nwo
stringlengths
5
106
sha
stringlengths
40
40
path
stringlengths
4
174
language
stringclasses
1 value
identifier
stringlengths
1
140
parameters
stringlengths
0
87.7k
argument_list
stringclasses
1 value
return_statement
stringlengths
0
426k
docstring
stringlengths
0
64.3k
docstring_summary
stringlengths
0
26.3k
docstring_tokens
list
function
stringlengths
18
4.83M
function_tokens
list
url
stringlengths
83
304
matt852/netconfig
7d3df1d0678974d5196f534d6f228351758befe0
app/device_classes/device_definitions/cisco/cisco_ios.py
python
CiscoIOS.pull_interface_config
(self, activeSession)
return self.get_cmd_output(command, activeSession)
Retrieve configuration for interface on device.
Retrieve configuration for interface on device.
[ "Retrieve", "configuration", "for", "interface", "on", "device", "." ]
def pull_interface_config(self, activeSession): """Retrieve configuration for interface on device.""" command = "show run interface %s | exclude configuration|!" % (self.interface) return self.get_cmd_output(command, activeSession)
[ "def", "pull_interface_config", "(", "self", ",", "activeSession", ")", ":", "command", "=", "\"show run interface %s | exclude configuration|!\"", "%", "(", "self", ".", "interface", ")", "return", "self", ".", "get_cmd_output", "(", "command", ",", "activeSession", ")" ]
https://github.com/matt852/netconfig/blob/7d3df1d0678974d5196f534d6f228351758befe0/app/device_classes/device_definitions/cisco/cisco_ios.py#L39-L42
Chaffelson/nipyapi
d3b186fd701ce308c2812746d98af9120955e810
nipyapi/nifi/models/bulletin_entity.py
python
BulletinEntity.node_address
(self)
return self._node_address
Gets the node_address of this BulletinEntity. :return: The node_address of this BulletinEntity. :rtype: str
Gets the node_address of this BulletinEntity.
[ "Gets", "the", "node_address", "of", "this", "BulletinEntity", "." ]
def node_address(self): """ Gets the node_address of this BulletinEntity. :return: The node_address of this BulletinEntity. :rtype: str """ return self._node_address
[ "def", "node_address", "(", "self", ")", ":", "return", "self", ".", "_node_address" ]
https://github.com/Chaffelson/nipyapi/blob/d3b186fd701ce308c2812746d98af9120955e810/nipyapi/nifi/models/bulletin_entity.py#L168-L175
NoGameNoLife00/mybolg
afe17ea5bfe405e33766e5682c43a4262232ee12
libs/sqlalchemy/events.py
python
ConnectionEvents.begin
(self, conn)
Intercept begin() events. :param conn: :class:`.Connection` object
Intercept begin() events.
[ "Intercept", "begin", "()", "events", "." ]
def begin(self, conn): """Intercept begin() events. :param conn: :class:`.Connection` object """
[ "def", "begin", "(", "self", ",", "conn", ")", ":" ]
https://github.com/NoGameNoLife00/mybolg/blob/afe17ea5bfe405e33766e5682c43a4262232ee12/libs/sqlalchemy/events.py#L837-L842
arizvisa/ida-minsc
8627a60f047b5e55d3efeecde332039cd1a16eea
base/structure.py
python
member_t.parent
(self)
return self.__parent__
Return the structure_t that owns the member.
Return the structure_t that owns the member.
[ "Return", "the", "structure_t", "that", "owns", "the", "member", "." ]
def parent(self): '''Return the structure_t that owns the member.''' return self.__parent__
[ "def", "parent", "(", "self", ")", ":", "return", "self", ".", "__parent__" ]
https://github.com/arizvisa/ida-minsc/blob/8627a60f047b5e55d3efeecde332039cd1a16eea/base/structure.py#L2035-L2037
cleverhans-lab/cleverhans
e5d00e537ce7ad6119ed5a8db1f0e9736d1f6e1d
cleverhans_v3.1.0/cleverhans/utils_keras.py
python
KerasModelWrapper.get_layer_names
(self)
return layer_names
:return: Names of all the layers kept by Keras
:return: Names of all the layers kept by Keras
[ ":", "return", ":", "Names", "of", "all", "the", "layers", "kept", "by", "Keras" ]
def get_layer_names(self): """ :return: Names of all the layers kept by Keras """ layer_names = [x.name for x in self.model.layers] return layer_names
[ "def", "get_layer_names", "(", "self", ")", ":", "layer_names", "=", "[", "x", ".", "name", "for", "x", "in", "self", ".", "model", ".", "layers", "]", "return", "layer_names" ]
https://github.com/cleverhans-lab/cleverhans/blob/e5d00e537ce7ad6119ed5a8db1f0e9736d1f6e1d/cleverhans_v3.1.0/cleverhans/utils_keras.py#L207-L212
openstack/manila
142990edc027e14839d5deaf4954dd6fc88de15e
manila/share/drivers/zfssa/zfssarest.py
python
ZFSSAApi.login
(self, auth_str)
Login to the appliance.
Login to the appliance.
[ "Login", "to", "the", "appliance", "." ]
def login(self, auth_str): """Login to the appliance.""" if self.rclient and not self.rclient.islogin(): self.rclient.login(auth_str)
[ "def", "login", "(", "self", ",", "auth_str", ")", ":", "if", "self", ".", "rclient", "and", "not", "self", ".", "rclient", ".", "islogin", "(", ")", ":", "self", ".", "rclient", ".", "login", "(", "auth_str", ")" ]
https://github.com/openstack/manila/blob/142990edc027e14839d5deaf4954dd6fc88de15e/manila/share/drivers/zfssa/zfssarest.py#L80-L83
khanhnamle1994/natural-language-processing
01d450d5ac002b0156ef4cf93a07cb508c1bcdc5
assignment1/.env/lib/python2.7/site-packages/numpy/linalg/linalg.py
python
eig
(a)
return w.astype(result_t), wrap(vt)
Compute the eigenvalues and right eigenvectors of a square array. Parameters ---------- a : (..., M, M) array Matrices for which the eigenvalues and right eigenvectors will be computed Returns ------- w : (..., M) array The eigenvalues, each repeated according to its multiplicity. The eigenvalues are not necessarily ordered. The resulting array will be always be of complex type. When `a` is real the resulting eigenvalues will be real (0 imaginary part) or occur in conjugate pairs v : (..., M, M) array The normalized (unit "length") eigenvectors, such that the column ``v[:,i]`` is the eigenvector corresponding to the eigenvalue ``w[i]``. Raises ------ LinAlgError If the eigenvalue computation does not converge. See Also -------- eigvalsh : eigenvalues of a symmetric or Hermitian (conjugate symmetric) array. eigvals : eigenvalues of a non-symmetric array. Notes ----- Broadcasting rules apply, see the `numpy.linalg` documentation for details. This is implemented using the _geev LAPACK routines which compute the eigenvalues and eigenvectors of general square arrays. The number `w` is an eigenvalue of `a` if there exists a vector `v` such that ``dot(a,v) = w * v``. Thus, the arrays `a`, `w`, and `v` satisfy the equations ``dot(a[:,:], v[:,i]) = w[i] * v[:,i]`` for :math:`i \\in \\{0,...,M-1\\}`. The array `v` of eigenvectors may not be of maximum rank, that is, some of the columns may be linearly dependent, although round-off error may obscure that fact. If the eigenvalues are all different, then theoretically the eigenvectors are linearly independent. Likewise, the (complex-valued) matrix of eigenvectors `v` is unitary if the matrix `a` is normal, i.e., if ``dot(a, a.H) = dot(a.H, a)``, where `a.H` denotes the conjugate transpose of `a`. Finally, it is emphasized that `v` consists of the *right* (as in right-hand side) eigenvectors of `a`. A vector `y` satisfying ``dot(y.T, a) = z * y.T`` for some number `z` is called a *left* eigenvector of `a`, and, in general, the left and right eigenvectors of a matrix are not necessarily the (perhaps conjugate) transposes of each other. References ---------- G. Strang, *Linear Algebra and Its Applications*, 2nd Ed., Orlando, FL, Academic Press, Inc., 1980, Various pp. Examples -------- >>> from numpy import linalg as LA (Almost) trivial example with real e-values and e-vectors. >>> w, v = LA.eig(np.diag((1, 2, 3))) >>> w; v array([ 1., 2., 3.]) array([[ 1., 0., 0.], [ 0., 1., 0.], [ 0., 0., 1.]]) Real matrix possessing complex e-values and e-vectors; note that the e-values are complex conjugates of each other. >>> w, v = LA.eig(np.array([[1, -1], [1, 1]])) >>> w; v array([ 1. + 1.j, 1. - 1.j]) array([[ 0.70710678+0.j , 0.70710678+0.j ], [ 0.00000000-0.70710678j, 0.00000000+0.70710678j]]) Complex-valued matrix with real e-values (but complex-valued e-vectors); note that a.conj().T = a, i.e., a is Hermitian. >>> a = np.array([[1, 1j], [-1j, 1]]) >>> w, v = LA.eig(a) >>> w; v array([ 2.00000000e+00+0.j, 5.98651912e-36+0.j]) # i.e., {2, 0} array([[ 0.00000000+0.70710678j, 0.70710678+0.j ], [ 0.70710678+0.j , 0.00000000+0.70710678j]]) Be careful about round-off error! >>> a = np.array([[1 + 1e-9, 0], [0, 1 - 1e-9]]) >>> # Theor. e-values are 1 +/- 1e-9 >>> w, v = LA.eig(a) >>> w; v array([ 1., 1.]) array([[ 1., 0.], [ 0., 1.]])
Compute the eigenvalues and right eigenvectors of a square array.
[ "Compute", "the", "eigenvalues", "and", "right", "eigenvectors", "of", "a", "square", "array", "." ]
def eig(a): """ Compute the eigenvalues and right eigenvectors of a square array. Parameters ---------- a : (..., M, M) array Matrices for which the eigenvalues and right eigenvectors will be computed Returns ------- w : (..., M) array The eigenvalues, each repeated according to its multiplicity. The eigenvalues are not necessarily ordered. The resulting array will be always be of complex type. When `a` is real the resulting eigenvalues will be real (0 imaginary part) or occur in conjugate pairs v : (..., M, M) array The normalized (unit "length") eigenvectors, such that the column ``v[:,i]`` is the eigenvector corresponding to the eigenvalue ``w[i]``. Raises ------ LinAlgError If the eigenvalue computation does not converge. See Also -------- eigvalsh : eigenvalues of a symmetric or Hermitian (conjugate symmetric) array. eigvals : eigenvalues of a non-symmetric array. Notes ----- Broadcasting rules apply, see the `numpy.linalg` documentation for details. This is implemented using the _geev LAPACK routines which compute the eigenvalues and eigenvectors of general square arrays. The number `w` is an eigenvalue of `a` if there exists a vector `v` such that ``dot(a,v) = w * v``. Thus, the arrays `a`, `w`, and `v` satisfy the equations ``dot(a[:,:], v[:,i]) = w[i] * v[:,i]`` for :math:`i \\in \\{0,...,M-1\\}`. The array `v` of eigenvectors may not be of maximum rank, that is, some of the columns may be linearly dependent, although round-off error may obscure that fact. If the eigenvalues are all different, then theoretically the eigenvectors are linearly independent. Likewise, the (complex-valued) matrix of eigenvectors `v` is unitary if the matrix `a` is normal, i.e., if ``dot(a, a.H) = dot(a.H, a)``, where `a.H` denotes the conjugate transpose of `a`. Finally, it is emphasized that `v` consists of the *right* (as in right-hand side) eigenvectors of `a`. A vector `y` satisfying ``dot(y.T, a) = z * y.T`` for some number `z` is called a *left* eigenvector of `a`, and, in general, the left and right eigenvectors of a matrix are not necessarily the (perhaps conjugate) transposes of each other. References ---------- G. Strang, *Linear Algebra and Its Applications*, 2nd Ed., Orlando, FL, Academic Press, Inc., 1980, Various pp. Examples -------- >>> from numpy import linalg as LA (Almost) trivial example with real e-values and e-vectors. >>> w, v = LA.eig(np.diag((1, 2, 3))) >>> w; v array([ 1., 2., 3.]) array([[ 1., 0., 0.], [ 0., 1., 0.], [ 0., 0., 1.]]) Real matrix possessing complex e-values and e-vectors; note that the e-values are complex conjugates of each other. >>> w, v = LA.eig(np.array([[1, -1], [1, 1]])) >>> w; v array([ 1. + 1.j, 1. - 1.j]) array([[ 0.70710678+0.j , 0.70710678+0.j ], [ 0.00000000-0.70710678j, 0.00000000+0.70710678j]]) Complex-valued matrix with real e-values (but complex-valued e-vectors); note that a.conj().T = a, i.e., a is Hermitian. >>> a = np.array([[1, 1j], [-1j, 1]]) >>> w, v = LA.eig(a) >>> w; v array([ 2.00000000e+00+0.j, 5.98651912e-36+0.j]) # i.e., {2, 0} array([[ 0.00000000+0.70710678j, 0.70710678+0.j ], [ 0.70710678+0.j , 0.00000000+0.70710678j]]) Be careful about round-off error! >>> a = np.array([[1 + 1e-9, 0], [0, 1 - 1e-9]]) >>> # Theor. e-values are 1 +/- 1e-9 >>> w, v = LA.eig(a) >>> w; v array([ 1., 1.]) array([[ 1., 0.], [ 0., 1.]]) """ a, wrap = _makearray(a) _assertRankAtLeast2(a) _assertNdSquareness(a) _assertFinite(a) t, result_t = _commonType(a) extobj = get_linalg_error_extobj( _raise_linalgerror_eigenvalues_nonconvergence) signature = 'D->DD' if isComplexType(t) else 'd->DD' w, vt = _umath_linalg.eig(a, signature=signature, extobj=extobj) if not isComplexType(t) and all(w.imag == 0.0): w = w.real vt = vt.real result_t = _realType(result_t) else: result_t = _complexType(result_t) vt = vt.astype(result_t) return w.astype(result_t), wrap(vt)
[ "def", "eig", "(", "a", ")", ":", "a", ",", "wrap", "=", "_makearray", "(", "a", ")", "_assertRankAtLeast2", "(", "a", ")", "_assertNdSquareness", "(", "a", ")", "_assertFinite", "(", "a", ")", "t", ",", "result_t", "=", "_commonType", "(", "a", ")", "extobj", "=", "get_linalg_error_extobj", "(", "_raise_linalgerror_eigenvalues_nonconvergence", ")", "signature", "=", "'D->DD'", "if", "isComplexType", "(", "t", ")", "else", "'d->DD'", "w", ",", "vt", "=", "_umath_linalg", ".", "eig", "(", "a", ",", "signature", "=", "signature", ",", "extobj", "=", "extobj", ")", "if", "not", "isComplexType", "(", "t", ")", "and", "all", "(", "w", ".", "imag", "==", "0.0", ")", ":", "w", "=", "w", ".", "real", "vt", "=", "vt", ".", "real", "result_t", "=", "_realType", "(", "result_t", ")", "else", ":", "result_t", "=", "_complexType", "(", "result_t", ")", "vt", "=", "vt", ".", "astype", "(", "result_t", ")", "return", "w", ".", "astype", "(", "result_t", ")", ",", "wrap", "(", "vt", ")" ]
https://github.com/khanhnamle1994/natural-language-processing/blob/01d450d5ac002b0156ef4cf93a07cb508c1bcdc5/assignment1/.env/lib/python2.7/site-packages/numpy/linalg/linalg.py#L982-L1113
zigpy/zigpy
db10b078874d93ad1c546ec810706c2e5dc33d7f
zigpy/zcl/foundation.py
python
DataTypes.pytype_to_datatype_id
(self, python_type)
return 0xFF
Return Zigbee Datatype ID for a give python type.
Return Zigbee Datatype ID for a give python type.
[ "Return", "Zigbee", "Datatype", "ID", "for", "a", "give", "python", "type", "." ]
def pytype_to_datatype_id(self, python_type) -> int: """Return Zigbee Datatype ID for a give python type.""" # We return the most specific parent class for cls in python_type.__mro__: if cls in self._idx_by_class: return self._idx_by_class[cls] return 0xFF
[ "def", "pytype_to_datatype_id", "(", "self", ",", "python_type", ")", "->", "int", ":", "# We return the most specific parent class", "for", "cls", "in", "python_type", ".", "__mro__", ":", "if", "cls", "in", "self", ".", "_idx_by_class", ":", "return", "self", ".", "_idx_by_class", "[", "cls", "]", "return", "0xFF" ]
https://github.com/zigpy/zigpy/blob/db10b078874d93ad1c546ec810706c2e5dc33d7f/zigpy/zcl/foundation.py#L135-L143
exodrifter/unity-python
bef6e4e9ddfbbf1eaf7acbbb973e9aa3dd64a20d
Lib/genericpath.py
python
commonprefix
(m)
return s1
Given a list of pathnames, returns the longest common leading component
Given a list of pathnames, returns the longest common leading component
[ "Given", "a", "list", "of", "pathnames", "returns", "the", "longest", "common", "leading", "component" ]
def commonprefix(m): "Given a list of pathnames, returns the longest common leading component" if not m: return '' s1 = min(m) s2 = max(m) for i, c in enumerate(s1): if c != s2[i]: return s1[:i] return s1
[ "def", "commonprefix", "(", "m", ")", ":", "if", "not", "m", ":", "return", "''", "s1", "=", "min", "(", "m", ")", "s2", "=", "max", "(", "m", ")", "for", "i", ",", "c", "in", "enumerate", "(", "s1", ")", ":", "if", "c", "!=", "s2", "[", "i", "]", ":", "return", "s1", "[", ":", "i", "]", "return", "s1" ]
https://github.com/exodrifter/unity-python/blob/bef6e4e9ddfbbf1eaf7acbbb973e9aa3dd64a20d/Lib/genericpath.py#L76-L84
JimmXinu/FanFicFare
bc149a2deb2636320fe50a3e374af6eef8f61889
included_dependencies/urllib3/util/wait.py
python
wait_for_write
(sock, timeout=None)
return wait_for_socket(sock, write=True, timeout=timeout)
Waits for writing to be available on a given socket. Returns True if the socket is readable, or False if the timeout expired.
Waits for writing to be available on a given socket. Returns True if the socket is readable, or False if the timeout expired.
[ "Waits", "for", "writing", "to", "be", "available", "on", "a", "given", "socket", ".", "Returns", "True", "if", "the", "socket", "is", "readable", "or", "False", "if", "the", "timeout", "expired", "." ]
def wait_for_write(sock, timeout=None): """Waits for writing to be available on a given socket. Returns True if the socket is readable, or False if the timeout expired. """ return wait_for_socket(sock, write=True, timeout=timeout)
[ "def", "wait_for_write", "(", "sock", ",", "timeout", "=", "None", ")", ":", "return", "wait_for_socket", "(", "sock", ",", "write", "=", "True", ",", "timeout", "=", "timeout", ")" ]
https://github.com/JimmXinu/FanFicFare/blob/bc149a2deb2636320fe50a3e374af6eef8f61889/included_dependencies/urllib3/util/wait.py#L149-L153
ethereum/trinity
6383280c5044feb06695ac2f7bc1100b7bcf4fe0
p2p/commands.py
python
NoneSerializationCodec.decode
(self, data: bytes)
[]
def decode(self, data: bytes) -> None: if data == b'\xc0': return None else: raise MalformedMessage(f"Should be empty. Got {len(data)} bytes: {data.hex()}")
[ "def", "decode", "(", "self", ",", "data", ":", "bytes", ")", "->", "None", ":", "if", "data", "==", "b'\\xc0'", ":", "return", "None", "else", ":", "raise", "MalformedMessage", "(", "f\"Should be empty. Got {len(data)} bytes: {data.hex()}\"", ")" ]
https://github.com/ethereum/trinity/blob/6383280c5044feb06695ac2f7bc1100b7bcf4fe0/p2p/commands.py#L32-L36
Ericsson/codechecker
c4e43f62dc3acbf71d3109b337db7c97f7852f43
codechecker_common/checker_labels.py
python
CheckerLabels.labels_of_checker
( self, checker: str, analyzer: Optional[str] = None )
return list(set(labels))
Return the list of labels of a checker. The list contains (label, value) pairs. If the checker name is not found in the label config file then its prefixes are also searched. For example "clang-diagnostic" in the config file matches "clang-diagnostic-unused-argument".
Return the list of labels of a checker. The list contains (label, value) pairs. If the checker name is not found in the label config file then its prefixes are also searched. For example "clang-diagnostic" in the config file matches "clang-diagnostic-unused-argument".
[ "Return", "the", "list", "of", "labels", "of", "a", "checker", ".", "The", "list", "contains", "(", "label", "value", ")", "pairs", ".", "If", "the", "checker", "name", "is", "not", "found", "in", "the", "label", "config", "file", "then", "its", "prefixes", "are", "also", "searched", ".", "For", "example", "clang", "-", "diagnostic", "in", "the", "config", "file", "matches", "clang", "-", "diagnostic", "-", "unused", "-", "argument", "." ]
def labels_of_checker( self, checker: str, analyzer: Optional[str] = None ) -> List[Tuple[str, str]]: """ Return the list of labels of a checker. The list contains (label, value) pairs. If the checker name is not found in the label config file then its prefixes are also searched. For example "clang-diagnostic" in the config file matches "clang-diagnostic-unused-argument". """ labels: List[Tuple[str, str]] = [] for _, checkers in self.__get_analyzer_data(analyzer): c: Optional[str] = checker if c not in checkers: c = next(filter( lambda c: checker.startswith(cast(str, c)), iter(checkers.keys())), None) labels.extend( map(self.__get_label_key_value, checkers.get(c, []))) # TODO set() is used for uniqueing results in case a checker name is # provided by multiple analyzers. This will be unnecessary when we # cover this case properly. return list(set(labels))
[ "def", "labels_of_checker", "(", "self", ",", "checker", ":", "str", ",", "analyzer", ":", "Optional", "[", "str", "]", "=", "None", ")", "->", "List", "[", "Tuple", "[", "str", ",", "str", "]", "]", ":", "labels", ":", "List", "[", "Tuple", "[", "str", ",", "str", "]", "]", "=", "[", "]", "for", "_", ",", "checkers", "in", "self", ".", "__get_analyzer_data", "(", "analyzer", ")", ":", "c", ":", "Optional", "[", "str", "]", "=", "checker", "if", "c", "not", "in", "checkers", ":", "c", "=", "next", "(", "filter", "(", "lambda", "c", ":", "checker", ".", "startswith", "(", "cast", "(", "str", ",", "c", ")", ")", ",", "iter", "(", "checkers", ".", "keys", "(", ")", ")", ")", ",", "None", ")", "labels", ".", "extend", "(", "map", "(", "self", ".", "__get_label_key_value", ",", "checkers", ".", "get", "(", "c", ",", "[", "]", ")", ")", ")", "# TODO set() is used for uniqueing results in case a checker name is", "# provided by multiple analyzers. This will be unnecessary when we", "# cover this case properly.", "return", "list", "(", "set", "(", "labels", ")", ")" ]
https://github.com/Ericsson/codechecker/blob/c4e43f62dc3acbf71d3109b337db7c97f7852f43/codechecker_common/checker_labels.py#L216-L243
fabioz/PyDev.Debugger
0f8c02a010fe5690405da1dd30ed72326191ce63
pydevd_attach_to_process/winappdbg/breakpoint.py
python
_BreakpointContainer.break_at
(self, pid, address, action = None)
return bp is not None
Sets a code breakpoint at the given process and address. If instead of an address you pass a label, the breakpoint may be deferred until the DLL it points to is loaded. @see: L{stalk_at}, L{dont_break_at} @type pid: int @param pid: Process global ID. @type address: int or str @param address: Memory address of code instruction to break at. It can be an integer value for the actual address or a string with a label to be resolved. @type action: function @param action: (Optional) Action callback function. See L{define_code_breakpoint} for more details. @rtype: bool @return: C{True} if the breakpoint was set immediately, or C{False} if it was deferred.
Sets a code breakpoint at the given process and address.
[ "Sets", "a", "code", "breakpoint", "at", "the", "given", "process", "and", "address", "." ]
def break_at(self, pid, address, action = None): """ Sets a code breakpoint at the given process and address. If instead of an address you pass a label, the breakpoint may be deferred until the DLL it points to is loaded. @see: L{stalk_at}, L{dont_break_at} @type pid: int @param pid: Process global ID. @type address: int or str @param address: Memory address of code instruction to break at. It can be an integer value for the actual address or a string with a label to be resolved. @type action: function @param action: (Optional) Action callback function. See L{define_code_breakpoint} for more details. @rtype: bool @return: C{True} if the breakpoint was set immediately, or C{False} if it was deferred. """ bp = self.__set_break(pid, address, action, oneshot = False) return bp is not None
[ "def", "break_at", "(", "self", ",", "pid", ",", "address", ",", "action", "=", "None", ")", ":", "bp", "=", "self", ".", "__set_break", "(", "pid", ",", "address", ",", "action", ",", "oneshot", "=", "False", ")", "return", "bp", "is", "not", "None" ]
https://github.com/fabioz/PyDev.Debugger/blob/0f8c02a010fe5690405da1dd30ed72326191ce63/pydevd_attach_to_process/winappdbg/breakpoint.py#L3908-L3936
zhl2008/awd-platform
0416b31abea29743387b10b3914581fbe8e7da5e
web_flaskbb/lib/python2.7/site-packages/werkzeug/wrappers.py
python
BaseRequest.headers
(self)
return EnvironHeaders(self.environ)
The headers from the WSGI environ as immutable :class:`~werkzeug.datastructures.EnvironHeaders`.
The headers from the WSGI environ as immutable :class:`~werkzeug.datastructures.EnvironHeaders`.
[ "The", "headers", "from", "the", "WSGI", "environ", "as", "immutable", ":", "class", ":", "~werkzeug", ".", "datastructures", ".", "EnvironHeaders", "." ]
def headers(self): """The headers from the WSGI environ as immutable :class:`~werkzeug.datastructures.EnvironHeaders`. """ return EnvironHeaders(self.environ)
[ "def", "headers", "(", "self", ")", ":", "return", "EnvironHeaders", "(", "self", ".", "environ", ")" ]
https://github.com/zhl2008/awd-platform/blob/0416b31abea29743387b10b3914581fbe8e7da5e/web_flaskbb/lib/python2.7/site-packages/werkzeug/wrappers.py#L583-L587
DataDog/dd-agent
526559be731b6e47b12d7aa8b6d45cb8d9ac4d68
agent.py
python
Agent.run
(self, config=None)
Main loop of the collector
Main loop of the collector
[ "Main", "loop", "of", "the", "collector" ]
def run(self, config=None): """Main loop of the collector""" # Gracefully exit on sigterm. signal.signal(signal.SIGTERM, self._handle_sigterm) if not Platform.is_windows(): # A SIGUSR1 signals an exit with an autorestart signal.signal(signal.SIGUSR1, self._handle_sigusr1) # Handle Keyboard Interrupt signal.signal(signal.SIGINT, self._handle_sigterm) # A SIGHUP signals a configuration reload signal.signal(signal.SIGHUP, self._handle_sighup) else: sdk_integrations = get_sdk_integration_paths() for name, path in sdk_integrations.iteritems(): lib_path = os.path.join(path, 'lib') if os.path.exists(lib_path): sys.path.append(lib_path) # Save the agent start-up stats. CollectorStatus().persist() # Intialize the collector. if not config: try: config = get_config(parse_args=True) except: log.warning("Failed to load configuration") sys.exit(2) self._agentConfig = self._set_agent_config_hostname(config) hostname = get_hostname(self._agentConfig) systemStats = get_system_stats( proc_path=self._agentConfig.get('procfs_path', '/proc').rstrip('/') ) emitters = self._get_emitters() # Initialize service discovery if self._agentConfig.get('service_discovery'): self.sd_backend = get_sd_backend(self._agentConfig) if self.sd_backend and _is_affirmative(self._agentConfig.get('sd_jmx_enable', False)): pipe_path = get_jmx_pipe_path() if Platform.is_windows(): pipe_name = pipe_path.format(pipename=SD_PIPE_NAME) else: pipe_name = os.path.join(pipe_path, SD_PIPE_NAME) if os.access(pipe_path, os.W_OK): if not os.path.exists(pipe_name): os.mkfifo(pipe_name) self.sd_pipe = os.open(pipe_name, os.O_RDWR) # RW to avoid blocking (will only W) # Initialize Supervisor proxy self.supervisor_proxy = self._get_supervisor_socket(self._agentConfig) else: log.debug('Unable to create pipe in temporary directory. JMX service discovery disabled.') # Load the checks.d checks self._checksd = load_check_directory(self._agentConfig, hostname) # Load JMX configs if available if self._jmx_service_discovery_enabled: self.sd_pipe_jmx_configs(hostname) # Initialize the Collector self.collector = Collector(self._agentConfig, emitters, systemStats, hostname) # In developer mode, the number of runs to be included in a single collector profile try: self.collector_profile_interval = int( self._agentConfig.get('collector_profile_interval', DEFAULT_COLLECTOR_PROFILE_INTERVAL)) except ValueError: log.warn('collector_profile_interval is invalid. ' 'Using default value instead (%s).' % DEFAULT_COLLECTOR_PROFILE_INTERVAL) self.collector_profile_interval = DEFAULT_COLLECTOR_PROFILE_INTERVAL # Configure the watchdog. self.check_frequency = int(self._agentConfig['check_freq']) watchdog = self._get_watchdog(self.check_frequency) # Initialize the auto-restarter self.restart_interval = int(self._agentConfig.get('restart_interval', RESTART_INTERVAL)) self.agent_start = time.time() self.allow_profiling = _is_affirmative(self._agentConfig.get('allow_profiling', True)) profiled = False collector_profiled_runs = 0 # Run the main loop. while self.run_forever: # Setup profiling if necessary if self.allow_profiling and self.in_developer_mode and not profiled: try: profiler = AgentProfiler() profiler.enable_profiling() profiled = True except Exception as e: log.warn("Cannot enable profiler: %s" % str(e)) if self.reload_configs_flag: if isinstance(self.reload_configs_flag, set): self.reload_configs(checks_to_reload=self.reload_configs_flag) else: self.reload_configs() # JMXFetch restarts should prompt re-piping *all* JMX configs if self._jmx_service_discovery_enabled and \ (not self.reload_configs_flag or isinstance(self.reload_configs_flag, set)): try: jmx_launch = JMXFetch._get_jmx_launchtime() if self.last_jmx_piped and self.last_jmx_piped < jmx_launch: self.sd_pipe_jmx_configs(hostname) except Exception as e: log.debug("could not stat JMX lunch file: %s", e) # Do the work. Pass `configs_reloaded` to let the collector know if it needs to # look for the AgentMetrics check and pop it out. self.collector.run(checksd=self._checksd, start_event=self.start_event, configs_reloaded=True if self.reload_configs_flag else False) self.reload_configs_flag = False # Look for change in the config template store. # The self.sd_backend.reload_check_configs flag is set # to True if a config reload is needed. if self._agentConfig.get('service_discovery') and self.sd_backend and \ not self.sd_backend.reload_check_configs: try: self.sd_backend.reload_check_configs = get_config_store( self._agentConfig).crawl_config_template() except Exception as e: log.warn('Something went wrong while looking for config template changes: %s' % str(e)) # Check if we should run service discovery # The `reload_check_configs` flag can be set through the docker_daemon check or # using ConfigStore.crawl_config_template if self._agentConfig.get('service_discovery') and self.sd_backend and \ self.sd_backend.reload_check_configs: self.reload_configs_flag = self.sd_backend.reload_check_configs self.sd_backend.reload_check_configs = False if profiled: if collector_profiled_runs >= self.collector_profile_interval: try: profiler.disable_profiling() profiled = False collector_profiled_runs = 0 except Exception as e: log.warn("Cannot disable profiler: %s" % str(e)) # Check if we should restart. if self.autorestart and self._should_restart(): self._do_restart() # Only plan for next loop if we will continue, otherwise exit quickly. if self.run_forever: if watchdog: watchdog.reset() if profiled: collector_profiled_runs += 1 log.debug("Sleeping for {0} seconds".format(self.check_frequency)) time.sleep(self.check_frequency) # Now clean-up. try: CollectorStatus.remove_latest_status() except Exception: pass # Explicitly kill the process, because it might be running as a daemon. log.info("Exiting. Bye bye.") sys.exit(0)
[ "def", "run", "(", "self", ",", "config", "=", "None", ")", ":", "# Gracefully exit on sigterm.", "signal", ".", "signal", "(", "signal", ".", "SIGTERM", ",", "self", ".", "_handle_sigterm", ")", "if", "not", "Platform", ".", "is_windows", "(", ")", ":", "# A SIGUSR1 signals an exit with an autorestart", "signal", ".", "signal", "(", "signal", ".", "SIGUSR1", ",", "self", ".", "_handle_sigusr1", ")", "# Handle Keyboard Interrupt", "signal", ".", "signal", "(", "signal", ".", "SIGINT", ",", "self", ".", "_handle_sigterm", ")", "# A SIGHUP signals a configuration reload", "signal", ".", "signal", "(", "signal", ".", "SIGHUP", ",", "self", ".", "_handle_sighup", ")", "else", ":", "sdk_integrations", "=", "get_sdk_integration_paths", "(", ")", "for", "name", ",", "path", "in", "sdk_integrations", ".", "iteritems", "(", ")", ":", "lib_path", "=", "os", ".", "path", ".", "join", "(", "path", ",", "'lib'", ")", "if", "os", ".", "path", ".", "exists", "(", "lib_path", ")", ":", "sys", ".", "path", ".", "append", "(", "lib_path", ")", "# Save the agent start-up stats.", "CollectorStatus", "(", ")", ".", "persist", "(", ")", "# Intialize the collector.", "if", "not", "config", ":", "try", ":", "config", "=", "get_config", "(", "parse_args", "=", "True", ")", "except", ":", "log", ".", "warning", "(", "\"Failed to load configuration\"", ")", "sys", ".", "exit", "(", "2", ")", "self", ".", "_agentConfig", "=", "self", ".", "_set_agent_config_hostname", "(", "config", ")", "hostname", "=", "get_hostname", "(", "self", ".", "_agentConfig", ")", "systemStats", "=", "get_system_stats", "(", "proc_path", "=", "self", ".", "_agentConfig", ".", "get", "(", "'procfs_path'", ",", "'/proc'", ")", ".", "rstrip", "(", "'/'", ")", ")", "emitters", "=", "self", ".", "_get_emitters", "(", ")", "# Initialize service discovery", "if", "self", ".", "_agentConfig", ".", "get", "(", "'service_discovery'", ")", ":", "self", ".", "sd_backend", "=", "get_sd_backend", "(", "self", ".", "_agentConfig", ")", "if", "self", ".", "sd_backend", "and", "_is_affirmative", "(", "self", ".", "_agentConfig", ".", "get", "(", "'sd_jmx_enable'", ",", "False", ")", ")", ":", "pipe_path", "=", "get_jmx_pipe_path", "(", ")", "if", "Platform", ".", "is_windows", "(", ")", ":", "pipe_name", "=", "pipe_path", ".", "format", "(", "pipename", "=", "SD_PIPE_NAME", ")", "else", ":", "pipe_name", "=", "os", ".", "path", ".", "join", "(", "pipe_path", ",", "SD_PIPE_NAME", ")", "if", "os", ".", "access", "(", "pipe_path", ",", "os", ".", "W_OK", ")", ":", "if", "not", "os", ".", "path", ".", "exists", "(", "pipe_name", ")", ":", "os", ".", "mkfifo", "(", "pipe_name", ")", "self", ".", "sd_pipe", "=", "os", ".", "open", "(", "pipe_name", ",", "os", ".", "O_RDWR", ")", "# RW to avoid blocking (will only W)", "# Initialize Supervisor proxy", "self", ".", "supervisor_proxy", "=", "self", ".", "_get_supervisor_socket", "(", "self", ".", "_agentConfig", ")", "else", ":", "log", ".", "debug", "(", "'Unable to create pipe in temporary directory. JMX service discovery disabled.'", ")", "# Load the checks.d checks", "self", ".", "_checksd", "=", "load_check_directory", "(", "self", ".", "_agentConfig", ",", "hostname", ")", "# Load JMX configs if available", "if", "self", ".", "_jmx_service_discovery_enabled", ":", "self", ".", "sd_pipe_jmx_configs", "(", "hostname", ")", "# Initialize the Collector", "self", ".", "collector", "=", "Collector", "(", "self", ".", "_agentConfig", ",", "emitters", ",", "systemStats", ",", "hostname", ")", "# In developer mode, the number of runs to be included in a single collector profile", "try", ":", "self", ".", "collector_profile_interval", "=", "int", "(", "self", ".", "_agentConfig", ".", "get", "(", "'collector_profile_interval'", ",", "DEFAULT_COLLECTOR_PROFILE_INTERVAL", ")", ")", "except", "ValueError", ":", "log", ".", "warn", "(", "'collector_profile_interval is invalid. '", "'Using default value instead (%s).'", "%", "DEFAULT_COLLECTOR_PROFILE_INTERVAL", ")", "self", ".", "collector_profile_interval", "=", "DEFAULT_COLLECTOR_PROFILE_INTERVAL", "# Configure the watchdog.", "self", ".", "check_frequency", "=", "int", "(", "self", ".", "_agentConfig", "[", "'check_freq'", "]", ")", "watchdog", "=", "self", ".", "_get_watchdog", "(", "self", ".", "check_frequency", ")", "# Initialize the auto-restarter", "self", ".", "restart_interval", "=", "int", "(", "self", ".", "_agentConfig", ".", "get", "(", "'restart_interval'", ",", "RESTART_INTERVAL", ")", ")", "self", ".", "agent_start", "=", "time", ".", "time", "(", ")", "self", ".", "allow_profiling", "=", "_is_affirmative", "(", "self", ".", "_agentConfig", ".", "get", "(", "'allow_profiling'", ",", "True", ")", ")", "profiled", "=", "False", "collector_profiled_runs", "=", "0", "# Run the main loop.", "while", "self", ".", "run_forever", ":", "# Setup profiling if necessary", "if", "self", ".", "allow_profiling", "and", "self", ".", "in_developer_mode", "and", "not", "profiled", ":", "try", ":", "profiler", "=", "AgentProfiler", "(", ")", "profiler", ".", "enable_profiling", "(", ")", "profiled", "=", "True", "except", "Exception", "as", "e", ":", "log", ".", "warn", "(", "\"Cannot enable profiler: %s\"", "%", "str", "(", "e", ")", ")", "if", "self", ".", "reload_configs_flag", ":", "if", "isinstance", "(", "self", ".", "reload_configs_flag", ",", "set", ")", ":", "self", ".", "reload_configs", "(", "checks_to_reload", "=", "self", ".", "reload_configs_flag", ")", "else", ":", "self", ".", "reload_configs", "(", ")", "# JMXFetch restarts should prompt re-piping *all* JMX configs", "if", "self", ".", "_jmx_service_discovery_enabled", "and", "(", "not", "self", ".", "reload_configs_flag", "or", "isinstance", "(", "self", ".", "reload_configs_flag", ",", "set", ")", ")", ":", "try", ":", "jmx_launch", "=", "JMXFetch", ".", "_get_jmx_launchtime", "(", ")", "if", "self", ".", "last_jmx_piped", "and", "self", ".", "last_jmx_piped", "<", "jmx_launch", ":", "self", ".", "sd_pipe_jmx_configs", "(", "hostname", ")", "except", "Exception", "as", "e", ":", "log", ".", "debug", "(", "\"could not stat JMX lunch file: %s\"", ",", "e", ")", "# Do the work. Pass `configs_reloaded` to let the collector know if it needs to", "# look for the AgentMetrics check and pop it out.", "self", ".", "collector", ".", "run", "(", "checksd", "=", "self", ".", "_checksd", ",", "start_event", "=", "self", ".", "start_event", ",", "configs_reloaded", "=", "True", "if", "self", ".", "reload_configs_flag", "else", "False", ")", "self", ".", "reload_configs_flag", "=", "False", "# Look for change in the config template store.", "# The self.sd_backend.reload_check_configs flag is set", "# to True if a config reload is needed.", "if", "self", ".", "_agentConfig", ".", "get", "(", "'service_discovery'", ")", "and", "self", ".", "sd_backend", "and", "not", "self", ".", "sd_backend", ".", "reload_check_configs", ":", "try", ":", "self", ".", "sd_backend", ".", "reload_check_configs", "=", "get_config_store", "(", "self", ".", "_agentConfig", ")", ".", "crawl_config_template", "(", ")", "except", "Exception", "as", "e", ":", "log", ".", "warn", "(", "'Something went wrong while looking for config template changes: %s'", "%", "str", "(", "e", ")", ")", "# Check if we should run service discovery", "# The `reload_check_configs` flag can be set through the docker_daemon check or", "# using ConfigStore.crawl_config_template", "if", "self", ".", "_agentConfig", ".", "get", "(", "'service_discovery'", ")", "and", "self", ".", "sd_backend", "and", "self", ".", "sd_backend", ".", "reload_check_configs", ":", "self", ".", "reload_configs_flag", "=", "self", ".", "sd_backend", ".", "reload_check_configs", "self", ".", "sd_backend", ".", "reload_check_configs", "=", "False", "if", "profiled", ":", "if", "collector_profiled_runs", ">=", "self", ".", "collector_profile_interval", ":", "try", ":", "profiler", ".", "disable_profiling", "(", ")", "profiled", "=", "False", "collector_profiled_runs", "=", "0", "except", "Exception", "as", "e", ":", "log", ".", "warn", "(", "\"Cannot disable profiler: %s\"", "%", "str", "(", "e", ")", ")", "# Check if we should restart.", "if", "self", ".", "autorestart", "and", "self", ".", "_should_restart", "(", ")", ":", "self", ".", "_do_restart", "(", ")", "# Only plan for next loop if we will continue, otherwise exit quickly.", "if", "self", ".", "run_forever", ":", "if", "watchdog", ":", "watchdog", ".", "reset", "(", ")", "if", "profiled", ":", "collector_profiled_runs", "+=", "1", "log", ".", "debug", "(", "\"Sleeping for {0} seconds\"", ".", "format", "(", "self", ".", "check_frequency", ")", ")", "time", ".", "sleep", "(", "self", ".", "check_frequency", ")", "# Now clean-up.", "try", ":", "CollectorStatus", ".", "remove_latest_status", "(", ")", "except", "Exception", ":", "pass", "# Explicitly kill the process, because it might be running as a daemon.", "log", ".", "info", "(", "\"Exiting. Bye bye.\"", ")", "sys", ".", "exit", "(", "0", ")" ]
https://github.com/DataDog/dd-agent/blob/526559be731b6e47b12d7aa8b6d45cb8d9ac4d68/agent.py#L227-L404
bruderstein/PythonScript
df9f7071ddf3a079e3a301b9b53a6dc78cf1208f
PythonLib/min/zipfile.py
python
Path.__str__
(self)
return posixpath.join(self.root.filename, self.at)
[]
def __str__(self): return posixpath.join(self.root.filename, self.at)
[ "def", "__str__", "(", "self", ")", ":", "return", "posixpath", ".", "join", "(", "self", ".", "root", ".", "filename", ",", "self", ".", "at", ")" ]
https://github.com/bruderstein/PythonScript/blob/df9f7071ddf3a079e3a301b9b53a6dc78cf1208f/PythonLib/min/zipfile.py#L2379-L2380
google-research/pegasus
649a5978e45a078e1574ed01c92fc12d3aa05f7f
pegasus/eval/bleu/bleu_scorer.py
python
BleuScorer.score
(self, target_text, prediction_text)
return {"bleu": BleuScore(bleu_score.score)}
Calculates bleu scores between target and prediction text.
Calculates bleu scores between target and prediction text.
[ "Calculates", "bleu", "scores", "between", "target", "and", "prediction", "text", "." ]
def score(self, target_text, prediction_text): """Calculates bleu scores between target and prediction text.""" bleu_score = sacrebleu.corpus_bleu([prediction_text], [[target_text]], smooth_method="exp", smooth_value=0.0, force=False, lowercase=False, tokenize="intl", use_effective_order=False) return {"bleu": BleuScore(bleu_score.score)}
[ "def", "score", "(", "self", ",", "target_text", ",", "prediction_text", ")", ":", "bleu_score", "=", "sacrebleu", ".", "corpus_bleu", "(", "[", "prediction_text", "]", ",", "[", "[", "target_text", "]", "]", ",", "smooth_method", "=", "\"exp\"", ",", "smooth_value", "=", "0.0", ",", "force", "=", "False", ",", "lowercase", "=", "False", ",", "tokenize", "=", "\"intl\"", ",", "use_effective_order", "=", "False", ")", "return", "{", "\"bleu\"", ":", "BleuScore", "(", "bleu_score", ".", "score", ")", "}" ]
https://github.com/google-research/pegasus/blob/649a5978e45a078e1574ed01c92fc12d3aa05f7f/pegasus/eval/bleu/bleu_scorer.py#L29-L38
DataDog/integrations-core
934674b29d94b70ccc008f76ea172d0cdae05e1e
couch/datadog_checks/couch/config_models/defaults.py
python
instance_headers
(field, value)
return get_default_field_value(field, value)
[]
def instance_headers(field, value): return get_default_field_value(field, value)
[ "def", "instance_headers", "(", "field", ",", "value", ")", ":", "return", "get_default_field_value", "(", "field", ",", "value", ")" ]
https://github.com/DataDog/integrations-core/blob/934674b29d94b70ccc008f76ea172d0cdae05e1e/couch/datadog_checks/couch/config_models/defaults.py#L77-L78
librahfacebook/Detection
84504d086634950224716f4de0e4c8a684493c34
object_detection/utils/vrd_evaluation.py
python
VRDDetectionEvaluator.add_single_ground_truth_image_info
(self, image_id, groundtruth_dict)
Adds groundtruth for a single image to be used for evaluation. Args: image_id: A unique string/integer identifier for the image. groundtruth_dict: A dictionary containing - standard_fields.InputDataFields.groundtruth_boxes: A numpy array of structures with the shape [M, 1], representing M tuples, each tuple containing the same number of named bounding boxes. Each box is of the format [y_min, x_min, y_max, x_max] (see datatype vrd_box_data_type, single_box_data_type above). standard_fields.InputDataFields.groundtruth_classes: A numpy array of structures shape [M, 1], representing the class labels of the corresponding bounding boxes and possibly additional classes (see datatype label_data_type above). standard_fields.InputDataFields.groundtruth_image_classes: numpy array of shape [K] containing verified labels. Raises: ValueError: On adding groundtruth for an image more than once.
Adds groundtruth for a single image to be used for evaluation.
[ "Adds", "groundtruth", "for", "a", "single", "image", "to", "be", "used", "for", "evaluation", "." ]
def add_single_ground_truth_image_info(self, image_id, groundtruth_dict): """Adds groundtruth for a single image to be used for evaluation. Args: image_id: A unique string/integer identifier for the image. groundtruth_dict: A dictionary containing - standard_fields.InputDataFields.groundtruth_boxes: A numpy array of structures with the shape [M, 1], representing M tuples, each tuple containing the same number of named bounding boxes. Each box is of the format [y_min, x_min, y_max, x_max] (see datatype vrd_box_data_type, single_box_data_type above). standard_fields.InputDataFields.groundtruth_classes: A numpy array of structures shape [M, 1], representing the class labels of the corresponding bounding boxes and possibly additional classes (see datatype label_data_type above). standard_fields.InputDataFields.groundtruth_image_classes: numpy array of shape [K] containing verified labels. Raises: ValueError: On adding groundtruth for an image more than once. """ if image_id in self._image_ids: raise ValueError('Image with id {} already added.'.format(image_id)) groundtruth_class_tuples = ( groundtruth_dict[standard_fields.InputDataFields.groundtruth_classes]) groundtruth_box_tuples = ( groundtruth_dict[standard_fields.InputDataFields.groundtruth_boxes]) self._evaluation.add_single_ground_truth_image_info( image_key=image_id, groundtruth_box_tuples=self._process_groundtruth_boxes( groundtruth_box_tuples), groundtruth_class_tuples=groundtruth_class_tuples) self._image_ids.update([image_id]) all_classes = [] for field in groundtruth_box_tuples.dtype.fields: all_classes.append(groundtruth_class_tuples[field]) groudtruth_positive_classes = np.unique(np.concatenate(all_classes)) verified_labels = groundtruth_dict.get( standard_fields.InputDataFields.groundtruth_image_classes, np.array([], dtype=int)) self._evaluatable_labels[image_id] = np.unique( np.concatenate((verified_labels, groudtruth_positive_classes))) self._negative_labels[image_id] = np.setdiff1d(verified_labels, groudtruth_positive_classes)
[ "def", "add_single_ground_truth_image_info", "(", "self", ",", "image_id", ",", "groundtruth_dict", ")", ":", "if", "image_id", "in", "self", ".", "_image_ids", ":", "raise", "ValueError", "(", "'Image with id {} already added.'", ".", "format", "(", "image_id", ")", ")", "groundtruth_class_tuples", "=", "(", "groundtruth_dict", "[", "standard_fields", ".", "InputDataFields", ".", "groundtruth_classes", "]", ")", "groundtruth_box_tuples", "=", "(", "groundtruth_dict", "[", "standard_fields", ".", "InputDataFields", ".", "groundtruth_boxes", "]", ")", "self", ".", "_evaluation", ".", "add_single_ground_truth_image_info", "(", "image_key", "=", "image_id", ",", "groundtruth_box_tuples", "=", "self", ".", "_process_groundtruth_boxes", "(", "groundtruth_box_tuples", ")", ",", "groundtruth_class_tuples", "=", "groundtruth_class_tuples", ")", "self", ".", "_image_ids", ".", "update", "(", "[", "image_id", "]", ")", "all_classes", "=", "[", "]", "for", "field", "in", "groundtruth_box_tuples", ".", "dtype", ".", "fields", ":", "all_classes", ".", "append", "(", "groundtruth_class_tuples", "[", "field", "]", ")", "groudtruth_positive_classes", "=", "np", ".", "unique", "(", "np", ".", "concatenate", "(", "all_classes", ")", ")", "verified_labels", "=", "groundtruth_dict", ".", "get", "(", "standard_fields", ".", "InputDataFields", ".", "groundtruth_image_classes", ",", "np", ".", "array", "(", "[", "]", ",", "dtype", "=", "int", ")", ")", "self", ".", "_evaluatable_labels", "[", "image_id", "]", "=", "np", ".", "unique", "(", "np", ".", "concatenate", "(", "(", "verified_labels", ",", "groudtruth_positive_classes", ")", ")", ")", "self", ".", "_negative_labels", "[", "image_id", "]", "=", "np", ".", "setdiff1d", "(", "verified_labels", ",", "groudtruth_positive_classes", ")" ]
https://github.com/librahfacebook/Detection/blob/84504d086634950224716f4de0e4c8a684493c34/object_detection/utils/vrd_evaluation.py#L116-L161
karpathy/find-birds
f99b57a918f9fe0ead7f1f69b763d0b4385682cc
common.py
python
api_iter
(api_func, user, limit)
return elements
Iterates API while error fetching correct. can't believe I have to do this manually and that it is not supported by tweepy. It claims to have it, but when I tried it crashed with an error.
Iterates API while error fetching correct. can't believe I have to do this manually and that it is not supported by tweepy. It claims to have it, but when I tried it crashed with an error.
[ "Iterates", "API", "while", "error", "fetching", "correct", ".", "can", "t", "believe", "I", "have", "to", "do", "this", "manually", "and", "that", "it", "is", "not", "supported", "by", "tweepy", ".", "It", "claims", "to", "have", "it", "but", "when", "I", "tried", "it", "crashed", "with", "an", "error", "." ]
def api_iter(api_func, user, limit): """ Iterates API while error fetching correct. can't believe I have to do this manually and that it is not supported by tweepy. It claims to have it, but when I tried it crashed with an error. """ if limit == 0: return [] # fast escape when applicable it = tweepy.Cursor(api_func, id=user).items(limit) elements = [] while True: try: f = it.next() elements.append(f) except tweepy.TweepError: print("got a tweepy error. collected %d/%d so far. waiting 15 minutes..." % (len(elements), limit)) time.sleep(60 * 15 + 10) continue except StopIteration: break return elements
[ "def", "api_iter", "(", "api_func", ",", "user", ",", "limit", ")", ":", "if", "limit", "==", "0", ":", "return", "[", "]", "# fast escape when applicable", "it", "=", "tweepy", ".", "Cursor", "(", "api_func", ",", "id", "=", "user", ")", ".", "items", "(", "limit", ")", "elements", "=", "[", "]", "while", "True", ":", "try", ":", "f", "=", "it", ".", "next", "(", ")", "elements", ".", "append", "(", "f", ")", "except", "tweepy", ".", "TweepError", ":", "print", "(", "\"got a tweepy error. collected %d/%d so far. waiting 15 minutes...\"", "%", "(", "len", "(", "elements", ")", ",", "limit", ")", ")", "time", ".", "sleep", "(", "60", "*", "15", "+", "10", ")", "continue", "except", "StopIteration", ":", "break", "return", "elements" ]
https://github.com/karpathy/find-birds/blob/f99b57a918f9fe0ead7f1f69b763d0b4385682cc/common.py#L20-L41
IronLanguages/ironpython2
51fdedeeda15727717fb8268a805f71b06c0b9f1
Src/StdLib/Lib/inspect.py
python
getblock
(lines)
return lines[:blockfinder.last]
Extract the block of code at the top of the given list of lines.
Extract the block of code at the top of the given list of lines.
[ "Extract", "the", "block", "of", "code", "at", "the", "top", "of", "the", "given", "list", "of", "lines", "." ]
def getblock(lines): """Extract the block of code at the top of the given list of lines.""" blockfinder = BlockFinder() try: tokenize.tokenize(iter(lines).next, blockfinder.tokeneater) except (EndOfBlock, IndentationError): pass return lines[:blockfinder.last]
[ "def", "getblock", "(", "lines", ")", ":", "blockfinder", "=", "BlockFinder", "(", ")", "try", ":", "tokenize", ".", "tokenize", "(", "iter", "(", "lines", ")", ".", "next", ",", "blockfinder", ".", "tokeneater", ")", "except", "(", "EndOfBlock", ",", "IndentationError", ")", ":", "pass", "return", "lines", "[", ":", "blockfinder", ".", "last", "]" ]
https://github.com/IronLanguages/ironpython2/blob/51fdedeeda15727717fb8268a805f71b06c0b9f1/Src/StdLib/Lib/inspect.py#L672-L679
holzschu/Carnets
44effb10ddfc6aa5c8b0687582a724ba82c6b547
Library/lib/python3.7/site-packages/sympy/sets/fancysets.py
python
normalize_theta_set
(theta)
Normalize a Real Set `theta` in the Interval [0, 2*pi). It returns a normalized value of theta in the Set. For Interval, a maximum of one cycle [0, 2*pi], is returned i.e. for theta equal to [0, 10*pi], returned normalized value would be [0, 2*pi). As of now intervals with end points as non-multiples of `pi` is not supported. Raises ====== NotImplementedError The algorithms for Normalizing theta Set are not yet implemented. ValueError The input is not valid, i.e. the input is not a real set. RuntimeError It is a bug, please report to the github issue tracker. Examples ======== >>> from sympy.sets.fancysets import normalize_theta_set >>> from sympy import Interval, FiniteSet, pi >>> normalize_theta_set(Interval(9*pi/2, 5*pi)) Interval(pi/2, pi) >>> normalize_theta_set(Interval(-3*pi/2, pi/2)) Interval.Ropen(0, 2*pi) >>> normalize_theta_set(Interval(-pi/2, pi/2)) Union(Interval(0, pi/2), Interval.Ropen(3*pi/2, 2*pi)) >>> normalize_theta_set(Interval(-4*pi, 3*pi)) Interval.Ropen(0, 2*pi) >>> normalize_theta_set(Interval(-3*pi/2, -pi/2)) Interval(pi/2, 3*pi/2) >>> normalize_theta_set(FiniteSet(0, pi, 3*pi)) FiniteSet(0, pi)
Normalize a Real Set `theta` in the Interval [0, 2*pi). It returns a normalized value of theta in the Set. For Interval, a maximum of one cycle [0, 2*pi], is returned i.e. for theta equal to [0, 10*pi], returned normalized value would be [0, 2*pi). As of now intervals with end points as non-multiples of `pi` is not supported.
[ "Normalize", "a", "Real", "Set", "theta", "in", "the", "Interval", "[", "0", "2", "*", "pi", ")", ".", "It", "returns", "a", "normalized", "value", "of", "theta", "in", "the", "Set", ".", "For", "Interval", "a", "maximum", "of", "one", "cycle", "[", "0", "2", "*", "pi", "]", "is", "returned", "i", ".", "e", ".", "for", "theta", "equal", "to", "[", "0", "10", "*", "pi", "]", "returned", "normalized", "value", "would", "be", "[", "0", "2", "*", "pi", ")", ".", "As", "of", "now", "intervals", "with", "end", "points", "as", "non", "-", "multiples", "of", "pi", "is", "not", "supported", "." ]
def normalize_theta_set(theta): """ Normalize a Real Set `theta` in the Interval [0, 2*pi). It returns a normalized value of theta in the Set. For Interval, a maximum of one cycle [0, 2*pi], is returned i.e. for theta equal to [0, 10*pi], returned normalized value would be [0, 2*pi). As of now intervals with end points as non-multiples of `pi` is not supported. Raises ====== NotImplementedError The algorithms for Normalizing theta Set are not yet implemented. ValueError The input is not valid, i.e. the input is not a real set. RuntimeError It is a bug, please report to the github issue tracker. Examples ======== >>> from sympy.sets.fancysets import normalize_theta_set >>> from sympy import Interval, FiniteSet, pi >>> normalize_theta_set(Interval(9*pi/2, 5*pi)) Interval(pi/2, pi) >>> normalize_theta_set(Interval(-3*pi/2, pi/2)) Interval.Ropen(0, 2*pi) >>> normalize_theta_set(Interval(-pi/2, pi/2)) Union(Interval(0, pi/2), Interval.Ropen(3*pi/2, 2*pi)) >>> normalize_theta_set(Interval(-4*pi, 3*pi)) Interval.Ropen(0, 2*pi) >>> normalize_theta_set(Interval(-3*pi/2, -pi/2)) Interval(pi/2, 3*pi/2) >>> normalize_theta_set(FiniteSet(0, pi, 3*pi)) FiniteSet(0, pi) """ from sympy.functions.elementary.trigonometric import _pi_coeff as coeff if theta.is_Interval: interval_len = theta.measure # one complete circle if interval_len >= 2*S.Pi: if interval_len == 2*S.Pi and theta.left_open and theta.right_open: k = coeff(theta.start) return Union(Interval(0, k*S.Pi, False, True), Interval(k*S.Pi, 2*S.Pi, True, True)) return Interval(0, 2*S.Pi, False, True) k_start, k_end = coeff(theta.start), coeff(theta.end) if k_start is None or k_end is None: raise NotImplementedError("Normalizing theta without pi as coefficient is " "not yet implemented") new_start = k_start*S.Pi new_end = k_end*S.Pi if new_start > new_end: return Union(Interval(S.Zero, new_end, False, theta.right_open), Interval(new_start, 2*S.Pi, theta.left_open, True)) else: return Interval(new_start, new_end, theta.left_open, theta.right_open) elif theta.is_FiniteSet: new_theta = [] for element in theta: k = coeff(element) if k is None: raise NotImplementedError('Normalizing theta without pi as ' 'coefficient, is not Implemented.') else: new_theta.append(k*S.Pi) return FiniteSet(*new_theta) elif theta.is_Union: return Union(*[normalize_theta_set(interval) for interval in theta.args]) elif theta.is_subset(S.Reals): raise NotImplementedError("Normalizing theta when, it is of type %s is not " "implemented" % type(theta)) else: raise ValueError(" %s is not a real set" % (theta))
[ "def", "normalize_theta_set", "(", "theta", ")", ":", "from", "sympy", ".", "functions", ".", "elementary", ".", "trigonometric", "import", "_pi_coeff", "as", "coeff", "if", "theta", ".", "is_Interval", ":", "interval_len", "=", "theta", ".", "measure", "# one complete circle", "if", "interval_len", ">=", "2", "*", "S", ".", "Pi", ":", "if", "interval_len", "==", "2", "*", "S", ".", "Pi", "and", "theta", ".", "left_open", "and", "theta", ".", "right_open", ":", "k", "=", "coeff", "(", "theta", ".", "start", ")", "return", "Union", "(", "Interval", "(", "0", ",", "k", "*", "S", ".", "Pi", ",", "False", ",", "True", ")", ",", "Interval", "(", "k", "*", "S", ".", "Pi", ",", "2", "*", "S", ".", "Pi", ",", "True", ",", "True", ")", ")", "return", "Interval", "(", "0", ",", "2", "*", "S", ".", "Pi", ",", "False", ",", "True", ")", "k_start", ",", "k_end", "=", "coeff", "(", "theta", ".", "start", ")", ",", "coeff", "(", "theta", ".", "end", ")", "if", "k_start", "is", "None", "or", "k_end", "is", "None", ":", "raise", "NotImplementedError", "(", "\"Normalizing theta without pi as coefficient is \"", "\"not yet implemented\"", ")", "new_start", "=", "k_start", "*", "S", ".", "Pi", "new_end", "=", "k_end", "*", "S", ".", "Pi", "if", "new_start", ">", "new_end", ":", "return", "Union", "(", "Interval", "(", "S", ".", "Zero", ",", "new_end", ",", "False", ",", "theta", ".", "right_open", ")", ",", "Interval", "(", "new_start", ",", "2", "*", "S", ".", "Pi", ",", "theta", ".", "left_open", ",", "True", ")", ")", "else", ":", "return", "Interval", "(", "new_start", ",", "new_end", ",", "theta", ".", "left_open", ",", "theta", ".", "right_open", ")", "elif", "theta", ".", "is_FiniteSet", ":", "new_theta", "=", "[", "]", "for", "element", "in", "theta", ":", "k", "=", "coeff", "(", "element", ")", "if", "k", "is", "None", ":", "raise", "NotImplementedError", "(", "'Normalizing theta without pi as '", "'coefficient, is not Implemented.'", ")", "else", ":", "new_theta", ".", "append", "(", "k", "*", "S", ".", "Pi", ")", "return", "FiniteSet", "(", "*", "new_theta", ")", "elif", "theta", ".", "is_Union", ":", "return", "Union", "(", "*", "[", "normalize_theta_set", "(", "interval", ")", "for", "interval", "in", "theta", ".", "args", "]", ")", "elif", "theta", ".", "is_subset", "(", "S", ".", "Reals", ")", ":", "raise", "NotImplementedError", "(", "\"Normalizing theta when, it is of type %s is not \"", "\"implemented\"", "%", "type", "(", "theta", ")", ")", "else", ":", "raise", "ValueError", "(", "\" %s is not a real set\"", "%", "(", "theta", ")", ")" ]
https://github.com/holzschu/Carnets/blob/44effb10ddfc6aa5c8b0687582a724ba82c6b547/Library/lib/python3.7/site-packages/sympy/sets/fancysets.py#L894-L976
google-research/bleurt
c6f2375c7c178e1480840cf27cb9e2af851394f9
bleurt/lib/optimization.py
python
AdamWeightDecayOptimizer.__init__
(self, learning_rate, weight_decay_rate=0.0, beta_1=0.9, beta_2=0.999, epsilon=1e-6, exclude_from_weight_decay=None, name="AdamWeightDecayOptimizer")
Constructs a AdamWeightDecayOptimizer.
Constructs a AdamWeightDecayOptimizer.
[ "Constructs", "a", "AdamWeightDecayOptimizer", "." ]
def __init__(self, learning_rate, weight_decay_rate=0.0, beta_1=0.9, beta_2=0.999, epsilon=1e-6, exclude_from_weight_decay=None, name="AdamWeightDecayOptimizer"): """Constructs a AdamWeightDecayOptimizer.""" super(AdamWeightDecayOptimizer, self).__init__(False, name) self.learning_rate = learning_rate self.weight_decay_rate = weight_decay_rate self.beta_1 = beta_1 self.beta_2 = beta_2 self.epsilon = epsilon self.exclude_from_weight_decay = exclude_from_weight_decay
[ "def", "__init__", "(", "self", ",", "learning_rate", ",", "weight_decay_rate", "=", "0.0", ",", "beta_1", "=", "0.9", ",", "beta_2", "=", "0.999", ",", "epsilon", "=", "1e-6", ",", "exclude_from_weight_decay", "=", "None", ",", "name", "=", "\"AdamWeightDecayOptimizer\"", ")", ":", "super", "(", "AdamWeightDecayOptimizer", ",", "self", ")", ".", "__init__", "(", "False", ",", "name", ")", "self", ".", "learning_rate", "=", "learning_rate", "self", ".", "weight_decay_rate", "=", "weight_decay_rate", "self", ".", "beta_1", "=", "beta_1", "self", ".", "beta_2", "=", "beta_2", "self", ".", "epsilon", "=", "epsilon", "self", ".", "exclude_from_weight_decay", "=", "exclude_from_weight_decay" ]
https://github.com/google-research/bleurt/blob/c6f2375c7c178e1480840cf27cb9e2af851394f9/bleurt/lib/optimization.py#L93-L109
CityOfZion/neo-python
99783bc8310982a5380081ec41a6ee07ba843f3f
neo/SmartContract/Contract.py
python
Contract.CreateSignatureContract
(publicKey)
return Contract(script, params, pubkey_hash)
Create a signature contract. Args: publicKey (edcsa.Curve.point): e.g. KeyPair.PublicKey. Returns: neo.SmartContract.Contract: a Contract instance.
Create a signature contract.
[ "Create", "a", "signature", "contract", "." ]
def CreateSignatureContract(publicKey): """ Create a signature contract. Args: publicKey (edcsa.Curve.point): e.g. KeyPair.PublicKey. Returns: neo.SmartContract.Contract: a Contract instance. """ script = Contract.CreateSignatureRedeemScript(publicKey) params = b'\x00' encoded = publicKey.encode_point(True) pubkey_hash = Crypto.ToScriptHash(encoded, unhex=True) return Contract(script, params, pubkey_hash)
[ "def", "CreateSignatureContract", "(", "publicKey", ")", ":", "script", "=", "Contract", ".", "CreateSignatureRedeemScript", "(", "publicKey", ")", "params", "=", "b'\\x00'", "encoded", "=", "publicKey", ".", "encode_point", "(", "True", ")", "pubkey_hash", "=", "Crypto", ".", "ToScriptHash", "(", "encoded", ",", "unhex", "=", "True", ")", "return", "Contract", "(", "script", ",", "params", ",", "pubkey_hash", ")" ]
https://github.com/CityOfZion/neo-python/blob/99783bc8310982a5380081ec41a6ee07ba843f3f/neo/SmartContract/Contract.py#L120-L135
dimagi/commcare-hq
d67ff1d3b4c51fa050c19e60c3253a79d3452a39
corehq/apps/reports/standard/sms.py
python
PhoneNumberReport.export_rows
(self)
return self._get_rows(paginate=False, link_user=False)
[]
def export_rows(self): return self._get_rows(paginate=False, link_user=False)
[ "def", "export_rows", "(", "self", ")", ":", "return", "self", ".", "_get_rows", "(", "paginate", "=", "False", ",", "link_user", "=", "False", ")" ]
https://github.com/dimagi/commcare-hq/blob/d67ff1d3b4c51fa050c19e60c3253a79d3452a39/corehq/apps/reports/standard/sms.py#L1338-L1339
selfboot/LeetCode
473c0c5451651140d75cbd143309c51cd8fe1cf1
Math/07_ReverseInteger.py
python
Solution.reverse
(self, x)
return result * negative
:type x: int :rtype: int
:type x: int :rtype: int
[ ":", "type", "x", ":", "int", ":", "rtype", ":", "int" ]
def reverse(self, x): """ :type x: int :rtype: int """ negative = 1 if x < 0: negative = -1 x = x * -1 result = 0 while x / 10 != 0: result = (result + x % 10) * 10 x = x / 10 result += x % 10 if abs(result) > 2 ** 31 - 1: return 0 return result * negative
[ "def", "reverse", "(", "self", ",", "x", ")", ":", "negative", "=", "1", "if", "x", "<", "0", ":", "negative", "=", "-", "1", "x", "=", "x", "*", "-", "1", "result", "=", "0", "while", "x", "/", "10", "!=", "0", ":", "result", "=", "(", "result", "+", "x", "%", "10", ")", "*", "10", "x", "=", "x", "/", "10", "result", "+=", "x", "%", "10", "if", "abs", "(", "result", ")", ">", "2", "**", "31", "-", "1", ":", "return", "0", "return", "result", "*", "negative" ]
https://github.com/selfboot/LeetCode/blob/473c0c5451651140d75cbd143309c51cd8fe1cf1/Math/07_ReverseInteger.py#L6-L24
nosmokingbandit/Watcher3
0217e75158b563bdefc8e01c3be7620008cf3977
lib/sqlalchemy/orm/events.py
python
SessionEvents.before_flush
(self, session, flush_context, instances)
Execute before flush process has started. :param session: The target :class:`.Session`. :param flush_context: Internal :class:`.UOWTransaction` object which handles the details of the flush. :param instances: Usually ``None``, this is the collection of objects which can be passed to the :meth:`.Session.flush` method (note this usage is deprecated). .. seealso:: :meth:`~.SessionEvents.after_flush` :meth:`~.SessionEvents.after_flush_postexec` :ref:`session_persistence_events`
Execute before flush process has started.
[ "Execute", "before", "flush", "process", "has", "started", "." ]
def before_flush(self, session, flush_context, instances): """Execute before flush process has started. :param session: The target :class:`.Session`. :param flush_context: Internal :class:`.UOWTransaction` object which handles the details of the flush. :param instances: Usually ``None``, this is the collection of objects which can be passed to the :meth:`.Session.flush` method (note this usage is deprecated). .. seealso:: :meth:`~.SessionEvents.after_flush` :meth:`~.SessionEvents.after_flush_postexec` :ref:`session_persistence_events` """
[ "def", "before_flush", "(", "self", ",", "session", ",", "flush_context", ",", "instances", ")", ":" ]
https://github.com/nosmokingbandit/Watcher3/blob/0217e75158b563bdefc8e01c3be7620008cf3977/lib/sqlalchemy/orm/events.py#L1373-L1391
OpenEIT/OpenEIT
0448694e8092361ae5ccb45fba81dee543a6244b
OpenEIT/backend/bluetooth/build/lib/Adafruit_BluefruitLE/corebluetooth/device.py
python
CoreBluetoothDevice.is_connected
(self)
return self._connected.is_set()
Return True if the device is connected to the system, otherwise False.
Return True if the device is connected to the system, otherwise False.
[ "Return", "True", "if", "the", "device", "is", "connected", "to", "the", "system", "otherwise", "False", "." ]
def is_connected(self): """Return True if the device is connected to the system, otherwise False. """ return self._connected.is_set()
[ "def", "is_connected", "(", "self", ")", ":", "return", "self", ".", "_connected", ".", "is_set", "(", ")" ]
https://github.com/OpenEIT/OpenEIT/blob/0448694e8092361ae5ccb45fba81dee543a6244b/OpenEIT/backend/bluetooth/build/lib/Adafruit_BluefruitLE/corebluetooth/device.py#L181-L184
OpenMDAO/OpenMDAO-Framework
f2e37b7de3edeaaeb2d251b375917adec059db9b
openmdao.main/src/openmdao/main/hasparameters.py
python
ParameterBase._get_scope
(self)
return self._expreval.scope
Return scope of target expression.
Return scope of target expression.
[ "Return", "scope", "of", "target", "expression", "." ]
def _get_scope(self): """Return scope of target expression.""" return self._expreval.scope
[ "def", "_get_scope", "(", "self", ")", ":", "return", "self", ".", "_expreval", ".", "scope" ]
https://github.com/OpenMDAO/OpenMDAO-Framework/blob/f2e37b7de3edeaaeb2d251b375917adec059db9b/openmdao.main/src/openmdao/main/hasparameters.py#L97-L99
chris-void/pyway
a49c6415e9833e38fa7e5d3399c7e514124b9645
ex25.py
python
print_first_and_last
(sentence)
Print the first and last words of the sentence.
Print the first and last words of the sentence.
[ "Print", "the", "first", "and", "last", "words", "of", "the", "sentence", "." ]
def print_first_and_last(sentence): """Print the first and last words of the sentence.""" words = break_words(sentence) print_first_word(words) print_last_word(words)
[ "def", "print_first_and_last", "(", "sentence", ")", ":", "words", "=", "break_words", "(", "sentence", ")", "print_first_word", "(", "words", ")", "print_last_word", "(", "words", ")" ]
https://github.com/chris-void/pyway/blob/a49c6415e9833e38fa7e5d3399c7e514124b9645/ex25.py#L25-L29
overviewer/Minecraft-Overviewer
7171af587399fee9140eb83fb9b066acd251f57a
overviewer_core/observer.py
python
Observer.start
(self, max_value)
return self
Signals the start of whatever process. Must be called before update
Signals the start of whatever process. Must be called before update
[ "Signals", "the", "start", "of", "whatever", "process", ".", "Must", "be", "called", "before", "update" ]
def start(self, max_value): """Signals the start of whatever process. Must be called before update """ self._set_max_value(max_value) self.start_time = time.time() self.update(0) return self
[ "def", "start", "(", "self", ",", "max_value", ")", ":", "self", ".", "_set_max_value", "(", "max_value", ")", "self", ".", "start_time", "=", "time", ".", "time", "(", ")", "self", ".", "update", "(", "0", ")", "return", "self" ]
https://github.com/overviewer/Minecraft-Overviewer/blob/7171af587399fee9140eb83fb9b066acd251f57a/overviewer_core/observer.py#L36-L42
fredrik-johansson/mpmath
c11db84b3237bd8fc6721f5a0c5d7c0c98a24dc1
mpmath/matrices/linalg.py
python
LinearAlgebraMethods.lu
(ctx, A)
return P, L, U
A -> P, L, U LU factorisation of a square matrix A. L is the lower, U the upper part. P is the permutation matrix indicating the row swaps. P*A = L*U If you need efficiency, use the low-level method LU_decomp instead, it's much more memory efficient.
A -> P, L, U
[ "A", "-", ">", "P", "L", "U" ]
def lu(ctx, A): """ A -> P, L, U LU factorisation of a square matrix A. L is the lower, U the upper part. P is the permutation matrix indicating the row swaps. P*A = L*U If you need efficiency, use the low-level method LU_decomp instead, it's much more memory efficient. """ # get factorization A, p = ctx.LU_decomp(A) n = A.rows L = ctx.matrix(n) U = ctx.matrix(n) for i in xrange(n): for j in xrange(n): if i > j: L[i,j] = A[i,j] elif i == j: L[i,j] = 1 U[i,j] = A[i,j] else: U[i,j] = A[i,j] # calculate permutation matrix P = ctx.eye(n) for k in xrange(len(p)): ctx.swap_row(P, k, p[k]) return P, L, U
[ "def", "lu", "(", "ctx", ",", "A", ")", ":", "# get factorization", "A", ",", "p", "=", "ctx", ".", "LU_decomp", "(", "A", ")", "n", "=", "A", ".", "rows", "L", "=", "ctx", ".", "matrix", "(", "n", ")", "U", "=", "ctx", ".", "matrix", "(", "n", ")", "for", "i", "in", "xrange", "(", "n", ")", ":", "for", "j", "in", "xrange", "(", "n", ")", ":", "if", "i", ">", "j", ":", "L", "[", "i", ",", "j", "]", "=", "A", "[", "i", ",", "j", "]", "elif", "i", "==", "j", ":", "L", "[", "i", ",", "j", "]", "=", "1", "U", "[", "i", ",", "j", "]", "=", "A", "[", "i", ",", "j", "]", "else", ":", "U", "[", "i", ",", "j", "]", "=", "A", "[", "i", ",", "j", "]", "# calculate permutation matrix", "P", "=", "ctx", ".", "eye", "(", "n", ")", "for", "k", "in", "xrange", "(", "len", "(", "p", ")", ")", ":", "ctx", ".", "swap_row", "(", "P", ",", "k", ",", "p", "[", "k", "]", ")", "return", "P", ",", "L", ",", "U" ]
https://github.com/fredrik-johansson/mpmath/blob/c11db84b3237bd8fc6721f5a0c5d7c0c98a24dc1/mpmath/matrices/linalg.py#L251-L281
saltstack/salt
fae5bc757ad0f1716483ce7ae180b451545c2058
salt/states/ceph.py
python
_unchanged
(name, msg)
return {"name": name, "result": True, "comment": msg, "changes": {}}
Utility function: Return structure unchanged
Utility function: Return structure unchanged
[ "Utility", "function", ":", "Return", "structure", "unchanged" ]
def _unchanged(name, msg): """ Utility function: Return structure unchanged """ return {"name": name, "result": True, "comment": msg, "changes": {}}
[ "def", "_unchanged", "(", "name", ",", "msg", ")", ":", "return", "{", "\"name\"", ":", "name", ",", "\"result\"", ":", "True", ",", "\"comment\"", ":", "msg", ",", "\"changes\"", ":", "{", "}", "}" ]
https://github.com/saltstack/salt/blob/fae5bc757ad0f1716483ce7ae180b451545c2058/salt/states/ceph.py#L15-L19
vertica/vertica-python
67323cee6209a6326affbca7dd33f1468a1ad797
vertica_python/compat.py
python
as_bytes
(bytes_or_text, encoding='utf-8')
Converts either bytes or unicode to `bytes`, using utf-8 encoding for text. Args: bytes_or_text: A `bytes`, `bytearray`, `str`, or `unicode` object. encoding: A string indicating the charset for encoding unicode. Returns: A `bytes` object. Raises: TypeError: If `bytes_or_text` is not a binary or unicode string.
Converts either bytes or unicode to `bytes`, using utf-8 encoding for text. Args: bytes_or_text: A `bytes`, `bytearray`, `str`, or `unicode` object. encoding: A string indicating the charset for encoding unicode. Returns: A `bytes` object. Raises: TypeError: If `bytes_or_text` is not a binary or unicode string.
[ "Converts", "either", "bytes", "or", "unicode", "to", "bytes", "using", "utf", "-", "8", "encoding", "for", "text", ".", "Args", ":", "bytes_or_text", ":", "A", "bytes", "bytearray", "str", "or", "unicode", "object", ".", "encoding", ":", "A", "string", "indicating", "the", "charset", "for", "encoding", "unicode", ".", "Returns", ":", "A", "bytes", "object", ".", "Raises", ":", "TypeError", ":", "If", "bytes_or_text", "is", "not", "a", "binary", "or", "unicode", "string", "." ]
def as_bytes(bytes_or_text, encoding='utf-8'): """Converts either bytes or unicode to `bytes`, using utf-8 encoding for text. Args: bytes_or_text: A `bytes`, `bytearray`, `str`, or `unicode` object. encoding: A string indicating the charset for encoding unicode. Returns: A `bytes` object. Raises: TypeError: If `bytes_or_text` is not a binary or unicode string. """ if isinstance(bytes_or_text, _six.text_type): return bytes_or_text.encode(encoding) elif isinstance(bytes_or_text, bytearray): return bytes(bytes_or_text) elif isinstance(bytes_or_text, bytes): return bytes_or_text else: raise TypeError('Expected binary or unicode string, got %r' % (bytes_or_text,))
[ "def", "as_bytes", "(", "bytes_or_text", ",", "encoding", "=", "'utf-8'", ")", ":", "if", "isinstance", "(", "bytes_or_text", ",", "_six", ".", "text_type", ")", ":", "return", "bytes_or_text", ".", "encode", "(", "encoding", ")", "elif", "isinstance", "(", "bytes_or_text", ",", "bytearray", ")", ":", "return", "bytes", "(", "bytes_or_text", ")", "elif", "isinstance", "(", "bytes_or_text", ",", "bytes", ")", ":", "return", "bytes_or_text", "else", ":", "raise", "TypeError", "(", "'Expected binary or unicode string, got %r'", "%", "(", "bytes_or_text", ",", ")", ")" ]
https://github.com/vertica/vertica-python/blob/67323cee6209a6326affbca7dd33f1468a1ad797/vertica_python/compat.py#L73-L91
twilio/twilio-python
6e1e811ea57a1edfadd5161ace87397c563f6915
twilio/rest/messaging/v1/service/__init__.py
python
ServiceInstance.fallback_url
(self)
return self._properties['fallback_url']
:returns: The URL that we call using fallback_method if an error occurs while retrieving or executing the TwiML from the Inbound Request URL. This field will be overridden if the `use_inbound_webhook_on_number` field is enabled. :rtype: unicode
:returns: The URL that we call using fallback_method if an error occurs while retrieving or executing the TwiML from the Inbound Request URL. This field will be overridden if the `use_inbound_webhook_on_number` field is enabled. :rtype: unicode
[ ":", "returns", ":", "The", "URL", "that", "we", "call", "using", "fallback_method", "if", "an", "error", "occurs", "while", "retrieving", "or", "executing", "the", "TwiML", "from", "the", "Inbound", "Request", "URL", ".", "This", "field", "will", "be", "overridden", "if", "the", "use_inbound_webhook_on_number", "field", "is", "enabled", ".", ":", "rtype", ":", "unicode" ]
def fallback_url(self): """ :returns: The URL that we call using fallback_method if an error occurs while retrieving or executing the TwiML from the Inbound Request URL. This field will be overridden if the `use_inbound_webhook_on_number` field is enabled. :rtype: unicode """ return self._properties['fallback_url']
[ "def", "fallback_url", "(", "self", ")", ":", "return", "self", ".", "_properties", "[", "'fallback_url'", "]" ]
https://github.com/twilio/twilio-python/blob/6e1e811ea57a1edfadd5161ace87397c563f6915/twilio/rest/messaging/v1/service/__init__.py#L541-L546
dimagi/commcare-hq
d67ff1d3b4c51fa050c19e60c3253a79d3452a39
corehq/toggles.py
python
all_toggles_by_name
()
return core_toggles
[]
def all_toggles_by_name(): # trick for listing the attributes of the current module. # http://stackoverflow.com/a/990450/8207 core_toggles = all_toggles_by_name_in_scope(globals()) for module_name in custom_toggle_modules(): module = import_module(module_name) core_toggles.update(all_toggles_by_name_in_scope(module.__dict__)) return core_toggles
[ "def", "all_toggles_by_name", "(", ")", ":", "# trick for listing the attributes of the current module.", "# http://stackoverflow.com/a/990450/8207", "core_toggles", "=", "all_toggles_by_name_in_scope", "(", "globals", "(", ")", ")", "for", "module_name", "in", "custom_toggle_modules", "(", ")", ":", "module", "=", "import_module", "(", "module_name", ")", "core_toggles", ".", "update", "(", "all_toggles_by_name_in_scope", "(", "module", ".", "__dict__", ")", ")", "return", "core_toggles" ]
https://github.com/dimagi/commcare-hq/blob/d67ff1d3b4c51fa050c19e60c3253a79d3452a39/corehq/toggles.py#L488-L495
natashamjaques/neural_chat
ddb977bb4602a67c460d02231e7bbf7b2cb49a97
ParlAI/parlai/mturk/tasks/light/light_chats/graph.py
python
Graph.get_props_from_either
(self, id1, id2, prop)
return resp1, resp2
Try to get ones own prop, fallback to other's prop. Do this for both provided ids symmetrically
Try to get ones own prop, fallback to other's prop. Do this for both provided ids symmetrically
[ "Try", "to", "get", "ones", "own", "prop", "fallback", "to", "other", "s", "prop", ".", "Do", "this", "for", "both", "provided", "ids", "symmetrically" ]
def get_props_from_either(self, id1, id2, prop): """Try to get ones own prop, fallback to other's prop. Do this for both provided ids symmetrically""" resp1 = self.get_prop(id1, prop, self.get_prop(id2, prop)) resp2 = self.get_prop(id2, prop, self.get_prop(id1, prop)) return resp1, resp2
[ "def", "get_props_from_either", "(", "self", ",", "id1", ",", "id2", ",", "prop", ")", ":", "resp1", "=", "self", ".", "get_prop", "(", "id1", ",", "prop", ",", "self", ".", "get_prop", "(", "id2", ",", "prop", ")", ")", "resp2", "=", "self", ".", "get_prop", "(", "id2", ",", "prop", ",", "self", ".", "get_prop", "(", "id1", ",", "prop", ")", ")", "return", "resp1", ",", "resp2" ]
https://github.com/natashamjaques/neural_chat/blob/ddb977bb4602a67c460d02231e7bbf7b2cb49a97/ParlAI/parlai/mturk/tasks/light/light_chats/graph.py#L3198-L3203
exodrifter/unity-python
bef6e4e9ddfbbf1eaf7acbbb973e9aa3dd64a20d
Lib/_osx_support.py
python
customize_compiler
(_config_vars)
return _config_vars
Customize compiler path and configuration variables. This customization is performed when the first extension module build is requested in distutils.sysconfig.customize_compiler).
Customize compiler path and configuration variables.
[ "Customize", "compiler", "path", "and", "configuration", "variables", "." ]
def customize_compiler(_config_vars): """Customize compiler path and configuration variables. This customization is performed when the first extension module build is requested in distutils.sysconfig.customize_compiler). """ # Find a compiler to use for extension module builds _find_appropriate_compiler(_config_vars) # Remove ppc arch flags if not supported here _remove_unsupported_archs(_config_vars) # Allow user to override all archs with ARCHFLAGS env var _override_all_archs(_config_vars) return _config_vars
[ "def", "customize_compiler", "(", "_config_vars", ")", ":", "# Find a compiler to use for extension module builds", "_find_appropriate_compiler", "(", "_config_vars", ")", "# Remove ppc arch flags if not supported here", "_remove_unsupported_archs", "(", "_config_vars", ")", "# Allow user to override all archs with ARCHFLAGS env var", "_override_all_archs", "(", "_config_vars", ")", "return", "_config_vars" ]
https://github.com/exodrifter/unity-python/blob/bef6e4e9ddfbbf1eaf7acbbb973e9aa3dd64a20d/Lib/_osx_support.py#L409-L426
galaxyproject/galaxy
4c03520f05062e0f4a1b3655dc0b7452fda69943
lib/galaxy/config/__init__.py
python
configure_logging
(config)
Allow some basic logging configuration to be read from ini file. This should be able to consume either a galaxy.config.Configuration object or a simple dictionary of configuration variables.
Allow some basic logging configuration to be read from ini file.
[ "Allow", "some", "basic", "logging", "configuration", "to", "be", "read", "from", "ini", "file", "." ]
def configure_logging(config): """Allow some basic logging configuration to be read from ini file. This should be able to consume either a galaxy.config.Configuration object or a simple dictionary of configuration variables. """ # Get root logger logging.addLevelName(LOGLV_TRACE, "TRACE") # PasteScript will have already configured the logger if the # 'loggers' section was found in the config file, otherwise we do # some simple setup using the 'log_*' values from the config. parser = getattr(config, "global_conf_parser", None) if parser: paste_configures_logging = config.global_conf_parser.has_section("loggers") else: paste_configures_logging = False auto_configure_logging = not paste_configures_logging and string_as_bool(config.get("auto_configure_logging", "True")) if auto_configure_logging: logging_conf = config.get('logging', None) if logging_conf is None: # if using the default logging config, honor the log_level setting logging_conf = LOGGING_CONFIG_DEFAULT if config.get('log_level', 'DEBUG') != 'DEBUG': logging_conf['handlers']['console']['level'] = config.get('log_level', 'DEBUG') # configure logging with logging dict in config, template *FileHandler handler filenames with the `filename_template` option for name, conf in logging_conf.get('handlers', {}).items(): if conf['class'].startswith('logging.') and conf['class'].endswith('FileHandler') and 'filename_template' in conf: conf['filename'] = conf.pop('filename_template').format(**get_stack_facts(config=config)) logging_conf['handlers'][name] = conf logging.config.dictConfig(logging_conf)
[ "def", "configure_logging", "(", "config", ")", ":", "# Get root logger", "logging", ".", "addLevelName", "(", "LOGLV_TRACE", ",", "\"TRACE\"", ")", "# PasteScript will have already configured the logger if the", "# 'loggers' section was found in the config file, otherwise we do", "# some simple setup using the 'log_*' values from the config.", "parser", "=", "getattr", "(", "config", ",", "\"global_conf_parser\"", ",", "None", ")", "if", "parser", ":", "paste_configures_logging", "=", "config", ".", "global_conf_parser", ".", "has_section", "(", "\"loggers\"", ")", "else", ":", "paste_configures_logging", "=", "False", "auto_configure_logging", "=", "not", "paste_configures_logging", "and", "string_as_bool", "(", "config", ".", "get", "(", "\"auto_configure_logging\"", ",", "\"True\"", ")", ")", "if", "auto_configure_logging", ":", "logging_conf", "=", "config", ".", "get", "(", "'logging'", ",", "None", ")", "if", "logging_conf", "is", "None", ":", "# if using the default logging config, honor the log_level setting", "logging_conf", "=", "LOGGING_CONFIG_DEFAULT", "if", "config", ".", "get", "(", "'log_level'", ",", "'DEBUG'", ")", "!=", "'DEBUG'", ":", "logging_conf", "[", "'handlers'", "]", "[", "'console'", "]", "[", "'level'", "]", "=", "config", ".", "get", "(", "'log_level'", ",", "'DEBUG'", ")", "# configure logging with logging dict in config, template *FileHandler handler filenames with the `filename_template` option", "for", "name", ",", "conf", "in", "logging_conf", ".", "get", "(", "'handlers'", ",", "{", "}", ")", ".", "items", "(", ")", ":", "if", "conf", "[", "'class'", "]", ".", "startswith", "(", "'logging.'", ")", "and", "conf", "[", "'class'", "]", ".", "endswith", "(", "'FileHandler'", ")", "and", "'filename_template'", "in", "conf", ":", "conf", "[", "'filename'", "]", "=", "conf", ".", "pop", "(", "'filename_template'", ")", ".", "format", "(", "*", "*", "get_stack_facts", "(", "config", "=", "config", ")", ")", "logging_conf", "[", "'handlers'", "]", "[", "name", "]", "=", "conf", "logging", ".", "config", ".", "dictConfig", "(", "logging_conf", ")" ]
https://github.com/galaxyproject/galaxy/blob/4c03520f05062e0f4a1b3655dc0b7452fda69943/lib/galaxy/config/__init__.py#L1176-L1205
ashual/scene_generation
6f6fe6afffae58da94c0c061e4dcaf273cdb9f44
scene_generation/vis.py
python
draw_scene_graph
(objs, triples, vocab=None, **kwargs)
return img
Use GraphViz to draw a scene graph. If vocab is not passed then we assume that objs and triples are python lists containing strings for object and relationship names. Using this requires that GraphViz is installed. On Ubuntu 16.04 this is easy: sudo apt-get install graphviz
Use GraphViz to draw a scene graph. If vocab is not passed then we assume that objs and triples are python lists containing strings for object and relationship names.
[ "Use", "GraphViz", "to", "draw", "a", "scene", "graph", ".", "If", "vocab", "is", "not", "passed", "then", "we", "assume", "that", "objs", "and", "triples", "are", "python", "lists", "containing", "strings", "for", "object", "and", "relationship", "names", "." ]
def draw_scene_graph(objs, triples, vocab=None, **kwargs): """ Use GraphViz to draw a scene graph. If vocab is not passed then we assume that objs and triples are python lists containing strings for object and relationship names. Using this requires that GraphViz is installed. On Ubuntu 16.04 this is easy: sudo apt-get install graphviz """ output_filename = kwargs.pop('output_filename', 'graph.png') orientation = kwargs.pop('orientation', 'V') edge_width = kwargs.pop('edge_width', 6) arrow_size = kwargs.pop('arrow_size', 1.5) binary_edge_weight = kwargs.pop('binary_edge_weight', 1.2) ignore_dummies = kwargs.pop('ignore_dummies', True) if orientation not in ['V', 'H']: raise ValueError('Invalid orientation "%s"' % orientation) rankdir = {'H': 'LR', 'V': 'TD'}[orientation] if vocab is not None: # Decode object and relationship names assert torch.is_tensor(objs) assert torch.is_tensor(triples) objs_list, triples_list = [], [] idx_to_obj = ['__image__'] + vocab['my_idx_to_obj'] for i in range(objs.size(0)): objs_list.append(idx_to_obj[objs[i].item()]) for i in range(triples.size(0)): s = triples[i, 0].item() p = vocab['pred_idx_to_name'][triples[i, 1].item()] o = triples[i, 2].item() triples_list.append([s, p, o]) objs, triples = objs_list, triples_list # General setup, and style for object nodes lines = [ 'digraph{', 'graph [size="5,3",ratio="compress",dpi="300",bgcolor="transparent"]', 'rankdir=%s' % rankdir, 'nodesep="0.5"', 'ranksep="0.5"', 'node [shape="box",style="rounded,filled",fontsize="48",color="none"]', 'node [fillcolor="lightpink1"]', ] # Output nodes for objects for i, obj in enumerate(objs): if ignore_dummies and obj == '__image__': continue lines.append('%d [label="%s"]' % (i, obj)) # Output relationships next_node_id = len(objs) lines.append('node [fillcolor="lightblue1"]') for s, p, o in triples: if ignore_dummies and p == '__in_image__': continue lines += [ '%d [label="%s"]' % (next_node_id, p), '%d->%d [penwidth=%f,arrowsize=%f,weight=%f]' % ( s, next_node_id, edge_width, arrow_size, binary_edge_weight), '%d->%d [penwidth=%f,arrowsize=%f,weight=%f]' % ( next_node_id, o, edge_width, arrow_size, binary_edge_weight) ] next_node_id += 1 lines.append('}') # Now it gets slightly hacky. Write the graphviz spec to a temporary # text file ff, dot_filename = tempfile.mkstemp() with open(dot_filename, 'w') as f: for line in lines: f.write('%s\n' % line) os.close(ff) # Shell out to invoke graphviz; this will save the resulting image to disk, # so we read it, delete it, then return it. output_format = os.path.splitext(output_filename)[1][1:] os.system('dot -T%s %s > %s' % (output_format, dot_filename, output_filename)) os.remove(dot_filename) img = imread(output_filename) os.remove(output_filename) return img
[ "def", "draw_scene_graph", "(", "objs", ",", "triples", ",", "vocab", "=", "None", ",", "*", "*", "kwargs", ")", ":", "output_filename", "=", "kwargs", ".", "pop", "(", "'output_filename'", ",", "'graph.png'", ")", "orientation", "=", "kwargs", ".", "pop", "(", "'orientation'", ",", "'V'", ")", "edge_width", "=", "kwargs", ".", "pop", "(", "'edge_width'", ",", "6", ")", "arrow_size", "=", "kwargs", ".", "pop", "(", "'arrow_size'", ",", "1.5", ")", "binary_edge_weight", "=", "kwargs", ".", "pop", "(", "'binary_edge_weight'", ",", "1.2", ")", "ignore_dummies", "=", "kwargs", ".", "pop", "(", "'ignore_dummies'", ",", "True", ")", "if", "orientation", "not", "in", "[", "'V'", ",", "'H'", "]", ":", "raise", "ValueError", "(", "'Invalid orientation \"%s\"'", "%", "orientation", ")", "rankdir", "=", "{", "'H'", ":", "'LR'", ",", "'V'", ":", "'TD'", "}", "[", "orientation", "]", "if", "vocab", "is", "not", "None", ":", "# Decode object and relationship names", "assert", "torch", ".", "is_tensor", "(", "objs", ")", "assert", "torch", ".", "is_tensor", "(", "triples", ")", "objs_list", ",", "triples_list", "=", "[", "]", ",", "[", "]", "idx_to_obj", "=", "[", "'__image__'", "]", "+", "vocab", "[", "'my_idx_to_obj'", "]", "for", "i", "in", "range", "(", "objs", ".", "size", "(", "0", ")", ")", ":", "objs_list", ".", "append", "(", "idx_to_obj", "[", "objs", "[", "i", "]", ".", "item", "(", ")", "]", ")", "for", "i", "in", "range", "(", "triples", ".", "size", "(", "0", ")", ")", ":", "s", "=", "triples", "[", "i", ",", "0", "]", ".", "item", "(", ")", "p", "=", "vocab", "[", "'pred_idx_to_name'", "]", "[", "triples", "[", "i", ",", "1", "]", ".", "item", "(", ")", "]", "o", "=", "triples", "[", "i", ",", "2", "]", ".", "item", "(", ")", "triples_list", ".", "append", "(", "[", "s", ",", "p", ",", "o", "]", ")", "objs", ",", "triples", "=", "objs_list", ",", "triples_list", "# General setup, and style for object nodes", "lines", "=", "[", "'digraph{'", ",", "'graph [size=\"5,3\",ratio=\"compress\",dpi=\"300\",bgcolor=\"transparent\"]'", ",", "'rankdir=%s'", "%", "rankdir", ",", "'nodesep=\"0.5\"'", ",", "'ranksep=\"0.5\"'", ",", "'node [shape=\"box\",style=\"rounded,filled\",fontsize=\"48\",color=\"none\"]'", ",", "'node [fillcolor=\"lightpink1\"]'", ",", "]", "# Output nodes for objects", "for", "i", ",", "obj", "in", "enumerate", "(", "objs", ")", ":", "if", "ignore_dummies", "and", "obj", "==", "'__image__'", ":", "continue", "lines", ".", "append", "(", "'%d [label=\"%s\"]'", "%", "(", "i", ",", "obj", ")", ")", "# Output relationships", "next_node_id", "=", "len", "(", "objs", ")", "lines", ".", "append", "(", "'node [fillcolor=\"lightblue1\"]'", ")", "for", "s", ",", "p", ",", "o", "in", "triples", ":", "if", "ignore_dummies", "and", "p", "==", "'__in_image__'", ":", "continue", "lines", "+=", "[", "'%d [label=\"%s\"]'", "%", "(", "next_node_id", ",", "p", ")", ",", "'%d->%d [penwidth=%f,arrowsize=%f,weight=%f]'", "%", "(", "s", ",", "next_node_id", ",", "edge_width", ",", "arrow_size", ",", "binary_edge_weight", ")", ",", "'%d->%d [penwidth=%f,arrowsize=%f,weight=%f]'", "%", "(", "next_node_id", ",", "o", ",", "edge_width", ",", "arrow_size", ",", "binary_edge_weight", ")", "]", "next_node_id", "+=", "1", "lines", ".", "append", "(", "'}'", ")", "# Now it gets slightly hacky. Write the graphviz spec to a temporary", "# text file", "ff", ",", "dot_filename", "=", "tempfile", ".", "mkstemp", "(", ")", "with", "open", "(", "dot_filename", ",", "'w'", ")", "as", "f", ":", "for", "line", "in", "lines", ":", "f", ".", "write", "(", "'%s\\n'", "%", "line", ")", "os", ".", "close", "(", "ff", ")", "# Shell out to invoke graphviz; this will save the resulting image to disk,", "# so we read it, delete it, then return it.", "output_format", "=", "os", ".", "path", ".", "splitext", "(", "output_filename", ")", "[", "1", "]", "[", "1", ":", "]", "os", ".", "system", "(", "'dot -T%s %s > %s'", "%", "(", "output_format", ",", "dot_filename", ",", "output_filename", ")", ")", "os", ".", "remove", "(", "dot_filename", ")", "img", "=", "imread", "(", "output_filename", ")", "os", ".", "remove", "(", "output_filename", ")", "return", "img" ]
https://github.com/ashual/scene_generation/blob/6f6fe6afffae58da94c0c061e4dcaf273cdb9f44/scene_generation/vis.py#L134-L217
zhl2008/awd-platform
0416b31abea29743387b10b3914581fbe8e7da5e
web_flaskbb/Python-2.7.9/Lib/posixpath.py
python
normpath
(path)
return path or dot
Normalize path, eliminating double slashes, etc.
Normalize path, eliminating double slashes, etc.
[ "Normalize", "path", "eliminating", "double", "slashes", "etc", "." ]
def normpath(path): """Normalize path, eliminating double slashes, etc.""" # Preserve unicode (if path is unicode) slash, dot = (u'/', u'.') if isinstance(path, _unicode) else ('/', '.') if path == '': return dot initial_slashes = path.startswith('/') # POSIX allows one or two initial slashes, but treats three or more # as single slash. if (initial_slashes and path.startswith('//') and not path.startswith('///')): initial_slashes = 2 comps = path.split('/') new_comps = [] for comp in comps: if comp in ('', '.'): continue if (comp != '..' or (not initial_slashes and not new_comps) or (new_comps and new_comps[-1] == '..')): new_comps.append(comp) elif new_comps: new_comps.pop() comps = new_comps path = slash.join(comps) if initial_slashes: path = slash*initial_slashes + path return path or dot
[ "def", "normpath", "(", "path", ")", ":", "# Preserve unicode (if path is unicode)", "slash", ",", "dot", "=", "(", "u'/'", ",", "u'.'", ")", "if", "isinstance", "(", "path", ",", "_unicode", ")", "else", "(", "'/'", ",", "'.'", ")", "if", "path", "==", "''", ":", "return", "dot", "initial_slashes", "=", "path", ".", "startswith", "(", "'/'", ")", "# POSIX allows one or two initial slashes, but treats three or more", "# as single slash.", "if", "(", "initial_slashes", "and", "path", ".", "startswith", "(", "'//'", ")", "and", "not", "path", ".", "startswith", "(", "'///'", ")", ")", ":", "initial_slashes", "=", "2", "comps", "=", "path", ".", "split", "(", "'/'", ")", "new_comps", "=", "[", "]", "for", "comp", "in", "comps", ":", "if", "comp", "in", "(", "''", ",", "'.'", ")", ":", "continue", "if", "(", "comp", "!=", "'..'", "or", "(", "not", "initial_slashes", "and", "not", "new_comps", ")", "or", "(", "new_comps", "and", "new_comps", "[", "-", "1", "]", "==", "'..'", ")", ")", ":", "new_comps", ".", "append", "(", "comp", ")", "elif", "new_comps", ":", "new_comps", ".", "pop", "(", ")", "comps", "=", "new_comps", "path", "=", "slash", ".", "join", "(", "comps", ")", "if", "initial_slashes", ":", "path", "=", "slash", "*", "initial_slashes", "+", "path", "return", "path", "or", "dot" ]
https://github.com/zhl2008/awd-platform/blob/0416b31abea29743387b10b3914581fbe8e7da5e/web_flaskbb/Python-2.7.9/Lib/posixpath.py#L336-L362
cbanack/comic-vine-scraper
8a7071796c61a9483079ad0e9ade56fcb7596bcd
src/py/utils/imagehash.py
python
hash
(image)
return __perceptual_hash(image)
Returns an image hash for the given .NET Image. The hash values for two images can be compared by calling: similarity(hash(image1), hash2(image2)). The given images are not modified in any way, nor are they Disposed.
Returns an image hash for the given .NET Image. The hash values for two images can be compared by calling: similarity(hash(image1), hash2(image2)). The given images are not modified in any way, nor are they Disposed.
[ "Returns", "an", "image", "hash", "for", "the", "given", ".", "NET", "Image", ".", "The", "hash", "values", "for", "two", "images", "can", "be", "compared", "by", "calling", ":", "similarity", "(", "hash", "(", "image1", ")", "hash2", "(", "image2", "))", ".", "The", "given", "images", "are", "not", "modified", "in", "any", "way", "nor", "are", "they", "Disposed", "." ]
def hash(image): ''' Returns an image hash for the given .NET Image. The hash values for two images can be compared by calling: similarity(hash(image1), hash2(image2)). The given images are not modified in any way, nor are they Disposed. ''' return __perceptual_hash(image)
[ "def", "hash", "(", "image", ")", ":", "return", "__perceptual_hash", "(", "image", ")" ]
https://github.com/cbanack/comic-vine-scraper/blob/8a7071796c61a9483079ad0e9ade56fcb7596bcd/src/py/utils/imagehash.py#L20-L29
w3h/isf
6faf0a3df185465ec17369c90ccc16e2a03a1870
lib/thirdparty/Crypto/Cipher/PKCS1_v1_5.py
python
new
(key)
return PKCS115_Cipher(key)
Return a cipher object `PKCS115_Cipher` that can be used to perform PKCS#1 v1.5 encryption or decryption. :Parameters: key : RSA key object The key to use to encrypt or decrypt the message. This is a `Crypto.PublicKey.RSA` object. Decryption is only possible if *key* is a private RSA key.
Return a cipher object `PKCS115_Cipher` that can be used to perform PKCS#1 v1.5 encryption or decryption.
[ "Return", "a", "cipher", "object", "PKCS115_Cipher", "that", "can", "be", "used", "to", "perform", "PKCS#1", "v1", ".", "5", "encryption", "or", "decryption", "." ]
def new(key): """Return a cipher object `PKCS115_Cipher` that can be used to perform PKCS#1 v1.5 encryption or decryption. :Parameters: key : RSA key object The key to use to encrypt or decrypt the message. This is a `Crypto.PublicKey.RSA` object. Decryption is only possible if *key* is a private RSA key. """ return PKCS115_Cipher(key)
[ "def", "new", "(", "key", ")", ":", "return", "PKCS115_Cipher", "(", "key", ")" ]
https://github.com/w3h/isf/blob/6faf0a3df185465ec17369c90ccc16e2a03a1870/lib/thirdparty/Crypto/Cipher/PKCS1_v1_5.py#L216-L225
XiaoMi/minos
164454a0804fb7eb7e14052327bdd4d5572c2697
build/virtual_bootstrap/virtual_bootstrap.py
python
Logger.stdout_level_matches
(self, level)
return self.level_matches(level, self._stdout_level())
Returns true if a message at this level will go to stdout
Returns true if a message at this level will go to stdout
[ "Returns", "true", "if", "a", "message", "at", "this", "level", "will", "go", "to", "stdout" ]
def stdout_level_matches(self, level): """Returns true if a message at this level will go to stdout""" return self.level_matches(level, self._stdout_level())
[ "def", "stdout_level_matches", "(", "self", ",", "level", ")", ":", "return", "self", ".", "level_matches", "(", "level", ",", "self", ".", "_stdout_level", "(", ")", ")" ]
https://github.com/XiaoMi/minos/blob/164454a0804fb7eb7e14052327bdd4d5572c2697/build/virtual_bootstrap/virtual_bootstrap.py#L392-L394
j4mie/sqlsite
f2dadb8db5ed7880f8872b6591d8cb1487f777ea
sqlsite/routing.py
python
search_path
(pattern, path)
return re.search(regex, path)
Given a pattern (ie the contents of the pattern column in the route table) and the path of an incoming request (without the leading slash), convert the pattern to a regex and return a match object captured from the path
Given a pattern (ie the contents of the pattern column in the route table) and the path of an incoming request (without the leading slash), convert the pattern to a regex and return a match object captured from the path
[ "Given", "a", "pattern", "(", "ie", "the", "contents", "of", "the", "pattern", "column", "in", "the", "route", "table", ")", "and", "the", "path", "of", "an", "incoming", "request", "(", "without", "the", "leading", "slash", ")", "convert", "the", "pattern", "to", "a", "regex", "and", "return", "a", "match", "object", "captured", "from", "the", "path" ]
def search_path(pattern, path): """ Given a pattern (ie the contents of the pattern column in the route table) and the path of an incoming request (without the leading slash), convert the pattern to a regex and return a match object captured from the path """ regex = pattern_to_regex(pattern) if regex.endswith("/$"): regex = regex[:-2] + "/?$" return re.search(regex, path)
[ "def", "search_path", "(", "pattern", ",", "path", ")", ":", "regex", "=", "pattern_to_regex", "(", "pattern", ")", "if", "regex", ".", "endswith", "(", "\"/$\"", ")", ":", "regex", "=", "regex", "[", ":", "-", "2", "]", "+", "\"/?$\"", "return", "re", ".", "search", "(", "regex", ",", "path", ")" ]
https://github.com/j4mie/sqlsite/blob/f2dadb8db5ed7880f8872b6591d8cb1487f777ea/sqlsite/routing.py#L52-L61
stoq/stoq
c26991644d1affcf96bc2e0a0434796cabdf8448
stoq/lib/gui/actions/base.py
python
BaseActions.set_action_enabled
(self, action, sensitive)
Enables or disables an action :param action: the action name :param sensitive: If the action is enabled or disabled
Enables or disables an action
[ "Enables", "or", "disables", "an", "action" ]
def set_action_enabled(self, action, sensitive): """Enables or disables an action :param action: the action name :param sensitive: If the action is enabled or disabled """ action = self._actions[action] action.set_enabled(bool(sensitive))
[ "def", "set_action_enabled", "(", "self", ",", "action", ",", "sensitive", ")", ":", "action", "=", "self", ".", "_actions", "[", "action", "]", "action", ".", "set_enabled", "(", "bool", "(", "sensitive", ")", ")" ]
https://github.com/stoq/stoq/blob/c26991644d1affcf96bc2e0a0434796cabdf8448/stoq/lib/gui/actions/base.py#L126-L133
Diamondfan/CTC_pytorch
eddd2550224dfe5ac28b6c4d20df5dde7eaf6119
my_863_corpus/steps/utils.py
python
process_map_file
(map_file)
return char_map, int2phone
Input: map_file : string label和数字的对应关系文件 Output: char_map : dict 对应关系字典 int2phone : dict 数字到label的对应关系
Input: map_file : string label和数字的对应关系文件 Output: char_map : dict 对应关系字典 int2phone : dict 数字到label的对应关系
[ "Input", ":", "map_file", ":", "string", "label和数字的对应关系文件", "Output", ":", "char_map", ":", "dict", "对应关系字典", "int2phone", ":", "dict", "数字到label的对应关系" ]
def process_map_file(map_file): ''' Input: map_file : string label和数字的对应关系文件 Output: char_map : dict 对应关系字典 int2phone : dict 数字到label的对应关系 ''' char_map = dict() int2phone = dict() f = open(map_file, 'r') for line in f.readlines(): char, num = line.strip().split(' ') char_map[char] = int(num) int2phone[int(num)] = char f.close() int2phone[0] = '#' return char_map, int2phone
[ "def", "process_map_file", "(", "map_file", ")", ":", "char_map", "=", "dict", "(", ")", "int2phone", "=", "dict", "(", ")", "f", "=", "open", "(", "map_file", ",", "'r'", ")", "for", "line", "in", "f", ".", "readlines", "(", ")", ":", "char", ",", "num", "=", "line", ".", "strip", "(", ")", ".", "split", "(", "' '", ")", "char_map", "[", "char", "]", "=", "int", "(", "num", ")", "int2phone", "[", "int", "(", "num", ")", "]", "=", "char", "f", ".", "close", "(", ")", "int2phone", "[", "0", "]", "=", "'#'", "return", "char_map", ",", "int2phone" ]
https://github.com/Diamondfan/CTC_pytorch/blob/eddd2550224dfe5ac28b6c4d20df5dde7eaf6119/my_863_corpus/steps/utils.py#L130-L147
JaniceWuo/MovieRecommend
4c86db64ca45598917d304f535413df3bc9fea65
movierecommend/venv1/Lib/site-packages/pip-9.0.1-py3.6.egg/pip/_vendor/pkg_resources/__init__.py
python
Requirement.__eq__
(self, other)
return ( isinstance(other, Requirement) and self.hashCmp == other.hashCmp )
[]
def __eq__(self, other): return ( isinstance(other, Requirement) and self.hashCmp == other.hashCmp )
[ "def", "__eq__", "(", "self", ",", "other", ")", ":", "return", "(", "isinstance", "(", "other", ",", "Requirement", ")", "and", "self", ".", "hashCmp", "==", "other", ".", "hashCmp", ")" ]
https://github.com/JaniceWuo/MovieRecommend/blob/4c86db64ca45598917d304f535413df3bc9fea65/movierecommend/venv1/Lib/site-packages/pip-9.0.1-py3.6.egg/pip/_vendor/pkg_resources/__init__.py#L2891-L2895
zhl2008/awd-platform
0416b31abea29743387b10b3914581fbe8e7da5e
web_hxb2/lib/python3.5/site-packages/pkg_resources/__init__.py
python
Environment.__getitem__
(self, project_name)
return self._distmap.get(distribution_key, [])
Return a newest-to-oldest list of distributions for `project_name` Uses case-insensitive `project_name` comparison, assuming all the project's distributions use their project's name converted to all lowercase as their key.
Return a newest-to-oldest list of distributions for `project_name`
[ "Return", "a", "newest", "-", "to", "-", "oldest", "list", "of", "distributions", "for", "project_name" ]
def __getitem__(self, project_name): """Return a newest-to-oldest list of distributions for `project_name` Uses case-insensitive `project_name` comparison, assuming all the project's distributions use their project's name converted to all lowercase as their key. """ distribution_key = project_name.lower() return self._distmap.get(distribution_key, [])
[ "def", "__getitem__", "(", "self", ",", "project_name", ")", ":", "distribution_key", "=", "project_name", ".", "lower", "(", ")", "return", "self", ".", "_distmap", ".", "get", "(", "distribution_key", ",", "[", "]", ")" ]
https://github.com/zhl2008/awd-platform/blob/0416b31abea29743387b10b3914581fbe8e7da5e/web_hxb2/lib/python3.5/site-packages/pkg_resources/__init__.py#L1100-L1109
wistbean/fxxkpython
88e16d79d8dd37236ba6ecd0d0ff11d63143968c
vip/qyxuan/projects/venv/lib/python3.6/site-packages/pip-19.0.3-py3.6.egg/pip/_vendor/ipaddress.py
python
_BaseNetwork.is_loopback
(self)
return (self.network_address.is_loopback and self.broadcast_address.is_loopback)
Test if the address is a loopback address. Returns: A boolean, True if the address is a loopback address as defined in RFC 2373 2.5.3.
Test if the address is a loopback address.
[ "Test", "if", "the", "address", "is", "a", "loopback", "address", "." ]
def is_loopback(self): """Test if the address is a loopback address. Returns: A boolean, True if the address is a loopback address as defined in RFC 2373 2.5.3. """ return (self.network_address.is_loopback and self.broadcast_address.is_loopback)
[ "def", "is_loopback", "(", "self", ")", ":", "return", "(", "self", ".", "network_address", ".", "is_loopback", "and", "self", ".", "broadcast_address", ".", "is_loopback", ")" ]
https://github.com/wistbean/fxxkpython/blob/88e16d79d8dd37236ba6ecd0d0ff11d63143968c/vip/qyxuan/projects/venv/lib/python3.6/site-packages/pip-19.0.3-py3.6.egg/pip/_vendor/ipaddress.py#L1180-L1189
sagemath/sage
f9b2db94f675ff16963ccdefba4f1a3393b3fe0d
src/sage/interfaces/octave.py
python
Octave.__init__
(self, maxread=None, script_subdirectory=None, logfile=None, server=None, server_tmpdir=None, seed=None, command=None)
EXAMPLES:: sage: octave == loads(dumps(octave)) True
EXAMPLES::
[ "EXAMPLES", "::" ]
def __init__(self, maxread=None, script_subdirectory=None, logfile=None, server=None, server_tmpdir=None, seed=None, command=None): """ EXAMPLES:: sage: octave == loads(dumps(octave)) True """ if command is None: command = os.getenv('SAGE_OCTAVE_COMMAND') or 'octave-cli' if server is None: server = os.getenv('SAGE_OCTAVE_SERVER') or None Expect.__init__(self, name = 'octave', # We want the prompt sequence to be unique to avoid confusion with syntax error messages containing >>> prompt = r'octave\:\d+> ', # We don't want any pagination of output command = command + " --no-line-editing --silent --eval 'PS2(PS1());more off' --persist", maxread = maxread, server = server, server_tmpdir = server_tmpdir, script_subdirectory = script_subdirectory, restart_on_ctrlc = False, verbose_start = False, logfile = logfile, eval_using_file_cutoff=100) self._seed = seed
[ "def", "__init__", "(", "self", ",", "maxread", "=", "None", ",", "script_subdirectory", "=", "None", ",", "logfile", "=", "None", ",", "server", "=", "None", ",", "server_tmpdir", "=", "None", ",", "seed", "=", "None", ",", "command", "=", "None", ")", ":", "if", "command", "is", "None", ":", "command", "=", "os", ".", "getenv", "(", "'SAGE_OCTAVE_COMMAND'", ")", "or", "'octave-cli'", "if", "server", "is", "None", ":", "server", "=", "os", ".", "getenv", "(", "'SAGE_OCTAVE_SERVER'", ")", "or", "None", "Expect", ".", "__init__", "(", "self", ",", "name", "=", "'octave'", ",", "# We want the prompt sequence to be unique to avoid confusion with syntax error messages containing >>>", "prompt", "=", "r'octave\\:\\d+> '", ",", "# We don't want any pagination of output", "command", "=", "command", "+", "\" --no-line-editing --silent --eval 'PS2(PS1());more off' --persist\"", ",", "maxread", "=", "maxread", ",", "server", "=", "server", ",", "server_tmpdir", "=", "server_tmpdir", ",", "script_subdirectory", "=", "script_subdirectory", ",", "restart_on_ctrlc", "=", "False", ",", "verbose_start", "=", "False", ",", "logfile", "=", "logfile", ",", "eval_using_file_cutoff", "=", "100", ")", "self", ".", "_seed", "=", "seed" ]
https://github.com/sagemath/sage/blob/f9b2db94f675ff16963ccdefba4f1a3393b3fe0d/src/sage/interfaces/octave.py#L177-L203
dpressel/mead-baseline
9987e6b37fa6525a4ddc187c305e292a718f59a9
layers/eight_mile/pytorch/layers.py
python
MeanPool1D.__init__
(self, outsz, batch_first=True)
Set up pooling module :param outsz: The output dim, for dowstream access :param batch_first: Is this module batch first or time first?
Set up pooling module
[ "Set", "up", "pooling", "module" ]
def __init__(self, outsz, batch_first=True): """Set up pooling module :param outsz: The output dim, for dowstream access :param batch_first: Is this module batch first or time first? """ super().__init__() self.batch_first = batch_first self.reduction_dim = 1 if self.batch_first else 0 self.output_dim = outsz self.requires_length = True
[ "def", "__init__", "(", "self", ",", "outsz", ",", "batch_first", "=", "True", ")", ":", "super", "(", ")", ".", "__init__", "(", ")", "self", ".", "batch_first", "=", "batch_first", "self", ".", "reduction_dim", "=", "1", "if", "self", ".", "batch_first", "else", "0", "self", ".", "output_dim", "=", "outsz", "self", ".", "requires_length", "=", "True" ]
https://github.com/dpressel/mead-baseline/blob/9987e6b37fa6525a4ddc187c305e292a718f59a9/layers/eight_mile/pytorch/layers.py#L241-L251
inventree/InvenTree
4a5e4a88ac3e91d64a21e8cab3708ecbc6e2bd8b
InvenTree/plugin/registry.py
python
PluginsRegistry._activate_plugins
(self, force_reload=False)
Run integration functions for all plugins :param force_reload: force reload base apps, defaults to False :type force_reload: bool, optional
Run integration functions for all plugins
[ "Run", "integration", "functions", "for", "all", "plugins" ]
def _activate_plugins(self, force_reload=False): """ Run integration functions for all plugins :param force_reload: force reload base apps, defaults to False :type force_reload: bool, optional """ # activate integrations plugins = self.plugins.items() logger.info(f'Found {len(plugins)} active plugins') self.activate_integration_settings(plugins) self.activate_integration_schedule(plugins) self.activate_integration_app(plugins, force_reload=force_reload)
[ "def", "_activate_plugins", "(", "self", ",", "force_reload", "=", "False", ")", ":", "# activate integrations", "plugins", "=", "self", ".", "plugins", ".", "items", "(", ")", "logger", ".", "info", "(", "f'Found {len(plugins)} active plugins'", ")", "self", ".", "activate_integration_settings", "(", "plugins", ")", "self", ".", "activate_integration_schedule", "(", "plugins", ")", "self", ".", "activate_integration_app", "(", "plugins", ",", "force_reload", "=", "force_reload", ")" ]
https://github.com/inventree/InvenTree/blob/4a5e4a88ac3e91d64a21e8cab3708ecbc6e2bd8b/InvenTree/plugin/registry.py#L256-L269
google-research/seed_rl
66e8890261f09d0355e8bf5f1c5e41968ca9f02b
agents/r2d2/learner.py
python
n_step_bellman_target
(rewards, done, q_target, gamma, n_steps)
return bellman_target
r"""Computes n-step Bellman targets. See section 2.3 of R2D2 paper (which does not mention the logic around end of episode). Args: rewards: <float32>[time, batch_size] tensor. This is r_t in the equations below. done: <bool>[time, batch_size] tensor. This is done_t in the equations below. done_t should be true if the episode is done just after experimenting reward r_t. q_target: <float32>[time, batch_size] tensor. This is Q_target(s_{t+1}, a*) (where a* is an action chosen by the caller). gamma: Exponential RL discounting. n_steps: The number of steps to look ahead for computing the Bellman targets. Returns: y_t targets as <float32>[time, batch_size] tensor. When n_steps=1, this is just: $$r_t + gamma * (1 - done_t) * Q_{target}(s_{t+1}, a^*)$$ In the general case, this is: $$(\sum_{i=0}^{n-1} \gamma ^ {i} * notdone_{t, i-1} * r_{t + i}) + \gamma ^ n * notdone_{t, n-1} * Q_{target}(s_{t + n}, a^*) $$ where notdone_{t,i} is defined as: $$notdone_{t,i} = \prod_{k=0}^{k=i}(1 - done_{t+k})$$ The last n_step-1 targets cannot be computed with n_step returns, since we run out of Q_{target}(s_{t+n}). Instead, they will use n_steps-1, .., 1 step returns. For those last targets, the last Q_{target}(s_{t}, a^*) is re-used multiple times.
r"""Computes n-step Bellman targets.
[ "r", "Computes", "n", "-", "step", "Bellman", "targets", "." ]
def n_step_bellman_target(rewards, done, q_target, gamma, n_steps): r"""Computes n-step Bellman targets. See section 2.3 of R2D2 paper (which does not mention the logic around end of episode). Args: rewards: <float32>[time, batch_size] tensor. This is r_t in the equations below. done: <bool>[time, batch_size] tensor. This is done_t in the equations below. done_t should be true if the episode is done just after experimenting reward r_t. q_target: <float32>[time, batch_size] tensor. This is Q_target(s_{t+1}, a*) (where a* is an action chosen by the caller). gamma: Exponential RL discounting. n_steps: The number of steps to look ahead for computing the Bellman targets. Returns: y_t targets as <float32>[time, batch_size] tensor. When n_steps=1, this is just: $$r_t + gamma * (1 - done_t) * Q_{target}(s_{t+1}, a^*)$$ In the general case, this is: $$(\sum_{i=0}^{n-1} \gamma ^ {i} * notdone_{t, i-1} * r_{t + i}) + \gamma ^ n * notdone_{t, n-1} * Q_{target}(s_{t + n}, a^*) $$ where notdone_{t,i} is defined as: $$notdone_{t,i} = \prod_{k=0}^{k=i}(1 - done_{t+k})$$ The last n_step-1 targets cannot be computed with n_step returns, since we run out of Q_{target}(s_{t+n}). Instead, they will use n_steps-1, .., 1 step returns. For those last targets, the last Q_{target}(s_{t}, a^*) is re-used multiple times. """ # We append n_steps - 1 times the last q_target. They are divided by gamma ** # k to correct for the fact that they are at a 'fake' indice, and will # therefore end up being multiplied back by gamma ** k in the loop below. # We prepend 0s that will be discarded at the first iteration below. bellman_target = tf.concat( [tf.zeros_like(q_target[0:1]), q_target] + [q_target[-1:] / gamma ** k for k in range(1, n_steps)], axis=0) # Pad with n_steps 0s. They will be used to compute the last n_steps-1 # targets (having 0 values is important). done = tf.concat([done] + [tf.zeros_like(done[0:1])] * n_steps, axis=0) rewards = tf.concat([rewards] + [tf.zeros_like(rewards[0:1])] * n_steps, axis=0) # Iteratively build the n_steps targets. After the i-th iteration (1-based), # bellman_target is effectively the i-step returns. for _ in range(n_steps): rewards = rewards[:-1] done = done[:-1] bellman_target = ( rewards + gamma * (1. - tf.cast(done, tf.float32)) * bellman_target[1:]) return bellman_target
[ "def", "n_step_bellman_target", "(", "rewards", ",", "done", ",", "q_target", ",", "gamma", ",", "n_steps", ")", ":", "# We append n_steps - 1 times the last q_target. They are divided by gamma **", "# k to correct for the fact that they are at a 'fake' indice, and will", "# therefore end up being multiplied back by gamma ** k in the loop below.", "# We prepend 0s that will be discarded at the first iteration below.", "bellman_target", "=", "tf", ".", "concat", "(", "[", "tf", ".", "zeros_like", "(", "q_target", "[", "0", ":", "1", "]", ")", ",", "q_target", "]", "+", "[", "q_target", "[", "-", "1", ":", "]", "/", "gamma", "**", "k", "for", "k", "in", "range", "(", "1", ",", "n_steps", ")", "]", ",", "axis", "=", "0", ")", "# Pad with n_steps 0s. They will be used to compute the last n_steps-1", "# targets (having 0 values is important).", "done", "=", "tf", ".", "concat", "(", "[", "done", "]", "+", "[", "tf", ".", "zeros_like", "(", "done", "[", "0", ":", "1", "]", ")", "]", "*", "n_steps", ",", "axis", "=", "0", ")", "rewards", "=", "tf", ".", "concat", "(", "[", "rewards", "]", "+", "[", "tf", ".", "zeros_like", "(", "rewards", "[", "0", ":", "1", "]", ")", "]", "*", "n_steps", ",", "axis", "=", "0", ")", "# Iteratively build the n_steps targets. After the i-th iteration (1-based),", "# bellman_target is effectively the i-step returns.", "for", "_", "in", "range", "(", "n_steps", ")", ":", "rewards", "=", "rewards", "[", ":", "-", "1", "]", "done", "=", "done", "[", ":", "-", "1", "]", "bellman_target", "=", "(", "rewards", "+", "gamma", "*", "(", "1.", "-", "tf", ".", "cast", "(", "done", ",", "tf", ".", "float32", ")", ")", "*", "bellman_target", "[", "1", ":", "]", ")", "return", "bellman_target" ]
https://github.com/google-research/seed_rl/blob/66e8890261f09d0355e8bf5f1c5e41968ca9f02b/agents/r2d2/learner.py#L195-L255
termius/termius-cli
2664d0c70d3d682ad931b885b4965447b156c280
termius/cloud/client/cryptor.py
python
RNCryptor.encrypt
(self, data)
return self.post_encrypt_data(encrypted_data)
Encrypt data.
Encrypt data.
[ "Encrypt", "data", "." ]
def encrypt(self, data): """Encrypt data.""" data = self.pre_encrypt_data(data) encryption_salt = self.encryption_salt hmac_salt = self.hmac_salt hmac_key = self.hmac_key initialization_vector = self.initialization_vector cipher_text = self._aes_encrypt(initialization_vector, data) version = b'\x03' options = b'\x01' new_data = b''.join([ version, options, encryption_salt, hmac_salt, initialization_vector, cipher_text ]) encrypted_data = new_data + self._hmac(hmac_key, new_data) return self.post_encrypt_data(encrypted_data)
[ "def", "encrypt", "(", "self", ",", "data", ")", ":", "data", "=", "self", ".", "pre_encrypt_data", "(", "data", ")", "encryption_salt", "=", "self", ".", "encryption_salt", "hmac_salt", "=", "self", ".", "hmac_salt", "hmac_key", "=", "self", ".", "hmac_key", "initialization_vector", "=", "self", ".", "initialization_vector", "cipher_text", "=", "self", ".", "_aes_encrypt", "(", "initialization_vector", ",", "data", ")", "version", "=", "b'\\x03'", "options", "=", "b'\\x01'", "new_data", "=", "b''", ".", "join", "(", "[", "version", ",", "options", ",", "encryption_salt", ",", "hmac_salt", ",", "initialization_vector", ",", "cipher_text", "]", ")", "encrypted_data", "=", "new_data", "+", "self", ".", "_hmac", "(", "hmac_key", ",", "new_data", ")", "return", "self", ".", "post_encrypt_data", "(", "encrypted_data", ")" ]
https://github.com/termius/termius-cli/blob/2664d0c70d3d682ad931b885b4965447b156c280/termius/cloud/client/cryptor.py#L165-L187
msracver/Deep-Feature-Flow
297293cbe728f817b62c82d3abfbd226300086ef
lib/utils/image_processing.py
python
transform_inverse
(im_tensor, pixel_means)
return im
transform from mxnet im_tensor to ordinary RGB image im_tensor is limited to one image :param im_tensor: [batch, channel, height, width] :param pixel_means: [[[R, G, B pixel means]]] :return: im [height, width, channel(RGB)]
transform from mxnet im_tensor to ordinary RGB image im_tensor is limited to one image :param im_tensor: [batch, channel, height, width] :param pixel_means: [[[R, G, B pixel means]]] :return: im [height, width, channel(RGB)]
[ "transform", "from", "mxnet", "im_tensor", "to", "ordinary", "RGB", "image", "im_tensor", "is", "limited", "to", "one", "image", ":", "param", "im_tensor", ":", "[", "batch", "channel", "height", "width", "]", ":", "param", "pixel_means", ":", "[[[", "R", "G", "B", "pixel", "means", "]]]", ":", "return", ":", "im", "[", "height", "width", "channel", "(", "RGB", ")", "]" ]
def transform_inverse(im_tensor, pixel_means): """ transform from mxnet im_tensor to ordinary RGB image im_tensor is limited to one image :param im_tensor: [batch, channel, height, width] :param pixel_means: [[[R, G, B pixel means]]] :return: im [height, width, channel(RGB)] """ assert im_tensor.shape[0] == 1 im_tensor = im_tensor.copy() # put channel back channel_swap = (0, 2, 3, 1) im_tensor = im_tensor.transpose(channel_swap) im = im_tensor[0] assert im.shape[2] == 3 im += pixel_means im = im.astype(np.uint8) return im
[ "def", "transform_inverse", "(", "im_tensor", ",", "pixel_means", ")", ":", "assert", "im_tensor", ".", "shape", "[", "0", "]", "==", "1", "im_tensor", "=", "im_tensor", ".", "copy", "(", ")", "# put channel back", "channel_swap", "=", "(", "0", ",", "2", ",", "3", ",", "1", ")", "im_tensor", "=", "im_tensor", ".", "transpose", "(", "channel_swap", ")", "im", "=", "im_tensor", "[", "0", "]", "assert", "im", ".", "shape", "[", "2", "]", "==", "3", "im", "+=", "pixel_means", "im", "=", "im", ".", "astype", "(", "np", ".", "uint8", ")", "return", "im" ]
https://github.com/msracver/Deep-Feature-Flow/blob/297293cbe728f817b62c82d3abfbd226300086ef/lib/utils/image_processing.py#L52-L69
triaquae/triaquae
bbabf736b3ba56a0c6498e7f04e16c13b8b8f2b9
TriAquae/models/Ubuntu_12/paramiko/packet.py
python
Packetizer.set_inbound_cipher
(self, block_engine, block_size, mac_engine, mac_size, mac_key)
Switch inbound data cipher.
Switch inbound data cipher.
[ "Switch", "inbound", "data", "cipher", "." ]
def set_inbound_cipher(self, block_engine, block_size, mac_engine, mac_size, mac_key): """ Switch inbound data cipher. """ self.__block_engine_in = block_engine self.__block_size_in = block_size self.__mac_engine_in = mac_engine self.__mac_size_in = mac_size self.__mac_key_in = mac_key self.__received_bytes = 0 self.__received_packets = 0 self.__received_bytes_overflow = 0 self.__received_packets_overflow = 0 # wait until the reset happens in both directions before clearing rekey flag self.__init_count |= 2 if self.__init_count == 3: self.__init_count = 0 self.__need_rekey = False
[ "def", "set_inbound_cipher", "(", "self", ",", "block_engine", ",", "block_size", ",", "mac_engine", ",", "mac_size", ",", "mac_key", ")", ":", "self", ".", "__block_engine_in", "=", "block_engine", "self", ".", "__block_size_in", "=", "block_size", "self", ".", "__mac_engine_in", "=", "mac_engine", "self", ".", "__mac_size_in", "=", "mac_size", "self", ".", "__mac_key_in", "=", "mac_key", "self", ".", "__received_bytes", "=", "0", "self", ".", "__received_packets", "=", "0", "self", ".", "__received_bytes_overflow", "=", "0", "self", ".", "__received_packets_overflow", "=", "0", "# wait until the reset happens in both directions before clearing rekey flag", "self", ".", "__init_count", "|=", "2", "if", "self", ".", "__init_count", "==", "3", ":", "self", ".", "__init_count", "=", "0", "self", ".", "__need_rekey", "=", "False" ]
https://github.com/triaquae/triaquae/blob/bbabf736b3ba56a0c6498e7f04e16c13b8b8f2b9/TriAquae/models/Ubuntu_12/paramiko/packet.py#L128-L145
log2timeline/plaso
fe2e316b8c76a0141760c0f2f181d84acb83abc2
plaso/cli/tool_options.py
python
OutputModuleOptions._ParseOutputOptions
(self, options)
Parses the output options. Args: options (argparse.Namespace): command line arguments. Raises: BadConfigOption: if the options are invalid.
Parses the output options.
[ "Parses", "the", "output", "options", "." ]
def _ParseOutputOptions(self, options): """Parses the output options. Args: options (argparse.Namespace): command line arguments. Raises: BadConfigOption: if the options are invalid. """ self._output_dynamic_time = getattr(options, 'dynamic_time', False) time_zone_string = self.ParseStringOption(options, 'output_time_zone') if isinstance(time_zone_string, str): if time_zone_string.lower() == 'list': self.list_time_zones = True elif time_zone_string: try: pytz.timezone(time_zone_string) except pytz.UnknownTimeZoneError: raise errors.BadConfigOption( 'Unknown time zone: {0:s}'.format(time_zone_string)) self._output_time_zone = time_zone_string
[ "def", "_ParseOutputOptions", "(", "self", ",", "options", ")", ":", "self", ".", "_output_dynamic_time", "=", "getattr", "(", "options", ",", "'dynamic_time'", ",", "False", ")", "time_zone_string", "=", "self", ".", "ParseStringOption", "(", "options", ",", "'output_time_zone'", ")", "if", "isinstance", "(", "time_zone_string", ",", "str", ")", ":", "if", "time_zone_string", ".", "lower", "(", ")", "==", "'list'", ":", "self", ".", "list_time_zones", "=", "True", "elif", "time_zone_string", ":", "try", ":", "pytz", ".", "timezone", "(", "time_zone_string", ")", "except", "pytz", ".", "UnknownTimeZoneError", ":", "raise", "errors", ".", "BadConfigOption", "(", "'Unknown time zone: {0:s}'", ".", "format", "(", "time_zone_string", ")", ")", "self", ".", "_output_time_zone", "=", "time_zone_string" ]
https://github.com/log2timeline/plaso/blob/fe2e316b8c76a0141760c0f2f181d84acb83abc2/plaso/cli/tool_options.py#L214-L237
Kjuly/iPokeMon-Server
b5e67c67ae248bd092c53fe9e3eee8bf2dba9e3f
bottle.py
python
Bottle.delete
(self, path=None, method='DELETE', **options)
return self.route(path, method, **options)
Equals :meth:`route` with a ``DELETE`` method parameter.
Equals :meth:`route` with a ``DELETE`` method parameter.
[ "Equals", ":", "meth", ":", "route", "with", "a", "DELETE", "method", "parameter", "." ]
def delete(self, path=None, method='DELETE', **options): """ Equals :meth:`route` with a ``DELETE`` method parameter. """ return self.route(path, method, **options)
[ "def", "delete", "(", "self", ",", "path", "=", "None", ",", "method", "=", "'DELETE'", ",", "*", "*", "options", ")", ":", "return", "self", ".", "route", "(", "path", ",", "method", ",", "*", "*", "options", ")" ]
https://github.com/Kjuly/iPokeMon-Server/blob/b5e67c67ae248bd092c53fe9e3eee8bf2dba9e3f/bottle.py#L716-L718
Komodo/KomodoEdit
61edab75dce2bdb03943b387b0608ea36f548e8e
src/codeintel/lib/codeintel2/lang_javascript.py
python
JavaScriptCiler._findInScope
(self, name, attrlist=("variables", ), scope=None)
return None
Find the object of the given name in the given scope @param name {str} The name of the object to look for @param attrlist {seq of str} The attributes to look into (e.g., "variables", "functions", "classes") @param scope {JSObject} The scope in which to find the object @returns {JSObject or None} The found object, an immediate child of the scope.
Find the object of the given name in the given scope
[ "Find", "the", "object", "of", "the", "given", "name", "in", "the", "given", "scope" ]
def _findInScope(self, name, attrlist=("variables", ), scope=None): """Find the object of the given name in the given scope @param name {str} The name of the object to look for @param attrlist {seq of str} The attributes to look into (e.g., "variables", "functions", "classes") @param scope {JSObject} The scope in which to find the object @returns {JSObject or None} The found object, an immediate child of the scope. """ assert scope is not None, "Missing scope" for attr in attrlist: namesDict = getattr(scope, attr, None) if namesDict: subscope = namesDict.get(name) if subscope: log.debug("_findInScope: Found a scope for: %r in %s.%s:", name, scope.name, attr) return subscope # Not found return None
[ "def", "_findInScope", "(", "self", ",", "name", ",", "attrlist", "=", "(", "\"variables\"", ",", ")", ",", "scope", "=", "None", ")", ":", "assert", "scope", "is", "not", "None", ",", "\"Missing scope\"", "for", "attr", "in", "attrlist", ":", "namesDict", "=", "getattr", "(", "scope", ",", "attr", ",", "None", ")", "if", "namesDict", ":", "subscope", "=", "namesDict", ".", "get", "(", "name", ")", "if", "subscope", ":", "log", ".", "debug", "(", "\"_findInScope: Found a scope for: %r in %s.%s:\"", ",", "name", ",", "scope", ".", "name", ",", "attr", ")", "return", "subscope", "# Not found", "return", "None" ]
https://github.com/Komodo/KomodoEdit/blob/61edab75dce2bdb03943b387b0608ea36f548e8e/src/codeintel/lib/codeintel2/lang_javascript.py#L1968-L1987
huawei-noah/vega
d9f13deede7f2b584e4b1d32ffdb833856129989
vega/algorithms/nas/modnas/registry/__init__.py
python
parse_spec
(spec: SPEC_TYPE)
Return parsed id and arguments from build spec.
Return parsed id and arguments from build spec.
[ "Return", "parsed", "id", "and", "arguments", "from", "build", "spec", "." ]
def parse_spec(spec: SPEC_TYPE) -> Any: """Return parsed id and arguments from build spec.""" if isinstance(spec, dict): return spec['type'], spec.get('args', {}) if isinstance(spec, (tuple, list)) and isinstance(spec[0], str): return spec[0], {} if len(spec) < 2 else spec[1] if isinstance(spec, str): return spec, {} raise ValueError('Invalid build spec: {}'.format(spec))
[ "def", "parse_spec", "(", "spec", ":", "SPEC_TYPE", ")", "->", "Any", ":", "if", "isinstance", "(", "spec", ",", "dict", ")", ":", "return", "spec", "[", "'type'", "]", ",", "spec", ".", "get", "(", "'args'", ",", "{", "}", ")", "if", "isinstance", "(", "spec", ",", "(", "tuple", ",", "list", ")", ")", "and", "isinstance", "(", "spec", "[", "0", "]", ",", "str", ")", ":", "return", "spec", "[", "0", "]", ",", "{", "}", "if", "len", "(", "spec", ")", "<", "2", "else", "spec", "[", "1", "]", "if", "isinstance", "(", "spec", ",", "str", ")", ":", "return", "spec", ",", "{", "}", "raise", "ValueError", "(", "'Invalid build spec: {}'", ".", "format", "(", "spec", ")", ")" ]
https://github.com/huawei-noah/vega/blob/d9f13deede7f2b584e4b1d32ffdb833856129989/vega/algorithms/nas/modnas/registry/__init__.py#L45-L53
linxid/Machine_Learning_Study_Path
558e82d13237114bbb8152483977806fc0c222af
Machine Learning In Action/Chapter4-NaiveBayes/venv/Lib/site-packages/pip/_vendor/distlib/_backport/tarfile.py
python
TarInfo.create_pax_header
(self, info, encoding)
return buf + self._create_header(info, USTAR_FORMAT, "ascii", "replace")
Return the object as a ustar header block. If it cannot be represented this way, prepend a pax extended header sequence with supplement information.
Return the object as a ustar header block. If it cannot be represented this way, prepend a pax extended header sequence with supplement information.
[ "Return", "the", "object", "as", "a", "ustar", "header", "block", ".", "If", "it", "cannot", "be", "represented", "this", "way", "prepend", "a", "pax", "extended", "header", "sequence", "with", "supplement", "information", "." ]
def create_pax_header(self, info, encoding): """Return the object as a ustar header block. If it cannot be represented this way, prepend a pax extended header sequence with supplement information. """ info["magic"] = POSIX_MAGIC pax_headers = self.pax_headers.copy() # Test string fields for values that exceed the field length or cannot # be represented in ASCII encoding. for name, hname, length in ( ("name", "path", LENGTH_NAME), ("linkname", "linkpath", LENGTH_LINK), ("uname", "uname", 32), ("gname", "gname", 32)): if hname in pax_headers: # The pax header has priority. continue # Try to encode the string as ASCII. try: info[name].encode("ascii", "strict") except UnicodeEncodeError: pax_headers[hname] = info[name] continue if len(info[name]) > length: pax_headers[hname] = info[name] # Test number fields for values that exceed the field limit or values # that like to be stored as float. for name, digits in (("uid", 8), ("gid", 8), ("size", 12), ("mtime", 12)): if name in pax_headers: # The pax header has priority. Avoid overflow. info[name] = 0 continue val = info[name] if not 0 <= val < 8 ** (digits - 1) or isinstance(val, float): pax_headers[name] = str(val) info[name] = 0 # Create a pax extended header if necessary. if pax_headers: buf = self._create_pax_generic_header(pax_headers, XHDTYPE, encoding) else: buf = b"" return buf + self._create_header(info, USTAR_FORMAT, "ascii", "replace")
[ "def", "create_pax_header", "(", "self", ",", "info", ",", "encoding", ")", ":", "info", "[", "\"magic\"", "]", "=", "POSIX_MAGIC", "pax_headers", "=", "self", ".", "pax_headers", ".", "copy", "(", ")", "# Test string fields for values that exceed the field length or cannot", "# be represented in ASCII encoding.", "for", "name", ",", "hname", ",", "length", "in", "(", "(", "\"name\"", ",", "\"path\"", ",", "LENGTH_NAME", ")", ",", "(", "\"linkname\"", ",", "\"linkpath\"", ",", "LENGTH_LINK", ")", ",", "(", "\"uname\"", ",", "\"uname\"", ",", "32", ")", ",", "(", "\"gname\"", ",", "\"gname\"", ",", "32", ")", ")", ":", "if", "hname", "in", "pax_headers", ":", "# The pax header has priority.", "continue", "# Try to encode the string as ASCII.", "try", ":", "info", "[", "name", "]", ".", "encode", "(", "\"ascii\"", ",", "\"strict\"", ")", "except", "UnicodeEncodeError", ":", "pax_headers", "[", "hname", "]", "=", "info", "[", "name", "]", "continue", "if", "len", "(", "info", "[", "name", "]", ")", ">", "length", ":", "pax_headers", "[", "hname", "]", "=", "info", "[", "name", "]", "# Test number fields for values that exceed the field limit or values", "# that like to be stored as float.", "for", "name", ",", "digits", "in", "(", "(", "\"uid\"", ",", "8", ")", ",", "(", "\"gid\"", ",", "8", ")", ",", "(", "\"size\"", ",", "12", ")", ",", "(", "\"mtime\"", ",", "12", ")", ")", ":", "if", "name", "in", "pax_headers", ":", "# The pax header has priority. Avoid overflow.", "info", "[", "name", "]", "=", "0", "continue", "val", "=", "info", "[", "name", "]", "if", "not", "0", "<=", "val", "<", "8", "**", "(", "digits", "-", "1", ")", "or", "isinstance", "(", "val", ",", "float", ")", ":", "pax_headers", "[", "name", "]", "=", "str", "(", "val", ")", "info", "[", "name", "]", "=", "0", "# Create a pax extended header if necessary.", "if", "pax_headers", ":", "buf", "=", "self", ".", "_create_pax_generic_header", "(", "pax_headers", ",", "XHDTYPE", ",", "encoding", ")", "else", ":", "buf", "=", "b\"\"", "return", "buf", "+", "self", ".", "_create_header", "(", "info", ",", "USTAR_FORMAT", ",", "\"ascii\"", ",", "\"replace\"", ")" ]
https://github.com/linxid/Machine_Learning_Study_Path/blob/558e82d13237114bbb8152483977806fc0c222af/Machine Learning In Action/Chapter4-NaiveBayes/venv/Lib/site-packages/pip/_vendor/distlib/_backport/tarfile.py#L1043-L1090
Allen7D/mini-shop-server
5f3ddd5a4e5e99a1e005f11abc620cefff2493fc
app/api/cms/group.py
python
delete_group
(id)
return Success(error_code=2)
删除权限组
删除权限组
[ "删除权限组" ]
def delete_group(id): '''删除权限组''' GroupDao.delete_group(id=id) return Success(error_code=2)
[ "def", "delete_group", "(", "id", ")", ":", "GroupDao", ".", "delete_group", "(", "id", "=", "id", ")", "return", "Success", "(", "error_code", "=", "2", ")" ]
https://github.com/Allen7D/mini-shop-server/blob/5f3ddd5a4e5e99a1e005f11abc620cefff2493fc/app/api/cms/group.py#L66-L69
home-assistant/core
265ebd17a3f17ed8dc1e9bdede03ac8e323f1ab1
homeassistant/components/rachio/binary_sensor.py
python
RachioRainSensor.device_class
(self)
return BinarySensorDeviceClass.MOISTURE
Return the class of this device.
Return the class of this device.
[ "Return", "the", "class", "of", "this", "device", "." ]
def device_class(self) -> BinarySensorDeviceClass: """Return the class of this device.""" return BinarySensorDeviceClass.MOISTURE
[ "def", "device_class", "(", "self", ")", "->", "BinarySensorDeviceClass", ":", "return", "BinarySensorDeviceClass", ".", "MOISTURE" ]
https://github.com/home-assistant/core/blob/265ebd17a3f17ed8dc1e9bdede03ac8e323f1ab1/homeassistant/components/rachio/binary_sensor.py#L146-L148
boston-dynamics/spot-sdk
5ffa12e6943a47323c7279d86e30346868755f52
python/bosdyn-client/src/bosdyn/client/data_buffer.py
python
DataBufferClient.add_blob_async
(self, data, type_id, channel=None, robot_timestamp=None, write_sync=False, **kwargs)
return self._do_add_blob(self.call_async, data, type_id, channel, robot_timestamp, write_sync, **kwargs)
Async version of add_blob.
Async version of add_blob.
[ "Async", "version", "of", "add_blob", "." ]
def add_blob_async(self, data, type_id, channel=None, robot_timestamp=None, write_sync=False, **kwargs): """Async version of add_blob.""" return self._do_add_blob(self.call_async, data, type_id, channel, robot_timestamp, write_sync, **kwargs)
[ "def", "add_blob_async", "(", "self", ",", "data", ",", "type_id", ",", "channel", "=", "None", ",", "robot_timestamp", "=", "None", ",", "write_sync", "=", "False", ",", "*", "*", "kwargs", ")", ":", "return", "self", ".", "_do_add_blob", "(", "self", ".", "call_async", ",", "data", ",", "type_id", ",", "channel", ",", "robot_timestamp", ",", "write_sync", ",", "*", "*", "kwargs", ")" ]
https://github.com/boston-dynamics/spot-sdk/blob/5ffa12e6943a47323c7279d86e30346868755f52/python/bosdyn-client/src/bosdyn/client/data_buffer.py#L170-L174
smart-mobile-software/gitstack
d9fee8f414f202143eb6e620529e8e5539a2af56
python/Lib/mailbox.py
python
MaildirMessage.set_flags
(self, flags)
Set the given flags and unset all others.
Set the given flags and unset all others.
[ "Set", "the", "given", "flags", "and", "unset", "all", "others", "." ]
def set_flags(self, flags): """Set the given flags and unset all others.""" self._info = '2,' + ''.join(sorted(flags))
[ "def", "set_flags", "(", "self", ",", "flags", ")", ":", "self", ".", "_info", "=", "'2,'", "+", "''", ".", "join", "(", "sorted", "(", "flags", ")", ")" ]
https://github.com/smart-mobile-software/gitstack/blob/d9fee8f414f202143eb6e620529e8e5539a2af56/python/Lib/mailbox.py#L1449-L1451
ales-tsurko/cells
4cf7e395cd433762bea70cdc863a346f3a6fe1d0
packaging/macos/python/lib/python3.7/smtplib.py
python
SMTP.docmd
(self, cmd, args="")
return self.getreply()
Send a command, and return its response code.
Send a command, and return its response code.
[ "Send", "a", "command", "and", "return", "its", "response", "code", "." ]
def docmd(self, cmd, args=""): """Send a command, and return its response code.""" self.putcmd(cmd, args) return self.getreply()
[ "def", "docmd", "(", "self", ",", "cmd", ",", "args", "=", "\"\"", ")", ":", "self", ".", "putcmd", "(", "cmd", ",", "args", ")", "return", "self", ".", "getreply", "(", ")" ]
https://github.com/ales-tsurko/cells/blob/4cf7e395cd433762bea70cdc863a346f3a6fe1d0/packaging/macos/python/lib/python3.7/smtplib.py#L418-L421
khanhnamle1994/natural-language-processing
01d450d5ac002b0156ef4cf93a07cb508c1bcdc5
assignment1/.env/lib/python2.7/site-packages/scipy/cluster/vq.py
python
kmeans2
(data, k, iter=10, thresh=1e-5, minit='random', missing='warn')
return _kmeans2(data, clusters, iter, nc, _valid_miss_meth[missing])
Classify a set of observations into k clusters using the k-means algorithm. The algorithm attempts to minimize the Euclidian distance between observations and centroids. Several initialization methods are included. Parameters ---------- data : ndarray A 'M' by 'N' array of 'M' observations in 'N' dimensions or a length 'M' array of 'M' one-dimensional observations. k : int or ndarray The number of clusters to form as well as the number of centroids to generate. If `minit` initialization string is 'matrix', or if a ndarray is given instead, it is interpreted as initial cluster to use instead. iter : int Number of iterations of the k-means algrithm to run. Note that this differs in meaning from the iters parameter to the kmeans function. thresh : float (not used yet) minit : string Method for initialization. Available methods are 'random', 'points', 'uniform', and 'matrix': 'random': generate k centroids from a Gaussian with mean and variance estimated from the data. 'points': choose k observations (rows) at random from data for the initial centroids. 'uniform': generate k observations from the data from a uniform distribution defined by the data set (unsupported). 'matrix': interpret the k parameter as a k by M (or length k array for one-dimensional data) array of initial centroids. Returns ------- centroid : ndarray A 'k' by 'N' array of centroids found at the last iteration of k-means. label : ndarray label[i] is the code or index of the centroid the i'th observation is closest to.
Classify a set of observations into k clusters using the k-means algorithm.
[ "Classify", "a", "set", "of", "observations", "into", "k", "clusters", "using", "the", "k", "-", "means", "algorithm", "." ]
def kmeans2(data, k, iter=10, thresh=1e-5, minit='random', missing='warn'): """ Classify a set of observations into k clusters using the k-means algorithm. The algorithm attempts to minimize the Euclidian distance between observations and centroids. Several initialization methods are included. Parameters ---------- data : ndarray A 'M' by 'N' array of 'M' observations in 'N' dimensions or a length 'M' array of 'M' one-dimensional observations. k : int or ndarray The number of clusters to form as well as the number of centroids to generate. If `minit` initialization string is 'matrix', or if a ndarray is given instead, it is interpreted as initial cluster to use instead. iter : int Number of iterations of the k-means algrithm to run. Note that this differs in meaning from the iters parameter to the kmeans function. thresh : float (not used yet) minit : string Method for initialization. Available methods are 'random', 'points', 'uniform', and 'matrix': 'random': generate k centroids from a Gaussian with mean and variance estimated from the data. 'points': choose k observations (rows) at random from data for the initial centroids. 'uniform': generate k observations from the data from a uniform distribution defined by the data set (unsupported). 'matrix': interpret the k parameter as a k by M (or length k array for one-dimensional data) array of initial centroids. Returns ------- centroid : ndarray A 'k' by 'N' array of centroids found at the last iteration of k-means. label : ndarray label[i] is the code or index of the centroid the i'th observation is closest to. """ if missing not in _valid_miss_meth: raise ValueError("Unkown missing method: %s" % str(missing)) # If data is rank 1, then we have 1 dimension problem. nd = np.ndim(data) if nd == 1: d = 1 # raise ValueError("Input of rank 1 not supported yet") elif nd == 2: d = data.shape[1] else: raise ValueError("Input of rank > 2 not supported") if np.size(data) < 1: raise ValueError("Input has 0 items.") # If k is not a single value, then it should be compatible with data's # shape if np.size(k) > 1 or minit == 'matrix': if not nd == np.ndim(k): raise ValueError("k is not an int and has not same rank than data") if d == 1: nc = len(k) else: (nc, dc) = k.shape if not dc == d: raise ValueError("k is not an int and has not same rank than\ data") clusters = k.copy() else: try: nc = int(k) except TypeError: raise ValueError("k (%s) could not be converted to an integer " % str(k)) if nc < 1: raise ValueError("kmeans2 for 0 clusters ? (k was %s)" % str(k)) if not nc == k: warnings.warn("k was not an integer, was converted.") try: init = _valid_init_meth[minit] except KeyError: raise ValueError("unknown init method %s" % str(minit)) clusters = init(data, k) if int(iter) < 1: raise ValueError("iter = %s is not valid. iter must be a positive integer." % iter) return _kmeans2(data, clusters, iter, nc, _valid_miss_meth[missing])
[ "def", "kmeans2", "(", "data", ",", "k", ",", "iter", "=", "10", ",", "thresh", "=", "1e-5", ",", "minit", "=", "'random'", ",", "missing", "=", "'warn'", ")", ":", "if", "missing", "not", "in", "_valid_miss_meth", ":", "raise", "ValueError", "(", "\"Unkown missing method: %s\"", "%", "str", "(", "missing", ")", ")", "# If data is rank 1, then we have 1 dimension problem.", "nd", "=", "np", ".", "ndim", "(", "data", ")", "if", "nd", "==", "1", ":", "d", "=", "1", "# raise ValueError(\"Input of rank 1 not supported yet\")", "elif", "nd", "==", "2", ":", "d", "=", "data", ".", "shape", "[", "1", "]", "else", ":", "raise", "ValueError", "(", "\"Input of rank > 2 not supported\"", ")", "if", "np", ".", "size", "(", "data", ")", "<", "1", ":", "raise", "ValueError", "(", "\"Input has 0 items.\"", ")", "# If k is not a single value, then it should be compatible with data's", "# shape", "if", "np", ".", "size", "(", "k", ")", ">", "1", "or", "minit", "==", "'matrix'", ":", "if", "not", "nd", "==", "np", ".", "ndim", "(", "k", ")", ":", "raise", "ValueError", "(", "\"k is not an int and has not same rank than data\"", ")", "if", "d", "==", "1", ":", "nc", "=", "len", "(", "k", ")", "else", ":", "(", "nc", ",", "dc", ")", "=", "k", ".", "shape", "if", "not", "dc", "==", "d", ":", "raise", "ValueError", "(", "\"k is not an int and has not same rank than\\\n data\"", ")", "clusters", "=", "k", ".", "copy", "(", ")", "else", ":", "try", ":", "nc", "=", "int", "(", "k", ")", "except", "TypeError", ":", "raise", "ValueError", "(", "\"k (%s) could not be converted to an integer \"", "%", "str", "(", "k", ")", ")", "if", "nc", "<", "1", ":", "raise", "ValueError", "(", "\"kmeans2 for 0 clusters ? (k was %s)\"", "%", "str", "(", "k", ")", ")", "if", "not", "nc", "==", "k", ":", "warnings", ".", "warn", "(", "\"k was not an integer, was converted.\"", ")", "try", ":", "init", "=", "_valid_init_meth", "[", "minit", "]", "except", "KeyError", ":", "raise", "ValueError", "(", "\"unknown init method %s\"", "%", "str", "(", "minit", ")", ")", "clusters", "=", "init", "(", "data", ",", "k", ")", "if", "int", "(", "iter", ")", "<", "1", ":", "raise", "ValueError", "(", "\"iter = %s is not valid. iter must be a positive integer.\"", "%", "iter", ")", "return", "_kmeans2", "(", "data", ",", "clusters", ",", "iter", ",", "nc", ",", "_valid_miss_meth", "[", "missing", "]", ")" ]
https://github.com/khanhnamle1994/natural-language-processing/blob/01d450d5ac002b0156ef4cf93a07cb508c1bcdc5/assignment1/.env/lib/python2.7/site-packages/scipy/cluster/vq.py#L612-L711
tensorflow/tensor2tensor
2a33b152d7835af66a6d20afe7961751047e28dd
tensor2tensor/models/research/attention_lm.py
python
attention_lm_translation_l12
()
return hparams
Version to use for seq2seq.
Version to use for seq2seq.
[ "Version", "to", "use", "for", "seq2seq", "." ]
def attention_lm_translation_l12(): """Version to use for seq2seq.""" hparams = attention_lm_translation() hparams.batch_size = 4096 hparams.num_hidden_layers = 12 return hparams
[ "def", "attention_lm_translation_l12", "(", ")", ":", "hparams", "=", "attention_lm_translation", "(", ")", "hparams", ".", "batch_size", "=", "4096", "hparams", ".", "num_hidden_layers", "=", "12", "return", "hparams" ]
https://github.com/tensorflow/tensor2tensor/blob/2a33b152d7835af66a6d20afe7961751047e28dd/tensor2tensor/models/research/attention_lm.py#L202-L207
ztosec/hunter
4ee5cca8dc5fc5d7e631e935517bd0f493c30a37
SqlmapCelery/model/hunter_model.py
python
HunterModelService.get_fields_by_where
(cls, **kwargs)
基础的CURD操作,通用类 To use: >>> tasks = HunterModelService.__get_fields_by_where(fields=(Task.id, Task.hunter_status), where=(Task.id > 1)) >>> print(tasks) :param kwargs: :return:
基础的CURD操作,通用类 To use: >>> tasks = HunterModelService.__get_fields_by_where(fields=(Task.id, Task.hunter_status), where=(Task.id > 1)) >>> print(tasks)
[ "基础的CURD操作,通用类", "To", "use", ":", ">>>", "tasks", "=", "HunterModelService", ".", "__get_fields_by_where", "(", "fields", "=", "(", "Task", ".", "id", "Task", ".", "hunter_status", ")", "where", "=", "(", "Task", ".", "id", ">", "1", "))", ">>>", "print", "(", "tasks", ")" ]
def get_fields_by_where(cls, **kwargs): """ 基础的CURD操作,通用类 To use: >>> tasks = HunterModelService.__get_fields_by_where(fields=(Task.id, Task.hunter_status), where=(Task.id > 1)) >>> print(tasks) :param kwargs: :return: """ # cls = self.__class__ if not kwargs: # 什么都没填 return cls.select().execute() if "fields" not in kwargs and "where" in kwargs: # 要的结果字段没填 if isinstance(kwargs["where"], tuple): return cls.select().where(*kwargs["where"]).execute() return cls.select().where(tuple([kwargs["where"]])).execute() if "where" not in kwargs and "fields" in kwargs: # 要的结果字段没填 if isinstance(kwargs["fields"], tuple): return cls.select(*kwargs["fields"]).execute() return cls.select(kwargs["fields"]).execute() if "where" in kwargs and "fields" in kwargs: # 两个都填的情况 if isinstance(kwargs["where"], tuple) and isinstance(kwargs["fields"], tuple): return cls.select(*kwargs["fields"]).where(*kwargs["where"]).execute() if isinstance(kwargs["where"], tuple) and not isinstance(kwargs["fields"], tuple): return cls.select(kwargs["fields"]).where(*kwargs["where"]).execute() if not isinstance(kwargs["where"], tuple) and isinstance(kwargs["fields"], tuple): return cls.select(*kwargs["fields"]).where(tuple([kwargs["where"]])).execute() if not isinstance(kwargs["where"], tuple) and not isinstance(kwargs["fields"], tuple): return cls.select(kwargs["fields"]).where(tuple([kwargs["where"]])).execute()
[ "def", "get_fields_by_where", "(", "cls", ",", "*", "*", "kwargs", ")", ":", "# cls = self.__class__", "if", "not", "kwargs", ":", "# 什么都没填", "return", "cls", ".", "select", "(", ")", ".", "execute", "(", ")", "if", "\"fields\"", "not", "in", "kwargs", "and", "\"where\"", "in", "kwargs", ":", "# 要的结果字段没填", "if", "isinstance", "(", "kwargs", "[", "\"where\"", "]", ",", "tuple", ")", ":", "return", "cls", ".", "select", "(", ")", ".", "where", "(", "*", "kwargs", "[", "\"where\"", "]", ")", ".", "execute", "(", ")", "return", "cls", ".", "select", "(", ")", ".", "where", "(", "tuple", "(", "[", "kwargs", "[", "\"where\"", "]", "]", ")", ")", ".", "execute", "(", ")", "if", "\"where\"", "not", "in", "kwargs", "and", "\"fields\"", "in", "kwargs", ":", "# 要的结果字段没填", "if", "isinstance", "(", "kwargs", "[", "\"fields\"", "]", ",", "tuple", ")", ":", "return", "cls", ".", "select", "(", "*", "kwargs", "[", "\"fields\"", "]", ")", ".", "execute", "(", ")", "return", "cls", ".", "select", "(", "kwargs", "[", "\"fields\"", "]", ")", ".", "execute", "(", ")", "if", "\"where\"", "in", "kwargs", "and", "\"fields\"", "in", "kwargs", ":", "# 两个都填的情况", "if", "isinstance", "(", "kwargs", "[", "\"where\"", "]", ",", "tuple", ")", "and", "isinstance", "(", "kwargs", "[", "\"fields\"", "]", ",", "tuple", ")", ":", "return", "cls", ".", "select", "(", "*", "kwargs", "[", "\"fields\"", "]", ")", ".", "where", "(", "*", "kwargs", "[", "\"where\"", "]", ")", ".", "execute", "(", ")", "if", "isinstance", "(", "kwargs", "[", "\"where\"", "]", ",", "tuple", ")", "and", "not", "isinstance", "(", "kwargs", "[", "\"fields\"", "]", ",", "tuple", ")", ":", "return", "cls", ".", "select", "(", "kwargs", "[", "\"fields\"", "]", ")", ".", "where", "(", "*", "kwargs", "[", "\"where\"", "]", ")", ".", "execute", "(", ")", "if", "not", "isinstance", "(", "kwargs", "[", "\"where\"", "]", ",", "tuple", ")", "and", "isinstance", "(", "kwargs", "[", "\"fields\"", "]", ",", "tuple", ")", ":", "return", "cls", ".", "select", "(", "*", "kwargs", "[", "\"fields\"", "]", ")", ".", "where", "(", "tuple", "(", "[", "kwargs", "[", "\"where\"", "]", "]", ")", ")", ".", "execute", "(", ")", "if", "not", "isinstance", "(", "kwargs", "[", "\"where\"", "]", ",", "tuple", ")", "and", "not", "isinstance", "(", "kwargs", "[", "\"fields\"", "]", ",", "tuple", ")", ":", "return", "cls", ".", "select", "(", "kwargs", "[", "\"fields\"", "]", ")", ".", "where", "(", "tuple", "(", "[", "kwargs", "[", "\"where\"", "]", "]", ")", ")", ".", "execute", "(", ")" ]
https://github.com/ztosec/hunter/blob/4ee5cca8dc5fc5d7e631e935517bd0f493c30a37/SqlmapCelery/model/hunter_model.py#L132-L167
IronLanguages/ironpython3
7a7bb2a872eeab0d1009fc8a6e24dca43f65b693
Src/StdLib/Lib/asyncio/base_events.py
python
BaseEventLoop.call_at
(self, when, callback, *args)
return timer
Like call_later(), but uses an absolute time. Absolute time corresponds to the event loop's time() method.
Like call_later(), but uses an absolute time.
[ "Like", "call_later", "()", "but", "uses", "an", "absolute", "time", "." ]
def call_at(self, when, callback, *args): """Like call_later(), but uses an absolute time. Absolute time corresponds to the event loop's time() method. """ if (coroutines.iscoroutine(callback) or coroutines.iscoroutinefunction(callback)): raise TypeError("coroutines cannot be used with call_at()") self._check_closed() if self._debug: self._check_thread() timer = events.TimerHandle(when, callback, args, self) if timer._source_traceback: del timer._source_traceback[-1] heapq.heappush(self._scheduled, timer) timer._scheduled = True return timer
[ "def", "call_at", "(", "self", ",", "when", ",", "callback", ",", "*", "args", ")", ":", "if", "(", "coroutines", ".", "iscoroutine", "(", "callback", ")", "or", "coroutines", ".", "iscoroutinefunction", "(", "callback", ")", ")", ":", "raise", "TypeError", "(", "\"coroutines cannot be used with call_at()\"", ")", "self", ".", "_check_closed", "(", ")", "if", "self", ".", "_debug", ":", "self", ".", "_check_thread", "(", ")", "timer", "=", "events", ".", "TimerHandle", "(", "when", ",", "callback", ",", "args", ",", "self", ")", "if", "timer", ".", "_source_traceback", ":", "del", "timer", ".", "_source_traceback", "[", "-", "1", "]", "heapq", ".", "heappush", "(", "self", ".", "_scheduled", ",", "timer", ")", "timer", ".", "_scheduled", "=", "True", "return", "timer" ]
https://github.com/IronLanguages/ironpython3/blob/7a7bb2a872eeab0d1009fc8a6e24dca43f65b693/Src/StdLib/Lib/asyncio/base_events.py#L453-L469
eirannejad/pyRevit
49c0b7eb54eb343458ce1365425e6552d0c47d44
pyrevitlib/rpw/__revit.py
python
Revit.open
(self, path)
Opens New Document
Opens New Document
[ "Opens", "New", "Document" ]
def open(self, path): """ Opens New Document """
[ "def", "open", "(", "self", ",", "path", ")", ":" ]
https://github.com/eirannejad/pyRevit/blob/49c0b7eb54eb343458ce1365425e6552d0c47d44/pyrevitlib/rpw/__revit.py#L102-L103
poppy-project/pypot
c5d384fe23eef9f6ec98467f6f76626cdf20afb9
pypot/sensor/depth/sonar.py
python
Sonar.update
(self)
return self.data
[]
def update(self): self.ping() time.sleep(0.065) self.data = self._filter(self.read()) return self.data
[ "def", "update", "(", "self", ")", ":", "self", ".", "ping", "(", ")", "time", ".", "sleep", "(", "0.065", ")", "self", ".", "data", "=", "self", ".", "_filter", "(", "self", ".", "read", "(", ")", ")", "return", "self", ".", "data" ]
https://github.com/poppy-project/pypot/blob/c5d384fe23eef9f6ec98467f6f76626cdf20afb9/pypot/sensor/depth/sonar.py#L74-L78
certbot/certbot
30b066f08260b73fc26256b5484a180468b9d0a6
certbot-apache/certbot_apache/_internal/parser.py
python
ApacheParser.save
(self, save_files)
Saves all changes to the configuration files. save() is called from ApacheConfigurator to handle the parser specific tasks of saving. :param list save_files: list of strings of file paths that we need to save.
Saves all changes to the configuration files.
[ "Saves", "all", "changes", "to", "the", "configuration", "files", "." ]
def save(self, save_files): """Saves all changes to the configuration files. save() is called from ApacheConfigurator to handle the parser specific tasks of saving. :param list save_files: list of strings of file paths that we need to save. """ self.configurator.save_notes = "" self.aug.save() # Force reload if files were modified # This is needed to recalculate augeas directive span if save_files: for sf in save_files: self.aug.remove("/files/"+sf) self.aug.load()
[ "def", "save", "(", "self", ",", "save_files", ")", ":", "self", ".", "configurator", ".", "save_notes", "=", "\"\"", "self", ".", "aug", ".", "save", "(", ")", "# Force reload if files were modified", "# This is needed to recalculate augeas directive span", "if", "save_files", ":", "for", "sf", "in", "save_files", ":", "self", ".", "aug", ".", "remove", "(", "\"/files/\"", "+", "sf", ")", "self", ".", "aug", ".", "load", "(", ")" ]
https://github.com/certbot/certbot/blob/30b066f08260b73fc26256b5484a180468b9d0a6/certbot-apache/certbot_apache/_internal/parser.py#L181-L198
zedshaw/lamson
8a8ad546ea746b129fa5f069bf9278f87d01473a
examples/librelist/app/handlers/bounce.py
python
force_to_bounce_state
(message)
[]
def force_to_bounce_state(message): # set their admin module state to disabled name, address = parseaddr(message.bounce.final_recipient) Router.STATE_STORE.set_all(address, 'BOUNCING') Router.STATE_STORE.set('app.handlers.bounce', address, 'BOUNCING') mailinglist.disable_all_subscriptions(message.bounce.final_recipient)
[ "def", "force_to_bounce_state", "(", "message", ")", ":", "# set their admin module state to disabled", "name", ",", "address", "=", "parseaddr", "(", "message", ".", "bounce", ".", "final_recipient", ")", "Router", ".", "STATE_STORE", ".", "set_all", "(", "address", ",", "'BOUNCING'", ")", "Router", ".", "STATE_STORE", ".", "set", "(", "'app.handlers.bounce'", ",", "address", ",", "'BOUNCING'", ")", "mailinglist", ".", "disable_all_subscriptions", "(", "message", ".", "bounce", ".", "final_recipient", ")" ]
https://github.com/zedshaw/lamson/blob/8a8ad546ea746b129fa5f069bf9278f87d01473a/examples/librelist/app/handlers/bounce.py#L10-L15
numba/numba
bf480b9e0da858a65508c2b17759a72ee6a44c51
numba/cpython/randomimpl.py
python
randrange_impl_1
(context, builder, sig, args)
return impl_ret_untracked(context, builder, sig.return_type, res)
[]
def randrange_impl_1(context, builder, sig, args): stop, = args start = ir.Constant(stop.type, 0) step = ir.Constant(stop.type, 1) res = _randrange_impl(context, builder, start, stop, step, "py") return impl_ret_untracked(context, builder, sig.return_type, res)
[ "def", "randrange_impl_1", "(", "context", ",", "builder", ",", "sig", ",", "args", ")", ":", "stop", ",", "=", "args", "start", "=", "ir", ".", "Constant", "(", "stop", ".", "type", ",", "0", ")", "step", "=", "ir", ".", "Constant", "(", "stop", ".", "type", ",", "1", ")", "res", "=", "_randrange_impl", "(", "context", ",", "builder", ",", "start", ",", "stop", ",", "step", ",", "\"py\"", ")", "return", "impl_ret_untracked", "(", "context", ",", "builder", ",", "sig", ".", "return_type", ",", "res", ")" ]
https://github.com/numba/numba/blob/bf480b9e0da858a65508c2b17759a72ee6a44c51/numba/cpython/randomimpl.py#L398-L403
hyperledger/aries-cloudagent-python
2f36776e99f6053ae92eed8123b5b1b2e891c02a
aries_cloudagent/protocols/present_proof/v1_0/routes.py
python
register
(app: web.Application)
Register routes.
Register routes.
[ "Register", "routes", "." ]
async def register(app: web.Application): """Register routes.""" app.add_routes( [ web.get( "/present-proof/records", presentation_exchange_list, allow_head=False, ), web.get( "/present-proof/records/{pres_ex_id}", presentation_exchange_retrieve, allow_head=False, ), web.get( "/present-proof/records/{pres_ex_id}/credentials", presentation_exchange_credentials_list, allow_head=False, ), web.post( "/present-proof/send-proposal", presentation_exchange_send_proposal, ), web.post( "/present-proof/create-request", presentation_exchange_create_request, ), web.post( "/present-proof/send-request", presentation_exchange_send_free_request, ), web.post( "/present-proof/records/{pres_ex_id}/send-request", presentation_exchange_send_bound_request, ), web.post( "/present-proof/records/{pres_ex_id}/send-presentation", presentation_exchange_send_presentation, ), web.post( "/present-proof/records/{pres_ex_id}/verify-presentation", presentation_exchange_verify_presentation, ), web.post( "/present-proof/records/{pres_ex_id}/problem-report", presentation_exchange_problem_report, ), web.delete( "/present-proof/records/{pres_ex_id}", presentation_exchange_remove, ), ] )
[ "async", "def", "register", "(", "app", ":", "web", ".", "Application", ")", ":", "app", ".", "add_routes", "(", "[", "web", ".", "get", "(", "\"/present-proof/records\"", ",", "presentation_exchange_list", ",", "allow_head", "=", "False", ",", ")", ",", "web", ".", "get", "(", "\"/present-proof/records/{pres_ex_id}\"", ",", "presentation_exchange_retrieve", ",", "allow_head", "=", "False", ",", ")", ",", "web", ".", "get", "(", "\"/present-proof/records/{pres_ex_id}/credentials\"", ",", "presentation_exchange_credentials_list", ",", "allow_head", "=", "False", ",", ")", ",", "web", ".", "post", "(", "\"/present-proof/send-proposal\"", ",", "presentation_exchange_send_proposal", ",", ")", ",", "web", ".", "post", "(", "\"/present-proof/create-request\"", ",", "presentation_exchange_create_request", ",", ")", ",", "web", ".", "post", "(", "\"/present-proof/send-request\"", ",", "presentation_exchange_send_free_request", ",", ")", ",", "web", ".", "post", "(", "\"/present-proof/records/{pres_ex_id}/send-request\"", ",", "presentation_exchange_send_bound_request", ",", ")", ",", "web", ".", "post", "(", "\"/present-proof/records/{pres_ex_id}/send-presentation\"", ",", "presentation_exchange_send_presentation", ",", ")", ",", "web", ".", "post", "(", "\"/present-proof/records/{pres_ex_id}/verify-presentation\"", ",", "presentation_exchange_verify_presentation", ",", ")", ",", "web", ".", "post", "(", "\"/present-proof/records/{pres_ex_id}/problem-report\"", ",", "presentation_exchange_problem_report", ",", ")", ",", "web", ".", "delete", "(", "\"/present-proof/records/{pres_ex_id}\"", ",", "presentation_exchange_remove", ",", ")", ",", "]", ")" ]
https://github.com/hyperledger/aries-cloudagent-python/blob/2f36776e99f6053ae92eed8123b5b1b2e891c02a/aries_cloudagent/protocols/present_proof/v1_0/routes.py#L928-L981
sagemath/sage
f9b2db94f675ff16963ccdefba4f1a3393b3fe0d
src/sage/numerical/interactive_simplex_method.py
python
LPAbstractDictionary.column_coefficients
(self, v)
r""" Return the coefficients of a nonbasic variable. INPUT: - ``v`` -- a nonbasic variable of ``self``, can be given as a string, an actual variable, or an integer interpreted as the index of a variable OUTPUT: - a vector of coefficients of a nonbasic variable EXAMPLES:: sage: A = ([1, 1], [3, 1]) sage: b = (1000, 1500) sage: c = (10, 5) sage: P = InteractiveLPProblemStandardForm(A, b, c) sage: D = P.revised_dictionary() sage: D.column_coefficients(1) (1, 3)
r""" Return the coefficients of a nonbasic variable.
[ "r", "Return", "the", "coefficients", "of", "a", "nonbasic", "variable", "." ]
def column_coefficients(self, v): r""" Return the coefficients of a nonbasic variable. INPUT: - ``v`` -- a nonbasic variable of ``self``, can be given as a string, an actual variable, or an integer interpreted as the index of a variable OUTPUT: - a vector of coefficients of a nonbasic variable EXAMPLES:: sage: A = ([1, 1], [3, 1]) sage: b = (1000, 1500) sage: c = (10, 5) sage: P = InteractiveLPProblemStandardForm(A, b, c) sage: D = P.revised_dictionary() sage: D.column_coefficients(1) (1, 3) """
[ "def", "column_coefficients", "(", "self", ",", "v", ")", ":" ]
https://github.com/sagemath/sage/blob/f9b2db94f675ff16963ccdefba4f1a3393b3fe0d/src/sage/numerical/interactive_simplex_method.py#L2946-L2968
dimagi/commcare-hq
d67ff1d3b4c51fa050c19e60c3253a79d3452a39
corehq/apps/app_manager/helpers/validators.py
python
AdvancedFormValidator.extended_build_validation
(self, error_meta, xml_valid, validate_module=True)
return errors
[]
def extended_build_validation(self, error_meta, xml_valid, validate_module=True): errors = [] if xml_valid: for error in self.check_actions(): error.update(error_meta) errors.append(error) module = self.form.get_module() if validate_module: errors.extend(module.validator.get_case_errors( needs_case_type=False, needs_case_detail=module.requires_case_details(), needs_referral_detail=False, )) return errors
[ "def", "extended_build_validation", "(", "self", ",", "error_meta", ",", "xml_valid", ",", "validate_module", "=", "True", ")", ":", "errors", "=", "[", "]", "if", "xml_valid", ":", "for", "error", "in", "self", ".", "check_actions", "(", ")", ":", "error", ".", "update", "(", "error_meta", ")", "errors", ".", "append", "(", "error", ")", "module", "=", "self", ".", "form", ".", "get_module", "(", ")", "if", "validate_module", ":", "errors", ".", "extend", "(", "module", ".", "validator", ".", "get_case_errors", "(", "needs_case_type", "=", "False", ",", "needs_case_detail", "=", "module", ".", "requires_case_details", "(", ")", ",", "needs_referral_detail", "=", "False", ",", ")", ")", "return", "errors" ]
https://github.com/dimagi/commcare-hq/blob/d67ff1d3b4c51fa050c19e60c3253a79d3452a39/corehq/apps/app_manager/helpers/validators.py#L1028-L1043
python/cpython
e13cdca0f5224ec4e23bdd04bb3120506964bc8b
Lib/importlib/_bootstrap_external.py
python
SourceFileLoader.path_stats
(self, path)
return {'mtime': st.st_mtime, 'size': st.st_size}
Return the metadata for the path.
Return the metadata for the path.
[ "Return", "the", "metadata", "for", "the", "path", "." ]
def path_stats(self, path): """Return the metadata for the path.""" st = _path_stat(path) return {'mtime': st.st_mtime, 'size': st.st_size}
[ "def", "path_stats", "(", "self", ",", "path", ")", ":", "st", "=", "_path_stat", "(", "path", ")", "return", "{", "'mtime'", ":", "st", ".", "st_mtime", ",", "'size'", ":", "st", ".", "st_size", "}" ]
https://github.com/python/cpython/blob/e13cdca0f5224ec4e23bdd04bb3120506964bc8b/Lib/importlib/_bootstrap_external.py#L1121-L1124
BrieflyX/ctf-pwns
0eb569d7f407a1bf50d4269ae1572181e4048774
heap/heap-trival/mario/release.py
python
pow_hash
(challenge, solution)
return hashlib.sha256(challenge.encode('ascii') + struct.pack('<Q', solution)).hexdigest()
[]
def pow_hash(challenge, solution): return hashlib.sha256(challenge.encode('ascii') + struct.pack('<Q', solution)).hexdigest()
[ "def", "pow_hash", "(", "challenge", ",", "solution", ")", ":", "return", "hashlib", ".", "sha256", "(", "challenge", ".", "encode", "(", "'ascii'", ")", "+", "struct", ".", "pack", "(", "'<Q'", ",", "solution", ")", ")", ".", "hexdigest", "(", ")" ]
https://github.com/BrieflyX/ctf-pwns/blob/0eb569d7f407a1bf50d4269ae1572181e4048774/heap/heap-trival/mario/release.py#L95-L96
number5/cloud-init
19948dbaf40309355e1a2dbef116efb0ce66245c
cloudinit/distros/gentoo.py
python
convert_resolv_conf
(settings)
return result
Returns a settings string formatted for resolv.conf.
Returns a settings string formatted for resolv.conf.
[ "Returns", "a", "settings", "string", "formatted", "for", "resolv", ".", "conf", "." ]
def convert_resolv_conf(settings): """Returns a settings string formatted for resolv.conf.""" result = "" if isinstance(settings, list): for ns in settings: result += "nameserver %s\n" % ns return result
[ "def", "convert_resolv_conf", "(", "settings", ")", ":", "result", "=", "\"\"", "if", "isinstance", "(", "settings", ",", "list", ")", ":", "for", "ns", "in", "settings", ":", "result", "+=", "\"nameserver %s\\n\"", "%", "ns", "return", "result" ]
https://github.com/number5/cloud-init/blob/19948dbaf40309355e1a2dbef116efb0ce66245c/cloudinit/distros/gentoo.py#L239-L245
AppScale/gts
46f909cf5dc5ba81faf9d81dc9af598dcf8a82a9
AppServer/lib/django-1.3/django/template/loader.py
python
BaseLoader.reset
(self)
Resets any state maintained by the loader instance (e.g., cached templates or cached loader modules).
Resets any state maintained by the loader instance (e.g., cached templates or cached loader modules).
[ "Resets", "any", "state", "maintained", "by", "the", "loader", "instance", "(", "e", ".", "g", ".", "cached", "templates", "or", "cached", "loader", "modules", ")", "." ]
def reset(self): """ Resets any state maintained by the loader instance (e.g., cached templates or cached loader modules). """ pass
[ "def", "reset", "(", "self", ")", ":", "pass" ]
https://github.com/AppScale/gts/blob/46f909cf5dc5ba81faf9d81dc9af598dcf8a82a9/AppServer/lib/django-1.3/django/template/loader.py#L65-L71
steeve/xbmctorrent
e6bcb1037668959e1e3cb5ba8cf3e379c6638da9
resources/site-packages/xbmcswift2/listitem.py
python
ListItem.__init__
(self, label=None, label2=None, icon=None, thumbnail=None, path=None)
Defaults are an emtpy string since xbmcgui.ListItem will not accept None.
Defaults are an emtpy string since xbmcgui.ListItem will not accept None.
[ "Defaults", "are", "an", "emtpy", "string", "since", "xbmcgui", ".", "ListItem", "will", "not", "accept", "None", "." ]
def __init__(self, label=None, label2=None, icon=None, thumbnail=None, path=None): '''Defaults are an emtpy string since xbmcgui.ListItem will not accept None. ''' kwargs = { 'label': label, 'label2': label2, 'iconImage': icon, 'thumbnailImage': thumbnail, 'path': path, } #kwargs = dict((key, val) for key, val in locals().items() if val is #not None and key != 'self') kwargs = dict((key, val) for key, val in kwargs.items() if val is not None) self._listitem = xbmcgui.ListItem(**kwargs) # xbmc doesn't make getters available for these properties so we'll # keep track on our own self._icon = icon self._path = path self._thumbnail = thumbnail self._context_menu_items = [] self.is_folder = True self._played = False
[ "def", "__init__", "(", "self", ",", "label", "=", "None", ",", "label2", "=", "None", ",", "icon", "=", "None", ",", "thumbnail", "=", "None", ",", "path", "=", "None", ")", ":", "kwargs", "=", "{", "'label'", ":", "label", ",", "'label2'", ":", "label2", ",", "'iconImage'", ":", "icon", ",", "'thumbnailImage'", ":", "thumbnail", ",", "'path'", ":", "path", ",", "}", "#kwargs = dict((key, val) for key, val in locals().items() if val is", "#not None and key != 'self')", "kwargs", "=", "dict", "(", "(", "key", ",", "val", ")", "for", "key", ",", "val", "in", "kwargs", ".", "items", "(", ")", "if", "val", "is", "not", "None", ")", "self", ".", "_listitem", "=", "xbmcgui", ".", "ListItem", "(", "*", "*", "kwargs", ")", "# xbmc doesn't make getters available for these properties so we'll", "# keep track on our own", "self", ".", "_icon", "=", "icon", "self", ".", "_path", "=", "path", "self", ".", "_thumbnail", "=", "thumbnail", "self", ".", "_context_menu_items", "=", "[", "]", "self", ".", "is_folder", "=", "True", "self", ".", "_played", "=", "False" ]
https://github.com/steeve/xbmctorrent/blob/e6bcb1037668959e1e3cb5ba8cf3e379c6638da9/resources/site-packages/xbmcswift2/listitem.py#L18-L43
NoGameNoLife00/mybolg
afe17ea5bfe405e33766e5682c43a4262232ee12
libs/wtforms/ext/appengine/db.py
python
convert_ReferenceProperty
(model, prop, kwargs)
return ReferencePropertyField(**kwargs)
Returns a form field for a ``db.ReferenceProperty``.
Returns a form field for a ``db.ReferenceProperty``.
[ "Returns", "a", "form", "field", "for", "a", "db", ".", "ReferenceProperty", "." ]
def convert_ReferenceProperty(model, prop, kwargs): """Returns a form field for a ``db.ReferenceProperty``.""" kwargs['reference_class'] = prop.reference_class kwargs.setdefault('allow_blank', not prop.required) return ReferencePropertyField(**kwargs)
[ "def", "convert_ReferenceProperty", "(", "model", ",", "prop", ",", "kwargs", ")", ":", "kwargs", "[", "'reference_class'", "]", "=", "prop", ".", "reference_class", "kwargs", ".", "setdefault", "(", "'allow_blank'", ",", "not", "prop", ".", "required", ")", "return", "ReferencePropertyField", "(", "*", "*", "kwargs", ")" ]
https://github.com/NoGameNoLife00/mybolg/blob/afe17ea5bfe405e33766e5682c43a4262232ee12/libs/wtforms/ext/appengine/db.py#L184-L188
espnet/espnet
ea411f3f627b8f101c211e107d0ff7053344ac80
espnet/nets/pytorch_backend/ctc.py
python
CTC.forced_align
(self, h, y, blank_id=0)
return output_state_seq
forced alignment. :param torch.Tensor h: hidden state sequence, 2d tensor (T, D) :param torch.Tensor y: id sequence tensor 1d tensor (L) :param int y: blank symbol index :return: best alignment results :rtype: list
forced alignment.
[ "forced", "alignment", "." ]
def forced_align(self, h, y, blank_id=0): """forced alignment. :param torch.Tensor h: hidden state sequence, 2d tensor (T, D) :param torch.Tensor y: id sequence tensor 1d tensor (L) :param int y: blank symbol index :return: best alignment results :rtype: list """ def interpolate_blank(label, blank_id=0): """Insert blank token between every two label token.""" label = np.expand_dims(label, 1) blanks = np.zeros((label.shape[0], 1), dtype=np.int64) + blank_id label = np.concatenate([blanks, label], axis=1) label = label.reshape(-1) label = np.append(label, label[0]) return label lpz = self.log_softmax(h) lpz = lpz.squeeze(0) y_int = interpolate_blank(y, blank_id) logdelta = np.zeros((lpz.size(0), len(y_int))) - 100000000000.0 # log of zero state_path = ( np.zeros((lpz.size(0), len(y_int)), dtype=np.int16) - 1 ) # state path logdelta[0, 0] = lpz[0][y_int[0]] logdelta[0, 1] = lpz[0][y_int[1]] for t in six.moves.range(1, lpz.size(0)): for s in six.moves.range(len(y_int)): if y_int[s] == blank_id or s < 2 or y_int[s] == y_int[s - 2]: candidates = np.array([logdelta[t - 1, s], logdelta[t - 1, s - 1]]) prev_state = [s, s - 1] else: candidates = np.array( [ logdelta[t - 1, s], logdelta[t - 1, s - 1], logdelta[t - 1, s - 2], ] ) prev_state = [s, s - 1, s - 2] logdelta[t, s] = np.max(candidates) + lpz[t][y_int[s]] state_path[t, s] = prev_state[np.argmax(candidates)] state_seq = -1 * np.ones((lpz.size(0), 1), dtype=np.int16) candidates = np.array( [logdelta[-1, len(y_int) - 1], logdelta[-1, len(y_int) - 2]] ) prev_state = [len(y_int) - 1, len(y_int) - 2] state_seq[-1] = prev_state[np.argmax(candidates)] for t in six.moves.range(lpz.size(0) - 2, -1, -1): state_seq[t] = state_path[t + 1, state_seq[t + 1, 0]] output_state_seq = [] for t in six.moves.range(0, lpz.size(0)): output_state_seq.append(y_int[state_seq[t, 0]]) return output_state_seq
[ "def", "forced_align", "(", "self", ",", "h", ",", "y", ",", "blank_id", "=", "0", ")", ":", "def", "interpolate_blank", "(", "label", ",", "blank_id", "=", "0", ")", ":", "\"\"\"Insert blank token between every two label token.\"\"\"", "label", "=", "np", ".", "expand_dims", "(", "label", ",", "1", ")", "blanks", "=", "np", ".", "zeros", "(", "(", "label", ".", "shape", "[", "0", "]", ",", "1", ")", ",", "dtype", "=", "np", ".", "int64", ")", "+", "blank_id", "label", "=", "np", ".", "concatenate", "(", "[", "blanks", ",", "label", "]", ",", "axis", "=", "1", ")", "label", "=", "label", ".", "reshape", "(", "-", "1", ")", "label", "=", "np", ".", "append", "(", "label", ",", "label", "[", "0", "]", ")", "return", "label", "lpz", "=", "self", ".", "log_softmax", "(", "h", ")", "lpz", "=", "lpz", ".", "squeeze", "(", "0", ")", "y_int", "=", "interpolate_blank", "(", "y", ",", "blank_id", ")", "logdelta", "=", "np", ".", "zeros", "(", "(", "lpz", ".", "size", "(", "0", ")", ",", "len", "(", "y_int", ")", ")", ")", "-", "100000000000.0", "# log of zero", "state_path", "=", "(", "np", ".", "zeros", "(", "(", "lpz", ".", "size", "(", "0", ")", ",", "len", "(", "y_int", ")", ")", ",", "dtype", "=", "np", ".", "int16", ")", "-", "1", ")", "# state path", "logdelta", "[", "0", ",", "0", "]", "=", "lpz", "[", "0", "]", "[", "y_int", "[", "0", "]", "]", "logdelta", "[", "0", ",", "1", "]", "=", "lpz", "[", "0", "]", "[", "y_int", "[", "1", "]", "]", "for", "t", "in", "six", ".", "moves", ".", "range", "(", "1", ",", "lpz", ".", "size", "(", "0", ")", ")", ":", "for", "s", "in", "six", ".", "moves", ".", "range", "(", "len", "(", "y_int", ")", ")", ":", "if", "y_int", "[", "s", "]", "==", "blank_id", "or", "s", "<", "2", "or", "y_int", "[", "s", "]", "==", "y_int", "[", "s", "-", "2", "]", ":", "candidates", "=", "np", ".", "array", "(", "[", "logdelta", "[", "t", "-", "1", ",", "s", "]", ",", "logdelta", "[", "t", "-", "1", ",", "s", "-", "1", "]", "]", ")", "prev_state", "=", "[", "s", ",", "s", "-", "1", "]", "else", ":", "candidates", "=", "np", ".", "array", "(", "[", "logdelta", "[", "t", "-", "1", ",", "s", "]", ",", "logdelta", "[", "t", "-", "1", ",", "s", "-", "1", "]", ",", "logdelta", "[", "t", "-", "1", ",", "s", "-", "2", "]", ",", "]", ")", "prev_state", "=", "[", "s", ",", "s", "-", "1", ",", "s", "-", "2", "]", "logdelta", "[", "t", ",", "s", "]", "=", "np", ".", "max", "(", "candidates", ")", "+", "lpz", "[", "t", "]", "[", "y_int", "[", "s", "]", "]", "state_path", "[", "t", ",", "s", "]", "=", "prev_state", "[", "np", ".", "argmax", "(", "candidates", ")", "]", "state_seq", "=", "-", "1", "*", "np", ".", "ones", "(", "(", "lpz", ".", "size", "(", "0", ")", ",", "1", ")", ",", "dtype", "=", "np", ".", "int16", ")", "candidates", "=", "np", ".", "array", "(", "[", "logdelta", "[", "-", "1", ",", "len", "(", "y_int", ")", "-", "1", "]", ",", "logdelta", "[", "-", "1", ",", "len", "(", "y_int", ")", "-", "2", "]", "]", ")", "prev_state", "=", "[", "len", "(", "y_int", ")", "-", "1", ",", "len", "(", "y_int", ")", "-", "2", "]", "state_seq", "[", "-", "1", "]", "=", "prev_state", "[", "np", ".", "argmax", "(", "candidates", ")", "]", "for", "t", "in", "six", ".", "moves", ".", "range", "(", "lpz", ".", "size", "(", "0", ")", "-", "2", ",", "-", "1", ",", "-", "1", ")", ":", "state_seq", "[", "t", "]", "=", "state_path", "[", "t", "+", "1", ",", "state_seq", "[", "t", "+", "1", ",", "0", "]", "]", "output_state_seq", "=", "[", "]", "for", "t", "in", "six", ".", "moves", ".", "range", "(", "0", ",", "lpz", ".", "size", "(", "0", ")", ")", ":", "output_state_seq", ".", "append", "(", "y_int", "[", "state_seq", "[", "t", ",", "0", "]", "]", ")", "return", "output_state_seq" ]
https://github.com/espnet/espnet/blob/ea411f3f627b8f101c211e107d0ff7053344ac80/espnet/nets/pytorch_backend/ctc.py#L180-L243
PyWavelets/pywt
9a72143be347481e2276371efb41ae0266b9c808
util/refguide_check.py
python
short_path
(path, cwd=None)
return relpath
Return relative or absolute path name, whichever is shortest.
Return relative or absolute path name, whichever is shortest.
[ "Return", "relative", "or", "absolute", "path", "name", "whichever", "is", "shortest", "." ]
def short_path(path, cwd=None): """ Return relative or absolute path name, whichever is shortest. """ if not isinstance(path, str): return path if cwd is None: cwd = os.getcwd() abspath = os.path.abspath(path) relpath = os.path.relpath(path, cwd) if len(abspath) <= len(relpath): return abspath return relpath
[ "def", "short_path", "(", "path", ",", "cwd", "=", "None", ")", ":", "if", "not", "isinstance", "(", "path", ",", "str", ")", ":", "return", "path", "if", "cwd", "is", "None", ":", "cwd", "=", "os", ".", "getcwd", "(", ")", "abspath", "=", "os", ".", "path", ".", "abspath", "(", "path", ")", "relpath", "=", "os", ".", "path", ".", "relpath", "(", "path", ",", "cwd", ")", "if", "len", "(", "abspath", ")", "<=", "len", "(", "relpath", ")", ":", "return", "abspath", "return", "relpath" ]
https://github.com/PyWavelets/pywt/blob/9a72143be347481e2276371efb41ae0266b9c808/util/refguide_check.py#L80-L92
pyopenapi/pyswagger
333c4ca08e758cd2194943d9904a3eda3fe43977
pyswagger/spec/base.py
python
BaseObj.resolve
(self, ts)
return obj
resolve a list of tokens to an child object :param list ts: list of tokens
resolve a list of tokens to an child object
[ "resolve", "a", "list", "of", "tokens", "to", "an", "child", "object" ]
def resolve(self, ts): """ resolve a list of tokens to an child object :param list ts: list of tokens """ if isinstance(ts, six.string_types): ts = [ts] obj = self while len(ts) > 0: t = ts.pop(0) if issubclass(obj.__class__, BaseObj): obj = getattr(obj, t) elif isinstance(obj, list): obj = obj[int(t)] elif isinstance(obj, dict): obj = obj[t] return obj
[ "def", "resolve", "(", "self", ",", "ts", ")", ":", "if", "isinstance", "(", "ts", ",", "six", ".", "string_types", ")", ":", "ts", "=", "[", "ts", "]", "obj", "=", "self", "while", "len", "(", "ts", ")", ">", "0", ":", "t", "=", "ts", ".", "pop", "(", "0", ")", "if", "issubclass", "(", "obj", ".", "__class__", ",", "BaseObj", ")", ":", "obj", "=", "getattr", "(", "obj", ",", "t", ")", "elif", "isinstance", "(", "obj", ",", "list", ")", ":", "obj", "=", "obj", "[", "int", "(", "t", ")", "]", "elif", "isinstance", "(", "obj", ",", "dict", ")", ":", "obj", "=", "obj", "[", "t", "]", "return", "obj" ]
https://github.com/pyopenapi/pyswagger/blob/333c4ca08e758cd2194943d9904a3eda3fe43977/pyswagger/spec/base.py#L259-L278
caiiiac/Machine-Learning-with-Python
1a26c4467da41ca4ebc3d5bd789ea942ef79422f
MachineLearning/venv/lib/python3.5/site-packages/pandas/core/dtypes/common.py
python
is_categorical
(arr)
return isinstance(arr, ABCCategorical) or is_categorical_dtype(arr)
Check whether an array-like is a Categorical instance. Parameters ---------- arr : array-like The array-like to check. Returns ------- boolean : Whether or not the array-like is of a Categorical instance. Examples -------- >>> is_categorical([1, 2, 3]) False Categoricals, Series Categoricals, and CategoricalIndex will return True. >>> cat = pd.Categorical([1, 2, 3]) >>> is_categorical(cat) True >>> is_categorical(pd.Series(cat)) True >>> is_categorical(pd.CategoricalIndex([1, 2, 3])) True
Check whether an array-like is a Categorical instance.
[ "Check", "whether", "an", "array", "-", "like", "is", "a", "Categorical", "instance", "." ]
def is_categorical(arr): """ Check whether an array-like is a Categorical instance. Parameters ---------- arr : array-like The array-like to check. Returns ------- boolean : Whether or not the array-like is of a Categorical instance. Examples -------- >>> is_categorical([1, 2, 3]) False Categoricals, Series Categoricals, and CategoricalIndex will return True. >>> cat = pd.Categorical([1, 2, 3]) >>> is_categorical(cat) True >>> is_categorical(pd.Series(cat)) True >>> is_categorical(pd.CategoricalIndex([1, 2, 3])) True """ return isinstance(arr, ABCCategorical) or is_categorical_dtype(arr)
[ "def", "is_categorical", "(", "arr", ")", ":", "return", "isinstance", "(", "arr", ",", "ABCCategorical", ")", "or", "is_categorical_dtype", "(", "arr", ")" ]
https://github.com/caiiiac/Machine-Learning-with-Python/blob/1a26c4467da41ca4ebc3d5bd789ea942ef79422f/MachineLearning/venv/lib/python3.5/site-packages/pandas/core/dtypes/common.py#L190-L219
OptMLGroup/VRP-RL
b794fb1e4c4bb70a62cfa54504ee7a247adbc2a0
VRP/vrp_utils.py
python
reward_func
(sample_solution)
return route_lens_decoded
The reward for the VRP task is defined as the negative value of the route length Args: sample_solution : a list tensor of size decode_len of shape [batch_size x input_dim] demands satisfied: a list tensor of size decode_len of shape [batch_size] Returns: rewards: tensor of size [batch_size] Example: sample_solution = [[[1,1],[2,2]],[[3,3],[4,4]],[[5,5],[6,6]]] sourceL = 3 batch_size = 2 input_dim = 2 sample_solution_tilted[ [[5,5] # [6,6]] # [[1,1] # [2,2]] # [[3,3] # [4,4]] ]
The reward for the VRP task is defined as the negative value of the route length
[ "The", "reward", "for", "the", "VRP", "task", "is", "defined", "as", "the", "negative", "value", "of", "the", "route", "length" ]
def reward_func(sample_solution): """The reward for the VRP task is defined as the negative value of the route length Args: sample_solution : a list tensor of size decode_len of shape [batch_size x input_dim] demands satisfied: a list tensor of size decode_len of shape [batch_size] Returns: rewards: tensor of size [batch_size] Example: sample_solution = [[[1,1],[2,2]],[[3,3],[4,4]],[[5,5],[6,6]]] sourceL = 3 batch_size = 2 input_dim = 2 sample_solution_tilted[ [[5,5] # [6,6]] # [[1,1] # [2,2]] # [[3,3] # [4,4]] ] """ # make init_solution of shape [sourceL x batch_size x input_dim] # make sample_solution of shape [sourceL x batch_size x input_dim] sample_solution = tf.stack(sample_solution,0) sample_solution_tilted = tf.concat((tf.expand_dims(sample_solution[-1],0), sample_solution[:-1]),0) # get the reward based on the route lengths route_lens_decoded = tf.reduce_sum(tf.pow(tf.reduce_sum(tf.pow(\ (sample_solution_tilted - sample_solution) ,2), 2) , .5), 0) return route_lens_decoded
[ "def", "reward_func", "(", "sample_solution", ")", ":", "# make init_solution of shape [sourceL x batch_size x input_dim]", "# make sample_solution of shape [sourceL x batch_size x input_dim]", "sample_solution", "=", "tf", ".", "stack", "(", "sample_solution", ",", "0", ")", "sample_solution_tilted", "=", "tf", ".", "concat", "(", "(", "tf", ".", "expand_dims", "(", "sample_solution", "[", "-", "1", "]", ",", "0", ")", ",", "sample_solution", "[", ":", "-", "1", "]", ")", ",", "0", ")", "# get the reward based on the route lengths", "route_lens_decoded", "=", "tf", ".", "reduce_sum", "(", "tf", ".", "pow", "(", "tf", ".", "reduce_sum", "(", "tf", ".", "pow", "(", "(", "sample_solution_tilted", "-", "sample_solution", ")", ",", "2", ")", ",", "2", ")", ",", ".5", ")", ",", "0", ")", "return", "route_lens_decoded" ]
https://github.com/OptMLGroup/VRP-RL/blob/b794fb1e4c4bb70a62cfa54504ee7a247adbc2a0/VRP/vrp_utils.py#L252-L288
Chaffelson/nipyapi
d3b186fd701ce308c2812746d98af9120955e810
nipyapi/nifi/models/remote_process_group_status_dto.py
python
RemoteProcessGroupStatusDTO.transmission_status
(self, transmission_status)
Sets the transmission_status of this RemoteProcessGroupStatusDTO. The transmission status of the remote process group. :param transmission_status: The transmission_status of this RemoteProcessGroupStatusDTO. :type: str
Sets the transmission_status of this RemoteProcessGroupStatusDTO. The transmission status of the remote process group.
[ "Sets", "the", "transmission_status", "of", "this", "RemoteProcessGroupStatusDTO", ".", "The", "transmission", "status", "of", "the", "remote", "process", "group", "." ]
def transmission_status(self, transmission_status): """ Sets the transmission_status of this RemoteProcessGroupStatusDTO. The transmission status of the remote process group. :param transmission_status: The transmission_status of this RemoteProcessGroupStatusDTO. :type: str """ self._transmission_status = transmission_status
[ "def", "transmission_status", "(", "self", ",", "transmission_status", ")", ":", "self", ".", "_transmission_status", "=", "transmission_status" ]
https://github.com/Chaffelson/nipyapi/blob/d3b186fd701ce308c2812746d98af9120955e810/nipyapi/nifi/models/remote_process_group_status_dto.py#L195-L204
zhl2008/awd-platform
0416b31abea29743387b10b3914581fbe8e7da5e
web_hxb2/lib/python3.5/site-packages/urllib3/packages/ordered_dict.py
python
OrderedDict.viewitems
(self)
return ItemsView(self)
od.viewitems() -> a set-like object providing a view on od's items
od.viewitems() -> a set-like object providing a view on od's items
[ "od", ".", "viewitems", "()", "-", ">", "a", "set", "-", "like", "object", "providing", "a", "view", "on", "od", "s", "items" ]
def viewitems(self): "od.viewitems() -> a set-like object providing a view on od's items" return ItemsView(self)
[ "def", "viewitems", "(", "self", ")", ":", "return", "ItemsView", "(", "self", ")" ]
https://github.com/zhl2008/awd-platform/blob/0416b31abea29743387b10b3914581fbe8e7da5e/web_hxb2/lib/python3.5/site-packages/urllib3/packages/ordered_dict.py#L257-L259
han1057578619/MachineLearning_Zhouzhihua_ProblemSets
00935f4216bc2441886a2d2abde5b90100910763
ch8--集成学习/8.3-AdaBoost.py
python
calcMinGiniIndex
(a, y, D)
return min_gini, min_gini_point
计算特征a下样本集y的的基尼指数 :param a: 单一特征值 :param y: 数据样本标签 :param D: 样本权重 :return:
计算特征a下样本集y的的基尼指数 :param a: 单一特征值 :param y: 数据样本标签 :param D: 样本权重 :return:
[ "计算特征a下样本集y的的基尼指数", ":", "param", "a", ":", "单一特征值", ":", "param", "y", ":", "数据样本标签", ":", "param", "D", ":", "样本权重", ":", "return", ":" ]
def calcMinGiniIndex(a, y, D): ''' 计算特征a下样本集y的的基尼指数 :param a: 单一特征值 :param y: 数据样本标签 :param D: 样本权重 :return: ''' feature = np.sort(a) total_weight = np.sum(D) split_points = [(feature[i] + feature[i + 1]) / 2 for i in range(feature.shape[0] - 1)] min_gini = float('inf') min_gini_point = None for i in split_points: yv1 = y[a <= i] yv2 = y[a > i] Dv1 = D[a <= i] Dv2 = D[a > i] gini_tmp = (np.sum(Dv1) * gini(yv1, Dv1) + np.sum(Dv2) * gini(yv2, Dv2)) / total_weight if gini_tmp < min_gini: min_gini = gini_tmp min_gini_point = i return min_gini, min_gini_point
[ "def", "calcMinGiniIndex", "(", "a", ",", "y", ",", "D", ")", ":", "feature", "=", "np", ".", "sort", "(", "a", ")", "total_weight", "=", "np", ".", "sum", "(", "D", ")", "split_points", "=", "[", "(", "feature", "[", "i", "]", "+", "feature", "[", "i", "+", "1", "]", ")", "/", "2", "for", "i", "in", "range", "(", "feature", ".", "shape", "[", "0", "]", "-", "1", ")", "]", "min_gini", "=", "float", "(", "'inf'", ")", "min_gini_point", "=", "None", "for", "i", "in", "split_points", ":", "yv1", "=", "y", "[", "a", "<=", "i", "]", "yv2", "=", "y", "[", "a", ">", "i", "]", "Dv1", "=", "D", "[", "a", "<=", "i", "]", "Dv2", "=", "D", "[", "a", ">", "i", "]", "gini_tmp", "=", "(", "np", ".", "sum", "(", "Dv1", ")", "*", "gini", "(", "yv1", ",", "Dv1", ")", "+", "np", ".", "sum", "(", "Dv2", ")", "*", "gini", "(", "yv2", ",", "Dv2", ")", ")", "/", "total_weight", "if", "gini_tmp", "<", "min_gini", ":", "min_gini", "=", "gini_tmp", "min_gini_point", "=", "i", "return", "min_gini", ",", "min_gini_point" ]
https://github.com/han1057578619/MachineLearning_Zhouzhihua_ProblemSets/blob/00935f4216bc2441886a2d2abde5b90100910763/ch8--集成学习/8.3-AdaBoost.py#L33-L62
securesystemslab/zippy
ff0e84ac99442c2c55fe1d285332cfd4e185e089
zippy/benchmarks/src/benchmarks/sympy/sympy/physics/quantum/qft.py
python
IQFT.omega
(self)
return exp(-2*pi*I/self.size)
[]
def omega(self): return exp(-2*pi*I/self.size)
[ "def", "omega", "(", "self", ")", ":", "return", "exp", "(", "-", "2", "*", "pi", "*", "I", "/", "self", ".", "size", ")" ]
https://github.com/securesystemslab/zippy/blob/ff0e84ac99442c2c55fe1d285332cfd4e185e089/zippy/benchmarks/src/benchmarks/sympy/sympy/physics/quantum/qft.py#L211-L212
Pymol-Scripts/Pymol-script-repo
bcd7bb7812dc6db1595953dfa4471fa15fb68c77
modules/pdb2pqr/src/topology.py
python
TopologyReference.__init__
(self, topologyResidue)
Initialize with a TopologyResidue object
Initialize with a TopologyResidue object
[ "Initialize", "with", "a", "TopologyResidue", "object" ]
def __init__(self, topologyResidue): """ Initialize with a TopologyResidue object """ self.topologyResidue = topologyResidue self.topologyResidue.reference = self self.atoms = [] self.dihedrals = []
[ "def", "__init__", "(", "self", ",", "topologyResidue", ")", ":", "self", ".", "topologyResidue", "=", "topologyResidue", "self", ".", "topologyResidue", ".", "reference", "=", "self", "self", ".", "atoms", "=", "[", "]", "self", ".", "dihedrals", "=", "[", "]" ]
https://github.com/Pymol-Scripts/Pymol-script-repo/blob/bcd7bb7812dc6db1595953dfa4471fa15fb68c77/modules/pdb2pqr/src/topology.py#L318-L323
edisonlz/fastor
342078a18363ac41d3c6b1ab29dbdd44fdb0b7b3
base/site-packages/requests/utils.py
python
dict_to_sequence
(d)
return d
Returns an internal sequence dictionary update.
Returns an internal sequence dictionary update.
[ "Returns", "an", "internal", "sequence", "dictionary", "update", "." ]
def dict_to_sequence(d): """Returns an internal sequence dictionary update.""" if hasattr(d, 'items'): d = d.items() return d
[ "def", "dict_to_sequence", "(", "d", ")", ":", "if", "hasattr", "(", "d", ",", "'items'", ")", ":", "d", "=", "d", ".", "items", "(", ")", "return", "d" ]
https://github.com/edisonlz/fastor/blob/342078a18363ac41d3c6b1ab29dbdd44fdb0b7b3/base/site-packages/requests/utils.py#L41-L47
googleads/google-ads-python
2a1d6062221f6aad1992a6bcca0e7e4a93d2db86
google/ads/googleads/v9/services/services/domain_category_service/client.py
python
DomainCategoryServiceClientMeta.get_transport_class
( cls, label: str = None, )
return next(iter(cls._transport_registry.values()))
Return an appropriate transport class. Args: label: The name of the desired transport. If none is provided, then the first transport in the registry is used. Returns: The transport class to use.
Return an appropriate transport class.
[ "Return", "an", "appropriate", "transport", "class", "." ]
def get_transport_class( cls, label: str = None, ) -> Type[DomainCategoryServiceTransport]: """Return an appropriate transport class. Args: label: The name of the desired transport. If none is provided, then the first transport in the registry is used. Returns: The transport class to use. """ # If a specific transport is requested, return that one. if label: return cls._transport_registry[label] # No transport is requested; return the default (that is, the first one # in the dictionary). return next(iter(cls._transport_registry.values()))
[ "def", "get_transport_class", "(", "cls", ",", "label", ":", "str", "=", "None", ",", ")", "->", "Type", "[", "DomainCategoryServiceTransport", "]", ":", "# If a specific transport is requested, return that one.", "if", "label", ":", "return", "cls", ".", "_transport_registry", "[", "label", "]", "# No transport is requested; return the default (that is, the first one", "# in the dictionary).", "return", "next", "(", "iter", "(", "cls", ".", "_transport_registry", ".", "values", "(", ")", ")", ")" ]
https://github.com/googleads/google-ads-python/blob/2a1d6062221f6aad1992a6bcca0e7e4a93d2db86/google/ads/googleads/v9/services/services/domain_category_service/client.py#L54-L72
marchtea/scrapy_doc_chs
5ed032cffed0f2c23a188f0b13b0c9ef9e228a22
topics/src_used/scrapy-ws.py
python
cmd_get_spider_stats
(args, opts)
get-spider-stats <spider> - get stats of a running spider
get-spider-stats <spider> - get stats of a running spider
[ "get", "-", "spider", "-", "stats", "<spider", ">", "-", "get", "stats", "of", "a", "running", "spider" ]
def cmd_get_spider_stats(args, opts): """get-spider-stats <spider> - get stats of a running spider""" stats = jsonrpc_call(opts, 'stats', 'get_stats', args[0]) for name, value in stats.items(): print("%-40s %s" % (name, value))
[ "def", "cmd_get_spider_stats", "(", "args", ",", "opts", ")", ":", "stats", "=", "jsonrpc_call", "(", "opts", ",", "'stats'", ",", "'get_stats'", ",", "args", "[", "0", "]", ")", "for", "name", ",", "value", "in", "stats", ".", "items", "(", ")", ":", "print", "(", "\"%-40s %s\"", "%", "(", "name", ",", "value", ")", ")" ]
https://github.com/marchtea/scrapy_doc_chs/blob/5ed032cffed0f2c23a188f0b13b0c9ef9e228a22/topics/src_used/scrapy-ws.py#L56-L60
numenta/nupic
b9ebedaf54f49a33de22d8d44dff7c765cdb5548
external/linux32/lib/python2.6/site-packages/matplotlib/ticker.py
python
Base.le
(self, x)
return d*self._base
return the largest multiple of base <= x
return the largest multiple of base <= x
[ "return", "the", "largest", "multiple", "of", "base", "<", "=", "x" ]
def le(self, x): 'return the largest multiple of base <= x' d,m = divmod(x, self._base) if closeto(m/self._base,1): # was closeto(m, self._base) #looks like floating point error return (d+1)*self._base return d*self._base
[ "def", "le", "(", "self", ",", "x", ")", ":", "d", ",", "m", "=", "divmod", "(", "x", ",", "self", ".", "_base", ")", "if", "closeto", "(", "m", "/", "self", ".", "_base", ",", "1", ")", ":", "# was closeto(m, self._base)", "#looks like floating point error", "return", "(", "d", "+", "1", ")", "*", "self", ".", "_base", "return", "d", "*", "self", ".", "_base" ]
https://github.com/numenta/nupic/blob/b9ebedaf54f49a33de22d8d44dff7c765cdb5548/external/linux32/lib/python2.6/site-packages/matplotlib/ticker.py#L822-L828
skylander86/lambda-text-extractor
6da52d077a2fc571e38bfe29c33ae68f6443cd5a
functions/ocr/pyparsing.py
python
ParserElement.__call__
(self, name=None)
Shortcut for C{L{setResultsName}}, with C{listAllMatches=False}. If C{name} is given with a trailing C{'*'} character, then C{listAllMatches} will be passed as C{True}. If C{name} is omitted, same as calling C{L{copy}}. Example:: # these are equivalent userdata = Word(alphas).setResultsName("name") + Word(nums+"-").setResultsName("socsecno") userdata = Word(alphas)("name") + Word(nums+"-")("socsecno")
Shortcut for C{L{setResultsName}}, with C{listAllMatches=False}. If C{name} is given with a trailing C{'*'} character, then C{listAllMatches} will be passed as C{True}. If C{name} is omitted, same as calling C{L{copy}}.
[ "Shortcut", "for", "C", "{", "L", "{", "setResultsName", "}}", "with", "C", "{", "listAllMatches", "=", "False", "}", ".", "If", "C", "{", "name", "}", "is", "given", "with", "a", "trailing", "C", "{", "*", "}", "character", "then", "C", "{", "listAllMatches", "}", "will", "be", "passed", "as", "C", "{", "True", "}", ".", "If", "C", "{", "name", "}", "is", "omitted", "same", "as", "calling", "C", "{", "L", "{", "copy", "}}", "." ]
def __call__(self, name=None): """ Shortcut for C{L{setResultsName}}, with C{listAllMatches=False}. If C{name} is given with a trailing C{'*'} character, then C{listAllMatches} will be passed as C{True}. If C{name} is omitted, same as calling C{L{copy}}. Example:: # these are equivalent userdata = Word(alphas).setResultsName("name") + Word(nums+"-").setResultsName("socsecno") userdata = Word(alphas)("name") + Word(nums+"-")("socsecno") """ if name is not None: return self.setResultsName(name) else: return self.copy()
[ "def", "__call__", "(", "self", ",", "name", "=", "None", ")", ":", "if", "name", "is", "not", "None", ":", "return", "self", ".", "setResultsName", "(", "name", ")", "else", ":", "return", "self", ".", "copy", "(", ")" ]
https://github.com/skylander86/lambda-text-extractor/blob/6da52d077a2fc571e38bfe29c33ae68f6443cd5a/functions/ocr/pyparsing.py#L2004-L2021