nwo
stringlengths
5
86
sha
stringlengths
40
40
path
stringlengths
4
189
language
stringclasses
1 value
identifier
stringlengths
1
94
parameters
stringlengths
2
4.03k
argument_list
stringclasses
1 value
return_statement
stringlengths
0
11.5k
docstring
stringlengths
1
33.2k
docstring_summary
stringlengths
0
5.15k
docstring_tokens
sequence
function
stringlengths
34
151k
function_tokens
sequence
url
stringlengths
90
278
jeog/TDAmeritradeAPI
91c738afd7d57b54f6231170bd64c2550fafd34d
python/tdma_api/auth.py
python
set_certificate_bundle_path
(path)
Set certificate bundle file(.pem) path for ssl/tls host authentication. If library is built against default ssl/tls library the default certificate store should be used. If not(a connection error is returned) you'll have to provide a certificate bundle to the connection libraries. def set_certificate_bundle_path(path); path :: str :: path to the certificate bundle file(.pem) returns -> None throws -> LibraryNotLoaded, CLibException
Set certificate bundle file(.pem) path for ssl/tls host authentication. If library is built against default ssl/tls library the default certificate store should be used. If not(a connection error is returned) you'll have to provide a certificate bundle to the connection libraries. def set_certificate_bundle_path(path); path :: str :: path to the certificate bundle file(.pem) returns -> None throws -> LibraryNotLoaded, CLibException
[ "Set", "certificate", "bundle", "file", "(", ".", "pem", ")", "path", "for", "ssl", "/", "tls", "host", "authentication", ".", "If", "library", "is", "built", "against", "default", "ssl", "/", "tls", "library", "the", "default", "certificate", "store", "should", "be", "used", ".", "If", "not", "(", "a", "connection", "error", "is", "returned", ")", "you", "ll", "have", "to", "provide", "a", "certificate", "bundle", "to", "the", "connection", "libraries", ".", "def", "set_certificate_bundle_path", "(", "path", ")", ";", "path", "::", "str", "::", "path", "to", "the", "certificate", "bundle", "file", "(", ".", "pem", ")", "returns", "-", ">", "None", "throws", "-", ">", "LibraryNotLoaded", "CLibException" ]
def set_certificate_bundle_path(path): """Set certificate bundle file(.pem) path for ssl/tls host authentication. If library is built against default ssl/tls library the default certificate store should be used. If not(a connection error is returned) you'll have to provide a certificate bundle to the connection libraries. def set_certificate_bundle_path(path); path :: str :: path to the certificate bundle file(.pem) returns -> None throws -> LibraryNotLoaded, CLibException """ clib.set_str('SetCertificateBundlePath_ABI', path)
[ "def", "set_certificate_bundle_path", "(", "path", ")", ":", "clib", ".", "set_str", "(", "'SetCertificateBundlePath_ABI'", ",", "path", ")" ]
https://github.com/jeog/TDAmeritradeAPI/blob/91c738afd7d57b54f6231170bd64c2550fafd34d/python/tdma_api/auth.py#L145-L160
su2code/SU2
72b2fa977b64b9683a388920f05298a40d39e5c5
SU2_PY/SU2/opt/scipy_tools.py
python
obj_df
(x,project)
return dobj
dobj = obj_df(x,project) Objective Function Gradients SU2 Project interface to scipy.fmin_slsqp su2: df(x), list[nobj x dim] scipy_slsqp: df(x), ndarray[dim]
dobj = obj_df(x,project) Objective Function Gradients SU2 Project interface to scipy.fmin_slsqp su2: df(x), list[nobj x dim] scipy_slsqp: df(x), ndarray[dim]
[ "dobj", "=", "obj_df", "(", "x", "project", ")", "Objective", "Function", "Gradients", "SU2", "Project", "interface", "to", "scipy", ".", "fmin_slsqp", "su2", ":", "df", "(", "x", ")", "list", "[", "nobj", "x", "dim", "]", "scipy_slsqp", ":", "df", "(", "x", ")", "ndarray", "[", "dim", "]" ]
def obj_df(x,project): """ dobj = obj_df(x,project) Objective Function Gradients SU2 Project interface to scipy.fmin_slsqp su2: df(x), list[nobj x dim] scipy_slsqp: df(x), ndarray[dim] """ dobj_list = project.obj_df(x) dobj=[0.0]*len(dobj_list[0]) for this_dobj in dobj_list: idv=0 for this_dv_dobj in this_dobj: dobj[idv] = dobj[idv]+this_dv_dobj; idv+=1 dobj = array( dobj ) return dobj
[ "def", "obj_df", "(", "x", ",", "project", ")", ":", "dobj_list", "=", "project", ".", "obj_df", "(", "x", ")", "dobj", "=", "[", "0.0", "]", "*", "len", "(", "dobj_list", "[", "0", "]", ")", "for", "this_dobj", "in", "dobj_list", ":", "idv", "=", "0", "for", "this_dv_dobj", "in", "this_dobj", ":", "dobj", "[", "idv", "]", "=", "dobj", "[", "idv", "]", "+", "this_dv_dobj", "idv", "+=", "1", "dobj", "=", "array", "(", "dobj", ")", "return", "dobj" ]
https://github.com/su2code/SU2/blob/72b2fa977b64b9683a388920f05298a40d39e5c5/SU2_PY/SU2/opt/scipy_tools.py#L390-L410
hanpfei/chromium-net
392cc1fa3a8f92f42e4071ab6e674d8e0482f83f
third_party/catapult/third_party/apiclient/googleapiclient/model.py
python
BaseModel.deserialize
(self, content)
Perform the actual deserialization from response string to Python object. Args: content: string, the body of the HTTP response Returns: The body de-serialized as a Python object.
Perform the actual deserialization from response string to Python object.
[ "Perform", "the", "actual", "deserialization", "from", "response", "string", "to", "Python", "object", "." ]
def deserialize(self, content): """Perform the actual deserialization from response string to Python object. Args: content: string, the body of the HTTP response Returns: The body de-serialized as a Python object. """ _abstract()
[ "def", "deserialize", "(", "self", ",", "content", ")", ":", "_abstract", "(", ")" ]
https://github.com/hanpfei/chromium-net/blob/392cc1fa3a8f92f42e4071ab6e674d8e0482f83f/third_party/catapult/third_party/apiclient/googleapiclient/model.py#L223-L233
nucleic/atom
9f0cb2a8101dd63c354a98ebc7489b2c616dc82a
examples/tutorial/person.py
python
Person.debug_print
(self, change)
Prints out a debug message whenever the person's age changes.
Prints out a debug message whenever the person's age changes.
[ "Prints", "out", "a", "debug", "message", "whenever", "the", "person", "s", "age", "changes", "." ]
def debug_print(self, change): """Prints out a debug message whenever the person's age changes.""" if self.debug: templ = "{first} {last} is {age} years old." s = templ.format( first=self.first_name, last=self.last_name, age=self.age, ) print(s)
[ "def", "debug_print", "(", "self", ",", "change", ")", ":", "if", "self", ".", "debug", ":", "templ", "=", "\"{first} {last} is {age} years old.\"", "s", "=", "templ", ".", "format", "(", "first", "=", "self", ".", "first_name", ",", "last", "=", "self", ".", "last_name", ",", "age", "=", "self", ".", "age", ",", ")", "print", "(", "s", ")" ]
https://github.com/nucleic/atom/blob/9f0cb2a8101dd63c354a98ebc7489b2c616dc82a/examples/tutorial/person.py#L26-L35
catboost/catboost
167f64f237114a4d10b2b4ee42adb4569137debe
contrib/python/jedi/jedi/evaluate/arguments.py
python
try_iter_content
(types, depth=0)
Helper method for static analysis.
Helper method for static analysis.
[ "Helper", "method", "for", "static", "analysis", "." ]
def try_iter_content(types, depth=0): """Helper method for static analysis.""" if depth > 10: # It's possible that a loop has references on itself (especially with # CompiledObject). Therefore don't loop infinitely. return for typ in types: try: f = typ.py__iter__ except AttributeError: pass else: for lazy_context in f(): try_iter_content(lazy_context.infer(), depth + 1)
[ "def", "try_iter_content", "(", "types", ",", "depth", "=", "0", ")", ":", "if", "depth", ">", "10", ":", "# It's possible that a loop has references on itself (especially with", "# CompiledObject). Therefore don't loop infinitely.", "return", "for", "typ", "in", "types", ":", "try", ":", "f", "=", "typ", ".", "py__iter__", "except", "AttributeError", ":", "pass", "else", ":", "for", "lazy_context", "in", "f", "(", ")", ":", "try_iter_content", "(", "lazy_context", ".", "infer", "(", ")", ",", "depth", "+", "1", ")" ]
https://github.com/catboost/catboost/blob/167f64f237114a4d10b2b4ee42adb4569137debe/contrib/python/jedi/jedi/evaluate/arguments.py#L16-L30
wxWidgets/wxPython-Classic
19571e1ae65f1ac445f5491474121998c97a1bf0
src/osx_carbon/_misc.py
python
DateSpan.SetWeeks
(*args, **kwargs)
return _misc_.DateSpan_SetWeeks(*args, **kwargs)
SetWeeks(self, int n) -> DateSpan
SetWeeks(self, int n) -> DateSpan
[ "SetWeeks", "(", "self", "int", "n", ")", "-", ">", "DateSpan" ]
def SetWeeks(*args, **kwargs): """SetWeeks(self, int n) -> DateSpan""" return _misc_.DateSpan_SetWeeks(*args, **kwargs)
[ "def", "SetWeeks", "(", "*", "args", ",", "*", "*", "kwargs", ")", ":", "return", "_misc_", ".", "DateSpan_SetWeeks", "(", "*", "args", ",", "*", "*", "kwargs", ")" ]
https://github.com/wxWidgets/wxPython-Classic/blob/19571e1ae65f1ac445f5491474121998c97a1bf0/src/osx_carbon/_misc.py#L4661-L4663
hanpfei/chromium-net
392cc1fa3a8f92f42e4071ab6e674d8e0482f83f
third_party/catapult/third_party/gsutil/third_party/boto/boto/swf/layer1.py
python
Layer1.describe_activity_type
(self, domain, activity_name, activity_version)
return self.json_request('DescribeActivityType', { 'domain': domain, 'activityType': {'name': activity_name, 'version': activity_version} })
Returns information about the specified activity type. This includes configuration settings provided at registration time as well as other general information about the type. :type domain: string :param domain: The name of the domain in which the activity type is registered. :type activity_name: string :param activity_name: The name of this activity. :type activity_version: string :param activity_version: The version of this activity. :raises: UnknownResourceFault, SWFOperationNotPermittedError
Returns information about the specified activity type. This includes configuration settings provided at registration time as well as other general information about the type.
[ "Returns", "information", "about", "the", "specified", "activity", "type", ".", "This", "includes", "configuration", "settings", "provided", "at", "registration", "time", "as", "well", "as", "other", "general", "information", "about", "the", "type", "." ]
def describe_activity_type(self, domain, activity_name, activity_version): """ Returns information about the specified activity type. This includes configuration settings provided at registration time as well as other general information about the type. :type domain: string :param domain: The name of the domain in which the activity type is registered. :type activity_name: string :param activity_name: The name of this activity. :type activity_version: string :param activity_version: The version of this activity. :raises: UnknownResourceFault, SWFOperationNotPermittedError """ return self.json_request('DescribeActivityType', { 'domain': domain, 'activityType': {'name': activity_name, 'version': activity_version} })
[ "def", "describe_activity_type", "(", "self", ",", "domain", ",", "activity_name", ",", "activity_version", ")", ":", "return", "self", ".", "json_request", "(", "'DescribeActivityType'", ",", "{", "'domain'", ":", "domain", ",", "'activityType'", ":", "{", "'name'", ":", "activity_name", ",", "'version'", ":", "activity_version", "}", "}", ")" ]
https://github.com/hanpfei/chromium-net/blob/392cc1fa3a8f92f42e4071ab6e674d8e0482f83f/third_party/catapult/third_party/gsutil/third_party/boto/boto/swf/layer1.py#L909-L931
wxWidgets/wxPython-Classic
19571e1ae65f1ac445f5491474121998c97a1bf0
src/osx_cocoa/wizard.py
python
PyWizardPage.DoGetSize
(*args, **kwargs)
return _wizard.PyWizardPage_DoGetSize(*args, **kwargs)
DoGetSize() -> (width, height)
DoGetSize() -> (width, height)
[ "DoGetSize", "()", "-", ">", "(", "width", "height", ")" ]
def DoGetSize(*args, **kwargs): """DoGetSize() -> (width, height)""" return _wizard.PyWizardPage_DoGetSize(*args, **kwargs)
[ "def", "DoGetSize", "(", "*", "args", ",", "*", "*", "kwargs", ")", ":", "return", "_wizard", ".", "PyWizardPage_DoGetSize", "(", "*", "args", ",", "*", "*", "kwargs", ")" ]
https://github.com/wxWidgets/wxPython-Classic/blob/19571e1ae65f1ac445f5491474121998c97a1bf0/src/osx_cocoa/wizard.py#L167-L169
hanpfei/chromium-net
392cc1fa3a8f92f42e4071ab6e674d8e0482f83f
third_party/catapult/third_party/closure_linter/closure_linter/statetracker.py
python
DocComment.GetTargetToken
(self)
Get this comment's target token. Returns: The token that is the target of this comment, or None if there isn't one.
Get this comment's target token.
[ "Get", "this", "comment", "s", "target", "token", "." ]
def GetTargetToken(self): """Get this comment's target token. Returns: The token that is the target of this comment, or None if there isn't one. """ # File overviews describe the file, not a token. if self.HasFlag('fileoverview'): return skip_types = frozenset([ Type.WHITESPACE, Type.BLANK_LINE, Type.START_PAREN]) target_types = frozenset([ Type.FUNCTION_NAME, Type.IDENTIFIER, Type.SIMPLE_LVALUE]) token = self.end_token.next while token: if token.type in target_types: return token # Handles the case of a comment on "var foo = ...' if token.IsKeyword('var'): next_code_token = tokenutil.CustomSearch( token, lambda t: t.type not in Type.NON_CODE_TYPES) if (next_code_token and next_code_token.IsType(Type.SIMPLE_LVALUE)): return next_code_token return # Handles the case of a comment on "function foo () {}" if token.type is Type.FUNCTION_DECLARATION: next_code_token = tokenutil.CustomSearch( token, lambda t: t.type not in Type.NON_CODE_TYPES) if next_code_token.IsType(Type.FUNCTION_NAME): return next_code_token return # Skip types will end the search. if token.type not in skip_types: return token = token.next
[ "def", "GetTargetToken", "(", "self", ")", ":", "# File overviews describe the file, not a token.", "if", "self", ".", "HasFlag", "(", "'fileoverview'", ")", ":", "return", "skip_types", "=", "frozenset", "(", "[", "Type", ".", "WHITESPACE", ",", "Type", ".", "BLANK_LINE", ",", "Type", ".", "START_PAREN", "]", ")", "target_types", "=", "frozenset", "(", "[", "Type", ".", "FUNCTION_NAME", ",", "Type", ".", "IDENTIFIER", ",", "Type", ".", "SIMPLE_LVALUE", "]", ")", "token", "=", "self", ".", "end_token", ".", "next", "while", "token", ":", "if", "token", ".", "type", "in", "target_types", ":", "return", "token", "# Handles the case of a comment on \"var foo = ...'", "if", "token", ".", "IsKeyword", "(", "'var'", ")", ":", "next_code_token", "=", "tokenutil", ".", "CustomSearch", "(", "token", ",", "lambda", "t", ":", "t", ".", "type", "not", "in", "Type", ".", "NON_CODE_TYPES", ")", "if", "(", "next_code_token", "and", "next_code_token", ".", "IsType", "(", "Type", ".", "SIMPLE_LVALUE", ")", ")", ":", "return", "next_code_token", "return", "# Handles the case of a comment on \"function foo () {}\"", "if", "token", ".", "type", "is", "Type", ".", "FUNCTION_DECLARATION", ":", "next_code_token", "=", "tokenutil", ".", "CustomSearch", "(", "token", ",", "lambda", "t", ":", "t", ".", "type", "not", "in", "Type", ".", "NON_CODE_TYPES", ")", "if", "next_code_token", ".", "IsType", "(", "Type", ".", "FUNCTION_NAME", ")", ":", "return", "next_code_token", "return", "# Skip types will end the search.", "if", "token", ".", "type", "not", "in", "skip_types", ":", "return", "token", "=", "token", ".", "next" ]
https://github.com/hanpfei/chromium-net/blob/392cc1fa3a8f92f42e4071ab6e674d8e0482f83f/third_party/catapult/third_party/closure_linter/closure_linter/statetracker.py#L452-L505
nlohmann/json
eb2182414749825be086c825edb5229e5c28503d
third_party/cpplint/cpplint.py
python
IsBlankLine
(line)
return not line or line.isspace()
Returns true if the given line is blank. We consider a line to be blank if the line is empty or consists of only white spaces. Args: line: A line of a string. Returns: True, if the given line is blank.
Returns true if the given line is blank.
[ "Returns", "true", "if", "the", "given", "line", "is", "blank", "." ]
def IsBlankLine(line): """Returns true if the given line is blank. We consider a line to be blank if the line is empty or consists of only white spaces. Args: line: A line of a string. Returns: True, if the given line is blank. """ return not line or line.isspace()
[ "def", "IsBlankLine", "(", "line", ")", ":", "return", "not", "line", "or", "line", ".", "isspace", "(", ")" ]
https://github.com/nlohmann/json/blob/eb2182414749825be086c825edb5229e5c28503d/third_party/cpplint/cpplint.py#L3513-L3525
ricardoquesada/Spidermonkey
4a75ea2543408bd1b2c515aa95901523eeef7858
dom/bindings/parser/WebIDL.py
python
Parser.p_Ellipsis
(self, p)
Ellipsis : ELLIPSIS
Ellipsis : ELLIPSIS
[ "Ellipsis", ":", "ELLIPSIS" ]
def p_Ellipsis(self, p): """ Ellipsis : ELLIPSIS """ p[0] = True
[ "def", "p_Ellipsis", "(", "self", ",", "p", ")", ":", "p", "[", "0", "]", "=", "True" ]
https://github.com/ricardoquesada/Spidermonkey/blob/4a75ea2543408bd1b2c515aa95901523eeef7858/dom/bindings/parser/WebIDL.py#L5016-L5020
aws/lumberyard
f85344403c1c2e77ec8c75deb2c116e97b713217
dev/Gems/CloudGemDefectReporter/v1/AWS/common-code/Lib/requests_toolbelt/multipart/encoder.py
python
Part.from_field
(cls, field, encoding)
return cls(headers, body)
Create a part from a Request Field generated by urllib3.
Create a part from a Request Field generated by urllib3.
[ "Create", "a", "part", "from", "a", "Request", "Field", "generated", "by", "urllib3", "." ]
def from_field(cls, field, encoding): """Create a part from a Request Field generated by urllib3.""" headers = encode_with(field.render_headers(), encoding) body = coerce_data(field.data, encoding) return cls(headers, body)
[ "def", "from_field", "(", "cls", ",", "field", ",", "encoding", ")", ":", "headers", "=", "encode_with", "(", "field", ".", "render_headers", "(", ")", ",", "encoding", ")", "body", "=", "coerce_data", "(", "field", ".", "data", ",", "encoding", ")", "return", "cls", "(", "headers", ",", "body", ")" ]
https://github.com/aws/lumberyard/blob/f85344403c1c2e77ec8c75deb2c116e97b713217/dev/Gems/CloudGemDefectReporter/v1/AWS/common-code/Lib/requests_toolbelt/multipart/encoder.py#L485-L489
Illumina/strelka
d7377443b62319f7c7bd70c241c4b2df3459e29a
src/python/lib/configureUtil.py
python
validateFixExistingDirArg
(argDir,label)
return _validateFixArgHelper(argDir,label,os.path.isdir)
convert directory arg to absolute path and check that it exists
convert directory arg to absolute path and check that it exists
[ "convert", "directory", "arg", "to", "absolute", "path", "and", "check", "that", "it", "exists" ]
def validateFixExistingDirArg(argDir,label) : """ convert directory arg to absolute path and check that it exists """ return _validateFixArgHelper(argDir,label,os.path.isdir)
[ "def", "validateFixExistingDirArg", "(", "argDir", ",", "label", ")", ":", "return", "_validateFixArgHelper", "(", "argDir", ",", "label", ",", "os", ".", "path", ".", "isdir", ")" ]
https://github.com/Illumina/strelka/blob/d7377443b62319f7c7bd70c241c4b2df3459e29a/src/python/lib/configureUtil.py#L186-L190
ApolloAuto/apollo
463fb82f9e979d02dcb25044e60931293ab2dba0
scripts/record_map_data.py
python
ArgManager.args
(self)
return self._args
Get parsed args.
Get parsed args.
[ "Get", "parsed", "args", "." ]
def args(self): """Get parsed args.""" if self._args is None: self._args = self.parser.parse_args() return self._args
[ "def", "args", "(", "self", ")", ":", "if", "self", ".", "_args", "is", "None", ":", "self", ".", "_args", "=", "self", ".", "parser", ".", "parse_args", "(", ")", "return", "self", ".", "_args" ]
https://github.com/ApolloAuto/apollo/blob/463fb82f9e979d02dcb25044e60931293ab2dba0/scripts/record_map_data.py#L94-L98
OSGeo/gdal
3748fc4ba4fba727492774b2b908a2130c864a83
swig/python/osgeo/ogr.py
python
MajorObject.SetMetadata
(self, *args)
return _ogr.MajorObject_SetMetadata(self, *args)
r""" SetMetadata(MajorObject self, char ** papszMetadata, char const * pszDomain="") -> CPLErr SetMetadata(MajorObject self, char * pszMetadataString, char const * pszDomain="") -> CPLErr
r""" SetMetadata(MajorObject self, char ** papszMetadata, char const * pszDomain="") -> CPLErr SetMetadata(MajorObject self, char * pszMetadataString, char const * pszDomain="") -> CPLErr
[ "r", "SetMetadata", "(", "MajorObject", "self", "char", "**", "papszMetadata", "char", "const", "*", "pszDomain", "=", ")", "-", ">", "CPLErr", "SetMetadata", "(", "MajorObject", "self", "char", "*", "pszMetadataString", "char", "const", "*", "pszDomain", "=", ")", "-", ">", "CPLErr" ]
def SetMetadata(self, *args): r""" SetMetadata(MajorObject self, char ** papszMetadata, char const * pszDomain="") -> CPLErr SetMetadata(MajorObject self, char * pszMetadataString, char const * pszDomain="") -> CPLErr """ return _ogr.MajorObject_SetMetadata(self, *args)
[ "def", "SetMetadata", "(", "self", ",", "*", "args", ")", ":", "return", "_ogr", ".", "MajorObject_SetMetadata", "(", "self", ",", "*", "args", ")" ]
https://github.com/OSGeo/gdal/blob/3748fc4ba4fba727492774b2b908a2130c864a83/swig/python/osgeo/ogr.py#L436-L441
panda3d/panda3d
833ad89ebad58395d0af0b7ec08538e5e4308265
samples/networking/03-distributed-node/AIDGameObject.py
python
AIDGameObject.announceGenerate
(self)
The AI has created this object, so we send it's distributed object ID over to the client. That way the client can actually grab the object and use it to communicate with the AI. Alternatively store it in the Client Repository in self.cr
The AI has created this object, so we send it's distributed object ID over to the client. That way the client can actually grab the object and use it to communicate with the AI. Alternatively store it in the Client Repository in self.cr
[ "The", "AI", "has", "created", "this", "object", "so", "we", "send", "it", "s", "distributed", "object", "ID", "over", "to", "the", "client", ".", "That", "way", "the", "client", "can", "actually", "grab", "the", "object", "and", "use", "it", "to", "communicate", "with", "the", "AI", ".", "Alternatively", "store", "it", "in", "the", "Client", "Repository", "in", "self", ".", "cr" ]
def announceGenerate(self): """ The AI has created this object, so we send it's distributed object ID over to the client. That way the client can actually grab the object and use it to communicate with the AI. Alternatively store it in the Client Repository in self.cr """ base.messenger.send(self.cr.uniqueName('AIDGameObjectGenerated'), [self.doId]) # call the base class method DistributedObject.announceGenerate(self)
[ "def", "announceGenerate", "(", "self", ")", ":", "base", ".", "messenger", ".", "send", "(", "self", ".", "cr", ".", "uniqueName", "(", "'AIDGameObjectGenerated'", ")", ",", "[", "self", ".", "doId", "]", ")", "# call the base class method", "DistributedObject", ".", "announceGenerate", "(", "self", ")" ]
https://github.com/panda3d/panda3d/blob/833ad89ebad58395d0af0b7ec08538e5e4308265/samples/networking/03-distributed-node/AIDGameObject.py#L10-L17
ChromiumWebApps/chromium
c7361d39be8abd1574e6ce8957c8dbddd4c6ccf7
tools/clang/scripts/run_tool.py
python
_CompilerDispatcher.__ProcessResult
(self, result)
Handles result processing. Args: result: The result dictionary returned by _ExecuteTool.
Handles result processing.
[ "Handles", "result", "processing", "." ]
def __ProcessResult(self, result): """Handles result processing. Args: result: The result dictionary returned by _ExecuteTool. """ if result['status']: self.__success_count += 1 for k, v in result['edits'].iteritems(): self.__edits[k].extend(v) else: self.__failed_count += 1 sys.stdout.write('\nFailed to process %s\n' % result['filename']) sys.stdout.write(result['stderr']) sys.stdout.write('\n') percentage = ( float(self.__success_count + self.__failed_count) / len(self.__filenames)) * 100 sys.stdout.write('Succeeded: %d, Failed: %d [%.2f%%]\r' % ( self.__success_count, self.__failed_count, percentage)) sys.stdout.flush()
[ "def", "__ProcessResult", "(", "self", ",", "result", ")", ":", "if", "result", "[", "'status'", "]", ":", "self", ".", "__success_count", "+=", "1", "for", "k", ",", "v", "in", "result", "[", "'edits'", "]", ".", "iteritems", "(", ")", ":", "self", ".", "__edits", "[", "k", "]", ".", "extend", "(", "v", ")", "else", ":", "self", ".", "__failed_count", "+=", "1", "sys", ".", "stdout", ".", "write", "(", "'\\nFailed to process %s\\n'", "%", "result", "[", "'filename'", "]", ")", "sys", ".", "stdout", ".", "write", "(", "result", "[", "'stderr'", "]", ")", "sys", ".", "stdout", ".", "write", "(", "'\\n'", ")", "percentage", "=", "(", "float", "(", "self", ".", "__success_count", "+", "self", ".", "__failed_count", ")", "/", "len", "(", "self", ".", "__filenames", ")", ")", "*", "100", "sys", ".", "stdout", ".", "write", "(", "'Succeeded: %d, Failed: %d [%.2f%%]\\r'", "%", "(", "self", ".", "__success_count", ",", "self", ".", "__failed_count", ",", "percentage", ")", ")", "sys", ".", "stdout", ".", "flush", "(", ")" ]
https://github.com/ChromiumWebApps/chromium/blob/c7361d39be8abd1574e6ce8957c8dbddd4c6ccf7/tools/clang/scripts/run_tool.py#L163-L183
BlzFans/wke
b0fa21158312e40c5fbd84682d643022b6c34a93
cygwin/lib/python2.6/distutils/command/build_py.py
python
build_py.find_data_files
(self, package, src_dir)
return files
Return filenames for package's data files in 'src_dir
Return filenames for package's data files in 'src_dir
[ "Return", "filenames", "for", "package", "s", "data", "files", "in", "src_dir" ]
def find_data_files (self, package, src_dir): """Return filenames for package's data files in 'src_dir'""" globs = (self.package_data.get('', []) + self.package_data.get(package, [])) files = [] for pattern in globs: # Each pattern has to be converted to a platform-specific path filelist = glob(os.path.join(src_dir, convert_path(pattern))) # Files that match more than one pattern are only added once files.extend([fn for fn in filelist if fn not in files]) return files
[ "def", "find_data_files", "(", "self", ",", "package", ",", "src_dir", ")", ":", "globs", "=", "(", "self", ".", "package_data", ".", "get", "(", "''", ",", "[", "]", ")", "+", "self", ".", "package_data", ".", "get", "(", "package", ",", "[", "]", ")", ")", "files", "=", "[", "]", "for", "pattern", "in", "globs", ":", "# Each pattern has to be converted to a platform-specific path", "filelist", "=", "glob", "(", "os", ".", "path", ".", "join", "(", "src_dir", ",", "convert_path", "(", "pattern", ")", ")", ")", "# Files that match more than one pattern are only added once", "files", ".", "extend", "(", "[", "fn", "for", "fn", "in", "filelist", "if", "fn", "not", "in", "files", "]", ")", "return", "files" ]
https://github.com/BlzFans/wke/blob/b0fa21158312e40c5fbd84682d643022b6c34a93/cygwin/lib/python2.6/distutils/command/build_py.py#L129-L139
kichik/nsis
e39fe70400b823ac3d00321e338cf3410634b10a
SCons/Tools/mstoolkit.py
python
pch_emitter
(target, source, env)
return (target, source)
Sets up the PDB dependencies for a pch file, and adds the object file target.
Sets up the PDB dependencies for a pch file, and adds the object file target.
[ "Sets", "up", "the", "PDB", "dependencies", "for", "a", "pch", "file", "and", "adds", "the", "object", "file", "target", "." ]
def pch_emitter(target, source, env): """Sets up the PDB dependencies for a pch file, and adds the object file target.""" validate_vars(env) pch = None obj = None for t in target: if SCons.Util.splitext(str(t))[1] == '.pch': pch = t if SCons.Util.splitext(str(t))[1] == '.obj': obj = t if not obj: obj = SCons.Util.splitext(str(pch))[0]+'.obj' target = [pch, obj] # pch must be first, and obj second for the PCHCOM to work if 'PDB' in env and env['PDB']: env.SideEffect(env['PDB'], target) env.Precious(env['PDB']) return (target, source)
[ "def", "pch_emitter", "(", "target", ",", "source", ",", "env", ")", ":", "validate_vars", "(", "env", ")", "pch", "=", "None", "obj", "=", "None", "for", "t", "in", "target", ":", "if", "SCons", ".", "Util", ".", "splitext", "(", "str", "(", "t", ")", ")", "[", "1", "]", "==", "'.pch'", ":", "pch", "=", "t", "if", "SCons", ".", "Util", ".", "splitext", "(", "str", "(", "t", ")", ")", "[", "1", "]", "==", "'.obj'", ":", "obj", "=", "t", "if", "not", "obj", ":", "obj", "=", "SCons", ".", "Util", ".", "splitext", "(", "str", "(", "pch", ")", ")", "[", "0", "]", "+", "'.obj'", "target", "=", "[", "pch", ",", "obj", "]", "# pch must be first, and obj second for the PCHCOM to work", "if", "'PDB'", "in", "env", "and", "env", "[", "'PDB'", "]", ":", "env", ".", "SideEffect", "(", "env", "[", "'PDB'", "]", ",", "target", ")", "env", ".", "Precious", "(", "env", "[", "'PDB'", "]", ")", "return", "(", "target", ",", "source", ")" ]
https://github.com/kichik/nsis/blob/e39fe70400b823ac3d00321e338cf3410634b10a/SCons/Tools/mstoolkit.py#L104-L128
wxWidgets/wxPython-Classic
19571e1ae65f1ac445f5491474121998c97a1bf0
src/osx_carbon/_core.py
python
WindowCreateEvent.__init__
(self, *args, **kwargs)
__init__(self, Window win=None) -> WindowCreateEvent The EVT_WINDOW_CREATE event is sent as soon as the window object (the underlying GUI object) exists.
__init__(self, Window win=None) -> WindowCreateEvent
[ "__init__", "(", "self", "Window", "win", "=", "None", ")", "-", ">", "WindowCreateEvent" ]
def __init__(self, *args, **kwargs): """ __init__(self, Window win=None) -> WindowCreateEvent The EVT_WINDOW_CREATE event is sent as soon as the window object (the underlying GUI object) exists. """ _core_.WindowCreateEvent_swiginit(self,_core_.new_WindowCreateEvent(*args, **kwargs))
[ "def", "__init__", "(", "self", ",", "*", "args", ",", "*", "*", "kwargs", ")", ":", "_core_", ".", "WindowCreateEvent_swiginit", "(", "self", ",", "_core_", ".", "new_WindowCreateEvent", "(", "*", "args", ",", "*", "*", "kwargs", ")", ")" ]
https://github.com/wxWidgets/wxPython-Classic/blob/19571e1ae65f1ac445f5491474121998c97a1bf0/src/osx_carbon/_core.py#L7332-L7339
Polidea/SiriusObfuscator
b0e590d8130e97856afe578869b83a209e2b19be
SymbolExtractorAndRenamer/lldb/scripts/Python/static-binding/lldb.py
python
SBValue.__eol_test__
(val)
Default function for end of list test takes an SBValue object. Return True if val is invalid or it corresponds to a null pointer. Otherwise, return False.
Default function for end of list test takes an SBValue object.
[ "Default", "function", "for", "end", "of", "list", "test", "takes", "an", "SBValue", "object", "." ]
def __eol_test__(val): """Default function for end of list test takes an SBValue object. Return True if val is invalid or it corresponds to a null pointer. Otherwise, return False. """ if not val or val.GetValueAsUnsigned() == 0: return True else: return False
[ "def", "__eol_test__", "(", "val", ")", ":", "if", "not", "val", "or", "val", ".", "GetValueAsUnsigned", "(", ")", "==", "0", ":", "return", "True", "else", ":", "return", "False" ]
https://github.com/Polidea/SiriusObfuscator/blob/b0e590d8130e97856afe578869b83a209e2b19be/SymbolExtractorAndRenamer/lldb/scripts/Python/static-binding/lldb.py#L11724-L11733
apple/swift-lldb
d74be846ef3e62de946df343e8c234bde93a8912
scripts/Python/static-binding/lldb.py
python
SBDebugger.SetErrorFileHandle
(self, f, transfer_ownership)
return _lldb.SBDebugger_SetErrorFileHandle(self, f, transfer_ownership)
SetErrorFileHandle(SBDebugger self, FILE * f, bool transfer_ownership)
SetErrorFileHandle(SBDebugger self, FILE * f, bool transfer_ownership)
[ "SetErrorFileHandle", "(", "SBDebugger", "self", "FILE", "*", "f", "bool", "transfer_ownership", ")" ]
def SetErrorFileHandle(self, f, transfer_ownership): """SetErrorFileHandle(SBDebugger self, FILE * f, bool transfer_ownership)""" return _lldb.SBDebugger_SetErrorFileHandle(self, f, transfer_ownership)
[ "def", "SetErrorFileHandle", "(", "self", ",", "f", ",", "transfer_ownership", ")", ":", "return", "_lldb", ".", "SBDebugger_SetErrorFileHandle", "(", "self", ",", "f", ",", "transfer_ownership", ")" ]
https://github.com/apple/swift-lldb/blob/d74be846ef3e62de946df343e8c234bde93a8912/scripts/Python/static-binding/lldb.py#L3887-L3889
miyosuda/TensorFlowAndroidMNIST
7b5a4603d2780a8a2834575706e9001977524007
jni-build/jni/include/tensorflow/contrib/learn/python/learn/dataframe/transforms/reader_source.py
python
ReaderSource.__init__
(self, reader_cls, work_units, reader_kwargs=None, enqueue_size=None, batch_size=1, queue_capacity=None, shuffle=False, min_after_dequeue=None, num_threads=1, seed=None)
Initializes a ReaderSource. Args: reader_cls: A subclass of `tesorflow.ReaderBase` that will be used to read from `work_units`. work_units: A list that describes the source(s) of data to read. Typically, this is a list of filenames. reader_kwargs: A dictionary of kwargs to be passed to `reader_cls` when it is constructed. enqueue_size: block size for each read operation. batch_size: The desired batch size of output. Defaults to 1. queue_capacity: Capacity of the queue. Defaults to 10 * `batch_size`. shuffle: Whether records will be shuffled before returning. Defaults to false. min_after_dequeue: Minimum number of elements in the queue to allow a dequeue operation. Only used when `shuffle` is true. Defaults to `queue_capacity` / 4. num_threads: Number of threads that will be used for reading. Each thread has its own instance of `reader_cls`. seed: A seed used for shuffling. Only used if `shuffle` is true.
Initializes a ReaderSource.
[ "Initializes", "a", "ReaderSource", "." ]
def __init__(self, reader_cls, work_units, reader_kwargs=None, enqueue_size=None, batch_size=1, queue_capacity=None, shuffle=False, min_after_dequeue=None, num_threads=1, seed=None): """Initializes a ReaderSource. Args: reader_cls: A subclass of `tesorflow.ReaderBase` that will be used to read from `work_units`. work_units: A list that describes the source(s) of data to read. Typically, this is a list of filenames. reader_kwargs: A dictionary of kwargs to be passed to `reader_cls` when it is constructed. enqueue_size: block size for each read operation. batch_size: The desired batch size of output. Defaults to 1. queue_capacity: Capacity of the queue. Defaults to 10 * `batch_size`. shuffle: Whether records will be shuffled before returning. Defaults to false. min_after_dequeue: Minimum number of elements in the queue to allow a dequeue operation. Only used when `shuffle` is true. Defaults to `queue_capacity` / 4. num_threads: Number of threads that will be used for reading. Each thread has its own instance of `reader_cls`. seed: A seed used for shuffling. Only used if `shuffle` is true. """ super(ReaderSource, self).__init__() self._reader_cls = reader_cls self._reader_kwargs = reader_kwargs self._work_units = work_units self._reader_kwargs = {} if reader_kwargs is None else reader_kwargs if enqueue_size is None: enqueue_size = max(1, int(batch_size / num_threads)) self._enqueue_size = enqueue_size self._batch_size = batch_size self._queue_capacity = (batch_size * 10 if queue_capacity is None else queue_capacity) self._shuffle = shuffle self._min_after_dequeue = int(self.queue_capacity / 4 if min_after_dequeue is None else min_after_dequeue) self._num_threads = num_threads self._seed = seed
[ "def", "__init__", "(", "self", ",", "reader_cls", ",", "work_units", ",", "reader_kwargs", "=", "None", ",", "enqueue_size", "=", "None", ",", "batch_size", "=", "1", ",", "queue_capacity", "=", "None", ",", "shuffle", "=", "False", ",", "min_after_dequeue", "=", "None", ",", "num_threads", "=", "1", ",", "seed", "=", "None", ")", ":", "super", "(", "ReaderSource", ",", "self", ")", ".", "__init__", "(", ")", "self", ".", "_reader_cls", "=", "reader_cls", "self", ".", "_reader_kwargs", "=", "reader_kwargs", "self", ".", "_work_units", "=", "work_units", "self", ".", "_reader_kwargs", "=", "{", "}", "if", "reader_kwargs", "is", "None", "else", "reader_kwargs", "if", "enqueue_size", "is", "None", ":", "enqueue_size", "=", "max", "(", "1", ",", "int", "(", "batch_size", "/", "num_threads", ")", ")", "self", ".", "_enqueue_size", "=", "enqueue_size", "self", ".", "_batch_size", "=", "batch_size", "self", ".", "_queue_capacity", "=", "(", "batch_size", "*", "10", "if", "queue_capacity", "is", "None", "else", "queue_capacity", ")", "self", ".", "_shuffle", "=", "shuffle", "self", ".", "_min_after_dequeue", "=", "int", "(", "self", ".", "queue_capacity", "/", "4", "if", "min_after_dequeue", "is", "None", "else", "min_after_dequeue", ")", "self", ".", "_num_threads", "=", "num_threads", "self", ".", "_seed", "=", "seed" ]
https://github.com/miyosuda/TensorFlowAndroidMNIST/blob/7b5a4603d2780a8a2834575706e9001977524007/jni-build/jni/include/tensorflow/contrib/learn/python/learn/dataframe/transforms/reader_source.py#L29-L76
aws/lumberyard
f85344403c1c2e77ec8c75deb2c116e97b713217
dev/Tools/Python/3.7.10/windows/Lib/email/_policybase.py
python
Policy.header_fetch_parse
(self, name, value)
Given the header name and the value from the model, return the value to be returned to the application program that is requesting that header. The value passed in by the email package may contain surrogateescaped binary data if the lines were parsed by a BytesParser. The returned value should not contain any surrogateescaped data.
Given the header name and the value from the model, return the value to be returned to the application program that is requesting that header. The value passed in by the email package may contain surrogateescaped binary data if the lines were parsed by a BytesParser. The returned value should not contain any surrogateescaped data.
[ "Given", "the", "header", "name", "and", "the", "value", "from", "the", "model", "return", "the", "value", "to", "be", "returned", "to", "the", "application", "program", "that", "is", "requesting", "that", "header", ".", "The", "value", "passed", "in", "by", "the", "email", "package", "may", "contain", "surrogateescaped", "binary", "data", "if", "the", "lines", "were", "parsed", "by", "a", "BytesParser", ".", "The", "returned", "value", "should", "not", "contain", "any", "surrogateescaped", "data", "." ]
def header_fetch_parse(self, name, value): """Given the header name and the value from the model, return the value to be returned to the application program that is requesting that header. The value passed in by the email package may contain surrogateescaped binary data if the lines were parsed by a BytesParser. The returned value should not contain any surrogateescaped data. """ raise NotImplementedError
[ "def", "header_fetch_parse", "(", "self", ",", "name", ",", "value", ")", ":", "raise", "NotImplementedError" ]
https://github.com/aws/lumberyard/blob/f85344403c1c2e77ec8c75deb2c116e97b713217/dev/Tools/Python/3.7.10/windows/Lib/email/_policybase.py#L238-L246
zju3dv/clean-pvnet
5870c509e3cc205e1bb28910a7b1a9a3c8add9a8
lib/utils/meshrenderer/pysixd/transform.py
python
is_same_transform
(matrix0, matrix1)
return numpy.allclose(matrix0, matrix1)
Return True if two matrices perform same transformation. >>> is_same_transform(numpy.identity(4), numpy.identity(4)) True >>> is_same_transform(numpy.identity(4), random_rotation_matrix()) False
Return True if two matrices perform same transformation.
[ "Return", "True", "if", "two", "matrices", "perform", "same", "transformation", "." ]
def is_same_transform(matrix0, matrix1): """Return True if two matrices perform same transformation. >>> is_same_transform(numpy.identity(4), numpy.identity(4)) True >>> is_same_transform(numpy.identity(4), random_rotation_matrix()) False """ matrix0 = numpy.array(matrix0, dtype=numpy.float64, copy=True) matrix0 /= matrix0[3, 3] matrix1 = numpy.array(matrix1, dtype=numpy.float64, copy=True) matrix1 /= matrix1[3, 3] return numpy.allclose(matrix0, matrix1)
[ "def", "is_same_transform", "(", "matrix0", ",", "matrix1", ")", ":", "matrix0", "=", "numpy", ".", "array", "(", "matrix0", ",", "dtype", "=", "numpy", ".", "float64", ",", "copy", "=", "True", ")", "matrix0", "/=", "matrix0", "[", "3", ",", "3", "]", "matrix1", "=", "numpy", ".", "array", "(", "matrix1", ",", "dtype", "=", "numpy", ".", "float64", ",", "copy", "=", "True", ")", "matrix1", "/=", "matrix1", "[", "3", ",", "3", "]", "return", "numpy", ".", "allclose", "(", "matrix0", ",", "matrix1", ")" ]
https://github.com/zju3dv/clean-pvnet/blob/5870c509e3cc205e1bb28910a7b1a9a3c8add9a8/lib/utils/meshrenderer/pysixd/transform.py#L1861-L1874
flink-extended/dl-on-flink
60646aa9520f49619b64e9ff03ce73959e8a3858
flink-ml-tensorflow/python/flink_ml_tensorflow/gpu_info.py
python
_get_free_gpu
(max_gpu_utilization=40, min_free_memory=0.5, num_gpu=1)
return gpus_to_use, free_memory
Get available GPUs according to utilization thresholds. Args: :max_gpu_utilization: percent utilization threshold to consider a GPU "free" :min_free_memory: percent free memory to consider a GPU "free" :num_gpu: number of requested GPUs Returns: A tuple of (available_gpus, minimum_free_memory), where available_gpus is a comma-delimited string of GPU ids, and minimum_free_memory is the lowest amount of free memory available on the available_gpus.
Get available GPUs according to utilization thresholds.
[ "Get", "available", "GPUs", "according", "to", "utilization", "thresholds", "." ]
def _get_free_gpu(max_gpu_utilization=40, min_free_memory=0.5, num_gpu=1): """Get available GPUs according to utilization thresholds. Args: :max_gpu_utilization: percent utilization threshold to consider a GPU "free" :min_free_memory: percent free memory to consider a GPU "free" :num_gpu: number of requested GPUs Returns: A tuple of (available_gpus, minimum_free_memory), where available_gpus is a comma-delimited string of GPU ids, and minimum_free_memory is the lowest amount of free memory available on the available_gpus. """ def get_gpu_info(): # Get the gpu information gpu_info = subprocess.check_output(["nvidia-smi", "--format=csv,noheader,nounits", "--query-gpu=index,memory.total,memory.free,memory.used,utilization.gpu"]).decode() gpu_info = gpu_info.split('\n') gpu_info_array = [] # Check each gpu for line in gpu_info: if len(line) > 0: gpu_id, total_memory, free_memory, used_memory, gpu_util = line.split(',') gpu_memory_util = float(used_memory) / float(total_memory) gpu_info_array.append((float(gpu_util), gpu_memory_util, gpu_id)) return (gpu_info_array) # Read the gpu information multiple times num_times_to_average = 5 current_array = [] for ind in range(num_times_to_average): current_array.append(get_gpu_info()) time.sleep(1) # Get number of gpus num_gpus = len(current_array[0]) # Average the gpu information avg_array = [(0, 0, str(x)) for x in range(num_gpus)] for ind in range(num_times_to_average): for gpu_ind in range(num_gpus): avg_array[gpu_ind] = (avg_array[gpu_ind][0] + current_array[ind][gpu_ind][0], avg_array[gpu_ind][1] + current_array[ind][gpu_ind][1], avg_array[gpu_ind][2]) for gpu_ind in range(num_gpus): avg_array[gpu_ind] = ( float(avg_array[gpu_ind][0]) / num_times_to_average, float(avg_array[gpu_ind][1]) / num_times_to_average, avg_array[gpu_ind][2]) avg_array.sort() gpus_found = 0 gpus_to_use = "" free_memory = 1.0 # Return the least utilized GPUs if it's utilized less than max_gpu_utilization and amount of free memory is at least min_free_memory # Otherwise, run in cpu only mode for current_gpu in avg_array: if current_gpu[0] < max_gpu_utilization and (1 - current_gpu[1]) > min_free_memory: if gpus_found == 0: gpus_to_use = current_gpu[2] free_memory = 1 - current_gpu[1] else: gpus_to_use = gpus_to_use + "," + current_gpu[2] free_memory = min(free_memory, 1 - current_gpu[1]) gpus_found = gpus_found + 1 if gpus_found == num_gpu: break return gpus_to_use, free_memory
[ "def", "_get_free_gpu", "(", "max_gpu_utilization", "=", "40", ",", "min_free_memory", "=", "0.5", ",", "num_gpu", "=", "1", ")", ":", "def", "get_gpu_info", "(", ")", ":", "# Get the gpu information", "gpu_info", "=", "subprocess", ".", "check_output", "(", "[", "\"nvidia-smi\"", ",", "\"--format=csv,noheader,nounits\"", ",", "\"--query-gpu=index,memory.total,memory.free,memory.used,utilization.gpu\"", "]", ")", ".", "decode", "(", ")", "gpu_info", "=", "gpu_info", ".", "split", "(", "'\\n'", ")", "gpu_info_array", "=", "[", "]", "# Check each gpu", "for", "line", "in", "gpu_info", ":", "if", "len", "(", "line", ")", ">", "0", ":", "gpu_id", ",", "total_memory", ",", "free_memory", ",", "used_memory", ",", "gpu_util", "=", "line", ".", "split", "(", "','", ")", "gpu_memory_util", "=", "float", "(", "used_memory", ")", "/", "float", "(", "total_memory", ")", "gpu_info_array", ".", "append", "(", "(", "float", "(", "gpu_util", ")", ",", "gpu_memory_util", ",", "gpu_id", ")", ")", "return", "(", "gpu_info_array", ")", "# Read the gpu information multiple times", "num_times_to_average", "=", "5", "current_array", "=", "[", "]", "for", "ind", "in", "range", "(", "num_times_to_average", ")", ":", "current_array", ".", "append", "(", "get_gpu_info", "(", ")", ")", "time", ".", "sleep", "(", "1", ")", "# Get number of gpus", "num_gpus", "=", "len", "(", "current_array", "[", "0", "]", ")", "# Average the gpu information", "avg_array", "=", "[", "(", "0", ",", "0", ",", "str", "(", "x", ")", ")", "for", "x", "in", "range", "(", "num_gpus", ")", "]", "for", "ind", "in", "range", "(", "num_times_to_average", ")", ":", "for", "gpu_ind", "in", "range", "(", "num_gpus", ")", ":", "avg_array", "[", "gpu_ind", "]", "=", "(", "avg_array", "[", "gpu_ind", "]", "[", "0", "]", "+", "current_array", "[", "ind", "]", "[", "gpu_ind", "]", "[", "0", "]", ",", "avg_array", "[", "gpu_ind", "]", "[", "1", "]", "+", "current_array", "[", "ind", "]", "[", "gpu_ind", "]", "[", "1", "]", ",", "avg_array", "[", "gpu_ind", "]", "[", "2", "]", ")", "for", "gpu_ind", "in", "range", "(", "num_gpus", ")", ":", "avg_array", "[", "gpu_ind", "]", "=", "(", "float", "(", "avg_array", "[", "gpu_ind", "]", "[", "0", "]", ")", "/", "num_times_to_average", ",", "float", "(", "avg_array", "[", "gpu_ind", "]", "[", "1", "]", ")", "/", "num_times_to_average", ",", "avg_array", "[", "gpu_ind", "]", "[", "2", "]", ")", "avg_array", ".", "sort", "(", ")", "gpus_found", "=", "0", "gpus_to_use", "=", "\"\"", "free_memory", "=", "1.0", "# Return the least utilized GPUs if it's utilized less than max_gpu_utilization and amount of free memory is at least min_free_memory", "# Otherwise, run in cpu only mode", "for", "current_gpu", "in", "avg_array", ":", "if", "current_gpu", "[", "0", "]", "<", "max_gpu_utilization", "and", "(", "1", "-", "current_gpu", "[", "1", "]", ")", ">", "min_free_memory", ":", "if", "gpus_found", "==", "0", ":", "gpus_to_use", "=", "current_gpu", "[", "2", "]", "free_memory", "=", "1", "-", "current_gpu", "[", "1", "]", "else", ":", "gpus_to_use", "=", "gpus_to_use", "+", "\",\"", "+", "current_gpu", "[", "2", "]", "free_memory", "=", "min", "(", "free_memory", ",", "1", "-", "current_gpu", "[", "1", "]", ")", "gpus_found", "=", "gpus_found", "+", "1", "if", "gpus_found", "==", "num_gpu", ":", "break", "return", "gpus_to_use", ",", "free_memory" ]
https://github.com/flink-extended/dl-on-flink/blob/60646aa9520f49619b64e9ff03ce73959e8a3858/flink-ml-tensorflow/python/flink_ml_tensorflow/gpu_info.py#L128-L202
aws/lumberyard
f85344403c1c2e77ec8c75deb2c116e97b713217
dev/Gems/CloudGemMetric/v1/AWS/python/windows/Lib/pandas/compat/numpy/function.py
python
validate_argsort_with_ascending
(ascending, args, kwargs)
return ascending
If 'Categorical.argsort' is called via the 'numpy' library, the first parameter in its signature is 'axis', which takes either an integer or 'None', so check if the 'ascending' parameter has either integer type or is None, since 'ascending' itself should be a boolean
If 'Categorical.argsort' is called via the 'numpy' library, the first parameter in its signature is 'axis', which takes either an integer or 'None', so check if the 'ascending' parameter has either integer type or is None, since 'ascending' itself should be a boolean
[ "If", "Categorical", ".", "argsort", "is", "called", "via", "the", "numpy", "library", "the", "first", "parameter", "in", "its", "signature", "is", "axis", "which", "takes", "either", "an", "integer", "or", "None", "so", "check", "if", "the", "ascending", "parameter", "has", "either", "integer", "type", "or", "is", "None", "since", "ascending", "itself", "should", "be", "a", "boolean" ]
def validate_argsort_with_ascending(ascending, args, kwargs): """ If 'Categorical.argsort' is called via the 'numpy' library, the first parameter in its signature is 'axis', which takes either an integer or 'None', so check if the 'ascending' parameter has either integer type or is None, since 'ascending' itself should be a boolean """ if is_integer(ascending) or ascending is None: args = (ascending,) + args ascending = True validate_argsort_kind(args, kwargs, max_fname_arg_count=3) return ascending
[ "def", "validate_argsort_with_ascending", "(", "ascending", ",", "args", ",", "kwargs", ")", ":", "if", "is_integer", "(", "ascending", ")", "or", "ascending", "is", "None", ":", "args", "=", "(", "ascending", ",", ")", "+", "args", "ascending", "=", "True", "validate_argsort_kind", "(", "args", ",", "kwargs", ",", "max_fname_arg_count", "=", "3", ")", "return", "ascending" ]
https://github.com/aws/lumberyard/blob/f85344403c1c2e77ec8c75deb2c116e97b713217/dev/Gems/CloudGemMetric/v1/AWS/python/windows/Lib/pandas/compat/numpy/function.py#L133-L147
miyosuda/TensorFlowAndroidDemo
35903e0221aa5f109ea2dbef27f20b52e317f42d
jni-build/jni/include/tensorflow/contrib/graph_editor/util.py
python
get_tensors
(graph)
return ts
get all the tensors which are input or output of an op in the graph. Args: graph: a tf.Graph. Returns: A list of tf.Tensor. Raises: TypeError: if graph is not a tf.Graph.
get all the tensors which are input or output of an op in the graph.
[ "get", "all", "the", "tensors", "which", "are", "input", "or", "output", "of", "an", "op", "in", "the", "graph", "." ]
def get_tensors(graph): """get all the tensors which are input or output of an op in the graph. Args: graph: a tf.Graph. Returns: A list of tf.Tensor. Raises: TypeError: if graph is not a tf.Graph. """ if not isinstance(graph, tf_ops.Graph): raise TypeError("Expected a graph, got: {}".format(type(graph))) ts = [] for op in graph.get_operations(): concatenate_unique(ts, op.inputs) concatenate_unique(ts, op.outputs) return ts
[ "def", "get_tensors", "(", "graph", ")", ":", "if", "not", "isinstance", "(", "graph", ",", "tf_ops", ".", "Graph", ")", ":", "raise", "TypeError", "(", "\"Expected a graph, got: {}\"", ".", "format", "(", "type", "(", "graph", ")", ")", ")", "ts", "=", "[", "]", "for", "op", "in", "graph", ".", "get_operations", "(", ")", ":", "concatenate_unique", "(", "ts", ",", "op", ".", "inputs", ")", "concatenate_unique", "(", "ts", ",", "op", ".", "outputs", ")", "return", "ts" ]
https://github.com/miyosuda/TensorFlowAndroidDemo/blob/35903e0221aa5f109ea2dbef27f20b52e317f42d/jni-build/jni/include/tensorflow/contrib/graph_editor/util.py#L152-L168
pytorch/pytorch
7176c92687d3cc847cc046bf002269c6949a21c2
torch/ao/ns/fx/graph_passes.py
python
create_a_shadows_b
( name_a: str, gm_a: GraphModule, name_b: str, gm_b: GraphModule, matched_subgraph_pairs: Dict[str, Tuple[NSSubgraph, NSSubgraph]], logger_cls: Callable, should_log_inputs: bool, node_type_to_io_type_map: Optional[Dict[str, Set[NSNodeTargetType]]] = None, )
return gm_c
Creates a new GraphModule consisting of the graph of C, with the meaningful nodes of A shadowing the corresponding nodes of B. For example, Graph A: a0 -> op0_fp32 -> a1 -> op1_fp32 -> a2 Graph B: b0 -> op0_int8 -> b1 -> op1_int8 -> b2 matched_node_pairs: {'op0': (op0_fp32, op0_int8), 'op1': (op1_fp32, op1_int8)} Graph C (A shadows B): / dequant0 -> op0_fp32 -> logger_a_0 / dequant_1 -> op1_fp32 -> logger_a_1 / / b0 -------------> op0_int8 -> logger_b_0 --------------> op1_int8 -> logger_b_1 In a nutshell, this function does the following for each node pair: * copies the necessary attributes and modules from gm_a to gm_b, keeping names unique * adds a dtype cast op (dequant, quant, etc) * adds a copy of node_a in gm_b's graph * adds loggers to the outputs of node_a and node_b
Creates a new GraphModule consisting of the graph of C, with the meaningful nodes of A shadowing the corresponding nodes of B. For example,
[ "Creates", "a", "new", "GraphModule", "consisting", "of", "the", "graph", "of", "C", "with", "the", "meaningful", "nodes", "of", "A", "shadowing", "the", "corresponding", "nodes", "of", "B", ".", "For", "example" ]
def create_a_shadows_b( name_a: str, gm_a: GraphModule, name_b: str, gm_b: GraphModule, matched_subgraph_pairs: Dict[str, Tuple[NSSubgraph, NSSubgraph]], logger_cls: Callable, should_log_inputs: bool, node_type_to_io_type_map: Optional[Dict[str, Set[NSNodeTargetType]]] = None, ) -> GraphModule: """ Creates a new GraphModule consisting of the graph of C, with the meaningful nodes of A shadowing the corresponding nodes of B. For example, Graph A: a0 -> op0_fp32 -> a1 -> op1_fp32 -> a2 Graph B: b0 -> op0_int8 -> b1 -> op1_int8 -> b2 matched_node_pairs: {'op0': (op0_fp32, op0_int8), 'op1': (op1_fp32, op1_int8)} Graph C (A shadows B): / dequant0 -> op0_fp32 -> logger_a_0 / dequant_1 -> op1_fp32 -> logger_a_1 / / b0 -------------> op0_int8 -> logger_b_0 --------------> op1_int8 -> logger_b_1 In a nutshell, this function does the following for each node pair: * copies the necessary attributes and modules from gm_a to gm_b, keeping names unique * adds a dtype cast op (dequant, quant, etc) * adds a copy of node_a in gm_b's graph * adds loggers to the outputs of node_a and node_b """ if node_type_to_io_type_map is None: node_type_to_io_type_map = get_node_type_to_io_type_map() # graph_c is the graph created from copying the nodes of graph_b and inserting # the shadows with the nodes copied from graph_a graph_c = Graph() env_c: Dict[str, Any] = {} modules = dict(gm_b.named_modules()) def load_arg(a): return map_arg(a, lambda node: env_c[node.name]) start_node_b_to_matched_subgraph_a_and_name = {} end_node_b_to_matched_subgraph_a_and_name = {} for match_name, match in matched_subgraph_pairs.items(): subgraph_a, subgraph_b = match ref_node_type_a = get_target_type_str(subgraph_a.base_op_node, gm_a) ref_node_type_b = get_target_type_str(subgraph_b.base_op_node, gm_b) start_node_b_to_matched_subgraph_a_and_name[subgraph_b.start_node] = \ (subgraph_a, match_name, ref_node_type_a, ref_node_type_b) end_node_b_to_matched_subgraph_a_and_name[subgraph_b.end_node] = \ (subgraph_a, match_name, ref_node_type_a, ref_node_type_b) for node_b in gm_b.graph.nodes: if node_b.op == 'output': graph_c.output(map_arg(node_b.args[0], load_arg)) continue # calculate the flags to determine what to do with this node node_b_is_start_node = node_b in start_node_b_to_matched_subgraph_a_and_name node_b_is_end_node = node_b in end_node_b_to_matched_subgraph_a_and_name if (node_b_is_start_node or node_b_is_end_node): if node_b_is_start_node: subgraph_a, ref_name, ref_node_type_a, ref_node_type_b = \ start_node_b_to_matched_subgraph_a_and_name[node_b] else: assert node_b_is_end_node subgraph_a, ref_name, ref_node_type_a, ref_node_type_b = \ end_node_b_to_matched_subgraph_a_and_name[node_b] # For both start_node and end_node verify that we know how to do # the dtype cast. If we do not, skip. node_input_type_a, node_output_type_a = \ get_node_first_input_and_output_type( subgraph_a.start_node, gm_a, logger_cls, node_type_to_io_type_map) node_input_type_b, node_output_type_b = \ get_node_first_input_and_output_type( node_b, gm_b, logger_cls, node_type_to_io_type_map) node_io_types_known_a_and_b = ( node_input_type_a != NodeInputOrOutputType.UNKNOWN and node_output_type_a != NodeInputOrOutputType.UNKNOWN and node_input_type_b != NodeInputOrOutputType.UNKNOWN and node_output_type_b != NodeInputOrOutputType.UNKNOWN ) if not node_io_types_known_a_and_b: print( f'skipping shadow loggers for node_b: {get_target_type_str(node_b, gm_b)}' + f', start_node_a: {get_target_type_str(subgraph_a.start_node, gm_a)}' + ', unknown dtype cast') env_c[node_b.name] = graph_c.node_copy(node_b, load_arg) continue # If we are shadowing from fp32 to int8, we need to insert # quantize_per_tensor call with qparams from the previous node. # Only do this if we are able to infer these qparams from the graph. if ( node_input_type_a == NodeInputOrOutputType.INT8 and node_input_type_b == NodeInputOrOutputType.FP32 ): node_a_input_qparams = get_node_input_qparams( subgraph_a.start_node, gm_a, node_type_to_io_type_map) if not node_a_input_qparams: print( f'skipping shadow loggers for node_b: {get_target_type_str(node_b, gm_b)}' + f', start_node_a: {get_target_type_str(subgraph_a.start_node, gm_a)}' + ', unknown input qparams') env_c[node_b.name] = graph_c.node_copy(node_b, load_arg) continue fqn_base_a = _maybe_get_fqn(subgraph_a.base_op_node, gm_a) fqn_base_b = _maybe_get_fqn(subgraph_b.base_op_node, gm_b) if node_b_is_start_node: # if necessary, log the input of node_c if should_log_inputs: if isinstance(node_b.args[0], Node): prev_node_c = env_c[node_b.args[0].name] env_c[prev_node_c.name] = _insert_logger_after_node( prev_node_c, gm_b, logger_cls, '_ns_logger_b_inp_', node_b.name, name_b, ref_name, ref_node_type_b, NSSingleResultValuesType.NODE_INPUT.value, index_within_arg=0, index_of_arg=0, fqn=fqn_base_b) elif isinstance(node_b.args[0], list): # first, save the prev_node instances, because they # will be overwritten in the env after the first logger # is added prev_node_c_list = [env_c[arg.name] for arg in node_b.args[0]] for arg_idx, arg in enumerate(node_b.args[0]): prev_node_c = prev_node_c_list[arg_idx] env_c[prev_node_c.name] = _insert_logger_after_node( prev_node_c, gm_b, logger_cls, '_ns_logger_b_inp_', node_b.name, name_b, ref_name, ref_node_type_b, NSSingleResultValuesType.NODE_INPUT.value, index_within_arg=arg_idx, index_of_arg=0, fqn=fqn_base_b) else: # logging of inputs which are not lists is not supported yet raise AssertionError(f"type {type(node_b.args[0])} is not handled yet") # subgraph so far: # # (prev_node_c)+ -> (logger_c_input)? # Note: this if statement is always True, spelling it out to clarify code # intent. if node_b_is_start_node or node_b_is_end_node: # ensure env_c is populated with base node env_c[node_b.name] = graph_c.node_copy(node_b, load_arg) node_c = env_c[node_b.name] # after this point, # # node_a is the original node from graph_a, with parent module gm_a # node_b is the original node from graph_b, with parent module gm_b # node_c is the copy of node_b in graph_c # # subgraph so far: # # (prev_node_c)+ -> (logger_c_input)? -> node_start_c if node_b_is_start_node: # cast dtype from the dtype of node_c's input to the dtype of # node_a's input (dequant, etc) prev_node_c = node_c.args[0] if should_log_inputs: # skip the input logger when inserting a dtype cast if isinstance(prev_node_c, Node): prev_node_c = prev_node_c.args[0] elif isinstance(prev_node_c, list): prev_node_c = [arg.args[0] for arg in prev_node_c] dtype_cast_node = _insert_dtype_cast_after_node( subgraph_a.start_node, node_c, prev_node_c, gm_a, gm_b, graph_c, node_b.name + '_dtype_cast_', logger_cls, node_type_to_io_type_map) # note: not inserting to env_c because all nodes which use the dtype # casts are copied from graph_a # # subgraph so far: # # (dtype_cast_node)+ # / # (prev_node_c)+ -> (logger_c_input)? -> node_start_c # if input logging is enabled, log the input to the subgraph if should_log_inputs: # TODO: explain this ref_node_name = '' if isinstance(dtype_cast_node, Node): dtype_cast_node = _insert_logger_after_node( dtype_cast_node, gm_b, logger_cls, '_ns_logger_a_inp_', ref_node_name, name_a, ref_name, ref_node_type_a, NSSingleResultValuesType.NODE_INPUT.value, index_within_arg=0, index_of_arg=0, fqn=fqn_base_a) input_logger: Union[Node, List[Node]] = dtype_cast_node else: assert isinstance(dtype_cast_node, list) new_loggers = [] for dtype_cast_idx, dtype_cast_node_inner in enumerate(dtype_cast_node): dtype_cast_logger = _insert_logger_after_node( dtype_cast_node_inner, gm_b, logger_cls, '_ns_logger_a_inp_', ref_node_name, name_a, ref_name, ref_node_type_a, NSSingleResultValuesType.NODE_INPUT.value, index_within_arg=dtype_cast_idx, index_of_arg=0, fqn=fqn_base_a) new_loggers.append(dtype_cast_logger) dtype_cast_node = new_loggers input_logger = dtype_cast_node # subgraph so far: # # (dtype_cast_node)+ -> (logger_a_input)? # / # prev_node_c -> (logger_c_input)? -> node_start_c # hook up the new mod_a copy to be in the graph, receiving the # same inputs as mod_b does, with dtype cast to match a # Some ops, such as LSTMs, have two non-param inputs. If we have # such an op, pass the second param as well. Note: dtype casting # for the second param is not implemented yet, it can be added # later if there is a use case. node_c_second_non_param_arg = None num_non_param_args_node_a = get_number_of_non_param_args(subgraph_a.start_node, gm_a) if num_non_param_args_node_a == 2: node_c_second_non_param_arg = node_c.args[1] node_a_shadows_c = _insert_copy_of_subgraph_a_after_input_node_c( dtype_cast_node, node_c_second_non_param_arg, subgraph_a, gm_a, gm_b, node_c.name + '_shadow_copy_') env_c[node_a_shadows_c.name] = node_a_shadows_c # subgraph so far: # # dtype_cast_node -> (logger_a_input)? -> subgraph_a_copy(args/kwargs not shown) # / # (prev_node_c)+ -> (logger_c_input)? -> node_start_c if should_log_inputs: # When we created the input logger, we left the ref_node_name # as an empty string, because the subgraph copy did not exist # yet. Now that the subgraph copy exists, we modify this name # to its true value. # Note: the alternative to this is to create the input logger # after creating the subgraph, which is slightly more # complicated. This is the lesser of two evils. # input_logger = env_c[dtype_cast_node.name] # Find the first node in the subgraph cur_node = node_a_shadows_c while cur_node.args[0] != input_logger: cur_node = cur_node.args[0] # type: ignore[assignment] if isinstance(input_logger, Node): input_logger_mod = getattr(gm_b, input_logger.name) input_logger_mod.ref_node_name = cur_node.name else: assert isinstance(input_logger, list) for input_logger_inner in input_logger: input_logger_mod = getattr(gm_b, input_logger_inner.name) input_logger_mod.ref_node_name = cur_node.name # hook up a logger to the mod_a copy env_c[node_a_shadows_c.name] = _insert_logger_after_node( env_c[node_a_shadows_c.name], gm_b, logger_cls, '_ns_logger_a_', node_a_shadows_c.name, name_a, ref_name, ref_node_type_a, NSSingleResultValuesType.NODE_OUTPUT.value, index_within_arg=0, index_of_arg=0, fqn=fqn_base_a) # subgraph so far: # # dtype_cast_node -> (logger_a_input)? -> subgraph_a_copy -> logger_a # / # (prev_node_c)+ -> (logger_c_input)? -> node_start_c if node_b_is_end_node: # hook up a logger to the mod_b copy env_c[node_b.name] = _insert_logger_after_node( env_c[node_b.name], gm_b, logger_cls, '_ns_logger_b_', node_b.name, name_b, ref_name, ref_node_type_b, NSSingleResultValuesType.NODE_OUTPUT.value, index_within_arg=0, index_of_arg=0, fqn=fqn_base_b) # subgraph so far: # # dtype_cast_node -> (logger_a_input)? -> subgraph_a_copy -> logger_a # / # (prev_node_c+) -> (logger_c_input)? -> node_start_c -> ... -> node_end_c -> logger_c # # Note: node_start_c may be the same node as node_end_c, or they # may have nodes inbetween. else: env_c[node_b.name] = graph_c.node_copy(node_b, load_arg) gm_c = GraphModule(gm_b, graph_c) return gm_c
[ "def", "create_a_shadows_b", "(", "name_a", ":", "str", ",", "gm_a", ":", "GraphModule", ",", "name_b", ":", "str", ",", "gm_b", ":", "GraphModule", ",", "matched_subgraph_pairs", ":", "Dict", "[", "str", ",", "Tuple", "[", "NSSubgraph", ",", "NSSubgraph", "]", "]", ",", "logger_cls", ":", "Callable", ",", "should_log_inputs", ":", "bool", ",", "node_type_to_io_type_map", ":", "Optional", "[", "Dict", "[", "str", ",", "Set", "[", "NSNodeTargetType", "]", "]", "]", "=", "None", ",", ")", "->", "GraphModule", ":", "if", "node_type_to_io_type_map", "is", "None", ":", "node_type_to_io_type_map", "=", "get_node_type_to_io_type_map", "(", ")", "# graph_c is the graph created from copying the nodes of graph_b and inserting", "# the shadows with the nodes copied from graph_a", "graph_c", "=", "Graph", "(", ")", "env_c", ":", "Dict", "[", "str", ",", "Any", "]", "=", "{", "}", "modules", "=", "dict", "(", "gm_b", ".", "named_modules", "(", ")", ")", "def", "load_arg", "(", "a", ")", ":", "return", "map_arg", "(", "a", ",", "lambda", "node", ":", "env_c", "[", "node", ".", "name", "]", ")", "start_node_b_to_matched_subgraph_a_and_name", "=", "{", "}", "end_node_b_to_matched_subgraph_a_and_name", "=", "{", "}", "for", "match_name", ",", "match", "in", "matched_subgraph_pairs", ".", "items", "(", ")", ":", "subgraph_a", ",", "subgraph_b", "=", "match", "ref_node_type_a", "=", "get_target_type_str", "(", "subgraph_a", ".", "base_op_node", ",", "gm_a", ")", "ref_node_type_b", "=", "get_target_type_str", "(", "subgraph_b", ".", "base_op_node", ",", "gm_b", ")", "start_node_b_to_matched_subgraph_a_and_name", "[", "subgraph_b", ".", "start_node", "]", "=", "(", "subgraph_a", ",", "match_name", ",", "ref_node_type_a", ",", "ref_node_type_b", ")", "end_node_b_to_matched_subgraph_a_and_name", "[", "subgraph_b", ".", "end_node", "]", "=", "(", "subgraph_a", ",", "match_name", ",", "ref_node_type_a", ",", "ref_node_type_b", ")", "for", "node_b", "in", "gm_b", ".", "graph", ".", "nodes", ":", "if", "node_b", ".", "op", "==", "'output'", ":", "graph_c", ".", "output", "(", "map_arg", "(", "node_b", ".", "args", "[", "0", "]", ",", "load_arg", ")", ")", "continue", "# calculate the flags to determine what to do with this node", "node_b_is_start_node", "=", "node_b", "in", "start_node_b_to_matched_subgraph_a_and_name", "node_b_is_end_node", "=", "node_b", "in", "end_node_b_to_matched_subgraph_a_and_name", "if", "(", "node_b_is_start_node", "or", "node_b_is_end_node", ")", ":", "if", "node_b_is_start_node", ":", "subgraph_a", ",", "ref_name", ",", "ref_node_type_a", ",", "ref_node_type_b", "=", "start_node_b_to_matched_subgraph_a_and_name", "[", "node_b", "]", "else", ":", "assert", "node_b_is_end_node", "subgraph_a", ",", "ref_name", ",", "ref_node_type_a", ",", "ref_node_type_b", "=", "end_node_b_to_matched_subgraph_a_and_name", "[", "node_b", "]", "# For both start_node and end_node verify that we know how to do", "# the dtype cast. If we do not, skip.", "node_input_type_a", ",", "node_output_type_a", "=", "get_node_first_input_and_output_type", "(", "subgraph_a", ".", "start_node", ",", "gm_a", ",", "logger_cls", ",", "node_type_to_io_type_map", ")", "node_input_type_b", ",", "node_output_type_b", "=", "get_node_first_input_and_output_type", "(", "node_b", ",", "gm_b", ",", "logger_cls", ",", "node_type_to_io_type_map", ")", "node_io_types_known_a_and_b", "=", "(", "node_input_type_a", "!=", "NodeInputOrOutputType", ".", "UNKNOWN", "and", "node_output_type_a", "!=", "NodeInputOrOutputType", ".", "UNKNOWN", "and", "node_input_type_b", "!=", "NodeInputOrOutputType", ".", "UNKNOWN", "and", "node_output_type_b", "!=", "NodeInputOrOutputType", ".", "UNKNOWN", ")", "if", "not", "node_io_types_known_a_and_b", ":", "print", "(", "f'skipping shadow loggers for node_b: {get_target_type_str(node_b, gm_b)}'", "+", "f', start_node_a: {get_target_type_str(subgraph_a.start_node, gm_a)}'", "+", "', unknown dtype cast'", ")", "env_c", "[", "node_b", ".", "name", "]", "=", "graph_c", ".", "node_copy", "(", "node_b", ",", "load_arg", ")", "continue", "# If we are shadowing from fp32 to int8, we need to insert", "# quantize_per_tensor call with qparams from the previous node.", "# Only do this if we are able to infer these qparams from the graph.", "if", "(", "node_input_type_a", "==", "NodeInputOrOutputType", ".", "INT8", "and", "node_input_type_b", "==", "NodeInputOrOutputType", ".", "FP32", ")", ":", "node_a_input_qparams", "=", "get_node_input_qparams", "(", "subgraph_a", ".", "start_node", ",", "gm_a", ",", "node_type_to_io_type_map", ")", "if", "not", "node_a_input_qparams", ":", "print", "(", "f'skipping shadow loggers for node_b: {get_target_type_str(node_b, gm_b)}'", "+", "f', start_node_a: {get_target_type_str(subgraph_a.start_node, gm_a)}'", "+", "', unknown input qparams'", ")", "env_c", "[", "node_b", ".", "name", "]", "=", "graph_c", ".", "node_copy", "(", "node_b", ",", "load_arg", ")", "continue", "fqn_base_a", "=", "_maybe_get_fqn", "(", "subgraph_a", ".", "base_op_node", ",", "gm_a", ")", "fqn_base_b", "=", "_maybe_get_fqn", "(", "subgraph_b", ".", "base_op_node", ",", "gm_b", ")", "if", "node_b_is_start_node", ":", "# if necessary, log the input of node_c", "if", "should_log_inputs", ":", "if", "isinstance", "(", "node_b", ".", "args", "[", "0", "]", ",", "Node", ")", ":", "prev_node_c", "=", "env_c", "[", "node_b", ".", "args", "[", "0", "]", ".", "name", "]", "env_c", "[", "prev_node_c", ".", "name", "]", "=", "_insert_logger_after_node", "(", "prev_node_c", ",", "gm_b", ",", "logger_cls", ",", "'_ns_logger_b_inp_'", ",", "node_b", ".", "name", ",", "name_b", ",", "ref_name", ",", "ref_node_type_b", ",", "NSSingleResultValuesType", ".", "NODE_INPUT", ".", "value", ",", "index_within_arg", "=", "0", ",", "index_of_arg", "=", "0", ",", "fqn", "=", "fqn_base_b", ")", "elif", "isinstance", "(", "node_b", ".", "args", "[", "0", "]", ",", "list", ")", ":", "# first, save the prev_node instances, because they", "# will be overwritten in the env after the first logger", "# is added", "prev_node_c_list", "=", "[", "env_c", "[", "arg", ".", "name", "]", "for", "arg", "in", "node_b", ".", "args", "[", "0", "]", "]", "for", "arg_idx", ",", "arg", "in", "enumerate", "(", "node_b", ".", "args", "[", "0", "]", ")", ":", "prev_node_c", "=", "prev_node_c_list", "[", "arg_idx", "]", "env_c", "[", "prev_node_c", ".", "name", "]", "=", "_insert_logger_after_node", "(", "prev_node_c", ",", "gm_b", ",", "logger_cls", ",", "'_ns_logger_b_inp_'", ",", "node_b", ".", "name", ",", "name_b", ",", "ref_name", ",", "ref_node_type_b", ",", "NSSingleResultValuesType", ".", "NODE_INPUT", ".", "value", ",", "index_within_arg", "=", "arg_idx", ",", "index_of_arg", "=", "0", ",", "fqn", "=", "fqn_base_b", ")", "else", ":", "# logging of inputs which are not lists is not supported yet", "raise", "AssertionError", "(", "f\"type {type(node_b.args[0])} is not handled yet\"", ")", "# subgraph so far:", "#", "# (prev_node_c)+ -> (logger_c_input)?", "# Note: this if statement is always True, spelling it out to clarify code", "# intent.", "if", "node_b_is_start_node", "or", "node_b_is_end_node", ":", "# ensure env_c is populated with base node", "env_c", "[", "node_b", ".", "name", "]", "=", "graph_c", ".", "node_copy", "(", "node_b", ",", "load_arg", ")", "node_c", "=", "env_c", "[", "node_b", ".", "name", "]", "# after this point,", "#", "# node_a is the original node from graph_a, with parent module gm_a", "# node_b is the original node from graph_b, with parent module gm_b", "# node_c is the copy of node_b in graph_c", "#", "# subgraph so far:", "#", "# (prev_node_c)+ -> (logger_c_input)? -> node_start_c", "if", "node_b_is_start_node", ":", "# cast dtype from the dtype of node_c's input to the dtype of", "# node_a's input (dequant, etc)", "prev_node_c", "=", "node_c", ".", "args", "[", "0", "]", "if", "should_log_inputs", ":", "# skip the input logger when inserting a dtype cast", "if", "isinstance", "(", "prev_node_c", ",", "Node", ")", ":", "prev_node_c", "=", "prev_node_c", ".", "args", "[", "0", "]", "elif", "isinstance", "(", "prev_node_c", ",", "list", ")", ":", "prev_node_c", "=", "[", "arg", ".", "args", "[", "0", "]", "for", "arg", "in", "prev_node_c", "]", "dtype_cast_node", "=", "_insert_dtype_cast_after_node", "(", "subgraph_a", ".", "start_node", ",", "node_c", ",", "prev_node_c", ",", "gm_a", ",", "gm_b", ",", "graph_c", ",", "node_b", ".", "name", "+", "'_dtype_cast_'", ",", "logger_cls", ",", "node_type_to_io_type_map", ")", "# note: not inserting to env_c because all nodes which use the dtype", "# casts are copied from graph_a", "#", "# subgraph so far:", "#", "# (dtype_cast_node)+", "# /", "# (prev_node_c)+ -> (logger_c_input)? -> node_start_c", "# if input logging is enabled, log the input to the subgraph", "if", "should_log_inputs", ":", "# TODO: explain this", "ref_node_name", "=", "''", "if", "isinstance", "(", "dtype_cast_node", ",", "Node", ")", ":", "dtype_cast_node", "=", "_insert_logger_after_node", "(", "dtype_cast_node", ",", "gm_b", ",", "logger_cls", ",", "'_ns_logger_a_inp_'", ",", "ref_node_name", ",", "name_a", ",", "ref_name", ",", "ref_node_type_a", ",", "NSSingleResultValuesType", ".", "NODE_INPUT", ".", "value", ",", "index_within_arg", "=", "0", ",", "index_of_arg", "=", "0", ",", "fqn", "=", "fqn_base_a", ")", "input_logger", ":", "Union", "[", "Node", ",", "List", "[", "Node", "]", "]", "=", "dtype_cast_node", "else", ":", "assert", "isinstance", "(", "dtype_cast_node", ",", "list", ")", "new_loggers", "=", "[", "]", "for", "dtype_cast_idx", ",", "dtype_cast_node_inner", "in", "enumerate", "(", "dtype_cast_node", ")", ":", "dtype_cast_logger", "=", "_insert_logger_after_node", "(", "dtype_cast_node_inner", ",", "gm_b", ",", "logger_cls", ",", "'_ns_logger_a_inp_'", ",", "ref_node_name", ",", "name_a", ",", "ref_name", ",", "ref_node_type_a", ",", "NSSingleResultValuesType", ".", "NODE_INPUT", ".", "value", ",", "index_within_arg", "=", "dtype_cast_idx", ",", "index_of_arg", "=", "0", ",", "fqn", "=", "fqn_base_a", ")", "new_loggers", ".", "append", "(", "dtype_cast_logger", ")", "dtype_cast_node", "=", "new_loggers", "input_logger", "=", "dtype_cast_node", "# subgraph so far:", "#", "# (dtype_cast_node)+ -> (logger_a_input)?", "# /", "# prev_node_c -> (logger_c_input)? -> node_start_c", "# hook up the new mod_a copy to be in the graph, receiving the", "# same inputs as mod_b does, with dtype cast to match a", "# Some ops, such as LSTMs, have two non-param inputs. If we have", "# such an op, pass the second param as well. Note: dtype casting", "# for the second param is not implemented yet, it can be added", "# later if there is a use case.", "node_c_second_non_param_arg", "=", "None", "num_non_param_args_node_a", "=", "get_number_of_non_param_args", "(", "subgraph_a", ".", "start_node", ",", "gm_a", ")", "if", "num_non_param_args_node_a", "==", "2", ":", "node_c_second_non_param_arg", "=", "node_c", ".", "args", "[", "1", "]", "node_a_shadows_c", "=", "_insert_copy_of_subgraph_a_after_input_node_c", "(", "dtype_cast_node", ",", "node_c_second_non_param_arg", ",", "subgraph_a", ",", "gm_a", ",", "gm_b", ",", "node_c", ".", "name", "+", "'_shadow_copy_'", ")", "env_c", "[", "node_a_shadows_c", ".", "name", "]", "=", "node_a_shadows_c", "# subgraph so far:", "#", "# dtype_cast_node -> (logger_a_input)? -> subgraph_a_copy(args/kwargs not shown)", "# /", "# (prev_node_c)+ -> (logger_c_input)? -> node_start_c", "if", "should_log_inputs", ":", "# When we created the input logger, we left the ref_node_name", "# as an empty string, because the subgraph copy did not exist", "# yet. Now that the subgraph copy exists, we modify this name", "# to its true value.", "# Note: the alternative to this is to create the input logger", "# after creating the subgraph, which is slightly more", "# complicated. This is the lesser of two evils.", "# input_logger = env_c[dtype_cast_node.name]", "# Find the first node in the subgraph", "cur_node", "=", "node_a_shadows_c", "while", "cur_node", ".", "args", "[", "0", "]", "!=", "input_logger", ":", "cur_node", "=", "cur_node", ".", "args", "[", "0", "]", "# type: ignore[assignment]", "if", "isinstance", "(", "input_logger", ",", "Node", ")", ":", "input_logger_mod", "=", "getattr", "(", "gm_b", ",", "input_logger", ".", "name", ")", "input_logger_mod", ".", "ref_node_name", "=", "cur_node", ".", "name", "else", ":", "assert", "isinstance", "(", "input_logger", ",", "list", ")", "for", "input_logger_inner", "in", "input_logger", ":", "input_logger_mod", "=", "getattr", "(", "gm_b", ",", "input_logger_inner", ".", "name", ")", "input_logger_mod", ".", "ref_node_name", "=", "cur_node", ".", "name", "# hook up a logger to the mod_a copy", "env_c", "[", "node_a_shadows_c", ".", "name", "]", "=", "_insert_logger_after_node", "(", "env_c", "[", "node_a_shadows_c", ".", "name", "]", ",", "gm_b", ",", "logger_cls", ",", "'_ns_logger_a_'", ",", "node_a_shadows_c", ".", "name", ",", "name_a", ",", "ref_name", ",", "ref_node_type_a", ",", "NSSingleResultValuesType", ".", "NODE_OUTPUT", ".", "value", ",", "index_within_arg", "=", "0", ",", "index_of_arg", "=", "0", ",", "fqn", "=", "fqn_base_a", ")", "# subgraph so far:", "#", "# dtype_cast_node -> (logger_a_input)? -> subgraph_a_copy -> logger_a", "# /", "# (prev_node_c)+ -> (logger_c_input)? -> node_start_c", "if", "node_b_is_end_node", ":", "# hook up a logger to the mod_b copy", "env_c", "[", "node_b", ".", "name", "]", "=", "_insert_logger_after_node", "(", "env_c", "[", "node_b", ".", "name", "]", ",", "gm_b", ",", "logger_cls", ",", "'_ns_logger_b_'", ",", "node_b", ".", "name", ",", "name_b", ",", "ref_name", ",", "ref_node_type_b", ",", "NSSingleResultValuesType", ".", "NODE_OUTPUT", ".", "value", ",", "index_within_arg", "=", "0", ",", "index_of_arg", "=", "0", ",", "fqn", "=", "fqn_base_b", ")", "# subgraph so far:", "#", "# dtype_cast_node -> (logger_a_input)? -> subgraph_a_copy -> logger_a", "# /", "# (prev_node_c+) -> (logger_c_input)? -> node_start_c -> ... -> node_end_c -> logger_c", "#", "# Note: node_start_c may be the same node as node_end_c, or they", "# may have nodes inbetween.", "else", ":", "env_c", "[", "node_b", ".", "name", "]", "=", "graph_c", ".", "node_copy", "(", "node_b", ",", "load_arg", ")", "gm_c", "=", "GraphModule", "(", "gm_b", ",", "graph_c", ")", "return", "gm_c" ]
https://github.com/pytorch/pytorch/blob/7176c92687d3cc847cc046bf002269c6949a21c2/torch/ao/ns/fx/graph_passes.py#L514-L819
aws/lumberyard
f85344403c1c2e77ec8c75deb2c116e97b713217
dev/Gems/CloudGemMetric/v1/AWS/common-code/Lib/pandas/core/indexes/multi.py
python
MultiIndex._hashed_values
(self)
return hash_tuples(self)
return a uint64 ndarray of my hashed values
return a uint64 ndarray of my hashed values
[ "return", "a", "uint64", "ndarray", "of", "my", "hashed", "values" ]
def _hashed_values(self): """ return a uint64 ndarray of my hashed values """ return hash_tuples(self)
[ "def", "_hashed_values", "(", "self", ")", ":", "return", "hash_tuples", "(", "self", ")" ]
https://github.com/aws/lumberyard/blob/f85344403c1c2e77ec8c75deb2c116e97b713217/dev/Gems/CloudGemMetric/v1/AWS/common-code/Lib/pandas/core/indexes/multi.py#L1408-L1410
bigartm/bigartm
47e37f982de87aa67bfd475ff1f39da696b181b3
utils/cpplint.py
python
FileInfo.NoExtension
(self)
return '/'.join(self.Split()[0:2])
File has no source file extension.
File has no source file extension.
[ "File", "has", "no", "source", "file", "extension", "." ]
def NoExtension(self): """File has no source file extension.""" return '/'.join(self.Split()[0:2])
[ "def", "NoExtension", "(", "self", ")", ":", "return", "'/'", ".", "join", "(", "self", ".", "Split", "(", ")", "[", "0", ":", "2", "]", ")" ]
https://github.com/bigartm/bigartm/blob/47e37f982de87aa67bfd475ff1f39da696b181b3/utils/cpplint.py#L1055-L1057
neoml-lib/neoml
a0d370fba05269a1b2258cef126f77bbd2054a3e
NeoML/Python/neoml/Dnn/Dnn.py
python
Dnn.initializer
(self, new_initializer)
Sets the initializer that will fill in the weight values before training starts.
Sets the initializer that will fill in the weight values before training starts.
[ "Sets", "the", "initializer", "that", "will", "fill", "in", "the", "weight", "values", "before", "training", "starts", "." ]
def initializer(self, new_initializer): """Sets the initializer that will fill in the weight values before training starts. """ self.set_initializer(new_initializer._internal)
[ "def", "initializer", "(", "self", ",", "new_initializer", ")", ":", "self", ".", "set_initializer", "(", "new_initializer", ".", "_internal", ")" ]
https://github.com/neoml-lib/neoml/blob/a0d370fba05269a1b2258cef126f77bbd2054a3e/NeoML/Python/neoml/Dnn/Dnn.py#L106-L110
llvm/llvm-project
ffa6262cb4e2a335d26416fad39a581b4f98c5f4
llvm/utils/lit/lit/LitConfig.py
python
LitConfig.maxIndividualTestTimeIsSupported
(self)
return lit.util.killProcessAndChildrenIsSupported()
Returns a tuple (<supported> , <error message>) where `<supported>` is True if setting maxIndividualTestTime is supported on the current host, returns False otherwise. `<error message>` is an empty string if `<supported>` is True, otherwise is contains a string describing why setting maxIndividualTestTime is not supported.
Returns a tuple (<supported> , <error message>) where `<supported>` is True if setting maxIndividualTestTime is supported on the current host, returns False otherwise. `<error message>` is an empty string if `<supported>` is True, otherwise is contains a string describing why setting maxIndividualTestTime is not supported.
[ "Returns", "a", "tuple", "(", "<supported", ">", "<error", "message", ">", ")", "where", "<supported", ">", "is", "True", "if", "setting", "maxIndividualTestTime", "is", "supported", "on", "the", "current", "host", "returns", "False", "otherwise", ".", "<error", "message", ">", "is", "an", "empty", "string", "if", "<supported", ">", "is", "True", "otherwise", "is", "contains", "a", "string", "describing", "why", "setting", "maxIndividualTestTime", "is", "not", "supported", "." ]
def maxIndividualTestTimeIsSupported(self): """ Returns a tuple (<supported> , <error message>) where `<supported>` is True if setting maxIndividualTestTime is supported on the current host, returns False otherwise. `<error message>` is an empty string if `<supported>` is True, otherwise is contains a string describing why setting maxIndividualTestTime is not supported. """ return lit.util.killProcessAndChildrenIsSupported()
[ "def", "maxIndividualTestTimeIsSupported", "(", "self", ")", ":", "return", "lit", ".", "util", ".", "killProcessAndChildrenIsSupported", "(", ")" ]
https://github.com/llvm/llvm-project/blob/ffa6262cb4e2a335d26416fad39a581b4f98c5f4/llvm/utils/lit/lit/LitConfig.py#L79-L89
miyosuda/TensorFlowAndroidMNIST
7b5a4603d2780a8a2834575706e9001977524007
jni-build/jni/include/tensorflow/python/ops/control_flow_ops.py
python
CondContext.BuildCondBranch
(self, fn)
return original_r, result
Add the subgraph defined by fn() to the graph.
Add the subgraph defined by fn() to the graph.
[ "Add", "the", "subgraph", "defined", "by", "fn", "()", "to", "the", "graph", "." ]
def BuildCondBranch(self, fn): """Add the subgraph defined by fn() to the graph.""" r = fn() original_r = r result = [] if r is not None: if not isinstance(r, list) and not isinstance(r, _basetuple): r = [r] original_r = [original_r] r = _convert_tensorarrays_to_flows(r) for v in r: real_v = v if isinstance(v, ops.Operation): # Use pivot as the proxy for this op. real_v = with_dependencies([v], self._pivot) elif v.name not in self._values: # Handle the special case of lambda: x self._values.add(v.name) if self._outer_context: real_v = self._outer_context.AddValue(v) self._values.add(real_v.name) real_v = _SwitchRefOrTensor(real_v, self._pred)[self._branch] self._external_values[v.name] = real_v else: external_v = self._external_values.get(v.name) if external_v is not None: real_v = external_v result.append(real_v) return original_r, result
[ "def", "BuildCondBranch", "(", "self", ",", "fn", ")", ":", "r", "=", "fn", "(", ")", "original_r", "=", "r", "result", "=", "[", "]", "if", "r", "is", "not", "None", ":", "if", "not", "isinstance", "(", "r", ",", "list", ")", "and", "not", "isinstance", "(", "r", ",", "_basetuple", ")", ":", "r", "=", "[", "r", "]", "original_r", "=", "[", "original_r", "]", "r", "=", "_convert_tensorarrays_to_flows", "(", "r", ")", "for", "v", "in", "r", ":", "real_v", "=", "v", "if", "isinstance", "(", "v", ",", "ops", ".", "Operation", ")", ":", "# Use pivot as the proxy for this op.", "real_v", "=", "with_dependencies", "(", "[", "v", "]", ",", "self", ".", "_pivot", ")", "elif", "v", ".", "name", "not", "in", "self", ".", "_values", ":", "# Handle the special case of lambda: x", "self", ".", "_values", ".", "add", "(", "v", ".", "name", ")", "if", "self", ".", "_outer_context", ":", "real_v", "=", "self", ".", "_outer_context", ".", "AddValue", "(", "v", ")", "self", ".", "_values", ".", "add", "(", "real_v", ".", "name", ")", "real_v", "=", "_SwitchRefOrTensor", "(", "real_v", ",", "self", ".", "_pred", ")", "[", "self", ".", "_branch", "]", "self", ".", "_external_values", "[", "v", ".", "name", "]", "=", "real_v", "else", ":", "external_v", "=", "self", ".", "_external_values", ".", "get", "(", "v", ".", "name", ")", "if", "external_v", "is", "not", "None", ":", "real_v", "=", "external_v", "result", ".", "append", "(", "real_v", ")", "return", "original_r", ",", "result" ]
https://github.com/miyosuda/TensorFlowAndroidMNIST/blob/7b5a4603d2780a8a2834575706e9001977524007/jni-build/jni/include/tensorflow/python/ops/control_flow_ops.py#L1244-L1272
Tencent/CMONGO
c40380caa14e05509f46993aa8b8da966b09b0b5
buildscripts/packager.py
python
Distro.repo_os_version
(self, build_os)
Return an OS version suitable for package repo directory naming - e.g. 5, 6 or 7 for redhat/centos, "precise," "wheezy," etc. for Ubuntu/Debian, 11 for suse, "2013.03" for amazon
Return an OS version suitable for package repo directory naming - e.g. 5, 6 or 7 for redhat/centos, "precise," "wheezy," etc. for Ubuntu/Debian, 11 for suse, "2013.03" for amazon
[ "Return", "an", "OS", "version", "suitable", "for", "package", "repo", "directory", "naming", "-", "e", ".", "g", ".", "5", "6", "or", "7", "for", "redhat", "/", "centos", "precise", "wheezy", "etc", ".", "for", "Ubuntu", "/", "Debian", "11", "for", "suse", "2013", ".", "03", "for", "amazon" ]
def repo_os_version(self, build_os): """Return an OS version suitable for package repo directory naming - e.g. 5, 6 or 7 for redhat/centos, "precise," "wheezy," etc. for Ubuntu/Debian, 11 for suse, "2013.03" for amazon""" if self.n == 'suse': return re.sub(r'^suse(\d+)$', r'\1', build_os) if self.n == 'redhat': return re.sub(r'^rhel(\d).*$', r'\1', build_os) if self.n == 'amazon': return "2013.03" elif self.n == 'ubuntu': if build_os == 'ubuntu1204': return "precise" elif build_os == 'ubuntu1404': return "trusty" elif build_os == 'ubuntu1604': return "xenial" else: raise Exception("unsupported build_os: %s" % build_os) elif self.n == 'debian': if build_os == 'debian71': return 'wheezy' elif build_os == 'debian81': return 'jessie' else: raise Exception("unsupported build_os: %s" % build_os) else: raise Exception("unsupported distro: %s" % self.n)
[ "def", "repo_os_version", "(", "self", ",", "build_os", ")", ":", "if", "self", ".", "n", "==", "'suse'", ":", "return", "re", ".", "sub", "(", "r'^suse(\\d+)$'", ",", "r'\\1'", ",", "build_os", ")", "if", "self", ".", "n", "==", "'redhat'", ":", "return", "re", ".", "sub", "(", "r'^rhel(\\d).*$'", ",", "r'\\1'", ",", "build_os", ")", "if", "self", ".", "n", "==", "'amazon'", ":", "return", "\"2013.03\"", "elif", "self", ".", "n", "==", "'ubuntu'", ":", "if", "build_os", "==", "'ubuntu1204'", ":", "return", "\"precise\"", "elif", "build_os", "==", "'ubuntu1404'", ":", "return", "\"trusty\"", "elif", "build_os", "==", "'ubuntu1604'", ":", "return", "\"xenial\"", "else", ":", "raise", "Exception", "(", "\"unsupported build_os: %s\"", "%", "build_os", ")", "elif", "self", ".", "n", "==", "'debian'", ":", "if", "build_os", "==", "'debian71'", ":", "return", "'wheezy'", "elif", "build_os", "==", "'debian81'", ":", "return", "'jessie'", "else", ":", "raise", "Exception", "(", "\"unsupported build_os: %s\"", "%", "build_os", ")", "else", ":", "raise", "Exception", "(", "\"unsupported distro: %s\"", "%", "self", ".", "n", ")" ]
https://github.com/Tencent/CMONGO/blob/c40380caa14e05509f46993aa8b8da966b09b0b5/buildscripts/packager.py#L197-L224
infinit/memo
3a8394d0f647efe03ccb8bfe885a7279cb8be8a6
elle/drake/src/drake/__init__.py
python
BaseNode.drake_type
(self)
return '%s.%s' % (self.__module__, self.__name__)
The qualified name of this type.
The qualified name of this type.
[ "The", "qualified", "name", "of", "this", "type", "." ]
def drake_type(self): """The qualified name of this type.""" return '%s.%s' % (self.__module__, self.__name__)
[ "def", "drake_type", "(", "self", ")", ":", "return", "'%s.%s'", "%", "(", "self", ".", "__module__", ",", "self", ".", "__name__", ")" ]
https://github.com/infinit/memo/blob/3a8394d0f647efe03ccb8bfe885a7279cb8be8a6/elle/drake/src/drake/__init__.py#L1391-L1393
benoitsteiner/tensorflow-opencl
cb7cb40a57fde5cfd4731bc551e82a1e2fef43a5
tensorflow/contrib/distributions/python/ops/binomial.py
python
Binomial.probs
(self)
return self._probs
Probability of drawing a `1`.
Probability of drawing a `1`.
[ "Probability", "of", "drawing", "a", "1", "." ]
def probs(self): """Probability of drawing a `1`.""" return self._probs
[ "def", "probs", "(", "self", ")", ":", "return", "self", ".", "_probs" ]
https://github.com/benoitsteiner/tensorflow-opencl/blob/cb7cb40a57fde5cfd4731bc551e82a1e2fef43a5/tensorflow/contrib/distributions/python/ops/binomial.py#L198-L200
Kitware/kwiver
7ed70308905698b6e88d27ae3dc028c9b016ca0a
python/kwiver/sprokit/processes/kwiver_process.py
python
KwiverProcess.config_value_using_trait
(self, name)
return self.config_value(ct.name)
Get value from config using trait. An exception will be thrown if the config trait has not been registered with the process. :param name: Name of the configuration trait.
Get value from config using trait. An exception will be thrown if the config trait has not been registered with the process.
[ "Get", "value", "from", "config", "using", "trait", ".", "An", "exception", "will", "be", "thrown", "if", "the", "config", "trait", "has", "not", "been", "registered", "with", "the", "process", "." ]
def config_value_using_trait(self, name): """ Get value from config using trait. An exception will be thrown if the config trait has not been registered with the process. :param name: Name of the configuration trait. """ ct = self._config_trait_set.get(name, None) if ct is None: raise ValueError('config trait name \"%s\" not registered' % name) return self.config_value(ct.name)
[ "def", "config_value_using_trait", "(", "self", ",", "name", ")", ":", "ct", "=", "self", ".", "_config_trait_set", ".", "get", "(", "name", ",", "None", ")", "if", "ct", "is", "None", ":", "raise", "ValueError", "(", "'config trait name \\\"%s\\\" not registered'", "%", "name", ")", "return", "self", ".", "config_value", "(", "ct", ".", "name", ")" ]
https://github.com/Kitware/kwiver/blob/7ed70308905698b6e88d27ae3dc028c9b016ca0a/python/kwiver/sprokit/processes/kwiver_process.py#L369-L382
luliyucoordinate/Leetcode
96afcdc54807d1d184e881a075d1dbf3371e31fb
src/0019-Remove-Nth-Node-From-End-of-List/0019.py
python
Solution.removeNthFromEnd
(self, head, n)
return h.next
:type head: ListNode :type n: int :rtype: ListNode
:type head: ListNode :type n: int :rtype: ListNode
[ ":", "type", "head", ":", "ListNode", ":", "type", "n", ":", "int", ":", "rtype", ":", "ListNode" ]
def removeNthFromEnd(self, head, n): """ :type head: ListNode :type n: int :rtype: ListNode """ h = ListNode(-1) h.next = head p, q = h, h for _ in range(n + 1): assert (q) q = q.next while q != None: p = p.next q = q.next p.next = p.next.next return h.next
[ "def", "removeNthFromEnd", "(", "self", ",", "head", ",", "n", ")", ":", "h", "=", "ListNode", "(", "-", "1", ")", "h", ".", "next", "=", "head", "p", ",", "q", "=", "h", ",", "h", "for", "_", "in", "range", "(", "n", "+", "1", ")", ":", "assert", "(", "q", ")", "q", "=", "q", ".", "next", "while", "q", "!=", "None", ":", "p", "=", "p", ".", "next", "q", "=", "q", ".", "next", "p", ".", "next", "=", "p", ".", "next", ".", "next", "return", "h", ".", "next" ]
https://github.com/luliyucoordinate/Leetcode/blob/96afcdc54807d1d184e881a075d1dbf3371e31fb/src/0019-Remove-Nth-Node-From-End-of-List/0019.py#L8-L27
stulp/dmpbbo
ca900e3b851d25faaf59ea296650370c70ed7d0f
python/bbo/updaters.py
python
costsToWeights
(costs, weighting_method, eliteness)
return weights
Convert costs to weights using different weighting methods. \param[in] costs A vector of costs. \param[in] weighting_method The weighting method ('PI-BB','CMA-ES','CEM') \param[in] eliteness The eliteness parameter (h in PI-BB, mu in CMA-ES) \return A vector of weights (they always sum to 1).
Convert costs to weights using different weighting methods. \param[in] costs A vector of costs. \param[in] weighting_method The weighting method ('PI-BB','CMA-ES','CEM') \param[in] eliteness The eliteness parameter (h in PI-BB, mu in CMA-ES) \return A vector of weights (they always sum to 1).
[ "Convert", "costs", "to", "weights", "using", "different", "weighting", "methods", ".", "\\", "param", "[", "in", "]", "costs", "A", "vector", "of", "costs", ".", "\\", "param", "[", "in", "]", "weighting_method", "The", "weighting", "method", "(", "PI", "-", "BB", "CMA", "-", "ES", "CEM", ")", "\\", "param", "[", "in", "]", "eliteness", "The", "eliteness", "parameter", "(", "h", "in", "PI", "-", "BB", "mu", "in", "CMA", "-", "ES", ")", "\\", "return", "A", "vector", "of", "weights", "(", "they", "always", "sum", "to", "1", ")", "." ]
def costsToWeights(costs, weighting_method, eliteness): """ Convert costs to weights using different weighting methods. \param[in] costs A vector of costs. \param[in] weighting_method The weighting method ('PI-BB','CMA-ES','CEM') \param[in] eliteness The eliteness parameter (h in PI-BB, mu in CMA-ES) \return A vector of weights (they always sum to 1). """ # Costs can be a 2D array or a list of lists. In this case, the first # column is the sum of the other columns (which contain the different cost # components). In this case, we should use only the first column. costs = np.asarray([np.atleast_1d(x)[0] for x in costs]) #np.set_printoptions(precision=4, suppress=True) if weighting_method == 'PI-BB': # PI^2 style weighting: continuous, cost exponention h = eliteness # In PI^2, eliteness parameter is known as "h" costs_range = max(costs)-min(costs) if costs_range==0: weights = np.full(costs.shape,1.0) else: costs_norm = np.asarray([-h*(x-min(costs))/costs_range for x in costs]) weights = np.exp(costs_norm) elif weighting_method=='CEM' or weighting_method=='CMA-ES': # CEM/CMA-ES style weights: rank-based, uses defaults mu = eliteness # In CMA-ES, eliteness parameter is known as "mu" indices = np.argsort(costs) weights = np.full(costs.size,0.0) if weighting_method=='CEM': # CEM weights[indices[0:mu]] = 1.0/mu else: # CMA-ES for ii in range(mu): weights[indices[ii]] = np.log(mu+0.5)-np.log(ii+1) else: print("WARNING: Unknown weighting method '", weighting_method, "'. Calling with PI-BB weighting."); return costsToWeights(costs, 'PI-BB', eliteness); #// Relative standard deviation of total costs #double mean = weights.mean(); #double std = sqrt((weights.array()-mean).pow(2).mean()); #double rel_std = std/mean; #if (rel_std<1e-10) #{ # // Special case: all costs are the same # // Set same weights for all. # weights.fill(1); #} # Normalize weights weights = weights/sum(weights) return weights
[ "def", "costsToWeights", "(", "costs", ",", "weighting_method", ",", "eliteness", ")", ":", "# Costs can be a 2D array or a list of lists. In this case, the first", "# column is the sum of the other columns (which contain the different cost", "# components). In this case, we should use only the first column.", "costs", "=", "np", ".", "asarray", "(", "[", "np", ".", "atleast_1d", "(", "x", ")", "[", "0", "]", "for", "x", "in", "costs", "]", ")", "#np.set_printoptions(precision=4, suppress=True)", "if", "weighting_method", "==", "'PI-BB'", ":", "# PI^2 style weighting: continuous, cost exponention", "h", "=", "eliteness", "# In PI^2, eliteness parameter is known as \"h\"", "costs_range", "=", "max", "(", "costs", ")", "-", "min", "(", "costs", ")", "if", "costs_range", "==", "0", ":", "weights", "=", "np", ".", "full", "(", "costs", ".", "shape", ",", "1.0", ")", "else", ":", "costs_norm", "=", "np", ".", "asarray", "(", "[", "-", "h", "*", "(", "x", "-", "min", "(", "costs", ")", ")", "/", "costs_range", "for", "x", "in", "costs", "]", ")", "weights", "=", "np", ".", "exp", "(", "costs_norm", ")", "elif", "weighting_method", "==", "'CEM'", "or", "weighting_method", "==", "'CMA-ES'", ":", "# CEM/CMA-ES style weights: rank-based, uses defaults", "mu", "=", "eliteness", "# In CMA-ES, eliteness parameter is known as \"mu\"", "indices", "=", "np", ".", "argsort", "(", "costs", ")", "weights", "=", "np", ".", "full", "(", "costs", ".", "size", ",", "0.0", ")", "if", "weighting_method", "==", "'CEM'", ":", "# CEM", "weights", "[", "indices", "[", "0", ":", "mu", "]", "]", "=", "1.0", "/", "mu", "else", ":", "# CMA-ES", "for", "ii", "in", "range", "(", "mu", ")", ":", "weights", "[", "indices", "[", "ii", "]", "]", "=", "np", ".", "log", "(", "mu", "+", "0.5", ")", "-", "np", ".", "log", "(", "ii", "+", "1", ")", "else", ":", "print", "(", "\"WARNING: Unknown weighting method '\"", ",", "weighting_method", ",", "\"'. Calling with PI-BB weighting.\"", ")", "return", "costsToWeights", "(", "costs", ",", "'PI-BB'", ",", "eliteness", ")", "#// Relative standard deviation of total costs", "#double mean = weights.mean();", "#double std = sqrt((weights.array()-mean).pow(2).mean());", "#double rel_std = std/mean;", "#if (rel_std<1e-10)", "#{", "# // Special case: all costs are the same", "# // Set same weights for all.", "# weights.fill(1);", "#}", "# Normalize weights", "weights", "=", "weights", "/", "sum", "(", "weights", ")", "return", "weights" ]
https://github.com/stulp/dmpbbo/blob/ca900e3b851d25faaf59ea296650370c70ed7d0f/python/bbo/updaters.py#L199-L254
apple/turicreate
cce55aa5311300e3ce6af93cb45ba791fd1bdf49
src/external/coremltools_wrap/coremltools/coremltools/converters/mil/frontend/torch/ops.py
python
convert_block
(context, block, inputs)
return outputs
Convert a block (sub-graph) to MIL. Conversion happens within a new context frame. Arguments: context: A TranscriptionContext object to pull node inputs and assign node outputs. block: An InternalTorchIRBlock object. inputs: List of Vars from the outer context that map to the block's expected inputs. The number of inputs provided must match the number expected by the block.
Convert a block (sub-graph) to MIL. Conversion happens within a new context frame.
[ "Convert", "a", "block", "(", "sub", "-", "graph", ")", "to", "MIL", ".", "Conversion", "happens", "within", "a", "new", "context", "frame", "." ]
def convert_block(context, block, inputs): """Convert a block (sub-graph) to MIL. Conversion happens within a new context frame. Arguments: context: A TranscriptionContext object to pull node inputs and assign node outputs. block: An InternalTorchIRBlock object. inputs: List of Vars from the outer context that map to the block's expected inputs. The number of inputs provided must match the number expected by the block. """ assert len(block.inputs) == len(inputs) # Start a new context frame. context.push((block.inputs, inputs)) # Add the block ops. convert_nodes(context, block) # Collect the block outputs. outputs = [context[outp] for outp in block.outputs] # Return to the previous context frame. context.pop() return outputs
[ "def", "convert_block", "(", "context", ",", "block", ",", "inputs", ")", ":", "assert", "len", "(", "block", ".", "inputs", ")", "==", "len", "(", "inputs", ")", "# Start a new context frame.", "context", ".", "push", "(", "(", "block", ".", "inputs", ",", "inputs", ")", ")", "# Add the block ops.", "convert_nodes", "(", "context", ",", "block", ")", "# Collect the block outputs.", "outputs", "=", "[", "context", "[", "outp", "]", "for", "outp", "in", "block", ".", "outputs", "]", "# Return to the previous context frame.", "context", ".", "pop", "(", ")", "return", "outputs" ]
https://github.com/apple/turicreate/blob/cce55aa5311300e3ce6af93cb45ba791fd1bdf49/src/external/coremltools_wrap/coremltools/coremltools/converters/mil/frontend/torch/ops.py#L62-L88
google/llvm-propeller
45c226984fe8377ebfb2ad7713c680d652ba678d
clang/bindings/python/clang/cindex.py
python
Type.get_ref_qualifier
(self)
return RefQualifierKind.from_id( conf.lib.clang_Type_getCXXRefQualifier(self))
Retrieve the ref-qualifier of the type.
Retrieve the ref-qualifier of the type.
[ "Retrieve", "the", "ref", "-", "qualifier", "of", "the", "type", "." ]
def get_ref_qualifier(self): """ Retrieve the ref-qualifier of the type. """ return RefQualifierKind.from_id( conf.lib.clang_Type_getCXXRefQualifier(self))
[ "def", "get_ref_qualifier", "(", "self", ")", ":", "return", "RefQualifierKind", ".", "from_id", "(", "conf", ".", "lib", ".", "clang_Type_getCXXRefQualifier", "(", "self", ")", ")" ]
https://github.com/google/llvm-propeller/blob/45c226984fe8377ebfb2ad7713c680d652ba678d/clang/bindings/python/clang/cindex.py#L2396-L2401
MegEngine/MegEngine
ce9ad07a27ec909fb8db4dd67943d24ba98fb93a
imperative/python/megengine/functional/math.py
python
dot
(inp1: Tensor, inp2: Tensor)
return result
r"""Computes dot-product of two vectors ``inp1`` and ``inp2``. inputs must be 1-dimensional or scalar. A scalar input is automatically broadcasted. Refer to :func:`~.matmul` for more general usage. Args: inp1: first vector. inp2: second vector. Returns: output value. Examples: .. testcode:: import numpy as np from megengine import tensor import megengine.functional as F data1 = tensor(np.arange(0, 6, dtype=np.float32)) data2 = tensor(np.arange(0, 6, dtype=np.float32)) out = F.dot(data1, data2) print(out.numpy()) Outputs: .. testoutput:: 55.
r"""Computes dot-product of two vectors ``inp1`` and ``inp2``. inputs must be 1-dimensional or scalar. A scalar input is automatically broadcasted. Refer to :func:`~.matmul` for more general usage.
[ "r", "Computes", "dot", "-", "product", "of", "two", "vectors", "inp1", "and", "inp2", ".", "inputs", "must", "be", "1", "-", "dimensional", "or", "scalar", ".", "A", "scalar", "input", "is", "automatically", "broadcasted", ".", "Refer", "to", ":", "func", ":", "~", ".", "matmul", "for", "more", "general", "usage", "." ]
def dot(inp1: Tensor, inp2: Tensor) -> Tensor: r"""Computes dot-product of two vectors ``inp1`` and ``inp2``. inputs must be 1-dimensional or scalar. A scalar input is automatically broadcasted. Refer to :func:`~.matmul` for more general usage. Args: inp1: first vector. inp2: second vector. Returns: output value. Examples: .. testcode:: import numpy as np from megengine import tensor import megengine.functional as F data1 = tensor(np.arange(0, 6, dtype=np.float32)) data2 = tensor(np.arange(0, 6, dtype=np.float32)) out = F.dot(data1, data2) print(out.numpy()) Outputs: .. testoutput:: 55. """ op = builtin.Dot() assert ( inp1.ndim <= 1 and inp2.ndim <= 1 ), "Input tensors for dot must be 1-dimensional or scalar" (result,) = apply(op, inp1, inp2) return result
[ "def", "dot", "(", "inp1", ":", "Tensor", ",", "inp2", ":", "Tensor", ")", "->", "Tensor", ":", "op", "=", "builtin", ".", "Dot", "(", ")", "assert", "(", "inp1", ".", "ndim", "<=", "1", "and", "inp2", ".", "ndim", "<=", "1", ")", ",", "\"Input tensors for dot must be 1-dimensional or scalar\"", "(", "result", ",", ")", "=", "apply", "(", "op", ",", "inp1", ",", "inp2", ")", "return", "result" ]
https://github.com/MegEngine/MegEngine/blob/ce9ad07a27ec909fb8db4dd67943d24ba98fb93a/imperative/python/megengine/functional/math.py#L1116-L1152
microsoft/DirectXShaderCompiler
8348ff8d9e0287610ba05d3a828e10af981a1c05
tools/clang/bindings/python/clang/cindex.py
python
SourceLocation.offset
(self)
return self._get_instantiation()[3]
Get the file offset represented by this source location.
Get the file offset represented by this source location.
[ "Get", "the", "file", "offset", "represented", "by", "this", "source", "location", "." ]
def offset(self): """Get the file offset represented by this source location.""" return self._get_instantiation()[3]
[ "def", "offset", "(", "self", ")", ":", "return", "self", ".", "_get_instantiation", "(", ")", "[", "3", "]" ]
https://github.com/microsoft/DirectXShaderCompiler/blob/8348ff8d9e0287610ba05d3a828e10af981a1c05/tools/clang/bindings/python/clang/cindex.py#L213-L215
aws/lumberyard
f85344403c1c2e77ec8c75deb2c116e97b713217
dev/Tools/Python/3.7.10/mac/Python.framework/Versions/3.7/lib/python3.7/distutils/command/build_py.py
python
build_py.build_package_data
(self)
Copy data files into build directory
Copy data files into build directory
[ "Copy", "data", "files", "into", "build", "directory" ]
def build_package_data(self): """Copy data files into build directory""" lastdir = None for package, src_dir, build_dir, filenames in self.data_files: for filename in filenames: target = os.path.join(build_dir, filename) self.mkpath(os.path.dirname(target)) self.copy_file(os.path.join(src_dir, filename), target, preserve_mode=False)
[ "def", "build_package_data", "(", "self", ")", ":", "lastdir", "=", "None", "for", "package", ",", "src_dir", ",", "build_dir", ",", "filenames", "in", "self", ".", "data_files", ":", "for", "filename", "in", "filenames", ":", "target", "=", "os", ".", "path", ".", "join", "(", "build_dir", ",", "filename", ")", "self", ".", "mkpath", "(", "os", ".", "path", ".", "dirname", "(", "target", ")", ")", "self", ".", "copy_file", "(", "os", ".", "path", ".", "join", "(", "src_dir", ",", "filename", ")", ",", "target", ",", "preserve_mode", "=", "False", ")" ]
https://github.com/aws/lumberyard/blob/f85344403c1c2e77ec8c75deb2c116e97b713217/dev/Tools/Python/3.7.10/mac/Python.framework/Versions/3.7/lib/python3.7/distutils/command/build_py.py#L134-L142
google/brunsli
e811197ab1ad8ddde3e3cf444548e42e2bdacf92
contrib/py/jxl_library_patches/jxl_utils.py
python
is_jpegxl_recompressed_jpeg_file
(filename)
Returns True iff the given filename is a genuine JPEG-XL file.
Returns True iff the given filename is a genuine JPEG-XL file.
[ "Returns", "True", "iff", "the", "given", "filename", "is", "a", "genuine", "JPEG", "-", "XL", "file", "." ]
def is_jpegxl_recompressed_jpeg_file(filename): """Returns True iff the given filename is a genuine JPEG-XL file.""" try: with open(filename, 'rb') as h: header = h.read(len(JPEGXL_RECOMPRESSED_JPEG_HEADER)) # Cf. https://arxiv.org/pdf/1908.03565.pdf, section 9.1, # on recompressed-JPEG header. return header == JPEGXL_RECOMPRESSED_JPEG_HEADER except: # pylint:disable=bare-except # If anything failed, this means that we cannot establish that the file # has the expected header, so we return False. return False
[ "def", "is_jpegxl_recompressed_jpeg_file", "(", "filename", ")", ":", "try", ":", "with", "open", "(", "filename", ",", "'rb'", ")", "as", "h", ":", "header", "=", "h", ".", "read", "(", "len", "(", "JPEGXL_RECOMPRESSED_JPEG_HEADER", ")", ")", "# Cf. https://arxiv.org/pdf/1908.03565.pdf, section 9.1,", "# on recompressed-JPEG header.", "return", "header", "==", "JPEGXL_RECOMPRESSED_JPEG_HEADER", "except", ":", "# pylint:disable=bare-except", "# If anything failed, this means that we cannot establish that the file", "# has the expected header, so we return False.", "return", "False" ]
https://github.com/google/brunsli/blob/e811197ab1ad8ddde3e3cf444548e42e2bdacf92/contrib/py/jxl_library_patches/jxl_utils.py#L44-L55
sdhash/sdhash
b9eff63e4e5867e910f41fd69032bbb1c94a2a5e
sdhash-ui/cherrypy/process/servers.py
python
client_host
(server_host)
return server_host
Return the host on which a client can connect to the given listener.
Return the host on which a client can connect to the given listener.
[ "Return", "the", "host", "on", "which", "a", "client", "can", "connect", "to", "the", "given", "listener", "." ]
def client_host(server_host): """Return the host on which a client can connect to the given listener.""" if server_host == '0.0.0.0': # 0.0.0.0 is INADDR_ANY, which should answer on localhost. return '127.0.0.1' if server_host in ('::', '::0', '::0.0.0.0'): # :: is IN6ADDR_ANY, which should answer on localhost. # ::0 and ::0.0.0.0 are non-canonical but common ways to write IN6ADDR_ANY. return '::1' return server_host
[ "def", "client_host", "(", "server_host", ")", ":", "if", "server_host", "==", "'0.0.0.0'", ":", "# 0.0.0.0 is INADDR_ANY, which should answer on localhost.", "return", "'127.0.0.1'", "if", "server_host", "in", "(", "'::'", ",", "'::0'", ",", "'::0.0.0.0'", ")", ":", "# :: is IN6ADDR_ANY, which should answer on localhost.", "# ::0 and ::0.0.0.0 are non-canonical but common ways to write IN6ADDR_ANY.", "return", "'::1'", "return", "server_host" ]
https://github.com/sdhash/sdhash/blob/b9eff63e4e5867e910f41fd69032bbb1c94a2a5e/sdhash-ui/cherrypy/process/servers.py#L340-L349
catboost/catboost
167f64f237114a4d10b2b4ee42adb4569137debe
contrib/python/scipy/py2/scipy/signal/waveforms.py
python
unit_impulse
(shape, idx=None, dtype=float)
return out
Unit impulse signal (discrete delta function) or unit basis vector. Parameters ---------- shape : int or tuple of int Number of samples in the output (1-D), or a tuple that represents the shape of the output (N-D). idx : None or int or tuple of int or 'mid', optional Index at which the value is 1. If None, defaults to the 0th element. If ``idx='mid'``, the impulse will be centered at ``shape // 2`` in all dimensions. If an int, the impulse will be at `idx` in all dimensions. dtype : data-type, optional The desired data-type for the array, e.g., `numpy.int8`. Default is `numpy.float64`. Returns ------- y : ndarray Output array containing an impulse signal. Notes ----- The 1D case is also known as the Kronecker delta. .. versionadded:: 0.19.0 Examples -------- An impulse at the 0th element (:math:`\\delta[n]`): >>> from scipy import signal >>> signal.unit_impulse(8) array([ 1., 0., 0., 0., 0., 0., 0., 0.]) Impulse offset by 2 samples (:math:`\\delta[n-2]`): >>> signal.unit_impulse(7, 2) array([ 0., 0., 1., 0., 0., 0., 0.]) 2-dimensional impulse, centered: >>> signal.unit_impulse((3, 3), 'mid') array([[ 0., 0., 0.], [ 0., 1., 0.], [ 0., 0., 0.]]) Impulse at (2, 2), using broadcasting: >>> signal.unit_impulse((4, 4), 2) array([[ 0., 0., 0., 0.], [ 0., 0., 0., 0.], [ 0., 0., 1., 0.], [ 0., 0., 0., 0.]]) Plot the impulse response of a 4th-order Butterworth lowpass filter: >>> imp = signal.unit_impulse(100, 'mid') >>> b, a = signal.butter(4, 0.2) >>> response = signal.lfilter(b, a, imp) >>> import matplotlib.pyplot as plt >>> plt.plot(np.arange(-50, 50), imp) >>> plt.plot(np.arange(-50, 50), response) >>> plt.margins(0.1, 0.1) >>> plt.xlabel('Time [samples]') >>> plt.ylabel('Amplitude') >>> plt.grid(True) >>> plt.show()
Unit impulse signal (discrete delta function) or unit basis vector.
[ "Unit", "impulse", "signal", "(", "discrete", "delta", "function", ")", "or", "unit", "basis", "vector", "." ]
def unit_impulse(shape, idx=None, dtype=float): """ Unit impulse signal (discrete delta function) or unit basis vector. Parameters ---------- shape : int or tuple of int Number of samples in the output (1-D), or a tuple that represents the shape of the output (N-D). idx : None or int or tuple of int or 'mid', optional Index at which the value is 1. If None, defaults to the 0th element. If ``idx='mid'``, the impulse will be centered at ``shape // 2`` in all dimensions. If an int, the impulse will be at `idx` in all dimensions. dtype : data-type, optional The desired data-type for the array, e.g., `numpy.int8`. Default is `numpy.float64`. Returns ------- y : ndarray Output array containing an impulse signal. Notes ----- The 1D case is also known as the Kronecker delta. .. versionadded:: 0.19.0 Examples -------- An impulse at the 0th element (:math:`\\delta[n]`): >>> from scipy import signal >>> signal.unit_impulse(8) array([ 1., 0., 0., 0., 0., 0., 0., 0.]) Impulse offset by 2 samples (:math:`\\delta[n-2]`): >>> signal.unit_impulse(7, 2) array([ 0., 0., 1., 0., 0., 0., 0.]) 2-dimensional impulse, centered: >>> signal.unit_impulse((3, 3), 'mid') array([[ 0., 0., 0.], [ 0., 1., 0.], [ 0., 0., 0.]]) Impulse at (2, 2), using broadcasting: >>> signal.unit_impulse((4, 4), 2) array([[ 0., 0., 0., 0.], [ 0., 0., 0., 0.], [ 0., 0., 1., 0.], [ 0., 0., 0., 0.]]) Plot the impulse response of a 4th-order Butterworth lowpass filter: >>> imp = signal.unit_impulse(100, 'mid') >>> b, a = signal.butter(4, 0.2) >>> response = signal.lfilter(b, a, imp) >>> import matplotlib.pyplot as plt >>> plt.plot(np.arange(-50, 50), imp) >>> plt.plot(np.arange(-50, 50), response) >>> plt.margins(0.1, 0.1) >>> plt.xlabel('Time [samples]') >>> plt.ylabel('Amplitude') >>> plt.grid(True) >>> plt.show() """ out = zeros(shape, dtype) shape = np.atleast_1d(shape) if idx is None: idx = (0,) * len(shape) elif idx == 'mid': idx = tuple(shape // 2) elif not hasattr(idx, "__iter__"): idx = (idx,) * len(shape) out[idx] = 1 return out
[ "def", "unit_impulse", "(", "shape", ",", "idx", "=", "None", ",", "dtype", "=", "float", ")", ":", "out", "=", "zeros", "(", "shape", ",", "dtype", ")", "shape", "=", "np", ".", "atleast_1d", "(", "shape", ")", "if", "idx", "is", "None", ":", "idx", "=", "(", "0", ",", ")", "*", "len", "(", "shape", ")", "elif", "idx", "==", "'mid'", ":", "idx", "=", "tuple", "(", "shape", "//", "2", ")", "elif", "not", "hasattr", "(", "idx", ",", "\"__iter__\"", ")", ":", "idx", "=", "(", "idx", ",", ")", "*", "len", "(", "shape", ")", "out", "[", "idx", "]", "=", "1", "return", "out" ]
https://github.com/catboost/catboost/blob/167f64f237114a4d10b2b4ee42adb4569137debe/contrib/python/scipy/py2/scipy/signal/waveforms.py#L596-L681
psnonis/FinBERT
c0c555d833a14e2316a3701e59c0b5156f804b4e
bert/optimization.py
python
AdamWeightDecayOptimizer._do_use_weight_decay
(self, param_name)
return True
Whether to use L2 weight decay for `param_name`.
Whether to use L2 weight decay for `param_name`.
[ "Whether", "to", "use", "L2", "weight", "decay", "for", "param_name", "." ]
def _do_use_weight_decay(self, param_name): """Whether to use L2 weight decay for `param_name`.""" if not self.weight_decay_rate: return False if self.exclude_from_weight_decay: for r in self.exclude_from_weight_decay: if re.search(r, param_name) is not None: return False return True
[ "def", "_do_use_weight_decay", "(", "self", ",", "param_name", ")", ":", "if", "not", "self", ".", "weight_decay_rate", ":", "return", "False", "if", "self", ".", "exclude_from_weight_decay", ":", "for", "r", "in", "self", ".", "exclude_from_weight_decay", ":", "if", "re", ".", "search", "(", "r", ",", "param_name", ")", "is", "not", "None", ":", "return", "False", "return", "True" ]
https://github.com/psnonis/FinBERT/blob/c0c555d833a14e2316a3701e59c0b5156f804b4e/bert/optimization.py#L159-L167
Xilinx/Vitis-AI
fc74d404563d9951b57245443c73bef389f3657f
tools/Vitis-AI-Quantizer/vai_q_pytorch/nndct_shared/quantization/quant_strategy.py
python
QuantStrategyBase._get_default_quant_config
(self, quant_info_mgr, lstm=False)
return config
1. unified activation bits 2 .mixed bits for lstm
1. unified activation bits 2 .mixed bits for lstm
[ "1", ".", "unified", "activation", "bits", "2", ".", "mixed", "bits", "for", "lstm" ]
def _get_default_quant_config(self, quant_info_mgr, lstm=False): """ 1. unified activation bits 2 .mixed bits for lstm """ # import ipdb # ipdb.set_trace() config = {'param': {}, 'output': {}, 'input': {}} for node in quant_info_mgr.Nndctgraph.nodes: # print('---- Handling node %s type: %s' % (node.name, node.op.type)) if quant_info_mgr.is_node_quantizable(node, lstm): # parameters for k in quant_info_mgr.quant_node_params(node).keys(): p = quant_info_mgr.quant_node_params(node)[k] # for mix precision quantization bw = self._bits_act if (node.has_bound_params() and (hasattr(node.op.ParamName, 'WEIGHTS') and k == node.op.ParamName.WEIGHTS or hasattr(node.op.ParamName, 'GAMMA') and k == node.op.ParamName.GAMMA)): bw = self._bits_weight config['param'][p.name] = [bw, None] # print('---- Add fix of param %s' % p.name) # output blobs end = quant_info_mgr.quant_output(node.name).name if end not in config['output']: config['output'][end] = [self._bits_act, None] # print('---- Add fix of output blob %s' % end) # input blobs (for mix precision quantization) if self._bits_weight != self._bits_act: if node.op.type in [NNDCT_OP.DENSE, NNDCT_OP.CONV2D]: config['input'][node.name] = [self._bits_weight, None] # print('---- Add fix of input blob %s' % end) elif (lstm and (node in quant_info_mgr.Nndctgraph.inputs)): # print('---- Handling input node %s' % (node.name)) # this path is only for quantizing a whole graph without quant stub OP # for lstm, check the following node type if (node.in_quant_part or (any( (quant_info_mgr.is_node_quantizable(c, lstm) and c.op.type is not NNDCT_OP.QUANT_STUB) for c in quant_info_mgr.Nndctgraph.children(node.name)))): end = quant_info_mgr.quant_output(node.name).name if end not in config['output']: config['output'][end] = [self._bits_act, None] # print('---- Add fix of quant net input blob %s' % end) # check the input fix of all quantized ops # import ipdb # ipdb.set_trace() if not lstm: for node in quant_info_mgr.Nndctgraph.nodes: if quant_info_mgr.is_node_quantizable(node, lstm): #print('---- Check input of node %s type: %s' % (node.name, node.op.type)) if node.op.type not in [NNDCT_OP.INPUT, NNDCT_OP.QUANT_STUB, NNDCT_OP.CONCAT]: for p_n in quant_info_mgr.Nndctgraph.parents(node): # if not quant_info_mgr.op_unquantizable(p_n.op.type): end = quant_info_mgr.quant_output(p_n.name).name end_node = quant_info_mgr.Nndctgraph.node(end) out_is_tensor = True for tensor in end_node.out_tensors: if tensor.shape == None: out_is_tensor = False if end not in config['output'] and out_is_tensor: config['output'][end] = [self._bits_act, None] #print('---- Add fix of output blob %s type: %s' % (end, end_node.op.type)) elif node.op.type in [NNDCT_OP.INPUT]: cn_nodes = quant_info_mgr.Nndctgraph.children(node) if len(cn_nodes) == 1 and cn_nodes[0].op.is_custom_op: end = quant_info_mgr.quant_output(node.name).name if end in config['output']: del config['output'][end] node.in_quant_part = False return config
[ "def", "_get_default_quant_config", "(", "self", ",", "quant_info_mgr", ",", "lstm", "=", "False", ")", ":", "# import ipdb", "# ipdb.set_trace()", "config", "=", "{", "'param'", ":", "{", "}", ",", "'output'", ":", "{", "}", ",", "'input'", ":", "{", "}", "}", "for", "node", "in", "quant_info_mgr", ".", "Nndctgraph", ".", "nodes", ":", "# print('---- Handling node %s type: %s' % (node.name, node.op.type))", "if", "quant_info_mgr", ".", "is_node_quantizable", "(", "node", ",", "lstm", ")", ":", "# parameters", "for", "k", "in", "quant_info_mgr", ".", "quant_node_params", "(", "node", ")", ".", "keys", "(", ")", ":", "p", "=", "quant_info_mgr", ".", "quant_node_params", "(", "node", ")", "[", "k", "]", "# for mix precision quantization", "bw", "=", "self", ".", "_bits_act", "if", "(", "node", ".", "has_bound_params", "(", ")", "and", "(", "hasattr", "(", "node", ".", "op", ".", "ParamName", ",", "'WEIGHTS'", ")", "and", "k", "==", "node", ".", "op", ".", "ParamName", ".", "WEIGHTS", "or", "hasattr", "(", "node", ".", "op", ".", "ParamName", ",", "'GAMMA'", ")", "and", "k", "==", "node", ".", "op", ".", "ParamName", ".", "GAMMA", ")", ")", ":", "bw", "=", "self", ".", "_bits_weight", "config", "[", "'param'", "]", "[", "p", ".", "name", "]", "=", "[", "bw", ",", "None", "]", "# print('---- Add fix of param %s' % p.name)", "# output blobs", "end", "=", "quant_info_mgr", ".", "quant_output", "(", "node", ".", "name", ")", ".", "name", "if", "end", "not", "in", "config", "[", "'output'", "]", ":", "config", "[", "'output'", "]", "[", "end", "]", "=", "[", "self", ".", "_bits_act", ",", "None", "]", "# print('---- Add fix of output blob %s' % end)", "# input blobs (for mix precision quantization)", "if", "self", ".", "_bits_weight", "!=", "self", ".", "_bits_act", ":", "if", "node", ".", "op", ".", "type", "in", "[", "NNDCT_OP", ".", "DENSE", ",", "NNDCT_OP", ".", "CONV2D", "]", ":", "config", "[", "'input'", "]", "[", "node", ".", "name", "]", "=", "[", "self", ".", "_bits_weight", ",", "None", "]", "# print('---- Add fix of input blob %s' % end)", "elif", "(", "lstm", "and", "(", "node", "in", "quant_info_mgr", ".", "Nndctgraph", ".", "inputs", ")", ")", ":", "# print('---- Handling input node %s' % (node.name))", "# this path is only for quantizing a whole graph without quant stub OP", "# for lstm, check the following node type", "if", "(", "node", ".", "in_quant_part", "or", "(", "any", "(", "(", "quant_info_mgr", ".", "is_node_quantizable", "(", "c", ",", "lstm", ")", "and", "c", ".", "op", ".", "type", "is", "not", "NNDCT_OP", ".", "QUANT_STUB", ")", "for", "c", "in", "quant_info_mgr", ".", "Nndctgraph", ".", "children", "(", "node", ".", "name", ")", ")", ")", ")", ":", "end", "=", "quant_info_mgr", ".", "quant_output", "(", "node", ".", "name", ")", ".", "name", "if", "end", "not", "in", "config", "[", "'output'", "]", ":", "config", "[", "'output'", "]", "[", "end", "]", "=", "[", "self", ".", "_bits_act", ",", "None", "]", "# print('---- Add fix of quant net input blob %s' % end)", "# check the input fix of all quantized ops ", "# import ipdb", "# ipdb.set_trace()", "if", "not", "lstm", ":", "for", "node", "in", "quant_info_mgr", ".", "Nndctgraph", ".", "nodes", ":", "if", "quant_info_mgr", ".", "is_node_quantizable", "(", "node", ",", "lstm", ")", ":", "#print('---- Check input of node %s type: %s' % (node.name, node.op.type))", "if", "node", ".", "op", ".", "type", "not", "in", "[", "NNDCT_OP", ".", "INPUT", ",", "NNDCT_OP", ".", "QUANT_STUB", ",", "NNDCT_OP", ".", "CONCAT", "]", ":", "for", "p_n", "in", "quant_info_mgr", ".", "Nndctgraph", ".", "parents", "(", "node", ")", ":", "# if not quant_info_mgr.op_unquantizable(p_n.op.type):", "end", "=", "quant_info_mgr", ".", "quant_output", "(", "p_n", ".", "name", ")", ".", "name", "end_node", "=", "quant_info_mgr", ".", "Nndctgraph", ".", "node", "(", "end", ")", "out_is_tensor", "=", "True", "for", "tensor", "in", "end_node", ".", "out_tensors", ":", "if", "tensor", ".", "shape", "==", "None", ":", "out_is_tensor", "=", "False", "if", "end", "not", "in", "config", "[", "'output'", "]", "and", "out_is_tensor", ":", "config", "[", "'output'", "]", "[", "end", "]", "=", "[", "self", ".", "_bits_act", ",", "None", "]", "#print('---- Add fix of output blob %s type: %s' % (end, end_node.op.type))", "elif", "node", ".", "op", ".", "type", "in", "[", "NNDCT_OP", ".", "INPUT", "]", ":", "cn_nodes", "=", "quant_info_mgr", ".", "Nndctgraph", ".", "children", "(", "node", ")", "if", "len", "(", "cn_nodes", ")", "==", "1", "and", "cn_nodes", "[", "0", "]", ".", "op", ".", "is_custom_op", ":", "end", "=", "quant_info_mgr", ".", "quant_output", "(", "node", ".", "name", ")", ".", "name", "if", "end", "in", "config", "[", "'output'", "]", ":", "del", "config", "[", "'output'", "]", "[", "end", "]", "node", ".", "in_quant_part", "=", "False", "return", "config" ]
https://github.com/Xilinx/Vitis-AI/blob/fc74d404563d9951b57245443c73bef389f3657f/tools/Vitis-AI-Quantizer/vai_q_pytorch/nndct_shared/quantization/quant_strategy.py#L56-L132
mantidproject/mantid
03deeb89254ec4289edb8771e0188c2090a02f32
scripts/reduction_gui/reduction/scripter.py
python
BaseScriptElement.apply
(self)
return NotImplemented
Method called to apply the reduction script element to a Mantid Reducer
Method called to apply the reduction script element to a Mantid Reducer
[ "Method", "called", "to", "apply", "the", "reduction", "script", "element", "to", "a", "Mantid", "Reducer" ]
def apply(self): """ Method called to apply the reduction script element to a Mantid Reducer """ return NotImplemented
[ "def", "apply", "(", "self", ")", ":", "return", "NotImplemented" ]
https://github.com/mantidproject/mantid/blob/03deeb89254ec4289edb8771e0188c2090a02f32/scripts/reduction_gui/reduction/scripter.py#L66-L71
ycm-core/ycmd
fc0fb7e5e15176cc5a2a30c80956335988c6b59a
ycmd/completers/language_server/language_server_completer.py
python
LanguageServerCompleter.WorkspaceConfigurationResponse
( self, request )
return None
If the concrete completer wants to respond to workspace/configuration requests, it should override this method.
If the concrete completer wants to respond to workspace/configuration requests, it should override this method.
[ "If", "the", "concrete", "completer", "wants", "to", "respond", "to", "workspace", "/", "configuration", "requests", "it", "should", "override", "this", "method", "." ]
def WorkspaceConfigurationResponse( self, request ): """If the concrete completer wants to respond to workspace/configuration requests, it should override this method.""" return None
[ "def", "WorkspaceConfigurationResponse", "(", "self", ",", "request", ")", ":", "return", "None" ]
https://github.com/ycm-core/ycmd/blob/fc0fb7e5e15176cc5a2a30c80956335988c6b59a/ycmd/completers/language_server/language_server_completer.py#L1597-L1600
echronos/echronos
c996f1d2c8af6c6536205eb319c1bf1d4d84569c
external_tools/pystache/renderer.py
python
Renderer._bytes_to_str
(self, _bytes)
return str(_bytes, self.string_encoding, self.decode_errors)
Convert a byte string to str, using string_encoding and decode_errors.
Convert a byte string to str, using string_encoding and decode_errors.
[ "Convert", "a", "byte", "string", "to", "str", "using", "string_encoding", "and", "decode_errors", "." ]
def _bytes_to_str(self, _bytes): """Convert a byte string to str, using string_encoding and decode_errors. """ assert type(_bytes) == bytes return str(_bytes, self.string_encoding, self.decode_errors)
[ "def", "_bytes_to_str", "(", "self", ",", "_bytes", ")", ":", "assert", "type", "(", "_bytes", ")", "==", "bytes", "return", "str", "(", "_bytes", ",", "self", ".", "string_encoding", ",", "self", ".", "decode_errors", ")" ]
https://github.com/echronos/echronos/blob/c996f1d2c8af6c6536205eb319c1bf1d4d84569c/external_tools/pystache/renderer.py#L182-L187
catboost/catboost
167f64f237114a4d10b2b4ee42adb4569137debe
contrib/python/pexpect/pexpect/screen.py
python
screen._decode
(self, s)
This converts from the external coding system (as passed to the constructor) to the internal one (unicode).
This converts from the external coding system (as passed to the constructor) to the internal one (unicode).
[ "This", "converts", "from", "the", "external", "coding", "system", "(", "as", "passed", "to", "the", "constructor", ")", "to", "the", "internal", "one", "(", "unicode", ")", "." ]
def _decode(self, s): '''This converts from the external coding system (as passed to the constructor) to the internal one (unicode). ''' if self.decoder is not None: return self.decoder.decode(s) else: raise TypeError("This screen was constructed with encoding=None, " "so it does not handle bytes.")
[ "def", "_decode", "(", "self", ",", "s", ")", ":", "if", "self", ".", "decoder", "is", "not", "None", ":", "return", "self", ".", "decoder", ".", "decode", "(", "s", ")", "else", ":", "raise", "TypeError", "(", "\"This screen was constructed with encoding=None, \"", "\"so it does not handle bytes.\"", ")" ]
https://github.com/catboost/catboost/blob/167f64f237114a4d10b2b4ee42adb4569137debe/contrib/python/pexpect/pexpect/screen.py#L104-L111
trilinos/Trilinos
6168be6dd51e35e1cd681e9c4b24433e709df140
packages/muelu/utils/analysis/tableau.py
python
tableau10
()
return rgb2float(colors)
Tableau 10' colors as RGB
Tableau 10' colors as RGB
[ "Tableau", "10", "colors", "as", "RGB" ]
def tableau10(): """'Tableau 10' colors as RGB""" colors = [ ( 31, 119, 180), (255, 127, 14), ( 44, 160, 44), (214, 39, 40), (148, 103, 189), (140, 86, 75), (227, 119, 194), (127, 127, 127), (188, 189, 34), ( 23, 190, 207) ] return rgb2float(colors)
[ "def", "tableau10", "(", ")", ":", "colors", "=", "[", "(", "31", ",", "119", ",", "180", ")", ",", "(", "255", ",", "127", ",", "14", ")", ",", "(", "44", ",", "160", ",", "44", ")", ",", "(", "214", ",", "39", ",", "40", ")", ",", "(", "148", ",", "103", ",", "189", ")", ",", "(", "140", ",", "86", ",", "75", ")", ",", "(", "227", ",", "119", ",", "194", ")", ",", "(", "127", ",", "127", ",", "127", ")", ",", "(", "188", ",", "189", ",", "34", ")", ",", "(", "23", ",", "190", ",", "207", ")", "]", "return", "rgb2float", "(", "colors", ")" ]
https://github.com/trilinos/Trilinos/blob/6168be6dd51e35e1cd681e9c4b24433e709df140/packages/muelu/utils/analysis/tableau.py#L10-L17
takemaru/graphillion
51879f92bb96b53ef8f914ef37a05252ce383617
graphillion/graphset.py
python
GraphSet.paths
(terminal1, terminal2, is_hamilton=False, graphset=None)
return GraphSet.graphs(vertex_groups=[[terminal1, terminal2]], degree_constraints=dc, no_loop=True, graphset=graphset)
Returns a GraphSet of paths. This method can be parallelized with OpenMP by specifying the environmental variable `OMP_NUM_THREADS`: `$ OMP_NUM_THREADS=4 python your_graphillion_script.py` Examples: >>> GraphSet.paths(1, 6) GraphSet([[(1, 2), (2, 3), (3, 6)], [(1, 2), (2, 5), (5, 6)], [(1, 4), (4, 5 ... Args: terminal1 and terminal2: Both end vertices of a paths. graphset: Optional. A GraphSet object. Paths to be stored are selected from this object. Returns: A new GraphSet object. See Also: graphs()
Returns a GraphSet of paths.
[ "Returns", "a", "GraphSet", "of", "paths", "." ]
def paths(terminal1, terminal2, is_hamilton=False, graphset=None): """Returns a GraphSet of paths. This method can be parallelized with OpenMP by specifying the environmental variable `OMP_NUM_THREADS`: `$ OMP_NUM_THREADS=4 python your_graphillion_script.py` Examples: >>> GraphSet.paths(1, 6) GraphSet([[(1, 2), (2, 3), (3, 6)], [(1, 2), (2, 5), (5, 6)], [(1, 4), (4, 5 ... Args: terminal1 and terminal2: Both end vertices of a paths. graphset: Optional. A GraphSet object. Paths to be stored are selected from this object. Returns: A new GraphSet object. See Also: graphs() """ dc = {} for v in GraphSet._vertices: if v in (terminal1, terminal2): dc[v] = 1 else: dc[v] = 2 if is_hamilton else range(0, 3, 2) return GraphSet.graphs(vertex_groups=[[terminal1, terminal2]], degree_constraints=dc, no_loop=True, graphset=graphset)
[ "def", "paths", "(", "terminal1", ",", "terminal2", ",", "is_hamilton", "=", "False", ",", "graphset", "=", "None", ")", ":", "dc", "=", "{", "}", "for", "v", "in", "GraphSet", ".", "_vertices", ":", "if", "v", "in", "(", "terminal1", ",", "terminal2", ")", ":", "dc", "[", "v", "]", "=", "1", "else", ":", "dc", "[", "v", "]", "=", "2", "if", "is_hamilton", "else", "range", "(", "0", ",", "3", ",", "2", ")", "return", "GraphSet", ".", "graphs", "(", "vertex_groups", "=", "[", "[", "terminal1", ",", "terminal2", "]", "]", ",", "degree_constraints", "=", "dc", ",", "no_loop", "=", "True", ",", "graphset", "=", "graphset", ")" ]
https://github.com/takemaru/graphillion/blob/51879f92bb96b53ef8f914ef37a05252ce383617/graphillion/graphset.py#L1941-L1973
aws/lumberyard
f85344403c1c2e77ec8c75deb2c116e97b713217
dev/Tools/Python/3.7.10/mac/Python.framework/Versions/3.7/lib/python3.7/plistlib.py
python
_BinaryPlistParser._get_size
(self, tokenL)
return tokenL
return the size of the next object.
return the size of the next object.
[ "return", "the", "size", "of", "the", "next", "object", "." ]
def _get_size(self, tokenL): """ return the size of the next object.""" if tokenL == 0xF: m = self._fp.read(1)[0] & 0x3 s = 1 << m f = '>' + _BINARY_FORMAT[s] return struct.unpack(f, self._fp.read(s))[0] return tokenL
[ "def", "_get_size", "(", "self", ",", "tokenL", ")", ":", "if", "tokenL", "==", "0xF", ":", "m", "=", "self", ".", "_fp", ".", "read", "(", "1", ")", "[", "0", "]", "&", "0x3", "s", "=", "1", "<<", "m", "f", "=", "'>'", "+", "_BINARY_FORMAT", "[", "s", "]", "return", "struct", ".", "unpack", "(", "f", ",", "self", ".", "_fp", ".", "read", "(", "s", ")", ")", "[", "0", "]", "return", "tokenL" ]
https://github.com/aws/lumberyard/blob/f85344403c1c2e77ec8c75deb2c116e97b713217/dev/Tools/Python/3.7.10/mac/Python.framework/Versions/3.7/lib/python3.7/plistlib.py#L574-L582
catboost/catboost
167f64f237114a4d10b2b4ee42adb4569137debe
contrib/python/prompt-toolkit/py3/prompt_toolkit/input/win32_pipe.py
python
Win32PipeInput.send_bytes
(self, data: bytes)
Send bytes to the input.
Send bytes to the input.
[ "Send", "bytes", "to", "the", "input", "." ]
def send_bytes(self, data: bytes) -> None: "Send bytes to the input." self.send_text(data.decode("utf-8", "ignore"))
[ "def", "send_bytes", "(", "self", ",", "data", ":", "bytes", ")", "->", "None", ":", "self", ".", "send_text", "(", "data", ".", "decode", "(", "\"utf-8\"", ",", "\"ignore\"", ")", ")" ]
https://github.com/catboost/catboost/blob/167f64f237114a4d10b2b4ee42adb4569137debe/contrib/python/prompt-toolkit/py3/prompt_toolkit/input/win32_pipe.py#L108-L110
baidu-research/tensorflow-allreduce
66d5b855e90b0949e9fa5cca5599fd729a70e874
tensorflow/contrib/tensor_forest/client/eval_metrics.py
python
get_metric
(metric_name)
return _EVAL_METRICS[metric_name]
Given a metric name, return the corresponding metric function.
Given a metric name, return the corresponding metric function.
[ "Given", "a", "metric", "name", "return", "the", "corresponding", "metric", "function", "." ]
def get_metric(metric_name): """Given a metric name, return the corresponding metric function.""" return _EVAL_METRICS[metric_name]
[ "def", "get_metric", "(", "metric_name", ")", ":", "return", "_EVAL_METRICS", "[", "metric_name", "]" ]
https://github.com/baidu-research/tensorflow-allreduce/blob/66d5b855e90b0949e9fa5cca5599fd729a70e874/tensorflow/contrib/tensor_forest/client/eval_metrics.py#L154-L156
pytorch/pytorch
7176c92687d3cc847cc046bf002269c6949a21c2
torch/distributed/pipeline/sync/phony.py
python
get_phony
(device: torch.device, *, requires_grad: bool)
return phony
Gets a phony. Phony is tensor without space. It is useful to make arbitrary dependency in a autograd graph because it doesn't require any gradient accumulation. .. note:: Phonies for each device are cached. If an autograd function gets a phony internally, the phony must be detached to be returned. Otherwise, the autograd engine will mutate the cached phony in-place:: class Phonify(torch.autograd.Function): @staticmethod def forward(ctx, input): phony = get_phony(input.device, requires_grad=False) return phony.detach() # detach() is necessary.
Gets a phony. Phony is tensor without space. It is useful to make arbitrary dependency in a autograd graph because it doesn't require any gradient accumulation.
[ "Gets", "a", "phony", ".", "Phony", "is", "tensor", "without", "space", ".", "It", "is", "useful", "to", "make", "arbitrary", "dependency", "in", "a", "autograd", "graph", "because", "it", "doesn", "t", "require", "any", "gradient", "accumulation", "." ]
def get_phony(device: torch.device, *, requires_grad: bool) -> Tensor: """Gets a phony. Phony is tensor without space. It is useful to make arbitrary dependency in a autograd graph because it doesn't require any gradient accumulation. .. note:: Phonies for each device are cached. If an autograd function gets a phony internally, the phony must be detached to be returned. Otherwise, the autograd engine will mutate the cached phony in-place:: class Phonify(torch.autograd.Function): @staticmethod def forward(ctx, input): phony = get_phony(input.device, requires_grad=False) return phony.detach() # detach() is necessary. """ key = (device, requires_grad) try: phony = _phonies[key] except KeyError: with use_stream(default_stream(device)): phony = torch.empty(0, device=device, requires_grad=requires_grad) _phonies[key] = phony return phony
[ "def", "get_phony", "(", "device", ":", "torch", ".", "device", ",", "*", ",", "requires_grad", ":", "bool", ")", "->", "Tensor", ":", "key", "=", "(", "device", ",", "requires_grad", ")", "try", ":", "phony", "=", "_phonies", "[", "key", "]", "except", "KeyError", ":", "with", "use_stream", "(", "default_stream", "(", "device", ")", ")", ":", "phony", "=", "torch", ".", "empty", "(", "0", ",", "device", "=", "device", ",", "requires_grad", "=", "requires_grad", ")", "_phonies", "[", "key", "]", "=", "phony", "return", "phony" ]
https://github.com/pytorch/pytorch/blob/7176c92687d3cc847cc046bf002269c6949a21c2/torch/distributed/pipeline/sync/phony.py#L21-L49
wxWidgets/wxPython-Classic
19571e1ae65f1ac445f5491474121998c97a1bf0
src/gtk/_core.py
python
Control_RemoveMnemonics
(*args, **kwargs)
return _core_.Control_RemoveMnemonics(*args, **kwargs)
Control_RemoveMnemonics(String str) -> String removes the mnemonics characters
Control_RemoveMnemonics(String str) -> String
[ "Control_RemoveMnemonics", "(", "String", "str", ")", "-", ">", "String" ]
def Control_RemoveMnemonics(*args, **kwargs): """ Control_RemoveMnemonics(String str) -> String removes the mnemonics characters """ return _core_.Control_RemoveMnemonics(*args, **kwargs)
[ "def", "Control_RemoveMnemonics", "(", "*", "args", ",", "*", "*", "kwargs", ")", ":", "return", "_core_", ".", "Control_RemoveMnemonics", "(", "*", "args", ",", "*", "*", "kwargs", ")" ]
https://github.com/wxWidgets/wxPython-Classic/blob/19571e1ae65f1ac445f5491474121998c97a1bf0/src/gtk/_core.py#L12781-L12787
Xilinx/Vitis-AI
fc74d404563d9951b57245443c73bef389f3657f
tools/Vitis-AI-Quantizer/vai_q_tensorflow1.x/tensorflow/python/training/input.py
python
slice_input_producer
(tensor_list, num_epochs=None, shuffle=True, seed=None, capacity=32, shared_name=None, name=None)
Produces a slice of each `Tensor` in `tensor_list`. Implemented using a Queue -- a `QueueRunner` for the Queue is added to the current `Graph`'s `QUEUE_RUNNER` collection. Args: tensor_list: A list of `Tensor` objects. Every `Tensor` in `tensor_list` must have the same size in the first dimension. num_epochs: An integer (optional). If specified, `slice_input_producer` produces each slice `num_epochs` times before generating an `OutOfRange` error. If not specified, `slice_input_producer` can cycle through the slices an unlimited number of times. shuffle: Boolean. If true, the integers are randomly shuffled within each epoch. seed: An integer (optional). Seed used if shuffle == True. capacity: An integer. Sets the queue capacity. shared_name: (optional). If set, this queue will be shared under the given name across multiple sessions. name: A name for the operations (optional). Returns: A list of tensors, one for each element of `tensor_list`. If the tensor in `tensor_list` has shape `[N, a, b, .., z]`, then the corresponding output tensor will have shape `[a, b, ..., z]`. Raises: ValueError: if `slice_input_producer` produces nothing from `tensor_list`. @compatibility(eager) Input pipelines based on Queues are not supported when eager execution is enabled. Please use the `tf.data` API to ingest data under eager execution. @end_compatibility
Produces a slice of each `Tensor` in `tensor_list`.
[ "Produces", "a", "slice", "of", "each", "Tensor", "in", "tensor_list", "." ]
def slice_input_producer(tensor_list, num_epochs=None, shuffle=True, seed=None, capacity=32, shared_name=None, name=None): """Produces a slice of each `Tensor` in `tensor_list`. Implemented using a Queue -- a `QueueRunner` for the Queue is added to the current `Graph`'s `QUEUE_RUNNER` collection. Args: tensor_list: A list of `Tensor` objects. Every `Tensor` in `tensor_list` must have the same size in the first dimension. num_epochs: An integer (optional). If specified, `slice_input_producer` produces each slice `num_epochs` times before generating an `OutOfRange` error. If not specified, `slice_input_producer` can cycle through the slices an unlimited number of times. shuffle: Boolean. If true, the integers are randomly shuffled within each epoch. seed: An integer (optional). Seed used if shuffle == True. capacity: An integer. Sets the queue capacity. shared_name: (optional). If set, this queue will be shared under the given name across multiple sessions. name: A name for the operations (optional). Returns: A list of tensors, one for each element of `tensor_list`. If the tensor in `tensor_list` has shape `[N, a, b, .., z]`, then the corresponding output tensor will have shape `[a, b, ..., z]`. Raises: ValueError: if `slice_input_producer` produces nothing from `tensor_list`. @compatibility(eager) Input pipelines based on Queues are not supported when eager execution is enabled. Please use the `tf.data` API to ingest data under eager execution. @end_compatibility """ with ops.name_scope(name, "input_producer", tensor_list): tensor_list = ops.convert_n_to_tensor_or_indexed_slices(tensor_list) if not tensor_list: raise ValueError( "Expected at least one tensor in slice_input_producer().") range_size = array_ops.shape(tensor_list[0])[0] # TODO(josh11b): Add an assertion that the first dimension of # everything in TensorList matches. Maybe just check the inferred shapes? queue = range_input_producer(range_size, num_epochs=num_epochs, shuffle=shuffle, seed=seed, capacity=capacity, shared_name=shared_name) index = queue.dequeue() output = [array_ops.gather(t, index) for t in tensor_list] return output
[ "def", "slice_input_producer", "(", "tensor_list", ",", "num_epochs", "=", "None", ",", "shuffle", "=", "True", ",", "seed", "=", "None", ",", "capacity", "=", "32", ",", "shared_name", "=", "None", ",", "name", "=", "None", ")", ":", "with", "ops", ".", "name_scope", "(", "name", ",", "\"input_producer\"", ",", "tensor_list", ")", ":", "tensor_list", "=", "ops", ".", "convert_n_to_tensor_or_indexed_slices", "(", "tensor_list", ")", "if", "not", "tensor_list", ":", "raise", "ValueError", "(", "\"Expected at least one tensor in slice_input_producer().\"", ")", "range_size", "=", "array_ops", ".", "shape", "(", "tensor_list", "[", "0", "]", ")", "[", "0", "]", "# TODO(josh11b): Add an assertion that the first dimension of", "# everything in TensorList matches. Maybe just check the inferred shapes?", "queue", "=", "range_input_producer", "(", "range_size", ",", "num_epochs", "=", "num_epochs", ",", "shuffle", "=", "shuffle", ",", "seed", "=", "seed", ",", "capacity", "=", "capacity", ",", "shared_name", "=", "shared_name", ")", "index", "=", "queue", ".", "dequeue", "(", ")", "output", "=", "[", "array_ops", ".", "gather", "(", "t", ",", "index", ")", "for", "t", "in", "tensor_list", "]", "return", "output" ]
https://github.com/Xilinx/Vitis-AI/blob/fc74d404563d9951b57245443c73bef389f3657f/tools/Vitis-AI-Quantizer/vai_q_tensorflow1.x/tensorflow/python/training/input.py#L328-L376
wxWidgets/wxPython-Classic
19571e1ae65f1ac445f5491474121998c97a1bf0
src/osx_cocoa/_misc.py
python
DataObjectComposite.GetObject
(*args, **kwargs)
return _misc_.DataObjectComposite_GetObject(*args, **kwargs)
GetObject(self, DataFormat format, wxDataObjectBase::Direction dir=Get) -> DataObjectSimple Returns the pointer to the object which supports this format or None. TODO: Fix this to use OOR and return the right object type.
GetObject(self, DataFormat format, wxDataObjectBase::Direction dir=Get) -> DataObjectSimple
[ "GetObject", "(", "self", "DataFormat", "format", "wxDataObjectBase", "::", "Direction", "dir", "=", "Get", ")", "-", ">", "DataObjectSimple" ]
def GetObject(*args, **kwargs): """ GetObject(self, DataFormat format, wxDataObjectBase::Direction dir=Get) -> DataObjectSimple Returns the pointer to the object which supports this format or None. TODO: Fix this to use OOR and return the right object type. """ return _misc_.DataObjectComposite_GetObject(*args, **kwargs)
[ "def", "GetObject", "(", "*", "args", ",", "*", "*", "kwargs", ")", ":", "return", "_misc_", ".", "DataObjectComposite_GetObject", "(", "*", "args", ",", "*", "*", "kwargs", ")" ]
https://github.com/wxWidgets/wxPython-Classic/blob/19571e1ae65f1ac445f5491474121998c97a1bf0/src/osx_cocoa/_misc.py#L5154-L5161
baidu-research/tensorflow-allreduce
66d5b855e90b0949e9fa5cca5599fd729a70e874
tensorflow/contrib/data/python/ops/dataset_ops.py
python
ZipDataset.__init__
(self, datasets)
See `Dataset.zip()` for details.
See `Dataset.zip()` for details.
[ "See", "Dataset", ".", "zip", "()", "for", "details", "." ]
def __init__(self, datasets): """See `Dataset.zip()` for details.""" super(ZipDataset, self).__init__() self._datasets = datasets
[ "def", "__init__", "(", "self", ",", "datasets", ")", ":", "super", "(", "ZipDataset", ",", "self", ")", ".", "__init__", "(", ")", "self", ".", "_datasets", "=", "datasets" ]
https://github.com/baidu-research/tensorflow-allreduce/blob/66d5b855e90b0949e9fa5cca5599fd729a70e874/tensorflow/contrib/data/python/ops/dataset_ops.py#L1171-L1174
hfinkel/llvm-project-cxxjit
91084ef018240bbb8e24235ff5cd8c355a9c1a1e
clang/bindings/python/clang/cindex.py
python
Type.get_offset
(self, fieldname)
return conf.lib.clang_Type_getOffsetOf(self, fieldname)
Retrieve the offset of a field in the record.
Retrieve the offset of a field in the record.
[ "Retrieve", "the", "offset", "of", "a", "field", "in", "the", "record", "." ]
def get_offset(self, fieldname): """ Retrieve the offset of a field in the record. """ return conf.lib.clang_Type_getOffsetOf(self, fieldname)
[ "def", "get_offset", "(", "self", ",", "fieldname", ")", ":", "return", "conf", ".", "lib", ".", "clang_Type_getOffsetOf", "(", "self", ",", "fieldname", ")" ]
https://github.com/hfinkel/llvm-project-cxxjit/blob/91084ef018240bbb8e24235ff5cd8c355a9c1a1e/clang/bindings/python/clang/cindex.py#L2384-L2388
strasdat/Sophus
36b08885e094fda63e92ad89d65be380c288265a
sympy/sophus/complex.py
python
Complex.Da_a_mul_b
(a, b)
return sympy.Matrix([[b.real, -b.imag], [b.imag, b.real]])
derivatice of complex muliplication wrt left multiplier a
derivatice of complex muliplication wrt left multiplier a
[ "derivatice", "of", "complex", "muliplication", "wrt", "left", "multiplier", "a" ]
def Da_a_mul_b(a, b): """ derivatice of complex muliplication wrt left multiplier a """ return sympy.Matrix([[b.real, -b.imag], [b.imag, b.real]])
[ "def", "Da_a_mul_b", "(", "a", ",", "b", ")", ":", "return", "sympy", ".", "Matrix", "(", "[", "[", "b", ".", "real", ",", "-", "b", ".", "imag", "]", ",", "[", "b", ".", "imag", ",", "b", ".", "real", "]", "]", ")" ]
https://github.com/strasdat/Sophus/blob/36b08885e094fda63e92ad89d65be380c288265a/sympy/sophus/complex.py#L72-L75
BlzFans/wke
b0fa21158312e40c5fbd84682d643022b6c34a93
cygwin/lib/python2.6/platform.py
python
linux_distribution
(distname='', version='', id='', supported_dists=_supported_dists, full_distribution_name=1)
return distname, version, id
Tries to determine the name of the Linux OS distribution name. The function first looks for a distribution release file in /etc and then reverts to _dist_try_harder() in case no suitable files are found. supported_dists may be given to define the set of Linux distributions to look for. It defaults to a list of currently supported Linux distributions identified by their release file name. If full_distribution_name is true (default), the full distribution read from the OS is returned. Otherwise the short name taken from supported_dists is used. Returns a tuple (distname,version,id) which default to the args given as parameters.
Tries to determine the name of the Linux OS distribution name.
[ "Tries", "to", "determine", "the", "name", "of", "the", "Linux", "OS", "distribution", "name", "." ]
def linux_distribution(distname='', version='', id='', supported_dists=_supported_dists, full_distribution_name=1): """ Tries to determine the name of the Linux OS distribution name. The function first looks for a distribution release file in /etc and then reverts to _dist_try_harder() in case no suitable files are found. supported_dists may be given to define the set of Linux distributions to look for. It defaults to a list of currently supported Linux distributions identified by their release file name. If full_distribution_name is true (default), the full distribution read from the OS is returned. Otherwise the short name taken from supported_dists is used. Returns a tuple (distname,version,id) which default to the args given as parameters. """ try: etc = os.listdir('/etc') except os.error: # Probably not a Unix system return distname,version,id etc.sort() for file in etc: m = _release_filename.match(file) if m is not None: _distname,dummy = m.groups() if _distname in supported_dists: distname = _distname break else: return _dist_try_harder(distname,version,id) # Read the first line f = open('/etc/'+file, 'r') firstline = f.readline() f.close() _distname, _version, _id = _parse_release_file(firstline) if _distname and full_distribution_name: distname = _distname if _version: version = _version if _id: id = _id return distname, version, id
[ "def", "linux_distribution", "(", "distname", "=", "''", ",", "version", "=", "''", ",", "id", "=", "''", ",", "supported_dists", "=", "_supported_dists", ",", "full_distribution_name", "=", "1", ")", ":", "try", ":", "etc", "=", "os", ".", "listdir", "(", "'/etc'", ")", "except", "os", ".", "error", ":", "# Probably not a Unix system", "return", "distname", ",", "version", ",", "id", "etc", ".", "sort", "(", ")", "for", "file", "in", "etc", ":", "m", "=", "_release_filename", ".", "match", "(", "file", ")", "if", "m", "is", "not", "None", ":", "_distname", ",", "dummy", "=", "m", ".", "groups", "(", ")", "if", "_distname", "in", "supported_dists", ":", "distname", "=", "_distname", "break", "else", ":", "return", "_dist_try_harder", "(", "distname", ",", "version", ",", "id", ")", "# Read the first line", "f", "=", "open", "(", "'/etc/'", "+", "file", ",", "'r'", ")", "firstline", "=", "f", ".", "readline", "(", ")", "f", ".", "close", "(", ")", "_distname", ",", "_version", ",", "_id", "=", "_parse_release_file", "(", "firstline", ")", "if", "_distname", "and", "full_distribution_name", ":", "distname", "=", "_distname", "if", "_version", ":", "version", "=", "_version", "if", "_id", ":", "id", "=", "_id", "return", "distname", ",", "version", ",", "id" ]
https://github.com/BlzFans/wke/blob/b0fa21158312e40c5fbd84682d643022b6c34a93/cygwin/lib/python2.6/platform.py#L293-L345
apple/swift
469f72fdae2ea828b3b6c0d7d62d7e4cf98c4893
utils/swift_build_support/swift_build_support/products/swiftsyntax.py
python
SwiftSyntax.product_source_name
(cls)
return "swift-syntax"
product_source_name() -> str The name of the source code directory of this product.
product_source_name() -> str
[ "product_source_name", "()", "-", ">", "str" ]
def product_source_name(cls): """product_source_name() -> str The name of the source code directory of this product. """ return "swift-syntax"
[ "def", "product_source_name", "(", "cls", ")", ":", "return", "\"swift-syntax\"" ]
https://github.com/apple/swift/blob/469f72fdae2ea828b3b6c0d7d62d7e4cf98c4893/utils/swift_build_support/swift_build_support/products/swiftsyntax.py#L33-L38
krishauser/Klampt
972cc83ea5befac3f653c1ba20f80155768ad519
Python/control-examples/system_id.py
python
LinearSystemID.fixC
(self,i,value)
Sets the i'th entry of the C vector to a fixed value
Sets the i'th entry of the C vector to a fixed value
[ "Sets", "the", "i", "th", "entry", "of", "the", "C", "vector", "to", "a", "fixed", "value" ]
def fixC(self,i,value): """Sets the i'th entry of the C vector to a fixed value""" if self.coeffPattern[2] == None: m,n=self.m,self.n self.coeffPattern[2] = [None]*m self.coeffPattern[2][i]=value self._updateEstimatorSize(i)
[ "def", "fixC", "(", "self", ",", "i", ",", "value", ")", ":", "if", "self", ".", "coeffPattern", "[", "2", "]", "==", "None", ":", "m", ",", "n", "=", "self", ".", "m", ",", "self", ".", "n", "self", ".", "coeffPattern", "[", "2", "]", "=", "[", "None", "]", "*", "m", "self", ".", "coeffPattern", "[", "2", "]", "[", "i", "]", "=", "value", "self", ".", "_updateEstimatorSize", "(", "i", ")" ]
https://github.com/krishauser/Klampt/blob/972cc83ea5befac3f653c1ba20f80155768ad519/Python/control-examples/system_id.py#L39-L45
facebook/proxygen
a9ca025af207787815cb01eee1971cd572c7a81e
build/fbcode_builder/shell_quoting.py
python
ShellQuoted.__new__
(cls, s)
return super(ShellQuoted, cls).__new__( cls, s.do_not_use_raw_str if isinstance(s, ShellQuoted) else s )
No need to nest ShellQuoted.
No need to nest ShellQuoted.
[ "No", "need", "to", "nest", "ShellQuoted", "." ]
def __new__(cls, s): "No need to nest ShellQuoted." return super(ShellQuoted, cls).__new__( cls, s.do_not_use_raw_str if isinstance(s, ShellQuoted) else s )
[ "def", "__new__", "(", "cls", ",", "s", ")", ":", "return", "super", "(", "ShellQuoted", ",", "cls", ")", ".", "__new__", "(", "cls", ",", "s", ".", "do_not_use_raw_str", "if", "isinstance", "(", "s", ",", "ShellQuoted", ")", "else", "s", ")" ]
https://github.com/facebook/proxygen/blob/a9ca025af207787815cb01eee1971cd572c7a81e/build/fbcode_builder/shell_quoting.py#L34-L38
Polidea/SiriusObfuscator
b0e590d8130e97856afe578869b83a209e2b19be
SymbolExtractorAndRenamer/lldb/third_party/Python/module/pexpect-2.4/screen.py
python
screen.cr
(self)
This moves the cursor to the beginning (col 1) of the current row.
This moves the cursor to the beginning (col 1) of the current row.
[ "This", "moves", "the", "cursor", "to", "the", "beginning", "(", "col", "1", ")", "of", "the", "current", "row", "." ]
def cr(self): """This moves the cursor to the beginning (col 1) of the current row. """ self.cursor_home(self.cur_r, 1)
[ "def", "cr", "(", "self", ")", ":", "self", ".", "cursor_home", "(", "self", ".", "cur_r", ",", "1", ")" ]
https://github.com/Polidea/SiriusObfuscator/blob/b0e590d8130e97856afe578869b83a209e2b19be/SymbolExtractorAndRenamer/lldb/third_party/Python/module/pexpect-2.4/screen.py#L101-L105
zju3dv/clean-pvnet
5870c509e3cc205e1bb28910a7b1a9a3c8add9a8
lib/utils/meshrenderer/gl_utils/camera.py
python
Camera.setIntrinsic
(self, I, W, H, near, far, scale=1.0, originIsInTopLeft=True)
Args: I: 3x3 intrinsic camera matrix from real camera (without any OpenGL stuff) W: Width of the camera image H: Height of the camera image near: Near plane far: Far plane originIsInTopLeft: If True then the image origin is in top left if False the image origin is in image center Source: http://ksimek.github.io/2013/06/03/calibrated_cameras_in_opengl/
Args: I: 3x3 intrinsic camera matrix from real camera (without any OpenGL stuff) W: Width of the camera image H: Height of the camera image near: Near plane far: Far plane originIsInTopLeft: If True then the image origin is in top left if False the image origin is in image center Source: http://ksimek.github.io/2013/06/03/calibrated_cameras_in_opengl/
[ "Args", ":", "I", ":", "3x3", "intrinsic", "camera", "matrix", "from", "real", "camera", "(", "without", "any", "OpenGL", "stuff", ")", "W", ":", "Width", "of", "the", "camera", "image", "H", ":", "Height", "of", "the", "camera", "image", "near", ":", "Near", "plane", "far", ":", "Far", "plane", "originIsInTopLeft", ":", "If", "True", "then", "the", "image", "origin", "is", "in", "top", "left", "if", "False", "the", "image", "origin", "is", "in", "image", "center", "Source", ":", "http", ":", "//", "ksimek", ".", "github", ".", "io", "/", "2013", "/", "06", "/", "03", "/", "calibrated_cameras_in_opengl", "/" ]
def setIntrinsic(self, I, W, H, near, far, scale=1.0, originIsInTopLeft=True): ''' Args: I: 3x3 intrinsic camera matrix from real camera (without any OpenGL stuff) W: Width of the camera image H: Height of the camera image near: Near plane far: Far plane originIsInTopLeft: If True then the image origin is in top left if False the image origin is in image center Source: http://ksimek.github.io/2013/06/03/calibrated_cameras_in_opengl/ ''' Camera.__check_matrix__(I) A = near + far B = near * far persp = np.array( [ [ I[0,0]*scale, I[0,1]*scale, -I[0,2]*scale, 0 ], [ 0 , I[1,1]*scale, -I[1,2]*scale, 0 ], [ 0 , 0 , A , B ], [ 0 , 0 , -1 , 0 ] ] , dtype=np.float64) ortho = Camera.__glOrtho__(0, W, H, 0, near, far) if originIsInTopLeft else\ Camera.__glOrtho__(-W/2., W/2., -H/2., H/2., near, far) self.__T_proj_view[:] = np.dot( ortho, persp ).astype(np.float32) self.__T_view_proj[:] = np.linalg.inv(self.__T_proj_view) self.__T_proj_world[:] = np.dot(self.__T_proj_view, self.__T_view_world) self.dirty = True
[ "def", "setIntrinsic", "(", "self", ",", "I", ",", "W", ",", "H", ",", "near", ",", "far", ",", "scale", "=", "1.0", ",", "originIsInTopLeft", "=", "True", ")", ":", "Camera", ".", "__check_matrix__", "(", "I", ")", "A", "=", "near", "+", "far", "B", "=", "near", "*", "far", "persp", "=", "np", ".", "array", "(", "[", "[", "I", "[", "0", ",", "0", "]", "*", "scale", ",", "I", "[", "0", ",", "1", "]", "*", "scale", ",", "-", "I", "[", "0", ",", "2", "]", "*", "scale", ",", "0", "]", ",", "[", "0", ",", "I", "[", "1", ",", "1", "]", "*", "scale", ",", "-", "I", "[", "1", ",", "2", "]", "*", "scale", ",", "0", "]", ",", "[", "0", ",", "0", ",", "A", ",", "B", "]", ",", "[", "0", ",", "0", ",", "-", "1", ",", "0", "]", "]", ",", "dtype", "=", "np", ".", "float64", ")", "ortho", "=", "Camera", ".", "__glOrtho__", "(", "0", ",", "W", ",", "H", ",", "0", ",", "near", ",", "far", ")", "if", "originIsInTopLeft", "else", "Camera", ".", "__glOrtho__", "(", "-", "W", "/", "2.", ",", "W", "/", "2.", ",", "-", "H", "/", "2.", ",", "H", "/", "2.", ",", "near", ",", "far", ")", "self", ".", "__T_proj_view", "[", ":", "]", "=", "np", ".", "dot", "(", "ortho", ",", "persp", ")", ".", "astype", "(", "np", ".", "float32", ")", "self", ".", "__T_view_proj", "[", ":", "]", "=", "np", ".", "linalg", ".", "inv", "(", "self", ".", "__T_proj_view", ")", "self", ".", "__T_proj_world", "[", ":", "]", "=", "np", ".", "dot", "(", "self", ".", "__T_proj_view", ",", "self", ".", "__T_view_world", ")", "self", ".", "dirty", "=", "True" ]
https://github.com/zju3dv/clean-pvnet/blob/5870c509e3cc205e1bb28910a7b1a9a3c8add9a8/lib/utils/meshrenderer/gl_utils/camera.py#L139-L166
wxWidgets/wxPython-Classic
19571e1ae65f1ac445f5491474121998c97a1bf0
wx/py/pseudo.py
python
PseudoFile.__init__
(self)
Create a file-like object.
Create a file-like object.
[ "Create", "a", "file", "-", "like", "object", "." ]
def __init__(self): """Create a file-like object.""" pass
[ "def", "__init__", "(", "self", ")", ":", "pass" ]
https://github.com/wxWidgets/wxPython-Classic/blob/19571e1ae65f1ac445f5491474121998c97a1bf0/wx/py/pseudo.py#L46-L48
catboost/catboost
167f64f237114a4d10b2b4ee42adb4569137debe
contrib/python/ipython/py2/IPython/utils/text.py
python
strip_ansi
(source)
return re.sub(r'\033\[(\d|;)+?m', '', source)
Remove ansi escape codes from text. Parameters ---------- source : str Source to remove the ansi from
Remove ansi escape codes from text. Parameters ---------- source : str Source to remove the ansi from
[ "Remove", "ansi", "escape", "codes", "from", "text", ".", "Parameters", "----------", "source", ":", "str", "Source", "to", "remove", "the", "ansi", "from" ]
def strip_ansi(source): """ Remove ansi escape codes from text. Parameters ---------- source : str Source to remove the ansi from """ return re.sub(r'\033\[(\d|;)+?m', '', source)
[ "def", "strip_ansi", "(", "source", ")", ":", "return", "re", ".", "sub", "(", "r'\\033\\[(\\d|;)+?m'", ",", "''", ",", "source", ")" ]
https://github.com/catboost/catboost/blob/167f64f237114a4d10b2b4ee42adb4569137debe/contrib/python/ipython/py2/IPython/utils/text.py#L479-L488
ApolloAuto/apollo
463fb82f9e979d02dcb25044e60931293ab2dba0
modules/tools/sensor_calibration/extract_data.py
python
Extractor.generate_compressed_file
(input_path, input_name, output_path, compressed_file='sensor_data')
Compress data extraction directory as a single tar.gz archive
Compress data extraction directory as a single tar.gz archive
[ "Compress", "data", "extraction", "directory", "as", "a", "single", "tar", ".", "gz", "archive" ]
def generate_compressed_file(input_path, input_name, output_path, compressed_file='sensor_data'): """ Compress data extraction directory as a single tar.gz archive """ cwd_path = os.getcwd() os.chdir(input_path) shutil.make_archive(base_name=os.path.join(output_path, compressed_file), format='gztar', root_dir=input_path, base_dir=input_name) os.chdir(cwd_path)
[ "def", "generate_compressed_file", "(", "input_path", ",", "input_name", ",", "output_path", ",", "compressed_file", "=", "'sensor_data'", ")", ":", "cwd_path", "=", "os", ".", "getcwd", "(", ")", "os", ".", "chdir", "(", "input_path", ")", "shutil", ".", "make_archive", "(", "base_name", "=", "os", ".", "path", ".", "join", "(", "output_path", ",", "compressed_file", ")", ",", "format", "=", "'gztar'", ",", "root_dir", "=", "input_path", ",", "base_dir", "=", "input_name", ")", "os", ".", "chdir", "(", "cwd_path", ")" ]
https://github.com/ApolloAuto/apollo/blob/463fb82f9e979d02dcb25044e60931293ab2dba0/modules/tools/sensor_calibration/extract_data.py#L323-L337
DmitryKoterov/dklab_realplexor
01281d42fddcf7b9efe763b3ab50191c4429debc
api/python/Dklab/realplexor.py
python
Dklab_Realplexor.send
(self, idsAndCursors, data, showOnlyForIds=None)
Send data to realplexor. Throw Dklab_Realplexor_Exception in case of error. idsAndCursors -- Target IDs in form of: dictionary(id1 => cursor1, id2 => cursor2, ...) of dictionary(id1, id2, id3, ...). If sending to a single ID, you may pass it as a plain string, not dictionary. data -- Data to be sent (any format, e.g. nested dictionaries are OK). showOnlyForIds -- Send this message to only those who also listen any of these IDs. This parameter may be used to limit the visibility to a closed number of cliens: give each client an unique ID and enumerate client IDs in $showOnlyForIds to not to send messages to others.
Send data to realplexor. Throw Dklab_Realplexor_Exception in case of error.
[ "Send", "data", "to", "realplexor", ".", "Throw", "Dklab_Realplexor_Exception", "in", "case", "of", "error", "." ]
def send(self, idsAndCursors, data, showOnlyForIds=None): """ Send data to realplexor. Throw Dklab_Realplexor_Exception in case of error. idsAndCursors -- Target IDs in form of: dictionary(id1 => cursor1, id2 => cursor2, ...) of dictionary(id1, id2, id3, ...). If sending to a single ID, you may pass it as a plain string, not dictionary. data -- Data to be sent (any format, e.g. nested dictionaries are OK). showOnlyForIds -- Send this message to only those who also listen any of these IDs. This parameter may be used to limit the visibility to a closed number of cliens: give each client an unique ID and enumerate client IDs in $showOnlyForIds to not to send messages to others. """ data = json.dumps(data) pairs = [] for id in idsAndCursors: if type(id) == type(1): id = cursor # this is NOT cursor, but ID! cursor = None if re.search('^\w+$', id) is None: raise Dklab_Realplexor_Exception("Identifier must be alphanumeric, \"%s\" given" % id) try: cursor = idsAndCursors[id] except: cursor = None id = (self._namespace or '') + id if cursor is not None: try: i = float(cursor) except ValueError: raise Dklab_Realplexor_Exception("Cursor must be numeric, \"%s\" given" % cursor) pairs.append("%s:%s" % (cursor,id)) else: pairs.append(id) if isinstance(showOnlyForIds, (list, tuple)): for id in showOnlyForIds: pairs.append("*" + (self._namespace or '') + id) self._send(",".join(pairs), data)
[ "def", "send", "(", "self", ",", "idsAndCursors", ",", "data", ",", "showOnlyForIds", "=", "None", ")", ":", "data", "=", "json", ".", "dumps", "(", "data", ")", "pairs", "=", "[", "]", "for", "id", "in", "idsAndCursors", ":", "if", "type", "(", "id", ")", "==", "type", "(", "1", ")", ":", "id", "=", "cursor", "# this is NOT cursor, but ID!", "cursor", "=", "None", "if", "re", ".", "search", "(", "'^\\w+$'", ",", "id", ")", "is", "None", ":", "raise", "Dklab_Realplexor_Exception", "(", "\"Identifier must be alphanumeric, \\\"%s\\\" given\"", "%", "id", ")", "try", ":", "cursor", "=", "idsAndCursors", "[", "id", "]", "except", ":", "cursor", "=", "None", "id", "=", "(", "self", ".", "_namespace", "or", "''", ")", "+", "id", "if", "cursor", "is", "not", "None", ":", "try", ":", "i", "=", "float", "(", "cursor", ")", "except", "ValueError", ":", "raise", "Dklab_Realplexor_Exception", "(", "\"Cursor must be numeric, \\\"%s\\\" given\"", "%", "cursor", ")", "pairs", ".", "append", "(", "\"%s:%s\"", "%", "(", "cursor", ",", "id", ")", ")", "else", ":", "pairs", ".", "append", "(", "id", ")", "if", "isinstance", "(", "showOnlyForIds", ",", "(", "list", ",", "tuple", ")", ")", ":", "for", "id", "in", "showOnlyForIds", ":", "pairs", ".", "append", "(", "\"*\"", "+", "(", "self", ".", "_namespace", "or", "''", ")", "+", "id", ")", "self", ".", "_send", "(", "\",\"", ".", "join", "(", "pairs", ")", ",", "data", ")" ]
https://github.com/DmitryKoterov/dklab_realplexor/blob/01281d42fddcf7b9efe763b3ab50191c4429debc/api/python/Dklab/realplexor.py#L36-L74

No dataset card yet

Downloads last month
48