text
stringlengths 938
1.05M
|
---|
// -----------------------------------------------------------
// Legal Notice: (C)2007 Altera Corporation. All rights reserved. Your
// use of Altera Corporation's design tools, logic functions and other
// software and tools, and its AMPP partner logic functions, and any
// output files any of the foregoing (including device programming or
// simulation files), and any associated documentation or information are
// expressly subject to the terms and conditions of the Altera Program
// License Subscription Agreement or other applicable license agreement,
// including, without limitation, that your use is for the sole purpose
// of programming logic devices manufactured by Altera and sold by Altera
// or its authorized distributors. Please refer to the applicable
// agreement for further details.
//
// Description: Single clock Avalon-ST FIFO.
// -----------------------------------------------------------
`timescale 1 ns / 1 ns
//altera message_off 10036
module altera_avalon_sc_fifo
#(
// --------------------------------------------------
// Parameters
// --------------------------------------------------
parameter SYMBOLS_PER_BEAT = 1,
parameter BITS_PER_SYMBOL = 8,
parameter FIFO_DEPTH = 16,
parameter CHANNEL_WIDTH = 0,
parameter ERROR_WIDTH = 0,
parameter USE_PACKETS = 0,
parameter USE_FILL_LEVEL = 0,
parameter USE_STORE_FORWARD = 0,
parameter USE_ALMOST_FULL_IF = 0,
parameter USE_ALMOST_EMPTY_IF = 0,
// --------------------------------------------------
// Empty latency is defined as the number of cycles
// required for a write to deassert the empty flag.
// For example, a latency of 1 means that the empty
// flag is deasserted on the cycle after a write.
//
// Another way to think of it is the latency for a
// write to propagate to the output.
//
// An empty latency of 0 implies lookahead, which is
// only implemented for the register-based FIFO.
// --------------------------------------------------
parameter EMPTY_LATENCY = 3,
parameter USE_MEMORY_BLOCKS = 1,
// --------------------------------------------------
// Internal Parameters
// --------------------------------------------------
parameter DATA_WIDTH = SYMBOLS_PER_BEAT * BITS_PER_SYMBOL,
parameter EMPTY_WIDTH = log2ceil(SYMBOLS_PER_BEAT)
)
(
// --------------------------------------------------
// Ports
// --------------------------------------------------
input clk,
input reset,
input [DATA_WIDTH-1: 0] in_data,
input in_valid,
input in_startofpacket,
input in_endofpacket,
input [((EMPTY_WIDTH>0) ? (EMPTY_WIDTH-1):0) : 0] in_empty,
input [((ERROR_WIDTH>0) ? (ERROR_WIDTH-1):0) : 0] in_error,
input [((CHANNEL_WIDTH>0) ? (CHANNEL_WIDTH-1):0): 0] in_channel,
output in_ready,
output [DATA_WIDTH-1 : 0] out_data,
output reg out_valid,
output out_startofpacket,
output out_endofpacket,
output [((EMPTY_WIDTH>0) ? (EMPTY_WIDTH-1):0) : 0] out_empty,
output [((ERROR_WIDTH>0) ? (ERROR_WIDTH-1):0) : 0] out_error,
output [((CHANNEL_WIDTH>0) ? (CHANNEL_WIDTH-1):0): 0] out_channel,
input out_ready,
input [(USE_STORE_FORWARD ? 2 : 1) : 0] csr_address,
input csr_write,
input csr_read,
input [31 : 0] csr_writedata,
output reg [31 : 0] csr_readdata,
output wire almost_full_data,
output wire almost_empty_data
);
// --------------------------------------------------
// Local Parameters
// --------------------------------------------------
localparam ADDR_WIDTH = log2ceil(FIFO_DEPTH);
localparam DEPTH = FIFO_DEPTH;
localparam PKT_SIGNALS_WIDTH = 2 + EMPTY_WIDTH;
localparam PAYLOAD_WIDTH = (USE_PACKETS == 1) ?
2 + EMPTY_WIDTH + DATA_WIDTH + ERROR_WIDTH + CHANNEL_WIDTH:
DATA_WIDTH + ERROR_WIDTH + CHANNEL_WIDTH;
// --------------------------------------------------
// Internal Signals
// --------------------------------------------------
genvar i;
reg [PAYLOAD_WIDTH-1 : 0] mem [DEPTH-1 : 0];
reg [ADDR_WIDTH-1 : 0] wr_ptr;
reg [ADDR_WIDTH-1 : 0] rd_ptr;
reg [DEPTH-1 : 0] mem_used;
wire [ADDR_WIDTH-1 : 0] next_wr_ptr;
wire [ADDR_WIDTH-1 : 0] next_rd_ptr;
wire [ADDR_WIDTH-1 : 0] incremented_wr_ptr;
wire [ADDR_WIDTH-1 : 0] incremented_rd_ptr;
wire [ADDR_WIDTH-1 : 0] mem_rd_ptr;
wire read;
wire write;
reg empty;
reg next_empty;
reg full;
reg next_full;
wire [PKT_SIGNALS_WIDTH-1 : 0] in_packet_signals;
wire [PKT_SIGNALS_WIDTH-1 : 0] out_packet_signals;
wire [PAYLOAD_WIDTH-1 : 0] in_payload;
reg [PAYLOAD_WIDTH-1 : 0] internal_out_payload;
reg [PAYLOAD_WIDTH-1 : 0] out_payload;
reg internal_out_valid;
wire internal_out_ready;
reg [ADDR_WIDTH : 0] fifo_fill_level;
reg [ADDR_WIDTH : 0] fill_level;
reg [ADDR_WIDTH-1 : 0] sop_ptr = 0;
wire [ADDR_WIDTH-1 : 0] curr_sop_ptr;
reg [23:0] almost_full_threshold;
reg [23:0] almost_empty_threshold;
reg [23:0] cut_through_threshold;
reg [15:0] pkt_cnt;
reg drop_on_error_en;
reg error_in_pkt;
reg pkt_has_started;
reg sop_has_left_fifo;
reg fifo_too_small_r;
reg pkt_cnt_eq_zero;
reg pkt_cnt_eq_one;
wire wait_for_threshold;
reg pkt_mode;
wire wait_for_pkt;
wire ok_to_forward;
wire in_pkt_eop_arrive;
wire out_pkt_leave;
wire in_pkt_start;
wire in_pkt_error;
wire drop_on_error;
wire fifo_too_small;
wire out_pkt_sop_leave;
wire [31:0] max_fifo_size;
reg fifo_fill_level_lt_cut_through_threshold;
// --------------------------------------------------
// Define Payload
//
// Icky part where we decide which signals form the
// payload to the FIFO with generate blocks.
// --------------------------------------------------
generate
if (EMPTY_WIDTH > 0) begin : gen_blk1
assign in_packet_signals = {in_startofpacket, in_endofpacket, in_empty};
assign {out_startofpacket, out_endofpacket, out_empty} = out_packet_signals;
end
else begin : gen_blk1_else
assign out_empty = in_error;
assign in_packet_signals = {in_startofpacket, in_endofpacket};
assign {out_startofpacket, out_endofpacket} = out_packet_signals;
end
endgenerate
generate
if (USE_PACKETS) begin : gen_blk2
if (ERROR_WIDTH > 0) begin : gen_blk3
if (CHANNEL_WIDTH > 0) begin : gen_blk4
assign in_payload = {in_packet_signals, in_data, in_error, in_channel};
assign {out_packet_signals, out_data, out_error, out_channel} = out_payload;
end
else begin : gen_blk4_else
assign out_channel = in_channel;
assign in_payload = {in_packet_signals, in_data, in_error};
assign {out_packet_signals, out_data, out_error} = out_payload;
end
end
else begin : gen_blk3_else
assign out_error = in_error;
if (CHANNEL_WIDTH > 0) begin : gen_blk5
assign in_payload = {in_packet_signals, in_data, in_channel};
assign {out_packet_signals, out_data, out_channel} = out_payload;
end
else begin : gen_blk5_else
assign out_channel = in_channel;
assign in_payload = {in_packet_signals, in_data};
assign {out_packet_signals, out_data} = out_payload;
end
end
end
else begin : gen_blk2_else
assign out_packet_signals = 0;
if (ERROR_WIDTH > 0) begin : gen_blk6
if (CHANNEL_WIDTH > 0) begin : gen_blk7
assign in_payload = {in_data, in_error, in_channel};
assign {out_data, out_error, out_channel} = out_payload;
end
else begin : gen_blk7_else
assign out_channel = in_channel;
assign in_payload = {in_data, in_error};
assign {out_data, out_error} = out_payload;
end
end
else begin : gen_blk6_else
assign out_error = in_error;
if (CHANNEL_WIDTH > 0) begin : gen_blk8
assign in_payload = {in_data, in_channel};
assign {out_data, out_channel} = out_payload;
end
else begin : gen_blk8_else
assign out_channel = in_channel;
assign in_payload = in_data;
assign out_data = out_payload;
end
end
end
endgenerate
// --------------------------------------------------
// Memory-based FIFO storage
//
// To allow a ready latency of 0, the read index is
// obtained from the next read pointer and memory
// outputs are unregistered.
//
// If the empty latency is 1, we infer bypass logic
// around the memory so writes propagate to the
// outputs on the next cycle.
//
// Do not change the way this is coded: Quartus needs
// a perfect match to the template, and any attempt to
// refactor the two always blocks into one will break
// memory inference.
// --------------------------------------------------
generate if (USE_MEMORY_BLOCKS == 1) begin : gen_blk9
if (EMPTY_LATENCY == 1) begin : gen_blk10
always @(posedge clk) begin
if (in_valid && in_ready)
mem[wr_ptr] = in_payload;
internal_out_payload = mem[mem_rd_ptr];
end
end else begin : gen_blk10_else
always @(posedge clk) begin
if (in_valid && in_ready)
mem[wr_ptr] <= in_payload;
internal_out_payload <= mem[mem_rd_ptr];
end
end
assign mem_rd_ptr = next_rd_ptr;
end else begin : gen_blk9_else
// --------------------------------------------------
// Register-based FIFO storage
//
// Uses a shift register as the storage element. Each
// shift register slot has a bit which indicates if
// the slot is occupied (credit to Sam H for the idea).
// The occupancy bits are contiguous and start from the
// lsb, so 0000, 0001, 0011, 0111, 1111 for a 4-deep
// FIFO.
//
// Each slot is enabled during a read or when it
// is unoccupied. New data is always written to every
// going-to-be-empty slot (we keep track of which ones
// are actually useful with the occupancy bits). On a
// read we shift occupied slots.
//
// The exception is the last slot, which always gets
// new data when it is unoccupied.
// --------------------------------------------------
for (i = 0; i < DEPTH-1; i = i + 1) begin : shift_reg
always @(posedge clk or posedge reset) begin
if (reset) begin
mem[i] <= 0;
end
else if (read || !mem_used[i]) begin
if (!mem_used[i+1])
mem[i] <= in_payload;
else
mem[i] <= mem[i+1];
end
end
end
always @(posedge clk, posedge reset) begin
if (reset) begin
mem[DEPTH-1] <= 0;
end
else begin
if (DEPTH == 1) begin
if (write)
mem[DEPTH-1] <= in_payload;
end
else if (!mem_used[DEPTH-1])
mem[DEPTH-1] <= in_payload;
end
end
end
endgenerate
assign read = internal_out_ready && internal_out_valid && ok_to_forward;
assign write = in_ready && in_valid;
// --------------------------------------------------
// Pointer Management
// --------------------------------------------------
generate if (USE_MEMORY_BLOCKS == 1) begin : gen_blk11
assign incremented_wr_ptr = wr_ptr + 1'b1;
assign incremented_rd_ptr = rd_ptr + 1'b1;
assign next_wr_ptr = drop_on_error ? curr_sop_ptr : write ? incremented_wr_ptr : wr_ptr;
assign next_rd_ptr = (read) ? incremented_rd_ptr : rd_ptr;
always @(posedge clk or posedge reset) begin
if (reset) begin
wr_ptr <= 0;
rd_ptr <= 0;
end
else begin
wr_ptr <= next_wr_ptr;
rd_ptr <= next_rd_ptr;
end
end
end else begin : gen_blk11_else
// --------------------------------------------------
// Shift Register Occupancy Bits
//
// Consider a 4-deep FIFO with 2 entries: 0011
// On a read and write, do not modify the bits.
// On a write, left-shift the bits to get 0111.
// On a read, right-shift the bits to get 0001.
//
// Also, on a write we set bit0 (the head), while
// clearing the tail on a read.
// --------------------------------------------------
always @(posedge clk or posedge reset) begin
if (reset) begin
mem_used[0] <= 0;
end
else begin
if (write ^ read) begin
if (write)
mem_used[0] <= 1;
else if (read) begin
if (DEPTH > 1)
mem_used[0] <= mem_used[1];
else
mem_used[0] <= 0;
end
end
end
end
if (DEPTH > 1) begin : gen_blk12
always @(posedge clk or posedge reset) begin
if (reset) begin
mem_used[DEPTH-1] <= 0;
end
else begin
if (write ^ read) begin
mem_used[DEPTH-1] <= 0;
if (write)
mem_used[DEPTH-1] <= mem_used[DEPTH-2];
end
end
end
end
for (i = 1; i < DEPTH-1; i = i + 1) begin : storage_logic
always @(posedge clk, posedge reset) begin
if (reset) begin
mem_used[i] <= 0;
end
else begin
if (write ^ read) begin
if (write)
mem_used[i] <= mem_used[i-1];
else if (read)
mem_used[i] <= mem_used[i+1];
end
end
end
end
end
endgenerate
// --------------------------------------------------
// Memory FIFO Status Management
//
// Generates the full and empty signals from the
// pointers. The FIFO is full when the next write
// pointer will be equal to the read pointer after
// a write. Reading from a FIFO clears full.
//
// The FIFO is empty when the next read pointer will
// be equal to the write pointer after a read. Writing
// to a FIFO clears empty.
//
// A simultaneous read and write must not change any of
// the empty or full flags unless there is a drop on error event.
// --------------------------------------------------
generate if (USE_MEMORY_BLOCKS == 1) begin : gen_blk13
always @* begin
next_full = full;
next_empty = empty;
if (read && !write) begin
next_full = 1'b0;
if (incremented_rd_ptr == wr_ptr)
next_empty = 1'b1;
end
if (write && !read) begin
if (!drop_on_error)
next_empty = 1'b0;
else if (curr_sop_ptr == rd_ptr) // drop on error and only 1 pkt in fifo
next_empty = 1'b1;
if (incremented_wr_ptr == rd_ptr && !drop_on_error)
next_full = 1'b1;
end
if (write && read && drop_on_error) begin
if (curr_sop_ptr == next_rd_ptr)
next_empty = 1'b1;
end
end
always @(posedge clk or posedge reset) begin
if (reset) begin
empty <= 1;
full <= 0;
end
else begin
empty <= next_empty;
full <= next_full;
end
end
end else begin : gen_blk13_else
// --------------------------------------------------
// Register FIFO Status Management
//
// Full when the tail occupancy bit is 1. Empty when
// the head occupancy bit is 0.
// --------------------------------------------------
always @* begin
full = mem_used[DEPTH-1];
empty = !mem_used[0];
// ------------------------------------------
// For a single slot FIFO, reading clears the
// full status immediately.
// ------------------------------------------
if (DEPTH == 1)
full = mem_used[0] && !read;
internal_out_payload = mem[0];
// ------------------------------------------
// Writes clear empty immediately for lookahead modes.
// Note that we use in_valid instead of write to avoid
// combinational loops (in lookahead mode, qualifying
// with in_ready is meaningless).
//
// In a 1-deep FIFO, a possible combinational loop runs
// from write -> out_valid -> out_ready -> write
// ------------------------------------------
if (EMPTY_LATENCY == 0) begin
empty = !mem_used[0] && !in_valid;
if (!mem_used[0] && in_valid)
internal_out_payload = in_payload;
end
end
end
endgenerate
// --------------------------------------------------
// Avalon-ST Signals
//
// The in_ready signal is straightforward.
//
// To match memory latency when empty latency > 1,
// out_valid assertions must be delayed by one clock
// cycle.
//
// Note: out_valid deassertions must not be delayed or
// the FIFO will underflow.
// --------------------------------------------------
assign in_ready = !full;
assign internal_out_ready = out_ready || !out_valid;
generate if (EMPTY_LATENCY > 1) begin : gen_blk14
always @(posedge clk or posedge reset) begin
if (reset)
internal_out_valid <= 0;
else begin
internal_out_valid <= !empty & ok_to_forward & ~drop_on_error;
if (read) begin
if (incremented_rd_ptr == wr_ptr)
internal_out_valid <= 1'b0;
end
end
end
end else begin : gen_blk14_else
always @* begin
internal_out_valid = !empty & ok_to_forward;
end
end
endgenerate
// --------------------------------------------------
// Single Output Pipeline Stage
//
// This output pipeline stage is enabled if the FIFO's
// empty latency is set to 3 (default). It is disabled
// for all other allowed latencies.
//
// Reason: The memory outputs are unregistered, so we have to
// register the output or fmax will drop if combinatorial
// logic is present on the output datapath.
//
// Q: The Avalon-ST spec says that I have to register my outputs
// But isn't the memory counted as a register?
// A: The path from the address lookup to the memory output is
// slow. Registering the memory outputs is a good idea.
//
// The registers get packed into the memory by the fitter
// which means minimal resources are consumed (the result
// is a altsyncram with registered outputs, available on
// all modern Altera devices).
//
// This output stage acts as an extra slot in the FIFO,
// and complicates the fill level.
// --------------------------------------------------
generate if (EMPTY_LATENCY == 3) begin : gen_blk15
always @(posedge clk or posedge reset) begin
if (reset) begin
out_valid <= 0;
out_payload <= 0;
end
else begin
if (internal_out_ready) begin
out_valid <= internal_out_valid & ok_to_forward;
out_payload <= internal_out_payload;
end
end
end
end
else begin : gen_blk15_else
always @* begin
out_valid = internal_out_valid;
out_payload = internal_out_payload;
end
end
endgenerate
// --------------------------------------------------
// Fill Level
//
// The fill level is calculated from the next write
// and read pointers to avoid unnecessary latency
// and logic.
//
// However, if the store-and-forward mode of the FIFO
// is enabled, the fill level is an up-down counter
// for fmax optimization reasons.
//
// If the output pipeline is enabled, the fill level
// must account for it, or we'll always be off by one.
// This may, or may not be important depending on the
// application.
//
// For now, we'll always calculate the exact fill level
// at the cost of an extra adder when the output stage
// is enabled.
// --------------------------------------------------
generate if (USE_FILL_LEVEL) begin : gen_blk16
wire [31:0] depth32;
assign depth32 = DEPTH;
if (USE_STORE_FORWARD) begin
reg [ADDR_WIDTH : 0] curr_packet_len_less_one;
// --------------------------------------------------
// We only drop on endofpacket. As long as we don't add to the fill
// level on the dropped endofpacket cycle, we can simply subtract
// (packet length - 1) from the fill level for dropped packets.
// --------------------------------------------------
always @(posedge clk or posedge reset) begin
if (reset) begin
curr_packet_len_less_one <= 0;
end else begin
if (write) begin
curr_packet_len_less_one <= curr_packet_len_less_one + 1'b1;
if (in_endofpacket)
curr_packet_len_less_one <= 0;
end
end
end
always @(posedge clk or posedge reset) begin
if (reset) begin
fifo_fill_level <= 0;
end else if (drop_on_error) begin
fifo_fill_level <= fifo_fill_level - curr_packet_len_less_one;
if (read)
fifo_fill_level <= fifo_fill_level - curr_packet_len_less_one - 1'b1;
end else if (write && !read) begin
fifo_fill_level <= fifo_fill_level + 1'b1;
end else if (read && !write) begin
fifo_fill_level <= fifo_fill_level - 1'b1;
end
end
end else begin
always @(posedge clk or posedge reset) begin
if (reset)
fifo_fill_level <= 0;
else if (next_full & !drop_on_error)
fifo_fill_level <= depth32[ADDR_WIDTH:0];
else begin
fifo_fill_level[ADDR_WIDTH] <= 1'b0;
fifo_fill_level[ADDR_WIDTH-1 : 0] <= next_wr_ptr - next_rd_ptr;
end
end
end
always @* begin
fill_level = fifo_fill_level;
if (EMPTY_LATENCY == 3)
fill_level = fifo_fill_level + {{ADDR_WIDTH{1'b0}}, out_valid};
end
end
else begin : gen_blk16_else
always @* begin
fill_level = 0;
end
end
endgenerate
generate if (USE_ALMOST_FULL_IF) begin : gen_blk17
assign almost_full_data = (fill_level >= almost_full_threshold);
end
else
assign almost_full_data = 0;
endgenerate
generate if (USE_ALMOST_EMPTY_IF) begin : gen_blk18
assign almost_empty_data = (fill_level <= almost_empty_threshold);
end
else
assign almost_empty_data = 0;
endgenerate
// --------------------------------------------------
// Avalon-MM Status & Control Connection Point
//
// Register map:
//
// | Addr | RW | 31 - 0 |
// | 0 | R | Fill level |
//
// The registering of this connection point means
// that there is a cycle of latency between
// reads/writes and the updating of the fill level.
// --------------------------------------------------
generate if (USE_STORE_FORWARD) begin : gen_blk19
assign max_fifo_size = FIFO_DEPTH - 1;
always @(posedge clk or posedge reset) begin
if (reset) begin
almost_full_threshold <= max_fifo_size[23 : 0];
almost_empty_threshold <= 0;
cut_through_threshold <= 0;
drop_on_error_en <= 0;
csr_readdata <= 0;
pkt_mode <= 1'b1;
end
else begin
if (csr_read) begin
csr_readdata <= 32'b0;
if (csr_address == 5)
csr_readdata <= {31'b0, drop_on_error_en};
else if (csr_address == 4)
csr_readdata <= {8'b0, cut_through_threshold};
else if (csr_address == 3)
csr_readdata <= {8'b0, almost_empty_threshold};
else if (csr_address == 2)
csr_readdata <= {8'b0, almost_full_threshold};
else if (csr_address == 0)
csr_readdata <= {{(31 - ADDR_WIDTH){1'b0}}, fill_level};
end
else if (csr_write) begin
if(csr_address == 3'b101)
drop_on_error_en <= csr_writedata[0];
else if(csr_address == 3'b100) begin
cut_through_threshold <= csr_writedata[23:0];
pkt_mode <= (csr_writedata[23:0] == 0);
end
else if(csr_address == 3'b011)
almost_empty_threshold <= csr_writedata[23:0];
else if(csr_address == 3'b010)
almost_full_threshold <= csr_writedata[23:0];
end
end
end
end
else if (USE_ALMOST_FULL_IF || USE_ALMOST_EMPTY_IF) begin : gen_blk19_else1
assign max_fifo_size = FIFO_DEPTH - 1;
always @(posedge clk or posedge reset) begin
if (reset) begin
almost_full_threshold <= max_fifo_size[23 : 0];
almost_empty_threshold <= 0;
csr_readdata <= 0;
end
else begin
if (csr_read) begin
csr_readdata <= 32'b0;
if (csr_address == 3)
csr_readdata <= {8'b0, almost_empty_threshold};
else if (csr_address == 2)
csr_readdata <= {8'b0, almost_full_threshold};
else if (csr_address == 0)
csr_readdata <= {{(31 - ADDR_WIDTH){1'b0}}, fill_level};
end
else if (csr_write) begin
if(csr_address == 3'b011)
almost_empty_threshold <= csr_writedata[23:0];
else if(csr_address == 3'b010)
almost_full_threshold <= csr_writedata[23:0];
end
end
end
end
else begin : gen_blk19_else2
always @(posedge clk or posedge reset) begin
if (reset) begin
csr_readdata <= 0;
end
else if (csr_read) begin
csr_readdata <= 0;
if (csr_address == 0)
csr_readdata <= {{(31 - ADDR_WIDTH){1'b0}}, fill_level};
end
end
end
endgenerate
// --------------------------------------------------
// Store and forward logic
// --------------------------------------------------
// if the fifo gets full before the entire packet or the
// cut-threshold condition is met then start sending out
// data in order to avoid dead-lock situation
generate if (USE_STORE_FORWARD) begin : gen_blk20
assign wait_for_threshold = (fifo_fill_level_lt_cut_through_threshold) & wait_for_pkt ;
assign wait_for_pkt = pkt_cnt_eq_zero | (pkt_cnt_eq_one & out_pkt_leave);
assign ok_to_forward = (pkt_mode ? (~wait_for_pkt | ~pkt_has_started) :
~wait_for_threshold) | fifo_too_small_r;
assign in_pkt_eop_arrive = in_valid & in_ready & in_endofpacket;
assign in_pkt_start = in_valid & in_ready & in_startofpacket;
assign in_pkt_error = in_valid & in_ready & |in_error;
assign out_pkt_sop_leave = out_valid & out_ready & out_startofpacket;
assign out_pkt_leave = out_valid & out_ready & out_endofpacket;
assign fifo_too_small = (pkt_mode ? wait_for_pkt : wait_for_threshold) & full & out_ready;
// count packets coming and going into the fifo
always @(posedge clk or posedge reset) begin
if (reset) begin
pkt_cnt <= 0;
pkt_has_started <= 0;
sop_has_left_fifo <= 0;
fifo_too_small_r <= 0;
pkt_cnt_eq_zero <= 1'b1;
pkt_cnt_eq_one <= 1'b0;
fifo_fill_level_lt_cut_through_threshold <= 1'b1;
end
else begin
fifo_fill_level_lt_cut_through_threshold <= fifo_fill_level < cut_through_threshold;
fifo_too_small_r <= fifo_too_small;
if( in_pkt_eop_arrive )
sop_has_left_fifo <= 1'b0;
else if (out_pkt_sop_leave & pkt_cnt_eq_zero )
sop_has_left_fifo <= 1'b1;
if (in_pkt_eop_arrive & ~out_pkt_leave & ~drop_on_error ) begin
pkt_cnt <= pkt_cnt + 1'b1;
pkt_cnt_eq_zero <= 0;
if (pkt_cnt == 0)
pkt_cnt_eq_one <= 1'b1;
else
pkt_cnt_eq_one <= 1'b0;
end
else if((~in_pkt_eop_arrive | drop_on_error) & out_pkt_leave) begin
pkt_cnt <= pkt_cnt - 1'b1;
if (pkt_cnt == 1)
pkt_cnt_eq_zero <= 1'b1;
else
pkt_cnt_eq_zero <= 1'b0;
if (pkt_cnt == 2)
pkt_cnt_eq_one <= 1'b1;
else
pkt_cnt_eq_one <= 1'b0;
end
if (in_pkt_start)
pkt_has_started <= 1'b1;
else if (in_pkt_eop_arrive)
pkt_has_started <= 1'b0;
end
end
// drop on error logic
always @(posedge clk or posedge reset) begin
if (reset) begin
sop_ptr <= 0;
error_in_pkt <= 0;
end
else begin
// save the location of the SOP
if ( in_pkt_start )
sop_ptr <= wr_ptr;
// remember if error in pkt
// log error only if packet has already started
if (in_pkt_eop_arrive)
error_in_pkt <= 1'b0;
else if ( in_pkt_error & (pkt_has_started | in_pkt_start))
error_in_pkt <= 1'b1;
end
end
assign drop_on_error = drop_on_error_en & (error_in_pkt | in_pkt_error) & in_pkt_eop_arrive &
~sop_has_left_fifo & ~(out_pkt_sop_leave & pkt_cnt_eq_zero);
assign curr_sop_ptr = (write && in_startofpacket && in_endofpacket) ? wr_ptr : sop_ptr;
end
else begin : gen_blk20_else
assign ok_to_forward = 1'b1;
assign drop_on_error = 1'b0;
if (ADDR_WIDTH <= 1)
assign curr_sop_ptr = 1'b0;
else
assign curr_sop_ptr = {ADDR_WIDTH - 1 { 1'b0 }};
end
endgenerate
// --------------------------------------------------
// Calculates the log2ceil of the input value
// --------------------------------------------------
function integer log2ceil;
input integer val;
reg[31:0] i;
begin
i = 1;
log2ceil = 0;
while (i < val) begin
log2ceil = log2ceil + 1;
i = i[30:0] << 1;
end
end
endfunction
endmodule
|
// -----------------------------------------------------------
// Legal Notice: (C)2007 Altera Corporation. All rights reserved. Your
// use of Altera Corporation's design tools, logic functions and other
// software and tools, and its AMPP partner logic functions, and any
// output files any of the foregoing (including device programming or
// simulation files), and any associated documentation or information are
// expressly subject to the terms and conditions of the Altera Program
// License Subscription Agreement or other applicable license agreement,
// including, without limitation, that your use is for the sole purpose
// of programming logic devices manufactured by Altera and sold by Altera
// or its authorized distributors. Please refer to the applicable
// agreement for further details.
//
// Description: Single clock Avalon-ST FIFO.
// -----------------------------------------------------------
`timescale 1 ns / 1 ns
//altera message_off 10036
module altera_avalon_sc_fifo
#(
// --------------------------------------------------
// Parameters
// --------------------------------------------------
parameter SYMBOLS_PER_BEAT = 1,
parameter BITS_PER_SYMBOL = 8,
parameter FIFO_DEPTH = 16,
parameter CHANNEL_WIDTH = 0,
parameter ERROR_WIDTH = 0,
parameter USE_PACKETS = 0,
parameter USE_FILL_LEVEL = 0,
parameter USE_STORE_FORWARD = 0,
parameter USE_ALMOST_FULL_IF = 0,
parameter USE_ALMOST_EMPTY_IF = 0,
// --------------------------------------------------
// Empty latency is defined as the number of cycles
// required for a write to deassert the empty flag.
// For example, a latency of 1 means that the empty
// flag is deasserted on the cycle after a write.
//
// Another way to think of it is the latency for a
// write to propagate to the output.
//
// An empty latency of 0 implies lookahead, which is
// only implemented for the register-based FIFO.
// --------------------------------------------------
parameter EMPTY_LATENCY = 3,
parameter USE_MEMORY_BLOCKS = 1,
// --------------------------------------------------
// Internal Parameters
// --------------------------------------------------
parameter DATA_WIDTH = SYMBOLS_PER_BEAT * BITS_PER_SYMBOL,
parameter EMPTY_WIDTH = log2ceil(SYMBOLS_PER_BEAT)
)
(
// --------------------------------------------------
// Ports
// --------------------------------------------------
input clk,
input reset,
input [DATA_WIDTH-1: 0] in_data,
input in_valid,
input in_startofpacket,
input in_endofpacket,
input [((EMPTY_WIDTH>0) ? (EMPTY_WIDTH-1):0) : 0] in_empty,
input [((ERROR_WIDTH>0) ? (ERROR_WIDTH-1):0) : 0] in_error,
input [((CHANNEL_WIDTH>0) ? (CHANNEL_WIDTH-1):0): 0] in_channel,
output in_ready,
output [DATA_WIDTH-1 : 0] out_data,
output reg out_valid,
output out_startofpacket,
output out_endofpacket,
output [((EMPTY_WIDTH>0) ? (EMPTY_WIDTH-1):0) : 0] out_empty,
output [((ERROR_WIDTH>0) ? (ERROR_WIDTH-1):0) : 0] out_error,
output [((CHANNEL_WIDTH>0) ? (CHANNEL_WIDTH-1):0): 0] out_channel,
input out_ready,
input [(USE_STORE_FORWARD ? 2 : 1) : 0] csr_address,
input csr_write,
input csr_read,
input [31 : 0] csr_writedata,
output reg [31 : 0] csr_readdata,
output wire almost_full_data,
output wire almost_empty_data
);
// --------------------------------------------------
// Local Parameters
// --------------------------------------------------
localparam ADDR_WIDTH = log2ceil(FIFO_DEPTH);
localparam DEPTH = FIFO_DEPTH;
localparam PKT_SIGNALS_WIDTH = 2 + EMPTY_WIDTH;
localparam PAYLOAD_WIDTH = (USE_PACKETS == 1) ?
2 + EMPTY_WIDTH + DATA_WIDTH + ERROR_WIDTH + CHANNEL_WIDTH:
DATA_WIDTH + ERROR_WIDTH + CHANNEL_WIDTH;
// --------------------------------------------------
// Internal Signals
// --------------------------------------------------
genvar i;
reg [PAYLOAD_WIDTH-1 : 0] mem [DEPTH-1 : 0];
reg [ADDR_WIDTH-1 : 0] wr_ptr;
reg [ADDR_WIDTH-1 : 0] rd_ptr;
reg [DEPTH-1 : 0] mem_used;
wire [ADDR_WIDTH-1 : 0] next_wr_ptr;
wire [ADDR_WIDTH-1 : 0] next_rd_ptr;
wire [ADDR_WIDTH-1 : 0] incremented_wr_ptr;
wire [ADDR_WIDTH-1 : 0] incremented_rd_ptr;
wire [ADDR_WIDTH-1 : 0] mem_rd_ptr;
wire read;
wire write;
reg empty;
reg next_empty;
reg full;
reg next_full;
wire [PKT_SIGNALS_WIDTH-1 : 0] in_packet_signals;
wire [PKT_SIGNALS_WIDTH-1 : 0] out_packet_signals;
wire [PAYLOAD_WIDTH-1 : 0] in_payload;
reg [PAYLOAD_WIDTH-1 : 0] internal_out_payload;
reg [PAYLOAD_WIDTH-1 : 0] out_payload;
reg internal_out_valid;
wire internal_out_ready;
reg [ADDR_WIDTH : 0] fifo_fill_level;
reg [ADDR_WIDTH : 0] fill_level;
reg [ADDR_WIDTH-1 : 0] sop_ptr = 0;
wire [ADDR_WIDTH-1 : 0] curr_sop_ptr;
reg [23:0] almost_full_threshold;
reg [23:0] almost_empty_threshold;
reg [23:0] cut_through_threshold;
reg [15:0] pkt_cnt;
reg drop_on_error_en;
reg error_in_pkt;
reg pkt_has_started;
reg sop_has_left_fifo;
reg fifo_too_small_r;
reg pkt_cnt_eq_zero;
reg pkt_cnt_eq_one;
wire wait_for_threshold;
reg pkt_mode;
wire wait_for_pkt;
wire ok_to_forward;
wire in_pkt_eop_arrive;
wire out_pkt_leave;
wire in_pkt_start;
wire in_pkt_error;
wire drop_on_error;
wire fifo_too_small;
wire out_pkt_sop_leave;
wire [31:0] max_fifo_size;
reg fifo_fill_level_lt_cut_through_threshold;
// --------------------------------------------------
// Define Payload
//
// Icky part where we decide which signals form the
// payload to the FIFO with generate blocks.
// --------------------------------------------------
generate
if (EMPTY_WIDTH > 0) begin : gen_blk1
assign in_packet_signals = {in_startofpacket, in_endofpacket, in_empty};
assign {out_startofpacket, out_endofpacket, out_empty} = out_packet_signals;
end
else begin : gen_blk1_else
assign out_empty = in_error;
assign in_packet_signals = {in_startofpacket, in_endofpacket};
assign {out_startofpacket, out_endofpacket} = out_packet_signals;
end
endgenerate
generate
if (USE_PACKETS) begin : gen_blk2
if (ERROR_WIDTH > 0) begin : gen_blk3
if (CHANNEL_WIDTH > 0) begin : gen_blk4
assign in_payload = {in_packet_signals, in_data, in_error, in_channel};
assign {out_packet_signals, out_data, out_error, out_channel} = out_payload;
end
else begin : gen_blk4_else
assign out_channel = in_channel;
assign in_payload = {in_packet_signals, in_data, in_error};
assign {out_packet_signals, out_data, out_error} = out_payload;
end
end
else begin : gen_blk3_else
assign out_error = in_error;
if (CHANNEL_WIDTH > 0) begin : gen_blk5
assign in_payload = {in_packet_signals, in_data, in_channel};
assign {out_packet_signals, out_data, out_channel} = out_payload;
end
else begin : gen_blk5_else
assign out_channel = in_channel;
assign in_payload = {in_packet_signals, in_data};
assign {out_packet_signals, out_data} = out_payload;
end
end
end
else begin : gen_blk2_else
assign out_packet_signals = 0;
if (ERROR_WIDTH > 0) begin : gen_blk6
if (CHANNEL_WIDTH > 0) begin : gen_blk7
assign in_payload = {in_data, in_error, in_channel};
assign {out_data, out_error, out_channel} = out_payload;
end
else begin : gen_blk7_else
assign out_channel = in_channel;
assign in_payload = {in_data, in_error};
assign {out_data, out_error} = out_payload;
end
end
else begin : gen_blk6_else
assign out_error = in_error;
if (CHANNEL_WIDTH > 0) begin : gen_blk8
assign in_payload = {in_data, in_channel};
assign {out_data, out_channel} = out_payload;
end
else begin : gen_blk8_else
assign out_channel = in_channel;
assign in_payload = in_data;
assign out_data = out_payload;
end
end
end
endgenerate
// --------------------------------------------------
// Memory-based FIFO storage
//
// To allow a ready latency of 0, the read index is
// obtained from the next read pointer and memory
// outputs are unregistered.
//
// If the empty latency is 1, we infer bypass logic
// around the memory so writes propagate to the
// outputs on the next cycle.
//
// Do not change the way this is coded: Quartus needs
// a perfect match to the template, and any attempt to
// refactor the two always blocks into one will break
// memory inference.
// --------------------------------------------------
generate if (USE_MEMORY_BLOCKS == 1) begin : gen_blk9
if (EMPTY_LATENCY == 1) begin : gen_blk10
always @(posedge clk) begin
if (in_valid && in_ready)
mem[wr_ptr] = in_payload;
internal_out_payload = mem[mem_rd_ptr];
end
end else begin : gen_blk10_else
always @(posedge clk) begin
if (in_valid && in_ready)
mem[wr_ptr] <= in_payload;
internal_out_payload <= mem[mem_rd_ptr];
end
end
assign mem_rd_ptr = next_rd_ptr;
end else begin : gen_blk9_else
// --------------------------------------------------
// Register-based FIFO storage
//
// Uses a shift register as the storage element. Each
// shift register slot has a bit which indicates if
// the slot is occupied (credit to Sam H for the idea).
// The occupancy bits are contiguous and start from the
// lsb, so 0000, 0001, 0011, 0111, 1111 for a 4-deep
// FIFO.
//
// Each slot is enabled during a read or when it
// is unoccupied. New data is always written to every
// going-to-be-empty slot (we keep track of which ones
// are actually useful with the occupancy bits). On a
// read we shift occupied slots.
//
// The exception is the last slot, which always gets
// new data when it is unoccupied.
// --------------------------------------------------
for (i = 0; i < DEPTH-1; i = i + 1) begin : shift_reg
always @(posedge clk or posedge reset) begin
if (reset) begin
mem[i] <= 0;
end
else if (read || !mem_used[i]) begin
if (!mem_used[i+1])
mem[i] <= in_payload;
else
mem[i] <= mem[i+1];
end
end
end
always @(posedge clk, posedge reset) begin
if (reset) begin
mem[DEPTH-1] <= 0;
end
else begin
if (DEPTH == 1) begin
if (write)
mem[DEPTH-1] <= in_payload;
end
else if (!mem_used[DEPTH-1])
mem[DEPTH-1] <= in_payload;
end
end
end
endgenerate
assign read = internal_out_ready && internal_out_valid && ok_to_forward;
assign write = in_ready && in_valid;
// --------------------------------------------------
// Pointer Management
// --------------------------------------------------
generate if (USE_MEMORY_BLOCKS == 1) begin : gen_blk11
assign incremented_wr_ptr = wr_ptr + 1'b1;
assign incremented_rd_ptr = rd_ptr + 1'b1;
assign next_wr_ptr = drop_on_error ? curr_sop_ptr : write ? incremented_wr_ptr : wr_ptr;
assign next_rd_ptr = (read) ? incremented_rd_ptr : rd_ptr;
always @(posedge clk or posedge reset) begin
if (reset) begin
wr_ptr <= 0;
rd_ptr <= 0;
end
else begin
wr_ptr <= next_wr_ptr;
rd_ptr <= next_rd_ptr;
end
end
end else begin : gen_blk11_else
// --------------------------------------------------
// Shift Register Occupancy Bits
//
// Consider a 4-deep FIFO with 2 entries: 0011
// On a read and write, do not modify the bits.
// On a write, left-shift the bits to get 0111.
// On a read, right-shift the bits to get 0001.
//
// Also, on a write we set bit0 (the head), while
// clearing the tail on a read.
// --------------------------------------------------
always @(posedge clk or posedge reset) begin
if (reset) begin
mem_used[0] <= 0;
end
else begin
if (write ^ read) begin
if (write)
mem_used[0] <= 1;
else if (read) begin
if (DEPTH > 1)
mem_used[0] <= mem_used[1];
else
mem_used[0] <= 0;
end
end
end
end
if (DEPTH > 1) begin : gen_blk12
always @(posedge clk or posedge reset) begin
if (reset) begin
mem_used[DEPTH-1] <= 0;
end
else begin
if (write ^ read) begin
mem_used[DEPTH-1] <= 0;
if (write)
mem_used[DEPTH-1] <= mem_used[DEPTH-2];
end
end
end
end
for (i = 1; i < DEPTH-1; i = i + 1) begin : storage_logic
always @(posedge clk, posedge reset) begin
if (reset) begin
mem_used[i] <= 0;
end
else begin
if (write ^ read) begin
if (write)
mem_used[i] <= mem_used[i-1];
else if (read)
mem_used[i] <= mem_used[i+1];
end
end
end
end
end
endgenerate
// --------------------------------------------------
// Memory FIFO Status Management
//
// Generates the full and empty signals from the
// pointers. The FIFO is full when the next write
// pointer will be equal to the read pointer after
// a write. Reading from a FIFO clears full.
//
// The FIFO is empty when the next read pointer will
// be equal to the write pointer after a read. Writing
// to a FIFO clears empty.
//
// A simultaneous read and write must not change any of
// the empty or full flags unless there is a drop on error event.
// --------------------------------------------------
generate if (USE_MEMORY_BLOCKS == 1) begin : gen_blk13
always @* begin
next_full = full;
next_empty = empty;
if (read && !write) begin
next_full = 1'b0;
if (incremented_rd_ptr == wr_ptr)
next_empty = 1'b1;
end
if (write && !read) begin
if (!drop_on_error)
next_empty = 1'b0;
else if (curr_sop_ptr == rd_ptr) // drop on error and only 1 pkt in fifo
next_empty = 1'b1;
if (incremented_wr_ptr == rd_ptr && !drop_on_error)
next_full = 1'b1;
end
if (write && read && drop_on_error) begin
if (curr_sop_ptr == next_rd_ptr)
next_empty = 1'b1;
end
end
always @(posedge clk or posedge reset) begin
if (reset) begin
empty <= 1;
full <= 0;
end
else begin
empty <= next_empty;
full <= next_full;
end
end
end else begin : gen_blk13_else
// --------------------------------------------------
// Register FIFO Status Management
//
// Full when the tail occupancy bit is 1. Empty when
// the head occupancy bit is 0.
// --------------------------------------------------
always @* begin
full = mem_used[DEPTH-1];
empty = !mem_used[0];
// ------------------------------------------
// For a single slot FIFO, reading clears the
// full status immediately.
// ------------------------------------------
if (DEPTH == 1)
full = mem_used[0] && !read;
internal_out_payload = mem[0];
// ------------------------------------------
// Writes clear empty immediately for lookahead modes.
// Note that we use in_valid instead of write to avoid
// combinational loops (in lookahead mode, qualifying
// with in_ready is meaningless).
//
// In a 1-deep FIFO, a possible combinational loop runs
// from write -> out_valid -> out_ready -> write
// ------------------------------------------
if (EMPTY_LATENCY == 0) begin
empty = !mem_used[0] && !in_valid;
if (!mem_used[0] && in_valid)
internal_out_payload = in_payload;
end
end
end
endgenerate
// --------------------------------------------------
// Avalon-ST Signals
//
// The in_ready signal is straightforward.
//
// To match memory latency when empty latency > 1,
// out_valid assertions must be delayed by one clock
// cycle.
//
// Note: out_valid deassertions must not be delayed or
// the FIFO will underflow.
// --------------------------------------------------
assign in_ready = !full;
assign internal_out_ready = out_ready || !out_valid;
generate if (EMPTY_LATENCY > 1) begin : gen_blk14
always @(posedge clk or posedge reset) begin
if (reset)
internal_out_valid <= 0;
else begin
internal_out_valid <= !empty & ok_to_forward & ~drop_on_error;
if (read) begin
if (incremented_rd_ptr == wr_ptr)
internal_out_valid <= 1'b0;
end
end
end
end else begin : gen_blk14_else
always @* begin
internal_out_valid = !empty & ok_to_forward;
end
end
endgenerate
// --------------------------------------------------
// Single Output Pipeline Stage
//
// This output pipeline stage is enabled if the FIFO's
// empty latency is set to 3 (default). It is disabled
// for all other allowed latencies.
//
// Reason: The memory outputs are unregistered, so we have to
// register the output or fmax will drop if combinatorial
// logic is present on the output datapath.
//
// Q: The Avalon-ST spec says that I have to register my outputs
// But isn't the memory counted as a register?
// A: The path from the address lookup to the memory output is
// slow. Registering the memory outputs is a good idea.
//
// The registers get packed into the memory by the fitter
// which means minimal resources are consumed (the result
// is a altsyncram with registered outputs, available on
// all modern Altera devices).
//
// This output stage acts as an extra slot in the FIFO,
// and complicates the fill level.
// --------------------------------------------------
generate if (EMPTY_LATENCY == 3) begin : gen_blk15
always @(posedge clk or posedge reset) begin
if (reset) begin
out_valid <= 0;
out_payload <= 0;
end
else begin
if (internal_out_ready) begin
out_valid <= internal_out_valid & ok_to_forward;
out_payload <= internal_out_payload;
end
end
end
end
else begin : gen_blk15_else
always @* begin
out_valid = internal_out_valid;
out_payload = internal_out_payload;
end
end
endgenerate
// --------------------------------------------------
// Fill Level
//
// The fill level is calculated from the next write
// and read pointers to avoid unnecessary latency
// and logic.
//
// However, if the store-and-forward mode of the FIFO
// is enabled, the fill level is an up-down counter
// for fmax optimization reasons.
//
// If the output pipeline is enabled, the fill level
// must account for it, or we'll always be off by one.
// This may, or may not be important depending on the
// application.
//
// For now, we'll always calculate the exact fill level
// at the cost of an extra adder when the output stage
// is enabled.
// --------------------------------------------------
generate if (USE_FILL_LEVEL) begin : gen_blk16
wire [31:0] depth32;
assign depth32 = DEPTH;
if (USE_STORE_FORWARD) begin
reg [ADDR_WIDTH : 0] curr_packet_len_less_one;
// --------------------------------------------------
// We only drop on endofpacket. As long as we don't add to the fill
// level on the dropped endofpacket cycle, we can simply subtract
// (packet length - 1) from the fill level for dropped packets.
// --------------------------------------------------
always @(posedge clk or posedge reset) begin
if (reset) begin
curr_packet_len_less_one <= 0;
end else begin
if (write) begin
curr_packet_len_less_one <= curr_packet_len_less_one + 1'b1;
if (in_endofpacket)
curr_packet_len_less_one <= 0;
end
end
end
always @(posedge clk or posedge reset) begin
if (reset) begin
fifo_fill_level <= 0;
end else if (drop_on_error) begin
fifo_fill_level <= fifo_fill_level - curr_packet_len_less_one;
if (read)
fifo_fill_level <= fifo_fill_level - curr_packet_len_less_one - 1'b1;
end else if (write && !read) begin
fifo_fill_level <= fifo_fill_level + 1'b1;
end else if (read && !write) begin
fifo_fill_level <= fifo_fill_level - 1'b1;
end
end
end else begin
always @(posedge clk or posedge reset) begin
if (reset)
fifo_fill_level <= 0;
else if (next_full & !drop_on_error)
fifo_fill_level <= depth32[ADDR_WIDTH:0];
else begin
fifo_fill_level[ADDR_WIDTH] <= 1'b0;
fifo_fill_level[ADDR_WIDTH-1 : 0] <= next_wr_ptr - next_rd_ptr;
end
end
end
always @* begin
fill_level = fifo_fill_level;
if (EMPTY_LATENCY == 3)
fill_level = fifo_fill_level + {{ADDR_WIDTH{1'b0}}, out_valid};
end
end
else begin : gen_blk16_else
always @* begin
fill_level = 0;
end
end
endgenerate
generate if (USE_ALMOST_FULL_IF) begin : gen_blk17
assign almost_full_data = (fill_level >= almost_full_threshold);
end
else
assign almost_full_data = 0;
endgenerate
generate if (USE_ALMOST_EMPTY_IF) begin : gen_blk18
assign almost_empty_data = (fill_level <= almost_empty_threshold);
end
else
assign almost_empty_data = 0;
endgenerate
// --------------------------------------------------
// Avalon-MM Status & Control Connection Point
//
// Register map:
//
// | Addr | RW | 31 - 0 |
// | 0 | R | Fill level |
//
// The registering of this connection point means
// that there is a cycle of latency between
// reads/writes and the updating of the fill level.
// --------------------------------------------------
generate if (USE_STORE_FORWARD) begin : gen_blk19
assign max_fifo_size = FIFO_DEPTH - 1;
always @(posedge clk or posedge reset) begin
if (reset) begin
almost_full_threshold <= max_fifo_size[23 : 0];
almost_empty_threshold <= 0;
cut_through_threshold <= 0;
drop_on_error_en <= 0;
csr_readdata <= 0;
pkt_mode <= 1'b1;
end
else begin
if (csr_read) begin
csr_readdata <= 32'b0;
if (csr_address == 5)
csr_readdata <= {31'b0, drop_on_error_en};
else if (csr_address == 4)
csr_readdata <= {8'b0, cut_through_threshold};
else if (csr_address == 3)
csr_readdata <= {8'b0, almost_empty_threshold};
else if (csr_address == 2)
csr_readdata <= {8'b0, almost_full_threshold};
else if (csr_address == 0)
csr_readdata <= {{(31 - ADDR_WIDTH){1'b0}}, fill_level};
end
else if (csr_write) begin
if(csr_address == 3'b101)
drop_on_error_en <= csr_writedata[0];
else if(csr_address == 3'b100) begin
cut_through_threshold <= csr_writedata[23:0];
pkt_mode <= (csr_writedata[23:0] == 0);
end
else if(csr_address == 3'b011)
almost_empty_threshold <= csr_writedata[23:0];
else if(csr_address == 3'b010)
almost_full_threshold <= csr_writedata[23:0];
end
end
end
end
else if (USE_ALMOST_FULL_IF || USE_ALMOST_EMPTY_IF) begin : gen_blk19_else1
assign max_fifo_size = FIFO_DEPTH - 1;
always @(posedge clk or posedge reset) begin
if (reset) begin
almost_full_threshold <= max_fifo_size[23 : 0];
almost_empty_threshold <= 0;
csr_readdata <= 0;
end
else begin
if (csr_read) begin
csr_readdata <= 32'b0;
if (csr_address == 3)
csr_readdata <= {8'b0, almost_empty_threshold};
else if (csr_address == 2)
csr_readdata <= {8'b0, almost_full_threshold};
else if (csr_address == 0)
csr_readdata <= {{(31 - ADDR_WIDTH){1'b0}}, fill_level};
end
else if (csr_write) begin
if(csr_address == 3'b011)
almost_empty_threshold <= csr_writedata[23:0];
else if(csr_address == 3'b010)
almost_full_threshold <= csr_writedata[23:0];
end
end
end
end
else begin : gen_blk19_else2
always @(posedge clk or posedge reset) begin
if (reset) begin
csr_readdata <= 0;
end
else if (csr_read) begin
csr_readdata <= 0;
if (csr_address == 0)
csr_readdata <= {{(31 - ADDR_WIDTH){1'b0}}, fill_level};
end
end
end
endgenerate
// --------------------------------------------------
// Store and forward logic
// --------------------------------------------------
// if the fifo gets full before the entire packet or the
// cut-threshold condition is met then start sending out
// data in order to avoid dead-lock situation
generate if (USE_STORE_FORWARD) begin : gen_blk20
assign wait_for_threshold = (fifo_fill_level_lt_cut_through_threshold) & wait_for_pkt ;
assign wait_for_pkt = pkt_cnt_eq_zero | (pkt_cnt_eq_one & out_pkt_leave);
assign ok_to_forward = (pkt_mode ? (~wait_for_pkt | ~pkt_has_started) :
~wait_for_threshold) | fifo_too_small_r;
assign in_pkt_eop_arrive = in_valid & in_ready & in_endofpacket;
assign in_pkt_start = in_valid & in_ready & in_startofpacket;
assign in_pkt_error = in_valid & in_ready & |in_error;
assign out_pkt_sop_leave = out_valid & out_ready & out_startofpacket;
assign out_pkt_leave = out_valid & out_ready & out_endofpacket;
assign fifo_too_small = (pkt_mode ? wait_for_pkt : wait_for_threshold) & full & out_ready;
// count packets coming and going into the fifo
always @(posedge clk or posedge reset) begin
if (reset) begin
pkt_cnt <= 0;
pkt_has_started <= 0;
sop_has_left_fifo <= 0;
fifo_too_small_r <= 0;
pkt_cnt_eq_zero <= 1'b1;
pkt_cnt_eq_one <= 1'b0;
fifo_fill_level_lt_cut_through_threshold <= 1'b1;
end
else begin
fifo_fill_level_lt_cut_through_threshold <= fifo_fill_level < cut_through_threshold;
fifo_too_small_r <= fifo_too_small;
if( in_pkt_eop_arrive )
sop_has_left_fifo <= 1'b0;
else if (out_pkt_sop_leave & pkt_cnt_eq_zero )
sop_has_left_fifo <= 1'b1;
if (in_pkt_eop_arrive & ~out_pkt_leave & ~drop_on_error ) begin
pkt_cnt <= pkt_cnt + 1'b1;
pkt_cnt_eq_zero <= 0;
if (pkt_cnt == 0)
pkt_cnt_eq_one <= 1'b1;
else
pkt_cnt_eq_one <= 1'b0;
end
else if((~in_pkt_eop_arrive | drop_on_error) & out_pkt_leave) begin
pkt_cnt <= pkt_cnt - 1'b1;
if (pkt_cnt == 1)
pkt_cnt_eq_zero <= 1'b1;
else
pkt_cnt_eq_zero <= 1'b0;
if (pkt_cnt == 2)
pkt_cnt_eq_one <= 1'b1;
else
pkt_cnt_eq_one <= 1'b0;
end
if (in_pkt_start)
pkt_has_started <= 1'b1;
else if (in_pkt_eop_arrive)
pkt_has_started <= 1'b0;
end
end
// drop on error logic
always @(posedge clk or posedge reset) begin
if (reset) begin
sop_ptr <= 0;
error_in_pkt <= 0;
end
else begin
// save the location of the SOP
if ( in_pkt_start )
sop_ptr <= wr_ptr;
// remember if error in pkt
// log error only if packet has already started
if (in_pkt_eop_arrive)
error_in_pkt <= 1'b0;
else if ( in_pkt_error & (pkt_has_started | in_pkt_start))
error_in_pkt <= 1'b1;
end
end
assign drop_on_error = drop_on_error_en & (error_in_pkt | in_pkt_error) & in_pkt_eop_arrive &
~sop_has_left_fifo & ~(out_pkt_sop_leave & pkt_cnt_eq_zero);
assign curr_sop_ptr = (write && in_startofpacket && in_endofpacket) ? wr_ptr : sop_ptr;
end
else begin : gen_blk20_else
assign ok_to_forward = 1'b1;
assign drop_on_error = 1'b0;
if (ADDR_WIDTH <= 1)
assign curr_sop_ptr = 1'b0;
else
assign curr_sop_ptr = {ADDR_WIDTH - 1 { 1'b0 }};
end
endgenerate
// --------------------------------------------------
// Calculates the log2ceil of the input value
// --------------------------------------------------
function integer log2ceil;
input integer val;
reg[31:0] i;
begin
i = 1;
log2ceil = 0;
while (i < val) begin
log2ceil = log2ceil + 1;
i = i[30:0] << 1;
end
end
endfunction
endmodule
|
// -----------------------------------------------------------
// Legal Notice: (C)2007 Altera Corporation. All rights reserved. Your
// use of Altera Corporation's design tools, logic functions and other
// software and tools, and its AMPP partner logic functions, and any
// output files any of the foregoing (including device programming or
// simulation files), and any associated documentation or information are
// expressly subject to the terms and conditions of the Altera Program
// License Subscription Agreement or other applicable license agreement,
// including, without limitation, that your use is for the sole purpose
// of programming logic devices manufactured by Altera and sold by Altera
// or its authorized distributors. Please refer to the applicable
// agreement for further details.
//
// Description: Single clock Avalon-ST FIFO.
// -----------------------------------------------------------
`timescale 1 ns / 1 ns
//altera message_off 10036
module altera_avalon_sc_fifo
#(
// --------------------------------------------------
// Parameters
// --------------------------------------------------
parameter SYMBOLS_PER_BEAT = 1,
parameter BITS_PER_SYMBOL = 8,
parameter FIFO_DEPTH = 16,
parameter CHANNEL_WIDTH = 0,
parameter ERROR_WIDTH = 0,
parameter USE_PACKETS = 0,
parameter USE_FILL_LEVEL = 0,
parameter USE_STORE_FORWARD = 0,
parameter USE_ALMOST_FULL_IF = 0,
parameter USE_ALMOST_EMPTY_IF = 0,
// --------------------------------------------------
// Empty latency is defined as the number of cycles
// required for a write to deassert the empty flag.
// For example, a latency of 1 means that the empty
// flag is deasserted on the cycle after a write.
//
// Another way to think of it is the latency for a
// write to propagate to the output.
//
// An empty latency of 0 implies lookahead, which is
// only implemented for the register-based FIFO.
// --------------------------------------------------
parameter EMPTY_LATENCY = 3,
parameter USE_MEMORY_BLOCKS = 1,
// --------------------------------------------------
// Internal Parameters
// --------------------------------------------------
parameter DATA_WIDTH = SYMBOLS_PER_BEAT * BITS_PER_SYMBOL,
parameter EMPTY_WIDTH = log2ceil(SYMBOLS_PER_BEAT)
)
(
// --------------------------------------------------
// Ports
// --------------------------------------------------
input clk,
input reset,
input [DATA_WIDTH-1: 0] in_data,
input in_valid,
input in_startofpacket,
input in_endofpacket,
input [((EMPTY_WIDTH>0) ? (EMPTY_WIDTH-1):0) : 0] in_empty,
input [((ERROR_WIDTH>0) ? (ERROR_WIDTH-1):0) : 0] in_error,
input [((CHANNEL_WIDTH>0) ? (CHANNEL_WIDTH-1):0): 0] in_channel,
output in_ready,
output [DATA_WIDTH-1 : 0] out_data,
output reg out_valid,
output out_startofpacket,
output out_endofpacket,
output [((EMPTY_WIDTH>0) ? (EMPTY_WIDTH-1):0) : 0] out_empty,
output [((ERROR_WIDTH>0) ? (ERROR_WIDTH-1):0) : 0] out_error,
output [((CHANNEL_WIDTH>0) ? (CHANNEL_WIDTH-1):0): 0] out_channel,
input out_ready,
input [(USE_STORE_FORWARD ? 2 : 1) : 0] csr_address,
input csr_write,
input csr_read,
input [31 : 0] csr_writedata,
output reg [31 : 0] csr_readdata,
output wire almost_full_data,
output wire almost_empty_data
);
// --------------------------------------------------
// Local Parameters
// --------------------------------------------------
localparam ADDR_WIDTH = log2ceil(FIFO_DEPTH);
localparam DEPTH = FIFO_DEPTH;
localparam PKT_SIGNALS_WIDTH = 2 + EMPTY_WIDTH;
localparam PAYLOAD_WIDTH = (USE_PACKETS == 1) ?
2 + EMPTY_WIDTH + DATA_WIDTH + ERROR_WIDTH + CHANNEL_WIDTH:
DATA_WIDTH + ERROR_WIDTH + CHANNEL_WIDTH;
// --------------------------------------------------
// Internal Signals
// --------------------------------------------------
genvar i;
reg [PAYLOAD_WIDTH-1 : 0] mem [DEPTH-1 : 0];
reg [ADDR_WIDTH-1 : 0] wr_ptr;
reg [ADDR_WIDTH-1 : 0] rd_ptr;
reg [DEPTH-1 : 0] mem_used;
wire [ADDR_WIDTH-1 : 0] next_wr_ptr;
wire [ADDR_WIDTH-1 : 0] next_rd_ptr;
wire [ADDR_WIDTH-1 : 0] incremented_wr_ptr;
wire [ADDR_WIDTH-1 : 0] incremented_rd_ptr;
wire [ADDR_WIDTH-1 : 0] mem_rd_ptr;
wire read;
wire write;
reg empty;
reg next_empty;
reg full;
reg next_full;
wire [PKT_SIGNALS_WIDTH-1 : 0] in_packet_signals;
wire [PKT_SIGNALS_WIDTH-1 : 0] out_packet_signals;
wire [PAYLOAD_WIDTH-1 : 0] in_payload;
reg [PAYLOAD_WIDTH-1 : 0] internal_out_payload;
reg [PAYLOAD_WIDTH-1 : 0] out_payload;
reg internal_out_valid;
wire internal_out_ready;
reg [ADDR_WIDTH : 0] fifo_fill_level;
reg [ADDR_WIDTH : 0] fill_level;
reg [ADDR_WIDTH-1 : 0] sop_ptr = 0;
wire [ADDR_WIDTH-1 : 0] curr_sop_ptr;
reg [23:0] almost_full_threshold;
reg [23:0] almost_empty_threshold;
reg [23:0] cut_through_threshold;
reg [15:0] pkt_cnt;
reg drop_on_error_en;
reg error_in_pkt;
reg pkt_has_started;
reg sop_has_left_fifo;
reg fifo_too_small_r;
reg pkt_cnt_eq_zero;
reg pkt_cnt_eq_one;
wire wait_for_threshold;
reg pkt_mode;
wire wait_for_pkt;
wire ok_to_forward;
wire in_pkt_eop_arrive;
wire out_pkt_leave;
wire in_pkt_start;
wire in_pkt_error;
wire drop_on_error;
wire fifo_too_small;
wire out_pkt_sop_leave;
wire [31:0] max_fifo_size;
reg fifo_fill_level_lt_cut_through_threshold;
// --------------------------------------------------
// Define Payload
//
// Icky part where we decide which signals form the
// payload to the FIFO with generate blocks.
// --------------------------------------------------
generate
if (EMPTY_WIDTH > 0) begin : gen_blk1
assign in_packet_signals = {in_startofpacket, in_endofpacket, in_empty};
assign {out_startofpacket, out_endofpacket, out_empty} = out_packet_signals;
end
else begin : gen_blk1_else
assign out_empty = in_error;
assign in_packet_signals = {in_startofpacket, in_endofpacket};
assign {out_startofpacket, out_endofpacket} = out_packet_signals;
end
endgenerate
generate
if (USE_PACKETS) begin : gen_blk2
if (ERROR_WIDTH > 0) begin : gen_blk3
if (CHANNEL_WIDTH > 0) begin : gen_blk4
assign in_payload = {in_packet_signals, in_data, in_error, in_channel};
assign {out_packet_signals, out_data, out_error, out_channel} = out_payload;
end
else begin : gen_blk4_else
assign out_channel = in_channel;
assign in_payload = {in_packet_signals, in_data, in_error};
assign {out_packet_signals, out_data, out_error} = out_payload;
end
end
else begin : gen_blk3_else
assign out_error = in_error;
if (CHANNEL_WIDTH > 0) begin : gen_blk5
assign in_payload = {in_packet_signals, in_data, in_channel};
assign {out_packet_signals, out_data, out_channel} = out_payload;
end
else begin : gen_blk5_else
assign out_channel = in_channel;
assign in_payload = {in_packet_signals, in_data};
assign {out_packet_signals, out_data} = out_payload;
end
end
end
else begin : gen_blk2_else
assign out_packet_signals = 0;
if (ERROR_WIDTH > 0) begin : gen_blk6
if (CHANNEL_WIDTH > 0) begin : gen_blk7
assign in_payload = {in_data, in_error, in_channel};
assign {out_data, out_error, out_channel} = out_payload;
end
else begin : gen_blk7_else
assign out_channel = in_channel;
assign in_payload = {in_data, in_error};
assign {out_data, out_error} = out_payload;
end
end
else begin : gen_blk6_else
assign out_error = in_error;
if (CHANNEL_WIDTH > 0) begin : gen_blk8
assign in_payload = {in_data, in_channel};
assign {out_data, out_channel} = out_payload;
end
else begin : gen_blk8_else
assign out_channel = in_channel;
assign in_payload = in_data;
assign out_data = out_payload;
end
end
end
endgenerate
// --------------------------------------------------
// Memory-based FIFO storage
//
// To allow a ready latency of 0, the read index is
// obtained from the next read pointer and memory
// outputs are unregistered.
//
// If the empty latency is 1, we infer bypass logic
// around the memory so writes propagate to the
// outputs on the next cycle.
//
// Do not change the way this is coded: Quartus needs
// a perfect match to the template, and any attempt to
// refactor the two always blocks into one will break
// memory inference.
// --------------------------------------------------
generate if (USE_MEMORY_BLOCKS == 1) begin : gen_blk9
if (EMPTY_LATENCY == 1) begin : gen_blk10
always @(posedge clk) begin
if (in_valid && in_ready)
mem[wr_ptr] = in_payload;
internal_out_payload = mem[mem_rd_ptr];
end
end else begin : gen_blk10_else
always @(posedge clk) begin
if (in_valid && in_ready)
mem[wr_ptr] <= in_payload;
internal_out_payload <= mem[mem_rd_ptr];
end
end
assign mem_rd_ptr = next_rd_ptr;
end else begin : gen_blk9_else
// --------------------------------------------------
// Register-based FIFO storage
//
// Uses a shift register as the storage element. Each
// shift register slot has a bit which indicates if
// the slot is occupied (credit to Sam H for the idea).
// The occupancy bits are contiguous and start from the
// lsb, so 0000, 0001, 0011, 0111, 1111 for a 4-deep
// FIFO.
//
// Each slot is enabled during a read or when it
// is unoccupied. New data is always written to every
// going-to-be-empty slot (we keep track of which ones
// are actually useful with the occupancy bits). On a
// read we shift occupied slots.
//
// The exception is the last slot, which always gets
// new data when it is unoccupied.
// --------------------------------------------------
for (i = 0; i < DEPTH-1; i = i + 1) begin : shift_reg
always @(posedge clk or posedge reset) begin
if (reset) begin
mem[i] <= 0;
end
else if (read || !mem_used[i]) begin
if (!mem_used[i+1])
mem[i] <= in_payload;
else
mem[i] <= mem[i+1];
end
end
end
always @(posedge clk, posedge reset) begin
if (reset) begin
mem[DEPTH-1] <= 0;
end
else begin
if (DEPTH == 1) begin
if (write)
mem[DEPTH-1] <= in_payload;
end
else if (!mem_used[DEPTH-1])
mem[DEPTH-1] <= in_payload;
end
end
end
endgenerate
assign read = internal_out_ready && internal_out_valid && ok_to_forward;
assign write = in_ready && in_valid;
// --------------------------------------------------
// Pointer Management
// --------------------------------------------------
generate if (USE_MEMORY_BLOCKS == 1) begin : gen_blk11
assign incremented_wr_ptr = wr_ptr + 1'b1;
assign incremented_rd_ptr = rd_ptr + 1'b1;
assign next_wr_ptr = drop_on_error ? curr_sop_ptr : write ? incremented_wr_ptr : wr_ptr;
assign next_rd_ptr = (read) ? incremented_rd_ptr : rd_ptr;
always @(posedge clk or posedge reset) begin
if (reset) begin
wr_ptr <= 0;
rd_ptr <= 0;
end
else begin
wr_ptr <= next_wr_ptr;
rd_ptr <= next_rd_ptr;
end
end
end else begin : gen_blk11_else
// --------------------------------------------------
// Shift Register Occupancy Bits
//
// Consider a 4-deep FIFO with 2 entries: 0011
// On a read and write, do not modify the bits.
// On a write, left-shift the bits to get 0111.
// On a read, right-shift the bits to get 0001.
//
// Also, on a write we set bit0 (the head), while
// clearing the tail on a read.
// --------------------------------------------------
always @(posedge clk or posedge reset) begin
if (reset) begin
mem_used[0] <= 0;
end
else begin
if (write ^ read) begin
if (write)
mem_used[0] <= 1;
else if (read) begin
if (DEPTH > 1)
mem_used[0] <= mem_used[1];
else
mem_used[0] <= 0;
end
end
end
end
if (DEPTH > 1) begin : gen_blk12
always @(posedge clk or posedge reset) begin
if (reset) begin
mem_used[DEPTH-1] <= 0;
end
else begin
if (write ^ read) begin
mem_used[DEPTH-1] <= 0;
if (write)
mem_used[DEPTH-1] <= mem_used[DEPTH-2];
end
end
end
end
for (i = 1; i < DEPTH-1; i = i + 1) begin : storage_logic
always @(posedge clk, posedge reset) begin
if (reset) begin
mem_used[i] <= 0;
end
else begin
if (write ^ read) begin
if (write)
mem_used[i] <= mem_used[i-1];
else if (read)
mem_used[i] <= mem_used[i+1];
end
end
end
end
end
endgenerate
// --------------------------------------------------
// Memory FIFO Status Management
//
// Generates the full and empty signals from the
// pointers. The FIFO is full when the next write
// pointer will be equal to the read pointer after
// a write. Reading from a FIFO clears full.
//
// The FIFO is empty when the next read pointer will
// be equal to the write pointer after a read. Writing
// to a FIFO clears empty.
//
// A simultaneous read and write must not change any of
// the empty or full flags unless there is a drop on error event.
// --------------------------------------------------
generate if (USE_MEMORY_BLOCKS == 1) begin : gen_blk13
always @* begin
next_full = full;
next_empty = empty;
if (read && !write) begin
next_full = 1'b0;
if (incremented_rd_ptr == wr_ptr)
next_empty = 1'b1;
end
if (write && !read) begin
if (!drop_on_error)
next_empty = 1'b0;
else if (curr_sop_ptr == rd_ptr) // drop on error and only 1 pkt in fifo
next_empty = 1'b1;
if (incremented_wr_ptr == rd_ptr && !drop_on_error)
next_full = 1'b1;
end
if (write && read && drop_on_error) begin
if (curr_sop_ptr == next_rd_ptr)
next_empty = 1'b1;
end
end
always @(posedge clk or posedge reset) begin
if (reset) begin
empty <= 1;
full <= 0;
end
else begin
empty <= next_empty;
full <= next_full;
end
end
end else begin : gen_blk13_else
// --------------------------------------------------
// Register FIFO Status Management
//
// Full when the tail occupancy bit is 1. Empty when
// the head occupancy bit is 0.
// --------------------------------------------------
always @* begin
full = mem_used[DEPTH-1];
empty = !mem_used[0];
// ------------------------------------------
// For a single slot FIFO, reading clears the
// full status immediately.
// ------------------------------------------
if (DEPTH == 1)
full = mem_used[0] && !read;
internal_out_payload = mem[0];
// ------------------------------------------
// Writes clear empty immediately for lookahead modes.
// Note that we use in_valid instead of write to avoid
// combinational loops (in lookahead mode, qualifying
// with in_ready is meaningless).
//
// In a 1-deep FIFO, a possible combinational loop runs
// from write -> out_valid -> out_ready -> write
// ------------------------------------------
if (EMPTY_LATENCY == 0) begin
empty = !mem_used[0] && !in_valid;
if (!mem_used[0] && in_valid)
internal_out_payload = in_payload;
end
end
end
endgenerate
// --------------------------------------------------
// Avalon-ST Signals
//
// The in_ready signal is straightforward.
//
// To match memory latency when empty latency > 1,
// out_valid assertions must be delayed by one clock
// cycle.
//
// Note: out_valid deassertions must not be delayed or
// the FIFO will underflow.
// --------------------------------------------------
assign in_ready = !full;
assign internal_out_ready = out_ready || !out_valid;
generate if (EMPTY_LATENCY > 1) begin : gen_blk14
always @(posedge clk or posedge reset) begin
if (reset)
internal_out_valid <= 0;
else begin
internal_out_valid <= !empty & ok_to_forward & ~drop_on_error;
if (read) begin
if (incremented_rd_ptr == wr_ptr)
internal_out_valid <= 1'b0;
end
end
end
end else begin : gen_blk14_else
always @* begin
internal_out_valid = !empty & ok_to_forward;
end
end
endgenerate
// --------------------------------------------------
// Single Output Pipeline Stage
//
// This output pipeline stage is enabled if the FIFO's
// empty latency is set to 3 (default). It is disabled
// for all other allowed latencies.
//
// Reason: The memory outputs are unregistered, so we have to
// register the output or fmax will drop if combinatorial
// logic is present on the output datapath.
//
// Q: The Avalon-ST spec says that I have to register my outputs
// But isn't the memory counted as a register?
// A: The path from the address lookup to the memory output is
// slow. Registering the memory outputs is a good idea.
//
// The registers get packed into the memory by the fitter
// which means minimal resources are consumed (the result
// is a altsyncram with registered outputs, available on
// all modern Altera devices).
//
// This output stage acts as an extra slot in the FIFO,
// and complicates the fill level.
// --------------------------------------------------
generate if (EMPTY_LATENCY == 3) begin : gen_blk15
always @(posedge clk or posedge reset) begin
if (reset) begin
out_valid <= 0;
out_payload <= 0;
end
else begin
if (internal_out_ready) begin
out_valid <= internal_out_valid & ok_to_forward;
out_payload <= internal_out_payload;
end
end
end
end
else begin : gen_blk15_else
always @* begin
out_valid = internal_out_valid;
out_payload = internal_out_payload;
end
end
endgenerate
// --------------------------------------------------
// Fill Level
//
// The fill level is calculated from the next write
// and read pointers to avoid unnecessary latency
// and logic.
//
// However, if the store-and-forward mode of the FIFO
// is enabled, the fill level is an up-down counter
// for fmax optimization reasons.
//
// If the output pipeline is enabled, the fill level
// must account for it, or we'll always be off by one.
// This may, or may not be important depending on the
// application.
//
// For now, we'll always calculate the exact fill level
// at the cost of an extra adder when the output stage
// is enabled.
// --------------------------------------------------
generate if (USE_FILL_LEVEL) begin : gen_blk16
wire [31:0] depth32;
assign depth32 = DEPTH;
if (USE_STORE_FORWARD) begin
reg [ADDR_WIDTH : 0] curr_packet_len_less_one;
// --------------------------------------------------
// We only drop on endofpacket. As long as we don't add to the fill
// level on the dropped endofpacket cycle, we can simply subtract
// (packet length - 1) from the fill level for dropped packets.
// --------------------------------------------------
always @(posedge clk or posedge reset) begin
if (reset) begin
curr_packet_len_less_one <= 0;
end else begin
if (write) begin
curr_packet_len_less_one <= curr_packet_len_less_one + 1'b1;
if (in_endofpacket)
curr_packet_len_less_one <= 0;
end
end
end
always @(posedge clk or posedge reset) begin
if (reset) begin
fifo_fill_level <= 0;
end else if (drop_on_error) begin
fifo_fill_level <= fifo_fill_level - curr_packet_len_less_one;
if (read)
fifo_fill_level <= fifo_fill_level - curr_packet_len_less_one - 1'b1;
end else if (write && !read) begin
fifo_fill_level <= fifo_fill_level + 1'b1;
end else if (read && !write) begin
fifo_fill_level <= fifo_fill_level - 1'b1;
end
end
end else begin
always @(posedge clk or posedge reset) begin
if (reset)
fifo_fill_level <= 0;
else if (next_full & !drop_on_error)
fifo_fill_level <= depth32[ADDR_WIDTH:0];
else begin
fifo_fill_level[ADDR_WIDTH] <= 1'b0;
fifo_fill_level[ADDR_WIDTH-1 : 0] <= next_wr_ptr - next_rd_ptr;
end
end
end
always @* begin
fill_level = fifo_fill_level;
if (EMPTY_LATENCY == 3)
fill_level = fifo_fill_level + {{ADDR_WIDTH{1'b0}}, out_valid};
end
end
else begin : gen_blk16_else
always @* begin
fill_level = 0;
end
end
endgenerate
generate if (USE_ALMOST_FULL_IF) begin : gen_blk17
assign almost_full_data = (fill_level >= almost_full_threshold);
end
else
assign almost_full_data = 0;
endgenerate
generate if (USE_ALMOST_EMPTY_IF) begin : gen_blk18
assign almost_empty_data = (fill_level <= almost_empty_threshold);
end
else
assign almost_empty_data = 0;
endgenerate
// --------------------------------------------------
// Avalon-MM Status & Control Connection Point
//
// Register map:
//
// | Addr | RW | 31 - 0 |
// | 0 | R | Fill level |
//
// The registering of this connection point means
// that there is a cycle of latency between
// reads/writes and the updating of the fill level.
// --------------------------------------------------
generate if (USE_STORE_FORWARD) begin : gen_blk19
assign max_fifo_size = FIFO_DEPTH - 1;
always @(posedge clk or posedge reset) begin
if (reset) begin
almost_full_threshold <= max_fifo_size[23 : 0];
almost_empty_threshold <= 0;
cut_through_threshold <= 0;
drop_on_error_en <= 0;
csr_readdata <= 0;
pkt_mode <= 1'b1;
end
else begin
if (csr_read) begin
csr_readdata <= 32'b0;
if (csr_address == 5)
csr_readdata <= {31'b0, drop_on_error_en};
else if (csr_address == 4)
csr_readdata <= {8'b0, cut_through_threshold};
else if (csr_address == 3)
csr_readdata <= {8'b0, almost_empty_threshold};
else if (csr_address == 2)
csr_readdata <= {8'b0, almost_full_threshold};
else if (csr_address == 0)
csr_readdata <= {{(31 - ADDR_WIDTH){1'b0}}, fill_level};
end
else if (csr_write) begin
if(csr_address == 3'b101)
drop_on_error_en <= csr_writedata[0];
else if(csr_address == 3'b100) begin
cut_through_threshold <= csr_writedata[23:0];
pkt_mode <= (csr_writedata[23:0] == 0);
end
else if(csr_address == 3'b011)
almost_empty_threshold <= csr_writedata[23:0];
else if(csr_address == 3'b010)
almost_full_threshold <= csr_writedata[23:0];
end
end
end
end
else if (USE_ALMOST_FULL_IF || USE_ALMOST_EMPTY_IF) begin : gen_blk19_else1
assign max_fifo_size = FIFO_DEPTH - 1;
always @(posedge clk or posedge reset) begin
if (reset) begin
almost_full_threshold <= max_fifo_size[23 : 0];
almost_empty_threshold <= 0;
csr_readdata <= 0;
end
else begin
if (csr_read) begin
csr_readdata <= 32'b0;
if (csr_address == 3)
csr_readdata <= {8'b0, almost_empty_threshold};
else if (csr_address == 2)
csr_readdata <= {8'b0, almost_full_threshold};
else if (csr_address == 0)
csr_readdata <= {{(31 - ADDR_WIDTH){1'b0}}, fill_level};
end
else if (csr_write) begin
if(csr_address == 3'b011)
almost_empty_threshold <= csr_writedata[23:0];
else if(csr_address == 3'b010)
almost_full_threshold <= csr_writedata[23:0];
end
end
end
end
else begin : gen_blk19_else2
always @(posedge clk or posedge reset) begin
if (reset) begin
csr_readdata <= 0;
end
else if (csr_read) begin
csr_readdata <= 0;
if (csr_address == 0)
csr_readdata <= {{(31 - ADDR_WIDTH){1'b0}}, fill_level};
end
end
end
endgenerate
// --------------------------------------------------
// Store and forward logic
// --------------------------------------------------
// if the fifo gets full before the entire packet or the
// cut-threshold condition is met then start sending out
// data in order to avoid dead-lock situation
generate if (USE_STORE_FORWARD) begin : gen_blk20
assign wait_for_threshold = (fifo_fill_level_lt_cut_through_threshold) & wait_for_pkt ;
assign wait_for_pkt = pkt_cnt_eq_zero | (pkt_cnt_eq_one & out_pkt_leave);
assign ok_to_forward = (pkt_mode ? (~wait_for_pkt | ~pkt_has_started) :
~wait_for_threshold) | fifo_too_small_r;
assign in_pkt_eop_arrive = in_valid & in_ready & in_endofpacket;
assign in_pkt_start = in_valid & in_ready & in_startofpacket;
assign in_pkt_error = in_valid & in_ready & |in_error;
assign out_pkt_sop_leave = out_valid & out_ready & out_startofpacket;
assign out_pkt_leave = out_valid & out_ready & out_endofpacket;
assign fifo_too_small = (pkt_mode ? wait_for_pkt : wait_for_threshold) & full & out_ready;
// count packets coming and going into the fifo
always @(posedge clk or posedge reset) begin
if (reset) begin
pkt_cnt <= 0;
pkt_has_started <= 0;
sop_has_left_fifo <= 0;
fifo_too_small_r <= 0;
pkt_cnt_eq_zero <= 1'b1;
pkt_cnt_eq_one <= 1'b0;
fifo_fill_level_lt_cut_through_threshold <= 1'b1;
end
else begin
fifo_fill_level_lt_cut_through_threshold <= fifo_fill_level < cut_through_threshold;
fifo_too_small_r <= fifo_too_small;
if( in_pkt_eop_arrive )
sop_has_left_fifo <= 1'b0;
else if (out_pkt_sop_leave & pkt_cnt_eq_zero )
sop_has_left_fifo <= 1'b1;
if (in_pkt_eop_arrive & ~out_pkt_leave & ~drop_on_error ) begin
pkt_cnt <= pkt_cnt + 1'b1;
pkt_cnt_eq_zero <= 0;
if (pkt_cnt == 0)
pkt_cnt_eq_one <= 1'b1;
else
pkt_cnt_eq_one <= 1'b0;
end
else if((~in_pkt_eop_arrive | drop_on_error) & out_pkt_leave) begin
pkt_cnt <= pkt_cnt - 1'b1;
if (pkt_cnt == 1)
pkt_cnt_eq_zero <= 1'b1;
else
pkt_cnt_eq_zero <= 1'b0;
if (pkt_cnt == 2)
pkt_cnt_eq_one <= 1'b1;
else
pkt_cnt_eq_one <= 1'b0;
end
if (in_pkt_start)
pkt_has_started <= 1'b1;
else if (in_pkt_eop_arrive)
pkt_has_started <= 1'b0;
end
end
// drop on error logic
always @(posedge clk or posedge reset) begin
if (reset) begin
sop_ptr <= 0;
error_in_pkt <= 0;
end
else begin
// save the location of the SOP
if ( in_pkt_start )
sop_ptr <= wr_ptr;
// remember if error in pkt
// log error only if packet has already started
if (in_pkt_eop_arrive)
error_in_pkt <= 1'b0;
else if ( in_pkt_error & (pkt_has_started | in_pkt_start))
error_in_pkt <= 1'b1;
end
end
assign drop_on_error = drop_on_error_en & (error_in_pkt | in_pkt_error) & in_pkt_eop_arrive &
~sop_has_left_fifo & ~(out_pkt_sop_leave & pkt_cnt_eq_zero);
assign curr_sop_ptr = (write && in_startofpacket && in_endofpacket) ? wr_ptr : sop_ptr;
end
else begin : gen_blk20_else
assign ok_to_forward = 1'b1;
assign drop_on_error = 1'b0;
if (ADDR_WIDTH <= 1)
assign curr_sop_ptr = 1'b0;
else
assign curr_sop_ptr = {ADDR_WIDTH - 1 { 1'b0 }};
end
endgenerate
// --------------------------------------------------
// Calculates the log2ceil of the input value
// --------------------------------------------------
function integer log2ceil;
input integer val;
reg[31:0] i;
begin
i = 1;
log2ceil = 0;
while (i < val) begin
log2ceil = log2ceil + 1;
i = i[30:0] << 1;
end
end
endfunction
endmodule
|
// -----------------------------------------------------------
// Legal Notice: (C)2007 Altera Corporation. All rights reserved. Your
// use of Altera Corporation's design tools, logic functions and other
// software and tools, and its AMPP partner logic functions, and any
// output files any of the foregoing (including device programming or
// simulation files), and any associated documentation or information are
// expressly subject to the terms and conditions of the Altera Program
// License Subscription Agreement or other applicable license agreement,
// including, without limitation, that your use is for the sole purpose
// of programming logic devices manufactured by Altera and sold by Altera
// or its authorized distributors. Please refer to the applicable
// agreement for further details.
//
// Description: Single clock Avalon-ST FIFO.
// -----------------------------------------------------------
`timescale 1 ns / 1 ns
//altera message_off 10036
module altera_avalon_sc_fifo
#(
// --------------------------------------------------
// Parameters
// --------------------------------------------------
parameter SYMBOLS_PER_BEAT = 1,
parameter BITS_PER_SYMBOL = 8,
parameter FIFO_DEPTH = 16,
parameter CHANNEL_WIDTH = 0,
parameter ERROR_WIDTH = 0,
parameter USE_PACKETS = 0,
parameter USE_FILL_LEVEL = 0,
parameter USE_STORE_FORWARD = 0,
parameter USE_ALMOST_FULL_IF = 0,
parameter USE_ALMOST_EMPTY_IF = 0,
// --------------------------------------------------
// Empty latency is defined as the number of cycles
// required for a write to deassert the empty flag.
// For example, a latency of 1 means that the empty
// flag is deasserted on the cycle after a write.
//
// Another way to think of it is the latency for a
// write to propagate to the output.
//
// An empty latency of 0 implies lookahead, which is
// only implemented for the register-based FIFO.
// --------------------------------------------------
parameter EMPTY_LATENCY = 3,
parameter USE_MEMORY_BLOCKS = 1,
// --------------------------------------------------
// Internal Parameters
// --------------------------------------------------
parameter DATA_WIDTH = SYMBOLS_PER_BEAT * BITS_PER_SYMBOL,
parameter EMPTY_WIDTH = log2ceil(SYMBOLS_PER_BEAT)
)
(
// --------------------------------------------------
// Ports
// --------------------------------------------------
input clk,
input reset,
input [DATA_WIDTH-1: 0] in_data,
input in_valid,
input in_startofpacket,
input in_endofpacket,
input [((EMPTY_WIDTH>0) ? (EMPTY_WIDTH-1):0) : 0] in_empty,
input [((ERROR_WIDTH>0) ? (ERROR_WIDTH-1):0) : 0] in_error,
input [((CHANNEL_WIDTH>0) ? (CHANNEL_WIDTH-1):0): 0] in_channel,
output in_ready,
output [DATA_WIDTH-1 : 0] out_data,
output reg out_valid,
output out_startofpacket,
output out_endofpacket,
output [((EMPTY_WIDTH>0) ? (EMPTY_WIDTH-1):0) : 0] out_empty,
output [((ERROR_WIDTH>0) ? (ERROR_WIDTH-1):0) : 0] out_error,
output [((CHANNEL_WIDTH>0) ? (CHANNEL_WIDTH-1):0): 0] out_channel,
input out_ready,
input [(USE_STORE_FORWARD ? 2 : 1) : 0] csr_address,
input csr_write,
input csr_read,
input [31 : 0] csr_writedata,
output reg [31 : 0] csr_readdata,
output wire almost_full_data,
output wire almost_empty_data
);
// --------------------------------------------------
// Local Parameters
// --------------------------------------------------
localparam ADDR_WIDTH = log2ceil(FIFO_DEPTH);
localparam DEPTH = FIFO_DEPTH;
localparam PKT_SIGNALS_WIDTH = 2 + EMPTY_WIDTH;
localparam PAYLOAD_WIDTH = (USE_PACKETS == 1) ?
2 + EMPTY_WIDTH + DATA_WIDTH + ERROR_WIDTH + CHANNEL_WIDTH:
DATA_WIDTH + ERROR_WIDTH + CHANNEL_WIDTH;
// --------------------------------------------------
// Internal Signals
// --------------------------------------------------
genvar i;
reg [PAYLOAD_WIDTH-1 : 0] mem [DEPTH-1 : 0];
reg [ADDR_WIDTH-1 : 0] wr_ptr;
reg [ADDR_WIDTH-1 : 0] rd_ptr;
reg [DEPTH-1 : 0] mem_used;
wire [ADDR_WIDTH-1 : 0] next_wr_ptr;
wire [ADDR_WIDTH-1 : 0] next_rd_ptr;
wire [ADDR_WIDTH-1 : 0] incremented_wr_ptr;
wire [ADDR_WIDTH-1 : 0] incremented_rd_ptr;
wire [ADDR_WIDTH-1 : 0] mem_rd_ptr;
wire read;
wire write;
reg empty;
reg next_empty;
reg full;
reg next_full;
wire [PKT_SIGNALS_WIDTH-1 : 0] in_packet_signals;
wire [PKT_SIGNALS_WIDTH-1 : 0] out_packet_signals;
wire [PAYLOAD_WIDTH-1 : 0] in_payload;
reg [PAYLOAD_WIDTH-1 : 0] internal_out_payload;
reg [PAYLOAD_WIDTH-1 : 0] out_payload;
reg internal_out_valid;
wire internal_out_ready;
reg [ADDR_WIDTH : 0] fifo_fill_level;
reg [ADDR_WIDTH : 0] fill_level;
reg [ADDR_WIDTH-1 : 0] sop_ptr = 0;
wire [ADDR_WIDTH-1 : 0] curr_sop_ptr;
reg [23:0] almost_full_threshold;
reg [23:0] almost_empty_threshold;
reg [23:0] cut_through_threshold;
reg [15:0] pkt_cnt;
reg drop_on_error_en;
reg error_in_pkt;
reg pkt_has_started;
reg sop_has_left_fifo;
reg fifo_too_small_r;
reg pkt_cnt_eq_zero;
reg pkt_cnt_eq_one;
wire wait_for_threshold;
reg pkt_mode;
wire wait_for_pkt;
wire ok_to_forward;
wire in_pkt_eop_arrive;
wire out_pkt_leave;
wire in_pkt_start;
wire in_pkt_error;
wire drop_on_error;
wire fifo_too_small;
wire out_pkt_sop_leave;
wire [31:0] max_fifo_size;
reg fifo_fill_level_lt_cut_through_threshold;
// --------------------------------------------------
// Define Payload
//
// Icky part where we decide which signals form the
// payload to the FIFO with generate blocks.
// --------------------------------------------------
generate
if (EMPTY_WIDTH > 0) begin : gen_blk1
assign in_packet_signals = {in_startofpacket, in_endofpacket, in_empty};
assign {out_startofpacket, out_endofpacket, out_empty} = out_packet_signals;
end
else begin : gen_blk1_else
assign out_empty = in_error;
assign in_packet_signals = {in_startofpacket, in_endofpacket};
assign {out_startofpacket, out_endofpacket} = out_packet_signals;
end
endgenerate
generate
if (USE_PACKETS) begin : gen_blk2
if (ERROR_WIDTH > 0) begin : gen_blk3
if (CHANNEL_WIDTH > 0) begin : gen_blk4
assign in_payload = {in_packet_signals, in_data, in_error, in_channel};
assign {out_packet_signals, out_data, out_error, out_channel} = out_payload;
end
else begin : gen_blk4_else
assign out_channel = in_channel;
assign in_payload = {in_packet_signals, in_data, in_error};
assign {out_packet_signals, out_data, out_error} = out_payload;
end
end
else begin : gen_blk3_else
assign out_error = in_error;
if (CHANNEL_WIDTH > 0) begin : gen_blk5
assign in_payload = {in_packet_signals, in_data, in_channel};
assign {out_packet_signals, out_data, out_channel} = out_payload;
end
else begin : gen_blk5_else
assign out_channel = in_channel;
assign in_payload = {in_packet_signals, in_data};
assign {out_packet_signals, out_data} = out_payload;
end
end
end
else begin : gen_blk2_else
assign out_packet_signals = 0;
if (ERROR_WIDTH > 0) begin : gen_blk6
if (CHANNEL_WIDTH > 0) begin : gen_blk7
assign in_payload = {in_data, in_error, in_channel};
assign {out_data, out_error, out_channel} = out_payload;
end
else begin : gen_blk7_else
assign out_channel = in_channel;
assign in_payload = {in_data, in_error};
assign {out_data, out_error} = out_payload;
end
end
else begin : gen_blk6_else
assign out_error = in_error;
if (CHANNEL_WIDTH > 0) begin : gen_blk8
assign in_payload = {in_data, in_channel};
assign {out_data, out_channel} = out_payload;
end
else begin : gen_blk8_else
assign out_channel = in_channel;
assign in_payload = in_data;
assign out_data = out_payload;
end
end
end
endgenerate
// --------------------------------------------------
// Memory-based FIFO storage
//
// To allow a ready latency of 0, the read index is
// obtained from the next read pointer and memory
// outputs are unregistered.
//
// If the empty latency is 1, we infer bypass logic
// around the memory so writes propagate to the
// outputs on the next cycle.
//
// Do not change the way this is coded: Quartus needs
// a perfect match to the template, and any attempt to
// refactor the two always blocks into one will break
// memory inference.
// --------------------------------------------------
generate if (USE_MEMORY_BLOCKS == 1) begin : gen_blk9
if (EMPTY_LATENCY == 1) begin : gen_blk10
always @(posedge clk) begin
if (in_valid && in_ready)
mem[wr_ptr] = in_payload;
internal_out_payload = mem[mem_rd_ptr];
end
end else begin : gen_blk10_else
always @(posedge clk) begin
if (in_valid && in_ready)
mem[wr_ptr] <= in_payload;
internal_out_payload <= mem[mem_rd_ptr];
end
end
assign mem_rd_ptr = next_rd_ptr;
end else begin : gen_blk9_else
// --------------------------------------------------
// Register-based FIFO storage
//
// Uses a shift register as the storage element. Each
// shift register slot has a bit which indicates if
// the slot is occupied (credit to Sam H for the idea).
// The occupancy bits are contiguous and start from the
// lsb, so 0000, 0001, 0011, 0111, 1111 for a 4-deep
// FIFO.
//
// Each slot is enabled during a read or when it
// is unoccupied. New data is always written to every
// going-to-be-empty slot (we keep track of which ones
// are actually useful with the occupancy bits). On a
// read we shift occupied slots.
//
// The exception is the last slot, which always gets
// new data when it is unoccupied.
// --------------------------------------------------
for (i = 0; i < DEPTH-1; i = i + 1) begin : shift_reg
always @(posedge clk or posedge reset) begin
if (reset) begin
mem[i] <= 0;
end
else if (read || !mem_used[i]) begin
if (!mem_used[i+1])
mem[i] <= in_payload;
else
mem[i] <= mem[i+1];
end
end
end
always @(posedge clk, posedge reset) begin
if (reset) begin
mem[DEPTH-1] <= 0;
end
else begin
if (DEPTH == 1) begin
if (write)
mem[DEPTH-1] <= in_payload;
end
else if (!mem_used[DEPTH-1])
mem[DEPTH-1] <= in_payload;
end
end
end
endgenerate
assign read = internal_out_ready && internal_out_valid && ok_to_forward;
assign write = in_ready && in_valid;
// --------------------------------------------------
// Pointer Management
// --------------------------------------------------
generate if (USE_MEMORY_BLOCKS == 1) begin : gen_blk11
assign incremented_wr_ptr = wr_ptr + 1'b1;
assign incremented_rd_ptr = rd_ptr + 1'b1;
assign next_wr_ptr = drop_on_error ? curr_sop_ptr : write ? incremented_wr_ptr : wr_ptr;
assign next_rd_ptr = (read) ? incremented_rd_ptr : rd_ptr;
always @(posedge clk or posedge reset) begin
if (reset) begin
wr_ptr <= 0;
rd_ptr <= 0;
end
else begin
wr_ptr <= next_wr_ptr;
rd_ptr <= next_rd_ptr;
end
end
end else begin : gen_blk11_else
// --------------------------------------------------
// Shift Register Occupancy Bits
//
// Consider a 4-deep FIFO with 2 entries: 0011
// On a read and write, do not modify the bits.
// On a write, left-shift the bits to get 0111.
// On a read, right-shift the bits to get 0001.
//
// Also, on a write we set bit0 (the head), while
// clearing the tail on a read.
// --------------------------------------------------
always @(posedge clk or posedge reset) begin
if (reset) begin
mem_used[0] <= 0;
end
else begin
if (write ^ read) begin
if (write)
mem_used[0] <= 1;
else if (read) begin
if (DEPTH > 1)
mem_used[0] <= mem_used[1];
else
mem_used[0] <= 0;
end
end
end
end
if (DEPTH > 1) begin : gen_blk12
always @(posedge clk or posedge reset) begin
if (reset) begin
mem_used[DEPTH-1] <= 0;
end
else begin
if (write ^ read) begin
mem_used[DEPTH-1] <= 0;
if (write)
mem_used[DEPTH-1] <= mem_used[DEPTH-2];
end
end
end
end
for (i = 1; i < DEPTH-1; i = i + 1) begin : storage_logic
always @(posedge clk, posedge reset) begin
if (reset) begin
mem_used[i] <= 0;
end
else begin
if (write ^ read) begin
if (write)
mem_used[i] <= mem_used[i-1];
else if (read)
mem_used[i] <= mem_used[i+1];
end
end
end
end
end
endgenerate
// --------------------------------------------------
// Memory FIFO Status Management
//
// Generates the full and empty signals from the
// pointers. The FIFO is full when the next write
// pointer will be equal to the read pointer after
// a write. Reading from a FIFO clears full.
//
// The FIFO is empty when the next read pointer will
// be equal to the write pointer after a read. Writing
// to a FIFO clears empty.
//
// A simultaneous read and write must not change any of
// the empty or full flags unless there is a drop on error event.
// --------------------------------------------------
generate if (USE_MEMORY_BLOCKS == 1) begin : gen_blk13
always @* begin
next_full = full;
next_empty = empty;
if (read && !write) begin
next_full = 1'b0;
if (incremented_rd_ptr == wr_ptr)
next_empty = 1'b1;
end
if (write && !read) begin
if (!drop_on_error)
next_empty = 1'b0;
else if (curr_sop_ptr == rd_ptr) // drop on error and only 1 pkt in fifo
next_empty = 1'b1;
if (incremented_wr_ptr == rd_ptr && !drop_on_error)
next_full = 1'b1;
end
if (write && read && drop_on_error) begin
if (curr_sop_ptr == next_rd_ptr)
next_empty = 1'b1;
end
end
always @(posedge clk or posedge reset) begin
if (reset) begin
empty <= 1;
full <= 0;
end
else begin
empty <= next_empty;
full <= next_full;
end
end
end else begin : gen_blk13_else
// --------------------------------------------------
// Register FIFO Status Management
//
// Full when the tail occupancy bit is 1. Empty when
// the head occupancy bit is 0.
// --------------------------------------------------
always @* begin
full = mem_used[DEPTH-1];
empty = !mem_used[0];
// ------------------------------------------
// For a single slot FIFO, reading clears the
// full status immediately.
// ------------------------------------------
if (DEPTH == 1)
full = mem_used[0] && !read;
internal_out_payload = mem[0];
// ------------------------------------------
// Writes clear empty immediately for lookahead modes.
// Note that we use in_valid instead of write to avoid
// combinational loops (in lookahead mode, qualifying
// with in_ready is meaningless).
//
// In a 1-deep FIFO, a possible combinational loop runs
// from write -> out_valid -> out_ready -> write
// ------------------------------------------
if (EMPTY_LATENCY == 0) begin
empty = !mem_used[0] && !in_valid;
if (!mem_used[0] && in_valid)
internal_out_payload = in_payload;
end
end
end
endgenerate
// --------------------------------------------------
// Avalon-ST Signals
//
// The in_ready signal is straightforward.
//
// To match memory latency when empty latency > 1,
// out_valid assertions must be delayed by one clock
// cycle.
//
// Note: out_valid deassertions must not be delayed or
// the FIFO will underflow.
// --------------------------------------------------
assign in_ready = !full;
assign internal_out_ready = out_ready || !out_valid;
generate if (EMPTY_LATENCY > 1) begin : gen_blk14
always @(posedge clk or posedge reset) begin
if (reset)
internal_out_valid <= 0;
else begin
internal_out_valid <= !empty & ok_to_forward & ~drop_on_error;
if (read) begin
if (incremented_rd_ptr == wr_ptr)
internal_out_valid <= 1'b0;
end
end
end
end else begin : gen_blk14_else
always @* begin
internal_out_valid = !empty & ok_to_forward;
end
end
endgenerate
// --------------------------------------------------
// Single Output Pipeline Stage
//
// This output pipeline stage is enabled if the FIFO's
// empty latency is set to 3 (default). It is disabled
// for all other allowed latencies.
//
// Reason: The memory outputs are unregistered, so we have to
// register the output or fmax will drop if combinatorial
// logic is present on the output datapath.
//
// Q: The Avalon-ST spec says that I have to register my outputs
// But isn't the memory counted as a register?
// A: The path from the address lookup to the memory output is
// slow. Registering the memory outputs is a good idea.
//
// The registers get packed into the memory by the fitter
// which means minimal resources are consumed (the result
// is a altsyncram with registered outputs, available on
// all modern Altera devices).
//
// This output stage acts as an extra slot in the FIFO,
// and complicates the fill level.
// --------------------------------------------------
generate if (EMPTY_LATENCY == 3) begin : gen_blk15
always @(posedge clk or posedge reset) begin
if (reset) begin
out_valid <= 0;
out_payload <= 0;
end
else begin
if (internal_out_ready) begin
out_valid <= internal_out_valid & ok_to_forward;
out_payload <= internal_out_payload;
end
end
end
end
else begin : gen_blk15_else
always @* begin
out_valid = internal_out_valid;
out_payload = internal_out_payload;
end
end
endgenerate
// --------------------------------------------------
// Fill Level
//
// The fill level is calculated from the next write
// and read pointers to avoid unnecessary latency
// and logic.
//
// However, if the store-and-forward mode of the FIFO
// is enabled, the fill level is an up-down counter
// for fmax optimization reasons.
//
// If the output pipeline is enabled, the fill level
// must account for it, or we'll always be off by one.
// This may, or may not be important depending on the
// application.
//
// For now, we'll always calculate the exact fill level
// at the cost of an extra adder when the output stage
// is enabled.
// --------------------------------------------------
generate if (USE_FILL_LEVEL) begin : gen_blk16
wire [31:0] depth32;
assign depth32 = DEPTH;
if (USE_STORE_FORWARD) begin
reg [ADDR_WIDTH : 0] curr_packet_len_less_one;
// --------------------------------------------------
// We only drop on endofpacket. As long as we don't add to the fill
// level on the dropped endofpacket cycle, we can simply subtract
// (packet length - 1) from the fill level for dropped packets.
// --------------------------------------------------
always @(posedge clk or posedge reset) begin
if (reset) begin
curr_packet_len_less_one <= 0;
end else begin
if (write) begin
curr_packet_len_less_one <= curr_packet_len_less_one + 1'b1;
if (in_endofpacket)
curr_packet_len_less_one <= 0;
end
end
end
always @(posedge clk or posedge reset) begin
if (reset) begin
fifo_fill_level <= 0;
end else if (drop_on_error) begin
fifo_fill_level <= fifo_fill_level - curr_packet_len_less_one;
if (read)
fifo_fill_level <= fifo_fill_level - curr_packet_len_less_one - 1'b1;
end else if (write && !read) begin
fifo_fill_level <= fifo_fill_level + 1'b1;
end else if (read && !write) begin
fifo_fill_level <= fifo_fill_level - 1'b1;
end
end
end else begin
always @(posedge clk or posedge reset) begin
if (reset)
fifo_fill_level <= 0;
else if (next_full & !drop_on_error)
fifo_fill_level <= depth32[ADDR_WIDTH:0];
else begin
fifo_fill_level[ADDR_WIDTH] <= 1'b0;
fifo_fill_level[ADDR_WIDTH-1 : 0] <= next_wr_ptr - next_rd_ptr;
end
end
end
always @* begin
fill_level = fifo_fill_level;
if (EMPTY_LATENCY == 3)
fill_level = fifo_fill_level + {{ADDR_WIDTH{1'b0}}, out_valid};
end
end
else begin : gen_blk16_else
always @* begin
fill_level = 0;
end
end
endgenerate
generate if (USE_ALMOST_FULL_IF) begin : gen_blk17
assign almost_full_data = (fill_level >= almost_full_threshold);
end
else
assign almost_full_data = 0;
endgenerate
generate if (USE_ALMOST_EMPTY_IF) begin : gen_blk18
assign almost_empty_data = (fill_level <= almost_empty_threshold);
end
else
assign almost_empty_data = 0;
endgenerate
// --------------------------------------------------
// Avalon-MM Status & Control Connection Point
//
// Register map:
//
// | Addr | RW | 31 - 0 |
// | 0 | R | Fill level |
//
// The registering of this connection point means
// that there is a cycle of latency between
// reads/writes and the updating of the fill level.
// --------------------------------------------------
generate if (USE_STORE_FORWARD) begin : gen_blk19
assign max_fifo_size = FIFO_DEPTH - 1;
always @(posedge clk or posedge reset) begin
if (reset) begin
almost_full_threshold <= max_fifo_size[23 : 0];
almost_empty_threshold <= 0;
cut_through_threshold <= 0;
drop_on_error_en <= 0;
csr_readdata <= 0;
pkt_mode <= 1'b1;
end
else begin
if (csr_read) begin
csr_readdata <= 32'b0;
if (csr_address == 5)
csr_readdata <= {31'b0, drop_on_error_en};
else if (csr_address == 4)
csr_readdata <= {8'b0, cut_through_threshold};
else if (csr_address == 3)
csr_readdata <= {8'b0, almost_empty_threshold};
else if (csr_address == 2)
csr_readdata <= {8'b0, almost_full_threshold};
else if (csr_address == 0)
csr_readdata <= {{(31 - ADDR_WIDTH){1'b0}}, fill_level};
end
else if (csr_write) begin
if(csr_address == 3'b101)
drop_on_error_en <= csr_writedata[0];
else if(csr_address == 3'b100) begin
cut_through_threshold <= csr_writedata[23:0];
pkt_mode <= (csr_writedata[23:0] == 0);
end
else if(csr_address == 3'b011)
almost_empty_threshold <= csr_writedata[23:0];
else if(csr_address == 3'b010)
almost_full_threshold <= csr_writedata[23:0];
end
end
end
end
else if (USE_ALMOST_FULL_IF || USE_ALMOST_EMPTY_IF) begin : gen_blk19_else1
assign max_fifo_size = FIFO_DEPTH - 1;
always @(posedge clk or posedge reset) begin
if (reset) begin
almost_full_threshold <= max_fifo_size[23 : 0];
almost_empty_threshold <= 0;
csr_readdata <= 0;
end
else begin
if (csr_read) begin
csr_readdata <= 32'b0;
if (csr_address == 3)
csr_readdata <= {8'b0, almost_empty_threshold};
else if (csr_address == 2)
csr_readdata <= {8'b0, almost_full_threshold};
else if (csr_address == 0)
csr_readdata <= {{(31 - ADDR_WIDTH){1'b0}}, fill_level};
end
else if (csr_write) begin
if(csr_address == 3'b011)
almost_empty_threshold <= csr_writedata[23:0];
else if(csr_address == 3'b010)
almost_full_threshold <= csr_writedata[23:0];
end
end
end
end
else begin : gen_blk19_else2
always @(posedge clk or posedge reset) begin
if (reset) begin
csr_readdata <= 0;
end
else if (csr_read) begin
csr_readdata <= 0;
if (csr_address == 0)
csr_readdata <= {{(31 - ADDR_WIDTH){1'b0}}, fill_level};
end
end
end
endgenerate
// --------------------------------------------------
// Store and forward logic
// --------------------------------------------------
// if the fifo gets full before the entire packet or the
// cut-threshold condition is met then start sending out
// data in order to avoid dead-lock situation
generate if (USE_STORE_FORWARD) begin : gen_blk20
assign wait_for_threshold = (fifo_fill_level_lt_cut_through_threshold) & wait_for_pkt ;
assign wait_for_pkt = pkt_cnt_eq_zero | (pkt_cnt_eq_one & out_pkt_leave);
assign ok_to_forward = (pkt_mode ? (~wait_for_pkt | ~pkt_has_started) :
~wait_for_threshold) | fifo_too_small_r;
assign in_pkt_eop_arrive = in_valid & in_ready & in_endofpacket;
assign in_pkt_start = in_valid & in_ready & in_startofpacket;
assign in_pkt_error = in_valid & in_ready & |in_error;
assign out_pkt_sop_leave = out_valid & out_ready & out_startofpacket;
assign out_pkt_leave = out_valid & out_ready & out_endofpacket;
assign fifo_too_small = (pkt_mode ? wait_for_pkt : wait_for_threshold) & full & out_ready;
// count packets coming and going into the fifo
always @(posedge clk or posedge reset) begin
if (reset) begin
pkt_cnt <= 0;
pkt_has_started <= 0;
sop_has_left_fifo <= 0;
fifo_too_small_r <= 0;
pkt_cnt_eq_zero <= 1'b1;
pkt_cnt_eq_one <= 1'b0;
fifo_fill_level_lt_cut_through_threshold <= 1'b1;
end
else begin
fifo_fill_level_lt_cut_through_threshold <= fifo_fill_level < cut_through_threshold;
fifo_too_small_r <= fifo_too_small;
if( in_pkt_eop_arrive )
sop_has_left_fifo <= 1'b0;
else if (out_pkt_sop_leave & pkt_cnt_eq_zero )
sop_has_left_fifo <= 1'b1;
if (in_pkt_eop_arrive & ~out_pkt_leave & ~drop_on_error ) begin
pkt_cnt <= pkt_cnt + 1'b1;
pkt_cnt_eq_zero <= 0;
if (pkt_cnt == 0)
pkt_cnt_eq_one <= 1'b1;
else
pkt_cnt_eq_one <= 1'b0;
end
else if((~in_pkt_eop_arrive | drop_on_error) & out_pkt_leave) begin
pkt_cnt <= pkt_cnt - 1'b1;
if (pkt_cnt == 1)
pkt_cnt_eq_zero <= 1'b1;
else
pkt_cnt_eq_zero <= 1'b0;
if (pkt_cnt == 2)
pkt_cnt_eq_one <= 1'b1;
else
pkt_cnt_eq_one <= 1'b0;
end
if (in_pkt_start)
pkt_has_started <= 1'b1;
else if (in_pkt_eop_arrive)
pkt_has_started <= 1'b0;
end
end
// drop on error logic
always @(posedge clk or posedge reset) begin
if (reset) begin
sop_ptr <= 0;
error_in_pkt <= 0;
end
else begin
// save the location of the SOP
if ( in_pkt_start )
sop_ptr <= wr_ptr;
// remember if error in pkt
// log error only if packet has already started
if (in_pkt_eop_arrive)
error_in_pkt <= 1'b0;
else if ( in_pkt_error & (pkt_has_started | in_pkt_start))
error_in_pkt <= 1'b1;
end
end
assign drop_on_error = drop_on_error_en & (error_in_pkt | in_pkt_error) & in_pkt_eop_arrive &
~sop_has_left_fifo & ~(out_pkt_sop_leave & pkt_cnt_eq_zero);
assign curr_sop_ptr = (write && in_startofpacket && in_endofpacket) ? wr_ptr : sop_ptr;
end
else begin : gen_blk20_else
assign ok_to_forward = 1'b1;
assign drop_on_error = 1'b0;
if (ADDR_WIDTH <= 1)
assign curr_sop_ptr = 1'b0;
else
assign curr_sop_ptr = {ADDR_WIDTH - 1 { 1'b0 }};
end
endgenerate
// --------------------------------------------------
// Calculates the log2ceil of the input value
// --------------------------------------------------
function integer log2ceil;
input integer val;
reg[31:0] i;
begin
i = 1;
log2ceil = 0;
while (i < val) begin
log2ceil = log2ceil + 1;
i = i[30:0] << 1;
end
end
endfunction
endmodule
|
/*
*
* Copyright (c) 2011 [email protected]
*
*
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
*/
`timescale 1ns/1ps
module e0 (x, y);
input [31:0] x;
output [31:0] y;
assign y = {x[1:0],x[31:2]} ^ {x[12:0],x[31:13]} ^ {x[21:0],x[31:22]};
endmodule
module e1 (x, y);
input [31:0] x;
output [31:0] y;
assign y = {x[5:0],x[31:6]} ^ {x[10:0],x[31:11]} ^ {x[24:0],x[31:25]};
endmodule
module ch (x, y, z, o);
input [31:0] x, y, z;
output [31:0] o;
assign o = z ^ (x & (y ^ z));
endmodule
module maj (x, y, z, o);
input [31:0] x, y, z;
output [31:0] o;
assign o = (x & y) | (z & (x | y));
endmodule
module s0 (x, y);
input [31:0] x;
output [31:0] y;
assign y[31:29] = x[6:4] ^ x[17:15];
assign y[28:0] = {x[3:0], x[31:7]} ^ {x[14:0],x[31:18]} ^ x[31:3];
endmodule
module s1 (x, y);
input [31:0] x;
output [31:0] y;
assign y[31:22] = x[16:7] ^ x[18:9];
assign y[21:0] = {x[6:0],x[31:17]} ^ {x[8:0],x[31:19]} ^ x[31:10];
endmodule
|
/*
*
* Copyright (c) 2011 [email protected]
*
*
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
*/
`timescale 1ns/1ps
module e0 (x, y);
input [31:0] x;
output [31:0] y;
assign y = {x[1:0],x[31:2]} ^ {x[12:0],x[31:13]} ^ {x[21:0],x[31:22]};
endmodule
module e1 (x, y);
input [31:0] x;
output [31:0] y;
assign y = {x[5:0],x[31:6]} ^ {x[10:0],x[31:11]} ^ {x[24:0],x[31:25]};
endmodule
module ch (x, y, z, o);
input [31:0] x, y, z;
output [31:0] o;
assign o = z ^ (x & (y ^ z));
endmodule
module maj (x, y, z, o);
input [31:0] x, y, z;
output [31:0] o;
assign o = (x & y) | (z & (x | y));
endmodule
module s0 (x, y);
input [31:0] x;
output [31:0] y;
assign y[31:29] = x[6:4] ^ x[17:15];
assign y[28:0] = {x[3:0], x[31:7]} ^ {x[14:0],x[31:18]} ^ x[31:3];
endmodule
module s1 (x, y);
input [31:0] x;
output [31:0] y;
assign y[31:22] = x[16:7] ^ x[18:9];
assign y[21:0] = {x[6:0],x[31:17]} ^ {x[8:0],x[31:19]} ^ x[31:10];
endmodule
|
/*
*
* Copyright (c) 2011 [email protected]
*
*
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
*/
`timescale 1ns/1ps
module e0 (x, y);
input [31:0] x;
output [31:0] y;
assign y = {x[1:0],x[31:2]} ^ {x[12:0],x[31:13]} ^ {x[21:0],x[31:22]};
endmodule
module e1 (x, y);
input [31:0] x;
output [31:0] y;
assign y = {x[5:0],x[31:6]} ^ {x[10:0],x[31:11]} ^ {x[24:0],x[31:25]};
endmodule
module ch (x, y, z, o);
input [31:0] x, y, z;
output [31:0] o;
assign o = z ^ (x & (y ^ z));
endmodule
module maj (x, y, z, o);
input [31:0] x, y, z;
output [31:0] o;
assign o = (x & y) | (z & (x | y));
endmodule
module s0 (x, y);
input [31:0] x;
output [31:0] y;
assign y[31:29] = x[6:4] ^ x[17:15];
assign y[28:0] = {x[3:0], x[31:7]} ^ {x[14:0],x[31:18]} ^ x[31:3];
endmodule
module s1 (x, y);
input [31:0] x;
output [31:0] y;
assign y[31:22] = x[16:7] ^ x[18:9];
assign y[21:0] = {x[6:0],x[31:17]} ^ {x[8:0],x[31:19]} ^ x[31:10];
endmodule
|
/*
*
* Copyright (c) 2011 [email protected]
*
*
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
*/
`timescale 1ns/1ps
module e0 (x, y);
input [31:0] x;
output [31:0] y;
assign y = {x[1:0],x[31:2]} ^ {x[12:0],x[31:13]} ^ {x[21:0],x[31:22]};
endmodule
module e1 (x, y);
input [31:0] x;
output [31:0] y;
assign y = {x[5:0],x[31:6]} ^ {x[10:0],x[31:11]} ^ {x[24:0],x[31:25]};
endmodule
module ch (x, y, z, o);
input [31:0] x, y, z;
output [31:0] o;
assign o = z ^ (x & (y ^ z));
endmodule
module maj (x, y, z, o);
input [31:0] x, y, z;
output [31:0] o;
assign o = (x & y) | (z & (x | y));
endmodule
module s0 (x, y);
input [31:0] x;
output [31:0] y;
assign y[31:29] = x[6:4] ^ x[17:15];
assign y[28:0] = {x[3:0], x[31:7]} ^ {x[14:0],x[31:18]} ^ x[31:3];
endmodule
module s1 (x, y);
input [31:0] x;
output [31:0] y;
assign y[31:22] = x[16:7] ^ x[18:9];
assign y[21:0] = {x[6:0],x[31:17]} ^ {x[8:0],x[31:19]} ^ x[31:10];
endmodule
|
/*
*
* Copyright (c) 2011 [email protected]
*
*
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
*/
`timescale 1ns/1ps
module e0 (x, y);
input [31:0] x;
output [31:0] y;
assign y = {x[1:0],x[31:2]} ^ {x[12:0],x[31:13]} ^ {x[21:0],x[31:22]};
endmodule
module e1 (x, y);
input [31:0] x;
output [31:0] y;
assign y = {x[5:0],x[31:6]} ^ {x[10:0],x[31:11]} ^ {x[24:0],x[31:25]};
endmodule
module ch (x, y, z, o);
input [31:0] x, y, z;
output [31:0] o;
assign o = z ^ (x & (y ^ z));
endmodule
module maj (x, y, z, o);
input [31:0] x, y, z;
output [31:0] o;
assign o = (x & y) | (z & (x | y));
endmodule
module s0 (x, y);
input [31:0] x;
output [31:0] y;
assign y[31:29] = x[6:4] ^ x[17:15];
assign y[28:0] = {x[3:0], x[31:7]} ^ {x[14:0],x[31:18]} ^ x[31:3];
endmodule
module s1 (x, y);
input [31:0] x;
output [31:0] y;
assign y[31:22] = x[16:7] ^ x[18:9];
assign y[21:0] = {x[6:0],x[31:17]} ^ {x[8:0],x[31:19]} ^ x[31:10];
endmodule
|
/*
*
* Copyright (c) 2011 [email protected]
*
*
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
*/
`timescale 1ns/1ps
module e0 (x, y);
input [31:0] x;
output [31:0] y;
assign y = {x[1:0],x[31:2]} ^ {x[12:0],x[31:13]} ^ {x[21:0],x[31:22]};
endmodule
module e1 (x, y);
input [31:0] x;
output [31:0] y;
assign y = {x[5:0],x[31:6]} ^ {x[10:0],x[31:11]} ^ {x[24:0],x[31:25]};
endmodule
module ch (x, y, z, o);
input [31:0] x, y, z;
output [31:0] o;
assign o = z ^ (x & (y ^ z));
endmodule
module maj (x, y, z, o);
input [31:0] x, y, z;
output [31:0] o;
assign o = (x & y) | (z & (x | y));
endmodule
module s0 (x, y);
input [31:0] x;
output [31:0] y;
assign y[31:29] = x[6:4] ^ x[17:15];
assign y[28:0] = {x[3:0], x[31:7]} ^ {x[14:0],x[31:18]} ^ x[31:3];
endmodule
module s1 (x, y);
input [31:0] x;
output [31:0] y;
assign y[31:22] = x[16:7] ^ x[18:9];
assign y[21:0] = {x[6:0],x[31:17]} ^ {x[8:0],x[31:19]} ^ x[31:10];
endmodule
|
/*
*
* Copyright (c) 2011 [email protected]
*
*
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
*/
`timescale 1ns/1ps
module e0 (x, y);
input [31:0] x;
output [31:0] y;
assign y = {x[1:0],x[31:2]} ^ {x[12:0],x[31:13]} ^ {x[21:0],x[31:22]};
endmodule
module e1 (x, y);
input [31:0] x;
output [31:0] y;
assign y = {x[5:0],x[31:6]} ^ {x[10:0],x[31:11]} ^ {x[24:0],x[31:25]};
endmodule
module ch (x, y, z, o);
input [31:0] x, y, z;
output [31:0] o;
assign o = z ^ (x & (y ^ z));
endmodule
module maj (x, y, z, o);
input [31:0] x, y, z;
output [31:0] o;
assign o = (x & y) | (z & (x | y));
endmodule
module s0 (x, y);
input [31:0] x;
output [31:0] y;
assign y[31:29] = x[6:4] ^ x[17:15];
assign y[28:0] = {x[3:0], x[31:7]} ^ {x[14:0],x[31:18]} ^ x[31:3];
endmodule
module s1 (x, y);
input [31:0] x;
output [31:0] y;
assign y[31:22] = x[16:7] ^ x[18:9];
assign y[21:0] = {x[6:0],x[31:17]} ^ {x[8:0],x[31:19]} ^ x[31:10];
endmodule
|
/*
*
* Copyright (c) 2011 [email protected]
*
*
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
*/
`timescale 1ns/1ps
module e0 (x, y);
input [31:0] x;
output [31:0] y;
assign y = {x[1:0],x[31:2]} ^ {x[12:0],x[31:13]} ^ {x[21:0],x[31:22]};
endmodule
module e1 (x, y);
input [31:0] x;
output [31:0] y;
assign y = {x[5:0],x[31:6]} ^ {x[10:0],x[31:11]} ^ {x[24:0],x[31:25]};
endmodule
module ch (x, y, z, o);
input [31:0] x, y, z;
output [31:0] o;
assign o = z ^ (x & (y ^ z));
endmodule
module maj (x, y, z, o);
input [31:0] x, y, z;
output [31:0] o;
assign o = (x & y) | (z & (x | y));
endmodule
module s0 (x, y);
input [31:0] x;
output [31:0] y;
assign y[31:29] = x[6:4] ^ x[17:15];
assign y[28:0] = {x[3:0], x[31:7]} ^ {x[14:0],x[31:18]} ^ x[31:3];
endmodule
module s1 (x, y);
input [31:0] x;
output [31:0] y;
assign y[31:22] = x[16:7] ^ x[18:9];
assign y[21:0] = {x[6:0],x[31:17]} ^ {x[8:0],x[31:19]} ^ x[31:10];
endmodule
|
/*
*
* Copyright (c) 2011 [email protected]
*
*
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
*/
`timescale 1ns/1ps
module e0 (x, y);
input [31:0] x;
output [31:0] y;
assign y = {x[1:0],x[31:2]} ^ {x[12:0],x[31:13]} ^ {x[21:0],x[31:22]};
endmodule
module e1 (x, y);
input [31:0] x;
output [31:0] y;
assign y = {x[5:0],x[31:6]} ^ {x[10:0],x[31:11]} ^ {x[24:0],x[31:25]};
endmodule
module ch (x, y, z, o);
input [31:0] x, y, z;
output [31:0] o;
assign o = z ^ (x & (y ^ z));
endmodule
module maj (x, y, z, o);
input [31:0] x, y, z;
output [31:0] o;
assign o = (x & y) | (z & (x | y));
endmodule
module s0 (x, y);
input [31:0] x;
output [31:0] y;
assign y[31:29] = x[6:4] ^ x[17:15];
assign y[28:0] = {x[3:0], x[31:7]} ^ {x[14:0],x[31:18]} ^ x[31:3];
endmodule
module s1 (x, y);
input [31:0] x;
output [31:0] y;
assign y[31:22] = x[16:7] ^ x[18:9];
assign y[21:0] = {x[6:0],x[31:17]} ^ {x[8:0],x[31:19]} ^ x[31:10];
endmodule
|
/*
*
* Copyright (c) 2011 [email protected]
*
*
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
*/
`timescale 1ns/1ps
module e0 (x, y);
input [31:0] x;
output [31:0] y;
assign y = {x[1:0],x[31:2]} ^ {x[12:0],x[31:13]} ^ {x[21:0],x[31:22]};
endmodule
module e1 (x, y);
input [31:0] x;
output [31:0] y;
assign y = {x[5:0],x[31:6]} ^ {x[10:0],x[31:11]} ^ {x[24:0],x[31:25]};
endmodule
module ch (x, y, z, o);
input [31:0] x, y, z;
output [31:0] o;
assign o = z ^ (x & (y ^ z));
endmodule
module maj (x, y, z, o);
input [31:0] x, y, z;
output [31:0] o;
assign o = (x & y) | (z & (x | y));
endmodule
module s0 (x, y);
input [31:0] x;
output [31:0] y;
assign y[31:29] = x[6:4] ^ x[17:15];
assign y[28:0] = {x[3:0], x[31:7]} ^ {x[14:0],x[31:18]} ^ x[31:3];
endmodule
module s1 (x, y);
input [31:0] x;
output [31:0] y;
assign y[31:22] = x[16:7] ^ x[18:9];
assign y[21:0] = {x[6:0],x[31:17]} ^ {x[8:0],x[31:19]} ^ x[31:10];
endmodule
|
/*
*
* Copyright (c) 2011 [email protected]
*
*
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
*/
`timescale 1ns/1ps
module e0 (x, y);
input [31:0] x;
output [31:0] y;
assign y = {x[1:0],x[31:2]} ^ {x[12:0],x[31:13]} ^ {x[21:0],x[31:22]};
endmodule
module e1 (x, y);
input [31:0] x;
output [31:0] y;
assign y = {x[5:0],x[31:6]} ^ {x[10:0],x[31:11]} ^ {x[24:0],x[31:25]};
endmodule
module ch (x, y, z, o);
input [31:0] x, y, z;
output [31:0] o;
assign o = z ^ (x & (y ^ z));
endmodule
module maj (x, y, z, o);
input [31:0] x, y, z;
output [31:0] o;
assign o = (x & y) | (z & (x | y));
endmodule
module s0 (x, y);
input [31:0] x;
output [31:0] y;
assign y[31:29] = x[6:4] ^ x[17:15];
assign y[28:0] = {x[3:0], x[31:7]} ^ {x[14:0],x[31:18]} ^ x[31:3];
endmodule
module s1 (x, y);
input [31:0] x;
output [31:0] y;
assign y[31:22] = x[16:7] ^ x[18:9];
assign y[21:0] = {x[6:0],x[31:17]} ^ {x[8:0],x[31:19]} ^ x[31:10];
endmodule
|
/*
*
* Copyright (c) 2011 [email protected]
*
*
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
*/
`timescale 1ns/1ps
module e0 (x, y);
input [31:0] x;
output [31:0] y;
assign y = {x[1:0],x[31:2]} ^ {x[12:0],x[31:13]} ^ {x[21:0],x[31:22]};
endmodule
module e1 (x, y);
input [31:0] x;
output [31:0] y;
assign y = {x[5:0],x[31:6]} ^ {x[10:0],x[31:11]} ^ {x[24:0],x[31:25]};
endmodule
module ch (x, y, z, o);
input [31:0] x, y, z;
output [31:0] o;
assign o = z ^ (x & (y ^ z));
endmodule
module maj (x, y, z, o);
input [31:0] x, y, z;
output [31:0] o;
assign o = (x & y) | (z & (x | y));
endmodule
module s0 (x, y);
input [31:0] x;
output [31:0] y;
assign y[31:29] = x[6:4] ^ x[17:15];
assign y[28:0] = {x[3:0], x[31:7]} ^ {x[14:0],x[31:18]} ^ x[31:3];
endmodule
module s1 (x, y);
input [31:0] x;
output [31:0] y;
assign y[31:22] = x[16:7] ^ x[18:9];
assign y[21:0] = {x[6:0],x[31:17]} ^ {x[8:0],x[31:19]} ^ x[31:10];
endmodule
|
/*
*
* Copyright (c) 2011 [email protected]
*
*
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
*/
`timescale 1ns/1ps
module e0 (x, y);
input [31:0] x;
output [31:0] y;
assign y = {x[1:0],x[31:2]} ^ {x[12:0],x[31:13]} ^ {x[21:0],x[31:22]};
endmodule
module e1 (x, y);
input [31:0] x;
output [31:0] y;
assign y = {x[5:0],x[31:6]} ^ {x[10:0],x[31:11]} ^ {x[24:0],x[31:25]};
endmodule
module ch (x, y, z, o);
input [31:0] x, y, z;
output [31:0] o;
assign o = z ^ (x & (y ^ z));
endmodule
module maj (x, y, z, o);
input [31:0] x, y, z;
output [31:0] o;
assign o = (x & y) | (z & (x | y));
endmodule
module s0 (x, y);
input [31:0] x;
output [31:0] y;
assign y[31:29] = x[6:4] ^ x[17:15];
assign y[28:0] = {x[3:0], x[31:7]} ^ {x[14:0],x[31:18]} ^ x[31:3];
endmodule
module s1 (x, y);
input [31:0] x;
output [31:0] y;
assign y[31:22] = x[16:7] ^ x[18:9];
assign y[21:0] = {x[6:0],x[31:17]} ^ {x[8:0],x[31:19]} ^ x[31:10];
endmodule
|
/*
*
* Copyright (c) 2011 [email protected]
*
*
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
*/
`timescale 1ns/1ps
module e0 (x, y);
input [31:0] x;
output [31:0] y;
assign y = {x[1:0],x[31:2]} ^ {x[12:0],x[31:13]} ^ {x[21:0],x[31:22]};
endmodule
module e1 (x, y);
input [31:0] x;
output [31:0] y;
assign y = {x[5:0],x[31:6]} ^ {x[10:0],x[31:11]} ^ {x[24:0],x[31:25]};
endmodule
module ch (x, y, z, o);
input [31:0] x, y, z;
output [31:0] o;
assign o = z ^ (x & (y ^ z));
endmodule
module maj (x, y, z, o);
input [31:0] x, y, z;
output [31:0] o;
assign o = (x & y) | (z & (x | y));
endmodule
module s0 (x, y);
input [31:0] x;
output [31:0] y;
assign y[31:29] = x[6:4] ^ x[17:15];
assign y[28:0] = {x[3:0], x[31:7]} ^ {x[14:0],x[31:18]} ^ x[31:3];
endmodule
module s1 (x, y);
input [31:0] x;
output [31:0] y;
assign y[31:22] = x[16:7] ^ x[18:9];
assign y[21:0] = {x[6:0],x[31:17]} ^ {x[8:0],x[31:19]} ^ x[31:10];
endmodule
|
/*
*
* Copyright (c) 2011 [email protected]
*
*
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
*/
`timescale 1ns/1ps
module e0 (x, y);
input [31:0] x;
output [31:0] y;
assign y = {x[1:0],x[31:2]} ^ {x[12:0],x[31:13]} ^ {x[21:0],x[31:22]};
endmodule
module e1 (x, y);
input [31:0] x;
output [31:0] y;
assign y = {x[5:0],x[31:6]} ^ {x[10:0],x[31:11]} ^ {x[24:0],x[31:25]};
endmodule
module ch (x, y, z, o);
input [31:0] x, y, z;
output [31:0] o;
assign o = z ^ (x & (y ^ z));
endmodule
module maj (x, y, z, o);
input [31:0] x, y, z;
output [31:0] o;
assign o = (x & y) | (z & (x | y));
endmodule
module s0 (x, y);
input [31:0] x;
output [31:0] y;
assign y[31:29] = x[6:4] ^ x[17:15];
assign y[28:0] = {x[3:0], x[31:7]} ^ {x[14:0],x[31:18]} ^ x[31:3];
endmodule
module s1 (x, y);
input [31:0] x;
output [31:0] y;
assign y[31:22] = x[16:7] ^ x[18:9];
assign y[21:0] = {x[6:0],x[31:17]} ^ {x[8:0],x[31:19]} ^ x[31:10];
endmodule
|
/*
*
* Copyright (c) 2011 [email protected]
*
*
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
*/
`timescale 1ns/1ps
module e0 (x, y);
input [31:0] x;
output [31:0] y;
assign y = {x[1:0],x[31:2]} ^ {x[12:0],x[31:13]} ^ {x[21:0],x[31:22]};
endmodule
module e1 (x, y);
input [31:0] x;
output [31:0] y;
assign y = {x[5:0],x[31:6]} ^ {x[10:0],x[31:11]} ^ {x[24:0],x[31:25]};
endmodule
module ch (x, y, z, o);
input [31:0] x, y, z;
output [31:0] o;
assign o = z ^ (x & (y ^ z));
endmodule
module maj (x, y, z, o);
input [31:0] x, y, z;
output [31:0] o;
assign o = (x & y) | (z & (x | y));
endmodule
module s0 (x, y);
input [31:0] x;
output [31:0] y;
assign y[31:29] = x[6:4] ^ x[17:15];
assign y[28:0] = {x[3:0], x[31:7]} ^ {x[14:0],x[31:18]} ^ x[31:3];
endmodule
module s1 (x, y);
input [31:0] x;
output [31:0] y;
assign y[31:22] = x[16:7] ^ x[18:9];
assign y[21:0] = {x[6:0],x[31:17]} ^ {x[8:0],x[31:19]} ^ x[31:10];
endmodule
|
/*
*
* Copyright (c) 2011 [email protected]
*
*
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
*/
`timescale 1ns/1ps
module e0 (x, y);
input [31:0] x;
output [31:0] y;
assign y = {x[1:0],x[31:2]} ^ {x[12:0],x[31:13]} ^ {x[21:0],x[31:22]};
endmodule
module e1 (x, y);
input [31:0] x;
output [31:0] y;
assign y = {x[5:0],x[31:6]} ^ {x[10:0],x[31:11]} ^ {x[24:0],x[31:25]};
endmodule
module ch (x, y, z, o);
input [31:0] x, y, z;
output [31:0] o;
assign o = z ^ (x & (y ^ z));
endmodule
module maj (x, y, z, o);
input [31:0] x, y, z;
output [31:0] o;
assign o = (x & y) | (z & (x | y));
endmodule
module s0 (x, y);
input [31:0] x;
output [31:0] y;
assign y[31:29] = x[6:4] ^ x[17:15];
assign y[28:0] = {x[3:0], x[31:7]} ^ {x[14:0],x[31:18]} ^ x[31:3];
endmodule
module s1 (x, y);
input [31:0] x;
output [31:0] y;
assign y[31:22] = x[16:7] ^ x[18:9];
assign y[21:0] = {x[6:0],x[31:17]} ^ {x[8:0],x[31:19]} ^ x[31:10];
endmodule
|
`timescale 1ns / 1ps
//////////////////////////////////////////////////////////////////////////////////
// Company:
// Engineer:
//
// Create Date: 03/10/2016 04:46:19 PM
// Design Name:
// Module Name: exp_operation
// Project Name:
// Target Devices:
// Tool Versions:
// Description:
//
// Dependencies:
//
// Revision:
// Revision 0.01 - File Created
// Additional Comments:
//
//////////////////////////////////////////////////////////////////////////////////
module Exp_Operation
#(parameter EW = 8) //Exponent Width
(
input wire clk, //system clock
input wire rst, //reset of the module
input wire load_a_i,
input wire load_b_i,
input wire [EW-1:0] Data_A_i,
input wire [EW-1:0] Data_B_i,
input wire Add_Subt_i,
///////////////////////////////////////////////////////////////////77
output wire [EW-1:0] Data_Result_o,
output wire Overflow_flag_o,
output wire Underflow_flag_o
);
//wire [EW-1:0] Data_B;
wire [EW:0] Data_S;
/////////////////////////////////////////7
//genvar j;
//for (j=0; j<EW; j=j+1)begin
// assign Data_B[j] = PreData_B_i[j] ^ Add_Subt_i;
//end
/////////////////////////////////////////
add_sub_carry_out #(.W(EW)) exp_add_subt(
.op_mode (Add_Subt_i),
.Data_A (Data_A_i),
.Data_B (Data_B_i),
.Data_S (Data_S)
);
//assign Overflow_flag_o = 1'b0;
//assign Underflow_flag_o = 1'b0;
Comparators #(.W_Exp(EW+1)) array_comparators(
.exp(Data_S),
.overflow(Overflow_flag),
.underflow(Underflow_flag)
);
RegisterAdd #(.W(EW)) exp_result(
.clk (clk),
.rst (rst),
.load (load_a_i),
.D (Data_S[EW-1:0]),
.Q (Data_Result_o)
);
RegisterAdd #(.W(1)) Overflow (
.clk(clk),
.rst(rst),
.load(load_a_i),
.D(Overflow_flag),
.Q(Overflow_flag_o)
);
RegisterAdd #(.W(1)) Underflow (
.clk(clk),
.rst(rst),
.load(load_b_i),
.D(Underflow_flag),
.Q(Underflow_flag_o)
);
endmodule
|
`timescale 1ns / 1ps
//////////////////////////////////////////////////////////////////////////////////
// Company:
// Engineer:
//
// Create Date: 03/10/2016 04:46:19 PM
// Design Name:
// Module Name: exp_operation
// Project Name:
// Target Devices:
// Tool Versions:
// Description:
//
// Dependencies:
//
// Revision:
// Revision 0.01 - File Created
// Additional Comments:
//
//////////////////////////////////////////////////////////////////////////////////
module Exp_Operation
#(parameter EW = 8) //Exponent Width
(
input wire clk, //system clock
input wire rst, //reset of the module
input wire load_a_i,
input wire load_b_i,
input wire [EW-1:0] Data_A_i,
input wire [EW-1:0] Data_B_i,
input wire Add_Subt_i,
///////////////////////////////////////////////////////////////////77
output wire [EW-1:0] Data_Result_o,
output wire Overflow_flag_o,
output wire Underflow_flag_o
);
//wire [EW-1:0] Data_B;
wire [EW:0] Data_S;
/////////////////////////////////////////7
//genvar j;
//for (j=0; j<EW; j=j+1)begin
// assign Data_B[j] = PreData_B_i[j] ^ Add_Subt_i;
//end
/////////////////////////////////////////
add_sub_carry_out #(.W(EW)) exp_add_subt(
.op_mode (Add_Subt_i),
.Data_A (Data_A_i),
.Data_B (Data_B_i),
.Data_S (Data_S)
);
//assign Overflow_flag_o = 1'b0;
//assign Underflow_flag_o = 1'b0;
Comparators #(.W_Exp(EW+1)) array_comparators(
.exp(Data_S),
.overflow(Overflow_flag),
.underflow(Underflow_flag)
);
RegisterAdd #(.W(EW)) exp_result(
.clk (clk),
.rst (rst),
.load (load_a_i),
.D (Data_S[EW-1:0]),
.Q (Data_Result_o)
);
RegisterAdd #(.W(1)) Overflow (
.clk(clk),
.rst(rst),
.load(load_a_i),
.D(Overflow_flag),
.Q(Overflow_flag_o)
);
RegisterAdd #(.W(1)) Underflow (
.clk(clk),
.rst(rst),
.load(load_b_i),
.D(Underflow_flag),
.Q(Underflow_flag_o)
);
endmodule
|
`timescale 1ns / 1ps
//////////////////////////////////////////////////////////////////////////////////
// Company:
// Engineer:
//
// Create Date: 03/10/2016 04:46:19 PM
// Design Name:
// Module Name: exp_operation
// Project Name:
// Target Devices:
// Tool Versions:
// Description:
//
// Dependencies:
//
// Revision:
// Revision 0.01 - File Created
// Additional Comments:
//
//////////////////////////////////////////////////////////////////////////////////
module Exp_Operation
#(parameter EW = 8) //Exponent Width
(
input wire clk, //system clock
input wire rst, //reset of the module
input wire load_a_i,
input wire load_b_i,
input wire [EW-1:0] Data_A_i,
input wire [EW-1:0] Data_B_i,
input wire Add_Subt_i,
///////////////////////////////////////////////////////////////////77
output wire [EW-1:0] Data_Result_o,
output wire Overflow_flag_o,
output wire Underflow_flag_o
);
//wire [EW-1:0] Data_B;
wire [EW:0] Data_S;
/////////////////////////////////////////7
//genvar j;
//for (j=0; j<EW; j=j+1)begin
// assign Data_B[j] = PreData_B_i[j] ^ Add_Subt_i;
//end
/////////////////////////////////////////
add_sub_carry_out #(.W(EW)) exp_add_subt(
.op_mode (Add_Subt_i),
.Data_A (Data_A_i),
.Data_B (Data_B_i),
.Data_S (Data_S)
);
//assign Overflow_flag_o = 1'b0;
//assign Underflow_flag_o = 1'b0;
Comparators #(.W_Exp(EW+1)) array_comparators(
.exp(Data_S),
.overflow(Overflow_flag),
.underflow(Underflow_flag)
);
RegisterAdd #(.W(EW)) exp_result(
.clk (clk),
.rst (rst),
.load (load_a_i),
.D (Data_S[EW-1:0]),
.Q (Data_Result_o)
);
RegisterAdd #(.W(1)) Overflow (
.clk(clk),
.rst(rst),
.load(load_a_i),
.D(Overflow_flag),
.Q(Overflow_flag_o)
);
RegisterAdd #(.W(1)) Underflow (
.clk(clk),
.rst(rst),
.load(load_b_i),
.D(Underflow_flag),
.Q(Underflow_flag_o)
);
endmodule
|
`timescale 1ns / 1ps
//////////////////////////////////////////////////////////////////////////////////
// Company:
// Engineer:
//
// Create Date: 03/10/2016 04:46:19 PM
// Design Name:
// Module Name: exp_operation
// Project Name:
// Target Devices:
// Tool Versions:
// Description:
//
// Dependencies:
//
// Revision:
// Revision 0.01 - File Created
// Additional Comments:
//
//////////////////////////////////////////////////////////////////////////////////
module Exp_Operation
#(parameter EW = 8) //Exponent Width
(
input wire clk, //system clock
input wire rst, //reset of the module
input wire load_a_i,
input wire load_b_i,
input wire [EW-1:0] Data_A_i,
input wire [EW-1:0] Data_B_i,
input wire Add_Subt_i,
///////////////////////////////////////////////////////////////////77
output wire [EW-1:0] Data_Result_o,
output wire Overflow_flag_o,
output wire Underflow_flag_o
);
//wire [EW-1:0] Data_B;
wire [EW:0] Data_S;
/////////////////////////////////////////7
//genvar j;
//for (j=0; j<EW; j=j+1)begin
// assign Data_B[j] = PreData_B_i[j] ^ Add_Subt_i;
//end
/////////////////////////////////////////
add_sub_carry_out #(.W(EW)) exp_add_subt(
.op_mode (Add_Subt_i),
.Data_A (Data_A_i),
.Data_B (Data_B_i),
.Data_S (Data_S)
);
//assign Overflow_flag_o = 1'b0;
//assign Underflow_flag_o = 1'b0;
Comparators #(.W_Exp(EW+1)) array_comparators(
.exp(Data_S),
.overflow(Overflow_flag),
.underflow(Underflow_flag)
);
RegisterAdd #(.W(EW)) exp_result(
.clk (clk),
.rst (rst),
.load (load_a_i),
.D (Data_S[EW-1:0]),
.Q (Data_Result_o)
);
RegisterAdd #(.W(1)) Overflow (
.clk(clk),
.rst(rst),
.load(load_a_i),
.D(Overflow_flag),
.Q(Overflow_flag_o)
);
RegisterAdd #(.W(1)) Underflow (
.clk(clk),
.rst(rst),
.load(load_b_i),
.D(Underflow_flag),
.Q(Underflow_flag_o)
);
endmodule
|
/*
* VGA top level file
* Copyright (C) 2010 Zeus Gomez Marmolejo <[email protected]>
*
* This file is part of the Zet processor. This processor is free
* hardware; you can redistribute it and/or modify it under the terms of
* the GNU General Public License as published by the Free Software
* Foundation; either version 3, or (at your option) any later version.
*
* Zet is distrubuted in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
* License for more details.
*
* You should have received a copy of the GNU General Public License
* along with Zet; see the file COPYING. If not, see
* <http://www.gnu.org/licenses/>.
*/
module vga (
// Wishbone signals
input wb_clk_i, // 25 Mhz VDU clock
input wb_rst_i,
input [15:0] wb_dat_i,
output [15:0] wb_dat_o,
input [16:1] wb_adr_i,
input wb_we_i,
input wb_tga_i,
input [ 1:0] wb_sel_i,
input wb_stb_i,
input wb_cyc_i,
output wb_ack_o,
// VGA pad signals
output [ 3:0] vga_red_o,
output [ 3:0] vga_green_o,
output [ 3:0] vga_blue_o,
output horiz_sync,
output vert_sync,
// CSR SRAM master interface
output [17:1] csrm_adr_o,
output [ 1:0] csrm_sel_o,
output csrm_we_o,
output [15:0] csrm_dat_o,
input [15:0] csrm_dat_i
);
// Registers and nets
//
// csr address
reg [17:1] csr_adr_i;
reg csr_stb_i;
// Config wires
wire [15:0] conf_wb_dat_o;
wire conf_wb_ack_o;
// Mem wires
wire [15:0] mem_wb_dat_o;
wire mem_wb_ack_o;
// LCD wires
wire [17:1] csr_adr_o;
wire [15:0] csr_dat_i;
wire csr_stb_o;
wire v_retrace;
wire vh_retrace;
wire w_vert_sync;
// VGA configuration registers
wire shift_reg1;
wire graphics_alpha;
wire memory_mapping1;
wire [ 1:0] write_mode;
wire [ 1:0] raster_op;
wire read_mode;
wire [ 7:0] bitmask;
wire [ 3:0] set_reset;
wire [ 3:0] enable_set_reset;
wire [ 3:0] map_mask;
wire x_dotclockdiv2;
wire chain_four;
wire [ 1:0] read_map_select;
wire [ 3:0] color_compare;
wire [ 3:0] color_dont_care;
// Wishbone master to SRAM
wire [17:1] wbm_adr_o;
wire [ 1:0] wbm_sel_o;
wire wbm_we_o;
wire [15:0] wbm_dat_o;
wire [15:0] wbm_dat_i;
wire wbm_stb_o;
wire wbm_ack_i;
wire stb;
// CRT wires
wire [ 5:0] cur_start;
wire [ 5:0] cur_end;
wire [15:0] start_addr;
wire [ 4:0] vcursor;
wire [ 6:0] hcursor;
wire [ 6:0] horiz_total;
wire [ 6:0] end_horiz;
wire [ 6:0] st_hor_retr;
wire [ 4:0] end_hor_retr;
wire [ 9:0] vert_total;
wire [ 9:0] end_vert;
wire [ 9:0] st_ver_retr;
wire [ 3:0] end_ver_retr;
// attribute_ctrl wires
wire [3:0] pal_addr;
wire pal_we;
wire [7:0] pal_read;
wire [7:0] pal_write;
// dac_regs wires
wire dac_we;
wire [1:0] dac_read_data_cycle;
wire [7:0] dac_read_data_register;
wire [3:0] dac_read_data;
wire [1:0] dac_write_data_cycle;
wire [7:0] dac_write_data_register;
wire [3:0] dac_write_data;
// Module instances
//
vga_config_iface config_iface (
.wb_clk_i (wb_clk_i),
.wb_rst_i (wb_rst_i),
.wb_dat_i (wb_dat_i),
.wb_dat_o (conf_wb_dat_o),
.wb_adr_i (wb_adr_i[4:1]),
.wb_we_i (wb_we_i),
.wb_sel_i (wb_sel_i),
.wb_stb_i (stb & wb_tga_i),
.wb_ack_o (conf_wb_ack_o),
.shift_reg1 (shift_reg1),
.graphics_alpha (graphics_alpha),
.memory_mapping1 (memory_mapping1),
.write_mode (write_mode),
.raster_op (raster_op),
.read_mode (read_mode),
.bitmask (bitmask),
.set_reset (set_reset),
.enable_set_reset (enable_set_reset),
.map_mask (map_mask),
.x_dotclockdiv2 (x_dotclockdiv2),
.chain_four (chain_four),
.read_map_select (read_map_select),
.color_compare (color_compare),
.color_dont_care (color_dont_care),
.pal_addr (pal_addr),
.pal_we (pal_we),
.pal_read (pal_read),
.pal_write (pal_write),
.dac_we (dac_we),
.dac_read_data_cycle (dac_read_data_cycle),
.dac_read_data_register (dac_read_data_register),
.dac_read_data (dac_read_data),
.dac_write_data_cycle (dac_write_data_cycle),
.dac_write_data_register (dac_write_data_register),
.dac_write_data (dac_write_data),
.cur_start (cur_start),
.cur_end (cur_end),
.start_addr (start_addr),
.vcursor (vcursor),
.hcursor (hcursor),
.horiz_total (horiz_total),
.end_horiz (end_horiz),
.st_hor_retr (st_hor_retr),
.end_hor_retr (end_hor_retr),
.vert_total (vert_total),
.end_vert (end_vert),
.st_ver_retr (st_ver_retr),
.end_ver_retr (end_ver_retr),
.v_retrace (v_retrace),
.vh_retrace (vh_retrace)
);
vga_lcd lcd (
.clk (wb_clk_i),
.rst (wb_rst_i),
.shift_reg1 (shift_reg1),
.graphics_alpha (graphics_alpha),
.pal_addr (pal_addr),
.pal_we (pal_we),
.pal_read (pal_read),
.pal_write (pal_write),
.dac_we (dac_we),
.dac_read_data_cycle (dac_read_data_cycle),
.dac_read_data_register (dac_read_data_register),
.dac_read_data (dac_read_data),
.dac_write_data_cycle (dac_write_data_cycle),
.dac_write_data_register (dac_write_data_register),
.dac_write_data (dac_write_data),
.csr_adr_o (csr_adr_o),
.csr_dat_i (csr_dat_i),
.csr_stb_o (csr_stb_o),
.vga_red_o (vga_red_o),
.vga_green_o (vga_green_o),
.vga_blue_o (vga_blue_o),
.horiz_sync (horiz_sync),
.vert_sync (w_vert_sync),
.cur_start (cur_start),
.cur_end (cur_end),
.vcursor (vcursor),
.hcursor (hcursor),
.horiz_total (horiz_total),
.end_horiz (end_horiz),
.st_hor_retr (st_hor_retr),
.end_hor_retr (end_hor_retr),
.vert_total (vert_total),
.end_vert (end_vert),
.st_ver_retr (st_ver_retr),
.end_ver_retr (end_ver_retr),
.x_dotclockdiv2 (x_dotclockdiv2),
.v_retrace (v_retrace),
.vh_retrace (vh_retrace)
);
vga_cpu_mem_iface cpu_mem_iface (
.wb_clk_i (wb_clk_i),
.wb_rst_i (wb_rst_i),
.wbs_adr_i (wb_adr_i),
.wbs_sel_i (wb_sel_i),
.wbs_we_i (wb_we_i),
.wbs_dat_i (wb_dat_i),
.wbs_dat_o (mem_wb_dat_o),
.wbs_stb_i (stb & !wb_tga_i),
.wbs_ack_o (mem_wb_ack_o),
.wbm_adr_o (wbm_adr_o),
.wbm_sel_o (wbm_sel_o),
.wbm_we_o (wbm_we_o),
.wbm_dat_o (wbm_dat_o),
.wbm_dat_i (wbm_dat_i),
.wbm_stb_o (wbm_stb_o),
.wbm_ack_i (wbm_ack_i),
.chain_four (chain_four),
.memory_mapping1 (memory_mapping1),
.write_mode (write_mode),
.raster_op (raster_op),
.read_mode (read_mode),
.bitmask (bitmask),
.set_reset (set_reset),
.enable_set_reset (enable_set_reset),
.map_mask (map_mask),
.read_map_select (read_map_select),
.color_compare (color_compare),
.color_dont_care (color_dont_care)
);
vga_mem_arbitrer mem_arbitrer (
.clk_i (wb_clk_i),
.rst_i (wb_rst_i),
.wb_adr_i (wbm_adr_o),
.wb_sel_i (wbm_sel_o),
.wb_we_i (wbm_we_o),
.wb_dat_i (wbm_dat_o),
.wb_dat_o (wbm_dat_i),
.wb_stb_i (wbm_stb_o),
.wb_ack_o (wbm_ack_i),
.csr_adr_i (csr_adr_i),
.csr_dat_o (csr_dat_i),
.csr_stb_i (csr_stb_i),
.csrm_adr_o (csrm_adr_o),
.csrm_sel_o (csrm_sel_o),
.csrm_we_o (csrm_we_o),
.csrm_dat_o (csrm_dat_o),
.csrm_dat_i (csrm_dat_i)
);
// Continous assignments
assign wb_dat_o = wb_tga_i ? conf_wb_dat_o : mem_wb_dat_o;
assign wb_ack_o = wb_tga_i ? conf_wb_ack_o : mem_wb_ack_o;
assign stb = wb_stb_i & wb_cyc_i;
assign vert_sync = ~graphics_alpha ^ w_vert_sync;
// Behaviour
// csr_adr_i
always @(posedge wb_clk_i)
csr_adr_i <= wb_rst_i ? 17'h0 : csr_adr_o + start_addr[15:1];
// csr_stb_i
always @(posedge wb_clk_i)
csr_stb_i <= wb_rst_i ? 1'b0 : csr_stb_o;
endmodule
|
/*
* VGA top level file
* Copyright (C) 2010 Zeus Gomez Marmolejo <[email protected]>
*
* This file is part of the Zet processor. This processor is free
* hardware; you can redistribute it and/or modify it under the terms of
* the GNU General Public License as published by the Free Software
* Foundation; either version 3, or (at your option) any later version.
*
* Zet is distrubuted in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
* License for more details.
*
* You should have received a copy of the GNU General Public License
* along with Zet; see the file COPYING. If not, see
* <http://www.gnu.org/licenses/>.
*/
module vga (
// Wishbone signals
input wb_clk_i, // 25 Mhz VDU clock
input wb_rst_i,
input [15:0] wb_dat_i,
output [15:0] wb_dat_o,
input [16:1] wb_adr_i,
input wb_we_i,
input wb_tga_i,
input [ 1:0] wb_sel_i,
input wb_stb_i,
input wb_cyc_i,
output wb_ack_o,
// VGA pad signals
output [ 3:0] vga_red_o,
output [ 3:0] vga_green_o,
output [ 3:0] vga_blue_o,
output horiz_sync,
output vert_sync,
// CSR SRAM master interface
output [17:1] csrm_adr_o,
output [ 1:0] csrm_sel_o,
output csrm_we_o,
output [15:0] csrm_dat_o,
input [15:0] csrm_dat_i
);
// Registers and nets
//
// csr address
reg [17:1] csr_adr_i;
reg csr_stb_i;
// Config wires
wire [15:0] conf_wb_dat_o;
wire conf_wb_ack_o;
// Mem wires
wire [15:0] mem_wb_dat_o;
wire mem_wb_ack_o;
// LCD wires
wire [17:1] csr_adr_o;
wire [15:0] csr_dat_i;
wire csr_stb_o;
wire v_retrace;
wire vh_retrace;
wire w_vert_sync;
// VGA configuration registers
wire shift_reg1;
wire graphics_alpha;
wire memory_mapping1;
wire [ 1:0] write_mode;
wire [ 1:0] raster_op;
wire read_mode;
wire [ 7:0] bitmask;
wire [ 3:0] set_reset;
wire [ 3:0] enable_set_reset;
wire [ 3:0] map_mask;
wire x_dotclockdiv2;
wire chain_four;
wire [ 1:0] read_map_select;
wire [ 3:0] color_compare;
wire [ 3:0] color_dont_care;
// Wishbone master to SRAM
wire [17:1] wbm_adr_o;
wire [ 1:0] wbm_sel_o;
wire wbm_we_o;
wire [15:0] wbm_dat_o;
wire [15:0] wbm_dat_i;
wire wbm_stb_o;
wire wbm_ack_i;
wire stb;
// CRT wires
wire [ 5:0] cur_start;
wire [ 5:0] cur_end;
wire [15:0] start_addr;
wire [ 4:0] vcursor;
wire [ 6:0] hcursor;
wire [ 6:0] horiz_total;
wire [ 6:0] end_horiz;
wire [ 6:0] st_hor_retr;
wire [ 4:0] end_hor_retr;
wire [ 9:0] vert_total;
wire [ 9:0] end_vert;
wire [ 9:0] st_ver_retr;
wire [ 3:0] end_ver_retr;
// attribute_ctrl wires
wire [3:0] pal_addr;
wire pal_we;
wire [7:0] pal_read;
wire [7:0] pal_write;
// dac_regs wires
wire dac_we;
wire [1:0] dac_read_data_cycle;
wire [7:0] dac_read_data_register;
wire [3:0] dac_read_data;
wire [1:0] dac_write_data_cycle;
wire [7:0] dac_write_data_register;
wire [3:0] dac_write_data;
// Module instances
//
vga_config_iface config_iface (
.wb_clk_i (wb_clk_i),
.wb_rst_i (wb_rst_i),
.wb_dat_i (wb_dat_i),
.wb_dat_o (conf_wb_dat_o),
.wb_adr_i (wb_adr_i[4:1]),
.wb_we_i (wb_we_i),
.wb_sel_i (wb_sel_i),
.wb_stb_i (stb & wb_tga_i),
.wb_ack_o (conf_wb_ack_o),
.shift_reg1 (shift_reg1),
.graphics_alpha (graphics_alpha),
.memory_mapping1 (memory_mapping1),
.write_mode (write_mode),
.raster_op (raster_op),
.read_mode (read_mode),
.bitmask (bitmask),
.set_reset (set_reset),
.enable_set_reset (enable_set_reset),
.map_mask (map_mask),
.x_dotclockdiv2 (x_dotclockdiv2),
.chain_four (chain_four),
.read_map_select (read_map_select),
.color_compare (color_compare),
.color_dont_care (color_dont_care),
.pal_addr (pal_addr),
.pal_we (pal_we),
.pal_read (pal_read),
.pal_write (pal_write),
.dac_we (dac_we),
.dac_read_data_cycle (dac_read_data_cycle),
.dac_read_data_register (dac_read_data_register),
.dac_read_data (dac_read_data),
.dac_write_data_cycle (dac_write_data_cycle),
.dac_write_data_register (dac_write_data_register),
.dac_write_data (dac_write_data),
.cur_start (cur_start),
.cur_end (cur_end),
.start_addr (start_addr),
.vcursor (vcursor),
.hcursor (hcursor),
.horiz_total (horiz_total),
.end_horiz (end_horiz),
.st_hor_retr (st_hor_retr),
.end_hor_retr (end_hor_retr),
.vert_total (vert_total),
.end_vert (end_vert),
.st_ver_retr (st_ver_retr),
.end_ver_retr (end_ver_retr),
.v_retrace (v_retrace),
.vh_retrace (vh_retrace)
);
vga_lcd lcd (
.clk (wb_clk_i),
.rst (wb_rst_i),
.shift_reg1 (shift_reg1),
.graphics_alpha (graphics_alpha),
.pal_addr (pal_addr),
.pal_we (pal_we),
.pal_read (pal_read),
.pal_write (pal_write),
.dac_we (dac_we),
.dac_read_data_cycle (dac_read_data_cycle),
.dac_read_data_register (dac_read_data_register),
.dac_read_data (dac_read_data),
.dac_write_data_cycle (dac_write_data_cycle),
.dac_write_data_register (dac_write_data_register),
.dac_write_data (dac_write_data),
.csr_adr_o (csr_adr_o),
.csr_dat_i (csr_dat_i),
.csr_stb_o (csr_stb_o),
.vga_red_o (vga_red_o),
.vga_green_o (vga_green_o),
.vga_blue_o (vga_blue_o),
.horiz_sync (horiz_sync),
.vert_sync (w_vert_sync),
.cur_start (cur_start),
.cur_end (cur_end),
.vcursor (vcursor),
.hcursor (hcursor),
.horiz_total (horiz_total),
.end_horiz (end_horiz),
.st_hor_retr (st_hor_retr),
.end_hor_retr (end_hor_retr),
.vert_total (vert_total),
.end_vert (end_vert),
.st_ver_retr (st_ver_retr),
.end_ver_retr (end_ver_retr),
.x_dotclockdiv2 (x_dotclockdiv2),
.v_retrace (v_retrace),
.vh_retrace (vh_retrace)
);
vga_cpu_mem_iface cpu_mem_iface (
.wb_clk_i (wb_clk_i),
.wb_rst_i (wb_rst_i),
.wbs_adr_i (wb_adr_i),
.wbs_sel_i (wb_sel_i),
.wbs_we_i (wb_we_i),
.wbs_dat_i (wb_dat_i),
.wbs_dat_o (mem_wb_dat_o),
.wbs_stb_i (stb & !wb_tga_i),
.wbs_ack_o (mem_wb_ack_o),
.wbm_adr_o (wbm_adr_o),
.wbm_sel_o (wbm_sel_o),
.wbm_we_o (wbm_we_o),
.wbm_dat_o (wbm_dat_o),
.wbm_dat_i (wbm_dat_i),
.wbm_stb_o (wbm_stb_o),
.wbm_ack_i (wbm_ack_i),
.chain_four (chain_four),
.memory_mapping1 (memory_mapping1),
.write_mode (write_mode),
.raster_op (raster_op),
.read_mode (read_mode),
.bitmask (bitmask),
.set_reset (set_reset),
.enable_set_reset (enable_set_reset),
.map_mask (map_mask),
.read_map_select (read_map_select),
.color_compare (color_compare),
.color_dont_care (color_dont_care)
);
vga_mem_arbitrer mem_arbitrer (
.clk_i (wb_clk_i),
.rst_i (wb_rst_i),
.wb_adr_i (wbm_adr_o),
.wb_sel_i (wbm_sel_o),
.wb_we_i (wbm_we_o),
.wb_dat_i (wbm_dat_o),
.wb_dat_o (wbm_dat_i),
.wb_stb_i (wbm_stb_o),
.wb_ack_o (wbm_ack_i),
.csr_adr_i (csr_adr_i),
.csr_dat_o (csr_dat_i),
.csr_stb_i (csr_stb_i),
.csrm_adr_o (csrm_adr_o),
.csrm_sel_o (csrm_sel_o),
.csrm_we_o (csrm_we_o),
.csrm_dat_o (csrm_dat_o),
.csrm_dat_i (csrm_dat_i)
);
// Continous assignments
assign wb_dat_o = wb_tga_i ? conf_wb_dat_o : mem_wb_dat_o;
assign wb_ack_o = wb_tga_i ? conf_wb_ack_o : mem_wb_ack_o;
assign stb = wb_stb_i & wb_cyc_i;
assign vert_sync = ~graphics_alpha ^ w_vert_sync;
// Behaviour
// csr_adr_i
always @(posedge wb_clk_i)
csr_adr_i <= wb_rst_i ? 17'h0 : csr_adr_o + start_addr[15:1];
// csr_stb_i
always @(posedge wb_clk_i)
csr_stb_i <= wb_rst_i ? 1'b0 : csr_stb_o;
endmodule
|
/*
* VGA top level file
* Copyright (C) 2010 Zeus Gomez Marmolejo <[email protected]>
*
* This file is part of the Zet processor. This processor is free
* hardware; you can redistribute it and/or modify it under the terms of
* the GNU General Public License as published by the Free Software
* Foundation; either version 3, or (at your option) any later version.
*
* Zet is distrubuted in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
* License for more details.
*
* You should have received a copy of the GNU General Public License
* along with Zet; see the file COPYING. If not, see
* <http://www.gnu.org/licenses/>.
*/
module vga (
// Wishbone signals
input wb_clk_i, // 25 Mhz VDU clock
input wb_rst_i,
input [15:0] wb_dat_i,
output [15:0] wb_dat_o,
input [16:1] wb_adr_i,
input wb_we_i,
input wb_tga_i,
input [ 1:0] wb_sel_i,
input wb_stb_i,
input wb_cyc_i,
output wb_ack_o,
// VGA pad signals
output [ 3:0] vga_red_o,
output [ 3:0] vga_green_o,
output [ 3:0] vga_blue_o,
output horiz_sync,
output vert_sync,
// CSR SRAM master interface
output [17:1] csrm_adr_o,
output [ 1:0] csrm_sel_o,
output csrm_we_o,
output [15:0] csrm_dat_o,
input [15:0] csrm_dat_i
);
// Registers and nets
//
// csr address
reg [17:1] csr_adr_i;
reg csr_stb_i;
// Config wires
wire [15:0] conf_wb_dat_o;
wire conf_wb_ack_o;
// Mem wires
wire [15:0] mem_wb_dat_o;
wire mem_wb_ack_o;
// LCD wires
wire [17:1] csr_adr_o;
wire [15:0] csr_dat_i;
wire csr_stb_o;
wire v_retrace;
wire vh_retrace;
wire w_vert_sync;
// VGA configuration registers
wire shift_reg1;
wire graphics_alpha;
wire memory_mapping1;
wire [ 1:0] write_mode;
wire [ 1:0] raster_op;
wire read_mode;
wire [ 7:0] bitmask;
wire [ 3:0] set_reset;
wire [ 3:0] enable_set_reset;
wire [ 3:0] map_mask;
wire x_dotclockdiv2;
wire chain_four;
wire [ 1:0] read_map_select;
wire [ 3:0] color_compare;
wire [ 3:0] color_dont_care;
// Wishbone master to SRAM
wire [17:1] wbm_adr_o;
wire [ 1:0] wbm_sel_o;
wire wbm_we_o;
wire [15:0] wbm_dat_o;
wire [15:0] wbm_dat_i;
wire wbm_stb_o;
wire wbm_ack_i;
wire stb;
// CRT wires
wire [ 5:0] cur_start;
wire [ 5:0] cur_end;
wire [15:0] start_addr;
wire [ 4:0] vcursor;
wire [ 6:0] hcursor;
wire [ 6:0] horiz_total;
wire [ 6:0] end_horiz;
wire [ 6:0] st_hor_retr;
wire [ 4:0] end_hor_retr;
wire [ 9:0] vert_total;
wire [ 9:0] end_vert;
wire [ 9:0] st_ver_retr;
wire [ 3:0] end_ver_retr;
// attribute_ctrl wires
wire [3:0] pal_addr;
wire pal_we;
wire [7:0] pal_read;
wire [7:0] pal_write;
// dac_regs wires
wire dac_we;
wire [1:0] dac_read_data_cycle;
wire [7:0] dac_read_data_register;
wire [3:0] dac_read_data;
wire [1:0] dac_write_data_cycle;
wire [7:0] dac_write_data_register;
wire [3:0] dac_write_data;
// Module instances
//
vga_config_iface config_iface (
.wb_clk_i (wb_clk_i),
.wb_rst_i (wb_rst_i),
.wb_dat_i (wb_dat_i),
.wb_dat_o (conf_wb_dat_o),
.wb_adr_i (wb_adr_i[4:1]),
.wb_we_i (wb_we_i),
.wb_sel_i (wb_sel_i),
.wb_stb_i (stb & wb_tga_i),
.wb_ack_o (conf_wb_ack_o),
.shift_reg1 (shift_reg1),
.graphics_alpha (graphics_alpha),
.memory_mapping1 (memory_mapping1),
.write_mode (write_mode),
.raster_op (raster_op),
.read_mode (read_mode),
.bitmask (bitmask),
.set_reset (set_reset),
.enable_set_reset (enable_set_reset),
.map_mask (map_mask),
.x_dotclockdiv2 (x_dotclockdiv2),
.chain_four (chain_four),
.read_map_select (read_map_select),
.color_compare (color_compare),
.color_dont_care (color_dont_care),
.pal_addr (pal_addr),
.pal_we (pal_we),
.pal_read (pal_read),
.pal_write (pal_write),
.dac_we (dac_we),
.dac_read_data_cycle (dac_read_data_cycle),
.dac_read_data_register (dac_read_data_register),
.dac_read_data (dac_read_data),
.dac_write_data_cycle (dac_write_data_cycle),
.dac_write_data_register (dac_write_data_register),
.dac_write_data (dac_write_data),
.cur_start (cur_start),
.cur_end (cur_end),
.start_addr (start_addr),
.vcursor (vcursor),
.hcursor (hcursor),
.horiz_total (horiz_total),
.end_horiz (end_horiz),
.st_hor_retr (st_hor_retr),
.end_hor_retr (end_hor_retr),
.vert_total (vert_total),
.end_vert (end_vert),
.st_ver_retr (st_ver_retr),
.end_ver_retr (end_ver_retr),
.v_retrace (v_retrace),
.vh_retrace (vh_retrace)
);
vga_lcd lcd (
.clk (wb_clk_i),
.rst (wb_rst_i),
.shift_reg1 (shift_reg1),
.graphics_alpha (graphics_alpha),
.pal_addr (pal_addr),
.pal_we (pal_we),
.pal_read (pal_read),
.pal_write (pal_write),
.dac_we (dac_we),
.dac_read_data_cycle (dac_read_data_cycle),
.dac_read_data_register (dac_read_data_register),
.dac_read_data (dac_read_data),
.dac_write_data_cycle (dac_write_data_cycle),
.dac_write_data_register (dac_write_data_register),
.dac_write_data (dac_write_data),
.csr_adr_o (csr_adr_o),
.csr_dat_i (csr_dat_i),
.csr_stb_o (csr_stb_o),
.vga_red_o (vga_red_o),
.vga_green_o (vga_green_o),
.vga_blue_o (vga_blue_o),
.horiz_sync (horiz_sync),
.vert_sync (w_vert_sync),
.cur_start (cur_start),
.cur_end (cur_end),
.vcursor (vcursor),
.hcursor (hcursor),
.horiz_total (horiz_total),
.end_horiz (end_horiz),
.st_hor_retr (st_hor_retr),
.end_hor_retr (end_hor_retr),
.vert_total (vert_total),
.end_vert (end_vert),
.st_ver_retr (st_ver_retr),
.end_ver_retr (end_ver_retr),
.x_dotclockdiv2 (x_dotclockdiv2),
.v_retrace (v_retrace),
.vh_retrace (vh_retrace)
);
vga_cpu_mem_iface cpu_mem_iface (
.wb_clk_i (wb_clk_i),
.wb_rst_i (wb_rst_i),
.wbs_adr_i (wb_adr_i),
.wbs_sel_i (wb_sel_i),
.wbs_we_i (wb_we_i),
.wbs_dat_i (wb_dat_i),
.wbs_dat_o (mem_wb_dat_o),
.wbs_stb_i (stb & !wb_tga_i),
.wbs_ack_o (mem_wb_ack_o),
.wbm_adr_o (wbm_adr_o),
.wbm_sel_o (wbm_sel_o),
.wbm_we_o (wbm_we_o),
.wbm_dat_o (wbm_dat_o),
.wbm_dat_i (wbm_dat_i),
.wbm_stb_o (wbm_stb_o),
.wbm_ack_i (wbm_ack_i),
.chain_four (chain_four),
.memory_mapping1 (memory_mapping1),
.write_mode (write_mode),
.raster_op (raster_op),
.read_mode (read_mode),
.bitmask (bitmask),
.set_reset (set_reset),
.enable_set_reset (enable_set_reset),
.map_mask (map_mask),
.read_map_select (read_map_select),
.color_compare (color_compare),
.color_dont_care (color_dont_care)
);
vga_mem_arbitrer mem_arbitrer (
.clk_i (wb_clk_i),
.rst_i (wb_rst_i),
.wb_adr_i (wbm_adr_o),
.wb_sel_i (wbm_sel_o),
.wb_we_i (wbm_we_o),
.wb_dat_i (wbm_dat_o),
.wb_dat_o (wbm_dat_i),
.wb_stb_i (wbm_stb_o),
.wb_ack_o (wbm_ack_i),
.csr_adr_i (csr_adr_i),
.csr_dat_o (csr_dat_i),
.csr_stb_i (csr_stb_i),
.csrm_adr_o (csrm_adr_o),
.csrm_sel_o (csrm_sel_o),
.csrm_we_o (csrm_we_o),
.csrm_dat_o (csrm_dat_o),
.csrm_dat_i (csrm_dat_i)
);
// Continous assignments
assign wb_dat_o = wb_tga_i ? conf_wb_dat_o : mem_wb_dat_o;
assign wb_ack_o = wb_tga_i ? conf_wb_ack_o : mem_wb_ack_o;
assign stb = wb_stb_i & wb_cyc_i;
assign vert_sync = ~graphics_alpha ^ w_vert_sync;
// Behaviour
// csr_adr_i
always @(posedge wb_clk_i)
csr_adr_i <= wb_rst_i ? 17'h0 : csr_adr_o + start_addr[15:1];
// csr_stb_i
always @(posedge wb_clk_i)
csr_stb_i <= wb_rst_i ? 1'b0 : csr_stb_o;
endmodule
|
/*
* VGA top level file
* Copyright (C) 2010 Zeus Gomez Marmolejo <[email protected]>
*
* This file is part of the Zet processor. This processor is free
* hardware; you can redistribute it and/or modify it under the terms of
* the GNU General Public License as published by the Free Software
* Foundation; either version 3, or (at your option) any later version.
*
* Zet is distrubuted in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
* License for more details.
*
* You should have received a copy of the GNU General Public License
* along with Zet; see the file COPYING. If not, see
* <http://www.gnu.org/licenses/>.
*/
module vga (
// Wishbone signals
input wb_clk_i, // 25 Mhz VDU clock
input wb_rst_i,
input [15:0] wb_dat_i,
output [15:0] wb_dat_o,
input [16:1] wb_adr_i,
input wb_we_i,
input wb_tga_i,
input [ 1:0] wb_sel_i,
input wb_stb_i,
input wb_cyc_i,
output wb_ack_o,
// VGA pad signals
output [ 3:0] vga_red_o,
output [ 3:0] vga_green_o,
output [ 3:0] vga_blue_o,
output horiz_sync,
output vert_sync,
// CSR SRAM master interface
output [17:1] csrm_adr_o,
output [ 1:0] csrm_sel_o,
output csrm_we_o,
output [15:0] csrm_dat_o,
input [15:0] csrm_dat_i
);
// Registers and nets
//
// csr address
reg [17:1] csr_adr_i;
reg csr_stb_i;
// Config wires
wire [15:0] conf_wb_dat_o;
wire conf_wb_ack_o;
// Mem wires
wire [15:0] mem_wb_dat_o;
wire mem_wb_ack_o;
// LCD wires
wire [17:1] csr_adr_o;
wire [15:0] csr_dat_i;
wire csr_stb_o;
wire v_retrace;
wire vh_retrace;
wire w_vert_sync;
// VGA configuration registers
wire shift_reg1;
wire graphics_alpha;
wire memory_mapping1;
wire [ 1:0] write_mode;
wire [ 1:0] raster_op;
wire read_mode;
wire [ 7:0] bitmask;
wire [ 3:0] set_reset;
wire [ 3:0] enable_set_reset;
wire [ 3:0] map_mask;
wire x_dotclockdiv2;
wire chain_four;
wire [ 1:0] read_map_select;
wire [ 3:0] color_compare;
wire [ 3:0] color_dont_care;
// Wishbone master to SRAM
wire [17:1] wbm_adr_o;
wire [ 1:0] wbm_sel_o;
wire wbm_we_o;
wire [15:0] wbm_dat_o;
wire [15:0] wbm_dat_i;
wire wbm_stb_o;
wire wbm_ack_i;
wire stb;
// CRT wires
wire [ 5:0] cur_start;
wire [ 5:0] cur_end;
wire [15:0] start_addr;
wire [ 4:0] vcursor;
wire [ 6:0] hcursor;
wire [ 6:0] horiz_total;
wire [ 6:0] end_horiz;
wire [ 6:0] st_hor_retr;
wire [ 4:0] end_hor_retr;
wire [ 9:0] vert_total;
wire [ 9:0] end_vert;
wire [ 9:0] st_ver_retr;
wire [ 3:0] end_ver_retr;
// attribute_ctrl wires
wire [3:0] pal_addr;
wire pal_we;
wire [7:0] pal_read;
wire [7:0] pal_write;
// dac_regs wires
wire dac_we;
wire [1:0] dac_read_data_cycle;
wire [7:0] dac_read_data_register;
wire [3:0] dac_read_data;
wire [1:0] dac_write_data_cycle;
wire [7:0] dac_write_data_register;
wire [3:0] dac_write_data;
// Module instances
//
vga_config_iface config_iface (
.wb_clk_i (wb_clk_i),
.wb_rst_i (wb_rst_i),
.wb_dat_i (wb_dat_i),
.wb_dat_o (conf_wb_dat_o),
.wb_adr_i (wb_adr_i[4:1]),
.wb_we_i (wb_we_i),
.wb_sel_i (wb_sel_i),
.wb_stb_i (stb & wb_tga_i),
.wb_ack_o (conf_wb_ack_o),
.shift_reg1 (shift_reg1),
.graphics_alpha (graphics_alpha),
.memory_mapping1 (memory_mapping1),
.write_mode (write_mode),
.raster_op (raster_op),
.read_mode (read_mode),
.bitmask (bitmask),
.set_reset (set_reset),
.enable_set_reset (enable_set_reset),
.map_mask (map_mask),
.x_dotclockdiv2 (x_dotclockdiv2),
.chain_four (chain_four),
.read_map_select (read_map_select),
.color_compare (color_compare),
.color_dont_care (color_dont_care),
.pal_addr (pal_addr),
.pal_we (pal_we),
.pal_read (pal_read),
.pal_write (pal_write),
.dac_we (dac_we),
.dac_read_data_cycle (dac_read_data_cycle),
.dac_read_data_register (dac_read_data_register),
.dac_read_data (dac_read_data),
.dac_write_data_cycle (dac_write_data_cycle),
.dac_write_data_register (dac_write_data_register),
.dac_write_data (dac_write_data),
.cur_start (cur_start),
.cur_end (cur_end),
.start_addr (start_addr),
.vcursor (vcursor),
.hcursor (hcursor),
.horiz_total (horiz_total),
.end_horiz (end_horiz),
.st_hor_retr (st_hor_retr),
.end_hor_retr (end_hor_retr),
.vert_total (vert_total),
.end_vert (end_vert),
.st_ver_retr (st_ver_retr),
.end_ver_retr (end_ver_retr),
.v_retrace (v_retrace),
.vh_retrace (vh_retrace)
);
vga_lcd lcd (
.clk (wb_clk_i),
.rst (wb_rst_i),
.shift_reg1 (shift_reg1),
.graphics_alpha (graphics_alpha),
.pal_addr (pal_addr),
.pal_we (pal_we),
.pal_read (pal_read),
.pal_write (pal_write),
.dac_we (dac_we),
.dac_read_data_cycle (dac_read_data_cycle),
.dac_read_data_register (dac_read_data_register),
.dac_read_data (dac_read_data),
.dac_write_data_cycle (dac_write_data_cycle),
.dac_write_data_register (dac_write_data_register),
.dac_write_data (dac_write_data),
.csr_adr_o (csr_adr_o),
.csr_dat_i (csr_dat_i),
.csr_stb_o (csr_stb_o),
.vga_red_o (vga_red_o),
.vga_green_o (vga_green_o),
.vga_blue_o (vga_blue_o),
.horiz_sync (horiz_sync),
.vert_sync (w_vert_sync),
.cur_start (cur_start),
.cur_end (cur_end),
.vcursor (vcursor),
.hcursor (hcursor),
.horiz_total (horiz_total),
.end_horiz (end_horiz),
.st_hor_retr (st_hor_retr),
.end_hor_retr (end_hor_retr),
.vert_total (vert_total),
.end_vert (end_vert),
.st_ver_retr (st_ver_retr),
.end_ver_retr (end_ver_retr),
.x_dotclockdiv2 (x_dotclockdiv2),
.v_retrace (v_retrace),
.vh_retrace (vh_retrace)
);
vga_cpu_mem_iface cpu_mem_iface (
.wb_clk_i (wb_clk_i),
.wb_rst_i (wb_rst_i),
.wbs_adr_i (wb_adr_i),
.wbs_sel_i (wb_sel_i),
.wbs_we_i (wb_we_i),
.wbs_dat_i (wb_dat_i),
.wbs_dat_o (mem_wb_dat_o),
.wbs_stb_i (stb & !wb_tga_i),
.wbs_ack_o (mem_wb_ack_o),
.wbm_adr_o (wbm_adr_o),
.wbm_sel_o (wbm_sel_o),
.wbm_we_o (wbm_we_o),
.wbm_dat_o (wbm_dat_o),
.wbm_dat_i (wbm_dat_i),
.wbm_stb_o (wbm_stb_o),
.wbm_ack_i (wbm_ack_i),
.chain_four (chain_four),
.memory_mapping1 (memory_mapping1),
.write_mode (write_mode),
.raster_op (raster_op),
.read_mode (read_mode),
.bitmask (bitmask),
.set_reset (set_reset),
.enable_set_reset (enable_set_reset),
.map_mask (map_mask),
.read_map_select (read_map_select),
.color_compare (color_compare),
.color_dont_care (color_dont_care)
);
vga_mem_arbitrer mem_arbitrer (
.clk_i (wb_clk_i),
.rst_i (wb_rst_i),
.wb_adr_i (wbm_adr_o),
.wb_sel_i (wbm_sel_o),
.wb_we_i (wbm_we_o),
.wb_dat_i (wbm_dat_o),
.wb_dat_o (wbm_dat_i),
.wb_stb_i (wbm_stb_o),
.wb_ack_o (wbm_ack_i),
.csr_adr_i (csr_adr_i),
.csr_dat_o (csr_dat_i),
.csr_stb_i (csr_stb_i),
.csrm_adr_o (csrm_adr_o),
.csrm_sel_o (csrm_sel_o),
.csrm_we_o (csrm_we_o),
.csrm_dat_o (csrm_dat_o),
.csrm_dat_i (csrm_dat_i)
);
// Continous assignments
assign wb_dat_o = wb_tga_i ? conf_wb_dat_o : mem_wb_dat_o;
assign wb_ack_o = wb_tga_i ? conf_wb_ack_o : mem_wb_ack_o;
assign stb = wb_stb_i & wb_cyc_i;
assign vert_sync = ~graphics_alpha ^ w_vert_sync;
// Behaviour
// csr_adr_i
always @(posedge wb_clk_i)
csr_adr_i <= wb_rst_i ? 17'h0 : csr_adr_o + start_addr[15:1];
// csr_stb_i
always @(posedge wb_clk_i)
csr_stb_i <= wb_rst_i ? 1'b0 : csr_stb_o;
endmodule
|
/*
* VGA top level file
* Copyright (C) 2010 Zeus Gomez Marmolejo <[email protected]>
*
* This file is part of the Zet processor. This processor is free
* hardware; you can redistribute it and/or modify it under the terms of
* the GNU General Public License as published by the Free Software
* Foundation; either version 3, or (at your option) any later version.
*
* Zet is distrubuted in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
* License for more details.
*
* You should have received a copy of the GNU General Public License
* along with Zet; see the file COPYING. If not, see
* <http://www.gnu.org/licenses/>.
*/
module vga (
// Wishbone signals
input wb_clk_i, // 25 Mhz VDU clock
input wb_rst_i,
input [15:0] wb_dat_i,
output [15:0] wb_dat_o,
input [16:1] wb_adr_i,
input wb_we_i,
input wb_tga_i,
input [ 1:0] wb_sel_i,
input wb_stb_i,
input wb_cyc_i,
output wb_ack_o,
// VGA pad signals
output [ 3:0] vga_red_o,
output [ 3:0] vga_green_o,
output [ 3:0] vga_blue_o,
output horiz_sync,
output vert_sync,
// CSR SRAM master interface
output [17:1] csrm_adr_o,
output [ 1:0] csrm_sel_o,
output csrm_we_o,
output [15:0] csrm_dat_o,
input [15:0] csrm_dat_i
);
// Registers and nets
//
// csr address
reg [17:1] csr_adr_i;
reg csr_stb_i;
// Config wires
wire [15:0] conf_wb_dat_o;
wire conf_wb_ack_o;
// Mem wires
wire [15:0] mem_wb_dat_o;
wire mem_wb_ack_o;
// LCD wires
wire [17:1] csr_adr_o;
wire [15:0] csr_dat_i;
wire csr_stb_o;
wire v_retrace;
wire vh_retrace;
wire w_vert_sync;
// VGA configuration registers
wire shift_reg1;
wire graphics_alpha;
wire memory_mapping1;
wire [ 1:0] write_mode;
wire [ 1:0] raster_op;
wire read_mode;
wire [ 7:0] bitmask;
wire [ 3:0] set_reset;
wire [ 3:0] enable_set_reset;
wire [ 3:0] map_mask;
wire x_dotclockdiv2;
wire chain_four;
wire [ 1:0] read_map_select;
wire [ 3:0] color_compare;
wire [ 3:0] color_dont_care;
// Wishbone master to SRAM
wire [17:1] wbm_adr_o;
wire [ 1:0] wbm_sel_o;
wire wbm_we_o;
wire [15:0] wbm_dat_o;
wire [15:0] wbm_dat_i;
wire wbm_stb_o;
wire wbm_ack_i;
wire stb;
// CRT wires
wire [ 5:0] cur_start;
wire [ 5:0] cur_end;
wire [15:0] start_addr;
wire [ 4:0] vcursor;
wire [ 6:0] hcursor;
wire [ 6:0] horiz_total;
wire [ 6:0] end_horiz;
wire [ 6:0] st_hor_retr;
wire [ 4:0] end_hor_retr;
wire [ 9:0] vert_total;
wire [ 9:0] end_vert;
wire [ 9:0] st_ver_retr;
wire [ 3:0] end_ver_retr;
// attribute_ctrl wires
wire [3:0] pal_addr;
wire pal_we;
wire [7:0] pal_read;
wire [7:0] pal_write;
// dac_regs wires
wire dac_we;
wire [1:0] dac_read_data_cycle;
wire [7:0] dac_read_data_register;
wire [3:0] dac_read_data;
wire [1:0] dac_write_data_cycle;
wire [7:0] dac_write_data_register;
wire [3:0] dac_write_data;
// Module instances
//
vga_config_iface config_iface (
.wb_clk_i (wb_clk_i),
.wb_rst_i (wb_rst_i),
.wb_dat_i (wb_dat_i),
.wb_dat_o (conf_wb_dat_o),
.wb_adr_i (wb_adr_i[4:1]),
.wb_we_i (wb_we_i),
.wb_sel_i (wb_sel_i),
.wb_stb_i (stb & wb_tga_i),
.wb_ack_o (conf_wb_ack_o),
.shift_reg1 (shift_reg1),
.graphics_alpha (graphics_alpha),
.memory_mapping1 (memory_mapping1),
.write_mode (write_mode),
.raster_op (raster_op),
.read_mode (read_mode),
.bitmask (bitmask),
.set_reset (set_reset),
.enable_set_reset (enable_set_reset),
.map_mask (map_mask),
.x_dotclockdiv2 (x_dotclockdiv2),
.chain_four (chain_four),
.read_map_select (read_map_select),
.color_compare (color_compare),
.color_dont_care (color_dont_care),
.pal_addr (pal_addr),
.pal_we (pal_we),
.pal_read (pal_read),
.pal_write (pal_write),
.dac_we (dac_we),
.dac_read_data_cycle (dac_read_data_cycle),
.dac_read_data_register (dac_read_data_register),
.dac_read_data (dac_read_data),
.dac_write_data_cycle (dac_write_data_cycle),
.dac_write_data_register (dac_write_data_register),
.dac_write_data (dac_write_data),
.cur_start (cur_start),
.cur_end (cur_end),
.start_addr (start_addr),
.vcursor (vcursor),
.hcursor (hcursor),
.horiz_total (horiz_total),
.end_horiz (end_horiz),
.st_hor_retr (st_hor_retr),
.end_hor_retr (end_hor_retr),
.vert_total (vert_total),
.end_vert (end_vert),
.st_ver_retr (st_ver_retr),
.end_ver_retr (end_ver_retr),
.v_retrace (v_retrace),
.vh_retrace (vh_retrace)
);
vga_lcd lcd (
.clk (wb_clk_i),
.rst (wb_rst_i),
.shift_reg1 (shift_reg1),
.graphics_alpha (graphics_alpha),
.pal_addr (pal_addr),
.pal_we (pal_we),
.pal_read (pal_read),
.pal_write (pal_write),
.dac_we (dac_we),
.dac_read_data_cycle (dac_read_data_cycle),
.dac_read_data_register (dac_read_data_register),
.dac_read_data (dac_read_data),
.dac_write_data_cycle (dac_write_data_cycle),
.dac_write_data_register (dac_write_data_register),
.dac_write_data (dac_write_data),
.csr_adr_o (csr_adr_o),
.csr_dat_i (csr_dat_i),
.csr_stb_o (csr_stb_o),
.vga_red_o (vga_red_o),
.vga_green_o (vga_green_o),
.vga_blue_o (vga_blue_o),
.horiz_sync (horiz_sync),
.vert_sync (w_vert_sync),
.cur_start (cur_start),
.cur_end (cur_end),
.vcursor (vcursor),
.hcursor (hcursor),
.horiz_total (horiz_total),
.end_horiz (end_horiz),
.st_hor_retr (st_hor_retr),
.end_hor_retr (end_hor_retr),
.vert_total (vert_total),
.end_vert (end_vert),
.st_ver_retr (st_ver_retr),
.end_ver_retr (end_ver_retr),
.x_dotclockdiv2 (x_dotclockdiv2),
.v_retrace (v_retrace),
.vh_retrace (vh_retrace)
);
vga_cpu_mem_iface cpu_mem_iface (
.wb_clk_i (wb_clk_i),
.wb_rst_i (wb_rst_i),
.wbs_adr_i (wb_adr_i),
.wbs_sel_i (wb_sel_i),
.wbs_we_i (wb_we_i),
.wbs_dat_i (wb_dat_i),
.wbs_dat_o (mem_wb_dat_o),
.wbs_stb_i (stb & !wb_tga_i),
.wbs_ack_o (mem_wb_ack_o),
.wbm_adr_o (wbm_adr_o),
.wbm_sel_o (wbm_sel_o),
.wbm_we_o (wbm_we_o),
.wbm_dat_o (wbm_dat_o),
.wbm_dat_i (wbm_dat_i),
.wbm_stb_o (wbm_stb_o),
.wbm_ack_i (wbm_ack_i),
.chain_four (chain_four),
.memory_mapping1 (memory_mapping1),
.write_mode (write_mode),
.raster_op (raster_op),
.read_mode (read_mode),
.bitmask (bitmask),
.set_reset (set_reset),
.enable_set_reset (enable_set_reset),
.map_mask (map_mask),
.read_map_select (read_map_select),
.color_compare (color_compare),
.color_dont_care (color_dont_care)
);
vga_mem_arbitrer mem_arbitrer (
.clk_i (wb_clk_i),
.rst_i (wb_rst_i),
.wb_adr_i (wbm_adr_o),
.wb_sel_i (wbm_sel_o),
.wb_we_i (wbm_we_o),
.wb_dat_i (wbm_dat_o),
.wb_dat_o (wbm_dat_i),
.wb_stb_i (wbm_stb_o),
.wb_ack_o (wbm_ack_i),
.csr_adr_i (csr_adr_i),
.csr_dat_o (csr_dat_i),
.csr_stb_i (csr_stb_i),
.csrm_adr_o (csrm_adr_o),
.csrm_sel_o (csrm_sel_o),
.csrm_we_o (csrm_we_o),
.csrm_dat_o (csrm_dat_o),
.csrm_dat_i (csrm_dat_i)
);
// Continous assignments
assign wb_dat_o = wb_tga_i ? conf_wb_dat_o : mem_wb_dat_o;
assign wb_ack_o = wb_tga_i ? conf_wb_ack_o : mem_wb_ack_o;
assign stb = wb_stb_i & wb_cyc_i;
assign vert_sync = ~graphics_alpha ^ w_vert_sync;
// Behaviour
// csr_adr_i
always @(posedge wb_clk_i)
csr_adr_i <= wb_rst_i ? 17'h0 : csr_adr_o + start_addr[15:1];
// csr_stb_i
always @(posedge wb_clk_i)
csr_stb_i <= wb_rst_i ? 1'b0 : csr_stb_o;
endmodule
|
/*
* VGA top level file
* Copyright (C) 2010 Zeus Gomez Marmolejo <[email protected]>
*
* This file is part of the Zet processor. This processor is free
* hardware; you can redistribute it and/or modify it under the terms of
* the GNU General Public License as published by the Free Software
* Foundation; either version 3, or (at your option) any later version.
*
* Zet is distrubuted in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
* License for more details.
*
* You should have received a copy of the GNU General Public License
* along with Zet; see the file COPYING. If not, see
* <http://www.gnu.org/licenses/>.
*/
module vga (
// Wishbone signals
input wb_clk_i, // 25 Mhz VDU clock
input wb_rst_i,
input [15:0] wb_dat_i,
output [15:0] wb_dat_o,
input [16:1] wb_adr_i,
input wb_we_i,
input wb_tga_i,
input [ 1:0] wb_sel_i,
input wb_stb_i,
input wb_cyc_i,
output wb_ack_o,
// VGA pad signals
output [ 3:0] vga_red_o,
output [ 3:0] vga_green_o,
output [ 3:0] vga_blue_o,
output horiz_sync,
output vert_sync,
// CSR SRAM master interface
output [17:1] csrm_adr_o,
output [ 1:0] csrm_sel_o,
output csrm_we_o,
output [15:0] csrm_dat_o,
input [15:0] csrm_dat_i
);
// Registers and nets
//
// csr address
reg [17:1] csr_adr_i;
reg csr_stb_i;
// Config wires
wire [15:0] conf_wb_dat_o;
wire conf_wb_ack_o;
// Mem wires
wire [15:0] mem_wb_dat_o;
wire mem_wb_ack_o;
// LCD wires
wire [17:1] csr_adr_o;
wire [15:0] csr_dat_i;
wire csr_stb_o;
wire v_retrace;
wire vh_retrace;
wire w_vert_sync;
// VGA configuration registers
wire shift_reg1;
wire graphics_alpha;
wire memory_mapping1;
wire [ 1:0] write_mode;
wire [ 1:0] raster_op;
wire read_mode;
wire [ 7:0] bitmask;
wire [ 3:0] set_reset;
wire [ 3:0] enable_set_reset;
wire [ 3:0] map_mask;
wire x_dotclockdiv2;
wire chain_four;
wire [ 1:0] read_map_select;
wire [ 3:0] color_compare;
wire [ 3:0] color_dont_care;
// Wishbone master to SRAM
wire [17:1] wbm_adr_o;
wire [ 1:0] wbm_sel_o;
wire wbm_we_o;
wire [15:0] wbm_dat_o;
wire [15:0] wbm_dat_i;
wire wbm_stb_o;
wire wbm_ack_i;
wire stb;
// CRT wires
wire [ 5:0] cur_start;
wire [ 5:0] cur_end;
wire [15:0] start_addr;
wire [ 4:0] vcursor;
wire [ 6:0] hcursor;
wire [ 6:0] horiz_total;
wire [ 6:0] end_horiz;
wire [ 6:0] st_hor_retr;
wire [ 4:0] end_hor_retr;
wire [ 9:0] vert_total;
wire [ 9:0] end_vert;
wire [ 9:0] st_ver_retr;
wire [ 3:0] end_ver_retr;
// attribute_ctrl wires
wire [3:0] pal_addr;
wire pal_we;
wire [7:0] pal_read;
wire [7:0] pal_write;
// dac_regs wires
wire dac_we;
wire [1:0] dac_read_data_cycle;
wire [7:0] dac_read_data_register;
wire [3:0] dac_read_data;
wire [1:0] dac_write_data_cycle;
wire [7:0] dac_write_data_register;
wire [3:0] dac_write_data;
// Module instances
//
vga_config_iface config_iface (
.wb_clk_i (wb_clk_i),
.wb_rst_i (wb_rst_i),
.wb_dat_i (wb_dat_i),
.wb_dat_o (conf_wb_dat_o),
.wb_adr_i (wb_adr_i[4:1]),
.wb_we_i (wb_we_i),
.wb_sel_i (wb_sel_i),
.wb_stb_i (stb & wb_tga_i),
.wb_ack_o (conf_wb_ack_o),
.shift_reg1 (shift_reg1),
.graphics_alpha (graphics_alpha),
.memory_mapping1 (memory_mapping1),
.write_mode (write_mode),
.raster_op (raster_op),
.read_mode (read_mode),
.bitmask (bitmask),
.set_reset (set_reset),
.enable_set_reset (enable_set_reset),
.map_mask (map_mask),
.x_dotclockdiv2 (x_dotclockdiv2),
.chain_four (chain_four),
.read_map_select (read_map_select),
.color_compare (color_compare),
.color_dont_care (color_dont_care),
.pal_addr (pal_addr),
.pal_we (pal_we),
.pal_read (pal_read),
.pal_write (pal_write),
.dac_we (dac_we),
.dac_read_data_cycle (dac_read_data_cycle),
.dac_read_data_register (dac_read_data_register),
.dac_read_data (dac_read_data),
.dac_write_data_cycle (dac_write_data_cycle),
.dac_write_data_register (dac_write_data_register),
.dac_write_data (dac_write_data),
.cur_start (cur_start),
.cur_end (cur_end),
.start_addr (start_addr),
.vcursor (vcursor),
.hcursor (hcursor),
.horiz_total (horiz_total),
.end_horiz (end_horiz),
.st_hor_retr (st_hor_retr),
.end_hor_retr (end_hor_retr),
.vert_total (vert_total),
.end_vert (end_vert),
.st_ver_retr (st_ver_retr),
.end_ver_retr (end_ver_retr),
.v_retrace (v_retrace),
.vh_retrace (vh_retrace)
);
vga_lcd lcd (
.clk (wb_clk_i),
.rst (wb_rst_i),
.shift_reg1 (shift_reg1),
.graphics_alpha (graphics_alpha),
.pal_addr (pal_addr),
.pal_we (pal_we),
.pal_read (pal_read),
.pal_write (pal_write),
.dac_we (dac_we),
.dac_read_data_cycle (dac_read_data_cycle),
.dac_read_data_register (dac_read_data_register),
.dac_read_data (dac_read_data),
.dac_write_data_cycle (dac_write_data_cycle),
.dac_write_data_register (dac_write_data_register),
.dac_write_data (dac_write_data),
.csr_adr_o (csr_adr_o),
.csr_dat_i (csr_dat_i),
.csr_stb_o (csr_stb_o),
.vga_red_o (vga_red_o),
.vga_green_o (vga_green_o),
.vga_blue_o (vga_blue_o),
.horiz_sync (horiz_sync),
.vert_sync (w_vert_sync),
.cur_start (cur_start),
.cur_end (cur_end),
.vcursor (vcursor),
.hcursor (hcursor),
.horiz_total (horiz_total),
.end_horiz (end_horiz),
.st_hor_retr (st_hor_retr),
.end_hor_retr (end_hor_retr),
.vert_total (vert_total),
.end_vert (end_vert),
.st_ver_retr (st_ver_retr),
.end_ver_retr (end_ver_retr),
.x_dotclockdiv2 (x_dotclockdiv2),
.v_retrace (v_retrace),
.vh_retrace (vh_retrace)
);
vga_cpu_mem_iface cpu_mem_iface (
.wb_clk_i (wb_clk_i),
.wb_rst_i (wb_rst_i),
.wbs_adr_i (wb_adr_i),
.wbs_sel_i (wb_sel_i),
.wbs_we_i (wb_we_i),
.wbs_dat_i (wb_dat_i),
.wbs_dat_o (mem_wb_dat_o),
.wbs_stb_i (stb & !wb_tga_i),
.wbs_ack_o (mem_wb_ack_o),
.wbm_adr_o (wbm_adr_o),
.wbm_sel_o (wbm_sel_o),
.wbm_we_o (wbm_we_o),
.wbm_dat_o (wbm_dat_o),
.wbm_dat_i (wbm_dat_i),
.wbm_stb_o (wbm_stb_o),
.wbm_ack_i (wbm_ack_i),
.chain_four (chain_four),
.memory_mapping1 (memory_mapping1),
.write_mode (write_mode),
.raster_op (raster_op),
.read_mode (read_mode),
.bitmask (bitmask),
.set_reset (set_reset),
.enable_set_reset (enable_set_reset),
.map_mask (map_mask),
.read_map_select (read_map_select),
.color_compare (color_compare),
.color_dont_care (color_dont_care)
);
vga_mem_arbitrer mem_arbitrer (
.clk_i (wb_clk_i),
.rst_i (wb_rst_i),
.wb_adr_i (wbm_adr_o),
.wb_sel_i (wbm_sel_o),
.wb_we_i (wbm_we_o),
.wb_dat_i (wbm_dat_o),
.wb_dat_o (wbm_dat_i),
.wb_stb_i (wbm_stb_o),
.wb_ack_o (wbm_ack_i),
.csr_adr_i (csr_adr_i),
.csr_dat_o (csr_dat_i),
.csr_stb_i (csr_stb_i),
.csrm_adr_o (csrm_adr_o),
.csrm_sel_o (csrm_sel_o),
.csrm_we_o (csrm_we_o),
.csrm_dat_o (csrm_dat_o),
.csrm_dat_i (csrm_dat_i)
);
// Continous assignments
assign wb_dat_o = wb_tga_i ? conf_wb_dat_o : mem_wb_dat_o;
assign wb_ack_o = wb_tga_i ? conf_wb_ack_o : mem_wb_ack_o;
assign stb = wb_stb_i & wb_cyc_i;
assign vert_sync = ~graphics_alpha ^ w_vert_sync;
// Behaviour
// csr_adr_i
always @(posedge wb_clk_i)
csr_adr_i <= wb_rst_i ? 17'h0 : csr_adr_o + start_addr[15:1];
// csr_stb_i
always @(posedge wb_clk_i)
csr_stb_i <= wb_rst_i ? 1'b0 : csr_stb_o;
endmodule
|
/*
* VGA top level file
* Copyright (C) 2010 Zeus Gomez Marmolejo <[email protected]>
*
* This file is part of the Zet processor. This processor is free
* hardware; you can redistribute it and/or modify it under the terms of
* the GNU General Public License as published by the Free Software
* Foundation; either version 3, or (at your option) any later version.
*
* Zet is distrubuted in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
* License for more details.
*
* You should have received a copy of the GNU General Public License
* along with Zet; see the file COPYING. If not, see
* <http://www.gnu.org/licenses/>.
*/
module vga (
// Wishbone signals
input wb_clk_i, // 25 Mhz VDU clock
input wb_rst_i,
input [15:0] wb_dat_i,
output [15:0] wb_dat_o,
input [16:1] wb_adr_i,
input wb_we_i,
input wb_tga_i,
input [ 1:0] wb_sel_i,
input wb_stb_i,
input wb_cyc_i,
output wb_ack_o,
// VGA pad signals
output [ 3:0] vga_red_o,
output [ 3:0] vga_green_o,
output [ 3:0] vga_blue_o,
output horiz_sync,
output vert_sync,
// CSR SRAM master interface
output [17:1] csrm_adr_o,
output [ 1:0] csrm_sel_o,
output csrm_we_o,
output [15:0] csrm_dat_o,
input [15:0] csrm_dat_i
);
// Registers and nets
//
// csr address
reg [17:1] csr_adr_i;
reg csr_stb_i;
// Config wires
wire [15:0] conf_wb_dat_o;
wire conf_wb_ack_o;
// Mem wires
wire [15:0] mem_wb_dat_o;
wire mem_wb_ack_o;
// LCD wires
wire [17:1] csr_adr_o;
wire [15:0] csr_dat_i;
wire csr_stb_o;
wire v_retrace;
wire vh_retrace;
wire w_vert_sync;
// VGA configuration registers
wire shift_reg1;
wire graphics_alpha;
wire memory_mapping1;
wire [ 1:0] write_mode;
wire [ 1:0] raster_op;
wire read_mode;
wire [ 7:0] bitmask;
wire [ 3:0] set_reset;
wire [ 3:0] enable_set_reset;
wire [ 3:0] map_mask;
wire x_dotclockdiv2;
wire chain_four;
wire [ 1:0] read_map_select;
wire [ 3:0] color_compare;
wire [ 3:0] color_dont_care;
// Wishbone master to SRAM
wire [17:1] wbm_adr_o;
wire [ 1:0] wbm_sel_o;
wire wbm_we_o;
wire [15:0] wbm_dat_o;
wire [15:0] wbm_dat_i;
wire wbm_stb_o;
wire wbm_ack_i;
wire stb;
// CRT wires
wire [ 5:0] cur_start;
wire [ 5:0] cur_end;
wire [15:0] start_addr;
wire [ 4:0] vcursor;
wire [ 6:0] hcursor;
wire [ 6:0] horiz_total;
wire [ 6:0] end_horiz;
wire [ 6:0] st_hor_retr;
wire [ 4:0] end_hor_retr;
wire [ 9:0] vert_total;
wire [ 9:0] end_vert;
wire [ 9:0] st_ver_retr;
wire [ 3:0] end_ver_retr;
// attribute_ctrl wires
wire [3:0] pal_addr;
wire pal_we;
wire [7:0] pal_read;
wire [7:0] pal_write;
// dac_regs wires
wire dac_we;
wire [1:0] dac_read_data_cycle;
wire [7:0] dac_read_data_register;
wire [3:0] dac_read_data;
wire [1:0] dac_write_data_cycle;
wire [7:0] dac_write_data_register;
wire [3:0] dac_write_data;
// Module instances
//
vga_config_iface config_iface (
.wb_clk_i (wb_clk_i),
.wb_rst_i (wb_rst_i),
.wb_dat_i (wb_dat_i),
.wb_dat_o (conf_wb_dat_o),
.wb_adr_i (wb_adr_i[4:1]),
.wb_we_i (wb_we_i),
.wb_sel_i (wb_sel_i),
.wb_stb_i (stb & wb_tga_i),
.wb_ack_o (conf_wb_ack_o),
.shift_reg1 (shift_reg1),
.graphics_alpha (graphics_alpha),
.memory_mapping1 (memory_mapping1),
.write_mode (write_mode),
.raster_op (raster_op),
.read_mode (read_mode),
.bitmask (bitmask),
.set_reset (set_reset),
.enable_set_reset (enable_set_reset),
.map_mask (map_mask),
.x_dotclockdiv2 (x_dotclockdiv2),
.chain_four (chain_four),
.read_map_select (read_map_select),
.color_compare (color_compare),
.color_dont_care (color_dont_care),
.pal_addr (pal_addr),
.pal_we (pal_we),
.pal_read (pal_read),
.pal_write (pal_write),
.dac_we (dac_we),
.dac_read_data_cycle (dac_read_data_cycle),
.dac_read_data_register (dac_read_data_register),
.dac_read_data (dac_read_data),
.dac_write_data_cycle (dac_write_data_cycle),
.dac_write_data_register (dac_write_data_register),
.dac_write_data (dac_write_data),
.cur_start (cur_start),
.cur_end (cur_end),
.start_addr (start_addr),
.vcursor (vcursor),
.hcursor (hcursor),
.horiz_total (horiz_total),
.end_horiz (end_horiz),
.st_hor_retr (st_hor_retr),
.end_hor_retr (end_hor_retr),
.vert_total (vert_total),
.end_vert (end_vert),
.st_ver_retr (st_ver_retr),
.end_ver_retr (end_ver_retr),
.v_retrace (v_retrace),
.vh_retrace (vh_retrace)
);
vga_lcd lcd (
.clk (wb_clk_i),
.rst (wb_rst_i),
.shift_reg1 (shift_reg1),
.graphics_alpha (graphics_alpha),
.pal_addr (pal_addr),
.pal_we (pal_we),
.pal_read (pal_read),
.pal_write (pal_write),
.dac_we (dac_we),
.dac_read_data_cycle (dac_read_data_cycle),
.dac_read_data_register (dac_read_data_register),
.dac_read_data (dac_read_data),
.dac_write_data_cycle (dac_write_data_cycle),
.dac_write_data_register (dac_write_data_register),
.dac_write_data (dac_write_data),
.csr_adr_o (csr_adr_o),
.csr_dat_i (csr_dat_i),
.csr_stb_o (csr_stb_o),
.vga_red_o (vga_red_o),
.vga_green_o (vga_green_o),
.vga_blue_o (vga_blue_o),
.horiz_sync (horiz_sync),
.vert_sync (w_vert_sync),
.cur_start (cur_start),
.cur_end (cur_end),
.vcursor (vcursor),
.hcursor (hcursor),
.horiz_total (horiz_total),
.end_horiz (end_horiz),
.st_hor_retr (st_hor_retr),
.end_hor_retr (end_hor_retr),
.vert_total (vert_total),
.end_vert (end_vert),
.st_ver_retr (st_ver_retr),
.end_ver_retr (end_ver_retr),
.x_dotclockdiv2 (x_dotclockdiv2),
.v_retrace (v_retrace),
.vh_retrace (vh_retrace)
);
vga_cpu_mem_iface cpu_mem_iface (
.wb_clk_i (wb_clk_i),
.wb_rst_i (wb_rst_i),
.wbs_adr_i (wb_adr_i),
.wbs_sel_i (wb_sel_i),
.wbs_we_i (wb_we_i),
.wbs_dat_i (wb_dat_i),
.wbs_dat_o (mem_wb_dat_o),
.wbs_stb_i (stb & !wb_tga_i),
.wbs_ack_o (mem_wb_ack_o),
.wbm_adr_o (wbm_adr_o),
.wbm_sel_o (wbm_sel_o),
.wbm_we_o (wbm_we_o),
.wbm_dat_o (wbm_dat_o),
.wbm_dat_i (wbm_dat_i),
.wbm_stb_o (wbm_stb_o),
.wbm_ack_i (wbm_ack_i),
.chain_four (chain_four),
.memory_mapping1 (memory_mapping1),
.write_mode (write_mode),
.raster_op (raster_op),
.read_mode (read_mode),
.bitmask (bitmask),
.set_reset (set_reset),
.enable_set_reset (enable_set_reset),
.map_mask (map_mask),
.read_map_select (read_map_select),
.color_compare (color_compare),
.color_dont_care (color_dont_care)
);
vga_mem_arbitrer mem_arbitrer (
.clk_i (wb_clk_i),
.rst_i (wb_rst_i),
.wb_adr_i (wbm_adr_o),
.wb_sel_i (wbm_sel_o),
.wb_we_i (wbm_we_o),
.wb_dat_i (wbm_dat_o),
.wb_dat_o (wbm_dat_i),
.wb_stb_i (wbm_stb_o),
.wb_ack_o (wbm_ack_i),
.csr_adr_i (csr_adr_i),
.csr_dat_o (csr_dat_i),
.csr_stb_i (csr_stb_i),
.csrm_adr_o (csrm_adr_o),
.csrm_sel_o (csrm_sel_o),
.csrm_we_o (csrm_we_o),
.csrm_dat_o (csrm_dat_o),
.csrm_dat_i (csrm_dat_i)
);
// Continous assignments
assign wb_dat_o = wb_tga_i ? conf_wb_dat_o : mem_wb_dat_o;
assign wb_ack_o = wb_tga_i ? conf_wb_ack_o : mem_wb_ack_o;
assign stb = wb_stb_i & wb_cyc_i;
assign vert_sync = ~graphics_alpha ^ w_vert_sync;
// Behaviour
// csr_adr_i
always @(posedge wb_clk_i)
csr_adr_i <= wb_rst_i ? 17'h0 : csr_adr_o + start_addr[15:1];
// csr_stb_i
always @(posedge wb_clk_i)
csr_stb_i <= wb_rst_i ? 1'b0 : csr_stb_o;
endmodule
|
/*
* VGA top level file
* Copyright (C) 2010 Zeus Gomez Marmolejo <[email protected]>
*
* This file is part of the Zet processor. This processor is free
* hardware; you can redistribute it and/or modify it under the terms of
* the GNU General Public License as published by the Free Software
* Foundation; either version 3, or (at your option) any later version.
*
* Zet is distrubuted in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
* License for more details.
*
* You should have received a copy of the GNU General Public License
* along with Zet; see the file COPYING. If not, see
* <http://www.gnu.org/licenses/>.
*/
module vga (
// Wishbone signals
input wb_clk_i, // 25 Mhz VDU clock
input wb_rst_i,
input [15:0] wb_dat_i,
output [15:0] wb_dat_o,
input [16:1] wb_adr_i,
input wb_we_i,
input wb_tga_i,
input [ 1:0] wb_sel_i,
input wb_stb_i,
input wb_cyc_i,
output wb_ack_o,
// VGA pad signals
output [ 3:0] vga_red_o,
output [ 3:0] vga_green_o,
output [ 3:0] vga_blue_o,
output horiz_sync,
output vert_sync,
// CSR SRAM master interface
output [17:1] csrm_adr_o,
output [ 1:0] csrm_sel_o,
output csrm_we_o,
output [15:0] csrm_dat_o,
input [15:0] csrm_dat_i
);
// Registers and nets
//
// csr address
reg [17:1] csr_adr_i;
reg csr_stb_i;
// Config wires
wire [15:0] conf_wb_dat_o;
wire conf_wb_ack_o;
// Mem wires
wire [15:0] mem_wb_dat_o;
wire mem_wb_ack_o;
// LCD wires
wire [17:1] csr_adr_o;
wire [15:0] csr_dat_i;
wire csr_stb_o;
wire v_retrace;
wire vh_retrace;
wire w_vert_sync;
// VGA configuration registers
wire shift_reg1;
wire graphics_alpha;
wire memory_mapping1;
wire [ 1:0] write_mode;
wire [ 1:0] raster_op;
wire read_mode;
wire [ 7:0] bitmask;
wire [ 3:0] set_reset;
wire [ 3:0] enable_set_reset;
wire [ 3:0] map_mask;
wire x_dotclockdiv2;
wire chain_four;
wire [ 1:0] read_map_select;
wire [ 3:0] color_compare;
wire [ 3:0] color_dont_care;
// Wishbone master to SRAM
wire [17:1] wbm_adr_o;
wire [ 1:0] wbm_sel_o;
wire wbm_we_o;
wire [15:0] wbm_dat_o;
wire [15:0] wbm_dat_i;
wire wbm_stb_o;
wire wbm_ack_i;
wire stb;
// CRT wires
wire [ 5:0] cur_start;
wire [ 5:0] cur_end;
wire [15:0] start_addr;
wire [ 4:0] vcursor;
wire [ 6:0] hcursor;
wire [ 6:0] horiz_total;
wire [ 6:0] end_horiz;
wire [ 6:0] st_hor_retr;
wire [ 4:0] end_hor_retr;
wire [ 9:0] vert_total;
wire [ 9:0] end_vert;
wire [ 9:0] st_ver_retr;
wire [ 3:0] end_ver_retr;
// attribute_ctrl wires
wire [3:0] pal_addr;
wire pal_we;
wire [7:0] pal_read;
wire [7:0] pal_write;
// dac_regs wires
wire dac_we;
wire [1:0] dac_read_data_cycle;
wire [7:0] dac_read_data_register;
wire [3:0] dac_read_data;
wire [1:0] dac_write_data_cycle;
wire [7:0] dac_write_data_register;
wire [3:0] dac_write_data;
// Module instances
//
vga_config_iface config_iface (
.wb_clk_i (wb_clk_i),
.wb_rst_i (wb_rst_i),
.wb_dat_i (wb_dat_i),
.wb_dat_o (conf_wb_dat_o),
.wb_adr_i (wb_adr_i[4:1]),
.wb_we_i (wb_we_i),
.wb_sel_i (wb_sel_i),
.wb_stb_i (stb & wb_tga_i),
.wb_ack_o (conf_wb_ack_o),
.shift_reg1 (shift_reg1),
.graphics_alpha (graphics_alpha),
.memory_mapping1 (memory_mapping1),
.write_mode (write_mode),
.raster_op (raster_op),
.read_mode (read_mode),
.bitmask (bitmask),
.set_reset (set_reset),
.enable_set_reset (enable_set_reset),
.map_mask (map_mask),
.x_dotclockdiv2 (x_dotclockdiv2),
.chain_four (chain_four),
.read_map_select (read_map_select),
.color_compare (color_compare),
.color_dont_care (color_dont_care),
.pal_addr (pal_addr),
.pal_we (pal_we),
.pal_read (pal_read),
.pal_write (pal_write),
.dac_we (dac_we),
.dac_read_data_cycle (dac_read_data_cycle),
.dac_read_data_register (dac_read_data_register),
.dac_read_data (dac_read_data),
.dac_write_data_cycle (dac_write_data_cycle),
.dac_write_data_register (dac_write_data_register),
.dac_write_data (dac_write_data),
.cur_start (cur_start),
.cur_end (cur_end),
.start_addr (start_addr),
.vcursor (vcursor),
.hcursor (hcursor),
.horiz_total (horiz_total),
.end_horiz (end_horiz),
.st_hor_retr (st_hor_retr),
.end_hor_retr (end_hor_retr),
.vert_total (vert_total),
.end_vert (end_vert),
.st_ver_retr (st_ver_retr),
.end_ver_retr (end_ver_retr),
.v_retrace (v_retrace),
.vh_retrace (vh_retrace)
);
vga_lcd lcd (
.clk (wb_clk_i),
.rst (wb_rst_i),
.shift_reg1 (shift_reg1),
.graphics_alpha (graphics_alpha),
.pal_addr (pal_addr),
.pal_we (pal_we),
.pal_read (pal_read),
.pal_write (pal_write),
.dac_we (dac_we),
.dac_read_data_cycle (dac_read_data_cycle),
.dac_read_data_register (dac_read_data_register),
.dac_read_data (dac_read_data),
.dac_write_data_cycle (dac_write_data_cycle),
.dac_write_data_register (dac_write_data_register),
.dac_write_data (dac_write_data),
.csr_adr_o (csr_adr_o),
.csr_dat_i (csr_dat_i),
.csr_stb_o (csr_stb_o),
.vga_red_o (vga_red_o),
.vga_green_o (vga_green_o),
.vga_blue_o (vga_blue_o),
.horiz_sync (horiz_sync),
.vert_sync (w_vert_sync),
.cur_start (cur_start),
.cur_end (cur_end),
.vcursor (vcursor),
.hcursor (hcursor),
.horiz_total (horiz_total),
.end_horiz (end_horiz),
.st_hor_retr (st_hor_retr),
.end_hor_retr (end_hor_retr),
.vert_total (vert_total),
.end_vert (end_vert),
.st_ver_retr (st_ver_retr),
.end_ver_retr (end_ver_retr),
.x_dotclockdiv2 (x_dotclockdiv2),
.v_retrace (v_retrace),
.vh_retrace (vh_retrace)
);
vga_cpu_mem_iface cpu_mem_iface (
.wb_clk_i (wb_clk_i),
.wb_rst_i (wb_rst_i),
.wbs_adr_i (wb_adr_i),
.wbs_sel_i (wb_sel_i),
.wbs_we_i (wb_we_i),
.wbs_dat_i (wb_dat_i),
.wbs_dat_o (mem_wb_dat_o),
.wbs_stb_i (stb & !wb_tga_i),
.wbs_ack_o (mem_wb_ack_o),
.wbm_adr_o (wbm_adr_o),
.wbm_sel_o (wbm_sel_o),
.wbm_we_o (wbm_we_o),
.wbm_dat_o (wbm_dat_o),
.wbm_dat_i (wbm_dat_i),
.wbm_stb_o (wbm_stb_o),
.wbm_ack_i (wbm_ack_i),
.chain_four (chain_four),
.memory_mapping1 (memory_mapping1),
.write_mode (write_mode),
.raster_op (raster_op),
.read_mode (read_mode),
.bitmask (bitmask),
.set_reset (set_reset),
.enable_set_reset (enable_set_reset),
.map_mask (map_mask),
.read_map_select (read_map_select),
.color_compare (color_compare),
.color_dont_care (color_dont_care)
);
vga_mem_arbitrer mem_arbitrer (
.clk_i (wb_clk_i),
.rst_i (wb_rst_i),
.wb_adr_i (wbm_adr_o),
.wb_sel_i (wbm_sel_o),
.wb_we_i (wbm_we_o),
.wb_dat_i (wbm_dat_o),
.wb_dat_o (wbm_dat_i),
.wb_stb_i (wbm_stb_o),
.wb_ack_o (wbm_ack_i),
.csr_adr_i (csr_adr_i),
.csr_dat_o (csr_dat_i),
.csr_stb_i (csr_stb_i),
.csrm_adr_o (csrm_adr_o),
.csrm_sel_o (csrm_sel_o),
.csrm_we_o (csrm_we_o),
.csrm_dat_o (csrm_dat_o),
.csrm_dat_i (csrm_dat_i)
);
// Continous assignments
assign wb_dat_o = wb_tga_i ? conf_wb_dat_o : mem_wb_dat_o;
assign wb_ack_o = wb_tga_i ? conf_wb_ack_o : mem_wb_ack_o;
assign stb = wb_stb_i & wb_cyc_i;
assign vert_sync = ~graphics_alpha ^ w_vert_sync;
// Behaviour
// csr_adr_i
always @(posedge wb_clk_i)
csr_adr_i <= wb_rst_i ? 17'h0 : csr_adr_o + start_addr[15:1];
// csr_stb_i
always @(posedge wb_clk_i)
csr_stb_i <= wb_rst_i ? 1'b0 : csr_stb_o;
endmodule
|
/*
* VGA top level file
* Copyright (C) 2010 Zeus Gomez Marmolejo <[email protected]>
*
* This file is part of the Zet processor. This processor is free
* hardware; you can redistribute it and/or modify it under the terms of
* the GNU General Public License as published by the Free Software
* Foundation; either version 3, or (at your option) any later version.
*
* Zet is distrubuted in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
* License for more details.
*
* You should have received a copy of the GNU General Public License
* along with Zet; see the file COPYING. If not, see
* <http://www.gnu.org/licenses/>.
*/
module vga (
// Wishbone signals
input wb_clk_i, // 25 Mhz VDU clock
input wb_rst_i,
input [15:0] wb_dat_i,
output [15:0] wb_dat_o,
input [16:1] wb_adr_i,
input wb_we_i,
input wb_tga_i,
input [ 1:0] wb_sel_i,
input wb_stb_i,
input wb_cyc_i,
output wb_ack_o,
// VGA pad signals
output [ 3:0] vga_red_o,
output [ 3:0] vga_green_o,
output [ 3:0] vga_blue_o,
output horiz_sync,
output vert_sync,
// CSR SRAM master interface
output [17:1] csrm_adr_o,
output [ 1:0] csrm_sel_o,
output csrm_we_o,
output [15:0] csrm_dat_o,
input [15:0] csrm_dat_i
);
// Registers and nets
//
// csr address
reg [17:1] csr_adr_i;
reg csr_stb_i;
// Config wires
wire [15:0] conf_wb_dat_o;
wire conf_wb_ack_o;
// Mem wires
wire [15:0] mem_wb_dat_o;
wire mem_wb_ack_o;
// LCD wires
wire [17:1] csr_adr_o;
wire [15:0] csr_dat_i;
wire csr_stb_o;
wire v_retrace;
wire vh_retrace;
wire w_vert_sync;
// VGA configuration registers
wire shift_reg1;
wire graphics_alpha;
wire memory_mapping1;
wire [ 1:0] write_mode;
wire [ 1:0] raster_op;
wire read_mode;
wire [ 7:0] bitmask;
wire [ 3:0] set_reset;
wire [ 3:0] enable_set_reset;
wire [ 3:0] map_mask;
wire x_dotclockdiv2;
wire chain_four;
wire [ 1:0] read_map_select;
wire [ 3:0] color_compare;
wire [ 3:0] color_dont_care;
// Wishbone master to SRAM
wire [17:1] wbm_adr_o;
wire [ 1:0] wbm_sel_o;
wire wbm_we_o;
wire [15:0] wbm_dat_o;
wire [15:0] wbm_dat_i;
wire wbm_stb_o;
wire wbm_ack_i;
wire stb;
// CRT wires
wire [ 5:0] cur_start;
wire [ 5:0] cur_end;
wire [15:0] start_addr;
wire [ 4:0] vcursor;
wire [ 6:0] hcursor;
wire [ 6:0] horiz_total;
wire [ 6:0] end_horiz;
wire [ 6:0] st_hor_retr;
wire [ 4:0] end_hor_retr;
wire [ 9:0] vert_total;
wire [ 9:0] end_vert;
wire [ 9:0] st_ver_retr;
wire [ 3:0] end_ver_retr;
// attribute_ctrl wires
wire [3:0] pal_addr;
wire pal_we;
wire [7:0] pal_read;
wire [7:0] pal_write;
// dac_regs wires
wire dac_we;
wire [1:0] dac_read_data_cycle;
wire [7:0] dac_read_data_register;
wire [3:0] dac_read_data;
wire [1:0] dac_write_data_cycle;
wire [7:0] dac_write_data_register;
wire [3:0] dac_write_data;
// Module instances
//
vga_config_iface config_iface (
.wb_clk_i (wb_clk_i),
.wb_rst_i (wb_rst_i),
.wb_dat_i (wb_dat_i),
.wb_dat_o (conf_wb_dat_o),
.wb_adr_i (wb_adr_i[4:1]),
.wb_we_i (wb_we_i),
.wb_sel_i (wb_sel_i),
.wb_stb_i (stb & wb_tga_i),
.wb_ack_o (conf_wb_ack_o),
.shift_reg1 (shift_reg1),
.graphics_alpha (graphics_alpha),
.memory_mapping1 (memory_mapping1),
.write_mode (write_mode),
.raster_op (raster_op),
.read_mode (read_mode),
.bitmask (bitmask),
.set_reset (set_reset),
.enable_set_reset (enable_set_reset),
.map_mask (map_mask),
.x_dotclockdiv2 (x_dotclockdiv2),
.chain_four (chain_four),
.read_map_select (read_map_select),
.color_compare (color_compare),
.color_dont_care (color_dont_care),
.pal_addr (pal_addr),
.pal_we (pal_we),
.pal_read (pal_read),
.pal_write (pal_write),
.dac_we (dac_we),
.dac_read_data_cycle (dac_read_data_cycle),
.dac_read_data_register (dac_read_data_register),
.dac_read_data (dac_read_data),
.dac_write_data_cycle (dac_write_data_cycle),
.dac_write_data_register (dac_write_data_register),
.dac_write_data (dac_write_data),
.cur_start (cur_start),
.cur_end (cur_end),
.start_addr (start_addr),
.vcursor (vcursor),
.hcursor (hcursor),
.horiz_total (horiz_total),
.end_horiz (end_horiz),
.st_hor_retr (st_hor_retr),
.end_hor_retr (end_hor_retr),
.vert_total (vert_total),
.end_vert (end_vert),
.st_ver_retr (st_ver_retr),
.end_ver_retr (end_ver_retr),
.v_retrace (v_retrace),
.vh_retrace (vh_retrace)
);
vga_lcd lcd (
.clk (wb_clk_i),
.rst (wb_rst_i),
.shift_reg1 (shift_reg1),
.graphics_alpha (graphics_alpha),
.pal_addr (pal_addr),
.pal_we (pal_we),
.pal_read (pal_read),
.pal_write (pal_write),
.dac_we (dac_we),
.dac_read_data_cycle (dac_read_data_cycle),
.dac_read_data_register (dac_read_data_register),
.dac_read_data (dac_read_data),
.dac_write_data_cycle (dac_write_data_cycle),
.dac_write_data_register (dac_write_data_register),
.dac_write_data (dac_write_data),
.csr_adr_o (csr_adr_o),
.csr_dat_i (csr_dat_i),
.csr_stb_o (csr_stb_o),
.vga_red_o (vga_red_o),
.vga_green_o (vga_green_o),
.vga_blue_o (vga_blue_o),
.horiz_sync (horiz_sync),
.vert_sync (w_vert_sync),
.cur_start (cur_start),
.cur_end (cur_end),
.vcursor (vcursor),
.hcursor (hcursor),
.horiz_total (horiz_total),
.end_horiz (end_horiz),
.st_hor_retr (st_hor_retr),
.end_hor_retr (end_hor_retr),
.vert_total (vert_total),
.end_vert (end_vert),
.st_ver_retr (st_ver_retr),
.end_ver_retr (end_ver_retr),
.x_dotclockdiv2 (x_dotclockdiv2),
.v_retrace (v_retrace),
.vh_retrace (vh_retrace)
);
vga_cpu_mem_iface cpu_mem_iface (
.wb_clk_i (wb_clk_i),
.wb_rst_i (wb_rst_i),
.wbs_adr_i (wb_adr_i),
.wbs_sel_i (wb_sel_i),
.wbs_we_i (wb_we_i),
.wbs_dat_i (wb_dat_i),
.wbs_dat_o (mem_wb_dat_o),
.wbs_stb_i (stb & !wb_tga_i),
.wbs_ack_o (mem_wb_ack_o),
.wbm_adr_o (wbm_adr_o),
.wbm_sel_o (wbm_sel_o),
.wbm_we_o (wbm_we_o),
.wbm_dat_o (wbm_dat_o),
.wbm_dat_i (wbm_dat_i),
.wbm_stb_o (wbm_stb_o),
.wbm_ack_i (wbm_ack_i),
.chain_four (chain_four),
.memory_mapping1 (memory_mapping1),
.write_mode (write_mode),
.raster_op (raster_op),
.read_mode (read_mode),
.bitmask (bitmask),
.set_reset (set_reset),
.enable_set_reset (enable_set_reset),
.map_mask (map_mask),
.read_map_select (read_map_select),
.color_compare (color_compare),
.color_dont_care (color_dont_care)
);
vga_mem_arbitrer mem_arbitrer (
.clk_i (wb_clk_i),
.rst_i (wb_rst_i),
.wb_adr_i (wbm_adr_o),
.wb_sel_i (wbm_sel_o),
.wb_we_i (wbm_we_o),
.wb_dat_i (wbm_dat_o),
.wb_dat_o (wbm_dat_i),
.wb_stb_i (wbm_stb_o),
.wb_ack_o (wbm_ack_i),
.csr_adr_i (csr_adr_i),
.csr_dat_o (csr_dat_i),
.csr_stb_i (csr_stb_i),
.csrm_adr_o (csrm_adr_o),
.csrm_sel_o (csrm_sel_o),
.csrm_we_o (csrm_we_o),
.csrm_dat_o (csrm_dat_o),
.csrm_dat_i (csrm_dat_i)
);
// Continous assignments
assign wb_dat_o = wb_tga_i ? conf_wb_dat_o : mem_wb_dat_o;
assign wb_ack_o = wb_tga_i ? conf_wb_ack_o : mem_wb_ack_o;
assign stb = wb_stb_i & wb_cyc_i;
assign vert_sync = ~graphics_alpha ^ w_vert_sync;
// Behaviour
// csr_adr_i
always @(posedge wb_clk_i)
csr_adr_i <= wb_rst_i ? 17'h0 : csr_adr_o + start_addr[15:1];
// csr_stb_i
always @(posedge wb_clk_i)
csr_stb_i <= wb_rst_i ? 1'b0 : csr_stb_o;
endmodule
|
/*
* VGA top level file
* Copyright (C) 2010 Zeus Gomez Marmolejo <[email protected]>
*
* This file is part of the Zet processor. This processor is free
* hardware; you can redistribute it and/or modify it under the terms of
* the GNU General Public License as published by the Free Software
* Foundation; either version 3, or (at your option) any later version.
*
* Zet is distrubuted in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
* License for more details.
*
* You should have received a copy of the GNU General Public License
* along with Zet; see the file COPYING. If not, see
* <http://www.gnu.org/licenses/>.
*/
module vga (
// Wishbone signals
input wb_clk_i, // 25 Mhz VDU clock
input wb_rst_i,
input [15:0] wb_dat_i,
output [15:0] wb_dat_o,
input [16:1] wb_adr_i,
input wb_we_i,
input wb_tga_i,
input [ 1:0] wb_sel_i,
input wb_stb_i,
input wb_cyc_i,
output wb_ack_o,
// VGA pad signals
output [ 3:0] vga_red_o,
output [ 3:0] vga_green_o,
output [ 3:0] vga_blue_o,
output horiz_sync,
output vert_sync,
// CSR SRAM master interface
output [17:1] csrm_adr_o,
output [ 1:0] csrm_sel_o,
output csrm_we_o,
output [15:0] csrm_dat_o,
input [15:0] csrm_dat_i
);
// Registers and nets
//
// csr address
reg [17:1] csr_adr_i;
reg csr_stb_i;
// Config wires
wire [15:0] conf_wb_dat_o;
wire conf_wb_ack_o;
// Mem wires
wire [15:0] mem_wb_dat_o;
wire mem_wb_ack_o;
// LCD wires
wire [17:1] csr_adr_o;
wire [15:0] csr_dat_i;
wire csr_stb_o;
wire v_retrace;
wire vh_retrace;
wire w_vert_sync;
// VGA configuration registers
wire shift_reg1;
wire graphics_alpha;
wire memory_mapping1;
wire [ 1:0] write_mode;
wire [ 1:0] raster_op;
wire read_mode;
wire [ 7:0] bitmask;
wire [ 3:0] set_reset;
wire [ 3:0] enable_set_reset;
wire [ 3:0] map_mask;
wire x_dotclockdiv2;
wire chain_four;
wire [ 1:0] read_map_select;
wire [ 3:0] color_compare;
wire [ 3:0] color_dont_care;
// Wishbone master to SRAM
wire [17:1] wbm_adr_o;
wire [ 1:0] wbm_sel_o;
wire wbm_we_o;
wire [15:0] wbm_dat_o;
wire [15:0] wbm_dat_i;
wire wbm_stb_o;
wire wbm_ack_i;
wire stb;
// CRT wires
wire [ 5:0] cur_start;
wire [ 5:0] cur_end;
wire [15:0] start_addr;
wire [ 4:0] vcursor;
wire [ 6:0] hcursor;
wire [ 6:0] horiz_total;
wire [ 6:0] end_horiz;
wire [ 6:0] st_hor_retr;
wire [ 4:0] end_hor_retr;
wire [ 9:0] vert_total;
wire [ 9:0] end_vert;
wire [ 9:0] st_ver_retr;
wire [ 3:0] end_ver_retr;
// attribute_ctrl wires
wire [3:0] pal_addr;
wire pal_we;
wire [7:0] pal_read;
wire [7:0] pal_write;
// dac_regs wires
wire dac_we;
wire [1:0] dac_read_data_cycle;
wire [7:0] dac_read_data_register;
wire [3:0] dac_read_data;
wire [1:0] dac_write_data_cycle;
wire [7:0] dac_write_data_register;
wire [3:0] dac_write_data;
// Module instances
//
vga_config_iface config_iface (
.wb_clk_i (wb_clk_i),
.wb_rst_i (wb_rst_i),
.wb_dat_i (wb_dat_i),
.wb_dat_o (conf_wb_dat_o),
.wb_adr_i (wb_adr_i[4:1]),
.wb_we_i (wb_we_i),
.wb_sel_i (wb_sel_i),
.wb_stb_i (stb & wb_tga_i),
.wb_ack_o (conf_wb_ack_o),
.shift_reg1 (shift_reg1),
.graphics_alpha (graphics_alpha),
.memory_mapping1 (memory_mapping1),
.write_mode (write_mode),
.raster_op (raster_op),
.read_mode (read_mode),
.bitmask (bitmask),
.set_reset (set_reset),
.enable_set_reset (enable_set_reset),
.map_mask (map_mask),
.x_dotclockdiv2 (x_dotclockdiv2),
.chain_four (chain_four),
.read_map_select (read_map_select),
.color_compare (color_compare),
.color_dont_care (color_dont_care),
.pal_addr (pal_addr),
.pal_we (pal_we),
.pal_read (pal_read),
.pal_write (pal_write),
.dac_we (dac_we),
.dac_read_data_cycle (dac_read_data_cycle),
.dac_read_data_register (dac_read_data_register),
.dac_read_data (dac_read_data),
.dac_write_data_cycle (dac_write_data_cycle),
.dac_write_data_register (dac_write_data_register),
.dac_write_data (dac_write_data),
.cur_start (cur_start),
.cur_end (cur_end),
.start_addr (start_addr),
.vcursor (vcursor),
.hcursor (hcursor),
.horiz_total (horiz_total),
.end_horiz (end_horiz),
.st_hor_retr (st_hor_retr),
.end_hor_retr (end_hor_retr),
.vert_total (vert_total),
.end_vert (end_vert),
.st_ver_retr (st_ver_retr),
.end_ver_retr (end_ver_retr),
.v_retrace (v_retrace),
.vh_retrace (vh_retrace)
);
vga_lcd lcd (
.clk (wb_clk_i),
.rst (wb_rst_i),
.shift_reg1 (shift_reg1),
.graphics_alpha (graphics_alpha),
.pal_addr (pal_addr),
.pal_we (pal_we),
.pal_read (pal_read),
.pal_write (pal_write),
.dac_we (dac_we),
.dac_read_data_cycle (dac_read_data_cycle),
.dac_read_data_register (dac_read_data_register),
.dac_read_data (dac_read_data),
.dac_write_data_cycle (dac_write_data_cycle),
.dac_write_data_register (dac_write_data_register),
.dac_write_data (dac_write_data),
.csr_adr_o (csr_adr_o),
.csr_dat_i (csr_dat_i),
.csr_stb_o (csr_stb_o),
.vga_red_o (vga_red_o),
.vga_green_o (vga_green_o),
.vga_blue_o (vga_blue_o),
.horiz_sync (horiz_sync),
.vert_sync (w_vert_sync),
.cur_start (cur_start),
.cur_end (cur_end),
.vcursor (vcursor),
.hcursor (hcursor),
.horiz_total (horiz_total),
.end_horiz (end_horiz),
.st_hor_retr (st_hor_retr),
.end_hor_retr (end_hor_retr),
.vert_total (vert_total),
.end_vert (end_vert),
.st_ver_retr (st_ver_retr),
.end_ver_retr (end_ver_retr),
.x_dotclockdiv2 (x_dotclockdiv2),
.v_retrace (v_retrace),
.vh_retrace (vh_retrace)
);
vga_cpu_mem_iface cpu_mem_iface (
.wb_clk_i (wb_clk_i),
.wb_rst_i (wb_rst_i),
.wbs_adr_i (wb_adr_i),
.wbs_sel_i (wb_sel_i),
.wbs_we_i (wb_we_i),
.wbs_dat_i (wb_dat_i),
.wbs_dat_o (mem_wb_dat_o),
.wbs_stb_i (stb & !wb_tga_i),
.wbs_ack_o (mem_wb_ack_o),
.wbm_adr_o (wbm_adr_o),
.wbm_sel_o (wbm_sel_o),
.wbm_we_o (wbm_we_o),
.wbm_dat_o (wbm_dat_o),
.wbm_dat_i (wbm_dat_i),
.wbm_stb_o (wbm_stb_o),
.wbm_ack_i (wbm_ack_i),
.chain_four (chain_four),
.memory_mapping1 (memory_mapping1),
.write_mode (write_mode),
.raster_op (raster_op),
.read_mode (read_mode),
.bitmask (bitmask),
.set_reset (set_reset),
.enable_set_reset (enable_set_reset),
.map_mask (map_mask),
.read_map_select (read_map_select),
.color_compare (color_compare),
.color_dont_care (color_dont_care)
);
vga_mem_arbitrer mem_arbitrer (
.clk_i (wb_clk_i),
.rst_i (wb_rst_i),
.wb_adr_i (wbm_adr_o),
.wb_sel_i (wbm_sel_o),
.wb_we_i (wbm_we_o),
.wb_dat_i (wbm_dat_o),
.wb_dat_o (wbm_dat_i),
.wb_stb_i (wbm_stb_o),
.wb_ack_o (wbm_ack_i),
.csr_adr_i (csr_adr_i),
.csr_dat_o (csr_dat_i),
.csr_stb_i (csr_stb_i),
.csrm_adr_o (csrm_adr_o),
.csrm_sel_o (csrm_sel_o),
.csrm_we_o (csrm_we_o),
.csrm_dat_o (csrm_dat_o),
.csrm_dat_i (csrm_dat_i)
);
// Continous assignments
assign wb_dat_o = wb_tga_i ? conf_wb_dat_o : mem_wb_dat_o;
assign wb_ack_o = wb_tga_i ? conf_wb_ack_o : mem_wb_ack_o;
assign stb = wb_stb_i & wb_cyc_i;
assign vert_sync = ~graphics_alpha ^ w_vert_sync;
// Behaviour
// csr_adr_i
always @(posedge wb_clk_i)
csr_adr_i <= wb_rst_i ? 17'h0 : csr_adr_o + start_addr[15:1];
// csr_stb_i
always @(posedge wb_clk_i)
csr_stb_i <= wb_rst_i ? 1'b0 : csr_stb_o;
endmodule
|
/*
* VGA top level file
* Copyright (C) 2010 Zeus Gomez Marmolejo <[email protected]>
*
* This file is part of the Zet processor. This processor is free
* hardware; you can redistribute it and/or modify it under the terms of
* the GNU General Public License as published by the Free Software
* Foundation; either version 3, or (at your option) any later version.
*
* Zet is distrubuted in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
* License for more details.
*
* You should have received a copy of the GNU General Public License
* along with Zet; see the file COPYING. If not, see
* <http://www.gnu.org/licenses/>.
*/
module vga (
// Wishbone signals
input wb_clk_i, // 25 Mhz VDU clock
input wb_rst_i,
input [15:0] wb_dat_i,
output [15:0] wb_dat_o,
input [16:1] wb_adr_i,
input wb_we_i,
input wb_tga_i,
input [ 1:0] wb_sel_i,
input wb_stb_i,
input wb_cyc_i,
output wb_ack_o,
// VGA pad signals
output [ 3:0] vga_red_o,
output [ 3:0] vga_green_o,
output [ 3:0] vga_blue_o,
output horiz_sync,
output vert_sync,
// CSR SRAM master interface
output [17:1] csrm_adr_o,
output [ 1:0] csrm_sel_o,
output csrm_we_o,
output [15:0] csrm_dat_o,
input [15:0] csrm_dat_i
);
// Registers and nets
//
// csr address
reg [17:1] csr_adr_i;
reg csr_stb_i;
// Config wires
wire [15:0] conf_wb_dat_o;
wire conf_wb_ack_o;
// Mem wires
wire [15:0] mem_wb_dat_o;
wire mem_wb_ack_o;
// LCD wires
wire [17:1] csr_adr_o;
wire [15:0] csr_dat_i;
wire csr_stb_o;
wire v_retrace;
wire vh_retrace;
wire w_vert_sync;
// VGA configuration registers
wire shift_reg1;
wire graphics_alpha;
wire memory_mapping1;
wire [ 1:0] write_mode;
wire [ 1:0] raster_op;
wire read_mode;
wire [ 7:0] bitmask;
wire [ 3:0] set_reset;
wire [ 3:0] enable_set_reset;
wire [ 3:0] map_mask;
wire x_dotclockdiv2;
wire chain_four;
wire [ 1:0] read_map_select;
wire [ 3:0] color_compare;
wire [ 3:0] color_dont_care;
// Wishbone master to SRAM
wire [17:1] wbm_adr_o;
wire [ 1:0] wbm_sel_o;
wire wbm_we_o;
wire [15:0] wbm_dat_o;
wire [15:0] wbm_dat_i;
wire wbm_stb_o;
wire wbm_ack_i;
wire stb;
// CRT wires
wire [ 5:0] cur_start;
wire [ 5:0] cur_end;
wire [15:0] start_addr;
wire [ 4:0] vcursor;
wire [ 6:0] hcursor;
wire [ 6:0] horiz_total;
wire [ 6:0] end_horiz;
wire [ 6:0] st_hor_retr;
wire [ 4:0] end_hor_retr;
wire [ 9:0] vert_total;
wire [ 9:0] end_vert;
wire [ 9:0] st_ver_retr;
wire [ 3:0] end_ver_retr;
// attribute_ctrl wires
wire [3:0] pal_addr;
wire pal_we;
wire [7:0] pal_read;
wire [7:0] pal_write;
// dac_regs wires
wire dac_we;
wire [1:0] dac_read_data_cycle;
wire [7:0] dac_read_data_register;
wire [3:0] dac_read_data;
wire [1:0] dac_write_data_cycle;
wire [7:0] dac_write_data_register;
wire [3:0] dac_write_data;
// Module instances
//
vga_config_iface config_iface (
.wb_clk_i (wb_clk_i),
.wb_rst_i (wb_rst_i),
.wb_dat_i (wb_dat_i),
.wb_dat_o (conf_wb_dat_o),
.wb_adr_i (wb_adr_i[4:1]),
.wb_we_i (wb_we_i),
.wb_sel_i (wb_sel_i),
.wb_stb_i (stb & wb_tga_i),
.wb_ack_o (conf_wb_ack_o),
.shift_reg1 (shift_reg1),
.graphics_alpha (graphics_alpha),
.memory_mapping1 (memory_mapping1),
.write_mode (write_mode),
.raster_op (raster_op),
.read_mode (read_mode),
.bitmask (bitmask),
.set_reset (set_reset),
.enable_set_reset (enable_set_reset),
.map_mask (map_mask),
.x_dotclockdiv2 (x_dotclockdiv2),
.chain_four (chain_four),
.read_map_select (read_map_select),
.color_compare (color_compare),
.color_dont_care (color_dont_care),
.pal_addr (pal_addr),
.pal_we (pal_we),
.pal_read (pal_read),
.pal_write (pal_write),
.dac_we (dac_we),
.dac_read_data_cycle (dac_read_data_cycle),
.dac_read_data_register (dac_read_data_register),
.dac_read_data (dac_read_data),
.dac_write_data_cycle (dac_write_data_cycle),
.dac_write_data_register (dac_write_data_register),
.dac_write_data (dac_write_data),
.cur_start (cur_start),
.cur_end (cur_end),
.start_addr (start_addr),
.vcursor (vcursor),
.hcursor (hcursor),
.horiz_total (horiz_total),
.end_horiz (end_horiz),
.st_hor_retr (st_hor_retr),
.end_hor_retr (end_hor_retr),
.vert_total (vert_total),
.end_vert (end_vert),
.st_ver_retr (st_ver_retr),
.end_ver_retr (end_ver_retr),
.v_retrace (v_retrace),
.vh_retrace (vh_retrace)
);
vga_lcd lcd (
.clk (wb_clk_i),
.rst (wb_rst_i),
.shift_reg1 (shift_reg1),
.graphics_alpha (graphics_alpha),
.pal_addr (pal_addr),
.pal_we (pal_we),
.pal_read (pal_read),
.pal_write (pal_write),
.dac_we (dac_we),
.dac_read_data_cycle (dac_read_data_cycle),
.dac_read_data_register (dac_read_data_register),
.dac_read_data (dac_read_data),
.dac_write_data_cycle (dac_write_data_cycle),
.dac_write_data_register (dac_write_data_register),
.dac_write_data (dac_write_data),
.csr_adr_o (csr_adr_o),
.csr_dat_i (csr_dat_i),
.csr_stb_o (csr_stb_o),
.vga_red_o (vga_red_o),
.vga_green_o (vga_green_o),
.vga_blue_o (vga_blue_o),
.horiz_sync (horiz_sync),
.vert_sync (w_vert_sync),
.cur_start (cur_start),
.cur_end (cur_end),
.vcursor (vcursor),
.hcursor (hcursor),
.horiz_total (horiz_total),
.end_horiz (end_horiz),
.st_hor_retr (st_hor_retr),
.end_hor_retr (end_hor_retr),
.vert_total (vert_total),
.end_vert (end_vert),
.st_ver_retr (st_ver_retr),
.end_ver_retr (end_ver_retr),
.x_dotclockdiv2 (x_dotclockdiv2),
.v_retrace (v_retrace),
.vh_retrace (vh_retrace)
);
vga_cpu_mem_iface cpu_mem_iface (
.wb_clk_i (wb_clk_i),
.wb_rst_i (wb_rst_i),
.wbs_adr_i (wb_adr_i),
.wbs_sel_i (wb_sel_i),
.wbs_we_i (wb_we_i),
.wbs_dat_i (wb_dat_i),
.wbs_dat_o (mem_wb_dat_o),
.wbs_stb_i (stb & !wb_tga_i),
.wbs_ack_o (mem_wb_ack_o),
.wbm_adr_o (wbm_adr_o),
.wbm_sel_o (wbm_sel_o),
.wbm_we_o (wbm_we_o),
.wbm_dat_o (wbm_dat_o),
.wbm_dat_i (wbm_dat_i),
.wbm_stb_o (wbm_stb_o),
.wbm_ack_i (wbm_ack_i),
.chain_four (chain_four),
.memory_mapping1 (memory_mapping1),
.write_mode (write_mode),
.raster_op (raster_op),
.read_mode (read_mode),
.bitmask (bitmask),
.set_reset (set_reset),
.enable_set_reset (enable_set_reset),
.map_mask (map_mask),
.read_map_select (read_map_select),
.color_compare (color_compare),
.color_dont_care (color_dont_care)
);
vga_mem_arbitrer mem_arbitrer (
.clk_i (wb_clk_i),
.rst_i (wb_rst_i),
.wb_adr_i (wbm_adr_o),
.wb_sel_i (wbm_sel_o),
.wb_we_i (wbm_we_o),
.wb_dat_i (wbm_dat_o),
.wb_dat_o (wbm_dat_i),
.wb_stb_i (wbm_stb_o),
.wb_ack_o (wbm_ack_i),
.csr_adr_i (csr_adr_i),
.csr_dat_o (csr_dat_i),
.csr_stb_i (csr_stb_i),
.csrm_adr_o (csrm_adr_o),
.csrm_sel_o (csrm_sel_o),
.csrm_we_o (csrm_we_o),
.csrm_dat_o (csrm_dat_o),
.csrm_dat_i (csrm_dat_i)
);
// Continous assignments
assign wb_dat_o = wb_tga_i ? conf_wb_dat_o : mem_wb_dat_o;
assign wb_ack_o = wb_tga_i ? conf_wb_ack_o : mem_wb_ack_o;
assign stb = wb_stb_i & wb_cyc_i;
assign vert_sync = ~graphics_alpha ^ w_vert_sync;
// Behaviour
// csr_adr_i
always @(posedge wb_clk_i)
csr_adr_i <= wb_rst_i ? 17'h0 : csr_adr_o + start_addr[15:1];
// csr_stb_i
always @(posedge wb_clk_i)
csr_stb_i <= wb_rst_i ? 1'b0 : csr_stb_o;
endmodule
|
/*
* VGA top level file
* Copyright (C) 2010 Zeus Gomez Marmolejo <[email protected]>
*
* This file is part of the Zet processor. This processor is free
* hardware; you can redistribute it and/or modify it under the terms of
* the GNU General Public License as published by the Free Software
* Foundation; either version 3, or (at your option) any later version.
*
* Zet is distrubuted in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
* License for more details.
*
* You should have received a copy of the GNU General Public License
* along with Zet; see the file COPYING. If not, see
* <http://www.gnu.org/licenses/>.
*/
module vga (
// Wishbone signals
input wb_clk_i, // 25 Mhz VDU clock
input wb_rst_i,
input [15:0] wb_dat_i,
output [15:0] wb_dat_o,
input [16:1] wb_adr_i,
input wb_we_i,
input wb_tga_i,
input [ 1:0] wb_sel_i,
input wb_stb_i,
input wb_cyc_i,
output wb_ack_o,
// VGA pad signals
output [ 3:0] vga_red_o,
output [ 3:0] vga_green_o,
output [ 3:0] vga_blue_o,
output horiz_sync,
output vert_sync,
// CSR SRAM master interface
output [17:1] csrm_adr_o,
output [ 1:0] csrm_sel_o,
output csrm_we_o,
output [15:0] csrm_dat_o,
input [15:0] csrm_dat_i
);
// Registers and nets
//
// csr address
reg [17:1] csr_adr_i;
reg csr_stb_i;
// Config wires
wire [15:0] conf_wb_dat_o;
wire conf_wb_ack_o;
// Mem wires
wire [15:0] mem_wb_dat_o;
wire mem_wb_ack_o;
// LCD wires
wire [17:1] csr_adr_o;
wire [15:0] csr_dat_i;
wire csr_stb_o;
wire v_retrace;
wire vh_retrace;
wire w_vert_sync;
// VGA configuration registers
wire shift_reg1;
wire graphics_alpha;
wire memory_mapping1;
wire [ 1:0] write_mode;
wire [ 1:0] raster_op;
wire read_mode;
wire [ 7:0] bitmask;
wire [ 3:0] set_reset;
wire [ 3:0] enable_set_reset;
wire [ 3:0] map_mask;
wire x_dotclockdiv2;
wire chain_four;
wire [ 1:0] read_map_select;
wire [ 3:0] color_compare;
wire [ 3:0] color_dont_care;
// Wishbone master to SRAM
wire [17:1] wbm_adr_o;
wire [ 1:0] wbm_sel_o;
wire wbm_we_o;
wire [15:0] wbm_dat_o;
wire [15:0] wbm_dat_i;
wire wbm_stb_o;
wire wbm_ack_i;
wire stb;
// CRT wires
wire [ 5:0] cur_start;
wire [ 5:0] cur_end;
wire [15:0] start_addr;
wire [ 4:0] vcursor;
wire [ 6:0] hcursor;
wire [ 6:0] horiz_total;
wire [ 6:0] end_horiz;
wire [ 6:0] st_hor_retr;
wire [ 4:0] end_hor_retr;
wire [ 9:0] vert_total;
wire [ 9:0] end_vert;
wire [ 9:0] st_ver_retr;
wire [ 3:0] end_ver_retr;
// attribute_ctrl wires
wire [3:0] pal_addr;
wire pal_we;
wire [7:0] pal_read;
wire [7:0] pal_write;
// dac_regs wires
wire dac_we;
wire [1:0] dac_read_data_cycle;
wire [7:0] dac_read_data_register;
wire [3:0] dac_read_data;
wire [1:0] dac_write_data_cycle;
wire [7:0] dac_write_data_register;
wire [3:0] dac_write_data;
// Module instances
//
vga_config_iface config_iface (
.wb_clk_i (wb_clk_i),
.wb_rst_i (wb_rst_i),
.wb_dat_i (wb_dat_i),
.wb_dat_o (conf_wb_dat_o),
.wb_adr_i (wb_adr_i[4:1]),
.wb_we_i (wb_we_i),
.wb_sel_i (wb_sel_i),
.wb_stb_i (stb & wb_tga_i),
.wb_ack_o (conf_wb_ack_o),
.shift_reg1 (shift_reg1),
.graphics_alpha (graphics_alpha),
.memory_mapping1 (memory_mapping1),
.write_mode (write_mode),
.raster_op (raster_op),
.read_mode (read_mode),
.bitmask (bitmask),
.set_reset (set_reset),
.enable_set_reset (enable_set_reset),
.map_mask (map_mask),
.x_dotclockdiv2 (x_dotclockdiv2),
.chain_four (chain_four),
.read_map_select (read_map_select),
.color_compare (color_compare),
.color_dont_care (color_dont_care),
.pal_addr (pal_addr),
.pal_we (pal_we),
.pal_read (pal_read),
.pal_write (pal_write),
.dac_we (dac_we),
.dac_read_data_cycle (dac_read_data_cycle),
.dac_read_data_register (dac_read_data_register),
.dac_read_data (dac_read_data),
.dac_write_data_cycle (dac_write_data_cycle),
.dac_write_data_register (dac_write_data_register),
.dac_write_data (dac_write_data),
.cur_start (cur_start),
.cur_end (cur_end),
.start_addr (start_addr),
.vcursor (vcursor),
.hcursor (hcursor),
.horiz_total (horiz_total),
.end_horiz (end_horiz),
.st_hor_retr (st_hor_retr),
.end_hor_retr (end_hor_retr),
.vert_total (vert_total),
.end_vert (end_vert),
.st_ver_retr (st_ver_retr),
.end_ver_retr (end_ver_retr),
.v_retrace (v_retrace),
.vh_retrace (vh_retrace)
);
vga_lcd lcd (
.clk (wb_clk_i),
.rst (wb_rst_i),
.shift_reg1 (shift_reg1),
.graphics_alpha (graphics_alpha),
.pal_addr (pal_addr),
.pal_we (pal_we),
.pal_read (pal_read),
.pal_write (pal_write),
.dac_we (dac_we),
.dac_read_data_cycle (dac_read_data_cycle),
.dac_read_data_register (dac_read_data_register),
.dac_read_data (dac_read_data),
.dac_write_data_cycle (dac_write_data_cycle),
.dac_write_data_register (dac_write_data_register),
.dac_write_data (dac_write_data),
.csr_adr_o (csr_adr_o),
.csr_dat_i (csr_dat_i),
.csr_stb_o (csr_stb_o),
.vga_red_o (vga_red_o),
.vga_green_o (vga_green_o),
.vga_blue_o (vga_blue_o),
.horiz_sync (horiz_sync),
.vert_sync (w_vert_sync),
.cur_start (cur_start),
.cur_end (cur_end),
.vcursor (vcursor),
.hcursor (hcursor),
.horiz_total (horiz_total),
.end_horiz (end_horiz),
.st_hor_retr (st_hor_retr),
.end_hor_retr (end_hor_retr),
.vert_total (vert_total),
.end_vert (end_vert),
.st_ver_retr (st_ver_retr),
.end_ver_retr (end_ver_retr),
.x_dotclockdiv2 (x_dotclockdiv2),
.v_retrace (v_retrace),
.vh_retrace (vh_retrace)
);
vga_cpu_mem_iface cpu_mem_iface (
.wb_clk_i (wb_clk_i),
.wb_rst_i (wb_rst_i),
.wbs_adr_i (wb_adr_i),
.wbs_sel_i (wb_sel_i),
.wbs_we_i (wb_we_i),
.wbs_dat_i (wb_dat_i),
.wbs_dat_o (mem_wb_dat_o),
.wbs_stb_i (stb & !wb_tga_i),
.wbs_ack_o (mem_wb_ack_o),
.wbm_adr_o (wbm_adr_o),
.wbm_sel_o (wbm_sel_o),
.wbm_we_o (wbm_we_o),
.wbm_dat_o (wbm_dat_o),
.wbm_dat_i (wbm_dat_i),
.wbm_stb_o (wbm_stb_o),
.wbm_ack_i (wbm_ack_i),
.chain_four (chain_four),
.memory_mapping1 (memory_mapping1),
.write_mode (write_mode),
.raster_op (raster_op),
.read_mode (read_mode),
.bitmask (bitmask),
.set_reset (set_reset),
.enable_set_reset (enable_set_reset),
.map_mask (map_mask),
.read_map_select (read_map_select),
.color_compare (color_compare),
.color_dont_care (color_dont_care)
);
vga_mem_arbitrer mem_arbitrer (
.clk_i (wb_clk_i),
.rst_i (wb_rst_i),
.wb_adr_i (wbm_adr_o),
.wb_sel_i (wbm_sel_o),
.wb_we_i (wbm_we_o),
.wb_dat_i (wbm_dat_o),
.wb_dat_o (wbm_dat_i),
.wb_stb_i (wbm_stb_o),
.wb_ack_o (wbm_ack_i),
.csr_adr_i (csr_adr_i),
.csr_dat_o (csr_dat_i),
.csr_stb_i (csr_stb_i),
.csrm_adr_o (csrm_adr_o),
.csrm_sel_o (csrm_sel_o),
.csrm_we_o (csrm_we_o),
.csrm_dat_o (csrm_dat_o),
.csrm_dat_i (csrm_dat_i)
);
// Continous assignments
assign wb_dat_o = wb_tga_i ? conf_wb_dat_o : mem_wb_dat_o;
assign wb_ack_o = wb_tga_i ? conf_wb_ack_o : mem_wb_ack_o;
assign stb = wb_stb_i & wb_cyc_i;
assign vert_sync = ~graphics_alpha ^ w_vert_sync;
// Behaviour
// csr_adr_i
always @(posedge wb_clk_i)
csr_adr_i <= wb_rst_i ? 17'h0 : csr_adr_o + start_addr[15:1];
// csr_stb_i
always @(posedge wb_clk_i)
csr_stb_i <= wb_rst_i ? 1'b0 : csr_stb_o;
endmodule
|
/*
* VGA top level file
* Copyright (C) 2010 Zeus Gomez Marmolejo <[email protected]>
*
* This file is part of the Zet processor. This processor is free
* hardware; you can redistribute it and/or modify it under the terms of
* the GNU General Public License as published by the Free Software
* Foundation; either version 3, or (at your option) any later version.
*
* Zet is distrubuted in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
* License for more details.
*
* You should have received a copy of the GNU General Public License
* along with Zet; see the file COPYING. If not, see
* <http://www.gnu.org/licenses/>.
*/
module vga (
// Wishbone signals
input wb_clk_i, // 25 Mhz VDU clock
input wb_rst_i,
input [15:0] wb_dat_i,
output [15:0] wb_dat_o,
input [16:1] wb_adr_i,
input wb_we_i,
input wb_tga_i,
input [ 1:0] wb_sel_i,
input wb_stb_i,
input wb_cyc_i,
output wb_ack_o,
// VGA pad signals
output [ 3:0] vga_red_o,
output [ 3:0] vga_green_o,
output [ 3:0] vga_blue_o,
output horiz_sync,
output vert_sync,
// CSR SRAM master interface
output [17:1] csrm_adr_o,
output [ 1:0] csrm_sel_o,
output csrm_we_o,
output [15:0] csrm_dat_o,
input [15:0] csrm_dat_i
);
// Registers and nets
//
// csr address
reg [17:1] csr_adr_i;
reg csr_stb_i;
// Config wires
wire [15:0] conf_wb_dat_o;
wire conf_wb_ack_o;
// Mem wires
wire [15:0] mem_wb_dat_o;
wire mem_wb_ack_o;
// LCD wires
wire [17:1] csr_adr_o;
wire [15:0] csr_dat_i;
wire csr_stb_o;
wire v_retrace;
wire vh_retrace;
wire w_vert_sync;
// VGA configuration registers
wire shift_reg1;
wire graphics_alpha;
wire memory_mapping1;
wire [ 1:0] write_mode;
wire [ 1:0] raster_op;
wire read_mode;
wire [ 7:0] bitmask;
wire [ 3:0] set_reset;
wire [ 3:0] enable_set_reset;
wire [ 3:0] map_mask;
wire x_dotclockdiv2;
wire chain_four;
wire [ 1:0] read_map_select;
wire [ 3:0] color_compare;
wire [ 3:0] color_dont_care;
// Wishbone master to SRAM
wire [17:1] wbm_adr_o;
wire [ 1:0] wbm_sel_o;
wire wbm_we_o;
wire [15:0] wbm_dat_o;
wire [15:0] wbm_dat_i;
wire wbm_stb_o;
wire wbm_ack_i;
wire stb;
// CRT wires
wire [ 5:0] cur_start;
wire [ 5:0] cur_end;
wire [15:0] start_addr;
wire [ 4:0] vcursor;
wire [ 6:0] hcursor;
wire [ 6:0] horiz_total;
wire [ 6:0] end_horiz;
wire [ 6:0] st_hor_retr;
wire [ 4:0] end_hor_retr;
wire [ 9:0] vert_total;
wire [ 9:0] end_vert;
wire [ 9:0] st_ver_retr;
wire [ 3:0] end_ver_retr;
// attribute_ctrl wires
wire [3:0] pal_addr;
wire pal_we;
wire [7:0] pal_read;
wire [7:0] pal_write;
// dac_regs wires
wire dac_we;
wire [1:0] dac_read_data_cycle;
wire [7:0] dac_read_data_register;
wire [3:0] dac_read_data;
wire [1:0] dac_write_data_cycle;
wire [7:0] dac_write_data_register;
wire [3:0] dac_write_data;
// Module instances
//
vga_config_iface config_iface (
.wb_clk_i (wb_clk_i),
.wb_rst_i (wb_rst_i),
.wb_dat_i (wb_dat_i),
.wb_dat_o (conf_wb_dat_o),
.wb_adr_i (wb_adr_i[4:1]),
.wb_we_i (wb_we_i),
.wb_sel_i (wb_sel_i),
.wb_stb_i (stb & wb_tga_i),
.wb_ack_o (conf_wb_ack_o),
.shift_reg1 (shift_reg1),
.graphics_alpha (graphics_alpha),
.memory_mapping1 (memory_mapping1),
.write_mode (write_mode),
.raster_op (raster_op),
.read_mode (read_mode),
.bitmask (bitmask),
.set_reset (set_reset),
.enable_set_reset (enable_set_reset),
.map_mask (map_mask),
.x_dotclockdiv2 (x_dotclockdiv2),
.chain_four (chain_four),
.read_map_select (read_map_select),
.color_compare (color_compare),
.color_dont_care (color_dont_care),
.pal_addr (pal_addr),
.pal_we (pal_we),
.pal_read (pal_read),
.pal_write (pal_write),
.dac_we (dac_we),
.dac_read_data_cycle (dac_read_data_cycle),
.dac_read_data_register (dac_read_data_register),
.dac_read_data (dac_read_data),
.dac_write_data_cycle (dac_write_data_cycle),
.dac_write_data_register (dac_write_data_register),
.dac_write_data (dac_write_data),
.cur_start (cur_start),
.cur_end (cur_end),
.start_addr (start_addr),
.vcursor (vcursor),
.hcursor (hcursor),
.horiz_total (horiz_total),
.end_horiz (end_horiz),
.st_hor_retr (st_hor_retr),
.end_hor_retr (end_hor_retr),
.vert_total (vert_total),
.end_vert (end_vert),
.st_ver_retr (st_ver_retr),
.end_ver_retr (end_ver_retr),
.v_retrace (v_retrace),
.vh_retrace (vh_retrace)
);
vga_lcd lcd (
.clk (wb_clk_i),
.rst (wb_rst_i),
.shift_reg1 (shift_reg1),
.graphics_alpha (graphics_alpha),
.pal_addr (pal_addr),
.pal_we (pal_we),
.pal_read (pal_read),
.pal_write (pal_write),
.dac_we (dac_we),
.dac_read_data_cycle (dac_read_data_cycle),
.dac_read_data_register (dac_read_data_register),
.dac_read_data (dac_read_data),
.dac_write_data_cycle (dac_write_data_cycle),
.dac_write_data_register (dac_write_data_register),
.dac_write_data (dac_write_data),
.csr_adr_o (csr_adr_o),
.csr_dat_i (csr_dat_i),
.csr_stb_o (csr_stb_o),
.vga_red_o (vga_red_o),
.vga_green_o (vga_green_o),
.vga_blue_o (vga_blue_o),
.horiz_sync (horiz_sync),
.vert_sync (w_vert_sync),
.cur_start (cur_start),
.cur_end (cur_end),
.vcursor (vcursor),
.hcursor (hcursor),
.horiz_total (horiz_total),
.end_horiz (end_horiz),
.st_hor_retr (st_hor_retr),
.end_hor_retr (end_hor_retr),
.vert_total (vert_total),
.end_vert (end_vert),
.st_ver_retr (st_ver_retr),
.end_ver_retr (end_ver_retr),
.x_dotclockdiv2 (x_dotclockdiv2),
.v_retrace (v_retrace),
.vh_retrace (vh_retrace)
);
vga_cpu_mem_iface cpu_mem_iface (
.wb_clk_i (wb_clk_i),
.wb_rst_i (wb_rst_i),
.wbs_adr_i (wb_adr_i),
.wbs_sel_i (wb_sel_i),
.wbs_we_i (wb_we_i),
.wbs_dat_i (wb_dat_i),
.wbs_dat_o (mem_wb_dat_o),
.wbs_stb_i (stb & !wb_tga_i),
.wbs_ack_o (mem_wb_ack_o),
.wbm_adr_o (wbm_adr_o),
.wbm_sel_o (wbm_sel_o),
.wbm_we_o (wbm_we_o),
.wbm_dat_o (wbm_dat_o),
.wbm_dat_i (wbm_dat_i),
.wbm_stb_o (wbm_stb_o),
.wbm_ack_i (wbm_ack_i),
.chain_four (chain_four),
.memory_mapping1 (memory_mapping1),
.write_mode (write_mode),
.raster_op (raster_op),
.read_mode (read_mode),
.bitmask (bitmask),
.set_reset (set_reset),
.enable_set_reset (enable_set_reset),
.map_mask (map_mask),
.read_map_select (read_map_select),
.color_compare (color_compare),
.color_dont_care (color_dont_care)
);
vga_mem_arbitrer mem_arbitrer (
.clk_i (wb_clk_i),
.rst_i (wb_rst_i),
.wb_adr_i (wbm_adr_o),
.wb_sel_i (wbm_sel_o),
.wb_we_i (wbm_we_o),
.wb_dat_i (wbm_dat_o),
.wb_dat_o (wbm_dat_i),
.wb_stb_i (wbm_stb_o),
.wb_ack_o (wbm_ack_i),
.csr_adr_i (csr_adr_i),
.csr_dat_o (csr_dat_i),
.csr_stb_i (csr_stb_i),
.csrm_adr_o (csrm_adr_o),
.csrm_sel_o (csrm_sel_o),
.csrm_we_o (csrm_we_o),
.csrm_dat_o (csrm_dat_o),
.csrm_dat_i (csrm_dat_i)
);
// Continous assignments
assign wb_dat_o = wb_tga_i ? conf_wb_dat_o : mem_wb_dat_o;
assign wb_ack_o = wb_tga_i ? conf_wb_ack_o : mem_wb_ack_o;
assign stb = wb_stb_i & wb_cyc_i;
assign vert_sync = ~graphics_alpha ^ w_vert_sync;
// Behaviour
// csr_adr_i
always @(posedge wb_clk_i)
csr_adr_i <= wb_rst_i ? 17'h0 : csr_adr_o + start_addr[15:1];
// csr_stb_i
always @(posedge wb_clk_i)
csr_stb_i <= wb_rst_i ? 1'b0 : csr_stb_o;
endmodule
|
/*
* VGA top level file
* Copyright (C) 2010 Zeus Gomez Marmolejo <[email protected]>
*
* This file is part of the Zet processor. This processor is free
* hardware; you can redistribute it and/or modify it under the terms of
* the GNU General Public License as published by the Free Software
* Foundation; either version 3, or (at your option) any later version.
*
* Zet is distrubuted in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
* License for more details.
*
* You should have received a copy of the GNU General Public License
* along with Zet; see the file COPYING. If not, see
* <http://www.gnu.org/licenses/>.
*/
module vga (
// Wishbone signals
input wb_clk_i, // 25 Mhz VDU clock
input wb_rst_i,
input [15:0] wb_dat_i,
output [15:0] wb_dat_o,
input [16:1] wb_adr_i,
input wb_we_i,
input wb_tga_i,
input [ 1:0] wb_sel_i,
input wb_stb_i,
input wb_cyc_i,
output wb_ack_o,
// VGA pad signals
output [ 3:0] vga_red_o,
output [ 3:0] vga_green_o,
output [ 3:0] vga_blue_o,
output horiz_sync,
output vert_sync,
// CSR SRAM master interface
output [17:1] csrm_adr_o,
output [ 1:0] csrm_sel_o,
output csrm_we_o,
output [15:0] csrm_dat_o,
input [15:0] csrm_dat_i
);
// Registers and nets
//
// csr address
reg [17:1] csr_adr_i;
reg csr_stb_i;
// Config wires
wire [15:0] conf_wb_dat_o;
wire conf_wb_ack_o;
// Mem wires
wire [15:0] mem_wb_dat_o;
wire mem_wb_ack_o;
// LCD wires
wire [17:1] csr_adr_o;
wire [15:0] csr_dat_i;
wire csr_stb_o;
wire v_retrace;
wire vh_retrace;
wire w_vert_sync;
// VGA configuration registers
wire shift_reg1;
wire graphics_alpha;
wire memory_mapping1;
wire [ 1:0] write_mode;
wire [ 1:0] raster_op;
wire read_mode;
wire [ 7:0] bitmask;
wire [ 3:0] set_reset;
wire [ 3:0] enable_set_reset;
wire [ 3:0] map_mask;
wire x_dotclockdiv2;
wire chain_four;
wire [ 1:0] read_map_select;
wire [ 3:0] color_compare;
wire [ 3:0] color_dont_care;
// Wishbone master to SRAM
wire [17:1] wbm_adr_o;
wire [ 1:0] wbm_sel_o;
wire wbm_we_o;
wire [15:0] wbm_dat_o;
wire [15:0] wbm_dat_i;
wire wbm_stb_o;
wire wbm_ack_i;
wire stb;
// CRT wires
wire [ 5:0] cur_start;
wire [ 5:0] cur_end;
wire [15:0] start_addr;
wire [ 4:0] vcursor;
wire [ 6:0] hcursor;
wire [ 6:0] horiz_total;
wire [ 6:0] end_horiz;
wire [ 6:0] st_hor_retr;
wire [ 4:0] end_hor_retr;
wire [ 9:0] vert_total;
wire [ 9:0] end_vert;
wire [ 9:0] st_ver_retr;
wire [ 3:0] end_ver_retr;
// attribute_ctrl wires
wire [3:0] pal_addr;
wire pal_we;
wire [7:0] pal_read;
wire [7:0] pal_write;
// dac_regs wires
wire dac_we;
wire [1:0] dac_read_data_cycle;
wire [7:0] dac_read_data_register;
wire [3:0] dac_read_data;
wire [1:0] dac_write_data_cycle;
wire [7:0] dac_write_data_register;
wire [3:0] dac_write_data;
// Module instances
//
vga_config_iface config_iface (
.wb_clk_i (wb_clk_i),
.wb_rst_i (wb_rst_i),
.wb_dat_i (wb_dat_i),
.wb_dat_o (conf_wb_dat_o),
.wb_adr_i (wb_adr_i[4:1]),
.wb_we_i (wb_we_i),
.wb_sel_i (wb_sel_i),
.wb_stb_i (stb & wb_tga_i),
.wb_ack_o (conf_wb_ack_o),
.shift_reg1 (shift_reg1),
.graphics_alpha (graphics_alpha),
.memory_mapping1 (memory_mapping1),
.write_mode (write_mode),
.raster_op (raster_op),
.read_mode (read_mode),
.bitmask (bitmask),
.set_reset (set_reset),
.enable_set_reset (enable_set_reset),
.map_mask (map_mask),
.x_dotclockdiv2 (x_dotclockdiv2),
.chain_four (chain_four),
.read_map_select (read_map_select),
.color_compare (color_compare),
.color_dont_care (color_dont_care),
.pal_addr (pal_addr),
.pal_we (pal_we),
.pal_read (pal_read),
.pal_write (pal_write),
.dac_we (dac_we),
.dac_read_data_cycle (dac_read_data_cycle),
.dac_read_data_register (dac_read_data_register),
.dac_read_data (dac_read_data),
.dac_write_data_cycle (dac_write_data_cycle),
.dac_write_data_register (dac_write_data_register),
.dac_write_data (dac_write_data),
.cur_start (cur_start),
.cur_end (cur_end),
.start_addr (start_addr),
.vcursor (vcursor),
.hcursor (hcursor),
.horiz_total (horiz_total),
.end_horiz (end_horiz),
.st_hor_retr (st_hor_retr),
.end_hor_retr (end_hor_retr),
.vert_total (vert_total),
.end_vert (end_vert),
.st_ver_retr (st_ver_retr),
.end_ver_retr (end_ver_retr),
.v_retrace (v_retrace),
.vh_retrace (vh_retrace)
);
vga_lcd lcd (
.clk (wb_clk_i),
.rst (wb_rst_i),
.shift_reg1 (shift_reg1),
.graphics_alpha (graphics_alpha),
.pal_addr (pal_addr),
.pal_we (pal_we),
.pal_read (pal_read),
.pal_write (pal_write),
.dac_we (dac_we),
.dac_read_data_cycle (dac_read_data_cycle),
.dac_read_data_register (dac_read_data_register),
.dac_read_data (dac_read_data),
.dac_write_data_cycle (dac_write_data_cycle),
.dac_write_data_register (dac_write_data_register),
.dac_write_data (dac_write_data),
.csr_adr_o (csr_adr_o),
.csr_dat_i (csr_dat_i),
.csr_stb_o (csr_stb_o),
.vga_red_o (vga_red_o),
.vga_green_o (vga_green_o),
.vga_blue_o (vga_blue_o),
.horiz_sync (horiz_sync),
.vert_sync (w_vert_sync),
.cur_start (cur_start),
.cur_end (cur_end),
.vcursor (vcursor),
.hcursor (hcursor),
.horiz_total (horiz_total),
.end_horiz (end_horiz),
.st_hor_retr (st_hor_retr),
.end_hor_retr (end_hor_retr),
.vert_total (vert_total),
.end_vert (end_vert),
.st_ver_retr (st_ver_retr),
.end_ver_retr (end_ver_retr),
.x_dotclockdiv2 (x_dotclockdiv2),
.v_retrace (v_retrace),
.vh_retrace (vh_retrace)
);
vga_cpu_mem_iface cpu_mem_iface (
.wb_clk_i (wb_clk_i),
.wb_rst_i (wb_rst_i),
.wbs_adr_i (wb_adr_i),
.wbs_sel_i (wb_sel_i),
.wbs_we_i (wb_we_i),
.wbs_dat_i (wb_dat_i),
.wbs_dat_o (mem_wb_dat_o),
.wbs_stb_i (stb & !wb_tga_i),
.wbs_ack_o (mem_wb_ack_o),
.wbm_adr_o (wbm_adr_o),
.wbm_sel_o (wbm_sel_o),
.wbm_we_o (wbm_we_o),
.wbm_dat_o (wbm_dat_o),
.wbm_dat_i (wbm_dat_i),
.wbm_stb_o (wbm_stb_o),
.wbm_ack_i (wbm_ack_i),
.chain_four (chain_four),
.memory_mapping1 (memory_mapping1),
.write_mode (write_mode),
.raster_op (raster_op),
.read_mode (read_mode),
.bitmask (bitmask),
.set_reset (set_reset),
.enable_set_reset (enable_set_reset),
.map_mask (map_mask),
.read_map_select (read_map_select),
.color_compare (color_compare),
.color_dont_care (color_dont_care)
);
vga_mem_arbitrer mem_arbitrer (
.clk_i (wb_clk_i),
.rst_i (wb_rst_i),
.wb_adr_i (wbm_adr_o),
.wb_sel_i (wbm_sel_o),
.wb_we_i (wbm_we_o),
.wb_dat_i (wbm_dat_o),
.wb_dat_o (wbm_dat_i),
.wb_stb_i (wbm_stb_o),
.wb_ack_o (wbm_ack_i),
.csr_adr_i (csr_adr_i),
.csr_dat_o (csr_dat_i),
.csr_stb_i (csr_stb_i),
.csrm_adr_o (csrm_adr_o),
.csrm_sel_o (csrm_sel_o),
.csrm_we_o (csrm_we_o),
.csrm_dat_o (csrm_dat_o),
.csrm_dat_i (csrm_dat_i)
);
// Continous assignments
assign wb_dat_o = wb_tga_i ? conf_wb_dat_o : mem_wb_dat_o;
assign wb_ack_o = wb_tga_i ? conf_wb_ack_o : mem_wb_ack_o;
assign stb = wb_stb_i & wb_cyc_i;
assign vert_sync = ~graphics_alpha ^ w_vert_sync;
// Behaviour
// csr_adr_i
always @(posedge wb_clk_i)
csr_adr_i <= wb_rst_i ? 17'h0 : csr_adr_o + start_addr[15:1];
// csr_stb_i
always @(posedge wb_clk_i)
csr_stb_i <= wb_rst_i ? 1'b0 : csr_stb_o;
endmodule
|
/*
* VGA top level file
* Copyright (C) 2010 Zeus Gomez Marmolejo <[email protected]>
*
* This file is part of the Zet processor. This processor is free
* hardware; you can redistribute it and/or modify it under the terms of
* the GNU General Public License as published by the Free Software
* Foundation; either version 3, or (at your option) any later version.
*
* Zet is distrubuted in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
* License for more details.
*
* You should have received a copy of the GNU General Public License
* along with Zet; see the file COPYING. If not, see
* <http://www.gnu.org/licenses/>.
*/
module vga (
// Wishbone signals
input wb_clk_i, // 25 Mhz VDU clock
input wb_rst_i,
input [15:0] wb_dat_i,
output [15:0] wb_dat_o,
input [16:1] wb_adr_i,
input wb_we_i,
input wb_tga_i,
input [ 1:0] wb_sel_i,
input wb_stb_i,
input wb_cyc_i,
output wb_ack_o,
// VGA pad signals
output [ 3:0] vga_red_o,
output [ 3:0] vga_green_o,
output [ 3:0] vga_blue_o,
output horiz_sync,
output vert_sync,
// CSR SRAM master interface
output [17:1] csrm_adr_o,
output [ 1:0] csrm_sel_o,
output csrm_we_o,
output [15:0] csrm_dat_o,
input [15:0] csrm_dat_i
);
// Registers and nets
//
// csr address
reg [17:1] csr_adr_i;
reg csr_stb_i;
// Config wires
wire [15:0] conf_wb_dat_o;
wire conf_wb_ack_o;
// Mem wires
wire [15:0] mem_wb_dat_o;
wire mem_wb_ack_o;
// LCD wires
wire [17:1] csr_adr_o;
wire [15:0] csr_dat_i;
wire csr_stb_o;
wire v_retrace;
wire vh_retrace;
wire w_vert_sync;
// VGA configuration registers
wire shift_reg1;
wire graphics_alpha;
wire memory_mapping1;
wire [ 1:0] write_mode;
wire [ 1:0] raster_op;
wire read_mode;
wire [ 7:0] bitmask;
wire [ 3:0] set_reset;
wire [ 3:0] enable_set_reset;
wire [ 3:0] map_mask;
wire x_dotclockdiv2;
wire chain_four;
wire [ 1:0] read_map_select;
wire [ 3:0] color_compare;
wire [ 3:0] color_dont_care;
// Wishbone master to SRAM
wire [17:1] wbm_adr_o;
wire [ 1:0] wbm_sel_o;
wire wbm_we_o;
wire [15:0] wbm_dat_o;
wire [15:0] wbm_dat_i;
wire wbm_stb_o;
wire wbm_ack_i;
wire stb;
// CRT wires
wire [ 5:0] cur_start;
wire [ 5:0] cur_end;
wire [15:0] start_addr;
wire [ 4:0] vcursor;
wire [ 6:0] hcursor;
wire [ 6:0] horiz_total;
wire [ 6:0] end_horiz;
wire [ 6:0] st_hor_retr;
wire [ 4:0] end_hor_retr;
wire [ 9:0] vert_total;
wire [ 9:0] end_vert;
wire [ 9:0] st_ver_retr;
wire [ 3:0] end_ver_retr;
// attribute_ctrl wires
wire [3:0] pal_addr;
wire pal_we;
wire [7:0] pal_read;
wire [7:0] pal_write;
// dac_regs wires
wire dac_we;
wire [1:0] dac_read_data_cycle;
wire [7:0] dac_read_data_register;
wire [3:0] dac_read_data;
wire [1:0] dac_write_data_cycle;
wire [7:0] dac_write_data_register;
wire [3:0] dac_write_data;
// Module instances
//
vga_config_iface config_iface (
.wb_clk_i (wb_clk_i),
.wb_rst_i (wb_rst_i),
.wb_dat_i (wb_dat_i),
.wb_dat_o (conf_wb_dat_o),
.wb_adr_i (wb_adr_i[4:1]),
.wb_we_i (wb_we_i),
.wb_sel_i (wb_sel_i),
.wb_stb_i (stb & wb_tga_i),
.wb_ack_o (conf_wb_ack_o),
.shift_reg1 (shift_reg1),
.graphics_alpha (graphics_alpha),
.memory_mapping1 (memory_mapping1),
.write_mode (write_mode),
.raster_op (raster_op),
.read_mode (read_mode),
.bitmask (bitmask),
.set_reset (set_reset),
.enable_set_reset (enable_set_reset),
.map_mask (map_mask),
.x_dotclockdiv2 (x_dotclockdiv2),
.chain_four (chain_four),
.read_map_select (read_map_select),
.color_compare (color_compare),
.color_dont_care (color_dont_care),
.pal_addr (pal_addr),
.pal_we (pal_we),
.pal_read (pal_read),
.pal_write (pal_write),
.dac_we (dac_we),
.dac_read_data_cycle (dac_read_data_cycle),
.dac_read_data_register (dac_read_data_register),
.dac_read_data (dac_read_data),
.dac_write_data_cycle (dac_write_data_cycle),
.dac_write_data_register (dac_write_data_register),
.dac_write_data (dac_write_data),
.cur_start (cur_start),
.cur_end (cur_end),
.start_addr (start_addr),
.vcursor (vcursor),
.hcursor (hcursor),
.horiz_total (horiz_total),
.end_horiz (end_horiz),
.st_hor_retr (st_hor_retr),
.end_hor_retr (end_hor_retr),
.vert_total (vert_total),
.end_vert (end_vert),
.st_ver_retr (st_ver_retr),
.end_ver_retr (end_ver_retr),
.v_retrace (v_retrace),
.vh_retrace (vh_retrace)
);
vga_lcd lcd (
.clk (wb_clk_i),
.rst (wb_rst_i),
.shift_reg1 (shift_reg1),
.graphics_alpha (graphics_alpha),
.pal_addr (pal_addr),
.pal_we (pal_we),
.pal_read (pal_read),
.pal_write (pal_write),
.dac_we (dac_we),
.dac_read_data_cycle (dac_read_data_cycle),
.dac_read_data_register (dac_read_data_register),
.dac_read_data (dac_read_data),
.dac_write_data_cycle (dac_write_data_cycle),
.dac_write_data_register (dac_write_data_register),
.dac_write_data (dac_write_data),
.csr_adr_o (csr_adr_o),
.csr_dat_i (csr_dat_i),
.csr_stb_o (csr_stb_o),
.vga_red_o (vga_red_o),
.vga_green_o (vga_green_o),
.vga_blue_o (vga_blue_o),
.horiz_sync (horiz_sync),
.vert_sync (w_vert_sync),
.cur_start (cur_start),
.cur_end (cur_end),
.vcursor (vcursor),
.hcursor (hcursor),
.horiz_total (horiz_total),
.end_horiz (end_horiz),
.st_hor_retr (st_hor_retr),
.end_hor_retr (end_hor_retr),
.vert_total (vert_total),
.end_vert (end_vert),
.st_ver_retr (st_ver_retr),
.end_ver_retr (end_ver_retr),
.x_dotclockdiv2 (x_dotclockdiv2),
.v_retrace (v_retrace),
.vh_retrace (vh_retrace)
);
vga_cpu_mem_iface cpu_mem_iface (
.wb_clk_i (wb_clk_i),
.wb_rst_i (wb_rst_i),
.wbs_adr_i (wb_adr_i),
.wbs_sel_i (wb_sel_i),
.wbs_we_i (wb_we_i),
.wbs_dat_i (wb_dat_i),
.wbs_dat_o (mem_wb_dat_o),
.wbs_stb_i (stb & !wb_tga_i),
.wbs_ack_o (mem_wb_ack_o),
.wbm_adr_o (wbm_adr_o),
.wbm_sel_o (wbm_sel_o),
.wbm_we_o (wbm_we_o),
.wbm_dat_o (wbm_dat_o),
.wbm_dat_i (wbm_dat_i),
.wbm_stb_o (wbm_stb_o),
.wbm_ack_i (wbm_ack_i),
.chain_four (chain_four),
.memory_mapping1 (memory_mapping1),
.write_mode (write_mode),
.raster_op (raster_op),
.read_mode (read_mode),
.bitmask (bitmask),
.set_reset (set_reset),
.enable_set_reset (enable_set_reset),
.map_mask (map_mask),
.read_map_select (read_map_select),
.color_compare (color_compare),
.color_dont_care (color_dont_care)
);
vga_mem_arbitrer mem_arbitrer (
.clk_i (wb_clk_i),
.rst_i (wb_rst_i),
.wb_adr_i (wbm_adr_o),
.wb_sel_i (wbm_sel_o),
.wb_we_i (wbm_we_o),
.wb_dat_i (wbm_dat_o),
.wb_dat_o (wbm_dat_i),
.wb_stb_i (wbm_stb_o),
.wb_ack_o (wbm_ack_i),
.csr_adr_i (csr_adr_i),
.csr_dat_o (csr_dat_i),
.csr_stb_i (csr_stb_i),
.csrm_adr_o (csrm_adr_o),
.csrm_sel_o (csrm_sel_o),
.csrm_we_o (csrm_we_o),
.csrm_dat_o (csrm_dat_o),
.csrm_dat_i (csrm_dat_i)
);
// Continous assignments
assign wb_dat_o = wb_tga_i ? conf_wb_dat_o : mem_wb_dat_o;
assign wb_ack_o = wb_tga_i ? conf_wb_ack_o : mem_wb_ack_o;
assign stb = wb_stb_i & wb_cyc_i;
assign vert_sync = ~graphics_alpha ^ w_vert_sync;
// Behaviour
// csr_adr_i
always @(posedge wb_clk_i)
csr_adr_i <= wb_rst_i ? 17'h0 : csr_adr_o + start_addr[15:1];
// csr_stb_i
always @(posedge wb_clk_i)
csr_stb_i <= wb_rst_i ? 1'b0 : csr_stb_o;
endmodule
|
// This is a component of pluto_servo, a PWM servo driver and quadrature
// counter for emc2
// Copyright 2006 Jeff Epler <[email protected]>
//
// This program is free software; you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation; either version 2 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
module main(clk, led, nConfig, epp_nReset, pport_data, nWrite, nWait, nDataStr,
nAddrStr, dout, din, step, dir);
parameter W=10;
parameter F=11;
parameter T=4;
input clk;
output led, nConfig;
inout [7:0] pport_data;
input nWrite;
output nWait;
input nDataStr, nAddrStr, epp_nReset;
input [15:0] din;
reg Spolarity;
reg[13:0] real_dout; output [13:0] dout = do_tristate ? 14'bZ : real_dout;
wire[3:0] real_step; output [3:0] step = do_tristate ? 4'bZ : real_step ^ {4{Spolarity}};
wire[3:0] real_dir; output [3:0] dir = do_tristate ? 4'bZ : real_dir;
wire [W+F-1:0] pos0, pos1, pos2, pos3;
reg [F:0] vel0, vel1, vel2, vel3;
reg [T-1:0] dirtime, steptime;
reg [1:0] tap;
reg [10:0] div2048;
wire stepcnt = ~|(div2048[5:0]);
always @(posedge clk) begin
div2048 <= div2048 + 1'd1;
end
wire do_enable_wdt, do_tristate;
wdt w(clk, do_enable_wdt, &div2048, do_tristate);
stepgen #(W,F,T) s0(clk, stepcnt, pos0, vel0, dirtime, steptime, real_step[0], real_dir[0], tap);
stepgen #(W,F,T) s1(clk, stepcnt, pos1, vel1, dirtime, steptime, real_step[1], real_dir[1], tap);
stepgen #(W,F,T) s2(clk, stepcnt, pos2, vel2, dirtime, steptime, real_step[2], real_dir[2], tap);
stepgen #(W,F,T) s3(clk, stepcnt, pos3, vel3, dirtime, steptime, real_step[3], real_dir[3], tap);
// EPP stuff
wire EPP_write = ~nWrite;
wire EPP_read = nWrite;
wire EPP_addr_strobe = ~nAddrStr;
wire EPP_data_strobe = ~nDataStr;
wire EPP_strobe = EPP_data_strobe | EPP_addr_strobe;
wire EPP_wait; assign nWait = ~EPP_wait;
wire [7:0] EPP_datain = pport_data;
wire [7:0] EPP_dataout; assign pport_data = EPP_dataout;
reg [4:0] EPP_strobe_reg;
always @(posedge clk) EPP_strobe_reg <= {EPP_strobe_reg[3:0], EPP_strobe};
wire EPP_strobe_edge1 = (EPP_strobe_reg[2:1]==2'b01);
// reg led;
assign EPP_wait = EPP_strobe_reg[4];
wire[15:0] EPP_dataword = {EPP_datain, lowbyte};
reg[4:0] addr_reg;
reg[7:0] lowbyte;
always @(posedge clk)
if(EPP_strobe_edge1 & EPP_write & EPP_addr_strobe) begin
addr_reg <= EPP_datain[4:0];
end
else if(EPP_strobe_edge1 & !EPP_addr_strobe) addr_reg <= addr_reg + 4'd1;
always @(posedge clk) begin
if(EPP_strobe_edge1 & EPP_write & EPP_data_strobe) begin
if(addr_reg[3:0] == 4'd1) vel0 <= EPP_dataword[F:0];
else if(addr_reg[3:0] == 4'd3) vel1 <= EPP_dataword[F:0];
else if(addr_reg[3:0] == 4'd5) vel2 <= EPP_dataword[F:0];
else if(addr_reg[3:0] == 4'd7) vel3 <= EPP_dataword[F:0];
else if(addr_reg[3:0] == 4'd9) begin
real_dout <= { EPP_datain[5:0], lowbyte };
end
else if(addr_reg[3:0] == 4'd11) begin
tap <= lowbyte[7:6];
steptime <= lowbyte[T-1:0];
Spolarity <= EPP_datain[7];
// EPP_datain[6] is do_enable_wdt
dirtime <= EPP_datain[T-1:0];
end
else lowbyte <= EPP_datain;
end
end
reg [31:0] data_buf;
always @(posedge clk) begin
if(EPP_strobe_edge1 & EPP_read && addr_reg[1:0] == 2'd0) begin
if(addr_reg[4:2] == 3'd0) data_buf <= pos0;
else if(addr_reg[4:2] == 3'd1) data_buf <= pos1;
else if(addr_reg[4:2] == 3'd2) data_buf <= pos2;
else if(addr_reg[4:2] == 3'd3) data_buf <= pos3;
else if(addr_reg[4:2] == 3'd4)
data_buf <= din;
end
end
// the addr_reg test looks funny because it is auto-incremented in an always
// block so "1" reads the low byte, "2 and "3" read middle bytes, and "0"
// reads the high byte I have a feeling that I'm doing this in the wrong way.
wire [7:0] data_reg = addr_reg[1:0] == 2'd1 ? data_buf[7:0] :
(addr_reg[1:0] == 2'd2 ? data_buf[15:8] :
(addr_reg[1:0] == 2'd3 ? data_buf[23:16] :
data_buf[31:24]));
wire [7:0] EPP_data_mux = data_reg;
assign EPP_dataout = (EPP_read & EPP_wait) ? EPP_data_mux : 8'hZZ;
// assign do_enable_wdt = EPP_strobe_edge1 & EPP_write & EPP_data_strobe & (addr_reg[3:0] == 4'd9) & EPP_datain[6];
// assign led = do_tristate ? 1'BZ : (real_step[0] ^ real_dir[0]);
assign led = do_tristate ? 1'bZ : (real_step[0] ^ real_dir[0]);
assign nConfig = epp_nReset; // 1'b1;
assign do_enable_wdt = EPP_strobe_edge1 & EPP_write & EPP_data_strobe & (addr_reg[3:0] == 4'd9) & EPP_datain[6];
endmodule
|
// -*- verilog -*-
//
// USRP - Universal Software Radio Peripheral
//
// Copyright (C) 2003 Matt Ettus
//
// This program is free software; you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation; either version 2 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program; if not, write to the Free Software
// Foundation, Inc., 51 Franklin Street, Boston, MA 02110-1301 USA
//
// DDC block
module ddc(input clock,
input reset,
input enable,
input [3:0] rate1,
input [3:0] rate2,
output strobe,
input [31:0] freq,
input [15:0] i_in,
input [15:0] q_in,
output [15:0] i_out,
output [15:0] q_out
);
parameter bw = 16;
parameter zw = 16;
wire [15:0] i_cordic_out, q_cordic_out;
wire [31:0] phase;
wire strobe1, strobe2;
reg [3:0] strobe_ctr1,strobe_ctr2;
always @(posedge clock)
if(reset | ~enable)
strobe_ctr2 <= #1 4'd0;
else if(strobe2)
strobe_ctr2 <= #1 4'd0;
else
strobe_ctr2 <= #1 strobe_ctr2 + 4'd1;
always @(posedge clock)
if(reset | ~enable)
strobe_ctr1 <= #1 4'd0;
else if(strobe1)
strobe_ctr1 <= #1 4'd0;
else if(strobe2)
strobe_ctr1 <= #1 strobe_ctr1 + 4'd1;
assign strobe2 = enable & ( strobe_ctr2 == rate2 );
assign strobe1 = strobe2 & ( strobe_ctr1 == rate1 );
assign strobe = strobe1;
function [2:0] log_ceil;
input [3:0] val;
log_ceil = val[3] ? 3'd4 : val[2] ? 3'd3 : val[1] ? 3'd2 : 3'd1;
endfunction
wire [2:0] shift1 = log_ceil(rate1);
wire [2:0] shift2 = log_ceil(rate2);
cordic #(.bitwidth(bw),.zwidth(zw),.stages(16))
cordic(.clock(clock), .reset(reset), .enable(enable),
.xi(i_in), .yi(q_in), .zi(phase[31:32-zw]),
.xo(i_cordic_out), .yo(q_cordic_out), .zo() );
cic_decim_2stage #(.bw(bw),.N(4))
decim_i(.clock(clock),.reset(reset),.enable(enable),
.strobe1(1'b1),.strobe2(strobe2),.strobe3(strobe1),.shift1(shift2),.shift2(shift1),
.signal_in(i_cordic_out),.signal_out(i_out));
cic_decim_2stage #(.bw(bw),.N(4))
decim_q(.clock(clock),.reset(reset),.enable(enable),
.strobe1(1'b1),.strobe2(strobe2),.strobe3(strobe1),.shift1(shift2),.shift2(shift1),
.signal_in(q_cordic_out),.signal_out(q_out));
phase_acc #(.resolution(32))
nco (.clk(clock),.reset(reset),.enable(enable),
.freq(freq),.phase(phase));
endmodule
|
// -*- verilog -*-
//
// USRP - Universal Software Radio Peripheral
//
// Copyright (C) 2003 Matt Ettus
//
// This program is free software; you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation; either version 2 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program; if not, write to the Free Software
// Foundation, Inc., 51 Franklin Street, Boston, MA 02110-1301 USA
//
// DDC block
module ddc(input clock,
input reset,
input enable,
input [3:0] rate1,
input [3:0] rate2,
output strobe,
input [31:0] freq,
input [15:0] i_in,
input [15:0] q_in,
output [15:0] i_out,
output [15:0] q_out
);
parameter bw = 16;
parameter zw = 16;
wire [15:0] i_cordic_out, q_cordic_out;
wire [31:0] phase;
wire strobe1, strobe2;
reg [3:0] strobe_ctr1,strobe_ctr2;
always @(posedge clock)
if(reset | ~enable)
strobe_ctr2 <= #1 4'd0;
else if(strobe2)
strobe_ctr2 <= #1 4'd0;
else
strobe_ctr2 <= #1 strobe_ctr2 + 4'd1;
always @(posedge clock)
if(reset | ~enable)
strobe_ctr1 <= #1 4'd0;
else if(strobe1)
strobe_ctr1 <= #1 4'd0;
else if(strobe2)
strobe_ctr1 <= #1 strobe_ctr1 + 4'd1;
assign strobe2 = enable & ( strobe_ctr2 == rate2 );
assign strobe1 = strobe2 & ( strobe_ctr1 == rate1 );
assign strobe = strobe1;
function [2:0] log_ceil;
input [3:0] val;
log_ceil = val[3] ? 3'd4 : val[2] ? 3'd3 : val[1] ? 3'd2 : 3'd1;
endfunction
wire [2:0] shift1 = log_ceil(rate1);
wire [2:0] shift2 = log_ceil(rate2);
cordic #(.bitwidth(bw),.zwidth(zw),.stages(16))
cordic(.clock(clock), .reset(reset), .enable(enable),
.xi(i_in), .yi(q_in), .zi(phase[31:32-zw]),
.xo(i_cordic_out), .yo(q_cordic_out), .zo() );
cic_decim_2stage #(.bw(bw),.N(4))
decim_i(.clock(clock),.reset(reset),.enable(enable),
.strobe1(1'b1),.strobe2(strobe2),.strobe3(strobe1),.shift1(shift2),.shift2(shift1),
.signal_in(i_cordic_out),.signal_out(i_out));
cic_decim_2stage #(.bw(bw),.N(4))
decim_q(.clock(clock),.reset(reset),.enable(enable),
.strobe1(1'b1),.strobe2(strobe2),.strobe3(strobe1),.shift1(shift2),.shift2(shift1),
.signal_in(q_cordic_out),.signal_out(q_out));
phase_acc #(.resolution(32))
nco (.clk(clock),.reset(reset),.enable(enable),
.freq(freq),.phase(phase));
endmodule
|
// -*- verilog -*-
//
// USRP - Universal Software Radio Peripheral
//
// Copyright (C) 2003 Matt Ettus
//
// This program is free software; you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation; either version 2 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program; if not, write to the Free Software
// Foundation, Inc., 51 Franklin Street, Boston, MA 02110-1301 USA
//
// DDC block
module ddc(input clock,
input reset,
input enable,
input [3:0] rate1,
input [3:0] rate2,
output strobe,
input [31:0] freq,
input [15:0] i_in,
input [15:0] q_in,
output [15:0] i_out,
output [15:0] q_out
);
parameter bw = 16;
parameter zw = 16;
wire [15:0] i_cordic_out, q_cordic_out;
wire [31:0] phase;
wire strobe1, strobe2;
reg [3:0] strobe_ctr1,strobe_ctr2;
always @(posedge clock)
if(reset | ~enable)
strobe_ctr2 <= #1 4'd0;
else if(strobe2)
strobe_ctr2 <= #1 4'd0;
else
strobe_ctr2 <= #1 strobe_ctr2 + 4'd1;
always @(posedge clock)
if(reset | ~enable)
strobe_ctr1 <= #1 4'd0;
else if(strobe1)
strobe_ctr1 <= #1 4'd0;
else if(strobe2)
strobe_ctr1 <= #1 strobe_ctr1 + 4'd1;
assign strobe2 = enable & ( strobe_ctr2 == rate2 );
assign strobe1 = strobe2 & ( strobe_ctr1 == rate1 );
assign strobe = strobe1;
function [2:0] log_ceil;
input [3:0] val;
log_ceil = val[3] ? 3'd4 : val[2] ? 3'd3 : val[1] ? 3'd2 : 3'd1;
endfunction
wire [2:0] shift1 = log_ceil(rate1);
wire [2:0] shift2 = log_ceil(rate2);
cordic #(.bitwidth(bw),.zwidth(zw),.stages(16))
cordic(.clock(clock), .reset(reset), .enable(enable),
.xi(i_in), .yi(q_in), .zi(phase[31:32-zw]),
.xo(i_cordic_out), .yo(q_cordic_out), .zo() );
cic_decim_2stage #(.bw(bw),.N(4))
decim_i(.clock(clock),.reset(reset),.enable(enable),
.strobe1(1'b1),.strobe2(strobe2),.strobe3(strobe1),.shift1(shift2),.shift2(shift1),
.signal_in(i_cordic_out),.signal_out(i_out));
cic_decim_2stage #(.bw(bw),.N(4))
decim_q(.clock(clock),.reset(reset),.enable(enable),
.strobe1(1'b1),.strobe2(strobe2),.strobe3(strobe1),.shift1(shift2),.shift2(shift1),
.signal_in(q_cordic_out),.signal_out(q_out));
phase_acc #(.resolution(32))
nco (.clk(clock),.reset(reset),.enable(enable),
.freq(freq),.phase(phase));
endmodule
|
`timescale 1ns / 1ps
// Copyright (C) 2008 Schuyler Eldridge, Boston University
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
module mux(opA,opB,sum,dsp_sel,out);
input [3:0] opA,opB;
input [4:0] sum;
input [1:0] dsp_sel;
output [3:0] out;
reg cout;
always @ (sum)
begin
if (sum[4] == 1)
cout <= 4'b0001;
else
cout <= 4'b0000;
end
reg out;
always @(dsp_sel,sum,cout,opB,opA)
begin
if (dsp_sel == 2'b00)
out <= sum[3:0];
else if (dsp_sel == 2'b01)
out <= cout;
else if (dsp_sel == 2'b10)
out <= opB;
else if (dsp_sel == 2'b11)
out <= opA;
end
endmodule
|
`timescale 1ns / 1ps
// Copyright (C) 2008 Schuyler Eldridge, Boston University
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
module mux(opA,opB,sum,dsp_sel,out);
input [3:0] opA,opB;
input [4:0] sum;
input [1:0] dsp_sel;
output [3:0] out;
reg cout;
always @ (sum)
begin
if (sum[4] == 1)
cout <= 4'b0001;
else
cout <= 4'b0000;
end
reg out;
always @(dsp_sel,sum,cout,opB,opA)
begin
if (dsp_sel == 2'b00)
out <= sum[3:0];
else if (dsp_sel == 2'b01)
out <= cout;
else if (dsp_sel == 2'b10)
out <= opB;
else if (dsp_sel == 2'b11)
out <= opA;
end
endmodule
|
`timescale 1ns / 1ps
// Copyright (C) 2008 Schuyler Eldridge, Boston University
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
module mux(opA,opB,sum,dsp_sel,out);
input [3:0] opA,opB;
input [4:0] sum;
input [1:0] dsp_sel;
output [3:0] out;
reg cout;
always @ (sum)
begin
if (sum[4] == 1)
cout <= 4'b0001;
else
cout <= 4'b0000;
end
reg out;
always @(dsp_sel,sum,cout,opB,opA)
begin
if (dsp_sel == 2'b00)
out <= sum[3:0];
else if (dsp_sel == 2'b01)
out <= cout;
else if (dsp_sel == 2'b10)
out <= opB;
else if (dsp_sel == 2'b11)
out <= opA;
end
endmodule
|
`timescale 1ns / 1ps
// Copyright (C) 2008 Schuyler Eldridge, Boston University
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
module mux(opA,opB,sum,dsp_sel,out);
input [3:0] opA,opB;
input [4:0] sum;
input [1:0] dsp_sel;
output [3:0] out;
reg cout;
always @ (sum)
begin
if (sum[4] == 1)
cout <= 4'b0001;
else
cout <= 4'b0000;
end
reg out;
always @(dsp_sel,sum,cout,opB,opA)
begin
if (dsp_sel == 2'b00)
out <= sum[3:0];
else if (dsp_sel == 2'b01)
out <= cout;
else if (dsp_sel == 2'b10)
out <= opB;
else if (dsp_sel == 2'b11)
out <= opA;
end
endmodule
|
`timescale 1ns / 1ps
// Copyright (C) 2008 Schuyler Eldridge, Boston University
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
module mux(opA,opB,sum,dsp_sel,out);
input [3:0] opA,opB;
input [4:0] sum;
input [1:0] dsp_sel;
output [3:0] out;
reg cout;
always @ (sum)
begin
if (sum[4] == 1)
cout <= 4'b0001;
else
cout <= 4'b0000;
end
reg out;
always @(dsp_sel,sum,cout,opB,opA)
begin
if (dsp_sel == 2'b00)
out <= sum[3:0];
else if (dsp_sel == 2'b01)
out <= cout;
else if (dsp_sel == 2'b10)
out <= opB;
else if (dsp_sel == 2'b11)
out <= opA;
end
endmodule
|
`timescale 1ns / 1ps
// Copyright (C) 2008 Schuyler Eldridge, Boston University
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
module mux(opA,opB,sum,dsp_sel,out);
input [3:0] opA,opB;
input [4:0] sum;
input [1:0] dsp_sel;
output [3:0] out;
reg cout;
always @ (sum)
begin
if (sum[4] == 1)
cout <= 4'b0001;
else
cout <= 4'b0000;
end
reg out;
always @(dsp_sel,sum,cout,opB,opA)
begin
if (dsp_sel == 2'b00)
out <= sum[3:0];
else if (dsp_sel == 2'b01)
out <= cout;
else if (dsp_sel == 2'b10)
out <= opB;
else if (dsp_sel == 2'b11)
out <= opA;
end
endmodule
|
`timescale 1ns / 1ps
// Copyright (C) 2008 Schuyler Eldridge, Boston University
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
module mux(opA,opB,sum,dsp_sel,out);
input [3:0] opA,opB;
input [4:0] sum;
input [1:0] dsp_sel;
output [3:0] out;
reg cout;
always @ (sum)
begin
if (sum[4] == 1)
cout <= 4'b0001;
else
cout <= 4'b0000;
end
reg out;
always @(dsp_sel,sum,cout,opB,opA)
begin
if (dsp_sel == 2'b00)
out <= sum[3:0];
else if (dsp_sel == 2'b01)
out <= cout;
else if (dsp_sel == 2'b10)
out <= opB;
else if (dsp_sel == 2'b11)
out <= opA;
end
endmodule
|
`timescale 1ns / 1ps
// Copyright (C) 2008 Schuyler Eldridge, Boston University
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
module mux(opA,opB,sum,dsp_sel,out);
input [3:0] opA,opB;
input [4:0] sum;
input [1:0] dsp_sel;
output [3:0] out;
reg cout;
always @ (sum)
begin
if (sum[4] == 1)
cout <= 4'b0001;
else
cout <= 4'b0000;
end
reg out;
always @(dsp_sel,sum,cout,opB,opA)
begin
if (dsp_sel == 2'b00)
out <= sum[3:0];
else if (dsp_sel == 2'b01)
out <= cout;
else if (dsp_sel == 2'b10)
out <= opB;
else if (dsp_sel == 2'b11)
out <= opA;
end
endmodule
|
`timescale 1ns / 1ps
// Copyright (C) 2008 Schuyler Eldridge, Boston University
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
module mux(opA,opB,sum,dsp_sel,out);
input [3:0] opA,opB;
input [4:0] sum;
input [1:0] dsp_sel;
output [3:0] out;
reg cout;
always @ (sum)
begin
if (sum[4] == 1)
cout <= 4'b0001;
else
cout <= 4'b0000;
end
reg out;
always @(dsp_sel,sum,cout,opB,opA)
begin
if (dsp_sel == 2'b00)
out <= sum[3:0];
else if (dsp_sel == 2'b01)
out <= cout;
else if (dsp_sel == 2'b10)
out <= opB;
else if (dsp_sel == 2'b11)
out <= opA;
end
endmodule
|
`timescale 1ns / 1ps
//////////////////////////////////////////////////////////////////////////////////
// Company:
// Engineer:
//
// Create Date: 03/11/2016 02:09:05 PM
// Design Name:
// Module Name: Rotate_Mux_Array
// Project Name:
// Target Devices:
// Tool Versions:
// Description:
//
// Dependencies:
//
// Revision:
// Revision 0.01 - File Created
// Additional Comments:
//
//////////////////////////////////////////////////////////////////////////////////
module Rotate_Mux_Array
#(parameter SWR=26)
(
input wire [SWR-1:0] Data_i,
input wire select_i,
output wire [SWR-1:0] Data_o
);
genvar j;//Create a variable for the loop FOR
generate for (j=0; j <= SWR-1; j=j+1) begin // generate enough Multiplexers modules for each bit
case (j)
SWR-1-j:begin
assign Data_o[j]=Data_i[SWR-1-j];
end
default:begin
Multiplexer_AC #(.W(1)) rotate_mux(
.ctrl(select_i),
.D0 (Data_i[j]),
.D1 (Data_i[SWR-1-j]),
.S (Data_o[j])
);
end
endcase
end
endgenerate
endmodule
|
`timescale 1ns / 1ps
//////////////////////////////////////////////////////////////////////////////////
// Company:
// Engineer:
//
// Create Date: 03/11/2016 02:09:05 PM
// Design Name:
// Module Name: Rotate_Mux_Array
// Project Name:
// Target Devices:
// Tool Versions:
// Description:
//
// Dependencies:
//
// Revision:
// Revision 0.01 - File Created
// Additional Comments:
//
//////////////////////////////////////////////////////////////////////////////////
module Rotate_Mux_Array
#(parameter SWR=26)
(
input wire [SWR-1:0] Data_i,
input wire select_i,
output wire [SWR-1:0] Data_o
);
genvar j;//Create a variable for the loop FOR
generate for (j=0; j <= SWR-1; j=j+1) begin // generate enough Multiplexers modules for each bit
case (j)
SWR-1-j:begin
assign Data_o[j]=Data_i[SWR-1-j];
end
default:begin
Multiplexer_AC #(.W(1)) rotate_mux(
.ctrl(select_i),
.D0 (Data_i[j]),
.D1 (Data_i[SWR-1-j]),
.S (Data_o[j])
);
end
endcase
end
endgenerate
endmodule
|
`timescale 1ns / 1ps
//////////////////////////////////////////////////////////////////////////////////
// Company:
// Engineer:
//
// Create Date: 03/11/2016 02:09:05 PM
// Design Name:
// Module Name: Rotate_Mux_Array
// Project Name:
// Target Devices:
// Tool Versions:
// Description:
//
// Dependencies:
//
// Revision:
// Revision 0.01 - File Created
// Additional Comments:
//
//////////////////////////////////////////////////////////////////////////////////
module Rotate_Mux_Array
#(parameter SWR=26)
(
input wire [SWR-1:0] Data_i,
input wire select_i,
output wire [SWR-1:0] Data_o
);
genvar j;//Create a variable for the loop FOR
generate for (j=0; j <= SWR-1; j=j+1) begin // generate enough Multiplexers modules for each bit
case (j)
SWR-1-j:begin
assign Data_o[j]=Data_i[SWR-1-j];
end
default:begin
Multiplexer_AC #(.W(1)) rotate_mux(
.ctrl(select_i),
.D0 (Data_i[j]),
.D1 (Data_i[SWR-1-j]),
.S (Data_o[j])
);
end
endcase
end
endgenerate
endmodule
|
// This is a component of pluto_servo, a PWM servo driver and quadrature
// counter for emc2
// Copyright 2006 Jeff Epler <[email protected]>
//
// This program is free software; you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation; either version 2 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1507 USA
module quad(clk, A, B, Z, zr, out);
parameter W=14;
input clk, A, B, Z, zr;
reg [(W-1):0] c, i; reg zl;
output [2*W:0] out = { zl, i, c };
// reg [(W-1):0] c, i; reg zl;
reg [2:0] Ad, Bd;
reg [2:0] Zc;
always @(posedge clk) Ad <= {Ad[1:0], A};
always @(posedge clk) Bd <= {Bd[1:0], B};
wire good_one = &Zc;
wire good_zero = ~|Zc;
reg last_good;
wire index_pulse = good_one && ! last_good;
wire count_enable = Ad[1] ^ Ad[2] ^ Bd[1] ^ Bd[2];
wire count_direction = Ad[1] ^ Bd[2];
always @(posedge clk)
begin
if(Z && !good_one) Zc <= Zc + 2'b1;
else if(!good_zero) Zc <= Zc - 2'b1;
if(good_one) last_good <= 1;
else if(good_zero) last_good <= 0;
if(count_enable)
begin
if(count_direction) c <= c + 1'd1;
else c <= c - 1'd1;
end
if(index_pulse) begin
i <= c;
zl <= 1;
end else if(zr) begin
zl <= 0;
end
end
endmodule
|
// This is a component of pluto_servo, a PWM servo driver and quadrature
// counter for emc2
// Copyright 2006 Jeff Epler <[email protected]>
//
// This program is free software; you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation; either version 2 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1507 USA
module quad(clk, A, B, Z, zr, out);
parameter W=14;
input clk, A, B, Z, zr;
reg [(W-1):0] c, i; reg zl;
output [2*W:0] out = { zl, i, c };
// reg [(W-1):0] c, i; reg zl;
reg [2:0] Ad, Bd;
reg [2:0] Zc;
always @(posedge clk) Ad <= {Ad[1:0], A};
always @(posedge clk) Bd <= {Bd[1:0], B};
wire good_one = &Zc;
wire good_zero = ~|Zc;
reg last_good;
wire index_pulse = good_one && ! last_good;
wire count_enable = Ad[1] ^ Ad[2] ^ Bd[1] ^ Bd[2];
wire count_direction = Ad[1] ^ Bd[2];
always @(posedge clk)
begin
if(Z && !good_one) Zc <= Zc + 2'b1;
else if(!good_zero) Zc <= Zc - 2'b1;
if(good_one) last_good <= 1;
else if(good_zero) last_good <= 0;
if(count_enable)
begin
if(count_direction) c <= c + 1'd1;
else c <= c - 1'd1;
end
if(index_pulse) begin
i <= c;
zl <= 1;
end else if(zr) begin
zl <= 0;
end
end
endmodule
|
// This is a component of pluto_servo, a PWM servo driver and quadrature
// counter for emc2
// Copyright 2006 Jeff Epler <[email protected]>
//
// This program is free software; you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation; either version 2 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1507 USA
module quad(clk, A, B, Z, zr, out);
parameter W=14;
input clk, A, B, Z, zr;
reg [(W-1):0] c, i; reg zl;
output [2*W:0] out = { zl, i, c };
// reg [(W-1):0] c, i; reg zl;
reg [2:0] Ad, Bd;
reg [2:0] Zc;
always @(posedge clk) Ad <= {Ad[1:0], A};
always @(posedge clk) Bd <= {Bd[1:0], B};
wire good_one = &Zc;
wire good_zero = ~|Zc;
reg last_good;
wire index_pulse = good_one && ! last_good;
wire count_enable = Ad[1] ^ Ad[2] ^ Bd[1] ^ Bd[2];
wire count_direction = Ad[1] ^ Bd[2];
always @(posedge clk)
begin
if(Z && !good_one) Zc <= Zc + 2'b1;
else if(!good_zero) Zc <= Zc - 2'b1;
if(good_one) last_good <= 1;
else if(good_zero) last_good <= 0;
if(count_enable)
begin
if(count_direction) c <= c + 1'd1;
else c <= c - 1'd1;
end
if(index_pulse) begin
i <= c;
zl <= 1;
end else if(zr) begin
zl <= 0;
end
end
endmodule
|
/******************************************************************************
-- (c) Copyright 2006 - 2013 Xilinx, Inc. All rights reserved.
--
-- This file contains confidential and proprietary information
-- of Xilinx, Inc. and is protected under U.S. and
-- international copyright and other intellectual property
-- laws.
--
-- DISCLAIMER
-- This disclaimer is not a license and does not grant any
-- rights to the materials distributed herewith. Except as
-- otherwise provided in a valid license issued to you by
-- Xilinx, and to the maximum extent permitted by applicable
-- law: (1) THESE MATERIALS ARE MADE AVAILABLE "AS IS" AND
-- WITH ALL FAULTS, AND XILINX HEREBY DISCLAIMS ALL WARRANTIES
-- AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING
-- BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, NON-
-- INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and
-- (2) Xilinx shall not be liable (whether in contract or tort,
-- including negligence, or under any other theory of
-- liability) for any loss or damage of any kind or nature
-- related to, arising under or in connection with these
-- materials, including for any direct, or any indirect,
-- special, incidental, or consequential loss or damage
-- (including loss of data, profits, goodwill, or any type of
-- loss or damage suffered as a result of any action brought
-- by a third party) even if such damage or loss was
-- reasonably foreseeable or Xilinx had been advised of the
-- possibility of the same.
--
-- CRITICAL APPLICATIONS
-- Xilinx products are not designed or intended to be fail-
-- safe, or for use in any application requiring fail-safe
-- performance, such as life-support or safety devices or
-- systems, Class III medical devices, nuclear facilities,
-- applications related to the deployment of airbags, or any
-- other applications that could lead to death, personal
-- injury, or severe property or environmental damage
-- (individually and collectively, "Critical
-- Applications"). Customer assumes the sole risk and
-- liability of any use of Xilinx products in Critical
-- Applications, subject only to applicable laws and
-- regulations governing limitations on product liability.
--
-- THIS COPYRIGHT NOTICE AND DISCLAIMER MUST BE RETAINED AS
-- PART OF THIS FILE AT ALL TIMES.
--
*****************************************************************************
*
* Filename: BLK_MEM_GEN_v8_2.v
*
* Description:
* This file is the Verilog behvarial model for the
* Block Memory Generator Core.
*
*****************************************************************************
* Author: Xilinx
*
* History: Jan 11, 2006 Initial revision
* Jun 11, 2007 Added independent register stages for
* Port A and Port B (IP1_Jm/v2.5)
* Aug 28, 2007 Added mux pipeline stages feature (IP2_Jm/v2.6)
* Mar 13, 2008 Behavioral model optimizations
* April 07, 2009 : Added support for Spartan-6 and Virtex-6
* features, including the following:
* (i) error injection, detection and/or correction
* (ii) reset priority
* (iii) special reset behavior
*
*****************************************************************************/
`timescale 1ps/1ps
module STATE_LOGIC_v8_2 (O, I0, I1, I2, I3, I4, I5);
parameter INIT = 64'h0000000000000000;
input I0, I1, I2, I3, I4, I5;
output O;
reg O;
reg tmp;
always @( I5 or I4 or I3 or I2 or I1 or I0 ) begin
tmp = I0 ^ I1 ^ I2 ^ I3 ^ I4 ^ I5;
if ( tmp == 0 || tmp == 1)
O = INIT[{I5, I4, I3, I2, I1, I0}];
end
endmodule
module beh_vlog_muxf7_v8_2 (O, I0, I1, S);
output O;
reg O;
input I0, I1, S;
always @(I0 or I1 or S)
if (S)
O = I1;
else
O = I0;
endmodule
module beh_vlog_ff_clr_v8_2 (Q, C, CLR, D);
parameter INIT = 0;
localparam FLOP_DELAY = 100;
output Q;
input C, CLR, D;
reg Q;
initial Q= 1'b0;
always @(posedge C )
if (CLR)
Q<= 1'b0;
else
Q<= #FLOP_DELAY D;
endmodule
module beh_vlog_ff_pre_v8_2 (Q, C, D, PRE);
parameter INIT = 0;
localparam FLOP_DELAY = 100;
output Q;
input C, D, PRE;
reg Q;
initial Q= 1'b0;
always @(posedge C )
if (PRE)
Q <= 1'b1;
else
Q <= #FLOP_DELAY D;
endmodule
module beh_vlog_ff_ce_clr_v8_2 (Q, C, CE, CLR, D);
parameter INIT = 0;
localparam FLOP_DELAY = 100;
output Q;
input C, CE, CLR, D;
reg Q;
initial Q= 1'b0;
always @(posedge C )
if (CLR)
Q <= 1'b0;
else if (CE)
Q <= #FLOP_DELAY D;
endmodule
module write_netlist_v8_2
#(
parameter C_AXI_TYPE = 0
)
(
S_ACLK, S_ARESETN, S_AXI_AWVALID, S_AXI_WVALID, S_AXI_BREADY,
w_last_c, bready_timeout_c, aw_ready_r, S_AXI_WREADY, S_AXI_BVALID,
S_AXI_WR_EN, addr_en_c, incr_addr_c, bvalid_c
);
input S_ACLK;
input S_ARESETN;
input S_AXI_AWVALID;
input S_AXI_WVALID;
input S_AXI_BREADY;
input w_last_c;
input bready_timeout_c;
output aw_ready_r;
output S_AXI_WREADY;
output S_AXI_BVALID;
output S_AXI_WR_EN;
output addr_en_c;
output incr_addr_c;
output bvalid_c;
//-------------------------------------------------------------------------
//AXI LITE
//-------------------------------------------------------------------------
generate if (C_AXI_TYPE == 0 ) begin : gbeh_axi_lite_sm
wire w_ready_r_7;
wire w_ready_c;
wire aw_ready_c;
wire NlwRenamedSignal_bvalid_c;
wire NlwRenamedSignal_incr_addr_c;
wire present_state_FSM_FFd3_13;
wire present_state_FSM_FFd2_14;
wire present_state_FSM_FFd1_15;
wire present_state_FSM_FFd4_16;
wire present_state_FSM_FFd4_In;
wire present_state_FSM_FFd3_In;
wire present_state_FSM_FFd2_In;
wire present_state_FSM_FFd1_In;
wire present_state_FSM_FFd4_In1_21;
wire [0:0] Mmux_aw_ready_c ;
begin
assign
S_AXI_WREADY = w_ready_r_7,
S_AXI_BVALID = NlwRenamedSignal_incr_addr_c,
S_AXI_WR_EN = NlwRenamedSignal_bvalid_c,
incr_addr_c = NlwRenamedSignal_incr_addr_c,
bvalid_c = NlwRenamedSignal_bvalid_c;
assign NlwRenamedSignal_incr_addr_c = 1'b0;
beh_vlog_ff_clr_v8_2 #(
.INIT (1'b0))
aw_ready_r_2 (
.C ( S_ACLK),
.CLR ( S_ARESETN),
.D ( aw_ready_c),
.Q ( aw_ready_r)
);
beh_vlog_ff_clr_v8_2 #(
.INIT (1'b0))
w_ready_r (
.C ( S_ACLK),
.CLR ( S_ARESETN),
.D ( w_ready_c),
.Q ( w_ready_r_7)
);
beh_vlog_ff_pre_v8_2 #(
.INIT (1'b1))
present_state_FSM_FFd4 (
.C ( S_ACLK),
.D ( present_state_FSM_FFd4_In),
.PRE ( S_ARESETN),
.Q ( present_state_FSM_FFd4_16)
);
beh_vlog_ff_clr_v8_2 #(
.INIT (1'b0))
present_state_FSM_FFd3 (
.C ( S_ACLK),
.CLR ( S_ARESETN),
.D ( present_state_FSM_FFd3_In),
.Q ( present_state_FSM_FFd3_13)
);
beh_vlog_ff_clr_v8_2 #(
.INIT (1'b0))
present_state_FSM_FFd2 (
.C ( S_ACLK),
.CLR ( S_ARESETN),
.D ( present_state_FSM_FFd2_In),
.Q ( present_state_FSM_FFd2_14)
);
beh_vlog_ff_clr_v8_2 #(
.INIT (1'b0))
present_state_FSM_FFd1 (
.C ( S_ACLK),
.CLR ( S_ARESETN),
.D ( present_state_FSM_FFd1_In),
.Q ( present_state_FSM_FFd1_15)
);
STATE_LOGIC_v8_2 #(
.INIT (64'h0000000055554440))
present_state_FSM_FFd3_In1 (
.I0 ( S_AXI_WVALID),
.I1 ( S_AXI_AWVALID),
.I2 ( present_state_FSM_FFd2_14),
.I3 ( present_state_FSM_FFd4_16),
.I4 ( present_state_FSM_FFd3_13),
.I5 (1'b0),
.O ( present_state_FSM_FFd3_In)
);
STATE_LOGIC_v8_2 #(
.INIT (64'h0000000088880800))
present_state_FSM_FFd2_In1 (
.I0 ( S_AXI_AWVALID),
.I1 ( S_AXI_WVALID),
.I2 ( bready_timeout_c),
.I3 ( present_state_FSM_FFd2_14),
.I4 ( present_state_FSM_FFd4_16),
.I5 (1'b0),
.O ( present_state_FSM_FFd2_In)
);
STATE_LOGIC_v8_2 #(
.INIT (64'h00000000AAAA2000))
Mmux_addr_en_c_0_1 (
.I0 ( S_AXI_AWVALID),
.I1 ( bready_timeout_c),
.I2 ( present_state_FSM_FFd2_14),
.I3 ( S_AXI_WVALID),
.I4 ( present_state_FSM_FFd4_16),
.I5 (1'b0),
.O ( addr_en_c)
);
STATE_LOGIC_v8_2 #(
.INIT (64'hF5F07570F5F05500))
Mmux_w_ready_c_0_1 (
.I0 ( S_AXI_WVALID),
.I1 ( bready_timeout_c),
.I2 ( S_AXI_AWVALID),
.I3 ( present_state_FSM_FFd3_13),
.I4 ( present_state_FSM_FFd4_16),
.I5 ( present_state_FSM_FFd2_14),
.O ( w_ready_c)
);
STATE_LOGIC_v8_2 #(
.INIT (64'h88808880FFFF8880))
present_state_FSM_FFd1_In1 (
.I0 ( S_AXI_WVALID),
.I1 ( bready_timeout_c),
.I2 ( present_state_FSM_FFd3_13),
.I3 ( present_state_FSM_FFd2_14),
.I4 ( present_state_FSM_FFd1_15),
.I5 ( S_AXI_BREADY),
.O ( present_state_FSM_FFd1_In)
);
STATE_LOGIC_v8_2 #(
.INIT (64'h00000000000000A8))
Mmux_S_AXI_WR_EN_0_1 (
.I0 ( S_AXI_WVALID),
.I1 ( present_state_FSM_FFd2_14),
.I2 ( present_state_FSM_FFd3_13),
.I3 (1'b0),
.I4 (1'b0),
.I5 (1'b0),
.O ( NlwRenamedSignal_bvalid_c)
);
STATE_LOGIC_v8_2 #(
.INIT (64'h2F0F27072F0F2200))
present_state_FSM_FFd4_In1 (
.I0 ( S_AXI_WVALID),
.I1 ( bready_timeout_c),
.I2 ( S_AXI_AWVALID),
.I3 ( present_state_FSM_FFd3_13),
.I4 ( present_state_FSM_FFd4_16),
.I5 ( present_state_FSM_FFd2_14),
.O ( present_state_FSM_FFd4_In1_21)
);
STATE_LOGIC_v8_2 #(
.INIT (64'h00000000000000F8))
present_state_FSM_FFd4_In2 (
.I0 ( present_state_FSM_FFd1_15),
.I1 ( S_AXI_BREADY),
.I2 ( present_state_FSM_FFd4_In1_21),
.I3 (1'b0),
.I4 (1'b0),
.I5 (1'b0),
.O ( present_state_FSM_FFd4_In)
);
STATE_LOGIC_v8_2 #(
.INIT (64'h7535753575305500))
Mmux_aw_ready_c_0_1 (
.I0 ( S_AXI_AWVALID),
.I1 ( bready_timeout_c),
.I2 ( S_AXI_WVALID),
.I3 ( present_state_FSM_FFd4_16),
.I4 ( present_state_FSM_FFd3_13),
.I5 ( present_state_FSM_FFd2_14),
.O ( Mmux_aw_ready_c[0])
);
STATE_LOGIC_v8_2 #(
.INIT (64'h00000000000000F8))
Mmux_aw_ready_c_0_2 (
.I0 ( present_state_FSM_FFd1_15),
.I1 ( S_AXI_BREADY),
.I2 ( Mmux_aw_ready_c[0]),
.I3 (1'b0),
.I4 (1'b0),
.I5 (1'b0),
.O ( aw_ready_c)
);
end
end
endgenerate
//---------------------------------------------------------------------
// AXI FULL
//---------------------------------------------------------------------
generate if (C_AXI_TYPE == 1 ) begin : gbeh_axi_full_sm
wire w_ready_r_8;
wire w_ready_c;
wire aw_ready_c;
wire NlwRenamedSig_OI_bvalid_c;
wire present_state_FSM_FFd1_16;
wire present_state_FSM_FFd4_17;
wire present_state_FSM_FFd3_18;
wire present_state_FSM_FFd2_19;
wire present_state_FSM_FFd4_In;
wire present_state_FSM_FFd3_In;
wire present_state_FSM_FFd2_In;
wire present_state_FSM_FFd1_In;
wire present_state_FSM_FFd2_In1_24;
wire present_state_FSM_FFd4_In1_25;
wire N2;
wire N4;
begin
assign
S_AXI_WREADY = w_ready_r_8,
bvalid_c = NlwRenamedSig_OI_bvalid_c,
S_AXI_BVALID = 1'b0;
beh_vlog_ff_clr_v8_2 #(
.INIT (1'b0))
aw_ready_r_2
(
.C ( S_ACLK),
.CLR ( S_ARESETN),
.D ( aw_ready_c),
.Q ( aw_ready_r)
);
beh_vlog_ff_clr_v8_2 #(
.INIT (1'b0))
w_ready_r
(
.C ( S_ACLK),
.CLR ( S_ARESETN),
.D ( w_ready_c),
.Q ( w_ready_r_8)
);
beh_vlog_ff_pre_v8_2 #(
.INIT (1'b1))
present_state_FSM_FFd4
(
.C ( S_ACLK),
.D ( present_state_FSM_FFd4_In),
.PRE ( S_ARESETN),
.Q ( present_state_FSM_FFd4_17)
);
beh_vlog_ff_clr_v8_2 #(
.INIT (1'b0))
present_state_FSM_FFd3
(
.C ( S_ACLK),
.CLR ( S_ARESETN),
.D ( present_state_FSM_FFd3_In),
.Q ( present_state_FSM_FFd3_18)
);
beh_vlog_ff_clr_v8_2 #(
.INIT (1'b0))
present_state_FSM_FFd2
(
.C ( S_ACLK),
.CLR ( S_ARESETN),
.D ( present_state_FSM_FFd2_In),
.Q ( present_state_FSM_FFd2_19)
);
beh_vlog_ff_clr_v8_2 #(
.INIT (1'b0))
present_state_FSM_FFd1
(
.C ( S_ACLK),
.CLR ( S_ARESETN),
.D ( present_state_FSM_FFd1_In),
.Q ( present_state_FSM_FFd1_16)
);
STATE_LOGIC_v8_2 #(
.INIT (64'h0000000000005540))
present_state_FSM_FFd3_In1
(
.I0 ( S_AXI_WVALID),
.I1 ( present_state_FSM_FFd4_17),
.I2 ( S_AXI_AWVALID),
.I3 ( present_state_FSM_FFd3_18),
.I4 (1'b0),
.I5 (1'b0),
.O ( present_state_FSM_FFd3_In)
);
STATE_LOGIC_v8_2 #(
.INIT (64'hBF3FBB33AF0FAA00))
Mmux_aw_ready_c_0_2
(
.I0 ( S_AXI_BREADY),
.I1 ( bready_timeout_c),
.I2 ( S_AXI_AWVALID),
.I3 ( present_state_FSM_FFd1_16),
.I4 ( present_state_FSM_FFd4_17),
.I5 ( NlwRenamedSig_OI_bvalid_c),
.O ( aw_ready_c)
);
STATE_LOGIC_v8_2 #(
.INIT (64'hAAAAAAAA20000000))
Mmux_addr_en_c_0_1
(
.I0 ( S_AXI_AWVALID),
.I1 ( bready_timeout_c),
.I2 ( present_state_FSM_FFd2_19),
.I3 ( S_AXI_WVALID),
.I4 ( w_last_c),
.I5 ( present_state_FSM_FFd4_17),
.O ( addr_en_c)
);
STATE_LOGIC_v8_2 #(
.INIT (64'h00000000000000A8))
Mmux_S_AXI_WR_EN_0_1
(
.I0 ( S_AXI_WVALID),
.I1 ( present_state_FSM_FFd2_19),
.I2 ( present_state_FSM_FFd3_18),
.I3 (1'b0),
.I4 (1'b0),
.I5 (1'b0),
.O ( S_AXI_WR_EN)
);
STATE_LOGIC_v8_2 #(
.INIT (64'h0000000000002220))
Mmux_incr_addr_c_0_1
(
.I0 ( S_AXI_WVALID),
.I1 ( w_last_c),
.I2 ( present_state_FSM_FFd2_19),
.I3 ( present_state_FSM_FFd3_18),
.I4 (1'b0),
.I5 (1'b0),
.O ( incr_addr_c)
);
STATE_LOGIC_v8_2 #(
.INIT (64'h0000000000008880))
Mmux_aw_ready_c_0_11
(
.I0 ( S_AXI_WVALID),
.I1 ( w_last_c),
.I2 ( present_state_FSM_FFd2_19),
.I3 ( present_state_FSM_FFd3_18),
.I4 (1'b0),
.I5 (1'b0),
.O ( NlwRenamedSig_OI_bvalid_c)
);
STATE_LOGIC_v8_2 #(
.INIT (64'h000000000000D5C0))
present_state_FSM_FFd2_In1
(
.I0 ( w_last_c),
.I1 ( S_AXI_AWVALID),
.I2 ( present_state_FSM_FFd4_17),
.I3 ( present_state_FSM_FFd3_18),
.I4 (1'b0),
.I5 (1'b0),
.O ( present_state_FSM_FFd2_In1_24)
);
STATE_LOGIC_v8_2 #(
.INIT (64'hFFFFAAAA08AAAAAA))
present_state_FSM_FFd2_In2
(
.I0 ( present_state_FSM_FFd2_19),
.I1 ( S_AXI_AWVALID),
.I2 ( bready_timeout_c),
.I3 ( w_last_c),
.I4 ( S_AXI_WVALID),
.I5 ( present_state_FSM_FFd2_In1_24),
.O ( present_state_FSM_FFd2_In)
);
STATE_LOGIC_v8_2 #(
.INIT (64'h00C0004000C00000))
present_state_FSM_FFd4_In1
(
.I0 ( S_AXI_AWVALID),
.I1 ( w_last_c),
.I2 ( S_AXI_WVALID),
.I3 ( bready_timeout_c),
.I4 ( present_state_FSM_FFd3_18),
.I5 ( present_state_FSM_FFd2_19),
.O ( present_state_FSM_FFd4_In1_25)
);
STATE_LOGIC_v8_2 #(
.INIT (64'h00000000FFFF88F8))
present_state_FSM_FFd4_In2
(
.I0 ( present_state_FSM_FFd1_16),
.I1 ( S_AXI_BREADY),
.I2 ( present_state_FSM_FFd4_17),
.I3 ( S_AXI_AWVALID),
.I4 ( present_state_FSM_FFd4_In1_25),
.I5 (1'b0),
.O ( present_state_FSM_FFd4_In)
);
STATE_LOGIC_v8_2 #(
.INIT (64'h0000000000000007))
Mmux_w_ready_c_0_SW0
(
.I0 ( w_last_c),
.I1 ( S_AXI_WVALID),
.I2 (1'b0),
.I3 (1'b0),
.I4 (1'b0),
.I5 (1'b0),
.O ( N2)
);
STATE_LOGIC_v8_2 #(
.INIT (64'hFABAFABAFAAAF000))
Mmux_w_ready_c_0_Q
(
.I0 ( N2),
.I1 ( bready_timeout_c),
.I2 ( S_AXI_AWVALID),
.I3 ( present_state_FSM_FFd4_17),
.I4 ( present_state_FSM_FFd3_18),
.I5 ( present_state_FSM_FFd2_19),
.O ( w_ready_c)
);
STATE_LOGIC_v8_2 #(
.INIT (64'h0000000000000008))
Mmux_aw_ready_c_0_11_SW0
(
.I0 ( bready_timeout_c),
.I1 ( S_AXI_WVALID),
.I2 (1'b0),
.I3 (1'b0),
.I4 (1'b0),
.I5 (1'b0),
.O ( N4)
);
STATE_LOGIC_v8_2 #(
.INIT (64'h88808880FFFF8880))
present_state_FSM_FFd1_In1
(
.I0 ( w_last_c),
.I1 ( N4),
.I2 ( present_state_FSM_FFd2_19),
.I3 ( present_state_FSM_FFd3_18),
.I4 ( present_state_FSM_FFd1_16),
.I5 ( S_AXI_BREADY),
.O ( present_state_FSM_FFd1_In)
);
end
end
endgenerate
endmodule
module read_netlist_v8_2 #(
parameter C_AXI_TYPE = 1,
parameter C_ADDRB_WIDTH = 12
) ( S_AXI_R_LAST_INT, S_ACLK, S_ARESETN, S_AXI_ARVALID,
S_AXI_RREADY,S_AXI_INCR_ADDR,S_AXI_ADDR_EN,
S_AXI_SINGLE_TRANS,S_AXI_MUX_SEL, S_AXI_R_LAST, S_AXI_ARREADY,
S_AXI_RLAST, S_AXI_RVALID, S_AXI_RD_EN, S_AXI_ARLEN);
input S_AXI_R_LAST_INT;
input S_ACLK;
input S_ARESETN;
input S_AXI_ARVALID;
input S_AXI_RREADY;
output S_AXI_INCR_ADDR;
output S_AXI_ADDR_EN;
output S_AXI_SINGLE_TRANS;
output S_AXI_MUX_SEL;
output S_AXI_R_LAST;
output S_AXI_ARREADY;
output S_AXI_RLAST;
output S_AXI_RVALID;
output S_AXI_RD_EN;
input [7:0] S_AXI_ARLEN;
wire present_state_FSM_FFd1_13 ;
wire present_state_FSM_FFd2_14 ;
wire gaxi_full_sm_outstanding_read_r_15 ;
wire gaxi_full_sm_ar_ready_r_16 ;
wire gaxi_full_sm_r_last_r_17 ;
wire NlwRenamedSig_OI_gaxi_full_sm_r_valid_r ;
wire gaxi_full_sm_r_valid_c ;
wire S_AXI_RREADY_gaxi_full_sm_r_valid_r_OR_9_o ;
wire gaxi_full_sm_ar_ready_c ;
wire gaxi_full_sm_outstanding_read_c ;
wire NlwRenamedSig_OI_S_AXI_R_LAST ;
wire S_AXI_ARLEN_7_GND_8_o_equal_1_o ;
wire present_state_FSM_FFd2_In ;
wire present_state_FSM_FFd1_In ;
wire Mmux_S_AXI_R_LAST13 ;
wire N01 ;
wire N2 ;
wire Mmux_gaxi_full_sm_ar_ready_c11 ;
wire N4 ;
wire N8 ;
wire N9 ;
wire N10 ;
wire N11 ;
wire N12 ;
wire N13 ;
assign
S_AXI_R_LAST = NlwRenamedSig_OI_S_AXI_R_LAST,
S_AXI_ARREADY = gaxi_full_sm_ar_ready_r_16,
S_AXI_RLAST = gaxi_full_sm_r_last_r_17,
S_AXI_RVALID = NlwRenamedSig_OI_gaxi_full_sm_r_valid_r;
beh_vlog_ff_clr_v8_2 #(
.INIT (1'b0))
gaxi_full_sm_outstanding_read_r (
.C (S_ACLK),
.CLR(S_ARESETN),
.D(gaxi_full_sm_outstanding_read_c),
.Q(gaxi_full_sm_outstanding_read_r_15)
);
beh_vlog_ff_ce_clr_v8_2 #(
.INIT (1'b0))
gaxi_full_sm_r_valid_r (
.C (S_ACLK),
.CE (S_AXI_RREADY_gaxi_full_sm_r_valid_r_OR_9_o),
.CLR (S_ARESETN),
.D (gaxi_full_sm_r_valid_c),
.Q (NlwRenamedSig_OI_gaxi_full_sm_r_valid_r)
);
beh_vlog_ff_clr_v8_2 #(
.INIT (1'b0))
gaxi_full_sm_ar_ready_r (
.C (S_ACLK),
.CLR (S_ARESETN),
.D (gaxi_full_sm_ar_ready_c),
.Q (gaxi_full_sm_ar_ready_r_16)
);
beh_vlog_ff_ce_clr_v8_2 #(
.INIT(1'b0))
gaxi_full_sm_r_last_r (
.C (S_ACLK),
.CE (S_AXI_RREADY_gaxi_full_sm_r_valid_r_OR_9_o),
.CLR (S_ARESETN),
.D (NlwRenamedSig_OI_S_AXI_R_LAST),
.Q (gaxi_full_sm_r_last_r_17)
);
beh_vlog_ff_clr_v8_2 #(
.INIT (1'b0))
present_state_FSM_FFd2 (
.C ( S_ACLK),
.CLR ( S_ARESETN),
.D ( present_state_FSM_FFd2_In),
.Q ( present_state_FSM_FFd2_14)
);
beh_vlog_ff_clr_v8_2 #(
.INIT (1'b0))
present_state_FSM_FFd1 (
.C (S_ACLK),
.CLR (S_ARESETN),
.D (present_state_FSM_FFd1_In),
.Q (present_state_FSM_FFd1_13)
);
STATE_LOGIC_v8_2 #(
.INIT (64'h000000000000000B))
S_AXI_RREADY_gaxi_full_sm_r_valid_r_OR_9_o1 (
.I0 ( S_AXI_RREADY),
.I1 ( NlwRenamedSig_OI_gaxi_full_sm_r_valid_r),
.I2 (1'b0),
.I3 (1'b0),
.I4 (1'b0),
.I5 (1'b0),
.O (S_AXI_RREADY_gaxi_full_sm_r_valid_r_OR_9_o)
);
STATE_LOGIC_v8_2 #(
.INIT (64'h0000000000000008))
Mmux_S_AXI_SINGLE_TRANS11 (
.I0 (S_AXI_ARVALID),
.I1 (S_AXI_ARLEN_7_GND_8_o_equal_1_o),
.I2 (1'b0),
.I3 (1'b0),
.I4 (1'b0),
.I5 (1'b0),
.O (S_AXI_SINGLE_TRANS)
);
STATE_LOGIC_v8_2 #(
.INIT (64'h0000000000000004))
Mmux_S_AXI_ADDR_EN11 (
.I0 (present_state_FSM_FFd1_13),
.I1 (S_AXI_ARVALID),
.I2 (1'b0),
.I3 (1'b0),
.I4 (1'b0),
.I5 (1'b0),
.O (S_AXI_ADDR_EN)
);
STATE_LOGIC_v8_2 #(
.INIT (64'hECEE2022EEEE2022))
present_state_FSM_FFd2_In1 (
.I0 ( S_AXI_ARVALID),
.I1 ( present_state_FSM_FFd1_13),
.I2 ( S_AXI_RREADY),
.I3 ( S_AXI_ARLEN_7_GND_8_o_equal_1_o),
.I4 ( present_state_FSM_FFd2_14),
.I5 ( NlwRenamedSig_OI_gaxi_full_sm_r_valid_r),
.O ( present_state_FSM_FFd2_In)
);
STATE_LOGIC_v8_2 #(
.INIT (64'h0000000044440444))
Mmux_S_AXI_R_LAST131 (
.I0 ( present_state_FSM_FFd1_13),
.I1 ( S_AXI_ARVALID),
.I2 ( present_state_FSM_FFd2_14),
.I3 ( NlwRenamedSig_OI_gaxi_full_sm_r_valid_r),
.I4 ( S_AXI_RREADY),
.I5 (1'b0),
.O ( Mmux_S_AXI_R_LAST13)
);
STATE_LOGIC_v8_2 #(
.INIT (64'h4000FFFF40004000))
Mmux_S_AXI_INCR_ADDR11 (
.I0 ( S_AXI_R_LAST_INT),
.I1 ( S_AXI_RREADY_gaxi_full_sm_r_valid_r_OR_9_o),
.I2 ( present_state_FSM_FFd2_14),
.I3 ( present_state_FSM_FFd1_13),
.I4 ( S_AXI_ARLEN_7_GND_8_o_equal_1_o),
.I5 ( Mmux_S_AXI_R_LAST13),
.O ( S_AXI_INCR_ADDR)
);
STATE_LOGIC_v8_2 #(
.INIT (64'h00000000000000FE))
S_AXI_ARLEN_7_GND_8_o_equal_1_o_7_SW0 (
.I0 ( S_AXI_ARLEN[2]),
.I1 ( S_AXI_ARLEN[1]),
.I2 ( S_AXI_ARLEN[0]),
.I3 ( 1'b0),
.I4 ( 1'b0),
.I5 ( 1'b0),
.O ( N01)
);
STATE_LOGIC_v8_2 #(
.INIT (64'h0000000000000001))
S_AXI_ARLEN_7_GND_8_o_equal_1_o_7_Q (
.I0 ( S_AXI_ARLEN[7]),
.I1 ( S_AXI_ARLEN[6]),
.I2 ( S_AXI_ARLEN[5]),
.I3 ( S_AXI_ARLEN[4]),
.I4 ( S_AXI_ARLEN[3]),
.I5 ( N01),
.O ( S_AXI_ARLEN_7_GND_8_o_equal_1_o)
);
STATE_LOGIC_v8_2 #(
.INIT (64'h0000000000000007))
Mmux_gaxi_full_sm_outstanding_read_c1_SW0 (
.I0 ( S_AXI_ARVALID),
.I1 ( S_AXI_ARLEN_7_GND_8_o_equal_1_o),
.I2 ( 1'b0),
.I3 ( 1'b0),
.I4 ( 1'b0),
.I5 ( 1'b0),
.O ( N2)
);
STATE_LOGIC_v8_2 #(
.INIT (64'h0020000002200200))
Mmux_gaxi_full_sm_outstanding_read_c1 (
.I0 ( NlwRenamedSig_OI_gaxi_full_sm_r_valid_r),
.I1 ( S_AXI_RREADY),
.I2 ( present_state_FSM_FFd1_13),
.I3 ( present_state_FSM_FFd2_14),
.I4 ( gaxi_full_sm_outstanding_read_r_15),
.I5 ( N2),
.O ( gaxi_full_sm_outstanding_read_c)
);
STATE_LOGIC_v8_2 #(
.INIT (64'h0000000000004555))
Mmux_gaxi_full_sm_ar_ready_c12 (
.I0 ( S_AXI_ARVALID),
.I1 ( S_AXI_RREADY),
.I2 ( present_state_FSM_FFd2_14),
.I3 ( NlwRenamedSig_OI_gaxi_full_sm_r_valid_r),
.I4 ( 1'b0),
.I5 ( 1'b0),
.O ( Mmux_gaxi_full_sm_ar_ready_c11)
);
STATE_LOGIC_v8_2 #(
.INIT (64'h00000000000000EF))
Mmux_S_AXI_R_LAST11_SW0 (
.I0 ( S_AXI_ARLEN_7_GND_8_o_equal_1_o),
.I1 ( S_AXI_RREADY),
.I2 ( NlwRenamedSig_OI_gaxi_full_sm_r_valid_r),
.I3 ( 1'b0),
.I4 ( 1'b0),
.I5 ( 1'b0),
.O ( N4)
);
STATE_LOGIC_v8_2 #(
.INIT (64'hFCAAFC0A00AA000A))
Mmux_S_AXI_R_LAST11 (
.I0 ( S_AXI_ARVALID),
.I1 ( gaxi_full_sm_outstanding_read_r_15),
.I2 ( present_state_FSM_FFd2_14),
.I3 ( present_state_FSM_FFd1_13),
.I4 ( N4),
.I5 ( S_AXI_RREADY_gaxi_full_sm_r_valid_r_OR_9_o),
.O ( gaxi_full_sm_r_valid_c)
);
STATE_LOGIC_v8_2 #(
.INIT (64'h00000000AAAAAA08))
S_AXI_MUX_SEL1 (
.I0 (present_state_FSM_FFd1_13),
.I1 (NlwRenamedSig_OI_gaxi_full_sm_r_valid_r),
.I2 (S_AXI_RREADY),
.I3 (present_state_FSM_FFd2_14),
.I4 (gaxi_full_sm_outstanding_read_r_15),
.I5 (1'b0),
.O (S_AXI_MUX_SEL)
);
STATE_LOGIC_v8_2 #(
.INIT (64'hF3F3F755A2A2A200))
Mmux_S_AXI_RD_EN11 (
.I0 ( present_state_FSM_FFd1_13),
.I1 ( NlwRenamedSig_OI_gaxi_full_sm_r_valid_r),
.I2 ( S_AXI_RREADY),
.I3 ( gaxi_full_sm_outstanding_read_r_15),
.I4 ( present_state_FSM_FFd2_14),
.I5 ( S_AXI_ARVALID),
.O ( S_AXI_RD_EN)
);
beh_vlog_muxf7_v8_2 present_state_FSM_FFd1_In3 (
.I0 ( N8),
.I1 ( N9),
.S ( present_state_FSM_FFd1_13),
.O ( present_state_FSM_FFd1_In)
);
STATE_LOGIC_v8_2 #(
.INIT (64'h000000005410F4F0))
present_state_FSM_FFd1_In3_F (
.I0 ( S_AXI_RREADY),
.I1 ( present_state_FSM_FFd2_14),
.I2 ( S_AXI_ARVALID),
.I3 ( NlwRenamedSig_OI_gaxi_full_sm_r_valid_r),
.I4 ( S_AXI_ARLEN_7_GND_8_o_equal_1_o),
.I5 ( 1'b0),
.O ( N8)
);
STATE_LOGIC_v8_2 #(
.INIT (64'h0000000072FF7272))
present_state_FSM_FFd1_In3_G (
.I0 ( present_state_FSM_FFd2_14),
.I1 ( S_AXI_R_LAST_INT),
.I2 ( gaxi_full_sm_outstanding_read_r_15),
.I3 ( S_AXI_RREADY),
.I4 ( NlwRenamedSig_OI_gaxi_full_sm_r_valid_r),
.I5 ( 1'b0),
.O ( N9)
);
beh_vlog_muxf7_v8_2 Mmux_gaxi_full_sm_ar_ready_c14 (
.I0 ( N10),
.I1 ( N11),
.S ( present_state_FSM_FFd1_13),
.O ( gaxi_full_sm_ar_ready_c)
);
STATE_LOGIC_v8_2 #(
.INIT (64'h00000000FFFF88A8))
Mmux_gaxi_full_sm_ar_ready_c14_F (
.I0 ( S_AXI_ARLEN_7_GND_8_o_equal_1_o),
.I1 ( S_AXI_RREADY),
.I2 ( present_state_FSM_FFd2_14),
.I3 ( NlwRenamedSig_OI_gaxi_full_sm_r_valid_r),
.I4 ( Mmux_gaxi_full_sm_ar_ready_c11),
.I5 ( 1'b0),
.O ( N10)
);
STATE_LOGIC_v8_2 #(
.INIT (64'h000000008D008D8D))
Mmux_gaxi_full_sm_ar_ready_c14_G (
.I0 ( present_state_FSM_FFd2_14),
.I1 ( S_AXI_R_LAST_INT),
.I2 ( gaxi_full_sm_outstanding_read_r_15),
.I3 ( S_AXI_RREADY),
.I4 ( NlwRenamedSig_OI_gaxi_full_sm_r_valid_r),
.I5 ( 1'b0),
.O ( N11)
);
beh_vlog_muxf7_v8_2 Mmux_S_AXI_R_LAST1 (
.I0 ( N12),
.I1 ( N13),
.S ( present_state_FSM_FFd1_13),
.O ( NlwRenamedSig_OI_S_AXI_R_LAST)
);
STATE_LOGIC_v8_2 #(
.INIT (64'h0000000088088888))
Mmux_S_AXI_R_LAST1_F (
.I0 ( S_AXI_ARLEN_7_GND_8_o_equal_1_o),
.I1 ( S_AXI_ARVALID),
.I2 ( present_state_FSM_FFd2_14),
.I3 ( S_AXI_RREADY),
.I4 ( NlwRenamedSig_OI_gaxi_full_sm_r_valid_r),
.I5 ( 1'b0),
.O ( N12)
);
STATE_LOGIC_v8_2 #(
.INIT (64'h00000000E400E4E4))
Mmux_S_AXI_R_LAST1_G (
.I0 ( present_state_FSM_FFd2_14),
.I1 ( gaxi_full_sm_outstanding_read_r_15),
.I2 ( S_AXI_R_LAST_INT),
.I3 ( S_AXI_RREADY),
.I4 ( NlwRenamedSig_OI_gaxi_full_sm_r_valid_r),
.I5 ( 1'b0),
.O ( N13)
);
endmodule
module blk_mem_axi_write_wrapper_beh_v8_2
# (
// AXI Interface related parameters start here
parameter C_INTERFACE_TYPE = 0, // 0: Native Interface; 1: AXI Interface
parameter C_AXI_TYPE = 0, // 0: AXI Lite; 1: AXI Full;
parameter C_AXI_SLAVE_TYPE = 0, // 0: MEMORY SLAVE; 1: PERIPHERAL SLAVE;
parameter C_MEMORY_TYPE = 0, // 0: SP-RAM, 1: SDP-RAM; 2: TDP-RAM; 3: DP-ROM;
parameter C_WRITE_DEPTH_A = 0,
parameter C_AXI_AWADDR_WIDTH = 32,
parameter C_ADDRA_WIDTH = 12,
parameter C_AXI_WDATA_WIDTH = 32,
parameter C_HAS_AXI_ID = 0,
parameter C_AXI_ID_WIDTH = 4,
// AXI OUTSTANDING WRITES
parameter C_AXI_OS_WR = 2
)
(
// AXI Global Signals
input S_ACLK,
input S_ARESETN,
// AXI Full/Lite Slave Write Channel (write side)
input [C_AXI_ID_WIDTH-1:0] S_AXI_AWID,
input [C_AXI_AWADDR_WIDTH-1:0] S_AXI_AWADDR,
input [8-1:0] S_AXI_AWLEN,
input [2:0] S_AXI_AWSIZE,
input [1:0] S_AXI_AWBURST,
input S_AXI_AWVALID,
output S_AXI_AWREADY,
input S_AXI_WVALID,
output S_AXI_WREADY,
output reg [C_AXI_ID_WIDTH-1:0] S_AXI_BID = 0,
output S_AXI_BVALID,
input S_AXI_BREADY,
// Signals for BMG interface
output [C_ADDRA_WIDTH-1:0] S_AXI_AWADDR_OUT,
output S_AXI_WR_EN
);
localparam FLOP_DELAY = 100; // 100 ps
localparam C_RANGE = ((C_AXI_WDATA_WIDTH == 8)?0:
((C_AXI_WDATA_WIDTH==16)?1:
((C_AXI_WDATA_WIDTH==32)?2:
((C_AXI_WDATA_WIDTH==64)?3:
((C_AXI_WDATA_WIDTH==128)?4:
((C_AXI_WDATA_WIDTH==256)?5:0))))));
wire bvalid_c ;
reg bready_timeout_c = 0;
wire [1:0] bvalid_rd_cnt_c;
reg bvalid_r = 0;
reg [2:0] bvalid_count_r = 0;
reg [((C_AXI_TYPE == 1 && C_AXI_SLAVE_TYPE == 0)?
C_AXI_AWADDR_WIDTH:C_ADDRA_WIDTH)-1:0] awaddr_reg = 0;
reg [1:0] bvalid_wr_cnt_r = 0;
reg [1:0] bvalid_rd_cnt_r = 0;
wire w_last_c ;
wire addr_en_c ;
wire incr_addr_c ;
wire aw_ready_r ;
wire dec_alen_c ;
reg bvalid_d1_c = 0;
reg [7:0] awlen_cntr_r = 0;
reg [7:0] awlen_int = 0;
reg [1:0] awburst_int = 0;
integer total_bytes = 0;
integer wrap_boundary = 0;
integer wrap_base_addr = 0;
integer num_of_bytes_c = 0;
integer num_of_bytes_r = 0;
// Array to store BIDs
reg [C_AXI_ID_WIDTH-1:0] axi_bid_array[3:0] ;
wire S_AXI_BVALID_axi_wr_fsm;
//-------------------------------------
//AXI WRITE FSM COMPONENT INSTANTIATION
//-------------------------------------
write_netlist_v8_2 #(.C_AXI_TYPE(C_AXI_TYPE)) axi_wr_fsm
(
.S_ACLK(S_ACLK),
.S_ARESETN(S_ARESETN),
.S_AXI_AWVALID(S_AXI_AWVALID),
.aw_ready_r(aw_ready_r),
.S_AXI_WVALID(S_AXI_WVALID),
.S_AXI_WREADY(S_AXI_WREADY),
.S_AXI_BREADY(S_AXI_BREADY),
.S_AXI_WR_EN(S_AXI_WR_EN),
.w_last_c(w_last_c),
.bready_timeout_c(bready_timeout_c),
.addr_en_c(addr_en_c),
.incr_addr_c(incr_addr_c),
.bvalid_c(bvalid_c),
.S_AXI_BVALID (S_AXI_BVALID_axi_wr_fsm)
);
//Wrap Address boundary calculation
always@(*) begin
num_of_bytes_c = 2**((C_AXI_TYPE == 1 && C_AXI_SLAVE_TYPE == 0)?S_AXI_AWSIZE:0);
total_bytes = (num_of_bytes_r)*(awlen_int+1);
wrap_base_addr = ((awaddr_reg)/((total_bytes==0)?1:total_bytes))*(total_bytes);
wrap_boundary = wrap_base_addr+total_bytes;
end
//-------------------------------------------------------------------------
// BMG address generation
//-------------------------------------------------------------------------
always @(posedge S_ACLK or S_ARESETN) begin
if (S_ARESETN == 1'b1) begin
awaddr_reg <= 0;
num_of_bytes_r <= 0;
awburst_int <= 0;
end else begin
if (addr_en_c == 1'b1) begin
awaddr_reg <= #FLOP_DELAY S_AXI_AWADDR ;
num_of_bytes_r <= num_of_bytes_c;
awburst_int <= ((C_AXI_TYPE == 1 && C_AXI_SLAVE_TYPE == 0)?S_AXI_AWBURST:2'b01);
end else if (incr_addr_c == 1'b1) begin
if (awburst_int == 2'b10) begin
if(awaddr_reg == (wrap_boundary-num_of_bytes_r)) begin
awaddr_reg <= wrap_base_addr;
end else begin
awaddr_reg <= awaddr_reg + num_of_bytes_r;
end
end else if (awburst_int == 2'b01 || awburst_int == 2'b11) begin
awaddr_reg <= awaddr_reg + num_of_bytes_r;
end
end
end
end
assign S_AXI_AWADDR_OUT = ((C_AXI_TYPE == 1 && C_AXI_SLAVE_TYPE == 0)?
awaddr_reg[C_AXI_AWADDR_WIDTH-1:C_RANGE]:awaddr_reg);
//-------------------------------------------------------------------------
// AXI wlast generation
//-------------------------------------------------------------------------
always @(posedge S_ACLK or S_ARESETN) begin
if (S_ARESETN == 1'b1) begin
awlen_cntr_r <= 0;
awlen_int <= 0;
end else begin
if (addr_en_c == 1'b1) begin
awlen_int <= #FLOP_DELAY (C_AXI_TYPE == 0?0:S_AXI_AWLEN) ;
awlen_cntr_r <= #FLOP_DELAY (C_AXI_TYPE == 0?0:S_AXI_AWLEN) ;
end else if (dec_alen_c == 1'b1) begin
awlen_cntr_r <= #FLOP_DELAY awlen_cntr_r - 1 ;
end
end
end
assign w_last_c = (awlen_cntr_r == 0 && S_AXI_WVALID == 1'b1)?1'b1:1'b0;
assign dec_alen_c = (incr_addr_c | w_last_c);
//-------------------------------------------------------------------------
// Generation of bvalid counter for outstanding transactions
//-------------------------------------------------------------------------
always @(posedge S_ACLK or S_ARESETN) begin
if (S_ARESETN == 1'b1) begin
bvalid_count_r <= 0;
end else begin
// bvalid_count_r generation
if (bvalid_c == 1'b1 && bvalid_r == 1'b1 && S_AXI_BREADY == 1'b1) begin
bvalid_count_r <= #FLOP_DELAY bvalid_count_r ;
end else if (bvalid_c == 1'b1) begin
bvalid_count_r <= #FLOP_DELAY bvalid_count_r + 1 ;
end else if (bvalid_r == 1'b1 && S_AXI_BREADY == 1'b1 && bvalid_count_r != 0) begin
bvalid_count_r <= #FLOP_DELAY bvalid_count_r - 1 ;
end
end
end
//-------------------------------------------------------------------------
// Generation of bvalid when BID is used
//-------------------------------------------------------------------------
generate if (C_HAS_AXI_ID == 1) begin:gaxi_bvalid_id_r
always @(posedge S_ACLK or S_ARESETN) begin
if (S_ARESETN == 1'b1) begin
bvalid_r <= 0;
bvalid_d1_c <= 0;
end else begin
// Delay the generation o bvalid_r for generation for BID
bvalid_d1_c <= bvalid_c;
//external bvalid signal generation
if (bvalid_d1_c == 1'b1) begin
bvalid_r <= #FLOP_DELAY 1'b1 ;
end else if (bvalid_count_r <= 1 && S_AXI_BREADY == 1'b1) begin
bvalid_r <= #FLOP_DELAY 0 ;
end
end
end
end
endgenerate
//-------------------------------------------------------------------------
// Generation of bvalid when BID is not used
//-------------------------------------------------------------------------
generate if(C_HAS_AXI_ID == 0) begin:gaxi_bvalid_noid_r
always @(posedge S_ACLK or S_ARESETN) begin
if (S_ARESETN == 1'b1) begin
bvalid_r <= 0;
end else begin
//external bvalid signal generation
if (bvalid_c == 1'b1) begin
bvalid_r <= #FLOP_DELAY 1'b1 ;
end else if (bvalid_count_r <= 1 && S_AXI_BREADY == 1'b1) begin
bvalid_r <= #FLOP_DELAY 0 ;
end
end
end
end
endgenerate
//-------------------------------------------------------------------------
// Generation of Bready timeout
//-------------------------------------------------------------------------
always @(bvalid_count_r) begin
// bready_timeout_c generation
if(bvalid_count_r == C_AXI_OS_WR-1) begin
bready_timeout_c <= 1'b1;
end else begin
bready_timeout_c <= 1'b0;
end
end
//-------------------------------------------------------------------------
// Generation of BID
//-------------------------------------------------------------------------
generate if(C_HAS_AXI_ID == 1) begin:gaxi_bid_gen
always @(posedge S_ACLK or S_ARESETN) begin
if (S_ARESETN == 1'b1) begin
bvalid_wr_cnt_r <= 0;
bvalid_rd_cnt_r <= 0;
end else begin
// STORE AWID IN AN ARRAY
if(bvalid_c == 1'b1) begin
bvalid_wr_cnt_r <= bvalid_wr_cnt_r + 1;
end
// generate BID FROM AWID ARRAY
bvalid_rd_cnt_r <= #FLOP_DELAY bvalid_rd_cnt_c ;
S_AXI_BID <= axi_bid_array[bvalid_rd_cnt_c];
end
end
assign bvalid_rd_cnt_c = (bvalid_r == 1'b1 && S_AXI_BREADY == 1'b1)?bvalid_rd_cnt_r+1:bvalid_rd_cnt_r;
//-------------------------------------------------------------------------
// Storing AWID for generation of BID
//-------------------------------------------------------------------------
always @(posedge S_ACLK or S_ARESETN) begin
if(S_ARESETN == 1'b1) begin
axi_bid_array[0] = 0;
axi_bid_array[1] = 0;
axi_bid_array[2] = 0;
axi_bid_array[3] = 0;
end else if(aw_ready_r == 1'b1 && S_AXI_AWVALID == 1'b1) begin
axi_bid_array[bvalid_wr_cnt_r] <= S_AXI_AWID;
end
end
end
endgenerate
assign S_AXI_BVALID = bvalid_r;
assign S_AXI_AWREADY = aw_ready_r;
endmodule
module blk_mem_axi_read_wrapper_beh_v8_2
# (
//// AXI Interface related parameters start here
parameter C_INTERFACE_TYPE = 0,
parameter C_AXI_TYPE = 0,
parameter C_AXI_SLAVE_TYPE = 0,
parameter C_MEMORY_TYPE = 0,
parameter C_WRITE_WIDTH_A = 4,
parameter C_WRITE_DEPTH_A = 32,
parameter C_ADDRA_WIDTH = 12,
parameter C_AXI_PIPELINE_STAGES = 0,
parameter C_AXI_ARADDR_WIDTH = 12,
parameter C_HAS_AXI_ID = 0,
parameter C_AXI_ID_WIDTH = 4,
parameter C_ADDRB_WIDTH = 12
)
(
//// AXI Global Signals
input S_ACLK,
input S_ARESETN,
//// AXI Full/Lite Slave Read (Read side)
input [C_AXI_ARADDR_WIDTH-1:0] S_AXI_ARADDR,
input [7:0] S_AXI_ARLEN,
input [2:0] S_AXI_ARSIZE,
input [1:0] S_AXI_ARBURST,
input S_AXI_ARVALID,
output S_AXI_ARREADY,
output S_AXI_RLAST,
output S_AXI_RVALID,
input S_AXI_RREADY,
input [C_AXI_ID_WIDTH-1:0] S_AXI_ARID,
output reg [C_AXI_ID_WIDTH-1:0] S_AXI_RID = 0,
//// AXI Full/Lite Read Address Signals to BRAM
output [C_ADDRB_WIDTH-1:0] S_AXI_ARADDR_OUT,
output S_AXI_RD_EN
);
localparam FLOP_DELAY = 100; // 100 ps
localparam C_RANGE = ((C_WRITE_WIDTH_A == 8)?0:
((C_WRITE_WIDTH_A==16)?1:
((C_WRITE_WIDTH_A==32)?2:
((C_WRITE_WIDTH_A==64)?3:
((C_WRITE_WIDTH_A==128)?4:
((C_WRITE_WIDTH_A==256)?5:0))))));
reg [C_AXI_ID_WIDTH-1:0] ar_id_r=0;
wire addr_en_c;
wire rd_en_c;
wire incr_addr_c;
wire single_trans_c;
wire dec_alen_c;
wire mux_sel_c;
wire r_last_c;
wire r_last_int_c;
wire [C_ADDRB_WIDTH-1 : 0] araddr_out;
reg [7:0] arlen_int_r=0;
reg [7:0] arlen_cntr=8'h01;
reg [1:0] arburst_int_c=0;
reg [1:0] arburst_int_r=0;
reg [((C_AXI_TYPE == 1 && C_AXI_SLAVE_TYPE == 0)?
C_AXI_ARADDR_WIDTH:C_ADDRA_WIDTH)-1:0] araddr_reg =0;
integer num_of_bytes_c = 0;
integer total_bytes = 0;
integer num_of_bytes_r = 0;
integer wrap_base_addr_r = 0;
integer wrap_boundary_r = 0;
reg [7:0] arlen_int_c=0;
integer total_bytes_c = 0;
integer wrap_base_addr_c = 0;
integer wrap_boundary_c = 0;
assign dec_alen_c = incr_addr_c | r_last_int_c;
read_netlist_v8_2
#(.C_AXI_TYPE (1),
.C_ADDRB_WIDTH (C_ADDRB_WIDTH))
axi_read_fsm (
.S_AXI_INCR_ADDR(incr_addr_c),
.S_AXI_ADDR_EN(addr_en_c),
.S_AXI_SINGLE_TRANS(single_trans_c),
.S_AXI_MUX_SEL(mux_sel_c),
.S_AXI_R_LAST(r_last_c),
.S_AXI_R_LAST_INT(r_last_int_c),
//// AXI Global Signals
.S_ACLK(S_ACLK),
.S_ARESETN(S_ARESETN),
//// AXI Full/Lite Slave Read (Read side)
.S_AXI_ARLEN(S_AXI_ARLEN),
.S_AXI_ARVALID(S_AXI_ARVALID),
.S_AXI_ARREADY(S_AXI_ARREADY),
.S_AXI_RLAST(S_AXI_RLAST),
.S_AXI_RVALID(S_AXI_RVALID),
.S_AXI_RREADY(S_AXI_RREADY),
//// AXI Full/Lite Read Address Signals to BRAM
.S_AXI_RD_EN(rd_en_c)
);
always@(*) begin
num_of_bytes_c = 2**((C_AXI_TYPE == 1 && C_AXI_SLAVE_TYPE == 0)?S_AXI_ARSIZE:0);
total_bytes = (num_of_bytes_r)*(arlen_int_r+1);
wrap_base_addr_r = ((araddr_reg)/(total_bytes==0?1:total_bytes))*(total_bytes);
wrap_boundary_r = wrap_base_addr_r+total_bytes;
//////// combinatorial from interface
arlen_int_c = (C_AXI_TYPE == 0?0:S_AXI_ARLEN);
total_bytes_c = (num_of_bytes_c)*(arlen_int_c+1);
wrap_base_addr_c = ((S_AXI_ARADDR)/(total_bytes_c==0?1:total_bytes_c))*(total_bytes_c);
wrap_boundary_c = wrap_base_addr_c+total_bytes_c;
arburst_int_c = ((C_AXI_TYPE == 1 && C_AXI_SLAVE_TYPE == 0)?S_AXI_ARBURST:1);
end
////-------------------------------------------------------------------------
//// BMG address generation
////-------------------------------------------------------------------------
always @(posedge S_ACLK or S_ARESETN) begin
if (S_ARESETN == 1'b1) begin
araddr_reg <= 0;
arburst_int_r <= 0;
num_of_bytes_r <= 0;
end else begin
if (incr_addr_c == 1'b1 && addr_en_c == 1'b1 && single_trans_c == 1'b0) begin
arburst_int_r <= arburst_int_c;
num_of_bytes_r <= num_of_bytes_c;
if (arburst_int_c == 2'b10) begin
if(S_AXI_ARADDR == (wrap_boundary_c-num_of_bytes_c)) begin
araddr_reg <= wrap_base_addr_c;
end else begin
araddr_reg <= S_AXI_ARADDR + num_of_bytes_c;
end
end else if (arburst_int_c == 2'b01 || arburst_int_c == 2'b11) begin
araddr_reg <= S_AXI_ARADDR + num_of_bytes_c;
end
end else if (addr_en_c == 1'b1) begin
araddr_reg <= S_AXI_ARADDR;
num_of_bytes_r <= num_of_bytes_c;
arburst_int_r <= arburst_int_c;
end else if (incr_addr_c == 1'b1) begin
if (arburst_int_r == 2'b10) begin
if(araddr_reg == (wrap_boundary_r-num_of_bytes_r)) begin
araddr_reg <= wrap_base_addr_r;
end else begin
araddr_reg <= araddr_reg + num_of_bytes_r;
end
end else if (arburst_int_r == 2'b01 || arburst_int_r == 2'b11) begin
araddr_reg <= araddr_reg + num_of_bytes_r;
end
end
end
end
assign araddr_out = ((C_AXI_TYPE == 1 && C_AXI_SLAVE_TYPE == 0)?araddr_reg[C_AXI_ARADDR_WIDTH-1:C_RANGE]:araddr_reg);
////-----------------------------------------------------------------------
//// Counter to generate r_last_int_c from registered ARLEN - AXI FULL FSM
////-----------------------------------------------------------------------
always @(posedge S_ACLK or S_ARESETN) begin
if (S_ARESETN == 1'b1) begin
arlen_cntr <= 8'h01;
arlen_int_r <= 0;
end else begin
if (addr_en_c == 1'b1 && dec_alen_c == 1'b1 && single_trans_c == 1'b0) begin
arlen_int_r <= (C_AXI_TYPE == 0?0:S_AXI_ARLEN) ;
arlen_cntr <= S_AXI_ARLEN - 1'b1;
end else if (addr_en_c == 1'b1) begin
arlen_int_r <= (C_AXI_TYPE == 0?0:S_AXI_ARLEN) ;
arlen_cntr <= (C_AXI_TYPE == 0?0:S_AXI_ARLEN) ;
end else if (dec_alen_c == 1'b1) begin
arlen_cntr <= arlen_cntr - 1'b1 ;
end
else begin
arlen_cntr <= arlen_cntr;
end
end
end
assign r_last_int_c = (arlen_cntr == 0 && S_AXI_RREADY == 1'b1)?1'b1:1'b0;
////------------------------------------------------------------------------
//// AXI FULL FSM
//// Mux Selection of ARADDR
//// ARADDR is driven out from the read fsm based on the mux_sel_c
//// Based on mux_sel either ARADDR is given out or the latched ARADDR is
//// given out to BRAM
////------------------------------------------------------------------------
assign S_AXI_ARADDR_OUT = (mux_sel_c == 1'b0)?((C_AXI_TYPE == 1 && C_AXI_SLAVE_TYPE == 0)?S_AXI_ARADDR[C_AXI_ARADDR_WIDTH-1:C_RANGE]:S_AXI_ARADDR):araddr_out;
////------------------------------------------------------------------------
//// Assign output signals - AXI FULL FSM
////------------------------------------------------------------------------
assign S_AXI_RD_EN = rd_en_c;
generate if (C_HAS_AXI_ID == 1) begin:gaxi_bvalid_id_r
always @(posedge S_ACLK or S_ARESETN) begin
if (S_ARESETN == 1'b1) begin
S_AXI_RID <= 0;
ar_id_r <= 0;
end else begin
if (addr_en_c == 1'b1 && rd_en_c == 1'b1) begin
S_AXI_RID <= S_AXI_ARID;
ar_id_r <= S_AXI_ARID;
end else if (addr_en_c == 1'b1 && rd_en_c == 1'b0) begin
ar_id_r <= S_AXI_ARID;
end else if (rd_en_c == 1'b1) begin
S_AXI_RID <= ar_id_r;
end
end
end
end
endgenerate
endmodule
module blk_mem_axi_regs_fwd_v8_2
#(parameter C_DATA_WIDTH = 8
)(
input ACLK,
input ARESET,
input S_VALID,
output S_READY,
input [C_DATA_WIDTH-1:0] S_PAYLOAD_DATA,
output M_VALID,
input M_READY,
output reg [C_DATA_WIDTH-1:0] M_PAYLOAD_DATA
);
reg [C_DATA_WIDTH-1:0] STORAGE_DATA;
wire S_READY_I;
reg M_VALID_I;
reg [1:0] ARESET_D;
//assign local signal to its output signal
assign S_READY = S_READY_I;
assign M_VALID = M_VALID_I;
always @(posedge ACLK) begin
ARESET_D <= {ARESET_D[0], ARESET};
end
//Save payload data whenever we have a transaction on the slave side
always @(posedge ACLK or ARESET) begin
if (ARESET == 1'b1) begin
STORAGE_DATA <= 0;
end else begin
if(S_VALID == 1'b1 && S_READY_I == 1'b1 ) begin
STORAGE_DATA <= S_PAYLOAD_DATA;
end
end
end
always @(posedge ACLK) begin
M_PAYLOAD_DATA = STORAGE_DATA;
end
//M_Valid set to high when we have a completed transfer on slave side
//Is removed on a M_READY except if we have a new transfer on the slave side
always @(posedge ACLK or ARESET_D) begin
if (ARESET_D != 2'b00) begin
M_VALID_I <= 1'b0;
end else begin
if (S_VALID == 1'b1) begin
//Always set M_VALID_I when slave side is valid
M_VALID_I <= 1'b1;
end else if (M_READY == 1'b1 ) begin
//Clear (or keep) when no slave side is valid but master side is ready
M_VALID_I <= 1'b0;
end
end
end
//Slave Ready is either when Master side drives M_READY or we have space in our storage data
assign S_READY_I = (M_READY || (!M_VALID_I)) && !(|(ARESET_D));
endmodule
//*****************************************************************************
// Output Register Stage module
//
// This module builds the output register stages of the memory. This module is
// instantiated in the main memory module (BLK_MEM_GEN_v8_2) which is
// declared/implemented further down in this file.
//*****************************************************************************
module BLK_MEM_GEN_v8_2_output_stage
#(parameter C_FAMILY = "virtex7",
parameter C_XDEVICEFAMILY = "virtex7",
parameter C_RST_TYPE = "SYNC",
parameter C_HAS_RST = 0,
parameter C_RSTRAM = 0,
parameter C_RST_PRIORITY = "CE",
parameter C_INIT_VAL = "0",
parameter C_HAS_EN = 0,
parameter C_HAS_REGCE = 0,
parameter C_DATA_WIDTH = 32,
parameter C_ADDRB_WIDTH = 10,
parameter C_HAS_MEM_OUTPUT_REGS = 0,
parameter C_USE_SOFTECC = 0,
parameter C_USE_ECC = 0,
parameter NUM_STAGES = 1,
parameter C_EN_ECC_PIPE = 0,
parameter FLOP_DELAY = 100
)
(
input CLK,
input RST,
input EN,
input REGCE,
input [C_DATA_WIDTH-1:0] DIN_I,
output reg [C_DATA_WIDTH-1:0] DOUT,
input SBITERR_IN_I,
input DBITERR_IN_I,
output reg SBITERR,
output reg DBITERR,
input [C_ADDRB_WIDTH-1:0] RDADDRECC_IN_I,
input ECCPIPECE,
output reg [C_ADDRB_WIDTH-1:0] RDADDRECC
);
//******************************
// Port and Generic Definitions
//******************************
//////////////////////////////////////////////////////////////////////////
// Generic Definitions
//////////////////////////////////////////////////////////////////////////
// C_FAMILY,C_XDEVICEFAMILY: Designates architecture targeted. The following
// options are available - "spartan3", "spartan6",
// "virtex4", "virtex5", "virtex6" and "virtex6l".
// C_RST_TYPE : Type of reset - Synchronous or Asynchronous
// C_HAS_RST : Determines the presence of the RST port
// C_RSTRAM : Determines if special reset behavior is used
// C_RST_PRIORITY : Determines the priority between CE and SR
// C_INIT_VAL : Initialization value
// C_HAS_EN : Determines the presence of the EN port
// C_HAS_REGCE : Determines the presence of the REGCE port
// C_DATA_WIDTH : Memory write/read width
// C_ADDRB_WIDTH : Width of the ADDRB input port
// C_HAS_MEM_OUTPUT_REGS : Designates the use of a register at the output
// of the RAM primitive
// C_USE_SOFTECC : Determines if the Soft ECC feature is used or
// not. Only applicable Spartan-6
// C_USE_ECC : Determines if the ECC feature is used or
// not. Only applicable for V5 and V6
// NUM_STAGES : Determines the number of output stages
// FLOP_DELAY : Constant delay for register assignments
//////////////////////////////////////////////////////////////////////////
// Port Definitions
//////////////////////////////////////////////////////////////////////////
// CLK : Clock to synchronize all read and write operations
// RST : Reset input to reset memory outputs to a user-defined
// reset state
// EN : Enable all read and write operations
// REGCE : Register Clock Enable to control each pipeline output
// register stages
// DIN : Data input to the Output stage.
// DOUT : Final Data output
// SBITERR_IN : SBITERR input signal to the Output stage.
// SBITERR : Final SBITERR Output signal.
// DBITERR_IN : DBITERR input signal to the Output stage.
// DBITERR : Final DBITERR Output signal.
// RDADDRECC_IN : RDADDRECC input signal to the Output stage.
// RDADDRECC : Final RDADDRECC Output signal.
//////////////////////////////////////////////////////////////////////////
// Fix for CR-509792
localparam REG_STAGES = (NUM_STAGES < 2) ? 1 : NUM_STAGES-1;
// Declare the pipeline registers
// (includes mem output reg, mux pipeline stages, and mux output reg)
reg [C_DATA_WIDTH*REG_STAGES-1:0] out_regs;
reg [C_ADDRB_WIDTH*REG_STAGES-1:0] rdaddrecc_regs;
reg [REG_STAGES-1:0] sbiterr_regs;
reg [REG_STAGES-1:0] dbiterr_regs;
reg [C_DATA_WIDTH*8-1:0] init_str = C_INIT_VAL;
reg [C_DATA_WIDTH-1:0] init_val ;
//*********************************************
// Wire off optional inputs based on parameters
//*********************************************
wire en_i;
wire regce_i;
wire rst_i;
// Internal signals
reg [C_DATA_WIDTH-1:0] DIN;
reg [C_ADDRB_WIDTH-1:0] RDADDRECC_IN;
reg SBITERR_IN;
reg DBITERR_IN;
// Internal enable for output registers is tied to user EN or '1' depending
// on parameters
assign en_i = (C_HAS_EN==0 || EN);
// Internal register enable for output registers is tied to user REGCE, EN or
// '1' depending on parameters
// For V4 ECC, REGCE is always 1
// Virtex-4 ECC Not Yet Supported
assign regce_i = ((C_HAS_REGCE==1) && REGCE) ||
((C_HAS_REGCE==0) && (C_HAS_EN==0 || EN));
//Internal SRR is tied to user RST or '0' depending on parameters
assign rst_i = (C_HAS_RST==1) && RST;
//****************************************************
// Power on: load up the output registers and latches
//****************************************************
initial begin
if (!($sscanf(init_str, "%h", init_val))) begin
init_val = 0;
end
DOUT = init_val;
RDADDRECC = 0;
SBITERR = 1'b0;
DBITERR = 1'b0;
DIN = {(C_DATA_WIDTH){1'b0}};
RDADDRECC_IN = 0;
SBITERR_IN = 0;
DBITERR_IN = 0;
// This will be one wider than need, but 0 is an error
out_regs = {(REG_STAGES+1){init_val}};
rdaddrecc_regs = 0;
sbiterr_regs = {(REG_STAGES+1){1'b0}};
dbiterr_regs = {(REG_STAGES+1){1'b0}};
end
//***********************************************
// NUM_STAGES = 0 (No output registers. RAM only)
//***********************************************
generate if (NUM_STAGES == 0) begin : zero_stages
always @* begin
DOUT = DIN;
RDADDRECC = RDADDRECC_IN;
SBITERR = SBITERR_IN;
DBITERR = DBITERR_IN;
end
end
endgenerate
generate if (C_EN_ECC_PIPE == 0) begin : no_ecc_pipe_reg
always @* begin
DIN = DIN_I;
SBITERR_IN = SBITERR_IN_I;
DBITERR_IN = DBITERR_IN_I;
RDADDRECC_IN = RDADDRECC_IN_I;
end
end
endgenerate
generate if (C_EN_ECC_PIPE == 1) begin : with_ecc_pipe_reg
always @(posedge CLK) begin
if(ECCPIPECE == 1) begin
DIN <= #FLOP_DELAY DIN_I;
SBITERR_IN <= #FLOP_DELAY SBITERR_IN_I;
DBITERR_IN <= #FLOP_DELAY DBITERR_IN_I;
RDADDRECC_IN <= #FLOP_DELAY RDADDRECC_IN_I;
end
end
end
endgenerate
//***********************************************
// NUM_STAGES = 1
// (Mem Output Reg only or Mux Output Reg only)
//***********************************************
// Possible valid combinations:
// Note: C_HAS_MUX_OUTPUT_REGS_*=0 when (C_RSTRAM_*=1)
// +-----------------------------------------+
// | C_RSTRAM_* | Reset Behavior |
// +----------------+------------------------+
// | 0 | Normal Behavior |
// +----------------+------------------------+
// | 1 | Special Behavior |
// +----------------+------------------------+
//
// Normal = REGCE gates reset, as in the case of all families except S3ADSP.
// Special = EN gates reset, as in the case of S3ADSP.
generate if (NUM_STAGES == 1 &&
(C_RSTRAM == 0 || (C_RSTRAM == 1 && (C_XDEVICEFAMILY != "spartan3adsp" && C_XDEVICEFAMILY != "aspartan3adsp" )) ||
C_HAS_MEM_OUTPUT_REGS == 0 || C_HAS_RST == 0))
begin : one_stages_norm
always @(posedge CLK) begin
if (C_RST_PRIORITY == "CE") begin //REGCE has priority
if (regce_i && rst_i) begin
DOUT <= #FLOP_DELAY init_val;
RDADDRECC <= #FLOP_DELAY 0;
SBITERR <= #FLOP_DELAY 1'b0;
DBITERR <= #FLOP_DELAY 1'b0;
end else if (regce_i) begin
DOUT <= #FLOP_DELAY DIN;
RDADDRECC <= #FLOP_DELAY RDADDRECC_IN;
SBITERR <= #FLOP_DELAY SBITERR_IN;
DBITERR <= #FLOP_DELAY DBITERR_IN;
end //Output signal assignments
end else begin //RST has priority
if (rst_i) begin
DOUT <= #FLOP_DELAY init_val;
RDADDRECC <= #FLOP_DELAY RDADDRECC_IN;
SBITERR <= #FLOP_DELAY 1'b0;
DBITERR <= #FLOP_DELAY 1'b0;
end else if (regce_i) begin
DOUT <= #FLOP_DELAY DIN;
RDADDRECC <= #FLOP_DELAY RDADDRECC_IN;
SBITERR <= #FLOP_DELAY SBITERR_IN;
DBITERR <= #FLOP_DELAY DBITERR_IN;
end //Output signal assignments
end //end Priority conditions
end //end RST Type conditions
end //end one_stages_norm generate statement
endgenerate
// Special Reset Behavior for S3ADSP
generate if (NUM_STAGES == 1 && C_RSTRAM == 1 && (C_XDEVICEFAMILY =="spartan3adsp" || C_XDEVICEFAMILY =="aspartan3adsp"))
begin : one_stage_splbhv
always @(posedge CLK) begin
if (en_i && rst_i) begin
DOUT <= #FLOP_DELAY init_val;
end else if (regce_i && !rst_i) begin
DOUT <= #FLOP_DELAY DIN;
end //Output signal assignments
end //end CLK
end //end one_stage_splbhv generate statement
endgenerate
//************************************************************
// NUM_STAGES > 1
// Mem Output Reg + Mux Output Reg
// or
// Mem Output Reg + Mux Pipeline Stages (>0) + Mux Output Reg
// or
// Mux Pipeline Stages (>0) + Mux Output Reg
//*************************************************************
generate if (NUM_STAGES > 1) begin : multi_stage
//Asynchronous Reset
always @(posedge CLK) begin
if (C_RST_PRIORITY == "CE") begin //REGCE has priority
if (regce_i && rst_i) begin
DOUT <= #FLOP_DELAY init_val;
RDADDRECC <= #FLOP_DELAY 0;
SBITERR <= #FLOP_DELAY 1'b0;
DBITERR <= #FLOP_DELAY 1'b0;
end else if (regce_i) begin
DOUT <= #FLOP_DELAY
out_regs[C_DATA_WIDTH*(NUM_STAGES-2)+:C_DATA_WIDTH];
RDADDRECC <= #FLOP_DELAY rdaddrecc_regs[C_ADDRB_WIDTH*(NUM_STAGES-2)+:C_ADDRB_WIDTH];
SBITERR <= #FLOP_DELAY sbiterr_regs[NUM_STAGES-2];
DBITERR <= #FLOP_DELAY dbiterr_regs[NUM_STAGES-2];
end //Output signal assignments
end else begin //RST has priority
if (rst_i) begin
DOUT <= #FLOP_DELAY init_val;
RDADDRECC <= #FLOP_DELAY 0;
SBITERR <= #FLOP_DELAY 1'b0;
DBITERR <= #FLOP_DELAY 1'b0;
end else if (regce_i) begin
DOUT <= #FLOP_DELAY
out_regs[C_DATA_WIDTH*(NUM_STAGES-2)+:C_DATA_WIDTH];
RDADDRECC <= #FLOP_DELAY rdaddrecc_regs[C_ADDRB_WIDTH*(NUM_STAGES-2)+:C_ADDRB_WIDTH];
SBITERR <= #FLOP_DELAY sbiterr_regs[NUM_STAGES-2];
DBITERR <= #FLOP_DELAY dbiterr_regs[NUM_STAGES-2];
end //Output signal assignments
end //end Priority conditions
// Shift the data through the output stages
if (en_i) begin
out_regs <= #FLOP_DELAY (out_regs << C_DATA_WIDTH) | DIN;
rdaddrecc_regs <= #FLOP_DELAY (rdaddrecc_regs << C_ADDRB_WIDTH) | RDADDRECC_IN;
sbiterr_regs <= #FLOP_DELAY (sbiterr_regs << 1) | SBITERR_IN;
dbiterr_regs <= #FLOP_DELAY (dbiterr_regs << 1) | DBITERR_IN;
end
end //end CLK
end //end multi_stage generate statement
endgenerate
endmodule
module BLK_MEM_GEN_v8_2_softecc_output_reg_stage
#(parameter C_DATA_WIDTH = 32,
parameter C_ADDRB_WIDTH = 10,
parameter C_HAS_SOFTECC_OUTPUT_REGS_B= 0,
parameter C_USE_SOFTECC = 0,
parameter FLOP_DELAY = 100
)
(
input CLK,
input [C_DATA_WIDTH-1:0] DIN,
output reg [C_DATA_WIDTH-1:0] DOUT,
input SBITERR_IN,
input DBITERR_IN,
output reg SBITERR,
output reg DBITERR,
input [C_ADDRB_WIDTH-1:0] RDADDRECC_IN,
output reg [C_ADDRB_WIDTH-1:0] RDADDRECC
);
//******************************
// Port and Generic Definitions
//******************************
//////////////////////////////////////////////////////////////////////////
// Generic Definitions
//////////////////////////////////////////////////////////////////////////
// C_DATA_WIDTH : Memory write/read width
// C_ADDRB_WIDTH : Width of the ADDRB input port
// C_HAS_SOFTECC_OUTPUT_REGS_B : Designates the use of a register at the output
// of the RAM primitive
// C_USE_SOFTECC : Determines if the Soft ECC feature is used or
// not. Only applicable Spartan-6
// FLOP_DELAY : Constant delay for register assignments
//////////////////////////////////////////////////////////////////////////
// Port Definitions
//////////////////////////////////////////////////////////////////////////
// CLK : Clock to synchronize all read and write operations
// DIN : Data input to the Output stage.
// DOUT : Final Data output
// SBITERR_IN : SBITERR input signal to the Output stage.
// SBITERR : Final SBITERR Output signal.
// DBITERR_IN : DBITERR input signal to the Output stage.
// DBITERR : Final DBITERR Output signal.
// RDADDRECC_IN : RDADDRECC input signal to the Output stage.
// RDADDRECC : Final RDADDRECC Output signal.
//////////////////////////////////////////////////////////////////////////
reg [C_DATA_WIDTH-1:0] dout_i = 0;
reg sbiterr_i = 0;
reg dbiterr_i = 0;
reg [C_ADDRB_WIDTH-1:0] rdaddrecc_i = 0;
//***********************************************
// NO OUTPUT REGISTERS.
//***********************************************
generate if (C_HAS_SOFTECC_OUTPUT_REGS_B==0) begin : no_output_stage
always @* begin
DOUT = DIN;
RDADDRECC = RDADDRECC_IN;
SBITERR = SBITERR_IN;
DBITERR = DBITERR_IN;
end
end
endgenerate
//***********************************************
// WITH OUTPUT REGISTERS.
//***********************************************
generate if (C_HAS_SOFTECC_OUTPUT_REGS_B==1) begin : has_output_stage
always @(posedge CLK) begin
dout_i <= #FLOP_DELAY DIN;
rdaddrecc_i <= #FLOP_DELAY RDADDRECC_IN;
sbiterr_i <= #FLOP_DELAY SBITERR_IN;
dbiterr_i <= #FLOP_DELAY DBITERR_IN;
end
always @* begin
DOUT = dout_i;
RDADDRECC = rdaddrecc_i;
SBITERR = sbiterr_i;
DBITERR = dbiterr_i;
end //end always
end //end in_or_out_stage generate statement
endgenerate
endmodule
//*****************************************************************************
// Main Memory module
//
// This module is the top-level behavioral model and this implements the RAM
//*****************************************************************************
module BLK_MEM_GEN_v8_2_mem_module
#(parameter C_CORENAME = "blk_mem_gen_v8_2",
parameter C_FAMILY = "virtex7",
parameter C_XDEVICEFAMILY = "virtex7",
parameter C_MEM_TYPE = 2,
parameter C_BYTE_SIZE = 9,
parameter C_USE_BRAM_BLOCK = 0,
parameter C_ALGORITHM = 1,
parameter C_PRIM_TYPE = 3,
parameter C_LOAD_INIT_FILE = 0,
parameter C_INIT_FILE_NAME = "",
parameter C_INIT_FILE = "",
parameter C_USE_DEFAULT_DATA = 0,
parameter C_DEFAULT_DATA = "0",
parameter C_RST_TYPE = "SYNC",
parameter C_HAS_RSTA = 0,
parameter C_RST_PRIORITY_A = "CE",
parameter C_RSTRAM_A = 0,
parameter C_INITA_VAL = "0",
parameter C_HAS_ENA = 1,
parameter C_HAS_REGCEA = 0,
parameter C_USE_BYTE_WEA = 0,
parameter C_WEA_WIDTH = 1,
parameter C_WRITE_MODE_A = "WRITE_FIRST",
parameter C_WRITE_WIDTH_A = 32,
parameter C_READ_WIDTH_A = 32,
parameter C_WRITE_DEPTH_A = 64,
parameter C_READ_DEPTH_A = 64,
parameter C_ADDRA_WIDTH = 5,
parameter C_HAS_RSTB = 0,
parameter C_RST_PRIORITY_B = "CE",
parameter C_RSTRAM_B = 0,
parameter C_INITB_VAL = "",
parameter C_HAS_ENB = 1,
parameter C_HAS_REGCEB = 0,
parameter C_USE_BYTE_WEB = 0,
parameter C_WEB_WIDTH = 1,
parameter C_WRITE_MODE_B = "WRITE_FIRST",
parameter C_WRITE_WIDTH_B = 32,
parameter C_READ_WIDTH_B = 32,
parameter C_WRITE_DEPTH_B = 64,
parameter C_READ_DEPTH_B = 64,
parameter C_ADDRB_WIDTH = 5,
parameter C_HAS_MEM_OUTPUT_REGS_A = 0,
parameter C_HAS_MEM_OUTPUT_REGS_B = 0,
parameter C_HAS_MUX_OUTPUT_REGS_A = 0,
parameter C_HAS_MUX_OUTPUT_REGS_B = 0,
parameter C_HAS_SOFTECC_INPUT_REGS_A = 0,
parameter C_HAS_SOFTECC_OUTPUT_REGS_B= 0,
parameter C_MUX_PIPELINE_STAGES = 0,
parameter C_USE_SOFTECC = 0,
parameter C_USE_ECC = 0,
parameter C_HAS_INJECTERR = 0,
parameter C_SIM_COLLISION_CHECK = "NONE",
parameter C_COMMON_CLK = 1,
parameter FLOP_DELAY = 100,
parameter C_DISABLE_WARN_BHV_COLL = 0,
parameter C_EN_ECC_PIPE = 0,
parameter C_DISABLE_WARN_BHV_RANGE = 0
)
(input CLKA,
input RSTA,
input ENA,
input REGCEA,
input [C_WEA_WIDTH-1:0] WEA,
input [C_ADDRA_WIDTH-1:0] ADDRA,
input [C_WRITE_WIDTH_A-1:0] DINA,
output [C_READ_WIDTH_A-1:0] DOUTA,
input CLKB,
input RSTB,
input ENB,
input REGCEB,
input [C_WEB_WIDTH-1:0] WEB,
input [C_ADDRB_WIDTH-1:0] ADDRB,
input [C_WRITE_WIDTH_B-1:0] DINB,
output [C_READ_WIDTH_B-1:0] DOUTB,
input INJECTSBITERR,
input INJECTDBITERR,
input ECCPIPECE,
input SLEEP,
output SBITERR,
output DBITERR,
output [C_ADDRB_WIDTH-1:0] RDADDRECC
);
//******************************
// Port and Generic Definitions
//******************************
//////////////////////////////////////////////////////////////////////////
// Generic Definitions
//////////////////////////////////////////////////////////////////////////
// C_CORENAME : Instance name of the Block Memory Generator core
// C_FAMILY,C_XDEVICEFAMILY: Designates architecture targeted. The following
// options are available - "spartan3", "spartan6",
// "virtex4", "virtex5", "virtex6" and "virtex6l".
// C_MEM_TYPE : Designates memory type.
// It can be
// 0 - Single Port Memory
// 1 - Simple Dual Port Memory
// 2 - True Dual Port Memory
// 3 - Single Port Read Only Memory
// 4 - Dual Port Read Only Memory
// C_BYTE_SIZE : Size of a byte (8 or 9 bits)
// C_ALGORITHM : Designates the algorithm method used
// for constructing the memory.
// It can be Fixed_Primitives, Minimum_Area or
// Low_Power
// C_PRIM_TYPE : Designates the user selected primitive used to
// construct the memory.
//
// C_LOAD_INIT_FILE : Designates the use of an initialization file to
// initialize memory contents.
// C_INIT_FILE_NAME : Memory initialization file name.
// C_USE_DEFAULT_DATA : Designates whether to fill remaining
// initialization space with default data
// C_DEFAULT_DATA : Default value of all memory locations
// not initialized by the memory
// initialization file.
// C_RST_TYPE : Type of reset - Synchronous or Asynchronous
// C_HAS_RSTA : Determines the presence of the RSTA port
// C_RST_PRIORITY_A : Determines the priority between CE and SR for
// Port A.
// C_RSTRAM_A : Determines if special reset behavior is used for
// Port A
// C_INITA_VAL : The initialization value for Port A
// C_HAS_ENA : Determines the presence of the ENA port
// C_HAS_REGCEA : Determines the presence of the REGCEA port
// C_USE_BYTE_WEA : Determines if the Byte Write is used or not.
// C_WEA_WIDTH : The width of the WEA port
// C_WRITE_MODE_A : Configurable write mode for Port A. It can be
// WRITE_FIRST, READ_FIRST or NO_CHANGE.
// C_WRITE_WIDTH_A : Memory write width for Port A.
// C_READ_WIDTH_A : Memory read width for Port A.
// C_WRITE_DEPTH_A : Memory write depth for Port A.
// C_READ_DEPTH_A : Memory read depth for Port A.
// C_ADDRA_WIDTH : Width of the ADDRA input port
// C_HAS_RSTB : Determines the presence of the RSTB port
// C_RST_PRIORITY_B : Determines the priority between CE and SR for
// Port B.
// C_RSTRAM_B : Determines if special reset behavior is used for
// Port B
// C_INITB_VAL : The initialization value for Port B
// C_HAS_ENB : Determines the presence of the ENB port
// C_HAS_REGCEB : Determines the presence of the REGCEB port
// C_USE_BYTE_WEB : Determines if the Byte Write is used or not.
// C_WEB_WIDTH : The width of the WEB port
// C_WRITE_MODE_B : Configurable write mode for Port B. It can be
// WRITE_FIRST, READ_FIRST or NO_CHANGE.
// C_WRITE_WIDTH_B : Memory write width for Port B.
// C_READ_WIDTH_B : Memory read width for Port B.
// C_WRITE_DEPTH_B : Memory write depth for Port B.
// C_READ_DEPTH_B : Memory read depth for Port B.
// C_ADDRB_WIDTH : Width of the ADDRB input port
// C_HAS_MEM_OUTPUT_REGS_A : Designates the use of a register at the output
// of the RAM primitive for Port A.
// C_HAS_MEM_OUTPUT_REGS_B : Designates the use of a register at the output
// of the RAM primitive for Port B.
// C_HAS_MUX_OUTPUT_REGS_A : Designates the use of a register at the output
// of the MUX for Port A.
// C_HAS_MUX_OUTPUT_REGS_B : Designates the use of a register at the output
// of the MUX for Port B.
// C_MUX_PIPELINE_STAGES : Designates the number of pipeline stages in
// between the muxes.
// C_USE_SOFTECC : Determines if the Soft ECC feature is used or
// not. Only applicable Spartan-6
// C_USE_ECC : Determines if the ECC feature is used or
// not. Only applicable for V5 and V6
// C_HAS_INJECTERR : Determines if the error injection pins
// are present or not. If the ECC feature
// is not used, this value is defaulted to
// 0, else the following are the allowed
// values:
// 0 : No INJECTSBITERR or INJECTDBITERR pins
// 1 : Only INJECTSBITERR pin exists
// 2 : Only INJECTDBITERR pin exists
// 3 : Both INJECTSBITERR and INJECTDBITERR pins exist
// C_SIM_COLLISION_CHECK : Controls the disabling of Unisim model collision
// warnings. It can be "ALL", "NONE",
// "Warnings_Only" or "Generate_X_Only".
// C_COMMON_CLK : Determins if the core has a single CLK input.
// C_DISABLE_WARN_BHV_COLL : Controls the Behavioral Model Collision warnings
// C_DISABLE_WARN_BHV_RANGE: Controls the Behavioral Model Out of Range
// warnings
//////////////////////////////////////////////////////////////////////////
// Port Definitions
//////////////////////////////////////////////////////////////////////////
// CLKA : Clock to synchronize all read and write operations of Port A.
// RSTA : Reset input to reset memory outputs to a user-defined
// reset state for Port A.
// ENA : Enable all read and write operations of Port A.
// REGCEA : Register Clock Enable to control each pipeline output
// register stages for Port A.
// WEA : Write Enable to enable all write operations of Port A.
// ADDRA : Address of Port A.
// DINA : Data input of Port A.
// DOUTA : Data output of Port A.
// CLKB : Clock to synchronize all read and write operations of Port B.
// RSTB : Reset input to reset memory outputs to a user-defined
// reset state for Port B.
// ENB : Enable all read and write operations of Port B.
// REGCEB : Register Clock Enable to control each pipeline output
// register stages for Port B.
// WEB : Write Enable to enable all write operations of Port B.
// ADDRB : Address of Port B.
// DINB : Data input of Port B.
// DOUTB : Data output of Port B.
// INJECTSBITERR : Single Bit ECC Error Injection Pin.
// INJECTDBITERR : Double Bit ECC Error Injection Pin.
// SBITERR : Output signal indicating that a Single Bit ECC Error has been
// detected and corrected.
// DBITERR : Output signal indicating that a Double Bit ECC Error has been
// detected.
// RDADDRECC : Read Address Output signal indicating address at which an
// ECC error has occurred.
//////////////////////////////////////////////////////////////////////////
// Note: C_CORENAME parameter is hard-coded to "blk_mem_gen_v8_2" and it is
// only used by this module to print warning messages. It is neither passed
// down from blk_mem_gen_v8_2_xst.v nor present in the instantiation template
// coregen generates
//***************************************************************************
// constants for the core behavior
//***************************************************************************
// file handles for logging
//--------------------------------------------------
localparam ADDRFILE = 32'h8000_0001; //stdout for addr out of range
localparam COLLFILE = 32'h8000_0001; //stdout for coll detection
localparam ERRFILE = 32'h8000_0001; //stdout for file I/O errors
// other constants
//--------------------------------------------------
localparam COLL_DELAY = 100; // 100 ps
// locally derived parameters to determine memory shape
//-----------------------------------------------------
localparam CHKBIT_WIDTH = (C_WRITE_WIDTH_A>57 ? 8 : (C_WRITE_WIDTH_A>26 ? 7 : (C_WRITE_WIDTH_A>11 ? 6 : (C_WRITE_WIDTH_A>4 ? 5 : (C_WRITE_WIDTH_A<5 ? 4 :0)))));
localparam MIN_WIDTH_A = (C_WRITE_WIDTH_A < C_READ_WIDTH_A) ?
C_WRITE_WIDTH_A : C_READ_WIDTH_A;
localparam MIN_WIDTH_B = (C_WRITE_WIDTH_B < C_READ_WIDTH_B) ?
C_WRITE_WIDTH_B : C_READ_WIDTH_B;
localparam MIN_WIDTH = (MIN_WIDTH_A < MIN_WIDTH_B) ?
MIN_WIDTH_A : MIN_WIDTH_B;
localparam MAX_DEPTH_A = (C_WRITE_DEPTH_A > C_READ_DEPTH_A) ?
C_WRITE_DEPTH_A : C_READ_DEPTH_A;
localparam MAX_DEPTH_B = (C_WRITE_DEPTH_B > C_READ_DEPTH_B) ?
C_WRITE_DEPTH_B : C_READ_DEPTH_B;
localparam MAX_DEPTH = (MAX_DEPTH_A > MAX_DEPTH_B) ?
MAX_DEPTH_A : MAX_DEPTH_B;
// locally derived parameters to assist memory access
//----------------------------------------------------
// Calculate the width ratios of each port with respect to the narrowest
// port
localparam WRITE_WIDTH_RATIO_A = C_WRITE_WIDTH_A/MIN_WIDTH;
localparam READ_WIDTH_RATIO_A = C_READ_WIDTH_A/MIN_WIDTH;
localparam WRITE_WIDTH_RATIO_B = C_WRITE_WIDTH_B/MIN_WIDTH;
localparam READ_WIDTH_RATIO_B = C_READ_WIDTH_B/MIN_WIDTH;
// To modify the LSBs of the 'wider' data to the actual
// address value
//----------------------------------------------------
localparam WRITE_ADDR_A_DIV = C_WRITE_WIDTH_A/MIN_WIDTH_A;
localparam READ_ADDR_A_DIV = C_READ_WIDTH_A/MIN_WIDTH_A;
localparam WRITE_ADDR_B_DIV = C_WRITE_WIDTH_B/MIN_WIDTH_B;
localparam READ_ADDR_B_DIV = C_READ_WIDTH_B/MIN_WIDTH_B;
// If byte writes aren't being used, make sure BYTE_SIZE is not
// wider than the memory elements to avoid compilation warnings
localparam BYTE_SIZE = (C_BYTE_SIZE < MIN_WIDTH) ? C_BYTE_SIZE : MIN_WIDTH;
// The memory
reg [MIN_WIDTH-1:0] memory [0:MAX_DEPTH-1];
reg [MIN_WIDTH-1:0] temp_mem_array [0:MAX_DEPTH-1];
reg [C_WRITE_WIDTH_A+CHKBIT_WIDTH-1:0] doublebit_error = 3;
// ECC error arrays
reg sbiterr_arr [0:MAX_DEPTH-1];
reg dbiterr_arr [0:MAX_DEPTH-1];
reg softecc_sbiterr_arr [0:MAX_DEPTH-1];
reg softecc_dbiterr_arr [0:MAX_DEPTH-1];
// Memory output 'latches'
reg [C_READ_WIDTH_A-1:0] memory_out_a;
reg [C_READ_WIDTH_B-1:0] memory_out_b;
// ECC error inputs and outputs from output_stage module:
reg sbiterr_in;
wire sbiterr_sdp;
reg dbiterr_in;
wire dbiterr_sdp;
wire [C_READ_WIDTH_B-1:0] dout_i;
wire dbiterr_i;
wire sbiterr_i;
wire [C_ADDRB_WIDTH-1:0] rdaddrecc_i;
reg [C_ADDRB_WIDTH-1:0] rdaddrecc_in;
wire [C_ADDRB_WIDTH-1:0] rdaddrecc_sdp;
// Reset values
reg [C_READ_WIDTH_A-1:0] inita_val;
reg [C_READ_WIDTH_B-1:0] initb_val;
// Collision detect
reg is_collision;
reg is_collision_a, is_collision_delay_a;
reg is_collision_b, is_collision_delay_b;
// Temporary variables for initialization
//---------------------------------------
integer status;
integer initfile;
integer meminitfile;
// data input buffer
reg [C_WRITE_WIDTH_A-1:0] mif_data;
reg [C_WRITE_WIDTH_A-1:0] mem_data;
// string values in hex
reg [C_READ_WIDTH_A*8-1:0] inita_str = C_INITA_VAL;
reg [C_READ_WIDTH_B*8-1:0] initb_str = C_INITB_VAL;
reg [C_WRITE_WIDTH_A*8-1:0] default_data_str = C_DEFAULT_DATA;
// initialization filename
reg [1023*8-1:0] init_file_str = C_INIT_FILE_NAME;
reg [1023*8-1:0] mem_init_file_str = C_INIT_FILE;
//Constants used to calculate the effective address widths for each of the
//four ports.
integer cnt = 1;
integer write_addr_a_width, read_addr_a_width;
integer write_addr_b_width, read_addr_b_width;
localparam C_FAMILY_LOCALPARAM = (C_FAMILY=="virtexu"?"virtex7":(C_FAMILY=="kintexu" ? "virtex7":(C_FAMILY=="virtex7" ? "virtex7" : (C_FAMILY=="virtex7l" ? "virtex7" : (C_FAMILY=="qvirtex7" ? "virtex7" : (C_FAMILY=="qvirtex7l" ? "virtex7" : (C_FAMILY=="kintex7" ? "virtex7" : (C_FAMILY=="kintex7l" ? "virtex7" : (C_FAMILY=="qkintex7" ? "virtex7" : (C_FAMILY=="qkintex7l" ? "virtex7" : (C_FAMILY=="artix7" ? "virtex7" : (C_FAMILY=="artix7l" ? "virtex7" : (C_FAMILY=="qartix7" ? "virtex7" : (C_FAMILY=="qartix7l" ? "virtex7" : (C_FAMILY=="aartix7" ? "virtex7" : (C_FAMILY=="zynq" ? "virtex7" : (C_FAMILY=="azynq" ? "virtex7" : (C_FAMILY=="qzynq" ? "virtex7" : C_FAMILY))))))))))))))))));
// Internal configuration parameters
//---------------------------------------------
localparam SINGLE_PORT = (C_MEM_TYPE==0 || C_MEM_TYPE==3);
localparam IS_ROM = (C_MEM_TYPE==3 || C_MEM_TYPE==4);
localparam HAS_A_WRITE = (!IS_ROM);
localparam HAS_B_WRITE = (C_MEM_TYPE==2);
localparam HAS_A_READ = (C_MEM_TYPE!=1);
localparam HAS_B_READ = (!SINGLE_PORT);
localparam HAS_B_PORT = (HAS_B_READ || HAS_B_WRITE);
// Calculate the mux pipeline register stages for Port A and Port B
//------------------------------------------------------------------
localparam MUX_PIPELINE_STAGES_A = (C_HAS_MUX_OUTPUT_REGS_A) ?
C_MUX_PIPELINE_STAGES : 0;
localparam MUX_PIPELINE_STAGES_B = (C_HAS_MUX_OUTPUT_REGS_B) ?
C_MUX_PIPELINE_STAGES : 0;
// Calculate total number of register stages in the core
// -----------------------------------------------------
localparam NUM_OUTPUT_STAGES_A = (C_HAS_MEM_OUTPUT_REGS_A+MUX_PIPELINE_STAGES_A+C_HAS_MUX_OUTPUT_REGS_A);
localparam NUM_OUTPUT_STAGES_B = (C_HAS_MEM_OUTPUT_REGS_B+MUX_PIPELINE_STAGES_B+C_HAS_MUX_OUTPUT_REGS_B);
wire ena_i;
wire enb_i;
wire reseta_i;
wire resetb_i;
wire [C_WEA_WIDTH-1:0] wea_i;
wire [C_WEB_WIDTH-1:0] web_i;
wire rea_i;
wire reb_i;
wire rsta_outp_stage;
wire rstb_outp_stage;
// ECC SBITERR/DBITERR Outputs
// The ECC Behavior is modeled by the behavioral models only for Virtex-6.
// For Virtex-5, these outputs will be tied to 0.
assign SBITERR = ((C_MEM_TYPE == 1 && C_USE_ECC == 1) || C_USE_SOFTECC == 1)?sbiterr_sdp:0;
assign DBITERR = ((C_MEM_TYPE == 1 && C_USE_ECC == 1) || C_USE_SOFTECC == 1)?dbiterr_sdp:0;
assign RDADDRECC = (((C_FAMILY_LOCALPARAM == "virtex7") && C_MEM_TYPE == 1 && C_USE_ECC == 1) || C_USE_SOFTECC == 1)?rdaddrecc_sdp:0;
// This effectively wires off optional inputs
assign ena_i = (C_HAS_ENA==0) || ENA;
assign enb_i = ((C_HAS_ENB==0) || ENB) && HAS_B_PORT;
assign wea_i = (HAS_A_WRITE && ena_i) ? WEA : 'b0;
assign web_i = (HAS_B_WRITE && enb_i) ? WEB : 'b0;
assign rea_i = (HAS_A_READ) ? ena_i : 'b0;
assign reb_i = (HAS_B_READ) ? enb_i : 'b0;
// These signals reset the memory latches
assign reseta_i =
((C_HAS_RSTA==1 && RSTA && NUM_OUTPUT_STAGES_A==0) ||
(C_HAS_RSTA==1 && RSTA && C_RSTRAM_A==1));
assign resetb_i =
((C_HAS_RSTB==1 && RSTB && NUM_OUTPUT_STAGES_B==0) ||
(C_HAS_RSTB==1 && RSTB && C_RSTRAM_B==1));
// Tasks to access the memory
//---------------------------
//**************
// write_a
//**************
task write_a
(input reg [C_ADDRA_WIDTH-1:0] addr,
input reg [C_WEA_WIDTH-1:0] byte_en,
input reg [C_WRITE_WIDTH_A-1:0] data,
input inj_sbiterr,
input inj_dbiterr);
reg [C_WRITE_WIDTH_A-1:0] current_contents;
reg [C_ADDRA_WIDTH-1:0] address;
integer i;
begin
// Shift the address by the ratio
address = (addr/WRITE_ADDR_A_DIV);
if (address >= C_WRITE_DEPTH_A) begin
if (!C_DISABLE_WARN_BHV_RANGE) begin
$fdisplay(ADDRFILE,
"%0s WARNING: Address %0h is outside range for A Write",
C_CORENAME, addr);
end
// valid address
end else begin
// Combine w/ byte writes
if (C_USE_BYTE_WEA) begin
// Get the current memory contents
if (WRITE_WIDTH_RATIO_A == 1) begin
// Workaround for IUS 5.5 part-select issue
current_contents = memory[address];
end else begin
for (i = 0; i < WRITE_WIDTH_RATIO_A; i = i + 1) begin
current_contents[MIN_WIDTH*i+:MIN_WIDTH]
= memory[address*WRITE_WIDTH_RATIO_A + i];
end
end
// Apply incoming bytes
if (C_WEA_WIDTH == 1) begin
// Workaround for IUS 5.5 part-select issue
if (byte_en[0]) begin
current_contents = data;
end
end else begin
for (i = 0; i < C_WEA_WIDTH; i = i + 1) begin
if (byte_en[i]) begin
current_contents[BYTE_SIZE*i+:BYTE_SIZE]
= data[BYTE_SIZE*i+:BYTE_SIZE];
end
end
end
// No byte-writes, overwrite the whole word
end else begin
current_contents = data;
end
// Insert double bit errors:
if (C_USE_ECC == 1) begin
if ((C_HAS_INJECTERR == 2 || C_HAS_INJECTERR == 3) && inj_dbiterr == 1'b1) begin
current_contents[0] = !(current_contents[0]);
current_contents[1] = !(current_contents[1]);
end
end
// Insert softecc double bit errors:
if (C_USE_SOFTECC == 1) begin
if ((C_HAS_INJECTERR == 2 || C_HAS_INJECTERR == 3) && inj_dbiterr == 1'b1) begin
doublebit_error[C_WRITE_WIDTH_A+CHKBIT_WIDTH-1:2] = doublebit_error[C_WRITE_WIDTH_A+CHKBIT_WIDTH-3:0];
doublebit_error[0] = doublebit_error[C_WRITE_WIDTH_A+CHKBIT_WIDTH-1];
doublebit_error[1] = doublebit_error[C_WRITE_WIDTH_A+CHKBIT_WIDTH-2];
current_contents = current_contents ^ doublebit_error[C_WRITE_WIDTH_A-1:0];
end
end
// Write data to memory
if (WRITE_WIDTH_RATIO_A == 1) begin
// Workaround for IUS 5.5 part-select issue
memory[address*WRITE_WIDTH_RATIO_A] = current_contents;
end else begin
for (i = 0; i < WRITE_WIDTH_RATIO_A; i = i + 1) begin
memory[address*WRITE_WIDTH_RATIO_A + i]
= current_contents[MIN_WIDTH*i+:MIN_WIDTH];
end
end
// Store the address at which error is injected:
if ((C_FAMILY_LOCALPARAM == "virtex7") && C_USE_ECC == 1) begin
if ((C_HAS_INJECTERR == 1 && inj_sbiterr == 1'b1) ||
(C_HAS_INJECTERR == 3 && inj_sbiterr == 1'b1 && inj_dbiterr != 1'b1))
begin
sbiterr_arr[addr] = 1;
end else begin
sbiterr_arr[addr] = 0;
end
if ((C_HAS_INJECTERR == 2 || C_HAS_INJECTERR == 3) && inj_dbiterr == 1'b1) begin
dbiterr_arr[addr] = 1;
end else begin
dbiterr_arr[addr] = 0;
end
end
// Store the address at which softecc error is injected:
if (C_USE_SOFTECC == 1) begin
if ((C_HAS_INJECTERR == 1 && inj_sbiterr == 1'b1) ||
(C_HAS_INJECTERR == 3 && inj_sbiterr == 1'b1 && inj_dbiterr != 1'b1))
begin
softecc_sbiterr_arr[addr] = 1;
end else begin
softecc_sbiterr_arr[addr] = 0;
end
if ((C_HAS_INJECTERR == 2 || C_HAS_INJECTERR == 3) && inj_dbiterr == 1'b1) begin
softecc_dbiterr_arr[addr] = 1;
end else begin
softecc_dbiterr_arr[addr] = 0;
end
end
end
end
endtask
//**************
// write_b
//**************
task write_b
(input reg [C_ADDRB_WIDTH-1:0] addr,
input reg [C_WEB_WIDTH-1:0] byte_en,
input reg [C_WRITE_WIDTH_B-1:0] data);
reg [C_WRITE_WIDTH_B-1:0] current_contents;
reg [C_ADDRB_WIDTH-1:0] address;
integer i;
begin
// Shift the address by the ratio
address = (addr/WRITE_ADDR_B_DIV);
if (address >= C_WRITE_DEPTH_B) begin
if (!C_DISABLE_WARN_BHV_RANGE) begin
$fdisplay(ADDRFILE,
"%0s WARNING: Address %0h is outside range for B Write",
C_CORENAME, addr);
end
// valid address
end else begin
// Combine w/ byte writes
if (C_USE_BYTE_WEB) begin
// Get the current memory contents
if (WRITE_WIDTH_RATIO_B == 1) begin
// Workaround for IUS 5.5 part-select issue
current_contents = memory[address];
end else begin
for (i = 0; i < WRITE_WIDTH_RATIO_B; i = i + 1) begin
current_contents[MIN_WIDTH*i+:MIN_WIDTH]
= memory[address*WRITE_WIDTH_RATIO_B + i];
end
end
// Apply incoming bytes
if (C_WEB_WIDTH == 1) begin
// Workaround for IUS 5.5 part-select issue
if (byte_en[0]) begin
current_contents = data;
end
end else begin
for (i = 0; i < C_WEB_WIDTH; i = i + 1) begin
if (byte_en[i]) begin
current_contents[BYTE_SIZE*i+:BYTE_SIZE]
= data[BYTE_SIZE*i+:BYTE_SIZE];
end
end
end
// No byte-writes, overwrite the whole word
end else begin
current_contents = data;
end
// Write data to memory
if (WRITE_WIDTH_RATIO_B == 1) begin
// Workaround for IUS 5.5 part-select issue
memory[address*WRITE_WIDTH_RATIO_B] = current_contents;
end else begin
for (i = 0; i < WRITE_WIDTH_RATIO_B; i = i + 1) begin
memory[address*WRITE_WIDTH_RATIO_B + i]
= current_contents[MIN_WIDTH*i+:MIN_WIDTH];
end
end
end
end
endtask
//**************
// read_a
//**************
task read_a
(input reg [C_ADDRA_WIDTH-1:0] addr,
input reg reset);
reg [C_ADDRA_WIDTH-1:0] address;
integer i;
begin
if (reset) begin
memory_out_a <= #FLOP_DELAY inita_val;
end else begin
// Shift the address by the ratio
address = (addr/READ_ADDR_A_DIV);
if (address >= C_READ_DEPTH_A) begin
if (!C_DISABLE_WARN_BHV_RANGE) begin
$fdisplay(ADDRFILE,
"%0s WARNING: Address %0h is outside range for A Read",
C_CORENAME, addr);
end
memory_out_a <= #FLOP_DELAY 'bX;
// valid address
end else begin
if (READ_WIDTH_RATIO_A==1) begin
memory_out_a <= #FLOP_DELAY memory[address*READ_WIDTH_RATIO_A];
end else begin
// Increment through the 'partial' words in the memory
for (i = 0; i < READ_WIDTH_RATIO_A; i = i + 1) begin
memory_out_a[MIN_WIDTH*i+:MIN_WIDTH]
<= #FLOP_DELAY memory[address*READ_WIDTH_RATIO_A + i];
end
end //end READ_WIDTH_RATIO_A==1 loop
end //end valid address loop
end //end reset-data assignment loops
end
endtask
//**************
// read_b
//**************
task read_b
(input reg [C_ADDRB_WIDTH-1:0] addr,
input reg reset);
reg [C_ADDRB_WIDTH-1:0] address;
integer i;
begin
if (reset) begin
memory_out_b <= #FLOP_DELAY initb_val;
sbiterr_in <= #FLOP_DELAY 1'b0;
dbiterr_in <= #FLOP_DELAY 1'b0;
rdaddrecc_in <= #FLOP_DELAY 0;
end else begin
// Shift the address
address = (addr/READ_ADDR_B_DIV);
if (address >= C_READ_DEPTH_B) begin
if (!C_DISABLE_WARN_BHV_RANGE) begin
$fdisplay(ADDRFILE,
"%0s WARNING: Address %0h is outside range for B Read",
C_CORENAME, addr);
end
memory_out_b <= #FLOP_DELAY 'bX;
sbiterr_in <= #FLOP_DELAY 1'bX;
dbiterr_in <= #FLOP_DELAY 1'bX;
rdaddrecc_in <= #FLOP_DELAY 'bX;
// valid address
end else begin
if (READ_WIDTH_RATIO_B==1) begin
memory_out_b <= #FLOP_DELAY memory[address*READ_WIDTH_RATIO_B];
end else begin
// Increment through the 'partial' words in the memory
for (i = 0; i < READ_WIDTH_RATIO_B; i = i + 1) begin
memory_out_b[MIN_WIDTH*i+:MIN_WIDTH]
<= #FLOP_DELAY memory[address*READ_WIDTH_RATIO_B + i];
end
end
if ((C_FAMILY_LOCALPARAM == "virtex7") && C_USE_ECC == 1) begin
rdaddrecc_in <= #FLOP_DELAY addr;
if (sbiterr_arr[addr] == 1) begin
sbiterr_in <= #FLOP_DELAY 1'b1;
end else begin
sbiterr_in <= #FLOP_DELAY 1'b0;
end
if (dbiterr_arr[addr] == 1) begin
dbiterr_in <= #FLOP_DELAY 1'b1;
end else begin
dbiterr_in <= #FLOP_DELAY 1'b0;
end
end else if (C_USE_SOFTECC == 1) begin
rdaddrecc_in <= #FLOP_DELAY addr;
if (softecc_sbiterr_arr[addr] == 1) begin
sbiterr_in <= #FLOP_DELAY 1'b1;
end else begin
sbiterr_in <= #FLOP_DELAY 1'b0;
end
if (softecc_dbiterr_arr[addr] == 1) begin
dbiterr_in <= #FLOP_DELAY 1'b1;
end else begin
dbiterr_in <= #FLOP_DELAY 1'b0;
end
end else begin
rdaddrecc_in <= #FLOP_DELAY 0;
dbiterr_in <= #FLOP_DELAY 1'b0;
sbiterr_in <= #FLOP_DELAY 1'b0;
end //end SOFTECC Loop
end //end Valid address loop
end //end reset-data assignment loops
end
endtask
//**************
// reset_a
//**************
task reset_a (input reg reset);
begin
if (reset) memory_out_a <= #FLOP_DELAY inita_val;
end
endtask
//**************
// reset_b
//**************
task reset_b (input reg reset);
begin
if (reset) memory_out_b <= #FLOP_DELAY initb_val;
end
endtask
//**************
// init_memory
//**************
task init_memory;
integer i, j, addr_step;
integer status;
reg [C_WRITE_WIDTH_A-1:0] default_data;
begin
default_data = 0;
//Display output message indicating that the behavioral model is being
//initialized
if (C_USE_DEFAULT_DATA || C_LOAD_INIT_FILE) $display(" Block Memory Generator module loading initial data...");
// Convert the default to hex
if (C_USE_DEFAULT_DATA) begin
if (default_data_str == "") begin
$fdisplay(ERRFILE, "%0s ERROR: C_DEFAULT_DATA is empty!", C_CORENAME);
$finish;
end else begin
status = $sscanf(default_data_str, "%h", default_data);
if (status == 0) begin
$fdisplay(ERRFILE, {"%0s ERROR: Unsuccessful hexadecimal read",
"from C_DEFAULT_DATA: %0s"},
C_CORENAME, C_DEFAULT_DATA);
$finish;
end
end
end
// Step by WRITE_ADDR_A_DIV through the memory via the
// Port A write interface to hit every location once
addr_step = WRITE_ADDR_A_DIV;
// 'write' to every location with default (or 0)
for (i = 0; i < C_WRITE_DEPTH_A*addr_step; i = i + addr_step) begin
write_a(i, {C_WEA_WIDTH{1'b1}}, default_data, 1'b0, 1'b0);
end
// Get specialized data from the MIF file
if (C_LOAD_INIT_FILE) begin
if (init_file_str == "") begin
$fdisplay(ERRFILE, "%0s ERROR: C_INIT_FILE_NAME is empty!",
C_CORENAME);
$finish;
end else begin
initfile = $fopen(init_file_str, "r");
if (initfile == 0) begin
$fdisplay(ERRFILE, {"%0s, ERROR: Problem opening",
"C_INIT_FILE_NAME: %0s!"},
C_CORENAME, init_file_str);
$finish;
end else begin
// loop through the mif file, loading in the data
for (i = 0; i < C_WRITE_DEPTH_A*addr_step; i = i + addr_step) begin
status = $fscanf(initfile, "%b", mif_data);
if (status > 0) begin
write_a(i, {C_WEA_WIDTH{1'b1}}, mif_data, 1'b0, 1'b0);
end
end
$fclose(initfile);
end //initfile
end //init_file_str
end //C_LOAD_INIT_FILE
if (C_USE_BRAM_BLOCK) begin
// Get specialized data from the MIF file
if (C_INIT_FILE != "NONE") begin
if (mem_init_file_str == "") begin
$fdisplay(ERRFILE, "%0s ERROR: C_INIT_FILE is empty!",
C_CORENAME);
$finish;
end else begin
meminitfile = $fopen(mem_init_file_str, "r");
if (meminitfile == 0) begin
$fdisplay(ERRFILE, {"%0s, ERROR: Problem opening",
"C_INIT_FILE: %0s!"},
C_CORENAME, mem_init_file_str);
$finish;
end else begin
// loop through the mif file, loading in the data
$readmemh(mem_init_file_str, memory );
for (j = 0; j < MAX_DEPTH-1 ; j = j + 1) begin
end
$fclose(meminitfile);
end //meminitfile
end //mem_init_file_str
end //C_INIT_FILE
end //C_USE_BRAM_BLOCK
//Display output message indicating that the behavioral model is done
//initializing
if (C_USE_DEFAULT_DATA || C_LOAD_INIT_FILE)
$display(" Block Memory Generator data initialization complete.");
end
endtask
//**************
// log2roundup
//**************
function integer log2roundup (input integer data_value);
integer width;
integer cnt;
begin
width = 0;
if (data_value > 1) begin
for(cnt=1 ; cnt < data_value ; cnt = cnt * 2) begin
width = width + 1;
end //loop
end //if
log2roundup = width;
end //log2roundup
endfunction
//*******************
// collision_check
//*******************
function integer collision_check (input reg [C_ADDRA_WIDTH-1:0] addr_a,
input integer iswrite_a,
input reg [C_ADDRB_WIDTH-1:0] addr_b,
input integer iswrite_b);
reg c_aw_bw, c_aw_br, c_ar_bw;
integer scaled_addra_to_waddrb_width;
integer scaled_addrb_to_waddrb_width;
integer scaled_addra_to_waddra_width;
integer scaled_addrb_to_waddra_width;
integer scaled_addra_to_raddrb_width;
integer scaled_addrb_to_raddrb_width;
integer scaled_addra_to_raddra_width;
integer scaled_addrb_to_raddra_width;
begin
c_aw_bw = 0;
c_aw_br = 0;
c_ar_bw = 0;
//If write_addr_b_width is smaller, scale both addresses to that width for
//comparing write_addr_a and write_addr_b; addr_a starts as C_ADDRA_WIDTH,
//scale it down to write_addr_b_width. addr_b starts as C_ADDRB_WIDTH,
//scale it down to write_addr_b_width. Once both are scaled to
//write_addr_b_width, compare.
scaled_addra_to_waddrb_width = ((addr_a)/
2**(C_ADDRA_WIDTH-write_addr_b_width));
scaled_addrb_to_waddrb_width = ((addr_b)/
2**(C_ADDRB_WIDTH-write_addr_b_width));
//If write_addr_a_width is smaller, scale both addresses to that width for
//comparing write_addr_a and write_addr_b; addr_a starts as C_ADDRA_WIDTH,
//scale it down to write_addr_a_width. addr_b starts as C_ADDRB_WIDTH,
//scale it down to write_addr_a_width. Once both are scaled to
//write_addr_a_width, compare.
scaled_addra_to_waddra_width = ((addr_a)/
2**(C_ADDRA_WIDTH-write_addr_a_width));
scaled_addrb_to_waddra_width = ((addr_b)/
2**(C_ADDRB_WIDTH-write_addr_a_width));
//If read_addr_b_width is smaller, scale both addresses to that width for
//comparing write_addr_a and read_addr_b; addr_a starts as C_ADDRA_WIDTH,
//scale it down to read_addr_b_width. addr_b starts as C_ADDRB_WIDTH,
//scale it down to read_addr_b_width. Once both are scaled to
//read_addr_b_width, compare.
scaled_addra_to_raddrb_width = ((addr_a)/
2**(C_ADDRA_WIDTH-read_addr_b_width));
scaled_addrb_to_raddrb_width = ((addr_b)/
2**(C_ADDRB_WIDTH-read_addr_b_width));
//If read_addr_a_width is smaller, scale both addresses to that width for
//comparing read_addr_a and write_addr_b; addr_a starts as C_ADDRA_WIDTH,
//scale it down to read_addr_a_width. addr_b starts as C_ADDRB_WIDTH,
//scale it down to read_addr_a_width. Once both are scaled to
//read_addr_a_width, compare.
scaled_addra_to_raddra_width = ((addr_a)/
2**(C_ADDRA_WIDTH-read_addr_a_width));
scaled_addrb_to_raddra_width = ((addr_b)/
2**(C_ADDRB_WIDTH-read_addr_a_width));
//Look for a write-write collision. In order for a write-write
//collision to exist, both ports must have a write transaction.
if (iswrite_a && iswrite_b) begin
if (write_addr_a_width > write_addr_b_width) begin
if (scaled_addra_to_waddrb_width == scaled_addrb_to_waddrb_width) begin
c_aw_bw = 1;
end else begin
c_aw_bw = 0;
end
end else begin
if (scaled_addrb_to_waddra_width == scaled_addra_to_waddra_width) begin
c_aw_bw = 1;
end else begin
c_aw_bw = 0;
end
end //width
end //iswrite_a and iswrite_b
//If the B port is reading (which means it is enabled - so could be
//a TX_WRITE or TX_READ), then check for a write-read collision).
//This could happen whether or not a write-write collision exists due
//to asymmetric write/read ports.
if (iswrite_a) begin
if (write_addr_a_width > read_addr_b_width) begin
if (scaled_addra_to_raddrb_width == scaled_addrb_to_raddrb_width) begin
c_aw_br = 1;
end else begin
c_aw_br = 0;
end
end else begin
if (scaled_addrb_to_waddra_width == scaled_addra_to_waddra_width) begin
c_aw_br = 1;
end else begin
c_aw_br = 0;
end
end //width
end //iswrite_a
//If the A port is reading (which means it is enabled - so could be
// a TX_WRITE or TX_READ), then check for a write-read collision).
//This could happen whether or not a write-write collision exists due
// to asymmetric write/read ports.
if (iswrite_b) begin
if (read_addr_a_width > write_addr_b_width) begin
if (scaled_addra_to_waddrb_width == scaled_addrb_to_waddrb_width) begin
c_ar_bw = 1;
end else begin
c_ar_bw = 0;
end
end else begin
if (scaled_addrb_to_raddra_width == scaled_addra_to_raddra_width) begin
c_ar_bw = 1;
end else begin
c_ar_bw = 0;
end
end //width
end //iswrite_b
collision_check = c_aw_bw | c_aw_br | c_ar_bw;
end
endfunction
//*******************************
// power on values
//*******************************
initial begin
// Load up the memory
init_memory;
// Load up the output registers and latches
if ($sscanf(inita_str, "%h", inita_val)) begin
memory_out_a = inita_val;
end else begin
memory_out_a = 0;
end
if ($sscanf(initb_str, "%h", initb_val)) begin
memory_out_b = initb_val;
end else begin
memory_out_b = 0;
end
sbiterr_in = 1'b0;
dbiterr_in = 1'b0;
rdaddrecc_in = 0;
// Determine the effective address widths for each of the 4 ports
write_addr_a_width = C_ADDRA_WIDTH - log2roundup(WRITE_ADDR_A_DIV);
read_addr_a_width = C_ADDRA_WIDTH - log2roundup(READ_ADDR_A_DIV);
write_addr_b_width = C_ADDRB_WIDTH - log2roundup(WRITE_ADDR_B_DIV);
read_addr_b_width = C_ADDRB_WIDTH - log2roundup(READ_ADDR_B_DIV);
$display("Block Memory Generator module %m is using a behavioral model for simulation which will not precisely model memory collision behavior.");
end
//***************************************************************************
// These are the main blocks which schedule read and write operations
// Note that the reset priority feature at the latch stage is only supported
// for Spartan-6. For other families, the default priority at the latch stage
// is "CE"
//***************************************************************************
// Synchronous clocks: schedule port operations with respect to
// both write operating modes
generate
if(C_COMMON_CLK && (C_WRITE_MODE_A == "WRITE_FIRST") && (C_WRITE_MODE_B ==
"WRITE_FIRST")) begin : com_clk_sched_wf_wf
always @(posedge CLKA) begin
//Write A
if (wea_i) write_a(ADDRA, wea_i, DINA, INJECTSBITERR, INJECTDBITERR);
//Write B
if (web_i) write_b(ADDRB, web_i, DINB);
if (rea_i) read_a(ADDRA, reseta_i);
//Read B
if (reb_i) read_b(ADDRB, resetb_i);
end
end
else
if(C_COMMON_CLK && (C_WRITE_MODE_A == "READ_FIRST") && (C_WRITE_MODE_B ==
"WRITE_FIRST")) begin : com_clk_sched_rf_wf
always @(posedge CLKA) begin
//Write B
if (web_i) write_b(ADDRB, web_i, DINB);
//Read B
if (reb_i) read_b(ADDRB, resetb_i);
//Read A
if (rea_i) read_a(ADDRA, reseta_i);
//Write A
if (wea_i) write_a(ADDRA, wea_i, DINA, INJECTSBITERR, INJECTDBITERR);
end
end
else
if(C_COMMON_CLK && (C_WRITE_MODE_A == "WRITE_FIRST") && (C_WRITE_MODE_B ==
"READ_FIRST")) begin : com_clk_sched_wf_rf
always @(posedge CLKA) begin
//Write A
if (wea_i) write_a(ADDRA, wea_i, DINA, INJECTSBITERR, INJECTDBITERR);
//Read A
if (rea_i) read_a(ADDRA, reseta_i);
//Read B
if (reb_i) read_b(ADDRB, resetb_i);
//Write B
if (web_i) write_b(ADDRB, web_i, DINB);
end
end
else
if(C_COMMON_CLK && (C_WRITE_MODE_A == "READ_FIRST") && (C_WRITE_MODE_B ==
"READ_FIRST")) begin : com_clk_sched_rf_rf
always @(posedge CLKA) begin
//Read A
if (rea_i) read_a(ADDRA, reseta_i);
//Read B
if (reb_i) read_b(ADDRB, resetb_i);
//Write A
if (wea_i) write_a(ADDRA, wea_i, DINA, INJECTSBITERR, INJECTDBITERR);
//Write B
if (web_i) write_b(ADDRB, web_i, DINB);
end
end
else if(C_COMMON_CLK && (C_WRITE_MODE_A =="WRITE_FIRST") && (C_WRITE_MODE_B ==
"NO_CHANGE")) begin : com_clk_sched_wf_nc
always @(posedge CLKA) begin
//Write A
if (wea_i) write_a(ADDRA, wea_i, DINA, INJECTSBITERR, INJECTDBITERR);
//Read A
if (rea_i) read_a(ADDRA, reseta_i);
//Read B
if (reb_i && (!web_i || resetb_i)) read_b(ADDRB, resetb_i);
//Write B
if (web_i) write_b(ADDRB, web_i, DINB);
end
end
else if(C_COMMON_CLK && (C_WRITE_MODE_A =="READ_FIRST") && (C_WRITE_MODE_B ==
"NO_CHANGE")) begin : com_clk_sched_rf_nc
always @(posedge CLKA) begin
//Read A
if (rea_i) read_a(ADDRA, reseta_i);
//Read B
if (reb_i && (!web_i || resetb_i)) read_b(ADDRB, resetb_i);
//Write A
if (wea_i) write_a(ADDRA, wea_i, DINA, INJECTSBITERR, INJECTDBITERR);
//Write B
if (web_i) write_b(ADDRB, web_i, DINB);
end
end
else if(C_COMMON_CLK && (C_WRITE_MODE_A =="NO_CHANGE") && (C_WRITE_MODE_B ==
"WRITE_FIRST")) begin : com_clk_sched_nc_wf
always @(posedge CLKA) begin
//Write A
if (wea_i) write_a(ADDRA, wea_i, DINA, INJECTSBITERR, INJECTDBITERR);
//Write B
if (web_i) write_b(ADDRB, web_i, DINB);
//Read A
if (rea_i && (!wea_i || reseta_i)) read_a(ADDRA, reseta_i);
//Read B
if (reb_i) read_b(ADDRB, resetb_i);
end
end
else if(C_COMMON_CLK && (C_WRITE_MODE_A =="NO_CHANGE") && (C_WRITE_MODE_B ==
"READ_FIRST")) begin : com_clk_sched_nc_rf
always @(posedge CLKA) begin
//Read B
if (reb_i) read_b(ADDRB, resetb_i);
//Read A
if (rea_i && (!wea_i || reseta_i)) read_a(ADDRA, reseta_i);
//Write A
if (wea_i) write_a(ADDRA, wea_i, DINA, INJECTSBITERR, INJECTDBITERR);
//Write B
if (web_i) write_b(ADDRB, web_i, DINB);
end
end
else if(C_COMMON_CLK && (C_WRITE_MODE_A =="NO_CHANGE") && (C_WRITE_MODE_B ==
"NO_CHANGE")) begin : com_clk_sched_nc_nc
always @(posedge CLKA) begin
//Write A
if (wea_i) write_a(ADDRA, wea_i, DINA, INJECTSBITERR, INJECTDBITERR);
//Write B
if (web_i) write_b(ADDRB, web_i, DINB);
//Read A
if (rea_i && (!wea_i || reseta_i)) read_a(ADDRA, reseta_i);
//Read B
if (reb_i && (!web_i || resetb_i)) read_b(ADDRB, resetb_i);
end
end
else if(C_COMMON_CLK) begin: com_clk_sched_default
always @(posedge CLKA) begin
//Write A
if (wea_i) write_a(ADDRA, wea_i, DINA, INJECTSBITERR, INJECTDBITERR);
//Write B
if (web_i) write_b(ADDRB, web_i, DINB);
//Read A
if (rea_i) read_a(ADDRA, reseta_i);
//Read B
if (reb_i) read_b(ADDRB, resetb_i);
end
end
endgenerate
// Asynchronous clocks: port operation is independent
generate
if((!C_COMMON_CLK) && (C_WRITE_MODE_A == "WRITE_FIRST")) begin : async_clk_sched_clka_wf
always @(posedge CLKA) begin
//Write A
if (wea_i) write_a(ADDRA, wea_i, DINA, INJECTSBITERR, INJECTDBITERR);
//Read A
if (rea_i) read_a(ADDRA, reseta_i);
end
end
else if((!C_COMMON_CLK) && (C_WRITE_MODE_A == "READ_FIRST")) begin : async_clk_sched_clka_rf
always @(posedge CLKA) begin
//Read A
if (rea_i) read_a(ADDRA, reseta_i);
//Write A
if (wea_i) write_a(ADDRA, wea_i, DINA, INJECTSBITERR, INJECTDBITERR);
end
end
else if((!C_COMMON_CLK) && (C_WRITE_MODE_A == "NO_CHANGE")) begin : async_clk_sched_clka_nc
always @(posedge CLKA) begin
//Write A
if (wea_i) write_a(ADDRA, wea_i, DINA, INJECTSBITERR, INJECTDBITERR);
//Read A
if (rea_i && (!wea_i || reseta_i)) read_a(ADDRA, reseta_i);
end
end
endgenerate
generate
if ((!C_COMMON_CLK) && (C_WRITE_MODE_B == "WRITE_FIRST")) begin: async_clk_sched_clkb_wf
always @(posedge CLKB) begin
//Write B
if (web_i) write_b(ADDRB, web_i, DINB);
//Read B
if (reb_i) read_b(ADDRB, resetb_i);
end
end
else if ((!C_COMMON_CLK) && (C_WRITE_MODE_B == "READ_FIRST")) begin: async_clk_sched_clkb_rf
always @(posedge CLKB) begin
//Read B
if (reb_i) read_b(ADDRB, resetb_i);
//Write B
if (web_i) write_b(ADDRB, web_i, DINB);
end
end
else if ((!C_COMMON_CLK) && (C_WRITE_MODE_B == "NO_CHANGE")) begin: async_clk_sched_clkb_nc
always @(posedge CLKB) begin
//Write B
if (web_i) write_b(ADDRB, web_i, DINB);
//Read B
if (reb_i && (!web_i || resetb_i)) read_b(ADDRB, resetb_i);
end
end
endgenerate
//***************************************************************
// Instantiate the variable depth output register stage module
//***************************************************************
// Port A
assign rsta_outp_stage = RSTA & (~SLEEP);
BLK_MEM_GEN_v8_2_output_stage
#(.C_FAMILY (C_FAMILY),
.C_XDEVICEFAMILY (C_XDEVICEFAMILY),
.C_RST_TYPE ("SYNC"),
.C_HAS_RST (C_HAS_RSTA),
.C_RSTRAM (C_RSTRAM_A),
.C_RST_PRIORITY (C_RST_PRIORITY_A),
.C_INIT_VAL (C_INITA_VAL),
.C_HAS_EN (C_HAS_ENA),
.C_HAS_REGCE (C_HAS_REGCEA),
.C_DATA_WIDTH (C_READ_WIDTH_A),
.C_ADDRB_WIDTH (C_ADDRB_WIDTH),
.C_HAS_MEM_OUTPUT_REGS (C_HAS_MEM_OUTPUT_REGS_A),
.C_USE_SOFTECC (C_USE_SOFTECC),
.C_USE_ECC (C_USE_ECC),
.NUM_STAGES (NUM_OUTPUT_STAGES_A),
.C_EN_ECC_PIPE (0),
.FLOP_DELAY (FLOP_DELAY))
reg_a
(.CLK (CLKA),
.RST (rsta_outp_stage),//(RSTA),
.EN (ENA),
.REGCE (REGCEA),
.DIN_I (memory_out_a),
.DOUT (DOUTA),
.SBITERR_IN_I (1'b0),
.DBITERR_IN_I (1'b0),
.SBITERR (),
.DBITERR (),
.RDADDRECC_IN_I ({C_ADDRB_WIDTH{1'b0}}),
.ECCPIPECE (1'b0),
.RDADDRECC ()
);
assign rstb_outp_stage = RSTB & (~SLEEP);
// Port B
BLK_MEM_GEN_v8_2_output_stage
#(.C_FAMILY (C_FAMILY),
.C_XDEVICEFAMILY (C_XDEVICEFAMILY),
.C_RST_TYPE ("SYNC"),
.C_HAS_RST (C_HAS_RSTB),
.C_RSTRAM (C_RSTRAM_B),
.C_RST_PRIORITY (C_RST_PRIORITY_B),
.C_INIT_VAL (C_INITB_VAL),
.C_HAS_EN (C_HAS_ENB),
.C_HAS_REGCE (C_HAS_REGCEB),
.C_DATA_WIDTH (C_READ_WIDTH_B),
.C_ADDRB_WIDTH (C_ADDRB_WIDTH),
.C_HAS_MEM_OUTPUT_REGS (C_HAS_MEM_OUTPUT_REGS_B),
.C_USE_SOFTECC (C_USE_SOFTECC),
.C_USE_ECC (C_USE_ECC),
.NUM_STAGES (NUM_OUTPUT_STAGES_B),
.C_EN_ECC_PIPE (C_EN_ECC_PIPE),
.FLOP_DELAY (FLOP_DELAY))
reg_b
(.CLK (CLKB),
.RST (rstb_outp_stage),//(RSTB),
.EN (ENB),
.REGCE (REGCEB),
.DIN_I (memory_out_b),
.DOUT (dout_i),
.SBITERR_IN_I (sbiterr_in),
.DBITERR_IN_I (dbiterr_in),
.SBITERR (sbiterr_i),
.DBITERR (dbiterr_i),
.RDADDRECC_IN_I (rdaddrecc_in),
.ECCPIPECE (ECCPIPECE),
.RDADDRECC (rdaddrecc_i)
);
//***************************************************************
// Instantiate the Input and Output register stages
//***************************************************************
BLK_MEM_GEN_v8_2_softecc_output_reg_stage
#(.C_DATA_WIDTH (C_READ_WIDTH_B),
.C_ADDRB_WIDTH (C_ADDRB_WIDTH),
.C_HAS_SOFTECC_OUTPUT_REGS_B (C_HAS_SOFTECC_OUTPUT_REGS_B),
.C_USE_SOFTECC (C_USE_SOFTECC),
.FLOP_DELAY (FLOP_DELAY))
has_softecc_output_reg_stage
(.CLK (CLKB),
.DIN (dout_i),
.DOUT (DOUTB),
.SBITERR_IN (sbiterr_i),
.DBITERR_IN (dbiterr_i),
.SBITERR (sbiterr_sdp),
.DBITERR (dbiterr_sdp),
.RDADDRECC_IN (rdaddrecc_i),
.RDADDRECC (rdaddrecc_sdp)
);
//****************************************************
// Synchronous collision checks
//****************************************************
// CR 780544 : To make verilog model's collison warnings in consistant with
// vhdl model, the non-blocking assignments are replaced with blocking
// assignments.
generate if (!C_DISABLE_WARN_BHV_COLL && C_COMMON_CLK) begin : sync_coll
always @(posedge CLKA) begin
// Possible collision if both are enabled and the addresses match
if (ena_i && enb_i) begin
if (wea_i || web_i) begin
is_collision = collision_check(ADDRA, wea_i, ADDRB, web_i);
end else begin
is_collision = 0;
end
end else begin
is_collision = 0;
end
// If the write port is in READ_FIRST mode, there is no collision
if (C_WRITE_MODE_A=="READ_FIRST" && wea_i && !web_i) begin
is_collision = 0;
end
if (C_WRITE_MODE_B=="READ_FIRST" && web_i && !wea_i) begin
is_collision = 0;
end
// Only flag if one of the accesses is a write
if (is_collision && (wea_i || web_i)) begin
$fwrite(COLLFILE, "%0s collision detected at time: %0d, ",
C_CORENAME, $time);
$fwrite(COLLFILE, "A %0s address: %0h, B %0s address: %0h\n",
wea_i ? "write" : "read", ADDRA,
web_i ? "write" : "read", ADDRB);
end
end
//****************************************************
// Asynchronous collision checks
//****************************************************
end else if (!C_DISABLE_WARN_BHV_COLL && !C_COMMON_CLK) begin : async_coll
// Delay A and B addresses in order to mimic setup/hold times
wire [C_ADDRA_WIDTH-1:0] #COLL_DELAY addra_delay = ADDRA;
wire [0:0] #COLL_DELAY wea_delay = wea_i;
wire #COLL_DELAY ena_delay = ena_i;
wire [C_ADDRB_WIDTH-1:0] #COLL_DELAY addrb_delay = ADDRB;
wire [0:0] #COLL_DELAY web_delay = web_i;
wire #COLL_DELAY enb_delay = enb_i;
// Do the checks w/rt A
always @(posedge CLKA) begin
// Possible collision if both are enabled and the addresses match
if (ena_i && enb_i) begin
if (wea_i || web_i) begin
is_collision_a = collision_check(ADDRA, wea_i, ADDRB, web_i);
end else begin
is_collision_a = 0;
end
end else begin
is_collision_a = 0;
end
if (ena_i && enb_delay) begin
if(wea_i || web_delay) begin
is_collision_delay_a = collision_check(ADDRA, wea_i, addrb_delay,
web_delay);
end else begin
is_collision_delay_a = 0;
end
end else begin
is_collision_delay_a = 0;
end
// Only flag if B access is a write
if (is_collision_a && web_i) begin
$fwrite(COLLFILE, "%0s collision detected at time: %0d, ",
C_CORENAME, $time);
$fwrite(COLLFILE, "A %0s address: %0h, B write address: %0h\n",
wea_i ? "write" : "read", ADDRA, ADDRB);
end else if (is_collision_delay_a && web_delay) begin
$fwrite(COLLFILE, "%0s collision detected at time: %0d, ",
C_CORENAME, $time);
$fwrite(COLLFILE, "A %0s address: %0h, B write address: %0h\n",
wea_i ? "write" : "read", ADDRA, addrb_delay);
end
end
// Do the checks w/rt B
always @(posedge CLKB) begin
// Possible collision if both are enabled and the addresses match
if (ena_i && enb_i) begin
if (wea_i || web_i) begin
is_collision_b = collision_check(ADDRA, wea_i, ADDRB, web_i);
end else begin
is_collision_b = 0;
end
end else begin
is_collision_b = 0;
end
if (ena_delay && enb_i) begin
if (wea_delay || web_i) begin
is_collision_delay_b = collision_check(addra_delay, wea_delay, ADDRB,
web_i);
end else begin
is_collision_delay_b = 0;
end
end else begin
is_collision_delay_b = 0;
end
// Only flag if A access is a write
if (is_collision_b && wea_i) begin
$fwrite(COLLFILE, "%0s collision detected at time: %0d, ",
C_CORENAME, $time);
$fwrite(COLLFILE, "A write address: %0h, B %s address: %0h\n",
ADDRA, web_i ? "write" : "read", ADDRB);
end else if (is_collision_delay_b && wea_delay) begin
$fwrite(COLLFILE, "%0s collision detected at time: %0d, ",
C_CORENAME, $time);
$fwrite(COLLFILE, "A write address: %0h, B %s address: %0h\n",
addra_delay, web_i ? "write" : "read", ADDRB);
end
end
end
endgenerate
endmodule
//*****************************************************************************
// Top module wraps Input register and Memory module
//
// This module is the top-level behavioral model and this implements the memory
// module and the input registers
//*****************************************************************************
module blk_mem_gen_v8_2
#(parameter C_CORENAME = "blk_mem_gen_v8_2",
parameter C_FAMILY = "virtex7",
parameter C_XDEVICEFAMILY = "virtex7",
parameter C_ELABORATION_DIR = "",
parameter C_INTERFACE_TYPE = 0,
parameter C_USE_BRAM_BLOCK = 0,
parameter C_CTRL_ECC_ALGO = "NONE",
parameter C_ENABLE_32BIT_ADDRESS = 0,
parameter C_AXI_TYPE = 0,
parameter C_AXI_SLAVE_TYPE = 0,
parameter C_HAS_AXI_ID = 0,
parameter C_AXI_ID_WIDTH = 4,
parameter C_MEM_TYPE = 2,
parameter C_BYTE_SIZE = 9,
parameter C_ALGORITHM = 1,
parameter C_PRIM_TYPE = 3,
parameter C_LOAD_INIT_FILE = 0,
parameter C_INIT_FILE_NAME = "",
parameter C_INIT_FILE = "",
parameter C_USE_DEFAULT_DATA = 0,
parameter C_DEFAULT_DATA = "0",
//parameter C_RST_TYPE = "SYNC",
parameter C_HAS_RSTA = 0,
parameter C_RST_PRIORITY_A = "CE",
parameter C_RSTRAM_A = 0,
parameter C_INITA_VAL = "0",
parameter C_HAS_ENA = 1,
parameter C_HAS_REGCEA = 0,
parameter C_USE_BYTE_WEA = 0,
parameter C_WEA_WIDTH = 1,
parameter C_WRITE_MODE_A = "WRITE_FIRST",
parameter C_WRITE_WIDTH_A = 32,
parameter C_READ_WIDTH_A = 32,
parameter C_WRITE_DEPTH_A = 64,
parameter C_READ_DEPTH_A = 64,
parameter C_ADDRA_WIDTH = 5,
parameter C_HAS_RSTB = 0,
parameter C_RST_PRIORITY_B = "CE",
parameter C_RSTRAM_B = 0,
parameter C_INITB_VAL = "",
parameter C_HAS_ENB = 1,
parameter C_HAS_REGCEB = 0,
parameter C_USE_BYTE_WEB = 0,
parameter C_WEB_WIDTH = 1,
parameter C_WRITE_MODE_B = "WRITE_FIRST",
parameter C_WRITE_WIDTH_B = 32,
parameter C_READ_WIDTH_B = 32,
parameter C_WRITE_DEPTH_B = 64,
parameter C_READ_DEPTH_B = 64,
parameter C_ADDRB_WIDTH = 5,
parameter C_HAS_MEM_OUTPUT_REGS_A = 0,
parameter C_HAS_MEM_OUTPUT_REGS_B = 0,
parameter C_HAS_MUX_OUTPUT_REGS_A = 0,
parameter C_HAS_MUX_OUTPUT_REGS_B = 0,
parameter C_HAS_SOFTECC_INPUT_REGS_A = 0,
parameter C_HAS_SOFTECC_OUTPUT_REGS_B= 0,
parameter C_MUX_PIPELINE_STAGES = 0,
parameter C_USE_SOFTECC = 0,
parameter C_USE_ECC = 0,
parameter C_EN_ECC_PIPE = 0,
parameter C_HAS_INJECTERR = 0,
parameter C_SIM_COLLISION_CHECK = "NONE",
parameter C_COMMON_CLK = 1,
parameter C_DISABLE_WARN_BHV_COLL = 0,
parameter C_EN_SLEEP_PIN = 0,
parameter C_USE_URAM = 0,
parameter C_EN_RDADDRA_CHG = 0,
parameter C_EN_RDADDRB_CHG = 0,
parameter C_EN_DEEPSLEEP_PIN = 0,
parameter C_EN_SHUTDOWN_PIN = 0,
parameter C_DISABLE_WARN_BHV_RANGE = 0,
parameter C_COUNT_36K_BRAM = "",
parameter C_COUNT_18K_BRAM = "",
parameter C_EST_POWER_SUMMARY = ""
)
(input clka,
input rsta,
input ena,
input regcea,
input [C_WEA_WIDTH-1:0] wea,
input [C_ADDRA_WIDTH-1:0] addra,
input [C_WRITE_WIDTH_A-1:0] dina,
output [C_READ_WIDTH_A-1:0] douta,
input clkb,
input rstb,
input enb,
input regceb,
input [C_WEB_WIDTH-1:0] web,
input [C_ADDRB_WIDTH-1:0] addrb,
input [C_WRITE_WIDTH_B-1:0] dinb,
output [C_READ_WIDTH_B-1:0] doutb,
input injectsbiterr,
input injectdbiterr,
output sbiterr,
output dbiterr,
output [C_ADDRB_WIDTH-1:0] rdaddrecc,
input eccpipece,
input sleep,
input deepsleep,
input shutdown,
//AXI BMG Input and Output Port Declarations
//AXI Global Signals
input s_aclk,
input s_aresetn,
//AXI Full/lite slave write (write side)
input [C_AXI_ID_WIDTH-1:0] s_axi_awid,
input [31:0] s_axi_awaddr,
input [7:0] s_axi_awlen,
input [2:0] s_axi_awsize,
input [1:0] s_axi_awburst,
input s_axi_awvalid,
output s_axi_awready,
input [C_WRITE_WIDTH_A-1:0] s_axi_wdata,
input [C_WEA_WIDTH-1:0] s_axi_wstrb,
input s_axi_wlast,
input s_axi_wvalid,
output s_axi_wready,
output [C_AXI_ID_WIDTH-1:0] s_axi_bid,
output [1:0] s_axi_bresp,
output s_axi_bvalid,
input s_axi_bready,
//AXI Full/lite slave read (write side)
input [C_AXI_ID_WIDTH-1:0] s_axi_arid,
input [31:0] s_axi_araddr,
input [7:0] s_axi_arlen,
input [2:0] s_axi_arsize,
input [1:0] s_axi_arburst,
input s_axi_arvalid,
output s_axi_arready,
output [C_AXI_ID_WIDTH-1:0] s_axi_rid,
output [C_WRITE_WIDTH_B-1:0] s_axi_rdata,
output [1:0] s_axi_rresp,
output s_axi_rlast,
output s_axi_rvalid,
input s_axi_rready,
//AXI Full/lite sideband signals
input s_axi_injectsbiterr,
input s_axi_injectdbiterr,
output s_axi_sbiterr,
output s_axi_dbiterr,
output [C_ADDRB_WIDTH-1:0] s_axi_rdaddrecc
);
//******************************
// Port and Generic Definitions
//******************************
//////////////////////////////////////////////////////////////////////////
// Generic Definitions
//////////////////////////////////////////////////////////////////////////
// C_CORENAME : Instance name of the Block Memory Generator core
// C_FAMILY,C_XDEVICEFAMILY: Designates architecture targeted. The following
// options are available - "spartan3", "spartan6",
// "virtex4", "virtex5", "virtex6" and "virtex6l".
// C_MEM_TYPE : Designates memory type.
// It can be
// 0 - Single Port Memory
// 1 - Simple Dual Port Memory
// 2 - True Dual Port Memory
// 3 - Single Port Read Only Memory
// 4 - Dual Port Read Only Memory
// C_BYTE_SIZE : Size of a byte (8 or 9 bits)
// C_ALGORITHM : Designates the algorithm method used
// for constructing the memory.
// It can be Fixed_Primitives, Minimum_Area or
// Low_Power
// C_PRIM_TYPE : Designates the user selected primitive used to
// construct the memory.
//
// C_LOAD_INIT_FILE : Designates the use of an initialization file to
// initialize memory contents.
// C_INIT_FILE_NAME : Memory initialization file name.
// C_USE_DEFAULT_DATA : Designates whether to fill remaining
// initialization space with default data
// C_DEFAULT_DATA : Default value of all memory locations
// not initialized by the memory
// initialization file.
// C_RST_TYPE : Type of reset - Synchronous or Asynchronous
// C_HAS_RSTA : Determines the presence of the RSTA port
// C_RST_PRIORITY_A : Determines the priority between CE and SR for
// Port A.
// C_RSTRAM_A : Determines if special reset behavior is used for
// Port A
// C_INITA_VAL : The initialization value for Port A
// C_HAS_ENA : Determines the presence of the ENA port
// C_HAS_REGCEA : Determines the presence of the REGCEA port
// C_USE_BYTE_WEA : Determines if the Byte Write is used or not.
// C_WEA_WIDTH : The width of the WEA port
// C_WRITE_MODE_A : Configurable write mode for Port A. It can be
// WRITE_FIRST, READ_FIRST or NO_CHANGE.
// C_WRITE_WIDTH_A : Memory write width for Port A.
// C_READ_WIDTH_A : Memory read width for Port A.
// C_WRITE_DEPTH_A : Memory write depth for Port A.
// C_READ_DEPTH_A : Memory read depth for Port A.
// C_ADDRA_WIDTH : Width of the ADDRA input port
// C_HAS_RSTB : Determines the presence of the RSTB port
// C_RST_PRIORITY_B : Determines the priority between CE and SR for
// Port B.
// C_RSTRAM_B : Determines if special reset behavior is used for
// Port B
// C_INITB_VAL : The initialization value for Port B
// C_HAS_ENB : Determines the presence of the ENB port
// C_HAS_REGCEB : Determines the presence of the REGCEB port
// C_USE_BYTE_WEB : Determines if the Byte Write is used or not.
// C_WEB_WIDTH : The width of the WEB port
// C_WRITE_MODE_B : Configurable write mode for Port B. It can be
// WRITE_FIRST, READ_FIRST or NO_CHANGE.
// C_WRITE_WIDTH_B : Memory write width for Port B.
// C_READ_WIDTH_B : Memory read width for Port B.
// C_WRITE_DEPTH_B : Memory write depth for Port B.
// C_READ_DEPTH_B : Memory read depth for Port B.
// C_ADDRB_WIDTH : Width of the ADDRB input port
// C_HAS_MEM_OUTPUT_REGS_A : Designates the use of a register at the output
// of the RAM primitive for Port A.
// C_HAS_MEM_OUTPUT_REGS_B : Designates the use of a register at the output
// of the RAM primitive for Port B.
// C_HAS_MUX_OUTPUT_REGS_A : Designates the use of a register at the output
// of the MUX for Port A.
// C_HAS_MUX_OUTPUT_REGS_B : Designates the use of a register at the output
// of the MUX for Port B.
// C_HAS_SOFTECC_INPUT_REGS_A :
// C_HAS_SOFTECC_OUTPUT_REGS_B :
// C_MUX_PIPELINE_STAGES : Designates the number of pipeline stages in
// between the muxes.
// C_USE_SOFTECC : Determines if the Soft ECC feature is used or
// not. Only applicable Spartan-6
// C_USE_ECC : Determines if the ECC feature is used or
// not. Only applicable for V5 and V6
// C_HAS_INJECTERR : Determines if the error injection pins
// are present or not. If the ECC feature
// is not used, this value is defaulted to
// 0, else the following are the allowed
// values:
// 0 : No INJECTSBITERR or INJECTDBITERR pins
// 1 : Only INJECTSBITERR pin exists
// 2 : Only INJECTDBITERR pin exists
// 3 : Both INJECTSBITERR and INJECTDBITERR pins exist
// C_SIM_COLLISION_CHECK : Controls the disabling of Unisim model collision
// warnings. It can be "ALL", "NONE",
// "Warnings_Only" or "Generate_X_Only".
// C_COMMON_CLK : Determins if the core has a single CLK input.
// C_DISABLE_WARN_BHV_COLL : Controls the Behavioral Model Collision warnings
// C_DISABLE_WARN_BHV_RANGE: Controls the Behavioral Model Out of Range
// warnings
//////////////////////////////////////////////////////////////////////////
// Port Definitions
//////////////////////////////////////////////////////////////////////////
// CLKA : Clock to synchronize all read and write operations of Port A.
// RSTA : Reset input to reset memory outputs to a user-defined
// reset state for Port A.
// ENA : Enable all read and write operations of Port A.
// REGCEA : Register Clock Enable to control each pipeline output
// register stages for Port A.
// WEA : Write Enable to enable all write operations of Port A.
// ADDRA : Address of Port A.
// DINA : Data input of Port A.
// DOUTA : Data output of Port A.
// CLKB : Clock to synchronize all read and write operations of Port B.
// RSTB : Reset input to reset memory outputs to a user-defined
// reset state for Port B.
// ENB : Enable all read and write operations of Port B.
// REGCEB : Register Clock Enable to control each pipeline output
// register stages for Port B.
// WEB : Write Enable to enable all write operations of Port B.
// ADDRB : Address of Port B.
// DINB : Data input of Port B.
// DOUTB : Data output of Port B.
// INJECTSBITERR : Single Bit ECC Error Injection Pin.
// INJECTDBITERR : Double Bit ECC Error Injection Pin.
// SBITERR : Output signal indicating that a Single Bit ECC Error has been
// detected and corrected.
// DBITERR : Output signal indicating that a Double Bit ECC Error has been
// detected.
// RDADDRECC : Read Address Output signal indicating address at which an
// ECC error has occurred.
//////////////////////////////////////////////////////////////////////////
wire SBITERR;
wire DBITERR;
wire S_AXI_AWREADY;
wire S_AXI_WREADY;
wire S_AXI_BVALID;
wire S_AXI_ARREADY;
wire S_AXI_RLAST;
wire S_AXI_RVALID;
wire S_AXI_SBITERR;
wire S_AXI_DBITERR;
wire [C_WEA_WIDTH-1:0] WEA = wea;
wire [C_ADDRA_WIDTH-1:0] ADDRA = addra;
wire [C_WRITE_WIDTH_A-1:0] DINA = dina;
wire [C_READ_WIDTH_A-1:0] DOUTA;
wire [C_WEB_WIDTH-1:0] WEB = web;
wire [C_ADDRB_WIDTH-1:0] ADDRB = addrb;
wire [C_WRITE_WIDTH_B-1:0] DINB = dinb;
wire [C_READ_WIDTH_B-1:0] DOUTB;
wire [C_ADDRB_WIDTH-1:0] RDADDRECC;
wire [C_AXI_ID_WIDTH-1:0] S_AXI_AWID = s_axi_awid;
wire [31:0] S_AXI_AWADDR = s_axi_awaddr;
wire [7:0] S_AXI_AWLEN = s_axi_awlen;
wire [2:0] S_AXI_AWSIZE = s_axi_awsize;
wire [1:0] S_AXI_AWBURST = s_axi_awburst;
wire [C_WRITE_WIDTH_A-1:0] S_AXI_WDATA = s_axi_wdata;
wire [C_WEA_WIDTH-1:0] S_AXI_WSTRB = s_axi_wstrb;
wire [C_AXI_ID_WIDTH-1:0] S_AXI_BID;
wire [1:0] S_AXI_BRESP;
wire [C_AXI_ID_WIDTH-1:0] S_AXI_ARID = s_axi_arid;
wire [31:0] S_AXI_ARADDR = s_axi_araddr;
wire [7:0] S_AXI_ARLEN = s_axi_arlen;
wire [2:0] S_AXI_ARSIZE = s_axi_arsize;
wire [1:0] S_AXI_ARBURST = s_axi_arburst;
wire [C_AXI_ID_WIDTH-1:0] S_AXI_RID;
wire [C_WRITE_WIDTH_B-1:0] S_AXI_RDATA;
wire [1:0] S_AXI_RRESP;
wire [C_ADDRB_WIDTH-1:0] S_AXI_RDADDRECC;
// Added to fix the simulation warning #CR731605
wire [C_WEB_WIDTH-1:0] WEB_parameterized = 0;
wire ECCPIPECE;
wire SLEEP;
assign CLKA = clka;
assign RSTA = rsta;
assign ENA = ena;
assign REGCEA = regcea;
assign CLKB = clkb;
assign RSTB = rstb;
assign ENB = enb;
assign REGCEB = regceb;
assign INJECTSBITERR = injectsbiterr;
assign INJECTDBITERR = injectdbiterr;
assign ECCPIPECE = eccpipece;
assign SLEEP = sleep;
assign sbiterr = SBITERR;
assign dbiterr = DBITERR;
assign S_ACLK = s_aclk;
assign S_ARESETN = s_aresetn;
assign S_AXI_AWVALID = s_axi_awvalid;
assign s_axi_awready = S_AXI_AWREADY;
assign S_AXI_WLAST = s_axi_wlast;
assign S_AXI_WVALID = s_axi_wvalid;
assign s_axi_wready = S_AXI_WREADY;
assign s_axi_bvalid = S_AXI_BVALID;
assign S_AXI_BREADY = s_axi_bready;
assign S_AXI_ARVALID = s_axi_arvalid;
assign s_axi_arready = S_AXI_ARREADY;
assign s_axi_rlast = S_AXI_RLAST;
assign s_axi_rvalid = S_AXI_RVALID;
assign S_AXI_RREADY = s_axi_rready;
assign S_AXI_INJECTSBITERR = s_axi_injectsbiterr;
assign S_AXI_INJECTDBITERR = s_axi_injectdbiterr;
assign s_axi_sbiterr = S_AXI_SBITERR;
assign s_axi_dbiterr = S_AXI_DBITERR;
assign doutb = DOUTB;
assign douta = DOUTA;
assign rdaddrecc = RDADDRECC;
assign s_axi_bid = S_AXI_BID;
assign s_axi_bresp = S_AXI_BRESP;
assign s_axi_rid = S_AXI_RID;
assign s_axi_rdata = S_AXI_RDATA;
assign s_axi_rresp = S_AXI_RRESP;
assign s_axi_rdaddrecc = S_AXI_RDADDRECC;
localparam FLOP_DELAY = 100; // 100 ps
reg injectsbiterr_in;
reg injectdbiterr_in;
reg rsta_in;
reg ena_in;
reg regcea_in;
reg [C_WEA_WIDTH-1:0] wea_in;
reg [C_ADDRA_WIDTH-1:0] addra_in;
reg [C_WRITE_WIDTH_A-1:0] dina_in;
wire [C_ADDRA_WIDTH-1:0] s_axi_awaddr_out_c;
wire [C_ADDRB_WIDTH-1:0] s_axi_araddr_out_c;
wire s_axi_wr_en_c;
wire s_axi_rd_en_c;
wire s_aresetn_a_c;
wire [7:0] s_axi_arlen_c ;
wire [C_AXI_ID_WIDTH-1 : 0] s_axi_rid_c;
wire [C_WRITE_WIDTH_B-1 : 0] s_axi_rdata_c;
wire [1:0] s_axi_rresp_c;
wire s_axi_rlast_c;
wire s_axi_rvalid_c;
wire s_axi_rready_c;
wire regceb_c;
localparam C_AXI_PAYLOAD = (C_HAS_MUX_OUTPUT_REGS_B == 1)?C_WRITE_WIDTH_B+C_AXI_ID_WIDTH+3:C_AXI_ID_WIDTH+3;
wire [C_AXI_PAYLOAD-1 : 0] s_axi_payload_c;
wire [C_AXI_PAYLOAD-1 : 0] m_axi_payload_c;
//**************
// log2roundup
//**************
function integer log2roundup (input integer data_value);
integer width;
integer cnt;
begin
width = 0;
if (data_value > 1) begin
for(cnt=1 ; cnt < data_value ; cnt = cnt * 2) begin
width = width + 1;
end //loop
end //if
log2roundup = width;
end //log2roundup
endfunction
//**************
// log2int
//**************
function integer log2int (input integer data_value);
integer width;
integer cnt;
begin
width = 0;
cnt= data_value;
for(cnt=data_value ; cnt >1 ; cnt = cnt / 2) begin
width = width + 1;
end //loop
log2int = width;
end //log2int
endfunction
//**************************************************************************
// FUNCTION : divroundup
// Returns the ceiling value of the division
// Data_value - the quantity to be divided, dividend
// Divisor - the value to divide the data_value by
//**************************************************************************
function integer divroundup (input integer data_value,input integer divisor);
integer div;
begin
div = data_value/divisor;
if ((data_value % divisor) != 0) begin
div = div+1;
end //if
divroundup = div;
end //if
endfunction
localparam AXI_FULL_MEMORY_SLAVE = ((C_AXI_SLAVE_TYPE == 0 && C_AXI_TYPE == 1)?1:0);
localparam C_AXI_ADDR_WIDTH_MSB = C_ADDRA_WIDTH+log2roundup(C_WRITE_WIDTH_A/8);
localparam C_AXI_ADDR_WIDTH = C_AXI_ADDR_WIDTH_MSB;
//Data Width Number of LSB address bits to be discarded
//1 to 16 1
//17 to 32 2
//33 to 64 3
//65 to 128 4
//129 to 256 5
//257 to 512 6
//513 to 1024 7
// The following two constants determine this.
localparam LOWER_BOUND_VAL = (log2roundup(divroundup(C_WRITE_WIDTH_A,8) == 0))?0:(log2roundup(divroundup(C_WRITE_WIDTH_A,8)));
localparam C_AXI_ADDR_WIDTH_LSB = ((AXI_FULL_MEMORY_SLAVE == 1)?0:LOWER_BOUND_VAL);
localparam C_AXI_OS_WR = 2;
//***********************************************
// INPUT REGISTERS.
//***********************************************
generate if (C_HAS_SOFTECC_INPUT_REGS_A==0) begin : no_softecc_input_reg_stage
always @* begin
injectsbiterr_in = INJECTSBITERR;
injectdbiterr_in = INJECTDBITERR;
rsta_in = RSTA;
ena_in = ENA;
regcea_in = REGCEA;
wea_in = WEA;
addra_in = ADDRA;
dina_in = DINA;
end //end always
end //end no_softecc_input_reg_stage
endgenerate
generate if (C_HAS_SOFTECC_INPUT_REGS_A==1) begin : has_softecc_input_reg_stage
always @(posedge CLKA) begin
injectsbiterr_in <= #FLOP_DELAY INJECTSBITERR;
injectdbiterr_in <= #FLOP_DELAY INJECTDBITERR;
rsta_in <= #FLOP_DELAY RSTA;
ena_in <= #FLOP_DELAY ENA;
regcea_in <= #FLOP_DELAY REGCEA;
wea_in <= #FLOP_DELAY WEA;
addra_in <= #FLOP_DELAY ADDRA;
dina_in <= #FLOP_DELAY DINA;
end //end always
end //end input_reg_stages generate statement
endgenerate
generate if ((C_INTERFACE_TYPE == 0) && (C_ENABLE_32BIT_ADDRESS == 0)) begin : native_mem_module
BLK_MEM_GEN_v8_2_mem_module
#(.C_CORENAME (C_CORENAME),
.C_FAMILY (C_FAMILY),
.C_XDEVICEFAMILY (C_XDEVICEFAMILY),
.C_MEM_TYPE (C_MEM_TYPE),
.C_BYTE_SIZE (C_BYTE_SIZE),
.C_ALGORITHM (C_ALGORITHM),
.C_USE_BRAM_BLOCK (C_USE_BRAM_BLOCK),
.C_PRIM_TYPE (C_PRIM_TYPE),
.C_LOAD_INIT_FILE (C_LOAD_INIT_FILE),
.C_INIT_FILE_NAME (C_INIT_FILE_NAME),
.C_INIT_FILE (C_INIT_FILE),
.C_USE_DEFAULT_DATA (C_USE_DEFAULT_DATA),
.C_DEFAULT_DATA (C_DEFAULT_DATA),
.C_RST_TYPE ("SYNC"),
.C_HAS_RSTA (C_HAS_RSTA),
.C_RST_PRIORITY_A (C_RST_PRIORITY_A),
.C_RSTRAM_A (C_RSTRAM_A),
.C_INITA_VAL (C_INITA_VAL),
.C_HAS_ENA (C_HAS_ENA),
.C_HAS_REGCEA (C_HAS_REGCEA),
.C_USE_BYTE_WEA (C_USE_BYTE_WEA),
.C_WEA_WIDTH (C_WEA_WIDTH),
.C_WRITE_MODE_A (C_WRITE_MODE_A),
.C_WRITE_WIDTH_A (C_WRITE_WIDTH_A),
.C_READ_WIDTH_A (C_READ_WIDTH_A),
.C_WRITE_DEPTH_A (C_WRITE_DEPTH_A),
.C_READ_DEPTH_A (C_READ_DEPTH_A),
.C_ADDRA_WIDTH (C_ADDRA_WIDTH),
.C_HAS_RSTB (C_HAS_RSTB),
.C_RST_PRIORITY_B (C_RST_PRIORITY_B),
.C_RSTRAM_B (C_RSTRAM_B),
.C_INITB_VAL (C_INITB_VAL),
.C_HAS_ENB (C_HAS_ENB),
.C_HAS_REGCEB (C_HAS_REGCEB),
.C_USE_BYTE_WEB (C_USE_BYTE_WEB),
.C_WEB_WIDTH (C_WEB_WIDTH),
.C_WRITE_MODE_B (C_WRITE_MODE_B),
.C_WRITE_WIDTH_B (C_WRITE_WIDTH_B),
.C_READ_WIDTH_B (C_READ_WIDTH_B),
.C_WRITE_DEPTH_B (C_WRITE_DEPTH_B),
.C_READ_DEPTH_B (C_READ_DEPTH_B),
.C_ADDRB_WIDTH (C_ADDRB_WIDTH),
.C_HAS_MEM_OUTPUT_REGS_A (C_HAS_MEM_OUTPUT_REGS_A),
.C_HAS_MEM_OUTPUT_REGS_B (C_HAS_MEM_OUTPUT_REGS_B),
.C_HAS_MUX_OUTPUT_REGS_A (C_HAS_MUX_OUTPUT_REGS_A),
.C_HAS_MUX_OUTPUT_REGS_B (C_HAS_MUX_OUTPUT_REGS_B),
.C_HAS_SOFTECC_INPUT_REGS_A (C_HAS_SOFTECC_INPUT_REGS_A),
.C_HAS_SOFTECC_OUTPUT_REGS_B (C_HAS_SOFTECC_OUTPUT_REGS_B),
.C_MUX_PIPELINE_STAGES (C_MUX_PIPELINE_STAGES),
.C_USE_SOFTECC (C_USE_SOFTECC),
.C_USE_ECC (C_USE_ECC),
.C_HAS_INJECTERR (C_HAS_INJECTERR),
.C_SIM_COLLISION_CHECK (C_SIM_COLLISION_CHECK),
.C_COMMON_CLK (C_COMMON_CLK),
.FLOP_DELAY (FLOP_DELAY),
.C_DISABLE_WARN_BHV_COLL (C_DISABLE_WARN_BHV_COLL),
.C_EN_ECC_PIPE (C_EN_ECC_PIPE),
.C_DISABLE_WARN_BHV_RANGE (C_DISABLE_WARN_BHV_RANGE))
blk_mem_gen_v8_2_inst
(.CLKA (CLKA),
.RSTA (rsta_in),
.ENA (ena_in),
.REGCEA (regcea_in),
.WEA (wea_in),
.ADDRA (addra_in),
.DINA (dina_in),
.DOUTA (DOUTA),
.CLKB (CLKB),
.RSTB (RSTB),
.ENB (ENB),
.REGCEB (REGCEB),
.WEB (WEB),
.ADDRB (ADDRB),
.DINB (DINB),
.DOUTB (DOUTB),
.INJECTSBITERR (injectsbiterr_in),
.INJECTDBITERR (injectdbiterr_in),
.ECCPIPECE (ECCPIPECE),
.SLEEP (SLEEP),
.SBITERR (SBITERR),
.DBITERR (DBITERR),
.RDADDRECC (RDADDRECC)
);
end
endgenerate
generate if((C_INTERFACE_TYPE == 0) && (C_ENABLE_32BIT_ADDRESS == 1)) begin : native_mem_mapped_module
localparam C_ADDRA_WIDTH_ACTUAL = log2roundup(C_WRITE_DEPTH_A);
localparam C_ADDRB_WIDTH_ACTUAL = log2roundup(C_WRITE_DEPTH_B);
localparam C_ADDRA_WIDTH_MSB = C_ADDRA_WIDTH_ACTUAL+log2int(C_WRITE_WIDTH_A/8);
localparam C_ADDRB_WIDTH_MSB = C_ADDRB_WIDTH_ACTUAL+log2int(C_WRITE_WIDTH_B/8);
// localparam C_ADDRA_WIDTH_MSB = C_ADDRA_WIDTH_ACTUAL+log2roundup(C_WRITE_WIDTH_A/8);
// localparam C_ADDRB_WIDTH_MSB = C_ADDRB_WIDTH_ACTUAL+log2roundup(C_WRITE_WIDTH_B/8);
localparam C_MEM_MAP_ADDRA_WIDTH_MSB = C_ADDRA_WIDTH_MSB;
localparam C_MEM_MAP_ADDRB_WIDTH_MSB = C_ADDRB_WIDTH_MSB;
// Data Width Number of LSB address bits to be discarded
// 1 to 16 1
// 17 to 32 2
// 33 to 64 3
// 65 to 128 4
// 129 to 256 5
// 257 to 512 6
// 513 to 1024 7
// The following two constants determine this.
localparam MEM_MAP_LOWER_BOUND_VAL_A = (log2int(divroundup(C_WRITE_WIDTH_A,8)==0)) ? 0:(log2int(divroundup(C_WRITE_WIDTH_A,8)));
localparam MEM_MAP_LOWER_BOUND_VAL_B = (log2int(divroundup(C_WRITE_WIDTH_A,8)==0)) ? 0:(log2int(divroundup(C_WRITE_WIDTH_A,8)));
localparam C_MEM_MAP_ADDRA_WIDTH_LSB = MEM_MAP_LOWER_BOUND_VAL_A;
localparam C_MEM_MAP_ADDRB_WIDTH_LSB = MEM_MAP_LOWER_BOUND_VAL_B;
wire [C_ADDRB_WIDTH_ACTUAL-1 :0] rdaddrecc_i;
wire [C_ADDRB_WIDTH-1:C_MEM_MAP_ADDRB_WIDTH_MSB] msb_zero_i;
wire [C_MEM_MAP_ADDRB_WIDTH_LSB-1:0] lsb_zero_i;
assign msb_zero_i = 0;
assign lsb_zero_i = 0;
assign RDADDRECC = {msb_zero_i,rdaddrecc_i,lsb_zero_i};
BLK_MEM_GEN_v8_2_mem_module
#(.C_CORENAME (C_CORENAME),
.C_FAMILY (C_FAMILY),
.C_XDEVICEFAMILY (C_XDEVICEFAMILY),
.C_MEM_TYPE (C_MEM_TYPE),
.C_BYTE_SIZE (C_BYTE_SIZE),
.C_USE_BRAM_BLOCK (C_USE_BRAM_BLOCK),
.C_ALGORITHM (C_ALGORITHM),
.C_PRIM_TYPE (C_PRIM_TYPE),
.C_LOAD_INIT_FILE (C_LOAD_INIT_FILE),
.C_INIT_FILE_NAME (C_INIT_FILE_NAME),
.C_INIT_FILE (C_INIT_FILE),
.C_USE_DEFAULT_DATA (C_USE_DEFAULT_DATA),
.C_DEFAULT_DATA (C_DEFAULT_DATA),
.C_RST_TYPE ("SYNC"),
.C_HAS_RSTA (C_HAS_RSTA),
.C_RST_PRIORITY_A (C_RST_PRIORITY_A),
.C_RSTRAM_A (C_RSTRAM_A),
.C_INITA_VAL (C_INITA_VAL),
.C_HAS_ENA (C_HAS_ENA),
.C_HAS_REGCEA (C_HAS_REGCEA),
.C_USE_BYTE_WEA (C_USE_BYTE_WEA),
.C_WEA_WIDTH (C_WEA_WIDTH),
.C_WRITE_MODE_A (C_WRITE_MODE_A),
.C_WRITE_WIDTH_A (C_WRITE_WIDTH_A),
.C_READ_WIDTH_A (C_READ_WIDTH_A),
.C_WRITE_DEPTH_A (C_WRITE_DEPTH_A),
.C_READ_DEPTH_A (C_READ_DEPTH_A),
.C_ADDRA_WIDTH (C_ADDRA_WIDTH_ACTUAL),
.C_HAS_RSTB (C_HAS_RSTB),
.C_RST_PRIORITY_B (C_RST_PRIORITY_B),
.C_RSTRAM_B (C_RSTRAM_B),
.C_INITB_VAL (C_INITB_VAL),
.C_HAS_ENB (C_HAS_ENB),
.C_HAS_REGCEB (C_HAS_REGCEB),
.C_USE_BYTE_WEB (C_USE_BYTE_WEB),
.C_WEB_WIDTH (C_WEB_WIDTH),
.C_WRITE_MODE_B (C_WRITE_MODE_B),
.C_WRITE_WIDTH_B (C_WRITE_WIDTH_B),
.C_READ_WIDTH_B (C_READ_WIDTH_B),
.C_WRITE_DEPTH_B (C_WRITE_DEPTH_B),
.C_READ_DEPTH_B (C_READ_DEPTH_B),
.C_ADDRB_WIDTH (C_ADDRB_WIDTH_ACTUAL),
.C_HAS_MEM_OUTPUT_REGS_A (C_HAS_MEM_OUTPUT_REGS_A),
.C_HAS_MEM_OUTPUT_REGS_B (C_HAS_MEM_OUTPUT_REGS_B),
.C_HAS_MUX_OUTPUT_REGS_A (C_HAS_MUX_OUTPUT_REGS_A),
.C_HAS_MUX_OUTPUT_REGS_B (C_HAS_MUX_OUTPUT_REGS_B),
.C_HAS_SOFTECC_INPUT_REGS_A (C_HAS_SOFTECC_INPUT_REGS_A),
.C_HAS_SOFTECC_OUTPUT_REGS_B (C_HAS_SOFTECC_OUTPUT_REGS_B),
.C_MUX_PIPELINE_STAGES (C_MUX_PIPELINE_STAGES),
.C_USE_SOFTECC (C_USE_SOFTECC),
.C_USE_ECC (C_USE_ECC),
.C_HAS_INJECTERR (C_HAS_INJECTERR),
.C_SIM_COLLISION_CHECK (C_SIM_COLLISION_CHECK),
.C_COMMON_CLK (C_COMMON_CLK),
.FLOP_DELAY (FLOP_DELAY),
.C_DISABLE_WARN_BHV_COLL (C_DISABLE_WARN_BHV_COLL),
.C_EN_ECC_PIPE (C_EN_ECC_PIPE),
.C_DISABLE_WARN_BHV_RANGE (C_DISABLE_WARN_BHV_RANGE))
blk_mem_gen_v8_2_inst
(.CLKA (CLKA),
.RSTA (rsta_in),
.ENA (ena_in),
.REGCEA (regcea_in),
.WEA (wea_in),
.ADDRA (addra_in[C_MEM_MAP_ADDRA_WIDTH_MSB-1:C_MEM_MAP_ADDRA_WIDTH_LSB]),
.DINA (dina_in),
.DOUTA (DOUTA),
.CLKB (CLKB),
.RSTB (RSTB),
.ENB (ENB),
.REGCEB (REGCEB),
.WEB (WEB),
.ADDRB (ADDRB[C_MEM_MAP_ADDRB_WIDTH_MSB-1:C_MEM_MAP_ADDRB_WIDTH_LSB]),
.DINB (DINB),
.DOUTB (DOUTB),
.INJECTSBITERR (injectsbiterr_in),
.INJECTDBITERR (injectdbiterr_in),
.ECCPIPECE (ECCPIPECE),
.SLEEP (SLEEP),
.SBITERR (SBITERR),
.DBITERR (DBITERR),
.RDADDRECC (rdaddrecc_i)
);
end
endgenerate
generate if (C_HAS_MEM_OUTPUT_REGS_B == 0 && C_HAS_MUX_OUTPUT_REGS_B == 0 ) begin : no_regs
assign S_AXI_RDATA = s_axi_rdata_c;
assign S_AXI_RLAST = s_axi_rlast_c;
assign S_AXI_RVALID = s_axi_rvalid_c;
assign S_AXI_RID = s_axi_rid_c;
assign S_AXI_RRESP = s_axi_rresp_c;
assign s_axi_rready_c = S_AXI_RREADY;
end
endgenerate
generate if (C_HAS_MEM_OUTPUT_REGS_B == 1) begin : has_regceb
assign regceb_c = s_axi_rvalid_c && s_axi_rready_c;
end
endgenerate
generate if (C_HAS_MEM_OUTPUT_REGS_B == 0) begin : no_regceb
assign regceb_c = REGCEB;
end
endgenerate
generate if (C_HAS_MUX_OUTPUT_REGS_B == 1) begin : only_core_op_regs
assign s_axi_payload_c = {s_axi_rid_c,s_axi_rdata_c,s_axi_rresp_c,s_axi_rlast_c};
assign S_AXI_RID = m_axi_payload_c[C_AXI_PAYLOAD-1 : C_AXI_PAYLOAD-C_AXI_ID_WIDTH];
assign S_AXI_RDATA = m_axi_payload_c[C_AXI_PAYLOAD-C_AXI_ID_WIDTH-1 : C_AXI_PAYLOAD-C_AXI_ID_WIDTH-C_WRITE_WIDTH_B];
assign S_AXI_RRESP = m_axi_payload_c[2:1];
assign S_AXI_RLAST = m_axi_payload_c[0];
end
endgenerate
generate if (C_HAS_MEM_OUTPUT_REGS_B == 1) begin : only_emb_op_regs
assign s_axi_payload_c = {s_axi_rid_c,s_axi_rresp_c,s_axi_rlast_c};
assign S_AXI_RDATA = s_axi_rdata_c;
assign S_AXI_RID = m_axi_payload_c[C_AXI_PAYLOAD-1 : C_AXI_PAYLOAD-C_AXI_ID_WIDTH];
assign S_AXI_RRESP = m_axi_payload_c[2:1];
assign S_AXI_RLAST = m_axi_payload_c[0];
end
endgenerate
generate if (C_HAS_MUX_OUTPUT_REGS_B == 1 || C_HAS_MEM_OUTPUT_REGS_B == 1) begin : has_regs_fwd
blk_mem_axi_regs_fwd_v8_2
#(.C_DATA_WIDTH (C_AXI_PAYLOAD))
axi_regs_inst (
.ACLK (S_ACLK),
.ARESET (s_aresetn_a_c),
.S_VALID (s_axi_rvalid_c),
.S_READY (s_axi_rready_c),
.S_PAYLOAD_DATA (s_axi_payload_c),
.M_VALID (S_AXI_RVALID),
.M_READY (S_AXI_RREADY),
.M_PAYLOAD_DATA (m_axi_payload_c)
);
end
endgenerate
generate if (C_INTERFACE_TYPE == 1) begin : axi_mem_module
assign s_aresetn_a_c = !S_ARESETN;
assign S_AXI_BRESP = 2'b00;
assign s_axi_rresp_c = 2'b00;
assign s_axi_arlen_c = (C_AXI_TYPE == 1)?S_AXI_ARLEN:8'h0;
blk_mem_axi_write_wrapper_beh_v8_2
#(.C_INTERFACE_TYPE (C_INTERFACE_TYPE),
.C_AXI_TYPE (C_AXI_TYPE),
.C_AXI_SLAVE_TYPE (C_AXI_SLAVE_TYPE),
.C_MEMORY_TYPE (C_MEM_TYPE),
.C_WRITE_DEPTH_A (C_WRITE_DEPTH_A),
.C_AXI_AWADDR_WIDTH ((AXI_FULL_MEMORY_SLAVE == 1)?C_AXI_ADDR_WIDTH:C_AXI_ADDR_WIDTH-C_AXI_ADDR_WIDTH_LSB),
.C_HAS_AXI_ID (C_HAS_AXI_ID),
.C_AXI_ID_WIDTH (C_AXI_ID_WIDTH),
.C_ADDRA_WIDTH (C_ADDRA_WIDTH),
.C_AXI_WDATA_WIDTH (C_WRITE_WIDTH_A),
.C_AXI_OS_WR (C_AXI_OS_WR))
axi_wr_fsm (
// AXI Global Signals
.S_ACLK (S_ACLK),
.S_ARESETN (s_aresetn_a_c),
// AXI Full/Lite Slave Write interface
.S_AXI_AWADDR (S_AXI_AWADDR[C_AXI_ADDR_WIDTH_MSB-1:C_AXI_ADDR_WIDTH_LSB]),
.S_AXI_AWLEN (S_AXI_AWLEN),
.S_AXI_AWID (S_AXI_AWID),
.S_AXI_AWSIZE (S_AXI_AWSIZE),
.S_AXI_AWBURST (S_AXI_AWBURST),
.S_AXI_AWVALID (S_AXI_AWVALID),
.S_AXI_AWREADY (S_AXI_AWREADY),
.S_AXI_WVALID (S_AXI_WVALID),
.S_AXI_WREADY (S_AXI_WREADY),
.S_AXI_BVALID (S_AXI_BVALID),
.S_AXI_BREADY (S_AXI_BREADY),
.S_AXI_BID (S_AXI_BID),
// Signals for BRAM interfac(
.S_AXI_AWADDR_OUT (s_axi_awaddr_out_c),
.S_AXI_WR_EN (s_axi_wr_en_c)
);
blk_mem_axi_read_wrapper_beh_v8_2
#(.C_INTERFACE_TYPE (C_INTERFACE_TYPE),
.C_AXI_TYPE (C_AXI_TYPE),
.C_AXI_SLAVE_TYPE (C_AXI_SLAVE_TYPE),
.C_MEMORY_TYPE (C_MEM_TYPE),
.C_WRITE_WIDTH_A (C_WRITE_WIDTH_A),
.C_ADDRA_WIDTH (C_ADDRA_WIDTH),
.C_AXI_PIPELINE_STAGES (1),
.C_AXI_ARADDR_WIDTH ((AXI_FULL_MEMORY_SLAVE == 1)?C_AXI_ADDR_WIDTH:C_AXI_ADDR_WIDTH-C_AXI_ADDR_WIDTH_LSB),
.C_HAS_AXI_ID (C_HAS_AXI_ID),
.C_AXI_ID_WIDTH (C_AXI_ID_WIDTH),
.C_ADDRB_WIDTH (C_ADDRB_WIDTH))
axi_rd_sm(
//AXI Global Signals
.S_ACLK (S_ACLK),
.S_ARESETN (s_aresetn_a_c),
//AXI Full/Lite Read Side
.S_AXI_ARADDR (S_AXI_ARADDR[C_AXI_ADDR_WIDTH_MSB-1:C_AXI_ADDR_WIDTH_LSB]),
.S_AXI_ARLEN (s_axi_arlen_c),
.S_AXI_ARSIZE (S_AXI_ARSIZE),
.S_AXI_ARBURST (S_AXI_ARBURST),
.S_AXI_ARVALID (S_AXI_ARVALID),
.S_AXI_ARREADY (S_AXI_ARREADY),
.S_AXI_RLAST (s_axi_rlast_c),
.S_AXI_RVALID (s_axi_rvalid_c),
.S_AXI_RREADY (s_axi_rready_c),
.S_AXI_ARID (S_AXI_ARID),
.S_AXI_RID (s_axi_rid_c),
//AXI Full/Lite Read FSM Outputs
.S_AXI_ARADDR_OUT (s_axi_araddr_out_c),
.S_AXI_RD_EN (s_axi_rd_en_c)
);
BLK_MEM_GEN_v8_2_mem_module
#(.C_CORENAME (C_CORENAME),
.C_FAMILY (C_FAMILY),
.C_XDEVICEFAMILY (C_XDEVICEFAMILY),
.C_MEM_TYPE (C_MEM_TYPE),
.C_BYTE_SIZE (C_BYTE_SIZE),
.C_USE_BRAM_BLOCK (C_USE_BRAM_BLOCK),
.C_ALGORITHM (C_ALGORITHM),
.C_PRIM_TYPE (C_PRIM_TYPE),
.C_LOAD_INIT_FILE (C_LOAD_INIT_FILE),
.C_INIT_FILE_NAME (C_INIT_FILE_NAME),
.C_INIT_FILE (C_INIT_FILE),
.C_USE_DEFAULT_DATA (C_USE_DEFAULT_DATA),
.C_DEFAULT_DATA (C_DEFAULT_DATA),
.C_RST_TYPE ("SYNC"),
.C_HAS_RSTA (C_HAS_RSTA),
.C_RST_PRIORITY_A (C_RST_PRIORITY_A),
.C_RSTRAM_A (C_RSTRAM_A),
.C_INITA_VAL (C_INITA_VAL),
.C_HAS_ENA (1),
.C_HAS_REGCEA (C_HAS_REGCEA),
.C_USE_BYTE_WEA (1),
.C_WEA_WIDTH (C_WEA_WIDTH),
.C_WRITE_MODE_A (C_WRITE_MODE_A),
.C_WRITE_WIDTH_A (C_WRITE_WIDTH_A),
.C_READ_WIDTH_A (C_READ_WIDTH_A),
.C_WRITE_DEPTH_A (C_WRITE_DEPTH_A),
.C_READ_DEPTH_A (C_READ_DEPTH_A),
.C_ADDRA_WIDTH (C_ADDRA_WIDTH),
.C_HAS_RSTB (C_HAS_RSTB),
.C_RST_PRIORITY_B (C_RST_PRIORITY_B),
.C_RSTRAM_B (C_RSTRAM_B),
.C_INITB_VAL (C_INITB_VAL),
.C_HAS_ENB (1),
.C_HAS_REGCEB (C_HAS_MEM_OUTPUT_REGS_B),
.C_USE_BYTE_WEB (1),
.C_WEB_WIDTH (C_WEB_WIDTH),
.C_WRITE_MODE_B (C_WRITE_MODE_B),
.C_WRITE_WIDTH_B (C_WRITE_WIDTH_B),
.C_READ_WIDTH_B (C_READ_WIDTH_B),
.C_WRITE_DEPTH_B (C_WRITE_DEPTH_B),
.C_READ_DEPTH_B (C_READ_DEPTH_B),
.C_ADDRB_WIDTH (C_ADDRB_WIDTH),
.C_HAS_MEM_OUTPUT_REGS_A (0),
.C_HAS_MEM_OUTPUT_REGS_B (C_HAS_MEM_OUTPUT_REGS_B),
.C_HAS_MUX_OUTPUT_REGS_A (0),
.C_HAS_MUX_OUTPUT_REGS_B (0),
.C_HAS_SOFTECC_INPUT_REGS_A (C_HAS_SOFTECC_INPUT_REGS_A),
.C_HAS_SOFTECC_OUTPUT_REGS_B (C_HAS_SOFTECC_OUTPUT_REGS_B),
.C_MUX_PIPELINE_STAGES (C_MUX_PIPELINE_STAGES),
.C_USE_SOFTECC (C_USE_SOFTECC),
.C_USE_ECC (C_USE_ECC),
.C_HAS_INJECTERR (C_HAS_INJECTERR),
.C_SIM_COLLISION_CHECK (C_SIM_COLLISION_CHECK),
.C_COMMON_CLK (C_COMMON_CLK),
.FLOP_DELAY (FLOP_DELAY),
.C_DISABLE_WARN_BHV_COLL (C_DISABLE_WARN_BHV_COLL),
.C_EN_ECC_PIPE (0),
.C_DISABLE_WARN_BHV_RANGE (C_DISABLE_WARN_BHV_RANGE))
blk_mem_gen_v8_2_inst
(.CLKA (S_ACLK),
.RSTA (s_aresetn_a_c),
.ENA (s_axi_wr_en_c),
.REGCEA (regcea_in),
.WEA (S_AXI_WSTRB),
.ADDRA (s_axi_awaddr_out_c),
.DINA (S_AXI_WDATA),
.DOUTA (DOUTA),
.CLKB (S_ACLK),
.RSTB (s_aresetn_a_c),
.ENB (s_axi_rd_en_c),
.REGCEB (regceb_c),
.WEB (WEB_parameterized),
.ADDRB (s_axi_araddr_out_c),
.DINB (DINB),
.DOUTB (s_axi_rdata_c),
.INJECTSBITERR (injectsbiterr_in),
.INJECTDBITERR (injectdbiterr_in),
.SBITERR (SBITERR),
.DBITERR (DBITERR),
.ECCPIPECE (1'b0),
.SLEEP (1'b0),
.RDADDRECC (RDADDRECC)
);
end
endgenerate
endmodule
|
/******************************************************************************
-- (c) Copyright 2006 - 2013 Xilinx, Inc. All rights reserved.
--
-- This file contains confidential and proprietary information
-- of Xilinx, Inc. and is protected under U.S. and
-- international copyright and other intellectual property
-- laws.
--
-- DISCLAIMER
-- This disclaimer is not a license and does not grant any
-- rights to the materials distributed herewith. Except as
-- otherwise provided in a valid license issued to you by
-- Xilinx, and to the maximum extent permitted by applicable
-- law: (1) THESE MATERIALS ARE MADE AVAILABLE "AS IS" AND
-- WITH ALL FAULTS, AND XILINX HEREBY DISCLAIMS ALL WARRANTIES
-- AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING
-- BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, NON-
-- INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and
-- (2) Xilinx shall not be liable (whether in contract or tort,
-- including negligence, or under any other theory of
-- liability) for any loss or damage of any kind or nature
-- related to, arising under or in connection with these
-- materials, including for any direct, or any indirect,
-- special, incidental, or consequential loss or damage
-- (including loss of data, profits, goodwill, or any type of
-- loss or damage suffered as a result of any action brought
-- by a third party) even if such damage or loss was
-- reasonably foreseeable or Xilinx had been advised of the
-- possibility of the same.
--
-- CRITICAL APPLICATIONS
-- Xilinx products are not designed or intended to be fail-
-- safe, or for use in any application requiring fail-safe
-- performance, such as life-support or safety devices or
-- systems, Class III medical devices, nuclear facilities,
-- applications related to the deployment of airbags, or any
-- other applications that could lead to death, personal
-- injury, or severe property or environmental damage
-- (individually and collectively, "Critical
-- Applications"). Customer assumes the sole risk and
-- liability of any use of Xilinx products in Critical
-- Applications, subject only to applicable laws and
-- regulations governing limitations on product liability.
--
-- THIS COPYRIGHT NOTICE AND DISCLAIMER MUST BE RETAINED AS
-- PART OF THIS FILE AT ALL TIMES.
--
*****************************************************************************
*
* Filename: BLK_MEM_GEN_v8_2.v
*
* Description:
* This file is the Verilog behvarial model for the
* Block Memory Generator Core.
*
*****************************************************************************
* Author: Xilinx
*
* History: Jan 11, 2006 Initial revision
* Jun 11, 2007 Added independent register stages for
* Port A and Port B (IP1_Jm/v2.5)
* Aug 28, 2007 Added mux pipeline stages feature (IP2_Jm/v2.6)
* Mar 13, 2008 Behavioral model optimizations
* April 07, 2009 : Added support for Spartan-6 and Virtex-6
* features, including the following:
* (i) error injection, detection and/or correction
* (ii) reset priority
* (iii) special reset behavior
*
*****************************************************************************/
`timescale 1ps/1ps
module STATE_LOGIC_v8_2 (O, I0, I1, I2, I3, I4, I5);
parameter INIT = 64'h0000000000000000;
input I0, I1, I2, I3, I4, I5;
output O;
reg O;
reg tmp;
always @( I5 or I4 or I3 or I2 or I1 or I0 ) begin
tmp = I0 ^ I1 ^ I2 ^ I3 ^ I4 ^ I5;
if ( tmp == 0 || tmp == 1)
O = INIT[{I5, I4, I3, I2, I1, I0}];
end
endmodule
module beh_vlog_muxf7_v8_2 (O, I0, I1, S);
output O;
reg O;
input I0, I1, S;
always @(I0 or I1 or S)
if (S)
O = I1;
else
O = I0;
endmodule
module beh_vlog_ff_clr_v8_2 (Q, C, CLR, D);
parameter INIT = 0;
localparam FLOP_DELAY = 100;
output Q;
input C, CLR, D;
reg Q;
initial Q= 1'b0;
always @(posedge C )
if (CLR)
Q<= 1'b0;
else
Q<= #FLOP_DELAY D;
endmodule
module beh_vlog_ff_pre_v8_2 (Q, C, D, PRE);
parameter INIT = 0;
localparam FLOP_DELAY = 100;
output Q;
input C, D, PRE;
reg Q;
initial Q= 1'b0;
always @(posedge C )
if (PRE)
Q <= 1'b1;
else
Q <= #FLOP_DELAY D;
endmodule
module beh_vlog_ff_ce_clr_v8_2 (Q, C, CE, CLR, D);
parameter INIT = 0;
localparam FLOP_DELAY = 100;
output Q;
input C, CE, CLR, D;
reg Q;
initial Q= 1'b0;
always @(posedge C )
if (CLR)
Q <= 1'b0;
else if (CE)
Q <= #FLOP_DELAY D;
endmodule
module write_netlist_v8_2
#(
parameter C_AXI_TYPE = 0
)
(
S_ACLK, S_ARESETN, S_AXI_AWVALID, S_AXI_WVALID, S_AXI_BREADY,
w_last_c, bready_timeout_c, aw_ready_r, S_AXI_WREADY, S_AXI_BVALID,
S_AXI_WR_EN, addr_en_c, incr_addr_c, bvalid_c
);
input S_ACLK;
input S_ARESETN;
input S_AXI_AWVALID;
input S_AXI_WVALID;
input S_AXI_BREADY;
input w_last_c;
input bready_timeout_c;
output aw_ready_r;
output S_AXI_WREADY;
output S_AXI_BVALID;
output S_AXI_WR_EN;
output addr_en_c;
output incr_addr_c;
output bvalid_c;
//-------------------------------------------------------------------------
//AXI LITE
//-------------------------------------------------------------------------
generate if (C_AXI_TYPE == 0 ) begin : gbeh_axi_lite_sm
wire w_ready_r_7;
wire w_ready_c;
wire aw_ready_c;
wire NlwRenamedSignal_bvalid_c;
wire NlwRenamedSignal_incr_addr_c;
wire present_state_FSM_FFd3_13;
wire present_state_FSM_FFd2_14;
wire present_state_FSM_FFd1_15;
wire present_state_FSM_FFd4_16;
wire present_state_FSM_FFd4_In;
wire present_state_FSM_FFd3_In;
wire present_state_FSM_FFd2_In;
wire present_state_FSM_FFd1_In;
wire present_state_FSM_FFd4_In1_21;
wire [0:0] Mmux_aw_ready_c ;
begin
assign
S_AXI_WREADY = w_ready_r_7,
S_AXI_BVALID = NlwRenamedSignal_incr_addr_c,
S_AXI_WR_EN = NlwRenamedSignal_bvalid_c,
incr_addr_c = NlwRenamedSignal_incr_addr_c,
bvalid_c = NlwRenamedSignal_bvalid_c;
assign NlwRenamedSignal_incr_addr_c = 1'b0;
beh_vlog_ff_clr_v8_2 #(
.INIT (1'b0))
aw_ready_r_2 (
.C ( S_ACLK),
.CLR ( S_ARESETN),
.D ( aw_ready_c),
.Q ( aw_ready_r)
);
beh_vlog_ff_clr_v8_2 #(
.INIT (1'b0))
w_ready_r (
.C ( S_ACLK),
.CLR ( S_ARESETN),
.D ( w_ready_c),
.Q ( w_ready_r_7)
);
beh_vlog_ff_pre_v8_2 #(
.INIT (1'b1))
present_state_FSM_FFd4 (
.C ( S_ACLK),
.D ( present_state_FSM_FFd4_In),
.PRE ( S_ARESETN),
.Q ( present_state_FSM_FFd4_16)
);
beh_vlog_ff_clr_v8_2 #(
.INIT (1'b0))
present_state_FSM_FFd3 (
.C ( S_ACLK),
.CLR ( S_ARESETN),
.D ( present_state_FSM_FFd3_In),
.Q ( present_state_FSM_FFd3_13)
);
beh_vlog_ff_clr_v8_2 #(
.INIT (1'b0))
present_state_FSM_FFd2 (
.C ( S_ACLK),
.CLR ( S_ARESETN),
.D ( present_state_FSM_FFd2_In),
.Q ( present_state_FSM_FFd2_14)
);
beh_vlog_ff_clr_v8_2 #(
.INIT (1'b0))
present_state_FSM_FFd1 (
.C ( S_ACLK),
.CLR ( S_ARESETN),
.D ( present_state_FSM_FFd1_In),
.Q ( present_state_FSM_FFd1_15)
);
STATE_LOGIC_v8_2 #(
.INIT (64'h0000000055554440))
present_state_FSM_FFd3_In1 (
.I0 ( S_AXI_WVALID),
.I1 ( S_AXI_AWVALID),
.I2 ( present_state_FSM_FFd2_14),
.I3 ( present_state_FSM_FFd4_16),
.I4 ( present_state_FSM_FFd3_13),
.I5 (1'b0),
.O ( present_state_FSM_FFd3_In)
);
STATE_LOGIC_v8_2 #(
.INIT (64'h0000000088880800))
present_state_FSM_FFd2_In1 (
.I0 ( S_AXI_AWVALID),
.I1 ( S_AXI_WVALID),
.I2 ( bready_timeout_c),
.I3 ( present_state_FSM_FFd2_14),
.I4 ( present_state_FSM_FFd4_16),
.I5 (1'b0),
.O ( present_state_FSM_FFd2_In)
);
STATE_LOGIC_v8_2 #(
.INIT (64'h00000000AAAA2000))
Mmux_addr_en_c_0_1 (
.I0 ( S_AXI_AWVALID),
.I1 ( bready_timeout_c),
.I2 ( present_state_FSM_FFd2_14),
.I3 ( S_AXI_WVALID),
.I4 ( present_state_FSM_FFd4_16),
.I5 (1'b0),
.O ( addr_en_c)
);
STATE_LOGIC_v8_2 #(
.INIT (64'hF5F07570F5F05500))
Mmux_w_ready_c_0_1 (
.I0 ( S_AXI_WVALID),
.I1 ( bready_timeout_c),
.I2 ( S_AXI_AWVALID),
.I3 ( present_state_FSM_FFd3_13),
.I4 ( present_state_FSM_FFd4_16),
.I5 ( present_state_FSM_FFd2_14),
.O ( w_ready_c)
);
STATE_LOGIC_v8_2 #(
.INIT (64'h88808880FFFF8880))
present_state_FSM_FFd1_In1 (
.I0 ( S_AXI_WVALID),
.I1 ( bready_timeout_c),
.I2 ( present_state_FSM_FFd3_13),
.I3 ( present_state_FSM_FFd2_14),
.I4 ( present_state_FSM_FFd1_15),
.I5 ( S_AXI_BREADY),
.O ( present_state_FSM_FFd1_In)
);
STATE_LOGIC_v8_2 #(
.INIT (64'h00000000000000A8))
Mmux_S_AXI_WR_EN_0_1 (
.I0 ( S_AXI_WVALID),
.I1 ( present_state_FSM_FFd2_14),
.I2 ( present_state_FSM_FFd3_13),
.I3 (1'b0),
.I4 (1'b0),
.I5 (1'b0),
.O ( NlwRenamedSignal_bvalid_c)
);
STATE_LOGIC_v8_2 #(
.INIT (64'h2F0F27072F0F2200))
present_state_FSM_FFd4_In1 (
.I0 ( S_AXI_WVALID),
.I1 ( bready_timeout_c),
.I2 ( S_AXI_AWVALID),
.I3 ( present_state_FSM_FFd3_13),
.I4 ( present_state_FSM_FFd4_16),
.I5 ( present_state_FSM_FFd2_14),
.O ( present_state_FSM_FFd4_In1_21)
);
STATE_LOGIC_v8_2 #(
.INIT (64'h00000000000000F8))
present_state_FSM_FFd4_In2 (
.I0 ( present_state_FSM_FFd1_15),
.I1 ( S_AXI_BREADY),
.I2 ( present_state_FSM_FFd4_In1_21),
.I3 (1'b0),
.I4 (1'b0),
.I5 (1'b0),
.O ( present_state_FSM_FFd4_In)
);
STATE_LOGIC_v8_2 #(
.INIT (64'h7535753575305500))
Mmux_aw_ready_c_0_1 (
.I0 ( S_AXI_AWVALID),
.I1 ( bready_timeout_c),
.I2 ( S_AXI_WVALID),
.I3 ( present_state_FSM_FFd4_16),
.I4 ( present_state_FSM_FFd3_13),
.I5 ( present_state_FSM_FFd2_14),
.O ( Mmux_aw_ready_c[0])
);
STATE_LOGIC_v8_2 #(
.INIT (64'h00000000000000F8))
Mmux_aw_ready_c_0_2 (
.I0 ( present_state_FSM_FFd1_15),
.I1 ( S_AXI_BREADY),
.I2 ( Mmux_aw_ready_c[0]),
.I3 (1'b0),
.I4 (1'b0),
.I5 (1'b0),
.O ( aw_ready_c)
);
end
end
endgenerate
//---------------------------------------------------------------------
// AXI FULL
//---------------------------------------------------------------------
generate if (C_AXI_TYPE == 1 ) begin : gbeh_axi_full_sm
wire w_ready_r_8;
wire w_ready_c;
wire aw_ready_c;
wire NlwRenamedSig_OI_bvalid_c;
wire present_state_FSM_FFd1_16;
wire present_state_FSM_FFd4_17;
wire present_state_FSM_FFd3_18;
wire present_state_FSM_FFd2_19;
wire present_state_FSM_FFd4_In;
wire present_state_FSM_FFd3_In;
wire present_state_FSM_FFd2_In;
wire present_state_FSM_FFd1_In;
wire present_state_FSM_FFd2_In1_24;
wire present_state_FSM_FFd4_In1_25;
wire N2;
wire N4;
begin
assign
S_AXI_WREADY = w_ready_r_8,
bvalid_c = NlwRenamedSig_OI_bvalid_c,
S_AXI_BVALID = 1'b0;
beh_vlog_ff_clr_v8_2 #(
.INIT (1'b0))
aw_ready_r_2
(
.C ( S_ACLK),
.CLR ( S_ARESETN),
.D ( aw_ready_c),
.Q ( aw_ready_r)
);
beh_vlog_ff_clr_v8_2 #(
.INIT (1'b0))
w_ready_r
(
.C ( S_ACLK),
.CLR ( S_ARESETN),
.D ( w_ready_c),
.Q ( w_ready_r_8)
);
beh_vlog_ff_pre_v8_2 #(
.INIT (1'b1))
present_state_FSM_FFd4
(
.C ( S_ACLK),
.D ( present_state_FSM_FFd4_In),
.PRE ( S_ARESETN),
.Q ( present_state_FSM_FFd4_17)
);
beh_vlog_ff_clr_v8_2 #(
.INIT (1'b0))
present_state_FSM_FFd3
(
.C ( S_ACLK),
.CLR ( S_ARESETN),
.D ( present_state_FSM_FFd3_In),
.Q ( present_state_FSM_FFd3_18)
);
beh_vlog_ff_clr_v8_2 #(
.INIT (1'b0))
present_state_FSM_FFd2
(
.C ( S_ACLK),
.CLR ( S_ARESETN),
.D ( present_state_FSM_FFd2_In),
.Q ( present_state_FSM_FFd2_19)
);
beh_vlog_ff_clr_v8_2 #(
.INIT (1'b0))
present_state_FSM_FFd1
(
.C ( S_ACLK),
.CLR ( S_ARESETN),
.D ( present_state_FSM_FFd1_In),
.Q ( present_state_FSM_FFd1_16)
);
STATE_LOGIC_v8_2 #(
.INIT (64'h0000000000005540))
present_state_FSM_FFd3_In1
(
.I0 ( S_AXI_WVALID),
.I1 ( present_state_FSM_FFd4_17),
.I2 ( S_AXI_AWVALID),
.I3 ( present_state_FSM_FFd3_18),
.I4 (1'b0),
.I5 (1'b0),
.O ( present_state_FSM_FFd3_In)
);
STATE_LOGIC_v8_2 #(
.INIT (64'hBF3FBB33AF0FAA00))
Mmux_aw_ready_c_0_2
(
.I0 ( S_AXI_BREADY),
.I1 ( bready_timeout_c),
.I2 ( S_AXI_AWVALID),
.I3 ( present_state_FSM_FFd1_16),
.I4 ( present_state_FSM_FFd4_17),
.I5 ( NlwRenamedSig_OI_bvalid_c),
.O ( aw_ready_c)
);
STATE_LOGIC_v8_2 #(
.INIT (64'hAAAAAAAA20000000))
Mmux_addr_en_c_0_1
(
.I0 ( S_AXI_AWVALID),
.I1 ( bready_timeout_c),
.I2 ( present_state_FSM_FFd2_19),
.I3 ( S_AXI_WVALID),
.I4 ( w_last_c),
.I5 ( present_state_FSM_FFd4_17),
.O ( addr_en_c)
);
STATE_LOGIC_v8_2 #(
.INIT (64'h00000000000000A8))
Mmux_S_AXI_WR_EN_0_1
(
.I0 ( S_AXI_WVALID),
.I1 ( present_state_FSM_FFd2_19),
.I2 ( present_state_FSM_FFd3_18),
.I3 (1'b0),
.I4 (1'b0),
.I5 (1'b0),
.O ( S_AXI_WR_EN)
);
STATE_LOGIC_v8_2 #(
.INIT (64'h0000000000002220))
Mmux_incr_addr_c_0_1
(
.I0 ( S_AXI_WVALID),
.I1 ( w_last_c),
.I2 ( present_state_FSM_FFd2_19),
.I3 ( present_state_FSM_FFd3_18),
.I4 (1'b0),
.I5 (1'b0),
.O ( incr_addr_c)
);
STATE_LOGIC_v8_2 #(
.INIT (64'h0000000000008880))
Mmux_aw_ready_c_0_11
(
.I0 ( S_AXI_WVALID),
.I1 ( w_last_c),
.I2 ( present_state_FSM_FFd2_19),
.I3 ( present_state_FSM_FFd3_18),
.I4 (1'b0),
.I5 (1'b0),
.O ( NlwRenamedSig_OI_bvalid_c)
);
STATE_LOGIC_v8_2 #(
.INIT (64'h000000000000D5C0))
present_state_FSM_FFd2_In1
(
.I0 ( w_last_c),
.I1 ( S_AXI_AWVALID),
.I2 ( present_state_FSM_FFd4_17),
.I3 ( present_state_FSM_FFd3_18),
.I4 (1'b0),
.I5 (1'b0),
.O ( present_state_FSM_FFd2_In1_24)
);
STATE_LOGIC_v8_2 #(
.INIT (64'hFFFFAAAA08AAAAAA))
present_state_FSM_FFd2_In2
(
.I0 ( present_state_FSM_FFd2_19),
.I1 ( S_AXI_AWVALID),
.I2 ( bready_timeout_c),
.I3 ( w_last_c),
.I4 ( S_AXI_WVALID),
.I5 ( present_state_FSM_FFd2_In1_24),
.O ( present_state_FSM_FFd2_In)
);
STATE_LOGIC_v8_2 #(
.INIT (64'h00C0004000C00000))
present_state_FSM_FFd4_In1
(
.I0 ( S_AXI_AWVALID),
.I1 ( w_last_c),
.I2 ( S_AXI_WVALID),
.I3 ( bready_timeout_c),
.I4 ( present_state_FSM_FFd3_18),
.I5 ( present_state_FSM_FFd2_19),
.O ( present_state_FSM_FFd4_In1_25)
);
STATE_LOGIC_v8_2 #(
.INIT (64'h00000000FFFF88F8))
present_state_FSM_FFd4_In2
(
.I0 ( present_state_FSM_FFd1_16),
.I1 ( S_AXI_BREADY),
.I2 ( present_state_FSM_FFd4_17),
.I3 ( S_AXI_AWVALID),
.I4 ( present_state_FSM_FFd4_In1_25),
.I5 (1'b0),
.O ( present_state_FSM_FFd4_In)
);
STATE_LOGIC_v8_2 #(
.INIT (64'h0000000000000007))
Mmux_w_ready_c_0_SW0
(
.I0 ( w_last_c),
.I1 ( S_AXI_WVALID),
.I2 (1'b0),
.I3 (1'b0),
.I4 (1'b0),
.I5 (1'b0),
.O ( N2)
);
STATE_LOGIC_v8_2 #(
.INIT (64'hFABAFABAFAAAF000))
Mmux_w_ready_c_0_Q
(
.I0 ( N2),
.I1 ( bready_timeout_c),
.I2 ( S_AXI_AWVALID),
.I3 ( present_state_FSM_FFd4_17),
.I4 ( present_state_FSM_FFd3_18),
.I5 ( present_state_FSM_FFd2_19),
.O ( w_ready_c)
);
STATE_LOGIC_v8_2 #(
.INIT (64'h0000000000000008))
Mmux_aw_ready_c_0_11_SW0
(
.I0 ( bready_timeout_c),
.I1 ( S_AXI_WVALID),
.I2 (1'b0),
.I3 (1'b0),
.I4 (1'b0),
.I5 (1'b0),
.O ( N4)
);
STATE_LOGIC_v8_2 #(
.INIT (64'h88808880FFFF8880))
present_state_FSM_FFd1_In1
(
.I0 ( w_last_c),
.I1 ( N4),
.I2 ( present_state_FSM_FFd2_19),
.I3 ( present_state_FSM_FFd3_18),
.I4 ( present_state_FSM_FFd1_16),
.I5 ( S_AXI_BREADY),
.O ( present_state_FSM_FFd1_In)
);
end
end
endgenerate
endmodule
module read_netlist_v8_2 #(
parameter C_AXI_TYPE = 1,
parameter C_ADDRB_WIDTH = 12
) ( S_AXI_R_LAST_INT, S_ACLK, S_ARESETN, S_AXI_ARVALID,
S_AXI_RREADY,S_AXI_INCR_ADDR,S_AXI_ADDR_EN,
S_AXI_SINGLE_TRANS,S_AXI_MUX_SEL, S_AXI_R_LAST, S_AXI_ARREADY,
S_AXI_RLAST, S_AXI_RVALID, S_AXI_RD_EN, S_AXI_ARLEN);
input S_AXI_R_LAST_INT;
input S_ACLK;
input S_ARESETN;
input S_AXI_ARVALID;
input S_AXI_RREADY;
output S_AXI_INCR_ADDR;
output S_AXI_ADDR_EN;
output S_AXI_SINGLE_TRANS;
output S_AXI_MUX_SEL;
output S_AXI_R_LAST;
output S_AXI_ARREADY;
output S_AXI_RLAST;
output S_AXI_RVALID;
output S_AXI_RD_EN;
input [7:0] S_AXI_ARLEN;
wire present_state_FSM_FFd1_13 ;
wire present_state_FSM_FFd2_14 ;
wire gaxi_full_sm_outstanding_read_r_15 ;
wire gaxi_full_sm_ar_ready_r_16 ;
wire gaxi_full_sm_r_last_r_17 ;
wire NlwRenamedSig_OI_gaxi_full_sm_r_valid_r ;
wire gaxi_full_sm_r_valid_c ;
wire S_AXI_RREADY_gaxi_full_sm_r_valid_r_OR_9_o ;
wire gaxi_full_sm_ar_ready_c ;
wire gaxi_full_sm_outstanding_read_c ;
wire NlwRenamedSig_OI_S_AXI_R_LAST ;
wire S_AXI_ARLEN_7_GND_8_o_equal_1_o ;
wire present_state_FSM_FFd2_In ;
wire present_state_FSM_FFd1_In ;
wire Mmux_S_AXI_R_LAST13 ;
wire N01 ;
wire N2 ;
wire Mmux_gaxi_full_sm_ar_ready_c11 ;
wire N4 ;
wire N8 ;
wire N9 ;
wire N10 ;
wire N11 ;
wire N12 ;
wire N13 ;
assign
S_AXI_R_LAST = NlwRenamedSig_OI_S_AXI_R_LAST,
S_AXI_ARREADY = gaxi_full_sm_ar_ready_r_16,
S_AXI_RLAST = gaxi_full_sm_r_last_r_17,
S_AXI_RVALID = NlwRenamedSig_OI_gaxi_full_sm_r_valid_r;
beh_vlog_ff_clr_v8_2 #(
.INIT (1'b0))
gaxi_full_sm_outstanding_read_r (
.C (S_ACLK),
.CLR(S_ARESETN),
.D(gaxi_full_sm_outstanding_read_c),
.Q(gaxi_full_sm_outstanding_read_r_15)
);
beh_vlog_ff_ce_clr_v8_2 #(
.INIT (1'b0))
gaxi_full_sm_r_valid_r (
.C (S_ACLK),
.CE (S_AXI_RREADY_gaxi_full_sm_r_valid_r_OR_9_o),
.CLR (S_ARESETN),
.D (gaxi_full_sm_r_valid_c),
.Q (NlwRenamedSig_OI_gaxi_full_sm_r_valid_r)
);
beh_vlog_ff_clr_v8_2 #(
.INIT (1'b0))
gaxi_full_sm_ar_ready_r (
.C (S_ACLK),
.CLR (S_ARESETN),
.D (gaxi_full_sm_ar_ready_c),
.Q (gaxi_full_sm_ar_ready_r_16)
);
beh_vlog_ff_ce_clr_v8_2 #(
.INIT(1'b0))
gaxi_full_sm_r_last_r (
.C (S_ACLK),
.CE (S_AXI_RREADY_gaxi_full_sm_r_valid_r_OR_9_o),
.CLR (S_ARESETN),
.D (NlwRenamedSig_OI_S_AXI_R_LAST),
.Q (gaxi_full_sm_r_last_r_17)
);
beh_vlog_ff_clr_v8_2 #(
.INIT (1'b0))
present_state_FSM_FFd2 (
.C ( S_ACLK),
.CLR ( S_ARESETN),
.D ( present_state_FSM_FFd2_In),
.Q ( present_state_FSM_FFd2_14)
);
beh_vlog_ff_clr_v8_2 #(
.INIT (1'b0))
present_state_FSM_FFd1 (
.C (S_ACLK),
.CLR (S_ARESETN),
.D (present_state_FSM_FFd1_In),
.Q (present_state_FSM_FFd1_13)
);
STATE_LOGIC_v8_2 #(
.INIT (64'h000000000000000B))
S_AXI_RREADY_gaxi_full_sm_r_valid_r_OR_9_o1 (
.I0 ( S_AXI_RREADY),
.I1 ( NlwRenamedSig_OI_gaxi_full_sm_r_valid_r),
.I2 (1'b0),
.I3 (1'b0),
.I4 (1'b0),
.I5 (1'b0),
.O (S_AXI_RREADY_gaxi_full_sm_r_valid_r_OR_9_o)
);
STATE_LOGIC_v8_2 #(
.INIT (64'h0000000000000008))
Mmux_S_AXI_SINGLE_TRANS11 (
.I0 (S_AXI_ARVALID),
.I1 (S_AXI_ARLEN_7_GND_8_o_equal_1_o),
.I2 (1'b0),
.I3 (1'b0),
.I4 (1'b0),
.I5 (1'b0),
.O (S_AXI_SINGLE_TRANS)
);
STATE_LOGIC_v8_2 #(
.INIT (64'h0000000000000004))
Mmux_S_AXI_ADDR_EN11 (
.I0 (present_state_FSM_FFd1_13),
.I1 (S_AXI_ARVALID),
.I2 (1'b0),
.I3 (1'b0),
.I4 (1'b0),
.I5 (1'b0),
.O (S_AXI_ADDR_EN)
);
STATE_LOGIC_v8_2 #(
.INIT (64'hECEE2022EEEE2022))
present_state_FSM_FFd2_In1 (
.I0 ( S_AXI_ARVALID),
.I1 ( present_state_FSM_FFd1_13),
.I2 ( S_AXI_RREADY),
.I3 ( S_AXI_ARLEN_7_GND_8_o_equal_1_o),
.I4 ( present_state_FSM_FFd2_14),
.I5 ( NlwRenamedSig_OI_gaxi_full_sm_r_valid_r),
.O ( present_state_FSM_FFd2_In)
);
STATE_LOGIC_v8_2 #(
.INIT (64'h0000000044440444))
Mmux_S_AXI_R_LAST131 (
.I0 ( present_state_FSM_FFd1_13),
.I1 ( S_AXI_ARVALID),
.I2 ( present_state_FSM_FFd2_14),
.I3 ( NlwRenamedSig_OI_gaxi_full_sm_r_valid_r),
.I4 ( S_AXI_RREADY),
.I5 (1'b0),
.O ( Mmux_S_AXI_R_LAST13)
);
STATE_LOGIC_v8_2 #(
.INIT (64'h4000FFFF40004000))
Mmux_S_AXI_INCR_ADDR11 (
.I0 ( S_AXI_R_LAST_INT),
.I1 ( S_AXI_RREADY_gaxi_full_sm_r_valid_r_OR_9_o),
.I2 ( present_state_FSM_FFd2_14),
.I3 ( present_state_FSM_FFd1_13),
.I4 ( S_AXI_ARLEN_7_GND_8_o_equal_1_o),
.I5 ( Mmux_S_AXI_R_LAST13),
.O ( S_AXI_INCR_ADDR)
);
STATE_LOGIC_v8_2 #(
.INIT (64'h00000000000000FE))
S_AXI_ARLEN_7_GND_8_o_equal_1_o_7_SW0 (
.I0 ( S_AXI_ARLEN[2]),
.I1 ( S_AXI_ARLEN[1]),
.I2 ( S_AXI_ARLEN[0]),
.I3 ( 1'b0),
.I4 ( 1'b0),
.I5 ( 1'b0),
.O ( N01)
);
STATE_LOGIC_v8_2 #(
.INIT (64'h0000000000000001))
S_AXI_ARLEN_7_GND_8_o_equal_1_o_7_Q (
.I0 ( S_AXI_ARLEN[7]),
.I1 ( S_AXI_ARLEN[6]),
.I2 ( S_AXI_ARLEN[5]),
.I3 ( S_AXI_ARLEN[4]),
.I4 ( S_AXI_ARLEN[3]),
.I5 ( N01),
.O ( S_AXI_ARLEN_7_GND_8_o_equal_1_o)
);
STATE_LOGIC_v8_2 #(
.INIT (64'h0000000000000007))
Mmux_gaxi_full_sm_outstanding_read_c1_SW0 (
.I0 ( S_AXI_ARVALID),
.I1 ( S_AXI_ARLEN_7_GND_8_o_equal_1_o),
.I2 ( 1'b0),
.I3 ( 1'b0),
.I4 ( 1'b0),
.I5 ( 1'b0),
.O ( N2)
);
STATE_LOGIC_v8_2 #(
.INIT (64'h0020000002200200))
Mmux_gaxi_full_sm_outstanding_read_c1 (
.I0 ( NlwRenamedSig_OI_gaxi_full_sm_r_valid_r),
.I1 ( S_AXI_RREADY),
.I2 ( present_state_FSM_FFd1_13),
.I3 ( present_state_FSM_FFd2_14),
.I4 ( gaxi_full_sm_outstanding_read_r_15),
.I5 ( N2),
.O ( gaxi_full_sm_outstanding_read_c)
);
STATE_LOGIC_v8_2 #(
.INIT (64'h0000000000004555))
Mmux_gaxi_full_sm_ar_ready_c12 (
.I0 ( S_AXI_ARVALID),
.I1 ( S_AXI_RREADY),
.I2 ( present_state_FSM_FFd2_14),
.I3 ( NlwRenamedSig_OI_gaxi_full_sm_r_valid_r),
.I4 ( 1'b0),
.I5 ( 1'b0),
.O ( Mmux_gaxi_full_sm_ar_ready_c11)
);
STATE_LOGIC_v8_2 #(
.INIT (64'h00000000000000EF))
Mmux_S_AXI_R_LAST11_SW0 (
.I0 ( S_AXI_ARLEN_7_GND_8_o_equal_1_o),
.I1 ( S_AXI_RREADY),
.I2 ( NlwRenamedSig_OI_gaxi_full_sm_r_valid_r),
.I3 ( 1'b0),
.I4 ( 1'b0),
.I5 ( 1'b0),
.O ( N4)
);
STATE_LOGIC_v8_2 #(
.INIT (64'hFCAAFC0A00AA000A))
Mmux_S_AXI_R_LAST11 (
.I0 ( S_AXI_ARVALID),
.I1 ( gaxi_full_sm_outstanding_read_r_15),
.I2 ( present_state_FSM_FFd2_14),
.I3 ( present_state_FSM_FFd1_13),
.I4 ( N4),
.I5 ( S_AXI_RREADY_gaxi_full_sm_r_valid_r_OR_9_o),
.O ( gaxi_full_sm_r_valid_c)
);
STATE_LOGIC_v8_2 #(
.INIT (64'h00000000AAAAAA08))
S_AXI_MUX_SEL1 (
.I0 (present_state_FSM_FFd1_13),
.I1 (NlwRenamedSig_OI_gaxi_full_sm_r_valid_r),
.I2 (S_AXI_RREADY),
.I3 (present_state_FSM_FFd2_14),
.I4 (gaxi_full_sm_outstanding_read_r_15),
.I5 (1'b0),
.O (S_AXI_MUX_SEL)
);
STATE_LOGIC_v8_2 #(
.INIT (64'hF3F3F755A2A2A200))
Mmux_S_AXI_RD_EN11 (
.I0 ( present_state_FSM_FFd1_13),
.I1 ( NlwRenamedSig_OI_gaxi_full_sm_r_valid_r),
.I2 ( S_AXI_RREADY),
.I3 ( gaxi_full_sm_outstanding_read_r_15),
.I4 ( present_state_FSM_FFd2_14),
.I5 ( S_AXI_ARVALID),
.O ( S_AXI_RD_EN)
);
beh_vlog_muxf7_v8_2 present_state_FSM_FFd1_In3 (
.I0 ( N8),
.I1 ( N9),
.S ( present_state_FSM_FFd1_13),
.O ( present_state_FSM_FFd1_In)
);
STATE_LOGIC_v8_2 #(
.INIT (64'h000000005410F4F0))
present_state_FSM_FFd1_In3_F (
.I0 ( S_AXI_RREADY),
.I1 ( present_state_FSM_FFd2_14),
.I2 ( S_AXI_ARVALID),
.I3 ( NlwRenamedSig_OI_gaxi_full_sm_r_valid_r),
.I4 ( S_AXI_ARLEN_7_GND_8_o_equal_1_o),
.I5 ( 1'b0),
.O ( N8)
);
STATE_LOGIC_v8_2 #(
.INIT (64'h0000000072FF7272))
present_state_FSM_FFd1_In3_G (
.I0 ( present_state_FSM_FFd2_14),
.I1 ( S_AXI_R_LAST_INT),
.I2 ( gaxi_full_sm_outstanding_read_r_15),
.I3 ( S_AXI_RREADY),
.I4 ( NlwRenamedSig_OI_gaxi_full_sm_r_valid_r),
.I5 ( 1'b0),
.O ( N9)
);
beh_vlog_muxf7_v8_2 Mmux_gaxi_full_sm_ar_ready_c14 (
.I0 ( N10),
.I1 ( N11),
.S ( present_state_FSM_FFd1_13),
.O ( gaxi_full_sm_ar_ready_c)
);
STATE_LOGIC_v8_2 #(
.INIT (64'h00000000FFFF88A8))
Mmux_gaxi_full_sm_ar_ready_c14_F (
.I0 ( S_AXI_ARLEN_7_GND_8_o_equal_1_o),
.I1 ( S_AXI_RREADY),
.I2 ( present_state_FSM_FFd2_14),
.I3 ( NlwRenamedSig_OI_gaxi_full_sm_r_valid_r),
.I4 ( Mmux_gaxi_full_sm_ar_ready_c11),
.I5 ( 1'b0),
.O ( N10)
);
STATE_LOGIC_v8_2 #(
.INIT (64'h000000008D008D8D))
Mmux_gaxi_full_sm_ar_ready_c14_G (
.I0 ( present_state_FSM_FFd2_14),
.I1 ( S_AXI_R_LAST_INT),
.I2 ( gaxi_full_sm_outstanding_read_r_15),
.I3 ( S_AXI_RREADY),
.I4 ( NlwRenamedSig_OI_gaxi_full_sm_r_valid_r),
.I5 ( 1'b0),
.O ( N11)
);
beh_vlog_muxf7_v8_2 Mmux_S_AXI_R_LAST1 (
.I0 ( N12),
.I1 ( N13),
.S ( present_state_FSM_FFd1_13),
.O ( NlwRenamedSig_OI_S_AXI_R_LAST)
);
STATE_LOGIC_v8_2 #(
.INIT (64'h0000000088088888))
Mmux_S_AXI_R_LAST1_F (
.I0 ( S_AXI_ARLEN_7_GND_8_o_equal_1_o),
.I1 ( S_AXI_ARVALID),
.I2 ( present_state_FSM_FFd2_14),
.I3 ( S_AXI_RREADY),
.I4 ( NlwRenamedSig_OI_gaxi_full_sm_r_valid_r),
.I5 ( 1'b0),
.O ( N12)
);
STATE_LOGIC_v8_2 #(
.INIT (64'h00000000E400E4E4))
Mmux_S_AXI_R_LAST1_G (
.I0 ( present_state_FSM_FFd2_14),
.I1 ( gaxi_full_sm_outstanding_read_r_15),
.I2 ( S_AXI_R_LAST_INT),
.I3 ( S_AXI_RREADY),
.I4 ( NlwRenamedSig_OI_gaxi_full_sm_r_valid_r),
.I5 ( 1'b0),
.O ( N13)
);
endmodule
module blk_mem_axi_write_wrapper_beh_v8_2
# (
// AXI Interface related parameters start here
parameter C_INTERFACE_TYPE = 0, // 0: Native Interface; 1: AXI Interface
parameter C_AXI_TYPE = 0, // 0: AXI Lite; 1: AXI Full;
parameter C_AXI_SLAVE_TYPE = 0, // 0: MEMORY SLAVE; 1: PERIPHERAL SLAVE;
parameter C_MEMORY_TYPE = 0, // 0: SP-RAM, 1: SDP-RAM; 2: TDP-RAM; 3: DP-ROM;
parameter C_WRITE_DEPTH_A = 0,
parameter C_AXI_AWADDR_WIDTH = 32,
parameter C_ADDRA_WIDTH = 12,
parameter C_AXI_WDATA_WIDTH = 32,
parameter C_HAS_AXI_ID = 0,
parameter C_AXI_ID_WIDTH = 4,
// AXI OUTSTANDING WRITES
parameter C_AXI_OS_WR = 2
)
(
// AXI Global Signals
input S_ACLK,
input S_ARESETN,
// AXI Full/Lite Slave Write Channel (write side)
input [C_AXI_ID_WIDTH-1:0] S_AXI_AWID,
input [C_AXI_AWADDR_WIDTH-1:0] S_AXI_AWADDR,
input [8-1:0] S_AXI_AWLEN,
input [2:0] S_AXI_AWSIZE,
input [1:0] S_AXI_AWBURST,
input S_AXI_AWVALID,
output S_AXI_AWREADY,
input S_AXI_WVALID,
output S_AXI_WREADY,
output reg [C_AXI_ID_WIDTH-1:0] S_AXI_BID = 0,
output S_AXI_BVALID,
input S_AXI_BREADY,
// Signals for BMG interface
output [C_ADDRA_WIDTH-1:0] S_AXI_AWADDR_OUT,
output S_AXI_WR_EN
);
localparam FLOP_DELAY = 100; // 100 ps
localparam C_RANGE = ((C_AXI_WDATA_WIDTH == 8)?0:
((C_AXI_WDATA_WIDTH==16)?1:
((C_AXI_WDATA_WIDTH==32)?2:
((C_AXI_WDATA_WIDTH==64)?3:
((C_AXI_WDATA_WIDTH==128)?4:
((C_AXI_WDATA_WIDTH==256)?5:0))))));
wire bvalid_c ;
reg bready_timeout_c = 0;
wire [1:0] bvalid_rd_cnt_c;
reg bvalid_r = 0;
reg [2:0] bvalid_count_r = 0;
reg [((C_AXI_TYPE == 1 && C_AXI_SLAVE_TYPE == 0)?
C_AXI_AWADDR_WIDTH:C_ADDRA_WIDTH)-1:0] awaddr_reg = 0;
reg [1:0] bvalid_wr_cnt_r = 0;
reg [1:0] bvalid_rd_cnt_r = 0;
wire w_last_c ;
wire addr_en_c ;
wire incr_addr_c ;
wire aw_ready_r ;
wire dec_alen_c ;
reg bvalid_d1_c = 0;
reg [7:0] awlen_cntr_r = 0;
reg [7:0] awlen_int = 0;
reg [1:0] awburst_int = 0;
integer total_bytes = 0;
integer wrap_boundary = 0;
integer wrap_base_addr = 0;
integer num_of_bytes_c = 0;
integer num_of_bytes_r = 0;
// Array to store BIDs
reg [C_AXI_ID_WIDTH-1:0] axi_bid_array[3:0] ;
wire S_AXI_BVALID_axi_wr_fsm;
//-------------------------------------
//AXI WRITE FSM COMPONENT INSTANTIATION
//-------------------------------------
write_netlist_v8_2 #(.C_AXI_TYPE(C_AXI_TYPE)) axi_wr_fsm
(
.S_ACLK(S_ACLK),
.S_ARESETN(S_ARESETN),
.S_AXI_AWVALID(S_AXI_AWVALID),
.aw_ready_r(aw_ready_r),
.S_AXI_WVALID(S_AXI_WVALID),
.S_AXI_WREADY(S_AXI_WREADY),
.S_AXI_BREADY(S_AXI_BREADY),
.S_AXI_WR_EN(S_AXI_WR_EN),
.w_last_c(w_last_c),
.bready_timeout_c(bready_timeout_c),
.addr_en_c(addr_en_c),
.incr_addr_c(incr_addr_c),
.bvalid_c(bvalid_c),
.S_AXI_BVALID (S_AXI_BVALID_axi_wr_fsm)
);
//Wrap Address boundary calculation
always@(*) begin
num_of_bytes_c = 2**((C_AXI_TYPE == 1 && C_AXI_SLAVE_TYPE == 0)?S_AXI_AWSIZE:0);
total_bytes = (num_of_bytes_r)*(awlen_int+1);
wrap_base_addr = ((awaddr_reg)/((total_bytes==0)?1:total_bytes))*(total_bytes);
wrap_boundary = wrap_base_addr+total_bytes;
end
//-------------------------------------------------------------------------
// BMG address generation
//-------------------------------------------------------------------------
always @(posedge S_ACLK or S_ARESETN) begin
if (S_ARESETN == 1'b1) begin
awaddr_reg <= 0;
num_of_bytes_r <= 0;
awburst_int <= 0;
end else begin
if (addr_en_c == 1'b1) begin
awaddr_reg <= #FLOP_DELAY S_AXI_AWADDR ;
num_of_bytes_r <= num_of_bytes_c;
awburst_int <= ((C_AXI_TYPE == 1 && C_AXI_SLAVE_TYPE == 0)?S_AXI_AWBURST:2'b01);
end else if (incr_addr_c == 1'b1) begin
if (awburst_int == 2'b10) begin
if(awaddr_reg == (wrap_boundary-num_of_bytes_r)) begin
awaddr_reg <= wrap_base_addr;
end else begin
awaddr_reg <= awaddr_reg + num_of_bytes_r;
end
end else if (awburst_int == 2'b01 || awburst_int == 2'b11) begin
awaddr_reg <= awaddr_reg + num_of_bytes_r;
end
end
end
end
assign S_AXI_AWADDR_OUT = ((C_AXI_TYPE == 1 && C_AXI_SLAVE_TYPE == 0)?
awaddr_reg[C_AXI_AWADDR_WIDTH-1:C_RANGE]:awaddr_reg);
//-------------------------------------------------------------------------
// AXI wlast generation
//-------------------------------------------------------------------------
always @(posedge S_ACLK or S_ARESETN) begin
if (S_ARESETN == 1'b1) begin
awlen_cntr_r <= 0;
awlen_int <= 0;
end else begin
if (addr_en_c == 1'b1) begin
awlen_int <= #FLOP_DELAY (C_AXI_TYPE == 0?0:S_AXI_AWLEN) ;
awlen_cntr_r <= #FLOP_DELAY (C_AXI_TYPE == 0?0:S_AXI_AWLEN) ;
end else if (dec_alen_c == 1'b1) begin
awlen_cntr_r <= #FLOP_DELAY awlen_cntr_r - 1 ;
end
end
end
assign w_last_c = (awlen_cntr_r == 0 && S_AXI_WVALID == 1'b1)?1'b1:1'b0;
assign dec_alen_c = (incr_addr_c | w_last_c);
//-------------------------------------------------------------------------
// Generation of bvalid counter for outstanding transactions
//-------------------------------------------------------------------------
always @(posedge S_ACLK or S_ARESETN) begin
if (S_ARESETN == 1'b1) begin
bvalid_count_r <= 0;
end else begin
// bvalid_count_r generation
if (bvalid_c == 1'b1 && bvalid_r == 1'b1 && S_AXI_BREADY == 1'b1) begin
bvalid_count_r <= #FLOP_DELAY bvalid_count_r ;
end else if (bvalid_c == 1'b1) begin
bvalid_count_r <= #FLOP_DELAY bvalid_count_r + 1 ;
end else if (bvalid_r == 1'b1 && S_AXI_BREADY == 1'b1 && bvalid_count_r != 0) begin
bvalid_count_r <= #FLOP_DELAY bvalid_count_r - 1 ;
end
end
end
//-------------------------------------------------------------------------
// Generation of bvalid when BID is used
//-------------------------------------------------------------------------
generate if (C_HAS_AXI_ID == 1) begin:gaxi_bvalid_id_r
always @(posedge S_ACLK or S_ARESETN) begin
if (S_ARESETN == 1'b1) begin
bvalid_r <= 0;
bvalid_d1_c <= 0;
end else begin
// Delay the generation o bvalid_r for generation for BID
bvalid_d1_c <= bvalid_c;
//external bvalid signal generation
if (bvalid_d1_c == 1'b1) begin
bvalid_r <= #FLOP_DELAY 1'b1 ;
end else if (bvalid_count_r <= 1 && S_AXI_BREADY == 1'b1) begin
bvalid_r <= #FLOP_DELAY 0 ;
end
end
end
end
endgenerate
//-------------------------------------------------------------------------
// Generation of bvalid when BID is not used
//-------------------------------------------------------------------------
generate if(C_HAS_AXI_ID == 0) begin:gaxi_bvalid_noid_r
always @(posedge S_ACLK or S_ARESETN) begin
if (S_ARESETN == 1'b1) begin
bvalid_r <= 0;
end else begin
//external bvalid signal generation
if (bvalid_c == 1'b1) begin
bvalid_r <= #FLOP_DELAY 1'b1 ;
end else if (bvalid_count_r <= 1 && S_AXI_BREADY == 1'b1) begin
bvalid_r <= #FLOP_DELAY 0 ;
end
end
end
end
endgenerate
//-------------------------------------------------------------------------
// Generation of Bready timeout
//-------------------------------------------------------------------------
always @(bvalid_count_r) begin
// bready_timeout_c generation
if(bvalid_count_r == C_AXI_OS_WR-1) begin
bready_timeout_c <= 1'b1;
end else begin
bready_timeout_c <= 1'b0;
end
end
//-------------------------------------------------------------------------
// Generation of BID
//-------------------------------------------------------------------------
generate if(C_HAS_AXI_ID == 1) begin:gaxi_bid_gen
always @(posedge S_ACLK or S_ARESETN) begin
if (S_ARESETN == 1'b1) begin
bvalid_wr_cnt_r <= 0;
bvalid_rd_cnt_r <= 0;
end else begin
// STORE AWID IN AN ARRAY
if(bvalid_c == 1'b1) begin
bvalid_wr_cnt_r <= bvalid_wr_cnt_r + 1;
end
// generate BID FROM AWID ARRAY
bvalid_rd_cnt_r <= #FLOP_DELAY bvalid_rd_cnt_c ;
S_AXI_BID <= axi_bid_array[bvalid_rd_cnt_c];
end
end
assign bvalid_rd_cnt_c = (bvalid_r == 1'b1 && S_AXI_BREADY == 1'b1)?bvalid_rd_cnt_r+1:bvalid_rd_cnt_r;
//-------------------------------------------------------------------------
// Storing AWID for generation of BID
//-------------------------------------------------------------------------
always @(posedge S_ACLK or S_ARESETN) begin
if(S_ARESETN == 1'b1) begin
axi_bid_array[0] = 0;
axi_bid_array[1] = 0;
axi_bid_array[2] = 0;
axi_bid_array[3] = 0;
end else if(aw_ready_r == 1'b1 && S_AXI_AWVALID == 1'b1) begin
axi_bid_array[bvalid_wr_cnt_r] <= S_AXI_AWID;
end
end
end
endgenerate
assign S_AXI_BVALID = bvalid_r;
assign S_AXI_AWREADY = aw_ready_r;
endmodule
module blk_mem_axi_read_wrapper_beh_v8_2
# (
//// AXI Interface related parameters start here
parameter C_INTERFACE_TYPE = 0,
parameter C_AXI_TYPE = 0,
parameter C_AXI_SLAVE_TYPE = 0,
parameter C_MEMORY_TYPE = 0,
parameter C_WRITE_WIDTH_A = 4,
parameter C_WRITE_DEPTH_A = 32,
parameter C_ADDRA_WIDTH = 12,
parameter C_AXI_PIPELINE_STAGES = 0,
parameter C_AXI_ARADDR_WIDTH = 12,
parameter C_HAS_AXI_ID = 0,
parameter C_AXI_ID_WIDTH = 4,
parameter C_ADDRB_WIDTH = 12
)
(
//// AXI Global Signals
input S_ACLK,
input S_ARESETN,
//// AXI Full/Lite Slave Read (Read side)
input [C_AXI_ARADDR_WIDTH-1:0] S_AXI_ARADDR,
input [7:0] S_AXI_ARLEN,
input [2:0] S_AXI_ARSIZE,
input [1:0] S_AXI_ARBURST,
input S_AXI_ARVALID,
output S_AXI_ARREADY,
output S_AXI_RLAST,
output S_AXI_RVALID,
input S_AXI_RREADY,
input [C_AXI_ID_WIDTH-1:0] S_AXI_ARID,
output reg [C_AXI_ID_WIDTH-1:0] S_AXI_RID = 0,
//// AXI Full/Lite Read Address Signals to BRAM
output [C_ADDRB_WIDTH-1:0] S_AXI_ARADDR_OUT,
output S_AXI_RD_EN
);
localparam FLOP_DELAY = 100; // 100 ps
localparam C_RANGE = ((C_WRITE_WIDTH_A == 8)?0:
((C_WRITE_WIDTH_A==16)?1:
((C_WRITE_WIDTH_A==32)?2:
((C_WRITE_WIDTH_A==64)?3:
((C_WRITE_WIDTH_A==128)?4:
((C_WRITE_WIDTH_A==256)?5:0))))));
reg [C_AXI_ID_WIDTH-1:0] ar_id_r=0;
wire addr_en_c;
wire rd_en_c;
wire incr_addr_c;
wire single_trans_c;
wire dec_alen_c;
wire mux_sel_c;
wire r_last_c;
wire r_last_int_c;
wire [C_ADDRB_WIDTH-1 : 0] araddr_out;
reg [7:0] arlen_int_r=0;
reg [7:0] arlen_cntr=8'h01;
reg [1:0] arburst_int_c=0;
reg [1:0] arburst_int_r=0;
reg [((C_AXI_TYPE == 1 && C_AXI_SLAVE_TYPE == 0)?
C_AXI_ARADDR_WIDTH:C_ADDRA_WIDTH)-1:0] araddr_reg =0;
integer num_of_bytes_c = 0;
integer total_bytes = 0;
integer num_of_bytes_r = 0;
integer wrap_base_addr_r = 0;
integer wrap_boundary_r = 0;
reg [7:0] arlen_int_c=0;
integer total_bytes_c = 0;
integer wrap_base_addr_c = 0;
integer wrap_boundary_c = 0;
assign dec_alen_c = incr_addr_c | r_last_int_c;
read_netlist_v8_2
#(.C_AXI_TYPE (1),
.C_ADDRB_WIDTH (C_ADDRB_WIDTH))
axi_read_fsm (
.S_AXI_INCR_ADDR(incr_addr_c),
.S_AXI_ADDR_EN(addr_en_c),
.S_AXI_SINGLE_TRANS(single_trans_c),
.S_AXI_MUX_SEL(mux_sel_c),
.S_AXI_R_LAST(r_last_c),
.S_AXI_R_LAST_INT(r_last_int_c),
//// AXI Global Signals
.S_ACLK(S_ACLK),
.S_ARESETN(S_ARESETN),
//// AXI Full/Lite Slave Read (Read side)
.S_AXI_ARLEN(S_AXI_ARLEN),
.S_AXI_ARVALID(S_AXI_ARVALID),
.S_AXI_ARREADY(S_AXI_ARREADY),
.S_AXI_RLAST(S_AXI_RLAST),
.S_AXI_RVALID(S_AXI_RVALID),
.S_AXI_RREADY(S_AXI_RREADY),
//// AXI Full/Lite Read Address Signals to BRAM
.S_AXI_RD_EN(rd_en_c)
);
always@(*) begin
num_of_bytes_c = 2**((C_AXI_TYPE == 1 && C_AXI_SLAVE_TYPE == 0)?S_AXI_ARSIZE:0);
total_bytes = (num_of_bytes_r)*(arlen_int_r+1);
wrap_base_addr_r = ((araddr_reg)/(total_bytes==0?1:total_bytes))*(total_bytes);
wrap_boundary_r = wrap_base_addr_r+total_bytes;
//////// combinatorial from interface
arlen_int_c = (C_AXI_TYPE == 0?0:S_AXI_ARLEN);
total_bytes_c = (num_of_bytes_c)*(arlen_int_c+1);
wrap_base_addr_c = ((S_AXI_ARADDR)/(total_bytes_c==0?1:total_bytes_c))*(total_bytes_c);
wrap_boundary_c = wrap_base_addr_c+total_bytes_c;
arburst_int_c = ((C_AXI_TYPE == 1 && C_AXI_SLAVE_TYPE == 0)?S_AXI_ARBURST:1);
end
////-------------------------------------------------------------------------
//// BMG address generation
////-------------------------------------------------------------------------
always @(posedge S_ACLK or S_ARESETN) begin
if (S_ARESETN == 1'b1) begin
araddr_reg <= 0;
arburst_int_r <= 0;
num_of_bytes_r <= 0;
end else begin
if (incr_addr_c == 1'b1 && addr_en_c == 1'b1 && single_trans_c == 1'b0) begin
arburst_int_r <= arburst_int_c;
num_of_bytes_r <= num_of_bytes_c;
if (arburst_int_c == 2'b10) begin
if(S_AXI_ARADDR == (wrap_boundary_c-num_of_bytes_c)) begin
araddr_reg <= wrap_base_addr_c;
end else begin
araddr_reg <= S_AXI_ARADDR + num_of_bytes_c;
end
end else if (arburst_int_c == 2'b01 || arburst_int_c == 2'b11) begin
araddr_reg <= S_AXI_ARADDR + num_of_bytes_c;
end
end else if (addr_en_c == 1'b1) begin
araddr_reg <= S_AXI_ARADDR;
num_of_bytes_r <= num_of_bytes_c;
arburst_int_r <= arburst_int_c;
end else if (incr_addr_c == 1'b1) begin
if (arburst_int_r == 2'b10) begin
if(araddr_reg == (wrap_boundary_r-num_of_bytes_r)) begin
araddr_reg <= wrap_base_addr_r;
end else begin
araddr_reg <= araddr_reg + num_of_bytes_r;
end
end else if (arburst_int_r == 2'b01 || arburst_int_r == 2'b11) begin
araddr_reg <= araddr_reg + num_of_bytes_r;
end
end
end
end
assign araddr_out = ((C_AXI_TYPE == 1 && C_AXI_SLAVE_TYPE == 0)?araddr_reg[C_AXI_ARADDR_WIDTH-1:C_RANGE]:araddr_reg);
////-----------------------------------------------------------------------
//// Counter to generate r_last_int_c from registered ARLEN - AXI FULL FSM
////-----------------------------------------------------------------------
always @(posedge S_ACLK or S_ARESETN) begin
if (S_ARESETN == 1'b1) begin
arlen_cntr <= 8'h01;
arlen_int_r <= 0;
end else begin
if (addr_en_c == 1'b1 && dec_alen_c == 1'b1 && single_trans_c == 1'b0) begin
arlen_int_r <= (C_AXI_TYPE == 0?0:S_AXI_ARLEN) ;
arlen_cntr <= S_AXI_ARLEN - 1'b1;
end else if (addr_en_c == 1'b1) begin
arlen_int_r <= (C_AXI_TYPE == 0?0:S_AXI_ARLEN) ;
arlen_cntr <= (C_AXI_TYPE == 0?0:S_AXI_ARLEN) ;
end else if (dec_alen_c == 1'b1) begin
arlen_cntr <= arlen_cntr - 1'b1 ;
end
else begin
arlen_cntr <= arlen_cntr;
end
end
end
assign r_last_int_c = (arlen_cntr == 0 && S_AXI_RREADY == 1'b1)?1'b1:1'b0;
////------------------------------------------------------------------------
//// AXI FULL FSM
//// Mux Selection of ARADDR
//// ARADDR is driven out from the read fsm based on the mux_sel_c
//// Based on mux_sel either ARADDR is given out or the latched ARADDR is
//// given out to BRAM
////------------------------------------------------------------------------
assign S_AXI_ARADDR_OUT = (mux_sel_c == 1'b0)?((C_AXI_TYPE == 1 && C_AXI_SLAVE_TYPE == 0)?S_AXI_ARADDR[C_AXI_ARADDR_WIDTH-1:C_RANGE]:S_AXI_ARADDR):araddr_out;
////------------------------------------------------------------------------
//// Assign output signals - AXI FULL FSM
////------------------------------------------------------------------------
assign S_AXI_RD_EN = rd_en_c;
generate if (C_HAS_AXI_ID == 1) begin:gaxi_bvalid_id_r
always @(posedge S_ACLK or S_ARESETN) begin
if (S_ARESETN == 1'b1) begin
S_AXI_RID <= 0;
ar_id_r <= 0;
end else begin
if (addr_en_c == 1'b1 && rd_en_c == 1'b1) begin
S_AXI_RID <= S_AXI_ARID;
ar_id_r <= S_AXI_ARID;
end else if (addr_en_c == 1'b1 && rd_en_c == 1'b0) begin
ar_id_r <= S_AXI_ARID;
end else if (rd_en_c == 1'b1) begin
S_AXI_RID <= ar_id_r;
end
end
end
end
endgenerate
endmodule
module blk_mem_axi_regs_fwd_v8_2
#(parameter C_DATA_WIDTH = 8
)(
input ACLK,
input ARESET,
input S_VALID,
output S_READY,
input [C_DATA_WIDTH-1:0] S_PAYLOAD_DATA,
output M_VALID,
input M_READY,
output reg [C_DATA_WIDTH-1:0] M_PAYLOAD_DATA
);
reg [C_DATA_WIDTH-1:0] STORAGE_DATA;
wire S_READY_I;
reg M_VALID_I;
reg [1:0] ARESET_D;
//assign local signal to its output signal
assign S_READY = S_READY_I;
assign M_VALID = M_VALID_I;
always @(posedge ACLK) begin
ARESET_D <= {ARESET_D[0], ARESET};
end
//Save payload data whenever we have a transaction on the slave side
always @(posedge ACLK or ARESET) begin
if (ARESET == 1'b1) begin
STORAGE_DATA <= 0;
end else begin
if(S_VALID == 1'b1 && S_READY_I == 1'b1 ) begin
STORAGE_DATA <= S_PAYLOAD_DATA;
end
end
end
always @(posedge ACLK) begin
M_PAYLOAD_DATA = STORAGE_DATA;
end
//M_Valid set to high when we have a completed transfer on slave side
//Is removed on a M_READY except if we have a new transfer on the slave side
always @(posedge ACLK or ARESET_D) begin
if (ARESET_D != 2'b00) begin
M_VALID_I <= 1'b0;
end else begin
if (S_VALID == 1'b1) begin
//Always set M_VALID_I when slave side is valid
M_VALID_I <= 1'b1;
end else if (M_READY == 1'b1 ) begin
//Clear (or keep) when no slave side is valid but master side is ready
M_VALID_I <= 1'b0;
end
end
end
//Slave Ready is either when Master side drives M_READY or we have space in our storage data
assign S_READY_I = (M_READY || (!M_VALID_I)) && !(|(ARESET_D));
endmodule
//*****************************************************************************
// Output Register Stage module
//
// This module builds the output register stages of the memory. This module is
// instantiated in the main memory module (BLK_MEM_GEN_v8_2) which is
// declared/implemented further down in this file.
//*****************************************************************************
module BLK_MEM_GEN_v8_2_output_stage
#(parameter C_FAMILY = "virtex7",
parameter C_XDEVICEFAMILY = "virtex7",
parameter C_RST_TYPE = "SYNC",
parameter C_HAS_RST = 0,
parameter C_RSTRAM = 0,
parameter C_RST_PRIORITY = "CE",
parameter C_INIT_VAL = "0",
parameter C_HAS_EN = 0,
parameter C_HAS_REGCE = 0,
parameter C_DATA_WIDTH = 32,
parameter C_ADDRB_WIDTH = 10,
parameter C_HAS_MEM_OUTPUT_REGS = 0,
parameter C_USE_SOFTECC = 0,
parameter C_USE_ECC = 0,
parameter NUM_STAGES = 1,
parameter C_EN_ECC_PIPE = 0,
parameter FLOP_DELAY = 100
)
(
input CLK,
input RST,
input EN,
input REGCE,
input [C_DATA_WIDTH-1:0] DIN_I,
output reg [C_DATA_WIDTH-1:0] DOUT,
input SBITERR_IN_I,
input DBITERR_IN_I,
output reg SBITERR,
output reg DBITERR,
input [C_ADDRB_WIDTH-1:0] RDADDRECC_IN_I,
input ECCPIPECE,
output reg [C_ADDRB_WIDTH-1:0] RDADDRECC
);
//******************************
// Port and Generic Definitions
//******************************
//////////////////////////////////////////////////////////////////////////
// Generic Definitions
//////////////////////////////////////////////////////////////////////////
// C_FAMILY,C_XDEVICEFAMILY: Designates architecture targeted. The following
// options are available - "spartan3", "spartan6",
// "virtex4", "virtex5", "virtex6" and "virtex6l".
// C_RST_TYPE : Type of reset - Synchronous or Asynchronous
// C_HAS_RST : Determines the presence of the RST port
// C_RSTRAM : Determines if special reset behavior is used
// C_RST_PRIORITY : Determines the priority between CE and SR
// C_INIT_VAL : Initialization value
// C_HAS_EN : Determines the presence of the EN port
// C_HAS_REGCE : Determines the presence of the REGCE port
// C_DATA_WIDTH : Memory write/read width
// C_ADDRB_WIDTH : Width of the ADDRB input port
// C_HAS_MEM_OUTPUT_REGS : Designates the use of a register at the output
// of the RAM primitive
// C_USE_SOFTECC : Determines if the Soft ECC feature is used or
// not. Only applicable Spartan-6
// C_USE_ECC : Determines if the ECC feature is used or
// not. Only applicable for V5 and V6
// NUM_STAGES : Determines the number of output stages
// FLOP_DELAY : Constant delay for register assignments
//////////////////////////////////////////////////////////////////////////
// Port Definitions
//////////////////////////////////////////////////////////////////////////
// CLK : Clock to synchronize all read and write operations
// RST : Reset input to reset memory outputs to a user-defined
// reset state
// EN : Enable all read and write operations
// REGCE : Register Clock Enable to control each pipeline output
// register stages
// DIN : Data input to the Output stage.
// DOUT : Final Data output
// SBITERR_IN : SBITERR input signal to the Output stage.
// SBITERR : Final SBITERR Output signal.
// DBITERR_IN : DBITERR input signal to the Output stage.
// DBITERR : Final DBITERR Output signal.
// RDADDRECC_IN : RDADDRECC input signal to the Output stage.
// RDADDRECC : Final RDADDRECC Output signal.
//////////////////////////////////////////////////////////////////////////
// Fix for CR-509792
localparam REG_STAGES = (NUM_STAGES < 2) ? 1 : NUM_STAGES-1;
// Declare the pipeline registers
// (includes mem output reg, mux pipeline stages, and mux output reg)
reg [C_DATA_WIDTH*REG_STAGES-1:0] out_regs;
reg [C_ADDRB_WIDTH*REG_STAGES-1:0] rdaddrecc_regs;
reg [REG_STAGES-1:0] sbiterr_regs;
reg [REG_STAGES-1:0] dbiterr_regs;
reg [C_DATA_WIDTH*8-1:0] init_str = C_INIT_VAL;
reg [C_DATA_WIDTH-1:0] init_val ;
//*********************************************
// Wire off optional inputs based on parameters
//*********************************************
wire en_i;
wire regce_i;
wire rst_i;
// Internal signals
reg [C_DATA_WIDTH-1:0] DIN;
reg [C_ADDRB_WIDTH-1:0] RDADDRECC_IN;
reg SBITERR_IN;
reg DBITERR_IN;
// Internal enable for output registers is tied to user EN or '1' depending
// on parameters
assign en_i = (C_HAS_EN==0 || EN);
// Internal register enable for output registers is tied to user REGCE, EN or
// '1' depending on parameters
// For V4 ECC, REGCE is always 1
// Virtex-4 ECC Not Yet Supported
assign regce_i = ((C_HAS_REGCE==1) && REGCE) ||
((C_HAS_REGCE==0) && (C_HAS_EN==0 || EN));
//Internal SRR is tied to user RST or '0' depending on parameters
assign rst_i = (C_HAS_RST==1) && RST;
//****************************************************
// Power on: load up the output registers and latches
//****************************************************
initial begin
if (!($sscanf(init_str, "%h", init_val))) begin
init_val = 0;
end
DOUT = init_val;
RDADDRECC = 0;
SBITERR = 1'b0;
DBITERR = 1'b0;
DIN = {(C_DATA_WIDTH){1'b0}};
RDADDRECC_IN = 0;
SBITERR_IN = 0;
DBITERR_IN = 0;
// This will be one wider than need, but 0 is an error
out_regs = {(REG_STAGES+1){init_val}};
rdaddrecc_regs = 0;
sbiterr_regs = {(REG_STAGES+1){1'b0}};
dbiterr_regs = {(REG_STAGES+1){1'b0}};
end
//***********************************************
// NUM_STAGES = 0 (No output registers. RAM only)
//***********************************************
generate if (NUM_STAGES == 0) begin : zero_stages
always @* begin
DOUT = DIN;
RDADDRECC = RDADDRECC_IN;
SBITERR = SBITERR_IN;
DBITERR = DBITERR_IN;
end
end
endgenerate
generate if (C_EN_ECC_PIPE == 0) begin : no_ecc_pipe_reg
always @* begin
DIN = DIN_I;
SBITERR_IN = SBITERR_IN_I;
DBITERR_IN = DBITERR_IN_I;
RDADDRECC_IN = RDADDRECC_IN_I;
end
end
endgenerate
generate if (C_EN_ECC_PIPE == 1) begin : with_ecc_pipe_reg
always @(posedge CLK) begin
if(ECCPIPECE == 1) begin
DIN <= #FLOP_DELAY DIN_I;
SBITERR_IN <= #FLOP_DELAY SBITERR_IN_I;
DBITERR_IN <= #FLOP_DELAY DBITERR_IN_I;
RDADDRECC_IN <= #FLOP_DELAY RDADDRECC_IN_I;
end
end
end
endgenerate
//***********************************************
// NUM_STAGES = 1
// (Mem Output Reg only or Mux Output Reg only)
//***********************************************
// Possible valid combinations:
// Note: C_HAS_MUX_OUTPUT_REGS_*=0 when (C_RSTRAM_*=1)
// +-----------------------------------------+
// | C_RSTRAM_* | Reset Behavior |
// +----------------+------------------------+
// | 0 | Normal Behavior |
// +----------------+------------------------+
// | 1 | Special Behavior |
// +----------------+------------------------+
//
// Normal = REGCE gates reset, as in the case of all families except S3ADSP.
// Special = EN gates reset, as in the case of S3ADSP.
generate if (NUM_STAGES == 1 &&
(C_RSTRAM == 0 || (C_RSTRAM == 1 && (C_XDEVICEFAMILY != "spartan3adsp" && C_XDEVICEFAMILY != "aspartan3adsp" )) ||
C_HAS_MEM_OUTPUT_REGS == 0 || C_HAS_RST == 0))
begin : one_stages_norm
always @(posedge CLK) begin
if (C_RST_PRIORITY == "CE") begin //REGCE has priority
if (regce_i && rst_i) begin
DOUT <= #FLOP_DELAY init_val;
RDADDRECC <= #FLOP_DELAY 0;
SBITERR <= #FLOP_DELAY 1'b0;
DBITERR <= #FLOP_DELAY 1'b0;
end else if (regce_i) begin
DOUT <= #FLOP_DELAY DIN;
RDADDRECC <= #FLOP_DELAY RDADDRECC_IN;
SBITERR <= #FLOP_DELAY SBITERR_IN;
DBITERR <= #FLOP_DELAY DBITERR_IN;
end //Output signal assignments
end else begin //RST has priority
if (rst_i) begin
DOUT <= #FLOP_DELAY init_val;
RDADDRECC <= #FLOP_DELAY RDADDRECC_IN;
SBITERR <= #FLOP_DELAY 1'b0;
DBITERR <= #FLOP_DELAY 1'b0;
end else if (regce_i) begin
DOUT <= #FLOP_DELAY DIN;
RDADDRECC <= #FLOP_DELAY RDADDRECC_IN;
SBITERR <= #FLOP_DELAY SBITERR_IN;
DBITERR <= #FLOP_DELAY DBITERR_IN;
end //Output signal assignments
end //end Priority conditions
end //end RST Type conditions
end //end one_stages_norm generate statement
endgenerate
// Special Reset Behavior for S3ADSP
generate if (NUM_STAGES == 1 && C_RSTRAM == 1 && (C_XDEVICEFAMILY =="spartan3adsp" || C_XDEVICEFAMILY =="aspartan3adsp"))
begin : one_stage_splbhv
always @(posedge CLK) begin
if (en_i && rst_i) begin
DOUT <= #FLOP_DELAY init_val;
end else if (regce_i && !rst_i) begin
DOUT <= #FLOP_DELAY DIN;
end //Output signal assignments
end //end CLK
end //end one_stage_splbhv generate statement
endgenerate
//************************************************************
// NUM_STAGES > 1
// Mem Output Reg + Mux Output Reg
// or
// Mem Output Reg + Mux Pipeline Stages (>0) + Mux Output Reg
// or
// Mux Pipeline Stages (>0) + Mux Output Reg
//*************************************************************
generate if (NUM_STAGES > 1) begin : multi_stage
//Asynchronous Reset
always @(posedge CLK) begin
if (C_RST_PRIORITY == "CE") begin //REGCE has priority
if (regce_i && rst_i) begin
DOUT <= #FLOP_DELAY init_val;
RDADDRECC <= #FLOP_DELAY 0;
SBITERR <= #FLOP_DELAY 1'b0;
DBITERR <= #FLOP_DELAY 1'b0;
end else if (regce_i) begin
DOUT <= #FLOP_DELAY
out_regs[C_DATA_WIDTH*(NUM_STAGES-2)+:C_DATA_WIDTH];
RDADDRECC <= #FLOP_DELAY rdaddrecc_regs[C_ADDRB_WIDTH*(NUM_STAGES-2)+:C_ADDRB_WIDTH];
SBITERR <= #FLOP_DELAY sbiterr_regs[NUM_STAGES-2];
DBITERR <= #FLOP_DELAY dbiterr_regs[NUM_STAGES-2];
end //Output signal assignments
end else begin //RST has priority
if (rst_i) begin
DOUT <= #FLOP_DELAY init_val;
RDADDRECC <= #FLOP_DELAY 0;
SBITERR <= #FLOP_DELAY 1'b0;
DBITERR <= #FLOP_DELAY 1'b0;
end else if (regce_i) begin
DOUT <= #FLOP_DELAY
out_regs[C_DATA_WIDTH*(NUM_STAGES-2)+:C_DATA_WIDTH];
RDADDRECC <= #FLOP_DELAY rdaddrecc_regs[C_ADDRB_WIDTH*(NUM_STAGES-2)+:C_ADDRB_WIDTH];
SBITERR <= #FLOP_DELAY sbiterr_regs[NUM_STAGES-2];
DBITERR <= #FLOP_DELAY dbiterr_regs[NUM_STAGES-2];
end //Output signal assignments
end //end Priority conditions
// Shift the data through the output stages
if (en_i) begin
out_regs <= #FLOP_DELAY (out_regs << C_DATA_WIDTH) | DIN;
rdaddrecc_regs <= #FLOP_DELAY (rdaddrecc_regs << C_ADDRB_WIDTH) | RDADDRECC_IN;
sbiterr_regs <= #FLOP_DELAY (sbiterr_regs << 1) | SBITERR_IN;
dbiterr_regs <= #FLOP_DELAY (dbiterr_regs << 1) | DBITERR_IN;
end
end //end CLK
end //end multi_stage generate statement
endgenerate
endmodule
module BLK_MEM_GEN_v8_2_softecc_output_reg_stage
#(parameter C_DATA_WIDTH = 32,
parameter C_ADDRB_WIDTH = 10,
parameter C_HAS_SOFTECC_OUTPUT_REGS_B= 0,
parameter C_USE_SOFTECC = 0,
parameter FLOP_DELAY = 100
)
(
input CLK,
input [C_DATA_WIDTH-1:0] DIN,
output reg [C_DATA_WIDTH-1:0] DOUT,
input SBITERR_IN,
input DBITERR_IN,
output reg SBITERR,
output reg DBITERR,
input [C_ADDRB_WIDTH-1:0] RDADDRECC_IN,
output reg [C_ADDRB_WIDTH-1:0] RDADDRECC
);
//******************************
// Port and Generic Definitions
//******************************
//////////////////////////////////////////////////////////////////////////
// Generic Definitions
//////////////////////////////////////////////////////////////////////////
// C_DATA_WIDTH : Memory write/read width
// C_ADDRB_WIDTH : Width of the ADDRB input port
// C_HAS_SOFTECC_OUTPUT_REGS_B : Designates the use of a register at the output
// of the RAM primitive
// C_USE_SOFTECC : Determines if the Soft ECC feature is used or
// not. Only applicable Spartan-6
// FLOP_DELAY : Constant delay for register assignments
//////////////////////////////////////////////////////////////////////////
// Port Definitions
//////////////////////////////////////////////////////////////////////////
// CLK : Clock to synchronize all read and write operations
// DIN : Data input to the Output stage.
// DOUT : Final Data output
// SBITERR_IN : SBITERR input signal to the Output stage.
// SBITERR : Final SBITERR Output signal.
// DBITERR_IN : DBITERR input signal to the Output stage.
// DBITERR : Final DBITERR Output signal.
// RDADDRECC_IN : RDADDRECC input signal to the Output stage.
// RDADDRECC : Final RDADDRECC Output signal.
//////////////////////////////////////////////////////////////////////////
reg [C_DATA_WIDTH-1:0] dout_i = 0;
reg sbiterr_i = 0;
reg dbiterr_i = 0;
reg [C_ADDRB_WIDTH-1:0] rdaddrecc_i = 0;
//***********************************************
// NO OUTPUT REGISTERS.
//***********************************************
generate if (C_HAS_SOFTECC_OUTPUT_REGS_B==0) begin : no_output_stage
always @* begin
DOUT = DIN;
RDADDRECC = RDADDRECC_IN;
SBITERR = SBITERR_IN;
DBITERR = DBITERR_IN;
end
end
endgenerate
//***********************************************
// WITH OUTPUT REGISTERS.
//***********************************************
generate if (C_HAS_SOFTECC_OUTPUT_REGS_B==1) begin : has_output_stage
always @(posedge CLK) begin
dout_i <= #FLOP_DELAY DIN;
rdaddrecc_i <= #FLOP_DELAY RDADDRECC_IN;
sbiterr_i <= #FLOP_DELAY SBITERR_IN;
dbiterr_i <= #FLOP_DELAY DBITERR_IN;
end
always @* begin
DOUT = dout_i;
RDADDRECC = rdaddrecc_i;
SBITERR = sbiterr_i;
DBITERR = dbiterr_i;
end //end always
end //end in_or_out_stage generate statement
endgenerate
endmodule
//*****************************************************************************
// Main Memory module
//
// This module is the top-level behavioral model and this implements the RAM
//*****************************************************************************
module BLK_MEM_GEN_v8_2_mem_module
#(parameter C_CORENAME = "blk_mem_gen_v8_2",
parameter C_FAMILY = "virtex7",
parameter C_XDEVICEFAMILY = "virtex7",
parameter C_MEM_TYPE = 2,
parameter C_BYTE_SIZE = 9,
parameter C_USE_BRAM_BLOCK = 0,
parameter C_ALGORITHM = 1,
parameter C_PRIM_TYPE = 3,
parameter C_LOAD_INIT_FILE = 0,
parameter C_INIT_FILE_NAME = "",
parameter C_INIT_FILE = "",
parameter C_USE_DEFAULT_DATA = 0,
parameter C_DEFAULT_DATA = "0",
parameter C_RST_TYPE = "SYNC",
parameter C_HAS_RSTA = 0,
parameter C_RST_PRIORITY_A = "CE",
parameter C_RSTRAM_A = 0,
parameter C_INITA_VAL = "0",
parameter C_HAS_ENA = 1,
parameter C_HAS_REGCEA = 0,
parameter C_USE_BYTE_WEA = 0,
parameter C_WEA_WIDTH = 1,
parameter C_WRITE_MODE_A = "WRITE_FIRST",
parameter C_WRITE_WIDTH_A = 32,
parameter C_READ_WIDTH_A = 32,
parameter C_WRITE_DEPTH_A = 64,
parameter C_READ_DEPTH_A = 64,
parameter C_ADDRA_WIDTH = 5,
parameter C_HAS_RSTB = 0,
parameter C_RST_PRIORITY_B = "CE",
parameter C_RSTRAM_B = 0,
parameter C_INITB_VAL = "",
parameter C_HAS_ENB = 1,
parameter C_HAS_REGCEB = 0,
parameter C_USE_BYTE_WEB = 0,
parameter C_WEB_WIDTH = 1,
parameter C_WRITE_MODE_B = "WRITE_FIRST",
parameter C_WRITE_WIDTH_B = 32,
parameter C_READ_WIDTH_B = 32,
parameter C_WRITE_DEPTH_B = 64,
parameter C_READ_DEPTH_B = 64,
parameter C_ADDRB_WIDTH = 5,
parameter C_HAS_MEM_OUTPUT_REGS_A = 0,
parameter C_HAS_MEM_OUTPUT_REGS_B = 0,
parameter C_HAS_MUX_OUTPUT_REGS_A = 0,
parameter C_HAS_MUX_OUTPUT_REGS_B = 0,
parameter C_HAS_SOFTECC_INPUT_REGS_A = 0,
parameter C_HAS_SOFTECC_OUTPUT_REGS_B= 0,
parameter C_MUX_PIPELINE_STAGES = 0,
parameter C_USE_SOFTECC = 0,
parameter C_USE_ECC = 0,
parameter C_HAS_INJECTERR = 0,
parameter C_SIM_COLLISION_CHECK = "NONE",
parameter C_COMMON_CLK = 1,
parameter FLOP_DELAY = 100,
parameter C_DISABLE_WARN_BHV_COLL = 0,
parameter C_EN_ECC_PIPE = 0,
parameter C_DISABLE_WARN_BHV_RANGE = 0
)
(input CLKA,
input RSTA,
input ENA,
input REGCEA,
input [C_WEA_WIDTH-1:0] WEA,
input [C_ADDRA_WIDTH-1:0] ADDRA,
input [C_WRITE_WIDTH_A-1:0] DINA,
output [C_READ_WIDTH_A-1:0] DOUTA,
input CLKB,
input RSTB,
input ENB,
input REGCEB,
input [C_WEB_WIDTH-1:0] WEB,
input [C_ADDRB_WIDTH-1:0] ADDRB,
input [C_WRITE_WIDTH_B-1:0] DINB,
output [C_READ_WIDTH_B-1:0] DOUTB,
input INJECTSBITERR,
input INJECTDBITERR,
input ECCPIPECE,
input SLEEP,
output SBITERR,
output DBITERR,
output [C_ADDRB_WIDTH-1:0] RDADDRECC
);
//******************************
// Port and Generic Definitions
//******************************
//////////////////////////////////////////////////////////////////////////
// Generic Definitions
//////////////////////////////////////////////////////////////////////////
// C_CORENAME : Instance name of the Block Memory Generator core
// C_FAMILY,C_XDEVICEFAMILY: Designates architecture targeted. The following
// options are available - "spartan3", "spartan6",
// "virtex4", "virtex5", "virtex6" and "virtex6l".
// C_MEM_TYPE : Designates memory type.
// It can be
// 0 - Single Port Memory
// 1 - Simple Dual Port Memory
// 2 - True Dual Port Memory
// 3 - Single Port Read Only Memory
// 4 - Dual Port Read Only Memory
// C_BYTE_SIZE : Size of a byte (8 or 9 bits)
// C_ALGORITHM : Designates the algorithm method used
// for constructing the memory.
// It can be Fixed_Primitives, Minimum_Area or
// Low_Power
// C_PRIM_TYPE : Designates the user selected primitive used to
// construct the memory.
//
// C_LOAD_INIT_FILE : Designates the use of an initialization file to
// initialize memory contents.
// C_INIT_FILE_NAME : Memory initialization file name.
// C_USE_DEFAULT_DATA : Designates whether to fill remaining
// initialization space with default data
// C_DEFAULT_DATA : Default value of all memory locations
// not initialized by the memory
// initialization file.
// C_RST_TYPE : Type of reset - Synchronous or Asynchronous
// C_HAS_RSTA : Determines the presence of the RSTA port
// C_RST_PRIORITY_A : Determines the priority between CE and SR for
// Port A.
// C_RSTRAM_A : Determines if special reset behavior is used for
// Port A
// C_INITA_VAL : The initialization value for Port A
// C_HAS_ENA : Determines the presence of the ENA port
// C_HAS_REGCEA : Determines the presence of the REGCEA port
// C_USE_BYTE_WEA : Determines if the Byte Write is used or not.
// C_WEA_WIDTH : The width of the WEA port
// C_WRITE_MODE_A : Configurable write mode for Port A. It can be
// WRITE_FIRST, READ_FIRST or NO_CHANGE.
// C_WRITE_WIDTH_A : Memory write width for Port A.
// C_READ_WIDTH_A : Memory read width for Port A.
// C_WRITE_DEPTH_A : Memory write depth for Port A.
// C_READ_DEPTH_A : Memory read depth for Port A.
// C_ADDRA_WIDTH : Width of the ADDRA input port
// C_HAS_RSTB : Determines the presence of the RSTB port
// C_RST_PRIORITY_B : Determines the priority between CE and SR for
// Port B.
// C_RSTRAM_B : Determines if special reset behavior is used for
// Port B
// C_INITB_VAL : The initialization value for Port B
// C_HAS_ENB : Determines the presence of the ENB port
// C_HAS_REGCEB : Determines the presence of the REGCEB port
// C_USE_BYTE_WEB : Determines if the Byte Write is used or not.
// C_WEB_WIDTH : The width of the WEB port
// C_WRITE_MODE_B : Configurable write mode for Port B. It can be
// WRITE_FIRST, READ_FIRST or NO_CHANGE.
// C_WRITE_WIDTH_B : Memory write width for Port B.
// C_READ_WIDTH_B : Memory read width for Port B.
// C_WRITE_DEPTH_B : Memory write depth for Port B.
// C_READ_DEPTH_B : Memory read depth for Port B.
// C_ADDRB_WIDTH : Width of the ADDRB input port
// C_HAS_MEM_OUTPUT_REGS_A : Designates the use of a register at the output
// of the RAM primitive for Port A.
// C_HAS_MEM_OUTPUT_REGS_B : Designates the use of a register at the output
// of the RAM primitive for Port B.
// C_HAS_MUX_OUTPUT_REGS_A : Designates the use of a register at the output
// of the MUX for Port A.
// C_HAS_MUX_OUTPUT_REGS_B : Designates the use of a register at the output
// of the MUX for Port B.
// C_MUX_PIPELINE_STAGES : Designates the number of pipeline stages in
// between the muxes.
// C_USE_SOFTECC : Determines if the Soft ECC feature is used or
// not. Only applicable Spartan-6
// C_USE_ECC : Determines if the ECC feature is used or
// not. Only applicable for V5 and V6
// C_HAS_INJECTERR : Determines if the error injection pins
// are present or not. If the ECC feature
// is not used, this value is defaulted to
// 0, else the following are the allowed
// values:
// 0 : No INJECTSBITERR or INJECTDBITERR pins
// 1 : Only INJECTSBITERR pin exists
// 2 : Only INJECTDBITERR pin exists
// 3 : Both INJECTSBITERR and INJECTDBITERR pins exist
// C_SIM_COLLISION_CHECK : Controls the disabling of Unisim model collision
// warnings. It can be "ALL", "NONE",
// "Warnings_Only" or "Generate_X_Only".
// C_COMMON_CLK : Determins if the core has a single CLK input.
// C_DISABLE_WARN_BHV_COLL : Controls the Behavioral Model Collision warnings
// C_DISABLE_WARN_BHV_RANGE: Controls the Behavioral Model Out of Range
// warnings
//////////////////////////////////////////////////////////////////////////
// Port Definitions
//////////////////////////////////////////////////////////////////////////
// CLKA : Clock to synchronize all read and write operations of Port A.
// RSTA : Reset input to reset memory outputs to a user-defined
// reset state for Port A.
// ENA : Enable all read and write operations of Port A.
// REGCEA : Register Clock Enable to control each pipeline output
// register stages for Port A.
// WEA : Write Enable to enable all write operations of Port A.
// ADDRA : Address of Port A.
// DINA : Data input of Port A.
// DOUTA : Data output of Port A.
// CLKB : Clock to synchronize all read and write operations of Port B.
// RSTB : Reset input to reset memory outputs to a user-defined
// reset state for Port B.
// ENB : Enable all read and write operations of Port B.
// REGCEB : Register Clock Enable to control each pipeline output
// register stages for Port B.
// WEB : Write Enable to enable all write operations of Port B.
// ADDRB : Address of Port B.
// DINB : Data input of Port B.
// DOUTB : Data output of Port B.
// INJECTSBITERR : Single Bit ECC Error Injection Pin.
// INJECTDBITERR : Double Bit ECC Error Injection Pin.
// SBITERR : Output signal indicating that a Single Bit ECC Error has been
// detected and corrected.
// DBITERR : Output signal indicating that a Double Bit ECC Error has been
// detected.
// RDADDRECC : Read Address Output signal indicating address at which an
// ECC error has occurred.
//////////////////////////////////////////////////////////////////////////
// Note: C_CORENAME parameter is hard-coded to "blk_mem_gen_v8_2" and it is
// only used by this module to print warning messages. It is neither passed
// down from blk_mem_gen_v8_2_xst.v nor present in the instantiation template
// coregen generates
//***************************************************************************
// constants for the core behavior
//***************************************************************************
// file handles for logging
//--------------------------------------------------
localparam ADDRFILE = 32'h8000_0001; //stdout for addr out of range
localparam COLLFILE = 32'h8000_0001; //stdout for coll detection
localparam ERRFILE = 32'h8000_0001; //stdout for file I/O errors
// other constants
//--------------------------------------------------
localparam COLL_DELAY = 100; // 100 ps
// locally derived parameters to determine memory shape
//-----------------------------------------------------
localparam CHKBIT_WIDTH = (C_WRITE_WIDTH_A>57 ? 8 : (C_WRITE_WIDTH_A>26 ? 7 : (C_WRITE_WIDTH_A>11 ? 6 : (C_WRITE_WIDTH_A>4 ? 5 : (C_WRITE_WIDTH_A<5 ? 4 :0)))));
localparam MIN_WIDTH_A = (C_WRITE_WIDTH_A < C_READ_WIDTH_A) ?
C_WRITE_WIDTH_A : C_READ_WIDTH_A;
localparam MIN_WIDTH_B = (C_WRITE_WIDTH_B < C_READ_WIDTH_B) ?
C_WRITE_WIDTH_B : C_READ_WIDTH_B;
localparam MIN_WIDTH = (MIN_WIDTH_A < MIN_WIDTH_B) ?
MIN_WIDTH_A : MIN_WIDTH_B;
localparam MAX_DEPTH_A = (C_WRITE_DEPTH_A > C_READ_DEPTH_A) ?
C_WRITE_DEPTH_A : C_READ_DEPTH_A;
localparam MAX_DEPTH_B = (C_WRITE_DEPTH_B > C_READ_DEPTH_B) ?
C_WRITE_DEPTH_B : C_READ_DEPTH_B;
localparam MAX_DEPTH = (MAX_DEPTH_A > MAX_DEPTH_B) ?
MAX_DEPTH_A : MAX_DEPTH_B;
// locally derived parameters to assist memory access
//----------------------------------------------------
// Calculate the width ratios of each port with respect to the narrowest
// port
localparam WRITE_WIDTH_RATIO_A = C_WRITE_WIDTH_A/MIN_WIDTH;
localparam READ_WIDTH_RATIO_A = C_READ_WIDTH_A/MIN_WIDTH;
localparam WRITE_WIDTH_RATIO_B = C_WRITE_WIDTH_B/MIN_WIDTH;
localparam READ_WIDTH_RATIO_B = C_READ_WIDTH_B/MIN_WIDTH;
// To modify the LSBs of the 'wider' data to the actual
// address value
//----------------------------------------------------
localparam WRITE_ADDR_A_DIV = C_WRITE_WIDTH_A/MIN_WIDTH_A;
localparam READ_ADDR_A_DIV = C_READ_WIDTH_A/MIN_WIDTH_A;
localparam WRITE_ADDR_B_DIV = C_WRITE_WIDTH_B/MIN_WIDTH_B;
localparam READ_ADDR_B_DIV = C_READ_WIDTH_B/MIN_WIDTH_B;
// If byte writes aren't being used, make sure BYTE_SIZE is not
// wider than the memory elements to avoid compilation warnings
localparam BYTE_SIZE = (C_BYTE_SIZE < MIN_WIDTH) ? C_BYTE_SIZE : MIN_WIDTH;
// The memory
reg [MIN_WIDTH-1:0] memory [0:MAX_DEPTH-1];
reg [MIN_WIDTH-1:0] temp_mem_array [0:MAX_DEPTH-1];
reg [C_WRITE_WIDTH_A+CHKBIT_WIDTH-1:0] doublebit_error = 3;
// ECC error arrays
reg sbiterr_arr [0:MAX_DEPTH-1];
reg dbiterr_arr [0:MAX_DEPTH-1];
reg softecc_sbiterr_arr [0:MAX_DEPTH-1];
reg softecc_dbiterr_arr [0:MAX_DEPTH-1];
// Memory output 'latches'
reg [C_READ_WIDTH_A-1:0] memory_out_a;
reg [C_READ_WIDTH_B-1:0] memory_out_b;
// ECC error inputs and outputs from output_stage module:
reg sbiterr_in;
wire sbiterr_sdp;
reg dbiterr_in;
wire dbiterr_sdp;
wire [C_READ_WIDTH_B-1:0] dout_i;
wire dbiterr_i;
wire sbiterr_i;
wire [C_ADDRB_WIDTH-1:0] rdaddrecc_i;
reg [C_ADDRB_WIDTH-1:0] rdaddrecc_in;
wire [C_ADDRB_WIDTH-1:0] rdaddrecc_sdp;
// Reset values
reg [C_READ_WIDTH_A-1:0] inita_val;
reg [C_READ_WIDTH_B-1:0] initb_val;
// Collision detect
reg is_collision;
reg is_collision_a, is_collision_delay_a;
reg is_collision_b, is_collision_delay_b;
// Temporary variables for initialization
//---------------------------------------
integer status;
integer initfile;
integer meminitfile;
// data input buffer
reg [C_WRITE_WIDTH_A-1:0] mif_data;
reg [C_WRITE_WIDTH_A-1:0] mem_data;
// string values in hex
reg [C_READ_WIDTH_A*8-1:0] inita_str = C_INITA_VAL;
reg [C_READ_WIDTH_B*8-1:0] initb_str = C_INITB_VAL;
reg [C_WRITE_WIDTH_A*8-1:0] default_data_str = C_DEFAULT_DATA;
// initialization filename
reg [1023*8-1:0] init_file_str = C_INIT_FILE_NAME;
reg [1023*8-1:0] mem_init_file_str = C_INIT_FILE;
//Constants used to calculate the effective address widths for each of the
//four ports.
integer cnt = 1;
integer write_addr_a_width, read_addr_a_width;
integer write_addr_b_width, read_addr_b_width;
localparam C_FAMILY_LOCALPARAM = (C_FAMILY=="virtexu"?"virtex7":(C_FAMILY=="kintexu" ? "virtex7":(C_FAMILY=="virtex7" ? "virtex7" : (C_FAMILY=="virtex7l" ? "virtex7" : (C_FAMILY=="qvirtex7" ? "virtex7" : (C_FAMILY=="qvirtex7l" ? "virtex7" : (C_FAMILY=="kintex7" ? "virtex7" : (C_FAMILY=="kintex7l" ? "virtex7" : (C_FAMILY=="qkintex7" ? "virtex7" : (C_FAMILY=="qkintex7l" ? "virtex7" : (C_FAMILY=="artix7" ? "virtex7" : (C_FAMILY=="artix7l" ? "virtex7" : (C_FAMILY=="qartix7" ? "virtex7" : (C_FAMILY=="qartix7l" ? "virtex7" : (C_FAMILY=="aartix7" ? "virtex7" : (C_FAMILY=="zynq" ? "virtex7" : (C_FAMILY=="azynq" ? "virtex7" : (C_FAMILY=="qzynq" ? "virtex7" : C_FAMILY))))))))))))))))));
// Internal configuration parameters
//---------------------------------------------
localparam SINGLE_PORT = (C_MEM_TYPE==0 || C_MEM_TYPE==3);
localparam IS_ROM = (C_MEM_TYPE==3 || C_MEM_TYPE==4);
localparam HAS_A_WRITE = (!IS_ROM);
localparam HAS_B_WRITE = (C_MEM_TYPE==2);
localparam HAS_A_READ = (C_MEM_TYPE!=1);
localparam HAS_B_READ = (!SINGLE_PORT);
localparam HAS_B_PORT = (HAS_B_READ || HAS_B_WRITE);
// Calculate the mux pipeline register stages for Port A and Port B
//------------------------------------------------------------------
localparam MUX_PIPELINE_STAGES_A = (C_HAS_MUX_OUTPUT_REGS_A) ?
C_MUX_PIPELINE_STAGES : 0;
localparam MUX_PIPELINE_STAGES_B = (C_HAS_MUX_OUTPUT_REGS_B) ?
C_MUX_PIPELINE_STAGES : 0;
// Calculate total number of register stages in the core
// -----------------------------------------------------
localparam NUM_OUTPUT_STAGES_A = (C_HAS_MEM_OUTPUT_REGS_A+MUX_PIPELINE_STAGES_A+C_HAS_MUX_OUTPUT_REGS_A);
localparam NUM_OUTPUT_STAGES_B = (C_HAS_MEM_OUTPUT_REGS_B+MUX_PIPELINE_STAGES_B+C_HAS_MUX_OUTPUT_REGS_B);
wire ena_i;
wire enb_i;
wire reseta_i;
wire resetb_i;
wire [C_WEA_WIDTH-1:0] wea_i;
wire [C_WEB_WIDTH-1:0] web_i;
wire rea_i;
wire reb_i;
wire rsta_outp_stage;
wire rstb_outp_stage;
// ECC SBITERR/DBITERR Outputs
// The ECC Behavior is modeled by the behavioral models only for Virtex-6.
// For Virtex-5, these outputs will be tied to 0.
assign SBITERR = ((C_MEM_TYPE == 1 && C_USE_ECC == 1) || C_USE_SOFTECC == 1)?sbiterr_sdp:0;
assign DBITERR = ((C_MEM_TYPE == 1 && C_USE_ECC == 1) || C_USE_SOFTECC == 1)?dbiterr_sdp:0;
assign RDADDRECC = (((C_FAMILY_LOCALPARAM == "virtex7") && C_MEM_TYPE == 1 && C_USE_ECC == 1) || C_USE_SOFTECC == 1)?rdaddrecc_sdp:0;
// This effectively wires off optional inputs
assign ena_i = (C_HAS_ENA==0) || ENA;
assign enb_i = ((C_HAS_ENB==0) || ENB) && HAS_B_PORT;
assign wea_i = (HAS_A_WRITE && ena_i) ? WEA : 'b0;
assign web_i = (HAS_B_WRITE && enb_i) ? WEB : 'b0;
assign rea_i = (HAS_A_READ) ? ena_i : 'b0;
assign reb_i = (HAS_B_READ) ? enb_i : 'b0;
// These signals reset the memory latches
assign reseta_i =
((C_HAS_RSTA==1 && RSTA && NUM_OUTPUT_STAGES_A==0) ||
(C_HAS_RSTA==1 && RSTA && C_RSTRAM_A==1));
assign resetb_i =
((C_HAS_RSTB==1 && RSTB && NUM_OUTPUT_STAGES_B==0) ||
(C_HAS_RSTB==1 && RSTB && C_RSTRAM_B==1));
// Tasks to access the memory
//---------------------------
//**************
// write_a
//**************
task write_a
(input reg [C_ADDRA_WIDTH-1:0] addr,
input reg [C_WEA_WIDTH-1:0] byte_en,
input reg [C_WRITE_WIDTH_A-1:0] data,
input inj_sbiterr,
input inj_dbiterr);
reg [C_WRITE_WIDTH_A-1:0] current_contents;
reg [C_ADDRA_WIDTH-1:0] address;
integer i;
begin
// Shift the address by the ratio
address = (addr/WRITE_ADDR_A_DIV);
if (address >= C_WRITE_DEPTH_A) begin
if (!C_DISABLE_WARN_BHV_RANGE) begin
$fdisplay(ADDRFILE,
"%0s WARNING: Address %0h is outside range for A Write",
C_CORENAME, addr);
end
// valid address
end else begin
// Combine w/ byte writes
if (C_USE_BYTE_WEA) begin
// Get the current memory contents
if (WRITE_WIDTH_RATIO_A == 1) begin
// Workaround for IUS 5.5 part-select issue
current_contents = memory[address];
end else begin
for (i = 0; i < WRITE_WIDTH_RATIO_A; i = i + 1) begin
current_contents[MIN_WIDTH*i+:MIN_WIDTH]
= memory[address*WRITE_WIDTH_RATIO_A + i];
end
end
// Apply incoming bytes
if (C_WEA_WIDTH == 1) begin
// Workaround for IUS 5.5 part-select issue
if (byte_en[0]) begin
current_contents = data;
end
end else begin
for (i = 0; i < C_WEA_WIDTH; i = i + 1) begin
if (byte_en[i]) begin
current_contents[BYTE_SIZE*i+:BYTE_SIZE]
= data[BYTE_SIZE*i+:BYTE_SIZE];
end
end
end
// No byte-writes, overwrite the whole word
end else begin
current_contents = data;
end
// Insert double bit errors:
if (C_USE_ECC == 1) begin
if ((C_HAS_INJECTERR == 2 || C_HAS_INJECTERR == 3) && inj_dbiterr == 1'b1) begin
current_contents[0] = !(current_contents[0]);
current_contents[1] = !(current_contents[1]);
end
end
// Insert softecc double bit errors:
if (C_USE_SOFTECC == 1) begin
if ((C_HAS_INJECTERR == 2 || C_HAS_INJECTERR == 3) && inj_dbiterr == 1'b1) begin
doublebit_error[C_WRITE_WIDTH_A+CHKBIT_WIDTH-1:2] = doublebit_error[C_WRITE_WIDTH_A+CHKBIT_WIDTH-3:0];
doublebit_error[0] = doublebit_error[C_WRITE_WIDTH_A+CHKBIT_WIDTH-1];
doublebit_error[1] = doublebit_error[C_WRITE_WIDTH_A+CHKBIT_WIDTH-2];
current_contents = current_contents ^ doublebit_error[C_WRITE_WIDTH_A-1:0];
end
end
// Write data to memory
if (WRITE_WIDTH_RATIO_A == 1) begin
// Workaround for IUS 5.5 part-select issue
memory[address*WRITE_WIDTH_RATIO_A] = current_contents;
end else begin
for (i = 0; i < WRITE_WIDTH_RATIO_A; i = i + 1) begin
memory[address*WRITE_WIDTH_RATIO_A + i]
= current_contents[MIN_WIDTH*i+:MIN_WIDTH];
end
end
// Store the address at which error is injected:
if ((C_FAMILY_LOCALPARAM == "virtex7") && C_USE_ECC == 1) begin
if ((C_HAS_INJECTERR == 1 && inj_sbiterr == 1'b1) ||
(C_HAS_INJECTERR == 3 && inj_sbiterr == 1'b1 && inj_dbiterr != 1'b1))
begin
sbiterr_arr[addr] = 1;
end else begin
sbiterr_arr[addr] = 0;
end
if ((C_HAS_INJECTERR == 2 || C_HAS_INJECTERR == 3) && inj_dbiterr == 1'b1) begin
dbiterr_arr[addr] = 1;
end else begin
dbiterr_arr[addr] = 0;
end
end
// Store the address at which softecc error is injected:
if (C_USE_SOFTECC == 1) begin
if ((C_HAS_INJECTERR == 1 && inj_sbiterr == 1'b1) ||
(C_HAS_INJECTERR == 3 && inj_sbiterr == 1'b1 && inj_dbiterr != 1'b1))
begin
softecc_sbiterr_arr[addr] = 1;
end else begin
softecc_sbiterr_arr[addr] = 0;
end
if ((C_HAS_INJECTERR == 2 || C_HAS_INJECTERR == 3) && inj_dbiterr == 1'b1) begin
softecc_dbiterr_arr[addr] = 1;
end else begin
softecc_dbiterr_arr[addr] = 0;
end
end
end
end
endtask
//**************
// write_b
//**************
task write_b
(input reg [C_ADDRB_WIDTH-1:0] addr,
input reg [C_WEB_WIDTH-1:0] byte_en,
input reg [C_WRITE_WIDTH_B-1:0] data);
reg [C_WRITE_WIDTH_B-1:0] current_contents;
reg [C_ADDRB_WIDTH-1:0] address;
integer i;
begin
// Shift the address by the ratio
address = (addr/WRITE_ADDR_B_DIV);
if (address >= C_WRITE_DEPTH_B) begin
if (!C_DISABLE_WARN_BHV_RANGE) begin
$fdisplay(ADDRFILE,
"%0s WARNING: Address %0h is outside range for B Write",
C_CORENAME, addr);
end
// valid address
end else begin
// Combine w/ byte writes
if (C_USE_BYTE_WEB) begin
// Get the current memory contents
if (WRITE_WIDTH_RATIO_B == 1) begin
// Workaround for IUS 5.5 part-select issue
current_contents = memory[address];
end else begin
for (i = 0; i < WRITE_WIDTH_RATIO_B; i = i + 1) begin
current_contents[MIN_WIDTH*i+:MIN_WIDTH]
= memory[address*WRITE_WIDTH_RATIO_B + i];
end
end
// Apply incoming bytes
if (C_WEB_WIDTH == 1) begin
// Workaround for IUS 5.5 part-select issue
if (byte_en[0]) begin
current_contents = data;
end
end else begin
for (i = 0; i < C_WEB_WIDTH; i = i + 1) begin
if (byte_en[i]) begin
current_contents[BYTE_SIZE*i+:BYTE_SIZE]
= data[BYTE_SIZE*i+:BYTE_SIZE];
end
end
end
// No byte-writes, overwrite the whole word
end else begin
current_contents = data;
end
// Write data to memory
if (WRITE_WIDTH_RATIO_B == 1) begin
// Workaround for IUS 5.5 part-select issue
memory[address*WRITE_WIDTH_RATIO_B] = current_contents;
end else begin
for (i = 0; i < WRITE_WIDTH_RATIO_B; i = i + 1) begin
memory[address*WRITE_WIDTH_RATIO_B + i]
= current_contents[MIN_WIDTH*i+:MIN_WIDTH];
end
end
end
end
endtask
//**************
// read_a
//**************
task read_a
(input reg [C_ADDRA_WIDTH-1:0] addr,
input reg reset);
reg [C_ADDRA_WIDTH-1:0] address;
integer i;
begin
if (reset) begin
memory_out_a <= #FLOP_DELAY inita_val;
end else begin
// Shift the address by the ratio
address = (addr/READ_ADDR_A_DIV);
if (address >= C_READ_DEPTH_A) begin
if (!C_DISABLE_WARN_BHV_RANGE) begin
$fdisplay(ADDRFILE,
"%0s WARNING: Address %0h is outside range for A Read",
C_CORENAME, addr);
end
memory_out_a <= #FLOP_DELAY 'bX;
// valid address
end else begin
if (READ_WIDTH_RATIO_A==1) begin
memory_out_a <= #FLOP_DELAY memory[address*READ_WIDTH_RATIO_A];
end else begin
// Increment through the 'partial' words in the memory
for (i = 0; i < READ_WIDTH_RATIO_A; i = i + 1) begin
memory_out_a[MIN_WIDTH*i+:MIN_WIDTH]
<= #FLOP_DELAY memory[address*READ_WIDTH_RATIO_A + i];
end
end //end READ_WIDTH_RATIO_A==1 loop
end //end valid address loop
end //end reset-data assignment loops
end
endtask
//**************
// read_b
//**************
task read_b
(input reg [C_ADDRB_WIDTH-1:0] addr,
input reg reset);
reg [C_ADDRB_WIDTH-1:0] address;
integer i;
begin
if (reset) begin
memory_out_b <= #FLOP_DELAY initb_val;
sbiterr_in <= #FLOP_DELAY 1'b0;
dbiterr_in <= #FLOP_DELAY 1'b0;
rdaddrecc_in <= #FLOP_DELAY 0;
end else begin
// Shift the address
address = (addr/READ_ADDR_B_DIV);
if (address >= C_READ_DEPTH_B) begin
if (!C_DISABLE_WARN_BHV_RANGE) begin
$fdisplay(ADDRFILE,
"%0s WARNING: Address %0h is outside range for B Read",
C_CORENAME, addr);
end
memory_out_b <= #FLOP_DELAY 'bX;
sbiterr_in <= #FLOP_DELAY 1'bX;
dbiterr_in <= #FLOP_DELAY 1'bX;
rdaddrecc_in <= #FLOP_DELAY 'bX;
// valid address
end else begin
if (READ_WIDTH_RATIO_B==1) begin
memory_out_b <= #FLOP_DELAY memory[address*READ_WIDTH_RATIO_B];
end else begin
// Increment through the 'partial' words in the memory
for (i = 0; i < READ_WIDTH_RATIO_B; i = i + 1) begin
memory_out_b[MIN_WIDTH*i+:MIN_WIDTH]
<= #FLOP_DELAY memory[address*READ_WIDTH_RATIO_B + i];
end
end
if ((C_FAMILY_LOCALPARAM == "virtex7") && C_USE_ECC == 1) begin
rdaddrecc_in <= #FLOP_DELAY addr;
if (sbiterr_arr[addr] == 1) begin
sbiterr_in <= #FLOP_DELAY 1'b1;
end else begin
sbiterr_in <= #FLOP_DELAY 1'b0;
end
if (dbiterr_arr[addr] == 1) begin
dbiterr_in <= #FLOP_DELAY 1'b1;
end else begin
dbiterr_in <= #FLOP_DELAY 1'b0;
end
end else if (C_USE_SOFTECC == 1) begin
rdaddrecc_in <= #FLOP_DELAY addr;
if (softecc_sbiterr_arr[addr] == 1) begin
sbiterr_in <= #FLOP_DELAY 1'b1;
end else begin
sbiterr_in <= #FLOP_DELAY 1'b0;
end
if (softecc_dbiterr_arr[addr] == 1) begin
dbiterr_in <= #FLOP_DELAY 1'b1;
end else begin
dbiterr_in <= #FLOP_DELAY 1'b0;
end
end else begin
rdaddrecc_in <= #FLOP_DELAY 0;
dbiterr_in <= #FLOP_DELAY 1'b0;
sbiterr_in <= #FLOP_DELAY 1'b0;
end //end SOFTECC Loop
end //end Valid address loop
end //end reset-data assignment loops
end
endtask
//**************
// reset_a
//**************
task reset_a (input reg reset);
begin
if (reset) memory_out_a <= #FLOP_DELAY inita_val;
end
endtask
//**************
// reset_b
//**************
task reset_b (input reg reset);
begin
if (reset) memory_out_b <= #FLOP_DELAY initb_val;
end
endtask
//**************
// init_memory
//**************
task init_memory;
integer i, j, addr_step;
integer status;
reg [C_WRITE_WIDTH_A-1:0] default_data;
begin
default_data = 0;
//Display output message indicating that the behavioral model is being
//initialized
if (C_USE_DEFAULT_DATA || C_LOAD_INIT_FILE) $display(" Block Memory Generator module loading initial data...");
// Convert the default to hex
if (C_USE_DEFAULT_DATA) begin
if (default_data_str == "") begin
$fdisplay(ERRFILE, "%0s ERROR: C_DEFAULT_DATA is empty!", C_CORENAME);
$finish;
end else begin
status = $sscanf(default_data_str, "%h", default_data);
if (status == 0) begin
$fdisplay(ERRFILE, {"%0s ERROR: Unsuccessful hexadecimal read",
"from C_DEFAULT_DATA: %0s"},
C_CORENAME, C_DEFAULT_DATA);
$finish;
end
end
end
// Step by WRITE_ADDR_A_DIV through the memory via the
// Port A write interface to hit every location once
addr_step = WRITE_ADDR_A_DIV;
// 'write' to every location with default (or 0)
for (i = 0; i < C_WRITE_DEPTH_A*addr_step; i = i + addr_step) begin
write_a(i, {C_WEA_WIDTH{1'b1}}, default_data, 1'b0, 1'b0);
end
// Get specialized data from the MIF file
if (C_LOAD_INIT_FILE) begin
if (init_file_str == "") begin
$fdisplay(ERRFILE, "%0s ERROR: C_INIT_FILE_NAME is empty!",
C_CORENAME);
$finish;
end else begin
initfile = $fopen(init_file_str, "r");
if (initfile == 0) begin
$fdisplay(ERRFILE, {"%0s, ERROR: Problem opening",
"C_INIT_FILE_NAME: %0s!"},
C_CORENAME, init_file_str);
$finish;
end else begin
// loop through the mif file, loading in the data
for (i = 0; i < C_WRITE_DEPTH_A*addr_step; i = i + addr_step) begin
status = $fscanf(initfile, "%b", mif_data);
if (status > 0) begin
write_a(i, {C_WEA_WIDTH{1'b1}}, mif_data, 1'b0, 1'b0);
end
end
$fclose(initfile);
end //initfile
end //init_file_str
end //C_LOAD_INIT_FILE
if (C_USE_BRAM_BLOCK) begin
// Get specialized data from the MIF file
if (C_INIT_FILE != "NONE") begin
if (mem_init_file_str == "") begin
$fdisplay(ERRFILE, "%0s ERROR: C_INIT_FILE is empty!",
C_CORENAME);
$finish;
end else begin
meminitfile = $fopen(mem_init_file_str, "r");
if (meminitfile == 0) begin
$fdisplay(ERRFILE, {"%0s, ERROR: Problem opening",
"C_INIT_FILE: %0s!"},
C_CORENAME, mem_init_file_str);
$finish;
end else begin
// loop through the mif file, loading in the data
$readmemh(mem_init_file_str, memory );
for (j = 0; j < MAX_DEPTH-1 ; j = j + 1) begin
end
$fclose(meminitfile);
end //meminitfile
end //mem_init_file_str
end //C_INIT_FILE
end //C_USE_BRAM_BLOCK
//Display output message indicating that the behavioral model is done
//initializing
if (C_USE_DEFAULT_DATA || C_LOAD_INIT_FILE)
$display(" Block Memory Generator data initialization complete.");
end
endtask
//**************
// log2roundup
//**************
function integer log2roundup (input integer data_value);
integer width;
integer cnt;
begin
width = 0;
if (data_value > 1) begin
for(cnt=1 ; cnt < data_value ; cnt = cnt * 2) begin
width = width + 1;
end //loop
end //if
log2roundup = width;
end //log2roundup
endfunction
//*******************
// collision_check
//*******************
function integer collision_check (input reg [C_ADDRA_WIDTH-1:0] addr_a,
input integer iswrite_a,
input reg [C_ADDRB_WIDTH-1:0] addr_b,
input integer iswrite_b);
reg c_aw_bw, c_aw_br, c_ar_bw;
integer scaled_addra_to_waddrb_width;
integer scaled_addrb_to_waddrb_width;
integer scaled_addra_to_waddra_width;
integer scaled_addrb_to_waddra_width;
integer scaled_addra_to_raddrb_width;
integer scaled_addrb_to_raddrb_width;
integer scaled_addra_to_raddra_width;
integer scaled_addrb_to_raddra_width;
begin
c_aw_bw = 0;
c_aw_br = 0;
c_ar_bw = 0;
//If write_addr_b_width is smaller, scale both addresses to that width for
//comparing write_addr_a and write_addr_b; addr_a starts as C_ADDRA_WIDTH,
//scale it down to write_addr_b_width. addr_b starts as C_ADDRB_WIDTH,
//scale it down to write_addr_b_width. Once both are scaled to
//write_addr_b_width, compare.
scaled_addra_to_waddrb_width = ((addr_a)/
2**(C_ADDRA_WIDTH-write_addr_b_width));
scaled_addrb_to_waddrb_width = ((addr_b)/
2**(C_ADDRB_WIDTH-write_addr_b_width));
//If write_addr_a_width is smaller, scale both addresses to that width for
//comparing write_addr_a and write_addr_b; addr_a starts as C_ADDRA_WIDTH,
//scale it down to write_addr_a_width. addr_b starts as C_ADDRB_WIDTH,
//scale it down to write_addr_a_width. Once both are scaled to
//write_addr_a_width, compare.
scaled_addra_to_waddra_width = ((addr_a)/
2**(C_ADDRA_WIDTH-write_addr_a_width));
scaled_addrb_to_waddra_width = ((addr_b)/
2**(C_ADDRB_WIDTH-write_addr_a_width));
//If read_addr_b_width is smaller, scale both addresses to that width for
//comparing write_addr_a and read_addr_b; addr_a starts as C_ADDRA_WIDTH,
//scale it down to read_addr_b_width. addr_b starts as C_ADDRB_WIDTH,
//scale it down to read_addr_b_width. Once both are scaled to
//read_addr_b_width, compare.
scaled_addra_to_raddrb_width = ((addr_a)/
2**(C_ADDRA_WIDTH-read_addr_b_width));
scaled_addrb_to_raddrb_width = ((addr_b)/
2**(C_ADDRB_WIDTH-read_addr_b_width));
//If read_addr_a_width is smaller, scale both addresses to that width for
//comparing read_addr_a and write_addr_b; addr_a starts as C_ADDRA_WIDTH,
//scale it down to read_addr_a_width. addr_b starts as C_ADDRB_WIDTH,
//scale it down to read_addr_a_width. Once both are scaled to
//read_addr_a_width, compare.
scaled_addra_to_raddra_width = ((addr_a)/
2**(C_ADDRA_WIDTH-read_addr_a_width));
scaled_addrb_to_raddra_width = ((addr_b)/
2**(C_ADDRB_WIDTH-read_addr_a_width));
//Look for a write-write collision. In order for a write-write
//collision to exist, both ports must have a write transaction.
if (iswrite_a && iswrite_b) begin
if (write_addr_a_width > write_addr_b_width) begin
if (scaled_addra_to_waddrb_width == scaled_addrb_to_waddrb_width) begin
c_aw_bw = 1;
end else begin
c_aw_bw = 0;
end
end else begin
if (scaled_addrb_to_waddra_width == scaled_addra_to_waddra_width) begin
c_aw_bw = 1;
end else begin
c_aw_bw = 0;
end
end //width
end //iswrite_a and iswrite_b
//If the B port is reading (which means it is enabled - so could be
//a TX_WRITE or TX_READ), then check for a write-read collision).
//This could happen whether or not a write-write collision exists due
//to asymmetric write/read ports.
if (iswrite_a) begin
if (write_addr_a_width > read_addr_b_width) begin
if (scaled_addra_to_raddrb_width == scaled_addrb_to_raddrb_width) begin
c_aw_br = 1;
end else begin
c_aw_br = 0;
end
end else begin
if (scaled_addrb_to_waddra_width == scaled_addra_to_waddra_width) begin
c_aw_br = 1;
end else begin
c_aw_br = 0;
end
end //width
end //iswrite_a
//If the A port is reading (which means it is enabled - so could be
// a TX_WRITE or TX_READ), then check for a write-read collision).
//This could happen whether or not a write-write collision exists due
// to asymmetric write/read ports.
if (iswrite_b) begin
if (read_addr_a_width > write_addr_b_width) begin
if (scaled_addra_to_waddrb_width == scaled_addrb_to_waddrb_width) begin
c_ar_bw = 1;
end else begin
c_ar_bw = 0;
end
end else begin
if (scaled_addrb_to_raddra_width == scaled_addra_to_raddra_width) begin
c_ar_bw = 1;
end else begin
c_ar_bw = 0;
end
end //width
end //iswrite_b
collision_check = c_aw_bw | c_aw_br | c_ar_bw;
end
endfunction
//*******************************
// power on values
//*******************************
initial begin
// Load up the memory
init_memory;
// Load up the output registers and latches
if ($sscanf(inita_str, "%h", inita_val)) begin
memory_out_a = inita_val;
end else begin
memory_out_a = 0;
end
if ($sscanf(initb_str, "%h", initb_val)) begin
memory_out_b = initb_val;
end else begin
memory_out_b = 0;
end
sbiterr_in = 1'b0;
dbiterr_in = 1'b0;
rdaddrecc_in = 0;
// Determine the effective address widths for each of the 4 ports
write_addr_a_width = C_ADDRA_WIDTH - log2roundup(WRITE_ADDR_A_DIV);
read_addr_a_width = C_ADDRA_WIDTH - log2roundup(READ_ADDR_A_DIV);
write_addr_b_width = C_ADDRB_WIDTH - log2roundup(WRITE_ADDR_B_DIV);
read_addr_b_width = C_ADDRB_WIDTH - log2roundup(READ_ADDR_B_DIV);
$display("Block Memory Generator module %m is using a behavioral model for simulation which will not precisely model memory collision behavior.");
end
//***************************************************************************
// These are the main blocks which schedule read and write operations
// Note that the reset priority feature at the latch stage is only supported
// for Spartan-6. For other families, the default priority at the latch stage
// is "CE"
//***************************************************************************
// Synchronous clocks: schedule port operations with respect to
// both write operating modes
generate
if(C_COMMON_CLK && (C_WRITE_MODE_A == "WRITE_FIRST") && (C_WRITE_MODE_B ==
"WRITE_FIRST")) begin : com_clk_sched_wf_wf
always @(posedge CLKA) begin
//Write A
if (wea_i) write_a(ADDRA, wea_i, DINA, INJECTSBITERR, INJECTDBITERR);
//Write B
if (web_i) write_b(ADDRB, web_i, DINB);
if (rea_i) read_a(ADDRA, reseta_i);
//Read B
if (reb_i) read_b(ADDRB, resetb_i);
end
end
else
if(C_COMMON_CLK && (C_WRITE_MODE_A == "READ_FIRST") && (C_WRITE_MODE_B ==
"WRITE_FIRST")) begin : com_clk_sched_rf_wf
always @(posedge CLKA) begin
//Write B
if (web_i) write_b(ADDRB, web_i, DINB);
//Read B
if (reb_i) read_b(ADDRB, resetb_i);
//Read A
if (rea_i) read_a(ADDRA, reseta_i);
//Write A
if (wea_i) write_a(ADDRA, wea_i, DINA, INJECTSBITERR, INJECTDBITERR);
end
end
else
if(C_COMMON_CLK && (C_WRITE_MODE_A == "WRITE_FIRST") && (C_WRITE_MODE_B ==
"READ_FIRST")) begin : com_clk_sched_wf_rf
always @(posedge CLKA) begin
//Write A
if (wea_i) write_a(ADDRA, wea_i, DINA, INJECTSBITERR, INJECTDBITERR);
//Read A
if (rea_i) read_a(ADDRA, reseta_i);
//Read B
if (reb_i) read_b(ADDRB, resetb_i);
//Write B
if (web_i) write_b(ADDRB, web_i, DINB);
end
end
else
if(C_COMMON_CLK && (C_WRITE_MODE_A == "READ_FIRST") && (C_WRITE_MODE_B ==
"READ_FIRST")) begin : com_clk_sched_rf_rf
always @(posedge CLKA) begin
//Read A
if (rea_i) read_a(ADDRA, reseta_i);
//Read B
if (reb_i) read_b(ADDRB, resetb_i);
//Write A
if (wea_i) write_a(ADDRA, wea_i, DINA, INJECTSBITERR, INJECTDBITERR);
//Write B
if (web_i) write_b(ADDRB, web_i, DINB);
end
end
else if(C_COMMON_CLK && (C_WRITE_MODE_A =="WRITE_FIRST") && (C_WRITE_MODE_B ==
"NO_CHANGE")) begin : com_clk_sched_wf_nc
always @(posedge CLKA) begin
//Write A
if (wea_i) write_a(ADDRA, wea_i, DINA, INJECTSBITERR, INJECTDBITERR);
//Read A
if (rea_i) read_a(ADDRA, reseta_i);
//Read B
if (reb_i && (!web_i || resetb_i)) read_b(ADDRB, resetb_i);
//Write B
if (web_i) write_b(ADDRB, web_i, DINB);
end
end
else if(C_COMMON_CLK && (C_WRITE_MODE_A =="READ_FIRST") && (C_WRITE_MODE_B ==
"NO_CHANGE")) begin : com_clk_sched_rf_nc
always @(posedge CLKA) begin
//Read A
if (rea_i) read_a(ADDRA, reseta_i);
//Read B
if (reb_i && (!web_i || resetb_i)) read_b(ADDRB, resetb_i);
//Write A
if (wea_i) write_a(ADDRA, wea_i, DINA, INJECTSBITERR, INJECTDBITERR);
//Write B
if (web_i) write_b(ADDRB, web_i, DINB);
end
end
else if(C_COMMON_CLK && (C_WRITE_MODE_A =="NO_CHANGE") && (C_WRITE_MODE_B ==
"WRITE_FIRST")) begin : com_clk_sched_nc_wf
always @(posedge CLKA) begin
//Write A
if (wea_i) write_a(ADDRA, wea_i, DINA, INJECTSBITERR, INJECTDBITERR);
//Write B
if (web_i) write_b(ADDRB, web_i, DINB);
//Read A
if (rea_i && (!wea_i || reseta_i)) read_a(ADDRA, reseta_i);
//Read B
if (reb_i) read_b(ADDRB, resetb_i);
end
end
else if(C_COMMON_CLK && (C_WRITE_MODE_A =="NO_CHANGE") && (C_WRITE_MODE_B ==
"READ_FIRST")) begin : com_clk_sched_nc_rf
always @(posedge CLKA) begin
//Read B
if (reb_i) read_b(ADDRB, resetb_i);
//Read A
if (rea_i && (!wea_i || reseta_i)) read_a(ADDRA, reseta_i);
//Write A
if (wea_i) write_a(ADDRA, wea_i, DINA, INJECTSBITERR, INJECTDBITERR);
//Write B
if (web_i) write_b(ADDRB, web_i, DINB);
end
end
else if(C_COMMON_CLK && (C_WRITE_MODE_A =="NO_CHANGE") && (C_WRITE_MODE_B ==
"NO_CHANGE")) begin : com_clk_sched_nc_nc
always @(posedge CLKA) begin
//Write A
if (wea_i) write_a(ADDRA, wea_i, DINA, INJECTSBITERR, INJECTDBITERR);
//Write B
if (web_i) write_b(ADDRB, web_i, DINB);
//Read A
if (rea_i && (!wea_i || reseta_i)) read_a(ADDRA, reseta_i);
//Read B
if (reb_i && (!web_i || resetb_i)) read_b(ADDRB, resetb_i);
end
end
else if(C_COMMON_CLK) begin: com_clk_sched_default
always @(posedge CLKA) begin
//Write A
if (wea_i) write_a(ADDRA, wea_i, DINA, INJECTSBITERR, INJECTDBITERR);
//Write B
if (web_i) write_b(ADDRB, web_i, DINB);
//Read A
if (rea_i) read_a(ADDRA, reseta_i);
//Read B
if (reb_i) read_b(ADDRB, resetb_i);
end
end
endgenerate
// Asynchronous clocks: port operation is independent
generate
if((!C_COMMON_CLK) && (C_WRITE_MODE_A == "WRITE_FIRST")) begin : async_clk_sched_clka_wf
always @(posedge CLKA) begin
//Write A
if (wea_i) write_a(ADDRA, wea_i, DINA, INJECTSBITERR, INJECTDBITERR);
//Read A
if (rea_i) read_a(ADDRA, reseta_i);
end
end
else if((!C_COMMON_CLK) && (C_WRITE_MODE_A == "READ_FIRST")) begin : async_clk_sched_clka_rf
always @(posedge CLKA) begin
//Read A
if (rea_i) read_a(ADDRA, reseta_i);
//Write A
if (wea_i) write_a(ADDRA, wea_i, DINA, INJECTSBITERR, INJECTDBITERR);
end
end
else if((!C_COMMON_CLK) && (C_WRITE_MODE_A == "NO_CHANGE")) begin : async_clk_sched_clka_nc
always @(posedge CLKA) begin
//Write A
if (wea_i) write_a(ADDRA, wea_i, DINA, INJECTSBITERR, INJECTDBITERR);
//Read A
if (rea_i && (!wea_i || reseta_i)) read_a(ADDRA, reseta_i);
end
end
endgenerate
generate
if ((!C_COMMON_CLK) && (C_WRITE_MODE_B == "WRITE_FIRST")) begin: async_clk_sched_clkb_wf
always @(posedge CLKB) begin
//Write B
if (web_i) write_b(ADDRB, web_i, DINB);
//Read B
if (reb_i) read_b(ADDRB, resetb_i);
end
end
else if ((!C_COMMON_CLK) && (C_WRITE_MODE_B == "READ_FIRST")) begin: async_clk_sched_clkb_rf
always @(posedge CLKB) begin
//Read B
if (reb_i) read_b(ADDRB, resetb_i);
//Write B
if (web_i) write_b(ADDRB, web_i, DINB);
end
end
else if ((!C_COMMON_CLK) && (C_WRITE_MODE_B == "NO_CHANGE")) begin: async_clk_sched_clkb_nc
always @(posedge CLKB) begin
//Write B
if (web_i) write_b(ADDRB, web_i, DINB);
//Read B
if (reb_i && (!web_i || resetb_i)) read_b(ADDRB, resetb_i);
end
end
endgenerate
//***************************************************************
// Instantiate the variable depth output register stage module
//***************************************************************
// Port A
assign rsta_outp_stage = RSTA & (~SLEEP);
BLK_MEM_GEN_v8_2_output_stage
#(.C_FAMILY (C_FAMILY),
.C_XDEVICEFAMILY (C_XDEVICEFAMILY),
.C_RST_TYPE ("SYNC"),
.C_HAS_RST (C_HAS_RSTA),
.C_RSTRAM (C_RSTRAM_A),
.C_RST_PRIORITY (C_RST_PRIORITY_A),
.C_INIT_VAL (C_INITA_VAL),
.C_HAS_EN (C_HAS_ENA),
.C_HAS_REGCE (C_HAS_REGCEA),
.C_DATA_WIDTH (C_READ_WIDTH_A),
.C_ADDRB_WIDTH (C_ADDRB_WIDTH),
.C_HAS_MEM_OUTPUT_REGS (C_HAS_MEM_OUTPUT_REGS_A),
.C_USE_SOFTECC (C_USE_SOFTECC),
.C_USE_ECC (C_USE_ECC),
.NUM_STAGES (NUM_OUTPUT_STAGES_A),
.C_EN_ECC_PIPE (0),
.FLOP_DELAY (FLOP_DELAY))
reg_a
(.CLK (CLKA),
.RST (rsta_outp_stage),//(RSTA),
.EN (ENA),
.REGCE (REGCEA),
.DIN_I (memory_out_a),
.DOUT (DOUTA),
.SBITERR_IN_I (1'b0),
.DBITERR_IN_I (1'b0),
.SBITERR (),
.DBITERR (),
.RDADDRECC_IN_I ({C_ADDRB_WIDTH{1'b0}}),
.ECCPIPECE (1'b0),
.RDADDRECC ()
);
assign rstb_outp_stage = RSTB & (~SLEEP);
// Port B
BLK_MEM_GEN_v8_2_output_stage
#(.C_FAMILY (C_FAMILY),
.C_XDEVICEFAMILY (C_XDEVICEFAMILY),
.C_RST_TYPE ("SYNC"),
.C_HAS_RST (C_HAS_RSTB),
.C_RSTRAM (C_RSTRAM_B),
.C_RST_PRIORITY (C_RST_PRIORITY_B),
.C_INIT_VAL (C_INITB_VAL),
.C_HAS_EN (C_HAS_ENB),
.C_HAS_REGCE (C_HAS_REGCEB),
.C_DATA_WIDTH (C_READ_WIDTH_B),
.C_ADDRB_WIDTH (C_ADDRB_WIDTH),
.C_HAS_MEM_OUTPUT_REGS (C_HAS_MEM_OUTPUT_REGS_B),
.C_USE_SOFTECC (C_USE_SOFTECC),
.C_USE_ECC (C_USE_ECC),
.NUM_STAGES (NUM_OUTPUT_STAGES_B),
.C_EN_ECC_PIPE (C_EN_ECC_PIPE),
.FLOP_DELAY (FLOP_DELAY))
reg_b
(.CLK (CLKB),
.RST (rstb_outp_stage),//(RSTB),
.EN (ENB),
.REGCE (REGCEB),
.DIN_I (memory_out_b),
.DOUT (dout_i),
.SBITERR_IN_I (sbiterr_in),
.DBITERR_IN_I (dbiterr_in),
.SBITERR (sbiterr_i),
.DBITERR (dbiterr_i),
.RDADDRECC_IN_I (rdaddrecc_in),
.ECCPIPECE (ECCPIPECE),
.RDADDRECC (rdaddrecc_i)
);
//***************************************************************
// Instantiate the Input and Output register stages
//***************************************************************
BLK_MEM_GEN_v8_2_softecc_output_reg_stage
#(.C_DATA_WIDTH (C_READ_WIDTH_B),
.C_ADDRB_WIDTH (C_ADDRB_WIDTH),
.C_HAS_SOFTECC_OUTPUT_REGS_B (C_HAS_SOFTECC_OUTPUT_REGS_B),
.C_USE_SOFTECC (C_USE_SOFTECC),
.FLOP_DELAY (FLOP_DELAY))
has_softecc_output_reg_stage
(.CLK (CLKB),
.DIN (dout_i),
.DOUT (DOUTB),
.SBITERR_IN (sbiterr_i),
.DBITERR_IN (dbiterr_i),
.SBITERR (sbiterr_sdp),
.DBITERR (dbiterr_sdp),
.RDADDRECC_IN (rdaddrecc_i),
.RDADDRECC (rdaddrecc_sdp)
);
//****************************************************
// Synchronous collision checks
//****************************************************
// CR 780544 : To make verilog model's collison warnings in consistant with
// vhdl model, the non-blocking assignments are replaced with blocking
// assignments.
generate if (!C_DISABLE_WARN_BHV_COLL && C_COMMON_CLK) begin : sync_coll
always @(posedge CLKA) begin
// Possible collision if both are enabled and the addresses match
if (ena_i && enb_i) begin
if (wea_i || web_i) begin
is_collision = collision_check(ADDRA, wea_i, ADDRB, web_i);
end else begin
is_collision = 0;
end
end else begin
is_collision = 0;
end
// If the write port is in READ_FIRST mode, there is no collision
if (C_WRITE_MODE_A=="READ_FIRST" && wea_i && !web_i) begin
is_collision = 0;
end
if (C_WRITE_MODE_B=="READ_FIRST" && web_i && !wea_i) begin
is_collision = 0;
end
// Only flag if one of the accesses is a write
if (is_collision && (wea_i || web_i)) begin
$fwrite(COLLFILE, "%0s collision detected at time: %0d, ",
C_CORENAME, $time);
$fwrite(COLLFILE, "A %0s address: %0h, B %0s address: %0h\n",
wea_i ? "write" : "read", ADDRA,
web_i ? "write" : "read", ADDRB);
end
end
//****************************************************
// Asynchronous collision checks
//****************************************************
end else if (!C_DISABLE_WARN_BHV_COLL && !C_COMMON_CLK) begin : async_coll
// Delay A and B addresses in order to mimic setup/hold times
wire [C_ADDRA_WIDTH-1:0] #COLL_DELAY addra_delay = ADDRA;
wire [0:0] #COLL_DELAY wea_delay = wea_i;
wire #COLL_DELAY ena_delay = ena_i;
wire [C_ADDRB_WIDTH-1:0] #COLL_DELAY addrb_delay = ADDRB;
wire [0:0] #COLL_DELAY web_delay = web_i;
wire #COLL_DELAY enb_delay = enb_i;
// Do the checks w/rt A
always @(posedge CLKA) begin
// Possible collision if both are enabled and the addresses match
if (ena_i && enb_i) begin
if (wea_i || web_i) begin
is_collision_a = collision_check(ADDRA, wea_i, ADDRB, web_i);
end else begin
is_collision_a = 0;
end
end else begin
is_collision_a = 0;
end
if (ena_i && enb_delay) begin
if(wea_i || web_delay) begin
is_collision_delay_a = collision_check(ADDRA, wea_i, addrb_delay,
web_delay);
end else begin
is_collision_delay_a = 0;
end
end else begin
is_collision_delay_a = 0;
end
// Only flag if B access is a write
if (is_collision_a && web_i) begin
$fwrite(COLLFILE, "%0s collision detected at time: %0d, ",
C_CORENAME, $time);
$fwrite(COLLFILE, "A %0s address: %0h, B write address: %0h\n",
wea_i ? "write" : "read", ADDRA, ADDRB);
end else if (is_collision_delay_a && web_delay) begin
$fwrite(COLLFILE, "%0s collision detected at time: %0d, ",
C_CORENAME, $time);
$fwrite(COLLFILE, "A %0s address: %0h, B write address: %0h\n",
wea_i ? "write" : "read", ADDRA, addrb_delay);
end
end
// Do the checks w/rt B
always @(posedge CLKB) begin
// Possible collision if both are enabled and the addresses match
if (ena_i && enb_i) begin
if (wea_i || web_i) begin
is_collision_b = collision_check(ADDRA, wea_i, ADDRB, web_i);
end else begin
is_collision_b = 0;
end
end else begin
is_collision_b = 0;
end
if (ena_delay && enb_i) begin
if (wea_delay || web_i) begin
is_collision_delay_b = collision_check(addra_delay, wea_delay, ADDRB,
web_i);
end else begin
is_collision_delay_b = 0;
end
end else begin
is_collision_delay_b = 0;
end
// Only flag if A access is a write
if (is_collision_b && wea_i) begin
$fwrite(COLLFILE, "%0s collision detected at time: %0d, ",
C_CORENAME, $time);
$fwrite(COLLFILE, "A write address: %0h, B %s address: %0h\n",
ADDRA, web_i ? "write" : "read", ADDRB);
end else if (is_collision_delay_b && wea_delay) begin
$fwrite(COLLFILE, "%0s collision detected at time: %0d, ",
C_CORENAME, $time);
$fwrite(COLLFILE, "A write address: %0h, B %s address: %0h\n",
addra_delay, web_i ? "write" : "read", ADDRB);
end
end
end
endgenerate
endmodule
//*****************************************************************************
// Top module wraps Input register and Memory module
//
// This module is the top-level behavioral model and this implements the memory
// module and the input registers
//*****************************************************************************
module blk_mem_gen_v8_2
#(parameter C_CORENAME = "blk_mem_gen_v8_2",
parameter C_FAMILY = "virtex7",
parameter C_XDEVICEFAMILY = "virtex7",
parameter C_ELABORATION_DIR = "",
parameter C_INTERFACE_TYPE = 0,
parameter C_USE_BRAM_BLOCK = 0,
parameter C_CTRL_ECC_ALGO = "NONE",
parameter C_ENABLE_32BIT_ADDRESS = 0,
parameter C_AXI_TYPE = 0,
parameter C_AXI_SLAVE_TYPE = 0,
parameter C_HAS_AXI_ID = 0,
parameter C_AXI_ID_WIDTH = 4,
parameter C_MEM_TYPE = 2,
parameter C_BYTE_SIZE = 9,
parameter C_ALGORITHM = 1,
parameter C_PRIM_TYPE = 3,
parameter C_LOAD_INIT_FILE = 0,
parameter C_INIT_FILE_NAME = "",
parameter C_INIT_FILE = "",
parameter C_USE_DEFAULT_DATA = 0,
parameter C_DEFAULT_DATA = "0",
//parameter C_RST_TYPE = "SYNC",
parameter C_HAS_RSTA = 0,
parameter C_RST_PRIORITY_A = "CE",
parameter C_RSTRAM_A = 0,
parameter C_INITA_VAL = "0",
parameter C_HAS_ENA = 1,
parameter C_HAS_REGCEA = 0,
parameter C_USE_BYTE_WEA = 0,
parameter C_WEA_WIDTH = 1,
parameter C_WRITE_MODE_A = "WRITE_FIRST",
parameter C_WRITE_WIDTH_A = 32,
parameter C_READ_WIDTH_A = 32,
parameter C_WRITE_DEPTH_A = 64,
parameter C_READ_DEPTH_A = 64,
parameter C_ADDRA_WIDTH = 5,
parameter C_HAS_RSTB = 0,
parameter C_RST_PRIORITY_B = "CE",
parameter C_RSTRAM_B = 0,
parameter C_INITB_VAL = "",
parameter C_HAS_ENB = 1,
parameter C_HAS_REGCEB = 0,
parameter C_USE_BYTE_WEB = 0,
parameter C_WEB_WIDTH = 1,
parameter C_WRITE_MODE_B = "WRITE_FIRST",
parameter C_WRITE_WIDTH_B = 32,
parameter C_READ_WIDTH_B = 32,
parameter C_WRITE_DEPTH_B = 64,
parameter C_READ_DEPTH_B = 64,
parameter C_ADDRB_WIDTH = 5,
parameter C_HAS_MEM_OUTPUT_REGS_A = 0,
parameter C_HAS_MEM_OUTPUT_REGS_B = 0,
parameter C_HAS_MUX_OUTPUT_REGS_A = 0,
parameter C_HAS_MUX_OUTPUT_REGS_B = 0,
parameter C_HAS_SOFTECC_INPUT_REGS_A = 0,
parameter C_HAS_SOFTECC_OUTPUT_REGS_B= 0,
parameter C_MUX_PIPELINE_STAGES = 0,
parameter C_USE_SOFTECC = 0,
parameter C_USE_ECC = 0,
parameter C_EN_ECC_PIPE = 0,
parameter C_HAS_INJECTERR = 0,
parameter C_SIM_COLLISION_CHECK = "NONE",
parameter C_COMMON_CLK = 1,
parameter C_DISABLE_WARN_BHV_COLL = 0,
parameter C_EN_SLEEP_PIN = 0,
parameter C_USE_URAM = 0,
parameter C_EN_RDADDRA_CHG = 0,
parameter C_EN_RDADDRB_CHG = 0,
parameter C_EN_DEEPSLEEP_PIN = 0,
parameter C_EN_SHUTDOWN_PIN = 0,
parameter C_DISABLE_WARN_BHV_RANGE = 0,
parameter C_COUNT_36K_BRAM = "",
parameter C_COUNT_18K_BRAM = "",
parameter C_EST_POWER_SUMMARY = ""
)
(input clka,
input rsta,
input ena,
input regcea,
input [C_WEA_WIDTH-1:0] wea,
input [C_ADDRA_WIDTH-1:0] addra,
input [C_WRITE_WIDTH_A-1:0] dina,
output [C_READ_WIDTH_A-1:0] douta,
input clkb,
input rstb,
input enb,
input regceb,
input [C_WEB_WIDTH-1:0] web,
input [C_ADDRB_WIDTH-1:0] addrb,
input [C_WRITE_WIDTH_B-1:0] dinb,
output [C_READ_WIDTH_B-1:0] doutb,
input injectsbiterr,
input injectdbiterr,
output sbiterr,
output dbiterr,
output [C_ADDRB_WIDTH-1:0] rdaddrecc,
input eccpipece,
input sleep,
input deepsleep,
input shutdown,
//AXI BMG Input and Output Port Declarations
//AXI Global Signals
input s_aclk,
input s_aresetn,
//AXI Full/lite slave write (write side)
input [C_AXI_ID_WIDTH-1:0] s_axi_awid,
input [31:0] s_axi_awaddr,
input [7:0] s_axi_awlen,
input [2:0] s_axi_awsize,
input [1:0] s_axi_awburst,
input s_axi_awvalid,
output s_axi_awready,
input [C_WRITE_WIDTH_A-1:0] s_axi_wdata,
input [C_WEA_WIDTH-1:0] s_axi_wstrb,
input s_axi_wlast,
input s_axi_wvalid,
output s_axi_wready,
output [C_AXI_ID_WIDTH-1:0] s_axi_bid,
output [1:0] s_axi_bresp,
output s_axi_bvalid,
input s_axi_bready,
//AXI Full/lite slave read (write side)
input [C_AXI_ID_WIDTH-1:0] s_axi_arid,
input [31:0] s_axi_araddr,
input [7:0] s_axi_arlen,
input [2:0] s_axi_arsize,
input [1:0] s_axi_arburst,
input s_axi_arvalid,
output s_axi_arready,
output [C_AXI_ID_WIDTH-1:0] s_axi_rid,
output [C_WRITE_WIDTH_B-1:0] s_axi_rdata,
output [1:0] s_axi_rresp,
output s_axi_rlast,
output s_axi_rvalid,
input s_axi_rready,
//AXI Full/lite sideband signals
input s_axi_injectsbiterr,
input s_axi_injectdbiterr,
output s_axi_sbiterr,
output s_axi_dbiterr,
output [C_ADDRB_WIDTH-1:0] s_axi_rdaddrecc
);
//******************************
// Port and Generic Definitions
//******************************
//////////////////////////////////////////////////////////////////////////
// Generic Definitions
//////////////////////////////////////////////////////////////////////////
// C_CORENAME : Instance name of the Block Memory Generator core
// C_FAMILY,C_XDEVICEFAMILY: Designates architecture targeted. The following
// options are available - "spartan3", "spartan6",
// "virtex4", "virtex5", "virtex6" and "virtex6l".
// C_MEM_TYPE : Designates memory type.
// It can be
// 0 - Single Port Memory
// 1 - Simple Dual Port Memory
// 2 - True Dual Port Memory
// 3 - Single Port Read Only Memory
// 4 - Dual Port Read Only Memory
// C_BYTE_SIZE : Size of a byte (8 or 9 bits)
// C_ALGORITHM : Designates the algorithm method used
// for constructing the memory.
// It can be Fixed_Primitives, Minimum_Area or
// Low_Power
// C_PRIM_TYPE : Designates the user selected primitive used to
// construct the memory.
//
// C_LOAD_INIT_FILE : Designates the use of an initialization file to
// initialize memory contents.
// C_INIT_FILE_NAME : Memory initialization file name.
// C_USE_DEFAULT_DATA : Designates whether to fill remaining
// initialization space with default data
// C_DEFAULT_DATA : Default value of all memory locations
// not initialized by the memory
// initialization file.
// C_RST_TYPE : Type of reset - Synchronous or Asynchronous
// C_HAS_RSTA : Determines the presence of the RSTA port
// C_RST_PRIORITY_A : Determines the priority between CE and SR for
// Port A.
// C_RSTRAM_A : Determines if special reset behavior is used for
// Port A
// C_INITA_VAL : The initialization value for Port A
// C_HAS_ENA : Determines the presence of the ENA port
// C_HAS_REGCEA : Determines the presence of the REGCEA port
// C_USE_BYTE_WEA : Determines if the Byte Write is used or not.
// C_WEA_WIDTH : The width of the WEA port
// C_WRITE_MODE_A : Configurable write mode for Port A. It can be
// WRITE_FIRST, READ_FIRST or NO_CHANGE.
// C_WRITE_WIDTH_A : Memory write width for Port A.
// C_READ_WIDTH_A : Memory read width for Port A.
// C_WRITE_DEPTH_A : Memory write depth for Port A.
// C_READ_DEPTH_A : Memory read depth for Port A.
// C_ADDRA_WIDTH : Width of the ADDRA input port
// C_HAS_RSTB : Determines the presence of the RSTB port
// C_RST_PRIORITY_B : Determines the priority between CE and SR for
// Port B.
// C_RSTRAM_B : Determines if special reset behavior is used for
// Port B
// C_INITB_VAL : The initialization value for Port B
// C_HAS_ENB : Determines the presence of the ENB port
// C_HAS_REGCEB : Determines the presence of the REGCEB port
// C_USE_BYTE_WEB : Determines if the Byte Write is used or not.
// C_WEB_WIDTH : The width of the WEB port
// C_WRITE_MODE_B : Configurable write mode for Port B. It can be
// WRITE_FIRST, READ_FIRST or NO_CHANGE.
// C_WRITE_WIDTH_B : Memory write width for Port B.
// C_READ_WIDTH_B : Memory read width for Port B.
// C_WRITE_DEPTH_B : Memory write depth for Port B.
// C_READ_DEPTH_B : Memory read depth for Port B.
// C_ADDRB_WIDTH : Width of the ADDRB input port
// C_HAS_MEM_OUTPUT_REGS_A : Designates the use of a register at the output
// of the RAM primitive for Port A.
// C_HAS_MEM_OUTPUT_REGS_B : Designates the use of a register at the output
// of the RAM primitive for Port B.
// C_HAS_MUX_OUTPUT_REGS_A : Designates the use of a register at the output
// of the MUX for Port A.
// C_HAS_MUX_OUTPUT_REGS_B : Designates the use of a register at the output
// of the MUX for Port B.
// C_HAS_SOFTECC_INPUT_REGS_A :
// C_HAS_SOFTECC_OUTPUT_REGS_B :
// C_MUX_PIPELINE_STAGES : Designates the number of pipeline stages in
// between the muxes.
// C_USE_SOFTECC : Determines if the Soft ECC feature is used or
// not. Only applicable Spartan-6
// C_USE_ECC : Determines if the ECC feature is used or
// not. Only applicable for V5 and V6
// C_HAS_INJECTERR : Determines if the error injection pins
// are present or not. If the ECC feature
// is not used, this value is defaulted to
// 0, else the following are the allowed
// values:
// 0 : No INJECTSBITERR or INJECTDBITERR pins
// 1 : Only INJECTSBITERR pin exists
// 2 : Only INJECTDBITERR pin exists
// 3 : Both INJECTSBITERR and INJECTDBITERR pins exist
// C_SIM_COLLISION_CHECK : Controls the disabling of Unisim model collision
// warnings. It can be "ALL", "NONE",
// "Warnings_Only" or "Generate_X_Only".
// C_COMMON_CLK : Determins if the core has a single CLK input.
// C_DISABLE_WARN_BHV_COLL : Controls the Behavioral Model Collision warnings
// C_DISABLE_WARN_BHV_RANGE: Controls the Behavioral Model Out of Range
// warnings
//////////////////////////////////////////////////////////////////////////
// Port Definitions
//////////////////////////////////////////////////////////////////////////
// CLKA : Clock to synchronize all read and write operations of Port A.
// RSTA : Reset input to reset memory outputs to a user-defined
// reset state for Port A.
// ENA : Enable all read and write operations of Port A.
// REGCEA : Register Clock Enable to control each pipeline output
// register stages for Port A.
// WEA : Write Enable to enable all write operations of Port A.
// ADDRA : Address of Port A.
// DINA : Data input of Port A.
// DOUTA : Data output of Port A.
// CLKB : Clock to synchronize all read and write operations of Port B.
// RSTB : Reset input to reset memory outputs to a user-defined
// reset state for Port B.
// ENB : Enable all read and write operations of Port B.
// REGCEB : Register Clock Enable to control each pipeline output
// register stages for Port B.
// WEB : Write Enable to enable all write operations of Port B.
// ADDRB : Address of Port B.
// DINB : Data input of Port B.
// DOUTB : Data output of Port B.
// INJECTSBITERR : Single Bit ECC Error Injection Pin.
// INJECTDBITERR : Double Bit ECC Error Injection Pin.
// SBITERR : Output signal indicating that a Single Bit ECC Error has been
// detected and corrected.
// DBITERR : Output signal indicating that a Double Bit ECC Error has been
// detected.
// RDADDRECC : Read Address Output signal indicating address at which an
// ECC error has occurred.
//////////////////////////////////////////////////////////////////////////
wire SBITERR;
wire DBITERR;
wire S_AXI_AWREADY;
wire S_AXI_WREADY;
wire S_AXI_BVALID;
wire S_AXI_ARREADY;
wire S_AXI_RLAST;
wire S_AXI_RVALID;
wire S_AXI_SBITERR;
wire S_AXI_DBITERR;
wire [C_WEA_WIDTH-1:0] WEA = wea;
wire [C_ADDRA_WIDTH-1:0] ADDRA = addra;
wire [C_WRITE_WIDTH_A-1:0] DINA = dina;
wire [C_READ_WIDTH_A-1:0] DOUTA;
wire [C_WEB_WIDTH-1:0] WEB = web;
wire [C_ADDRB_WIDTH-1:0] ADDRB = addrb;
wire [C_WRITE_WIDTH_B-1:0] DINB = dinb;
wire [C_READ_WIDTH_B-1:0] DOUTB;
wire [C_ADDRB_WIDTH-1:0] RDADDRECC;
wire [C_AXI_ID_WIDTH-1:0] S_AXI_AWID = s_axi_awid;
wire [31:0] S_AXI_AWADDR = s_axi_awaddr;
wire [7:0] S_AXI_AWLEN = s_axi_awlen;
wire [2:0] S_AXI_AWSIZE = s_axi_awsize;
wire [1:0] S_AXI_AWBURST = s_axi_awburst;
wire [C_WRITE_WIDTH_A-1:0] S_AXI_WDATA = s_axi_wdata;
wire [C_WEA_WIDTH-1:0] S_AXI_WSTRB = s_axi_wstrb;
wire [C_AXI_ID_WIDTH-1:0] S_AXI_BID;
wire [1:0] S_AXI_BRESP;
wire [C_AXI_ID_WIDTH-1:0] S_AXI_ARID = s_axi_arid;
wire [31:0] S_AXI_ARADDR = s_axi_araddr;
wire [7:0] S_AXI_ARLEN = s_axi_arlen;
wire [2:0] S_AXI_ARSIZE = s_axi_arsize;
wire [1:0] S_AXI_ARBURST = s_axi_arburst;
wire [C_AXI_ID_WIDTH-1:0] S_AXI_RID;
wire [C_WRITE_WIDTH_B-1:0] S_AXI_RDATA;
wire [1:0] S_AXI_RRESP;
wire [C_ADDRB_WIDTH-1:0] S_AXI_RDADDRECC;
// Added to fix the simulation warning #CR731605
wire [C_WEB_WIDTH-1:0] WEB_parameterized = 0;
wire ECCPIPECE;
wire SLEEP;
assign CLKA = clka;
assign RSTA = rsta;
assign ENA = ena;
assign REGCEA = regcea;
assign CLKB = clkb;
assign RSTB = rstb;
assign ENB = enb;
assign REGCEB = regceb;
assign INJECTSBITERR = injectsbiterr;
assign INJECTDBITERR = injectdbiterr;
assign ECCPIPECE = eccpipece;
assign SLEEP = sleep;
assign sbiterr = SBITERR;
assign dbiterr = DBITERR;
assign S_ACLK = s_aclk;
assign S_ARESETN = s_aresetn;
assign S_AXI_AWVALID = s_axi_awvalid;
assign s_axi_awready = S_AXI_AWREADY;
assign S_AXI_WLAST = s_axi_wlast;
assign S_AXI_WVALID = s_axi_wvalid;
assign s_axi_wready = S_AXI_WREADY;
assign s_axi_bvalid = S_AXI_BVALID;
assign S_AXI_BREADY = s_axi_bready;
assign S_AXI_ARVALID = s_axi_arvalid;
assign s_axi_arready = S_AXI_ARREADY;
assign s_axi_rlast = S_AXI_RLAST;
assign s_axi_rvalid = S_AXI_RVALID;
assign S_AXI_RREADY = s_axi_rready;
assign S_AXI_INJECTSBITERR = s_axi_injectsbiterr;
assign S_AXI_INJECTDBITERR = s_axi_injectdbiterr;
assign s_axi_sbiterr = S_AXI_SBITERR;
assign s_axi_dbiterr = S_AXI_DBITERR;
assign doutb = DOUTB;
assign douta = DOUTA;
assign rdaddrecc = RDADDRECC;
assign s_axi_bid = S_AXI_BID;
assign s_axi_bresp = S_AXI_BRESP;
assign s_axi_rid = S_AXI_RID;
assign s_axi_rdata = S_AXI_RDATA;
assign s_axi_rresp = S_AXI_RRESP;
assign s_axi_rdaddrecc = S_AXI_RDADDRECC;
localparam FLOP_DELAY = 100; // 100 ps
reg injectsbiterr_in;
reg injectdbiterr_in;
reg rsta_in;
reg ena_in;
reg regcea_in;
reg [C_WEA_WIDTH-1:0] wea_in;
reg [C_ADDRA_WIDTH-1:0] addra_in;
reg [C_WRITE_WIDTH_A-1:0] dina_in;
wire [C_ADDRA_WIDTH-1:0] s_axi_awaddr_out_c;
wire [C_ADDRB_WIDTH-1:0] s_axi_araddr_out_c;
wire s_axi_wr_en_c;
wire s_axi_rd_en_c;
wire s_aresetn_a_c;
wire [7:0] s_axi_arlen_c ;
wire [C_AXI_ID_WIDTH-1 : 0] s_axi_rid_c;
wire [C_WRITE_WIDTH_B-1 : 0] s_axi_rdata_c;
wire [1:0] s_axi_rresp_c;
wire s_axi_rlast_c;
wire s_axi_rvalid_c;
wire s_axi_rready_c;
wire regceb_c;
localparam C_AXI_PAYLOAD = (C_HAS_MUX_OUTPUT_REGS_B == 1)?C_WRITE_WIDTH_B+C_AXI_ID_WIDTH+3:C_AXI_ID_WIDTH+3;
wire [C_AXI_PAYLOAD-1 : 0] s_axi_payload_c;
wire [C_AXI_PAYLOAD-1 : 0] m_axi_payload_c;
//**************
// log2roundup
//**************
function integer log2roundup (input integer data_value);
integer width;
integer cnt;
begin
width = 0;
if (data_value > 1) begin
for(cnt=1 ; cnt < data_value ; cnt = cnt * 2) begin
width = width + 1;
end //loop
end //if
log2roundup = width;
end //log2roundup
endfunction
//**************
// log2int
//**************
function integer log2int (input integer data_value);
integer width;
integer cnt;
begin
width = 0;
cnt= data_value;
for(cnt=data_value ; cnt >1 ; cnt = cnt / 2) begin
width = width + 1;
end //loop
log2int = width;
end //log2int
endfunction
//**************************************************************************
// FUNCTION : divroundup
// Returns the ceiling value of the division
// Data_value - the quantity to be divided, dividend
// Divisor - the value to divide the data_value by
//**************************************************************************
function integer divroundup (input integer data_value,input integer divisor);
integer div;
begin
div = data_value/divisor;
if ((data_value % divisor) != 0) begin
div = div+1;
end //if
divroundup = div;
end //if
endfunction
localparam AXI_FULL_MEMORY_SLAVE = ((C_AXI_SLAVE_TYPE == 0 && C_AXI_TYPE == 1)?1:0);
localparam C_AXI_ADDR_WIDTH_MSB = C_ADDRA_WIDTH+log2roundup(C_WRITE_WIDTH_A/8);
localparam C_AXI_ADDR_WIDTH = C_AXI_ADDR_WIDTH_MSB;
//Data Width Number of LSB address bits to be discarded
//1 to 16 1
//17 to 32 2
//33 to 64 3
//65 to 128 4
//129 to 256 5
//257 to 512 6
//513 to 1024 7
// The following two constants determine this.
localparam LOWER_BOUND_VAL = (log2roundup(divroundup(C_WRITE_WIDTH_A,8) == 0))?0:(log2roundup(divroundup(C_WRITE_WIDTH_A,8)));
localparam C_AXI_ADDR_WIDTH_LSB = ((AXI_FULL_MEMORY_SLAVE == 1)?0:LOWER_BOUND_VAL);
localparam C_AXI_OS_WR = 2;
//***********************************************
// INPUT REGISTERS.
//***********************************************
generate if (C_HAS_SOFTECC_INPUT_REGS_A==0) begin : no_softecc_input_reg_stage
always @* begin
injectsbiterr_in = INJECTSBITERR;
injectdbiterr_in = INJECTDBITERR;
rsta_in = RSTA;
ena_in = ENA;
regcea_in = REGCEA;
wea_in = WEA;
addra_in = ADDRA;
dina_in = DINA;
end //end always
end //end no_softecc_input_reg_stage
endgenerate
generate if (C_HAS_SOFTECC_INPUT_REGS_A==1) begin : has_softecc_input_reg_stage
always @(posedge CLKA) begin
injectsbiterr_in <= #FLOP_DELAY INJECTSBITERR;
injectdbiterr_in <= #FLOP_DELAY INJECTDBITERR;
rsta_in <= #FLOP_DELAY RSTA;
ena_in <= #FLOP_DELAY ENA;
regcea_in <= #FLOP_DELAY REGCEA;
wea_in <= #FLOP_DELAY WEA;
addra_in <= #FLOP_DELAY ADDRA;
dina_in <= #FLOP_DELAY DINA;
end //end always
end //end input_reg_stages generate statement
endgenerate
generate if ((C_INTERFACE_TYPE == 0) && (C_ENABLE_32BIT_ADDRESS == 0)) begin : native_mem_module
BLK_MEM_GEN_v8_2_mem_module
#(.C_CORENAME (C_CORENAME),
.C_FAMILY (C_FAMILY),
.C_XDEVICEFAMILY (C_XDEVICEFAMILY),
.C_MEM_TYPE (C_MEM_TYPE),
.C_BYTE_SIZE (C_BYTE_SIZE),
.C_ALGORITHM (C_ALGORITHM),
.C_USE_BRAM_BLOCK (C_USE_BRAM_BLOCK),
.C_PRIM_TYPE (C_PRIM_TYPE),
.C_LOAD_INIT_FILE (C_LOAD_INIT_FILE),
.C_INIT_FILE_NAME (C_INIT_FILE_NAME),
.C_INIT_FILE (C_INIT_FILE),
.C_USE_DEFAULT_DATA (C_USE_DEFAULT_DATA),
.C_DEFAULT_DATA (C_DEFAULT_DATA),
.C_RST_TYPE ("SYNC"),
.C_HAS_RSTA (C_HAS_RSTA),
.C_RST_PRIORITY_A (C_RST_PRIORITY_A),
.C_RSTRAM_A (C_RSTRAM_A),
.C_INITA_VAL (C_INITA_VAL),
.C_HAS_ENA (C_HAS_ENA),
.C_HAS_REGCEA (C_HAS_REGCEA),
.C_USE_BYTE_WEA (C_USE_BYTE_WEA),
.C_WEA_WIDTH (C_WEA_WIDTH),
.C_WRITE_MODE_A (C_WRITE_MODE_A),
.C_WRITE_WIDTH_A (C_WRITE_WIDTH_A),
.C_READ_WIDTH_A (C_READ_WIDTH_A),
.C_WRITE_DEPTH_A (C_WRITE_DEPTH_A),
.C_READ_DEPTH_A (C_READ_DEPTH_A),
.C_ADDRA_WIDTH (C_ADDRA_WIDTH),
.C_HAS_RSTB (C_HAS_RSTB),
.C_RST_PRIORITY_B (C_RST_PRIORITY_B),
.C_RSTRAM_B (C_RSTRAM_B),
.C_INITB_VAL (C_INITB_VAL),
.C_HAS_ENB (C_HAS_ENB),
.C_HAS_REGCEB (C_HAS_REGCEB),
.C_USE_BYTE_WEB (C_USE_BYTE_WEB),
.C_WEB_WIDTH (C_WEB_WIDTH),
.C_WRITE_MODE_B (C_WRITE_MODE_B),
.C_WRITE_WIDTH_B (C_WRITE_WIDTH_B),
.C_READ_WIDTH_B (C_READ_WIDTH_B),
.C_WRITE_DEPTH_B (C_WRITE_DEPTH_B),
.C_READ_DEPTH_B (C_READ_DEPTH_B),
.C_ADDRB_WIDTH (C_ADDRB_WIDTH),
.C_HAS_MEM_OUTPUT_REGS_A (C_HAS_MEM_OUTPUT_REGS_A),
.C_HAS_MEM_OUTPUT_REGS_B (C_HAS_MEM_OUTPUT_REGS_B),
.C_HAS_MUX_OUTPUT_REGS_A (C_HAS_MUX_OUTPUT_REGS_A),
.C_HAS_MUX_OUTPUT_REGS_B (C_HAS_MUX_OUTPUT_REGS_B),
.C_HAS_SOFTECC_INPUT_REGS_A (C_HAS_SOFTECC_INPUT_REGS_A),
.C_HAS_SOFTECC_OUTPUT_REGS_B (C_HAS_SOFTECC_OUTPUT_REGS_B),
.C_MUX_PIPELINE_STAGES (C_MUX_PIPELINE_STAGES),
.C_USE_SOFTECC (C_USE_SOFTECC),
.C_USE_ECC (C_USE_ECC),
.C_HAS_INJECTERR (C_HAS_INJECTERR),
.C_SIM_COLLISION_CHECK (C_SIM_COLLISION_CHECK),
.C_COMMON_CLK (C_COMMON_CLK),
.FLOP_DELAY (FLOP_DELAY),
.C_DISABLE_WARN_BHV_COLL (C_DISABLE_WARN_BHV_COLL),
.C_EN_ECC_PIPE (C_EN_ECC_PIPE),
.C_DISABLE_WARN_BHV_RANGE (C_DISABLE_WARN_BHV_RANGE))
blk_mem_gen_v8_2_inst
(.CLKA (CLKA),
.RSTA (rsta_in),
.ENA (ena_in),
.REGCEA (regcea_in),
.WEA (wea_in),
.ADDRA (addra_in),
.DINA (dina_in),
.DOUTA (DOUTA),
.CLKB (CLKB),
.RSTB (RSTB),
.ENB (ENB),
.REGCEB (REGCEB),
.WEB (WEB),
.ADDRB (ADDRB),
.DINB (DINB),
.DOUTB (DOUTB),
.INJECTSBITERR (injectsbiterr_in),
.INJECTDBITERR (injectdbiterr_in),
.ECCPIPECE (ECCPIPECE),
.SLEEP (SLEEP),
.SBITERR (SBITERR),
.DBITERR (DBITERR),
.RDADDRECC (RDADDRECC)
);
end
endgenerate
generate if((C_INTERFACE_TYPE == 0) && (C_ENABLE_32BIT_ADDRESS == 1)) begin : native_mem_mapped_module
localparam C_ADDRA_WIDTH_ACTUAL = log2roundup(C_WRITE_DEPTH_A);
localparam C_ADDRB_WIDTH_ACTUAL = log2roundup(C_WRITE_DEPTH_B);
localparam C_ADDRA_WIDTH_MSB = C_ADDRA_WIDTH_ACTUAL+log2int(C_WRITE_WIDTH_A/8);
localparam C_ADDRB_WIDTH_MSB = C_ADDRB_WIDTH_ACTUAL+log2int(C_WRITE_WIDTH_B/8);
// localparam C_ADDRA_WIDTH_MSB = C_ADDRA_WIDTH_ACTUAL+log2roundup(C_WRITE_WIDTH_A/8);
// localparam C_ADDRB_WIDTH_MSB = C_ADDRB_WIDTH_ACTUAL+log2roundup(C_WRITE_WIDTH_B/8);
localparam C_MEM_MAP_ADDRA_WIDTH_MSB = C_ADDRA_WIDTH_MSB;
localparam C_MEM_MAP_ADDRB_WIDTH_MSB = C_ADDRB_WIDTH_MSB;
// Data Width Number of LSB address bits to be discarded
// 1 to 16 1
// 17 to 32 2
// 33 to 64 3
// 65 to 128 4
// 129 to 256 5
// 257 to 512 6
// 513 to 1024 7
// The following two constants determine this.
localparam MEM_MAP_LOWER_BOUND_VAL_A = (log2int(divroundup(C_WRITE_WIDTH_A,8)==0)) ? 0:(log2int(divroundup(C_WRITE_WIDTH_A,8)));
localparam MEM_MAP_LOWER_BOUND_VAL_B = (log2int(divroundup(C_WRITE_WIDTH_A,8)==0)) ? 0:(log2int(divroundup(C_WRITE_WIDTH_A,8)));
localparam C_MEM_MAP_ADDRA_WIDTH_LSB = MEM_MAP_LOWER_BOUND_VAL_A;
localparam C_MEM_MAP_ADDRB_WIDTH_LSB = MEM_MAP_LOWER_BOUND_VAL_B;
wire [C_ADDRB_WIDTH_ACTUAL-1 :0] rdaddrecc_i;
wire [C_ADDRB_WIDTH-1:C_MEM_MAP_ADDRB_WIDTH_MSB] msb_zero_i;
wire [C_MEM_MAP_ADDRB_WIDTH_LSB-1:0] lsb_zero_i;
assign msb_zero_i = 0;
assign lsb_zero_i = 0;
assign RDADDRECC = {msb_zero_i,rdaddrecc_i,lsb_zero_i};
BLK_MEM_GEN_v8_2_mem_module
#(.C_CORENAME (C_CORENAME),
.C_FAMILY (C_FAMILY),
.C_XDEVICEFAMILY (C_XDEVICEFAMILY),
.C_MEM_TYPE (C_MEM_TYPE),
.C_BYTE_SIZE (C_BYTE_SIZE),
.C_USE_BRAM_BLOCK (C_USE_BRAM_BLOCK),
.C_ALGORITHM (C_ALGORITHM),
.C_PRIM_TYPE (C_PRIM_TYPE),
.C_LOAD_INIT_FILE (C_LOAD_INIT_FILE),
.C_INIT_FILE_NAME (C_INIT_FILE_NAME),
.C_INIT_FILE (C_INIT_FILE),
.C_USE_DEFAULT_DATA (C_USE_DEFAULT_DATA),
.C_DEFAULT_DATA (C_DEFAULT_DATA),
.C_RST_TYPE ("SYNC"),
.C_HAS_RSTA (C_HAS_RSTA),
.C_RST_PRIORITY_A (C_RST_PRIORITY_A),
.C_RSTRAM_A (C_RSTRAM_A),
.C_INITA_VAL (C_INITA_VAL),
.C_HAS_ENA (C_HAS_ENA),
.C_HAS_REGCEA (C_HAS_REGCEA),
.C_USE_BYTE_WEA (C_USE_BYTE_WEA),
.C_WEA_WIDTH (C_WEA_WIDTH),
.C_WRITE_MODE_A (C_WRITE_MODE_A),
.C_WRITE_WIDTH_A (C_WRITE_WIDTH_A),
.C_READ_WIDTH_A (C_READ_WIDTH_A),
.C_WRITE_DEPTH_A (C_WRITE_DEPTH_A),
.C_READ_DEPTH_A (C_READ_DEPTH_A),
.C_ADDRA_WIDTH (C_ADDRA_WIDTH_ACTUAL),
.C_HAS_RSTB (C_HAS_RSTB),
.C_RST_PRIORITY_B (C_RST_PRIORITY_B),
.C_RSTRAM_B (C_RSTRAM_B),
.C_INITB_VAL (C_INITB_VAL),
.C_HAS_ENB (C_HAS_ENB),
.C_HAS_REGCEB (C_HAS_REGCEB),
.C_USE_BYTE_WEB (C_USE_BYTE_WEB),
.C_WEB_WIDTH (C_WEB_WIDTH),
.C_WRITE_MODE_B (C_WRITE_MODE_B),
.C_WRITE_WIDTH_B (C_WRITE_WIDTH_B),
.C_READ_WIDTH_B (C_READ_WIDTH_B),
.C_WRITE_DEPTH_B (C_WRITE_DEPTH_B),
.C_READ_DEPTH_B (C_READ_DEPTH_B),
.C_ADDRB_WIDTH (C_ADDRB_WIDTH_ACTUAL),
.C_HAS_MEM_OUTPUT_REGS_A (C_HAS_MEM_OUTPUT_REGS_A),
.C_HAS_MEM_OUTPUT_REGS_B (C_HAS_MEM_OUTPUT_REGS_B),
.C_HAS_MUX_OUTPUT_REGS_A (C_HAS_MUX_OUTPUT_REGS_A),
.C_HAS_MUX_OUTPUT_REGS_B (C_HAS_MUX_OUTPUT_REGS_B),
.C_HAS_SOFTECC_INPUT_REGS_A (C_HAS_SOFTECC_INPUT_REGS_A),
.C_HAS_SOFTECC_OUTPUT_REGS_B (C_HAS_SOFTECC_OUTPUT_REGS_B),
.C_MUX_PIPELINE_STAGES (C_MUX_PIPELINE_STAGES),
.C_USE_SOFTECC (C_USE_SOFTECC),
.C_USE_ECC (C_USE_ECC),
.C_HAS_INJECTERR (C_HAS_INJECTERR),
.C_SIM_COLLISION_CHECK (C_SIM_COLLISION_CHECK),
.C_COMMON_CLK (C_COMMON_CLK),
.FLOP_DELAY (FLOP_DELAY),
.C_DISABLE_WARN_BHV_COLL (C_DISABLE_WARN_BHV_COLL),
.C_EN_ECC_PIPE (C_EN_ECC_PIPE),
.C_DISABLE_WARN_BHV_RANGE (C_DISABLE_WARN_BHV_RANGE))
blk_mem_gen_v8_2_inst
(.CLKA (CLKA),
.RSTA (rsta_in),
.ENA (ena_in),
.REGCEA (regcea_in),
.WEA (wea_in),
.ADDRA (addra_in[C_MEM_MAP_ADDRA_WIDTH_MSB-1:C_MEM_MAP_ADDRA_WIDTH_LSB]),
.DINA (dina_in),
.DOUTA (DOUTA),
.CLKB (CLKB),
.RSTB (RSTB),
.ENB (ENB),
.REGCEB (REGCEB),
.WEB (WEB),
.ADDRB (ADDRB[C_MEM_MAP_ADDRB_WIDTH_MSB-1:C_MEM_MAP_ADDRB_WIDTH_LSB]),
.DINB (DINB),
.DOUTB (DOUTB),
.INJECTSBITERR (injectsbiterr_in),
.INJECTDBITERR (injectdbiterr_in),
.ECCPIPECE (ECCPIPECE),
.SLEEP (SLEEP),
.SBITERR (SBITERR),
.DBITERR (DBITERR),
.RDADDRECC (rdaddrecc_i)
);
end
endgenerate
generate if (C_HAS_MEM_OUTPUT_REGS_B == 0 && C_HAS_MUX_OUTPUT_REGS_B == 0 ) begin : no_regs
assign S_AXI_RDATA = s_axi_rdata_c;
assign S_AXI_RLAST = s_axi_rlast_c;
assign S_AXI_RVALID = s_axi_rvalid_c;
assign S_AXI_RID = s_axi_rid_c;
assign S_AXI_RRESP = s_axi_rresp_c;
assign s_axi_rready_c = S_AXI_RREADY;
end
endgenerate
generate if (C_HAS_MEM_OUTPUT_REGS_B == 1) begin : has_regceb
assign regceb_c = s_axi_rvalid_c && s_axi_rready_c;
end
endgenerate
generate if (C_HAS_MEM_OUTPUT_REGS_B == 0) begin : no_regceb
assign regceb_c = REGCEB;
end
endgenerate
generate if (C_HAS_MUX_OUTPUT_REGS_B == 1) begin : only_core_op_regs
assign s_axi_payload_c = {s_axi_rid_c,s_axi_rdata_c,s_axi_rresp_c,s_axi_rlast_c};
assign S_AXI_RID = m_axi_payload_c[C_AXI_PAYLOAD-1 : C_AXI_PAYLOAD-C_AXI_ID_WIDTH];
assign S_AXI_RDATA = m_axi_payload_c[C_AXI_PAYLOAD-C_AXI_ID_WIDTH-1 : C_AXI_PAYLOAD-C_AXI_ID_WIDTH-C_WRITE_WIDTH_B];
assign S_AXI_RRESP = m_axi_payload_c[2:1];
assign S_AXI_RLAST = m_axi_payload_c[0];
end
endgenerate
generate if (C_HAS_MEM_OUTPUT_REGS_B == 1) begin : only_emb_op_regs
assign s_axi_payload_c = {s_axi_rid_c,s_axi_rresp_c,s_axi_rlast_c};
assign S_AXI_RDATA = s_axi_rdata_c;
assign S_AXI_RID = m_axi_payload_c[C_AXI_PAYLOAD-1 : C_AXI_PAYLOAD-C_AXI_ID_WIDTH];
assign S_AXI_RRESP = m_axi_payload_c[2:1];
assign S_AXI_RLAST = m_axi_payload_c[0];
end
endgenerate
generate if (C_HAS_MUX_OUTPUT_REGS_B == 1 || C_HAS_MEM_OUTPUT_REGS_B == 1) begin : has_regs_fwd
blk_mem_axi_regs_fwd_v8_2
#(.C_DATA_WIDTH (C_AXI_PAYLOAD))
axi_regs_inst (
.ACLK (S_ACLK),
.ARESET (s_aresetn_a_c),
.S_VALID (s_axi_rvalid_c),
.S_READY (s_axi_rready_c),
.S_PAYLOAD_DATA (s_axi_payload_c),
.M_VALID (S_AXI_RVALID),
.M_READY (S_AXI_RREADY),
.M_PAYLOAD_DATA (m_axi_payload_c)
);
end
endgenerate
generate if (C_INTERFACE_TYPE == 1) begin : axi_mem_module
assign s_aresetn_a_c = !S_ARESETN;
assign S_AXI_BRESP = 2'b00;
assign s_axi_rresp_c = 2'b00;
assign s_axi_arlen_c = (C_AXI_TYPE == 1)?S_AXI_ARLEN:8'h0;
blk_mem_axi_write_wrapper_beh_v8_2
#(.C_INTERFACE_TYPE (C_INTERFACE_TYPE),
.C_AXI_TYPE (C_AXI_TYPE),
.C_AXI_SLAVE_TYPE (C_AXI_SLAVE_TYPE),
.C_MEMORY_TYPE (C_MEM_TYPE),
.C_WRITE_DEPTH_A (C_WRITE_DEPTH_A),
.C_AXI_AWADDR_WIDTH ((AXI_FULL_MEMORY_SLAVE == 1)?C_AXI_ADDR_WIDTH:C_AXI_ADDR_WIDTH-C_AXI_ADDR_WIDTH_LSB),
.C_HAS_AXI_ID (C_HAS_AXI_ID),
.C_AXI_ID_WIDTH (C_AXI_ID_WIDTH),
.C_ADDRA_WIDTH (C_ADDRA_WIDTH),
.C_AXI_WDATA_WIDTH (C_WRITE_WIDTH_A),
.C_AXI_OS_WR (C_AXI_OS_WR))
axi_wr_fsm (
// AXI Global Signals
.S_ACLK (S_ACLK),
.S_ARESETN (s_aresetn_a_c),
// AXI Full/Lite Slave Write interface
.S_AXI_AWADDR (S_AXI_AWADDR[C_AXI_ADDR_WIDTH_MSB-1:C_AXI_ADDR_WIDTH_LSB]),
.S_AXI_AWLEN (S_AXI_AWLEN),
.S_AXI_AWID (S_AXI_AWID),
.S_AXI_AWSIZE (S_AXI_AWSIZE),
.S_AXI_AWBURST (S_AXI_AWBURST),
.S_AXI_AWVALID (S_AXI_AWVALID),
.S_AXI_AWREADY (S_AXI_AWREADY),
.S_AXI_WVALID (S_AXI_WVALID),
.S_AXI_WREADY (S_AXI_WREADY),
.S_AXI_BVALID (S_AXI_BVALID),
.S_AXI_BREADY (S_AXI_BREADY),
.S_AXI_BID (S_AXI_BID),
// Signals for BRAM interfac(
.S_AXI_AWADDR_OUT (s_axi_awaddr_out_c),
.S_AXI_WR_EN (s_axi_wr_en_c)
);
blk_mem_axi_read_wrapper_beh_v8_2
#(.C_INTERFACE_TYPE (C_INTERFACE_TYPE),
.C_AXI_TYPE (C_AXI_TYPE),
.C_AXI_SLAVE_TYPE (C_AXI_SLAVE_TYPE),
.C_MEMORY_TYPE (C_MEM_TYPE),
.C_WRITE_WIDTH_A (C_WRITE_WIDTH_A),
.C_ADDRA_WIDTH (C_ADDRA_WIDTH),
.C_AXI_PIPELINE_STAGES (1),
.C_AXI_ARADDR_WIDTH ((AXI_FULL_MEMORY_SLAVE == 1)?C_AXI_ADDR_WIDTH:C_AXI_ADDR_WIDTH-C_AXI_ADDR_WIDTH_LSB),
.C_HAS_AXI_ID (C_HAS_AXI_ID),
.C_AXI_ID_WIDTH (C_AXI_ID_WIDTH),
.C_ADDRB_WIDTH (C_ADDRB_WIDTH))
axi_rd_sm(
//AXI Global Signals
.S_ACLK (S_ACLK),
.S_ARESETN (s_aresetn_a_c),
//AXI Full/Lite Read Side
.S_AXI_ARADDR (S_AXI_ARADDR[C_AXI_ADDR_WIDTH_MSB-1:C_AXI_ADDR_WIDTH_LSB]),
.S_AXI_ARLEN (s_axi_arlen_c),
.S_AXI_ARSIZE (S_AXI_ARSIZE),
.S_AXI_ARBURST (S_AXI_ARBURST),
.S_AXI_ARVALID (S_AXI_ARVALID),
.S_AXI_ARREADY (S_AXI_ARREADY),
.S_AXI_RLAST (s_axi_rlast_c),
.S_AXI_RVALID (s_axi_rvalid_c),
.S_AXI_RREADY (s_axi_rready_c),
.S_AXI_ARID (S_AXI_ARID),
.S_AXI_RID (s_axi_rid_c),
//AXI Full/Lite Read FSM Outputs
.S_AXI_ARADDR_OUT (s_axi_araddr_out_c),
.S_AXI_RD_EN (s_axi_rd_en_c)
);
BLK_MEM_GEN_v8_2_mem_module
#(.C_CORENAME (C_CORENAME),
.C_FAMILY (C_FAMILY),
.C_XDEVICEFAMILY (C_XDEVICEFAMILY),
.C_MEM_TYPE (C_MEM_TYPE),
.C_BYTE_SIZE (C_BYTE_SIZE),
.C_USE_BRAM_BLOCK (C_USE_BRAM_BLOCK),
.C_ALGORITHM (C_ALGORITHM),
.C_PRIM_TYPE (C_PRIM_TYPE),
.C_LOAD_INIT_FILE (C_LOAD_INIT_FILE),
.C_INIT_FILE_NAME (C_INIT_FILE_NAME),
.C_INIT_FILE (C_INIT_FILE),
.C_USE_DEFAULT_DATA (C_USE_DEFAULT_DATA),
.C_DEFAULT_DATA (C_DEFAULT_DATA),
.C_RST_TYPE ("SYNC"),
.C_HAS_RSTA (C_HAS_RSTA),
.C_RST_PRIORITY_A (C_RST_PRIORITY_A),
.C_RSTRAM_A (C_RSTRAM_A),
.C_INITA_VAL (C_INITA_VAL),
.C_HAS_ENA (1),
.C_HAS_REGCEA (C_HAS_REGCEA),
.C_USE_BYTE_WEA (1),
.C_WEA_WIDTH (C_WEA_WIDTH),
.C_WRITE_MODE_A (C_WRITE_MODE_A),
.C_WRITE_WIDTH_A (C_WRITE_WIDTH_A),
.C_READ_WIDTH_A (C_READ_WIDTH_A),
.C_WRITE_DEPTH_A (C_WRITE_DEPTH_A),
.C_READ_DEPTH_A (C_READ_DEPTH_A),
.C_ADDRA_WIDTH (C_ADDRA_WIDTH),
.C_HAS_RSTB (C_HAS_RSTB),
.C_RST_PRIORITY_B (C_RST_PRIORITY_B),
.C_RSTRAM_B (C_RSTRAM_B),
.C_INITB_VAL (C_INITB_VAL),
.C_HAS_ENB (1),
.C_HAS_REGCEB (C_HAS_MEM_OUTPUT_REGS_B),
.C_USE_BYTE_WEB (1),
.C_WEB_WIDTH (C_WEB_WIDTH),
.C_WRITE_MODE_B (C_WRITE_MODE_B),
.C_WRITE_WIDTH_B (C_WRITE_WIDTH_B),
.C_READ_WIDTH_B (C_READ_WIDTH_B),
.C_WRITE_DEPTH_B (C_WRITE_DEPTH_B),
.C_READ_DEPTH_B (C_READ_DEPTH_B),
.C_ADDRB_WIDTH (C_ADDRB_WIDTH),
.C_HAS_MEM_OUTPUT_REGS_A (0),
.C_HAS_MEM_OUTPUT_REGS_B (C_HAS_MEM_OUTPUT_REGS_B),
.C_HAS_MUX_OUTPUT_REGS_A (0),
.C_HAS_MUX_OUTPUT_REGS_B (0),
.C_HAS_SOFTECC_INPUT_REGS_A (C_HAS_SOFTECC_INPUT_REGS_A),
.C_HAS_SOFTECC_OUTPUT_REGS_B (C_HAS_SOFTECC_OUTPUT_REGS_B),
.C_MUX_PIPELINE_STAGES (C_MUX_PIPELINE_STAGES),
.C_USE_SOFTECC (C_USE_SOFTECC),
.C_USE_ECC (C_USE_ECC),
.C_HAS_INJECTERR (C_HAS_INJECTERR),
.C_SIM_COLLISION_CHECK (C_SIM_COLLISION_CHECK),
.C_COMMON_CLK (C_COMMON_CLK),
.FLOP_DELAY (FLOP_DELAY),
.C_DISABLE_WARN_BHV_COLL (C_DISABLE_WARN_BHV_COLL),
.C_EN_ECC_PIPE (0),
.C_DISABLE_WARN_BHV_RANGE (C_DISABLE_WARN_BHV_RANGE))
blk_mem_gen_v8_2_inst
(.CLKA (S_ACLK),
.RSTA (s_aresetn_a_c),
.ENA (s_axi_wr_en_c),
.REGCEA (regcea_in),
.WEA (S_AXI_WSTRB),
.ADDRA (s_axi_awaddr_out_c),
.DINA (S_AXI_WDATA),
.DOUTA (DOUTA),
.CLKB (S_ACLK),
.RSTB (s_aresetn_a_c),
.ENB (s_axi_rd_en_c),
.REGCEB (regceb_c),
.WEB (WEB_parameterized),
.ADDRB (s_axi_araddr_out_c),
.DINB (DINB),
.DOUTB (s_axi_rdata_c),
.INJECTSBITERR (injectsbiterr_in),
.INJECTDBITERR (injectdbiterr_in),
.SBITERR (SBITERR),
.DBITERR (DBITERR),
.ECCPIPECE (1'b0),
.SLEEP (1'b0),
.RDADDRECC (RDADDRECC)
);
end
endgenerate
endmodule
|
/******************************************************************************
-- (c) Copyright 2006 - 2013 Xilinx, Inc. All rights reserved.
--
-- This file contains confidential and proprietary information
-- of Xilinx, Inc. and is protected under U.S. and
-- international copyright and other intellectual property
-- laws.
--
-- DISCLAIMER
-- This disclaimer is not a license and does not grant any
-- rights to the materials distributed herewith. Except as
-- otherwise provided in a valid license issued to you by
-- Xilinx, and to the maximum extent permitted by applicable
-- law: (1) THESE MATERIALS ARE MADE AVAILABLE "AS IS" AND
-- WITH ALL FAULTS, AND XILINX HEREBY DISCLAIMS ALL WARRANTIES
-- AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING
-- BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, NON-
-- INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and
-- (2) Xilinx shall not be liable (whether in contract or tort,
-- including negligence, or under any other theory of
-- liability) for any loss or damage of any kind or nature
-- related to, arising under or in connection with these
-- materials, including for any direct, or any indirect,
-- special, incidental, or consequential loss or damage
-- (including loss of data, profits, goodwill, or any type of
-- loss or damage suffered as a result of any action brought
-- by a third party) even if such damage or loss was
-- reasonably foreseeable or Xilinx had been advised of the
-- possibility of the same.
--
-- CRITICAL APPLICATIONS
-- Xilinx products are not designed or intended to be fail-
-- safe, or for use in any application requiring fail-safe
-- performance, such as life-support or safety devices or
-- systems, Class III medical devices, nuclear facilities,
-- applications related to the deployment of airbags, or any
-- other applications that could lead to death, personal
-- injury, or severe property or environmental damage
-- (individually and collectively, "Critical
-- Applications"). Customer assumes the sole risk and
-- liability of any use of Xilinx products in Critical
-- Applications, subject only to applicable laws and
-- regulations governing limitations on product liability.
--
-- THIS COPYRIGHT NOTICE AND DISCLAIMER MUST BE RETAINED AS
-- PART OF THIS FILE AT ALL TIMES.
--
*****************************************************************************
*
* Filename: BLK_MEM_GEN_v8_2.v
*
* Description:
* This file is the Verilog behvarial model for the
* Block Memory Generator Core.
*
*****************************************************************************
* Author: Xilinx
*
* History: Jan 11, 2006 Initial revision
* Jun 11, 2007 Added independent register stages for
* Port A and Port B (IP1_Jm/v2.5)
* Aug 28, 2007 Added mux pipeline stages feature (IP2_Jm/v2.6)
* Mar 13, 2008 Behavioral model optimizations
* April 07, 2009 : Added support for Spartan-6 and Virtex-6
* features, including the following:
* (i) error injection, detection and/or correction
* (ii) reset priority
* (iii) special reset behavior
*
*****************************************************************************/
`timescale 1ps/1ps
module STATE_LOGIC_v8_2 (O, I0, I1, I2, I3, I4, I5);
parameter INIT = 64'h0000000000000000;
input I0, I1, I2, I3, I4, I5;
output O;
reg O;
reg tmp;
always @( I5 or I4 or I3 or I2 or I1 or I0 ) begin
tmp = I0 ^ I1 ^ I2 ^ I3 ^ I4 ^ I5;
if ( tmp == 0 || tmp == 1)
O = INIT[{I5, I4, I3, I2, I1, I0}];
end
endmodule
module beh_vlog_muxf7_v8_2 (O, I0, I1, S);
output O;
reg O;
input I0, I1, S;
always @(I0 or I1 or S)
if (S)
O = I1;
else
O = I0;
endmodule
module beh_vlog_ff_clr_v8_2 (Q, C, CLR, D);
parameter INIT = 0;
localparam FLOP_DELAY = 100;
output Q;
input C, CLR, D;
reg Q;
initial Q= 1'b0;
always @(posedge C )
if (CLR)
Q<= 1'b0;
else
Q<= #FLOP_DELAY D;
endmodule
module beh_vlog_ff_pre_v8_2 (Q, C, D, PRE);
parameter INIT = 0;
localparam FLOP_DELAY = 100;
output Q;
input C, D, PRE;
reg Q;
initial Q= 1'b0;
always @(posedge C )
if (PRE)
Q <= 1'b1;
else
Q <= #FLOP_DELAY D;
endmodule
module beh_vlog_ff_ce_clr_v8_2 (Q, C, CE, CLR, D);
parameter INIT = 0;
localparam FLOP_DELAY = 100;
output Q;
input C, CE, CLR, D;
reg Q;
initial Q= 1'b0;
always @(posedge C )
if (CLR)
Q <= 1'b0;
else if (CE)
Q <= #FLOP_DELAY D;
endmodule
module write_netlist_v8_2
#(
parameter C_AXI_TYPE = 0
)
(
S_ACLK, S_ARESETN, S_AXI_AWVALID, S_AXI_WVALID, S_AXI_BREADY,
w_last_c, bready_timeout_c, aw_ready_r, S_AXI_WREADY, S_AXI_BVALID,
S_AXI_WR_EN, addr_en_c, incr_addr_c, bvalid_c
);
input S_ACLK;
input S_ARESETN;
input S_AXI_AWVALID;
input S_AXI_WVALID;
input S_AXI_BREADY;
input w_last_c;
input bready_timeout_c;
output aw_ready_r;
output S_AXI_WREADY;
output S_AXI_BVALID;
output S_AXI_WR_EN;
output addr_en_c;
output incr_addr_c;
output bvalid_c;
//-------------------------------------------------------------------------
//AXI LITE
//-------------------------------------------------------------------------
generate if (C_AXI_TYPE == 0 ) begin : gbeh_axi_lite_sm
wire w_ready_r_7;
wire w_ready_c;
wire aw_ready_c;
wire NlwRenamedSignal_bvalid_c;
wire NlwRenamedSignal_incr_addr_c;
wire present_state_FSM_FFd3_13;
wire present_state_FSM_FFd2_14;
wire present_state_FSM_FFd1_15;
wire present_state_FSM_FFd4_16;
wire present_state_FSM_FFd4_In;
wire present_state_FSM_FFd3_In;
wire present_state_FSM_FFd2_In;
wire present_state_FSM_FFd1_In;
wire present_state_FSM_FFd4_In1_21;
wire [0:0] Mmux_aw_ready_c ;
begin
assign
S_AXI_WREADY = w_ready_r_7,
S_AXI_BVALID = NlwRenamedSignal_incr_addr_c,
S_AXI_WR_EN = NlwRenamedSignal_bvalid_c,
incr_addr_c = NlwRenamedSignal_incr_addr_c,
bvalid_c = NlwRenamedSignal_bvalid_c;
assign NlwRenamedSignal_incr_addr_c = 1'b0;
beh_vlog_ff_clr_v8_2 #(
.INIT (1'b0))
aw_ready_r_2 (
.C ( S_ACLK),
.CLR ( S_ARESETN),
.D ( aw_ready_c),
.Q ( aw_ready_r)
);
beh_vlog_ff_clr_v8_2 #(
.INIT (1'b0))
w_ready_r (
.C ( S_ACLK),
.CLR ( S_ARESETN),
.D ( w_ready_c),
.Q ( w_ready_r_7)
);
beh_vlog_ff_pre_v8_2 #(
.INIT (1'b1))
present_state_FSM_FFd4 (
.C ( S_ACLK),
.D ( present_state_FSM_FFd4_In),
.PRE ( S_ARESETN),
.Q ( present_state_FSM_FFd4_16)
);
beh_vlog_ff_clr_v8_2 #(
.INIT (1'b0))
present_state_FSM_FFd3 (
.C ( S_ACLK),
.CLR ( S_ARESETN),
.D ( present_state_FSM_FFd3_In),
.Q ( present_state_FSM_FFd3_13)
);
beh_vlog_ff_clr_v8_2 #(
.INIT (1'b0))
present_state_FSM_FFd2 (
.C ( S_ACLK),
.CLR ( S_ARESETN),
.D ( present_state_FSM_FFd2_In),
.Q ( present_state_FSM_FFd2_14)
);
beh_vlog_ff_clr_v8_2 #(
.INIT (1'b0))
present_state_FSM_FFd1 (
.C ( S_ACLK),
.CLR ( S_ARESETN),
.D ( present_state_FSM_FFd1_In),
.Q ( present_state_FSM_FFd1_15)
);
STATE_LOGIC_v8_2 #(
.INIT (64'h0000000055554440))
present_state_FSM_FFd3_In1 (
.I0 ( S_AXI_WVALID),
.I1 ( S_AXI_AWVALID),
.I2 ( present_state_FSM_FFd2_14),
.I3 ( present_state_FSM_FFd4_16),
.I4 ( present_state_FSM_FFd3_13),
.I5 (1'b0),
.O ( present_state_FSM_FFd3_In)
);
STATE_LOGIC_v8_2 #(
.INIT (64'h0000000088880800))
present_state_FSM_FFd2_In1 (
.I0 ( S_AXI_AWVALID),
.I1 ( S_AXI_WVALID),
.I2 ( bready_timeout_c),
.I3 ( present_state_FSM_FFd2_14),
.I4 ( present_state_FSM_FFd4_16),
.I5 (1'b0),
.O ( present_state_FSM_FFd2_In)
);
STATE_LOGIC_v8_2 #(
.INIT (64'h00000000AAAA2000))
Mmux_addr_en_c_0_1 (
.I0 ( S_AXI_AWVALID),
.I1 ( bready_timeout_c),
.I2 ( present_state_FSM_FFd2_14),
.I3 ( S_AXI_WVALID),
.I4 ( present_state_FSM_FFd4_16),
.I5 (1'b0),
.O ( addr_en_c)
);
STATE_LOGIC_v8_2 #(
.INIT (64'hF5F07570F5F05500))
Mmux_w_ready_c_0_1 (
.I0 ( S_AXI_WVALID),
.I1 ( bready_timeout_c),
.I2 ( S_AXI_AWVALID),
.I3 ( present_state_FSM_FFd3_13),
.I4 ( present_state_FSM_FFd4_16),
.I5 ( present_state_FSM_FFd2_14),
.O ( w_ready_c)
);
STATE_LOGIC_v8_2 #(
.INIT (64'h88808880FFFF8880))
present_state_FSM_FFd1_In1 (
.I0 ( S_AXI_WVALID),
.I1 ( bready_timeout_c),
.I2 ( present_state_FSM_FFd3_13),
.I3 ( present_state_FSM_FFd2_14),
.I4 ( present_state_FSM_FFd1_15),
.I5 ( S_AXI_BREADY),
.O ( present_state_FSM_FFd1_In)
);
STATE_LOGIC_v8_2 #(
.INIT (64'h00000000000000A8))
Mmux_S_AXI_WR_EN_0_1 (
.I0 ( S_AXI_WVALID),
.I1 ( present_state_FSM_FFd2_14),
.I2 ( present_state_FSM_FFd3_13),
.I3 (1'b0),
.I4 (1'b0),
.I5 (1'b0),
.O ( NlwRenamedSignal_bvalid_c)
);
STATE_LOGIC_v8_2 #(
.INIT (64'h2F0F27072F0F2200))
present_state_FSM_FFd4_In1 (
.I0 ( S_AXI_WVALID),
.I1 ( bready_timeout_c),
.I2 ( S_AXI_AWVALID),
.I3 ( present_state_FSM_FFd3_13),
.I4 ( present_state_FSM_FFd4_16),
.I5 ( present_state_FSM_FFd2_14),
.O ( present_state_FSM_FFd4_In1_21)
);
STATE_LOGIC_v8_2 #(
.INIT (64'h00000000000000F8))
present_state_FSM_FFd4_In2 (
.I0 ( present_state_FSM_FFd1_15),
.I1 ( S_AXI_BREADY),
.I2 ( present_state_FSM_FFd4_In1_21),
.I3 (1'b0),
.I4 (1'b0),
.I5 (1'b0),
.O ( present_state_FSM_FFd4_In)
);
STATE_LOGIC_v8_2 #(
.INIT (64'h7535753575305500))
Mmux_aw_ready_c_0_1 (
.I0 ( S_AXI_AWVALID),
.I1 ( bready_timeout_c),
.I2 ( S_AXI_WVALID),
.I3 ( present_state_FSM_FFd4_16),
.I4 ( present_state_FSM_FFd3_13),
.I5 ( present_state_FSM_FFd2_14),
.O ( Mmux_aw_ready_c[0])
);
STATE_LOGIC_v8_2 #(
.INIT (64'h00000000000000F8))
Mmux_aw_ready_c_0_2 (
.I0 ( present_state_FSM_FFd1_15),
.I1 ( S_AXI_BREADY),
.I2 ( Mmux_aw_ready_c[0]),
.I3 (1'b0),
.I4 (1'b0),
.I5 (1'b0),
.O ( aw_ready_c)
);
end
end
endgenerate
//---------------------------------------------------------------------
// AXI FULL
//---------------------------------------------------------------------
generate if (C_AXI_TYPE == 1 ) begin : gbeh_axi_full_sm
wire w_ready_r_8;
wire w_ready_c;
wire aw_ready_c;
wire NlwRenamedSig_OI_bvalid_c;
wire present_state_FSM_FFd1_16;
wire present_state_FSM_FFd4_17;
wire present_state_FSM_FFd3_18;
wire present_state_FSM_FFd2_19;
wire present_state_FSM_FFd4_In;
wire present_state_FSM_FFd3_In;
wire present_state_FSM_FFd2_In;
wire present_state_FSM_FFd1_In;
wire present_state_FSM_FFd2_In1_24;
wire present_state_FSM_FFd4_In1_25;
wire N2;
wire N4;
begin
assign
S_AXI_WREADY = w_ready_r_8,
bvalid_c = NlwRenamedSig_OI_bvalid_c,
S_AXI_BVALID = 1'b0;
beh_vlog_ff_clr_v8_2 #(
.INIT (1'b0))
aw_ready_r_2
(
.C ( S_ACLK),
.CLR ( S_ARESETN),
.D ( aw_ready_c),
.Q ( aw_ready_r)
);
beh_vlog_ff_clr_v8_2 #(
.INIT (1'b0))
w_ready_r
(
.C ( S_ACLK),
.CLR ( S_ARESETN),
.D ( w_ready_c),
.Q ( w_ready_r_8)
);
beh_vlog_ff_pre_v8_2 #(
.INIT (1'b1))
present_state_FSM_FFd4
(
.C ( S_ACLK),
.D ( present_state_FSM_FFd4_In),
.PRE ( S_ARESETN),
.Q ( present_state_FSM_FFd4_17)
);
beh_vlog_ff_clr_v8_2 #(
.INIT (1'b0))
present_state_FSM_FFd3
(
.C ( S_ACLK),
.CLR ( S_ARESETN),
.D ( present_state_FSM_FFd3_In),
.Q ( present_state_FSM_FFd3_18)
);
beh_vlog_ff_clr_v8_2 #(
.INIT (1'b0))
present_state_FSM_FFd2
(
.C ( S_ACLK),
.CLR ( S_ARESETN),
.D ( present_state_FSM_FFd2_In),
.Q ( present_state_FSM_FFd2_19)
);
beh_vlog_ff_clr_v8_2 #(
.INIT (1'b0))
present_state_FSM_FFd1
(
.C ( S_ACLK),
.CLR ( S_ARESETN),
.D ( present_state_FSM_FFd1_In),
.Q ( present_state_FSM_FFd1_16)
);
STATE_LOGIC_v8_2 #(
.INIT (64'h0000000000005540))
present_state_FSM_FFd3_In1
(
.I0 ( S_AXI_WVALID),
.I1 ( present_state_FSM_FFd4_17),
.I2 ( S_AXI_AWVALID),
.I3 ( present_state_FSM_FFd3_18),
.I4 (1'b0),
.I5 (1'b0),
.O ( present_state_FSM_FFd3_In)
);
STATE_LOGIC_v8_2 #(
.INIT (64'hBF3FBB33AF0FAA00))
Mmux_aw_ready_c_0_2
(
.I0 ( S_AXI_BREADY),
.I1 ( bready_timeout_c),
.I2 ( S_AXI_AWVALID),
.I3 ( present_state_FSM_FFd1_16),
.I4 ( present_state_FSM_FFd4_17),
.I5 ( NlwRenamedSig_OI_bvalid_c),
.O ( aw_ready_c)
);
STATE_LOGIC_v8_2 #(
.INIT (64'hAAAAAAAA20000000))
Mmux_addr_en_c_0_1
(
.I0 ( S_AXI_AWVALID),
.I1 ( bready_timeout_c),
.I2 ( present_state_FSM_FFd2_19),
.I3 ( S_AXI_WVALID),
.I4 ( w_last_c),
.I5 ( present_state_FSM_FFd4_17),
.O ( addr_en_c)
);
STATE_LOGIC_v8_2 #(
.INIT (64'h00000000000000A8))
Mmux_S_AXI_WR_EN_0_1
(
.I0 ( S_AXI_WVALID),
.I1 ( present_state_FSM_FFd2_19),
.I2 ( present_state_FSM_FFd3_18),
.I3 (1'b0),
.I4 (1'b0),
.I5 (1'b0),
.O ( S_AXI_WR_EN)
);
STATE_LOGIC_v8_2 #(
.INIT (64'h0000000000002220))
Mmux_incr_addr_c_0_1
(
.I0 ( S_AXI_WVALID),
.I1 ( w_last_c),
.I2 ( present_state_FSM_FFd2_19),
.I3 ( present_state_FSM_FFd3_18),
.I4 (1'b0),
.I5 (1'b0),
.O ( incr_addr_c)
);
STATE_LOGIC_v8_2 #(
.INIT (64'h0000000000008880))
Mmux_aw_ready_c_0_11
(
.I0 ( S_AXI_WVALID),
.I1 ( w_last_c),
.I2 ( present_state_FSM_FFd2_19),
.I3 ( present_state_FSM_FFd3_18),
.I4 (1'b0),
.I5 (1'b0),
.O ( NlwRenamedSig_OI_bvalid_c)
);
STATE_LOGIC_v8_2 #(
.INIT (64'h000000000000D5C0))
present_state_FSM_FFd2_In1
(
.I0 ( w_last_c),
.I1 ( S_AXI_AWVALID),
.I2 ( present_state_FSM_FFd4_17),
.I3 ( present_state_FSM_FFd3_18),
.I4 (1'b0),
.I5 (1'b0),
.O ( present_state_FSM_FFd2_In1_24)
);
STATE_LOGIC_v8_2 #(
.INIT (64'hFFFFAAAA08AAAAAA))
present_state_FSM_FFd2_In2
(
.I0 ( present_state_FSM_FFd2_19),
.I1 ( S_AXI_AWVALID),
.I2 ( bready_timeout_c),
.I3 ( w_last_c),
.I4 ( S_AXI_WVALID),
.I5 ( present_state_FSM_FFd2_In1_24),
.O ( present_state_FSM_FFd2_In)
);
STATE_LOGIC_v8_2 #(
.INIT (64'h00C0004000C00000))
present_state_FSM_FFd4_In1
(
.I0 ( S_AXI_AWVALID),
.I1 ( w_last_c),
.I2 ( S_AXI_WVALID),
.I3 ( bready_timeout_c),
.I4 ( present_state_FSM_FFd3_18),
.I5 ( present_state_FSM_FFd2_19),
.O ( present_state_FSM_FFd4_In1_25)
);
STATE_LOGIC_v8_2 #(
.INIT (64'h00000000FFFF88F8))
present_state_FSM_FFd4_In2
(
.I0 ( present_state_FSM_FFd1_16),
.I1 ( S_AXI_BREADY),
.I2 ( present_state_FSM_FFd4_17),
.I3 ( S_AXI_AWVALID),
.I4 ( present_state_FSM_FFd4_In1_25),
.I5 (1'b0),
.O ( present_state_FSM_FFd4_In)
);
STATE_LOGIC_v8_2 #(
.INIT (64'h0000000000000007))
Mmux_w_ready_c_0_SW0
(
.I0 ( w_last_c),
.I1 ( S_AXI_WVALID),
.I2 (1'b0),
.I3 (1'b0),
.I4 (1'b0),
.I5 (1'b0),
.O ( N2)
);
STATE_LOGIC_v8_2 #(
.INIT (64'hFABAFABAFAAAF000))
Mmux_w_ready_c_0_Q
(
.I0 ( N2),
.I1 ( bready_timeout_c),
.I2 ( S_AXI_AWVALID),
.I3 ( present_state_FSM_FFd4_17),
.I4 ( present_state_FSM_FFd3_18),
.I5 ( present_state_FSM_FFd2_19),
.O ( w_ready_c)
);
STATE_LOGIC_v8_2 #(
.INIT (64'h0000000000000008))
Mmux_aw_ready_c_0_11_SW0
(
.I0 ( bready_timeout_c),
.I1 ( S_AXI_WVALID),
.I2 (1'b0),
.I3 (1'b0),
.I4 (1'b0),
.I5 (1'b0),
.O ( N4)
);
STATE_LOGIC_v8_2 #(
.INIT (64'h88808880FFFF8880))
present_state_FSM_FFd1_In1
(
.I0 ( w_last_c),
.I1 ( N4),
.I2 ( present_state_FSM_FFd2_19),
.I3 ( present_state_FSM_FFd3_18),
.I4 ( present_state_FSM_FFd1_16),
.I5 ( S_AXI_BREADY),
.O ( present_state_FSM_FFd1_In)
);
end
end
endgenerate
endmodule
module read_netlist_v8_2 #(
parameter C_AXI_TYPE = 1,
parameter C_ADDRB_WIDTH = 12
) ( S_AXI_R_LAST_INT, S_ACLK, S_ARESETN, S_AXI_ARVALID,
S_AXI_RREADY,S_AXI_INCR_ADDR,S_AXI_ADDR_EN,
S_AXI_SINGLE_TRANS,S_AXI_MUX_SEL, S_AXI_R_LAST, S_AXI_ARREADY,
S_AXI_RLAST, S_AXI_RVALID, S_AXI_RD_EN, S_AXI_ARLEN);
input S_AXI_R_LAST_INT;
input S_ACLK;
input S_ARESETN;
input S_AXI_ARVALID;
input S_AXI_RREADY;
output S_AXI_INCR_ADDR;
output S_AXI_ADDR_EN;
output S_AXI_SINGLE_TRANS;
output S_AXI_MUX_SEL;
output S_AXI_R_LAST;
output S_AXI_ARREADY;
output S_AXI_RLAST;
output S_AXI_RVALID;
output S_AXI_RD_EN;
input [7:0] S_AXI_ARLEN;
wire present_state_FSM_FFd1_13 ;
wire present_state_FSM_FFd2_14 ;
wire gaxi_full_sm_outstanding_read_r_15 ;
wire gaxi_full_sm_ar_ready_r_16 ;
wire gaxi_full_sm_r_last_r_17 ;
wire NlwRenamedSig_OI_gaxi_full_sm_r_valid_r ;
wire gaxi_full_sm_r_valid_c ;
wire S_AXI_RREADY_gaxi_full_sm_r_valid_r_OR_9_o ;
wire gaxi_full_sm_ar_ready_c ;
wire gaxi_full_sm_outstanding_read_c ;
wire NlwRenamedSig_OI_S_AXI_R_LAST ;
wire S_AXI_ARLEN_7_GND_8_o_equal_1_o ;
wire present_state_FSM_FFd2_In ;
wire present_state_FSM_FFd1_In ;
wire Mmux_S_AXI_R_LAST13 ;
wire N01 ;
wire N2 ;
wire Mmux_gaxi_full_sm_ar_ready_c11 ;
wire N4 ;
wire N8 ;
wire N9 ;
wire N10 ;
wire N11 ;
wire N12 ;
wire N13 ;
assign
S_AXI_R_LAST = NlwRenamedSig_OI_S_AXI_R_LAST,
S_AXI_ARREADY = gaxi_full_sm_ar_ready_r_16,
S_AXI_RLAST = gaxi_full_sm_r_last_r_17,
S_AXI_RVALID = NlwRenamedSig_OI_gaxi_full_sm_r_valid_r;
beh_vlog_ff_clr_v8_2 #(
.INIT (1'b0))
gaxi_full_sm_outstanding_read_r (
.C (S_ACLK),
.CLR(S_ARESETN),
.D(gaxi_full_sm_outstanding_read_c),
.Q(gaxi_full_sm_outstanding_read_r_15)
);
beh_vlog_ff_ce_clr_v8_2 #(
.INIT (1'b0))
gaxi_full_sm_r_valid_r (
.C (S_ACLK),
.CE (S_AXI_RREADY_gaxi_full_sm_r_valid_r_OR_9_o),
.CLR (S_ARESETN),
.D (gaxi_full_sm_r_valid_c),
.Q (NlwRenamedSig_OI_gaxi_full_sm_r_valid_r)
);
beh_vlog_ff_clr_v8_2 #(
.INIT (1'b0))
gaxi_full_sm_ar_ready_r (
.C (S_ACLK),
.CLR (S_ARESETN),
.D (gaxi_full_sm_ar_ready_c),
.Q (gaxi_full_sm_ar_ready_r_16)
);
beh_vlog_ff_ce_clr_v8_2 #(
.INIT(1'b0))
gaxi_full_sm_r_last_r (
.C (S_ACLK),
.CE (S_AXI_RREADY_gaxi_full_sm_r_valid_r_OR_9_o),
.CLR (S_ARESETN),
.D (NlwRenamedSig_OI_S_AXI_R_LAST),
.Q (gaxi_full_sm_r_last_r_17)
);
beh_vlog_ff_clr_v8_2 #(
.INIT (1'b0))
present_state_FSM_FFd2 (
.C ( S_ACLK),
.CLR ( S_ARESETN),
.D ( present_state_FSM_FFd2_In),
.Q ( present_state_FSM_FFd2_14)
);
beh_vlog_ff_clr_v8_2 #(
.INIT (1'b0))
present_state_FSM_FFd1 (
.C (S_ACLK),
.CLR (S_ARESETN),
.D (present_state_FSM_FFd1_In),
.Q (present_state_FSM_FFd1_13)
);
STATE_LOGIC_v8_2 #(
.INIT (64'h000000000000000B))
S_AXI_RREADY_gaxi_full_sm_r_valid_r_OR_9_o1 (
.I0 ( S_AXI_RREADY),
.I1 ( NlwRenamedSig_OI_gaxi_full_sm_r_valid_r),
.I2 (1'b0),
.I3 (1'b0),
.I4 (1'b0),
.I5 (1'b0),
.O (S_AXI_RREADY_gaxi_full_sm_r_valid_r_OR_9_o)
);
STATE_LOGIC_v8_2 #(
.INIT (64'h0000000000000008))
Mmux_S_AXI_SINGLE_TRANS11 (
.I0 (S_AXI_ARVALID),
.I1 (S_AXI_ARLEN_7_GND_8_o_equal_1_o),
.I2 (1'b0),
.I3 (1'b0),
.I4 (1'b0),
.I5 (1'b0),
.O (S_AXI_SINGLE_TRANS)
);
STATE_LOGIC_v8_2 #(
.INIT (64'h0000000000000004))
Mmux_S_AXI_ADDR_EN11 (
.I0 (present_state_FSM_FFd1_13),
.I1 (S_AXI_ARVALID),
.I2 (1'b0),
.I3 (1'b0),
.I4 (1'b0),
.I5 (1'b0),
.O (S_AXI_ADDR_EN)
);
STATE_LOGIC_v8_2 #(
.INIT (64'hECEE2022EEEE2022))
present_state_FSM_FFd2_In1 (
.I0 ( S_AXI_ARVALID),
.I1 ( present_state_FSM_FFd1_13),
.I2 ( S_AXI_RREADY),
.I3 ( S_AXI_ARLEN_7_GND_8_o_equal_1_o),
.I4 ( present_state_FSM_FFd2_14),
.I5 ( NlwRenamedSig_OI_gaxi_full_sm_r_valid_r),
.O ( present_state_FSM_FFd2_In)
);
STATE_LOGIC_v8_2 #(
.INIT (64'h0000000044440444))
Mmux_S_AXI_R_LAST131 (
.I0 ( present_state_FSM_FFd1_13),
.I1 ( S_AXI_ARVALID),
.I2 ( present_state_FSM_FFd2_14),
.I3 ( NlwRenamedSig_OI_gaxi_full_sm_r_valid_r),
.I4 ( S_AXI_RREADY),
.I5 (1'b0),
.O ( Mmux_S_AXI_R_LAST13)
);
STATE_LOGIC_v8_2 #(
.INIT (64'h4000FFFF40004000))
Mmux_S_AXI_INCR_ADDR11 (
.I0 ( S_AXI_R_LAST_INT),
.I1 ( S_AXI_RREADY_gaxi_full_sm_r_valid_r_OR_9_o),
.I2 ( present_state_FSM_FFd2_14),
.I3 ( present_state_FSM_FFd1_13),
.I4 ( S_AXI_ARLEN_7_GND_8_o_equal_1_o),
.I5 ( Mmux_S_AXI_R_LAST13),
.O ( S_AXI_INCR_ADDR)
);
STATE_LOGIC_v8_2 #(
.INIT (64'h00000000000000FE))
S_AXI_ARLEN_7_GND_8_o_equal_1_o_7_SW0 (
.I0 ( S_AXI_ARLEN[2]),
.I1 ( S_AXI_ARLEN[1]),
.I2 ( S_AXI_ARLEN[0]),
.I3 ( 1'b0),
.I4 ( 1'b0),
.I5 ( 1'b0),
.O ( N01)
);
STATE_LOGIC_v8_2 #(
.INIT (64'h0000000000000001))
S_AXI_ARLEN_7_GND_8_o_equal_1_o_7_Q (
.I0 ( S_AXI_ARLEN[7]),
.I1 ( S_AXI_ARLEN[6]),
.I2 ( S_AXI_ARLEN[5]),
.I3 ( S_AXI_ARLEN[4]),
.I4 ( S_AXI_ARLEN[3]),
.I5 ( N01),
.O ( S_AXI_ARLEN_7_GND_8_o_equal_1_o)
);
STATE_LOGIC_v8_2 #(
.INIT (64'h0000000000000007))
Mmux_gaxi_full_sm_outstanding_read_c1_SW0 (
.I0 ( S_AXI_ARVALID),
.I1 ( S_AXI_ARLEN_7_GND_8_o_equal_1_o),
.I2 ( 1'b0),
.I3 ( 1'b0),
.I4 ( 1'b0),
.I5 ( 1'b0),
.O ( N2)
);
STATE_LOGIC_v8_2 #(
.INIT (64'h0020000002200200))
Mmux_gaxi_full_sm_outstanding_read_c1 (
.I0 ( NlwRenamedSig_OI_gaxi_full_sm_r_valid_r),
.I1 ( S_AXI_RREADY),
.I2 ( present_state_FSM_FFd1_13),
.I3 ( present_state_FSM_FFd2_14),
.I4 ( gaxi_full_sm_outstanding_read_r_15),
.I5 ( N2),
.O ( gaxi_full_sm_outstanding_read_c)
);
STATE_LOGIC_v8_2 #(
.INIT (64'h0000000000004555))
Mmux_gaxi_full_sm_ar_ready_c12 (
.I0 ( S_AXI_ARVALID),
.I1 ( S_AXI_RREADY),
.I2 ( present_state_FSM_FFd2_14),
.I3 ( NlwRenamedSig_OI_gaxi_full_sm_r_valid_r),
.I4 ( 1'b0),
.I5 ( 1'b0),
.O ( Mmux_gaxi_full_sm_ar_ready_c11)
);
STATE_LOGIC_v8_2 #(
.INIT (64'h00000000000000EF))
Mmux_S_AXI_R_LAST11_SW0 (
.I0 ( S_AXI_ARLEN_7_GND_8_o_equal_1_o),
.I1 ( S_AXI_RREADY),
.I2 ( NlwRenamedSig_OI_gaxi_full_sm_r_valid_r),
.I3 ( 1'b0),
.I4 ( 1'b0),
.I5 ( 1'b0),
.O ( N4)
);
STATE_LOGIC_v8_2 #(
.INIT (64'hFCAAFC0A00AA000A))
Mmux_S_AXI_R_LAST11 (
.I0 ( S_AXI_ARVALID),
.I1 ( gaxi_full_sm_outstanding_read_r_15),
.I2 ( present_state_FSM_FFd2_14),
.I3 ( present_state_FSM_FFd1_13),
.I4 ( N4),
.I5 ( S_AXI_RREADY_gaxi_full_sm_r_valid_r_OR_9_o),
.O ( gaxi_full_sm_r_valid_c)
);
STATE_LOGIC_v8_2 #(
.INIT (64'h00000000AAAAAA08))
S_AXI_MUX_SEL1 (
.I0 (present_state_FSM_FFd1_13),
.I1 (NlwRenamedSig_OI_gaxi_full_sm_r_valid_r),
.I2 (S_AXI_RREADY),
.I3 (present_state_FSM_FFd2_14),
.I4 (gaxi_full_sm_outstanding_read_r_15),
.I5 (1'b0),
.O (S_AXI_MUX_SEL)
);
STATE_LOGIC_v8_2 #(
.INIT (64'hF3F3F755A2A2A200))
Mmux_S_AXI_RD_EN11 (
.I0 ( present_state_FSM_FFd1_13),
.I1 ( NlwRenamedSig_OI_gaxi_full_sm_r_valid_r),
.I2 ( S_AXI_RREADY),
.I3 ( gaxi_full_sm_outstanding_read_r_15),
.I4 ( present_state_FSM_FFd2_14),
.I5 ( S_AXI_ARVALID),
.O ( S_AXI_RD_EN)
);
beh_vlog_muxf7_v8_2 present_state_FSM_FFd1_In3 (
.I0 ( N8),
.I1 ( N9),
.S ( present_state_FSM_FFd1_13),
.O ( present_state_FSM_FFd1_In)
);
STATE_LOGIC_v8_2 #(
.INIT (64'h000000005410F4F0))
present_state_FSM_FFd1_In3_F (
.I0 ( S_AXI_RREADY),
.I1 ( present_state_FSM_FFd2_14),
.I2 ( S_AXI_ARVALID),
.I3 ( NlwRenamedSig_OI_gaxi_full_sm_r_valid_r),
.I4 ( S_AXI_ARLEN_7_GND_8_o_equal_1_o),
.I5 ( 1'b0),
.O ( N8)
);
STATE_LOGIC_v8_2 #(
.INIT (64'h0000000072FF7272))
present_state_FSM_FFd1_In3_G (
.I0 ( present_state_FSM_FFd2_14),
.I1 ( S_AXI_R_LAST_INT),
.I2 ( gaxi_full_sm_outstanding_read_r_15),
.I3 ( S_AXI_RREADY),
.I4 ( NlwRenamedSig_OI_gaxi_full_sm_r_valid_r),
.I5 ( 1'b0),
.O ( N9)
);
beh_vlog_muxf7_v8_2 Mmux_gaxi_full_sm_ar_ready_c14 (
.I0 ( N10),
.I1 ( N11),
.S ( present_state_FSM_FFd1_13),
.O ( gaxi_full_sm_ar_ready_c)
);
STATE_LOGIC_v8_2 #(
.INIT (64'h00000000FFFF88A8))
Mmux_gaxi_full_sm_ar_ready_c14_F (
.I0 ( S_AXI_ARLEN_7_GND_8_o_equal_1_o),
.I1 ( S_AXI_RREADY),
.I2 ( present_state_FSM_FFd2_14),
.I3 ( NlwRenamedSig_OI_gaxi_full_sm_r_valid_r),
.I4 ( Mmux_gaxi_full_sm_ar_ready_c11),
.I5 ( 1'b0),
.O ( N10)
);
STATE_LOGIC_v8_2 #(
.INIT (64'h000000008D008D8D))
Mmux_gaxi_full_sm_ar_ready_c14_G (
.I0 ( present_state_FSM_FFd2_14),
.I1 ( S_AXI_R_LAST_INT),
.I2 ( gaxi_full_sm_outstanding_read_r_15),
.I3 ( S_AXI_RREADY),
.I4 ( NlwRenamedSig_OI_gaxi_full_sm_r_valid_r),
.I5 ( 1'b0),
.O ( N11)
);
beh_vlog_muxf7_v8_2 Mmux_S_AXI_R_LAST1 (
.I0 ( N12),
.I1 ( N13),
.S ( present_state_FSM_FFd1_13),
.O ( NlwRenamedSig_OI_S_AXI_R_LAST)
);
STATE_LOGIC_v8_2 #(
.INIT (64'h0000000088088888))
Mmux_S_AXI_R_LAST1_F (
.I0 ( S_AXI_ARLEN_7_GND_8_o_equal_1_o),
.I1 ( S_AXI_ARVALID),
.I2 ( present_state_FSM_FFd2_14),
.I3 ( S_AXI_RREADY),
.I4 ( NlwRenamedSig_OI_gaxi_full_sm_r_valid_r),
.I5 ( 1'b0),
.O ( N12)
);
STATE_LOGIC_v8_2 #(
.INIT (64'h00000000E400E4E4))
Mmux_S_AXI_R_LAST1_G (
.I0 ( present_state_FSM_FFd2_14),
.I1 ( gaxi_full_sm_outstanding_read_r_15),
.I2 ( S_AXI_R_LAST_INT),
.I3 ( S_AXI_RREADY),
.I4 ( NlwRenamedSig_OI_gaxi_full_sm_r_valid_r),
.I5 ( 1'b0),
.O ( N13)
);
endmodule
module blk_mem_axi_write_wrapper_beh_v8_2
# (
// AXI Interface related parameters start here
parameter C_INTERFACE_TYPE = 0, // 0: Native Interface; 1: AXI Interface
parameter C_AXI_TYPE = 0, // 0: AXI Lite; 1: AXI Full;
parameter C_AXI_SLAVE_TYPE = 0, // 0: MEMORY SLAVE; 1: PERIPHERAL SLAVE;
parameter C_MEMORY_TYPE = 0, // 0: SP-RAM, 1: SDP-RAM; 2: TDP-RAM; 3: DP-ROM;
parameter C_WRITE_DEPTH_A = 0,
parameter C_AXI_AWADDR_WIDTH = 32,
parameter C_ADDRA_WIDTH = 12,
parameter C_AXI_WDATA_WIDTH = 32,
parameter C_HAS_AXI_ID = 0,
parameter C_AXI_ID_WIDTH = 4,
// AXI OUTSTANDING WRITES
parameter C_AXI_OS_WR = 2
)
(
// AXI Global Signals
input S_ACLK,
input S_ARESETN,
// AXI Full/Lite Slave Write Channel (write side)
input [C_AXI_ID_WIDTH-1:0] S_AXI_AWID,
input [C_AXI_AWADDR_WIDTH-1:0] S_AXI_AWADDR,
input [8-1:0] S_AXI_AWLEN,
input [2:0] S_AXI_AWSIZE,
input [1:0] S_AXI_AWBURST,
input S_AXI_AWVALID,
output S_AXI_AWREADY,
input S_AXI_WVALID,
output S_AXI_WREADY,
output reg [C_AXI_ID_WIDTH-1:0] S_AXI_BID = 0,
output S_AXI_BVALID,
input S_AXI_BREADY,
// Signals for BMG interface
output [C_ADDRA_WIDTH-1:0] S_AXI_AWADDR_OUT,
output S_AXI_WR_EN
);
localparam FLOP_DELAY = 100; // 100 ps
localparam C_RANGE = ((C_AXI_WDATA_WIDTH == 8)?0:
((C_AXI_WDATA_WIDTH==16)?1:
((C_AXI_WDATA_WIDTH==32)?2:
((C_AXI_WDATA_WIDTH==64)?3:
((C_AXI_WDATA_WIDTH==128)?4:
((C_AXI_WDATA_WIDTH==256)?5:0))))));
wire bvalid_c ;
reg bready_timeout_c = 0;
wire [1:0] bvalid_rd_cnt_c;
reg bvalid_r = 0;
reg [2:0] bvalid_count_r = 0;
reg [((C_AXI_TYPE == 1 && C_AXI_SLAVE_TYPE == 0)?
C_AXI_AWADDR_WIDTH:C_ADDRA_WIDTH)-1:0] awaddr_reg = 0;
reg [1:0] bvalid_wr_cnt_r = 0;
reg [1:0] bvalid_rd_cnt_r = 0;
wire w_last_c ;
wire addr_en_c ;
wire incr_addr_c ;
wire aw_ready_r ;
wire dec_alen_c ;
reg bvalid_d1_c = 0;
reg [7:0] awlen_cntr_r = 0;
reg [7:0] awlen_int = 0;
reg [1:0] awburst_int = 0;
integer total_bytes = 0;
integer wrap_boundary = 0;
integer wrap_base_addr = 0;
integer num_of_bytes_c = 0;
integer num_of_bytes_r = 0;
// Array to store BIDs
reg [C_AXI_ID_WIDTH-1:0] axi_bid_array[3:0] ;
wire S_AXI_BVALID_axi_wr_fsm;
//-------------------------------------
//AXI WRITE FSM COMPONENT INSTANTIATION
//-------------------------------------
write_netlist_v8_2 #(.C_AXI_TYPE(C_AXI_TYPE)) axi_wr_fsm
(
.S_ACLK(S_ACLK),
.S_ARESETN(S_ARESETN),
.S_AXI_AWVALID(S_AXI_AWVALID),
.aw_ready_r(aw_ready_r),
.S_AXI_WVALID(S_AXI_WVALID),
.S_AXI_WREADY(S_AXI_WREADY),
.S_AXI_BREADY(S_AXI_BREADY),
.S_AXI_WR_EN(S_AXI_WR_EN),
.w_last_c(w_last_c),
.bready_timeout_c(bready_timeout_c),
.addr_en_c(addr_en_c),
.incr_addr_c(incr_addr_c),
.bvalid_c(bvalid_c),
.S_AXI_BVALID (S_AXI_BVALID_axi_wr_fsm)
);
//Wrap Address boundary calculation
always@(*) begin
num_of_bytes_c = 2**((C_AXI_TYPE == 1 && C_AXI_SLAVE_TYPE == 0)?S_AXI_AWSIZE:0);
total_bytes = (num_of_bytes_r)*(awlen_int+1);
wrap_base_addr = ((awaddr_reg)/((total_bytes==0)?1:total_bytes))*(total_bytes);
wrap_boundary = wrap_base_addr+total_bytes;
end
//-------------------------------------------------------------------------
// BMG address generation
//-------------------------------------------------------------------------
always @(posedge S_ACLK or S_ARESETN) begin
if (S_ARESETN == 1'b1) begin
awaddr_reg <= 0;
num_of_bytes_r <= 0;
awburst_int <= 0;
end else begin
if (addr_en_c == 1'b1) begin
awaddr_reg <= #FLOP_DELAY S_AXI_AWADDR ;
num_of_bytes_r <= num_of_bytes_c;
awburst_int <= ((C_AXI_TYPE == 1 && C_AXI_SLAVE_TYPE == 0)?S_AXI_AWBURST:2'b01);
end else if (incr_addr_c == 1'b1) begin
if (awburst_int == 2'b10) begin
if(awaddr_reg == (wrap_boundary-num_of_bytes_r)) begin
awaddr_reg <= wrap_base_addr;
end else begin
awaddr_reg <= awaddr_reg + num_of_bytes_r;
end
end else if (awburst_int == 2'b01 || awburst_int == 2'b11) begin
awaddr_reg <= awaddr_reg + num_of_bytes_r;
end
end
end
end
assign S_AXI_AWADDR_OUT = ((C_AXI_TYPE == 1 && C_AXI_SLAVE_TYPE == 0)?
awaddr_reg[C_AXI_AWADDR_WIDTH-1:C_RANGE]:awaddr_reg);
//-------------------------------------------------------------------------
// AXI wlast generation
//-------------------------------------------------------------------------
always @(posedge S_ACLK or S_ARESETN) begin
if (S_ARESETN == 1'b1) begin
awlen_cntr_r <= 0;
awlen_int <= 0;
end else begin
if (addr_en_c == 1'b1) begin
awlen_int <= #FLOP_DELAY (C_AXI_TYPE == 0?0:S_AXI_AWLEN) ;
awlen_cntr_r <= #FLOP_DELAY (C_AXI_TYPE == 0?0:S_AXI_AWLEN) ;
end else if (dec_alen_c == 1'b1) begin
awlen_cntr_r <= #FLOP_DELAY awlen_cntr_r - 1 ;
end
end
end
assign w_last_c = (awlen_cntr_r == 0 && S_AXI_WVALID == 1'b1)?1'b1:1'b0;
assign dec_alen_c = (incr_addr_c | w_last_c);
//-------------------------------------------------------------------------
// Generation of bvalid counter for outstanding transactions
//-------------------------------------------------------------------------
always @(posedge S_ACLK or S_ARESETN) begin
if (S_ARESETN == 1'b1) begin
bvalid_count_r <= 0;
end else begin
// bvalid_count_r generation
if (bvalid_c == 1'b1 && bvalid_r == 1'b1 && S_AXI_BREADY == 1'b1) begin
bvalid_count_r <= #FLOP_DELAY bvalid_count_r ;
end else if (bvalid_c == 1'b1) begin
bvalid_count_r <= #FLOP_DELAY bvalid_count_r + 1 ;
end else if (bvalid_r == 1'b1 && S_AXI_BREADY == 1'b1 && bvalid_count_r != 0) begin
bvalid_count_r <= #FLOP_DELAY bvalid_count_r - 1 ;
end
end
end
//-------------------------------------------------------------------------
// Generation of bvalid when BID is used
//-------------------------------------------------------------------------
generate if (C_HAS_AXI_ID == 1) begin:gaxi_bvalid_id_r
always @(posedge S_ACLK or S_ARESETN) begin
if (S_ARESETN == 1'b1) begin
bvalid_r <= 0;
bvalid_d1_c <= 0;
end else begin
// Delay the generation o bvalid_r for generation for BID
bvalid_d1_c <= bvalid_c;
//external bvalid signal generation
if (bvalid_d1_c == 1'b1) begin
bvalid_r <= #FLOP_DELAY 1'b1 ;
end else if (bvalid_count_r <= 1 && S_AXI_BREADY == 1'b1) begin
bvalid_r <= #FLOP_DELAY 0 ;
end
end
end
end
endgenerate
//-------------------------------------------------------------------------
// Generation of bvalid when BID is not used
//-------------------------------------------------------------------------
generate if(C_HAS_AXI_ID == 0) begin:gaxi_bvalid_noid_r
always @(posedge S_ACLK or S_ARESETN) begin
if (S_ARESETN == 1'b1) begin
bvalid_r <= 0;
end else begin
//external bvalid signal generation
if (bvalid_c == 1'b1) begin
bvalid_r <= #FLOP_DELAY 1'b1 ;
end else if (bvalid_count_r <= 1 && S_AXI_BREADY == 1'b1) begin
bvalid_r <= #FLOP_DELAY 0 ;
end
end
end
end
endgenerate
//-------------------------------------------------------------------------
// Generation of Bready timeout
//-------------------------------------------------------------------------
always @(bvalid_count_r) begin
// bready_timeout_c generation
if(bvalid_count_r == C_AXI_OS_WR-1) begin
bready_timeout_c <= 1'b1;
end else begin
bready_timeout_c <= 1'b0;
end
end
//-------------------------------------------------------------------------
// Generation of BID
//-------------------------------------------------------------------------
generate if(C_HAS_AXI_ID == 1) begin:gaxi_bid_gen
always @(posedge S_ACLK or S_ARESETN) begin
if (S_ARESETN == 1'b1) begin
bvalid_wr_cnt_r <= 0;
bvalid_rd_cnt_r <= 0;
end else begin
// STORE AWID IN AN ARRAY
if(bvalid_c == 1'b1) begin
bvalid_wr_cnt_r <= bvalid_wr_cnt_r + 1;
end
// generate BID FROM AWID ARRAY
bvalid_rd_cnt_r <= #FLOP_DELAY bvalid_rd_cnt_c ;
S_AXI_BID <= axi_bid_array[bvalid_rd_cnt_c];
end
end
assign bvalid_rd_cnt_c = (bvalid_r == 1'b1 && S_AXI_BREADY == 1'b1)?bvalid_rd_cnt_r+1:bvalid_rd_cnt_r;
//-------------------------------------------------------------------------
// Storing AWID for generation of BID
//-------------------------------------------------------------------------
always @(posedge S_ACLK or S_ARESETN) begin
if(S_ARESETN == 1'b1) begin
axi_bid_array[0] = 0;
axi_bid_array[1] = 0;
axi_bid_array[2] = 0;
axi_bid_array[3] = 0;
end else if(aw_ready_r == 1'b1 && S_AXI_AWVALID == 1'b1) begin
axi_bid_array[bvalid_wr_cnt_r] <= S_AXI_AWID;
end
end
end
endgenerate
assign S_AXI_BVALID = bvalid_r;
assign S_AXI_AWREADY = aw_ready_r;
endmodule
module blk_mem_axi_read_wrapper_beh_v8_2
# (
//// AXI Interface related parameters start here
parameter C_INTERFACE_TYPE = 0,
parameter C_AXI_TYPE = 0,
parameter C_AXI_SLAVE_TYPE = 0,
parameter C_MEMORY_TYPE = 0,
parameter C_WRITE_WIDTH_A = 4,
parameter C_WRITE_DEPTH_A = 32,
parameter C_ADDRA_WIDTH = 12,
parameter C_AXI_PIPELINE_STAGES = 0,
parameter C_AXI_ARADDR_WIDTH = 12,
parameter C_HAS_AXI_ID = 0,
parameter C_AXI_ID_WIDTH = 4,
parameter C_ADDRB_WIDTH = 12
)
(
//// AXI Global Signals
input S_ACLK,
input S_ARESETN,
//// AXI Full/Lite Slave Read (Read side)
input [C_AXI_ARADDR_WIDTH-1:0] S_AXI_ARADDR,
input [7:0] S_AXI_ARLEN,
input [2:0] S_AXI_ARSIZE,
input [1:0] S_AXI_ARBURST,
input S_AXI_ARVALID,
output S_AXI_ARREADY,
output S_AXI_RLAST,
output S_AXI_RVALID,
input S_AXI_RREADY,
input [C_AXI_ID_WIDTH-1:0] S_AXI_ARID,
output reg [C_AXI_ID_WIDTH-1:0] S_AXI_RID = 0,
//// AXI Full/Lite Read Address Signals to BRAM
output [C_ADDRB_WIDTH-1:0] S_AXI_ARADDR_OUT,
output S_AXI_RD_EN
);
localparam FLOP_DELAY = 100; // 100 ps
localparam C_RANGE = ((C_WRITE_WIDTH_A == 8)?0:
((C_WRITE_WIDTH_A==16)?1:
((C_WRITE_WIDTH_A==32)?2:
((C_WRITE_WIDTH_A==64)?3:
((C_WRITE_WIDTH_A==128)?4:
((C_WRITE_WIDTH_A==256)?5:0))))));
reg [C_AXI_ID_WIDTH-1:0] ar_id_r=0;
wire addr_en_c;
wire rd_en_c;
wire incr_addr_c;
wire single_trans_c;
wire dec_alen_c;
wire mux_sel_c;
wire r_last_c;
wire r_last_int_c;
wire [C_ADDRB_WIDTH-1 : 0] araddr_out;
reg [7:0] arlen_int_r=0;
reg [7:0] arlen_cntr=8'h01;
reg [1:0] arburst_int_c=0;
reg [1:0] arburst_int_r=0;
reg [((C_AXI_TYPE == 1 && C_AXI_SLAVE_TYPE == 0)?
C_AXI_ARADDR_WIDTH:C_ADDRA_WIDTH)-1:0] araddr_reg =0;
integer num_of_bytes_c = 0;
integer total_bytes = 0;
integer num_of_bytes_r = 0;
integer wrap_base_addr_r = 0;
integer wrap_boundary_r = 0;
reg [7:0] arlen_int_c=0;
integer total_bytes_c = 0;
integer wrap_base_addr_c = 0;
integer wrap_boundary_c = 0;
assign dec_alen_c = incr_addr_c | r_last_int_c;
read_netlist_v8_2
#(.C_AXI_TYPE (1),
.C_ADDRB_WIDTH (C_ADDRB_WIDTH))
axi_read_fsm (
.S_AXI_INCR_ADDR(incr_addr_c),
.S_AXI_ADDR_EN(addr_en_c),
.S_AXI_SINGLE_TRANS(single_trans_c),
.S_AXI_MUX_SEL(mux_sel_c),
.S_AXI_R_LAST(r_last_c),
.S_AXI_R_LAST_INT(r_last_int_c),
//// AXI Global Signals
.S_ACLK(S_ACLK),
.S_ARESETN(S_ARESETN),
//// AXI Full/Lite Slave Read (Read side)
.S_AXI_ARLEN(S_AXI_ARLEN),
.S_AXI_ARVALID(S_AXI_ARVALID),
.S_AXI_ARREADY(S_AXI_ARREADY),
.S_AXI_RLAST(S_AXI_RLAST),
.S_AXI_RVALID(S_AXI_RVALID),
.S_AXI_RREADY(S_AXI_RREADY),
//// AXI Full/Lite Read Address Signals to BRAM
.S_AXI_RD_EN(rd_en_c)
);
always@(*) begin
num_of_bytes_c = 2**((C_AXI_TYPE == 1 && C_AXI_SLAVE_TYPE == 0)?S_AXI_ARSIZE:0);
total_bytes = (num_of_bytes_r)*(arlen_int_r+1);
wrap_base_addr_r = ((araddr_reg)/(total_bytes==0?1:total_bytes))*(total_bytes);
wrap_boundary_r = wrap_base_addr_r+total_bytes;
//////// combinatorial from interface
arlen_int_c = (C_AXI_TYPE == 0?0:S_AXI_ARLEN);
total_bytes_c = (num_of_bytes_c)*(arlen_int_c+1);
wrap_base_addr_c = ((S_AXI_ARADDR)/(total_bytes_c==0?1:total_bytes_c))*(total_bytes_c);
wrap_boundary_c = wrap_base_addr_c+total_bytes_c;
arburst_int_c = ((C_AXI_TYPE == 1 && C_AXI_SLAVE_TYPE == 0)?S_AXI_ARBURST:1);
end
////-------------------------------------------------------------------------
//// BMG address generation
////-------------------------------------------------------------------------
always @(posedge S_ACLK or S_ARESETN) begin
if (S_ARESETN == 1'b1) begin
araddr_reg <= 0;
arburst_int_r <= 0;
num_of_bytes_r <= 0;
end else begin
if (incr_addr_c == 1'b1 && addr_en_c == 1'b1 && single_trans_c == 1'b0) begin
arburst_int_r <= arburst_int_c;
num_of_bytes_r <= num_of_bytes_c;
if (arburst_int_c == 2'b10) begin
if(S_AXI_ARADDR == (wrap_boundary_c-num_of_bytes_c)) begin
araddr_reg <= wrap_base_addr_c;
end else begin
araddr_reg <= S_AXI_ARADDR + num_of_bytes_c;
end
end else if (arburst_int_c == 2'b01 || arburst_int_c == 2'b11) begin
araddr_reg <= S_AXI_ARADDR + num_of_bytes_c;
end
end else if (addr_en_c == 1'b1) begin
araddr_reg <= S_AXI_ARADDR;
num_of_bytes_r <= num_of_bytes_c;
arburst_int_r <= arburst_int_c;
end else if (incr_addr_c == 1'b1) begin
if (arburst_int_r == 2'b10) begin
if(araddr_reg == (wrap_boundary_r-num_of_bytes_r)) begin
araddr_reg <= wrap_base_addr_r;
end else begin
araddr_reg <= araddr_reg + num_of_bytes_r;
end
end else if (arburst_int_r == 2'b01 || arburst_int_r == 2'b11) begin
araddr_reg <= araddr_reg + num_of_bytes_r;
end
end
end
end
assign araddr_out = ((C_AXI_TYPE == 1 && C_AXI_SLAVE_TYPE == 0)?araddr_reg[C_AXI_ARADDR_WIDTH-1:C_RANGE]:araddr_reg);
////-----------------------------------------------------------------------
//// Counter to generate r_last_int_c from registered ARLEN - AXI FULL FSM
////-----------------------------------------------------------------------
always @(posedge S_ACLK or S_ARESETN) begin
if (S_ARESETN == 1'b1) begin
arlen_cntr <= 8'h01;
arlen_int_r <= 0;
end else begin
if (addr_en_c == 1'b1 && dec_alen_c == 1'b1 && single_trans_c == 1'b0) begin
arlen_int_r <= (C_AXI_TYPE == 0?0:S_AXI_ARLEN) ;
arlen_cntr <= S_AXI_ARLEN - 1'b1;
end else if (addr_en_c == 1'b1) begin
arlen_int_r <= (C_AXI_TYPE == 0?0:S_AXI_ARLEN) ;
arlen_cntr <= (C_AXI_TYPE == 0?0:S_AXI_ARLEN) ;
end else if (dec_alen_c == 1'b1) begin
arlen_cntr <= arlen_cntr - 1'b1 ;
end
else begin
arlen_cntr <= arlen_cntr;
end
end
end
assign r_last_int_c = (arlen_cntr == 0 && S_AXI_RREADY == 1'b1)?1'b1:1'b0;
////------------------------------------------------------------------------
//// AXI FULL FSM
//// Mux Selection of ARADDR
//// ARADDR is driven out from the read fsm based on the mux_sel_c
//// Based on mux_sel either ARADDR is given out or the latched ARADDR is
//// given out to BRAM
////------------------------------------------------------------------------
assign S_AXI_ARADDR_OUT = (mux_sel_c == 1'b0)?((C_AXI_TYPE == 1 && C_AXI_SLAVE_TYPE == 0)?S_AXI_ARADDR[C_AXI_ARADDR_WIDTH-1:C_RANGE]:S_AXI_ARADDR):araddr_out;
////------------------------------------------------------------------------
//// Assign output signals - AXI FULL FSM
////------------------------------------------------------------------------
assign S_AXI_RD_EN = rd_en_c;
generate if (C_HAS_AXI_ID == 1) begin:gaxi_bvalid_id_r
always @(posedge S_ACLK or S_ARESETN) begin
if (S_ARESETN == 1'b1) begin
S_AXI_RID <= 0;
ar_id_r <= 0;
end else begin
if (addr_en_c == 1'b1 && rd_en_c == 1'b1) begin
S_AXI_RID <= S_AXI_ARID;
ar_id_r <= S_AXI_ARID;
end else if (addr_en_c == 1'b1 && rd_en_c == 1'b0) begin
ar_id_r <= S_AXI_ARID;
end else if (rd_en_c == 1'b1) begin
S_AXI_RID <= ar_id_r;
end
end
end
end
endgenerate
endmodule
module blk_mem_axi_regs_fwd_v8_2
#(parameter C_DATA_WIDTH = 8
)(
input ACLK,
input ARESET,
input S_VALID,
output S_READY,
input [C_DATA_WIDTH-1:0] S_PAYLOAD_DATA,
output M_VALID,
input M_READY,
output reg [C_DATA_WIDTH-1:0] M_PAYLOAD_DATA
);
reg [C_DATA_WIDTH-1:0] STORAGE_DATA;
wire S_READY_I;
reg M_VALID_I;
reg [1:0] ARESET_D;
//assign local signal to its output signal
assign S_READY = S_READY_I;
assign M_VALID = M_VALID_I;
always @(posedge ACLK) begin
ARESET_D <= {ARESET_D[0], ARESET};
end
//Save payload data whenever we have a transaction on the slave side
always @(posedge ACLK or ARESET) begin
if (ARESET == 1'b1) begin
STORAGE_DATA <= 0;
end else begin
if(S_VALID == 1'b1 && S_READY_I == 1'b1 ) begin
STORAGE_DATA <= S_PAYLOAD_DATA;
end
end
end
always @(posedge ACLK) begin
M_PAYLOAD_DATA = STORAGE_DATA;
end
//M_Valid set to high when we have a completed transfer on slave side
//Is removed on a M_READY except if we have a new transfer on the slave side
always @(posedge ACLK or ARESET_D) begin
if (ARESET_D != 2'b00) begin
M_VALID_I <= 1'b0;
end else begin
if (S_VALID == 1'b1) begin
//Always set M_VALID_I when slave side is valid
M_VALID_I <= 1'b1;
end else if (M_READY == 1'b1 ) begin
//Clear (or keep) when no slave side is valid but master side is ready
M_VALID_I <= 1'b0;
end
end
end
//Slave Ready is either when Master side drives M_READY or we have space in our storage data
assign S_READY_I = (M_READY || (!M_VALID_I)) && !(|(ARESET_D));
endmodule
//*****************************************************************************
// Output Register Stage module
//
// This module builds the output register stages of the memory. This module is
// instantiated in the main memory module (BLK_MEM_GEN_v8_2) which is
// declared/implemented further down in this file.
//*****************************************************************************
module BLK_MEM_GEN_v8_2_output_stage
#(parameter C_FAMILY = "virtex7",
parameter C_XDEVICEFAMILY = "virtex7",
parameter C_RST_TYPE = "SYNC",
parameter C_HAS_RST = 0,
parameter C_RSTRAM = 0,
parameter C_RST_PRIORITY = "CE",
parameter C_INIT_VAL = "0",
parameter C_HAS_EN = 0,
parameter C_HAS_REGCE = 0,
parameter C_DATA_WIDTH = 32,
parameter C_ADDRB_WIDTH = 10,
parameter C_HAS_MEM_OUTPUT_REGS = 0,
parameter C_USE_SOFTECC = 0,
parameter C_USE_ECC = 0,
parameter NUM_STAGES = 1,
parameter C_EN_ECC_PIPE = 0,
parameter FLOP_DELAY = 100
)
(
input CLK,
input RST,
input EN,
input REGCE,
input [C_DATA_WIDTH-1:0] DIN_I,
output reg [C_DATA_WIDTH-1:0] DOUT,
input SBITERR_IN_I,
input DBITERR_IN_I,
output reg SBITERR,
output reg DBITERR,
input [C_ADDRB_WIDTH-1:0] RDADDRECC_IN_I,
input ECCPIPECE,
output reg [C_ADDRB_WIDTH-1:0] RDADDRECC
);
//******************************
// Port and Generic Definitions
//******************************
//////////////////////////////////////////////////////////////////////////
// Generic Definitions
//////////////////////////////////////////////////////////////////////////
// C_FAMILY,C_XDEVICEFAMILY: Designates architecture targeted. The following
// options are available - "spartan3", "spartan6",
// "virtex4", "virtex5", "virtex6" and "virtex6l".
// C_RST_TYPE : Type of reset - Synchronous or Asynchronous
// C_HAS_RST : Determines the presence of the RST port
// C_RSTRAM : Determines if special reset behavior is used
// C_RST_PRIORITY : Determines the priority between CE and SR
// C_INIT_VAL : Initialization value
// C_HAS_EN : Determines the presence of the EN port
// C_HAS_REGCE : Determines the presence of the REGCE port
// C_DATA_WIDTH : Memory write/read width
// C_ADDRB_WIDTH : Width of the ADDRB input port
// C_HAS_MEM_OUTPUT_REGS : Designates the use of a register at the output
// of the RAM primitive
// C_USE_SOFTECC : Determines if the Soft ECC feature is used or
// not. Only applicable Spartan-6
// C_USE_ECC : Determines if the ECC feature is used or
// not. Only applicable for V5 and V6
// NUM_STAGES : Determines the number of output stages
// FLOP_DELAY : Constant delay for register assignments
//////////////////////////////////////////////////////////////////////////
// Port Definitions
//////////////////////////////////////////////////////////////////////////
// CLK : Clock to synchronize all read and write operations
// RST : Reset input to reset memory outputs to a user-defined
// reset state
// EN : Enable all read and write operations
// REGCE : Register Clock Enable to control each pipeline output
// register stages
// DIN : Data input to the Output stage.
// DOUT : Final Data output
// SBITERR_IN : SBITERR input signal to the Output stage.
// SBITERR : Final SBITERR Output signal.
// DBITERR_IN : DBITERR input signal to the Output stage.
// DBITERR : Final DBITERR Output signal.
// RDADDRECC_IN : RDADDRECC input signal to the Output stage.
// RDADDRECC : Final RDADDRECC Output signal.
//////////////////////////////////////////////////////////////////////////
// Fix for CR-509792
localparam REG_STAGES = (NUM_STAGES < 2) ? 1 : NUM_STAGES-1;
// Declare the pipeline registers
// (includes mem output reg, mux pipeline stages, and mux output reg)
reg [C_DATA_WIDTH*REG_STAGES-1:0] out_regs;
reg [C_ADDRB_WIDTH*REG_STAGES-1:0] rdaddrecc_regs;
reg [REG_STAGES-1:0] sbiterr_regs;
reg [REG_STAGES-1:0] dbiterr_regs;
reg [C_DATA_WIDTH*8-1:0] init_str = C_INIT_VAL;
reg [C_DATA_WIDTH-1:0] init_val ;
//*********************************************
// Wire off optional inputs based on parameters
//*********************************************
wire en_i;
wire regce_i;
wire rst_i;
// Internal signals
reg [C_DATA_WIDTH-1:0] DIN;
reg [C_ADDRB_WIDTH-1:0] RDADDRECC_IN;
reg SBITERR_IN;
reg DBITERR_IN;
// Internal enable for output registers is tied to user EN or '1' depending
// on parameters
assign en_i = (C_HAS_EN==0 || EN);
// Internal register enable for output registers is tied to user REGCE, EN or
// '1' depending on parameters
// For V4 ECC, REGCE is always 1
// Virtex-4 ECC Not Yet Supported
assign regce_i = ((C_HAS_REGCE==1) && REGCE) ||
((C_HAS_REGCE==0) && (C_HAS_EN==0 || EN));
//Internal SRR is tied to user RST or '0' depending on parameters
assign rst_i = (C_HAS_RST==1) && RST;
//****************************************************
// Power on: load up the output registers and latches
//****************************************************
initial begin
if (!($sscanf(init_str, "%h", init_val))) begin
init_val = 0;
end
DOUT = init_val;
RDADDRECC = 0;
SBITERR = 1'b0;
DBITERR = 1'b0;
DIN = {(C_DATA_WIDTH){1'b0}};
RDADDRECC_IN = 0;
SBITERR_IN = 0;
DBITERR_IN = 0;
// This will be one wider than need, but 0 is an error
out_regs = {(REG_STAGES+1){init_val}};
rdaddrecc_regs = 0;
sbiterr_regs = {(REG_STAGES+1){1'b0}};
dbiterr_regs = {(REG_STAGES+1){1'b0}};
end
//***********************************************
// NUM_STAGES = 0 (No output registers. RAM only)
//***********************************************
generate if (NUM_STAGES == 0) begin : zero_stages
always @* begin
DOUT = DIN;
RDADDRECC = RDADDRECC_IN;
SBITERR = SBITERR_IN;
DBITERR = DBITERR_IN;
end
end
endgenerate
generate if (C_EN_ECC_PIPE == 0) begin : no_ecc_pipe_reg
always @* begin
DIN = DIN_I;
SBITERR_IN = SBITERR_IN_I;
DBITERR_IN = DBITERR_IN_I;
RDADDRECC_IN = RDADDRECC_IN_I;
end
end
endgenerate
generate if (C_EN_ECC_PIPE == 1) begin : with_ecc_pipe_reg
always @(posedge CLK) begin
if(ECCPIPECE == 1) begin
DIN <= #FLOP_DELAY DIN_I;
SBITERR_IN <= #FLOP_DELAY SBITERR_IN_I;
DBITERR_IN <= #FLOP_DELAY DBITERR_IN_I;
RDADDRECC_IN <= #FLOP_DELAY RDADDRECC_IN_I;
end
end
end
endgenerate
//***********************************************
// NUM_STAGES = 1
// (Mem Output Reg only or Mux Output Reg only)
//***********************************************
// Possible valid combinations:
// Note: C_HAS_MUX_OUTPUT_REGS_*=0 when (C_RSTRAM_*=1)
// +-----------------------------------------+
// | C_RSTRAM_* | Reset Behavior |
// +----------------+------------------------+
// | 0 | Normal Behavior |
// +----------------+------------------------+
// | 1 | Special Behavior |
// +----------------+------------------------+
//
// Normal = REGCE gates reset, as in the case of all families except S3ADSP.
// Special = EN gates reset, as in the case of S3ADSP.
generate if (NUM_STAGES == 1 &&
(C_RSTRAM == 0 || (C_RSTRAM == 1 && (C_XDEVICEFAMILY != "spartan3adsp" && C_XDEVICEFAMILY != "aspartan3adsp" )) ||
C_HAS_MEM_OUTPUT_REGS == 0 || C_HAS_RST == 0))
begin : one_stages_norm
always @(posedge CLK) begin
if (C_RST_PRIORITY == "CE") begin //REGCE has priority
if (regce_i && rst_i) begin
DOUT <= #FLOP_DELAY init_val;
RDADDRECC <= #FLOP_DELAY 0;
SBITERR <= #FLOP_DELAY 1'b0;
DBITERR <= #FLOP_DELAY 1'b0;
end else if (regce_i) begin
DOUT <= #FLOP_DELAY DIN;
RDADDRECC <= #FLOP_DELAY RDADDRECC_IN;
SBITERR <= #FLOP_DELAY SBITERR_IN;
DBITERR <= #FLOP_DELAY DBITERR_IN;
end //Output signal assignments
end else begin //RST has priority
if (rst_i) begin
DOUT <= #FLOP_DELAY init_val;
RDADDRECC <= #FLOP_DELAY RDADDRECC_IN;
SBITERR <= #FLOP_DELAY 1'b0;
DBITERR <= #FLOP_DELAY 1'b0;
end else if (regce_i) begin
DOUT <= #FLOP_DELAY DIN;
RDADDRECC <= #FLOP_DELAY RDADDRECC_IN;
SBITERR <= #FLOP_DELAY SBITERR_IN;
DBITERR <= #FLOP_DELAY DBITERR_IN;
end //Output signal assignments
end //end Priority conditions
end //end RST Type conditions
end //end one_stages_norm generate statement
endgenerate
// Special Reset Behavior for S3ADSP
generate if (NUM_STAGES == 1 && C_RSTRAM == 1 && (C_XDEVICEFAMILY =="spartan3adsp" || C_XDEVICEFAMILY =="aspartan3adsp"))
begin : one_stage_splbhv
always @(posedge CLK) begin
if (en_i && rst_i) begin
DOUT <= #FLOP_DELAY init_val;
end else if (regce_i && !rst_i) begin
DOUT <= #FLOP_DELAY DIN;
end //Output signal assignments
end //end CLK
end //end one_stage_splbhv generate statement
endgenerate
//************************************************************
// NUM_STAGES > 1
// Mem Output Reg + Mux Output Reg
// or
// Mem Output Reg + Mux Pipeline Stages (>0) + Mux Output Reg
// or
// Mux Pipeline Stages (>0) + Mux Output Reg
//*************************************************************
generate if (NUM_STAGES > 1) begin : multi_stage
//Asynchronous Reset
always @(posedge CLK) begin
if (C_RST_PRIORITY == "CE") begin //REGCE has priority
if (regce_i && rst_i) begin
DOUT <= #FLOP_DELAY init_val;
RDADDRECC <= #FLOP_DELAY 0;
SBITERR <= #FLOP_DELAY 1'b0;
DBITERR <= #FLOP_DELAY 1'b0;
end else if (regce_i) begin
DOUT <= #FLOP_DELAY
out_regs[C_DATA_WIDTH*(NUM_STAGES-2)+:C_DATA_WIDTH];
RDADDRECC <= #FLOP_DELAY rdaddrecc_regs[C_ADDRB_WIDTH*(NUM_STAGES-2)+:C_ADDRB_WIDTH];
SBITERR <= #FLOP_DELAY sbiterr_regs[NUM_STAGES-2];
DBITERR <= #FLOP_DELAY dbiterr_regs[NUM_STAGES-2];
end //Output signal assignments
end else begin //RST has priority
if (rst_i) begin
DOUT <= #FLOP_DELAY init_val;
RDADDRECC <= #FLOP_DELAY 0;
SBITERR <= #FLOP_DELAY 1'b0;
DBITERR <= #FLOP_DELAY 1'b0;
end else if (regce_i) begin
DOUT <= #FLOP_DELAY
out_regs[C_DATA_WIDTH*(NUM_STAGES-2)+:C_DATA_WIDTH];
RDADDRECC <= #FLOP_DELAY rdaddrecc_regs[C_ADDRB_WIDTH*(NUM_STAGES-2)+:C_ADDRB_WIDTH];
SBITERR <= #FLOP_DELAY sbiterr_regs[NUM_STAGES-2];
DBITERR <= #FLOP_DELAY dbiterr_regs[NUM_STAGES-2];
end //Output signal assignments
end //end Priority conditions
// Shift the data through the output stages
if (en_i) begin
out_regs <= #FLOP_DELAY (out_regs << C_DATA_WIDTH) | DIN;
rdaddrecc_regs <= #FLOP_DELAY (rdaddrecc_regs << C_ADDRB_WIDTH) | RDADDRECC_IN;
sbiterr_regs <= #FLOP_DELAY (sbiterr_regs << 1) | SBITERR_IN;
dbiterr_regs <= #FLOP_DELAY (dbiterr_regs << 1) | DBITERR_IN;
end
end //end CLK
end //end multi_stage generate statement
endgenerate
endmodule
module BLK_MEM_GEN_v8_2_softecc_output_reg_stage
#(parameter C_DATA_WIDTH = 32,
parameter C_ADDRB_WIDTH = 10,
parameter C_HAS_SOFTECC_OUTPUT_REGS_B= 0,
parameter C_USE_SOFTECC = 0,
parameter FLOP_DELAY = 100
)
(
input CLK,
input [C_DATA_WIDTH-1:0] DIN,
output reg [C_DATA_WIDTH-1:0] DOUT,
input SBITERR_IN,
input DBITERR_IN,
output reg SBITERR,
output reg DBITERR,
input [C_ADDRB_WIDTH-1:0] RDADDRECC_IN,
output reg [C_ADDRB_WIDTH-1:0] RDADDRECC
);
//******************************
// Port and Generic Definitions
//******************************
//////////////////////////////////////////////////////////////////////////
// Generic Definitions
//////////////////////////////////////////////////////////////////////////
// C_DATA_WIDTH : Memory write/read width
// C_ADDRB_WIDTH : Width of the ADDRB input port
// C_HAS_SOFTECC_OUTPUT_REGS_B : Designates the use of a register at the output
// of the RAM primitive
// C_USE_SOFTECC : Determines if the Soft ECC feature is used or
// not. Only applicable Spartan-6
// FLOP_DELAY : Constant delay for register assignments
//////////////////////////////////////////////////////////////////////////
// Port Definitions
//////////////////////////////////////////////////////////////////////////
// CLK : Clock to synchronize all read and write operations
// DIN : Data input to the Output stage.
// DOUT : Final Data output
// SBITERR_IN : SBITERR input signal to the Output stage.
// SBITERR : Final SBITERR Output signal.
// DBITERR_IN : DBITERR input signal to the Output stage.
// DBITERR : Final DBITERR Output signal.
// RDADDRECC_IN : RDADDRECC input signal to the Output stage.
// RDADDRECC : Final RDADDRECC Output signal.
//////////////////////////////////////////////////////////////////////////
reg [C_DATA_WIDTH-1:0] dout_i = 0;
reg sbiterr_i = 0;
reg dbiterr_i = 0;
reg [C_ADDRB_WIDTH-1:0] rdaddrecc_i = 0;
//***********************************************
// NO OUTPUT REGISTERS.
//***********************************************
generate if (C_HAS_SOFTECC_OUTPUT_REGS_B==0) begin : no_output_stage
always @* begin
DOUT = DIN;
RDADDRECC = RDADDRECC_IN;
SBITERR = SBITERR_IN;
DBITERR = DBITERR_IN;
end
end
endgenerate
//***********************************************
// WITH OUTPUT REGISTERS.
//***********************************************
generate if (C_HAS_SOFTECC_OUTPUT_REGS_B==1) begin : has_output_stage
always @(posedge CLK) begin
dout_i <= #FLOP_DELAY DIN;
rdaddrecc_i <= #FLOP_DELAY RDADDRECC_IN;
sbiterr_i <= #FLOP_DELAY SBITERR_IN;
dbiterr_i <= #FLOP_DELAY DBITERR_IN;
end
always @* begin
DOUT = dout_i;
RDADDRECC = rdaddrecc_i;
SBITERR = sbiterr_i;
DBITERR = dbiterr_i;
end //end always
end //end in_or_out_stage generate statement
endgenerate
endmodule
//*****************************************************************************
// Main Memory module
//
// This module is the top-level behavioral model and this implements the RAM
//*****************************************************************************
module BLK_MEM_GEN_v8_2_mem_module
#(parameter C_CORENAME = "blk_mem_gen_v8_2",
parameter C_FAMILY = "virtex7",
parameter C_XDEVICEFAMILY = "virtex7",
parameter C_MEM_TYPE = 2,
parameter C_BYTE_SIZE = 9,
parameter C_USE_BRAM_BLOCK = 0,
parameter C_ALGORITHM = 1,
parameter C_PRIM_TYPE = 3,
parameter C_LOAD_INIT_FILE = 0,
parameter C_INIT_FILE_NAME = "",
parameter C_INIT_FILE = "",
parameter C_USE_DEFAULT_DATA = 0,
parameter C_DEFAULT_DATA = "0",
parameter C_RST_TYPE = "SYNC",
parameter C_HAS_RSTA = 0,
parameter C_RST_PRIORITY_A = "CE",
parameter C_RSTRAM_A = 0,
parameter C_INITA_VAL = "0",
parameter C_HAS_ENA = 1,
parameter C_HAS_REGCEA = 0,
parameter C_USE_BYTE_WEA = 0,
parameter C_WEA_WIDTH = 1,
parameter C_WRITE_MODE_A = "WRITE_FIRST",
parameter C_WRITE_WIDTH_A = 32,
parameter C_READ_WIDTH_A = 32,
parameter C_WRITE_DEPTH_A = 64,
parameter C_READ_DEPTH_A = 64,
parameter C_ADDRA_WIDTH = 5,
parameter C_HAS_RSTB = 0,
parameter C_RST_PRIORITY_B = "CE",
parameter C_RSTRAM_B = 0,
parameter C_INITB_VAL = "",
parameter C_HAS_ENB = 1,
parameter C_HAS_REGCEB = 0,
parameter C_USE_BYTE_WEB = 0,
parameter C_WEB_WIDTH = 1,
parameter C_WRITE_MODE_B = "WRITE_FIRST",
parameter C_WRITE_WIDTH_B = 32,
parameter C_READ_WIDTH_B = 32,
parameter C_WRITE_DEPTH_B = 64,
parameter C_READ_DEPTH_B = 64,
parameter C_ADDRB_WIDTH = 5,
parameter C_HAS_MEM_OUTPUT_REGS_A = 0,
parameter C_HAS_MEM_OUTPUT_REGS_B = 0,
parameter C_HAS_MUX_OUTPUT_REGS_A = 0,
parameter C_HAS_MUX_OUTPUT_REGS_B = 0,
parameter C_HAS_SOFTECC_INPUT_REGS_A = 0,
parameter C_HAS_SOFTECC_OUTPUT_REGS_B= 0,
parameter C_MUX_PIPELINE_STAGES = 0,
parameter C_USE_SOFTECC = 0,
parameter C_USE_ECC = 0,
parameter C_HAS_INJECTERR = 0,
parameter C_SIM_COLLISION_CHECK = "NONE",
parameter C_COMMON_CLK = 1,
parameter FLOP_DELAY = 100,
parameter C_DISABLE_WARN_BHV_COLL = 0,
parameter C_EN_ECC_PIPE = 0,
parameter C_DISABLE_WARN_BHV_RANGE = 0
)
(input CLKA,
input RSTA,
input ENA,
input REGCEA,
input [C_WEA_WIDTH-1:0] WEA,
input [C_ADDRA_WIDTH-1:0] ADDRA,
input [C_WRITE_WIDTH_A-1:0] DINA,
output [C_READ_WIDTH_A-1:0] DOUTA,
input CLKB,
input RSTB,
input ENB,
input REGCEB,
input [C_WEB_WIDTH-1:0] WEB,
input [C_ADDRB_WIDTH-1:0] ADDRB,
input [C_WRITE_WIDTH_B-1:0] DINB,
output [C_READ_WIDTH_B-1:0] DOUTB,
input INJECTSBITERR,
input INJECTDBITERR,
input ECCPIPECE,
input SLEEP,
output SBITERR,
output DBITERR,
output [C_ADDRB_WIDTH-1:0] RDADDRECC
);
//******************************
// Port and Generic Definitions
//******************************
//////////////////////////////////////////////////////////////////////////
// Generic Definitions
//////////////////////////////////////////////////////////////////////////
// C_CORENAME : Instance name of the Block Memory Generator core
// C_FAMILY,C_XDEVICEFAMILY: Designates architecture targeted. The following
// options are available - "spartan3", "spartan6",
// "virtex4", "virtex5", "virtex6" and "virtex6l".
// C_MEM_TYPE : Designates memory type.
// It can be
// 0 - Single Port Memory
// 1 - Simple Dual Port Memory
// 2 - True Dual Port Memory
// 3 - Single Port Read Only Memory
// 4 - Dual Port Read Only Memory
// C_BYTE_SIZE : Size of a byte (8 or 9 bits)
// C_ALGORITHM : Designates the algorithm method used
// for constructing the memory.
// It can be Fixed_Primitives, Minimum_Area or
// Low_Power
// C_PRIM_TYPE : Designates the user selected primitive used to
// construct the memory.
//
// C_LOAD_INIT_FILE : Designates the use of an initialization file to
// initialize memory contents.
// C_INIT_FILE_NAME : Memory initialization file name.
// C_USE_DEFAULT_DATA : Designates whether to fill remaining
// initialization space with default data
// C_DEFAULT_DATA : Default value of all memory locations
// not initialized by the memory
// initialization file.
// C_RST_TYPE : Type of reset - Synchronous or Asynchronous
// C_HAS_RSTA : Determines the presence of the RSTA port
// C_RST_PRIORITY_A : Determines the priority between CE and SR for
// Port A.
// C_RSTRAM_A : Determines if special reset behavior is used for
// Port A
// C_INITA_VAL : The initialization value for Port A
// C_HAS_ENA : Determines the presence of the ENA port
// C_HAS_REGCEA : Determines the presence of the REGCEA port
// C_USE_BYTE_WEA : Determines if the Byte Write is used or not.
// C_WEA_WIDTH : The width of the WEA port
// C_WRITE_MODE_A : Configurable write mode for Port A. It can be
// WRITE_FIRST, READ_FIRST or NO_CHANGE.
// C_WRITE_WIDTH_A : Memory write width for Port A.
// C_READ_WIDTH_A : Memory read width for Port A.
// C_WRITE_DEPTH_A : Memory write depth for Port A.
// C_READ_DEPTH_A : Memory read depth for Port A.
// C_ADDRA_WIDTH : Width of the ADDRA input port
// C_HAS_RSTB : Determines the presence of the RSTB port
// C_RST_PRIORITY_B : Determines the priority between CE and SR for
// Port B.
// C_RSTRAM_B : Determines if special reset behavior is used for
// Port B
// C_INITB_VAL : The initialization value for Port B
// C_HAS_ENB : Determines the presence of the ENB port
// C_HAS_REGCEB : Determines the presence of the REGCEB port
// C_USE_BYTE_WEB : Determines if the Byte Write is used or not.
// C_WEB_WIDTH : The width of the WEB port
// C_WRITE_MODE_B : Configurable write mode for Port B. It can be
// WRITE_FIRST, READ_FIRST or NO_CHANGE.
// C_WRITE_WIDTH_B : Memory write width for Port B.
// C_READ_WIDTH_B : Memory read width for Port B.
// C_WRITE_DEPTH_B : Memory write depth for Port B.
// C_READ_DEPTH_B : Memory read depth for Port B.
// C_ADDRB_WIDTH : Width of the ADDRB input port
// C_HAS_MEM_OUTPUT_REGS_A : Designates the use of a register at the output
// of the RAM primitive for Port A.
// C_HAS_MEM_OUTPUT_REGS_B : Designates the use of a register at the output
// of the RAM primitive for Port B.
// C_HAS_MUX_OUTPUT_REGS_A : Designates the use of a register at the output
// of the MUX for Port A.
// C_HAS_MUX_OUTPUT_REGS_B : Designates the use of a register at the output
// of the MUX for Port B.
// C_MUX_PIPELINE_STAGES : Designates the number of pipeline stages in
// between the muxes.
// C_USE_SOFTECC : Determines if the Soft ECC feature is used or
// not. Only applicable Spartan-6
// C_USE_ECC : Determines if the ECC feature is used or
// not. Only applicable for V5 and V6
// C_HAS_INJECTERR : Determines if the error injection pins
// are present or not. If the ECC feature
// is not used, this value is defaulted to
// 0, else the following are the allowed
// values:
// 0 : No INJECTSBITERR or INJECTDBITERR pins
// 1 : Only INJECTSBITERR pin exists
// 2 : Only INJECTDBITERR pin exists
// 3 : Both INJECTSBITERR and INJECTDBITERR pins exist
// C_SIM_COLLISION_CHECK : Controls the disabling of Unisim model collision
// warnings. It can be "ALL", "NONE",
// "Warnings_Only" or "Generate_X_Only".
// C_COMMON_CLK : Determins if the core has a single CLK input.
// C_DISABLE_WARN_BHV_COLL : Controls the Behavioral Model Collision warnings
// C_DISABLE_WARN_BHV_RANGE: Controls the Behavioral Model Out of Range
// warnings
//////////////////////////////////////////////////////////////////////////
// Port Definitions
//////////////////////////////////////////////////////////////////////////
// CLKA : Clock to synchronize all read and write operations of Port A.
// RSTA : Reset input to reset memory outputs to a user-defined
// reset state for Port A.
// ENA : Enable all read and write operations of Port A.
// REGCEA : Register Clock Enable to control each pipeline output
// register stages for Port A.
// WEA : Write Enable to enable all write operations of Port A.
// ADDRA : Address of Port A.
// DINA : Data input of Port A.
// DOUTA : Data output of Port A.
// CLKB : Clock to synchronize all read and write operations of Port B.
// RSTB : Reset input to reset memory outputs to a user-defined
// reset state for Port B.
// ENB : Enable all read and write operations of Port B.
// REGCEB : Register Clock Enable to control each pipeline output
// register stages for Port B.
// WEB : Write Enable to enable all write operations of Port B.
// ADDRB : Address of Port B.
// DINB : Data input of Port B.
// DOUTB : Data output of Port B.
// INJECTSBITERR : Single Bit ECC Error Injection Pin.
// INJECTDBITERR : Double Bit ECC Error Injection Pin.
// SBITERR : Output signal indicating that a Single Bit ECC Error has been
// detected and corrected.
// DBITERR : Output signal indicating that a Double Bit ECC Error has been
// detected.
// RDADDRECC : Read Address Output signal indicating address at which an
// ECC error has occurred.
//////////////////////////////////////////////////////////////////////////
// Note: C_CORENAME parameter is hard-coded to "blk_mem_gen_v8_2" and it is
// only used by this module to print warning messages. It is neither passed
// down from blk_mem_gen_v8_2_xst.v nor present in the instantiation template
// coregen generates
//***************************************************************************
// constants for the core behavior
//***************************************************************************
// file handles for logging
//--------------------------------------------------
localparam ADDRFILE = 32'h8000_0001; //stdout for addr out of range
localparam COLLFILE = 32'h8000_0001; //stdout for coll detection
localparam ERRFILE = 32'h8000_0001; //stdout for file I/O errors
// other constants
//--------------------------------------------------
localparam COLL_DELAY = 100; // 100 ps
// locally derived parameters to determine memory shape
//-----------------------------------------------------
localparam CHKBIT_WIDTH = (C_WRITE_WIDTH_A>57 ? 8 : (C_WRITE_WIDTH_A>26 ? 7 : (C_WRITE_WIDTH_A>11 ? 6 : (C_WRITE_WIDTH_A>4 ? 5 : (C_WRITE_WIDTH_A<5 ? 4 :0)))));
localparam MIN_WIDTH_A = (C_WRITE_WIDTH_A < C_READ_WIDTH_A) ?
C_WRITE_WIDTH_A : C_READ_WIDTH_A;
localparam MIN_WIDTH_B = (C_WRITE_WIDTH_B < C_READ_WIDTH_B) ?
C_WRITE_WIDTH_B : C_READ_WIDTH_B;
localparam MIN_WIDTH = (MIN_WIDTH_A < MIN_WIDTH_B) ?
MIN_WIDTH_A : MIN_WIDTH_B;
localparam MAX_DEPTH_A = (C_WRITE_DEPTH_A > C_READ_DEPTH_A) ?
C_WRITE_DEPTH_A : C_READ_DEPTH_A;
localparam MAX_DEPTH_B = (C_WRITE_DEPTH_B > C_READ_DEPTH_B) ?
C_WRITE_DEPTH_B : C_READ_DEPTH_B;
localparam MAX_DEPTH = (MAX_DEPTH_A > MAX_DEPTH_B) ?
MAX_DEPTH_A : MAX_DEPTH_B;
// locally derived parameters to assist memory access
//----------------------------------------------------
// Calculate the width ratios of each port with respect to the narrowest
// port
localparam WRITE_WIDTH_RATIO_A = C_WRITE_WIDTH_A/MIN_WIDTH;
localparam READ_WIDTH_RATIO_A = C_READ_WIDTH_A/MIN_WIDTH;
localparam WRITE_WIDTH_RATIO_B = C_WRITE_WIDTH_B/MIN_WIDTH;
localparam READ_WIDTH_RATIO_B = C_READ_WIDTH_B/MIN_WIDTH;
// To modify the LSBs of the 'wider' data to the actual
// address value
//----------------------------------------------------
localparam WRITE_ADDR_A_DIV = C_WRITE_WIDTH_A/MIN_WIDTH_A;
localparam READ_ADDR_A_DIV = C_READ_WIDTH_A/MIN_WIDTH_A;
localparam WRITE_ADDR_B_DIV = C_WRITE_WIDTH_B/MIN_WIDTH_B;
localparam READ_ADDR_B_DIV = C_READ_WIDTH_B/MIN_WIDTH_B;
// If byte writes aren't being used, make sure BYTE_SIZE is not
// wider than the memory elements to avoid compilation warnings
localparam BYTE_SIZE = (C_BYTE_SIZE < MIN_WIDTH) ? C_BYTE_SIZE : MIN_WIDTH;
// The memory
reg [MIN_WIDTH-1:0] memory [0:MAX_DEPTH-1];
reg [MIN_WIDTH-1:0] temp_mem_array [0:MAX_DEPTH-1];
reg [C_WRITE_WIDTH_A+CHKBIT_WIDTH-1:0] doublebit_error = 3;
// ECC error arrays
reg sbiterr_arr [0:MAX_DEPTH-1];
reg dbiterr_arr [0:MAX_DEPTH-1];
reg softecc_sbiterr_arr [0:MAX_DEPTH-1];
reg softecc_dbiterr_arr [0:MAX_DEPTH-1];
// Memory output 'latches'
reg [C_READ_WIDTH_A-1:0] memory_out_a;
reg [C_READ_WIDTH_B-1:0] memory_out_b;
// ECC error inputs and outputs from output_stage module:
reg sbiterr_in;
wire sbiterr_sdp;
reg dbiterr_in;
wire dbiterr_sdp;
wire [C_READ_WIDTH_B-1:0] dout_i;
wire dbiterr_i;
wire sbiterr_i;
wire [C_ADDRB_WIDTH-1:0] rdaddrecc_i;
reg [C_ADDRB_WIDTH-1:0] rdaddrecc_in;
wire [C_ADDRB_WIDTH-1:0] rdaddrecc_sdp;
// Reset values
reg [C_READ_WIDTH_A-1:0] inita_val;
reg [C_READ_WIDTH_B-1:0] initb_val;
// Collision detect
reg is_collision;
reg is_collision_a, is_collision_delay_a;
reg is_collision_b, is_collision_delay_b;
// Temporary variables for initialization
//---------------------------------------
integer status;
integer initfile;
integer meminitfile;
// data input buffer
reg [C_WRITE_WIDTH_A-1:0] mif_data;
reg [C_WRITE_WIDTH_A-1:0] mem_data;
// string values in hex
reg [C_READ_WIDTH_A*8-1:0] inita_str = C_INITA_VAL;
reg [C_READ_WIDTH_B*8-1:0] initb_str = C_INITB_VAL;
reg [C_WRITE_WIDTH_A*8-1:0] default_data_str = C_DEFAULT_DATA;
// initialization filename
reg [1023*8-1:0] init_file_str = C_INIT_FILE_NAME;
reg [1023*8-1:0] mem_init_file_str = C_INIT_FILE;
//Constants used to calculate the effective address widths for each of the
//four ports.
integer cnt = 1;
integer write_addr_a_width, read_addr_a_width;
integer write_addr_b_width, read_addr_b_width;
localparam C_FAMILY_LOCALPARAM = (C_FAMILY=="virtexu"?"virtex7":(C_FAMILY=="kintexu" ? "virtex7":(C_FAMILY=="virtex7" ? "virtex7" : (C_FAMILY=="virtex7l" ? "virtex7" : (C_FAMILY=="qvirtex7" ? "virtex7" : (C_FAMILY=="qvirtex7l" ? "virtex7" : (C_FAMILY=="kintex7" ? "virtex7" : (C_FAMILY=="kintex7l" ? "virtex7" : (C_FAMILY=="qkintex7" ? "virtex7" : (C_FAMILY=="qkintex7l" ? "virtex7" : (C_FAMILY=="artix7" ? "virtex7" : (C_FAMILY=="artix7l" ? "virtex7" : (C_FAMILY=="qartix7" ? "virtex7" : (C_FAMILY=="qartix7l" ? "virtex7" : (C_FAMILY=="aartix7" ? "virtex7" : (C_FAMILY=="zynq" ? "virtex7" : (C_FAMILY=="azynq" ? "virtex7" : (C_FAMILY=="qzynq" ? "virtex7" : C_FAMILY))))))))))))))))));
// Internal configuration parameters
//---------------------------------------------
localparam SINGLE_PORT = (C_MEM_TYPE==0 || C_MEM_TYPE==3);
localparam IS_ROM = (C_MEM_TYPE==3 || C_MEM_TYPE==4);
localparam HAS_A_WRITE = (!IS_ROM);
localparam HAS_B_WRITE = (C_MEM_TYPE==2);
localparam HAS_A_READ = (C_MEM_TYPE!=1);
localparam HAS_B_READ = (!SINGLE_PORT);
localparam HAS_B_PORT = (HAS_B_READ || HAS_B_WRITE);
// Calculate the mux pipeline register stages for Port A and Port B
//------------------------------------------------------------------
localparam MUX_PIPELINE_STAGES_A = (C_HAS_MUX_OUTPUT_REGS_A) ?
C_MUX_PIPELINE_STAGES : 0;
localparam MUX_PIPELINE_STAGES_B = (C_HAS_MUX_OUTPUT_REGS_B) ?
C_MUX_PIPELINE_STAGES : 0;
// Calculate total number of register stages in the core
// -----------------------------------------------------
localparam NUM_OUTPUT_STAGES_A = (C_HAS_MEM_OUTPUT_REGS_A+MUX_PIPELINE_STAGES_A+C_HAS_MUX_OUTPUT_REGS_A);
localparam NUM_OUTPUT_STAGES_B = (C_HAS_MEM_OUTPUT_REGS_B+MUX_PIPELINE_STAGES_B+C_HAS_MUX_OUTPUT_REGS_B);
wire ena_i;
wire enb_i;
wire reseta_i;
wire resetb_i;
wire [C_WEA_WIDTH-1:0] wea_i;
wire [C_WEB_WIDTH-1:0] web_i;
wire rea_i;
wire reb_i;
wire rsta_outp_stage;
wire rstb_outp_stage;
// ECC SBITERR/DBITERR Outputs
// The ECC Behavior is modeled by the behavioral models only for Virtex-6.
// For Virtex-5, these outputs will be tied to 0.
assign SBITERR = ((C_MEM_TYPE == 1 && C_USE_ECC == 1) || C_USE_SOFTECC == 1)?sbiterr_sdp:0;
assign DBITERR = ((C_MEM_TYPE == 1 && C_USE_ECC == 1) || C_USE_SOFTECC == 1)?dbiterr_sdp:0;
assign RDADDRECC = (((C_FAMILY_LOCALPARAM == "virtex7") && C_MEM_TYPE == 1 && C_USE_ECC == 1) || C_USE_SOFTECC == 1)?rdaddrecc_sdp:0;
// This effectively wires off optional inputs
assign ena_i = (C_HAS_ENA==0) || ENA;
assign enb_i = ((C_HAS_ENB==0) || ENB) && HAS_B_PORT;
assign wea_i = (HAS_A_WRITE && ena_i) ? WEA : 'b0;
assign web_i = (HAS_B_WRITE && enb_i) ? WEB : 'b0;
assign rea_i = (HAS_A_READ) ? ena_i : 'b0;
assign reb_i = (HAS_B_READ) ? enb_i : 'b0;
// These signals reset the memory latches
assign reseta_i =
((C_HAS_RSTA==1 && RSTA && NUM_OUTPUT_STAGES_A==0) ||
(C_HAS_RSTA==1 && RSTA && C_RSTRAM_A==1));
assign resetb_i =
((C_HAS_RSTB==1 && RSTB && NUM_OUTPUT_STAGES_B==0) ||
(C_HAS_RSTB==1 && RSTB && C_RSTRAM_B==1));
// Tasks to access the memory
//---------------------------
//**************
// write_a
//**************
task write_a
(input reg [C_ADDRA_WIDTH-1:0] addr,
input reg [C_WEA_WIDTH-1:0] byte_en,
input reg [C_WRITE_WIDTH_A-1:0] data,
input inj_sbiterr,
input inj_dbiterr);
reg [C_WRITE_WIDTH_A-1:0] current_contents;
reg [C_ADDRA_WIDTH-1:0] address;
integer i;
begin
// Shift the address by the ratio
address = (addr/WRITE_ADDR_A_DIV);
if (address >= C_WRITE_DEPTH_A) begin
if (!C_DISABLE_WARN_BHV_RANGE) begin
$fdisplay(ADDRFILE,
"%0s WARNING: Address %0h is outside range for A Write",
C_CORENAME, addr);
end
// valid address
end else begin
// Combine w/ byte writes
if (C_USE_BYTE_WEA) begin
// Get the current memory contents
if (WRITE_WIDTH_RATIO_A == 1) begin
// Workaround for IUS 5.5 part-select issue
current_contents = memory[address];
end else begin
for (i = 0; i < WRITE_WIDTH_RATIO_A; i = i + 1) begin
current_contents[MIN_WIDTH*i+:MIN_WIDTH]
= memory[address*WRITE_WIDTH_RATIO_A + i];
end
end
// Apply incoming bytes
if (C_WEA_WIDTH == 1) begin
// Workaround for IUS 5.5 part-select issue
if (byte_en[0]) begin
current_contents = data;
end
end else begin
for (i = 0; i < C_WEA_WIDTH; i = i + 1) begin
if (byte_en[i]) begin
current_contents[BYTE_SIZE*i+:BYTE_SIZE]
= data[BYTE_SIZE*i+:BYTE_SIZE];
end
end
end
// No byte-writes, overwrite the whole word
end else begin
current_contents = data;
end
// Insert double bit errors:
if (C_USE_ECC == 1) begin
if ((C_HAS_INJECTERR == 2 || C_HAS_INJECTERR == 3) && inj_dbiterr == 1'b1) begin
current_contents[0] = !(current_contents[0]);
current_contents[1] = !(current_contents[1]);
end
end
// Insert softecc double bit errors:
if (C_USE_SOFTECC == 1) begin
if ((C_HAS_INJECTERR == 2 || C_HAS_INJECTERR == 3) && inj_dbiterr == 1'b1) begin
doublebit_error[C_WRITE_WIDTH_A+CHKBIT_WIDTH-1:2] = doublebit_error[C_WRITE_WIDTH_A+CHKBIT_WIDTH-3:0];
doublebit_error[0] = doublebit_error[C_WRITE_WIDTH_A+CHKBIT_WIDTH-1];
doublebit_error[1] = doublebit_error[C_WRITE_WIDTH_A+CHKBIT_WIDTH-2];
current_contents = current_contents ^ doublebit_error[C_WRITE_WIDTH_A-1:0];
end
end
// Write data to memory
if (WRITE_WIDTH_RATIO_A == 1) begin
// Workaround for IUS 5.5 part-select issue
memory[address*WRITE_WIDTH_RATIO_A] = current_contents;
end else begin
for (i = 0; i < WRITE_WIDTH_RATIO_A; i = i + 1) begin
memory[address*WRITE_WIDTH_RATIO_A + i]
= current_contents[MIN_WIDTH*i+:MIN_WIDTH];
end
end
// Store the address at which error is injected:
if ((C_FAMILY_LOCALPARAM == "virtex7") && C_USE_ECC == 1) begin
if ((C_HAS_INJECTERR == 1 && inj_sbiterr == 1'b1) ||
(C_HAS_INJECTERR == 3 && inj_sbiterr == 1'b1 && inj_dbiterr != 1'b1))
begin
sbiterr_arr[addr] = 1;
end else begin
sbiterr_arr[addr] = 0;
end
if ((C_HAS_INJECTERR == 2 || C_HAS_INJECTERR == 3) && inj_dbiterr == 1'b1) begin
dbiterr_arr[addr] = 1;
end else begin
dbiterr_arr[addr] = 0;
end
end
// Store the address at which softecc error is injected:
if (C_USE_SOFTECC == 1) begin
if ((C_HAS_INJECTERR == 1 && inj_sbiterr == 1'b1) ||
(C_HAS_INJECTERR == 3 && inj_sbiterr == 1'b1 && inj_dbiterr != 1'b1))
begin
softecc_sbiterr_arr[addr] = 1;
end else begin
softecc_sbiterr_arr[addr] = 0;
end
if ((C_HAS_INJECTERR == 2 || C_HAS_INJECTERR == 3) && inj_dbiterr == 1'b1) begin
softecc_dbiterr_arr[addr] = 1;
end else begin
softecc_dbiterr_arr[addr] = 0;
end
end
end
end
endtask
//**************
// write_b
//**************
task write_b
(input reg [C_ADDRB_WIDTH-1:0] addr,
input reg [C_WEB_WIDTH-1:0] byte_en,
input reg [C_WRITE_WIDTH_B-1:0] data);
reg [C_WRITE_WIDTH_B-1:0] current_contents;
reg [C_ADDRB_WIDTH-1:0] address;
integer i;
begin
// Shift the address by the ratio
address = (addr/WRITE_ADDR_B_DIV);
if (address >= C_WRITE_DEPTH_B) begin
if (!C_DISABLE_WARN_BHV_RANGE) begin
$fdisplay(ADDRFILE,
"%0s WARNING: Address %0h is outside range for B Write",
C_CORENAME, addr);
end
// valid address
end else begin
// Combine w/ byte writes
if (C_USE_BYTE_WEB) begin
// Get the current memory contents
if (WRITE_WIDTH_RATIO_B == 1) begin
// Workaround for IUS 5.5 part-select issue
current_contents = memory[address];
end else begin
for (i = 0; i < WRITE_WIDTH_RATIO_B; i = i + 1) begin
current_contents[MIN_WIDTH*i+:MIN_WIDTH]
= memory[address*WRITE_WIDTH_RATIO_B + i];
end
end
// Apply incoming bytes
if (C_WEB_WIDTH == 1) begin
// Workaround for IUS 5.5 part-select issue
if (byte_en[0]) begin
current_contents = data;
end
end else begin
for (i = 0; i < C_WEB_WIDTH; i = i + 1) begin
if (byte_en[i]) begin
current_contents[BYTE_SIZE*i+:BYTE_SIZE]
= data[BYTE_SIZE*i+:BYTE_SIZE];
end
end
end
// No byte-writes, overwrite the whole word
end else begin
current_contents = data;
end
// Write data to memory
if (WRITE_WIDTH_RATIO_B == 1) begin
// Workaround for IUS 5.5 part-select issue
memory[address*WRITE_WIDTH_RATIO_B] = current_contents;
end else begin
for (i = 0; i < WRITE_WIDTH_RATIO_B; i = i + 1) begin
memory[address*WRITE_WIDTH_RATIO_B + i]
= current_contents[MIN_WIDTH*i+:MIN_WIDTH];
end
end
end
end
endtask
//**************
// read_a
//**************
task read_a
(input reg [C_ADDRA_WIDTH-1:0] addr,
input reg reset);
reg [C_ADDRA_WIDTH-1:0] address;
integer i;
begin
if (reset) begin
memory_out_a <= #FLOP_DELAY inita_val;
end else begin
// Shift the address by the ratio
address = (addr/READ_ADDR_A_DIV);
if (address >= C_READ_DEPTH_A) begin
if (!C_DISABLE_WARN_BHV_RANGE) begin
$fdisplay(ADDRFILE,
"%0s WARNING: Address %0h is outside range for A Read",
C_CORENAME, addr);
end
memory_out_a <= #FLOP_DELAY 'bX;
// valid address
end else begin
if (READ_WIDTH_RATIO_A==1) begin
memory_out_a <= #FLOP_DELAY memory[address*READ_WIDTH_RATIO_A];
end else begin
// Increment through the 'partial' words in the memory
for (i = 0; i < READ_WIDTH_RATIO_A; i = i + 1) begin
memory_out_a[MIN_WIDTH*i+:MIN_WIDTH]
<= #FLOP_DELAY memory[address*READ_WIDTH_RATIO_A + i];
end
end //end READ_WIDTH_RATIO_A==1 loop
end //end valid address loop
end //end reset-data assignment loops
end
endtask
//**************
// read_b
//**************
task read_b
(input reg [C_ADDRB_WIDTH-1:0] addr,
input reg reset);
reg [C_ADDRB_WIDTH-1:0] address;
integer i;
begin
if (reset) begin
memory_out_b <= #FLOP_DELAY initb_val;
sbiterr_in <= #FLOP_DELAY 1'b0;
dbiterr_in <= #FLOP_DELAY 1'b0;
rdaddrecc_in <= #FLOP_DELAY 0;
end else begin
// Shift the address
address = (addr/READ_ADDR_B_DIV);
if (address >= C_READ_DEPTH_B) begin
if (!C_DISABLE_WARN_BHV_RANGE) begin
$fdisplay(ADDRFILE,
"%0s WARNING: Address %0h is outside range for B Read",
C_CORENAME, addr);
end
memory_out_b <= #FLOP_DELAY 'bX;
sbiterr_in <= #FLOP_DELAY 1'bX;
dbiterr_in <= #FLOP_DELAY 1'bX;
rdaddrecc_in <= #FLOP_DELAY 'bX;
// valid address
end else begin
if (READ_WIDTH_RATIO_B==1) begin
memory_out_b <= #FLOP_DELAY memory[address*READ_WIDTH_RATIO_B];
end else begin
// Increment through the 'partial' words in the memory
for (i = 0; i < READ_WIDTH_RATIO_B; i = i + 1) begin
memory_out_b[MIN_WIDTH*i+:MIN_WIDTH]
<= #FLOP_DELAY memory[address*READ_WIDTH_RATIO_B + i];
end
end
if ((C_FAMILY_LOCALPARAM == "virtex7") && C_USE_ECC == 1) begin
rdaddrecc_in <= #FLOP_DELAY addr;
if (sbiterr_arr[addr] == 1) begin
sbiterr_in <= #FLOP_DELAY 1'b1;
end else begin
sbiterr_in <= #FLOP_DELAY 1'b0;
end
if (dbiterr_arr[addr] == 1) begin
dbiterr_in <= #FLOP_DELAY 1'b1;
end else begin
dbiterr_in <= #FLOP_DELAY 1'b0;
end
end else if (C_USE_SOFTECC == 1) begin
rdaddrecc_in <= #FLOP_DELAY addr;
if (softecc_sbiterr_arr[addr] == 1) begin
sbiterr_in <= #FLOP_DELAY 1'b1;
end else begin
sbiterr_in <= #FLOP_DELAY 1'b0;
end
if (softecc_dbiterr_arr[addr] == 1) begin
dbiterr_in <= #FLOP_DELAY 1'b1;
end else begin
dbiterr_in <= #FLOP_DELAY 1'b0;
end
end else begin
rdaddrecc_in <= #FLOP_DELAY 0;
dbiterr_in <= #FLOP_DELAY 1'b0;
sbiterr_in <= #FLOP_DELAY 1'b0;
end //end SOFTECC Loop
end //end Valid address loop
end //end reset-data assignment loops
end
endtask
//**************
// reset_a
//**************
task reset_a (input reg reset);
begin
if (reset) memory_out_a <= #FLOP_DELAY inita_val;
end
endtask
//**************
// reset_b
//**************
task reset_b (input reg reset);
begin
if (reset) memory_out_b <= #FLOP_DELAY initb_val;
end
endtask
//**************
// init_memory
//**************
task init_memory;
integer i, j, addr_step;
integer status;
reg [C_WRITE_WIDTH_A-1:0] default_data;
begin
default_data = 0;
//Display output message indicating that the behavioral model is being
//initialized
if (C_USE_DEFAULT_DATA || C_LOAD_INIT_FILE) $display(" Block Memory Generator module loading initial data...");
// Convert the default to hex
if (C_USE_DEFAULT_DATA) begin
if (default_data_str == "") begin
$fdisplay(ERRFILE, "%0s ERROR: C_DEFAULT_DATA is empty!", C_CORENAME);
$finish;
end else begin
status = $sscanf(default_data_str, "%h", default_data);
if (status == 0) begin
$fdisplay(ERRFILE, {"%0s ERROR: Unsuccessful hexadecimal read",
"from C_DEFAULT_DATA: %0s"},
C_CORENAME, C_DEFAULT_DATA);
$finish;
end
end
end
// Step by WRITE_ADDR_A_DIV through the memory via the
// Port A write interface to hit every location once
addr_step = WRITE_ADDR_A_DIV;
// 'write' to every location with default (or 0)
for (i = 0; i < C_WRITE_DEPTH_A*addr_step; i = i + addr_step) begin
write_a(i, {C_WEA_WIDTH{1'b1}}, default_data, 1'b0, 1'b0);
end
// Get specialized data from the MIF file
if (C_LOAD_INIT_FILE) begin
if (init_file_str == "") begin
$fdisplay(ERRFILE, "%0s ERROR: C_INIT_FILE_NAME is empty!",
C_CORENAME);
$finish;
end else begin
initfile = $fopen(init_file_str, "r");
if (initfile == 0) begin
$fdisplay(ERRFILE, {"%0s, ERROR: Problem opening",
"C_INIT_FILE_NAME: %0s!"},
C_CORENAME, init_file_str);
$finish;
end else begin
// loop through the mif file, loading in the data
for (i = 0; i < C_WRITE_DEPTH_A*addr_step; i = i + addr_step) begin
status = $fscanf(initfile, "%b", mif_data);
if (status > 0) begin
write_a(i, {C_WEA_WIDTH{1'b1}}, mif_data, 1'b0, 1'b0);
end
end
$fclose(initfile);
end //initfile
end //init_file_str
end //C_LOAD_INIT_FILE
if (C_USE_BRAM_BLOCK) begin
// Get specialized data from the MIF file
if (C_INIT_FILE != "NONE") begin
if (mem_init_file_str == "") begin
$fdisplay(ERRFILE, "%0s ERROR: C_INIT_FILE is empty!",
C_CORENAME);
$finish;
end else begin
meminitfile = $fopen(mem_init_file_str, "r");
if (meminitfile == 0) begin
$fdisplay(ERRFILE, {"%0s, ERROR: Problem opening",
"C_INIT_FILE: %0s!"},
C_CORENAME, mem_init_file_str);
$finish;
end else begin
// loop through the mif file, loading in the data
$readmemh(mem_init_file_str, memory );
for (j = 0; j < MAX_DEPTH-1 ; j = j + 1) begin
end
$fclose(meminitfile);
end //meminitfile
end //mem_init_file_str
end //C_INIT_FILE
end //C_USE_BRAM_BLOCK
//Display output message indicating that the behavioral model is done
//initializing
if (C_USE_DEFAULT_DATA || C_LOAD_INIT_FILE)
$display(" Block Memory Generator data initialization complete.");
end
endtask
//**************
// log2roundup
//**************
function integer log2roundup (input integer data_value);
integer width;
integer cnt;
begin
width = 0;
if (data_value > 1) begin
for(cnt=1 ; cnt < data_value ; cnt = cnt * 2) begin
width = width + 1;
end //loop
end //if
log2roundup = width;
end //log2roundup
endfunction
//*******************
// collision_check
//*******************
function integer collision_check (input reg [C_ADDRA_WIDTH-1:0] addr_a,
input integer iswrite_a,
input reg [C_ADDRB_WIDTH-1:0] addr_b,
input integer iswrite_b);
reg c_aw_bw, c_aw_br, c_ar_bw;
integer scaled_addra_to_waddrb_width;
integer scaled_addrb_to_waddrb_width;
integer scaled_addra_to_waddra_width;
integer scaled_addrb_to_waddra_width;
integer scaled_addra_to_raddrb_width;
integer scaled_addrb_to_raddrb_width;
integer scaled_addra_to_raddra_width;
integer scaled_addrb_to_raddra_width;
begin
c_aw_bw = 0;
c_aw_br = 0;
c_ar_bw = 0;
//If write_addr_b_width is smaller, scale both addresses to that width for
//comparing write_addr_a and write_addr_b; addr_a starts as C_ADDRA_WIDTH,
//scale it down to write_addr_b_width. addr_b starts as C_ADDRB_WIDTH,
//scale it down to write_addr_b_width. Once both are scaled to
//write_addr_b_width, compare.
scaled_addra_to_waddrb_width = ((addr_a)/
2**(C_ADDRA_WIDTH-write_addr_b_width));
scaled_addrb_to_waddrb_width = ((addr_b)/
2**(C_ADDRB_WIDTH-write_addr_b_width));
//If write_addr_a_width is smaller, scale both addresses to that width for
//comparing write_addr_a and write_addr_b; addr_a starts as C_ADDRA_WIDTH,
//scale it down to write_addr_a_width. addr_b starts as C_ADDRB_WIDTH,
//scale it down to write_addr_a_width. Once both are scaled to
//write_addr_a_width, compare.
scaled_addra_to_waddra_width = ((addr_a)/
2**(C_ADDRA_WIDTH-write_addr_a_width));
scaled_addrb_to_waddra_width = ((addr_b)/
2**(C_ADDRB_WIDTH-write_addr_a_width));
//If read_addr_b_width is smaller, scale both addresses to that width for
//comparing write_addr_a and read_addr_b; addr_a starts as C_ADDRA_WIDTH,
//scale it down to read_addr_b_width. addr_b starts as C_ADDRB_WIDTH,
//scale it down to read_addr_b_width. Once both are scaled to
//read_addr_b_width, compare.
scaled_addra_to_raddrb_width = ((addr_a)/
2**(C_ADDRA_WIDTH-read_addr_b_width));
scaled_addrb_to_raddrb_width = ((addr_b)/
2**(C_ADDRB_WIDTH-read_addr_b_width));
//If read_addr_a_width is smaller, scale both addresses to that width for
//comparing read_addr_a and write_addr_b; addr_a starts as C_ADDRA_WIDTH,
//scale it down to read_addr_a_width. addr_b starts as C_ADDRB_WIDTH,
//scale it down to read_addr_a_width. Once both are scaled to
//read_addr_a_width, compare.
scaled_addra_to_raddra_width = ((addr_a)/
2**(C_ADDRA_WIDTH-read_addr_a_width));
scaled_addrb_to_raddra_width = ((addr_b)/
2**(C_ADDRB_WIDTH-read_addr_a_width));
//Look for a write-write collision. In order for a write-write
//collision to exist, both ports must have a write transaction.
if (iswrite_a && iswrite_b) begin
if (write_addr_a_width > write_addr_b_width) begin
if (scaled_addra_to_waddrb_width == scaled_addrb_to_waddrb_width) begin
c_aw_bw = 1;
end else begin
c_aw_bw = 0;
end
end else begin
if (scaled_addrb_to_waddra_width == scaled_addra_to_waddra_width) begin
c_aw_bw = 1;
end else begin
c_aw_bw = 0;
end
end //width
end //iswrite_a and iswrite_b
//If the B port is reading (which means it is enabled - so could be
//a TX_WRITE or TX_READ), then check for a write-read collision).
//This could happen whether or not a write-write collision exists due
//to asymmetric write/read ports.
if (iswrite_a) begin
if (write_addr_a_width > read_addr_b_width) begin
if (scaled_addra_to_raddrb_width == scaled_addrb_to_raddrb_width) begin
c_aw_br = 1;
end else begin
c_aw_br = 0;
end
end else begin
if (scaled_addrb_to_waddra_width == scaled_addra_to_waddra_width) begin
c_aw_br = 1;
end else begin
c_aw_br = 0;
end
end //width
end //iswrite_a
//If the A port is reading (which means it is enabled - so could be
// a TX_WRITE or TX_READ), then check for a write-read collision).
//This could happen whether or not a write-write collision exists due
// to asymmetric write/read ports.
if (iswrite_b) begin
if (read_addr_a_width > write_addr_b_width) begin
if (scaled_addra_to_waddrb_width == scaled_addrb_to_waddrb_width) begin
c_ar_bw = 1;
end else begin
c_ar_bw = 0;
end
end else begin
if (scaled_addrb_to_raddra_width == scaled_addra_to_raddra_width) begin
c_ar_bw = 1;
end else begin
c_ar_bw = 0;
end
end //width
end //iswrite_b
collision_check = c_aw_bw | c_aw_br | c_ar_bw;
end
endfunction
//*******************************
// power on values
//*******************************
initial begin
// Load up the memory
init_memory;
// Load up the output registers and latches
if ($sscanf(inita_str, "%h", inita_val)) begin
memory_out_a = inita_val;
end else begin
memory_out_a = 0;
end
if ($sscanf(initb_str, "%h", initb_val)) begin
memory_out_b = initb_val;
end else begin
memory_out_b = 0;
end
sbiterr_in = 1'b0;
dbiterr_in = 1'b0;
rdaddrecc_in = 0;
// Determine the effective address widths for each of the 4 ports
write_addr_a_width = C_ADDRA_WIDTH - log2roundup(WRITE_ADDR_A_DIV);
read_addr_a_width = C_ADDRA_WIDTH - log2roundup(READ_ADDR_A_DIV);
write_addr_b_width = C_ADDRB_WIDTH - log2roundup(WRITE_ADDR_B_DIV);
read_addr_b_width = C_ADDRB_WIDTH - log2roundup(READ_ADDR_B_DIV);
$display("Block Memory Generator module %m is using a behavioral model for simulation which will not precisely model memory collision behavior.");
end
//***************************************************************************
// These are the main blocks which schedule read and write operations
// Note that the reset priority feature at the latch stage is only supported
// for Spartan-6. For other families, the default priority at the latch stage
// is "CE"
//***************************************************************************
// Synchronous clocks: schedule port operations with respect to
// both write operating modes
generate
if(C_COMMON_CLK && (C_WRITE_MODE_A == "WRITE_FIRST") && (C_WRITE_MODE_B ==
"WRITE_FIRST")) begin : com_clk_sched_wf_wf
always @(posedge CLKA) begin
//Write A
if (wea_i) write_a(ADDRA, wea_i, DINA, INJECTSBITERR, INJECTDBITERR);
//Write B
if (web_i) write_b(ADDRB, web_i, DINB);
if (rea_i) read_a(ADDRA, reseta_i);
//Read B
if (reb_i) read_b(ADDRB, resetb_i);
end
end
else
if(C_COMMON_CLK && (C_WRITE_MODE_A == "READ_FIRST") && (C_WRITE_MODE_B ==
"WRITE_FIRST")) begin : com_clk_sched_rf_wf
always @(posedge CLKA) begin
//Write B
if (web_i) write_b(ADDRB, web_i, DINB);
//Read B
if (reb_i) read_b(ADDRB, resetb_i);
//Read A
if (rea_i) read_a(ADDRA, reseta_i);
//Write A
if (wea_i) write_a(ADDRA, wea_i, DINA, INJECTSBITERR, INJECTDBITERR);
end
end
else
if(C_COMMON_CLK && (C_WRITE_MODE_A == "WRITE_FIRST") && (C_WRITE_MODE_B ==
"READ_FIRST")) begin : com_clk_sched_wf_rf
always @(posedge CLKA) begin
//Write A
if (wea_i) write_a(ADDRA, wea_i, DINA, INJECTSBITERR, INJECTDBITERR);
//Read A
if (rea_i) read_a(ADDRA, reseta_i);
//Read B
if (reb_i) read_b(ADDRB, resetb_i);
//Write B
if (web_i) write_b(ADDRB, web_i, DINB);
end
end
else
if(C_COMMON_CLK && (C_WRITE_MODE_A == "READ_FIRST") && (C_WRITE_MODE_B ==
"READ_FIRST")) begin : com_clk_sched_rf_rf
always @(posedge CLKA) begin
//Read A
if (rea_i) read_a(ADDRA, reseta_i);
//Read B
if (reb_i) read_b(ADDRB, resetb_i);
//Write A
if (wea_i) write_a(ADDRA, wea_i, DINA, INJECTSBITERR, INJECTDBITERR);
//Write B
if (web_i) write_b(ADDRB, web_i, DINB);
end
end
else if(C_COMMON_CLK && (C_WRITE_MODE_A =="WRITE_FIRST") && (C_WRITE_MODE_B ==
"NO_CHANGE")) begin : com_clk_sched_wf_nc
always @(posedge CLKA) begin
//Write A
if (wea_i) write_a(ADDRA, wea_i, DINA, INJECTSBITERR, INJECTDBITERR);
//Read A
if (rea_i) read_a(ADDRA, reseta_i);
//Read B
if (reb_i && (!web_i || resetb_i)) read_b(ADDRB, resetb_i);
//Write B
if (web_i) write_b(ADDRB, web_i, DINB);
end
end
else if(C_COMMON_CLK && (C_WRITE_MODE_A =="READ_FIRST") && (C_WRITE_MODE_B ==
"NO_CHANGE")) begin : com_clk_sched_rf_nc
always @(posedge CLKA) begin
//Read A
if (rea_i) read_a(ADDRA, reseta_i);
//Read B
if (reb_i && (!web_i || resetb_i)) read_b(ADDRB, resetb_i);
//Write A
if (wea_i) write_a(ADDRA, wea_i, DINA, INJECTSBITERR, INJECTDBITERR);
//Write B
if (web_i) write_b(ADDRB, web_i, DINB);
end
end
else if(C_COMMON_CLK && (C_WRITE_MODE_A =="NO_CHANGE") && (C_WRITE_MODE_B ==
"WRITE_FIRST")) begin : com_clk_sched_nc_wf
always @(posedge CLKA) begin
//Write A
if (wea_i) write_a(ADDRA, wea_i, DINA, INJECTSBITERR, INJECTDBITERR);
//Write B
if (web_i) write_b(ADDRB, web_i, DINB);
//Read A
if (rea_i && (!wea_i || reseta_i)) read_a(ADDRA, reseta_i);
//Read B
if (reb_i) read_b(ADDRB, resetb_i);
end
end
else if(C_COMMON_CLK && (C_WRITE_MODE_A =="NO_CHANGE") && (C_WRITE_MODE_B ==
"READ_FIRST")) begin : com_clk_sched_nc_rf
always @(posedge CLKA) begin
//Read B
if (reb_i) read_b(ADDRB, resetb_i);
//Read A
if (rea_i && (!wea_i || reseta_i)) read_a(ADDRA, reseta_i);
//Write A
if (wea_i) write_a(ADDRA, wea_i, DINA, INJECTSBITERR, INJECTDBITERR);
//Write B
if (web_i) write_b(ADDRB, web_i, DINB);
end
end
else if(C_COMMON_CLK && (C_WRITE_MODE_A =="NO_CHANGE") && (C_WRITE_MODE_B ==
"NO_CHANGE")) begin : com_clk_sched_nc_nc
always @(posedge CLKA) begin
//Write A
if (wea_i) write_a(ADDRA, wea_i, DINA, INJECTSBITERR, INJECTDBITERR);
//Write B
if (web_i) write_b(ADDRB, web_i, DINB);
//Read A
if (rea_i && (!wea_i || reseta_i)) read_a(ADDRA, reseta_i);
//Read B
if (reb_i && (!web_i || resetb_i)) read_b(ADDRB, resetb_i);
end
end
else if(C_COMMON_CLK) begin: com_clk_sched_default
always @(posedge CLKA) begin
//Write A
if (wea_i) write_a(ADDRA, wea_i, DINA, INJECTSBITERR, INJECTDBITERR);
//Write B
if (web_i) write_b(ADDRB, web_i, DINB);
//Read A
if (rea_i) read_a(ADDRA, reseta_i);
//Read B
if (reb_i) read_b(ADDRB, resetb_i);
end
end
endgenerate
// Asynchronous clocks: port operation is independent
generate
if((!C_COMMON_CLK) && (C_WRITE_MODE_A == "WRITE_FIRST")) begin : async_clk_sched_clka_wf
always @(posedge CLKA) begin
//Write A
if (wea_i) write_a(ADDRA, wea_i, DINA, INJECTSBITERR, INJECTDBITERR);
//Read A
if (rea_i) read_a(ADDRA, reseta_i);
end
end
else if((!C_COMMON_CLK) && (C_WRITE_MODE_A == "READ_FIRST")) begin : async_clk_sched_clka_rf
always @(posedge CLKA) begin
//Read A
if (rea_i) read_a(ADDRA, reseta_i);
//Write A
if (wea_i) write_a(ADDRA, wea_i, DINA, INJECTSBITERR, INJECTDBITERR);
end
end
else if((!C_COMMON_CLK) && (C_WRITE_MODE_A == "NO_CHANGE")) begin : async_clk_sched_clka_nc
always @(posedge CLKA) begin
//Write A
if (wea_i) write_a(ADDRA, wea_i, DINA, INJECTSBITERR, INJECTDBITERR);
//Read A
if (rea_i && (!wea_i || reseta_i)) read_a(ADDRA, reseta_i);
end
end
endgenerate
generate
if ((!C_COMMON_CLK) && (C_WRITE_MODE_B == "WRITE_FIRST")) begin: async_clk_sched_clkb_wf
always @(posedge CLKB) begin
//Write B
if (web_i) write_b(ADDRB, web_i, DINB);
//Read B
if (reb_i) read_b(ADDRB, resetb_i);
end
end
else if ((!C_COMMON_CLK) && (C_WRITE_MODE_B == "READ_FIRST")) begin: async_clk_sched_clkb_rf
always @(posedge CLKB) begin
//Read B
if (reb_i) read_b(ADDRB, resetb_i);
//Write B
if (web_i) write_b(ADDRB, web_i, DINB);
end
end
else if ((!C_COMMON_CLK) && (C_WRITE_MODE_B == "NO_CHANGE")) begin: async_clk_sched_clkb_nc
always @(posedge CLKB) begin
//Write B
if (web_i) write_b(ADDRB, web_i, DINB);
//Read B
if (reb_i && (!web_i || resetb_i)) read_b(ADDRB, resetb_i);
end
end
endgenerate
//***************************************************************
// Instantiate the variable depth output register stage module
//***************************************************************
// Port A
assign rsta_outp_stage = RSTA & (~SLEEP);
BLK_MEM_GEN_v8_2_output_stage
#(.C_FAMILY (C_FAMILY),
.C_XDEVICEFAMILY (C_XDEVICEFAMILY),
.C_RST_TYPE ("SYNC"),
.C_HAS_RST (C_HAS_RSTA),
.C_RSTRAM (C_RSTRAM_A),
.C_RST_PRIORITY (C_RST_PRIORITY_A),
.C_INIT_VAL (C_INITA_VAL),
.C_HAS_EN (C_HAS_ENA),
.C_HAS_REGCE (C_HAS_REGCEA),
.C_DATA_WIDTH (C_READ_WIDTH_A),
.C_ADDRB_WIDTH (C_ADDRB_WIDTH),
.C_HAS_MEM_OUTPUT_REGS (C_HAS_MEM_OUTPUT_REGS_A),
.C_USE_SOFTECC (C_USE_SOFTECC),
.C_USE_ECC (C_USE_ECC),
.NUM_STAGES (NUM_OUTPUT_STAGES_A),
.C_EN_ECC_PIPE (0),
.FLOP_DELAY (FLOP_DELAY))
reg_a
(.CLK (CLKA),
.RST (rsta_outp_stage),//(RSTA),
.EN (ENA),
.REGCE (REGCEA),
.DIN_I (memory_out_a),
.DOUT (DOUTA),
.SBITERR_IN_I (1'b0),
.DBITERR_IN_I (1'b0),
.SBITERR (),
.DBITERR (),
.RDADDRECC_IN_I ({C_ADDRB_WIDTH{1'b0}}),
.ECCPIPECE (1'b0),
.RDADDRECC ()
);
assign rstb_outp_stage = RSTB & (~SLEEP);
// Port B
BLK_MEM_GEN_v8_2_output_stage
#(.C_FAMILY (C_FAMILY),
.C_XDEVICEFAMILY (C_XDEVICEFAMILY),
.C_RST_TYPE ("SYNC"),
.C_HAS_RST (C_HAS_RSTB),
.C_RSTRAM (C_RSTRAM_B),
.C_RST_PRIORITY (C_RST_PRIORITY_B),
.C_INIT_VAL (C_INITB_VAL),
.C_HAS_EN (C_HAS_ENB),
.C_HAS_REGCE (C_HAS_REGCEB),
.C_DATA_WIDTH (C_READ_WIDTH_B),
.C_ADDRB_WIDTH (C_ADDRB_WIDTH),
.C_HAS_MEM_OUTPUT_REGS (C_HAS_MEM_OUTPUT_REGS_B),
.C_USE_SOFTECC (C_USE_SOFTECC),
.C_USE_ECC (C_USE_ECC),
.NUM_STAGES (NUM_OUTPUT_STAGES_B),
.C_EN_ECC_PIPE (C_EN_ECC_PIPE),
.FLOP_DELAY (FLOP_DELAY))
reg_b
(.CLK (CLKB),
.RST (rstb_outp_stage),//(RSTB),
.EN (ENB),
.REGCE (REGCEB),
.DIN_I (memory_out_b),
.DOUT (dout_i),
.SBITERR_IN_I (sbiterr_in),
.DBITERR_IN_I (dbiterr_in),
.SBITERR (sbiterr_i),
.DBITERR (dbiterr_i),
.RDADDRECC_IN_I (rdaddrecc_in),
.ECCPIPECE (ECCPIPECE),
.RDADDRECC (rdaddrecc_i)
);
//***************************************************************
// Instantiate the Input and Output register stages
//***************************************************************
BLK_MEM_GEN_v8_2_softecc_output_reg_stage
#(.C_DATA_WIDTH (C_READ_WIDTH_B),
.C_ADDRB_WIDTH (C_ADDRB_WIDTH),
.C_HAS_SOFTECC_OUTPUT_REGS_B (C_HAS_SOFTECC_OUTPUT_REGS_B),
.C_USE_SOFTECC (C_USE_SOFTECC),
.FLOP_DELAY (FLOP_DELAY))
has_softecc_output_reg_stage
(.CLK (CLKB),
.DIN (dout_i),
.DOUT (DOUTB),
.SBITERR_IN (sbiterr_i),
.DBITERR_IN (dbiterr_i),
.SBITERR (sbiterr_sdp),
.DBITERR (dbiterr_sdp),
.RDADDRECC_IN (rdaddrecc_i),
.RDADDRECC (rdaddrecc_sdp)
);
//****************************************************
// Synchronous collision checks
//****************************************************
// CR 780544 : To make verilog model's collison warnings in consistant with
// vhdl model, the non-blocking assignments are replaced with blocking
// assignments.
generate if (!C_DISABLE_WARN_BHV_COLL && C_COMMON_CLK) begin : sync_coll
always @(posedge CLKA) begin
// Possible collision if both are enabled and the addresses match
if (ena_i && enb_i) begin
if (wea_i || web_i) begin
is_collision = collision_check(ADDRA, wea_i, ADDRB, web_i);
end else begin
is_collision = 0;
end
end else begin
is_collision = 0;
end
// If the write port is in READ_FIRST mode, there is no collision
if (C_WRITE_MODE_A=="READ_FIRST" && wea_i && !web_i) begin
is_collision = 0;
end
if (C_WRITE_MODE_B=="READ_FIRST" && web_i && !wea_i) begin
is_collision = 0;
end
// Only flag if one of the accesses is a write
if (is_collision && (wea_i || web_i)) begin
$fwrite(COLLFILE, "%0s collision detected at time: %0d, ",
C_CORENAME, $time);
$fwrite(COLLFILE, "A %0s address: %0h, B %0s address: %0h\n",
wea_i ? "write" : "read", ADDRA,
web_i ? "write" : "read", ADDRB);
end
end
//****************************************************
// Asynchronous collision checks
//****************************************************
end else if (!C_DISABLE_WARN_BHV_COLL && !C_COMMON_CLK) begin : async_coll
// Delay A and B addresses in order to mimic setup/hold times
wire [C_ADDRA_WIDTH-1:0] #COLL_DELAY addra_delay = ADDRA;
wire [0:0] #COLL_DELAY wea_delay = wea_i;
wire #COLL_DELAY ena_delay = ena_i;
wire [C_ADDRB_WIDTH-1:0] #COLL_DELAY addrb_delay = ADDRB;
wire [0:0] #COLL_DELAY web_delay = web_i;
wire #COLL_DELAY enb_delay = enb_i;
// Do the checks w/rt A
always @(posedge CLKA) begin
// Possible collision if both are enabled and the addresses match
if (ena_i && enb_i) begin
if (wea_i || web_i) begin
is_collision_a = collision_check(ADDRA, wea_i, ADDRB, web_i);
end else begin
is_collision_a = 0;
end
end else begin
is_collision_a = 0;
end
if (ena_i && enb_delay) begin
if(wea_i || web_delay) begin
is_collision_delay_a = collision_check(ADDRA, wea_i, addrb_delay,
web_delay);
end else begin
is_collision_delay_a = 0;
end
end else begin
is_collision_delay_a = 0;
end
// Only flag if B access is a write
if (is_collision_a && web_i) begin
$fwrite(COLLFILE, "%0s collision detected at time: %0d, ",
C_CORENAME, $time);
$fwrite(COLLFILE, "A %0s address: %0h, B write address: %0h\n",
wea_i ? "write" : "read", ADDRA, ADDRB);
end else if (is_collision_delay_a && web_delay) begin
$fwrite(COLLFILE, "%0s collision detected at time: %0d, ",
C_CORENAME, $time);
$fwrite(COLLFILE, "A %0s address: %0h, B write address: %0h\n",
wea_i ? "write" : "read", ADDRA, addrb_delay);
end
end
// Do the checks w/rt B
always @(posedge CLKB) begin
// Possible collision if both are enabled and the addresses match
if (ena_i && enb_i) begin
if (wea_i || web_i) begin
is_collision_b = collision_check(ADDRA, wea_i, ADDRB, web_i);
end else begin
is_collision_b = 0;
end
end else begin
is_collision_b = 0;
end
if (ena_delay && enb_i) begin
if (wea_delay || web_i) begin
is_collision_delay_b = collision_check(addra_delay, wea_delay, ADDRB,
web_i);
end else begin
is_collision_delay_b = 0;
end
end else begin
is_collision_delay_b = 0;
end
// Only flag if A access is a write
if (is_collision_b && wea_i) begin
$fwrite(COLLFILE, "%0s collision detected at time: %0d, ",
C_CORENAME, $time);
$fwrite(COLLFILE, "A write address: %0h, B %s address: %0h\n",
ADDRA, web_i ? "write" : "read", ADDRB);
end else if (is_collision_delay_b && wea_delay) begin
$fwrite(COLLFILE, "%0s collision detected at time: %0d, ",
C_CORENAME, $time);
$fwrite(COLLFILE, "A write address: %0h, B %s address: %0h\n",
addra_delay, web_i ? "write" : "read", ADDRB);
end
end
end
endgenerate
endmodule
//*****************************************************************************
// Top module wraps Input register and Memory module
//
// This module is the top-level behavioral model and this implements the memory
// module and the input registers
//*****************************************************************************
module blk_mem_gen_v8_2
#(parameter C_CORENAME = "blk_mem_gen_v8_2",
parameter C_FAMILY = "virtex7",
parameter C_XDEVICEFAMILY = "virtex7",
parameter C_ELABORATION_DIR = "",
parameter C_INTERFACE_TYPE = 0,
parameter C_USE_BRAM_BLOCK = 0,
parameter C_CTRL_ECC_ALGO = "NONE",
parameter C_ENABLE_32BIT_ADDRESS = 0,
parameter C_AXI_TYPE = 0,
parameter C_AXI_SLAVE_TYPE = 0,
parameter C_HAS_AXI_ID = 0,
parameter C_AXI_ID_WIDTH = 4,
parameter C_MEM_TYPE = 2,
parameter C_BYTE_SIZE = 9,
parameter C_ALGORITHM = 1,
parameter C_PRIM_TYPE = 3,
parameter C_LOAD_INIT_FILE = 0,
parameter C_INIT_FILE_NAME = "",
parameter C_INIT_FILE = "",
parameter C_USE_DEFAULT_DATA = 0,
parameter C_DEFAULT_DATA = "0",
//parameter C_RST_TYPE = "SYNC",
parameter C_HAS_RSTA = 0,
parameter C_RST_PRIORITY_A = "CE",
parameter C_RSTRAM_A = 0,
parameter C_INITA_VAL = "0",
parameter C_HAS_ENA = 1,
parameter C_HAS_REGCEA = 0,
parameter C_USE_BYTE_WEA = 0,
parameter C_WEA_WIDTH = 1,
parameter C_WRITE_MODE_A = "WRITE_FIRST",
parameter C_WRITE_WIDTH_A = 32,
parameter C_READ_WIDTH_A = 32,
parameter C_WRITE_DEPTH_A = 64,
parameter C_READ_DEPTH_A = 64,
parameter C_ADDRA_WIDTH = 5,
parameter C_HAS_RSTB = 0,
parameter C_RST_PRIORITY_B = "CE",
parameter C_RSTRAM_B = 0,
parameter C_INITB_VAL = "",
parameter C_HAS_ENB = 1,
parameter C_HAS_REGCEB = 0,
parameter C_USE_BYTE_WEB = 0,
parameter C_WEB_WIDTH = 1,
parameter C_WRITE_MODE_B = "WRITE_FIRST",
parameter C_WRITE_WIDTH_B = 32,
parameter C_READ_WIDTH_B = 32,
parameter C_WRITE_DEPTH_B = 64,
parameter C_READ_DEPTH_B = 64,
parameter C_ADDRB_WIDTH = 5,
parameter C_HAS_MEM_OUTPUT_REGS_A = 0,
parameter C_HAS_MEM_OUTPUT_REGS_B = 0,
parameter C_HAS_MUX_OUTPUT_REGS_A = 0,
parameter C_HAS_MUX_OUTPUT_REGS_B = 0,
parameter C_HAS_SOFTECC_INPUT_REGS_A = 0,
parameter C_HAS_SOFTECC_OUTPUT_REGS_B= 0,
parameter C_MUX_PIPELINE_STAGES = 0,
parameter C_USE_SOFTECC = 0,
parameter C_USE_ECC = 0,
parameter C_EN_ECC_PIPE = 0,
parameter C_HAS_INJECTERR = 0,
parameter C_SIM_COLLISION_CHECK = "NONE",
parameter C_COMMON_CLK = 1,
parameter C_DISABLE_WARN_BHV_COLL = 0,
parameter C_EN_SLEEP_PIN = 0,
parameter C_USE_URAM = 0,
parameter C_EN_RDADDRA_CHG = 0,
parameter C_EN_RDADDRB_CHG = 0,
parameter C_EN_DEEPSLEEP_PIN = 0,
parameter C_EN_SHUTDOWN_PIN = 0,
parameter C_DISABLE_WARN_BHV_RANGE = 0,
parameter C_COUNT_36K_BRAM = "",
parameter C_COUNT_18K_BRAM = "",
parameter C_EST_POWER_SUMMARY = ""
)
(input clka,
input rsta,
input ena,
input regcea,
input [C_WEA_WIDTH-1:0] wea,
input [C_ADDRA_WIDTH-1:0] addra,
input [C_WRITE_WIDTH_A-1:0] dina,
output [C_READ_WIDTH_A-1:0] douta,
input clkb,
input rstb,
input enb,
input regceb,
input [C_WEB_WIDTH-1:0] web,
input [C_ADDRB_WIDTH-1:0] addrb,
input [C_WRITE_WIDTH_B-1:0] dinb,
output [C_READ_WIDTH_B-1:0] doutb,
input injectsbiterr,
input injectdbiterr,
output sbiterr,
output dbiterr,
output [C_ADDRB_WIDTH-1:0] rdaddrecc,
input eccpipece,
input sleep,
input deepsleep,
input shutdown,
//AXI BMG Input and Output Port Declarations
//AXI Global Signals
input s_aclk,
input s_aresetn,
//AXI Full/lite slave write (write side)
input [C_AXI_ID_WIDTH-1:0] s_axi_awid,
input [31:0] s_axi_awaddr,
input [7:0] s_axi_awlen,
input [2:0] s_axi_awsize,
input [1:0] s_axi_awburst,
input s_axi_awvalid,
output s_axi_awready,
input [C_WRITE_WIDTH_A-1:0] s_axi_wdata,
input [C_WEA_WIDTH-1:0] s_axi_wstrb,
input s_axi_wlast,
input s_axi_wvalid,
output s_axi_wready,
output [C_AXI_ID_WIDTH-1:0] s_axi_bid,
output [1:0] s_axi_bresp,
output s_axi_bvalid,
input s_axi_bready,
//AXI Full/lite slave read (write side)
input [C_AXI_ID_WIDTH-1:0] s_axi_arid,
input [31:0] s_axi_araddr,
input [7:0] s_axi_arlen,
input [2:0] s_axi_arsize,
input [1:0] s_axi_arburst,
input s_axi_arvalid,
output s_axi_arready,
output [C_AXI_ID_WIDTH-1:0] s_axi_rid,
output [C_WRITE_WIDTH_B-1:0] s_axi_rdata,
output [1:0] s_axi_rresp,
output s_axi_rlast,
output s_axi_rvalid,
input s_axi_rready,
//AXI Full/lite sideband signals
input s_axi_injectsbiterr,
input s_axi_injectdbiterr,
output s_axi_sbiterr,
output s_axi_dbiterr,
output [C_ADDRB_WIDTH-1:0] s_axi_rdaddrecc
);
//******************************
// Port and Generic Definitions
//******************************
//////////////////////////////////////////////////////////////////////////
// Generic Definitions
//////////////////////////////////////////////////////////////////////////
// C_CORENAME : Instance name of the Block Memory Generator core
// C_FAMILY,C_XDEVICEFAMILY: Designates architecture targeted. The following
// options are available - "spartan3", "spartan6",
// "virtex4", "virtex5", "virtex6" and "virtex6l".
// C_MEM_TYPE : Designates memory type.
// It can be
// 0 - Single Port Memory
// 1 - Simple Dual Port Memory
// 2 - True Dual Port Memory
// 3 - Single Port Read Only Memory
// 4 - Dual Port Read Only Memory
// C_BYTE_SIZE : Size of a byte (8 or 9 bits)
// C_ALGORITHM : Designates the algorithm method used
// for constructing the memory.
// It can be Fixed_Primitives, Minimum_Area or
// Low_Power
// C_PRIM_TYPE : Designates the user selected primitive used to
// construct the memory.
//
// C_LOAD_INIT_FILE : Designates the use of an initialization file to
// initialize memory contents.
// C_INIT_FILE_NAME : Memory initialization file name.
// C_USE_DEFAULT_DATA : Designates whether to fill remaining
// initialization space with default data
// C_DEFAULT_DATA : Default value of all memory locations
// not initialized by the memory
// initialization file.
// C_RST_TYPE : Type of reset - Synchronous or Asynchronous
// C_HAS_RSTA : Determines the presence of the RSTA port
// C_RST_PRIORITY_A : Determines the priority between CE and SR for
// Port A.
// C_RSTRAM_A : Determines if special reset behavior is used for
// Port A
// C_INITA_VAL : The initialization value for Port A
// C_HAS_ENA : Determines the presence of the ENA port
// C_HAS_REGCEA : Determines the presence of the REGCEA port
// C_USE_BYTE_WEA : Determines if the Byte Write is used or not.
// C_WEA_WIDTH : The width of the WEA port
// C_WRITE_MODE_A : Configurable write mode for Port A. It can be
// WRITE_FIRST, READ_FIRST or NO_CHANGE.
// C_WRITE_WIDTH_A : Memory write width for Port A.
// C_READ_WIDTH_A : Memory read width for Port A.
// C_WRITE_DEPTH_A : Memory write depth for Port A.
// C_READ_DEPTH_A : Memory read depth for Port A.
// C_ADDRA_WIDTH : Width of the ADDRA input port
// C_HAS_RSTB : Determines the presence of the RSTB port
// C_RST_PRIORITY_B : Determines the priority between CE and SR for
// Port B.
// C_RSTRAM_B : Determines if special reset behavior is used for
// Port B
// C_INITB_VAL : The initialization value for Port B
// C_HAS_ENB : Determines the presence of the ENB port
// C_HAS_REGCEB : Determines the presence of the REGCEB port
// C_USE_BYTE_WEB : Determines if the Byte Write is used or not.
// C_WEB_WIDTH : The width of the WEB port
// C_WRITE_MODE_B : Configurable write mode for Port B. It can be
// WRITE_FIRST, READ_FIRST or NO_CHANGE.
// C_WRITE_WIDTH_B : Memory write width for Port B.
// C_READ_WIDTH_B : Memory read width for Port B.
// C_WRITE_DEPTH_B : Memory write depth for Port B.
// C_READ_DEPTH_B : Memory read depth for Port B.
// C_ADDRB_WIDTH : Width of the ADDRB input port
// C_HAS_MEM_OUTPUT_REGS_A : Designates the use of a register at the output
// of the RAM primitive for Port A.
// C_HAS_MEM_OUTPUT_REGS_B : Designates the use of a register at the output
// of the RAM primitive for Port B.
// C_HAS_MUX_OUTPUT_REGS_A : Designates the use of a register at the output
// of the MUX for Port A.
// C_HAS_MUX_OUTPUT_REGS_B : Designates the use of a register at the output
// of the MUX for Port B.
// C_HAS_SOFTECC_INPUT_REGS_A :
// C_HAS_SOFTECC_OUTPUT_REGS_B :
// C_MUX_PIPELINE_STAGES : Designates the number of pipeline stages in
// between the muxes.
// C_USE_SOFTECC : Determines if the Soft ECC feature is used or
// not. Only applicable Spartan-6
// C_USE_ECC : Determines if the ECC feature is used or
// not. Only applicable for V5 and V6
// C_HAS_INJECTERR : Determines if the error injection pins
// are present or not. If the ECC feature
// is not used, this value is defaulted to
// 0, else the following are the allowed
// values:
// 0 : No INJECTSBITERR or INJECTDBITERR pins
// 1 : Only INJECTSBITERR pin exists
// 2 : Only INJECTDBITERR pin exists
// 3 : Both INJECTSBITERR and INJECTDBITERR pins exist
// C_SIM_COLLISION_CHECK : Controls the disabling of Unisim model collision
// warnings. It can be "ALL", "NONE",
// "Warnings_Only" or "Generate_X_Only".
// C_COMMON_CLK : Determins if the core has a single CLK input.
// C_DISABLE_WARN_BHV_COLL : Controls the Behavioral Model Collision warnings
// C_DISABLE_WARN_BHV_RANGE: Controls the Behavioral Model Out of Range
// warnings
//////////////////////////////////////////////////////////////////////////
// Port Definitions
//////////////////////////////////////////////////////////////////////////
// CLKA : Clock to synchronize all read and write operations of Port A.
// RSTA : Reset input to reset memory outputs to a user-defined
// reset state for Port A.
// ENA : Enable all read and write operations of Port A.
// REGCEA : Register Clock Enable to control each pipeline output
// register stages for Port A.
// WEA : Write Enable to enable all write operations of Port A.
// ADDRA : Address of Port A.
// DINA : Data input of Port A.
// DOUTA : Data output of Port A.
// CLKB : Clock to synchronize all read and write operations of Port B.
// RSTB : Reset input to reset memory outputs to a user-defined
// reset state for Port B.
// ENB : Enable all read and write operations of Port B.
// REGCEB : Register Clock Enable to control each pipeline output
// register stages for Port B.
// WEB : Write Enable to enable all write operations of Port B.
// ADDRB : Address of Port B.
// DINB : Data input of Port B.
// DOUTB : Data output of Port B.
// INJECTSBITERR : Single Bit ECC Error Injection Pin.
// INJECTDBITERR : Double Bit ECC Error Injection Pin.
// SBITERR : Output signal indicating that a Single Bit ECC Error has been
// detected and corrected.
// DBITERR : Output signal indicating that a Double Bit ECC Error has been
// detected.
// RDADDRECC : Read Address Output signal indicating address at which an
// ECC error has occurred.
//////////////////////////////////////////////////////////////////////////
wire SBITERR;
wire DBITERR;
wire S_AXI_AWREADY;
wire S_AXI_WREADY;
wire S_AXI_BVALID;
wire S_AXI_ARREADY;
wire S_AXI_RLAST;
wire S_AXI_RVALID;
wire S_AXI_SBITERR;
wire S_AXI_DBITERR;
wire [C_WEA_WIDTH-1:0] WEA = wea;
wire [C_ADDRA_WIDTH-1:0] ADDRA = addra;
wire [C_WRITE_WIDTH_A-1:0] DINA = dina;
wire [C_READ_WIDTH_A-1:0] DOUTA;
wire [C_WEB_WIDTH-1:0] WEB = web;
wire [C_ADDRB_WIDTH-1:0] ADDRB = addrb;
wire [C_WRITE_WIDTH_B-1:0] DINB = dinb;
wire [C_READ_WIDTH_B-1:0] DOUTB;
wire [C_ADDRB_WIDTH-1:0] RDADDRECC;
wire [C_AXI_ID_WIDTH-1:0] S_AXI_AWID = s_axi_awid;
wire [31:0] S_AXI_AWADDR = s_axi_awaddr;
wire [7:0] S_AXI_AWLEN = s_axi_awlen;
wire [2:0] S_AXI_AWSIZE = s_axi_awsize;
wire [1:0] S_AXI_AWBURST = s_axi_awburst;
wire [C_WRITE_WIDTH_A-1:0] S_AXI_WDATA = s_axi_wdata;
wire [C_WEA_WIDTH-1:0] S_AXI_WSTRB = s_axi_wstrb;
wire [C_AXI_ID_WIDTH-1:0] S_AXI_BID;
wire [1:0] S_AXI_BRESP;
wire [C_AXI_ID_WIDTH-1:0] S_AXI_ARID = s_axi_arid;
wire [31:0] S_AXI_ARADDR = s_axi_araddr;
wire [7:0] S_AXI_ARLEN = s_axi_arlen;
wire [2:0] S_AXI_ARSIZE = s_axi_arsize;
wire [1:0] S_AXI_ARBURST = s_axi_arburst;
wire [C_AXI_ID_WIDTH-1:0] S_AXI_RID;
wire [C_WRITE_WIDTH_B-1:0] S_AXI_RDATA;
wire [1:0] S_AXI_RRESP;
wire [C_ADDRB_WIDTH-1:0] S_AXI_RDADDRECC;
// Added to fix the simulation warning #CR731605
wire [C_WEB_WIDTH-1:0] WEB_parameterized = 0;
wire ECCPIPECE;
wire SLEEP;
assign CLKA = clka;
assign RSTA = rsta;
assign ENA = ena;
assign REGCEA = regcea;
assign CLKB = clkb;
assign RSTB = rstb;
assign ENB = enb;
assign REGCEB = regceb;
assign INJECTSBITERR = injectsbiterr;
assign INJECTDBITERR = injectdbiterr;
assign ECCPIPECE = eccpipece;
assign SLEEP = sleep;
assign sbiterr = SBITERR;
assign dbiterr = DBITERR;
assign S_ACLK = s_aclk;
assign S_ARESETN = s_aresetn;
assign S_AXI_AWVALID = s_axi_awvalid;
assign s_axi_awready = S_AXI_AWREADY;
assign S_AXI_WLAST = s_axi_wlast;
assign S_AXI_WVALID = s_axi_wvalid;
assign s_axi_wready = S_AXI_WREADY;
assign s_axi_bvalid = S_AXI_BVALID;
assign S_AXI_BREADY = s_axi_bready;
assign S_AXI_ARVALID = s_axi_arvalid;
assign s_axi_arready = S_AXI_ARREADY;
assign s_axi_rlast = S_AXI_RLAST;
assign s_axi_rvalid = S_AXI_RVALID;
assign S_AXI_RREADY = s_axi_rready;
assign S_AXI_INJECTSBITERR = s_axi_injectsbiterr;
assign S_AXI_INJECTDBITERR = s_axi_injectdbiterr;
assign s_axi_sbiterr = S_AXI_SBITERR;
assign s_axi_dbiterr = S_AXI_DBITERR;
assign doutb = DOUTB;
assign douta = DOUTA;
assign rdaddrecc = RDADDRECC;
assign s_axi_bid = S_AXI_BID;
assign s_axi_bresp = S_AXI_BRESP;
assign s_axi_rid = S_AXI_RID;
assign s_axi_rdata = S_AXI_RDATA;
assign s_axi_rresp = S_AXI_RRESP;
assign s_axi_rdaddrecc = S_AXI_RDADDRECC;
localparam FLOP_DELAY = 100; // 100 ps
reg injectsbiterr_in;
reg injectdbiterr_in;
reg rsta_in;
reg ena_in;
reg regcea_in;
reg [C_WEA_WIDTH-1:0] wea_in;
reg [C_ADDRA_WIDTH-1:0] addra_in;
reg [C_WRITE_WIDTH_A-1:0] dina_in;
wire [C_ADDRA_WIDTH-1:0] s_axi_awaddr_out_c;
wire [C_ADDRB_WIDTH-1:0] s_axi_araddr_out_c;
wire s_axi_wr_en_c;
wire s_axi_rd_en_c;
wire s_aresetn_a_c;
wire [7:0] s_axi_arlen_c ;
wire [C_AXI_ID_WIDTH-1 : 0] s_axi_rid_c;
wire [C_WRITE_WIDTH_B-1 : 0] s_axi_rdata_c;
wire [1:0] s_axi_rresp_c;
wire s_axi_rlast_c;
wire s_axi_rvalid_c;
wire s_axi_rready_c;
wire regceb_c;
localparam C_AXI_PAYLOAD = (C_HAS_MUX_OUTPUT_REGS_B == 1)?C_WRITE_WIDTH_B+C_AXI_ID_WIDTH+3:C_AXI_ID_WIDTH+3;
wire [C_AXI_PAYLOAD-1 : 0] s_axi_payload_c;
wire [C_AXI_PAYLOAD-1 : 0] m_axi_payload_c;
//**************
// log2roundup
//**************
function integer log2roundup (input integer data_value);
integer width;
integer cnt;
begin
width = 0;
if (data_value > 1) begin
for(cnt=1 ; cnt < data_value ; cnt = cnt * 2) begin
width = width + 1;
end //loop
end //if
log2roundup = width;
end //log2roundup
endfunction
//**************
// log2int
//**************
function integer log2int (input integer data_value);
integer width;
integer cnt;
begin
width = 0;
cnt= data_value;
for(cnt=data_value ; cnt >1 ; cnt = cnt / 2) begin
width = width + 1;
end //loop
log2int = width;
end //log2int
endfunction
//**************************************************************************
// FUNCTION : divroundup
// Returns the ceiling value of the division
// Data_value - the quantity to be divided, dividend
// Divisor - the value to divide the data_value by
//**************************************************************************
function integer divroundup (input integer data_value,input integer divisor);
integer div;
begin
div = data_value/divisor;
if ((data_value % divisor) != 0) begin
div = div+1;
end //if
divroundup = div;
end //if
endfunction
localparam AXI_FULL_MEMORY_SLAVE = ((C_AXI_SLAVE_TYPE == 0 && C_AXI_TYPE == 1)?1:0);
localparam C_AXI_ADDR_WIDTH_MSB = C_ADDRA_WIDTH+log2roundup(C_WRITE_WIDTH_A/8);
localparam C_AXI_ADDR_WIDTH = C_AXI_ADDR_WIDTH_MSB;
//Data Width Number of LSB address bits to be discarded
//1 to 16 1
//17 to 32 2
//33 to 64 3
//65 to 128 4
//129 to 256 5
//257 to 512 6
//513 to 1024 7
// The following two constants determine this.
localparam LOWER_BOUND_VAL = (log2roundup(divroundup(C_WRITE_WIDTH_A,8) == 0))?0:(log2roundup(divroundup(C_WRITE_WIDTH_A,8)));
localparam C_AXI_ADDR_WIDTH_LSB = ((AXI_FULL_MEMORY_SLAVE == 1)?0:LOWER_BOUND_VAL);
localparam C_AXI_OS_WR = 2;
//***********************************************
// INPUT REGISTERS.
//***********************************************
generate if (C_HAS_SOFTECC_INPUT_REGS_A==0) begin : no_softecc_input_reg_stage
always @* begin
injectsbiterr_in = INJECTSBITERR;
injectdbiterr_in = INJECTDBITERR;
rsta_in = RSTA;
ena_in = ENA;
regcea_in = REGCEA;
wea_in = WEA;
addra_in = ADDRA;
dina_in = DINA;
end //end always
end //end no_softecc_input_reg_stage
endgenerate
generate if (C_HAS_SOFTECC_INPUT_REGS_A==1) begin : has_softecc_input_reg_stage
always @(posedge CLKA) begin
injectsbiterr_in <= #FLOP_DELAY INJECTSBITERR;
injectdbiterr_in <= #FLOP_DELAY INJECTDBITERR;
rsta_in <= #FLOP_DELAY RSTA;
ena_in <= #FLOP_DELAY ENA;
regcea_in <= #FLOP_DELAY REGCEA;
wea_in <= #FLOP_DELAY WEA;
addra_in <= #FLOP_DELAY ADDRA;
dina_in <= #FLOP_DELAY DINA;
end //end always
end //end input_reg_stages generate statement
endgenerate
generate if ((C_INTERFACE_TYPE == 0) && (C_ENABLE_32BIT_ADDRESS == 0)) begin : native_mem_module
BLK_MEM_GEN_v8_2_mem_module
#(.C_CORENAME (C_CORENAME),
.C_FAMILY (C_FAMILY),
.C_XDEVICEFAMILY (C_XDEVICEFAMILY),
.C_MEM_TYPE (C_MEM_TYPE),
.C_BYTE_SIZE (C_BYTE_SIZE),
.C_ALGORITHM (C_ALGORITHM),
.C_USE_BRAM_BLOCK (C_USE_BRAM_BLOCK),
.C_PRIM_TYPE (C_PRIM_TYPE),
.C_LOAD_INIT_FILE (C_LOAD_INIT_FILE),
.C_INIT_FILE_NAME (C_INIT_FILE_NAME),
.C_INIT_FILE (C_INIT_FILE),
.C_USE_DEFAULT_DATA (C_USE_DEFAULT_DATA),
.C_DEFAULT_DATA (C_DEFAULT_DATA),
.C_RST_TYPE ("SYNC"),
.C_HAS_RSTA (C_HAS_RSTA),
.C_RST_PRIORITY_A (C_RST_PRIORITY_A),
.C_RSTRAM_A (C_RSTRAM_A),
.C_INITA_VAL (C_INITA_VAL),
.C_HAS_ENA (C_HAS_ENA),
.C_HAS_REGCEA (C_HAS_REGCEA),
.C_USE_BYTE_WEA (C_USE_BYTE_WEA),
.C_WEA_WIDTH (C_WEA_WIDTH),
.C_WRITE_MODE_A (C_WRITE_MODE_A),
.C_WRITE_WIDTH_A (C_WRITE_WIDTH_A),
.C_READ_WIDTH_A (C_READ_WIDTH_A),
.C_WRITE_DEPTH_A (C_WRITE_DEPTH_A),
.C_READ_DEPTH_A (C_READ_DEPTH_A),
.C_ADDRA_WIDTH (C_ADDRA_WIDTH),
.C_HAS_RSTB (C_HAS_RSTB),
.C_RST_PRIORITY_B (C_RST_PRIORITY_B),
.C_RSTRAM_B (C_RSTRAM_B),
.C_INITB_VAL (C_INITB_VAL),
.C_HAS_ENB (C_HAS_ENB),
.C_HAS_REGCEB (C_HAS_REGCEB),
.C_USE_BYTE_WEB (C_USE_BYTE_WEB),
.C_WEB_WIDTH (C_WEB_WIDTH),
.C_WRITE_MODE_B (C_WRITE_MODE_B),
.C_WRITE_WIDTH_B (C_WRITE_WIDTH_B),
.C_READ_WIDTH_B (C_READ_WIDTH_B),
.C_WRITE_DEPTH_B (C_WRITE_DEPTH_B),
.C_READ_DEPTH_B (C_READ_DEPTH_B),
.C_ADDRB_WIDTH (C_ADDRB_WIDTH),
.C_HAS_MEM_OUTPUT_REGS_A (C_HAS_MEM_OUTPUT_REGS_A),
.C_HAS_MEM_OUTPUT_REGS_B (C_HAS_MEM_OUTPUT_REGS_B),
.C_HAS_MUX_OUTPUT_REGS_A (C_HAS_MUX_OUTPUT_REGS_A),
.C_HAS_MUX_OUTPUT_REGS_B (C_HAS_MUX_OUTPUT_REGS_B),
.C_HAS_SOFTECC_INPUT_REGS_A (C_HAS_SOFTECC_INPUT_REGS_A),
.C_HAS_SOFTECC_OUTPUT_REGS_B (C_HAS_SOFTECC_OUTPUT_REGS_B),
.C_MUX_PIPELINE_STAGES (C_MUX_PIPELINE_STAGES),
.C_USE_SOFTECC (C_USE_SOFTECC),
.C_USE_ECC (C_USE_ECC),
.C_HAS_INJECTERR (C_HAS_INJECTERR),
.C_SIM_COLLISION_CHECK (C_SIM_COLLISION_CHECK),
.C_COMMON_CLK (C_COMMON_CLK),
.FLOP_DELAY (FLOP_DELAY),
.C_DISABLE_WARN_BHV_COLL (C_DISABLE_WARN_BHV_COLL),
.C_EN_ECC_PIPE (C_EN_ECC_PIPE),
.C_DISABLE_WARN_BHV_RANGE (C_DISABLE_WARN_BHV_RANGE))
blk_mem_gen_v8_2_inst
(.CLKA (CLKA),
.RSTA (rsta_in),
.ENA (ena_in),
.REGCEA (regcea_in),
.WEA (wea_in),
.ADDRA (addra_in),
.DINA (dina_in),
.DOUTA (DOUTA),
.CLKB (CLKB),
.RSTB (RSTB),
.ENB (ENB),
.REGCEB (REGCEB),
.WEB (WEB),
.ADDRB (ADDRB),
.DINB (DINB),
.DOUTB (DOUTB),
.INJECTSBITERR (injectsbiterr_in),
.INJECTDBITERR (injectdbiterr_in),
.ECCPIPECE (ECCPIPECE),
.SLEEP (SLEEP),
.SBITERR (SBITERR),
.DBITERR (DBITERR),
.RDADDRECC (RDADDRECC)
);
end
endgenerate
generate if((C_INTERFACE_TYPE == 0) && (C_ENABLE_32BIT_ADDRESS == 1)) begin : native_mem_mapped_module
localparam C_ADDRA_WIDTH_ACTUAL = log2roundup(C_WRITE_DEPTH_A);
localparam C_ADDRB_WIDTH_ACTUAL = log2roundup(C_WRITE_DEPTH_B);
localparam C_ADDRA_WIDTH_MSB = C_ADDRA_WIDTH_ACTUAL+log2int(C_WRITE_WIDTH_A/8);
localparam C_ADDRB_WIDTH_MSB = C_ADDRB_WIDTH_ACTUAL+log2int(C_WRITE_WIDTH_B/8);
// localparam C_ADDRA_WIDTH_MSB = C_ADDRA_WIDTH_ACTUAL+log2roundup(C_WRITE_WIDTH_A/8);
// localparam C_ADDRB_WIDTH_MSB = C_ADDRB_WIDTH_ACTUAL+log2roundup(C_WRITE_WIDTH_B/8);
localparam C_MEM_MAP_ADDRA_WIDTH_MSB = C_ADDRA_WIDTH_MSB;
localparam C_MEM_MAP_ADDRB_WIDTH_MSB = C_ADDRB_WIDTH_MSB;
// Data Width Number of LSB address bits to be discarded
// 1 to 16 1
// 17 to 32 2
// 33 to 64 3
// 65 to 128 4
// 129 to 256 5
// 257 to 512 6
// 513 to 1024 7
// The following two constants determine this.
localparam MEM_MAP_LOWER_BOUND_VAL_A = (log2int(divroundup(C_WRITE_WIDTH_A,8)==0)) ? 0:(log2int(divroundup(C_WRITE_WIDTH_A,8)));
localparam MEM_MAP_LOWER_BOUND_VAL_B = (log2int(divroundup(C_WRITE_WIDTH_A,8)==0)) ? 0:(log2int(divroundup(C_WRITE_WIDTH_A,8)));
localparam C_MEM_MAP_ADDRA_WIDTH_LSB = MEM_MAP_LOWER_BOUND_VAL_A;
localparam C_MEM_MAP_ADDRB_WIDTH_LSB = MEM_MAP_LOWER_BOUND_VAL_B;
wire [C_ADDRB_WIDTH_ACTUAL-1 :0] rdaddrecc_i;
wire [C_ADDRB_WIDTH-1:C_MEM_MAP_ADDRB_WIDTH_MSB] msb_zero_i;
wire [C_MEM_MAP_ADDRB_WIDTH_LSB-1:0] lsb_zero_i;
assign msb_zero_i = 0;
assign lsb_zero_i = 0;
assign RDADDRECC = {msb_zero_i,rdaddrecc_i,lsb_zero_i};
BLK_MEM_GEN_v8_2_mem_module
#(.C_CORENAME (C_CORENAME),
.C_FAMILY (C_FAMILY),
.C_XDEVICEFAMILY (C_XDEVICEFAMILY),
.C_MEM_TYPE (C_MEM_TYPE),
.C_BYTE_SIZE (C_BYTE_SIZE),
.C_USE_BRAM_BLOCK (C_USE_BRAM_BLOCK),
.C_ALGORITHM (C_ALGORITHM),
.C_PRIM_TYPE (C_PRIM_TYPE),
.C_LOAD_INIT_FILE (C_LOAD_INIT_FILE),
.C_INIT_FILE_NAME (C_INIT_FILE_NAME),
.C_INIT_FILE (C_INIT_FILE),
.C_USE_DEFAULT_DATA (C_USE_DEFAULT_DATA),
.C_DEFAULT_DATA (C_DEFAULT_DATA),
.C_RST_TYPE ("SYNC"),
.C_HAS_RSTA (C_HAS_RSTA),
.C_RST_PRIORITY_A (C_RST_PRIORITY_A),
.C_RSTRAM_A (C_RSTRAM_A),
.C_INITA_VAL (C_INITA_VAL),
.C_HAS_ENA (C_HAS_ENA),
.C_HAS_REGCEA (C_HAS_REGCEA),
.C_USE_BYTE_WEA (C_USE_BYTE_WEA),
.C_WEA_WIDTH (C_WEA_WIDTH),
.C_WRITE_MODE_A (C_WRITE_MODE_A),
.C_WRITE_WIDTH_A (C_WRITE_WIDTH_A),
.C_READ_WIDTH_A (C_READ_WIDTH_A),
.C_WRITE_DEPTH_A (C_WRITE_DEPTH_A),
.C_READ_DEPTH_A (C_READ_DEPTH_A),
.C_ADDRA_WIDTH (C_ADDRA_WIDTH_ACTUAL),
.C_HAS_RSTB (C_HAS_RSTB),
.C_RST_PRIORITY_B (C_RST_PRIORITY_B),
.C_RSTRAM_B (C_RSTRAM_B),
.C_INITB_VAL (C_INITB_VAL),
.C_HAS_ENB (C_HAS_ENB),
.C_HAS_REGCEB (C_HAS_REGCEB),
.C_USE_BYTE_WEB (C_USE_BYTE_WEB),
.C_WEB_WIDTH (C_WEB_WIDTH),
.C_WRITE_MODE_B (C_WRITE_MODE_B),
.C_WRITE_WIDTH_B (C_WRITE_WIDTH_B),
.C_READ_WIDTH_B (C_READ_WIDTH_B),
.C_WRITE_DEPTH_B (C_WRITE_DEPTH_B),
.C_READ_DEPTH_B (C_READ_DEPTH_B),
.C_ADDRB_WIDTH (C_ADDRB_WIDTH_ACTUAL),
.C_HAS_MEM_OUTPUT_REGS_A (C_HAS_MEM_OUTPUT_REGS_A),
.C_HAS_MEM_OUTPUT_REGS_B (C_HAS_MEM_OUTPUT_REGS_B),
.C_HAS_MUX_OUTPUT_REGS_A (C_HAS_MUX_OUTPUT_REGS_A),
.C_HAS_MUX_OUTPUT_REGS_B (C_HAS_MUX_OUTPUT_REGS_B),
.C_HAS_SOFTECC_INPUT_REGS_A (C_HAS_SOFTECC_INPUT_REGS_A),
.C_HAS_SOFTECC_OUTPUT_REGS_B (C_HAS_SOFTECC_OUTPUT_REGS_B),
.C_MUX_PIPELINE_STAGES (C_MUX_PIPELINE_STAGES),
.C_USE_SOFTECC (C_USE_SOFTECC),
.C_USE_ECC (C_USE_ECC),
.C_HAS_INJECTERR (C_HAS_INJECTERR),
.C_SIM_COLLISION_CHECK (C_SIM_COLLISION_CHECK),
.C_COMMON_CLK (C_COMMON_CLK),
.FLOP_DELAY (FLOP_DELAY),
.C_DISABLE_WARN_BHV_COLL (C_DISABLE_WARN_BHV_COLL),
.C_EN_ECC_PIPE (C_EN_ECC_PIPE),
.C_DISABLE_WARN_BHV_RANGE (C_DISABLE_WARN_BHV_RANGE))
blk_mem_gen_v8_2_inst
(.CLKA (CLKA),
.RSTA (rsta_in),
.ENA (ena_in),
.REGCEA (regcea_in),
.WEA (wea_in),
.ADDRA (addra_in[C_MEM_MAP_ADDRA_WIDTH_MSB-1:C_MEM_MAP_ADDRA_WIDTH_LSB]),
.DINA (dina_in),
.DOUTA (DOUTA),
.CLKB (CLKB),
.RSTB (RSTB),
.ENB (ENB),
.REGCEB (REGCEB),
.WEB (WEB),
.ADDRB (ADDRB[C_MEM_MAP_ADDRB_WIDTH_MSB-1:C_MEM_MAP_ADDRB_WIDTH_LSB]),
.DINB (DINB),
.DOUTB (DOUTB),
.INJECTSBITERR (injectsbiterr_in),
.INJECTDBITERR (injectdbiterr_in),
.ECCPIPECE (ECCPIPECE),
.SLEEP (SLEEP),
.SBITERR (SBITERR),
.DBITERR (DBITERR),
.RDADDRECC (rdaddrecc_i)
);
end
endgenerate
generate if (C_HAS_MEM_OUTPUT_REGS_B == 0 && C_HAS_MUX_OUTPUT_REGS_B == 0 ) begin : no_regs
assign S_AXI_RDATA = s_axi_rdata_c;
assign S_AXI_RLAST = s_axi_rlast_c;
assign S_AXI_RVALID = s_axi_rvalid_c;
assign S_AXI_RID = s_axi_rid_c;
assign S_AXI_RRESP = s_axi_rresp_c;
assign s_axi_rready_c = S_AXI_RREADY;
end
endgenerate
generate if (C_HAS_MEM_OUTPUT_REGS_B == 1) begin : has_regceb
assign regceb_c = s_axi_rvalid_c && s_axi_rready_c;
end
endgenerate
generate if (C_HAS_MEM_OUTPUT_REGS_B == 0) begin : no_regceb
assign regceb_c = REGCEB;
end
endgenerate
generate if (C_HAS_MUX_OUTPUT_REGS_B == 1) begin : only_core_op_regs
assign s_axi_payload_c = {s_axi_rid_c,s_axi_rdata_c,s_axi_rresp_c,s_axi_rlast_c};
assign S_AXI_RID = m_axi_payload_c[C_AXI_PAYLOAD-1 : C_AXI_PAYLOAD-C_AXI_ID_WIDTH];
assign S_AXI_RDATA = m_axi_payload_c[C_AXI_PAYLOAD-C_AXI_ID_WIDTH-1 : C_AXI_PAYLOAD-C_AXI_ID_WIDTH-C_WRITE_WIDTH_B];
assign S_AXI_RRESP = m_axi_payload_c[2:1];
assign S_AXI_RLAST = m_axi_payload_c[0];
end
endgenerate
generate if (C_HAS_MEM_OUTPUT_REGS_B == 1) begin : only_emb_op_regs
assign s_axi_payload_c = {s_axi_rid_c,s_axi_rresp_c,s_axi_rlast_c};
assign S_AXI_RDATA = s_axi_rdata_c;
assign S_AXI_RID = m_axi_payload_c[C_AXI_PAYLOAD-1 : C_AXI_PAYLOAD-C_AXI_ID_WIDTH];
assign S_AXI_RRESP = m_axi_payload_c[2:1];
assign S_AXI_RLAST = m_axi_payload_c[0];
end
endgenerate
generate if (C_HAS_MUX_OUTPUT_REGS_B == 1 || C_HAS_MEM_OUTPUT_REGS_B == 1) begin : has_regs_fwd
blk_mem_axi_regs_fwd_v8_2
#(.C_DATA_WIDTH (C_AXI_PAYLOAD))
axi_regs_inst (
.ACLK (S_ACLK),
.ARESET (s_aresetn_a_c),
.S_VALID (s_axi_rvalid_c),
.S_READY (s_axi_rready_c),
.S_PAYLOAD_DATA (s_axi_payload_c),
.M_VALID (S_AXI_RVALID),
.M_READY (S_AXI_RREADY),
.M_PAYLOAD_DATA (m_axi_payload_c)
);
end
endgenerate
generate if (C_INTERFACE_TYPE == 1) begin : axi_mem_module
assign s_aresetn_a_c = !S_ARESETN;
assign S_AXI_BRESP = 2'b00;
assign s_axi_rresp_c = 2'b00;
assign s_axi_arlen_c = (C_AXI_TYPE == 1)?S_AXI_ARLEN:8'h0;
blk_mem_axi_write_wrapper_beh_v8_2
#(.C_INTERFACE_TYPE (C_INTERFACE_TYPE),
.C_AXI_TYPE (C_AXI_TYPE),
.C_AXI_SLAVE_TYPE (C_AXI_SLAVE_TYPE),
.C_MEMORY_TYPE (C_MEM_TYPE),
.C_WRITE_DEPTH_A (C_WRITE_DEPTH_A),
.C_AXI_AWADDR_WIDTH ((AXI_FULL_MEMORY_SLAVE == 1)?C_AXI_ADDR_WIDTH:C_AXI_ADDR_WIDTH-C_AXI_ADDR_WIDTH_LSB),
.C_HAS_AXI_ID (C_HAS_AXI_ID),
.C_AXI_ID_WIDTH (C_AXI_ID_WIDTH),
.C_ADDRA_WIDTH (C_ADDRA_WIDTH),
.C_AXI_WDATA_WIDTH (C_WRITE_WIDTH_A),
.C_AXI_OS_WR (C_AXI_OS_WR))
axi_wr_fsm (
// AXI Global Signals
.S_ACLK (S_ACLK),
.S_ARESETN (s_aresetn_a_c),
// AXI Full/Lite Slave Write interface
.S_AXI_AWADDR (S_AXI_AWADDR[C_AXI_ADDR_WIDTH_MSB-1:C_AXI_ADDR_WIDTH_LSB]),
.S_AXI_AWLEN (S_AXI_AWLEN),
.S_AXI_AWID (S_AXI_AWID),
.S_AXI_AWSIZE (S_AXI_AWSIZE),
.S_AXI_AWBURST (S_AXI_AWBURST),
.S_AXI_AWVALID (S_AXI_AWVALID),
.S_AXI_AWREADY (S_AXI_AWREADY),
.S_AXI_WVALID (S_AXI_WVALID),
.S_AXI_WREADY (S_AXI_WREADY),
.S_AXI_BVALID (S_AXI_BVALID),
.S_AXI_BREADY (S_AXI_BREADY),
.S_AXI_BID (S_AXI_BID),
// Signals for BRAM interfac(
.S_AXI_AWADDR_OUT (s_axi_awaddr_out_c),
.S_AXI_WR_EN (s_axi_wr_en_c)
);
blk_mem_axi_read_wrapper_beh_v8_2
#(.C_INTERFACE_TYPE (C_INTERFACE_TYPE),
.C_AXI_TYPE (C_AXI_TYPE),
.C_AXI_SLAVE_TYPE (C_AXI_SLAVE_TYPE),
.C_MEMORY_TYPE (C_MEM_TYPE),
.C_WRITE_WIDTH_A (C_WRITE_WIDTH_A),
.C_ADDRA_WIDTH (C_ADDRA_WIDTH),
.C_AXI_PIPELINE_STAGES (1),
.C_AXI_ARADDR_WIDTH ((AXI_FULL_MEMORY_SLAVE == 1)?C_AXI_ADDR_WIDTH:C_AXI_ADDR_WIDTH-C_AXI_ADDR_WIDTH_LSB),
.C_HAS_AXI_ID (C_HAS_AXI_ID),
.C_AXI_ID_WIDTH (C_AXI_ID_WIDTH),
.C_ADDRB_WIDTH (C_ADDRB_WIDTH))
axi_rd_sm(
//AXI Global Signals
.S_ACLK (S_ACLK),
.S_ARESETN (s_aresetn_a_c),
//AXI Full/Lite Read Side
.S_AXI_ARADDR (S_AXI_ARADDR[C_AXI_ADDR_WIDTH_MSB-1:C_AXI_ADDR_WIDTH_LSB]),
.S_AXI_ARLEN (s_axi_arlen_c),
.S_AXI_ARSIZE (S_AXI_ARSIZE),
.S_AXI_ARBURST (S_AXI_ARBURST),
.S_AXI_ARVALID (S_AXI_ARVALID),
.S_AXI_ARREADY (S_AXI_ARREADY),
.S_AXI_RLAST (s_axi_rlast_c),
.S_AXI_RVALID (s_axi_rvalid_c),
.S_AXI_RREADY (s_axi_rready_c),
.S_AXI_ARID (S_AXI_ARID),
.S_AXI_RID (s_axi_rid_c),
//AXI Full/Lite Read FSM Outputs
.S_AXI_ARADDR_OUT (s_axi_araddr_out_c),
.S_AXI_RD_EN (s_axi_rd_en_c)
);
BLK_MEM_GEN_v8_2_mem_module
#(.C_CORENAME (C_CORENAME),
.C_FAMILY (C_FAMILY),
.C_XDEVICEFAMILY (C_XDEVICEFAMILY),
.C_MEM_TYPE (C_MEM_TYPE),
.C_BYTE_SIZE (C_BYTE_SIZE),
.C_USE_BRAM_BLOCK (C_USE_BRAM_BLOCK),
.C_ALGORITHM (C_ALGORITHM),
.C_PRIM_TYPE (C_PRIM_TYPE),
.C_LOAD_INIT_FILE (C_LOAD_INIT_FILE),
.C_INIT_FILE_NAME (C_INIT_FILE_NAME),
.C_INIT_FILE (C_INIT_FILE),
.C_USE_DEFAULT_DATA (C_USE_DEFAULT_DATA),
.C_DEFAULT_DATA (C_DEFAULT_DATA),
.C_RST_TYPE ("SYNC"),
.C_HAS_RSTA (C_HAS_RSTA),
.C_RST_PRIORITY_A (C_RST_PRIORITY_A),
.C_RSTRAM_A (C_RSTRAM_A),
.C_INITA_VAL (C_INITA_VAL),
.C_HAS_ENA (1),
.C_HAS_REGCEA (C_HAS_REGCEA),
.C_USE_BYTE_WEA (1),
.C_WEA_WIDTH (C_WEA_WIDTH),
.C_WRITE_MODE_A (C_WRITE_MODE_A),
.C_WRITE_WIDTH_A (C_WRITE_WIDTH_A),
.C_READ_WIDTH_A (C_READ_WIDTH_A),
.C_WRITE_DEPTH_A (C_WRITE_DEPTH_A),
.C_READ_DEPTH_A (C_READ_DEPTH_A),
.C_ADDRA_WIDTH (C_ADDRA_WIDTH),
.C_HAS_RSTB (C_HAS_RSTB),
.C_RST_PRIORITY_B (C_RST_PRIORITY_B),
.C_RSTRAM_B (C_RSTRAM_B),
.C_INITB_VAL (C_INITB_VAL),
.C_HAS_ENB (1),
.C_HAS_REGCEB (C_HAS_MEM_OUTPUT_REGS_B),
.C_USE_BYTE_WEB (1),
.C_WEB_WIDTH (C_WEB_WIDTH),
.C_WRITE_MODE_B (C_WRITE_MODE_B),
.C_WRITE_WIDTH_B (C_WRITE_WIDTH_B),
.C_READ_WIDTH_B (C_READ_WIDTH_B),
.C_WRITE_DEPTH_B (C_WRITE_DEPTH_B),
.C_READ_DEPTH_B (C_READ_DEPTH_B),
.C_ADDRB_WIDTH (C_ADDRB_WIDTH),
.C_HAS_MEM_OUTPUT_REGS_A (0),
.C_HAS_MEM_OUTPUT_REGS_B (C_HAS_MEM_OUTPUT_REGS_B),
.C_HAS_MUX_OUTPUT_REGS_A (0),
.C_HAS_MUX_OUTPUT_REGS_B (0),
.C_HAS_SOFTECC_INPUT_REGS_A (C_HAS_SOFTECC_INPUT_REGS_A),
.C_HAS_SOFTECC_OUTPUT_REGS_B (C_HAS_SOFTECC_OUTPUT_REGS_B),
.C_MUX_PIPELINE_STAGES (C_MUX_PIPELINE_STAGES),
.C_USE_SOFTECC (C_USE_SOFTECC),
.C_USE_ECC (C_USE_ECC),
.C_HAS_INJECTERR (C_HAS_INJECTERR),
.C_SIM_COLLISION_CHECK (C_SIM_COLLISION_CHECK),
.C_COMMON_CLK (C_COMMON_CLK),
.FLOP_DELAY (FLOP_DELAY),
.C_DISABLE_WARN_BHV_COLL (C_DISABLE_WARN_BHV_COLL),
.C_EN_ECC_PIPE (0),
.C_DISABLE_WARN_BHV_RANGE (C_DISABLE_WARN_BHV_RANGE))
blk_mem_gen_v8_2_inst
(.CLKA (S_ACLK),
.RSTA (s_aresetn_a_c),
.ENA (s_axi_wr_en_c),
.REGCEA (regcea_in),
.WEA (S_AXI_WSTRB),
.ADDRA (s_axi_awaddr_out_c),
.DINA (S_AXI_WDATA),
.DOUTA (DOUTA),
.CLKB (S_ACLK),
.RSTB (s_aresetn_a_c),
.ENB (s_axi_rd_en_c),
.REGCEB (regceb_c),
.WEB (WEB_parameterized),
.ADDRB (s_axi_araddr_out_c),
.DINB (DINB),
.DOUTB (s_axi_rdata_c),
.INJECTSBITERR (injectsbiterr_in),
.INJECTDBITERR (injectdbiterr_in),
.SBITERR (SBITERR),
.DBITERR (DBITERR),
.ECCPIPECE (1'b0),
.SLEEP (1'b0),
.RDADDRECC (RDADDRECC)
);
end
endgenerate
endmodule
|
/******************************************************************************
-- (c) Copyright 2006 - 2013 Xilinx, Inc. All rights reserved.
--
-- This file contains confidential and proprietary information
-- of Xilinx, Inc. and is protected under U.S. and
-- international copyright and other intellectual property
-- laws.
--
-- DISCLAIMER
-- This disclaimer is not a license and does not grant any
-- rights to the materials distributed herewith. Except as
-- otherwise provided in a valid license issued to you by
-- Xilinx, and to the maximum extent permitted by applicable
-- law: (1) THESE MATERIALS ARE MADE AVAILABLE "AS IS" AND
-- WITH ALL FAULTS, AND XILINX HEREBY DISCLAIMS ALL WARRANTIES
-- AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING
-- BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, NON-
-- INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and
-- (2) Xilinx shall not be liable (whether in contract or tort,
-- including negligence, or under any other theory of
-- liability) for any loss or damage of any kind or nature
-- related to, arising under or in connection with these
-- materials, including for any direct, or any indirect,
-- special, incidental, or consequential loss or damage
-- (including loss of data, profits, goodwill, or any type of
-- loss or damage suffered as a result of any action brought
-- by a third party) even if such damage or loss was
-- reasonably foreseeable or Xilinx had been advised of the
-- possibility of the same.
--
-- CRITICAL APPLICATIONS
-- Xilinx products are not designed or intended to be fail-
-- safe, or for use in any application requiring fail-safe
-- performance, such as life-support or safety devices or
-- systems, Class III medical devices, nuclear facilities,
-- applications related to the deployment of airbags, or any
-- other applications that could lead to death, personal
-- injury, or severe property or environmental damage
-- (individually and collectively, "Critical
-- Applications"). Customer assumes the sole risk and
-- liability of any use of Xilinx products in Critical
-- Applications, subject only to applicable laws and
-- regulations governing limitations on product liability.
--
-- THIS COPYRIGHT NOTICE AND DISCLAIMER MUST BE RETAINED AS
-- PART OF THIS FILE AT ALL TIMES.
--
*****************************************************************************
*
* Filename: BLK_MEM_GEN_v8_2.v
*
* Description:
* This file is the Verilog behvarial model for the
* Block Memory Generator Core.
*
*****************************************************************************
* Author: Xilinx
*
* History: Jan 11, 2006 Initial revision
* Jun 11, 2007 Added independent register stages for
* Port A and Port B (IP1_Jm/v2.5)
* Aug 28, 2007 Added mux pipeline stages feature (IP2_Jm/v2.6)
* Mar 13, 2008 Behavioral model optimizations
* April 07, 2009 : Added support for Spartan-6 and Virtex-6
* features, including the following:
* (i) error injection, detection and/or correction
* (ii) reset priority
* (iii) special reset behavior
*
*****************************************************************************/
`timescale 1ps/1ps
module STATE_LOGIC_v8_2 (O, I0, I1, I2, I3, I4, I5);
parameter INIT = 64'h0000000000000000;
input I0, I1, I2, I3, I4, I5;
output O;
reg O;
reg tmp;
always @( I5 or I4 or I3 or I2 or I1 or I0 ) begin
tmp = I0 ^ I1 ^ I2 ^ I3 ^ I4 ^ I5;
if ( tmp == 0 || tmp == 1)
O = INIT[{I5, I4, I3, I2, I1, I0}];
end
endmodule
module beh_vlog_muxf7_v8_2 (O, I0, I1, S);
output O;
reg O;
input I0, I1, S;
always @(I0 or I1 or S)
if (S)
O = I1;
else
O = I0;
endmodule
module beh_vlog_ff_clr_v8_2 (Q, C, CLR, D);
parameter INIT = 0;
localparam FLOP_DELAY = 100;
output Q;
input C, CLR, D;
reg Q;
initial Q= 1'b0;
always @(posedge C )
if (CLR)
Q<= 1'b0;
else
Q<= #FLOP_DELAY D;
endmodule
module beh_vlog_ff_pre_v8_2 (Q, C, D, PRE);
parameter INIT = 0;
localparam FLOP_DELAY = 100;
output Q;
input C, D, PRE;
reg Q;
initial Q= 1'b0;
always @(posedge C )
if (PRE)
Q <= 1'b1;
else
Q <= #FLOP_DELAY D;
endmodule
module beh_vlog_ff_ce_clr_v8_2 (Q, C, CE, CLR, D);
parameter INIT = 0;
localparam FLOP_DELAY = 100;
output Q;
input C, CE, CLR, D;
reg Q;
initial Q= 1'b0;
always @(posedge C )
if (CLR)
Q <= 1'b0;
else if (CE)
Q <= #FLOP_DELAY D;
endmodule
module write_netlist_v8_2
#(
parameter C_AXI_TYPE = 0
)
(
S_ACLK, S_ARESETN, S_AXI_AWVALID, S_AXI_WVALID, S_AXI_BREADY,
w_last_c, bready_timeout_c, aw_ready_r, S_AXI_WREADY, S_AXI_BVALID,
S_AXI_WR_EN, addr_en_c, incr_addr_c, bvalid_c
);
input S_ACLK;
input S_ARESETN;
input S_AXI_AWVALID;
input S_AXI_WVALID;
input S_AXI_BREADY;
input w_last_c;
input bready_timeout_c;
output aw_ready_r;
output S_AXI_WREADY;
output S_AXI_BVALID;
output S_AXI_WR_EN;
output addr_en_c;
output incr_addr_c;
output bvalid_c;
//-------------------------------------------------------------------------
//AXI LITE
//-------------------------------------------------------------------------
generate if (C_AXI_TYPE == 0 ) begin : gbeh_axi_lite_sm
wire w_ready_r_7;
wire w_ready_c;
wire aw_ready_c;
wire NlwRenamedSignal_bvalid_c;
wire NlwRenamedSignal_incr_addr_c;
wire present_state_FSM_FFd3_13;
wire present_state_FSM_FFd2_14;
wire present_state_FSM_FFd1_15;
wire present_state_FSM_FFd4_16;
wire present_state_FSM_FFd4_In;
wire present_state_FSM_FFd3_In;
wire present_state_FSM_FFd2_In;
wire present_state_FSM_FFd1_In;
wire present_state_FSM_FFd4_In1_21;
wire [0:0] Mmux_aw_ready_c ;
begin
assign
S_AXI_WREADY = w_ready_r_7,
S_AXI_BVALID = NlwRenamedSignal_incr_addr_c,
S_AXI_WR_EN = NlwRenamedSignal_bvalid_c,
incr_addr_c = NlwRenamedSignal_incr_addr_c,
bvalid_c = NlwRenamedSignal_bvalid_c;
assign NlwRenamedSignal_incr_addr_c = 1'b0;
beh_vlog_ff_clr_v8_2 #(
.INIT (1'b0))
aw_ready_r_2 (
.C ( S_ACLK),
.CLR ( S_ARESETN),
.D ( aw_ready_c),
.Q ( aw_ready_r)
);
beh_vlog_ff_clr_v8_2 #(
.INIT (1'b0))
w_ready_r (
.C ( S_ACLK),
.CLR ( S_ARESETN),
.D ( w_ready_c),
.Q ( w_ready_r_7)
);
beh_vlog_ff_pre_v8_2 #(
.INIT (1'b1))
present_state_FSM_FFd4 (
.C ( S_ACLK),
.D ( present_state_FSM_FFd4_In),
.PRE ( S_ARESETN),
.Q ( present_state_FSM_FFd4_16)
);
beh_vlog_ff_clr_v8_2 #(
.INIT (1'b0))
present_state_FSM_FFd3 (
.C ( S_ACLK),
.CLR ( S_ARESETN),
.D ( present_state_FSM_FFd3_In),
.Q ( present_state_FSM_FFd3_13)
);
beh_vlog_ff_clr_v8_2 #(
.INIT (1'b0))
present_state_FSM_FFd2 (
.C ( S_ACLK),
.CLR ( S_ARESETN),
.D ( present_state_FSM_FFd2_In),
.Q ( present_state_FSM_FFd2_14)
);
beh_vlog_ff_clr_v8_2 #(
.INIT (1'b0))
present_state_FSM_FFd1 (
.C ( S_ACLK),
.CLR ( S_ARESETN),
.D ( present_state_FSM_FFd1_In),
.Q ( present_state_FSM_FFd1_15)
);
STATE_LOGIC_v8_2 #(
.INIT (64'h0000000055554440))
present_state_FSM_FFd3_In1 (
.I0 ( S_AXI_WVALID),
.I1 ( S_AXI_AWVALID),
.I2 ( present_state_FSM_FFd2_14),
.I3 ( present_state_FSM_FFd4_16),
.I4 ( present_state_FSM_FFd3_13),
.I5 (1'b0),
.O ( present_state_FSM_FFd3_In)
);
STATE_LOGIC_v8_2 #(
.INIT (64'h0000000088880800))
present_state_FSM_FFd2_In1 (
.I0 ( S_AXI_AWVALID),
.I1 ( S_AXI_WVALID),
.I2 ( bready_timeout_c),
.I3 ( present_state_FSM_FFd2_14),
.I4 ( present_state_FSM_FFd4_16),
.I5 (1'b0),
.O ( present_state_FSM_FFd2_In)
);
STATE_LOGIC_v8_2 #(
.INIT (64'h00000000AAAA2000))
Mmux_addr_en_c_0_1 (
.I0 ( S_AXI_AWVALID),
.I1 ( bready_timeout_c),
.I2 ( present_state_FSM_FFd2_14),
.I3 ( S_AXI_WVALID),
.I4 ( present_state_FSM_FFd4_16),
.I5 (1'b0),
.O ( addr_en_c)
);
STATE_LOGIC_v8_2 #(
.INIT (64'hF5F07570F5F05500))
Mmux_w_ready_c_0_1 (
.I0 ( S_AXI_WVALID),
.I1 ( bready_timeout_c),
.I2 ( S_AXI_AWVALID),
.I3 ( present_state_FSM_FFd3_13),
.I4 ( present_state_FSM_FFd4_16),
.I5 ( present_state_FSM_FFd2_14),
.O ( w_ready_c)
);
STATE_LOGIC_v8_2 #(
.INIT (64'h88808880FFFF8880))
present_state_FSM_FFd1_In1 (
.I0 ( S_AXI_WVALID),
.I1 ( bready_timeout_c),
.I2 ( present_state_FSM_FFd3_13),
.I3 ( present_state_FSM_FFd2_14),
.I4 ( present_state_FSM_FFd1_15),
.I5 ( S_AXI_BREADY),
.O ( present_state_FSM_FFd1_In)
);
STATE_LOGIC_v8_2 #(
.INIT (64'h00000000000000A8))
Mmux_S_AXI_WR_EN_0_1 (
.I0 ( S_AXI_WVALID),
.I1 ( present_state_FSM_FFd2_14),
.I2 ( present_state_FSM_FFd3_13),
.I3 (1'b0),
.I4 (1'b0),
.I5 (1'b0),
.O ( NlwRenamedSignal_bvalid_c)
);
STATE_LOGIC_v8_2 #(
.INIT (64'h2F0F27072F0F2200))
present_state_FSM_FFd4_In1 (
.I0 ( S_AXI_WVALID),
.I1 ( bready_timeout_c),
.I2 ( S_AXI_AWVALID),
.I3 ( present_state_FSM_FFd3_13),
.I4 ( present_state_FSM_FFd4_16),
.I5 ( present_state_FSM_FFd2_14),
.O ( present_state_FSM_FFd4_In1_21)
);
STATE_LOGIC_v8_2 #(
.INIT (64'h00000000000000F8))
present_state_FSM_FFd4_In2 (
.I0 ( present_state_FSM_FFd1_15),
.I1 ( S_AXI_BREADY),
.I2 ( present_state_FSM_FFd4_In1_21),
.I3 (1'b0),
.I4 (1'b0),
.I5 (1'b0),
.O ( present_state_FSM_FFd4_In)
);
STATE_LOGIC_v8_2 #(
.INIT (64'h7535753575305500))
Mmux_aw_ready_c_0_1 (
.I0 ( S_AXI_AWVALID),
.I1 ( bready_timeout_c),
.I2 ( S_AXI_WVALID),
.I3 ( present_state_FSM_FFd4_16),
.I4 ( present_state_FSM_FFd3_13),
.I5 ( present_state_FSM_FFd2_14),
.O ( Mmux_aw_ready_c[0])
);
STATE_LOGIC_v8_2 #(
.INIT (64'h00000000000000F8))
Mmux_aw_ready_c_0_2 (
.I0 ( present_state_FSM_FFd1_15),
.I1 ( S_AXI_BREADY),
.I2 ( Mmux_aw_ready_c[0]),
.I3 (1'b0),
.I4 (1'b0),
.I5 (1'b0),
.O ( aw_ready_c)
);
end
end
endgenerate
//---------------------------------------------------------------------
// AXI FULL
//---------------------------------------------------------------------
generate if (C_AXI_TYPE == 1 ) begin : gbeh_axi_full_sm
wire w_ready_r_8;
wire w_ready_c;
wire aw_ready_c;
wire NlwRenamedSig_OI_bvalid_c;
wire present_state_FSM_FFd1_16;
wire present_state_FSM_FFd4_17;
wire present_state_FSM_FFd3_18;
wire present_state_FSM_FFd2_19;
wire present_state_FSM_FFd4_In;
wire present_state_FSM_FFd3_In;
wire present_state_FSM_FFd2_In;
wire present_state_FSM_FFd1_In;
wire present_state_FSM_FFd2_In1_24;
wire present_state_FSM_FFd4_In1_25;
wire N2;
wire N4;
begin
assign
S_AXI_WREADY = w_ready_r_8,
bvalid_c = NlwRenamedSig_OI_bvalid_c,
S_AXI_BVALID = 1'b0;
beh_vlog_ff_clr_v8_2 #(
.INIT (1'b0))
aw_ready_r_2
(
.C ( S_ACLK),
.CLR ( S_ARESETN),
.D ( aw_ready_c),
.Q ( aw_ready_r)
);
beh_vlog_ff_clr_v8_2 #(
.INIT (1'b0))
w_ready_r
(
.C ( S_ACLK),
.CLR ( S_ARESETN),
.D ( w_ready_c),
.Q ( w_ready_r_8)
);
beh_vlog_ff_pre_v8_2 #(
.INIT (1'b1))
present_state_FSM_FFd4
(
.C ( S_ACLK),
.D ( present_state_FSM_FFd4_In),
.PRE ( S_ARESETN),
.Q ( present_state_FSM_FFd4_17)
);
beh_vlog_ff_clr_v8_2 #(
.INIT (1'b0))
present_state_FSM_FFd3
(
.C ( S_ACLK),
.CLR ( S_ARESETN),
.D ( present_state_FSM_FFd3_In),
.Q ( present_state_FSM_FFd3_18)
);
beh_vlog_ff_clr_v8_2 #(
.INIT (1'b0))
present_state_FSM_FFd2
(
.C ( S_ACLK),
.CLR ( S_ARESETN),
.D ( present_state_FSM_FFd2_In),
.Q ( present_state_FSM_FFd2_19)
);
beh_vlog_ff_clr_v8_2 #(
.INIT (1'b0))
present_state_FSM_FFd1
(
.C ( S_ACLK),
.CLR ( S_ARESETN),
.D ( present_state_FSM_FFd1_In),
.Q ( present_state_FSM_FFd1_16)
);
STATE_LOGIC_v8_2 #(
.INIT (64'h0000000000005540))
present_state_FSM_FFd3_In1
(
.I0 ( S_AXI_WVALID),
.I1 ( present_state_FSM_FFd4_17),
.I2 ( S_AXI_AWVALID),
.I3 ( present_state_FSM_FFd3_18),
.I4 (1'b0),
.I5 (1'b0),
.O ( present_state_FSM_FFd3_In)
);
STATE_LOGIC_v8_2 #(
.INIT (64'hBF3FBB33AF0FAA00))
Mmux_aw_ready_c_0_2
(
.I0 ( S_AXI_BREADY),
.I1 ( bready_timeout_c),
.I2 ( S_AXI_AWVALID),
.I3 ( present_state_FSM_FFd1_16),
.I4 ( present_state_FSM_FFd4_17),
.I5 ( NlwRenamedSig_OI_bvalid_c),
.O ( aw_ready_c)
);
STATE_LOGIC_v8_2 #(
.INIT (64'hAAAAAAAA20000000))
Mmux_addr_en_c_0_1
(
.I0 ( S_AXI_AWVALID),
.I1 ( bready_timeout_c),
.I2 ( present_state_FSM_FFd2_19),
.I3 ( S_AXI_WVALID),
.I4 ( w_last_c),
.I5 ( present_state_FSM_FFd4_17),
.O ( addr_en_c)
);
STATE_LOGIC_v8_2 #(
.INIT (64'h00000000000000A8))
Mmux_S_AXI_WR_EN_0_1
(
.I0 ( S_AXI_WVALID),
.I1 ( present_state_FSM_FFd2_19),
.I2 ( present_state_FSM_FFd3_18),
.I3 (1'b0),
.I4 (1'b0),
.I5 (1'b0),
.O ( S_AXI_WR_EN)
);
STATE_LOGIC_v8_2 #(
.INIT (64'h0000000000002220))
Mmux_incr_addr_c_0_1
(
.I0 ( S_AXI_WVALID),
.I1 ( w_last_c),
.I2 ( present_state_FSM_FFd2_19),
.I3 ( present_state_FSM_FFd3_18),
.I4 (1'b0),
.I5 (1'b0),
.O ( incr_addr_c)
);
STATE_LOGIC_v8_2 #(
.INIT (64'h0000000000008880))
Mmux_aw_ready_c_0_11
(
.I0 ( S_AXI_WVALID),
.I1 ( w_last_c),
.I2 ( present_state_FSM_FFd2_19),
.I3 ( present_state_FSM_FFd3_18),
.I4 (1'b0),
.I5 (1'b0),
.O ( NlwRenamedSig_OI_bvalid_c)
);
STATE_LOGIC_v8_2 #(
.INIT (64'h000000000000D5C0))
present_state_FSM_FFd2_In1
(
.I0 ( w_last_c),
.I1 ( S_AXI_AWVALID),
.I2 ( present_state_FSM_FFd4_17),
.I3 ( present_state_FSM_FFd3_18),
.I4 (1'b0),
.I5 (1'b0),
.O ( present_state_FSM_FFd2_In1_24)
);
STATE_LOGIC_v8_2 #(
.INIT (64'hFFFFAAAA08AAAAAA))
present_state_FSM_FFd2_In2
(
.I0 ( present_state_FSM_FFd2_19),
.I1 ( S_AXI_AWVALID),
.I2 ( bready_timeout_c),
.I3 ( w_last_c),
.I4 ( S_AXI_WVALID),
.I5 ( present_state_FSM_FFd2_In1_24),
.O ( present_state_FSM_FFd2_In)
);
STATE_LOGIC_v8_2 #(
.INIT (64'h00C0004000C00000))
present_state_FSM_FFd4_In1
(
.I0 ( S_AXI_AWVALID),
.I1 ( w_last_c),
.I2 ( S_AXI_WVALID),
.I3 ( bready_timeout_c),
.I4 ( present_state_FSM_FFd3_18),
.I5 ( present_state_FSM_FFd2_19),
.O ( present_state_FSM_FFd4_In1_25)
);
STATE_LOGIC_v8_2 #(
.INIT (64'h00000000FFFF88F8))
present_state_FSM_FFd4_In2
(
.I0 ( present_state_FSM_FFd1_16),
.I1 ( S_AXI_BREADY),
.I2 ( present_state_FSM_FFd4_17),
.I3 ( S_AXI_AWVALID),
.I4 ( present_state_FSM_FFd4_In1_25),
.I5 (1'b0),
.O ( present_state_FSM_FFd4_In)
);
STATE_LOGIC_v8_2 #(
.INIT (64'h0000000000000007))
Mmux_w_ready_c_0_SW0
(
.I0 ( w_last_c),
.I1 ( S_AXI_WVALID),
.I2 (1'b0),
.I3 (1'b0),
.I4 (1'b0),
.I5 (1'b0),
.O ( N2)
);
STATE_LOGIC_v8_2 #(
.INIT (64'hFABAFABAFAAAF000))
Mmux_w_ready_c_0_Q
(
.I0 ( N2),
.I1 ( bready_timeout_c),
.I2 ( S_AXI_AWVALID),
.I3 ( present_state_FSM_FFd4_17),
.I4 ( present_state_FSM_FFd3_18),
.I5 ( present_state_FSM_FFd2_19),
.O ( w_ready_c)
);
STATE_LOGIC_v8_2 #(
.INIT (64'h0000000000000008))
Mmux_aw_ready_c_0_11_SW0
(
.I0 ( bready_timeout_c),
.I1 ( S_AXI_WVALID),
.I2 (1'b0),
.I3 (1'b0),
.I4 (1'b0),
.I5 (1'b0),
.O ( N4)
);
STATE_LOGIC_v8_2 #(
.INIT (64'h88808880FFFF8880))
present_state_FSM_FFd1_In1
(
.I0 ( w_last_c),
.I1 ( N4),
.I2 ( present_state_FSM_FFd2_19),
.I3 ( present_state_FSM_FFd3_18),
.I4 ( present_state_FSM_FFd1_16),
.I5 ( S_AXI_BREADY),
.O ( present_state_FSM_FFd1_In)
);
end
end
endgenerate
endmodule
module read_netlist_v8_2 #(
parameter C_AXI_TYPE = 1,
parameter C_ADDRB_WIDTH = 12
) ( S_AXI_R_LAST_INT, S_ACLK, S_ARESETN, S_AXI_ARVALID,
S_AXI_RREADY,S_AXI_INCR_ADDR,S_AXI_ADDR_EN,
S_AXI_SINGLE_TRANS,S_AXI_MUX_SEL, S_AXI_R_LAST, S_AXI_ARREADY,
S_AXI_RLAST, S_AXI_RVALID, S_AXI_RD_EN, S_AXI_ARLEN);
input S_AXI_R_LAST_INT;
input S_ACLK;
input S_ARESETN;
input S_AXI_ARVALID;
input S_AXI_RREADY;
output S_AXI_INCR_ADDR;
output S_AXI_ADDR_EN;
output S_AXI_SINGLE_TRANS;
output S_AXI_MUX_SEL;
output S_AXI_R_LAST;
output S_AXI_ARREADY;
output S_AXI_RLAST;
output S_AXI_RVALID;
output S_AXI_RD_EN;
input [7:0] S_AXI_ARLEN;
wire present_state_FSM_FFd1_13 ;
wire present_state_FSM_FFd2_14 ;
wire gaxi_full_sm_outstanding_read_r_15 ;
wire gaxi_full_sm_ar_ready_r_16 ;
wire gaxi_full_sm_r_last_r_17 ;
wire NlwRenamedSig_OI_gaxi_full_sm_r_valid_r ;
wire gaxi_full_sm_r_valid_c ;
wire S_AXI_RREADY_gaxi_full_sm_r_valid_r_OR_9_o ;
wire gaxi_full_sm_ar_ready_c ;
wire gaxi_full_sm_outstanding_read_c ;
wire NlwRenamedSig_OI_S_AXI_R_LAST ;
wire S_AXI_ARLEN_7_GND_8_o_equal_1_o ;
wire present_state_FSM_FFd2_In ;
wire present_state_FSM_FFd1_In ;
wire Mmux_S_AXI_R_LAST13 ;
wire N01 ;
wire N2 ;
wire Mmux_gaxi_full_sm_ar_ready_c11 ;
wire N4 ;
wire N8 ;
wire N9 ;
wire N10 ;
wire N11 ;
wire N12 ;
wire N13 ;
assign
S_AXI_R_LAST = NlwRenamedSig_OI_S_AXI_R_LAST,
S_AXI_ARREADY = gaxi_full_sm_ar_ready_r_16,
S_AXI_RLAST = gaxi_full_sm_r_last_r_17,
S_AXI_RVALID = NlwRenamedSig_OI_gaxi_full_sm_r_valid_r;
beh_vlog_ff_clr_v8_2 #(
.INIT (1'b0))
gaxi_full_sm_outstanding_read_r (
.C (S_ACLK),
.CLR(S_ARESETN),
.D(gaxi_full_sm_outstanding_read_c),
.Q(gaxi_full_sm_outstanding_read_r_15)
);
beh_vlog_ff_ce_clr_v8_2 #(
.INIT (1'b0))
gaxi_full_sm_r_valid_r (
.C (S_ACLK),
.CE (S_AXI_RREADY_gaxi_full_sm_r_valid_r_OR_9_o),
.CLR (S_ARESETN),
.D (gaxi_full_sm_r_valid_c),
.Q (NlwRenamedSig_OI_gaxi_full_sm_r_valid_r)
);
beh_vlog_ff_clr_v8_2 #(
.INIT (1'b0))
gaxi_full_sm_ar_ready_r (
.C (S_ACLK),
.CLR (S_ARESETN),
.D (gaxi_full_sm_ar_ready_c),
.Q (gaxi_full_sm_ar_ready_r_16)
);
beh_vlog_ff_ce_clr_v8_2 #(
.INIT(1'b0))
gaxi_full_sm_r_last_r (
.C (S_ACLK),
.CE (S_AXI_RREADY_gaxi_full_sm_r_valid_r_OR_9_o),
.CLR (S_ARESETN),
.D (NlwRenamedSig_OI_S_AXI_R_LAST),
.Q (gaxi_full_sm_r_last_r_17)
);
beh_vlog_ff_clr_v8_2 #(
.INIT (1'b0))
present_state_FSM_FFd2 (
.C ( S_ACLK),
.CLR ( S_ARESETN),
.D ( present_state_FSM_FFd2_In),
.Q ( present_state_FSM_FFd2_14)
);
beh_vlog_ff_clr_v8_2 #(
.INIT (1'b0))
present_state_FSM_FFd1 (
.C (S_ACLK),
.CLR (S_ARESETN),
.D (present_state_FSM_FFd1_In),
.Q (present_state_FSM_FFd1_13)
);
STATE_LOGIC_v8_2 #(
.INIT (64'h000000000000000B))
S_AXI_RREADY_gaxi_full_sm_r_valid_r_OR_9_o1 (
.I0 ( S_AXI_RREADY),
.I1 ( NlwRenamedSig_OI_gaxi_full_sm_r_valid_r),
.I2 (1'b0),
.I3 (1'b0),
.I4 (1'b0),
.I5 (1'b0),
.O (S_AXI_RREADY_gaxi_full_sm_r_valid_r_OR_9_o)
);
STATE_LOGIC_v8_2 #(
.INIT (64'h0000000000000008))
Mmux_S_AXI_SINGLE_TRANS11 (
.I0 (S_AXI_ARVALID),
.I1 (S_AXI_ARLEN_7_GND_8_o_equal_1_o),
.I2 (1'b0),
.I3 (1'b0),
.I4 (1'b0),
.I5 (1'b0),
.O (S_AXI_SINGLE_TRANS)
);
STATE_LOGIC_v8_2 #(
.INIT (64'h0000000000000004))
Mmux_S_AXI_ADDR_EN11 (
.I0 (present_state_FSM_FFd1_13),
.I1 (S_AXI_ARVALID),
.I2 (1'b0),
.I3 (1'b0),
.I4 (1'b0),
.I5 (1'b0),
.O (S_AXI_ADDR_EN)
);
STATE_LOGIC_v8_2 #(
.INIT (64'hECEE2022EEEE2022))
present_state_FSM_FFd2_In1 (
.I0 ( S_AXI_ARVALID),
.I1 ( present_state_FSM_FFd1_13),
.I2 ( S_AXI_RREADY),
.I3 ( S_AXI_ARLEN_7_GND_8_o_equal_1_o),
.I4 ( present_state_FSM_FFd2_14),
.I5 ( NlwRenamedSig_OI_gaxi_full_sm_r_valid_r),
.O ( present_state_FSM_FFd2_In)
);
STATE_LOGIC_v8_2 #(
.INIT (64'h0000000044440444))
Mmux_S_AXI_R_LAST131 (
.I0 ( present_state_FSM_FFd1_13),
.I1 ( S_AXI_ARVALID),
.I2 ( present_state_FSM_FFd2_14),
.I3 ( NlwRenamedSig_OI_gaxi_full_sm_r_valid_r),
.I4 ( S_AXI_RREADY),
.I5 (1'b0),
.O ( Mmux_S_AXI_R_LAST13)
);
STATE_LOGIC_v8_2 #(
.INIT (64'h4000FFFF40004000))
Mmux_S_AXI_INCR_ADDR11 (
.I0 ( S_AXI_R_LAST_INT),
.I1 ( S_AXI_RREADY_gaxi_full_sm_r_valid_r_OR_9_o),
.I2 ( present_state_FSM_FFd2_14),
.I3 ( present_state_FSM_FFd1_13),
.I4 ( S_AXI_ARLEN_7_GND_8_o_equal_1_o),
.I5 ( Mmux_S_AXI_R_LAST13),
.O ( S_AXI_INCR_ADDR)
);
STATE_LOGIC_v8_2 #(
.INIT (64'h00000000000000FE))
S_AXI_ARLEN_7_GND_8_o_equal_1_o_7_SW0 (
.I0 ( S_AXI_ARLEN[2]),
.I1 ( S_AXI_ARLEN[1]),
.I2 ( S_AXI_ARLEN[0]),
.I3 ( 1'b0),
.I4 ( 1'b0),
.I5 ( 1'b0),
.O ( N01)
);
STATE_LOGIC_v8_2 #(
.INIT (64'h0000000000000001))
S_AXI_ARLEN_7_GND_8_o_equal_1_o_7_Q (
.I0 ( S_AXI_ARLEN[7]),
.I1 ( S_AXI_ARLEN[6]),
.I2 ( S_AXI_ARLEN[5]),
.I3 ( S_AXI_ARLEN[4]),
.I4 ( S_AXI_ARLEN[3]),
.I5 ( N01),
.O ( S_AXI_ARLEN_7_GND_8_o_equal_1_o)
);
STATE_LOGIC_v8_2 #(
.INIT (64'h0000000000000007))
Mmux_gaxi_full_sm_outstanding_read_c1_SW0 (
.I0 ( S_AXI_ARVALID),
.I1 ( S_AXI_ARLEN_7_GND_8_o_equal_1_o),
.I2 ( 1'b0),
.I3 ( 1'b0),
.I4 ( 1'b0),
.I5 ( 1'b0),
.O ( N2)
);
STATE_LOGIC_v8_2 #(
.INIT (64'h0020000002200200))
Mmux_gaxi_full_sm_outstanding_read_c1 (
.I0 ( NlwRenamedSig_OI_gaxi_full_sm_r_valid_r),
.I1 ( S_AXI_RREADY),
.I2 ( present_state_FSM_FFd1_13),
.I3 ( present_state_FSM_FFd2_14),
.I4 ( gaxi_full_sm_outstanding_read_r_15),
.I5 ( N2),
.O ( gaxi_full_sm_outstanding_read_c)
);
STATE_LOGIC_v8_2 #(
.INIT (64'h0000000000004555))
Mmux_gaxi_full_sm_ar_ready_c12 (
.I0 ( S_AXI_ARVALID),
.I1 ( S_AXI_RREADY),
.I2 ( present_state_FSM_FFd2_14),
.I3 ( NlwRenamedSig_OI_gaxi_full_sm_r_valid_r),
.I4 ( 1'b0),
.I5 ( 1'b0),
.O ( Mmux_gaxi_full_sm_ar_ready_c11)
);
STATE_LOGIC_v8_2 #(
.INIT (64'h00000000000000EF))
Mmux_S_AXI_R_LAST11_SW0 (
.I0 ( S_AXI_ARLEN_7_GND_8_o_equal_1_o),
.I1 ( S_AXI_RREADY),
.I2 ( NlwRenamedSig_OI_gaxi_full_sm_r_valid_r),
.I3 ( 1'b0),
.I4 ( 1'b0),
.I5 ( 1'b0),
.O ( N4)
);
STATE_LOGIC_v8_2 #(
.INIT (64'hFCAAFC0A00AA000A))
Mmux_S_AXI_R_LAST11 (
.I0 ( S_AXI_ARVALID),
.I1 ( gaxi_full_sm_outstanding_read_r_15),
.I2 ( present_state_FSM_FFd2_14),
.I3 ( present_state_FSM_FFd1_13),
.I4 ( N4),
.I5 ( S_AXI_RREADY_gaxi_full_sm_r_valid_r_OR_9_o),
.O ( gaxi_full_sm_r_valid_c)
);
STATE_LOGIC_v8_2 #(
.INIT (64'h00000000AAAAAA08))
S_AXI_MUX_SEL1 (
.I0 (present_state_FSM_FFd1_13),
.I1 (NlwRenamedSig_OI_gaxi_full_sm_r_valid_r),
.I2 (S_AXI_RREADY),
.I3 (present_state_FSM_FFd2_14),
.I4 (gaxi_full_sm_outstanding_read_r_15),
.I5 (1'b0),
.O (S_AXI_MUX_SEL)
);
STATE_LOGIC_v8_2 #(
.INIT (64'hF3F3F755A2A2A200))
Mmux_S_AXI_RD_EN11 (
.I0 ( present_state_FSM_FFd1_13),
.I1 ( NlwRenamedSig_OI_gaxi_full_sm_r_valid_r),
.I2 ( S_AXI_RREADY),
.I3 ( gaxi_full_sm_outstanding_read_r_15),
.I4 ( present_state_FSM_FFd2_14),
.I5 ( S_AXI_ARVALID),
.O ( S_AXI_RD_EN)
);
beh_vlog_muxf7_v8_2 present_state_FSM_FFd1_In3 (
.I0 ( N8),
.I1 ( N9),
.S ( present_state_FSM_FFd1_13),
.O ( present_state_FSM_FFd1_In)
);
STATE_LOGIC_v8_2 #(
.INIT (64'h000000005410F4F0))
present_state_FSM_FFd1_In3_F (
.I0 ( S_AXI_RREADY),
.I1 ( present_state_FSM_FFd2_14),
.I2 ( S_AXI_ARVALID),
.I3 ( NlwRenamedSig_OI_gaxi_full_sm_r_valid_r),
.I4 ( S_AXI_ARLEN_7_GND_8_o_equal_1_o),
.I5 ( 1'b0),
.O ( N8)
);
STATE_LOGIC_v8_2 #(
.INIT (64'h0000000072FF7272))
present_state_FSM_FFd1_In3_G (
.I0 ( present_state_FSM_FFd2_14),
.I1 ( S_AXI_R_LAST_INT),
.I2 ( gaxi_full_sm_outstanding_read_r_15),
.I3 ( S_AXI_RREADY),
.I4 ( NlwRenamedSig_OI_gaxi_full_sm_r_valid_r),
.I5 ( 1'b0),
.O ( N9)
);
beh_vlog_muxf7_v8_2 Mmux_gaxi_full_sm_ar_ready_c14 (
.I0 ( N10),
.I1 ( N11),
.S ( present_state_FSM_FFd1_13),
.O ( gaxi_full_sm_ar_ready_c)
);
STATE_LOGIC_v8_2 #(
.INIT (64'h00000000FFFF88A8))
Mmux_gaxi_full_sm_ar_ready_c14_F (
.I0 ( S_AXI_ARLEN_7_GND_8_o_equal_1_o),
.I1 ( S_AXI_RREADY),
.I2 ( present_state_FSM_FFd2_14),
.I3 ( NlwRenamedSig_OI_gaxi_full_sm_r_valid_r),
.I4 ( Mmux_gaxi_full_sm_ar_ready_c11),
.I5 ( 1'b0),
.O ( N10)
);
STATE_LOGIC_v8_2 #(
.INIT (64'h000000008D008D8D))
Mmux_gaxi_full_sm_ar_ready_c14_G (
.I0 ( present_state_FSM_FFd2_14),
.I1 ( S_AXI_R_LAST_INT),
.I2 ( gaxi_full_sm_outstanding_read_r_15),
.I3 ( S_AXI_RREADY),
.I4 ( NlwRenamedSig_OI_gaxi_full_sm_r_valid_r),
.I5 ( 1'b0),
.O ( N11)
);
beh_vlog_muxf7_v8_2 Mmux_S_AXI_R_LAST1 (
.I0 ( N12),
.I1 ( N13),
.S ( present_state_FSM_FFd1_13),
.O ( NlwRenamedSig_OI_S_AXI_R_LAST)
);
STATE_LOGIC_v8_2 #(
.INIT (64'h0000000088088888))
Mmux_S_AXI_R_LAST1_F (
.I0 ( S_AXI_ARLEN_7_GND_8_o_equal_1_o),
.I1 ( S_AXI_ARVALID),
.I2 ( present_state_FSM_FFd2_14),
.I3 ( S_AXI_RREADY),
.I4 ( NlwRenamedSig_OI_gaxi_full_sm_r_valid_r),
.I5 ( 1'b0),
.O ( N12)
);
STATE_LOGIC_v8_2 #(
.INIT (64'h00000000E400E4E4))
Mmux_S_AXI_R_LAST1_G (
.I0 ( present_state_FSM_FFd2_14),
.I1 ( gaxi_full_sm_outstanding_read_r_15),
.I2 ( S_AXI_R_LAST_INT),
.I3 ( S_AXI_RREADY),
.I4 ( NlwRenamedSig_OI_gaxi_full_sm_r_valid_r),
.I5 ( 1'b0),
.O ( N13)
);
endmodule
module blk_mem_axi_write_wrapper_beh_v8_2
# (
// AXI Interface related parameters start here
parameter C_INTERFACE_TYPE = 0, // 0: Native Interface; 1: AXI Interface
parameter C_AXI_TYPE = 0, // 0: AXI Lite; 1: AXI Full;
parameter C_AXI_SLAVE_TYPE = 0, // 0: MEMORY SLAVE; 1: PERIPHERAL SLAVE;
parameter C_MEMORY_TYPE = 0, // 0: SP-RAM, 1: SDP-RAM; 2: TDP-RAM; 3: DP-ROM;
parameter C_WRITE_DEPTH_A = 0,
parameter C_AXI_AWADDR_WIDTH = 32,
parameter C_ADDRA_WIDTH = 12,
parameter C_AXI_WDATA_WIDTH = 32,
parameter C_HAS_AXI_ID = 0,
parameter C_AXI_ID_WIDTH = 4,
// AXI OUTSTANDING WRITES
parameter C_AXI_OS_WR = 2
)
(
// AXI Global Signals
input S_ACLK,
input S_ARESETN,
// AXI Full/Lite Slave Write Channel (write side)
input [C_AXI_ID_WIDTH-1:0] S_AXI_AWID,
input [C_AXI_AWADDR_WIDTH-1:0] S_AXI_AWADDR,
input [8-1:0] S_AXI_AWLEN,
input [2:0] S_AXI_AWSIZE,
input [1:0] S_AXI_AWBURST,
input S_AXI_AWVALID,
output S_AXI_AWREADY,
input S_AXI_WVALID,
output S_AXI_WREADY,
output reg [C_AXI_ID_WIDTH-1:0] S_AXI_BID = 0,
output S_AXI_BVALID,
input S_AXI_BREADY,
// Signals for BMG interface
output [C_ADDRA_WIDTH-1:0] S_AXI_AWADDR_OUT,
output S_AXI_WR_EN
);
localparam FLOP_DELAY = 100; // 100 ps
localparam C_RANGE = ((C_AXI_WDATA_WIDTH == 8)?0:
((C_AXI_WDATA_WIDTH==16)?1:
((C_AXI_WDATA_WIDTH==32)?2:
((C_AXI_WDATA_WIDTH==64)?3:
((C_AXI_WDATA_WIDTH==128)?4:
((C_AXI_WDATA_WIDTH==256)?5:0))))));
wire bvalid_c ;
reg bready_timeout_c = 0;
wire [1:0] bvalid_rd_cnt_c;
reg bvalid_r = 0;
reg [2:0] bvalid_count_r = 0;
reg [((C_AXI_TYPE == 1 && C_AXI_SLAVE_TYPE == 0)?
C_AXI_AWADDR_WIDTH:C_ADDRA_WIDTH)-1:0] awaddr_reg = 0;
reg [1:0] bvalid_wr_cnt_r = 0;
reg [1:0] bvalid_rd_cnt_r = 0;
wire w_last_c ;
wire addr_en_c ;
wire incr_addr_c ;
wire aw_ready_r ;
wire dec_alen_c ;
reg bvalid_d1_c = 0;
reg [7:0] awlen_cntr_r = 0;
reg [7:0] awlen_int = 0;
reg [1:0] awburst_int = 0;
integer total_bytes = 0;
integer wrap_boundary = 0;
integer wrap_base_addr = 0;
integer num_of_bytes_c = 0;
integer num_of_bytes_r = 0;
// Array to store BIDs
reg [C_AXI_ID_WIDTH-1:0] axi_bid_array[3:0] ;
wire S_AXI_BVALID_axi_wr_fsm;
//-------------------------------------
//AXI WRITE FSM COMPONENT INSTANTIATION
//-------------------------------------
write_netlist_v8_2 #(.C_AXI_TYPE(C_AXI_TYPE)) axi_wr_fsm
(
.S_ACLK(S_ACLK),
.S_ARESETN(S_ARESETN),
.S_AXI_AWVALID(S_AXI_AWVALID),
.aw_ready_r(aw_ready_r),
.S_AXI_WVALID(S_AXI_WVALID),
.S_AXI_WREADY(S_AXI_WREADY),
.S_AXI_BREADY(S_AXI_BREADY),
.S_AXI_WR_EN(S_AXI_WR_EN),
.w_last_c(w_last_c),
.bready_timeout_c(bready_timeout_c),
.addr_en_c(addr_en_c),
.incr_addr_c(incr_addr_c),
.bvalid_c(bvalid_c),
.S_AXI_BVALID (S_AXI_BVALID_axi_wr_fsm)
);
//Wrap Address boundary calculation
always@(*) begin
num_of_bytes_c = 2**((C_AXI_TYPE == 1 && C_AXI_SLAVE_TYPE == 0)?S_AXI_AWSIZE:0);
total_bytes = (num_of_bytes_r)*(awlen_int+1);
wrap_base_addr = ((awaddr_reg)/((total_bytes==0)?1:total_bytes))*(total_bytes);
wrap_boundary = wrap_base_addr+total_bytes;
end
//-------------------------------------------------------------------------
// BMG address generation
//-------------------------------------------------------------------------
always @(posedge S_ACLK or S_ARESETN) begin
if (S_ARESETN == 1'b1) begin
awaddr_reg <= 0;
num_of_bytes_r <= 0;
awburst_int <= 0;
end else begin
if (addr_en_c == 1'b1) begin
awaddr_reg <= #FLOP_DELAY S_AXI_AWADDR ;
num_of_bytes_r <= num_of_bytes_c;
awburst_int <= ((C_AXI_TYPE == 1 && C_AXI_SLAVE_TYPE == 0)?S_AXI_AWBURST:2'b01);
end else if (incr_addr_c == 1'b1) begin
if (awburst_int == 2'b10) begin
if(awaddr_reg == (wrap_boundary-num_of_bytes_r)) begin
awaddr_reg <= wrap_base_addr;
end else begin
awaddr_reg <= awaddr_reg + num_of_bytes_r;
end
end else if (awburst_int == 2'b01 || awburst_int == 2'b11) begin
awaddr_reg <= awaddr_reg + num_of_bytes_r;
end
end
end
end
assign S_AXI_AWADDR_OUT = ((C_AXI_TYPE == 1 && C_AXI_SLAVE_TYPE == 0)?
awaddr_reg[C_AXI_AWADDR_WIDTH-1:C_RANGE]:awaddr_reg);
//-------------------------------------------------------------------------
// AXI wlast generation
//-------------------------------------------------------------------------
always @(posedge S_ACLK or S_ARESETN) begin
if (S_ARESETN == 1'b1) begin
awlen_cntr_r <= 0;
awlen_int <= 0;
end else begin
if (addr_en_c == 1'b1) begin
awlen_int <= #FLOP_DELAY (C_AXI_TYPE == 0?0:S_AXI_AWLEN) ;
awlen_cntr_r <= #FLOP_DELAY (C_AXI_TYPE == 0?0:S_AXI_AWLEN) ;
end else if (dec_alen_c == 1'b1) begin
awlen_cntr_r <= #FLOP_DELAY awlen_cntr_r - 1 ;
end
end
end
assign w_last_c = (awlen_cntr_r == 0 && S_AXI_WVALID == 1'b1)?1'b1:1'b0;
assign dec_alen_c = (incr_addr_c | w_last_c);
//-------------------------------------------------------------------------
// Generation of bvalid counter for outstanding transactions
//-------------------------------------------------------------------------
always @(posedge S_ACLK or S_ARESETN) begin
if (S_ARESETN == 1'b1) begin
bvalid_count_r <= 0;
end else begin
// bvalid_count_r generation
if (bvalid_c == 1'b1 && bvalid_r == 1'b1 && S_AXI_BREADY == 1'b1) begin
bvalid_count_r <= #FLOP_DELAY bvalid_count_r ;
end else if (bvalid_c == 1'b1) begin
bvalid_count_r <= #FLOP_DELAY bvalid_count_r + 1 ;
end else if (bvalid_r == 1'b1 && S_AXI_BREADY == 1'b1 && bvalid_count_r != 0) begin
bvalid_count_r <= #FLOP_DELAY bvalid_count_r - 1 ;
end
end
end
//-------------------------------------------------------------------------
// Generation of bvalid when BID is used
//-------------------------------------------------------------------------
generate if (C_HAS_AXI_ID == 1) begin:gaxi_bvalid_id_r
always @(posedge S_ACLK or S_ARESETN) begin
if (S_ARESETN == 1'b1) begin
bvalid_r <= 0;
bvalid_d1_c <= 0;
end else begin
// Delay the generation o bvalid_r for generation for BID
bvalid_d1_c <= bvalid_c;
//external bvalid signal generation
if (bvalid_d1_c == 1'b1) begin
bvalid_r <= #FLOP_DELAY 1'b1 ;
end else if (bvalid_count_r <= 1 && S_AXI_BREADY == 1'b1) begin
bvalid_r <= #FLOP_DELAY 0 ;
end
end
end
end
endgenerate
//-------------------------------------------------------------------------
// Generation of bvalid when BID is not used
//-------------------------------------------------------------------------
generate if(C_HAS_AXI_ID == 0) begin:gaxi_bvalid_noid_r
always @(posedge S_ACLK or S_ARESETN) begin
if (S_ARESETN == 1'b1) begin
bvalid_r <= 0;
end else begin
//external bvalid signal generation
if (bvalid_c == 1'b1) begin
bvalid_r <= #FLOP_DELAY 1'b1 ;
end else if (bvalid_count_r <= 1 && S_AXI_BREADY == 1'b1) begin
bvalid_r <= #FLOP_DELAY 0 ;
end
end
end
end
endgenerate
//-------------------------------------------------------------------------
// Generation of Bready timeout
//-------------------------------------------------------------------------
always @(bvalid_count_r) begin
// bready_timeout_c generation
if(bvalid_count_r == C_AXI_OS_WR-1) begin
bready_timeout_c <= 1'b1;
end else begin
bready_timeout_c <= 1'b0;
end
end
//-------------------------------------------------------------------------
// Generation of BID
//-------------------------------------------------------------------------
generate if(C_HAS_AXI_ID == 1) begin:gaxi_bid_gen
always @(posedge S_ACLK or S_ARESETN) begin
if (S_ARESETN == 1'b1) begin
bvalid_wr_cnt_r <= 0;
bvalid_rd_cnt_r <= 0;
end else begin
// STORE AWID IN AN ARRAY
if(bvalid_c == 1'b1) begin
bvalid_wr_cnt_r <= bvalid_wr_cnt_r + 1;
end
// generate BID FROM AWID ARRAY
bvalid_rd_cnt_r <= #FLOP_DELAY bvalid_rd_cnt_c ;
S_AXI_BID <= axi_bid_array[bvalid_rd_cnt_c];
end
end
assign bvalid_rd_cnt_c = (bvalid_r == 1'b1 && S_AXI_BREADY == 1'b1)?bvalid_rd_cnt_r+1:bvalid_rd_cnt_r;
//-------------------------------------------------------------------------
// Storing AWID for generation of BID
//-------------------------------------------------------------------------
always @(posedge S_ACLK or S_ARESETN) begin
if(S_ARESETN == 1'b1) begin
axi_bid_array[0] = 0;
axi_bid_array[1] = 0;
axi_bid_array[2] = 0;
axi_bid_array[3] = 0;
end else if(aw_ready_r == 1'b1 && S_AXI_AWVALID == 1'b1) begin
axi_bid_array[bvalid_wr_cnt_r] <= S_AXI_AWID;
end
end
end
endgenerate
assign S_AXI_BVALID = bvalid_r;
assign S_AXI_AWREADY = aw_ready_r;
endmodule
module blk_mem_axi_read_wrapper_beh_v8_2
# (
//// AXI Interface related parameters start here
parameter C_INTERFACE_TYPE = 0,
parameter C_AXI_TYPE = 0,
parameter C_AXI_SLAVE_TYPE = 0,
parameter C_MEMORY_TYPE = 0,
parameter C_WRITE_WIDTH_A = 4,
parameter C_WRITE_DEPTH_A = 32,
parameter C_ADDRA_WIDTH = 12,
parameter C_AXI_PIPELINE_STAGES = 0,
parameter C_AXI_ARADDR_WIDTH = 12,
parameter C_HAS_AXI_ID = 0,
parameter C_AXI_ID_WIDTH = 4,
parameter C_ADDRB_WIDTH = 12
)
(
//// AXI Global Signals
input S_ACLK,
input S_ARESETN,
//// AXI Full/Lite Slave Read (Read side)
input [C_AXI_ARADDR_WIDTH-1:0] S_AXI_ARADDR,
input [7:0] S_AXI_ARLEN,
input [2:0] S_AXI_ARSIZE,
input [1:0] S_AXI_ARBURST,
input S_AXI_ARVALID,
output S_AXI_ARREADY,
output S_AXI_RLAST,
output S_AXI_RVALID,
input S_AXI_RREADY,
input [C_AXI_ID_WIDTH-1:0] S_AXI_ARID,
output reg [C_AXI_ID_WIDTH-1:0] S_AXI_RID = 0,
//// AXI Full/Lite Read Address Signals to BRAM
output [C_ADDRB_WIDTH-1:0] S_AXI_ARADDR_OUT,
output S_AXI_RD_EN
);
localparam FLOP_DELAY = 100; // 100 ps
localparam C_RANGE = ((C_WRITE_WIDTH_A == 8)?0:
((C_WRITE_WIDTH_A==16)?1:
((C_WRITE_WIDTH_A==32)?2:
((C_WRITE_WIDTH_A==64)?3:
((C_WRITE_WIDTH_A==128)?4:
((C_WRITE_WIDTH_A==256)?5:0))))));
reg [C_AXI_ID_WIDTH-1:0] ar_id_r=0;
wire addr_en_c;
wire rd_en_c;
wire incr_addr_c;
wire single_trans_c;
wire dec_alen_c;
wire mux_sel_c;
wire r_last_c;
wire r_last_int_c;
wire [C_ADDRB_WIDTH-1 : 0] araddr_out;
reg [7:0] arlen_int_r=0;
reg [7:0] arlen_cntr=8'h01;
reg [1:0] arburst_int_c=0;
reg [1:0] arburst_int_r=0;
reg [((C_AXI_TYPE == 1 && C_AXI_SLAVE_TYPE == 0)?
C_AXI_ARADDR_WIDTH:C_ADDRA_WIDTH)-1:0] araddr_reg =0;
integer num_of_bytes_c = 0;
integer total_bytes = 0;
integer num_of_bytes_r = 0;
integer wrap_base_addr_r = 0;
integer wrap_boundary_r = 0;
reg [7:0] arlen_int_c=0;
integer total_bytes_c = 0;
integer wrap_base_addr_c = 0;
integer wrap_boundary_c = 0;
assign dec_alen_c = incr_addr_c | r_last_int_c;
read_netlist_v8_2
#(.C_AXI_TYPE (1),
.C_ADDRB_WIDTH (C_ADDRB_WIDTH))
axi_read_fsm (
.S_AXI_INCR_ADDR(incr_addr_c),
.S_AXI_ADDR_EN(addr_en_c),
.S_AXI_SINGLE_TRANS(single_trans_c),
.S_AXI_MUX_SEL(mux_sel_c),
.S_AXI_R_LAST(r_last_c),
.S_AXI_R_LAST_INT(r_last_int_c),
//// AXI Global Signals
.S_ACLK(S_ACLK),
.S_ARESETN(S_ARESETN),
//// AXI Full/Lite Slave Read (Read side)
.S_AXI_ARLEN(S_AXI_ARLEN),
.S_AXI_ARVALID(S_AXI_ARVALID),
.S_AXI_ARREADY(S_AXI_ARREADY),
.S_AXI_RLAST(S_AXI_RLAST),
.S_AXI_RVALID(S_AXI_RVALID),
.S_AXI_RREADY(S_AXI_RREADY),
//// AXI Full/Lite Read Address Signals to BRAM
.S_AXI_RD_EN(rd_en_c)
);
always@(*) begin
num_of_bytes_c = 2**((C_AXI_TYPE == 1 && C_AXI_SLAVE_TYPE == 0)?S_AXI_ARSIZE:0);
total_bytes = (num_of_bytes_r)*(arlen_int_r+1);
wrap_base_addr_r = ((araddr_reg)/(total_bytes==0?1:total_bytes))*(total_bytes);
wrap_boundary_r = wrap_base_addr_r+total_bytes;
//////// combinatorial from interface
arlen_int_c = (C_AXI_TYPE == 0?0:S_AXI_ARLEN);
total_bytes_c = (num_of_bytes_c)*(arlen_int_c+1);
wrap_base_addr_c = ((S_AXI_ARADDR)/(total_bytes_c==0?1:total_bytes_c))*(total_bytes_c);
wrap_boundary_c = wrap_base_addr_c+total_bytes_c;
arburst_int_c = ((C_AXI_TYPE == 1 && C_AXI_SLAVE_TYPE == 0)?S_AXI_ARBURST:1);
end
////-------------------------------------------------------------------------
//// BMG address generation
////-------------------------------------------------------------------------
always @(posedge S_ACLK or S_ARESETN) begin
if (S_ARESETN == 1'b1) begin
araddr_reg <= 0;
arburst_int_r <= 0;
num_of_bytes_r <= 0;
end else begin
if (incr_addr_c == 1'b1 && addr_en_c == 1'b1 && single_trans_c == 1'b0) begin
arburst_int_r <= arburst_int_c;
num_of_bytes_r <= num_of_bytes_c;
if (arburst_int_c == 2'b10) begin
if(S_AXI_ARADDR == (wrap_boundary_c-num_of_bytes_c)) begin
araddr_reg <= wrap_base_addr_c;
end else begin
araddr_reg <= S_AXI_ARADDR + num_of_bytes_c;
end
end else if (arburst_int_c == 2'b01 || arburst_int_c == 2'b11) begin
araddr_reg <= S_AXI_ARADDR + num_of_bytes_c;
end
end else if (addr_en_c == 1'b1) begin
araddr_reg <= S_AXI_ARADDR;
num_of_bytes_r <= num_of_bytes_c;
arburst_int_r <= arburst_int_c;
end else if (incr_addr_c == 1'b1) begin
if (arburst_int_r == 2'b10) begin
if(araddr_reg == (wrap_boundary_r-num_of_bytes_r)) begin
araddr_reg <= wrap_base_addr_r;
end else begin
araddr_reg <= araddr_reg + num_of_bytes_r;
end
end else if (arburst_int_r == 2'b01 || arburst_int_r == 2'b11) begin
araddr_reg <= araddr_reg + num_of_bytes_r;
end
end
end
end
assign araddr_out = ((C_AXI_TYPE == 1 && C_AXI_SLAVE_TYPE == 0)?araddr_reg[C_AXI_ARADDR_WIDTH-1:C_RANGE]:araddr_reg);
////-----------------------------------------------------------------------
//// Counter to generate r_last_int_c from registered ARLEN - AXI FULL FSM
////-----------------------------------------------------------------------
always @(posedge S_ACLK or S_ARESETN) begin
if (S_ARESETN == 1'b1) begin
arlen_cntr <= 8'h01;
arlen_int_r <= 0;
end else begin
if (addr_en_c == 1'b1 && dec_alen_c == 1'b1 && single_trans_c == 1'b0) begin
arlen_int_r <= (C_AXI_TYPE == 0?0:S_AXI_ARLEN) ;
arlen_cntr <= S_AXI_ARLEN - 1'b1;
end else if (addr_en_c == 1'b1) begin
arlen_int_r <= (C_AXI_TYPE == 0?0:S_AXI_ARLEN) ;
arlen_cntr <= (C_AXI_TYPE == 0?0:S_AXI_ARLEN) ;
end else if (dec_alen_c == 1'b1) begin
arlen_cntr <= arlen_cntr - 1'b1 ;
end
else begin
arlen_cntr <= arlen_cntr;
end
end
end
assign r_last_int_c = (arlen_cntr == 0 && S_AXI_RREADY == 1'b1)?1'b1:1'b0;
////------------------------------------------------------------------------
//// AXI FULL FSM
//// Mux Selection of ARADDR
//// ARADDR is driven out from the read fsm based on the mux_sel_c
//// Based on mux_sel either ARADDR is given out or the latched ARADDR is
//// given out to BRAM
////------------------------------------------------------------------------
assign S_AXI_ARADDR_OUT = (mux_sel_c == 1'b0)?((C_AXI_TYPE == 1 && C_AXI_SLAVE_TYPE == 0)?S_AXI_ARADDR[C_AXI_ARADDR_WIDTH-1:C_RANGE]:S_AXI_ARADDR):araddr_out;
////------------------------------------------------------------------------
//// Assign output signals - AXI FULL FSM
////------------------------------------------------------------------------
assign S_AXI_RD_EN = rd_en_c;
generate if (C_HAS_AXI_ID == 1) begin:gaxi_bvalid_id_r
always @(posedge S_ACLK or S_ARESETN) begin
if (S_ARESETN == 1'b1) begin
S_AXI_RID <= 0;
ar_id_r <= 0;
end else begin
if (addr_en_c == 1'b1 && rd_en_c == 1'b1) begin
S_AXI_RID <= S_AXI_ARID;
ar_id_r <= S_AXI_ARID;
end else if (addr_en_c == 1'b1 && rd_en_c == 1'b0) begin
ar_id_r <= S_AXI_ARID;
end else if (rd_en_c == 1'b1) begin
S_AXI_RID <= ar_id_r;
end
end
end
end
endgenerate
endmodule
module blk_mem_axi_regs_fwd_v8_2
#(parameter C_DATA_WIDTH = 8
)(
input ACLK,
input ARESET,
input S_VALID,
output S_READY,
input [C_DATA_WIDTH-1:0] S_PAYLOAD_DATA,
output M_VALID,
input M_READY,
output reg [C_DATA_WIDTH-1:0] M_PAYLOAD_DATA
);
reg [C_DATA_WIDTH-1:0] STORAGE_DATA;
wire S_READY_I;
reg M_VALID_I;
reg [1:0] ARESET_D;
//assign local signal to its output signal
assign S_READY = S_READY_I;
assign M_VALID = M_VALID_I;
always @(posedge ACLK) begin
ARESET_D <= {ARESET_D[0], ARESET};
end
//Save payload data whenever we have a transaction on the slave side
always @(posedge ACLK or ARESET) begin
if (ARESET == 1'b1) begin
STORAGE_DATA <= 0;
end else begin
if(S_VALID == 1'b1 && S_READY_I == 1'b1 ) begin
STORAGE_DATA <= S_PAYLOAD_DATA;
end
end
end
always @(posedge ACLK) begin
M_PAYLOAD_DATA = STORAGE_DATA;
end
//M_Valid set to high when we have a completed transfer on slave side
//Is removed on a M_READY except if we have a new transfer on the slave side
always @(posedge ACLK or ARESET_D) begin
if (ARESET_D != 2'b00) begin
M_VALID_I <= 1'b0;
end else begin
if (S_VALID == 1'b1) begin
//Always set M_VALID_I when slave side is valid
M_VALID_I <= 1'b1;
end else if (M_READY == 1'b1 ) begin
//Clear (or keep) when no slave side is valid but master side is ready
M_VALID_I <= 1'b0;
end
end
end
//Slave Ready is either when Master side drives M_READY or we have space in our storage data
assign S_READY_I = (M_READY || (!M_VALID_I)) && !(|(ARESET_D));
endmodule
//*****************************************************************************
// Output Register Stage module
//
// This module builds the output register stages of the memory. This module is
// instantiated in the main memory module (BLK_MEM_GEN_v8_2) which is
// declared/implemented further down in this file.
//*****************************************************************************
module BLK_MEM_GEN_v8_2_output_stage
#(parameter C_FAMILY = "virtex7",
parameter C_XDEVICEFAMILY = "virtex7",
parameter C_RST_TYPE = "SYNC",
parameter C_HAS_RST = 0,
parameter C_RSTRAM = 0,
parameter C_RST_PRIORITY = "CE",
parameter C_INIT_VAL = "0",
parameter C_HAS_EN = 0,
parameter C_HAS_REGCE = 0,
parameter C_DATA_WIDTH = 32,
parameter C_ADDRB_WIDTH = 10,
parameter C_HAS_MEM_OUTPUT_REGS = 0,
parameter C_USE_SOFTECC = 0,
parameter C_USE_ECC = 0,
parameter NUM_STAGES = 1,
parameter C_EN_ECC_PIPE = 0,
parameter FLOP_DELAY = 100
)
(
input CLK,
input RST,
input EN,
input REGCE,
input [C_DATA_WIDTH-1:0] DIN_I,
output reg [C_DATA_WIDTH-1:0] DOUT,
input SBITERR_IN_I,
input DBITERR_IN_I,
output reg SBITERR,
output reg DBITERR,
input [C_ADDRB_WIDTH-1:0] RDADDRECC_IN_I,
input ECCPIPECE,
output reg [C_ADDRB_WIDTH-1:0] RDADDRECC
);
//******************************
// Port and Generic Definitions
//******************************
//////////////////////////////////////////////////////////////////////////
// Generic Definitions
//////////////////////////////////////////////////////////////////////////
// C_FAMILY,C_XDEVICEFAMILY: Designates architecture targeted. The following
// options are available - "spartan3", "spartan6",
// "virtex4", "virtex5", "virtex6" and "virtex6l".
// C_RST_TYPE : Type of reset - Synchronous or Asynchronous
// C_HAS_RST : Determines the presence of the RST port
// C_RSTRAM : Determines if special reset behavior is used
// C_RST_PRIORITY : Determines the priority between CE and SR
// C_INIT_VAL : Initialization value
// C_HAS_EN : Determines the presence of the EN port
// C_HAS_REGCE : Determines the presence of the REGCE port
// C_DATA_WIDTH : Memory write/read width
// C_ADDRB_WIDTH : Width of the ADDRB input port
// C_HAS_MEM_OUTPUT_REGS : Designates the use of a register at the output
// of the RAM primitive
// C_USE_SOFTECC : Determines if the Soft ECC feature is used or
// not. Only applicable Spartan-6
// C_USE_ECC : Determines if the ECC feature is used or
// not. Only applicable for V5 and V6
// NUM_STAGES : Determines the number of output stages
// FLOP_DELAY : Constant delay for register assignments
//////////////////////////////////////////////////////////////////////////
// Port Definitions
//////////////////////////////////////////////////////////////////////////
// CLK : Clock to synchronize all read and write operations
// RST : Reset input to reset memory outputs to a user-defined
// reset state
// EN : Enable all read and write operations
// REGCE : Register Clock Enable to control each pipeline output
// register stages
// DIN : Data input to the Output stage.
// DOUT : Final Data output
// SBITERR_IN : SBITERR input signal to the Output stage.
// SBITERR : Final SBITERR Output signal.
// DBITERR_IN : DBITERR input signal to the Output stage.
// DBITERR : Final DBITERR Output signal.
// RDADDRECC_IN : RDADDRECC input signal to the Output stage.
// RDADDRECC : Final RDADDRECC Output signal.
//////////////////////////////////////////////////////////////////////////
// Fix for CR-509792
localparam REG_STAGES = (NUM_STAGES < 2) ? 1 : NUM_STAGES-1;
// Declare the pipeline registers
// (includes mem output reg, mux pipeline stages, and mux output reg)
reg [C_DATA_WIDTH*REG_STAGES-1:0] out_regs;
reg [C_ADDRB_WIDTH*REG_STAGES-1:0] rdaddrecc_regs;
reg [REG_STAGES-1:0] sbiterr_regs;
reg [REG_STAGES-1:0] dbiterr_regs;
reg [C_DATA_WIDTH*8-1:0] init_str = C_INIT_VAL;
reg [C_DATA_WIDTH-1:0] init_val ;
//*********************************************
// Wire off optional inputs based on parameters
//*********************************************
wire en_i;
wire regce_i;
wire rst_i;
// Internal signals
reg [C_DATA_WIDTH-1:0] DIN;
reg [C_ADDRB_WIDTH-1:0] RDADDRECC_IN;
reg SBITERR_IN;
reg DBITERR_IN;
// Internal enable for output registers is tied to user EN or '1' depending
// on parameters
assign en_i = (C_HAS_EN==0 || EN);
// Internal register enable for output registers is tied to user REGCE, EN or
// '1' depending on parameters
// For V4 ECC, REGCE is always 1
// Virtex-4 ECC Not Yet Supported
assign regce_i = ((C_HAS_REGCE==1) && REGCE) ||
((C_HAS_REGCE==0) && (C_HAS_EN==0 || EN));
//Internal SRR is tied to user RST or '0' depending on parameters
assign rst_i = (C_HAS_RST==1) && RST;
//****************************************************
// Power on: load up the output registers and latches
//****************************************************
initial begin
if (!($sscanf(init_str, "%h", init_val))) begin
init_val = 0;
end
DOUT = init_val;
RDADDRECC = 0;
SBITERR = 1'b0;
DBITERR = 1'b0;
DIN = {(C_DATA_WIDTH){1'b0}};
RDADDRECC_IN = 0;
SBITERR_IN = 0;
DBITERR_IN = 0;
// This will be one wider than need, but 0 is an error
out_regs = {(REG_STAGES+1){init_val}};
rdaddrecc_regs = 0;
sbiterr_regs = {(REG_STAGES+1){1'b0}};
dbiterr_regs = {(REG_STAGES+1){1'b0}};
end
//***********************************************
// NUM_STAGES = 0 (No output registers. RAM only)
//***********************************************
generate if (NUM_STAGES == 0) begin : zero_stages
always @* begin
DOUT = DIN;
RDADDRECC = RDADDRECC_IN;
SBITERR = SBITERR_IN;
DBITERR = DBITERR_IN;
end
end
endgenerate
generate if (C_EN_ECC_PIPE == 0) begin : no_ecc_pipe_reg
always @* begin
DIN = DIN_I;
SBITERR_IN = SBITERR_IN_I;
DBITERR_IN = DBITERR_IN_I;
RDADDRECC_IN = RDADDRECC_IN_I;
end
end
endgenerate
generate if (C_EN_ECC_PIPE == 1) begin : with_ecc_pipe_reg
always @(posedge CLK) begin
if(ECCPIPECE == 1) begin
DIN <= #FLOP_DELAY DIN_I;
SBITERR_IN <= #FLOP_DELAY SBITERR_IN_I;
DBITERR_IN <= #FLOP_DELAY DBITERR_IN_I;
RDADDRECC_IN <= #FLOP_DELAY RDADDRECC_IN_I;
end
end
end
endgenerate
//***********************************************
// NUM_STAGES = 1
// (Mem Output Reg only or Mux Output Reg only)
//***********************************************
// Possible valid combinations:
// Note: C_HAS_MUX_OUTPUT_REGS_*=0 when (C_RSTRAM_*=1)
// +-----------------------------------------+
// | C_RSTRAM_* | Reset Behavior |
// +----------------+------------------------+
// | 0 | Normal Behavior |
// +----------------+------------------------+
// | 1 | Special Behavior |
// +----------------+------------------------+
//
// Normal = REGCE gates reset, as in the case of all families except S3ADSP.
// Special = EN gates reset, as in the case of S3ADSP.
generate if (NUM_STAGES == 1 &&
(C_RSTRAM == 0 || (C_RSTRAM == 1 && (C_XDEVICEFAMILY != "spartan3adsp" && C_XDEVICEFAMILY != "aspartan3adsp" )) ||
C_HAS_MEM_OUTPUT_REGS == 0 || C_HAS_RST == 0))
begin : one_stages_norm
always @(posedge CLK) begin
if (C_RST_PRIORITY == "CE") begin //REGCE has priority
if (regce_i && rst_i) begin
DOUT <= #FLOP_DELAY init_val;
RDADDRECC <= #FLOP_DELAY 0;
SBITERR <= #FLOP_DELAY 1'b0;
DBITERR <= #FLOP_DELAY 1'b0;
end else if (regce_i) begin
DOUT <= #FLOP_DELAY DIN;
RDADDRECC <= #FLOP_DELAY RDADDRECC_IN;
SBITERR <= #FLOP_DELAY SBITERR_IN;
DBITERR <= #FLOP_DELAY DBITERR_IN;
end //Output signal assignments
end else begin //RST has priority
if (rst_i) begin
DOUT <= #FLOP_DELAY init_val;
RDADDRECC <= #FLOP_DELAY RDADDRECC_IN;
SBITERR <= #FLOP_DELAY 1'b0;
DBITERR <= #FLOP_DELAY 1'b0;
end else if (regce_i) begin
DOUT <= #FLOP_DELAY DIN;
RDADDRECC <= #FLOP_DELAY RDADDRECC_IN;
SBITERR <= #FLOP_DELAY SBITERR_IN;
DBITERR <= #FLOP_DELAY DBITERR_IN;
end //Output signal assignments
end //end Priority conditions
end //end RST Type conditions
end //end one_stages_norm generate statement
endgenerate
// Special Reset Behavior for S3ADSP
generate if (NUM_STAGES == 1 && C_RSTRAM == 1 && (C_XDEVICEFAMILY =="spartan3adsp" || C_XDEVICEFAMILY =="aspartan3adsp"))
begin : one_stage_splbhv
always @(posedge CLK) begin
if (en_i && rst_i) begin
DOUT <= #FLOP_DELAY init_val;
end else if (regce_i && !rst_i) begin
DOUT <= #FLOP_DELAY DIN;
end //Output signal assignments
end //end CLK
end //end one_stage_splbhv generate statement
endgenerate
//************************************************************
// NUM_STAGES > 1
// Mem Output Reg + Mux Output Reg
// or
// Mem Output Reg + Mux Pipeline Stages (>0) + Mux Output Reg
// or
// Mux Pipeline Stages (>0) + Mux Output Reg
//*************************************************************
generate if (NUM_STAGES > 1) begin : multi_stage
//Asynchronous Reset
always @(posedge CLK) begin
if (C_RST_PRIORITY == "CE") begin //REGCE has priority
if (regce_i && rst_i) begin
DOUT <= #FLOP_DELAY init_val;
RDADDRECC <= #FLOP_DELAY 0;
SBITERR <= #FLOP_DELAY 1'b0;
DBITERR <= #FLOP_DELAY 1'b0;
end else if (regce_i) begin
DOUT <= #FLOP_DELAY
out_regs[C_DATA_WIDTH*(NUM_STAGES-2)+:C_DATA_WIDTH];
RDADDRECC <= #FLOP_DELAY rdaddrecc_regs[C_ADDRB_WIDTH*(NUM_STAGES-2)+:C_ADDRB_WIDTH];
SBITERR <= #FLOP_DELAY sbiterr_regs[NUM_STAGES-2];
DBITERR <= #FLOP_DELAY dbiterr_regs[NUM_STAGES-2];
end //Output signal assignments
end else begin //RST has priority
if (rst_i) begin
DOUT <= #FLOP_DELAY init_val;
RDADDRECC <= #FLOP_DELAY 0;
SBITERR <= #FLOP_DELAY 1'b0;
DBITERR <= #FLOP_DELAY 1'b0;
end else if (regce_i) begin
DOUT <= #FLOP_DELAY
out_regs[C_DATA_WIDTH*(NUM_STAGES-2)+:C_DATA_WIDTH];
RDADDRECC <= #FLOP_DELAY rdaddrecc_regs[C_ADDRB_WIDTH*(NUM_STAGES-2)+:C_ADDRB_WIDTH];
SBITERR <= #FLOP_DELAY sbiterr_regs[NUM_STAGES-2];
DBITERR <= #FLOP_DELAY dbiterr_regs[NUM_STAGES-2];
end //Output signal assignments
end //end Priority conditions
// Shift the data through the output stages
if (en_i) begin
out_regs <= #FLOP_DELAY (out_regs << C_DATA_WIDTH) | DIN;
rdaddrecc_regs <= #FLOP_DELAY (rdaddrecc_regs << C_ADDRB_WIDTH) | RDADDRECC_IN;
sbiterr_regs <= #FLOP_DELAY (sbiterr_regs << 1) | SBITERR_IN;
dbiterr_regs <= #FLOP_DELAY (dbiterr_regs << 1) | DBITERR_IN;
end
end //end CLK
end //end multi_stage generate statement
endgenerate
endmodule
module BLK_MEM_GEN_v8_2_softecc_output_reg_stage
#(parameter C_DATA_WIDTH = 32,
parameter C_ADDRB_WIDTH = 10,
parameter C_HAS_SOFTECC_OUTPUT_REGS_B= 0,
parameter C_USE_SOFTECC = 0,
parameter FLOP_DELAY = 100
)
(
input CLK,
input [C_DATA_WIDTH-1:0] DIN,
output reg [C_DATA_WIDTH-1:0] DOUT,
input SBITERR_IN,
input DBITERR_IN,
output reg SBITERR,
output reg DBITERR,
input [C_ADDRB_WIDTH-1:0] RDADDRECC_IN,
output reg [C_ADDRB_WIDTH-1:0] RDADDRECC
);
//******************************
// Port and Generic Definitions
//******************************
//////////////////////////////////////////////////////////////////////////
// Generic Definitions
//////////////////////////////////////////////////////////////////////////
// C_DATA_WIDTH : Memory write/read width
// C_ADDRB_WIDTH : Width of the ADDRB input port
// C_HAS_SOFTECC_OUTPUT_REGS_B : Designates the use of a register at the output
// of the RAM primitive
// C_USE_SOFTECC : Determines if the Soft ECC feature is used or
// not. Only applicable Spartan-6
// FLOP_DELAY : Constant delay for register assignments
//////////////////////////////////////////////////////////////////////////
// Port Definitions
//////////////////////////////////////////////////////////////////////////
// CLK : Clock to synchronize all read and write operations
// DIN : Data input to the Output stage.
// DOUT : Final Data output
// SBITERR_IN : SBITERR input signal to the Output stage.
// SBITERR : Final SBITERR Output signal.
// DBITERR_IN : DBITERR input signal to the Output stage.
// DBITERR : Final DBITERR Output signal.
// RDADDRECC_IN : RDADDRECC input signal to the Output stage.
// RDADDRECC : Final RDADDRECC Output signal.
//////////////////////////////////////////////////////////////////////////
reg [C_DATA_WIDTH-1:0] dout_i = 0;
reg sbiterr_i = 0;
reg dbiterr_i = 0;
reg [C_ADDRB_WIDTH-1:0] rdaddrecc_i = 0;
//***********************************************
// NO OUTPUT REGISTERS.
//***********************************************
generate if (C_HAS_SOFTECC_OUTPUT_REGS_B==0) begin : no_output_stage
always @* begin
DOUT = DIN;
RDADDRECC = RDADDRECC_IN;
SBITERR = SBITERR_IN;
DBITERR = DBITERR_IN;
end
end
endgenerate
//***********************************************
// WITH OUTPUT REGISTERS.
//***********************************************
generate if (C_HAS_SOFTECC_OUTPUT_REGS_B==1) begin : has_output_stage
always @(posedge CLK) begin
dout_i <= #FLOP_DELAY DIN;
rdaddrecc_i <= #FLOP_DELAY RDADDRECC_IN;
sbiterr_i <= #FLOP_DELAY SBITERR_IN;
dbiterr_i <= #FLOP_DELAY DBITERR_IN;
end
always @* begin
DOUT = dout_i;
RDADDRECC = rdaddrecc_i;
SBITERR = sbiterr_i;
DBITERR = dbiterr_i;
end //end always
end //end in_or_out_stage generate statement
endgenerate
endmodule
//*****************************************************************************
// Main Memory module
//
// This module is the top-level behavioral model and this implements the RAM
//*****************************************************************************
module BLK_MEM_GEN_v8_2_mem_module
#(parameter C_CORENAME = "blk_mem_gen_v8_2",
parameter C_FAMILY = "virtex7",
parameter C_XDEVICEFAMILY = "virtex7",
parameter C_MEM_TYPE = 2,
parameter C_BYTE_SIZE = 9,
parameter C_USE_BRAM_BLOCK = 0,
parameter C_ALGORITHM = 1,
parameter C_PRIM_TYPE = 3,
parameter C_LOAD_INIT_FILE = 0,
parameter C_INIT_FILE_NAME = "",
parameter C_INIT_FILE = "",
parameter C_USE_DEFAULT_DATA = 0,
parameter C_DEFAULT_DATA = "0",
parameter C_RST_TYPE = "SYNC",
parameter C_HAS_RSTA = 0,
parameter C_RST_PRIORITY_A = "CE",
parameter C_RSTRAM_A = 0,
parameter C_INITA_VAL = "0",
parameter C_HAS_ENA = 1,
parameter C_HAS_REGCEA = 0,
parameter C_USE_BYTE_WEA = 0,
parameter C_WEA_WIDTH = 1,
parameter C_WRITE_MODE_A = "WRITE_FIRST",
parameter C_WRITE_WIDTH_A = 32,
parameter C_READ_WIDTH_A = 32,
parameter C_WRITE_DEPTH_A = 64,
parameter C_READ_DEPTH_A = 64,
parameter C_ADDRA_WIDTH = 5,
parameter C_HAS_RSTB = 0,
parameter C_RST_PRIORITY_B = "CE",
parameter C_RSTRAM_B = 0,
parameter C_INITB_VAL = "",
parameter C_HAS_ENB = 1,
parameter C_HAS_REGCEB = 0,
parameter C_USE_BYTE_WEB = 0,
parameter C_WEB_WIDTH = 1,
parameter C_WRITE_MODE_B = "WRITE_FIRST",
parameter C_WRITE_WIDTH_B = 32,
parameter C_READ_WIDTH_B = 32,
parameter C_WRITE_DEPTH_B = 64,
parameter C_READ_DEPTH_B = 64,
parameter C_ADDRB_WIDTH = 5,
parameter C_HAS_MEM_OUTPUT_REGS_A = 0,
parameter C_HAS_MEM_OUTPUT_REGS_B = 0,
parameter C_HAS_MUX_OUTPUT_REGS_A = 0,
parameter C_HAS_MUX_OUTPUT_REGS_B = 0,
parameter C_HAS_SOFTECC_INPUT_REGS_A = 0,
parameter C_HAS_SOFTECC_OUTPUT_REGS_B= 0,
parameter C_MUX_PIPELINE_STAGES = 0,
parameter C_USE_SOFTECC = 0,
parameter C_USE_ECC = 0,
parameter C_HAS_INJECTERR = 0,
parameter C_SIM_COLLISION_CHECK = "NONE",
parameter C_COMMON_CLK = 1,
parameter FLOP_DELAY = 100,
parameter C_DISABLE_WARN_BHV_COLL = 0,
parameter C_EN_ECC_PIPE = 0,
parameter C_DISABLE_WARN_BHV_RANGE = 0
)
(input CLKA,
input RSTA,
input ENA,
input REGCEA,
input [C_WEA_WIDTH-1:0] WEA,
input [C_ADDRA_WIDTH-1:0] ADDRA,
input [C_WRITE_WIDTH_A-1:0] DINA,
output [C_READ_WIDTH_A-1:0] DOUTA,
input CLKB,
input RSTB,
input ENB,
input REGCEB,
input [C_WEB_WIDTH-1:0] WEB,
input [C_ADDRB_WIDTH-1:0] ADDRB,
input [C_WRITE_WIDTH_B-1:0] DINB,
output [C_READ_WIDTH_B-1:0] DOUTB,
input INJECTSBITERR,
input INJECTDBITERR,
input ECCPIPECE,
input SLEEP,
output SBITERR,
output DBITERR,
output [C_ADDRB_WIDTH-1:0] RDADDRECC
);
//******************************
// Port and Generic Definitions
//******************************
//////////////////////////////////////////////////////////////////////////
// Generic Definitions
//////////////////////////////////////////////////////////////////////////
// C_CORENAME : Instance name of the Block Memory Generator core
// C_FAMILY,C_XDEVICEFAMILY: Designates architecture targeted. The following
// options are available - "spartan3", "spartan6",
// "virtex4", "virtex5", "virtex6" and "virtex6l".
// C_MEM_TYPE : Designates memory type.
// It can be
// 0 - Single Port Memory
// 1 - Simple Dual Port Memory
// 2 - True Dual Port Memory
// 3 - Single Port Read Only Memory
// 4 - Dual Port Read Only Memory
// C_BYTE_SIZE : Size of a byte (8 or 9 bits)
// C_ALGORITHM : Designates the algorithm method used
// for constructing the memory.
// It can be Fixed_Primitives, Minimum_Area or
// Low_Power
// C_PRIM_TYPE : Designates the user selected primitive used to
// construct the memory.
//
// C_LOAD_INIT_FILE : Designates the use of an initialization file to
// initialize memory contents.
// C_INIT_FILE_NAME : Memory initialization file name.
// C_USE_DEFAULT_DATA : Designates whether to fill remaining
// initialization space with default data
// C_DEFAULT_DATA : Default value of all memory locations
// not initialized by the memory
// initialization file.
// C_RST_TYPE : Type of reset - Synchronous or Asynchronous
// C_HAS_RSTA : Determines the presence of the RSTA port
// C_RST_PRIORITY_A : Determines the priority between CE and SR for
// Port A.
// C_RSTRAM_A : Determines if special reset behavior is used for
// Port A
// C_INITA_VAL : The initialization value for Port A
// C_HAS_ENA : Determines the presence of the ENA port
// C_HAS_REGCEA : Determines the presence of the REGCEA port
// C_USE_BYTE_WEA : Determines if the Byte Write is used or not.
// C_WEA_WIDTH : The width of the WEA port
// C_WRITE_MODE_A : Configurable write mode for Port A. It can be
// WRITE_FIRST, READ_FIRST or NO_CHANGE.
// C_WRITE_WIDTH_A : Memory write width for Port A.
// C_READ_WIDTH_A : Memory read width for Port A.
// C_WRITE_DEPTH_A : Memory write depth for Port A.
// C_READ_DEPTH_A : Memory read depth for Port A.
// C_ADDRA_WIDTH : Width of the ADDRA input port
// C_HAS_RSTB : Determines the presence of the RSTB port
// C_RST_PRIORITY_B : Determines the priority between CE and SR for
// Port B.
// C_RSTRAM_B : Determines if special reset behavior is used for
// Port B
// C_INITB_VAL : The initialization value for Port B
// C_HAS_ENB : Determines the presence of the ENB port
// C_HAS_REGCEB : Determines the presence of the REGCEB port
// C_USE_BYTE_WEB : Determines if the Byte Write is used or not.
// C_WEB_WIDTH : The width of the WEB port
// C_WRITE_MODE_B : Configurable write mode for Port B. It can be
// WRITE_FIRST, READ_FIRST or NO_CHANGE.
// C_WRITE_WIDTH_B : Memory write width for Port B.
// C_READ_WIDTH_B : Memory read width for Port B.
// C_WRITE_DEPTH_B : Memory write depth for Port B.
// C_READ_DEPTH_B : Memory read depth for Port B.
// C_ADDRB_WIDTH : Width of the ADDRB input port
// C_HAS_MEM_OUTPUT_REGS_A : Designates the use of a register at the output
// of the RAM primitive for Port A.
// C_HAS_MEM_OUTPUT_REGS_B : Designates the use of a register at the output
// of the RAM primitive for Port B.
// C_HAS_MUX_OUTPUT_REGS_A : Designates the use of a register at the output
// of the MUX for Port A.
// C_HAS_MUX_OUTPUT_REGS_B : Designates the use of a register at the output
// of the MUX for Port B.
// C_MUX_PIPELINE_STAGES : Designates the number of pipeline stages in
// between the muxes.
// C_USE_SOFTECC : Determines if the Soft ECC feature is used or
// not. Only applicable Spartan-6
// C_USE_ECC : Determines if the ECC feature is used or
// not. Only applicable for V5 and V6
// C_HAS_INJECTERR : Determines if the error injection pins
// are present or not. If the ECC feature
// is not used, this value is defaulted to
// 0, else the following are the allowed
// values:
// 0 : No INJECTSBITERR or INJECTDBITERR pins
// 1 : Only INJECTSBITERR pin exists
// 2 : Only INJECTDBITERR pin exists
// 3 : Both INJECTSBITERR and INJECTDBITERR pins exist
// C_SIM_COLLISION_CHECK : Controls the disabling of Unisim model collision
// warnings. It can be "ALL", "NONE",
// "Warnings_Only" or "Generate_X_Only".
// C_COMMON_CLK : Determins if the core has a single CLK input.
// C_DISABLE_WARN_BHV_COLL : Controls the Behavioral Model Collision warnings
// C_DISABLE_WARN_BHV_RANGE: Controls the Behavioral Model Out of Range
// warnings
//////////////////////////////////////////////////////////////////////////
// Port Definitions
//////////////////////////////////////////////////////////////////////////
// CLKA : Clock to synchronize all read and write operations of Port A.
// RSTA : Reset input to reset memory outputs to a user-defined
// reset state for Port A.
// ENA : Enable all read and write operations of Port A.
// REGCEA : Register Clock Enable to control each pipeline output
// register stages for Port A.
// WEA : Write Enable to enable all write operations of Port A.
// ADDRA : Address of Port A.
// DINA : Data input of Port A.
// DOUTA : Data output of Port A.
// CLKB : Clock to synchronize all read and write operations of Port B.
// RSTB : Reset input to reset memory outputs to a user-defined
// reset state for Port B.
// ENB : Enable all read and write operations of Port B.
// REGCEB : Register Clock Enable to control each pipeline output
// register stages for Port B.
// WEB : Write Enable to enable all write operations of Port B.
// ADDRB : Address of Port B.
// DINB : Data input of Port B.
// DOUTB : Data output of Port B.
// INJECTSBITERR : Single Bit ECC Error Injection Pin.
// INJECTDBITERR : Double Bit ECC Error Injection Pin.
// SBITERR : Output signal indicating that a Single Bit ECC Error has been
// detected and corrected.
// DBITERR : Output signal indicating that a Double Bit ECC Error has been
// detected.
// RDADDRECC : Read Address Output signal indicating address at which an
// ECC error has occurred.
//////////////////////////////////////////////////////////////////////////
// Note: C_CORENAME parameter is hard-coded to "blk_mem_gen_v8_2" and it is
// only used by this module to print warning messages. It is neither passed
// down from blk_mem_gen_v8_2_xst.v nor present in the instantiation template
// coregen generates
//***************************************************************************
// constants for the core behavior
//***************************************************************************
// file handles for logging
//--------------------------------------------------
localparam ADDRFILE = 32'h8000_0001; //stdout for addr out of range
localparam COLLFILE = 32'h8000_0001; //stdout for coll detection
localparam ERRFILE = 32'h8000_0001; //stdout for file I/O errors
// other constants
//--------------------------------------------------
localparam COLL_DELAY = 100; // 100 ps
// locally derived parameters to determine memory shape
//-----------------------------------------------------
localparam CHKBIT_WIDTH = (C_WRITE_WIDTH_A>57 ? 8 : (C_WRITE_WIDTH_A>26 ? 7 : (C_WRITE_WIDTH_A>11 ? 6 : (C_WRITE_WIDTH_A>4 ? 5 : (C_WRITE_WIDTH_A<5 ? 4 :0)))));
localparam MIN_WIDTH_A = (C_WRITE_WIDTH_A < C_READ_WIDTH_A) ?
C_WRITE_WIDTH_A : C_READ_WIDTH_A;
localparam MIN_WIDTH_B = (C_WRITE_WIDTH_B < C_READ_WIDTH_B) ?
C_WRITE_WIDTH_B : C_READ_WIDTH_B;
localparam MIN_WIDTH = (MIN_WIDTH_A < MIN_WIDTH_B) ?
MIN_WIDTH_A : MIN_WIDTH_B;
localparam MAX_DEPTH_A = (C_WRITE_DEPTH_A > C_READ_DEPTH_A) ?
C_WRITE_DEPTH_A : C_READ_DEPTH_A;
localparam MAX_DEPTH_B = (C_WRITE_DEPTH_B > C_READ_DEPTH_B) ?
C_WRITE_DEPTH_B : C_READ_DEPTH_B;
localparam MAX_DEPTH = (MAX_DEPTH_A > MAX_DEPTH_B) ?
MAX_DEPTH_A : MAX_DEPTH_B;
// locally derived parameters to assist memory access
//----------------------------------------------------
// Calculate the width ratios of each port with respect to the narrowest
// port
localparam WRITE_WIDTH_RATIO_A = C_WRITE_WIDTH_A/MIN_WIDTH;
localparam READ_WIDTH_RATIO_A = C_READ_WIDTH_A/MIN_WIDTH;
localparam WRITE_WIDTH_RATIO_B = C_WRITE_WIDTH_B/MIN_WIDTH;
localparam READ_WIDTH_RATIO_B = C_READ_WIDTH_B/MIN_WIDTH;
// To modify the LSBs of the 'wider' data to the actual
// address value
//----------------------------------------------------
localparam WRITE_ADDR_A_DIV = C_WRITE_WIDTH_A/MIN_WIDTH_A;
localparam READ_ADDR_A_DIV = C_READ_WIDTH_A/MIN_WIDTH_A;
localparam WRITE_ADDR_B_DIV = C_WRITE_WIDTH_B/MIN_WIDTH_B;
localparam READ_ADDR_B_DIV = C_READ_WIDTH_B/MIN_WIDTH_B;
// If byte writes aren't being used, make sure BYTE_SIZE is not
// wider than the memory elements to avoid compilation warnings
localparam BYTE_SIZE = (C_BYTE_SIZE < MIN_WIDTH) ? C_BYTE_SIZE : MIN_WIDTH;
// The memory
reg [MIN_WIDTH-1:0] memory [0:MAX_DEPTH-1];
reg [MIN_WIDTH-1:0] temp_mem_array [0:MAX_DEPTH-1];
reg [C_WRITE_WIDTH_A+CHKBIT_WIDTH-1:0] doublebit_error = 3;
// ECC error arrays
reg sbiterr_arr [0:MAX_DEPTH-1];
reg dbiterr_arr [0:MAX_DEPTH-1];
reg softecc_sbiterr_arr [0:MAX_DEPTH-1];
reg softecc_dbiterr_arr [0:MAX_DEPTH-1];
// Memory output 'latches'
reg [C_READ_WIDTH_A-1:0] memory_out_a;
reg [C_READ_WIDTH_B-1:0] memory_out_b;
// ECC error inputs and outputs from output_stage module:
reg sbiterr_in;
wire sbiterr_sdp;
reg dbiterr_in;
wire dbiterr_sdp;
wire [C_READ_WIDTH_B-1:0] dout_i;
wire dbiterr_i;
wire sbiterr_i;
wire [C_ADDRB_WIDTH-1:0] rdaddrecc_i;
reg [C_ADDRB_WIDTH-1:0] rdaddrecc_in;
wire [C_ADDRB_WIDTH-1:0] rdaddrecc_sdp;
// Reset values
reg [C_READ_WIDTH_A-1:0] inita_val;
reg [C_READ_WIDTH_B-1:0] initb_val;
// Collision detect
reg is_collision;
reg is_collision_a, is_collision_delay_a;
reg is_collision_b, is_collision_delay_b;
// Temporary variables for initialization
//---------------------------------------
integer status;
integer initfile;
integer meminitfile;
// data input buffer
reg [C_WRITE_WIDTH_A-1:0] mif_data;
reg [C_WRITE_WIDTH_A-1:0] mem_data;
// string values in hex
reg [C_READ_WIDTH_A*8-1:0] inita_str = C_INITA_VAL;
reg [C_READ_WIDTH_B*8-1:0] initb_str = C_INITB_VAL;
reg [C_WRITE_WIDTH_A*8-1:0] default_data_str = C_DEFAULT_DATA;
// initialization filename
reg [1023*8-1:0] init_file_str = C_INIT_FILE_NAME;
reg [1023*8-1:0] mem_init_file_str = C_INIT_FILE;
//Constants used to calculate the effective address widths for each of the
//four ports.
integer cnt = 1;
integer write_addr_a_width, read_addr_a_width;
integer write_addr_b_width, read_addr_b_width;
localparam C_FAMILY_LOCALPARAM = (C_FAMILY=="virtexu"?"virtex7":(C_FAMILY=="kintexu" ? "virtex7":(C_FAMILY=="virtex7" ? "virtex7" : (C_FAMILY=="virtex7l" ? "virtex7" : (C_FAMILY=="qvirtex7" ? "virtex7" : (C_FAMILY=="qvirtex7l" ? "virtex7" : (C_FAMILY=="kintex7" ? "virtex7" : (C_FAMILY=="kintex7l" ? "virtex7" : (C_FAMILY=="qkintex7" ? "virtex7" : (C_FAMILY=="qkintex7l" ? "virtex7" : (C_FAMILY=="artix7" ? "virtex7" : (C_FAMILY=="artix7l" ? "virtex7" : (C_FAMILY=="qartix7" ? "virtex7" : (C_FAMILY=="qartix7l" ? "virtex7" : (C_FAMILY=="aartix7" ? "virtex7" : (C_FAMILY=="zynq" ? "virtex7" : (C_FAMILY=="azynq" ? "virtex7" : (C_FAMILY=="qzynq" ? "virtex7" : C_FAMILY))))))))))))))))));
// Internal configuration parameters
//---------------------------------------------
localparam SINGLE_PORT = (C_MEM_TYPE==0 || C_MEM_TYPE==3);
localparam IS_ROM = (C_MEM_TYPE==3 || C_MEM_TYPE==4);
localparam HAS_A_WRITE = (!IS_ROM);
localparam HAS_B_WRITE = (C_MEM_TYPE==2);
localparam HAS_A_READ = (C_MEM_TYPE!=1);
localparam HAS_B_READ = (!SINGLE_PORT);
localparam HAS_B_PORT = (HAS_B_READ || HAS_B_WRITE);
// Calculate the mux pipeline register stages for Port A and Port B
//------------------------------------------------------------------
localparam MUX_PIPELINE_STAGES_A = (C_HAS_MUX_OUTPUT_REGS_A) ?
C_MUX_PIPELINE_STAGES : 0;
localparam MUX_PIPELINE_STAGES_B = (C_HAS_MUX_OUTPUT_REGS_B) ?
C_MUX_PIPELINE_STAGES : 0;
// Calculate total number of register stages in the core
// -----------------------------------------------------
localparam NUM_OUTPUT_STAGES_A = (C_HAS_MEM_OUTPUT_REGS_A+MUX_PIPELINE_STAGES_A+C_HAS_MUX_OUTPUT_REGS_A);
localparam NUM_OUTPUT_STAGES_B = (C_HAS_MEM_OUTPUT_REGS_B+MUX_PIPELINE_STAGES_B+C_HAS_MUX_OUTPUT_REGS_B);
wire ena_i;
wire enb_i;
wire reseta_i;
wire resetb_i;
wire [C_WEA_WIDTH-1:0] wea_i;
wire [C_WEB_WIDTH-1:0] web_i;
wire rea_i;
wire reb_i;
wire rsta_outp_stage;
wire rstb_outp_stage;
// ECC SBITERR/DBITERR Outputs
// The ECC Behavior is modeled by the behavioral models only for Virtex-6.
// For Virtex-5, these outputs will be tied to 0.
assign SBITERR = ((C_MEM_TYPE == 1 && C_USE_ECC == 1) || C_USE_SOFTECC == 1)?sbiterr_sdp:0;
assign DBITERR = ((C_MEM_TYPE == 1 && C_USE_ECC == 1) || C_USE_SOFTECC == 1)?dbiterr_sdp:0;
assign RDADDRECC = (((C_FAMILY_LOCALPARAM == "virtex7") && C_MEM_TYPE == 1 && C_USE_ECC == 1) || C_USE_SOFTECC == 1)?rdaddrecc_sdp:0;
// This effectively wires off optional inputs
assign ena_i = (C_HAS_ENA==0) || ENA;
assign enb_i = ((C_HAS_ENB==0) || ENB) && HAS_B_PORT;
assign wea_i = (HAS_A_WRITE && ena_i) ? WEA : 'b0;
assign web_i = (HAS_B_WRITE && enb_i) ? WEB : 'b0;
assign rea_i = (HAS_A_READ) ? ena_i : 'b0;
assign reb_i = (HAS_B_READ) ? enb_i : 'b0;
// These signals reset the memory latches
assign reseta_i =
((C_HAS_RSTA==1 && RSTA && NUM_OUTPUT_STAGES_A==0) ||
(C_HAS_RSTA==1 && RSTA && C_RSTRAM_A==1));
assign resetb_i =
((C_HAS_RSTB==1 && RSTB && NUM_OUTPUT_STAGES_B==0) ||
(C_HAS_RSTB==1 && RSTB && C_RSTRAM_B==1));
// Tasks to access the memory
//---------------------------
//**************
// write_a
//**************
task write_a
(input reg [C_ADDRA_WIDTH-1:0] addr,
input reg [C_WEA_WIDTH-1:0] byte_en,
input reg [C_WRITE_WIDTH_A-1:0] data,
input inj_sbiterr,
input inj_dbiterr);
reg [C_WRITE_WIDTH_A-1:0] current_contents;
reg [C_ADDRA_WIDTH-1:0] address;
integer i;
begin
// Shift the address by the ratio
address = (addr/WRITE_ADDR_A_DIV);
if (address >= C_WRITE_DEPTH_A) begin
if (!C_DISABLE_WARN_BHV_RANGE) begin
$fdisplay(ADDRFILE,
"%0s WARNING: Address %0h is outside range for A Write",
C_CORENAME, addr);
end
// valid address
end else begin
// Combine w/ byte writes
if (C_USE_BYTE_WEA) begin
// Get the current memory contents
if (WRITE_WIDTH_RATIO_A == 1) begin
// Workaround for IUS 5.5 part-select issue
current_contents = memory[address];
end else begin
for (i = 0; i < WRITE_WIDTH_RATIO_A; i = i + 1) begin
current_contents[MIN_WIDTH*i+:MIN_WIDTH]
= memory[address*WRITE_WIDTH_RATIO_A + i];
end
end
// Apply incoming bytes
if (C_WEA_WIDTH == 1) begin
// Workaround for IUS 5.5 part-select issue
if (byte_en[0]) begin
current_contents = data;
end
end else begin
for (i = 0; i < C_WEA_WIDTH; i = i + 1) begin
if (byte_en[i]) begin
current_contents[BYTE_SIZE*i+:BYTE_SIZE]
= data[BYTE_SIZE*i+:BYTE_SIZE];
end
end
end
// No byte-writes, overwrite the whole word
end else begin
current_contents = data;
end
// Insert double bit errors:
if (C_USE_ECC == 1) begin
if ((C_HAS_INJECTERR == 2 || C_HAS_INJECTERR == 3) && inj_dbiterr == 1'b1) begin
current_contents[0] = !(current_contents[0]);
current_contents[1] = !(current_contents[1]);
end
end
// Insert softecc double bit errors:
if (C_USE_SOFTECC == 1) begin
if ((C_HAS_INJECTERR == 2 || C_HAS_INJECTERR == 3) && inj_dbiterr == 1'b1) begin
doublebit_error[C_WRITE_WIDTH_A+CHKBIT_WIDTH-1:2] = doublebit_error[C_WRITE_WIDTH_A+CHKBIT_WIDTH-3:0];
doublebit_error[0] = doublebit_error[C_WRITE_WIDTH_A+CHKBIT_WIDTH-1];
doublebit_error[1] = doublebit_error[C_WRITE_WIDTH_A+CHKBIT_WIDTH-2];
current_contents = current_contents ^ doublebit_error[C_WRITE_WIDTH_A-1:0];
end
end
// Write data to memory
if (WRITE_WIDTH_RATIO_A == 1) begin
// Workaround for IUS 5.5 part-select issue
memory[address*WRITE_WIDTH_RATIO_A] = current_contents;
end else begin
for (i = 0; i < WRITE_WIDTH_RATIO_A; i = i + 1) begin
memory[address*WRITE_WIDTH_RATIO_A + i]
= current_contents[MIN_WIDTH*i+:MIN_WIDTH];
end
end
// Store the address at which error is injected:
if ((C_FAMILY_LOCALPARAM == "virtex7") && C_USE_ECC == 1) begin
if ((C_HAS_INJECTERR == 1 && inj_sbiterr == 1'b1) ||
(C_HAS_INJECTERR == 3 && inj_sbiterr == 1'b1 && inj_dbiterr != 1'b1))
begin
sbiterr_arr[addr] = 1;
end else begin
sbiterr_arr[addr] = 0;
end
if ((C_HAS_INJECTERR == 2 || C_HAS_INJECTERR == 3) && inj_dbiterr == 1'b1) begin
dbiterr_arr[addr] = 1;
end else begin
dbiterr_arr[addr] = 0;
end
end
// Store the address at which softecc error is injected:
if (C_USE_SOFTECC == 1) begin
if ((C_HAS_INJECTERR == 1 && inj_sbiterr == 1'b1) ||
(C_HAS_INJECTERR == 3 && inj_sbiterr == 1'b1 && inj_dbiterr != 1'b1))
begin
softecc_sbiterr_arr[addr] = 1;
end else begin
softecc_sbiterr_arr[addr] = 0;
end
if ((C_HAS_INJECTERR == 2 || C_HAS_INJECTERR == 3) && inj_dbiterr == 1'b1) begin
softecc_dbiterr_arr[addr] = 1;
end else begin
softecc_dbiterr_arr[addr] = 0;
end
end
end
end
endtask
//**************
// write_b
//**************
task write_b
(input reg [C_ADDRB_WIDTH-1:0] addr,
input reg [C_WEB_WIDTH-1:0] byte_en,
input reg [C_WRITE_WIDTH_B-1:0] data);
reg [C_WRITE_WIDTH_B-1:0] current_contents;
reg [C_ADDRB_WIDTH-1:0] address;
integer i;
begin
// Shift the address by the ratio
address = (addr/WRITE_ADDR_B_DIV);
if (address >= C_WRITE_DEPTH_B) begin
if (!C_DISABLE_WARN_BHV_RANGE) begin
$fdisplay(ADDRFILE,
"%0s WARNING: Address %0h is outside range for B Write",
C_CORENAME, addr);
end
// valid address
end else begin
// Combine w/ byte writes
if (C_USE_BYTE_WEB) begin
// Get the current memory contents
if (WRITE_WIDTH_RATIO_B == 1) begin
// Workaround for IUS 5.5 part-select issue
current_contents = memory[address];
end else begin
for (i = 0; i < WRITE_WIDTH_RATIO_B; i = i + 1) begin
current_contents[MIN_WIDTH*i+:MIN_WIDTH]
= memory[address*WRITE_WIDTH_RATIO_B + i];
end
end
// Apply incoming bytes
if (C_WEB_WIDTH == 1) begin
// Workaround for IUS 5.5 part-select issue
if (byte_en[0]) begin
current_contents = data;
end
end else begin
for (i = 0; i < C_WEB_WIDTH; i = i + 1) begin
if (byte_en[i]) begin
current_contents[BYTE_SIZE*i+:BYTE_SIZE]
= data[BYTE_SIZE*i+:BYTE_SIZE];
end
end
end
// No byte-writes, overwrite the whole word
end else begin
current_contents = data;
end
// Write data to memory
if (WRITE_WIDTH_RATIO_B == 1) begin
// Workaround for IUS 5.5 part-select issue
memory[address*WRITE_WIDTH_RATIO_B] = current_contents;
end else begin
for (i = 0; i < WRITE_WIDTH_RATIO_B; i = i + 1) begin
memory[address*WRITE_WIDTH_RATIO_B + i]
= current_contents[MIN_WIDTH*i+:MIN_WIDTH];
end
end
end
end
endtask
//**************
// read_a
//**************
task read_a
(input reg [C_ADDRA_WIDTH-1:0] addr,
input reg reset);
reg [C_ADDRA_WIDTH-1:0] address;
integer i;
begin
if (reset) begin
memory_out_a <= #FLOP_DELAY inita_val;
end else begin
// Shift the address by the ratio
address = (addr/READ_ADDR_A_DIV);
if (address >= C_READ_DEPTH_A) begin
if (!C_DISABLE_WARN_BHV_RANGE) begin
$fdisplay(ADDRFILE,
"%0s WARNING: Address %0h is outside range for A Read",
C_CORENAME, addr);
end
memory_out_a <= #FLOP_DELAY 'bX;
// valid address
end else begin
if (READ_WIDTH_RATIO_A==1) begin
memory_out_a <= #FLOP_DELAY memory[address*READ_WIDTH_RATIO_A];
end else begin
// Increment through the 'partial' words in the memory
for (i = 0; i < READ_WIDTH_RATIO_A; i = i + 1) begin
memory_out_a[MIN_WIDTH*i+:MIN_WIDTH]
<= #FLOP_DELAY memory[address*READ_WIDTH_RATIO_A + i];
end
end //end READ_WIDTH_RATIO_A==1 loop
end //end valid address loop
end //end reset-data assignment loops
end
endtask
//**************
// read_b
//**************
task read_b
(input reg [C_ADDRB_WIDTH-1:0] addr,
input reg reset);
reg [C_ADDRB_WIDTH-1:0] address;
integer i;
begin
if (reset) begin
memory_out_b <= #FLOP_DELAY initb_val;
sbiterr_in <= #FLOP_DELAY 1'b0;
dbiterr_in <= #FLOP_DELAY 1'b0;
rdaddrecc_in <= #FLOP_DELAY 0;
end else begin
// Shift the address
address = (addr/READ_ADDR_B_DIV);
if (address >= C_READ_DEPTH_B) begin
if (!C_DISABLE_WARN_BHV_RANGE) begin
$fdisplay(ADDRFILE,
"%0s WARNING: Address %0h is outside range for B Read",
C_CORENAME, addr);
end
memory_out_b <= #FLOP_DELAY 'bX;
sbiterr_in <= #FLOP_DELAY 1'bX;
dbiterr_in <= #FLOP_DELAY 1'bX;
rdaddrecc_in <= #FLOP_DELAY 'bX;
// valid address
end else begin
if (READ_WIDTH_RATIO_B==1) begin
memory_out_b <= #FLOP_DELAY memory[address*READ_WIDTH_RATIO_B];
end else begin
// Increment through the 'partial' words in the memory
for (i = 0; i < READ_WIDTH_RATIO_B; i = i + 1) begin
memory_out_b[MIN_WIDTH*i+:MIN_WIDTH]
<= #FLOP_DELAY memory[address*READ_WIDTH_RATIO_B + i];
end
end
if ((C_FAMILY_LOCALPARAM == "virtex7") && C_USE_ECC == 1) begin
rdaddrecc_in <= #FLOP_DELAY addr;
if (sbiterr_arr[addr] == 1) begin
sbiterr_in <= #FLOP_DELAY 1'b1;
end else begin
sbiterr_in <= #FLOP_DELAY 1'b0;
end
if (dbiterr_arr[addr] == 1) begin
dbiterr_in <= #FLOP_DELAY 1'b1;
end else begin
dbiterr_in <= #FLOP_DELAY 1'b0;
end
end else if (C_USE_SOFTECC == 1) begin
rdaddrecc_in <= #FLOP_DELAY addr;
if (softecc_sbiterr_arr[addr] == 1) begin
sbiterr_in <= #FLOP_DELAY 1'b1;
end else begin
sbiterr_in <= #FLOP_DELAY 1'b0;
end
if (softecc_dbiterr_arr[addr] == 1) begin
dbiterr_in <= #FLOP_DELAY 1'b1;
end else begin
dbiterr_in <= #FLOP_DELAY 1'b0;
end
end else begin
rdaddrecc_in <= #FLOP_DELAY 0;
dbiterr_in <= #FLOP_DELAY 1'b0;
sbiterr_in <= #FLOP_DELAY 1'b0;
end //end SOFTECC Loop
end //end Valid address loop
end //end reset-data assignment loops
end
endtask
//**************
// reset_a
//**************
task reset_a (input reg reset);
begin
if (reset) memory_out_a <= #FLOP_DELAY inita_val;
end
endtask
//**************
// reset_b
//**************
task reset_b (input reg reset);
begin
if (reset) memory_out_b <= #FLOP_DELAY initb_val;
end
endtask
//**************
// init_memory
//**************
task init_memory;
integer i, j, addr_step;
integer status;
reg [C_WRITE_WIDTH_A-1:0] default_data;
begin
default_data = 0;
//Display output message indicating that the behavioral model is being
//initialized
if (C_USE_DEFAULT_DATA || C_LOAD_INIT_FILE) $display(" Block Memory Generator module loading initial data...");
// Convert the default to hex
if (C_USE_DEFAULT_DATA) begin
if (default_data_str == "") begin
$fdisplay(ERRFILE, "%0s ERROR: C_DEFAULT_DATA is empty!", C_CORENAME);
$finish;
end else begin
status = $sscanf(default_data_str, "%h", default_data);
if (status == 0) begin
$fdisplay(ERRFILE, {"%0s ERROR: Unsuccessful hexadecimal read",
"from C_DEFAULT_DATA: %0s"},
C_CORENAME, C_DEFAULT_DATA);
$finish;
end
end
end
// Step by WRITE_ADDR_A_DIV through the memory via the
// Port A write interface to hit every location once
addr_step = WRITE_ADDR_A_DIV;
// 'write' to every location with default (or 0)
for (i = 0; i < C_WRITE_DEPTH_A*addr_step; i = i + addr_step) begin
write_a(i, {C_WEA_WIDTH{1'b1}}, default_data, 1'b0, 1'b0);
end
// Get specialized data from the MIF file
if (C_LOAD_INIT_FILE) begin
if (init_file_str == "") begin
$fdisplay(ERRFILE, "%0s ERROR: C_INIT_FILE_NAME is empty!",
C_CORENAME);
$finish;
end else begin
initfile = $fopen(init_file_str, "r");
if (initfile == 0) begin
$fdisplay(ERRFILE, {"%0s, ERROR: Problem opening",
"C_INIT_FILE_NAME: %0s!"},
C_CORENAME, init_file_str);
$finish;
end else begin
// loop through the mif file, loading in the data
for (i = 0; i < C_WRITE_DEPTH_A*addr_step; i = i + addr_step) begin
status = $fscanf(initfile, "%b", mif_data);
if (status > 0) begin
write_a(i, {C_WEA_WIDTH{1'b1}}, mif_data, 1'b0, 1'b0);
end
end
$fclose(initfile);
end //initfile
end //init_file_str
end //C_LOAD_INIT_FILE
if (C_USE_BRAM_BLOCK) begin
// Get specialized data from the MIF file
if (C_INIT_FILE != "NONE") begin
if (mem_init_file_str == "") begin
$fdisplay(ERRFILE, "%0s ERROR: C_INIT_FILE is empty!",
C_CORENAME);
$finish;
end else begin
meminitfile = $fopen(mem_init_file_str, "r");
if (meminitfile == 0) begin
$fdisplay(ERRFILE, {"%0s, ERROR: Problem opening",
"C_INIT_FILE: %0s!"},
C_CORENAME, mem_init_file_str);
$finish;
end else begin
// loop through the mif file, loading in the data
$readmemh(mem_init_file_str, memory );
for (j = 0; j < MAX_DEPTH-1 ; j = j + 1) begin
end
$fclose(meminitfile);
end //meminitfile
end //mem_init_file_str
end //C_INIT_FILE
end //C_USE_BRAM_BLOCK
//Display output message indicating that the behavioral model is done
//initializing
if (C_USE_DEFAULT_DATA || C_LOAD_INIT_FILE)
$display(" Block Memory Generator data initialization complete.");
end
endtask
//**************
// log2roundup
//**************
function integer log2roundup (input integer data_value);
integer width;
integer cnt;
begin
width = 0;
if (data_value > 1) begin
for(cnt=1 ; cnt < data_value ; cnt = cnt * 2) begin
width = width + 1;
end //loop
end //if
log2roundup = width;
end //log2roundup
endfunction
//*******************
// collision_check
//*******************
function integer collision_check (input reg [C_ADDRA_WIDTH-1:0] addr_a,
input integer iswrite_a,
input reg [C_ADDRB_WIDTH-1:0] addr_b,
input integer iswrite_b);
reg c_aw_bw, c_aw_br, c_ar_bw;
integer scaled_addra_to_waddrb_width;
integer scaled_addrb_to_waddrb_width;
integer scaled_addra_to_waddra_width;
integer scaled_addrb_to_waddra_width;
integer scaled_addra_to_raddrb_width;
integer scaled_addrb_to_raddrb_width;
integer scaled_addra_to_raddra_width;
integer scaled_addrb_to_raddra_width;
begin
c_aw_bw = 0;
c_aw_br = 0;
c_ar_bw = 0;
//If write_addr_b_width is smaller, scale both addresses to that width for
//comparing write_addr_a and write_addr_b; addr_a starts as C_ADDRA_WIDTH,
//scale it down to write_addr_b_width. addr_b starts as C_ADDRB_WIDTH,
//scale it down to write_addr_b_width. Once both are scaled to
//write_addr_b_width, compare.
scaled_addra_to_waddrb_width = ((addr_a)/
2**(C_ADDRA_WIDTH-write_addr_b_width));
scaled_addrb_to_waddrb_width = ((addr_b)/
2**(C_ADDRB_WIDTH-write_addr_b_width));
//If write_addr_a_width is smaller, scale both addresses to that width for
//comparing write_addr_a and write_addr_b; addr_a starts as C_ADDRA_WIDTH,
//scale it down to write_addr_a_width. addr_b starts as C_ADDRB_WIDTH,
//scale it down to write_addr_a_width. Once both are scaled to
//write_addr_a_width, compare.
scaled_addra_to_waddra_width = ((addr_a)/
2**(C_ADDRA_WIDTH-write_addr_a_width));
scaled_addrb_to_waddra_width = ((addr_b)/
2**(C_ADDRB_WIDTH-write_addr_a_width));
//If read_addr_b_width is smaller, scale both addresses to that width for
//comparing write_addr_a and read_addr_b; addr_a starts as C_ADDRA_WIDTH,
//scale it down to read_addr_b_width. addr_b starts as C_ADDRB_WIDTH,
//scale it down to read_addr_b_width. Once both are scaled to
//read_addr_b_width, compare.
scaled_addra_to_raddrb_width = ((addr_a)/
2**(C_ADDRA_WIDTH-read_addr_b_width));
scaled_addrb_to_raddrb_width = ((addr_b)/
2**(C_ADDRB_WIDTH-read_addr_b_width));
//If read_addr_a_width is smaller, scale both addresses to that width for
//comparing read_addr_a and write_addr_b; addr_a starts as C_ADDRA_WIDTH,
//scale it down to read_addr_a_width. addr_b starts as C_ADDRB_WIDTH,
//scale it down to read_addr_a_width. Once both are scaled to
//read_addr_a_width, compare.
scaled_addra_to_raddra_width = ((addr_a)/
2**(C_ADDRA_WIDTH-read_addr_a_width));
scaled_addrb_to_raddra_width = ((addr_b)/
2**(C_ADDRB_WIDTH-read_addr_a_width));
//Look for a write-write collision. In order for a write-write
//collision to exist, both ports must have a write transaction.
if (iswrite_a && iswrite_b) begin
if (write_addr_a_width > write_addr_b_width) begin
if (scaled_addra_to_waddrb_width == scaled_addrb_to_waddrb_width) begin
c_aw_bw = 1;
end else begin
c_aw_bw = 0;
end
end else begin
if (scaled_addrb_to_waddra_width == scaled_addra_to_waddra_width) begin
c_aw_bw = 1;
end else begin
c_aw_bw = 0;
end
end //width
end //iswrite_a and iswrite_b
//If the B port is reading (which means it is enabled - so could be
//a TX_WRITE or TX_READ), then check for a write-read collision).
//This could happen whether or not a write-write collision exists due
//to asymmetric write/read ports.
if (iswrite_a) begin
if (write_addr_a_width > read_addr_b_width) begin
if (scaled_addra_to_raddrb_width == scaled_addrb_to_raddrb_width) begin
c_aw_br = 1;
end else begin
c_aw_br = 0;
end
end else begin
if (scaled_addrb_to_waddra_width == scaled_addra_to_waddra_width) begin
c_aw_br = 1;
end else begin
c_aw_br = 0;
end
end //width
end //iswrite_a
//If the A port is reading (which means it is enabled - so could be
// a TX_WRITE or TX_READ), then check for a write-read collision).
//This could happen whether or not a write-write collision exists due
// to asymmetric write/read ports.
if (iswrite_b) begin
if (read_addr_a_width > write_addr_b_width) begin
if (scaled_addra_to_waddrb_width == scaled_addrb_to_waddrb_width) begin
c_ar_bw = 1;
end else begin
c_ar_bw = 0;
end
end else begin
if (scaled_addrb_to_raddra_width == scaled_addra_to_raddra_width) begin
c_ar_bw = 1;
end else begin
c_ar_bw = 0;
end
end //width
end //iswrite_b
collision_check = c_aw_bw | c_aw_br | c_ar_bw;
end
endfunction
//*******************************
// power on values
//*******************************
initial begin
// Load up the memory
init_memory;
// Load up the output registers and latches
if ($sscanf(inita_str, "%h", inita_val)) begin
memory_out_a = inita_val;
end else begin
memory_out_a = 0;
end
if ($sscanf(initb_str, "%h", initb_val)) begin
memory_out_b = initb_val;
end else begin
memory_out_b = 0;
end
sbiterr_in = 1'b0;
dbiterr_in = 1'b0;
rdaddrecc_in = 0;
// Determine the effective address widths for each of the 4 ports
write_addr_a_width = C_ADDRA_WIDTH - log2roundup(WRITE_ADDR_A_DIV);
read_addr_a_width = C_ADDRA_WIDTH - log2roundup(READ_ADDR_A_DIV);
write_addr_b_width = C_ADDRB_WIDTH - log2roundup(WRITE_ADDR_B_DIV);
read_addr_b_width = C_ADDRB_WIDTH - log2roundup(READ_ADDR_B_DIV);
$display("Block Memory Generator module %m is using a behavioral model for simulation which will not precisely model memory collision behavior.");
end
//***************************************************************************
// These are the main blocks which schedule read and write operations
// Note that the reset priority feature at the latch stage is only supported
// for Spartan-6. For other families, the default priority at the latch stage
// is "CE"
//***************************************************************************
// Synchronous clocks: schedule port operations with respect to
// both write operating modes
generate
if(C_COMMON_CLK && (C_WRITE_MODE_A == "WRITE_FIRST") && (C_WRITE_MODE_B ==
"WRITE_FIRST")) begin : com_clk_sched_wf_wf
always @(posedge CLKA) begin
//Write A
if (wea_i) write_a(ADDRA, wea_i, DINA, INJECTSBITERR, INJECTDBITERR);
//Write B
if (web_i) write_b(ADDRB, web_i, DINB);
if (rea_i) read_a(ADDRA, reseta_i);
//Read B
if (reb_i) read_b(ADDRB, resetb_i);
end
end
else
if(C_COMMON_CLK && (C_WRITE_MODE_A == "READ_FIRST") && (C_WRITE_MODE_B ==
"WRITE_FIRST")) begin : com_clk_sched_rf_wf
always @(posedge CLKA) begin
//Write B
if (web_i) write_b(ADDRB, web_i, DINB);
//Read B
if (reb_i) read_b(ADDRB, resetb_i);
//Read A
if (rea_i) read_a(ADDRA, reseta_i);
//Write A
if (wea_i) write_a(ADDRA, wea_i, DINA, INJECTSBITERR, INJECTDBITERR);
end
end
else
if(C_COMMON_CLK && (C_WRITE_MODE_A == "WRITE_FIRST") && (C_WRITE_MODE_B ==
"READ_FIRST")) begin : com_clk_sched_wf_rf
always @(posedge CLKA) begin
//Write A
if (wea_i) write_a(ADDRA, wea_i, DINA, INJECTSBITERR, INJECTDBITERR);
//Read A
if (rea_i) read_a(ADDRA, reseta_i);
//Read B
if (reb_i) read_b(ADDRB, resetb_i);
//Write B
if (web_i) write_b(ADDRB, web_i, DINB);
end
end
else
if(C_COMMON_CLK && (C_WRITE_MODE_A == "READ_FIRST") && (C_WRITE_MODE_B ==
"READ_FIRST")) begin : com_clk_sched_rf_rf
always @(posedge CLKA) begin
//Read A
if (rea_i) read_a(ADDRA, reseta_i);
//Read B
if (reb_i) read_b(ADDRB, resetb_i);
//Write A
if (wea_i) write_a(ADDRA, wea_i, DINA, INJECTSBITERR, INJECTDBITERR);
//Write B
if (web_i) write_b(ADDRB, web_i, DINB);
end
end
else if(C_COMMON_CLK && (C_WRITE_MODE_A =="WRITE_FIRST") && (C_WRITE_MODE_B ==
"NO_CHANGE")) begin : com_clk_sched_wf_nc
always @(posedge CLKA) begin
//Write A
if (wea_i) write_a(ADDRA, wea_i, DINA, INJECTSBITERR, INJECTDBITERR);
//Read A
if (rea_i) read_a(ADDRA, reseta_i);
//Read B
if (reb_i && (!web_i || resetb_i)) read_b(ADDRB, resetb_i);
//Write B
if (web_i) write_b(ADDRB, web_i, DINB);
end
end
else if(C_COMMON_CLK && (C_WRITE_MODE_A =="READ_FIRST") && (C_WRITE_MODE_B ==
"NO_CHANGE")) begin : com_clk_sched_rf_nc
always @(posedge CLKA) begin
//Read A
if (rea_i) read_a(ADDRA, reseta_i);
//Read B
if (reb_i && (!web_i || resetb_i)) read_b(ADDRB, resetb_i);
//Write A
if (wea_i) write_a(ADDRA, wea_i, DINA, INJECTSBITERR, INJECTDBITERR);
//Write B
if (web_i) write_b(ADDRB, web_i, DINB);
end
end
else if(C_COMMON_CLK && (C_WRITE_MODE_A =="NO_CHANGE") && (C_WRITE_MODE_B ==
"WRITE_FIRST")) begin : com_clk_sched_nc_wf
always @(posedge CLKA) begin
//Write A
if (wea_i) write_a(ADDRA, wea_i, DINA, INJECTSBITERR, INJECTDBITERR);
//Write B
if (web_i) write_b(ADDRB, web_i, DINB);
//Read A
if (rea_i && (!wea_i || reseta_i)) read_a(ADDRA, reseta_i);
//Read B
if (reb_i) read_b(ADDRB, resetb_i);
end
end
else if(C_COMMON_CLK && (C_WRITE_MODE_A =="NO_CHANGE") && (C_WRITE_MODE_B ==
"READ_FIRST")) begin : com_clk_sched_nc_rf
always @(posedge CLKA) begin
//Read B
if (reb_i) read_b(ADDRB, resetb_i);
//Read A
if (rea_i && (!wea_i || reseta_i)) read_a(ADDRA, reseta_i);
//Write A
if (wea_i) write_a(ADDRA, wea_i, DINA, INJECTSBITERR, INJECTDBITERR);
//Write B
if (web_i) write_b(ADDRB, web_i, DINB);
end
end
else if(C_COMMON_CLK && (C_WRITE_MODE_A =="NO_CHANGE") && (C_WRITE_MODE_B ==
"NO_CHANGE")) begin : com_clk_sched_nc_nc
always @(posedge CLKA) begin
//Write A
if (wea_i) write_a(ADDRA, wea_i, DINA, INJECTSBITERR, INJECTDBITERR);
//Write B
if (web_i) write_b(ADDRB, web_i, DINB);
//Read A
if (rea_i && (!wea_i || reseta_i)) read_a(ADDRA, reseta_i);
//Read B
if (reb_i && (!web_i || resetb_i)) read_b(ADDRB, resetb_i);
end
end
else if(C_COMMON_CLK) begin: com_clk_sched_default
always @(posedge CLKA) begin
//Write A
if (wea_i) write_a(ADDRA, wea_i, DINA, INJECTSBITERR, INJECTDBITERR);
//Write B
if (web_i) write_b(ADDRB, web_i, DINB);
//Read A
if (rea_i) read_a(ADDRA, reseta_i);
//Read B
if (reb_i) read_b(ADDRB, resetb_i);
end
end
endgenerate
// Asynchronous clocks: port operation is independent
generate
if((!C_COMMON_CLK) && (C_WRITE_MODE_A == "WRITE_FIRST")) begin : async_clk_sched_clka_wf
always @(posedge CLKA) begin
//Write A
if (wea_i) write_a(ADDRA, wea_i, DINA, INJECTSBITERR, INJECTDBITERR);
//Read A
if (rea_i) read_a(ADDRA, reseta_i);
end
end
else if((!C_COMMON_CLK) && (C_WRITE_MODE_A == "READ_FIRST")) begin : async_clk_sched_clka_rf
always @(posedge CLKA) begin
//Read A
if (rea_i) read_a(ADDRA, reseta_i);
//Write A
if (wea_i) write_a(ADDRA, wea_i, DINA, INJECTSBITERR, INJECTDBITERR);
end
end
else if((!C_COMMON_CLK) && (C_WRITE_MODE_A == "NO_CHANGE")) begin : async_clk_sched_clka_nc
always @(posedge CLKA) begin
//Write A
if (wea_i) write_a(ADDRA, wea_i, DINA, INJECTSBITERR, INJECTDBITERR);
//Read A
if (rea_i && (!wea_i || reseta_i)) read_a(ADDRA, reseta_i);
end
end
endgenerate
generate
if ((!C_COMMON_CLK) && (C_WRITE_MODE_B == "WRITE_FIRST")) begin: async_clk_sched_clkb_wf
always @(posedge CLKB) begin
//Write B
if (web_i) write_b(ADDRB, web_i, DINB);
//Read B
if (reb_i) read_b(ADDRB, resetb_i);
end
end
else if ((!C_COMMON_CLK) && (C_WRITE_MODE_B == "READ_FIRST")) begin: async_clk_sched_clkb_rf
always @(posedge CLKB) begin
//Read B
if (reb_i) read_b(ADDRB, resetb_i);
//Write B
if (web_i) write_b(ADDRB, web_i, DINB);
end
end
else if ((!C_COMMON_CLK) && (C_WRITE_MODE_B == "NO_CHANGE")) begin: async_clk_sched_clkb_nc
always @(posedge CLKB) begin
//Write B
if (web_i) write_b(ADDRB, web_i, DINB);
//Read B
if (reb_i && (!web_i || resetb_i)) read_b(ADDRB, resetb_i);
end
end
endgenerate
//***************************************************************
// Instantiate the variable depth output register stage module
//***************************************************************
// Port A
assign rsta_outp_stage = RSTA & (~SLEEP);
BLK_MEM_GEN_v8_2_output_stage
#(.C_FAMILY (C_FAMILY),
.C_XDEVICEFAMILY (C_XDEVICEFAMILY),
.C_RST_TYPE ("SYNC"),
.C_HAS_RST (C_HAS_RSTA),
.C_RSTRAM (C_RSTRAM_A),
.C_RST_PRIORITY (C_RST_PRIORITY_A),
.C_INIT_VAL (C_INITA_VAL),
.C_HAS_EN (C_HAS_ENA),
.C_HAS_REGCE (C_HAS_REGCEA),
.C_DATA_WIDTH (C_READ_WIDTH_A),
.C_ADDRB_WIDTH (C_ADDRB_WIDTH),
.C_HAS_MEM_OUTPUT_REGS (C_HAS_MEM_OUTPUT_REGS_A),
.C_USE_SOFTECC (C_USE_SOFTECC),
.C_USE_ECC (C_USE_ECC),
.NUM_STAGES (NUM_OUTPUT_STAGES_A),
.C_EN_ECC_PIPE (0),
.FLOP_DELAY (FLOP_DELAY))
reg_a
(.CLK (CLKA),
.RST (rsta_outp_stage),//(RSTA),
.EN (ENA),
.REGCE (REGCEA),
.DIN_I (memory_out_a),
.DOUT (DOUTA),
.SBITERR_IN_I (1'b0),
.DBITERR_IN_I (1'b0),
.SBITERR (),
.DBITERR (),
.RDADDRECC_IN_I ({C_ADDRB_WIDTH{1'b0}}),
.ECCPIPECE (1'b0),
.RDADDRECC ()
);
assign rstb_outp_stage = RSTB & (~SLEEP);
// Port B
BLK_MEM_GEN_v8_2_output_stage
#(.C_FAMILY (C_FAMILY),
.C_XDEVICEFAMILY (C_XDEVICEFAMILY),
.C_RST_TYPE ("SYNC"),
.C_HAS_RST (C_HAS_RSTB),
.C_RSTRAM (C_RSTRAM_B),
.C_RST_PRIORITY (C_RST_PRIORITY_B),
.C_INIT_VAL (C_INITB_VAL),
.C_HAS_EN (C_HAS_ENB),
.C_HAS_REGCE (C_HAS_REGCEB),
.C_DATA_WIDTH (C_READ_WIDTH_B),
.C_ADDRB_WIDTH (C_ADDRB_WIDTH),
.C_HAS_MEM_OUTPUT_REGS (C_HAS_MEM_OUTPUT_REGS_B),
.C_USE_SOFTECC (C_USE_SOFTECC),
.C_USE_ECC (C_USE_ECC),
.NUM_STAGES (NUM_OUTPUT_STAGES_B),
.C_EN_ECC_PIPE (C_EN_ECC_PIPE),
.FLOP_DELAY (FLOP_DELAY))
reg_b
(.CLK (CLKB),
.RST (rstb_outp_stage),//(RSTB),
.EN (ENB),
.REGCE (REGCEB),
.DIN_I (memory_out_b),
.DOUT (dout_i),
.SBITERR_IN_I (sbiterr_in),
.DBITERR_IN_I (dbiterr_in),
.SBITERR (sbiterr_i),
.DBITERR (dbiterr_i),
.RDADDRECC_IN_I (rdaddrecc_in),
.ECCPIPECE (ECCPIPECE),
.RDADDRECC (rdaddrecc_i)
);
//***************************************************************
// Instantiate the Input and Output register stages
//***************************************************************
BLK_MEM_GEN_v8_2_softecc_output_reg_stage
#(.C_DATA_WIDTH (C_READ_WIDTH_B),
.C_ADDRB_WIDTH (C_ADDRB_WIDTH),
.C_HAS_SOFTECC_OUTPUT_REGS_B (C_HAS_SOFTECC_OUTPUT_REGS_B),
.C_USE_SOFTECC (C_USE_SOFTECC),
.FLOP_DELAY (FLOP_DELAY))
has_softecc_output_reg_stage
(.CLK (CLKB),
.DIN (dout_i),
.DOUT (DOUTB),
.SBITERR_IN (sbiterr_i),
.DBITERR_IN (dbiterr_i),
.SBITERR (sbiterr_sdp),
.DBITERR (dbiterr_sdp),
.RDADDRECC_IN (rdaddrecc_i),
.RDADDRECC (rdaddrecc_sdp)
);
//****************************************************
// Synchronous collision checks
//****************************************************
// CR 780544 : To make verilog model's collison warnings in consistant with
// vhdl model, the non-blocking assignments are replaced with blocking
// assignments.
generate if (!C_DISABLE_WARN_BHV_COLL && C_COMMON_CLK) begin : sync_coll
always @(posedge CLKA) begin
// Possible collision if both are enabled and the addresses match
if (ena_i && enb_i) begin
if (wea_i || web_i) begin
is_collision = collision_check(ADDRA, wea_i, ADDRB, web_i);
end else begin
is_collision = 0;
end
end else begin
is_collision = 0;
end
// If the write port is in READ_FIRST mode, there is no collision
if (C_WRITE_MODE_A=="READ_FIRST" && wea_i && !web_i) begin
is_collision = 0;
end
if (C_WRITE_MODE_B=="READ_FIRST" && web_i && !wea_i) begin
is_collision = 0;
end
// Only flag if one of the accesses is a write
if (is_collision && (wea_i || web_i)) begin
$fwrite(COLLFILE, "%0s collision detected at time: %0d, ",
C_CORENAME, $time);
$fwrite(COLLFILE, "A %0s address: %0h, B %0s address: %0h\n",
wea_i ? "write" : "read", ADDRA,
web_i ? "write" : "read", ADDRB);
end
end
//****************************************************
// Asynchronous collision checks
//****************************************************
end else if (!C_DISABLE_WARN_BHV_COLL && !C_COMMON_CLK) begin : async_coll
// Delay A and B addresses in order to mimic setup/hold times
wire [C_ADDRA_WIDTH-1:0] #COLL_DELAY addra_delay = ADDRA;
wire [0:0] #COLL_DELAY wea_delay = wea_i;
wire #COLL_DELAY ena_delay = ena_i;
wire [C_ADDRB_WIDTH-1:0] #COLL_DELAY addrb_delay = ADDRB;
wire [0:0] #COLL_DELAY web_delay = web_i;
wire #COLL_DELAY enb_delay = enb_i;
// Do the checks w/rt A
always @(posedge CLKA) begin
// Possible collision if both are enabled and the addresses match
if (ena_i && enb_i) begin
if (wea_i || web_i) begin
is_collision_a = collision_check(ADDRA, wea_i, ADDRB, web_i);
end else begin
is_collision_a = 0;
end
end else begin
is_collision_a = 0;
end
if (ena_i && enb_delay) begin
if(wea_i || web_delay) begin
is_collision_delay_a = collision_check(ADDRA, wea_i, addrb_delay,
web_delay);
end else begin
is_collision_delay_a = 0;
end
end else begin
is_collision_delay_a = 0;
end
// Only flag if B access is a write
if (is_collision_a && web_i) begin
$fwrite(COLLFILE, "%0s collision detected at time: %0d, ",
C_CORENAME, $time);
$fwrite(COLLFILE, "A %0s address: %0h, B write address: %0h\n",
wea_i ? "write" : "read", ADDRA, ADDRB);
end else if (is_collision_delay_a && web_delay) begin
$fwrite(COLLFILE, "%0s collision detected at time: %0d, ",
C_CORENAME, $time);
$fwrite(COLLFILE, "A %0s address: %0h, B write address: %0h\n",
wea_i ? "write" : "read", ADDRA, addrb_delay);
end
end
// Do the checks w/rt B
always @(posedge CLKB) begin
// Possible collision if both are enabled and the addresses match
if (ena_i && enb_i) begin
if (wea_i || web_i) begin
is_collision_b = collision_check(ADDRA, wea_i, ADDRB, web_i);
end else begin
is_collision_b = 0;
end
end else begin
is_collision_b = 0;
end
if (ena_delay && enb_i) begin
if (wea_delay || web_i) begin
is_collision_delay_b = collision_check(addra_delay, wea_delay, ADDRB,
web_i);
end else begin
is_collision_delay_b = 0;
end
end else begin
is_collision_delay_b = 0;
end
// Only flag if A access is a write
if (is_collision_b && wea_i) begin
$fwrite(COLLFILE, "%0s collision detected at time: %0d, ",
C_CORENAME, $time);
$fwrite(COLLFILE, "A write address: %0h, B %s address: %0h\n",
ADDRA, web_i ? "write" : "read", ADDRB);
end else if (is_collision_delay_b && wea_delay) begin
$fwrite(COLLFILE, "%0s collision detected at time: %0d, ",
C_CORENAME, $time);
$fwrite(COLLFILE, "A write address: %0h, B %s address: %0h\n",
addra_delay, web_i ? "write" : "read", ADDRB);
end
end
end
endgenerate
endmodule
//*****************************************************************************
// Top module wraps Input register and Memory module
//
// This module is the top-level behavioral model and this implements the memory
// module and the input registers
//*****************************************************************************
module blk_mem_gen_v8_2
#(parameter C_CORENAME = "blk_mem_gen_v8_2",
parameter C_FAMILY = "virtex7",
parameter C_XDEVICEFAMILY = "virtex7",
parameter C_ELABORATION_DIR = "",
parameter C_INTERFACE_TYPE = 0,
parameter C_USE_BRAM_BLOCK = 0,
parameter C_CTRL_ECC_ALGO = "NONE",
parameter C_ENABLE_32BIT_ADDRESS = 0,
parameter C_AXI_TYPE = 0,
parameter C_AXI_SLAVE_TYPE = 0,
parameter C_HAS_AXI_ID = 0,
parameter C_AXI_ID_WIDTH = 4,
parameter C_MEM_TYPE = 2,
parameter C_BYTE_SIZE = 9,
parameter C_ALGORITHM = 1,
parameter C_PRIM_TYPE = 3,
parameter C_LOAD_INIT_FILE = 0,
parameter C_INIT_FILE_NAME = "",
parameter C_INIT_FILE = "",
parameter C_USE_DEFAULT_DATA = 0,
parameter C_DEFAULT_DATA = "0",
//parameter C_RST_TYPE = "SYNC",
parameter C_HAS_RSTA = 0,
parameter C_RST_PRIORITY_A = "CE",
parameter C_RSTRAM_A = 0,
parameter C_INITA_VAL = "0",
parameter C_HAS_ENA = 1,
parameter C_HAS_REGCEA = 0,
parameter C_USE_BYTE_WEA = 0,
parameter C_WEA_WIDTH = 1,
parameter C_WRITE_MODE_A = "WRITE_FIRST",
parameter C_WRITE_WIDTH_A = 32,
parameter C_READ_WIDTH_A = 32,
parameter C_WRITE_DEPTH_A = 64,
parameter C_READ_DEPTH_A = 64,
parameter C_ADDRA_WIDTH = 5,
parameter C_HAS_RSTB = 0,
parameter C_RST_PRIORITY_B = "CE",
parameter C_RSTRAM_B = 0,
parameter C_INITB_VAL = "",
parameter C_HAS_ENB = 1,
parameter C_HAS_REGCEB = 0,
parameter C_USE_BYTE_WEB = 0,
parameter C_WEB_WIDTH = 1,
parameter C_WRITE_MODE_B = "WRITE_FIRST",
parameter C_WRITE_WIDTH_B = 32,
parameter C_READ_WIDTH_B = 32,
parameter C_WRITE_DEPTH_B = 64,
parameter C_READ_DEPTH_B = 64,
parameter C_ADDRB_WIDTH = 5,
parameter C_HAS_MEM_OUTPUT_REGS_A = 0,
parameter C_HAS_MEM_OUTPUT_REGS_B = 0,
parameter C_HAS_MUX_OUTPUT_REGS_A = 0,
parameter C_HAS_MUX_OUTPUT_REGS_B = 0,
parameter C_HAS_SOFTECC_INPUT_REGS_A = 0,
parameter C_HAS_SOFTECC_OUTPUT_REGS_B= 0,
parameter C_MUX_PIPELINE_STAGES = 0,
parameter C_USE_SOFTECC = 0,
parameter C_USE_ECC = 0,
parameter C_EN_ECC_PIPE = 0,
parameter C_HAS_INJECTERR = 0,
parameter C_SIM_COLLISION_CHECK = "NONE",
parameter C_COMMON_CLK = 1,
parameter C_DISABLE_WARN_BHV_COLL = 0,
parameter C_EN_SLEEP_PIN = 0,
parameter C_USE_URAM = 0,
parameter C_EN_RDADDRA_CHG = 0,
parameter C_EN_RDADDRB_CHG = 0,
parameter C_EN_DEEPSLEEP_PIN = 0,
parameter C_EN_SHUTDOWN_PIN = 0,
parameter C_DISABLE_WARN_BHV_RANGE = 0,
parameter C_COUNT_36K_BRAM = "",
parameter C_COUNT_18K_BRAM = "",
parameter C_EST_POWER_SUMMARY = ""
)
(input clka,
input rsta,
input ena,
input regcea,
input [C_WEA_WIDTH-1:0] wea,
input [C_ADDRA_WIDTH-1:0] addra,
input [C_WRITE_WIDTH_A-1:0] dina,
output [C_READ_WIDTH_A-1:0] douta,
input clkb,
input rstb,
input enb,
input regceb,
input [C_WEB_WIDTH-1:0] web,
input [C_ADDRB_WIDTH-1:0] addrb,
input [C_WRITE_WIDTH_B-1:0] dinb,
output [C_READ_WIDTH_B-1:0] doutb,
input injectsbiterr,
input injectdbiterr,
output sbiterr,
output dbiterr,
output [C_ADDRB_WIDTH-1:0] rdaddrecc,
input eccpipece,
input sleep,
input deepsleep,
input shutdown,
//AXI BMG Input and Output Port Declarations
//AXI Global Signals
input s_aclk,
input s_aresetn,
//AXI Full/lite slave write (write side)
input [C_AXI_ID_WIDTH-1:0] s_axi_awid,
input [31:0] s_axi_awaddr,
input [7:0] s_axi_awlen,
input [2:0] s_axi_awsize,
input [1:0] s_axi_awburst,
input s_axi_awvalid,
output s_axi_awready,
input [C_WRITE_WIDTH_A-1:0] s_axi_wdata,
input [C_WEA_WIDTH-1:0] s_axi_wstrb,
input s_axi_wlast,
input s_axi_wvalid,
output s_axi_wready,
output [C_AXI_ID_WIDTH-1:0] s_axi_bid,
output [1:0] s_axi_bresp,
output s_axi_bvalid,
input s_axi_bready,
//AXI Full/lite slave read (write side)
input [C_AXI_ID_WIDTH-1:0] s_axi_arid,
input [31:0] s_axi_araddr,
input [7:0] s_axi_arlen,
input [2:0] s_axi_arsize,
input [1:0] s_axi_arburst,
input s_axi_arvalid,
output s_axi_arready,
output [C_AXI_ID_WIDTH-1:0] s_axi_rid,
output [C_WRITE_WIDTH_B-1:0] s_axi_rdata,
output [1:0] s_axi_rresp,
output s_axi_rlast,
output s_axi_rvalid,
input s_axi_rready,
//AXI Full/lite sideband signals
input s_axi_injectsbiterr,
input s_axi_injectdbiterr,
output s_axi_sbiterr,
output s_axi_dbiterr,
output [C_ADDRB_WIDTH-1:0] s_axi_rdaddrecc
);
//******************************
// Port and Generic Definitions
//******************************
//////////////////////////////////////////////////////////////////////////
// Generic Definitions
//////////////////////////////////////////////////////////////////////////
// C_CORENAME : Instance name of the Block Memory Generator core
// C_FAMILY,C_XDEVICEFAMILY: Designates architecture targeted. The following
// options are available - "spartan3", "spartan6",
// "virtex4", "virtex5", "virtex6" and "virtex6l".
// C_MEM_TYPE : Designates memory type.
// It can be
// 0 - Single Port Memory
// 1 - Simple Dual Port Memory
// 2 - True Dual Port Memory
// 3 - Single Port Read Only Memory
// 4 - Dual Port Read Only Memory
// C_BYTE_SIZE : Size of a byte (8 or 9 bits)
// C_ALGORITHM : Designates the algorithm method used
// for constructing the memory.
// It can be Fixed_Primitives, Minimum_Area or
// Low_Power
// C_PRIM_TYPE : Designates the user selected primitive used to
// construct the memory.
//
// C_LOAD_INIT_FILE : Designates the use of an initialization file to
// initialize memory contents.
// C_INIT_FILE_NAME : Memory initialization file name.
// C_USE_DEFAULT_DATA : Designates whether to fill remaining
// initialization space with default data
// C_DEFAULT_DATA : Default value of all memory locations
// not initialized by the memory
// initialization file.
// C_RST_TYPE : Type of reset - Synchronous or Asynchronous
// C_HAS_RSTA : Determines the presence of the RSTA port
// C_RST_PRIORITY_A : Determines the priority between CE and SR for
// Port A.
// C_RSTRAM_A : Determines if special reset behavior is used for
// Port A
// C_INITA_VAL : The initialization value for Port A
// C_HAS_ENA : Determines the presence of the ENA port
// C_HAS_REGCEA : Determines the presence of the REGCEA port
// C_USE_BYTE_WEA : Determines if the Byte Write is used or not.
// C_WEA_WIDTH : The width of the WEA port
// C_WRITE_MODE_A : Configurable write mode for Port A. It can be
// WRITE_FIRST, READ_FIRST or NO_CHANGE.
// C_WRITE_WIDTH_A : Memory write width for Port A.
// C_READ_WIDTH_A : Memory read width for Port A.
// C_WRITE_DEPTH_A : Memory write depth for Port A.
// C_READ_DEPTH_A : Memory read depth for Port A.
// C_ADDRA_WIDTH : Width of the ADDRA input port
// C_HAS_RSTB : Determines the presence of the RSTB port
// C_RST_PRIORITY_B : Determines the priority between CE and SR for
// Port B.
// C_RSTRAM_B : Determines if special reset behavior is used for
// Port B
// C_INITB_VAL : The initialization value for Port B
// C_HAS_ENB : Determines the presence of the ENB port
// C_HAS_REGCEB : Determines the presence of the REGCEB port
// C_USE_BYTE_WEB : Determines if the Byte Write is used or not.
// C_WEB_WIDTH : The width of the WEB port
// C_WRITE_MODE_B : Configurable write mode for Port B. It can be
// WRITE_FIRST, READ_FIRST or NO_CHANGE.
// C_WRITE_WIDTH_B : Memory write width for Port B.
// C_READ_WIDTH_B : Memory read width for Port B.
// C_WRITE_DEPTH_B : Memory write depth for Port B.
// C_READ_DEPTH_B : Memory read depth for Port B.
// C_ADDRB_WIDTH : Width of the ADDRB input port
// C_HAS_MEM_OUTPUT_REGS_A : Designates the use of a register at the output
// of the RAM primitive for Port A.
// C_HAS_MEM_OUTPUT_REGS_B : Designates the use of a register at the output
// of the RAM primitive for Port B.
// C_HAS_MUX_OUTPUT_REGS_A : Designates the use of a register at the output
// of the MUX for Port A.
// C_HAS_MUX_OUTPUT_REGS_B : Designates the use of a register at the output
// of the MUX for Port B.
// C_HAS_SOFTECC_INPUT_REGS_A :
// C_HAS_SOFTECC_OUTPUT_REGS_B :
// C_MUX_PIPELINE_STAGES : Designates the number of pipeline stages in
// between the muxes.
// C_USE_SOFTECC : Determines if the Soft ECC feature is used or
// not. Only applicable Spartan-6
// C_USE_ECC : Determines if the ECC feature is used or
// not. Only applicable for V5 and V6
// C_HAS_INJECTERR : Determines if the error injection pins
// are present or not. If the ECC feature
// is not used, this value is defaulted to
// 0, else the following are the allowed
// values:
// 0 : No INJECTSBITERR or INJECTDBITERR pins
// 1 : Only INJECTSBITERR pin exists
// 2 : Only INJECTDBITERR pin exists
// 3 : Both INJECTSBITERR and INJECTDBITERR pins exist
// C_SIM_COLLISION_CHECK : Controls the disabling of Unisim model collision
// warnings. It can be "ALL", "NONE",
// "Warnings_Only" or "Generate_X_Only".
// C_COMMON_CLK : Determins if the core has a single CLK input.
// C_DISABLE_WARN_BHV_COLL : Controls the Behavioral Model Collision warnings
// C_DISABLE_WARN_BHV_RANGE: Controls the Behavioral Model Out of Range
// warnings
//////////////////////////////////////////////////////////////////////////
// Port Definitions
//////////////////////////////////////////////////////////////////////////
// CLKA : Clock to synchronize all read and write operations of Port A.
// RSTA : Reset input to reset memory outputs to a user-defined
// reset state for Port A.
// ENA : Enable all read and write operations of Port A.
// REGCEA : Register Clock Enable to control each pipeline output
// register stages for Port A.
// WEA : Write Enable to enable all write operations of Port A.
// ADDRA : Address of Port A.
// DINA : Data input of Port A.
// DOUTA : Data output of Port A.
// CLKB : Clock to synchronize all read and write operations of Port B.
// RSTB : Reset input to reset memory outputs to a user-defined
// reset state for Port B.
// ENB : Enable all read and write operations of Port B.
// REGCEB : Register Clock Enable to control each pipeline output
// register stages for Port B.
// WEB : Write Enable to enable all write operations of Port B.
// ADDRB : Address of Port B.
// DINB : Data input of Port B.
// DOUTB : Data output of Port B.
// INJECTSBITERR : Single Bit ECC Error Injection Pin.
// INJECTDBITERR : Double Bit ECC Error Injection Pin.
// SBITERR : Output signal indicating that a Single Bit ECC Error has been
// detected and corrected.
// DBITERR : Output signal indicating that a Double Bit ECC Error has been
// detected.
// RDADDRECC : Read Address Output signal indicating address at which an
// ECC error has occurred.
//////////////////////////////////////////////////////////////////////////
wire SBITERR;
wire DBITERR;
wire S_AXI_AWREADY;
wire S_AXI_WREADY;
wire S_AXI_BVALID;
wire S_AXI_ARREADY;
wire S_AXI_RLAST;
wire S_AXI_RVALID;
wire S_AXI_SBITERR;
wire S_AXI_DBITERR;
wire [C_WEA_WIDTH-1:0] WEA = wea;
wire [C_ADDRA_WIDTH-1:0] ADDRA = addra;
wire [C_WRITE_WIDTH_A-1:0] DINA = dina;
wire [C_READ_WIDTH_A-1:0] DOUTA;
wire [C_WEB_WIDTH-1:0] WEB = web;
wire [C_ADDRB_WIDTH-1:0] ADDRB = addrb;
wire [C_WRITE_WIDTH_B-1:0] DINB = dinb;
wire [C_READ_WIDTH_B-1:0] DOUTB;
wire [C_ADDRB_WIDTH-1:0] RDADDRECC;
wire [C_AXI_ID_WIDTH-1:0] S_AXI_AWID = s_axi_awid;
wire [31:0] S_AXI_AWADDR = s_axi_awaddr;
wire [7:0] S_AXI_AWLEN = s_axi_awlen;
wire [2:0] S_AXI_AWSIZE = s_axi_awsize;
wire [1:0] S_AXI_AWBURST = s_axi_awburst;
wire [C_WRITE_WIDTH_A-1:0] S_AXI_WDATA = s_axi_wdata;
wire [C_WEA_WIDTH-1:0] S_AXI_WSTRB = s_axi_wstrb;
wire [C_AXI_ID_WIDTH-1:0] S_AXI_BID;
wire [1:0] S_AXI_BRESP;
wire [C_AXI_ID_WIDTH-1:0] S_AXI_ARID = s_axi_arid;
wire [31:0] S_AXI_ARADDR = s_axi_araddr;
wire [7:0] S_AXI_ARLEN = s_axi_arlen;
wire [2:0] S_AXI_ARSIZE = s_axi_arsize;
wire [1:0] S_AXI_ARBURST = s_axi_arburst;
wire [C_AXI_ID_WIDTH-1:0] S_AXI_RID;
wire [C_WRITE_WIDTH_B-1:0] S_AXI_RDATA;
wire [1:0] S_AXI_RRESP;
wire [C_ADDRB_WIDTH-1:0] S_AXI_RDADDRECC;
// Added to fix the simulation warning #CR731605
wire [C_WEB_WIDTH-1:0] WEB_parameterized = 0;
wire ECCPIPECE;
wire SLEEP;
assign CLKA = clka;
assign RSTA = rsta;
assign ENA = ena;
assign REGCEA = regcea;
assign CLKB = clkb;
assign RSTB = rstb;
assign ENB = enb;
assign REGCEB = regceb;
assign INJECTSBITERR = injectsbiterr;
assign INJECTDBITERR = injectdbiterr;
assign ECCPIPECE = eccpipece;
assign SLEEP = sleep;
assign sbiterr = SBITERR;
assign dbiterr = DBITERR;
assign S_ACLK = s_aclk;
assign S_ARESETN = s_aresetn;
assign S_AXI_AWVALID = s_axi_awvalid;
assign s_axi_awready = S_AXI_AWREADY;
assign S_AXI_WLAST = s_axi_wlast;
assign S_AXI_WVALID = s_axi_wvalid;
assign s_axi_wready = S_AXI_WREADY;
assign s_axi_bvalid = S_AXI_BVALID;
assign S_AXI_BREADY = s_axi_bready;
assign S_AXI_ARVALID = s_axi_arvalid;
assign s_axi_arready = S_AXI_ARREADY;
assign s_axi_rlast = S_AXI_RLAST;
assign s_axi_rvalid = S_AXI_RVALID;
assign S_AXI_RREADY = s_axi_rready;
assign S_AXI_INJECTSBITERR = s_axi_injectsbiterr;
assign S_AXI_INJECTDBITERR = s_axi_injectdbiterr;
assign s_axi_sbiterr = S_AXI_SBITERR;
assign s_axi_dbiterr = S_AXI_DBITERR;
assign doutb = DOUTB;
assign douta = DOUTA;
assign rdaddrecc = RDADDRECC;
assign s_axi_bid = S_AXI_BID;
assign s_axi_bresp = S_AXI_BRESP;
assign s_axi_rid = S_AXI_RID;
assign s_axi_rdata = S_AXI_RDATA;
assign s_axi_rresp = S_AXI_RRESP;
assign s_axi_rdaddrecc = S_AXI_RDADDRECC;
localparam FLOP_DELAY = 100; // 100 ps
reg injectsbiterr_in;
reg injectdbiterr_in;
reg rsta_in;
reg ena_in;
reg regcea_in;
reg [C_WEA_WIDTH-1:0] wea_in;
reg [C_ADDRA_WIDTH-1:0] addra_in;
reg [C_WRITE_WIDTH_A-1:0] dina_in;
wire [C_ADDRA_WIDTH-1:0] s_axi_awaddr_out_c;
wire [C_ADDRB_WIDTH-1:0] s_axi_araddr_out_c;
wire s_axi_wr_en_c;
wire s_axi_rd_en_c;
wire s_aresetn_a_c;
wire [7:0] s_axi_arlen_c ;
wire [C_AXI_ID_WIDTH-1 : 0] s_axi_rid_c;
wire [C_WRITE_WIDTH_B-1 : 0] s_axi_rdata_c;
wire [1:0] s_axi_rresp_c;
wire s_axi_rlast_c;
wire s_axi_rvalid_c;
wire s_axi_rready_c;
wire regceb_c;
localparam C_AXI_PAYLOAD = (C_HAS_MUX_OUTPUT_REGS_B == 1)?C_WRITE_WIDTH_B+C_AXI_ID_WIDTH+3:C_AXI_ID_WIDTH+3;
wire [C_AXI_PAYLOAD-1 : 0] s_axi_payload_c;
wire [C_AXI_PAYLOAD-1 : 0] m_axi_payload_c;
//**************
// log2roundup
//**************
function integer log2roundup (input integer data_value);
integer width;
integer cnt;
begin
width = 0;
if (data_value > 1) begin
for(cnt=1 ; cnt < data_value ; cnt = cnt * 2) begin
width = width + 1;
end //loop
end //if
log2roundup = width;
end //log2roundup
endfunction
//**************
// log2int
//**************
function integer log2int (input integer data_value);
integer width;
integer cnt;
begin
width = 0;
cnt= data_value;
for(cnt=data_value ; cnt >1 ; cnt = cnt / 2) begin
width = width + 1;
end //loop
log2int = width;
end //log2int
endfunction
//**************************************************************************
// FUNCTION : divroundup
// Returns the ceiling value of the division
// Data_value - the quantity to be divided, dividend
// Divisor - the value to divide the data_value by
//**************************************************************************
function integer divroundup (input integer data_value,input integer divisor);
integer div;
begin
div = data_value/divisor;
if ((data_value % divisor) != 0) begin
div = div+1;
end //if
divroundup = div;
end //if
endfunction
localparam AXI_FULL_MEMORY_SLAVE = ((C_AXI_SLAVE_TYPE == 0 && C_AXI_TYPE == 1)?1:0);
localparam C_AXI_ADDR_WIDTH_MSB = C_ADDRA_WIDTH+log2roundup(C_WRITE_WIDTH_A/8);
localparam C_AXI_ADDR_WIDTH = C_AXI_ADDR_WIDTH_MSB;
//Data Width Number of LSB address bits to be discarded
//1 to 16 1
//17 to 32 2
//33 to 64 3
//65 to 128 4
//129 to 256 5
//257 to 512 6
//513 to 1024 7
// The following two constants determine this.
localparam LOWER_BOUND_VAL = (log2roundup(divroundup(C_WRITE_WIDTH_A,8) == 0))?0:(log2roundup(divroundup(C_WRITE_WIDTH_A,8)));
localparam C_AXI_ADDR_WIDTH_LSB = ((AXI_FULL_MEMORY_SLAVE == 1)?0:LOWER_BOUND_VAL);
localparam C_AXI_OS_WR = 2;
//***********************************************
// INPUT REGISTERS.
//***********************************************
generate if (C_HAS_SOFTECC_INPUT_REGS_A==0) begin : no_softecc_input_reg_stage
always @* begin
injectsbiterr_in = INJECTSBITERR;
injectdbiterr_in = INJECTDBITERR;
rsta_in = RSTA;
ena_in = ENA;
regcea_in = REGCEA;
wea_in = WEA;
addra_in = ADDRA;
dina_in = DINA;
end //end always
end //end no_softecc_input_reg_stage
endgenerate
generate if (C_HAS_SOFTECC_INPUT_REGS_A==1) begin : has_softecc_input_reg_stage
always @(posedge CLKA) begin
injectsbiterr_in <= #FLOP_DELAY INJECTSBITERR;
injectdbiterr_in <= #FLOP_DELAY INJECTDBITERR;
rsta_in <= #FLOP_DELAY RSTA;
ena_in <= #FLOP_DELAY ENA;
regcea_in <= #FLOP_DELAY REGCEA;
wea_in <= #FLOP_DELAY WEA;
addra_in <= #FLOP_DELAY ADDRA;
dina_in <= #FLOP_DELAY DINA;
end //end always
end //end input_reg_stages generate statement
endgenerate
generate if ((C_INTERFACE_TYPE == 0) && (C_ENABLE_32BIT_ADDRESS == 0)) begin : native_mem_module
BLK_MEM_GEN_v8_2_mem_module
#(.C_CORENAME (C_CORENAME),
.C_FAMILY (C_FAMILY),
.C_XDEVICEFAMILY (C_XDEVICEFAMILY),
.C_MEM_TYPE (C_MEM_TYPE),
.C_BYTE_SIZE (C_BYTE_SIZE),
.C_ALGORITHM (C_ALGORITHM),
.C_USE_BRAM_BLOCK (C_USE_BRAM_BLOCK),
.C_PRIM_TYPE (C_PRIM_TYPE),
.C_LOAD_INIT_FILE (C_LOAD_INIT_FILE),
.C_INIT_FILE_NAME (C_INIT_FILE_NAME),
.C_INIT_FILE (C_INIT_FILE),
.C_USE_DEFAULT_DATA (C_USE_DEFAULT_DATA),
.C_DEFAULT_DATA (C_DEFAULT_DATA),
.C_RST_TYPE ("SYNC"),
.C_HAS_RSTA (C_HAS_RSTA),
.C_RST_PRIORITY_A (C_RST_PRIORITY_A),
.C_RSTRAM_A (C_RSTRAM_A),
.C_INITA_VAL (C_INITA_VAL),
.C_HAS_ENA (C_HAS_ENA),
.C_HAS_REGCEA (C_HAS_REGCEA),
.C_USE_BYTE_WEA (C_USE_BYTE_WEA),
.C_WEA_WIDTH (C_WEA_WIDTH),
.C_WRITE_MODE_A (C_WRITE_MODE_A),
.C_WRITE_WIDTH_A (C_WRITE_WIDTH_A),
.C_READ_WIDTH_A (C_READ_WIDTH_A),
.C_WRITE_DEPTH_A (C_WRITE_DEPTH_A),
.C_READ_DEPTH_A (C_READ_DEPTH_A),
.C_ADDRA_WIDTH (C_ADDRA_WIDTH),
.C_HAS_RSTB (C_HAS_RSTB),
.C_RST_PRIORITY_B (C_RST_PRIORITY_B),
.C_RSTRAM_B (C_RSTRAM_B),
.C_INITB_VAL (C_INITB_VAL),
.C_HAS_ENB (C_HAS_ENB),
.C_HAS_REGCEB (C_HAS_REGCEB),
.C_USE_BYTE_WEB (C_USE_BYTE_WEB),
.C_WEB_WIDTH (C_WEB_WIDTH),
.C_WRITE_MODE_B (C_WRITE_MODE_B),
.C_WRITE_WIDTH_B (C_WRITE_WIDTH_B),
.C_READ_WIDTH_B (C_READ_WIDTH_B),
.C_WRITE_DEPTH_B (C_WRITE_DEPTH_B),
.C_READ_DEPTH_B (C_READ_DEPTH_B),
.C_ADDRB_WIDTH (C_ADDRB_WIDTH),
.C_HAS_MEM_OUTPUT_REGS_A (C_HAS_MEM_OUTPUT_REGS_A),
.C_HAS_MEM_OUTPUT_REGS_B (C_HAS_MEM_OUTPUT_REGS_B),
.C_HAS_MUX_OUTPUT_REGS_A (C_HAS_MUX_OUTPUT_REGS_A),
.C_HAS_MUX_OUTPUT_REGS_B (C_HAS_MUX_OUTPUT_REGS_B),
.C_HAS_SOFTECC_INPUT_REGS_A (C_HAS_SOFTECC_INPUT_REGS_A),
.C_HAS_SOFTECC_OUTPUT_REGS_B (C_HAS_SOFTECC_OUTPUT_REGS_B),
.C_MUX_PIPELINE_STAGES (C_MUX_PIPELINE_STAGES),
.C_USE_SOFTECC (C_USE_SOFTECC),
.C_USE_ECC (C_USE_ECC),
.C_HAS_INJECTERR (C_HAS_INJECTERR),
.C_SIM_COLLISION_CHECK (C_SIM_COLLISION_CHECK),
.C_COMMON_CLK (C_COMMON_CLK),
.FLOP_DELAY (FLOP_DELAY),
.C_DISABLE_WARN_BHV_COLL (C_DISABLE_WARN_BHV_COLL),
.C_EN_ECC_PIPE (C_EN_ECC_PIPE),
.C_DISABLE_WARN_BHV_RANGE (C_DISABLE_WARN_BHV_RANGE))
blk_mem_gen_v8_2_inst
(.CLKA (CLKA),
.RSTA (rsta_in),
.ENA (ena_in),
.REGCEA (regcea_in),
.WEA (wea_in),
.ADDRA (addra_in),
.DINA (dina_in),
.DOUTA (DOUTA),
.CLKB (CLKB),
.RSTB (RSTB),
.ENB (ENB),
.REGCEB (REGCEB),
.WEB (WEB),
.ADDRB (ADDRB),
.DINB (DINB),
.DOUTB (DOUTB),
.INJECTSBITERR (injectsbiterr_in),
.INJECTDBITERR (injectdbiterr_in),
.ECCPIPECE (ECCPIPECE),
.SLEEP (SLEEP),
.SBITERR (SBITERR),
.DBITERR (DBITERR),
.RDADDRECC (RDADDRECC)
);
end
endgenerate
generate if((C_INTERFACE_TYPE == 0) && (C_ENABLE_32BIT_ADDRESS == 1)) begin : native_mem_mapped_module
localparam C_ADDRA_WIDTH_ACTUAL = log2roundup(C_WRITE_DEPTH_A);
localparam C_ADDRB_WIDTH_ACTUAL = log2roundup(C_WRITE_DEPTH_B);
localparam C_ADDRA_WIDTH_MSB = C_ADDRA_WIDTH_ACTUAL+log2int(C_WRITE_WIDTH_A/8);
localparam C_ADDRB_WIDTH_MSB = C_ADDRB_WIDTH_ACTUAL+log2int(C_WRITE_WIDTH_B/8);
// localparam C_ADDRA_WIDTH_MSB = C_ADDRA_WIDTH_ACTUAL+log2roundup(C_WRITE_WIDTH_A/8);
// localparam C_ADDRB_WIDTH_MSB = C_ADDRB_WIDTH_ACTUAL+log2roundup(C_WRITE_WIDTH_B/8);
localparam C_MEM_MAP_ADDRA_WIDTH_MSB = C_ADDRA_WIDTH_MSB;
localparam C_MEM_MAP_ADDRB_WIDTH_MSB = C_ADDRB_WIDTH_MSB;
// Data Width Number of LSB address bits to be discarded
// 1 to 16 1
// 17 to 32 2
// 33 to 64 3
// 65 to 128 4
// 129 to 256 5
// 257 to 512 6
// 513 to 1024 7
// The following two constants determine this.
localparam MEM_MAP_LOWER_BOUND_VAL_A = (log2int(divroundup(C_WRITE_WIDTH_A,8)==0)) ? 0:(log2int(divroundup(C_WRITE_WIDTH_A,8)));
localparam MEM_MAP_LOWER_BOUND_VAL_B = (log2int(divroundup(C_WRITE_WIDTH_A,8)==0)) ? 0:(log2int(divroundup(C_WRITE_WIDTH_A,8)));
localparam C_MEM_MAP_ADDRA_WIDTH_LSB = MEM_MAP_LOWER_BOUND_VAL_A;
localparam C_MEM_MAP_ADDRB_WIDTH_LSB = MEM_MAP_LOWER_BOUND_VAL_B;
wire [C_ADDRB_WIDTH_ACTUAL-1 :0] rdaddrecc_i;
wire [C_ADDRB_WIDTH-1:C_MEM_MAP_ADDRB_WIDTH_MSB] msb_zero_i;
wire [C_MEM_MAP_ADDRB_WIDTH_LSB-1:0] lsb_zero_i;
assign msb_zero_i = 0;
assign lsb_zero_i = 0;
assign RDADDRECC = {msb_zero_i,rdaddrecc_i,lsb_zero_i};
BLK_MEM_GEN_v8_2_mem_module
#(.C_CORENAME (C_CORENAME),
.C_FAMILY (C_FAMILY),
.C_XDEVICEFAMILY (C_XDEVICEFAMILY),
.C_MEM_TYPE (C_MEM_TYPE),
.C_BYTE_SIZE (C_BYTE_SIZE),
.C_USE_BRAM_BLOCK (C_USE_BRAM_BLOCK),
.C_ALGORITHM (C_ALGORITHM),
.C_PRIM_TYPE (C_PRIM_TYPE),
.C_LOAD_INIT_FILE (C_LOAD_INIT_FILE),
.C_INIT_FILE_NAME (C_INIT_FILE_NAME),
.C_INIT_FILE (C_INIT_FILE),
.C_USE_DEFAULT_DATA (C_USE_DEFAULT_DATA),
.C_DEFAULT_DATA (C_DEFAULT_DATA),
.C_RST_TYPE ("SYNC"),
.C_HAS_RSTA (C_HAS_RSTA),
.C_RST_PRIORITY_A (C_RST_PRIORITY_A),
.C_RSTRAM_A (C_RSTRAM_A),
.C_INITA_VAL (C_INITA_VAL),
.C_HAS_ENA (C_HAS_ENA),
.C_HAS_REGCEA (C_HAS_REGCEA),
.C_USE_BYTE_WEA (C_USE_BYTE_WEA),
.C_WEA_WIDTH (C_WEA_WIDTH),
.C_WRITE_MODE_A (C_WRITE_MODE_A),
.C_WRITE_WIDTH_A (C_WRITE_WIDTH_A),
.C_READ_WIDTH_A (C_READ_WIDTH_A),
.C_WRITE_DEPTH_A (C_WRITE_DEPTH_A),
.C_READ_DEPTH_A (C_READ_DEPTH_A),
.C_ADDRA_WIDTH (C_ADDRA_WIDTH_ACTUAL),
.C_HAS_RSTB (C_HAS_RSTB),
.C_RST_PRIORITY_B (C_RST_PRIORITY_B),
.C_RSTRAM_B (C_RSTRAM_B),
.C_INITB_VAL (C_INITB_VAL),
.C_HAS_ENB (C_HAS_ENB),
.C_HAS_REGCEB (C_HAS_REGCEB),
.C_USE_BYTE_WEB (C_USE_BYTE_WEB),
.C_WEB_WIDTH (C_WEB_WIDTH),
.C_WRITE_MODE_B (C_WRITE_MODE_B),
.C_WRITE_WIDTH_B (C_WRITE_WIDTH_B),
.C_READ_WIDTH_B (C_READ_WIDTH_B),
.C_WRITE_DEPTH_B (C_WRITE_DEPTH_B),
.C_READ_DEPTH_B (C_READ_DEPTH_B),
.C_ADDRB_WIDTH (C_ADDRB_WIDTH_ACTUAL),
.C_HAS_MEM_OUTPUT_REGS_A (C_HAS_MEM_OUTPUT_REGS_A),
.C_HAS_MEM_OUTPUT_REGS_B (C_HAS_MEM_OUTPUT_REGS_B),
.C_HAS_MUX_OUTPUT_REGS_A (C_HAS_MUX_OUTPUT_REGS_A),
.C_HAS_MUX_OUTPUT_REGS_B (C_HAS_MUX_OUTPUT_REGS_B),
.C_HAS_SOFTECC_INPUT_REGS_A (C_HAS_SOFTECC_INPUT_REGS_A),
.C_HAS_SOFTECC_OUTPUT_REGS_B (C_HAS_SOFTECC_OUTPUT_REGS_B),
.C_MUX_PIPELINE_STAGES (C_MUX_PIPELINE_STAGES),
.C_USE_SOFTECC (C_USE_SOFTECC),
.C_USE_ECC (C_USE_ECC),
.C_HAS_INJECTERR (C_HAS_INJECTERR),
.C_SIM_COLLISION_CHECK (C_SIM_COLLISION_CHECK),
.C_COMMON_CLK (C_COMMON_CLK),
.FLOP_DELAY (FLOP_DELAY),
.C_DISABLE_WARN_BHV_COLL (C_DISABLE_WARN_BHV_COLL),
.C_EN_ECC_PIPE (C_EN_ECC_PIPE),
.C_DISABLE_WARN_BHV_RANGE (C_DISABLE_WARN_BHV_RANGE))
blk_mem_gen_v8_2_inst
(.CLKA (CLKA),
.RSTA (rsta_in),
.ENA (ena_in),
.REGCEA (regcea_in),
.WEA (wea_in),
.ADDRA (addra_in[C_MEM_MAP_ADDRA_WIDTH_MSB-1:C_MEM_MAP_ADDRA_WIDTH_LSB]),
.DINA (dina_in),
.DOUTA (DOUTA),
.CLKB (CLKB),
.RSTB (RSTB),
.ENB (ENB),
.REGCEB (REGCEB),
.WEB (WEB),
.ADDRB (ADDRB[C_MEM_MAP_ADDRB_WIDTH_MSB-1:C_MEM_MAP_ADDRB_WIDTH_LSB]),
.DINB (DINB),
.DOUTB (DOUTB),
.INJECTSBITERR (injectsbiterr_in),
.INJECTDBITERR (injectdbiterr_in),
.ECCPIPECE (ECCPIPECE),
.SLEEP (SLEEP),
.SBITERR (SBITERR),
.DBITERR (DBITERR),
.RDADDRECC (rdaddrecc_i)
);
end
endgenerate
generate if (C_HAS_MEM_OUTPUT_REGS_B == 0 && C_HAS_MUX_OUTPUT_REGS_B == 0 ) begin : no_regs
assign S_AXI_RDATA = s_axi_rdata_c;
assign S_AXI_RLAST = s_axi_rlast_c;
assign S_AXI_RVALID = s_axi_rvalid_c;
assign S_AXI_RID = s_axi_rid_c;
assign S_AXI_RRESP = s_axi_rresp_c;
assign s_axi_rready_c = S_AXI_RREADY;
end
endgenerate
generate if (C_HAS_MEM_OUTPUT_REGS_B == 1) begin : has_regceb
assign regceb_c = s_axi_rvalid_c && s_axi_rready_c;
end
endgenerate
generate if (C_HAS_MEM_OUTPUT_REGS_B == 0) begin : no_regceb
assign regceb_c = REGCEB;
end
endgenerate
generate if (C_HAS_MUX_OUTPUT_REGS_B == 1) begin : only_core_op_regs
assign s_axi_payload_c = {s_axi_rid_c,s_axi_rdata_c,s_axi_rresp_c,s_axi_rlast_c};
assign S_AXI_RID = m_axi_payload_c[C_AXI_PAYLOAD-1 : C_AXI_PAYLOAD-C_AXI_ID_WIDTH];
assign S_AXI_RDATA = m_axi_payload_c[C_AXI_PAYLOAD-C_AXI_ID_WIDTH-1 : C_AXI_PAYLOAD-C_AXI_ID_WIDTH-C_WRITE_WIDTH_B];
assign S_AXI_RRESP = m_axi_payload_c[2:1];
assign S_AXI_RLAST = m_axi_payload_c[0];
end
endgenerate
generate if (C_HAS_MEM_OUTPUT_REGS_B == 1) begin : only_emb_op_regs
assign s_axi_payload_c = {s_axi_rid_c,s_axi_rresp_c,s_axi_rlast_c};
assign S_AXI_RDATA = s_axi_rdata_c;
assign S_AXI_RID = m_axi_payload_c[C_AXI_PAYLOAD-1 : C_AXI_PAYLOAD-C_AXI_ID_WIDTH];
assign S_AXI_RRESP = m_axi_payload_c[2:1];
assign S_AXI_RLAST = m_axi_payload_c[0];
end
endgenerate
generate if (C_HAS_MUX_OUTPUT_REGS_B == 1 || C_HAS_MEM_OUTPUT_REGS_B == 1) begin : has_regs_fwd
blk_mem_axi_regs_fwd_v8_2
#(.C_DATA_WIDTH (C_AXI_PAYLOAD))
axi_regs_inst (
.ACLK (S_ACLK),
.ARESET (s_aresetn_a_c),
.S_VALID (s_axi_rvalid_c),
.S_READY (s_axi_rready_c),
.S_PAYLOAD_DATA (s_axi_payload_c),
.M_VALID (S_AXI_RVALID),
.M_READY (S_AXI_RREADY),
.M_PAYLOAD_DATA (m_axi_payload_c)
);
end
endgenerate
generate if (C_INTERFACE_TYPE == 1) begin : axi_mem_module
assign s_aresetn_a_c = !S_ARESETN;
assign S_AXI_BRESP = 2'b00;
assign s_axi_rresp_c = 2'b00;
assign s_axi_arlen_c = (C_AXI_TYPE == 1)?S_AXI_ARLEN:8'h0;
blk_mem_axi_write_wrapper_beh_v8_2
#(.C_INTERFACE_TYPE (C_INTERFACE_TYPE),
.C_AXI_TYPE (C_AXI_TYPE),
.C_AXI_SLAVE_TYPE (C_AXI_SLAVE_TYPE),
.C_MEMORY_TYPE (C_MEM_TYPE),
.C_WRITE_DEPTH_A (C_WRITE_DEPTH_A),
.C_AXI_AWADDR_WIDTH ((AXI_FULL_MEMORY_SLAVE == 1)?C_AXI_ADDR_WIDTH:C_AXI_ADDR_WIDTH-C_AXI_ADDR_WIDTH_LSB),
.C_HAS_AXI_ID (C_HAS_AXI_ID),
.C_AXI_ID_WIDTH (C_AXI_ID_WIDTH),
.C_ADDRA_WIDTH (C_ADDRA_WIDTH),
.C_AXI_WDATA_WIDTH (C_WRITE_WIDTH_A),
.C_AXI_OS_WR (C_AXI_OS_WR))
axi_wr_fsm (
// AXI Global Signals
.S_ACLK (S_ACLK),
.S_ARESETN (s_aresetn_a_c),
// AXI Full/Lite Slave Write interface
.S_AXI_AWADDR (S_AXI_AWADDR[C_AXI_ADDR_WIDTH_MSB-1:C_AXI_ADDR_WIDTH_LSB]),
.S_AXI_AWLEN (S_AXI_AWLEN),
.S_AXI_AWID (S_AXI_AWID),
.S_AXI_AWSIZE (S_AXI_AWSIZE),
.S_AXI_AWBURST (S_AXI_AWBURST),
.S_AXI_AWVALID (S_AXI_AWVALID),
.S_AXI_AWREADY (S_AXI_AWREADY),
.S_AXI_WVALID (S_AXI_WVALID),
.S_AXI_WREADY (S_AXI_WREADY),
.S_AXI_BVALID (S_AXI_BVALID),
.S_AXI_BREADY (S_AXI_BREADY),
.S_AXI_BID (S_AXI_BID),
// Signals for BRAM interfac(
.S_AXI_AWADDR_OUT (s_axi_awaddr_out_c),
.S_AXI_WR_EN (s_axi_wr_en_c)
);
blk_mem_axi_read_wrapper_beh_v8_2
#(.C_INTERFACE_TYPE (C_INTERFACE_TYPE),
.C_AXI_TYPE (C_AXI_TYPE),
.C_AXI_SLAVE_TYPE (C_AXI_SLAVE_TYPE),
.C_MEMORY_TYPE (C_MEM_TYPE),
.C_WRITE_WIDTH_A (C_WRITE_WIDTH_A),
.C_ADDRA_WIDTH (C_ADDRA_WIDTH),
.C_AXI_PIPELINE_STAGES (1),
.C_AXI_ARADDR_WIDTH ((AXI_FULL_MEMORY_SLAVE == 1)?C_AXI_ADDR_WIDTH:C_AXI_ADDR_WIDTH-C_AXI_ADDR_WIDTH_LSB),
.C_HAS_AXI_ID (C_HAS_AXI_ID),
.C_AXI_ID_WIDTH (C_AXI_ID_WIDTH),
.C_ADDRB_WIDTH (C_ADDRB_WIDTH))
axi_rd_sm(
//AXI Global Signals
.S_ACLK (S_ACLK),
.S_ARESETN (s_aresetn_a_c),
//AXI Full/Lite Read Side
.S_AXI_ARADDR (S_AXI_ARADDR[C_AXI_ADDR_WIDTH_MSB-1:C_AXI_ADDR_WIDTH_LSB]),
.S_AXI_ARLEN (s_axi_arlen_c),
.S_AXI_ARSIZE (S_AXI_ARSIZE),
.S_AXI_ARBURST (S_AXI_ARBURST),
.S_AXI_ARVALID (S_AXI_ARVALID),
.S_AXI_ARREADY (S_AXI_ARREADY),
.S_AXI_RLAST (s_axi_rlast_c),
.S_AXI_RVALID (s_axi_rvalid_c),
.S_AXI_RREADY (s_axi_rready_c),
.S_AXI_ARID (S_AXI_ARID),
.S_AXI_RID (s_axi_rid_c),
//AXI Full/Lite Read FSM Outputs
.S_AXI_ARADDR_OUT (s_axi_araddr_out_c),
.S_AXI_RD_EN (s_axi_rd_en_c)
);
BLK_MEM_GEN_v8_2_mem_module
#(.C_CORENAME (C_CORENAME),
.C_FAMILY (C_FAMILY),
.C_XDEVICEFAMILY (C_XDEVICEFAMILY),
.C_MEM_TYPE (C_MEM_TYPE),
.C_BYTE_SIZE (C_BYTE_SIZE),
.C_USE_BRAM_BLOCK (C_USE_BRAM_BLOCK),
.C_ALGORITHM (C_ALGORITHM),
.C_PRIM_TYPE (C_PRIM_TYPE),
.C_LOAD_INIT_FILE (C_LOAD_INIT_FILE),
.C_INIT_FILE_NAME (C_INIT_FILE_NAME),
.C_INIT_FILE (C_INIT_FILE),
.C_USE_DEFAULT_DATA (C_USE_DEFAULT_DATA),
.C_DEFAULT_DATA (C_DEFAULT_DATA),
.C_RST_TYPE ("SYNC"),
.C_HAS_RSTA (C_HAS_RSTA),
.C_RST_PRIORITY_A (C_RST_PRIORITY_A),
.C_RSTRAM_A (C_RSTRAM_A),
.C_INITA_VAL (C_INITA_VAL),
.C_HAS_ENA (1),
.C_HAS_REGCEA (C_HAS_REGCEA),
.C_USE_BYTE_WEA (1),
.C_WEA_WIDTH (C_WEA_WIDTH),
.C_WRITE_MODE_A (C_WRITE_MODE_A),
.C_WRITE_WIDTH_A (C_WRITE_WIDTH_A),
.C_READ_WIDTH_A (C_READ_WIDTH_A),
.C_WRITE_DEPTH_A (C_WRITE_DEPTH_A),
.C_READ_DEPTH_A (C_READ_DEPTH_A),
.C_ADDRA_WIDTH (C_ADDRA_WIDTH),
.C_HAS_RSTB (C_HAS_RSTB),
.C_RST_PRIORITY_B (C_RST_PRIORITY_B),
.C_RSTRAM_B (C_RSTRAM_B),
.C_INITB_VAL (C_INITB_VAL),
.C_HAS_ENB (1),
.C_HAS_REGCEB (C_HAS_MEM_OUTPUT_REGS_B),
.C_USE_BYTE_WEB (1),
.C_WEB_WIDTH (C_WEB_WIDTH),
.C_WRITE_MODE_B (C_WRITE_MODE_B),
.C_WRITE_WIDTH_B (C_WRITE_WIDTH_B),
.C_READ_WIDTH_B (C_READ_WIDTH_B),
.C_WRITE_DEPTH_B (C_WRITE_DEPTH_B),
.C_READ_DEPTH_B (C_READ_DEPTH_B),
.C_ADDRB_WIDTH (C_ADDRB_WIDTH),
.C_HAS_MEM_OUTPUT_REGS_A (0),
.C_HAS_MEM_OUTPUT_REGS_B (C_HAS_MEM_OUTPUT_REGS_B),
.C_HAS_MUX_OUTPUT_REGS_A (0),
.C_HAS_MUX_OUTPUT_REGS_B (0),
.C_HAS_SOFTECC_INPUT_REGS_A (C_HAS_SOFTECC_INPUT_REGS_A),
.C_HAS_SOFTECC_OUTPUT_REGS_B (C_HAS_SOFTECC_OUTPUT_REGS_B),
.C_MUX_PIPELINE_STAGES (C_MUX_PIPELINE_STAGES),
.C_USE_SOFTECC (C_USE_SOFTECC),
.C_USE_ECC (C_USE_ECC),
.C_HAS_INJECTERR (C_HAS_INJECTERR),
.C_SIM_COLLISION_CHECK (C_SIM_COLLISION_CHECK),
.C_COMMON_CLK (C_COMMON_CLK),
.FLOP_DELAY (FLOP_DELAY),
.C_DISABLE_WARN_BHV_COLL (C_DISABLE_WARN_BHV_COLL),
.C_EN_ECC_PIPE (0),
.C_DISABLE_WARN_BHV_RANGE (C_DISABLE_WARN_BHV_RANGE))
blk_mem_gen_v8_2_inst
(.CLKA (S_ACLK),
.RSTA (s_aresetn_a_c),
.ENA (s_axi_wr_en_c),
.REGCEA (regcea_in),
.WEA (S_AXI_WSTRB),
.ADDRA (s_axi_awaddr_out_c),
.DINA (S_AXI_WDATA),
.DOUTA (DOUTA),
.CLKB (S_ACLK),
.RSTB (s_aresetn_a_c),
.ENB (s_axi_rd_en_c),
.REGCEB (regceb_c),
.WEB (WEB_parameterized),
.ADDRB (s_axi_araddr_out_c),
.DINB (DINB),
.DOUTB (s_axi_rdata_c),
.INJECTSBITERR (injectsbiterr_in),
.INJECTDBITERR (injectdbiterr_in),
.SBITERR (SBITERR),
.DBITERR (DBITERR),
.ECCPIPECE (1'b0),
.SLEEP (1'b0),
.RDADDRECC (RDADDRECC)
);
end
endgenerate
endmodule
|
// -*- verilog -*-
//
// USRP - Universal Software Radio Peripheral
//
// Copyright (C) 2003 Matt Ettus
//
// This program is free software; you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation; either version 2 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program; if not, write to the Free Software
// Foundation, Inc., 51 Franklin Street, Boston, MA 02110-1301 USA
//
// Sign extension "macro"
// bits_out should be greater than bits_in
module sign_extend (in,out);
parameter bits_in=0; // FIXME Quartus insists on a default
parameter bits_out=0;
input [bits_in-1:0] in;
output [bits_out-1:0] out;
assign out = {{(bits_out-bits_in){in[bits_in-1]}},in};
endmodule
|
// -*- verilog -*-
//
// USRP - Universal Software Radio Peripheral
//
// Copyright (C) 2003 Matt Ettus
//
// This program is free software; you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation; either version 2 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program; if not, write to the Free Software
// Foundation, Inc., 51 Franklin Street, Boston, MA 02110-1301 USA
//
// Sign extension "macro"
// bits_out should be greater than bits_in
module sign_extend (in,out);
parameter bits_in=0; // FIXME Quartus insists on a default
parameter bits_out=0;
input [bits_in-1:0] in;
output [bits_out-1:0] out;
assign out = {{(bits_out-bits_in){in[bits_in-1]}},in};
endmodule
|
// -*- verilog -*-
//
// USRP - Universal Software Radio Peripheral
//
// Copyright (C) 2003 Matt Ettus
//
// This program is free software; you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation; either version 2 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program; if not, write to the Free Software
// Foundation, Inc., 51 Franklin Street, Boston, MA 02110-1301 USA
//
// Sign extension "macro"
// bits_out should be greater than bits_in
module sign_extend (in,out);
parameter bits_in=0; // FIXME Quartus insists on a default
parameter bits_out=0;
input [bits_in-1:0] in;
output [bits_out-1:0] out;
assign out = {{(bits_out-bits_in){in[bits_in-1]}},in};
endmodule
|
// -*- verilog -*-
//
// USRP - Universal Software Radio Peripheral
//
// Copyright (C) 2003 Matt Ettus
//
// This program is free software; you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation; either version 2 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program; if not, write to the Free Software
// Foundation, Inc., 51 Franklin Street, Boston, MA 02110-1301 USA
//
// Sign extension "macro"
// bits_out should be greater than bits_in
module sign_extend (in,out);
parameter bits_in=0; // FIXME Quartus insists on a default
parameter bits_out=0;
input [bits_in-1:0] in;
output [bits_out-1:0] out;
assign out = {{(bits_out-bits_in){in[bits_in-1]}},in};
endmodule
|
`include "lo_simulate.v"
/*
pck0 - input main 24Mhz clock (PLL / 4)
[7:0] adc_d - input data from A/D converter
pwr_lo - output to coil drivers (ssp_clk / 8)
adc_clk - output A/D clock signal
ssp_frame - output SSS frame indicator (goes high while the 8 bits are shifted)
ssp_din - output SSP data to ARM (shifts 8 bit A/D value serially to ARM MSB first)
ssp_clk - output SSP clock signal
ck_1356meg - input unused
ck_1356megb - input unused
ssp_dout - input unused
cross_hi - input unused
cross_lo - input unused
pwr_hi - output unused, tied low
pwr_oe1 - output unused, undefined
pwr_oe2 - output unused, undefined
pwr_oe3 - output unused, undefined
pwr_oe4 - output unused, undefined
dbg - output alias for adc_clk
*/
module testbed_lo_simulate;
reg pck0;
reg [7:0] adc_d;
wire pwr_lo;
wire adc_clk;
wire ck_1356meg;
wire ck_1356megb;
wire ssp_frame;
wire ssp_din;
wire ssp_clk;
reg ssp_dout;
wire pwr_hi;
wire pwr_oe1;
wire pwr_oe2;
wire pwr_oe3;
wire pwr_oe4;
reg cross_lo;
wire cross_hi;
wire dbg;
lo_simulate #(5,200) dut(
.pck0(pck0),
.ck_1356meg(ck_1356meg),
.ck_1356megb(ck_1356megb),
.pwr_lo(pwr_lo),
.pwr_hi(pwr_hi),
.pwr_oe1(pwr_oe1),
.pwr_oe2(pwr_oe2),
.pwr_oe3(pwr_oe3),
.pwr_oe4(pwr_oe4),
.adc_d(adc_d),
.adc_clk(adc_clk),
.ssp_frame(ssp_frame),
.ssp_din(ssp_din),
.ssp_dout(ssp_dout),
.ssp_clk(ssp_clk),
.cross_hi(cross_hi),
.cross_lo(cross_lo),
.dbg(dbg)
);
integer i, counter=0;
// main clock
always #5 pck0 = !pck0;
//cross_lo is not really synced to pck0 but it's roughly pck0/192 (24Mhz/192=125Khz)
task crank_dut;
begin
@(posedge pck0) ;
counter = counter + 1;
if (counter == 192) begin
counter = 0;
ssp_dout = $random;
cross_lo = 1;
end else begin
cross_lo = 0;
end
end
endtask
initial begin
pck0 = 0;
for (i = 0 ; i < 4096 ; i = i + 1) begin
crank_dut;
end
$finish;
end
endmodule // main
|
`include "lo_simulate.v"
/*
pck0 - input main 24Mhz clock (PLL / 4)
[7:0] adc_d - input data from A/D converter
pwr_lo - output to coil drivers (ssp_clk / 8)
adc_clk - output A/D clock signal
ssp_frame - output SSS frame indicator (goes high while the 8 bits are shifted)
ssp_din - output SSP data to ARM (shifts 8 bit A/D value serially to ARM MSB first)
ssp_clk - output SSP clock signal
ck_1356meg - input unused
ck_1356megb - input unused
ssp_dout - input unused
cross_hi - input unused
cross_lo - input unused
pwr_hi - output unused, tied low
pwr_oe1 - output unused, undefined
pwr_oe2 - output unused, undefined
pwr_oe3 - output unused, undefined
pwr_oe4 - output unused, undefined
dbg - output alias for adc_clk
*/
module testbed_lo_simulate;
reg pck0;
reg [7:0] adc_d;
wire pwr_lo;
wire adc_clk;
wire ck_1356meg;
wire ck_1356megb;
wire ssp_frame;
wire ssp_din;
wire ssp_clk;
reg ssp_dout;
wire pwr_hi;
wire pwr_oe1;
wire pwr_oe2;
wire pwr_oe3;
wire pwr_oe4;
reg cross_lo;
wire cross_hi;
wire dbg;
lo_simulate #(5,200) dut(
.pck0(pck0),
.ck_1356meg(ck_1356meg),
.ck_1356megb(ck_1356megb),
.pwr_lo(pwr_lo),
.pwr_hi(pwr_hi),
.pwr_oe1(pwr_oe1),
.pwr_oe2(pwr_oe2),
.pwr_oe3(pwr_oe3),
.pwr_oe4(pwr_oe4),
.adc_d(adc_d),
.adc_clk(adc_clk),
.ssp_frame(ssp_frame),
.ssp_din(ssp_din),
.ssp_dout(ssp_dout),
.ssp_clk(ssp_clk),
.cross_hi(cross_hi),
.cross_lo(cross_lo),
.dbg(dbg)
);
integer i, counter=0;
// main clock
always #5 pck0 = !pck0;
//cross_lo is not really synced to pck0 but it's roughly pck0/192 (24Mhz/192=125Khz)
task crank_dut;
begin
@(posedge pck0) ;
counter = counter + 1;
if (counter == 192) begin
counter = 0;
ssp_dout = $random;
cross_lo = 1;
end else begin
cross_lo = 0;
end
end
endtask
initial begin
pck0 = 0;
for (i = 0 ; i < 4096 ; i = i + 1) begin
crank_dut;
end
$finish;
end
endmodule // main
|
`include "lo_simulate.v"
/*
pck0 - input main 24Mhz clock (PLL / 4)
[7:0] adc_d - input data from A/D converter
pwr_lo - output to coil drivers (ssp_clk / 8)
adc_clk - output A/D clock signal
ssp_frame - output SSS frame indicator (goes high while the 8 bits are shifted)
ssp_din - output SSP data to ARM (shifts 8 bit A/D value serially to ARM MSB first)
ssp_clk - output SSP clock signal
ck_1356meg - input unused
ck_1356megb - input unused
ssp_dout - input unused
cross_hi - input unused
cross_lo - input unused
pwr_hi - output unused, tied low
pwr_oe1 - output unused, undefined
pwr_oe2 - output unused, undefined
pwr_oe3 - output unused, undefined
pwr_oe4 - output unused, undefined
dbg - output alias for adc_clk
*/
module testbed_lo_simulate;
reg pck0;
reg [7:0] adc_d;
wire pwr_lo;
wire adc_clk;
wire ck_1356meg;
wire ck_1356megb;
wire ssp_frame;
wire ssp_din;
wire ssp_clk;
reg ssp_dout;
wire pwr_hi;
wire pwr_oe1;
wire pwr_oe2;
wire pwr_oe3;
wire pwr_oe4;
reg cross_lo;
wire cross_hi;
wire dbg;
lo_simulate #(5,200) dut(
.pck0(pck0),
.ck_1356meg(ck_1356meg),
.ck_1356megb(ck_1356megb),
.pwr_lo(pwr_lo),
.pwr_hi(pwr_hi),
.pwr_oe1(pwr_oe1),
.pwr_oe2(pwr_oe2),
.pwr_oe3(pwr_oe3),
.pwr_oe4(pwr_oe4),
.adc_d(adc_d),
.adc_clk(adc_clk),
.ssp_frame(ssp_frame),
.ssp_din(ssp_din),
.ssp_dout(ssp_dout),
.ssp_clk(ssp_clk),
.cross_hi(cross_hi),
.cross_lo(cross_lo),
.dbg(dbg)
);
integer i, counter=0;
// main clock
always #5 pck0 = !pck0;
//cross_lo is not really synced to pck0 but it's roughly pck0/192 (24Mhz/192=125Khz)
task crank_dut;
begin
@(posedge pck0) ;
counter = counter + 1;
if (counter == 192) begin
counter = 0;
ssp_dout = $random;
cross_lo = 1;
end else begin
cross_lo = 0;
end
end
endtask
initial begin
pck0 = 0;
for (i = 0 ; i < 4096 ; i = i + 1) begin
crank_dut;
end
$finish;
end
endmodule // main
|
//Legal Notice: (C)2017 Altera Corporation. All rights reserved. Your
//use of Altera Corporation's design tools, logic functions and other
//software and tools, and its AMPP partner logic functions, and any
//output files any of the foregoing (including device programming or
//simulation files), and any associated documentation or information are
//expressly subject to the terms and conditions of the Altera Program
//License Subscription Agreement or other applicable license agreement,
//including, without limitation, that your use is for the sole purpose
//of programming logic devices manufactured by Altera and sold by Altera
//or its authorized distributors. Please refer to the applicable
//agreement for further details.
// synthesis translate_off
`timescale 1ns / 1ps
// synthesis translate_on
// turn off superfluous verilog processor warnings
// altera message_level Level1
// altera message_off 10034 10035 10036 10037 10230 10240 10030
module soc_design_Sys_Timer (
// inputs:
address,
chipselect,
clk,
reset_n,
write_n,
writedata,
// outputs:
irq,
readdata
)
;
output irq;
output [ 15: 0] readdata;
input [ 2: 0] address;
input chipselect;
input clk;
input reset_n;
input write_n;
input [ 15: 0] writedata;
wire clk_en;
wire control_interrupt_enable;
reg control_register;
wire control_wr_strobe;
reg counter_is_running;
wire counter_is_zero;
wire [ 16: 0] counter_load_value;
reg delayed_unxcounter_is_zeroxx0;
wire do_start_counter;
wire do_stop_counter;
reg force_reload;
reg [ 16: 0] internal_counter;
wire irq;
wire period_h_wr_strobe;
wire period_l_wr_strobe;
wire [ 15: 0] read_mux_out;
reg [ 15: 0] readdata;
wire status_wr_strobe;
wire timeout_event;
reg timeout_occurred;
assign clk_en = 1;
always @(posedge clk or negedge reset_n)
begin
if (reset_n == 0)
internal_counter <= 17'h1869F;
else if (counter_is_running || force_reload)
if (counter_is_zero || force_reload)
internal_counter <= counter_load_value;
else
internal_counter <= internal_counter - 1;
end
assign counter_is_zero = internal_counter == 0;
assign counter_load_value = 17'h1869F;
always @(posedge clk or negedge reset_n)
begin
if (reset_n == 0)
force_reload <= 0;
else if (clk_en)
force_reload <= period_h_wr_strobe || period_l_wr_strobe;
end
assign do_start_counter = 1;
assign do_stop_counter = 0;
always @(posedge clk or negedge reset_n)
begin
if (reset_n == 0)
counter_is_running <= 1'b0;
else if (clk_en)
if (do_start_counter)
counter_is_running <= -1;
else if (do_stop_counter)
counter_is_running <= 0;
end
//delayed_unxcounter_is_zeroxx0, which is an e_register
always @(posedge clk or negedge reset_n)
begin
if (reset_n == 0)
delayed_unxcounter_is_zeroxx0 <= 0;
else if (clk_en)
delayed_unxcounter_is_zeroxx0 <= counter_is_zero;
end
assign timeout_event = (counter_is_zero) & ~(delayed_unxcounter_is_zeroxx0);
always @(posedge clk or negedge reset_n)
begin
if (reset_n == 0)
timeout_occurred <= 0;
else if (clk_en)
if (status_wr_strobe)
timeout_occurred <= 0;
else if (timeout_event)
timeout_occurred <= -1;
end
assign irq = timeout_occurred && control_interrupt_enable;
//s1, which is an e_avalon_slave
assign read_mux_out = ({16 {(address == 1)}} & control_register) |
({16 {(address == 0)}} & {counter_is_running,
timeout_occurred});
always @(posedge clk or negedge reset_n)
begin
if (reset_n == 0)
readdata <= 0;
else if (clk_en)
readdata <= read_mux_out;
end
assign period_l_wr_strobe = chipselect && ~write_n && (address == 2);
assign period_h_wr_strobe = chipselect && ~write_n && (address == 3);
assign control_wr_strobe = chipselect && ~write_n && (address == 1);
always @(posedge clk or negedge reset_n)
begin
if (reset_n == 0)
control_register <= 0;
else if (control_wr_strobe)
control_register <= writedata[0];
end
assign control_interrupt_enable = control_register;
assign status_wr_strobe = chipselect && ~write_n && (address == 0);
endmodule
|
//Legal Notice: (C)2017 Altera Corporation. All rights reserved. Your
//use of Altera Corporation's design tools, logic functions and other
//software and tools, and its AMPP partner logic functions, and any
//output files any of the foregoing (including device programming or
//simulation files), and any associated documentation or information are
//expressly subject to the terms and conditions of the Altera Program
//License Subscription Agreement or other applicable license agreement,
//including, without limitation, that your use is for the sole purpose
//of programming logic devices manufactured by Altera and sold by Altera
//or its authorized distributors. Please refer to the applicable
//agreement for further details.
// synthesis translate_off
`timescale 1ns / 1ps
// synthesis translate_on
// turn off superfluous verilog processor warnings
// altera message_level Level1
// altera message_off 10034 10035 10036 10037 10230 10240 10030
module soc_design_Sys_Timer (
// inputs:
address,
chipselect,
clk,
reset_n,
write_n,
writedata,
// outputs:
irq,
readdata
)
;
output irq;
output [ 15: 0] readdata;
input [ 2: 0] address;
input chipselect;
input clk;
input reset_n;
input write_n;
input [ 15: 0] writedata;
wire clk_en;
wire control_interrupt_enable;
reg control_register;
wire control_wr_strobe;
reg counter_is_running;
wire counter_is_zero;
wire [ 16: 0] counter_load_value;
reg delayed_unxcounter_is_zeroxx0;
wire do_start_counter;
wire do_stop_counter;
reg force_reload;
reg [ 16: 0] internal_counter;
wire irq;
wire period_h_wr_strobe;
wire period_l_wr_strobe;
wire [ 15: 0] read_mux_out;
reg [ 15: 0] readdata;
wire status_wr_strobe;
wire timeout_event;
reg timeout_occurred;
assign clk_en = 1;
always @(posedge clk or negedge reset_n)
begin
if (reset_n == 0)
internal_counter <= 17'h1869F;
else if (counter_is_running || force_reload)
if (counter_is_zero || force_reload)
internal_counter <= counter_load_value;
else
internal_counter <= internal_counter - 1;
end
assign counter_is_zero = internal_counter == 0;
assign counter_load_value = 17'h1869F;
always @(posedge clk or negedge reset_n)
begin
if (reset_n == 0)
force_reload <= 0;
else if (clk_en)
force_reload <= period_h_wr_strobe || period_l_wr_strobe;
end
assign do_start_counter = 1;
assign do_stop_counter = 0;
always @(posedge clk or negedge reset_n)
begin
if (reset_n == 0)
counter_is_running <= 1'b0;
else if (clk_en)
if (do_start_counter)
counter_is_running <= -1;
else if (do_stop_counter)
counter_is_running <= 0;
end
//delayed_unxcounter_is_zeroxx0, which is an e_register
always @(posedge clk or negedge reset_n)
begin
if (reset_n == 0)
delayed_unxcounter_is_zeroxx0 <= 0;
else if (clk_en)
delayed_unxcounter_is_zeroxx0 <= counter_is_zero;
end
assign timeout_event = (counter_is_zero) & ~(delayed_unxcounter_is_zeroxx0);
always @(posedge clk or negedge reset_n)
begin
if (reset_n == 0)
timeout_occurred <= 0;
else if (clk_en)
if (status_wr_strobe)
timeout_occurred <= 0;
else if (timeout_event)
timeout_occurred <= -1;
end
assign irq = timeout_occurred && control_interrupt_enable;
//s1, which is an e_avalon_slave
assign read_mux_out = ({16 {(address == 1)}} & control_register) |
({16 {(address == 0)}} & {counter_is_running,
timeout_occurred});
always @(posedge clk or negedge reset_n)
begin
if (reset_n == 0)
readdata <= 0;
else if (clk_en)
readdata <= read_mux_out;
end
assign period_l_wr_strobe = chipselect && ~write_n && (address == 2);
assign period_h_wr_strobe = chipselect && ~write_n && (address == 3);
assign control_wr_strobe = chipselect && ~write_n && (address == 1);
always @(posedge clk or negedge reset_n)
begin
if (reset_n == 0)
control_register <= 0;
else if (control_wr_strobe)
control_register <= writedata[0];
end
assign control_interrupt_enable = control_register;
assign status_wr_strobe = chipselect && ~write_n && (address == 0);
endmodule
|
// This is a component of pluto_step, a hardware step waveform generator
// Copyright 2007 Jeff Epler <[email protected]>
//
// This program is free software; you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation; either version 2 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
module stepgen(clk, enable, position, velocity, dirtime, steptime, step, dir, tap);
`define STATE_STEP 0
`define STATE_DIRCHANGE 1
`define STATE_DIRWAIT 2
parameter W=12;
parameter F=10;
parameter T=5;
input clk, enable;
output [W+F-1:0] position; reg [W+F-1:0] position;
input [F:0] velocity;
input [T-1:0] dirtime, steptime;
input [1:0] tap;
output step, dir;
reg step, dir;
reg [T-1:0] timer;
reg [1:0] state;
reg ones;
wire dbit = velocity[F];
wire pbit = (tap == 0 ? position[F]
: (tap == 1 ? position[F+1]
: (tap == 2 ? position[F+2]
: position[F+3])));
wire [W+F-1:0] xvelocity = {{W{velocity[F]}}, {1{velocity[F-1:0]}}};
`ifdef TESTING
// for testing:
initial position = 1'b0;
initial state = `STATE_STEP;
initial timer = 0;
initial dir = 0;
initial ones = 0;
`endif
always @(posedge clk) begin
if(enable) begin
// $display("state=%d timer=%d position=%h velocity=%h dir=%d dbit=%d pbit=%d ones=%d", state, timer, position, xvelocity, dir, dbit, pbit, ones);
if((dir != dbit) && (pbit == ones)) begin
if(state == `STATE_DIRCHANGE) begin
if(timer == 0) begin
dir <= dbit;
timer <= dirtime;
state <= `STATE_DIRWAIT;
end else begin
timer <= timer - 1'd1;
end
end else begin
if(timer == 0) begin
step <= 0;
timer <= dirtime;
state <= `STATE_DIRCHANGE;
end else begin
timer <= timer - 1'd1;
end
end
end else if(state == `STATE_DIRWAIT) begin
if(timer == 0) begin
state <= `STATE_STEP;
end else begin
timer <= timer - 1'd1;
end
end else begin
if(timer == 0) begin
if(pbit != ones) begin
ones <= pbit;
step <= 1'd1;
timer <= steptime;
end else begin
step <= 0;
end
end else begin
timer <= timer - 1'd1;
end
if(dir == dbit)
position <= position + xvelocity;
end
end
end
endmodule
|
// This is a component of pluto_step, a hardware step waveform generator
// Copyright 2007 Jeff Epler <[email protected]>
//
// This program is free software; you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation; either version 2 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
module stepgen(clk, enable, position, velocity, dirtime, steptime, step, dir, tap);
`define STATE_STEP 0
`define STATE_DIRCHANGE 1
`define STATE_DIRWAIT 2
parameter W=12;
parameter F=10;
parameter T=5;
input clk, enable;
output [W+F-1:0] position; reg [W+F-1:0] position;
input [F:0] velocity;
input [T-1:0] dirtime, steptime;
input [1:0] tap;
output step, dir;
reg step, dir;
reg [T-1:0] timer;
reg [1:0] state;
reg ones;
wire dbit = velocity[F];
wire pbit = (tap == 0 ? position[F]
: (tap == 1 ? position[F+1]
: (tap == 2 ? position[F+2]
: position[F+3])));
wire [W+F-1:0] xvelocity = {{W{velocity[F]}}, {1{velocity[F-1:0]}}};
`ifdef TESTING
// for testing:
initial position = 1'b0;
initial state = `STATE_STEP;
initial timer = 0;
initial dir = 0;
initial ones = 0;
`endif
always @(posedge clk) begin
if(enable) begin
// $display("state=%d timer=%d position=%h velocity=%h dir=%d dbit=%d pbit=%d ones=%d", state, timer, position, xvelocity, dir, dbit, pbit, ones);
if((dir != dbit) && (pbit == ones)) begin
if(state == `STATE_DIRCHANGE) begin
if(timer == 0) begin
dir <= dbit;
timer <= dirtime;
state <= `STATE_DIRWAIT;
end else begin
timer <= timer - 1'd1;
end
end else begin
if(timer == 0) begin
step <= 0;
timer <= dirtime;
state <= `STATE_DIRCHANGE;
end else begin
timer <= timer - 1'd1;
end
end
end else if(state == `STATE_DIRWAIT) begin
if(timer == 0) begin
state <= `STATE_STEP;
end else begin
timer <= timer - 1'd1;
end
end else begin
if(timer == 0) begin
if(pbit != ones) begin
ones <= pbit;
step <= 1'd1;
timer <= steptime;
end else begin
step <= 0;
end
end else begin
timer <= timer - 1'd1;
end
if(dir == dbit)
position <= position + xvelocity;
end
end
end
endmodule
|
// This is a component of pluto_step, a hardware step waveform generator
// Copyright 2007 Jeff Epler <[email protected]>
//
// This program is free software; you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation; either version 2 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
module stepgen(clk, enable, position, velocity, dirtime, steptime, step, dir, tap);
`define STATE_STEP 0
`define STATE_DIRCHANGE 1
`define STATE_DIRWAIT 2
parameter W=12;
parameter F=10;
parameter T=5;
input clk, enable;
output [W+F-1:0] position; reg [W+F-1:0] position;
input [F:0] velocity;
input [T-1:0] dirtime, steptime;
input [1:0] tap;
output step, dir;
reg step, dir;
reg [T-1:0] timer;
reg [1:0] state;
reg ones;
wire dbit = velocity[F];
wire pbit = (tap == 0 ? position[F]
: (tap == 1 ? position[F+1]
: (tap == 2 ? position[F+2]
: position[F+3])));
wire [W+F-1:0] xvelocity = {{W{velocity[F]}}, {1{velocity[F-1:0]}}};
`ifdef TESTING
// for testing:
initial position = 1'b0;
initial state = `STATE_STEP;
initial timer = 0;
initial dir = 0;
initial ones = 0;
`endif
always @(posedge clk) begin
if(enable) begin
// $display("state=%d timer=%d position=%h velocity=%h dir=%d dbit=%d pbit=%d ones=%d", state, timer, position, xvelocity, dir, dbit, pbit, ones);
if((dir != dbit) && (pbit == ones)) begin
if(state == `STATE_DIRCHANGE) begin
if(timer == 0) begin
dir <= dbit;
timer <= dirtime;
state <= `STATE_DIRWAIT;
end else begin
timer <= timer - 1'd1;
end
end else begin
if(timer == 0) begin
step <= 0;
timer <= dirtime;
state <= `STATE_DIRCHANGE;
end else begin
timer <= timer - 1'd1;
end
end
end else if(state == `STATE_DIRWAIT) begin
if(timer == 0) begin
state <= `STATE_STEP;
end else begin
timer <= timer - 1'd1;
end
end else begin
if(timer == 0) begin
if(pbit != ones) begin
ones <= pbit;
step <= 1'd1;
timer <= steptime;
end else begin
step <= 0;
end
end else begin
timer <= timer - 1'd1;
end
if(dir == dbit)
position <= position + xvelocity;
end
end
end
endmodule
|
//Legal Notice: (C)2017 Altera Corporation. All rights reserved. Your
//use of Altera Corporation's design tools, logic functions and other
//software and tools, and its AMPP partner logic functions, and any
//output files any of the foregoing (including device programming or
//simulation files), and any associated documentation or information are
//expressly subject to the terms and conditions of the Altera Program
//License Subscription Agreement or other applicable license agreement,
//including, without limitation, that your use is for the sole purpose
//of programming logic devices manufactured by Altera and sold by Altera
//or its authorized distributors. Please refer to the applicable
//agreement for further details.
// synthesis translate_off
`timescale 1ns / 1ps
// synthesis translate_on
// turn off superfluous verilog processor warnings
// altera message_level Level1
// altera message_off 10034 10035 10036 10037 10230 10240 10030
module soc_design_niosII_core_cpu_mult_cell (
// inputs:
E_src1,
E_src2,
M_en,
clk,
reset_n,
// outputs:
M_mul_cell_p1,
M_mul_cell_p2,
M_mul_cell_p3
)
;
output [ 31: 0] M_mul_cell_p1;
output [ 31: 0] M_mul_cell_p2;
output [ 31: 0] M_mul_cell_p3;
input [ 31: 0] E_src1;
input [ 31: 0] E_src2;
input M_en;
input clk;
input reset_n;
wire [ 31: 0] M_mul_cell_p1;
wire [ 31: 0] M_mul_cell_p2;
wire [ 31: 0] M_mul_cell_p3;
wire mul_clr;
wire [ 31: 0] mul_src1;
wire [ 31: 0] mul_src2;
assign mul_clr = ~reset_n;
assign mul_src1 = E_src1;
assign mul_src2 = E_src2;
altera_mult_add the_altmult_add_p1
(
.aclr0 (mul_clr),
.clock0 (clk),
.dataa (mul_src1[15 : 0]),
.datab (mul_src2[15 : 0]),
.ena0 (M_en),
.result (M_mul_cell_p1)
);
defparam the_altmult_add_p1.addnsub_multiplier_pipeline_aclr1 = "ACLR0",
the_altmult_add_p1.addnsub_multiplier_pipeline_register1 = "CLOCK0",
the_altmult_add_p1.addnsub_multiplier_register1 = "UNREGISTERED",
the_altmult_add_p1.dedicated_multiplier_circuitry = "YES",
the_altmult_add_p1.input_register_a0 = "UNREGISTERED",
the_altmult_add_p1.input_register_b0 = "UNREGISTERED",
the_altmult_add_p1.input_source_a0 = "DATAA",
the_altmult_add_p1.input_source_b0 = "DATAB",
the_altmult_add_p1.lpm_type = "altera_mult_add",
the_altmult_add_p1.multiplier1_direction = "ADD",
the_altmult_add_p1.multiplier_aclr0 = "ACLR0",
the_altmult_add_p1.multiplier_register0 = "CLOCK0",
the_altmult_add_p1.number_of_multipliers = 1,
the_altmult_add_p1.output_register = "UNREGISTERED",
the_altmult_add_p1.port_addnsub1 = "PORT_UNUSED",
the_altmult_add_p1.port_addnsub3 = "PORT_UNUSED",
the_altmult_add_p1.representation_a = "UNSIGNED",
the_altmult_add_p1.representation_b = "UNSIGNED",
the_altmult_add_p1.selected_device_family = "CYCLONEV",
the_altmult_add_p1.signed_pipeline_aclr_a = "ACLR0",
the_altmult_add_p1.signed_pipeline_aclr_b = "ACLR0",
the_altmult_add_p1.signed_pipeline_register_a = "CLOCK0",
the_altmult_add_p1.signed_pipeline_register_b = "CLOCK0",
the_altmult_add_p1.signed_register_a = "UNREGISTERED",
the_altmult_add_p1.signed_register_b = "UNREGISTERED",
the_altmult_add_p1.width_a = 16,
the_altmult_add_p1.width_b = 16,
the_altmult_add_p1.width_result = 32;
altera_mult_add the_altmult_add_p2
(
.aclr0 (mul_clr),
.clock0 (clk),
.dataa (mul_src1[15 : 0]),
.datab (mul_src2[31 : 16]),
.ena0 (M_en),
.result (M_mul_cell_p2)
);
defparam the_altmult_add_p2.addnsub_multiplier_pipeline_aclr1 = "ACLR0",
the_altmult_add_p2.addnsub_multiplier_pipeline_register1 = "CLOCK0",
the_altmult_add_p2.addnsub_multiplier_register1 = "UNREGISTERED",
the_altmult_add_p2.dedicated_multiplier_circuitry = "YES",
the_altmult_add_p2.input_register_a0 = "UNREGISTERED",
the_altmult_add_p2.input_register_b0 = "UNREGISTERED",
the_altmult_add_p2.input_source_a0 = "DATAA",
the_altmult_add_p2.input_source_b0 = "DATAB",
the_altmult_add_p2.lpm_type = "altera_mult_add",
the_altmult_add_p2.multiplier1_direction = "ADD",
the_altmult_add_p2.multiplier_aclr0 = "ACLR0",
the_altmult_add_p2.multiplier_register0 = "CLOCK0",
the_altmult_add_p2.number_of_multipliers = 1,
the_altmult_add_p2.output_register = "UNREGISTERED",
the_altmult_add_p2.port_addnsub1 = "PORT_UNUSED",
the_altmult_add_p2.port_addnsub3 = "PORT_UNUSED",
the_altmult_add_p2.representation_a = "UNSIGNED",
the_altmult_add_p2.representation_b = "UNSIGNED",
the_altmult_add_p2.selected_device_family = "CYCLONEV",
the_altmult_add_p2.signed_pipeline_aclr_a = "ACLR0",
the_altmult_add_p2.signed_pipeline_aclr_b = "ACLR0",
the_altmult_add_p2.signed_pipeline_register_a = "CLOCK0",
the_altmult_add_p2.signed_pipeline_register_b = "CLOCK0",
the_altmult_add_p2.signed_register_a = "UNREGISTERED",
the_altmult_add_p2.signed_register_b = "UNREGISTERED",
the_altmult_add_p2.width_a = 16,
the_altmult_add_p2.width_b = 16,
the_altmult_add_p2.width_result = 32;
altera_mult_add the_altmult_add_p3
(
.aclr0 (mul_clr),
.clock0 (clk),
.dataa (mul_src1[31 : 16]),
.datab (mul_src2[15 : 0]),
.ena0 (M_en),
.result (M_mul_cell_p3)
);
defparam the_altmult_add_p3.addnsub_multiplier_pipeline_aclr1 = "ACLR0",
the_altmult_add_p3.addnsub_multiplier_pipeline_register1 = "CLOCK0",
the_altmult_add_p3.addnsub_multiplier_register1 = "UNREGISTERED",
the_altmult_add_p3.dedicated_multiplier_circuitry = "YES",
the_altmult_add_p3.input_register_a0 = "UNREGISTERED",
the_altmult_add_p3.input_register_b0 = "UNREGISTERED",
the_altmult_add_p3.input_source_a0 = "DATAA",
the_altmult_add_p3.input_source_b0 = "DATAB",
the_altmult_add_p3.lpm_type = "altera_mult_add",
the_altmult_add_p3.multiplier1_direction = "ADD",
the_altmult_add_p3.multiplier_aclr0 = "ACLR0",
the_altmult_add_p3.multiplier_register0 = "CLOCK0",
the_altmult_add_p3.number_of_multipliers = 1,
the_altmult_add_p3.output_register = "UNREGISTERED",
the_altmult_add_p3.port_addnsub1 = "PORT_UNUSED",
the_altmult_add_p3.port_addnsub3 = "PORT_UNUSED",
the_altmult_add_p3.representation_a = "UNSIGNED",
the_altmult_add_p3.representation_b = "UNSIGNED",
the_altmult_add_p3.selected_device_family = "CYCLONEV",
the_altmult_add_p3.signed_pipeline_aclr_a = "ACLR0",
the_altmult_add_p3.signed_pipeline_aclr_b = "ACLR0",
the_altmult_add_p3.signed_pipeline_register_a = "CLOCK0",
the_altmult_add_p3.signed_pipeline_register_b = "CLOCK0",
the_altmult_add_p3.signed_register_a = "UNREGISTERED",
the_altmult_add_p3.signed_register_b = "UNREGISTERED",
the_altmult_add_p3.width_a = 16,
the_altmult_add_p3.width_b = 16,
the_altmult_add_p3.width_result = 32;
endmodule
|
//Legal Notice: (C)2017 Altera Corporation. All rights reserved. Your
//use of Altera Corporation's design tools, logic functions and other
//software and tools, and its AMPP partner logic functions, and any
//output files any of the foregoing (including device programming or
//simulation files), and any associated documentation or information are
//expressly subject to the terms and conditions of the Altera Program
//License Subscription Agreement or other applicable license agreement,
//including, without limitation, that your use is for the sole purpose
//of programming logic devices manufactured by Altera and sold by Altera
//or its authorized distributors. Please refer to the applicable
//agreement for further details.
// synthesis translate_off
`timescale 1ns / 1ps
// synthesis translate_on
// turn off superfluous verilog processor warnings
// altera message_level Level1
// altera message_off 10034 10035 10036 10037 10230 10240 10030
module soc_design_niosII_core_cpu_mult_cell (
// inputs:
E_src1,
E_src2,
M_en,
clk,
reset_n,
// outputs:
M_mul_cell_p1,
M_mul_cell_p2,
M_mul_cell_p3
)
;
output [ 31: 0] M_mul_cell_p1;
output [ 31: 0] M_mul_cell_p2;
output [ 31: 0] M_mul_cell_p3;
input [ 31: 0] E_src1;
input [ 31: 0] E_src2;
input M_en;
input clk;
input reset_n;
wire [ 31: 0] M_mul_cell_p1;
wire [ 31: 0] M_mul_cell_p2;
wire [ 31: 0] M_mul_cell_p3;
wire mul_clr;
wire [ 31: 0] mul_src1;
wire [ 31: 0] mul_src2;
assign mul_clr = ~reset_n;
assign mul_src1 = E_src1;
assign mul_src2 = E_src2;
altera_mult_add the_altmult_add_p1
(
.aclr0 (mul_clr),
.clock0 (clk),
.dataa (mul_src1[15 : 0]),
.datab (mul_src2[15 : 0]),
.ena0 (M_en),
.result (M_mul_cell_p1)
);
defparam the_altmult_add_p1.addnsub_multiplier_pipeline_aclr1 = "ACLR0",
the_altmult_add_p1.addnsub_multiplier_pipeline_register1 = "CLOCK0",
the_altmult_add_p1.addnsub_multiplier_register1 = "UNREGISTERED",
the_altmult_add_p1.dedicated_multiplier_circuitry = "YES",
the_altmult_add_p1.input_register_a0 = "UNREGISTERED",
the_altmult_add_p1.input_register_b0 = "UNREGISTERED",
the_altmult_add_p1.input_source_a0 = "DATAA",
the_altmult_add_p1.input_source_b0 = "DATAB",
the_altmult_add_p1.lpm_type = "altera_mult_add",
the_altmult_add_p1.multiplier1_direction = "ADD",
the_altmult_add_p1.multiplier_aclr0 = "ACLR0",
the_altmult_add_p1.multiplier_register0 = "CLOCK0",
the_altmult_add_p1.number_of_multipliers = 1,
the_altmult_add_p1.output_register = "UNREGISTERED",
the_altmult_add_p1.port_addnsub1 = "PORT_UNUSED",
the_altmult_add_p1.port_addnsub3 = "PORT_UNUSED",
the_altmult_add_p1.representation_a = "UNSIGNED",
the_altmult_add_p1.representation_b = "UNSIGNED",
the_altmult_add_p1.selected_device_family = "CYCLONEV",
the_altmult_add_p1.signed_pipeline_aclr_a = "ACLR0",
the_altmult_add_p1.signed_pipeline_aclr_b = "ACLR0",
the_altmult_add_p1.signed_pipeline_register_a = "CLOCK0",
the_altmult_add_p1.signed_pipeline_register_b = "CLOCK0",
the_altmult_add_p1.signed_register_a = "UNREGISTERED",
the_altmult_add_p1.signed_register_b = "UNREGISTERED",
the_altmult_add_p1.width_a = 16,
the_altmult_add_p1.width_b = 16,
the_altmult_add_p1.width_result = 32;
altera_mult_add the_altmult_add_p2
(
.aclr0 (mul_clr),
.clock0 (clk),
.dataa (mul_src1[15 : 0]),
.datab (mul_src2[31 : 16]),
.ena0 (M_en),
.result (M_mul_cell_p2)
);
defparam the_altmult_add_p2.addnsub_multiplier_pipeline_aclr1 = "ACLR0",
the_altmult_add_p2.addnsub_multiplier_pipeline_register1 = "CLOCK0",
the_altmult_add_p2.addnsub_multiplier_register1 = "UNREGISTERED",
the_altmult_add_p2.dedicated_multiplier_circuitry = "YES",
the_altmult_add_p2.input_register_a0 = "UNREGISTERED",
the_altmult_add_p2.input_register_b0 = "UNREGISTERED",
the_altmult_add_p2.input_source_a0 = "DATAA",
the_altmult_add_p2.input_source_b0 = "DATAB",
the_altmult_add_p2.lpm_type = "altera_mult_add",
the_altmult_add_p2.multiplier1_direction = "ADD",
the_altmult_add_p2.multiplier_aclr0 = "ACLR0",
the_altmult_add_p2.multiplier_register0 = "CLOCK0",
the_altmult_add_p2.number_of_multipliers = 1,
the_altmult_add_p2.output_register = "UNREGISTERED",
the_altmult_add_p2.port_addnsub1 = "PORT_UNUSED",
the_altmult_add_p2.port_addnsub3 = "PORT_UNUSED",
the_altmult_add_p2.representation_a = "UNSIGNED",
the_altmult_add_p2.representation_b = "UNSIGNED",
the_altmult_add_p2.selected_device_family = "CYCLONEV",
the_altmult_add_p2.signed_pipeline_aclr_a = "ACLR0",
the_altmult_add_p2.signed_pipeline_aclr_b = "ACLR0",
the_altmult_add_p2.signed_pipeline_register_a = "CLOCK0",
the_altmult_add_p2.signed_pipeline_register_b = "CLOCK0",
the_altmult_add_p2.signed_register_a = "UNREGISTERED",
the_altmult_add_p2.signed_register_b = "UNREGISTERED",
the_altmult_add_p2.width_a = 16,
the_altmult_add_p2.width_b = 16,
the_altmult_add_p2.width_result = 32;
altera_mult_add the_altmult_add_p3
(
.aclr0 (mul_clr),
.clock0 (clk),
.dataa (mul_src1[31 : 16]),
.datab (mul_src2[15 : 0]),
.ena0 (M_en),
.result (M_mul_cell_p3)
);
defparam the_altmult_add_p3.addnsub_multiplier_pipeline_aclr1 = "ACLR0",
the_altmult_add_p3.addnsub_multiplier_pipeline_register1 = "CLOCK0",
the_altmult_add_p3.addnsub_multiplier_register1 = "UNREGISTERED",
the_altmult_add_p3.dedicated_multiplier_circuitry = "YES",
the_altmult_add_p3.input_register_a0 = "UNREGISTERED",
the_altmult_add_p3.input_register_b0 = "UNREGISTERED",
the_altmult_add_p3.input_source_a0 = "DATAA",
the_altmult_add_p3.input_source_b0 = "DATAB",
the_altmult_add_p3.lpm_type = "altera_mult_add",
the_altmult_add_p3.multiplier1_direction = "ADD",
the_altmult_add_p3.multiplier_aclr0 = "ACLR0",
the_altmult_add_p3.multiplier_register0 = "CLOCK0",
the_altmult_add_p3.number_of_multipliers = 1,
the_altmult_add_p3.output_register = "UNREGISTERED",
the_altmult_add_p3.port_addnsub1 = "PORT_UNUSED",
the_altmult_add_p3.port_addnsub3 = "PORT_UNUSED",
the_altmult_add_p3.representation_a = "UNSIGNED",
the_altmult_add_p3.representation_b = "UNSIGNED",
the_altmult_add_p3.selected_device_family = "CYCLONEV",
the_altmult_add_p3.signed_pipeline_aclr_a = "ACLR0",
the_altmult_add_p3.signed_pipeline_aclr_b = "ACLR0",
the_altmult_add_p3.signed_pipeline_register_a = "CLOCK0",
the_altmult_add_p3.signed_pipeline_register_b = "CLOCK0",
the_altmult_add_p3.signed_register_a = "UNREGISTERED",
the_altmult_add_p3.signed_register_b = "UNREGISTERED",
the_altmult_add_p3.width_a = 16,
the_altmult_add_p3.width_b = 16,
the_altmult_add_p3.width_result = 32;
endmodule
|
/*
* Copyright (c) 2009 Zeus Gomez Marmolejo <[email protected]>
*
* This file is part of the Zet processor. This processor is free
* hardware; you can redistribute it and/or modify it under the terms of
* the GNU General Public License as published by the Free Software
* Foundation; either version 3, or (at your option) any later version.
*
* Zet is distrubuted in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
* License for more details.
*
* You should have received a copy of the GNU General Public License
* along with Zet; see the file COPYING. If not, see
* <http://www.gnu.org/licenses/>.
*/
module hex_display (
input [15:0] num,
input en,
output [6:0] hex0,
output [6:0] hex1,
output [6:0] hex2,
output [6:0] hex3
);
// Module instantiations
seg_7 hex_group0 (
.num (num[3:0]),
.en (en),
.seg (hex0)
);
seg_7 hex_group1 (
.num (num[7:4]),
.en (en),
.seg (hex1)
);
seg_7 hex_group2 (
.num (num[11:8]),
.en (en),
.seg (hex2)
);
seg_7 hex_group3 (
.num (num[15:12]),
.en (en),
.seg (hex3)
);
endmodule
|
/*
* Copyright (c) 2009 Zeus Gomez Marmolejo <[email protected]>
*
* This file is part of the Zet processor. This processor is free
* hardware; you can redistribute it and/or modify it under the terms of
* the GNU General Public License as published by the Free Software
* Foundation; either version 3, or (at your option) any later version.
*
* Zet is distrubuted in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
* License for more details.
*
* You should have received a copy of the GNU General Public License
* along with Zet; see the file COPYING. If not, see
* <http://www.gnu.org/licenses/>.
*/
module hex_display (
input [15:0] num,
input en,
output [6:0] hex0,
output [6:0] hex1,
output [6:0] hex2,
output [6:0] hex3
);
// Module instantiations
seg_7 hex_group0 (
.num (num[3:0]),
.en (en),
.seg (hex0)
);
seg_7 hex_group1 (
.num (num[7:4]),
.en (en),
.seg (hex1)
);
seg_7 hex_group2 (
.num (num[11:8]),
.en (en),
.seg (hex2)
);
seg_7 hex_group3 (
.num (num[15:12]),
.en (en),
.seg (hex3)
);
endmodule
|
/*
* Copyright (c) 2009 Zeus Gomez Marmolejo <[email protected]>
*
* This file is part of the Zet processor. This processor is free
* hardware; you can redistribute it and/or modify it under the terms of
* the GNU General Public License as published by the Free Software
* Foundation; either version 3, or (at your option) any later version.
*
* Zet is distrubuted in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
* License for more details.
*
* You should have received a copy of the GNU General Public License
* along with Zet; see the file COPYING. If not, see
* <http://www.gnu.org/licenses/>.
*/
module hex_display (
input [15:0] num,
input en,
output [6:0] hex0,
output [6:0] hex1,
output [6:0] hex2,
output [6:0] hex3
);
// Module instantiations
seg_7 hex_group0 (
.num (num[3:0]),
.en (en),
.seg (hex0)
);
seg_7 hex_group1 (
.num (num[7:4]),
.en (en),
.seg (hex1)
);
seg_7 hex_group2 (
.num (num[11:8]),
.en (en),
.seg (hex2)
);
seg_7 hex_group3 (
.num (num[15:12]),
.en (en),
.seg (hex3)
);
endmodule
|
/*
* Copyright (c) 2009 Zeus Gomez Marmolejo <[email protected]>
*
* This file is part of the Zet processor. This processor is free
* hardware; you can redistribute it and/or modify it under the terms of
* the GNU General Public License as published by the Free Software
* Foundation; either version 3, or (at your option) any later version.
*
* Zet is distrubuted in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
* License for more details.
*
* You should have received a copy of the GNU General Public License
* along with Zet; see the file COPYING. If not, see
* <http://www.gnu.org/licenses/>.
*/
module hex_display (
input [15:0] num,
input en,
output [6:0] hex0,
output [6:0] hex1,
output [6:0] hex2,
output [6:0] hex3
);
// Module instantiations
seg_7 hex_group0 (
.num (num[3:0]),
.en (en),
.seg (hex0)
);
seg_7 hex_group1 (
.num (num[7:4]),
.en (en),
.seg (hex1)
);
seg_7 hex_group2 (
.num (num[11:8]),
.en (en),
.seg (hex2)
);
seg_7 hex_group3 (
.num (num[15:12]),
.en (en),
.seg (hex3)
);
endmodule
|
/*
* Copyright (c) 2009 Zeus Gomez Marmolejo <[email protected]>
*
* This file is part of the Zet processor. This processor is free
* hardware; you can redistribute it and/or modify it under the terms of
* the GNU General Public License as published by the Free Software
* Foundation; either version 3, or (at your option) any later version.
*
* Zet is distrubuted in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
* License for more details.
*
* You should have received a copy of the GNU General Public License
* along with Zet; see the file COPYING. If not, see
* <http://www.gnu.org/licenses/>.
*/
module hex_display (
input [15:0] num,
input en,
output [6:0] hex0,
output [6:0] hex1,
output [6:0] hex2,
output [6:0] hex3
);
// Module instantiations
seg_7 hex_group0 (
.num (num[3:0]),
.en (en),
.seg (hex0)
);
seg_7 hex_group1 (
.num (num[7:4]),
.en (en),
.seg (hex1)
);
seg_7 hex_group2 (
.num (num[11:8]),
.en (en),
.seg (hex2)
);
seg_7 hex_group3 (
.num (num[15:12]),
.en (en),
.seg (hex3)
);
endmodule
|
/*
* Copyright (c) 2009 Zeus Gomez Marmolejo <[email protected]>
*
* This file is part of the Zet processor. This processor is free
* hardware; you can redistribute it and/or modify it under the terms of
* the GNU General Public License as published by the Free Software
* Foundation; either version 3, or (at your option) any later version.
*
* Zet is distrubuted in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
* License for more details.
*
* You should have received a copy of the GNU General Public License
* along with Zet; see the file COPYING. If not, see
* <http://www.gnu.org/licenses/>.
*/
module hex_display (
input [15:0] num,
input en,
output [6:0] hex0,
output [6:0] hex1,
output [6:0] hex2,
output [6:0] hex3
);
// Module instantiations
seg_7 hex_group0 (
.num (num[3:0]),
.en (en),
.seg (hex0)
);
seg_7 hex_group1 (
.num (num[7:4]),
.en (en),
.seg (hex1)
);
seg_7 hex_group2 (
.num (num[11:8]),
.en (en),
.seg (hex2)
);
seg_7 hex_group3 (
.num (num[15:12]),
.en (en),
.seg (hex3)
);
endmodule
|
/*
* Copyright (c) 2009 Zeus Gomez Marmolejo <[email protected]>
*
* This file is part of the Zet processor. This processor is free
* hardware; you can redistribute it and/or modify it under the terms of
* the GNU General Public License as published by the Free Software
* Foundation; either version 3, or (at your option) any later version.
*
* Zet is distrubuted in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
* License for more details.
*
* You should have received a copy of the GNU General Public License
* along with Zet; see the file COPYING. If not, see
* <http://www.gnu.org/licenses/>.
*/
module hex_display (
input [15:0] num,
input en,
output [6:0] hex0,
output [6:0] hex1,
output [6:0] hex2,
output [6:0] hex3
);
// Module instantiations
seg_7 hex_group0 (
.num (num[3:0]),
.en (en),
.seg (hex0)
);
seg_7 hex_group1 (
.num (num[7:4]),
.en (en),
.seg (hex1)
);
seg_7 hex_group2 (
.num (num[11:8]),
.en (en),
.seg (hex2)
);
seg_7 hex_group3 (
.num (num[15:12]),
.en (en),
.seg (hex3)
);
endmodule
|
/*
* Copyright (c) 2009 Zeus Gomez Marmolejo <[email protected]>
*
* This file is part of the Zet processor. This processor is free
* hardware; you can redistribute it and/or modify it under the terms of
* the GNU General Public License as published by the Free Software
* Foundation; either version 3, or (at your option) any later version.
*
* Zet is distrubuted in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
* License for more details.
*
* You should have received a copy of the GNU General Public License
* along with Zet; see the file COPYING. If not, see
* <http://www.gnu.org/licenses/>.
*/
module hex_display (
input [15:0] num,
input en,
output [6:0] hex0,
output [6:0] hex1,
output [6:0] hex2,
output [6:0] hex3
);
// Module instantiations
seg_7 hex_group0 (
.num (num[3:0]),
.en (en),
.seg (hex0)
);
seg_7 hex_group1 (
.num (num[7:4]),
.en (en),
.seg (hex1)
);
seg_7 hex_group2 (
.num (num[11:8]),
.en (en),
.seg (hex2)
);
seg_7 hex_group3 (
.num (num[15:12]),
.en (en),
.seg (hex3)
);
endmodule
|
// (c) Copyright 2012-2013 Xilinx, Inc. All rights reserved.
//
// This file contains confidential and proprietary information
// of Xilinx, Inc. and is protected under U.S. and
// international copyright and other intellectual property
// laws.
//
// DISCLAIMER
// This disclaimer is not a license and does not grant any
// rights to the materials distributed herewith. Except as
// otherwise provided in a valid license issued to you by
// Xilinx, and to the maximum extent permitted by applicable
// law: (1) THESE MATERIALS ARE MADE AVAILABLE "AS IS" AND
// WITH ALL FAULTS, AND XILINX HEREBY DISCLAIMS ALL WARRANTIES
// AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING
// BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, NON-
// INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and
// (2) Xilinx shall not be liable (whether in contract or tort,
// including negligence, or under any other theory of
// liability) for any loss or damage of any kind or nature
// related to, arising under or in connection with these
// materials, including for any direct, or any indirect,
// special, incidental, or consequential loss or damage
// (including loss of data, profits, goodwill, or any type of
// loss or damage suffered as a result of any action brought
// by a third party) even if such damage or loss was
// reasonably foreseeable or Xilinx had been advised of the
// possibility of the same.
//
// CRITICAL APPLICATIONS
// Xilinx products are not designed or intended to be fail-
// safe, or for use in any application requiring fail-safe
// performance, such as life-support or safety devices or
// systems, Class III medical devices, nuclear facilities,
// applications related to the deployment of airbags, or any
// other applications that could lead to death, personal
// injury, or severe property or environmental damage
// (individually and collectively, "Critical
// Applications"). Customer assumes the sole risk and
// liability of any use of Xilinx products in Critical
// Applications, subject only to applicable laws and
// regulations governing limitations on product liability.
//
// THIS COPYRIGHT NOTICE AND DISCLAIMER MUST BE RETAINED AS
// PART OF THIS FILE AT ALL TIMES.
//-----------------------------------------------------------------------------
// Description: SRL based FIFO for AXIS/AXI Channels.
//--------------------------------------------------------------------------
`timescale 1ps/1ps
`default_nettype none
(* DowngradeIPIdentifiedWarnings="yes" *)
module axi_infrastructure_v1_1_axic_srl_fifo #(
///////////////////////////////////////////////////////////////////////////////
// Parameter Definitions
///////////////////////////////////////////////////////////////////////////////
parameter C_FAMILY = "virtex7",
parameter integer C_PAYLOAD_WIDTH = 1,
parameter integer C_FIFO_DEPTH = 16 // Range: 4-16.
)
(
///////////////////////////////////////////////////////////////////////////////
// Port Declarations
///////////////////////////////////////////////////////////////////////////////
input wire aclk, // Clock
input wire aresetn, // Reset
input wire [C_PAYLOAD_WIDTH-1:0] s_payload, // Input data
input wire s_valid, // Input data valid
output reg s_ready, // Input data ready
output wire [C_PAYLOAD_WIDTH-1:0] m_payload, // Output data
output reg m_valid, // Output data valid
input wire m_ready // Output data ready
);
////////////////////////////////////////////////////////////////////////////////
// Functions
////////////////////////////////////////////////////////////////////////////////
// ceiling logb2
function integer f_clogb2 (input integer size);
integer s;
begin
s = size;
s = s - 1;
for (f_clogb2=1; s>1; f_clogb2=f_clogb2+1)
s = s >> 1;
end
endfunction // clogb2
////////////////////////////////////////////////////////////////////////////////
// Local parameters
////////////////////////////////////////////////////////////////////////////////
localparam integer LP_LOG_FIFO_DEPTH = f_clogb2(C_FIFO_DEPTH);
////////////////////////////////////////////////////////////////////////////////
// Wires/Reg declarations
////////////////////////////////////////////////////////////////////////////////
reg [LP_LOG_FIFO_DEPTH-1:0] fifo_index;
wire [4-1:0] fifo_addr;
wire push;
wire pop ;
reg areset_r1;
////////////////////////////////////////////////////////////////////////////////
// BEGIN RTL
////////////////////////////////////////////////////////////////////////////////
always @(posedge aclk) begin
areset_r1 <= ~aresetn;
end
always @(posedge aclk) begin
if (~aresetn) begin
fifo_index <= {LP_LOG_FIFO_DEPTH{1'b1}};
end
else begin
fifo_index <= push & ~pop ? fifo_index + 1'b1 :
~push & pop ? fifo_index - 1'b1 :
fifo_index;
end
end
assign push = s_valid & s_ready;
always @(posedge aclk) begin
if (~aresetn) begin
s_ready <= 1'b0;
end
else begin
s_ready <= areset_r1 ? 1'b1 :
push & ~pop && (fifo_index == (C_FIFO_DEPTH - 2'd2)) ? 1'b0 :
~push & pop ? 1'b1 :
s_ready;
end
end
assign pop = m_valid & m_ready;
always @(posedge aclk) begin
if (~aresetn) begin
m_valid <= 1'b0;
end
else begin
m_valid <= ~push & pop && (fifo_index == {LP_LOG_FIFO_DEPTH{1'b0}}) ? 1'b0 :
push & ~pop ? 1'b1 :
m_valid;
end
end
generate
if (LP_LOG_FIFO_DEPTH < 4) begin : gen_pad_fifo_addr
assign fifo_addr[0+:LP_LOG_FIFO_DEPTH] = fifo_index[LP_LOG_FIFO_DEPTH-1:0];
assign fifo_addr[LP_LOG_FIFO_DEPTH+:(4-LP_LOG_FIFO_DEPTH)] = {4-LP_LOG_FIFO_DEPTH{1'b0}};
end
else begin : gen_fifo_addr
assign fifo_addr[LP_LOG_FIFO_DEPTH-1:0] = fifo_index[LP_LOG_FIFO_DEPTH-1:0];
end
endgenerate
generate
genvar i;
for (i = 0; i < C_PAYLOAD_WIDTH; i = i + 1) begin : gen_data_bit
SRL16E
u_srl_fifo(
.Q ( m_payload[i] ) ,
.A0 ( fifo_addr[0] ) ,
.A1 ( fifo_addr[1] ) ,
.A2 ( fifo_addr[2] ) ,
.A3 ( fifo_addr[3] ) ,
.CE ( push ) ,
.CLK ( aclk ) ,
.D ( s_payload[i] )
);
end
endgenerate
endmodule
`default_nettype wire
|
// (c) Copyright 2012-2013 Xilinx, Inc. All rights reserved.
//
// This file contains confidential and proprietary information
// of Xilinx, Inc. and is protected under U.S. and
// international copyright and other intellectual property
// laws.
//
// DISCLAIMER
// This disclaimer is not a license and does not grant any
// rights to the materials distributed herewith. Except as
// otherwise provided in a valid license issued to you by
// Xilinx, and to the maximum extent permitted by applicable
// law: (1) THESE MATERIALS ARE MADE AVAILABLE "AS IS" AND
// WITH ALL FAULTS, AND XILINX HEREBY DISCLAIMS ALL WARRANTIES
// AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING
// BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, NON-
// INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and
// (2) Xilinx shall not be liable (whether in contract or tort,
// including negligence, or under any other theory of
// liability) for any loss or damage of any kind or nature
// related to, arising under or in connection with these
// materials, including for any direct, or any indirect,
// special, incidental, or consequential loss or damage
// (including loss of data, profits, goodwill, or any type of
// loss or damage suffered as a result of any action brought
// by a third party) even if such damage or loss was
// reasonably foreseeable or Xilinx had been advised of the
// possibility of the same.
//
// CRITICAL APPLICATIONS
// Xilinx products are not designed or intended to be fail-
// safe, or for use in any application requiring fail-safe
// performance, such as life-support or safety devices or
// systems, Class III medical devices, nuclear facilities,
// applications related to the deployment of airbags, or any
// other applications that could lead to death, personal
// injury, or severe property or environmental damage
// (individually and collectively, "Critical
// Applications"). Customer assumes the sole risk and
// liability of any use of Xilinx products in Critical
// Applications, subject only to applicable laws and
// regulations governing limitations on product liability.
//
// THIS COPYRIGHT NOTICE AND DISCLAIMER MUST BE RETAINED AS
// PART OF THIS FILE AT ALL TIMES.
//-----------------------------------------------------------------------------
// Description: SRL based FIFO for AXIS/AXI Channels.
//--------------------------------------------------------------------------
`timescale 1ps/1ps
`default_nettype none
(* DowngradeIPIdentifiedWarnings="yes" *)
module axi_infrastructure_v1_1_axic_srl_fifo #(
///////////////////////////////////////////////////////////////////////////////
// Parameter Definitions
///////////////////////////////////////////////////////////////////////////////
parameter C_FAMILY = "virtex7",
parameter integer C_PAYLOAD_WIDTH = 1,
parameter integer C_FIFO_DEPTH = 16 // Range: 4-16.
)
(
///////////////////////////////////////////////////////////////////////////////
// Port Declarations
///////////////////////////////////////////////////////////////////////////////
input wire aclk, // Clock
input wire aresetn, // Reset
input wire [C_PAYLOAD_WIDTH-1:0] s_payload, // Input data
input wire s_valid, // Input data valid
output reg s_ready, // Input data ready
output wire [C_PAYLOAD_WIDTH-1:0] m_payload, // Output data
output reg m_valid, // Output data valid
input wire m_ready // Output data ready
);
////////////////////////////////////////////////////////////////////////////////
// Functions
////////////////////////////////////////////////////////////////////////////////
// ceiling logb2
function integer f_clogb2 (input integer size);
integer s;
begin
s = size;
s = s - 1;
for (f_clogb2=1; s>1; f_clogb2=f_clogb2+1)
s = s >> 1;
end
endfunction // clogb2
////////////////////////////////////////////////////////////////////////////////
// Local parameters
////////////////////////////////////////////////////////////////////////////////
localparam integer LP_LOG_FIFO_DEPTH = f_clogb2(C_FIFO_DEPTH);
////////////////////////////////////////////////////////////////////////////////
// Wires/Reg declarations
////////////////////////////////////////////////////////////////////////////////
reg [LP_LOG_FIFO_DEPTH-1:0] fifo_index;
wire [4-1:0] fifo_addr;
wire push;
wire pop ;
reg areset_r1;
////////////////////////////////////////////////////////////////////////////////
// BEGIN RTL
////////////////////////////////////////////////////////////////////////////////
always @(posedge aclk) begin
areset_r1 <= ~aresetn;
end
always @(posedge aclk) begin
if (~aresetn) begin
fifo_index <= {LP_LOG_FIFO_DEPTH{1'b1}};
end
else begin
fifo_index <= push & ~pop ? fifo_index + 1'b1 :
~push & pop ? fifo_index - 1'b1 :
fifo_index;
end
end
assign push = s_valid & s_ready;
always @(posedge aclk) begin
if (~aresetn) begin
s_ready <= 1'b0;
end
else begin
s_ready <= areset_r1 ? 1'b1 :
push & ~pop && (fifo_index == (C_FIFO_DEPTH - 2'd2)) ? 1'b0 :
~push & pop ? 1'b1 :
s_ready;
end
end
assign pop = m_valid & m_ready;
always @(posedge aclk) begin
if (~aresetn) begin
m_valid <= 1'b0;
end
else begin
m_valid <= ~push & pop && (fifo_index == {LP_LOG_FIFO_DEPTH{1'b0}}) ? 1'b0 :
push & ~pop ? 1'b1 :
m_valid;
end
end
generate
if (LP_LOG_FIFO_DEPTH < 4) begin : gen_pad_fifo_addr
assign fifo_addr[0+:LP_LOG_FIFO_DEPTH] = fifo_index[LP_LOG_FIFO_DEPTH-1:0];
assign fifo_addr[LP_LOG_FIFO_DEPTH+:(4-LP_LOG_FIFO_DEPTH)] = {4-LP_LOG_FIFO_DEPTH{1'b0}};
end
else begin : gen_fifo_addr
assign fifo_addr[LP_LOG_FIFO_DEPTH-1:0] = fifo_index[LP_LOG_FIFO_DEPTH-1:0];
end
endgenerate
generate
genvar i;
for (i = 0; i < C_PAYLOAD_WIDTH; i = i + 1) begin : gen_data_bit
SRL16E
u_srl_fifo(
.Q ( m_payload[i] ) ,
.A0 ( fifo_addr[0] ) ,
.A1 ( fifo_addr[1] ) ,
.A2 ( fifo_addr[2] ) ,
.A3 ( fifo_addr[3] ) ,
.CE ( push ) ,
.CLK ( aclk ) ,
.D ( s_payload[i] )
);
end
endgenerate
endmodule
`default_nettype wire
|
// (c) Copyright 2012-2013 Xilinx, Inc. All rights reserved.
//
// This file contains confidential and proprietary information
// of Xilinx, Inc. and is protected under U.S. and
// international copyright and other intellectual property
// laws.
//
// DISCLAIMER
// This disclaimer is not a license and does not grant any
// rights to the materials distributed herewith. Except as
// otherwise provided in a valid license issued to you by
// Xilinx, and to the maximum extent permitted by applicable
// law: (1) THESE MATERIALS ARE MADE AVAILABLE "AS IS" AND
// WITH ALL FAULTS, AND XILINX HEREBY DISCLAIMS ALL WARRANTIES
// AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING
// BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, NON-
// INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and
// (2) Xilinx shall not be liable (whether in contract or tort,
// including negligence, or under any other theory of
// liability) for any loss or damage of any kind or nature
// related to, arising under or in connection with these
// materials, including for any direct, or any indirect,
// special, incidental, or consequential loss or damage
// (including loss of data, profits, goodwill, or any type of
// loss or damage suffered as a result of any action brought
// by a third party) even if such damage or loss was
// reasonably foreseeable or Xilinx had been advised of the
// possibility of the same.
//
// CRITICAL APPLICATIONS
// Xilinx products are not designed or intended to be fail-
// safe, or for use in any application requiring fail-safe
// performance, such as life-support or safety devices or
// systems, Class III medical devices, nuclear facilities,
// applications related to the deployment of airbags, or any
// other applications that could lead to death, personal
// injury, or severe property or environmental damage
// (individually and collectively, "Critical
// Applications"). Customer assumes the sole risk and
// liability of any use of Xilinx products in Critical
// Applications, subject only to applicable laws and
// regulations governing limitations on product liability.
//
// THIS COPYRIGHT NOTICE AND DISCLAIMER MUST BE RETAINED AS
// PART OF THIS FILE AT ALL TIMES.
//-----------------------------------------------------------------------------
// Description: SRL based FIFO for AXIS/AXI Channels.
//--------------------------------------------------------------------------
`timescale 1ps/1ps
`default_nettype none
(* DowngradeIPIdentifiedWarnings="yes" *)
module axi_infrastructure_v1_1_axic_srl_fifo #(
///////////////////////////////////////////////////////////////////////////////
// Parameter Definitions
///////////////////////////////////////////////////////////////////////////////
parameter C_FAMILY = "virtex7",
parameter integer C_PAYLOAD_WIDTH = 1,
parameter integer C_FIFO_DEPTH = 16 // Range: 4-16.
)
(
///////////////////////////////////////////////////////////////////////////////
// Port Declarations
///////////////////////////////////////////////////////////////////////////////
input wire aclk, // Clock
input wire aresetn, // Reset
input wire [C_PAYLOAD_WIDTH-1:0] s_payload, // Input data
input wire s_valid, // Input data valid
output reg s_ready, // Input data ready
output wire [C_PAYLOAD_WIDTH-1:0] m_payload, // Output data
output reg m_valid, // Output data valid
input wire m_ready // Output data ready
);
////////////////////////////////////////////////////////////////////////////////
// Functions
////////////////////////////////////////////////////////////////////////////////
// ceiling logb2
function integer f_clogb2 (input integer size);
integer s;
begin
s = size;
s = s - 1;
for (f_clogb2=1; s>1; f_clogb2=f_clogb2+1)
s = s >> 1;
end
endfunction // clogb2
////////////////////////////////////////////////////////////////////////////////
// Local parameters
////////////////////////////////////////////////////////////////////////////////
localparam integer LP_LOG_FIFO_DEPTH = f_clogb2(C_FIFO_DEPTH);
////////////////////////////////////////////////////////////////////////////////
// Wires/Reg declarations
////////////////////////////////////////////////////////////////////////////////
reg [LP_LOG_FIFO_DEPTH-1:0] fifo_index;
wire [4-1:0] fifo_addr;
wire push;
wire pop ;
reg areset_r1;
////////////////////////////////////////////////////////////////////////////////
// BEGIN RTL
////////////////////////////////////////////////////////////////////////////////
always @(posedge aclk) begin
areset_r1 <= ~aresetn;
end
always @(posedge aclk) begin
if (~aresetn) begin
fifo_index <= {LP_LOG_FIFO_DEPTH{1'b1}};
end
else begin
fifo_index <= push & ~pop ? fifo_index + 1'b1 :
~push & pop ? fifo_index - 1'b1 :
fifo_index;
end
end
assign push = s_valid & s_ready;
always @(posedge aclk) begin
if (~aresetn) begin
s_ready <= 1'b0;
end
else begin
s_ready <= areset_r1 ? 1'b1 :
push & ~pop && (fifo_index == (C_FIFO_DEPTH - 2'd2)) ? 1'b0 :
~push & pop ? 1'b1 :
s_ready;
end
end
assign pop = m_valid & m_ready;
always @(posedge aclk) begin
if (~aresetn) begin
m_valid <= 1'b0;
end
else begin
m_valid <= ~push & pop && (fifo_index == {LP_LOG_FIFO_DEPTH{1'b0}}) ? 1'b0 :
push & ~pop ? 1'b1 :
m_valid;
end
end
generate
if (LP_LOG_FIFO_DEPTH < 4) begin : gen_pad_fifo_addr
assign fifo_addr[0+:LP_LOG_FIFO_DEPTH] = fifo_index[LP_LOG_FIFO_DEPTH-1:0];
assign fifo_addr[LP_LOG_FIFO_DEPTH+:(4-LP_LOG_FIFO_DEPTH)] = {4-LP_LOG_FIFO_DEPTH{1'b0}};
end
else begin : gen_fifo_addr
assign fifo_addr[LP_LOG_FIFO_DEPTH-1:0] = fifo_index[LP_LOG_FIFO_DEPTH-1:0];
end
endgenerate
generate
genvar i;
for (i = 0; i < C_PAYLOAD_WIDTH; i = i + 1) begin : gen_data_bit
SRL16E
u_srl_fifo(
.Q ( m_payload[i] ) ,
.A0 ( fifo_addr[0] ) ,
.A1 ( fifo_addr[1] ) ,
.A2 ( fifo_addr[2] ) ,
.A3 ( fifo_addr[3] ) ,
.CE ( push ) ,
.CLK ( aclk ) ,
.D ( s_payload[i] )
);
end
endgenerate
endmodule
`default_nettype wire
|
// (c) Copyright 2012-2013 Xilinx, Inc. All rights reserved.
//
// This file contains confidential and proprietary information
// of Xilinx, Inc. and is protected under U.S. and
// international copyright and other intellectual property
// laws.
//
// DISCLAIMER
// This disclaimer is not a license and does not grant any
// rights to the materials distributed herewith. Except as
// otherwise provided in a valid license issued to you by
// Xilinx, and to the maximum extent permitted by applicable
// law: (1) THESE MATERIALS ARE MADE AVAILABLE "AS IS" AND
// WITH ALL FAULTS, AND XILINX HEREBY DISCLAIMS ALL WARRANTIES
// AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING
// BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, NON-
// INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and
// (2) Xilinx shall not be liable (whether in contract or tort,
// including negligence, or under any other theory of
// liability) for any loss or damage of any kind or nature
// related to, arising under or in connection with these
// materials, including for any direct, or any indirect,
// special, incidental, or consequential loss or damage
// (including loss of data, profits, goodwill, or any type of
// loss or damage suffered as a result of any action brought
// by a third party) even if such damage or loss was
// reasonably foreseeable or Xilinx had been advised of the
// possibility of the same.
//
// CRITICAL APPLICATIONS
// Xilinx products are not designed or intended to be fail-
// safe, or for use in any application requiring fail-safe
// performance, such as life-support or safety devices or
// systems, Class III medical devices, nuclear facilities,
// applications related to the deployment of airbags, or any
// other applications that could lead to death, personal
// injury, or severe property or environmental damage
// (individually and collectively, "Critical
// Applications"). Customer assumes the sole risk and
// liability of any use of Xilinx products in Critical
// Applications, subject only to applicable laws and
// regulations governing limitations on product liability.
//
// THIS COPYRIGHT NOTICE AND DISCLAIMER MUST BE RETAINED AS
// PART OF THIS FILE AT ALL TIMES.
//-----------------------------------------------------------------------------
// Description: SRL based FIFO for AXIS/AXI Channels.
//--------------------------------------------------------------------------
`timescale 1ps/1ps
`default_nettype none
(* DowngradeIPIdentifiedWarnings="yes" *)
module axi_infrastructure_v1_1_axic_srl_fifo #(
///////////////////////////////////////////////////////////////////////////////
// Parameter Definitions
///////////////////////////////////////////////////////////////////////////////
parameter C_FAMILY = "virtex7",
parameter integer C_PAYLOAD_WIDTH = 1,
parameter integer C_FIFO_DEPTH = 16 // Range: 4-16.
)
(
///////////////////////////////////////////////////////////////////////////////
// Port Declarations
///////////////////////////////////////////////////////////////////////////////
input wire aclk, // Clock
input wire aresetn, // Reset
input wire [C_PAYLOAD_WIDTH-1:0] s_payload, // Input data
input wire s_valid, // Input data valid
output reg s_ready, // Input data ready
output wire [C_PAYLOAD_WIDTH-1:0] m_payload, // Output data
output reg m_valid, // Output data valid
input wire m_ready // Output data ready
);
////////////////////////////////////////////////////////////////////////////////
// Functions
////////////////////////////////////////////////////////////////////////////////
// ceiling logb2
function integer f_clogb2 (input integer size);
integer s;
begin
s = size;
s = s - 1;
for (f_clogb2=1; s>1; f_clogb2=f_clogb2+1)
s = s >> 1;
end
endfunction // clogb2
////////////////////////////////////////////////////////////////////////////////
// Local parameters
////////////////////////////////////////////////////////////////////////////////
localparam integer LP_LOG_FIFO_DEPTH = f_clogb2(C_FIFO_DEPTH);
////////////////////////////////////////////////////////////////////////////////
// Wires/Reg declarations
////////////////////////////////////////////////////////////////////////////////
reg [LP_LOG_FIFO_DEPTH-1:0] fifo_index;
wire [4-1:0] fifo_addr;
wire push;
wire pop ;
reg areset_r1;
////////////////////////////////////////////////////////////////////////////////
// BEGIN RTL
////////////////////////////////////////////////////////////////////////////////
always @(posedge aclk) begin
areset_r1 <= ~aresetn;
end
always @(posedge aclk) begin
if (~aresetn) begin
fifo_index <= {LP_LOG_FIFO_DEPTH{1'b1}};
end
else begin
fifo_index <= push & ~pop ? fifo_index + 1'b1 :
~push & pop ? fifo_index - 1'b1 :
fifo_index;
end
end
assign push = s_valid & s_ready;
always @(posedge aclk) begin
if (~aresetn) begin
s_ready <= 1'b0;
end
else begin
s_ready <= areset_r1 ? 1'b1 :
push & ~pop && (fifo_index == (C_FIFO_DEPTH - 2'd2)) ? 1'b0 :
~push & pop ? 1'b1 :
s_ready;
end
end
assign pop = m_valid & m_ready;
always @(posedge aclk) begin
if (~aresetn) begin
m_valid <= 1'b0;
end
else begin
m_valid <= ~push & pop && (fifo_index == {LP_LOG_FIFO_DEPTH{1'b0}}) ? 1'b0 :
push & ~pop ? 1'b1 :
m_valid;
end
end
generate
if (LP_LOG_FIFO_DEPTH < 4) begin : gen_pad_fifo_addr
assign fifo_addr[0+:LP_LOG_FIFO_DEPTH] = fifo_index[LP_LOG_FIFO_DEPTH-1:0];
assign fifo_addr[LP_LOG_FIFO_DEPTH+:(4-LP_LOG_FIFO_DEPTH)] = {4-LP_LOG_FIFO_DEPTH{1'b0}};
end
else begin : gen_fifo_addr
assign fifo_addr[LP_LOG_FIFO_DEPTH-1:0] = fifo_index[LP_LOG_FIFO_DEPTH-1:0];
end
endgenerate
generate
genvar i;
for (i = 0; i < C_PAYLOAD_WIDTH; i = i + 1) begin : gen_data_bit
SRL16E
u_srl_fifo(
.Q ( m_payload[i] ) ,
.A0 ( fifo_addr[0] ) ,
.A1 ( fifo_addr[1] ) ,
.A2 ( fifo_addr[2] ) ,
.A3 ( fifo_addr[3] ) ,
.CE ( push ) ,
.CLK ( aclk ) ,
.D ( s_payload[i] )
);
end
endgenerate
endmodule
`default_nettype wire
|
// (c) Copyright 2012-2013 Xilinx, Inc. All rights reserved.
//
// This file contains confidential and proprietary information
// of Xilinx, Inc. and is protected under U.S. and
// international copyright and other intellectual property
// laws.
//
// DISCLAIMER
// This disclaimer is not a license and does not grant any
// rights to the materials distributed herewith. Except as
// otherwise provided in a valid license issued to you by
// Xilinx, and to the maximum extent permitted by applicable
// law: (1) THESE MATERIALS ARE MADE AVAILABLE "AS IS" AND
// WITH ALL FAULTS, AND XILINX HEREBY DISCLAIMS ALL WARRANTIES
// AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING
// BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, NON-
// INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and
// (2) Xilinx shall not be liable (whether in contract or tort,
// including negligence, or under any other theory of
// liability) for any loss or damage of any kind or nature
// related to, arising under or in connection with these
// materials, including for any direct, or any indirect,
// special, incidental, or consequential loss or damage
// (including loss of data, profits, goodwill, or any type of
// loss or damage suffered as a result of any action brought
// by a third party) even if such damage or loss was
// reasonably foreseeable or Xilinx had been advised of the
// possibility of the same.
//
// CRITICAL APPLICATIONS
// Xilinx products are not designed or intended to be fail-
// safe, or for use in any application requiring fail-safe
// performance, such as life-support or safety devices or
// systems, Class III medical devices, nuclear facilities,
// applications related to the deployment of airbags, or any
// other applications that could lead to death, personal
// injury, or severe property or environmental damage
// (individually and collectively, "Critical
// Applications"). Customer assumes the sole risk and
// liability of any use of Xilinx products in Critical
// Applications, subject only to applicable laws and
// regulations governing limitations on product liability.
//
// THIS COPYRIGHT NOTICE AND DISCLAIMER MUST BE RETAINED AS
// PART OF THIS FILE AT ALL TIMES.
//-----------------------------------------------------------------------------
// Description: SRL based FIFO for AXIS/AXI Channels.
//--------------------------------------------------------------------------
`timescale 1ps/1ps
`default_nettype none
(* DowngradeIPIdentifiedWarnings="yes" *)
module axi_infrastructure_v1_1_axic_srl_fifo #(
///////////////////////////////////////////////////////////////////////////////
// Parameter Definitions
///////////////////////////////////////////////////////////////////////////////
parameter C_FAMILY = "virtex7",
parameter integer C_PAYLOAD_WIDTH = 1,
parameter integer C_FIFO_DEPTH = 16 // Range: 4-16.
)
(
///////////////////////////////////////////////////////////////////////////////
// Port Declarations
///////////////////////////////////////////////////////////////////////////////
input wire aclk, // Clock
input wire aresetn, // Reset
input wire [C_PAYLOAD_WIDTH-1:0] s_payload, // Input data
input wire s_valid, // Input data valid
output reg s_ready, // Input data ready
output wire [C_PAYLOAD_WIDTH-1:0] m_payload, // Output data
output reg m_valid, // Output data valid
input wire m_ready // Output data ready
);
////////////////////////////////////////////////////////////////////////////////
// Functions
////////////////////////////////////////////////////////////////////////////////
// ceiling logb2
function integer f_clogb2 (input integer size);
integer s;
begin
s = size;
s = s - 1;
for (f_clogb2=1; s>1; f_clogb2=f_clogb2+1)
s = s >> 1;
end
endfunction // clogb2
////////////////////////////////////////////////////////////////////////////////
// Local parameters
////////////////////////////////////////////////////////////////////////////////
localparam integer LP_LOG_FIFO_DEPTH = f_clogb2(C_FIFO_DEPTH);
////////////////////////////////////////////////////////////////////////////////
// Wires/Reg declarations
////////////////////////////////////////////////////////////////////////////////
reg [LP_LOG_FIFO_DEPTH-1:0] fifo_index;
wire [4-1:0] fifo_addr;
wire push;
wire pop ;
reg areset_r1;
////////////////////////////////////////////////////////////////////////////////
// BEGIN RTL
////////////////////////////////////////////////////////////////////////////////
always @(posedge aclk) begin
areset_r1 <= ~aresetn;
end
always @(posedge aclk) begin
if (~aresetn) begin
fifo_index <= {LP_LOG_FIFO_DEPTH{1'b1}};
end
else begin
fifo_index <= push & ~pop ? fifo_index + 1'b1 :
~push & pop ? fifo_index - 1'b1 :
fifo_index;
end
end
assign push = s_valid & s_ready;
always @(posedge aclk) begin
if (~aresetn) begin
s_ready <= 1'b0;
end
else begin
s_ready <= areset_r1 ? 1'b1 :
push & ~pop && (fifo_index == (C_FIFO_DEPTH - 2'd2)) ? 1'b0 :
~push & pop ? 1'b1 :
s_ready;
end
end
assign pop = m_valid & m_ready;
always @(posedge aclk) begin
if (~aresetn) begin
m_valid <= 1'b0;
end
else begin
m_valid <= ~push & pop && (fifo_index == {LP_LOG_FIFO_DEPTH{1'b0}}) ? 1'b0 :
push & ~pop ? 1'b1 :
m_valid;
end
end
generate
if (LP_LOG_FIFO_DEPTH < 4) begin : gen_pad_fifo_addr
assign fifo_addr[0+:LP_LOG_FIFO_DEPTH] = fifo_index[LP_LOG_FIFO_DEPTH-1:0];
assign fifo_addr[LP_LOG_FIFO_DEPTH+:(4-LP_LOG_FIFO_DEPTH)] = {4-LP_LOG_FIFO_DEPTH{1'b0}};
end
else begin : gen_fifo_addr
assign fifo_addr[LP_LOG_FIFO_DEPTH-1:0] = fifo_index[LP_LOG_FIFO_DEPTH-1:0];
end
endgenerate
generate
genvar i;
for (i = 0; i < C_PAYLOAD_WIDTH; i = i + 1) begin : gen_data_bit
SRL16E
u_srl_fifo(
.Q ( m_payload[i] ) ,
.A0 ( fifo_addr[0] ) ,
.A1 ( fifo_addr[1] ) ,
.A2 ( fifo_addr[2] ) ,
.A3 ( fifo_addr[3] ) ,
.CE ( push ) ,
.CLK ( aclk ) ,
.D ( s_payload[i] )
);
end
endgenerate
endmodule
`default_nettype wire
|
`include "hi_read_tx.v"
/*
pck0 - input main 24Mhz clock (PLL / 4)
[7:0] adc_d - input data from A/D converter
shallow_modulation - modulation type
pwr_lo - output to coil drivers (ssp_clk / 8)
adc_clk - output A/D clock signal
ssp_frame - output SSS frame indicator (goes high while the 8 bits are shifted)
ssp_din - output SSP data to ARM (shifts 8 bit A/D value serially to ARM MSB first)
ssp_clk - output SSP clock signal
ck_1356meg - input unused
ck_1356megb - input unused
ssp_dout - input unused
cross_hi - input unused
cross_lo - input unused
pwr_hi - output unused, tied low
pwr_oe1 - output unused, undefined
pwr_oe2 - output unused, undefined
pwr_oe3 - output unused, undefined
pwr_oe4 - output unused, undefined
dbg - output alias for adc_clk
*/
module testbed_hi_read_tx;
reg pck0;
reg [7:0] adc_d;
reg shallow_modulation;
wire pwr_lo;
wire adc_clk;
reg ck_1356meg;
reg ck_1356megb;
wire ssp_frame;
wire ssp_din;
wire ssp_clk;
reg ssp_dout;
wire pwr_hi;
wire pwr_oe1;
wire pwr_oe2;
wire pwr_oe3;
wire pwr_oe4;
wire cross_lo;
wire cross_hi;
wire dbg;
hi_read_tx #(5,200) dut(
.pck0(pck0),
.ck_1356meg(ck_1356meg),
.ck_1356megb(ck_1356megb),
.pwr_lo(pwr_lo),
.pwr_hi(pwr_hi),
.pwr_oe1(pwr_oe1),
.pwr_oe2(pwr_oe2),
.pwr_oe3(pwr_oe3),
.pwr_oe4(pwr_oe4),
.adc_d(adc_d),
.adc_clk(adc_clk),
.ssp_frame(ssp_frame),
.ssp_din(ssp_din),
.ssp_dout(ssp_dout),
.ssp_clk(ssp_clk),
.cross_hi(cross_hi),
.cross_lo(cross_lo),
.dbg(dbg),
.shallow_modulation(shallow_modulation)
);
integer idx, i;
// main clock
always #5 begin
ck_1356megb = !ck_1356megb;
ck_1356meg = ck_1356megb;
end
//crank DUT
task crank_dut;
begin
@(posedge ssp_clk) ;
ssp_dout = $random;
end
endtask
initial begin
// init inputs
ck_1356megb = 0;
adc_d = 0;
ssp_dout=0;
// shallow modulation off
shallow_modulation=0;
for (i = 0 ; i < 16 ; i = i + 1) begin
crank_dut;
end
// shallow modulation on
shallow_modulation=1;
for (i = 0 ; i < 16 ; i = i + 1) begin
crank_dut;
end
$finish;
end
endmodule // main
|
`include "hi_read_tx.v"
/*
pck0 - input main 24Mhz clock (PLL / 4)
[7:0] adc_d - input data from A/D converter
shallow_modulation - modulation type
pwr_lo - output to coil drivers (ssp_clk / 8)
adc_clk - output A/D clock signal
ssp_frame - output SSS frame indicator (goes high while the 8 bits are shifted)
ssp_din - output SSP data to ARM (shifts 8 bit A/D value serially to ARM MSB first)
ssp_clk - output SSP clock signal
ck_1356meg - input unused
ck_1356megb - input unused
ssp_dout - input unused
cross_hi - input unused
cross_lo - input unused
pwr_hi - output unused, tied low
pwr_oe1 - output unused, undefined
pwr_oe2 - output unused, undefined
pwr_oe3 - output unused, undefined
pwr_oe4 - output unused, undefined
dbg - output alias for adc_clk
*/
module testbed_hi_read_tx;
reg pck0;
reg [7:0] adc_d;
reg shallow_modulation;
wire pwr_lo;
wire adc_clk;
reg ck_1356meg;
reg ck_1356megb;
wire ssp_frame;
wire ssp_din;
wire ssp_clk;
reg ssp_dout;
wire pwr_hi;
wire pwr_oe1;
wire pwr_oe2;
wire pwr_oe3;
wire pwr_oe4;
wire cross_lo;
wire cross_hi;
wire dbg;
hi_read_tx #(5,200) dut(
.pck0(pck0),
.ck_1356meg(ck_1356meg),
.ck_1356megb(ck_1356megb),
.pwr_lo(pwr_lo),
.pwr_hi(pwr_hi),
.pwr_oe1(pwr_oe1),
.pwr_oe2(pwr_oe2),
.pwr_oe3(pwr_oe3),
.pwr_oe4(pwr_oe4),
.adc_d(adc_d),
.adc_clk(adc_clk),
.ssp_frame(ssp_frame),
.ssp_din(ssp_din),
.ssp_dout(ssp_dout),
.ssp_clk(ssp_clk),
.cross_hi(cross_hi),
.cross_lo(cross_lo),
.dbg(dbg),
.shallow_modulation(shallow_modulation)
);
integer idx, i;
// main clock
always #5 begin
ck_1356megb = !ck_1356megb;
ck_1356meg = ck_1356megb;
end
//crank DUT
task crank_dut;
begin
@(posedge ssp_clk) ;
ssp_dout = $random;
end
endtask
initial begin
// init inputs
ck_1356megb = 0;
adc_d = 0;
ssp_dout=0;
// shallow modulation off
shallow_modulation=0;
for (i = 0 ; i < 16 ; i = i + 1) begin
crank_dut;
end
// shallow modulation on
shallow_modulation=1;
for (i = 0 ; i < 16 ; i = i + 1) begin
crank_dut;
end
$finish;
end
endmodule // main
|
`include "hi_read_tx.v"
/*
pck0 - input main 24Mhz clock (PLL / 4)
[7:0] adc_d - input data from A/D converter
shallow_modulation - modulation type
pwr_lo - output to coil drivers (ssp_clk / 8)
adc_clk - output A/D clock signal
ssp_frame - output SSS frame indicator (goes high while the 8 bits are shifted)
ssp_din - output SSP data to ARM (shifts 8 bit A/D value serially to ARM MSB first)
ssp_clk - output SSP clock signal
ck_1356meg - input unused
ck_1356megb - input unused
ssp_dout - input unused
cross_hi - input unused
cross_lo - input unused
pwr_hi - output unused, tied low
pwr_oe1 - output unused, undefined
pwr_oe2 - output unused, undefined
pwr_oe3 - output unused, undefined
pwr_oe4 - output unused, undefined
dbg - output alias for adc_clk
*/
module testbed_hi_read_tx;
reg pck0;
reg [7:0] adc_d;
reg shallow_modulation;
wire pwr_lo;
wire adc_clk;
reg ck_1356meg;
reg ck_1356megb;
wire ssp_frame;
wire ssp_din;
wire ssp_clk;
reg ssp_dout;
wire pwr_hi;
wire pwr_oe1;
wire pwr_oe2;
wire pwr_oe3;
wire pwr_oe4;
wire cross_lo;
wire cross_hi;
wire dbg;
hi_read_tx #(5,200) dut(
.pck0(pck0),
.ck_1356meg(ck_1356meg),
.ck_1356megb(ck_1356megb),
.pwr_lo(pwr_lo),
.pwr_hi(pwr_hi),
.pwr_oe1(pwr_oe1),
.pwr_oe2(pwr_oe2),
.pwr_oe3(pwr_oe3),
.pwr_oe4(pwr_oe4),
.adc_d(adc_d),
.adc_clk(adc_clk),
.ssp_frame(ssp_frame),
.ssp_din(ssp_din),
.ssp_dout(ssp_dout),
.ssp_clk(ssp_clk),
.cross_hi(cross_hi),
.cross_lo(cross_lo),
.dbg(dbg),
.shallow_modulation(shallow_modulation)
);
integer idx, i;
// main clock
always #5 begin
ck_1356megb = !ck_1356megb;
ck_1356meg = ck_1356megb;
end
//crank DUT
task crank_dut;
begin
@(posedge ssp_clk) ;
ssp_dout = $random;
end
endtask
initial begin
// init inputs
ck_1356megb = 0;
adc_d = 0;
ssp_dout=0;
// shallow modulation off
shallow_modulation=0;
for (i = 0 ; i < 16 ; i = i + 1) begin
crank_dut;
end
// shallow modulation on
shallow_modulation=1;
for (i = 0 ; i < 16 ; i = i + 1) begin
crank_dut;
end
$finish;
end
endmodule // main
|
`timescale 1ns / 1ps
//////////////////////////////////////////////////////////////////////////////////
// Company:
// Engineer:
//
// Create Date: 03/17/2016 05:20:59 PM
// Design Name:
// Module Name: Priority_Codec_64
// Project Name:
// Target Devices:
// Tool Versions:
// Description:
//
// Dependencies:
//
// Revision:
// Revision 0.01 - File Created
// Additional Comments:
//
//////////////////////////////////////////////////////////////////////////////////
module Priority_Codec_64(
input wire [54:0] Data_Dec_i,
output reg [5:0] Data_Bin_o
);
always @(Data_Dec_i)
begin
Data_Bin_o=6'b000000;
if(~Data_Dec_i[54]) begin Data_Bin_o = 6'b000000;//0
end else if(~Data_Dec_i[53]) begin Data_Bin_o = 6'b000001;//1
end else if(~Data_Dec_i[52]) begin Data_Bin_o = 6'b000010;//2
end else if(~Data_Dec_i[51]) begin Data_Bin_o = 6'b000011;//3
end else if(~Data_Dec_i[50]) begin Data_Bin_o = 6'b000100;//4
end else if(~Data_Dec_i[49]) begin Data_Bin_o = 6'b000101;//5
end else if(~Data_Dec_i[48]) begin Data_Bin_o = 6'b000110;//6
end else if(~Data_Dec_i[47]) begin Data_Bin_o = 6'b000111;//7
end else if(~Data_Dec_i[46]) begin Data_Bin_o = 6'b001000;//8
end else if(~Data_Dec_i[45]) begin Data_Bin_o = 6'b001001;//9
end else if(~Data_Dec_i[44]) begin Data_Bin_o = 6'b001010;//10
end else if(~Data_Dec_i[43]) begin Data_Bin_o = 6'b001011;//11
end else if(~Data_Dec_i[42]) begin Data_Bin_o = 6'b001100;//12
end else if(~Data_Dec_i[41]) begin Data_Bin_o = 6'b001101;//13
end else if(~Data_Dec_i[40]) begin Data_Bin_o = 6'b001110;//14
end else if(~Data_Dec_i[39]) begin Data_Bin_o = 6'b001111;//15
end else if(~Data_Dec_i[38]) begin Data_Bin_o = 6'b010000;//16
end else if(~Data_Dec_i[37]) begin Data_Bin_o = 6'b010001;//17
end else if(~Data_Dec_i[36]) begin Data_Bin_o = 6'b010010;//18
end else if(~Data_Dec_i[35]) begin Data_Bin_o = 6'b010011;//19
end else if(~Data_Dec_i[34]) begin Data_Bin_o = 6'b010100;//20
end else if(~Data_Dec_i[33]) begin Data_Bin_o = 6'b010101;//21
end else if(~Data_Dec_i[32]) begin Data_Bin_o = 6'b010110;//22
end else if(~Data_Dec_i[31]) begin Data_Bin_o = 6'b010111;//23
end else if(~Data_Dec_i[30]) begin Data_Bin_o = 6'b011000;//24
end else if(~Data_Dec_i[29]) begin Data_Bin_o = 6'b010101;//25
end else if(~Data_Dec_i[28]) begin Data_Bin_o = 6'b010110;//26
end else if(~Data_Dec_i[27]) begin Data_Bin_o = 6'b010111;//27
end else if(~Data_Dec_i[26]) begin Data_Bin_o = 6'b011000;//28
end else if(~Data_Dec_i[25]) begin Data_Bin_o = 6'b011001;//29
end else if(~Data_Dec_i[24]) begin Data_Bin_o = 6'b011010;//30
end else if(~Data_Dec_i[23]) begin Data_Bin_o = 6'b011011;//31
end else if(~Data_Dec_i[22]) begin Data_Bin_o = 6'b011100;//32
end else if(~Data_Dec_i[21]) begin Data_Bin_o = 6'b011101;//33
end else if(~Data_Dec_i[20]) begin Data_Bin_o = 6'b011110;//34
end else if(~Data_Dec_i[19]) begin Data_Bin_o = 6'b011111;//35
end else if(~Data_Dec_i[18]) begin Data_Bin_o = 6'b100000;//36
end else if(~Data_Dec_i[17]) begin Data_Bin_o = 6'b100001;//37
end else if(~Data_Dec_i[16]) begin Data_Bin_o = 6'b100010;//38
end else if(~Data_Dec_i[15]) begin Data_Bin_o = 6'b100011;//39
end else if(~Data_Dec_i[14]) begin Data_Bin_o = 6'b100100;//40
end else if(~Data_Dec_i[13]) begin Data_Bin_o = 6'b100101;//41
end else if(~Data_Dec_i[12]) begin Data_Bin_o = 6'b100110;//42
end else if(~Data_Dec_i[11]) begin Data_Bin_o = 6'b100111;//43
end else if(~Data_Dec_i[10]) begin Data_Bin_o = 6'b101000;//44
end else if(~Data_Dec_i[9]) begin Data_Bin_o = 6'b101001;//45
end else if(~Data_Dec_i[8]) begin Data_Bin_o = 6'b101010;//46
end else if(~Data_Dec_i[7]) begin Data_Bin_o = 6'b101011;//47
end else if(~Data_Dec_i[6]) begin Data_Bin_o = 6'b101100;//48
end else if(~Data_Dec_i[5]) begin Data_Bin_o = 6'b101101;//49
end else if(~Data_Dec_i[4]) begin Data_Bin_o = 6'b101110;//50
end else if(~Data_Dec_i[3]) begin Data_Bin_o = 6'b101111;//51
end else if(~Data_Dec_i[2]) begin Data_Bin_o = 6'b110000;//52
end else if(~Data_Dec_i[1]) begin Data_Bin_o = 6'b110001;//53
end else if(~Data_Dec_i[0]) begin Data_Bin_o = 6'b110010;//54
end else begin Data_Bin_o = 6'b000000;//zero value
end
end
endmodule |
/* -*- verilog -*-
*
* USRP - Universal Software Radio Peripheral
*
* Copyright (C) 2005 Matt Ettus
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Boston, MA 02110-1301 USA
*/
/*
* This implements a 31-tap halfband filter that decimates by two.
* The coefficients are symmetric, and with the exception of the middle tap,
* every other coefficient is zero. The middle section of taps looks like this:
*
* ..., -1468, 0, 2950, 0, -6158, 0, 20585, 32768, 20585, 0, -6158, 0, 2950, 0, -1468, ...
* |
* middle tap -------+
*
* See coeff_rom.v for the full set. The taps are scaled relative to 32768,
* thus the middle tap equals 1.0. Not counting the middle tap, there are 8
* non-zero taps on each side, and they are symmetric. A naive implementation
* requires a mulitply for each non-zero tap. Because of symmetry, we can
* replace 2 multiplies with 1 add and 1 multiply. Thus, to compute each output
* sample, we need to perform 8 multiplications. Since the middle tap is 1.0,
* we just add the corresponding delay line value.
*
* About timing: We implement this with a single multiplier, so it takes
* 8 cycles to compute a single output. However, since we're decimating by two
* we can accept a new input value every 4 cycles. strobe_in is asserted when
* there's a new input sample available. Depending on the overall decimation
* rate, strobe_in may be asserted less frequently than once every 4 clocks.
* On the output side, we assert strobe_out when output contains a new sample.
*
* Implementation: Every time strobe_in is asserted we store the new data into
* the delay line. We split the delay line into two components, one for the
* even samples, and one for the odd samples. ram16_odd is the delay line for
* the odd samples. This ram is written on each odd assertion of strobe_in, and
* is read on each clock when we're computing the dot product. ram16_even is
* similar, although because it holds the even samples we must be able to read
* two samples from different addresses at the same time, while writing the incoming
* even samples. Thus it's "triple-ported".
*/
module halfband_decim
(input clock, input reset, input enable, input strobe_in, output wire strobe_out,
input wire [15:0] data_in, output reg [15:0] data_out,output wire [15:0] debugctrl);
reg [3:0] rd_addr1;
reg [3:0] rd_addr2;
reg [3:0] phase;
reg [3:0] base_addr;
wire signed [15:0] mac_out,middle_data, sum, coeff;
wire signed [30:0] product;
wire signed [33:0] sum_even;
wire clear;
reg store_odd;
always @(posedge clock)
if(reset)
store_odd <= #1 1'b0;
else
if(strobe_in)
store_odd <= #1 ~store_odd;
wire start = strobe_in & store_odd;
always @(posedge clock)
if(reset)
base_addr <= #1 4'd0;
else if(start)
base_addr <= #1 base_addr + 4'd1;
always @(posedge clock)
if(reset)
phase <= #1 4'd8;
else if (start)
phase <= #1 4'd0;
else if(phase != 4'd8)
phase <= #1 phase + 4'd1;
reg start_d1,start_d2,start_d3,start_d4,start_d5,start_d6,start_d7,start_d8,start_d9,start_dA,start_dB,start_dC,start_dD;
always @(posedge clock)
begin
start_d1 <= #1 start;
start_d2 <= #1 start_d1;
start_d3 <= #1 start_d2;
start_d4 <= #1 start_d3;
start_d5 <= #1 start_d4;
start_d6 <= #1 start_d5;
start_d7 <= #1 start_d6;
start_d8 <= #1 start_d7;
start_d9 <= #1 start_d8;
start_dA <= #1 start_d9;
start_dB <= #1 start_dA;
start_dC <= #1 start_dB;
start_dD <= #1 start_dC;
end // always @ (posedge clock)
reg mult_en, mult_en_pre;
always @(posedge clock)
begin
mult_en_pre <= #1 phase!=8;
mult_en <= #1 mult_en_pre;
end
assign clear = start_d4; // was dC
wire latch_result = start_d4; // was dC
assign strobe_out = start_d5; // was dD
wire acc_en;
always @*
case(phase[2:0])
3'd0 : begin rd_addr1 = base_addr + 4'd0; rd_addr2 = base_addr + 4'd15; end
3'd1 : begin rd_addr1 = base_addr + 4'd1; rd_addr2 = base_addr + 4'd14; end
3'd2 : begin rd_addr1 = base_addr + 4'd2; rd_addr2 = base_addr + 4'd13; end
3'd3 : begin rd_addr1 = base_addr + 4'd3; rd_addr2 = base_addr + 4'd12; end
3'd4 : begin rd_addr1 = base_addr + 4'd4; rd_addr2 = base_addr + 4'd11; end
3'd5 : begin rd_addr1 = base_addr + 4'd5; rd_addr2 = base_addr + 4'd10; end
3'd6 : begin rd_addr1 = base_addr + 4'd6; rd_addr2 = base_addr + 4'd9; end
3'd7 : begin rd_addr1 = base_addr + 4'd7; rd_addr2 = base_addr + 4'd8; end
default: begin rd_addr1 = base_addr + 4'd0; rd_addr2 = base_addr + 4'd15; end
endcase // case(phase)
coeff_rom coeff_rom (.clock(clock),.addr(phase[2:0]-3'd1),.data(coeff));
ram16_2sum ram16_even (.clock(clock),.write(strobe_in & ~store_odd),
.wr_addr(base_addr),.wr_data(data_in),
.rd_addr1(rd_addr1),.rd_addr2(rd_addr2),
.sum(sum));
ram16 ram16_odd (.clock(clock),.write(strobe_in & store_odd), // Holds middle items
.wr_addr(base_addr),.wr_data(data_in),
//.rd_addr(base_addr+4'd7),.rd_data(middle_data));
.rd_addr(base_addr+4'd6),.rd_data(middle_data));
mult mult(.clock(clock),.x(coeff),.y(sum),.product(product),.enable_in(mult_en),.enable_out(acc_en));
acc acc(.clock(clock),.reset(reset),.enable_in(acc_en),.enable_out(),
.clear(clear),.addend(product),.sum(sum_even));
wire signed [33:0] dout = sum_even + {{4{middle_data[15]}},middle_data,14'b0}; // We already divided product by 2!!!!
always @(posedge clock)
if(reset)
data_out <= #1 16'd0;
else if(latch_result)
data_out <= #1 dout[30:15] + (dout[33]& |dout[14:0]);
assign debugctrl = { clock,reset,acc_en,mult_en,clear,latch_result,store_odd,strobe_in,strobe_out,phase};
endmodule // halfband_decim
|
/* -*- verilog -*-
*
* USRP - Universal Software Radio Peripheral
*
* Copyright (C) 2005 Matt Ettus
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Boston, MA 02110-1301 USA
*/
/*
* This implements a 31-tap halfband filter that decimates by two.
* The coefficients are symmetric, and with the exception of the middle tap,
* every other coefficient is zero. The middle section of taps looks like this:
*
* ..., -1468, 0, 2950, 0, -6158, 0, 20585, 32768, 20585, 0, -6158, 0, 2950, 0, -1468, ...
* |
* middle tap -------+
*
* See coeff_rom.v for the full set. The taps are scaled relative to 32768,
* thus the middle tap equals 1.0. Not counting the middle tap, there are 8
* non-zero taps on each side, and they are symmetric. A naive implementation
* requires a mulitply for each non-zero tap. Because of symmetry, we can
* replace 2 multiplies with 1 add and 1 multiply. Thus, to compute each output
* sample, we need to perform 8 multiplications. Since the middle tap is 1.0,
* we just add the corresponding delay line value.
*
* About timing: We implement this with a single multiplier, so it takes
* 8 cycles to compute a single output. However, since we're decimating by two
* we can accept a new input value every 4 cycles. strobe_in is asserted when
* there's a new input sample available. Depending on the overall decimation
* rate, strobe_in may be asserted less frequently than once every 4 clocks.
* On the output side, we assert strobe_out when output contains a new sample.
*
* Implementation: Every time strobe_in is asserted we store the new data into
* the delay line. We split the delay line into two components, one for the
* even samples, and one for the odd samples. ram16_odd is the delay line for
* the odd samples. This ram is written on each odd assertion of strobe_in, and
* is read on each clock when we're computing the dot product. ram16_even is
* similar, although because it holds the even samples we must be able to read
* two samples from different addresses at the same time, while writing the incoming
* even samples. Thus it's "triple-ported".
*/
module halfband_decim
(input clock, input reset, input enable, input strobe_in, output wire strobe_out,
input wire [15:0] data_in, output reg [15:0] data_out,output wire [15:0] debugctrl);
reg [3:0] rd_addr1;
reg [3:0] rd_addr2;
reg [3:0] phase;
reg [3:0] base_addr;
wire signed [15:0] mac_out,middle_data, sum, coeff;
wire signed [30:0] product;
wire signed [33:0] sum_even;
wire clear;
reg store_odd;
always @(posedge clock)
if(reset)
store_odd <= #1 1'b0;
else
if(strobe_in)
store_odd <= #1 ~store_odd;
wire start = strobe_in & store_odd;
always @(posedge clock)
if(reset)
base_addr <= #1 4'd0;
else if(start)
base_addr <= #1 base_addr + 4'd1;
always @(posedge clock)
if(reset)
phase <= #1 4'd8;
else if (start)
phase <= #1 4'd0;
else if(phase != 4'd8)
phase <= #1 phase + 4'd1;
reg start_d1,start_d2,start_d3,start_d4,start_d5,start_d6,start_d7,start_d8,start_d9,start_dA,start_dB,start_dC,start_dD;
always @(posedge clock)
begin
start_d1 <= #1 start;
start_d2 <= #1 start_d1;
start_d3 <= #1 start_d2;
start_d4 <= #1 start_d3;
start_d5 <= #1 start_d4;
start_d6 <= #1 start_d5;
start_d7 <= #1 start_d6;
start_d8 <= #1 start_d7;
start_d9 <= #1 start_d8;
start_dA <= #1 start_d9;
start_dB <= #1 start_dA;
start_dC <= #1 start_dB;
start_dD <= #1 start_dC;
end // always @ (posedge clock)
reg mult_en, mult_en_pre;
always @(posedge clock)
begin
mult_en_pre <= #1 phase!=8;
mult_en <= #1 mult_en_pre;
end
assign clear = start_d4; // was dC
wire latch_result = start_d4; // was dC
assign strobe_out = start_d5; // was dD
wire acc_en;
always @*
case(phase[2:0])
3'd0 : begin rd_addr1 = base_addr + 4'd0; rd_addr2 = base_addr + 4'd15; end
3'd1 : begin rd_addr1 = base_addr + 4'd1; rd_addr2 = base_addr + 4'd14; end
3'd2 : begin rd_addr1 = base_addr + 4'd2; rd_addr2 = base_addr + 4'd13; end
3'd3 : begin rd_addr1 = base_addr + 4'd3; rd_addr2 = base_addr + 4'd12; end
3'd4 : begin rd_addr1 = base_addr + 4'd4; rd_addr2 = base_addr + 4'd11; end
3'd5 : begin rd_addr1 = base_addr + 4'd5; rd_addr2 = base_addr + 4'd10; end
3'd6 : begin rd_addr1 = base_addr + 4'd6; rd_addr2 = base_addr + 4'd9; end
3'd7 : begin rd_addr1 = base_addr + 4'd7; rd_addr2 = base_addr + 4'd8; end
default: begin rd_addr1 = base_addr + 4'd0; rd_addr2 = base_addr + 4'd15; end
endcase // case(phase)
coeff_rom coeff_rom (.clock(clock),.addr(phase[2:0]-3'd1),.data(coeff));
ram16_2sum ram16_even (.clock(clock),.write(strobe_in & ~store_odd),
.wr_addr(base_addr),.wr_data(data_in),
.rd_addr1(rd_addr1),.rd_addr2(rd_addr2),
.sum(sum));
ram16 ram16_odd (.clock(clock),.write(strobe_in & store_odd), // Holds middle items
.wr_addr(base_addr),.wr_data(data_in),
//.rd_addr(base_addr+4'd7),.rd_data(middle_data));
.rd_addr(base_addr+4'd6),.rd_data(middle_data));
mult mult(.clock(clock),.x(coeff),.y(sum),.product(product),.enable_in(mult_en),.enable_out(acc_en));
acc acc(.clock(clock),.reset(reset),.enable_in(acc_en),.enable_out(),
.clear(clear),.addend(product),.sum(sum_even));
wire signed [33:0] dout = sum_even + {{4{middle_data[15]}},middle_data,14'b0}; // We already divided product by 2!!!!
always @(posedge clock)
if(reset)
data_out <= #1 16'd0;
else if(latch_result)
data_out <= #1 dout[30:15] + (dout[33]& |dout[14:0]);
assign debugctrl = { clock,reset,acc_en,mult_en,clear,latch_result,store_odd,strobe_in,strobe_out,phase};
endmodule // halfband_decim
|
/* -*- verilog -*-
*
* USRP - Universal Software Radio Peripheral
*
* Copyright (C) 2005 Matt Ettus
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Boston, MA 02110-1301 USA
*/
/*
* This implements a 31-tap halfband filter that decimates by two.
* The coefficients are symmetric, and with the exception of the middle tap,
* every other coefficient is zero. The middle section of taps looks like this:
*
* ..., -1468, 0, 2950, 0, -6158, 0, 20585, 32768, 20585, 0, -6158, 0, 2950, 0, -1468, ...
* |
* middle tap -------+
*
* See coeff_rom.v for the full set. The taps are scaled relative to 32768,
* thus the middle tap equals 1.0. Not counting the middle tap, there are 8
* non-zero taps on each side, and they are symmetric. A naive implementation
* requires a mulitply for each non-zero tap. Because of symmetry, we can
* replace 2 multiplies with 1 add and 1 multiply. Thus, to compute each output
* sample, we need to perform 8 multiplications. Since the middle tap is 1.0,
* we just add the corresponding delay line value.
*
* About timing: We implement this with a single multiplier, so it takes
* 8 cycles to compute a single output. However, since we're decimating by two
* we can accept a new input value every 4 cycles. strobe_in is asserted when
* there's a new input sample available. Depending on the overall decimation
* rate, strobe_in may be asserted less frequently than once every 4 clocks.
* On the output side, we assert strobe_out when output contains a new sample.
*
* Implementation: Every time strobe_in is asserted we store the new data into
* the delay line. We split the delay line into two components, one for the
* even samples, and one for the odd samples. ram16_odd is the delay line for
* the odd samples. This ram is written on each odd assertion of strobe_in, and
* is read on each clock when we're computing the dot product. ram16_even is
* similar, although because it holds the even samples we must be able to read
* two samples from different addresses at the same time, while writing the incoming
* even samples. Thus it's "triple-ported".
*/
module halfband_decim
(input clock, input reset, input enable, input strobe_in, output wire strobe_out,
input wire [15:0] data_in, output reg [15:0] data_out,output wire [15:0] debugctrl);
reg [3:0] rd_addr1;
reg [3:0] rd_addr2;
reg [3:0] phase;
reg [3:0] base_addr;
wire signed [15:0] mac_out,middle_data, sum, coeff;
wire signed [30:0] product;
wire signed [33:0] sum_even;
wire clear;
reg store_odd;
always @(posedge clock)
if(reset)
store_odd <= #1 1'b0;
else
if(strobe_in)
store_odd <= #1 ~store_odd;
wire start = strobe_in & store_odd;
always @(posedge clock)
if(reset)
base_addr <= #1 4'd0;
else if(start)
base_addr <= #1 base_addr + 4'd1;
always @(posedge clock)
if(reset)
phase <= #1 4'd8;
else if (start)
phase <= #1 4'd0;
else if(phase != 4'd8)
phase <= #1 phase + 4'd1;
reg start_d1,start_d2,start_d3,start_d4,start_d5,start_d6,start_d7,start_d8,start_d9,start_dA,start_dB,start_dC,start_dD;
always @(posedge clock)
begin
start_d1 <= #1 start;
start_d2 <= #1 start_d1;
start_d3 <= #1 start_d2;
start_d4 <= #1 start_d3;
start_d5 <= #1 start_d4;
start_d6 <= #1 start_d5;
start_d7 <= #1 start_d6;
start_d8 <= #1 start_d7;
start_d9 <= #1 start_d8;
start_dA <= #1 start_d9;
start_dB <= #1 start_dA;
start_dC <= #1 start_dB;
start_dD <= #1 start_dC;
end // always @ (posedge clock)
reg mult_en, mult_en_pre;
always @(posedge clock)
begin
mult_en_pre <= #1 phase!=8;
mult_en <= #1 mult_en_pre;
end
assign clear = start_d4; // was dC
wire latch_result = start_d4; // was dC
assign strobe_out = start_d5; // was dD
wire acc_en;
always @*
case(phase[2:0])
3'd0 : begin rd_addr1 = base_addr + 4'd0; rd_addr2 = base_addr + 4'd15; end
3'd1 : begin rd_addr1 = base_addr + 4'd1; rd_addr2 = base_addr + 4'd14; end
3'd2 : begin rd_addr1 = base_addr + 4'd2; rd_addr2 = base_addr + 4'd13; end
3'd3 : begin rd_addr1 = base_addr + 4'd3; rd_addr2 = base_addr + 4'd12; end
3'd4 : begin rd_addr1 = base_addr + 4'd4; rd_addr2 = base_addr + 4'd11; end
3'd5 : begin rd_addr1 = base_addr + 4'd5; rd_addr2 = base_addr + 4'd10; end
3'd6 : begin rd_addr1 = base_addr + 4'd6; rd_addr2 = base_addr + 4'd9; end
3'd7 : begin rd_addr1 = base_addr + 4'd7; rd_addr2 = base_addr + 4'd8; end
default: begin rd_addr1 = base_addr + 4'd0; rd_addr2 = base_addr + 4'd15; end
endcase // case(phase)
coeff_rom coeff_rom (.clock(clock),.addr(phase[2:0]-3'd1),.data(coeff));
ram16_2sum ram16_even (.clock(clock),.write(strobe_in & ~store_odd),
.wr_addr(base_addr),.wr_data(data_in),
.rd_addr1(rd_addr1),.rd_addr2(rd_addr2),
.sum(sum));
ram16 ram16_odd (.clock(clock),.write(strobe_in & store_odd), // Holds middle items
.wr_addr(base_addr),.wr_data(data_in),
//.rd_addr(base_addr+4'd7),.rd_data(middle_data));
.rd_addr(base_addr+4'd6),.rd_data(middle_data));
mult mult(.clock(clock),.x(coeff),.y(sum),.product(product),.enable_in(mult_en),.enable_out(acc_en));
acc acc(.clock(clock),.reset(reset),.enable_in(acc_en),.enable_out(),
.clear(clear),.addend(product),.sum(sum_even));
wire signed [33:0] dout = sum_even + {{4{middle_data[15]}},middle_data,14'b0}; // We already divided product by 2!!!!
always @(posedge clock)
if(reset)
data_out <= #1 16'd0;
else if(latch_result)
data_out <= #1 dout[30:15] + (dout[33]& |dout[14:0]);
assign debugctrl = { clock,reset,acc_en,mult_en,clear,latch_result,store_odd,strobe_in,strobe_out,phase};
endmodule // halfband_decim
|
/*****************************************************************************
* File : processing_system7_bfm_v2_0_5_unused_ports.v
*
* Date : 2012-11
*
* Description : Semantic checks for unused ports.
*
*****************************************************************************/
/* CAN */
assign CAN0_PHY_TX = 0;
assign CAN1_PHY_TX = 0;
always @(CAN0_PHY_RX or CAN1_PHY_RX)
begin
if(CAN0_PHY_RX | CAN1_PHY_RX)
$display("[%0d] : %0s : CAN Interface is not supported.",$time, DISP_ERR);
end
/* ------------------------------------------- */
/* ETHERNET */
/* ------------------------------------------- */
assign ENET0_GMII_TX_EN = 0;
assign ENET0_GMII_TX_ER = 0;
assign ENET0_MDIO_MDC = 0;
assign ENET0_MDIO_O = 0; /// confirm
assign ENET0_MDIO_T = 0;
assign ENET0_PTP_DELAY_REQ_RX = 0;
assign ENET0_PTP_DELAY_REQ_TX = 0;
assign ENET0_PTP_PDELAY_REQ_RX = 0;
assign ENET0_PTP_PDELAY_REQ_TX = 0;
assign ENET0_PTP_PDELAY_RESP_RX = 0;
assign ENET0_PTP_PDELAY_RESP_TX = 0;
assign ENET0_PTP_SYNC_FRAME_RX = 0;
assign ENET0_PTP_SYNC_FRAME_TX = 0;
assign ENET0_SOF_RX = 0;
assign ENET0_SOF_TX = 0;
assign ENET0_GMII_TXD = 0;
always@(ENET0_GMII_COL or ENET0_GMII_CRS or ENET0_EXT_INTIN or
ENET0_GMII_RX_CLK or ENET0_GMII_RX_DV or ENET0_GMII_RX_ER or
ENET0_GMII_TX_CLK or ENET0_MDIO_I or ENET0_GMII_RXD)
begin
if(ENET0_GMII_COL | ENET0_GMII_CRS | ENET0_EXT_INTIN |
ENET0_GMII_RX_CLK | ENET0_GMII_RX_DV | ENET0_GMII_RX_ER |
ENET0_GMII_TX_CLK | ENET0_MDIO_I )
$display("[%0d] : %0s : ETHERNET Interface is not supported.",$time, DISP_ERR);
end
assign ENET1_GMII_TX_EN = 0;
assign ENET1_GMII_TX_ER = 0;
assign ENET1_MDIO_MDC = 0;
assign ENET1_MDIO_O = 0;/// confirm
assign ENET1_MDIO_T = 0;
assign ENET1_PTP_DELAY_REQ_RX = 0;
assign ENET1_PTP_DELAY_REQ_TX = 0;
assign ENET1_PTP_PDELAY_REQ_RX = 0;
assign ENET1_PTP_PDELAY_REQ_TX = 0;
assign ENET1_PTP_PDELAY_RESP_RX = 0;
assign ENET1_PTP_PDELAY_RESP_TX = 0;
assign ENET1_PTP_SYNC_FRAME_RX = 0;
assign ENET1_PTP_SYNC_FRAME_TX = 0;
assign ENET1_SOF_RX = 0;
assign ENET1_SOF_TX = 0;
assign ENET1_GMII_TXD = 0;
always@(ENET1_GMII_COL or ENET1_GMII_CRS or ENET1_EXT_INTIN or
ENET1_GMII_RX_CLK or ENET1_GMII_RX_DV or ENET1_GMII_RX_ER or
ENET1_GMII_TX_CLK or ENET1_MDIO_I or ENET1_GMII_RXD)
begin
if(ENET1_GMII_COL | ENET1_GMII_CRS | ENET1_EXT_INTIN |
ENET1_GMII_RX_CLK | ENET1_GMII_RX_DV | ENET1_GMII_RX_ER |
ENET1_GMII_TX_CLK | ENET1_MDIO_I )
$display("[%0d] : %0s : ETHERNET Interface is not supported.",$time, DISP_ERR);
end
/* ------------------------------------------- */
/* GPIO */
/* ------------------------------------------- */
assign GPIO_O = 0;
assign GPIO_T = 0;
always@(GPIO_I)
begin
if(GPIO_I !== 0)
$display("[%0d] : %0s : GPIO Interface is not supported.",$time, DISP_ERR);
end
/* ------------------------------------------- */
/* I2C */
/* ------------------------------------------- */
assign I2C0_SDA_O = 0;
assign I2C0_SDA_T = 0;
assign I2C0_SCL_O = 0;
assign I2C0_SCL_T = 0;
assign I2C1_SDA_O = 0;
assign I2C1_SDA_T = 0;
assign I2C1_SCL_O = 0;
assign I2C1_SCL_T = 0;
always@(I2C0_SDA_I or I2C0_SCL_I or I2C1_SDA_I or I2C1_SCL_I )
begin
if(I2C0_SDA_I | I2C0_SCL_I | I2C1_SDA_I | I2C1_SCL_I)
$display("[%0d] : %0s : I2C Interface is not supported.",$time, DISP_ERR);
end
/* ------------------------------------------- */
/* JTAG */
/* ------------------------------------------- */
assign PJTAG_TD_T = 0;
assign PJTAG_TD_O = 0;
always@(PJTAG_TCK or PJTAG_TMS or PJTAG_TD_I)
begin
if(PJTAG_TCK | PJTAG_TMS | PJTAG_TD_I)
$display("[%0d] : %0s : JTAG Interface is not supported.",$time, DISP_ERR);
end
/* ------------------------------------------- */
/* SDIO */
/* ------------------------------------------- */
assign SDIO0_CLK = 0;
assign SDIO0_CMD_O = 0;
assign SDIO0_CMD_T = 0;
assign SDIO0_DATA_O = 0;
assign SDIO0_DATA_T = 0;
assign SDIO0_LED = 0;
assign SDIO0_BUSPOW = 0;
assign SDIO0_BUSVOLT = 0;
always@(SDIO0_CLK_FB or SDIO0_CMD_I or SDIO0_DATA_I or SDIO0_CDN or SDIO0_WP )
begin
if(SDIO0_CLK_FB | SDIO0_CMD_I | SDIO0_CDN | SDIO0_WP )
$display("[%0d] : %0s : SDIO Interface is not supported.",$time, DISP_ERR);
end
assign SDIO1_CLK = 0;
assign SDIO1_CMD_O = 0;
assign SDIO1_CMD_T = 0;
assign SDIO1_DATA_O = 0;
assign SDIO1_DATA_T = 0;
assign SDIO1_LED = 0;
assign SDIO1_BUSPOW = 0;
assign SDIO1_BUSVOLT = 0;
always@(SDIO1_CLK_FB or SDIO1_CMD_I or SDIO1_DATA_I or SDIO1_CDN or SDIO1_WP )
begin
if(SDIO1_CLK_FB | SDIO1_CMD_I | SDIO1_CDN | SDIO1_WP )
$display("[%0d] : %0s : SDIO Interface is not supported.",$time, DISP_ERR);
end
/* ------------------------------------------- */
/* SPI */
/* ------------------------------------------- */
assign SPI0_SCLK_O = 0;
assign SPI0_SCLK_T = 0;
assign SPI0_MOSI_O = 0;
assign SPI0_MOSI_T = 0;
assign SPI0_MISO_O = 0;
assign SPI0_MISO_T = 0;
assign SPI0_SS_O = 0; /// confirm
assign SPI0_SS1_O = 0;/// confirm
assign SPI0_SS2_O = 0;/// confirm
assign SPI0_SS_T = 0;
always@(SPI0_SCLK_I or SPI0_MOSI_I or SPI0_MISO_I or SPI0_SS_I)
begin
if(SPI0_SCLK_I | SPI0_MOSI_I | SPI0_MISO_I | SPI0_SS_I)
$display("[%0d] : %0s : SPI Interface is not supported.",$time, DISP_ERR);
end
assign SPI1_SCLK_O = 0;
assign SPI1_SCLK_T = 0;
assign SPI1_MOSI_O = 0;
assign SPI1_MOSI_T = 0;
assign SPI1_MISO_O = 0;
assign SPI1_MISO_T = 0;
assign SPI1_SS_O = 0;
assign SPI1_SS1_O = 0;
assign SPI1_SS2_O = 0;
assign SPI1_SS_T = 0;
always@(SPI1_SCLK_I or SPI1_MOSI_I or SPI1_MISO_I or SPI1_SS_I)
begin
if(SPI1_SCLK_I | SPI1_MOSI_I | SPI1_MISO_I | SPI1_SS_I)
$display("[%0d] : %0s : SPI Interface is not supported.",$time, DISP_ERR);
end
/* ------------------------------------------- */
/* UART */
/* ------------------------------------------- */
/// confirm
assign UART0_DTRN = 0;
assign UART0_RTSN = 0;
assign UART0_TX = 0;
always@(UART0_CTSN or UART0_DCDN or UART0_DSRN or UART0_RIN or UART0_RX)
begin
if(UART0_CTSN | UART0_DCDN | UART0_DSRN | UART0_RIN | UART0_RX)
$display("[%0d] : %0s : UART Interface is not supported.",$time, DISP_ERR);
end
assign UART1_DTRN = 0;
assign UART1_RTSN = 0;
assign UART1_TX = 0;
always@(UART1_CTSN or UART1_DCDN or UART1_DSRN or UART1_RIN or UART1_RX)
begin
if(UART1_CTSN | UART1_DCDN | UART1_DSRN | UART1_RIN | UART1_RX)
$display("[%0d] : %0s : UART Interface is not supported.",$time, DISP_ERR);
end
/* ------------------------------------------- */
/* TTC */
/* ------------------------------------------- */
assign TTC0_WAVE0_OUT = 0;
assign TTC0_WAVE1_OUT = 0;
assign TTC0_WAVE2_OUT = 0;
always@(TTC0_CLK0_IN or TTC0_CLK1_IN or TTC0_CLK2_IN)
begin
if(TTC0_CLK0_IN | TTC0_CLK1_IN | TTC0_CLK2_IN)
$display("[%0d] : %0s : TTC Interface is not supported.",$time, DISP_ERR);
end
assign TTC1_WAVE0_OUT = 0;
assign TTC1_WAVE1_OUT = 0;
assign TTC1_WAVE2_OUT = 0;
always@(TTC1_CLK0_IN or TTC1_CLK1_IN or TTC1_CLK2_IN)
begin
if(TTC1_CLK0_IN | TTC1_CLK1_IN | TTC1_CLK2_IN)
$display("[%0d] : %0s : TTC Interface is not supported.",$time, DISP_ERR);
end
/* ------------------------------------------- */
/* WDT */
/* ------------------------------------------- */
assign WDT_RST_OUT = 0;
always@(WDT_CLK_IN)
begin
if(WDT_CLK_IN)
$display("[%0d] : %0s : WDT Interface is not supported.",$time, DISP_ERR);
end
/* ------------------------------------------- */
/* TRACE */
/* ------------------------------------------- */
assign TRACE_CTL = 0;
assign TRACE_DATA = 0;
always@(TRACE_CLK)
begin
if(TRACE_CLK)
$display("[%0d] : %0s : TRACE Interface is not supported.",$time, DISP_ERR);
end
/* ------------------------------------------- */
/* USB */
/* ------------------------------------------- */
assign USB0_PORT_INDCTL = 0;
assign USB0_VBUS_PWRSELECT = 0;
always@(USB0_VBUS_PWRFAULT)
begin
if(USB0_VBUS_PWRFAULT)
$display("[%0d] : %0s : USB Interface is not supported.",$time, DISP_ERR);
end
assign USB1_PORT_INDCTL = 0;
assign USB1_VBUS_PWRSELECT = 0;
always@(USB1_VBUS_PWRFAULT)
begin
if(USB1_VBUS_PWRFAULT)
$display("[%0d] : %0s : USB Interface is not supported.",$time, DISP_ERR);
end
always@(SRAM_INTIN)
begin
if(SRAM_INTIN)
$display("[%0d] : %0s : SRAM_INTIN is not supported.",$time, DISP_ERR);
end
/* ------------------------------------------- */
/* DMA */
/* ------------------------------------------- */
assign DMA0_DATYPE = 0;
assign DMA0_DAVALID = 0;
assign DMA0_DRREADY = 0;
assign DMA0_RSTN = 0;
always@(DMA0_ACLK or DMA0_DAREADY or DMA0_DRLAST or DMA0_DRVALID or DMA0_DRTYPE)
begin
if(DMA0_ACLK | DMA0_DAREADY | DMA0_DRLAST | DMA0_DRVALID | DMA0_DRTYPE)
$display("[%0d] : %0s : DMA Interface is not supported.",$time, DISP_ERR);
end
assign DMA1_DATYPE = 0;
assign DMA1_DAVALID = 0;
assign DMA1_DRREADY = 0;
assign DMA1_RSTN = 0;
always@(DMA1_ACLK or DMA1_DAREADY or DMA1_DRLAST or DMA1_DRVALID or DMA1_DRTYPE)
begin
if(DMA1_ACLK | DMA1_DAREADY | DMA1_DRLAST | DMA1_DRVALID | DMA1_DRTYPE)
$display("[%0d] : %0s : DMA Interface is not supported.",$time, DISP_ERR);
end
assign DMA2_DATYPE = 0;
assign DMA2_DAVALID = 0;
assign DMA2_DRREADY = 0;
assign DMA2_RSTN = 0;
always@(DMA2_ACLK or DMA2_DAREADY or DMA2_DRLAST or DMA2_DRVALID or DMA2_DRTYPE)
begin
if(DMA2_ACLK | DMA2_DAREADY | DMA2_DRLAST | DMA2_DRVALID | DMA2_DRTYPE)
$display("[%0d] : %0s : DMA Interface is not supported.",$time, DISP_ERR);
end
assign DMA3_DATYPE = 0;
assign DMA3_DAVALID = 0;
assign DMA3_DRREADY = 0;
assign DMA3_RSTN = 0;
always@(DMA3_ACLK or DMA3_DAREADY or DMA3_DRLAST or DMA3_DRVALID or DMA3_DRTYPE)
begin
if(DMA3_ACLK | DMA3_DAREADY | DMA3_DRLAST | DMA3_DRVALID | DMA3_DRTYPE)
$display("[%0d] : %0s : DMA Interface is not supported.",$time, DISP_ERR);
end
/* ------------------------------------------- */
/* FTM */
/* ------------------------------------------- */
assign FTMT_F2P_TRIGACK = 0;
assign FTMT_P2F_TRIG = 0;
assign FTMT_P2F_DEBUG = 0;
always@(FTMD_TRACEIN_DATA or FTMD_TRACEIN_VALID or FTMD_TRACEIN_CLK or
FTMD_TRACEIN_ATID or FTMT_F2P_TRIG or FTMT_F2P_DEBUG or FTMT_P2F_TRIGACK)
begin
if(FTMD_TRACEIN_DATA | FTMD_TRACEIN_VALID | FTMD_TRACEIN_CLK | FTMD_TRACEIN_ATID | FTMT_F2P_TRIG | FTMT_F2P_DEBUG | FTMT_P2F_TRIGACK)
$display("[%0d] : %0s : FTM Interface is not supported.",$time, DISP_ERR);
end
/* ------------------------------------------- */
/* EVENT */
/* ------------------------------------------- */
assign EVENT_EVENTO = 0;
assign EVENT_STANDBYWFE = 0;
assign EVENT_STANDBYWFI = 0;
always@(EVENT_EVENTI)
begin
if(EVENT_EVENTI)
$display("[%0d] : %0s : EVENT Interface is not supported.",$time, DISP_ERR);
end
/* ------------------------------------------- */
/* MIO */
/* ------------------------------------------- */
always@(MIO)
begin
if(MIO !== 0)
$display("[%0d] : %0s : MIO is not supported.",$time, DISP_ERR);
end
/* ------------------------------------------- */
/* FCLK_TRIG */
/* ------------------------------------------- */
always@(FCLK_CLKTRIG3_N or FCLK_CLKTRIG2_N or FCLK_CLKTRIG1_N or FCLK_CLKTRIG0_N )
begin
if(FCLK_CLKTRIG3_N | FCLK_CLKTRIG2_N | FCLK_CLKTRIG1_N | FCLK_CLKTRIG0_N )
$display("[%0d] : %0s : FCLK_TRIG is not supported.",$time, DISP_ERR);
end
/* ------------------------------------------- */
/* MISC */
/* ------------------------------------------- */
always@(FPGA_IDLE_N)
begin
if(FPGA_IDLE_N)
$display("[%0d] : %0s : FPGA_IDLE_N is not supported.",$time, DISP_ERR);
end
always@(DDR_ARB)
begin
if(DDR_ARB !== 0)
$display("[%0d] : %0s : DDR_ARB is not supported.",$time, DISP_ERR);
end
always@(Core0_nFIQ or Core0_nIRQ or Core1_nFIQ or Core1_nIRQ )
begin
if(Core0_nFIQ | Core0_nIRQ | Core1_nFIQ | Core1_nIRQ)
$display("[%0d] : %0s : CORE FIQ,IRQ is not supported.",$time, DISP_ERR);
end
/* ------------------------------------------- */
/* DDR */
/* ------------------------------------------- */
assign DDR_WEB = 0;
always@(DDR_Clk or DDR_CS_n)
begin
if(!DDR_CS_n)
$display("[%0d] : %0s : EXTERNAL DDR is not supported.",$time, DISP_ERR);
end
/* ------------------------------------------- */
/* IRQ_P2F */
/* ------------------------------------------- */
assign IRQ_P2F_DMAC_ABORT = 0;
assign IRQ_P2F_DMAC0 = 0;
assign IRQ_P2F_DMAC1 = 0;
assign IRQ_P2F_DMAC2 = 0;
assign IRQ_P2F_DMAC3 = 0;
assign IRQ_P2F_DMAC4 = 0;
assign IRQ_P2F_DMAC5 = 0;
assign IRQ_P2F_DMAC6 = 0;
assign IRQ_P2F_DMAC7 = 0;
assign IRQ_P2F_SMC = 0;
assign IRQ_P2F_QSPI = 0;
assign IRQ_P2F_CTI = 0;
assign IRQ_P2F_GPIO = 0;
assign IRQ_P2F_USB0 = 0;
assign IRQ_P2F_ENET0 = 0;
assign IRQ_P2F_ENET_WAKE0 = 0;
assign IRQ_P2F_SDIO0 = 0;
assign IRQ_P2F_I2C0 = 0;
assign IRQ_P2F_SPI0 = 0;
assign IRQ_P2F_UART0 = 0;
assign IRQ_P2F_CAN0 = 0;
assign IRQ_P2F_USB1 = 0;
assign IRQ_P2F_ENET1 = 0;
assign IRQ_P2F_ENET_WAKE1 = 0;
assign IRQ_P2F_SDIO1 = 0;
assign IRQ_P2F_I2C1 = 0;
assign IRQ_P2F_SPI1 = 0;
assign IRQ_P2F_UART1 = 0;
assign IRQ_P2F_CAN1 = 0;
|
/*****************************************************************************
* File : processing_system7_bfm_v2_0_5_unused_ports.v
*
* Date : 2012-11
*
* Description : Semantic checks for unused ports.
*
*****************************************************************************/
/* CAN */
assign CAN0_PHY_TX = 0;
assign CAN1_PHY_TX = 0;
always @(CAN0_PHY_RX or CAN1_PHY_RX)
begin
if(CAN0_PHY_RX | CAN1_PHY_RX)
$display("[%0d] : %0s : CAN Interface is not supported.",$time, DISP_ERR);
end
/* ------------------------------------------- */
/* ETHERNET */
/* ------------------------------------------- */
assign ENET0_GMII_TX_EN = 0;
assign ENET0_GMII_TX_ER = 0;
assign ENET0_MDIO_MDC = 0;
assign ENET0_MDIO_O = 0; /// confirm
assign ENET0_MDIO_T = 0;
assign ENET0_PTP_DELAY_REQ_RX = 0;
assign ENET0_PTP_DELAY_REQ_TX = 0;
assign ENET0_PTP_PDELAY_REQ_RX = 0;
assign ENET0_PTP_PDELAY_REQ_TX = 0;
assign ENET0_PTP_PDELAY_RESP_RX = 0;
assign ENET0_PTP_PDELAY_RESP_TX = 0;
assign ENET0_PTP_SYNC_FRAME_RX = 0;
assign ENET0_PTP_SYNC_FRAME_TX = 0;
assign ENET0_SOF_RX = 0;
assign ENET0_SOF_TX = 0;
assign ENET0_GMII_TXD = 0;
always@(ENET0_GMII_COL or ENET0_GMII_CRS or ENET0_EXT_INTIN or
ENET0_GMII_RX_CLK or ENET0_GMII_RX_DV or ENET0_GMII_RX_ER or
ENET0_GMII_TX_CLK or ENET0_MDIO_I or ENET0_GMII_RXD)
begin
if(ENET0_GMII_COL | ENET0_GMII_CRS | ENET0_EXT_INTIN |
ENET0_GMII_RX_CLK | ENET0_GMII_RX_DV | ENET0_GMII_RX_ER |
ENET0_GMII_TX_CLK | ENET0_MDIO_I )
$display("[%0d] : %0s : ETHERNET Interface is not supported.",$time, DISP_ERR);
end
assign ENET1_GMII_TX_EN = 0;
assign ENET1_GMII_TX_ER = 0;
assign ENET1_MDIO_MDC = 0;
assign ENET1_MDIO_O = 0;/// confirm
assign ENET1_MDIO_T = 0;
assign ENET1_PTP_DELAY_REQ_RX = 0;
assign ENET1_PTP_DELAY_REQ_TX = 0;
assign ENET1_PTP_PDELAY_REQ_RX = 0;
assign ENET1_PTP_PDELAY_REQ_TX = 0;
assign ENET1_PTP_PDELAY_RESP_RX = 0;
assign ENET1_PTP_PDELAY_RESP_TX = 0;
assign ENET1_PTP_SYNC_FRAME_RX = 0;
assign ENET1_PTP_SYNC_FRAME_TX = 0;
assign ENET1_SOF_RX = 0;
assign ENET1_SOF_TX = 0;
assign ENET1_GMII_TXD = 0;
always@(ENET1_GMII_COL or ENET1_GMII_CRS or ENET1_EXT_INTIN or
ENET1_GMII_RX_CLK or ENET1_GMII_RX_DV or ENET1_GMII_RX_ER or
ENET1_GMII_TX_CLK or ENET1_MDIO_I or ENET1_GMII_RXD)
begin
if(ENET1_GMII_COL | ENET1_GMII_CRS | ENET1_EXT_INTIN |
ENET1_GMII_RX_CLK | ENET1_GMII_RX_DV | ENET1_GMII_RX_ER |
ENET1_GMII_TX_CLK | ENET1_MDIO_I )
$display("[%0d] : %0s : ETHERNET Interface is not supported.",$time, DISP_ERR);
end
/* ------------------------------------------- */
/* GPIO */
/* ------------------------------------------- */
assign GPIO_O = 0;
assign GPIO_T = 0;
always@(GPIO_I)
begin
if(GPIO_I !== 0)
$display("[%0d] : %0s : GPIO Interface is not supported.",$time, DISP_ERR);
end
/* ------------------------------------------- */
/* I2C */
/* ------------------------------------------- */
assign I2C0_SDA_O = 0;
assign I2C0_SDA_T = 0;
assign I2C0_SCL_O = 0;
assign I2C0_SCL_T = 0;
assign I2C1_SDA_O = 0;
assign I2C1_SDA_T = 0;
assign I2C1_SCL_O = 0;
assign I2C1_SCL_T = 0;
always@(I2C0_SDA_I or I2C0_SCL_I or I2C1_SDA_I or I2C1_SCL_I )
begin
if(I2C0_SDA_I | I2C0_SCL_I | I2C1_SDA_I | I2C1_SCL_I)
$display("[%0d] : %0s : I2C Interface is not supported.",$time, DISP_ERR);
end
/* ------------------------------------------- */
/* JTAG */
/* ------------------------------------------- */
assign PJTAG_TD_T = 0;
assign PJTAG_TD_O = 0;
always@(PJTAG_TCK or PJTAG_TMS or PJTAG_TD_I)
begin
if(PJTAG_TCK | PJTAG_TMS | PJTAG_TD_I)
$display("[%0d] : %0s : JTAG Interface is not supported.",$time, DISP_ERR);
end
/* ------------------------------------------- */
/* SDIO */
/* ------------------------------------------- */
assign SDIO0_CLK = 0;
assign SDIO0_CMD_O = 0;
assign SDIO0_CMD_T = 0;
assign SDIO0_DATA_O = 0;
assign SDIO0_DATA_T = 0;
assign SDIO0_LED = 0;
assign SDIO0_BUSPOW = 0;
assign SDIO0_BUSVOLT = 0;
always@(SDIO0_CLK_FB or SDIO0_CMD_I or SDIO0_DATA_I or SDIO0_CDN or SDIO0_WP )
begin
if(SDIO0_CLK_FB | SDIO0_CMD_I | SDIO0_CDN | SDIO0_WP )
$display("[%0d] : %0s : SDIO Interface is not supported.",$time, DISP_ERR);
end
assign SDIO1_CLK = 0;
assign SDIO1_CMD_O = 0;
assign SDIO1_CMD_T = 0;
assign SDIO1_DATA_O = 0;
assign SDIO1_DATA_T = 0;
assign SDIO1_LED = 0;
assign SDIO1_BUSPOW = 0;
assign SDIO1_BUSVOLT = 0;
always@(SDIO1_CLK_FB or SDIO1_CMD_I or SDIO1_DATA_I or SDIO1_CDN or SDIO1_WP )
begin
if(SDIO1_CLK_FB | SDIO1_CMD_I | SDIO1_CDN | SDIO1_WP )
$display("[%0d] : %0s : SDIO Interface is not supported.",$time, DISP_ERR);
end
/* ------------------------------------------- */
/* SPI */
/* ------------------------------------------- */
assign SPI0_SCLK_O = 0;
assign SPI0_SCLK_T = 0;
assign SPI0_MOSI_O = 0;
assign SPI0_MOSI_T = 0;
assign SPI0_MISO_O = 0;
assign SPI0_MISO_T = 0;
assign SPI0_SS_O = 0; /// confirm
assign SPI0_SS1_O = 0;/// confirm
assign SPI0_SS2_O = 0;/// confirm
assign SPI0_SS_T = 0;
always@(SPI0_SCLK_I or SPI0_MOSI_I or SPI0_MISO_I or SPI0_SS_I)
begin
if(SPI0_SCLK_I | SPI0_MOSI_I | SPI0_MISO_I | SPI0_SS_I)
$display("[%0d] : %0s : SPI Interface is not supported.",$time, DISP_ERR);
end
assign SPI1_SCLK_O = 0;
assign SPI1_SCLK_T = 0;
assign SPI1_MOSI_O = 0;
assign SPI1_MOSI_T = 0;
assign SPI1_MISO_O = 0;
assign SPI1_MISO_T = 0;
assign SPI1_SS_O = 0;
assign SPI1_SS1_O = 0;
assign SPI1_SS2_O = 0;
assign SPI1_SS_T = 0;
always@(SPI1_SCLK_I or SPI1_MOSI_I or SPI1_MISO_I or SPI1_SS_I)
begin
if(SPI1_SCLK_I | SPI1_MOSI_I | SPI1_MISO_I | SPI1_SS_I)
$display("[%0d] : %0s : SPI Interface is not supported.",$time, DISP_ERR);
end
/* ------------------------------------------- */
/* UART */
/* ------------------------------------------- */
/// confirm
assign UART0_DTRN = 0;
assign UART0_RTSN = 0;
assign UART0_TX = 0;
always@(UART0_CTSN or UART0_DCDN or UART0_DSRN or UART0_RIN or UART0_RX)
begin
if(UART0_CTSN | UART0_DCDN | UART0_DSRN | UART0_RIN | UART0_RX)
$display("[%0d] : %0s : UART Interface is not supported.",$time, DISP_ERR);
end
assign UART1_DTRN = 0;
assign UART1_RTSN = 0;
assign UART1_TX = 0;
always@(UART1_CTSN or UART1_DCDN or UART1_DSRN or UART1_RIN or UART1_RX)
begin
if(UART1_CTSN | UART1_DCDN | UART1_DSRN | UART1_RIN | UART1_RX)
$display("[%0d] : %0s : UART Interface is not supported.",$time, DISP_ERR);
end
/* ------------------------------------------- */
/* TTC */
/* ------------------------------------------- */
assign TTC0_WAVE0_OUT = 0;
assign TTC0_WAVE1_OUT = 0;
assign TTC0_WAVE2_OUT = 0;
always@(TTC0_CLK0_IN or TTC0_CLK1_IN or TTC0_CLK2_IN)
begin
if(TTC0_CLK0_IN | TTC0_CLK1_IN | TTC0_CLK2_IN)
$display("[%0d] : %0s : TTC Interface is not supported.",$time, DISP_ERR);
end
assign TTC1_WAVE0_OUT = 0;
assign TTC1_WAVE1_OUT = 0;
assign TTC1_WAVE2_OUT = 0;
always@(TTC1_CLK0_IN or TTC1_CLK1_IN or TTC1_CLK2_IN)
begin
if(TTC1_CLK0_IN | TTC1_CLK1_IN | TTC1_CLK2_IN)
$display("[%0d] : %0s : TTC Interface is not supported.",$time, DISP_ERR);
end
/* ------------------------------------------- */
/* WDT */
/* ------------------------------------------- */
assign WDT_RST_OUT = 0;
always@(WDT_CLK_IN)
begin
if(WDT_CLK_IN)
$display("[%0d] : %0s : WDT Interface is not supported.",$time, DISP_ERR);
end
/* ------------------------------------------- */
/* TRACE */
/* ------------------------------------------- */
assign TRACE_CTL = 0;
assign TRACE_DATA = 0;
always@(TRACE_CLK)
begin
if(TRACE_CLK)
$display("[%0d] : %0s : TRACE Interface is not supported.",$time, DISP_ERR);
end
/* ------------------------------------------- */
/* USB */
/* ------------------------------------------- */
assign USB0_PORT_INDCTL = 0;
assign USB0_VBUS_PWRSELECT = 0;
always@(USB0_VBUS_PWRFAULT)
begin
if(USB0_VBUS_PWRFAULT)
$display("[%0d] : %0s : USB Interface is not supported.",$time, DISP_ERR);
end
assign USB1_PORT_INDCTL = 0;
assign USB1_VBUS_PWRSELECT = 0;
always@(USB1_VBUS_PWRFAULT)
begin
if(USB1_VBUS_PWRFAULT)
$display("[%0d] : %0s : USB Interface is not supported.",$time, DISP_ERR);
end
always@(SRAM_INTIN)
begin
if(SRAM_INTIN)
$display("[%0d] : %0s : SRAM_INTIN is not supported.",$time, DISP_ERR);
end
/* ------------------------------------------- */
/* DMA */
/* ------------------------------------------- */
assign DMA0_DATYPE = 0;
assign DMA0_DAVALID = 0;
assign DMA0_DRREADY = 0;
assign DMA0_RSTN = 0;
always@(DMA0_ACLK or DMA0_DAREADY or DMA0_DRLAST or DMA0_DRVALID or DMA0_DRTYPE)
begin
if(DMA0_ACLK | DMA0_DAREADY | DMA0_DRLAST | DMA0_DRVALID | DMA0_DRTYPE)
$display("[%0d] : %0s : DMA Interface is not supported.",$time, DISP_ERR);
end
assign DMA1_DATYPE = 0;
assign DMA1_DAVALID = 0;
assign DMA1_DRREADY = 0;
assign DMA1_RSTN = 0;
always@(DMA1_ACLK or DMA1_DAREADY or DMA1_DRLAST or DMA1_DRVALID or DMA1_DRTYPE)
begin
if(DMA1_ACLK | DMA1_DAREADY | DMA1_DRLAST | DMA1_DRVALID | DMA1_DRTYPE)
$display("[%0d] : %0s : DMA Interface is not supported.",$time, DISP_ERR);
end
assign DMA2_DATYPE = 0;
assign DMA2_DAVALID = 0;
assign DMA2_DRREADY = 0;
assign DMA2_RSTN = 0;
always@(DMA2_ACLK or DMA2_DAREADY or DMA2_DRLAST or DMA2_DRVALID or DMA2_DRTYPE)
begin
if(DMA2_ACLK | DMA2_DAREADY | DMA2_DRLAST | DMA2_DRVALID | DMA2_DRTYPE)
$display("[%0d] : %0s : DMA Interface is not supported.",$time, DISP_ERR);
end
assign DMA3_DATYPE = 0;
assign DMA3_DAVALID = 0;
assign DMA3_DRREADY = 0;
assign DMA3_RSTN = 0;
always@(DMA3_ACLK or DMA3_DAREADY or DMA3_DRLAST or DMA3_DRVALID or DMA3_DRTYPE)
begin
if(DMA3_ACLK | DMA3_DAREADY | DMA3_DRLAST | DMA3_DRVALID | DMA3_DRTYPE)
$display("[%0d] : %0s : DMA Interface is not supported.",$time, DISP_ERR);
end
/* ------------------------------------------- */
/* FTM */
/* ------------------------------------------- */
assign FTMT_F2P_TRIGACK = 0;
assign FTMT_P2F_TRIG = 0;
assign FTMT_P2F_DEBUG = 0;
always@(FTMD_TRACEIN_DATA or FTMD_TRACEIN_VALID or FTMD_TRACEIN_CLK or
FTMD_TRACEIN_ATID or FTMT_F2P_TRIG or FTMT_F2P_DEBUG or FTMT_P2F_TRIGACK)
begin
if(FTMD_TRACEIN_DATA | FTMD_TRACEIN_VALID | FTMD_TRACEIN_CLK | FTMD_TRACEIN_ATID | FTMT_F2P_TRIG | FTMT_F2P_DEBUG | FTMT_P2F_TRIGACK)
$display("[%0d] : %0s : FTM Interface is not supported.",$time, DISP_ERR);
end
/* ------------------------------------------- */
/* EVENT */
/* ------------------------------------------- */
assign EVENT_EVENTO = 0;
assign EVENT_STANDBYWFE = 0;
assign EVENT_STANDBYWFI = 0;
always@(EVENT_EVENTI)
begin
if(EVENT_EVENTI)
$display("[%0d] : %0s : EVENT Interface is not supported.",$time, DISP_ERR);
end
/* ------------------------------------------- */
/* MIO */
/* ------------------------------------------- */
always@(MIO)
begin
if(MIO !== 0)
$display("[%0d] : %0s : MIO is not supported.",$time, DISP_ERR);
end
/* ------------------------------------------- */
/* FCLK_TRIG */
/* ------------------------------------------- */
always@(FCLK_CLKTRIG3_N or FCLK_CLKTRIG2_N or FCLK_CLKTRIG1_N or FCLK_CLKTRIG0_N )
begin
if(FCLK_CLKTRIG3_N | FCLK_CLKTRIG2_N | FCLK_CLKTRIG1_N | FCLK_CLKTRIG0_N )
$display("[%0d] : %0s : FCLK_TRIG is not supported.",$time, DISP_ERR);
end
/* ------------------------------------------- */
/* MISC */
/* ------------------------------------------- */
always@(FPGA_IDLE_N)
begin
if(FPGA_IDLE_N)
$display("[%0d] : %0s : FPGA_IDLE_N is not supported.",$time, DISP_ERR);
end
always@(DDR_ARB)
begin
if(DDR_ARB !== 0)
$display("[%0d] : %0s : DDR_ARB is not supported.",$time, DISP_ERR);
end
always@(Core0_nFIQ or Core0_nIRQ or Core1_nFIQ or Core1_nIRQ )
begin
if(Core0_nFIQ | Core0_nIRQ | Core1_nFIQ | Core1_nIRQ)
$display("[%0d] : %0s : CORE FIQ,IRQ is not supported.",$time, DISP_ERR);
end
/* ------------------------------------------- */
/* DDR */
/* ------------------------------------------- */
assign DDR_WEB = 0;
always@(DDR_Clk or DDR_CS_n)
begin
if(!DDR_CS_n)
$display("[%0d] : %0s : EXTERNAL DDR is not supported.",$time, DISP_ERR);
end
/* ------------------------------------------- */
/* IRQ_P2F */
/* ------------------------------------------- */
assign IRQ_P2F_DMAC_ABORT = 0;
assign IRQ_P2F_DMAC0 = 0;
assign IRQ_P2F_DMAC1 = 0;
assign IRQ_P2F_DMAC2 = 0;
assign IRQ_P2F_DMAC3 = 0;
assign IRQ_P2F_DMAC4 = 0;
assign IRQ_P2F_DMAC5 = 0;
assign IRQ_P2F_DMAC6 = 0;
assign IRQ_P2F_DMAC7 = 0;
assign IRQ_P2F_SMC = 0;
assign IRQ_P2F_QSPI = 0;
assign IRQ_P2F_CTI = 0;
assign IRQ_P2F_GPIO = 0;
assign IRQ_P2F_USB0 = 0;
assign IRQ_P2F_ENET0 = 0;
assign IRQ_P2F_ENET_WAKE0 = 0;
assign IRQ_P2F_SDIO0 = 0;
assign IRQ_P2F_I2C0 = 0;
assign IRQ_P2F_SPI0 = 0;
assign IRQ_P2F_UART0 = 0;
assign IRQ_P2F_CAN0 = 0;
assign IRQ_P2F_USB1 = 0;
assign IRQ_P2F_ENET1 = 0;
assign IRQ_P2F_ENET_WAKE1 = 0;
assign IRQ_P2F_SDIO1 = 0;
assign IRQ_P2F_I2C1 = 0;
assign IRQ_P2F_SPI1 = 0;
assign IRQ_P2F_UART1 = 0;
assign IRQ_P2F_CAN1 = 0;
|
/*****************************************************************************
* File : processing_system7_bfm_v2_0_5_unused_ports.v
*
* Date : 2012-11
*
* Description : Semantic checks for unused ports.
*
*****************************************************************************/
/* CAN */
assign CAN0_PHY_TX = 0;
assign CAN1_PHY_TX = 0;
always @(CAN0_PHY_RX or CAN1_PHY_RX)
begin
if(CAN0_PHY_RX | CAN1_PHY_RX)
$display("[%0d] : %0s : CAN Interface is not supported.",$time, DISP_ERR);
end
/* ------------------------------------------- */
/* ETHERNET */
/* ------------------------------------------- */
assign ENET0_GMII_TX_EN = 0;
assign ENET0_GMII_TX_ER = 0;
assign ENET0_MDIO_MDC = 0;
assign ENET0_MDIO_O = 0; /// confirm
assign ENET0_MDIO_T = 0;
assign ENET0_PTP_DELAY_REQ_RX = 0;
assign ENET0_PTP_DELAY_REQ_TX = 0;
assign ENET0_PTP_PDELAY_REQ_RX = 0;
assign ENET0_PTP_PDELAY_REQ_TX = 0;
assign ENET0_PTP_PDELAY_RESP_RX = 0;
assign ENET0_PTP_PDELAY_RESP_TX = 0;
assign ENET0_PTP_SYNC_FRAME_RX = 0;
assign ENET0_PTP_SYNC_FRAME_TX = 0;
assign ENET0_SOF_RX = 0;
assign ENET0_SOF_TX = 0;
assign ENET0_GMII_TXD = 0;
always@(ENET0_GMII_COL or ENET0_GMII_CRS or ENET0_EXT_INTIN or
ENET0_GMII_RX_CLK or ENET0_GMII_RX_DV or ENET0_GMII_RX_ER or
ENET0_GMII_TX_CLK or ENET0_MDIO_I or ENET0_GMII_RXD)
begin
if(ENET0_GMII_COL | ENET0_GMII_CRS | ENET0_EXT_INTIN |
ENET0_GMII_RX_CLK | ENET0_GMII_RX_DV | ENET0_GMII_RX_ER |
ENET0_GMII_TX_CLK | ENET0_MDIO_I )
$display("[%0d] : %0s : ETHERNET Interface is not supported.",$time, DISP_ERR);
end
assign ENET1_GMII_TX_EN = 0;
assign ENET1_GMII_TX_ER = 0;
assign ENET1_MDIO_MDC = 0;
assign ENET1_MDIO_O = 0;/// confirm
assign ENET1_MDIO_T = 0;
assign ENET1_PTP_DELAY_REQ_RX = 0;
assign ENET1_PTP_DELAY_REQ_TX = 0;
assign ENET1_PTP_PDELAY_REQ_RX = 0;
assign ENET1_PTP_PDELAY_REQ_TX = 0;
assign ENET1_PTP_PDELAY_RESP_RX = 0;
assign ENET1_PTP_PDELAY_RESP_TX = 0;
assign ENET1_PTP_SYNC_FRAME_RX = 0;
assign ENET1_PTP_SYNC_FRAME_TX = 0;
assign ENET1_SOF_RX = 0;
assign ENET1_SOF_TX = 0;
assign ENET1_GMII_TXD = 0;
always@(ENET1_GMII_COL or ENET1_GMII_CRS or ENET1_EXT_INTIN or
ENET1_GMII_RX_CLK or ENET1_GMII_RX_DV or ENET1_GMII_RX_ER or
ENET1_GMII_TX_CLK or ENET1_MDIO_I or ENET1_GMII_RXD)
begin
if(ENET1_GMII_COL | ENET1_GMII_CRS | ENET1_EXT_INTIN |
ENET1_GMII_RX_CLK | ENET1_GMII_RX_DV | ENET1_GMII_RX_ER |
ENET1_GMII_TX_CLK | ENET1_MDIO_I )
$display("[%0d] : %0s : ETHERNET Interface is not supported.",$time, DISP_ERR);
end
/* ------------------------------------------- */
/* GPIO */
/* ------------------------------------------- */
assign GPIO_O = 0;
assign GPIO_T = 0;
always@(GPIO_I)
begin
if(GPIO_I !== 0)
$display("[%0d] : %0s : GPIO Interface is not supported.",$time, DISP_ERR);
end
/* ------------------------------------------- */
/* I2C */
/* ------------------------------------------- */
assign I2C0_SDA_O = 0;
assign I2C0_SDA_T = 0;
assign I2C0_SCL_O = 0;
assign I2C0_SCL_T = 0;
assign I2C1_SDA_O = 0;
assign I2C1_SDA_T = 0;
assign I2C1_SCL_O = 0;
assign I2C1_SCL_T = 0;
always@(I2C0_SDA_I or I2C0_SCL_I or I2C1_SDA_I or I2C1_SCL_I )
begin
if(I2C0_SDA_I | I2C0_SCL_I | I2C1_SDA_I | I2C1_SCL_I)
$display("[%0d] : %0s : I2C Interface is not supported.",$time, DISP_ERR);
end
/* ------------------------------------------- */
/* JTAG */
/* ------------------------------------------- */
assign PJTAG_TD_T = 0;
assign PJTAG_TD_O = 0;
always@(PJTAG_TCK or PJTAG_TMS or PJTAG_TD_I)
begin
if(PJTAG_TCK | PJTAG_TMS | PJTAG_TD_I)
$display("[%0d] : %0s : JTAG Interface is not supported.",$time, DISP_ERR);
end
/* ------------------------------------------- */
/* SDIO */
/* ------------------------------------------- */
assign SDIO0_CLK = 0;
assign SDIO0_CMD_O = 0;
assign SDIO0_CMD_T = 0;
assign SDIO0_DATA_O = 0;
assign SDIO0_DATA_T = 0;
assign SDIO0_LED = 0;
assign SDIO0_BUSPOW = 0;
assign SDIO0_BUSVOLT = 0;
always@(SDIO0_CLK_FB or SDIO0_CMD_I or SDIO0_DATA_I or SDIO0_CDN or SDIO0_WP )
begin
if(SDIO0_CLK_FB | SDIO0_CMD_I | SDIO0_CDN | SDIO0_WP )
$display("[%0d] : %0s : SDIO Interface is not supported.",$time, DISP_ERR);
end
assign SDIO1_CLK = 0;
assign SDIO1_CMD_O = 0;
assign SDIO1_CMD_T = 0;
assign SDIO1_DATA_O = 0;
assign SDIO1_DATA_T = 0;
assign SDIO1_LED = 0;
assign SDIO1_BUSPOW = 0;
assign SDIO1_BUSVOLT = 0;
always@(SDIO1_CLK_FB or SDIO1_CMD_I or SDIO1_DATA_I or SDIO1_CDN or SDIO1_WP )
begin
if(SDIO1_CLK_FB | SDIO1_CMD_I | SDIO1_CDN | SDIO1_WP )
$display("[%0d] : %0s : SDIO Interface is not supported.",$time, DISP_ERR);
end
/* ------------------------------------------- */
/* SPI */
/* ------------------------------------------- */
assign SPI0_SCLK_O = 0;
assign SPI0_SCLK_T = 0;
assign SPI0_MOSI_O = 0;
assign SPI0_MOSI_T = 0;
assign SPI0_MISO_O = 0;
assign SPI0_MISO_T = 0;
assign SPI0_SS_O = 0; /// confirm
assign SPI0_SS1_O = 0;/// confirm
assign SPI0_SS2_O = 0;/// confirm
assign SPI0_SS_T = 0;
always@(SPI0_SCLK_I or SPI0_MOSI_I or SPI0_MISO_I or SPI0_SS_I)
begin
if(SPI0_SCLK_I | SPI0_MOSI_I | SPI0_MISO_I | SPI0_SS_I)
$display("[%0d] : %0s : SPI Interface is not supported.",$time, DISP_ERR);
end
assign SPI1_SCLK_O = 0;
assign SPI1_SCLK_T = 0;
assign SPI1_MOSI_O = 0;
assign SPI1_MOSI_T = 0;
assign SPI1_MISO_O = 0;
assign SPI1_MISO_T = 0;
assign SPI1_SS_O = 0;
assign SPI1_SS1_O = 0;
assign SPI1_SS2_O = 0;
assign SPI1_SS_T = 0;
always@(SPI1_SCLK_I or SPI1_MOSI_I or SPI1_MISO_I or SPI1_SS_I)
begin
if(SPI1_SCLK_I | SPI1_MOSI_I | SPI1_MISO_I | SPI1_SS_I)
$display("[%0d] : %0s : SPI Interface is not supported.",$time, DISP_ERR);
end
/* ------------------------------------------- */
/* UART */
/* ------------------------------------------- */
/// confirm
assign UART0_DTRN = 0;
assign UART0_RTSN = 0;
assign UART0_TX = 0;
always@(UART0_CTSN or UART0_DCDN or UART0_DSRN or UART0_RIN or UART0_RX)
begin
if(UART0_CTSN | UART0_DCDN | UART0_DSRN | UART0_RIN | UART0_RX)
$display("[%0d] : %0s : UART Interface is not supported.",$time, DISP_ERR);
end
assign UART1_DTRN = 0;
assign UART1_RTSN = 0;
assign UART1_TX = 0;
always@(UART1_CTSN or UART1_DCDN or UART1_DSRN or UART1_RIN or UART1_RX)
begin
if(UART1_CTSN | UART1_DCDN | UART1_DSRN | UART1_RIN | UART1_RX)
$display("[%0d] : %0s : UART Interface is not supported.",$time, DISP_ERR);
end
/* ------------------------------------------- */
/* TTC */
/* ------------------------------------------- */
assign TTC0_WAVE0_OUT = 0;
assign TTC0_WAVE1_OUT = 0;
assign TTC0_WAVE2_OUT = 0;
always@(TTC0_CLK0_IN or TTC0_CLK1_IN or TTC0_CLK2_IN)
begin
if(TTC0_CLK0_IN | TTC0_CLK1_IN | TTC0_CLK2_IN)
$display("[%0d] : %0s : TTC Interface is not supported.",$time, DISP_ERR);
end
assign TTC1_WAVE0_OUT = 0;
assign TTC1_WAVE1_OUT = 0;
assign TTC1_WAVE2_OUT = 0;
always@(TTC1_CLK0_IN or TTC1_CLK1_IN or TTC1_CLK2_IN)
begin
if(TTC1_CLK0_IN | TTC1_CLK1_IN | TTC1_CLK2_IN)
$display("[%0d] : %0s : TTC Interface is not supported.",$time, DISP_ERR);
end
/* ------------------------------------------- */
/* WDT */
/* ------------------------------------------- */
assign WDT_RST_OUT = 0;
always@(WDT_CLK_IN)
begin
if(WDT_CLK_IN)
$display("[%0d] : %0s : WDT Interface is not supported.",$time, DISP_ERR);
end
/* ------------------------------------------- */
/* TRACE */
/* ------------------------------------------- */
assign TRACE_CTL = 0;
assign TRACE_DATA = 0;
always@(TRACE_CLK)
begin
if(TRACE_CLK)
$display("[%0d] : %0s : TRACE Interface is not supported.",$time, DISP_ERR);
end
/* ------------------------------------------- */
/* USB */
/* ------------------------------------------- */
assign USB0_PORT_INDCTL = 0;
assign USB0_VBUS_PWRSELECT = 0;
always@(USB0_VBUS_PWRFAULT)
begin
if(USB0_VBUS_PWRFAULT)
$display("[%0d] : %0s : USB Interface is not supported.",$time, DISP_ERR);
end
assign USB1_PORT_INDCTL = 0;
assign USB1_VBUS_PWRSELECT = 0;
always@(USB1_VBUS_PWRFAULT)
begin
if(USB1_VBUS_PWRFAULT)
$display("[%0d] : %0s : USB Interface is not supported.",$time, DISP_ERR);
end
always@(SRAM_INTIN)
begin
if(SRAM_INTIN)
$display("[%0d] : %0s : SRAM_INTIN is not supported.",$time, DISP_ERR);
end
/* ------------------------------------------- */
/* DMA */
/* ------------------------------------------- */
assign DMA0_DATYPE = 0;
assign DMA0_DAVALID = 0;
assign DMA0_DRREADY = 0;
assign DMA0_RSTN = 0;
always@(DMA0_ACLK or DMA0_DAREADY or DMA0_DRLAST or DMA0_DRVALID or DMA0_DRTYPE)
begin
if(DMA0_ACLK | DMA0_DAREADY | DMA0_DRLAST | DMA0_DRVALID | DMA0_DRTYPE)
$display("[%0d] : %0s : DMA Interface is not supported.",$time, DISP_ERR);
end
assign DMA1_DATYPE = 0;
assign DMA1_DAVALID = 0;
assign DMA1_DRREADY = 0;
assign DMA1_RSTN = 0;
always@(DMA1_ACLK or DMA1_DAREADY or DMA1_DRLAST or DMA1_DRVALID or DMA1_DRTYPE)
begin
if(DMA1_ACLK | DMA1_DAREADY | DMA1_DRLAST | DMA1_DRVALID | DMA1_DRTYPE)
$display("[%0d] : %0s : DMA Interface is not supported.",$time, DISP_ERR);
end
assign DMA2_DATYPE = 0;
assign DMA2_DAVALID = 0;
assign DMA2_DRREADY = 0;
assign DMA2_RSTN = 0;
always@(DMA2_ACLK or DMA2_DAREADY or DMA2_DRLAST or DMA2_DRVALID or DMA2_DRTYPE)
begin
if(DMA2_ACLK | DMA2_DAREADY | DMA2_DRLAST | DMA2_DRVALID | DMA2_DRTYPE)
$display("[%0d] : %0s : DMA Interface is not supported.",$time, DISP_ERR);
end
assign DMA3_DATYPE = 0;
assign DMA3_DAVALID = 0;
assign DMA3_DRREADY = 0;
assign DMA3_RSTN = 0;
always@(DMA3_ACLK or DMA3_DAREADY or DMA3_DRLAST or DMA3_DRVALID or DMA3_DRTYPE)
begin
if(DMA3_ACLK | DMA3_DAREADY | DMA3_DRLAST | DMA3_DRVALID | DMA3_DRTYPE)
$display("[%0d] : %0s : DMA Interface is not supported.",$time, DISP_ERR);
end
/* ------------------------------------------- */
/* FTM */
/* ------------------------------------------- */
assign FTMT_F2P_TRIGACK = 0;
assign FTMT_P2F_TRIG = 0;
assign FTMT_P2F_DEBUG = 0;
always@(FTMD_TRACEIN_DATA or FTMD_TRACEIN_VALID or FTMD_TRACEIN_CLK or
FTMD_TRACEIN_ATID or FTMT_F2P_TRIG or FTMT_F2P_DEBUG or FTMT_P2F_TRIGACK)
begin
if(FTMD_TRACEIN_DATA | FTMD_TRACEIN_VALID | FTMD_TRACEIN_CLK | FTMD_TRACEIN_ATID | FTMT_F2P_TRIG | FTMT_F2P_DEBUG | FTMT_P2F_TRIGACK)
$display("[%0d] : %0s : FTM Interface is not supported.",$time, DISP_ERR);
end
/* ------------------------------------------- */
/* EVENT */
/* ------------------------------------------- */
assign EVENT_EVENTO = 0;
assign EVENT_STANDBYWFE = 0;
assign EVENT_STANDBYWFI = 0;
always@(EVENT_EVENTI)
begin
if(EVENT_EVENTI)
$display("[%0d] : %0s : EVENT Interface is not supported.",$time, DISP_ERR);
end
/* ------------------------------------------- */
/* MIO */
/* ------------------------------------------- */
always@(MIO)
begin
if(MIO !== 0)
$display("[%0d] : %0s : MIO is not supported.",$time, DISP_ERR);
end
/* ------------------------------------------- */
/* FCLK_TRIG */
/* ------------------------------------------- */
always@(FCLK_CLKTRIG3_N or FCLK_CLKTRIG2_N or FCLK_CLKTRIG1_N or FCLK_CLKTRIG0_N )
begin
if(FCLK_CLKTRIG3_N | FCLK_CLKTRIG2_N | FCLK_CLKTRIG1_N | FCLK_CLKTRIG0_N )
$display("[%0d] : %0s : FCLK_TRIG is not supported.",$time, DISP_ERR);
end
/* ------------------------------------------- */
/* MISC */
/* ------------------------------------------- */
always@(FPGA_IDLE_N)
begin
if(FPGA_IDLE_N)
$display("[%0d] : %0s : FPGA_IDLE_N is not supported.",$time, DISP_ERR);
end
always@(DDR_ARB)
begin
if(DDR_ARB !== 0)
$display("[%0d] : %0s : DDR_ARB is not supported.",$time, DISP_ERR);
end
always@(Core0_nFIQ or Core0_nIRQ or Core1_nFIQ or Core1_nIRQ )
begin
if(Core0_nFIQ | Core0_nIRQ | Core1_nFIQ | Core1_nIRQ)
$display("[%0d] : %0s : CORE FIQ,IRQ is not supported.",$time, DISP_ERR);
end
/* ------------------------------------------- */
/* DDR */
/* ------------------------------------------- */
assign DDR_WEB = 0;
always@(DDR_Clk or DDR_CS_n)
begin
if(!DDR_CS_n)
$display("[%0d] : %0s : EXTERNAL DDR is not supported.",$time, DISP_ERR);
end
/* ------------------------------------------- */
/* IRQ_P2F */
/* ------------------------------------------- */
assign IRQ_P2F_DMAC_ABORT = 0;
assign IRQ_P2F_DMAC0 = 0;
assign IRQ_P2F_DMAC1 = 0;
assign IRQ_P2F_DMAC2 = 0;
assign IRQ_P2F_DMAC3 = 0;
assign IRQ_P2F_DMAC4 = 0;
assign IRQ_P2F_DMAC5 = 0;
assign IRQ_P2F_DMAC6 = 0;
assign IRQ_P2F_DMAC7 = 0;
assign IRQ_P2F_SMC = 0;
assign IRQ_P2F_QSPI = 0;
assign IRQ_P2F_CTI = 0;
assign IRQ_P2F_GPIO = 0;
assign IRQ_P2F_USB0 = 0;
assign IRQ_P2F_ENET0 = 0;
assign IRQ_P2F_ENET_WAKE0 = 0;
assign IRQ_P2F_SDIO0 = 0;
assign IRQ_P2F_I2C0 = 0;
assign IRQ_P2F_SPI0 = 0;
assign IRQ_P2F_UART0 = 0;
assign IRQ_P2F_CAN0 = 0;
assign IRQ_P2F_USB1 = 0;
assign IRQ_P2F_ENET1 = 0;
assign IRQ_P2F_ENET_WAKE1 = 0;
assign IRQ_P2F_SDIO1 = 0;
assign IRQ_P2F_I2C1 = 0;
assign IRQ_P2F_SPI1 = 0;
assign IRQ_P2F_UART1 = 0;
assign IRQ_P2F_CAN1 = 0;
|
Subsets and Splits
No saved queries yet
Save your SQL queries to embed, download, and access them later. Queries will appear here once saved.