nwo
stringlengths
5
106
sha
stringlengths
40
40
path
stringlengths
4
174
language
stringclasses
1 value
identifier
stringlengths
1
140
parameters
stringlengths
0
87.7k
argument_list
stringclasses
1 value
return_statement
stringlengths
0
426k
docstring
stringlengths
0
64.3k
docstring_summary
stringlengths
0
26.3k
docstring_tokens
list
function
stringlengths
18
4.83M
function_tokens
list
url
stringlengths
83
304
LinOTP/LinOTP
bb3940bbaccea99550e6c063ff824f258dd6d6d7
linotp/lib/reply.py
python
sendResult
(response, obj, id=1, opt=None, status=True)
return Response(response=data, status=200, mimetype="application/json")
sendResult - return an json result document :param response: the pylons response object :type response: response object :param obj: simple result object like dict, sting or list :type obj: dict or list or string/unicode :param id: id value, for future versions :type id: int :param opt: optional parameter, which allows to provide more detail :type opt: None or simple type like dict, list or string/unicode :return: json rendered sting result :rtype: string
sendResult - return an json result document
[ "sendResult", "-", "return", "an", "json", "result", "document" ]
def sendResult(response, obj, id=1, opt=None, status=True): """ sendResult - return an json result document :param response: the pylons response object :type response: response object :param obj: simple result object like dict, sting or list :type obj: dict or list or string/unicode :param id: id value, for future versions :type id: int :param opt: optional parameter, which allows to provide more detail :type opt: None or simple type like dict, list or string/unicode :return: json rendered sting result :rtype: string """ res = { "jsonrpc": get_api_version(), "result": { "status": status, "value": obj, }, "version": get_version(), "id": id, } if opt is not None and len(opt) > 0: res["detail"] = opt data = json.dumps(res, indent=3) return Response(response=data, status=200, mimetype="application/json")
[ "def", "sendResult", "(", "response", ",", "obj", ",", "id", "=", "1", ",", "opt", "=", "None", ",", "status", "=", "True", ")", ":", "res", "=", "{", "\"jsonrpc\"", ":", "get_api_version", "(", ")", ",", "\"result\"", ":", "{", "\"status\"", ":", "status", ",", "\"value\"", ":", "obj", ",", "}", ",", "\"version\"", ":", "get_version", "(", ")", ",", "\"id\"", ":", "id", ",", "}", "if", "opt", "is", "not", "None", "and", "len", "(", "opt", ")", ">", "0", ":", "res", "[", "\"detail\"", "]", "=", "opt", "data", "=", "json", ".", "dumps", "(", "res", ",", "indent", "=", "3", ")", "return", "Response", "(", "response", "=", "data", ",", "status", "=", "200", ",", "mimetype", "=", "\"application/json\"", ")" ]
https://github.com/LinOTP/LinOTP/blob/bb3940bbaccea99550e6c063ff824f258dd6d6d7/linotp/lib/reply.py#L286-L319
QCoDeS/Qcodes
3cda2cef44812e2aa4672781f2423bf5f816f9f9
qcodes/instrument_drivers/Keysight/keysightb1500/KeysightB1517A.py
python
B1517A.setup_staircase_sweep
( self, v_start: float, v_end: float, n_steps: int, post_sweep_voltage_val: Union[constants.WMDCV.Post, int] = constants.WMDCV.Post.STOP, av_coef: int = -1, enable_filter: bool = True, v_src_range: constants.OutputRange = constants.VOutputRange.AUTO, i_comp: float = 10e-6, i_meas_range: Optional[ constants.MeasureRange] = constants.IMeasRange.FIX_10uA, hold_time: float = 0, delay: float = 0, step_delay: float = 0, measure_delay: float = 0, abort_enabled: Union[constants.Abort, int] = constants.Abort.ENABLED, sweep_mode: Union[constants.SweepMode, int] = constants.SweepMode.LINEAR )
Setup the staircase sweep measurement using the same set of commands (in the same order) as given in the programming manual - see pages 3-19 and 3-20. Args: v_start: starting voltage of staircase sweep v_end: ending voltage of staircase sweep n_steps: number of measurement points (uniformly distributed between v_start and v_end) post_sweep_voltage_val: voltage to hold at end of sweep (i.e. start or end val). Sweep chan will also output this voltage if an abort condition is encountered during the sweep av_coef: coefficient to use for av command to set ADC averaging. Negative value implies NPLC mode with absolute value of av_coeff the NPLC setting to use. Positive value implies auto mode and must be set to >= 4 enable_filter: turn SMU filter on or off v_src_range: range setting to use for voltage source i_comp: current compliance level i_meas_range: current measurement range hold_time: time (in s) to wait before starting very first measurement in sweep delay: time (in s) after starting to force a step output and before starting a step measurement step_delay: time (in s) after starting a step measurement before next step in staircase. If step_delay is < measurement time, B1500 waits until measurement complete and then forces the next step value. measure_delay: time (in s) after receiving a start step measurement trigger and before starting a step measurement abort_enabled: Enbale abort sweep_mode: Linear, log, linear-2-way or log-2-way
Setup the staircase sweep measurement using the same set of commands (in the same order) as given in the programming manual - see pages 3-19 and 3-20.
[ "Setup", "the", "staircase", "sweep", "measurement", "using", "the", "same", "set", "of", "commands", "(", "in", "the", "same", "order", ")", "as", "given", "in", "the", "programming", "manual", "-", "see", "pages", "3", "-", "19", "and", "3", "-", "20", "." ]
def setup_staircase_sweep( self, v_start: float, v_end: float, n_steps: int, post_sweep_voltage_val: Union[constants.WMDCV.Post, int] = constants.WMDCV.Post.STOP, av_coef: int = -1, enable_filter: bool = True, v_src_range: constants.OutputRange = constants.VOutputRange.AUTO, i_comp: float = 10e-6, i_meas_range: Optional[ constants.MeasureRange] = constants.IMeasRange.FIX_10uA, hold_time: float = 0, delay: float = 0, step_delay: float = 0, measure_delay: float = 0, abort_enabled: Union[constants.Abort, int] = constants.Abort.ENABLED, sweep_mode: Union[constants.SweepMode, int] = constants.SweepMode.LINEAR ) -> None: """ Setup the staircase sweep measurement using the same set of commands (in the same order) as given in the programming manual - see pages 3-19 and 3-20. Args: v_start: starting voltage of staircase sweep v_end: ending voltage of staircase sweep n_steps: number of measurement points (uniformly distributed between v_start and v_end) post_sweep_voltage_val: voltage to hold at end of sweep (i.e. start or end val). Sweep chan will also output this voltage if an abort condition is encountered during the sweep av_coef: coefficient to use for av command to set ADC averaging. Negative value implies NPLC mode with absolute value of av_coeff the NPLC setting to use. Positive value implies auto mode and must be set to >= 4 enable_filter: turn SMU filter on or off v_src_range: range setting to use for voltage source i_comp: current compliance level i_meas_range: current measurement range hold_time: time (in s) to wait before starting very first measurement in sweep delay: time (in s) after starting to force a step output and before starting a step measurement step_delay: time (in s) after starting a step measurement before next step in staircase. If step_delay is < measurement time, B1500 waits until measurement complete and then forces the next step value. measure_delay: time (in s) after receiving a start step measurement trigger and before starting a step measurement abort_enabled: Enbale abort sweep_mode: Linear, log, linear-2-way or log-2-way """ self.set_average_samples_for_high_speed_adc(av_coef) self.enable_filter(enable_filter) self.source_config(output_range=v_src_range, compliance=i_comp, min_compliance_range=i_meas_range) self.voltage(v_start) self.measurement_operation_mode(constants.CMM.Mode.COMPLIANCE_SIDE) self.current_measurement_range(i_meas_range) self.iv_sweep.hold_time(hold_time) self.iv_sweep.delay(delay) self.iv_sweep.step_delay(step_delay) self.iv_sweep.measure_delay(measure_delay) self.iv_sweep.sweep_auto_abort(abort_enabled) self.iv_sweep.post_sweep_voltage_condition(post_sweep_voltage_val) self.iv_sweep.sweep_mode(sweep_mode) self.iv_sweep.sweep_range(v_src_range) self.iv_sweep.sweep_start(v_start) self.iv_sweep.sweep_end(v_end) self.iv_sweep.sweep_steps(n_steps) self.iv_sweep.current_compliance(i_comp) self.root_instrument.clear_timer_count() self.setup_fnc_already_run = True
[ "def", "setup_staircase_sweep", "(", "self", ",", "v_start", ":", "float", ",", "v_end", ":", "float", ",", "n_steps", ":", "int", ",", "post_sweep_voltage_val", ":", "Union", "[", "constants", ".", "WMDCV", ".", "Post", ",", "int", "]", "=", "constants", ".", "WMDCV", ".", "Post", ".", "STOP", ",", "av_coef", ":", "int", "=", "-", "1", ",", "enable_filter", ":", "bool", "=", "True", ",", "v_src_range", ":", "constants", ".", "OutputRange", "=", "constants", ".", "VOutputRange", ".", "AUTO", ",", "i_comp", ":", "float", "=", "10e-6", ",", "i_meas_range", ":", "Optional", "[", "constants", ".", "MeasureRange", "]", "=", "constants", ".", "IMeasRange", ".", "FIX_10uA", ",", "hold_time", ":", "float", "=", "0", ",", "delay", ":", "float", "=", "0", ",", "step_delay", ":", "float", "=", "0", ",", "measure_delay", ":", "float", "=", "0", ",", "abort_enabled", ":", "Union", "[", "constants", ".", "Abort", ",", "int", "]", "=", "constants", ".", "Abort", ".", "ENABLED", ",", "sweep_mode", ":", "Union", "[", "constants", ".", "SweepMode", ",", "int", "]", "=", "constants", ".", "SweepMode", ".", "LINEAR", ")", "->", "None", ":", "self", ".", "set_average_samples_for_high_speed_adc", "(", "av_coef", ")", "self", ".", "enable_filter", "(", "enable_filter", ")", "self", ".", "source_config", "(", "output_range", "=", "v_src_range", ",", "compliance", "=", "i_comp", ",", "min_compliance_range", "=", "i_meas_range", ")", "self", ".", "voltage", "(", "v_start", ")", "self", ".", "measurement_operation_mode", "(", "constants", ".", "CMM", ".", "Mode", ".", "COMPLIANCE_SIDE", ")", "self", ".", "current_measurement_range", "(", "i_meas_range", ")", "self", ".", "iv_sweep", ".", "hold_time", "(", "hold_time", ")", "self", ".", "iv_sweep", ".", "delay", "(", "delay", ")", "self", ".", "iv_sweep", ".", "step_delay", "(", "step_delay", ")", "self", ".", "iv_sweep", ".", "measure_delay", "(", "measure_delay", ")", "self", ".", "iv_sweep", ".", "sweep_auto_abort", "(", "abort_enabled", ")", "self", ".", "iv_sweep", ".", "post_sweep_voltage_condition", "(", "post_sweep_voltage_val", ")", "self", ".", "iv_sweep", ".", "sweep_mode", "(", "sweep_mode", ")", "self", ".", "iv_sweep", ".", "sweep_range", "(", "v_src_range", ")", "self", ".", "iv_sweep", ".", "sweep_start", "(", "v_start", ")", "self", ".", "iv_sweep", ".", "sweep_end", "(", "v_end", ")", "self", ".", "iv_sweep", ".", "sweep_steps", "(", "n_steps", ")", "self", ".", "iv_sweep", ".", "current_compliance", "(", "i_comp", ")", "self", ".", "root_instrument", ".", "clear_timer_count", "(", ")", "self", ".", "setup_fnc_already_run", "=", "True" ]
https://github.com/QCoDeS/Qcodes/blob/3cda2cef44812e2aa4672781f2423bf5f816f9f9/qcodes/instrument_drivers/Keysight/keysightb1500/KeysightB1517A.py#L1082-L1160
golismero/golismero
7d605b937e241f51c1ca4f47b20f755eeefb9d76
thirdparty_libs/nltk/metrics/confusionmatrix.py
python
ConfusionMatrix.__getitem__
(self, (li,lj))
return self._confusion[i][j]
:return: The number of times that value ``li`` was expected and value ``lj`` was given. :rtype: int
:return: The number of times that value ``li`` was expected and value ``lj`` was given. :rtype: int
[ ":", "return", ":", "The", "number", "of", "times", "that", "value", "li", "was", "expected", "and", "value", "lj", "was", "given", ".", ":", "rtype", ":", "int" ]
def __getitem__(self, (li,lj)): """ :return: The number of times that value ``li`` was expected and value ``lj`` was given. :rtype: int """ i = self._indices[li] j = self._indices[lj] return self._confusion[i][j]
[ "def", "__getitem__", "(", "self", ",", "(", "li", ",", "lj", ")", ")", ":", "i", "=", "self", ".", "_indices", "[", "li", "]", "j", "=", "self", ".", "_indices", "[", "lj", "]", "return", "self", ".", "_confusion", "[", "i", "]", "[", "j", "]" ]
https://github.com/golismero/golismero/blob/7d605b937e241f51c1ca4f47b20f755eeefb9d76/thirdparty_libs/nltk/metrics/confusionmatrix.py#L77-L85
ChineseGLUE/ChineseGLUE
1591b85cf5427c2ff60f718d359ecb71d2b44879
baselines/models/xlnet/xlnet.py
python
XLNetModel.get_initializer
(self)
return self.initializer
Returns: A tf initializer. Used to initialize variables in layers on top of XLNet.
Returns: A tf initializer. Used to initialize variables in layers on top of XLNet.
[ "Returns", ":", "A", "tf", "initializer", ".", "Used", "to", "initialize", "variables", "in", "layers", "on", "top", "of", "XLNet", "." ]
def get_initializer(self): """ Returns: A tf initializer. Used to initialize variables in layers on top of XLNet. """ return self.initializer
[ "def", "get_initializer", "(", "self", ")", ":", "return", "self", ".", "initializer" ]
https://github.com/ChineseGLUE/ChineseGLUE/blob/1591b85cf5427c2ff60f718d359ecb71d2b44879/baselines/models/xlnet/xlnet.py#L286-L291
PixarAnimationStudios/OpenTimelineIO
990a54ccbe6488180a93753370fc87902b982962
contrib/opentimelineio_contrib/adapters/xges.py
python
XGESOtio._serialize_track_effect_to_effect_clip
( self, otio_effect, layer, layer_priority, start, duration, track_types, clip_id)
Convert the effect 'otio_effect' found on an otio.schema.Track into a GESEffectClip xges <clip> under the xges 'layer' with the given 'layer_priority'. 'start', 'duration', 'clip_id' and 'track-types' will be used for the corresponding attributes of the <clip>.
Convert the effect 'otio_effect' found on an otio.schema.Track into a GESEffectClip xges <clip> under the xges 'layer' with the given 'layer_priority'. 'start', 'duration', 'clip_id' and 'track-types' will be used for the corresponding attributes of the <clip>.
[ "Convert", "the", "effect", "otio_effect", "found", "on", "an", "otio", ".", "schema", ".", "Track", "into", "a", "GESEffectClip", "xges", "<clip", ">", "under", "the", "xges", "layer", "with", "the", "given", "layer_priority", ".", "start", "duration", "clip_id", "and", "track", "-", "types", "will", "be", "used", "for", "the", "corresponding", "attributes", "of", "the", "<clip", ">", "." ]
def _serialize_track_effect_to_effect_clip( self, otio_effect, layer, layer_priority, start, duration, track_types, clip_id): """ Convert the effect 'otio_effect' found on an otio.schema.Track into a GESEffectClip xges <clip> under the xges 'layer' with the given 'layer_priority'. 'start', 'duration', 'clip_id' and 'track-types' will be used for the corresponding attributes of the <clip>. """ if isinstance(otio_effect, otio.schema.TimeEffect): _show_otio_not_supported(otio_effect, "Ignoring") return self._insert_new_sub_element( layer, "clip", attrib={ "id": str(clip_id), "asset-id": str(self._get_effect_bin_desc(otio_effect)), "type-name": "GESEffectClip", "track-types": str(track_types), "layer-priority": str(layer_priority), "start": str(start), "rate": '0', "inpoint": "0", "duration": str(duration), "properties": "properties;", "metadatas": "metadatas;" } )
[ "def", "_serialize_track_effect_to_effect_clip", "(", "self", ",", "otio_effect", ",", "layer", ",", "layer_priority", ",", "start", ",", "duration", ",", "track_types", ",", "clip_id", ")", ":", "if", "isinstance", "(", "otio_effect", ",", "otio", ".", "schema", ".", "TimeEffect", ")", ":", "_show_otio_not_supported", "(", "otio_effect", ",", "\"Ignoring\"", ")", "return", "self", ".", "_insert_new_sub_element", "(", "layer", ",", "\"clip\"", ",", "attrib", "=", "{", "\"id\"", ":", "str", "(", "clip_id", ")", ",", "\"asset-id\"", ":", "str", "(", "self", ".", "_get_effect_bin_desc", "(", "otio_effect", ")", ")", ",", "\"type-name\"", ":", "\"GESEffectClip\"", ",", "\"track-types\"", ":", "str", "(", "track_types", ")", ",", "\"layer-priority\"", ":", "str", "(", "layer_priority", ")", ",", "\"start\"", ":", "str", "(", "start", ")", ",", "\"rate\"", ":", "'0'", ",", "\"inpoint\"", ":", "\"0\"", ",", "\"duration\"", ":", "str", "(", "duration", ")", ",", "\"properties\"", ":", "\"properties;\"", ",", "\"metadatas\"", ":", "\"metadatas;\"", "}", ")" ]
https://github.com/PixarAnimationStudios/OpenTimelineIO/blob/990a54ccbe6488180a93753370fc87902b982962/contrib/opentimelineio_contrib/adapters/xges.py#L1432-L1459
scikit-image/scikit-image
ed642e2bc822f362504d24379dee94978d6fa9de
skimage/io/_plugins/matplotlib_plugin.py
python
_raise_warnings
(image_properties)
Raise the appropriate warning for each nonstandard image type. Parameters ---------- image_properties : ImageProperties named tuple The properties of the considered image.
Raise the appropriate warning for each nonstandard image type.
[ "Raise", "the", "appropriate", "warning", "for", "each", "nonstandard", "image", "type", "." ]
def _raise_warnings(image_properties): """Raise the appropriate warning for each nonstandard image type. Parameters ---------- image_properties : ImageProperties named tuple The properties of the considered image. """ ip = image_properties if ip.unsupported_dtype: warn("Non-standard image type; displaying image with " "stretched contrast.", stacklevel=3) if ip.low_data_range: warn("Low image data range; displaying image with " "stretched contrast.", stacklevel=3) if ip.out_of_range_float: warn("Float image out of standard range; displaying " "image with stretched contrast.", stacklevel=3)
[ "def", "_raise_warnings", "(", "image_properties", ")", ":", "ip", "=", "image_properties", "if", "ip", ".", "unsupported_dtype", ":", "warn", "(", "\"Non-standard image type; displaying image with \"", "\"stretched contrast.\"", ",", "stacklevel", "=", "3", ")", "if", "ip", ".", "low_data_range", ":", "warn", "(", "\"Low image data range; displaying image with \"", "\"stretched contrast.\"", ",", "stacklevel", "=", "3", ")", "if", "ip", ".", "out_of_range_float", ":", "warn", "(", "\"Float image out of standard range; displaying \"", "\"image with stretched contrast.\"", ",", "stacklevel", "=", "3", ")" ]
https://github.com/scikit-image/scikit-image/blob/ed642e2bc822f362504d24379dee94978d6fa9de/skimage/io/_plugins/matplotlib_plugin.py#L62-L79
AppScale/gts
46f909cf5dc5ba81faf9d81dc9af598dcf8a82a9
AppServer/lib/django-1.2/django/utils/datastructures.py
python
MergeDict.copy
(self)
return self.__copy__()
Returns a copy of this object.
Returns a copy of this object.
[ "Returns", "a", "copy", "of", "this", "object", "." ]
def copy(self): """Returns a copy of this object.""" return self.__copy__()
[ "def", "copy", "(", "self", ")", ":", "return", "self", ".", "__copy__", "(", ")" ]
https://github.com/AppScale/gts/blob/46f909cf5dc5ba81faf9d81dc9af598dcf8a82a9/AppServer/lib/django-1.2/django/utils/datastructures.py#L76-L78
iiau-tracker/SPLT
a196e603798e9be969d9d985c087c11cad1cda43
lib/object_detection/utils/static_shape.py
python
get_width
(tensor_shape)
return tensor_shape[2].value
Returns width from the tensor shape. Args: tensor_shape: A rank 4 TensorShape. Returns: An integer representing the width of the tensor.
Returns width from the tensor shape.
[ "Returns", "width", "from", "the", "tensor", "shape", "." ]
def get_width(tensor_shape): """Returns width from the tensor shape. Args: tensor_shape: A rank 4 TensorShape. Returns: An integer representing the width of the tensor. """ tensor_shape.assert_has_rank(rank=4) return tensor_shape[2].value
[ "def", "get_width", "(", "tensor_shape", ")", ":", "tensor_shape", ".", "assert_has_rank", "(", "rank", "=", "4", ")", "return", "tensor_shape", "[", "2", "]", ".", "value" ]
https://github.com/iiau-tracker/SPLT/blob/a196e603798e9be969d9d985c087c11cad1cda43/lib/object_detection/utils/static_shape.py#L48-L58
ines/wasabi
4cb261ce92c435f922dcc47e625d23cf038a699a
wasabi/util.py
python
get_raw_input
(description, default=False, indent=4)
return user_input
Get user input from the command line via raw_input / input. description (unicode): Text to display before prompt. default (unicode or False/None): Default value to display with prompt. indent (int): Indentation in spaces. RETURNS (unicode): User input.
Get user input from the command line via raw_input / input.
[ "Get", "user", "input", "from", "the", "command", "line", "via", "raw_input", "/", "input", "." ]
def get_raw_input(description, default=False, indent=4): """Get user input from the command line via raw_input / input. description (unicode): Text to display before prompt. default (unicode or False/None): Default value to display with prompt. indent (int): Indentation in spaces. RETURNS (unicode): User input. """ additional = " (default: {})".format(default) if default else "" prompt = wrap("{}{}: ".format(description, additional), indent=indent) user_input = input_(prompt) return user_input
[ "def", "get_raw_input", "(", "description", ",", "default", "=", "False", ",", "indent", "=", "4", ")", ":", "additional", "=", "\" (default: {})\"", ".", "format", "(", "default", ")", "if", "default", "else", "\"\"", "prompt", "=", "wrap", "(", "\"{}{}: \"", ".", "format", "(", "description", ",", "additional", ")", ",", "indent", "=", "indent", ")", "user_input", "=", "input_", "(", "prompt", ")", "return", "user_input" ]
https://github.com/ines/wasabi/blob/4cb261ce92c435f922dcc47e625d23cf038a699a/wasabi/util.py#L157-L168
phaethon/kamene
bf679a65d456411942ee4a907818ba3d6a183bfe
kamene/contrib/gsm_um.py
python
pagingRequestType1
(MobileId_presence=0)
return packet
PAGING REQUEST TYPE 1 Section 9.1.22
PAGING REQUEST TYPE 1 Section 9.1.22
[ "PAGING", "REQUEST", "TYPE", "1", "Section", "9", ".", "1", ".", "22" ]
def pagingRequestType1(MobileId_presence=0): """PAGING REQUEST TYPE 1 Section 9.1.22""" #The L2 pseudo length of this message is the sum of lengths of all #information elements present in the message except #the P1 Rest Octets and L2 Pseudo Length information elements. a = L2PseudoLength() b = TpPd(pd=0x6) c = MessageType(mesType=0x21) # 00100001 d = PageModeAndChannelNeeded() f = MobileId() packet = a / b / c / d / f if MobileId_presence is 1: g = MobileIdHdr(ieiMI=0x17, eightBitMI=0x0) packet = packet / g h = P1RestOctets() packet = packet / h return packet
[ "def", "pagingRequestType1", "(", "MobileId_presence", "=", "0", ")", ":", "#The L2 pseudo length of this message is the sum of lengths of all", "#information elements present in the message except", "#the P1 Rest Octets and L2 Pseudo Length information elements.", "a", "=", "L2PseudoLength", "(", ")", "b", "=", "TpPd", "(", "pd", "=", "0x6", ")", "c", "=", "MessageType", "(", "mesType", "=", "0x21", ")", "# 00100001", "d", "=", "PageModeAndChannelNeeded", "(", ")", "f", "=", "MobileId", "(", ")", "packet", "=", "a", "/", "b", "/", "c", "/", "d", "/", "f", "if", "MobileId_presence", "is", "1", ":", "g", "=", "MobileIdHdr", "(", "ieiMI", "=", "0x17", ",", "eightBitMI", "=", "0x0", ")", "packet", "=", "packet", "/", "g", "h", "=", "P1RestOctets", "(", ")", "packet", "=", "packet", "/", "h", "return", "packet" ]
https://github.com/phaethon/kamene/blob/bf679a65d456411942ee4a907818ba3d6a183bfe/kamene/contrib/gsm_um.py#L846-L862
seanbell/opensurfaces
7f3e987560faa62cd37f821760683ccd1e053c7c
server/common/utils.py
python
dict_union
(a, b)
return ret
Return the union of two dictionaries without editing either. If a key exists in both dictionaries, the second value is used.
Return the union of two dictionaries without editing either. If a key exists in both dictionaries, the second value is used.
[ "Return", "the", "union", "of", "two", "dictionaries", "without", "editing", "either", ".", "If", "a", "key", "exists", "in", "both", "dictionaries", "the", "second", "value", "is", "used", "." ]
def dict_union(a, b): """ Return the union of two dictionaries without editing either. If a key exists in both dictionaries, the second value is used. """ if not a: return b if b else {} if not b: return a ret = a.copy() ret.update(b) return ret
[ "def", "dict_union", "(", "a", ",", "b", ")", ":", "if", "not", "a", ":", "return", "b", "if", "b", "else", "{", "}", "if", "not", "b", ":", "return", "a", "ret", "=", "a", ".", "copy", "(", ")", "ret", ".", "update", "(", "b", ")", "return", "ret" ]
https://github.com/seanbell/opensurfaces/blob/7f3e987560faa62cd37f821760683ccd1e053c7c/server/common/utils.py#L636-L647
dropbox/PyHive
b21c507a24ed2f2b0cf15b0b6abb1c43f31d3ee0
TCLIService/ttypes.py
python
TStringColumn.read
(self, iprot)
[]
def read(self, iprot): if iprot._fast_decode is not None and isinstance(iprot.trans, TTransport.CReadableTransport) and self.thrift_spec is not None: iprot._fast_decode(self, iprot, (self.__class__, self.thrift_spec)) return iprot.readStructBegin() while True: (fname, ftype, fid) = iprot.readFieldBegin() if ftype == TType.STOP: break if fid == 1: if ftype == TType.LIST: self.values = [] (_etype93, _size90) = iprot.readListBegin() for _i94 in range(_size90): _elem95 = iprot.readString().decode('utf-8') if sys.version_info[0] == 2 else iprot.readString() self.values.append(_elem95) iprot.readListEnd() else: iprot.skip(ftype) elif fid == 2: if ftype == TType.STRING: self.nulls = iprot.readBinary() else: iprot.skip(ftype) else: iprot.skip(ftype) iprot.readFieldEnd() iprot.readStructEnd()
[ "def", "read", "(", "self", ",", "iprot", ")", ":", "if", "iprot", ".", "_fast_decode", "is", "not", "None", "and", "isinstance", "(", "iprot", ".", "trans", ",", "TTransport", ".", "CReadableTransport", ")", "and", "self", ".", "thrift_spec", "is", "not", "None", ":", "iprot", ".", "_fast_decode", "(", "self", ",", "iprot", ",", "(", "self", ".", "__class__", ",", "self", ".", "thrift_spec", ")", ")", "return", "iprot", ".", "readStructBegin", "(", ")", "while", "True", ":", "(", "fname", ",", "ftype", ",", "fid", ")", "=", "iprot", ".", "readFieldBegin", "(", ")", "if", "ftype", "==", "TType", ".", "STOP", ":", "break", "if", "fid", "==", "1", ":", "if", "ftype", "==", "TType", ".", "LIST", ":", "self", ".", "values", "=", "[", "]", "(", "_etype93", ",", "_size90", ")", "=", "iprot", ".", "readListBegin", "(", ")", "for", "_i94", "in", "range", "(", "_size90", ")", ":", "_elem95", "=", "iprot", ".", "readString", "(", ")", ".", "decode", "(", "'utf-8'", ")", "if", "sys", ".", "version_info", "[", "0", "]", "==", "2", "else", "iprot", ".", "readString", "(", ")", "self", ".", "values", ".", "append", "(", "_elem95", ")", "iprot", ".", "readListEnd", "(", ")", "else", ":", "iprot", ".", "skip", "(", "ftype", ")", "elif", "fid", "==", "2", ":", "if", "ftype", "==", "TType", ".", "STRING", ":", "self", ".", "nulls", "=", "iprot", ".", "readBinary", "(", ")", "else", ":", "iprot", ".", "skip", "(", "ftype", ")", "else", ":", "iprot", ".", "skip", "(", "ftype", ")", "iprot", ".", "readFieldEnd", "(", ")", "iprot", ".", "readStructEnd", "(", ")" ]
https://github.com/dropbox/PyHive/blob/b21c507a24ed2f2b0cf15b0b6abb1c43f31d3ee0/TCLIService/ttypes.py#L2507-L2534
gabrieleangeletti/Deep-Learning-TensorFlow
ddeb1f2848da7b7bee166ad2152b4afc46bb2086
yadlt/models/autoencoders/denoising_autoencoder.py
python
DenoisingAutoencoder.get_parameters
(self, graph=None)
Return the model parameters in the form of numpy arrays. Parameters ---------- graph : tf.Graph, optional (default = None) Tensorflow graph object. Returns ------- dict : model parameters dictionary.
Return the model parameters in the form of numpy arrays.
[ "Return", "the", "model", "parameters", "in", "the", "form", "of", "numpy", "arrays", "." ]
def get_parameters(self, graph=None): """Return the model parameters in the form of numpy arrays. Parameters ---------- graph : tf.Graph, optional (default = None) Tensorflow graph object. Returns ------- dict : model parameters dictionary. """ g = graph if graph is not None else self.tf_graph with g.as_default(): with tf.Session() as self.tf_session: self.tf_saver.restore(self.tf_session, self.model_path) return { 'enc_w': self.W_.eval(), 'enc_b': self.bh_.eval(), 'dec_b': self.bv_.eval() }
[ "def", "get_parameters", "(", "self", ",", "graph", "=", "None", ")", ":", "g", "=", "graph", "if", "graph", "is", "not", "None", "else", "self", ".", "tf_graph", "with", "g", ".", "as_default", "(", ")", ":", "with", "tf", ".", "Session", "(", ")", "as", "self", ".", "tf_session", ":", "self", ".", "tf_saver", ".", "restore", "(", "self", ".", "tf_session", ",", "self", ".", "model_path", ")", "return", "{", "'enc_w'", ":", "self", ".", "W_", ".", "eval", "(", ")", ",", "'enc_b'", ":", "self", ".", "bh_", ".", "eval", "(", ")", ",", "'dec_b'", ":", "self", ".", "bv_", ".", "eval", "(", ")", "}" ]
https://github.com/gabrieleangeletti/Deep-Learning-TensorFlow/blob/ddeb1f2848da7b7bee166ad2152b4afc46bb2086/yadlt/models/autoencoders/denoising_autoencoder.py#L291-L315
fail2ban/fail2ban
095aeda8407b433098df35424cde2764a09566a6
fail2ban/server/strptime.py
python
validateTimeZone
(tz)
return zone2offset(tz, 0)
Validate a timezone and convert it to offset if it can (offset-based TZ). For now this accepts the UTC[+-]hhmm format (UTC has aliases GMT/Z and optional). Additionally it accepts all zone abbreviations mentioned below in TZ_STR. Note that currently this zone abbreviations are offset-based and used fixed offset without automatically DST-switch (if CET used then no automatically CEST-switch). In the future, it may be extended for named time zones (such as Europe/Paris) present on the system, if a suitable tz library is present (pytz).
Validate a timezone and convert it to offset if it can (offset-based TZ).
[ "Validate", "a", "timezone", "and", "convert", "it", "to", "offset", "if", "it", "can", "(", "offset", "-", "based", "TZ", ")", "." ]
def validateTimeZone(tz): """Validate a timezone and convert it to offset if it can (offset-based TZ). For now this accepts the UTC[+-]hhmm format (UTC has aliases GMT/Z and optional). Additionally it accepts all zone abbreviations mentioned below in TZ_STR. Note that currently this zone abbreviations are offset-based and used fixed offset without automatically DST-switch (if CET used then no automatically CEST-switch). In the future, it may be extended for named time zones (such as Europe/Paris) present on the system, if a suitable tz library is present (pytz). """ if tz is None: return None m = FIXED_OFFSET_TZ_RE.match(tz) if m is None: raise ValueError("Unknown or unsupported time zone: %r" % tz) tz = m.groups() return zone2offset(tz, 0)
[ "def", "validateTimeZone", "(", "tz", ")", ":", "if", "tz", "is", "None", ":", "return", "None", "m", "=", "FIXED_OFFSET_TZ_RE", ".", "match", "(", "tz", ")", "if", "m", "is", "None", ":", "raise", "ValueError", "(", "\"Unknown or unsupported time zone: %r\"", "%", "tz", ")", "tz", "=", "m", ".", "groups", "(", ")", "return", "zone2offset", "(", "tz", ",", "0", ")" ]
https://github.com/fail2ban/fail2ban/blob/095aeda8407b433098df35424cde2764a09566a6/fail2ban/server/strptime.py#L141-L158
home-assistant-libs/pychromecast
d7acb9f5ae2c0daa797d78da1a1e8090b4181d21
pychromecast/controllers/media.py
python
MediaController.queue_prev
(self)
Send the QUEUE_PREV command.
Send the QUEUE_PREV command.
[ "Send", "the", "QUEUE_PREV", "command", "." ]
def queue_prev(self): """Send the QUEUE_PREV command.""" self._send_command({MESSAGE_TYPE: TYPE_QUEUE_UPDATE, "jump": -1})
[ "def", "queue_prev", "(", "self", ")", ":", "self", ".", "_send_command", "(", "{", "MESSAGE_TYPE", ":", "TYPE_QUEUE_UPDATE", ",", "\"jump\"", ":", "-", "1", "}", ")" ]
https://github.com/home-assistant-libs/pychromecast/blob/d7acb9f5ae2c0daa797d78da1a1e8090b4181d21/pychromecast/controllers/media.py#L444-L446
robotlearn/pyrobolearn
9cd7c060723fda7d2779fa255ac998c2c82b8436
pyrobolearn/priorities/models/model.py
python
ModelInterface.get_joint_limits
(self)
r""" Return the joint limits. Returns: np.array[float[2, N]]: lower and upper joint position limits.
r""" Return the joint limits.
[ "r", "Return", "the", "joint", "limits", "." ]
def get_joint_limits(self): r""" Return the joint limits. Returns: np.array[float[2, N]]: lower and upper joint position limits. """ pass
[ "def", "get_joint_limits", "(", "self", ")", ":", "pass" ]
https://github.com/robotlearn/pyrobolearn/blob/9cd7c060723fda7d2779fa255ac998c2c82b8436/pyrobolearn/priorities/models/model.py#L123-L130
BigBrotherBot/big-brother-bot
848823c71413c86e7f1ff9584f43e08d40a7f2c0
b3/tools/debug/statlib/pstat.py
python
unique
(inlist)
return uniques
Returns all unique items in the passed list. If the a list-of-lists is passed, unique LISTS are found (i.e., items in the first dimension are compared). Usage: unique (inlist) Returns: the unique elements (or rows) in inlist
Returns all unique items in the passed list. If the a list-of-lists is passed, unique LISTS are found (i.e., items in the first dimension are compared).
[ "Returns", "all", "unique", "items", "in", "the", "passed", "list", ".", "If", "the", "a", "list", "-", "of", "-", "lists", "is", "passed", "unique", "LISTS", "are", "found", "(", "i", ".", "e", ".", "items", "in", "the", "first", "dimension", "are", "compared", ")", "." ]
def unique (inlist): """ Returns all unique items in the passed list. If the a list-of-lists is passed, unique LISTS are found (i.e., items in the first dimension are compared). Usage: unique (inlist) Returns: the unique elements (or rows) in inlist """ uniques = [] for item in inlist: if item not in uniques: uniques.append(item) return uniques
[ "def", "unique", "(", "inlist", ")", ":", "uniques", "=", "[", "]", "for", "item", "in", "inlist", ":", "if", "item", "not", "in", "uniques", ":", "uniques", ".", "append", "(", "item", ")", "return", "uniques" ]
https://github.com/BigBrotherBot/big-brother-bot/blob/848823c71413c86e7f1ff9584f43e08d40a7f2c0/b3/tools/debug/statlib/pstat.py#L660-L673
oilshell/oil
94388e7d44a9ad879b12615f6203b38596b5a2d3
Python-2.7.13/Lib/pickle.py
python
Unpickler.load_float
(self)
[]
def load_float(self): self.append(float(self.readline()[:-1]))
[ "def", "load_float", "(", "self", ")", ":", "self", ".", "append", "(", "float", "(", "self", ".", "readline", "(", ")", "[", ":", "-", "1", "]", ")", ")" ]
https://github.com/oilshell/oil/blob/94388e7d44a9ad879b12615f6203b38596b5a2d3/Python-2.7.13/Lib/pickle.py#L960-L961
osmr/imgclsmob
f2993d3ce73a2f7ddba05da3891defb08547d504
pytorch/pytorchcv/models/sharesnet.py
python
sharesnet50
(**kwargs)
return get_sharesnet(blocks=50, model_name="sharesnet50", **kwargs)
ShaResNet-50 model from 'ShaResNet: reducing residual network parameter number by sharing weights,' https://arxiv.org/abs/1702.08782. Parameters: ---------- pretrained : bool, default False Whether to load the pretrained weights for model. root : str, default '~/.torch/models' Location for keeping the model parameters.
ShaResNet-50 model from 'ShaResNet: reducing residual network parameter number by sharing weights,' https://arxiv.org/abs/1702.08782.
[ "ShaResNet", "-", "50", "model", "from", "ShaResNet", ":", "reducing", "residual", "network", "parameter", "number", "by", "sharing", "weights", "https", ":", "//", "arxiv", ".", "org", "/", "abs", "/", "1702", ".", "08782", "." ]
def sharesnet50(**kwargs): """ ShaResNet-50 model from 'ShaResNet: reducing residual network parameter number by sharing weights,' https://arxiv.org/abs/1702.08782. Parameters: ---------- pretrained : bool, default False Whether to load the pretrained weights for model. root : str, default '~/.torch/models' Location for keeping the model parameters. """ return get_sharesnet(blocks=50, model_name="sharesnet50", **kwargs)
[ "def", "sharesnet50", "(", "*", "*", "kwargs", ")", ":", "return", "get_sharesnet", "(", "blocks", "=", "50", ",", "model_name", "=", "\"sharesnet50\"", ",", "*", "*", "kwargs", ")" ]
https://github.com/osmr/imgclsmob/blob/f2993d3ce73a2f7ddba05da3891defb08547d504/pytorch/pytorchcv/models/sharesnet.py#L475-L487
faucetsdn/ryu
537f35f4b2bc634ef05e3f28373eb5e24609f989
ryu/services/protocols/bgp/core_managers/table_manager.py
python
TableCoreManager.learn_path
(self, path)
Inserts `path` into correct global table. Since known paths to `Destination` has changes, we queue it for further processing.
Inserts `path` into correct global table.
[ "Inserts", "path", "into", "correct", "global", "table", "." ]
def learn_path(self, path): """Inserts `path` into correct global table. Since known paths to `Destination` has changes, we queue it for further processing. """ # Get VPN/Global table table = self.get_global_table_by_route_family(path.route_family) gpath_dest = table.insert(path) # Since destination was updated, we enqueue it for processing. self._signal_bus.dest_changed(gpath_dest)
[ "def", "learn_path", "(", "self", ",", "path", ")", ":", "# Get VPN/Global table", "table", "=", "self", ".", "get_global_table_by_route_family", "(", "path", ".", "route_family", ")", "gpath_dest", "=", "table", ".", "insert", "(", "path", ")", "# Since destination was updated, we enqueue it for processing.", "self", ".", "_signal_bus", ".", "dest_changed", "(", "gpath_dest", ")" ]
https://github.com/faucetsdn/ryu/blob/537f35f4b2bc634ef05e3f28373eb5e24609f989/ryu/services/protocols/bgp/core_managers/table_manager.py#L162-L172
arnabgho/iSketchNFill
68060a34d9f78fcc5f3a143ffc733ea6ec979d3f
ui_shadow_draw/py-thin-plate-spline/thinplate/pytorch.py
python
tps
(theta, ctrl, grid)
return z
Evaluate the thin-plate-spline (TPS) surface at xy locations arranged in a grid. The TPS surface is a minimum bend interpolation surface defined by a set of control points. The function value for a x,y location is given by TPS(x,y) := theta[-3] + theta[-2]*x + theta[-1]*y + \sum_t=0,T theta[t] U(x,y,ctrl[t]) This method computes the TPS value for multiple batches over multiple grid locations for 2 surfaces in one go. Params ------ theta: Nx(T+3)x2 tensor, or Nx(T+2)x2 tensor Batch size N, T+3 or T+2 (reduced form) model parameters for T control points in dx and dy. ctrl: NxTx2 tensor or Tx2 tensor T control points in normalized image coordinates [0..1] grid: NxHxWx3 tensor Grid locations to evaluate with homogeneous 1 in first coordinate. Returns ------- z: NxHxWx2 tensor Function values at each grid location in dx and dy.
Evaluate the thin-plate-spline (TPS) surface at xy locations arranged in a grid. The TPS surface is a minimum bend interpolation surface defined by a set of control points. The function value for a x,y location is given by TPS(x,y) := theta[-3] + theta[-2]*x + theta[-1]*y + \sum_t=0,T theta[t] U(x,y,ctrl[t]) This method computes the TPS value for multiple batches over multiple grid locations for 2 surfaces in one go. Params ------ theta: Nx(T+3)x2 tensor, or Nx(T+2)x2 tensor Batch size N, T+3 or T+2 (reduced form) model parameters for T control points in dx and dy. ctrl: NxTx2 tensor or Tx2 tensor T control points in normalized image coordinates [0..1] grid: NxHxWx3 tensor Grid locations to evaluate with homogeneous 1 in first coordinate. Returns ------- z: NxHxWx2 tensor Function values at each grid location in dx and dy.
[ "Evaluate", "the", "thin", "-", "plate", "-", "spline", "(", "TPS", ")", "surface", "at", "xy", "locations", "arranged", "in", "a", "grid", ".", "The", "TPS", "surface", "is", "a", "minimum", "bend", "interpolation", "surface", "defined", "by", "a", "set", "of", "control", "points", ".", "The", "function", "value", "for", "a", "x", "y", "location", "is", "given", "by", "TPS", "(", "x", "y", ")", ":", "=", "theta", "[", "-", "3", "]", "+", "theta", "[", "-", "2", "]", "*", "x", "+", "theta", "[", "-", "1", "]", "*", "y", "+", "\\", "sum_t", "=", "0", "T", "theta", "[", "t", "]", "U", "(", "x", "y", "ctrl", "[", "t", "]", ")", "This", "method", "computes", "the", "TPS", "value", "for", "multiple", "batches", "over", "multiple", "grid", "locations", "for", "2", "surfaces", "in", "one", "go", ".", "Params", "------", "theta", ":", "Nx", "(", "T", "+", "3", ")", "x2", "tensor", "or", "Nx", "(", "T", "+", "2", ")", "x2", "tensor", "Batch", "size", "N", "T", "+", "3", "or", "T", "+", "2", "(", "reduced", "form", ")", "model", "parameters", "for", "T", "control", "points", "in", "dx", "and", "dy", ".", "ctrl", ":", "NxTx2", "tensor", "or", "Tx2", "tensor", "T", "control", "points", "in", "normalized", "image", "coordinates", "[", "0", "..", "1", "]", "grid", ":", "NxHxWx3", "tensor", "Grid", "locations", "to", "evaluate", "with", "homogeneous", "1", "in", "first", "coordinate", ".", "Returns", "-------", "z", ":", "NxHxWx2", "tensor", "Function", "values", "at", "each", "grid", "location", "in", "dx", "and", "dy", "." ]
def tps(theta, ctrl, grid): '''Evaluate the thin-plate-spline (TPS) surface at xy locations arranged in a grid. The TPS surface is a minimum bend interpolation surface defined by a set of control points. The function value for a x,y location is given by TPS(x,y) := theta[-3] + theta[-2]*x + theta[-1]*y + \sum_t=0,T theta[t] U(x,y,ctrl[t]) This method computes the TPS value for multiple batches over multiple grid locations for 2 surfaces in one go. Params ------ theta: Nx(T+3)x2 tensor, or Nx(T+2)x2 tensor Batch size N, T+3 or T+2 (reduced form) model parameters for T control points in dx and dy. ctrl: NxTx2 tensor or Tx2 tensor T control points in normalized image coordinates [0..1] grid: NxHxWx3 tensor Grid locations to evaluate with homogeneous 1 in first coordinate. Returns ------- z: NxHxWx2 tensor Function values at each grid location in dx and dy. ''' N, H, W, _ = grid.size() if ctrl.dim() == 2: ctrl = ctrl.expand(N, *ctrl.size()) T = ctrl.shape[1] diff = grid[...,1:].unsqueeze(-2) - ctrl.unsqueeze(1).unsqueeze(1) D = torch.sqrt((diff**2).sum(-1)) U = (D**2) * torch.log(D + 1e-6) w, a = theta[:, :-3, :], theta[:, -3:, :] reduced = T + 2 == theta.shape[1] if reduced: w = torch.cat((-w.sum(dim=1, keepdim=True), w), dim=1) # U is NxHxWxT b = torch.bmm(U.view(N, -1, T), w).view(N,H,W,2) # b is NxHxWx2 z = torch.bmm(grid.view(N,-1,3), a).view(N,H,W,2) + b return z
[ "def", "tps", "(", "theta", ",", "ctrl", ",", "grid", ")", ":", "N", ",", "H", ",", "W", ",", "_", "=", "grid", ".", "size", "(", ")", "if", "ctrl", ".", "dim", "(", ")", "==", "2", ":", "ctrl", "=", "ctrl", ".", "expand", "(", "N", ",", "*", "ctrl", ".", "size", "(", ")", ")", "T", "=", "ctrl", ".", "shape", "[", "1", "]", "diff", "=", "grid", "[", "...", ",", "1", ":", "]", ".", "unsqueeze", "(", "-", "2", ")", "-", "ctrl", ".", "unsqueeze", "(", "1", ")", ".", "unsqueeze", "(", "1", ")", "D", "=", "torch", ".", "sqrt", "(", "(", "diff", "**", "2", ")", ".", "sum", "(", "-", "1", ")", ")", "U", "=", "(", "D", "**", "2", ")", "*", "torch", ".", "log", "(", "D", "+", "1e-6", ")", "w", ",", "a", "=", "theta", "[", ":", ",", ":", "-", "3", ",", ":", "]", ",", "theta", "[", ":", ",", "-", "3", ":", ",", ":", "]", "reduced", "=", "T", "+", "2", "==", "theta", ".", "shape", "[", "1", "]", "if", "reduced", ":", "w", "=", "torch", ".", "cat", "(", "(", "-", "w", ".", "sum", "(", "dim", "=", "1", ",", "keepdim", "=", "True", ")", ",", "w", ")", ",", "dim", "=", "1", ")", "# U is NxHxWxT", "b", "=", "torch", ".", "bmm", "(", "U", ".", "view", "(", "N", ",", "-", "1", ",", "T", ")", ",", "w", ")", ".", "view", "(", "N", ",", "H", ",", "W", ",", "2", ")", "# b is NxHxWx2", "z", "=", "torch", ".", "bmm", "(", "grid", ".", "view", "(", "N", ",", "-", "1", ",", "3", ")", ",", "a", ")", ".", "view", "(", "N", ",", "H", ",", "W", ",", "2", ")", "+", "b", "return", "z" ]
https://github.com/arnabgho/iSketchNFill/blob/68060a34d9f78fcc5f3a143ffc733ea6ec979d3f/ui_shadow_draw/py-thin-plate-spline/thinplate/pytorch.py#L8-L55
etingof/pyasn1
db8f1a7930c6b5826357646746337dafc983f953
pyasn1/type/univ.py
python
Any.tagMap
(self)
Return a :class:`~pyasn1.type.tagmap.TagMap` object mapping ASN.1 tags to ASN.1 objects contained within callee.
Return a :class:`~pyasn1.type.tagmap.TagMap` object mapping ASN.1 tags to ASN.1 objects contained within callee.
[ "Return", "a", ":", "class", ":", "~pyasn1", ".", "type", ".", "tagmap", ".", "TagMap", "object", "mapping", "ASN", ".", "1", "tags", "to", "ASN", ".", "1", "objects", "contained", "within", "callee", "." ]
def tagMap(self): """"Return a :class:`~pyasn1.type.tagmap.TagMap` object mapping ASN.1 tags to ASN.1 objects contained within callee. """ try: return self._tagMap except AttributeError: self._tagMap = tagmap.TagMap( {self.tagSet: self}, {eoo.endOfOctets.tagSet: eoo.endOfOctets}, self ) return self._tagMap
[ "def", "tagMap", "(", "self", ")", ":", "try", ":", "return", "self", ".", "_tagMap", "except", "AttributeError", ":", "self", ".", "_tagMap", "=", "tagmap", ".", "TagMap", "(", "{", "self", ".", "tagSet", ":", "self", "}", ",", "{", "eoo", ".", "endOfOctets", ".", "tagSet", ":", "eoo", ".", "endOfOctets", "}", ",", "self", ")", "return", "self", ".", "_tagMap" ]
https://github.com/etingof/pyasn1/blob/db8f1a7930c6b5826357646746337dafc983f953/pyasn1/type/univ.py#L3288-L3302
js3611/Deep-MRI-Reconstruction
d8a40efd892e57799c3413630e5cb92d5b035cf8
cascadenet/network/layers/fourier.py
python
FFTLayer.transform
(self, input)
return T.stack([out_r, out_c])
Perform fourier transform using Fourier matrix Parameters ------------------------------ input must be of 4d tensor with shape [n, 2, nx, ny] where [nx, ny] == self.data_shape. n means number of data. 2 means channels for real and complex part of the input (channel 1 == real, channel 2 = complex) uses real values to simulate the complex operation Returns ------------------------------ tensor of the shape [n, 2, nx, ny] which is equivalent to fourier transform
Perform fourier transform using Fourier matrix
[ "Perform", "fourier", "transform", "using", "Fourier", "matrix" ]
def transform(self, input): ''' Perform fourier transform using Fourier matrix Parameters ------------------------------ input must be of 4d tensor with shape [n, 2, nx, ny] where [nx, ny] == self.data_shape. n means number of data. 2 means channels for real and complex part of the input (channel 1 == real, channel 2 = complex) uses real values to simulate the complex operation Returns ------------------------------ tensor of the shape [n, 2, nx, ny] which is equivalent to fourier transform ''' in_r = input[0] in_c = input[1] real_fft = self.real_fft complex_fft = self.complex_fft out_r = T.dot(real_fft, in_r) - T.dot(complex_fft, in_c) out_c = T.dot(complex_fft, in_r) + T.dot(real_fft, in_c) return T.stack([out_r, out_c])
[ "def", "transform", "(", "self", ",", "input", ")", ":", "in_r", "=", "input", "[", "0", "]", "in_c", "=", "input", "[", "1", "]", "real_fft", "=", "self", ".", "real_fft", "complex_fft", "=", "self", ".", "complex_fft", "out_r", "=", "T", ".", "dot", "(", "real_fft", ",", "in_r", ")", "-", "T", ".", "dot", "(", "complex_fft", ",", "in_c", ")", "out_c", "=", "T", ".", "dot", "(", "complex_fft", ",", "in_r", ")", "+", "T", ".", "dot", "(", "real_fft", ",", "in_c", ")", "return", "T", ".", "stack", "(", "[", "out_r", ",", "out_c", "]", ")" ]
https://github.com/js3611/Deep-MRI-Reconstruction/blob/d8a40efd892e57799c3413630e5cb92d5b035cf8/cascadenet/network/layers/fourier.py#L51-L75
thatbrguy/Pedestrian-Detection
b11c7d6bed0ff320811726fe1c429be26a87da9e
object_detection/builders/model_builder.py
python
_build_faster_rcnn_feature_extractor
( feature_extractor_config, is_training, reuse_weights=None)
return feature_extractor_class( is_training, first_stage_features_stride, batch_norm_trainable, reuse_weights)
Builds a faster_rcnn_meta_arch.FasterRCNNFeatureExtractor based on config. Args: feature_extractor_config: A FasterRcnnFeatureExtractor proto config from faster_rcnn.proto. is_training: True if this feature extractor is being built for training. reuse_weights: if the feature extractor should reuse weights. Returns: faster_rcnn_meta_arch.FasterRCNNFeatureExtractor based on config. Raises: ValueError: On invalid feature extractor type.
Builds a faster_rcnn_meta_arch.FasterRCNNFeatureExtractor based on config.
[ "Builds", "a", "faster_rcnn_meta_arch", ".", "FasterRCNNFeatureExtractor", "based", "on", "config", "." ]
def _build_faster_rcnn_feature_extractor( feature_extractor_config, is_training, reuse_weights=None): """Builds a faster_rcnn_meta_arch.FasterRCNNFeatureExtractor based on config. Args: feature_extractor_config: A FasterRcnnFeatureExtractor proto config from faster_rcnn.proto. is_training: True if this feature extractor is being built for training. reuse_weights: if the feature extractor should reuse weights. Returns: faster_rcnn_meta_arch.FasterRCNNFeatureExtractor based on config. Raises: ValueError: On invalid feature extractor type. """ feature_type = feature_extractor_config.type first_stage_features_stride = ( feature_extractor_config.first_stage_features_stride) batch_norm_trainable = feature_extractor_config.batch_norm_trainable if feature_type not in FASTER_RCNN_FEATURE_EXTRACTOR_CLASS_MAP: raise ValueError('Unknown Faster R-CNN feature_extractor: {}'.format( feature_type)) feature_extractor_class = FASTER_RCNN_FEATURE_EXTRACTOR_CLASS_MAP[ feature_type] return feature_extractor_class( is_training, first_stage_features_stride, batch_norm_trainable, reuse_weights)
[ "def", "_build_faster_rcnn_feature_extractor", "(", "feature_extractor_config", ",", "is_training", ",", "reuse_weights", "=", "None", ")", ":", "feature_type", "=", "feature_extractor_config", ".", "type", "first_stage_features_stride", "=", "(", "feature_extractor_config", ".", "first_stage_features_stride", ")", "batch_norm_trainable", "=", "feature_extractor_config", ".", "batch_norm_trainable", "if", "feature_type", "not", "in", "FASTER_RCNN_FEATURE_EXTRACTOR_CLASS_MAP", ":", "raise", "ValueError", "(", "'Unknown Faster R-CNN feature_extractor: {}'", ".", "format", "(", "feature_type", ")", ")", "feature_extractor_class", "=", "FASTER_RCNN_FEATURE_EXTRACTOR_CLASS_MAP", "[", "feature_type", "]", "return", "feature_extractor_class", "(", "is_training", ",", "first_stage_features_stride", ",", "batch_norm_trainable", ",", "reuse_weights", ")" ]
https://github.com/thatbrguy/Pedestrian-Detection/blob/b11c7d6bed0ff320811726fe1c429be26a87da9e/object_detection/builders/model_builder.py#L177-L205
GoogleCloudPlatform/professional-services
0c707aa97437f3d154035ef8548109b7882f71da
tools/gmon/gmon/cli.py
python
parse_fields
(fields)
return fields
Parse `fields` CLI argument. Args: fields (list): List of fields to display. Returns: list: Parsed fields.
Parse `fields` CLI argument.
[ "Parse", "fields", "CLI", "argument", "." ]
def parse_fields(fields): """Parse `fields` CLI argument. Args: fields (list): List of fields to display. Returns: list: Parsed fields. """ # display all fields if fields == ['all']: return None # Remove unneeded fields to_remove = [] if fields: # Go through fields and check for comma-delimited fields (user mistakes) for f in fields: if ',' in f: to_remove.append(f) more = f.split(",") fields.extend(more) for f in to_remove: fields.remove(f) return fields
[ "def", "parse_fields", "(", "fields", ")", ":", "# display all fields", "if", "fields", "==", "[", "'all'", "]", ":", "return", "None", "# Remove unneeded fields", "to_remove", "=", "[", "]", "if", "fields", ":", "# Go through fields and check for comma-delimited fields (user mistakes)", "for", "f", "in", "fields", ":", "if", "','", "in", "f", ":", "to_remove", ".", "append", "(", "f", ")", "more", "=", "f", ".", "split", "(", "\",\"", ")", "fields", ".", "extend", "(", "more", ")", "for", "f", "in", "to_remove", ":", "fields", ".", "remove", "(", "f", ")", "return", "fields" ]
https://github.com/GoogleCloudPlatform/professional-services/blob/0c707aa97437f3d154035ef8548109b7882f71da/tools/gmon/gmon/cli.py#L405-L429
SHI-Labs/Decoupled-Classification-Refinement
16202b48eb9cbf79a9b130a98e8c209d4f24693e
faster_rcnn/core/DataParallelExecutorGroup.py
python
DataParallelExecutorGroup.get_outputs
(self, merge_multi_context=True)
return outputs
Get outputs of the previous forward computation. Parameters ---------- merge_multi_context : bool Default is `True`. In the case when data-parallelism is used, the outputs will be collected from multiple devices. A `True` value indicate that we should merge the collected results so that they look like from a single executor. Returns ------- If `merge_multi_context` is `True`, it is like `[out1, out2]`. Otherwise, it is like `[[out1_dev1, out1_dev2], [out2_dev1, out2_dev2]]`. All the output elements are `NDArray`.
Get outputs of the previous forward computation.
[ "Get", "outputs", "of", "the", "previous", "forward", "computation", "." ]
def get_outputs(self, merge_multi_context=True): """Get outputs of the previous forward computation. Parameters ---------- merge_multi_context : bool Default is `True`. In the case when data-parallelism is used, the outputs will be collected from multiple devices. A `True` value indicate that we should merge the collected results so that they look like from a single executor. Returns ------- If `merge_multi_context` is `True`, it is like `[out1, out2]`. Otherwise, it is like `[[out1_dev1, out1_dev2], [out2_dev1, out2_dev2]]`. All the output elements are `NDArray`. """ outputs = [[exec_.outputs[i] for exec_ in self.execs] for i in range(len(self.execs[0].outputs))] if merge_multi_context: outputs = _merge_multi_context(outputs, self.output_layouts) return outputs
[ "def", "get_outputs", "(", "self", ",", "merge_multi_context", "=", "True", ")", ":", "outputs", "=", "[", "[", "exec_", ".", "outputs", "[", "i", "]", "for", "exec_", "in", "self", ".", "execs", "]", "for", "i", "in", "range", "(", "len", "(", "self", ".", "execs", "[", "0", "]", ".", "outputs", ")", ")", "]", "if", "merge_multi_context", ":", "outputs", "=", "_merge_multi_context", "(", "outputs", ",", "self", ".", "output_layouts", ")", "return", "outputs" ]
https://github.com/SHI-Labs/Decoupled-Classification-Refinement/blob/16202b48eb9cbf79a9b130a98e8c209d4f24693e/faster_rcnn/core/DataParallelExecutorGroup.py#L363-L384
danieljl/keras-image-captioning
cac7a99ed35ed787b473376ce5c5d189f191f578
pycocoevalcap/bleu/bleu_scorer.py
python
cook_refs
(refs, eff=None, n=4)
return (reflen, maxcounts)
Takes a list of reference sentences for a single segment and returns an object that encapsulates everything that BLEU needs to know about them.
Takes a list of reference sentences for a single segment and returns an object that encapsulates everything that BLEU needs to know about them.
[ "Takes", "a", "list", "of", "reference", "sentences", "for", "a", "single", "segment", "and", "returns", "an", "object", "that", "encapsulates", "everything", "that", "BLEU", "needs", "to", "know", "about", "them", "." ]
def cook_refs(refs, eff=None, n=4): ## lhuang: oracle will call with "average" '''Takes a list of reference sentences for a single segment and returns an object that encapsulates everything that BLEU needs to know about them.''' reflen = [] maxcounts = {} for ref in refs: rl, counts = precook(ref, n) reflen.append(rl) for (ngram,count) in counts.iteritems(): maxcounts[ngram] = max(maxcounts.get(ngram,0), count) # Calculate effective reference sentence length. if eff == "shortest": reflen = min(reflen) elif eff == "average": reflen = float(sum(reflen))/len(reflen) ## lhuang: N.B.: leave reflen computaiton to the very end!! ## lhuang: N.B.: in case of "closest", keep a list of reflens!! (bad design) return (reflen, maxcounts)
[ "def", "cook_refs", "(", "refs", ",", "eff", "=", "None", ",", "n", "=", "4", ")", ":", "## lhuang: oracle will call with \"average\"", "reflen", "=", "[", "]", "maxcounts", "=", "{", "}", "for", "ref", "in", "refs", ":", "rl", ",", "counts", "=", "precook", "(", "ref", ",", "n", ")", "reflen", ".", "append", "(", "rl", ")", "for", "(", "ngram", ",", "count", ")", "in", "counts", ".", "iteritems", "(", ")", ":", "maxcounts", "[", "ngram", "]", "=", "max", "(", "maxcounts", ".", "get", "(", "ngram", ",", "0", ")", ",", "count", ")", "# Calculate effective reference sentence length.", "if", "eff", "==", "\"shortest\"", ":", "reflen", "=", "min", "(", "reflen", ")", "elif", "eff", "==", "\"average\"", ":", "reflen", "=", "float", "(", "sum", "(", "reflen", ")", ")", "/", "len", "(", "reflen", ")", "## lhuang: N.B.: leave reflen computaiton to the very end!!", "## lhuang: N.B.: in case of \"closest\", keep a list of reflens!! (bad design)", "return", "(", "reflen", ",", "maxcounts", ")" ]
https://github.com/danieljl/keras-image-captioning/blob/cac7a99ed35ed787b473376ce5c5d189f191f578/pycocoevalcap/bleu/bleu_scorer.py#L35-L58
pm4py/pm4py-core
7807b09a088b02199cd0149d724d0e28793971bf
pm4py/objects/stochastic_petri/ctmc.py
python
get_tangible_reachability_and_q_matrix_from_dfg_performance
(dfg_performance, invisible_firing_rate=1000.0, parameters=None)
return tang_reach_graph, tang_reach_graph, stochastic_map, q_matrix
Get the tangible reachability graph and the Q matrix from the performance DFG Parameters ------------- dfg_performance Performance DFG invisible_firing_rate Firing rate for invisible transitions parameters Parameters Returns ------------- reachab_graph Reachability graph tangible_reach_graph Tangible reachability graph stochastic_info Stochastic information q_matrix Q-matrix from the tangible reachability graph
Get the tangible reachability graph and the Q matrix from the performance DFG
[ "Get", "the", "tangible", "reachability", "graph", "and", "the", "Q", "matrix", "from", "the", "performance", "DFG" ]
def get_tangible_reachability_and_q_matrix_from_dfg_performance(dfg_performance, invisible_firing_rate=1000.0, parameters=None): """ Get the tangible reachability graph and the Q matrix from the performance DFG Parameters ------------- dfg_performance Performance DFG invisible_firing_rate Firing rate for invisible transitions parameters Parameters Returns ------------- reachab_graph Reachability graph tangible_reach_graph Tangible reachability graph stochastic_info Stochastic information q_matrix Q-matrix from the tangible reachability graph """ if parameters is None: parameters = {} net, im, fm = dfg_converter.apply(dfg_performance, parameters=parameters) stochastic_map = {} for tr in net.transitions: if tr.label is None: rv = random_variable.RandomVariable() exp = exponential.Exponential() exp.scale = 1/invisible_firing_rate rv.random_variable = exp stochastic_map[tr] = rv else: input_arc = list(tr.in_arcs)[0] output_arc = list(tr.out_arcs)[0] rv = random_variable.RandomVariable() el = (input_arc.source.name, output_arc.target.name) scale = 0 if el in dfg_performance: scale = dfg_performance[el] if scale == 0: scale = 1/invisible_firing_rate exp = exponential.Exponential() exp.scale = scale rv.random_variable = exp stochastic_map[tr] = rv tang_reach_graph = construct_reachability_graph(net, im, use_trans_name=True) q_matrix = get_q_matrix_from_tangible_exponential(tang_reach_graph, stochastic_map) return tang_reach_graph, tang_reach_graph, stochastic_map, q_matrix
[ "def", "get_tangible_reachability_and_q_matrix_from_dfg_performance", "(", "dfg_performance", ",", "invisible_firing_rate", "=", "1000.0", ",", "parameters", "=", "None", ")", ":", "if", "parameters", "is", "None", ":", "parameters", "=", "{", "}", "net", ",", "im", ",", "fm", "=", "dfg_converter", ".", "apply", "(", "dfg_performance", ",", "parameters", "=", "parameters", ")", "stochastic_map", "=", "{", "}", "for", "tr", "in", "net", ".", "transitions", ":", "if", "tr", ".", "label", "is", "None", ":", "rv", "=", "random_variable", ".", "RandomVariable", "(", ")", "exp", "=", "exponential", ".", "Exponential", "(", ")", "exp", ".", "scale", "=", "1", "/", "invisible_firing_rate", "rv", ".", "random_variable", "=", "exp", "stochastic_map", "[", "tr", "]", "=", "rv", "else", ":", "input_arc", "=", "list", "(", "tr", ".", "in_arcs", ")", "[", "0", "]", "output_arc", "=", "list", "(", "tr", ".", "out_arcs", ")", "[", "0", "]", "rv", "=", "random_variable", ".", "RandomVariable", "(", ")", "el", "=", "(", "input_arc", ".", "source", ".", "name", ",", "output_arc", ".", "target", ".", "name", ")", "scale", "=", "0", "if", "el", "in", "dfg_performance", ":", "scale", "=", "dfg_performance", "[", "el", "]", "if", "scale", "==", "0", ":", "scale", "=", "1", "/", "invisible_firing_rate", "exp", "=", "exponential", ".", "Exponential", "(", ")", "exp", ".", "scale", "=", "scale", "rv", ".", "random_variable", "=", "exp", "stochastic_map", "[", "tr", "]", "=", "rv", "tang_reach_graph", "=", "construct_reachability_graph", "(", "net", ",", "im", ",", "use_trans_name", "=", "True", ")", "q_matrix", "=", "get_q_matrix_from_tangible_exponential", "(", "tang_reach_graph", ",", "stochastic_map", ")", "return", "tang_reach_graph", ",", "tang_reach_graph", ",", "stochastic_map", ",", "q_matrix" ]
https://github.com/pm4py/pm4py-core/blob/7807b09a088b02199cd0149d724d0e28793971bf/pm4py/objects/stochastic_petri/ctmc.py#L86-L137
apigee/henchman
13c53c66669800aaa89f1799ac974b45ec473c3d
modules/curl/curl/requests/requests/packages/urllib3/_collections.py
python
RecentlyUsedContainer.clear
(self)
[]
def clear(self): with self.lock: # Copy pointers to all values, then wipe the mapping values = list(itervalues(self._container)) self._container.clear() if self.dispose_func: for value in values: self.dispose_func(value)
[ "def", "clear", "(", "self", ")", ":", "with", "self", ".", "lock", ":", "# Copy pointers to all values, then wipe the mapping", "values", "=", "list", "(", "itervalues", "(", "self", ".", "_container", ")", ")", "self", ".", "_container", ".", "clear", "(", ")", "if", "self", ".", "dispose_func", ":", "for", "value", "in", "values", ":", "self", ".", "dispose_func", "(", "value", ")" ]
https://github.com/apigee/henchman/blob/13c53c66669800aaa89f1799ac974b45ec473c3d/modules/curl/curl/requests/requests/packages/urllib3/_collections.py#L85-L93
PowerScript/KatanaFramework
0f6ad90a88de865d58ec26941cb4460501e75496
lib/scapy/build/lib.linux-i686-2.7/scapy/contrib/bgp.py
python
BGPOptionalParameter.extract_padding
(self, p)
return "",p
any thing after this packet is extracted is padding
any thing after this packet is extracted is padding
[ "any", "thing", "after", "this", "packet", "is", "extracted", "is", "padding" ]
def extract_padding(self, p): """any thing after this packet is extracted is padding""" return "",p
[ "def", "extract_padding", "(", "self", ",", "p", ")", ":", "return", "\"\"", ",", "p" ]
https://github.com/PowerScript/KatanaFramework/blob/0f6ad90a88de865d58ec26941cb4460501e75496/lib/scapy/build/lib.linux-i686-2.7/scapy/contrib/bgp.py#L74-L76
ACCLAB/DABEST-python
3ac87685a6c0859f731e9c9107bef8f32e39a61d
dabest/_stats_tools/effsize.py
python
_compute_hedges_correction_factor
(n1, n2)
return out
Computes the bias correction factor for Hedges' g. See https://en.wikipedia.org/wiki/Effect_size#Hedges'_g Returns ------- j: float References ---------- Larry V. Hedges & Ingram Olkin (1985). Statistical Methods for Meta-Analysis. Orlando: Academic Press. ISBN 0-12-336380-2.
Computes the bias correction factor for Hedges' g.
[ "Computes", "the", "bias", "correction", "factor", "for", "Hedges", "g", "." ]
def _compute_hedges_correction_factor(n1, n2): """ Computes the bias correction factor for Hedges' g. See https://en.wikipedia.org/wiki/Effect_size#Hedges'_g Returns ------- j: float References ---------- Larry V. Hedges & Ingram Olkin (1985). Statistical Methods for Meta-Analysis. Orlando: Academic Press. ISBN 0-12-336380-2. """ from scipy.special import gamma from numpy import sqrt, isinf import warnings df = n1 + n2 - 2 numer = gamma(df / 2) denom0 = gamma((df - 1) / 2) denom = sqrt(df / 2) * denom0 if isinf(numer) or isinf(denom): # occurs when df is too large. # Apply Hedges and Olkin's approximation. df_sum = n1 + n2 denom = (4 * df_sum) - 9 out = 1 - (3 / denom) else: out = numer / denom return out
[ "def", "_compute_hedges_correction_factor", "(", "n1", ",", "n2", ")", ":", "from", "scipy", ".", "special", "import", "gamma", "from", "numpy", "import", "sqrt", ",", "isinf", "import", "warnings", "df", "=", "n1", "+", "n2", "-", "2", "numer", "=", "gamma", "(", "df", "/", "2", ")", "denom0", "=", "gamma", "(", "(", "df", "-", "1", ")", "/", "2", ")", "denom", "=", "sqrt", "(", "df", "/", "2", ")", "*", "denom0", "if", "isinf", "(", "numer", ")", "or", "isinf", "(", "denom", ")", ":", "# occurs when df is too large.", "# Apply Hedges and Olkin's approximation.", "df_sum", "=", "n1", "+", "n2", "denom", "=", "(", "4", "*", "df_sum", ")", "-", "9", "out", "=", "1", "-", "(", "3", "/", "denom", ")", "else", ":", "out", "=", "numer", "/", "denom", "return", "out" ]
https://github.com/ACCLAB/DABEST-python/blob/3ac87685a6c0859f731e9c9107bef8f32e39a61d/dabest/_stats_tools/effsize.py#L352-L388
rembo10/headphones
b3199605be1ebc83a7a8feab6b1e99b64014187c
headphones/webserve.py
python
WebInterface.addArtist
(self, artistid)
[]
def addArtist(self, artistid): thread = threading.Thread(target=importer.addArtisttoDB, args=[artistid]) thread.start() thread.join(1) raise cherrypy.HTTPRedirect("artistPage?ArtistID=%s" % artistid)
[ "def", "addArtist", "(", "self", ",", "artistid", ")", ":", "thread", "=", "threading", ".", "Thread", "(", "target", "=", "importer", ".", "addArtisttoDB", ",", "args", "=", "[", "artistid", "]", ")", "thread", ".", "start", "(", ")", "thread", ".", "join", "(", "1", ")", "raise", "cherrypy", ".", "HTTPRedirect", "(", "\"artistPage?ArtistID=%s\"", "%", "artistid", ")" ]
https://github.com/rembo10/headphones/blob/b3199605be1ebc83a7a8feab6b1e99b64014187c/headphones/webserve.py#L165-L169
napari/napari
dbf4158e801fa7a429de8ef1cdee73bf6d64c61e
napari/_qt/qt_viewer.py
python
QtViewer._map_canvas2world
(self, position)
return tuple(position_world)
Map position from canvas pixels into world coordinates. Parameters ---------- position : 2-tuple Position in canvas (x, y). Returns ------- coords : tuple Position in world coordinates, matches the total dimensionality of the viewer.
Map position from canvas pixels into world coordinates.
[ "Map", "position", "from", "canvas", "pixels", "into", "world", "coordinates", "." ]
def _map_canvas2world(self, position): """Map position from canvas pixels into world coordinates. Parameters ---------- position : 2-tuple Position in canvas (x, y). Returns ------- coords : tuple Position in world coordinates, matches the total dimensionality of the viewer. """ nd = self.viewer.dims.ndisplay transform = self.view.scene.transform mapped_position = transform.imap(list(position))[:nd] position_world_slice = mapped_position[::-1] position_world = list(self.viewer.dims.point) for i, d in enumerate(self.viewer.dims.displayed): position_world[d] = position_world_slice[i] return tuple(position_world)
[ "def", "_map_canvas2world", "(", "self", ",", "position", ")", ":", "nd", "=", "self", ".", "viewer", ".", "dims", ".", "ndisplay", "transform", "=", "self", ".", "view", ".", "scene", ".", "transform", "mapped_position", "=", "transform", ".", "imap", "(", "list", "(", "position", ")", ")", "[", ":", "nd", "]", "position_world_slice", "=", "mapped_position", "[", ":", ":", "-", "1", "]", "position_world", "=", "list", "(", "self", ".", "viewer", ".", "dims", ".", "point", ")", "for", "i", ",", "d", "in", "enumerate", "(", "self", ".", "viewer", ".", "dims", ".", "displayed", ")", ":", "position_world", "[", "d", "]", "=", "position_world_slice", "[", "i", "]", "return", "tuple", "(", "position_world", ")" ]
https://github.com/napari/napari/blob/dbf4158e801fa7a429de8ef1cdee73bf6d64c61e/napari/_qt/qt_viewer.py#L816-L839
privacyidea/privacyidea
9490c12ddbf77a34ac935b082d09eb583dfafa2c
privacyidea/lib/config.py
python
get_token_list
()
return module_list
get the list of the tokens :return: list of token names from the config file
get the list of the tokens :return: list of token names from the config file
[ "get", "the", "list", "of", "the", "tokens", ":", "return", ":", "list", "of", "token", "names", "from", "the", "config", "file" ]
def get_token_list(): """ get the list of the tokens :return: list of token names from the config file """ module_list = set() module_list.add("privacyidea.lib.tokens.daplugtoken") module_list.add("privacyidea.lib.tokens.hotptoken") module_list.add("privacyidea.lib.tokens.motptoken") module_list.add("privacyidea.lib.tokens.passwordtoken") module_list.add("privacyidea.lib.tokens.remotetoken") module_list.add("privacyidea.lib.tokens.spasstoken") module_list.add("privacyidea.lib.tokens.sshkeytoken") module_list.add("privacyidea.lib.tokens.totptoken") module_list.add("privacyidea.lib.tokens.yubicotoken") module_list.add("privacyidea.lib.tokens.yubikeytoken") module_list.add("privacyidea.lib.tokens.radiustoken") module_list.add("privacyidea.lib.tokens.smstoken") module_list.add("privacyidea.lib.tokens.emailtoken") module_list.add("privacyidea.lib.tokens.registrationtoken") module_list.add("privacyidea.lib.tokens.certificatetoken") module_list.add("privacyidea.lib.tokens.foureyestoken") module_list.add("privacyidea.lib.tokens.tiqrtoken") module_list.add("privacyidea.lib.tokens.ocratoken") module_list.add("privacyidea.lib.tokens.u2ftoken") module_list.add("privacyidea.lib.tokens.papertoken") module_list.add("privacyidea.lib.tokens.questionnairetoken") module_list.add("privacyidea.lib.tokens.vascotoken") module_list.add("privacyidea.lib.tokens.tantoken") module_list.add("privacyidea.lib.tokens.pushtoken") module_list.add("privacyidea.lib.tokens.indexedsecrettoken") module_list.add("privacyidea.lib.tokens.webauthntoken") # Dynamic token modules dynamic_token_modules = get_app_config_value("PI_TOKEN_MODULES") if dynamic_token_modules: # In the pi.cfg you can specify a list or set of 3rd party token modules like # PI_TOKEN_MODULES = [ "myproj.tokens.tok1", "myproj.tokens.tok2" ] module_list.update(to_list(dynamic_token_modules)) return module_list
[ "def", "get_token_list", "(", ")", ":", "module_list", "=", "set", "(", ")", "module_list", ".", "add", "(", "\"privacyidea.lib.tokens.daplugtoken\"", ")", "module_list", ".", "add", "(", "\"privacyidea.lib.tokens.hotptoken\"", ")", "module_list", ".", "add", "(", "\"privacyidea.lib.tokens.motptoken\"", ")", "module_list", ".", "add", "(", "\"privacyidea.lib.tokens.passwordtoken\"", ")", "module_list", ".", "add", "(", "\"privacyidea.lib.tokens.remotetoken\"", ")", "module_list", ".", "add", "(", "\"privacyidea.lib.tokens.spasstoken\"", ")", "module_list", ".", "add", "(", "\"privacyidea.lib.tokens.sshkeytoken\"", ")", "module_list", ".", "add", "(", "\"privacyidea.lib.tokens.totptoken\"", ")", "module_list", ".", "add", "(", "\"privacyidea.lib.tokens.yubicotoken\"", ")", "module_list", ".", "add", "(", "\"privacyidea.lib.tokens.yubikeytoken\"", ")", "module_list", ".", "add", "(", "\"privacyidea.lib.tokens.radiustoken\"", ")", "module_list", ".", "add", "(", "\"privacyidea.lib.tokens.smstoken\"", ")", "module_list", ".", "add", "(", "\"privacyidea.lib.tokens.emailtoken\"", ")", "module_list", ".", "add", "(", "\"privacyidea.lib.tokens.registrationtoken\"", ")", "module_list", ".", "add", "(", "\"privacyidea.lib.tokens.certificatetoken\"", ")", "module_list", ".", "add", "(", "\"privacyidea.lib.tokens.foureyestoken\"", ")", "module_list", ".", "add", "(", "\"privacyidea.lib.tokens.tiqrtoken\"", ")", "module_list", ".", "add", "(", "\"privacyidea.lib.tokens.ocratoken\"", ")", "module_list", ".", "add", "(", "\"privacyidea.lib.tokens.u2ftoken\"", ")", "module_list", ".", "add", "(", "\"privacyidea.lib.tokens.papertoken\"", ")", "module_list", ".", "add", "(", "\"privacyidea.lib.tokens.questionnairetoken\"", ")", "module_list", ".", "add", "(", "\"privacyidea.lib.tokens.vascotoken\"", ")", "module_list", ".", "add", "(", "\"privacyidea.lib.tokens.tantoken\"", ")", "module_list", ".", "add", "(", "\"privacyidea.lib.tokens.pushtoken\"", ")", "module_list", ".", "add", "(", "\"privacyidea.lib.tokens.indexedsecrettoken\"", ")", "module_list", ".", "add", "(", "\"privacyidea.lib.tokens.webauthntoken\"", ")", "# Dynamic token modules", "dynamic_token_modules", "=", "get_app_config_value", "(", "\"PI_TOKEN_MODULES\"", ")", "if", "dynamic_token_modules", ":", "# In the pi.cfg you can specify a list or set of 3rd party token modules like", "# PI_TOKEN_MODULES = [ \"myproj.tokens.tok1\", \"myproj.tokens.tok2\" ]", "module_list", ".", "update", "(", "to_list", "(", "dynamic_token_modules", ")", ")", "return", "module_list" ]
https://github.com/privacyidea/privacyidea/blob/9490c12ddbf77a34ac935b082d09eb583dfafa2c/privacyidea/lib/config.py#L690-L731
IronLanguages/ironpython3
7a7bb2a872eeab0d1009fc8a6e24dca43f65b693
Src/StdLib/Lib/email/message.py
python
_IsAttachment.__bool__
(self)
return self.value
[]
def __bool__(self): warnings.warn("is_attachment will be a method, not a property, in 3.5", DeprecationWarning, stacklevel=3) return self.value
[ "def", "__bool__", "(", "self", ")", ":", "warnings", ".", "warn", "(", "\"is_attachment will be a method, not a property, in 3.5\"", ",", "DeprecationWarning", ",", "stacklevel", "=", "3", ")", "return", "self", ".", "value" ]
https://github.com/IronLanguages/ironpython3/blob/7a7bb2a872eeab0d1009fc8a6e24dca43f65b693/Src/StdLib/Lib/email/message.py#L939-L943
lebedov/scikit-cuda
5d3c74f926fe7ce67ecfc85e9623aab7bc0b344f
skcuda/magma.py
python
magma_ssyevdx_gpu
(jobz, rnge, uplo, n, A, lda, vl, vu, il, iu, m, w, wa, ldwa, work, lwork, iwork, liwork)
Compute eigenvalues of real symmetric matrix. Single-GPU, data on device, expert mode source: dsyedx_m.cpp
Compute eigenvalues of real symmetric matrix. Single-GPU, data on device, expert mode
[ "Compute", "eigenvalues", "of", "real", "symmetric", "matrix", ".", "Single", "-", "GPU", "data", "on", "device", "expert", "mode" ]
def magma_ssyevdx_gpu(jobz, rnge, uplo, n, A, lda, vl, vu, il, iu, m, w, wa, ldwa, work, lwork, iwork, liwork): """ Compute eigenvalues of real symmetric matrix. Single-GPU, data on device, expert mode source: dsyedx_m.cpp """ # _XXX_conversion[] returns integer according to magma_types.h jobz = _vec_conversion[jobz] rnge = _range_conversion[rnge] uplo = _uplo_conversion[uplo] info = c_int_type() status = _libmagma.magma_ssyevdx_gpu(jobz, rnge, uplo, n, int(A), lda, vl, vu, il, iu, int(m), int(w), int(wa), ldwa, int(work), lwork, int(iwork), liwork, ctypes.byref(info)) magmaCheckStatus(status)
[ "def", "magma_ssyevdx_gpu", "(", "jobz", ",", "rnge", ",", "uplo", ",", "n", ",", "A", ",", "lda", ",", "vl", ",", "vu", ",", "il", ",", "iu", ",", "m", ",", "w", ",", "wa", ",", "ldwa", ",", "work", ",", "lwork", ",", "iwork", ",", "liwork", ")", ":", "# _XXX_conversion[] returns integer according to magma_types.h", "jobz", "=", "_vec_conversion", "[", "jobz", "]", "rnge", "=", "_range_conversion", "[", "rnge", "]", "uplo", "=", "_uplo_conversion", "[", "uplo", "]", "info", "=", "c_int_type", "(", ")", "status", "=", "_libmagma", ".", "magma_ssyevdx_gpu", "(", "jobz", ",", "rnge", ",", "uplo", ",", "n", ",", "int", "(", "A", ")", ",", "lda", ",", "vl", ",", "vu", ",", "il", ",", "iu", ",", "int", "(", "m", ")", ",", "int", "(", "w", ")", ",", "int", "(", "wa", ")", ",", "ldwa", ",", "int", "(", "work", ")", ",", "lwork", ",", "int", "(", "iwork", ")", ",", "liwork", ",", "ctypes", ".", "byref", "(", "info", ")", ")", "magmaCheckStatus", "(", "status", ")" ]
https://github.com/lebedov/scikit-cuda/blob/5d3c74f926fe7ce67ecfc85e9623aab7bc0b344f/skcuda/magma.py#L3887-L3907
secureworks/dalton
a514a7ed5dc376a6722260910078d841017b1f80
app/dalton.py
python
set_job_status
(jobid, status)
set's a job status code
set's a job status code
[ "set", "s", "a", "job", "status", "code" ]
def set_job_status(jobid, status): """set's a job status code""" global r r.set("%s-statcode" % jobid, status) # statcode keys do not expire if/when they are queued if status != STAT_CODE_QUEUED: if r.get("%s-teapotjob" % jobid): r.expire("%s-statcode" % jobid, TEAPOT_REDIS_EXPIRE) else: r.expire("%s-statcode" % jobid, REDIS_EXPIRE)
[ "def", "set_job_status", "(", "jobid", ",", "status", ")", ":", "global", "r", "r", ".", "set", "(", "\"%s-statcode\"", "%", "jobid", ",", "status", ")", "# statcode keys do not expire if/when they are queued", "if", "status", "!=", "STAT_CODE_QUEUED", ":", "if", "r", ".", "get", "(", "\"%s-teapotjob\"", "%", "jobid", ")", ":", "r", ".", "expire", "(", "\"%s-statcode\"", "%", "jobid", ",", "TEAPOT_REDIS_EXPIRE", ")", "else", ":", "r", ".", "expire", "(", "\"%s-statcode\"", "%", "jobid", ",", "REDIS_EXPIRE", ")" ]
https://github.com/secureworks/dalton/blob/a514a7ed5dc376a6722260910078d841017b1f80/app/dalton.py#L273-L282
holzschu/Carnets
44effb10ddfc6aa5c8b0687582a724ba82c6b547
Library/lib/python3.7/site-packages/traitlets/config/loader.py
python
Config._merge
(self, other)
deprecated alias, use Config.merge()
deprecated alias, use Config.merge()
[ "deprecated", "alias", "use", "Config", ".", "merge", "()" ]
def _merge(self, other): """deprecated alias, use Config.merge()""" self.merge(other)
[ "def", "_merge", "(", "self", ",", "other", ")", ":", "self", ".", "merge", "(", "other", ")" ]
https://github.com/holzschu/Carnets/blob/44effb10ddfc6aa5c8b0687582a724ba82c6b547/Library/lib/python3.7/site-packages/traitlets/config/loader.py#L178-L180
OpenTSDB/tcollector
37ae920d83c1002da66b5201a5311b1714cb5c14
collectors/0/haproxy.py
python
find_sock_file
(conf_file)
Returns the unix socket file of haproxy.
Returns the unix socket file of haproxy.
[ "Returns", "the", "unix", "socket", "file", "of", "haproxy", "." ]
def find_sock_file(conf_file): """Returns the unix socket file of haproxy.""" try: fd = open(conf_file) except IOError as e: utils.err("Error: %s. Config file path is relative: %s" % (e, conf_file)) return None try: for line in fd: if line.lstrip(" \t").startswith("stats socket"): sock_file = line.split()[2] if utils.is_sockfile(sock_file): return sock_file finally: fd.close()
[ "def", "find_sock_file", "(", "conf_file", ")", ":", "try", ":", "fd", "=", "open", "(", "conf_file", ")", "except", "IOError", "as", "e", ":", "utils", ".", "err", "(", "\"Error: %s. Config file path is relative: %s\"", "%", "(", "e", ",", "conf_file", ")", ")", "return", "None", "try", ":", "for", "line", "in", "fd", ":", "if", "line", ".", "lstrip", "(", "\" \\t\"", ")", ".", "startswith", "(", "\"stats socket\"", ")", ":", "sock_file", "=", "line", ".", "split", "(", ")", "[", "2", "]", "if", "utils", ".", "is_sockfile", "(", "sock_file", ")", ":", "return", "sock_file", "finally", ":", "fd", ".", "close", "(", ")" ]
https://github.com/OpenTSDB/tcollector/blob/37ae920d83c1002da66b5201a5311b1714cb5c14/collectors/0/haproxy.py#L110-L124
WerWolv/EdiZon_CheatsConfigsAndScripts
d16d36c7509c01dca770f402babd83ff2e9ae6e7
Scripts/lib/python3.5/code.py
python
interact
(banner=None, readfunc=None, local=None)
Closely emulate the interactive Python interpreter. This is a backwards compatible interface to the InteractiveConsole class. When readfunc is not specified, it attempts to import the readline module to enable GNU readline if it is available. Arguments (all optional, all default to None): banner -- passed to InteractiveConsole.interact() readfunc -- if not None, replaces InteractiveConsole.raw_input() local -- passed to InteractiveInterpreter.__init__()
Closely emulate the interactive Python interpreter.
[ "Closely", "emulate", "the", "interactive", "Python", "interpreter", "." ]
def interact(banner=None, readfunc=None, local=None): """Closely emulate the interactive Python interpreter. This is a backwards compatible interface to the InteractiveConsole class. When readfunc is not specified, it attempts to import the readline module to enable GNU readline if it is available. Arguments (all optional, all default to None): banner -- passed to InteractiveConsole.interact() readfunc -- if not None, replaces InteractiveConsole.raw_input() local -- passed to InteractiveInterpreter.__init__() """ console = InteractiveConsole(local) if readfunc is not None: console.raw_input = readfunc else: try: import readline except ImportError: pass console.interact(banner)
[ "def", "interact", "(", "banner", "=", "None", ",", "readfunc", "=", "None", ",", "local", "=", "None", ")", ":", "console", "=", "InteractiveConsole", "(", "local", ")", "if", "readfunc", "is", "not", "None", ":", "console", ".", "raw_input", "=", "readfunc", "else", ":", "try", ":", "import", "readline", "except", "ImportError", ":", "pass", "console", ".", "interact", "(", "banner", ")" ]
https://github.com/WerWolv/EdiZon_CheatsConfigsAndScripts/blob/d16d36c7509c01dca770f402babd83ff2e9ae6e7/Scripts/lib/python3.5/code.py#L270-L292
CvvT/dumpDex
92ab3b7e996194a06bf1dd5538a4954e8a5ee9c1
python/idaapi.py
python
is_type_bool
(*args)
return _idaapi.is_type_bool(*args)
is_type_bool(t) -> bool
is_type_bool(t) -> bool
[ "is_type_bool", "(", "t", ")", "-", ">", "bool" ]
def is_type_bool(*args): """ is_type_bool(t) -> bool """ return _idaapi.is_type_bool(*args)
[ "def", "is_type_bool", "(", "*", "args", ")", ":", "return", "_idaapi", ".", "is_type_bool", "(", "*", "args", ")" ]
https://github.com/CvvT/dumpDex/blob/92ab3b7e996194a06bf1dd5538a4954e8a5ee9c1/python/idaapi.py#L28508-L28512
edwardlib/observations
2c8b1ac31025938cb17762e540f2f592e302d5de
observations/r/ant111b.py
python
ant111b
(path)
return x_train, metadata
Averages by block of corn yields, for treatment 111 only These data frames have averages by blocks (parcels) for the treatment `111`. A data frame with 36 observations on 9 variables. site a factor with levels (`ant111b`:) `DBAN` `LFAN` `NSAN` `ORAN` `OVAN` `TEAN` `WEAN` `WLAN` parcel a factor with levels `I` `II` `III` `IV` code a numeric vector island a numeric vector id a numeric vector plot a numeric vector trt a numeric vector ears a numeric vector harvwt a numeric vector Andrews DF; Herzberg AM, 1985. Data. A Collection of Problems from Many Fields for the Student and Research Worker. Springer-Verlag. (pp. Args: path: str. Path to directory which either stores file or otherwise file will be downloaded and extracted there. Filename is `ant111b.csv`. Returns: Tuple of np.ndarray `x_train` with 32 rows and 9 columns and dictionary `metadata` of column headers (feature names).
Averages by block of corn yields, for treatment 111 only
[ "Averages", "by", "block", "of", "corn", "yields", "for", "treatment", "111", "only" ]
def ant111b(path): """Averages by block of corn yields, for treatment 111 only These data frames have averages by blocks (parcels) for the treatment `111`. A data frame with 36 observations on 9 variables. site a factor with levels (`ant111b`:) `DBAN` `LFAN` `NSAN` `ORAN` `OVAN` `TEAN` `WEAN` `WLAN` parcel a factor with levels `I` `II` `III` `IV` code a numeric vector island a numeric vector id a numeric vector plot a numeric vector trt a numeric vector ears a numeric vector harvwt a numeric vector Andrews DF; Herzberg AM, 1985. Data. A Collection of Problems from Many Fields for the Student and Research Worker. Springer-Verlag. (pp. Args: path: str. Path to directory which either stores file or otherwise file will be downloaded and extracted there. Filename is `ant111b.csv`. Returns: Tuple of np.ndarray `x_train` with 32 rows and 9 columns and dictionary `metadata` of column headers (feature names). """ import pandas as pd path = os.path.expanduser(path) filename = 'ant111b.csv' if not os.path.exists(os.path.join(path, filename)): url = 'http://dustintran.com/data/r/DAAG/ant111b.csv' maybe_download_and_extract(path, url, save_file_name='ant111b.csv', resume=False) data = pd.read_csv(os.path.join(path, filename), index_col=0, parse_dates=True) x_train = data.values metadata = {'columns': data.columns} return x_train, metadata
[ "def", "ant111b", "(", "path", ")", ":", "import", "pandas", "as", "pd", "path", "=", "os", ".", "path", ".", "expanduser", "(", "path", ")", "filename", "=", "'ant111b.csv'", "if", "not", "os", ".", "path", ".", "exists", "(", "os", ".", "path", ".", "join", "(", "path", ",", "filename", ")", ")", ":", "url", "=", "'http://dustintran.com/data/r/DAAG/ant111b.csv'", "maybe_download_and_extract", "(", "path", ",", "url", ",", "save_file_name", "=", "'ant111b.csv'", ",", "resume", "=", "False", ")", "data", "=", "pd", ".", "read_csv", "(", "os", ".", "path", ".", "join", "(", "path", ",", "filename", ")", ",", "index_col", "=", "0", ",", "parse_dates", "=", "True", ")", "x_train", "=", "data", ".", "values", "metadata", "=", "{", "'columns'", ":", "data", ".", "columns", "}", "return", "x_train", ",", "metadata" ]
https://github.com/edwardlib/observations/blob/2c8b1ac31025938cb17762e540f2f592e302d5de/observations/r/ant111b.py#L14-L78
selfteaching/selfteaching-python-camp
9982ee964b984595e7d664b07c389cddaf158f1e
19100104/zqiwj/d3_exercise_calculator .py
python
divide
(x, y)
return x / y
相除
相除
[ "相除" ]
def divide(x, y): """相除""" return x / y
[ "def", "divide", "(", "x", ",", "y", ")", ":", "return", "x", "/", "y" ]
https://github.com/selfteaching/selfteaching-python-camp/blob/9982ee964b984595e7d664b07c389cddaf158f1e/19100104/zqiwj/d3_exercise_calculator .py#L17-L20
home-assistant/core
265ebd17a3f17ed8dc1e9bdede03ac8e323f1ab1
homeassistant/components/imap_email_content/sensor.py
python
EmailContentSensor.__init__
(self, hass, email_reader, name, allowed_senders, value_template)
Initialize the sensor.
Initialize the sensor.
[ "Initialize", "the", "sensor", "." ]
def __init__(self, hass, email_reader, name, allowed_senders, value_template): """Initialize the sensor.""" self.hass = hass self._email_reader = email_reader self._name = name self._allowed_senders = [sender.upper() for sender in allowed_senders] self._value_template = value_template self._last_id = None self._message = None self._state_attributes = None self.connected = self._email_reader.connect()
[ "def", "__init__", "(", "self", ",", "hass", ",", "email_reader", ",", "name", ",", "allowed_senders", ",", "value_template", ")", ":", "self", ".", "hass", "=", "hass", "self", ".", "_email_reader", "=", "email_reader", "self", ".", "_name", "=", "name", "self", ".", "_allowed_senders", "=", "[", "sender", ".", "upper", "(", ")", "for", "sender", "in", "allowed_senders", "]", "self", ".", "_value_template", "=", "value_template", "self", ".", "_last_id", "=", "None", "self", ".", "_message", "=", "None", "self", ".", "_state_attributes", "=", "None", "self", ".", "connected", "=", "self", ".", "_email_reader", ".", "connect", "(", ")" ]
https://github.com/home-assistant/core/blob/265ebd17a3f17ed8dc1e9bdede03ac8e323f1ab1/homeassistant/components/imap_email_content/sensor.py#L157-L167
sagemath/sage
f9b2db94f675ff16963ccdefba4f1a3393b3fe0d
src/sage/manifolds/differentiable/de_rham_cohomology.py
python
DeRhamCohomologyClass._latex_
(self)
return rf"\left[{latex_name}\right]"
r""" Return a LaTeX representation of the object. TESTS:: sage: M = Manifold(2, 'M', latex_name=r'\mathcal{M}') sage: X.<x,y> = M.chart() sage: C = M.de_rham_complex() sage: H = C.cohomology() sage: omega = M.diff_form(1, [1,1], name='omega', latex_name=r'\omega') sage: u = H(omega) sage: latex(u) # indirect doctest \left[\omega\right] sage: u._latex_() '\\left[\\omega\\right]'
r""" Return a LaTeX representation of the object.
[ "r", "Return", "a", "LaTeX", "representation", "of", "the", "object", "." ]
def _latex_(self): r""" Return a LaTeX representation of the object. TESTS:: sage: M = Manifold(2, 'M', latex_name=r'\mathcal{M}') sage: X.<x,y> = M.chart() sage: C = M.de_rham_complex() sage: H = C.cohomology() sage: omega = M.diff_form(1, [1,1], name='omega', latex_name=r'\omega') sage: u = H(omega) sage: latex(u) # indirect doctest \left[\omega\right] sage: u._latex_() '\\left[\\omega\\right]' """ latex_name = self._representative._latex_name if latex_name is None: latex_name = r'\mathrm{unnamed form}' return rf"\left[{latex_name}\right]"
[ "def", "_latex_", "(", "self", ")", ":", "latex_name", "=", "self", ".", "_representative", ".", "_latex_name", "if", "latex_name", "is", "None", ":", "latex_name", "=", "r'\\mathrm{unnamed form}'", "return", "rf\"\\left[{latex_name}\\right]\"" ]
https://github.com/sagemath/sage/blob/f9b2db94f675ff16963ccdefba4f1a3393b3fe0d/src/sage/manifolds/differentiable/de_rham_cohomology.py#L139-L160
Komodo/KomodoEdit
61edab75dce2bdb03943b387b0608ea36f548e8e
src/codeintel/play/core.py
python
MouseEvent.GetX
(*args, **kwargs)
return _core.MouseEvent_GetX(*args, **kwargs)
GetX() -> int
GetX() -> int
[ "GetX", "()", "-", ">", "int" ]
def GetX(*args, **kwargs): """GetX() -> int""" return _core.MouseEvent_GetX(*args, **kwargs)
[ "def", "GetX", "(", "*", "args", ",", "*", "*", "kwargs", ")", ":", "return", "_core", ".", "MouseEvent_GetX", "(", "*", "args", ",", "*", "*", "kwargs", ")" ]
https://github.com/Komodo/KomodoEdit/blob/61edab75dce2bdb03943b387b0608ea36f548e8e/src/codeintel/play/core.py#L3417-L3419
NVlabs/neuralrgbd
c8071a0bcbd4c4e7ef95c44e7de9c51353ab9764
code/mutils/misc.py
python
indexMap2DMap
(d_range, indx_map)
return np.reshape(DMap, indx_map.shape)
[]
def indexMap2DMap(d_range, indx_map): indx_map_flat = indx_map.flatten() DMap = [ d_range[indx_] for indx_ in indx_map_flat] return np.reshape(DMap, indx_map.shape)
[ "def", "indexMap2DMap", "(", "d_range", ",", "indx_map", ")", ":", "indx_map_flat", "=", "indx_map", ".", "flatten", "(", ")", "DMap", "=", "[", "d_range", "[", "indx_", "]", "for", "indx_", "in", "indx_map_flat", "]", "return", "np", ".", "reshape", "(", "DMap", ",", "indx_map", ".", "shape", ")" ]
https://github.com/NVlabs/neuralrgbd/blob/c8071a0bcbd4c4e7ef95c44e7de9c51353ab9764/code/mutils/misc.py#L231-L234
biolab/orange2
db40a9449cb45b507d63dcd5739b223f9cffb8e6
Orange/orng/orngCA.py
python
CA.getMatrix
(self)
return self.__dataMatrix
Returns array object that is representation of contingency table.
Returns array object that is representation of contingency table.
[ "Returns", "array", "object", "that", "is", "representation", "of", "contingency", "table", "." ]
def getMatrix(self): """ Returns array object that is representation of contingency table. """ return self.__dataMatrix
[ "def", "getMatrix", "(", "self", ")", ":", "return", "self", ".", "__dataMatrix" ]
https://github.com/biolab/orange2/blob/db40a9449cb45b507d63dcd5739b223f9cffb8e6/Orange/orng/orngCA.py#L80-L84
ARMmbed/yotta
82d854b43d391abb5a006b05e7beffe7d0d6ffbf
yotta/lib/cmakegen.py
python
CMakeGen.generateRecursive
(self, component, all_components, builddir=None, modbuilddir=None, processed_components=None, application=None)
generate top-level CMakeLists for this component and its dependencies: the CMakeLists are all generated in self.buildroot, which MUST be out-of-source !!! NOTE: experimenting with a slightly different way of doing things here, this function is a generator that yields any errors produced, so the correct use is: for error in gen.generateRecursive(...): print(error)
generate top-level CMakeLists for this component and its dependencies: the CMakeLists are all generated in self.buildroot, which MUST be out-of-source
[ "generate", "top", "-", "level", "CMakeLists", "for", "this", "component", "and", "its", "dependencies", ":", "the", "CMakeLists", "are", "all", "generated", "in", "self", ".", "buildroot", "which", "MUST", "be", "out", "-", "of", "-", "source" ]
def generateRecursive(self, component, all_components, builddir=None, modbuilddir=None, processed_components=None, application=None): ''' generate top-level CMakeLists for this component and its dependencies: the CMakeLists are all generated in self.buildroot, which MUST be out-of-source !!! NOTE: experimenting with a slightly different way of doing things here, this function is a generator that yields any errors produced, so the correct use is: for error in gen.generateRecursive(...): print(error) ''' assert(self.configured) if builddir is None: builddir = self.buildroot if modbuilddir is None: modbuilddir = os.path.join(builddir, 'ym') if processed_components is None: processed_components = dict() if not self.target: yield 'Target "%s" is not a valid build target' % self.target toplevel = not len(processed_components) logger.debug('generate build files: %s (target=%s)' % (component, self.target)) # because of the way c-family language includes work we need to put the # public header directories of all components that this component # depends on (directly OR indirectly) into the search path, which means # we need to first enumerate all the direct and indirect dependencies recursive_deps = component.getDependenciesRecursive( available_components = all_components, target = self.target, available_only = True, test = True ) dependencies = component.getDependencies( all_components, target = self.target, available_only = True, test = True ) for name, dep in dependencies.items(): # if dep is a test dependency, then it might not be required (if # we're not building tests). We don't actually know at this point if not dep: if dep.isTestDependency(): logger.debug('Test dependency "%s" of "%s" is not installed.' % (name, component)) else: yield 'Required dependency "%s" of "%s" is not installed.' % (name, component) # ensure this component is assumed to have been installed before we # check for its dependencies, in case it has a circular dependency on # itself processed_components[component.getName()] = component new_dependencies = OrderedDict([(name,c) for name,c in dependencies.items() if c and not name in processed_components]) self.generate(builddir, modbuilddir, component, new_dependencies, dependencies, recursive_deps, application, toplevel) logger.debug('recursive deps of %s:' % component) for d in recursive_deps.values(): logger.debug(' %s' % d) processed_components.update(new_dependencies) for name, c in new_dependencies.items(): for error in self.generateRecursive( c, all_components, os.path.join(modbuilddir, name), modbuilddir, processed_components, application=application ): yield error
[ "def", "generateRecursive", "(", "self", ",", "component", ",", "all_components", ",", "builddir", "=", "None", ",", "modbuilddir", "=", "None", ",", "processed_components", "=", "None", ",", "application", "=", "None", ")", ":", "assert", "(", "self", ".", "configured", ")", "if", "builddir", "is", "None", ":", "builddir", "=", "self", ".", "buildroot", "if", "modbuilddir", "is", "None", ":", "modbuilddir", "=", "os", ".", "path", ".", "join", "(", "builddir", ",", "'ym'", ")", "if", "processed_components", "is", "None", ":", "processed_components", "=", "dict", "(", ")", "if", "not", "self", ".", "target", ":", "yield", "'Target \"%s\" is not a valid build target'", "%", "self", ".", "target", "toplevel", "=", "not", "len", "(", "processed_components", ")", "logger", ".", "debug", "(", "'generate build files: %s (target=%s)'", "%", "(", "component", ",", "self", ".", "target", ")", ")", "# because of the way c-family language includes work we need to put the", "# public header directories of all components that this component", "# depends on (directly OR indirectly) into the search path, which means", "# we need to first enumerate all the direct and indirect dependencies", "recursive_deps", "=", "component", ".", "getDependenciesRecursive", "(", "available_components", "=", "all_components", ",", "target", "=", "self", ".", "target", ",", "available_only", "=", "True", ",", "test", "=", "True", ")", "dependencies", "=", "component", ".", "getDependencies", "(", "all_components", ",", "target", "=", "self", ".", "target", ",", "available_only", "=", "True", ",", "test", "=", "True", ")", "for", "name", ",", "dep", "in", "dependencies", ".", "items", "(", ")", ":", "# if dep is a test dependency, then it might not be required (if", "# we're not building tests). We don't actually know at this point", "if", "not", "dep", ":", "if", "dep", ".", "isTestDependency", "(", ")", ":", "logger", ".", "debug", "(", "'Test dependency \"%s\" of \"%s\" is not installed.'", "%", "(", "name", ",", "component", ")", ")", "else", ":", "yield", "'Required dependency \"%s\" of \"%s\" is not installed.'", "%", "(", "name", ",", "component", ")", "# ensure this component is assumed to have been installed before we", "# check for its dependencies, in case it has a circular dependency on", "# itself", "processed_components", "[", "component", ".", "getName", "(", ")", "]", "=", "component", "new_dependencies", "=", "OrderedDict", "(", "[", "(", "name", ",", "c", ")", "for", "name", ",", "c", "in", "dependencies", ".", "items", "(", ")", "if", "c", "and", "not", "name", "in", "processed_components", "]", ")", "self", ".", "generate", "(", "builddir", ",", "modbuilddir", ",", "component", ",", "new_dependencies", ",", "dependencies", ",", "recursive_deps", ",", "application", ",", "toplevel", ")", "logger", ".", "debug", "(", "'recursive deps of %s:'", "%", "component", ")", "for", "d", "in", "recursive_deps", ".", "values", "(", ")", ":", "logger", ".", "debug", "(", "' %s'", "%", "d", ")", "processed_components", ".", "update", "(", "new_dependencies", ")", "for", "name", ",", "c", "in", "new_dependencies", ".", "items", "(", ")", ":", "for", "error", "in", "self", ".", "generateRecursive", "(", "c", ",", "all_components", ",", "os", ".", "path", ".", "join", "(", "modbuilddir", ",", "name", ")", ",", "modbuilddir", ",", "processed_components", ",", "application", "=", "application", ")", ":", "yield", "error" ]
https://github.com/ARMmbed/yotta/blob/82d854b43d391abb5a006b05e7beffe7d0d6ffbf/yotta/lib/cmakegen.py#L98-L166
sfepy/sfepy
02ec7bb2ab39ee1dfe1eb4cd509f0ffb7dcc8b25
sfepy/discrete/projections.py
python
create_mass_matrix
(field)
return mtx
Create scalar mass matrix corresponding to the given field. Returns ------- mtx : csr_matrix The mass matrix in CSR format.
Create scalar mass matrix corresponding to the given field.
[ "Create", "scalar", "mass", "matrix", "corresponding", "to", "the", "given", "field", "." ]
def create_mass_matrix(field): """ Create scalar mass matrix corresponding to the given field. Returns ------- mtx : csr_matrix The mass matrix in CSR format. """ u = FieldVariable('u', 'unknown', field) v = FieldVariable('v', 'test', field, primary_var_name='u') integral = Integral('i', order=field.approx_order * 2) term = Term.new('dw_dot(v, u)', integral, field.region, v=v, u=u) eq = Equation('aux', term) eqs = Equations([eq]) eqs.time_update(None) dummy = eqs.create_state_vector() mtx = eqs.create_matrix_graph() mtx = eqs.eval_tangent_matrices(dummy, mtx) return mtx
[ "def", "create_mass_matrix", "(", "field", ")", ":", "u", "=", "FieldVariable", "(", "'u'", ",", "'unknown'", ",", "field", ")", "v", "=", "FieldVariable", "(", "'v'", ",", "'test'", ",", "field", ",", "primary_var_name", "=", "'u'", ")", "integral", "=", "Integral", "(", "'i'", ",", "order", "=", "field", ".", "approx_order", "*", "2", ")", "term", "=", "Term", ".", "new", "(", "'dw_dot(v, u)'", ",", "integral", ",", "field", ".", "region", ",", "v", "=", "v", ",", "u", "=", "u", ")", "eq", "=", "Equation", "(", "'aux'", ",", "term", ")", "eqs", "=", "Equations", "(", "[", "eq", "]", ")", "eqs", ".", "time_update", "(", "None", ")", "dummy", "=", "eqs", ".", "create_state_vector", "(", ")", "mtx", "=", "eqs", ".", "create_matrix_graph", "(", ")", "mtx", "=", "eqs", ".", "eval_tangent_matrices", "(", "dummy", ",", "mtx", ")", "return", "mtx" ]
https://github.com/sfepy/sfepy/blob/02ec7bb2ab39ee1dfe1eb4cd509f0ffb7dcc8b25/sfepy/discrete/projections.py#L16-L39
macanv/BERT-BiLSTM-CRF-NER
ccf3f093f0ac803e435cb8e8598fdddc2ba1105d
bert_base/bert/create_pretraining_data.py
python
create_instances_from_document
( all_documents, document_index, max_seq_length, short_seq_prob, masked_lm_prob, max_predictions_per_seq, vocab_words, rng)
return instances
Creates `TrainingInstance`s for a single document.
Creates `TrainingInstance`s for a single document.
[ "Creates", "TrainingInstance", "s", "for", "a", "single", "document", "." ]
def create_instances_from_document( all_documents, document_index, max_seq_length, short_seq_prob, masked_lm_prob, max_predictions_per_seq, vocab_words, rng): """Creates `TrainingInstance`s for a single document.""" document = all_documents[document_index] # Account for [CLS], [SEP], [SEP] max_num_tokens = max_seq_length - 3 # We *usually* want to fill up the entire sequence since we are padding # to `max_seq_length` anyways, so short sequences are generally wasted # computation. However, we *sometimes* # (i.e., short_seq_prob == 0.1 == 10% of the time) want to use shorter # sequences to minimize the mismatch between pre-training and fine-tuning. # The `target_seq_length` is just a rough target however, whereas # `max_seq_length` is a hard limit. target_seq_length = max_num_tokens if rng.random() < short_seq_prob: target_seq_length = rng.randint(2, max_num_tokens) # We DON'T just concatenate all of the tokens from a document into a long # sequence and choose an arbitrary split point because this would make the # next sentence prediction task too easy. Instead, we split the input into # segments "A" and "B" based on the actual "sentences" provided by the user # input. instances = [] current_chunk = [] current_length = 0 i = 0 while i < len(document): segment = document[i] current_chunk.append(segment) current_length += len(segment) if i == len(document) - 1 or current_length >= target_seq_length: if current_chunk: # `a_end` is how many segments from `current_chunk` go into the `A` # (first) sentence. a_end = 1 if len(current_chunk) >= 2: a_end = rng.randint(1, len(current_chunk) - 1) tokens_a = [] for j in range(a_end): tokens_a.extend(current_chunk[j]) tokens_b = [] # Random next is_random_next = False if len(current_chunk) == 1 or rng.random() < 0.5: is_random_next = True target_b_length = target_seq_length - len(tokens_a) # This should rarely go for more than one iteration for large # corpora. However, just to be careful, we try to make sure that # the random document is not the same as the document # we're processing. for _ in range(10): random_document_index = rng.randint(0, len(all_documents) - 1) if random_document_index != document_index: break random_document = all_documents[random_document_index] random_start = rng.randint(0, len(random_document) - 1) for j in range(random_start, len(random_document)): tokens_b.extend(random_document[j]) if len(tokens_b) >= target_b_length: break # We didn't actually use these segments so we "put them back" so # they don't go to waste. num_unused_segments = len(current_chunk) - a_end i -= num_unused_segments # Actual next else: is_random_next = False for j in range(a_end, len(current_chunk)): tokens_b.extend(current_chunk[j]) truncate_seq_pair(tokens_a, tokens_b, max_num_tokens, rng) assert len(tokens_a) >= 1 assert len(tokens_b) >= 1 tokens = [] segment_ids = [] tokens.append("[CLS]") segment_ids.append(0) for token in tokens_a: tokens.append(token) segment_ids.append(0) tokens.append("[SEP]") segment_ids.append(0) for token in tokens_b: tokens.append(token) segment_ids.append(1) tokens.append("[SEP]") segment_ids.append(1) (tokens, masked_lm_positions, masked_lm_labels) = create_masked_lm_predictions( tokens, masked_lm_prob, max_predictions_per_seq, vocab_words, rng) instance = TrainingInstance( tokens=tokens, segment_ids=segment_ids, is_random_next=is_random_next, masked_lm_positions=masked_lm_positions, masked_lm_labels=masked_lm_labels) instances.append(instance) current_chunk = [] current_length = 0 i += 1 return instances
[ "def", "create_instances_from_document", "(", "all_documents", ",", "document_index", ",", "max_seq_length", ",", "short_seq_prob", ",", "masked_lm_prob", ",", "max_predictions_per_seq", ",", "vocab_words", ",", "rng", ")", ":", "document", "=", "all_documents", "[", "document_index", "]", "# Account for [CLS], [SEP], [SEP]", "max_num_tokens", "=", "max_seq_length", "-", "3", "# We *usually* want to fill up the entire sequence since we are padding", "# to `max_seq_length` anyways, so short sequences are generally wasted", "# computation. However, we *sometimes*", "# (i.e., short_seq_prob == 0.1 == 10% of the time) want to use shorter", "# sequences to minimize the mismatch between pre-training and fine-tuning.", "# The `target_seq_length` is just a rough target however, whereas", "# `max_seq_length` is a hard limit.", "target_seq_length", "=", "max_num_tokens", "if", "rng", ".", "random", "(", ")", "<", "short_seq_prob", ":", "target_seq_length", "=", "rng", ".", "randint", "(", "2", ",", "max_num_tokens", ")", "# We DON'T just concatenate all of the tokens from a document into a long", "# sequence and choose an arbitrary split point because this would make the", "# next sentence prediction task too easy. Instead, we split the input into", "# segments \"A\" and \"B\" based on the actual \"sentences\" provided by the user", "# input.", "instances", "=", "[", "]", "current_chunk", "=", "[", "]", "current_length", "=", "0", "i", "=", "0", "while", "i", "<", "len", "(", "document", ")", ":", "segment", "=", "document", "[", "i", "]", "current_chunk", ".", "append", "(", "segment", ")", "current_length", "+=", "len", "(", "segment", ")", "if", "i", "==", "len", "(", "document", ")", "-", "1", "or", "current_length", ">=", "target_seq_length", ":", "if", "current_chunk", ":", "# `a_end` is how many segments from `current_chunk` go into the `A`", "# (first) sentence.", "a_end", "=", "1", "if", "len", "(", "current_chunk", ")", ">=", "2", ":", "a_end", "=", "rng", ".", "randint", "(", "1", ",", "len", "(", "current_chunk", ")", "-", "1", ")", "tokens_a", "=", "[", "]", "for", "j", "in", "range", "(", "a_end", ")", ":", "tokens_a", ".", "extend", "(", "current_chunk", "[", "j", "]", ")", "tokens_b", "=", "[", "]", "# Random next", "is_random_next", "=", "False", "if", "len", "(", "current_chunk", ")", "==", "1", "or", "rng", ".", "random", "(", ")", "<", "0.5", ":", "is_random_next", "=", "True", "target_b_length", "=", "target_seq_length", "-", "len", "(", "tokens_a", ")", "# This should rarely go for more than one iteration for large", "# corpora. However, just to be careful, we try to make sure that", "# the random document is not the same as the document", "# we're processing.", "for", "_", "in", "range", "(", "10", ")", ":", "random_document_index", "=", "rng", ".", "randint", "(", "0", ",", "len", "(", "all_documents", ")", "-", "1", ")", "if", "random_document_index", "!=", "document_index", ":", "break", "random_document", "=", "all_documents", "[", "random_document_index", "]", "random_start", "=", "rng", ".", "randint", "(", "0", ",", "len", "(", "random_document", ")", "-", "1", ")", "for", "j", "in", "range", "(", "random_start", ",", "len", "(", "random_document", ")", ")", ":", "tokens_b", ".", "extend", "(", "random_document", "[", "j", "]", ")", "if", "len", "(", "tokens_b", ")", ">=", "target_b_length", ":", "break", "# We didn't actually use these segments so we \"put them back\" so", "# they don't go to waste.", "num_unused_segments", "=", "len", "(", "current_chunk", ")", "-", "a_end", "i", "-=", "num_unused_segments", "# Actual next", "else", ":", "is_random_next", "=", "False", "for", "j", "in", "range", "(", "a_end", ",", "len", "(", "current_chunk", ")", ")", ":", "tokens_b", ".", "extend", "(", "current_chunk", "[", "j", "]", ")", "truncate_seq_pair", "(", "tokens_a", ",", "tokens_b", ",", "max_num_tokens", ",", "rng", ")", "assert", "len", "(", "tokens_a", ")", ">=", "1", "assert", "len", "(", "tokens_b", ")", ">=", "1", "tokens", "=", "[", "]", "segment_ids", "=", "[", "]", "tokens", ".", "append", "(", "\"[CLS]\"", ")", "segment_ids", ".", "append", "(", "0", ")", "for", "token", "in", "tokens_a", ":", "tokens", ".", "append", "(", "token", ")", "segment_ids", ".", "append", "(", "0", ")", "tokens", ".", "append", "(", "\"[SEP]\"", ")", "segment_ids", ".", "append", "(", "0", ")", "for", "token", "in", "tokens_b", ":", "tokens", ".", "append", "(", "token", ")", "segment_ids", ".", "append", "(", "1", ")", "tokens", ".", "append", "(", "\"[SEP]\"", ")", "segment_ids", ".", "append", "(", "1", ")", "(", "tokens", ",", "masked_lm_positions", ",", "masked_lm_labels", ")", "=", "create_masked_lm_predictions", "(", "tokens", ",", "masked_lm_prob", ",", "max_predictions_per_seq", ",", "vocab_words", ",", "rng", ")", "instance", "=", "TrainingInstance", "(", "tokens", "=", "tokens", ",", "segment_ids", "=", "segment_ids", ",", "is_random_next", "=", "is_random_next", ",", "masked_lm_positions", "=", "masked_lm_positions", ",", "masked_lm_labels", "=", "masked_lm_labels", ")", "instances", ".", "append", "(", "instance", ")", "current_chunk", "=", "[", "]", "current_length", "=", "0", "i", "+=", "1", "return", "instances" ]
https://github.com/macanv/BERT-BiLSTM-CRF-NER/blob/ccf3f093f0ac803e435cb8e8598fdddc2ba1105d/bert_base/bert/create_pretraining_data.py#L220-L332
GalSim-developers/GalSim
a05d4ec3b8d8574f99d3b0606ad882cbba53f345
galsim/cdmodel.py
python
_modelShiftCoeffT
(x, y, r0, t0, rx, tx, r, t, alpha)
return cc * t * rr**(-alpha)
Calculate the model shift coeff of top pixel border as a function of int pixel position (x, y).
Calculate the model shift coeff of top pixel border as a function of int pixel position (x, y).
[ "Calculate", "the", "model", "shift", "coeff", "of", "top", "pixel", "border", "as", "a", "function", "of", "int", "pixel", "position", "(", "x", "y", ")", "." ]
def _modelShiftCoeffT(x, y, r0, t0, rx, tx, r, t, alpha): """Calculate the model shift coeff of top pixel border as a function of int pixel position (x, y). """ # Invoke symmetry if x < 0: return _modelShiftCoeffT(-x, y, r0, t0, rx, tx, r, t, alpha) if y < 0: return -_modelShiftCoeffT(x, 1 - y, r0, t0, rx, tx, r, t, alpha) # Invoke special immediate neighbour cases if x == 0 and y == 0: return -t0 if x == 0 and y == 1: return +t0 if x == 1 and y == 0: return -tx if x == 1 and y == 1: return +tx # Then, for remainder, apply power law model rr = np.sqrt((float(y) - .5)**2 + float(x)**2) cc = (y - 0.5) / rr # projection onto relevant axis return cc * t * rr**(-alpha)
[ "def", "_modelShiftCoeffT", "(", "x", ",", "y", ",", "r0", ",", "t0", ",", "rx", ",", "tx", ",", "r", ",", "t", ",", "alpha", ")", ":", "# Invoke symmetry", "if", "x", "<", "0", ":", "return", "_modelShiftCoeffT", "(", "-", "x", ",", "y", ",", "r0", ",", "t0", ",", "rx", ",", "tx", ",", "r", ",", "t", ",", "alpha", ")", "if", "y", "<", "0", ":", "return", "-", "_modelShiftCoeffT", "(", "x", ",", "1", "-", "y", ",", "r0", ",", "t0", ",", "rx", ",", "tx", ",", "r", ",", "t", ",", "alpha", ")", "# Invoke special immediate neighbour cases", "if", "x", "==", "0", "and", "y", "==", "0", ":", "return", "-", "t0", "if", "x", "==", "0", "and", "y", "==", "1", ":", "return", "+", "t0", "if", "x", "==", "1", "and", "y", "==", "0", ":", "return", "-", "tx", "if", "x", "==", "1", "and", "y", "==", "1", ":", "return", "+", "tx", "# Then, for remainder, apply power law model", "rr", "=", "np", ".", "sqrt", "(", "(", "float", "(", "y", ")", "-", ".5", ")", "**", "2", "+", "float", "(", "x", ")", "**", "2", ")", "cc", "=", "(", "y", "-", "0.5", ")", "/", "rr", "# projection onto relevant axis", "return", "cc", "*", "t", "*", "rr", "**", "(", "-", "alpha", ")" ]
https://github.com/GalSim-developers/GalSim/blob/a05d4ec3b8d8574f99d3b0606ad882cbba53f345/galsim/cdmodel.py#L147-L162
numenta/nupic
b9ebedaf54f49a33de22d8d44dff7c765cdb5548
external/linux32/lib/python2.6/site-packages/matplotlib/contour.py
python
ContourLabeler.print_label
(self, linecontour,labelwidth)
if contours are too short, don't plot a label
if contours are too short, don't plot a label
[ "if", "contours", "are", "too", "short", "don", "t", "plot", "a", "label" ]
def print_label(self, linecontour,labelwidth): "if contours are too short, don't plot a label" lcsize = len(linecontour) if lcsize > 10 * labelwidth: return 1 xmax = np.amax(linecontour[:,0]) xmin = np.amin(linecontour[:,0]) ymax = np.amax(linecontour[:,1]) ymin = np.amin(linecontour[:,1]) lw = labelwidth if (xmax - xmin) > 1.2* lw or (ymax - ymin) > 1.2 * lw: return 1 else: return 0
[ "def", "print_label", "(", "self", ",", "linecontour", ",", "labelwidth", ")", ":", "lcsize", "=", "len", "(", "linecontour", ")", "if", "lcsize", ">", "10", "*", "labelwidth", ":", "return", "1", "xmax", "=", "np", ".", "amax", "(", "linecontour", "[", ":", ",", "0", "]", ")", "xmin", "=", "np", ".", "amin", "(", "linecontour", "[", ":", ",", "0", "]", ")", "ymax", "=", "np", ".", "amax", "(", "linecontour", "[", ":", ",", "1", "]", ")", "ymin", "=", "np", ".", "amin", "(", "linecontour", "[", ":", ",", "1", "]", ")", "lw", "=", "labelwidth", "if", "(", "xmax", "-", "xmin", ")", ">", "1.2", "*", "lw", "or", "(", "ymax", "-", "ymin", ")", ">", "1.2", "*", "lw", ":", "return", "1", "else", ":", "return", "0" ]
https://github.com/numenta/nupic/blob/b9ebedaf54f49a33de22d8d44dff7c765cdb5548/external/linux32/lib/python2.6/site-packages/matplotlib/contour.py#L189-L204
asyml/texar
a23f021dae289a3d768dc099b220952111da04fd
examples/gpt-2/prepare_data.py
python
prepare_data
()
Builds the model and runs.
Builds the model and runs.
[ "Builds", "the", "model", "and", "runs", "." ]
def prepare_data(): """ Builds the model and runs. """ data_dir = FLAGS.data_dir if FLAGS.tfrecord_output_dir is None: tfrecord_output_dir = data_dir else: tfrecord_output_dir = FLAGS.tfrecord_output_dir tx.utils.maybe_create_dir(tfrecord_output_dir) # Creates a data pre-processor for, e.g., BPE encoding proc = processor.get_encoder(FLAGS.pretrain_model_dir) # Produces TFRecord files data_utils.prepare_TFRecord_data( data_dir=data_dir, max_seq_length=FLAGS.max_seq_length, encoder=proc, output_dir=tfrecord_output_dir)
[ "def", "prepare_data", "(", ")", ":", "data_dir", "=", "FLAGS", ".", "data_dir", "if", "FLAGS", ".", "tfrecord_output_dir", "is", "None", ":", "tfrecord_output_dir", "=", "data_dir", "else", ":", "tfrecord_output_dir", "=", "FLAGS", ".", "tfrecord_output_dir", "tx", ".", "utils", ".", "maybe_create_dir", "(", "tfrecord_output_dir", ")", "# Creates a data pre-processor for, e.g., BPE encoding", "proc", "=", "processor", ".", "get_encoder", "(", "FLAGS", ".", "pretrain_model_dir", ")", "# Produces TFRecord files", "data_utils", ".", "prepare_TFRecord_data", "(", "data_dir", "=", "data_dir", ",", "max_seq_length", "=", "FLAGS", ".", "max_seq_length", ",", "encoder", "=", "proc", ",", "output_dir", "=", "tfrecord_output_dir", ")" ]
https://github.com/asyml/texar/blob/a23f021dae289a3d768dc099b220952111da04fd/examples/gpt-2/prepare_data.py#L46-L65
WPO-Foundation/wptagent
94470f007294213f900dcd9a207678b5b9fce5d3
internal/traffic_shaping.py
python
NetEm.apply
(self, target_id)
return
Stub for applying Chrome traffic-shaping
Stub for applying Chrome traffic-shaping
[ "Stub", "for", "applying", "Chrome", "traffic", "-", "shaping" ]
def apply(self, target_id): """Stub for applying Chrome traffic-shaping""" return
[ "def", "apply", "(", "self", ",", "target_id", ")", ":", "return" ]
https://github.com/WPO-Foundation/wptagent/blob/94470f007294213f900dcd9a207678b5b9fce5d3/internal/traffic_shaping.py#L629-L631
twilio/twilio-python
6e1e811ea57a1edfadd5161ace87397c563f6915
twilio/rest/api/v2010/account/incoming_phone_number/assigned_add_on/__init__.py
python
AssignedAddOnInstance.unique_name
(self)
return self._properties['unique_name']
:returns: An application-defined string that uniquely identifies the resource :rtype: unicode
:returns: An application-defined string that uniquely identifies the resource :rtype: unicode
[ ":", "returns", ":", "An", "application", "-", "defined", "string", "that", "uniquely", "identifies", "the", "resource", ":", "rtype", ":", "unicode" ]
def unique_name(self): """ :returns: An application-defined string that uniquely identifies the resource :rtype: unicode """ return self._properties['unique_name']
[ "def", "unique_name", "(", "self", ")", ":", "return", "self", ".", "_properties", "[", "'unique_name'", "]" ]
https://github.com/twilio/twilio-python/blob/6e1e811ea57a1edfadd5161ace87397c563f6915/twilio/rest/api/v2010/account/incoming_phone_number/assigned_add_on/__init__.py#L407-L412
richq/folders2flickr
0b735057dbf3c0ea132668af36d30ded52e7b6d9
f2flickr/flickr.py
python
_get_api_sig
(params)
return api_signature
Generate API signature.
Generate API signature.
[ "Generate", "API", "signature", "." ]
def _get_api_sig(params): """Generate API signature.""" token = userToken() parameters = ['api_key', 'auth_token'] for item in params.items(): parameters.append(item[0]) parameters.sort() api_string = [API_SECRET] for item in parameters: for chocolate in params.items(): if item == chocolate[0]: api_string.append(item) api_string.append(str(chocolate[1])) if item == 'api_key': api_string.append('api_key') api_string.append(API_KEY) if item == 'auth_token': api_string.append('auth_token') api_string.append(token) api_signature = hashlib.md5(''.join(api_string)).hexdigest() return api_signature
[ "def", "_get_api_sig", "(", "params", ")", ":", "token", "=", "userToken", "(", ")", "parameters", "=", "[", "'api_key'", ",", "'auth_token'", "]", "for", "item", "in", "params", ".", "items", "(", ")", ":", "parameters", ".", "append", "(", "item", "[", "0", "]", ")", "parameters", ".", "sort", "(", ")", "api_string", "=", "[", "API_SECRET", "]", "for", "item", "in", "parameters", ":", "for", "chocolate", "in", "params", ".", "items", "(", ")", ":", "if", "item", "==", "chocolate", "[", "0", "]", ":", "api_string", ".", "append", "(", "item", ")", "api_string", ".", "append", "(", "str", "(", "chocolate", "[", "1", "]", ")", ")", "if", "item", "==", "'api_key'", ":", "api_string", ".", "append", "(", "'api_key'", ")", "api_string", ".", "append", "(", "API_KEY", ")", "if", "item", "==", "'auth_token'", ":", "api_string", ".", "append", "(", "'auth_token'", ")", "api_string", ".", "append", "(", "token", ")", "api_signature", "=", "hashlib", ".", "md5", "(", "''", ".", "join", "(", "api_string", ")", ")", ".", "hexdigest", "(", ")", "return", "api_signature" ]
https://github.com/richq/folders2flickr/blob/0b735057dbf3c0ea132668af36d30ded52e7b6d9/f2flickr/flickr.py#L1272-L1296
buke/GreenOdoo
3d8c55d426fb41fdb3f2f5a1533cfe05983ba1df
runtime/python/lib/python2.7/site-packages/docutils/utils/math/math2html.py
python
FormulaCommand.parsewithcommand
(self, command, pos)
return None
Parse the command type once we have the command.
Parse the command type once we have the command.
[ "Parse", "the", "command", "type", "once", "we", "have", "the", "command", "." ]
def parsewithcommand(self, command, pos): "Parse the command type once we have the command." for type in FormulaCommand.types: if command in type.commandmap: return self.parsecommandtype(command, type, pos) return None
[ "def", "parsewithcommand", "(", "self", ",", "command", ",", "pos", ")", ":", "for", "type", "in", "FormulaCommand", ".", "types", ":", "if", "command", "in", "type", ".", "commandmap", ":", "return", "self", ".", "parsecommandtype", "(", "command", ",", "type", ",", "pos", ")", "return", "None" ]
https://github.com/buke/GreenOdoo/blob/3d8c55d426fb41fdb3f2f5a1533cfe05983ba1df/runtime/python/lib/python2.7/site-packages/docutils/utils/math/math2html.py#L3967-L3972
fboender/ansible-cmdb
3f3e412d2a7be91c97c5a1842f4e57cc85b06961
lib/mako/template.py
python
Template.code
(self)
return _get_module_info_from_callable(self.callable_).code
Return the module source code for this :class:`.Template`.
Return the module source code for this :class:`.Template`.
[ "Return", "the", "module", "source", "code", "for", "this", ":", "class", ":", ".", "Template", "." ]
def code(self): """Return the module source code for this :class:`.Template`.""" return _get_module_info_from_callable(self.callable_).code
[ "def", "code", "(", "self", ")", ":", "return", "_get_module_info_from_callable", "(", "self", ".", "callable_", ")", ".", "code" ]
https://github.com/fboender/ansible-cmdb/blob/3f3e412d2a7be91c97c5a1842f4e57cc85b06961/lib/mako/template.py#L412-L415
tomplus/kubernetes_asyncio
f028cc793e3a2c519be6a52a49fb77ff0b014c9b
kubernetes_asyncio/client/models/v1beta1_event.py
python
V1beta1Event.regarding
(self, regarding)
Sets the regarding of this V1beta1Event. :param regarding: The regarding of this V1beta1Event. # noqa: E501 :type: V1ObjectReference
Sets the regarding of this V1beta1Event.
[ "Sets", "the", "regarding", "of", "this", "V1beta1Event", "." ]
def regarding(self, regarding): """Sets the regarding of this V1beta1Event. :param regarding: The regarding of this V1beta1Event. # noqa: E501 :type: V1ObjectReference """ self._regarding = regarding
[ "def", "regarding", "(", "self", ",", "regarding", ")", ":", "self", ".", "_regarding", "=", "regarding" ]
https://github.com/tomplus/kubernetes_asyncio/blob/f028cc793e3a2c519be6a52a49fb77ff0b014c9b/kubernetes_asyncio/client/models/v1beta1_event.py#L396-L404
dimagi/commcare-hq
d67ff1d3b4c51fa050c19e60c3253a79d3452a39
corehq/messaging/scheduling/forms.py
python
ConditionalAlertScheduleForm.update_start_date_type_choices
(self)
[]
def update_start_date_type_choices(self): if ( self.is_system_admin or self.initial.get('start_date_type') == self.START_DATE_FROM_VISIT_SCHEDULER ): self.fields['start_date_type'].choices += [ (self.START_DATE_FROM_VISIT_SCHEDULER, _("A date from a visit scheduler")), ]
[ "def", "update_start_date_type_choices", "(", "self", ")", ":", "if", "(", "self", ".", "is_system_admin", "or", "self", ".", "initial", ".", "get", "(", "'start_date_type'", ")", "==", "self", ".", "START_DATE_FROM_VISIT_SCHEDULER", ")", ":", "self", ".", "fields", "[", "'start_date_type'", "]", ".", "choices", "+=", "[", "(", "self", ".", "START_DATE_FROM_VISIT_SCHEDULER", ",", "_", "(", "\"A date from a visit scheduler\"", ")", ")", ",", "]" ]
https://github.com/dimagi/commcare-hq/blob/d67ff1d3b4c51fa050c19e60c3253a79d3452a39/corehq/messaging/scheduling/forms.py#L2951-L2958
uqfoundation/multiprocess
028cc73f02655e6451d92e5147d19d8c10aebe50
pypy3.6/multiprocess/connection.py
python
_ConnectionBase.closed
(self)
return self._handle is None
True if the connection is closed
True if the connection is closed
[ "True", "if", "the", "connection", "is", "closed" ]
def closed(self): """True if the connection is closed""" return self._handle is None
[ "def", "closed", "(", "self", ")", ":", "return", "self", ".", "_handle", "is", "None" ]
https://github.com/uqfoundation/multiprocess/blob/028cc73f02655e6451d92e5147d19d8c10aebe50/pypy3.6/multiprocess/connection.py#L157-L159
golemhq/golem
84f51478b169cdeab73fc7e2a22a64d0a2a29263
golem/actions.py
python
verify_element_text_contains
(element, text)
Verify element contains text Parameters: element : element text : value
Verify element contains text
[ "Verify", "element", "contains", "text" ]
def verify_element_text_contains(element, text): """Verify element contains text Parameters: element : element text : value """ element = browser.get_browser().find(element, timeout=0) with _verify_step(f"Verify element {element.name} contains text '{text}'") as s: s.error = f"expected element {element.name} text '{element.text}' to contain '{text}'" s.condition = text in element.text
[ "def", "verify_element_text_contains", "(", "element", ",", "text", ")", ":", "element", "=", "browser", ".", "get_browser", "(", ")", ".", "find", "(", "element", ",", "timeout", "=", "0", ")", "with", "_verify_step", "(", "f\"Verify element {element.name} contains text '{text}'\"", ")", "as", "s", ":", "s", ".", "error", "=", "f\"expected element {element.name} text '{element.text}' to contain '{text}'\"", "s", ".", "condition", "=", "text", "in", "element", ".", "text" ]
https://github.com/golemhq/golem/blob/84f51478b169cdeab73fc7e2a22a64d0a2a29263/golem/actions.py#L2125-L2135
open-mmlab/mmdetection3d
c7272063e818bcf33aebc498a017a95c8d065143
tools/data_converter/waymo_converter.py
python
Waymo2KITTI.convert_range_image_to_point_cloud
(self, frame, range_images, camera_projections, range_image_top_pose, ri_index=0)
return points, cp_points, intensity, elongation
Convert range images to point cloud. Args: frame (:obj:`Frame`): Open dataset frame. range_images (dict): Mapping from laser_name to list of two range images corresponding with two returns. camera_projections (dict): Mapping from laser_name to list of two camera projections corresponding with two returns. range_image_top_pose (:obj:`Transform`): Range image pixel pose for top lidar. ri_index (int): 0 for the first return, 1 for the second return. Default: 0. Returns: tuple[list[np.ndarray]]: (List of points with shape [N, 3], camera projections of points with shape [N, 6], intensity with shape [N, 1], elongation with shape [N, 1]). All the lists have the length of lidar numbers (5).
Convert range images to point cloud.
[ "Convert", "range", "images", "to", "point", "cloud", "." ]
def convert_range_image_to_point_cloud(self, frame, range_images, camera_projections, range_image_top_pose, ri_index=0): """Convert range images to point cloud. Args: frame (:obj:`Frame`): Open dataset frame. range_images (dict): Mapping from laser_name to list of two range images corresponding with two returns. camera_projections (dict): Mapping from laser_name to list of two camera projections corresponding with two returns. range_image_top_pose (:obj:`Transform`): Range image pixel pose for top lidar. ri_index (int): 0 for the first return, 1 for the second return. Default: 0. Returns: tuple[list[np.ndarray]]: (List of points with shape [N, 3], camera projections of points with shape [N, 6], intensity with shape [N, 1], elongation with shape [N, 1]). All the lists have the length of lidar numbers (5). """ calibrations = sorted( frame.context.laser_calibrations, key=lambda c: c.name) points = [] cp_points = [] intensity = [] elongation = [] frame_pose = tf.convert_to_tensor( value=np.reshape(np.array(frame.pose.transform), [4, 4])) # [H, W, 6] range_image_top_pose_tensor = tf.reshape( tf.convert_to_tensor(value=range_image_top_pose.data), range_image_top_pose.shape.dims) # [H, W, 3, 3] range_image_top_pose_tensor_rotation = \ transform_utils.get_rotation_matrix( range_image_top_pose_tensor[..., 0], range_image_top_pose_tensor[..., 1], range_image_top_pose_tensor[..., 2]) range_image_top_pose_tensor_translation = \ range_image_top_pose_tensor[..., 3:] range_image_top_pose_tensor = transform_utils.get_transform( range_image_top_pose_tensor_rotation, range_image_top_pose_tensor_translation) for c in calibrations: range_image = range_images[c.name][ri_index] if len(c.beam_inclinations) == 0: beam_inclinations = range_image_utils.compute_inclination( tf.constant( [c.beam_inclination_min, c.beam_inclination_max]), height=range_image.shape.dims[0]) else: beam_inclinations = tf.constant(c.beam_inclinations) beam_inclinations = tf.reverse(beam_inclinations, axis=[-1]) extrinsic = np.reshape(np.array(c.extrinsic.transform), [4, 4]) range_image_tensor = tf.reshape( tf.convert_to_tensor(value=range_image.data), range_image.shape.dims) pixel_pose_local = None frame_pose_local = None if c.name == dataset_pb2.LaserName.TOP: pixel_pose_local = range_image_top_pose_tensor pixel_pose_local = tf.expand_dims(pixel_pose_local, axis=0) frame_pose_local = tf.expand_dims(frame_pose, axis=0) range_image_mask = range_image_tensor[..., 0] > 0 if self.filter_no_label_zone_points: nlz_mask = range_image_tensor[..., 3] != 1.0 # 1.0: in NLZ range_image_mask = range_image_mask & nlz_mask range_image_cartesian = \ range_image_utils.extract_point_cloud_from_range_image( tf.expand_dims(range_image_tensor[..., 0], axis=0), tf.expand_dims(extrinsic, axis=0), tf.expand_dims(tf.convert_to_tensor( value=beam_inclinations), axis=0), pixel_pose=pixel_pose_local, frame_pose=frame_pose_local) range_image_cartesian = tf.squeeze(range_image_cartesian, axis=0) points_tensor = tf.gather_nd(range_image_cartesian, tf.compat.v1.where(range_image_mask)) cp = camera_projections[c.name][ri_index] cp_tensor = tf.reshape( tf.convert_to_tensor(value=cp.data), cp.shape.dims) cp_points_tensor = tf.gather_nd( cp_tensor, tf.compat.v1.where(range_image_mask)) points.append(points_tensor.numpy()) cp_points.append(cp_points_tensor.numpy()) intensity_tensor = tf.gather_nd(range_image_tensor[..., 1], tf.where(range_image_mask)) intensity.append(intensity_tensor.numpy()) elongation_tensor = tf.gather_nd(range_image_tensor[..., 2], tf.where(range_image_mask)) elongation.append(elongation_tensor.numpy()) return points, cp_points, intensity, elongation
[ "def", "convert_range_image_to_point_cloud", "(", "self", ",", "frame", ",", "range_images", ",", "camera_projections", ",", "range_image_top_pose", ",", "ri_index", "=", "0", ")", ":", "calibrations", "=", "sorted", "(", "frame", ".", "context", ".", "laser_calibrations", ",", "key", "=", "lambda", "c", ":", "c", ".", "name", ")", "points", "=", "[", "]", "cp_points", "=", "[", "]", "intensity", "=", "[", "]", "elongation", "=", "[", "]", "frame_pose", "=", "tf", ".", "convert_to_tensor", "(", "value", "=", "np", ".", "reshape", "(", "np", ".", "array", "(", "frame", ".", "pose", ".", "transform", ")", ",", "[", "4", ",", "4", "]", ")", ")", "# [H, W, 6]", "range_image_top_pose_tensor", "=", "tf", ".", "reshape", "(", "tf", ".", "convert_to_tensor", "(", "value", "=", "range_image_top_pose", ".", "data", ")", ",", "range_image_top_pose", ".", "shape", ".", "dims", ")", "# [H, W, 3, 3]", "range_image_top_pose_tensor_rotation", "=", "transform_utils", ".", "get_rotation_matrix", "(", "range_image_top_pose_tensor", "[", "...", ",", "0", "]", ",", "range_image_top_pose_tensor", "[", "...", ",", "1", "]", ",", "range_image_top_pose_tensor", "[", "...", ",", "2", "]", ")", "range_image_top_pose_tensor_translation", "=", "range_image_top_pose_tensor", "[", "...", ",", "3", ":", "]", "range_image_top_pose_tensor", "=", "transform_utils", ".", "get_transform", "(", "range_image_top_pose_tensor_rotation", ",", "range_image_top_pose_tensor_translation", ")", "for", "c", "in", "calibrations", ":", "range_image", "=", "range_images", "[", "c", ".", "name", "]", "[", "ri_index", "]", "if", "len", "(", "c", ".", "beam_inclinations", ")", "==", "0", ":", "beam_inclinations", "=", "range_image_utils", ".", "compute_inclination", "(", "tf", ".", "constant", "(", "[", "c", ".", "beam_inclination_min", ",", "c", ".", "beam_inclination_max", "]", ")", ",", "height", "=", "range_image", ".", "shape", ".", "dims", "[", "0", "]", ")", "else", ":", "beam_inclinations", "=", "tf", ".", "constant", "(", "c", ".", "beam_inclinations", ")", "beam_inclinations", "=", "tf", ".", "reverse", "(", "beam_inclinations", ",", "axis", "=", "[", "-", "1", "]", ")", "extrinsic", "=", "np", ".", "reshape", "(", "np", ".", "array", "(", "c", ".", "extrinsic", ".", "transform", ")", ",", "[", "4", ",", "4", "]", ")", "range_image_tensor", "=", "tf", ".", "reshape", "(", "tf", ".", "convert_to_tensor", "(", "value", "=", "range_image", ".", "data", ")", ",", "range_image", ".", "shape", ".", "dims", ")", "pixel_pose_local", "=", "None", "frame_pose_local", "=", "None", "if", "c", ".", "name", "==", "dataset_pb2", ".", "LaserName", ".", "TOP", ":", "pixel_pose_local", "=", "range_image_top_pose_tensor", "pixel_pose_local", "=", "tf", ".", "expand_dims", "(", "pixel_pose_local", ",", "axis", "=", "0", ")", "frame_pose_local", "=", "tf", ".", "expand_dims", "(", "frame_pose", ",", "axis", "=", "0", ")", "range_image_mask", "=", "range_image_tensor", "[", "...", ",", "0", "]", ">", "0", "if", "self", ".", "filter_no_label_zone_points", ":", "nlz_mask", "=", "range_image_tensor", "[", "...", ",", "3", "]", "!=", "1.0", "# 1.0: in NLZ", "range_image_mask", "=", "range_image_mask", "&", "nlz_mask", "range_image_cartesian", "=", "range_image_utils", ".", "extract_point_cloud_from_range_image", "(", "tf", ".", "expand_dims", "(", "range_image_tensor", "[", "...", ",", "0", "]", ",", "axis", "=", "0", ")", ",", "tf", ".", "expand_dims", "(", "extrinsic", ",", "axis", "=", "0", ")", ",", "tf", ".", "expand_dims", "(", "tf", ".", "convert_to_tensor", "(", "value", "=", "beam_inclinations", ")", ",", "axis", "=", "0", ")", ",", "pixel_pose", "=", "pixel_pose_local", ",", "frame_pose", "=", "frame_pose_local", ")", "range_image_cartesian", "=", "tf", ".", "squeeze", "(", "range_image_cartesian", ",", "axis", "=", "0", ")", "points_tensor", "=", "tf", ".", "gather_nd", "(", "range_image_cartesian", ",", "tf", ".", "compat", ".", "v1", ".", "where", "(", "range_image_mask", ")", ")", "cp", "=", "camera_projections", "[", "c", ".", "name", "]", "[", "ri_index", "]", "cp_tensor", "=", "tf", ".", "reshape", "(", "tf", ".", "convert_to_tensor", "(", "value", "=", "cp", ".", "data", ")", ",", "cp", ".", "shape", ".", "dims", ")", "cp_points_tensor", "=", "tf", ".", "gather_nd", "(", "cp_tensor", ",", "tf", ".", "compat", ".", "v1", ".", "where", "(", "range_image_mask", ")", ")", "points", ".", "append", "(", "points_tensor", ".", "numpy", "(", ")", ")", "cp_points", ".", "append", "(", "cp_points_tensor", ".", "numpy", "(", ")", ")", "intensity_tensor", "=", "tf", ".", "gather_nd", "(", "range_image_tensor", "[", "...", ",", "1", "]", ",", "tf", ".", "where", "(", "range_image_mask", ")", ")", "intensity", ".", "append", "(", "intensity_tensor", ".", "numpy", "(", ")", ")", "elongation_tensor", "=", "tf", ".", "gather_nd", "(", "range_image_tensor", "[", "...", ",", "2", "]", ",", "tf", ".", "where", "(", "range_image_mask", ")", ")", "elongation", ".", "append", "(", "elongation_tensor", ".", "numpy", "(", ")", ")", "return", "points", ",", "cp_points", ",", "intensity", ",", "elongation" ]
https://github.com/open-mmlab/mmdetection3d/blob/c7272063e818bcf33aebc498a017a95c8d065143/tools/data_converter/waymo_converter.py#L389-L495
pyglet/pyglet
2833c1df902ca81aeeffa786c12e7e87d402434b
pyglet/sprite.py
python
Sprite.rotation
(self)
return self._rotation
Clockwise rotation of the sprite, in degrees. The sprite image will be rotated about its image's (anchor_x, anchor_y) position. :type: float
Clockwise rotation of the sprite, in degrees.
[ "Clockwise", "rotation", "of", "the", "sprite", "in", "degrees", "." ]
def rotation(self): """Clockwise rotation of the sprite, in degrees. The sprite image will be rotated about its image's (anchor_x, anchor_y) position. :type: float """ return self._rotation
[ "def", "rotation", "(", "self", ")", ":", "return", "self", ".", "_rotation" ]
https://github.com/pyglet/pyglet/blob/2833c1df902ca81aeeffa786c12e7e87d402434b/pyglet/sprite.py#L546-L554
jesse-ai/jesse
28759547138fbc76dff12741204833e39c93b083
jesse/indicators/ichimoku_cloud_seq.py
python
ichimoku_cloud_seq
(candles: np.ndarray, conversion_line_period: int = 9, base_line_period: int = 26, lagging_line_period: int = 52, displacement: int = 26, sequential: bool = False)
Ichimoku Cloud :param candles: np.ndarray :param conversion_line_period: int - default: 9 :param base_line_period: int - default: 26 :param lagging_line_period: int - default: 52 :param displacement: - default: 26 :param sequential: bool - default: False :return: IchimokuCloud
Ichimoku Cloud
[ "Ichimoku", "Cloud" ]
def ichimoku_cloud_seq(candles: np.ndarray, conversion_line_period: int = 9, base_line_period: int = 26, lagging_line_period: int = 52, displacement: int = 26, sequential: bool = False) -> IchimokuCloud: """ Ichimoku Cloud :param candles: np.ndarray :param conversion_line_period: int - default: 9 :param base_line_period: int - default: 26 :param lagging_line_period: int - default: 52 :param displacement: - default: 26 :param sequential: bool - default: False :return: IchimokuCloud """ if candles.shape[0] < lagging_line_period + displacement: raise ValueError("Too few candles available for lagging_line_period + displacement.") candles = slice_candles(candles, sequential) conversion_line = _line_helper(candles, conversion_line_period) base_line = _line_helper(candles, base_line_period) span_b_pre = _line_helper(candles, lagging_line_period) span_b = np_shift(span_b_pre, displacement, fill_value=np.nan) span_a_pre = (conversion_line + base_line) / 2 span_a = np_shift(span_a_pre, displacement, fill_value=np.nan) lagging_line = np_shift(candles[:, 2], displacement - 1, fill_value=np.nan) if sequential: return IchimokuCloud(conversion_line, base_line, span_a, span_b, lagging_line, span_a_pre, span_b_pre) else: return IchimokuCloud(conversion_line[-1], base_line[-1], span_a[-1], span_b[-1], lagging_line[-1], span_a_pre[-1], span_b_pre[-1])
[ "def", "ichimoku_cloud_seq", "(", "candles", ":", "np", ".", "ndarray", ",", "conversion_line_period", ":", "int", "=", "9", ",", "base_line_period", ":", "int", "=", "26", ",", "lagging_line_period", ":", "int", "=", "52", ",", "displacement", ":", "int", "=", "26", ",", "sequential", ":", "bool", "=", "False", ")", "->", "IchimokuCloud", ":", "if", "candles", ".", "shape", "[", "0", "]", "<", "lagging_line_period", "+", "displacement", ":", "raise", "ValueError", "(", "\"Too few candles available for lagging_line_period + displacement.\"", ")", "candles", "=", "slice_candles", "(", "candles", ",", "sequential", ")", "conversion_line", "=", "_line_helper", "(", "candles", ",", "conversion_line_period", ")", "base_line", "=", "_line_helper", "(", "candles", ",", "base_line_period", ")", "span_b_pre", "=", "_line_helper", "(", "candles", ",", "lagging_line_period", ")", "span_b", "=", "np_shift", "(", "span_b_pre", ",", "displacement", ",", "fill_value", "=", "np", ".", "nan", ")", "span_a_pre", "=", "(", "conversion_line", "+", "base_line", ")", "/", "2", "span_a", "=", "np_shift", "(", "span_a_pre", ",", "displacement", ",", "fill_value", "=", "np", ".", "nan", ")", "lagging_line", "=", "np_shift", "(", "candles", "[", ":", ",", "2", "]", ",", "displacement", "-", "1", ",", "fill_value", "=", "np", ".", "nan", ")", "if", "sequential", ":", "return", "IchimokuCloud", "(", "conversion_line", ",", "base_line", ",", "span_a", ",", "span_b", ",", "lagging_line", ",", "span_a_pre", ",", "span_b_pre", ")", "else", ":", "return", "IchimokuCloud", "(", "conversion_line", "[", "-", "1", "]", ",", "base_line", "[", "-", "1", "]", ",", "span_a", "[", "-", "1", "]", ",", "span_b", "[", "-", "1", "]", ",", "lagging_line", "[", "-", "1", "]", ",", "span_a_pre", "[", "-", "1", "]", ",", "span_b_pre", "[", "-", "1", "]", ")" ]
https://github.com/jesse-ai/jesse/blob/28759547138fbc76dff12741204833e39c93b083/jesse/indicators/ichimoku_cloud_seq.py#L14-L47
FairwindsOps/reckoner
0acad4c3e02cf13c0983cc57d632400d7a826bd0
reckoner/course.py
python
Course._set_chart_repository
(self, chart: dict)
_set_chart_repository will convert the string reference of a repository into the dictionary configuration of that repository or, if None, or if the string isn't in the repositories section, it will leave it alone.
_set_chart_repository will convert the string reference of a repository into the dictionary configuration of that repository or, if None, or if the string isn't in the repositories section, it will leave it alone.
[ "_set_chart_repository", "will", "convert", "the", "string", "reference", "of", "a", "repository", "into", "the", "dictionary", "configuration", "of", "that", "repository", "or", "if", "None", "or", "if", "the", "string", "isn", "t", "in", "the", "repositories", "section", "it", "will", "leave", "it", "alone", "." ]
def _set_chart_repository(self, chart: dict): """_set_chart_repository will convert the string reference of a repository into the dictionary configuration of that repository or, if None, or if the string isn't in the repositories section, it will leave it alone.""" if isinstance(chart.get('repository', None), str) and chart['repository'] in [x.name for x in self.repositories]: logging.debug('Found a reference to a repository installed via repositories section of course, replacing reference.') chart['repository'] = self._dict['repositories'][chart['repository']]
[ "def", "_set_chart_repository", "(", "self", ",", "chart", ":", "dict", ")", ":", "if", "isinstance", "(", "chart", ".", "get", "(", "'repository'", ",", "None", ")", ",", "str", ")", "and", "chart", "[", "'repository'", "]", "in", "[", "x", ".", "name", "for", "x", "in", "self", ".", "repositories", "]", ":", "logging", ".", "debug", "(", "'Found a reference to a repository installed via repositories section of course, replacing reference.'", ")", "chart", "[", "'repository'", "]", "=", "self", ".", "_dict", "[", "'repositories'", "]", "[", "chart", "[", "'repository'", "]", "]" ]
https://github.com/FairwindsOps/reckoner/blob/0acad4c3e02cf13c0983cc57d632400d7a826bd0/reckoner/course.py#L143-L150
OpenKMIP/PyKMIP
c0c980395660ea1b1a8009e97f17ab32d1100233
kmip/pie/client.py
python
ProxyKmipClient.encrypt
(self, data, uid=None, cryptographic_parameters=None, iv_counter_nonce=None)
Encrypt data using the specified encryption key and parameters. Args: data (bytes): The bytes to encrypt. Required. uid (string): The unique ID of the encryption key to use. Optional, defaults to None. cryptographic_parameters (dict): A dictionary containing various cryptographic settings to be used for the encryption. Optional, defaults to None. iv_counter_nonce (bytes): The bytes to use for the IV/counter/ nonce, if needed by the encryption algorithm and/or cipher mode. Optional, defaults to None. Returns: bytes: The encrypted data. bytes: The IV/counter/nonce used with the encryption algorithm, only if it was autogenerated by the server. Raises: ClientConnectionNotOpen: if the client connection is unusable KmipOperationFailure: if the operation result is a failure TypeError: if the input arguments are invalid Notes: The cryptographic_parameters argument is a dictionary that can contain the following key/value pairs: Keys | Value ------------------------------|----------------------------------- 'block_cipher_mode' | A BlockCipherMode enumeration | indicating the cipher mode to use | with the encryption algorithm. 'padding_method' | A PaddingMethod enumeration | indicating which padding method to | use with the encryption algorithm. 'hashing_algorithm' | A HashingAlgorithm enumeration | indicating which hashing algorithm | to use. 'key_role_type' | A KeyRoleType enumeration | indicating the intended use of the | associated cryptographic key. 'digital_signature_algorithm' | A DigitalSignatureAlgorithm | enumeration indicating which | digital signature algorithm to | use. 'cryptographic_algorithm' | A CryptographicAlgorithm | enumeration indicating which | encryption algorithm to use. 'random_iv' | A boolean indicating whether the | server should autogenerate an IV. 'iv_length' | An integer representing the length | of the initialization vector (IV) | in bits. 'tag_length' | An integer representing the length | of the authenticator tag in bytes. 'fixed_field_length' | An integer representing the length | of the fixed field portion of the | IV in bits. 'invocation_field_length' | An integer representing the length | of the invocation field portion of | the IV in bits. 'counter_length' | An integer representing the length | of the coutner portion of the IV | in bits. 'initial_counter_value' | An integer representing the | starting counter value for CTR | mode (typically 1).
Encrypt data using the specified encryption key and parameters.
[ "Encrypt", "data", "using", "the", "specified", "encryption", "key", "and", "parameters", "." ]
def encrypt(self, data, uid=None, cryptographic_parameters=None, iv_counter_nonce=None): """ Encrypt data using the specified encryption key and parameters. Args: data (bytes): The bytes to encrypt. Required. uid (string): The unique ID of the encryption key to use. Optional, defaults to None. cryptographic_parameters (dict): A dictionary containing various cryptographic settings to be used for the encryption. Optional, defaults to None. iv_counter_nonce (bytes): The bytes to use for the IV/counter/ nonce, if needed by the encryption algorithm and/or cipher mode. Optional, defaults to None. Returns: bytes: The encrypted data. bytes: The IV/counter/nonce used with the encryption algorithm, only if it was autogenerated by the server. Raises: ClientConnectionNotOpen: if the client connection is unusable KmipOperationFailure: if the operation result is a failure TypeError: if the input arguments are invalid Notes: The cryptographic_parameters argument is a dictionary that can contain the following key/value pairs: Keys | Value ------------------------------|----------------------------------- 'block_cipher_mode' | A BlockCipherMode enumeration | indicating the cipher mode to use | with the encryption algorithm. 'padding_method' | A PaddingMethod enumeration | indicating which padding method to | use with the encryption algorithm. 'hashing_algorithm' | A HashingAlgorithm enumeration | indicating which hashing algorithm | to use. 'key_role_type' | A KeyRoleType enumeration | indicating the intended use of the | associated cryptographic key. 'digital_signature_algorithm' | A DigitalSignatureAlgorithm | enumeration indicating which | digital signature algorithm to | use. 'cryptographic_algorithm' | A CryptographicAlgorithm | enumeration indicating which | encryption algorithm to use. 'random_iv' | A boolean indicating whether the | server should autogenerate an IV. 'iv_length' | An integer representing the length | of the initialization vector (IV) | in bits. 'tag_length' | An integer representing the length | of the authenticator tag in bytes. 'fixed_field_length' | An integer representing the length | of the fixed field portion of the | IV in bits. 'invocation_field_length' | An integer representing the length | of the invocation field portion of | the IV in bits. 'counter_length' | An integer representing the length | of the coutner portion of the IV | in bits. 'initial_counter_value' | An integer representing the | starting counter value for CTR | mode (typically 1). """ # Check input if not isinstance(data, six.binary_type): raise TypeError("data must be bytes") if uid is not None: if not isinstance(uid, six.string_types): raise TypeError("uid must be a string") if cryptographic_parameters is not None: if not isinstance(cryptographic_parameters, dict): raise TypeError("cryptographic_parameters must be a dict") if iv_counter_nonce is not None: if not isinstance(iv_counter_nonce, six.binary_type): raise TypeError("iv_counter_nonce must be bytes") cryptographic_parameters = self._build_cryptographic_parameters( cryptographic_parameters ) # Encrypt the provided data and handle the results result = self.proxy.encrypt( data, uid, cryptographic_parameters, iv_counter_nonce ) status = result.get('result_status') if status == enums.ResultStatus.SUCCESS: return result.get('data'), result.get('iv_counter_nonce') else: raise exceptions.KmipOperationFailure( status, result.get('result_reason'), result.get('result_message') )
[ "def", "encrypt", "(", "self", ",", "data", ",", "uid", "=", "None", ",", "cryptographic_parameters", "=", "None", ",", "iv_counter_nonce", "=", "None", ")", ":", "# Check input", "if", "not", "isinstance", "(", "data", ",", "six", ".", "binary_type", ")", ":", "raise", "TypeError", "(", "\"data must be bytes\"", ")", "if", "uid", "is", "not", "None", ":", "if", "not", "isinstance", "(", "uid", ",", "six", ".", "string_types", ")", ":", "raise", "TypeError", "(", "\"uid must be a string\"", ")", "if", "cryptographic_parameters", "is", "not", "None", ":", "if", "not", "isinstance", "(", "cryptographic_parameters", ",", "dict", ")", ":", "raise", "TypeError", "(", "\"cryptographic_parameters must be a dict\"", ")", "if", "iv_counter_nonce", "is", "not", "None", ":", "if", "not", "isinstance", "(", "iv_counter_nonce", ",", "six", ".", "binary_type", ")", ":", "raise", "TypeError", "(", "\"iv_counter_nonce must be bytes\"", ")", "cryptographic_parameters", "=", "self", ".", "_build_cryptographic_parameters", "(", "cryptographic_parameters", ")", "# Encrypt the provided data and handle the results", "result", "=", "self", ".", "proxy", ".", "encrypt", "(", "data", ",", "uid", ",", "cryptographic_parameters", ",", "iv_counter_nonce", ")", "status", "=", "result", ".", "get", "(", "'result_status'", ")", "if", "status", "==", "enums", ".", "ResultStatus", ".", "SUCCESS", ":", "return", "result", ".", "get", "(", "'data'", ")", ",", "result", ".", "get", "(", "'iv_counter_nonce'", ")", "else", ":", "raise", "exceptions", ".", "KmipOperationFailure", "(", "status", ",", "result", ".", "get", "(", "'result_reason'", ")", ",", "result", ".", "get", "(", "'result_message'", ")", ")" ]
https://github.com/OpenKMIP/PyKMIP/blob/c0c980395660ea1b1a8009e97f17ab32d1100233/kmip/pie/client.py#L1193-L1297
CedricGuillemet/Imogen
ee417b42747ed5b46cb11b02ef0c3630000085b3
bin/Lib/logging/__init__.py
python
Handler.setFormatter
(self, fmt)
Set the formatter for this handler.
Set the formatter for this handler.
[ "Set", "the", "formatter", "for", "this", "handler", "." ]
def setFormatter(self, fmt): """ Set the formatter for this handler. """ self.formatter = fmt
[ "def", "setFormatter", "(", "self", ",", "fmt", ")", ":", "self", ".", "formatter", "=", "fmt" ]
https://github.com/CedricGuillemet/Imogen/blob/ee417b42747ed5b46cb11b02ef0c3630000085b3/bin/Lib/logging/__init__.py#L910-L914
lohriialo/photoshop-scripting-python
6b97da967a5d0a45e54f7c99631b29773b923f09
api_reference/photoshop_2020.py
python
_GalleryBannerOptions.__iter__
(self)
return win32com.client.util.Iterator(ob, None)
Return a Python iterator for this object
Return a Python iterator for this object
[ "Return", "a", "Python", "iterator", "for", "this", "object" ]
def __iter__(self): "Return a Python iterator for this object" try: ob = self._oleobj_.InvokeTypes(-4,LCID,3,(13, 10),()) except pythoncom.error: raise TypeError("This object does not support enumeration") return win32com.client.util.Iterator(ob, None)
[ "def", "__iter__", "(", "self", ")", ":", "try", ":", "ob", "=", "self", ".", "_oleobj_", ".", "InvokeTypes", "(", "-", "4", ",", "LCID", ",", "3", ",", "(", "13", ",", "10", ")", ",", "(", ")", ")", "except", "pythoncom", ".", "error", ":", "raise", "TypeError", "(", "\"This object does not support enumeration\"", ")", "return", "win32com", ".", "client", ".", "util", ".", "Iterator", "(", "ob", ",", "None", ")" ]
https://github.com/lohriialo/photoshop-scripting-python/blob/6b97da967a5d0a45e54f7c99631b29773b923f09/api_reference/photoshop_2020.py#L4899-L4905
devstructure/blueprint
574a9fc0dd3031c66970387f1105d8c89e61218f
blueprint/__init__.py
python
Blueprint.add_service_package
(self, manager, service, package_manager, *args)
Add package dependencies to a service resource.
Add package dependencies to a service resource.
[ "Add", "package", "dependencies", "to", "a", "service", "resource", "." ]
def add_service_package(self, manager, service, package_manager, *args): """ Add package dependencies to a service resource. """ if 0 == len(args): return d = self.services[manager][service].setdefault('packages', defaultdict(set)) for package in args: d[package_manager].add(package)
[ "def", "add_service_package", "(", "self", ",", "manager", ",", "service", ",", "package_manager", ",", "*", "args", ")", ":", "if", "0", "==", "len", "(", "args", ")", ":", "return", "d", "=", "self", ".", "services", "[", "manager", "]", "[", "service", "]", ".", "setdefault", "(", "'packages'", ",", "defaultdict", "(", "set", ")", ")", "for", "package", "in", "args", ":", "d", "[", "package_manager", "]", ".", "add", "(", "package", ")" ]
https://github.com/devstructure/blueprint/blob/574a9fc0dd3031c66970387f1105d8c89e61218f/blueprint/__init__.py#L360-L369
exaile/exaile
a7b58996c5c15b3aa7b9975ac13ee8f784ef4689
xlgui/widgets/dialogs.py
python
URIOpenDialog.do_uri_selected
(self, uri)
Destroys the dialog
Destroys the dialog
[ "Destroys", "the", "dialog" ]
def do_uri_selected(self, uri): """ Destroys the dialog """ self.destroy()
[ "def", "do_uri_selected", "(", "self", ",", "uri", ")", ":", "self", ".", "destroy", "(", ")" ]
https://github.com/exaile/exaile/blob/a7b58996c5c15b3aa7b9975ac13ee8f784ef4689/xlgui/widgets/dialogs.py#L390-L394
zhl2008/awd-platform
0416b31abea29743387b10b3914581fbe8e7da5e
web_flaskbb/lib/python2.7/site-packages/sqlalchemy/dialects/oracle/cx_oracle.py
python
OracleDialect_cx_oracle.__init__
(self, auto_convert_lobs=True, threaded=True, coerce_to_unicode=False, coerce_to_decimal=True, arraysize=50, **kwargs)
[]
def __init__(self, auto_convert_lobs=True, threaded=True, coerce_to_unicode=False, coerce_to_decimal=True, arraysize=50, **kwargs): self._pop_deprecated_kwargs(kwargs) OracleDialect.__init__(self, **kwargs) self.threaded = threaded self.arraysize = arraysize self.auto_convert_lobs = auto_convert_lobs self.coerce_to_unicode = coerce_to_unicode self.coerce_to_decimal = coerce_to_decimal cx_Oracle = self.dbapi if cx_Oracle is None: self._include_setinputsizes = {} self.cx_oracle_ver = (0, 0, 0) else: self.cx_oracle_ver = self._parse_cx_oracle_ver(cx_Oracle.version) if self.cx_oracle_ver < (5, 2) and self.cx_oracle_ver > (0, 0, 0): raise exc.InvalidRequestError( "cx_Oracle version 5.2 and above are supported") self._has_native_int = hasattr(cx_Oracle, "NATIVE_INT") self._include_setinputsizes = { cx_Oracle.NCLOB, cx_Oracle.CLOB, cx_Oracle.LOB, cx_Oracle.NCHAR, cx_Oracle.FIXED_NCHAR, cx_Oracle.BLOB, cx_Oracle.FIXED_CHAR, cx_Oracle.TIMESTAMP } self._is_cx_oracle_6 = self.cx_oracle_ver >= (6, )
[ "def", "__init__", "(", "self", ",", "auto_convert_lobs", "=", "True", ",", "threaded", "=", "True", ",", "coerce_to_unicode", "=", "False", ",", "coerce_to_decimal", "=", "True", ",", "arraysize", "=", "50", ",", "*", "*", "kwargs", ")", ":", "self", ".", "_pop_deprecated_kwargs", "(", "kwargs", ")", "OracleDialect", ".", "__init__", "(", "self", ",", "*", "*", "kwargs", ")", "self", ".", "threaded", "=", "threaded", "self", ".", "arraysize", "=", "arraysize", "self", ".", "auto_convert_lobs", "=", "auto_convert_lobs", "self", ".", "coerce_to_unicode", "=", "coerce_to_unicode", "self", ".", "coerce_to_decimal", "=", "coerce_to_decimal", "cx_Oracle", "=", "self", ".", "dbapi", "if", "cx_Oracle", "is", "None", ":", "self", ".", "_include_setinputsizes", "=", "{", "}", "self", ".", "cx_oracle_ver", "=", "(", "0", ",", "0", ",", "0", ")", "else", ":", "self", ".", "cx_oracle_ver", "=", "self", ".", "_parse_cx_oracle_ver", "(", "cx_Oracle", ".", "version", ")", "if", "self", ".", "cx_oracle_ver", "<", "(", "5", ",", "2", ")", "and", "self", ".", "cx_oracle_ver", ">", "(", "0", ",", "0", ",", "0", ")", ":", "raise", "exc", ".", "InvalidRequestError", "(", "\"cx_Oracle version 5.2 and above are supported\"", ")", "self", ".", "_has_native_int", "=", "hasattr", "(", "cx_Oracle", ",", "\"NATIVE_INT\"", ")", "self", ".", "_include_setinputsizes", "=", "{", "cx_Oracle", ".", "NCLOB", ",", "cx_Oracle", ".", "CLOB", ",", "cx_Oracle", ".", "LOB", ",", "cx_Oracle", ".", "NCHAR", ",", "cx_Oracle", ".", "FIXED_NCHAR", ",", "cx_Oracle", ".", "BLOB", ",", "cx_Oracle", ".", "FIXED_CHAR", ",", "cx_Oracle", ".", "TIMESTAMP", "}", "self", ".", "_is_cx_oracle_6", "=", "self", ".", "cx_oracle_ver", ">=", "(", "6", ",", ")" ]
https://github.com/zhl2008/awd-platform/blob/0416b31abea29743387b10b3914581fbe8e7da5e/web_flaskbb/lib/python2.7/site-packages/sqlalchemy/dialects/oracle/cx_oracle.py#L624-L660
spack/spack
675210bd8bd1c5d32ad1cc83d898fb43b569ed74
var/spack/repos/builtin/packages/tk/package.py
python
Tk.setup_run_environment
(self, env)
Set TK_LIBRARY to the directory containing tk.tcl. For further info, see: * https://www.tcl-lang.org/man/tcl/TkCmd/tkvars.htm
Set TK_LIBRARY to the directory containing tk.tcl.
[ "Set", "TK_LIBRARY", "to", "the", "directory", "containing", "tk", ".", "tcl", "." ]
def setup_run_environment(self, env): """Set TK_LIBRARY to the directory containing tk.tcl. For further info, see: * https://www.tcl-lang.org/man/tcl/TkCmd/tkvars.htm """ # When using tkinter from within spack provided python+tkinter, # python will not be able to find Tk unless TK_LIBRARY is set. env.set('TK_LIBRARY', os.path.dirname(sorted(find(self.prefix, 'tk.tcl'))[0]))
[ "def", "setup_run_environment", "(", "self", ",", "env", ")", ":", "# When using tkinter from within spack provided python+tkinter,", "# python will not be able to find Tk unless TK_LIBRARY is set.", "env", ".", "set", "(", "'TK_LIBRARY'", ",", "os", ".", "path", ".", "dirname", "(", "sorted", "(", "find", "(", "self", ".", "prefix", ",", "'tk.tcl'", ")", ")", "[", "0", "]", ")", ")" ]
https://github.com/spack/spack/blob/675210bd8bd1c5d32ad1cc83d898fb43b569ed74/var/spack/repos/builtin/packages/tk/package.py#L112-L121
home-assistant/core
265ebd17a3f17ed8dc1e9bdede03ac8e323f1ab1
homeassistant/components/eliqonline/sensor.py
python
async_setup_platform
( hass: HomeAssistant, config: ConfigType, async_add_entities: AddEntitiesCallback, discovery_info: DiscoveryInfoType | None = None, )
Set up the ELIQ Online sensor.
Set up the ELIQ Online sensor.
[ "Set", "up", "the", "ELIQ", "Online", "sensor", "." ]
async def async_setup_platform( hass: HomeAssistant, config: ConfigType, async_add_entities: AddEntitiesCallback, discovery_info: DiscoveryInfoType | None = None, ) -> None: """Set up the ELIQ Online sensor.""" access_token = config.get(CONF_ACCESS_TOKEN) name = config.get(CONF_NAME, DEFAULT_NAME) channel_id = config.get(CONF_CHANNEL_ID) session = async_get_clientsession(hass) api = eliqonline.API(session=session, access_token=access_token) try: _LOGGER.debug("Probing for access to ELIQ Online API") await api.get_data_now(channelid=channel_id) except OSError as error: _LOGGER.error("Could not access the ELIQ Online API: %s", error) return async_add_entities([EliqSensor(api, channel_id, name)], True)
[ "async", "def", "async_setup_platform", "(", "hass", ":", "HomeAssistant", ",", "config", ":", "ConfigType", ",", "async_add_entities", ":", "AddEntitiesCallback", ",", "discovery_info", ":", "DiscoveryInfoType", "|", "None", "=", "None", ",", ")", "->", "None", ":", "access_token", "=", "config", ".", "get", "(", "CONF_ACCESS_TOKEN", ")", "name", "=", "config", ".", "get", "(", "CONF_NAME", ",", "DEFAULT_NAME", ")", "channel_id", "=", "config", ".", "get", "(", "CONF_CHANNEL_ID", ")", "session", "=", "async_get_clientsession", "(", "hass", ")", "api", "=", "eliqonline", ".", "API", "(", "session", "=", "session", ",", "access_token", "=", "access_token", ")", "try", ":", "_LOGGER", ".", "debug", "(", "\"Probing for access to ELIQ Online API\"", ")", "await", "api", ".", "get_data_now", "(", "channelid", "=", "channel_id", ")", "except", "OSError", "as", "error", ":", "_LOGGER", ".", "error", "(", "\"Could not access the ELIQ Online API: %s\"", ",", "error", ")", "return", "async_add_entities", "(", "[", "EliqSensor", "(", "api", ",", "channel_id", ",", "name", ")", "]", ",", "True", ")" ]
https://github.com/home-assistant/core/blob/265ebd17a3f17ed8dc1e9bdede03ac8e323f1ab1/homeassistant/components/eliqonline/sensor.py#L44-L65
minio/minio-py
b3ba3bf99fe6b9ff2b28855550d6ab5345c134e3
minio/commonconfig.py
python
AndOperator.prefix
(self)
return self._prefix
Get prefix.
Get prefix.
[ "Get", "prefix", "." ]
def prefix(self): """Get prefix.""" return self._prefix
[ "def", "prefix", "(", "self", ")", ":", "return", "self", ".", "_prefix" ]
https://github.com/minio/minio-py/blob/b3ba3bf99fe6b9ff2b28855550d6ab5345c134e3/minio/commonconfig.py#L138-L140
Kyubyong/transformer
fb023bb097e08d53baf25b46a9da490beba51a21
tf1.2_legacy/modules.py
python
embedding
(inputs, vocab_size, num_units, zero_pad=True, scale=True, scope="embedding", reuse=None)
return outputs
Embeds a given tensor. Args: inputs: A `Tensor` with type `int32` or `int64` containing the ids to be looked up in `lookup table`. vocab_size: An int. Vocabulary size. num_units: An int. Number of embedding hidden units. zero_pad: A boolean. If True, all the values of the fist row (id 0) should be constant zeros. scale: A boolean. If True. the outputs is multiplied by sqrt num_units. scope: Optional scope for `variable_scope`. reuse: Boolean, whether to reuse the weights of a previous layer by the same name. Returns: A `Tensor` with one more rank than inputs's. The last dimensionality should be `num_units`. For example, ``` import tensorflow as tf inputs = tf.to_int32(tf.reshape(tf.range(2*3), (2, 3))) outputs = embedding(inputs, 6, 2, zero_pad=True) with tf.Session() as sess: sess.run(tf.global_variables_initializer()) print sess.run(outputs) >> [[[ 0. 0. ] [ 0.09754146 0.67385566] [ 0.37864095 -0.35689294]] [[-1.01329422 -1.09939694] [ 0.7521342 0.38203377] [-0.04973143 -0.06210355]]] ``` ``` import tensorflow as tf inputs = tf.to_int32(tf.reshape(tf.range(2*3), (2, 3))) outputs = embedding(inputs, 6, 2, zero_pad=False) with tf.Session() as sess: sess.run(tf.global_variables_initializer()) print sess.run(outputs) >> [[[-0.19172323 -0.39159766] [-0.43212751 -0.66207761] [ 1.03452027 -0.26704335]] [[-0.11634696 -0.35983452] [ 0.50208133 0.53509563] [ 1.22204471 -0.96587461]]] ```
Embeds a given tensor.
[ "Embeds", "a", "given", "tensor", "." ]
def embedding(inputs, vocab_size, num_units, zero_pad=True, scale=True, scope="embedding", reuse=None): '''Embeds a given tensor. Args: inputs: A `Tensor` with type `int32` or `int64` containing the ids to be looked up in `lookup table`. vocab_size: An int. Vocabulary size. num_units: An int. Number of embedding hidden units. zero_pad: A boolean. If True, all the values of the fist row (id 0) should be constant zeros. scale: A boolean. If True. the outputs is multiplied by sqrt num_units. scope: Optional scope for `variable_scope`. reuse: Boolean, whether to reuse the weights of a previous layer by the same name. Returns: A `Tensor` with one more rank than inputs's. The last dimensionality should be `num_units`. For example, ``` import tensorflow as tf inputs = tf.to_int32(tf.reshape(tf.range(2*3), (2, 3))) outputs = embedding(inputs, 6, 2, zero_pad=True) with tf.Session() as sess: sess.run(tf.global_variables_initializer()) print sess.run(outputs) >> [[[ 0. 0. ] [ 0.09754146 0.67385566] [ 0.37864095 -0.35689294]] [[-1.01329422 -1.09939694] [ 0.7521342 0.38203377] [-0.04973143 -0.06210355]]] ``` ``` import tensorflow as tf inputs = tf.to_int32(tf.reshape(tf.range(2*3), (2, 3))) outputs = embedding(inputs, 6, 2, zero_pad=False) with tf.Session() as sess: sess.run(tf.global_variables_initializer()) print sess.run(outputs) >> [[[-0.19172323 -0.39159766] [-0.43212751 -0.66207761] [ 1.03452027 -0.26704335]] [[-0.11634696 -0.35983452] [ 0.50208133 0.53509563] [ 1.22204471 -0.96587461]]] ``` ''' with tf.variable_scope(scope, reuse=reuse): lookup_table = tf.get_variable('lookup_table', dtype=tf.float32, shape=[vocab_size, num_units], initializer=tf.contrib.layers.xavier_initializer()) if zero_pad: lookup_table = tf.concat((tf.zeros(shape=[1, num_units]), lookup_table[1:, :]), 0) outputs = tf.nn.embedding_lookup(lookup_table, inputs) if scale: outputs = outputs * (num_units ** 0.5) return outputs
[ "def", "embedding", "(", "inputs", ",", "vocab_size", ",", "num_units", ",", "zero_pad", "=", "True", ",", "scale", "=", "True", ",", "scope", "=", "\"embedding\"", ",", "reuse", "=", "None", ")", ":", "with", "tf", ".", "variable_scope", "(", "scope", ",", "reuse", "=", "reuse", ")", ":", "lookup_table", "=", "tf", ".", "get_variable", "(", "'lookup_table'", ",", "dtype", "=", "tf", ".", "float32", ",", "shape", "=", "[", "vocab_size", ",", "num_units", "]", ",", "initializer", "=", "tf", ".", "contrib", ".", "layers", ".", "xavier_initializer", "(", ")", ")", "if", "zero_pad", ":", "lookup_table", "=", "tf", ".", "concat", "(", "(", "tf", ".", "zeros", "(", "shape", "=", "[", "1", ",", "num_units", "]", ")", ",", "lookup_table", "[", "1", ":", ",", ":", "]", ")", ",", "0", ")", "outputs", "=", "tf", ".", "nn", ".", "embedding_lookup", "(", "lookup_table", ",", "inputs", ")", "if", "scale", ":", "outputs", "=", "outputs", "*", "(", "num_units", "**", "0.5", ")", "return", "outputs" ]
https://github.com/Kyubyong/transformer/blob/fb023bb097e08d53baf25b46a9da490beba51a21/tf1.2_legacy/modules.py#L41-L117
spectralpython/spectral
e1cd919f5f66abddc219b76926450240feaaed8f
spectral/database/usgs.py
python
USGSDatabase.get_spectrum
(self, sampleID)
return (list(x), list(y))
Returns a spectrum from the database. Usage: (x, y) = usgs.get_spectrum(sampleID) Arguments: `sampleID` (int): The **SampleID** value for the desired spectrum from the **Samples** table in the database. Returns: `x` (list): Band centers for the spectrum. This is extraced from assumed spectrometer for given sample. `y` (list): Spectrum data values for each band. Returns a pair of vectors containing the wavelengths and measured values values of a measurment.
Returns a spectrum from the database.
[ "Returns", "a", "spectrum", "from", "the", "database", "." ]
def get_spectrum(self, sampleID): '''Returns a spectrum from the database. Usage: (x, y) = usgs.get_spectrum(sampleID) Arguments: `sampleID` (int): The **SampleID** value for the desired spectrum from the **Samples** table in the database. Returns: `x` (list): Band centers for the spectrum. This is extraced from assumed spectrometer for given sample. `y` (list): Spectrum data values for each band. Returns a pair of vectors containing the wavelengths and measured values values of a measurment. ''' import array query = '''SELECT ValuesArray, AssumedWLSpmeterDataID FROM Samples WHERE SampleID = ?''' result = self.cursor.execute(query, (sampleID,)) rows = result.fetchall() if len(rows) < 1: raise Exception('Measurement record not found.') y = array_from_blob(rows[0][0]) assumedWLSpmeterDataID = rows[0][1] query = '''SELECT ValuesArray FROM SpectrometerData WHERE SpectrometerDataID = ?''' result = self.cursor.execute( query, (assumedWLSpmeterDataID,)) rows = result.fetchall() if len(rows) < 1: raise Exception('Measurement (wavelengths) record not found.') x = array_from_blob(rows[0][0]) return (list(x), list(y))
[ "def", "get_spectrum", "(", "self", ",", "sampleID", ")", ":", "import", "array", "query", "=", "'''SELECT ValuesArray, AssumedWLSpmeterDataID FROM Samples WHERE SampleID = ?'''", "result", "=", "self", ".", "cursor", ".", "execute", "(", "query", ",", "(", "sampleID", ",", ")", ")", "rows", "=", "result", ".", "fetchall", "(", ")", "if", "len", "(", "rows", ")", "<", "1", ":", "raise", "Exception", "(", "'Measurement record not found.'", ")", "y", "=", "array_from_blob", "(", "rows", "[", "0", "]", "[", "0", "]", ")", "assumedWLSpmeterDataID", "=", "rows", "[", "0", "]", "[", "1", "]", "query", "=", "'''SELECT ValuesArray FROM SpectrometerData WHERE SpectrometerDataID = ?'''", "result", "=", "self", ".", "cursor", ".", "execute", "(", "query", ",", "(", "assumedWLSpmeterDataID", ",", ")", ")", "rows", "=", "result", ".", "fetchall", "(", ")", "if", "len", "(", "rows", ")", "<", "1", ":", "raise", "Exception", "(", "'Measurement (wavelengths) record not found.'", ")", "x", "=", "array_from_blob", "(", "rows", "[", "0", "]", "[", "0", "]", ")", "return", "(", "list", "(", "x", ")", ",", "list", "(", "y", ")", ")" ]
https://github.com/spectralpython/spectral/blob/e1cd919f5f66abddc219b76926450240feaaed8f/spectral/database/usgs.py#L499-L544
holzschu/Carnets
44effb10ddfc6aa5c8b0687582a724ba82c6b547
Library/lib/python3.7/site-packages/sympy/stats/crv_types.py
python
Beta
(name, alpha, beta)
return rv(name, BetaDistribution, (alpha, beta))
r""" Create a Continuous Random Variable with a Beta distribution. The density of the Beta distribution is given by .. math:: f(x) := \frac{x^{\alpha-1}(1-x)^{\beta-1}} {\mathrm{B}(\alpha,\beta)} with :math:`x \in [0,1]`. Parameters ========== alpha : Real number, `\alpha > 0`, a shape beta : Real number, `\beta > 0`, a shape Returns ======= A RandomSymbol. Examples ======== >>> from sympy.stats import Beta, density, E, variance >>> from sympy import Symbol, simplify, pprint, factor >>> alpha = Symbol("alpha", positive=True) >>> beta = Symbol("beta", positive=True) >>> z = Symbol("z") >>> X = Beta("x", alpha, beta) >>> D = density(X)(z) >>> pprint(D, use_unicode=False) alpha - 1 beta - 1 z *(1 - z) -------------------------- B(alpha, beta) >>> simplify(E(X)) alpha/(alpha + beta) >>> factor(simplify(variance(X))) alpha*beta/((alpha + beta)**2*(alpha + beta + 1)) References ========== .. [1] https://en.wikipedia.org/wiki/Beta_distribution .. [2] http://mathworld.wolfram.com/BetaDistribution.html
r""" Create a Continuous Random Variable with a Beta distribution.
[ "r", "Create", "a", "Continuous", "Random", "Variable", "with", "a", "Beta", "distribution", "." ]
def Beta(name, alpha, beta): r""" Create a Continuous Random Variable with a Beta distribution. The density of the Beta distribution is given by .. math:: f(x) := \frac{x^{\alpha-1}(1-x)^{\beta-1}} {\mathrm{B}(\alpha,\beta)} with :math:`x \in [0,1]`. Parameters ========== alpha : Real number, `\alpha > 0`, a shape beta : Real number, `\beta > 0`, a shape Returns ======= A RandomSymbol. Examples ======== >>> from sympy.stats import Beta, density, E, variance >>> from sympy import Symbol, simplify, pprint, factor >>> alpha = Symbol("alpha", positive=True) >>> beta = Symbol("beta", positive=True) >>> z = Symbol("z") >>> X = Beta("x", alpha, beta) >>> D = density(X)(z) >>> pprint(D, use_unicode=False) alpha - 1 beta - 1 z *(1 - z) -------------------------- B(alpha, beta) >>> simplify(E(X)) alpha/(alpha + beta) >>> factor(simplify(variance(X))) alpha*beta/((alpha + beta)**2*(alpha + beta + 1)) References ========== .. [1] https://en.wikipedia.org/wiki/Beta_distribution .. [2] http://mathworld.wolfram.com/BetaDistribution.html """ return rv(name, BetaDistribution, (alpha, beta))
[ "def", "Beta", "(", "name", ",", "alpha", ",", "beta", ")", ":", "return", "rv", "(", "name", ",", "BetaDistribution", ",", "(", "alpha", ",", "beta", ")", ")" ]
https://github.com/holzschu/Carnets/blob/44effb10ddfc6aa5c8b0687582a724ba82c6b547/Library/lib/python3.7/site-packages/sympy/stats/crv_types.py#L355-L410
SeldonIO/alibi-detect
b5ec53cfadcd8e3463d400259f2ea1b752ed1812
alibi_detect/utils/saving.py
python
load_tf_hl
(filepath: Union[str, os.PathLike], model: tf.keras.Model, state_dict: dict)
return model_hl
Load hidden layer models for AdversarialAE. Parameters ---------- filepath Saved model directory. model tf.keras classification model. state_dict Dictionary containing the detector's parameters. Returns ------- List with loaded tf.keras models.
Load hidden layer models for AdversarialAE.
[ "Load", "hidden", "layer", "models", "for", "AdversarialAE", "." ]
def load_tf_hl(filepath: Union[str, os.PathLike], model: tf.keras.Model, state_dict: dict) -> List[tf.keras.Model]: """ Load hidden layer models for AdversarialAE. Parameters ---------- filepath Saved model directory. model tf.keras classification model. state_dict Dictionary containing the detector's parameters. Returns ------- List with loaded tf.keras models. """ model_dir = Path(filepath).joinpath('model') hidden_layer_kld = state_dict['hidden_layer_kld'] if not hidden_layer_kld: return [] model_hl = [] for i, (hidden_layer, output_dim) in enumerate(hidden_layer_kld.items()): m = DenseHidden(model, hidden_layer, output_dim) m.load_weights(model_dir.joinpath('model_hl_' + str(i) + '.ckpt')) model_hl.append(m) return model_hl
[ "def", "load_tf_hl", "(", "filepath", ":", "Union", "[", "str", ",", "os", ".", "PathLike", "]", ",", "model", ":", "tf", ".", "keras", ".", "Model", ",", "state_dict", ":", "dict", ")", "->", "List", "[", "tf", ".", "keras", ".", "Model", "]", ":", "model_dir", "=", "Path", "(", "filepath", ")", ".", "joinpath", "(", "'model'", ")", "hidden_layer_kld", "=", "state_dict", "[", "'hidden_layer_kld'", "]", "if", "not", "hidden_layer_kld", ":", "return", "[", "]", "model_hl", "=", "[", "]", "for", "i", ",", "(", "hidden_layer", ",", "output_dim", ")", "in", "enumerate", "(", "hidden_layer_kld", ".", "items", "(", ")", ")", ":", "m", "=", "DenseHidden", "(", "model", ",", "hidden_layer", ",", "output_dim", ")", "m", ".", "load_weights", "(", "model_dir", ".", "joinpath", "(", "'model_hl_'", "+", "str", "(", "i", ")", "+", "'.ckpt'", ")", ")", "model_hl", ".", "append", "(", "m", ")", "return", "model_hl" ]
https://github.com/SeldonIO/alibi-detect/blob/b5ec53cfadcd8e3463d400259f2ea1b752ed1812/alibi_detect/utils/saving.py#L1089-L1115
deluge-torrent/deluge
2316088f5c0dd6cb044d9d4832fa7d56dcc79cdc
deluge/core/rpcserver.py
python
RPCServer.emit_event
(self, event)
Emits the event to interested clients. :param event: the event to emit :type event: :class:`deluge.event.DelugeEvent`
Emits the event to interested clients.
[ "Emits", "the", "event", "to", "interested", "clients", "." ]
def emit_event(self, event): """ Emits the event to interested clients. :param event: the event to emit :type event: :class:`deluge.event.DelugeEvent` """ log.debug('intevents: %s', self.factory.interested_events) # Find sessions interested in this event for session_id, interest in self.factory.interested_events.items(): if event.name in interest: log.debug('Emit Event: %s %s', event.name, event.args) # This session is interested so send a RPC_EVENT self.factory.session_protocols[session_id].sendData( (RPC_EVENT, event.name, event.args) )
[ "def", "emit_event", "(", "self", ",", "event", ")", ":", "log", ".", "debug", "(", "'intevents: %s'", ",", "self", ".", "factory", ".", "interested_events", ")", "# Find sessions interested in this event", "for", "session_id", ",", "interest", "in", "self", ".", "factory", ".", "interested_events", ".", "items", "(", ")", ":", "if", "event", ".", "name", "in", "interest", ":", "log", ".", "debug", "(", "'Emit Event: %s %s'", ",", "event", ".", "name", ",", "event", ".", "args", ")", "# This session is interested so send a RPC_EVENT", "self", ".", "factory", ".", "session_protocols", "[", "session_id", "]", ".", "sendData", "(", "(", "RPC_EVENT", ",", "event", ".", "name", ",", "event", ".", "args", ")", ")" ]
https://github.com/deluge-torrent/deluge/blob/2316088f5c0dd6cb044d9d4832fa7d56dcc79cdc/deluge/core/rpcserver.py#L527-L542
kexinyi/ns-vqa
df357618af224723acffb66a17ce3e94298642a7
scene_parse/mask_rcnn/lib/utils/net.py
python
load_ckpt
(model, ckpt)
Load checkpoint
Load checkpoint
[ "Load", "checkpoint" ]
def load_ckpt(model, ckpt): """Load checkpoint""" mapping, _ = model.detectron_weight_mapping state_dict = {} for name in ckpt: if mapping[name]: state_dict[name] = ckpt[name] model.load_state_dict(state_dict, strict=False)
[ "def", "load_ckpt", "(", "model", ",", "ckpt", ")", ":", "mapping", ",", "_", "=", "model", ".", "detectron_weight_mapping", "state_dict", "=", "{", "}", "for", "name", "in", "ckpt", ":", "if", "mapping", "[", "name", "]", ":", "state_dict", "[", "name", "]", "=", "ckpt", "[", "name", "]", "model", ".", "load_state_dict", "(", "state_dict", ",", "strict", "=", "False", ")" ]
https://github.com/kexinyi/ns-vqa/blob/df357618af224723acffb66a17ce3e94298642a7/scene_parse/mask_rcnn/lib/utils/net.py#L156-L163
gabrielfalcao/lettuce
f79d8f1bdbb119c423753dd958134fcef3995a93
lettuce/fs.py
python
FileSystem.in_directory
(cls, *directories)
return decorator
Decorator to set the working directory around a function
Decorator to set the working directory around a function
[ "Decorator", "to", "set", "the", "working", "directory", "around", "a", "function" ]
def in_directory(cls, *directories): """Decorator to set the working directory around a function""" def decorator(func): @wraps(func) def inner(*args, **kwargs): cls.pushd(*directories) try: return func(*args, **kwargs) finally: cls.popd() return inner return decorator
[ "def", "in_directory", "(", "cls", ",", "*", "directories", ")", ":", "def", "decorator", "(", "func", ")", ":", "@", "wraps", "(", "func", ")", "def", "inner", "(", "*", "args", ",", "*", "*", "kwargs", ")", ":", "cls", ".", "pushd", "(", "*", "directories", ")", "try", ":", "return", "func", "(", "*", "args", ",", "*", "*", "kwargs", ")", "finally", ":", "cls", ".", "popd", "(", ")", "return", "inner", "return", "decorator" ]
https://github.com/gabrielfalcao/lettuce/blob/f79d8f1bdbb119c423753dd958134fcef3995a93/lettuce/fs.py#L253-L267
alerta/alerta
eca06235a4402c39e3a446f0066557d3c8dc5afd
alerta/models/key.py
python
ApiKey.find_all
(query: Query = None, page: int = 1, page_size: int = 1000)
return [ApiKey.from_db(key) for key in db.get_keys(query, page, page_size)]
List all API keys.
List all API keys.
[ "List", "all", "API", "keys", "." ]
def find_all(query: Query = None, page: int = 1, page_size: int = 1000) -> List['ApiKey']: """ List all API keys. """ return [ApiKey.from_db(key) for key in db.get_keys(query, page, page_size)]
[ "def", "find_all", "(", "query", ":", "Query", "=", "None", ",", "page", ":", "int", "=", "1", ",", "page_size", ":", "int", "=", "1000", ")", "->", "List", "[", "'ApiKey'", "]", ":", "return", "[", "ApiKey", ".", "from_db", "(", "key", ")", "for", "key", "in", "db", ".", "get_keys", "(", "query", ",", "page", ",", "page_size", ")", "]" ]
https://github.com/alerta/alerta/blob/eca06235a4402c39e3a446f0066557d3c8dc5afd/alerta/models/key.py#L133-L137
lxtGH/OctaveConv_pytorch
079f7da29d55c2eeed8985d33f0b2f765d7a469e
libs/nn/resnet_srm.py
python
srm_resnet34
(pretrained=False, **kwargs)
return model
Constructs a ResNet-34 model. Args: pretrained (bool): If True, returns a model pre-trained on ImageNet
Constructs a ResNet-34 model.
[ "Constructs", "a", "ResNet", "-", "34", "model", "." ]
def srm_resnet34(pretrained=False, **kwargs): """Constructs a ResNet-34 model. Args: pretrained (bool): If True, returns a model pre-trained on ImageNet """ model = ResNet(BasicBlock, [3, 4, 6, 3], **kwargs) # if pretrained: # model.load_state_dict(model_zoo.load_url(model_urls['resnet34'])) return model
[ "def", "srm_resnet34", "(", "pretrained", "=", "False", ",", "*", "*", "kwargs", ")", ":", "model", "=", "ResNet", "(", "BasicBlock", ",", "[", "3", ",", "4", ",", "6", ",", "3", "]", ",", "*", "*", "kwargs", ")", "# if pretrained:", "# model.load_state_dict(model_zoo.load_url(model_urls['resnet34']))", "return", "model" ]
https://github.com/lxtGH/OctaveConv_pytorch/blob/079f7da29d55c2eeed8985d33f0b2f765d7a469e/libs/nn/resnet_srm.py#L238-L247
convexengineering/gpkit
3d4dd34ba4e95f1fe58fe9ea45401a6ff2fde1fa
gpkit/small_classes.py
python
_append_dict
(d_in, d_out)
return d_out
Recursively travels dict d_out and appends items found in d_in.
Recursively travels dict d_out and appends items found in d_in.
[ "Recursively", "travels", "dict", "d_out", "and", "appends", "items", "found", "in", "d_in", "." ]
def _append_dict(d_in, d_out): "Recursively travels dict d_out and appends items found in d_in." for k, v in d_in.items(): if isinstance(v, dict): d_out[k] = _append_dict(v, d_out[k]) else: try: d_out[k].append(v) except KeyError as e: raise RuntimeWarning("Key `%s` was added after the first sweep." % k) from e return d_out
[ "def", "_append_dict", "(", "d_in", ",", "d_out", ")", ":", "for", "k", ",", "v", "in", "d_in", ".", "items", "(", ")", ":", "if", "isinstance", "(", "v", ",", "dict", ")", ":", "d_out", "[", "k", "]", "=", "_append_dict", "(", "v", ",", "d_out", "[", "k", "]", ")", "else", ":", "try", ":", "d_out", "[", "k", "]", ".", "append", "(", "v", ")", "except", "KeyError", "as", "e", ":", "raise", "RuntimeWarning", "(", "\"Key `%s` was added after the first sweep.\"", "%", "k", ")", "from", "e", "return", "d_out" ]
https://github.com/convexengineering/gpkit/blob/3d4dd34ba4e95f1fe58fe9ea45401a6ff2fde1fa/gpkit/small_classes.py#L122-L133
sethmlarson/virtualbox-python
984a6e2cb0e8996f4df40f4444c1528849f1c70d
virtualbox/library.py
python
ISystemProperties.get_storage_controller_hotplug_capable
(self, controller_type)
return hotplug_capable
Returns whether the given storage controller supports hot-plugging devices. in controller_type of type :class:`StorageControllerType` The storage controller to check the setting for. return hotplug_capable of type bool Returned flag indicating whether the controller is hotplug capable
Returns whether the given storage controller supports hot-plugging devices.
[ "Returns", "whether", "the", "given", "storage", "controller", "supports", "hot", "-", "plugging", "devices", "." ]
def get_storage_controller_hotplug_capable(self, controller_type): """Returns whether the given storage controller supports hot-plugging devices. in controller_type of type :class:`StorageControllerType` The storage controller to check the setting for. return hotplug_capable of type bool Returned flag indicating whether the controller is hotplug capable """ if not isinstance(controller_type, StorageControllerType): raise TypeError( "controller_type can only be an instance of type StorageControllerType" ) hotplug_capable = self._call( "getStorageControllerHotplugCapable", in_p=[controller_type] ) return hotplug_capable
[ "def", "get_storage_controller_hotplug_capable", "(", "self", ",", "controller_type", ")", ":", "if", "not", "isinstance", "(", "controller_type", ",", "StorageControllerType", ")", ":", "raise", "TypeError", "(", "\"controller_type can only be an instance of type StorageControllerType\"", ")", "hotplug_capable", "=", "self", ".", "_call", "(", "\"getStorageControllerHotplugCapable\"", ",", "in_p", "=", "[", "controller_type", "]", ")", "return", "hotplug_capable" ]
https://github.com/sethmlarson/virtualbox-python/blob/984a6e2cb0e8996f4df40f4444c1528849f1c70d/virtualbox/library.py#L21150-L21168
meduza-corp/interstellar
40a801ccd7856491726f5a126621d9318cabe2e1
gsutil/gslib/commands/rsync.py
python
_FieldedListingIterator
(cls, gsutil_api, base_url_str, desc)
Iterator over base_url_str formatting output per _BuildTmpOutputLine. Args: cls: Command instance. gsutil_api: gsutil Cloud API instance to use for bucket listing. base_url_str: The top-level URL string over which to iterate. desc: 'source' or 'destination'. Yields: Output line formatted per _BuildTmpOutputLine.
Iterator over base_url_str formatting output per _BuildTmpOutputLine.
[ "Iterator", "over", "base_url_str", "formatting", "output", "per", "_BuildTmpOutputLine", "." ]
def _FieldedListingIterator(cls, gsutil_api, base_url_str, desc): """Iterator over base_url_str formatting output per _BuildTmpOutputLine. Args: cls: Command instance. gsutil_api: gsutil Cloud API instance to use for bucket listing. base_url_str: The top-level URL string over which to iterate. desc: 'source' or 'destination'. Yields: Output line formatted per _BuildTmpOutputLine. """ if cls.recursion_requested: wildcard = '%s/**' % base_url_str.rstrip('/\\') else: wildcard = '%s/*' % base_url_str.rstrip('/\\') i = 0 for blr in CreateWildcardIterator( wildcard, gsutil_api, debug=cls.debug, project_id=cls.project_id).IterObjects( # Request just the needed fields, to reduce bandwidth usage. bucket_listing_fields=['crc32c', 'md5Hash', 'name', 'size']): # Various GUI tools (like the GCS web console) create placeholder objects # ending with '/' when the user creates an empty directory. Normally these # tools should delete those placeholders once objects have been written # "under" the directory, but sometimes the placeholders are left around. # We need to filter them out here, otherwise if the user tries to rsync # from GCS to a local directory it will result in a directory/file # conflict (e.g., trying to download an object called "mydata/" where the # local directory "mydata" exists). url = blr.storage_url if IsCloudSubdirPlaceholder(url, blr=blr): cls.logger.info('Skipping cloud sub-directory placeholder object (%s) ' 'because such objects aren\'t needed in (and would ' 'interfere with) directories in the local file system', url) continue if (cls.exclude_symlinks and url.IsFileUrl() and os.path.islink(url.object_name)): continue if cls.exclude_pattern: str_to_check = url.url_string[len(base_url_str):] if str_to_check.startswith(url.delim): str_to_check = str_to_check[1:] if cls.exclude_pattern.match(str_to_check): continue i += 1 if i % _PROGRESS_REPORT_LISTING_COUNT == 0: cls.logger.info('At %s listing %d...', desc, i) yield _BuildTmpOutputLine(blr)
[ "def", "_FieldedListingIterator", "(", "cls", ",", "gsutil_api", ",", "base_url_str", ",", "desc", ")", ":", "if", "cls", ".", "recursion_requested", ":", "wildcard", "=", "'%s/**'", "%", "base_url_str", ".", "rstrip", "(", "'/\\\\'", ")", "else", ":", "wildcard", "=", "'%s/*'", "%", "base_url_str", ".", "rstrip", "(", "'/\\\\'", ")", "i", "=", "0", "for", "blr", "in", "CreateWildcardIterator", "(", "wildcard", ",", "gsutil_api", ",", "debug", "=", "cls", ".", "debug", ",", "project_id", "=", "cls", ".", "project_id", ")", ".", "IterObjects", "(", "# Request just the needed fields, to reduce bandwidth usage.", "bucket_listing_fields", "=", "[", "'crc32c'", ",", "'md5Hash'", ",", "'name'", ",", "'size'", "]", ")", ":", "# Various GUI tools (like the GCS web console) create placeholder objects", "# ending with '/' when the user creates an empty directory. Normally these", "# tools should delete those placeholders once objects have been written", "# \"under\" the directory, but sometimes the placeholders are left around.", "# We need to filter them out here, otherwise if the user tries to rsync", "# from GCS to a local directory it will result in a directory/file", "# conflict (e.g., trying to download an object called \"mydata/\" where the", "# local directory \"mydata\" exists).", "url", "=", "blr", ".", "storage_url", "if", "IsCloudSubdirPlaceholder", "(", "url", ",", "blr", "=", "blr", ")", ":", "cls", ".", "logger", ".", "info", "(", "'Skipping cloud sub-directory placeholder object (%s) '", "'because such objects aren\\'t needed in (and would '", "'interfere with) directories in the local file system'", ",", "url", ")", "continue", "if", "(", "cls", ".", "exclude_symlinks", "and", "url", ".", "IsFileUrl", "(", ")", "and", "os", ".", "path", ".", "islink", "(", "url", ".", "object_name", ")", ")", ":", "continue", "if", "cls", ".", "exclude_pattern", ":", "str_to_check", "=", "url", ".", "url_string", "[", "len", "(", "base_url_str", ")", ":", "]", "if", "str_to_check", ".", "startswith", "(", "url", ".", "delim", ")", ":", "str_to_check", "=", "str_to_check", "[", "1", ":", "]", "if", "cls", ".", "exclude_pattern", ".", "match", "(", "str_to_check", ")", ":", "continue", "i", "+=", "1", "if", "i", "%", "_PROGRESS_REPORT_LISTING_COUNT", "==", "0", ":", "cls", ".", "logger", ".", "info", "(", "'At %s listing %d...'", ",", "desc", ",", "i", ")", "yield", "_BuildTmpOutputLine", "(", "blr", ")" ]
https://github.com/meduza-corp/interstellar/blob/40a801ccd7856491726f5a126621d9318cabe2e1/gsutil/gslib/commands/rsync.py#L426-L475
spack/spack
675210bd8bd1c5d32ad1cc83d898fb43b569ed74
lib/spack/spack/package.py
python
PackageBase.apply_macos_rpath_fixups
(self)
On Darwin, make installed libraries more easily relocatable. Some build systems (handrolled, autotools, makefiles) can set their own rpaths that are duplicated by spack's compiler wrapper. This fixup interrogates, and postprocesses if necessary, all libraries installed by the code. It should be added as a @run_after to packaging systems (or individual packages) that do not install relocatable libraries by default.
On Darwin, make installed libraries more easily relocatable.
[ "On", "Darwin", "make", "installed", "libraries", "more", "easily", "relocatable", "." ]
def apply_macos_rpath_fixups(self): """On Darwin, make installed libraries more easily relocatable. Some build systems (handrolled, autotools, makefiles) can set their own rpaths that are duplicated by spack's compiler wrapper. This fixup interrogates, and postprocesses if necessary, all libraries installed by the code. It should be added as a @run_after to packaging systems (or individual packages) that do not install relocatable libraries by default. """ if 'platform=darwin' not in self.spec: return from spack.relocate import fixup_macos_rpaths fixup_macos_rpaths(self.spec)
[ "def", "apply_macos_rpath_fixups", "(", "self", ")", ":", "if", "'platform=darwin'", "not", "in", "self", ".", "spec", ":", "return", "from", "spack", ".", "relocate", "import", "fixup_macos_rpaths", "fixup_macos_rpaths", "(", "self", ".", "spec", ")" ]
https://github.com/spack/spack/blob/675210bd8bd1c5d32ad1cc83d898fb43b569ed74/lib/spack/spack/package.py#L1972-L1987
linhaow/TextClassify
aa479ae0941c008602631c50124d8c07d159bfb1
hubconfs/transformer_xl_hubconf.py
python
transformerXLTokenizer
(*args, **kwargs)
return tokenizer
Instantiate a Transformer-XL tokenizer adapted from Vocab class in https://github.com/kimiyoung/transformer-xl Args: pretrained_model_name_or_path: Path to pretrained model archive or one of pre-trained vocab configs below. * transfo-xl-wt103 Example: import torch tokenizer = torch.hub.load('huggingface/pytorch-transformers', 'transformerXLTokenizer', 'transfo-xl-wt103') text = "Who was Jim Henson ?" tokenized_text = tokenizer.tokenize(tokenized_text) indexed_tokens = tokenizer.convert_tokens_to_ids(tokenized_text)
Instantiate a Transformer-XL tokenizer adapted from Vocab class in https://github.com/kimiyoung/transformer-xl
[ "Instantiate", "a", "Transformer", "-", "XL", "tokenizer", "adapted", "from", "Vocab", "class", "in", "https", ":", "//", "github", ".", "com", "/", "kimiyoung", "/", "transformer", "-", "xl" ]
def transformerXLTokenizer(*args, **kwargs): """ Instantiate a Transformer-XL tokenizer adapted from Vocab class in https://github.com/kimiyoung/transformer-xl Args: pretrained_model_name_or_path: Path to pretrained model archive or one of pre-trained vocab configs below. * transfo-xl-wt103 Example: import torch tokenizer = torch.hub.load('huggingface/pytorch-transformers', 'transformerXLTokenizer', 'transfo-xl-wt103') text = "Who was Jim Henson ?" tokenized_text = tokenizer.tokenize(tokenized_text) indexed_tokens = tokenizer.convert_tokens_to_ids(tokenized_text) """ tokenizer = TransfoXLTokenizer.from_pretrained(*args, **kwargs) return tokenizer
[ "def", "transformerXLTokenizer", "(", "*", "args", ",", "*", "*", "kwargs", ")", ":", "tokenizer", "=", "TransfoXLTokenizer", ".", "from_pretrained", "(", "*", "args", ",", "*", "*", "kwargs", ")", "return", "tokenizer" ]
https://github.com/linhaow/TextClassify/blob/aa479ae0941c008602631c50124d8c07d159bfb1/hubconfs/transformer_xl_hubconf.py#L38-L56
robotlearn/pyrobolearn
9cd7c060723fda7d2779fa255ac998c2c82b8436
pyrobolearn/tools/bridges/controllers/robots/bridge_controller_wheeled.py
python
BridgeControllerWheeledRobot.simulator
(self)
return self._robot.simulator
Return the simulator instance.
Return the simulator instance.
[ "Return", "the", "simulator", "instance", "." ]
def simulator(self): """Return the simulator instance.""" return self._robot.simulator
[ "def", "simulator", "(", "self", ")", ":", "return", "self", ".", "_robot", ".", "simulator" ]
https://github.com/robotlearn/pyrobolearn/blob/9cd7c060723fda7d2779fa255ac998c2c82b8436/pyrobolearn/tools/bridges/controllers/robots/bridge_controller_wheeled.py#L96-L98
firedrakeproject/firedrake
06ab4975c14c0d4dcb79be55821f8b9e41554125
firedrake/utility_meshes.py
python
PeriodicUnitIntervalMesh
(ncells, distribution_parameters=None, comm=COMM_WORLD)
return PeriodicIntervalMesh(ncells, length=1.0, distribution_parameters=distribution_parameters, comm=comm)
Generate a periodic mesh of the unit interval :arg ncells: The number of cells in the interval. :kwarg comm: Optional communicator to build the mesh on (defaults to COMM_WORLD).
Generate a periodic mesh of the unit interval
[ "Generate", "a", "periodic", "mesh", "of", "the", "unit", "interval" ]
def PeriodicUnitIntervalMesh(ncells, distribution_parameters=None, comm=COMM_WORLD): """Generate a periodic mesh of the unit interval :arg ncells: The number of cells in the interval. :kwarg comm: Optional communicator to build the mesh on (defaults to COMM_WORLD). """ return PeriodicIntervalMesh(ncells, length=1.0, distribution_parameters=distribution_parameters, comm=comm)
[ "def", "PeriodicUnitIntervalMesh", "(", "ncells", ",", "distribution_parameters", "=", "None", ",", "comm", "=", "COMM_WORLD", ")", ":", "return", "PeriodicIntervalMesh", "(", "ncells", ",", "length", "=", "1.0", ",", "distribution_parameters", "=", "distribution_parameters", ",", "comm", "=", "comm", ")" ]
https://github.com/firedrakeproject/firedrake/blob/06ab4975c14c0d4dcb79be55821f8b9e41554125/firedrake/utility_meshes.py#L152-L159
osmr/imgclsmob
f2993d3ce73a2f7ddba05da3891defb08547d504
pytorch/pytorchcv/models/hrnet.py
python
get_hrnet
(version, model_name=None, pretrained=False, root=os.path.join("~", ".torch", "models"), **kwargs)
return net
Create HRNet model with specific parameters. Parameters: ---------- version : str Version of MobileNetV3 ('s' or 'm'). model_name : str or None, default None Model name for loading pretrained model. pretrained : bool, default False Whether to load the pretrained weights for model. root : str, default '~/.torch/models' Location for keeping the model parameters.
Create HRNet model with specific parameters.
[ "Create", "HRNet", "model", "with", "specific", "parameters", "." ]
def get_hrnet(version, model_name=None, pretrained=False, root=os.path.join("~", ".torch", "models"), **kwargs): """ Create HRNet model with specific parameters. Parameters: ---------- version : str Version of MobileNetV3 ('s' or 'm'). model_name : str or None, default None Model name for loading pretrained model. pretrained : bool, default False Whether to load the pretrained weights for model. root : str, default '~/.torch/models' Location for keeping the model parameters. """ if version == "w18s1": init_block_channels = 128 init_num_subblocks = 1 channels = [[16, 32], [16, 32, 64], [16, 32, 64, 128]] num_modules = [1, 1, 1] elif version == "w18s2": init_block_channels = 256 init_num_subblocks = 2 channels = [[18, 36], [18, 36, 72], [18, 36, 72, 144]] num_modules = [1, 3, 2] elif version == "w18": init_block_channels = 256 init_num_subblocks = 4 channels = [[18, 36], [18, 36, 72], [18, 36, 72, 144]] num_modules = [1, 4, 3] elif version == "w30": init_block_channels = 256 init_num_subblocks = 4 channels = [[30, 60], [30, 60, 120], [30, 60, 120, 240]] num_modules = [1, 4, 3] elif version == "w32": init_block_channels = 256 init_num_subblocks = 4 channels = [[32, 64], [32, 64, 128], [32, 64, 128, 256]] num_modules = [1, 4, 3] elif version == "w40": init_block_channels = 256 init_num_subblocks = 4 channels = [[40, 80], [40, 80, 160], [40, 80, 160, 320]] num_modules = [1, 4, 3] elif version == "w44": init_block_channels = 256 init_num_subblocks = 4 channels = [[44, 88], [44, 88, 176], [44, 88, 176, 352]] num_modules = [1, 4, 3] elif version == "w48": init_block_channels = 256 init_num_subblocks = 4 channels = [[48, 96], [48, 96, 192], [48, 96, 192, 384]] num_modules = [1, 4, 3] elif version == "w64": init_block_channels = 256 init_num_subblocks = 4 channels = [[64, 128], [64, 128, 256], [64, 128, 256, 512]] num_modules = [1, 4, 3] else: raise ValueError("Unsupported HRNet version {}".format(version)) num_subblocks = [[max(2, init_num_subblocks)] * len(ci) for ci in channels] net = HRNet( channels=channels, init_block_channels=init_block_channels, init_num_subblocks=init_num_subblocks, num_modules=num_modules, num_subblocks=num_subblocks, **kwargs) if pretrained: if (model_name is None) or (not model_name): raise ValueError("Parameter `model_name` should be properly initialized for loading pretrained model.") from .model_store import download_model download_model( net=net, model_name=model_name, local_model_store_dir_path=root) return net
[ "def", "get_hrnet", "(", "version", ",", "model_name", "=", "None", ",", "pretrained", "=", "False", ",", "root", "=", "os", ".", "path", ".", "join", "(", "\"~\"", ",", "\".torch\"", ",", "\"models\"", ")", ",", "*", "*", "kwargs", ")", ":", "if", "version", "==", "\"w18s1\"", ":", "init_block_channels", "=", "128", "init_num_subblocks", "=", "1", "channels", "=", "[", "[", "16", ",", "32", "]", ",", "[", "16", ",", "32", ",", "64", "]", ",", "[", "16", ",", "32", ",", "64", ",", "128", "]", "]", "num_modules", "=", "[", "1", ",", "1", ",", "1", "]", "elif", "version", "==", "\"w18s2\"", ":", "init_block_channels", "=", "256", "init_num_subblocks", "=", "2", "channels", "=", "[", "[", "18", ",", "36", "]", ",", "[", "18", ",", "36", ",", "72", "]", ",", "[", "18", ",", "36", ",", "72", ",", "144", "]", "]", "num_modules", "=", "[", "1", ",", "3", ",", "2", "]", "elif", "version", "==", "\"w18\"", ":", "init_block_channels", "=", "256", "init_num_subblocks", "=", "4", "channels", "=", "[", "[", "18", ",", "36", "]", ",", "[", "18", ",", "36", ",", "72", "]", ",", "[", "18", ",", "36", ",", "72", ",", "144", "]", "]", "num_modules", "=", "[", "1", ",", "4", ",", "3", "]", "elif", "version", "==", "\"w30\"", ":", "init_block_channels", "=", "256", "init_num_subblocks", "=", "4", "channels", "=", "[", "[", "30", ",", "60", "]", ",", "[", "30", ",", "60", ",", "120", "]", ",", "[", "30", ",", "60", ",", "120", ",", "240", "]", "]", "num_modules", "=", "[", "1", ",", "4", ",", "3", "]", "elif", "version", "==", "\"w32\"", ":", "init_block_channels", "=", "256", "init_num_subblocks", "=", "4", "channels", "=", "[", "[", "32", ",", "64", "]", ",", "[", "32", ",", "64", ",", "128", "]", ",", "[", "32", ",", "64", ",", "128", ",", "256", "]", "]", "num_modules", "=", "[", "1", ",", "4", ",", "3", "]", "elif", "version", "==", "\"w40\"", ":", "init_block_channels", "=", "256", "init_num_subblocks", "=", "4", "channels", "=", "[", "[", "40", ",", "80", "]", ",", "[", "40", ",", "80", ",", "160", "]", ",", "[", "40", ",", "80", ",", "160", ",", "320", "]", "]", "num_modules", "=", "[", "1", ",", "4", ",", "3", "]", "elif", "version", "==", "\"w44\"", ":", "init_block_channels", "=", "256", "init_num_subblocks", "=", "4", "channels", "=", "[", "[", "44", ",", "88", "]", ",", "[", "44", ",", "88", ",", "176", "]", ",", "[", "44", ",", "88", ",", "176", ",", "352", "]", "]", "num_modules", "=", "[", "1", ",", "4", ",", "3", "]", "elif", "version", "==", "\"w48\"", ":", "init_block_channels", "=", "256", "init_num_subblocks", "=", "4", "channels", "=", "[", "[", "48", ",", "96", "]", ",", "[", "48", ",", "96", ",", "192", "]", ",", "[", "48", ",", "96", ",", "192", ",", "384", "]", "]", "num_modules", "=", "[", "1", ",", "4", ",", "3", "]", "elif", "version", "==", "\"w64\"", ":", "init_block_channels", "=", "256", "init_num_subblocks", "=", "4", "channels", "=", "[", "[", "64", ",", "128", "]", ",", "[", "64", ",", "128", ",", "256", "]", ",", "[", "64", ",", "128", ",", "256", ",", "512", "]", "]", "num_modules", "=", "[", "1", ",", "4", ",", "3", "]", "else", ":", "raise", "ValueError", "(", "\"Unsupported HRNet version {}\"", ".", "format", "(", "version", ")", ")", "num_subblocks", "=", "[", "[", "max", "(", "2", ",", "init_num_subblocks", ")", "]", "*", "len", "(", "ci", ")", "for", "ci", "in", "channels", "]", "net", "=", "HRNet", "(", "channels", "=", "channels", ",", "init_block_channels", "=", "init_block_channels", ",", "init_num_subblocks", "=", "init_num_subblocks", ",", "num_modules", "=", "num_modules", ",", "num_subblocks", "=", "num_subblocks", ",", "*", "*", "kwargs", ")", "if", "pretrained", ":", "if", "(", "model_name", "is", "None", ")", "or", "(", "not", "model_name", ")", ":", "raise", "ValueError", "(", "\"Parameter `model_name` should be properly initialized for loading pretrained model.\"", ")", "from", ".", "model_store", "import", "download_model", "download_model", "(", "net", "=", "net", ",", "model_name", "=", "model_name", ",", "local_model_store_dir_path", "=", "root", ")", "return", "net" ]
https://github.com/osmr/imgclsmob/blob/f2993d3ce73a2f7ddba05da3891defb08547d504/pytorch/pytorchcv/models/hrnet.py#L381-L467
xmengli/H-DenseUNet
06cc436a43196310fe933d114a353839907cc176
Keras-2.0.8/keras/engine/topology.py
python
Layer._node_key
(layer, node_index)
return layer.name + '_ib-' + str(node_index)
Converts a layer and its index to a unique (immutable type) name. This function is used internally with `self.container_nodes`. # Arguments layer: The layer. node_index: The layer's position (e.g. via enumerate) in a list of nodes. # Returns The unique name.
Converts a layer and its index to a unique (immutable type) name. This function is used internally with `self.container_nodes`.
[ "Converts", "a", "layer", "and", "its", "index", "to", "a", "unique", "(", "immutable", "type", ")", "name", ".", "This", "function", "is", "used", "internally", "with", "self", ".", "container_nodes", "." ]
def _node_key(layer, node_index): """Converts a layer and its index to a unique (immutable type) name. This function is used internally with `self.container_nodes`. # Arguments layer: The layer. node_index: The layer's position (e.g. via enumerate) in a list of nodes. # Returns The unique name. """ return layer.name + '_ib-' + str(node_index)
[ "def", "_node_key", "(", "layer", ",", "node_index", ")", ":", "return", "layer", ".", "name", "+", "'_ib-'", "+", "str", "(", "node_index", ")" ]
https://github.com/xmengli/H-DenseUNet/blob/06cc436a43196310fe933d114a353839907cc176/Keras-2.0.8/keras/engine/topology.py#L314-L326
pythonanywhere/dirigible-spreadsheet
c771e9a391708f3b219248bf9974e05b1582fdd0
dirigible/sheet/parser/grammar.py
python
p_if_function
(p)
if_function : IF LEFTPAREN argument COMMA argument COMMA argument RIGHTPAREN | IF LEFTPAREN argument COMMA argument COMMA RIGHTPAREN | IF LEFTPAREN argument COMMA argument RIGHTPAREN
if_function : IF LEFTPAREN argument COMMA argument COMMA argument RIGHTPAREN | IF LEFTPAREN argument COMMA argument COMMA RIGHTPAREN | IF LEFTPAREN argument COMMA argument RIGHTPAREN
[ "if_function", ":", "IF", "LEFTPAREN", "argument", "COMMA", "argument", "COMMA", "argument", "RIGHTPAREN", "|", "IF", "LEFTPAREN", "argument", "COMMA", "argument", "COMMA", "RIGHTPAREN", "|", "IF", "LEFTPAREN", "argument", "COMMA", "argument", "RIGHTPAREN" ]
def p_if_function(p): """if_function : IF LEFTPAREN argument COMMA argument COMMA argument RIGHTPAREN | IF LEFTPAREN argument COMMA argument COMMA RIGHTPAREN | IF LEFTPAREN argument COMMA argument RIGHTPAREN""" FixFunction(p)
[ "def", "p_if_function", "(", "p", ")", ":", "FixFunction", "(", "p", ")" ]
https://github.com/pythonanywhere/dirigible-spreadsheet/blob/c771e9a391708f3b219248bf9974e05b1582fdd0/dirigible/sheet/parser/grammar.py#L774-L778
paulwinex/pw_MultiScriptEditor
e447e99f87cb07e238baf693b7e124e50efdbc51
multi_script_editor/jedi/evaluate/representation.py
python
Function._decorated_func
(self)
return f
Returns the function, that is to be executed in the end. This is also the places where the decorators are processed.
Returns the function, that is to be executed in the end. This is also the places where the decorators are processed.
[ "Returns", "the", "function", "that", "is", "to", "be", "executed", "in", "the", "end", ".", "This", "is", "also", "the", "places", "where", "the", "decorators", "are", "processed", "." ]
def _decorated_func(self): """ Returns the function, that is to be executed in the end. This is also the places where the decorators are processed. """ f = self.base_func # Only enter it, if has not already been processed. if not self.is_decorated: for dec in reversed(self.base_func.decorators): debug.dbg('decorator: %s %s', dec, f) dec_results = self._evaluator.eval_statement(dec) if not len(dec_results): debug.warning('decorator not found: %s on %s', dec, self.base_func) return None decorator = dec_results.pop() if dec_results: debug.warning('multiple decorators found %s %s', self.base_func, dec_results) # Create param array. old_func = Function(self._evaluator, f, is_decorated=True) wrappers = self._evaluator.execute(decorator, (old_func,)) if not len(wrappers): debug.warning('no wrappers found %s', self.base_func) return None if len(wrappers) > 1: # TODO resolve issue with multiple wrappers -> multiple types debug.warning('multiple wrappers found %s %s', self.base_func, wrappers) f = wrappers[0] debug.dbg('decorator end %s', f) if isinstance(f, pr.Function): f = Function(self._evaluator, f, True) return f
[ "def", "_decorated_func", "(", "self", ")", ":", "f", "=", "self", ".", "base_func", "# Only enter it, if has not already been processed.", "if", "not", "self", ".", "is_decorated", ":", "for", "dec", "in", "reversed", "(", "self", ".", "base_func", ".", "decorators", ")", ":", "debug", ".", "dbg", "(", "'decorator: %s %s'", ",", "dec", ",", "f", ")", "dec_results", "=", "self", ".", "_evaluator", ".", "eval_statement", "(", "dec", ")", "if", "not", "len", "(", "dec_results", ")", ":", "debug", ".", "warning", "(", "'decorator not found: %s on %s'", ",", "dec", ",", "self", ".", "base_func", ")", "return", "None", "decorator", "=", "dec_results", ".", "pop", "(", ")", "if", "dec_results", ":", "debug", ".", "warning", "(", "'multiple decorators found %s %s'", ",", "self", ".", "base_func", ",", "dec_results", ")", "# Create param array.", "old_func", "=", "Function", "(", "self", ".", "_evaluator", ",", "f", ",", "is_decorated", "=", "True", ")", "wrappers", "=", "self", ".", "_evaluator", ".", "execute", "(", "decorator", ",", "(", "old_func", ",", ")", ")", "if", "not", "len", "(", "wrappers", ")", ":", "debug", ".", "warning", "(", "'no wrappers found %s'", ",", "self", ".", "base_func", ")", "return", "None", "if", "len", "(", "wrappers", ")", ">", "1", ":", "# TODO resolve issue with multiple wrappers -> multiple types", "debug", ".", "warning", "(", "'multiple wrappers found %s %s'", ",", "self", ".", "base_func", ",", "wrappers", ")", "f", "=", "wrappers", "[", "0", "]", "debug", ".", "dbg", "(", "'decorator end %s'", ",", "f", ")", "if", "isinstance", "(", "f", ",", "pr", ".", "Function", ")", ":", "f", "=", "Function", "(", "self", ".", "_evaluator", ",", "f", ",", "True", ")", "return", "f" ]
https://github.com/paulwinex/pw_MultiScriptEditor/blob/e447e99f87cb07e238baf693b7e124e50efdbc51/multi_script_editor/jedi/evaluate/representation.py#L340-L376
pgq/skytools-legacy
8b7e6c118572a605d28b7a3403c96aeecfd0d272
python/londiste/playback.py
python
Replicator.sync_from_main_thread
(self, cnt, src_db, dst_db)
return ret
Main thread sync logic.
Main thread sync logic.
[ "Main", "thread", "sync", "logic", "." ]
def sync_from_main_thread(self, cnt, src_db, dst_db): "Main thread sync logic." # This operates on all table, any amount can be in any state ret = SYNC_OK if cnt.do_sync: # wait for copy thread to catch up ret = SYNC_LOOP # we need to do wanna-sync->do_sync with small batches need_dsync = False dsync_ok = True if self.pgq_min_interval or self.pgq_min_count: dsync_ok = False elif self.dsync_backup and self.dsync_backup[0] >= self.cur_tick: dsync_ok = False # now check if do-sync is needed for t in self.get_tables_in_state(TABLE_WANNA_SYNC): # copy thread wants sync, if not behind, do it if self.cur_tick >= t.sync_tick_id: if dsync_ok: self.change_table_state(dst_db, t, TABLE_DO_SYNC, self.cur_tick) ret = SYNC_LOOP else: need_dsync = True # tune batch size if needed if need_dsync: if self.pgq_min_count or self.pgq_min_interval: bak = (self.cur_tick, self.pgq_min_count, self.pgq_min_interval) self.dsync_backup = bak self.pgq_min_count = None self.pgq_min_interval = None elif self.dsync_backup: self.pgq_min_count = self.dsync_backup[1] self.pgq_min_interval = self.dsync_backup[2] self.dsync_backup = None # now handle new copies npossible = self.parallel_copies - cnt.get_copy_count() if cnt.missing and npossible > 0: pmap = self.get_state_map(src_db.cursor()) src_db.commit() for t in self.get_tables_in_state(TABLE_MISSING): if 'copy_node' in t.table_attrs: # should we go and check this node? pass else: # regular provider is used if t.name not in pmap: self.log.warning("Table %s not available on provider", t.name) continue pt = pmap[t.name] if pt.state != TABLE_OK: # or pt.custom_snapshot: # FIXME: does snapsnot matter? self.log.info("Table %s not OK on provider, waiting", t.name) continue # don't allow more copies than configured if npossible == 0: break npossible -= 1 # drop all foreign keys to and from this table self.drop_fkeys(dst_db, t.dest_table) # change state after fkeys are dropped thus allowing # failure inbetween self.change_table_state(dst_db, t, TABLE_IN_COPY) # the copy _may_ happen immediately self.launch_copy(t) # there cannot be interesting events in current batch # but maybe there's several tables, lets do them in one go ret = SYNC_LOOP return ret
[ "def", "sync_from_main_thread", "(", "self", ",", "cnt", ",", "src_db", ",", "dst_db", ")", ":", "# This operates on all table, any amount can be in any state", "ret", "=", "SYNC_OK", "if", "cnt", ".", "do_sync", ":", "# wait for copy thread to catch up", "ret", "=", "SYNC_LOOP", "# we need to do wanna-sync->do_sync with small batches", "need_dsync", "=", "False", "dsync_ok", "=", "True", "if", "self", ".", "pgq_min_interval", "or", "self", ".", "pgq_min_count", ":", "dsync_ok", "=", "False", "elif", "self", ".", "dsync_backup", "and", "self", ".", "dsync_backup", "[", "0", "]", ">=", "self", ".", "cur_tick", ":", "dsync_ok", "=", "False", "# now check if do-sync is needed", "for", "t", "in", "self", ".", "get_tables_in_state", "(", "TABLE_WANNA_SYNC", ")", ":", "# copy thread wants sync, if not behind, do it", "if", "self", ".", "cur_tick", ">=", "t", ".", "sync_tick_id", ":", "if", "dsync_ok", ":", "self", ".", "change_table_state", "(", "dst_db", ",", "t", ",", "TABLE_DO_SYNC", ",", "self", ".", "cur_tick", ")", "ret", "=", "SYNC_LOOP", "else", ":", "need_dsync", "=", "True", "# tune batch size if needed", "if", "need_dsync", ":", "if", "self", ".", "pgq_min_count", "or", "self", ".", "pgq_min_interval", ":", "bak", "=", "(", "self", ".", "cur_tick", ",", "self", ".", "pgq_min_count", ",", "self", ".", "pgq_min_interval", ")", "self", ".", "dsync_backup", "=", "bak", "self", ".", "pgq_min_count", "=", "None", "self", ".", "pgq_min_interval", "=", "None", "elif", "self", ".", "dsync_backup", ":", "self", ".", "pgq_min_count", "=", "self", ".", "dsync_backup", "[", "1", "]", "self", ".", "pgq_min_interval", "=", "self", ".", "dsync_backup", "[", "2", "]", "self", ".", "dsync_backup", "=", "None", "# now handle new copies", "npossible", "=", "self", ".", "parallel_copies", "-", "cnt", ".", "get_copy_count", "(", ")", "if", "cnt", ".", "missing", "and", "npossible", ">", "0", ":", "pmap", "=", "self", ".", "get_state_map", "(", "src_db", ".", "cursor", "(", ")", ")", "src_db", ".", "commit", "(", ")", "for", "t", "in", "self", ".", "get_tables_in_state", "(", "TABLE_MISSING", ")", ":", "if", "'copy_node'", "in", "t", ".", "table_attrs", ":", "# should we go and check this node?", "pass", "else", ":", "# regular provider is used", "if", "t", ".", "name", "not", "in", "pmap", ":", "self", ".", "log", ".", "warning", "(", "\"Table %s not available on provider\"", ",", "t", ".", "name", ")", "continue", "pt", "=", "pmap", "[", "t", ".", "name", "]", "if", "pt", ".", "state", "!=", "TABLE_OK", ":", "# or pt.custom_snapshot: # FIXME: does snapsnot matter?", "self", ".", "log", ".", "info", "(", "\"Table %s not OK on provider, waiting\"", ",", "t", ".", "name", ")", "continue", "# don't allow more copies than configured", "if", "npossible", "==", "0", ":", "break", "npossible", "-=", "1", "# drop all foreign keys to and from this table", "self", ".", "drop_fkeys", "(", "dst_db", ",", "t", ".", "dest_table", ")", "# change state after fkeys are dropped thus allowing", "# failure inbetween", "self", ".", "change_table_state", "(", "dst_db", ",", "t", ",", "TABLE_IN_COPY", ")", "# the copy _may_ happen immediately", "self", ".", "launch_copy", "(", "t", ")", "# there cannot be interesting events in current batch", "# but maybe there's several tables, lets do them in one go", "ret", "=", "SYNC_LOOP", "return", "ret" ]
https://github.com/pgq/skytools-legacy/blob/8b7e6c118572a605d28b7a3403c96aeecfd0d272/python/londiste/playback.py#L455-L534
Gandi/gandi.cli
5de0605126247e986f8288b467a52710a78e1794
gandi/cli/modules/webacc.py
python
Webacc.list
(cls, options=None)
return cls.call('hosting.rproxy.list', options)
List all webaccelerator
List all webaccelerator
[ "List", "all", "webaccelerator" ]
def list(cls, options=None): """ List all webaccelerator """ if not options: options = {} return cls.call('hosting.rproxy.list', options)
[ "def", "list", "(", "cls", ",", "options", "=", "None", ")", ":", "if", "not", "options", ":", "options", "=", "{", "}", "return", "cls", ".", "call", "(", "'hosting.rproxy.list'", ",", "options", ")" ]
https://github.com/Gandi/gandi.cli/blob/5de0605126247e986f8288b467a52710a78e1794/gandi/cli/modules/webacc.py#L23-L27
KalleHallden/AutoTimer
2d954216700c4930baa154e28dbddc34609af7ce
env/lib/python2.7/site-packages/pip/_internal/download.py
python
_copy_file
(filename, location, link)
[]
def _copy_file(filename, location, link): copy = True download_location = os.path.join(location, link.filename) if os.path.exists(download_location): response = ask_path_exists( 'The file %s exists. (i)gnore, (w)ipe, (b)ackup, (a)abort' % display_path(download_location), ('i', 'w', 'b', 'a')) if response == 'i': copy = False elif response == 'w': logger.warning('Deleting %s', display_path(download_location)) os.remove(download_location) elif response == 'b': dest_file = backup_dir(download_location) logger.warning( 'Backing up %s to %s', display_path(download_location), display_path(dest_file), ) shutil.move(download_location, dest_file) elif response == 'a': sys.exit(-1) if copy: shutil.copy(filename, download_location) logger.info('Saved %s', display_path(download_location))
[ "def", "_copy_file", "(", "filename", ",", "location", ",", "link", ")", ":", "copy", "=", "True", "download_location", "=", "os", ".", "path", ".", "join", "(", "location", ",", "link", ".", "filename", ")", "if", "os", ".", "path", ".", "exists", "(", "download_location", ")", ":", "response", "=", "ask_path_exists", "(", "'The file %s exists. (i)gnore, (w)ipe, (b)ackup, (a)abort'", "%", "display_path", "(", "download_location", ")", ",", "(", "'i'", ",", "'w'", ",", "'b'", ",", "'a'", ")", ")", "if", "response", "==", "'i'", ":", "copy", "=", "False", "elif", "response", "==", "'w'", ":", "logger", ".", "warning", "(", "'Deleting %s'", ",", "display_path", "(", "download_location", ")", ")", "os", ".", "remove", "(", "download_location", ")", "elif", "response", "==", "'b'", ":", "dest_file", "=", "backup_dir", "(", "download_location", ")", "logger", ".", "warning", "(", "'Backing up %s to %s'", ",", "display_path", "(", "download_location", ")", ",", "display_path", "(", "dest_file", ")", ",", ")", "shutil", ".", "move", "(", "download_location", ",", "dest_file", ")", "elif", "response", "==", "'a'", ":", "sys", ".", "exit", "(", "-", "1", ")", "if", "copy", ":", "shutil", ".", "copy", "(", "filename", ",", "download_location", ")", "logger", ".", "info", "(", "'Saved %s'", ",", "display_path", "(", "download_location", ")", ")" ]
https://github.com/KalleHallden/AutoTimer/blob/2d954216700c4930baa154e28dbddc34609af7ce/env/lib/python2.7/site-packages/pip/_internal/download.py#L866-L890
googleads/google-ads-python
2a1d6062221f6aad1992a6bcca0e7e4a93d2db86
google/ads/googleads/v7/services/services/recommendation_service/transports/grpc.py
python
RecommendationServiceGrpcTransport.__init__
( self, *, host: str = "googleads.googleapis.com", credentials: credentials.Credentials = None, credentials_file: str = None, scopes: Sequence[str] = None, channel: grpc.Channel = None, api_mtls_endpoint: str = None, client_cert_source: Callable[[], Tuple[bytes, bytes]] = None, ssl_channel_credentials: grpc.ChannelCredentials = None, quota_project_id: Optional[str] = None, client_info: gapic_v1.client_info.ClientInfo = DEFAULT_CLIENT_INFO, )
Instantiate the transport. Args: host (Optional[str]): The hostname to connect to. credentials (Optional[google.auth.credentials.Credentials]): The authorization credentials to attach to requests. These credentials identify the application to the service; if none are specified, the client will attempt to ascertain the credentials from the environment. This argument is ignored if ``channel`` is provided. credentials_file (Optional[str]): A file with credentials that can be loaded with :func:`google.auth.load_credentials_from_file`. This argument is ignored if ``channel`` is provided. scopes (Optional(Sequence[str])): A list of scopes. This argument is ignored if ``channel`` is provided. channel (Optional[grpc.Channel]): A ``Channel`` instance through which to make calls. api_mtls_endpoint (Optional[str]): Deprecated. The mutual TLS endpoint. If provided, it overrides the ``host`` argument and tries to create a mutual TLS channel with client SSL credentials from ``client_cert_source`` or applicatin default SSL credentials. client_cert_source (Optional[Callable[[], Tuple[bytes, bytes]]]): Deprecated. A callback to provide client SSL certificate bytes and private key bytes, both in PEM format. It is ignored if ``api_mtls_endpoint`` is None. ssl_channel_credentials (grpc.ChannelCredentials): SSL credentials for grpc channel. It is ignored if ``channel`` is provided. quota_project_id (Optional[str]): An optional project to use for billing and quota. client_info (google.api_core.gapic_v1.client_info.ClientInfo): The client info used to send a user-agent string along with API requests. If ``None``, then default info will be used. Generally, you only need to set this if you're developing your own client library. Raises: google.auth.exceptions.MutualTLSChannelError: If mutual TLS transport creation failed for any reason.
Instantiate the transport.
[ "Instantiate", "the", "transport", "." ]
def __init__( self, *, host: str = "googleads.googleapis.com", credentials: credentials.Credentials = None, credentials_file: str = None, scopes: Sequence[str] = None, channel: grpc.Channel = None, api_mtls_endpoint: str = None, client_cert_source: Callable[[], Tuple[bytes, bytes]] = None, ssl_channel_credentials: grpc.ChannelCredentials = None, quota_project_id: Optional[str] = None, client_info: gapic_v1.client_info.ClientInfo = DEFAULT_CLIENT_INFO, ) -> None: """Instantiate the transport. Args: host (Optional[str]): The hostname to connect to. credentials (Optional[google.auth.credentials.Credentials]): The authorization credentials to attach to requests. These credentials identify the application to the service; if none are specified, the client will attempt to ascertain the credentials from the environment. This argument is ignored if ``channel`` is provided. credentials_file (Optional[str]): A file with credentials that can be loaded with :func:`google.auth.load_credentials_from_file`. This argument is ignored if ``channel`` is provided. scopes (Optional(Sequence[str])): A list of scopes. This argument is ignored if ``channel`` is provided. channel (Optional[grpc.Channel]): A ``Channel`` instance through which to make calls. api_mtls_endpoint (Optional[str]): Deprecated. The mutual TLS endpoint. If provided, it overrides the ``host`` argument and tries to create a mutual TLS channel with client SSL credentials from ``client_cert_source`` or applicatin default SSL credentials. client_cert_source (Optional[Callable[[], Tuple[bytes, bytes]]]): Deprecated. A callback to provide client SSL certificate bytes and private key bytes, both in PEM format. It is ignored if ``api_mtls_endpoint`` is None. ssl_channel_credentials (grpc.ChannelCredentials): SSL credentials for grpc channel. It is ignored if ``channel`` is provided. quota_project_id (Optional[str]): An optional project to use for billing and quota. client_info (google.api_core.gapic_v1.client_info.ClientInfo): The client info used to send a user-agent string along with API requests. If ``None``, then default info will be used. Generally, you only need to set this if you're developing your own client library. Raises: google.auth.exceptions.MutualTLSChannelError: If mutual TLS transport creation failed for any reason. """ self._ssl_channel_credentials = ssl_channel_credentials if channel: # Sanity check: Ensure that channel and credentials are not both # provided. credentials = False # If a channel was explicitly provided, set it. self._grpc_channel = channel self._ssl_channel_credentials = None elif api_mtls_endpoint: warnings.warn( "api_mtls_endpoint and client_cert_source are deprecated", DeprecationWarning, ) host = ( api_mtls_endpoint if ":" in api_mtls_endpoint else api_mtls_endpoint + ":443" ) if credentials is None: credentials, _ = auth.default( scopes=self.AUTH_SCOPES, quota_project_id=quota_project_id ) # Create SSL credentials with client_cert_source or application # default SSL credentials. if client_cert_source: cert, key = client_cert_source() ssl_credentials = grpc.ssl_channel_credentials( certificate_chain=cert, private_key=key ) else: ssl_credentials = SslCredentials().ssl_credentials # create a new channel. The provided one is ignored. self._grpc_channel = type(self).create_channel( host, credentials=credentials, credentials_file=credentials_file, ssl_credentials=ssl_credentials, scopes=scopes or self.AUTH_SCOPES, quota_project_id=quota_project_id, options=[ ("grpc.max_send_message_length", -1), ("grpc.max_receive_message_length", -1), ], ) self._ssl_channel_credentials = ssl_credentials else: host = host if ":" in host else host + ":443" if credentials is None: credentials, _ = auth.default(scopes=self.AUTH_SCOPES) # create a new channel. The provided one is ignored. self._grpc_channel = type(self).create_channel( host, credentials=credentials, ssl_credentials=ssl_channel_credentials, scopes=self.AUTH_SCOPES, options=[ ("grpc.max_send_message_length", -1), ("grpc.max_receive_message_length", -1), ], ) self._stubs = {} # type: Dict[str, Callable] # Run the base constructor. super().__init__( host=host, credentials=credentials, client_info=client_info, )
[ "def", "__init__", "(", "self", ",", "*", ",", "host", ":", "str", "=", "\"googleads.googleapis.com\"", ",", "credentials", ":", "credentials", ".", "Credentials", "=", "None", ",", "credentials_file", ":", "str", "=", "None", ",", "scopes", ":", "Sequence", "[", "str", "]", "=", "None", ",", "channel", ":", "grpc", ".", "Channel", "=", "None", ",", "api_mtls_endpoint", ":", "str", "=", "None", ",", "client_cert_source", ":", "Callable", "[", "[", "]", ",", "Tuple", "[", "bytes", ",", "bytes", "]", "]", "=", "None", ",", "ssl_channel_credentials", ":", "grpc", ".", "ChannelCredentials", "=", "None", ",", "quota_project_id", ":", "Optional", "[", "str", "]", "=", "None", ",", "client_info", ":", "gapic_v1", ".", "client_info", ".", "ClientInfo", "=", "DEFAULT_CLIENT_INFO", ",", ")", "->", "None", ":", "self", ".", "_ssl_channel_credentials", "=", "ssl_channel_credentials", "if", "channel", ":", "# Sanity check: Ensure that channel and credentials are not both", "# provided.", "credentials", "=", "False", "# If a channel was explicitly provided, set it.", "self", ".", "_grpc_channel", "=", "channel", "self", ".", "_ssl_channel_credentials", "=", "None", "elif", "api_mtls_endpoint", ":", "warnings", ".", "warn", "(", "\"api_mtls_endpoint and client_cert_source are deprecated\"", ",", "DeprecationWarning", ",", ")", "host", "=", "(", "api_mtls_endpoint", "if", "\":\"", "in", "api_mtls_endpoint", "else", "api_mtls_endpoint", "+", "\":443\"", ")", "if", "credentials", "is", "None", ":", "credentials", ",", "_", "=", "auth", ".", "default", "(", "scopes", "=", "self", ".", "AUTH_SCOPES", ",", "quota_project_id", "=", "quota_project_id", ")", "# Create SSL credentials with client_cert_source or application", "# default SSL credentials.", "if", "client_cert_source", ":", "cert", ",", "key", "=", "client_cert_source", "(", ")", "ssl_credentials", "=", "grpc", ".", "ssl_channel_credentials", "(", "certificate_chain", "=", "cert", ",", "private_key", "=", "key", ")", "else", ":", "ssl_credentials", "=", "SslCredentials", "(", ")", ".", "ssl_credentials", "# create a new channel. The provided one is ignored.", "self", ".", "_grpc_channel", "=", "type", "(", "self", ")", ".", "create_channel", "(", "host", ",", "credentials", "=", "credentials", ",", "credentials_file", "=", "credentials_file", ",", "ssl_credentials", "=", "ssl_credentials", ",", "scopes", "=", "scopes", "or", "self", ".", "AUTH_SCOPES", ",", "quota_project_id", "=", "quota_project_id", ",", "options", "=", "[", "(", "\"grpc.max_send_message_length\"", ",", "-", "1", ")", ",", "(", "\"grpc.max_receive_message_length\"", ",", "-", "1", ")", ",", "]", ",", ")", "self", ".", "_ssl_channel_credentials", "=", "ssl_credentials", "else", ":", "host", "=", "host", "if", "\":\"", "in", "host", "else", "host", "+", "\":443\"", "if", "credentials", "is", "None", ":", "credentials", ",", "_", "=", "auth", ".", "default", "(", "scopes", "=", "self", ".", "AUTH_SCOPES", ")", "# create a new channel. The provided one is ignored.", "self", ".", "_grpc_channel", "=", "type", "(", "self", ")", ".", "create_channel", "(", "host", ",", "credentials", "=", "credentials", ",", "ssl_credentials", "=", "ssl_channel_credentials", ",", "scopes", "=", "self", ".", "AUTH_SCOPES", ",", "options", "=", "[", "(", "\"grpc.max_send_message_length\"", ",", "-", "1", ")", ",", "(", "\"grpc.max_receive_message_length\"", ",", "-", "1", ")", ",", "]", ",", ")", "self", ".", "_stubs", "=", "{", "}", "# type: Dict[str, Callable]", "# Run the base constructor.", "super", "(", ")", ".", "__init__", "(", "host", "=", "host", ",", "credentials", "=", "credentials", ",", "client_info", "=", "client_info", ",", ")" ]
https://github.com/googleads/google-ads-python/blob/2a1d6062221f6aad1992a6bcca0e7e4a93d2db86/google/ads/googleads/v7/services/services/recommendation_service/transports/grpc.py#L45-L173