nwo
stringlengths
5
106
sha
stringlengths
40
40
path
stringlengths
4
174
language
stringclasses
1 value
identifier
stringlengths
1
140
parameters
stringlengths
0
87.7k
argument_list
stringclasses
1 value
return_statement
stringlengths
0
426k
docstring
stringlengths
0
64.3k
docstring_summary
stringlengths
0
26.3k
docstring_tokens
list
function
stringlengths
18
4.83M
function_tokens
list
url
stringlengths
83
304
linkchecker/linkchecker
d1078ed8480e5cfc4264d0dbf026b45b45aede4d
linkcheck/lc_cgi.py
python
log
(env, msg)
Log message to WSGI error output.
Log message to WSGI error output.
[ "Log", "message", "to", "WSGI", "error", "output", "." ]
def log(env, msg): """Log message to WSGI error output.""" logfile = env['wsgi.errors'] logfile.write("%s\n" % msg)
[ "def", "log", "(", "env", ",", "msg", ")", ":", "logfile", "=", "env", "[", "'wsgi.errors'", "]", "logfile", ".", "write", "(", "\"%s\\n\"", "%", "msg", ")" ]
https://github.com/linkchecker/linkchecker/blob/d1078ed8480e5cfc4264d0dbf026b45b45aede4d/linkcheck/lc_cgi.py#L241-L244
tanghaibao/jcvi
5e720870c0928996f8b77a38208106ff0447ccb6
jcvi/variation/str.py
python
data
(args)
%prog data data.bin samples.ids STR.ids meta.tsv Make data.tsv based on meta.tsv.
%prog data data.bin samples.ids STR.ids meta.tsv
[ "%prog", "data", "data", ".", "bin", "samples", ".", "ids", "STR", ".", "ids", "meta", ".", "tsv" ]
def data(args): """ %prog data data.bin samples.ids STR.ids meta.tsv Make data.tsv based on meta.tsv. """ p = OptionParser(data.__doc__) p.add_option( "--notsv", default=False, action="store_true", help="Do not write data.tsv" ) opts, args = p.parse_args(args) if len(args) != 4: sys.exit(not p.print_help()) databin, sampleids, strids, metafile = args final_columns, percentiles = read_meta(metafile) df, m, samples, loci = read_binfile(databin, sampleids, strids) # Clean the data m %= 1000 # Get the larger of the two alleles m[m == 999] = -1 # Missing data final = set(final_columns) remove = [] for i, locus in enumerate(loci): if locus not in final: remove.append(locus) continue pf = "STRs_{}_SEARCH".format(timestamp()) filteredstrids = "{}.STR.ids".format(pf) fw = open(filteredstrids, "w") print("\n".join(final_columns), file=fw) fw.close() logging.debug( "Dropped {} columns; Retained {} columns (`{}`)".format( len(remove), len(final_columns), filteredstrids ) ) # Remove low-quality columns! df.drop(remove, inplace=True, axis=1) df.columns = final_columns filtered_bin = "{}.data.bin".format(pf) if need_update(databin, filtered_bin): m = df.as_matrix() m.tofile(filtered_bin) logging.debug("Filtered binary matrix written to `{}`".format(filtered_bin)) # Write data output filtered_tsv = "{}.data.tsv".format(pf) if not opts.notsv and need_update(databin, filtered_tsv): df.to_csv(filtered_tsv, sep="\t", index_label="SampleKey")
[ "def", "data", "(", "args", ")", ":", "p", "=", "OptionParser", "(", "data", ".", "__doc__", ")", "p", ".", "add_option", "(", "\"--notsv\"", ",", "default", "=", "False", ",", "action", "=", "\"store_true\"", ",", "help", "=", "\"Do not write data.tsv\"", ")", "opts", ",", "args", "=", "p", ".", "parse_args", "(", "args", ")", "if", "len", "(", "args", ")", "!=", "4", ":", "sys", ".", "exit", "(", "not", "p", ".", "print_help", "(", ")", ")", "databin", ",", "sampleids", ",", "strids", ",", "metafile", "=", "args", "final_columns", ",", "percentiles", "=", "read_meta", "(", "metafile", ")", "df", ",", "m", ",", "samples", ",", "loci", "=", "read_binfile", "(", "databin", ",", "sampleids", ",", "strids", ")", "# Clean the data", "m", "%=", "1000", "# Get the larger of the two alleles", "m", "[", "m", "==", "999", "]", "=", "-", "1", "# Missing data", "final", "=", "set", "(", "final_columns", ")", "remove", "=", "[", "]", "for", "i", ",", "locus", "in", "enumerate", "(", "loci", ")", ":", "if", "locus", "not", "in", "final", ":", "remove", ".", "append", "(", "locus", ")", "continue", "pf", "=", "\"STRs_{}_SEARCH\"", ".", "format", "(", "timestamp", "(", ")", ")", "filteredstrids", "=", "\"{}.STR.ids\"", ".", "format", "(", "pf", ")", "fw", "=", "open", "(", "filteredstrids", ",", "\"w\"", ")", "print", "(", "\"\\n\"", ".", "join", "(", "final_columns", ")", ",", "file", "=", "fw", ")", "fw", ".", "close", "(", ")", "logging", ".", "debug", "(", "\"Dropped {} columns; Retained {} columns (`{}`)\"", ".", "format", "(", "len", "(", "remove", ")", ",", "len", "(", "final_columns", ")", ",", "filteredstrids", ")", ")", "# Remove low-quality columns!", "df", ".", "drop", "(", "remove", ",", "inplace", "=", "True", ",", "axis", "=", "1", ")", "df", ".", "columns", "=", "final_columns", "filtered_bin", "=", "\"{}.data.bin\"", ".", "format", "(", "pf", ")", "if", "need_update", "(", "databin", ",", "filtered_bin", ")", ":", "m", "=", "df", ".", "as_matrix", "(", ")", "m", ".", "tofile", "(", "filtered_bin", ")", "logging", ".", "debug", "(", "\"Filtered binary matrix written to `{}`\"", ".", "format", "(", "filtered_bin", ")", ")", "# Write data output", "filtered_tsv", "=", "\"{}.data.tsv\"", ".", "format", "(", "pf", ")", "if", "not", "opts", ".", "notsv", "and", "need_update", "(", "databin", ",", "filtered_tsv", ")", ":", "df", ".", "to_csv", "(", "filtered_tsv", ",", "sep", "=", "\"\\t\"", ",", "index_label", "=", "\"SampleKey\"", ")" ]
https://github.com/tanghaibao/jcvi/blob/5e720870c0928996f8b77a38208106ff0447ccb6/jcvi/variation/str.py#L788-L842
leancloud/satori
701caccbd4fe45765001ca60435c0cb499477c03
satori-rules/plugin/libs/redis/client.py
python
BasePipeline._execute_transaction
(self, connection, commands, raise_on_error)
return data
[]
def _execute_transaction(self, connection, commands, raise_on_error): cmds = chain([(('MULTI', ), {})], commands, [(('EXEC', ), {})]) all_cmds = connection.pack_commands([args for args, _ in cmds]) connection.send_packed_command(all_cmds) errors = [] # parse off the response for MULTI # NOTE: we need to handle ResponseErrors here and continue # so that we read all the additional command messages from # the socket try: self.parse_response(connection, '_') except ResponseError: errors.append((0, sys.exc_info()[1])) # and all the other commands for i, command in enumerate(commands): try: self.parse_response(connection, '_') except ResponseError: ex = sys.exc_info()[1] self.annotate_exception(ex, i + 1, command[0]) errors.append((i, ex)) # parse the EXEC. try: response = self.parse_response(connection, '_') except ExecAbortError: if self.explicit_transaction: self.immediate_execute_command('DISCARD') if errors: raise errors[0][1] raise sys.exc_info()[1] if response is None: raise WatchError("Watched variable changed.") # put any parse errors into the response for i, e in errors: response.insert(i, e) if len(response) != len(commands): self.connection.disconnect() raise ResponseError("Wrong number of response items from " "pipeline execution") # find any errors in the response and raise if necessary if raise_on_error: self.raise_first_error(commands, response) # We have to run response callbacks manually data = [] for r, cmd in izip(response, commands): if not isinstance(r, Exception): args, options = cmd command_name = args[0] if command_name in self.response_callbacks: r = self.response_callbacks[command_name](r, **options) data.append(r) return data
[ "def", "_execute_transaction", "(", "self", ",", "connection", ",", "commands", ",", "raise_on_error", ")", ":", "cmds", "=", "chain", "(", "[", "(", "(", "'MULTI'", ",", ")", ",", "{", "}", ")", "]", ",", "commands", ",", "[", "(", "(", "'EXEC'", ",", ")", ",", "{", "}", ")", "]", ")", "all_cmds", "=", "connection", ".", "pack_commands", "(", "[", "args", "for", "args", ",", "_", "in", "cmds", "]", ")", "connection", ".", "send_packed_command", "(", "all_cmds", ")", "errors", "=", "[", "]", "# parse off the response for MULTI", "# NOTE: we need to handle ResponseErrors here and continue", "# so that we read all the additional command messages from", "# the socket", "try", ":", "self", ".", "parse_response", "(", "connection", ",", "'_'", ")", "except", "ResponseError", ":", "errors", ".", "append", "(", "(", "0", ",", "sys", ".", "exc_info", "(", ")", "[", "1", "]", ")", ")", "# and all the other commands", "for", "i", ",", "command", "in", "enumerate", "(", "commands", ")", ":", "try", ":", "self", ".", "parse_response", "(", "connection", ",", "'_'", ")", "except", "ResponseError", ":", "ex", "=", "sys", ".", "exc_info", "(", ")", "[", "1", "]", "self", ".", "annotate_exception", "(", "ex", ",", "i", "+", "1", ",", "command", "[", "0", "]", ")", "errors", ".", "append", "(", "(", "i", ",", "ex", ")", ")", "# parse the EXEC.", "try", ":", "response", "=", "self", ".", "parse_response", "(", "connection", ",", "'_'", ")", "except", "ExecAbortError", ":", "if", "self", ".", "explicit_transaction", ":", "self", ".", "immediate_execute_command", "(", "'DISCARD'", ")", "if", "errors", ":", "raise", "errors", "[", "0", "]", "[", "1", "]", "raise", "sys", ".", "exc_info", "(", ")", "[", "1", "]", "if", "response", "is", "None", ":", "raise", "WatchError", "(", "\"Watched variable changed.\"", ")", "# put any parse errors into the response", "for", "i", ",", "e", "in", "errors", ":", "response", ".", "insert", "(", "i", ",", "e", ")", "if", "len", "(", "response", ")", "!=", "len", "(", "commands", ")", ":", "self", ".", "connection", ".", "disconnect", "(", ")", "raise", "ResponseError", "(", "\"Wrong number of response items from \"", "\"pipeline execution\"", ")", "# find any errors in the response and raise if necessary", "if", "raise_on_error", ":", "self", ".", "raise_first_error", "(", "commands", ",", "response", ")", "# We have to run response callbacks manually", "data", "=", "[", "]", "for", "r", ",", "cmd", "in", "izip", "(", "response", ",", "commands", ")", ":", "if", "not", "isinstance", "(", "r", ",", "Exception", ")", ":", "args", ",", "options", "=", "cmd", "command_name", "=", "args", "[", "0", "]", "if", "command_name", "in", "self", ".", "response_callbacks", ":", "r", "=", "self", ".", "response_callbacks", "[", "command_name", "]", "(", "r", ",", "*", "*", "options", ")", "data", ".", "append", "(", "r", ")", "return", "data" ]
https://github.com/leancloud/satori/blob/701caccbd4fe45765001ca60435c0cb499477c03/satori-rules/plugin/libs/redis/client.py#L2492-L2551
niosus/EasyClangComplete
3b16eb17735aaa3f56bb295fc5481b269ee9f2ef
plugin/clang/cindex33.py
python
Diagnostic.option
(self)
return conf.lib.clang_getDiagnosticOption(self, None)
The command-line option that enables this diagnostic.
The command-line option that enables this diagnostic.
[ "The", "command", "-", "line", "option", "that", "enables", "this", "diagnostic", "." ]
def option(self): """The command-line option that enables this diagnostic.""" return conf.lib.clang_getDiagnosticOption(self, None)
[ "def", "option", "(", "self", ")", ":", "return", "conf", ".", "lib", ".", "clang_getDiagnosticOption", "(", "self", ",", "None", ")" ]
https://github.com/niosus/EasyClangComplete/blob/3b16eb17735aaa3f56bb295fc5481b269ee9f2ef/plugin/clang/cindex33.py#L353-L355
openshift/openshift-tools
1188778e728a6e4781acf728123e5b356380fe6f
openshift/installer/vendored/openshift-ansible-3.9.40/roles/lib_openshift/src/ansible/oc_configmap.py
python
main
()
ansible oc module for managing OpenShift configmap objects
ansible oc module for managing OpenShift configmap objects
[ "ansible", "oc", "module", "for", "managing", "OpenShift", "configmap", "objects" ]
def main(): ''' ansible oc module for managing OpenShift configmap objects ''' module = AnsibleModule( argument_spec=dict( kubeconfig=dict(default='/etc/origin/master/admin.kubeconfig', type='str'), state=dict(default='present', type='str', choices=['present', 'absent', 'list']), debug=dict(default=False, type='bool'), namespace=dict(default='default', type='str'), name=dict(default=None, required=True, type='str'), from_file=dict(default=None, type='dict'), from_literal=dict(default=None, type='dict'), ), supports_check_mode=True, ) rval = OCConfigMap.run_ansible(module.params, module.check_mode) if 'failed' in rval: module.fail_json(**rval) module.exit_json(**rval)
[ "def", "main", "(", ")", ":", "module", "=", "AnsibleModule", "(", "argument_spec", "=", "dict", "(", "kubeconfig", "=", "dict", "(", "default", "=", "'/etc/origin/master/admin.kubeconfig'", ",", "type", "=", "'str'", ")", ",", "state", "=", "dict", "(", "default", "=", "'present'", ",", "type", "=", "'str'", ",", "choices", "=", "[", "'present'", ",", "'absent'", ",", "'list'", "]", ")", ",", "debug", "=", "dict", "(", "default", "=", "False", ",", "type", "=", "'bool'", ")", ",", "namespace", "=", "dict", "(", "default", "=", "'default'", ",", "type", "=", "'str'", ")", ",", "name", "=", "dict", "(", "default", "=", "None", ",", "required", "=", "True", ",", "type", "=", "'str'", ")", ",", "from_file", "=", "dict", "(", "default", "=", "None", ",", "type", "=", "'dict'", ")", ",", "from_literal", "=", "dict", "(", "default", "=", "None", ",", "type", "=", "'dict'", ")", ",", ")", ",", "supports_check_mode", "=", "True", ",", ")", "rval", "=", "OCConfigMap", ".", "run_ansible", "(", "module", ".", "params", ",", "module", ".", "check_mode", ")", "if", "'failed'", "in", "rval", ":", "module", ".", "fail_json", "(", "*", "*", "rval", ")", "module", ".", "exit_json", "(", "*", "*", "rval", ")" ]
https://github.com/openshift/openshift-tools/blob/1188778e728a6e4781acf728123e5b356380fe6f/openshift/installer/vendored/openshift-ansible-3.9.40/roles/lib_openshift/src/ansible/oc_configmap.py#L5-L29
CoinCheung/BiSeNet
f9231b7c971413e6ebdfcd961fbea53417b18851
tools/demo_video.py
python
infer_batch
(frames)
[]
def infer_batch(frames): frames = torch.cat(frames, dim=0).cuda() H, W = frames.size()[2:] frames = F.interpolate(frames, size=(768, 768), mode='bilinear', align_corners=False) # must be divisible by 32 out = net(frames)[0] out = F.interpolate(out, size=(H, W), mode='bilinear', align_corners=False).argmax(dim=1).detach().cpu() out_q.put(out)
[ "def", "infer_batch", "(", "frames", ")", ":", "frames", "=", "torch", ".", "cat", "(", "frames", ",", "dim", "=", "0", ")", ".", "cuda", "(", ")", "H", ",", "W", "=", "frames", ".", "size", "(", ")", "[", "2", ":", "]", "frames", "=", "F", ".", "interpolate", "(", "frames", ",", "size", "=", "(", "768", ",", "768", ")", ",", "mode", "=", "'bilinear'", ",", "align_corners", "=", "False", ")", "# must be divisible by 32", "out", "=", "net", "(", "frames", ")", "[", "0", "]", "out", "=", "F", ".", "interpolate", "(", "out", ",", "size", "=", "(", "H", ",", "W", ")", ",", "mode", "=", "'bilinear'", ",", "align_corners", "=", "False", ")", ".", "argmax", "(", "dim", "=", "1", ")", ".", "detach", "(", ")", ".", "cpu", "(", ")", "out_q", ".", "put", "(", "out", ")" ]
https://github.com/CoinCheung/BiSeNet/blob/f9231b7c971413e6ebdfcd961fbea53417b18851/tools/demo_video.py#L95-L103
misterch0c/shadowbroker
e3a069bea47a2c1009697941ac214adc6f90aa8d
windows/Resources/Python/Core/Lib/lib-tk/ttk.py
python
Combobox.__init__
(self, master=None, **kw)
Construct a Ttk Combobox widget with the parent master. STANDARD OPTIONS class, cursor, style, takefocus WIDGET-SPECIFIC OPTIONS exportselection, justify, height, postcommand, state, textvariable, values, width
Construct a Ttk Combobox widget with the parent master. STANDARD OPTIONS class, cursor, style, takefocus WIDGET-SPECIFIC OPTIONS exportselection, justify, height, postcommand, state, textvariable, values, width
[ "Construct", "a", "Ttk", "Combobox", "widget", "with", "the", "parent", "master", ".", "STANDARD", "OPTIONS", "class", "cursor", "style", "takefocus", "WIDGET", "-", "SPECIFIC", "OPTIONS", "exportselection", "justify", "height", "postcommand", "state", "textvariable", "values", "width" ]
def __init__(self, master=None, **kw): """Construct a Ttk Combobox widget with the parent master. STANDARD OPTIONS class, cursor, style, takefocus WIDGET-SPECIFIC OPTIONS exportselection, justify, height, postcommand, state, textvariable, values, width """ if 'values' in kw: kw['values'] = _format_optdict({'v': kw['values']})[1] Entry.__init__(self, master, 'ttk::combobox', **kw)
[ "def", "__init__", "(", "self", ",", "master", "=", "None", ",", "*", "*", "kw", ")", ":", "if", "'values'", "in", "kw", ":", "kw", "[", "'values'", "]", "=", "_format_optdict", "(", "{", "'v'", ":", "kw", "[", "'values'", "]", "}", ")", "[", "1", "]", "Entry", ".", "__init__", "(", "self", ",", "master", ",", "'ttk::combobox'", ",", "*", "*", "kw", ")" ]
https://github.com/misterch0c/shadowbroker/blob/e3a069bea47a2c1009697941ac214adc6f90aa8d/windows/Resources/Python/Core/Lib/lib-tk/ttk.py#L604-L618
nucleic/enaml
65c2a2a2d765e88f2e1103046680571894bb41ed
enaml/qt/qt_dock_pane.py
python
QCustomDockWidget._hideTitleBar
(self)
Hides the title bar for the widget.
Hides the title bar for the widget.
[ "Hides", "the", "title", "bar", "for", "the", "widget", "." ]
def _hideTitleBar(self): """ Hides the title bar for the widget. """ if self.titleBarWidget() is None: self.setTitleBarWidget(QWidget())
[ "def", "_hideTitleBar", "(", "self", ")", ":", "if", "self", ".", "titleBarWidget", "(", ")", "is", "None", ":", "self", ".", "setTitleBarWidget", "(", "QWidget", "(", ")", ")" ]
https://github.com/nucleic/enaml/blob/65c2a2a2d765e88f2e1103046680571894bb41ed/enaml/qt/qt_dock_pane.py#L90-L95
thearn/Python-Arduino-Command-API
610171b3ae153542aca42d354fbb26c32027f38f
examples.py
python
adjustBrightness
(pot_pin, led_pin, baud, port="")
Adjusts brightness of an LED using a potentiometer.
Adjusts brightness of an LED using a potentiometer.
[ "Adjusts", "brightness", "of", "an", "LED", "using", "a", "potentiometer", "." ]
def adjustBrightness(pot_pin, led_pin, baud, port=""): """ Adjusts brightness of an LED using a potentiometer. """ board = Arduino(baud, port=port) while True: time.sleep(0.01) val = board.analogRead(pot_pin) / 4 print val board.analogWrite(led_pin, val)
[ "def", "adjustBrightness", "(", "pot_pin", ",", "led_pin", ",", "baud", ",", "port", "=", "\"\"", ")", ":", "board", "=", "Arduino", "(", "baud", ",", "port", "=", "port", ")", "while", "True", ":", "time", ".", "sleep", "(", "0.01", ")", "val", "=", "board", ".", "analogRead", "(", "pot_pin", ")", "/", "4", "print", "val", "board", ".", "analogWrite", "(", "led_pin", ",", "val", ")" ]
https://github.com/thearn/Python-Arduino-Command-API/blob/610171b3ae153542aca42d354fbb26c32027f38f/examples.py#L37-L47
marcelm/cutadapt
c63043e0f43970619bb7f8c1242912c236d60545
src/cutadapt/parser.py
python
AdapterParser.parse_multi
(self, type_spec_pairs: List[Tuple[str, str]])
return adapters
Parse all three types of commandline options that can be used to specify adapters. adapters must be a list of (str, str) pairs, where the first is the adapter type (either 'front', 'back' or 'anywhere') and the second is the adapter specification given on the commandline Return a list of appropriate Adapter classes.
Parse all three types of commandline options that can be used to specify adapters. adapters must be a list of (str, str) pairs, where the first is the adapter type (either 'front', 'back' or 'anywhere') and the second is the adapter specification given on the commandline
[ "Parse", "all", "three", "types", "of", "commandline", "options", "that", "can", "be", "used", "to", "specify", "adapters", ".", "adapters", "must", "be", "a", "list", "of", "(", "str", "str", ")", "pairs", "where", "the", "first", "is", "the", "adapter", "type", "(", "either", "front", "back", "or", "anywhere", ")", "and", "the", "second", "is", "the", "adapter", "specification", "given", "on", "the", "commandline" ]
def parse_multi(self, type_spec_pairs: List[Tuple[str, str]]) -> List[Adapter]: """ Parse all three types of commandline options that can be used to specify adapters. adapters must be a list of (str, str) pairs, where the first is the adapter type (either 'front', 'back' or 'anywhere') and the second is the adapter specification given on the commandline Return a list of appropriate Adapter classes. """ adapters = [] # type: List[Adapter] for cmdline_type, spec in type_spec_pairs: if cmdline_type not in {'front', 'back', 'anywhere'}: raise ValueError('adapter type must be front, back or anywhere') adapters.extend(self.parse(spec, cmdline_type)) return adapters
[ "def", "parse_multi", "(", "self", ",", "type_spec_pairs", ":", "List", "[", "Tuple", "[", "str", ",", "str", "]", "]", ")", "->", "List", "[", "Adapter", "]", ":", "adapters", "=", "[", "]", "# type: List[Adapter]", "for", "cmdline_type", ",", "spec", "in", "type_spec_pairs", ":", "if", "cmdline_type", "not", "in", "{", "'front'", ",", "'back'", ",", "'anywhere'", "}", ":", "raise", "ValueError", "(", "'adapter type must be front, back or anywhere'", ")", "adapters", ".", "extend", "(", "self", ".", "parse", "(", "spec", ",", "cmdline_type", ")", ")", "return", "adapters" ]
https://github.com/marcelm/cutadapt/blob/c63043e0f43970619bb7f8c1242912c236d60545/src/cutadapt/parser.py#L446-L460
LabPy/lantz
3e878e3f765a4295b0089d04e241d4beb7b8a65b
lantz/drivers/andor/ccd.py
python
CCD.setint
(self, strcommand, value)
SetInt function.
SetInt function.
[ "SetInt", "function", "." ]
def setint(self, strcommand, value): """SetInt function. """ command = ct.c_wchar_p(strcommand) value = ct.c_longlong(value) self.lib.AT_SetInt(self.AT_H, command, value)
[ "def", "setint", "(", "self", ",", "strcommand", ",", "value", ")", ":", "command", "=", "ct", ".", "c_wchar_p", "(", "strcommand", ")", "value", "=", "ct", ".", "c_longlong", "(", "value", ")", "self", ".", "lib", ".", "AT_SetInt", "(", "self", ".", "AT_H", ",", "command", ",", "value", ")" ]
https://github.com/LabPy/lantz/blob/3e878e3f765a4295b0089d04e241d4beb7b8a65b/lantz/drivers/andor/ccd.py#L1810-L1815
openstack/magnum
fa298eeab19b1d87070d72c7c4fb26cd75b0781e
magnum/common/exception.py
python
MagnumException.__init__
(self, message=None, **kwargs)
[]
def __init__(self, message=None, **kwargs): self.kwargs = kwargs if 'code' not in self.kwargs and hasattr(self, 'code'): self.kwargs['code'] = self.code if message: self.message = message try: self.message = self.message % kwargs except Exception: # kwargs doesn't match a variable in the message # log the issue and the kwargs LOG.exception('Exception in string format operation, ' 'kwargs: %s', kwargs) try: if CONF.fatal_exception_format_errors: raise except cfg.NoSuchOptError: # Note: work around for Bug: #1447873 if CONF.oslo_versionedobjects.fatal_exception_format_errors: raise super(MagnumException, self).__init__(self.message)
[ "def", "__init__", "(", "self", ",", "message", "=", "None", ",", "*", "*", "kwargs", ")", ":", "self", ".", "kwargs", "=", "kwargs", "if", "'code'", "not", "in", "self", ".", "kwargs", "and", "hasattr", "(", "self", ",", "'code'", ")", ":", "self", ".", "kwargs", "[", "'code'", "]", "=", "self", ".", "code", "if", "message", ":", "self", ".", "message", "=", "message", "try", ":", "self", ".", "message", "=", "self", ".", "message", "%", "kwargs", "except", "Exception", ":", "# kwargs doesn't match a variable in the message", "# log the issue and the kwargs", "LOG", ".", "exception", "(", "'Exception in string format operation, '", "'kwargs: %s'", ",", "kwargs", ")", "try", ":", "if", "CONF", ".", "fatal_exception_format_errors", ":", "raise", "except", "cfg", ".", "NoSuchOptError", ":", "# Note: work around for Bug: #1447873", "if", "CONF", ".", "oslo_versionedobjects", ".", "fatal_exception_format_errors", ":", "raise", "super", "(", "MagnumException", ",", "self", ")", ".", "__init__", "(", "self", ".", "message", ")" ]
https://github.com/openstack/magnum/blob/fa298eeab19b1d87070d72c7c4fb26cd75b0781e/magnum/common/exception.py#L80-L104
home-assistant/core
265ebd17a3f17ed8dc1e9bdede03ac8e323f1ab1
homeassistant/components/media_player/__init__.py
python
MediaPlayerEntity.set_volume_level
(self, volume)
Set volume level, range 0..1.
Set volume level, range 0..1.
[ "Set", "volume", "level", "range", "0", "..", "1", "." ]
def set_volume_level(self, volume): """Set volume level, range 0..1.""" raise NotImplementedError()
[ "def", "set_volume_level", "(", "self", ",", "volume", ")", ":", "raise", "NotImplementedError", "(", ")" ]
https://github.com/home-assistant/core/blob/265ebd17a3f17ed8dc1e9bdede03ac8e323f1ab1/homeassistant/components/media_player/__init__.py#L658-L660
krintoxi/NoobSec-Toolkit
38738541cbc03cedb9a3b3ed13b629f781ad64f6
NoobSecToolkit /tools/sqli/tamper/space2hash.py
python
tamper
(payload, **kwargs)
return retVal
Replaces space character (' ') with a pound character ('#') followed by a random string and a new line ('\n') Requirement: * MySQL Tested against: * MySQL 4.0, 5.0 Notes: * Useful to bypass several web application firewalls * Used during the ModSecurity SQL injection challenge, http://modsecurity.org/demo/challenge.html >>> random.seed(0) >>> tamper('1 AND 9227=9227') '1%23nVNaVoPYeva%0AAND%23ngNvzqu%0A9227=9227'
Replaces space character (' ') with a pound character ('#') followed by a random string and a new line ('\n')
[ "Replaces", "space", "character", "(", ")", "with", "a", "pound", "character", "(", "#", ")", "followed", "by", "a", "random", "string", "and", "a", "new", "line", "(", "\\", "n", ")" ]
def tamper(payload, **kwargs): """ Replaces space character (' ') with a pound character ('#') followed by a random string and a new line ('\n') Requirement: * MySQL Tested against: * MySQL 4.0, 5.0 Notes: * Useful to bypass several web application firewalls * Used during the ModSecurity SQL injection challenge, http://modsecurity.org/demo/challenge.html >>> random.seed(0) >>> tamper('1 AND 9227=9227') '1%23nVNaVoPYeva%0AAND%23ngNvzqu%0A9227=9227' """ retVal = "" if payload: for i in xrange(len(payload)): if payload[i].isspace(): randomStr = ''.join(random.choice(string.ascii_uppercase + string.ascii_lowercase) for _ in xrange(random.randint(6, 12))) retVal += "%%23%s%%0A" % randomStr elif payload[i] == '#' or payload[i:i + 3] == '-- ': retVal += payload[i:] break else: retVal += payload[i] return retVal
[ "def", "tamper", "(", "payload", ",", "*", "*", "kwargs", ")", ":", "retVal", "=", "\"\"", "if", "payload", ":", "for", "i", "in", "xrange", "(", "len", "(", "payload", ")", ")", ":", "if", "payload", "[", "i", "]", ".", "isspace", "(", ")", ":", "randomStr", "=", "''", ".", "join", "(", "random", ".", "choice", "(", "string", ".", "ascii_uppercase", "+", "string", ".", "ascii_lowercase", ")", "for", "_", "in", "xrange", "(", "random", ".", "randint", "(", "6", ",", "12", ")", ")", ")", "retVal", "+=", "\"%%23%s%%0A\"", "%", "randomStr", "elif", "payload", "[", "i", "]", "==", "'#'", "or", "payload", "[", "i", ":", "i", "+", "3", "]", "==", "'-- '", ":", "retVal", "+=", "payload", "[", "i", ":", "]", "break", "else", ":", "retVal", "+=", "payload", "[", "i", "]", "return", "retVal" ]
https://github.com/krintoxi/NoobSec-Toolkit/blob/38738541cbc03cedb9a3b3ed13b629f781ad64f6/NoobSecToolkit /tools/sqli/tamper/space2hash.py#L21-L55
openhatch/oh-mainline
ce29352a034e1223141dcc2f317030bbc3359a51
vendor/packages/Django/django/contrib/auth/models.py
python
PermissionsMixin.has_module_perms
(self, app_label)
return _user_has_module_perms(self, app_label)
Returns True if the user has any permissions in the given app label. Uses pretty much the same logic as has_perm, above.
Returns True if the user has any permissions in the given app label. Uses pretty much the same logic as has_perm, above.
[ "Returns", "True", "if", "the", "user", "has", "any", "permissions", "in", "the", "given", "app", "label", ".", "Uses", "pretty", "much", "the", "same", "logic", "as", "has_perm", "above", "." ]
def has_module_perms(self, app_label): """ Returns True if the user has any permissions in the given app label. Uses pretty much the same logic as has_perm, above. """ # Active superusers have all permissions. if self.is_active and self.is_superuser: return True return _user_has_module_perms(self, app_label)
[ "def", "has_module_perms", "(", "self", ",", "app_label", ")", ":", "# Active superusers have all permissions.", "if", "self", ".", "is_active", "and", "self", ".", "is_superuser", ":", "return", "True", "return", "_user_has_module_perms", "(", "self", ",", "app_label", ")" ]
https://github.com/openhatch/oh-mainline/blob/ce29352a034e1223141dcc2f317030bbc3359a51/vendor/packages/Django/django/contrib/auth/models.py#L358-L367
pandas-dev/pandas
5ba7d714014ae8feaccc0dd4a98890828cf2832d
pandas/core/tools/datetimes.py
python
_to_datetime_with_format
( arg, orig_arg, name, tz, fmt: str, exact: bool, errors: str, infer_datetime_format: bool, )
Try parsing with the given format, returning None on failure.
Try parsing with the given format, returning None on failure.
[ "Try", "parsing", "with", "the", "given", "format", "returning", "None", "on", "failure", "." ]
def _to_datetime_with_format( arg, orig_arg, name, tz, fmt: str, exact: bool, errors: str, infer_datetime_format: bool, ) -> Index | None: """ Try parsing with the given format, returning None on failure. """ result = None try: # shortcut formatting here if fmt == "%Y%m%d": # pass orig_arg as float-dtype may have been converted to # datetime64[ns] orig_arg = ensure_object(orig_arg) try: # may return None without raising result = _attempt_YYYYMMDD(orig_arg, errors=errors) except (ValueError, TypeError, OutOfBoundsDatetime) as err: raise ValueError( "cannot convert the input to '%Y%m%d' date format" ) from err if result is not None: utc = tz == "utc" return _box_as_indexlike(result, utc=utc, name=name) # fallback res = _array_strptime_with_fallback( arg, name, tz, fmt, exact, errors, infer_datetime_format ) return res except ValueError as err: # Fallback to try to convert datetime objects if timezone-aware # datetime objects are found without passing `utc=True` try: values, tz = conversion.datetime_to_datetime64(arg) dta = DatetimeArray(values, dtype=tz_to_dtype(tz)) return DatetimeIndex._simple_new(dta, name=name) except (ValueError, TypeError): raise err
[ "def", "_to_datetime_with_format", "(", "arg", ",", "orig_arg", ",", "name", ",", "tz", ",", "fmt", ":", "str", ",", "exact", ":", "bool", ",", "errors", ":", "str", ",", "infer_datetime_format", ":", "bool", ",", ")", "->", "Index", "|", "None", ":", "result", "=", "None", "try", ":", "# shortcut formatting here", "if", "fmt", "==", "\"%Y%m%d\"", ":", "# pass orig_arg as float-dtype may have been converted to", "# datetime64[ns]", "orig_arg", "=", "ensure_object", "(", "orig_arg", ")", "try", ":", "# may return None without raising", "result", "=", "_attempt_YYYYMMDD", "(", "orig_arg", ",", "errors", "=", "errors", ")", "except", "(", "ValueError", ",", "TypeError", ",", "OutOfBoundsDatetime", ")", "as", "err", ":", "raise", "ValueError", "(", "\"cannot convert the input to '%Y%m%d' date format\"", ")", "from", "err", "if", "result", "is", "not", "None", ":", "utc", "=", "tz", "==", "\"utc\"", "return", "_box_as_indexlike", "(", "result", ",", "utc", "=", "utc", ",", "name", "=", "name", ")", "# fallback", "res", "=", "_array_strptime_with_fallback", "(", "arg", ",", "name", ",", "tz", ",", "fmt", ",", "exact", ",", "errors", ",", "infer_datetime_format", ")", "return", "res", "except", "ValueError", "as", "err", ":", "# Fallback to try to convert datetime objects if timezone-aware", "# datetime objects are found without passing `utc=True`", "try", ":", "values", ",", "tz", "=", "conversion", ".", "datetime_to_datetime64", "(", "arg", ")", "dta", "=", "DatetimeArray", "(", "values", ",", "dtype", "=", "tz_to_dtype", "(", "tz", ")", ")", "return", "DatetimeIndex", ".", "_simple_new", "(", "dta", ",", "name", "=", "name", ")", "except", "(", "ValueError", ",", "TypeError", ")", ":", "raise", "err" ]
https://github.com/pandas-dev/pandas/blob/5ba7d714014ae8feaccc0dd4a98890828cf2832d/pandas/core/tools/datetimes.py#L469-L514
statsmodels/statsmodels
debbe7ea6ba28fe5bdb78f09f8cac694bef98722
statsmodels/stats/outliers_influence.py
python
GLMInfluence.cooks_distance
(self)
return cooks_d2, pvals
Cook's distance Notes ----- Based on one step approximation using resid_studentized and hat_matrix_diag for the computation. Cook's distance divides by the number of explanatory variables. Computed using formulas for GLM and does not use results.cov_params. It includes p-values based on the F-distribution which are only approximate outside of linear Gaussian models.
Cook's distance
[ "Cook", "s", "distance" ]
def cooks_distance(self): """Cook's distance Notes ----- Based on one step approximation using resid_studentized and hat_matrix_diag for the computation. Cook's distance divides by the number of explanatory variables. Computed using formulas for GLM and does not use results.cov_params. It includes p-values based on the F-distribution which are only approximate outside of linear Gaussian models. """ hii = self.hat_matrix_diag # Eubank p.93, 94 cooks_d2 = self.resid_studentized ** 2 / self.k_vars cooks_d2 *= hii / (1 - hii) from scipy import stats # alpha = 0.1 # print stats.f.isf(1-alpha, n_params, res.df_modelwc) pvals = stats.f.sf(cooks_d2, self.k_vars, self.results.df_resid) return cooks_d2, pvals
[ "def", "cooks_distance", "(", "self", ")", ":", "hii", "=", "self", ".", "hat_matrix_diag", "# Eubank p.93, 94", "cooks_d2", "=", "self", ".", "resid_studentized", "**", "2", "/", "self", ".", "k_vars", "cooks_d2", "*=", "hii", "/", "(", "1", "-", "hii", ")", "from", "scipy", "import", "stats", "# alpha = 0.1", "# print stats.f.isf(1-alpha, n_params, res.df_modelwc)", "pvals", "=", "stats", ".", "f", ".", "sf", "(", "cooks_d2", ",", "self", ".", "k_vars", ",", "self", ".", "results", ".", "df_resid", ")", "return", "cooks_d2", ",", "pvals" ]
https://github.com/statsmodels/statsmodels/blob/debbe7ea6ba28fe5bdb78f09f8cac694bef98722/statsmodels/stats/outliers_influence.py#L1389-L1414
dragonfly/dragonfly
a579b5eadf452e23b07d4caf27b402703b0012b7
dragonfly/opt/blackbox_optimiser.py
python
OptInitialiser.__init__
(self, func_caller, worker_manager, get_initial_qinfos=None, initialisation_capital=None, options=None, reporter=None)
Constructor.
Constructor.
[ "Constructor", "." ]
def __init__(self, func_caller, worker_manager, get_initial_qinfos=None, initialisation_capital=None, options=None, reporter=None): """ Constructor. """ options = load_options(blackbox_opt_args, partial_options=options) super(OptInitialiser, self).__init__(func_caller, worker_manager, model=None, options=options, reporter=reporter) self.options.max_num_steps = 0 self.options.get_initial_qinfos = get_initial_qinfos self.options.init_capital = initialisation_capital
[ "def", "__init__", "(", "self", ",", "func_caller", ",", "worker_manager", ",", "get_initial_qinfos", "=", "None", ",", "initialisation_capital", "=", "None", ",", "options", "=", "None", ",", "reporter", "=", "None", ")", ":", "options", "=", "load_options", "(", "blackbox_opt_args", ",", "partial_options", "=", "options", ")", "super", "(", "OptInitialiser", ",", "self", ")", ".", "__init__", "(", "func_caller", ",", "worker_manager", ",", "model", "=", "None", ",", "options", "=", "options", ",", "reporter", "=", "reporter", ")", "self", ".", "options", ".", "max_num_steps", "=", "0", "self", ".", "options", ".", "get_initial_qinfos", "=", "get_initial_qinfos", "self", ".", "options", ".", "init_capital", "=", "initialisation_capital" ]
https://github.com/dragonfly/dragonfly/blob/a579b5eadf452e23b07d4caf27b402703b0012b7/dragonfly/opt/blackbox_optimiser.py#L343-L351
apache/libcloud
90971e17bfd7b6bb97b2489986472c531cc8e140
libcloud/compute/drivers/linode.py
python
LinodeNodeDriverV3.stop_node
(self, node)
return True
Shutdown the given Linode
Shutdown the given Linode
[ "Shutdown", "the", "given", "Linode" ]
def stop_node(self, node): """ Shutdown the given Linode """ params = {"api_action": "linode.shutdown", "LinodeID": node.id} self.connection.request(API_ROOT, params=params) return True
[ "def", "stop_node", "(", "self", ",", "node", ")", ":", "params", "=", "{", "\"api_action\"", ":", "\"linode.shutdown\"", ",", "\"LinodeID\"", ":", "node", ".", "id", "}", "self", ".", "connection", ".", "request", "(", "API_ROOT", ",", "params", "=", "params", ")", "return", "True" ]
https://github.com/apache/libcloud/blob/90971e17bfd7b6bb97b2489986472c531cc8e140/libcloud/compute/drivers/linode.py#L179-L186
itailang/SampleNet
442459abc54f9e14f0966a169a094a98febd32eb
classification/utils/plyfile.py
python
PlyListProperty._set_len_dtype
(self, len_dtype)
[]
def _set_len_dtype(self, len_dtype): self._len_dtype = _data_types[_lookup_type(len_dtype)]
[ "def", "_set_len_dtype", "(", "self", ",", "len_dtype", ")", ":", "self", ".", "_len_dtype", "=", "_data_types", "[", "_lookup_type", "(", "len_dtype", ")", "]" ]
https://github.com/itailang/SampleNet/blob/442459abc54f9e14f0966a169a094a98febd32eb/classification/utils/plyfile.py#L822-L823
ilastik/ilastik
6acd2c554bc517e9c8ddad3623a7aaa2e6970c28
lazyflow/roi.py
python
sliceToRoi
( slicing: Union[numbers.Integral, slice, "ellipsis", Sequence[Union[numbers.Integral, slice, "ellipsis"]]], shape: Sequence[numbers.Integral], *, extendSingleton: bool = True, )
return roi_start, roi_stop
Convert slicing to ROI. Negative indices and slices are allowed similarly to usual Python and NumPy indexing. None (newaxis) objects are not allowed. As a special case, passing a 0-dimensional shape ``()`` always returns 0-dimensional ROI, regardless of the value of `slicing`. Args: slicing: Valid slicing. shape: Shape of the target array. extendSingleton: Whether to keep dimensions of int indices (similar to negated ``keepdims`` from some NumPy functions, see the examples). Returns: ``(start, stop)`` pair. Raises: ValueError: Slicing is not valid (either by itself or in combination with the given shape). Examples: Point indexing: >>> sliceToRoi(1, (7, 8, 9)) ([1, 0, 0], [2, 8, 9]) >>> sliceToRoi(-1, (7, 8, 9)) ([6, 0, 0], [7, 8, 9]) >>> sliceToRoi(1, (7, 8, 9), extendSingleton=False) ([1, 0, 0], [1, 8, 9]) >>> sliceToRoi(42, (7, 8, 9)) # doctest: +IGNORE_EXCEPTION_DETAIL Traceback (most recent call last): ... ValueError Slice indexing: >>> sliceToRoi(slice(None, None), (7, 8, 9)) ([0, 0, 0], [7, 8, 9]) >>> sliceToRoi(slice(2, 5), (7, 8, 9)) ([2, 0, 0], [5, 8, 9]) >>> sliceToRoi(slice(2, 42), (7, 8, 9)) ([2, 0, 0], [7, 8, 9]) >>> sliceToRoi(slice(-1, 5), (7, 8, 9)) ([6, 0, 0], [5, 8, 9]) >>> sliceToRoi(slice(-42, 42), (7, 8, 9)) ([0, 0, 0], [7, 8, 9]) >>> sliceToRoi(slice(None, None, 2), (7, 8, 9)) # doctest: +IGNORE_EXCEPTION_DETAIL Traceback (most recent call last): ... ValueError Multi indexing: >>> sliceToRoi((), (7, 8, 9)) ([0, 0, 0], [7, 8, 9]) >>> sliceToRoi((1,), (7, 8, 9)) ([1, 0, 0], [2, 8, 9]) >>> sliceToRoi((1, 2), (7, 8, 9)) ([1, 2, 0], [2, 3, 9]) >>> sliceToRoi([1, 2], (7, 8, 9)) ([1, 2, 0], [2, 3, 9]) >>> sliceToRoi((slice(2, 5), slice(3, 6), 5), (7, 8, 9)) ([2, 3, 5], [5, 6, 6]) >>> sliceToRoi((1, 2, 3, 4), (7, 8, 9)) # doctest: +IGNORE_EXCEPTION_DETAIL Traceback (most recent call last): ... ValueError Ellipsis indexing: >>> sliceToRoi((1, ..., 5), (7, 8, 9)) ([1, 0, 5], [2, 8, 6]) >>> sliceToRoi((..., slice(2, 5)), (7, 8, 9)) ([0, 0, 2], [7, 8, 5]) >>> sliceToRoi((..., ...), (7, 8, 9)) # doctest: +IGNORE_EXCEPTION_DETAIL Traceback (most recent call last): ... ValueError Zero-dimensional shape: >>> sliceToRoi((), ()) ([], []) >>> sliceToRoi((1, 2, 3), ()) ([], [])
Convert slicing to ROI.
[ "Convert", "slicing", "to", "ROI", "." ]
def sliceToRoi( slicing: Union[numbers.Integral, slice, "ellipsis", Sequence[Union[numbers.Integral, slice, "ellipsis"]]], shape: Sequence[numbers.Integral], *, extendSingleton: bool = True, ) -> Tuple[Sequence[int], Sequence[int]]: """Convert slicing to ROI. Negative indices and slices are allowed similarly to usual Python and NumPy indexing. None (newaxis) objects are not allowed. As a special case, passing a 0-dimensional shape ``()`` always returns 0-dimensional ROI, regardless of the value of `slicing`. Args: slicing: Valid slicing. shape: Shape of the target array. extendSingleton: Whether to keep dimensions of int indices (similar to negated ``keepdims`` from some NumPy functions, see the examples). Returns: ``(start, stop)`` pair. Raises: ValueError: Slicing is not valid (either by itself or in combination with the given shape). Examples: Point indexing: >>> sliceToRoi(1, (7, 8, 9)) ([1, 0, 0], [2, 8, 9]) >>> sliceToRoi(-1, (7, 8, 9)) ([6, 0, 0], [7, 8, 9]) >>> sliceToRoi(1, (7, 8, 9), extendSingleton=False) ([1, 0, 0], [1, 8, 9]) >>> sliceToRoi(42, (7, 8, 9)) # doctest: +IGNORE_EXCEPTION_DETAIL Traceback (most recent call last): ... ValueError Slice indexing: >>> sliceToRoi(slice(None, None), (7, 8, 9)) ([0, 0, 0], [7, 8, 9]) >>> sliceToRoi(slice(2, 5), (7, 8, 9)) ([2, 0, 0], [5, 8, 9]) >>> sliceToRoi(slice(2, 42), (7, 8, 9)) ([2, 0, 0], [7, 8, 9]) >>> sliceToRoi(slice(-1, 5), (7, 8, 9)) ([6, 0, 0], [5, 8, 9]) >>> sliceToRoi(slice(-42, 42), (7, 8, 9)) ([0, 0, 0], [7, 8, 9]) >>> sliceToRoi(slice(None, None, 2), (7, 8, 9)) # doctest: +IGNORE_EXCEPTION_DETAIL Traceback (most recent call last): ... ValueError Multi indexing: >>> sliceToRoi((), (7, 8, 9)) ([0, 0, 0], [7, 8, 9]) >>> sliceToRoi((1,), (7, 8, 9)) ([1, 0, 0], [2, 8, 9]) >>> sliceToRoi((1, 2), (7, 8, 9)) ([1, 2, 0], [2, 3, 9]) >>> sliceToRoi([1, 2], (7, 8, 9)) ([1, 2, 0], [2, 3, 9]) >>> sliceToRoi((slice(2, 5), slice(3, 6), 5), (7, 8, 9)) ([2, 3, 5], [5, 6, 6]) >>> sliceToRoi((1, 2, 3, 4), (7, 8, 9)) # doctest: +IGNORE_EXCEPTION_DETAIL Traceback (most recent call last): ... ValueError Ellipsis indexing: >>> sliceToRoi((1, ..., 5), (7, 8, 9)) ([1, 0, 5], [2, 8, 6]) >>> sliceToRoi((..., slice(2, 5)), (7, 8, 9)) ([0, 0, 2], [7, 8, 5]) >>> sliceToRoi((..., ...), (7, 8, 9)) # doctest: +IGNORE_EXCEPTION_DETAIL Traceback (most recent call last): ... ValueError Zero-dimensional shape: >>> sliceToRoi((), ()) ([], []) >>> sliceToRoi((1, 2, 3), ()) ([], []) """ if not shape: return TinyVector(), TinyVector() try: slicing = list(slicing) except TypeError: slicing = [slicing] try: i = slicing.index(Ellipsis) slicing[i : i + 1] = [slice(None)] * (len(shape) - len(slicing) + 1) except ValueError: pass if Ellipsis in slicing: raise ValueError("an index can only have a single ellipsis ('...')") if len(slicing) > len(shape): raise ValueError("too many indices for array") slicing += [slice(None)] * (len(shape) - len(slicing)) roi_start = TinyVector() roi_stop = TinyVector() for i, (idx, dim) in enumerate(zip(slicing, shape)): if isinstance(idx, numbers.Integral): idx = int(idx) if idx not in range(-dim, dim): raise ValueError(f"index {idx} is out of bounds for axis {i} with size {dim}") if idx < 0: idx += dim start, stop = idx, idx if extendSingleton: stop += 1 elif isinstance(idx, slice): start, stop, step = idx.indices(dim) if step != 1: raise ValueError(f"slice {idx} has non-contiguous stride for axis {i}") else: raise ValueError("only integers, slices (`:`) and ellipsis (`...`) are valid indices") roi_start.append(start) roi_stop.append(stop) return roi_start, roi_stop
[ "def", "sliceToRoi", "(", "slicing", ":", "Union", "[", "numbers", ".", "Integral", ",", "slice", ",", "\"ellipsis\"", ",", "Sequence", "[", "Union", "[", "numbers", ".", "Integral", ",", "slice", ",", "\"ellipsis\"", "]", "]", "]", ",", "shape", ":", "Sequence", "[", "numbers", ".", "Integral", "]", ",", "*", ",", "extendSingleton", ":", "bool", "=", "True", ",", ")", "->", "Tuple", "[", "Sequence", "[", "int", "]", ",", "Sequence", "[", "int", "]", "]", ":", "if", "not", "shape", ":", "return", "TinyVector", "(", ")", ",", "TinyVector", "(", ")", "try", ":", "slicing", "=", "list", "(", "slicing", ")", "except", "TypeError", ":", "slicing", "=", "[", "slicing", "]", "try", ":", "i", "=", "slicing", ".", "index", "(", "Ellipsis", ")", "slicing", "[", "i", ":", "i", "+", "1", "]", "=", "[", "slice", "(", "None", ")", "]", "*", "(", "len", "(", "shape", ")", "-", "len", "(", "slicing", ")", "+", "1", ")", "except", "ValueError", ":", "pass", "if", "Ellipsis", "in", "slicing", ":", "raise", "ValueError", "(", "\"an index can only have a single ellipsis ('...')\"", ")", "if", "len", "(", "slicing", ")", ">", "len", "(", "shape", ")", ":", "raise", "ValueError", "(", "\"too many indices for array\"", ")", "slicing", "+=", "[", "slice", "(", "None", ")", "]", "*", "(", "len", "(", "shape", ")", "-", "len", "(", "slicing", ")", ")", "roi_start", "=", "TinyVector", "(", ")", "roi_stop", "=", "TinyVector", "(", ")", "for", "i", ",", "(", "idx", ",", "dim", ")", "in", "enumerate", "(", "zip", "(", "slicing", ",", "shape", ")", ")", ":", "if", "isinstance", "(", "idx", ",", "numbers", ".", "Integral", ")", ":", "idx", "=", "int", "(", "idx", ")", "if", "idx", "not", "in", "range", "(", "-", "dim", ",", "dim", ")", ":", "raise", "ValueError", "(", "f\"index {idx} is out of bounds for axis {i} with size {dim}\"", ")", "if", "idx", "<", "0", ":", "idx", "+=", "dim", "start", ",", "stop", "=", "idx", ",", "idx", "if", "extendSingleton", ":", "stop", "+=", "1", "elif", "isinstance", "(", "idx", ",", "slice", ")", ":", "start", ",", "stop", ",", "step", "=", "idx", ".", "indices", "(", "dim", ")", "if", "step", "!=", "1", ":", "raise", "ValueError", "(", "f\"slice {idx} has non-contiguous stride for axis {i}\"", ")", "else", ":", "raise", "ValueError", "(", "\"only integers, slices (`:`) and ellipsis (`...`) are valid indices\"", ")", "roi_start", ".", "append", "(", "start", ")", "roi_stop", ".", "append", "(", "stop", ")", "return", "roi_start", ",", "roi_stop" ]
https://github.com/ilastik/ilastik/blob/6acd2c554bc517e9c8ddad3623a7aaa2e6970c28/lazyflow/roi.py#L252-L394
securesystemslab/zippy
ff0e84ac99442c2c55fe1d285332cfd4e185e089
zippy/benchmarks/src/benchmarks/sympy/sympy/physics/secondquant.py
python
_SymbolFactory._next
(self)
return s
Generates the next symbols and increments counter by 1.
Generates the next symbols and increments counter by 1.
[ "Generates", "the", "next", "symbols", "and", "increments", "counter", "by", "1", "." ]
def _next(self): """ Generates the next symbols and increments counter by 1. """ s = Symbol("%s%i" % (self._label, self._counterVar)) self._counterVar += 1 return s
[ "def", "_next", "(", "self", ")", ":", "s", "=", "Symbol", "(", "\"%s%i\"", "%", "(", "self", ".", "_label", ",", "self", ".", "_counterVar", ")", ")", "self", ".", "_counterVar", "+=", "1", "return", "s" ]
https://github.com/securesystemslab/zippy/blob/ff0e84ac99442c2c55fe1d285332cfd4e185e089/zippy/benchmarks/src/benchmarks/sympy/sympy/physics/secondquant.py#L2741-L2747
TencentCloud/tencentcloud-sdk-python
3677fd1cdc8c5fd626ce001c13fd3b59d1f279d2
tencentcloud/tdmq/v20200217/models.py
python
AMQPRouteRelation.__init__
(self)
r""" :param RouteRelationId: 路由关系ID :type RouteRelationId: str :param SourceExchange: 源Exchange :type SourceExchange: str :param DestType: 目标类型:Queue|Exchange :type DestType: str :param DestValue: 目标值 :type DestValue: str :param RoutingKey: 绑定key :type RoutingKey: str :param SourceExchangeType: 源路由类型:Direct|Topic|Fanout :type SourceExchangeType: str :param CreateTime: 创建时间,以毫秒为单位 :type CreateTime: int :param UpdateTime: 修改时间,以毫秒为单位 :type UpdateTime: int :param Remark: 说明信息 注意:此字段可能返回 null,表示取不到有效值。 :type Remark: str
r""" :param RouteRelationId: 路由关系ID :type RouteRelationId: str :param SourceExchange: 源Exchange :type SourceExchange: str :param DestType: 目标类型:Queue|Exchange :type DestType: str :param DestValue: 目标值 :type DestValue: str :param RoutingKey: 绑定key :type RoutingKey: str :param SourceExchangeType: 源路由类型:Direct|Topic|Fanout :type SourceExchangeType: str :param CreateTime: 创建时间,以毫秒为单位 :type CreateTime: int :param UpdateTime: 修改时间,以毫秒为单位 :type UpdateTime: int :param Remark: 说明信息 注意:此字段可能返回 null,表示取不到有效值。 :type Remark: str
[ "r", ":", "param", "RouteRelationId", ":", "路由关系ID", ":", "type", "RouteRelationId", ":", "str", ":", "param", "SourceExchange", ":", "源Exchange", ":", "type", "SourceExchange", ":", "str", ":", "param", "DestType", ":", "目标类型", ":", "Queue|Exchange", ":", "type", "DestType", ":", "str", ":", "param", "DestValue", ":", "目标值", ":", "type", "DestValue", ":", "str", ":", "param", "RoutingKey", ":", "绑定key", ":", "type", "RoutingKey", ":", "str", ":", "param", "SourceExchangeType", ":", "源路由类型", ":", "Direct|Topic|Fanout", ":", "type", "SourceExchangeType", ":", "str", ":", "param", "CreateTime", ":", "创建时间,以毫秒为单位", ":", "type", "CreateTime", ":", "int", ":", "param", "UpdateTime", ":", "修改时间,以毫秒为单位", ":", "type", "UpdateTime", ":", "int", ":", "param", "Remark", ":", "说明信息", "注意:此字段可能返回", "null,表示取不到有效值。", ":", "type", "Remark", ":", "str" ]
def __init__(self): r""" :param RouteRelationId: 路由关系ID :type RouteRelationId: str :param SourceExchange: 源Exchange :type SourceExchange: str :param DestType: 目标类型:Queue|Exchange :type DestType: str :param DestValue: 目标值 :type DestValue: str :param RoutingKey: 绑定key :type RoutingKey: str :param SourceExchangeType: 源路由类型:Direct|Topic|Fanout :type SourceExchangeType: str :param CreateTime: 创建时间,以毫秒为单位 :type CreateTime: int :param UpdateTime: 修改时间,以毫秒为单位 :type UpdateTime: int :param Remark: 说明信息 注意:此字段可能返回 null,表示取不到有效值。 :type Remark: str """ self.RouteRelationId = None self.SourceExchange = None self.DestType = None self.DestValue = None self.RoutingKey = None self.SourceExchangeType = None self.CreateTime = None self.UpdateTime = None self.Remark = None
[ "def", "__init__", "(", "self", ")", ":", "self", ".", "RouteRelationId", "=", "None", "self", ".", "SourceExchange", "=", "None", "self", ".", "DestType", "=", "None", "self", ".", "DestValue", "=", "None", "self", ".", "RoutingKey", "=", "None", "self", ".", "SourceExchangeType", "=", "None", "self", ".", "CreateTime", "=", "None", "self", ".", "UpdateTime", "=", "None", "self", ".", "Remark", "=", "None" ]
https://github.com/TencentCloud/tencentcloud-sdk-python/blob/3677fd1cdc8c5fd626ce001c13fd3b59d1f279d2/tencentcloud/tdmq/v20200217/models.py#L338-L368
selfteaching/selfteaching-python-camp
9982ee964b984595e7d664b07c389cddaf158f1e
19100205/Ceasar1978/pip-19.0.3/src/pip/_vendor/requests/_internal_utils.py
python
to_native_string
(string, encoding='ascii')
return out
Given a string object, regardless of type, returns a representation of that string in the native string type, encoding and decoding where necessary. This assumes ASCII unless told otherwise.
Given a string object, regardless of type, returns a representation of that string in the native string type, encoding and decoding where necessary. This assumes ASCII unless told otherwise.
[ "Given", "a", "string", "object", "regardless", "of", "type", "returns", "a", "representation", "of", "that", "string", "in", "the", "native", "string", "type", "encoding", "and", "decoding", "where", "necessary", ".", "This", "assumes", "ASCII", "unless", "told", "otherwise", "." ]
def to_native_string(string, encoding='ascii'): """Given a string object, regardless of type, returns a representation of that string in the native string type, encoding and decoding where necessary. This assumes ASCII unless told otherwise. """ if isinstance(string, builtin_str): out = string else: if is_py2: out = string.encode(encoding) else: out = string.decode(encoding) return out
[ "def", "to_native_string", "(", "string", ",", "encoding", "=", "'ascii'", ")", ":", "if", "isinstance", "(", "string", ",", "builtin_str", ")", ":", "out", "=", "string", "else", ":", "if", "is_py2", ":", "out", "=", "string", ".", "encode", "(", "encoding", ")", "else", ":", "out", "=", "string", ".", "decode", "(", "encoding", ")", "return", "out" ]
https://github.com/selfteaching/selfteaching-python-camp/blob/9982ee964b984595e7d664b07c389cddaf158f1e/19100205/Ceasar1978/pip-19.0.3/src/pip/_vendor/requests/_internal_utils.py#L14-L27
edisonlz/fastor
342078a18363ac41d3c6b1ab29dbdd44fdb0b7b3
base/site-packages/androguard/core/bytecodes/dvm.py
python
EncodedTypeAddrPair.get_type_idx
(self)
return self.type_idx
Return the index into the type_ids list for the type of the exception to catch :rtype: int
Return the index into the type_ids list for the type of the exception to catch
[ "Return", "the", "index", "into", "the", "type_ids", "list", "for", "the", "type", "of", "the", "exception", "to", "catch" ]
def get_type_idx(self) : """ Return the index into the type_ids list for the type of the exception to catch :rtype: int """ return self.type_idx
[ "def", "get_type_idx", "(", "self", ")", ":", "return", "self", ".", "type_idx" ]
https://github.com/edisonlz/fastor/blob/342078a18363ac41d3c6b1ab29dbdd44fdb0b7b3/base/site-packages/androguard/core/bytecodes/dvm.py#L3461-L3467
yanzhou/CnkiSpider
348d7114f3ffee7b0a134cf6c5d01150433f3fde
src/bs4/diagnose.py
python
rword
(length=5)
return s
Generate a random word-like string.
Generate a random word-like string.
[ "Generate", "a", "random", "word", "-", "like", "string", "." ]
def rword(length=5): "Generate a random word-like string." s = '' for i in range(length): if i % 2 == 0: t = _consonants else: t = _vowels s += random.choice(t) return s
[ "def", "rword", "(", "length", "=", "5", ")", ":", "s", "=", "''", "for", "i", "in", "range", "(", "length", ")", ":", "if", "i", "%", "2", "==", "0", ":", "t", "=", "_consonants", "else", ":", "t", "=", "_vowels", "s", "+=", "random", ".", "choice", "(", "t", ")", "return", "s" ]
https://github.com/yanzhou/CnkiSpider/blob/348d7114f3ffee7b0a134cf6c5d01150433f3fde/src/bs4/diagnose.py#L124-L133
theotherp/nzbhydra
4b03d7f769384b97dfc60dade4806c0fc987514e
libs/platform.py
python
dist
(distname='',version='',id='', supported_dists=_supported_dists)
return linux_distribution(distname, version, id, supported_dists=supported_dists, full_distribution_name=0)
Tries to determine the name of the Linux OS distribution name. The function first looks for a distribution release file in /etc and then reverts to _dist_try_harder() in case no suitable files are found. Returns a tuple (distname,version,id) which default to the args given as parameters.
Tries to determine the name of the Linux OS distribution name.
[ "Tries", "to", "determine", "the", "name", "of", "the", "Linux", "OS", "distribution", "name", "." ]
def dist(distname='',version='',id='', supported_dists=_supported_dists): """ Tries to determine the name of the Linux OS distribution name. The function first looks for a distribution release file in /etc and then reverts to _dist_try_harder() in case no suitable files are found. Returns a tuple (distname,version,id) which default to the args given as parameters. """ return linux_distribution(distname, version, id, supported_dists=supported_dists, full_distribution_name=0)
[ "def", "dist", "(", "distname", "=", "''", ",", "version", "=", "''", ",", "id", "=", "''", ",", "supported_dists", "=", "_supported_dists", ")", ":", "return", "linux_distribution", "(", "distname", ",", "version", ",", "id", ",", "supported_dists", "=", "supported_dists", ",", "full_distribution_name", "=", "0", ")" ]
https://github.com/theotherp/nzbhydra/blob/4b03d7f769384b97dfc60dade4806c0fc987514e/libs/platform.py#L347-L363
XX-net/XX-Net
a9898cfcf0084195fb7e69b6bc834e59aecdf14f
python3.8.2/Lib/site-packages/OpenSSL/SSL.py
python
Connection.accept
(self)
return (conn, addr)
Call the :meth:`accept` method of the underlying socket and set up SSL on the returned socket, using the Context object supplied to this :class:`Connection` object at creation. :return: A *(conn, addr)* pair where *conn* is the new :class:`Connection` object created, and *address* is as returned by the socket's :meth:`accept`.
Call the :meth:`accept` method of the underlying socket and set up SSL on the returned socket, using the Context object supplied to this :class:`Connection` object at creation.
[ "Call", "the", ":", "meth", ":", "accept", "method", "of", "the", "underlying", "socket", "and", "set", "up", "SSL", "on", "the", "returned", "socket", "using", "the", "Context", "object", "supplied", "to", "this", ":", "class", ":", "Connection", "object", "at", "creation", "." ]
def accept(self): """ Call the :meth:`accept` method of the underlying socket and set up SSL on the returned socket, using the Context object supplied to this :class:`Connection` object at creation. :return: A *(conn, addr)* pair where *conn* is the new :class:`Connection` object created, and *address* is as returned by the socket's :meth:`accept`. """ client, addr = self._socket.accept() conn = Connection(self._context, client) conn.set_accept_state() return (conn, addr)
[ "def", "accept", "(", "self", ")", ":", "client", ",", "addr", "=", "self", ".", "_socket", ".", "accept", "(", ")", "conn", "=", "Connection", "(", "self", ".", "_context", ",", "client", ")", "conn", ".", "set_accept_state", "(", ")", "return", "(", "conn", ",", "addr", ")" ]
https://github.com/XX-net/XX-Net/blob/a9898cfcf0084195fb7e69b6bc834e59aecdf14f/python3.8.2/Lib/site-packages/OpenSSL/SSL.py#L1981-L1994
007gzs/dingtalk-sdk
7979da2e259fdbc571728cae2425a04dbc65850a
dingtalk/client/api/taobao.py
python
TbGuoNeiJiPiaoDingDan.taobao_alitrip_seller_refund_get
( self, apply_id )
return self._top_request( "taobao.alitrip.seller.refund.get", { "apply_id": apply_id } )
【机票代理商】退票申请单详情 查询退票申请单详情 文档地址:https://open-doc.dingtalk.com/docs/api.htm?apiId=26087 :param apply_id: 申请单ID
【机票代理商】退票申请单详情 查询退票申请单详情 文档地址:https://open-doc.dingtalk.com/docs/api.htm?apiId=26087
[ "【机票代理商】退票申请单详情", "查询退票申请单详情", "文档地址:https", ":", "//", "open", "-", "doc", ".", "dingtalk", ".", "com", "/", "docs", "/", "api", ".", "htm?apiId", "=", "26087" ]
def taobao_alitrip_seller_refund_get( self, apply_id ): """ 【机票代理商】退票申请单详情 查询退票申请单详情 文档地址:https://open-doc.dingtalk.com/docs/api.htm?apiId=26087 :param apply_id: 申请单ID """ return self._top_request( "taobao.alitrip.seller.refund.get", { "apply_id": apply_id } )
[ "def", "taobao_alitrip_seller_refund_get", "(", "self", ",", "apply_id", ")", ":", "return", "self", ".", "_top_request", "(", "\"taobao.alitrip.seller.refund.get\"", ",", "{", "\"apply_id\"", ":", "apply_id", "}", ")" ]
https://github.com/007gzs/dingtalk-sdk/blob/7979da2e259fdbc571728cae2425a04dbc65850a/dingtalk/client/api/taobao.py#L76961-L76977
merixstudio/django-trench
27b61479e6d494d7c2e94732c1d186247dac8dd9
trench/views/base.py
python
MFAPrimaryMethodChangeView.post
(request: Request)
[]
def post(request: Request) -> Response: mfa_model = get_mfa_model() mfa_method_name = mfa_model.objects.get_primary_active_name( user_id=request.user.id ) serializer = ChangePrimaryMethodValidator( user=request.user, mfa_method_name=mfa_method_name, data=request.data ) serializer.is_valid(raise_exception=True) try: set_primary_mfa_method_command( user_id=request.user.id, name=serializer.validated_data["method"] ) return Response(status=HTTP_204_NO_CONTENT) except MFAValidationError as cause: return ErrorResponse(error=cause)
[ "def", "post", "(", "request", ":", "Request", ")", "->", "Response", ":", "mfa_model", "=", "get_mfa_model", "(", ")", "mfa_method_name", "=", "mfa_model", ".", "objects", ".", "get_primary_active_name", "(", "user_id", "=", "request", ".", "user", ".", "id", ")", "serializer", "=", "ChangePrimaryMethodValidator", "(", "user", "=", "request", ".", "user", ",", "mfa_method_name", "=", "mfa_method_name", ",", "data", "=", "request", ".", "data", ")", "serializer", ".", "is_valid", "(", "raise_exception", "=", "True", ")", "try", ":", "set_primary_mfa_method_command", "(", "user_id", "=", "request", ".", "user", ".", "id", ",", "name", "=", "serializer", ".", "validated_data", "[", "\"method\"", "]", ")", "return", "Response", "(", "status", "=", "HTTP_204_NO_CONTENT", ")", "except", "MFAValidationError", "as", "cause", ":", "return", "ErrorResponse", "(", "error", "=", "cause", ")" ]
https://github.com/merixstudio/django-trench/blob/27b61479e6d494d7c2e94732c1d186247dac8dd9/trench/views/base.py#L233-L248
holzschu/Carnets
44effb10ddfc6aa5c8b0687582a724ba82c6b547
Library/lib/python3.7/site-packages/matplotlib-3.0.3-py3.7-macosx-10.9-x86_64.egg/matplotlib/axes/_axes.py
python
Axes.loglog
(self, *args, **kwargs)
return l
Make a plot with log scaling on both the x and y axis. Call signatures:: loglog([x], y, [fmt], data=None, **kwargs) loglog([x], y, [fmt], [x2], y2, [fmt2], ..., **kwargs) This is just a thin wrapper around `.plot` which additionally changes both the x-axis and the y-axis to log scaling. All of the concepts and parameters of plot can be used here as well. The additional parameters *basex/y*, *subsx/y* and *nonposx/y* control the x/y-axis properties. They are just forwarded to `.Axes.set_xscale` and `.Axes.set_yscale`. Parameters ---------- basex, basey : scalar, optional, default 10 Base of the x/y logarithm. subsx, subsy : sequence, optional The location of the minor x/y ticks. If *None*, reasonable locations are automatically chosen depending on the number of decades in the plot. See `.Axes.set_xscale` / `.Axes.set_yscale` for details. nonposx, nonposy : {'mask', 'clip'}, optional, default 'mask' Non-positive values in x or y can be masked as invalid, or clipped to a very small positive number. Returns ------- lines A list of `~.Line2D` objects representing the plotted data. Other Parameters ---------------- **kwargs All parameters supported by `.plot`.
Make a plot with log scaling on both the x and y axis.
[ "Make", "a", "plot", "with", "log", "scaling", "on", "both", "the", "x", "and", "y", "axis", "." ]
def loglog(self, *args, **kwargs): """ Make a plot with log scaling on both the x and y axis. Call signatures:: loglog([x], y, [fmt], data=None, **kwargs) loglog([x], y, [fmt], [x2], y2, [fmt2], ..., **kwargs) This is just a thin wrapper around `.plot` which additionally changes both the x-axis and the y-axis to log scaling. All of the concepts and parameters of plot can be used here as well. The additional parameters *basex/y*, *subsx/y* and *nonposx/y* control the x/y-axis properties. They are just forwarded to `.Axes.set_xscale` and `.Axes.set_yscale`. Parameters ---------- basex, basey : scalar, optional, default 10 Base of the x/y logarithm. subsx, subsy : sequence, optional The location of the minor x/y ticks. If *None*, reasonable locations are automatically chosen depending on the number of decades in the plot. See `.Axes.set_xscale` / `.Axes.set_yscale` for details. nonposx, nonposy : {'mask', 'clip'}, optional, default 'mask' Non-positive values in x or y can be masked as invalid, or clipped to a very small positive number. Returns ------- lines A list of `~.Line2D` objects representing the plotted data. Other Parameters ---------------- **kwargs All parameters supported by `.plot`. """ dx = {k: kwargs.pop(k) for k in ['basex', 'subsx', 'nonposx'] if k in kwargs} dy = {k: kwargs.pop(k) for k in ['basey', 'subsy', 'nonposy'] if k in kwargs} self.set_xscale('log', **dx) self.set_yscale('log', **dy) l = self.plot(*args, **kwargs) return l
[ "def", "loglog", "(", "self", ",", "*", "args", ",", "*", "*", "kwargs", ")", ":", "dx", "=", "{", "k", ":", "kwargs", ".", "pop", "(", "k", ")", "for", "k", "in", "[", "'basex'", ",", "'subsx'", ",", "'nonposx'", "]", "if", "k", "in", "kwargs", "}", "dy", "=", "{", "k", ":", "kwargs", ".", "pop", "(", "k", ")", "for", "k", "in", "[", "'basey'", ",", "'subsy'", ",", "'nonposy'", "]", "if", "k", "in", "kwargs", "}", "self", ".", "set_xscale", "(", "'log'", ",", "*", "*", "dx", ")", "self", ".", "set_yscale", "(", "'log'", ",", "*", "*", "dy", ")", "l", "=", "self", ".", "plot", "(", "*", "args", ",", "*", "*", "kwargs", ")", "return", "l" ]
https://github.com/holzschu/Carnets/blob/44effb10ddfc6aa5c8b0687582a724ba82c6b547/Library/lib/python3.7/site-packages/matplotlib-3.0.3-py3.7-macosx-10.9-x86_64.egg/matplotlib/axes/_axes.py#L1697-L1748
exodrifter/unity-python
bef6e4e9ddfbbf1eaf7acbbb973e9aa3dd64a20d
Lib/distutils/ccompiler.py
python
CCompiler.create_static_lib
(self, objects, output_libname, output_dir=None, debug=0, target_lang=None)
Link a bunch of stuff together to create a static library file. The "bunch of stuff" consists of the list of object files supplied as 'objects', the extra object files supplied to 'add_link_object()' and/or 'set_link_objects()', the libraries supplied to 'add_library()' and/or 'set_libraries()', and the libraries supplied as 'libraries' (if any). 'output_libname' should be a library name, not a filename; the filename will be inferred from the library name. 'output_dir' is the directory where the library file will be put. 'debug' is a boolean; if true, debugging information will be included in the library (note that on most platforms, it is the compile step where this matters: the 'debug' flag is included here just for consistency). 'target_lang' is the target language for which the given objects are being compiled. This allows specific linkage time treatment of certain languages. Raises LibError on failure.
Link a bunch of stuff together to create a static library file. The "bunch of stuff" consists of the list of object files supplied as 'objects', the extra object files supplied to 'add_link_object()' and/or 'set_link_objects()', the libraries supplied to 'add_library()' and/or 'set_libraries()', and the libraries supplied as 'libraries' (if any).
[ "Link", "a", "bunch", "of", "stuff", "together", "to", "create", "a", "static", "library", "file", ".", "The", "bunch", "of", "stuff", "consists", "of", "the", "list", "of", "object", "files", "supplied", "as", "objects", "the", "extra", "object", "files", "supplied", "to", "add_link_object", "()", "and", "/", "or", "set_link_objects", "()", "the", "libraries", "supplied", "to", "add_library", "()", "and", "/", "or", "set_libraries", "()", "and", "the", "libraries", "supplied", "as", "libraries", "(", "if", "any", ")", "." ]
def create_static_lib(self, objects, output_libname, output_dir=None, debug=0, target_lang=None): """Link a bunch of stuff together to create a static library file. The "bunch of stuff" consists of the list of object files supplied as 'objects', the extra object files supplied to 'add_link_object()' and/or 'set_link_objects()', the libraries supplied to 'add_library()' and/or 'set_libraries()', and the libraries supplied as 'libraries' (if any). 'output_libname' should be a library name, not a filename; the filename will be inferred from the library name. 'output_dir' is the directory where the library file will be put. 'debug' is a boolean; if true, debugging information will be included in the library (note that on most platforms, it is the compile step where this matters: the 'debug' flag is included here just for consistency). 'target_lang' is the target language for which the given objects are being compiled. This allows specific linkage time treatment of certain languages. Raises LibError on failure. """ pass
[ "def", "create_static_lib", "(", "self", ",", "objects", ",", "output_libname", ",", "output_dir", "=", "None", ",", "debug", "=", "0", ",", "target_lang", "=", "None", ")", ":", "pass" ]
https://github.com/exodrifter/unity-python/blob/bef6e4e9ddfbbf1eaf7acbbb973e9aa3dd64a20d/Lib/distutils/ccompiler.py#L586-L610
securityclippy/elasticintel
aa08d3e9f5ab1c000128e95161139ce97ff0e334
ingest_feed_lambda/numpy/ma/extras.py
python
_ezclump
(mask)
return r
Finds the clumps (groups of data with the same values) for a 1D bool array. Returns a series of slices.
Finds the clumps (groups of data with the same values) for a 1D bool array.
[ "Finds", "the", "clumps", "(", "groups", "of", "data", "with", "the", "same", "values", ")", "for", "a", "1D", "bool", "array", "." ]
def _ezclump(mask): """ Finds the clumps (groups of data with the same values) for a 1D bool array. Returns a series of slices. """ if mask.ndim > 1: mask = mask.ravel() idx = (mask[1:] ^ mask[:-1]).nonzero() idx = idx[0] + 1 if mask[0]: if len(idx) == 0: return [slice(0, mask.size)] r = [slice(0, idx[0])] r.extend((slice(left, right) for left, right in zip(idx[1:-1:2], idx[2::2]))) else: if len(idx) == 0: return [] r = [slice(left, right) for left, right in zip(idx[:-1:2], idx[1::2])] if mask[-1]: r.append(slice(idx[-1], mask.size)) return r
[ "def", "_ezclump", "(", "mask", ")", ":", "if", "mask", ".", "ndim", ">", "1", ":", "mask", "=", "mask", ".", "ravel", "(", ")", "idx", "=", "(", "mask", "[", "1", ":", "]", "^", "mask", "[", ":", "-", "1", "]", ")", ".", "nonzero", "(", ")", "idx", "=", "idx", "[", "0", "]", "+", "1", "if", "mask", "[", "0", "]", ":", "if", "len", "(", "idx", ")", "==", "0", ":", "return", "[", "slice", "(", "0", ",", "mask", ".", "size", ")", "]", "r", "=", "[", "slice", "(", "0", ",", "idx", "[", "0", "]", ")", "]", "r", ".", "extend", "(", "(", "slice", "(", "left", ",", "right", ")", "for", "left", ",", "right", "in", "zip", "(", "idx", "[", "1", ":", "-", "1", ":", "2", "]", ",", "idx", "[", "2", ":", ":", "2", "]", ")", ")", ")", "else", ":", "if", "len", "(", "idx", ")", "==", "0", ":", "return", "[", "]", "r", "=", "[", "slice", "(", "left", ",", "right", ")", "for", "left", ",", "right", "in", "zip", "(", "idx", "[", ":", "-", "1", ":", "2", "]", ",", "idx", "[", "1", ":", ":", "2", "]", ")", "]", "if", "mask", "[", "-", "1", "]", ":", "r", ".", "append", "(", "slice", "(", "idx", "[", "-", "1", "]", ",", "mask", ".", "size", ")", ")", "return", "r" ]
https://github.com/securityclippy/elasticintel/blob/aa08d3e9f5ab1c000128e95161139ce97ff0e334/ingest_feed_lambda/numpy/ma/extras.py#L1722-L1748
google/coursebuilder-core
08f809db3226d9269e30d5edd0edd33bd22041f4
coursebuilder/models/data_removal.py
python
Registry.register_indexed_by_user_id_remover
(cls, remover)
Register a function that can remove instances by user_id. These items are treated differently from un-indexed items, because we want to be able to very rapidly remove the bulk of the data for a given user. Items that are keyed or indexed by user ID tend to contain more sensitive PII; non-indexed items will generally be more along the lines of user events, etc. Also, immediately removing the user record will prevent re-login, and that's important for giving users the strong feedback that on un-register they really have had their stuff removed. Args: remover: A function to remove DB instances that are indexable by user ID. The function must take exactly one parameter: The string constituting the user_id. (This is the string returned from users.get_current_user().user_id()).
Register a function that can remove instances by user_id.
[ "Register", "a", "function", "that", "can", "remove", "instances", "by", "user_id", "." ]
def register_indexed_by_user_id_remover(cls, remover): """Register a function that can remove instances by user_id. These items are treated differently from un-indexed items, because we want to be able to very rapidly remove the bulk of the data for a given user. Items that are keyed or indexed by user ID tend to contain more sensitive PII; non-indexed items will generally be more along the lines of user events, etc. Also, immediately removing the user record will prevent re-login, and that's important for giving users the strong feedback that on un-register they really have had their stuff removed. Args: remover: A function to remove DB instances that are indexable by user ID. The function must take exactly one parameter: The string constituting the user_id. (This is the string returned from users.get_current_user().user_id()). """ cls._remove_by_user_id_functions.append(remover)
[ "def", "register_indexed_by_user_id_remover", "(", "cls", ",", "remover", ")", ":", "cls", ".", "_remove_by_user_id_functions", ".", "append", "(", "remover", ")" ]
https://github.com/google/coursebuilder-core/blob/08f809db3226d9269e30d5edd0edd33bd22041f4/coursebuilder/models/data_removal.py#L49-L68
eugene-eeo/graphlite
8d17e9549ee8610570dcde1b427431a2584395b7
graphlite/transaction.py
python
Transaction.abort
(self)
Raises an ``AbortSignal``. If you used the ``Graph.transaction`` context manager this exception is automatically caught and ignored.
Raises an ``AbortSignal``. If you used the ``Graph.transaction`` context manager this exception is automatically caught and ignored.
[ "Raises", "an", "AbortSignal", ".", "If", "you", "used", "the", "Graph", ".", "transaction", "context", "manager", "this", "exception", "is", "automatically", "caught", "and", "ignored", "." ]
def abort(self): """ Raises an ``AbortSignal``. If you used the ``Graph.transaction`` context manager this exception is automatically caught and ignored. """ self.clear() raise AbortSignal
[ "def", "abort", "(", "self", ")", ":", "self", ".", "clear", "(", ")", "raise", "AbortSignal" ]
https://github.com/eugene-eeo/graphlite/blob/8d17e9549ee8610570dcde1b427431a2584395b7/graphlite/transaction.py#L67-L74
4shadoww/hakkuframework
409a11fc3819d251f86faa3473439f8c19066a21
lib/future/backports/misc.py
python
ceil
(x)
return int(oldceil(x))
Return the ceiling of x as an int. This is the smallest integral value >= x.
Return the ceiling of x as an int. This is the smallest integral value >= x.
[ "Return", "the", "ceiling", "of", "x", "as", "an", "int", ".", "This", "is", "the", "smallest", "integral", "value", ">", "=", "x", "." ]
def ceil(x): """ Return the ceiling of x as an int. This is the smallest integral value >= x. """ return int(oldceil(x))
[ "def", "ceil", "(", "x", ")", ":", "return", "int", "(", "oldceil", "(", "x", ")", ")" ]
https://github.com/4shadoww/hakkuframework/blob/409a11fc3819d251f86faa3473439f8c19066a21/lib/future/backports/misc.py#L35-L40
midgetspy/Sick-Beard
171a607e41b7347a74cc815f6ecce7968d9acccf
lib/configobj.py
python
ConfigObj._match_depth
(self, sect, depth)
Given a section and a depth level, walk back through the sections parents to see if the depth level matches a previous section. Return a reference to the right section, or raise a SyntaxError.
Given a section and a depth level, walk back through the sections parents to see if the depth level matches a previous section. Return a reference to the right section, or raise a SyntaxError.
[ "Given", "a", "section", "and", "a", "depth", "level", "walk", "back", "through", "the", "sections", "parents", "to", "see", "if", "the", "depth", "level", "matches", "a", "previous", "section", ".", "Return", "a", "reference", "to", "the", "right", "section", "or", "raise", "a", "SyntaxError", "." ]
def _match_depth(self, sect, depth): """ Given a section and a depth level, walk back through the sections parents to see if the depth level matches a previous section. Return a reference to the right section, or raise a SyntaxError. """ while depth < sect.depth: if sect is sect.parent: # we've reached the top level already raise SyntaxError() sect = sect.parent if sect.depth == depth: return sect # shouldn't get here raise SyntaxError()
[ "def", "_match_depth", "(", "self", ",", "sect", ",", "depth", ")", ":", "while", "depth", "<", "sect", ".", "depth", ":", "if", "sect", "is", "sect", ".", "parent", ":", "# we've reached the top level already", "raise", "SyntaxError", "(", ")", "sect", "=", "sect", ".", "parent", "if", "sect", ".", "depth", "==", "depth", ":", "return", "sect", "# shouldn't get here", "raise", "SyntaxError", "(", ")" ]
https://github.com/midgetspy/Sick-Beard/blob/171a607e41b7347a74cc815f6ecce7968d9acccf/lib/configobj.py#L1666-L1682
biopython/biopython
2dd97e71762af7b046d7f7f8a4f1e38db6b06c86
Bio/Graphics/GenomeDiagram/_CircularDrawer.py
python
CircularDrawer._draw_arc_poly
( self, inner_radius, outer_radius, inner_startangle, inner_endangle, outer_startangle, outer_endangle, color, border=None, flip=False, **kwargs, )
Return polygon path describing an arc.
Return polygon path describing an arc.
[ "Return", "polygon", "path", "describing", "an", "arc", "." ]
def _draw_arc_poly( self, inner_radius, outer_radius, inner_startangle, inner_endangle, outer_startangle, outer_endangle, color, border=None, flip=False, **kwargs, ): """Return polygon path describing an arc.""" strokecolor, color = _stroke_and_fill_colors(color, border) x0, y0 = self.xcenter, self.ycenter # origin of the circle if ( abs(inner_endangle - outer_startangle) > 0.01 or abs(outer_endangle - inner_startangle) > 0.01 or abs(inner_startangle - outer_startangle) > 0.01 or abs(outer_startangle - outer_startangle) > 0.01 ): # Wide arc, must use full curves p = ArcPath( strokeColor=strokecolor, fillColor=color, # default is mitre/miter which can stick out too much: strokeLineJoin=1, # 1=round strokewidth=0, ) # Note reportlab counts angles anti-clockwise from the horizontal # (as in mathematics, e.g. complex numbers and polar coordinates) # but we use clockwise from the vertical. Also reportlab uses # degrees, but we use radians. i_start = 90 - (inner_startangle * 180 / pi) i_end = 90 - (inner_endangle * 180 / pi) o_start = 90 - (outer_startangle * 180 / pi) o_end = 90 - (outer_endangle * 180 / pi) p.addArc(x0, y0, inner_radius, i_end, i_start, moveTo=True, reverse=True) if flip: # Flipped, join end to start, self._draw_arc_line(p, inner_radius, outer_radius, i_end, o_start) p.addArc(x0, y0, outer_radius, o_end, o_start, reverse=True) self._draw_arc_line(p, outer_radius, inner_radius, o_end, i_start) else: # Not flipped, join start to start, end to end self._draw_arc_line(p, inner_radius, outer_radius, i_end, o_end) p.addArc(x0, y0, outer_radius, o_end, o_start, reverse=False) self._draw_arc_line(p, outer_radius, inner_radius, o_start, i_start) p.closePath() return p else: # Cheat and just use a four sided polygon. # Calculate trig values for angle and coordinates inner_startcos, inner_startsin = ( cos(inner_startangle), sin(inner_startangle), ) inner_endcos, inner_endsin = cos(inner_endangle), sin(inner_endangle) outer_startcos, outer_startsin = ( cos(outer_startangle), sin(outer_startangle), ) outer_endcos, outer_endsin = cos(outer_endangle), sin(outer_endangle) x1, y1 = ( x0 + inner_radius * inner_startsin, y0 + inner_radius * inner_startcos, ) x2, y2 = ( x0 + inner_radius * inner_endsin, y0 + inner_radius * inner_endcos, ) x3, y3 = ( x0 + outer_radius * outer_endsin, y0 + outer_radius * outer_endcos, ) x4, y4 = ( x0 + outer_radius * outer_startsin, y0 + outer_radius * outer_startcos, ) return draw_polygon( [(x1, y1), (x2, y2), (x3, y3), (x4, y4)], color, border, # default is mitre/miter which can stick out too much: strokeLineJoin=1, # 1=round )
[ "def", "_draw_arc_poly", "(", "self", ",", "inner_radius", ",", "outer_radius", ",", "inner_startangle", ",", "inner_endangle", ",", "outer_startangle", ",", "outer_endangle", ",", "color", ",", "border", "=", "None", ",", "flip", "=", "False", ",", "*", "*", "kwargs", ",", ")", ":", "strokecolor", ",", "color", "=", "_stroke_and_fill_colors", "(", "color", ",", "border", ")", "x0", ",", "y0", "=", "self", ".", "xcenter", ",", "self", ".", "ycenter", "# origin of the circle", "if", "(", "abs", "(", "inner_endangle", "-", "outer_startangle", ")", ">", "0.01", "or", "abs", "(", "outer_endangle", "-", "inner_startangle", ")", ">", "0.01", "or", "abs", "(", "inner_startangle", "-", "outer_startangle", ")", ">", "0.01", "or", "abs", "(", "outer_startangle", "-", "outer_startangle", ")", ">", "0.01", ")", ":", "# Wide arc, must use full curves", "p", "=", "ArcPath", "(", "strokeColor", "=", "strokecolor", ",", "fillColor", "=", "color", ",", "# default is mitre/miter which can stick out too much:", "strokeLineJoin", "=", "1", ",", "# 1=round", "strokewidth", "=", "0", ",", ")", "# Note reportlab counts angles anti-clockwise from the horizontal", "# (as in mathematics, e.g. complex numbers and polar coordinates)", "# but we use clockwise from the vertical. Also reportlab uses", "# degrees, but we use radians.", "i_start", "=", "90", "-", "(", "inner_startangle", "*", "180", "/", "pi", ")", "i_end", "=", "90", "-", "(", "inner_endangle", "*", "180", "/", "pi", ")", "o_start", "=", "90", "-", "(", "outer_startangle", "*", "180", "/", "pi", ")", "o_end", "=", "90", "-", "(", "outer_endangle", "*", "180", "/", "pi", ")", "p", ".", "addArc", "(", "x0", ",", "y0", ",", "inner_radius", ",", "i_end", ",", "i_start", ",", "moveTo", "=", "True", ",", "reverse", "=", "True", ")", "if", "flip", ":", "# Flipped, join end to start,", "self", ".", "_draw_arc_line", "(", "p", ",", "inner_radius", ",", "outer_radius", ",", "i_end", ",", "o_start", ")", "p", ".", "addArc", "(", "x0", ",", "y0", ",", "outer_radius", ",", "o_end", ",", "o_start", ",", "reverse", "=", "True", ")", "self", ".", "_draw_arc_line", "(", "p", ",", "outer_radius", ",", "inner_radius", ",", "o_end", ",", "i_start", ")", "else", ":", "# Not flipped, join start to start, end to end", "self", ".", "_draw_arc_line", "(", "p", ",", "inner_radius", ",", "outer_radius", ",", "i_end", ",", "o_end", ")", "p", ".", "addArc", "(", "x0", ",", "y0", ",", "outer_radius", ",", "o_end", ",", "o_start", ",", "reverse", "=", "False", ")", "self", ".", "_draw_arc_line", "(", "p", ",", "outer_radius", ",", "inner_radius", ",", "o_start", ",", "i_start", ")", "p", ".", "closePath", "(", ")", "return", "p", "else", ":", "# Cheat and just use a four sided polygon.", "# Calculate trig values for angle and coordinates", "inner_startcos", ",", "inner_startsin", "=", "(", "cos", "(", "inner_startangle", ")", ",", "sin", "(", "inner_startangle", ")", ",", ")", "inner_endcos", ",", "inner_endsin", "=", "cos", "(", "inner_endangle", ")", ",", "sin", "(", "inner_endangle", ")", "outer_startcos", ",", "outer_startsin", "=", "(", "cos", "(", "outer_startangle", ")", ",", "sin", "(", "outer_startangle", ")", ",", ")", "outer_endcos", ",", "outer_endsin", "=", "cos", "(", "outer_endangle", ")", ",", "sin", "(", "outer_endangle", ")", "x1", ",", "y1", "=", "(", "x0", "+", "inner_radius", "*", "inner_startsin", ",", "y0", "+", "inner_radius", "*", "inner_startcos", ",", ")", "x2", ",", "y2", "=", "(", "x0", "+", "inner_radius", "*", "inner_endsin", ",", "y0", "+", "inner_radius", "*", "inner_endcos", ",", ")", "x3", ",", "y3", "=", "(", "x0", "+", "outer_radius", "*", "outer_endsin", ",", "y0", "+", "outer_radius", "*", "outer_endcos", ",", ")", "x4", ",", "y4", "=", "(", "x0", "+", "outer_radius", "*", "outer_startsin", ",", "y0", "+", "outer_radius", "*", "outer_startcos", ",", ")", "return", "draw_polygon", "(", "[", "(", "x1", ",", "y1", ")", ",", "(", "x2", ",", "y2", ")", ",", "(", "x3", ",", "y3", ")", ",", "(", "x4", ",", "y4", ")", "]", ",", "color", ",", "border", ",", "# default is mitre/miter which can stick out too much:", "strokeLineJoin", "=", "1", ",", "# 1=round", ")" ]
https://github.com/biopython/biopython/blob/2dd97e71762af7b046d7f7f8a4f1e38db6b06c86/Bio/Graphics/GenomeDiagram/_CircularDrawer.py#L1185-L1272
sympy/sympy
d822fcba181155b85ff2b29fe525adbafb22b448
sympy/physics/quantum/pauli.py
python
qsimplify_pauli
(e)
return e
Simplify an expression that includes products of pauli operators. Parameters ========== e : expression An expression that contains products of Pauli operators that is to be simplified. Examples ======== >>> from sympy.physics.quantum.pauli import SigmaX, SigmaY >>> from sympy.physics.quantum.pauli import qsimplify_pauli >>> sx, sy = SigmaX(), SigmaY() >>> sx * sy SigmaX()*SigmaY() >>> qsimplify_pauli(sx * sy) I*SigmaZ()
Simplify an expression that includes products of pauli operators.
[ "Simplify", "an", "expression", "that", "includes", "products", "of", "pauli", "operators", "." ]
def qsimplify_pauli(e): """ Simplify an expression that includes products of pauli operators. Parameters ========== e : expression An expression that contains products of Pauli operators that is to be simplified. Examples ======== >>> from sympy.physics.quantum.pauli import SigmaX, SigmaY >>> from sympy.physics.quantum.pauli import qsimplify_pauli >>> sx, sy = SigmaX(), SigmaY() >>> sx * sy SigmaX()*SigmaY() >>> qsimplify_pauli(sx * sy) I*SigmaZ() """ if isinstance(e, Operator): return e if isinstance(e, (Add, Pow, exp)): t = type(e) return t(*(qsimplify_pauli(arg) for arg in e.args)) if isinstance(e, Mul): c, nc = e.args_cnc() nc_s = [] while nc: curr = nc.pop(0) while (len(nc) and isinstance(curr, SigmaOpBase) and isinstance(nc[0], SigmaOpBase) and curr.name == nc[0].name): x = nc.pop(0) y = _qsimplify_pauli_product(curr, x) c1, nc1 = y.args_cnc() curr = Mul(*nc1) c = c + c1 nc_s.append(curr) return Mul(*c) * Mul(*nc_s) return e
[ "def", "qsimplify_pauli", "(", "e", ")", ":", "if", "isinstance", "(", "e", ",", "Operator", ")", ":", "return", "e", "if", "isinstance", "(", "e", ",", "(", "Add", ",", "Pow", ",", "exp", ")", ")", ":", "t", "=", "type", "(", "e", ")", "return", "t", "(", "*", "(", "qsimplify_pauli", "(", "arg", ")", "for", "arg", "in", "e", ".", "args", ")", ")", "if", "isinstance", "(", "e", ",", "Mul", ")", ":", "c", ",", "nc", "=", "e", ".", "args_cnc", "(", ")", "nc_s", "=", "[", "]", "while", "nc", ":", "curr", "=", "nc", ".", "pop", "(", "0", ")", "while", "(", "len", "(", "nc", ")", "and", "isinstance", "(", "curr", ",", "SigmaOpBase", ")", "and", "isinstance", "(", "nc", "[", "0", "]", ",", "SigmaOpBase", ")", "and", "curr", ".", "name", "==", "nc", "[", "0", "]", ".", "name", ")", ":", "x", "=", "nc", ".", "pop", "(", "0", ")", "y", "=", "_qsimplify_pauli_product", "(", "curr", ",", "x", ")", "c1", ",", "nc1", "=", "y", ".", "args_cnc", "(", ")", "curr", "=", "Mul", "(", "*", "nc1", ")", "c", "=", "c", "+", "c1", "nc_s", ".", "append", "(", "curr", ")", "return", "Mul", "(", "*", "c", ")", "*", "Mul", "(", "*", "nc_s", ")", "return", "e" ]
https://github.com/sympy/sympy/blob/d822fcba181155b85ff2b29fe525adbafb22b448/sympy/physics/quantum/pauli.py#L623-L675
pyenchant/pyenchant
fc2a4a3fca6a55d510d01455b814aa27cdfc961e
enchant/__init__.py
python
Broker.set_ordering
(self, tag: str, ordering: str)
Set dictionary preferences for a language. The Enchant library supports the use of multiple dictionary programs and multiple languages. This method specifies which dictionaries the broker should prefer when dealing with a given language. `tag` must be an appropriate language specification and `ordering` is a string listing the dictionaries in order of preference. For example a valid ordering might be "aspell,myspell,ispell". The value of `tag` can also be set to "*" to set a default ordering for all languages for which one has not been set explicitly.
Set dictionary preferences for a language.
[ "Set", "dictionary", "preferences", "for", "a", "language", "." ]
def set_ordering(self, tag: str, ordering: str) -> None: """Set dictionary preferences for a language. The Enchant library supports the use of multiple dictionary programs and multiple languages. This method specifies which dictionaries the broker should prefer when dealing with a given language. `tag` must be an appropriate language specification and `ordering` is a string listing the dictionaries in order of preference. For example a valid ordering might be "aspell,myspell,ispell". The value of `tag` can also be set to "*" to set a default ordering for all languages for which one has not been set explicitly. """ self._check_this() _e.broker_set_ordering(self._this, tag.encode(), ordering.encode())
[ "def", "set_ordering", "(", "self", ",", "tag", ":", "str", ",", "ordering", ":", "str", ")", "->", "None", ":", "self", ".", "_check_this", "(", ")", "_e", ".", "broker_set_ordering", "(", "self", ".", "_this", ",", "tag", ".", "encode", "(", ")", ",", "ordering", ".", "encode", "(", ")", ")" ]
https://github.com/pyenchant/pyenchant/blob/fc2a4a3fca6a55d510d01455b814aa27cdfc961e/enchant/__init__.py#L354-L367
carmaa/inception
6c09195f1318ae66010d629b1a86c10524251e26
inception/external/pymetasploit/metasploit/msfrpc.py
python
Workspace.events
(self)
return EventsTable(self.rpc, self.name)
Returns the events table for the current workspace.
Returns the events table for the current workspace.
[ "Returns", "the", "events", "table", "for", "the", "current", "workspace", "." ]
def events(self): """ Returns the events table for the current workspace. """ return EventsTable(self.rpc, self.name)
[ "def", "events", "(", "self", ")", ":", "return", "EventsTable", "(", "self", ".", "rpc", ",", "self", ".", "name", ")" ]
https://github.com/carmaa/inception/blob/6c09195f1318ae66010d629b1a86c10524251e26/inception/external/pymetasploit/metasploit/msfrpc.py#L943-L947
equinor/segyio
a98c2bc21d238de00b9b65be331d7a011d8a6372
python/segyio/create.py
python
default_text_header
(iline, xline, offset)
return bytes(rows)
[]
def default_text_header(iline, xline, offset): lines = { 1: "DATE %s" % datetime.date.today().isoformat(), 2: "AN INCREASE IN AMPLITUDE EQUALS AN INCREASE IN ACOUSTIC IMPEDANCE", 3: "Written by libsegyio (python)", 11: "TRACE HEADER POSITION:", 12: " INLINE BYTES %03d-%03d | OFFSET BYTES %03d-%03d" % (iline, iline + 4, int(offset), int(offset) + 4), 13: " CROSSLINE BYTES %03d-%03d |" % (xline, xline + 4), 15: "END EBCDIC HEADER", } rows = segyio.create_text_header(lines) rows = bytearray(rows, 'ascii') # mutable array of bytes rows[-1] = 128 # \x80 -- Unsure if this is really required... return bytes(rows)
[ "def", "default_text_header", "(", "iline", ",", "xline", ",", "offset", ")", ":", "lines", "=", "{", "1", ":", "\"DATE %s\"", "%", "datetime", ".", "date", ".", "today", "(", ")", ".", "isoformat", "(", ")", ",", "2", ":", "\"AN INCREASE IN AMPLITUDE EQUALS AN INCREASE IN ACOUSTIC IMPEDANCE\"", ",", "3", ":", "\"Written by libsegyio (python)\"", ",", "11", ":", "\"TRACE HEADER POSITION:\"", ",", "12", ":", "\" INLINE BYTES %03d-%03d | OFFSET BYTES %03d-%03d\"", "%", "(", "iline", ",", "iline", "+", "4", ",", "int", "(", "offset", ")", ",", "int", "(", "offset", ")", "+", "4", ")", ",", "13", ":", "\" CROSSLINE BYTES %03d-%03d |\"", "%", "(", "xline", ",", "xline", "+", "4", ")", ",", "15", ":", "\"END EBCDIC HEADER\"", ",", "}", "rows", "=", "segyio", ".", "create_text_header", "(", "lines", ")", "rows", "=", "bytearray", "(", "rows", ",", "'ascii'", ")", "# mutable array of bytes", "rows", "[", "-", "1", "]", "=", "128", "# \\x80 -- Unsure if this is really required...", "return", "bytes", "(", "rows", ")" ]
https://github.com/equinor/segyio/blob/a98c2bc21d238de00b9b65be331d7a011d8a6372/python/segyio/create.py#L7-L20
pymedusa/Medusa
1405fbb6eb8ef4d20fcca24c32ddca52b11f0f38
medusa/tv/series.py
python
Series.whitelist
(self)
return self.release_groups.whitelist
Return the anime's whitelisted release groups.
Return the anime's whitelisted release groups.
[ "Return", "the", "anime", "s", "whitelisted", "release", "groups", "." ]
def whitelist(self): """Return the anime's whitelisted release groups.""" return self.release_groups.whitelist
[ "def", "whitelist", "(", "self", ")", ":", "return", "self", ".", "release_groups", ".", "whitelist" ]
https://github.com/pymedusa/Medusa/blob/1405fbb6eb8ef4d20fcca24c32ddca52b11f0f38/medusa/tv/series.py#L754-L756
python/mypy
17850b3bd77ae9efb5d21f656c4e4e05ac48d894
mypy/errors.py
python
Errors.render_messages
(self, errors: List[ErrorInfo])
return result
Translate the messages into a sequence of tuples. Each tuple is of form (path, line, col, severity, message, allow_dups, code). The rendered sequence includes information about error contexts. The path item may be None. If the line item is negative, the line number is not defined for the tuple.
Translate the messages into a sequence of tuples.
[ "Translate", "the", "messages", "into", "a", "sequence", "of", "tuples", "." ]
def render_messages(self, errors: List[ErrorInfo]) -> List[ErrorTuple]: """Translate the messages into a sequence of tuples. Each tuple is of form (path, line, col, severity, message, allow_dups, code). The rendered sequence includes information about error contexts. The path item may be None. If the line item is negative, the line number is not defined for the tuple. """ result: List[ErrorTuple] = [] prev_import_context: List[Tuple[str, int]] = [] prev_function_or_member: Optional[str] = None prev_type: Optional[str] = None for e in errors: # Report module import context, if different from previous message. if not self.show_error_context: pass elif e.import_ctx != prev_import_context: last = len(e.import_ctx) - 1 i = last while i >= 0: path, line = e.import_ctx[i] fmt = '{}:{}: note: In module imported here' if i < last: fmt = '{}:{}: note: ... from here' if i > 0: fmt += ',' else: fmt += ':' # Remove prefix to ignore from path (if present) to # simplify path. path = remove_path_prefix(path, self.ignore_prefix) result.append((None, -1, -1, 'note', fmt.format(path, line), e.allow_dups, None)) i -= 1 file = self.simplify_path(e.file) # Report context within a source file. if not self.show_error_context: pass elif (e.function_or_member != prev_function_or_member or e.type != prev_type): if e.function_or_member is None: if e.type is None: result.append((file, -1, -1, 'note', 'At top level:', e.allow_dups, None)) else: result.append((file, -1, -1, 'note', 'In class "{}":'.format( e.type), e.allow_dups, None)) else: if e.type is None: result.append((file, -1, -1, 'note', 'In function "{}":'.format( e.function_or_member), e.allow_dups, None)) else: result.append((file, -1, -1, 'note', 'In member "{}" of class "{}":'.format( e.function_or_member, e.type), e.allow_dups, None)) elif e.type != prev_type: if e.type is None: result.append((file, -1, -1, 'note', 'At top level:', e.allow_dups, None)) else: result.append((file, -1, -1, 'note', 'In class "{}":'.format(e.type), e.allow_dups, None)) if isinstance(e.message, ErrorMessage): result.append( (file, e.line, e.column, e.severity, e.message.value, e.allow_dups, e.code)) else: result.append( (file, e.line, e.column, e.severity, e.message, e.allow_dups, e.code)) prev_import_context = e.import_ctx prev_function_or_member = e.function_or_member prev_type = e.type return result
[ "def", "render_messages", "(", "self", ",", "errors", ":", "List", "[", "ErrorInfo", "]", ")", "->", "List", "[", "ErrorTuple", "]", ":", "result", ":", "List", "[", "ErrorTuple", "]", "=", "[", "]", "prev_import_context", ":", "List", "[", "Tuple", "[", "str", ",", "int", "]", "]", "=", "[", "]", "prev_function_or_member", ":", "Optional", "[", "str", "]", "=", "None", "prev_type", ":", "Optional", "[", "str", "]", "=", "None", "for", "e", "in", "errors", ":", "# Report module import context, if different from previous message.", "if", "not", "self", ".", "show_error_context", ":", "pass", "elif", "e", ".", "import_ctx", "!=", "prev_import_context", ":", "last", "=", "len", "(", "e", ".", "import_ctx", ")", "-", "1", "i", "=", "last", "while", "i", ">=", "0", ":", "path", ",", "line", "=", "e", ".", "import_ctx", "[", "i", "]", "fmt", "=", "'{}:{}: note: In module imported here'", "if", "i", "<", "last", ":", "fmt", "=", "'{}:{}: note: ... from here'", "if", "i", ">", "0", ":", "fmt", "+=", "','", "else", ":", "fmt", "+=", "':'", "# Remove prefix to ignore from path (if present) to", "# simplify path.", "path", "=", "remove_path_prefix", "(", "path", ",", "self", ".", "ignore_prefix", ")", "result", ".", "append", "(", "(", "None", ",", "-", "1", ",", "-", "1", ",", "'note'", ",", "fmt", ".", "format", "(", "path", ",", "line", ")", ",", "e", ".", "allow_dups", ",", "None", ")", ")", "i", "-=", "1", "file", "=", "self", ".", "simplify_path", "(", "e", ".", "file", ")", "# Report context within a source file.", "if", "not", "self", ".", "show_error_context", ":", "pass", "elif", "(", "e", ".", "function_or_member", "!=", "prev_function_or_member", "or", "e", ".", "type", "!=", "prev_type", ")", ":", "if", "e", ".", "function_or_member", "is", "None", ":", "if", "e", ".", "type", "is", "None", ":", "result", ".", "append", "(", "(", "file", ",", "-", "1", ",", "-", "1", ",", "'note'", ",", "'At top level:'", ",", "e", ".", "allow_dups", ",", "None", ")", ")", "else", ":", "result", ".", "append", "(", "(", "file", ",", "-", "1", ",", "-", "1", ",", "'note'", ",", "'In class \"{}\":'", ".", "format", "(", "e", ".", "type", ")", ",", "e", ".", "allow_dups", ",", "None", ")", ")", "else", ":", "if", "e", ".", "type", "is", "None", ":", "result", ".", "append", "(", "(", "file", ",", "-", "1", ",", "-", "1", ",", "'note'", ",", "'In function \"{}\":'", ".", "format", "(", "e", ".", "function_or_member", ")", ",", "e", ".", "allow_dups", ",", "None", ")", ")", "else", ":", "result", ".", "append", "(", "(", "file", ",", "-", "1", ",", "-", "1", ",", "'note'", ",", "'In member \"{}\" of class \"{}\":'", ".", "format", "(", "e", ".", "function_or_member", ",", "e", ".", "type", ")", ",", "e", ".", "allow_dups", ",", "None", ")", ")", "elif", "e", ".", "type", "!=", "prev_type", ":", "if", "e", ".", "type", "is", "None", ":", "result", ".", "append", "(", "(", "file", ",", "-", "1", ",", "-", "1", ",", "'note'", ",", "'At top level:'", ",", "e", ".", "allow_dups", ",", "None", ")", ")", "else", ":", "result", ".", "append", "(", "(", "file", ",", "-", "1", ",", "-", "1", ",", "'note'", ",", "'In class \"{}\":'", ".", "format", "(", "e", ".", "type", ")", ",", "e", ".", "allow_dups", ",", "None", ")", ")", "if", "isinstance", "(", "e", ".", "message", ",", "ErrorMessage", ")", ":", "result", ".", "append", "(", "(", "file", ",", "e", ".", "line", ",", "e", ".", "column", ",", "e", ".", "severity", ",", "e", ".", "message", ".", "value", ",", "e", ".", "allow_dups", ",", "e", ".", "code", ")", ")", "else", ":", "result", ".", "append", "(", "(", "file", ",", "e", ".", "line", ",", "e", ".", "column", ",", "e", ".", "severity", ",", "e", ".", "message", ",", "e", ".", "allow_dups", ",", "e", ".", "code", ")", ")", "prev_import_context", "=", "e", ".", "import_ctx", "prev_function_or_member", "=", "e", ".", "function_or_member", "prev_type", "=", "e", ".", "type", "return", "result" ]
https://github.com/python/mypy/blob/17850b3bd77ae9efb5d21f656c4e4e05ac48d894/mypy/errors.py#L615-L692
tensorflow/models
6b8bb0cbeb3e10415c7a87448f08adc3c484c1d3
research/lfads/synth_data/synthetic_data_utils.py
python
nparray_and_transpose
(data_a_b_c)
return data_axcxb
Convert the list of items in data to a numpy array, and transpose it Args: data: data_asbsc: a nested, nested list of length a, with sublist length b, with sublist length c. Returns: a numpy 3-tensor with dimensions a x c x b
Convert the list of items in data to a numpy array, and transpose it Args: data: data_asbsc: a nested, nested list of length a, with sublist length b, with sublist length c. Returns: a numpy 3-tensor with dimensions a x c x b
[ "Convert", "the", "list", "of", "items", "in", "data", "to", "a", "numpy", "array", "and", "transpose", "it", "Args", ":", "data", ":", "data_asbsc", ":", "a", "nested", "nested", "list", "of", "length", "a", "with", "sublist", "length", "b", "with", "sublist", "length", "c", ".", "Returns", ":", "a", "numpy", "3", "-", "tensor", "with", "dimensions", "a", "x", "c", "x", "b" ]
def nparray_and_transpose(data_a_b_c): """Convert the list of items in data to a numpy array, and transpose it Args: data: data_asbsc: a nested, nested list of length a, with sublist length b, with sublist length c. Returns: a numpy 3-tensor with dimensions a x c x b """ data_axbxc = np.array([datum_b_c for datum_b_c in data_a_b_c]) data_axcxb = np.transpose(data_axbxc, axes=[0,2,1]) return data_axcxb
[ "def", "nparray_and_transpose", "(", "data_a_b_c", ")", ":", "data_axbxc", "=", "np", ".", "array", "(", "[", "datum_b_c", "for", "datum_b_c", "in", "data_a_b_c", "]", ")", "data_axcxb", "=", "np", ".", "transpose", "(", "data_axbxc", ",", "axes", "=", "[", "0", ",", "2", ",", "1", "]", ")", "return", "data_axcxb" ]
https://github.com/tensorflow/models/blob/6b8bb0cbeb3e10415c7a87448f08adc3c484c1d3/research/lfads/synth_data/synthetic_data_utils.py#L220-L230
bruderstein/PythonScript
df9f7071ddf3a079e3a301b9b53a6dc78cf1208f
PythonLib/full/genericpath.py
python
samefile
(f1, f2)
return samestat(s1, s2)
Test whether two pathnames reference the same actual file or directory This is determined by the device number and i-node number and raises an exception if an os.stat() call on either pathname fails.
Test whether two pathnames reference the same actual file or directory
[ "Test", "whether", "two", "pathnames", "reference", "the", "same", "actual", "file", "or", "directory" ]
def samefile(f1, f2): """Test whether two pathnames reference the same actual file or directory This is determined by the device number and i-node number and raises an exception if an os.stat() call on either pathname fails. """ s1 = os.stat(f1) s2 = os.stat(f2) return samestat(s1, s2)
[ "def", "samefile", "(", "f1", ",", "f2", ")", ":", "s1", "=", "os", ".", "stat", "(", "f1", ")", "s2", "=", "os", ".", "stat", "(", "f2", ")", "return", "samestat", "(", "s1", ",", "s2", ")" ]
https://github.com/bruderstein/PythonScript/blob/df9f7071ddf3a079e3a301b9b53a6dc78cf1208f/PythonLib/full/genericpath.py#L94-L102
yourtion/DataminingGuideBook-Codes
ff8f41b3b5faa3b584475f92f60ed3f7613869b8
chapter-4/classifyTemplate.py
python
Classifier.getAbsoluteStandardDeviation
(self, alist, median)
return sum / len(alist)
given alist and median return absolute standard deviation
given alist and median return absolute standard deviation
[ "given", "alist", "and", "median", "return", "absolute", "standard", "deviation" ]
def getAbsoluteStandardDeviation(self, alist, median): """given alist and median return absolute standard deviation""" sum = 0 for item in alist: sum += abs(item - median) return sum / len(alist)
[ "def", "getAbsoluteStandardDeviation", "(", "self", ",", "alist", ",", "median", ")", ":", "sum", "=", "0", "for", "item", "in", "alist", ":", "sum", "+=", "abs", "(", "item", "-", "median", ")", "return", "sum", "/", "len", "(", "alist", ")" ]
https://github.com/yourtion/DataminingGuideBook-Codes/blob/ff8f41b3b5faa3b584475f92f60ed3f7613869b8/chapter-4/classifyTemplate.py#L68-L73
fake-name/ReadableWebProxy
ed5c7abe38706acc2684a1e6cd80242a03c5f010
WebMirror/management/rss_parser_funcs/feed_parse_extractTrashbunnyTumblrCom.py
python
extractTrashbunnyTumblrCom
(item)
return False
Parser for 'trashbunny.tumblr.com'
Parser for 'trashbunny.tumblr.com'
[ "Parser", "for", "trashbunny", ".", "tumblr", ".", "com" ]
def extractTrashbunnyTumblrCom(item): ''' Parser for 'trashbunny.tumblr.com' ''' vol, chp, frag, postfix = extractVolChapterFragmentPostfix(item['title']) if not (chp or vol) or "preview" in item['title'].lower(): return None tagmap = [ ('PRC', 'PRC', 'translated'), ('Loiterous', 'Loiterous', 'oel'), ] for tagname, name, tl_type in tagmap: if tagname in item['tags']: return buildReleaseMessageWithType(item, name, vol, chp, frag=frag, postfix=postfix, tl_type=tl_type) return False
[ "def", "extractTrashbunnyTumblrCom", "(", "item", ")", ":", "vol", ",", "chp", ",", "frag", ",", "postfix", "=", "extractVolChapterFragmentPostfix", "(", "item", "[", "'title'", "]", ")", "if", "not", "(", "chp", "or", "vol", ")", "or", "\"preview\"", "in", "item", "[", "'title'", "]", ".", "lower", "(", ")", ":", "return", "None", "tagmap", "=", "[", "(", "'PRC'", ",", "'PRC'", ",", "'translated'", ")", ",", "(", "'Loiterous'", ",", "'Loiterous'", ",", "'oel'", ")", ",", "]", "for", "tagname", ",", "name", ",", "tl_type", "in", "tagmap", ":", "if", "tagname", "in", "item", "[", "'tags'", "]", ":", "return", "buildReleaseMessageWithType", "(", "item", ",", "name", ",", "vol", ",", "chp", ",", "frag", "=", "frag", ",", "postfix", "=", "postfix", ",", "tl_type", "=", "tl_type", ")", "return", "False" ]
https://github.com/fake-name/ReadableWebProxy/blob/ed5c7abe38706acc2684a1e6cd80242a03c5f010/WebMirror/management/rss_parser_funcs/feed_parse_extractTrashbunnyTumblrCom.py#L2-L21
koniu/recoll-webui
c3151abc2b4416fb4a63b7833b8c99d17e3ace6e
bottle.py
python
HooksPlugin.add
(self, name, func)
Attach a callback to a hook.
Attach a callback to a hook.
[ "Attach", "a", "callback", "to", "a", "hook", "." ]
def add(self, name, func): ''' Attach a callback to a hook. ''' was_empty = self._empty() self.hooks.setdefault(name, []).append(func) if self.app and was_empty and not self._empty(): self.app.reset()
[ "def", "add", "(", "self", ",", "name", ",", "func", ")", ":", "was_empty", "=", "self", ".", "_empty", "(", ")", "self", ".", "hooks", ".", "setdefault", "(", "name", ",", "[", "]", ")", ".", "append", "(", "func", ")", "if", "self", ".", "app", "and", "was_empty", "and", "not", "self", ".", "_empty", "(", ")", ":", "self", ".", "app", ".", "reset", "(", ")" ]
https://github.com/koniu/recoll-webui/blob/c3151abc2b4416fb4a63b7833b8c99d17e3ace6e/bottle.py#L1506-L1510
missionpinball/mpf
8e6b74cff4ba06d2fec9445742559c1068b88582
mpf/devices/logic_blocks.py
python
Counter.validate_and_parse_config
(self, config: dict, is_mode_config: bool, debug_prefix: str = None)
return super().validate_and_parse_config(config, is_mode_config, debug_prefix)
Validate logic block config.
Validate logic block config.
[ "Validate", "logic", "block", "config", "." ]
def validate_and_parse_config(self, config: dict, is_mode_config: bool, debug_prefix: str = None) -> dict: """Validate logic block config.""" if 'events_when_hit' not in config: # for compatibility post the same default as previously for # counters. This one is deprecated. config['events_when_hit'] = ['counter_' + self.name + '_hit'] # this is the one moving forward config['events_when_hit'].append('logicblock_' + self.name + '_hit') return super().validate_and_parse_config(config, is_mode_config, debug_prefix)
[ "def", "validate_and_parse_config", "(", "self", ",", "config", ":", "dict", ",", "is_mode_config", ":", "bool", ",", "debug_prefix", ":", "str", "=", "None", ")", "->", "dict", ":", "if", "'events_when_hit'", "not", "in", "config", ":", "# for compatibility post the same default as previously for", "# counters. This one is deprecated.", "config", "[", "'events_when_hit'", "]", "=", "[", "'counter_'", "+", "self", ".", "name", "+", "'_hit'", "]", "# this is the one moving forward", "config", "[", "'events_when_hit'", "]", ".", "append", "(", "'logicblock_'", "+", "self", ".", "name", "+", "'_hit'", ")", "return", "super", "(", ")", ".", "validate_and_parse_config", "(", "config", ",", "is_mode_config", ",", "debug_prefix", ")" ]
https://github.com/missionpinball/mpf/blob/8e6b74cff4ba06d2fec9445742559c1068b88582/mpf/devices/logic_blocks.py#L466-L476
Spacelog/Spacelog
92df308be5923765607a89b022acb57c041c86b3
ext/xappy-0.5-sja-1/xappy/searchconnection.py
python
SearchConnection.reopen
(self)
Reopen the connection. This updates the revision of the index which the connection references to the latest flushed revision.
Reopen the connection.
[ "Reopen", "the", "connection", "." ]
def reopen(self): """Reopen the connection. This updates the revision of the index which the connection references to the latest flushed revision. """ if self._index is None: raise _errors.SearchError("SearchConnection has been closed") self._index.reopen() # Re-read the actions. self._load_config()
[ "def", "reopen", "(", "self", ")", ":", "if", "self", ".", "_index", "is", "None", ":", "raise", "_errors", ".", "SearchError", "(", "\"SearchConnection has been closed\"", ")", "self", ".", "_index", ".", "reopen", "(", ")", "# Re-read the actions.", "self", ".", "_load_config", "(", ")" ]
https://github.com/Spacelog/Spacelog/blob/92df308be5923765607a89b022acb57c041c86b3/ext/xappy-0.5-sja-1/xappy/searchconnection.py#L825-L836
misterch0c/shadowbroker
e3a069bea47a2c1009697941ac214adc6f90aa8d
windows/Resources/Python/Core/Lib/collections.py
python
Counter.copy
(self)
return self.__class__(self)
Return a shallow copy.
Return a shallow copy.
[ "Return", "a", "shallow", "copy", "." ]
def copy(self): """Return a shallow copy.""" return self.__class__(self)
[ "def", "copy", "(", "self", ")", ":", "return", "self", ".", "__class__", "(", "self", ")" ]
https://github.com/misterch0c/shadowbroker/blob/e3a069bea47a2c1009697941ac214adc6f90aa8d/windows/Resources/Python/Core/Lib/collections.py#L456-L458
Source-Python-Dev-Team/Source.Python
d0ffd8ccbd1e9923c9bc44936f20613c1c76b7fb
addons/source-python/packages/site-packages/docutils/nodes.py
python
Element.copy_attr_coerce
(self, attr, value, replace)
If attr is an attribute of self and either self[attr] or value is a list, convert all non-sequence values to a sequence of 1 element and then concatenate the two sequence, setting the result to self[attr]. If both self[attr] and value are non-sequences and replace is True or self[attr] is None, replace self[attr] with value. Otherwise, do nothing.
If attr is an attribute of self and either self[attr] or value is a list, convert all non-sequence values to a sequence of 1 element and then concatenate the two sequence, setting the result to self[attr]. If both self[attr] and value are non-sequences and replace is True or self[attr] is None, replace self[attr] with value. Otherwise, do nothing.
[ "If", "attr", "is", "an", "attribute", "of", "self", "and", "either", "self", "[", "attr", "]", "or", "value", "is", "a", "list", "convert", "all", "non", "-", "sequence", "values", "to", "a", "sequence", "of", "1", "element", "and", "then", "concatenate", "the", "two", "sequence", "setting", "the", "result", "to", "self", "[", "attr", "]", ".", "If", "both", "self", "[", "attr", "]", "and", "value", "are", "non", "-", "sequences", "and", "replace", "is", "True", "or", "self", "[", "attr", "]", "is", "None", "replace", "self", "[", "attr", "]", "with", "value", ".", "Otherwise", "do", "nothing", "." ]
def copy_attr_coerce(self, attr, value, replace): """ If attr is an attribute of self and either self[attr] or value is a list, convert all non-sequence values to a sequence of 1 element and then concatenate the two sequence, setting the result to self[attr]. If both self[attr] and value are non-sequences and replace is True or self[attr] is None, replace self[attr] with value. Otherwise, do nothing. """ if self.get(attr) is not value: if isinstance(self.get(attr), list) or \ isinstance(value, list): self.coerce_append_attr_list(attr, value) else: self.replace_attr(attr, value, replace)
[ "def", "copy_attr_coerce", "(", "self", ",", "attr", ",", "value", ",", "replace", ")", ":", "if", "self", ".", "get", "(", "attr", ")", "is", "not", "value", ":", "if", "isinstance", "(", "self", ".", "get", "(", "attr", ")", ",", "list", ")", "or", "isinstance", "(", "value", ",", "list", ")", ":", "self", ".", "coerce_append_attr_list", "(", "attr", ",", "value", ")", "else", ":", "self", ".", "replace_attr", "(", "attr", ",", "value", ",", "replace", ")" ]
https://github.com/Source-Python-Dev-Team/Source.Python/blob/d0ffd8ccbd1e9923c9bc44936f20613c1c76b7fb/addons/source-python/packages/site-packages/docutils/nodes.py#L755-L769
nltk/nltk
3f74ac55681667d7ef78b664557487145f51eb02
nltk/classify/api.py
python
MultiClassifierI.labels
(self)
:return: the list of category labels used by this classifier. :rtype: list of (immutable)
:return: the list of category labels used by this classifier. :rtype: list of (immutable)
[ ":", "return", ":", "the", "list", "of", "category", "labels", "used", "by", "this", "classifier", ".", ":", "rtype", ":", "list", "of", "(", "immutable", ")" ]
def labels(self): """ :return: the list of category labels used by this classifier. :rtype: list of (immutable) """ raise NotImplementedError()
[ "def", "labels", "(", "self", ")", ":", "raise", "NotImplementedError", "(", ")" ]
https://github.com/nltk/nltk/blob/3f74ac55681667d7ef78b664557487145f51eb02/nltk/classify/api.py#L107-L112
hardmaru/resnet-cppn-gan-tensorflow
9206e06512c118e932fbc789c91a5cf4f9e5d2b9
images2gif.py
python
NeuQuant.fix
(self)
[]
def fix(self): for i in range(self.NETSIZE): for j in range(3): x = int(0.5 + self.network[i,j]) x = max(0, x) x = min(255, x) self.colormap[i,j] = x self.colormap[i,3] = i
[ "def", "fix", "(", "self", ")", ":", "for", "i", "in", "range", "(", "self", ".", "NETSIZE", ")", ":", "for", "j", "in", "range", "(", "3", ")", ":", "x", "=", "int", "(", "0.5", "+", "self", ".", "network", "[", "i", ",", "j", "]", ")", "x", "=", "max", "(", "0", ",", "x", ")", "x", "=", "min", "(", "255", ",", "x", ")", "self", ".", "colormap", "[", "i", ",", "j", "]", "=", "x", "self", ".", "colormap", "[", "i", ",", "3", "]", "=", "i" ]
https://github.com/hardmaru/resnet-cppn-gan-tensorflow/blob/9206e06512c118e932fbc789c91a5cf4f9e5d2b9/images2gif.py#L959-L966
pypa/pipenv
b21baade71a86ab3ee1429f71fbc14d4f95fb75d
pipenv/patched/notpip/_vendor/distlib/util.py
python
Progress.maximum
(self)
return self.unknown if self.max is None else self.max
[]
def maximum(self): return self.unknown if self.max is None else self.max
[ "def", "maximum", "(", "self", ")", ":", "return", "self", ".", "unknown", "if", "self", ".", "max", "is", "None", "else", "self", ".", "max" ]
https://github.com/pypa/pipenv/blob/b21baade71a86ab3ee1429f71fbc14d4f95fb75d/pipenv/patched/notpip/_vendor/distlib/util.py#L1310-L1311
dropbox/pyannotate
a7a46f394f0ba91a1b5fbf657e2393af542969ae
pyannotate_tools/annotations/infer.py
python
infer_annotation
(type_comments)
return combined_args, combined_return
Given some type comments, return a single inferred signature. Args: type_comments: Strings of form '(arg1, ... argN) -> ret' Returns: Tuple of (argument types and kinds, return type).
Given some type comments, return a single inferred signature.
[ "Given", "some", "type", "comments", "return", "a", "single", "inferred", "signature", "." ]
def infer_annotation(type_comments): # type: (List[str]) -> Tuple[List[Argument], AbstractType] """Given some type comments, return a single inferred signature. Args: type_comments: Strings of form '(arg1, ... argN) -> ret' Returns: Tuple of (argument types and kinds, return type). """ assert type_comments args = {} # type: Dict[int, Set[Argument]] returns = set() for comment in type_comments: arg_types, return_type = parse_type_comment(comment) for i, arg_type in enumerate(arg_types): args.setdefault(i, set()).add(arg_type) returns.add(return_type) combined_args = [] for i in sorted(args): arg_infos = list(args[i]) kind = argument_kind(arg_infos) if kind is None: raise InferError('Ambiguous argument kinds:\n' + '\n'.join(type_comments)) types = [arg.type for arg in arg_infos] combined = combine_types(types) if str(combined) == 'None': # It's very rare for an argument to actually be typed `None`, more likely than # not we simply don't have any data points for this argument. combined = UnionType([ClassType('None'), AnyType()]) if kind != ARG_POS and (len(str(combined)) > 120 or isinstance(combined, UnionType)): # Avoid some noise. combined = AnyType() combined_args.append(Argument(combined, kind)) combined_return = combine_types(returns) return combined_args, combined_return
[ "def", "infer_annotation", "(", "type_comments", ")", ":", "# type: (List[str]) -> Tuple[List[Argument], AbstractType]", "assert", "type_comments", "args", "=", "{", "}", "# type: Dict[int, Set[Argument]]", "returns", "=", "set", "(", ")", "for", "comment", "in", "type_comments", ":", "arg_types", ",", "return_type", "=", "parse_type_comment", "(", "comment", ")", "for", "i", ",", "arg_type", "in", "enumerate", "(", "arg_types", ")", ":", "args", ".", "setdefault", "(", "i", ",", "set", "(", ")", ")", ".", "add", "(", "arg_type", ")", "returns", ".", "add", "(", "return_type", ")", "combined_args", "=", "[", "]", "for", "i", "in", "sorted", "(", "args", ")", ":", "arg_infos", "=", "list", "(", "args", "[", "i", "]", ")", "kind", "=", "argument_kind", "(", "arg_infos", ")", "if", "kind", "is", "None", ":", "raise", "InferError", "(", "'Ambiguous argument kinds:\\n'", "+", "'\\n'", ".", "join", "(", "type_comments", ")", ")", "types", "=", "[", "arg", ".", "type", "for", "arg", "in", "arg_infos", "]", "combined", "=", "combine_types", "(", "types", ")", "if", "str", "(", "combined", ")", "==", "'None'", ":", "# It's very rare for an argument to actually be typed `None`, more likely than", "# not we simply don't have any data points for this argument.", "combined", "=", "UnionType", "(", "[", "ClassType", "(", "'None'", ")", ",", "AnyType", "(", ")", "]", ")", "if", "kind", "!=", "ARG_POS", "and", "(", "len", "(", "str", "(", "combined", ")", ")", ">", "120", "or", "isinstance", "(", "combined", ",", "UnionType", ")", ")", ":", "# Avoid some noise.", "combined", "=", "AnyType", "(", ")", "combined_args", ".", "append", "(", "Argument", "(", "combined", ",", "kind", ")", ")", "combined_return", "=", "combine_types", "(", "returns", ")", "return", "combined_args", ",", "combined_return" ]
https://github.com/dropbox/pyannotate/blob/a7a46f394f0ba91a1b5fbf657e2393af542969ae/pyannotate_tools/annotations/infer.py#L32-L66
serengil/deepface
6b48b008fd1ee13c7359baedc878dc88b2216c45
deepface/basemodels/ArcFace.py
python
stack1
(x, filters, blocks, stride1=2, name=None)
return x
[]
def stack1(x, filters, blocks, stride1=2, name=None): x = block1(x, filters, stride=stride1, name=name + '_block1') for i in range(2, blocks + 1): x = block1(x, filters, conv_shortcut=False, name=name + '_block' + str(i)) return x
[ "def", "stack1", "(", "x", ",", "filters", ",", "blocks", ",", "stride1", "=", "2", ",", "name", "=", "None", ")", ":", "x", "=", "block1", "(", "x", ",", "filters", ",", "stride", "=", "stride1", ",", "name", "=", "name", "+", "'_block1'", ")", "for", "i", "in", "range", "(", "2", ",", "blocks", "+", "1", ")", ":", "x", "=", "block1", "(", "x", ",", "filters", ",", "conv_shortcut", "=", "False", ",", "name", "=", "name", "+", "'_block'", "+", "str", "(", "i", ")", ")", "return", "x" ]
https://github.com/serengil/deepface/blob/6b48b008fd1ee13c7359baedc878dc88b2216c45/deepface/basemodels/ArcFace.py#L83-L87
regisb/slack-cli
a9c9140e32e23de1c2add89a42ee6363b811b6f6
slackcli/emoji.py
python
emojize
(text)
return result
Replace the :short_codes: with their corresponding unicode values. Avoid replacing short codes inside verbatim tick (`) marks.
Replace the :short_codes: with their corresponding unicode values. Avoid replacing short codes inside verbatim tick (`) marks.
[ "Replace", "the", ":", "short_codes", ":", "with", "their", "corresponding", "unicode", "values", ".", "Avoid", "replacing", "short", "codes", "inside", "verbatim", "tick", "(", ")", "marks", "." ]
def emojize(text): """ Replace the :short_codes: with their corresponding unicode values. Avoid replacing short codes inside verbatim tick (`) marks. """ if not USE_EMOJIS: return text pos = 0 result = "" verbatim = False verbatim_block = False while pos < len(text): chunk = text[pos] if text[pos] == "`": if text[pos + 1 : pos + 3] == "``": verbatim_block = not verbatim_block if not verbatim_block: verbatim = not verbatim if text[pos] == ":" and not verbatim and not verbatim_block: end_pos = text.find(":", pos + 1) if end_pos > pos + 1: emoji = Emojis.get(text[pos + 1 : end_pos]) if emoji: chunk = emoji pos = end_pos result += chunk pos += 1 return result
[ "def", "emojize", "(", "text", ")", ":", "if", "not", "USE_EMOJIS", ":", "return", "text", "pos", "=", "0", "result", "=", "\"\"", "verbatim", "=", "False", "verbatim_block", "=", "False", "while", "pos", "<", "len", "(", "text", ")", ":", "chunk", "=", "text", "[", "pos", "]", "if", "text", "[", "pos", "]", "==", "\"`\"", ":", "if", "text", "[", "pos", "+", "1", ":", "pos", "+", "3", "]", "==", "\"``\"", ":", "verbatim_block", "=", "not", "verbatim_block", "if", "not", "verbatim_block", ":", "verbatim", "=", "not", "verbatim", "if", "text", "[", "pos", "]", "==", "\":\"", "and", "not", "verbatim", "and", "not", "verbatim_block", ":", "end_pos", "=", "text", ".", "find", "(", "\":\"", ",", "pos", "+", "1", ")", "if", "end_pos", ">", "pos", "+", "1", ":", "emoji", "=", "Emojis", ".", "get", "(", "text", "[", "pos", "+", "1", ":", "end_pos", "]", ")", "if", "emoji", ":", "chunk", "=", "emoji", "pos", "=", "end_pos", "result", "+=", "chunk", "pos", "+=", "1", "return", "result" ]
https://github.com/regisb/slack-cli/blob/a9c9140e32e23de1c2add89a42ee6363b811b6f6/slackcli/emoji.py#L48-L76
QCoDeS/Qcodes
3cda2cef44812e2aa4672781f2423bf5f816f9f9
qcodes/loops.py
python
Loop.loop
(self, sweep_values, delay=0)
return out
Nest another loop inside this one. Args: sweep_values: delay (int): Examples: >>> Loop(sv1, d1).loop(sv2, d2).each(*a) is equivalent to: >>> Loop(sv1, d1).each(Loop(sv2, d2).each(*a)) Returns: a new Loop object - the original is untouched
Nest another loop inside this one.
[ "Nest", "another", "loop", "inside", "this", "one", "." ]
def loop(self, sweep_values, delay=0): """ Nest another loop inside this one. Args: sweep_values: delay (int): Examples: >>> Loop(sv1, d1).loop(sv2, d2).each(*a) is equivalent to: >>> Loop(sv1, d1).each(Loop(sv2, d2).each(*a)) Returns: a new Loop object - the original is untouched """ out = self._copy() if out.nested_loop: # nest this new loop inside the deepest level out.nested_loop = out.nested_loop.loop(sweep_values, delay) else: out.nested_loop = Loop(sweep_values, delay) return out
[ "def", "loop", "(", "self", ",", "sweep_values", ",", "delay", "=", "0", ")", ":", "out", "=", "self", ".", "_copy", "(", ")", "if", "out", ".", "nested_loop", ":", "# nest this new loop inside the deepest level", "out", ".", "nested_loop", "=", "out", ".", "nested_loop", ".", "loop", "(", "sweep_values", ",", "delay", ")", "else", ":", "out", ".", "nested_loop", "=", "Loop", "(", "sweep_values", ",", "delay", ")", "return", "out" ]
https://github.com/QCoDeS/Qcodes/blob/3cda2cef44812e2aa4672781f2423bf5f816f9f9/qcodes/loops.py#L130-L155
microsoft/MMdnn
19562a381c27545984a216eda7591430e274e518
mmdnn/conversion/examples/tensorflow/models/inception_resnet_v2.py
python
inception_resnet_v2
(inputs, num_classes=1001, is_training=True, dropout_keep_prob=0.8, reuse=None, scope='InceptionResnetV2', create_aux_logits=True, activation_fn=tf.nn.relu)
Creates the Inception Resnet V2 model. Args: inputs: a 4-D tensor of size [batch_size, height, width, 3]. Dimension batch_size may be undefined. If create_aux_logits is false, also height and width may be undefined. num_classes: number of predicted classes. If 0 or None, the logits layer is omitted and the input features to the logits layer (before dropout) are returned instead. is_training: whether is training or not. dropout_keep_prob: float, the fraction to keep before final layer. reuse: whether or not the network and its variables should be reused. To be able to reuse 'scope' must be given. scope: Optional variable_scope. create_aux_logits: Whether to include the auxilliary logits. activation_fn: Activation function for conv2d. Returns: net: the output of the logits layer (if num_classes is a non-zero integer), or the non-dropped-out input to the logits layer (if num_classes is 0 or None). end_points: the set of end_points from the inception model.
Creates the Inception Resnet V2 model.
[ "Creates", "the", "Inception", "Resnet", "V2", "model", "." ]
def inception_resnet_v2(inputs, num_classes=1001, is_training=True, dropout_keep_prob=0.8, reuse=None, scope='InceptionResnetV2', create_aux_logits=True, activation_fn=tf.nn.relu): """Creates the Inception Resnet V2 model. Args: inputs: a 4-D tensor of size [batch_size, height, width, 3]. Dimension batch_size may be undefined. If create_aux_logits is false, also height and width may be undefined. num_classes: number of predicted classes. If 0 or None, the logits layer is omitted and the input features to the logits layer (before dropout) are returned instead. is_training: whether is training or not. dropout_keep_prob: float, the fraction to keep before final layer. reuse: whether or not the network and its variables should be reused. To be able to reuse 'scope' must be given. scope: Optional variable_scope. create_aux_logits: Whether to include the auxilliary logits. activation_fn: Activation function for conv2d. Returns: net: the output of the logits layer (if num_classes is a non-zero integer), or the non-dropped-out input to the logits layer (if num_classes is 0 or None). end_points: the set of end_points from the inception model. """ end_points = {} with tf.variable_scope(scope, 'InceptionResnetV2', [inputs], reuse=reuse) as scope: with slim.arg_scope([slim.batch_norm, slim.dropout], is_training=is_training): net, end_points = inception_resnet_v2_base(inputs, scope=scope, activation_fn=activation_fn) if create_aux_logits and num_classes: with tf.variable_scope('AuxLogits'): aux = end_points['PreAuxLogits'] aux = slim.avg_pool2d(aux, 5, stride=3, padding='VALID', scope='Conv2d_1a_3x3') aux = slim.conv2d(aux, 128, 1, scope='Conv2d_1b_1x1') aux = slim.conv2d(aux, 768, aux.get_shape()[1:3], padding='VALID', scope='Conv2d_2a_5x5') aux = slim.flatten(aux) aux = slim.fully_connected(aux, num_classes, activation_fn=None, scope='Logits') end_points['AuxLogits'] = aux with tf.variable_scope('Logits'): # TODO(sguada,arnoegw): Consider adding a parameter global_pool which # can be set to False to disable pooling here (as in resnet_*()). kernel_size = net.get_shape()[1:3] if kernel_size.is_fully_defined(): net = slim.avg_pool2d(net, kernel_size, padding='VALID', scope='AvgPool_1a_8x8') else: net = tf.reduce_mean(net, [1, 2], keep_dims=True, name='global_pool') end_points['global_pool'] = net if not num_classes: return net, end_points net = slim.flatten(net) net = slim.dropout(net, dropout_keep_prob, is_training=is_training, scope='Dropout') end_points['PreLogitsFlatten'] = net logits = slim.fully_connected(net, num_classes, activation_fn=None, scope='Logits') end_points['Logits'] = logits end_points['Predictions'] = tf.nn.softmax(logits, name='Predictions') return logits, end_points
[ "def", "inception_resnet_v2", "(", "inputs", ",", "num_classes", "=", "1001", ",", "is_training", "=", "True", ",", "dropout_keep_prob", "=", "0.8", ",", "reuse", "=", "None", ",", "scope", "=", "'InceptionResnetV2'", ",", "create_aux_logits", "=", "True", ",", "activation_fn", "=", "tf", ".", "nn", ".", "relu", ")", ":", "end_points", "=", "{", "}", "with", "tf", ".", "variable_scope", "(", "scope", ",", "'InceptionResnetV2'", ",", "[", "inputs", "]", ",", "reuse", "=", "reuse", ")", "as", "scope", ":", "with", "slim", ".", "arg_scope", "(", "[", "slim", ".", "batch_norm", ",", "slim", ".", "dropout", "]", ",", "is_training", "=", "is_training", ")", ":", "net", ",", "end_points", "=", "inception_resnet_v2_base", "(", "inputs", ",", "scope", "=", "scope", ",", "activation_fn", "=", "activation_fn", ")", "if", "create_aux_logits", "and", "num_classes", ":", "with", "tf", ".", "variable_scope", "(", "'AuxLogits'", ")", ":", "aux", "=", "end_points", "[", "'PreAuxLogits'", "]", "aux", "=", "slim", ".", "avg_pool2d", "(", "aux", ",", "5", ",", "stride", "=", "3", ",", "padding", "=", "'VALID'", ",", "scope", "=", "'Conv2d_1a_3x3'", ")", "aux", "=", "slim", ".", "conv2d", "(", "aux", ",", "128", ",", "1", ",", "scope", "=", "'Conv2d_1b_1x1'", ")", "aux", "=", "slim", ".", "conv2d", "(", "aux", ",", "768", ",", "aux", ".", "get_shape", "(", ")", "[", "1", ":", "3", "]", ",", "padding", "=", "'VALID'", ",", "scope", "=", "'Conv2d_2a_5x5'", ")", "aux", "=", "slim", ".", "flatten", "(", "aux", ")", "aux", "=", "slim", ".", "fully_connected", "(", "aux", ",", "num_classes", ",", "activation_fn", "=", "None", ",", "scope", "=", "'Logits'", ")", "end_points", "[", "'AuxLogits'", "]", "=", "aux", "with", "tf", ".", "variable_scope", "(", "'Logits'", ")", ":", "# TODO(sguada,arnoegw): Consider adding a parameter global_pool which", "# can be set to False to disable pooling here (as in resnet_*()).", "kernel_size", "=", "net", ".", "get_shape", "(", ")", "[", "1", ":", "3", "]", "if", "kernel_size", ".", "is_fully_defined", "(", ")", ":", "net", "=", "slim", ".", "avg_pool2d", "(", "net", ",", "kernel_size", ",", "padding", "=", "'VALID'", ",", "scope", "=", "'AvgPool_1a_8x8'", ")", "else", ":", "net", "=", "tf", ".", "reduce_mean", "(", "net", ",", "[", "1", ",", "2", "]", ",", "keep_dims", "=", "True", ",", "name", "=", "'global_pool'", ")", "end_points", "[", "'global_pool'", "]", "=", "net", "if", "not", "num_classes", ":", "return", "net", ",", "end_points", "net", "=", "slim", ".", "flatten", "(", "net", ")", "net", "=", "slim", ".", "dropout", "(", "net", ",", "dropout_keep_prob", ",", "is_training", "=", "is_training", ",", "scope", "=", "'Dropout'", ")", "end_points", "[", "'PreLogitsFlatten'", "]", "=", "net", "logits", "=", "slim", ".", "fully_connected", "(", "net", ",", "num_classes", ",", "activation_fn", "=", "None", ",", "scope", "=", "'Logits'", ")", "end_points", "[", "'Logits'", "]", "=", "logits", "end_points", "[", "'Predictions'", "]", "=", "tf", ".", "nn", ".", "softmax", "(", "logits", ",", "name", "=", "'Predictions'", ")", "return", "logits", ",", "end_points" ]
https://github.com/microsoft/MMdnn/blob/19562a381c27545984a216eda7591430e274e518/mmdnn/conversion/examples/tensorflow/models/inception_resnet_v2.py#L291-L364
tp4a/teleport
1fafd34f1f775d2cf80ea4af6e44468d8e0b24ad
server/www/packages/packages-windows/x86/idna/uts46data.py
python
_seg_54
()
return [ (0x104C0, 'M', u'𐓨'), (0x104C1, 'M', u'𐓩'), (0x104C2, 'M', u'𐓪'), (0x104C3, 'M', u'𐓫'), (0x104C4, 'M', u'𐓬'), (0x104C5, 'M', u'𐓭'), (0x104C6, 'M', u'𐓮'), (0x104C7, 'M', u'𐓯'), (0x104C8, 'M', u'𐓰'), (0x104C9, 'M', u'𐓱'), (0x104CA, 'M', u'𐓲'), (0x104CB, 'M', u'𐓳'), (0x104CC, 'M', u'𐓴'), (0x104CD, 'M', u'𐓵'), (0x104CE, 'M', u'𐓶'), (0x104CF, 'M', u'𐓷'), (0x104D0, 'M', u'𐓸'), (0x104D1, 'M', u'𐓹'), (0x104D2, 'M', u'𐓺'), (0x104D3, 'M', u'𐓻'), (0x104D4, 'X'), (0x104D8, 'V'), (0x104FC, 'X'), (0x10500, 'V'), (0x10528, 'X'), (0x10530, 'V'), (0x10564, 'X'), (0x1056F, 'V'), (0x10570, 'X'), (0x10600, 'V'), (0x10737, 'X'), (0x10740, 'V'), (0x10756, 'X'), (0x10760, 'V'), (0x10768, 'X'), (0x10800, 'V'), (0x10806, 'X'), (0x10808, 'V'), (0x10809, 'X'), (0x1080A, 'V'), (0x10836, 'X'), (0x10837, 'V'), (0x10839, 'X'), (0x1083C, 'V'), (0x1083D, 'X'), (0x1083F, 'V'), (0x10856, 'X'), (0x10857, 'V'), (0x1089F, 'X'), (0x108A7, 'V'), (0x108B0, 'X'), (0x108E0, 'V'), (0x108F3, 'X'), (0x108F4, 'V'), (0x108F6, 'X'), (0x108FB, 'V'), (0x1091C, 'X'), (0x1091F, 'V'), (0x1093A, 'X'), (0x1093F, 'V'), (0x10940, 'X'), (0x10980, 'V'), (0x109B8, 'X'), (0x109BC, 'V'), (0x109D0, 'X'), (0x109D2, 'V'), (0x10A04, 'X'), (0x10A05, 'V'), (0x10A07, 'X'), (0x10A0C, 'V'), (0x10A14, 'X'), (0x10A15, 'V'), (0x10A18, 'X'), (0x10A19, 'V'), (0x10A36, 'X'), (0x10A38, 'V'), (0x10A3B, 'X'), (0x10A3F, 'V'), (0x10A49, 'X'), (0x10A50, 'V'), (0x10A59, 'X'), (0x10A60, 'V'), (0x10AA0, 'X'), (0x10AC0, 'V'), (0x10AE7, 'X'), (0x10AEB, 'V'), (0x10AF7, 'X'), (0x10B00, 'V'), (0x10B36, 'X'), (0x10B39, 'V'), (0x10B56, 'X'), (0x10B58, 'V'), (0x10B73, 'X'), (0x10B78, 'V'), (0x10B92, 'X'), (0x10B99, 'V'), (0x10B9D, 'X'), (0x10BA9, 'V'), (0x10BB0, 'X'), (0x10C00, 'V'), ]
[]
def _seg_54(): return [ (0x104C0, 'M', u'𐓨'), (0x104C1, 'M', u'𐓩'), (0x104C2, 'M', u'𐓪'), (0x104C3, 'M', u'𐓫'), (0x104C4, 'M', u'𐓬'), (0x104C5, 'M', u'𐓭'), (0x104C6, 'M', u'𐓮'), (0x104C7, 'M', u'𐓯'), (0x104C8, 'M', u'𐓰'), (0x104C9, 'M', u'𐓱'), (0x104CA, 'M', u'𐓲'), (0x104CB, 'M', u'𐓳'), (0x104CC, 'M', u'𐓴'), (0x104CD, 'M', u'𐓵'), (0x104CE, 'M', u'𐓶'), (0x104CF, 'M', u'𐓷'), (0x104D0, 'M', u'𐓸'), (0x104D1, 'M', u'𐓹'), (0x104D2, 'M', u'𐓺'), (0x104D3, 'M', u'𐓻'), (0x104D4, 'X'), (0x104D8, 'V'), (0x104FC, 'X'), (0x10500, 'V'), (0x10528, 'X'), (0x10530, 'V'), (0x10564, 'X'), (0x1056F, 'V'), (0x10570, 'X'), (0x10600, 'V'), (0x10737, 'X'), (0x10740, 'V'), (0x10756, 'X'), (0x10760, 'V'), (0x10768, 'X'), (0x10800, 'V'), (0x10806, 'X'), (0x10808, 'V'), (0x10809, 'X'), (0x1080A, 'V'), (0x10836, 'X'), (0x10837, 'V'), (0x10839, 'X'), (0x1083C, 'V'), (0x1083D, 'X'), (0x1083F, 'V'), (0x10856, 'X'), (0x10857, 'V'), (0x1089F, 'X'), (0x108A7, 'V'), (0x108B0, 'X'), (0x108E0, 'V'), (0x108F3, 'X'), (0x108F4, 'V'), (0x108F6, 'X'), (0x108FB, 'V'), (0x1091C, 'X'), (0x1091F, 'V'), (0x1093A, 'X'), (0x1093F, 'V'), (0x10940, 'X'), (0x10980, 'V'), (0x109B8, 'X'), (0x109BC, 'V'), (0x109D0, 'X'), (0x109D2, 'V'), (0x10A04, 'X'), (0x10A05, 'V'), (0x10A07, 'X'), (0x10A0C, 'V'), (0x10A14, 'X'), (0x10A15, 'V'), (0x10A18, 'X'), (0x10A19, 'V'), (0x10A36, 'X'), (0x10A38, 'V'), (0x10A3B, 'X'), (0x10A3F, 'V'), (0x10A49, 'X'), (0x10A50, 'V'), (0x10A59, 'X'), (0x10A60, 'V'), (0x10AA0, 'X'), (0x10AC0, 'V'), (0x10AE7, 'X'), (0x10AEB, 'V'), (0x10AF7, 'X'), (0x10B00, 'V'), (0x10B36, 'X'), (0x10B39, 'V'), (0x10B56, 'X'), (0x10B58, 'V'), (0x10B73, 'X'), (0x10B78, 'V'), (0x10B92, 'X'), (0x10B99, 'V'), (0x10B9D, 'X'), (0x10BA9, 'V'), (0x10BB0, 'X'), (0x10C00, 'V'), ]
[ "def", "_seg_54", "(", ")", ":", "return", "[", "(", "0x104C0", ",", "'M'", ",", "u'𐓨'),", "", "", "(", "0x104C1", ",", "'M'", ",", "u'𐓩'),", "", "", "(", "0x104C2", ",", "'M'", ",", "u'𐓪'),", "", "", "(", "0x104C3", ",", "'M'", ",", "u'𐓫'),", "", "", "(", "0x104C4", ",", "'M'", ",", "u'𐓬'),", "", "", "(", "0x104C5", ",", "'M'", ",", "u'𐓭'),", "", "", "(", "0x104C6", ",", "'M'", ",", "u'𐓮'),", "", "", "(", "0x104C7", ",", "'M'", ",", "u'𐓯'),", "", "", "(", "0x104C8", ",", "'M'", ",", "u'𐓰'),", "", "", "(", "0x104C9", ",", "'M'", ",", "u'𐓱'),", "", "", "(", "0x104CA", ",", "'M'", ",", "u'𐓲'),", "", "", "(", "0x104CB", ",", "'M'", ",", "u'𐓳'),", "", "", "(", "0x104CC", ",", "'M'", ",", "u'𐓴'),", "", "", "(", "0x104CD", ",", "'M'", ",", "u'𐓵'),", "", "", "(", "0x104CE", ",", "'M'", ",", "u'𐓶'),", "", "", "(", "0x104CF", ",", "'M'", ",", "u'𐓷'),", "", "", "(", "0x104D0", ",", "'M'", ",", "u'𐓸'),", "", "", "(", "0x104D1", ",", "'M'", ",", "u'𐓹'),", "", "", "(", "0x104D2", ",", "'M'", ",", "u'𐓺'),", "", "", "(", "0x104D3", ",", "'M'", ",", "u'𐓻'),", "", "", "(", "0x104D4", ",", "'X'", ")", ",", "(", "0x104D8", ",", "'V'", ")", ",", "(", "0x104FC", ",", "'X'", ")", ",", "(", "0x10500", ",", "'V'", ")", ",", "(", "0x10528", ",", "'X'", ")", ",", "(", "0x10530", ",", "'V'", ")", ",", "(", "0x10564", ",", "'X'", ")", ",", "(", "0x1056F", ",", "'V'", ")", ",", "(", "0x10570", ",", "'X'", ")", ",", "(", "0x10600", ",", "'V'", ")", ",", "(", "0x10737", ",", "'X'", ")", ",", "(", "0x10740", ",", "'V'", ")", ",", "(", "0x10756", ",", "'X'", ")", ",", "(", "0x10760", ",", "'V'", ")", ",", "(", "0x10768", ",", "'X'", ")", ",", "(", "0x10800", ",", "'V'", ")", ",", "(", "0x10806", ",", "'X'", ")", ",", "(", "0x10808", ",", "'V'", ")", ",", "(", "0x10809", ",", "'X'", ")", ",", "(", "0x1080A", ",", "'V'", ")", ",", "(", "0x10836", ",", "'X'", ")", ",", "(", "0x10837", ",", "'V'", ")", ",", "(", "0x10839", ",", "'X'", ")", ",", "(", "0x1083C", ",", "'V'", ")", ",", "(", "0x1083D", ",", "'X'", ")", ",", "(", "0x1083F", ",", "'V'", ")", ",", "(", "0x10856", ",", "'X'", ")", ",", "(", "0x10857", ",", "'V'", ")", ",", "(", "0x1089F", ",", "'X'", ")", ",", "(", "0x108A7", ",", "'V'", ")", ",", "(", "0x108B0", ",", "'X'", ")", ",", "(", "0x108E0", ",", "'V'", ")", ",", "(", "0x108F3", ",", "'X'", ")", ",", "(", "0x108F4", ",", "'V'", ")", ",", "(", "0x108F6", ",", "'X'", ")", ",", "(", "0x108FB", ",", "'V'", ")", ",", "(", "0x1091C", ",", "'X'", ")", ",", "(", "0x1091F", ",", "'V'", ")", ",", "(", "0x1093A", ",", "'X'", ")", ",", "(", "0x1093F", ",", "'V'", ")", ",", "(", "0x10940", ",", "'X'", ")", ",", "(", "0x10980", ",", "'V'", ")", ",", "(", "0x109B8", ",", "'X'", ")", ",", "(", "0x109BC", ",", "'V'", ")", ",", "(", "0x109D0", ",", "'X'", ")", ",", "(", "0x109D2", ",", "'V'", ")", ",", "(", "0x10A04", ",", "'X'", ")", ",", "(", "0x10A05", ",", "'V'", ")", ",", "(", "0x10A07", ",", "'X'", ")", ",", "(", "0x10A0C", ",", "'V'", ")", ",", "(", "0x10A14", ",", "'X'", ")", ",", "(", "0x10A15", ",", "'V'", ")", ",", "(", "0x10A18", ",", "'X'", ")", ",", "(", "0x10A19", ",", "'V'", ")", ",", "(", "0x10A36", ",", "'X'", ")", ",", "(", "0x10A38", ",", "'V'", ")", ",", "(", "0x10A3B", ",", "'X'", ")", ",", "(", "0x10A3F", ",", "'V'", ")", ",", "(", "0x10A49", ",", "'X'", ")", ",", "(", "0x10A50", ",", "'V'", ")", ",", "(", "0x10A59", ",", "'X'", ")", ",", "(", "0x10A60", ",", "'V'", ")", ",", "(", "0x10AA0", ",", "'X'", ")", ",", "(", "0x10AC0", ",", "'V'", ")", ",", "(", "0x10AE7", ",", "'X'", ")", ",", "(", "0x10AEB", ",", "'V'", ")", ",", "(", "0x10AF7", ",", "'X'", ")", ",", "(", "0x10B00", ",", "'V'", ")", ",", "(", "0x10B36", ",", "'X'", ")", ",", "(", "0x10B39", ",", "'V'", ")", ",", "(", "0x10B56", ",", "'X'", ")", ",", "(", "0x10B58", ",", "'V'", ")", ",", "(", "0x10B73", ",", "'X'", ")", ",", "(", "0x10B78", ",", "'V'", ")", ",", "(", "0x10B92", ",", "'X'", ")", ",", "(", "0x10B99", ",", "'V'", ")", ",", "(", "0x10B9D", ",", "'X'", ")", ",", "(", "0x10BA9", ",", "'V'", ")", ",", "(", "0x10BB0", ",", "'X'", ")", ",", "(", "0x10C00", ",", "'V'", ")", ",", "]" ]
https://github.com/tp4a/teleport/blob/1fafd34f1f775d2cf80ea4af6e44468d8e0b24ad/server/www/packages/packages-windows/x86/idna/uts46data.py#L5624-L5726
tensorflow/lingvo
ce10019243d954c3c3ebe739f7589b5eebfdf907
lingvo/core/batch_major_attention.py
python
LocalSelfAttention._StreamStepStaticComputeKeyValue3d
(self, theta, indices, inputs, state0)
return key, value, state1
Computes key/value tensors in use_3d_recurrent_state mode. This mode treats state like a circular buffer, and uses scatter_nd_update to update that buffer. This in-place update may be cheaper than using tf.concat. (Don't use this method when in minimize_state_size mode, you want the _StreamStepStaticComputeKeyValueMinimal even if you're using use_3d_recurrent_state mode) Args: theta: The theta NestedMap for this layer. indices: Locations to store new recurrent state in the circular buffer when in 3d mode. inputs: [B, Q, D]: The inputs for this step, note that Q>=1. state0: The recurrent state. Returns: key: [B, S, N, H]: Queries projected into key space. value: [B, S, N, H]: Queries projected into value space. state1: Updated recurrent state.
Computes key/value tensors in use_3d_recurrent_state mode.
[ "Computes", "key", "/", "value", "tensors", "in", "use_3d_recurrent_state", "mode", "." ]
def _StreamStepStaticComputeKeyValue3d(self, theta, indices, inputs, state0): """Computes key/value tensors in use_3d_recurrent_state mode. This mode treats state like a circular buffer, and uses scatter_nd_update to update that buffer. This in-place update may be cheaper than using tf.concat. (Don't use this method when in minimize_state_size mode, you want the _StreamStepStaticComputeKeyValueMinimal even if you're using use_3d_recurrent_state mode) Args: theta: The theta NestedMap for this layer. indices: Locations to store new recurrent state in the circular buffer when in 3d mode. inputs: [B, Q, D]: The inputs for this step, note that Q>=1. state0: The recurrent state. Returns: key: [B, S, N, H]: Queries projected into key space. value: [B, S, N, H]: Queries projected into value space. state1: Updated recurrent state. """ dims = self._StreamStepDimensions(inputs) state0.key = py_utils.HasShape(state0.key, [dims.b, dims.s, dims.n * dims.h]) state0.value = py_utils.HasShape(state0.value, py_utils.GetShape(state0.key)) def get_next_state(recur_state, inputs): # pylint:disable=invalid-name next_state = tf.tensor_scatter_nd_update(recur_state, indices, inputs) # [B, S, N, H] outputs = tf.reshape(next_state, [dims.b, dims.s, dims.n, dims.h]) return outputs, next_state # [B, Q, N * H] incr_key = tf.einsum( 'DH,BTD->BTH', tf.reshape(theta.key.w, [self.key.params.input_dim, dims.n * dims.h]), inputs) + tf.reshape(theta.key.b, [-1]) # [B, Q, N * H] incr_value = tf.einsum( 'DH,BTD->BTH', tf.reshape(theta.value.w, [self.value.params.input_dim, dims.n * dims.h]), inputs) + tf.reshape(theta.value.b, [-1]) # [B, S, N, H], [B, S, N * H] key, next_key = get_next_state(state0.key, incr_key) # [B, S, N, H], [B, S, N * H] value, next_value = get_next_state(state0.value, incr_value) state1 = py_utils.NestedMap(key=next_key, value=next_value) return key, value, state1
[ "def", "_StreamStepStaticComputeKeyValue3d", "(", "self", ",", "theta", ",", "indices", ",", "inputs", ",", "state0", ")", ":", "dims", "=", "self", ".", "_StreamStepDimensions", "(", "inputs", ")", "state0", ".", "key", "=", "py_utils", ".", "HasShape", "(", "state0", ".", "key", ",", "[", "dims", ".", "b", ",", "dims", ".", "s", ",", "dims", ".", "n", "*", "dims", ".", "h", "]", ")", "state0", ".", "value", "=", "py_utils", ".", "HasShape", "(", "state0", ".", "value", ",", "py_utils", ".", "GetShape", "(", "state0", ".", "key", ")", ")", "def", "get_next_state", "(", "recur_state", ",", "inputs", ")", ":", "# pylint:disable=invalid-name", "next_state", "=", "tf", ".", "tensor_scatter_nd_update", "(", "recur_state", ",", "indices", ",", "inputs", ")", "# [B, S, N, H]", "outputs", "=", "tf", ".", "reshape", "(", "next_state", ",", "[", "dims", ".", "b", ",", "dims", ".", "s", ",", "dims", ".", "n", ",", "dims", ".", "h", "]", ")", "return", "outputs", ",", "next_state", "# [B, Q, N * H]", "incr_key", "=", "tf", ".", "einsum", "(", "'DH,BTD->BTH'", ",", "tf", ".", "reshape", "(", "theta", ".", "key", ".", "w", ",", "[", "self", ".", "key", ".", "params", ".", "input_dim", ",", "dims", ".", "n", "*", "dims", ".", "h", "]", ")", ",", "inputs", ")", "+", "tf", ".", "reshape", "(", "theta", ".", "key", ".", "b", ",", "[", "-", "1", "]", ")", "# [B, Q, N * H]", "incr_value", "=", "tf", ".", "einsum", "(", "'DH,BTD->BTH'", ",", "tf", ".", "reshape", "(", "theta", ".", "value", ".", "w", ",", "[", "self", ".", "value", ".", "params", ".", "input_dim", ",", "dims", ".", "n", "*", "dims", ".", "h", "]", ")", ",", "inputs", ")", "+", "tf", ".", "reshape", "(", "theta", ".", "value", ".", "b", ",", "[", "-", "1", "]", ")", "# [B, S, N, H], [B, S, N * H]", "key", ",", "next_key", "=", "get_next_state", "(", "state0", ".", "key", ",", "incr_key", ")", "# [B, S, N, H], [B, S, N * H]", "value", ",", "next_value", "=", "get_next_state", "(", "state0", ".", "value", ",", "incr_value", ")", "state1", "=", "py_utils", ".", "NestedMap", "(", "key", "=", "next_key", ",", "value", "=", "next_value", ")", "return", "key", ",", "value", ",", "state1" ]
https://github.com/tensorflow/lingvo/blob/ce10019243d954c3c3ebe739f7589b5eebfdf907/lingvo/core/batch_major_attention.py#L2274-L2328
howie6879/Sanic-For-Pythoneer
1006db52f38de7a568f8e2437589c45dd4cc2235
examples/demo03/sample02/src/views/rss.py
python
index
(request)
return json(data)
[]
async def index(request): url = "http://blog.howie6879.cn/atom.xml" feed = parse(url) articles = feed['entries'] data = [] for article in articles: data.append({"title": article["title_detail"]["value"], "link": article["link"]}) return json(data)
[ "async", "def", "index", "(", "request", ")", ":", "url", "=", "\"http://blog.howie6879.cn/atom.xml\"", "feed", "=", "parse", "(", "url", ")", "articles", "=", "feed", "[", "'entries'", "]", "data", "=", "[", "]", "for", "article", "in", "articles", ":", "data", ".", "append", "(", "{", "\"title\"", ":", "article", "[", "\"title_detail\"", "]", "[", "\"value\"", "]", ",", "\"link\"", ":", "article", "[", "\"link\"", "]", "}", ")", "return", "json", "(", "data", ")" ]
https://github.com/howie6879/Sanic-For-Pythoneer/blob/1006db52f38de7a568f8e2437589c45dd4cc2235/examples/demo03/sample02/src/views/rss.py#L29-L36
cloudera/hue
23f02102d4547c17c32bd5ea0eb24e9eadd657a4
desktop/core/ext-py/PyYAML-5.4.1/lib/yaml/__init__.py
python
emit
(events, stream=None, Dumper=Dumper, canonical=None, indent=None, width=None, allow_unicode=None, line_break=None)
Emit YAML parsing events into a stream. If stream is None, return the produced string instead.
Emit YAML parsing events into a stream. If stream is None, return the produced string instead.
[ "Emit", "YAML", "parsing", "events", "into", "a", "stream", ".", "If", "stream", "is", "None", "return", "the", "produced", "string", "instead", "." ]
def emit(events, stream=None, Dumper=Dumper, canonical=None, indent=None, width=None, allow_unicode=None, line_break=None): """ Emit YAML parsing events into a stream. If stream is None, return the produced string instead. """ getvalue = None if stream is None: from StringIO import StringIO stream = StringIO() getvalue = stream.getvalue dumper = Dumper(stream, canonical=canonical, indent=indent, width=width, allow_unicode=allow_unicode, line_break=line_break) try: for event in events: dumper.emit(event) finally: dumper.dispose() if getvalue: return getvalue()
[ "def", "emit", "(", "events", ",", "stream", "=", "None", ",", "Dumper", "=", "Dumper", ",", "canonical", "=", "None", ",", "indent", "=", "None", ",", "width", "=", "None", ",", "allow_unicode", "=", "None", ",", "line_break", "=", "None", ")", ":", "getvalue", "=", "None", "if", "stream", "is", "None", ":", "from", "StringIO", "import", "StringIO", "stream", "=", "StringIO", "(", ")", "getvalue", "=", "stream", ".", "getvalue", "dumper", "=", "Dumper", "(", "stream", ",", "canonical", "=", "canonical", ",", "indent", "=", "indent", ",", "width", "=", "width", ",", "allow_unicode", "=", "allow_unicode", ",", "line_break", "=", "line_break", ")", "try", ":", "for", "event", "in", "events", ":", "dumper", ".", "emit", "(", "event", ")", "finally", ":", "dumper", ".", "dispose", "(", ")", "if", "getvalue", ":", "return", "getvalue", "(", ")" ]
https://github.com/cloudera/hue/blob/23f02102d4547c17c32bd5ea0eb24e9eadd657a4/desktop/core/ext-py/PyYAML-5.4.1/lib/yaml/__init__.py#L194-L214
lmco/laikaboss
eb04b4c4fe7bf3fc86c26b8a37451d99e6fc9c17
laikaboss/clientLib.py
python
get_scanObjectUID
(scanObject)
return scanObject.uuid
Get the UID for a ScanObject instance. Arguments: scanObject -- a ScanObject instance Returns: A string containing the UID of the object.
Get the UID for a ScanObject instance. Arguments: scanObject -- a ScanObject instance
[ "Get", "the", "UID", "for", "a", "ScanObject", "instance", ".", "Arguments", ":", "scanObject", "--", "a", "ScanObject", "instance" ]
def get_scanObjectUID(scanObject): ''' Get the UID for a ScanObject instance. Arguments: scanObject -- a ScanObject instance Returns: A string containing the UID of the object. ''' return scanObject.uuid
[ "def", "get_scanObjectUID", "(", "scanObject", ")", ":", "return", "scanObject", ".", "uuid" ]
https://github.com/lmco/laikaboss/blob/eb04b4c4fe7bf3fc86c26b8a37451d99e6fc9c17/laikaboss/clientLib.py#L103-L113
JiYou/openstack
8607dd488bde0905044b303eb6e52bdea6806923
packages/source/swift/swift/common/manager.py
python
Server.spawn
(self, conf_file, once=False, wait=True, daemon=True, **kwargs)
return proc.pid
Launch a subprocess for this server. :param conf_file: path to conf_file to use as first arg :param once: boolean, add once argument to command :param wait: boolean, if true capture stdout with a pipe :param daemon: boolean, if true ask server to log to console :returns : the pid of the spawned process
Launch a subprocess for this server.
[ "Launch", "a", "subprocess", "for", "this", "server", "." ]
def spawn(self, conf_file, once=False, wait=True, daemon=True, **kwargs): """Launch a subprocess for this server. :param conf_file: path to conf_file to use as first arg :param once: boolean, add once argument to command :param wait: boolean, if true capture stdout with a pipe :param daemon: boolean, if true ask server to log to console :returns : the pid of the spawned process """ args = [self.cmd, conf_file] if once: args.append('once') if not daemon: # ask the server to log to console args.append('verbose') # figure out what we're going to do with stdio if not daemon: # do nothing, this process is open until the spawns close anyway re_out = None re_err = None else: re_err = subprocess.STDOUT if wait: # we're going to need to block on this... re_out = subprocess.PIPE else: re_out = open(os.devnull, 'w+b') proc = subprocess.Popen(args, stdout=re_out, stderr=re_err) pid_file = self.get_pid_file_name(conf_file) write_file(pid_file, proc.pid) self.procs.append(proc) return proc.pid
[ "def", "spawn", "(", "self", ",", "conf_file", ",", "once", "=", "False", ",", "wait", "=", "True", ",", "daemon", "=", "True", ",", "*", "*", "kwargs", ")", ":", "args", "=", "[", "self", ".", "cmd", ",", "conf_file", "]", "if", "once", ":", "args", ".", "append", "(", "'once'", ")", "if", "not", "daemon", ":", "# ask the server to log to console", "args", ".", "append", "(", "'verbose'", ")", "# figure out what we're going to do with stdio", "if", "not", "daemon", ":", "# do nothing, this process is open until the spawns close anyway", "re_out", "=", "None", "re_err", "=", "None", "else", ":", "re_err", "=", "subprocess", ".", "STDOUT", "if", "wait", ":", "# we're going to need to block on this...", "re_out", "=", "subprocess", ".", "PIPE", "else", ":", "re_out", "=", "open", "(", "os", ".", "devnull", ",", "'w+b'", ")", "proc", "=", "subprocess", ".", "Popen", "(", "args", ",", "stdout", "=", "re_out", ",", "stderr", "=", "re_err", ")", "pid_file", "=", "self", ".", "get_pid_file_name", "(", "conf_file", ")", "write_file", "(", "pid_file", ",", "proc", ".", "pid", ")", "self", ".", "procs", ".", "append", "(", "proc", ")", "return", "proc", ".", "pid" ]
https://github.com/JiYou/openstack/blob/8607dd488bde0905044b303eb6e52bdea6806923/packages/source/swift/swift/common/manager.py#L506-L539
edfungus/Crouton
ada98b3930192938a48909072b45cb84b945f875
clients/python_clients/cf_demo_client/cf_env/lib/python2.7/site-packages/werkzeug/wrappers.py
python
ETagResponseMixin.freeze
(self, no_etag=False)
Call this method if you want to make your response object ready for pickeling. This buffers the generator if there is one. This also sets the etag unless `no_etag` is set to `True`.
Call this method if you want to make your response object ready for pickeling. This buffers the generator if there is one. This also sets the etag unless `no_etag` is set to `True`.
[ "Call", "this", "method", "if", "you", "want", "to", "make", "your", "response", "object", "ready", "for", "pickeling", ".", "This", "buffers", "the", "generator", "if", "there", "is", "one", ".", "This", "also", "sets", "the", "etag", "unless", "no_etag", "is", "set", "to", "True", "." ]
def freeze(self, no_etag=False): """Call this method if you want to make your response object ready for pickeling. This buffers the generator if there is one. This also sets the etag unless `no_etag` is set to `True`. """ if not no_etag: self.add_etag() super(ETagResponseMixin, self).freeze()
[ "def", "freeze", "(", "self", ",", "no_etag", "=", "False", ")", ":", "if", "not", "no_etag", ":", "self", ".", "add_etag", "(", ")", "super", "(", "ETagResponseMixin", ",", "self", ")", ".", "freeze", "(", ")" ]
https://github.com/edfungus/Crouton/blob/ada98b3930192938a48909072b45cb84b945f875/clients/python_clients/cf_demo_client/cf_env/lib/python2.7/site-packages/werkzeug/wrappers.py#L1460-L1467
holzschu/Carnets
44effb10ddfc6aa5c8b0687582a724ba82c6b547
Library/lib/python3.7/site-packages/pygments/formatters/img.py
python
ImageFormatter._get_text_color
(self, style)
return fill
Get the correct color for the token from the style.
Get the correct color for the token from the style.
[ "Get", "the", "correct", "color", "for", "the", "token", "from", "the", "style", "." ]
def _get_text_color(self, style): """ Get the correct color for the token from the style. """ if style['color'] is not None: fill = '#' + style['color'] else: fill = '#000' return fill
[ "def", "_get_text_color", "(", "self", ",", "style", ")", ":", "if", "style", "[", "'color'", "]", "is", "not", "None", ":", "fill", "=", "'#'", "+", "style", "[", "'color'", "]", "else", ":", "fill", "=", "'#000'", "return", "fill" ]
https://github.com/holzschu/Carnets/blob/44effb10ddfc6aa5c8b0687582a724ba82c6b547/Library/lib/python3.7/site-packages/pygments/formatters/img.py#L426-L434
JasonKessler/scattertext
ef33f06d4c31f9d64b551a7ab86bf157aca82644
scattertext/__init__.py
python
produce_pca_explorer
(corpus, category, word2vec_model=None, projection_model=None, embeddings=None, projection=None, term_acceptance_re=re.compile('[a-z]{3,}'), x_dim=0, y_dim=1, scaler=scale, show_axes=False, show_dimensions_on_tooltip=True, x_label='', y_label='', **kwargs)
return html
Parameters ---------- corpus : ParsedCorpus It is highly recommended to use a stoplisted, unigram corpus-- `corpus.get_stoplisted_unigram_corpus()` category : str word2vec_model : Word2Vec A gensim word2vec model. A default model will be used instead. See Word2VecFromParsedCorpus for the default model. projection_model : sklearn-style dimensionality reduction model. Ignored if 'projection' is presents By default: umap.UMAP(min_dist=0.5, metric='cosine') unless projection is present. If so, You could also use, e.g., sklearn.manifold.TSNE(perplexity=10, n_components=2, init='pca', n_iter=2500, random_state=23) embeddings : array[len(corpus.get_terms()), X] Word embeddings. If None (default), and no value is passed into projection, use word2vec_model projection : DataFrame('x': array[len(corpus.get_terms())], 'y': array[len(corpus.get_terms())]) If None (default), produced using projection_model term_acceptance_re : SRE_Pattern, Regular expression to identify valid terms x_dim : int, default 0 Dimension of transformation matrix for x-axis y_dim : int, default 1 Dimension of transformation matrix for y-axis scalers : function , default scattertext.Scalers.scale Function used to scale projection show_axes : bool, default False Show the ticked axes on the plot. If false, show inner axes as a crosshair. show_dimensions_on_tooltip : bool, False by default If true, shows dimension positions on tooltip, along with term name. Otherwise, default to the get_tooltip_content parameter. kwargs : dict Remaining produce_scattertext_explorer keywords get_tooltip_content Returns ------- str HTML of visualization
Parameters ---------- corpus : ParsedCorpus It is highly recommended to use a stoplisted, unigram corpus-- `corpus.get_stoplisted_unigram_corpus()` category : str word2vec_model : Word2Vec A gensim word2vec model. A default model will be used instead. See Word2VecFromParsedCorpus for the default model. projection_model : sklearn-style dimensionality reduction model. Ignored if 'projection' is presents By default: umap.UMAP(min_dist=0.5, metric='cosine') unless projection is present. If so, You could also use, e.g., sklearn.manifold.TSNE(perplexity=10, n_components=2, init='pca', n_iter=2500, random_state=23) embeddings : array[len(corpus.get_terms()), X] Word embeddings. If None (default), and no value is passed into projection, use word2vec_model projection : DataFrame('x': array[len(corpus.get_terms())], 'y': array[len(corpus.get_terms())]) If None (default), produced using projection_model term_acceptance_re : SRE_Pattern, Regular expression to identify valid terms x_dim : int, default 0 Dimension of transformation matrix for x-axis y_dim : int, default 1 Dimension of transformation matrix for y-axis scalers : function , default scattertext.Scalers.scale Function used to scale projection show_axes : bool, default False Show the ticked axes on the plot. If false, show inner axes as a crosshair. show_dimensions_on_tooltip : bool, False by default If true, shows dimension positions on tooltip, along with term name. Otherwise, default to the get_tooltip_content parameter. kwargs : dict Remaining produce_scattertext_explorer keywords get_tooltip_content
[ "Parameters", "----------", "corpus", ":", "ParsedCorpus", "It", "is", "highly", "recommended", "to", "use", "a", "stoplisted", "unigram", "corpus", "--", "corpus", ".", "get_stoplisted_unigram_corpus", "()", "category", ":", "str", "word2vec_model", ":", "Word2Vec", "A", "gensim", "word2vec", "model", ".", "A", "default", "model", "will", "be", "used", "instead", ".", "See", "Word2VecFromParsedCorpus", "for", "the", "default", "model", ".", "projection_model", ":", "sklearn", "-", "style", "dimensionality", "reduction", "model", ".", "Ignored", "if", "projection", "is", "presents", "By", "default", ":", "umap", ".", "UMAP", "(", "min_dist", "=", "0", ".", "5", "metric", "=", "cosine", ")", "unless", "projection", "is", "present", ".", "If", "so", "You", "could", "also", "use", "e", ".", "g", ".", "sklearn", ".", "manifold", ".", "TSNE", "(", "perplexity", "=", "10", "n_components", "=", "2", "init", "=", "pca", "n_iter", "=", "2500", "random_state", "=", "23", ")", "embeddings", ":", "array", "[", "len", "(", "corpus", ".", "get_terms", "()", ")", "X", "]", "Word", "embeddings", ".", "If", "None", "(", "default", ")", "and", "no", "value", "is", "passed", "into", "projection", "use", "word2vec_model", "projection", ":", "DataFrame", "(", "x", ":", "array", "[", "len", "(", "corpus", ".", "get_terms", "()", ")", "]", "y", ":", "array", "[", "len", "(", "corpus", ".", "get_terms", "()", ")", "]", ")", "If", "None", "(", "default", ")", "produced", "using", "projection_model", "term_acceptance_re", ":", "SRE_Pattern", "Regular", "expression", "to", "identify", "valid", "terms", "x_dim", ":", "int", "default", "0", "Dimension", "of", "transformation", "matrix", "for", "x", "-", "axis", "y_dim", ":", "int", "default", "1", "Dimension", "of", "transformation", "matrix", "for", "y", "-", "axis", "scalers", ":", "function", "default", "scattertext", ".", "Scalers", ".", "scale", "Function", "used", "to", "scale", "projection", "show_axes", ":", "bool", "default", "False", "Show", "the", "ticked", "axes", "on", "the", "plot", ".", "If", "false", "show", "inner", "axes", "as", "a", "crosshair", ".", "show_dimensions_on_tooltip", ":", "bool", "False", "by", "default", "If", "true", "shows", "dimension", "positions", "on", "tooltip", "along", "with", "term", "name", ".", "Otherwise", "default", "to", "the", "get_tooltip_content", "parameter", ".", "kwargs", ":", "dict", "Remaining", "produce_scattertext_explorer", "keywords", "get_tooltip_content" ]
def produce_pca_explorer(corpus, category, word2vec_model=None, projection_model=None, embeddings=None, projection=None, term_acceptance_re=re.compile('[a-z]{3,}'), x_dim=0, y_dim=1, scaler=scale, show_axes=False, show_dimensions_on_tooltip=True, x_label='', y_label='', **kwargs): """ Parameters ---------- corpus : ParsedCorpus It is highly recommended to use a stoplisted, unigram corpus-- `corpus.get_stoplisted_unigram_corpus()` category : str word2vec_model : Word2Vec A gensim word2vec model. A default model will be used instead. See Word2VecFromParsedCorpus for the default model. projection_model : sklearn-style dimensionality reduction model. Ignored if 'projection' is presents By default: umap.UMAP(min_dist=0.5, metric='cosine') unless projection is present. If so, You could also use, e.g., sklearn.manifold.TSNE(perplexity=10, n_components=2, init='pca', n_iter=2500, random_state=23) embeddings : array[len(corpus.get_terms()), X] Word embeddings. If None (default), and no value is passed into projection, use word2vec_model projection : DataFrame('x': array[len(corpus.get_terms())], 'y': array[len(corpus.get_terms())]) If None (default), produced using projection_model term_acceptance_re : SRE_Pattern, Regular expression to identify valid terms x_dim : int, default 0 Dimension of transformation matrix for x-axis y_dim : int, default 1 Dimension of transformation matrix for y-axis scalers : function , default scattertext.Scalers.scale Function used to scale projection show_axes : bool, default False Show the ticked axes on the plot. If false, show inner axes as a crosshair. show_dimensions_on_tooltip : bool, False by default If true, shows dimension positions on tooltip, along with term name. Otherwise, default to the get_tooltip_content parameter. kwargs : dict Remaining produce_scattertext_explorer keywords get_tooltip_content Returns ------- str HTML of visualization """ if projection is None: embeddings_resolover = EmbeddingsResolver(corpus) if embeddings is not None: embeddings_resolover.set_embeddings(embeddings) else: embeddings_resolover.set_embeddings_model(word2vec_model, term_acceptance_re) corpus, projection = embeddings_resolover.project_embeddings(projection_model, x_dim=x_dim, y_dim=y_dim) else: assert type(projection) == pd.DataFrame assert 'x' in projection and 'y' in projection if kwargs.get('use_non_text_features', False): assert set(projection.index) == set(corpus.get_metadata()) else: assert set(projection.index) == set(corpus.get_terms()) if show_dimensions_on_tooltip: kwargs['get_tooltip_content'] = '''(function(d) { return d.term + "<br/>Dim %s: " + Math.round(d.ox*1000)/1000 + "<br/>Dim %s: " + Math.round(d.oy*1000)/1000 })''' % (x_dim, y_dim) html = produce_scattertext_explorer( corpus=corpus, category=category, minimum_term_frequency=0, sort_by_dist=False, original_x=projection['x'], original_y=projection['y'], x_coords=scaler(projection['x']), y_coords=scaler(projection['y']), y_label=y_label, x_label=x_label, show_axes=show_axes, horizontal_line_y_position=kwargs.get('horizontal_line_y_position', 0), vertical_line_x_position=kwargs.get('vertical_line_x_position', 0), **kwargs ) return html
[ "def", "produce_pca_explorer", "(", "corpus", ",", "category", ",", "word2vec_model", "=", "None", ",", "projection_model", "=", "None", ",", "embeddings", "=", "None", ",", "projection", "=", "None", ",", "term_acceptance_re", "=", "re", ".", "compile", "(", "'[a-z]{3,}'", ")", ",", "x_dim", "=", "0", ",", "y_dim", "=", "1", ",", "scaler", "=", "scale", ",", "show_axes", "=", "False", ",", "show_dimensions_on_tooltip", "=", "True", ",", "x_label", "=", "''", ",", "y_label", "=", "''", ",", "*", "*", "kwargs", ")", ":", "if", "projection", "is", "None", ":", "embeddings_resolover", "=", "EmbeddingsResolver", "(", "corpus", ")", "if", "embeddings", "is", "not", "None", ":", "embeddings_resolover", ".", "set_embeddings", "(", "embeddings", ")", "else", ":", "embeddings_resolover", ".", "set_embeddings_model", "(", "word2vec_model", ",", "term_acceptance_re", ")", "corpus", ",", "projection", "=", "embeddings_resolover", ".", "project_embeddings", "(", "projection_model", ",", "x_dim", "=", "x_dim", ",", "y_dim", "=", "y_dim", ")", "else", ":", "assert", "type", "(", "projection", ")", "==", "pd", ".", "DataFrame", "assert", "'x'", "in", "projection", "and", "'y'", "in", "projection", "if", "kwargs", ".", "get", "(", "'use_non_text_features'", ",", "False", ")", ":", "assert", "set", "(", "projection", ".", "index", ")", "==", "set", "(", "corpus", ".", "get_metadata", "(", ")", ")", "else", ":", "assert", "set", "(", "projection", ".", "index", ")", "==", "set", "(", "corpus", ".", "get_terms", "(", ")", ")", "if", "show_dimensions_on_tooltip", ":", "kwargs", "[", "'get_tooltip_content'", "]", "=", "'''(function(d) {\n return d.term + \"<br/>Dim %s: \" + Math.round(d.ox*1000)/1000 + \"<br/>Dim %s: \" + Math.round(d.oy*1000)/1000 \n })'''", "%", "(", "x_dim", ",", "y_dim", ")", "html", "=", "produce_scattertext_explorer", "(", "corpus", "=", "corpus", ",", "category", "=", "category", ",", "minimum_term_frequency", "=", "0", ",", "sort_by_dist", "=", "False", ",", "original_x", "=", "projection", "[", "'x'", "]", ",", "original_y", "=", "projection", "[", "'y'", "]", ",", "x_coords", "=", "scaler", "(", "projection", "[", "'x'", "]", ")", ",", "y_coords", "=", "scaler", "(", "projection", "[", "'y'", "]", ")", ",", "y_label", "=", "y_label", ",", "x_label", "=", "x_label", ",", "show_axes", "=", "show_axes", ",", "horizontal_line_y_position", "=", "kwargs", ".", "get", "(", "'horizontal_line_y_position'", ",", "0", ")", ",", "vertical_line_x_position", "=", "kwargs", ".", "get", "(", "'vertical_line_x_position'", ",", "0", ")", ",", "*", "*", "kwargs", ")", "return", "html" ]
https://github.com/JasonKessler/scattertext/blob/ef33f06d4c31f9d64b551a7ab86bf157aca82644/scattertext/__init__.py#L1494-L1580
mbusb/multibootusb
fa89b28f27891a9ce8d6e2a5737baa2e6ee83dfd
scripts/param_rewrite.py
python
op_remove_keys
(keys, params)
return [x for x in params if all([not x.startswith(k) for k in keys])]
[]
def op_remove_keys(keys, params): return [x for x in params if all([not x.startswith(k) for k in keys])]
[ "def", "op_remove_keys", "(", "keys", ",", "params", ")", ":", "return", "[", "x", "for", "x", "in", "params", "if", "all", "(", "[", "not", "x", ".", "startswith", "(", "k", ")", "for", "k", "in", "keys", "]", ")", "]" ]
https://github.com/mbusb/multibootusb/blob/fa89b28f27891a9ce8d6e2a5737baa2e6ee83dfd/scripts/param_rewrite.py#L57-L58
LCAV/pyroomacoustics
15a86425b68969b2109860ca3614f0cbf92b1bd0
pyroomacoustics/transform/stft.py
python
analysis
(x, L, hop, win=None, zp_back=0, zp_front=0)
return the_stft.analysis(x)
Convenience function for one-shot STFT Parameters ---------- x: array_like, (n_samples) or (n_samples, n_channels) input signal L: int frame size hop: int shift size between frames win: array_like the window to apply (default None) zp_back: int zero padding to apply at the end of the frame zp_front: int zero padding to apply at the beginning of the frame Returns ------- X: ndarray, (n_frames, n_frequencies) or (n_frames, n_frequencies, n_channels) The STFT of x
Convenience function for one-shot STFT
[ "Convenience", "function", "for", "one", "-", "shot", "STFT" ]
def analysis(x, L, hop, win=None, zp_back=0, zp_front=0): """ Convenience function for one-shot STFT Parameters ---------- x: array_like, (n_samples) or (n_samples, n_channels) input signal L: int frame size hop: int shift size between frames win: array_like the window to apply (default None) zp_back: int zero padding to apply at the end of the frame zp_front: int zero padding to apply at the beginning of the frame Returns ------- X: ndarray, (n_frames, n_frequencies) or (n_frames, n_frequencies, n_channels) The STFT of x """ if x.ndim == 2: channels = x.shape[1] else: channels = 1 the_stft = STFT( L, hop=hop, analysis_window=win, channels=channels, precision=x.dtype ) if zp_back > 0: the_stft.zero_pad_back(zp_back) if zp_front > 0: the_stft.zero_pad_front(zp_front) # apply transform return the_stft.analysis(x)
[ "def", "analysis", "(", "x", ",", "L", ",", "hop", ",", "win", "=", "None", ",", "zp_back", "=", "0", ",", "zp_front", "=", "0", ")", ":", "if", "x", ".", "ndim", "==", "2", ":", "channels", "=", "x", ".", "shape", "[", "1", "]", "else", ":", "channels", "=", "1", "the_stft", "=", "STFT", "(", "L", ",", "hop", "=", "hop", ",", "analysis_window", "=", "win", ",", "channels", "=", "channels", ",", "precision", "=", "x", ".", "dtype", ")", "if", "zp_back", ">", "0", ":", "the_stft", ".", "zero_pad_back", "(", "zp_back", ")", "if", "zp_front", ">", "0", ":", "the_stft", ".", "zero_pad_front", "(", "zp_front", ")", "# apply transform", "return", "the_stft", ".", "analysis", "(", "x", ")" ]
https://github.com/LCAV/pyroomacoustics/blob/15a86425b68969b2109860ca3614f0cbf92b1bd0/pyroomacoustics/transform/stft.py#L773-L814
junyanz/pytorch-CycleGAN-and-pix2pix
003efc4c8819de47ff11b5a0af7ba09aee7f5fc1
models/base_model.py
python
BaseModel.forward
(self)
Run forward pass; called by both functions <optimize_parameters> and <test>.
Run forward pass; called by both functions <optimize_parameters> and <test>.
[ "Run", "forward", "pass", ";", "called", "by", "both", "functions", "<optimize_parameters", ">", "and", "<test", ">", "." ]
def forward(self): """Run forward pass; called by both functions <optimize_parameters> and <test>.""" pass
[ "def", "forward", "(", "self", ")", ":", "pass" ]
https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix/blob/003efc4c8819de47ff11b5a0af7ba09aee7f5fc1/models/base_model.py#L69-L71
oracle/graalpython
577e02da9755d916056184ec441c26e00b70145c
graalpython/lib-python/3/xml/sax/xmlreader.py
python
XMLReader.setLocale
(self, locale)
Allow an application to set the locale for errors and warnings. SAX parsers are not required to provide localization for errors and warnings; if they cannot support the requested locale, however, they must raise a SAX exception. Applications may request a locale change in the middle of a parse.
Allow an application to set the locale for errors and warnings.
[ "Allow", "an", "application", "to", "set", "the", "locale", "for", "errors", "and", "warnings", "." ]
def setLocale(self, locale): """Allow an application to set the locale for errors and warnings. SAX parsers are not required to provide localization for errors and warnings; if they cannot support the requested locale, however, they must raise a SAX exception. Applications may request a locale change in the middle of a parse.""" raise SAXNotSupportedException("Locale support not implemented")
[ "def", "setLocale", "(", "self", ",", "locale", ")", ":", "raise", "SAXNotSupportedException", "(", "\"Locale support not implemented\"", ")" ]
https://github.com/oracle/graalpython/blob/577e02da9755d916056184ec441c26e00b70145c/graalpython/lib-python/3/xml/sax/xmlreader.py#L66-L73
Autodesk/molecular-design-toolkit
5f45a47fea21d3603899a6366cb163024f0e2ec4
moldesign/units/unitsystem.py
python
UnitSystem.convert
(self, quantity)
Convert a quantity into this unit system. Args: quantity (MdtQuantity or MdtUnit): quantity to convert
Convert a quantity into this unit system.
[ "Convert", "a", "quantity", "into", "this", "unit", "system", "." ]
def convert(self, quantity): """ Convert a quantity into this unit system. Args: quantity (MdtQuantity or MdtUnit): quantity to convert """ baseunit = self.get_baseunit(quantity) if baseunit == ureg.dimensionless: return quantity * ureg.dimensionless else: result = quantity.to(baseunit) return result
[ "def", "convert", "(", "self", ",", "quantity", ")", ":", "baseunit", "=", "self", ".", "get_baseunit", "(", "quantity", ")", "if", "baseunit", "==", "ureg", ".", "dimensionless", ":", "return", "quantity", "*", "ureg", ".", "dimensionless", "else", ":", "result", "=", "quantity", ".", "to", "(", "baseunit", ")", "return", "result" ]
https://github.com/Autodesk/molecular-design-toolkit/blob/5f45a47fea21d3603899a6366cb163024f0e2ec4/moldesign/units/unitsystem.py#L85-L96
biolab/orange3
41685e1c7b1d1babe680113685a2d44bcc9fec0b
Orange/widgets/data/owcsvimport.py
python
_mime_type_for_path
(path)
return mtype
Return the mime type of the file on a local filesystem. In case the path is a compressed file return the mime type of its contents Parameters ---------- path : str Local filesystem path Returns ------- mimetype: QMimeType
Return the mime type of the file on a local filesystem.
[ "Return", "the", "mime", "type", "of", "the", "file", "on", "a", "local", "filesystem", "." ]
def _mime_type_for_path(path): # type: (str) -> QMimeType """ Return the mime type of the file on a local filesystem. In case the path is a compressed file return the mime type of its contents Parameters ---------- path : str Local filesystem path Returns ------- mimetype: QMimeType """ db = QMimeDatabase() mtype = db.mimeTypeForFile(path, QMimeDatabase.MatchDefault) if any(mtype.inherits(t) for t in compression_types): # peek contents try: with _open(path, "rb") as f: sample = f.read(4096) except Exception: # pylint: disable=broad-except sample = b'' mtype = db.mimeTypeForData(sample) return mtype
[ "def", "_mime_type_for_path", "(", "path", ")", ":", "# type: (str) -> QMimeType", "db", "=", "QMimeDatabase", "(", ")", "mtype", "=", "db", ".", "mimeTypeForFile", "(", "path", ",", "QMimeDatabase", ".", "MatchDefault", ")", "if", "any", "(", "mtype", ".", "inherits", "(", "t", ")", "for", "t", "in", "compression_types", ")", ":", "# peek contents", "try", ":", "with", "_open", "(", "path", ",", "\"rb\"", ")", "as", "f", ":", "sample", "=", "f", ".", "read", "(", "4096", ")", "except", "Exception", ":", "# pylint: disable=broad-except", "sample", "=", "b''", "mtype", "=", "db", ".", "mimeTypeForData", "(", "sample", ")", "return", "mtype" ]
https://github.com/biolab/orange3/blob/41685e1c7b1d1babe680113685a2d44bcc9fec0b/Orange/widgets/data/owcsvimport.py#L1421-L1447
tensorflow/ranking
94cccec8b4e71d2cc4489c61e2623522738c2924
tensorflow_ranking/python/metrics_impl.py
python
AlphaDCGMetric._compute_per_list_metric
(self, labels, predictions, weights, topn, mask)
return tf.compat.v1.math.divide_no_nan(alpha_dcg, per_list_weights)
See `_DivRankingMetric`.
See `_DivRankingMetric`.
[ "See", "_DivRankingMetric", "." ]
def _compute_per_list_metric(self, labels, predictions, weights, topn, mask): """See `_DivRankingMetric`.""" sorted_labels, sorted_weights = utils.sort_by_scores( predictions, [labels, weights], topn=topn, seed=self._seed, mask=mask) alpha_dcg = _discounted_cumulative_gain(sorted_labels, sorted_weights, self._gain_fn, self._rank_discount_fn) per_list_weights = self._compute_per_list_weights(weights, labels) return tf.compat.v1.math.divide_no_nan(alpha_dcg, per_list_weights)
[ "def", "_compute_per_list_metric", "(", "self", ",", "labels", ",", "predictions", ",", "weights", ",", "topn", ",", "mask", ")", ":", "sorted_labels", ",", "sorted_weights", "=", "utils", ".", "sort_by_scores", "(", "predictions", ",", "[", "labels", ",", "weights", "]", ",", "topn", "=", "topn", ",", "seed", "=", "self", ".", "_seed", ",", "mask", "=", "mask", ")", "alpha_dcg", "=", "_discounted_cumulative_gain", "(", "sorted_labels", ",", "sorted_weights", ",", "self", ".", "_gain_fn", ",", "self", ".", "_rank_discount_fn", ")", "per_list_weights", "=", "self", ".", "_compute_per_list_weights", "(", "weights", ",", "labels", ")", "return", "tf", ".", "compat", ".", "v1", ".", "math", ".", "divide_no_nan", "(", "alpha_dcg", ",", "per_list_weights", ")" ]
https://github.com/tensorflow/ranking/blob/94cccec8b4e71d2cc4489c61e2623522738c2924/tensorflow_ranking/python/metrics_impl.py#L766-L774
sagemath/sage
f9b2db94f675ff16963ccdefba4f1a3393b3fe0d
src/sage/sets/finite_set_maps.py
python
FiniteSetMaps_MN._from_list_
(self, v)
return self.element_class(self, v, check=False)
EXAMPLES:: sage: M = FiniteSetMaps(4,3) sage: M._from_list_([2,1,1,0]) [2, 1, 1, 0]
EXAMPLES::
[ "EXAMPLES", "::" ]
def _from_list_(self, v): """ EXAMPLES:: sage: M = FiniteSetMaps(4,3) sage: M._from_list_([2,1,1,0]) [2, 1, 1, 0] """ return self.element_class(self, v, check=False)
[ "def", "_from_list_", "(", "self", ",", "v", ")", ":", "return", "self", ".", "element_class", "(", "self", ",", "v", ",", "check", "=", "False", ")" ]
https://github.com/sagemath/sage/blob/f9b2db94f675ff16963ccdefba4f1a3393b3fe0d/src/sage/sets/finite_set_maps.py#L346-L354
rizar/attention-lvcsr
1ae52cafdd8419874846f9544a299eef9c758f3b
libs/blocks/blocks/model.py
python
Model.get_top_bricks
(self)
return self.top_bricks
Get the bricks that do not have parents. Returns ------- bricks : list of :class:`~blocks.bricks.base.Brick`
Get the bricks that do not have parents.
[ "Get", "the", "bricks", "that", "do", "not", "have", "parents", "." ]
def get_top_bricks(self): """Get the bricks that do not have parents. Returns ------- bricks : list of :class:`~blocks.bricks.base.Brick` """ return self.top_bricks
[ "def", "get_top_bricks", "(", "self", ")", ":", "return", "self", ".", "top_bricks" ]
https://github.com/rizar/attention-lvcsr/blob/1ae52cafdd8419874846f9544a299eef9c758f3b/libs/blocks/blocks/model.py#L153-L161
CalebBell/thermo
572a47d1b03d49fe609b8d5f826fa6a7cde00828
thermo/equilibrium.py
python
EquilibriumState.G_ideal_gas
(self, phase=None)
return G_ideal_gas
r'''Method to calculate and return the ideal-gas Gibbs free energy of the phase. .. math:: G^{ig} = H^{ig} - T S^{ig} Returns ------- G_ideal_gas : float Ideal gas free energy, [J/(mol)]
r'''Method to calculate and return the ideal-gas Gibbs free energy of the phase.
[ "r", "Method", "to", "calculate", "and", "return", "the", "ideal", "-", "gas", "Gibbs", "free", "energy", "of", "the", "phase", "." ]
def G_ideal_gas(self, phase=None): r'''Method to calculate and return the ideal-gas Gibbs free energy of the phase. .. math:: G^{ig} = H^{ig} - T S^{ig} Returns ------- G_ideal_gas : float Ideal gas free energy, [J/(mol)] ''' G_ideal_gas = self.H_ideal_gas(phase) - self.T*self.S_ideal_gas(phase) return G_ideal_gas
[ "def", "G_ideal_gas", "(", "self", ",", "phase", "=", "None", ")", ":", "G_ideal_gas", "=", "self", ".", "H_ideal_gas", "(", "phase", ")", "-", "self", ".", "T", "*", "self", ".", "S_ideal_gas", "(", "phase", ")", "return", "G_ideal_gas" ]
https://github.com/CalebBell/thermo/blob/572a47d1b03d49fe609b8d5f826fa6a7cde00828/thermo/equilibrium.py#L1301-L1314
openbci-archive/OpenBCI_Python
1a8a0a1f8c9158b6c6a4714d605ba781c2630f64
openbci/wifi.py
python
OpenBCIWiFi.check_connection
(self)
Check connection quality in term of lag and number of packets drop. Reinit connection if necessary. FIXME: parameters given to the board will be lost.
Check connection quality in term of lag and number of packets drop. Reinit connection if necessary. FIXME: parameters given to the board will be lost.
[ "Check", "connection", "quality", "in", "term", "of", "lag", "and", "number", "of", "packets", "drop", ".", "Reinit", "connection", "if", "necessary", ".", "FIXME", ":", "parameters", "given", "to", "the", "board", "will", "be", "lost", "." ]
def check_connection(self): """ Check connection quality in term of lag and number of packets drop. Reinit connection if necessary. FIXME: parameters given to the board will be lost. """ # stop checking when we're no longer streaming if not self.streaming: return # check number of dropped packets and duration without new packets, deco/reco if too large if self.packets_dropped > self.max_packets_to_skip: self.warn("Too many packets dropped, attempt to reconnect") self.reconnect() elif self.timeout > 0 and timeit.default_timer() - self.time_last_packet > self.timeout: self.warn("Too long since got new data, attempt to reconnect") # if error, attempt to reconect self.reconnect()
[ "def", "check_connection", "(", "self", ")", ":", "# stop checking when we're no longer streaming", "if", "not", "self", ".", "streaming", ":", "return", "# check number of dropped packets and duration without new packets, deco/reco if too large", "if", "self", ".", "packets_dropped", ">", "self", ".", "max_packets_to_skip", ":", "self", ".", "warn", "(", "\"Too many packets dropped, attempt to reconnect\"", ")", "self", ".", "reconnect", "(", ")", "elif", "self", ".", "timeout", ">", "0", "and", "timeit", ".", "default_timer", "(", ")", "-", "self", ".", "time_last_packet", ">", "self", ".", "timeout", ":", "self", ".", "warn", "(", "\"Too long since got new data, attempt to reconnect\"", ")", "# if error, attempt to reconect", "self", ".", "reconnect", "(", ")" ]
https://github.com/openbci-archive/OpenBCI_Python/blob/1a8a0a1f8c9158b6c6a4714d605ba781c2630f64/openbci/wifi.py#L591-L606
memray/seq2seq-keyphrase
9145c63ebdc4c3bc431f8091dc52547a46804012
emolga/models/encdec.py
python
Encoder.__init__
(self, config, rng, prefix='enc', mode='Evaluation', embed=None, use_context=False)
Create all elements of the Encoder's Computational graph
Create all elements of the Encoder's Computational graph
[ "Create", "all", "elements", "of", "the", "Encoder", "s", "Computational", "graph" ]
def __init__(self, config, rng, prefix='enc', mode='Evaluation', embed=None, use_context=False): super(Encoder, self).__init__() self.config = config self.rng = rng self.prefix = prefix self.mode = mode self.name = prefix self.use_context = use_context self.return_embed = False self.return_sequence = False """ Create all elements of the Encoder's Computational graph """ # create Embedding layers logger.info("{}_create embedding layers.".format(self.prefix)) if embed: self.Embed = embed else: self.Embed = Embedding( self.config['enc_voc_size'], self.config['enc_embedd_dim'], name="{}_embed".format(self.prefix)) self._add(self.Embed) if self.use_context: self.Initializer = Dense( config['enc_contxt_dim'], config['enc_hidden_dim'], activation='tanh', name="{}_init".format(self.prefix) ) self._add(self.Initializer) """ Encoder Core """ # create RNN cells if not self.config['bidirectional']: logger.info("{}_create RNN cells.".format(self.prefix)) self.RNN = RNN( self.config['enc_embedd_dim'], self.config['enc_hidden_dim'], None if not use_context else self.config['enc_contxt_dim'], name="{}_cell".format(self.prefix) ) self._add(self.RNN) else: logger.info("{}_create forward RNN cells.".format(self.prefix)) self.forwardRNN = RNN( self.config['enc_embedd_dim'], self.config['enc_hidden_dim'], None if not use_context else self.config['enc_contxt_dim'], name="{}_fw_cell".format(self.prefix) ) self._add(self.forwardRNN) logger.info("{}_create backward RNN cells.".format(self.prefix)) self.backwardRNN = RNN( self.config['enc_embedd_dim'], self.config['enc_hidden_dim'], None if not use_context else self.config['enc_contxt_dim'], name="{}_bw_cell".format(self.prefix) ) self._add(self.backwardRNN) logger.info("create encoder ok.")
[ "def", "__init__", "(", "self", ",", "config", ",", "rng", ",", "prefix", "=", "'enc'", ",", "mode", "=", "'Evaluation'", ",", "embed", "=", "None", ",", "use_context", "=", "False", ")", ":", "super", "(", "Encoder", ",", "self", ")", ".", "__init__", "(", ")", "self", ".", "config", "=", "config", "self", ".", "rng", "=", "rng", "self", ".", "prefix", "=", "prefix", "self", ".", "mode", "=", "mode", "self", ".", "name", "=", "prefix", "self", ".", "use_context", "=", "use_context", "self", ".", "return_embed", "=", "False", "self", ".", "return_sequence", "=", "False", "# create Embedding layers", "logger", ".", "info", "(", "\"{}_create embedding layers.\"", ".", "format", "(", "self", ".", "prefix", ")", ")", "if", "embed", ":", "self", ".", "Embed", "=", "embed", "else", ":", "self", ".", "Embed", "=", "Embedding", "(", "self", ".", "config", "[", "'enc_voc_size'", "]", ",", "self", ".", "config", "[", "'enc_embedd_dim'", "]", ",", "name", "=", "\"{}_embed\"", ".", "format", "(", "self", ".", "prefix", ")", ")", "self", ".", "_add", "(", "self", ".", "Embed", ")", "if", "self", ".", "use_context", ":", "self", ".", "Initializer", "=", "Dense", "(", "config", "[", "'enc_contxt_dim'", "]", ",", "config", "[", "'enc_hidden_dim'", "]", ",", "activation", "=", "'tanh'", ",", "name", "=", "\"{}_init\"", ".", "format", "(", "self", ".", "prefix", ")", ")", "self", ".", "_add", "(", "self", ".", "Initializer", ")", "\"\"\"\n Encoder Core\n \"\"\"", "# create RNN cells", "if", "not", "self", ".", "config", "[", "'bidirectional'", "]", ":", "logger", ".", "info", "(", "\"{}_create RNN cells.\"", ".", "format", "(", "self", ".", "prefix", ")", ")", "self", ".", "RNN", "=", "RNN", "(", "self", ".", "config", "[", "'enc_embedd_dim'", "]", ",", "self", ".", "config", "[", "'enc_hidden_dim'", "]", ",", "None", "if", "not", "use_context", "else", "self", ".", "config", "[", "'enc_contxt_dim'", "]", ",", "name", "=", "\"{}_cell\"", ".", "format", "(", "self", ".", "prefix", ")", ")", "self", ".", "_add", "(", "self", ".", "RNN", ")", "else", ":", "logger", ".", "info", "(", "\"{}_create forward RNN cells.\"", ".", "format", "(", "self", ".", "prefix", ")", ")", "self", ".", "forwardRNN", "=", "RNN", "(", "self", ".", "config", "[", "'enc_embedd_dim'", "]", ",", "self", ".", "config", "[", "'enc_hidden_dim'", "]", ",", "None", "if", "not", "use_context", "else", "self", ".", "config", "[", "'enc_contxt_dim'", "]", ",", "name", "=", "\"{}_fw_cell\"", ".", "format", "(", "self", ".", "prefix", ")", ")", "self", ".", "_add", "(", "self", ".", "forwardRNN", ")", "logger", ".", "info", "(", "\"{}_create backward RNN cells.\"", ".", "format", "(", "self", ".", "prefix", ")", ")", "self", ".", "backwardRNN", "=", "RNN", "(", "self", ".", "config", "[", "'enc_embedd_dim'", "]", ",", "self", ".", "config", "[", "'enc_hidden_dim'", "]", ",", "None", "if", "not", "use_context", "else", "self", ".", "config", "[", "'enc_contxt_dim'", "]", ",", "name", "=", "\"{}_bw_cell\"", ".", "format", "(", "self", ".", "prefix", ")", ")", "self", ".", "_add", "(", "self", ".", "backwardRNN", ")", "logger", ".", "info", "(", "\"create encoder ok.\"", ")" ]
https://github.com/memray/seq2seq-keyphrase/blob/9145c63ebdc4c3bc431f8091dc52547a46804012/emolga/models/encdec.py#L183-L255
ReactionMechanismGenerator/RMG-Py
2b7baf51febf27157def58fb3f6cee03fb6a684c
rmgpy/reaction.py
python
Reaction.is_unimolecular
(self)
return len(self.reactants) == 1 or len(self.products) == 1
Return ``True`` if the reaction has a single molecule as either reactant or product (or both) :math:`\\ce{A <=> B + C}` or :math:`\\ce{A + B <=> C}` or :math:`\\ce{A <=> B}`, or ``False`` if not.
Return ``True`` if the reaction has a single molecule as either reactant or product (or both) :math:`\\ce{A <=> B + C}` or :math:`\\ce{A + B <=> C}` or :math:`\\ce{A <=> B}`, or ``False`` if not.
[ "Return", "True", "if", "the", "reaction", "has", "a", "single", "molecule", "as", "either", "reactant", "or", "product", "(", "or", "both", ")", ":", "math", ":", "\\\\", "ce", "{", "A", "<", "=", ">", "B", "+", "C", "}", "or", ":", "math", ":", "\\\\", "ce", "{", "A", "+", "B", "<", "=", ">", "C", "}", "or", ":", "math", ":", "\\\\", "ce", "{", "A", "<", "=", ">", "B", "}", "or", "False", "if", "not", "." ]
def is_unimolecular(self): """ Return ``True`` if the reaction has a single molecule as either reactant or product (or both) :math:`\\ce{A <=> B + C}` or :math:`\\ce{A + B <=> C}` or :math:`\\ce{A <=> B}`, or ``False`` if not. """ return len(self.reactants) == 1 or len(self.products) == 1
[ "def", "is_unimolecular", "(", "self", ")", ":", "return", "len", "(", "self", ".", "reactants", ")", "==", "1", "or", "len", "(", "self", ".", "products", ")", "==", "1" ]
https://github.com/ReactionMechanismGenerator/RMG-Py/blob/2b7baf51febf27157def58fb3f6cee03fb6a684c/rmgpy/reaction.py#L380-L386
hubblestack/hubble
763142474edcecdec5fd25591dc29c3536e8f969
hubblestack/modules/iptables.py
python
__virtual__
()
return True
Only load the module if iptables is installed
Only load the module if iptables is installed
[ "Only", "load", "the", "module", "if", "iptables", "is", "installed" ]
def __virtual__(): """ Only load the module if iptables is installed """ if not hubblestack.utils.path.which("iptables"): return ( False, "The iptables execution module cannot be loaded: iptables not installed.", ) return True
[ "def", "__virtual__", "(", ")", ":", "if", "not", "hubblestack", ".", "utils", ".", "path", ".", "which", "(", "\"iptables\"", ")", ":", "return", "(", "False", ",", "\"The iptables execution module cannot be loaded: iptables not installed.\"", ",", ")", "return", "True" ]
https://github.com/hubblestack/hubble/blob/763142474edcecdec5fd25591dc29c3536e8f969/hubblestack/modules/iptables.py#L113-L123
open-mmlab/OpenPCDet
0f4d3f1f5c1fbe551c35917220e75eb90e28035f
pcdet/datasets/augmentor/database_sampler.py
python
DataBaseSampler.put_boxes_on_road_planes
(gt_boxes, road_planes, calib)
return gt_boxes, mv_height
Only validate in KITTIDataset Args: gt_boxes: (N, 7 + C) [x, y, z, dx, dy, dz, heading, ...] road_planes: [a, b, c, d] calib: Returns:
Only validate in KITTIDataset Args: gt_boxes: (N, 7 + C) [x, y, z, dx, dy, dz, heading, ...] road_planes: [a, b, c, d] calib:
[ "Only", "validate", "in", "KITTIDataset", "Args", ":", "gt_boxes", ":", "(", "N", "7", "+", "C", ")", "[", "x", "y", "z", "dx", "dy", "dz", "heading", "...", "]", "road_planes", ":", "[", "a", "b", "c", "d", "]", "calib", ":" ]
def put_boxes_on_road_planes(gt_boxes, road_planes, calib): """ Only validate in KITTIDataset Args: gt_boxes: (N, 7 + C) [x, y, z, dx, dy, dz, heading, ...] road_planes: [a, b, c, d] calib: Returns: """ a, b, c, d = road_planes center_cam = calib.lidar_to_rect(gt_boxes[:, 0:3]) cur_height_cam = (-d - a * center_cam[:, 0] - c * center_cam[:, 2]) / b center_cam[:, 1] = cur_height_cam cur_lidar_height = calib.rect_to_lidar(center_cam)[:, 2] mv_height = gt_boxes[:, 2] - gt_boxes[:, 5] / 2 - cur_lidar_height gt_boxes[:, 2] -= mv_height # lidar view return gt_boxes, mv_height
[ "def", "put_boxes_on_road_planes", "(", "gt_boxes", ",", "road_planes", ",", "calib", ")", ":", "a", ",", "b", ",", "c", ",", "d", "=", "road_planes", "center_cam", "=", "calib", ".", "lidar_to_rect", "(", "gt_boxes", "[", ":", ",", "0", ":", "3", "]", ")", "cur_height_cam", "=", "(", "-", "d", "-", "a", "*", "center_cam", "[", ":", ",", "0", "]", "-", "c", "*", "center_cam", "[", ":", ",", "2", "]", ")", "/", "b", "center_cam", "[", ":", ",", "1", "]", "=", "cur_height_cam", "cur_lidar_height", "=", "calib", ".", "rect_to_lidar", "(", "center_cam", ")", "[", ":", ",", "2", "]", "mv_height", "=", "gt_boxes", "[", ":", ",", "2", "]", "-", "gt_boxes", "[", ":", ",", "5", "]", "/", "2", "-", "cur_lidar_height", "gt_boxes", "[", ":", ",", "2", "]", "-=", "mv_height", "# lidar view", "return", "gt_boxes", ",", "mv_height" ]
https://github.com/open-mmlab/OpenPCDet/blob/0f4d3f1f5c1fbe551c35917220e75eb90e28035f/pcdet/datasets/augmentor/database_sampler.py#L137-L154
linxid/Machine_Learning_Study_Path
558e82d13237114bbb8152483977806fc0c222af
Machine Learning In Action/Chapter5-LogisticRegression/venv/Lib/site-packages/setuptools/command/easy_install.py
python
chmod
(path, mode)
[]
def chmod(path, mode): log.debug("changing mode of %s to %o", path, mode) try: _chmod(path, mode) except os.error as e: log.debug("chmod failed: %s", e)
[ "def", "chmod", "(", "path", ",", "mode", ")", ":", "log", ".", "debug", "(", "\"changing mode of %s to %o\"", ",", "path", ",", "mode", ")", "try", ":", "_chmod", "(", "path", ",", "mode", ")", "except", "os", ".", "error", "as", "e", ":", "log", ".", "debug", "(", "\"chmod failed: %s\"", ",", "e", ")" ]
https://github.com/linxid/Machine_Learning_Study_Path/blob/558e82d13237114bbb8152483977806fc0c222af/Machine Learning In Action/Chapter5-LogisticRegression/venv/Lib/site-packages/setuptools/command/easy_install.py#L1953-L1958
holzschu/Carnets
44effb10ddfc6aa5c8b0687582a724ba82c6b547
Library/lib/python3.7/site-packages/numpy-1.16.0-py3.7-macosx-10.9-x86_64.egg/numpy/ma/extras.py
python
mask_rows
(a, axis=None)
return mask_rowcols(a, 0)
Mask rows of a 2D array that contain masked values. This function is a shortcut to ``mask_rowcols`` with `axis` equal to 0. See Also -------- mask_rowcols : Mask rows and/or columns of a 2D array. masked_where : Mask where a condition is met. Examples -------- >>> import numpy.ma as ma >>> a = np.zeros((3, 3), dtype=int) >>> a[1, 1] = 1 >>> a array([[0, 0, 0], [0, 1, 0], [0, 0, 0]]) >>> a = ma.masked_equal(a, 1) >>> a masked_array(data = [[0 0 0] [0 -- 0] [0 0 0]], mask = [[False False False] [False True False] [False False False]], fill_value=999999) >>> ma.mask_rows(a) masked_array(data = [[0 0 0] [-- -- --] [0 0 0]], mask = [[False False False] [ True True True] [False False False]], fill_value=999999)
Mask rows of a 2D array that contain masked values.
[ "Mask", "rows", "of", "a", "2D", "array", "that", "contain", "masked", "values", "." ]
def mask_rows(a, axis=None): """ Mask rows of a 2D array that contain masked values. This function is a shortcut to ``mask_rowcols`` with `axis` equal to 0. See Also -------- mask_rowcols : Mask rows and/or columns of a 2D array. masked_where : Mask where a condition is met. Examples -------- >>> import numpy.ma as ma >>> a = np.zeros((3, 3), dtype=int) >>> a[1, 1] = 1 >>> a array([[0, 0, 0], [0, 1, 0], [0, 0, 0]]) >>> a = ma.masked_equal(a, 1) >>> a masked_array(data = [[0 0 0] [0 -- 0] [0 0 0]], mask = [[False False False] [False True False] [False False False]], fill_value=999999) >>> ma.mask_rows(a) masked_array(data = [[0 0 0] [-- -- --] [0 0 0]], mask = [[False False False] [ True True True] [False False False]], fill_value=999999) """ return mask_rowcols(a, 0)
[ "def", "mask_rows", "(", "a", ",", "axis", "=", "None", ")", ":", "return", "mask_rowcols", "(", "a", ",", "0", ")" ]
https://github.com/holzschu/Carnets/blob/44effb10ddfc6aa5c8b0687582a724ba82c6b547/Library/lib/python3.7/site-packages/numpy-1.16.0-py3.7-macosx-10.9-x86_64.egg/numpy/ma/extras.py#L918-L961
kbandla/ImmunityDebugger
2abc03fb15c8f3ed0914e1175c4d8933977c73e3
1.84/Libs/libstackanalyze.py
python
StackFunction.getVarsSize
(self, offsets)
return self.varsSize
Get the size of the local vars, checking the difference between the offset of two consecutives vars. XXX:An unused local var can make this check unreliable. @type offsets: LIST @param offsets: a list of stack's constants @rtype: DICTIONARY @return: the key is the stack's constant, value is the size
Get the size of the local vars, checking the difference between the offset of two consecutives vars. XXX:An unused local var can make this check unreliable.
[ "Get", "the", "size", "of", "the", "local", "vars", "checking", "the", "difference", "between", "the", "offset", "of", "two", "consecutives", "vars", ".", "XXX", ":", "An", "unused", "local", "var", "can", "make", "this", "check", "unreliable", "." ]
def getVarsSize(self, offsets): """ Get the size of the local vars, checking the difference between the offset of two consecutives vars. XXX:An unused local var can make this check unreliable. @type offsets: LIST @param offsets: a list of stack's constants @rtype: DICTIONARY @return: the key is the stack's constant, value is the size """ self.varsSize = {} offsets.sort() last = 0 for off in offsets: size = off - last last = off self.varsSize[off] = size return self.varsSize
[ "def", "getVarsSize", "(", "self", ",", "offsets", ")", ":", "self", ".", "varsSize", "=", "{", "}", "offsets", ".", "sort", "(", ")", "last", "=", "0", "for", "off", "in", "offsets", ":", "size", "=", "off", "-", "last", "last", "=", "off", "self", ".", "varsSize", "[", "off", "]", "=", "size", "return", "self", ".", "varsSize" ]
https://github.com/kbandla/ImmunityDebugger/blob/2abc03fb15c8f3ed0914e1175c4d8933977c73e3/1.84/Libs/libstackanalyze.py#L391-L412
securesystemslab/zippy
ff0e84ac99442c2c55fe1d285332cfd4e185e089
zippy/benchmarks/src/benchmarks/sympy/doc/ext/docscrape.py
python
Reader.is_empty
(self)
return not ''.join(self._str).strip()
[]
def is_empty(self): return not ''.join(self._str).strip()
[ "def", "is_empty", "(", "self", ")", ":", "return", "not", "''", ".", "join", "(", "self", ".", "_str", ")", ".", "strip", "(", ")" ]
https://github.com/securesystemslab/zippy/blob/ff0e84ac99442c2c55fe1d285332cfd4e185e089/zippy/benchmarks/src/benchmarks/sympy/doc/ext/docscrape.py#L83-L84
openedx/edx-platform
68dd185a0ab45862a2a61e0f803d7e03d2be71b5
openedx/features/course_experience/views/course_outline.py
python
CourseOutlineFragmentView.user_enrolled_after_completion_collection
(self, user, course_key)
Checks that the user has enrolled in the course after 01/24/2018, the date that the completion API began data collection. If the user has enrolled in the course before this date, they may see incomplete collection data. This is a temporary check until all active enrollments are created after the date.
Checks that the user has enrolled in the course after 01/24/2018, the date that the completion API began data collection. If the user has enrolled in the course before this date, they may see incomplete collection data. This is a temporary check until all active enrollments are created after the date.
[ "Checks", "that", "the", "user", "has", "enrolled", "in", "the", "course", "after", "01", "/", "24", "/", "2018", "the", "date", "that", "the", "completion", "API", "began", "data", "collection", ".", "If", "the", "user", "has", "enrolled", "in", "the", "course", "before", "this", "date", "they", "may", "see", "incomplete", "collection", "data", ".", "This", "is", "a", "temporary", "check", "until", "all", "active", "enrollments", "are", "created", "after", "the", "date", "." ]
def user_enrolled_after_completion_collection(self, user, course_key): """ Checks that the user has enrolled in the course after 01/24/2018, the date that the completion API began data collection. If the user has enrolled in the course before this date, they may see incomplete collection data. This is a temporary check until all active enrollments are created after the date. """ user = User.objects.get(username=user) try: user_enrollment = CourseEnrollment.objects.get( user=user, course_id=course_key, is_active=True ) return user_enrollment.created > self._completion_data_collection_start() except CourseEnrollment.DoesNotExist: return False
[ "def", "user_enrolled_after_completion_collection", "(", "self", ",", "user", ",", "course_key", ")", ":", "user", "=", "User", ".", "objects", ".", "get", "(", "username", "=", "user", ")", "try", ":", "user_enrollment", "=", "CourseEnrollment", ".", "objects", ".", "get", "(", "user", "=", "user", ",", "course_id", "=", "course_key", ",", "is_active", "=", "True", ")", "return", "user_enrollment", ".", "created", ">", "self", ".", "_completion_data_collection_start", "(", ")", "except", "CourseEnrollment", ".", "DoesNotExist", ":", "return", "False" ]
https://github.com/openedx/edx-platform/blob/68dd185a0ab45862a2a61e0f803d7e03d2be71b5/openedx/features/course_experience/views/course_outline.py#L134-L150
R0uter/ss.conf-for-surge
920985fc052b72969762cc70c9c76d9abbe2aa72
ssconf.py
python
white_list_check
()
[]
def white_list_check(): dnsmasq_china_list = 'https://r0uter.github.io/gfw_domain_whitelist/whitelist.pac' try: content = get_list(dnsmasq_china_list) content = content.decode('utf-8') f = codecs.open('./list/whitelist', 'w', 'utf-8') f.write(content) f.close() except: print('Get list update failed,use cache to update instead.') whitelist = codecs.open('./list/whitelist','r','utf-8') whitelistTxt = codecs.open('./list/whitelist.txt','w','utf-8') whitelistTxt.write('// updated on ' + datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S" + '\n')) # Write list for line in whitelist.readlines(): domain = re.findall(r'(?<=")[a-z0-9|\-]+\.\w+', line) if len(domain) > 0: whitelistTxt.write('DOMAIN-SUFFIX,%s,DIRECT\n'%(domain[0])) whitelist.close() whitelistTxt.close()
[ "def", "white_list_check", "(", ")", ":", "dnsmasq_china_list", "=", "'https://r0uter.github.io/gfw_domain_whitelist/whitelist.pac'", "try", ":", "content", "=", "get_list", "(", "dnsmasq_china_list", ")", "content", "=", "content", ".", "decode", "(", "'utf-8'", ")", "f", "=", "codecs", ".", "open", "(", "'./list/whitelist'", ",", "'w'", ",", "'utf-8'", ")", "f", ".", "write", "(", "content", ")", "f", ".", "close", "(", ")", "except", ":", "print", "(", "'Get list update failed,use cache to update instead.'", ")", "whitelist", "=", "codecs", ".", "open", "(", "'./list/whitelist'", ",", "'r'", ",", "'utf-8'", ")", "whitelistTxt", "=", "codecs", ".", "open", "(", "'./list/whitelist.txt'", ",", "'w'", ",", "'utf-8'", ")", "whitelistTxt", ".", "write", "(", "'// updated on '", "+", "datetime", ".", "datetime", ".", "now", "(", ")", ".", "strftime", "(", "\"%Y-%m-%d %H:%M:%S\"", "+", "'\\n'", ")", ")", "# Write list", "for", "line", "in", "whitelist", ".", "readlines", "(", ")", ":", "domain", "=", "re", ".", "findall", "(", "r'(?<=\")[a-z0-9|\\-]+\\.\\w+'", ",", "line", ")", "if", "len", "(", "domain", ")", ">", "0", ":", "whitelistTxt", ".", "write", "(", "'DOMAIN-SUFFIX,%s,DIRECT\\n'", "%", "(", "domain", "[", "0", "]", ")", ")", "whitelist", ".", "close", "(", ")", "whitelistTxt", ".", "close", "(", ")" ]
https://github.com/R0uter/ss.conf-for-surge/blob/920985fc052b72969762cc70c9c76d9abbe2aa72/ssconf.py#L25-L48
coderholic/pyradio
cd3ee2d6b369fedfd009371a59aca23ab39b020f
pyradio/browser.py
python
RadioBrowserSearchWindow.focus
(self)
return self._focus
[]
def focus(self): return self._focus
[ "def", "focus", "(", "self", ")", ":", "return", "self", ".", "_focus" ]
https://github.com/coderholic/pyradio/blob/cd3ee2d6b369fedfd009371a59aca23ab39b020f/pyradio/browser.py#L1789-L1790
OpenMDAO/OpenMDAO
f47eb5485a0bb5ea5d2ae5bd6da4b94dc6b296bd
openmdao/utils/units.py
python
PhysicalUnit.name
(self)
return num + denom
Compute the name of this unit. Returns ------- str String representation of the unit.
Compute the name of this unit.
[ "Compute", "the", "name", "of", "this", "unit", "." ]
def name(self): """ Compute the name of this unit. Returns ------- str String representation of the unit. """ num = '' denom = '' for unit, power in self._names.items(): if power < 0: denom = denom + '/' + unit if power < -1: denom = denom + '**' + str(-power) elif power > 0: num = num + '*' + unit if power > 1: num = num + '**' + str(power) if len(num) == 0: num = '1' else: num = num[1:] return num + denom
[ "def", "name", "(", "self", ")", ":", "num", "=", "''", "denom", "=", "''", "for", "unit", ",", "power", "in", "self", ".", "_names", ".", "items", "(", ")", ":", "if", "power", "<", "0", ":", "denom", "=", "denom", "+", "'/'", "+", "unit", "if", "power", "<", "-", "1", ":", "denom", "=", "denom", "+", "'**'", "+", "str", "(", "-", "power", ")", "elif", "power", ">", "0", ":", "num", "=", "num", "+", "'*'", "+", "unit", "if", "power", ">", "1", ":", "num", "=", "num", "+", "'**'", "+", "str", "(", "power", ")", "if", "len", "(", "num", ")", "==", "0", ":", "num", "=", "'1'", "else", ":", "num", "=", "num", "[", "1", ":", "]", "return", "num", "+", "denom" ]
https://github.com/OpenMDAO/OpenMDAO/blob/f47eb5485a0bb5ea5d2ae5bd6da4b94dc6b296bd/openmdao/utils/units.py#L566-L590
mila-iqia/myia
56774a39579b4ec4123f44843ad4ca688acc859b
myia/compile/backends/__init__.py
python
Converter.convert_bool
(self, v, t)
Convert boolean values.
Convert boolean values.
[ "Convert", "boolean", "values", "." ]
def convert_bool(self, v, t): """Convert boolean values.""" raise NotImplementedError("convert_bool")
[ "def", "convert_bool", "(", "self", ",", "v", ",", "t", ")", ":", "raise", "NotImplementedError", "(", "\"convert_bool\"", ")" ]
https://github.com/mila-iqia/myia/blob/56774a39579b4ec4123f44843ad4ca688acc859b/myia/compile/backends/__init__.py#L272-L274
DataDog/integrations-core
934674b29d94b70ccc008f76ea172d0cdae05e1e
datadog_checks_dev/datadog_checks/dev/tooling/utils.py
python
get_check_directory
(check_name)
return os.path.join(get_root(), check_name, 'datadog_checks', check_name)
[]
def get_check_directory(check_name): return os.path.join(get_root(), check_name, 'datadog_checks', check_name)
[ "def", "get_check_directory", "(", "check_name", ")", ":", "return", "os", ".", "path", ".", "join", "(", "get_root", "(", ")", ",", "check_name", ",", "'datadog_checks'", ",", "check_name", ")" ]
https://github.com/DataDog/integrations-core/blob/934674b29d94b70ccc008f76ea172d0cdae05e1e/datadog_checks_dev/datadog_checks/dev/tooling/utils.py#L298-L299
TengXiaoDai/DistributedCrawling
f5c2439e6ce68dd9b49bde084d76473ff9ed4963
Lib/site-packages/pkg_resources/__init__.py
python
find_distributions
(path_item, only=False)
return finder(importer, path_item, only)
Yield distributions accessible via `path_item`
Yield distributions accessible via `path_item`
[ "Yield", "distributions", "accessible", "via", "path_item" ]
def find_distributions(path_item, only=False): """Yield distributions accessible via `path_item`""" importer = get_importer(path_item) finder = _find_adapter(_distribution_finders, importer) return finder(importer, path_item, only)
[ "def", "find_distributions", "(", "path_item", ",", "only", "=", "False", ")", ":", "importer", "=", "get_importer", "(", "path_item", ")", "finder", "=", "_find_adapter", "(", "_distribution_finders", ",", "importer", ")", "return", "finder", "(", "importer", ",", "path_item", ",", "only", ")" ]
https://github.com/TengXiaoDai/DistributedCrawling/blob/f5c2439e6ce68dd9b49bde084d76473ff9ed4963/Lib/site-packages/pkg_resources/__init__.py#L1933-L1937
tensorflow/models
6b8bb0cbeb3e10415c7a87448f08adc3c484c1d3
research/slim/nets/vgg.py
python
vgg_16
(inputs, num_classes=1000, is_training=True, dropout_keep_prob=0.5, spatial_squeeze=True, reuse=None, scope='vgg_16', fc_conv_padding='VALID', global_pool=False)
Oxford Net VGG 16-Layers version D Example. Note: All the fully_connected layers have been transformed to conv2d layers. To use in classification mode, resize input to 224x224. Args: inputs: a tensor of size [batch_size, height, width, channels]. num_classes: number of predicted classes. If 0 or None, the logits layer is omitted and the input features to the logits layer are returned instead. is_training: whether or not the model is being trained. dropout_keep_prob: the probability that activations are kept in the dropout layers during training. spatial_squeeze: whether or not should squeeze the spatial dimensions of the outputs. Useful to remove unnecessary dimensions for classification. reuse: whether or not the network and its variables should be reused. To be able to reuse 'scope' must be given. scope: Optional scope for the variables. fc_conv_padding: the type of padding to use for the fully connected layer that is implemented as a convolutional layer. Use 'SAME' padding if you are applying the network in a fully convolutional manner and want to get a prediction map downsampled by a factor of 32 as an output. Otherwise, the output prediction map will be (input / 32) - 6 in case of 'VALID' padding. global_pool: Optional boolean flag. If True, the input to the classification layer is avgpooled to size 1x1, for any input size. (This is not part of the original VGG architecture.) Returns: net: the output of the logits layer (if num_classes is a non-zero integer), or the input to the logits layer (if num_classes is 0 or None). end_points: a dict of tensors with intermediate activations.
Oxford Net VGG 16-Layers version D Example.
[ "Oxford", "Net", "VGG", "16", "-", "Layers", "version", "D", "Example", "." ]
def vgg_16(inputs, num_classes=1000, is_training=True, dropout_keep_prob=0.5, spatial_squeeze=True, reuse=None, scope='vgg_16', fc_conv_padding='VALID', global_pool=False): """Oxford Net VGG 16-Layers version D Example. Note: All the fully_connected layers have been transformed to conv2d layers. To use in classification mode, resize input to 224x224. Args: inputs: a tensor of size [batch_size, height, width, channels]. num_classes: number of predicted classes. If 0 or None, the logits layer is omitted and the input features to the logits layer are returned instead. is_training: whether or not the model is being trained. dropout_keep_prob: the probability that activations are kept in the dropout layers during training. spatial_squeeze: whether or not should squeeze the spatial dimensions of the outputs. Useful to remove unnecessary dimensions for classification. reuse: whether or not the network and its variables should be reused. To be able to reuse 'scope' must be given. scope: Optional scope for the variables. fc_conv_padding: the type of padding to use for the fully connected layer that is implemented as a convolutional layer. Use 'SAME' padding if you are applying the network in a fully convolutional manner and want to get a prediction map downsampled by a factor of 32 as an output. Otherwise, the output prediction map will be (input / 32) - 6 in case of 'VALID' padding. global_pool: Optional boolean flag. If True, the input to the classification layer is avgpooled to size 1x1, for any input size. (This is not part of the original VGG architecture.) Returns: net: the output of the logits layer (if num_classes is a non-zero integer), or the input to the logits layer (if num_classes is 0 or None). end_points: a dict of tensors with intermediate activations. """ with tf.variable_scope( scope, 'vgg_16', [inputs], reuse=reuse) as sc: end_points_collection = sc.original_name_scope + '_end_points' # Collect outputs for conv2d, fully_connected and max_pool2d. with slim.arg_scope([slim.conv2d, slim.fully_connected, slim.max_pool2d], outputs_collections=end_points_collection): net = slim.repeat(inputs, 2, slim.conv2d, 64, [3, 3], scope='conv1') net = slim.max_pool2d(net, [2, 2], scope='pool1') net = slim.repeat(net, 2, slim.conv2d, 128, [3, 3], scope='conv2') net = slim.max_pool2d(net, [2, 2], scope='pool2') net = slim.repeat(net, 3, slim.conv2d, 256, [3, 3], scope='conv3') net = slim.max_pool2d(net, [2, 2], scope='pool3') net = slim.repeat(net, 3, slim.conv2d, 512, [3, 3], scope='conv4') net = slim.max_pool2d(net, [2, 2], scope='pool4') net = slim.repeat(net, 3, slim.conv2d, 512, [3, 3], scope='conv5') net = slim.max_pool2d(net, [2, 2], scope='pool5') # Use conv2d instead of fully_connected layers. net = slim.conv2d(net, 4096, [7, 7], padding=fc_conv_padding, scope='fc6') net = slim.dropout(net, dropout_keep_prob, is_training=is_training, scope='dropout6') net = slim.conv2d(net, 4096, [1, 1], scope='fc7') # Convert end_points_collection into a end_point dict. end_points = slim.utils.convert_collection_to_dict(end_points_collection) if global_pool: net = tf.reduce_mean( input_tensor=net, axis=[1, 2], keepdims=True, name='global_pool') end_points['global_pool'] = net if num_classes: net = slim.dropout(net, dropout_keep_prob, is_training=is_training, scope='dropout7') net = slim.conv2d(net, num_classes, [1, 1], activation_fn=None, normalizer_fn=None, scope='fc8') if spatial_squeeze: net = tf.squeeze(net, [1, 2], name='fc8/squeezed') end_points[sc.name + '/fc8'] = net return net, end_points
[ "def", "vgg_16", "(", "inputs", ",", "num_classes", "=", "1000", ",", "is_training", "=", "True", ",", "dropout_keep_prob", "=", "0.5", ",", "spatial_squeeze", "=", "True", ",", "reuse", "=", "None", ",", "scope", "=", "'vgg_16'", ",", "fc_conv_padding", "=", "'VALID'", ",", "global_pool", "=", "False", ")", ":", "with", "tf", ".", "variable_scope", "(", "scope", ",", "'vgg_16'", ",", "[", "inputs", "]", ",", "reuse", "=", "reuse", ")", "as", "sc", ":", "end_points_collection", "=", "sc", ".", "original_name_scope", "+", "'_end_points'", "# Collect outputs for conv2d, fully_connected and max_pool2d.", "with", "slim", ".", "arg_scope", "(", "[", "slim", ".", "conv2d", ",", "slim", ".", "fully_connected", ",", "slim", ".", "max_pool2d", "]", ",", "outputs_collections", "=", "end_points_collection", ")", ":", "net", "=", "slim", ".", "repeat", "(", "inputs", ",", "2", ",", "slim", ".", "conv2d", ",", "64", ",", "[", "3", ",", "3", "]", ",", "scope", "=", "'conv1'", ")", "net", "=", "slim", ".", "max_pool2d", "(", "net", ",", "[", "2", ",", "2", "]", ",", "scope", "=", "'pool1'", ")", "net", "=", "slim", ".", "repeat", "(", "net", ",", "2", ",", "slim", ".", "conv2d", ",", "128", ",", "[", "3", ",", "3", "]", ",", "scope", "=", "'conv2'", ")", "net", "=", "slim", ".", "max_pool2d", "(", "net", ",", "[", "2", ",", "2", "]", ",", "scope", "=", "'pool2'", ")", "net", "=", "slim", ".", "repeat", "(", "net", ",", "3", ",", "slim", ".", "conv2d", ",", "256", ",", "[", "3", ",", "3", "]", ",", "scope", "=", "'conv3'", ")", "net", "=", "slim", ".", "max_pool2d", "(", "net", ",", "[", "2", ",", "2", "]", ",", "scope", "=", "'pool3'", ")", "net", "=", "slim", ".", "repeat", "(", "net", ",", "3", ",", "slim", ".", "conv2d", ",", "512", ",", "[", "3", ",", "3", "]", ",", "scope", "=", "'conv4'", ")", "net", "=", "slim", ".", "max_pool2d", "(", "net", ",", "[", "2", ",", "2", "]", ",", "scope", "=", "'pool4'", ")", "net", "=", "slim", ".", "repeat", "(", "net", ",", "3", ",", "slim", ".", "conv2d", ",", "512", ",", "[", "3", ",", "3", "]", ",", "scope", "=", "'conv5'", ")", "net", "=", "slim", ".", "max_pool2d", "(", "net", ",", "[", "2", ",", "2", "]", ",", "scope", "=", "'pool5'", ")", "# Use conv2d instead of fully_connected layers.", "net", "=", "slim", ".", "conv2d", "(", "net", ",", "4096", ",", "[", "7", ",", "7", "]", ",", "padding", "=", "fc_conv_padding", ",", "scope", "=", "'fc6'", ")", "net", "=", "slim", ".", "dropout", "(", "net", ",", "dropout_keep_prob", ",", "is_training", "=", "is_training", ",", "scope", "=", "'dropout6'", ")", "net", "=", "slim", ".", "conv2d", "(", "net", ",", "4096", ",", "[", "1", ",", "1", "]", ",", "scope", "=", "'fc7'", ")", "# Convert end_points_collection into a end_point dict.", "end_points", "=", "slim", ".", "utils", ".", "convert_collection_to_dict", "(", "end_points_collection", ")", "if", "global_pool", ":", "net", "=", "tf", ".", "reduce_mean", "(", "input_tensor", "=", "net", ",", "axis", "=", "[", "1", ",", "2", "]", ",", "keepdims", "=", "True", ",", "name", "=", "'global_pool'", ")", "end_points", "[", "'global_pool'", "]", "=", "net", "if", "num_classes", ":", "net", "=", "slim", ".", "dropout", "(", "net", ",", "dropout_keep_prob", ",", "is_training", "=", "is_training", ",", "scope", "=", "'dropout7'", ")", "net", "=", "slim", ".", "conv2d", "(", "net", ",", "num_classes", ",", "[", "1", ",", "1", "]", ",", "activation_fn", "=", "None", ",", "normalizer_fn", "=", "None", ",", "scope", "=", "'fc8'", ")", "if", "spatial_squeeze", ":", "net", "=", "tf", ".", "squeeze", "(", "net", ",", "[", "1", ",", "2", "]", ",", "name", "=", "'fc8/squeezed'", ")", "end_points", "[", "sc", ".", "name", "+", "'/fc8'", "]", "=", "net", "return", "net", ",", "end_points" ]
https://github.com/tensorflow/models/blob/6b8bb0cbeb3e10415c7a87448f08adc3c484c1d3/research/slim/nets/vgg.py#L147-L226
limodou/ulipad
4c7d590234f39cac80bb1d36dca095b646e287fb
modules/wxctrl/FlatNotebook.py
python
TabNavigatorWindow.OnKeyUp
(self, event)
Handles the wx.EVT_KEY_UP for the L{TabNavigatorWindow}.
Handles the wx.EVT_KEY_UP for the L{TabNavigatorWindow}.
[ "Handles", "the", "wx", ".", "EVT_KEY_UP", "for", "the", "L", "{", "TabNavigatorWindow", "}", "." ]
def OnKeyUp(self, event): """Handles the wx.EVT_KEY_UP for the L{TabNavigatorWindow}.""" if event.GetKeyCode() == wx.WXK_CONTROL: self.CloseDialog()
[ "def", "OnKeyUp", "(", "self", ",", "event", ")", ":", "if", "event", ".", "GetKeyCode", "(", ")", "==", "wx", ".", "WXK_CONTROL", ":", "self", ".", "CloseDialog", "(", ")" ]
https://github.com/limodou/ulipad/blob/4c7d590234f39cac80bb1d36dca095b646e287fb/modules/wxctrl/FlatNotebook.py#L1148-L1152
kupferlauncher/kupfer
1c1e9bcbce05a82f503f68f8b3955c20b02639b3
kupfer/core/plugins.py
python
get_plugin_desc
()
return "\n".join(desc)
Return a formatted list of plugins suitable for printing to terminal
Return a formatted list of plugins suitable for printing to terminal
[ "Return", "a", "formatted", "list", "of", "plugins", "suitable", "for", "printing", "to", "terminal" ]
def get_plugin_desc(): """Return a formatted list of plugins suitable for printing to terminal""" import textwrap infos = list(get_plugin_info()) verlen = max(len(r["version"]) for r in infos) idlen = max(len(r["name"]) for r in infos) maxlen = 78 left_margin = 2 + idlen + 1 + verlen + 1 desc = [] for rec in infos: # Wrap the description and align continued lines wrapped = textwrap.wrap(rec["description"], maxlen - left_margin) description = ("\n" + " "*left_margin).join(wrapped) desc.append(" %s %s %s" % ( rec["name"].ljust(idlen), rec["version"].ljust(verlen), description, )) return "\n".join(desc)
[ "def", "get_plugin_desc", "(", ")", ":", "import", "textwrap", "infos", "=", "list", "(", "get_plugin_info", "(", ")", ")", "verlen", "=", "max", "(", "len", "(", "r", "[", "\"version\"", "]", ")", "for", "r", "in", "infos", ")", "idlen", "=", "max", "(", "len", "(", "r", "[", "\"name\"", "]", ")", "for", "r", "in", "infos", ")", "maxlen", "=", "78", "left_margin", "=", "2", "+", "idlen", "+", "1", "+", "verlen", "+", "1", "desc", "=", "[", "]", "for", "rec", "in", "infos", ":", "# Wrap the description and align continued lines", "wrapped", "=", "textwrap", ".", "wrap", "(", "rec", "[", "\"description\"", "]", ",", "maxlen", "-", "left_margin", ")", "description", "=", "(", "\"\\n\"", "+", "\" \"", "*", "left_margin", ")", ".", "join", "(", "wrapped", ")", "desc", ".", "append", "(", "\" %s %s %s\"", "%", "(", "rec", "[", "\"name\"", "]", ".", "ljust", "(", "idlen", ")", ",", "rec", "[", "\"version\"", "]", ".", "ljust", "(", "verlen", ")", ",", "description", ",", ")", ")", "return", "\"\\n\"", ".", "join", "(", "desc", ")" ]
https://github.com/kupferlauncher/kupfer/blob/1c1e9bcbce05a82f503f68f8b3955c20b02639b3/kupfer/core/plugins.py#L90-L109
bitcraze/crazyflie-clients-python
65d433a945b097333e5681a937354045dd4b66f4
src/cfclient/ui/dialogs/logconfigdialogue.py
python
LogConfigDialogue._item_selected
(self)
Opens the log configuration of the pressed item in the category-tree.
Opens the log configuration of the pressed item in the category-tree.
[ "Opens", "the", "log", "configuration", "of", "the", "pressed", "item", "in", "the", "category", "-", "tree", "." ]
def _item_selected(self): """ Opens the log configuration of the pressed item in the category-tree. """ items = self.categoryTree.selectedItems() if items: config = items[0] category = config.parent() if category: self._loadConfig(category.text(NAME_FIELD), config.text(NAME_FIELD)) else: # if category is None, it's the category that's clicked self._clear_trees_and_progressbar()
[ "def", "_item_selected", "(", "self", ")", ":", "items", "=", "self", ".", "categoryTree", ".", "selectedItems", "(", ")", "if", "items", ":", "config", "=", "items", "[", "0", "]", "category", "=", "config", ".", "parent", "(", ")", "if", "category", ":", "self", ".", "_loadConfig", "(", "category", ".", "text", "(", "NAME_FIELD", ")", ",", "config", ".", "text", "(", "NAME_FIELD", ")", ")", "else", ":", "# if category is None, it's the category that's clicked", "self", ".", "_clear_trees_and_progressbar", "(", ")" ]
https://github.com/bitcraze/crazyflie-clients-python/blob/65d433a945b097333e5681a937354045dd4b66f4/src/cfclient/ui/dialogs/logconfigdialogue.py#L284-L297