File size: 21,865 Bytes
ee02bc0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": 36,
   "id": "bbd1b7a1-dbb7-4243-99e0-70a6cd47d573",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "bc0613fcb64f4a5e8cd4ad69698f7715",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "VBox(children=(HTML(value='<center> <img\\nsrc=https://huggingface.co/front/assets/huggingface_logo-noborder.sv…"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
   "source": [
    "from huggingface_hub import notebook_login\n",
    "notebook_login()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 93,
   "id": "306958c8-4603-4b9b-b941-6a824777164d",
   "metadata": {},
   "outputs": [],
   "source": [
    "import librosa\n",
    "import math\n",
    "import pyarrow as pa\n",
    "import pandas as pd\n",
    "from datasets import load_dataset_builder, SplitGenerator, Split, Dataset, table"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 131,
   "id": "4ac69d3b-38c6-49af-aefe-63755bf3f0e9",
   "metadata": {},
   "outputs": [],
   "source": [
    "SAMPLE_RATE = 16_000\n",
    "MAX_LENGTH_IN_SECONDS = 20.0\n",
    "\n",
    "def add_audio(file, words):\n",
    "    audio, _ = librosa.load(file, sr=SAMPLE_RATE)\n",
    "    return {\n",
    "        \"audio\": audio,\n",
    "    }"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 162,
   "id": "9192b631-388f-4306-b975-9ba770b9dc4d",
   "metadata": {},
   "outputs": [],
   "source": [
    "audio, _ = librosa.load('clips/1.wav', sr=SAMPLE_RATE)\n",
    "    \n",
    "df = pd.DataFrame({\n",
    "    'audio': audio,\n",
    "})\n",
    "tbl = table.InMemoryTable(\n",
    "    pa.Table.from_pandas(df)\n",
    ")\n",
    "ds = Dataset(tbl)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 163,
   "id": "eb7979e4-c00a-4657-a1d4-b2bffd894363",
   "metadata": {},
   "outputs": [
    {
     "ename": "TypeError",
     "evalue": "Couldn't cast array of type\nlist<item: float>\nto\nfloat",
     "output_type": "error",
     "traceback": [
      "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
      "\u001b[0;31mTypeError\u001b[0m                                 Traceback (most recent call last)",
      "Input \u001b[0;32mIn [163]\u001b[0m, in \u001b[0;36m<cell line: 1>\u001b[0;34m()\u001b[0m\n\u001b[0;32m----> 1\u001b[0m \u001b[43mds\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43madd_item\u001b[49m\u001b[43m(\u001b[49m\u001b[43madd_audio\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;124;43m'\u001b[39;49m\u001b[38;5;124;43mclips/1.wav\u001b[39;49m\u001b[38;5;124;43m'\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;124;43m'\u001b[39;49m\u001b[38;5;124;43mbjorn\u001b[39;49m\u001b[38;5;124;43m'\u001b[39;49m\u001b[43m)\u001b[49m\u001b[43m)\u001b[49m\n",
      "File \u001b[0;32m~/.local/lib/python3.10/site-packages/datasets/arrow_dataset.py:518\u001b[0m, in \u001b[0;36mtransmit_format.<locals>.wrapper\u001b[0;34m(*args, **kwargs)\u001b[0m\n\u001b[1;32m    511\u001b[0m self_format \u001b[38;5;241m=\u001b[39m {\n\u001b[1;32m    512\u001b[0m     \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mtype\u001b[39m\u001b[38;5;124m\"\u001b[39m: \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_format_type,\n\u001b[1;32m    513\u001b[0m     \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mformat_kwargs\u001b[39m\u001b[38;5;124m\"\u001b[39m: \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_format_kwargs,\n\u001b[1;32m    514\u001b[0m     \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mcolumns\u001b[39m\u001b[38;5;124m\"\u001b[39m: \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_format_columns,\n\u001b[1;32m    515\u001b[0m     \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124moutput_all_columns\u001b[39m\u001b[38;5;124m\"\u001b[39m: \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_output_all_columns,\n\u001b[1;32m    516\u001b[0m }\n\u001b[1;32m    517\u001b[0m \u001b[38;5;66;03m# apply actual function\u001b[39;00m\n\u001b[0;32m--> 518\u001b[0m out: Union[\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mDataset\u001b[39m\u001b[38;5;124m\"\u001b[39m, \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mDatasetDict\u001b[39m\u001b[38;5;124m\"\u001b[39m] \u001b[38;5;241m=\u001b[39m \u001b[43mfunc\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m    519\u001b[0m datasets: List[\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mDataset\u001b[39m\u001b[38;5;124m\"\u001b[39m] \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mlist\u001b[39m(out\u001b[38;5;241m.\u001b[39mvalues()) \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28misinstance\u001b[39m(out, \u001b[38;5;28mdict\u001b[39m) \u001b[38;5;28;01melse\u001b[39;00m [out]\n\u001b[1;32m    520\u001b[0m \u001b[38;5;66;03m# re-apply format to the output\u001b[39;00m\n",
      "File \u001b[0;32m~/.local/lib/python3.10/site-packages/datasets/fingerprint.py:458\u001b[0m, in \u001b[0;36mfingerprint_transform.<locals>._fingerprint.<locals>.wrapper\u001b[0;34m(*args, **kwargs)\u001b[0m\n\u001b[1;32m    452\u001b[0m             kwargs[fingerprint_name] \u001b[38;5;241m=\u001b[39m update_fingerprint(\n\u001b[1;32m    453\u001b[0m                 \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_fingerprint, transform, kwargs_for_fingerprint\n\u001b[1;32m    454\u001b[0m             )\n\u001b[1;32m    456\u001b[0m \u001b[38;5;66;03m# Call actual function\u001b[39;00m\n\u001b[0;32m--> 458\u001b[0m out \u001b[38;5;241m=\u001b[39m \u001b[43mfunc\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m    460\u001b[0m \u001b[38;5;66;03m# Update fingerprint of in-place transforms + update in-place history of transforms\u001b[39;00m\n\u001b[1;32m    462\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m inplace:  \u001b[38;5;66;03m# update after calling func so that the fingerprint doesn't change if the function fails\u001b[39;00m\n",
      "File \u001b[0;32m~/.local/lib/python3.10/site-packages/datasets/arrow_dataset.py:4624\u001b[0m, in \u001b[0;36mDataset.add_item\u001b[0;34m(self, item, new_fingerprint)\u001b[0m\n\u001b[1;32m   4619\u001b[0m dset_features, item_features \u001b[38;5;241m=\u001b[39m _align_features([\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mfeatures, Features\u001b[38;5;241m.\u001b[39mfrom_arrow_schema(item_table\u001b[38;5;241m.\u001b[39mschema)])\n\u001b[1;32m   4620\u001b[0m \u001b[38;5;66;03m# Cast to align the schemas of the tables and concatenate the tables\u001b[39;00m\n\u001b[1;32m   4621\u001b[0m table \u001b[38;5;241m=\u001b[39m concat_tables(\n\u001b[1;32m   4622\u001b[0m     [\n\u001b[1;32m   4623\u001b[0m         \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_data\u001b[38;5;241m.\u001b[39mcast(dset_features\u001b[38;5;241m.\u001b[39marrow_schema) \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mfeatures \u001b[38;5;241m!=\u001b[39m dset_features \u001b[38;5;28;01melse\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_data,\n\u001b[0;32m-> 4624\u001b[0m         \u001b[43mitem_table\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mcast\u001b[49m\u001b[43m(\u001b[49m\u001b[43mitem_features\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43marrow_schema\u001b[49m\u001b[43m)\u001b[49m,\n\u001b[1;32m   4625\u001b[0m     ]\n\u001b[1;32m   4626\u001b[0m )\n\u001b[1;32m   4627\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_indices \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m:\n\u001b[1;32m   4628\u001b[0m     indices_table \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mNone\u001b[39;00m\n",
      "File \u001b[0;32m~/.local/lib/python3.10/site-packages/datasets/table.py:834\u001b[0m, in \u001b[0;36mInMemoryTable.cast\u001b[0;34m(self, *args, **kwargs)\u001b[0m\n\u001b[1;32m    821\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21mcast\u001b[39m(\u001b[38;5;28mself\u001b[39m, \u001b[38;5;241m*\u001b[39margs, \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkwargs):\n\u001b[1;32m    822\u001b[0m     \u001b[38;5;124;03m\"\"\"\u001b[39;00m\n\u001b[1;32m    823\u001b[0m \u001b[38;5;124;03m    Cast table values to another schema\u001b[39;00m\n\u001b[1;32m    824\u001b[0m \n\u001b[0;32m   (...)\u001b[0m\n\u001b[1;32m    832\u001b[0m \u001b[38;5;124;03m        :class:`datasets.table.Table`:\u001b[39;00m\n\u001b[1;32m    833\u001b[0m \u001b[38;5;124;03m    \"\"\"\u001b[39;00m\n\u001b[0;32m--> 834\u001b[0m     \u001b[38;5;28;01mreturn\u001b[39;00m InMemoryTable(\u001b[43mtable_cast\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mtable\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m)\n",
      "File \u001b[0;32m~/.local/lib/python3.10/site-packages/datasets/table.py:1897\u001b[0m, in \u001b[0;36mtable_cast\u001b[0;34m(table, schema)\u001b[0m\n\u001b[1;32m   1885\u001b[0m \u001b[38;5;124;03m\"\"\"Improved version of pa.Table.cast.\u001b[39;00m\n\u001b[1;32m   1886\u001b[0m \n\u001b[1;32m   1887\u001b[0m \u001b[38;5;124;03mIt supports casting to feature types stored in the schema metadata.\u001b[39;00m\n\u001b[0;32m   (...)\u001b[0m\n\u001b[1;32m   1894\u001b[0m \u001b[38;5;124;03m    table (:obj:`pyarrow.Table`): the casted table\u001b[39;00m\n\u001b[1;32m   1895\u001b[0m \u001b[38;5;124;03m\"\"\"\u001b[39;00m\n\u001b[1;32m   1896\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m table\u001b[38;5;241m.\u001b[39mschema \u001b[38;5;241m!=\u001b[39m schema:\n\u001b[0;32m-> 1897\u001b[0m     \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mcast_table_to_schema\u001b[49m\u001b[43m(\u001b[49m\u001b[43mtable\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mschema\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m   1898\u001b[0m \u001b[38;5;28;01melif\u001b[39;00m table\u001b[38;5;241m.\u001b[39mschema\u001b[38;5;241m.\u001b[39mmetadata \u001b[38;5;241m!=\u001b[39m schema\u001b[38;5;241m.\u001b[39mmetadata:\n\u001b[1;32m   1899\u001b[0m     \u001b[38;5;28;01mreturn\u001b[39;00m table\u001b[38;5;241m.\u001b[39mreplace_schema_metadata(schema\u001b[38;5;241m.\u001b[39mmetadata)\n",
      "File \u001b[0;32m~/.local/lib/python3.10/site-packages/datasets/table.py:1880\u001b[0m, in \u001b[0;36mcast_table_to_schema\u001b[0;34m(table, schema)\u001b[0m\n\u001b[1;32m   1878\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28msorted\u001b[39m(table\u001b[38;5;241m.\u001b[39mcolumn_names) \u001b[38;5;241m!=\u001b[39m \u001b[38;5;28msorted\u001b[39m(features):\n\u001b[1;32m   1879\u001b[0m     \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mValueError\u001b[39;00m(\u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mCouldn\u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mt cast\u001b[39m\u001b[38;5;130;01m\\n\u001b[39;00m\u001b[38;5;132;01m{\u001b[39;00mtable\u001b[38;5;241m.\u001b[39mschema\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;130;01m\\n\u001b[39;00m\u001b[38;5;124mto\u001b[39m\u001b[38;5;130;01m\\n\u001b[39;00m\u001b[38;5;132;01m{\u001b[39;00mfeatures\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;130;01m\\n\u001b[39;00m\u001b[38;5;124mbecause column names don\u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mt match\u001b[39m\u001b[38;5;124m\"\u001b[39m)\n\u001b[0;32m-> 1880\u001b[0m arrays \u001b[38;5;241m=\u001b[39m [cast_array_to_feature(table[name], feature) \u001b[38;5;28;01mfor\u001b[39;00m name, feature \u001b[38;5;129;01min\u001b[39;00m features\u001b[38;5;241m.\u001b[39mitems()]\n\u001b[1;32m   1881\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m pa\u001b[38;5;241m.\u001b[39mTable\u001b[38;5;241m.\u001b[39mfrom_arrays(arrays, schema\u001b[38;5;241m=\u001b[39mschema)\n",
      "File \u001b[0;32m~/.local/lib/python3.10/site-packages/datasets/table.py:1880\u001b[0m, in \u001b[0;36m<listcomp>\u001b[0;34m(.0)\u001b[0m\n\u001b[1;32m   1878\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28msorted\u001b[39m(table\u001b[38;5;241m.\u001b[39mcolumn_names) \u001b[38;5;241m!=\u001b[39m \u001b[38;5;28msorted\u001b[39m(features):\n\u001b[1;32m   1879\u001b[0m     \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mValueError\u001b[39;00m(\u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mCouldn\u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mt cast\u001b[39m\u001b[38;5;130;01m\\n\u001b[39;00m\u001b[38;5;132;01m{\u001b[39;00mtable\u001b[38;5;241m.\u001b[39mschema\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;130;01m\\n\u001b[39;00m\u001b[38;5;124mto\u001b[39m\u001b[38;5;130;01m\\n\u001b[39;00m\u001b[38;5;132;01m{\u001b[39;00mfeatures\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;130;01m\\n\u001b[39;00m\u001b[38;5;124mbecause column names don\u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mt match\u001b[39m\u001b[38;5;124m\"\u001b[39m)\n\u001b[0;32m-> 1880\u001b[0m arrays \u001b[38;5;241m=\u001b[39m [\u001b[43mcast_array_to_feature\u001b[49m\u001b[43m(\u001b[49m\u001b[43mtable\u001b[49m\u001b[43m[\u001b[49m\u001b[43mname\u001b[49m\u001b[43m]\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mfeature\u001b[49m\u001b[43m)\u001b[49m \u001b[38;5;28;01mfor\u001b[39;00m name, feature \u001b[38;5;129;01min\u001b[39;00m features\u001b[38;5;241m.\u001b[39mitems()]\n\u001b[1;32m   1881\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m pa\u001b[38;5;241m.\u001b[39mTable\u001b[38;5;241m.\u001b[39mfrom_arrays(arrays, schema\u001b[38;5;241m=\u001b[39mschema)\n",
      "File \u001b[0;32m~/.local/lib/python3.10/site-packages/datasets/table.py:1673\u001b[0m, in \u001b[0;36m_wrap_for_chunked_arrays.<locals>.wrapper\u001b[0;34m(array, *args, **kwargs)\u001b[0m\n\u001b[1;32m   1671\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21mwrapper\u001b[39m(array, \u001b[38;5;241m*\u001b[39margs, \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkwargs):\n\u001b[1;32m   1672\u001b[0m     \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28misinstance\u001b[39m(array, pa\u001b[38;5;241m.\u001b[39mChunkedArray):\n\u001b[0;32m-> 1673\u001b[0m         \u001b[38;5;28;01mreturn\u001b[39;00m pa\u001b[38;5;241m.\u001b[39mchunked_array([func(chunk, \u001b[38;5;241m*\u001b[39margs, \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkwargs) \u001b[38;5;28;01mfor\u001b[39;00m chunk \u001b[38;5;129;01min\u001b[39;00m array\u001b[38;5;241m.\u001b[39mchunks])\n\u001b[1;32m   1674\u001b[0m     \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[1;32m   1675\u001b[0m         \u001b[38;5;28;01mreturn\u001b[39;00m func(array, \u001b[38;5;241m*\u001b[39margs, \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkwargs)\n",
      "File \u001b[0;32m~/.local/lib/python3.10/site-packages/datasets/table.py:1673\u001b[0m, in \u001b[0;36m<listcomp>\u001b[0;34m(.0)\u001b[0m\n\u001b[1;32m   1671\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21mwrapper\u001b[39m(array, \u001b[38;5;241m*\u001b[39margs, \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkwargs):\n\u001b[1;32m   1672\u001b[0m     \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28misinstance\u001b[39m(array, pa\u001b[38;5;241m.\u001b[39mChunkedArray):\n\u001b[0;32m-> 1673\u001b[0m         \u001b[38;5;28;01mreturn\u001b[39;00m pa\u001b[38;5;241m.\u001b[39mchunked_array([\u001b[43mfunc\u001b[49m\u001b[43m(\u001b[49m\u001b[43mchunk\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m \u001b[38;5;28;01mfor\u001b[39;00m chunk \u001b[38;5;129;01min\u001b[39;00m array\u001b[38;5;241m.\u001b[39mchunks])\n\u001b[1;32m   1674\u001b[0m     \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[1;32m   1675\u001b[0m         \u001b[38;5;28;01mreturn\u001b[39;00m func(array, \u001b[38;5;241m*\u001b[39margs, \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkwargs)\n",
      "File \u001b[0;32m~/.local/lib/python3.10/site-packages/datasets/table.py:1845\u001b[0m, in \u001b[0;36mcast_array_to_feature\u001b[0;34m(array, feature, allow_number_to_str)\u001b[0m\n\u001b[1;32m   1843\u001b[0m     \u001b[38;5;28;01mreturn\u001b[39;00m array_cast(array, get_nested_type(feature), allow_number_to_str\u001b[38;5;241m=\u001b[39mallow_number_to_str)\n\u001b[1;32m   1844\u001b[0m \u001b[38;5;28;01melif\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28misinstance\u001b[39m(feature, (Sequence, \u001b[38;5;28mdict\u001b[39m, \u001b[38;5;28mlist\u001b[39m, \u001b[38;5;28mtuple\u001b[39m)):\n\u001b[0;32m-> 1845\u001b[0m     \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43marray_cast\u001b[49m\u001b[43m(\u001b[49m\u001b[43marray\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mfeature\u001b[49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mallow_number_to_str\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mallow_number_to_str\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m   1846\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mTypeError\u001b[39;00m(\u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mCouldn\u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mt cast array of type\u001b[39m\u001b[38;5;130;01m\\n\u001b[39;00m\u001b[38;5;132;01m{\u001b[39;00marray\u001b[38;5;241m.\u001b[39mtype\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;130;01m\\n\u001b[39;00m\u001b[38;5;124mto\u001b[39m\u001b[38;5;130;01m\\n\u001b[39;00m\u001b[38;5;132;01m{\u001b[39;00mfeature\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m\"\u001b[39m)\n",
      "File \u001b[0;32m~/.local/lib/python3.10/site-packages/datasets/table.py:1675\u001b[0m, in \u001b[0;36m_wrap_for_chunked_arrays.<locals>.wrapper\u001b[0;34m(array, *args, **kwargs)\u001b[0m\n\u001b[1;32m   1673\u001b[0m     \u001b[38;5;28;01mreturn\u001b[39;00m pa\u001b[38;5;241m.\u001b[39mchunked_array([func(chunk, \u001b[38;5;241m*\u001b[39margs, \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkwargs) \u001b[38;5;28;01mfor\u001b[39;00m chunk \u001b[38;5;129;01min\u001b[39;00m array\u001b[38;5;241m.\u001b[39mchunks])\n\u001b[1;32m   1674\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[0;32m-> 1675\u001b[0m     \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mfunc\u001b[49m\u001b[43m(\u001b[49m\u001b[43marray\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n",
      "File \u001b[0;32m~/.local/lib/python3.10/site-packages/datasets/table.py:1755\u001b[0m, in \u001b[0;36marray_cast\u001b[0;34m(array, pa_type, allow_number_to_str)\u001b[0m\n\u001b[1;32m   1753\u001b[0m         \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mTypeError\u001b[39;00m(\u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mCouldn\u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mt cast array of type \u001b[39m\u001b[38;5;132;01m{\u001b[39;00marray\u001b[38;5;241m.\u001b[39mtype\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m to \u001b[39m\u001b[38;5;132;01m{\u001b[39;00mpa_type\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m\"\u001b[39m)\n\u001b[1;32m   1754\u001b[0m     \u001b[38;5;28;01mreturn\u001b[39;00m array\u001b[38;5;241m.\u001b[39mcast(pa_type)\n\u001b[0;32m-> 1755\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mTypeError\u001b[39;00m(\u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mCouldn\u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mt cast array of type\u001b[39m\u001b[38;5;130;01m\\n\u001b[39;00m\u001b[38;5;132;01m{\u001b[39;00marray\u001b[38;5;241m.\u001b[39mtype\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;130;01m\\n\u001b[39;00m\u001b[38;5;124mto\u001b[39m\u001b[38;5;130;01m\\n\u001b[39;00m\u001b[38;5;132;01m{\u001b[39;00mpa_type\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m\"\u001b[39m)\n",
      "\u001b[0;31mTypeError\u001b[0m: Couldn't cast array of type\nlist<item: float>\nto\nfloat"
     ]
    }
   ],
   "source": [
    "ds.add_item(add_audio('clips/1.wav', 'bjorn'))"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "bac1a601-a7a1-434e-917d-0e372684f56b",
   "metadata": {},
   "outputs": [],
   "source": []
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "b070517c-2dfc-4f1b-baed-1748a9d5f088",
   "metadata": {},
   "outputs": [],
   "source": []
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3 (ipykernel)",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.10.4"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}