File size: 7,491 Bytes
ee02bc0
 
 
 
ed3e9f5
ee02bc0
 
 
 
 
 
ed3e9f5
ee02bc0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ed3e9f5
ee02bc0
 
 
 
 
 
 
 
 
 
 
 
 
ed3e9f5
ee02bc0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ed3e9f5
ee02bc0
 
 
 
 
 
 
1cedd4e
 
ee02bc0
 
 
 
ed3e9f5
ee02bc0
 
 
 
d428bf5
ed3e9f5
ee02bc0
 
1cedd4e
d428bf5
 
ed3e9f5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1cedd4e
ee02bc0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": 2,
   "id": "bbd1b7a1-dbb7-4243-99e0-70a6cd47d573",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "bcc2f5482d8342a7915cecf9e7855531",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "VBox(children=(HTML(value='<center> <img\\nsrc=https://huggingface.co/front/assets/huggingface_logo-noborder.sv…"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
   "source": [
    "from huggingface_hub import notebook_login\n",
    "notebook_login()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 13,
   "id": "306958c8-4603-4b9b-b941-6a824777164d",
   "metadata": {},
   "outputs": [],
   "source": [
    "import librosa\n",
    "import math\n",
    "import pyarrow as pa\n",
    "import pandas as pd\n",
    "from datasets import load_dataset_builder, SplitGenerator, Split, Dataset, table"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 14,
   "id": "4ac69d3b-38c6-49af-aefe-63755bf3f0e9",
   "metadata": {},
   "outputs": [],
   "source": [
    "SAMPLE_RATE = 16_000\n",
    "MAX_LENGTH_IN_SECONDS = 20.0\n",
    "\n",
    "def add_audio(file, words):\n",
    "    audio, _ = librosa.load(file, sr=SAMPLE_RATE)\n",
    "    return {\n",
    "        \"audio\": audio,\n",
    "    }"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 15,
   "id": "9192b631-388f-4306-b975-9ba770b9dc4d",
   "metadata": {},
   "outputs": [],
   "source": [
    "audio, _ = librosa.load('clips/1.wav', sr=SAMPLE_RATE)\n",
    "    \n",
    "df = pd.DataFrame({\n",
    "    'audio': [audio],\n",
    "    'text': ['bjorn.'],\n",
    "})\n",
    "tbl = table.InMemoryTable(\n",
    "    pa.Table.from_pandas(df)\n",
    ")\n",
    "ds = Dataset(tbl, split=[\"test\", \"training\"])"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 17,
   "id": "f37d68ea-cbe7-4dd1-8215-f9449fe047f4",
   "metadata": {},
   "outputs": [],
   "source": [
    "ds.save_to_disk(\"data/test/\")\n",
    "ds.save_to_disk(\"data/training/\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 12,
   "id": "bac1a601-a7a1-434e-917d-0e372684f56b",
   "metadata": {},
   "outputs": [
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "Resuming upload of the dataset shards.\n"
     ]
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "61cfa14ccb514ff4961072752bc3d4da",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "Pushing dataset shards to the dataset hub:   0%|          | 0/1 [00:00<?, ?it/s]"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "5803c7d37ce1426794af8ad65f618275",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "Downloading metadata:   0%|          | 0.00/1.20k [00:00<?, ?B/s]"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "Updating downloaded metadata with the new split.\n"
     ]
    },
    {
     "ename": "ValueError",
     "evalue": "Split ['test', 'training'] already present",
     "output_type": "error",
     "traceback": [
      "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
      "\u001b[0;31mValueError\u001b[0m                                Traceback (most recent call last)",
      "Input \u001b[0;32mIn [12]\u001b[0m, in \u001b[0;36m<cell line: 1>\u001b[0;34m()\u001b[0m\n\u001b[0;32m----> 1\u001b[0m \u001b[43mds\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mpush_to_hub\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43msharpcoder/bjorn_training\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m)\u001b[49m\n",
      "File \u001b[0;32m~/.local/lib/python3.10/site-packages/datasets/arrow_dataset.py:4342\u001b[0m, in \u001b[0;36mDataset.push_to_hub\u001b[0;34m(self, repo_id, split, private, token, branch, max_shard_size, shard_size, embed_external_files)\u001b[0m\n\u001b[1;32m   4340\u001b[0m         repo_info\u001b[38;5;241m.\u001b[39mdataset_size \u001b[38;5;241m+\u001b[39m\u001b[38;5;241m=\u001b[39m dataset_nbytes\n\u001b[1;32m   4341\u001b[0m         repo_info\u001b[38;5;241m.\u001b[39msize_in_bytes \u001b[38;5;241m=\u001b[39m repo_info\u001b[38;5;241m.\u001b[39mdownload_size \u001b[38;5;241m+\u001b[39m repo_info\u001b[38;5;241m.\u001b[39mdataset_size\n\u001b[0;32m-> 4342\u001b[0m         repo_info\u001b[38;5;241m.\u001b[39msplits[split] \u001b[38;5;241m=\u001b[39m SplitInfo(\n\u001b[1;32m   4343\u001b[0m             split, num_bytes\u001b[38;5;241m=\u001b[39mdataset_nbytes, num_examples\u001b[38;5;241m=\u001b[39m\u001b[38;5;28mlen\u001b[39m(\u001b[38;5;28mself\u001b[39m), dataset_name\u001b[38;5;241m=\u001b[39mdataset_name\n\u001b[1;32m   4344\u001b[0m         )\n\u001b[1;32m   4345\u001b[0m         info_to_dump \u001b[38;5;241m=\u001b[39m repo_info\n\u001b[1;32m   4346\u001b[0m buffer \u001b[38;5;241m=\u001b[39m BytesIO()\n",
      "File \u001b[0;32m~/.local/lib/python3.10/site-packages/datasets/splits.py:523\u001b[0m, in \u001b[0;36mSplitDict.__setitem__\u001b[0;34m(self, key, value)\u001b[0m\n\u001b[1;32m    521\u001b[0m     \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mValueError\u001b[39;00m(\u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mCannot add elem. (key mismatch: \u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;132;01m{\u001b[39;00mkey\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124m != \u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;132;01m{\u001b[39;00mvalue\u001b[38;5;241m.\u001b[39mname\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124m)\u001b[39m\u001b[38;5;124m\"\u001b[39m)\n\u001b[1;32m    522\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m key \u001b[38;5;129;01min\u001b[39;00m \u001b[38;5;28mself\u001b[39m:\n\u001b[0;32m--> 523\u001b[0m     \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mValueError\u001b[39;00m(\u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mSplit \u001b[39m\u001b[38;5;132;01m{\u001b[39;00mkey\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m already present\u001b[39m\u001b[38;5;124m\"\u001b[39m)\n\u001b[1;32m    524\u001b[0m \u001b[38;5;28msuper\u001b[39m()\u001b[38;5;241m.\u001b[39m\u001b[38;5;21m__setitem__\u001b[39m(key, value)\n",
      "\u001b[0;31mValueError\u001b[0m: Split ['test', 'training'] already present"
     ]
    }
   ],
   "source": [
    "# ds.push_to_hub(\"sharpcoder/bjorn_training\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "b070517c-2dfc-4f1b-baed-1748a9d5f088",
   "metadata": {},
   "outputs": [],
   "source": []
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3 (ipykernel)",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.10.4"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}