nwo
stringlengths 5
106
| sha
stringlengths 40
40
| path
stringlengths 4
174
| language
stringclasses 1
value | identifier
stringlengths 1
140
| parameters
stringlengths 0
87.7k
| argument_list
stringclasses 1
value | return_statement
stringlengths 0
426k
| docstring
stringlengths 0
64.3k
| docstring_summary
stringlengths 0
26.3k
| docstring_tokens
list | function
stringlengths 18
4.83M
| function_tokens
list | url
stringlengths 83
304
|
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
ajinabraham/OWASP-Xenotix-XSS-Exploit-Framework
|
cb692f527e4e819b6c228187c5702d990a180043
|
external/Scripting Engine/packages/IronPython.StdLib.2.7.4/content/Lib/nntplib.py
|
python
|
NNTP.statcmd
|
(self, line)
|
return self.statparse(resp)
|
Internal: process a STAT, NEXT or LAST command.
|
Internal: process a STAT, NEXT or LAST command.
|
[
"Internal",
":",
"process",
"a",
"STAT",
"NEXT",
"or",
"LAST",
"command",
"."
] |
def statcmd(self, line):
"""Internal: process a STAT, NEXT or LAST command."""
resp = self.shortcmd(line)
return self.statparse(resp)
|
[
"def",
"statcmd",
"(",
"self",
",",
"line",
")",
":",
"resp",
"=",
"self",
".",
"shortcmd",
"(",
"line",
")",
"return",
"self",
".",
"statparse",
"(",
"resp",
")"
] |
https://github.com/ajinabraham/OWASP-Xenotix-XSS-Exploit-Framework/blob/cb692f527e4e819b6c228187c5702d990a180043/external/Scripting Engine/packages/IronPython.StdLib.2.7.4/content/Lib/nntplib.py#L382-L385
|
|
deepmind/hanabi-learning-environment
|
54e79594f4b6fb40ebb3004289c6db0e34a8b5fb
|
hanabi_learning_environment/pyhanabi.py
|
python
|
HanabiGame.num_cards
|
(self, color, rank)
|
return lib.NumCards(self._game, color, rank)
|
Returns number of instances of Card(color, rank) in the initial deck.
|
Returns number of instances of Card(color, rank) in the initial deck.
|
[
"Returns",
"number",
"of",
"instances",
"of",
"Card",
"(",
"color",
"rank",
")",
"in",
"the",
"initial",
"deck",
"."
] |
def num_cards(self, color, rank):
"""Returns number of instances of Card(color, rank) in the initial deck."""
return lib.NumCards(self._game, color, rank)
|
[
"def",
"num_cards",
"(",
"self",
",",
"color",
",",
"rank",
")",
":",
"return",
"lib",
".",
"NumCards",
"(",
"self",
".",
"_game",
",",
"color",
",",
"rank",
")"
] |
https://github.com/deepmind/hanabi-learning-environment/blob/54e79594f4b6fb40ebb3004289c6db0e34a8b5fb/hanabi_learning_environment/pyhanabi.py#L773-L775
|
|
OpenMDAO/OpenMDAO
|
f47eb5485a0bb5ea5d2ae5bd6da4b94dc6b296bd
|
openmdao/utils/assert_utils.py
|
python
|
assert_warning
|
(category, msg, contains_msg=False)
|
Context manager asserting that a warning is issued.
Parameters
----------
category : class
The class of the expected warning.
msg : str
The text of the expected warning.
contains_msg : bool
Set to True to check that the warning text contains msg, rather than checking equality.
Yields
------
None
Raises
------
AssertionError
If the expected warning is not raised.
|
Context manager asserting that a warning is issued.
|
[
"Context",
"manager",
"asserting",
"that",
"a",
"warning",
"is",
"issued",
"."
] |
def assert_warning(category, msg, contains_msg=False):
"""
Context manager asserting that a warning is issued.
Parameters
----------
category : class
The class of the expected warning.
msg : str
The text of the expected warning.
contains_msg : bool
Set to True to check that the warning text contains msg, rather than checking equality.
Yields
------
None
Raises
------
AssertionError
If the expected warning is not raised.
"""
with reset_warning_registry():
with warnings.catch_warnings(record=True) as w:
warnings.simplefilter("always")
yield
for warn in w:
if contains_msg:
warn_clause = msg in str(warn.message)
else:
warn_clause = str(warn.message) == msg
if (issubclass(warn.category, category) and warn_clause):
break
else:
msg = f"Did not see expected {category.__name__}:\n{msg}"
if w:
ws = '\n'.join([str(ww.message) for ww in w])
categories = '\n'.join([str(ww.category.__name__) for ww in w])
msg += f"\nDid see warnings [{categories}]:\n{ws}"
raise AssertionError(msg)
|
[
"def",
"assert_warning",
"(",
"category",
",",
"msg",
",",
"contains_msg",
"=",
"False",
")",
":",
"with",
"reset_warning_registry",
"(",
")",
":",
"with",
"warnings",
".",
"catch_warnings",
"(",
"record",
"=",
"True",
")",
"as",
"w",
":",
"warnings",
".",
"simplefilter",
"(",
"\"always\"",
")",
"yield",
"for",
"warn",
"in",
"w",
":",
"if",
"contains_msg",
":",
"warn_clause",
"=",
"msg",
"in",
"str",
"(",
"warn",
".",
"message",
")",
"else",
":",
"warn_clause",
"=",
"str",
"(",
"warn",
".",
"message",
")",
"==",
"msg",
"if",
"(",
"issubclass",
"(",
"warn",
".",
"category",
",",
"category",
")",
"and",
"warn_clause",
")",
":",
"break",
"else",
":",
"msg",
"=",
"f\"Did not see expected {category.__name__}:\\n{msg}\"",
"if",
"w",
":",
"ws",
"=",
"'\\n'",
".",
"join",
"(",
"[",
"str",
"(",
"ww",
".",
"message",
")",
"for",
"ww",
"in",
"w",
"]",
")",
"categories",
"=",
"'\\n'",
".",
"join",
"(",
"[",
"str",
"(",
"ww",
".",
"category",
".",
"__name__",
")",
"for",
"ww",
"in",
"w",
"]",
")",
"msg",
"+=",
"f\"\\nDid see warnings [{categories}]:\\n{ws}\"",
"raise",
"AssertionError",
"(",
"msg",
")"
] |
https://github.com/OpenMDAO/OpenMDAO/blob/f47eb5485a0bb5ea5d2ae5bd6da4b94dc6b296bd/openmdao/utils/assert_utils.py#L21-L62
|
||
openstack/python-keystoneclient
|
100253d52e0c62dffffddb6f046ad660a9bce1a9
|
keystoneclient/base.py
|
python
|
Manager._delete
|
(self, url, **kwargs)
|
return resp, self._prepare_return_value(resp, body)
|
Delete an object.
:param url: a partial URL, e.g., '/servers/my-server'
:param kwargs: Additional arguments will be passed to the request.
|
Delete an object.
|
[
"Delete",
"an",
"object",
"."
] |
def _delete(self, url, **kwargs):
"""Delete an object.
:param url: a partial URL, e.g., '/servers/my-server'
:param kwargs: Additional arguments will be passed to the request.
"""
resp, body = self.client.delete(url, **kwargs)
return resp, self._prepare_return_value(resp, body)
|
[
"def",
"_delete",
"(",
"self",
",",
"url",
",",
"*",
"*",
"kwargs",
")",
":",
"resp",
",",
"body",
"=",
"self",
".",
"client",
".",
"delete",
"(",
"url",
",",
"*",
"*",
"kwargs",
")",
"return",
"resp",
",",
"self",
".",
"_prepare_return_value",
"(",
"resp",
",",
"body",
")"
] |
https://github.com/openstack/python-keystoneclient/blob/100253d52e0c62dffffddb6f046ad660a9bce1a9/keystoneclient/base.py#L240-L247
|
|
SteveDoyle2/pyNastran
|
eda651ac2d4883d95a34951f8a002ff94f642a1a
|
pyNastran/op2/op2_interface/op2_scalar.py
|
python
|
OP2_Scalar.__init__
|
(self, debug=False, log=None, debug_file=None)
|
Initializes the OP2_Scalar object
Parameters
----------
debug : bool/None; default=True
used to set the logger if no logger is passed in
True: logs debug/info/warning/error messages
False: logs info/warning/error messages
None: logs warning/error messages
log : Log()
a logging object to write debug messages to
(.. seealso:: import logging)
debug_file : str; default=None (No debug)
sets the filename that will be written to
|
Initializes the OP2_Scalar object
|
[
"Initializes",
"the",
"OP2_Scalar",
"object"
] |
def __init__(self, debug=False, log=None, debug_file=None):
"""
Initializes the OP2_Scalar object
Parameters
----------
debug : bool/None; default=True
used to set the logger if no logger is passed in
True: logs debug/info/warning/error messages
False: logs info/warning/error messages
None: logs warning/error messages
log : Log()
a logging object to write debug messages to
(.. seealso:: import logging)
debug_file : str; default=None (No debug)
sets the filename that will be written to
"""
assert debug is None or isinstance(debug, bool), 'debug=%r' % debug
self.log = get_logger2(log, debug=debug, encoding='utf-8')
self._count = 0
self.op2_filename = None
self.bdf_filename = None
self.f06_filename = None
self.des_filename = None
self.h5_filename = None
self._encoding = 'utf8'
#: should a MATPOOL "symmetric" matrix be stored as symmetric
#: it takes double the RAM, but is easier to use
self.apply_symmetry = True
OP2Common.__init__(self)
FortranFormat.__init__(self)
self.is_vectorized = False
self._close_op2 = True
self.result_names = set()
self.grid_point_weight = {}
self.words = []
self.debug = debug
self._last_comment = None
#self.debug = True
#self.debug = False
#debug_file = None
if debug_file is None:
self.debug_file = None
else:
assert isinstance(debug_file, str), debug_file
self.debug_file = debug_file
self.op2_reader = OP2Reader(self)
|
[
"def",
"__init__",
"(",
"self",
",",
"debug",
"=",
"False",
",",
"log",
"=",
"None",
",",
"debug_file",
"=",
"None",
")",
":",
"assert",
"debug",
"is",
"None",
"or",
"isinstance",
"(",
"debug",
",",
"bool",
")",
",",
"'debug=%r'",
"%",
"debug",
"self",
".",
"log",
"=",
"get_logger2",
"(",
"log",
",",
"debug",
"=",
"debug",
",",
"encoding",
"=",
"'utf-8'",
")",
"self",
".",
"_count",
"=",
"0",
"self",
".",
"op2_filename",
"=",
"None",
"self",
".",
"bdf_filename",
"=",
"None",
"self",
".",
"f06_filename",
"=",
"None",
"self",
".",
"des_filename",
"=",
"None",
"self",
".",
"h5_filename",
"=",
"None",
"self",
".",
"_encoding",
"=",
"'utf8'",
"#: should a MATPOOL \"symmetric\" matrix be stored as symmetric",
"#: it takes double the RAM, but is easier to use",
"self",
".",
"apply_symmetry",
"=",
"True",
"OP2Common",
".",
"__init__",
"(",
"self",
")",
"FortranFormat",
".",
"__init__",
"(",
"self",
")",
"self",
".",
"is_vectorized",
"=",
"False",
"self",
".",
"_close_op2",
"=",
"True",
"self",
".",
"result_names",
"=",
"set",
"(",
")",
"self",
".",
"grid_point_weight",
"=",
"{",
"}",
"self",
".",
"words",
"=",
"[",
"]",
"self",
".",
"debug",
"=",
"debug",
"self",
".",
"_last_comment",
"=",
"None",
"#self.debug = True",
"#self.debug = False",
"#debug_file = None",
"if",
"debug_file",
"is",
"None",
":",
"self",
".",
"debug_file",
"=",
"None",
"else",
":",
"assert",
"isinstance",
"(",
"debug_file",
",",
"str",
")",
",",
"debug_file",
"self",
".",
"debug_file",
"=",
"debug_file",
"self",
".",
"op2_reader",
"=",
"OP2Reader",
"(",
"self",
")"
] |
https://github.com/SteveDoyle2/pyNastran/blob/eda651ac2d4883d95a34951f8a002ff94f642a1a/pyNastran/op2/op2_interface/op2_scalar.py#L535-L589
|
||
miyosuda/unreal
|
31d4886149412fa248f6efa490ab65bd2f425cde
|
train/rmsprop_applier.py
|
python
|
RMSPropApplier._slot_dict
|
(self, slot_name)
|
return named_slots
|
[] |
def _slot_dict(self, slot_name):
named_slots = self._slots.get(slot_name, None)
if named_slots is None:
named_slots = {}
self._slots[slot_name] = named_slots
return named_slots
|
[
"def",
"_slot_dict",
"(",
"self",
",",
"slot_name",
")",
":",
"named_slots",
"=",
"self",
".",
"_slots",
".",
"get",
"(",
"slot_name",
",",
"None",
")",
"if",
"named_slots",
"is",
"None",
":",
"named_slots",
"=",
"{",
"}",
"self",
".",
"_slots",
"[",
"slot_name",
"]",
"=",
"named_slots",
"return",
"named_slots"
] |
https://github.com/miyosuda/unreal/blob/31d4886149412fa248f6efa490ab65bd2f425cde/train/rmsprop_applier.py#L54-L59
|
|||
SymbiFlow/prjxray
|
5349556bc2c230801d6df0cf11bccb9cfd171639
|
fuzzers/034-cmt-pll-pips/fixup_and_group.py
|
python
|
bit_to_str
|
(bit)
|
return "{}{}_{:02d}".format(s, bit[0], bit[1])
|
Converts a tuple (frame, bit, value) to its string representation.
|
Converts a tuple (frame, bit, value) to its string representation.
|
[
"Converts",
"a",
"tuple",
"(",
"frame",
"bit",
"value",
")",
"to",
"its",
"string",
"representation",
"."
] |
def bit_to_str(bit):
"""
Converts a tuple (frame, bit, value) to its string representation.
"""
s = "!" if not bit[2] else ""
return "{}{}_{:02d}".format(s, bit[0], bit[1])
|
[
"def",
"bit_to_str",
"(",
"bit",
")",
":",
"s",
"=",
"\"!\"",
"if",
"not",
"bit",
"[",
"2",
"]",
"else",
"\"\"",
"return",
"\"{}{}_{:02d}\"",
".",
"format",
"(",
"s",
",",
"bit",
"[",
"0",
"]",
",",
"bit",
"[",
"1",
"]",
")"
] |
https://github.com/SymbiFlow/prjxray/blob/5349556bc2c230801d6df0cf11bccb9cfd171639/fuzzers/034-cmt-pll-pips/fixup_and_group.py#L81-L86
|
|
jieter/django-tables2
|
ce392ee2ee341d7180345a6113919cf9a3925f16
|
django_tables2/views.py
|
python
|
SingleTableMixin.get_table_class
|
(self)
|
Return the class to use for the table.
|
Return the class to use for the table.
|
[
"Return",
"the",
"class",
"to",
"use",
"for",
"the",
"table",
"."
] |
def get_table_class(self):
"""
Return the class to use for the table.
"""
if self.table_class:
return self.table_class
if self.model:
return tables.table_factory(self.model)
raise ImproperlyConfigured(
"You must either specify {0}.table_class or {0}.model".format(type(self).__name__)
)
|
[
"def",
"get_table_class",
"(",
"self",
")",
":",
"if",
"self",
".",
"table_class",
":",
"return",
"self",
".",
"table_class",
"if",
"self",
".",
"model",
":",
"return",
"tables",
".",
"table_factory",
"(",
"self",
".",
"model",
")",
"raise",
"ImproperlyConfigured",
"(",
"\"You must either specify {0}.table_class or {0}.model\"",
".",
"format",
"(",
"type",
"(",
"self",
")",
".",
"__name__",
")",
")"
] |
https://github.com/jieter/django-tables2/blob/ce392ee2ee341d7180345a6113919cf9a3925f16/django_tables2/views.py#L86-L97
|
||
bruderstein/PythonScript
|
df9f7071ddf3a079e3a301b9b53a6dc78cf1208f
|
PythonLib/full/idlelib/pyshell.py
|
python
|
PyShell.ResetColorizer
|
(self)
|
[] |
def ResetColorizer(self):
super().ResetColorizer()
theme = idleConf.CurrentTheme()
tag_colors = {
"stdin": {'background': None, 'foreground': None},
"stdout": idleConf.GetHighlight(theme, "stdout"),
"stderr": idleConf.GetHighlight(theme, "stderr"),
"console": idleConf.GetHighlight(theme, "normal"),
}
for tag, tag_colors_config in tag_colors.items():
self.text.tag_configure(tag, **tag_colors_config)
if self.shell_sidebar is not None:
self.shell_sidebar.update_colors()
|
[
"def",
"ResetColorizer",
"(",
"self",
")",
":",
"super",
"(",
")",
".",
"ResetColorizer",
"(",
")",
"theme",
"=",
"idleConf",
".",
"CurrentTheme",
"(",
")",
"tag_colors",
"=",
"{",
"\"stdin\"",
":",
"{",
"'background'",
":",
"None",
",",
"'foreground'",
":",
"None",
"}",
",",
"\"stdout\"",
":",
"idleConf",
".",
"GetHighlight",
"(",
"theme",
",",
"\"stdout\"",
")",
",",
"\"stderr\"",
":",
"idleConf",
".",
"GetHighlight",
"(",
"theme",
",",
"\"stderr\"",
")",
",",
"\"console\"",
":",
"idleConf",
".",
"GetHighlight",
"(",
"theme",
",",
"\"normal\"",
")",
",",
"}",
"for",
"tag",
",",
"tag_colors_config",
"in",
"tag_colors",
".",
"items",
"(",
")",
":",
"self",
".",
"text",
".",
"tag_configure",
"(",
"tag",
",",
"*",
"*",
"tag_colors_config",
")",
"if",
"self",
".",
"shell_sidebar",
"is",
"not",
"None",
":",
"self",
".",
"shell_sidebar",
".",
"update_colors",
"(",
")"
] |
https://github.com/bruderstein/PythonScript/blob/df9f7071ddf3a079e3a301b9b53a6dc78cf1208f/PythonLib/full/idlelib/pyshell.py#L975-L989
|
||||
pulp/pulp
|
a0a28d804f997b6f81c391378aff2e4c90183df9
|
server/pulp/server/managers/repo/_common.py
|
python
|
to_related_repo
|
(repo_data, configs)
|
return r
|
Converts the given database representation of a repository into a plugin's
representation of a related repository. The list of configurations for
the repository's plugins will be included in the returned type.
@param repo_data: database representation of a repository
@type repo_data: dict
@param configs: list of configurations for all relevant plugins on the repo
@type configs: list
@return: transfer object used in many plugin API calls
@rtype: pulp.plugins.model.RelatedRepository
|
Converts the given database representation of a repository into a plugin's
representation of a related repository. The list of configurations for
the repository's plugins will be included in the returned type.
|
[
"Converts",
"the",
"given",
"database",
"representation",
"of",
"a",
"repository",
"into",
"a",
"plugin",
"s",
"representation",
"of",
"a",
"related",
"repository",
".",
"The",
"list",
"of",
"configurations",
"for",
"the",
"repository",
"s",
"plugins",
"will",
"be",
"included",
"in",
"the",
"returned",
"type",
"."
] |
def to_related_repo(repo_data, configs):
"""
Converts the given database representation of a repository into a plugin's
representation of a related repository. The list of configurations for
the repository's plugins will be included in the returned type.
@param repo_data: database representation of a repository
@type repo_data: dict
@param configs: list of configurations for all relevant plugins on the repo
@type configs: list
@return: transfer object used in many plugin API calls
@rtype: pulp.plugins.model.RelatedRepository
"""
r = RelatedRepository(repo_data['id'], configs, repo_data['display_name'],
repo_data['description'], repo_data['notes'])
return r
|
[
"def",
"to_related_repo",
"(",
"repo_data",
",",
"configs",
")",
":",
"r",
"=",
"RelatedRepository",
"(",
"repo_data",
"[",
"'id'",
"]",
",",
"configs",
",",
"repo_data",
"[",
"'display_name'",
"]",
",",
"repo_data",
"[",
"'description'",
"]",
",",
"repo_data",
"[",
"'notes'",
"]",
")",
"return",
"r"
] |
https://github.com/pulp/pulp/blob/a0a28d804f997b6f81c391378aff2e4c90183df9/server/pulp/server/managers/repo/_common.py#L25-L42
|
|
openedx/edx-platform
|
68dd185a0ab45862a2a61e0f803d7e03d2be71b5
|
lms/djangoapps/discussion/rest_api/forms.py
|
python
|
ThreadListGetForm.clean_following
|
(self)
|
Validate following
|
Validate following
|
[
"Validate",
"following"
] |
def clean_following(self):
"""Validate following"""
value = self.cleaned_data["following"]
if value is False: # lint-amnesty, pylint: disable=no-else-raise
raise ValidationError("The value of the 'following' parameter must be true.")
else:
return value
|
[
"def",
"clean_following",
"(",
"self",
")",
":",
"value",
"=",
"self",
".",
"cleaned_data",
"[",
"\"following\"",
"]",
"if",
"value",
"is",
"False",
":",
"# lint-amnesty, pylint: disable=no-else-raise",
"raise",
"ValidationError",
"(",
"\"The value of the 'following' parameter must be true.\"",
")",
"else",
":",
"return",
"value"
] |
https://github.com/openedx/edx-platform/blob/68dd185a0ab45862a2a61e0f803d7e03d2be71b5/lms/djangoapps/discussion/rest_api/forms.py#L82-L88
|
||
lvzhaoyang/DeeperInverseCompositionalAlgorithm
|
9a401bf2b03ecfed169c1a655b4fe8be8a4c211d
|
code/models/LeastSquareTracking.py
|
python
|
LeastSquareTracking.__Nto1
|
(self, x)
|
return x.sum(dim=1, keepdim=True) / C
|
Take the average of multi-dimension feature into one dimensional,
which boostrap the optimization speed
|
Take the average of multi-dimension feature into one dimensional,
which boostrap the optimization speed
|
[
"Take",
"the",
"average",
"of",
"multi",
"-",
"dimension",
"feature",
"into",
"one",
"dimensional",
"which",
"boostrap",
"the",
"optimization",
"speed"
] |
def __Nto1(self, x):
""" Take the average of multi-dimension feature into one dimensional,
which boostrap the optimization speed
"""
C = x.shape[1]
return x.sum(dim=1, keepdim=True) / C
|
[
"def",
"__Nto1",
"(",
"self",
",",
"x",
")",
":",
"C",
"=",
"x",
".",
"shape",
"[",
"1",
"]",
"return",
"x",
".",
"sum",
"(",
"dim",
"=",
"1",
",",
"keepdim",
"=",
"True",
")",
"/",
"C"
] |
https://github.com/lvzhaoyang/DeeperInverseCompositionalAlgorithm/blob/9a401bf2b03ecfed169c1a655b4fe8be8a4c211d/code/models/LeastSquareTracking.py#L223-L228
|
|
collinsctk/PyQYT
|
7af3673955f94ff1b2df2f94220cd2dab2e252af
|
ExtentionPackages/Crypto/PublicKey/RSA.py
|
python
|
_RSAobj.verify
|
(self, M, signature)
|
return pubkey.pubkey.verify(self, M, signature)
|
Verify the validity of an RSA signature.
:attention: this function performs the plain, primitive RSA encryption
(*textbook*). In real applications, you always need to use proper
cryptographic padding, and you should not directly verify data with
this method. Failure to do so may lead to security vulnerabilities.
It is recommended to use modules
`Crypto.Signature.PKCS1_PSS` or `Crypto.Signature.PKCS1_v1_5` instead.
:Parameter M: The expected message.
:Type M: byte string or long
:Parameter signature: The RSA signature to verify. The first item of
the tuple is the actual signature (a long not larger than the modulus
**n**), whereas the second item is always ignored.
:Type signature: A 2-item tuple as return by `sign`
:Return: True if the signature is correct, False otherwise.
|
Verify the validity of an RSA signature.
|
[
"Verify",
"the",
"validity",
"of",
"an",
"RSA",
"signature",
"."
] |
def verify(self, M, signature):
"""Verify the validity of an RSA signature.
:attention: this function performs the plain, primitive RSA encryption
(*textbook*). In real applications, you always need to use proper
cryptographic padding, and you should not directly verify data with
this method. Failure to do so may lead to security vulnerabilities.
It is recommended to use modules
`Crypto.Signature.PKCS1_PSS` or `Crypto.Signature.PKCS1_v1_5` instead.
:Parameter M: The expected message.
:Type M: byte string or long
:Parameter signature: The RSA signature to verify. The first item of
the tuple is the actual signature (a long not larger than the modulus
**n**), whereas the second item is always ignored.
:Type signature: A 2-item tuple as return by `sign`
:Return: True if the signature is correct, False otherwise.
"""
return pubkey.pubkey.verify(self, M, signature)
|
[
"def",
"verify",
"(",
"self",
",",
"M",
",",
"signature",
")",
":",
"return",
"pubkey",
".",
"pubkey",
".",
"verify",
"(",
"self",
",",
"M",
",",
"signature",
")"
] |
https://github.com/collinsctk/PyQYT/blob/7af3673955f94ff1b2df2f94220cd2dab2e252af/ExtentionPackages/Crypto/PublicKey/RSA.py#L201-L221
|
|
Kismuz/btgym
|
7fb3316e67f1d7a17c620630fb62fb29428b2cec
|
btgym/envs/base.py
|
python
|
BTgymEnv._comm_with_timeout
|
( socket, message,)
|
return response
|
Exchanges messages via socket, timeout sensitive.
Args:
socket: zmq connected socket to communicate via;
message: message to send;
Note:
socket zmq.RCVTIMEO and zmq.SNDTIMEO should be set to some finite number of milliseconds.
Returns:
dictionary:
`status`: communication result;
`message`: received message if status == `ok` or None;
`time`: remote side response time.
|
Exchanges messages via socket, timeout sensitive.
|
[
"Exchanges",
"messages",
"via",
"socket",
"timeout",
"sensitive",
"."
] |
def _comm_with_timeout( socket, message,):
"""
Exchanges messages via socket, timeout sensitive.
Args:
socket: zmq connected socket to communicate via;
message: message to send;
Note:
socket zmq.RCVTIMEO and zmq.SNDTIMEO should be set to some finite number of milliseconds.
Returns:
dictionary:
`status`: communication result;
`message`: received message if status == `ok` or None;
`time`: remote side response time.
"""
response = dict(
status='ok',
message=None,
)
try:
socket.send_pyobj(message)
except zmq.ZMQError as e:
if e.errno == zmq.EAGAIN:
response['status'] = 'send_failed_due_to_connect_timeout'
else:
response['status'] = 'send_failed_for_unknown_reason'
return response
start = time.time()
try:
response['message'] = socket.recv_pyobj()
response['time'] = time.time() - start
except zmq.ZMQError as e:
if e.errno == zmq.EAGAIN:
response['status'] = 'receive_failed_due_to_connect_timeout'
else:
response['status'] = 'receive_failed_for_unknown_reason'
return response
return response
|
[
"def",
"_comm_with_timeout",
"(",
"socket",
",",
"message",
",",
")",
":",
"response",
"=",
"dict",
"(",
"status",
"=",
"'ok'",
",",
"message",
"=",
"None",
",",
")",
"try",
":",
"socket",
".",
"send_pyobj",
"(",
"message",
")",
"except",
"zmq",
".",
"ZMQError",
"as",
"e",
":",
"if",
"e",
".",
"errno",
"==",
"zmq",
".",
"EAGAIN",
":",
"response",
"[",
"'status'",
"]",
"=",
"'send_failed_due_to_connect_timeout'",
"else",
":",
"response",
"[",
"'status'",
"]",
"=",
"'send_failed_for_unknown_reason'",
"return",
"response",
"start",
"=",
"time",
".",
"time",
"(",
")",
"try",
":",
"response",
"[",
"'message'",
"]",
"=",
"socket",
".",
"recv_pyobj",
"(",
")",
"response",
"[",
"'time'",
"]",
"=",
"time",
".",
"time",
"(",
")",
"-",
"start",
"except",
"zmq",
".",
"ZMQError",
"as",
"e",
":",
"if",
"e",
".",
"errno",
"==",
"zmq",
".",
"EAGAIN",
":",
"response",
"[",
"'status'",
"]",
"=",
"'receive_failed_due_to_connect_timeout'",
"else",
":",
"response",
"[",
"'status'",
"]",
"=",
"'receive_failed_for_unknown_reason'",
"return",
"response",
"return",
"response"
] |
https://github.com/Kismuz/btgym/blob/7fb3316e67f1d7a17c620630fb62fb29428b2cec/btgym/envs/base.py#L453-L498
|
|
google/python-fire
|
ed44d8b801fc24e40729abef11b2dcbf6588d361
|
fire/console/console_attr.py
|
python
|
ConsoleAttr._GetConsoleEncoding
|
(self)
|
return None
|
Gets the encoding as declared by the stdout stream.
Returns:
str, The encoding name or None if it could not be determined.
|
Gets the encoding as declared by the stdout stream.
|
[
"Gets",
"the",
"encoding",
"as",
"declared",
"by",
"the",
"stdout",
"stream",
"."
] |
def _GetConsoleEncoding(self):
"""Gets the encoding as declared by the stdout stream.
Returns:
str, The encoding name or None if it could not be determined.
"""
console_encoding = getattr(sys.stdout, 'encoding', None)
if not console_encoding:
return None
console_encoding = console_encoding.lower()
if 'utf-8' in console_encoding:
return 'utf8'
elif 'cp437' in console_encoding:
return 'cp437'
return None
|
[
"def",
"_GetConsoleEncoding",
"(",
"self",
")",
":",
"console_encoding",
"=",
"getattr",
"(",
"sys",
".",
"stdout",
",",
"'encoding'",
",",
"None",
")",
"if",
"not",
"console_encoding",
":",
"return",
"None",
"console_encoding",
"=",
"console_encoding",
".",
"lower",
"(",
")",
"if",
"'utf-8'",
"in",
"console_encoding",
":",
"return",
"'utf8'",
"elif",
"'cp437'",
"in",
"console_encoding",
":",
"return",
"'cp437'",
"return",
"None"
] |
https://github.com/google/python-fire/blob/ed44d8b801fc24e40729abef11b2dcbf6588d361/fire/console/console_attr.py#L307-L321
|
|
pypa/pipenv
|
b21baade71a86ab3ee1429f71fbc14d4f95fb75d
|
pipenv/vendor/distlib/resources.py
|
python
|
Resource.as_stream
|
(self)
|
return self.finder.get_stream(self)
|
Get the resource as a stream.
This is not a property to make it obvious that it returns a new stream
each time.
|
Get the resource as a stream.
|
[
"Get",
"the",
"resource",
"as",
"a",
"stream",
"."
] |
def as_stream(self):
"""
Get the resource as a stream.
This is not a property to make it obvious that it returns a new stream
each time.
"""
return self.finder.get_stream(self)
|
[
"def",
"as_stream",
"(",
"self",
")",
":",
"return",
"self",
".",
"finder",
".",
"get_stream",
"(",
"self",
")"
] |
https://github.com/pypa/pipenv/blob/b21baade71a86ab3ee1429f71fbc14d4f95fb75d/pipenv/vendor/distlib/resources.py#L85-L92
|
|
openstack/openstacksdk
|
58384268487fa854f21c470b101641ab382c9897
|
openstack/identity/v3/domain.py
|
python
|
Domain.assign_role_to_group
|
(self, session, group, role)
|
return False
|
Assign role to group on domain
|
Assign role to group on domain
|
[
"Assign",
"role",
"to",
"group",
"on",
"domain"
] |
def assign_role_to_group(self, session, group, role):
"""Assign role to group on domain"""
url = utils.urljoin(self.base_path, self.id, 'groups',
group.id, 'roles', role.id)
resp = session.put(url,)
if resp.status_code == 204:
return True
return False
|
[
"def",
"assign_role_to_group",
"(",
"self",
",",
"session",
",",
"group",
",",
"role",
")",
":",
"url",
"=",
"utils",
".",
"urljoin",
"(",
"self",
".",
"base_path",
",",
"self",
".",
"id",
",",
"'groups'",
",",
"group",
".",
"id",
",",
"'roles'",
",",
"role",
".",
"id",
")",
"resp",
"=",
"session",
".",
"put",
"(",
"url",
",",
")",
"if",
"resp",
".",
"status_code",
"==",
"204",
":",
"return",
"True",
"return",
"False"
] |
https://github.com/openstack/openstacksdk/blob/58384268487fa854f21c470b101641ab382c9897/openstack/identity/v3/domain.py#L78-L85
|
|
markj3d/Red9_StudioPack
|
1d40a8bf84c45ce7eaefdd9ccfa3cdbeb1471919
|
packages/pydub/pydub/utils.py
|
python
|
ratio_to_db
|
(ratio, val2=None, using_amplitude=True)
|
Converts the input float to db, which represents the equivalent
to the ratio in power represented by the multiplier passed in.
|
Converts the input float to db, which represents the equivalent
to the ratio in power represented by the multiplier passed in.
|
[
"Converts",
"the",
"input",
"float",
"to",
"db",
"which",
"represents",
"the",
"equivalent",
"to",
"the",
"ratio",
"in",
"power",
"represented",
"by",
"the",
"multiplier",
"passed",
"in",
"."
] |
def ratio_to_db(ratio, val2=None, using_amplitude=True):
"""
Converts the input float to db, which represents the equivalent
to the ratio in power represented by the multiplier passed in.
"""
ratio = float(ratio)
# accept 2 values and use the ratio of val1 to val2
if val2 is not None:
ratio = ratio / val2
# special case for multiply-by-zero (convert to silence)
if ratio == 0:
return -float('inf')
if using_amplitude:
return 20 * log(ratio, 10)
else: # using power
return 10 * log(ratio, 10)
|
[
"def",
"ratio_to_db",
"(",
"ratio",
",",
"val2",
"=",
"None",
",",
"using_amplitude",
"=",
"True",
")",
":",
"ratio",
"=",
"float",
"(",
"ratio",
")",
"# accept 2 values and use the ratio of val1 to val2",
"if",
"val2",
"is",
"not",
"None",
":",
"ratio",
"=",
"ratio",
"/",
"val2",
"# special case for multiply-by-zero (convert to silence)",
"if",
"ratio",
"==",
"0",
":",
"return",
"-",
"float",
"(",
"'inf'",
")",
"if",
"using_amplitude",
":",
"return",
"20",
"*",
"log",
"(",
"ratio",
",",
"10",
")",
"else",
":",
"# using power",
"return",
"10",
"*",
"log",
"(",
"ratio",
",",
"10",
")"
] |
https://github.com/markj3d/Red9_StudioPack/blob/1d40a8bf84c45ce7eaefdd9ccfa3cdbeb1471919/packages/pydub/pydub/utils.py#L76-L94
|
||
quantumblacklabs/causalnex
|
127d9324a3d68c1795299c7522f22cdea880f344
|
causalnex/structure/pytorch/sklearn/_base.py
|
python
|
DAGBase.fit
|
(self, X: Union[pd.DataFrame, np.ndarray], y: Union[pd.Series, np.ndarray])
|
return self
|
Fits the sm model using the concat of X and y.
|
Fits the sm model using the concat of X and y.
|
[
"Fits",
"the",
"sm",
"model",
"using",
"the",
"concat",
"of",
"X",
"and",
"y",
"."
] |
def fit(self, X: Union[pd.DataFrame, np.ndarray], y: Union[pd.Series, np.ndarray]):
"""
Fits the sm model using the concat of X and y.
"""
# defensive X, y checks
check_X_y(X, y, y_numeric=True)
# force X, y to DataFrame, Series for later calculations
X = pd.DataFrame(X)
y = pd.Series(y)
# force name so that name != None (causes errors in notears)
y.name = y.name or "__target"
# if self.dist_type_schema is None, assume all columns are continuous
# NOTE: this is copied due to later insertions
dist_type_schema = copy.deepcopy(self.dist_type_schema) or {
col: "cont" for col in X.columns
}
if self.standardize:
# only standardize the continuous dist type columns.
self.continuous_col_idxs = [
X.columns.get_loc(col)
for col, alias in dist_type_schema.items()
if alias == "cont"
]
# copy X to prevet changes to underlying array data
X = X.copy()
self._ss_X = StandardScaler()
X.iloc[:, self.continuous_col_idxs] = self._ss_X.fit_transform(
X.iloc[:, self.continuous_col_idxs]
)
# if its a continuous target also standardize
if self.target_dist_type == "cont":
y = y.copy()
self._ss_y = StandardScaler()
y[:] = self._ss_y.fit_transform(y.values.reshape(-1, 1)).reshape(-1)
# add the target to the dist_type_schema
# NOTE: this must be done AFTER standardize
dist_type_schema[y.name] = self.target_dist_type
# preserve the feature and target colnames
self._features = tuple(X.columns)
self._target = y.name
# concat X and y along column axis
X = pd.concat([X, y], axis=1)
# make copy to prevent mutability
tabu_parent_nodes = copy.deepcopy(self.tabu_parent_nodes)
if self.dependent_target:
if tabu_parent_nodes is None:
tabu_parent_nodes = [self._target]
elif self._target not in tabu_parent_nodes:
tabu_parent_nodes.append(self._target)
# fit the structured model
self.graph_ = notears.from_pandas(
X,
dist_type_schema=dist_type_schema,
lasso_beta=self.alpha,
ridge_beta=self.beta,
hidden_layer_units=self.hidden_layer_units,
w_threshold=self.threshold,
tabu_edges=self.tabu_edges,
tabu_parent_nodes=tabu_parent_nodes,
tabu_child_nodes=self.tabu_child_nodes,
use_bias=self.fit_intercept,
**(self.notears_mlp_kwargs or {}),
)
# keep thresholding until the DAG constraint is enforced
if self.enforce_dag:
self.graph_.threshold_till_dag()
return self
|
[
"def",
"fit",
"(",
"self",
",",
"X",
":",
"Union",
"[",
"pd",
".",
"DataFrame",
",",
"np",
".",
"ndarray",
"]",
",",
"y",
":",
"Union",
"[",
"pd",
".",
"Series",
",",
"np",
".",
"ndarray",
"]",
")",
":",
"# defensive X, y checks",
"check_X_y",
"(",
"X",
",",
"y",
",",
"y_numeric",
"=",
"True",
")",
"# force X, y to DataFrame, Series for later calculations",
"X",
"=",
"pd",
".",
"DataFrame",
"(",
"X",
")",
"y",
"=",
"pd",
".",
"Series",
"(",
"y",
")",
"# force name so that name != None (causes errors in notears)",
"y",
".",
"name",
"=",
"y",
".",
"name",
"or",
"\"__target\"",
"# if self.dist_type_schema is None, assume all columns are continuous",
"# NOTE: this is copied due to later insertions",
"dist_type_schema",
"=",
"copy",
".",
"deepcopy",
"(",
"self",
".",
"dist_type_schema",
")",
"or",
"{",
"col",
":",
"\"cont\"",
"for",
"col",
"in",
"X",
".",
"columns",
"}",
"if",
"self",
".",
"standardize",
":",
"# only standardize the continuous dist type columns.",
"self",
".",
"continuous_col_idxs",
"=",
"[",
"X",
".",
"columns",
".",
"get_loc",
"(",
"col",
")",
"for",
"col",
",",
"alias",
"in",
"dist_type_schema",
".",
"items",
"(",
")",
"if",
"alias",
"==",
"\"cont\"",
"]",
"# copy X to prevet changes to underlying array data",
"X",
"=",
"X",
".",
"copy",
"(",
")",
"self",
".",
"_ss_X",
"=",
"StandardScaler",
"(",
")",
"X",
".",
"iloc",
"[",
":",
",",
"self",
".",
"continuous_col_idxs",
"]",
"=",
"self",
".",
"_ss_X",
".",
"fit_transform",
"(",
"X",
".",
"iloc",
"[",
":",
",",
"self",
".",
"continuous_col_idxs",
"]",
")",
"# if its a continuous target also standardize",
"if",
"self",
".",
"target_dist_type",
"==",
"\"cont\"",
":",
"y",
"=",
"y",
".",
"copy",
"(",
")",
"self",
".",
"_ss_y",
"=",
"StandardScaler",
"(",
")",
"y",
"[",
":",
"]",
"=",
"self",
".",
"_ss_y",
".",
"fit_transform",
"(",
"y",
".",
"values",
".",
"reshape",
"(",
"-",
"1",
",",
"1",
")",
")",
".",
"reshape",
"(",
"-",
"1",
")",
"# add the target to the dist_type_schema",
"# NOTE: this must be done AFTER standardize",
"dist_type_schema",
"[",
"y",
".",
"name",
"]",
"=",
"self",
".",
"target_dist_type",
"# preserve the feature and target colnames",
"self",
".",
"_features",
"=",
"tuple",
"(",
"X",
".",
"columns",
")",
"self",
".",
"_target",
"=",
"y",
".",
"name",
"# concat X and y along column axis",
"X",
"=",
"pd",
".",
"concat",
"(",
"[",
"X",
",",
"y",
"]",
",",
"axis",
"=",
"1",
")",
"# make copy to prevent mutability",
"tabu_parent_nodes",
"=",
"copy",
".",
"deepcopy",
"(",
"self",
".",
"tabu_parent_nodes",
")",
"if",
"self",
".",
"dependent_target",
":",
"if",
"tabu_parent_nodes",
"is",
"None",
":",
"tabu_parent_nodes",
"=",
"[",
"self",
".",
"_target",
"]",
"elif",
"self",
".",
"_target",
"not",
"in",
"tabu_parent_nodes",
":",
"tabu_parent_nodes",
".",
"append",
"(",
"self",
".",
"_target",
")",
"# fit the structured model",
"self",
".",
"graph_",
"=",
"notears",
".",
"from_pandas",
"(",
"X",
",",
"dist_type_schema",
"=",
"dist_type_schema",
",",
"lasso_beta",
"=",
"self",
".",
"alpha",
",",
"ridge_beta",
"=",
"self",
".",
"beta",
",",
"hidden_layer_units",
"=",
"self",
".",
"hidden_layer_units",
",",
"w_threshold",
"=",
"self",
".",
"threshold",
",",
"tabu_edges",
"=",
"self",
".",
"tabu_edges",
",",
"tabu_parent_nodes",
"=",
"tabu_parent_nodes",
",",
"tabu_child_nodes",
"=",
"self",
".",
"tabu_child_nodes",
",",
"use_bias",
"=",
"self",
".",
"fit_intercept",
",",
"*",
"*",
"(",
"self",
".",
"notears_mlp_kwargs",
"or",
"{",
"}",
")",
",",
")",
"# keep thresholding until the DAG constraint is enforced",
"if",
"self",
".",
"enforce_dag",
":",
"self",
".",
"graph_",
".",
"threshold_till_dag",
"(",
")",
"return",
"self"
] |
https://github.com/quantumblacklabs/causalnex/blob/127d9324a3d68c1795299c7522f22cdea880f344/causalnex/structure/pytorch/sklearn/_base.py#L175-L255
|
|
microsoft/botbuilder-python
|
3d410365461dc434df59bdfeaa2f16d28d9df868
|
libraries/botbuilder-dialogs/botbuilder/dialogs/memory/dialog_state_manager.py
|
python
|
DialogStateManager.remove_item
|
(self, item: Tuple[str, object])
|
Determines whether the dialog state manager contains a specific value (should use __contains__).
:param item: The tuple of the item to locate.
:return bool: True if item is found in the dialog state manager otherwise, False
|
Determines whether the dialog state manager contains a specific value (should use __contains__).
:param item: The tuple of the item to locate.
:return bool: True if item is found in the dialog state manager otherwise, False
|
[
"Determines",
"whether",
"the",
"dialog",
"state",
"manager",
"contains",
"a",
"specific",
"value",
"(",
"should",
"use",
"__contains__",
")",
".",
":",
"param",
"item",
":",
"The",
"tuple",
"of",
"the",
"item",
"to",
"locate",
".",
":",
"return",
"bool",
":",
"True",
"if",
"item",
"is",
"found",
"in",
"the",
"dialog",
"state",
"manager",
"otherwise",
"False"
] |
def remove_item(self, item: Tuple[str, object]) -> bool:
"""
Determines whether the dialog state manager contains a specific value (should use __contains__).
:param item: The tuple of the item to locate.
:return bool: True if item is found in the dialog state manager otherwise, False
"""
raise RuntimeError("Not supported")
|
[
"def",
"remove_item",
"(",
"self",
",",
"item",
":",
"Tuple",
"[",
"str",
",",
"object",
"]",
")",
"->",
"bool",
":",
"raise",
"RuntimeError",
"(",
"\"Not supported\"",
")"
] |
https://github.com/microsoft/botbuilder-python/blob/3d410365461dc434df59bdfeaa2f16d28d9df868/libraries/botbuilder-dialogs/botbuilder/dialogs/memory/dialog_state_manager.py#L534-L540
|
||
IJDykeman/wangTiles
|
7c1ee2095ebdf7f72bce07d94c6484915d5cae8b
|
experimental_code/tiles_3d/venv_mac_py3/lib/python2.7/site-packages/pip/_vendor/distlib/_backport/tarfile.py
|
python
|
TarFile.makeunknown
|
(self, tarinfo, targetpath)
|
Make a file from a TarInfo object with an unknown type
at targetpath.
|
Make a file from a TarInfo object with an unknown type
at targetpath.
|
[
"Make",
"a",
"file",
"from",
"a",
"TarInfo",
"object",
"with",
"an",
"unknown",
"type",
"at",
"targetpath",
"."
] |
def makeunknown(self, tarinfo, targetpath):
"""Make a file from a TarInfo object with an unknown type
at targetpath.
"""
self.makefile(tarinfo, targetpath)
self._dbg(1, "tarfile: Unknown file type %r, " \
"extracted as regular file." % tarinfo.type)
|
[
"def",
"makeunknown",
"(",
"self",
",",
"tarinfo",
",",
"targetpath",
")",
":",
"self",
".",
"makefile",
"(",
"tarinfo",
",",
"targetpath",
")",
"self",
".",
"_dbg",
"(",
"1",
",",
"\"tarfile: Unknown file type %r, \"",
"\"extracted as regular file.\"",
"%",
"tarinfo",
".",
"type",
")"
] |
https://github.com/IJDykeman/wangTiles/blob/7c1ee2095ebdf7f72bce07d94c6484915d5cae8b/experimental_code/tiles_3d/venv_mac_py3/lib/python2.7/site-packages/pip/_vendor/distlib/_backport/tarfile.py#L2312-L2318
|
||
tenzir/threatbus
|
a26096e7b61b3eddf25c445d40a6cd2ea4420558
|
apps/stix-shifter/stix_shifter_threatbus/shifter.py
|
python
|
query_indicator
|
(
indicator: Indicator, module: str, opts: dict, sightings_queue: asyncio.Queue
)
|
Translates an indicator into a module-specific query and executes it. E.g.,
if the module is `splunk`, the indicator's pattern is first translated into
a valid Splunk query and then executed via the Splunk REST API.
@param indicator The indicator to translate and query
@param module The module's name, e.g., `splunk`
@param opts The module configuration directly taken from the user-defined
configuration file `config.yaml` with which this app was started
@param sightings_queue The queue to put sightings into
|
Translates an indicator into a module-specific query and executes it. E.g.,
if the module is `splunk`, the indicator's pattern is first translated into
a valid Splunk query and then executed via the Splunk REST API.
|
[
"Translates",
"an",
"indicator",
"into",
"a",
"module",
"-",
"specific",
"query",
"and",
"executes",
"it",
".",
"E",
".",
"g",
".",
"if",
"the",
"module",
"is",
"splunk",
"the",
"indicator",
"s",
"pattern",
"is",
"first",
"translated",
"into",
"a",
"valid",
"Splunk",
"query",
"and",
"then",
"executed",
"via",
"the",
"Splunk",
"REST",
"API",
"."
] |
async def query_indicator(
indicator: Indicator, module: str, opts: dict, sightings_queue: asyncio.Queue
):
"""
Translates an indicator into a module-specific query and executes it. E.g.,
if the module is `splunk`, the indicator's pattern is first translated into
a valid Splunk query and then executed via the Splunk REST API.
@param indicator The indicator to translate and query
@param module The module's name, e.g., `splunk`
@param opts The module configuration directly taken from the user-defined
configuration file `config.yaml` with which this app was started
@param sightings_queue The queue to put sightings into
"""
max_results = opts["max_results"]
connection_opts = opts["connection"]
transmission_opts = opts.get("transmission", {})
translation_opts = opts.get("translation", {})
data_source = opts["data_source"]
## Translate the pattern to a module-specific query.
translation = stix_translation.StixTranslation()
dsl = translation.translate(
module, "query", indicator, indicator.pattern, translation_opts
)
if not dsl.get("queries", None):
logger.error(
f"Failed to translate STIX-2 indicator with ID '{indicator.id}' to query for module '{module}': {dsl}"
)
return
logger.debug(f"Translated pattern to {module} query: {dsl}")
## Run the query against the configured endpoint for this module.
transmission = stix_transmission.StixTransmission(
module, connection_opts, transmission_opts
)
query_results = []
for query in dsl["queries"]:
search_result = transmission.query(query)
if not search_result["success"]:
logger.error(str(search_result))
continue
search_id = search_result["search_id"]
if transmission.is_async():
status = transmission.status(search_id)
if not status.get("success", None):
logger.error(f"Fetching query status failed for module '{module}'")
return
while status["progress"] < 100 and status["status"] == "RUNNING":
status = transmission.status(search_id)
await asyncio.sleep(0.05)
result = transmission.results(search_id, 0, max_results)
if result["success"]:
# Collect all results
query_results += result["data"]
else:
logger.error(f"Fetching results failed for module '{module}': {result}")
## Translate query_results to STIX.
if not query_results:
return
stix_results = translation.translate(
module,
"results",
json.dumps(data_source),
json.dumps(query_results),
translation_opts,
)
## Parse output and report back sightings to Threat Bus
## The stix_results is always a self-made bundle with at least an `objects`
## field present. The bundle may be invalid STIX though, so we cannot simply
## invoke `parse()`. See this link for details on the bundle stucture:
## https://github.com/opencybersecurityalliance/stix-shifter/blob/3.4.5/stix_shifter_utils/stix_translation/src/json_to_stix/json_to_stix_translator.py#L12
objs = stix_results.get("objects", None)
if objs is None:
logger.error(
f"Received STIX bundle without `objects` field, cannot generate sightings: {stix_results}"
)
return
for sighting in map_bundle_to_sightings(indicator, objs):
await sightings_queue.put(sighting)
|
[
"async",
"def",
"query_indicator",
"(",
"indicator",
":",
"Indicator",
",",
"module",
":",
"str",
",",
"opts",
":",
"dict",
",",
"sightings_queue",
":",
"asyncio",
".",
"Queue",
")",
":",
"max_results",
"=",
"opts",
"[",
"\"max_results\"",
"]",
"connection_opts",
"=",
"opts",
"[",
"\"connection\"",
"]",
"transmission_opts",
"=",
"opts",
".",
"get",
"(",
"\"transmission\"",
",",
"{",
"}",
")",
"translation_opts",
"=",
"opts",
".",
"get",
"(",
"\"translation\"",
",",
"{",
"}",
")",
"data_source",
"=",
"opts",
"[",
"\"data_source\"",
"]",
"## Translate the pattern to a module-specific query.",
"translation",
"=",
"stix_translation",
".",
"StixTranslation",
"(",
")",
"dsl",
"=",
"translation",
".",
"translate",
"(",
"module",
",",
"\"query\"",
",",
"indicator",
",",
"indicator",
".",
"pattern",
",",
"translation_opts",
")",
"if",
"not",
"dsl",
".",
"get",
"(",
"\"queries\"",
",",
"None",
")",
":",
"logger",
".",
"error",
"(",
"f\"Failed to translate STIX-2 indicator with ID '{indicator.id}' to query for module '{module}': {dsl}\"",
")",
"return",
"logger",
".",
"debug",
"(",
"f\"Translated pattern to {module} query: {dsl}\"",
")",
"## Run the query against the configured endpoint for this module.",
"transmission",
"=",
"stix_transmission",
".",
"StixTransmission",
"(",
"module",
",",
"connection_opts",
",",
"transmission_opts",
")",
"query_results",
"=",
"[",
"]",
"for",
"query",
"in",
"dsl",
"[",
"\"queries\"",
"]",
":",
"search_result",
"=",
"transmission",
".",
"query",
"(",
"query",
")",
"if",
"not",
"search_result",
"[",
"\"success\"",
"]",
":",
"logger",
".",
"error",
"(",
"str",
"(",
"search_result",
")",
")",
"continue",
"search_id",
"=",
"search_result",
"[",
"\"search_id\"",
"]",
"if",
"transmission",
".",
"is_async",
"(",
")",
":",
"status",
"=",
"transmission",
".",
"status",
"(",
"search_id",
")",
"if",
"not",
"status",
".",
"get",
"(",
"\"success\"",
",",
"None",
")",
":",
"logger",
".",
"error",
"(",
"f\"Fetching query status failed for module '{module}'\"",
")",
"return",
"while",
"status",
"[",
"\"progress\"",
"]",
"<",
"100",
"and",
"status",
"[",
"\"status\"",
"]",
"==",
"\"RUNNING\"",
":",
"status",
"=",
"transmission",
".",
"status",
"(",
"search_id",
")",
"await",
"asyncio",
".",
"sleep",
"(",
"0.05",
")",
"result",
"=",
"transmission",
".",
"results",
"(",
"search_id",
",",
"0",
",",
"max_results",
")",
"if",
"result",
"[",
"\"success\"",
"]",
":",
"# Collect all results",
"query_results",
"+=",
"result",
"[",
"\"data\"",
"]",
"else",
":",
"logger",
".",
"error",
"(",
"f\"Fetching results failed for module '{module}': {result}\"",
")",
"## Translate query_results to STIX.",
"if",
"not",
"query_results",
":",
"return",
"stix_results",
"=",
"translation",
".",
"translate",
"(",
"module",
",",
"\"results\"",
",",
"json",
".",
"dumps",
"(",
"data_source",
")",
",",
"json",
".",
"dumps",
"(",
"query_results",
")",
",",
"translation_opts",
",",
")",
"## Parse output and report back sightings to Threat Bus",
"## The stix_results is always a self-made bundle with at least an `objects`",
"## field present. The bundle may be invalid STIX though, so we cannot simply",
"## invoke `parse()`. See this link for details on the bundle stucture:",
"## https://github.com/opencybersecurityalliance/stix-shifter/blob/3.4.5/stix_shifter_utils/stix_translation/src/json_to_stix/json_to_stix_translator.py#L12",
"objs",
"=",
"stix_results",
".",
"get",
"(",
"\"objects\"",
",",
"None",
")",
"if",
"objs",
"is",
"None",
":",
"logger",
".",
"error",
"(",
"f\"Received STIX bundle without `objects` field, cannot generate sightings: {stix_results}\"",
")",
"return",
"for",
"sighting",
"in",
"map_bundle_to_sightings",
"(",
"indicator",
",",
"objs",
")",
":",
"await",
"sightings_queue",
".",
"put",
"(",
"sighting",
")"
] |
https://github.com/tenzir/threatbus/blob/a26096e7b61b3eddf25c445d40a6cd2ea4420558/apps/stix-shifter/stix_shifter_threatbus/shifter.py#L360-L442
|
||
dimagi/commcare-hq
|
d67ff1d3b4c51fa050c19e60c3253a79d3452a39
|
custom/up_nrhm/reports/asha_functionality_checklist_report.py
|
python
|
ASHAFunctionalityChecklistReport.ashas
|
(self)
|
return sorted(list(self.model_data.data.values()), key=lambda x: x['completed_on'])
|
[] |
def ashas(self):
return sorted(list(self.model_data.data.values()), key=lambda x: x['completed_on'])
|
[
"def",
"ashas",
"(",
"self",
")",
":",
"return",
"sorted",
"(",
"list",
"(",
"self",
".",
"model_data",
".",
"data",
".",
"values",
"(",
")",
")",
",",
"key",
"=",
"lambda",
"x",
":",
"x",
"[",
"'completed_on'",
"]",
")"
] |
https://github.com/dimagi/commcare-hq/blob/d67ff1d3b4c51fa050c19e60c3253a79d3452a39/custom/up_nrhm/reports/asha_functionality_checklist_report.py#L30-L31
|
|||
ajinabraham/OWASP-Xenotix-XSS-Exploit-Framework
|
cb692f527e4e819b6c228187c5702d990a180043
|
bin/x86/Debug/scripting_engine/Lib/xmlrpclib.py
|
python
|
gzip_decode
|
(data)
|
return decoded
|
gzip encoded data -> unencoded data
Decode data using the gzip content encoding as described in RFC 1952
|
gzip encoded data -> unencoded data
|
[
"gzip",
"encoded",
"data",
"-",
">",
"unencoded",
"data"
] |
def gzip_decode(data):
"""gzip encoded data -> unencoded data
Decode data using the gzip content encoding as described in RFC 1952
"""
if not gzip:
raise NotImplementedError
f = StringIO.StringIO(data)
gzf = gzip.GzipFile(mode="rb", fileobj=f)
try:
decoded = gzf.read()
except IOError:
raise ValueError("invalid data")
f.close()
gzf.close()
return decoded
|
[
"def",
"gzip_decode",
"(",
"data",
")",
":",
"if",
"not",
"gzip",
":",
"raise",
"NotImplementedError",
"f",
"=",
"StringIO",
".",
"StringIO",
"(",
"data",
")",
"gzf",
"=",
"gzip",
".",
"GzipFile",
"(",
"mode",
"=",
"\"rb\"",
",",
"fileobj",
"=",
"f",
")",
"try",
":",
"decoded",
"=",
"gzf",
".",
"read",
"(",
")",
"except",
"IOError",
":",
"raise",
"ValueError",
"(",
"\"invalid data\"",
")",
"f",
".",
"close",
"(",
")",
"gzf",
".",
"close",
"(",
")",
"return",
"decoded"
] |
https://github.com/ajinabraham/OWASP-Xenotix-XSS-Exploit-Framework/blob/cb692f527e4e819b6c228187c5702d990a180043/bin/x86/Debug/scripting_engine/Lib/xmlrpclib.py#L1171-L1186
|
|
dorneanu/smalisca
|
1aa7a164ee3060afd51d0524b80aa6e8bbec3515
|
smalisca/modules/module_graph.py
|
python
|
add_nodes
|
(graph, nodes)
|
return graph
|
Add node(s) to graph
Args:
graph (Graph): Graph to add node(s) to
nodes (list): List of nodes
Returns:
Graph: Return the modified graph
|
Add node(s) to graph
|
[
"Add",
"node",
"(",
"s",
")",
"to",
"graph"
] |
def add_nodes(graph, nodes):
""" Add node(s) to graph
Args:
graph (Graph): Graph to add node(s) to
nodes (list): List of nodes
Returns:
Graph: Return the modified graph
"""
for n in nodes:
if isinstance(n, tuple):
graph.node(n[0], **n[1])
else:
graph.node(n)
return graph
|
[
"def",
"add_nodes",
"(",
"graph",
",",
"nodes",
")",
":",
"for",
"n",
"in",
"nodes",
":",
"if",
"isinstance",
"(",
"n",
",",
"tuple",
")",
":",
"graph",
".",
"node",
"(",
"n",
"[",
"0",
"]",
",",
"*",
"*",
"n",
"[",
"1",
"]",
")",
"else",
":",
"graph",
".",
"node",
"(",
"n",
")",
"return",
"graph"
] |
https://github.com/dorneanu/smalisca/blob/1aa7a164ee3060afd51d0524b80aa6e8bbec3515/smalisca/modules/module_graph.py#L42-L58
|
|
cw1204772/AIC2018_iamai
|
9c3720ba5eeb94e02deed303f32acaaa80aa893d
|
Detection/lib/datasets/json_dataset.py
|
python
|
_merge_proposal_boxes_into_roidb
|
(roidb, box_list)
|
Add proposal boxes to each roidb entry.
|
Add proposal boxes to each roidb entry.
|
[
"Add",
"proposal",
"boxes",
"to",
"each",
"roidb",
"entry",
"."
] |
def _merge_proposal_boxes_into_roidb(roidb, box_list):
"""Add proposal boxes to each roidb entry."""
assert len(box_list) == len(roidb)
for i, entry in enumerate(roidb):
boxes = box_list[i]
num_boxes = boxes.shape[0]
gt_overlaps = np.zeros(
(num_boxes, entry['gt_overlaps'].shape[1]),
dtype=entry['gt_overlaps'].dtype
)
box_to_gt_ind_map = -np.ones(
(num_boxes), dtype=entry['box_to_gt_ind_map'].dtype
)
# Note: unlike in other places, here we intentionally include all gt
# rois, even ones marked as crowd. Boxes that overlap with crowds will
# be filtered out later (see: _filter_crowd_proposals).
gt_inds = np.where(entry['gt_classes'] > 0)[0]
if len(gt_inds) > 0:
gt_boxes = entry['boxes'][gt_inds, :]
gt_classes = entry['gt_classes'][gt_inds]
proposal_to_gt_overlaps = box_utils.bbox_overlaps(
boxes.astype(dtype=np.float32, copy=False),
gt_boxes.astype(dtype=np.float32, copy=False)
)
# Gt box that overlaps each input box the most
# (ties are broken arbitrarily by class order)
argmaxes = proposal_to_gt_overlaps.argmax(axis=1)
# Amount of that overlap
maxes = proposal_to_gt_overlaps.max(axis=1)
# Those boxes with non-zero overlap with gt boxes
I = np.where(maxes > 0)[0]
# Record max overlaps with the class of the appropriate gt box
gt_overlaps[I, gt_classes[argmaxes[I]]] = maxes[I]
box_to_gt_ind_map[I] = gt_inds[argmaxes[I]]
entry['boxes'] = np.append(
entry['boxes'],
boxes.astype(entry['boxes'].dtype, copy=False),
axis=0
)
entry['gt_classes'] = np.append(
entry['gt_classes'],
np.zeros((num_boxes), dtype=entry['gt_classes'].dtype)
)
entry['seg_areas'] = np.append(
entry['seg_areas'],
np.zeros((num_boxes), dtype=entry['seg_areas'].dtype)
)
entry['gt_overlaps'] = np.append(
entry['gt_overlaps'].toarray(), gt_overlaps, axis=0
)
entry['gt_overlaps'] = scipy.sparse.csr_matrix(entry['gt_overlaps'])
entry['is_crowd'] = np.append(
entry['is_crowd'],
np.zeros((num_boxes), dtype=entry['is_crowd'].dtype)
)
entry['box_to_gt_ind_map'] = np.append(
entry['box_to_gt_ind_map'],
box_to_gt_ind_map.astype(
entry['box_to_gt_ind_map'].dtype, copy=False
)
)
|
[
"def",
"_merge_proposal_boxes_into_roidb",
"(",
"roidb",
",",
"box_list",
")",
":",
"assert",
"len",
"(",
"box_list",
")",
"==",
"len",
"(",
"roidb",
")",
"for",
"i",
",",
"entry",
"in",
"enumerate",
"(",
"roidb",
")",
":",
"boxes",
"=",
"box_list",
"[",
"i",
"]",
"num_boxes",
"=",
"boxes",
".",
"shape",
"[",
"0",
"]",
"gt_overlaps",
"=",
"np",
".",
"zeros",
"(",
"(",
"num_boxes",
",",
"entry",
"[",
"'gt_overlaps'",
"]",
".",
"shape",
"[",
"1",
"]",
")",
",",
"dtype",
"=",
"entry",
"[",
"'gt_overlaps'",
"]",
".",
"dtype",
")",
"box_to_gt_ind_map",
"=",
"-",
"np",
".",
"ones",
"(",
"(",
"num_boxes",
")",
",",
"dtype",
"=",
"entry",
"[",
"'box_to_gt_ind_map'",
"]",
".",
"dtype",
")",
"# Note: unlike in other places, here we intentionally include all gt",
"# rois, even ones marked as crowd. Boxes that overlap with crowds will",
"# be filtered out later (see: _filter_crowd_proposals).",
"gt_inds",
"=",
"np",
".",
"where",
"(",
"entry",
"[",
"'gt_classes'",
"]",
">",
"0",
")",
"[",
"0",
"]",
"if",
"len",
"(",
"gt_inds",
")",
">",
"0",
":",
"gt_boxes",
"=",
"entry",
"[",
"'boxes'",
"]",
"[",
"gt_inds",
",",
":",
"]",
"gt_classes",
"=",
"entry",
"[",
"'gt_classes'",
"]",
"[",
"gt_inds",
"]",
"proposal_to_gt_overlaps",
"=",
"box_utils",
".",
"bbox_overlaps",
"(",
"boxes",
".",
"astype",
"(",
"dtype",
"=",
"np",
".",
"float32",
",",
"copy",
"=",
"False",
")",
",",
"gt_boxes",
".",
"astype",
"(",
"dtype",
"=",
"np",
".",
"float32",
",",
"copy",
"=",
"False",
")",
")",
"# Gt box that overlaps each input box the most",
"# (ties are broken arbitrarily by class order)",
"argmaxes",
"=",
"proposal_to_gt_overlaps",
".",
"argmax",
"(",
"axis",
"=",
"1",
")",
"# Amount of that overlap",
"maxes",
"=",
"proposal_to_gt_overlaps",
".",
"max",
"(",
"axis",
"=",
"1",
")",
"# Those boxes with non-zero overlap with gt boxes",
"I",
"=",
"np",
".",
"where",
"(",
"maxes",
">",
"0",
")",
"[",
"0",
"]",
"# Record max overlaps with the class of the appropriate gt box",
"gt_overlaps",
"[",
"I",
",",
"gt_classes",
"[",
"argmaxes",
"[",
"I",
"]",
"]",
"]",
"=",
"maxes",
"[",
"I",
"]",
"box_to_gt_ind_map",
"[",
"I",
"]",
"=",
"gt_inds",
"[",
"argmaxes",
"[",
"I",
"]",
"]",
"entry",
"[",
"'boxes'",
"]",
"=",
"np",
".",
"append",
"(",
"entry",
"[",
"'boxes'",
"]",
",",
"boxes",
".",
"astype",
"(",
"entry",
"[",
"'boxes'",
"]",
".",
"dtype",
",",
"copy",
"=",
"False",
")",
",",
"axis",
"=",
"0",
")",
"entry",
"[",
"'gt_classes'",
"]",
"=",
"np",
".",
"append",
"(",
"entry",
"[",
"'gt_classes'",
"]",
",",
"np",
".",
"zeros",
"(",
"(",
"num_boxes",
")",
",",
"dtype",
"=",
"entry",
"[",
"'gt_classes'",
"]",
".",
"dtype",
")",
")",
"entry",
"[",
"'seg_areas'",
"]",
"=",
"np",
".",
"append",
"(",
"entry",
"[",
"'seg_areas'",
"]",
",",
"np",
".",
"zeros",
"(",
"(",
"num_boxes",
")",
",",
"dtype",
"=",
"entry",
"[",
"'seg_areas'",
"]",
".",
"dtype",
")",
")",
"entry",
"[",
"'gt_overlaps'",
"]",
"=",
"np",
".",
"append",
"(",
"entry",
"[",
"'gt_overlaps'",
"]",
".",
"toarray",
"(",
")",
",",
"gt_overlaps",
",",
"axis",
"=",
"0",
")",
"entry",
"[",
"'gt_overlaps'",
"]",
"=",
"scipy",
".",
"sparse",
".",
"csr_matrix",
"(",
"entry",
"[",
"'gt_overlaps'",
"]",
")",
"entry",
"[",
"'is_crowd'",
"]",
"=",
"np",
".",
"append",
"(",
"entry",
"[",
"'is_crowd'",
"]",
",",
"np",
".",
"zeros",
"(",
"(",
"num_boxes",
")",
",",
"dtype",
"=",
"entry",
"[",
"'is_crowd'",
"]",
".",
"dtype",
")",
")",
"entry",
"[",
"'box_to_gt_ind_map'",
"]",
"=",
"np",
".",
"append",
"(",
"entry",
"[",
"'box_to_gt_ind_map'",
"]",
",",
"box_to_gt_ind_map",
".",
"astype",
"(",
"entry",
"[",
"'box_to_gt_ind_map'",
"]",
".",
"dtype",
",",
"copy",
"=",
"False",
")",
")"
] |
https://github.com/cw1204772/AIC2018_iamai/blob/9c3720ba5eeb94e02deed303f32acaaa80aa893d/Detection/lib/datasets/json_dataset.py#L349-L410
|
||
dbcli/mssql-cli
|
6509aa2fc226dde8ce6bab7af9cbb5f03717b936
|
build.py
|
python
|
build
|
()
|
Builds mssql-cli package.
|
Builds mssql-cli package.
|
[
"Builds",
"mssql",
"-",
"cli",
"package",
"."
] |
def build():
"""
Builds mssql-cli package.
"""
print_heading('Cleanup')
# clean
utility.clean_up(utility.MSSQLCLI_DIST_DIRECTORY)
utility.clean_up_egg_info_sub_directories(utility.ROOT_DIR)
print_heading('Running setup')
# install general requirements.
utility.exec_command(
'{0} -m pip install -r requirements-dev.txt'.format(PYTHON),
utility.ROOT_DIR)
# convert windows line endings to unix for mssql-cli bash script
utility.exec_command(
'{0} dos2unix.py mssql-cli mssql-cli'.format(PYTHON),
utility.ROOT_DIR)
# run flake8
code_analysis()
if utility.get_current_platform().startswith('win'):
platforms_to_build = ['win32', 'win_amd64']
else:
platforms_to_build = [utility.get_current_platform()]
for plat in platforms_to_build:
# For the current platform, populate the appropriate binaries and
# generate the wheel.
clean_and_copy_sqltoolsservice(plat)
utility.clean_up(utility.MSSQLCLI_BUILD_DIRECTORY)
print_heading('Building mssql-cli pip package')
utility.exec_command('%s --version' % PYTHON, utility.ROOT_DIR)
utility.exec_command('%s setup.py bdist_wheel --plat-name %s' % (PYTHON, plat),
utility.ROOT_DIR,
continue_on_error=False)
try:
# checks if long description will render correctly--does not work on some systems
utility.exec_command('twine check {}'
.format(os.path.join(utility.MSSQLCLI_DIST_DIRECTORY, '*')),
utility.ROOT_DIR, continue_on_error=False)
except IOError as err:
print(err)
print("Unable to run 'twine check'.")
# Copy back the SqlToolsService binaries for this platform.
clean_and_copy_sqltoolsservice(utility.get_current_platform())
copy_and_rename_wheels()
|
[
"def",
"build",
"(",
")",
":",
"print_heading",
"(",
"'Cleanup'",
")",
"# clean",
"utility",
".",
"clean_up",
"(",
"utility",
".",
"MSSQLCLI_DIST_DIRECTORY",
")",
"utility",
".",
"clean_up_egg_info_sub_directories",
"(",
"utility",
".",
"ROOT_DIR",
")",
"print_heading",
"(",
"'Running setup'",
")",
"# install general requirements.",
"utility",
".",
"exec_command",
"(",
"'{0} -m pip install -r requirements-dev.txt'",
".",
"format",
"(",
"PYTHON",
")",
",",
"utility",
".",
"ROOT_DIR",
")",
"# convert windows line endings to unix for mssql-cli bash script",
"utility",
".",
"exec_command",
"(",
"'{0} dos2unix.py mssql-cli mssql-cli'",
".",
"format",
"(",
"PYTHON",
")",
",",
"utility",
".",
"ROOT_DIR",
")",
"# run flake8",
"code_analysis",
"(",
")",
"if",
"utility",
".",
"get_current_platform",
"(",
")",
".",
"startswith",
"(",
"'win'",
")",
":",
"platforms_to_build",
"=",
"[",
"'win32'",
",",
"'win_amd64'",
"]",
"else",
":",
"platforms_to_build",
"=",
"[",
"utility",
".",
"get_current_platform",
"(",
")",
"]",
"for",
"plat",
"in",
"platforms_to_build",
":",
"# For the current platform, populate the appropriate binaries and",
"# generate the wheel.",
"clean_and_copy_sqltoolsservice",
"(",
"plat",
")",
"utility",
".",
"clean_up",
"(",
"utility",
".",
"MSSQLCLI_BUILD_DIRECTORY",
")",
"print_heading",
"(",
"'Building mssql-cli pip package'",
")",
"utility",
".",
"exec_command",
"(",
"'%s --version'",
"%",
"PYTHON",
",",
"utility",
".",
"ROOT_DIR",
")",
"utility",
".",
"exec_command",
"(",
"'%s setup.py bdist_wheel --plat-name %s'",
"%",
"(",
"PYTHON",
",",
"plat",
")",
",",
"utility",
".",
"ROOT_DIR",
",",
"continue_on_error",
"=",
"False",
")",
"try",
":",
"# checks if long description will render correctly--does not work on some systems",
"utility",
".",
"exec_command",
"(",
"'twine check {}'",
".",
"format",
"(",
"os",
".",
"path",
".",
"join",
"(",
"utility",
".",
"MSSQLCLI_DIST_DIRECTORY",
",",
"'*'",
")",
")",
",",
"utility",
".",
"ROOT_DIR",
",",
"continue_on_error",
"=",
"False",
")",
"except",
"IOError",
"as",
"err",
":",
"print",
"(",
"err",
")",
"print",
"(",
"\"Unable to run 'twine check'.\"",
")",
"# Copy back the SqlToolsService binaries for this platform.",
"clean_and_copy_sqltoolsservice",
"(",
"utility",
".",
"get_current_platform",
"(",
")",
")",
"copy_and_rename_wheels",
"(",
")"
] |
https://github.com/dbcli/mssql-cli/blob/6509aa2fc226dde8ce6bab7af9cbb5f03717b936/build.py#L41-L94
|
||
pwnieexpress/pwn_plug_sources
|
1a23324f5dc2c3de20f9c810269b6a29b2758cad
|
src/voiper/sulley/impacket/smb.py
|
python
|
set_key_odd_parity
|
(key)
|
return key
|
[] |
def set_key_odd_parity(key):
""
for i in range(len(key)):
for k in range(7):
bit = 0
t = key[i] >> k
bit = (t ^ bit) & 0x1
key[i] = (key[i] & 0xFE) | bit
return key
|
[
"def",
"set_key_odd_parity",
"(",
"key",
")",
":",
"for",
"i",
"in",
"range",
"(",
"len",
"(",
"key",
")",
")",
":",
"for",
"k",
"in",
"range",
"(",
"7",
")",
":",
"bit",
"=",
"0",
"t",
"=",
"key",
"[",
"i",
"]",
">>",
"k",
"bit",
"=",
"(",
"t",
"^",
"bit",
")",
"&",
"0x1",
"key",
"[",
"i",
"]",
"=",
"(",
"key",
"[",
"i",
"]",
"&",
"0xFE",
")",
"|",
"bit",
"return",
"key"
] |
https://github.com/pwnieexpress/pwn_plug_sources/blob/1a23324f5dc2c3de20f9c810269b6a29b2758cad/src/voiper/sulley/impacket/smb.py#L135-L144
|
|||
ahmetcemturan/SFACT
|
7576e29ba72b33e5058049b77b7b558875542747
|
fabmetheus_utilities/xml_simple_reader.py
|
python
|
DocumentTypeMonad.getNextMonad
|
(self, character)
|
return self
|
Get the next monad.
|
Get the next monad.
|
[
"Get",
"the",
"next",
"monad",
"."
] |
def getNextMonad(self, character):
'Get the next monad.'
self.input.write(character)
if character == '>':
inputString = self.input.getvalue()
if inputString.endswith('?>'):
textContent = '%s\n' % inputString
self.parentNode.childNodes.append(DocumentTypeNode(self.parentNode, textContent))
return OpenMonad(self.parentNode)
return self
|
[
"def",
"getNextMonad",
"(",
"self",
",",
"character",
")",
":",
"self",
".",
"input",
".",
"write",
"(",
"character",
")",
"if",
"character",
"==",
"'>'",
":",
"inputString",
"=",
"self",
".",
"input",
".",
"getvalue",
"(",
")",
"if",
"inputString",
".",
"endswith",
"(",
"'?>'",
")",
":",
"textContent",
"=",
"'%s\\n'",
"%",
"inputString",
"self",
".",
"parentNode",
".",
"childNodes",
".",
"append",
"(",
"DocumentTypeNode",
"(",
"self",
".",
"parentNode",
",",
"textContent",
")",
")",
"return",
"OpenMonad",
"(",
"self",
".",
"parentNode",
")",
"return",
"self"
] |
https://github.com/ahmetcemturan/SFACT/blob/7576e29ba72b33e5058049b77b7b558875542747/fabmetheus_utilities/xml_simple_reader.py#L312-L321
|
|
GoogleCloudPlatform/datastore-ndb-python
|
cf4cab3f1f69cd04e1a9229871be466b53729f3f
|
ndb/eventloop.py
|
python
|
get_event_loop
|
()
|
return ev
|
Return a EventLoop instance.
A new instance is created for each new HTTP request. We determine
that we're in a new request by inspecting os.environ, which is reset
at the start of each request. Also, each thread gets its own loop.
|
Return a EventLoop instance.
|
[
"Return",
"a",
"EventLoop",
"instance",
"."
] |
def get_event_loop():
"""Return a EventLoop instance.
A new instance is created for each new HTTP request. We determine
that we're in a new request by inspecting os.environ, which is reset
at the start of each request. Also, each thread gets its own loop.
"""
ev = _state.event_loop
if not os.getenv(_EVENT_LOOP_KEY) and ev is not None:
ev.clear()
_state.event_loop = None
ev = None
if ev is None:
ev = EventLoop()
_state.event_loop = ev
os.environ[_EVENT_LOOP_KEY] = '1'
return ev
|
[
"def",
"get_event_loop",
"(",
")",
":",
"ev",
"=",
"_state",
".",
"event_loop",
"if",
"not",
"os",
".",
"getenv",
"(",
"_EVENT_LOOP_KEY",
")",
"and",
"ev",
"is",
"not",
"None",
":",
"ev",
".",
"clear",
"(",
")",
"_state",
".",
"event_loop",
"=",
"None",
"ev",
"=",
"None",
"if",
"ev",
"is",
"None",
":",
"ev",
"=",
"EventLoop",
"(",
")",
"_state",
".",
"event_loop",
"=",
"ev",
"os",
".",
"environ",
"[",
"_EVENT_LOOP_KEY",
"]",
"=",
"'1'",
"return",
"ev"
] |
https://github.com/GoogleCloudPlatform/datastore-ndb-python/blob/cf4cab3f1f69cd04e1a9229871be466b53729f3f/ndb/eventloop.py#L293-L309
|
|
GNS3/gns3-gui
|
da8adbaa18ab60e053af2a619efd468f4c8950f3
|
gns3/progress.py
|
python
|
Progress.instance
|
(parent=None)
|
return Progress._instance
|
Singleton to return only one instance of Progress.
:returns: instance of Progress
|
Singleton to return only one instance of Progress.
|
[
"Singleton",
"to",
"return",
"only",
"one",
"instance",
"of",
"Progress",
"."
] |
def instance(parent=None):
"""
Singleton to return only one instance of Progress.
:returns: instance of Progress
"""
if not hasattr(Progress, "_instance") or Progress._instance is None:
Progress._instance = Progress(parent)
return Progress._instance
|
[
"def",
"instance",
"(",
"parent",
"=",
"None",
")",
":",
"if",
"not",
"hasattr",
"(",
"Progress",
",",
"\"_instance\"",
")",
"or",
"Progress",
".",
"_instance",
"is",
"None",
":",
"Progress",
".",
"_instance",
"=",
"Progress",
"(",
"parent",
")",
"return",
"Progress",
".",
"_instance"
] |
https://github.com/GNS3/gns3-gui/blob/da8adbaa18ab60e053af2a619efd468f4c8950f3/gns3/progress.py#L258-L267
|
|
BigBrotherBot/big-brother-bot
|
848823c71413c86e7f1ff9584f43e08d40a7f2c0
|
b3/plugins/poweradminurt/iourt41.py
|
python
|
Poweradminurt41Plugin.cmd_pagear
|
(self, data, client=None, cmd=None)
|
[<all/none/reset/[+-](nade|snipe|spas|pistol|auto|negev)>] - Set allowed weapons.
|
[<all/none/reset/[+-](nade|snipe|spas|pistol|auto|negev)>] - Set allowed weapons.
|
[
"[",
"<all",
"/",
"none",
"/",
"reset",
"/",
"[",
"+",
"-",
"]",
"(",
"nade|snipe|spas|pistol|auto|negev",
")",
">",
"]",
"-",
"Set",
"allowed",
"weapons",
"."
] |
def cmd_pagear(self, data, client=None, cmd=None):
"""
[<all/none/reset/[+-](nade|snipe|spas|pistol|auto|negev)>] - Set allowed weapons.
"""
cur_gear = self.console.getCvar('g_gear').getInt()
if not data:
if client:
nade = (cur_gear & 1) != 1
snipe = (cur_gear & 2) != 2
spas = (cur_gear & 4) != 4
pist = (cur_gear & 8) != 8
auto = (cur_gear & 16) != 16
nege = (cur_gear & 32) != 32
self.console.write('^7current gear: %s (Nade:%d, Sniper:%d, Spas:%d, Pistol:%d, Auto:%d, Negev:%d)' %
(cur_gear, nade, snipe, spas, pist, auto, nege))
return
else:
if not data[:5] in ('all', 'none', 'reset',
'+nade', '+snip', '+spas', '+pist', '+auto', '+nege',
'-nade', '-snip', '-spas', '-pist', '-auto', '-nege'):
if client:
client.message('^7Invalid data, try !help pagear')
else:
self.debug('invalid data sent to cmd_pagear')
return
if data[:5] == 'all':
self.console.setCvar('g_gear', '0')
elif data[:5] == 'none':
self.console.setCvar('g_gear', '63')
elif data[:5] == 'reset':
self.console.setCvar('g_gear', '%s' % self._origgear)
else:
if data[1:5] == 'nade':
bit = 1
elif data[1:5] == 'snip':
bit = 2
elif data[1:5] == 'spas':
bit = 4
elif data[1:5] == 'pist':
bit = 8
elif data[1:5] == 'auto':
bit = 16
elif data[1:5] == 'nege':
bit = 32
else:
return
if data[:1] == '+':
self.console.setCvar('g_gear', '%s' % (cur_gear & (63 - bit)))
elif data[:1] == '-':
self.console.setCvar('g_gear', '%s' % (cur_gear | bit))
|
[
"def",
"cmd_pagear",
"(",
"self",
",",
"data",
",",
"client",
"=",
"None",
",",
"cmd",
"=",
"None",
")",
":",
"cur_gear",
"=",
"self",
".",
"console",
".",
"getCvar",
"(",
"'g_gear'",
")",
".",
"getInt",
"(",
")",
"if",
"not",
"data",
":",
"if",
"client",
":",
"nade",
"=",
"(",
"cur_gear",
"&",
"1",
")",
"!=",
"1",
"snipe",
"=",
"(",
"cur_gear",
"&",
"2",
")",
"!=",
"2",
"spas",
"=",
"(",
"cur_gear",
"&",
"4",
")",
"!=",
"4",
"pist",
"=",
"(",
"cur_gear",
"&",
"8",
")",
"!=",
"8",
"auto",
"=",
"(",
"cur_gear",
"&",
"16",
")",
"!=",
"16",
"nege",
"=",
"(",
"cur_gear",
"&",
"32",
")",
"!=",
"32",
"self",
".",
"console",
".",
"write",
"(",
"'^7current gear: %s (Nade:%d, Sniper:%d, Spas:%d, Pistol:%d, Auto:%d, Negev:%d)'",
"%",
"(",
"cur_gear",
",",
"nade",
",",
"snipe",
",",
"spas",
",",
"pist",
",",
"auto",
",",
"nege",
")",
")",
"return",
"else",
":",
"if",
"not",
"data",
"[",
":",
"5",
"]",
"in",
"(",
"'all'",
",",
"'none'",
",",
"'reset'",
",",
"'+nade'",
",",
"'+snip'",
",",
"'+spas'",
",",
"'+pist'",
",",
"'+auto'",
",",
"'+nege'",
",",
"'-nade'",
",",
"'-snip'",
",",
"'-spas'",
",",
"'-pist'",
",",
"'-auto'",
",",
"'-nege'",
")",
":",
"if",
"client",
":",
"client",
".",
"message",
"(",
"'^7Invalid data, try !help pagear'",
")",
"else",
":",
"self",
".",
"debug",
"(",
"'invalid data sent to cmd_pagear'",
")",
"return",
"if",
"data",
"[",
":",
"5",
"]",
"==",
"'all'",
":",
"self",
".",
"console",
".",
"setCvar",
"(",
"'g_gear'",
",",
"'0'",
")",
"elif",
"data",
"[",
":",
"5",
"]",
"==",
"'none'",
":",
"self",
".",
"console",
".",
"setCvar",
"(",
"'g_gear'",
",",
"'63'",
")",
"elif",
"data",
"[",
":",
"5",
"]",
"==",
"'reset'",
":",
"self",
".",
"console",
".",
"setCvar",
"(",
"'g_gear'",
",",
"'%s'",
"%",
"self",
".",
"_origgear",
")",
"else",
":",
"if",
"data",
"[",
"1",
":",
"5",
"]",
"==",
"'nade'",
":",
"bit",
"=",
"1",
"elif",
"data",
"[",
"1",
":",
"5",
"]",
"==",
"'snip'",
":",
"bit",
"=",
"2",
"elif",
"data",
"[",
"1",
":",
"5",
"]",
"==",
"'spas'",
":",
"bit",
"=",
"4",
"elif",
"data",
"[",
"1",
":",
"5",
"]",
"==",
"'pist'",
":",
"bit",
"=",
"8",
"elif",
"data",
"[",
"1",
":",
"5",
"]",
"==",
"'auto'",
":",
"bit",
"=",
"16",
"elif",
"data",
"[",
"1",
":",
"5",
"]",
"==",
"'nege'",
":",
"bit",
"=",
"32",
"else",
":",
"return",
"if",
"data",
"[",
":",
"1",
"]",
"==",
"'+'",
":",
"self",
".",
"console",
".",
"setCvar",
"(",
"'g_gear'",
",",
"'%s'",
"%",
"(",
"cur_gear",
"&",
"(",
"63",
"-",
"bit",
")",
")",
")",
"elif",
"data",
"[",
":",
"1",
"]",
"==",
"'-'",
":",
"self",
".",
"console",
".",
"setCvar",
"(",
"'g_gear'",
",",
"'%s'",
"%",
"(",
"cur_gear",
"|",
"bit",
")",
")"
] |
https://github.com/BigBrotherBot/big-brother-bot/blob/848823c71413c86e7f1ff9584f43e08d40a7f2c0/b3/plugins/poweradminurt/iourt41.py#L1795-L1852
|
||
MrH0wl/Cloudmare
|
65e5bc9888f9d362ab2abfb103ea6c1e869d67aa
|
thirdparty/urllib3/poolmanager.py
|
python
|
PoolManager.connection_from_host
|
(self, host, port=None, scheme="http", pool_kwargs=None)
|
return self.connection_from_context(request_context)
|
Get a :class:`ConnectionPool` based on the host, port, and scheme.
If ``port`` isn't given, it will be derived from the ``scheme`` using
``urllib3.connectionpool.port_by_scheme``. If ``pool_kwargs`` is
provided, it is merged with the instance's ``connection_pool_kw``
variable and used to create the new connection pool, if one is
needed.
|
Get a :class:`ConnectionPool` based on the host, port, and scheme.
|
[
"Get",
"a",
":",
"class",
":",
"ConnectionPool",
"based",
"on",
"the",
"host",
"port",
"and",
"scheme",
"."
] |
def connection_from_host(self, host, port=None, scheme="http", pool_kwargs=None):
"""
Get a :class:`ConnectionPool` based on the host, port, and scheme.
If ``port`` isn't given, it will be derived from the ``scheme`` using
``urllib3.connectionpool.port_by_scheme``. If ``pool_kwargs`` is
provided, it is merged with the instance's ``connection_pool_kw``
variable and used to create the new connection pool, if one is
needed.
"""
if not host:
raise LocationValueError("No host specified.")
request_context = self._merge_pool_kwargs(pool_kwargs)
request_context["scheme"] = scheme or "http"
if not port:
port = port_by_scheme.get(request_context["scheme"].lower(), 80)
request_context["port"] = port
request_context["host"] = host
return self.connection_from_context(request_context)
|
[
"def",
"connection_from_host",
"(",
"self",
",",
"host",
",",
"port",
"=",
"None",
",",
"scheme",
"=",
"\"http\"",
",",
"pool_kwargs",
"=",
"None",
")",
":",
"if",
"not",
"host",
":",
"raise",
"LocationValueError",
"(",
"\"No host specified.\"",
")",
"request_context",
"=",
"self",
".",
"_merge_pool_kwargs",
"(",
"pool_kwargs",
")",
"request_context",
"[",
"\"scheme\"",
"]",
"=",
"scheme",
"or",
"\"http\"",
"if",
"not",
"port",
":",
"port",
"=",
"port_by_scheme",
".",
"get",
"(",
"request_context",
"[",
"\"scheme\"",
"]",
".",
"lower",
"(",
")",
",",
"80",
")",
"request_context",
"[",
"\"port\"",
"]",
"=",
"port",
"request_context",
"[",
"\"host\"",
"]",
"=",
"host",
"return",
"self",
".",
"connection_from_context",
"(",
"request_context",
")"
] |
https://github.com/MrH0wl/Cloudmare/blob/65e5bc9888f9d362ab2abfb103ea6c1e869d67aa/thirdparty/urllib3/poolmanager.py#L219-L240
|
|
Fantomas42/django-blog-zinnia
|
881101a9d1d455b2fc581d6f4ae0947cdd8126c6
|
zinnia/feeds.py
|
python
|
SearchEntries.description
|
(self, obj)
|
return _("The last entries containing the pattern '%(pattern)s'") % {
'pattern': obj}
|
Description of the feed.
|
Description of the feed.
|
[
"Description",
"of",
"the",
"feed",
"."
] |
def description(self, obj):
"""
Description of the feed.
"""
return _("The last entries containing the pattern '%(pattern)s'") % {
'pattern': obj}
|
[
"def",
"description",
"(",
"self",
",",
"obj",
")",
":",
"return",
"_",
"(",
"\"The last entries containing the pattern '%(pattern)s'\"",
")",
"%",
"{",
"'pattern'",
":",
"obj",
"}"
] |
https://github.com/Fantomas42/django-blog-zinnia/blob/881101a9d1d455b2fc581d6f4ae0947cdd8126c6/zinnia/feeds.py#L343-L348
|
|
achaiah/pywick
|
9d663faf0c1660a9b8359a6472c164f658dfc8cb
|
pywick/models/segmentation/refinenet/refinenet.py
|
python
|
BaseRefineNet4Cascade.__init__
|
(self,
input_shape,
refinenet_block,
num_classes=1,
features=256,
resnet_factory=models.resnet101,
pretrained=True,
freeze_resnet=False,
**kwargs)
|
Multi-path 4-Cascaded RefineNet for image segmentation
Args:
input_shape ((int, int)): (channel, size) assumes input has
equal height and width
refinenet_block (block): RefineNet Block
num_classes (int, optional): number of classes
features (int, optional): number of features in refinenet
resnet_factory (func, optional): A Resnet model from torchvision.
Default: models.resnet101
pretrained (bool, optional): Use pretrained version of resnet
Default: True
freeze_resnet (bool, optional): Freeze resnet model
Default: True
Raises:
ValueError: size of input_shape not divisible by 32
|
Multi-path 4-Cascaded RefineNet for image segmentation
|
[
"Multi",
"-",
"path",
"4",
"-",
"Cascaded",
"RefineNet",
"for",
"image",
"segmentation"
] |
def __init__(self,
input_shape,
refinenet_block,
num_classes=1,
features=256,
resnet_factory=models.resnet101,
pretrained=True,
freeze_resnet=False,
**kwargs):
"""Multi-path 4-Cascaded RefineNet for image segmentation
Args:
input_shape ((int, int)): (channel, size) assumes input has
equal height and width
refinenet_block (block): RefineNet Block
num_classes (int, optional): number of classes
features (int, optional): number of features in refinenet
resnet_factory (func, optional): A Resnet model from torchvision.
Default: models.resnet101
pretrained (bool, optional): Use pretrained version of resnet
Default: True
freeze_resnet (bool, optional): Freeze resnet model
Default: True
Raises:
ValueError: size of input_shape not divisible by 32
"""
super().__init__()
input_channel, input_size = input_shape
if input_size % 32 != 0:
raise ValueError("{} not divisble by 32".format(input_shape))
resnet = resnet_factory(pretrained=pretrained)
self.layer1 = nn.Sequential(resnet.conv1, resnet.bn1, resnet.relu,
resnet.maxpool, resnet.layer1)
self.layer2 = resnet.layer2
self.layer3 = resnet.layer3
self.layer4 = resnet.layer4
if freeze_resnet:
layers = [self.layer1, self.layer2, self.layer3, self.layer4]
for layer in layers:
for param in layer.parameters():
param.requires_grad = False
self.layer1_rn = nn.Conv2d(
256, features, kernel_size=3, stride=1, padding=1, bias=False)
self.layer2_rn = nn.Conv2d(
512, features, kernel_size=3, stride=1, padding=1, bias=False)
self.layer3_rn = nn.Conv2d(
1024, features, kernel_size=3, stride=1, padding=1, bias=False)
self.layer4_rn = nn.Conv2d(
2048, 2 * features, kernel_size=3, stride=1, padding=1, bias=False)
self.refinenet4 = RefineNetBlock(2 * features,
(2 * features, input_size // 32))
self.refinenet3 = RefineNetBlock(features,
(2 * features, input_size // 32),
(features, input_size // 16))
self.refinenet2 = RefineNetBlock(features,
(features, input_size // 16),
(features, input_size // 8))
self.refinenet1 = RefineNetBlock(features, (features, input_size // 8),
(features, input_size // 4))
self.output_conv = nn.Sequential(
ResidualConvUnit(features), ResidualConvUnit(features),
nn.Conv2d(
features,
num_classes,
kernel_size=1,
stride=1,
padding=0,
bias=True))
|
[
"def",
"__init__",
"(",
"self",
",",
"input_shape",
",",
"refinenet_block",
",",
"num_classes",
"=",
"1",
",",
"features",
"=",
"256",
",",
"resnet_factory",
"=",
"models",
".",
"resnet101",
",",
"pretrained",
"=",
"True",
",",
"freeze_resnet",
"=",
"False",
",",
"*",
"*",
"kwargs",
")",
":",
"super",
"(",
")",
".",
"__init__",
"(",
")",
"input_channel",
",",
"input_size",
"=",
"input_shape",
"if",
"input_size",
"%",
"32",
"!=",
"0",
":",
"raise",
"ValueError",
"(",
"\"{} not divisble by 32\"",
".",
"format",
"(",
"input_shape",
")",
")",
"resnet",
"=",
"resnet_factory",
"(",
"pretrained",
"=",
"pretrained",
")",
"self",
".",
"layer1",
"=",
"nn",
".",
"Sequential",
"(",
"resnet",
".",
"conv1",
",",
"resnet",
".",
"bn1",
",",
"resnet",
".",
"relu",
",",
"resnet",
".",
"maxpool",
",",
"resnet",
".",
"layer1",
")",
"self",
".",
"layer2",
"=",
"resnet",
".",
"layer2",
"self",
".",
"layer3",
"=",
"resnet",
".",
"layer3",
"self",
".",
"layer4",
"=",
"resnet",
".",
"layer4",
"if",
"freeze_resnet",
":",
"layers",
"=",
"[",
"self",
".",
"layer1",
",",
"self",
".",
"layer2",
",",
"self",
".",
"layer3",
",",
"self",
".",
"layer4",
"]",
"for",
"layer",
"in",
"layers",
":",
"for",
"param",
"in",
"layer",
".",
"parameters",
"(",
")",
":",
"param",
".",
"requires_grad",
"=",
"False",
"self",
".",
"layer1_rn",
"=",
"nn",
".",
"Conv2d",
"(",
"256",
",",
"features",
",",
"kernel_size",
"=",
"3",
",",
"stride",
"=",
"1",
",",
"padding",
"=",
"1",
",",
"bias",
"=",
"False",
")",
"self",
".",
"layer2_rn",
"=",
"nn",
".",
"Conv2d",
"(",
"512",
",",
"features",
",",
"kernel_size",
"=",
"3",
",",
"stride",
"=",
"1",
",",
"padding",
"=",
"1",
",",
"bias",
"=",
"False",
")",
"self",
".",
"layer3_rn",
"=",
"nn",
".",
"Conv2d",
"(",
"1024",
",",
"features",
",",
"kernel_size",
"=",
"3",
",",
"stride",
"=",
"1",
",",
"padding",
"=",
"1",
",",
"bias",
"=",
"False",
")",
"self",
".",
"layer4_rn",
"=",
"nn",
".",
"Conv2d",
"(",
"2048",
",",
"2",
"*",
"features",
",",
"kernel_size",
"=",
"3",
",",
"stride",
"=",
"1",
",",
"padding",
"=",
"1",
",",
"bias",
"=",
"False",
")",
"self",
".",
"refinenet4",
"=",
"RefineNetBlock",
"(",
"2",
"*",
"features",
",",
"(",
"2",
"*",
"features",
",",
"input_size",
"//",
"32",
")",
")",
"self",
".",
"refinenet3",
"=",
"RefineNetBlock",
"(",
"features",
",",
"(",
"2",
"*",
"features",
",",
"input_size",
"//",
"32",
")",
",",
"(",
"features",
",",
"input_size",
"//",
"16",
")",
")",
"self",
".",
"refinenet2",
"=",
"RefineNetBlock",
"(",
"features",
",",
"(",
"features",
",",
"input_size",
"//",
"16",
")",
",",
"(",
"features",
",",
"input_size",
"//",
"8",
")",
")",
"self",
".",
"refinenet1",
"=",
"RefineNetBlock",
"(",
"features",
",",
"(",
"features",
",",
"input_size",
"//",
"8",
")",
",",
"(",
"features",
",",
"input_size",
"//",
"4",
")",
")",
"self",
".",
"output_conv",
"=",
"nn",
".",
"Sequential",
"(",
"ResidualConvUnit",
"(",
"features",
")",
",",
"ResidualConvUnit",
"(",
"features",
")",
",",
"nn",
".",
"Conv2d",
"(",
"features",
",",
"num_classes",
",",
"kernel_size",
"=",
"1",
",",
"stride",
"=",
"1",
",",
"padding",
"=",
"0",
",",
"bias",
"=",
"True",
")",
")"
] |
https://github.com/achaiah/pywick/blob/9d663faf0c1660a9b8359a6472c164f658dfc8cb/pywick/models/segmentation/refinenet/refinenet.py#L17-L94
|
||
runawayhorse001/LearningApacheSpark
|
67f3879dce17553195f094f5728b94a01badcf24
|
pyspark/mllib/linalg/distributed.py
|
python
|
BlockMatrix.add
|
(self, other)
|
return BlockMatrix(java_block_matrix, self.rowsPerBlock, self.colsPerBlock)
|
Adds two block matrices together. The matrices must have the
same size and matching `rowsPerBlock` and `colsPerBlock` values.
If one of the sub matrix blocks that are being added is a
SparseMatrix, the resulting sub matrix block will also be a
SparseMatrix, even if it is being added to a DenseMatrix. If
two dense sub matrix blocks are added, the output block will
also be a DenseMatrix.
>>> dm1 = Matrices.dense(3, 2, [1, 2, 3, 4, 5, 6])
>>> dm2 = Matrices.dense(3, 2, [7, 8, 9, 10, 11, 12])
>>> sm = Matrices.sparse(3, 2, [0, 1, 3], [0, 1, 2], [7, 11, 12])
>>> blocks1 = sc.parallelize([((0, 0), dm1), ((1, 0), dm2)])
>>> blocks2 = sc.parallelize([((0, 0), dm1), ((1, 0), dm2)])
>>> blocks3 = sc.parallelize([((0, 0), sm), ((1, 0), dm2)])
>>> mat1 = BlockMatrix(blocks1, 3, 2)
>>> mat2 = BlockMatrix(blocks2, 3, 2)
>>> mat3 = BlockMatrix(blocks3, 3, 2)
>>> mat1.add(mat2).toLocalMatrix()
DenseMatrix(6, 2, [2.0, 4.0, 6.0, 14.0, 16.0, 18.0, 8.0, 10.0, 12.0, 20.0, 22.0, 24.0], 0)
>>> mat1.add(mat3).toLocalMatrix()
DenseMatrix(6, 2, [8.0, 2.0, 3.0, 14.0, 16.0, 18.0, 4.0, 16.0, 18.0, 20.0, 22.0, 24.0], 0)
|
Adds two block matrices together. The matrices must have the
same size and matching `rowsPerBlock` and `colsPerBlock` values.
If one of the sub matrix blocks that are being added is a
SparseMatrix, the resulting sub matrix block will also be a
SparseMatrix, even if it is being added to a DenseMatrix. If
two dense sub matrix blocks are added, the output block will
also be a DenseMatrix.
|
[
"Adds",
"two",
"block",
"matrices",
"together",
".",
"The",
"matrices",
"must",
"have",
"the",
"same",
"size",
"and",
"matching",
"rowsPerBlock",
"and",
"colsPerBlock",
"values",
".",
"If",
"one",
"of",
"the",
"sub",
"matrix",
"blocks",
"that",
"are",
"being",
"added",
"is",
"a",
"SparseMatrix",
"the",
"resulting",
"sub",
"matrix",
"block",
"will",
"also",
"be",
"a",
"SparseMatrix",
"even",
"if",
"it",
"is",
"being",
"added",
"to",
"a",
"DenseMatrix",
".",
"If",
"two",
"dense",
"sub",
"matrix",
"blocks",
"are",
"added",
"the",
"output",
"block",
"will",
"also",
"be",
"a",
"DenseMatrix",
"."
] |
def add(self, other):
"""
Adds two block matrices together. The matrices must have the
same size and matching `rowsPerBlock` and `colsPerBlock` values.
If one of the sub matrix blocks that are being added is a
SparseMatrix, the resulting sub matrix block will also be a
SparseMatrix, even if it is being added to a DenseMatrix. If
two dense sub matrix blocks are added, the output block will
also be a DenseMatrix.
>>> dm1 = Matrices.dense(3, 2, [1, 2, 3, 4, 5, 6])
>>> dm2 = Matrices.dense(3, 2, [7, 8, 9, 10, 11, 12])
>>> sm = Matrices.sparse(3, 2, [0, 1, 3], [0, 1, 2], [7, 11, 12])
>>> blocks1 = sc.parallelize([((0, 0), dm1), ((1, 0), dm2)])
>>> blocks2 = sc.parallelize([((0, 0), dm1), ((1, 0), dm2)])
>>> blocks3 = sc.parallelize([((0, 0), sm), ((1, 0), dm2)])
>>> mat1 = BlockMatrix(blocks1, 3, 2)
>>> mat2 = BlockMatrix(blocks2, 3, 2)
>>> mat3 = BlockMatrix(blocks3, 3, 2)
>>> mat1.add(mat2).toLocalMatrix()
DenseMatrix(6, 2, [2.0, 4.0, 6.0, 14.0, 16.0, 18.0, 8.0, 10.0, 12.0, 20.0, 22.0, 24.0], 0)
>>> mat1.add(mat3).toLocalMatrix()
DenseMatrix(6, 2, [8.0, 2.0, 3.0, 14.0, 16.0, 18.0, 4.0, 16.0, 18.0, 20.0, 22.0, 24.0], 0)
"""
if not isinstance(other, BlockMatrix):
raise TypeError("Other should be a BlockMatrix, got %s" % type(other))
other_java_block_matrix = other._java_matrix_wrapper._java_model
java_block_matrix = self._java_matrix_wrapper.call("add", other_java_block_matrix)
return BlockMatrix(java_block_matrix, self.rowsPerBlock, self.colsPerBlock)
|
[
"def",
"add",
"(",
"self",
",",
"other",
")",
":",
"if",
"not",
"isinstance",
"(",
"other",
",",
"BlockMatrix",
")",
":",
"raise",
"TypeError",
"(",
"\"Other should be a BlockMatrix, got %s\"",
"%",
"type",
"(",
"other",
")",
")",
"other_java_block_matrix",
"=",
"other",
".",
"_java_matrix_wrapper",
".",
"_java_model",
"java_block_matrix",
"=",
"self",
".",
"_java_matrix_wrapper",
".",
"call",
"(",
"\"add\"",
",",
"other_java_block_matrix",
")",
"return",
"BlockMatrix",
"(",
"java_block_matrix",
",",
"self",
".",
"rowsPerBlock",
",",
"self",
".",
"colsPerBlock",
")"
] |
https://github.com/runawayhorse001/LearningApacheSpark/blob/67f3879dce17553195f094f5728b94a01badcf24/pyspark/mllib/linalg/distributed.py#L1186-L1217
|
|
xuanyuzhou98/SqueezeSegV2
|
9f02049466fd369398a94de091ca8d7e4fb6ae81
|
src/nn_skeleton.py
|
python
|
_variable_on_device
|
(name, shape, initializer, trainable=True)
|
return var
|
Helper to create a Variable.
Args:
name: name of the variable
shape: list of ints
initializer: initializer for Variable
Returns:
Variable Tensor
|
Helper to create a Variable.
|
[
"Helper",
"to",
"create",
"a",
"Variable",
"."
] |
def _variable_on_device(name, shape, initializer, trainable=True):
"""Helper to create a Variable.
Args:
name: name of the variable
shape: list of ints
initializer: initializer for Variable
Returns:
Variable Tensor
"""
# TODO(bichen): fix the hard-coded data type below
dtype = tf.float32
if not callable(initializer):
var = tf.get_variable(name, initializer=initializer, trainable=trainable)
else:
var = tf.get_variable(
name, shape, initializer=initializer, dtype=dtype, trainable=trainable)
return var
|
[
"def",
"_variable_on_device",
"(",
"name",
",",
"shape",
",",
"initializer",
",",
"trainable",
"=",
"True",
")",
":",
"# TODO(bichen): fix the hard-coded data type below",
"dtype",
"=",
"tf",
".",
"float32",
"if",
"not",
"callable",
"(",
"initializer",
")",
":",
"var",
"=",
"tf",
".",
"get_variable",
"(",
"name",
",",
"initializer",
"=",
"initializer",
",",
"trainable",
"=",
"trainable",
")",
"else",
":",
"var",
"=",
"tf",
".",
"get_variable",
"(",
"name",
",",
"shape",
",",
"initializer",
"=",
"initializer",
",",
"dtype",
"=",
"dtype",
",",
"trainable",
"=",
"trainable",
")",
"return",
"var"
] |
https://github.com/xuanyuzhou98/SqueezeSegV2/blob/9f02049466fd369398a94de091ca8d7e4fb6ae81/src/nn_skeleton.py#L16-L34
|
|
Chaffelson/nipyapi
|
d3b186fd701ce308c2812746d98af9120955e810
|
nipyapi/nifi/models/cluster_summary_dto.py
|
python
|
ClusterSummaryDTO.connected_to_cluster
|
(self)
|
return self._connected_to_cluster
|
Gets the connected_to_cluster of this ClusterSummaryDTO.
Whether this NiFi instance is connected to a cluster.
:return: The connected_to_cluster of this ClusterSummaryDTO.
:rtype: bool
|
Gets the connected_to_cluster of this ClusterSummaryDTO.
Whether this NiFi instance is connected to a cluster.
|
[
"Gets",
"the",
"connected_to_cluster",
"of",
"this",
"ClusterSummaryDTO",
".",
"Whether",
"this",
"NiFi",
"instance",
"is",
"connected",
"to",
"a",
"cluster",
"."
] |
def connected_to_cluster(self):
"""
Gets the connected_to_cluster of this ClusterSummaryDTO.
Whether this NiFi instance is connected to a cluster.
:return: The connected_to_cluster of this ClusterSummaryDTO.
:rtype: bool
"""
return self._connected_to_cluster
|
[
"def",
"connected_to_cluster",
"(",
"self",
")",
":",
"return",
"self",
".",
"_connected_to_cluster"
] |
https://github.com/Chaffelson/nipyapi/blob/d3b186fd701ce308c2812746d98af9120955e810/nipyapi/nifi/models/cluster_summary_dto.py#L141-L149
|
|
google/clusterfuzz
|
f358af24f414daa17a3649b143e71ea71871ef59
|
src/clusterfuzz/_internal/datastore/data_types.py
|
python
|
FuzzTarget.fully_qualified_name
|
(self)
|
return fuzz_target_fully_qualified_name(self.engine, self.project,
self.binary)
|
Get the fully qualified name for this fuzz target.
|
Get the fully qualified name for this fuzz target.
|
[
"Get",
"the",
"fully",
"qualified",
"name",
"for",
"this",
"fuzz",
"target",
"."
] |
def fully_qualified_name(self):
"""Get the fully qualified name for this fuzz target."""
return fuzz_target_fully_qualified_name(self.engine, self.project,
self.binary)
|
[
"def",
"fully_qualified_name",
"(",
"self",
")",
":",
"return",
"fuzz_target_fully_qualified_name",
"(",
"self",
".",
"engine",
",",
"self",
".",
"project",
",",
"self",
".",
"binary",
")"
] |
https://github.com/google/clusterfuzz/blob/f358af24f414daa17a3649b143e71ea71871ef59/src/clusterfuzz/_internal/datastore/data_types.py#L1192-L1195
|
|
Instagram/LibCST
|
13370227703fe3171e94c57bdd7977f3af696b73
|
libcst/_parser/py_whitespace_parser.py
|
python
|
_parse_indent
|
(
config: BaseWhitespaceParserConfig,
state: State,
*,
override_absolute_indent: Optional[str] = None,
)
|
return False
|
Returns True if indentation was found, otherwise False.
|
Returns True if indentation was found, otherwise False.
|
[
"Returns",
"True",
"if",
"indentation",
"was",
"found",
"otherwise",
"False",
"."
] |
def _parse_indent(
config: BaseWhitespaceParserConfig,
state: State,
*,
override_absolute_indent: Optional[str] = None,
) -> bool:
"""
Returns True if indentation was found, otherwise False.
"""
absolute_indent = (
override_absolute_indent
if override_absolute_indent is not None
else state.absolute_indent
)
line_str = config.lines[state.line - 1]
if state.column != 0:
if state.column == len(line_str) and state.line == len(config.lines):
# We're at EOF, treat this as a failed speculative parse
return False
raise Exception("Internal Error: Column should be 0 when parsing an indent.")
if line_str.startswith(absolute_indent, state.column):
state.column += len(absolute_indent)
return True
return False
|
[
"def",
"_parse_indent",
"(",
"config",
":",
"BaseWhitespaceParserConfig",
",",
"state",
":",
"State",
",",
"*",
",",
"override_absolute_indent",
":",
"Optional",
"[",
"str",
"]",
"=",
"None",
",",
")",
"->",
"bool",
":",
"absolute_indent",
"=",
"(",
"override_absolute_indent",
"if",
"override_absolute_indent",
"is",
"not",
"None",
"else",
"state",
".",
"absolute_indent",
")",
"line_str",
"=",
"config",
".",
"lines",
"[",
"state",
".",
"line",
"-",
"1",
"]",
"if",
"state",
".",
"column",
"!=",
"0",
":",
"if",
"state",
".",
"column",
"==",
"len",
"(",
"line_str",
")",
"and",
"state",
".",
"line",
"==",
"len",
"(",
"config",
".",
"lines",
")",
":",
"# We're at EOF, treat this as a failed speculative parse",
"return",
"False",
"raise",
"Exception",
"(",
"\"Internal Error: Column should be 0 when parsing an indent.\"",
")",
"if",
"line_str",
".",
"startswith",
"(",
"absolute_indent",
",",
"state",
".",
"column",
")",
":",
"state",
".",
"column",
"+=",
"len",
"(",
"absolute_indent",
")",
"return",
"True",
"return",
"False"
] |
https://github.com/Instagram/LibCST/blob/13370227703fe3171e94c57bdd7977f3af696b73/libcst/_parser/py_whitespace_parser.py#L161-L184
|
|
fjarri/reikna
|
e32e507d74337c13c508ae9ff5f0716a99798a61
|
reikna/cluda/api.py
|
python
|
Kernel.prepare
|
(self, global_size, local_size=None, local_mem=0)
|
Prepare the kernel for execution with given parameters.
:param global_size: an integer or a tuple of integers,
specifying total number of work items to run.
:param local_size: an integer or a tuple of integers,
specifying the size of a single work group.
Should have the same number of dimensions as ``global_size``.
If ``None`` is passed, some ``local_size`` will be picked internally.
:param local_mem: (**CUDA API only**) amount of dynamic local memory (in bytes)
|
Prepare the kernel for execution with given parameters.
|
[
"Prepare",
"the",
"kernel",
"for",
"execution",
"with",
"given",
"parameters",
"."
] |
def prepare(self, global_size, local_size=None, local_mem=0):
"""
Prepare the kernel for execution with given parameters.
:param global_size: an integer or a tuple of integers,
specifying total number of work items to run.
:param local_size: an integer or a tuple of integers,
specifying the size of a single work group.
Should have the same number of dimensions as ``global_size``.
If ``None`` is passed, some ``local_size`` will be picked internally.
:param local_mem: (**CUDA API only**) amount of dynamic local memory (in bytes)
"""
raise NotImplementedError()
|
[
"def",
"prepare",
"(",
"self",
",",
"global_size",
",",
"local_size",
"=",
"None",
",",
"local_mem",
"=",
"0",
")",
":",
"raise",
"NotImplementedError",
"(",
")"
] |
https://github.com/fjarri/reikna/blob/e32e507d74337c13c508ae9ff5f0716a99798a61/reikna/cluda/api.py#L695-L707
|
||
holzschu/Carnets
|
44effb10ddfc6aa5c8b0687582a724ba82c6b547
|
Library/lib/python3.7/site-packages/bokeh-1.4.0-py3.7.egg/bokeh/models/plots.py
|
python
|
Plot.column
|
(self, col, gridplot)
|
return self in gridplot.column(col)
|
Return whether this plot is in a given column of a GridPlot.
Args:
col (int) : index of the column to test
gridplot (GridPlot) : the GridPlot to check
Returns:
bool
|
Return whether this plot is in a given column of a GridPlot.
|
[
"Return",
"whether",
"this",
"plot",
"is",
"in",
"a",
"given",
"column",
"of",
"a",
"GridPlot",
"."
] |
def column(self, col, gridplot):
''' Return whether this plot is in a given column of a GridPlot.
Args:
col (int) : index of the column to test
gridplot (GridPlot) : the GridPlot to check
Returns:
bool
'''
return self in gridplot.column(col)
|
[
"def",
"column",
"(",
"self",
",",
"col",
",",
"gridplot",
")",
":",
"return",
"self",
"in",
"gridplot",
".",
"column",
"(",
"col",
")"
] |
https://github.com/holzschu/Carnets/blob/44effb10ddfc6aa5c8b0687582a724ba82c6b547/Library/lib/python3.7/site-packages/bokeh-1.4.0-py3.7.egg/bokeh/models/plots.py#L139-L150
|
|
nodesign/weio
|
1d67d705a5c36a2e825ad13feab910b0aca9a2e8
|
updateMaker/prepareForWeIOServer/prepareUpdate.py
|
python
|
saveConfiguration
|
(path, conf)
|
[] |
def saveConfiguration(path, conf):
inputFile = open(path+"/updateWeio.json", 'w')
print(inputFile)
ret = inputFile.write(json.dumps(conf, indent=4, sort_keys=True))
inputFile.close()
|
[
"def",
"saveConfiguration",
"(",
"path",
",",
"conf",
")",
":",
"inputFile",
"=",
"open",
"(",
"path",
"+",
"\"/updateWeio.json\"",
",",
"'w'",
")",
"print",
"(",
"inputFile",
")",
"ret",
"=",
"inputFile",
".",
"write",
"(",
"json",
".",
"dumps",
"(",
"conf",
",",
"indent",
"=",
"4",
",",
"sort_keys",
"=",
"True",
")",
")",
"inputFile",
".",
"close",
"(",
")"
] |
https://github.com/nodesign/weio/blob/1d67d705a5c36a2e825ad13feab910b0aca9a2e8/updateMaker/prepareForWeIOServer/prepareUpdate.py#L17-L21
|
||||
nortikin/sverchok
|
7b460f01317c15f2681bfa3e337c5e7346f3711b
|
nodes/number/curve_mapper.py
|
python
|
SvCurveMapperNode.save_to_json
|
(self, node_data: dict)
|
function to set data for exporting json
|
function to set data for exporting json
|
[
"function",
"to",
"set",
"data",
"for",
"exporting",
"json"
] |
def save_to_json(self, node_data: dict):
'''function to set data for exporting json'''
curve_node_name = self._get_curve_node_name()
data = get_rgb_curve(node_group_name, curve_node_name)
data_json_str = json.dumps(data)
node_data['curve_data'] = data_json_str
|
[
"def",
"save_to_json",
"(",
"self",
",",
"node_data",
":",
"dict",
")",
":",
"curve_node_name",
"=",
"self",
".",
"_get_curve_node_name",
"(",
")",
"data",
"=",
"get_rgb_curve",
"(",
"node_group_name",
",",
"curve_node_name",
")",
"data_json_str",
"=",
"json",
".",
"dumps",
"(",
"data",
")",
"node_data",
"[",
"'curve_data'",
"]",
"=",
"data_json_str"
] |
https://github.com/nortikin/sverchok/blob/7b460f01317c15f2681bfa3e337c5e7346f3711b/nodes/number/curve_mapper.py#L138-L143
|
||
cobbler/cobbler
|
eed8cdca3e970c8aa1d199e80b8c8f19b3f940cc
|
cobbler/api.py
|
python
|
CobblerAPI.mkloaders
|
(self)
|
Create the GRUB installer images via this API call. It utilizes ``grub2-mkimage`` behind the curtain.
|
Create the GRUB installer images via this API call. It utilizes ``grub2-mkimage`` behind the curtain.
|
[
"Create",
"the",
"GRUB",
"installer",
"images",
"via",
"this",
"API",
"call",
".",
"It",
"utilizes",
"grub2",
"-",
"mkimage",
"behind",
"the",
"curtain",
"."
] |
def mkloaders(self):
"""
Create the GRUB installer images via this API call. It utilizes ``grub2-mkimage`` behind the curtain.
"""
action = mkloaders.MkLoaders(self)
action.run()
|
[
"def",
"mkloaders",
"(",
"self",
")",
":",
"action",
"=",
"mkloaders",
".",
"MkLoaders",
"(",
"self",
")",
"action",
".",
"run",
"(",
")"
] |
https://github.com/cobbler/cobbler/blob/eed8cdca3e970c8aa1d199e80b8c8f19b3f940cc/cobbler/api.py#L1873-L1878
|
||
tensorflow/tensor2tensor
|
2a33b152d7835af66a6d20afe7961751047e28dd
|
tensor2tensor/models/research/attention_lm_moe.py
|
python
|
attention_lm_no_moe_small
|
()
|
return hparams
|
Without the mixture of experts (for comparison).
on lm1b_32k:
~45M params
2 steps/sec on [GeForce GTX TITAN X]
After 50K steps on 8 GPUs (synchronous):
eval_log_ppl_per_token = 3.51
Returns:
an hparams object.
|
Without the mixture of experts (for comparison).
|
[
"Without",
"the",
"mixture",
"of",
"experts",
"(",
"for",
"comparison",
")",
"."
] |
def attention_lm_no_moe_small():
"""Without the mixture of experts (for comparison).
on lm1b_32k:
~45M params
2 steps/sec on [GeForce GTX TITAN X]
After 50K steps on 8 GPUs (synchronous):
eval_log_ppl_per_token = 3.51
Returns:
an hparams object.
"""
hparams = attention_lm_moe_small()
hparams.moe_layers = ""
return hparams
|
[
"def",
"attention_lm_no_moe_small",
"(",
")",
":",
"hparams",
"=",
"attention_lm_moe_small",
"(",
")",
"hparams",
".",
"moe_layers",
"=",
"\"\"",
"return",
"hparams"
] |
https://github.com/tensorflow/tensor2tensor/blob/2a33b152d7835af66a6d20afe7961751047e28dd/tensor2tensor/models/research/attention_lm_moe.py#L681-L695
|
|
marcosfede/algorithms
|
1ee7c815f9d556c9cef4d4b0d21ee3a409d21629
|
adventofcode/2019/d19/d19.py
|
python
|
Point.__mul__
|
(self, num)
|
return Point(self.x*num, self.y*num)
|
[] |
def __mul__(self, num):
return Point(self.x*num, self.y*num)
|
[
"def",
"__mul__",
"(",
"self",
",",
"num",
")",
":",
"return",
"Point",
"(",
"self",
".",
"x",
"*",
"num",
",",
"self",
".",
"y",
"*",
"num",
")"
] |
https://github.com/marcosfede/algorithms/blob/1ee7c815f9d556c9cef4d4b0d21ee3a409d21629/adventofcode/2019/d19/d19.py#L91-L92
|
|||
radlab/sparrow
|
afb8efadeb88524f1394d1abe4ea66c6fd2ac744
|
src/main/python/parse_logs.py
|
python
|
Task.service_time
|
(self)
|
return (self.completion_time - self.node_monitor_launch_time)
|
Returns the service time (time executing on backend).
|
Returns the service time (time executing on backend).
|
[
"Returns",
"the",
"service",
"time",
"(",
"time",
"executing",
"on",
"backend",
")",
"."
] |
def service_time(self):
""" Returns the service time (time executing on backend)."""
#print self.node_monitor_address, self.completion_time - self.node_monitor_launch_time
return (self.completion_time - self.node_monitor_launch_time)
|
[
"def",
"service_time",
"(",
"self",
")",
":",
"#print self.node_monitor_address, self.completion_time - self.node_monitor_launch_time",
"return",
"(",
"self",
".",
"completion_time",
"-",
"self",
".",
"node_monitor_launch_time",
")"
] |
https://github.com/radlab/sparrow/blob/afb8efadeb88524f1394d1abe4ea66c6fd2ac744/src/main/python/parse_logs.py#L128-L131
|
|
tp4a/teleport
|
1fafd34f1f775d2cf80ea4af6e44468d8e0b24ad
|
server/www/packages/packages-windows/x86/cryptography/hazmat/primitives/serialization/ssh.py
|
python
|
_ssh_read_next_mpint
|
(data)
|
return (
utils.int_from_bytes(mpint_data, byteorder='big', signed=False), rest
)
|
Reads the next mpint from the data.
Currently, all mpints are interpreted as unsigned.
|
Reads the next mpint from the data.
|
[
"Reads",
"the",
"next",
"mpint",
"from",
"the",
"data",
"."
] |
def _ssh_read_next_mpint(data):
"""
Reads the next mpint from the data.
Currently, all mpints are interpreted as unsigned.
"""
mpint_data, rest = _ssh_read_next_string(data)
return (
utils.int_from_bytes(mpint_data, byteorder='big', signed=False), rest
)
|
[
"def",
"_ssh_read_next_mpint",
"(",
"data",
")",
":",
"mpint_data",
",",
"rest",
"=",
"_ssh_read_next_string",
"(",
"data",
")",
"return",
"(",
"utils",
".",
"int_from_bytes",
"(",
"mpint_data",
",",
"byteorder",
"=",
"'big'",
",",
"signed",
"=",
"False",
")",
",",
"rest",
")"
] |
https://github.com/tp4a/teleport/blob/1fafd34f1f775d2cf80ea4af6e44468d8e0b24ad/server/www/packages/packages-windows/x86/cryptography/hazmat/primitives/serialization/ssh.py#L132-L142
|
|
hahnyuan/nn_tools
|
e04903d2946a75b62128b64ada7eec8b9fbd841f
|
analysis/MxnetA.py
|
python
|
Monitor.install
|
(self, exe)
|
[] |
def install(self, exe):
exe.set_monitor_callback(self.stat_helper)
self.exes.append(exe)
|
[
"def",
"install",
"(",
"self",
",",
"exe",
")",
":",
"exe",
".",
"set_monitor_callback",
"(",
"self",
".",
"stat_helper",
")",
"self",
".",
"exes",
".",
"append",
"(",
"exe",
")"
] |
https://github.com/hahnyuan/nn_tools/blob/e04903d2946a75b62128b64ada7eec8b9fbd841f/analysis/MxnetA.py#L109-L111
|
||||
chainer/chainercv
|
7159616642e0be7c5b3ef380b848e16b7e99355b
|
chainercv/chainer_experimental/datasets/sliceable/sliceable_dataset.py
|
python
|
SliceableDataset.get_example
|
(self, index)
|
[] |
def get_example(self, index):
if isinstance(self.keys, tuple):
return self.get_example_by_keys(
index, tuple(range(len(self.keys))))
else:
return self.get_example_by_keys(index, (0,))[0]
|
[
"def",
"get_example",
"(",
"self",
",",
"index",
")",
":",
"if",
"isinstance",
"(",
"self",
".",
"keys",
",",
"tuple",
")",
":",
"return",
"self",
".",
"get_example_by_keys",
"(",
"index",
",",
"tuple",
"(",
"range",
"(",
"len",
"(",
"self",
".",
"keys",
")",
")",
")",
")",
"else",
":",
"return",
"self",
".",
"get_example_by_keys",
"(",
"index",
",",
"(",
"0",
",",
")",
")",
"[",
"0",
"]"
] |
https://github.com/chainer/chainercv/blob/7159616642e0be7c5b3ef380b848e16b7e99355b/chainercv/chainer_experimental/datasets/sliceable/sliceable_dataset.py#L95-L100
|
||||
danielzak/sl-quant
|
460a55c966192b2bde5497f8502ac24f81a51ddf
|
ex3-self_learning_quant.py
|
python
|
get_reward
|
(new_state, time_step, action, xdata, signal, terminal_state, eval=False, epoch=0)
|
return reward
|
[] |
def get_reward(new_state, time_step, action, xdata, signal, terminal_state, eval=False, epoch=0):
reward = 0
signal.fillna(value=0, inplace=True)
if eval == False:
bt = twp.Backtest(pd.Series(data=[x for x in xdata[time_step-2:time_step]], index=signal[time_step-2:time_step].index.values), signal[time_step-2:time_step], signalType='shares')
reward = ((bt.data['price'].iloc[-1] - bt.data['price'].iloc[-2])*bt.data['shares'].iloc[-1])
if terminal_state == 1 and eval == True:
#save a figure of the test set
bt = twp.Backtest(pd.Series(data=[x for x in xdata], index=signal.index.values), signal, signalType='shares')
reward = bt.pnl.iloc[-1]
plt.figure(figsize=(3,4))
bt.plotTrades()
plt.axvline(x=400, color='black', linestyle='--')
plt.text(250, 400, 'training data')
plt.text(450, 400, 'test data')
plt.suptitle(str(epoch))
plt.savefig('plt/'+str(epoch)+'.png', bbox_inches='tight', pad_inches=1, dpi=72)
plt.close('all')
#print(time_step, terminal_state, eval, reward)
return reward
|
[
"def",
"get_reward",
"(",
"new_state",
",",
"time_step",
",",
"action",
",",
"xdata",
",",
"signal",
",",
"terminal_state",
",",
"eval",
"=",
"False",
",",
"epoch",
"=",
"0",
")",
":",
"reward",
"=",
"0",
"signal",
".",
"fillna",
"(",
"value",
"=",
"0",
",",
"inplace",
"=",
"True",
")",
"if",
"eval",
"==",
"False",
":",
"bt",
"=",
"twp",
".",
"Backtest",
"(",
"pd",
".",
"Series",
"(",
"data",
"=",
"[",
"x",
"for",
"x",
"in",
"xdata",
"[",
"time_step",
"-",
"2",
":",
"time_step",
"]",
"]",
",",
"index",
"=",
"signal",
"[",
"time_step",
"-",
"2",
":",
"time_step",
"]",
".",
"index",
".",
"values",
")",
",",
"signal",
"[",
"time_step",
"-",
"2",
":",
"time_step",
"]",
",",
"signalType",
"=",
"'shares'",
")",
"reward",
"=",
"(",
"(",
"bt",
".",
"data",
"[",
"'price'",
"]",
".",
"iloc",
"[",
"-",
"1",
"]",
"-",
"bt",
".",
"data",
"[",
"'price'",
"]",
".",
"iloc",
"[",
"-",
"2",
"]",
")",
"*",
"bt",
".",
"data",
"[",
"'shares'",
"]",
".",
"iloc",
"[",
"-",
"1",
"]",
")",
"if",
"terminal_state",
"==",
"1",
"and",
"eval",
"==",
"True",
":",
"#save a figure of the test set",
"bt",
"=",
"twp",
".",
"Backtest",
"(",
"pd",
".",
"Series",
"(",
"data",
"=",
"[",
"x",
"for",
"x",
"in",
"xdata",
"]",
",",
"index",
"=",
"signal",
".",
"index",
".",
"values",
")",
",",
"signal",
",",
"signalType",
"=",
"'shares'",
")",
"reward",
"=",
"bt",
".",
"pnl",
".",
"iloc",
"[",
"-",
"1",
"]",
"plt",
".",
"figure",
"(",
"figsize",
"=",
"(",
"3",
",",
"4",
")",
")",
"bt",
".",
"plotTrades",
"(",
")",
"plt",
".",
"axvline",
"(",
"x",
"=",
"400",
",",
"color",
"=",
"'black'",
",",
"linestyle",
"=",
"'--'",
")",
"plt",
".",
"text",
"(",
"250",
",",
"400",
",",
"'training data'",
")",
"plt",
".",
"text",
"(",
"450",
",",
"400",
",",
"'test data'",
")",
"plt",
".",
"suptitle",
"(",
"str",
"(",
"epoch",
")",
")",
"plt",
".",
"savefig",
"(",
"'plt/'",
"+",
"str",
"(",
"epoch",
")",
"+",
"'.png'",
",",
"bbox_inches",
"=",
"'tight'",
",",
"pad_inches",
"=",
"1",
",",
"dpi",
"=",
"72",
")",
"plt",
".",
"close",
"(",
"'all'",
")",
"#print(time_step, terminal_state, eval, reward)",
"return",
"reward"
] |
https://github.com/danielzak/sl-quant/blob/460a55c966192b2bde5497f8502ac24f81a51ddf/ex3-self_learning_quant.py#L123-L145
|
|||
graphcore/examples
|
46d2b7687b829778369fc6328170a7b14761e5c6
|
code_examples/tensorflow2/abc_covid_19/ABC_IPU.py
|
python
|
main
|
()
|
Warmup, timing, and stats output handling.
|
Warmup, timing, and stats output handling.
|
[
"Warmup",
"timing",
"and",
"stats",
"output",
"handling",
"."
] |
def main():
"""Warmup, timing, and stats output handling."""
with strategy.scope():
# Warm-up
if not args.sparse_output:
print("Warming up...")
strategy.run(
loop_collect_samples,
[args.n_samples_target,
tf.constant(1, dtype=tf.int32),
args.tolerance])
if not args.no_outfeed_ops:
outfeed_data.dequeue()
# Time the compute
if not args.sparse_output:
print("Running...")
start_time = time.time()
num_accepted_samples, num_runs = strategy.run(
loop_collect_samples,
[args.n_samples_target,
args.max_n_runs,
args.tolerance])
end_time = time.time()
samples_collected = np.int(num_accepted_samples)
num_runs = np.int(num_runs)
run_duration = end_time - start_time
# Dequeue the data
if args.no_outfeed_ops:
start_time = end_time = time.time()
else:
start_time = time.time()
param_vector, reduced_distances, eval_param_vector = \
dequeue_and_postproc(time_it=True)
end_time = time.time()
deq_proc_duration = end_time - start_time
duration = run_duration + deq_proc_duration
if args.sparse_output:
print(f"{duration:.3f} \t {1e3*duration/num_runs:.3f} \t "
f"{run_duration:.3f} \t {1e3*run_duration/num_runs:.3f}")
else:
print(f"Running ABC inference for {args.country}\n"
f"\tBatch size: {args.n_samples_per_batch}\n"
f"\tTolerance: {args.tolerance}"
f"\tTarget number of samples: {args.n_samples_target}"
f"\tEnqueue chunk size: {args.enqueue_chunk_size}")
print("=========================================")
print("IPU runs completed in {0:.3f} seconds\n".format(
run_duration))
print(f"Samples collected: {samples_collected:.0f}")
print(f"Number of runs: {num_runs:.0f} "
f"with {args.replication_factor} replica(s)")
print("Time per run: {0:.3f} milliseconds\n".format(
1e3*run_duration/num_runs))
print("Debug: Time for dequeue and processing: "
"{0:.3f} second\n".format(deq_proc_duration))
print("Debug: Total Time (inc dequeue): {0:.3f} second\n".format(
duration))
print("Debug: Time per run (inc dequeue): "
"{0:.3f} milliseconds\n".format(1e3*duration/num_runs))
if not args.no_outfeed_ops:
print(f"param_vector.shape = {param_vector.shape}")
print(f"reduced_distances.shape = {reduced_distances.shape}")
print(f"eval_param_vector.shape = {eval_param_vector.shape}")
if samples_collected < args.n_samples_target:
raise NotImplementedError(
"Too few iterations. Increase max_num_runs parameter.")
if args.samples_filepath:
# Save the accepted samples if filepath given
np.savetxt(args.samples_filepath,
eval_param_vector.numpy(),
delimiter=",")
|
[
"def",
"main",
"(",
")",
":",
"with",
"strategy",
".",
"scope",
"(",
")",
":",
"# Warm-up",
"if",
"not",
"args",
".",
"sparse_output",
":",
"print",
"(",
"\"Warming up...\"",
")",
"strategy",
".",
"run",
"(",
"loop_collect_samples",
",",
"[",
"args",
".",
"n_samples_target",
",",
"tf",
".",
"constant",
"(",
"1",
",",
"dtype",
"=",
"tf",
".",
"int32",
")",
",",
"args",
".",
"tolerance",
"]",
")",
"if",
"not",
"args",
".",
"no_outfeed_ops",
":",
"outfeed_data",
".",
"dequeue",
"(",
")",
"# Time the compute",
"if",
"not",
"args",
".",
"sparse_output",
":",
"print",
"(",
"\"Running...\"",
")",
"start_time",
"=",
"time",
".",
"time",
"(",
")",
"num_accepted_samples",
",",
"num_runs",
"=",
"strategy",
".",
"run",
"(",
"loop_collect_samples",
",",
"[",
"args",
".",
"n_samples_target",
",",
"args",
".",
"max_n_runs",
",",
"args",
".",
"tolerance",
"]",
")",
"end_time",
"=",
"time",
".",
"time",
"(",
")",
"samples_collected",
"=",
"np",
".",
"int",
"(",
"num_accepted_samples",
")",
"num_runs",
"=",
"np",
".",
"int",
"(",
"num_runs",
")",
"run_duration",
"=",
"end_time",
"-",
"start_time",
"# Dequeue the data",
"if",
"args",
".",
"no_outfeed_ops",
":",
"start_time",
"=",
"end_time",
"=",
"time",
".",
"time",
"(",
")",
"else",
":",
"start_time",
"=",
"time",
".",
"time",
"(",
")",
"param_vector",
",",
"reduced_distances",
",",
"eval_param_vector",
"=",
"dequeue_and_postproc",
"(",
"time_it",
"=",
"True",
")",
"end_time",
"=",
"time",
".",
"time",
"(",
")",
"deq_proc_duration",
"=",
"end_time",
"-",
"start_time",
"duration",
"=",
"run_duration",
"+",
"deq_proc_duration",
"if",
"args",
".",
"sparse_output",
":",
"print",
"(",
"f\"{duration:.3f} \\t {1e3*duration/num_runs:.3f} \\t \"",
"f\"{run_duration:.3f} \\t {1e3*run_duration/num_runs:.3f}\"",
")",
"else",
":",
"print",
"(",
"f\"Running ABC inference for {args.country}\\n\"",
"f\"\\tBatch size: {args.n_samples_per_batch}\\n\"",
"f\"\\tTolerance: {args.tolerance}\"",
"f\"\\tTarget number of samples: {args.n_samples_target}\"",
"f\"\\tEnqueue chunk size: {args.enqueue_chunk_size}\"",
")",
"print",
"(",
"\"=========================================\"",
")",
"print",
"(",
"\"IPU runs completed in {0:.3f} seconds\\n\"",
".",
"format",
"(",
"run_duration",
")",
")",
"print",
"(",
"f\"Samples collected: {samples_collected:.0f}\"",
")",
"print",
"(",
"f\"Number of runs: {num_runs:.0f} \"",
"f\"with {args.replication_factor} replica(s)\"",
")",
"print",
"(",
"\"Time per run: {0:.3f} milliseconds\\n\"",
".",
"format",
"(",
"1e3",
"*",
"run_duration",
"/",
"num_runs",
")",
")",
"print",
"(",
"\"Debug: Time for dequeue and processing: \"",
"\"{0:.3f} second\\n\"",
".",
"format",
"(",
"deq_proc_duration",
")",
")",
"print",
"(",
"\"Debug: Total Time (inc dequeue): {0:.3f} second\\n\"",
".",
"format",
"(",
"duration",
")",
")",
"print",
"(",
"\"Debug: Time per run (inc dequeue): \"",
"\"{0:.3f} milliseconds\\n\"",
".",
"format",
"(",
"1e3",
"*",
"duration",
"/",
"num_runs",
")",
")",
"if",
"not",
"args",
".",
"no_outfeed_ops",
":",
"print",
"(",
"f\"param_vector.shape = {param_vector.shape}\"",
")",
"print",
"(",
"f\"reduced_distances.shape = {reduced_distances.shape}\"",
")",
"print",
"(",
"f\"eval_param_vector.shape = {eval_param_vector.shape}\"",
")",
"if",
"samples_collected",
"<",
"args",
".",
"n_samples_target",
":",
"raise",
"NotImplementedError",
"(",
"\"Too few iterations. Increase max_num_runs parameter.\"",
")",
"if",
"args",
".",
"samples_filepath",
":",
"# Save the accepted samples if filepath given",
"np",
".",
"savetxt",
"(",
"args",
".",
"samples_filepath",
",",
"eval_param_vector",
".",
"numpy",
"(",
")",
",",
"delimiter",
"=",
"\",\"",
")"
] |
https://github.com/graphcore/examples/blob/46d2b7687b829778369fc6328170a7b14761e5c6/code_examples/tensorflow2/abc_covid_19/ABC_IPU.py#L305-L380
|
||
edisonlz/fastor
|
342078a18363ac41d3c6b1ab29dbdd44fdb0b7b3
|
base/site-packages/androguard/core/bytecodes/dvm.py
|
python
|
AnnotationElement.get_value
|
(self)
|
return self.value
|
Return the element value (EncodedValue)
:rtype: a :class:`EncodedValue` object
|
Return the element value (EncodedValue)
|
[
"Return",
"the",
"element",
"value",
"(",
"EncodedValue",
")"
] |
def get_value(self) :
"""
Return the element value (EncodedValue)
:rtype: a :class:`EncodedValue` object
"""
return self.value
|
[
"def",
"get_value",
"(",
"self",
")",
":",
"return",
"self",
".",
"value"
] |
https://github.com/edisonlz/fastor/blob/342078a18363ac41d3c6b1ab29dbdd44fdb0b7b3/base/site-packages/androguard/core/bytecodes/dvm.py#L1545-L1551
|
|
modin-project/modin
|
0d9d14e6669be3dd6bb3b72222dbe6a6dffe1bee
|
modin/core/dataframe/pandas/dataframe/dataframe.py
|
python
|
PandasDataframe._axes_lengths
|
(self)
|
return [self._row_lengths, self._column_widths]
|
Get a pair of row partitions lengths and column partitions widths.
Returns
-------
list
The pair of row partitions lengths and column partitions widths.
|
Get a pair of row partitions lengths and column partitions widths.
|
[
"Get",
"a",
"pair",
"of",
"row",
"partitions",
"lengths",
"and",
"column",
"partitions",
"widths",
"."
] |
def _axes_lengths(self):
"""
Get a pair of row partitions lengths and column partitions widths.
Returns
-------
list
The pair of row partitions lengths and column partitions widths.
"""
return [self._row_lengths, self._column_widths]
|
[
"def",
"_axes_lengths",
"(",
"self",
")",
":",
"return",
"[",
"self",
".",
"_row_lengths",
",",
"self",
".",
"_column_widths",
"]"
] |
https://github.com/modin-project/modin/blob/0d9d14e6669be3dd6bb3b72222dbe6a6dffe1bee/modin/core/dataframe/pandas/dataframe/dataframe.py#L142-L151
|
|
Azure/azure-linux-extensions
|
a42ef718c746abab2b3c6a21da87b29e76364558
|
OmsAgent/omsagent.py
|
python
|
was_curl_found
|
(exit_code, output)
|
return True
|
Returns false if exit_code indicates that curl was not installed; this can
occur when package lists need to be updated, or when some archives are
out-of-date
|
Returns false if exit_code indicates that curl was not installed; this can
occur when package lists need to be updated, or when some archives are
out-of-date
|
[
"Returns",
"false",
"if",
"exit_code",
"indicates",
"that",
"curl",
"was",
"not",
"installed",
";",
"this",
"can",
"occur",
"when",
"package",
"lists",
"need",
"to",
"be",
"updated",
"or",
"when",
"some",
"archives",
"are",
"out",
"-",
"of",
"-",
"date"
] |
def was_curl_found(exit_code, output):
"""
Returns false if exit_code indicates that curl was not installed; this can
occur when package lists need to be updated, or when some archives are
out-of-date
"""
if exit_code is InstallErrorCurlNotInstalled:
return False
return True
|
[
"def",
"was_curl_found",
"(",
"exit_code",
",",
"output",
")",
":",
"if",
"exit_code",
"is",
"InstallErrorCurlNotInstalled",
":",
"return",
"False",
"return",
"True"
] |
https://github.com/Azure/azure-linux-extensions/blob/a42ef718c746abab2b3c6a21da87b29e76364558/OmsAgent/omsagent.py#L1452-L1460
|
|
VITA-Group/FasterSeg
|
478b0265eb9ab626cfbe503ad16d2452878b38cc
|
latency/operations.py
|
python
|
FactorizedReduce.__init__
|
(self, C_in, C_out, stride=1, slimmable=True, width_mult_list=[1.])
|
[] |
def __init__(self, C_in, C_out, stride=1, slimmable=True, width_mult_list=[1.]):
super(FactorizedReduce, self).__init__()
assert stride in [1, 2]
assert C_out % 2 == 0
self.C_in = C_in
self.C_out = C_out
self.stride = stride
self.slimmable = slimmable
self.width_mult_list = width_mult_list
self.ratio = (1., 1.)
if stride == 1 and slimmable:
self.conv1 = USConv2d(C_in, C_out, 1, stride=1, padding=0, bias=False, width_mult_list=width_mult_list)
self.bn = USBatchNorm2d(C_out, width_mult_list)
self.relu = nn.ReLU(inplace=True)
elif stride == 2:
self.relu = nn.ReLU(inplace=True)
if slimmable:
self.conv1 = USConv2d(C_in, C_out // 2, 1, stride=2, padding=0, bias=False, width_mult_list=width_mult_list)
self.conv2 = USConv2d(C_in, C_out // 2, 1, stride=2, padding=0, bias=False, width_mult_list=width_mult_list)
self.bn = USBatchNorm2d(C_out, width_mult_list)
else:
# TensorRT: [Slice]: slice is out of input range
self.conv1 = nn.Conv2d(C_in, C_out, 1, stride=2, padding=0, bias=False)
self.bn = nn.BatchNorm2d(C_out)
|
[
"def",
"__init__",
"(",
"self",
",",
"C_in",
",",
"C_out",
",",
"stride",
"=",
"1",
",",
"slimmable",
"=",
"True",
",",
"width_mult_list",
"=",
"[",
"1.",
"]",
")",
":",
"super",
"(",
"FactorizedReduce",
",",
"self",
")",
".",
"__init__",
"(",
")",
"assert",
"stride",
"in",
"[",
"1",
",",
"2",
"]",
"assert",
"C_out",
"%",
"2",
"==",
"0",
"self",
".",
"C_in",
"=",
"C_in",
"self",
".",
"C_out",
"=",
"C_out",
"self",
".",
"stride",
"=",
"stride",
"self",
".",
"slimmable",
"=",
"slimmable",
"self",
".",
"width_mult_list",
"=",
"width_mult_list",
"self",
".",
"ratio",
"=",
"(",
"1.",
",",
"1.",
")",
"if",
"stride",
"==",
"1",
"and",
"slimmable",
":",
"self",
".",
"conv1",
"=",
"USConv2d",
"(",
"C_in",
",",
"C_out",
",",
"1",
",",
"stride",
"=",
"1",
",",
"padding",
"=",
"0",
",",
"bias",
"=",
"False",
",",
"width_mult_list",
"=",
"width_mult_list",
")",
"self",
".",
"bn",
"=",
"USBatchNorm2d",
"(",
"C_out",
",",
"width_mult_list",
")",
"self",
".",
"relu",
"=",
"nn",
".",
"ReLU",
"(",
"inplace",
"=",
"True",
")",
"elif",
"stride",
"==",
"2",
":",
"self",
".",
"relu",
"=",
"nn",
".",
"ReLU",
"(",
"inplace",
"=",
"True",
")",
"if",
"slimmable",
":",
"self",
".",
"conv1",
"=",
"USConv2d",
"(",
"C_in",
",",
"C_out",
"//",
"2",
",",
"1",
",",
"stride",
"=",
"2",
",",
"padding",
"=",
"0",
",",
"bias",
"=",
"False",
",",
"width_mult_list",
"=",
"width_mult_list",
")",
"self",
".",
"conv2",
"=",
"USConv2d",
"(",
"C_in",
",",
"C_out",
"//",
"2",
",",
"1",
",",
"stride",
"=",
"2",
",",
"padding",
"=",
"0",
",",
"bias",
"=",
"False",
",",
"width_mult_list",
"=",
"width_mult_list",
")",
"self",
".",
"bn",
"=",
"USBatchNorm2d",
"(",
"C_out",
",",
"width_mult_list",
")",
"else",
":",
"# TensorRT: [Slice]: slice is out of input range",
"self",
".",
"conv1",
"=",
"nn",
".",
"Conv2d",
"(",
"C_in",
",",
"C_out",
",",
"1",
",",
"stride",
"=",
"2",
",",
"padding",
"=",
"0",
",",
"bias",
"=",
"False",
")",
"self",
".",
"bn",
"=",
"nn",
".",
"BatchNorm2d",
"(",
"C_out",
")"
] |
https://github.com/VITA-Group/FasterSeg/blob/478b0265eb9ab626cfbe503ad16d2452878b38cc/latency/operations.py#L440-L463
|
||||
grow/grow
|
97fc21730b6a674d5d33948d94968e79447ce433
|
grow/common/rc_config.py
|
python
|
RCConfig.reset_update_check
|
(self)
|
Reset the timestamp of the last_checked.
|
Reset the timestamp of the last_checked.
|
[
"Reset",
"the",
"timestamp",
"of",
"the",
"last_checked",
"."
] |
def reset_update_check(self):
"""Reset the timestamp of the last_checked."""
self.last_checked = self._time()
|
[
"def",
"reset_update_check",
"(",
"self",
")",
":",
"self",
".",
"last_checked",
"=",
"self",
".",
"_time",
"(",
")"
] |
https://github.com/grow/grow/blob/97fc21730b6a674d5d33948d94968e79447ce433/grow/common/rc_config.py#L76-L78
|
||
ArchiveBox/ArchiveBox
|
663918a37298d6b7617d1f36d346f95947c5bab2
|
archivebox/cli/__init__.py
|
python
|
list_subcommands
|
()
|
return dict(sorted(COMMANDS, key=display_order))
|
find and import all valid archivebox_<subcommand>.py files in CLI_DIR
|
find and import all valid archivebox_<subcommand>.py files in CLI_DIR
|
[
"find",
"and",
"import",
"all",
"valid",
"archivebox_<subcommand",
">",
".",
"py",
"files",
"in",
"CLI_DIR"
] |
def list_subcommands() -> Dict[str, str]:
"""find and import all valid archivebox_<subcommand>.py files in CLI_DIR"""
COMMANDS = []
for filename in os.listdir(CLI_DIR):
if is_cli_module(filename):
subcommand = filename.replace('archivebox_', '').replace('.py', '')
module = import_module('.archivebox_{}'.format(subcommand), __package__)
assert is_valid_cli_module(module, subcommand)
COMMANDS.append((subcommand, module.main.__doc__))
globals()[subcommand] = module.main
display_order = lambda cmd: (
display_first.index(cmd[0])
if cmd[0] in display_first else
100 + len(cmd[0])
)
return dict(sorted(COMMANDS, key=display_order))
|
[
"def",
"list_subcommands",
"(",
")",
"->",
"Dict",
"[",
"str",
",",
"str",
"]",
":",
"COMMANDS",
"=",
"[",
"]",
"for",
"filename",
"in",
"os",
".",
"listdir",
"(",
"CLI_DIR",
")",
":",
"if",
"is_cli_module",
"(",
"filename",
")",
":",
"subcommand",
"=",
"filename",
".",
"replace",
"(",
"'archivebox_'",
",",
"''",
")",
".",
"replace",
"(",
"'.py'",
",",
"''",
")",
"module",
"=",
"import_module",
"(",
"'.archivebox_{}'",
".",
"format",
"(",
"subcommand",
")",
",",
"__package__",
")",
"assert",
"is_valid_cli_module",
"(",
"module",
",",
"subcommand",
")",
"COMMANDS",
".",
"append",
"(",
"(",
"subcommand",
",",
"module",
".",
"main",
".",
"__doc__",
")",
")",
"globals",
"(",
")",
"[",
"subcommand",
"]",
"=",
"module",
".",
"main",
"display_order",
"=",
"lambda",
"cmd",
":",
"(",
"display_first",
".",
"index",
"(",
"cmd",
"[",
"0",
"]",
")",
"if",
"cmd",
"[",
"0",
"]",
"in",
"display_first",
"else",
"100",
"+",
"len",
"(",
"cmd",
"[",
"0",
"]",
")",
")",
"return",
"dict",
"(",
"sorted",
"(",
"COMMANDS",
",",
"key",
"=",
"display_order",
")",
")"
] |
https://github.com/ArchiveBox/ArchiveBox/blob/663918a37298d6b7617d1f36d346f95947c5bab2/archivebox/cli/__init__.py#L36-L54
|
|
Qirky/FoxDot
|
76318f9630bede48ff3994146ed644affa27bfa4
|
FoxDot/lib/TimeVar.py
|
python
|
TimeVar.__radd__
|
(self, other)
|
return new
|
[] |
def __radd__(self, other):
new = self.math_op(other, "__radd__")
if not isinstance(other, (TimeVar, int, float)):
return new
new = self.new(other)
new.evaluate = fetch(rAdd)
return new
|
[
"def",
"__radd__",
"(",
"self",
",",
"other",
")",
":",
"new",
"=",
"self",
".",
"math_op",
"(",
"other",
",",
"\"__radd__\"",
")",
"if",
"not",
"isinstance",
"(",
"other",
",",
"(",
"TimeVar",
",",
"int",
",",
"float",
")",
")",
":",
"return",
"new",
"new",
"=",
"self",
".",
"new",
"(",
"other",
")",
"new",
".",
"evaluate",
"=",
"fetch",
"(",
"rAdd",
")",
"return",
"new"
] |
https://github.com/Qirky/FoxDot/blob/76318f9630bede48ff3994146ed644affa27bfa4/FoxDot/lib/TimeVar.py#L312-L318
|
|||
out0fmemory/GoAgent-Always-Available
|
c4254984fea633ce3d1893fe5901debd9f22c2a9
|
server/lib/google/appengine/tools/appcfg.py
|
python
|
AppCfgApp.DeleteVersion
|
(self)
|
Deletes the specified version for an app.
|
Deletes the specified version for an app.
|
[
"Deletes",
"the",
"specified",
"version",
"for",
"an",
"app",
"."
] |
def DeleteVersion(self):
"""Deletes the specified version for an app."""
if not (self.options.app_id and self.options.version):
self.parser.error('Expected an <app_id> argument, a <version> argument '
'and an optional <module> argument.')
if self.options.module:
module = self.options.module
else:
module = ''
rpcserver = self._GetRpcServer()
response = rpcserver.Send('/api/versions/delete',
app_id=self.options.app_id,
version_match=self.options.version,
module=module)
print >> self.out_fh, response
|
[
"def",
"DeleteVersion",
"(",
"self",
")",
":",
"if",
"not",
"(",
"self",
".",
"options",
".",
"app_id",
"and",
"self",
".",
"options",
".",
"version",
")",
":",
"self",
".",
"parser",
".",
"error",
"(",
"'Expected an <app_id> argument, a <version> argument '",
"'and an optional <module> argument.'",
")",
"if",
"self",
".",
"options",
".",
"module",
":",
"module",
"=",
"self",
".",
"options",
".",
"module",
"else",
":",
"module",
"=",
"''",
"rpcserver",
"=",
"self",
".",
"_GetRpcServer",
"(",
")",
"response",
"=",
"rpcserver",
".",
"Send",
"(",
"'/api/versions/delete'",
",",
"app_id",
"=",
"self",
".",
"options",
".",
"app_id",
",",
"version_match",
"=",
"self",
".",
"options",
".",
"version",
",",
"module",
"=",
"module",
")",
"print",
">>",
"self",
".",
"out_fh",
",",
"response"
] |
https://github.com/out0fmemory/GoAgent-Always-Available/blob/c4254984fea633ce3d1893fe5901debd9f22c2a9/server/lib/google/appengine/tools/appcfg.py#L4211-L4227
|
||
dmlc/dgl
|
8d14a739bc9e446d6c92ef83eafe5782398118de
|
python/dgl/_deprecate/graph.py
|
python
|
DGLGraph.clear_cache
|
(self)
|
Clear all cached graph structures such as adjmat.
By default, all graph structure related sparse matrices (e.g. adjmat, incmat)
are cached so they could be reused with the cost of extra memory consumption.
This function can be used to clear the cached matrices if memory is an issue.
|
Clear all cached graph structures such as adjmat.
|
[
"Clear",
"all",
"cached",
"graph",
"structures",
"such",
"as",
"adjmat",
"."
] |
def clear_cache(self):
"""Clear all cached graph structures such as adjmat.
By default, all graph structure related sparse matrices (e.g. adjmat, incmat)
are cached so they could be reused with the cost of extra memory consumption.
This function can be used to clear the cached matrices if memory is an issue.
"""
self._graph.clear_cache()
|
[
"def",
"clear_cache",
"(",
"self",
")",
":",
"self",
".",
"_graph",
".",
"clear_cache",
"(",
")"
] |
https://github.com/dmlc/dgl/blob/8d14a739bc9e446d6c92ef83eafe5782398118de/python/dgl/_deprecate/graph.py#L1743-L1750
|
||
enthought/chaco
|
0907d1dedd07a499202efbaf2fe2a4e51b4c8e5f
|
chaco/tools/dataprinter.py
|
python
|
DataPrinter._build_text_from_event
|
(self, event)
|
return self.format % (x, y)
|
Build the text to display from the mouse event.
|
Build the text to display from the mouse event.
|
[
"Build",
"the",
"text",
"to",
"display",
"from",
"the",
"mouse",
"event",
"."
] |
def _build_text_from_event(self, event):
"""Build the text to display from the mouse event."""
plot = self.component
ndx = plot.map_index((event.x, event.y), index_only=True)
x = plot.index.get_data()[ndx]
y = plot.value.get_data()[ndx]
return self.format % (x, y)
|
[
"def",
"_build_text_from_event",
"(",
"self",
",",
"event",
")",
":",
"plot",
"=",
"self",
".",
"component",
"ndx",
"=",
"plot",
".",
"map_index",
"(",
"(",
"event",
".",
"x",
",",
"event",
".",
"y",
")",
",",
"index_only",
"=",
"True",
")",
"x",
"=",
"plot",
".",
"index",
".",
"get_data",
"(",
")",
"[",
"ndx",
"]",
"y",
"=",
"plot",
".",
"value",
".",
"get_data",
"(",
")",
"[",
"ndx",
"]",
"return",
"self",
".",
"format",
"%",
"(",
"x",
",",
"y",
")"
] |
https://github.com/enthought/chaco/blob/0907d1dedd07a499202efbaf2fe2a4e51b4c8e5f/chaco/tools/dataprinter.py#L51-L57
|
|
ahmetcemturan/SFACT
|
7576e29ba72b33e5058049b77b7b558875542747
|
skeinforge_application/skeinforge_plugins/craft_plugins/fill.py
|
python
|
YIntersectionPath.__repr__
|
(self)
|
return '%s, %s, %s' % ( self.pathIndex, self.pointIndex, self.y )
|
Get the string representation of this y intersection.
|
Get the string representation of this y intersection.
|
[
"Get",
"the",
"string",
"representation",
"of",
"this",
"y",
"intersection",
"."
] |
def __repr__(self):
'Get the string representation of this y intersection.'
return '%s, %s, %s' % ( self.pathIndex, self.pointIndex, self.y )
|
[
"def",
"__repr__",
"(",
"self",
")",
":",
"return",
"'%s, %s, %s'",
"%",
"(",
"self",
".",
"pathIndex",
",",
"self",
".",
"pointIndex",
",",
"self",
".",
"y",
")"
] |
https://github.com/ahmetcemturan/SFACT/blob/7576e29ba72b33e5058049b77b7b558875542747/skeinforge_application/skeinforge_plugins/craft_plugins/fill.py#L1384-L1386
|
|
IronLanguages/main
|
a949455434b1fda8c783289e897e78a9a0caabb5
|
External.LCA_RESTRICTED/Languages/IronPython/27/Doc/jinja2/environment.py
|
python
|
Template.debug_info
|
(self)
|
return [tuple(map(int, x.split('='))) for x in
self._debug_info.split('&')]
|
The debug info mapping.
|
The debug info mapping.
|
[
"The",
"debug",
"info",
"mapping",
"."
] |
def debug_info(self):
"""The debug info mapping."""
return [tuple(map(int, x.split('='))) for x in
self._debug_info.split('&')]
|
[
"def",
"debug_info",
"(",
"self",
")",
":",
"return",
"[",
"tuple",
"(",
"map",
"(",
"int",
",",
"x",
".",
"split",
"(",
"'='",
")",
")",
")",
"for",
"x",
"in",
"self",
".",
"_debug_info",
".",
"split",
"(",
"'&'",
")",
"]"
] |
https://github.com/IronLanguages/main/blob/a949455434b1fda8c783289e897e78a9a0caabb5/External.LCA_RESTRICTED/Languages/IronPython/27/Doc/jinja2/environment.py#L749-L752
|
|
holzschu/Carnets
|
44effb10ddfc6aa5c8b0687582a724ba82c6b547
|
Library/lib/python3.7/site-packages/bokeh-1.4.0-py3.7.egg/bokeh/core/property/descriptors.py
|
python
|
PropertyDescriptor.__str__
|
(self)
|
return "PropertyDescriptor(%s)" % (self.name)
|
Basic string representation of ``PropertyDescriptor``.
**Subclasses must implement this to serve their specific needs.**
|
Basic string representation of ``PropertyDescriptor``.
|
[
"Basic",
"string",
"representation",
"of",
"PropertyDescriptor",
"."
] |
def __str__(self):
''' Basic string representation of ``PropertyDescriptor``.
**Subclasses must implement this to serve their specific needs.**
'''
return "PropertyDescriptor(%s)" % (self.name)
|
[
"def",
"__str__",
"(",
"self",
")",
":",
"return",
"\"PropertyDescriptor(%s)\"",
"%",
"(",
"self",
".",
"name",
")"
] |
https://github.com/holzschu/Carnets/blob/44effb10ddfc6aa5c8b0687582a724ba82c6b547/Library/lib/python3.7/site-packages/bokeh-1.4.0-py3.7.egg/bokeh/core/property/descriptors.py#L137-L143
|
|
pyscf/pyscf
|
0adfb464333f5ceee07b664f291d4084801bae64
|
pyscf/lib/linalg_helper.py
|
python
|
krylov
|
(aop, b, x0=None, tol=1e-10, max_cycle=30, dot=numpy.dot,
lindep=DSOLVE_LINDEP, callback=None, hermi=False,
max_memory=MAX_MEMORY, verbose=logger.WARN)
|
return x
|
r'''Krylov subspace method to solve (1+a) x = b. Ref:
J. A. Pople et al, Int. J. Quantum. Chem. Symp. 13, 225 (1979).
Args:
aop : function(x) => array_like_x
aop(x) to mimic the matrix vector multiplication :math:`\sum_{j}a_{ij} x_j`.
The argument is a 1D array. The returned value is a 1D array.
b : a vector or a list of vectors
Kwargs:
x0 : 1D array
Initial guess
tol : float
Tolerance to terminate the operation aop(x).
max_cycle : int
max number of iterations.
lindep : float
Linear dependency threshold. The function is terminated when the
smallest eigenvalue of the metric of the trial vectors is lower
than this threshold.
dot : function(x, y) => scalar
Inner product
callback : function(envs_dict) => None
callback function takes one dict as the argument which is
generated by the builtin function :func:`locals`, so that the
callback function can access all local variables in the current
envrionment.
Returns:
x : ndarray like b
Examples:
>>> from pyscf import lib
>>> a = numpy.random.random((10,10)) * 1e-2
>>> b = numpy.random.random(10)
>>> aop = lambda x: numpy.dot(a,x)
>>> x = lib.krylov(aop, b)
>>> numpy.allclose(numpy.dot(a,x)+x, b)
True
|
r'''Krylov subspace method to solve (1+a) x = b. Ref:
J. A. Pople et al, Int. J. Quantum. Chem. Symp. 13, 225 (1979).
|
[
"r",
"Krylov",
"subspace",
"method",
"to",
"solve",
"(",
"1",
"+",
"a",
")",
"x",
"=",
"b",
".",
"Ref",
":",
"J",
".",
"A",
".",
"Pople",
"et",
"al",
"Int",
".",
"J",
".",
"Quantum",
".",
"Chem",
".",
"Symp",
".",
"13",
"225",
"(",
"1979",
")",
"."
] |
def krylov(aop, b, x0=None, tol=1e-10, max_cycle=30, dot=numpy.dot,
lindep=DSOLVE_LINDEP, callback=None, hermi=False,
max_memory=MAX_MEMORY, verbose=logger.WARN):
r'''Krylov subspace method to solve (1+a) x = b. Ref:
J. A. Pople et al, Int. J. Quantum. Chem. Symp. 13, 225 (1979).
Args:
aop : function(x) => array_like_x
aop(x) to mimic the matrix vector multiplication :math:`\sum_{j}a_{ij} x_j`.
The argument is a 1D array. The returned value is a 1D array.
b : a vector or a list of vectors
Kwargs:
x0 : 1D array
Initial guess
tol : float
Tolerance to terminate the operation aop(x).
max_cycle : int
max number of iterations.
lindep : float
Linear dependency threshold. The function is terminated when the
smallest eigenvalue of the metric of the trial vectors is lower
than this threshold.
dot : function(x, y) => scalar
Inner product
callback : function(envs_dict) => None
callback function takes one dict as the argument which is
generated by the builtin function :func:`locals`, so that the
callback function can access all local variables in the current
envrionment.
Returns:
x : ndarray like b
Examples:
>>> from pyscf import lib
>>> a = numpy.random.random((10,10)) * 1e-2
>>> b = numpy.random.random(10)
>>> aop = lambda x: numpy.dot(a,x)
>>> x = lib.krylov(aop, b)
>>> numpy.allclose(numpy.dot(a,x)+x, b)
True
'''
if isinstance(aop, numpy.ndarray) and aop.ndim == 2:
return numpy.linalg.solve(aop+numpy.eye(aop.shape[0]), b)
if isinstance(verbose, logger.Logger):
log = verbose
else:
log = logger.Logger(sys.stdout, verbose)
if not (isinstance(b, numpy.ndarray) and b.ndim == 1):
b = numpy.asarray(b)
if x0 is None:
x1 = b
else:
b = b - (x0 + aop(x0))
x1 = b
if x1.ndim == 1:
x1 = x1.reshape(1, x1.size)
nroots, ndim = x1.shape
# Not exactly QR, vectors are orthogonal but not normalized
x1, rmat = _qr(x1, dot, lindep)
for i in range(len(x1)):
x1[i] *= rmat[i,i]
innerprod = [dot(xi.conj(), xi).real for xi in x1]
if innerprod:
max_innerprod = max(innerprod)
else:
max_innerprod = 0
if max_innerprod < lindep or max_innerprod < tol**2:
if x0 is None:
return numpy.zeros_like(b)
else:
return x0
_incore = max_memory*1e6/b.nbytes > 14
log.debug1('max_memory %d incore %s', max_memory, _incore)
if _incore:
xs = []
ax = []
else:
xs = _Xlist()
ax = _Xlist()
max_cycle = min(max_cycle, ndim)
for cycle in range(max_cycle):
axt = aop(x1)
if axt.ndim == 1:
axt = axt.reshape(1,ndim)
xs.extend(x1)
ax.extend(axt)
if callable(callback):
callback(cycle, xs, ax)
x1 = axt.copy()
for i in range(len(xs)):
xsi = numpy.asarray(xs[i])
for j, axj in enumerate(axt):
x1[j] -= xsi * (dot(xsi.conj(), axj) / innerprod[i])
axt = None
max_innerprod = 0
idx = []
for i, xi in enumerate(x1):
innerprod1 = dot(xi.conj(), xi).real
max_innerprod = max(max_innerprod, innerprod1)
if innerprod1 > lindep and innerprod1 > tol**2:
idx.append(i)
innerprod.append(innerprod1)
log.debug('krylov cycle %d r = %g', cycle, max_innerprod**.5)
if max_innerprod < lindep or max_innerprod < tol**2:
break
x1 = x1[idx]
nd = cycle + 1
h = numpy.empty((nd,nd), dtype=x1.dtype)
for i in range(nd):
xi = numpy.asarray(xs[i])
if hermi:
for j in range(i+1):
h[i,j] = dot(xi.conj(), ax[j])
h[j,i] = h[i,j].conj()
else:
for j in range(nd):
h[i,j] = dot(xi.conj(), ax[j])
xi = None
# Add the contribution of I in (1+a)
for i in range(nd):
h[i,i] += innerprod[i]
g = numpy.zeros((nd,nroots), dtype=x1.dtype)
if b.ndim == 1:
g[0] = innerprod[0]
else:
# Restore the first nroots vectors, which are array b or b-(1+a)x0
for i in range(min(nd, nroots)):
xsi = numpy.asarray(xs[i])
for j in range(nroots):
g[i,j] = dot(xsi.conj(), b[j])
c = numpy.linalg.solve(h, g)
x = _gen_x0(c, xs)
if b.ndim == 1:
x = x[0]
if x0 is not None:
x += x0
return x
|
[
"def",
"krylov",
"(",
"aop",
",",
"b",
",",
"x0",
"=",
"None",
",",
"tol",
"=",
"1e-10",
",",
"max_cycle",
"=",
"30",
",",
"dot",
"=",
"numpy",
".",
"dot",
",",
"lindep",
"=",
"DSOLVE_LINDEP",
",",
"callback",
"=",
"None",
",",
"hermi",
"=",
"False",
",",
"max_memory",
"=",
"MAX_MEMORY",
",",
"verbose",
"=",
"logger",
".",
"WARN",
")",
":",
"if",
"isinstance",
"(",
"aop",
",",
"numpy",
".",
"ndarray",
")",
"and",
"aop",
".",
"ndim",
"==",
"2",
":",
"return",
"numpy",
".",
"linalg",
".",
"solve",
"(",
"aop",
"+",
"numpy",
".",
"eye",
"(",
"aop",
".",
"shape",
"[",
"0",
"]",
")",
",",
"b",
")",
"if",
"isinstance",
"(",
"verbose",
",",
"logger",
".",
"Logger",
")",
":",
"log",
"=",
"verbose",
"else",
":",
"log",
"=",
"logger",
".",
"Logger",
"(",
"sys",
".",
"stdout",
",",
"verbose",
")",
"if",
"not",
"(",
"isinstance",
"(",
"b",
",",
"numpy",
".",
"ndarray",
")",
"and",
"b",
".",
"ndim",
"==",
"1",
")",
":",
"b",
"=",
"numpy",
".",
"asarray",
"(",
"b",
")",
"if",
"x0",
"is",
"None",
":",
"x1",
"=",
"b",
"else",
":",
"b",
"=",
"b",
"-",
"(",
"x0",
"+",
"aop",
"(",
"x0",
")",
")",
"x1",
"=",
"b",
"if",
"x1",
".",
"ndim",
"==",
"1",
":",
"x1",
"=",
"x1",
".",
"reshape",
"(",
"1",
",",
"x1",
".",
"size",
")",
"nroots",
",",
"ndim",
"=",
"x1",
".",
"shape",
"# Not exactly QR, vectors are orthogonal but not normalized",
"x1",
",",
"rmat",
"=",
"_qr",
"(",
"x1",
",",
"dot",
",",
"lindep",
")",
"for",
"i",
"in",
"range",
"(",
"len",
"(",
"x1",
")",
")",
":",
"x1",
"[",
"i",
"]",
"*=",
"rmat",
"[",
"i",
",",
"i",
"]",
"innerprod",
"=",
"[",
"dot",
"(",
"xi",
".",
"conj",
"(",
")",
",",
"xi",
")",
".",
"real",
"for",
"xi",
"in",
"x1",
"]",
"if",
"innerprod",
":",
"max_innerprod",
"=",
"max",
"(",
"innerprod",
")",
"else",
":",
"max_innerprod",
"=",
"0",
"if",
"max_innerprod",
"<",
"lindep",
"or",
"max_innerprod",
"<",
"tol",
"**",
"2",
":",
"if",
"x0",
"is",
"None",
":",
"return",
"numpy",
".",
"zeros_like",
"(",
"b",
")",
"else",
":",
"return",
"x0",
"_incore",
"=",
"max_memory",
"*",
"1e6",
"/",
"b",
".",
"nbytes",
">",
"14",
"log",
".",
"debug1",
"(",
"'max_memory %d incore %s'",
",",
"max_memory",
",",
"_incore",
")",
"if",
"_incore",
":",
"xs",
"=",
"[",
"]",
"ax",
"=",
"[",
"]",
"else",
":",
"xs",
"=",
"_Xlist",
"(",
")",
"ax",
"=",
"_Xlist",
"(",
")",
"max_cycle",
"=",
"min",
"(",
"max_cycle",
",",
"ndim",
")",
"for",
"cycle",
"in",
"range",
"(",
"max_cycle",
")",
":",
"axt",
"=",
"aop",
"(",
"x1",
")",
"if",
"axt",
".",
"ndim",
"==",
"1",
":",
"axt",
"=",
"axt",
".",
"reshape",
"(",
"1",
",",
"ndim",
")",
"xs",
".",
"extend",
"(",
"x1",
")",
"ax",
".",
"extend",
"(",
"axt",
")",
"if",
"callable",
"(",
"callback",
")",
":",
"callback",
"(",
"cycle",
",",
"xs",
",",
"ax",
")",
"x1",
"=",
"axt",
".",
"copy",
"(",
")",
"for",
"i",
"in",
"range",
"(",
"len",
"(",
"xs",
")",
")",
":",
"xsi",
"=",
"numpy",
".",
"asarray",
"(",
"xs",
"[",
"i",
"]",
")",
"for",
"j",
",",
"axj",
"in",
"enumerate",
"(",
"axt",
")",
":",
"x1",
"[",
"j",
"]",
"-=",
"xsi",
"*",
"(",
"dot",
"(",
"xsi",
".",
"conj",
"(",
")",
",",
"axj",
")",
"/",
"innerprod",
"[",
"i",
"]",
")",
"axt",
"=",
"None",
"max_innerprod",
"=",
"0",
"idx",
"=",
"[",
"]",
"for",
"i",
",",
"xi",
"in",
"enumerate",
"(",
"x1",
")",
":",
"innerprod1",
"=",
"dot",
"(",
"xi",
".",
"conj",
"(",
")",
",",
"xi",
")",
".",
"real",
"max_innerprod",
"=",
"max",
"(",
"max_innerprod",
",",
"innerprod1",
")",
"if",
"innerprod1",
">",
"lindep",
"and",
"innerprod1",
">",
"tol",
"**",
"2",
":",
"idx",
".",
"append",
"(",
"i",
")",
"innerprod",
".",
"append",
"(",
"innerprod1",
")",
"log",
".",
"debug",
"(",
"'krylov cycle %d r = %g'",
",",
"cycle",
",",
"max_innerprod",
"**",
".5",
")",
"if",
"max_innerprod",
"<",
"lindep",
"or",
"max_innerprod",
"<",
"tol",
"**",
"2",
":",
"break",
"x1",
"=",
"x1",
"[",
"idx",
"]",
"nd",
"=",
"cycle",
"+",
"1",
"h",
"=",
"numpy",
".",
"empty",
"(",
"(",
"nd",
",",
"nd",
")",
",",
"dtype",
"=",
"x1",
".",
"dtype",
")",
"for",
"i",
"in",
"range",
"(",
"nd",
")",
":",
"xi",
"=",
"numpy",
".",
"asarray",
"(",
"xs",
"[",
"i",
"]",
")",
"if",
"hermi",
":",
"for",
"j",
"in",
"range",
"(",
"i",
"+",
"1",
")",
":",
"h",
"[",
"i",
",",
"j",
"]",
"=",
"dot",
"(",
"xi",
".",
"conj",
"(",
")",
",",
"ax",
"[",
"j",
"]",
")",
"h",
"[",
"j",
",",
"i",
"]",
"=",
"h",
"[",
"i",
",",
"j",
"]",
".",
"conj",
"(",
")",
"else",
":",
"for",
"j",
"in",
"range",
"(",
"nd",
")",
":",
"h",
"[",
"i",
",",
"j",
"]",
"=",
"dot",
"(",
"xi",
".",
"conj",
"(",
")",
",",
"ax",
"[",
"j",
"]",
")",
"xi",
"=",
"None",
"# Add the contribution of I in (1+a)",
"for",
"i",
"in",
"range",
"(",
"nd",
")",
":",
"h",
"[",
"i",
",",
"i",
"]",
"+=",
"innerprod",
"[",
"i",
"]",
"g",
"=",
"numpy",
".",
"zeros",
"(",
"(",
"nd",
",",
"nroots",
")",
",",
"dtype",
"=",
"x1",
".",
"dtype",
")",
"if",
"b",
".",
"ndim",
"==",
"1",
":",
"g",
"[",
"0",
"]",
"=",
"innerprod",
"[",
"0",
"]",
"else",
":",
"# Restore the first nroots vectors, which are array b or b-(1+a)x0",
"for",
"i",
"in",
"range",
"(",
"min",
"(",
"nd",
",",
"nroots",
")",
")",
":",
"xsi",
"=",
"numpy",
".",
"asarray",
"(",
"xs",
"[",
"i",
"]",
")",
"for",
"j",
"in",
"range",
"(",
"nroots",
")",
":",
"g",
"[",
"i",
",",
"j",
"]",
"=",
"dot",
"(",
"xsi",
".",
"conj",
"(",
")",
",",
"b",
"[",
"j",
"]",
")",
"c",
"=",
"numpy",
".",
"linalg",
".",
"solve",
"(",
"h",
",",
"g",
")",
"x",
"=",
"_gen_x0",
"(",
"c",
",",
"xs",
")",
"if",
"b",
".",
"ndim",
"==",
"1",
":",
"x",
"=",
"x",
"[",
"0",
"]",
"if",
"x0",
"is",
"not",
"None",
":",
"x",
"+=",
"x0",
"return",
"x"
] |
https://github.com/pyscf/pyscf/blob/0adfb464333f5ceee07b664f291d4084801bae64/pyscf/lib/linalg_helper.py#L1273-L1428
|
|
CvvT/dumpDex
|
92ab3b7e996194a06bf1dd5538a4954e8a5ee9c1
|
python/idaapi.py
|
python
|
loader_input_t_from_fp
|
(*args)
|
return _idaapi.loader_input_t_from_fp(*args)
|
loader_input_t_from_fp(fp) -> loader_input_t
|
loader_input_t_from_fp(fp) -> loader_input_t
|
[
"loader_input_t_from_fp",
"(",
"fp",
")",
"-",
">",
"loader_input_t"
] |
def loader_input_t_from_fp(*args):
"""
loader_input_t_from_fp(fp) -> loader_input_t
"""
return _idaapi.loader_input_t_from_fp(*args)
|
[
"def",
"loader_input_t_from_fp",
"(",
"*",
"args",
")",
":",
"return",
"_idaapi",
".",
"loader_input_t_from_fp",
"(",
"*",
"args",
")"
] |
https://github.com/CvvT/dumpDex/blob/92ab3b7e996194a06bf1dd5538a4954e8a5ee9c1/python/idaapi.py#L25773-L25777
|
|
wxWidgets/Phoenix
|
b2199e299a6ca6d866aa6f3d0888499136ead9d6
|
wx/lib/agw/flatnotebook.py
|
python
|
FlatNotebook.SetRightClickMenu
|
(self, menu)
|
Sets the popup menu associated to a right click on a tab.
:param `menu`: an instance of :class:`wx.Menu`.
|
Sets the popup menu associated to a right click on a tab.
|
[
"Sets",
"the",
"popup",
"menu",
"associated",
"to",
"a",
"right",
"click",
"on",
"a",
"tab",
"."
] |
def SetRightClickMenu(self, menu):
"""
Sets the popup menu associated to a right click on a tab.
:param `menu`: an instance of :class:`wx.Menu`.
"""
self._pages._pRightClickMenu = menu
|
[
"def",
"SetRightClickMenu",
"(",
"self",
",",
"menu",
")",
":",
"self",
".",
"_pages",
".",
"_pRightClickMenu",
"=",
"menu"
] |
https://github.com/wxWidgets/Phoenix/blob/b2199e299a6ca6d866aa6f3d0888499136ead9d6/wx/lib/agw/flatnotebook.py#L4848-L4855
|
||
donnemartin/data-science-ipython-notebooks
|
5b3c00d462c6e9200315afe46d0093948621eb95
|
scipy/thinkstats2.py
|
python
|
Hist.Freq
|
(self, x)
|
return self.d.get(x, 0)
|
Gets the frequency associated with the value x.
Args:
x: number value
Returns:
int frequency
|
Gets the frequency associated with the value x.
|
[
"Gets",
"the",
"frequency",
"associated",
"with",
"the",
"value",
"x",
"."
] |
def Freq(self, x):
"""Gets the frequency associated with the value x.
Args:
x: number value
Returns:
int frequency
"""
return self.d.get(x, 0)
|
[
"def",
"Freq",
"(",
"self",
",",
"x",
")",
":",
"return",
"self",
".",
"d",
".",
"get",
"(",
"x",
",",
"0",
")"
] |
https://github.com/donnemartin/data-science-ipython-notebooks/blob/5b3c00d462c6e9200315afe46d0093948621eb95/scipy/thinkstats2.py#L373-L382
|
|
spesmilo/electrum
|
bdbd59300fbd35b01605e66145458e5f396108e8
|
electrum/gui/qt/main_window.py
|
python
|
ElectrumWindow.tx_from_text
|
(self, data: Union[str, bytes])
|
[] |
def tx_from_text(self, data: Union[str, bytes]) -> Union[None, 'PartialTransaction', 'Transaction']:
from electrum.transaction import tx_from_any
try:
return tx_from_any(data)
except BaseException as e:
self.show_critical(_("Electrum was unable to parse your transaction") + ":\n" + repr(e))
return
|
[
"def",
"tx_from_text",
"(",
"self",
",",
"data",
":",
"Union",
"[",
"str",
",",
"bytes",
"]",
")",
"->",
"Union",
"[",
"None",
",",
"'PartialTransaction'",
",",
"'Transaction'",
"]",
":",
"from",
"electrum",
".",
"transaction",
"import",
"tx_from_any",
"try",
":",
"return",
"tx_from_any",
"(",
"data",
")",
"except",
"BaseException",
"as",
"e",
":",
"self",
".",
"show_critical",
"(",
"_",
"(",
"\"Electrum was unable to parse your transaction\"",
")",
"+",
"\":\\n\"",
"+",
"repr",
"(",
"e",
")",
")",
"return"
] |
https://github.com/spesmilo/electrum/blob/bdbd59300fbd35b01605e66145458e5f396108e8/electrum/gui/qt/main_window.py#L2827-L2833
|
||||
elastic/elasticsearch-py
|
6ef1adfa3c840a84afda7369cd8e43ae7dc45cdb
|
elasticsearch/_sync/client/rollup.py
|
python
|
RollupClient.get_jobs
|
(
self,
*,
id: Optional[Any] = None,
error_trace: Optional[bool] = None,
filter_path: Optional[Union[List[str], str]] = None,
human: Optional[bool] = None,
pretty: Optional[bool] = None,
)
|
return self._perform_request("GET", __target, headers=__headers)
|
Retrieves the configuration, stats, and status of rollup jobs.
`<https://www.elastic.co/guide/en/elasticsearch/reference/master/rollup-get-job.html>`_
:param id: The ID of the job(s) to fetch. Accepts glob patterns, or left blank
for all jobs
|
Retrieves the configuration, stats, and status of rollup jobs.
|
[
"Retrieves",
"the",
"configuration",
"stats",
"and",
"status",
"of",
"rollup",
"jobs",
"."
] |
def get_jobs(
self,
*,
id: Optional[Any] = None,
error_trace: Optional[bool] = None,
filter_path: Optional[Union[List[str], str]] = None,
human: Optional[bool] = None,
pretty: Optional[bool] = None,
) -> ObjectApiResponse[Any]:
"""
Retrieves the configuration, stats, and status of rollup jobs.
`<https://www.elastic.co/guide/en/elasticsearch/reference/master/rollup-get-job.html>`_
:param id: The ID of the job(s) to fetch. Accepts glob patterns, or left blank
for all jobs
"""
if id not in SKIP_IN_PATH:
__path = f"/_rollup/job/{_quote(id)}"
else:
__path = "/_rollup/job"
__query: Dict[str, Any] = {}
if error_trace is not None:
__query["error_trace"] = error_trace
if filter_path is not None:
__query["filter_path"] = filter_path
if human is not None:
__query["human"] = human
if pretty is not None:
__query["pretty"] = pretty
if __query:
__target = f"{__path}?{_quote_query(__query)}"
else:
__target = __path
__headers = {"accept": "application/json"}
return self._perform_request("GET", __target, headers=__headers)
|
[
"def",
"get_jobs",
"(",
"self",
",",
"*",
",",
"id",
":",
"Optional",
"[",
"Any",
"]",
"=",
"None",
",",
"error_trace",
":",
"Optional",
"[",
"bool",
"]",
"=",
"None",
",",
"filter_path",
":",
"Optional",
"[",
"Union",
"[",
"List",
"[",
"str",
"]",
",",
"str",
"]",
"]",
"=",
"None",
",",
"human",
":",
"Optional",
"[",
"bool",
"]",
"=",
"None",
",",
"pretty",
":",
"Optional",
"[",
"bool",
"]",
"=",
"None",
",",
")",
"->",
"ObjectApiResponse",
"[",
"Any",
"]",
":",
"if",
"id",
"not",
"in",
"SKIP_IN_PATH",
":",
"__path",
"=",
"f\"/_rollup/job/{_quote(id)}\"",
"else",
":",
"__path",
"=",
"\"/_rollup/job\"",
"__query",
":",
"Dict",
"[",
"str",
",",
"Any",
"]",
"=",
"{",
"}",
"if",
"error_trace",
"is",
"not",
"None",
":",
"__query",
"[",
"\"error_trace\"",
"]",
"=",
"error_trace",
"if",
"filter_path",
"is",
"not",
"None",
":",
"__query",
"[",
"\"filter_path\"",
"]",
"=",
"filter_path",
"if",
"human",
"is",
"not",
"None",
":",
"__query",
"[",
"\"human\"",
"]",
"=",
"human",
"if",
"pretty",
"is",
"not",
"None",
":",
"__query",
"[",
"\"pretty\"",
"]",
"=",
"pretty",
"if",
"__query",
":",
"__target",
"=",
"f\"{__path}?{_quote_query(__query)}\"",
"else",
":",
"__target",
"=",
"__path",
"__headers",
"=",
"{",
"\"accept\"",
":",
"\"application/json\"",
"}",
"return",
"self",
".",
"_perform_request",
"(",
"\"GET\"",
",",
"__target",
",",
"headers",
"=",
"__headers",
")"
] |
https://github.com/elastic/elasticsearch-py/blob/6ef1adfa3c840a84afda7369cd8e43ae7dc45cdb/elasticsearch/_sync/client/rollup.py#L64-L99
|
|
tp4a/teleport
|
1fafd34f1f775d2cf80ea4af6e44468d8e0b24ad
|
server/www/packages/packages-darwin/x64/mako/_ast_util.py
|
python
|
get_child_nodes
|
(node)
|
return list(iter_child_nodes(node))
|
Like `iter_child_nodes` but returns a list.
|
Like `iter_child_nodes` but returns a list.
|
[
"Like",
"iter_child_nodes",
"but",
"returns",
"a",
"list",
"."
] |
def get_child_nodes(node):
"""Like `iter_child_nodes` but returns a list."""
return list(iter_child_nodes(node))
|
[
"def",
"get_child_nodes",
"(",
"node",
")",
":",
"return",
"list",
"(",
"iter_child_nodes",
"(",
"node",
")",
")"
] |
https://github.com/tp4a/teleport/blob/1fafd34f1f775d2cf80ea4af6e44468d8e0b24ad/server/www/packages/packages-darwin/x64/mako/_ast_util.py#L205-L207
|
|
chribsen/simple-machine-learning-examples
|
dc94e52a4cebdc8bb959ff88b81ff8cfeca25022
|
venv/lib/python2.7/site-packages/scipy/signal/ltisys.py
|
python
|
TransferFunction.den
|
(self)
|
return self._den
|
Denominator of the `TransferFunction` system.
|
Denominator of the `TransferFunction` system.
|
[
"Denominator",
"of",
"the",
"TransferFunction",
"system",
"."
] |
def den(self):
"""Denominator of the `TransferFunction` system."""
return self._den
|
[
"def",
"den",
"(",
"self",
")",
":",
"return",
"self",
".",
"_den"
] |
https://github.com/chribsen/simple-machine-learning-examples/blob/dc94e52a4cebdc8bb959ff88b81ff8cfeca25022/venv/lib/python2.7/site-packages/scipy/signal/ltisys.py#L789-L791
|
|
kubernetes-client/python
|
47b9da9de2d02b2b7a34fbe05afb44afd130d73a
|
kubernetes/client/models/v1_policy_rule.py
|
python
|
V1PolicyRule.__init__
|
(self, api_groups=None, non_resource_ur_ls=None, resource_names=None, resources=None, verbs=None, local_vars_configuration=None)
|
V1PolicyRule - a model defined in OpenAPI
|
V1PolicyRule - a model defined in OpenAPI
|
[
"V1PolicyRule",
"-",
"a",
"model",
"defined",
"in",
"OpenAPI"
] |
def __init__(self, api_groups=None, non_resource_ur_ls=None, resource_names=None, resources=None, verbs=None, local_vars_configuration=None): # noqa: E501
"""V1PolicyRule - a model defined in OpenAPI""" # noqa: E501
if local_vars_configuration is None:
local_vars_configuration = Configuration()
self.local_vars_configuration = local_vars_configuration
self._api_groups = None
self._non_resource_ur_ls = None
self._resource_names = None
self._resources = None
self._verbs = None
self.discriminator = None
if api_groups is not None:
self.api_groups = api_groups
if non_resource_ur_ls is not None:
self.non_resource_ur_ls = non_resource_ur_ls
if resource_names is not None:
self.resource_names = resource_names
if resources is not None:
self.resources = resources
self.verbs = verbs
|
[
"def",
"__init__",
"(",
"self",
",",
"api_groups",
"=",
"None",
",",
"non_resource_ur_ls",
"=",
"None",
",",
"resource_names",
"=",
"None",
",",
"resources",
"=",
"None",
",",
"verbs",
"=",
"None",
",",
"local_vars_configuration",
"=",
"None",
")",
":",
"# noqa: E501",
"# noqa: E501",
"if",
"local_vars_configuration",
"is",
"None",
":",
"local_vars_configuration",
"=",
"Configuration",
"(",
")",
"self",
".",
"local_vars_configuration",
"=",
"local_vars_configuration",
"self",
".",
"_api_groups",
"=",
"None",
"self",
".",
"_non_resource_ur_ls",
"=",
"None",
"self",
".",
"_resource_names",
"=",
"None",
"self",
".",
"_resources",
"=",
"None",
"self",
".",
"_verbs",
"=",
"None",
"self",
".",
"discriminator",
"=",
"None",
"if",
"api_groups",
"is",
"not",
"None",
":",
"self",
".",
"api_groups",
"=",
"api_groups",
"if",
"non_resource_ur_ls",
"is",
"not",
"None",
":",
"self",
".",
"non_resource_ur_ls",
"=",
"non_resource_ur_ls",
"if",
"resource_names",
"is",
"not",
"None",
":",
"self",
".",
"resource_names",
"=",
"resource_names",
"if",
"resources",
"is",
"not",
"None",
":",
"self",
".",
"resources",
"=",
"resources",
"self",
".",
"verbs",
"=",
"verbs"
] |
https://github.com/kubernetes-client/python/blob/47b9da9de2d02b2b7a34fbe05afb44afd130d73a/kubernetes/client/models/v1_policy_rule.py#L51-L72
|
||
zhl2008/awd-platform
|
0416b31abea29743387b10b3914581fbe8e7da5e
|
web_flaskbb/Python-2.7.9/Tools/pybench/pybench.py
|
python
|
Test.get_timer
|
(self)
|
return get_timer(self.timer)
|
Return the timer function to use for the test.
|
Return the timer function to use for the test.
|
[
"Return",
"the",
"timer",
"function",
"to",
"use",
"for",
"the",
"test",
"."
] |
def get_timer(self):
""" Return the timer function to use for the test.
"""
return get_timer(self.timer)
|
[
"def",
"get_timer",
"(",
"self",
")",
":",
"return",
"get_timer",
"(",
"self",
".",
"timer",
")"
] |
https://github.com/zhl2008/awd-platform/blob/0416b31abea29743387b10b3914581fbe8e7da5e/web_flaskbb/Python-2.7.9/Tools/pybench/pybench.py#L245-L250
|
|
python/cpython
|
e13cdca0f5224ec4e23bdd04bb3120506964bc8b
|
Lib/logging/__init__.py
|
python
|
makeLogRecord
|
(dict)
|
return rv
|
Make a LogRecord whose attributes are defined by the specified dictionary,
This function is useful for converting a logging event received over
a socket connection (which is sent as a dictionary) into a LogRecord
instance.
|
Make a LogRecord whose attributes are defined by the specified dictionary,
This function is useful for converting a logging event received over
a socket connection (which is sent as a dictionary) into a LogRecord
instance.
|
[
"Make",
"a",
"LogRecord",
"whose",
"attributes",
"are",
"defined",
"by",
"the",
"specified",
"dictionary",
"This",
"function",
"is",
"useful",
"for",
"converting",
"a",
"logging",
"event",
"received",
"over",
"a",
"socket",
"connection",
"(",
"which",
"is",
"sent",
"as",
"a",
"dictionary",
")",
"into",
"a",
"LogRecord",
"instance",
"."
] |
def makeLogRecord(dict):
"""
Make a LogRecord whose attributes are defined by the specified dictionary,
This function is useful for converting a logging event received over
a socket connection (which is sent as a dictionary) into a LogRecord
instance.
"""
rv = _logRecordFactory(None, None, "", 0, "", (), None, None)
rv.__dict__.update(dict)
return rv
|
[
"def",
"makeLogRecord",
"(",
"dict",
")",
":",
"rv",
"=",
"_logRecordFactory",
"(",
"None",
",",
"None",
",",
"\"\"",
",",
"0",
",",
"\"\"",
",",
"(",
")",
",",
"None",
",",
"None",
")",
"rv",
".",
"__dict__",
".",
"update",
"(",
"dict",
")",
"return",
"rv"
] |
https://github.com/python/cpython/blob/e13cdca0f5224ec4e23bdd04bb3120506964bc8b/Lib/logging/__init__.py#L396-L405
|
|
zhl2008/awd-platform
|
0416b31abea29743387b10b3914581fbe8e7da5e
|
web_flaskbb/Python-2.7.9/Tools/scripts/texi2html.py
|
python
|
TexinfoParser.bgn_example
|
(self, args)
|
[] |
def bgn_example(self, args):
self.nofill = self.nofill + 1
self.write('<PRE>')
|
[
"def",
"bgn_example",
"(",
"self",
",",
"args",
")",
":",
"self",
".",
"nofill",
"=",
"self",
".",
"nofill",
"+",
"1",
"self",
".",
"write",
"(",
"'<PRE>'",
")"
] |
https://github.com/zhl2008/awd-platform/blob/0416b31abea29743387b10b3914581fbe8e7da5e/web_flaskbb/Python-2.7.9/Tools/scripts/texi2html.py#L1482-L1484
|
||||
mysql/mysql-connector-python
|
c5460bcbb0dff8e4e48bf4af7a971c89bf486d85
|
lib/mysqlx/result.py
|
python
|
Column.get_character_set_name
|
(self)
|
return self._character_set_name
|
Returns the character set name.
Returns:
str: The character set name.
|
Returns the character set name.
|
[
"Returns",
"the",
"character",
"set",
"name",
"."
] |
def get_character_set_name(self):
"""Returns the character set name.
Returns:
str: The character set name.
"""
return self._character_set_name
|
[
"def",
"get_character_set_name",
"(",
"self",
")",
":",
"return",
"self",
".",
"_character_set_name"
] |
https://github.com/mysql/mysql-connector-python/blob/c5460bcbb0dff8e4e48bf4af7a971c89bf486d85/lib/mysqlx/result.py#L725-L731
|
|
oilshell/oil
|
94388e7d44a9ad879b12615f6203b38596b5a2d3
|
osh/builtin_process.py
|
python
|
Fg.Run
|
(self, cmd_val)
|
return self.job_state.WhenContinued(pid, self.waiter)
|
[] |
def Run(self, cmd_val):
# type: (cmd_value__Argv) -> int
# Note: 'fg' currently works with processes, but not pipelines. See issue
# #360. Part of it is that we should use posix.killpg().
pid = self.job_state.GetLastStopped()
if pid == -1:
log('No job to put in the foreground')
return 1
# TODO: Print job ID rather than the PID
log('Continue PID %d', pid)
posix.kill(pid, signal.SIGCONT)
return self.job_state.WhenContinued(pid, self.waiter)
|
[
"def",
"Run",
"(",
"self",
",",
"cmd_val",
")",
":",
"# type: (cmd_value__Argv) -> int",
"# Note: 'fg' currently works with processes, but not pipelines. See issue",
"# #360. Part of it is that we should use posix.killpg().",
"pid",
"=",
"self",
".",
"job_state",
".",
"GetLastStopped",
"(",
")",
"if",
"pid",
"==",
"-",
"1",
":",
"log",
"(",
"'No job to put in the foreground'",
")",
"return",
"1",
"# TODO: Print job ID rather than the PID",
"log",
"(",
"'Continue PID %d'",
",",
"pid",
")",
"posix",
".",
"kill",
"(",
"pid",
",",
"signal",
".",
"SIGCONT",
")",
"return",
"self",
".",
"job_state",
".",
"WhenContinued",
"(",
"pid",
",",
"self",
".",
"waiter",
")"
] |
https://github.com/oilshell/oil/blob/94388e7d44a9ad879b12615f6203b38596b5a2d3/osh/builtin_process.py#L247-L260
|
|||
ScottfreeLLC/AlphaPy
|
e6419cc811c2a3abc1ad522a85a888c8ef386056
|
alphapy/transforms.py
|
python
|
streak
|
(vec)
|
return latest_streak
|
r"""Determine the length of the latest streak.
Parameters
----------
vec : pandas.Series
The input array for calculating the latest streak.
Returns
-------
latest_streak : int
The length of the latest streak.
Example
-------
>>> vec.rolling(window=20).apply(streak)
|
r"""Determine the length of the latest streak.
|
[
"r",
"Determine",
"the",
"length",
"of",
"the",
"latest",
"streak",
"."
] |
def streak(vec):
r"""Determine the length of the latest streak.
Parameters
----------
vec : pandas.Series
The input array for calculating the latest streak.
Returns
-------
latest_streak : int
The length of the latest streak.
Example
-------
>>> vec.rolling(window=20).apply(streak)
"""
latest_streak = [len(list(g)) for k, g in itertools.groupby(vec)][-1]
return latest_streak
|
[
"def",
"streak",
"(",
"vec",
")",
":",
"latest_streak",
"=",
"[",
"len",
"(",
"list",
"(",
"g",
")",
")",
"for",
"k",
",",
"g",
"in",
"itertools",
".",
"groupby",
"(",
"vec",
")",
"]",
"[",
"-",
"1",
"]",
"return",
"latest_streak"
] |
https://github.com/ScottfreeLLC/AlphaPy/blob/e6419cc811c2a3abc1ad522a85a888c8ef386056/alphapy/transforms.py#L1359-L1379
|
|
GoogleCloudPlatform/cloudml-samples
|
efddc4a9898127e55edc0946557aca4bfaf59705
|
tensorflow/standard/legacy/flowers/pipeline.py
|
python
|
FlowersE2E.make_request_json
|
(self, uri, output_json)
|
Produces a JSON request suitable to send to CloudML Prediction API.
Args:
uri: The input image URI.
output_json: File handle of the output json where request will be written.
|
Produces a JSON request suitable to send to CloudML Prediction API.
|
[
"Produces",
"a",
"JSON",
"request",
"suitable",
"to",
"send",
"to",
"CloudML",
"Prediction",
"API",
"."
] |
def make_request_json(self, uri, output_json):
"""Produces a JSON request suitable to send to CloudML Prediction API.
Args:
uri: The input image URI.
output_json: File handle of the output json where request will be written.
"""
def _open_file_read_binary(uri):
try:
return file_io.FileIO(uri, mode='rb')
except errors.InvalidArgumentError:
return file_io.FileIO(uri, mode='r')
with open(output_json, 'w') as outf:
with _open_file_read_binary(uri) as f:
image_bytes = f.read()
image = Image.open(io.BytesIO(image_bytes)).convert('RGB')
image = image.resize((299, 299), Image.BILINEAR)
resized_image = io.BytesIO()
image.save(resized_image, format='JPEG')
encoded_image = base64.b64encode(resized_image.getvalue())
row = json.dumps({'key': uri, 'image_bytes': {'b64': encoded_image}})
outf.write(row)
outf.write('\n')
|
[
"def",
"make_request_json",
"(",
"self",
",",
"uri",
",",
"output_json",
")",
":",
"def",
"_open_file_read_binary",
"(",
"uri",
")",
":",
"try",
":",
"return",
"file_io",
".",
"FileIO",
"(",
"uri",
",",
"mode",
"=",
"'rb'",
")",
"except",
"errors",
".",
"InvalidArgumentError",
":",
"return",
"file_io",
".",
"FileIO",
"(",
"uri",
",",
"mode",
"=",
"'r'",
")",
"with",
"open",
"(",
"output_json",
",",
"'w'",
")",
"as",
"outf",
":",
"with",
"_open_file_read_binary",
"(",
"uri",
")",
"as",
"f",
":",
"image_bytes",
"=",
"f",
".",
"read",
"(",
")",
"image",
"=",
"Image",
".",
"open",
"(",
"io",
".",
"BytesIO",
"(",
"image_bytes",
")",
")",
".",
"convert",
"(",
"'RGB'",
")",
"image",
"=",
"image",
".",
"resize",
"(",
"(",
"299",
",",
"299",
")",
",",
"Image",
".",
"BILINEAR",
")",
"resized_image",
"=",
"io",
".",
"BytesIO",
"(",
")",
"image",
".",
"save",
"(",
"resized_image",
",",
"format",
"=",
"'JPEG'",
")",
"encoded_image",
"=",
"base64",
".",
"b64encode",
"(",
"resized_image",
".",
"getvalue",
"(",
")",
")",
"row",
"=",
"json",
".",
"dumps",
"(",
"{",
"'key'",
":",
"uri",
",",
"'image_bytes'",
":",
"{",
"'b64'",
":",
"encoded_image",
"}",
"}",
")",
"outf",
".",
"write",
"(",
"row",
")",
"outf",
".",
"write",
"(",
"'\\n'",
")"
] |
https://github.com/GoogleCloudPlatform/cloudml-samples/blob/efddc4a9898127e55edc0946557aca4bfaf59705/tensorflow/standard/legacy/flowers/pipeline.py#L349-L372
|
||
apache/libcloud
|
90971e17bfd7b6bb97b2489986472c531cc8e140
|
libcloud/compute/drivers/equinixmetal.py
|
python
|
EquinixMetalNodeDriver.create_volume_snapshot
|
(self, volume, name="")
|
return volume.list_snapshots()[-1]
|
Create a new volume snapshot.
:param volume: Volume to create a snapshot for
:type volume: class:`StorageVolume`
:return: The newly created volume snapshot.
:rtype: :class:`VolumeSnapshot`
|
Create a new volume snapshot.
|
[
"Create",
"a",
"new",
"volume",
"snapshot",
"."
] |
def create_volume_snapshot(self, volume, name=""):
"""
Create a new volume snapshot.
:param volume: Volume to create a snapshot for
:type volume: class:`StorageVolume`
:return: The newly created volume snapshot.
:rtype: :class:`VolumeSnapshot`
"""
path = "/metal/v1/storage/%s/snapshots" % volume.id
res = self.connection.request(path, method="POST")
assert res.status == httplib.ACCEPTED
return volume.list_snapshots()[-1]
|
[
"def",
"create_volume_snapshot",
"(",
"self",
",",
"volume",
",",
"name",
"=",
"\"\"",
")",
":",
"path",
"=",
"\"/metal/v1/storage/%s/snapshots\"",
"%",
"volume",
".",
"id",
"res",
"=",
"self",
".",
"connection",
".",
"request",
"(",
"path",
",",
"method",
"=",
"\"POST\"",
")",
"assert",
"res",
".",
"status",
"==",
"httplib",
".",
"ACCEPTED",
"return",
"volume",
".",
"list_snapshots",
"(",
")",
"[",
"-",
"1",
"]"
] |
https://github.com/apache/libcloud/blob/90971e17bfd7b6bb97b2489986472c531cc8e140/libcloud/compute/drivers/equinixmetal.py#L856-L869
|
|
oilshell/oil
|
94388e7d44a9ad879b12615f6203b38596b5a2d3
|
Python-2.7.13/Lib/lib-tk/ttk.py
|
python
|
Style.theme_create
|
(self, themename, parent=None, settings=None)
|
Creates a new theme.
It is an error if themename already exists. If parent is
specified, the new theme will inherit styles, elements and
layouts from the specified parent theme. If settings are present,
they are expected to have the same syntax used for theme_settings.
|
Creates a new theme.
|
[
"Creates",
"a",
"new",
"theme",
"."
] |
def theme_create(self, themename, parent=None, settings=None):
"""Creates a new theme.
It is an error if themename already exists. If parent is
specified, the new theme will inherit styles, elements and
layouts from the specified parent theme. If settings are present,
they are expected to have the same syntax used for theme_settings."""
script = _script_from_settings(settings) if settings else ''
if parent:
self.tk.call(self._name, "theme", "create", themename,
"-parent", parent, "-settings", script)
else:
self.tk.call(self._name, "theme", "create", themename,
"-settings", script)
|
[
"def",
"theme_create",
"(",
"self",
",",
"themename",
",",
"parent",
"=",
"None",
",",
"settings",
"=",
"None",
")",
":",
"script",
"=",
"_script_from_settings",
"(",
"settings",
")",
"if",
"settings",
"else",
"''",
"if",
"parent",
":",
"self",
".",
"tk",
".",
"call",
"(",
"self",
".",
"_name",
",",
"\"theme\"",
",",
"\"create\"",
",",
"themename",
",",
"\"-parent\"",
",",
"parent",
",",
"\"-settings\"",
",",
"script",
")",
"else",
":",
"self",
".",
"tk",
".",
"call",
"(",
"self",
".",
"_name",
",",
"\"theme\"",
",",
"\"create\"",
",",
"themename",
",",
"\"-settings\"",
",",
"script",
")"
] |
https://github.com/oilshell/oil/blob/94388e7d44a9ad879b12615f6203b38596b5a2d3/Python-2.7.13/Lib/lib-tk/ttk.py#L479-L493
|
||
CalebBell/thermo
|
572a47d1b03d49fe609b8d5f826fa6a7cde00828
|
thermo/phases/helmholtz_eos.py
|
python
|
HelmholtzEOS.dA_dtau
|
(self)
|
return dA_dtau
|
[] |
def dA_dtau(self):
try:
return self._dA_dtau
except:
pass
dA_dtau = self._dA_dtau = self._dAr_dtau_func(self.tau, self.delta) + self.dA0_dtau
return dA_dtau
|
[
"def",
"dA_dtau",
"(",
"self",
")",
":",
"try",
":",
"return",
"self",
".",
"_dA_dtau",
"except",
":",
"pass",
"dA_dtau",
"=",
"self",
".",
"_dA_dtau",
"=",
"self",
".",
"_dAr_dtau_func",
"(",
"self",
".",
"tau",
",",
"self",
".",
"delta",
")",
"+",
"self",
".",
"dA0_dtau",
"return",
"dA_dtau"
] |
https://github.com/CalebBell/thermo/blob/572a47d1b03d49fe609b8d5f826fa6a7cde00828/thermo/phases/helmholtz_eos.py#L100-L106
|
|||
tensorflow/models
|
6b8bb0cbeb3e10415c7a87448f08adc3c484c1d3
|
research/cognitive_planning/train_supervised_active_vision.py
|
python
|
create_modality_types
|
()
|
return [conversion_dict[k] for k in modality_types]
|
Parses the modality_types and returns a list of task_env.ModalityType.
|
Parses the modality_types and returns a list of task_env.ModalityType.
|
[
"Parses",
"the",
"modality_types",
"and",
"returns",
"a",
"list",
"of",
"task_env",
".",
"ModalityType",
"."
] |
def create_modality_types():
"""Parses the modality_types and returns a list of task_env.ModalityType."""
if not FLAGS.modality_types:
raise ValueError('there needs to be at least one modality type')
modality_types = FLAGS.modality_types.split('_')
for x in modality_types:
if x not in ['image', 'sseg', 'det', 'depth']:
raise ValueError('invalid modality type: {}'.format(x))
conversion_dict = {
'image': task_env.ModalityTypes.IMAGE,
'sseg': task_env.ModalityTypes.SEMANTIC_SEGMENTATION,
'depth': task_env.ModalityTypes.DEPTH,
'det': task_env.ModalityTypes.OBJECT_DETECTION,
}
return [conversion_dict[k] for k in modality_types]
|
[
"def",
"create_modality_types",
"(",
")",
":",
"if",
"not",
"FLAGS",
".",
"modality_types",
":",
"raise",
"ValueError",
"(",
"'there needs to be at least one modality type'",
")",
"modality_types",
"=",
"FLAGS",
".",
"modality_types",
".",
"split",
"(",
"'_'",
")",
"for",
"x",
"in",
"modality_types",
":",
"if",
"x",
"not",
"in",
"[",
"'image'",
",",
"'sseg'",
",",
"'det'",
",",
"'depth'",
"]",
":",
"raise",
"ValueError",
"(",
"'invalid modality type: {}'",
".",
"format",
"(",
"x",
")",
")",
"conversion_dict",
"=",
"{",
"'image'",
":",
"task_env",
".",
"ModalityTypes",
".",
"IMAGE",
",",
"'sseg'",
":",
"task_env",
".",
"ModalityTypes",
".",
"SEMANTIC_SEGMENTATION",
",",
"'depth'",
":",
"task_env",
".",
"ModalityTypes",
".",
"DEPTH",
",",
"'det'",
":",
"task_env",
".",
"ModalityTypes",
".",
"OBJECT_DETECTION",
",",
"}",
"return",
"[",
"conversion_dict",
"[",
"k",
"]",
"for",
"k",
"in",
"modality_types",
"]"
] |
https://github.com/tensorflow/models/blob/6b8bb0cbeb3e10415c7a87448f08adc3c484c1d3/research/cognitive_planning/train_supervised_active_vision.py#L138-L153
|
|
d6t/d6tflow
|
ccd161057793e04ac0d090a4968f1ac9abb43e5b
|
d6tflow/functional.py
|
python
|
Workflow.delete
|
(self, func_to_reset, *args, **kwargs)
|
Possibly dangerous! `delete(func)` will delete *all files* in the `data/func` directory of the given func.
Useful if you want to delete all function related outputs.
Consider using `reset(func, params)` to reset a specific func
|
Possibly dangerous! `delete(func)` will delete *all files* in the `data/func` directory of the given func.
Useful if you want to delete all function related outputs.
Consider using `reset(func, params)` to reset a specific func
|
[
"Possibly",
"dangerous!",
"delete",
"(",
"func",
")",
"will",
"delete",
"*",
"all",
"files",
"*",
"in",
"the",
"data",
"/",
"func",
"directory",
"of",
"the",
"given",
"func",
".",
"Useful",
"if",
"you",
"want",
"to",
"delete",
"all",
"function",
"related",
"outputs",
".",
"Consider",
"using",
"reset",
"(",
"func",
"params",
")",
"to",
"reset",
"a",
"specific",
"func"
] |
def delete(self, func_to_reset, *args, **kwargs):
"""Possibly dangerous! `delete(func)` will delete *all files* in the `data/func` directory of the given func.
Useful if you want to delete all function related outputs.
Consider using `reset(func, params)` to reset a specific func
"""
name = func_to_reset if isinstance(
func_to_reset, str) else func_to_reset.__name__
task = self.steps[name]()
if task.path:
dirpath = pathlib.Path(task.path)
else:
dirpath = d6tflow.settings.dirpath
path = task._getpath(dirpath, [])
for f in path.parent.glob('*'):
f.unlink()
|
[
"def",
"delete",
"(",
"self",
",",
"func_to_reset",
",",
"*",
"args",
",",
"*",
"*",
"kwargs",
")",
":",
"name",
"=",
"func_to_reset",
"if",
"isinstance",
"(",
"func_to_reset",
",",
"str",
")",
"else",
"func_to_reset",
".",
"__name__",
"task",
"=",
"self",
".",
"steps",
"[",
"name",
"]",
"(",
")",
"if",
"task",
".",
"path",
":",
"dirpath",
"=",
"pathlib",
".",
"Path",
"(",
"task",
".",
"path",
")",
"else",
":",
"dirpath",
"=",
"d6tflow",
".",
"settings",
".",
"dirpath",
"path",
"=",
"task",
".",
"_getpath",
"(",
"dirpath",
",",
"[",
"]",
")",
"for",
"f",
"in",
"path",
".",
"parent",
".",
"glob",
"(",
"'*'",
")",
":",
"f",
".",
"unlink",
"(",
")"
] |
https://github.com/d6t/d6tflow/blob/ccd161057793e04ac0d090a4968f1ac9abb43e5b/d6tflow/functional.py#L307-L322
|
||
robotlearn/pyrobolearn
|
9cd7c060723fda7d2779fa255ac998c2c82b8436
|
pyrobolearn/models/model.py
|
python
|
Model.is_discriminative
|
()
|
Return True if the model is discriminative, that is, if the model estimates the conditional probability
:math:`p(y|x)`.
Returns:
bool: True if the model is discriminative.
|
Return True if the model is discriminative, that is, if the model estimates the conditional probability
:math:`p(y|x)`.
|
[
"Return",
"True",
"if",
"the",
"model",
"is",
"discriminative",
"that",
"is",
"if",
"the",
"model",
"estimates",
"the",
"conditional",
"probability",
":",
"math",
":",
"p",
"(",
"y|x",
")",
"."
] |
def is_discriminative():
"""
Return True if the model is discriminative, that is, if the model estimates the conditional probability
:math:`p(y|x)`.
Returns:
bool: True if the model is discriminative.
"""
raise NotImplementedError
|
[
"def",
"is_discriminative",
"(",
")",
":",
"raise",
"NotImplementedError"
] |
https://github.com/robotlearn/pyrobolearn/blob/9cd7c060723fda7d2779fa255ac998c2c82b8436/pyrobolearn/models/model.py#L176-L184
|
||
sqlalchemy/sqlalchemy
|
eb716884a4abcabae84a6aaba105568e925b7d27
|
lib/sqlalchemy/engine/interfaces.py
|
python
|
Dialect.get_foreign_keys
|
(
self,
connection: "Connection",
table_name: str,
schema: Optional[str] = None,
**kw: Any,
)
|
Return information about foreign_keys in ``table_name``.
Given a :class:`_engine.Connection`, a string
``table_name``, and an optional string ``schema``, return foreign
key information as a list of dicts corresponding to the
:class:`.ReflectedForeignKeyConstraint` dictionary.
|
Return information about foreign_keys in ``table_name``.
|
[
"Return",
"information",
"about",
"foreign_keys",
"in",
"table_name",
"."
] |
def get_foreign_keys(
self,
connection: "Connection",
table_name: str,
schema: Optional[str] = None,
**kw: Any,
) -> List[ReflectedForeignKeyConstraint]:
"""Return information about foreign_keys in ``table_name``.
Given a :class:`_engine.Connection`, a string
``table_name``, and an optional string ``schema``, return foreign
key information as a list of dicts corresponding to the
:class:`.ReflectedForeignKeyConstraint` dictionary.
"""
raise NotImplementedError()
|
[
"def",
"get_foreign_keys",
"(",
"self",
",",
"connection",
":",
"\"Connection\"",
",",
"table_name",
":",
"str",
",",
"schema",
":",
"Optional",
"[",
"str",
"]",
"=",
"None",
",",
"*",
"*",
"kw",
":",
"Any",
",",
")",
"->",
"List",
"[",
"ReflectedForeignKeyConstraint",
"]",
":",
"raise",
"NotImplementedError",
"(",
")"
] |
https://github.com/sqlalchemy/sqlalchemy/blob/eb716884a4abcabae84a6aaba105568e925b7d27/lib/sqlalchemy/engine/interfaces.py#L764-L780
|
||
IJDykeman/wangTiles
|
7c1ee2095ebdf7f72bce07d94c6484915d5cae8b
|
experimental_code/tiles_3d/venv_mac_py3/lib/python2.7/site-packages/setuptools/command/egg_info.py
|
python
|
FileList.prune
|
(self, dir)
|
return self._remove_files(match.match)
|
Filter out files from 'dir/'.
|
Filter out files from 'dir/'.
|
[
"Filter",
"out",
"files",
"from",
"dir",
"/",
"."
] |
def prune(self, dir):
"""Filter out files from 'dir/'."""
match = translate_pattern(os.path.join(dir, '**'))
return self._remove_files(match.match)
|
[
"def",
"prune",
"(",
"self",
",",
"dir",
")",
":",
"match",
"=",
"translate_pattern",
"(",
"os",
".",
"path",
".",
"join",
"(",
"dir",
",",
"'**'",
")",
")",
"return",
"self",
".",
"_remove_files",
"(",
"match",
".",
"match",
")"
] |
https://github.com/IJDykeman/wangTiles/blob/7c1ee2095ebdf7f72bce07d94c6484915d5cae8b/experimental_code/tiles_3d/venv_mac_py3/lib/python2.7/site-packages/setuptools/command/egg_info.py#L449-L452
|
|
home-assistant/core
|
265ebd17a3f17ed8dc1e9bdede03ac8e323f1ab1
|
homeassistant/components/mediaroom/media_player.py
|
python
|
MediaroomDevice.async_turn_off
|
(self)
|
Turn off the receiver.
|
Turn off the receiver.
|
[
"Turn",
"off",
"the",
"receiver",
"."
] |
async def async_turn_off(self):
"""Turn off the receiver."""
try:
self.set_state(await self.stb.turn_off())
if self._optimistic:
self._state = STATE_STANDBY
self._available = True
except PyMediaroomError:
self._available = False
self.async_write_ha_state()
|
[
"async",
"def",
"async_turn_off",
"(",
"self",
")",
":",
"try",
":",
"self",
".",
"set_state",
"(",
"await",
"self",
".",
"stb",
".",
"turn_off",
"(",
")",
")",
"if",
"self",
".",
"_optimistic",
":",
"self",
".",
"_state",
"=",
"STATE_STANDBY",
"self",
".",
"_available",
"=",
"True",
"except",
"PyMediaroomError",
":",
"self",
".",
"_available",
"=",
"False",
"self",
".",
"async_write_ha_state",
"(",
")"
] |
https://github.com/home-assistant/core/blob/265ebd17a3f17ed8dc1e9bdede03ac8e323f1ab1/homeassistant/components/mediaroom/media_player.py#L272-L282
|
||
digidotcom/xbee-python
|
0757f4be0017530c205175fbee8f9f61be9614d1
|
digi/xbee/packets/zigbee.py
|
python
|
RouteRecordIndicatorPacket.create_packet
|
(raw, operating_mode)
|
return RouteRecordIndicatorPacket(
XBee64BitAddress(raw[4:12]), XBee16BitAddress(raw[12:14]),
raw[14], hops, op_mode=operating_mode)
|
Override method.
Returns:
:class:`.RouteRecordIndicatorPacket`.
Raises:
InvalidPacketException: If the bytearray length is less than 17.
(start delim. + length (2 bytes) + frame type + 64bit addr. +
16bit addr. + Receive options + num of addrs + checksum
= 17 bytes).
InvalidPacketException: If the length field of `raw` is different
from its real length. (length field: bytes 1 and 3)
InvalidPacketException: If the first byte of 'raw' is not the
header byte. See :class:`.SpecialByte`.
InvalidPacketException: If the calculated checksum is different
from the checksum field value (last byte).
InvalidPacketException: If the frame type is not
:attr:`.ApiFrameType.ROUTE_RECORD_INDICATOR`.
InvalidPacketException: If the number of hops does not match with
the number of 16-bit addresses.
InvalidOperatingModeException: If `operating_mode` is not
supported.
.. seealso::
| :meth:`.XBeePacket.create_packet`
| :meth:`.XBeeAPIPacket._check_api_packet`
|
Override method.
|
[
"Override",
"method",
"."
] |
def create_packet(raw, operating_mode):
"""
Override method.
Returns:
:class:`.RouteRecordIndicatorPacket`.
Raises:
InvalidPacketException: If the bytearray length is less than 17.
(start delim. + length (2 bytes) + frame type + 64bit addr. +
16bit addr. + Receive options + num of addrs + checksum
= 17 bytes).
InvalidPacketException: If the length field of `raw` is different
from its real length. (length field: bytes 1 and 3)
InvalidPacketException: If the first byte of 'raw' is not the
header byte. See :class:`.SpecialByte`.
InvalidPacketException: If the calculated checksum is different
from the checksum field value (last byte).
InvalidPacketException: If the frame type is not
:attr:`.ApiFrameType.ROUTE_RECORD_INDICATOR`.
InvalidPacketException: If the number of hops does not match with
the number of 16-bit addresses.
InvalidOperatingModeException: If `operating_mode` is not
supported.
.. seealso::
| :meth:`.XBeePacket.create_packet`
| :meth:`.XBeeAPIPacket._check_api_packet`
"""
if operating_mode not in (OperatingMode.ESCAPED_API_MODE,
OperatingMode.API_MODE):
raise InvalidOperatingModeException(
operating_mode.name + " is not supported.")
XBeeAPIPacket._check_api_packet(
raw, min_length=RouteRecordIndicatorPacket.__MIN_PACKET_LENGTH)
if raw[3] != ApiFrameType.ROUTE_RECORD_INDICATOR.code:
raise InvalidPacketException(
"This packet is not a Route Record Indicator packet.")
hops = [XBee16BitAddress(raw[i:i+2]) for i in range(16, len(raw) - 1, 2)]
if raw[15] != len(hops):
raise InvalidPacketException("Specified number of hops does not"
"match with the length of addresses.")
return RouteRecordIndicatorPacket(
XBee64BitAddress(raw[4:12]), XBee16BitAddress(raw[12:14]),
raw[14], hops, op_mode=operating_mode)
|
[
"def",
"create_packet",
"(",
"raw",
",",
"operating_mode",
")",
":",
"if",
"operating_mode",
"not",
"in",
"(",
"OperatingMode",
".",
"ESCAPED_API_MODE",
",",
"OperatingMode",
".",
"API_MODE",
")",
":",
"raise",
"InvalidOperatingModeException",
"(",
"operating_mode",
".",
"name",
"+",
"\" is not supported.\"",
")",
"XBeeAPIPacket",
".",
"_check_api_packet",
"(",
"raw",
",",
"min_length",
"=",
"RouteRecordIndicatorPacket",
".",
"__MIN_PACKET_LENGTH",
")",
"if",
"raw",
"[",
"3",
"]",
"!=",
"ApiFrameType",
".",
"ROUTE_RECORD_INDICATOR",
".",
"code",
":",
"raise",
"InvalidPacketException",
"(",
"\"This packet is not a Route Record Indicator packet.\"",
")",
"hops",
"=",
"[",
"XBee16BitAddress",
"(",
"raw",
"[",
"i",
":",
"i",
"+",
"2",
"]",
")",
"for",
"i",
"in",
"range",
"(",
"16",
",",
"len",
"(",
"raw",
")",
"-",
"1",
",",
"2",
")",
"]",
"if",
"raw",
"[",
"15",
"]",
"!=",
"len",
"(",
"hops",
")",
":",
"raise",
"InvalidPacketException",
"(",
"\"Specified number of hops does not\"",
"\"match with the length of addresses.\"",
")",
"return",
"RouteRecordIndicatorPacket",
"(",
"XBee64BitAddress",
"(",
"raw",
"[",
"4",
":",
"12",
"]",
")",
",",
"XBee16BitAddress",
"(",
"raw",
"[",
"12",
":",
"14",
"]",
")",
",",
"raw",
"[",
"14",
"]",
",",
"hops",
",",
"op_mode",
"=",
"operating_mode",
")"
] |
https://github.com/digidotcom/xbee-python/blob/0757f4be0017530c205175fbee8f9f61be9614d1/digi/xbee/packets/zigbee.py#L439-L488
|
|
number5/cloud-init
|
19948dbaf40309355e1a2dbef116efb0ce66245c
|
cloudinit/util.py
|
python
|
blkid
|
(devs=None, disable_cache=False)
|
return ret
|
Get all device tags details from blkid.
@param devs: Optional list of device paths you wish to query.
@param disable_cache: Bool, set True to start with clean cache.
@return: Dict of key value pairs of info for the device.
|
Get all device tags details from blkid.
|
[
"Get",
"all",
"device",
"tags",
"details",
"from",
"blkid",
"."
] |
def blkid(devs=None, disable_cache=False):
"""Get all device tags details from blkid.
@param devs: Optional list of device paths you wish to query.
@param disable_cache: Bool, set True to start with clean cache.
@return: Dict of key value pairs of info for the device.
"""
if devs is None:
devs = []
else:
devs = list(devs)
cmd = ["blkid", "-o", "full"]
if disable_cache:
cmd.extend(["-c", "/dev/null"])
cmd.extend(devs)
# we have to decode with 'replace' as shelx.split (called by
# load_shell_content) can't take bytes. So this is potentially
# lossy of non-utf-8 chars in blkid output.
out, _ = subp.subp(cmd, capture=True, decode="replace")
ret = {}
for line in out.splitlines():
dev, _, data = line.partition(":")
ret[dev] = load_shell_content(data)
ret[dev]["DEVNAME"] = dev
return ret
|
[
"def",
"blkid",
"(",
"devs",
"=",
"None",
",",
"disable_cache",
"=",
"False",
")",
":",
"if",
"devs",
"is",
"None",
":",
"devs",
"=",
"[",
"]",
"else",
":",
"devs",
"=",
"list",
"(",
"devs",
")",
"cmd",
"=",
"[",
"\"blkid\"",
",",
"\"-o\"",
",",
"\"full\"",
"]",
"if",
"disable_cache",
":",
"cmd",
".",
"extend",
"(",
"[",
"\"-c\"",
",",
"\"/dev/null\"",
"]",
")",
"cmd",
".",
"extend",
"(",
"devs",
")",
"# we have to decode with 'replace' as shelx.split (called by",
"# load_shell_content) can't take bytes. So this is potentially",
"# lossy of non-utf-8 chars in blkid output.",
"out",
",",
"_",
"=",
"subp",
".",
"subp",
"(",
"cmd",
",",
"capture",
"=",
"True",
",",
"decode",
"=",
"\"replace\"",
")",
"ret",
"=",
"{",
"}",
"for",
"line",
"in",
"out",
".",
"splitlines",
"(",
")",
":",
"dev",
",",
"_",
",",
"data",
"=",
"line",
".",
"partition",
"(",
"\":\"",
")",
"ret",
"[",
"dev",
"]",
"=",
"load_shell_content",
"(",
"data",
")",
"ret",
"[",
"dev",
"]",
"[",
"\"DEVNAME\"",
"]",
"=",
"dev",
"return",
"ret"
] |
https://github.com/number5/cloud-init/blob/19948dbaf40309355e1a2dbef116efb0ce66245c/cloudinit/util.py#L1399-L1427
|
|
IDArlingTeam/IDArling
|
d15b9b7c8bdeb992c569efcc49adf7642bb82cdf
|
idarling/module.py
|
python
|
Module._uninstall
|
(self)
|
Uninstall the module. Overloaded by the module.
|
Uninstall the module. Overloaded by the module.
|
[
"Uninstall",
"the",
"module",
".",
"Overloaded",
"by",
"the",
"module",
"."
] |
def _uninstall(self):
"""Uninstall the module. Overloaded by the module."""
raise NotImplementedError("_uninstall() not implemented")
|
[
"def",
"_uninstall",
"(",
"self",
")",
":",
"raise",
"NotImplementedError",
"(",
"\"_uninstall() not implemented\"",
")"
] |
https://github.com/IDArlingTeam/IDArling/blob/d15b9b7c8bdeb992c569efcc49adf7642bb82cdf/idarling/module.py#L43-L45
|
||
log2timeline/plaso
|
fe2e316b8c76a0141760c0f2f181d84acb83abc2
|
plaso/parsers/plist_plugins/interface.py
|
python
|
PlistPathFilter.Match
|
(self, filename_lower_case)
|
return bool(filename_lower_case == self._filename_lower_case)
|
Determines if a plist filename matches the filter.
Note that this method does a case insensitive comparison.
Args:
filename_lower_case (str): filename of the plist in lower case.
Returns:
bool: True if the filename matches the filter.
|
Determines if a plist filename matches the filter.
|
[
"Determines",
"if",
"a",
"plist",
"filename",
"matches",
"the",
"filter",
"."
] |
def Match(self, filename_lower_case):
"""Determines if a plist filename matches the filter.
Note that this method does a case insensitive comparison.
Args:
filename_lower_case (str): filename of the plist in lower case.
Returns:
bool: True if the filename matches the filter.
"""
return bool(filename_lower_case == self._filename_lower_case)
|
[
"def",
"Match",
"(",
"self",
",",
"filename_lower_case",
")",
":",
"return",
"bool",
"(",
"filename_lower_case",
"==",
"self",
".",
"_filename_lower_case",
")"
] |
https://github.com/log2timeline/plaso/blob/fe2e316b8c76a0141760c0f2f181d84acb83abc2/plaso/parsers/plist_plugins/interface.py#L30-L41
|
|
taolei87/rcnn
|
7c45f497d4507047549480c2dc579866c76eec82
|
code/rationale/rationale_dependent.py
|
python
|
Model.evaluate_data
|
(self, batches_x, batches_y, eval_func, sampling=False)
|
return tot_obj/n, tot_mse/n, tot_diff/n, p1/n
|
[] |
def evaluate_data(self, batches_x, batches_y, eval_func, sampling=False):
padding_id = self.embedding_layer.vocab_map["<padding>"]
tot_obj, tot_mse, tot_diff, p1 = 0.0, 0.0, 0.0, 0.0
for bx, by in zip(batches_x, batches_y):
if not sampling:
e, d = eval_func(bx, by)
else:
mask = bx != padding_id
bz, o, e, d = eval_func(bx, by)
p1 += np.sum(bz*mask) / (np.sum(mask) + 1e-8)
tot_obj += o
tot_mse += e
tot_diff += d
n = len(batches_x)
if not sampling:
return tot_mse/n, tot_diff/n
return tot_obj/n, tot_mse/n, tot_diff/n, p1/n
|
[
"def",
"evaluate_data",
"(",
"self",
",",
"batches_x",
",",
"batches_y",
",",
"eval_func",
",",
"sampling",
"=",
"False",
")",
":",
"padding_id",
"=",
"self",
".",
"embedding_layer",
".",
"vocab_map",
"[",
"\"<padding>\"",
"]",
"tot_obj",
",",
"tot_mse",
",",
"tot_diff",
",",
"p1",
"=",
"0.0",
",",
"0.0",
",",
"0.0",
",",
"0.0",
"for",
"bx",
",",
"by",
"in",
"zip",
"(",
"batches_x",
",",
"batches_y",
")",
":",
"if",
"not",
"sampling",
":",
"e",
",",
"d",
"=",
"eval_func",
"(",
"bx",
",",
"by",
")",
"else",
":",
"mask",
"=",
"bx",
"!=",
"padding_id",
"bz",
",",
"o",
",",
"e",
",",
"d",
"=",
"eval_func",
"(",
"bx",
",",
"by",
")",
"p1",
"+=",
"np",
".",
"sum",
"(",
"bz",
"*",
"mask",
")",
"/",
"(",
"np",
".",
"sum",
"(",
"mask",
")",
"+",
"1e-8",
")",
"tot_obj",
"+=",
"o",
"tot_mse",
"+=",
"e",
"tot_diff",
"+=",
"d",
"n",
"=",
"len",
"(",
"batches_x",
")",
"if",
"not",
"sampling",
":",
"return",
"tot_mse",
"/",
"n",
",",
"tot_diff",
"/",
"n",
"return",
"tot_obj",
"/",
"n",
",",
"tot_mse",
"/",
"n",
",",
"tot_diff",
"/",
"n",
",",
"p1",
"/",
"n"
] |
https://github.com/taolei87/rcnn/blob/7c45f497d4507047549480c2dc579866c76eec82/code/rationale/rationale_dependent.py#L527-L543
|
|||
AppScale/gts
|
46f909cf5dc5ba81faf9d81dc9af598dcf8a82a9
|
AppServer/lib/django-1.3/django/contrib/gis/maps/google/gmap.py
|
python
|
GoogleMap.render
|
(self)
|
return render_to_string(self.template, params)
|
Generates the JavaScript necessary for displaying this Google Map.
|
Generates the JavaScript necessary for displaying this Google Map.
|
[
"Generates",
"the",
"JavaScript",
"necessary",
"for",
"displaying",
"this",
"Google",
"Map",
"."
] |
def render(self):
"""
Generates the JavaScript necessary for displaying this Google Map.
"""
params = {'calc_zoom' : self.calc_zoom,
'center' : self.center,
'dom_id' : self.dom_id,
'js_module' : self.js_module,
'kml_urls' : self.kml_urls,
'zoom' : self.zoom,
'polygons' : self.polygons,
'polylines' : self.polylines,
'icons': self.icons,
'markers' : self.markers,
}
params.update(self.extra_context)
return render_to_string(self.template, params)
|
[
"def",
"render",
"(",
"self",
")",
":",
"params",
"=",
"{",
"'calc_zoom'",
":",
"self",
".",
"calc_zoom",
",",
"'center'",
":",
"self",
".",
"center",
",",
"'dom_id'",
":",
"self",
".",
"dom_id",
",",
"'js_module'",
":",
"self",
".",
"js_module",
",",
"'kml_urls'",
":",
"self",
".",
"kml_urls",
",",
"'zoom'",
":",
"self",
".",
"zoom",
",",
"'polygons'",
":",
"self",
".",
"polygons",
",",
"'polylines'",
":",
"self",
".",
"polylines",
",",
"'icons'",
":",
"self",
".",
"icons",
",",
"'markers'",
":",
"self",
".",
"markers",
",",
"}",
"params",
".",
"update",
"(",
"self",
".",
"extra_context",
")",
"return",
"render_to_string",
"(",
"self",
".",
"template",
",",
"params",
")"
] |
https://github.com/AppScale/gts/blob/46f909cf5dc5ba81faf9d81dc9af598dcf8a82a9/AppServer/lib/django-1.3/django/contrib/gis/maps/google/gmap.py#L90-L106
|
|
jfalken/github_commit_crawler
|
a964d7dcd8b79b680ea142f7c25245babe4fd1e7
|
ghcc_process/libs/mongo_utils.py
|
python
|
mdb_insert_results
|
(results)
|
return oid
|
inserts result records into mongodb
:param results: a list of result dicts, from `do_audit_events`
returns object id of the insert
|
inserts result records into mongodb
:param results: a list of result dicts, from `do_audit_events`
|
[
"inserts",
"result",
"records",
"into",
"mongodb",
":",
"param",
"results",
":",
"a",
"list",
"of",
"result",
"dicts",
"from",
"do_audit_events"
] |
def mdb_insert_results(results):
''' inserts result records into mongodb
:param results: a list of result dicts, from `do_audit_events`
returns object id of the insert
'''
db = _connect_mongo()
col = db['results']
col.ensure_index('uid')
col.ensure_index('matched')
oid = col.insert(results)
return oid
|
[
"def",
"mdb_insert_results",
"(",
"results",
")",
":",
"db",
"=",
"_connect_mongo",
"(",
")",
"col",
"=",
"db",
"[",
"'results'",
"]",
"col",
".",
"ensure_index",
"(",
"'uid'",
")",
"col",
".",
"ensure_index",
"(",
"'matched'",
")",
"oid",
"=",
"col",
".",
"insert",
"(",
"results",
")",
"return",
"oid"
] |
https://github.com/jfalken/github_commit_crawler/blob/a964d7dcd8b79b680ea142f7c25245babe4fd1e7/ghcc_process/libs/mongo_utils.py#L55-L66
|
|
spotty-cloud/spotty
|
1127c56112b33ac4772582e4edb70e2dfa4292f0
|
spotty/config/abstract_instance_config.py
|
python
|
AbstractInstanceConfig._get_instance_volumes
|
(self)
|
Returns specific to the provider volumes that should be mounted on the host OS.
|
Returns specific to the provider volumes that should be mounted on the host OS.
|
[
"Returns",
"specific",
"to",
"the",
"provider",
"volumes",
"that",
"should",
"be",
"mounted",
"on",
"the",
"host",
"OS",
"."
] |
def _get_instance_volumes(self) -> List[AbstractInstanceVolume]:
"""Returns specific to the provider volumes that should be mounted on the host OS."""
raise NotImplementedError
|
[
"def",
"_get_instance_volumes",
"(",
"self",
")",
"->",
"List",
"[",
"AbstractInstanceVolume",
"]",
":",
"raise",
"NotImplementedError"
] |
https://github.com/spotty-cloud/spotty/blob/1127c56112b33ac4772582e4edb70e2dfa4292f0/spotty/config/abstract_instance_config.py#L49-L51
|
||
krintoxi/NoobSec-Toolkit
|
38738541cbc03cedb9a3b3ed13b629f781ad64f6
|
NoobSecToolkit - MAC OSX/tools/inject/thirdparty/odict/odict.py
|
python
|
_OrderedDict.__deepcopy__
|
(self, memo)
|
return self.__class__(deepcopy(self.items(), memo), self.strict)
|
To allow deepcopy to work with OrderedDict.
>>> from copy import deepcopy
>>> a = OrderedDict([(1, 1), (2, 2), (3, 3)])
>>> a['test'] = {}
>>> b = deepcopy(a)
>>> b == a
True
>>> b is a
False
>>> a['test'] is b['test']
False
|
To allow deepcopy to work with OrderedDict.
|
[
"To",
"allow",
"deepcopy",
"to",
"work",
"with",
"OrderedDict",
"."
] |
def __deepcopy__(self, memo):
"""
To allow deepcopy to work with OrderedDict.
>>> from copy import deepcopy
>>> a = OrderedDict([(1, 1), (2, 2), (3, 3)])
>>> a['test'] = {}
>>> b = deepcopy(a)
>>> b == a
True
>>> b is a
False
>>> a['test'] is b['test']
False
"""
from copy import deepcopy
return self.__class__(deepcopy(self.items(), memo), self.strict)
|
[
"def",
"__deepcopy__",
"(",
"self",
",",
"memo",
")",
":",
"from",
"copy",
"import",
"deepcopy",
"return",
"self",
".",
"__class__",
"(",
"deepcopy",
"(",
"self",
".",
"items",
"(",
")",
",",
"memo",
")",
",",
"self",
".",
"strict",
")"
] |
https://github.com/krintoxi/NoobSec-Toolkit/blob/38738541cbc03cedb9a3b3ed13b629f781ad64f6/NoobSecToolkit - MAC OSX/tools/inject/thirdparty/odict/odict.py#L460-L476
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.