text
stringlengths
0
1.73k
source
stringlengths
35
119
category
stringclasses
2 values
'is_dynamic': True, }, { 'input_dtype': DTypeWithConstraints(dtype=torch.float16, quant_min_lower_bound=None, quant_max_upper_bound=None, scale_min_lower_bound=None, scale_max_upper_bound=None, scale_exact_match=None, zero_point_exact_match=None), 'output_dtype': DTypeWithConstraints(dtype=torch.float32, quant_min_lower_bound=None, quant_max_upper_bound=None, scale_min_lower_bound=None, scale_max_upper_bound=None, scale_exact_match=None, zero_point_exact_match=None), 'weight_dtype': DTypeWithConstraints(dtype=torch.float16, quant_min_lower_bound=None, quant_max_upper_bound=None, scale_min_lower_bound=None, scale_max_upper_bound=None, scale_exact_match=None, zero_point_exact_match=None), 'bias_dtype': torch.float32, 'is_dynamic': True, }, ], 'observation_type': ObservationType.OUTPUT_USE_DIFFERENT_OBSERVER_AS_INPUT, 'root_module': ,
https://pytorch.org/docs/stable/quantization-backend-configuration.html
pytorch docs
'reference_quantized_module_for_root': , }, { 'pattern': , 'dtype_configs': [ { 'input_dtype': DTypeWithConstraints(dtype=torch.quint8, quant_min_lower_bound=None, quant_max_upper_bound=None, scale_min_lower_bound=None, scale_max_upper_bound=None, scale_exact_match=None, zero_point_exact_match=None), 'output_dtype': DTypeWithConstraints(dtype=torch.float32, quant_min_lower_bound=None, quant_max_upper_bound=None, scale_min_lower_bound=None, scale_max_upper_bound=None, scale_exact_match=None, zero_point_exact_match=None), 'weight_dtype': DTypeWithConstraints(dtype=torch.qint8, quant_min_lower_bound=None, quant_max_upper_bound=None, scale_min_lower_bound=None, scale_max_upper_bound=None, scale_exact_match=None, zero_point_exact_match=None), 'bias_dtype': torch.float32, 'is_dynamic': True, }, {
https://pytorch.org/docs/stable/quantization-backend-configuration.html
pytorch docs
'is_dynamic': True, }, { 'input_dtype': DTypeWithConstraints(dtype=torch.float16, quant_min_lower_bound=None, quant_max_upper_bound=None, scale_min_lower_bound=None, scale_max_upper_bound=None, scale_exact_match=None, zero_point_exact_match=None), 'output_dtype': DTypeWithConstraints(dtype=torch.float32, quant_min_lower_bound=None, quant_max_upper_bound=None, scale_min_lower_bound=None, scale_max_upper_bound=None, scale_exact_match=None, zero_point_exact_match=None), 'weight_dtype': DTypeWithConstraints(dtype=torch.float16, quant_min_lower_bound=None, quant_max_upper_bound=None, scale_min_lower_bound=None, scale_max_upper_bound=None, scale_exact_match=None, zero_point_exact_match=None), 'bias_dtype': torch.float32, 'is_dynamic': True, }, ], 'observation_type': ObservationType.OUTPUT_USE_DIFFERENT_OBSERVER_AS_INPUT, 'root_module': ,
https://pytorch.org/docs/stable/quantization-backend-configuration.html
pytorch docs
'reference_quantized_module_for_root': , }, { 'pattern': , 'dtype_configs': [ { 'input_dtype': DTypeWithConstraints(dtype=torch.quint8, quant_min_lower_bound=None, quant_max_upper_bound=None, scale_min_lower_bound=None, scale_max_upper_bound=None, scale_exact_match=None, zero_point_exact_match=None), 'output_dtype': DTypeWithConstraints(dtype=torch.float32, quant_min_lower_bound=None, quant_max_upper_bound=None, scale_min_lower_bound=None, scale_max_upper_bound=None, scale_exact_match=None, zero_point_exact_match=None), 'weight_dtype': DTypeWithConstraints(dtype=torch.qint8, quant_min_lower_bound=None, quant_max_upper_bound=None, scale_min_lower_bound=None, scale_max_upper_bound=None, scale_exact_match=None, zero_point_exact_match=None), 'bias_dtype': torch.float32, 'is_dynamic': True, }, {
https://pytorch.org/docs/stable/quantization-backend-configuration.html
pytorch docs
'is_dynamic': True, }, { 'input_dtype': DTypeWithConstraints(dtype=torch.float16, quant_min_lower_bound=None, quant_max_upper_bound=None, scale_min_lower_bound=None, scale_max_upper_bound=None, scale_exact_match=None, zero_point_exact_match=None), 'output_dtype': DTypeWithConstraints(dtype=torch.float32, quant_min_lower_bound=None, quant_max_upper_bound=None, scale_min_lower_bound=None, scale_max_upper_bound=None, scale_exact_match=None, zero_point_exact_match=None), 'weight_dtype': DTypeWithConstraints(dtype=torch.float16, quant_min_lower_bound=None, quant_max_upper_bound=None, scale_min_lower_bound=None, scale_max_upper_bound=None, scale_exact_match=None, zero_point_exact_match=None), 'bias_dtype': torch.float32, 'is_dynamic': True, }, ], 'observation_type': ObservationType.OUTPUT_USE_DIFFERENT_OBSERVER_AS_INPUT, 'root_module': ,
https://pytorch.org/docs/stable/quantization-backend-configuration.html
pytorch docs
'reference_quantized_module_for_root': , }, { 'pattern': , 'dtype_configs': [ { 'input_dtype': DTypeWithConstraints(dtype=torch.quint8, quant_min_lower_bound=None, quant_max_upper_bound=None, scale_min_lower_bound=None, scale_max_upper_bound=None, scale_exact_match=None, zero_point_exact_match=None), 'output_dtype': DTypeWithConstraints(dtype=torch.quint8, quant_min_lower_bound=None, quant_max_upper_bound=None, scale_min_lower_bound=None, scale_max_upper_bound=None, scale_exact_match=None, zero_point_exact_match=None), }, ], 'observation_type': ObservationType.OUTPUT_USE_DIFFERENT_OBSERVER_AS_INPUT, }, { 'pattern': , 'dtype_configs': [ {
https://pytorch.org/docs/stable/quantization-backend-configuration.html
pytorch docs
'dtype_configs': [ { 'input_dtype': DTypeWithConstraints(dtype=torch.quint8, quant_min_lower_bound=None, quant_max_upper_bound=None, scale_min_lower_bound=None, scale_max_upper_bound=None, scale_exact_match=None, zero_point_exact_match=None), 'output_dtype': DTypeWithConstraints(dtype=torch.quint8, quant_min_lower_bound=None, quant_max_upper_bound=None, scale_min_lower_bound=None, scale_max_upper_bound=None, scale_exact_match=None, zero_point_exact_match=None), }, ], 'observation_type': ObservationType.OUTPUT_SHARE_OBSERVER_WITH_INPUT, }, { 'pattern': torch.nn.functional.max_pool1d, 'dtype_configs': [ { 'input_dtype': DTypeWithConstraints(dtype=torch.quint8, quant_min_lower_bound=None, quant_max_upper_bound=None, scale_min_lower_bound=None, scale_max_upper_bound=None, scale_exact_match=None, zero_point_exact_match=None),
https://pytorch.org/docs/stable/quantization-backend-configuration.html
pytorch docs
'output_dtype': DTypeWithConstraints(dtype=torch.quint8, quant_min_lower_bound=None, quant_max_upper_bound=None, scale_min_lower_bound=None, scale_max_upper_bound=None, scale_exact_match=None, zero_point_exact_match=None), }, ], 'observation_type': ObservationType.OUTPUT_SHARE_OBSERVER_WITH_INPUT, }, { 'pattern': , 'dtype_configs': [ { 'input_dtype': DTypeWithConstraints(dtype=torch.quint8, quant_min_lower_bound=None, quant_max_upper_bound=None, scale_min_lower_bound=None, scale_max_upper_bound=None, scale_exact_match=None, zero_point_exact_match=None), 'output_dtype': DTypeWithConstraints(dtype=torch.quint8, quant_min_lower_bound=None, quant_max_upper_bound=None, scale_min_lower_bound=None, scale_max_upper_bound=None, scale_exact_match=None, zero_point_exact_match=None), }, ], 'observation_type': ObservationType.OUTPUT_SHARE_OBSERVER_WITH_INPUT, }, {
https://pytorch.org/docs/stable/quantization-backend-configuration.html
pytorch docs
}, { 'pattern': torch.nn.functional.max_pool2d, 'dtype_configs': [ { 'input_dtype': DTypeWithConstraints(dtype=torch.quint8, quant_min_lower_bound=None, quant_max_upper_bound=None, scale_min_lower_bound=None, scale_max_upper_bound=None, scale_exact_match=None, zero_point_exact_match=None), 'output_dtype': DTypeWithConstraints(dtype=torch.quint8, quant_min_lower_bound=None, quant_max_upper_bound=None, scale_min_lower_bound=None, scale_max_upper_bound=None, scale_exact_match=None, zero_point_exact_match=None), }, ], 'observation_type': ObservationType.OUTPUT_SHARE_OBSERVER_WITH_INPUT, }, { 'pattern': , 'dtype_configs': [ { 'input_dtype': DTypeWithConstraints(dtype=torch.quint8, quant_min_lower_bound=None, quant_max_upper_bound=None, scale_min_lower_bound=None, scale_max_upper_bound=None, scale_exact_match=None, zero_point_exact_match=None),
https://pytorch.org/docs/stable/quantization-backend-configuration.html
pytorch docs
'output_dtype': DTypeWithConstraints(dtype=torch.quint8, quant_min_lower_bound=None, quant_max_upper_bound=None, scale_min_lower_bound=None, scale_max_upper_bound=None, scale_exact_match=None, zero_point_exact_match=None), }, ], 'observation_type': ObservationType.OUTPUT_SHARE_OBSERVER_WITH_INPUT, }, { 'pattern': torch.nn.functional.max_pool3d, 'dtype_configs': [ { 'input_dtype': DTypeWithConstraints(dtype=torch.quint8, quant_min_lower_bound=None, quant_max_upper_bound=None, scale_min_lower_bound=None, scale_max_upper_bound=None, scale_exact_match=None, zero_point_exact_match=None), 'output_dtype': DTypeWithConstraints(dtype=torch.quint8, quant_min_lower_bound=None, quant_max_upper_bound=None, scale_min_lower_bound=None, scale_max_upper_bound=None, scale_exact_match=None, zero_point_exact_match=None), }, ], 'observation_type': ObservationType.OUTPUT_SHARE_OBSERVER_WITH_INPUT, }, {
https://pytorch.org/docs/stable/quantization-backend-configuration.html
pytorch docs
}, { 'pattern': , 'dtype_configs': [ { 'input_dtype': DTypeWithConstraints(dtype=torch.quint8, quant_min_lower_bound=None, quant_max_upper_bound=None, scale_min_lower_bound=None, scale_max_upper_bound=None, scale_exact_match=None, zero_point_exact_match=None), 'output_dtype': DTypeWithConstraints(dtype=torch.quint8, quant_min_lower_bound=None, quant_max_upper_bound=None, scale_min_lower_bound=None, scale_max_upper_bound=None, scale_exact_match=None, zero_point_exact_match=None), }, ], 'observation_type': ObservationType.OUTPUT_SHARE_OBSERVER_WITH_INPUT, }, { 'pattern': mean, 'dtype_configs': [ { 'input_dtype': DTypeWithConstraints(dtype=torch.quint8, quant_min_lower_bound=None, quant_max_upper_bound=None, scale_min_lower_bound=None, scale_max_upper_bound=None, scale_exact_match=None, zero_point_exact_match=None),
https://pytorch.org/docs/stable/quantization-backend-configuration.html
pytorch docs
'output_dtype': DTypeWithConstraints(dtype=torch.quint8, quant_min_lower_bound=None, quant_max_upper_bound=None, scale_min_lower_bound=None, scale_max_upper_bound=None, scale_exact_match=None, zero_point_exact_match=None), }, ], 'observation_type': ObservationType.OUTPUT_SHARE_OBSERVER_WITH_INPUT, }, { 'pattern': , 'dtype_configs': [ { 'input_dtype': DTypeWithConstraints(dtype=torch.quint8, quant_min_lower_bound=None, quant_max_upper_bound=None, scale_min_lower_bound=None, scale_max_upper_bound=None, scale_exact_match=None, zero_point_exact_match=None), 'output_dtype': DTypeWithConstraints(dtype=torch.quint8, quant_min_lower_bound=None, quant_max_upper_bound=None, scale_min_lower_bound=None, scale_max_upper_bound=None, scale_exact_match=None, zero_point_exact_match=None), }, ], 'num_tensor_args_to_observation_type': { 0: ObservationType.OUTPUT_USE_DIFFERENT_OBSERVER_AS_INPUT,
https://pytorch.org/docs/stable/quantization-backend-configuration.html
pytorch docs
1: ObservationType.OUTPUT_SHARE_OBSERVER_WITH_INPUT, 2: ObservationType.OUTPUT_USE_DIFFERENT_OBSERVER_AS_INPUT, }, 'observation_type': ObservationType.OUTPUT_USE_DIFFERENT_OBSERVER_AS_INPUT, }, { 'pattern': , 'dtype_configs': [ { 'input_dtype': DTypeWithConstraints(dtype=torch.quint8, quant_min_lower_bound=None, quant_max_upper_bound=None, scale_min_lower_bound=None, scale_max_upper_bound=None, scale_exact_match=None, zero_point_exact_match=None), 'output_dtype': DTypeWithConstraints(dtype=torch.quint8, quant_min_lower_bound=None, quant_max_upper_bound=None, scale_min_lower_bound=None, scale_max_upper_bound=None, scale_exact_match=None, zero_point_exact_match=None), }, ], 'num_tensor_args_to_observation_type': { 0: ObservationType.OUTPUT_USE_DIFFERENT_OBSERVER_AS_INPUT, 1: ObservationType.OUTPUT_SHARE_OBSERVER_WITH_INPUT,
https://pytorch.org/docs/stable/quantization-backend-configuration.html
pytorch docs
2: ObservationType.OUTPUT_USE_DIFFERENT_OBSERVER_AS_INPUT, }, 'observation_type': ObservationType.OUTPUT_USE_DIFFERENT_OBSERVER_AS_INPUT, }, { 'pattern': permute, 'dtype_configs': [ { 'input_dtype': DTypeWithConstraints(dtype=torch.quint8, quant_min_lower_bound=None, quant_max_upper_bound=None, scale_min_lower_bound=None, scale_max_upper_bound=None, scale_exact_match=None, zero_point_exact_match=None), 'output_dtype': DTypeWithConstraints(dtype=torch.quint8, quant_min_lower_bound=None, quant_max_upper_bound=None, scale_min_lower_bound=None, scale_max_upper_bound=None, scale_exact_match=None, zero_point_exact_match=None), }, ], 'observation_type': ObservationType.OUTPUT_SHARE_OBSERVER_WITH_INPUT, }, { 'pattern': , 'dtype_configs': [ {
https://pytorch.org/docs/stable/quantization-backend-configuration.html
pytorch docs
'dtype_configs': [ { 'input_dtype': DTypeWithConstraints(dtype=torch.quint8, quant_min_lower_bound=None, quant_max_upper_bound=None, scale_min_lower_bound=None, scale_max_upper_bound=None, scale_exact_match=None, zero_point_exact_match=None), 'output_dtype': DTypeWithConstraints(dtype=torch.quint8, quant_min_lower_bound=None, quant_max_upper_bound=None, scale_min_lower_bound=None, scale_max_upper_bound=None, scale_exact_match=None, zero_point_exact_match=None), }, ], 'observation_type': ObservationType.OUTPUT_USE_DIFFERENT_OBSERVER_AS_INPUT, }, { 'pattern': (, ), 'dtype_configs': [ { 'input_dtype': DTypeWithConstraints(dtype=torch.quint8, quant_min_lower_bound=None, quant_max_upper_bound=None, scale_min_lower_bound=None, scale_max_upper_bound=None, scale_exact_match=None, zero_point_exact_match=None),
https://pytorch.org/docs/stable/quantization-backend-configuration.html
pytorch docs
'output_dtype': DTypeWithConstraints(dtype=torch.quint8, quant_min_lower_bound=None, quant_max_upper_bound=None, scale_min_lower_bound=None, scale_max_upper_bound=None, scale_exact_match=None, zero_point_exact_match=None), 'weight_dtype': DTypeWithConstraints(dtype=torch.qint8, quant_min_lower_bound=None, quant_max_upper_bound=None, scale_min_lower_bound=None, scale_max_upper_bound=None, scale_exact_match=None, zero_point_exact_match=None), 'bias_dtype': torch.float32, }, ], 'observation_type': ObservationType.OUTPUT_USE_DIFFERENT_OBSERVER_AS_INPUT, 'fused_module': , 'fuser_method': .fuser_method at 0x7f8f27895630>, }, { 'pattern': (, ), 'dtype_configs': [ {
https://pytorch.org/docs/stable/quantization-backend-configuration.html
pytorch docs
'dtype_configs': [ { 'input_dtype': DTypeWithConstraints(dtype=torch.quint8, quant_min_lower_bound=None, quant_max_upper_bound=None, scale_min_lower_bound=None, scale_max_upper_bound=None, scale_exact_match=None, zero_point_exact_match=None), 'output_dtype': DTypeWithConstraints(dtype=torch.quint8, quant_min_lower_bound=None, quant_max_upper_bound=None, scale_min_lower_bound=None, scale_max_upper_bound=None, scale_exact_match=None, zero_point_exact_match=None), 'weight_dtype': DTypeWithConstraints(dtype=torch.qint8, quant_min_lower_bound=None, quant_max_upper_bound=None, scale_min_lower_bound=None, scale_max_upper_bound=None, scale_exact_match=None, zero_point_exact_match=None), 'bias_dtype': torch.float32, }, ], 'observation_type': ObservationType.OUTPUT_USE_DIFFERENT_OBSERVER_AS_INPUT, 'fused_module': ,
https://pytorch.org/docs/stable/quantization-backend-configuration.html
pytorch docs
'fuser_method': .fuser_method at 0x7f8f278955a0>, }, { 'pattern': (, ), 'dtype_configs': [ { 'input_dtype': DTypeWithConstraints(dtype=torch.quint8, quant_min_lower_bound=None, quant_max_upper_bound=None, scale_min_lower_bound=None, scale_max_upper_bound=None, scale_exact_match=None, zero_point_exact_match=None), 'output_dtype': DTypeWithConstraints(dtype=torch.quint8, quant_min_lower_bound=None, quant_max_upper_bound=None, scale_min_lower_bound=None, scale_max_upper_bound=None, scale_exact_match=None, zero_point_exact_match=None), 'weight_dtype': DTypeWithConstraints(dtype=torch.qint8, quant_min_lower_bound=None, quant_max_upper_bound=None, scale_min_lower_bound=None, scale_max_upper_bound=None, scale_exact_match=None, zero_point_exact_match=None), 'bias_dtype': torch.float32, }, ],
https://pytorch.org/docs/stable/quantization-backend-configuration.html
pytorch docs
}, ], 'observation_type': ObservationType.OUTPUT_USE_DIFFERENT_OBSERVER_AS_INPUT, }, { 'pattern': (, ), 'dtype_configs': [ { 'input_dtype': DTypeWithConstraints(dtype=torch.quint8, quant_min_lower_bound=None, quant_max_upper_bound=None, scale_min_lower_bound=None, scale_max_upper_bound=None, scale_exact_match=None, zero_point_exact_match=None), 'output_dtype': DTypeWithConstraints(dtype=torch.quint8, quant_min_lower_bound=None, quant_max_upper_bound=None, scale_min_lower_bound=None, scale_max_upper_bound=None, scale_exact_match=None, zero_point_exact_match=None), 'weight_dtype': DTypeWithConstraints(dtype=torch.qint8, quant_min_lower_bound=None, quant_max_upper_bound=None, scale_min_lower_bound=None, scale_max_upper_bound=None, scale_exact_match=None, zero_point_exact_match=None), 'bias_dtype': torch.float32, }, ],
https://pytorch.org/docs/stable/quantization-backend-configuration.html
pytorch docs
}, ], 'observation_type': ObservationType.OUTPUT_USE_DIFFERENT_OBSERVER_AS_INPUT, }, { 'pattern': (, , ), 'dtype_configs': [ { 'input_dtype': DTypeWithConstraints(dtype=torch.quint8, quant_min_lower_bound=None, quant_max_upper_bound=None, scale_min_lower_bound=None, scale_max_upper_bound=None, scale_exact_match=None, zero_point_exact_match=None), 'output_dtype': DTypeWithConstraints(dtype=torch.quint8, quant_min_lower_bound=None, quant_max_upper_bound=None, scale_min_lower_bound=None, scale_max_upper_bound=None, scale_exact_match=None, zero_point_exact_match=None), 'weight_dtype': DTypeWithConstraints(dtype=torch.qint8, quant_min_lower_bound=None, quant_max_upper_bound=None, scale_min_lower_bound=None, scale_max_upper_bound=None, scale_exact_match=None, zero_point_exact_match=None),
https://pytorch.org/docs/stable/quantization-backend-configuration.html
pytorch docs
'bias_dtype': torch.float32, }, ], 'observation_type': ObservationType.OUTPUT_USE_DIFFERENT_OBSERVER_AS_INPUT, 'fused_module': , 'fuser_method': , }, { 'pattern': (, , ), 'dtype_configs': [ { 'input_dtype': DTypeWithConstraints(dtype=torch.quint8, quant_min_lower_bound=None, quant_max_upper_bound=None, scale_min_lower_bound=None, scale_max_upper_bound=None, scale_exact_match=None, zero_point_exact_match=None), 'output_dtype': DTypeWithConstraints(dtype=torch.quint8, quant_min_lower_bound=None, quant_max_upper_bound=None, scale_min_lower_bound=None, scale_max_upper_bound=None, scale_exact_match=None, zero_point_exact_match=None),
https://pytorch.org/docs/stable/quantization-backend-configuration.html
pytorch docs
'weight_dtype': DTypeWithConstraints(dtype=torch.qint8, quant_min_lower_bound=None, quant_max_upper_bound=None, scale_min_lower_bound=None, scale_max_upper_bound=None, scale_exact_match=None, zero_point_exact_match=None), 'bias_dtype': torch.float32, }, ], 'observation_type': ObservationType.OUTPUT_USE_DIFFERENT_OBSERVER_AS_INPUT, 'root_module': , 'fused_module': , 'fuser_method': , }, { 'pattern': (, ), 'dtype_configs': [ { 'input_dtype': DTypeWithConstraints(dtype=torch.quint8, quant_min_lower_bound=None, quant_max_upper_bound=None, scale_min_lower_bound=None, scale_max_upper_bound=None, scale_exact_match=None, zero_point_exact_match=None),
https://pytorch.org/docs/stable/quantization-backend-configuration.html
pytorch docs
'output_dtype': DTypeWithConstraints(dtype=torch.quint8, quant_min_lower_bound=None, quant_max_upper_bound=None, scale_min_lower_bound=None, scale_max_upper_bound=None, scale_exact_match=None, zero_point_exact_match=None), 'weight_dtype': DTypeWithConstraints(dtype=torch.qint8, quant_min_lower_bound=None, quant_max_upper_bound=None, scale_min_lower_bound=None, scale_max_upper_bound=None, scale_exact_match=None, zero_point_exact_match=None), 'bias_dtype': torch.float32, }, ], 'observation_type': ObservationType.OUTPUT_USE_DIFFERENT_OBSERVER_AS_INPUT, 'fused_module': , 'fuser_method': .fuser_method at 0x7f8f278956c0>, }, { 'pattern': (, ), 'dtype_configs': [ {
https://pytorch.org/docs/stable/quantization-backend-configuration.html
pytorch docs
'dtype_configs': [ { 'input_dtype': DTypeWithConstraints(dtype=torch.quint8, quant_min_lower_bound=None, quant_max_upper_bound=None, scale_min_lower_bound=None, scale_max_upper_bound=None, scale_exact_match=None, zero_point_exact_match=None), 'output_dtype': DTypeWithConstraints(dtype=torch.quint8, quant_min_lower_bound=None, quant_max_upper_bound=None, scale_min_lower_bound=None, scale_max_upper_bound=None, scale_exact_match=None, zero_point_exact_match=None), 'weight_dtype': DTypeWithConstraints(dtype=torch.qint8, quant_min_lower_bound=None, quant_max_upper_bound=None, scale_min_lower_bound=None, scale_max_upper_bound=None, scale_exact_match=None, zero_point_exact_match=None), 'bias_dtype': torch.float32, }, ], 'observation_type': ObservationType.OUTPUT_USE_DIFFERENT_OBSERVER_AS_INPUT, 'fused_module': ,
https://pytorch.org/docs/stable/quantization-backend-configuration.html
pytorch docs
'fuser_method': .fuser_method at 0x7f8f27895750>, }, { 'pattern': (, ), 'dtype_configs': [ { 'input_dtype': DTypeWithConstraints(dtype=torch.quint8, quant_min_lower_bound=None, quant_max_upper_bound=None, scale_min_lower_bound=None, scale_max_upper_bound=None, scale_exact_match=None, zero_point_exact_match=None), 'output_dtype': DTypeWithConstraints(dtype=torch.quint8, quant_min_lower_bound=None, quant_max_upper_bound=None, scale_min_lower_bound=None, scale_max_upper_bound=None, scale_exact_match=None, zero_point_exact_match=None), 'weight_dtype': DTypeWithConstraints(dtype=torch.qint8, quant_min_lower_bound=None, quant_max_upper_bound=None, scale_min_lower_bound=None, scale_max_upper_bound=None, scale_exact_match=None, zero_point_exact_match=None), 'bias_dtype': torch.float32, }, ],
https://pytorch.org/docs/stable/quantization-backend-configuration.html
pytorch docs
}, ], 'observation_type': ObservationType.OUTPUT_USE_DIFFERENT_OBSERVER_AS_INPUT, }, { 'pattern': (, ), 'dtype_configs': [ { 'input_dtype': DTypeWithConstraints(dtype=torch.quint8, quant_min_lower_bound=None, quant_max_upper_bound=None, scale_min_lower_bound=None, scale_max_upper_bound=None, scale_exact_match=None, zero_point_exact_match=None), 'output_dtype': DTypeWithConstraints(dtype=torch.quint8, quant_min_lower_bound=None, quant_max_upper_bound=None, scale_min_lower_bound=None, scale_max_upper_bound=None, scale_exact_match=None, zero_point_exact_match=None), 'weight_dtype': DTypeWithConstraints(dtype=torch.qint8, quant_min_lower_bound=None, quant_max_upper_bound=None, scale_min_lower_bound=None, scale_max_upper_bound=None, scale_exact_match=None, zero_point_exact_match=None), 'bias_dtype': torch.float32, }, ],
https://pytorch.org/docs/stable/quantization-backend-configuration.html
pytorch docs
}, ], 'observation_type': ObservationType.OUTPUT_USE_DIFFERENT_OBSERVER_AS_INPUT, }, { 'pattern': (, , ), 'dtype_configs': [ { 'input_dtype': DTypeWithConstraints(dtype=torch.quint8, quant_min_lower_bound=None, quant_max_upper_bound=None, scale_min_lower_bound=None, scale_max_upper_bound=None, scale_exact_match=None, zero_point_exact_match=None), 'output_dtype': DTypeWithConstraints(dtype=torch.quint8, quant_min_lower_bound=None, quant_max_upper_bound=None, scale_min_lower_bound=None, scale_max_upper_bound=None, scale_exact_match=None, zero_point_exact_match=None), 'weight_dtype': DTypeWithConstraints(dtype=torch.qint8, quant_min_lower_bound=None, quant_max_upper_bound=None, scale_min_lower_bound=None, scale_max_upper_bound=None, scale_exact_match=None, zero_point_exact_match=None),
https://pytorch.org/docs/stable/quantization-backend-configuration.html
pytorch docs
'bias_dtype': torch.float32, }, ], 'observation_type': ObservationType.OUTPUT_USE_DIFFERENT_OBSERVER_AS_INPUT, 'fused_module': , 'fuser_method': , }, { 'pattern': (, , ), 'dtype_configs': [ { 'input_dtype': DTypeWithConstraints(dtype=torch.quint8, quant_min_lower_bound=None, quant_max_upper_bound=None, scale_min_lower_bound=None, scale_max_upper_bound=None, scale_exact_match=None, zero_point_exact_match=None), 'output_dtype': DTypeWithConstraints(dtype=torch.quint8, quant_min_lower_bound=None, quant_max_upper_bound=None, scale_min_lower_bound=None, scale_max_upper_bound=None, scale_exact_match=None, zero_point_exact_match=None),
https://pytorch.org/docs/stable/quantization-backend-configuration.html
pytorch docs
'weight_dtype': DTypeWithConstraints(dtype=torch.qint8, quant_min_lower_bound=None, quant_max_upper_bound=None, scale_min_lower_bound=None, scale_max_upper_bound=None, scale_exact_match=None, zero_point_exact_match=None), 'bias_dtype': torch.float32, }, ], 'observation_type': ObservationType.OUTPUT_USE_DIFFERENT_OBSERVER_AS_INPUT, 'root_module': , 'fused_module': , 'fuser_method': , }, { 'pattern': (, ), 'dtype_configs': [ { 'input_dtype': DTypeWithConstraints(dtype=torch.quint8, quant_min_lower_bound=None, quant_max_upper_bound=None, scale_min_lower_bound=None, scale_max_upper_bound=None, scale_exact_match=None, zero_point_exact_match=None),
https://pytorch.org/docs/stable/quantization-backend-configuration.html
pytorch docs
'output_dtype': DTypeWithConstraints(dtype=torch.quint8, quant_min_lower_bound=None, quant_max_upper_bound=None, scale_min_lower_bound=None, scale_max_upper_bound=None, scale_exact_match=None, zero_point_exact_match=None), 'weight_dtype': DTypeWithConstraints(dtype=torch.qint8, quant_min_lower_bound=None, quant_max_upper_bound=None, scale_min_lower_bound=None, scale_max_upper_bound=None, scale_exact_match=None, zero_point_exact_match=None), 'bias_dtype': torch.float32, }, ], 'observation_type': ObservationType.OUTPUT_USE_DIFFERENT_OBSERVER_AS_INPUT, 'fused_module': , 'fuser_method': .fuser_method at 0x7f8f278957e0>, }, { 'pattern': (, ), 'dtype_configs': [ {
https://pytorch.org/docs/stable/quantization-backend-configuration.html
pytorch docs
'dtype_configs': [ { 'input_dtype': DTypeWithConstraints(dtype=torch.quint8, quant_min_lower_bound=None, quant_max_upper_bound=None, scale_min_lower_bound=None, scale_max_upper_bound=None, scale_exact_match=None, zero_point_exact_match=None), 'output_dtype': DTypeWithConstraints(dtype=torch.quint8, quant_min_lower_bound=None, quant_max_upper_bound=None, scale_min_lower_bound=None, scale_max_upper_bound=None, scale_exact_match=None, zero_point_exact_match=None), 'weight_dtype': DTypeWithConstraints(dtype=torch.qint8, quant_min_lower_bound=None, quant_max_upper_bound=None, scale_min_lower_bound=None, scale_max_upper_bound=None, scale_exact_match=None, zero_point_exact_match=None), 'bias_dtype': torch.float32, }, ], 'observation_type': ObservationType.OUTPUT_USE_DIFFERENT_OBSERVER_AS_INPUT, 'fused_module': ,
https://pytorch.org/docs/stable/quantization-backend-configuration.html
pytorch docs
'fuser_method': .fuser_method at 0x7f8f27895870>, }, { 'pattern': (, ), 'dtype_configs': [ { 'input_dtype': DTypeWithConstraints(dtype=torch.quint8, quant_min_lower_bound=None, quant_max_upper_bound=None, scale_min_lower_bound=None, scale_max_upper_bound=None, scale_exact_match=None, zero_point_exact_match=None), 'output_dtype': DTypeWithConstraints(dtype=torch.quint8, quant_min_lower_bound=None, quant_max_upper_bound=None, scale_min_lower_bound=None, scale_max_upper_bound=None, scale_exact_match=None, zero_point_exact_match=None), 'weight_dtype': DTypeWithConstraints(dtype=torch.qint8, quant_min_lower_bound=None, quant_max_upper_bound=None, scale_min_lower_bound=None, scale_max_upper_bound=None, scale_exact_match=None, zero_point_exact_match=None), 'bias_dtype': torch.float32, }, ],
https://pytorch.org/docs/stable/quantization-backend-configuration.html
pytorch docs
}, ], 'observation_type': ObservationType.OUTPUT_USE_DIFFERENT_OBSERVER_AS_INPUT, }, { 'pattern': (, ), 'dtype_configs': [ { 'input_dtype': DTypeWithConstraints(dtype=torch.quint8, quant_min_lower_bound=None, quant_max_upper_bound=None, scale_min_lower_bound=None, scale_max_upper_bound=None, scale_exact_match=None, zero_point_exact_match=None), 'output_dtype': DTypeWithConstraints(dtype=torch.quint8, quant_min_lower_bound=None, quant_max_upper_bound=None, scale_min_lower_bound=None, scale_max_upper_bound=None, scale_exact_match=None, zero_point_exact_match=None), 'weight_dtype': DTypeWithConstraints(dtype=torch.qint8, quant_min_lower_bound=None, quant_max_upper_bound=None, scale_min_lower_bound=None, scale_max_upper_bound=None, scale_exact_match=None, zero_point_exact_match=None), 'bias_dtype': torch.float32, }, ],
https://pytorch.org/docs/stable/quantization-backend-configuration.html
pytorch docs
}, ], 'observation_type': ObservationType.OUTPUT_USE_DIFFERENT_OBSERVER_AS_INPUT, }, { 'pattern': (, , ), 'dtype_configs': [ { 'input_dtype': DTypeWithConstraints(dtype=torch.quint8, quant_min_lower_bound=None, quant_max_upper_bound=None, scale_min_lower_bound=None, scale_max_upper_bound=None, scale_exact_match=None, zero_point_exact_match=None), 'output_dtype': DTypeWithConstraints(dtype=torch.quint8, quant_min_lower_bound=None, quant_max_upper_bound=None, scale_min_lower_bound=None, scale_max_upper_bound=None, scale_exact_match=None, zero_point_exact_match=None), 'weight_dtype': DTypeWithConstraints(dtype=torch.qint8, quant_min_lower_bound=None, quant_max_upper_bound=None, scale_min_lower_bound=None, scale_max_upper_bound=None, scale_exact_match=None, zero_point_exact_match=None),
https://pytorch.org/docs/stable/quantization-backend-configuration.html
pytorch docs
'bias_dtype': torch.float32, }, ], 'observation_type': ObservationType.OUTPUT_USE_DIFFERENT_OBSERVER_AS_INPUT, 'fused_module': , 'fuser_method': , }, { 'pattern': (, , ), 'dtype_configs': [ { 'input_dtype': DTypeWithConstraints(dtype=torch.quint8, quant_min_lower_bound=None, quant_max_upper_bound=None, scale_min_lower_bound=None, scale_max_upper_bound=None, scale_exact_match=None, zero_point_exact_match=None), 'output_dtype': DTypeWithConstraints(dtype=torch.quint8, quant_min_lower_bound=None, quant_max_upper_bound=None, scale_min_lower_bound=None, scale_max_upper_bound=None, scale_exact_match=None, zero_point_exact_match=None),
https://pytorch.org/docs/stable/quantization-backend-configuration.html
pytorch docs
'weight_dtype': DTypeWithConstraints(dtype=torch.qint8, quant_min_lower_bound=None, quant_max_upper_bound=None, scale_min_lower_bound=None, scale_max_upper_bound=None, scale_exact_match=None, zero_point_exact_match=None), 'bias_dtype': torch.float32, }, ], 'observation_type': ObservationType.OUTPUT_USE_DIFFERENT_OBSERVER_AS_INPUT, 'root_module': , 'fused_module': , 'fuser_method': , }, { 'pattern': (, ), 'dtype_configs': [ { 'input_dtype': DTypeWithConstraints(dtype=torch.quint8, quant_min_lower_bound=None, quant_max_upper_bound=None, scale_min_lower_bound=None, scale_max_upper_bound=None, scale_exact_match=None, zero_point_exact_match=None),
https://pytorch.org/docs/stable/quantization-backend-configuration.html
pytorch docs
'output_dtype': DTypeWithConstraints(dtype=torch.quint8, quant_min_lower_bound=None, quant_max_upper_bound=None, scale_min_lower_bound=None, scale_max_upper_bound=None, scale_exact_match=None, zero_point_exact_match=None), 'weight_dtype': DTypeWithConstraints(dtype=torch.qint8, quant_min_lower_bound=None, quant_max_upper_bound=None, scale_min_lower_bound=None, scale_max_upper_bound=None, scale_exact_match=None, zero_point_exact_match=None), 'bias_dtype': torch.float32, }, { 'input_dtype': DTypeWithConstraints(dtype=torch.quint8, quant_min_lower_bound=None, quant_max_upper_bound=None, scale_min_lower_bound=None, scale_max_upper_bound=None, scale_exact_match=None, zero_point_exact_match=None), 'output_dtype': DTypeWithConstraints(dtype=torch.float32, quant_min_lower_bound=None, quant_max_upper_bound=None, scale_min_lower_bound=None, scale_max_upper_bound=None, scale_exact_match=None, zero_point_exact_match=None),
https://pytorch.org/docs/stable/quantization-backend-configuration.html
pytorch docs
'weight_dtype': DTypeWithConstraints(dtype=torch.qint8, quant_min_lower_bound=None, quant_max_upper_bound=None, scale_min_lower_bound=None, scale_max_upper_bound=None, scale_exact_match=None, zero_point_exact_match=None), 'bias_dtype': torch.float32, 'is_dynamic': True, }, { 'input_dtype': DTypeWithConstraints(dtype=torch.float16, quant_min_lower_bound=None, quant_max_upper_bound=None, scale_min_lower_bound=None, scale_max_upper_bound=None, scale_exact_match=None, zero_point_exact_match=None), 'output_dtype': DTypeWithConstraints(dtype=torch.float32, quant_min_lower_bound=None, quant_max_upper_bound=None, scale_min_lower_bound=None, scale_max_upper_bound=None, scale_exact_match=None, zero_point_exact_match=None), 'weight_dtype': DTypeWithConstraints(dtype=torch.float16, quant_min_lower_bound=None, quant_max_upper_bound=None, scale_min_lower_bound=None, scale_max_upper_bound=None, scale_exact_match=None, zero_point_exact_match=None),
https://pytorch.org/docs/stable/quantization-backend-configuration.html
pytorch docs
'bias_dtype': torch.float32, 'is_dynamic': True, }, ], 'observation_type': ObservationType.OUTPUT_USE_DIFFERENT_OBSERVER_AS_INPUT, 'fused_module': , 'fuser_method': .fuser_method at 0x7f8f27895900>, }, { 'pattern': (, ), 'dtype_configs': [ { 'input_dtype': DTypeWithConstraints(dtype=torch.quint8, quant_min_lower_bound=None, quant_max_upper_bound=None, scale_min_lower_bound=None, scale_max_upper_bound=None, scale_exact_match=None, zero_point_exact_match=None), 'output_dtype': DTypeWithConstraints(dtype=torch.quint8, quant_min_lower_bound=None, quant_max_upper_bound=None, scale_min_lower_bound=None, scale_max_upper_bound=None, scale_exact_match=None, zero_point_exact_match=None),
https://pytorch.org/docs/stable/quantization-backend-configuration.html
pytorch docs
'weight_dtype': DTypeWithConstraints(dtype=torch.qint8, quant_min_lower_bound=None, quant_max_upper_bound=None, scale_min_lower_bound=None, scale_max_upper_bound=None, scale_exact_match=None, zero_point_exact_match=None), 'bias_dtype': torch.float32, }, { 'input_dtype': DTypeWithConstraints(dtype=torch.quint8, quant_min_lower_bound=None, quant_max_upper_bound=None, scale_min_lower_bound=None, scale_max_upper_bound=None, scale_exact_match=None, zero_point_exact_match=None), 'output_dtype': DTypeWithConstraints(dtype=torch.float32, quant_min_lower_bound=None, quant_max_upper_bound=None, scale_min_lower_bound=None, scale_max_upper_bound=None, scale_exact_match=None, zero_point_exact_match=None), 'weight_dtype': DTypeWithConstraints(dtype=torch.qint8, quant_min_lower_bound=None, quant_max_upper_bound=None, scale_min_lower_bound=None, scale_max_upper_bound=None, scale_exact_match=None, zero_point_exact_match=None), 'bias_dtype': torch.float32,
https://pytorch.org/docs/stable/quantization-backend-configuration.html
pytorch docs
'bias_dtype': torch.float32, 'is_dynamic': True, }, { 'input_dtype': DTypeWithConstraints(dtype=torch.float16, quant_min_lower_bound=None, quant_max_upper_bound=None, scale_min_lower_bound=None, scale_max_upper_bound=None, scale_exact_match=None, zero_point_exact_match=None), 'output_dtype': DTypeWithConstraints(dtype=torch.float32, quant_min_lower_bound=None, quant_max_upper_bound=None, scale_min_lower_bound=None, scale_max_upper_bound=None, scale_exact_match=None, zero_point_exact_match=None), 'weight_dtype': DTypeWithConstraints(dtype=torch.float16, quant_min_lower_bound=None, quant_max_upper_bound=None, scale_min_lower_bound=None, scale_max_upper_bound=None, scale_exact_match=None, zero_point_exact_match=None), 'bias_dtype': torch.float32, 'is_dynamic': True, }, ], 'observation_type': ObservationType.OUTPUT_USE_DIFFERENT_OBSERVER_AS_INPUT,
https://pytorch.org/docs/stable/quantization-backend-configuration.html
pytorch docs
'fused_module': , 'fuser_method': .fuser_method at 0x7f8f27895990>, }, { 'pattern': (, ), 'dtype_configs': [ { 'input_dtype': DTypeWithConstraints(dtype=torch.quint8, quant_min_lower_bound=None, quant_max_upper_bound=None, scale_min_lower_bound=None, scale_max_upper_bound=None, scale_exact_match=None, zero_point_exact_match=None), 'output_dtype': DTypeWithConstraints(dtype=torch.quint8, quant_min_lower_bound=None, quant_max_upper_bound=None, scale_min_lower_bound=None, scale_max_upper_bound=None, scale_exact_match=None, zero_point_exact_match=None), 'weight_dtype': DTypeWithConstraints(dtype=torch.qint8, quant_min_lower_bound=None, quant_max_upper_bound=None, scale_min_lower_bound=None, scale_max_upper_bound=None, scale_exact_match=None, zero_point_exact_match=None),
https://pytorch.org/docs/stable/quantization-backend-configuration.html
pytorch docs
'bias_dtype': torch.float32, }, { 'input_dtype': DTypeWithConstraints(dtype=torch.quint8, quant_min_lower_bound=None, quant_max_upper_bound=None, scale_min_lower_bound=None, scale_max_upper_bound=None, scale_exact_match=None, zero_point_exact_match=None), 'output_dtype': DTypeWithConstraints(dtype=torch.float32, quant_min_lower_bound=None, quant_max_upper_bound=None, scale_min_lower_bound=None, scale_max_upper_bound=None, scale_exact_match=None, zero_point_exact_match=None), 'weight_dtype': DTypeWithConstraints(dtype=torch.qint8, quant_min_lower_bound=None, quant_max_upper_bound=None, scale_min_lower_bound=None, scale_max_upper_bound=None, scale_exact_match=None, zero_point_exact_match=None), 'bias_dtype': torch.float32, 'is_dynamic': True, }, {
https://pytorch.org/docs/stable/quantization-backend-configuration.html
pytorch docs
'is_dynamic': True, }, { 'input_dtype': DTypeWithConstraints(dtype=torch.float16, quant_min_lower_bound=None, quant_max_upper_bound=None, scale_min_lower_bound=None, scale_max_upper_bound=None, scale_exact_match=None, zero_point_exact_match=None), 'output_dtype': DTypeWithConstraints(dtype=torch.float32, quant_min_lower_bound=None, quant_max_upper_bound=None, scale_min_lower_bound=None, scale_max_upper_bound=None, scale_exact_match=None, zero_point_exact_match=None), 'weight_dtype': DTypeWithConstraints(dtype=torch.float16, quant_min_lower_bound=None, quant_max_upper_bound=None, scale_min_lower_bound=None, scale_max_upper_bound=None, scale_exact_match=None, zero_point_exact_match=None), 'bias_dtype': torch.float32, 'is_dynamic': True, }, ], 'observation_type': ObservationType.OUTPUT_USE_DIFFERENT_OBSERVER_AS_INPUT, }, { 'pattern': (, ),
https://pytorch.org/docs/stable/quantization-backend-configuration.html
pytorch docs
'dtype_configs': [ { 'input_dtype': DTypeWithConstraints(dtype=torch.quint8, quant_min_lower_bound=None, quant_max_upper_bound=None, scale_min_lower_bound=None, scale_max_upper_bound=None, scale_exact_match=None, zero_point_exact_match=None), 'output_dtype': DTypeWithConstraints(dtype=torch.quint8, quant_min_lower_bound=None, quant_max_upper_bound=None, scale_min_lower_bound=None, scale_max_upper_bound=None, scale_exact_match=None, zero_point_exact_match=None), 'weight_dtype': DTypeWithConstraints(dtype=torch.qint8, quant_min_lower_bound=None, quant_max_upper_bound=None, scale_min_lower_bound=None, scale_max_upper_bound=None, scale_exact_match=None, zero_point_exact_match=None), 'bias_dtype': torch.float32, }, { 'input_dtype': DTypeWithConstraints(dtype=torch.quint8, quant_min_lower_bound=None, quant_max_upper_bound=None, scale_min_lower_bound=None, scale_max_upper_bound=None, scale_exact_match=None, zero_point_exact_match=None),
https://pytorch.org/docs/stable/quantization-backend-configuration.html
pytorch docs
'output_dtype': DTypeWithConstraints(dtype=torch.float32, quant_min_lower_bound=None, quant_max_upper_bound=None, scale_min_lower_bound=None, scale_max_upper_bound=None, scale_exact_match=None, zero_point_exact_match=None), 'weight_dtype': DTypeWithConstraints(dtype=torch.qint8, quant_min_lower_bound=None, quant_max_upper_bound=None, scale_min_lower_bound=None, scale_max_upper_bound=None, scale_exact_match=None, zero_point_exact_match=None), 'bias_dtype': torch.float32, 'is_dynamic': True, }, { 'input_dtype': DTypeWithConstraints(dtype=torch.float16, quant_min_lower_bound=None, quant_max_upper_bound=None, scale_min_lower_bound=None, scale_max_upper_bound=None, scale_exact_match=None, zero_point_exact_match=None), 'output_dtype': DTypeWithConstraints(dtype=torch.float32, quant_min_lower_bound=None, quant_max_upper_bound=None, scale_min_lower_bound=None, scale_max_upper_bound=None, scale_exact_match=None, zero_point_exact_match=None),
https://pytorch.org/docs/stable/quantization-backend-configuration.html
pytorch docs
'weight_dtype': DTypeWithConstraints(dtype=torch.float16, quant_min_lower_bound=None, quant_max_upper_bound=None, scale_min_lower_bound=None, scale_max_upper_bound=None, scale_exact_match=None, zero_point_exact_match=None), 'bias_dtype': torch.float32, 'is_dynamic': True, }, ], 'observation_type': ObservationType.OUTPUT_USE_DIFFERENT_OBSERVER_AS_INPUT, }, { 'pattern': (, ), 'dtype_configs': [ { 'input_dtype': DTypeWithConstraints(dtype=torch.quint8, quant_min_lower_bound=None, quant_max_upper_bound=None, scale_min_lower_bound=None, scale_max_upper_bound=None, scale_exact_match=None, zero_point_exact_match=None), 'output_dtype': DTypeWithConstraints(dtype=torch.quint8, quant_min_lower_bound=None, quant_max_upper_bound=None, scale_min_lower_bound=None, scale_max_upper_bound=None, scale_exact_match=None, zero_point_exact_match=None), }, ],
https://pytorch.org/docs/stable/quantization-backend-configuration.html
pytorch docs
}, ], 'num_tensor_args_to_observation_type': { 0: ObservationType.OUTPUT_USE_DIFFERENT_OBSERVER_AS_INPUT, 1: ObservationType.OUTPUT_SHARE_OBSERVER_WITH_INPUT, 2: ObservationType.OUTPUT_USE_DIFFERENT_OBSERVER_AS_INPUT, }, 'observation_type': ObservationType.OUTPUT_USE_DIFFERENT_OBSERVER_AS_INPUT, }, { 'pattern': (, ), 'dtype_configs': [ { 'input_dtype': DTypeWithConstraints(dtype=torch.quint8, quant_min_lower_bound=None, quant_max_upper_bound=None, scale_min_lower_bound=None, scale_max_upper_bound=None, scale_exact_match=None, zero_point_exact_match=None), 'output_dtype': DTypeWithConstraints(dtype=torch.quint8, quant_min_lower_bound=None, quant_max_upper_bound=None, scale_min_lower_bound=None, scale_max_upper_bound=None, scale_exact_match=None, zero_point_exact_match=None), }, ], 'num_tensor_args_to_observation_type': {
https://pytorch.org/docs/stable/quantization-backend-configuration.html
pytorch docs
'num_tensor_args_to_observation_type': { 0: ObservationType.OUTPUT_USE_DIFFERENT_OBSERVER_AS_INPUT, 1: ObservationType.OUTPUT_SHARE_OBSERVER_WITH_INPUT, 2: ObservationType.OUTPUT_USE_DIFFERENT_OBSERVER_AS_INPUT, }, 'observation_type': ObservationType.OUTPUT_USE_DIFFERENT_OBSERVER_AS_INPUT, }, { 'pattern': (, ), 'dtype_configs': [ { 'input_dtype': DTypeWithConstraints(dtype=torch.quint8, quant_min_lower_bound=None, quant_max_upper_bound=None, scale_min_lower_bound=None, scale_max_upper_bound=None, scale_exact_match=None, zero_point_exact_match=None), 'output_dtype': DTypeWithConstraints(dtype=torch.quint8, quant_min_lower_bound=None, quant_max_upper_bound=None, scale_min_lower_bound=None, scale_max_upper_bound=None, scale_exact_match=None, zero_point_exact_match=None), }, ], 'num_tensor_args_to_observation_type': {
https://pytorch.org/docs/stable/quantization-backend-configuration.html
pytorch docs
'num_tensor_args_to_observation_type': { 0: ObservationType.OUTPUT_USE_DIFFERENT_OBSERVER_AS_INPUT, 1: ObservationType.OUTPUT_SHARE_OBSERVER_WITH_INPUT, 2: ObservationType.OUTPUT_USE_DIFFERENT_OBSERVER_AS_INPUT, }, 'observation_type': ObservationType.OUTPUT_USE_DIFFERENT_OBSERVER_AS_INPUT, }, { 'pattern': (, ), 'dtype_configs': [ { 'input_dtype': DTypeWithConstraints(dtype=torch.quint8, quant_min_lower_bound=None, quant_max_upper_bound=None, scale_min_lower_bound=None, scale_max_upper_bound=None, scale_exact_match=None, zero_point_exact_match=None), 'output_dtype': DTypeWithConstraints(dtype=torch.quint8, quant_min_lower_bound=None, quant_max_upper_bound=None, scale_min_lower_bound=None, scale_max_upper_bound=None, scale_exact_match=None, zero_point_exact_match=None), }, ], 'num_tensor_args_to_observation_type': {
https://pytorch.org/docs/stable/quantization-backend-configuration.html
pytorch docs
'num_tensor_args_to_observation_type': { 0: ObservationType.OUTPUT_USE_DIFFERENT_OBSERVER_AS_INPUT, 1: ObservationType.OUTPUT_SHARE_OBSERVER_WITH_INPUT, 2: ObservationType.OUTPUT_USE_DIFFERENT_OBSERVER_AS_INPUT, }, 'observation_type': ObservationType.OUTPUT_USE_DIFFERENT_OBSERVER_AS_INPUT, }, { 'pattern': (, ), 'dtype_configs': [ { 'input_dtype': DTypeWithConstraints(dtype=torch.quint8, quant_min_lower_bound=None, quant_max_upper_bound=None, scale_min_lower_bound=None, scale_max_upper_bound=None, scale_exact_match=None, zero_point_exact_match=None), 'output_dtype': DTypeWithConstraints(dtype=torch.quint8, quant_min_lower_bound=None, quant_max_upper_bound=None, scale_min_lower_bound=None, scale_max_upper_bound=None, scale_exact_match=None, zero_point_exact_match=None), }, ], 'num_tensor_args_to_observation_type': {
https://pytorch.org/docs/stable/quantization-backend-configuration.html
pytorch docs
'num_tensor_args_to_observation_type': { 0: ObservationType.OUTPUT_USE_DIFFERENT_OBSERVER_AS_INPUT, 1: ObservationType.OUTPUT_SHARE_OBSERVER_WITH_INPUT, 2: ObservationType.OUTPUT_USE_DIFFERENT_OBSERVER_AS_INPUT, }, 'observation_type': ObservationType.OUTPUT_USE_DIFFERENT_OBSERVER_AS_INPUT, }, { 'pattern': (, ), 'dtype_configs': [ { 'input_dtype': DTypeWithConstraints(dtype=torch.quint8, quant_min_lower_bound=None, quant_max_upper_bound=None, scale_min_lower_bound=None, scale_max_upper_bound=None, scale_exact_match=None, zero_point_exact_match=None), 'output_dtype': DTypeWithConstraints(dtype=torch.quint8, quant_min_lower_bound=None, quant_max_upper_bound=None, scale_min_lower_bound=None, scale_max_upper_bound=None, scale_exact_match=None, zero_point_exact_match=None), }, ],
https://pytorch.org/docs/stable/quantization-backend-configuration.html
pytorch docs
}, ], 'num_tensor_args_to_observation_type': { 0: ObservationType.OUTPUT_USE_DIFFERENT_OBSERVER_AS_INPUT, 1: ObservationType.OUTPUT_SHARE_OBSERVER_WITH_INPUT, 2: ObservationType.OUTPUT_USE_DIFFERENT_OBSERVER_AS_INPUT, }, 'observation_type': ObservationType.OUTPUT_USE_DIFFERENT_OBSERVER_AS_INPUT, }, { 'pattern': (, ), 'dtype_configs': [ { 'input_dtype': DTypeWithConstraints(dtype=torch.quint8, quant_min_lower_bound=None, quant_max_upper_bound=None, scale_min_lower_bound=None, scale_max_upper_bound=None, scale_exact_match=None, zero_point_exact_match=None), 'output_dtype': DTypeWithConstraints(dtype=torch.quint8, quant_min_lower_bound=None, quant_max_upper_bound=None, scale_min_lower_bound=None, scale_max_upper_bound=None, scale_exact_match=None, zero_point_exact_match=None), }, ], 'num_tensor_args_to_observation_type': {
https://pytorch.org/docs/stable/quantization-backend-configuration.html
pytorch docs
'num_tensor_args_to_observation_type': { 0: ObservationType.OUTPUT_USE_DIFFERENT_OBSERVER_AS_INPUT, 1: ObservationType.OUTPUT_SHARE_OBSERVER_WITH_INPUT, 2: ObservationType.OUTPUT_USE_DIFFERENT_OBSERVER_AS_INPUT, }, 'observation_type': ObservationType.OUTPUT_USE_DIFFERENT_OBSERVER_AS_INPUT, }, { 'pattern': (, ), 'dtype_configs': [ { 'input_dtype': DTypeWithConstraints(dtype=torch.quint8, quant_min_lower_bound=None, quant_max_upper_bound=None, scale_min_lower_bound=None, scale_max_upper_bound=None, scale_exact_match=None, zero_point_exact_match=None), 'output_dtype': DTypeWithConstraints(dtype=torch.quint8, quant_min_lower_bound=None, quant_max_upper_bound=None, scale_min_lower_bound=None, scale_max_upper_bound=None, scale_exact_match=None, zero_point_exact_match=None), }, ], 'num_tensor_args_to_observation_type': {
https://pytorch.org/docs/stable/quantization-backend-configuration.html
pytorch docs
'num_tensor_args_to_observation_type': { 0: ObservationType.OUTPUT_USE_DIFFERENT_OBSERVER_AS_INPUT, 1: ObservationType.OUTPUT_SHARE_OBSERVER_WITH_INPUT, 2: ObservationType.OUTPUT_USE_DIFFERENT_OBSERVER_AS_INPUT, }, 'observation_type': ObservationType.OUTPUT_USE_DIFFERENT_OBSERVER_AS_INPUT, }, { 'pattern': (, ), 'dtype_configs': [ { 'input_dtype': DTypeWithConstraints(dtype=torch.quint8, quant_min_lower_bound=None, quant_max_upper_bound=None, scale_min_lower_bound=None, scale_max_upper_bound=None, scale_exact_match=None, zero_point_exact_match=None), 'output_dtype': DTypeWithConstraints(dtype=torch.quint8, quant_min_lower_bound=None, quant_max_upper_bound=None, scale_min_lower_bound=None, scale_max_upper_bound=None, scale_exact_match=None, zero_point_exact_match=None), }, ], 'num_tensor_args_to_observation_type': {
https://pytorch.org/docs/stable/quantization-backend-configuration.html
pytorch docs
'num_tensor_args_to_observation_type': { 0: ObservationType.OUTPUT_USE_DIFFERENT_OBSERVER_AS_INPUT, 1: ObservationType.OUTPUT_SHARE_OBSERVER_WITH_INPUT, 2: ObservationType.OUTPUT_USE_DIFFERENT_OBSERVER_AS_INPUT, }, 'observation_type': ObservationType.OUTPUT_USE_DIFFERENT_OBSERVER_AS_INPUT, }, { 'pattern': (, ), 'dtype_configs': [ { 'input_dtype': DTypeWithConstraints(dtype=torch.quint8, quant_min_lower_bound=None, quant_max_upper_bound=None, scale_min_lower_bound=None, scale_max_upper_bound=None, scale_exact_match=None, zero_point_exact_match=None), 'output_dtype': DTypeWithConstraints(dtype=torch.quint8, quant_min_lower_bound=None, quant_max_upper_bound=None, scale_min_lower_bound=None, scale_max_upper_bound=None, scale_exact_match=None, zero_point_exact_match=None), }, ], 'num_tensor_args_to_observation_type': {
https://pytorch.org/docs/stable/quantization-backend-configuration.html
pytorch docs
'num_tensor_args_to_observation_type': { 0: ObservationType.OUTPUT_USE_DIFFERENT_OBSERVER_AS_INPUT, 1: ObservationType.OUTPUT_SHARE_OBSERVER_WITH_INPUT, 2: ObservationType.OUTPUT_USE_DIFFERENT_OBSERVER_AS_INPUT, }, 'observation_type': ObservationType.OUTPUT_USE_DIFFERENT_OBSERVER_AS_INPUT, }, { 'pattern': (, ), 'dtype_configs': [ { 'input_dtype': DTypeWithConstraints(dtype=torch.quint8, quant_min_lower_bound=None, quant_max_upper_bound=None, scale_min_lower_bound=None, scale_max_upper_bound=None, scale_exact_match=None, zero_point_exact_match=None), 'output_dtype': DTypeWithConstraints(dtype=torch.quint8, quant_min_lower_bound=None, quant_max_upper_bound=None, scale_min_lower_bound=None, scale_max_upper_bound=None, scale_exact_match=None, zero_point_exact_match=None), }, ], 'num_tensor_args_to_observation_type': {
https://pytorch.org/docs/stable/quantization-backend-configuration.html
pytorch docs
'num_tensor_args_to_observation_type': { 0: ObservationType.OUTPUT_USE_DIFFERENT_OBSERVER_AS_INPUT, 1: ObservationType.OUTPUT_SHARE_OBSERVER_WITH_INPUT, 2: ObservationType.OUTPUT_USE_DIFFERENT_OBSERVER_AS_INPUT, }, 'observation_type': ObservationType.OUTPUT_USE_DIFFERENT_OBSERVER_AS_INPUT, }, { 'pattern': (, ), 'dtype_configs': [ { 'input_dtype': DTypeWithConstraints(dtype=torch.quint8, quant_min_lower_bound=None, quant_max_upper_bound=None, scale_min_lower_bound=None, scale_max_upper_bound=None, scale_exact_match=None, zero_point_exact_match=None), 'output_dtype': DTypeWithConstraints(dtype=torch.quint8, quant_min_lower_bound=None, quant_max_upper_bound=None, scale_min_lower_bound=None, scale_max_upper_bound=None, scale_exact_match=None, zero_point_exact_match=None), }, ],
https://pytorch.org/docs/stable/quantization-backend-configuration.html
pytorch docs
}, ], 'num_tensor_args_to_observation_type': { 0: ObservationType.OUTPUT_USE_DIFFERENT_OBSERVER_AS_INPUT, 1: ObservationType.OUTPUT_SHARE_OBSERVER_WITH_INPUT, 2: ObservationType.OUTPUT_USE_DIFFERENT_OBSERVER_AS_INPUT, }, 'observation_type': ObservationType.OUTPUT_USE_DIFFERENT_OBSERVER_AS_INPUT, }, { 'pattern': , 'dtype_configs': [ { 'input_dtype': DTypeWithConstraints(dtype=torch.quint8, quant_min_lower_bound=None, quant_max_upper_bound=None, scale_min_lower_bound=None, scale_max_upper_bound=None, scale_exact_match=None, zero_point_exact_match=None), 'output_dtype': DTypeWithConstraints(dtype=torch.quint8, quant_min_lower_bound=None, quant_max_upper_bound=None, scale_min_lower_bound=None, scale_max_upper_bound=None, scale_exact_match=None, zero_point_exact_match=None), }, ], 'observation_type': ObservationType.OUTPUT_SHARE_OBSERVER_WITH_INPUT, }, {
https://pytorch.org/docs/stable/quantization-backend-configuration.html
pytorch docs
}, { 'pattern': , 'dtype_configs': [ { 'input_dtype': DTypeWithConstraints(dtype=torch.quint8, quant_min_lower_bound=None, quant_max_upper_bound=None, scale_min_lower_bound=None, scale_max_upper_bound=None, scale_exact_match=None, zero_point_exact_match=None), 'output_dtype': DTypeWithConstraints(dtype=torch.quint8, quant_min_lower_bound=None, quant_max_upper_bound=None, scale_min_lower_bound=None, scale_max_upper_bound=None, scale_exact_match=None, zero_point_exact_match=None), }, ], 'observation_type': ObservationType.OUTPUT_SHARE_OBSERVER_WITH_INPUT, }, { 'pattern': relu, 'dtype_configs': [ { 'input_dtype': DTypeWithConstraints(dtype=torch.quint8, quant_min_lower_bound=None, quant_max_upper_bound=None, scale_min_lower_bound=None, scale_max_upper_bound=None, scale_exact_match=None, zero_point_exact_match=None),
https://pytorch.org/docs/stable/quantization-backend-configuration.html
pytorch docs
'output_dtype': DTypeWithConstraints(dtype=torch.quint8, quant_min_lower_bound=None, quant_max_upper_bound=None, scale_min_lower_bound=None, scale_max_upper_bound=None, scale_exact_match=None, zero_point_exact_match=None), }, ], 'observation_type': ObservationType.OUTPUT_SHARE_OBSERVER_WITH_INPUT, }, { 'pattern': relu_, 'dtype_configs': [ { 'input_dtype': DTypeWithConstraints(dtype=torch.quint8, quant_min_lower_bound=None, quant_max_upper_bound=None, scale_min_lower_bound=None, scale_max_upper_bound=None, scale_exact_match=None, zero_point_exact_match=None), 'output_dtype': DTypeWithConstraints(dtype=torch.quint8, quant_min_lower_bound=None, quant_max_upper_bound=None, scale_min_lower_bound=None, scale_max_upper_bound=None, scale_exact_match=None, zero_point_exact_match=None), }, ], 'observation_type': ObservationType.OUTPUT_SHARE_OBSERVER_WITH_INPUT, }, {
https://pytorch.org/docs/stable/quantization-backend-configuration.html
pytorch docs
}, { 'pattern': (, ), 'dtype_configs': [ { 'input_dtype': DTypeWithConstraints(dtype=torch.quint8, quant_min_lower_bound=None, quant_max_upper_bound=None, scale_min_lower_bound=None, scale_max_upper_bound=None, scale_exact_match=None, zero_point_exact_match=None), 'output_dtype': DTypeWithConstraints(dtype=torch.quint8, quant_min_lower_bound=None, quant_max_upper_bound=None, scale_min_lower_bound=None, scale_max_upper_bound=None, scale_exact_match=None, zero_point_exact_match=None), }, ], 'observation_type': ObservationType.OUTPUT_USE_DIFFERENT_OBSERVER_AS_INPUT, 'fused_module': , 'fuser_method': .fuser_method at 0x7f8f27895a20>, }, { 'pattern': (, ),
https://pytorch.org/docs/stable/quantization-backend-configuration.html
pytorch docs
'dtype_configs': [ { 'input_dtype': DTypeWithConstraints(dtype=torch.quint8, quant_min_lower_bound=None, quant_max_upper_bound=None, scale_min_lower_bound=None, scale_max_upper_bound=None, scale_exact_match=None, zero_point_exact_match=None), 'output_dtype': DTypeWithConstraints(dtype=torch.quint8, quant_min_lower_bound=None, quant_max_upper_bound=None, scale_min_lower_bound=None, scale_max_upper_bound=None, scale_exact_match=None, zero_point_exact_match=None), }, ], 'observation_type': ObservationType.OUTPUT_USE_DIFFERENT_OBSERVER_AS_INPUT, 'fused_module': , 'fuser_method': .fuser_method at 0x7f8f27895ab0>, }, { 'pattern': (, ), 'dtype_configs': [ {
https://pytorch.org/docs/stable/quantization-backend-configuration.html
pytorch docs
'dtype_configs': [ { 'input_dtype': DTypeWithConstraints(dtype=torch.quint8, quant_min_lower_bound=None, quant_max_upper_bound=None, scale_min_lower_bound=None, scale_max_upper_bound=None, scale_exact_match=None, zero_point_exact_match=None), 'output_dtype': DTypeWithConstraints(dtype=torch.quint8, quant_min_lower_bound=None, quant_max_upper_bound=None, scale_min_lower_bound=None, scale_max_upper_bound=None, scale_exact_match=None, zero_point_exact_match=None), }, ], 'observation_type': ObservationType.OUTPUT_USE_DIFFERENT_OBSERVER_AS_INPUT, 'fused_module': , 'fuser_method': .fuser_method at 0x7f8f27895b40>, }, { 'pattern': (, ), 'dtype_configs': [ {
https://pytorch.org/docs/stable/quantization-backend-configuration.html
pytorch docs
'dtype_configs': [ { 'input_dtype': DTypeWithConstraints(dtype=torch.quint8, quant_min_lower_bound=None, quant_max_upper_bound=None, scale_min_lower_bound=None, scale_max_upper_bound=None, scale_exact_match=None, zero_point_exact_match=None), 'output_dtype': DTypeWithConstraints(dtype=torch.quint8, quant_min_lower_bound=None, quant_max_upper_bound=None, scale_min_lower_bound=None, scale_max_upper_bound=None, scale_exact_match=None, zero_point_exact_match=None), }, ], 'observation_type': ObservationType.OUTPUT_USE_DIFFERENT_OBSERVER_AS_INPUT, 'fused_module': , 'fuser_method': .fuser_method at 0x7f8f27895bd0>, }, { 'pattern': , 'dtype_configs': [ {
https://pytorch.org/docs/stable/quantization-backend-configuration.html
pytorch docs
'dtype_configs': [ { 'input_dtype': DTypeWithConstraints(dtype=torch.quint8, quant_min_lower_bound=None, quant_max_upper_bound=None, scale_min_lower_bound=None, scale_max_upper_bound=None, scale_exact_match=None, zero_point_exact_match=None), 'output_dtype': DTypeWithConstraints(dtype=torch.quint8, quant_min_lower_bound=None, quant_max_upper_bound=None, scale_min_lower_bound=None, scale_max_upper_bound=None, scale_exact_match=None, zero_point_exact_match=None), }, ], 'observation_type': ObservationType.OUTPUT_SHARE_OBSERVER_WITH_INPUT, }, { 'pattern': , 'dtype_configs': [ { 'input_dtype': DTypeWithConstraints(dtype=torch.quint8, quant_min_lower_bound=None, quant_max_upper_bound=None, scale_min_lower_bound=None, scale_max_upper_bound=None, scale_exact_match=None, zero_point_exact_match=None),
https://pytorch.org/docs/stable/quantization-backend-configuration.html
pytorch docs
'output_dtype': DTypeWithConstraints(dtype=torch.quint8, quant_min_lower_bound=None, quant_max_upper_bound=None, scale_min_lower_bound=None, scale_max_upper_bound=None, scale_exact_match=None, zero_point_exact_match=None), }, ], 'observation_type': ObservationType.OUTPUT_SHARE_OBSERVER_WITH_INPUT, }, { 'pattern': repeat, 'dtype_configs': [ { 'input_dtype': DTypeWithConstraints(dtype=torch.quint8, quant_min_lower_bound=None, quant_max_upper_bound=None, scale_min_lower_bound=None, scale_max_upper_bound=None, scale_exact_match=None, zero_point_exact_match=None), 'output_dtype': DTypeWithConstraints(dtype=torch.quint8, quant_min_lower_bound=None, quant_max_upper_bound=None, scale_min_lower_bound=None, scale_max_upper_bound=None, scale_exact_match=None, zero_point_exact_match=None), }, ], 'observation_type': ObservationType.OUTPUT_SHARE_OBSERVER_WITH_INPUT, }, {
https://pytorch.org/docs/stable/quantization-backend-configuration.html
pytorch docs
}, { 'pattern': , 'dtype_configs': [ { 'input_dtype': DTypeWithConstraints(dtype=torch.quint8, quant_min_lower_bound=None, quant_max_upper_bound=None, scale_min_lower_bound=None, scale_max_upper_bound=None, scale_exact_match=None, zero_point_exact_match=None), 'output_dtype': DTypeWithConstraints(dtype=torch.quint8, quant_min_lower_bound=None, quant_max_upper_bound=None, scale_min_lower_bound=None, scale_max_upper_bound=None, scale_exact_match=None, zero_point_exact_match=None), }, ], 'observation_type': ObservationType.OUTPUT_SHARE_OBSERVER_WITH_INPUT, }, { 'pattern': repeat_interleave, 'dtype_configs': [ { 'input_dtype': DTypeWithConstraints(dtype=torch.quint8, quant_min_lower_bound=None, quant_max_upper_bound=None, scale_min_lower_bound=None, scale_max_upper_bound=None, scale_exact_match=None, zero_point_exact_match=None),
https://pytorch.org/docs/stable/quantization-backend-configuration.html
pytorch docs
'output_dtype': DTypeWithConstraints(dtype=torch.quint8, quant_min_lower_bound=None, quant_max_upper_bound=None, scale_min_lower_bound=None, scale_max_upper_bound=None, scale_exact_match=None, zero_point_exact_match=None), }, ], 'observation_type': ObservationType.OUTPUT_SHARE_OBSERVER_WITH_INPUT, }, { 'pattern': reshape, 'dtype_configs': [ { 'input_dtype': DTypeWithConstraints(dtype=torch.quint8, quant_min_lower_bound=None, quant_max_upper_bound=None, scale_min_lower_bound=None, scale_max_upper_bound=None, scale_exact_match=None, zero_point_exact_match=None), 'output_dtype': DTypeWithConstraints(dtype=torch.quint8, quant_min_lower_bound=None, quant_max_upper_bound=None, scale_min_lower_bound=None, scale_max_upper_bound=None, scale_exact_match=None, zero_point_exact_match=None), }, ], 'observation_type': ObservationType.OUTPUT_SHARE_OBSERVER_WITH_INPUT, }, { 'pattern': resize_, 'dtype_configs': [ {
https://pytorch.org/docs/stable/quantization-backend-configuration.html
pytorch docs
'dtype_configs': [ { 'input_dtype': DTypeWithConstraints(dtype=torch.quint8, quant_min_lower_bound=None, quant_max_upper_bound=None, scale_min_lower_bound=None, scale_max_upper_bound=None, scale_exact_match=None, zero_point_exact_match=None), 'output_dtype': DTypeWithConstraints(dtype=torch.quint8, quant_min_lower_bound=None, quant_max_upper_bound=None, scale_min_lower_bound=None, scale_max_upper_bound=None, scale_exact_match=None, zero_point_exact_match=None), }, ], 'observation_type': ObservationType.OUTPUT_SHARE_OBSERVER_WITH_INPUT, }, { 'pattern': , 'dtype_configs': [ { 'input_dtype': DTypeWithConstraints(dtype=torch.quint8, quant_min_lower_bound=None, quant_max_upper_bound=None, scale_min_lower_bound=None, scale_max_upper_bound=None, scale_exact_match=None, zero_point_exact_match=None),
https://pytorch.org/docs/stable/quantization-backend-configuration.html
pytorch docs
'output_dtype': DTypeWithConstraints(dtype=torch.float32, quant_min_lower_bound=None, quant_max_upper_bound=None, scale_min_lower_bound=None, scale_max_upper_bound=None, scale_exact_match=None, zero_point_exact_match=None), 'weight_dtype': DTypeWithConstraints(dtype=torch.qint8, quant_min_lower_bound=None, quant_max_upper_bound=None, scale_min_lower_bound=None, scale_max_upper_bound=None, scale_exact_match=None, zero_point_exact_match=None), 'bias_dtype': torch.float32, 'is_dynamic': True, }, { 'input_dtype': DTypeWithConstraints(dtype=torch.float16, quant_min_lower_bound=None, quant_max_upper_bound=None, scale_min_lower_bound=None, scale_max_upper_bound=None, scale_exact_match=None, zero_point_exact_match=None), 'output_dtype': DTypeWithConstraints(dtype=torch.float32, quant_min_lower_bound=None, quant_max_upper_bound=None, scale_min_lower_bound=None, scale_max_upper_bound=None, scale_exact_match=None, zero_point_exact_match=None),
https://pytorch.org/docs/stable/quantization-backend-configuration.html
pytorch docs
'weight_dtype': DTypeWithConstraints(dtype=torch.float16, quant_min_lower_bound=None, quant_max_upper_bound=None, scale_min_lower_bound=None, scale_max_upper_bound=None, scale_exact_match=None, zero_point_exact_match=None), 'bias_dtype': torch.float32, 'is_dynamic': True, }, ], 'observation_type': ObservationType.OUTPUT_USE_DIFFERENT_OBSERVER_AS_INPUT, 'root_module': , 'reference_quantized_module_for_root': , }, { 'pattern': shape, 'dtype_configs': [ { 'input_dtype': DTypeWithConstraints(dtype=torch.quint8, quant_min_lower_bound=None, quant_max_upper_bound=None, scale_min_lower_bound=None, scale_max_upper_bound=None, scale_exact_match=None, zero_point_exact_match=None),
https://pytorch.org/docs/stable/quantization-backend-configuration.html
pytorch docs
'output_dtype': DTypeWithConstraints(dtype=torch.quint8, quant_min_lower_bound=None, quant_max_upper_bound=None, scale_min_lower_bound=None, scale_max_upper_bound=None, scale_exact_match=None, zero_point_exact_match=None), }, ], 'observation_type': ObservationType.OUTPUT_SHARE_OBSERVER_WITH_INPUT, }, { 'pattern': , 'dtype_configs': [ { 'input_dtype': DTypeWithConstraints(dtype=torch.quint8, quant_min_lower_bound=0, quant_max_upper_bound=255, scale_min_lower_bound=None, scale_max_upper_bound=None, scale_exact_match=0.00390625, zero_point_exact_match=0), 'output_dtype': DTypeWithConstraints(dtype=torch.quint8, quant_min_lower_bound=0, quant_max_upper_bound=255, scale_min_lower_bound=None, scale_max_upper_bound=None, scale_exact_match=0.00390625, zero_point_exact_match=0), }, ], 'observation_type': ObservationType.OUTPUT_USE_DIFFERENT_OBSERVER_AS_INPUT, }, {
https://pytorch.org/docs/stable/quantization-backend-configuration.html
pytorch docs
}, { 'pattern': , 'dtype_configs': [ { 'input_dtype': DTypeWithConstraints(dtype=torch.quint8, quant_min_lower_bound=0, quant_max_upper_bound=255, scale_min_lower_bound=None, scale_max_upper_bound=None, scale_exact_match=0.00390625, zero_point_exact_match=0), 'output_dtype': DTypeWithConstraints(dtype=torch.quint8, quant_min_lower_bound=0, quant_max_upper_bound=255, scale_min_lower_bound=None, scale_max_upper_bound=None, scale_exact_match=0.00390625, zero_point_exact_match=0), }, ], 'observation_type': ObservationType.OUTPUT_USE_DIFFERENT_OBSERVER_AS_INPUT, }, { 'pattern': sigmoid, 'dtype_configs': [ { 'input_dtype': DTypeWithConstraints(dtype=torch.quint8, quant_min_lower_bound=0, quant_max_upper_bound=255, scale_min_lower_bound=None, scale_max_upper_bound=None, scale_exact_match=0.00390625, zero_point_exact_match=0),
https://pytorch.org/docs/stable/quantization-backend-configuration.html
pytorch docs
'output_dtype': DTypeWithConstraints(dtype=torch.quint8, quant_min_lower_bound=0, quant_max_upper_bound=255, scale_min_lower_bound=None, scale_max_upper_bound=None, scale_exact_match=0.00390625, zero_point_exact_match=0), }, ], 'observation_type': ObservationType.OUTPUT_USE_DIFFERENT_OBSERVER_AS_INPUT, }, { 'pattern': sigmoid_, 'dtype_configs': [ { 'input_dtype': DTypeWithConstraints(dtype=torch.quint8, quant_min_lower_bound=0, quant_max_upper_bound=255, scale_min_lower_bound=None, scale_max_upper_bound=None, scale_exact_match=0.00390625, zero_point_exact_match=0), 'output_dtype': DTypeWithConstraints(dtype=torch.quint8, quant_min_lower_bound=0, quant_max_upper_bound=255, scale_min_lower_bound=None, scale_max_upper_bound=None, scale_exact_match=0.00390625, zero_point_exact_match=0), }, ], 'observation_type': ObservationType.OUTPUT_USE_DIFFERENT_OBSERVER_AS_INPUT, }, { 'pattern': size, 'dtype_configs': [
https://pytorch.org/docs/stable/quantization-backend-configuration.html
pytorch docs
{ 'pattern': size, 'dtype_configs': [ { 'input_dtype': DTypeWithConstraints(dtype=torch.quint8, quant_min_lower_bound=None, quant_max_upper_bound=None, scale_min_lower_bound=None, scale_max_upper_bound=None, scale_exact_match=None, zero_point_exact_match=None), 'output_dtype': DTypeWithConstraints(dtype=torch.quint8, quant_min_lower_bound=None, quant_max_upper_bound=None, scale_min_lower_bound=None, scale_max_upper_bound=None, scale_exact_match=None, zero_point_exact_match=None), }, ], 'observation_type': ObservationType.OUTPUT_SHARE_OBSERVER_WITH_INPUT, }, { 'pattern': , 'dtype_configs': [ { 'input_dtype': DTypeWithConstraints(dtype=torch.quint8, quant_min_lower_bound=0, quant_max_upper_bound=255, scale_min_lower_bound=None, scale_max_upper_bound=None, scale_exact_match=0.00390625, zero_point_exact_match=0),
https://pytorch.org/docs/stable/quantization-backend-configuration.html
pytorch docs
'output_dtype': DTypeWithConstraints(dtype=torch.quint8, quant_min_lower_bound=0, quant_max_upper_bound=255, scale_min_lower_bound=None, scale_max_upper_bound=None, scale_exact_match=0.00390625, zero_point_exact_match=0), }, ], 'observation_type': ObservationType.OUTPUT_USE_DIFFERENT_OBSERVER_AS_INPUT, }, { 'pattern': , 'dtype_configs': [ { 'input_dtype': DTypeWithConstraints(dtype=torch.quint8, quant_min_lower_bound=None, quant_max_upper_bound=None, scale_min_lower_bound=None, scale_max_upper_bound=None, scale_exact_match=None, zero_point_exact_match=None), 'output_dtype': DTypeWithConstraints(dtype=torch.quint8, quant_min_lower_bound=None, quant_max_upper_bound=None, scale_min_lower_bound=None, scale_max_upper_bound=None, scale_exact_match=None, zero_point_exact_match=None), }, ], 'observation_type': ObservationType.OUTPUT_SHARE_OBSERVER_WITH_INPUT, }, {
https://pytorch.org/docs/stable/quantization-backend-configuration.html
pytorch docs
}, { 'pattern': squeeze, 'dtype_configs': [ { 'input_dtype': DTypeWithConstraints(dtype=torch.quint8, quant_min_lower_bound=None, quant_max_upper_bound=None, scale_min_lower_bound=None, scale_max_upper_bound=None, scale_exact_match=None, zero_point_exact_match=None), 'output_dtype': DTypeWithConstraints(dtype=torch.quint8, quant_min_lower_bound=None, quant_max_upper_bound=None, scale_min_lower_bound=None, scale_max_upper_bound=None, scale_exact_match=None, zero_point_exact_match=None), }, ], 'observation_type': ObservationType.OUTPUT_SHARE_OBSERVER_WITH_INPUT, }, { 'pattern': squeeze_, 'dtype_configs': [ { 'input_dtype': DTypeWithConstraints(dtype=torch.quint8, quant_min_lower_bound=None, quant_max_upper_bound=None, scale_min_lower_bound=None, scale_max_upper_bound=None, scale_exact_match=None, zero_point_exact_match=None),
https://pytorch.org/docs/stable/quantization-backend-configuration.html
pytorch docs
'output_dtype': DTypeWithConstraints(dtype=torch.quint8, quant_min_lower_bound=None, quant_max_upper_bound=None, scale_min_lower_bound=None, scale_max_upper_bound=None, scale_exact_match=None, zero_point_exact_match=None), }, ], 'observation_type': ObservationType.OUTPUT_SHARE_OBSERVER_WITH_INPUT, }, { 'pattern': , 'dtype_configs': [ { 'input_dtype': DTypeWithConstraints(dtype=torch.quint8, quant_min_lower_bound=None, quant_max_upper_bound=None, scale_min_lower_bound=None, scale_max_upper_bound=None, scale_exact_match=None, zero_point_exact_match=None), 'output_dtype': DTypeWithConstraints(dtype=torch.quint8, quant_min_lower_bound=None, quant_max_upper_bound=None, scale_min_lower_bound=None, scale_max_upper_bound=None, scale_exact_match=None, zero_point_exact_match=None), }, ], 'observation_type': ObservationType.OUTPUT_SHARE_OBSERVER_WITH_INPUT, }, {
https://pytorch.org/docs/stable/quantization-backend-configuration.html
pytorch docs
}, { 'pattern': , 'dtype_configs': [ { 'input_dtype': DTypeWithConstraints(dtype=torch.quint8, quant_min_lower_bound=0, quant_max_upper_bound=255, scale_min_lower_bound=None, scale_max_upper_bound=None, scale_exact_match=0.0078125, zero_point_exact_match=128), 'output_dtype': DTypeWithConstraints(dtype=torch.quint8, quant_min_lower_bound=0, quant_max_upper_bound=255, scale_min_lower_bound=None, scale_max_upper_bound=None, scale_exact_match=0.0078125, zero_point_exact_match=128), }, ], 'observation_type': ObservationType.OUTPUT_USE_DIFFERENT_OBSERVER_AS_INPUT, }, { 'pattern': , 'dtype_configs': [ { 'input_dtype': DTypeWithConstraints(dtype=torch.quint8, quant_min_lower_bound=0, quant_max_upper_bound=255, scale_min_lower_bound=None, scale_max_upper_bound=None, scale_exact_match=0.0078125, zero_point_exact_match=128),
https://pytorch.org/docs/stable/quantization-backend-configuration.html
pytorch docs
'output_dtype': DTypeWithConstraints(dtype=torch.quint8, quant_min_lower_bound=0, quant_max_upper_bound=255, scale_min_lower_bound=None, scale_max_upper_bound=None, scale_exact_match=0.0078125, zero_point_exact_match=128), }, ], 'observation_type': ObservationType.OUTPUT_USE_DIFFERENT_OBSERVER_AS_INPUT, }, { 'pattern': tanh, 'dtype_configs': [ { 'input_dtype': DTypeWithConstraints(dtype=torch.quint8, quant_min_lower_bound=0, quant_max_upper_bound=255, scale_min_lower_bound=None, scale_max_upper_bound=None, scale_exact_match=0.0078125, zero_point_exact_match=128), 'output_dtype': DTypeWithConstraints(dtype=torch.quint8, quant_min_lower_bound=0, quant_max_upper_bound=255, scale_min_lower_bound=None, scale_max_upper_bound=None, scale_exact_match=0.0078125, zero_point_exact_match=128), }, ], 'observation_type': ObservationType.OUTPUT_USE_DIFFERENT_OBSERVER_AS_INPUT, }, { 'pattern': tanh_, 'dtype_configs': [
https://pytorch.org/docs/stable/quantization-backend-configuration.html
pytorch docs
'pattern': tanh_, 'dtype_configs': [ { 'input_dtype': DTypeWithConstraints(dtype=torch.quint8, quant_min_lower_bound=0, quant_max_upper_bound=255, scale_min_lower_bound=None, scale_max_upper_bound=None, scale_exact_match=0.0078125, zero_point_exact_match=128), 'output_dtype': DTypeWithConstraints(dtype=torch.quint8, quant_min_lower_bound=0, quant_max_upper_bound=255, scale_min_lower_bound=None, scale_max_upper_bound=None, scale_exact_match=0.0078125, zero_point_exact_match=128), }, ], 'observation_type': ObservationType.OUTPUT_USE_DIFFERENT_OBSERVER_AS_INPUT, }, { 'pattern': , 'dtype_configs': [ { 'input_dtype': DTypeWithConstraints(dtype=torch.quint8, quant_min_lower_bound=None, quant_max_upper_bound=None, scale_min_lower_bound=None, scale_max_upper_bound=None, scale_exact_match=None, zero_point_exact_match=None),
https://pytorch.org/docs/stable/quantization-backend-configuration.html
pytorch docs
'output_dtype': DTypeWithConstraints(dtype=torch.quint8, quant_min_lower_bound=None, quant_max_upper_bound=None, scale_min_lower_bound=None, scale_max_upper_bound=None, scale_exact_match=None, zero_point_exact_match=None), }, ], 'observation_type': ObservationType.OUTPUT_SHARE_OBSERVER_WITH_INPUT, }, { 'pattern': transpose, 'dtype_configs': [ { 'input_dtype': DTypeWithConstraints(dtype=torch.quint8, quant_min_lower_bound=None, quant_max_upper_bound=None, scale_min_lower_bound=None, scale_max_upper_bound=None, scale_exact_match=None, zero_point_exact_match=None), 'output_dtype': DTypeWithConstraints(dtype=torch.quint8, quant_min_lower_bound=None, quant_max_upper_bound=None, scale_min_lower_bound=None, scale_max_upper_bound=None, scale_exact_match=None, zero_point_exact_match=None), }, ], 'observation_type': ObservationType.OUTPUT_SHARE_OBSERVER_WITH_INPUT, }, {
https://pytorch.org/docs/stable/quantization-backend-configuration.html
pytorch docs
}, { 'pattern': , 'dtype_configs': [ { 'input_dtype': DTypeWithConstraints(dtype=torch.quint8, quant_min_lower_bound=None, quant_max_upper_bound=None, scale_min_lower_bound=None, scale_max_upper_bound=None, scale_exact_match=None, zero_point_exact_match=None), 'output_dtype': DTypeWithConstraints(dtype=torch.quint8, quant_min_lower_bound=None, quant_max_upper_bound=None, scale_min_lower_bound=None, scale_max_upper_bound=None, scale_exact_match=None, zero_point_exact_match=None), }, ], 'observation_type': ObservationType.OUTPUT_SHARE_OBSERVER_WITH_INPUT, }, { 'pattern': unsqueeze, 'dtype_configs': [ { 'input_dtype': DTypeWithConstraints(dtype=torch.quint8, quant_min_lower_bound=None, quant_max_upper_bound=None, scale_min_lower_bound=None, scale_max_upper_bound=None, scale_exact_match=None, zero_point_exact_match=None),
https://pytorch.org/docs/stable/quantization-backend-configuration.html
pytorch docs
'output_dtype': DTypeWithConstraints(dtype=torch.quint8, quant_min_lower_bound=None, quant_max_upper_bound=None, scale_min_lower_bound=None, scale_max_upper_bound=None, scale_exact_match=None, zero_point_exact_match=None), }, ], 'observation_type': ObservationType.OUTPUT_SHARE_OBSERVER_WITH_INPUT, }, { 'pattern': unsqueeze_, 'dtype_configs': [ { 'input_dtype': DTypeWithConstraints(dtype=torch.quint8, quant_min_lower_bound=None, quant_max_upper_bound=None, scale_min_lower_bound=None, scale_max_upper_bound=None, scale_exact_match=None, zero_point_exact_match=None), 'output_dtype': DTypeWithConstraints(dtype=torch.quint8, quant_min_lower_bound=None, quant_max_upper_bound=None, scale_min_lower_bound=None, scale_max_upper_bound=None, scale_exact_match=None, zero_point_exact_match=None), }, ], 'observation_type': ObservationType.OUTPUT_SHARE_OBSERVER_WITH_INPUT, }, { 'pattern': view, 'dtype_configs': [ {
https://pytorch.org/docs/stable/quantization-backend-configuration.html
pytorch docs
'dtype_configs': [ { 'input_dtype': DTypeWithConstraints(dtype=torch.quint8, quant_min_lower_bound=None, quant_max_upper_bound=None, scale_min_lower_bound=None, scale_max_upper_bound=None, scale_exact_match=None, zero_point_exact_match=None), 'output_dtype': DTypeWithConstraints(dtype=torch.quint8, quant_min_lower_bound=None, quant_max_upper_bound=None, scale_min_lower_bound=None, scale_max_upper_bound=None, scale_exact_match=None, zero_point_exact_match=None), }, ], 'observation_type': ObservationType.OUTPUT_SHARE_OBSERVER_WITH_INPUT, }
https://pytorch.org/docs/stable/quantization-backend-configuration.html
pytorch docs
‹íÁ  ÷Om7 €7šÞ'(
https://pytorch.org/docs/stable/output_text.tar.gz.html
pytorch docs
torch.utils.checkpoint Note: Checkpointing is implemented by rerunning a forward-pass segment for each checkpointed segment during backward. This can cause persistent states like the RNG state to be advanced than they would without checkpointing. By default, checkpointing includes logic to juggle the RNG state such that checkpointed passes making use of RNG (through dropout for example) have deterministic output as compared to non-checkpointed passes. The logic to stash and restore RNG states can incur a moderate performance hit depending on the runtime of checkpointed operations. If deterministic output compared to non-checkpointed passes is not required, supply "preserve_rng_state=False" to "checkpoint" or "checkpoint_sequential" to omit stashing and restoring the RNG state during each checkpoint.The stashing logic saves and restores the RNG state for the current device and the device of all cuda Tensor
https://pytorch.org/docs/stable/checkpoint.html
pytorch docs
arguments to the "run_fn". However, the logic has no way to anticipate if the user will move Tensors to a new device within the "run_fn" itself. Therefore, if you move Tensors to a new device ("new" meaning not belonging to the set of [current device + devices of Tensor arguments]) within "run_fn", deterministic output compared to non-checkpointed passes is never guaranteed. torch.utils.checkpoint.checkpoint(function, args, use_reentrant=True, *kwargs) Checkpoint a model or part of the model Checkpointing works by trading compute for memory. Rather than storing all intermediate activations of the entire computation graph for computing backward, the checkpointed part does not save intermediate activations, and instead recomputes them in backward pass. It can be applied on any part of a model. Specifically, in the forward pass, "function" will run in "torch.no_grad()" manner, i.e., not storing the intermediate
https://pytorch.org/docs/stable/checkpoint.html
pytorch docs
activations. Instead, the forward pass saves the inputs tuple and the "function" parameter. In the backwards pass, the saved inputs and "function" is retrieved, and the forward pass is computed on "function" again, now tracking the intermediate activations, and then the gradients are calculated using these activation values. The output of "function" can contain non-Tensor values and gradient recording is only performed for the Tensor values. Note that if the output consists of nested structures (ex: custom objects, lists, dicts etc.) consisting of Tensors, these Tensors nested in custom structures will not be considered as part of autograd. Warning: If "function" invocation during backward does anything different than the one during forward, e.g., due to some global variable, the checkpointed version won't be equivalent, and unfortunately it can't be detected. Warning: If "use_reentrant=True" is specified, then if the checkpointed
https://pytorch.org/docs/stable/checkpoint.html
pytorch docs
segment contains tensors detached from the computational graph by detach() or torch.no_grad(), the backward pass will raise an error. This is because checkpoint makes all the outputs require gradients which causes issues when a tensor is defined to have no gradient in the model. To circumvent this, detach the tensors outside of the checkpoint function. Note that the checkpointed segment can contain tensors detached from the computational graph if "use_reentrant=False" is specified. Warning: If "use_reentrant=True" is specified, at least one of the inputs needs to have "requires_grad=True" if grads are needed for model inputs, otherwise the checkpointed part of the model won't have gradients. At least one of the outputs needs to have "requires_grad=True" as well. Note that this does not apply if "use_reentrant=False" is specified. Warning: If "use_reentrant=True" is specified, checkpointing currently
https://pytorch.org/docs/stable/checkpoint.html
pytorch docs
only supports "torch.autograd.backward()" and only if its inputs argument is not passed. "torch.autograd.grad()" is not supported. If "use_reentrant=False" is specified, checkpointing will work with "torch.autograd.grad()". Parameters: * function -- describes what to run in the forward pass of the model or part of the model. It should also know how to handle the inputs passed as the tuple. For example, in LSTM, if user passes "(activation, hidden)", "function" should correctly use the first input as "activation" and the second input as "hidden" * **preserve_rng_state** (*bool**, **optional*) -- Omit stashing and restoring the RNG state during each checkpoint. Default: "True" * **use_reentrant** (*bool**, **optional*) -- Use checkpointing implementation that requires re-entrant autograd. If "use_reentrant=False" is specified, "checkpoint" will use an
https://pytorch.org/docs/stable/checkpoint.html
pytorch docs
implementation that does not require re-entrant autograd. This allows "checkpoint" to support additional functionality, such as working as expected with "torch.autograd.grad" and support for keyword arguments input into the checkpointed function. Note that future versions of PyTorch will default to "use_reentrant=False". Default: "True" * **args** -- tuple containing inputs to the "function" Returns: Output of running "function" on "*args" torch.utils.checkpoint.checkpoint_sequential(functions, segments, input, use_reentrant=True, **kwargs) A helper function for checkpointing sequential models. Sequential models execute a list of modules/functions in order (sequentially). Therefore, we can divide such a model in various segments and checkpoint each segment. All segments except the last will run in "torch.no_grad()" manner, i.e., not storing the intermediate activations. The inputs of each checkpointed segment
https://pytorch.org/docs/stable/checkpoint.html
pytorch docs
will be saved for re-running the segment in the backward pass. See "checkpoint()" on how checkpointing works. Warning: Checkpointing currently only supports "torch.autograd.backward()" and only if its *inputs* argument is not passed. "torch.autograd.grad()" is not supported. Parameters: * functions -- A "torch.nn.Sequential" or the list of modules or functions (comprising the model) to run sequentially. * **segments** -- Number of chunks to create in the model * **input** -- A Tensor that is input to "functions" * **preserve_rng_state** (*bool**, **optional*) -- Omit stashing and restoring the RNG state during each checkpoint. Default: "True" * **use_reentrant** (*bool**, **optional*) -- Use checkpointing implementation that requires re-entrant autograd. If "use_reentrant=False" is specified, "checkpoint" will use an implementation that does not require re-entrant autograd. This
https://pytorch.org/docs/stable/checkpoint.html
pytorch docs
allows "checkpoint" to support additional functionality, such as working as expected with "torch.autograd.grad" and support for keyword arguments input into the checkpointed function. Default: "True" Returns: Output of running "functions" sequentially on "*inputs" -[ Example ]- model = nn.Sequential(...) input_var = checkpoint_sequential(model, chunks, input_var)
https://pytorch.org/docs/stable/checkpoint.html
pytorch docs
torch.func torch.func, previously known as "functorch", is JAX-like composable function transforms for PyTorch. Note: This library is currently in beta. What this means is that the features generally work (unless otherwise documented) and we (the PyTorch team) are committed to bringing this library forward. However, the APIs may change under user feedback and we don't have full coverage over PyTorch operations.If you have suggestions on the API or use-cases you'd like to be covered, please open an GitHub issue or reach out. We'd love to hear about how you're using the library. What are composable function transforms? A "function transform" is a higher-order function that accepts a numerical function and returns a new function that computes a different quantity. "torch.func" has auto-differentiation transforms ("grad(f)" returns a function that computes the gradient of "f"), a
https://pytorch.org/docs/stable/func.html
pytorch docs
a function that computes the gradient of "f"), a vectorization/batching transform ("vmap(f)" returns a function that computes "f" over batches of inputs), and others. These function transforms can compose with each other arbitrarily. For example, composing "vmap(grad(f))" computes a quantity called per-sample-gradients that stock PyTorch cannot efficiently compute today. Why composable function transforms? There are a number of use cases that are tricky to do in PyTorch today: computing per-sample-gradients (or other per-sample quantities) running ensembles of models on a single machine efficiently batching together tasks in the inner-loop of MAML efficiently computing Jacobians and Hessians efficiently computing batched Jacobians and Hessians Composing "vmap()", "grad()", and "vjp()" transforms allows us to express the above without designing a separate subsystem for each. This idea of composable function transforms comes from the JAX
https://pytorch.org/docs/stable/func.html
pytorch docs
framework. Read More torch.func Whirlwind Tour What is torch.func? Why composable function transforms? What are the transforms? torch.func API Reference Function Transforms Utilities for working with torch.nn.Modules UX Limitations General limitations torch.autograd APIs vmap limitations Randomness Migrating from functorch to torch.func function transforms NN module utilities functorch.compile
https://pytorch.org/docs/stable/func.html
pytorch docs
torch.ao.ns._numeric_suite Warning: This module is an early prototype and is subject to change. torch.ao.ns._numeric_suite.compare_weights(float_dict, quantized_dict) Compare the weights of the float module with its corresponding quantized module. Return a dict with key corresponding to module names and each entry being a dictionary with two keys 'float' and 'quantized', containing the float and quantized weights. This dict can be used to compare and compute the quantization error of the weights of float and quantized models. Example usage: wt_compare_dict = compare_weights( float_model.state_dict(), qmodel.state_dict()) for key in wt_compare_dict: print( key, compute_error( wt_compare_dict[key]['float'], wt_compare_dict[key]['quantized'].dequantize() ) ) Parameters:
https://pytorch.org/docs/stable/torch.ao.ns._numeric_suite.html
pytorch docs
) ) Parameters: * float_dict (Dict[str, Any]) -- state dict of the float model * **quantized_dict** (*Dict**[**str**, **Any**]*) -- state dict of the quantized model Returns: dict with key corresponding to module names and each entry being a dictionary with two keys 'float' and 'quantized', containing the float and quantized weights Return type: weight_dict torch.ao.ns._numeric_suite.get_logger_dict(mod, prefix='') Traverse the modules and save all logger stats into target dict. This is mainly used for quantization accuracy debug. Type of loggers supported: ShadowLogger: used to log the outputs of the quantized module and its matching float shadow module, OutputLogger: used to log the outputs of the modules Parameters: * mod (Module) -- module we want to save all logger stats * **prefix** (*str*) -- prefix for the current module Returns:
https://pytorch.org/docs/stable/torch.ao.ns._numeric_suite.html
pytorch docs