nwo
stringlengths
5
106
sha
stringlengths
40
40
path
stringlengths
4
174
language
stringclasses
1 value
identifier
stringlengths
1
140
parameters
stringlengths
0
87.7k
argument_list
stringclasses
1 value
return_statement
stringlengths
0
426k
docstring
stringlengths
0
64.3k
docstring_summary
stringlengths
0
26.3k
docstring_tokens
list
function
stringlengths
18
4.83M
function_tokens
list
url
stringlengths
83
304
cloudera/hue
23f02102d4547c17c32bd5ea0eb24e9eadd657a4
desktop/core/ext-py/Django-1.11.29/django/contrib/admin/sites.py
python
AdminSite.password_change_done
(self, request, extra_context=None)
return PasswordChangeDoneView.as_view(**defaults)(request)
Displays the "success" page after a password change.
Displays the "success" page after a password change.
[ "Displays", "the", "success", "page", "after", "a", "password", "change", "." ]
def password_change_done(self, request, extra_context=None): """ Displays the "success" page after a password change. """ from django.contrib.auth.views import PasswordChangeDoneView defaults = { 'extra_context': dict(self.each_context(request), **(extra_context or {})), } if self.password_change_done_template is not None: defaults['template_name'] = self.password_change_done_template request.current_app = self.name return PasswordChangeDoneView.as_view(**defaults)(request)
[ "def", "password_change_done", "(", "self", ",", "request", ",", "extra_context", "=", "None", ")", ":", "from", "django", ".", "contrib", ".", "auth", ".", "views", "import", "PasswordChangeDoneView", "defaults", "=", "{", "'extra_context'", ":", "dict", "(", "self", ".", "each_context", "(", "request", ")", ",", "*", "*", "(", "extra_context", "or", "{", "}", ")", ")", ",", "}", "if", "self", ".", "password_change_done_template", "is", "not", "None", ":", "defaults", "[", "'template_name'", "]", "=", "self", ".", "password_change_done_template", "request", ".", "current_app", "=", "self", ".", "name", "return", "PasswordChangeDoneView", ".", "as_view", "(", "*", "*", "defaults", ")", "(", "request", ")" ]
https://github.com/cloudera/hue/blob/23f02102d4547c17c32bd5ea0eb24e9eadd657a4/desktop/core/ext-py/Django-1.11.29/django/contrib/admin/sites.py#L317-L328
buke/GreenOdoo
3d8c55d426fb41fdb3f2f5a1533cfe05983ba1df
runtime/common/lib/python2.7/site-packages/libxml2.py
python
uCSIsBasicLatin
(code)
return ret
Check whether the character is part of BasicLatin UCS Block
Check whether the character is part of BasicLatin UCS Block
[ "Check", "whether", "the", "character", "is", "part", "of", "BasicLatin", "UCS", "Block" ]
def uCSIsBasicLatin(code): """Check whether the character is part of BasicLatin UCS Block """ ret = libxml2mod.xmlUCSIsBasicLatin(code) return ret
[ "def", "uCSIsBasicLatin", "(", "code", ")", ":", "ret", "=", "libxml2mod", ".", "xmlUCSIsBasicLatin", "(", "code", ")", "return", "ret" ]
https://github.com/buke/GreenOdoo/blob/3d8c55d426fb41fdb3f2f5a1533cfe05983ba1df/runtime/common/lib/python2.7/site-packages/libxml2.py#L2075-L2078
maxtepkeev/python-redmine
3e1b7e290082b18b639492c6ba601688c60f26d9
redminelib/resultsets.py
python
BaseResourceSet.__len__
(self)
return sum(1 for _ in self)
Allows len() to be called on a ResourceSet object.
Allows len() to be called on a ResourceSet object.
[ "Allows", "len", "()", "to", "be", "called", "on", "a", "ResourceSet", "object", "." ]
def __len__(self): """ Allows len() to be called on a ResourceSet object. """ return sum(1 for _ in self)
[ "def", "__len__", "(", "self", ")", ":", "return", "sum", "(", "1", "for", "_", "in", "self", ")" ]
https://github.com/maxtepkeev/python-redmine/blob/3e1b7e290082b18b639492c6ba601688c60f26d9/redminelib/resultsets.py#L163-L167
francisck/DanderSpritz_docs
86bb7caca5a957147f120b18bb5c31f299914904
Python/Core/Lib/mailbox.py
python
_create_carefully
(path)
Create a file if it doesn't exist and open for reading and writing.
Create a file if it doesn't exist and open for reading and writing.
[ "Create", "a", "file", "if", "it", "doesn", "t", "exist", "and", "open", "for", "reading", "and", "writing", "." ]
def _create_carefully(path): """Create a file if it doesn't exist and open for reading and writing.""" fd = os.open(path, os.O_CREAT | os.O_EXCL | os.O_RDWR, 438) try: return open(path, 'rb+') finally: os.close(fd)
[ "def", "_create_carefully", "(", "path", ")", ":", "fd", "=", "os", ".", "open", "(", "path", ",", "os", ".", "O_CREAT", "|", "os", ".", "O_EXCL", "|", "os", ".", "O_RDWR", ",", "438", ")", "try", ":", "return", "open", "(", "path", ",", "'rb+'", ")", "finally", ":", "os", ".", "close", "(", "fd", ")" ]
https://github.com/francisck/DanderSpritz_docs/blob/86bb7caca5a957147f120b18bb5c31f299914904/Python/Core/Lib/mailbox.py#L1970-L1976
aws-samples/aws-kube-codesuite
ab4e5ce45416b83bffb947ab8d234df5437f4fca
src/kubernetes/client/models/v1_network_policy.py
python
V1NetworkPolicy.__init__
(self, api_version=None, kind=None, metadata=None, spec=None)
V1NetworkPolicy - a model defined in Swagger :param dict swaggerTypes: The key is attribute name and the value is attribute type. :param dict attributeMap: The key is attribute name and the value is json key in definition.
V1NetworkPolicy - a model defined in Swagger
[ "V1NetworkPolicy", "-", "a", "model", "defined", "in", "Swagger" ]
def __init__(self, api_version=None, kind=None, metadata=None, spec=None): """ V1NetworkPolicy - a model defined in Swagger :param dict swaggerTypes: The key is attribute name and the value is attribute type. :param dict attributeMap: The key is attribute name and the value is json key in definition. """ self.swagger_types = { 'api_version': 'str', 'kind': 'str', 'metadata': 'V1ObjectMeta', 'spec': 'V1NetworkPolicySpec' } self.attribute_map = { 'api_version': 'apiVersion', 'kind': 'kind', 'metadata': 'metadata', 'spec': 'spec' } self._api_version = api_version self._kind = kind self._metadata = metadata self._spec = spec
[ "def", "__init__", "(", "self", ",", "api_version", "=", "None", ",", "kind", "=", "None", ",", "metadata", "=", "None", ",", "spec", "=", "None", ")", ":", "self", ".", "swagger_types", "=", "{", "'api_version'", ":", "'str'", ",", "'kind'", ":", "'str'", ",", "'metadata'", ":", "'V1ObjectMeta'", ",", "'spec'", ":", "'V1NetworkPolicySpec'", "}", "self", ".", "attribute_map", "=", "{", "'api_version'", ":", "'apiVersion'", ",", "'kind'", ":", "'kind'", ",", "'metadata'", ":", "'metadata'", ",", "'spec'", ":", "'spec'", "}", "self", ".", "_api_version", "=", "api_version", "self", ".", "_kind", "=", "kind", "self", ".", "_metadata", "=", "metadata", "self", ".", "_spec", "=", "spec" ]
https://github.com/aws-samples/aws-kube-codesuite/blob/ab4e5ce45416b83bffb947ab8d234df5437f4fca/src/kubernetes/client/models/v1_network_policy.py#L24-L50
genforce/interfacegan
acec139909fb9aad41fbdbbbde651dfc0b7b3a17
models/base_generator.py
python
BaseGenerator.preprocess
(self, latent_codes)
Preprocesses the input latent code if needed. Args: latent_codes: The input latent codes for preprocessing. Returns: The preprocessed latent codes which can be used as final input for the generator.
Preprocesses the input latent code if needed.
[ "Preprocesses", "the", "input", "latent", "code", "if", "needed", "." ]
def preprocess(self, latent_codes): """Preprocesses the input latent code if needed. Args: latent_codes: The input latent codes for preprocessing. Returns: The preprocessed latent codes which can be used as final input for the generator. """ raise NotImplementedError(f'Should be implemented in derived class!')
[ "def", "preprocess", "(", "self", ",", "latent_codes", ")", ":", "raise", "NotImplementedError", "(", "f'Should be implemented in derived class!'", ")" ]
https://github.com/genforce/interfacegan/blob/acec139909fb9aad41fbdbbbde651dfc0b7b3a17/models/base_generator.py#L146-L156
PaddlePaddle/PaddleHub
107ee7e1a49d15e9c94da3956475d88a53fc165f
modules/image/classification/efficientnetb4_imagenet/module.py
python
BlockDecoder._decode_block_string
(block_string: str)
return BlockArgs( kernel_size=int(options['k']), num_repeat=int(options['r']), input_filters=int(options['i']), output_filters=int(options['o']), expand_ratio=int(options['e']), id_skip=('noskip' not in block_string), se_ratio=float(options['se']) if 'se' in options else None, stride=[int(options['s'][0])])
Gets a block through a string notation of arguments.
Gets a block through a string notation of arguments.
[ "Gets", "a", "block", "through", "a", "string", "notation", "of", "arguments", "." ]
def _decode_block_string(block_string: str): """ Gets a block through a string notation of arguments. """ assert isinstance(block_string, str) ops = block_string.split('_') options = {} for op in ops: splits = re.split(r'(\d.*)', op) if len(splits) >= 2: key, value = splits[:2] options[key] = value # Check stride cond_1 = ('s' in options and len(options['s']) == 1) cond_2 = ((len(options['s']) == 2) and (options['s'][0] == options['s'][1])) assert (cond_1 or cond_2) return BlockArgs( kernel_size=int(options['k']), num_repeat=int(options['r']), input_filters=int(options['i']), output_filters=int(options['o']), expand_ratio=int(options['e']), id_skip=('noskip' not in block_string), se_ratio=float(options['se']) if 'se' in options else None, stride=[int(options['s'][0])])
[ "def", "_decode_block_string", "(", "block_string", ":", "str", ")", ":", "assert", "isinstance", "(", "block_string", ",", "str", ")", "ops", "=", "block_string", ".", "split", "(", "'_'", ")", "options", "=", "{", "}", "for", "op", "in", "ops", ":", "splits", "=", "re", ".", "split", "(", "r'(\\d.*)'", ",", "op", ")", "if", "len", "(", "splits", ")", ">=", "2", ":", "key", ",", "value", "=", "splits", "[", ":", "2", "]", "options", "[", "key", "]", "=", "value", "# Check stride", "cond_1", "=", "(", "'s'", "in", "options", "and", "len", "(", "options", "[", "'s'", "]", ")", "==", "1", ")", "cond_2", "=", "(", "(", "len", "(", "options", "[", "'s'", "]", ")", "==", "2", ")", "and", "(", "options", "[", "'s'", "]", "[", "0", "]", "==", "options", "[", "'s'", "]", "[", "1", "]", ")", ")", "assert", "(", "cond_1", "or", "cond_2", ")", "return", "BlockArgs", "(", "kernel_size", "=", "int", "(", "options", "[", "'k'", "]", ")", ",", "num_repeat", "=", "int", "(", "options", "[", "'r'", "]", ")", ",", "input_filters", "=", "int", "(", "options", "[", "'i'", "]", ")", ",", "output_filters", "=", "int", "(", "options", "[", "'o'", "]", ")", ",", "expand_ratio", "=", "int", "(", "options", "[", "'e'", "]", ")", ",", "id_skip", "=", "(", "'noskip'", "not", "in", "block_string", ")", ",", "se_ratio", "=", "float", "(", "options", "[", "'se'", "]", ")", "if", "'se'", "in", "options", "else", "None", ",", "stride", "=", "[", "int", "(", "options", "[", "'s'", "]", "[", "0", "]", ")", "]", ")" ]
https://github.com/PaddlePaddle/PaddleHub/blob/107ee7e1a49d15e9c94da3956475d88a53fc165f/modules/image/classification/efficientnetb4_imagenet/module.py#L130-L155
sympy/sympy
d822fcba181155b85ff2b29fe525adbafb22b448
sympy/polys/distributedmodules.py
python
sdm_to_dict
(f)
return dict(f)
Make a dictionary from a distributed polynomial.
Make a dictionary from a distributed polynomial.
[ "Make", "a", "dictionary", "from", "a", "distributed", "polynomial", "." ]
def sdm_to_dict(f): """Make a dictionary from a distributed polynomial. """ return dict(f)
[ "def", "sdm_to_dict", "(", "f", ")", ":", "return", "dict", "(", "f", ")" ]
https://github.com/sympy/sympy/blob/d822fcba181155b85ff2b29fe525adbafb22b448/sympy/polys/distributedmodules.py#L159-L161
anki/vector-python-sdk
d61fdb07c6278deba750f987b20441fff2df865f
anki_vector/world.py
python
World.create_custom_fixed_object
(self, pose: util.Pose, x_size_mm: float, y_size_mm: float, z_size_mm: float, relative_to_robot: bool = False, use_robot_origin: bool = True)
return fixed_custom_object
Defines a cuboid of custom size and places it in the world. It cannot be observed. See :class:`objects.CustomObjectMarkers`. :param pose: The pose of the object we are creating. :param x_size_mm: size of the object (in millimeters) in the x axis. :param y_size_mm: size of the object (in millimeters) in the y axis. :param z_size_mm: size of the object (in millimeters) in the z axis. :param relative_to_robot: whether or not the pose given assumes the robot's pose as its origin. :param use_robot_origin: whether or not to override the origin_id in the given pose to be the origin_id of Vector. .. testcode:: import anki_vector from anki_vector.util import degrees, Pose with anki_vector.Robot() as robot: robot.world.create_custom_fixed_object(Pose(100, 0, 0, angle_z=degrees(0)), x_size_mm=10, y_size_mm=100, z_size_mm=100, relative_to_robot=True) Returns: FixedCustomObject instance with the specified dimensions and pose.
Defines a cuboid of custom size and places it in the world. It cannot be observed.
[ "Defines", "a", "cuboid", "of", "custom", "size", "and", "places", "it", "in", "the", "world", ".", "It", "cannot", "be", "observed", "." ]
def create_custom_fixed_object(self, pose: util.Pose, x_size_mm: float, y_size_mm: float, z_size_mm: float, relative_to_robot: bool = False, use_robot_origin: bool = True) -> objects.FixedCustomObject: """Defines a cuboid of custom size and places it in the world. It cannot be observed. See :class:`objects.CustomObjectMarkers`. :param pose: The pose of the object we are creating. :param x_size_mm: size of the object (in millimeters) in the x axis. :param y_size_mm: size of the object (in millimeters) in the y axis. :param z_size_mm: size of the object (in millimeters) in the z axis. :param relative_to_robot: whether or not the pose given assumes the robot's pose as its origin. :param use_robot_origin: whether or not to override the origin_id in the given pose to be the origin_id of Vector. .. testcode:: import anki_vector from anki_vector.util import degrees, Pose with anki_vector.Robot() as robot: robot.world.create_custom_fixed_object(Pose(100, 0, 0, angle_z=degrees(0)), x_size_mm=10, y_size_mm=100, z_size_mm=100, relative_to_robot=True) Returns: FixedCustomObject instance with the specified dimensions and pose. """ # Override the origin of the pose to be the same as the robot's. This will make sure they are in # the same space in the robot every time. if use_robot_origin: pose = util.Pose(x=pose.position.x, y=pose.position.y, z=pose.position.z, q0=pose.rotation.q0, q1=pose.rotation.q1, q2=pose.rotation.q2, q3=pose.rotation.q3, origin_id=self._robot.pose.origin_id) # In this case define the given pose to be with respect to the robot's pose as its origin. if relative_to_robot: pose = self._robot.pose.define_pose_relative_this(pose) response = self._create_custom_fixed_object(pose, x_size_mm, y_size_mm, z_size_mm) if isinstance(response, futures.Future): response = response.result() fixed_custom_object = self.fixed_custom_object_factory( self._robot, pose, x_size_mm, y_size_mm, z_size_mm, response.object_id) if fixed_custom_object: self._objects[fixed_custom_object.object_id] = fixed_custom_object return fixed_custom_object
[ "def", "create_custom_fixed_object", "(", "self", ",", "pose", ":", "util", ".", "Pose", ",", "x_size_mm", ":", "float", ",", "y_size_mm", ":", "float", ",", "z_size_mm", ":", "float", ",", "relative_to_robot", ":", "bool", "=", "False", ",", "use_robot_origin", ":", "bool", "=", "True", ")", "->", "objects", ".", "FixedCustomObject", ":", "# Override the origin of the pose to be the same as the robot's. This will make sure they are in", "# the same space in the robot every time.", "if", "use_robot_origin", ":", "pose", "=", "util", ".", "Pose", "(", "x", "=", "pose", ".", "position", ".", "x", ",", "y", "=", "pose", ".", "position", ".", "y", ",", "z", "=", "pose", ".", "position", ".", "z", ",", "q0", "=", "pose", ".", "rotation", ".", "q0", ",", "q1", "=", "pose", ".", "rotation", ".", "q1", ",", "q2", "=", "pose", ".", "rotation", ".", "q2", ",", "q3", "=", "pose", ".", "rotation", ".", "q3", ",", "origin_id", "=", "self", ".", "_robot", ".", "pose", ".", "origin_id", ")", "# In this case define the given pose to be with respect to the robot's pose as its origin.", "if", "relative_to_robot", ":", "pose", "=", "self", ".", "_robot", ".", "pose", ".", "define_pose_relative_this", "(", "pose", ")", "response", "=", "self", ".", "_create_custom_fixed_object", "(", "pose", ",", "x_size_mm", ",", "y_size_mm", ",", "z_size_mm", ")", "if", "isinstance", "(", "response", ",", "futures", ".", "Future", ")", ":", "response", "=", "response", ".", "result", "(", ")", "fixed_custom_object", "=", "self", ".", "fixed_custom_object_factory", "(", "self", ".", "_robot", ",", "pose", ",", "x_size_mm", ",", "y_size_mm", ",", "z_size_mm", ",", "response", ".", "object_id", ")", "if", "fixed_custom_object", ":", "self", ".", "_objects", "[", "fixed_custom_object", ".", "object_id", "]", "=", "fixed_custom_object", "return", "fixed_custom_object" ]
https://github.com/anki/vector-python-sdk/blob/d61fdb07c6278deba750f987b20441fff2df865f/anki_vector/world.py#L731-L789
richzhang/PerceptualSimilarity
31bc1271ae6f13b7e281b9959ac24a5e8f2ed522
util/util.py
python
mkdir
(path)
[]
def mkdir(path): if not os.path.exists(path): os.makedirs(path)
[ "def", "mkdir", "(", "path", ")", ":", "if", "not", "os", ".", "path", ".", "exists", "(", "path", ")", ":", "os", ".", "makedirs", "(", "path", ")" ]
https://github.com/richzhang/PerceptualSimilarity/blob/31bc1271ae6f13b7e281b9959ac24a5e8f2ed522/util/util.py#L34-L36
nlloyd/SubliminalCollaborator
5c619e17ddbe8acb9eea8996ec038169ddcd50a1
libs/twisted/conch/ssh/userauth.py
python
SSHUserAuthServer.auth_publickey
(self, packet)
Public key authentication. Payload:: byte has signature string algorithm name string key blob [string signature] (if has signature is True) Create a SSHPublicKey credential and verify it using our portal.
Public key authentication. Payload:: byte has signature string algorithm name string key blob [string signature] (if has signature is True)
[ "Public", "key", "authentication", ".", "Payload", "::", "byte", "has", "signature", "string", "algorithm", "name", "string", "key", "blob", "[", "string", "signature", "]", "(", "if", "has", "signature", "is", "True", ")" ]
def auth_publickey(self, packet): """ Public key authentication. Payload:: byte has signature string algorithm name string key blob [string signature] (if has signature is True) Create a SSHPublicKey credential and verify it using our portal. """ hasSig = ord(packet[0]) algName, blob, rest = getNS(packet[1:], 2) pubKey = keys.Key.fromString(blob) signature = hasSig and getNS(rest)[0] or None if hasSig: b = (NS(self.transport.sessionID) + chr(MSG_USERAUTH_REQUEST) + NS(self.user) + NS(self.nextService) + NS('publickey') + chr(hasSig) + NS(pubKey.sshType()) + NS(blob)) c = credentials.SSHPrivateKey(self.user, algName, blob, b, signature) return self.portal.login(c, None, interfaces.IConchUser) else: c = credentials.SSHPrivateKey(self.user, algName, blob, None, None) return self.portal.login(c, None, interfaces.IConchUser).addErrback(self._ebCheckKey, packet[1:])
[ "def", "auth_publickey", "(", "self", ",", "packet", ")", ":", "hasSig", "=", "ord", "(", "packet", "[", "0", "]", ")", "algName", ",", "blob", ",", "rest", "=", "getNS", "(", "packet", "[", "1", ":", "]", ",", "2", ")", "pubKey", "=", "keys", ".", "Key", ".", "fromString", "(", "blob", ")", "signature", "=", "hasSig", "and", "getNS", "(", "rest", ")", "[", "0", "]", "or", "None", "if", "hasSig", ":", "b", "=", "(", "NS", "(", "self", ".", "transport", ".", "sessionID", ")", "+", "chr", "(", "MSG_USERAUTH_REQUEST", ")", "+", "NS", "(", "self", ".", "user", ")", "+", "NS", "(", "self", ".", "nextService", ")", "+", "NS", "(", "'publickey'", ")", "+", "chr", "(", "hasSig", ")", "+", "NS", "(", "pubKey", ".", "sshType", "(", ")", ")", "+", "NS", "(", "blob", ")", ")", "c", "=", "credentials", ".", "SSHPrivateKey", "(", "self", ".", "user", ",", "algName", ",", "blob", ",", "b", ",", "signature", ")", "return", "self", ".", "portal", ".", "login", "(", "c", ",", "None", ",", "interfaces", ".", "IConchUser", ")", "else", ":", "c", "=", "credentials", ".", "SSHPrivateKey", "(", "self", ".", "user", ",", "algName", ",", "blob", ",", "None", ",", "None", ")", "return", "self", ".", "portal", ".", "login", "(", "c", ",", "None", ",", "interfaces", ".", "IConchUser", ")", ".", "addErrback", "(", "self", ".", "_ebCheckKey", ",", "packet", "[", "1", ":", "]", ")" ]
https://github.com/nlloyd/SubliminalCollaborator/blob/5c619e17ddbe8acb9eea8996ec038169ddcd50a1/libs/twisted/conch/ssh/userauth.py#L253-L278
ganeti/ganeti
d340a9ddd12f501bef57da421b5f9b969a4ba905
lib/objects.py
python
Cluster.SimpleFillDiskState
(disk_state)
return FillDict(constants.DS_DEFAULTS, disk_state)
Fill an disk_state sub dict with cluster defaults.
Fill an disk_state sub dict with cluster defaults.
[ "Fill", "an", "disk_state", "sub", "dict", "with", "cluster", "defaults", "." ]
def SimpleFillDiskState(disk_state): """Fill an disk_state sub dict with cluster defaults. """ return FillDict(constants.DS_DEFAULTS, disk_state)
[ "def", "SimpleFillDiskState", "(", "disk_state", ")", ":", "return", "FillDict", "(", "constants", ".", "DS_DEFAULTS", ",", "disk_state", ")" ]
https://github.com/ganeti/ganeti/blob/d340a9ddd12f501bef57da421b5f9b969a4ba905/lib/objects.py#L2084-L2088
rizar/attention-lvcsr
1ae52cafdd8419874846f9544a299eef9c758f3b
libs/Theano/theano/gof/destroyhandler.py
python
DestroyHandler.validate
(self, fgraph)
return True
Return None. Raise InconsistencyError when a) orderings() raises an error b) orderings cannot be topologically sorted.
Return None.
[ "Return", "None", "." ]
def validate(self, fgraph): """ Return None. Raise InconsistencyError when a) orderings() raises an error b) orderings cannot be topologically sorted. """ if self.destroyers: ords = self.orderings(fgraph) if _contains_cycle(fgraph, ords): raise InconsistencyError("Dependency graph contains cycles") else: # James's Conjecture: # If there are no destructive ops, then there can be no cycles. # FB: This isn't always True. It can happend that # optimization introduce node that depend on itself. This # is very rare and should not happen in general. It will be # caught later. The error will be far from the source. But # doing this conjecture should speed up compilation most of # the time. The user should create such dependency except # if he mess too much with the internal. pass return True
[ "def", "validate", "(", "self", ",", "fgraph", ")", ":", "if", "self", ".", "destroyers", ":", "ords", "=", "self", ".", "orderings", "(", "fgraph", ")", "if", "_contains_cycle", "(", "fgraph", ",", "ords", ")", ":", "raise", "InconsistencyError", "(", "\"Dependency graph contains cycles\"", ")", "else", ":", "# James's Conjecture:", "# If there are no destructive ops, then there can be no cycles.", "# FB: This isn't always True. It can happend that", "# optimization introduce node that depend on itself. This", "# is very rare and should not happen in general. It will be", "# caught later. The error will be far from the source. But", "# doing this conjecture should speed up compilation most of", "# the time. The user should create such dependency except", "# if he mess too much with the internal.", "pass", "return", "True" ]
https://github.com/rizar/attention-lvcsr/blob/1ae52cafdd8419874846f9544a299eef9c758f3b/libs/Theano/theano/gof/destroyhandler.py#L894-L920
Source-Python-Dev-Team/Source.Python
d0ffd8ccbd1e9923c9bc44936f20613c1c76b7fb
addons/source-python/packages/source-python/listeners/__init__.py
python
ListenerManagerDecorator._unload_instance
(self)
Unregister the listener.
Unregister the listener.
[ "Unregister", "the", "listener", "." ]
def _unload_instance(self): """Unregister the listener.""" # Was the callback registered? if self.callback is None: return # Log the unregistering listeners_logger.log_debug( '{0}._unload_instance - Unregistering <{1}>'.format( self.name, self.callback)) # Unregister the listener self.manager.unregister_listener(self.callback)
[ "def", "_unload_instance", "(", "self", ")", ":", "# Was the callback registered?", "if", "self", ".", "callback", "is", "None", ":", "return", "# Log the unregistering", "listeners_logger", ".", "log_debug", "(", "'{0}._unload_instance - Unregistering <{1}>'", ".", "format", "(", "self", ".", "name", ",", "self", ".", "callback", ")", ")", "# Unregister the listener", "self", ".", "manager", ".", "unregister_listener", "(", "self", ".", "callback", ")" ]
https://github.com/Source-Python-Dev-Team/Source.Python/blob/d0ffd8ccbd1e9923c9bc44936f20613c1c76b7fb/addons/source-python/packages/source-python/listeners/__init__.py#L248-L260
numba/numba
bf480b9e0da858a65508c2b17759a72ee6a44c51
numba/cuda/simulator/reduction.py
python
Reduce
(func)
return reduce_wrapper
[]
def Reduce(func): def reduce_wrapper(seq, res=None, init=0): r = pyreduce(func, seq, init) if res is not None: res[0] = r return None else: return r return reduce_wrapper
[ "def", "Reduce", "(", "func", ")", ":", "def", "reduce_wrapper", "(", "seq", ",", "res", "=", "None", ",", "init", "=", "0", ")", ":", "r", "=", "pyreduce", "(", "func", ",", "seq", ",", "init", ")", "if", "res", "is", "not", "None", ":", "res", "[", "0", "]", "=", "r", "return", "None", "else", ":", "return", "r", "return", "reduce_wrapper" ]
https://github.com/numba/numba/blob/bf480b9e0da858a65508c2b17759a72ee6a44c51/numba/cuda/simulator/reduction.py#L4-L12
Kozea/Radicale
8fa4345b6ffb32cd44154d64bba2caf28d54f214
radicale/server.py
python
ParallelHTTPServer.finish_request
( # type:ignore[override] self, request: socket.socket, client_address_and_socket: Tuple[ADDRESS_TYPE, socket.socket])
[]
def finish_request( # type:ignore[override] self, request: socket.socket, client_address_and_socket: Tuple[ADDRESS_TYPE, socket.socket]) -> None: # HACK: Unpack `client_address_and_socket` and call super class # `finish_request` with original `client_address` client_address, worker_socket = client_address_and_socket try: return self.finish_request_locked(request, client_address) finally: worker_socket.close()
[ "def", "finish_request", "(", "# type:ignore[override]", "self", ",", "request", ":", "socket", ".", "socket", ",", "client_address_and_socket", ":", "Tuple", "[", "ADDRESS_TYPE", ",", "socket", ".", "socket", "]", ")", "->", "None", ":", "# HACK: Unpack `client_address_and_socket` and call super class", "# `finish_request` with original `client_address`", "client_address", ",", "worker_socket", "=", "client_address_and_socket", "try", ":", "return", "self", ".", "finish_request_locked", "(", "request", ",", "client_address", ")", "finally", ":", "worker_socket", ".", "close", "(", ")" ]
https://github.com/Kozea/Radicale/blob/8fa4345b6ffb32cd44154d64bba2caf28d54f214/radicale/server.py#L123-L132
TencentCloud/tencentcloud-sdk-python
3677fd1cdc8c5fd626ce001c13fd3b59d1f279d2
tencentcloud/youmall/v20180228/models.py
python
DescribeNetworkInfoRequest.__init__
(self)
r""" :param Time: 请求时间戳 :type Time: int :param CompanyId: 优mall集团id,通过"指定身份标识获取客户门店列表"接口获取 :type CompanyId: str :param ShopId: 优mall店铺id,通过"指定身份标识获取客户门店列表"接口获取,不填则拉取集团全部店铺当前 :type ShopId: int
r""" :param Time: 请求时间戳 :type Time: int :param CompanyId: 优mall集团id,通过"指定身份标识获取客户门店列表"接口获取 :type CompanyId: str :param ShopId: 优mall店铺id,通过"指定身份标识获取客户门店列表"接口获取,不填则拉取集团全部店铺当前 :type ShopId: int
[ "r", ":", "param", "Time", ":", "请求时间戳", ":", "type", "Time", ":", "int", ":", "param", "CompanyId", ":", "优mall集团id,通过", "指定身份标识获取客户门店列表", "接口获取", ":", "type", "CompanyId", ":", "str", ":", "param", "ShopId", ":", "优mall店铺id,通过", "指定身份标识获取客户门店列表", "接口获取,不填则拉取集团全部店铺当前", ":", "type", "ShopId", ":", "int" ]
def __init__(self): r""" :param Time: 请求时间戳 :type Time: int :param CompanyId: 优mall集团id,通过"指定身份标识获取客户门店列表"接口获取 :type CompanyId: str :param ShopId: 优mall店铺id,通过"指定身份标识获取客户门店列表"接口获取,不填则拉取集团全部店铺当前 :type ShopId: int """ self.Time = None self.CompanyId = None self.ShopId = None
[ "def", "__init__", "(", "self", ")", ":", "self", ".", "Time", "=", "None", "self", ".", "CompanyId", "=", "None", "self", ".", "ShopId", "=", "None" ]
https://github.com/TencentCloud/tencentcloud-sdk-python/blob/3677fd1cdc8c5fd626ce001c13fd3b59d1f279d2/tencentcloud/youmall/v20180228/models.py#L732-L743
kuri65536/python-for-android
26402a08fc46b09ef94e8d7a6bbc3a54ff9d0891
python-build/python-libs/gdata/src/gdata/Crypto/PublicKey/DSA.py
python
generate
(bits, randfunc, progress_func=None)
return obj
generate(bits:int, randfunc:callable, progress_func:callable) Generate a DSA key of length 'bits', using 'randfunc' to get random data and 'progress_func', if present, to display the progress of the key generation.
generate(bits:int, randfunc:callable, progress_func:callable)
[ "generate", "(", "bits", ":", "int", "randfunc", ":", "callable", "progress_func", ":", "callable", ")" ]
def generate(bits, randfunc, progress_func=None): """generate(bits:int, randfunc:callable, progress_func:callable) Generate a DSA key of length 'bits', using 'randfunc' to get random data and 'progress_func', if present, to display the progress of the key generation. """ if bits<160: raise error, 'Key length <160 bits' obj=DSAobj() # Generate string S and prime q if progress_func: progress_func('p,q\n') while (1): S, obj.q = generateQ(randfunc) n=(bits-1)/160 C, N, V = 0, 2, {} b=(obj.q >> 5) & 15 powb=pow(bignum(2), b) powL1=pow(bignum(2), bits-1) while C<4096: for k in range(0, n+1): V[k]=bytes_to_long(SHA.new(S+str(N)+str(k)).digest()) W=V[n] % powb for k in range(n-1, -1, -1): W=(W<<160L)+V[k] X=W+powL1 p=X-(X%(2*obj.q)-1) if powL1<=p and isPrime(p): break C, N = C+1, N+n+1 if C<4096: break if progress_func: progress_func('4096 multiples failed\n') obj.p = p power=(p-1)/obj.q if progress_func: progress_func('h,g\n') while (1): h=bytes_to_long(randfunc(bits)) % (p-1) g=pow(h, power, p) if 1<h<p-1 and g>1: break obj.g=g if progress_func: progress_func('x,y\n') while (1): x=bytes_to_long(randfunc(20)) if 0 < x < obj.q: break obj.x, obj.y = x, pow(g, x, p) return obj
[ "def", "generate", "(", "bits", ",", "randfunc", ",", "progress_func", "=", "None", ")", ":", "if", "bits", "<", "160", ":", "raise", "error", ",", "'Key length <160 bits'", "obj", "=", "DSAobj", "(", ")", "# Generate string S and prime q", "if", "progress_func", ":", "progress_func", "(", "'p,q\\n'", ")", "while", "(", "1", ")", ":", "S", ",", "obj", ".", "q", "=", "generateQ", "(", "randfunc", ")", "n", "=", "(", "bits", "-", "1", ")", "/", "160", "C", ",", "N", ",", "V", "=", "0", ",", "2", ",", "{", "}", "b", "=", "(", "obj", ".", "q", ">>", "5", ")", "&", "15", "powb", "=", "pow", "(", "bignum", "(", "2", ")", ",", "b", ")", "powL1", "=", "pow", "(", "bignum", "(", "2", ")", ",", "bits", "-", "1", ")", "while", "C", "<", "4096", ":", "for", "k", "in", "range", "(", "0", ",", "n", "+", "1", ")", ":", "V", "[", "k", "]", "=", "bytes_to_long", "(", "SHA", ".", "new", "(", "S", "+", "str", "(", "N", ")", "+", "str", "(", "k", ")", ")", ".", "digest", "(", ")", ")", "W", "=", "V", "[", "n", "]", "%", "powb", "for", "k", "in", "range", "(", "n", "-", "1", ",", "-", "1", ",", "-", "1", ")", ":", "W", "=", "(", "W", "<<", "160L", ")", "+", "V", "[", "k", "]", "X", "=", "W", "+", "powL1", "p", "=", "X", "-", "(", "X", "%", "(", "2", "*", "obj", ".", "q", ")", "-", "1", ")", "if", "powL1", "<=", "p", "and", "isPrime", "(", "p", ")", ":", "break", "C", ",", "N", "=", "C", "+", "1", ",", "N", "+", "n", "+", "1", "if", "C", "<", "4096", ":", "break", "if", "progress_func", ":", "progress_func", "(", "'4096 multiples failed\\n'", ")", "obj", ".", "p", "=", "p", "power", "=", "(", "p", "-", "1", ")", "/", "obj", ".", "q", "if", "progress_func", ":", "progress_func", "(", "'h,g\\n'", ")", "while", "(", "1", ")", ":", "h", "=", "bytes_to_long", "(", "randfunc", "(", "bits", ")", ")", "%", "(", "p", "-", "1", ")", "g", "=", "pow", "(", "h", ",", "power", ",", "p", ")", "if", "1", "<", "h", "<", "p", "-", "1", "and", "g", ">", "1", ":", "break", "obj", ".", "g", "=", "g", "if", "progress_func", ":", "progress_func", "(", "'x,y\\n'", ")", "while", "(", "1", ")", ":", "x", "=", "bytes_to_long", "(", "randfunc", "(", "20", ")", ")", "if", "0", "<", "x", "<", "obj", ".", "q", ":", "break", "obj", ".", "x", ",", "obj", ".", "y", "=", "x", ",", "pow", "(", "g", ",", "x", ",", "p", ")", "return", "obj" ]
https://github.com/kuri65536/python-for-android/blob/26402a08fc46b09ef94e8d7a6bbc3a54ff9d0891/python-build/python-libs/gdata/src/gdata/Crypto/PublicKey/DSA.py#L47-L101
spyder-ide/spyder
55da47c032dfcf519600f67f8b30eab467f965e7
spyder/plugins/variableexplorer/widgets/objectexplorer/tree_model.py
python
TreeModel.inspectedIndex
(self)
The model index that point to the inspectedItem.
The model index that point to the inspectedItem.
[ "The", "model", "index", "that", "point", "to", "the", "inspectedItem", "." ]
def inspectedIndex(self): """The model index that point to the inspectedItem.""" if self.inspectedNodeIsVisible: return self.createIndex(0, 0, self._inspected_item) else: return self.rootIndex()
[ "def", "inspectedIndex", "(", "self", ")", ":", "if", "self", ".", "inspectedNodeIsVisible", ":", "return", "self", ".", "createIndex", "(", "0", ",", "0", ",", "self", ".", "_inspected_item", ")", "else", ":", "return", "self", ".", "rootIndex", "(", ")" ]
https://github.com/spyder-ide/spyder/blob/55da47c032dfcf519600f67f8b30eab467f965e7/spyder/plugins/variableexplorer/widgets/objectexplorer/tree_model.py#L124-L129
LinuxCNC/simple-gcode-generators
d06c2750fe03c41becd6bd5863ace54b52920155
bezel/bezel.py
python
Application.__init__
(self, master=None)
[]
def __init__(self, master=None): Frame.__init__(self, master) self.grid() self.createWidgets() self.DoIt()
[ "def", "__init__", "(", "self", ",", "master", "=", "None", ")", ":", "Frame", ".", "__init__", "(", "self", ",", "master", ")", "self", ".", "grid", "(", ")", "self", ".", "createWidgets", "(", ")", "self", ".", "DoIt", "(", ")" ]
https://github.com/LinuxCNC/simple-gcode-generators/blob/d06c2750fe03c41becd6bd5863ace54b52920155/bezel/bezel.py#L42-L46
uzh-rpg/rpg_trajectory_evaluation
995e584d19712b26539fca6dbf694224eea0f5ba
src/rpg_trajectory_evaluation/transformations.py
python
vector_norm
(data, axis=None, out=None)
Return length, i.e. eucledian norm, of ndarray along axis. >>> v = numpy.random.random(3) >>> n = vector_norm(v) >>> numpy.allclose(n, numpy.linalg.norm(v)) True >>> v = numpy.random.rand(6, 5, 3) >>> n = vector_norm(v, axis=-1) >>> numpy.allclose(n, numpy.sqrt(numpy.sum(v*v, axis=2))) True >>> n = vector_norm(v, axis=1) >>> numpy.allclose(n, numpy.sqrt(numpy.sum(v*v, axis=1))) True >>> v = numpy.random.rand(5, 4, 3) >>> n = numpy.empty((5, 3), dtype=numpy.float64) >>> vector_norm(v, axis=1, out=n) >>> numpy.allclose(n, numpy.sqrt(numpy.sum(v*v, axis=1))) True >>> vector_norm([]) 0.0 >>> vector_norm([1.0]) 1.0
Return length, i.e. eucledian norm, of ndarray along axis.
[ "Return", "length", "i", ".", "e", ".", "eucledian", "norm", "of", "ndarray", "along", "axis", "." ]
def vector_norm(data, axis=None, out=None): """Return length, i.e. eucledian norm, of ndarray along axis. >>> v = numpy.random.random(3) >>> n = vector_norm(v) >>> numpy.allclose(n, numpy.linalg.norm(v)) True >>> v = numpy.random.rand(6, 5, 3) >>> n = vector_norm(v, axis=-1) >>> numpy.allclose(n, numpy.sqrt(numpy.sum(v*v, axis=2))) True >>> n = vector_norm(v, axis=1) >>> numpy.allclose(n, numpy.sqrt(numpy.sum(v*v, axis=1))) True >>> v = numpy.random.rand(5, 4, 3) >>> n = numpy.empty((5, 3), dtype=numpy.float64) >>> vector_norm(v, axis=1, out=n) >>> numpy.allclose(n, numpy.sqrt(numpy.sum(v*v, axis=1))) True >>> vector_norm([]) 0.0 >>> vector_norm([1.0]) 1.0 """ data = numpy.array(data, dtype=numpy.float64, copy=True) if out is None: if data.ndim == 1: return math.sqrt(numpy.dot(data, data)) data *= data out = numpy.atleast_1d(numpy.sum(data, axis=axis)) numpy.sqrt(out, out) return out else: data *= data numpy.sum(data, axis=axis, out=out) numpy.sqrt(out, out)
[ "def", "vector_norm", "(", "data", ",", "axis", "=", "None", ",", "out", "=", "None", ")", ":", "data", "=", "numpy", ".", "array", "(", "data", ",", "dtype", "=", "numpy", ".", "float64", ",", "copy", "=", "True", ")", "if", "out", "is", "None", ":", "if", "data", ".", "ndim", "==", "1", ":", "return", "math", ".", "sqrt", "(", "numpy", ".", "dot", "(", "data", ",", "data", ")", ")", "data", "*=", "data", "out", "=", "numpy", ".", "atleast_1d", "(", "numpy", ".", "sum", "(", "data", ",", "axis", "=", "axis", ")", ")", "numpy", ".", "sqrt", "(", "out", ",", "out", ")", "return", "out", "else", ":", "data", "*=", "data", "numpy", ".", "sum", "(", "data", ",", "axis", "=", "axis", ",", "out", "=", "out", ")", "numpy", ".", "sqrt", "(", "out", ",", "out", ")" ]
https://github.com/uzh-rpg/rpg_trajectory_evaluation/blob/995e584d19712b26539fca6dbf694224eea0f5ba/src/rpg_trajectory_evaluation/transformations.py#L1803-L1839
quantmind/pulsar
fee44e871954aa6ca36d00bb5a3739abfdb89b26
pulsar/apps/http/client.py
python
HttpClient.put
(self, url, **kwargs)
return self.request('PUT', url, **kwargs)
Sends a PUT request and returns a :class:`.HttpResponse` object. :params url: url for the new :class:`HttpRequest` object. :param \*\*kwargs: Optional arguments for the :meth:`request` method.
Sends a PUT request and returns a :class:`.HttpResponse` object.
[ "Sends", "a", "PUT", "request", "and", "returns", "a", ":", "class", ":", ".", "HttpResponse", "object", "." ]
def put(self, url, **kwargs): """Sends a PUT request and returns a :class:`.HttpResponse` object. :params url: url for the new :class:`HttpRequest` object. :param \*\*kwargs: Optional arguments for the :meth:`request` method. """ return self.request('PUT', url, **kwargs)
[ "def", "put", "(", "self", ",", "url", ",", "*", "*", "kwargs", ")", ":", "return", "self", ".", "request", "(", "'PUT'", ",", "url", ",", "*", "*", "kwargs", ")" ]
https://github.com/quantmind/pulsar/blob/fee44e871954aa6ca36d00bb5a3739abfdb89b26/pulsar/apps/http/client.py#L840-L846
scikit-learn/scikit-learn
1d1aadd0711b87d2a11c80aad15df6f8cf156712
doc/tutorial/machine_learning_map/pyparsing.py
python
replaceWith
(replStr)
return lambda s,l,t: [replStr]
Helper method for common parse actions that simply return a literal value. Especially useful when used with C{L{transformString<ParserElement.transformString>}()}. Example:: num = Word(nums).setParseAction(lambda toks: int(toks[0])) na = oneOf("N/A NA").setParseAction(replaceWith(math.nan)) term = na | num OneOrMore(term).parseString("324 234 N/A 234") # -> [324, 234, nan, 234]
Helper method for common parse actions that simply return a literal value. Especially useful when used with C{L{transformString<ParserElement.transformString>}()}.
[ "Helper", "method", "for", "common", "parse", "actions", "that", "simply", "return", "a", "literal", "value", ".", "Especially", "useful", "when", "used", "with", "C", "{", "L", "{", "transformString<ParserElement", ".", "transformString", ">", "}", "()", "}", "." ]
def replaceWith(replStr): """ Helper method for common parse actions that simply return a literal value. Especially useful when used with C{L{transformString<ParserElement.transformString>}()}. Example:: num = Word(nums).setParseAction(lambda toks: int(toks[0])) na = oneOf("N/A NA").setParseAction(replaceWith(math.nan)) term = na | num OneOrMore(term).parseString("324 234 N/A 234") # -> [324, 234, nan, 234] """ return lambda s,l,t: [replStr]
[ "def", "replaceWith", "(", "replStr", ")", ":", "return", "lambda", "s", ",", "l", ",", "t", ":", "[", "replStr", "]" ]
https://github.com/scikit-learn/scikit-learn/blob/1d1aadd0711b87d2a11c80aad15df6f8cf156712/doc/tutorial/machine_learning_map/pyparsing.py#L4770-L4782
dreamnettech/dreampower
0253fe6b403552deb1a5fe3363678e4aea7437fa
src/main.py
python
select_processing
()
return process
Select the processing to use following args parameters. :return: <Process> a process to run
Select the processing to use following args parameters.
[ "Select", "the", "processing", "to", "use", "following", "args", "parameters", "." ]
def select_processing(): """ Select the processing to use following args parameters. :return: <Process> a process to run """ if Conf.args['image_size'] and Conf.args['image_size'] >= 256: Conf.set_image_size(Conf.args['image_size']) if os.path.isdir(Conf.args['input']): process = processing_image_folder() elif Conf.args['n_runs'] != 1: process = multiple_image_processing() else: process = simple_image_processing() Conf.log.debug("Process to execute : {}".format(process)) return process
[ "def", "select_processing", "(", ")", ":", "if", "Conf", ".", "args", "[", "'image_size'", "]", "and", "Conf", ".", "args", "[", "'image_size'", "]", ">=", "256", ":", "Conf", ".", "set_image_size", "(", "Conf", ".", "args", "[", "'image_size'", "]", ")", "if", "os", ".", "path", ".", "isdir", "(", "Conf", ".", "args", "[", "'input'", "]", ")", ":", "process", "=", "processing_image_folder", "(", ")", "elif", "Conf", ".", "args", "[", "'n_runs'", "]", "!=", "1", ":", "process", "=", "multiple_image_processing", "(", ")", "else", ":", "process", "=", "simple_image_processing", "(", ")", "Conf", ".", "log", ".", "debug", "(", "\"Process to execute : {}\"", ".", "format", "(", "process", ")", ")", "return", "process" ]
https://github.com/dreamnettech/dreampower/blob/0253fe6b403552deb1a5fe3363678e4aea7437fa/src/main.py#L33-L49
JiYou/openstack
8607dd488bde0905044b303eb6e52bdea6806923
packages/source/swift/swift/common/swob.py
python
Request.get_response
(self, application)
return Response(status=status, headers=dict(headers), app_iter=app_iter, request=self)
Calls the application with this request's environment. Returns a Response object that wraps up the application's result. :param application: the WSGI application to call
Calls the application with this request's environment. Returns a Response object that wraps up the application's result.
[ "Calls", "the", "application", "with", "this", "request", "s", "environment", ".", "Returns", "a", "Response", "object", "that", "wraps", "up", "the", "application", "s", "result", "." ]
def get_response(self, application): """ Calls the application with this request's environment. Returns a Response object that wraps up the application's result. :param application: the WSGI application to call """ status, headers, app_iter = self.call_application(application) return Response(status=status, headers=dict(headers), app_iter=app_iter, request=self)
[ "def", "get_response", "(", "self", ",", "application", ")", ":", "status", ",", "headers", ",", "app_iter", "=", "self", ".", "call_application", "(", "application", ")", "return", "Response", "(", "status", "=", "status", ",", "headers", "=", "dict", "(", "headers", ")", ",", "app_iter", "=", "app_iter", ",", "request", "=", "self", ")" ]
https://github.com/JiYou/openstack/blob/8607dd488bde0905044b303eb6e52bdea6806923/packages/source/swift/swift/common/swob.py#L855-L864
nipy/nipy
d16d268938dcd5c15748ca051532c21f57cf8a22
nipy/externals/transforms3d/taitbryan.py
python
quat2euler
(q)
return mat2euler(nq.quat2mat(q))
Return Euler angles corresponding to quaternion `q` Parameters ---------- q : 4 element sequence w, x, y, z of quaternion Returns ------- z : scalar Rotation angle in radians around z-axis (performed first) y : scalar Rotation angle in radians around y-axis x : scalar Rotation angle in radians around x-axis (performed last) Notes ----- It's possible to reduce the amount of calculation a little, by combining parts of the ``quat2mat`` and ``mat2euler`` functions, but the reduction in computation is small, and the code repetition is large.
Return Euler angles corresponding to quaternion `q`
[ "Return", "Euler", "angles", "corresponding", "to", "quaternion", "q" ]
def quat2euler(q): ''' Return Euler angles corresponding to quaternion `q` Parameters ---------- q : 4 element sequence w, x, y, z of quaternion Returns ------- z : scalar Rotation angle in radians around z-axis (performed first) y : scalar Rotation angle in radians around y-axis x : scalar Rotation angle in radians around x-axis (performed last) Notes ----- It's possible to reduce the amount of calculation a little, by combining parts of the ``quat2mat`` and ``mat2euler`` functions, but the reduction in computation is small, and the code repetition is large. ''' # delayed import to avoid cyclic dependencies from . import quaternions as nq return mat2euler(nq.quat2mat(q))
[ "def", "quat2euler", "(", "q", ")", ":", "# delayed import to avoid cyclic dependencies", "from", ".", "import", "quaternions", "as", "nq", "return", "mat2euler", "(", "nq", ".", "quat2mat", "(", "q", ")", ")" ]
https://github.com/nipy/nipy/blob/d16d268938dcd5c15748ca051532c21f57cf8a22/nipy/externals/transforms3d/taitbryan.py#L302-L328
pypa/pipenv
b21baade71a86ab3ee1429f71fbc14d4f95fb75d
pipenv/vendor/requirementslib/models/setup_info.py
python
SetupReader._find_extras_require
( cls, call: ast.Call, body: "Iterable[Any]" )
return extras_require
[]
def _find_extras_require( cls, call: ast.Call, body: "Iterable[Any]" ) -> "Dict[str, List[str]]": extras_require: "Dict[str, List[str]]" = {} value = cls._find_in_call(call, "extras_require") if value is None: # Trying to find in kwargs kwargs = cls._find_call_kwargs(call) if kwargs is None: return extras_require if not isinstance(kwargs, ast.Name): raise Unparsable() variable = cls._find_variable_in_body(body, kwargs.id) if not isinstance(variable, (ast.Dict, ast.Call)): raise Unparsable() if isinstance(variable, ast.Call): if not isinstance(variable.func, ast.Name): raise Unparsable() if variable.func.id != "dict": raise Unparsable() value = cls._find_in_call(variable, "extras_require") else: value = cls._find_in_dict(variable, "extras_require") if value is None: return extras_require if isinstance(value, ast.Dict): for key, val in zip(value.keys, value.values): if isinstance(val, ast.Name): val = cls._find_variable_in_body(body, val.id) if isinstance(val, ast.List): extras_require[key.s] = [e.s for e in val.elts] else: raise Unparsable() elif isinstance(value, ast.Name): variable = cls._find_variable_in_body(body, value.id) if variable is None or not isinstance(variable, ast.Dict): raise Unparsable() for key, val in zip(variable.keys, variable.values): if isinstance(val, ast.Name): val = cls._find_variable_in_body(body, val.id) if isinstance(val, ast.List): extras_require[key.s] = [e.s for e in val.elts] else: raise Unparsable() else: raise Unparsable() return extras_require
[ "def", "_find_extras_require", "(", "cls", ",", "call", ":", "ast", ".", "Call", ",", "body", ":", "\"Iterable[Any]\"", ")", "->", "\"Dict[str, List[str]]\"", ":", "extras_require", ":", "\"Dict[str, List[str]]\"", "=", "{", "}", "value", "=", "cls", ".", "_find_in_call", "(", "call", ",", "\"extras_require\"", ")", "if", "value", "is", "None", ":", "# Trying to find in kwargs", "kwargs", "=", "cls", ".", "_find_call_kwargs", "(", "call", ")", "if", "kwargs", "is", "None", ":", "return", "extras_require", "if", "not", "isinstance", "(", "kwargs", ",", "ast", ".", "Name", ")", ":", "raise", "Unparsable", "(", ")", "variable", "=", "cls", ".", "_find_variable_in_body", "(", "body", ",", "kwargs", ".", "id", ")", "if", "not", "isinstance", "(", "variable", ",", "(", "ast", ".", "Dict", ",", "ast", ".", "Call", ")", ")", ":", "raise", "Unparsable", "(", ")", "if", "isinstance", "(", "variable", ",", "ast", ".", "Call", ")", ":", "if", "not", "isinstance", "(", "variable", ".", "func", ",", "ast", ".", "Name", ")", ":", "raise", "Unparsable", "(", ")", "if", "variable", ".", "func", ".", "id", "!=", "\"dict\"", ":", "raise", "Unparsable", "(", ")", "value", "=", "cls", ".", "_find_in_call", "(", "variable", ",", "\"extras_require\"", ")", "else", ":", "value", "=", "cls", ".", "_find_in_dict", "(", "variable", ",", "\"extras_require\"", ")", "if", "value", "is", "None", ":", "return", "extras_require", "if", "isinstance", "(", "value", ",", "ast", ".", "Dict", ")", ":", "for", "key", ",", "val", "in", "zip", "(", "value", ".", "keys", ",", "value", ".", "values", ")", ":", "if", "isinstance", "(", "val", ",", "ast", ".", "Name", ")", ":", "val", "=", "cls", ".", "_find_variable_in_body", "(", "body", ",", "val", ".", "id", ")", "if", "isinstance", "(", "val", ",", "ast", ".", "List", ")", ":", "extras_require", "[", "key", ".", "s", "]", "=", "[", "e", ".", "s", "for", "e", "in", "val", ".", "elts", "]", "else", ":", "raise", "Unparsable", "(", ")", "elif", "isinstance", "(", "value", ",", "ast", ".", "Name", ")", ":", "variable", "=", "cls", ".", "_find_variable_in_body", "(", "body", ",", "value", ".", "id", ")", "if", "variable", "is", "None", "or", "not", "isinstance", "(", "variable", ",", "ast", ".", "Dict", ")", ":", "raise", "Unparsable", "(", ")", "for", "key", ",", "val", "in", "zip", "(", "variable", ".", "keys", ",", "variable", ".", "values", ")", ":", "if", "isinstance", "(", "val", ",", "ast", ".", "Name", ")", ":", "val", "=", "cls", ".", "_find_variable_in_body", "(", "body", ",", "val", ".", "id", ")", "if", "isinstance", "(", "val", ",", "ast", ".", "List", ")", ":", "extras_require", "[", "key", ".", "s", "]", "=", "[", "e", ".", "s", "for", "e", "in", "val", ".", "elts", "]", "else", ":", "raise", "Unparsable", "(", ")", "else", ":", "raise", "Unparsable", "(", ")", "return", "extras_require" ]
https://github.com/pypa/pipenv/blob/b21baade71a86ab3ee1429f71fbc14d4f95fb75d/pipenv/vendor/requirementslib/models/setup_info.py#L370-L429
pwnieexpress/pwn_plug_sources
1a23324f5dc2c3de20f9c810269b6a29b2758cad
src/sslstrip/sslstrip/URLMonitor.py
python
URLMonitor.getInstance
()
return URLMonitor._instance
[]
def getInstance(): if URLMonitor._instance == None: URLMonitor._instance = URLMonitor() return URLMonitor._instance
[ "def", "getInstance", "(", ")", ":", "if", "URLMonitor", ".", "_instance", "==", "None", ":", "URLMonitor", ".", "_instance", "=", "URLMonitor", "(", ")", "return", "URLMonitor", ".", "_instance" ]
https://github.com/pwnieexpress/pwn_plug_sources/blob/1a23324f5dc2c3de20f9c810269b6a29b2758cad/src/sslstrip/sslstrip/URLMonitor.py#L81-L85
holzschu/Carnets
44effb10ddfc6aa5c8b0687582a724ba82c6b547
Library/lib/python3.7/site-packages/sympy/physics/quantum/identitysearch.py
python
is_reducible
(circuit, nqubits, begin, end)
return False
Determines if a circuit is reducible by checking if its subcircuits are scalar values. Parameters ========== circuit : Gate tuple A tuple of Gates representing a circuit. The circuit to check if a gate identity is contained in a subcircuit. nqubits : int The number of qubits the circuit operates on. begin : int The leftmost gate in the circuit to include in a subcircuit. end : int The rightmost gate in the circuit to include in a subcircuit. Examples ======== Check if the circuit can be reduced: >>> from sympy.physics.quantum.identitysearch import ( ... GateIdentity, is_reducible) >>> from sympy.physics.quantum.gate import X, Y, Z >>> x = X(0); y = Y(0); z = Z(0) >>> is_reducible((x, y, z), 1, 0, 3) True Check if an interval in the circuit can be reduced: >>> is_reducible((x, y, z), 1, 1, 3) False >>> is_reducible((x, y, y), 1, 1, 3) True
Determines if a circuit is reducible by checking if its subcircuits are scalar values.
[ "Determines", "if", "a", "circuit", "is", "reducible", "by", "checking", "if", "its", "subcircuits", "are", "scalar", "values", "." ]
def is_reducible(circuit, nqubits, begin, end): """Determines if a circuit is reducible by checking if its subcircuits are scalar values. Parameters ========== circuit : Gate tuple A tuple of Gates representing a circuit. The circuit to check if a gate identity is contained in a subcircuit. nqubits : int The number of qubits the circuit operates on. begin : int The leftmost gate in the circuit to include in a subcircuit. end : int The rightmost gate in the circuit to include in a subcircuit. Examples ======== Check if the circuit can be reduced: >>> from sympy.physics.quantum.identitysearch import ( ... GateIdentity, is_reducible) >>> from sympy.physics.quantum.gate import X, Y, Z >>> x = X(0); y = Y(0); z = Z(0) >>> is_reducible((x, y, z), 1, 0, 3) True Check if an interval in the circuit can be reduced: >>> is_reducible((x, y, z), 1, 1, 3) False >>> is_reducible((x, y, y), 1, 1, 3) True """ current_circuit = () # Start from the gate at "end" and go down to almost the gate at "begin" for ndx in reversed(range(begin, end)): next_gate = circuit[ndx] current_circuit = (next_gate,) + current_circuit # If a circuit as a matrix is equivalent to a scalar value if (is_scalar_matrix(current_circuit, nqubits, False)): return True return False
[ "def", "is_reducible", "(", "circuit", ",", "nqubits", ",", "begin", ",", "end", ")", ":", "current_circuit", "=", "(", ")", "# Start from the gate at \"end\" and go down to almost the gate at \"begin\"", "for", "ndx", "in", "reversed", "(", "range", "(", "begin", ",", "end", ")", ")", ":", "next_gate", "=", "circuit", "[", "ndx", "]", "current_circuit", "=", "(", "next_gate", ",", ")", "+", "current_circuit", "# If a circuit as a matrix is equivalent to a scalar value", "if", "(", "is_scalar_matrix", "(", "current_circuit", ",", "nqubits", ",", "False", ")", ")", ":", "return", "True", "return", "False" ]
https://github.com/holzschu/Carnets/blob/44effb10ddfc6aa5c8b0687582a724ba82c6b547/Library/lib/python3.7/site-packages/sympy/physics/quantum/identitysearch.py#L704-L752
zhl2008/awd-platform
0416b31abea29743387b10b3914581fbe8e7da5e
web_flaskbb/lib/python2.7/site-packages/whoosh/analysis/filters.py
python
LowercaseFilter.__call__
(self, tokens)
[]
def __call__(self, tokens): for t in tokens: t.text = t.text.lower() yield t
[ "def", "__call__", "(", "self", ",", "tokens", ")", ":", "for", "t", "in", "tokens", ":", "t", ".", "text", "=", "t", ".", "text", ".", "lower", "(", ")", "yield", "t" ]
https://github.com/zhl2008/awd-platform/blob/0416b31abea29743387b10b3914581fbe8e7da5e/web_flaskbb/lib/python2.7/site-packages/whoosh/analysis/filters.py#L224-L227
NVIDIA/apex
b88c507edb0d067d5570f7a8efe03a90664a3d16
apex/reparameterization/__init__.py
python
remove_weight_norm
(module, name='', remove_all=False)
return remove_reparameterization(module, reparameterization=WeightNorm, name=name, remove_all=remove_all)
Removes the weight normalization reparameterization of a parameter from a module. If no parameter is supplied then all weight norm parameterizations are removed. Args: module (nn.Module): containing module name (str, optional): name of weight parameter Example: >>> m = apply_weight_norm(nn.Linear(20, 40)) >>> remove_weight_norm(m)
Removes the weight normalization reparameterization of a parameter from a module. If no parameter is supplied then all weight norm parameterizations are removed. Args: module (nn.Module): containing module name (str, optional): name of weight parameter Example: >>> m = apply_weight_norm(nn.Linear(20, 40)) >>> remove_weight_norm(m)
[ "Removes", "the", "weight", "normalization", "reparameterization", "of", "a", "parameter", "from", "a", "module", ".", "If", "no", "parameter", "is", "supplied", "then", "all", "weight", "norm", "parameterizations", "are", "removed", ".", "Args", ":", "module", "(", "nn", ".", "Module", ")", ":", "containing", "module", "name", "(", "str", "optional", ")", ":", "name", "of", "weight", "parameter", "Example", ":", ">>>", "m", "=", "apply_weight_norm", "(", "nn", ".", "Linear", "(", "20", "40", "))", ">>>", "remove_weight_norm", "(", "m", ")" ]
def remove_weight_norm(module, name='', remove_all=False): """ Removes the weight normalization reparameterization of a parameter from a module. If no parameter is supplied then all weight norm parameterizations are removed. Args: module (nn.Module): containing module name (str, optional): name of weight parameter Example: >>> m = apply_weight_norm(nn.Linear(20, 40)) >>> remove_weight_norm(m) """ return remove_reparameterization(module, reparameterization=WeightNorm, name=name, remove_all=remove_all)
[ "def", "remove_weight_norm", "(", "module", ",", "name", "=", "''", ",", "remove_all", "=", "False", ")", ":", "return", "remove_reparameterization", "(", "module", ",", "reparameterization", "=", "WeightNorm", ",", "name", "=", "name", ",", "remove_all", "=", "remove_all", ")" ]
https://github.com/NVIDIA/apex/blob/b88c507edb0d067d5570f7a8efe03a90664a3d16/apex/reparameterization/__init__.py#L50-L62
bilylee/SiamFC-TensorFlow
f572dca95f2b3b2861f54de467259753428e468c
embeddings/convolutional_alexnet.py
python
convolutional_alexnet_arg_scope
(embed_config, trainable=True, is_training=False)
Defines the default arg scope. Args: embed_config: A dictionary which contains configurations for the embedding function. trainable: If the weights in the embedding function is trainable. is_training: If the embedding function is built for training. Returns: An `arg_scope` to use for the convolutional_alexnet models.
Defines the default arg scope.
[ "Defines", "the", "default", "arg", "scope", "." ]
def convolutional_alexnet_arg_scope(embed_config, trainable=True, is_training=False): """Defines the default arg scope. Args: embed_config: A dictionary which contains configurations for the embedding function. trainable: If the weights in the embedding function is trainable. is_training: If the embedding function is built for training. Returns: An `arg_scope` to use for the convolutional_alexnet models. """ # Only consider the model to be in training mode if it's trainable. # This is vital for batch_norm since moving_mean and moving_variance # will get updated even if not trainable. is_model_training = trainable and is_training if get(embed_config, 'use_bn', True): batch_norm_scale = get(embed_config, 'bn_scale', True) batch_norm_decay = 1 - get(embed_config, 'bn_momentum', 3e-4) batch_norm_epsilon = get(embed_config, 'bn_epsilon', 1e-6) batch_norm_params = { "scale": batch_norm_scale, # Decay for the moving averages. "decay": batch_norm_decay, # Epsilon to prevent 0s in variance. "epsilon": batch_norm_epsilon, "trainable": trainable, "is_training": is_model_training, # Collection containing the moving mean and moving variance. "variables_collections": { "beta": None, "gamma": None, "moving_mean": ["moving_vars"], "moving_variance": ["moving_vars"], }, 'updates_collections': None, # Ensure that updates are done within a frame } normalizer_fn = slim.batch_norm else: batch_norm_params = {} normalizer_fn = None weight_decay = get(embed_config, 'weight_decay', 5e-4) if trainable: weights_regularizer = slim.l2_regularizer(weight_decay) else: weights_regularizer = None init_method = get(embed_config, 'init_method', 'kaiming_normal') if is_model_training: logging.info('embedding init method -- {}'.format(init_method)) if init_method == 'kaiming_normal': # The same setting as siamese-fc initializer = slim.variance_scaling_initializer(factor=2.0, mode='FAN_OUT', uniform=False) else: initializer = slim.xavier_initializer() with slim.arg_scope( [slim.conv2d], weights_regularizer=weights_regularizer, weights_initializer=initializer, padding='VALID', trainable=trainable, activation_fn=tf.nn.relu, normalizer_fn=normalizer_fn, normalizer_params=batch_norm_params): with slim.arg_scope([slim.batch_norm], **batch_norm_params): with slim.arg_scope([slim.batch_norm], is_training=is_model_training) as arg_sc: return arg_sc
[ "def", "convolutional_alexnet_arg_scope", "(", "embed_config", ",", "trainable", "=", "True", ",", "is_training", "=", "False", ")", ":", "# Only consider the model to be in training mode if it's trainable.", "# This is vital for batch_norm since moving_mean and moving_variance", "# will get updated even if not trainable.", "is_model_training", "=", "trainable", "and", "is_training", "if", "get", "(", "embed_config", ",", "'use_bn'", ",", "True", ")", ":", "batch_norm_scale", "=", "get", "(", "embed_config", ",", "'bn_scale'", ",", "True", ")", "batch_norm_decay", "=", "1", "-", "get", "(", "embed_config", ",", "'bn_momentum'", ",", "3e-4", ")", "batch_norm_epsilon", "=", "get", "(", "embed_config", ",", "'bn_epsilon'", ",", "1e-6", ")", "batch_norm_params", "=", "{", "\"scale\"", ":", "batch_norm_scale", ",", "# Decay for the moving averages.", "\"decay\"", ":", "batch_norm_decay", ",", "# Epsilon to prevent 0s in variance.", "\"epsilon\"", ":", "batch_norm_epsilon", ",", "\"trainable\"", ":", "trainable", ",", "\"is_training\"", ":", "is_model_training", ",", "# Collection containing the moving mean and moving variance.", "\"variables_collections\"", ":", "{", "\"beta\"", ":", "None", ",", "\"gamma\"", ":", "None", ",", "\"moving_mean\"", ":", "[", "\"moving_vars\"", "]", ",", "\"moving_variance\"", ":", "[", "\"moving_vars\"", "]", ",", "}", ",", "'updates_collections'", ":", "None", ",", "# Ensure that updates are done within a frame", "}", "normalizer_fn", "=", "slim", ".", "batch_norm", "else", ":", "batch_norm_params", "=", "{", "}", "normalizer_fn", "=", "None", "weight_decay", "=", "get", "(", "embed_config", ",", "'weight_decay'", ",", "5e-4", ")", "if", "trainable", ":", "weights_regularizer", "=", "slim", ".", "l2_regularizer", "(", "weight_decay", ")", "else", ":", "weights_regularizer", "=", "None", "init_method", "=", "get", "(", "embed_config", ",", "'init_method'", ",", "'kaiming_normal'", ")", "if", "is_model_training", ":", "logging", ".", "info", "(", "'embedding init method -- {}'", ".", "format", "(", "init_method", ")", ")", "if", "init_method", "==", "'kaiming_normal'", ":", "# The same setting as siamese-fc", "initializer", "=", "slim", ".", "variance_scaling_initializer", "(", "factor", "=", "2.0", ",", "mode", "=", "'FAN_OUT'", ",", "uniform", "=", "False", ")", "else", ":", "initializer", "=", "slim", ".", "xavier_initializer", "(", ")", "with", "slim", ".", "arg_scope", "(", "[", "slim", ".", "conv2d", "]", ",", "weights_regularizer", "=", "weights_regularizer", ",", "weights_initializer", "=", "initializer", ",", "padding", "=", "'VALID'", ",", "trainable", "=", "trainable", ",", "activation_fn", "=", "tf", ".", "nn", ".", "relu", ",", "normalizer_fn", "=", "normalizer_fn", ",", "normalizer_params", "=", "batch_norm_params", ")", ":", "with", "slim", ".", "arg_scope", "(", "[", "slim", ".", "batch_norm", "]", ",", "*", "*", "batch_norm_params", ")", ":", "with", "slim", ".", "arg_scope", "(", "[", "slim", ".", "batch_norm", "]", ",", "is_training", "=", "is_model_training", ")", "as", "arg_sc", ":", "return", "arg_sc" ]
https://github.com/bilylee/SiamFC-TensorFlow/blob/f572dca95f2b3b2861f54de467259753428e468c/embeddings/convolutional_alexnet.py#L27-L97
home-assistant/core
265ebd17a3f17ed8dc1e9bdede03ac8e323f1ab1
homeassistant/components/squeezebox/media_player.py
python
SqueezeBoxEntity.async_media_play
(self)
Send play command to media player.
Send play command to media player.
[ "Send", "play", "command", "to", "media", "player", "." ]
async def async_media_play(self): """Send play command to media player.""" await self._player.async_play()
[ "async", "def", "async_media_play", "(", "self", ")", ":", "await", "self", ".", "_player", ".", "async_play", "(", ")" ]
https://github.com/home-assistant/core/blob/265ebd17a3f17ed8dc1e9bdede03ac8e323f1ab1/homeassistant/components/squeezebox/media_player.py#L427-L429
Delta-ML/delta
31dfebc8f20b7cb282b62f291ff25a87e403cc86
delta/utils/cmvn.py
python
create_cmvn_statis
(feature_size, add_delta_deltas=True)
return sums, square, count
init sums, squares and cout of feature statistic
init sums, squares and cout of feature statistic
[ "init", "sums", "squares", "and", "cout", "of", "feature", "statistic" ]
def create_cmvn_statis(feature_size, add_delta_deltas=True): ''' init sums, squares and cout of feature statistic ''' sums = np.zeros([1, feature_size, 3 if add_delta_deltas else 1], dtype=np.float64) square = np.zeros([1, feature_size, 3 if add_delta_deltas else 1], dtype=np.float64) count = 0.0 return sums, square, count
[ "def", "create_cmvn_statis", "(", "feature_size", ",", "add_delta_deltas", "=", "True", ")", ":", "sums", "=", "np", ".", "zeros", "(", "[", "1", ",", "feature_size", ",", "3", "if", "add_delta_deltas", "else", "1", "]", ",", "dtype", "=", "np", ".", "float64", ")", "square", "=", "np", ".", "zeros", "(", "[", "1", ",", "feature_size", ",", "3", "if", "add_delta_deltas", "else", "1", "]", ",", "dtype", "=", "np", ".", "float64", ")", "count", "=", "0.0", "return", "sums", ",", "square", ",", "count" ]
https://github.com/Delta-ML/delta/blob/31dfebc8f20b7cb282b62f291ff25a87e403cc86/delta/utils/cmvn.py#L23-L30
biolab/orange3
41685e1c7b1d1babe680113685a2d44bcc9fec0b
Orange/widgets/data/owdatasampler.py
python
OWDataSampler.__init__
(self)
[]
def __init__(self): super().__init__() if self.compatibility_mode: self.Information.compatibility_mode() self.data = None self.indices = None self.sampled_instances = self.remaining_instances = None self.sampling_box = gui.vBox(self.controlArea, "Sampling Type") sampling = gui.radioButtons(self.sampling_box, self, "sampling_type", callback=self.sampling_type_changed) def set_sampling_type(i): def set_sampling_type_i(): self.sampling_type = i self.sampling_type_changed() return set_sampling_type_i gui.appendRadioButton(sampling, "Fixed proportion of data:") self.sampleSizePercentageSlider = gui.hSlider( gui.indentedBox(sampling), self, "sampleSizePercentage", minValue=0, maxValue=100, ticks=10, labelFormat="%d %%", callback=set_sampling_type(self.FixedProportion)) gui.appendRadioButton(sampling, "Fixed sample size") ibox = gui.indentedBox(sampling) self.sampleSizeSpin = gui.spin( ibox, self, "sampleSizeNumber", label="Instances: ", minv=1, maxv=self._MAX_SAMPLE_SIZE, callback=set_sampling_type(self.FixedSize), controlWidth=90) gui.checkBox( ibox, self, "replacement", "Sample with replacement", callback=set_sampling_type(self.FixedSize)) gui.appendRadioButton(sampling, "Cross validation") form = QFormLayout( formAlignment=Qt.AlignLeft | Qt.AlignTop, labelAlignment=Qt.AlignLeft, fieldGrowthPolicy=QFormLayout.AllNonFixedFieldsGrow) ibox = gui.indentedBox(sampling, orientation=form) form.addRow("Number of subsets:", gui.spin( ibox, self, "number_of_folds", 2, 100, addToLayout=False, callback=self.number_of_folds_changed)) self.selected_fold_spin = gui.spin( ibox, self, "selectedFold", 1, self.number_of_folds, addToLayout=False, callback=self.fold_changed) form.addRow("Unused subset:" if not self.compatibility_mode else "Selected subset:", self.selected_fold_spin) gui.appendRadioButton(sampling, "Bootstrap") self.sql_box = gui.vBox(self.controlArea, "Sampling Type") sampling = gui.radioButtons(self.sql_box, self, "sampling_type", callback=self.sampling_type_changed) gui.appendRadioButton(sampling, "Time:") ibox = gui.indentedBox(sampling) spin = gui.spin(ibox, self, "sampleSizeSqlTime", minv=1, maxv=3600, callback=set_sampling_type(self.SqlTime)) spin.setSuffix(" sec") gui.appendRadioButton(sampling, "Percentage") ibox = gui.indentedBox(sampling) spin = gui.spin(ibox, self, "sampleSizeSqlPercentage", spinType=float, minv=0.0001, maxv=100, step=0.1, decimals=4, callback=set_sampling_type(self.SqlProportion)) spin.setSuffix(" %") self.sql_box.setVisible(False) self.options_box = gui.vBox(self.controlArea, "Options", addSpaceBefore=False) self.cb_seed = gui.checkBox( self.options_box, self, "use_seed", "Replicable (deterministic) sampling", callback=self.settings_changed) self.cb_stratify = gui.checkBox( self.options_box, self, "stratify", "Stratify sample (when possible)", callback=self.settings_changed) self.cb_sql_dl = gui.checkBox( self.options_box, self, "sql_dl", "Download data to local memory", callback=self.settings_changed) self.cb_sql_dl.setVisible(False) gui.button(self.buttonsArea, self, "Sample Data", callback=self.commit)
[ "def", "__init__", "(", "self", ")", ":", "super", "(", ")", ".", "__init__", "(", ")", "if", "self", ".", "compatibility_mode", ":", "self", ".", "Information", ".", "compatibility_mode", "(", ")", "self", ".", "data", "=", "None", "self", ".", "indices", "=", "None", "self", ".", "sampled_instances", "=", "self", ".", "remaining_instances", "=", "None", "self", ".", "sampling_box", "=", "gui", ".", "vBox", "(", "self", ".", "controlArea", ",", "\"Sampling Type\"", ")", "sampling", "=", "gui", ".", "radioButtons", "(", "self", ".", "sampling_box", ",", "self", ",", "\"sampling_type\"", ",", "callback", "=", "self", ".", "sampling_type_changed", ")", "def", "set_sampling_type", "(", "i", ")", ":", "def", "set_sampling_type_i", "(", ")", ":", "self", ".", "sampling_type", "=", "i", "self", ".", "sampling_type_changed", "(", ")", "return", "set_sampling_type_i", "gui", ".", "appendRadioButton", "(", "sampling", ",", "\"Fixed proportion of data:\"", ")", "self", ".", "sampleSizePercentageSlider", "=", "gui", ".", "hSlider", "(", "gui", ".", "indentedBox", "(", "sampling", ")", ",", "self", ",", "\"sampleSizePercentage\"", ",", "minValue", "=", "0", ",", "maxValue", "=", "100", ",", "ticks", "=", "10", ",", "labelFormat", "=", "\"%d %%\"", ",", "callback", "=", "set_sampling_type", "(", "self", ".", "FixedProportion", ")", ")", "gui", ".", "appendRadioButton", "(", "sampling", ",", "\"Fixed sample size\"", ")", "ibox", "=", "gui", ".", "indentedBox", "(", "sampling", ")", "self", ".", "sampleSizeSpin", "=", "gui", ".", "spin", "(", "ibox", ",", "self", ",", "\"sampleSizeNumber\"", ",", "label", "=", "\"Instances: \"", ",", "minv", "=", "1", ",", "maxv", "=", "self", ".", "_MAX_SAMPLE_SIZE", ",", "callback", "=", "set_sampling_type", "(", "self", ".", "FixedSize", ")", ",", "controlWidth", "=", "90", ")", "gui", ".", "checkBox", "(", "ibox", ",", "self", ",", "\"replacement\"", ",", "\"Sample with replacement\"", ",", "callback", "=", "set_sampling_type", "(", "self", ".", "FixedSize", ")", ")", "gui", ".", "appendRadioButton", "(", "sampling", ",", "\"Cross validation\"", ")", "form", "=", "QFormLayout", "(", "formAlignment", "=", "Qt", ".", "AlignLeft", "|", "Qt", ".", "AlignTop", ",", "labelAlignment", "=", "Qt", ".", "AlignLeft", ",", "fieldGrowthPolicy", "=", "QFormLayout", ".", "AllNonFixedFieldsGrow", ")", "ibox", "=", "gui", ".", "indentedBox", "(", "sampling", ",", "orientation", "=", "form", ")", "form", ".", "addRow", "(", "\"Number of subsets:\"", ",", "gui", ".", "spin", "(", "ibox", ",", "self", ",", "\"number_of_folds\"", ",", "2", ",", "100", ",", "addToLayout", "=", "False", ",", "callback", "=", "self", ".", "number_of_folds_changed", ")", ")", "self", ".", "selected_fold_spin", "=", "gui", ".", "spin", "(", "ibox", ",", "self", ",", "\"selectedFold\"", ",", "1", ",", "self", ".", "number_of_folds", ",", "addToLayout", "=", "False", ",", "callback", "=", "self", ".", "fold_changed", ")", "form", ".", "addRow", "(", "\"Unused subset:\"", "if", "not", "self", ".", "compatibility_mode", "else", "\"Selected subset:\"", ",", "self", ".", "selected_fold_spin", ")", "gui", ".", "appendRadioButton", "(", "sampling", ",", "\"Bootstrap\"", ")", "self", ".", "sql_box", "=", "gui", ".", "vBox", "(", "self", ".", "controlArea", ",", "\"Sampling Type\"", ")", "sampling", "=", "gui", ".", "radioButtons", "(", "self", ".", "sql_box", ",", "self", ",", "\"sampling_type\"", ",", "callback", "=", "self", ".", "sampling_type_changed", ")", "gui", ".", "appendRadioButton", "(", "sampling", ",", "\"Time:\"", ")", "ibox", "=", "gui", ".", "indentedBox", "(", "sampling", ")", "spin", "=", "gui", ".", "spin", "(", "ibox", ",", "self", ",", "\"sampleSizeSqlTime\"", ",", "minv", "=", "1", ",", "maxv", "=", "3600", ",", "callback", "=", "set_sampling_type", "(", "self", ".", "SqlTime", ")", ")", "spin", ".", "setSuffix", "(", "\" sec\"", ")", "gui", ".", "appendRadioButton", "(", "sampling", ",", "\"Percentage\"", ")", "ibox", "=", "gui", ".", "indentedBox", "(", "sampling", ")", "spin", "=", "gui", ".", "spin", "(", "ibox", ",", "self", ",", "\"sampleSizeSqlPercentage\"", ",", "spinType", "=", "float", ",", "minv", "=", "0.0001", ",", "maxv", "=", "100", ",", "step", "=", "0.1", ",", "decimals", "=", "4", ",", "callback", "=", "set_sampling_type", "(", "self", ".", "SqlProportion", ")", ")", "spin", ".", "setSuffix", "(", "\" %\"", ")", "self", ".", "sql_box", ".", "setVisible", "(", "False", ")", "self", ".", "options_box", "=", "gui", ".", "vBox", "(", "self", ".", "controlArea", ",", "\"Options\"", ",", "addSpaceBefore", "=", "False", ")", "self", ".", "cb_seed", "=", "gui", ".", "checkBox", "(", "self", ".", "options_box", ",", "self", ",", "\"use_seed\"", ",", "\"Replicable (deterministic) sampling\"", ",", "callback", "=", "self", ".", "settings_changed", ")", "self", ".", "cb_stratify", "=", "gui", ".", "checkBox", "(", "self", ".", "options_box", ",", "self", ",", "\"stratify\"", ",", "\"Stratify sample (when possible)\"", ",", "callback", "=", "self", ".", "settings_changed", ")", "self", ".", "cb_sql_dl", "=", "gui", ".", "checkBox", "(", "self", ".", "options_box", ",", "self", ",", "\"sql_dl\"", ",", "\"Download data to local memory\"", ",", "callback", "=", "self", ".", "settings_changed", ")", "self", ".", "cb_sql_dl", ".", "setVisible", "(", "False", ")", "gui", ".", "button", "(", "self", ".", "buttonsArea", ",", "self", ",", "\"Sample Data\"", ",", "callback", "=", "self", ".", "commit", ")" ]
https://github.com/biolab/orange3/blob/41685e1c7b1d1babe680113685a2d44bcc9fec0b/Orange/widgets/data/owdatasampler.py#L79-L165
skylander86/lambda-text-extractor
6da52d077a2fc571e38bfe29c33ae68f6443cd5a
lib-linux_x64/pptx/oxml/ns.py
python
NamespacePrefixedTag.nspfx
(self)
return self._pfx
Return the string namespace prefix for the tag, e.g. 'f' is returned for tag 'f:foobar'.
Return the string namespace prefix for the tag, e.g. 'f' is returned for tag 'f:foobar'.
[ "Return", "the", "string", "namespace", "prefix", "for", "the", "tag", "e", ".", "g", ".", "f", "is", "returned", "for", "tag", "f", ":", "foobar", "." ]
def nspfx(self): """ Return the string namespace prefix for the tag, e.g. 'f' is returned for tag 'f:foobar'. """ return self._pfx
[ "def", "nspfx", "(", "self", ")", ":", "return", "self", ".", "_pfx" ]
https://github.com/skylander86/lambda-text-extractor/blob/6da52d077a2fc571e38bfe29c33ae68f6443cd5a/lib-linux_x64/pptx/oxml/ns.py#L83-L88
sunnyxiaohu/R-C3D.pytorch
e8731af7b95f1dc934f6604f9c09e3c4ead74db5
lib/tf_model_zoo/models/differential_privacy/dp_sgd/dp_optimizer/utils.py
python
BuildNetwork
(inputs, network_parameters)
return outputs, projection, training_parameters
Build a network using the given parameters. Args: inputs: a Tensor of floats containing the input data. network_parameters: NetworkParameters object that describes the parameters for the network. Returns: output, training_parameters: where the outputs (a tensor) is the output of the network, and training_parameters (a dictionary that maps the name of each variable to a dictionary of parameters) is the parameters used during training.
Build a network using the given parameters.
[ "Build", "a", "network", "using", "the", "given", "parameters", "." ]
def BuildNetwork(inputs, network_parameters): """Build a network using the given parameters. Args: inputs: a Tensor of floats containing the input data. network_parameters: NetworkParameters object that describes the parameters for the network. Returns: output, training_parameters: where the outputs (a tensor) is the output of the network, and training_parameters (a dictionary that maps the name of each variable to a dictionary of parameters) is the parameters used during training. """ training_parameters = {} num_inputs = network_parameters.input_size outputs = inputs projection = None # First apply convolutions, if needed for conv_param in network_parameters.conv_parameters: outputs = tf.reshape( outputs, [-1, conv_param.in_size, conv_param.in_size, conv_param.in_channels]) conv_weights_name = "%s_conv_weight" % (conv_param.name) conv_bias_name = "%s_conv_bias" % (conv_param.name) conv_std_dev = 1.0 / (conv_param.patch_size * math.sqrt(conv_param.in_channels)) conv_weights = tf.Variable( tf.truncated_normal([conv_param.patch_size, conv_param.patch_size, conv_param.in_channels, conv_param.out_channels], stddev=conv_std_dev), trainable=conv_param.trainable, name=conv_weights_name) conv_bias = tf.Variable( tf.truncated_normal([conv_param.out_channels], stddev=conv_param.bias_stddev), trainable=conv_param.trainable, name=conv_bias_name) training_parameters[conv_weights_name] = {} training_parameters[conv_bias_name] = {} conv = tf.nn.conv2d(outputs, conv_weights, strides=[1, conv_param.stride, conv_param.stride, 1], padding="SAME") relud = tf.nn.relu(conv + conv_bias) mpd = tf.nn.max_pool(relud, ksize=[1, conv_param.max_pool_size, conv_param.max_pool_size, 1], strides=[1, conv_param.max_pool_stride, conv_param.max_pool_stride, 1], padding="SAME") outputs = mpd num_inputs = conv_param.num_outputs # this should equal # in_size * in_size * out_channels / (stride * max_pool_stride) # once all the convs are done, reshape to make it flat outputs = tf.reshape(outputs, [-1, num_inputs]) # Now project, if needed if network_parameters.projection_type is not "NONE": projection = tf.Variable(tf.truncated_normal( [num_inputs, network_parameters.projection_dimensions], stddev=1.0 / math.sqrt(num_inputs)), trainable=False, name="projection") num_inputs = network_parameters.projection_dimensions outputs = tf.matmul(outputs, projection) # Now apply any other layers for layer_parameters in network_parameters.layer_parameters: num_units = layer_parameters.num_units hidden_weights_name = "%s_weight" % (layer_parameters.name) hidden_weights = tf.Variable( tf.truncated_normal([num_inputs, num_units], stddev=1.0 / math.sqrt(num_inputs)), name=hidden_weights_name, trainable=layer_parameters.trainable) training_parameters[hidden_weights_name] = {} if layer_parameters.gradient_l2norm_bound: training_parameters[hidden_weights_name]["gradient_l2norm_bound"] = ( layer_parameters.gradient_l2norm_bound) if layer_parameters.weight_decay: training_parameters[hidden_weights_name]["weight_decay"] = ( layer_parameters.weight_decay) outputs = tf.matmul(outputs, hidden_weights) if layer_parameters.with_bias: hidden_biases_name = "%s_bias" % (layer_parameters.name) hidden_biases = tf.Variable(tf.zeros([num_units]), name=hidden_biases_name) training_parameters[hidden_biases_name] = {} if layer_parameters.bias_gradient_l2norm_bound: training_parameters[hidden_biases_name][ "bias_gradient_l2norm_bound"] = ( layer_parameters.bias_gradient_l2norm_bound) outputs += hidden_biases if layer_parameters.relu: outputs = tf.nn.relu(outputs) # num_inputs for the next layer is num_units in the current layer. num_inputs = num_units return outputs, projection, training_parameters
[ "def", "BuildNetwork", "(", "inputs", ",", "network_parameters", ")", ":", "training_parameters", "=", "{", "}", "num_inputs", "=", "network_parameters", ".", "input_size", "outputs", "=", "inputs", "projection", "=", "None", "# First apply convolutions, if needed", "for", "conv_param", "in", "network_parameters", ".", "conv_parameters", ":", "outputs", "=", "tf", ".", "reshape", "(", "outputs", ",", "[", "-", "1", ",", "conv_param", ".", "in_size", ",", "conv_param", ".", "in_size", ",", "conv_param", ".", "in_channels", "]", ")", "conv_weights_name", "=", "\"%s_conv_weight\"", "%", "(", "conv_param", ".", "name", ")", "conv_bias_name", "=", "\"%s_conv_bias\"", "%", "(", "conv_param", ".", "name", ")", "conv_std_dev", "=", "1.0", "/", "(", "conv_param", ".", "patch_size", "*", "math", ".", "sqrt", "(", "conv_param", ".", "in_channels", ")", ")", "conv_weights", "=", "tf", ".", "Variable", "(", "tf", ".", "truncated_normal", "(", "[", "conv_param", ".", "patch_size", ",", "conv_param", ".", "patch_size", ",", "conv_param", ".", "in_channels", ",", "conv_param", ".", "out_channels", "]", ",", "stddev", "=", "conv_std_dev", ")", ",", "trainable", "=", "conv_param", ".", "trainable", ",", "name", "=", "conv_weights_name", ")", "conv_bias", "=", "tf", ".", "Variable", "(", "tf", ".", "truncated_normal", "(", "[", "conv_param", ".", "out_channels", "]", ",", "stddev", "=", "conv_param", ".", "bias_stddev", ")", ",", "trainable", "=", "conv_param", ".", "trainable", ",", "name", "=", "conv_bias_name", ")", "training_parameters", "[", "conv_weights_name", "]", "=", "{", "}", "training_parameters", "[", "conv_bias_name", "]", "=", "{", "}", "conv", "=", "tf", ".", "nn", ".", "conv2d", "(", "outputs", ",", "conv_weights", ",", "strides", "=", "[", "1", ",", "conv_param", ".", "stride", ",", "conv_param", ".", "stride", ",", "1", "]", ",", "padding", "=", "\"SAME\"", ")", "relud", "=", "tf", ".", "nn", ".", "relu", "(", "conv", "+", "conv_bias", ")", "mpd", "=", "tf", ".", "nn", ".", "max_pool", "(", "relud", ",", "ksize", "=", "[", "1", ",", "conv_param", ".", "max_pool_size", ",", "conv_param", ".", "max_pool_size", ",", "1", "]", ",", "strides", "=", "[", "1", ",", "conv_param", ".", "max_pool_stride", ",", "conv_param", ".", "max_pool_stride", ",", "1", "]", ",", "padding", "=", "\"SAME\"", ")", "outputs", "=", "mpd", "num_inputs", "=", "conv_param", ".", "num_outputs", "# this should equal", "# in_size * in_size * out_channels / (stride * max_pool_stride)", "# once all the convs are done, reshape to make it flat", "outputs", "=", "tf", ".", "reshape", "(", "outputs", ",", "[", "-", "1", ",", "num_inputs", "]", ")", "# Now project, if needed", "if", "network_parameters", ".", "projection_type", "is", "not", "\"NONE\"", ":", "projection", "=", "tf", ".", "Variable", "(", "tf", ".", "truncated_normal", "(", "[", "num_inputs", ",", "network_parameters", ".", "projection_dimensions", "]", ",", "stddev", "=", "1.0", "/", "math", ".", "sqrt", "(", "num_inputs", ")", ")", ",", "trainable", "=", "False", ",", "name", "=", "\"projection\"", ")", "num_inputs", "=", "network_parameters", ".", "projection_dimensions", "outputs", "=", "tf", ".", "matmul", "(", "outputs", ",", "projection", ")", "# Now apply any other layers", "for", "layer_parameters", "in", "network_parameters", ".", "layer_parameters", ":", "num_units", "=", "layer_parameters", ".", "num_units", "hidden_weights_name", "=", "\"%s_weight\"", "%", "(", "layer_parameters", ".", "name", ")", "hidden_weights", "=", "tf", ".", "Variable", "(", "tf", ".", "truncated_normal", "(", "[", "num_inputs", ",", "num_units", "]", ",", "stddev", "=", "1.0", "/", "math", ".", "sqrt", "(", "num_inputs", ")", ")", ",", "name", "=", "hidden_weights_name", ",", "trainable", "=", "layer_parameters", ".", "trainable", ")", "training_parameters", "[", "hidden_weights_name", "]", "=", "{", "}", "if", "layer_parameters", ".", "gradient_l2norm_bound", ":", "training_parameters", "[", "hidden_weights_name", "]", "[", "\"gradient_l2norm_bound\"", "]", "=", "(", "layer_parameters", ".", "gradient_l2norm_bound", ")", "if", "layer_parameters", ".", "weight_decay", ":", "training_parameters", "[", "hidden_weights_name", "]", "[", "\"weight_decay\"", "]", "=", "(", "layer_parameters", ".", "weight_decay", ")", "outputs", "=", "tf", ".", "matmul", "(", "outputs", ",", "hidden_weights", ")", "if", "layer_parameters", ".", "with_bias", ":", "hidden_biases_name", "=", "\"%s_bias\"", "%", "(", "layer_parameters", ".", "name", ")", "hidden_biases", "=", "tf", ".", "Variable", "(", "tf", ".", "zeros", "(", "[", "num_units", "]", ")", ",", "name", "=", "hidden_biases_name", ")", "training_parameters", "[", "hidden_biases_name", "]", "=", "{", "}", "if", "layer_parameters", ".", "bias_gradient_l2norm_bound", ":", "training_parameters", "[", "hidden_biases_name", "]", "[", "\"bias_gradient_l2norm_bound\"", "]", "=", "(", "layer_parameters", ".", "bias_gradient_l2norm_bound", ")", "outputs", "+=", "hidden_biases", "if", "layer_parameters", ".", "relu", ":", "outputs", "=", "tf", ".", "nn", ".", "relu", "(", "outputs", ")", "# num_inputs for the next layer is num_units in the current layer.", "num_inputs", "=", "num_units", "return", "outputs", ",", "projection", ",", "training_parameters" ]
https://github.com/sunnyxiaohu/R-C3D.pytorch/blob/e8731af7b95f1dc934f6604f9c09e3c4ead74db5/lib/tf_model_zoo/models/differential_privacy/dp_sgd/dp_optimizer/utils.py#L88-L193
smart-on-fhir/client-py
6047277daa31f10931e44ed19e92128298cdb64b
fhirclient/models/device.py
python
Device.__init__
(self, jsondict=None, strict=True)
Initialize all valid properties. :raises: FHIRValidationError on validation errors, unless strict is False :param dict jsondict: A JSON dictionary to use for initialization :param bool strict: If True (the default), invalid variables will raise a TypeError
Initialize all valid properties. :raises: FHIRValidationError on validation errors, unless strict is False :param dict jsondict: A JSON dictionary to use for initialization :param bool strict: If True (the default), invalid variables will raise a TypeError
[ "Initialize", "all", "valid", "properties", ".", ":", "raises", ":", "FHIRValidationError", "on", "validation", "errors", "unless", "strict", "is", "False", ":", "param", "dict", "jsondict", ":", "A", "JSON", "dictionary", "to", "use", "for", "initialization", ":", "param", "bool", "strict", ":", "If", "True", "(", "the", "default", ")", "invalid", "variables", "will", "raise", "a", "TypeError" ]
def __init__(self, jsondict=None, strict=True): """ Initialize all valid properties. :raises: FHIRValidationError on validation errors, unless strict is False :param dict jsondict: A JSON dictionary to use for initialization :param bool strict: If True (the default), invalid variables will raise a TypeError """ self.contact = None """ Details for human/organization for support. List of `ContactPoint` items (represented as `dict` in JSON). """ self.definition = None """ The reference to the definition for the device. Type `FHIRReference` (represented as `dict` in JSON). """ self.deviceName = None """ The name of the device as given by the manufacturer. List of `DeviceDeviceName` items (represented as `dict` in JSON). """ self.distinctIdentifier = None """ The distinct identification string. Type `str`. """ self.expirationDate = None """ Date and time of expiry of this device (if applicable). Type `FHIRDate` (represented as `str` in JSON). """ self.identifier = None """ Instance identifier. List of `Identifier` items (represented as `dict` in JSON). """ self.location = None """ Where the device is found. Type `FHIRReference` (represented as `dict` in JSON). """ self.lotNumber = None """ Lot number of manufacture. Type `str`. """ self.manufactureDate = None """ Date when the device was made. Type `FHIRDate` (represented as `str` in JSON). """ self.manufacturer = None """ Name of device manufacturer. Type `str`. """ self.modelNumber = None """ The model number for the device. Type `str`. """ self.note = None """ Device notes and comments. List of `Annotation` items (represented as `dict` in JSON). """ self.owner = None """ Organization responsible for device. Type `FHIRReference` (represented as `dict` in JSON). """ self.parent = None """ The parent device. Type `FHIRReference` (represented as `dict` in JSON). """ self.partNumber = None """ The part number of the device. Type `str`. """ self.patient = None """ Patient to whom Device is affixed. Type `FHIRReference` (represented as `dict` in JSON). """ self.property = None """ The actual configuration settings of a device as it actually operates, e.g., regulation status, time properties. List of `DeviceProperty` items (represented as `dict` in JSON). """ self.safety = None """ Safety Characteristics of Device. List of `CodeableConcept` items (represented as `dict` in JSON). """ self.serialNumber = None """ Serial number assigned by the manufacturer. Type `str`. """ self.specialization = None """ The capabilities supported on a device, the standards to which the device conforms for a particular purpose, and used for the communication. List of `DeviceSpecialization` items (represented as `dict` in JSON). """ self.status = None """ active | inactive | entered-in-error | unknown. Type `str`. """ self.statusReason = None """ online | paused | standby | offline | not-ready | transduc-discon | hw-discon | off. List of `CodeableConcept` items (represented as `dict` in JSON). """ self.type = None """ The kind or type of device. Type `CodeableConcept` (represented as `dict` in JSON). """ self.udiCarrier = None """ Unique Device Identifier (UDI) Barcode string. List of `DeviceUdiCarrier` items (represented as `dict` in JSON). """ self.url = None """ Network address to contact device. Type `str`. """ self.version = None """ The actual design of the device or software version running on the device. List of `DeviceVersion` items (represented as `dict` in JSON). """ super(Device, self).__init__(jsondict=jsondict, strict=strict)
[ "def", "__init__", "(", "self", ",", "jsondict", "=", "None", ",", "strict", "=", "True", ")", ":", "self", ".", "contact", "=", "None", "\"\"\" Details for human/organization for support.\n List of `ContactPoint` items (represented as `dict` in JSON). \"\"\"", "self", ".", "definition", "=", "None", "\"\"\" The reference to the definition for the device.\n Type `FHIRReference` (represented as `dict` in JSON). \"\"\"", "self", ".", "deviceName", "=", "None", "\"\"\" The name of the device as given by the manufacturer.\n List of `DeviceDeviceName` items (represented as `dict` in JSON). \"\"\"", "self", ".", "distinctIdentifier", "=", "None", "\"\"\" The distinct identification string.\n Type `str`. \"\"\"", "self", ".", "expirationDate", "=", "None", "\"\"\" Date and time of expiry of this device (if applicable).\n Type `FHIRDate` (represented as `str` in JSON). \"\"\"", "self", ".", "identifier", "=", "None", "\"\"\" Instance identifier.\n List of `Identifier` items (represented as `dict` in JSON). \"\"\"", "self", ".", "location", "=", "None", "\"\"\" Where the device is found.\n Type `FHIRReference` (represented as `dict` in JSON). \"\"\"", "self", ".", "lotNumber", "=", "None", "\"\"\" Lot number of manufacture.\n Type `str`. \"\"\"", "self", ".", "manufactureDate", "=", "None", "\"\"\" Date when the device was made.\n Type `FHIRDate` (represented as `str` in JSON). \"\"\"", "self", ".", "manufacturer", "=", "None", "\"\"\" Name of device manufacturer.\n Type `str`. \"\"\"", "self", ".", "modelNumber", "=", "None", "\"\"\" The model number for the device.\n Type `str`. \"\"\"", "self", ".", "note", "=", "None", "\"\"\" Device notes and comments.\n List of `Annotation` items (represented as `dict` in JSON). \"\"\"", "self", ".", "owner", "=", "None", "\"\"\" Organization responsible for device.\n Type `FHIRReference` (represented as `dict` in JSON). \"\"\"", "self", ".", "parent", "=", "None", "\"\"\" The parent device.\n Type `FHIRReference` (represented as `dict` in JSON). \"\"\"", "self", ".", "partNumber", "=", "None", "\"\"\" The part number of the device.\n Type `str`. \"\"\"", "self", ".", "patient", "=", "None", "\"\"\" Patient to whom Device is affixed.\n Type `FHIRReference` (represented as `dict` in JSON). \"\"\"", "self", ".", "property", "=", "None", "\"\"\" The actual configuration settings of a device as it actually\n operates, e.g., regulation status, time properties.\n List of `DeviceProperty` items (represented as `dict` in JSON). \"\"\"", "self", ".", "safety", "=", "None", "\"\"\" Safety Characteristics of Device.\n List of `CodeableConcept` items (represented as `dict` in JSON). \"\"\"", "self", ".", "serialNumber", "=", "None", "\"\"\" Serial number assigned by the manufacturer.\n Type `str`. \"\"\"", "self", ".", "specialization", "=", "None", "\"\"\" The capabilities supported on a device, the standards to which the\n device conforms for a particular purpose, and used for the\n communication.\n List of `DeviceSpecialization` items (represented as `dict` in JSON). \"\"\"", "self", ".", "status", "=", "None", "\"\"\" active | inactive | entered-in-error | unknown.\n Type `str`. \"\"\"", "self", ".", "statusReason", "=", "None", "\"\"\" online | paused | standby | offline | not-ready | transduc-discon |\n hw-discon | off.\n List of `CodeableConcept` items (represented as `dict` in JSON). \"\"\"", "self", ".", "type", "=", "None", "\"\"\" The kind or type of device.\n Type `CodeableConcept` (represented as `dict` in JSON). \"\"\"", "self", ".", "udiCarrier", "=", "None", "\"\"\" Unique Device Identifier (UDI) Barcode string.\n List of `DeviceUdiCarrier` items (represented as `dict` in JSON). \"\"\"", "self", ".", "url", "=", "None", "\"\"\" Network address to contact device.\n Type `str`. \"\"\"", "self", ".", "version", "=", "None", "\"\"\" The actual design of the device or software version running on the\n device.\n List of `DeviceVersion` items (represented as `dict` in JSON). \"\"\"", "super", "(", "Device", ",", "self", ")", ".", "__init__", "(", "jsondict", "=", "jsondict", ",", "strict", "=", "strict", ")" ]
https://github.com/smart-on-fhir/client-py/blob/6047277daa31f10931e44ed19e92128298cdb64b/fhirclient/models/device.py#L20-L137
openedx/ecommerce
db6c774e239e5aa65e5a6151995073d364e8c896
ecommerce/extensions/catalogue/migrations/0013_coupon_product_class.py
python
create_product_class
(apps, schema_editor)
Create a Coupon product class.
Create a Coupon product class.
[ "Create", "a", "Coupon", "product", "class", "." ]
def create_product_class(apps, schema_editor): """Create a Coupon product class.""" Category = apps.get_model("catalogue", "Category") ProductAttribute = apps.get_model("catalogue", "ProductAttribute") ProductClass = apps.get_model("catalogue", "ProductClass") for klass in (Category, ProductAttribute, ProductClass): klass.skip_history_when_saving = True coupon = ProductClass( track_stock=False, requires_shipping=False, name=COUPON_PRODUCT_CLASS_NAME, slug=slugify(COUPON_PRODUCT_CLASS_NAME), ) coupon.save() pa = ProductAttribute( product_class=coupon, name='Coupon vouchers', code='coupon_vouchers', type='entity', required=False ) pa.save() # Create a category for coupons. c = Category( description='All Coupons', slug='coupons', depth=1, path='0002', image='', name='Coupons' ) c.save()
[ "def", "create_product_class", "(", "apps", ",", "schema_editor", ")", ":", "Category", "=", "apps", ".", "get_model", "(", "\"catalogue\"", ",", "\"Category\"", ")", "ProductAttribute", "=", "apps", ".", "get_model", "(", "\"catalogue\"", ",", "\"ProductAttribute\"", ")", "ProductClass", "=", "apps", ".", "get_model", "(", "\"catalogue\"", ",", "\"ProductClass\"", ")", "for", "klass", "in", "(", "Category", ",", "ProductAttribute", ",", "ProductClass", ")", ":", "klass", ".", "skip_history_when_saving", "=", "True", "coupon", "=", "ProductClass", "(", "track_stock", "=", "False", ",", "requires_shipping", "=", "False", ",", "name", "=", "COUPON_PRODUCT_CLASS_NAME", ",", "slug", "=", "slugify", "(", "COUPON_PRODUCT_CLASS_NAME", ")", ",", ")", "coupon", ".", "save", "(", ")", "pa", "=", "ProductAttribute", "(", "product_class", "=", "coupon", ",", "name", "=", "'Coupon vouchers'", ",", "code", "=", "'coupon_vouchers'", ",", "type", "=", "'entity'", ",", "required", "=", "False", ")", "pa", ".", "save", "(", ")", "# Create a category for coupons.", "c", "=", "Category", "(", "description", "=", "'All Coupons'", ",", "slug", "=", "'coupons'", ",", "depth", "=", "1", ",", "path", "=", "'0002'", ",", "image", "=", "''", ",", "name", "=", "'Coupons'", ")", "c", ".", "save", "(", ")" ]
https://github.com/openedx/ecommerce/blob/db6c774e239e5aa65e5a6151995073d364e8c896/ecommerce/extensions/catalogue/migrations/0013_coupon_product_class.py#L10-L45
erdewit/ib_insync
9674fe974c07ca3afaf70673ae296f1d19f028dc
ib_insync/wrapper.py
python
Wrapper.setEventsDone
(self)
Set all subscribtion-type events as done.
Set all subscribtion-type events as done.
[ "Set", "all", "subscribtion", "-", "type", "events", "as", "done", "." ]
def setEventsDone(self): """Set all subscribtion-type events as done.""" events = [ticker.updateEvent for ticker in self.tickers.values()] events += [sub.updateEvent for sub in self.reqId2Subscriber.values()] for trade in self.trades.values(): events += [ trade.statusEvent, trade.modifyEvent, trade.fillEvent, trade.filledEvent, trade.commissionReportEvent, trade.cancelEvent, trade.cancelledEvent] for event in events: event.set_done()
[ "def", "setEventsDone", "(", "self", ")", ":", "events", "=", "[", "ticker", ".", "updateEvent", "for", "ticker", "in", "self", ".", "tickers", ".", "values", "(", ")", "]", "events", "+=", "[", "sub", ".", "updateEvent", "for", "sub", "in", "self", ".", "reqId2Subscriber", ".", "values", "(", ")", "]", "for", "trade", "in", "self", ".", "trades", ".", "values", "(", ")", ":", "events", "+=", "[", "trade", ".", "statusEvent", ",", "trade", ".", "modifyEvent", ",", "trade", ".", "fillEvent", ",", "trade", ".", "filledEvent", ",", "trade", ".", "commissionReportEvent", ",", "trade", ".", "cancelEvent", ",", "trade", ".", "cancelledEvent", "]", "for", "event", "in", "events", ":", "event", ".", "set_done", "(", ")" ]
https://github.com/erdewit/ib_insync/blob/9674fe974c07ca3afaf70673ae296f1d19f028dc/ib_insync/wrapper.py#L114-L124
volatilityfoundation/volatility3
168b0d0b053ab97a7cb096ef2048795cc54d885f
volatility3/framework/symbols/wrappers.py
python
Flags.__init__
(self, choices: Mapping[str, int])
[]
def __init__(self, choices: Mapping[str, int]) -> None: self._choices = interfaces.objects.ReadOnlyMapping(choices)
[ "def", "__init__", "(", "self", ",", "choices", ":", "Mapping", "[", "str", ",", "int", "]", ")", "->", "None", ":", "self", ".", "_choices", "=", "interfaces", ".", "objects", ".", "ReadOnlyMapping", "(", "choices", ")" ]
https://github.com/volatilityfoundation/volatility3/blob/168b0d0b053ab97a7cb096ef2048795cc54d885f/volatility3/framework/symbols/wrappers.py#L14-L15
takluyver/pynsist
17cd683735de1b2f2b75875befe56196dd652054
nsist/copymodules.py
python
copy_zipmodule
(loader, modname, target)
Copy a module or package out of a zip file to the target directory.
Copy a module or package out of a zip file to the target directory.
[ "Copy", "a", "module", "or", "package", "out", "of", "a", "zip", "file", "to", "the", "target", "directory", "." ]
def copy_zipmodule(loader, modname, target): """Copy a module or package out of a zip file to the target directory.""" file = loader.get_filename(modname) assert file.startswith(loader.archive) path_in_zip = file[len(loader.archive+'/'):] zf = zipfile.ZipFile(loader.archive) # If the packages are in a subdirectory, extracting them recreates the # directory structure from the zip file. So extract to a temp dir first, # and then copy the modules to target. tempdir = tempfile.mkdtemp() if loader.is_package(modname): # Extract everything in a folder pkgdir, basename = os.path.split(path_in_zip) assert basename.startswith('__init__') pkgfiles = [f for f in zf.namelist() if f.startswith(pkgdir)] zf.extractall(tempdir, pkgfiles) shutil.copytree(pjoin(tempdir, pkgdir), pjoin(target, modname)) else: # Extract a single file zf.extract(path_in_zip, tempdir) shutil.copy2(pjoin(tempdir, path_in_zip), target) shutil.rmtree(tempdir)
[ "def", "copy_zipmodule", "(", "loader", ",", "modname", ",", "target", ")", ":", "file", "=", "loader", ".", "get_filename", "(", "modname", ")", "assert", "file", ".", "startswith", "(", "loader", ".", "archive", ")", "path_in_zip", "=", "file", "[", "len", "(", "loader", ".", "archive", "+", "'/'", ")", ":", "]", "zf", "=", "zipfile", ".", "ZipFile", "(", "loader", ".", "archive", ")", "# If the packages are in a subdirectory, extracting them recreates the", "# directory structure from the zip file. So extract to a temp dir first,", "# and then copy the modules to target.", "tempdir", "=", "tempfile", ".", "mkdtemp", "(", ")", "if", "loader", ".", "is_package", "(", "modname", ")", ":", "# Extract everything in a folder", "pkgdir", ",", "basename", "=", "os", ".", "path", ".", "split", "(", "path_in_zip", ")", "assert", "basename", ".", "startswith", "(", "'__init__'", ")", "pkgfiles", "=", "[", "f", "for", "f", "in", "zf", ".", "namelist", "(", ")", "if", "f", ".", "startswith", "(", "pkgdir", ")", "]", "zf", ".", "extractall", "(", "tempdir", ",", "pkgfiles", ")", "shutil", ".", "copytree", "(", "pjoin", "(", "tempdir", ",", "pkgdir", ")", ",", "pjoin", "(", "target", ",", "modname", ")", ")", "else", ":", "# Extract a single file", "zf", ".", "extract", "(", "path_in_zip", ",", "tempdir", ")", "shutil", ".", "copy2", "(", "pjoin", "(", "tempdir", ",", "path_in_zip", ")", ",", "target", ")", "shutil", ".", "rmtree", "(", "tempdir", ")" ]
https://github.com/takluyver/pynsist/blob/17cd683735de1b2f2b75875befe56196dd652054/nsist/copymodules.py#L48-L71
Calysto/calysto_scheme
15bf81987870bcae1264e5a0a06feb9a8ee12b8b
calysto_scheme/scheme.py
python
get_exception_info
(exception)
[]
def get_exception_info(exception): column = list_ref(exception, 5) line = list_ref(exception, 4) source = list_ref(exception, 3) if (False if (((source) is (symbol_none)) is False) else True): return symbol_none else: return format("line ~a, column ~a of ~a", line, column, source)
[ "def", "get_exception_info", "(", "exception", ")", ":", "column", "=", "list_ref", "(", "exception", ",", "5", ")", "line", "=", "list_ref", "(", "exception", ",", "4", ")", "source", "=", "list_ref", "(", "exception", ",", "3", ")", "if", "(", "False", "if", "(", "(", "(", "source", ")", "is", "(", "symbol_none", ")", ")", "is", "False", ")", "else", "True", ")", ":", "return", "symbol_none", "else", ":", "return", "format", "(", "\"line ~a, column ~a of ~a\"", ",", "line", ",", "column", ",", "source", ")" ]
https://github.com/Calysto/calysto_scheme/blob/15bf81987870bcae1264e5a0a06feb9a8ee12b8b/calysto_scheme/scheme.py#L8062-L8069
Rapptz/RoboDanny
1fb95d76d1b7685e2e2ff950e11cddfc96efbfec
cogs/splatoon.py
python
Splatoon.gear
(self, ctx, *, query: GearQuery)
Searches for Splatoon 2 gear that matches your query. The query can be a main ability, a brand, or a name. For advanced queries to reduce results you can pass some filters: `--brand` with the brand name. `--ability` with the main ability. `--frequent` with the buffed main ability probability `--type` with the type of clothing (head, hat, shoes, or clothes) For example, a query like `ink resist --brand splash mob` will give all gear with Ink Resistance Up and Splash Mob as the brand. **Note**: you must pass a query before passing a filter.
Searches for Splatoon 2 gear that matches your query.
[ "Searches", "for", "Splatoon", "2", "gear", "that", "matches", "your", "query", "." ]
async def gear(self, ctx, *, query: GearQuery): """Searches for Splatoon 2 gear that matches your query. The query can be a main ability, a brand, or a name. For advanced queries to reduce results you can pass some filters: `--brand` with the brand name. `--ability` with the main ability. `--frequent` with the buffed main ability probability `--type` with the type of clothing (head, hat, shoes, or clothes) For example, a query like `ink resist --brand splash mob` will give all gear with Ink Resistance Up and Splash Mob as the brand. **Note**: you must pass a query before passing a filter. """ pages = RoboPages(GearPageSource(query), ctx=ctx, show_skip_pages=True) await pages.start()
[ "async", "def", "gear", "(", "self", ",", "ctx", ",", "*", ",", "query", ":", "GearQuery", ")", ":", "pages", "=", "RoboPages", "(", "GearPageSource", "(", "query", ")", ",", "ctx", "=", "ctx", ",", "show_skip_pages", "=", "True", ")", "await", "pages", ".", "start", "(", ")" ]
https://github.com/Rapptz/RoboDanny/blob/1fb95d76d1b7685e2e2ff950e11cddfc96efbfec/cogs/splatoon.py#L1152-L1171
JaniceWuo/MovieRecommend
4c86db64ca45598917d304f535413df3bc9fea65
movierecommend/venv1/Lib/site-packages/django/contrib/admin/checks.py
python
ModelAdminChecks._check_inlines_item
(self, obj, model, inline, label)
Check one inline model admin.
Check one inline model admin.
[ "Check", "one", "inline", "model", "admin", "." ]
def _check_inlines_item(self, obj, model, inline, label): """ Check one inline model admin. """ inline_label = '.'.join([inline.__module__, inline.__name__]) from django.contrib.admin.options import InlineModelAdmin if not issubclass(inline, InlineModelAdmin): return [ checks.Error( "'%s' must inherit from 'InlineModelAdmin'." % inline_label, obj=obj.__class__, id='admin.E104', ) ] elif not inline.model: return [ checks.Error( "'%s' must have a 'model' attribute." % inline_label, obj=obj.__class__, id='admin.E105', ) ] elif not issubclass(inline.model, models.Model): return must_be('a Model', option='%s.model' % inline_label, obj=obj, id='admin.E106') else: return inline(model, obj.admin_site).check()
[ "def", "_check_inlines_item", "(", "self", ",", "obj", ",", "model", ",", "inline", ",", "label", ")", ":", "inline_label", "=", "'.'", ".", "join", "(", "[", "inline", ".", "__module__", ",", "inline", ".", "__name__", "]", ")", "from", "django", ".", "contrib", ".", "admin", ".", "options", "import", "InlineModelAdmin", "if", "not", "issubclass", "(", "inline", ",", "InlineModelAdmin", ")", ":", "return", "[", "checks", ".", "Error", "(", "\"'%s' must inherit from 'InlineModelAdmin'.\"", "%", "inline_label", ",", "obj", "=", "obj", ".", "__class__", ",", "id", "=", "'admin.E104'", ",", ")", "]", "elif", "not", "inline", ".", "model", ":", "return", "[", "checks", ".", "Error", "(", "\"'%s' must have a 'model' attribute.\"", "%", "inline_label", ",", "obj", "=", "obj", ".", "__class__", ",", "id", "=", "'admin.E105'", ",", ")", "]", "elif", "not", "issubclass", "(", "inline", ".", "model", ",", "models", ".", "Model", ")", ":", "return", "must_be", "(", "'a Model'", ",", "option", "=", "'%s.model'", "%", "inline_label", ",", "obj", "=", "obj", ",", "id", "=", "'admin.E106'", ")", "else", ":", "return", "inline", "(", "model", ",", "obj", ".", "admin_site", ")", ".", "check", "(", ")" ]
https://github.com/JaniceWuo/MovieRecommend/blob/4c86db64ca45598917d304f535413df3bc9fea65/movierecommend/venv1/Lib/site-packages/django/contrib/admin/checks.py#L564-L589
reddit/baseplate.py
f29bd1ce0f1ec4962f65ecd5a2b016b1cd4fd5ac
baseplate/lib/crypto.py
python
make_signature
(secret: VersionedSecret, message: str, max_age: datetime.timedelta)
return base64.urlsafe_b64encode(header + digest)
Return a signature for the given message. To ensure that key rotation works automatically, always fetch the secret token from the secret store immediately before use and do not cache / save the token anywhere. The ``current`` version of the secret will be used to sign the token. :param secret: The secret signing key from the secret store. :param message: The message to sign. :param max_age: The amount of time in the future the signature will be valid for. :return: An encoded signature.
Return a signature for the given message.
[ "Return", "a", "signature", "for", "the", "given", "message", "." ]
def make_signature(secret: VersionedSecret, message: str, max_age: datetime.timedelta) -> bytes: """Return a signature for the given message. To ensure that key rotation works automatically, always fetch the secret token from the secret store immediately before use and do not cache / save the token anywhere. The ``current`` version of the secret will be used to sign the token. :param secret: The secret signing key from the secret store. :param message: The message to sign. :param max_age: The amount of time in the future the signature will be valid for. :return: An encoded signature. """ version = 1 expiration = int(time.time() + max_age.total_seconds()) header = _HEADER_FORMAT.pack(version, expiration) digest = _compute_digest(secret.current, header, message) return base64.urlsafe_b64encode(header + digest)
[ "def", "make_signature", "(", "secret", ":", "VersionedSecret", ",", "message", ":", "str", ",", "max_age", ":", "datetime", ".", "timedelta", ")", "->", "bytes", ":", "version", "=", "1", "expiration", "=", "int", "(", "time", ".", "time", "(", ")", "+", "max_age", ".", "total_seconds", "(", ")", ")", "header", "=", "_HEADER_FORMAT", ".", "pack", "(", "version", ",", "expiration", ")", "digest", "=", "_compute_digest", "(", "secret", ".", "current", ",", "header", ",", "message", ")", "return", "base64", ".", "urlsafe_b64encode", "(", "header", "+", "digest", ")" ]
https://github.com/reddit/baseplate.py/blob/f29bd1ce0f1ec4962f65ecd5a2b016b1cd4fd5ac/baseplate/lib/crypto.py#L101-L119
brian-team/brian2
c212a57cb992b766786b5769ebb830ff12d8a8ad
brian2/spatialneuron/morphology.py
python
Cylinder.start_diameter
(self)
return self._diameter
The diameter at the start of each compartment in this section.
The diameter at the start of each compartment in this section.
[ "The", "diameter", "at", "the", "start", "of", "each", "compartment", "in", "this", "section", "." ]
def start_diameter(self): """ The diameter at the start of each compartment in this section. """ return self._diameter
[ "def", "start_diameter", "(", "self", ")", ":", "return", "self", ".", "_diameter" ]
https://github.com/brian-team/brian2/blob/c212a57cb992b766786b5769ebb830ff12d8a8ad/brian2/spatialneuron/morphology.py#L2176-L2180
cloudera/impyla
0c736af4cad2bade9b8e313badc08ec50e81c948
impala/_thrift_gen/hive_metastore/ThriftHiveMetastore.py
python
Client.drop_table
(self, dbname, name, deleteData)
Parameters: - dbname - name - deleteData
Parameters: - dbname - name - deleteData
[ "Parameters", ":", "-", "dbname", "-", "name", "-", "deleteData" ]
def drop_table(self, dbname, name, deleteData): """ Parameters: - dbname - name - deleteData """ self.send_drop_table(dbname, name, deleteData) self.recv_drop_table()
[ "def", "drop_table", "(", "self", ",", "dbname", ",", "name", ",", "deleteData", ")", ":", "self", ".", "send_drop_table", "(", "dbname", ",", "name", ",", "deleteData", ")", "self", ".", "recv_drop_table", "(", ")" ]
https://github.com/cloudera/impyla/blob/0c736af4cad2bade9b8e313badc08ec50e81c948/impala/_thrift_gen/hive_metastore/ThriftHiveMetastore.py#L2007-L2015
securesystemslab/zippy
ff0e84ac99442c2c55fe1d285332cfd4e185e089
zippy/benchmarks/src/benchmarks/sympy/sympy/core/expr.py
python
Expr.__gt__
(self, other)
return C.StrictGreaterThan(self, other)
[]
def __gt__(self, other): dif = self - other if dif.is_number and dif.is_real is False: raise TypeError("Invalid comparison of complex %s" % dif) if dif.is_positive is not None and \ dif.is_positive is not dif.is_nonpositive: return sympify(dif.is_positive) return C.StrictGreaterThan(self, other)
[ "def", "__gt__", "(", "self", ",", "other", ")", ":", "dif", "=", "self", "-", "other", "if", "dif", ".", "is_number", "and", "dif", ".", "is_real", "is", "False", ":", "raise", "TypeError", "(", "\"Invalid comparison of complex %s\"", "%", "dif", ")", "if", "dif", ".", "is_positive", "is", "not", "None", "and", "dif", ".", "is_positive", "is", "not", "dif", ".", "is_nonpositive", ":", "return", "sympify", "(", "dif", ".", "is_positive", ")", "return", "C", ".", "StrictGreaterThan", "(", "self", ",", "other", ")" ]
https://github.com/securesystemslab/zippy/blob/ff0e84ac99442c2c55fe1d285332cfd4e185e089/zippy/benchmarks/src/benchmarks/sympy/sympy/core/expr.py#L237-L244
redhat-imaging/imagefactory
176f6e045e1df049d50f33a924653128d5ab8b27
imgfac/rest/bottle.py
python
Bottle.close
(self)
Close the application and all installed plugins.
Close the application and all installed plugins.
[ "Close", "the", "application", "and", "all", "installed", "plugins", "." ]
def close(self): ''' Close the application and all installed plugins. ''' for plugin in self.plugins: if hasattr(plugin, 'close'): plugin.close() self.stopped = True
[ "def", "close", "(", "self", ")", ":", "for", "plugin", "in", "self", ".", "plugins", ":", "if", "hasattr", "(", "plugin", ",", "'close'", ")", ":", "plugin", ".", "close", "(", ")", "self", ".", "stopped", "=", "True" ]
https://github.com/redhat-imaging/imagefactory/blob/176f6e045e1df049d50f33a924653128d5ab8b27/imgfac/rest/bottle.py#L747-L751
pimoroni/bme680-python
7afe2ef78259d89c83cacc9cbf2d55abff8c8e68
library/bme680/__init__.py
python
BME680._set_regs
(self, register, value)
Set one or more registers.
Set one or more registers.
[ "Set", "one", "or", "more", "registers", "." ]
def _set_regs(self, register, value): """Set one or more registers.""" if isinstance(value, int): self._i2c.write_byte_data(self.i2c_addr, register, value) else: self._i2c.write_i2c_block_data(self.i2c_addr, register, value)
[ "def", "_set_regs", "(", "self", ",", "register", ",", "value", ")", ":", "if", "isinstance", "(", "value", ",", "int", ")", ":", "self", ".", "_i2c", ".", "write_byte_data", "(", "self", ".", "i2c_addr", ",", "register", ",", "value", ")", "else", ":", "self", ".", "_i2c", ".", "write_i2c_block_data", "(", "self", ".", "i2c_addr", ",", "register", ",", "value", ")" ]
https://github.com/pimoroni/bme680-python/blob/7afe2ef78259d89c83cacc9cbf2d55abff8c8e68/library/bme680/__init__.py#L342-L347
openshift/openshift-tools
1188778e728a6e4781acf728123e5b356380fe6f
ansible/roles/lib_openshift_3.2/library/oadm_router.py
python
Yedit.separator
(self)
return self._separator
getter method for yaml_dict
getter method for yaml_dict
[ "getter", "method", "for", "yaml_dict" ]
def separator(self): ''' getter method for yaml_dict ''' return self._separator
[ "def", "separator", "(", "self", ")", ":", "return", "self", ".", "_separator" ]
https://github.com/openshift/openshift-tools/blob/1188778e728a6e4781acf728123e5b356380fe6f/ansible/roles/lib_openshift_3.2/library/oadm_router.py#L506-L508
harpribot/deep-summarization
9b3bb1daae11a1db2386dbe4a71848714e6127f8
helpers/checkpoint.py
python
Checkpointer.get_last_checkpoint
(self)
return self.last_ckpt
Assumes that the last checpoint has a higher checkpoint id. Checkpoint will be saved in this exact format model_<checkpint_id>.ckpt Eg - model_100.ckpt :return:
Assumes that the last checpoint has a higher checkpoint id. Checkpoint will be saved in this exact format model_<checkpint_id>.ckpt Eg - model_100.ckpt
[ "Assumes", "that", "the", "last", "checpoint", "has", "a", "higher", "checkpoint", "id", ".", "Checkpoint", "will", "be", "saved", "in", "this", "exact", "format", "model_<checkpint_id", ">", ".", "ckpt", "Eg", "-", "model_100", ".", "ckpt" ]
def get_last_checkpoint(self): """ Assumes that the last checpoint has a higher checkpoint id. Checkpoint will be saved in this exact format model_<checkpint_id>.ckpt Eg - model_100.ckpt :return: """ ''' ''' self.present_checkpoints = glob.glob(self.get_checkpoint_location() + '/*.ckpt') if len(self.present_checkpoints) != 0: present_ids = [self.__get_id(ckpt) for ckpt in self.present_checkpoints] # sort the ID's and return the model for the last ID present_ids.sort() self.last_id = present_ids[-1] self.last_ckpt = self.get_checkpoint_location() + '/model_' +\ str(self.last_id) + '.ckpt' return self.last_ckpt
[ "def", "get_last_checkpoint", "(", "self", ")", ":", "'''\n\n '''", "self", ".", "present_checkpoints", "=", "glob", ".", "glob", "(", "self", ".", "get_checkpoint_location", "(", ")", "+", "'/*.ckpt'", ")", "if", "len", "(", "self", ".", "present_checkpoints", ")", "!=", "0", ":", "present_ids", "=", "[", "self", ".", "__get_id", "(", "ckpt", ")", "for", "ckpt", "in", "self", ".", "present_checkpoints", "]", "# sort the ID's and return the model for the last ID", "present_ids", ".", "sort", "(", ")", "self", ".", "last_id", "=", "present_ids", "[", "-", "1", "]", "self", ".", "last_ckpt", "=", "self", ".", "get_checkpoint_location", "(", ")", "+", "'/model_'", "+", "str", "(", "self", ".", "last_id", ")", "+", "'.ckpt'", "return", "self", ".", "last_ckpt" ]
https://github.com/harpribot/deep-summarization/blob/9b3bb1daae11a1db2386dbe4a71848714e6127f8/helpers/checkpoint.py#L67-L86
ReactiveX/RxPY
52e72c2e691f0a8ae0f479cb3a22753e6c4f8242
rx/core/operators/window.py
python
_window_toggle
(openings: Observable, closing_mapper: Callable[[Any], Observable] )
return window_toggle
Projects each element of an observable sequence into zero or more windows. Args: source: Source observable to project into windows. Returns: An observable sequence of windows.
Projects each element of an observable sequence into zero or more windows.
[ "Projects", "each", "element", "of", "an", "observable", "sequence", "into", "zero", "or", "more", "windows", "." ]
def _window_toggle(openings: Observable, closing_mapper: Callable[[Any], Observable] ) -> Callable[[Observable], Observable]: """Projects each element of an observable sequence into zero or more windows. Args: source: Source observable to project into windows. Returns: An observable sequence of windows. """ def window_toggle(source: Observable) -> Observable: def mapper(args): _, window = args return window return openings.pipe( ops.group_join( source, closing_mapper, lambda _: empty(), ), ops.map(mapper), ) return window_toggle
[ "def", "_window_toggle", "(", "openings", ":", "Observable", ",", "closing_mapper", ":", "Callable", "[", "[", "Any", "]", ",", "Observable", "]", ")", "->", "Callable", "[", "[", "Observable", "]", ",", "Observable", "]", ":", "def", "window_toggle", "(", "source", ":", "Observable", ")", "->", "Observable", ":", "def", "mapper", "(", "args", ")", ":", "_", ",", "window", "=", "args", "return", "window", "return", "openings", ".", "pipe", "(", "ops", ".", "group_join", "(", "source", ",", "closing_mapper", ",", "lambda", "_", ":", "empty", "(", ")", ",", ")", ",", "ops", ".", "map", "(", "mapper", ")", ",", ")", "return", "window_toggle" ]
https://github.com/ReactiveX/RxPY/blob/52e72c2e691f0a8ae0f479cb3a22753e6c4f8242/rx/core/operators/window.py#L15-L41
biolab/orange2
db40a9449cb45b507d63dcd5739b223f9cffb8e6
Orange/OrangeCanvas/gui/utils.py
python
gradient_darker
(grad, factor)
return new_grad
Return a copy of the QGradient darkened by factor. .. note:: Only QLinearGradeint and QRadialGradient are supported.
Return a copy of the QGradient darkened by factor.
[ "Return", "a", "copy", "of", "the", "QGradient", "darkened", "by", "factor", "." ]
def gradient_darker(grad, factor): """Return a copy of the QGradient darkened by factor. .. note:: Only QLinearGradeint and QRadialGradient are supported. """ if type(grad) is QGradient: if grad.type() == QGradient.LinearGradient: grad = sip.cast(grad, QLinearGradient) elif grad.type() == QGradient.RadialGradient: grad = sip.cast(grad, QRadialGradient) if isinstance(grad, QLinearGradient): new_grad = QLinearGradient(grad.start(), grad.finalStop()) elif isinstance(grad, QRadialGradient): new_grad = QRadialGradient(grad.center(), grad.radius(), grad.focalPoint()) else: raise TypeError new_grad.setCoordinateMode(grad.coordinateMode()) for pos, color in grad.stops(): new_grad.setColorAt(pos, color.darker(factor)) return new_grad
[ "def", "gradient_darker", "(", "grad", ",", "factor", ")", ":", "if", "type", "(", "grad", ")", "is", "QGradient", ":", "if", "grad", ".", "type", "(", ")", "==", "QGradient", ".", "LinearGradient", ":", "grad", "=", "sip", ".", "cast", "(", "grad", ",", "QLinearGradient", ")", "elif", "grad", ".", "type", "(", ")", "==", "QGradient", ".", "RadialGradient", ":", "grad", "=", "sip", ".", "cast", "(", "grad", ",", "QRadialGradient", ")", "if", "isinstance", "(", "grad", ",", "QLinearGradient", ")", ":", "new_grad", "=", "QLinearGradient", "(", "grad", ".", "start", "(", ")", ",", "grad", ".", "finalStop", "(", ")", ")", "elif", "isinstance", "(", "grad", ",", "QRadialGradient", ")", ":", "new_grad", "=", "QRadialGradient", "(", "grad", ".", "center", "(", ")", ",", "grad", ".", "radius", "(", ")", ",", "grad", ".", "focalPoint", "(", ")", ")", "else", ":", "raise", "TypeError", "new_grad", ".", "setCoordinateMode", "(", "grad", ".", "coordinateMode", "(", ")", ")", "for", "pos", ",", "color", "in", "grad", ".", "stops", "(", ")", ":", "new_grad", ".", "setColorAt", "(", "pos", ",", "color", ".", "darker", "(", "factor", ")", ")", "return", "new_grad" ]
https://github.com/biolab/orange2/blob/db40a9449cb45b507d63dcd5739b223f9cffb8e6/Orange/OrangeCanvas/gui/utils.py#L141-L166
openshift/openshift-tools
1188778e728a6e4781acf728123e5b356380fe6f
openshift/installer/vendored/openshift-ansible-3.9.14-1/roles/lib_openshift/library/oc_adm_ca_server_cert.py
python
CAServerCert.get
(self)
return None
get the current cert file If a file exists by the same name in the specified location then the cert exists
get the current cert file
[ "get", "the", "current", "cert", "file" ]
def get(self): '''get the current cert file If a file exists by the same name in the specified location then the cert exists ''' cert = self.config.config_options['cert']['value'] if cert and os.path.exists(cert): return open(cert).read() return None
[ "def", "get", "(", "self", ")", ":", "cert", "=", "self", ".", "config", ".", "config_options", "[", "'cert'", "]", "[", "'value'", "]", "if", "cert", "and", "os", ".", "path", ".", "exists", "(", "cert", ")", ":", "return", "open", "(", "cert", ")", ".", "read", "(", ")", "return", "None" ]
https://github.com/openshift/openshift-tools/blob/1188778e728a6e4781acf728123e5b356380fe6f/openshift/installer/vendored/openshift-ansible-3.9.14-1/roles/lib_openshift/library/oc_adm_ca_server_cert.py#L1510-L1519
gramps-project/gramps
04d4651a43eb210192f40a9f8c2bad8ee8fa3753
gramps/gen/db/generic.py
python
DbGeneric.get_event_gramps_ids
(self)
return self._get_gramps_ids(EVENT_KEY)
Return a list of Gramps IDs, one ID for each Event in the database.
Return a list of Gramps IDs, one ID for each Event in the database.
[ "Return", "a", "list", "of", "Gramps", "IDs", "one", "ID", "for", "each", "Event", "in", "the", "database", "." ]
def get_event_gramps_ids(self): """ Return a list of Gramps IDs, one ID for each Event in the database. """ return self._get_gramps_ids(EVENT_KEY)
[ "def", "get_event_gramps_ids", "(", "self", ")", ":", "return", "self", ".", "_get_gramps_ids", "(", "EVENT_KEY", ")" ]
https://github.com/gramps-project/gramps/blob/04d4651a43eb210192f40a9f8c2bad8ee8fa3753/gramps/gen/db/generic.py#L1219-L1224
googlearchive/simian
fb9c43946ff7ba29be417068d6447cfc0adfe9ef
src/simian/mac/models/munki.py
python
PackageInfo._SetDescription
(self, desc)
Sets the description to the plist, preserving any avg duration text.
Sets the description to the plist, preserving any avg duration text.
[ "Sets", "the", "description", "to", "the", "plist", "preserving", "any", "avg", "duration", "text", "." ]
def _SetDescription(self, desc): """Sets the description to the plist, preserving any avg duration text.""" if self.AVG_DURATION_REGEX.search(desc): # If the new description has the avg duration text, just keep it all. self.plist['description'] = desc else: # Otherwise append the old avg duration text to the new description. match = self.AVG_DURATION_REGEX.search(self.plist.get('description', '')) if match: self.plist['description'] = '%s\n\n%s' % (desc, match.group(0)) else: self.plist['description'] = desc # Update the plist property with the new description. self.plist = self.plist.GetXml()
[ "def", "_SetDescription", "(", "self", ",", "desc", ")", ":", "if", "self", ".", "AVG_DURATION_REGEX", ".", "search", "(", "desc", ")", ":", "# If the new description has the avg duration text, just keep it all.", "self", ".", "plist", "[", "'description'", "]", "=", "desc", "else", ":", "# Otherwise append the old avg duration text to the new description.", "match", "=", "self", ".", "AVG_DURATION_REGEX", ".", "search", "(", "self", ".", "plist", ".", "get", "(", "'description'", ",", "''", ")", ")", "if", "match", ":", "self", ".", "plist", "[", "'description'", "]", "=", "'%s\\n\\n%s'", "%", "(", "desc", ",", "match", ".", "group", "(", "0", ")", ")", "else", ":", "self", ".", "plist", "[", "'description'", "]", "=", "desc", "# Update the plist property with the new description.", "self", ".", "plist", "=", "self", ".", "plist", ".", "GetXml", "(", ")" ]
https://github.com/googlearchive/simian/blob/fb9c43946ff7ba29be417068d6447cfc0adfe9ef/src/simian/mac/models/munki.py#L314-L328
securesystemslab/zippy
ff0e84ac99442c2c55fe1d285332cfd4e185e089
zippy/benchmarks/src/benchmarks/whoosh/src/whoosh/automata/fst.py
python
IntersectionNode.edge
(self, key)
[]
def edge(self, key): a = self.a b = self.b if key in a and key in b: return IntersectionNode(a.edge(key), b.edge(key))
[ "def", "edge", "(", "self", ",", "key", ")", ":", "a", "=", "self", ".", "a", "b", "=", "self", ".", "b", "if", "key", "in", "a", "and", "key", "in", "b", ":", "return", "IntersectionNode", "(", "a", ".", "edge", "(", "key", ")", ",", "b", ".", "edge", "(", "key", ")", ")" ]
https://github.com/securesystemslab/zippy/blob/ff0e84ac99442c2c55fe1d285332cfd4e185e089/zippy/benchmarks/src/benchmarks/whoosh/src/whoosh/automata/fst.py#L461-L465
autotest/autotest
4614ae5f550cc888267b9a419e4b90deb54f8fae
client/job.py
python
base_client_job.install_pkg
(self, name, pkg_type, install_dir)
This method is a simple wrapper around the actual package installation method in the Packager class. This is used internally by the profilers, deps and tests code. :param name: name of the package (ex: sleeptest, dbench etc.) :param pkg_type: Type of the package (ex: test, dep etc.) :param install_dir: The directory in which the source is actually untarred into. (ex: client/profilers/<name> for profilers)
This method is a simple wrapper around the actual package installation method in the Packager class. This is used internally by the profilers, deps and tests code.
[ "This", "method", "is", "a", "simple", "wrapper", "around", "the", "actual", "package", "installation", "method", "in", "the", "Packager", "class", ".", "This", "is", "used", "internally", "by", "the", "profilers", "deps", "and", "tests", "code", "." ]
def install_pkg(self, name, pkg_type, install_dir): ''' This method is a simple wrapper around the actual package installation method in the Packager class. This is used internally by the profilers, deps and tests code. :param name: name of the package (ex: sleeptest, dbench etc.) :param pkg_type: Type of the package (ex: test, dep etc.) :param install_dir: The directory in which the source is actually untarred into. (ex: client/profilers/<name> for profilers) ''' if self.pkgmgr.repositories: self.pkgmgr.install_pkg(name, pkg_type, self.pkgdir, install_dir)
[ "def", "install_pkg", "(", "self", ",", "name", ",", "pkg_type", ",", "install_dir", ")", ":", "if", "self", ".", "pkgmgr", ".", "repositories", ":", "self", ".", "pkgmgr", ".", "install_pkg", "(", "name", ",", "pkg_type", ",", "self", ".", "pkgdir", ",", "install_dir", ")" ]
https://github.com/autotest/autotest/blob/4614ae5f550cc888267b9a419e4b90deb54f8fae/client/job.py#L429-L441
sagemath/sage
f9b2db94f675ff16963ccdefba4f1a3393b3fe0d
src/sage/crypto/mq/sr.py
python
SR_gf2n.shift_rows_matrix
(self)
return shift_rows
Return the ``ShiftRows`` matrix. EXAMPLES:: sage: sr = mq.SR(1, 2, 2, 4) sage: s = sr.random_state_array() sage: r1 = sr.shift_rows(s) sage: r2 = sr.state_array( sr.shift_rows_matrix() * sr.vector(s) ) sage: r1 == r2 True
Return the ``ShiftRows`` matrix.
[ "Return", "the", "ShiftRows", "matrix", "." ]
def shift_rows_matrix(self): """ Return the ``ShiftRows`` matrix. EXAMPLES:: sage: sr = mq.SR(1, 2, 2, 4) sage: s = sr.random_state_array() sage: r1 = sr.shift_rows(s) sage: r2 = sr.state_array( sr.shift_rows_matrix() * sr.vector(s) ) sage: r1 == r2 True """ e = self.e r = self.r c = self.c k = self.base_ring() bs = r*c*e shift_rows = Matrix(k, bs, bs) I = MatrixSpace(k, e, e)(1) for x in range(0, c): for y in range(0, r): _r = ((x*r)+y) * e _c = (((x*r)+((r+1)*y)) * e) % bs self._insert_matrix_into_matrix(shift_rows, I, _r, _c) return shift_rows
[ "def", "shift_rows_matrix", "(", "self", ")", ":", "e", "=", "self", ".", "e", "r", "=", "self", ".", "r", "c", "=", "self", ".", "c", "k", "=", "self", ".", "base_ring", "(", ")", "bs", "=", "r", "*", "c", "*", "e", "shift_rows", "=", "Matrix", "(", "k", ",", "bs", ",", "bs", ")", "I", "=", "MatrixSpace", "(", "k", ",", "e", ",", "e", ")", "(", "1", ")", "for", "x", "in", "range", "(", "0", ",", "c", ")", ":", "for", "y", "in", "range", "(", "0", ",", "r", ")", ":", "_r", "=", "(", "(", "x", "*", "r", ")", "+", "y", ")", "*", "e", "_c", "=", "(", "(", "(", "x", "*", "r", ")", "+", "(", "(", "r", "+", "1", ")", "*", "y", ")", ")", "*", "e", ")", "%", "bs", "self", ".", "_insert_matrix_into_matrix", "(", "shift_rows", ",", "I", ",", "_r", ",", "_c", ")", "return", "shift_rows" ]
https://github.com/sagemath/sage/blob/f9b2db94f675ff16963ccdefba4f1a3393b3fe0d/src/sage/crypto/mq/sr.py#L2261-L2287
Robot-Will/Stino
a94831cd1bf40a59587a7b6cc2e9b5c4306b1bf2
libs/serial/serialposix.py
python
Serial.set_output_flow_control
(self, enable=True)
\ Manually control flow of outgoing data - when hardware or software flow control is enabled. WARNING: this function is not portable to different platforms!
\ Manually control flow of outgoing data - when hardware or software flow control is enabled. WARNING: this function is not portable to different platforms!
[ "\\", "Manually", "control", "flow", "of", "outgoing", "data", "-", "when", "hardware", "or", "software", "flow", "control", "is", "enabled", ".", "WARNING", ":", "this", "function", "is", "not", "portable", "to", "different", "platforms!" ]
def set_output_flow_control(self, enable=True): """\ Manually control flow of outgoing data - when hardware or software flow control is enabled. WARNING: this function is not portable to different platforms! """ if not self.is_open: raise portNotOpenError if enable: termios.tcflow(self.fd, termios.TCOON) else: termios.tcflow(self.fd, termios.TCOOFF)
[ "def", "set_output_flow_control", "(", "self", ",", "enable", "=", "True", ")", ":", "if", "not", "self", ".", "is_open", ":", "raise", "portNotOpenError", "if", "enable", ":", "termios", ".", "tcflow", "(", "self", ".", "fd", ",", "termios", ".", "TCOON", ")", "else", ":", "termios", ".", "tcflow", "(", "self", ".", "fd", ",", "termios", ".", "TCOOFF", ")" ]
https://github.com/Robot-Will/Stino/blob/a94831cd1bf40a59587a7b6cc2e9b5c4306b1bf2/libs/serial/serialposix.py#L679-L690
guildai/guildai
1665985a3d4d788efc1a3180ca51cc417f71ca78
guild/external/setuptools/_vendor/pyparsing.py
python
tokenMap
(func, *args)
return pa
Helper to define a parse action by mapping a function to all elements of a ParseResults list.If any additional args are passed, they are forwarded to the given function as additional arguments after the token, as in C{hex_integer = Word(hexnums).setParseAction(tokenMap(int, 16))}, which will convert the parsed data to an integer using base 16. Example (compare the last to example in L{ParserElement.transformString}:: hex_ints = OneOrMore(Word(hexnums)).setParseAction(tokenMap(int, 16)) hex_ints.runTests(''' 00 11 22 aa FF 0a 0d 1a ''') upperword = Word(alphas).setParseAction(tokenMap(str.upper)) OneOrMore(upperword).runTests(''' my kingdom for a horse ''') wd = Word(alphas).setParseAction(tokenMap(str.title)) OneOrMore(wd).setParseAction(' '.join).runTests(''' now is the winter of our discontent made glorious summer by this sun of york ''') prints:: 00 11 22 aa FF 0a 0d 1a [0, 17, 34, 170, 255, 10, 13, 26] my kingdom for a horse ['MY', 'KINGDOM', 'FOR', 'A', 'HORSE'] now is the winter of our discontent made glorious summer by this sun of york ['Now Is The Winter Of Our Discontent Made Glorious Summer By This Sun Of York']
Helper to define a parse action by mapping a function to all elements of a ParseResults list.If any additional args are passed, they are forwarded to the given function as additional arguments after the token, as in C{hex_integer = Word(hexnums).setParseAction(tokenMap(int, 16))}, which will convert the parsed data to an integer using base 16.
[ "Helper", "to", "define", "a", "parse", "action", "by", "mapping", "a", "function", "to", "all", "elements", "of", "a", "ParseResults", "list", ".", "If", "any", "additional", "args", "are", "passed", "they", "are", "forwarded", "to", "the", "given", "function", "as", "additional", "arguments", "after", "the", "token", "as", "in", "C", "{", "hex_integer", "=", "Word", "(", "hexnums", ")", ".", "setParseAction", "(", "tokenMap", "(", "int", "16", "))", "}", "which", "will", "convert", "the", "parsed", "data", "to", "an", "integer", "using", "base", "16", "." ]
def tokenMap(func, *args): """ Helper to define a parse action by mapping a function to all elements of a ParseResults list.If any additional args are passed, they are forwarded to the given function as additional arguments after the token, as in C{hex_integer = Word(hexnums).setParseAction(tokenMap(int, 16))}, which will convert the parsed data to an integer using base 16. Example (compare the last to example in L{ParserElement.transformString}:: hex_ints = OneOrMore(Word(hexnums)).setParseAction(tokenMap(int, 16)) hex_ints.runTests(''' 00 11 22 aa FF 0a 0d 1a ''') upperword = Word(alphas).setParseAction(tokenMap(str.upper)) OneOrMore(upperword).runTests(''' my kingdom for a horse ''') wd = Word(alphas).setParseAction(tokenMap(str.title)) OneOrMore(wd).setParseAction(' '.join).runTests(''' now is the winter of our discontent made glorious summer by this sun of york ''') prints:: 00 11 22 aa FF 0a 0d 1a [0, 17, 34, 170, 255, 10, 13, 26] my kingdom for a horse ['MY', 'KINGDOM', 'FOR', 'A', 'HORSE'] now is the winter of our discontent made glorious summer by this sun of york ['Now Is The Winter Of Our Discontent Made Glorious Summer By This Sun Of York'] """ def pa(s,l,t): return [func(tokn, *args) for tokn in t] try: func_name = getattr(func, '__name__', getattr(func, '__class__').__name__) except Exception: func_name = str(func) pa.__name__ = func_name return pa
[ "def", "tokenMap", "(", "func", ",", "*", "args", ")", ":", "def", "pa", "(", "s", ",", "l", ",", "t", ")", ":", "return", "[", "func", "(", "tokn", ",", "*", "args", ")", "for", "tokn", "in", "t", "]", "try", ":", "func_name", "=", "getattr", "(", "func", ",", "'__name__'", ",", "getattr", "(", "func", ",", "'__class__'", ")", ".", "__name__", ")", "except", "Exception", ":", "func_name", "=", "str", "(", "func", ")", "pa", ".", "__name__", "=", "func_name", "return", "pa" ]
https://github.com/guildai/guildai/blob/1665985a3d4d788efc1a3180ca51cc417f71ca78/guild/external/setuptools/_vendor/pyparsing.py#L4825-L4867
home-assistant/core
265ebd17a3f17ed8dc1e9bdede03ac8e323f1ab1
homeassistant/components/bosch_shc/cover.py
python
ShutterControlCover.close_cover
(self, **kwargs)
Close cover.
Close cover.
[ "Close", "cover", "." ]
def close_cover(self, **kwargs): """Close cover.""" self._device.level = 0.0
[ "def", "close_cover", "(", "self", ",", "*", "*", "kwargs", ")", ":", "self", ".", "_device", ".", "level", "=", "0.0" ]
https://github.com/home-assistant/core/blob/265ebd17a3f17ed8dc1e9bdede03ac8e323f1ab1/homeassistant/components/bosch_shc/cover.py#L86-L88
mlflow/mlflow
364aca7daf0fcee3ec407ae0b1b16d9cb3085081
mlflow/entities/run_info.py
python
RunInfo._copy_with_overrides
(self, status=None, end_time=None, lifecycle_stage=None)
return RunInfo.from_proto(proto)
A copy of the RunInfo with certain attributes modified.
A copy of the RunInfo with certain attributes modified.
[ "A", "copy", "of", "the", "RunInfo", "with", "certain", "attributes", "modified", "." ]
def _copy_with_overrides(self, status=None, end_time=None, lifecycle_stage=None): """A copy of the RunInfo with certain attributes modified.""" proto = self.to_proto() if status: proto.status = status if end_time: proto.end_time = end_time if lifecycle_stage: proto.lifecycle_stage = lifecycle_stage return RunInfo.from_proto(proto)
[ "def", "_copy_with_overrides", "(", "self", ",", "status", "=", "None", ",", "end_time", "=", "None", ",", "lifecycle_stage", "=", "None", ")", ":", "proto", "=", "self", ".", "to_proto", "(", ")", "if", "status", ":", "proto", ".", "status", "=", "status", "if", "end_time", ":", "proto", ".", "end_time", "=", "end_time", "if", "lifecycle_stage", ":", "proto", ".", "lifecycle_stage", "=", "lifecycle_stage", "return", "RunInfo", ".", "from_proto", "(", "proto", ")" ]
https://github.com/mlflow/mlflow/blob/364aca7daf0fcee3ec407ae0b1b16d9cb3085081/mlflow/entities/run_info.py#L84-L93
andresriancho/w3af
cd22e5252243a87aaa6d0ddea47cf58dacfe00a9
w3af/plugins/attack/db/sqlmap/thirdparty/xdot/xdot.py
python
Edge.__init__
(self, src, dst, points, shapes)
[]
def __init__(self, src, dst, points, shapes): Element.__init__(self, shapes) self.src = src self.dst = dst self.points = points
[ "def", "__init__", "(", "self", ",", "src", ",", "dst", ",", "points", ",", "shapes", ")", ":", "Element", ".", "__init__", "(", "self", ",", "shapes", ")", "self", ".", "src", "=", "src", "self", ".", "dst", "=", "dst", "self", ".", "points", "=", "points" ]
https://github.com/andresriancho/w3af/blob/cd22e5252243a87aaa6d0ddea47cf58dacfe00a9/w3af/plugins/attack/db/sqlmap/thirdparty/xdot/xdot.py#L419-L423
francisck/DanderSpritz_docs
86bb7caca5a957147f120b18bb5c31f299914904
Python/Core/Lib/logging/__init__.py
python
_removeHandlerRef
(wr)
return
Remove a handler reference from the internal cleanup list.
Remove a handler reference from the internal cleanup list.
[ "Remove", "a", "handler", "reference", "from", "the", "internal", "cleanup", "list", "." ]
def _removeHandlerRef(wr): """ Remove a handler reference from the internal cleanup list. """ if _acquireLock is not None: _acquireLock() try: if wr in _handlerList: _handlerList.remove(wr) finally: _releaseLock() return
[ "def", "_removeHandlerRef", "(", "wr", ")", ":", "if", "_acquireLock", "is", "not", "None", ":", "_acquireLock", "(", ")", "try", ":", "if", "wr", "in", "_handlerList", ":", "_handlerList", ".", "remove", "(", "wr", ")", "finally", ":", "_releaseLock", "(", ")", "return" ]
https://github.com/francisck/DanderSpritz_docs/blob/86bb7caca5a957147f120b18bb5c31f299914904/Python/Core/Lib/logging/__init__.py#L526-L538
jiangxinyang227/bert-for-task
3e7aed9e3c757ebc22aabfd4f3fb7b4cd81b010a
albert_task/ner_task/bilstm_crf.py
python
BiLSTMCRF.get_pred
(self, new_logits, trans_params=None)
得到预测值 :param new_logits: :param trans_params: :return:
得到预测值 :param new_logits: :param trans_params: :return:
[ "得到预测值", ":", "param", "new_logits", ":", ":", "param", "trans_params", ":", ":", "return", ":" ]
def get_pred(self, new_logits, trans_params=None): """ 得到预测值 :param new_logits: :param trans_params: :return: """ with tf.name_scope("maskedOutput"): viterbi_sequence, viterbi_score = tf.contrib.crf.crf_decode(new_logits, trans_params, self.sequence_lens) return viterbi_sequence
[ "def", "get_pred", "(", "self", ",", "new_logits", ",", "trans_params", "=", "None", ")", ":", "with", "tf", ".", "name_scope", "(", "\"maskedOutput\"", ")", ":", "viterbi_sequence", ",", "viterbi_score", "=", "tf", ".", "contrib", ".", "crf", ".", "crf_decode", "(", "new_logits", ",", "trans_params", ",", "self", ".", "sequence_lens", ")", "return", "viterbi_sequence" ]
https://github.com/jiangxinyang227/bert-for-task/blob/3e7aed9e3c757ebc22aabfd4f3fb7b4cd81b010a/albert_task/ner_task/bilstm_crf.py#L123-L133
pypa/pipenv
b21baade71a86ab3ee1429f71fbc14d4f95fb75d
pipenv/project.py
python
Project._parse_pipfile
(self, contents)
[]
def _parse_pipfile(self, contents): # type: (str) -> Union[tomlkit.toml_document.TOMLDocument, TPipfile] try: return tomlkit.parse(contents) except Exception: # We lose comments here, but it's for the best.) # Fallback to toml parser, for large files. return toml.loads(contents)
[ "def", "_parse_pipfile", "(", "self", ",", "contents", ")", ":", "# type: (str) -> Union[tomlkit.toml_document.TOMLDocument, TPipfile]", "try", ":", "return", "tomlkit", ".", "parse", "(", "contents", ")", "except", "Exception", ":", "# We lose comments here, but it's for the best.)", "# Fallback to toml parser, for large files.", "return", "toml", ".", "loads", "(", "contents", ")" ]
https://github.com/pypa/pipenv/blob/b21baade71a86ab3ee1429f71fbc14d4f95fb75d/pipenv/project.py#L544-L551
pyansys/pymapdl
c07291fc062b359abf0e92b95a92d753a95ef3d7
ansys/mapdl/core/_commands/solution/dynamic_options.py
python
DynamicOptions.betad
(self, value="", **kwargs)
return self.run(command, **kwargs)
Defines the stiffness matrix multiplier for damping. APDL Command: BETAD Parameters ---------- value Stiffness matrix multiplier for damping. Notes ----- This command defines the stiffness matrix multiplier β used to form the viscous damping matrix [C] = β [K] where [K] is the stiffness matrix. Values of : β may also be input as a material property (use the BETD label on the MP command). If BETD is included, the BETD value is added to the BETAD value as appropriate (see Damping Matrices in the Mechanical APDL Theory Reference). Damping is not used in the static (ANTYPE,STATIC) or buckling (ANTYPE,BUCKLE) analyses. This command is also valid in PREP7.
Defines the stiffness matrix multiplier for damping.
[ "Defines", "the", "stiffness", "matrix", "multiplier", "for", "damping", "." ]
def betad(self, value="", **kwargs): """Defines the stiffness matrix multiplier for damping. APDL Command: BETAD Parameters ---------- value Stiffness matrix multiplier for damping. Notes ----- This command defines the stiffness matrix multiplier β used to form the viscous damping matrix [C] = β [K] where [K] is the stiffness matrix. Values of : β may also be input as a material property (use the BETD label on the MP command). If BETD is included, the BETD value is added to the BETAD value as appropriate (see Damping Matrices in the Mechanical APDL Theory Reference). Damping is not used in the static (ANTYPE,STATIC) or buckling (ANTYPE,BUCKLE) analyses. This command is also valid in PREP7. """ command = f"BETAD,{value}" return self.run(command, **kwargs)
[ "def", "betad", "(", "self", ",", "value", "=", "\"\"", ",", "*", "*", "kwargs", ")", ":", "command", "=", "f\"BETAD,{value}\"", "return", "self", ".", "run", "(", "command", ",", "*", "*", "kwargs", ")" ]
https://github.com/pyansys/pymapdl/blob/c07291fc062b359abf0e92b95a92d753a95ef3d7/ansys/mapdl/core/_commands/solution/dynamic_options.py#L28-L52
TarrySingh/Artificial-Intelligence-Deep-Learning-Machine-Learning-Tutorials
5bb97d7e3ffd913abddb4cfa7d78a1b4c868890e
tensorflow_dl_models/research/object_detection/core/preprocessor.py
python
random_pixel_value_scale
(image, minval=0.9, maxval=1.1, seed=None)
return image
Scales each value in the pixels of the image. This function scales each pixel independent of the other ones. For each value in image tensor, draws a random number between minval and maxval and multiples the values with them. Args: image: rank 3 float32 tensor contains 1 image -> [height, width, channels] with pixel values varying between [0, 1]. minval: lower ratio of scaling pixel values. maxval: upper ratio of scaling pixel values. seed: random seed. Returns: image: image which is the same shape as input image.
Scales each value in the pixels of the image.
[ "Scales", "each", "value", "in", "the", "pixels", "of", "the", "image", "." ]
def random_pixel_value_scale(image, minval=0.9, maxval=1.1, seed=None): """Scales each value in the pixels of the image. This function scales each pixel independent of the other ones. For each value in image tensor, draws a random number between minval and maxval and multiples the values with them. Args: image: rank 3 float32 tensor contains 1 image -> [height, width, channels] with pixel values varying between [0, 1]. minval: lower ratio of scaling pixel values. maxval: upper ratio of scaling pixel values. seed: random seed. Returns: image: image which is the same shape as input image. """ with tf.name_scope('RandomPixelValueScale', values=[image]): color_coef = tf.random_uniform( tf.shape(image), minval=minval, maxval=maxval, dtype=tf.float32, seed=seed) image = tf.multiply(image, color_coef) image = tf.clip_by_value(image, 0.0, 1.0) return image
[ "def", "random_pixel_value_scale", "(", "image", ",", "minval", "=", "0.9", ",", "maxval", "=", "1.1", ",", "seed", "=", "None", ")", ":", "with", "tf", ".", "name_scope", "(", "'RandomPixelValueScale'", ",", "values", "=", "[", "image", "]", ")", ":", "color_coef", "=", "tf", ".", "random_uniform", "(", "tf", ".", "shape", "(", "image", ")", ",", "minval", "=", "minval", ",", "maxval", "=", "maxval", ",", "dtype", "=", "tf", ".", "float32", ",", "seed", "=", "seed", ")", "image", "=", "tf", ".", "multiply", "(", "image", ",", "color_coef", ")", "image", "=", "tf", ".", "clip_by_value", "(", "image", ",", "0.0", ",", "1.0", ")", "return", "image" ]
https://github.com/TarrySingh/Artificial-Intelligence-Deep-Learning-Machine-Learning-Tutorials/blob/5bb97d7e3ffd913abddb4cfa7d78a1b4c868890e/tensorflow_dl_models/research/object_detection/core/preprocessor.py#L565-L592
shapely/shapely
9258e6dd4dcca61699d69c2a5853a486b132ed86
shapely/geometry/base.py
python
BaseGeometry.distance
(self, other)
return float(shapely.distance(self, other))
Unitless distance to other geometry (float)
Unitless distance to other geometry (float)
[ "Unitless", "distance", "to", "other", "geometry", "(", "float", ")" ]
def distance(self, other): """Unitless distance to other geometry (float)""" return float(shapely.distance(self, other))
[ "def", "distance", "(", "self", ",", "other", ")", ":", "return", "float", "(", "shapely", ".", "distance", "(", "self", ",", "other", ")", ")" ]
https://github.com/shapely/shapely/blob/9258e6dd4dcca61699d69c2a5853a486b132ed86/shapely/geometry/base.py#L236-L238
dmlc/dgl
8d14a739bc9e446d6c92ef83eafe5782398118de
python/dgl/nn/pytorch/conv/gmmconv.py
python
GMMConv.set_allow_zero_in_degree
(self, set_value)
r""" Description ----------- Set allow_zero_in_degree flag. Parameters ---------- set_value : bool The value to be set to the flag.
r"""
[ "r" ]
def set_allow_zero_in_degree(self, set_value): r""" Description ----------- Set allow_zero_in_degree flag. Parameters ---------- set_value : bool The value to be set to the flag. """ self._allow_zero_in_degree = set_value
[ "def", "set_allow_zero_in_degree", "(", "self", ",", "set_value", ")", ":", "self", ".", "_allow_zero_in_degree", "=", "set_value" ]
https://github.com/dmlc/dgl/blob/8d14a739bc9e446d6c92ef83eafe5782398118de/python/dgl/nn/pytorch/conv/gmmconv.py#L174-L186
jodal/pyspotify
770aee08de274951b63e60bdd8835188b58e7862
spotify/connection.py
python
Connection.allow_network
(self)
return self._allow_network
Whether or not network access is allowed at all. Defaults to :class:`True`. Setting this to :class:`False` turns on offline mode.
Whether or not network access is allowed at all.
[ "Whether", "or", "not", "network", "access", "is", "allowed", "at", "all", "." ]
def allow_network(self): """Whether or not network access is allowed at all. Defaults to :class:`True`. Setting this to :class:`False` turns on offline mode. """ return self._allow_network
[ "def", "allow_network", "(", "self", ")", ":", "return", "self", ".", "_allow_network" ]
https://github.com/jodal/pyspotify/blob/770aee08de274951b63e60bdd8835188b58e7862/spotify/connection.py#L76-L82
zaxlct/imooc-django
daf1ced745d3d21989e8191b658c293a511b37fd
extra_apps/xadmin/views/list.py
python
ResultItem.tagattrs
(self)
return mark_safe( '%s%s' % ((self.tag_attrs and ' '.join(self.tag_attrs) or ''), (self.classes and (' class="%s"' % ' '.join(self.classes)) or '')))
[]
def tagattrs(self): return mark_safe( '%s%s' % ((self.tag_attrs and ' '.join(self.tag_attrs) or ''), (self.classes and (' class="%s"' % ' '.join(self.classes)) or '')))
[ "def", "tagattrs", "(", "self", ")", ":", "return", "mark_safe", "(", "'%s%s'", "%", "(", "(", "self", ".", "tag_attrs", "and", "' '", ".", "join", "(", "self", ".", "tag_attrs", ")", "or", "''", ")", ",", "(", "self", ".", "classes", "and", "(", "' class=\"%s\"'", "%", "' '", ".", "join", "(", "self", ".", "classes", ")", ")", "or", "''", ")", ")", ")" ]
https://github.com/zaxlct/imooc-django/blob/daf1ced745d3d21989e8191b658c293a511b37fd/extra_apps/xadmin/views/list.py#L78-L81
memray/seq2seq-keyphrase
9145c63ebdc4c3bc431f8091dc52547a46804012
emolga/models/encdec.py
python
Encoder.build_encoder
(self, source, context=None, return_embed=False, return_sequence=False)
return X_out
Build the Encoder Computational Graph For the default configurations (with attention) with_context=False, return_sequence=True, return_embed=True Input: source : source text, a list of indexes [nb_sample * max_len] context: None Return: For Attention model: return_sequence=True: to return the embedding at each time, not just the end state return_embed=True: X_out: a list of vectors [nb_sample, max_len, 2*enc_hidden_dim], encoding of each time state (concatenate both forward and backward RNN) X: embedding of text X [nb_sample, max_len, enc_embedd_dim] X_mask: mask, an array showing which elements in X are not 0 [nb_sample, max_len] X_tail: encoding of ending of X, seems not make sense for bidirectional model (head+tail) [nb_sample, 2*enc_hidden_dim] there's bug on X_tail, but luckily we don't use it often nb_sample: number of samples, defined by batch size max_len: max length of sentence (should be same after padding)
Build the Encoder Computational Graph
[ "Build", "the", "Encoder", "Computational", "Graph" ]
def build_encoder(self, source, context=None, return_embed=False, return_sequence=False): """ Build the Encoder Computational Graph For the default configurations (with attention) with_context=False, return_sequence=True, return_embed=True Input: source : source text, a list of indexes [nb_sample * max_len] context: None Return: For Attention model: return_sequence=True: to return the embedding at each time, not just the end state return_embed=True: X_out: a list of vectors [nb_sample, max_len, 2*enc_hidden_dim], encoding of each time state (concatenate both forward and backward RNN) X: embedding of text X [nb_sample, max_len, enc_embedd_dim] X_mask: mask, an array showing which elements in X are not 0 [nb_sample, max_len] X_tail: encoding of ending of X, seems not make sense for bidirectional model (head+tail) [nb_sample, 2*enc_hidden_dim] there's bug on X_tail, but luckily we don't use it often nb_sample: number of samples, defined by batch size max_len: max length of sentence (should be same after padding) """ # Initial state Init_h = None if self.use_context: Init_h = self.Initializer(context) # word embedding if not self.config['bidirectional']: X, X_mask = self.Embed(source, True) X_out = self.RNN(X, X_mask, C=context, init_h=Init_h, return_sequence=return_sequence) if return_sequence: X_tail = X_out[:, -1] else: X_tail = X_out else: # reverse the source for backwardRNN source2 = source[:, ::-1] # map text to embedding X, X_mask = self.Embed(source, True) X2, X2_mask = self.Embed(source2, True) # get the encoding at each time t. [Bug?] run forwardRNN on the reverse text? X_out1 = self.backwardRNN(X, X_mask, C=context, init_h=Init_h, return_sequence=return_sequence) X_out2 = self.forwardRNN(X2, X2_mask, C=context, init_h=Init_h, return_sequence=return_sequence) # concatenate vectors of both forward and backward if not return_sequence: # [Bug]I think the X_out of backwardRNN is time 0, but for forwardRNN is ending time X_out = T.concatenate([X_out1, X_out2], axis=1) X_tail = X_out else: # reverse the encoding of forwardRNN(actually backwardRNN), so the X_out is backward X_out = T.concatenate([X_out1, X_out2[:, ::-1, :]], axis=2) # [Bug] X_out1[-1] is time 0, but X_out2[-1] is ending time X_tail = T.concatenate([X_out1[:, -1], X_out2[:, -1]], axis=1) X_mask = T.cast(X_mask, dtype='float32') if return_embed: return X_out, X, X_mask, X_tail return X_out
[ "def", "build_encoder", "(", "self", ",", "source", ",", "context", "=", "None", ",", "return_embed", "=", "False", ",", "return_sequence", "=", "False", ")", ":", "# Initial state", "Init_h", "=", "None", "if", "self", ".", "use_context", ":", "Init_h", "=", "self", ".", "Initializer", "(", "context", ")", "# word embedding", "if", "not", "self", ".", "config", "[", "'bidirectional'", "]", ":", "X", ",", "X_mask", "=", "self", ".", "Embed", "(", "source", ",", "True", ")", "X_out", "=", "self", ".", "RNN", "(", "X", ",", "X_mask", ",", "C", "=", "context", ",", "init_h", "=", "Init_h", ",", "return_sequence", "=", "return_sequence", ")", "if", "return_sequence", ":", "X_tail", "=", "X_out", "[", ":", ",", "-", "1", "]", "else", ":", "X_tail", "=", "X_out", "else", ":", "# reverse the source for backwardRNN", "source2", "=", "source", "[", ":", ",", ":", ":", "-", "1", "]", "# map text to embedding", "X", ",", "X_mask", "=", "self", ".", "Embed", "(", "source", ",", "True", ")", "X2", ",", "X2_mask", "=", "self", ".", "Embed", "(", "source2", ",", "True", ")", "# get the encoding at each time t. [Bug?] run forwardRNN on the reverse text?", "X_out1", "=", "self", ".", "backwardRNN", "(", "X", ",", "X_mask", ",", "C", "=", "context", ",", "init_h", "=", "Init_h", ",", "return_sequence", "=", "return_sequence", ")", "X_out2", "=", "self", ".", "forwardRNN", "(", "X2", ",", "X2_mask", ",", "C", "=", "context", ",", "init_h", "=", "Init_h", ",", "return_sequence", "=", "return_sequence", ")", "# concatenate vectors of both forward and backward", "if", "not", "return_sequence", ":", "# [Bug]I think the X_out of backwardRNN is time 0, but for forwardRNN is ending time", "X_out", "=", "T", ".", "concatenate", "(", "[", "X_out1", ",", "X_out2", "]", ",", "axis", "=", "1", ")", "X_tail", "=", "X_out", "else", ":", "# reverse the encoding of forwardRNN(actually backwardRNN), so the X_out is backward", "X_out", "=", "T", ".", "concatenate", "(", "[", "X_out1", ",", "X_out2", "[", ":", ",", ":", ":", "-", "1", ",", ":", "]", "]", ",", "axis", "=", "2", ")", "# [Bug] X_out1[-1] is time 0, but X_out2[-1] is ending time", "X_tail", "=", "T", ".", "concatenate", "(", "[", "X_out1", "[", ":", ",", "-", "1", "]", ",", "X_out2", "[", ":", ",", "-", "1", "]", "]", ",", "axis", "=", "1", ")", "X_mask", "=", "T", ".", "cast", "(", "X_mask", ",", "dtype", "=", "'float32'", ")", "if", "return_embed", ":", "return", "X_out", ",", "X", ",", "X_mask", ",", "X_tail", "return", "X_out" ]
https://github.com/memray/seq2seq-keyphrase/blob/9145c63ebdc4c3bc431f8091dc52547a46804012/emolga/models/encdec.py#L257-L317
CoinAlpha/hummingbot
36f6149c1644c07cd36795b915f38b8f49b798e7
hummingbot/connector/derivative/bybit_perpetual/bybit_perpetual_api_order_book_data_source.py
python
BybitPerpetualAPIOrderBookDataSource._create_websocket_connection
(self, url: str)
Initialize WebSocket client for UserStreamDataSource
Initialize WebSocket client for UserStreamDataSource
[ "Initialize", "WebSocket", "client", "for", "UserStreamDataSource" ]
async def _create_websocket_connection(self, url: str) -> BybitPerpetualWebSocketAdaptor: """ Initialize WebSocket client for UserStreamDataSource """ try: session = await self._get_session() ws = await session.ws_connect(url) return BybitPerpetualWebSocketAdaptor(websocket=ws) except asyncio.CancelledError: raise except Exception as ex: self.logger().network(f"Unexpected error occurred during {CONSTANTS.EXCHANGE_NAME} WebSocket Connection " f"({ex})") raise
[ "async", "def", "_create_websocket_connection", "(", "self", ",", "url", ":", "str", ")", "->", "BybitPerpetualWebSocketAdaptor", ":", "try", ":", "session", "=", "await", "self", ".", "_get_session", "(", ")", "ws", "=", "await", "session", ".", "ws_connect", "(", "url", ")", "return", "BybitPerpetualWebSocketAdaptor", "(", "websocket", "=", "ws", ")", "except", "asyncio", ".", "CancelledError", ":", "raise", "except", "Exception", "as", "ex", ":", "self", ".", "logger", "(", ")", ".", "network", "(", "f\"Unexpected error occurred during {CONSTANTS.EXCHANGE_NAME} WebSocket Connection \"", "f\"({ex})\"", ")", "raise" ]
https://github.com/CoinAlpha/hummingbot/blob/36f6149c1644c07cd36795b915f38b8f49b798e7/hummingbot/connector/derivative/bybit_perpetual/bybit_perpetual_api_order_book_data_source.py#L76-L89
IronLanguages/main
a949455434b1fda8c783289e897e78a9a0caabb5
External.LCA_RESTRICTED/Languages/CPython/27/Lib/idlelib/tabbedpages.py
python
TabSet._arrange_tabs
(self)
Arrange the tabs in rows, in the order in which they were added. If n_rows >= 1, this will be the number of rows used. Otherwise the number of rows will be calculated according to the number of tabs and max_tabs_per_row. In this case, the number of rows may change when adding/removing tabs.
Arrange the tabs in rows, in the order in which they were added.
[ "Arrange", "the", "tabs", "in", "rows", "in", "the", "order", "in", "which", "they", "were", "added", "." ]
def _arrange_tabs(self): """ Arrange the tabs in rows, in the order in which they were added. If n_rows >= 1, this will be the number of rows used. Otherwise the number of rows will be calculated according to the number of tabs and max_tabs_per_row. In this case, the number of rows may change when adding/removing tabs. """ # remove all tabs and rows for tab_name in self._tabs.keys(): self._tabs.pop(tab_name).destroy() self._reset_tab_rows() if not self._tab_names: return if self.n_rows is not None and self.n_rows > 0: n_rows = self.n_rows else: # calculate the required number of rows n_rows = (len(self._tab_names) - 1) // self.max_tabs_per_row + 1 # not expanding the tabs with more than one row is very ugly expand_tabs = self.expand_tabs or n_rows > 1 i = 0 # index in self._tab_names for row_index in xrange(n_rows): # calculate required number of tabs in this row n_tabs = (len(self._tab_names) - i - 1) // (n_rows - row_index) + 1 tab_names = self._tab_names[i:i + n_tabs] i += n_tabs self._add_tab_row(tab_names, expand_tabs) # re-select selected tab so it is properly displayed selected = self._selected_tab self.set_selected_tab(None) if selected in self._tab_names: self.set_selected_tab(selected)
[ "def", "_arrange_tabs", "(", "self", ")", ":", "# remove all tabs and rows", "for", "tab_name", "in", "self", ".", "_tabs", ".", "keys", "(", ")", ":", "self", ".", "_tabs", ".", "pop", "(", "tab_name", ")", ".", "destroy", "(", ")", "self", ".", "_reset_tab_rows", "(", ")", "if", "not", "self", ".", "_tab_names", ":", "return", "if", "self", ".", "n_rows", "is", "not", "None", "and", "self", ".", "n_rows", ">", "0", ":", "n_rows", "=", "self", ".", "n_rows", "else", ":", "# calculate the required number of rows", "n_rows", "=", "(", "len", "(", "self", ".", "_tab_names", ")", "-", "1", ")", "//", "self", ".", "max_tabs_per_row", "+", "1", "# not expanding the tabs with more than one row is very ugly", "expand_tabs", "=", "self", ".", "expand_tabs", "or", "n_rows", ">", "1", "i", "=", "0", "# index in self._tab_names", "for", "row_index", "in", "xrange", "(", "n_rows", ")", ":", "# calculate required number of tabs in this row", "n_tabs", "=", "(", "len", "(", "self", ".", "_tab_names", ")", "-", "i", "-", "1", ")", "//", "(", "n_rows", "-", "row_index", ")", "+", "1", "tab_names", "=", "self", ".", "_tab_names", "[", "i", ":", "i", "+", "n_tabs", "]", "i", "+=", "n_tabs", "self", ".", "_add_tab_row", "(", "tab_names", ",", "expand_tabs", ")", "# re-select selected tab so it is properly displayed", "selected", "=", "self", ".", "_selected_tab", "self", ".", "set_selected_tab", "(", "None", ")", "if", "selected", "in", "self", ".", "_tab_names", ":", "self", ".", "set_selected_tab", "(", "selected", ")" ]
https://github.com/IronLanguages/main/blob/a949455434b1fda8c783289e897e78a9a0caabb5/External.LCA_RESTRICTED/Languages/CPython/27/Lib/idlelib/tabbedpages.py#L135-L173
scaleway/postal-address
968f19aadf254695d7383ff9f6012f1bfaf1f7a4
postal_address/address.py
python
Address.__setitem__
(self, key, value)
Set a field's value. Only base fields are allowed to be set explicitely.
Set a field's value.
[ "Set", "a", "field", "s", "value", "." ]
def __setitem__(self, key, value): """ Set a field's value. Only base fields are allowed to be set explicitely. """ if not isinstance(key, basestring): raise TypeError if not (isinstance(value, basestring) or value is None): raise TypeError if key not in self.BASE_FIELD_IDS: raise KeyError self._fields[key] = value
[ "def", "__setitem__", "(", "self", ",", "key", ",", "value", ")", ":", "if", "not", "isinstance", "(", "key", ",", "basestring", ")", ":", "raise", "TypeError", "if", "not", "(", "isinstance", "(", "value", ",", "basestring", ")", "or", "value", "is", "None", ")", ":", "raise", "TypeError", "if", "key", "not", "in", "self", ".", "BASE_FIELD_IDS", ":", "raise", "KeyError", "self", ".", "_fields", "[", "key", "]", "=", "value" ]
https://github.com/scaleway/postal-address/blob/968f19aadf254695d7383ff9f6012f1bfaf1f7a4/postal_address/address.py#L197-L208
samuelclay/NewsBlur
2c45209df01a1566ea105e04d499367f32ac9ad2
utils/feed_functions.py
python
Counter.__or__
(self, other)
return result
Union is the maximum of value in either of the input counters. >>> Counter('abbb') | Counter('bcc') Counter({'b': 3, 'c': 2, 'a': 1})
Union is the maximum of value in either of the input counters.
[ "Union", "is", "the", "maximum", "of", "value", "in", "either", "of", "the", "input", "counters", "." ]
def __or__(self, other): '''Union is the maximum of value in either of the input counters. >>> Counter('abbb') | Counter('bcc') Counter({'b': 3, 'c': 2, 'a': 1}) ''' if not isinstance(other, Counter): return NotImplemented _max = max result = Counter() for elem in set(self) | set(other): newcount = _max(self[elem], other[elem]) if newcount > 0: result[elem] = newcount return result
[ "def", "__or__", "(", "self", ",", "other", ")", ":", "if", "not", "isinstance", "(", "other", ",", "Counter", ")", ":", "return", "NotImplemented", "_max", "=", "max", "result", "=", "Counter", "(", ")", "for", "elem", "in", "set", "(", "self", ")", "|", "set", "(", "other", ")", ":", "newcount", "=", "_max", "(", "self", "[", "elem", "]", ",", "other", "[", "elem", "]", ")", "if", "newcount", ">", "0", ":", "result", "[", "elem", "]", "=", "newcount", "return", "result" ]
https://github.com/samuelclay/NewsBlur/blob/2c45209df01a1566ea105e04d499367f32ac9ad2/utils/feed_functions.py#L377-L392
huawei-noah/vega
d9f13deede7f2b584e4b1d32ffdb833856129989
vega/networks/pytorch/customs/modnas/arch_space/torch/mobilenetv3.py
python
mobilenetv3_large
(cfgs=None, **kwargs)
return MobileNetV3(cfgs, mode='large', **kwargs)
Construct a MobileNetV3-Large model.
Construct a MobileNetV3-Large model.
[ "Construct", "a", "MobileNetV3", "-", "Large", "model", "." ]
def mobilenetv3_large(cfgs=None, **kwargs): """Construct a MobileNetV3-Large model.""" cfgs = [ # k, t, c, SE, NL, s [3, 0, 16, 0, 1, 2], [3, 16, 16, 0, 0, 1], [3, 64, 24, 0, 0, 2], [3, 72, 24, 0, 0, 1], [5, 72, 40, 1, 0, 2], [5, 120, 40, 1, 0, 1], [5, 120, 40, 1, 0, 1], [3, 240, 80, 0, 1, 2], [3, 200, 80, 0, 1, 1], [3, 184, 80, 0, 1, 1], [3, 184, 80, 0, 1, 1], [3, 480, 112, 1, 1, 1], [3, 672, 112, 1, 1, 1], [5, 672, 160, 1, 1, 2], [5, 960, 160, 1, 1, 1], [5, 960, 160, 1, 1, 1] ] if cfgs is None else cfgs return MobileNetV3(cfgs, mode='large', **kwargs)
[ "def", "mobilenetv3_large", "(", "cfgs", "=", "None", ",", "*", "*", "kwargs", ")", ":", "cfgs", "=", "[", "# k, t, c, SE, NL, s", "[", "3", ",", "0", ",", "16", ",", "0", ",", "1", ",", "2", "]", ",", "[", "3", ",", "16", ",", "16", ",", "0", ",", "0", ",", "1", "]", ",", "[", "3", ",", "64", ",", "24", ",", "0", ",", "0", ",", "2", "]", ",", "[", "3", ",", "72", ",", "24", ",", "0", ",", "0", ",", "1", "]", ",", "[", "5", ",", "72", ",", "40", ",", "1", ",", "0", ",", "2", "]", ",", "[", "5", ",", "120", ",", "40", ",", "1", ",", "0", ",", "1", "]", ",", "[", "5", ",", "120", ",", "40", ",", "1", ",", "0", ",", "1", "]", ",", "[", "3", ",", "240", ",", "80", ",", "0", ",", "1", ",", "2", "]", ",", "[", "3", ",", "200", ",", "80", ",", "0", ",", "1", ",", "1", "]", ",", "[", "3", ",", "184", ",", "80", ",", "0", ",", "1", ",", "1", "]", ",", "[", "3", ",", "184", ",", "80", ",", "0", ",", "1", ",", "1", "]", ",", "[", "3", ",", "480", ",", "112", ",", "1", ",", "1", ",", "1", "]", ",", "[", "3", ",", "672", ",", "112", ",", "1", ",", "1", ",", "1", "]", ",", "[", "5", ",", "672", ",", "160", ",", "1", ",", "1", ",", "2", "]", ",", "[", "5", ",", "960", ",", "160", ",", "1", ",", "1", ",", "1", "]", ",", "[", "5", ",", "960", ",", "160", ",", "1", ",", "1", ",", "1", "]", "]", "if", "cfgs", "is", "None", "else", "cfgs", "return", "MobileNetV3", "(", "cfgs", ",", "mode", "=", "'large'", ",", "*", "*", "kwargs", ")" ]
https://github.com/huawei-noah/vega/blob/d9f13deede7f2b584e4b1d32ffdb833856129989/vega/networks/pytorch/customs/modnas/arch_space/torch/mobilenetv3.py#L271-L292
pyfa-org/Pyfa
feaa52c36beeda21ab380fc74d8f871b81d49729
gui/builtinViews/fittingView.py
python
FittingView.click
(self, event)
Handle click event on modules. This is only useful for the State column. If multiple items are selected, and we have clicked the State column, iterate through the selections and change State
Handle click event on modules.
[ "Handle", "click", "event", "on", "modules", "." ]
def click(self, event): """ Handle click event on modules. This is only useful for the State column. If multiple items are selected, and we have clicked the State column, iterate through the selections and change State """ clickedRow, _, col = self.HitTestSubItem(event.Position) # only do State column and ignore invalid rows if clickedRow != -1 and clickedRow not in self.blanks and col == self.getColIndex(State): selectedRows = [] currentRow = self.GetFirstSelected() while currentRow != -1 and clickedRow not in self.blanks: selectedRows.append(currentRow) currentRow = self.GetNextSelected(currentRow) if clickedRow not in selectedRows: try: selectedMods = [self.mods[clickedRow]] except IndexError: return else: selectedMods = self.getSelectedMods() click = "ctrl" if event.GetModifiers() == wx.MOD_CONTROL or event.middleIsDown else "right" if event.GetButton() == 3 else "left" try: mainMod = self.mods[clickedRow] except IndexError: return if mainMod.isEmpty: return fitID = self.mainFrame.getActiveFit() fit = Fit.getInstance().getFit(fitID) if mainMod not in fit.modules: return mainPosition = fit.modules.index(mainMod) if event.GetModifiers() == wx.MOD_ALT: positions = getSimilarModPositions(fit.modules, mainMod) else: positions = [] for position, mod in enumerate(fit.modules): if mod in selectedMods: positions.append(position) self.mainFrame.command.Submit(cmd.GuiChangeLocalModuleStatesCommand( fitID=fitID, mainPosition=mainPosition, positions=positions, click=click)) # update state tooltip tooltip = self.activeColumns[col].getToolTip(self.mods[clickedRow]) if tooltip: self.SetToolTip(tooltip) else: event.Skip()
[ "def", "click", "(", "self", ",", "event", ")", ":", "clickedRow", ",", "_", ",", "col", "=", "self", ".", "HitTestSubItem", "(", "event", ".", "Position", ")", "# only do State column and ignore invalid rows", "if", "clickedRow", "!=", "-", "1", "and", "clickedRow", "not", "in", "self", ".", "blanks", "and", "col", "==", "self", ".", "getColIndex", "(", "State", ")", ":", "selectedRows", "=", "[", "]", "currentRow", "=", "self", ".", "GetFirstSelected", "(", ")", "while", "currentRow", "!=", "-", "1", "and", "clickedRow", "not", "in", "self", ".", "blanks", ":", "selectedRows", ".", "append", "(", "currentRow", ")", "currentRow", "=", "self", ".", "GetNextSelected", "(", "currentRow", ")", "if", "clickedRow", "not", "in", "selectedRows", ":", "try", ":", "selectedMods", "=", "[", "self", ".", "mods", "[", "clickedRow", "]", "]", "except", "IndexError", ":", "return", "else", ":", "selectedMods", "=", "self", ".", "getSelectedMods", "(", ")", "click", "=", "\"ctrl\"", "if", "event", ".", "GetModifiers", "(", ")", "==", "wx", ".", "MOD_CONTROL", "or", "event", ".", "middleIsDown", "else", "\"right\"", "if", "event", ".", "GetButton", "(", ")", "==", "3", "else", "\"left\"", "try", ":", "mainMod", "=", "self", ".", "mods", "[", "clickedRow", "]", "except", "IndexError", ":", "return", "if", "mainMod", ".", "isEmpty", ":", "return", "fitID", "=", "self", ".", "mainFrame", ".", "getActiveFit", "(", ")", "fit", "=", "Fit", ".", "getInstance", "(", ")", ".", "getFit", "(", "fitID", ")", "if", "mainMod", "not", "in", "fit", ".", "modules", ":", "return", "mainPosition", "=", "fit", ".", "modules", ".", "index", "(", "mainMod", ")", "if", "event", ".", "GetModifiers", "(", ")", "==", "wx", ".", "MOD_ALT", ":", "positions", "=", "getSimilarModPositions", "(", "fit", ".", "modules", ",", "mainMod", ")", "else", ":", "positions", "=", "[", "]", "for", "position", ",", "mod", "in", "enumerate", "(", "fit", ".", "modules", ")", ":", "if", "mod", "in", "selectedMods", ":", "positions", ".", "append", "(", "position", ")", "self", ".", "mainFrame", ".", "command", ".", "Submit", "(", "cmd", ".", "GuiChangeLocalModuleStatesCommand", "(", "fitID", "=", "fitID", ",", "mainPosition", "=", "mainPosition", ",", "positions", "=", "positions", ",", "click", "=", "click", ")", ")", "# update state tooltip", "tooltip", "=", "self", ".", "activeColumns", "[", "col", "]", ".", "getToolTip", "(", "self", ".", "mods", "[", "clickedRow", "]", ")", "if", "tooltip", ":", "self", ".", "SetToolTip", "(", "tooltip", ")", "else", ":", "event", ".", "Skip", "(", ")" ]
https://github.com/pyfa-org/Pyfa/blob/feaa52c36beeda21ab380fc74d8f871b81d49729/gui/builtinViews/fittingView.py#L669-L729
kubeflow-kale/kale
bda9d296822e56ba8fe76b0072e656005da04905
backend/kale/rpc/rok.py
python
check_rok_availability
(request)
Check if Rok is available.
Check if Rok is available.
[ "Check", "if", "Rok", "is", "available", "." ]
def check_rok_availability(request): """Check if Rok is available.""" log = request.log if hasattr(request, "log") else logger try: rok = rokutils.get_client() except ImportError: log.exception("Failed to import RokClient") raise RPCNotFoundError(details="Rok Gateway Client module not found", trans_id=request.trans_id) except Exception: log.exception("Failed to initialize RokClient") raise RPCServiceUnavailableError(details=("Failed to initialize" " RokClient"), trans_id=request.trans_id) try: rok.account_info() except Exception: log.exception("Failed to retrieve account information") raise RPCServiceUnavailableError(details="Failed to access Rok", trans_id=request.trans_id) name = podutils.get_pod_name() namespace = podutils.get_namespace() try: suggestions = rok.version_register_suggest(rokutils.DEFAULT_BUCKET, name, "jupyter", "params:lab", {"namespace": namespace}, ignore_env=True) except Exception as e: log.exception("Failed to list lab suggestions") message = "%s: %s" % (e.__class__.__name__, e) raise RPCServiceUnavailableError(message=message, details=("Rok cannot list notebooks" " in this namespace"), trans_id=request.trans_id) if not any(s["value"] == name for s in suggestions): log.error("Could not find notebook '%s' in list of suggestions", name) raise RPCNotFoundError(details=("Could not find this notebook in" " notebooks listed by Rok"), trans_id=request.trans_id)
[ "def", "check_rok_availability", "(", "request", ")", ":", "log", "=", "request", ".", "log", "if", "hasattr", "(", "request", ",", "\"log\"", ")", "else", "logger", "try", ":", "rok", "=", "rokutils", ".", "get_client", "(", ")", "except", "ImportError", ":", "log", ".", "exception", "(", "\"Failed to import RokClient\"", ")", "raise", "RPCNotFoundError", "(", "details", "=", "\"Rok Gateway Client module not found\"", ",", "trans_id", "=", "request", ".", "trans_id", ")", "except", "Exception", ":", "log", ".", "exception", "(", "\"Failed to initialize RokClient\"", ")", "raise", "RPCServiceUnavailableError", "(", "details", "=", "(", "\"Failed to initialize\"", "\" RokClient\"", ")", ",", "trans_id", "=", "request", ".", "trans_id", ")", "try", ":", "rok", ".", "account_info", "(", ")", "except", "Exception", ":", "log", ".", "exception", "(", "\"Failed to retrieve account information\"", ")", "raise", "RPCServiceUnavailableError", "(", "details", "=", "\"Failed to access Rok\"", ",", "trans_id", "=", "request", ".", "trans_id", ")", "name", "=", "podutils", ".", "get_pod_name", "(", ")", "namespace", "=", "podutils", ".", "get_namespace", "(", ")", "try", ":", "suggestions", "=", "rok", ".", "version_register_suggest", "(", "rokutils", ".", "DEFAULT_BUCKET", ",", "name", ",", "\"jupyter\"", ",", "\"params:lab\"", ",", "{", "\"namespace\"", ":", "namespace", "}", ",", "ignore_env", "=", "True", ")", "except", "Exception", "as", "e", ":", "log", ".", "exception", "(", "\"Failed to list lab suggestions\"", ")", "message", "=", "\"%s: %s\"", "%", "(", "e", ".", "__class__", ".", "__name__", ",", "e", ")", "raise", "RPCServiceUnavailableError", "(", "message", "=", "message", ",", "details", "=", "(", "\"Rok cannot list notebooks\"", "\" in this namespace\"", ")", ",", "trans_id", "=", "request", ".", "trans_id", ")", "if", "not", "any", "(", "s", "[", "\"value\"", "]", "==", "name", "for", "s", "in", "suggestions", ")", ":", "log", ".", "error", "(", "\"Could not find notebook '%s' in list of suggestions\"", ",", "name", ")", "raise", "RPCNotFoundError", "(", "details", "=", "(", "\"Could not find this notebook in\"", "\" notebooks listed by Rok\"", ")", ",", "trans_id", "=", "request", ".", "trans_id", ")" ]
https://github.com/kubeflow-kale/kale/blob/bda9d296822e56ba8fe76b0072e656005da04905/backend/kale/rpc/rok.py#L40-L82
shellphish/ictf-framework
c0384f12060cf47442a52f516c6e78bd722f208a
database/support/mysql-connector-python-2.1.3/lib/mysql/connector/fabric/connection.py
python
Fabric.get_sharding_information
(self, tables=None, database=None)
Get and cache the sharding information for given tables This method is fetching sharding information from MySQL Fabric and caches the result. The tables argument must be sequence of sequences contain the name of the database and table. If no database is given, the value for the database argument will be used. Examples: tables = [('salary',), ('employees',)] get_sharding_information(tables, database='employees') tables = [('salary', 'employees'), ('employees', employees)] get_sharding_information(tables) Raises InterfaceError on errors; ValueError when something is wrong with the tables argument.
Get and cache the sharding information for given tables
[ "Get", "and", "cache", "the", "sharding", "information", "for", "given", "tables" ]
def get_sharding_information(self, tables=None, database=None): """Get and cache the sharding information for given tables This method is fetching sharding information from MySQL Fabric and caches the result. The tables argument must be sequence of sequences contain the name of the database and table. If no database is given, the value for the database argument will be used. Examples: tables = [('salary',), ('employees',)] get_sharding_information(tables, database='employees') tables = [('salary', 'employees'), ('employees', employees)] get_sharding_information(tables) Raises InterfaceError on errors; ValueError when something is wrong with the tables argument. """ if not isinstance(tables, (list, tuple)): raise ValueError("tables should be a sequence") patterns = [] for table in tables: if not isinstance(table, (list, tuple)) and not database: raise ValueError("No database specified for table {0}".format( table)) if isinstance(table, (list, tuple)): dbase = table[1] tbl = table[0] else: dbase = database tbl = table patterns.append("{0}.{1}".format(dbase, tbl)) inst = self.get_instance() try: fset = inst.execute( 'dump', 'sharding_information', self._version_token, ','.join(patterns) ) except (Fault, socket.error) as exc: msg = "Looking up sharding information failed : {error}".format( error=str(exc)) raise InterfaceError(msg) for row in fset.rows(): self._cache.sharding_cache_table( FabricShard(row.schema_name, row.table_name, row.column_name, row.lower_bound, row.shard_id, row.type_name, row.group_id, row.global_group) )
[ "def", "get_sharding_information", "(", "self", ",", "tables", "=", "None", ",", "database", "=", "None", ")", ":", "if", "not", "isinstance", "(", "tables", ",", "(", "list", ",", "tuple", ")", ")", ":", "raise", "ValueError", "(", "\"tables should be a sequence\"", ")", "patterns", "=", "[", "]", "for", "table", "in", "tables", ":", "if", "not", "isinstance", "(", "table", ",", "(", "list", ",", "tuple", ")", ")", "and", "not", "database", ":", "raise", "ValueError", "(", "\"No database specified for table {0}\"", ".", "format", "(", "table", ")", ")", "if", "isinstance", "(", "table", ",", "(", "list", ",", "tuple", ")", ")", ":", "dbase", "=", "table", "[", "1", "]", "tbl", "=", "table", "[", "0", "]", "else", ":", "dbase", "=", "database", "tbl", "=", "table", "patterns", ".", "append", "(", "\"{0}.{1}\"", ".", "format", "(", "dbase", ",", "tbl", ")", ")", "inst", "=", "self", ".", "get_instance", "(", ")", "try", ":", "fset", "=", "inst", ".", "execute", "(", "'dump'", ",", "'sharding_information'", ",", "self", ".", "_version_token", ",", "','", ".", "join", "(", "patterns", ")", ")", "except", "(", "Fault", ",", "socket", ".", "error", ")", "as", "exc", ":", "msg", "=", "\"Looking up sharding information failed : {error}\"", ".", "format", "(", "error", "=", "str", "(", "exc", ")", ")", "raise", "InterfaceError", "(", "msg", ")", "for", "row", "in", "fset", ".", "rows", "(", ")", ":", "self", ".", "_cache", ".", "sharding_cache_table", "(", "FabricShard", "(", "row", ".", "schema_name", ",", "row", ".", "table_name", ",", "row", ".", "column_name", ",", "row", ".", "lower_bound", ",", "row", ".", "shard_id", ",", "row", ".", "type_name", ",", "row", ".", "group_id", ",", "row", ".", "global_group", ")", ")" ]
https://github.com/shellphish/ictf-framework/blob/c0384f12060cf47442a52f516c6e78bd722f208a/database/support/mysql-connector-python-2.1.3/lib/mysql/connector/fabric/connection.py#L864-L917
JaniceWuo/MovieRecommend
4c86db64ca45598917d304f535413df3bc9fea65
movierecommend/venv1/Lib/site-packages/django/contrib/gis/db/backends/mysql/operations.py
python
MySQLOperations.get_db_converters
(self, expression)
return converters
[]
def get_db_converters(self, expression): converters = super(MySQLOperations, self).get_db_converters(expression) if isinstance(expression.output_field, GeometryField) and self.uses_invalid_empty_geometry_collection: converters.append(self.convert_invalid_empty_geometry_collection) return converters
[ "def", "get_db_converters", "(", "self", ",", "expression", ")", ":", "converters", "=", "super", "(", "MySQLOperations", ",", "self", ")", ".", "get_db_converters", "(", "expression", ")", "if", "isinstance", "(", "expression", ".", "output_field", ",", "GeometryField", ")", "and", "self", ".", "uses_invalid_empty_geometry_collection", ":", "converters", ".", "append", "(", "self", ".", "convert_invalid_empty_geometry_collection", ")", "return", "converters" ]
https://github.com/JaniceWuo/MovieRecommend/blob/4c86db64ca45598917d304f535413df3bc9fea65/movierecommend/venv1/Lib/site-packages/django/contrib/gis/db/backends/mysql/operations.py#L100-L104
AppScale/gts
46f909cf5dc5ba81faf9d81dc9af598dcf8a82a9
AppServer/lib/django-1.3/django/middleware/common.py
python
CommonMiddleware.process_response
(self, request, response)
return response
Send broken link emails and calculate the Etag, if needed.
Send broken link emails and calculate the Etag, if needed.
[ "Send", "broken", "link", "emails", "and", "calculate", "the", "Etag", "if", "needed", "." ]
def process_response(self, request, response): "Send broken link emails and calculate the Etag, if needed." if response.status_code == 404: if settings.SEND_BROKEN_LINK_EMAILS and not settings.DEBUG: # If the referrer was from an internal link or a non-search-engine site, # send a note to the managers. domain = request.get_host() referer = request.META.get('HTTP_REFERER', None) is_internal = _is_internal_request(domain, referer) path = request.get_full_path() if referer and not _is_ignorable_404(path) and (is_internal or '?' not in referer): ua = request.META.get('HTTP_USER_AGENT', '<none>') ip = request.META.get('REMOTE_ADDR', '<none>') mail_managers("Broken %slink on %s" % ((is_internal and 'INTERNAL ' or ''), domain), "Referrer: %s\nRequested URL: %s\nUser agent: %s\nIP address: %s\n" \ % (referer, request.get_full_path(), ua, ip), fail_silently=True) return response # Use ETags, if requested. if settings.USE_ETAGS: if response.has_header('ETag'): etag = response['ETag'] else: etag = '"%s"' % md5_constructor(response.content).hexdigest() if response.status_code >= 200 and response.status_code < 300 and request.META.get('HTTP_IF_NONE_MATCH') == etag: cookies = response.cookies response = http.HttpResponseNotModified() response.cookies = cookies else: response['ETag'] = etag return response
[ "def", "process_response", "(", "self", ",", "request", ",", "response", ")", ":", "if", "response", ".", "status_code", "==", "404", ":", "if", "settings", ".", "SEND_BROKEN_LINK_EMAILS", "and", "not", "settings", ".", "DEBUG", ":", "# If the referrer was from an internal link or a non-search-engine site,", "# send a note to the managers.", "domain", "=", "request", ".", "get_host", "(", ")", "referer", "=", "request", ".", "META", ".", "get", "(", "'HTTP_REFERER'", ",", "None", ")", "is_internal", "=", "_is_internal_request", "(", "domain", ",", "referer", ")", "path", "=", "request", ".", "get_full_path", "(", ")", "if", "referer", "and", "not", "_is_ignorable_404", "(", "path", ")", "and", "(", "is_internal", "or", "'?'", "not", "in", "referer", ")", ":", "ua", "=", "request", ".", "META", ".", "get", "(", "'HTTP_USER_AGENT'", ",", "'<none>'", ")", "ip", "=", "request", ".", "META", ".", "get", "(", "'REMOTE_ADDR'", ",", "'<none>'", ")", "mail_managers", "(", "\"Broken %slink on %s\"", "%", "(", "(", "is_internal", "and", "'INTERNAL '", "or", "''", ")", ",", "domain", ")", ",", "\"Referrer: %s\\nRequested URL: %s\\nUser agent: %s\\nIP address: %s\\n\"", "%", "(", "referer", ",", "request", ".", "get_full_path", "(", ")", ",", "ua", ",", "ip", ")", ",", "fail_silently", "=", "True", ")", "return", "response", "# Use ETags, if requested.", "if", "settings", ".", "USE_ETAGS", ":", "if", "response", ".", "has_header", "(", "'ETag'", ")", ":", "etag", "=", "response", "[", "'ETag'", "]", "else", ":", "etag", "=", "'\"%s\"'", "%", "md5_constructor", "(", "response", ".", "content", ")", ".", "hexdigest", "(", ")", "if", "response", ".", "status_code", ">=", "200", "and", "response", ".", "status_code", "<", "300", "and", "request", ".", "META", ".", "get", "(", "'HTTP_IF_NONE_MATCH'", ")", "==", "etag", ":", "cookies", "=", "response", ".", "cookies", "response", "=", "http", ".", "HttpResponseNotModified", "(", ")", "response", ".", "cookies", "=", "cookies", "else", ":", "response", "[", "'ETag'", "]", "=", "etag", "return", "response" ]
https://github.com/AppScale/gts/blob/46f909cf5dc5ba81faf9d81dc9af598dcf8a82a9/AppServer/lib/django-1.3/django/middleware/common.py#L92-L124
carbonblack/cbapi-python
24d677ffd99aee911c2c76ecb5528e4e9320c7cc
src/cbapi/psc/alerts_query.py
python
CBAnalyticsAlertSearchQuery.set_device_locations
(self, locations)
return self
Restricts the alerts that this query is performed on to the specified device locations. :param locations list: List of device locations to look for. Valid values are "ONSITE", "OFFSITE", and "UNKNOWN". :return: This instance.
Restricts the alerts that this query is performed on to the specified device locations.
[ "Restricts", "the", "alerts", "that", "this", "query", "is", "performed", "on", "to", "the", "specified", "device", "locations", "." ]
def set_device_locations(self, locations): """ Restricts the alerts that this query is performed on to the specified device locations. :param locations list: List of device locations to look for. Valid values are "ONSITE", "OFFSITE", and "UNKNOWN". :return: This instance. """ if not all((location in CBAnalyticsAlertSearchQuery.VALID_LOCATIONS) for location in locations): raise ApiError("One or more invalid device locations") self._update_criteria("device_location", locations) return self
[ "def", "set_device_locations", "(", "self", ",", "locations", ")", ":", "if", "not", "all", "(", "(", "location", "in", "CBAnalyticsAlertSearchQuery", ".", "VALID_LOCATIONS", ")", "for", "location", "in", "locations", ")", ":", "raise", "ApiError", "(", "\"One or more invalid device locations\"", ")", "self", ".", "_update_criteria", "(", "\"device_location\"", ",", "locations", ")", "return", "self" ]
https://github.com/carbonblack/cbapi-python/blob/24d677ffd99aee911c2c76ecb5528e4e9320c7cc/src/cbapi/psc/alerts_query.py#L567-L580
holzschu/Carnets
44effb10ddfc6aa5c8b0687582a724ba82c6b547
Library/lib/python3.7/site-packages/jupyter_client/threaded.py
python
ThreadedZMQSocketChannel._handle_recv
(self, msg)
Callback for stream.on_recv. Unpacks message, and calls handlers with it.
Callback for stream.on_recv.
[ "Callback", "for", "stream", ".", "on_recv", "." ]
def _handle_recv(self, msg): """Callback for stream.on_recv. Unpacks message, and calls handlers with it. """ ident,smsg = self.session.feed_identities(msg) msg = self.session.deserialize(smsg) # let client inspect messages if self._inspect: self._inspect(msg) self.call_handlers(msg)
[ "def", "_handle_recv", "(", "self", ",", "msg", ")", ":", "ident", ",", "smsg", "=", "self", ".", "session", ".", "feed_identities", "(", "msg", ")", "msg", "=", "self", ".", "session", ".", "deserialize", "(", "smsg", ")", "# let client inspect messages", "if", "self", ".", "_inspect", ":", "self", ".", "_inspect", "(", "msg", ")", "self", ".", "call_handlers", "(", "msg", ")" ]
https://github.com/holzschu/Carnets/blob/44effb10ddfc6aa5c8b0687582a724ba82c6b547/Library/lib/python3.7/site-packages/jupyter_client/threaded.py#L87-L97
pymedusa/Medusa
1405fbb6eb8ef4d20fcca24c32ddca52b11f0f38
ext/tvdbapiv2/models/episode.py
python
Episode.director
(self, director)
Sets the director of this Episode. :param director: The director of this Episode. :type: text_type
Sets the director of this Episode.
[ "Sets", "the", "director", "of", "this", "Episode", "." ]
def director(self, director): """ Sets the director of this Episode. :param director: The director of this Episode. :type: text_type """ self._director = director
[ "def", "director", "(", "self", ",", "director", ")", ":", "self", ".", "_director", "=", "director" ]
https://github.com/pymedusa/Medusa/blob/1405fbb6eb8ef4d20fcca24c32ddca52b11f0f38/ext/tvdbapiv2/models/episode.py#L280-L288
ganeti/ganeti
d340a9ddd12f501bef57da421b5f9b969a4ba905
lib/hypervisor/hv_lxc.py
python
LXCHypervisor._LoadInstanceStash
(self, instance_name)
Load information stashed in file which was created by L{_SaveInstanceStash}.
Load information stashed in file which was created by L{_SaveInstanceStash}.
[ "Load", "information", "stashed", "in", "file", "which", "was", "created", "by", "L", "{", "_SaveInstanceStash", "}", "." ]
def _LoadInstanceStash(self, instance_name): """Load information stashed in file which was created by L{_SaveInstanceStash}. """ stash_file = self._InstanceStashFilePath(instance_name) try: return serializer.Load(utils.ReadFile(stash_file)) except (EnvironmentError, ValueError) as err: raise HypervisorError("Failed to load instance stash file %s : %s" % (stash_file, err))
[ "def", "_LoadInstanceStash", "(", "self", ",", "instance_name", ")", ":", "stash_file", "=", "self", ".", "_InstanceStashFilePath", "(", "instance_name", ")", "try", ":", "return", "serializer", ".", "Load", "(", "utils", ".", "ReadFile", "(", "stash_file", ")", ")", "except", "(", "EnvironmentError", ",", "ValueError", ")", "as", "err", ":", "raise", "HypervisorError", "(", "\"Failed to load instance stash file %s : %s\"", "%", "(", "stash_file", ",", "err", ")", ")" ]
https://github.com/ganeti/ganeti/blob/d340a9ddd12f501bef57da421b5f9b969a4ba905/lib/hypervisor/hv_lxc.py#L232-L242
PrefectHQ/prefect
67bdc94e2211726d99561f6f52614bec8970e981
src/prefect/core/parameter.py
python
Parameter.serialize
(self)
return prefect.serialization.task.ParameterSchema().dump(self)
Creates a serialized representation of this parameter Returns: - dict representing this parameter
Creates a serialized representation of this parameter
[ "Creates", "a", "serialized", "representation", "of", "this", "parameter" ]
def serialize(self) -> Dict[str, Any]: """ Creates a serialized representation of this parameter Returns: - dict representing this parameter """ return prefect.serialization.task.ParameterSchema().dump(self)
[ "def", "serialize", "(", "self", ")", "->", "Dict", "[", "str", ",", "Any", "]", ":", "return", "prefect", ".", "serialization", ".", "task", ".", "ParameterSchema", "(", ")", ".", "dump", "(", "self", ")" ]
https://github.com/PrefectHQ/prefect/blob/67bdc94e2211726d99561f6f52614bec8970e981/src/prefect/core/parameter.py#L109-L116
Autodesk/molecular-design-toolkit
5f45a47fea21d3603899a6366cb163024f0e2ec4
moldesign/molecules/atomcollections.py
python
AtomGroup.center_of_mass
(self)
return com
units.Vector[length]: The (x,y,z) coordinates of this object's center of mass
units.Vector[length]: The (x,y,z) coordinates of this object's center of mass
[ "units", ".", "Vector", "[", "length", "]", ":", "The", "(", "x", "y", "z", ")", "coordinates", "of", "this", "object", "s", "center", "of", "mass" ]
def center_of_mass(self): """ units.Vector[length]: The (x,y,z) coordinates of this object's center of mass """ if self.num_atoms == 0: # nicer exception than divide-by-zero raise ValueError('"%s" has no atoms' % str(self)) total_mass = 0.0 * u.default.mass com = np.zeros(3) * u.default.length * u.default.mass for atom in self.atoms: total_mass += atom.mass com += atom.position * atom.mass com = com / total_mass return com
[ "def", "center_of_mass", "(", "self", ")", ":", "if", "self", ".", "num_atoms", "==", "0", ":", "# nicer exception than divide-by-zero", "raise", "ValueError", "(", "'\"%s\" has no atoms'", "%", "str", "(", "self", ")", ")", "total_mass", "=", "0.0", "*", "u", ".", "default", ".", "mass", "com", "=", "np", ".", "zeros", "(", "3", ")", "*", "u", ".", "default", ".", "length", "*", "u", ".", "default", ".", "mass", "for", "atom", "in", "self", ".", "atoms", ":", "total_mass", "+=", "atom", ".", "mass", "com", "+=", "atom", ".", "position", "*", "atom", ".", "mass", "com", "=", "com", "/", "total_mass", "return", "com" ]
https://github.com/Autodesk/molecular-design-toolkit/blob/5f45a47fea21d3603899a6366cb163024f0e2ec4/moldesign/molecules/atomcollections.py#L180-L191
Vespa314/bilibili-api
42b6b90aa7c141f5cfb0fdc754435518106f6966
bilibili-video/GetAssDanmaku.py
python
GetVideoInfo
(aid,appkey,page = 1,AppSecret=None,fav = None)
return video
[]
def GetVideoInfo(aid,appkey,page = 1,AppSecret=None,fav = None): paras = {'id': GetString(aid),'page': GetString(page)} if fav != None: paras['fav'] = fav url = 'http://api.bilibili.cn/view?'+GetSign(paras,appkey,AppSecret) jsoninfo = JsonInfo(url) video = Video(aid,jsoninfo.Getvalue('title')) video.guankan = jsoninfo.Getvalue('play') video.commentNumber = jsoninfo.Getvalue('review') video.danmu = jsoninfo.Getvalue('video_review') video.shoucang = jsoninfo.Getvalue('favorites') video.description = jsoninfo.Getvalue('description') video.tag = [] taglist = jsoninfo.Getvalue('tag') if taglist != None: for tag in taglist.split(','): video.tag.append(tag) video.cover = jsoninfo.Getvalue('pic') video.author = User(jsoninfo.Getvalue('mid'),jsoninfo.Getvalue('author')) video.page = jsoninfo.Getvalue('pages') video.date = jsoninfo.Getvalue('created_at') video.credit = jsoninfo.Getvalue('credit') video.coin = jsoninfo.Getvalue('coins') video.spid = jsoninfo.Getvalue('spid') video.cid = jsoninfo.Getvalue('cid') video.offsite = jsoninfo.Getvalue('offsite') video.partname = jsoninfo.Getvalue('partname') video.src = jsoninfo.Getvalue('src') video.tid = jsoninfo.Getvalue('tid') video.typename = jsoninfo.Getvalue('typename') video.instant_server = jsoninfo.Getvalue('instant_server') return video
[ "def", "GetVideoInfo", "(", "aid", ",", "appkey", ",", "page", "=", "1", ",", "AppSecret", "=", "None", ",", "fav", "=", "None", ")", ":", "paras", "=", "{", "'id'", ":", "GetString", "(", "aid", ")", ",", "'page'", ":", "GetString", "(", "page", ")", "}", "if", "fav", "!=", "None", ":", "paras", "[", "'fav'", "]", "=", "fav", "url", "=", "'http://api.bilibili.cn/view?'", "+", "GetSign", "(", "paras", ",", "appkey", ",", "AppSecret", ")", "jsoninfo", "=", "JsonInfo", "(", "url", ")", "video", "=", "Video", "(", "aid", ",", "jsoninfo", ".", "Getvalue", "(", "'title'", ")", ")", "video", ".", "guankan", "=", "jsoninfo", ".", "Getvalue", "(", "'play'", ")", "video", ".", "commentNumber", "=", "jsoninfo", ".", "Getvalue", "(", "'review'", ")", "video", ".", "danmu", "=", "jsoninfo", ".", "Getvalue", "(", "'video_review'", ")", "video", ".", "shoucang", "=", "jsoninfo", ".", "Getvalue", "(", "'favorites'", ")", "video", ".", "description", "=", "jsoninfo", ".", "Getvalue", "(", "'description'", ")", "video", ".", "tag", "=", "[", "]", "taglist", "=", "jsoninfo", ".", "Getvalue", "(", "'tag'", ")", "if", "taglist", "!=", "None", ":", "for", "tag", "in", "taglist", ".", "split", "(", "','", ")", ":", "video", ".", "tag", ".", "append", "(", "tag", ")", "video", ".", "cover", "=", "jsoninfo", ".", "Getvalue", "(", "'pic'", ")", "video", ".", "author", "=", "User", "(", "jsoninfo", ".", "Getvalue", "(", "'mid'", ")", ",", "jsoninfo", ".", "Getvalue", "(", "'author'", ")", ")", "video", ".", "page", "=", "jsoninfo", ".", "Getvalue", "(", "'pages'", ")", "video", ".", "date", "=", "jsoninfo", ".", "Getvalue", "(", "'created_at'", ")", "video", ".", "credit", "=", "jsoninfo", ".", "Getvalue", "(", "'credit'", ")", "video", ".", "coin", "=", "jsoninfo", ".", "Getvalue", "(", "'coins'", ")", "video", ".", "spid", "=", "jsoninfo", ".", "Getvalue", "(", "'spid'", ")", "video", ".", "cid", "=", "jsoninfo", ".", "Getvalue", "(", "'cid'", ")", "video", ".", "offsite", "=", "jsoninfo", ".", "Getvalue", "(", "'offsite'", ")", "video", ".", "partname", "=", "jsoninfo", ".", "Getvalue", "(", "'partname'", ")", "video", ".", "src", "=", "jsoninfo", ".", "Getvalue", "(", "'src'", ")", "video", ".", "tid", "=", "jsoninfo", ".", "Getvalue", "(", "'tid'", ")", "video", ".", "typename", "=", "jsoninfo", ".", "Getvalue", "(", "'typename'", ")", "video", ".", "instant_server", "=", "jsoninfo", ".", "Getvalue", "(", "'instant_server'", ")", "return", "video" ]
https://github.com/Vespa314/bilibili-api/blob/42b6b90aa7c141f5cfb0fdc754435518106f6966/bilibili-video/GetAssDanmaku.py#L316-L347
Cadene/tensorflow-model-zoo.torch
990b10ffc22d4c8eacb2a502f20415b4f70c74c2
models/research/learned_optimizer/optimizer/hierarchical_rnn.py
python
HierarchicalRNN._compute_scaled_and_ms_grads
(self, grad, state)
return grads_scaled, mean_squared_gradients, grads_accum
Computes the scaled gradient and the mean squared gradients. Gradients are also accumulated across different timescales if appropriate. Args: grad: The gradient tensor for this layer. state: The optimizer state for this layer. Returns: The scaled gradients, mean squared gradients, and accumulated gradients.
Computes the scaled gradient and the mean squared gradients.
[ "Computes", "the", "scaled", "gradient", "and", "the", "mean", "squared", "gradients", "." ]
def _compute_scaled_and_ms_grads(self, grad, state): """Computes the scaled gradient and the mean squared gradients. Gradients are also accumulated across different timescales if appropriate. Args: grad: The gradient tensor for this layer. state: The optimizer state for this layer. Returns: The scaled gradients, mean squared gradients, and accumulated gradients. """ input_decays = [state["inp_decay"]] scale_decays = [state["scl_decay"]] if self.use_multiple_scale_decays and self.num_gradient_scales > 1: for i in range(self.num_gradient_scales - 1): scale_decays.append(tf.sqrt(scale_decays[i])) for i in range(self.num_gradient_scales - 1): # Each accumulator on twice the timescale of the one before. input_decays.append(tf.sqrt(input_decays[i])) grads_accum = [] grads_scaled = [] mean_squared_gradients = [] # populate the scaled gradients and associated mean_squared values if self.num_gradient_scales > 0: for i, decay in enumerate(input_decays): if self.num_gradient_scales == 1: # We don't accumulate if no scales, just take the current gradient. grad_accum = grad else: # The state vars are 1-indexed. old_accum = state["grad_accum{}".format(i + 1)] grad_accum = grad * (1. - decay) + old_accum * decay grads_accum.append(grad_accum) sd = scale_decays[i if self.use_multiple_scale_decays else 0] grad_scaled, ms = utils.rms_scaling(grad_accum, sd, state["ms{}".format(i + 1)], update_ms=True) grads_scaled.append(grad_scaled) mean_squared_gradients.append(ms) return grads_scaled, mean_squared_gradients, grads_accum
[ "def", "_compute_scaled_and_ms_grads", "(", "self", ",", "grad", ",", "state", ")", ":", "input_decays", "=", "[", "state", "[", "\"inp_decay\"", "]", "]", "scale_decays", "=", "[", "state", "[", "\"scl_decay\"", "]", "]", "if", "self", ".", "use_multiple_scale_decays", "and", "self", ".", "num_gradient_scales", ">", "1", ":", "for", "i", "in", "range", "(", "self", ".", "num_gradient_scales", "-", "1", ")", ":", "scale_decays", ".", "append", "(", "tf", ".", "sqrt", "(", "scale_decays", "[", "i", "]", ")", ")", "for", "i", "in", "range", "(", "self", ".", "num_gradient_scales", "-", "1", ")", ":", "# Each accumulator on twice the timescale of the one before.", "input_decays", ".", "append", "(", "tf", ".", "sqrt", "(", "input_decays", "[", "i", "]", ")", ")", "grads_accum", "=", "[", "]", "grads_scaled", "=", "[", "]", "mean_squared_gradients", "=", "[", "]", "# populate the scaled gradients and associated mean_squared values", "if", "self", ".", "num_gradient_scales", ">", "0", ":", "for", "i", ",", "decay", "in", "enumerate", "(", "input_decays", ")", ":", "if", "self", ".", "num_gradient_scales", "==", "1", ":", "# We don't accumulate if no scales, just take the current gradient.", "grad_accum", "=", "grad", "else", ":", "# The state vars are 1-indexed.", "old_accum", "=", "state", "[", "\"grad_accum{}\"", ".", "format", "(", "i", "+", "1", ")", "]", "grad_accum", "=", "grad", "*", "(", "1.", "-", "decay", ")", "+", "old_accum", "*", "decay", "grads_accum", ".", "append", "(", "grad_accum", ")", "sd", "=", "scale_decays", "[", "i", "if", "self", ".", "use_multiple_scale_decays", "else", "0", "]", "grad_scaled", ",", "ms", "=", "utils", ".", "rms_scaling", "(", "grad_accum", ",", "sd", ",", "state", "[", "\"ms{}\"", ".", "format", "(", "i", "+", "1", ")", "]", ",", "update_ms", "=", "True", ")", "grads_scaled", ".", "append", "(", "grad_scaled", ")", "mean_squared_gradients", ".", "append", "(", "ms", ")", "return", "grads_scaled", ",", "mean_squared_gradients", ",", "grads_accum" ]
https://github.com/Cadene/tensorflow-model-zoo.torch/blob/990b10ffc22d4c8eacb2a502f20415b4f70c74c2/models/research/learned_optimizer/optimizer/hierarchical_rnn.py#L437-L482
python-visualization/folium
67aab11039cd990d73fdf14566380286835ff84b
folium/utilities.py
python
parse_options
(**kwargs)
return {camelize(key): value for key, value in kwargs.items() if value is not None}
Return a dict with lower-camelcase keys and non-None values..
Return a dict with lower-camelcase keys and non-None values..
[ "Return", "a", "dict", "with", "lower", "-", "camelcase", "keys", "and", "non", "-", "None", "values", ".." ]
def parse_options(**kwargs): """Return a dict with lower-camelcase keys and non-None values..""" return {camelize(key): value for key, value in kwargs.items() if value is not None}
[ "def", "parse_options", "(", "*", "*", "kwargs", ")", ":", "return", "{", "camelize", "(", "key", ")", ":", "value", "for", "key", ",", "value", "in", "kwargs", ".", "items", "(", ")", "if", "value", "is", "not", "None", "}" ]
https://github.com/python-visualization/folium/blob/67aab11039cd990d73fdf14566380286835ff84b/folium/utilities.py#L471-L475
GadgetReactor/pyHS100
e03c192c8ca5a22116fd7605151d8bb10d0255e1
pyHS100/smartstrip.py
python
SmartStrip.set_alias
(self, alias: str, *, index: int = -1)
Sets the alias for a plug :param index: plug index :param alias: new alias :raises SmartDeviceException: on error :raises SmartStripException: index out of bounds
Sets the alias for a plug
[ "Sets", "the", "alias", "for", "a", "plug" ]
def set_alias(self, alias: str, *, index: int = -1): """Sets the alias for a plug :param index: plug index :param alias: new alias :raises SmartDeviceException: on error :raises SmartStripException: index out of bounds """ # Renaming the whole strip if index < 0: return super().set_alias(alias) self.raise_for_index(index) self.plugs[index].set_alias(alias)
[ "def", "set_alias", "(", "self", ",", "alias", ":", "str", ",", "*", ",", "index", ":", "int", "=", "-", "1", ")", ":", "# Renaming the whole strip", "if", "index", "<", "0", ":", "return", "super", "(", ")", ".", "set_alias", "(", "alias", ")", "self", ".", "raise_for_index", "(", "index", ")", "self", ".", "plugs", "[", "index", "]", ".", "set_alias", "(", "alias", ")" ]
https://github.com/GadgetReactor/pyHS100/blob/e03c192c8ca5a22116fd7605151d8bb10d0255e1/pyHS100/smartstrip.py#L315-L328
ZENGXH/DMM_Net
a6308688cbcf411db9072aa68efbe485dde02a9b
dmm/dataloader/collate.py
python
cocotrain_collate
(batch)
return [batch_imgs, batch_tar, transposed[2], transposed[3]]
r"""Puts each data field into a tensor with outer dimension batch size batch: [ (imgs, targets, seq_name, starting_frame), # for batch 1 (....), ] imgs: list of Tensor imgs of different batch may has different length
r"""Puts each data field into a tensor with outer dimension batch size batch: [ (imgs, targets, seq_name, starting_frame), # for batch 1 (....), ] imgs: list of Tensor imgs of different batch may has different length
[ "r", "Puts", "each", "data", "field", "into", "a", "tensor", "with", "outer", "dimension", "batch", "size", "batch", ":", "[", "(", "imgs", "targets", "seq_name", "starting_frame", ")", "#", "for", "batch", "1", "(", "....", ")", "]", "imgs", ":", "list", "of", "Tensor", "imgs", "of", "different", "batch", "may", "has", "different", "length" ]
def cocotrain_collate(batch): r"""Puts each data field into a tensor with outer dimension batch size batch: [ (imgs, targets, seq_name, starting_frame), # for batch 1 (....), ] imgs: list of Tensor imgs of different batch may has different length """ #elem_type = type(batch[0]) transposed = list(zip(*batch)) imgs = transposed[0] # expect: list of list of Tensor targets = transposed[1] #for im in imgs: # logging.info('len {}'.format(len(im))) assert(type(imgs) == tuple), \ 'type: {}, len {} BatchContent {}; shape {}'.format(type(imgs), len(imgs), len(transposed), len(imgs[0])) imgs = list(imgs) assert(type(imgs[0]) == list), type(imgs[0]) B = len(batch) CHECKEQ(B, len(imgs)) #if not args.pad_video: # return default_collate(batch) # max_len = [len(vid) for vid in imgs] # max_len = np.array(max_len).max() # create empty frames # input_shape = imgs[0][0].shape # empty_frame = imgs[0][0].new_zeros(input_shape) targets = list(targets) targets = [[ torch.from_numpy(tar_cur_frame) for tar_cur_frame in target_cur_vid[0]] for target_cur_vid in targets] # empty_target = targets[0][0].new_zeros(targets[0][0].shape) for b in range(B): #while len(imgs[b]) < max_len: # imgs[b].append(empty_frame) # targets[b].append(empty_target) imgs[b] = torch.stack(imgs[b]) # Len, D, H, W targets[b] = torch.stack(targets[b]) batch_imgs = torch.stack(imgs) # B, Len, D, H, W batch_tar = torch.stack(targets) CHECK5D(batch_imgs) return [batch_imgs, batch_tar, transposed[2], transposed[3]]
[ "def", "cocotrain_collate", "(", "batch", ")", ":", "#elem_type = type(batch[0])", "transposed", "=", "list", "(", "zip", "(", "*", "batch", ")", ")", "imgs", "=", "transposed", "[", "0", "]", "# expect: list of list of Tensor ", "targets", "=", "transposed", "[", "1", "]", "#for im in imgs:", "# logging.info('len {}'.format(len(im)))", "assert", "(", "type", "(", "imgs", ")", "==", "tuple", ")", ",", "'type: {}, len {} BatchContent {}; shape {}'", ".", "format", "(", "type", "(", "imgs", ")", ",", "len", "(", "imgs", ")", ",", "len", "(", "transposed", ")", ",", "len", "(", "imgs", "[", "0", "]", ")", ")", "imgs", "=", "list", "(", "imgs", ")", "assert", "(", "type", "(", "imgs", "[", "0", "]", ")", "==", "list", ")", ",", "type", "(", "imgs", "[", "0", "]", ")", "B", "=", "len", "(", "batch", ")", "CHECKEQ", "(", "B", ",", "len", "(", "imgs", ")", ")", "#if not args.pad_video:", "# return default_collate(batch)", "# max_len = [len(vid) for vid in imgs]", "# max_len = np.array(max_len).max() ", "# create empty frames ", "# input_shape = imgs[0][0].shape ", "# empty_frame = imgs[0][0].new_zeros(input_shape)", "targets", "=", "list", "(", "targets", ")", "targets", "=", "[", "[", "torch", ".", "from_numpy", "(", "tar_cur_frame", ")", "for", "tar_cur_frame", "in", "target_cur_vid", "[", "0", "]", "]", "for", "target_cur_vid", "in", "targets", "]", "# empty_target = targets[0][0].new_zeros(targets[0][0].shape)", "for", "b", "in", "range", "(", "B", ")", ":", "#while len(imgs[b]) < max_len:", "# imgs[b].append(empty_frame)", "# targets[b].append(empty_target)", "imgs", "[", "b", "]", "=", "torch", ".", "stack", "(", "imgs", "[", "b", "]", ")", "# Len, D, H, W ", "targets", "[", "b", "]", "=", "torch", ".", "stack", "(", "targets", "[", "b", "]", ")", "batch_imgs", "=", "torch", ".", "stack", "(", "imgs", ")", "# B, Len, D, H, W", "batch_tar", "=", "torch", ".", "stack", "(", "targets", ")", "CHECK5D", "(", "batch_imgs", ")", "return", "[", "batch_imgs", ",", "batch_tar", ",", "transposed", "[", "2", "]", ",", "transposed", "[", "3", "]", "]" ]
https://github.com/ZENGXH/DMM_Net/blob/a6308688cbcf411db9072aa68efbe485dde02a9b/dmm/dataloader/collate.py#L80-L124
home-assistant/core
265ebd17a3f17ed8dc1e9bdede03ac8e323f1ab1
homeassistant/components/light/__init__.py
python
LightEntity.color_mode
(self)
return self._attr_color_mode
Return the color mode of the light.
Return the color mode of the light.
[ "Return", "the", "color", "mode", "of", "the", "light", "." ]
def color_mode(self) -> str | None: """Return the color mode of the light.""" return self._attr_color_mode
[ "def", "color_mode", "(", "self", ")", "->", "str", "|", "None", ":", "return", "self", ".", "_attr_color_mode" ]
https://github.com/home-assistant/core/blob/265ebd17a3f17ed8dc1e9bdede03ac8e323f1ab1/homeassistant/components/light/__init__.py#L715-L717
CedricGuillemet/Imogen
ee417b42747ed5b46cb11b02ef0c3630000085b3
bin/Lib/ipaddress.py
python
_collapse_addresses_internal
(addresses)
Loops through the addresses, collapsing concurrent netblocks. Example: ip1 = IPv4Network('192.0.2.0/26') ip2 = IPv4Network('192.0.2.64/26') ip3 = IPv4Network('192.0.2.128/26') ip4 = IPv4Network('192.0.2.192/26') _collapse_addresses_internal([ip1, ip2, ip3, ip4]) -> [IPv4Network('192.0.2.0/24')] This shouldn't be called directly; it is called via collapse_addresses([]). Args: addresses: A list of IPv4Network's or IPv6Network's Returns: A list of IPv4Network's or IPv6Network's depending on what we were passed.
Loops through the addresses, collapsing concurrent netblocks.
[ "Loops", "through", "the", "addresses", "collapsing", "concurrent", "netblocks", "." ]
def _collapse_addresses_internal(addresses): """Loops through the addresses, collapsing concurrent netblocks. Example: ip1 = IPv4Network('192.0.2.0/26') ip2 = IPv4Network('192.0.2.64/26') ip3 = IPv4Network('192.0.2.128/26') ip4 = IPv4Network('192.0.2.192/26') _collapse_addresses_internal([ip1, ip2, ip3, ip4]) -> [IPv4Network('192.0.2.0/24')] This shouldn't be called directly; it is called via collapse_addresses([]). Args: addresses: A list of IPv4Network's or IPv6Network's Returns: A list of IPv4Network's or IPv6Network's depending on what we were passed. """ # First merge to_merge = list(addresses) subnets = {} while to_merge: net = to_merge.pop() supernet = net.supernet() existing = subnets.get(supernet) if existing is None: subnets[supernet] = net elif existing != net: # Merge consecutive subnets del subnets[supernet] to_merge.append(supernet) # Then iterate over resulting networks, skipping subsumed subnets last = None for net in sorted(subnets.values()): if last is not None: # Since they are sorted, last.network_address <= net.network_address # is a given. if last.broadcast_address >= net.broadcast_address: continue yield net last = net
[ "def", "_collapse_addresses_internal", "(", "addresses", ")", ":", "# First merge", "to_merge", "=", "list", "(", "addresses", ")", "subnets", "=", "{", "}", "while", "to_merge", ":", "net", "=", "to_merge", ".", "pop", "(", ")", "supernet", "=", "net", ".", "supernet", "(", ")", "existing", "=", "subnets", ".", "get", "(", "supernet", ")", "if", "existing", "is", "None", ":", "subnets", "[", "supernet", "]", "=", "net", "elif", "existing", "!=", "net", ":", "# Merge consecutive subnets", "del", "subnets", "[", "supernet", "]", "to_merge", ".", "append", "(", "supernet", ")", "# Then iterate over resulting networks, skipping subsumed subnets", "last", "=", "None", "for", "net", "in", "sorted", "(", "subnets", ".", "values", "(", ")", ")", ":", "if", "last", "is", "not", "None", ":", "# Since they are sorted, last.network_address <= net.network_address", "# is a given.", "if", "last", ".", "broadcast_address", ">=", "net", ".", "broadcast_address", ":", "continue", "yield", "net", "last", "=", "net" ]
https://github.com/CedricGuillemet/Imogen/blob/ee417b42747ed5b46cb11b02ef0c3630000085b3/bin/Lib/ipaddress.py#L257-L303
scipy/scipy
e0a749f01e79046642ccfdc419edbf9e7ca141ad
scipy/ndimage/_filters.py
python
uniform_filter
(input, size=3, output=None, mode="reflect", cval=0.0, origin=0)
return output
Multidimensional uniform filter. Parameters ---------- %(input)s size : int or sequence of ints, optional The sizes of the uniform filter are given for each axis as a sequence, or as a single number, in which case the size is equal for all axes. %(output)s %(mode_multiple)s %(cval)s %(origin_multiple)s Returns ------- uniform_filter : ndarray Filtered array. Has the same shape as `input`. Notes ----- The multidimensional filter is implemented as a sequence of 1-D uniform filters. The intermediate arrays are stored in the same data type as the output. Therefore, for output types with a limited precision, the results may be imprecise because intermediate results may be stored with insufficient precision. Examples -------- >>> from scipy import ndimage, misc >>> import matplotlib.pyplot as plt >>> fig = plt.figure() >>> plt.gray() # show the filtered result in grayscale >>> ax1 = fig.add_subplot(121) # left side >>> ax2 = fig.add_subplot(122) # right side >>> ascent = misc.ascent() >>> result = ndimage.uniform_filter(ascent, size=20) >>> ax1.imshow(ascent) >>> ax2.imshow(result) >>> plt.show()
Multidimensional uniform filter.
[ "Multidimensional", "uniform", "filter", "." ]
def uniform_filter(input, size=3, output=None, mode="reflect", cval=0.0, origin=0): """Multidimensional uniform filter. Parameters ---------- %(input)s size : int or sequence of ints, optional The sizes of the uniform filter are given for each axis as a sequence, or as a single number, in which case the size is equal for all axes. %(output)s %(mode_multiple)s %(cval)s %(origin_multiple)s Returns ------- uniform_filter : ndarray Filtered array. Has the same shape as `input`. Notes ----- The multidimensional filter is implemented as a sequence of 1-D uniform filters. The intermediate arrays are stored in the same data type as the output. Therefore, for output types with a limited precision, the results may be imprecise because intermediate results may be stored with insufficient precision. Examples -------- >>> from scipy import ndimage, misc >>> import matplotlib.pyplot as plt >>> fig = plt.figure() >>> plt.gray() # show the filtered result in grayscale >>> ax1 = fig.add_subplot(121) # left side >>> ax2 = fig.add_subplot(122) # right side >>> ascent = misc.ascent() >>> result = ndimage.uniform_filter(ascent, size=20) >>> ax1.imshow(ascent) >>> ax2.imshow(result) >>> plt.show() """ input = numpy.asarray(input) output = _ni_support._get_output(output, input, complex_output=input.dtype.kind == 'c') sizes = _ni_support._normalize_sequence(size, input.ndim) origins = _ni_support._normalize_sequence(origin, input.ndim) modes = _ni_support._normalize_sequence(mode, input.ndim) axes = list(range(input.ndim)) axes = [(axes[ii], sizes[ii], origins[ii], modes[ii]) for ii in range(len(axes)) if sizes[ii] > 1] if len(axes) > 0: for axis, size, origin, mode in axes: uniform_filter1d(input, int(size), axis, output, mode, cval, origin) input = output else: output[...] = input[...] return output
[ "def", "uniform_filter", "(", "input", ",", "size", "=", "3", ",", "output", "=", "None", ",", "mode", "=", "\"reflect\"", ",", "cval", "=", "0.0", ",", "origin", "=", "0", ")", ":", "input", "=", "numpy", ".", "asarray", "(", "input", ")", "output", "=", "_ni_support", ".", "_get_output", "(", "output", ",", "input", ",", "complex_output", "=", "input", ".", "dtype", ".", "kind", "==", "'c'", ")", "sizes", "=", "_ni_support", ".", "_normalize_sequence", "(", "size", ",", "input", ".", "ndim", ")", "origins", "=", "_ni_support", ".", "_normalize_sequence", "(", "origin", ",", "input", ".", "ndim", ")", "modes", "=", "_ni_support", ".", "_normalize_sequence", "(", "mode", ",", "input", ".", "ndim", ")", "axes", "=", "list", "(", "range", "(", "input", ".", "ndim", ")", ")", "axes", "=", "[", "(", "axes", "[", "ii", "]", ",", "sizes", "[", "ii", "]", ",", "origins", "[", "ii", "]", ",", "modes", "[", "ii", "]", ")", "for", "ii", "in", "range", "(", "len", "(", "axes", ")", ")", "if", "sizes", "[", "ii", "]", ">", "1", "]", "if", "len", "(", "axes", ")", ">", "0", ":", "for", "axis", ",", "size", ",", "origin", ",", "mode", "in", "axes", ":", "uniform_filter1d", "(", "input", ",", "int", "(", "size", ")", ",", "axis", ",", "output", ",", "mode", ",", "cval", ",", "origin", ")", "input", "=", "output", "else", ":", "output", "[", "...", "]", "=", "input", "[", "...", "]", "return", "output" ]
https://github.com/scipy/scipy/blob/e0a749f01e79046642ccfdc419edbf9e7ca141ad/scipy/ndimage/_filters.py#L913-L972