nwo
stringlengths
5
86
sha
stringlengths
40
40
path
stringlengths
4
189
language
stringclasses
1 value
identifier
stringlengths
1
94
parameters
stringlengths
2
4.03k
argument_list
stringclasses
1 value
return_statement
stringlengths
0
11.5k
docstring
stringlengths
1
33.2k
docstring_summary
stringlengths
0
5.15k
docstring_tokens
sequence
function
stringlengths
34
151k
function_tokens
sequence
url
stringlengths
90
278
catboost/catboost
167f64f237114a4d10b2b4ee42adb4569137debe
contrib/python/pandas/py3/pandas/core/sorting.py
python
decons_obs_group_ids
(comp_ids: np.ndarray, obs_ids, shape, labels, xnull: bool)
return [lab[indexer].astype(np.intp, subok=False, copy=True) for lab in labels]
Reconstruct labels from observed group ids. Parameters ---------- comp_ids : np.ndarray[np.intp] xnull : bool If nulls are excluded; i.e. -1 labels are passed through.
Reconstruct labels from observed group ids.
[ "Reconstruct", "labels", "from", "observed", "group", "ids", "." ]
def decons_obs_group_ids(comp_ids: np.ndarray, obs_ids, shape, labels, xnull: bool): """ Reconstruct labels from observed group ids. Parameters ---------- comp_ids : np.ndarray[np.intp] xnull : bool If nulls are excluded; i.e. -1 labels are passed through. """ if not xnull: lift = np.fromiter(((a == -1).any() for a in labels), dtype="i8") shape = np.asarray(shape, dtype="i8") + lift if not is_int64_overflow_possible(shape): # obs ids are deconstructable! take the fast route! out = decons_group_index(obs_ids, shape) return out if xnull or not lift.any() else [x - y for x, y in zip(out, lift)] # TODO: unique_label_indices only used here, should take ndarray[np.intp] indexer = unique_label_indices(ensure_int64(comp_ids)) return [lab[indexer].astype(np.intp, subok=False, copy=True) for lab in labels]
[ "def", "decons_obs_group_ids", "(", "comp_ids", ":", "np", ".", "ndarray", ",", "obs_ids", ",", "shape", ",", "labels", ",", "xnull", ":", "bool", ")", ":", "if", "not", "xnull", ":", "lift", "=", "np", ".", "fromiter", "(", "(", "(", "a", "==", "-", "1", ")", ".", "any", "(", ")", "for", "a", "in", "labels", ")", ",", "dtype", "=", "\"i8\"", ")", "shape", "=", "np", ".", "asarray", "(", "shape", ",", "dtype", "=", "\"i8\"", ")", "+", "lift", "if", "not", "is_int64_overflow_possible", "(", "shape", ")", ":", "# obs ids are deconstructable! take the fast route!", "out", "=", "decons_group_index", "(", "obs_ids", ",", "shape", ")", "return", "out", "if", "xnull", "or", "not", "lift", ".", "any", "(", ")", "else", "[", "x", "-", "y", "for", "x", ",", "y", "in", "zip", "(", "out", ",", "lift", ")", "]", "# TODO: unique_label_indices only used here, should take ndarray[np.intp]", "indexer", "=", "unique_label_indices", "(", "ensure_int64", "(", "comp_ids", ")", ")", "return", "[", "lab", "[", "indexer", "]", ".", "astype", "(", "np", ".", "intp", ",", "subok", "=", "False", ",", "copy", "=", "True", ")", "for", "lab", "in", "labels", "]" ]
https://github.com/catboost/catboost/blob/167f64f237114a4d10b2b4ee42adb4569137debe/contrib/python/pandas/py3/pandas/core/sorting.py#L239-L260
benoitsteiner/tensorflow-opencl
cb7cb40a57fde5cfd4731bc551e82a1e2fef43a5
tensorflow/contrib/rnn/python/ops/fused_rnn_cell.py
python
FusedRNNCell.__call__
(self, inputs, initial_state=None, dtype=None, sequence_length=None, scope=None)
Run this fused RNN on inputs, starting from the given state. Args: inputs: `3-D` tensor with shape `[time_len x batch_size x input_size]` or a list of `time_len` tensors of shape `[batch_size x input_size]`. initial_state: either a tensor with shape `[batch_size x state_size]` or a tuple with shapes `[batch_size x s] for s in state_size`, if the cell takes tuples. If this is not provided, the cell is expected to create a zero initial state of type `dtype`. dtype: The data type for the initial state and expected output. Required if `initial_state` is not provided or RNN state has a heterogeneous dtype. sequence_length: Specifies the length of each sequence in inputs. An `int32` or `int64` vector (tensor) size `[batch_size]`, values in `[0, time_len)`. Defaults to `time_len` for each element. scope: `VariableScope` or `string` for the created subgraph; defaults to class name. Returns: A pair containing: - Output: A `3-D` tensor of shape `[time_len x batch_size x output_size]` or a list of `time_len` tensors of shape `[batch_size x output_size]`, to match the type of the `inputs`. - Final state: Either a single `2-D` tensor, or a tuple of tensors matching the arity and shapes of `initial_state`.
Run this fused RNN on inputs, starting from the given state.
[ "Run", "this", "fused", "RNN", "on", "inputs", "starting", "from", "the", "given", "state", "." ]
def __call__(self, inputs, initial_state=None, dtype=None, sequence_length=None, scope=None): """Run this fused RNN on inputs, starting from the given state. Args: inputs: `3-D` tensor with shape `[time_len x batch_size x input_size]` or a list of `time_len` tensors of shape `[batch_size x input_size]`. initial_state: either a tensor with shape `[batch_size x state_size]` or a tuple with shapes `[batch_size x s] for s in state_size`, if the cell takes tuples. If this is not provided, the cell is expected to create a zero initial state of type `dtype`. dtype: The data type for the initial state and expected output. Required if `initial_state` is not provided or RNN state has a heterogeneous dtype. sequence_length: Specifies the length of each sequence in inputs. An `int32` or `int64` vector (tensor) size `[batch_size]`, values in `[0, time_len)`. Defaults to `time_len` for each element. scope: `VariableScope` or `string` for the created subgraph; defaults to class name. Returns: A pair containing: - Output: A `3-D` tensor of shape `[time_len x batch_size x output_size]` or a list of `time_len` tensors of shape `[batch_size x output_size]`, to match the type of the `inputs`. - Final state: Either a single `2-D` tensor, or a tuple of tensors matching the arity and shapes of `initial_state`. """ pass
[ "def", "__call__", "(", "self", ",", "inputs", ",", "initial_state", "=", "None", ",", "dtype", "=", "None", ",", "sequence_length", "=", "None", ",", "scope", "=", "None", ")", ":", "pass" ]
https://github.com/benoitsteiner/tensorflow-opencl/blob/cb7cb40a57fde5cfd4731bc551e82a1e2fef43a5/tensorflow/contrib/rnn/python/ops/fused_rnn_cell.py#L44-L78
wxWidgets/wxPython-Classic
19571e1ae65f1ac445f5491474121998c97a1bf0
src/gtk/richtext.py
python
TextBoxAttr.GetTopMargin
(*args)
return _richtext.TextBoxAttr_GetTopMargin(*args)
GetTopMargin(self) -> TextAttrDimension GetTopMargin(self) -> TextAttrDimension
GetTopMargin(self) -> TextAttrDimension GetTopMargin(self) -> TextAttrDimension
[ "GetTopMargin", "(", "self", ")", "-", ">", "TextAttrDimension", "GetTopMargin", "(", "self", ")", "-", ">", "TextAttrDimension" ]
def GetTopMargin(*args): """ GetTopMargin(self) -> TextAttrDimension GetTopMargin(self) -> TextAttrDimension """ return _richtext.TextBoxAttr_GetTopMargin(*args)
[ "def", "GetTopMargin", "(", "*", "args", ")", ":", "return", "_richtext", ".", "TextBoxAttr_GetTopMargin", "(", "*", "args", ")" ]
https://github.com/wxWidgets/wxPython-Classic/blob/19571e1ae65f1ac445f5491474121998c97a1bf0/src/gtk/richtext.py#L649-L654
catboost/catboost
167f64f237114a4d10b2b4ee42adb4569137debe
contrib/python/pandas/py2/pandas/io/excel.py
python
_XlwtWriter.save
(self)
return self.book.save(self.path)
Save workbook to disk.
Save workbook to disk.
[ "Save", "workbook", "to", "disk", "." ]
def save(self): """ Save workbook to disk. """ return self.book.save(self.path)
[ "def", "save", "(", "self", ")", ":", "return", "self", ".", "book", ".", "save", "(", "self", ".", "path", ")" ]
https://github.com/catboost/catboost/blob/167f64f237114a4d10b2b4ee42adb4569137debe/contrib/python/pandas/py2/pandas/io/excel.py#L1673-L1677
tensorflow/tensorflow
419e3a6b650ea4bd1b0cba23c4348f8a69f3272e
tensorflow/python/ops/ragged/ragged_tensor.py
python
_shape_as_tensor
(shape, dtype)
return constant_op.constant(shape, dtype=dtype)
Takes shape and coerces it to a shape as a tensor. If the object is already a tensor, simply passes it on (result is guaranteed to be int64 or int32, but not necessarily dtype). If not, creates a tensor of type dtype. Result is either a scalar equal to -1 if the shape is unknown_rank. Otherwise, it is a vector, where unknown dimensions are represented with a value of -1. In C++, see TensorShapeFromTensor for parsing shapes in kernels, and InferenceContext::MakeShapeFromShapeTensorTreatScalarAsUnknownShape, for use in the shape inference function. Args: shape: input to coerce from TensorShape, Tensor, None, List[Optional[Int]], Tuple[Optional[Int]]. dtype: tf.int64 or tf.int32 Returns: a scalar or vector tensor of dtype tf.int32 or tf.int64.
Takes shape and coerces it to a shape as a tensor.
[ "Takes", "shape", "and", "coerces", "it", "to", "a", "shape", "as", "a", "tensor", "." ]
def _shape_as_tensor(shape, dtype): """Takes shape and coerces it to a shape as a tensor. If the object is already a tensor, simply passes it on (result is guaranteed to be int64 or int32, but not necessarily dtype). If not, creates a tensor of type dtype. Result is either a scalar equal to -1 if the shape is unknown_rank. Otherwise, it is a vector, where unknown dimensions are represented with a value of -1. In C++, see TensorShapeFromTensor for parsing shapes in kernels, and InferenceContext::MakeShapeFromShapeTensorTreatScalarAsUnknownShape, for use in the shape inference function. Args: shape: input to coerce from TensorShape, Tensor, None, List[Optional[Int]], Tuple[Optional[Int]]. dtype: tf.int64 or tf.int32 Returns: a scalar or vector tensor of dtype tf.int32 or tf.int64. """ if dtype != dtypes.int64 and dtype != dtypes.int32: raise ValueError(f"Expected int64 or int32 for dtype: got {dtype}.") if isinstance(shape, ops.Tensor): if shape.dtype != dtypes.int64 and shape.dtype != dtypes.int32: return math_ops.cast(shape, dtype) return shape shape = tensor_shape.as_shape(shape) if not shape: # Imply rank is unknown using a -1 scalar. return constant_op.constant(-1, dtype=dtype) shape = [(-1 if x is None else x) for x in shape.as_list()] # At this point, shape is List[Int]. return constant_op.constant(shape, dtype=dtype)
[ "def", "_shape_as_tensor", "(", "shape", ",", "dtype", ")", ":", "if", "dtype", "!=", "dtypes", ".", "int64", "and", "dtype", "!=", "dtypes", ".", "int32", ":", "raise", "ValueError", "(", "f\"Expected int64 or int32 for dtype: got {dtype}.\"", ")", "if", "isinstance", "(", "shape", ",", "ops", ".", "Tensor", ")", ":", "if", "shape", ".", "dtype", "!=", "dtypes", ".", "int64", "and", "shape", ".", "dtype", "!=", "dtypes", ".", "int32", ":", "return", "math_ops", ".", "cast", "(", "shape", ",", "dtype", ")", "return", "shape", "shape", "=", "tensor_shape", ".", "as_shape", "(", "shape", ")", "if", "not", "shape", ":", "# Imply rank is unknown using a -1 scalar.", "return", "constant_op", ".", "constant", "(", "-", "1", ",", "dtype", "=", "dtype", ")", "shape", "=", "[", "(", "-", "1", "if", "x", "is", "None", "else", "x", ")", "for", "x", "in", "shape", ".", "as_list", "(", ")", "]", "# At this point, shape is List[Int].", "return", "constant_op", ".", "constant", "(", "shape", ",", "dtype", "=", "dtype", ")" ]
https://github.com/tensorflow/tensorflow/blob/419e3a6b650ea4bd1b0cba23c4348f8a69f3272e/tensorflow/python/ops/ragged/ragged_tensor.py#L2942-L2978
wlanjie/AndroidFFmpeg
7baf9122f4b8e1c74e7baf4be5c422c7a5ba5aaf
tools/fdk-aac-build/x86/toolchain/lib/python2.7/traceback.py
python
print_tb
(tb, limit=None, file=None)
Print up to 'limit' stack trace entries from the traceback 'tb'. If 'limit' is omitted or None, all entries are printed. If 'file' is omitted or None, the output goes to sys.stderr; otherwise 'file' should be an open file or file-like object with a write() method.
Print up to 'limit' stack trace entries from the traceback 'tb'.
[ "Print", "up", "to", "limit", "stack", "trace", "entries", "from", "the", "traceback", "tb", "." ]
def print_tb(tb, limit=None, file=None): """Print up to 'limit' stack trace entries from the traceback 'tb'. If 'limit' is omitted or None, all entries are printed. If 'file' is omitted or None, the output goes to sys.stderr; otherwise 'file' should be an open file or file-like object with a write() method. """ if file is None: file = sys.stderr if limit is None: if hasattr(sys, 'tracebacklimit'): limit = sys.tracebacklimit n = 0 while tb is not None and (limit is None or n < limit): f = tb.tb_frame lineno = tb.tb_lineno co = f.f_code filename = co.co_filename name = co.co_name _print(file, ' File "%s", line %d, in %s' % (filename, lineno, name)) linecache.checkcache(filename) line = linecache.getline(filename, lineno, f.f_globals) if line: _print(file, ' ' + line.strip()) tb = tb.tb_next n = n+1
[ "def", "print_tb", "(", "tb", ",", "limit", "=", "None", ",", "file", "=", "None", ")", ":", "if", "file", "is", "None", ":", "file", "=", "sys", ".", "stderr", "if", "limit", "is", "None", ":", "if", "hasattr", "(", "sys", ",", "'tracebacklimit'", ")", ":", "limit", "=", "sys", ".", "tracebacklimit", "n", "=", "0", "while", "tb", "is", "not", "None", "and", "(", "limit", "is", "None", "or", "n", "<", "limit", ")", ":", "f", "=", "tb", ".", "tb_frame", "lineno", "=", "tb", ".", "tb_lineno", "co", "=", "f", ".", "f_code", "filename", "=", "co", ".", "co_filename", "name", "=", "co", ".", "co_name", "_print", "(", "file", ",", "' File \"%s\", line %d, in %s'", "%", "(", "filename", ",", "lineno", ",", "name", ")", ")", "linecache", ".", "checkcache", "(", "filename", ")", "line", "=", "linecache", ".", "getline", "(", "filename", ",", "lineno", ",", "f", ".", "f_globals", ")", "if", "line", ":", "_print", "(", "file", ",", "' '", "+", "line", ".", "strip", "(", ")", ")", "tb", "=", "tb", ".", "tb_next", "n", "=", "n", "+", "1" ]
https://github.com/wlanjie/AndroidFFmpeg/blob/7baf9122f4b8e1c74e7baf4be5c422c7a5ba5aaf/tools/fdk-aac-build/x86/toolchain/lib/python2.7/traceback.py#L46-L72
larroy/clearskies_core
3574ddf0edc8555454c7044126e786a6c29444dc
tools/gyp/pylib/gyp/generator/ninja.py
python
NinjaWriter.WriteSourcesForArch
(self, ninja_file, config_name, config, sources, predepends, precompiled_header, spec, arch=None)
return outputs
Write build rules to compile all of |sources|.
Write build rules to compile all of |sources|.
[ "Write", "build", "rules", "to", "compile", "all", "of", "|sources|", "." ]
def WriteSourcesForArch(self, ninja_file, config_name, config, sources, predepends, precompiled_header, spec, arch=None): """Write build rules to compile all of |sources|.""" extra_defines = [] if self.flavor == 'mac': cflags = self.xcode_settings.GetCflags(config_name, arch=arch) cflags_c = self.xcode_settings.GetCflagsC(config_name) cflags_cc = self.xcode_settings.GetCflagsCC(config_name) cflags_objc = ['$cflags_c'] + \ self.xcode_settings.GetCflagsObjC(config_name) cflags_objcc = ['$cflags_cc'] + \ self.xcode_settings.GetCflagsObjCC(config_name) elif self.flavor == 'win': cflags = self.msvs_settings.GetCflags(config_name) cflags_c = self.msvs_settings.GetCflagsC(config_name) cflags_cc = self.msvs_settings.GetCflagsCC(config_name) extra_defines = self.msvs_settings.GetComputedDefines(config_name) # See comment at cc_command for why there's two .pdb files. pdbpath_c = pdbpath_cc = self.msvs_settings.GetCompilerPdbName( config_name, self.ExpandSpecial) if not pdbpath_c: obj = 'obj' if self.toolset != 'target': obj += '.' + self.toolset pdbpath = os.path.normpath(os.path.join(obj, self.base_dir, self.name)) pdbpath_c = pdbpath + '.c.pdb' pdbpath_cc = pdbpath + '.cc.pdb' self.WriteVariableList(ninja_file, 'pdbname_c', [pdbpath_c]) self.WriteVariableList(ninja_file, 'pdbname_cc', [pdbpath_cc]) self.WriteVariableList(ninja_file, 'pchprefix', [self.name]) else: cflags = config.get('cflags', []) cflags_c = config.get('cflags_c', []) cflags_cc = config.get('cflags_cc', []) # Respect environment variables related to build, but target-specific # flags can still override them. if self.toolset == 'target': cflags_c = (os.environ.get('CPPFLAGS', '').split() + os.environ.get('CFLAGS', '').split() + cflags_c) cflags_cc = (os.environ.get('CPPFLAGS', '').split() + os.environ.get('CXXFLAGS', '').split() + cflags_cc) defines = config.get('defines', []) + extra_defines self.WriteVariableList(ninja_file, 'defines', [Define(d, self.flavor) for d in defines]) if self.flavor == 'win': self.WriteVariableList(ninja_file, 'rcflags', [QuoteShellArgument(self.ExpandSpecial(f), self.flavor) for f in self.msvs_settings.GetRcflags(config_name, self.GypPathToNinja)]) include_dirs = config.get('include_dirs', []) env = self.GetSortedXcodeEnv() if self.flavor == 'win': env = self.msvs_settings.GetVSMacroEnv('$!PRODUCT_DIR', config=config_name) include_dirs = self.msvs_settings.AdjustIncludeDirs(include_dirs, config_name) self.WriteVariableList(ninja_file, 'includes', [QuoteShellArgument('-I' + self.GypPathToNinja(i, env), self.flavor) for i in include_dirs]) pch_commands = precompiled_header.GetPchBuildCommands(arch) if self.flavor == 'mac': # Most targets use no precompiled headers, so only write these if needed. for ext, var in [('c', 'cflags_pch_c'), ('cc', 'cflags_pch_cc'), ('m', 'cflags_pch_objc'), ('mm', 'cflags_pch_objcc')]: include = precompiled_header.GetInclude(ext, arch) if include: ninja_file.variable(var, include) self.WriteVariableList(ninja_file, 'cflags', map(self.ExpandSpecial, cflags)) self.WriteVariableList(ninja_file, 'cflags_c', map(self.ExpandSpecial, cflags_c)) self.WriteVariableList(ninja_file, 'cflags_cc', map(self.ExpandSpecial, cflags_cc)) if self.flavor == 'mac': self.WriteVariableList(ninja_file, 'cflags_objc', map(self.ExpandSpecial, cflags_objc)) self.WriteVariableList(ninja_file, 'cflags_objcc', map(self.ExpandSpecial, cflags_objcc)) ninja_file.newline() outputs = [] has_rc_source = False for source in sources: filename, ext = os.path.splitext(source) ext = ext[1:] obj_ext = self.obj_ext if ext in ('cc', 'cpp', 'cxx'): command = 'cxx' self.uses_cpp = True elif ext == 'c' or (ext == 'S' and self.flavor != 'win'): command = 'cc' elif ext == 's' and self.flavor != 'win': # Doesn't generate .o.d files. command = 'cc_s' elif (self.flavor == 'win' and ext == 'asm' and self.msvs_settings.GetArch(config_name) == 'x86' and not self.msvs_settings.HasExplicitAsmRules(spec)): # Asm files only get auto assembled for x86 (not x64). command = 'asm' # Add the _asm suffix as msvs is capable of handling .cc and # .asm files of the same name without collision. obj_ext = '_asm.obj' elif self.flavor == 'mac' and ext == 'm': command = 'objc' elif self.flavor == 'mac' and ext == 'mm': command = 'objcxx' self.uses_cpp = True elif self.flavor == 'win' and ext == 'rc': command = 'rc' obj_ext = '.res' has_rc_source = True else: # Ignore unhandled extensions. continue input = self.GypPathToNinja(source) output = self.GypPathToUniqueOutput(filename + obj_ext) if arch is not None: output = AddArch(output, arch) implicit = precompiled_header.GetObjDependencies([input], [output], arch) variables = [] if self.flavor == 'win': variables, output, implicit = precompiled_header.GetFlagsModifications( input, output, implicit, command, cflags_c, cflags_cc, self.ExpandSpecial) ninja_file.build(output, command, input, implicit=[gch for _, _, gch in implicit], order_only=predepends, variables=variables) outputs.append(output) if has_rc_source: resource_include_dirs = config.get('resource_include_dirs', include_dirs) self.WriteVariableList(ninja_file, 'resource_includes', [QuoteShellArgument('-I' + self.GypPathToNinja(i, env), self.flavor) for i in resource_include_dirs]) self.WritePchTargets(ninja_file, pch_commands) ninja_file.newline() return outputs
[ "def", "WriteSourcesForArch", "(", "self", ",", "ninja_file", ",", "config_name", ",", "config", ",", "sources", ",", "predepends", ",", "precompiled_header", ",", "spec", ",", "arch", "=", "None", ")", ":", "extra_defines", "=", "[", "]", "if", "self", ".", "flavor", "==", "'mac'", ":", "cflags", "=", "self", ".", "xcode_settings", ".", "GetCflags", "(", "config_name", ",", "arch", "=", "arch", ")", "cflags_c", "=", "self", ".", "xcode_settings", ".", "GetCflagsC", "(", "config_name", ")", "cflags_cc", "=", "self", ".", "xcode_settings", ".", "GetCflagsCC", "(", "config_name", ")", "cflags_objc", "=", "[", "'$cflags_c'", "]", "+", "self", ".", "xcode_settings", ".", "GetCflagsObjC", "(", "config_name", ")", "cflags_objcc", "=", "[", "'$cflags_cc'", "]", "+", "self", ".", "xcode_settings", ".", "GetCflagsObjCC", "(", "config_name", ")", "elif", "self", ".", "flavor", "==", "'win'", ":", "cflags", "=", "self", ".", "msvs_settings", ".", "GetCflags", "(", "config_name", ")", "cflags_c", "=", "self", ".", "msvs_settings", ".", "GetCflagsC", "(", "config_name", ")", "cflags_cc", "=", "self", ".", "msvs_settings", ".", "GetCflagsCC", "(", "config_name", ")", "extra_defines", "=", "self", ".", "msvs_settings", ".", "GetComputedDefines", "(", "config_name", ")", "# See comment at cc_command for why there's two .pdb files.", "pdbpath_c", "=", "pdbpath_cc", "=", "self", ".", "msvs_settings", ".", "GetCompilerPdbName", "(", "config_name", ",", "self", ".", "ExpandSpecial", ")", "if", "not", "pdbpath_c", ":", "obj", "=", "'obj'", "if", "self", ".", "toolset", "!=", "'target'", ":", "obj", "+=", "'.'", "+", "self", ".", "toolset", "pdbpath", "=", "os", ".", "path", ".", "normpath", "(", "os", ".", "path", ".", "join", "(", "obj", ",", "self", ".", "base_dir", ",", "self", ".", "name", ")", ")", "pdbpath_c", "=", "pdbpath", "+", "'.c.pdb'", "pdbpath_cc", "=", "pdbpath", "+", "'.cc.pdb'", "self", ".", "WriteVariableList", "(", "ninja_file", ",", "'pdbname_c'", ",", "[", "pdbpath_c", "]", ")", "self", ".", "WriteVariableList", "(", "ninja_file", ",", "'pdbname_cc'", ",", "[", "pdbpath_cc", "]", ")", "self", ".", "WriteVariableList", "(", "ninja_file", ",", "'pchprefix'", ",", "[", "self", ".", "name", "]", ")", "else", ":", "cflags", "=", "config", ".", "get", "(", "'cflags'", ",", "[", "]", ")", "cflags_c", "=", "config", ".", "get", "(", "'cflags_c'", ",", "[", "]", ")", "cflags_cc", "=", "config", ".", "get", "(", "'cflags_cc'", ",", "[", "]", ")", "# Respect environment variables related to build, but target-specific", "# flags can still override them.", "if", "self", ".", "toolset", "==", "'target'", ":", "cflags_c", "=", "(", "os", ".", "environ", ".", "get", "(", "'CPPFLAGS'", ",", "''", ")", ".", "split", "(", ")", "+", "os", ".", "environ", ".", "get", "(", "'CFLAGS'", ",", "''", ")", ".", "split", "(", ")", "+", "cflags_c", ")", "cflags_cc", "=", "(", "os", ".", "environ", ".", "get", "(", "'CPPFLAGS'", ",", "''", ")", ".", "split", "(", ")", "+", "os", ".", "environ", ".", "get", "(", "'CXXFLAGS'", ",", "''", ")", ".", "split", "(", ")", "+", "cflags_cc", ")", "defines", "=", "config", ".", "get", "(", "'defines'", ",", "[", "]", ")", "+", "extra_defines", "self", ".", "WriteVariableList", "(", "ninja_file", ",", "'defines'", ",", "[", "Define", "(", "d", ",", "self", ".", "flavor", ")", "for", "d", "in", "defines", "]", ")", "if", "self", ".", "flavor", "==", "'win'", ":", "self", ".", "WriteVariableList", "(", "ninja_file", ",", "'rcflags'", ",", "[", "QuoteShellArgument", "(", "self", ".", "ExpandSpecial", "(", "f", ")", ",", "self", ".", "flavor", ")", "for", "f", "in", "self", ".", "msvs_settings", ".", "GetRcflags", "(", "config_name", ",", "self", ".", "GypPathToNinja", ")", "]", ")", "include_dirs", "=", "config", ".", "get", "(", "'include_dirs'", ",", "[", "]", ")", "env", "=", "self", ".", "GetSortedXcodeEnv", "(", ")", "if", "self", ".", "flavor", "==", "'win'", ":", "env", "=", "self", ".", "msvs_settings", ".", "GetVSMacroEnv", "(", "'$!PRODUCT_DIR'", ",", "config", "=", "config_name", ")", "include_dirs", "=", "self", ".", "msvs_settings", ".", "AdjustIncludeDirs", "(", "include_dirs", ",", "config_name", ")", "self", ".", "WriteVariableList", "(", "ninja_file", ",", "'includes'", ",", "[", "QuoteShellArgument", "(", "'-I'", "+", "self", ".", "GypPathToNinja", "(", "i", ",", "env", ")", ",", "self", ".", "flavor", ")", "for", "i", "in", "include_dirs", "]", ")", "pch_commands", "=", "precompiled_header", ".", "GetPchBuildCommands", "(", "arch", ")", "if", "self", ".", "flavor", "==", "'mac'", ":", "# Most targets use no precompiled headers, so only write these if needed.", "for", "ext", ",", "var", "in", "[", "(", "'c'", ",", "'cflags_pch_c'", ")", ",", "(", "'cc'", ",", "'cflags_pch_cc'", ")", ",", "(", "'m'", ",", "'cflags_pch_objc'", ")", ",", "(", "'mm'", ",", "'cflags_pch_objcc'", ")", "]", ":", "include", "=", "precompiled_header", ".", "GetInclude", "(", "ext", ",", "arch", ")", "if", "include", ":", "ninja_file", ".", "variable", "(", "var", ",", "include", ")", "self", ".", "WriteVariableList", "(", "ninja_file", ",", "'cflags'", ",", "map", "(", "self", ".", "ExpandSpecial", ",", "cflags", ")", ")", "self", ".", "WriteVariableList", "(", "ninja_file", ",", "'cflags_c'", ",", "map", "(", "self", ".", "ExpandSpecial", ",", "cflags_c", ")", ")", "self", ".", "WriteVariableList", "(", "ninja_file", ",", "'cflags_cc'", ",", "map", "(", "self", ".", "ExpandSpecial", ",", "cflags_cc", ")", ")", "if", "self", ".", "flavor", "==", "'mac'", ":", "self", ".", "WriteVariableList", "(", "ninja_file", ",", "'cflags_objc'", ",", "map", "(", "self", ".", "ExpandSpecial", ",", "cflags_objc", ")", ")", "self", ".", "WriteVariableList", "(", "ninja_file", ",", "'cflags_objcc'", ",", "map", "(", "self", ".", "ExpandSpecial", ",", "cflags_objcc", ")", ")", "ninja_file", ".", "newline", "(", ")", "outputs", "=", "[", "]", "has_rc_source", "=", "False", "for", "source", "in", "sources", ":", "filename", ",", "ext", "=", "os", ".", "path", ".", "splitext", "(", "source", ")", "ext", "=", "ext", "[", "1", ":", "]", "obj_ext", "=", "self", ".", "obj_ext", "if", "ext", "in", "(", "'cc'", ",", "'cpp'", ",", "'cxx'", ")", ":", "command", "=", "'cxx'", "self", ".", "uses_cpp", "=", "True", "elif", "ext", "==", "'c'", "or", "(", "ext", "==", "'S'", "and", "self", ".", "flavor", "!=", "'win'", ")", ":", "command", "=", "'cc'", "elif", "ext", "==", "'s'", "and", "self", ".", "flavor", "!=", "'win'", ":", "# Doesn't generate .o.d files.", "command", "=", "'cc_s'", "elif", "(", "self", ".", "flavor", "==", "'win'", "and", "ext", "==", "'asm'", "and", "self", ".", "msvs_settings", ".", "GetArch", "(", "config_name", ")", "==", "'x86'", "and", "not", "self", ".", "msvs_settings", ".", "HasExplicitAsmRules", "(", "spec", ")", ")", ":", "# Asm files only get auto assembled for x86 (not x64).", "command", "=", "'asm'", "# Add the _asm suffix as msvs is capable of handling .cc and", "# .asm files of the same name without collision.", "obj_ext", "=", "'_asm.obj'", "elif", "self", ".", "flavor", "==", "'mac'", "and", "ext", "==", "'m'", ":", "command", "=", "'objc'", "elif", "self", ".", "flavor", "==", "'mac'", "and", "ext", "==", "'mm'", ":", "command", "=", "'objcxx'", "self", ".", "uses_cpp", "=", "True", "elif", "self", ".", "flavor", "==", "'win'", "and", "ext", "==", "'rc'", ":", "command", "=", "'rc'", "obj_ext", "=", "'.res'", "has_rc_source", "=", "True", "else", ":", "# Ignore unhandled extensions.", "continue", "input", "=", "self", ".", "GypPathToNinja", "(", "source", ")", "output", "=", "self", ".", "GypPathToUniqueOutput", "(", "filename", "+", "obj_ext", ")", "if", "arch", "is", "not", "None", ":", "output", "=", "AddArch", "(", "output", ",", "arch", ")", "implicit", "=", "precompiled_header", ".", "GetObjDependencies", "(", "[", "input", "]", ",", "[", "output", "]", ",", "arch", ")", "variables", "=", "[", "]", "if", "self", ".", "flavor", "==", "'win'", ":", "variables", ",", "output", ",", "implicit", "=", "precompiled_header", ".", "GetFlagsModifications", "(", "input", ",", "output", ",", "implicit", ",", "command", ",", "cflags_c", ",", "cflags_cc", ",", "self", ".", "ExpandSpecial", ")", "ninja_file", ".", "build", "(", "output", ",", "command", ",", "input", ",", "implicit", "=", "[", "gch", "for", "_", ",", "_", ",", "gch", "in", "implicit", "]", ",", "order_only", "=", "predepends", ",", "variables", "=", "variables", ")", "outputs", ".", "append", "(", "output", ")", "if", "has_rc_source", ":", "resource_include_dirs", "=", "config", ".", "get", "(", "'resource_include_dirs'", ",", "include_dirs", ")", "self", ".", "WriteVariableList", "(", "ninja_file", ",", "'resource_includes'", ",", "[", "QuoteShellArgument", "(", "'-I'", "+", "self", ".", "GypPathToNinja", "(", "i", ",", "env", ")", ",", "self", ".", "flavor", ")", "for", "i", "in", "resource_include_dirs", "]", ")", "self", ".", "WritePchTargets", "(", "ninja_file", ",", "pch_commands", ")", "ninja_file", ".", "newline", "(", ")", "return", "outputs" ]
https://github.com/larroy/clearskies_core/blob/3574ddf0edc8555454c7044126e786a6c29444dc/tools/gyp/pylib/gyp/generator/ninja.py#L802-L943
bundy-dns/bundy
3d41934996b82b0cd2fe22dd74d2abc1daba835d
src/lib/python/bundy/config/cfgmgr.py
python
ConfigManagerData.check_for_updates
(file_config)
return config
Given the parsed JSON data from the config file, check whether it needs updating due to version changes. Return the data with updates (or the original data if no updates were necessary). Even though it is at this moment not technically necessary, this function makes and returns a copy of the given data.
Given the parsed JSON data from the config file, check whether it needs updating due to version changes. Return the data with updates (or the original data if no updates were necessary). Even though it is at this moment not technically necessary, this function makes and returns a copy of the given data.
[ "Given", "the", "parsed", "JSON", "data", "from", "the", "config", "file", "check", "whether", "it", "needs", "updating", "due", "to", "version", "changes", ".", "Return", "the", "data", "with", "updates", "(", "or", "the", "original", "data", "if", "no", "updates", "were", "necessary", ")", ".", "Even", "though", "it", "is", "at", "this", "moment", "not", "technically", "necessary", "this", "function", "makes", "and", "returns", "a", "copy", "of", "the", "given", "data", "." ]
def check_for_updates(file_config): """ Given the parsed JSON data from the config file, check whether it needs updating due to version changes. Return the data with updates (or the original data if no updates were necessary). Even though it is at this moment not technically necessary, this function makes and returns a copy of the given data. """ config = copy.deepcopy(file_config) if 'version' in config: data_version = config['version'] else: # If it is not present, assume latest or earliest? data_version = 1 # For efficiency, if up-to-date, return now if data_version == config_data.BUNDY_CONFIG_DATA_VERSION: return config # Don't know what to do if it is more recent if data_version > config_data.BUNDY_CONFIG_DATA_VERSION: raise ConfigManagerDataReadError( "Cannot load configuration file: version " "%d not yet supported" % config['version']) # At some point we might give up supporting older versions if data_version < 1: raise ConfigManagerDataReadError( "Cannot load configuration file: version " "%d no longer supported" % config['version']) # Ok, so we have a still-supported older version. Apply all # updates new_data_version = data_version if new_data_version == 1: # only format change, no other changes necessary new_data_version = 2 if new_data_version == 2: # 'Boss' got changed to 'Init'; If for some reason both are # present, simply ignore the old one if 'Boss' in config: if not 'Init' in config: config['Init'] = config['Boss'] del config['Boss'] else: # This should not happen, but we don't want to overwrite # any config in this case, so warn about it logger.warn(CFGMGR_CONFIG_UPDATE_BOSS_AND_INIT_FOUND) new_data_version = 3 if new_data_version == 3: # items beginning with '_' are now reserved for internal system # use. any possible conflict (none known) is rejected here. for mod, mod_conf in config.items(): if mod == 'version': continue reserved = [x for x in mod_conf.keys() if x and x[0] == '_'] if reserved: raise ConfigManagerDataReadError('system reserved items ' 'should not exist until ' 'version 4: ' + ', '.join(reserved)) # _generation_id is currently the only defined system reserved # item. mod_conf['_generation_id'] = 1 new_data_version = 4 config['version'] = new_data_version logger.info(CFGMGR_AUTOMATIC_CONFIG_DATABASE_UPDATE, data_version, new_data_version) return config
[ "def", "check_for_updates", "(", "file_config", ")", ":", "config", "=", "copy", ".", "deepcopy", "(", "file_config", ")", "if", "'version'", "in", "config", ":", "data_version", "=", "config", "[", "'version'", "]", "else", ":", "# If it is not present, assume latest or earliest?", "data_version", "=", "1", "# For efficiency, if up-to-date, return now", "if", "data_version", "==", "config_data", ".", "BUNDY_CONFIG_DATA_VERSION", ":", "return", "config", "# Don't know what to do if it is more recent", "if", "data_version", ">", "config_data", ".", "BUNDY_CONFIG_DATA_VERSION", ":", "raise", "ConfigManagerDataReadError", "(", "\"Cannot load configuration file: version \"", "\"%d not yet supported\"", "%", "config", "[", "'version'", "]", ")", "# At some point we might give up supporting older versions", "if", "data_version", "<", "1", ":", "raise", "ConfigManagerDataReadError", "(", "\"Cannot load configuration file: version \"", "\"%d no longer supported\"", "%", "config", "[", "'version'", "]", ")", "# Ok, so we have a still-supported older version. Apply all", "# updates", "new_data_version", "=", "data_version", "if", "new_data_version", "==", "1", ":", "# only format change, no other changes necessary", "new_data_version", "=", "2", "if", "new_data_version", "==", "2", ":", "# 'Boss' got changed to 'Init'; If for some reason both are", "# present, simply ignore the old one", "if", "'Boss'", "in", "config", ":", "if", "not", "'Init'", "in", "config", ":", "config", "[", "'Init'", "]", "=", "config", "[", "'Boss'", "]", "del", "config", "[", "'Boss'", "]", "else", ":", "# This should not happen, but we don't want to overwrite", "# any config in this case, so warn about it", "logger", ".", "warn", "(", "CFGMGR_CONFIG_UPDATE_BOSS_AND_INIT_FOUND", ")", "new_data_version", "=", "3", "if", "new_data_version", "==", "3", ":", "# items beginning with '_' are now reserved for internal system", "# use. any possible conflict (none known) is rejected here.", "for", "mod", ",", "mod_conf", "in", "config", ".", "items", "(", ")", ":", "if", "mod", "==", "'version'", ":", "continue", "reserved", "=", "[", "x", "for", "x", "in", "mod_conf", ".", "keys", "(", ")", "if", "x", "and", "x", "[", "0", "]", "==", "'_'", "]", "if", "reserved", ":", "raise", "ConfigManagerDataReadError", "(", "'system reserved items '", "'should not exist until '", "'version 4: '", "+", "', '", ".", "join", "(", "reserved", ")", ")", "# _generation_id is currently the only defined system reserved", "# item.", "mod_conf", "[", "'_generation_id'", "]", "=", "1", "new_data_version", "=", "4", "config", "[", "'version'", "]", "=", "new_data_version", "logger", ".", "info", "(", "CFGMGR_AUTOMATIC_CONFIG_DATABASE_UPDATE", ",", "data_version", ",", "new_data_version", ")", "return", "config" ]
https://github.com/bundy-dns/bundy/blob/3d41934996b82b0cd2fe22dd74d2abc1daba835d/src/lib/python/bundy/config/cfgmgr.py#L72-L142
GJDuck/LowFat
ecf6a0f0fa1b73a27a626cf493cc39e477b6faea
llvm-4.0.0.src/tools/clang/tools/scan-build-py/libscanbuild/report.py
python
read_crashes
(output_dir)
return (parse_crash(filename) for filename in glob.iglob(os.path.join(output_dir, 'failures', '*.info.txt')))
Generate a unique sequence of crashes from given output directory.
Generate a unique sequence of crashes from given output directory.
[ "Generate", "a", "unique", "sequence", "of", "crashes", "from", "given", "output", "directory", "." ]
def read_crashes(output_dir): """ Generate a unique sequence of crashes from given output directory. """ return (parse_crash(filename) for filename in glob.iglob(os.path.join(output_dir, 'failures', '*.info.txt')))
[ "def", "read_crashes", "(", "output_dir", ")", ":", "return", "(", "parse_crash", "(", "filename", ")", "for", "filename", "in", "glob", ".", "iglob", "(", "os", ".", "path", ".", "join", "(", "output_dir", ",", "'failures'", ",", "'*.info.txt'", ")", ")", ")" ]
https://github.com/GJDuck/LowFat/blob/ecf6a0f0fa1b73a27a626cf493cc39e477b6faea/llvm-4.0.0.src/tools/clang/tools/scan-build-py/libscanbuild/report.py#L286-L291
eclipse/sumo
7132a9b8b6eea734bdec38479026b4d8c4336d03
tools/contributed/sumopy/plugins/mapmatching/wxgui.py
python
WxGui.on_edgesresults_to_shapefile
(self, event=None)
Export edge results to shape file.
Export edge results to shape file.
[ "Export", "edge", "results", "to", "shape", "file", "." ]
def on_edgesresults_to_shapefile(self, event=None): """ Export edge results to shape file. """ print 'on_nodes_to_shapefile' scenario = self._mapmatching.get_scenario() dirpath = scenario.get_workdirpath() #defaultFile = scenario.get_rootfilename()+'.edgeres.shp' wildcards_all = 'All files (*.*)|*.*|SHP files (*.shp)|*.shp' dlg = wx.FileDialog(None, message='Export edge results to shapefile', defaultDir=dirpath, # defaultFile=defaultFile, wildcard=wildcards_all, style=wx.SAVE | wx.CHANGE_DIR) if dlg.ShowModal() == wx.ID_OK: filepath = dlg.GetPath() else: return mapmatching.edgesresults_to_shapefile(self._mapmatching, self._results, filepath, log=self._mainframe.get_logger())
[ "def", "on_edgesresults_to_shapefile", "(", "self", ",", "event", "=", "None", ")", ":", "print", "'on_nodes_to_shapefile'", "scenario", "=", "self", ".", "_mapmatching", ".", "get_scenario", "(", ")", "dirpath", "=", "scenario", ".", "get_workdirpath", "(", ")", "#defaultFile = scenario.get_rootfilename()+'.edgeres.shp'", "wildcards_all", "=", "'All files (*.*)|*.*|SHP files (*.shp)|*.shp'", "dlg", "=", "wx", ".", "FileDialog", "(", "None", ",", "message", "=", "'Export edge results to shapefile'", ",", "defaultDir", "=", "dirpath", ",", "# defaultFile=defaultFile,", "wildcard", "=", "wildcards_all", ",", "style", "=", "wx", ".", "SAVE", "|", "wx", ".", "CHANGE_DIR", ")", "if", "dlg", ".", "ShowModal", "(", ")", "==", "wx", ".", "ID_OK", ":", "filepath", "=", "dlg", ".", "GetPath", "(", ")", "else", ":", "return", "mapmatching", ".", "edgesresults_to_shapefile", "(", "self", ".", "_mapmatching", ",", "self", ".", "_results", ",", "filepath", ",", "log", "=", "self", ".", "_mainframe", ".", "get_logger", "(", ")", ")" ]
https://github.com/eclipse/sumo/blob/7132a9b8b6eea734bdec38479026b4d8c4336d03/tools/contributed/sumopy/plugins/mapmatching/wxgui.py#L946-L968
miyosuda/TensorFlowAndroidDemo
35903e0221aa5f109ea2dbef27f20b52e317f42d
jni-build/jni/include/tensorflow/python/ops/data_flow_ops.py
python
Barrier.incomplete_size
(self, name=None)
return gen_data_flow_ops._barrier_incomplete_size( self._barrier_ref, name=name)
Compute the number of incomplete elements in the given barrier. Args: name: A name for the operation (optional). Returns: A single-element tensor containing the number of incomplete elements in the given barrier.
Compute the number of incomplete elements in the given barrier.
[ "Compute", "the", "number", "of", "incomplete", "elements", "in", "the", "given", "barrier", "." ]
def incomplete_size(self, name=None): """Compute the number of incomplete elements in the given barrier. Args: name: A name for the operation (optional). Returns: A single-element tensor containing the number of incomplete elements in the given barrier. """ if name is None: name = "%s_BarrierIncompleteSize" % self._name return gen_data_flow_ops._barrier_incomplete_size( self._barrier_ref, name=name)
[ "def", "incomplete_size", "(", "self", ",", "name", "=", "None", ")", ":", "if", "name", "is", "None", ":", "name", "=", "\"%s_BarrierIncompleteSize\"", "%", "self", ".", "_name", "return", "gen_data_flow_ops", ".", "_barrier_incomplete_size", "(", "self", ".", "_barrier_ref", ",", "name", "=", "name", ")" ]
https://github.com/miyosuda/TensorFlowAndroidDemo/blob/35903e0221aa5f109ea2dbef27f20b52e317f42d/jni-build/jni/include/tensorflow/python/ops/data_flow_ops.py#L994-L1007
catboost/catboost
167f64f237114a4d10b2b4ee42adb4569137debe
contrib/python/py/py/_code/source.py
python
Source.getstatementrange
(self, lineno, assertion=False)
return start, end
return (start, end) tuple which spans the minimal statement region which containing the given lineno.
return (start, end) tuple which spans the minimal statement region which containing the given lineno.
[ "return", "(", "start", "end", ")", "tuple", "which", "spans", "the", "minimal", "statement", "region", "which", "containing", "the", "given", "lineno", "." ]
def getstatementrange(self, lineno, assertion=False): """ return (start, end) tuple which spans the minimal statement region which containing the given lineno. """ if not (0 <= lineno < len(self)): raise IndexError("lineno out of range") ast, start, end = getstatementrange_ast(lineno, self) return start, end
[ "def", "getstatementrange", "(", "self", ",", "lineno", ",", "assertion", "=", "False", ")", ":", "if", "not", "(", "0", "<=", "lineno", "<", "len", "(", "self", ")", ")", ":", "raise", "IndexError", "(", "\"lineno out of range\"", ")", "ast", ",", "start", ",", "end", "=", "getstatementrange_ast", "(", "lineno", ",", "self", ")", "return", "start", ",", "end" ]
https://github.com/catboost/catboost/blob/167f64f237114a4d10b2b4ee42adb4569137debe/contrib/python/py/py/_code/source.py#L110-L117
mhammond/pywin32
44afd86ba8485194df93234639243252deeb40d5
com/win32com/client/dynamic.py
python
CDispatch._get_good_object_
(self, ob, userName=None, ReturnCLSID=None)
Given an object (usually the retval from a method), make it a good object to return. Basically checks if it is a COM object, and wraps it up. Also handles the fact that a retval may be a tuple of retvals
Given an object (usually the retval from a method), make it a good object to return. Basically checks if it is a COM object, and wraps it up. Also handles the fact that a retval may be a tuple of retvals
[ "Given", "an", "object", "(", "usually", "the", "retval", "from", "a", "method", ")", "make", "it", "a", "good", "object", "to", "return", ".", "Basically", "checks", "if", "it", "is", "a", "COM", "object", "and", "wraps", "it", "up", ".", "Also", "handles", "the", "fact", "that", "a", "retval", "may", "be", "a", "tuple", "of", "retvals" ]
def _get_good_object_(self, ob, userName=None, ReturnCLSID=None): """Given an object (usually the retval from a method), make it a good object to return. Basically checks if it is a COM object, and wraps it up. Also handles the fact that a retval may be a tuple of retvals""" if ob is None: # Quick exit! return None elif isinstance(ob, tuple): return tuple( map( lambda o, s=self, oun=userName, rc=ReturnCLSID: s._get_good_single_object_( o, oun, rc ), ob, ) ) else: return self._get_good_single_object_(ob)
[ "def", "_get_good_object_", "(", "self", ",", "ob", ",", "userName", "=", "None", ",", "ReturnCLSID", "=", "None", ")", ":", "if", "ob", "is", "None", ":", "# Quick exit!", "return", "None", "elif", "isinstance", "(", "ob", ",", "tuple", ")", ":", "return", "tuple", "(", "map", "(", "lambda", "o", ",", "s", "=", "self", ",", "oun", "=", "userName", ",", "rc", "=", "ReturnCLSID", ":", "s", ".", "_get_good_single_object_", "(", "o", ",", "oun", ",", "rc", ")", ",", "ob", ",", ")", ")", "else", ":", "return", "self", ".", "_get_good_single_object_", "(", "ob", ")" ]
https://github.com/mhammond/pywin32/blob/44afd86ba8485194df93234639243252deeb40d5/com/win32com/client/dynamic.py#L393-L409
SpenceKonde/megaTinyCore
1c4a70b18a149fe6bcb551dfa6db11ca50b8997b
megaavr/tools/libs/pyedbglib/protocols/avr8protocol.py
python
Avr8Protocol.set_variant
(self, variant)
Sets the variant field in the config context :param variant: type of device
Sets the variant field in the config context
[ "Sets", "the", "variant", "field", "in", "the", "config", "context" ]
def set_variant(self, variant): """ Sets the variant field in the config context :param variant: type of device """ self.set_byte(self.AVR8_CTXT_CONFIG, self.AVR8_CONFIG_VARIANT, variant)
[ "def", "set_variant", "(", "self", ",", "variant", ")", ":", "self", ".", "set_byte", "(", "self", ".", "AVR8_CTXT_CONFIG", ",", "self", ".", "AVR8_CONFIG_VARIANT", ",", "variant", ")" ]
https://github.com/SpenceKonde/megaTinyCore/blob/1c4a70b18a149fe6bcb551dfa6db11ca50b8997b/megaavr/tools/libs/pyedbglib/protocols/avr8protocol.py#L224-L230
mantidproject/mantid
03deeb89254ec4289edb8771e0188c2090a02f32
qt/python/mantidqt/mantidqt/widgets/samplelogs/presenter.py
python
SampleLogs.search_key_changed
(self)
When the line edit is changed, print the logs that match the search key, and display the data.
When the line edit is changed, print the logs that match the search key, and display the data.
[ "When", "the", "line", "edit", "is", "changed", "print", "the", "logs", "that", "match", "the", "search", "key", "and", "display", "the", "data", "." ]
def search_key_changed(self): """When the line edit is changed, print the logs that match the search key, and display the data. """ self.update_table_with_matching_logs()
[ "def", "search_key_changed", "(", "self", ")", ":", "self", ".", "update_table_with_matching_logs", "(", ")" ]
https://github.com/mantidproject/mantid/blob/03deeb89254ec4289edb8771e0188c2090a02f32/qt/python/mantidqt/mantidqt/widgets/samplelogs/presenter.py#L122-L126
LiquidPlayer/LiquidCore
9405979363f2353ac9a71ad8ab59685dd7f919c9
deps/node-10.15.3/deps/npm/node_modules/node-gyp/gyp/pylib/gyp/ordered_dict.py
python
OrderedDict.iteritems
(self)
od.iteritems -> an iterator over the (key, value) items in od
od.iteritems -> an iterator over the (key, value) items in od
[ "od", ".", "iteritems", "-", ">", "an", "iterator", "over", "the", "(", "key", "value", ")", "items", "in", "od" ]
def iteritems(self): 'od.iteritems -> an iterator over the (key, value) items in od' for k in self: yield (k, self[k])
[ "def", "iteritems", "(", "self", ")", ":", "for", "k", "in", "self", ":", "yield", "(", "k", ",", "self", "[", "k", "]", ")" ]
https://github.com/LiquidPlayer/LiquidCore/blob/9405979363f2353ac9a71ad8ab59685dd7f919c9/deps/node-10.15.3/deps/npm/node_modules/node-gyp/gyp/pylib/gyp/ordered_dict.py#L164-L167
Xilinx/Vitis-AI
fc74d404563d9951b57245443c73bef389f3657f
tools/Vitis-AI-Quantizer/vai_q_tensorflow1.x/tensorflow/python/ops/control_flow_v2_toggles.py
python
output_all_intermediates
(state)
Whether to output all intermediates from functional control flow ops. The "default" behavior to is to output all intermediates when using v2 control flow inside Keras models in graph mode (possibly inside Estimators). This is needed to support taking gradients of v2 control flow. In graph mode, Keras can sometimes freeze the forward graph before the gradient computation which does not work for v2 control flow since it requires updating the forward ops to output the needed intermediates. We work around this by proactively outputting the needed intermediates when building the forward pass itself. Ideally any such extra tensors should be pruned out at runtime. However, if for any reason this doesn't work for you or if you have an infernce-only model you can turn this behavior off using `tf.compat.v1.experimental.output_all_intermediates(False)`. If with the default behavior you are still seeing errors of the form "Connecting to invalid output X of source node Y which has Z outputs" try setting `tf.compat.v1.experimental.output_all_intermediates(True)` and please file an issue at https://github.com/tensorflow/tensorflow/issues. Args: state: True, False or None. None restores the default behavior.
Whether to output all intermediates from functional control flow ops.
[ "Whether", "to", "output", "all", "intermediates", "from", "functional", "control", "flow", "ops", "." ]
def output_all_intermediates(state): # pylint: disable=invalid-name """Whether to output all intermediates from functional control flow ops. The "default" behavior to is to output all intermediates when using v2 control flow inside Keras models in graph mode (possibly inside Estimators). This is needed to support taking gradients of v2 control flow. In graph mode, Keras can sometimes freeze the forward graph before the gradient computation which does not work for v2 control flow since it requires updating the forward ops to output the needed intermediates. We work around this by proactively outputting the needed intermediates when building the forward pass itself. Ideally any such extra tensors should be pruned out at runtime. However, if for any reason this doesn't work for you or if you have an infernce-only model you can turn this behavior off using `tf.compat.v1.experimental.output_all_intermediates(False)`. If with the default behavior you are still seeing errors of the form "Connecting to invalid output X of source node Y which has Z outputs" try setting `tf.compat.v1.experimental.output_all_intermediates(True)` and please file an issue at https://github.com/tensorflow/tensorflow/issues. Args: state: True, False or None. None restores the default behavior. """ control_flow_util_v2._EXPERIMENTAL_OUTPUT_ALL_INTERMEDIATES_OVERRIDE = state
[ "def", "output_all_intermediates", "(", "state", ")", ":", "# pylint: disable=invalid-name", "control_flow_util_v2", ".", "_EXPERIMENTAL_OUTPUT_ALL_INTERMEDIATES_OVERRIDE", "=", "state" ]
https://github.com/Xilinx/Vitis-AI/blob/fc74d404563d9951b57245443c73bef389f3657f/tools/Vitis-AI-Quantizer/vai_q_tensorflow1.x/tensorflow/python/ops/control_flow_v2_toggles.py#L71-L94
musescore/MuseScore
a817fea23e3c2be30847b7fde5b01746222c252e
tools/crashdump/posix/generate_breakpad_symbols.py
python
mkdir_p
(path)
Simulates mkdir -p.
Simulates mkdir -p.
[ "Simulates", "mkdir", "-", "p", "." ]
def mkdir_p(path): """Simulates mkdir -p.""" try: os.makedirs(path) except OSError as e: if e.errno == errno.EEXIST and os.path.isdir(path): pass else: raise
[ "def", "mkdir_p", "(", "path", ")", ":", "try", ":", "os", ".", "makedirs", "(", "path", ")", "except", "OSError", "as", "e", ":", "if", "e", ".", "errno", "==", "errno", ".", "EEXIST", "and", "os", ".", "path", ".", "isdir", "(", "path", ")", ":", "pass", "else", ":", "raise" ]
https://github.com/musescore/MuseScore/blob/a817fea23e3c2be30847b7fde5b01746222c252e/tools/crashdump/posix/generate_breakpad_symbols.py#L265-L272
aws/lumberyard
f85344403c1c2e77ec8c75deb2c116e97b713217
dev/Tools/Python/3.7.10/linux_x64/lib/python3.7/tkinter/__init__.py
python
Text.tag_lower
(self, tagName, belowThis=None)
Change the priority of tag TAGNAME such that it is lower than the priority of BELOWTHIS.
Change the priority of tag TAGNAME such that it is lower than the priority of BELOWTHIS.
[ "Change", "the", "priority", "of", "tag", "TAGNAME", "such", "that", "it", "is", "lower", "than", "the", "priority", "of", "BELOWTHIS", "." ]
def tag_lower(self, tagName, belowThis=None): """Change the priority of tag TAGNAME such that it is lower than the priority of BELOWTHIS.""" self.tk.call(self._w, 'tag', 'lower', tagName, belowThis)
[ "def", "tag_lower", "(", "self", ",", "tagName", ",", "belowThis", "=", "None", ")", ":", "self", ".", "tk", ".", "call", "(", "self", ".", "_w", ",", "'tag'", ",", "'lower'", ",", "tagName", ",", "belowThis", ")" ]
https://github.com/aws/lumberyard/blob/f85344403c1c2e77ec8c75deb2c116e97b713217/dev/Tools/Python/3.7.10/linux_x64/lib/python3.7/tkinter/__init__.py#L3375-L3378
catboost/catboost
167f64f237114a4d10b2b4ee42adb4569137debe
contrib/python/pandas/py3/pandas/core/series.py
python
Series._set_as_cached
(self, item, cacher)
Set the _cacher attribute on the calling object with a weakref to cacher.
Set the _cacher attribute on the calling object with a weakref to cacher.
[ "Set", "the", "_cacher", "attribute", "on", "the", "calling", "object", "with", "a", "weakref", "to", "cacher", "." ]
def _set_as_cached(self, item, cacher) -> None: """ Set the _cacher attribute on the calling object with a weakref to cacher. """ self._cacher = (item, weakref.ref(cacher))
[ "def", "_set_as_cached", "(", "self", ",", "item", ",", "cacher", ")", "->", "None", ":", "self", ".", "_cacher", "=", "(", "item", ",", "weakref", ".", "ref", "(", "cacher", ")", ")" ]
https://github.com/catboost/catboost/blob/167f64f237114a4d10b2b4ee42adb4569137debe/contrib/python/pandas/py3/pandas/core/series.py#L1194-L1199
ApolloAuto/apollo-platform
86d9dc6743b496ead18d597748ebabd34a513289
ros/genpy/src/genpy/rostime.py
python
Duration.__truediv__
(self, val)
Divide this duration by an integer or float :param val: division factor ``int/float``, or :class:`Duration` to divide by :returns: :class:`Duration` divided by val - a :class:`Duration` if divided by a number, or a number if divided by a duration
Divide this duration by an integer or float :param val: division factor ``int/float``, or :class:`Duration` to divide by :returns: :class:`Duration` divided by val - a :class:`Duration` if divided by a number, or a number if divided by a duration
[ "Divide", "this", "duration", "by", "an", "integer", "or", "float", ":", "param", "val", ":", "division", "factor", "int", "/", "float", "or", ":", "class", ":", "Duration", "to", "divide", "by", ":", "returns", ":", ":", "class", ":", "Duration", "divided", "by", "val", "-", "a", ":", "class", ":", "Duration", "if", "divided", "by", "a", "number", "or", "a", "number", "if", "divided", "by", "a", "duration" ]
def __truediv__(self, val): """ Divide this duration by an integer or float :param val: division factor ``int/float``, or :class:`Duration` to divide by :returns: :class:`Duration` divided by val - a :class:`Duration` if divided by a number, or a number if divided by a duration """ if type(val) in (int, long, float): return Duration.from_sec(self.to_sec() / val) elif isinstance(val, Duration): return self.to_sec() / val.to_sec() else: return NotImplemented
[ "def", "__truediv__", "(", "self", ",", "val", ")", ":", "if", "type", "(", "val", ")", "in", "(", "int", ",", "long", ",", "float", ")", ":", "return", "Duration", ".", "from_sec", "(", "self", ".", "to_sec", "(", ")", "/", "val", ")", "elif", "isinstance", "(", "val", ",", "Duration", ")", ":", "return", "self", ".", "to_sec", "(", ")", "/", "val", ".", "to_sec", "(", ")", "else", ":", "return", "NotImplemented" ]
https://github.com/ApolloAuto/apollo-platform/blob/86d9dc6743b496ead18d597748ebabd34a513289/ros/genpy/src/genpy/rostime.py#L436-L447
Tracktion/tracktion_engine
a52de2e05f1b831582c7c615371f82fb0f9b64e6
doxygen/process_source_files.py
python
get_curly_brace_scope_end
(string, start_pos)
return -1
Given a string and a starting position of an opening brace, find the position of the closing brace.
Given a string and a starting position of an opening brace, find the position of the closing brace.
[ "Given", "a", "string", "and", "a", "starting", "position", "of", "an", "opening", "brace", "find", "the", "position", "of", "the", "closing", "brace", "." ]
def get_curly_brace_scope_end(string, start_pos): """Given a string and a starting position of an opening brace, find the position of the closing brace. """ start_pos += 1 string_end = len(string) bracket_counter = 1 while start_pos < string_end: if string[start_pos] == "{": bracket_counter += 1 elif string[start_pos] == "}": bracket_counter -= 1 if bracket_counter == 0: return start_pos start_pos += 1 return -1
[ "def", "get_curly_brace_scope_end", "(", "string", ",", "start_pos", ")", ":", "start_pos", "+=", "1", "string_end", "=", "len", "(", "string", ")", "bracket_counter", "=", "1", "while", "start_pos", "<", "string_end", ":", "if", "string", "[", "start_pos", "]", "==", "\"{\"", ":", "bracket_counter", "+=", "1", "elif", "string", "[", "start_pos", "]", "==", "\"}\"", ":", "bracket_counter", "-=", "1", "if", "bracket_counter", "==", "0", ":", "return", "start_pos", "start_pos", "+=", "1", "return", "-", "1" ]
https://github.com/Tracktion/tracktion_engine/blob/a52de2e05f1b831582c7c615371f82fb0f9b64e6/doxygen/process_source_files.py#L9-L24
domino-team/openwrt-cc
8b181297c34d14d3ca521cc9f31430d561dbc688
package/gli-pub/openwrt-node-packages-master/node/node-v6.9.1/tools/gyp/pylib/gyp/msvs_emulation.py
python
MsvsSettings.AdjustMidlIncludeDirs
(self, midl_include_dirs, config)
return [self.ConvertVSMacros(p, config=config) for p in includes]
Updates midl_include_dirs to expand VS specific paths, and adds the system include dirs used for platform SDK and similar.
Updates midl_include_dirs to expand VS specific paths, and adds the system include dirs used for platform SDK and similar.
[ "Updates", "midl_include_dirs", "to", "expand", "VS", "specific", "paths", "and", "adds", "the", "system", "include", "dirs", "used", "for", "platform", "SDK", "and", "similar", "." ]
def AdjustMidlIncludeDirs(self, midl_include_dirs, config): """Updates midl_include_dirs to expand VS specific paths, and adds the system include dirs used for platform SDK and similar.""" config = self._TargetConfig(config) includes = midl_include_dirs + self.msvs_system_include_dirs[config] includes.extend(self._Setting( ('VCMIDLTool', 'AdditionalIncludeDirectories'), config, default=[])) return [self.ConvertVSMacros(p, config=config) for p in includes]
[ "def", "AdjustMidlIncludeDirs", "(", "self", ",", "midl_include_dirs", ",", "config", ")", ":", "config", "=", "self", ".", "_TargetConfig", "(", "config", ")", "includes", "=", "midl_include_dirs", "+", "self", ".", "msvs_system_include_dirs", "[", "config", "]", "includes", ".", "extend", "(", "self", ".", "_Setting", "(", "(", "'VCMIDLTool'", ",", "'AdditionalIncludeDirectories'", ")", ",", "config", ",", "default", "=", "[", "]", ")", ")", "return", "[", "self", ".", "ConvertVSMacros", "(", "p", ",", "config", "=", "config", ")", "for", "p", "in", "includes", "]" ]
https://github.com/domino-team/openwrt-cc/blob/8b181297c34d14d3ca521cc9f31430d561dbc688/package/gli-pub/openwrt-node-packages-master/node/node-v6.9.1/tools/gyp/pylib/gyp/msvs_emulation.py#L341-L348
wlanjie/AndroidFFmpeg
7baf9122f4b8e1c74e7baf4be5c422c7a5ba5aaf
tools/fdk-aac-build/armeabi/toolchain/lib/python2.7/pydoc.py
python
Helper.getline
(self, prompt)
Read one line, using raw_input when available.
Read one line, using raw_input when available.
[ "Read", "one", "line", "using", "raw_input", "when", "available", "." ]
def getline(self, prompt): """Read one line, using raw_input when available.""" if self.input is sys.stdin: return raw_input(prompt) else: self.output.write(prompt) self.output.flush() return self.input.readline()
[ "def", "getline", "(", "self", ",", "prompt", ")", ":", "if", "self", ".", "input", "is", "sys", ".", "stdin", ":", "return", "raw_input", "(", "prompt", ")", "else", ":", "self", ".", "output", ".", "write", "(", "prompt", ")", "self", ".", "output", ".", "flush", "(", ")", "return", "self", ".", "input", ".", "readline", "(", ")" ]
https://github.com/wlanjie/AndroidFFmpeg/blob/7baf9122f4b8e1c74e7baf4be5c422c7a5ba5aaf/tools/fdk-aac-build/armeabi/toolchain/lib/python2.7/pydoc.py#L1771-L1778
etotheipi/BitcoinArmory
2a6fc5355bb0c6fe26e387ccba30a5baafe8cd98
armoryd.py
python
Armory_Json_Rpc_Server.jsonrpc_listloadedwallets
(self)
return walletList
DESCRIPTION: List all wallets loaded onto the armoryd server. PARAMETERS: None RETURN: A dictionary with the Base58 values of all wallets loaded in armoryd.
DESCRIPTION: List all wallets loaded onto the armoryd server. PARAMETERS: None RETURN: A dictionary with the Base58 values of all wallets loaded in armoryd.
[ "DESCRIPTION", ":", "List", "all", "wallets", "loaded", "onto", "the", "armoryd", "server", ".", "PARAMETERS", ":", "None", "RETURN", ":", "A", "dictionary", "with", "the", "Base58", "values", "of", "all", "wallets", "loaded", "in", "armoryd", "." ]
def jsonrpc_listloadedwallets(self): """ DESCRIPTION: List all wallets loaded onto the armoryd server. PARAMETERS: None RETURN: A dictionary with the Base58 values of all wallets loaded in armoryd. """ # Return a dictionary with a string as the key and a wallet B58 value as # the value. curKey = 1 walletList = {} for k in self.serverWltMap.keys(): curWltStr = 'Wallet %04d' % curKey walletList[curWltStr] = k curKey += 1 return walletList
[ "def", "jsonrpc_listloadedwallets", "(", "self", ")", ":", "# Return a dictionary with a string as the key and a wallet B58 value as", "# the value.", "curKey", "=", "1", "walletList", "=", "{", "}", "for", "k", "in", "self", ".", "serverWltMap", ".", "keys", "(", ")", ":", "curWltStr", "=", "'Wallet %04d'", "%", "curKey", "walletList", "[", "curWltStr", "]", "=", "k", "curKey", "+=", "1", "return", "walletList" ]
https://github.com/etotheipi/BitcoinArmory/blob/2a6fc5355bb0c6fe26e387ccba30a5baafe8cd98/armoryd.py#L2616-L2634
catboost/catboost
167f64f237114a4d10b2b4ee42adb4569137debe
contrib/python/scikit-learn/py3/sklearn/covariance/_graph_lasso.py
python
graphical_lasso
(emp_cov, alpha, cov_init=None, mode='cd', tol=1e-4, enet_tol=1e-4, max_iter=100, verbose=False, return_costs=False, eps=np.finfo(np.float64).eps, return_n_iter=False)
l1-penalized covariance estimator Read more in the :ref:`User Guide <sparse_inverse_covariance>`. Parameters ---------- emp_cov : 2D ndarray, shape (n_features, n_features) Empirical covariance from which to compute the covariance estimate. alpha : positive float The regularization parameter: the higher alpha, the more regularization, the sparser the inverse covariance. cov_init : 2D array (n_features, n_features), optional The initial guess for the covariance. mode : {'cd', 'lars'} The Lasso solver to use: coordinate descent or LARS. Use LARS for very sparse underlying graphs, where p > n. Elsewhere prefer cd which is more numerically stable. tol : positive float, optional The tolerance to declare convergence: if the dual gap goes below this value, iterations are stopped. enet_tol : positive float, optional The tolerance for the elastic net solver used to calculate the descent direction. This parameter controls the accuracy of the search direction for a given column update, not of the overall parameter estimate. Only used for mode='cd'. max_iter : integer, optional The maximum number of iterations. verbose : boolean, optional If verbose is True, the objective function and dual gap are printed at each iteration. return_costs : boolean, optional If return_costs is True, the objective function and dual gap at each iteration are returned. eps : float, optional The machine-precision regularization in the computation of the Cholesky diagonal factors. Increase this for very ill-conditioned systems. return_n_iter : bool, optional Whether or not to return the number of iterations. Returns ------- covariance : 2D ndarray, shape (n_features, n_features) The estimated covariance matrix. precision : 2D ndarray, shape (n_features, n_features) The estimated (sparse) precision matrix. costs : list of (objective, dual_gap) pairs The list of values of the objective function and the dual gap at each iteration. Returned only if return_costs is True. n_iter : int Number of iterations. Returned only if `return_n_iter` is set to True. See Also -------- GraphicalLasso, GraphicalLassoCV Notes ----- The algorithm employed to solve this problem is the GLasso algorithm, from the Friedman 2008 Biostatistics paper. It is the same algorithm as in the R `glasso` package. One possible difference with the `glasso` R package is that the diagonal coefficients are not penalized.
l1-penalized covariance estimator
[ "l1", "-", "penalized", "covariance", "estimator" ]
def graphical_lasso(emp_cov, alpha, cov_init=None, mode='cd', tol=1e-4, enet_tol=1e-4, max_iter=100, verbose=False, return_costs=False, eps=np.finfo(np.float64).eps, return_n_iter=False): """l1-penalized covariance estimator Read more in the :ref:`User Guide <sparse_inverse_covariance>`. Parameters ---------- emp_cov : 2D ndarray, shape (n_features, n_features) Empirical covariance from which to compute the covariance estimate. alpha : positive float The regularization parameter: the higher alpha, the more regularization, the sparser the inverse covariance. cov_init : 2D array (n_features, n_features), optional The initial guess for the covariance. mode : {'cd', 'lars'} The Lasso solver to use: coordinate descent or LARS. Use LARS for very sparse underlying graphs, where p > n. Elsewhere prefer cd which is more numerically stable. tol : positive float, optional The tolerance to declare convergence: if the dual gap goes below this value, iterations are stopped. enet_tol : positive float, optional The tolerance for the elastic net solver used to calculate the descent direction. This parameter controls the accuracy of the search direction for a given column update, not of the overall parameter estimate. Only used for mode='cd'. max_iter : integer, optional The maximum number of iterations. verbose : boolean, optional If verbose is True, the objective function and dual gap are printed at each iteration. return_costs : boolean, optional If return_costs is True, the objective function and dual gap at each iteration are returned. eps : float, optional The machine-precision regularization in the computation of the Cholesky diagonal factors. Increase this for very ill-conditioned systems. return_n_iter : bool, optional Whether or not to return the number of iterations. Returns ------- covariance : 2D ndarray, shape (n_features, n_features) The estimated covariance matrix. precision : 2D ndarray, shape (n_features, n_features) The estimated (sparse) precision matrix. costs : list of (objective, dual_gap) pairs The list of values of the objective function and the dual gap at each iteration. Returned only if return_costs is True. n_iter : int Number of iterations. Returned only if `return_n_iter` is set to True. See Also -------- GraphicalLasso, GraphicalLassoCV Notes ----- The algorithm employed to solve this problem is the GLasso algorithm, from the Friedman 2008 Biostatistics paper. It is the same algorithm as in the R `glasso` package. One possible difference with the `glasso` R package is that the diagonal coefficients are not penalized. """ _, n_features = emp_cov.shape if alpha == 0: if return_costs: precision_ = linalg.inv(emp_cov) cost = - 2. * log_likelihood(emp_cov, precision_) cost += n_features * np.log(2 * np.pi) d_gap = np.sum(emp_cov * precision_) - n_features if return_n_iter: return emp_cov, precision_, (cost, d_gap), 0 else: return emp_cov, precision_, (cost, d_gap) else: if return_n_iter: return emp_cov, linalg.inv(emp_cov), 0 else: return emp_cov, linalg.inv(emp_cov) if cov_init is None: covariance_ = emp_cov.copy() else: covariance_ = cov_init.copy() # As a trivial regularization (Tikhonov like), we scale down the # off-diagonal coefficients of our starting point: This is needed, as # in the cross-validation the cov_init can easily be # ill-conditioned, and the CV loop blows. Beside, this takes # conservative stand-point on the initial conditions, and it tends to # make the convergence go faster. covariance_ *= 0.95 diagonal = emp_cov.flat[::n_features + 1] covariance_.flat[::n_features + 1] = diagonal precision_ = linalg.pinvh(covariance_) indices = np.arange(n_features) costs = list() # The different l1 regression solver have different numerical errors if mode == 'cd': errors = dict(over='raise', invalid='ignore') else: errors = dict(invalid='raise') try: # be robust to the max_iter=0 edge case, see: # https://github.com/scikit-learn/scikit-learn/issues/4134 d_gap = np.inf # set a sub_covariance buffer sub_covariance = np.copy(covariance_[1:, 1:], order='C') for i in range(max_iter): for idx in range(n_features): # To keep the contiguous matrix `sub_covariance` equal to # covariance_[indices != idx].T[indices != idx] # we only need to update 1 column and 1 line when idx changes if idx > 0: di = idx - 1 sub_covariance[di] = covariance_[di][indices != idx] sub_covariance[:, di] = covariance_[:, di][indices != idx] else: sub_covariance[:] = covariance_[1:, 1:] row = emp_cov[idx, indices != idx] with np.errstate(**errors): if mode == 'cd': # Use coordinate descent coefs = -(precision_[indices != idx, idx] / (precision_[idx, idx] + 1000 * eps)) coefs, _, _, _ = cd_fast.enet_coordinate_descent_gram( coefs, alpha, 0, sub_covariance, row, row, max_iter, enet_tol, check_random_state(None), False) else: # Use LARS _, _, coefs = lars_path_gram( Xy=row, Gram=sub_covariance, n_samples=row.size, alpha_min=alpha / (n_features - 1), copy_Gram=True, eps=eps, method='lars', return_path=False) # Update the precision matrix precision_[idx, idx] = ( 1. / (covariance_[idx, idx] - np.dot(covariance_[indices != idx, idx], coefs))) precision_[indices != idx, idx] = (- precision_[idx, idx] * coefs) precision_[idx, indices != idx] = (- precision_[idx, idx] * coefs) coefs = np.dot(sub_covariance, coefs) covariance_[idx, indices != idx] = coefs covariance_[indices != idx, idx] = coefs if not np.isfinite(precision_.sum()): raise FloatingPointError('The system is too ill-conditioned ' 'for this solver') d_gap = _dual_gap(emp_cov, precision_, alpha) cost = _objective(emp_cov, precision_, alpha) if verbose: print('[graphical_lasso] Iteration ' '% 3i, cost % 3.2e, dual gap %.3e' % (i, cost, d_gap)) if return_costs: costs.append((cost, d_gap)) if np.abs(d_gap) < tol: break if not np.isfinite(cost) and i > 0: raise FloatingPointError('Non SPD result: the system is ' 'too ill-conditioned for this solver') else: warnings.warn('graphical_lasso: did not converge after ' '%i iteration: dual gap: %.3e' % (max_iter, d_gap), ConvergenceWarning) except FloatingPointError as e: e.args = (e.args[0] + '. The system is too ill-conditioned for this solver',) raise e if return_costs: if return_n_iter: return covariance_, precision_, costs, i + 1 else: return covariance_, precision_, costs else: if return_n_iter: return covariance_, precision_, i + 1 else: return covariance_, precision_
[ "def", "graphical_lasso", "(", "emp_cov", ",", "alpha", ",", "cov_init", "=", "None", ",", "mode", "=", "'cd'", ",", "tol", "=", "1e-4", ",", "enet_tol", "=", "1e-4", ",", "max_iter", "=", "100", ",", "verbose", "=", "False", ",", "return_costs", "=", "False", ",", "eps", "=", "np", ".", "finfo", "(", "np", ".", "float64", ")", ".", "eps", ",", "return_n_iter", "=", "False", ")", ":", "_", ",", "n_features", "=", "emp_cov", ".", "shape", "if", "alpha", "==", "0", ":", "if", "return_costs", ":", "precision_", "=", "linalg", ".", "inv", "(", "emp_cov", ")", "cost", "=", "-", "2.", "*", "log_likelihood", "(", "emp_cov", ",", "precision_", ")", "cost", "+=", "n_features", "*", "np", ".", "log", "(", "2", "*", "np", ".", "pi", ")", "d_gap", "=", "np", ".", "sum", "(", "emp_cov", "*", "precision_", ")", "-", "n_features", "if", "return_n_iter", ":", "return", "emp_cov", ",", "precision_", ",", "(", "cost", ",", "d_gap", ")", ",", "0", "else", ":", "return", "emp_cov", ",", "precision_", ",", "(", "cost", ",", "d_gap", ")", "else", ":", "if", "return_n_iter", ":", "return", "emp_cov", ",", "linalg", ".", "inv", "(", "emp_cov", ")", ",", "0", "else", ":", "return", "emp_cov", ",", "linalg", ".", "inv", "(", "emp_cov", ")", "if", "cov_init", "is", "None", ":", "covariance_", "=", "emp_cov", ".", "copy", "(", ")", "else", ":", "covariance_", "=", "cov_init", ".", "copy", "(", ")", "# As a trivial regularization (Tikhonov like), we scale down the", "# off-diagonal coefficients of our starting point: This is needed, as", "# in the cross-validation the cov_init can easily be", "# ill-conditioned, and the CV loop blows. Beside, this takes", "# conservative stand-point on the initial conditions, and it tends to", "# make the convergence go faster.", "covariance_", "*=", "0.95", "diagonal", "=", "emp_cov", ".", "flat", "[", ":", ":", "n_features", "+", "1", "]", "covariance_", ".", "flat", "[", ":", ":", "n_features", "+", "1", "]", "=", "diagonal", "precision_", "=", "linalg", ".", "pinvh", "(", "covariance_", ")", "indices", "=", "np", ".", "arange", "(", "n_features", ")", "costs", "=", "list", "(", ")", "# The different l1 regression solver have different numerical errors", "if", "mode", "==", "'cd'", ":", "errors", "=", "dict", "(", "over", "=", "'raise'", ",", "invalid", "=", "'ignore'", ")", "else", ":", "errors", "=", "dict", "(", "invalid", "=", "'raise'", ")", "try", ":", "# be robust to the max_iter=0 edge case, see:", "# https://github.com/scikit-learn/scikit-learn/issues/4134", "d_gap", "=", "np", ".", "inf", "# set a sub_covariance buffer", "sub_covariance", "=", "np", ".", "copy", "(", "covariance_", "[", "1", ":", ",", "1", ":", "]", ",", "order", "=", "'C'", ")", "for", "i", "in", "range", "(", "max_iter", ")", ":", "for", "idx", "in", "range", "(", "n_features", ")", ":", "# To keep the contiguous matrix `sub_covariance` equal to", "# covariance_[indices != idx].T[indices != idx]", "# we only need to update 1 column and 1 line when idx changes", "if", "idx", ">", "0", ":", "di", "=", "idx", "-", "1", "sub_covariance", "[", "di", "]", "=", "covariance_", "[", "di", "]", "[", "indices", "!=", "idx", "]", "sub_covariance", "[", ":", ",", "di", "]", "=", "covariance_", "[", ":", ",", "di", "]", "[", "indices", "!=", "idx", "]", "else", ":", "sub_covariance", "[", ":", "]", "=", "covariance_", "[", "1", ":", ",", "1", ":", "]", "row", "=", "emp_cov", "[", "idx", ",", "indices", "!=", "idx", "]", "with", "np", ".", "errstate", "(", "*", "*", "errors", ")", ":", "if", "mode", "==", "'cd'", ":", "# Use coordinate descent", "coefs", "=", "-", "(", "precision_", "[", "indices", "!=", "idx", ",", "idx", "]", "/", "(", "precision_", "[", "idx", ",", "idx", "]", "+", "1000", "*", "eps", ")", ")", "coefs", ",", "_", ",", "_", ",", "_", "=", "cd_fast", ".", "enet_coordinate_descent_gram", "(", "coefs", ",", "alpha", ",", "0", ",", "sub_covariance", ",", "row", ",", "row", ",", "max_iter", ",", "enet_tol", ",", "check_random_state", "(", "None", ")", ",", "False", ")", "else", ":", "# Use LARS", "_", ",", "_", ",", "coefs", "=", "lars_path_gram", "(", "Xy", "=", "row", ",", "Gram", "=", "sub_covariance", ",", "n_samples", "=", "row", ".", "size", ",", "alpha_min", "=", "alpha", "/", "(", "n_features", "-", "1", ")", ",", "copy_Gram", "=", "True", ",", "eps", "=", "eps", ",", "method", "=", "'lars'", ",", "return_path", "=", "False", ")", "# Update the precision matrix", "precision_", "[", "idx", ",", "idx", "]", "=", "(", "1.", "/", "(", "covariance_", "[", "idx", ",", "idx", "]", "-", "np", ".", "dot", "(", "covariance_", "[", "indices", "!=", "idx", ",", "idx", "]", ",", "coefs", ")", ")", ")", "precision_", "[", "indices", "!=", "idx", ",", "idx", "]", "=", "(", "-", "precision_", "[", "idx", ",", "idx", "]", "*", "coefs", ")", "precision_", "[", "idx", ",", "indices", "!=", "idx", "]", "=", "(", "-", "precision_", "[", "idx", ",", "idx", "]", "*", "coefs", ")", "coefs", "=", "np", ".", "dot", "(", "sub_covariance", ",", "coefs", ")", "covariance_", "[", "idx", ",", "indices", "!=", "idx", "]", "=", "coefs", "covariance_", "[", "indices", "!=", "idx", ",", "idx", "]", "=", "coefs", "if", "not", "np", ".", "isfinite", "(", "precision_", ".", "sum", "(", ")", ")", ":", "raise", "FloatingPointError", "(", "'The system is too ill-conditioned '", "'for this solver'", ")", "d_gap", "=", "_dual_gap", "(", "emp_cov", ",", "precision_", ",", "alpha", ")", "cost", "=", "_objective", "(", "emp_cov", ",", "precision_", ",", "alpha", ")", "if", "verbose", ":", "print", "(", "'[graphical_lasso] Iteration '", "'% 3i, cost % 3.2e, dual gap %.3e'", "%", "(", "i", ",", "cost", ",", "d_gap", ")", ")", "if", "return_costs", ":", "costs", ".", "append", "(", "(", "cost", ",", "d_gap", ")", ")", "if", "np", ".", "abs", "(", "d_gap", ")", "<", "tol", ":", "break", "if", "not", "np", ".", "isfinite", "(", "cost", ")", "and", "i", ">", "0", ":", "raise", "FloatingPointError", "(", "'Non SPD result: the system is '", "'too ill-conditioned for this solver'", ")", "else", ":", "warnings", ".", "warn", "(", "'graphical_lasso: did not converge after '", "'%i iteration: dual gap: %.3e'", "%", "(", "max_iter", ",", "d_gap", ")", ",", "ConvergenceWarning", ")", "except", "FloatingPointError", "as", "e", ":", "e", ".", "args", "=", "(", "e", ".", "args", "[", "0", "]", "+", "'. The system is too ill-conditioned for this solver'", ",", ")", "raise", "e", "if", "return_costs", ":", "if", "return_n_iter", ":", "return", "covariance_", ",", "precision_", ",", "costs", ",", "i", "+", "1", "else", ":", "return", "covariance_", ",", "precision_", ",", "costs", "else", ":", "if", "return_n_iter", ":", "return", "covariance_", ",", "precision_", ",", "i", "+", "1", "else", ":", "return", "covariance_", ",", "precision_" ]
https://github.com/catboost/catboost/blob/167f64f237114a4d10b2b4ee42adb4569137debe/contrib/python/scikit-learn/py3/sklearn/covariance/_graph_lasso.py#L79-L278
dmlc/xgboost
2775c2a1abd4b5b759ff517617434c8b9aeb4cc0
python-package/xgboost/core.py
python
DMatrix.get_label
(self)
return self.get_float_info('label')
Get the label of the DMatrix. Returns ------- label : array
Get the label of the DMatrix.
[ "Get", "the", "label", "of", "the", "DMatrix", "." ]
def get_label(self) -> np.ndarray: """Get the label of the DMatrix. Returns ------- label : array """ return self.get_float_info('label')
[ "def", "get_label", "(", "self", ")", "->", "np", ".", "ndarray", ":", "return", "self", ".", "get_float_info", "(", "'label'", ")" ]
https://github.com/dmlc/xgboost/blob/2775c2a1abd4b5b759ff517617434c8b9aeb4cc0/python-package/xgboost/core.py#L867-L874
aws/lumberyard
f85344403c1c2e77ec8c75deb2c116e97b713217
dev/Tools/Python/3.7.10/windows/Lib/site-packages/pip/_internal/resolution/legacy/resolver.py
python
Resolver._populate_link
(self, req)
Ensure that if a link can be found for this, that it is found. Note that req.link may still be None - if the requirement is already installed and not needed to be upgraded based on the return value of _is_upgrade_allowed(). If preparer.require_hashes is True, don't use the wheel cache, because cached wheels, always built locally, have different hashes than the files downloaded from the index server and thus throw false hash mismatches. Furthermore, cached wheels at present have undeterministic contents due to file modification times.
Ensure that if a link can be found for this, that it is found.
[ "Ensure", "that", "if", "a", "link", "can", "be", "found", "for", "this", "that", "it", "is", "found", "." ]
def _populate_link(self, req): # type: (InstallRequirement) -> None """Ensure that if a link can be found for this, that it is found. Note that req.link may still be None - if the requirement is already installed and not needed to be upgraded based on the return value of _is_upgrade_allowed(). If preparer.require_hashes is True, don't use the wheel cache, because cached wheels, always built locally, have different hashes than the files downloaded from the index server and thus throw false hash mismatches. Furthermore, cached wheels at present have undeterministic contents due to file modification times. """ if req.link is None: req.link = self._find_requirement_link(req) if self.wheel_cache is None or self.preparer.require_hashes: return cache_entry = self.wheel_cache.get_cache_entry( link=req.link, package_name=req.name, supported_tags=get_supported(), ) if cache_entry is not None: logger.debug('Using cached wheel link: %s', cache_entry.link) if req.link is req.original_link and cache_entry.persistent: req.original_link_is_in_wheel_cache = True req.link = cache_entry.link
[ "def", "_populate_link", "(", "self", ",", "req", ")", ":", "# type: (InstallRequirement) -> None", "if", "req", ".", "link", "is", "None", ":", "req", ".", "link", "=", "self", ".", "_find_requirement_link", "(", "req", ")", "if", "self", ".", "wheel_cache", "is", "None", "or", "self", ".", "preparer", ".", "require_hashes", ":", "return", "cache_entry", "=", "self", ".", "wheel_cache", ".", "get_cache_entry", "(", "link", "=", "req", ".", "link", ",", "package_name", "=", "req", ".", "name", ",", "supported_tags", "=", "get_supported", "(", ")", ",", ")", "if", "cache_entry", "is", "not", "None", ":", "logger", ".", "debug", "(", "'Using cached wheel link: %s'", ",", "cache_entry", ".", "link", ")", "if", "req", ".", "link", "is", "req", ".", "original_link", "and", "cache_entry", ".", "persistent", ":", "req", ".", "original_link_is_in_wheel_cache", "=", "True", "req", ".", "link", "=", "cache_entry", ".", "link" ]
https://github.com/aws/lumberyard/blob/f85344403c1c2e77ec8c75deb2c116e97b713217/dev/Tools/Python/3.7.10/windows/Lib/site-packages/pip/_internal/resolution/legacy/resolver.py#L287-L315
esa/pagmo
80281d549c8f1b470e1489a5d37c8f06b2e429c0
PyGMO/problem/_gtop.py
python
_gtoc_1_ctor
(self)
Constructs a GTOC 1 Problem (Box-Constrained Continuous Single-Objective) NOTE: This problem (MGA) belongs to the GTOP database [http://www.esa.int/gsp/ACT/inf/op/globopt.htm] Best known global minima is at -1,581,950 USAGE: problem.gtoc_1()
Constructs a GTOC 1 Problem (Box-Constrained Continuous Single-Objective)
[ "Constructs", "a", "GTOC", "1", "Problem", "(", "Box", "-", "Constrained", "Continuous", "Single", "-", "Objective", ")" ]
def _gtoc_1_ctor(self): """ Constructs a GTOC 1 Problem (Box-Constrained Continuous Single-Objective) NOTE: This problem (MGA) belongs to the GTOP database [http://www.esa.int/gsp/ACT/inf/op/globopt.htm] Best known global minima is at -1,581,950 USAGE: problem.gtoc_1() """ # We construct the arg list for the original constructor exposed by # boost_python arg_list = [] self._orig_init(*arg_list)
[ "def", "_gtoc_1_ctor", "(", "self", ")", ":", "# We construct the arg list for the original constructor exposed by", "# boost_python", "arg_list", "=", "[", "]", "self", ".", "_orig_init", "(", "*", "arg_list", ")" ]
https://github.com/esa/pagmo/blob/80281d549c8f1b470e1489a5d37c8f06b2e429c0/PyGMO/problem/_gtop.py#L30-L45
hanpfei/chromium-net
392cc1fa3a8f92f42e4071ab6e674d8e0482f83f
third_party/catapult/third_party/gsutil/third_party/protorpc/protorpc/definition.py
python
_get_or_define_module
(full_name, modules)
return module
Helper method for defining new modules. Args: full_name: Fully qualified name of module to create or return. modules: Dictionary of all modules. Defaults to sys.modules. Returns: Named module if found in 'modules', else creates new module and inserts in 'modules'. Will also construct parent modules if necessary.
Helper method for defining new modules.
[ "Helper", "method", "for", "defining", "new", "modules", "." ]
def _get_or_define_module(full_name, modules): """Helper method for defining new modules. Args: full_name: Fully qualified name of module to create or return. modules: Dictionary of all modules. Defaults to sys.modules. Returns: Named module if found in 'modules', else creates new module and inserts in 'modules'. Will also construct parent modules if necessary. """ module = modules.get(full_name) if not module: module = types.ModuleType(full_name) modules[full_name] = module split_name = full_name.rsplit('.', 1) if len(split_name) > 1: parent_module_name, sub_module_name = split_name parent_module = _get_or_define_module(parent_module_name, modules) setattr(parent_module, sub_module_name, module) return module
[ "def", "_get_or_define_module", "(", "full_name", ",", "modules", ")", ":", "module", "=", "modules", ".", "get", "(", "full_name", ")", "if", "not", "module", ":", "module", "=", "types", ".", "ModuleType", "(", "full_name", ")", "modules", "[", "full_name", "]", "=", "module", "split_name", "=", "full_name", ".", "rsplit", "(", "'.'", ",", "1", ")", "if", "len", "(", "split_name", ")", ">", "1", ":", "parent_module_name", ",", "sub_module_name", "=", "split_name", "parent_module", "=", "_get_or_define_module", "(", "parent_module_name", ",", "modules", ")", "setattr", "(", "parent_module", ",", "sub_module_name", ",", "module", ")", "return", "module" ]
https://github.com/hanpfei/chromium-net/blob/392cc1fa3a8f92f42e4071ab6e674d8e0482f83f/third_party/catapult/third_party/gsutil/third_party/protorpc/protorpc/definition.py#L66-L88
sslab-gatech/qsym
78702ba8928519ffb9beb7859ec2f7ddce2b2fe4
third_party/pin-2.14-71313-gcc.4.4.7-linux/source/tools/Utils/installer.py
python
walk
(top, options)
return 0
Set up the env dictionary, then iterate the directory structure, finding directories of tools that need to be installed for testing.
Set up the env dictionary, then iterate the directory structure, finding directories of tools that need to be installed for testing.
[ "Set", "up", "the", "env", "dictionary", "then", "iterate", "the", "directory", "structure", "finding", "directories", "of", "tools", "that", "need", "to", "be", "installed", "for", "testing", "." ]
def walk(top, options): """ Set up the env dictionary, then iterate the directory structure, finding directories of tools that need to be installed for testing. """ try: remote_kit_base = os.environ['REMOTE_ROOT'] cmd_prefix = os.environ.get('CMD_PREFIX', '') device_type = os.environ['DEVICE_TYPE'] device_id = os.environ['REMOTE_DEVICE'] target_arch = os.environ['TARGET'] except KeyError: warn("Some required environment variables aren't set. Make sure CMD_PREFIX, REMOTE_DEVICE and REMOTE_ROOT are defined'") return 1 if device_type == 'android': prop = android_properties elif device_type == 'mic': prop = mic_properties else: print "Error: unexpected device type, installer cannot continue. Device type is '%s'." % device_type return 1 env = { 'device_type': device_type, 'device_id' : device_id, 'cmd_prefix' : cmd_prefix, 'target_arch': target_arch, } for root, dirs, files in os.walk(top, options): if 'obj-' + target_arch in dirs: info('in dir ' + root) env['root'] = root env['filename'] = os.path.basename(root) + ".tar.bz2" env['remote_path'] = os.path.join(remote_kit_base, "source", "tools", os.path.basename(root)) if options.clean: execute(prop['rmdir_cmd'], env) continue try: archive(env) execute(prop['mkdir_cmd'], env) execute(prop['push_cmd'], env) execute(prop['extract_cmd'], env) if device_type == 'android' and glob.glob('*.apk') != []: apks = glob.glob('*.apk') for apk in apks: env['apk'] = apk execute(prop['install_apk_cmd'],env) if 'apk' in env: del env['apk'] except subprocess.CalledProcessError as cpe: warn('Could not install in directory ' + root + '. Error code = ' + str(cpe.returncode) + '. cmd = ' + str(cpe.cmd) + '.' ) return 1 return 0
[ "def", "walk", "(", "top", ",", "options", ")", ":", "try", ":", "remote_kit_base", "=", "os", ".", "environ", "[", "'REMOTE_ROOT'", "]", "cmd_prefix", "=", "os", ".", "environ", ".", "get", "(", "'CMD_PREFIX'", ",", "''", ")", "device_type", "=", "os", ".", "environ", "[", "'DEVICE_TYPE'", "]", "device_id", "=", "os", ".", "environ", "[", "'REMOTE_DEVICE'", "]", "target_arch", "=", "os", ".", "environ", "[", "'TARGET'", "]", "except", "KeyError", ":", "warn", "(", "\"Some required environment variables aren't set. Make sure CMD_PREFIX, REMOTE_DEVICE and REMOTE_ROOT are defined'\"", ")", "return", "1", "if", "device_type", "==", "'android'", ":", "prop", "=", "android_properties", "elif", "device_type", "==", "'mic'", ":", "prop", "=", "mic_properties", "else", ":", "print", "\"Error: unexpected device type, installer cannot continue. Device type is '%s'.\"", "%", "device_type", "return", "1", "env", "=", "{", "'device_type'", ":", "device_type", ",", "'device_id'", ":", "device_id", ",", "'cmd_prefix'", ":", "cmd_prefix", ",", "'target_arch'", ":", "target_arch", ",", "}", "for", "root", ",", "dirs", ",", "files", "in", "os", ".", "walk", "(", "top", ",", "options", ")", ":", "if", "'obj-'", "+", "target_arch", "in", "dirs", ":", "info", "(", "'in dir '", "+", "root", ")", "env", "[", "'root'", "]", "=", "root", "env", "[", "'filename'", "]", "=", "os", ".", "path", ".", "basename", "(", "root", ")", "+", "\".tar.bz2\"", "env", "[", "'remote_path'", "]", "=", "os", ".", "path", ".", "join", "(", "remote_kit_base", ",", "\"source\"", ",", "\"tools\"", ",", "os", ".", "path", ".", "basename", "(", "root", ")", ")", "if", "options", ".", "clean", ":", "execute", "(", "prop", "[", "'rmdir_cmd'", "]", ",", "env", ")", "continue", "try", ":", "archive", "(", "env", ")", "execute", "(", "prop", "[", "'mkdir_cmd'", "]", ",", "env", ")", "execute", "(", "prop", "[", "'push_cmd'", "]", ",", "env", ")", "execute", "(", "prop", "[", "'extract_cmd'", "]", ",", "env", ")", "if", "device_type", "==", "'android'", "and", "glob", ".", "glob", "(", "'*.apk'", ")", "!=", "[", "]", ":", "apks", "=", "glob", ".", "glob", "(", "'*.apk'", ")", "for", "apk", "in", "apks", ":", "env", "[", "'apk'", "]", "=", "apk", "execute", "(", "prop", "[", "'install_apk_cmd'", "]", ",", "env", ")", "if", "'apk'", "in", "env", ":", "del", "env", "[", "'apk'", "]", "except", "subprocess", ".", "CalledProcessError", "as", "cpe", ":", "warn", "(", "'Could not install in directory '", "+", "root", "+", "'. Error code = '", "+", "str", "(", "cpe", ".", "returncode", ")", "+", "'. cmd = '", "+", "str", "(", "cpe", ".", "cmd", ")", "+", "'.'", ")", "return", "1", "return", "0" ]
https://github.com/sslab-gatech/qsym/blob/78702ba8928519ffb9beb7859ec2f7ddce2b2fe4/third_party/pin-2.14-71313-gcc.4.4.7-linux/source/tools/Utils/installer.py#L68-L120
wxWidgets/wxPython-Classic
19571e1ae65f1ac445f5491474121998c97a1bf0
src/msw/_misc.py
python
DateTime.__ge__
(*args, **kwargs)
return _misc_.DateTime___ge__(*args, **kwargs)
__ge__(self, DateTime other) -> bool
__ge__(self, DateTime other) -> bool
[ "__ge__", "(", "self", "DateTime", "other", ")", "-", ">", "bool" ]
def __ge__(*args, **kwargs): """__ge__(self, DateTime other) -> bool""" return _misc_.DateTime___ge__(*args, **kwargs)
[ "def", "__ge__", "(", "*", "args", ",", "*", "*", "kwargs", ")", ":", "return", "_misc_", ".", "DateTime___ge__", "(", "*", "args", ",", "*", "*", "kwargs", ")" ]
https://github.com/wxWidgets/wxPython-Classic/blob/19571e1ae65f1ac445f5491474121998c97a1bf0/src/msw/_misc.py#L4118-L4120
apple/turicreate
cce55aa5311300e3ce6af93cb45ba791fd1bdf49
deps/src/libxml2-2.9.1/python/libxml2class.py
python
xpathContext.contextNode
(self)
return __tmp
Get the current node from an xpathContext
Get the current node from an xpathContext
[ "Get", "the", "current", "node", "from", "an", "xpathContext" ]
def contextNode(self): """Get the current node from an xpathContext """ ret = libxml2mod.xmlXPathGetContextNode(self._o) if ret is None:raise xpathError('xmlXPathGetContextNode() failed') __tmp = xmlNode(_obj=ret) return __tmp
[ "def", "contextNode", "(", "self", ")", ":", "ret", "=", "libxml2mod", ".", "xmlXPathGetContextNode", "(", "self", ".", "_o", ")", "if", "ret", "is", "None", ":", "raise", "xpathError", "(", "'xmlXPathGetContextNode() failed'", ")", "__tmp", "=", "xmlNode", "(", "_obj", "=", "ret", ")", "return", "__tmp" ]
https://github.com/apple/turicreate/blob/cce55aa5311300e3ce6af93cb45ba791fd1bdf49/deps/src/libxml2-2.9.1/python/libxml2class.py#L6478-L6483
google/perfetto
fe68c7a7f7657aa71ced68efb126dcac4107c745
python/perfetto/trace_uri_resolver/resolver.py
python
TraceUriResolver.resolve
(self)
Resolves a list of traces. Subclasses should implement this method and resolve the parameters specified in the constructor to a list of traces.
Resolves a list of traces.
[ "Resolves", "a", "list", "of", "traces", "." ]
def resolve(self) -> List['TraceUriResolver.Result']: """Resolves a list of traces. Subclasses should implement this method and resolve the parameters specified in the constructor to a list of traces.""" raise Exception("resolve is unimplemented for this resolver")
[ "def", "resolve", "(", "self", ")", "->", "List", "[", "'TraceUriResolver.Result'", "]", ":", "raise", "Exception", "(", "\"resolve is unimplemented for this resolver\"", ")" ]
https://github.com/google/perfetto/blob/fe68c7a7f7657aa71ced68efb126dcac4107c745/python/perfetto/trace_uri_resolver/resolver.py#L84-L89
krishauser/Klampt
972cc83ea5befac3f653c1ba20f80155768ad519
Python/klampt/src/robotsim.py
python
RobotModelDriver.getValue
(self)
return _robotsim.RobotModelDriver_getValue(self)
r""" getValue(RobotModelDriver self) -> double Returns the current driver value from the robot's config.
r""" getValue(RobotModelDriver self) -> double
[ "r", "getValue", "(", "RobotModelDriver", "self", ")", "-", ">", "double" ]
def getValue(self) -> "double": r""" getValue(RobotModelDriver self) -> double Returns the current driver value from the robot's config. """ return _robotsim.RobotModelDriver_getValue(self)
[ "def", "getValue", "(", "self", ")", "->", "\"double\"", ":", "return", "_robotsim", ".", "RobotModelDriver_getValue", "(", "self", ")" ]
https://github.com/krishauser/Klampt/blob/972cc83ea5befac3f653c1ba20f80155768ad519/Python/klampt/src/robotsim.py#L4677-L4685
mantidproject/mantid
03deeb89254ec4289edb8771e0188c2090a02f32
scripts/SANS/isis_instrument.py
python
ISISInstrument.reset_TOFs_for_ROI
(self)
Reset background region set by set_TOFs for ROI
Reset background region set by set_TOFs for ROI
[ "Reset", "background", "region", "set", "by", "set_TOFs", "for", "ROI" ]
def reset_TOFs_for_ROI(self): """ Reset background region set by set_TOFs for ROI """ self._back_start_ROI = None self._back_end_ROI = None
[ "def", "reset_TOFs_for_ROI", "(", "self", ")", ":", "self", ".", "_back_start_ROI", "=", "None", "self", ".", "_back_end_ROI", "=", "None" ]
https://github.com/mantidproject/mantid/blob/03deeb89254ec4289edb8771e0188c2090a02f32/scripts/SANS/isis_instrument.py#L713-L718
MegEngine/MegEngine
ce9ad07a27ec909fb8db4dd67943d24ba98fb93a
imperative/python/megengine/functional/tensor.py
python
expand_dims
(inp: Tensor, axis: Union[int, Sequence[int]])
return result
r"""Adds dimension before given axis. Args: inp: input tensor. axis: place of new axes. Returns: output tensor. Examples: .. testcode:: import numpy as np from megengine import tensor import megengine.functional as F x = tensor([1, 2]) out = F.expand_dims(x, 0) print(out.numpy().shape) Outputs: .. testoutput:: (1, 2)
r"""Adds dimension before given axis.
[ "r", "Adds", "dimension", "before", "given", "axis", "." ]
def expand_dims(inp: Tensor, axis: Union[int, Sequence[int]]) -> Tensor: r"""Adds dimension before given axis. Args: inp: input tensor. axis: place of new axes. Returns: output tensor. Examples: .. testcode:: import numpy as np from megengine import tensor import megengine.functional as F x = tensor([1, 2]) out = F.expand_dims(x, 0) print(out.numpy().shape) Outputs: .. testoutput:: (1, 2) """ def get_axes(): try: return [int(axis)] except (TypeError, ValueError): pass return list(map(int, axis)) axis = get_axes() try: ndim = inp.ndim + len(axis) axis = sorted(i + ndim if i < 0 else i for i in axis) except ValueError: if any([ind < 0 for ind in axis]): raise IndexError( "Does not support negative index when tensor's ndim is unknown" ) axis = sorted(axis) assert axis, "axis could not be empty" op = builtin.AddAxis(axis=axis) (result,) = apply(op, inp) return result
[ "def", "expand_dims", "(", "inp", ":", "Tensor", ",", "axis", ":", "Union", "[", "int", ",", "Sequence", "[", "int", "]", "]", ")", "->", "Tensor", ":", "def", "get_axes", "(", ")", ":", "try", ":", "return", "[", "int", "(", "axis", ")", "]", "except", "(", "TypeError", ",", "ValueError", ")", ":", "pass", "return", "list", "(", "map", "(", "int", ",", "axis", ")", ")", "axis", "=", "get_axes", "(", ")", "try", ":", "ndim", "=", "inp", ".", "ndim", "+", "len", "(", "axis", ")", "axis", "=", "sorted", "(", "i", "+", "ndim", "if", "i", "<", "0", "else", "i", "for", "i", "in", "axis", ")", "except", "ValueError", ":", "if", "any", "(", "[", "ind", "<", "0", "for", "ind", "in", "axis", "]", ")", ":", "raise", "IndexError", "(", "\"Does not support negative index when tensor's ndim is unknown\"", ")", "axis", "=", "sorted", "(", "axis", ")", "assert", "axis", ",", "\"axis could not be empty\"", "op", "=", "builtin", ".", "AddAxis", "(", "axis", "=", "axis", ")", "(", "result", ",", ")", "=", "apply", "(", "op", ",", "inp", ")", "return", "result" ]
https://github.com/MegEngine/MegEngine/blob/ce9ad07a27ec909fb8db4dd67943d24ba98fb93a/imperative/python/megengine/functional/tensor.py#L954-L1003
mingchen/protobuf-ios
0958df34558cd54cb7b6e6ca5c8855bf3d475046
compiler/python/google/protobuf/internal/decoder.py
python
Decoder.ReadFixed64
(self)
return self._stream.ReadLittleEndian64()
Reads and returns an unsigned, fixed-width, 64-bit integer.
Reads and returns an unsigned, fixed-width, 64-bit integer.
[ "Reads", "and", "returns", "an", "unsigned", "fixed", "-", "width", "64", "-", "bit", "integer", "." ]
def ReadFixed64(self): """Reads and returns an unsigned, fixed-width, 64-bit integer.""" return self._stream.ReadLittleEndian64()
[ "def", "ReadFixed64", "(", "self", ")", ":", "return", "self", ".", "_stream", ".", "ReadLittleEndian64", "(", ")" ]
https://github.com/mingchen/protobuf-ios/blob/0958df34558cd54cb7b6e6ca5c8855bf3d475046/compiler/python/google/protobuf/internal/decoder.py#L117-L119
aws/lumberyard
f85344403c1c2e77ec8c75deb2c116e97b713217
dev/Tools/Python/3.7.10/windows/Lib/site-packages/boto3/resources/collection.py
python
CollectionFactory.load_from_definition
(self, resource_name, collection_model, service_context, event_emitter)
return type(str(cls_name), (CollectionManager,), attrs)
Loads a collection from a model, creating a new :py:class:`CollectionManager` subclass with the correct properties and methods, named based on the service and resource name, e.g. ec2.InstanceCollectionManager. It also creates a new :py:class:`ResourceCollection` subclass which is used by the new manager class. :type resource_name: string :param resource_name: Name of the resource to look up. For services, this should match the ``service_name``. :type service_context: :py:class:`~boto3.utils.ServiceContext` :param service_context: Context about the AWS service :type event_emitter: :py:class:`~botocore.hooks.HierarchialEmitter` :param event_emitter: An event emitter :rtype: Subclass of :py:class:`CollectionManager` :return: The collection class.
Loads a collection from a model, creating a new :py:class:`CollectionManager` subclass with the correct properties and methods, named based on the service and resource name, e.g. ec2.InstanceCollectionManager. It also creates a new :py:class:`ResourceCollection` subclass which is used by the new manager class.
[ "Loads", "a", "collection", "from", "a", "model", "creating", "a", "new", ":", "py", ":", "class", ":", "CollectionManager", "subclass", "with", "the", "correct", "properties", "and", "methods", "named", "based", "on", "the", "service", "and", "resource", "name", "e", ".", "g", ".", "ec2", ".", "InstanceCollectionManager", ".", "It", "also", "creates", "a", "new", ":", "py", ":", "class", ":", "ResourceCollection", "subclass", "which", "is", "used", "by", "the", "new", "manager", "class", "." ]
def load_from_definition(self, resource_name, collection_model, service_context, event_emitter): """ Loads a collection from a model, creating a new :py:class:`CollectionManager` subclass with the correct properties and methods, named based on the service and resource name, e.g. ec2.InstanceCollectionManager. It also creates a new :py:class:`ResourceCollection` subclass which is used by the new manager class. :type resource_name: string :param resource_name: Name of the resource to look up. For services, this should match the ``service_name``. :type service_context: :py:class:`~boto3.utils.ServiceContext` :param service_context: Context about the AWS service :type event_emitter: :py:class:`~botocore.hooks.HierarchialEmitter` :param event_emitter: An event emitter :rtype: Subclass of :py:class:`CollectionManager` :return: The collection class. """ attrs = {} collection_name = collection_model.name # Create the batch actions for a collection self._load_batch_actions( attrs, resource_name, collection_model, service_context.service_model, event_emitter) # Add the documentation to the collection class's methods self._load_documented_collection_methods( attrs=attrs, resource_name=resource_name, collection_model=collection_model, service_model=service_context.service_model, event_emitter=event_emitter, base_class=ResourceCollection) if service_context.service_name == resource_name: cls_name = '{0}.{1}Collection'.format( service_context.service_name, collection_name) else: cls_name = '{0}.{1}.{2}Collection'.format( service_context.service_name, resource_name, collection_name) collection_cls = type(str(cls_name), (ResourceCollection,), attrs) # Add the documentation to the collection manager's methods self._load_documented_collection_methods( attrs=attrs, resource_name=resource_name, collection_model=collection_model, service_model=service_context.service_model, event_emitter=event_emitter, base_class=CollectionManager) attrs['_collection_cls'] = collection_cls cls_name += 'Manager' return type(str(cls_name), (CollectionManager,), attrs)
[ "def", "load_from_definition", "(", "self", ",", "resource_name", ",", "collection_model", ",", "service_context", ",", "event_emitter", ")", ":", "attrs", "=", "{", "}", "collection_name", "=", "collection_model", ".", "name", "# Create the batch actions for a collection", "self", ".", "_load_batch_actions", "(", "attrs", ",", "resource_name", ",", "collection_model", ",", "service_context", ".", "service_model", ",", "event_emitter", ")", "# Add the documentation to the collection class's methods", "self", ".", "_load_documented_collection_methods", "(", "attrs", "=", "attrs", ",", "resource_name", "=", "resource_name", ",", "collection_model", "=", "collection_model", ",", "service_model", "=", "service_context", ".", "service_model", ",", "event_emitter", "=", "event_emitter", ",", "base_class", "=", "ResourceCollection", ")", "if", "service_context", ".", "service_name", "==", "resource_name", ":", "cls_name", "=", "'{0}.{1}Collection'", ".", "format", "(", "service_context", ".", "service_name", ",", "collection_name", ")", "else", ":", "cls_name", "=", "'{0}.{1}.{2}Collection'", ".", "format", "(", "service_context", ".", "service_name", ",", "resource_name", ",", "collection_name", ")", "collection_cls", "=", "type", "(", "str", "(", "cls_name", ")", ",", "(", "ResourceCollection", ",", ")", ",", "attrs", ")", "# Add the documentation to the collection manager's methods", "self", ".", "_load_documented_collection_methods", "(", "attrs", "=", "attrs", ",", "resource_name", "=", "resource_name", ",", "collection_model", "=", "collection_model", ",", "service_model", "=", "service_context", ".", "service_model", ",", "event_emitter", "=", "event_emitter", ",", "base_class", "=", "CollectionManager", ")", "attrs", "[", "'_collection_cls'", "]", "=", "collection_cls", "cls_name", "+=", "'Manager'", "return", "type", "(", "str", "(", "cls_name", ")", ",", "(", "CollectionManager", ",", ")", ",", "attrs", ")" ]
https://github.com/aws/lumberyard/blob/f85344403c1c2e77ec8c75deb2c116e97b713217/dev/Tools/Python/3.7.10/windows/Lib/site-packages/boto3/resources/collection.py#L368-L426
yan99033/CNN-SVO
d5591ea88103f8d1b26e5296129bf3b3196a14f1
rpg_vikit/vikit_py/src/vikit_py/align_trajectory.py
python
align_sim3
(model, data)
return s, R, t
Implementation of the paper: S. Umeyama, Least-Squares Estimation of Transformation Parameters Between Two Point Patterns, IEEE Trans. Pattern Anal. Mach. Intell., vol. 13, no. 4, 1991. Input: model -- first trajectory (3xn) data -- second trajectory (3xn) Output: s -- scale factor (scalar) R -- rotation matrix (3x3) t -- translation vector (3x1) t_error -- translational error per point (1xn)
Implementation of the paper: S. Umeyama, Least-Squares Estimation of Transformation Parameters Between Two Point Patterns, IEEE Trans. Pattern Anal. Mach. Intell., vol. 13, no. 4, 1991.
[ "Implementation", "of", "the", "paper", ":", "S", ".", "Umeyama", "Least", "-", "Squares", "Estimation", "of", "Transformation", "Parameters", "Between", "Two", "Point", "Patterns", "IEEE", "Trans", ".", "Pattern", "Anal", ".", "Mach", ".", "Intell", ".", "vol", ".", "13", "no", ".", "4", "1991", "." ]
def align_sim3(model, data): """Implementation of the paper: S. Umeyama, Least-Squares Estimation of Transformation Parameters Between Two Point Patterns, IEEE Trans. Pattern Anal. Mach. Intell., vol. 13, no. 4, 1991. Input: model -- first trajectory (3xn) data -- second trajectory (3xn) Output: s -- scale factor (scalar) R -- rotation matrix (3x3) t -- translation vector (3x1) t_error -- translational error per point (1xn) """ # substract mean mu_M = model.mean(0).reshape(model.shape[0],1) mu_D = data.mean(0).reshape(data.shape[0],1) model_zerocentered = model - mu_M data_zerocentered = data - mu_D n = np.shape(model)[0] # correlation C = 1.0/n*np.dot(model_zerocentered.transpose(), data_zerocentered) sigma2 = 1.0/n*np.multiply(data_zerocentered,data_zerocentered).sum() U_svd,D_svd,V_svd = np.linalg.linalg.svd(C) D_svd = np.diag(D_svd) V_svd = np.transpose(V_svd) S = np.eye(3) if(np.linalg.det(U_svd)*np.linalg.det(V_svd) < 0): S[2,2] = -1 R = np.dot(U_svd, np.dot(S, np.transpose(V_svd))) s = 1.0/sigma2*np.trace(np.dot(D_svd, S)) t = mu_M-s*np.dot(R,mu_D) # TODO: # model_aligned = s * R * model + t # alignment_error = model_aligned - data # t_error = np.sqrt(np.sum(np.multiply(alignment_error,alignment_error),0)).A[0] return s, R, t
[ "def", "align_sim3", "(", "model", ",", "data", ")", ":", "# substract mean", "mu_M", "=", "model", ".", "mean", "(", "0", ")", ".", "reshape", "(", "model", ".", "shape", "[", "0", "]", ",", "1", ")", "mu_D", "=", "data", ".", "mean", "(", "0", ")", ".", "reshape", "(", "data", ".", "shape", "[", "0", "]", ",", "1", ")", "model_zerocentered", "=", "model", "-", "mu_M", "data_zerocentered", "=", "data", "-", "mu_D", "n", "=", "np", ".", "shape", "(", "model", ")", "[", "0", "]", "# correlation", "C", "=", "1.0", "/", "n", "*", "np", ".", "dot", "(", "model_zerocentered", ".", "transpose", "(", ")", ",", "data_zerocentered", ")", "sigma2", "=", "1.0", "/", "n", "*", "np", ".", "multiply", "(", "data_zerocentered", ",", "data_zerocentered", ")", ".", "sum", "(", ")", "U_svd", ",", "D_svd", ",", "V_svd", "=", "np", ".", "linalg", ".", "linalg", ".", "svd", "(", "C", ")", "D_svd", "=", "np", ".", "diag", "(", "D_svd", ")", "V_svd", "=", "np", ".", "transpose", "(", "V_svd", ")", "S", "=", "np", ".", "eye", "(", "3", ")", "if", "(", "np", ".", "linalg", ".", "det", "(", "U_svd", ")", "*", "np", ".", "linalg", ".", "det", "(", "V_svd", ")", "<", "0", ")", ":", "S", "[", "2", ",", "2", "]", "=", "-", "1", "R", "=", "np", ".", "dot", "(", "U_svd", ",", "np", ".", "dot", "(", "S", ",", "np", ".", "transpose", "(", "V_svd", ")", ")", ")", "s", "=", "1.0", "/", "sigma2", "*", "np", ".", "trace", "(", "np", ".", "dot", "(", "D_svd", ",", "S", ")", ")", "t", "=", "mu_M", "-", "s", "*", "np", ".", "dot", "(", "R", ",", "mu_D", ")", "# TODO:", "# model_aligned = s * R * model + t", "# alignment_error = model_aligned - data", "# t_error = np.sqrt(np.sum(np.multiply(alignment_error,alignment_error),0)).A[0]", "return", "s", ",", "R", ",", "t" ]
https://github.com/yan99033/CNN-SVO/blob/d5591ea88103f8d1b26e5296129bf3b3196a14f1/rpg_vikit/vikit_py/src/vikit_py/align_trajectory.py#L6-L50
wxWidgets/wxPython-Classic
19571e1ae65f1ac445f5491474121998c97a1bf0
src/msw/_windows.py
python
Printer.Print
(*args, **kwargs)
return _windows_.Printer_Print(*args, **kwargs)
Print(self, Window parent, Printout printout, bool prompt=True) -> bool
Print(self, Window parent, Printout printout, bool prompt=True) -> bool
[ "Print", "(", "self", "Window", "parent", "Printout", "printout", "bool", "prompt", "=", "True", ")", "-", ">", "bool" ]
def Print(*args, **kwargs): """Print(self, Window parent, Printout printout, bool prompt=True) -> bool""" return _windows_.Printer_Print(*args, **kwargs)
[ "def", "Print", "(", "*", "args", ",", "*", "*", "kwargs", ")", ":", "return", "_windows_", ".", "Printer_Print", "(", "*", "args", ",", "*", "*", "kwargs", ")" ]
https://github.com/wxWidgets/wxPython-Classic/blob/19571e1ae65f1ac445f5491474121998c97a1bf0/src/msw/_windows.py#L5235-L5237
deepmodeling/deepmd-kit
159e45d248b0429844fb6a8cb3b3a201987c8d79
deepmd/infer/ewald_recp.py
python
EwaldRecp.eval
(self, coord : np.ndarray, charge : np.ndarray, box : np.ndarray )
return energy, force, virial
Evaluate Parameters ---------- coord The coordinates of atoms charge The atomic charge box The simulation region. PBC is assumed Returns ------- e The energy f The force v The virial
Evaluate Parameters ---------- coord The coordinates of atoms charge The atomic charge box The simulation region. PBC is assumed
[ "Evaluate", "Parameters", "----------", "coord", "The", "coordinates", "of", "atoms", "charge", "The", "atomic", "charge", "box", "The", "simulation", "region", ".", "PBC", "is", "assumed" ]
def eval(self, coord : np.ndarray, charge : np.ndarray, box : np.ndarray ) -> Tuple[np.ndarray, np.ndarray, np.ndarray] : """ Evaluate Parameters ---------- coord The coordinates of atoms charge The atomic charge box The simulation region. PBC is assumed Returns ------- e The energy f The force v The virial """ coord = np.array(coord) charge = np.array(charge) box = np.array(box) nframes = charge.shape[0] natoms = charge.shape[1] coord = np.reshape(coord, [nframes * 3 * natoms]) charge = np.reshape(charge, [nframes * natoms]) box = np.reshape(box, [nframes * 9]) [energy, force, virial] \ = run_sess(self.sess, [self.t_energy, self.t_force, self.t_virial], feed_dict = { self.t_coord: coord, self.t_charge: charge, self.t_box: box, self.t_nloc: [natoms], }) return energy, force, virial
[ "def", "eval", "(", "self", ",", "coord", ":", "np", ".", "ndarray", ",", "charge", ":", "np", ".", "ndarray", ",", "box", ":", "np", ".", "ndarray", ")", "->", "Tuple", "[", "np", ".", "ndarray", ",", "np", ".", "ndarray", ",", "np", ".", "ndarray", "]", ":", "coord", "=", "np", ".", "array", "(", "coord", ")", "charge", "=", "np", ".", "array", "(", "charge", ")", "box", "=", "np", ".", "array", "(", "box", ")", "nframes", "=", "charge", ".", "shape", "[", "0", "]", "natoms", "=", "charge", ".", "shape", "[", "1", "]", "coord", "=", "np", ".", "reshape", "(", "coord", ",", "[", "nframes", "*", "3", "*", "natoms", "]", ")", "charge", "=", "np", ".", "reshape", "(", "charge", ",", "[", "nframes", "*", "natoms", "]", ")", "box", "=", "np", ".", "reshape", "(", "box", ",", "[", "nframes", "*", "9", "]", ")", "[", "energy", ",", "force", ",", "virial", "]", "=", "run_sess", "(", "self", ".", "sess", ",", "[", "self", ".", "t_energy", ",", "self", ".", "t_force", ",", "self", ".", "t_virial", "]", ",", "feed_dict", "=", "{", "self", ".", "t_coord", ":", "coord", ",", "self", ".", "t_charge", ":", "charge", ",", "self", ".", "t_box", ":", "box", ",", "self", ".", "t_nloc", ":", "[", "natoms", "]", ",", "}", ")", "return", "energy", ",", "force", ",", "virial" ]
https://github.com/deepmodeling/deepmd-kit/blob/159e45d248b0429844fb6a8cb3b3a201987c8d79/deepmd/infer/ewald_recp.py#L47-L91
mindspore-ai/mindspore
fb8fd3338605bb34fa5cea054e535a8b1d753fab
mindspore/python/mindspore/train/serialization.py
python
_fill_param_into_net
(net, parameter_list)
Fills parameter_list into net. Args: net (Cell): train network. parameter_list (list): parameters list from ge callback.
Fills parameter_list into net.
[ "Fills", "parameter_list", "into", "net", "." ]
def _fill_param_into_net(net, parameter_list): """ Fills parameter_list into net. Args: net (Cell): train network. parameter_list (list): parameters list from ge callback. """ parameter_dict = {} for each_param in parameter_list: param_name = each_param["name"] if isinstance(each_param["data"], Parameter): each_param["data"].init_data() np_val = each_param["data"].asnumpy() if np_val.shape == (1,): parameter_dict[param_name] = Parameter(np_val, name=param_name) elif np_val.shape == (): parameter_dict[param_name] = Parameter(Tensor(np_val.tolist(), mstype.pytype_to_dtype(np_val.dtype)), name=param_name) else: parameter_dict[param_name] = Parameter(Tensor(np_val), name=param_name) load_param_into_net(net, parameter_dict)
[ "def", "_fill_param_into_net", "(", "net", ",", "parameter_list", ")", ":", "parameter_dict", "=", "{", "}", "for", "each_param", "in", "parameter_list", ":", "param_name", "=", "each_param", "[", "\"name\"", "]", "if", "isinstance", "(", "each_param", "[", "\"data\"", "]", ",", "Parameter", ")", ":", "each_param", "[", "\"data\"", "]", ".", "init_data", "(", ")", "np_val", "=", "each_param", "[", "\"data\"", "]", ".", "asnumpy", "(", ")", "if", "np_val", ".", "shape", "==", "(", "1", ",", ")", ":", "parameter_dict", "[", "param_name", "]", "=", "Parameter", "(", "np_val", ",", "name", "=", "param_name", ")", "elif", "np_val", ".", "shape", "==", "(", ")", ":", "parameter_dict", "[", "param_name", "]", "=", "Parameter", "(", "Tensor", "(", "np_val", ".", "tolist", "(", ")", ",", "mstype", ".", "pytype_to_dtype", "(", "np_val", ".", "dtype", ")", ")", ",", "name", "=", "param_name", ")", "else", ":", "parameter_dict", "[", "param_name", "]", "=", "Parameter", "(", "Tensor", "(", "np_val", ")", ",", "name", "=", "param_name", ")", "load_param_into_net", "(", "net", ",", "parameter_dict", ")" ]
https://github.com/mindspore-ai/mindspore/blob/fb8fd3338605bb34fa5cea054e535a8b1d753fab/mindspore/python/mindspore/train/serialization.py#L710-L732
SoarGroup/Soar
a1c5e249499137a27da60533c72969eef3b8ab6b
scons/scons-local-4.1.0/SCons/Script/Main.py
python
_scons_internal_error
()
Handle all errors but user errors. Print out a message telling the user what to do in this case and print a normal trace.
Handle all errors but user errors. Print out a message telling the user what to do in this case and print a normal trace.
[ "Handle", "all", "errors", "but", "user", "errors", ".", "Print", "out", "a", "message", "telling", "the", "user", "what", "to", "do", "in", "this", "case", "and", "print", "a", "normal", "trace", "." ]
def _scons_internal_error(): """Handle all errors but user errors. Print out a message telling the user what to do in this case and print a normal trace. """ print('internal error') traceback.print_exc() sys.exit(2)
[ "def", "_scons_internal_error", "(", ")", ":", "print", "(", "'internal error'", ")", "traceback", ".", "print_exc", "(", ")", "sys", ".", "exit", "(", "2", ")" ]
https://github.com/SoarGroup/Soar/blob/a1c5e249499137a27da60533c72969eef3b8ab6b/scons/scons-local-4.1.0/SCons/Script/Main.py#L604-L610
wxWidgets/wxPython-Classic
19571e1ae65f1ac445f5491474121998c97a1bf0
src/osx_carbon/_misc.py
python
ProcessEvent.GetExitCode
(*args, **kwargs)
return _misc_.ProcessEvent_GetExitCode(*args, **kwargs)
GetExitCode(self) -> int
GetExitCode(self) -> int
[ "GetExitCode", "(", "self", ")", "-", ">", "int" ]
def GetExitCode(*args, **kwargs): """GetExitCode(self) -> int""" return _misc_.ProcessEvent_GetExitCode(*args, **kwargs)
[ "def", "GetExitCode", "(", "*", "args", ",", "*", "*", "kwargs", ")", ":", "return", "_misc_", ".", "ProcessEvent_GetExitCode", "(", "*", "args", ",", "*", "*", "kwargs", ")" ]
https://github.com/wxWidgets/wxPython-Classic/blob/19571e1ae65f1ac445f5491474121998c97a1bf0/src/osx_carbon/_misc.py#L2078-L2080
alrightchiu/SecondRound
56f7603ed87b6db2326fcc7a67ec015e820d57e4
fabfile.py
python
publish
()
Publish to production via rsync
Publish to production via rsync
[ "Publish", "to", "production", "via", "rsync" ]
def publish(): """Publish to production via rsync""" local('pelican -s publishconf.py') project.rsync_project( remote_dir=dest_path, exclude=".DS_Store", local_dir=DEPLOY_PATH.rstrip('/') + '/', delete=True, extra_opts='-c', )
[ "def", "publish", "(", ")", ":", "local", "(", "'pelican -s publishconf.py'", ")", "project", ".", "rsync_project", "(", "remote_dir", "=", "dest_path", ",", "exclude", "=", "\".DS_Store\"", ",", "local_dir", "=", "DEPLOY_PATH", ".", "rstrip", "(", "'/'", ")", "+", "'/'", ",", "delete", "=", "True", ",", "extra_opts", "=", "'-c'", ",", ")" ]
https://github.com/alrightchiu/SecondRound/blob/56f7603ed87b6db2326fcc7a67ec015e820d57e4/fabfile.py#L79-L88
Kitware/ParaView
f760af9124ff4634b23ebbeab95a4f56e0261955
Wrapping/Python/paraview/simple.py
python
GetActiveView
()
return active_objects.view
Returns the active view.
Returns the active view.
[ "Returns", "the", "active", "view", "." ]
def GetActiveView(): """Returns the active view.""" return active_objects.view
[ "def", "GetActiveView", "(", ")", ":", "return", "active_objects", ".", "view" ]
https://github.com/Kitware/ParaView/blob/f760af9124ff4634b23ebbeab95a4f56e0261955/Wrapping/Python/paraview/simple.py#L1157-L1159
microsoft/clang
86d4513d3e0daa4d5a29b0b1de7c854ca15f9fe5
bindings/python/clang/cindex.py
python
TranslationUnit.diagnostics
(self)
return DiagIterator(self)
Return an iterable (and indexable) object containing the diagnostics.
Return an iterable (and indexable) object containing the diagnostics.
[ "Return", "an", "iterable", "(", "and", "indexable", ")", "object", "containing", "the", "diagnostics", "." ]
def diagnostics(self): """ Return an iterable (and indexable) object containing the diagnostics. """ class DiagIterator: def __init__(self, tu): self.tu = tu def __len__(self): return int(conf.lib.clang_getNumDiagnostics(self.tu)) def __getitem__(self, key): diag = conf.lib.clang_getDiagnostic(self.tu, key) if not diag: raise IndexError return Diagnostic(diag) return DiagIterator(self)
[ "def", "diagnostics", "(", "self", ")", ":", "class", "DiagIterator", ":", "def", "__init__", "(", "self", ",", "tu", ")", ":", "self", ".", "tu", "=", "tu", "def", "__len__", "(", "self", ")", ":", "return", "int", "(", "conf", ".", "lib", ".", "clang_getNumDiagnostics", "(", "self", ".", "tu", ")", ")", "def", "__getitem__", "(", "self", ",", "key", ")", ":", "diag", "=", "conf", ".", "lib", ".", "clang_getDiagnostic", "(", "self", ".", "tu", ",", "key", ")", "if", "not", "diag", ":", "raise", "IndexError", "return", "Diagnostic", "(", "diag", ")", "return", "DiagIterator", "(", "self", ")" ]
https://github.com/microsoft/clang/blob/86d4513d3e0daa4d5a29b0b1de7c854ca15f9fe5/bindings/python/clang/cindex.py#L2944-L2961
CanalTP/navitia
cb84ce9859070187e708818b058e6a7e0b7f891b
source/jormungandr/jormungandr/scenarios/journey_filter.py
python
shared_section_generator
(journey)
Definition of journeys with a shared section: - same stop point of departure and arrival - same number of sections in the journey
Definition of journeys with a shared section: - same stop point of departure and arrival - same number of sections in the journey
[ "Definition", "of", "journeys", "with", "a", "shared", "section", ":", "-", "same", "stop", "point", "of", "departure", "and", "arrival", "-", "same", "number", "of", "sections", "in", "the", "journey" ]
def shared_section_generator(journey): """ Definition of journeys with a shared section: - same stop point of departure and arrival - same number of sections in the journey """ # Early return: test if the journeys have the same number of sections yield len(journey.sections) # Compare each section of the journey with the criteria in the function description for s in journey.sections: if s.type == response_pb2.PUBLIC_TRANSPORT: yield "origin:{}/dest:{}".format(s.origin.uri, s.destination.uri)
[ "def", "shared_section_generator", "(", "journey", ")", ":", "# Early return: test if the journeys have the same number of sections", "yield", "len", "(", "journey", ".", "sections", ")", "# Compare each section of the journey with the criteria in the function description", "for", "s", "in", "journey", ".", "sections", ":", "if", "s", ".", "type", "==", "response_pb2", ".", "PUBLIC_TRANSPORT", ":", "yield", "\"origin:{}/dest:{}\"", ".", "format", "(", "s", ".", "origin", ".", "uri", ",", "s", ".", "destination", ".", "uri", ")" ]
https://github.com/CanalTP/navitia/blob/cb84ce9859070187e708818b058e6a7e0b7f891b/source/jormungandr/jormungandr/scenarios/journey_filter.py#L520-L533
Xilinx/Vitis-AI
fc74d404563d9951b57245443c73bef389f3657f
tools/Vitis-AI-Quantizer/vai_q_tensorflow1.x/tensorflow/python/ops/parsing_ops.py
python
_process_raw_parameters
(names, dense_defaults, sparse_keys, sparse_types, dense_keys, dense_types, dense_shapes)
return (names, dense_defaults_vec, sparse_keys, sparse_types, dense_keys, dense_shapes_as_proto, dense_shapes)
Process raw parameters to params used by `gen_parsing_ops`. Args: names: A vector (1-D Tensor) of strings (optional), the names of the serialized protos. dense_defaults: A dict mapping string keys to `Tensor`s. The keys of the dict must match the dense_keys of the feature. sparse_keys: A list of string keys in the examples' features. The results for these keys will be returned as `SparseTensor` objects. sparse_types: A list of `DTypes` of the same length as `sparse_keys`. Only `tf.float32` (`FloatList`), `tf.int64` (`Int64List`), and `tf.string` (`BytesList`) are supported. dense_keys: A list of string keys in the examples' features. The results for these keys will be returned as `Tensor`s dense_types: A list of DTypes of the same length as `dense_keys`. Only `tf.float32` (`FloatList`), `tf.int64` (`Int64List`), and `tf.string` (`BytesList`) are supported. dense_shapes: A list of tuples with the same length as `dense_keys`. The shape of the data for each dense feature referenced by `dense_keys`. Required for any input tensors identified by `dense_keys`. Must be either fully defined, or may contain an unknown first dimension. An unknown first dimension means the feature is treated as having a variable number of blocks, and the output shape along this dimension is considered unknown at graph build time. Padding is applied for minibatch elements smaller than the maximum number of blocks for the given feature along this dimension. Returns: Tuple of `names`, `dense_defaults_vec`, `sparse_keys`, `sparse_types`, `dense_keys`, `dense_shapes`. Raises: ValueError: If sparse and dense key sets intersect, or input lengths do not match up.
Process raw parameters to params used by `gen_parsing_ops`.
[ "Process", "raw", "parameters", "to", "params", "used", "by", "gen_parsing_ops", "." ]
def _process_raw_parameters(names, dense_defaults, sparse_keys, sparse_types, dense_keys, dense_types, dense_shapes): """Process raw parameters to params used by `gen_parsing_ops`. Args: names: A vector (1-D Tensor) of strings (optional), the names of the serialized protos. dense_defaults: A dict mapping string keys to `Tensor`s. The keys of the dict must match the dense_keys of the feature. sparse_keys: A list of string keys in the examples' features. The results for these keys will be returned as `SparseTensor` objects. sparse_types: A list of `DTypes` of the same length as `sparse_keys`. Only `tf.float32` (`FloatList`), `tf.int64` (`Int64List`), and `tf.string` (`BytesList`) are supported. dense_keys: A list of string keys in the examples' features. The results for these keys will be returned as `Tensor`s dense_types: A list of DTypes of the same length as `dense_keys`. Only `tf.float32` (`FloatList`), `tf.int64` (`Int64List`), and `tf.string` (`BytesList`) are supported. dense_shapes: A list of tuples with the same length as `dense_keys`. The shape of the data for each dense feature referenced by `dense_keys`. Required for any input tensors identified by `dense_keys`. Must be either fully defined, or may contain an unknown first dimension. An unknown first dimension means the feature is treated as having a variable number of blocks, and the output shape along this dimension is considered unknown at graph build time. Padding is applied for minibatch elements smaller than the maximum number of blocks for the given feature along this dimension. Returns: Tuple of `names`, `dense_defaults_vec`, `sparse_keys`, `sparse_types`, `dense_keys`, `dense_shapes`. Raises: ValueError: If sparse and dense key sets intersect, or input lengths do not match up. """ names = [] if names is None else names dense_defaults = collections.OrderedDict( ) if dense_defaults is None else dense_defaults sparse_keys = [] if sparse_keys is None else sparse_keys sparse_types = [] if sparse_types is None else sparse_types dense_keys = [] if dense_keys is None else dense_keys dense_types = [] if dense_types is None else dense_types dense_shapes = ([[]] * len(dense_keys) if dense_shapes is None else dense_shapes) num_dense = len(dense_keys) num_sparse = len(sparse_keys) if len(dense_shapes) != num_dense: raise ValueError("len(dense_shapes) != len(dense_keys): %d vs. %d" % (len(dense_shapes), num_dense)) if len(dense_types) != num_dense: raise ValueError("len(dense_types) != len(num_dense): %d vs. %d" % (len(dense_types), num_dense)) if len(sparse_types) != num_sparse: raise ValueError("len(sparse_types) != len(sparse_keys): %d vs. %d" % (len(sparse_types), num_sparse)) if num_dense + num_sparse == 0: raise ValueError("Must provide at least one sparse key or dense key") if not set(dense_keys).isdisjoint(set(sparse_keys)): raise ValueError( "Dense and sparse keys must not intersect; intersection: %s" % set(dense_keys).intersection(set(sparse_keys))) # Convert dense_shapes to TensorShape object. dense_shapes = [tensor_shape.as_shape(shape) for shape in dense_shapes] dense_defaults_vec = [] for i, key in enumerate(dense_keys): default_value = dense_defaults.get(key) dense_shape = dense_shapes[i] if (dense_shape.ndims is not None and dense_shape.ndims > 0 and dense_shape.dims[0].value is None): # Variable stride dense shape, the default value should be a # scalar padding value if default_value is None: default_value = ops.convert_to_tensor( "" if dense_types[i] == dtypes.string else 0, dtype=dense_types[i]) else: # Reshape to a scalar to ensure user gets an error if they # provide a tensor that's not intended to be a padding value # (0 or 2+ elements). key_name = "padding_" + re.sub("[^A-Za-z0-9_.\\-/]", "_", key) default_value = ops.convert_to_tensor( default_value, dtype=dense_types[i], name=key_name) default_value = array_ops.reshape(default_value, []) else: if default_value is None: default_value = constant_op.constant([], dtype=dense_types[i]) elif not isinstance(default_value, ops.Tensor): key_name = "key_" + re.sub("[^A-Za-z0-9_.\\-/]", "_", key) default_value = ops.convert_to_tensor( default_value, dtype=dense_types[i], name=key_name) default_value = array_ops.reshape(default_value, dense_shape) dense_defaults_vec.append(default_value) # Finally, convert dense_shapes to TensorShapeProto dense_shapes_as_proto = [shape.as_proto() for shape in dense_shapes] return (names, dense_defaults_vec, sparse_keys, sparse_types, dense_keys, dense_shapes_as_proto, dense_shapes)
[ "def", "_process_raw_parameters", "(", "names", ",", "dense_defaults", ",", "sparse_keys", ",", "sparse_types", ",", "dense_keys", ",", "dense_types", ",", "dense_shapes", ")", ":", "names", "=", "[", "]", "if", "names", "is", "None", "else", "names", "dense_defaults", "=", "collections", ".", "OrderedDict", "(", ")", "if", "dense_defaults", "is", "None", "else", "dense_defaults", "sparse_keys", "=", "[", "]", "if", "sparse_keys", "is", "None", "else", "sparse_keys", "sparse_types", "=", "[", "]", "if", "sparse_types", "is", "None", "else", "sparse_types", "dense_keys", "=", "[", "]", "if", "dense_keys", "is", "None", "else", "dense_keys", "dense_types", "=", "[", "]", "if", "dense_types", "is", "None", "else", "dense_types", "dense_shapes", "=", "(", "[", "[", "]", "]", "*", "len", "(", "dense_keys", ")", "if", "dense_shapes", "is", "None", "else", "dense_shapes", ")", "num_dense", "=", "len", "(", "dense_keys", ")", "num_sparse", "=", "len", "(", "sparse_keys", ")", "if", "len", "(", "dense_shapes", ")", "!=", "num_dense", ":", "raise", "ValueError", "(", "\"len(dense_shapes) != len(dense_keys): %d vs. %d\"", "%", "(", "len", "(", "dense_shapes", ")", ",", "num_dense", ")", ")", "if", "len", "(", "dense_types", ")", "!=", "num_dense", ":", "raise", "ValueError", "(", "\"len(dense_types) != len(num_dense): %d vs. %d\"", "%", "(", "len", "(", "dense_types", ")", ",", "num_dense", ")", ")", "if", "len", "(", "sparse_types", ")", "!=", "num_sparse", ":", "raise", "ValueError", "(", "\"len(sparse_types) != len(sparse_keys): %d vs. %d\"", "%", "(", "len", "(", "sparse_types", ")", ",", "num_sparse", ")", ")", "if", "num_dense", "+", "num_sparse", "==", "0", ":", "raise", "ValueError", "(", "\"Must provide at least one sparse key or dense key\"", ")", "if", "not", "set", "(", "dense_keys", ")", ".", "isdisjoint", "(", "set", "(", "sparse_keys", ")", ")", ":", "raise", "ValueError", "(", "\"Dense and sparse keys must not intersect; intersection: %s\"", "%", "set", "(", "dense_keys", ")", ".", "intersection", "(", "set", "(", "sparse_keys", ")", ")", ")", "# Convert dense_shapes to TensorShape object.", "dense_shapes", "=", "[", "tensor_shape", ".", "as_shape", "(", "shape", ")", "for", "shape", "in", "dense_shapes", "]", "dense_defaults_vec", "=", "[", "]", "for", "i", ",", "key", "in", "enumerate", "(", "dense_keys", ")", ":", "default_value", "=", "dense_defaults", ".", "get", "(", "key", ")", "dense_shape", "=", "dense_shapes", "[", "i", "]", "if", "(", "dense_shape", ".", "ndims", "is", "not", "None", "and", "dense_shape", ".", "ndims", ">", "0", "and", "dense_shape", ".", "dims", "[", "0", "]", ".", "value", "is", "None", ")", ":", "# Variable stride dense shape, the default value should be a", "# scalar padding value", "if", "default_value", "is", "None", ":", "default_value", "=", "ops", ".", "convert_to_tensor", "(", "\"\"", "if", "dense_types", "[", "i", "]", "==", "dtypes", ".", "string", "else", "0", ",", "dtype", "=", "dense_types", "[", "i", "]", ")", "else", ":", "# Reshape to a scalar to ensure user gets an error if they", "# provide a tensor that's not intended to be a padding value", "# (0 or 2+ elements).", "key_name", "=", "\"padding_\"", "+", "re", ".", "sub", "(", "\"[^A-Za-z0-9_.\\\\-/]\"", ",", "\"_\"", ",", "key", ")", "default_value", "=", "ops", ".", "convert_to_tensor", "(", "default_value", ",", "dtype", "=", "dense_types", "[", "i", "]", ",", "name", "=", "key_name", ")", "default_value", "=", "array_ops", ".", "reshape", "(", "default_value", ",", "[", "]", ")", "else", ":", "if", "default_value", "is", "None", ":", "default_value", "=", "constant_op", ".", "constant", "(", "[", "]", ",", "dtype", "=", "dense_types", "[", "i", "]", ")", "elif", "not", "isinstance", "(", "default_value", ",", "ops", ".", "Tensor", ")", ":", "key_name", "=", "\"key_\"", "+", "re", ".", "sub", "(", "\"[^A-Za-z0-9_.\\\\-/]\"", ",", "\"_\"", ",", "key", ")", "default_value", "=", "ops", ".", "convert_to_tensor", "(", "default_value", ",", "dtype", "=", "dense_types", "[", "i", "]", ",", "name", "=", "key_name", ")", "default_value", "=", "array_ops", ".", "reshape", "(", "default_value", ",", "dense_shape", ")", "dense_defaults_vec", ".", "append", "(", "default_value", ")", "# Finally, convert dense_shapes to TensorShapeProto", "dense_shapes_as_proto", "=", "[", "shape", ".", "as_proto", "(", ")", "for", "shape", "in", "dense_shapes", "]", "return", "(", "names", ",", "dense_defaults_vec", ",", "sparse_keys", ",", "sparse_types", ",", "dense_keys", ",", "dense_shapes_as_proto", ",", "dense_shapes", ")" ]
https://github.com/Xilinx/Vitis-AI/blob/fc74d404563d9951b57245443c73bef389f3657f/tools/Vitis-AI-Quantizer/vai_q_tensorflow1.x/tensorflow/python/ops/parsing_ops.py#L879-L982
facebook/mysql-5.6
65a650660ec7b4d627d1b738f397252ff4706207
arcanist/lint/cpp_linter/cpplint.py
python
UpdateIncludeState
(filename, include_state, io=codecs)
return True
Fill up the include_state with new includes found from the file. Args: filename: the name of the header to read. include_state: an _IncludeState instance in which the headers are inserted. io: The io factory to use to read the file. Provided for testability. Returns: True if a header was successfully added. False otherwise.
Fill up the include_state with new includes found from the file.
[ "Fill", "up", "the", "include_state", "with", "new", "includes", "found", "from", "the", "file", "." ]
def UpdateIncludeState(filename, include_state, io=codecs): """Fill up the include_state with new includes found from the file. Args: filename: the name of the header to read. include_state: an _IncludeState instance in which the headers are inserted. io: The io factory to use to read the file. Provided for testability. Returns: True if a header was successfully added. False otherwise. """ headerfile = None try: headerfile = io.open(filename, 'r', 'utf8', 'replace') except IOError: return False linenum = 0 for line in headerfile: linenum += 1 clean_line = CleanseComments(line) match = _RE_PATTERN_INCLUDE.search(clean_line) if match: include = match.group(2) # The value formatting is cute, but not really used right now. # What matters here is that the key is in include_state. include_state.setdefault(include, '%s:%d' % (filename, linenum)) return True
[ "def", "UpdateIncludeState", "(", "filename", ",", "include_state", ",", "io", "=", "codecs", ")", ":", "headerfile", "=", "None", "try", ":", "headerfile", "=", "io", ".", "open", "(", "filename", ",", "'r'", ",", "'utf8'", ",", "'replace'", ")", "except", "IOError", ":", "return", "False", "linenum", "=", "0", "for", "line", "in", "headerfile", ":", "linenum", "+=", "1", "clean_line", "=", "CleanseComments", "(", "line", ")", "match", "=", "_RE_PATTERN_INCLUDE", ".", "search", "(", "clean_line", ")", "if", "match", ":", "include", "=", "match", ".", "group", "(", "2", ")", "# The value formatting is cute, but not really used right now.", "# What matters here is that the key is in include_state.", "include_state", ".", "setdefault", "(", "include", ",", "'%s:%d'", "%", "(", "filename", ",", "linenum", ")", ")", "return", "True" ]
https://github.com/facebook/mysql-5.6/blob/65a650660ec7b4d627d1b738f397252ff4706207/arcanist/lint/cpp_linter/cpplint.py#L4359-L4385
hanpfei/chromium-net
392cc1fa3a8f92f42e4071ab6e674d8e0482f83f
third_party/catapult/third_party/gsutil/third_party/boto/boto/s3/key.py
python
Key.get_file
(self, fp, headers=None, cb=None, num_cb=10, torrent=False, version_id=None, override_num_retries=None, response_headers=None)
Retrieves a file from an S3 Key :type fp: file :param fp: File pointer to put the data into :type headers: string :param: headers to send when retrieving the files :type cb: function :param cb: a callback function that will be called to report progress on the upload. The callback should accept two integer parameters, the first representing the number of bytes that have been successfully transmitted to S3 and the second representing the size of the to be transmitted object. :type cb: int :param num_cb: (optional) If a callback is specified with the cb parameter this parameter determines the granularity of the callback by defining the maximum number of times the callback will be called during the file transfer. :type torrent: bool :param torrent: Flag for whether to get a torrent for the file :type override_num_retries: int :param override_num_retries: If not None will override configured num_retries parameter for underlying GET. :type response_headers: dict :param response_headers: A dictionary containing HTTP headers/values that will override any headers associated with the stored object in the response. See http://goo.gl/EWOPb for details. :type version_id: str :param version_id: The ID of a particular version of the object. If this parameter is not supplied but the Key object has a ``version_id`` attribute, that value will be used when retrieving the object. You can set the Key object's ``version_id`` attribute to None to always grab the latest version from a version-enabled bucket.
Retrieves a file from an S3 Key
[ "Retrieves", "a", "file", "from", "an", "S3", "Key" ]
def get_file(self, fp, headers=None, cb=None, num_cb=10, torrent=False, version_id=None, override_num_retries=None, response_headers=None): """ Retrieves a file from an S3 Key :type fp: file :param fp: File pointer to put the data into :type headers: string :param: headers to send when retrieving the files :type cb: function :param cb: a callback function that will be called to report progress on the upload. The callback should accept two integer parameters, the first representing the number of bytes that have been successfully transmitted to S3 and the second representing the size of the to be transmitted object. :type cb: int :param num_cb: (optional) If a callback is specified with the cb parameter this parameter determines the granularity of the callback by defining the maximum number of times the callback will be called during the file transfer. :type torrent: bool :param torrent: Flag for whether to get a torrent for the file :type override_num_retries: int :param override_num_retries: If not None will override configured num_retries parameter for underlying GET. :type response_headers: dict :param response_headers: A dictionary containing HTTP headers/values that will override any headers associated with the stored object in the response. See http://goo.gl/EWOPb for details. :type version_id: str :param version_id: The ID of a particular version of the object. If this parameter is not supplied but the Key object has a ``version_id`` attribute, that value will be used when retrieving the object. You can set the Key object's ``version_id`` attribute to None to always grab the latest version from a version-enabled bucket. """ self._get_file_internal(fp, headers=headers, cb=cb, num_cb=num_cb, torrent=torrent, version_id=version_id, override_num_retries=override_num_retries, response_headers=response_headers, hash_algs=None, query_args=None)
[ "def", "get_file", "(", "self", ",", "fp", ",", "headers", "=", "None", ",", "cb", "=", "None", ",", "num_cb", "=", "10", ",", "torrent", "=", "False", ",", "version_id", "=", "None", ",", "override_num_retries", "=", "None", ",", "response_headers", "=", "None", ")", ":", "self", ".", "_get_file_internal", "(", "fp", ",", "headers", "=", "headers", ",", "cb", "=", "cb", ",", "num_cb", "=", "num_cb", ",", "torrent", "=", "torrent", ",", "version_id", "=", "version_id", ",", "override_num_retries", "=", "override_num_retries", ",", "response_headers", "=", "response_headers", ",", "hash_algs", "=", "None", ",", "query_args", "=", "None", ")" ]
https://github.com/hanpfei/chromium-net/blob/392cc1fa3a8f92f42e4071ab6e674d8e0482f83f/third_party/catapult/third_party/gsutil/third_party/boto/boto/s3/key.py#L1430-L1482
ChromiumWebApps/chromium
c7361d39be8abd1574e6ce8957c8dbddd4c6ccf7
tools/perf/measurements/media.py
python
Media.results_are_the_same_on_every_page
(self)
return False
Results can vary from page to page based on media events taking place.
Results can vary from page to page based on media events taking place.
[ "Results", "can", "vary", "from", "page", "to", "page", "based", "on", "media", "events", "taking", "place", "." ]
def results_are_the_same_on_every_page(self): """Results can vary from page to page based on media events taking place.""" return False
[ "def", "results_are_the_same_on_every_page", "(", "self", ")", ":", "return", "False" ]
https://github.com/ChromiumWebApps/chromium/blob/c7361d39be8abd1574e6ce8957c8dbddd4c6ccf7/tools/perf/measurements/media.py#L28-L30
aws/lumberyard
f85344403c1c2e77ec8c75deb2c116e97b713217
dev/Tools/Python/3.7.10/linux_x64/lib/python3.7/_pyio.py
python
FileIO.writable
(self)
return self._writable
True if file was opened in a write mode.
True if file was opened in a write mode.
[ "True", "if", "file", "was", "opened", "in", "a", "write", "mode", "." ]
def writable(self): """True if file was opened in a write mode.""" self._checkClosed() return self._writable
[ "def", "writable", "(", "self", ")", ":", "self", ".", "_checkClosed", "(", ")", "return", "self", ".", "_writable" ]
https://github.com/aws/lumberyard/blob/f85344403c1c2e77ec8c75deb2c116e97b713217/dev/Tools/Python/3.7.10/linux_x64/lib/python3.7/_pyio.py#L1728-L1731
aws/lumberyard
f85344403c1c2e77ec8c75deb2c116e97b713217
dev/Tools/Python/3.7.10/mac/Python.framework/Versions/3.7/lib/python3.7/site-packages/pip/_vendor/toml/encoder.py
python
dumps
(o, encoder=None)
return retval
Stringifies input dict as toml Args: o: Object to dump into toml encoder: The ``TomlEncoder`` to use for constructing the output string Returns: String containing the toml corresponding to dict Examples: ```python >>> import toml >>> output = { ... 'a': "I'm a string", ... 'b': ["I'm", "a", "list"], ... 'c': 2400 ... } >>> toml.dumps(output) 'a = "I\'m a string"\nb = [ "I\'m", "a", "list",]\nc = 2400\n' ```
Stringifies input dict as toml
[ "Stringifies", "input", "dict", "as", "toml" ]
def dumps(o, encoder=None): """Stringifies input dict as toml Args: o: Object to dump into toml encoder: The ``TomlEncoder`` to use for constructing the output string Returns: String containing the toml corresponding to dict Examples: ```python >>> import toml >>> output = { ... 'a': "I'm a string", ... 'b': ["I'm", "a", "list"], ... 'c': 2400 ... } >>> toml.dumps(output) 'a = "I\'m a string"\nb = [ "I\'m", "a", "list",]\nc = 2400\n' ``` """ retval = "" if encoder is None: encoder = TomlEncoder(o.__class__) addtoretval, sections = encoder.dump_sections(o, "") retval += addtoretval outer_objs = [id(o)] while sections: section_ids = [id(section) for section in sections.values()] for outer_obj in outer_objs: if outer_obj in section_ids: raise ValueError("Circular reference detected") outer_objs += section_ids newsections = encoder.get_empty_table() for section in sections: addtoretval, addtosections = encoder.dump_sections( sections[section], section) if addtoretval or (not addtoretval and not addtosections): if retval and retval[-2:] != "\n\n": retval += "\n" retval += "[" + section + "]\n" if addtoretval: retval += addtoretval for s in addtosections: newsections[section + "." + s] = addtosections[s] sections = newsections return retval
[ "def", "dumps", "(", "o", ",", "encoder", "=", "None", ")", ":", "retval", "=", "\"\"", "if", "encoder", "is", "None", ":", "encoder", "=", "TomlEncoder", "(", "o", ".", "__class__", ")", "addtoretval", ",", "sections", "=", "encoder", ".", "dump_sections", "(", "o", ",", "\"\"", ")", "retval", "+=", "addtoretval", "outer_objs", "=", "[", "id", "(", "o", ")", "]", "while", "sections", ":", "section_ids", "=", "[", "id", "(", "section", ")", "for", "section", "in", "sections", ".", "values", "(", ")", "]", "for", "outer_obj", "in", "outer_objs", ":", "if", "outer_obj", "in", "section_ids", ":", "raise", "ValueError", "(", "\"Circular reference detected\"", ")", "outer_objs", "+=", "section_ids", "newsections", "=", "encoder", ".", "get_empty_table", "(", ")", "for", "section", "in", "sections", ":", "addtoretval", ",", "addtosections", "=", "encoder", ".", "dump_sections", "(", "sections", "[", "section", "]", ",", "section", ")", "if", "addtoretval", "or", "(", "not", "addtoretval", "and", "not", "addtosections", ")", ":", "if", "retval", "and", "retval", "[", "-", "2", ":", "]", "!=", "\"\\n\\n\"", ":", "retval", "+=", "\"\\n\"", "retval", "+=", "\"[\"", "+", "section", "+", "\"]\\n\"", "if", "addtoretval", ":", "retval", "+=", "addtoretval", "for", "s", "in", "addtosections", ":", "newsections", "[", "section", "+", "\".\"", "+", "s", "]", "=", "addtosections", "[", "s", "]", "sections", "=", "newsections", "return", "retval" ]
https://github.com/aws/lumberyard/blob/f85344403c1c2e77ec8c75deb2c116e97b713217/dev/Tools/Python/3.7.10/mac/Python.framework/Versions/3.7/lib/python3.7/site-packages/pip/_vendor/toml/encoder.py#L34-L83
aws/lumberyard
f85344403c1c2e77ec8c75deb2c116e97b713217
dev/Tools/Python/3.7.10/linux_x64/lib/python3.7/idlelib/query.py
python
CustomRun.entry_ok
(self)
return None if cli_args is None else (cli_args, restart)
Return apparently valid (cli_args, restart) or None
Return apparently valid (cli_args, restart) or None
[ "Return", "apparently", "valid", "(", "cli_args", "restart", ")", "or", "None" ]
def entry_ok(self): "Return apparently valid (cli_args, restart) or None" cli_args = self.cli_args_ok() restart = self.restartvar.get() return None if cli_args is None else (cli_args, restart)
[ "def", "entry_ok", "(", "self", ")", ":", "cli_args", "=", "self", ".", "cli_args_ok", "(", ")", "restart", "=", "self", ".", "restartvar", ".", "get", "(", ")", "return", "None", "if", "cli_args", "is", "None", "else", "(", "cli_args", ",", "restart", ")" ]
https://github.com/aws/lumberyard/blob/f85344403c1c2e77ec8c75deb2c116e97b713217/dev/Tools/Python/3.7.10/linux_x64/lib/python3.7/idlelib/query.py#L377-L381
apple/swift-lldb
d74be846ef3e62de946df343e8c234bde93a8912
scripts/Python/static-binding/lldb.py
python
SBError.SetError
(self, err, type)
return _lldb.SBError_SetError(self, err, type)
SetError(SBError self, uint32_t err, lldb::ErrorType type)
SetError(SBError self, uint32_t err, lldb::ErrorType type)
[ "SetError", "(", "SBError", "self", "uint32_t", "err", "lldb", "::", "ErrorType", "type", ")" ]
def SetError(self, err, type): """SetError(SBError self, uint32_t err, lldb::ErrorType type)""" return _lldb.SBError_SetError(self, err, type)
[ "def", "SetError", "(", "self", ",", "err", ",", "type", ")", ":", "return", "_lldb", ".", "SBError_SetError", "(", "self", ",", "err", ",", "type", ")" ]
https://github.com/apple/swift-lldb/blob/d74be846ef3e62de946df343e8c234bde93a8912/scripts/Python/static-binding/lldb.py#L4607-L4609
ChromiumWebApps/chromium
c7361d39be8abd1574e6ce8957c8dbddd4c6ccf7
tools/deep_memory_profiler/lib/policy.py
python
Policy.find_rule
(self, component_name)
return None
Finds a rule whose name is |component_name|.
Finds a rule whose name is |component_name|.
[ "Finds", "a", "rule", "whose", "name", "is", "|component_name|", "." ]
def find_rule(self, component_name): """Finds a rule whose name is |component_name|. """ for rule in self._rules: if rule.name == component_name: return rule return None
[ "def", "find_rule", "(", "self", ",", "component_name", ")", ":", "for", "rule", "in", "self", ".", "_rules", ":", "if", "rule", ".", "name", "==", "component_name", ":", "return", "rule", "return", "None" ]
https://github.com/ChromiumWebApps/chromium/blob/c7361d39be8abd1574e6ce8957c8dbddd4c6ccf7/tools/deep_memory_profiler/lib/policy.py#L128-L133
cvxpy/cvxpy
5165b4fb750dfd237de8659383ef24b4b2e33aaf
cvxpy/atoms/matrix_frac.py
python
MatrixFrac.is_atom_convex
(self)
return True
Is the atom convex?
Is the atom convex?
[ "Is", "the", "atom", "convex?" ]
def is_atom_convex(self) -> bool: """Is the atom convex? """ return True
[ "def", "is_atom_convex", "(", "self", ")", "->", "bool", ":", "return", "True" ]
https://github.com/cvxpy/cvxpy/blob/5165b4fb750dfd237de8659383ef24b4b2e33aaf/cvxpy/atoms/matrix_frac.py#L111-L114
aws/lumberyard
f85344403c1c2e77ec8c75deb2c116e97b713217
dev/Gems/CloudGemMetric/v1/AWS/common-code/Lib/numba/targets/callconv.py
python
BaseCallConv._get_arg_packer
(self, argtypes)
return self.context.get_arg_packer(argtypes)
Get an argument packer for the given argument types.
Get an argument packer for the given argument types.
[ "Get", "an", "argument", "packer", "for", "the", "given", "argument", "types", "." ]
def _get_arg_packer(self, argtypes): """ Get an argument packer for the given argument types. """ return self.context.get_arg_packer(argtypes)
[ "def", "_get_arg_packer", "(", "self", ",", "argtypes", ")", ":", "return", "self", ".", "context", ".", "get_arg_packer", "(", "argtypes", ")" ]
https://github.com/aws/lumberyard/blob/f85344403c1c2e77ec8c75deb2c116e97b713217/dev/Gems/CloudGemMetric/v1/AWS/common-code/Lib/numba/targets/callconv.py#L154-L158
ApolloAuto/apollo-platform
86d9dc6743b496ead18d597748ebabd34a513289
ros/third_party/lib_x86_64/python2.7/dist-packages/yaml/__init__.py
python
load
(stream, Loader=Loader)
Parse the first YAML document in a stream and produce the corresponding Python object.
Parse the first YAML document in a stream and produce the corresponding Python object.
[ "Parse", "the", "first", "YAML", "document", "in", "a", "stream", "and", "produce", "the", "corresponding", "Python", "object", "." ]
def load(stream, Loader=Loader): """ Parse the first YAML document in a stream and produce the corresponding Python object. """ loader = Loader(stream) try: return loader.get_single_data() finally: loader.dispose()
[ "def", "load", "(", "stream", ",", "Loader", "=", "Loader", ")", ":", "loader", "=", "Loader", "(", "stream", ")", "try", ":", "return", "loader", ".", "get_single_data", "(", ")", "finally", ":", "loader", ".", "dispose", "(", ")" ]
https://github.com/ApolloAuto/apollo-platform/blob/86d9dc6743b496ead18d597748ebabd34a513289/ros/third_party/lib_x86_64/python2.7/dist-packages/yaml/__init__.py#L64-L73
catboost/catboost
167f64f237114a4d10b2b4ee42adb4569137debe
contrib/tools/python/src/Lib/poplib.py
python
POP3.uidl
(self, which=None)
return self._longcmd('UIDL')
Return message digest (unique id) list. If 'which', result contains unique id for that message in the form 'response mesgnum uid', otherwise result is the list ['response', ['mesgnum uid', ...], octets]
Return message digest (unique id) list.
[ "Return", "message", "digest", "(", "unique", "id", ")", "list", "." ]
def uidl(self, which=None): """Return message digest (unique id) list. If 'which', result contains unique id for that message in the form 'response mesgnum uid', otherwise result is the list ['response', ['mesgnum uid', ...], octets] """ if which is not None: return self._shortcmd('UIDL %s' % which) return self._longcmd('UIDL')
[ "def", "uidl", "(", "self", ",", "which", "=", "None", ")", ":", "if", "which", "is", "not", "None", ":", "return", "self", ".", "_shortcmd", "(", "'UIDL %s'", "%", "which", ")", "return", "self", ".", "_longcmd", "(", "'UIDL'", ")" ]
https://github.com/catboost/catboost/blob/167f64f237114a4d10b2b4ee42adb4569137debe/contrib/tools/python/src/Lib/poplib.py#L308-L317
PX4/PX4-Autopilot
0b9f60a0370be53d683352c63fd92db3d6586e18
Tools/px4airframes/srcparser.py
python
ParameterGroup.AddParameter
(self, param)
Add parameter to the group
Add parameter to the group
[ "Add", "parameter", "to", "the", "group" ]
def AddParameter(self, param): """ Add parameter to the group """ self.params.append(param)
[ "def", "AddParameter", "(", "self", ",", "param", ")", ":", "self", ".", "params", ".", "append", "(", "param", ")" ]
https://github.com/PX4/PX4-Autopilot/blob/0b9f60a0370be53d683352c63fd92db3d6586e18/Tools/px4airframes/srcparser.py#L15-L19
taichi-dev/taichi
973c04d6ba40f34e9e3bd5a28ae0ee0802f136a6
python/taichi/lang/field.py
python
Field.get_field_members
(self)
return self.vars
Gets field members. Returns: List[Expr]: Field members.
Gets field members.
[ "Gets", "field", "members", "." ]
def get_field_members(self): """Gets field members. Returns: List[Expr]: Field members. """ return self.vars
[ "def", "get_field_members", "(", "self", ")", ":", "return", "self", ".", "vars" ]
https://github.com/taichi-dev/taichi/blob/973c04d6ba40f34e9e3bd5a28ae0ee0802f136a6/python/taichi/lang/field.py#L69-L75
aws/lumberyard
f85344403c1c2e77ec8c75deb2c116e97b713217
dev/Gems/CloudGemMetric/v1/AWS/python/windows/Lib/s3fs/core.py
python
S3FileSystem.merge
(self, path, filelist, **kwargs)
Create single S3 file from list of S3 files Uses multi-part, no data is downloaded. The original files are not deleted. Parameters ---------- path : str The final file to produce filelist : list of str The paths, in order, to assemble into the final file.
Create single S3 file from list of S3 files
[ "Create", "single", "S3", "file", "from", "list", "of", "S3", "files" ]
def merge(self, path, filelist, **kwargs): """ Create single S3 file from list of S3 files Uses multi-part, no data is downloaded. The original files are not deleted. Parameters ---------- path : str The final file to produce filelist : list of str The paths, in order, to assemble into the final file. """ bucket, key, version_id = self.split_path(path) if version_id: raise ValueError("Cannot write to an explicit versioned file!") mpu = self._call_s3( self.s3.create_multipart_upload, kwargs, Bucket=bucket, Key=key ) # TODO: Make this support versions? out = [self._call_s3( self.s3.upload_part_copy, kwargs, Bucket=bucket, Key=key, UploadId=mpu['UploadId'], CopySource=f, PartNumber=i + 1) for (i, f) in enumerate(filelist)] parts = [{'PartNumber': i + 1, 'ETag': o['CopyPartResult']['ETag']} for (i, o) in enumerate(out)] part_info = {'Parts': parts} self.s3.complete_multipart_upload(Bucket=bucket, Key=key, UploadId=mpu['UploadId'], MultipartUpload=part_info) self.invalidate_cache(path)
[ "def", "merge", "(", "self", ",", "path", ",", "filelist", ",", "*", "*", "kwargs", ")", ":", "bucket", ",", "key", ",", "version_id", "=", "self", ".", "split_path", "(", "path", ")", "if", "version_id", ":", "raise", "ValueError", "(", "\"Cannot write to an explicit versioned file!\"", ")", "mpu", "=", "self", ".", "_call_s3", "(", "self", ".", "s3", ".", "create_multipart_upload", ",", "kwargs", ",", "Bucket", "=", "bucket", ",", "Key", "=", "key", ")", "# TODO: Make this support versions?", "out", "=", "[", "self", ".", "_call_s3", "(", "self", ".", "s3", ".", "upload_part_copy", ",", "kwargs", ",", "Bucket", "=", "bucket", ",", "Key", "=", "key", ",", "UploadId", "=", "mpu", "[", "'UploadId'", "]", ",", "CopySource", "=", "f", ",", "PartNumber", "=", "i", "+", "1", ")", "for", "(", "i", ",", "f", ")", "in", "enumerate", "(", "filelist", ")", "]", "parts", "=", "[", "{", "'PartNumber'", ":", "i", "+", "1", ",", "'ETag'", ":", "o", "[", "'CopyPartResult'", "]", "[", "'ETag'", "]", "}", "for", "(", "i", ",", "o", ")", "in", "enumerate", "(", "out", ")", "]", "part_info", "=", "{", "'Parts'", ":", "parts", "}", "self", ".", "s3", ".", "complete_multipart_upload", "(", "Bucket", "=", "bucket", ",", "Key", "=", "key", ",", "UploadId", "=", "mpu", "[", "'UploadId'", "]", ",", "MultipartUpload", "=", "part_info", ")", "self", ".", "invalidate_cache", "(", "path", ")" ]
https://github.com/aws/lumberyard/blob/f85344403c1c2e77ec8c75deb2c116e97b713217/dev/Gems/CloudGemMetric/v1/AWS/python/windows/Lib/s3fs/core.py#L827-L862
wxWidgets/wxPython-Classic
19571e1ae65f1ac445f5491474121998c97a1bf0
src/msw/_gdi.py
python
Overlay.Reset
(*args, **kwargs)
return _gdi_.Overlay_Reset(*args, **kwargs)
Reset(self)
Reset(self)
[ "Reset", "(", "self", ")" ]
def Reset(*args, **kwargs): """Reset(self)""" return _gdi_.Overlay_Reset(*args, **kwargs)
[ "def", "Reset", "(", "*", "args", ",", "*", "*", "kwargs", ")", ":", "return", "_gdi_", ".", "Overlay_Reset", "(", "*", "args", ",", "*", "*", "kwargs", ")" ]
https://github.com/wxWidgets/wxPython-Classic/blob/19571e1ae65f1ac445f5491474121998c97a1bf0/src/msw/_gdi.py#L6875-L6877
tensorflow/tensorflow
419e3a6b650ea4bd1b0cba23c4348f8a69f3272e
tensorflow/python/summary/summary.py
python
_compat_summary_scope
(name, family)
Handles `family` argument for v2 op invocation in v1.
Handles `family` argument for v2 op invocation in v1.
[ "Handles", "family", "argument", "for", "v2", "op", "invocation", "in", "v1", "." ]
def _compat_summary_scope(name, family): """Handles `family` argument for v2 op invocation in v1.""" # Get a new summary tag name with the `family` arg. with _summary_op_util.summary_scope(name, family) as (tag, _): # Reset the root name scope with an empty summary_scope. with _summary_op_util.summary_scope(name='', family=None): yield tag
[ "def", "_compat_summary_scope", "(", "name", ",", "family", ")", ":", "# Get a new summary tag name with the `family` arg.", "with", "_summary_op_util", ".", "summary_scope", "(", "name", ",", "family", ")", "as", "(", "tag", ",", "_", ")", ":", "# Reset the root name scope with an empty summary_scope.", "with", "_summary_op_util", ".", "summary_scope", "(", "name", "=", "''", ",", "family", "=", "None", ")", ":", "yield", "tag" ]
https://github.com/tensorflow/tensorflow/blob/419e3a6b650ea4bd1b0cba23c4348f8a69f3272e/tensorflow/python/summary/summary.py#L847-L853
ApolloAuto/apollo-platform
86d9dc6743b496ead18d597748ebabd34a513289
ros/third_party/lib_x86_64/python2.7/dist-packages/rosdep2/rospkg_loader.py
python
RosPkgLoader.get_loadable_views
(self)
return list(self._rosstack.list()) + [DEFAULT_VIEW_KEY]
'Views' map to ROS stack names.
'Views' map to ROS stack names.
[ "Views", "map", "to", "ROS", "stack", "names", "." ]
def get_loadable_views(self): """ 'Views' map to ROS stack names. """ return list(self._rosstack.list()) + [DEFAULT_VIEW_KEY]
[ "def", "get_loadable_views", "(", "self", ")", ":", "return", "list", "(", "self", ".", "_rosstack", ".", "list", "(", ")", ")", "+", "[", "DEFAULT_VIEW_KEY", "]" ]
https://github.com/ApolloAuto/apollo-platform/blob/86d9dc6743b496ead18d597748ebabd34a513289/ros/third_party/lib_x86_64/python2.7/dist-packages/rosdep2/rospkg_loader.py#L106-L110
rapidsai/cudf
d5b2448fc69f17509304d594f029d0df56984962
python/cudf/cudf/core/series.py
python
TimedeltaProperties.days
(self)
return self._get_td_field("days")
Number of days. Returns ------- Series Examples -------- >>> import cudf >>> s = cudf.Series([12231312123, 1231231231, 1123236768712, 2135656, ... 3244334234], dtype='timedelta64[ms]') >>> s 0 141 days 13:35:12.123 1 14 days 06:00:31.231 2 13000 days 10:12:48.712 3 0 days 00:35:35.656 4 37 days 13:12:14.234 dtype: timedelta64[ms] >>> s.dt.days 0 141 1 14 2 13000 3 0 4 37 dtype: int64
Number of days.
[ "Number", "of", "days", "." ]
def days(self): """ Number of days. Returns ------- Series Examples -------- >>> import cudf >>> s = cudf.Series([12231312123, 1231231231, 1123236768712, 2135656, ... 3244334234], dtype='timedelta64[ms]') >>> s 0 141 days 13:35:12.123 1 14 days 06:00:31.231 2 13000 days 10:12:48.712 3 0 days 00:35:35.656 4 37 days 13:12:14.234 dtype: timedelta64[ms] >>> s.dt.days 0 141 1 14 2 13000 3 0 4 37 dtype: int64 """ return self._get_td_field("days")
[ "def", "days", "(", "self", ")", ":", "return", "self", ".", "_get_td_field", "(", "\"days\"", ")" ]
https://github.com/rapidsai/cudf/blob/d5b2448fc69f17509304d594f029d0df56984962/python/cudf/cudf/core/series.py#L4620-L4648
lawy623/SVS
b7c7ae367c82a4797ff4a896a2ff304f02e7f724
caffe/scripts/cpp_lint.py
python
_NestingState.InnermostClass
(self)
return None
Get class info on the top of the stack. Returns: A _ClassInfo object if we are inside a class, or None otherwise.
Get class info on the top of the stack.
[ "Get", "class", "info", "on", "the", "top", "of", "the", "stack", "." ]
def InnermostClass(self): """Get class info on the top of the stack. Returns: A _ClassInfo object if we are inside a class, or None otherwise. """ for i in range(len(self.stack), 0, -1): classinfo = self.stack[i - 1] if isinstance(classinfo, _ClassInfo): return classinfo return None
[ "def", "InnermostClass", "(", "self", ")", ":", "for", "i", "in", "range", "(", "len", "(", "self", ".", "stack", ")", ",", "0", ",", "-", "1", ")", ":", "classinfo", "=", "self", ".", "stack", "[", "i", "-", "1", "]", "if", "isinstance", "(", "classinfo", ",", "_ClassInfo", ")", ":", "return", "classinfo", "return", "None" ]
https://github.com/lawy623/SVS/blob/b7c7ae367c82a4797ff4a896a2ff304f02e7f724/caffe/scripts/cpp_lint.py#L2160-L2170
aws/lumberyard
f85344403c1c2e77ec8c75deb2c116e97b713217
dev/Tools/Python/3.7.10/windows/Lib/site-packages/requests/utils.py
python
urldefragauth
(url)
return urlunparse((scheme, netloc, path, params, query, ''))
Given a url remove the fragment and the authentication part. :rtype: str
Given a url remove the fragment and the authentication part.
[ "Given", "a", "url", "remove", "the", "fragment", "and", "the", "authentication", "part", "." ]
def urldefragauth(url): """ Given a url remove the fragment and the authentication part. :rtype: str """ scheme, netloc, path, params, query, fragment = urlparse(url) # see func:`prepend_scheme_if_needed` if not netloc: netloc, path = path, netloc netloc = netloc.rsplit('@', 1)[-1] return urlunparse((scheme, netloc, path, params, query, ''))
[ "def", "urldefragauth", "(", "url", ")", ":", "scheme", ",", "netloc", ",", "path", ",", "params", ",", "query", ",", "fragment", "=", "urlparse", "(", "url", ")", "# see func:`prepend_scheme_if_needed`", "if", "not", "netloc", ":", "netloc", ",", "path", "=", "path", ",", "netloc", "netloc", "=", "netloc", ".", "rsplit", "(", "'@'", ",", "1", ")", "[", "-", "1", "]", "return", "urlunparse", "(", "(", "scheme", ",", "netloc", ",", "path", ",", "params", ",", "query", ",", "''", ")", ")" ]
https://github.com/aws/lumberyard/blob/f85344403c1c2e77ec8c75deb2c116e97b713217/dev/Tools/Python/3.7.10/windows/Lib/site-packages/requests/utils.py#L953-L967
OSGeo/gdal
3748fc4ba4fba727492774b2b908a2130c864a83
swig/python/osgeo/osr.py
python
OSRCRSInfo_auth_name_get
(*args)
return _osr.OSRCRSInfo_auth_name_get(*args)
r"""OSRCRSInfo_auth_name_get(CRSInfo crsInfo) -> char const *
r"""OSRCRSInfo_auth_name_get(CRSInfo crsInfo) -> char const *
[ "r", "OSRCRSInfo_auth_name_get", "(", "CRSInfo", "crsInfo", ")", "-", ">", "char", "const", "*" ]
def OSRCRSInfo_auth_name_get(*args): r"""OSRCRSInfo_auth_name_get(CRSInfo crsInfo) -> char const *""" return _osr.OSRCRSInfo_auth_name_get(*args)
[ "def", "OSRCRSInfo_auth_name_get", "(", "*", "args", ")", ":", "return", "_osr", ".", "OSRCRSInfo_auth_name_get", "(", "*", "args", ")" ]
https://github.com/OSGeo/gdal/blob/3748fc4ba4fba727492774b2b908a2130c864a83/swig/python/osgeo/osr.py#L1000-L1002
benoitsteiner/tensorflow-opencl
cb7cb40a57fde5cfd4731bc551e82a1e2fef43a5
tensorflow/python/ops/image_ops_impl.py
python
_is_tensor
(x)
return isinstance(x, (ops.Tensor, variables.Variable))
Returns `True` if `x` is a symbolic tensor-like object. Args: x: A python object to check. Returns: `True` if `x` is a `tf.Tensor` or `tf.Variable`, otherwise `False`.
Returns `True` if `x` is a symbolic tensor-like object.
[ "Returns", "True", "if", "x", "is", "a", "symbolic", "tensor", "-", "like", "object", "." ]
def _is_tensor(x): """Returns `True` if `x` is a symbolic tensor-like object. Args: x: A python object to check. Returns: `True` if `x` is a `tf.Tensor` or `tf.Variable`, otherwise `False`. """ return isinstance(x, (ops.Tensor, variables.Variable))
[ "def", "_is_tensor", "(", "x", ")", ":", "return", "isinstance", "(", "x", ",", "(", "ops", ".", "Tensor", ",", "variables", ".", "Variable", ")", ")" ]
https://github.com/benoitsteiner/tensorflow-opencl/blob/cb7cb40a57fde5cfd4731bc551e82a1e2fef43a5/tensorflow/python/ops/image_ops_impl.py#L83-L92
catboost/catboost
167f64f237114a4d10b2b4ee42adb4569137debe
contrib/tools/python3/src/Lib/http/client.py
python
HTTPConnection.set_tunnel
(self, host, port=None, headers=None)
Set up host and port for HTTP CONNECT tunnelling. In a connection that uses HTTP CONNECT tunneling, the host passed to the constructor is used as a proxy server that relays all communication to the endpoint passed to `set_tunnel`. This done by sending an HTTP CONNECT request to the proxy server when the connection is established. This method must be called before the HTTP connection has been established. The headers argument should be a mapping of extra HTTP headers to send with the CONNECT request.
Set up host and port for HTTP CONNECT tunnelling.
[ "Set", "up", "host", "and", "port", "for", "HTTP", "CONNECT", "tunnelling", "." ]
def set_tunnel(self, host, port=None, headers=None): """Set up host and port for HTTP CONNECT tunnelling. In a connection that uses HTTP CONNECT tunneling, the host passed to the constructor is used as a proxy server that relays all communication to the endpoint passed to `set_tunnel`. This done by sending an HTTP CONNECT request to the proxy server when the connection is established. This method must be called before the HTTP connection has been established. The headers argument should be a mapping of extra HTTP headers to send with the CONNECT request. """ if self.sock: raise RuntimeError("Can't set up tunnel for established connection") self._tunnel_host, self._tunnel_port = self._get_hostport(host, port) if headers: self._tunnel_headers = headers else: self._tunnel_headers.clear()
[ "def", "set_tunnel", "(", "self", ",", "host", ",", "port", "=", "None", ",", "headers", "=", "None", ")", ":", "if", "self", ".", "sock", ":", "raise", "RuntimeError", "(", "\"Can't set up tunnel for established connection\"", ")", "self", ".", "_tunnel_host", ",", "self", ".", "_tunnel_port", "=", "self", ".", "_get_hostport", "(", "host", ",", "port", ")", "if", "headers", ":", "self", ".", "_tunnel_headers", "=", "headers", "else", ":", "self", ".", "_tunnel_headers", ".", "clear", "(", ")" ]
https://github.com/catboost/catboost/blob/167f64f237114a4d10b2b4ee42adb4569137debe/contrib/tools/python3/src/Lib/http/client.py#L865-L887
aws/lumberyard
f85344403c1c2e77ec8c75deb2c116e97b713217
dev/Gems/CloudGemMetric/v1/AWS/python/windows/Lib/numpy/lib/utils.py
python
get_include
()
return d
Return the directory that contains the NumPy \\*.h header files. Extension modules that need to compile against NumPy should use this function to locate the appropriate include directory. Notes ----- When using ``distutils``, for example in ``setup.py``. :: import numpy as np ... Extension('extension_name', ... include_dirs=[np.get_include()]) ...
Return the directory that contains the NumPy \\*.h header files.
[ "Return", "the", "directory", "that", "contains", "the", "NumPy", "\\\\", "*", ".", "h", "header", "files", "." ]
def get_include(): """ Return the directory that contains the NumPy \\*.h header files. Extension modules that need to compile against NumPy should use this function to locate the appropriate include directory. Notes ----- When using ``distutils``, for example in ``setup.py``. :: import numpy as np ... Extension('extension_name', ... include_dirs=[np.get_include()]) ... """ import numpy if numpy.show_config is None: # running from numpy source directory d = os.path.join(os.path.dirname(numpy.__file__), 'core', 'include') else: # using installed numpy core headers import numpy.core as core d = os.path.join(os.path.dirname(core.__file__), 'include') return d
[ "def", "get_include", "(", ")", ":", "import", "numpy", "if", "numpy", ".", "show_config", "is", "None", ":", "# running from numpy source directory", "d", "=", "os", ".", "path", ".", "join", "(", "os", ".", "path", ".", "dirname", "(", "numpy", ".", "__file__", ")", ",", "'core'", ",", "'include'", ")", "else", ":", "# using installed numpy core headers", "import", "numpy", ".", "core", "as", "core", "d", "=", "os", ".", "path", ".", "join", "(", "os", ".", "path", ".", "dirname", "(", "core", ".", "__file__", ")", ",", "'include'", ")", "return", "d" ]
https://github.com/aws/lumberyard/blob/f85344403c1c2e77ec8c75deb2c116e97b713217/dev/Gems/CloudGemMetric/v1/AWS/python/windows/Lib/numpy/lib/utils.py#L23-L50
ricardoquesada/Spidermonkey
4a75ea2543408bd1b2c515aa95901523eeef7858
config/expandlibs.py
python
isDynamicLib
(path)
return os.path.splitext(path)[1] == conf.DLL_SUFFIX or os.path.basename(path) == 'XUL'
Returns whether the given path points to a dynamic library, that is, ends with DLL_SUFFIX.
Returns whether the given path points to a dynamic library, that is, ends with DLL_SUFFIX.
[ "Returns", "whether", "the", "given", "path", "points", "to", "a", "dynamic", "library", "that", "is", "ends", "with", "DLL_SUFFIX", "." ]
def isDynamicLib(path): '''Returns whether the given path points to a dynamic library, that is, ends with DLL_SUFFIX.''' # On mac, the xul library is named XUL, instead of libxul.dylib. Assume any # file by that name is a dynamic library. return os.path.splitext(path)[1] == conf.DLL_SUFFIX or os.path.basename(path) == 'XUL'
[ "def", "isDynamicLib", "(", "path", ")", ":", "# On mac, the xul library is named XUL, instead of libxul.dylib. Assume any", "# file by that name is a dynamic library.", "return", "os", ".", "path", ".", "splitext", "(", "path", ")", "[", "1", "]", "==", "conf", ".", "DLL_SUFFIX", "or", "os", ".", "path", ".", "basename", "(", "path", ")", "==", "'XUL'" ]
https://github.com/ricardoquesada/Spidermonkey/blob/4a75ea2543408bd1b2c515aa95901523eeef7858/config/expandlibs.py#L71-L76
fifengine/fifengine
4b62c42e85bec19893cef8e63e6855927cff2c47
engine/python/fife/extensions/fife_utils.py
python
getUserDataDirectory
(vendor, appname)
return dir
Gets the proper location to save configuration and data files, depending on depending on OS. Windows: %APPDATA%\vendor\appname Mac: ~/Library/Application Support/vendor/appname Linux/Unix/Other: ~/.vendor/appname See: Brian Vanderburg II @ http://mail.python.org/pipermail/python-list/2008-May/660779.html
Gets the proper location to save configuration and data files, depending on depending on OS.
[ "Gets", "the", "proper", "location", "to", "save", "configuration", "and", "data", "files", "depending", "on", "depending", "on", "OS", "." ]
def getUserDataDirectory(vendor, appname): """ Gets the proper location to save configuration and data files, depending on depending on OS. Windows: %APPDATA%\vendor\appname Mac: ~/Library/Application Support/vendor/appname Linux/Unix/Other: ~/.vendor/appname See: Brian Vanderburg II @ http://mail.python.org/pipermail/python-list/2008-May/660779.html """ dir = None # WINDOWS if os.name == "nt": # Try env APPDATA or USERPROFILE or HOMEDRIVE/HOMEPATH if "APPDATA" in os.environ: dir = os.environ["APPDATA"] if ((dir is None) or (not os.path.isdir(dir))) and ("USERPROFILE" in os.environ): dir = os.environ["USERPROFILE"] if os.path.isdir(os.path.join(dir, "Application Data")): dir = os.path.join(dir, "Application Data") if ((dir is None) or (not os.path.isdir(dir))) and ("HOMEDRIVE" in os.environ) and ("HOMEPATH" in os.environ): dir = os.environ["HOMEDRIVE"] + os.environ["HOMEPATH"] if os.path.isdir(os.path.join(dir, "Application Data")): dir = os.path.join(dir, "Application Data") if (dir is None) or (not os.path.isdir(dir)): dir = os.path.expanduser("~") # On windows, add vendor and app name dir = os.path.join(dir, vendor, appname) # Mac elif os.name == "mac": # ?? may not be entirely correct dir = os.path.expanduser("~") dir = os.path.join(dir, "Library", "Application Support") dir = os.path.join(dir, vendor, appname) # Unix/Linux/all others if dir is None: dir = os.path.expanduser("~") dir = os.path.join(dir, "."+vendor, appname) # Create vendor/appname folder if it doesn't exist if not os.path.isdir(dir): os.makedirs(dir) return dir
[ "def", "getUserDataDirectory", "(", "vendor", ",", "appname", ")", ":", "dir", "=", "None", "# WINDOWS", "if", "os", ".", "name", "==", "\"nt\"", ":", "# Try env APPDATA or USERPROFILE or HOMEDRIVE/HOMEPATH", "if", "\"APPDATA\"", "in", "os", ".", "environ", ":", "dir", "=", "os", ".", "environ", "[", "\"APPDATA\"", "]", "if", "(", "(", "dir", "is", "None", ")", "or", "(", "not", "os", ".", "path", ".", "isdir", "(", "dir", ")", ")", ")", "and", "(", "\"USERPROFILE\"", "in", "os", ".", "environ", ")", ":", "dir", "=", "os", ".", "environ", "[", "\"USERPROFILE\"", "]", "if", "os", ".", "path", ".", "isdir", "(", "os", ".", "path", ".", "join", "(", "dir", ",", "\"Application Data\"", ")", ")", ":", "dir", "=", "os", ".", "path", ".", "join", "(", "dir", ",", "\"Application Data\"", ")", "if", "(", "(", "dir", "is", "None", ")", "or", "(", "not", "os", ".", "path", ".", "isdir", "(", "dir", ")", ")", ")", "and", "(", "\"HOMEDRIVE\"", "in", "os", ".", "environ", ")", "and", "(", "\"HOMEPATH\"", "in", "os", ".", "environ", ")", ":", "dir", "=", "os", ".", "environ", "[", "\"HOMEDRIVE\"", "]", "+", "os", ".", "environ", "[", "\"HOMEPATH\"", "]", "if", "os", ".", "path", ".", "isdir", "(", "os", ".", "path", ".", "join", "(", "dir", ",", "\"Application Data\"", ")", ")", ":", "dir", "=", "os", ".", "path", ".", "join", "(", "dir", ",", "\"Application Data\"", ")", "if", "(", "dir", "is", "None", ")", "or", "(", "not", "os", ".", "path", ".", "isdir", "(", "dir", ")", ")", ":", "dir", "=", "os", ".", "path", ".", "expanduser", "(", "\"~\"", ")", "# On windows, add vendor and app name", "dir", "=", "os", ".", "path", ".", "join", "(", "dir", ",", "vendor", ",", "appname", ")", "# Mac", "elif", "os", ".", "name", "==", "\"mac\"", ":", "# ?? may not be entirely correct", "dir", "=", "os", ".", "path", ".", "expanduser", "(", "\"~\"", ")", "dir", "=", "os", ".", "path", ".", "join", "(", "dir", ",", "\"Library\"", ",", "\"Application Support\"", ")", "dir", "=", "os", ".", "path", ".", "join", "(", "dir", ",", "vendor", ",", "appname", ")", "# Unix/Linux/all others", "if", "dir", "is", "None", ":", "dir", "=", "os", ".", "path", ".", "expanduser", "(", "\"~\"", ")", "dir", "=", "os", ".", "path", ".", "join", "(", "dir", ",", "\".\"", "+", "vendor", ",", "appname", ")", "# Create vendor/appname folder if it doesn't exist", "if", "not", "os", ".", "path", ".", "isdir", "(", "dir", ")", ":", "os", ".", "makedirs", "(", "dir", ")", "return", "dir" ]
https://github.com/fifengine/fifengine/blob/4b62c42e85bec19893cef8e63e6855927cff2c47/engine/python/fife/extensions/fife_utils.py#L50-L100
aws/lumberyard
f85344403c1c2e77ec8c75deb2c116e97b713217
dev/Tools/Python/3.7.10/windows/Lib/site-packages/pip/_internal/vcs/git.py
python
Git.has_commit
(cls, location, rev)
Check if rev is a commit that is available in the local repository.
Check if rev is a commit that is available in the local repository.
[ "Check", "if", "rev", "is", "a", "commit", "that", "is", "available", "in", "the", "local", "repository", "." ]
def has_commit(cls, location, rev): """ Check if rev is a commit that is available in the local repository. """ try: cls.run_command( ['rev-parse', '-q', '--verify', "sha^" + rev], cwd=location, log_failed_cmd=False, ) except InstallationError: return False else: return True
[ "def", "has_commit", "(", "cls", ",", "location", ",", "rev", ")", ":", "try", ":", "cls", ".", "run_command", "(", "[", "'rev-parse'", ",", "'-q'", ",", "'--verify'", ",", "\"sha^\"", "+", "rev", "]", ",", "cwd", "=", "location", ",", "log_failed_cmd", "=", "False", ",", ")", "except", "InstallationError", ":", "return", "False", "else", ":", "return", "True" ]
https://github.com/aws/lumberyard/blob/f85344403c1c2e77ec8c75deb2c116e97b713217/dev/Tools/Python/3.7.10/windows/Lib/site-packages/pip/_internal/vcs/git.py#L342-L355
krishauser/Klampt
972cc83ea5befac3f653c1ba20f80155768ad519
Python/klampt/vis/ipython/widgets.py
python
KlamptWidget.hide
(self,name,value=False)
Changes the visibility status of a certain named target
Changes the visibility status of a certain named target
[ "Changes", "the", "visibility", "status", "of", "a", "certain", "named", "target" ]
def hide(self,name,value=False): """Changes the visibility status of a certain named target""" target_name = name if name in self._extras: type,data = self._extras[name] if type == 'Config': target_name = data elif type == 'Configs' or type == 'Trajectory': self.beginRpc(strict=False) for subitem in data: self._do_rpc({'type':'set_visible','object':subitem,'value':value}) self.endRpc(strict=False) return self._do_rpc({'type':'set_visible','object':target_name,'value':value})
[ "def", "hide", "(", "self", ",", "name", ",", "value", "=", "False", ")", ":", "target_name", "=", "name", "if", "name", "in", "self", ".", "_extras", ":", "type", ",", "data", "=", "self", ".", "_extras", "[", "name", "]", "if", "type", "==", "'Config'", ":", "target_name", "=", "data", "elif", "type", "==", "'Configs'", "or", "type", "==", "'Trajectory'", ":", "self", ".", "beginRpc", "(", "strict", "=", "False", ")", "for", "subitem", "in", "data", ":", "self", ".", "_do_rpc", "(", "{", "'type'", ":", "'set_visible'", ",", "'object'", ":", "subitem", ",", "'value'", ":", "value", "}", ")", "self", ".", "endRpc", "(", "strict", "=", "False", ")", "return", "self", ".", "_do_rpc", "(", "{", "'type'", ":", "'set_visible'", ",", "'object'", ":", "target_name", ",", "'value'", ":", "value", "}", ")" ]
https://github.com/krishauser/Klampt/blob/972cc83ea5befac3f653c1ba20f80155768ad519/Python/klampt/vis/ipython/widgets.py#L325-L338
zufuliu/notepad2
680bb88661147936c7ae062da1dae4231486d3c1
scintilla/scripts/FileGenerator.py
python
ReadFileAsList
(path)
Read all the lnes in the file and return as a list of strings without line ends.
Read all the lnes in the file and return as a list of strings without line ends.
[ "Read", "all", "the", "lnes", "in", "the", "file", "and", "return", "as", "a", "list", "of", "strings", "without", "line", "ends", "." ]
def ReadFileAsList(path): """Read all the lnes in the file and return as a list of strings without line ends. """ with open(path, "r", encoding="utf-8") as f: return [l.rstrip('\n') for l in f]
[ "def", "ReadFileAsList", "(", "path", ")", ":", "with", "open", "(", "path", ",", "\"r\"", ",", "encoding", "=", "\"utf-8\"", ")", "as", "f", ":", "return", "[", "l", ".", "rstrip", "(", "'\\n'", ")", "for", "l", "in", "f", "]" ]
https://github.com/zufuliu/notepad2/blob/680bb88661147936c7ae062da1dae4231486d3c1/scintilla/scripts/FileGenerator.py#L193-L197
thalium/icebox
99d147d5b9269222225443ce171b4fd46d8985d4
third_party/virtualbox/src/libs/libxml2-2.9.4/python/libxml2class.py
python
xmlNode.docCopyNode
(self, doc, extended)
return __tmp
Do a copy of the node to a given document.
Do a copy of the node to a given document.
[ "Do", "a", "copy", "of", "the", "node", "to", "a", "given", "document", "." ]
def docCopyNode(self, doc, extended): """Do a copy of the node to a given document. """ if doc is None: doc__o = None else: doc__o = doc._o ret = libxml2mod.xmlDocCopyNode(self._o, doc__o, extended) if ret is None:raise treeError('xmlDocCopyNode() failed') __tmp = xmlNode(_obj=ret) return __tmp
[ "def", "docCopyNode", "(", "self", ",", "doc", ",", "extended", ")", ":", "if", "doc", "is", "None", ":", "doc__o", "=", "None", "else", ":", "doc__o", "=", "doc", ".", "_o", "ret", "=", "libxml2mod", ".", "xmlDocCopyNode", "(", "self", ".", "_o", ",", "doc__o", ",", "extended", ")", "if", "ret", "is", "None", ":", "raise", "treeError", "(", "'xmlDocCopyNode() failed'", ")", "__tmp", "=", "xmlNode", "(", "_obj", "=", "ret", ")", "return", "__tmp" ]
https://github.com/thalium/icebox/blob/99d147d5b9269222225443ce171b4fd46d8985d4/third_party/virtualbox/src/libs/libxml2-2.9.4/python/libxml2class.py#L2400-L2407
LiquidPlayer/LiquidCore
9405979363f2353ac9a71ad8ab59685dd7f919c9
deps/node-10.15.3/tools/jinja2/environment.py
python
Template.is_up_to_date
(self)
return self._uptodate()
If this variable is `False` there is a newer version available.
If this variable is `False` there is a newer version available.
[ "If", "this", "variable", "is", "False", "there", "is", "a", "newer", "version", "available", "." ]
def is_up_to_date(self): """If this variable is `False` there is a newer version available.""" if self._uptodate is None: return True return self._uptodate()
[ "def", "is_up_to_date", "(", "self", ")", ":", "if", "self", ".", "_uptodate", "is", "None", ":", "return", "True", "return", "self", ".", "_uptodate", "(", ")" ]
https://github.com/LiquidPlayer/LiquidCore/blob/9405979363f2353ac9a71ad8ab59685dd7f919c9/deps/node-10.15.3/tools/jinja2/environment.py#L1118-L1122
Illumina/strelka
d7377443b62319f7c7bd70c241c4b2df3459e29a
src/python/lib/configureOptions.py
python
ConfigureWorkflowOptions.addWorkflowGroupOptions
(self,group)
Add options to OptionsGroup object which specify parameters which commonly change from run to run
Add options to OptionsGroup object which specify parameters which commonly change from run to run
[ "Add", "options", "to", "OptionsGroup", "object", "which", "specify", "parameters", "which", "commonly", "change", "from", "run", "to", "run" ]
def addWorkflowGroupOptions(self,group) : """ Add options to OptionsGroup object which specify parameters which commonly change from run to run """ pass
[ "def", "addWorkflowGroupOptions", "(", "self", ",", "group", ")", ":", "pass" ]
https://github.com/Illumina/strelka/blob/d7377443b62319f7c7bd70c241c4b2df3459e29a/src/python/lib/configureOptions.py#L53-L58
wxWidgets/wxPython-Classic
19571e1ae65f1ac445f5491474121998c97a1bf0
src/osx_carbon/_windows.py
python
PreviewCanvas.SetPreview
(*args, **kwargs)
return _windows_.PreviewCanvas_SetPreview(*args, **kwargs)
SetPreview(self, wxPrintPreviewBase preview)
SetPreview(self, wxPrintPreviewBase preview)
[ "SetPreview", "(", "self", "wxPrintPreviewBase", "preview", ")" ]
def SetPreview(*args, **kwargs): """SetPreview(self, wxPrintPreviewBase preview)""" return _windows_.PreviewCanvas_SetPreview(*args, **kwargs)
[ "def", "SetPreview", "(", "*", "args", ",", "*", "*", "kwargs", ")", ":", "return", "_windows_", ".", "PreviewCanvas_SetPreview", "(", "*", "args", ",", "*", "*", "kwargs", ")" ]
https://github.com/wxWidgets/wxPython-Classic/blob/19571e1ae65f1ac445f5491474121998c97a1bf0/src/osx_carbon/_windows.py#L5462-L5464
Xilinx/Vitis-AI
fc74d404563d9951b57245443c73bef389f3657f
tools/Vitis-AI-Quantizer/vai_q_tensorflow1.x/tensorflow/contrib/integrate/python/ops/odes.py
python
_dopri5
(func, y0, t, rtol, atol, full_output=False, first_step=None, safety=0.9, ifactor=10.0, dfactor=0.2, max_num_steps=1000, name=None)
Solve an ODE for `odeint` using method='dopri5'.
Solve an ODE for `odeint` using method='dopri5'.
[ "Solve", "an", "ODE", "for", "odeint", "using", "method", "=", "dopri5", "." ]
def _dopri5(func, y0, t, rtol, atol, full_output=False, first_step=None, safety=0.9, ifactor=10.0, dfactor=0.2, max_num_steps=1000, name=None): """Solve an ODE for `odeint` using method='dopri5'.""" if first_step is None: # at some point, we might want to switch to picking the step size # automatically first_step = 1.0 with ops.name_scope(name, 'dopri5', [ y0, t, rtol, atol, safety, ifactor, dfactor, max_num_steps ]) as scope: first_step = ops.convert_to_tensor( first_step, dtype=t.dtype, name='first_step') safety = ops.convert_to_tensor(safety, dtype=t.dtype, name='safety') ifactor = ops.convert_to_tensor(ifactor, dtype=t.dtype, name='ifactor') dfactor = ops.convert_to_tensor(dfactor, dtype=t.dtype, name='dfactor') max_num_steps = ops.convert_to_tensor( max_num_steps, dtype=dtypes.int32, name='max_num_steps') def adaptive_runge_kutta_step(rk_state, history, n_steps): """Take an adaptive Runge-Kutta step to integrate the ODE.""" y0, f0, _, t0, dt, interp_coeff = rk_state with ops.name_scope('assertions'): check_underflow = control_flow_ops.Assert(t0 + dt > t0, ['underflow in dt', dt]) check_max_num_steps = control_flow_ops.Assert( n_steps < max_num_steps, ['max_num_steps exceeded']) check_numerics = control_flow_ops.Assert( math_ops.reduce_all(math_ops.is_finite(abs(y0))), ['non-finite values in state `y`', y0]) with ops.control_dependencies( [check_underflow, check_max_num_steps, check_numerics]): y1, f1, y1_error, k = _runge_kutta_step(func, y0, f0, t0, dt) with ops.name_scope('error_ratio'): # We use the same approach as the dopri5 fortran code. error_tol = atol + rtol * math_ops.maximum(abs(y0), abs(y1)) tensor_error_ratio = _abs_square(y1_error) / _abs_square(error_tol) # Could also use reduce_maximum here. error_ratio = math_ops.sqrt(math_ops.reduce_mean(tensor_error_ratio)) accept_step = error_ratio <= 1 with ops.name_scope('update/rk_state'): # If we don't accept the step, the _RungeKuttaState will be useless # (covering a time-interval of size 0), but that's OK, because in such # cases we always immediately take another Runge-Kutta step. y_next = control_flow_ops.cond(accept_step, lambda: y1, lambda: y0) f_next = control_flow_ops.cond(accept_step, lambda: f1, lambda: f0) t_next = control_flow_ops.cond(accept_step, lambda: t0 + dt, lambda: t0) interp_coeff = control_flow_ops.cond( accept_step, lambda: _interp_fit_rk(y0, y1, k, dt), lambda: interp_coeff) dt_next = _optimal_step_size(dt, error_ratio, safety, ifactor, dfactor) rk_state = _RungeKuttaState(y_next, f_next, t0, t_next, dt_next, interp_coeff) with ops.name_scope('update/history'): history = _History( _ta_append(history.integrate_points, t0 + dt), _ta_append(history.error_ratio, error_ratio)) return rk_state, history, n_steps + 1 def interpolate(solution, history, rk_state, i): """Interpolate through the next time point, integrating as necessary.""" with ops.name_scope('interpolate'): rk_state, history, _ = control_flow_ops.while_loop( lambda rk_state, *_: t[i] > rk_state.t1, adaptive_runge_kutta_step, (rk_state, history, 0), name='integrate_loop') y = _interp_evaluate(rk_state.interp_coeff, rk_state.t0, rk_state.t1, t[i]) solution = solution.write(i, y) return solution, history, rk_state, i + 1 with _assert_increasing(t): num_times = array_ops.size(t) solution = tensor_array_ops.TensorArray( y0.dtype, size=num_times).write(0, y0) history = _History( integrate_points=tensor_array_ops.TensorArray( t.dtype, size=0, dynamic_size=True), error_ratio=tensor_array_ops.TensorArray( rtol.dtype, size=0, dynamic_size=True)) rk_state = _RungeKuttaState( y0, func(y0, t[0]), t[0], t[0], first_step, interp_coeff=[y0] * 5) solution, history, _, _ = control_flow_ops.while_loop( lambda _, __, ___, i: i < num_times, interpolate, (solution, history, rk_state, 1), name='interpolate_loop') y = solution.stack(name=scope) y.set_shape(t.get_shape().concatenate(y0.get_shape())) if not full_output: return y else: integrate_points = history.integrate_points.stack() info_dict = { 'num_func_evals': 6 * array_ops.size(integrate_points) + 1, 'integrate_points': integrate_points, 'error_ratio': history.error_ratio.stack() } return (y, info_dict)
[ "def", "_dopri5", "(", "func", ",", "y0", ",", "t", ",", "rtol", ",", "atol", ",", "full_output", "=", "False", ",", "first_step", "=", "None", ",", "safety", "=", "0.9", ",", "ifactor", "=", "10.0", ",", "dfactor", "=", "0.2", ",", "max_num_steps", "=", "1000", ",", "name", "=", "None", ")", ":", "if", "first_step", "is", "None", ":", "# at some point, we might want to switch to picking the step size", "# automatically", "first_step", "=", "1.0", "with", "ops", ".", "name_scope", "(", "name", ",", "'dopri5'", ",", "[", "y0", ",", "t", ",", "rtol", ",", "atol", ",", "safety", ",", "ifactor", ",", "dfactor", ",", "max_num_steps", "]", ")", "as", "scope", ":", "first_step", "=", "ops", ".", "convert_to_tensor", "(", "first_step", ",", "dtype", "=", "t", ".", "dtype", ",", "name", "=", "'first_step'", ")", "safety", "=", "ops", ".", "convert_to_tensor", "(", "safety", ",", "dtype", "=", "t", ".", "dtype", ",", "name", "=", "'safety'", ")", "ifactor", "=", "ops", ".", "convert_to_tensor", "(", "ifactor", ",", "dtype", "=", "t", ".", "dtype", ",", "name", "=", "'ifactor'", ")", "dfactor", "=", "ops", ".", "convert_to_tensor", "(", "dfactor", ",", "dtype", "=", "t", ".", "dtype", ",", "name", "=", "'dfactor'", ")", "max_num_steps", "=", "ops", ".", "convert_to_tensor", "(", "max_num_steps", ",", "dtype", "=", "dtypes", ".", "int32", ",", "name", "=", "'max_num_steps'", ")", "def", "adaptive_runge_kutta_step", "(", "rk_state", ",", "history", ",", "n_steps", ")", ":", "\"\"\"Take an adaptive Runge-Kutta step to integrate the ODE.\"\"\"", "y0", ",", "f0", ",", "_", ",", "t0", ",", "dt", ",", "interp_coeff", "=", "rk_state", "with", "ops", ".", "name_scope", "(", "'assertions'", ")", ":", "check_underflow", "=", "control_flow_ops", ".", "Assert", "(", "t0", "+", "dt", ">", "t0", ",", "[", "'underflow in dt'", ",", "dt", "]", ")", "check_max_num_steps", "=", "control_flow_ops", ".", "Assert", "(", "n_steps", "<", "max_num_steps", ",", "[", "'max_num_steps exceeded'", "]", ")", "check_numerics", "=", "control_flow_ops", ".", "Assert", "(", "math_ops", ".", "reduce_all", "(", "math_ops", ".", "is_finite", "(", "abs", "(", "y0", ")", ")", ")", ",", "[", "'non-finite values in state `y`'", ",", "y0", "]", ")", "with", "ops", ".", "control_dependencies", "(", "[", "check_underflow", ",", "check_max_num_steps", ",", "check_numerics", "]", ")", ":", "y1", ",", "f1", ",", "y1_error", ",", "k", "=", "_runge_kutta_step", "(", "func", ",", "y0", ",", "f0", ",", "t0", ",", "dt", ")", "with", "ops", ".", "name_scope", "(", "'error_ratio'", ")", ":", "# We use the same approach as the dopri5 fortran code.", "error_tol", "=", "atol", "+", "rtol", "*", "math_ops", ".", "maximum", "(", "abs", "(", "y0", ")", ",", "abs", "(", "y1", ")", ")", "tensor_error_ratio", "=", "_abs_square", "(", "y1_error", ")", "/", "_abs_square", "(", "error_tol", ")", "# Could also use reduce_maximum here.", "error_ratio", "=", "math_ops", ".", "sqrt", "(", "math_ops", ".", "reduce_mean", "(", "tensor_error_ratio", ")", ")", "accept_step", "=", "error_ratio", "<=", "1", "with", "ops", ".", "name_scope", "(", "'update/rk_state'", ")", ":", "# If we don't accept the step, the _RungeKuttaState will be useless", "# (covering a time-interval of size 0), but that's OK, because in such", "# cases we always immediately take another Runge-Kutta step.", "y_next", "=", "control_flow_ops", ".", "cond", "(", "accept_step", ",", "lambda", ":", "y1", ",", "lambda", ":", "y0", ")", "f_next", "=", "control_flow_ops", ".", "cond", "(", "accept_step", ",", "lambda", ":", "f1", ",", "lambda", ":", "f0", ")", "t_next", "=", "control_flow_ops", ".", "cond", "(", "accept_step", ",", "lambda", ":", "t0", "+", "dt", ",", "lambda", ":", "t0", ")", "interp_coeff", "=", "control_flow_ops", ".", "cond", "(", "accept_step", ",", "lambda", ":", "_interp_fit_rk", "(", "y0", ",", "y1", ",", "k", ",", "dt", ")", ",", "lambda", ":", "interp_coeff", ")", "dt_next", "=", "_optimal_step_size", "(", "dt", ",", "error_ratio", ",", "safety", ",", "ifactor", ",", "dfactor", ")", "rk_state", "=", "_RungeKuttaState", "(", "y_next", ",", "f_next", ",", "t0", ",", "t_next", ",", "dt_next", ",", "interp_coeff", ")", "with", "ops", ".", "name_scope", "(", "'update/history'", ")", ":", "history", "=", "_History", "(", "_ta_append", "(", "history", ".", "integrate_points", ",", "t0", "+", "dt", ")", ",", "_ta_append", "(", "history", ".", "error_ratio", ",", "error_ratio", ")", ")", "return", "rk_state", ",", "history", ",", "n_steps", "+", "1", "def", "interpolate", "(", "solution", ",", "history", ",", "rk_state", ",", "i", ")", ":", "\"\"\"Interpolate through the next time point, integrating as necessary.\"\"\"", "with", "ops", ".", "name_scope", "(", "'interpolate'", ")", ":", "rk_state", ",", "history", ",", "_", "=", "control_flow_ops", ".", "while_loop", "(", "lambda", "rk_state", ",", "*", "_", ":", "t", "[", "i", "]", ">", "rk_state", ".", "t1", ",", "adaptive_runge_kutta_step", ",", "(", "rk_state", ",", "history", ",", "0", ")", ",", "name", "=", "'integrate_loop'", ")", "y", "=", "_interp_evaluate", "(", "rk_state", ".", "interp_coeff", ",", "rk_state", ".", "t0", ",", "rk_state", ".", "t1", ",", "t", "[", "i", "]", ")", "solution", "=", "solution", ".", "write", "(", "i", ",", "y", ")", "return", "solution", ",", "history", ",", "rk_state", ",", "i", "+", "1", "with", "_assert_increasing", "(", "t", ")", ":", "num_times", "=", "array_ops", ".", "size", "(", "t", ")", "solution", "=", "tensor_array_ops", ".", "TensorArray", "(", "y0", ".", "dtype", ",", "size", "=", "num_times", ")", ".", "write", "(", "0", ",", "y0", ")", "history", "=", "_History", "(", "integrate_points", "=", "tensor_array_ops", ".", "TensorArray", "(", "t", ".", "dtype", ",", "size", "=", "0", ",", "dynamic_size", "=", "True", ")", ",", "error_ratio", "=", "tensor_array_ops", ".", "TensorArray", "(", "rtol", ".", "dtype", ",", "size", "=", "0", ",", "dynamic_size", "=", "True", ")", ")", "rk_state", "=", "_RungeKuttaState", "(", "y0", ",", "func", "(", "y0", ",", "t", "[", "0", "]", ")", ",", "t", "[", "0", "]", ",", "t", "[", "0", "]", ",", "first_step", ",", "interp_coeff", "=", "[", "y0", "]", "*", "5", ")", "solution", ",", "history", ",", "_", ",", "_", "=", "control_flow_ops", ".", "while_loop", "(", "lambda", "_", ",", "__", ",", "___", ",", "i", ":", "i", "<", "num_times", ",", "interpolate", ",", "(", "solution", ",", "history", ",", "rk_state", ",", "1", ")", ",", "name", "=", "'interpolate_loop'", ")", "y", "=", "solution", ".", "stack", "(", "name", "=", "scope", ")", "y", ".", "set_shape", "(", "t", ".", "get_shape", "(", ")", ".", "concatenate", "(", "y0", ".", "get_shape", "(", ")", ")", ")", "if", "not", "full_output", ":", "return", "y", "else", ":", "integrate_points", "=", "history", ".", "integrate_points", ".", "stack", "(", ")", "info_dict", "=", "{", "'num_func_evals'", ":", "6", "*", "array_ops", ".", "size", "(", "integrate_points", ")", "+", "1", ",", "'integrate_points'", ":", "integrate_points", ",", "'error_ratio'", ":", "history", ".", "error_ratio", ".", "stack", "(", ")", "}", "return", "(", "y", ",", "info_dict", ")" ]
https://github.com/Xilinx/Vitis-AI/blob/fc74d404563d9951b57245443c73bef389f3657f/tools/Vitis-AI-Quantizer/vai_q_tensorflow1.x/tensorflow/contrib/integrate/python/ops/odes.py#L303-L418
wlanjie/AndroidFFmpeg
7baf9122f4b8e1c74e7baf4be5c422c7a5ba5aaf
tools/fdk-aac-build/x86/toolchain/lib/python2.7/optparse.py
python
Values._update_careful
(self, dict)
Update the option values from an arbitrary dictionary, but only use keys from dict that already have a corresponding attribute in self. Any keys in dict without a corresponding attribute are silently ignored.
Update the option values from an arbitrary dictionary, but only use keys from dict that already have a corresponding attribute in self. Any keys in dict without a corresponding attribute are silently ignored.
[ "Update", "the", "option", "values", "from", "an", "arbitrary", "dictionary", "but", "only", "use", "keys", "from", "dict", "that", "already", "have", "a", "corresponding", "attribute", "in", "self", ".", "Any", "keys", "in", "dict", "without", "a", "corresponding", "attribute", "are", "silently", "ignored", "." ]
def _update_careful(self, dict): """ Update the option values from an arbitrary dictionary, but only use keys from dict that already have a corresponding attribute in self. Any keys in dict without a corresponding attribute are silently ignored. """ for attr in dir(self): if attr in dict: dval = dict[attr] if dval is not None: setattr(self, attr, dval)
[ "def", "_update_careful", "(", "self", ",", "dict", ")", ":", "for", "attr", "in", "dir", "(", "self", ")", ":", "if", "attr", "in", "dict", ":", "dval", "=", "dict", "[", "attr", "]", "if", "dval", "is", "not", "None", ":", "setattr", "(", "self", ",", "attr", ",", "dval", ")" ]
https://github.com/wlanjie/AndroidFFmpeg/blob/7baf9122f4b8e1c74e7baf4be5c422c7a5ba5aaf/tools/fdk-aac-build/x86/toolchain/lib/python2.7/optparse.py#L855-L866
hanpfei/chromium-net
392cc1fa3a8f92f42e4071ab6e674d8e0482f83f
third_party/catapult/third_party/py_vulcanize/third_party/rcssmin/_setup/py3/shell.py
python
frompath
(executable)
return None
Find executable in PATH
Find executable in PATH
[ "Find", "executable", "in", "PATH" ]
def frompath(executable): """ Find executable in PATH """ # Based on distutils.spawn.find_executable. path = _os.environ.get('PATH', '') paths = [ _os.path.expanduser(item) for item in path.split(_os.pathsep) ] ext = _os.path.splitext(executable)[1] exts = [''] if _sys.platform == 'win32' or _os.name == 'os2': eext = ['.exe', '.bat', '.py'] if ext not in eext: exts.extend(eext) for ext in exts: if not _os.path.isfile(executable + ext): for path in paths: fname = _os.path.join(path, executable + ext) if _os.path.isfile(fname): # the file exists, we have a shot at spawn working return fname else: return executable + ext return None
[ "def", "frompath", "(", "executable", ")", ":", "# Based on distutils.spawn.find_executable.", "path", "=", "_os", ".", "environ", ".", "get", "(", "'PATH'", ",", "''", ")", "paths", "=", "[", "_os", ".", "path", ".", "expanduser", "(", "item", ")", "for", "item", "in", "path", ".", "split", "(", "_os", ".", "pathsep", ")", "]", "ext", "=", "_os", ".", "path", ".", "splitext", "(", "executable", ")", "[", "1", "]", "exts", "=", "[", "''", "]", "if", "_sys", ".", "platform", "==", "'win32'", "or", "_os", ".", "name", "==", "'os2'", ":", "eext", "=", "[", "'.exe'", ",", "'.bat'", ",", "'.py'", "]", "if", "ext", "not", "in", "eext", ":", "exts", ".", "extend", "(", "eext", ")", "for", "ext", "in", "exts", ":", "if", "not", "_os", ".", "path", ".", "isfile", "(", "executable", "+", "ext", ")", ":", "for", "path", "in", "paths", ":", "fname", "=", "_os", ".", "path", ".", "join", "(", "path", ",", "executable", "+", "ext", ")", "if", "_os", ".", "path", ".", "isfile", "(", "fname", ")", ":", "# the file exists, we have a shot at spawn working", "return", "fname", "else", ":", "return", "executable", "+", "ext", "return", "None" ]
https://github.com/hanpfei/chromium-net/blob/392cc1fa3a8f92f42e4071ab6e674d8e0482f83f/third_party/catapult/third_party/py_vulcanize/third_party/rcssmin/_setup/py3/shell.py#L326-L351
NASA-SW-VnV/ikos
71325dfb94737332542caa708d7537752021522d
analyzer/python/ikos/analyzer.py
python
clang_ikos_flags
()
return [ # enable clang warnings '-Wall', # disable source code fortification '-U_FORTIFY_SOURCE', '-D_FORTIFY_SOURCE=0', # flag for intrinsic.h '-D__IKOS__', # compile in debug mode '-g', # disable optimizations '-O0', # disable the 'optnone' attribute # see https://bugs.llvm.org/show_bug.cgi?id=35950#c10 '-Xclang', '-disable-O0-optnone', ]
Clang flags for ikos
Clang flags for ikos
[ "Clang", "flags", "for", "ikos" ]
def clang_ikos_flags(): ''' Clang flags for ikos ''' return [ # enable clang warnings '-Wall', # disable source code fortification '-U_FORTIFY_SOURCE', '-D_FORTIFY_SOURCE=0', # flag for intrinsic.h '-D__IKOS__', # compile in debug mode '-g', # disable optimizations '-O0', # disable the 'optnone' attribute # see https://bugs.llvm.org/show_bug.cgi?id=35950#c10 '-Xclang', '-disable-O0-optnone', ]
[ "def", "clang_ikos_flags", "(", ")", ":", "return", "[", "# enable clang warnings", "'-Wall'", ",", "# disable source code fortification", "'-U_FORTIFY_SOURCE'", ",", "'-D_FORTIFY_SOURCE=0'", ",", "# flag for intrinsic.h", "'-D__IKOS__'", ",", "# compile in debug mode", "'-g'", ",", "# disable optimizations", "'-O0'", ",", "# disable the 'optnone' attribute", "# see https://bugs.llvm.org/show_bug.cgi?id=35950#c10", "'-Xclang'", ",", "'-disable-O0-optnone'", ",", "]" ]
https://github.com/NASA-SW-VnV/ikos/blob/71325dfb94737332542caa708d7537752021522d/analyzer/python/ikos/analyzer.py#L649-L667
pytorch/pytorch
7176c92687d3cc847cc046bf002269c6949a21c2
torch/distributed/elastic/utils/logging.py
python
get_logger
(name: Optional[str] = None)
return _setup_logger(name or _derive_module_name(depth=2))
Util function to set up a simple logger that writes into stderr. The loglevel is fetched from the LOGLEVEL env. variable or WARNING as default. The function will use the module name of the caller if no name is provided. Args: name: Name of the logger. If no name provided, the name will be derived from the call stack.
Util function to set up a simple logger that writes into stderr. The loglevel is fetched from the LOGLEVEL env. variable or WARNING as default. The function will use the module name of the caller if no name is provided.
[ "Util", "function", "to", "set", "up", "a", "simple", "logger", "that", "writes", "into", "stderr", ".", "The", "loglevel", "is", "fetched", "from", "the", "LOGLEVEL", "env", ".", "variable", "or", "WARNING", "as", "default", ".", "The", "function", "will", "use", "the", "module", "name", "of", "the", "caller", "if", "no", "name", "is", "provided", "." ]
def get_logger(name: Optional[str] = None): """ Util function to set up a simple logger that writes into stderr. The loglevel is fetched from the LOGLEVEL env. variable or WARNING as default. The function will use the module name of the caller if no name is provided. Args: name: Name of the logger. If no name provided, the name will be derived from the call stack. """ # Derive the name of the caller, if none provided # Use depth=2 since this function takes up one level in the call stack return _setup_logger(name or _derive_module_name(depth=2))
[ "def", "get_logger", "(", "name", ":", "Optional", "[", "str", "]", "=", "None", ")", ":", "# Derive the name of the caller, if none provided", "# Use depth=2 since this function takes up one level in the call stack", "return", "_setup_logger", "(", "name", "or", "_derive_module_name", "(", "depth", "=", "2", ")", ")" ]
https://github.com/pytorch/pytorch/blob/7176c92687d3cc847cc046bf002269c6949a21c2/torch/distributed/elastic/utils/logging.py#L18-L32
lyxok1/Tiny-DSOD
94d15450699bea0dd3720e75e2d273e476174fba
scripts/cpp_lint.py
python
IsCppString
(line)
return ((line.count('"') - line.count(r'\"') - line.count("'\"'")) & 1) == 1
Does line terminate so, that the next symbol is in string constant. This function does not consider single-line nor multi-line comments. Args: line: is a partial line of code starting from the 0..n. Returns: True, if next character appended to 'line' is inside a string constant.
Does line terminate so, that the next symbol is in string constant.
[ "Does", "line", "terminate", "so", "that", "the", "next", "symbol", "is", "in", "string", "constant", "." ]
def IsCppString(line): """Does line terminate so, that the next symbol is in string constant. This function does not consider single-line nor multi-line comments. Args: line: is a partial line of code starting from the 0..n. Returns: True, if next character appended to 'line' is inside a string constant. """ line = line.replace(r'\\', 'XX') # after this, \\" does not match to \" return ((line.count('"') - line.count(r'\"') - line.count("'\"'")) & 1) == 1
[ "def", "IsCppString", "(", "line", ")", ":", "line", "=", "line", ".", "replace", "(", "r'\\\\'", ",", "'XX'", ")", "# after this, \\\\\" does not match to \\\"", "return", "(", "(", "line", ".", "count", "(", "'\"'", ")", "-", "line", ".", "count", "(", "r'\\\"'", ")", "-", "line", ".", "count", "(", "\"'\\\"'\"", ")", ")", "&", "1", ")", "==", "1" ]
https://github.com/lyxok1/Tiny-DSOD/blob/94d15450699bea0dd3720e75e2d273e476174fba/scripts/cpp_lint.py#L1045-L1059
aws/lumberyard
f85344403c1c2e77ec8c75deb2c116e97b713217
dev/Tools/Python/3.7.10/mac/Python.framework/Versions/3.7/lib/python3.7/site-packages/setuptools/_vendor/six.py
python
_SixMetaPathImporter.is_package
(self, fullname)
return hasattr(self.__get_module(fullname), "__path__")
Return true, if the named module is a package. We need this method to get correct spec objects with Python 3.4 (see PEP451)
Return true, if the named module is a package.
[ "Return", "true", "if", "the", "named", "module", "is", "a", "package", "." ]
def is_package(self, fullname): """ Return true, if the named module is a package. We need this method to get correct spec objects with Python 3.4 (see PEP451) """ return hasattr(self.__get_module(fullname), "__path__")
[ "def", "is_package", "(", "self", ",", "fullname", ")", ":", "return", "hasattr", "(", "self", ".", "__get_module", "(", "fullname", ")", ",", "\"__path__\"", ")" ]
https://github.com/aws/lumberyard/blob/f85344403c1c2e77ec8c75deb2c116e97b713217/dev/Tools/Python/3.7.10/mac/Python.framework/Versions/3.7/lib/python3.7/site-packages/setuptools/_vendor/six.py#L209-L216
apache/incubator-weex
5c25f0b59f7ac90703c363e7261f60bd06356dbe
weex_core/tools/cpplint.py
python
PrintCategories
()
Prints a list of all the error-categories used by error messages. These are the categories used to filter messages via --filter.
Prints a list of all the error-categories used by error messages.
[ "Prints", "a", "list", "of", "all", "the", "error", "-", "categories", "used", "by", "error", "messages", "." ]
def PrintCategories(): """Prints a list of all the error-categories used by error messages. These are the categories used to filter messages via --filter. """ sys.stderr.write(''.join(' %s\n' % cat for cat in _ERROR_CATEGORIES)) sys.exit(0)
[ "def", "PrintCategories", "(", ")", ":", "sys", ".", "stderr", ".", "write", "(", "''", ".", "join", "(", "' %s\\n'", "%", "cat", "for", "cat", "in", "_ERROR_CATEGORIES", ")", ")", "sys", ".", "exit", "(", "0", ")" ]
https://github.com/apache/incubator-weex/blob/5c25f0b59f7ac90703c363e7261f60bd06356dbe/weex_core/tools/cpplint.py#L6136-L6142
benoitsteiner/tensorflow-opencl
cb7cb40a57fde5cfd4731bc551e82a1e2fef43a5
tensorflow/python/debug/lib/debug_data.py
python
DebugDumpDir.core_metadata
(self)
return output[0] if len(output) == 1 else output
Metadata about the `Session.run()` call from the core runtime. Of the three counters available in the return value, `global_step` is supplied by the caller of the debugged `Session.run()`, while `session_run_index` and `executor_step_index` are determined by the state of the core runtime, automatically. For the same fetch list, feed keys and debug tensor watch options, the same executor will be used and `executor_step_index` should increase by one at a time. However, runs with different fetch lists, feed keys and debug_tensor watch options that all share the same `Session` object can lead to gaps in `session_run_index`. Returns: If core metadata are loaded, a `namedtuple` with the fields: `global_step`: A global step count supplied by the caller of `Session.run()`. It is optional to the caller. If the caller did not supply this parameter, its value will be -1. `session_run_index`: A sorted index for Run() calls to the underlying TensorFlow `Session` object. `executor_step_index`: A counter for invocations of a given runtime executor. The same executor is re-used for the same fetched tensors, target nodes, input feed keys and debug tensor watch options. `input_names`: Names of the input (feed) Tensors. `output_names`: Names of the output (fetched) Tensors. `target_nodes`: Names of the target nodes. If the core metadata have not been loaded, `None`. If more than one core metadata files exist, return a list of the `nametuple` described above.
Metadata about the `Session.run()` call from the core runtime.
[ "Metadata", "about", "the", "Session", ".", "run", "()", "call", "from", "the", "core", "runtime", "." ]
def core_metadata(self): """Metadata about the `Session.run()` call from the core runtime. Of the three counters available in the return value, `global_step` is supplied by the caller of the debugged `Session.run()`, while `session_run_index` and `executor_step_index` are determined by the state of the core runtime, automatically. For the same fetch list, feed keys and debug tensor watch options, the same executor will be used and `executor_step_index` should increase by one at a time. However, runs with different fetch lists, feed keys and debug_tensor watch options that all share the same `Session` object can lead to gaps in `session_run_index`. Returns: If core metadata are loaded, a `namedtuple` with the fields: `global_step`: A global step count supplied by the caller of `Session.run()`. It is optional to the caller. If the caller did not supply this parameter, its value will be -1. `session_run_index`: A sorted index for Run() calls to the underlying TensorFlow `Session` object. `executor_step_index`: A counter for invocations of a given runtime executor. The same executor is re-used for the same fetched tensors, target nodes, input feed keys and debug tensor watch options. `input_names`: Names of the input (feed) Tensors. `output_names`: Names of the output (fetched) Tensors. `target_nodes`: Names of the target nodes. If the core metadata have not been loaded, `None`. If more than one core metadata files exist, return a list of the `nametuple` described above. """ output = self._core_metadata return output[0] if len(output) == 1 else output
[ "def", "core_metadata", "(", "self", ")", ":", "output", "=", "self", ".", "_core_metadata", "return", "output", "[", "0", "]", "if", "len", "(", "output", ")", "==", "1", "else", "output" ]
https://github.com/benoitsteiner/tensorflow-opencl/blob/cb7cb40a57fde5cfd4731bc551e82a1e2fef43a5/tensorflow/python/debug/lib/debug_data.py#L687-L718
apache/incubator-mxnet
f03fb23f1d103fec9541b5ae59ee06b1734a51d9
python/mxnet/ndarray/numpy/_op.py
python
polyval
(p, x)
Evaluate a polynomial at specific values. If p is of length N, this function returns the value: p[0]*x**(N-1) + p[1]*x**(N-2) + ... + p[N-2]*x + p[N-1] If x is a sequence, then p(x) is returned for each element of x. If x is another polynomial then the composite polynomial p(x(t)) is returned. Parameters ---------- p : ndarray 1D array of polynomial coefficients (including coefficients equal to zero) from highest degree to the constant term. x : ndarray An array of numbers, at which to evaluate p. Returns ------- values : ndarray Result array of polynomials Notes ----- This function differs from the original `numpy.polyval <https://numpy.org/devdocs/reference/generated/numpy.polyval.html>`_ in the following way(s): - Does not support poly1d. - X should be ndarray type even if it contains only one element. Examples -------- >>> p = np.array([3, 0, 1]) array([3., 0., 1.]) >>> x = np.array([5]) array([5.]) >>> np.polyval(p, x) # 3 * 5**2 + 0 * 5**1 + 1 array([76.]) >>> x = np.array([5, 4]) array([5., 4.]) >>> np.polyval(p, x) array([76., 49.])
Evaluate a polynomial at specific values. If p is of length N, this function returns the value: p[0]*x**(N-1) + p[1]*x**(N-2) + ... + p[N-2]*x + p[N-1] If x is a sequence, then p(x) is returned for each element of x. If x is another polynomial then the composite polynomial p(x(t)) is returned.
[ "Evaluate", "a", "polynomial", "at", "specific", "values", ".", "If", "p", "is", "of", "length", "N", "this", "function", "returns", "the", "value", ":", "p", "[", "0", "]", "*", "x", "**", "(", "N", "-", "1", ")", "+", "p", "[", "1", "]", "*", "x", "**", "(", "N", "-", "2", ")", "+", "...", "+", "p", "[", "N", "-", "2", "]", "*", "x", "+", "p", "[", "N", "-", "1", "]", "If", "x", "is", "a", "sequence", "then", "p", "(", "x", ")", "is", "returned", "for", "each", "element", "of", "x", ".", "If", "x", "is", "another", "polynomial", "then", "the", "composite", "polynomial", "p", "(", "x", "(", "t", "))", "is", "returned", "." ]
def polyval(p, x): """ Evaluate a polynomial at specific values. If p is of length N, this function returns the value: p[0]*x**(N-1) + p[1]*x**(N-2) + ... + p[N-2]*x + p[N-1] If x is a sequence, then p(x) is returned for each element of x. If x is another polynomial then the composite polynomial p(x(t)) is returned. Parameters ---------- p : ndarray 1D array of polynomial coefficients (including coefficients equal to zero) from highest degree to the constant term. x : ndarray An array of numbers, at which to evaluate p. Returns ------- values : ndarray Result array of polynomials Notes ----- This function differs from the original `numpy.polyval <https://numpy.org/devdocs/reference/generated/numpy.polyval.html>`_ in the following way(s): - Does not support poly1d. - X should be ndarray type even if it contains only one element. Examples -------- >>> p = np.array([3, 0, 1]) array([3., 0., 1.]) >>> x = np.array([5]) array([5.]) >>> np.polyval(p, x) # 3 * 5**2 + 0 * 5**1 + 1 array([76.]) >>> x = np.array([5, 4]) array([5., 4.]) >>> np.polyval(p, x) array([76., 49.]) """ from ...numpy import ndarray if isinstance(p, numeric_types) and isinstance(x, numeric_types): return _np.polyval(p, x) elif isinstance(p, ndarray) and isinstance(x, ndarray): return _api_internal.polyval(p, x) else: raise TypeError('type not supported')
[ "def", "polyval", "(", "p", ",", "x", ")", ":", "from", ".", ".", ".", "numpy", "import", "ndarray", "if", "isinstance", "(", "p", ",", "numeric_types", ")", "and", "isinstance", "(", "x", ",", "numeric_types", ")", ":", "return", "_np", ".", "polyval", "(", "p", ",", "x", ")", "elif", "isinstance", "(", "p", ",", "ndarray", ")", "and", "isinstance", "(", "x", ",", "ndarray", ")", ":", "return", "_api_internal", ".", "polyval", "(", "p", ",", "x", ")", "else", ":", "raise", "TypeError", "(", "'type not supported'", ")" ]
https://github.com/apache/incubator-mxnet/blob/f03fb23f1d103fec9541b5ae59ee06b1734a51d9/python/mxnet/ndarray/numpy/_op.py#L9286-L9334
ros/geometry2
c0cb44e5315abc6067d7640cf58487e61d8d680a
tf2_ros/src/tf2_ros/buffer_interface.py
python
BufferInterface.can_transform
(self, target_frame, source_frame, time, timeout=rospy.Duration(0.0))
Check if a transform from the source frame to the target frame is possible. Must be implemented by a subclass of BufferInterface. :param target_frame: Name of the frame to transform into. :param source_frame: Name of the input frame. :param time: The time at which to get the transform. (0 will get the latest) :param timeout: (Optional) Time to wait for the target frame to become available. :return: True if the transform is possible, false otherwise. :rtype: bool
Check if a transform from the source frame to the target frame is possible.
[ "Check", "if", "a", "transform", "from", "the", "source", "frame", "to", "the", "target", "frame", "is", "possible", "." ]
def can_transform(self, target_frame, source_frame, time, timeout=rospy.Duration(0.0)): """ Check if a transform from the source frame to the target frame is possible. Must be implemented by a subclass of BufferInterface. :param target_frame: Name of the frame to transform into. :param source_frame: Name of the input frame. :param time: The time at which to get the transform. (0 will get the latest) :param timeout: (Optional) Time to wait for the target frame to become available. :return: True if the transform is possible, false otherwise. :rtype: bool """ raise NotImplementedException()
[ "def", "can_transform", "(", "self", ",", "target_frame", ",", "source_frame", ",", "time", ",", "timeout", "=", "rospy", ".", "Duration", "(", "0.0", ")", ")", ":", "raise", "NotImplementedException", "(", ")" ]
https://github.com/ros/geometry2/blob/c0cb44e5315abc6067d7640cf58487e61d8d680a/tf2_ros/src/tf2_ros/buffer_interface.py#L135-L148
apache/qpid-proton
6bcdfebb55ea3554bc29b1901422532db331a591
python/proton/_transport.py
python
Transport.connection
(self)
return _endpoints.Connection.wrap(pn_transport_connection(self._impl))
The connection bound to this transport.
The connection bound to this transport.
[ "The", "connection", "bound", "to", "this", "transport", "." ]
def connection(self) -> 'Connection': """The connection bound to this transport.""" from . import _endpoints return _endpoints.Connection.wrap(pn_transport_connection(self._impl))
[ "def", "connection", "(", "self", ")", "->", "'Connection'", ":", "from", ".", "import", "_endpoints", "return", "_endpoints", ".", "Connection", ".", "wrap", "(", "pn_transport_connection", "(", "self", ".", "_impl", ")", ")" ]
https://github.com/apache/qpid-proton/blob/6bcdfebb55ea3554bc29b1901422532db331a591/python/proton/_transport.py#L501-L504
apache/incubator-mxnet
f03fb23f1d103fec9541b5ae59ee06b1734a51d9
python/mxnet/numpy/multiarray.py
python
dot
(a, b, out=None)
return _mx_nd_np.dot(a, b, out=out)
Dot product of two arrays. Specifically, * If both `a` and `b` are 1-D arrays, it is inner product of vectors * If both `a` and `b` are 2-D arrays, it is matrix multiplication, * If either `a` or `b` is 0-D (scalar), it is equivalent to :func:`multiply` and using ``np.multiply(a, b)`` or ``a * b`` is preferred. * If `a` is an N-D array and `b` is a 1-D array, it is a sum product over the last axis of `a` and `b`. * If `a` is an N-D array and `b` is a 2-D array, it is a sum product over the last axis of `a` and the second-to-last axis of `b`:: dot(a, b)[i,j,k] = sum(a[i,j,:] * b[:,k]) Parameters ---------- a : ndarray First argument. b : ndarray Second argument. out : ndarray, optional Output argument. It must have the same shape and type as the expected output. Returns ------- output : ndarray Returns the dot product of `a` and `b`. If `a` and `b` are both scalars or both 1-D arrays then a scalar is returned; otherwise an array is returned. If `out` is given, then it is returned Examples -------- >>> a = np.array(3) >>> b = np.array(4) >>> np.dot(a, b) array(12.) For 2-D arrays it is the matrix product: >>> a = np.array([[1, 0], [0, 1]]) >>> b = np.array([[4, 1], [2, 2]]) >>> np.dot(a, b) array([[4., 1.], [2., 2.]]) >>> a = np.arange(3*4*5*6).reshape((3,4,5,6)) >>> b = np.arange(5*6)[::-1].reshape((6,5)) >>> np.dot(a, b)[2,3,2,2] array(29884.) >>> np.sum(a[2,3,2,:] * b[:,2]) array(29884.)
Dot product of two arrays. Specifically,
[ "Dot", "product", "of", "two", "arrays", ".", "Specifically" ]
def dot(a, b, out=None): """ Dot product of two arrays. Specifically, * If both `a` and `b` are 1-D arrays, it is inner product of vectors * If both `a` and `b` are 2-D arrays, it is matrix multiplication, * If either `a` or `b` is 0-D (scalar), it is equivalent to :func:`multiply` and using ``np.multiply(a, b)`` or ``a * b`` is preferred. * If `a` is an N-D array and `b` is a 1-D array, it is a sum product over the last axis of `a` and `b`. * If `a` is an N-D array and `b` is a 2-D array, it is a sum product over the last axis of `a` and the second-to-last axis of `b`:: dot(a, b)[i,j,k] = sum(a[i,j,:] * b[:,k]) Parameters ---------- a : ndarray First argument. b : ndarray Second argument. out : ndarray, optional Output argument. It must have the same shape and type as the expected output. Returns ------- output : ndarray Returns the dot product of `a` and `b`. If `a` and `b` are both scalars or both 1-D arrays then a scalar is returned; otherwise an array is returned. If `out` is given, then it is returned Examples -------- >>> a = np.array(3) >>> b = np.array(4) >>> np.dot(a, b) array(12.) For 2-D arrays it is the matrix product: >>> a = np.array([[1, 0], [0, 1]]) >>> b = np.array([[4, 1], [2, 2]]) >>> np.dot(a, b) array([[4., 1.], [2., 2.]]) >>> a = np.arange(3*4*5*6).reshape((3,4,5,6)) >>> b = np.arange(5*6)[::-1].reshape((6,5)) >>> np.dot(a, b)[2,3,2,2] array(29884.) >>> np.sum(a[2,3,2,:] * b[:,2]) array(29884.) """ return _mx_nd_np.dot(a, b, out=out)
[ "def", "dot", "(", "a", ",", "b", ",", "out", "=", "None", ")", ":", "return", "_mx_nd_np", ".", "dot", "(", "a", ",", "b", ",", "out", "=", "out", ")" ]
https://github.com/apache/incubator-mxnet/blob/f03fb23f1d103fec9541b5ae59ee06b1734a51d9/python/mxnet/numpy/multiarray.py#L12712-L12771
panda3d/panda3d
833ad89ebad58395d0af0b7ec08538e5e4308265
direct/src/directtools/DirectLights.py
python
DirectLights.allOn
(self)
Turn on all DIRECT lights
Turn on all DIRECT lights
[ "Turn", "on", "all", "DIRECT", "lights" ]
def allOn(self): """ Turn on all DIRECT lights """ for light in self.lightDict.values(): self.setOn(light) # Make sure there is a default material render.setMaterial(Material())
[ "def", "allOn", "(", "self", ")", ":", "for", "light", "in", "self", ".", "lightDict", ".", "values", "(", ")", ":", "self", ".", "setOn", "(", "light", ")", "# Make sure there is a default material", "render", ".", "setMaterial", "(", "Material", "(", ")", ")" ]
https://github.com/panda3d/panda3d/blob/833ad89ebad58395d0af0b7ec08538e5e4308265/direct/src/directtools/DirectLights.py#L99-L106
wlanjie/AndroidFFmpeg
7baf9122f4b8e1c74e7baf4be5c422c7a5ba5aaf
tools/fdk-aac-build/x86/toolchain/lib/python2.7/multiprocessing/pool.py
python
Pool._maintain_pool
(self)
Clean up any exited workers and start replacements for them.
Clean up any exited workers and start replacements for them.
[ "Clean", "up", "any", "exited", "workers", "and", "start", "replacements", "for", "them", "." ]
def _maintain_pool(self): """Clean up any exited workers and start replacements for them. """ if self._join_exited_workers(): self._repopulate_pool()
[ "def", "_maintain_pool", "(", "self", ")", ":", "if", "self", ".", "_join_exited_workers", "(", ")", ":", "self", ".", "_repopulate_pool", "(", ")" ]
https://github.com/wlanjie/AndroidFFmpeg/blob/7baf9122f4b8e1c74e7baf4be5c422c7a5ba5aaf/tools/fdk-aac-build/x86/toolchain/lib/python2.7/multiprocessing/pool.py#L225-L229
CRYTEK/CRYENGINE
232227c59a220cbbd311576f0fbeba7bb53b2a8c
Editor/Python/windows/Lib/site-packages/pkg_resources/_vendor/pyparsing.py
python
ParseResults.asList
( self )
return [res.asList() if isinstance(res,ParseResults) else res for res in self.__toklist]
Returns the parse results as a nested list of matching tokens, all converted to strings. Example:: patt = OneOrMore(Word(alphas)) result = patt.parseString("sldkj lsdkj sldkj") # even though the result prints in string-like form, it is actually a pyparsing ParseResults print(type(result), result) # -> <class 'pyparsing.ParseResults'> ['sldkj', 'lsdkj', 'sldkj'] # Use asList() to create an actual list result_list = result.asList() print(type(result_list), result_list) # -> <class 'list'> ['sldkj', 'lsdkj', 'sldkj']
Returns the parse results as a nested list of matching tokens, all converted to strings.
[ "Returns", "the", "parse", "results", "as", "a", "nested", "list", "of", "matching", "tokens", "all", "converted", "to", "strings", "." ]
def asList( self ): """ Returns the parse results as a nested list of matching tokens, all converted to strings. Example:: patt = OneOrMore(Word(alphas)) result = patt.parseString("sldkj lsdkj sldkj") # even though the result prints in string-like form, it is actually a pyparsing ParseResults print(type(result), result) # -> <class 'pyparsing.ParseResults'> ['sldkj', 'lsdkj', 'sldkj'] # Use asList() to create an actual list result_list = result.asList() print(type(result_list), result_list) # -> <class 'list'> ['sldkj', 'lsdkj', 'sldkj'] """ return [res.asList() if isinstance(res,ParseResults) else res for res in self.__toklist]
[ "def", "asList", "(", "self", ")", ":", "return", "[", "res", ".", "asList", "(", ")", "if", "isinstance", "(", "res", ",", "ParseResults", ")", "else", "res", "for", "res", "in", "self", ".", "__toklist", "]" ]
https://github.com/CRYTEK/CRYENGINE/blob/232227c59a220cbbd311576f0fbeba7bb53b2a8c/Editor/Python/windows/Lib/site-packages/pkg_resources/_vendor/pyparsing.py#L704-L718