text
stringlengths 0
2.2M
|
---|
int kT, int kW, int kH,
|
int dT, int dW, int dH,
|
int pT, int pW, int pH,
|
int dilationT, int dilationW, int dilationH)
|
{
|
at::parallel_for(0, nbatch, 0, [&](int64_t start, int64_t end) {
|
for (const auto p : c10::irange(start, end)) {
|
max_pool3d_with_indices_single_out_frame(
|
input_data + p * istride,
|
output_data + p * ostride,
|
indices_data + p * ostride,
|
nslices,
|
itime, iwidth, iheight,
|
otime, owidth, oheight,
|
kT, kW, kH,
|
dT, dW, dH,
|
pT, pW, pH,
|
dilationT, dilationW, dilationH
|
);
|
}
|
});
|
}
|
void max_pool3d_with_indices_out_cpu_template(
|
Tensor& output,
|
Tensor& indices,
|
const Tensor& input_,
|
IntArrayRef kernel_size,
|
IntArrayRef stride,
|
IntArrayRef padding,
|
IntArrayRef dilation,
|
bool ceil_mode)
|
{
|
// #20866, #22032: Guarantee this for the official C++ API?
|
TORCH_CHECK(kernel_size.size() == 1 || kernel_size.size() == 3,
|
"max_pool3d: kernel_size must either be a single int, or a tuple of three ints")
|
const int kT = safe_downcast<int, int64_t>(kernel_size[0]);
|
const int kH = kernel_size.size() == 1 ? kT : safe_downcast<int, int64_t>(kernel_size[1]);
|
const int kW = kernel_size.size() == 1 ? kT : safe_downcast<int, int64_t>(kernel_size[2]);
|
TORCH_CHECK(stride.size() == 0 || stride.size() == 1 || stride.size() == 3,
|
"max_pool3d: stride must either be omitted, a single int, or a tuple of three ints")
|
const int dT = stride.empty() ? kT : safe_downcast<int, int64_t>(stride[0]);
|
const int dH = stride.empty() ? kH :
|
stride.size() == 1 ? dT : safe_downcast<int, int64_t>(stride[1]);
|
const int dW = stride.empty() ? kW :
|
stride.size() == 1 ? dT : safe_downcast<int, int64_t>(stride[2]);
|
TORCH_CHECK(padding.size() == 1 || padding.size() == 3,
|
"max_pool3d: padding must be either be a single int, or a tuple of three ints");
|
const int pT = safe_downcast<int, int64_t>(padding[0]);
|
const int pH = padding.size() == 1 ? pT : safe_downcast<int, int64_t>(padding[1]);
|
const int pW = padding.size() == 1 ? pT : safe_downcast<int, int64_t>(padding[2]);
|
TORCH_CHECK(dilation.size() == 1 || dilation.size() == 3,
|
"max_pool3d: dilation must be either a single int, or a tuple of three ints");
|
const int dilationT = safe_downcast<int, int64_t>(dilation[0]);
|
const int dilationH = dilation.size() == 1 ? dilationT : safe_downcast<int, int64_t>(dilation[1]);
|
const int dilationW = dilation.size() == 1 ? dilationT : safe_downcast<int, int64_t>(dilation[2]);
|
TORCH_CHECK((input_.ndimension() == 4 || input_.ndimension() == 5),
|
"non-empty 4D or 5D (batch mode) tensor expected for input");
|
const int64_t nslices = input_.size(-4);
|
const int64_t itime = input_.size(-3);
|
const int64_t iheight = input_.size(-2);
|
const int64_t iwidth = input_.size(-1);
|
const int64_t otime = pooling_output_shape<int64_t>(itime, kT, pT, dT, dilationT, ceil_mode);
|
const int64_t oheight = pooling_output_shape<int64_t>(iheight, kH, pH, dH, dilationH, ceil_mode);
|
const int64_t owidth = pooling_output_shape<int64_t>(iwidth, kW, pW, dW, dilationW, ceil_mode);
|
pool3d_shape_check(
|
input_,
|
nslices,
|
kT, kH, kW,
|
dT, dH, dW,
|
pT, pH, pW,
|
dilationT, dilationH, dilationW,
|
itime, iheight, iwidth,
|
otime, oheight, owidth,
|
"max_pool3d_with_indices_out_cpu_template()");
|
/* get contiguous input */
|
Tensor input = input_.contiguous();
|
if (input.dim() == 4) { /* non-batch mode */
|
/* resize output */
|
output.resize_({nslices, otime, oheight, owidth});
|
/* indices will contain ti,i,j locations for each output point */
|
indices.resize_({nslices, otime, oheight, owidth});
|
AT_DISPATCH_FLOATING_TYPES(input.scalar_type(),
|
"max_pool3d_with_indices_cpu",
|
[&] {
|
scalar_t *input_data = input.data_ptr<scalar_t>();
|
scalar_t *output_data = output.data_ptr<scalar_t>();
|
int64_t *indices_data = indices.data_ptr<int64_t>();
|
max_pool3d_with_indices_single_out_frame(
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.