File size: 2,685 Bytes
ee02bc0
 
 
 
1cedd4e
ee02bc0
 
 
 
 
 
1cedd4e
ee02bc0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1cedd4e
ee02bc0
 
 
 
 
 
 
 
 
 
 
 
 
1cedd4e
ee02bc0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1cedd4e
ee02bc0
 
 
 
 
 
 
1cedd4e
 
ee02bc0
 
 
 
 
 
 
 
 
1cedd4e
ee02bc0
 
 
1cedd4e
 
 
ee02bc0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": 1,
   "id": "bbd1b7a1-dbb7-4243-99e0-70a6cd47d573",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "fbfb4b038e344f68b344e0998d42112f",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "VBox(children=(HTML(value='<center> <img\\nsrc=https://huggingface.co/front/assets/huggingface_logo-noborder.sv…"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
   "source": [
    "from huggingface_hub import notebook_login\n",
    "notebook_login()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "id": "306958c8-4603-4b9b-b941-6a824777164d",
   "metadata": {},
   "outputs": [],
   "source": [
    "import librosa\n",
    "import math\n",
    "import pyarrow as pa\n",
    "import pandas as pd\n",
    "from datasets import load_dataset_builder, SplitGenerator, Split, Dataset, table"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "id": "4ac69d3b-38c6-49af-aefe-63755bf3f0e9",
   "metadata": {},
   "outputs": [],
   "source": [
    "SAMPLE_RATE = 16_000\n",
    "MAX_LENGTH_IN_SECONDS = 20.0\n",
    "\n",
    "def add_audio(file, words):\n",
    "    audio, _ = librosa.load(file, sr=SAMPLE_RATE)\n",
    "    return {\n",
    "        \"audio\": audio,\n",
    "    }"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 10,
   "id": "9192b631-388f-4306-b975-9ba770b9dc4d",
   "metadata": {},
   "outputs": [],
   "source": [
    "audio, _ = librosa.load('clips/1.wav', sr=SAMPLE_RATE)\n",
    "    \n",
    "df = pd.DataFrame({\n",
    "    'audio': [audio],\n",
    "    'text': ['bjorn.'],\n",
    "})\n",
    "tbl = table.InMemoryTable(\n",
    "    pa.Table.from_pandas(df)\n",
    ")\n",
    "ds = Dataset(tbl)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 15,
   "id": "bac1a601-a7a1-434e-917d-0e372684f56b",
   "metadata": {},
   "outputs": [],
   "source": [
    "ds.save_to_disk('.')"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "b070517c-2dfc-4f1b-baed-1748a9d5f088",
   "metadata": {},
   "outputs": [],
   "source": []
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3 (ipykernel)",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.10.4"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}