nwo
stringlengths
5
106
sha
stringlengths
40
40
path
stringlengths
4
174
language
stringclasses
1 value
identifier
stringlengths
1
140
parameters
stringlengths
0
87.7k
argument_list
stringclasses
1 value
return_statement
stringlengths
0
426k
docstring
stringlengths
0
64.3k
docstring_summary
stringlengths
0
26.3k
docstring_tokens
list
function
stringlengths
18
4.83M
function_tokens
list
url
stringlengths
83
304
andabi/music-source-separation
ba9aa531ccca08437f1efe5dec1871faebf5c840
mir_eval/hierarchy.py
python
_lca
(intervals_hier, frame_size)
return lca_matrix.tocsr()
Compute the (sparse) least-common-ancestor (LCA) matrix for a hierarchical segmentation. For any pair of frames ``(s, t)``, the LCA is the deepest level in the hierarchy such that ``(s, t)`` are contained within a single segment at that level. Parameters ---------- intervals_hier : list of ndarray An ordered list of segment interval arrays. The list is assumed to be ordered by increasing specificity (depth). frame_size : number The length of the sample frames (in seconds) Returns ------- lca_matrix : scipy.sparse.csr_matrix A sparse matrix such that ``lca_matrix[i, j]`` contains the depth of the deepest segment containing frames ``i`` and ``j``.
Compute the (sparse) least-common-ancestor (LCA) matrix for a hierarchical segmentation.
[ "Compute", "the", "(", "sparse", ")", "least", "-", "common", "-", "ancestor", "(", "LCA", ")", "matrix", "for", "a", "hierarchical", "segmentation", "." ]
def _lca(intervals_hier, frame_size): '''Compute the (sparse) least-common-ancestor (LCA) matrix for a hierarchical segmentation. For any pair of frames ``(s, t)``, the LCA is the deepest level in the hierarchy such that ``(s, t)`` are contained within a single segment at that level. Parameters ---------- intervals_hier : list of ndarray An ordered list of segment interval arrays. The list is assumed to be ordered by increasing specificity (depth). frame_size : number The length of the sample frames (in seconds) Returns ------- lca_matrix : scipy.sparse.csr_matrix A sparse matrix such that ``lca_matrix[i, j]`` contains the depth of the deepest segment containing frames ``i`` and ``j``. ''' frame_size = float(frame_size) # Figure out how many frames we need n_start, n_end = _hierarchy_bounds(intervals_hier) n = int((_round(n_end, frame_size) - _round(n_start, frame_size)) / frame_size) # Initialize the LCA matrix lca_matrix = scipy.sparse.lil_matrix((n, n), dtype=np.uint8) for level, intervals in enumerate(intervals_hier, 1): for ival in (_round(np.asarray(intervals), frame_size) / frame_size).astype(int): idx = slice(ival[0], ival[1]) lca_matrix[idx, idx] = level return lca_matrix.tocsr()
[ "def", "_lca", "(", "intervals_hier", ",", "frame_size", ")", ":", "frame_size", "=", "float", "(", "frame_size", ")", "# Figure out how many frames we need", "n_start", ",", "n_end", "=", "_hierarchy_bounds", "(", "intervals_hier", ")", "n", "=", "int", "(", "(", "_round", "(", "n_end", ",", "frame_size", ")", "-", "_round", "(", "n_start", ",", "frame_size", ")", ")", "/", "frame_size", ")", "# Initialize the LCA matrix", "lca_matrix", "=", "scipy", ".", "sparse", ".", "lil_matrix", "(", "(", "n", ",", "n", ")", ",", "dtype", "=", "np", ".", "uint8", ")", "for", "level", ",", "intervals", "in", "enumerate", "(", "intervals_hier", ",", "1", ")", ":", "for", "ival", "in", "(", "_round", "(", "np", ".", "asarray", "(", "intervals", ")", ",", "frame_size", ")", "/", "frame_size", ")", ".", "astype", "(", "int", ")", ":", "idx", "=", "slice", "(", "ival", "[", "0", "]", ",", "ival", "[", "1", "]", ")", "lca_matrix", "[", "idx", ",", "idx", "]", "=", "level", "return", "lca_matrix", ".", "tocsr", "(", ")" ]
https://github.com/andabi/music-source-separation/blob/ba9aa531ccca08437f1efe5dec1871faebf5c840/mir_eval/hierarchy.py#L101-L143
joschabach/micropsi2
74a2642d20da9da1d64acc5e4c11aeabee192a27
micropsi_core/world/minecraft/minecraft_graph_locomotion.py
python
MinecraftGraphLocomotion.update_data_sources_and_targets
(self)
called on every world calculation step to advance the life of the agent
called on every world calculation step to advance the life of the agent
[ "called", "on", "every", "world", "calculation", "step", "to", "advance", "the", "life", "of", "the", "agent" ]
def update_data_sources_and_targets(self): """called on every world calculation step to advance the life of the agent""" self.datasources['awake'] = 0 if self.sleeping else 1 # first thing when spock initialization is done, determine current loco node if self.waiting_for_spock: # by substitution: spock init is considered done, when its client has a position unlike # {'on_ground': False, 'pitch': 0, 'x': 0, 'y': 0, 'yaw': 0, 'stance': 0, 'z': 0}: if self.spockplugin.clientinfo.position['y'] != 0. \ and self.spockplugin.clientinfo.position['x'] != 0: self.waiting_for_spock = False x = int(self.spockplugin.clientinfo.position['x']) y = int(self.spockplugin.clientinfo.position['y']) z = int(self.spockplugin.clientinfo.position['z']) for k, v in self.loco_nodes.items(): if abs(x - v['x']) <= self.tp_tolerance and abs(y - v['y']) <= self.tp_tolerance and abs(z - v['z']) <= self.tp_tolerance: self.current_loco_node = self.loco_nodes[k] self.last_slept = self.spockplugin.world.age if self.current_loco_node is None: # bot is outside our graph, teleport to a random graph location to get started. target = random.choice(list(self.loco_nodes.keys())) self.locomote(target) # self.locomote(self.forest_uid) else: # reset self.datatarget_feedback for k in self.datatarget_feedback.keys(): # reset actions only if not requested anymore if k in self.actions: if self.datatargets[k] == 0: self.datatarget_feedback[k] = 0. else: self.datatarget_feedback[k] = 0. if not self.spockplugin.is_connected(): return self.datasources['current_location_index'] = self.loco_nodes_indexes.index(self.current_loco_node['name']) # health and food are in [0;20] self.datasources['health'] = self.spockplugin.clientinfo.health['health'] / 20 self.datasources['food'] = self.spockplugin.clientinfo.health['food'] / 20 if self.spockplugin.get_temperature() is not None: self.datasources['temperature'] = self.spockplugin.get_temperature() self.datasources['food_supply'] = self.spockplugin.count_inventory_item(297) # count bread # compute fatigue: 0.1 per half a day: # timeofday = self.spockplugin.world.time_of_day % 24000 if self.sleeping: no_sleep = ((self.sleeping - self.last_slept) // 3000) / 2 else: no_sleep = ((self.spockplugin.world.age - self.last_slept) // 3000) / 2 fatigue = no_sleep * 0.05 self.datasources['fatigue'] = round(fatigue, 2) self.check_for_action_feedback() # read locomotor values, trigger teleportation in the world, and provide action feedback # don't trigger another teleportation if the datatargets was on continuously, cf. pipe logic if self.datatargets['take_exit_one'] >= 1 and not self.datatarget_history['take_exit_one'] >= 1: # if the current node on the transition graph has the selected exit if self.current_loco_node['exit_one_uid'] is not None: self.register_action( 'take_exit_one', partial(self.locomote, self.current_loco_node['exit_one_uid']), partial(self.check_movement_feedback, self.current_loco_node['exit_one_uid']) ) else: self.datatarget_feedback['take_exit_one'] = -1. if self.datatargets['take_exit_two'] >= 1 and not self.datatarget_history['take_exit_two'] >= 1: if self.current_loco_node['exit_two_uid'] is not None: self.register_action( 'take_exit_two', partial(self.locomote, self.current_loco_node['exit_two_uid']), partial(self.check_movement_feedback, self.current_loco_node['exit_two_uid']) ) else: self.datatarget_feedback['take_exit_two'] = -1. if self.datatargets['take_exit_three'] >= 1 and not self.datatarget_history['take_exit_three'] >=1: if self.current_loco_node['exit_three_uid'] is not None: self.register_action( 'take_exit_three', partial(self.locomote, self.current_loco_node['exit_three_uid']), partial(self.check_movement_feedback, self.current_loco_node['exit_three_uid']) ) else: self.datatarget_feedback['take_exit_three'] = -1. if self.datatargets['eat'] >= 1 and not self.datatarget_history['eat'] >= 1: if self.has_bread() and self.datasources['food'] < 1: self.register_action( 'eat', self.spockplugin.eat, partial(self.check_eat_feedback, self.spockplugin.clientinfo.health['food']) ) else: self.datatarget_feedback['eat'] = -1. if self.datatargets['sleep'] >= 1 and not self.datatarget_history['sleep'] >= 1: if self.check_movement_feedback(self.home_uid) and self.spockplugin.world.time_of_day % 24000 > 12500: # we're home and it's night, so we can sleep now: self.register_action('sleep', self.sleep, self.check_waking_up) else: self.datatarget_feedback['sleep'] = -1. # update datatarget history for k in self.datatarget_history.keys(): self.datatarget_history[k] = self.datatargets[k]
[ "def", "update_data_sources_and_targets", "(", "self", ")", ":", "self", ".", "datasources", "[", "'awake'", "]", "=", "0", "if", "self", ".", "sleeping", "else", "1", "# first thing when spock initialization is done, determine current loco node", "if", "self", ".", "waiting_for_spock", ":", "# by substitution: spock init is considered done, when its client has a position unlike", "# {'on_ground': False, 'pitch': 0, 'x': 0, 'y': 0, 'yaw': 0, 'stance': 0, 'z': 0}:", "if", "self", ".", "spockplugin", ".", "clientinfo", ".", "position", "[", "'y'", "]", "!=", "0.", "and", "self", ".", "spockplugin", ".", "clientinfo", ".", "position", "[", "'x'", "]", "!=", "0", ":", "self", ".", "waiting_for_spock", "=", "False", "x", "=", "int", "(", "self", ".", "spockplugin", ".", "clientinfo", ".", "position", "[", "'x'", "]", ")", "y", "=", "int", "(", "self", ".", "spockplugin", ".", "clientinfo", ".", "position", "[", "'y'", "]", ")", "z", "=", "int", "(", "self", ".", "spockplugin", ".", "clientinfo", ".", "position", "[", "'z'", "]", ")", "for", "k", ",", "v", "in", "self", ".", "loco_nodes", ".", "items", "(", ")", ":", "if", "abs", "(", "x", "-", "v", "[", "'x'", "]", ")", "<=", "self", ".", "tp_tolerance", "and", "abs", "(", "y", "-", "v", "[", "'y'", "]", ")", "<=", "self", ".", "tp_tolerance", "and", "abs", "(", "z", "-", "v", "[", "'z'", "]", ")", "<=", "self", ".", "tp_tolerance", ":", "self", ".", "current_loco_node", "=", "self", ".", "loco_nodes", "[", "k", "]", "self", ".", "last_slept", "=", "self", ".", "spockplugin", ".", "world", ".", "age", "if", "self", ".", "current_loco_node", "is", "None", ":", "# bot is outside our graph, teleport to a random graph location to get started.", "target", "=", "random", ".", "choice", "(", "list", "(", "self", ".", "loco_nodes", ".", "keys", "(", ")", ")", ")", "self", ".", "locomote", "(", "target", ")", "# self.locomote(self.forest_uid)", "else", ":", "# reset self.datatarget_feedback", "for", "k", "in", "self", ".", "datatarget_feedback", ".", "keys", "(", ")", ":", "# reset actions only if not requested anymore", "if", "k", "in", "self", ".", "actions", ":", "if", "self", ".", "datatargets", "[", "k", "]", "==", "0", ":", "self", ".", "datatarget_feedback", "[", "k", "]", "=", "0.", "else", ":", "self", ".", "datatarget_feedback", "[", "k", "]", "=", "0.", "if", "not", "self", ".", "spockplugin", ".", "is_connected", "(", ")", ":", "return", "self", ".", "datasources", "[", "'current_location_index'", "]", "=", "self", ".", "loco_nodes_indexes", ".", "index", "(", "self", ".", "current_loco_node", "[", "'name'", "]", ")", "# health and food are in [0;20]", "self", ".", "datasources", "[", "'health'", "]", "=", "self", ".", "spockplugin", ".", "clientinfo", ".", "health", "[", "'health'", "]", "/", "20", "self", ".", "datasources", "[", "'food'", "]", "=", "self", ".", "spockplugin", ".", "clientinfo", ".", "health", "[", "'food'", "]", "/", "20", "if", "self", ".", "spockplugin", ".", "get_temperature", "(", ")", "is", "not", "None", ":", "self", ".", "datasources", "[", "'temperature'", "]", "=", "self", ".", "spockplugin", ".", "get_temperature", "(", ")", "self", ".", "datasources", "[", "'food_supply'", "]", "=", "self", ".", "spockplugin", ".", "count_inventory_item", "(", "297", ")", "# count bread", "# compute fatigue: 0.1 per half a day:", "# timeofday = self.spockplugin.world.time_of_day % 24000", "if", "self", ".", "sleeping", ":", "no_sleep", "=", "(", "(", "self", ".", "sleeping", "-", "self", ".", "last_slept", ")", "//", "3000", ")", "/", "2", "else", ":", "no_sleep", "=", "(", "(", "self", ".", "spockplugin", ".", "world", ".", "age", "-", "self", ".", "last_slept", ")", "//", "3000", ")", "/", "2", "fatigue", "=", "no_sleep", "*", "0.05", "self", ".", "datasources", "[", "'fatigue'", "]", "=", "round", "(", "fatigue", ",", "2", ")", "self", ".", "check_for_action_feedback", "(", ")", "# read locomotor values, trigger teleportation in the world, and provide action feedback", "# don't trigger another teleportation if the datatargets was on continuously, cf. pipe logic", "if", "self", ".", "datatargets", "[", "'take_exit_one'", "]", ">=", "1", "and", "not", "self", ".", "datatarget_history", "[", "'take_exit_one'", "]", ">=", "1", ":", "# if the current node on the transition graph has the selected exit", "if", "self", ".", "current_loco_node", "[", "'exit_one_uid'", "]", "is", "not", "None", ":", "self", ".", "register_action", "(", "'take_exit_one'", ",", "partial", "(", "self", ".", "locomote", ",", "self", ".", "current_loco_node", "[", "'exit_one_uid'", "]", ")", ",", "partial", "(", "self", ".", "check_movement_feedback", ",", "self", ".", "current_loco_node", "[", "'exit_one_uid'", "]", ")", ")", "else", ":", "self", ".", "datatarget_feedback", "[", "'take_exit_one'", "]", "=", "-", "1.", "if", "self", ".", "datatargets", "[", "'take_exit_two'", "]", ">=", "1", "and", "not", "self", ".", "datatarget_history", "[", "'take_exit_two'", "]", ">=", "1", ":", "if", "self", ".", "current_loco_node", "[", "'exit_two_uid'", "]", "is", "not", "None", ":", "self", ".", "register_action", "(", "'take_exit_two'", ",", "partial", "(", "self", ".", "locomote", ",", "self", ".", "current_loco_node", "[", "'exit_two_uid'", "]", ")", ",", "partial", "(", "self", ".", "check_movement_feedback", ",", "self", ".", "current_loco_node", "[", "'exit_two_uid'", "]", ")", ")", "else", ":", "self", ".", "datatarget_feedback", "[", "'take_exit_two'", "]", "=", "-", "1.", "if", "self", ".", "datatargets", "[", "'take_exit_three'", "]", ">=", "1", "and", "not", "self", ".", "datatarget_history", "[", "'take_exit_three'", "]", ">=", "1", ":", "if", "self", ".", "current_loco_node", "[", "'exit_three_uid'", "]", "is", "not", "None", ":", "self", ".", "register_action", "(", "'take_exit_three'", ",", "partial", "(", "self", ".", "locomote", ",", "self", ".", "current_loco_node", "[", "'exit_three_uid'", "]", ")", ",", "partial", "(", "self", ".", "check_movement_feedback", ",", "self", ".", "current_loco_node", "[", "'exit_three_uid'", "]", ")", ")", "else", ":", "self", ".", "datatarget_feedback", "[", "'take_exit_three'", "]", "=", "-", "1.", "if", "self", ".", "datatargets", "[", "'eat'", "]", ">=", "1", "and", "not", "self", ".", "datatarget_history", "[", "'eat'", "]", ">=", "1", ":", "if", "self", ".", "has_bread", "(", ")", "and", "self", ".", "datasources", "[", "'food'", "]", "<", "1", ":", "self", ".", "register_action", "(", "'eat'", ",", "self", ".", "spockplugin", ".", "eat", ",", "partial", "(", "self", ".", "check_eat_feedback", ",", "self", ".", "spockplugin", ".", "clientinfo", ".", "health", "[", "'food'", "]", ")", ")", "else", ":", "self", ".", "datatarget_feedback", "[", "'eat'", "]", "=", "-", "1.", "if", "self", ".", "datatargets", "[", "'sleep'", "]", ">=", "1", "and", "not", "self", ".", "datatarget_history", "[", "'sleep'", "]", ">=", "1", ":", "if", "self", ".", "check_movement_feedback", "(", "self", ".", "home_uid", ")", "and", "self", ".", "spockplugin", ".", "world", ".", "time_of_day", "%", "24000", ">", "12500", ":", "# we're home and it's night, so we can sleep now:", "self", ".", "register_action", "(", "'sleep'", ",", "self", ".", "sleep", ",", "self", ".", "check_waking_up", ")", "else", ":", "self", ".", "datatarget_feedback", "[", "'sleep'", "]", "=", "-", "1.", "# update datatarget history", "for", "k", "in", "self", ".", "datatarget_history", ".", "keys", "(", ")", ":", "self", ".", "datatarget_history", "[", "k", "]", "=", "self", ".", "datatargets", "[", "k", "]" ]
https://github.com/joschabach/micropsi2/blob/74a2642d20da9da1d64acc5e4c11aeabee192a27/micropsi_core/world/minecraft/minecraft_graph_locomotion.py#L206-L318
gentoo/portage
e5be73709b1a42b40380fd336f9381452b01a723
lib/portage/dbapi/vartree.py
python
dblink._post_merge_sync
(self)
Call this after merge or unmerge, in order to sync relevant files to disk and avoid data-loss in the event of a power failure. This method does nothing if FEATURES=merge-sync is disabled.
Call this after merge or unmerge, in order to sync relevant files to disk and avoid data-loss in the event of a power failure. This method does nothing if FEATURES=merge-sync is disabled.
[ "Call", "this", "after", "merge", "or", "unmerge", "in", "order", "to", "sync", "relevant", "files", "to", "disk", "and", "avoid", "data", "-", "loss", "in", "the", "event", "of", "a", "power", "failure", ".", "This", "method", "does", "nothing", "if", "FEATURES", "=", "merge", "-", "sync", "is", "disabled", "." ]
def _post_merge_sync(self): """ Call this after merge or unmerge, in order to sync relevant files to disk and avoid data-loss in the event of a power failure. This method does nothing if FEATURES=merge-sync is disabled. """ if not self._device_path_map or "merge-sync" not in self.settings.features: return returncode = None if platform.system() == "Linux": paths = [] for path in self._device_path_map.values(): if path is not False: paths.append(path) paths = tuple(paths) proc = SyncfsProcess( paths=paths, scheduler=(self._scheduler or asyncio._safe_loop()) ) proc.start() returncode = proc.wait() if returncode is None or returncode != os.EX_OK: try: proc = subprocess.Popen(["sync"]) except EnvironmentError: pass else: proc.wait()
[ "def", "_post_merge_sync", "(", "self", ")", ":", "if", "not", "self", ".", "_device_path_map", "or", "\"merge-sync\"", "not", "in", "self", ".", "settings", ".", "features", ":", "return", "returncode", "=", "None", "if", "platform", ".", "system", "(", ")", "==", "\"Linux\"", ":", "paths", "=", "[", "]", "for", "path", "in", "self", ".", "_device_path_map", ".", "values", "(", ")", ":", "if", "path", "is", "not", "False", ":", "paths", ".", "append", "(", "path", ")", "paths", "=", "tuple", "(", "paths", ")", "proc", "=", "SyncfsProcess", "(", "paths", "=", "paths", ",", "scheduler", "=", "(", "self", ".", "_scheduler", "or", "asyncio", ".", "_safe_loop", "(", ")", ")", ")", "proc", ".", "start", "(", ")", "returncode", "=", "proc", ".", "wait", "(", ")", "if", "returncode", "is", "None", "or", "returncode", "!=", "os", ".", "EX_OK", ":", "try", ":", "proc", "=", "subprocess", ".", "Popen", "(", "[", "\"sync\"", "]", ")", "except", "EnvironmentError", ":", "pass", "else", ":", "proc", ".", "wait", "(", ")" ]
https://github.com/gentoo/portage/blob/e5be73709b1a42b40380fd336f9381452b01a723/lib/portage/dbapi/vartree.py#L5963-L5993
makerdao/pymaker
9245b3e22bcb257004d54337df6c2b0c9cbe42c8
pymaker/auctions.py
python
Clipper.upchost
(self)
return Transact(self, self.web3, self.abi, self.address, self._contract, 'upchost', [])
Update the the cached dust*chop value following a governance change
Update the the cached dust*chop value following a governance change
[ "Update", "the", "the", "cached", "dust", "*", "chop", "value", "following", "a", "governance", "change" ]
def upchost(self): """Update the the cached dust*chop value following a governance change""" return Transact(self, self.web3, self.abi, self.address, self._contract, 'upchost', [])
[ "def", "upchost", "(", "self", ")", ":", "return", "Transact", "(", "self", ",", "self", ".", "web3", ",", "self", ".", "abi", ",", "self", ".", "address", ",", "self", ".", "_contract", ",", "'upchost'", ",", "[", "]", ")" ]
https://github.com/makerdao/pymaker/blob/9245b3e22bcb257004d54337df6c2b0c9cbe42c8/pymaker/auctions.py#L884-L886
yechengxi/deconvolution
dace8a38e6a7158a51d5b2d60fedd819a52f422c
Segmentation/models/resnetd.py
python
resnet34d
(deconv, channel_deconv, pretrained=False, progress=True, **kwargs)
return _resnet('resnet34d', BasicBlock, [3, 4, 6, 3], pretrained, progress, deconv=deconv,channel_deconv=channel_deconv, **kwargs)
Constructs a ResNet-34 model. Args: pretrained (bool): If True, returns a model pre-trained on ImageNet progress (bool): If True, displays a progress bar of the download to stderr
Constructs a ResNet-34 model.
[ "Constructs", "a", "ResNet", "-", "34", "model", "." ]
def resnet34d(deconv, channel_deconv, pretrained=False, progress=True, **kwargs): """Constructs a ResNet-34 model. Args: pretrained (bool): If True, returns a model pre-trained on ImageNet progress (bool): If True, displays a progress bar of the download to stderr """ return _resnet('resnet34d', BasicBlock, [3, 4, 6, 3], pretrained, progress, deconv=deconv,channel_deconv=channel_deconv, **kwargs)
[ "def", "resnet34d", "(", "deconv", ",", "channel_deconv", ",", "pretrained", "=", "False", ",", "progress", "=", "True", ",", "*", "*", "kwargs", ")", ":", "return", "_resnet", "(", "'resnet34d'", ",", "BasicBlock", ",", "[", "3", ",", "4", ",", "6", ",", "3", "]", ",", "pretrained", ",", "progress", ",", "deconv", "=", "deconv", ",", "channel_deconv", "=", "channel_deconv", ",", "*", "*", "kwargs", ")" ]
https://github.com/yechengxi/deconvolution/blob/dace8a38e6a7158a51d5b2d60fedd819a52f422c/Segmentation/models/resnetd.py#L287-L295
google-research/language
61fa7260ac7d690d11ef72ca863e45a37c0bdc80
language/nql/nql/dist.py
python
DistributedNeuralQueryContext._sharded_rel_name
(self, rel_name, shard_id = -1)
return rel_name + '_' + str(shard_id)
Helper function to append shard_id to the end of rel_name. Args: rel_name: string naming a declared relation shard_id: the i'th shard of the matrix. Returns: A string of rel_name appended by shard_id
Helper function to append shard_id to the end of rel_name.
[ "Helper", "function", "to", "append", "shard_id", "to", "the", "end", "of", "rel_name", "." ]
def _sharded_rel_name(self, rel_name, shard_id = -1): """Helper function to append shard_id to the end of rel_name. Args: rel_name: string naming a declared relation shard_id: the i'th shard of the matrix. Returns: A string of rel_name appended by shard_id """ return rel_name + '_' + str(shard_id)
[ "def", "_sharded_rel_name", "(", "self", ",", "rel_name", ",", "shard_id", "=", "-", "1", ")", ":", "return", "rel_name", "+", "'_'", "+", "str", "(", "shard_id", ")" ]
https://github.com/google-research/language/blob/61fa7260ac7d690d11ef72ca863e45a37c0bdc80/language/nql/nql/dist.py#L365-L375
mrkipling/maraschino
c6be9286937783ae01df2d6d8cebfc8b2734a7d7
lib/feedparser/sgmllib3.py
python
SGMLParser.reset
(self)
Reset this instance. Loses all unprocessed data.
Reset this instance. Loses all unprocessed data.
[ "Reset", "this", "instance", ".", "Loses", "all", "unprocessed", "data", "." ]
def reset(self): """Reset this instance. Loses all unprocessed data.""" self.__starttag_text = None self.rawdata = '' self.stack = [] self.lasttag = '???' self.nomoretags = 0 self.literal = 0 _markupbase.ParserBase.reset(self)
[ "def", "reset", "(", "self", ")", ":", "self", ".", "__starttag_text", "=", "None", "self", ".", "rawdata", "=", "''", "self", ".", "stack", "=", "[", "]", "self", ".", "lasttag", "=", "'???'", "self", ".", "nomoretags", "=", "0", "self", ".", "literal", "=", "0", "_markupbase", ".", "ParserBase", ".", "reset", "(", "self", ")" ]
https://github.com/mrkipling/maraschino/blob/c6be9286937783ae01df2d6d8cebfc8b2734a7d7/lib/feedparser/sgmllib3.py#L65-L73
sagarvegad/Video-Classification-CNN-and-LSTM-
dd41a912a5fa8065b7f5d50924d4779b3c21e5b3
train_CNN.py
python
train_model
(train_data,train_labels,validation_data,validation_labels)
return model
used fully connected layers, SGD optimizer and checkpoint to store the best weights
used fully connected layers, SGD optimizer and checkpoint to store the best weights
[ "used", "fully", "connected", "layers", "SGD", "optimizer", "and", "checkpoint", "to", "store", "the", "best", "weights" ]
def train_model(train_data,train_labels,validation_data,validation_labels): ''' used fully connected layers, SGD optimizer and checkpoint to store the best weights''' model = Sequential() model.add(Flatten(input_shape=train_data.shape[1:])) model.add(Dense(512, activation='relu')) model.add(Dense(512, activation='relu')) model.add(Dropout(0.5)) model.add(Dense(512, activation='relu')) model.add(Dropout(0.5)) model.add(Dense(5, activation='softmax')) sgd = SGD(lr=0.00005, decay = 1e-6, momentum=0.9, nesterov=True) model.compile(optimizer=sgd, loss='categorical_crossentropy', metrics=['accuracy']) model.load_weights('video_3_512_VGG_no_drop.h5') callbacks = [ EarlyStopping(monitor='val_loss', patience=10, verbose=0), ModelCheckpoint('video_3_512_VGG_no_drop.h5', monitor='val_loss', save_best_only=True, verbose=0) ] nb_epoch = 500 model.fit(train_data,train_labels,validation_data = (validation_data,validation_labels),batch_size=batch_size,nb_epoch=nb_epoch,callbacks=callbacks,shuffle=True,verbose=1) return model
[ "def", "train_model", "(", "train_data", ",", "train_labels", ",", "validation_data", ",", "validation_labels", ")", ":", "model", "=", "Sequential", "(", ")", "model", ".", "add", "(", "Flatten", "(", "input_shape", "=", "train_data", ".", "shape", "[", "1", ":", "]", ")", ")", "model", ".", "add", "(", "Dense", "(", "512", ",", "activation", "=", "'relu'", ")", ")", "model", ".", "add", "(", "Dense", "(", "512", ",", "activation", "=", "'relu'", ")", ")", "model", ".", "add", "(", "Dropout", "(", "0.5", ")", ")", "model", ".", "add", "(", "Dense", "(", "512", ",", "activation", "=", "'relu'", ")", ")", "model", ".", "add", "(", "Dropout", "(", "0.5", ")", ")", "model", ".", "add", "(", "Dense", "(", "5", ",", "activation", "=", "'softmax'", ")", ")", "sgd", "=", "SGD", "(", "lr", "=", "0.00005", ",", "decay", "=", "1e-6", ",", "momentum", "=", "0.9", ",", "nesterov", "=", "True", ")", "model", ".", "compile", "(", "optimizer", "=", "sgd", ",", "loss", "=", "'categorical_crossentropy'", ",", "metrics", "=", "[", "'accuracy'", "]", ")", "model", ".", "load_weights", "(", "'video_3_512_VGG_no_drop.h5'", ")", "callbacks", "=", "[", "EarlyStopping", "(", "monitor", "=", "'val_loss'", ",", "patience", "=", "10", ",", "verbose", "=", "0", ")", ",", "ModelCheckpoint", "(", "'video_3_512_VGG_no_drop.h5'", ",", "monitor", "=", "'val_loss'", ",", "save_best_only", "=", "True", ",", "verbose", "=", "0", ")", "]", "nb_epoch", "=", "500", "model", ".", "fit", "(", "train_data", ",", "train_labels", ",", "validation_data", "=", "(", "validation_data", ",", "validation_labels", ")", ",", "batch_size", "=", "batch_size", ",", "nb_epoch", "=", "nb_epoch", ",", "callbacks", "=", "callbacks", ",", "shuffle", "=", "True", ",", "verbose", "=", "1", ")", "return", "model" ]
https://github.com/sagarvegad/Video-Classification-CNN-and-LSTM-/blob/dd41a912a5fa8065b7f5d50924d4779b3c21e5b3/train_CNN.py#L93-L111
cw1204772/AIC2018_iamai
9c3720ba5eeb94e02deed303f32acaaa80aa893d
Detection/lib/modeling/mask_rcnn_heads.py
python
mask_rcnn_fcn_head_v1up
(model, blob_in, dim_in, spatial_scale)
return mask_rcnn_fcn_head_v1upXconvs( model, blob_in, dim_in, spatial_scale, 2 )
v1up design: 2 * (conv 3x3), convT 2x2.
v1up design: 2 * (conv 3x3), convT 2x2.
[ "v1up", "design", ":", "2", "*", "(", "conv", "3x3", ")", "convT", "2x2", "." ]
def mask_rcnn_fcn_head_v1up(model, blob_in, dim_in, spatial_scale): """v1up design: 2 * (conv 3x3), convT 2x2.""" return mask_rcnn_fcn_head_v1upXconvs( model, blob_in, dim_in, spatial_scale, 2 )
[ "def", "mask_rcnn_fcn_head_v1up", "(", "model", ",", "blob_in", ",", "dim_in", ",", "spatial_scale", ")", ":", "return", "mask_rcnn_fcn_head_v1upXconvs", "(", "model", ",", "blob_in", ",", "dim_in", ",", "spatial_scale", ",", "2", ")" ]
https://github.com/cw1204772/AIC2018_iamai/blob/9c3720ba5eeb94e02deed303f32acaaa80aa893d/Detection/lib/modeling/mask_rcnn_heads.py#L117-L121
yuxiaokui/Intranet-Penetration
f57678a204840c83cbf3308e3470ae56c5ff514b
proxy/XX-Net/code/default/python27/1.0/lib/win32/gevent/greenlet.py
python
Greenlet.link
(self, callback, SpawnedLink=SpawnedLink)
Link greenlet's completion to a callable. The *callback* will be called with this instance as an argument once this greenlet's dead. A callable is called in its own greenlet.
Link greenlet's completion to a callable.
[ "Link", "greenlet", "s", "completion", "to", "a", "callable", "." ]
def link(self, callback, SpawnedLink=SpawnedLink): """Link greenlet's completion to a callable. The *callback* will be called with this instance as an argument once this greenlet's dead. A callable is called in its own greenlet. """ self.rawlink(SpawnedLink(callback))
[ "def", "link", "(", "self", ",", "callback", ",", "SpawnedLink", "=", "SpawnedLink", ")", ":", "self", ".", "rawlink", "(", "SpawnedLink", "(", "callback", ")", ")" ]
https://github.com/yuxiaokui/Intranet-Penetration/blob/f57678a204840c83cbf3308e3470ae56c5ff514b/proxy/XX-Net/code/default/python27/1.0/lib/win32/gevent/greenlet.py#L348-L354
buke/GreenOdoo
3d8c55d426fb41fdb3f2f5a1533cfe05983ba1df
runtime/python/lib/python2.7/site-packages/_xmlplus/utils/iso8601.py
python
__extract_tzd
(m)
return offset
Return the Time Zone Designator as an offset in seconds from UTC.
Return the Time Zone Designator as an offset in seconds from UTC.
[ "Return", "the", "Time", "Zone", "Designator", "as", "an", "offset", "in", "seconds", "from", "UTC", "." ]
def __extract_tzd(m): """Return the Time Zone Designator as an offset in seconds from UTC.""" if not m: return 0 tzd = m.group("tzd") if not tzd: return 0 if tzd == "Z": return 0 hours = int(m.group("tzdhours")) minutes = m.group("tzdminutes") if minutes: minutes = int(minutes) else: minutes = 0 offset = (hours*60 + minutes) * 60 if tzd[0] == "+": return -offset return offset
[ "def", "__extract_tzd", "(", "m", ")", ":", "if", "not", "m", ":", "return", "0", "tzd", "=", "m", ".", "group", "(", "\"tzd\"", ")", "if", "not", "tzd", ":", "return", "0", "if", "tzd", "==", "\"Z\"", ":", "return", "0", "hours", "=", "int", "(", "m", ".", "group", "(", "\"tzdhours\"", ")", ")", "minutes", "=", "m", ".", "group", "(", "\"tzdminutes\"", ")", "if", "minutes", ":", "minutes", "=", "int", "(", "minutes", ")", "else", ":", "minutes", "=", "0", "offset", "=", "(", "hours", "*", "60", "+", "minutes", ")", "*", "60", "if", "tzd", "[", "0", "]", "==", "\"+\"", ":", "return", "-", "offset", "return", "offset" ]
https://github.com/buke/GreenOdoo/blob/3d8c55d426fb41fdb3f2f5a1533cfe05983ba1df/runtime/python/lib/python2.7/site-packages/_xmlplus/utils/iso8601.py#L149-L167
CGCookie/retopoflow
3d8b3a47d1d661f99ab0aeb21d31370bf15de35e
retopoflow/updater.py
python
addon_updater_updated_successful.draw
(self, context)
[]
def draw(self, context): layout = self.layout if updater.invalid_updater: layout.label(text="Updater error") return saved = updater.json if self.error != "": col = layout.column() col.scale_y = 0.7 col.label(text="Error occurred, did not install", icon="ERROR") if updater.error_msg: msg = updater.error_msg else: msg = self.error col.label(text=str(msg), icon="BLANK1") rw = col.row() rw.scale_y = 2 rw.operator("wm.url_open", text="Click for manual download.", icon="BLANK1" ).url=updater.website # manual download button here elif updater.auto_reload_post_update == False: # tell user to restart blender if "just_restored" in saved and saved["just_restored"]: col = layout.column() col.scale_y = 0.7 col.label(text="Addon restored", icon="RECOVER_LAST") col.label(text="Restart blender to reload.",icon="BLANK1") updater.json_reset_restore() else: col = layout.column() col.scale_y = 0.7 col.label(text="Addon successfully installed", icon="FILE_TICK") col.label(text="Restart blender to reload.", icon="BLANK1") else: # reload addon, but still recommend they restart blender if "just_restored" in saved and saved["just_restored"]: col = layout.column() col.scale_y = 0.7 col.label(text="Addon restored", icon="RECOVER_LAST") col.label(text="Consider restarting blender to fully reload.", icon="BLANK1") updater.json_reset_restore() else: col = layout.column() col.scale_y = 0.7 col.label(text="Addon successfully installed", icon="FILE_TICK") col.label(text="Consider restarting blender to fully reload.", icon="BLANK1")
[ "def", "draw", "(", "self", ",", "context", ")", ":", "layout", "=", "self", ".", "layout", "if", "updater", ".", "invalid_updater", ":", "layout", ".", "label", "(", "text", "=", "\"Updater error\"", ")", "return", "saved", "=", "updater", ".", "json", "if", "self", ".", "error", "!=", "\"\"", ":", "col", "=", "layout", ".", "column", "(", ")", "col", ".", "scale_y", "=", "0.7", "col", ".", "label", "(", "text", "=", "\"Error occurred, did not install\"", ",", "icon", "=", "\"ERROR\"", ")", "if", "updater", ".", "error_msg", ":", "msg", "=", "updater", ".", "error_msg", "else", ":", "msg", "=", "self", ".", "error", "col", ".", "label", "(", "text", "=", "str", "(", "msg", ")", ",", "icon", "=", "\"BLANK1\"", ")", "rw", "=", "col", ".", "row", "(", ")", "rw", ".", "scale_y", "=", "2", "rw", ".", "operator", "(", "\"wm.url_open\"", ",", "text", "=", "\"Click for manual download.\"", ",", "icon", "=", "\"BLANK1\"", ")", ".", "url", "=", "updater", ".", "website", "# manual download button here", "elif", "updater", ".", "auto_reload_post_update", "==", "False", ":", "# tell user to restart blender", "if", "\"just_restored\"", "in", "saved", "and", "saved", "[", "\"just_restored\"", "]", ":", "col", "=", "layout", ".", "column", "(", ")", "col", ".", "scale_y", "=", "0.7", "col", ".", "label", "(", "text", "=", "\"Addon restored\"", ",", "icon", "=", "\"RECOVER_LAST\"", ")", "col", ".", "label", "(", "text", "=", "\"Restart blender to reload.\"", ",", "icon", "=", "\"BLANK1\"", ")", "updater", ".", "json_reset_restore", "(", ")", "else", ":", "col", "=", "layout", ".", "column", "(", ")", "col", ".", "scale_y", "=", "0.7", "col", ".", "label", "(", "text", "=", "\"Addon successfully installed\"", ",", "icon", "=", "\"FILE_TICK\"", ")", "col", ".", "label", "(", "text", "=", "\"Restart blender to reload.\"", ",", "icon", "=", "\"BLANK1\"", ")", "else", ":", "# reload addon, but still recommend they restart blender", "if", "\"just_restored\"", "in", "saved", "and", "saved", "[", "\"just_restored\"", "]", ":", "col", "=", "layout", ".", "column", "(", ")", "col", ".", "scale_y", "=", "0.7", "col", ".", "label", "(", "text", "=", "\"Addon restored\"", ",", "icon", "=", "\"RECOVER_LAST\"", ")", "col", ".", "label", "(", "text", "=", "\"Consider restarting blender to fully reload.\"", ",", "icon", "=", "\"BLANK1\"", ")", "updater", ".", "json_reset_restore", "(", ")", "else", ":", "col", "=", "layout", ".", "column", "(", ")", "col", ".", "scale_y", "=", "0.7", "col", ".", "label", "(", "text", "=", "\"Addon successfully installed\"", ",", "icon", "=", "\"FILE_TICK\"", ")", "col", ".", "label", "(", "text", "=", "\"Consider restarting blender to fully reload.\"", ",", "icon", "=", "\"BLANK1\"", ")" ]
https://github.com/CGCookie/retopoflow/blob/3d8b3a47d1d661f99ab0aeb21d31370bf15de35e/retopoflow/updater.py#L467-L520
metakirby5/colorz
11fd47a28d7a4af5b91d29978524335c8fef8cc9
colorz.py
python
clamp
(color, min_v, max_v)
return tuple(map(up_scale, hsv_to_rgb(h, s, v)))
Clamps a color such that the value is between min_v and max_v.
Clamps a color such that the value is between min_v and max_v.
[ "Clamps", "a", "color", "such", "that", "the", "value", "is", "between", "min_v", "and", "max_v", "." ]
def clamp(color, min_v, max_v): """ Clamps a color such that the value is between min_v and max_v. """ h, s, v = rgb_to_hsv(*map(down_scale, color)) min_v, max_v = map(down_scale, (min_v, max_v)) v = min(max(min_v, v), max_v) return tuple(map(up_scale, hsv_to_rgb(h, s, v)))
[ "def", "clamp", "(", "color", ",", "min_v", ",", "max_v", ")", ":", "h", ",", "s", ",", "v", "=", "rgb_to_hsv", "(", "*", "map", "(", "down_scale", ",", "color", ")", ")", "min_v", ",", "max_v", "=", "map", "(", "down_scale", ",", "(", "min_v", ",", "max_v", ")", ")", "v", "=", "min", "(", "max", "(", "min_v", ",", "v", ")", ",", "max_v", ")", "return", "tuple", "(", "map", "(", "up_scale", ",", "hsv_to_rgb", "(", "h", ",", "s", ",", "v", ")", ")", ")" ]
https://github.com/metakirby5/colorz/blob/11fd47a28d7a4af5b91d29978524335c8fef8cc9/colorz.py#L64-L71
wxWidgets/Phoenix
b2199e299a6ca6d866aa6f3d0888499136ead9d6
wx/lib/ogl/basic.py
python
RectangleShape.GetBoundingBoxMin
(self)
return self._width, self._height
Get the bounding box minimum.
Get the bounding box minimum.
[ "Get", "the", "bounding", "box", "minimum", "." ]
def GetBoundingBoxMin(self): """Get the bounding box minimum.""" return self._width, self._height
[ "def", "GetBoundingBoxMin", "(", "self", ")", ":", "return", "self", ".", "_width", ",", "self", ".", "_height" ]
https://github.com/wxWidgets/Phoenix/blob/b2199e299a6ca6d866aa6f3d0888499136ead9d6/wx/lib/ogl/basic.py#L2776-L2778
krintoxi/NoobSec-Toolkit
38738541cbc03cedb9a3b3ed13b629f781ad64f6
NoobSecToolkit /tools/inject/lib/core/common.py
python
filterPairValues
(values)
return retVal
Returns only list-like values with length 2 >>> filterPairValues([[1, 2], [3], 1, [4, 5]]) [[1, 2], [4, 5]]
Returns only list-like values with length 2
[ "Returns", "only", "list", "-", "like", "values", "with", "length", "2" ]
def filterPairValues(values): """ Returns only list-like values with length 2 >>> filterPairValues([[1, 2], [3], 1, [4, 5]]) [[1, 2], [4, 5]] """ retVal = [] if not isNoneValue(values) and hasattr(values, '__iter__'): retVal = filter(lambda x: isinstance(x, (tuple, list, set)) and len(x) == 2, values) return retVal
[ "def", "filterPairValues", "(", "values", ")", ":", "retVal", "=", "[", "]", "if", "not", "isNoneValue", "(", "values", ")", "and", "hasattr", "(", "values", ",", "'__iter__'", ")", ":", "retVal", "=", "filter", "(", "lambda", "x", ":", "isinstance", "(", "x", ",", "(", "tuple", ",", "list", ",", "set", ")", ")", "and", "len", "(", "x", ")", "==", "2", ",", "values", ")", "return", "retVal" ]
https://github.com/krintoxi/NoobSec-Toolkit/blob/38738541cbc03cedb9a3b3ed13b629f781ad64f6/NoobSecToolkit /tools/inject/lib/core/common.py#L3399-L3412
twilio/twilio-python
6e1e811ea57a1edfadd5161ace87397c563f6915
twilio/rest/conversations/v1/role.py
python
RoleInstance.account_sid
(self)
return self._properties['account_sid']
:returns: The SID of the Account that created the resource :rtype: unicode
:returns: The SID of the Account that created the resource :rtype: unicode
[ ":", "returns", ":", "The", "SID", "of", "the", "Account", "that", "created", "the", "resource", ":", "rtype", ":", "unicode" ]
def account_sid(self): """ :returns: The SID of the Account that created the resource :rtype: unicode """ return self._properties['account_sid']
[ "def", "account_sid", "(", "self", ")", ":", "return", "self", ".", "_properties", "[", "'account_sid'", "]" ]
https://github.com/twilio/twilio-python/blob/6e1e811ea57a1edfadd5161ace87397c563f6915/twilio/rest/conversations/v1/role.py#L321-L326
numba/numba
bf480b9e0da858a65508c2b17759a72ee6a44c51
numba/core/ir.py
python
Const.__deepcopy__
(self, memo)
return Const( value=self.value, loc=self.loc, use_literal_type=self.use_literal_type, )
[]
def __deepcopy__(self, memo): # Override to not copy constant values in code return Const( value=self.value, loc=self.loc, use_literal_type=self.use_literal_type, )
[ "def", "__deepcopy__", "(", "self", ",", "memo", ")", ":", "# Override to not copy constant values in code", "return", "Const", "(", "value", "=", "self", ".", "value", ",", "loc", "=", "self", ".", "loc", ",", "use_literal_type", "=", "self", ".", "use_literal_type", ",", ")" ]
https://github.com/numba/numba/blob/bf480b9e0da858a65508c2b17759a72ee6a44c51/numba/core/ir.py#L966-L971
luoyetx/mx-lsoftmax
194f49eb41c58acf3eff46369574d8828844c4ef
plot_beta.py
python
plot_beta
()
plot beta over training
plot beta over training
[ "plot", "beta", "over", "training" ]
def plot_beta(): '''plot beta over training ''' beta = args.beta scale = args.scale beta_min = args.beta_min num_epoch = args.num_epoch epoch_size = int(float(args.num_examples) / args.batch_size) x = np.arange(num_epoch*epoch_size) y = beta * np.power(scale, x) y = np.maximum(y, beta_min) epoch_x = np.arange(num_epoch) * epoch_size epoch_y = beta * np.power(scale, epoch_x) epoch_y = np.maximum(epoch_y, beta_min) # plot beta descent curve plt.semilogy(x, y) plt.semilogy(epoch_x, epoch_y, 'ro') plt.title('beta descent') plt.ylabel('beta') plt.xlabel('epoch') plt.show()
[ "def", "plot_beta", "(", ")", ":", "beta", "=", "args", ".", "beta", "scale", "=", "args", ".", "scale", "beta_min", "=", "args", ".", "beta_min", "num_epoch", "=", "args", ".", "num_epoch", "epoch_size", "=", "int", "(", "float", "(", "args", ".", "num_examples", ")", "/", "args", ".", "batch_size", ")", "x", "=", "np", ".", "arange", "(", "num_epoch", "*", "epoch_size", ")", "y", "=", "beta", "*", "np", ".", "power", "(", "scale", ",", "x", ")", "y", "=", "np", ".", "maximum", "(", "y", ",", "beta_min", ")", "epoch_x", "=", "np", ".", "arange", "(", "num_epoch", ")", "*", "epoch_size", "epoch_y", "=", "beta", "*", "np", ".", "power", "(", "scale", ",", "epoch_x", ")", "epoch_y", "=", "np", ".", "maximum", "(", "epoch_y", ",", "beta_min", ")", "# plot beta descent curve", "plt", ".", "semilogy", "(", "x", ",", "y", ")", "plt", ".", "semilogy", "(", "epoch_x", ",", "epoch_y", ",", "'ro'", ")", "plt", ".", "title", "(", "'beta descent'", ")", "plt", ".", "ylabel", "(", "'beta'", ")", "plt", ".", "xlabel", "(", "'epoch'", ")", "plt", ".", "show", "(", ")" ]
https://github.com/luoyetx/mx-lsoftmax/blob/194f49eb41c58acf3eff46369574d8828844c4ef/plot_beta.py#L8-L30
WilsonWangTHU/mbbl
bb88a016de2fcd8ea0ed9c4d5c539817d2b476e7
mbbl/env/gym_env/delayed_walker.py
python
env._get_done
(self, ob)
return done, alive_reward
@brief: add termination condition
[]
def _get_done(self, ob): """ @brief: add termination condition """ alive_reward = 0.0 done = False if self._env_name == 'gym_dfhopper': height, ang = ob[0], ob[1] done = (height <= 0.7) or (abs(ang) >= 0.2) alive_reward = float(not done) elif self._env_name == 'gym_dfwalker2d': height, ang = ob[0], ob[1] done = (height >= 2.0) or (height <= 0.8) or (abs(ang) >= 1.0) alive_reward = float(not done) elif self._env_name == 'gym_dfant': height = ob[0] done = (height > 1.0) or (height < 0.2) alive_reward = float(not done) if self._no_termination: done = False if self._current_step >= self._env_info['max_length']: done = True return done, alive_reward
[ "def", "_get_done", "(", "self", ",", "ob", ")", ":", "alive_reward", "=", "0.0", "done", "=", "False", "if", "self", ".", "_env_name", "==", "'gym_dfhopper'", ":", "height", ",", "ang", "=", "ob", "[", "0", "]", ",", "ob", "[", "1", "]", "done", "=", "(", "height", "<=", "0.7", ")", "or", "(", "abs", "(", "ang", ")", ">=", "0.2", ")", "alive_reward", "=", "float", "(", "not", "done", ")", "elif", "self", ".", "_env_name", "==", "'gym_dfwalker2d'", ":", "height", ",", "ang", "=", "ob", "[", "0", "]", ",", "ob", "[", "1", "]", "done", "=", "(", "height", ">=", "2.0", ")", "or", "(", "height", "<=", "0.8", ")", "or", "(", "abs", "(", "ang", ")", ">=", "1.0", ")", "alive_reward", "=", "float", "(", "not", "done", ")", "elif", "self", ".", "_env_name", "==", "'gym_dfant'", ":", "height", "=", "ob", "[", "0", "]", "done", "=", "(", "height", ">", "1.0", ")", "or", "(", "height", "<", "0.2", ")", "alive_reward", "=", "float", "(", "not", "done", ")", "if", "self", ".", "_no_termination", ":", "done", "=", "False", "if", "self", ".", "_current_step", ">=", "self", ".", "_env_info", "[", "'max_length'", "]", ":", "done", "=", "True", "return", "done", ",", "alive_reward" ]
https://github.com/WilsonWangTHU/mbbl/blob/bb88a016de2fcd8ea0ed9c4d5c539817d2b476e7/mbbl/env/gym_env/delayed_walker.py#L80-L107
morganstanley/treadmill
f18267c665baf6def4374d21170198f63ff1cde4
lib/python/treadmill/localdiskutils.py
python
setup_image_lvm
(img_name, img_location, img_size, vg_name=TREADMILL_VG)
return activated
Setup the LVM Volume Group based on image file
Setup the LVM Volume Group based on image file
[ "Setup", "the", "LVM", "Volume", "Group", "based", "on", "image", "file" ]
def setup_image_lvm(img_name, img_location, img_size, vg_name=TREADMILL_VG): """Setup the LVM Volume Group based on image file""" activated = activate_vg(vg_name) if not activated: _LOGGER.info('Initializing Volume Group') block_dev = init_block_dev( img_name, img_location, img_size ) init_vg(vg_name, block_dev) return activated
[ "def", "setup_image_lvm", "(", "img_name", ",", "img_location", ",", "img_size", ",", "vg_name", "=", "TREADMILL_VG", ")", ":", "activated", "=", "activate_vg", "(", "vg_name", ")", "if", "not", "activated", ":", "_LOGGER", ".", "info", "(", "'Initializing Volume Group'", ")", "block_dev", "=", "init_block_dev", "(", "img_name", ",", "img_location", ",", "img_size", ")", "init_vg", "(", "vg_name", ",", "block_dev", ")", "return", "activated" ]
https://github.com/morganstanley/treadmill/blob/f18267c665baf6def4374d21170198f63ff1cde4/lib/python/treadmill/localdiskutils.py#L235-L247
shaneshixiang/rllabplusplus
4d55f96ec98e3fe025b7991945e3e6a54fd5449f
rllab/rllab_mujoco_py/glfw.py
python
get_monitor_name
(monitor)
return _glfw.glfwGetMonitorName(monitor)
Returns the name of the specified monitor. Wrapper for: const char* glfwGetMonitorName(GLFWmonitor* monitor);
Returns the name of the specified monitor.
[ "Returns", "the", "name", "of", "the", "specified", "monitor", "." ]
def get_monitor_name(monitor): ''' Returns the name of the specified monitor. Wrapper for: const char* glfwGetMonitorName(GLFWmonitor* monitor); ''' return _glfw.glfwGetMonitorName(monitor)
[ "def", "get_monitor_name", "(", "monitor", ")", ":", "return", "_glfw", ".", "glfwGetMonitorName", "(", "monitor", ")" ]
https://github.com/shaneshixiang/rllabplusplus/blob/4d55f96ec98e3fe025b7991945e3e6a54fd5449f/rllab/rllab_mujoco_py/glfw.py#L659-L666
epinna/weevely3
6332b4641f5ac68f1cbeac1604e7dd03383d7b31
modules/net/proxy.py
python
get_cert_path
(path)
return os.path.join(cert_folder, path)
[]
def get_cert_path(path): return os.path.join(cert_folder, path)
[ "def", "get_cert_path", "(", "path", ")", ":", "return", "os", ".", "path", ".", "join", "(", "cert_folder", ",", "path", ")" ]
https://github.com/epinna/weevely3/blob/6332b4641f5ac68f1cbeac1604e7dd03383d7b31/modules/net/proxy.py#L52-L53
HymanLiuTS/flaskTs
286648286976e85d9b9a5873632331efcafe0b21
flasky/lib/python2.7/site-packages/flask_wtf/form.py
python
FlaskForm.hidden_tag
(self, *fields)
return Markup(u'\n'.join(text_type(f) for f in hidden_fields(fields or self)))
Render the form's hidden fields in one call. A field is considered hidden if it uses the :class:`~wtforms.widgets.HiddenInput` widget. If ``fields`` are given, only render the given fields that are hidden. If a string is passed, render the field with that name if it exists. .. versionchanged:: 0.13 No longer wraps inputs in hidden div. This is valid HTML 5. .. versionchanged:: 0.13 Skip passed fields that aren't hidden. Skip passed names that don't exist.
Render the form's hidden fields in one call.
[ "Render", "the", "form", "s", "hidden", "fields", "in", "one", "call", "." ]
def hidden_tag(self, *fields): """Render the form's hidden fields in one call. A field is considered hidden if it uses the :class:`~wtforms.widgets.HiddenInput` widget. If ``fields`` are given, only render the given fields that are hidden. If a string is passed, render the field with that name if it exists. .. versionchanged:: 0.13 No longer wraps inputs in hidden div. This is valid HTML 5. .. versionchanged:: 0.13 Skip passed fields that aren't hidden. Skip passed names that don't exist. """ def hidden_fields(fields): for f in fields: if isinstance(f, string_types): f = getattr(self, f, None) if f is None or not isinstance(f.widget, HiddenInput): continue yield f return Markup(u'\n'.join(text_type(f) for f in hidden_fields(fields or self)))
[ "def", "hidden_tag", "(", "self", ",", "*", "fields", ")", ":", "def", "hidden_fields", "(", "fields", ")", ":", "for", "f", "in", "fields", ":", "if", "isinstance", "(", "f", ",", "string_types", ")", ":", "f", "=", "getattr", "(", "self", ",", "f", ",", "None", ")", "if", "f", "is", "None", "or", "not", "isinstance", "(", "f", ".", "widget", ",", "HiddenInput", ")", ":", "continue", "yield", "f", "return", "Markup", "(", "u'\\n'", ".", "join", "(", "text_type", "(", "f", ")", "for", "f", "in", "hidden_fields", "(", "fields", "or", "self", ")", ")", ")" ]
https://github.com/HymanLiuTS/flaskTs/blob/286648286976e85d9b9a5873632331efcafe0b21/flasky/lib/python2.7/site-packages/flask_wtf/form.py#L124-L155
karlicoss/orgparse
e79228fd0f2cedc6c6e21a3de5b73337d2749fbf
orgparse/node.py
python
OrgBaseNode._get_tags
(self, inher=False)
return set()
Return tags :arg bool inher: Mix with tags of all ancestor nodes if ``True``. :rtype: set
Return tags
[ "Return", "tags" ]
def _get_tags(self, inher=False) -> Set[str]: """ Return tags :arg bool inher: Mix with tags of all ancestor nodes if ``True``. :rtype: set """ return set()
[ "def", "_get_tags", "(", "self", ",", "inher", "=", "False", ")", "->", "Set", "[", "str", "]", ":", "return", "set", "(", ")" ]
https://github.com/karlicoss/orgparse/blob/e79228fd0f2cedc6c6e21a3de5b73337d2749fbf/orgparse/node.py#L838-L848
securesystemslab/zippy
ff0e84ac99442c2c55fe1d285332cfd4e185e089
zippy/benchmarks/src/benchmarks/sympy/sympy/mpmath/functions/bessel.py
python
besselk
(ctx, n, z, **kwargs)
return ctx.hypercomb(h, [n], **kwargs)
[]
def besselk(ctx, n, z, **kwargs): if not z: return ctx.inf M = ctx.mag(z) if M < 1: # Represent as limit definition def h(n): r = (z/2)**2 T1 = [z, 2], [-n, n-1], [n], [], [], [1-n], r T2 = [z, 2], [n, -n-1], [-n], [], [], [1+n], r return T1, T2 # We could use the limit definition always, but it leads # to very bad cancellation (of exponentially large terms) # for large real z # Instead represent in terms of 2F0 else: ctx.prec += M def h(n): return [([ctx.pi/2, z, ctx.exp(-z)], [0.5,-0.5,1], [], [], \ [n+0.5, 0.5-n], [], -1/(2*z))] return ctx.hypercomb(h, [n], **kwargs)
[ "def", "besselk", "(", "ctx", ",", "n", ",", "z", ",", "*", "*", "kwargs", ")", ":", "if", "not", "z", ":", "return", "ctx", ".", "inf", "M", "=", "ctx", ".", "mag", "(", "z", ")", "if", "M", "<", "1", ":", "# Represent as limit definition", "def", "h", "(", "n", ")", ":", "r", "=", "(", "z", "/", "2", ")", "**", "2", "T1", "=", "[", "z", ",", "2", "]", ",", "[", "-", "n", ",", "n", "-", "1", "]", ",", "[", "n", "]", ",", "[", "]", ",", "[", "]", ",", "[", "1", "-", "n", "]", ",", "r", "T2", "=", "[", "z", ",", "2", "]", ",", "[", "n", ",", "-", "n", "-", "1", "]", ",", "[", "-", "n", "]", ",", "[", "]", ",", "[", "]", ",", "[", "1", "+", "n", "]", ",", "r", "return", "T1", ",", "T2", "# We could use the limit definition always, but it leads", "# to very bad cancellation (of exponentially large terms)", "# for large real z", "# Instead represent in terms of 2F0", "else", ":", "ctx", ".", "prec", "+=", "M", "def", "h", "(", "n", ")", ":", "return", "[", "(", "[", "ctx", ".", "pi", "/", "2", ",", "z", ",", "ctx", ".", "exp", "(", "-", "z", ")", "]", ",", "[", "0.5", ",", "-", "0.5", ",", "1", "]", ",", "[", "]", ",", "[", "]", ",", "[", "n", "+", "0.5", ",", "0.5", "-", "n", "]", ",", "[", "]", ",", "-", "1", "/", "(", "2", "*", "z", ")", ")", "]", "return", "ctx", ".", "hypercomb", "(", "h", ",", "[", "n", "]", ",", "*", "*", "kwargs", ")" ]
https://github.com/securesystemslab/zippy/blob/ff0e84ac99442c2c55fe1d285332cfd4e185e089/zippy/benchmarks/src/benchmarks/sympy/sympy/mpmath/functions/bessel.py#L153-L173
openshift/openshift-ansible
e3b38f9ffd8e954c0060ec6a62f141fbc6335354
roles/openshift_node/library/oc_csr_approve.py
python
CSRapprove.run
(self)
execute the CSR approval process
execute the CSR approval process
[ "execute", "the", "CSR", "approval", "process" ]
def run(self): """execute the CSR approval process""" # # Client Cert Section # # mode = "client" attempts = 1 while True: # If the node is in the list of all nodes, we do not need to approve client CSRs if self.nodename not in self.get_nodes(): attempts = self.runner(attempts, mode) else: self.result["{}_approve_results".format(mode)].append( "Node {} is present in node list".format(self.nodename)) break # # Server Cert Section # # mode = "server" attempts = 1 while True: # If the node API is healthy, we do not need to approve server CSRs if not self.node_is_ready(self.nodename): attempts = self.runner(attempts, mode) else: self.result["{}_approve_results".format(mode)].append( "Node {} API is ready".format(self.nodename)) break self.module.exit_json(**self.result)
[ "def", "run", "(", "self", ")", ":", "# # Client Cert Section # #", "mode", "=", "\"client\"", "attempts", "=", "1", "while", "True", ":", "# If the node is in the list of all nodes, we do not need to approve client CSRs", "if", "self", ".", "nodename", "not", "in", "self", ".", "get_nodes", "(", ")", ":", "attempts", "=", "self", ".", "runner", "(", "attempts", ",", "mode", ")", "else", ":", "self", ".", "result", "[", "\"{}_approve_results\"", ".", "format", "(", "mode", ")", "]", ".", "append", "(", "\"Node {} is present in node list\"", ".", "format", "(", "self", ".", "nodename", ")", ")", "break", "# # Server Cert Section # #", "mode", "=", "\"server\"", "attempts", "=", "1", "while", "True", ":", "# If the node API is healthy, we do not need to approve server CSRs", "if", "not", "self", ".", "node_is_ready", "(", "self", ".", "nodename", ")", ":", "attempts", "=", "self", ".", "runner", "(", "attempts", ",", "mode", ")", "else", ":", "self", ".", "result", "[", "\"{}_approve_results\"", ".", "format", "(", "mode", ")", "]", ".", "append", "(", "\"Node {} API is ready\"", ".", "format", "(", "self", ".", "nodename", ")", ")", "break", "self", ".", "module", ".", "exit_json", "(", "*", "*", "self", ".", "result", ")" ]
https://github.com/openshift/openshift-ansible/blob/e3b38f9ffd8e954c0060ec6a62f141fbc6335354/roles/openshift_node/library/oc_csr_approve.py#L241-L268
sahana/eden
1696fa50e90ce967df69f66b571af45356cc18da
modules/s3/s3masterkey.py
python
S3MasterKey.challenge
(cls, headers=None)
Add a response header to a HTTP-401 challenge containing a master key auth token; this token can be used by the client to generate an access key The client must indicate its MasterKeyAuth capability by adding a HTTP header to the original request: - RequestMasterKeyAuth: true In case of a 401-response, the server will send a corresponding header: - MasterKeyAuthToken: <token> The value of this header is a base64-encoded combination of token ID and token string: "ID:TOKEN".
Add a response header to a HTTP-401 challenge containing a master key auth token; this token can be used by the client to generate an access key
[ "Add", "a", "response", "header", "to", "a", "HTTP", "-", "401", "challenge", "containing", "a", "master", "key", "auth", "token", ";", "this", "token", "can", "be", "used", "by", "the", "client", "to", "generate", "an", "access", "key" ]
def challenge(cls, headers=None): """ Add a response header to a HTTP-401 challenge containing a master key auth token; this token can be used by the client to generate an access key The client must indicate its MasterKeyAuth capability by adding a HTTP header to the original request: - RequestMasterKeyAuth: true In case of a 401-response, the server will send a corresponding header: - MasterKeyAuthToken: <token> The value of this header is a base64-encoded combination of token ID and token string: "ID:TOKEN". """ if not current.response.s3.masterkey_auth_failed and \ current.request.env.http_requestmasterkeyauth == "true": header = ("%s:%s" % cls.__token()).encode("utf-8") if headers is None: headers = current.response.headers headers["MasterKeyAuthToken"] = s3_str(base64.b64encode(header))
[ "def", "challenge", "(", "cls", ",", "headers", "=", "None", ")", ":", "if", "not", "current", ".", "response", ".", "s3", ".", "masterkey_auth_failed", "and", "current", ".", "request", ".", "env", ".", "http_requestmasterkeyauth", "==", "\"true\"", ":", "header", "=", "(", "\"%s:%s\"", "%", "cls", ".", "__token", "(", ")", ")", ".", "encode", "(", "\"utf-8\"", ")", "if", "headers", "is", "None", ":", "headers", "=", "current", ".", "response", ".", "headers", "headers", "[", "\"MasterKeyAuthToken\"", "]", "=", "s3_str", "(", "base64", ".", "b64encode", "(", "header", ")", ")" ]
https://github.com/sahana/eden/blob/1696fa50e90ce967df69f66b571af45356cc18da/modules/s3/s3masterkey.py#L127-L155
DocNow/twarc
adec782f0a99987e0e909812823bb9bd01af4e5e
twarc/command2.py
python
hydrate
(T, infile, outfile, hide_progress, **kwargs)
Hydrate tweet ids.
Hydrate tweet ids.
[ "Hydrate", "tweet", "ids", "." ]
def hydrate(T, infile, outfile, hide_progress, **kwargs): """ Hydrate tweet ids. """ kwargs = _process_expansions_shortcuts(kwargs) with FileLineProgressBar(infile, outfile, disable=hide_progress) as progress: for result in T.tweet_lookup(infile, **kwargs): _write(result, outfile) tweet_ids = [t["id"] for t in result.get("data", [])] log.info("archived %s", ",".join(tweet_ids)) progress.update_with_result(result, error_resource_type="tweet")
[ "def", "hydrate", "(", "T", ",", "infile", ",", "outfile", ",", "hide_progress", ",", "*", "*", "kwargs", ")", ":", "kwargs", "=", "_process_expansions_shortcuts", "(", "kwargs", ")", "with", "FileLineProgressBar", "(", "infile", ",", "outfile", ",", "disable", "=", "hide_progress", ")", "as", "progress", ":", "for", "result", "in", "T", ".", "tweet_lookup", "(", "infile", ",", "*", "*", "kwargs", ")", ":", "_write", "(", "result", ",", "outfile", ")", "tweet_ids", "=", "[", "t", "[", "\"id\"", "]", "for", "t", "in", "result", ".", "get", "(", "\"data\"", ",", "[", "]", ")", "]", "log", ".", "info", "(", "\"archived %s\"", ",", "\",\"", ".", "join", "(", "tweet_ids", ")", ")", "progress", ".", "update_with_result", "(", "result", ",", "error_resource_type", "=", "\"tweet\"", ")" ]
https://github.com/DocNow/twarc/blob/adec782f0a99987e0e909812823bb9bd01af4e5e/twarc/command2.py#L918-L930
triaquae/triaquae
bbabf736b3ba56a0c6498e7f04e16c13b8b8f2b9
TriAquae/models/django/contrib/gis/geos/polygon.py
python
Polygon._set_list
(self, length, items)
[]
def _set_list(self, length, items): # Getting the current pointer, replacing with the newly constructed # geometry, and destroying the old geometry. prev_ptr = self.ptr srid = self.srid self.ptr = self._create_polygon(length, items) if srid: self.srid = srid capi.destroy_geom(prev_ptr)
[ "def", "_set_list", "(", "self", ",", "length", ",", "items", ")", ":", "# Getting the current pointer, replacing with the newly constructed", "# geometry, and destroying the old geometry.", "prev_ptr", "=", "self", ".", "ptr", "srid", "=", "self", ".", "srid", "self", ".", "ptr", "=", "self", ".", "_create_polygon", "(", "length", ",", "items", ")", "if", "srid", ":", "self", ".", "srid", "=", "srid", "capi", ".", "destroy_geom", "(", "prev_ptr", ")" ]
https://github.com/triaquae/triaquae/blob/bbabf736b3ba56a0c6498e7f04e16c13b8b8f2b9/TriAquae/models/django/contrib/gis/geos/polygon.py#L107-L114
Bemmu/PyNamecheap
1657852993bb0a7bfdc07c44977c88409bc7753a
namecheap.py
python
Api.domains_dns_delHost
(self, domain, host_record)
This method is absent in original API as well. It executes non-atomic remove operation over the host record which has the following Type, Hostname and Address. Example: api.domains_dns_delHost('example.com', { "RecordType": "A", "HostName": "test", "Address": "127.0.0.1" })
This method is absent in original API as well. It executes non-atomic remove operation over the host record which has the following Type, Hostname and Address.
[ "This", "method", "is", "absent", "in", "original", "API", "as", "well", ".", "It", "executes", "non", "-", "atomic", "remove", "operation", "over", "the", "host", "record", "which", "has", "the", "following", "Type", "Hostname", "and", "Address", "." ]
def domains_dns_delHost(self, domain, host_record): """This method is absent in original API as well. It executes non-atomic remove operation over the host record which has the following Type, Hostname and Address. Example: api.domains_dns_delHost('example.com', { "RecordType": "A", "HostName": "test", "Address": "127.0.0.1" }) """ host_records_remote = self.domains_dns_getHosts(domain) print("Remote: %i" % len(host_records_remote)) host_records_new = [] for r in host_records_remote: cond_type = r["Type"] == host_record["Type"] cond_name = r["Name"] == host_record["Name"] cond_addr = r["Address"] == host_record["Address"] if cond_type and cond_name and cond_addr: # skipping this record as it is the one we want to delete pass else: host_records_new.append(r) host_records_new = [self._elements_names_fix(x) for x in host_records_new] print("To set: %i" % len(host_records_new)) # Check that we delete not more than 1 record at a time if len(host_records_remote) != len(host_records_new) + 1: sys.stderr.write( "Something went wrong while removing host record, delta > 1: %i -> %i, aborting API call.\n" % ( len(host_records_remote), len(host_records_new) ) ) return False extra_payload = self._list_of_dictionaries_to_numbered_payload(host_records_new) sld, tld = domain.split(".") extra_payload.update({ 'SLD': sld, 'TLD': tld }) self._call("namecheap.domains.dns.setHosts", extra_payload)
[ "def", "domains_dns_delHost", "(", "self", ",", "domain", ",", "host_record", ")", ":", "host_records_remote", "=", "self", ".", "domains_dns_getHosts", "(", "domain", ")", "print", "(", "\"Remote: %i\"", "%", "len", "(", "host_records_remote", ")", ")", "host_records_new", "=", "[", "]", "for", "r", "in", "host_records_remote", ":", "cond_type", "=", "r", "[", "\"Type\"", "]", "==", "host_record", "[", "\"Type\"", "]", "cond_name", "=", "r", "[", "\"Name\"", "]", "==", "host_record", "[", "\"Name\"", "]", "cond_addr", "=", "r", "[", "\"Address\"", "]", "==", "host_record", "[", "\"Address\"", "]", "if", "cond_type", "and", "cond_name", "and", "cond_addr", ":", "# skipping this record as it is the one we want to delete", "pass", "else", ":", "host_records_new", ".", "append", "(", "r", ")", "host_records_new", "=", "[", "self", ".", "_elements_names_fix", "(", "x", ")", "for", "x", "in", "host_records_new", "]", "print", "(", "\"To set: %i\"", "%", "len", "(", "host_records_new", ")", ")", "# Check that we delete not more than 1 record at a time", "if", "len", "(", "host_records_remote", ")", "!=", "len", "(", "host_records_new", ")", "+", "1", ":", "sys", ".", "stderr", ".", "write", "(", "\"Something went wrong while removing host record, delta > 1: %i -> %i, aborting API call.\\n\"", "%", "(", "len", "(", "host_records_remote", ")", ",", "len", "(", "host_records_new", ")", ")", ")", "return", "False", "extra_payload", "=", "self", ".", "_list_of_dictionaries_to_numbered_payload", "(", "host_records_new", ")", "sld", ",", "tld", "=", "domain", ".", "split", "(", "\".\"", ")", "extra_payload", ".", "update", "(", "{", "'SLD'", ":", "sld", ",", "'TLD'", ":", "tld", "}", ")", "self", ".", "_call", "(", "\"namecheap.domains.dns.setHosts\"", ",", "extra_payload", ")" ]
https://github.com/Bemmu/PyNamecheap/blob/1657852993bb0a7bfdc07c44977c88409bc7753a/namecheap.py#L390-L439
openstack/swift
b8d7c3dcb817504dcc0959ba52cc4ed2cf66c100
swift/common/ring/builder.py
python
RingBuilder.get_required_overload
(self, weighted=None, wanted=None)
return max_overload
Returns the minimum overload value required to make the ring maximally dispersed. The required overload is the largest percentage change of any single device from its weighted replicanth to its wanted replicanth (note: under weighted devices have a negative percentage change) to archive dispersion - that is to say a single device that must be overloaded by 5% is worse than 5 devices in a single tier overloaded by 1%.
Returns the minimum overload value required to make the ring maximally dispersed.
[ "Returns", "the", "minimum", "overload", "value", "required", "to", "make", "the", "ring", "maximally", "dispersed", "." ]
def get_required_overload(self, weighted=None, wanted=None): """ Returns the minimum overload value required to make the ring maximally dispersed. The required overload is the largest percentage change of any single device from its weighted replicanth to its wanted replicanth (note: under weighted devices have a negative percentage change) to archive dispersion - that is to say a single device that must be overloaded by 5% is worse than 5 devices in a single tier overloaded by 1%. """ weighted = weighted or self._build_weighted_replicas_by_tier() wanted = wanted or self._build_wanted_replicas_by_tier() max_overload = 0.0 for dev in self._iter_devs(): tier = (dev['region'], dev['zone'], dev['ip'], dev['id']) if not dev['weight']: if tier not in wanted or not wanted[tier]: continue raise exceptions.RingValidationError( 'Device %s has zero weight and ' 'should not want any replicas' % (tier,)) required = (wanted[tier] - weighted[tier]) / weighted[tier] self.logger.debug('%(tier)s wants %(wanted)s and is weighted for ' '%(weight)s so therefore requires %(required)s ' 'overload', {'tier': pretty_dev(dev), 'wanted': wanted[tier], 'weight': weighted[tier], 'required': required}) if required > max_overload: max_overload = required return max_overload
[ "def", "get_required_overload", "(", "self", ",", "weighted", "=", "None", ",", "wanted", "=", "None", ")", ":", "weighted", "=", "weighted", "or", "self", ".", "_build_weighted_replicas_by_tier", "(", ")", "wanted", "=", "wanted", "or", "self", ".", "_build_wanted_replicas_by_tier", "(", ")", "max_overload", "=", "0.0", "for", "dev", "in", "self", ".", "_iter_devs", "(", ")", ":", "tier", "=", "(", "dev", "[", "'region'", "]", ",", "dev", "[", "'zone'", "]", ",", "dev", "[", "'ip'", "]", ",", "dev", "[", "'id'", "]", ")", "if", "not", "dev", "[", "'weight'", "]", ":", "if", "tier", "not", "in", "wanted", "or", "not", "wanted", "[", "tier", "]", ":", "continue", "raise", "exceptions", ".", "RingValidationError", "(", "'Device %s has zero weight and '", "'should not want any replicas'", "%", "(", "tier", ",", ")", ")", "required", "=", "(", "wanted", "[", "tier", "]", "-", "weighted", "[", "tier", "]", ")", "/", "weighted", "[", "tier", "]", "self", ".", "logger", ".", "debug", "(", "'%(tier)s wants %(wanted)s and is weighted for '", "'%(weight)s so therefore requires %(required)s '", "'overload'", ",", "{", "'tier'", ":", "pretty_dev", "(", "dev", ")", ",", "'wanted'", ":", "wanted", "[", "tier", "]", ",", "'weight'", ":", "weighted", "[", "tier", "]", ",", "'required'", ":", "required", "}", ")", "if", "required", ">", "max_overload", ":", "max_overload", "=", "required", "return", "max_overload" ]
https://github.com/openstack/swift/blob/b8d7c3dcb817504dcc0959ba52cc4ed2cf66c100/swift/common/ring/builder.py#L822-L853
DestructHub/ProjectEuler
50637c7b3022b3b9044009338a52e2135575a1cc
Problem501/Python/solution_slow_1.py
python
f_p
(n)
return last
[]
def f_p(n): last = 0 for x in xrange(2, n): if len(d(x)) == 8: print x, (x - last) last = x return last
[ "def", "f_p", "(", "n", ")", ":", "last", "=", "0", "for", "x", "in", "xrange", "(", "2", ",", "n", ")", ":", "if", "len", "(", "d", "(", "x", ")", ")", "==", "8", ":", "print", "x", ",", "(", "x", "-", "last", ")", "last", "=", "x", "return", "last" ]
https://github.com/DestructHub/ProjectEuler/blob/50637c7b3022b3b9044009338a52e2135575a1cc/Problem501/Python/solution_slow_1.py#L29-L35
FederatedAI/FATE
32540492623568ecd1afcb367360133616e02fa3
python/federatedml/secure_information_retrieval/base_secure_information_retrieval.py
python
BaseSecureInformationRetrieval._sync_coverage
(self, data_instance)
guest -> host :param data_instance: :return:
guest -> host :param data_instance: :return:
[ "guest", "-", ">", "host", ":", "param", "data_instance", ":", ":", "return", ":" ]
def _sync_coverage(self, data_instance): """ guest -> host :param data_instance: :return: """ pass
[ "def", "_sync_coverage", "(", "self", ",", "data_instance", ")", ":", "pass" ]
https://github.com/FederatedAI/FATE/blob/32540492623568ecd1afcb367360133616e02fa3/python/federatedml/secure_information_retrieval/base_secure_information_retrieval.py#L166-L172
twilio/twilio-python
6e1e811ea57a1edfadd5161ace87397c563f6915
twilio/rest/messaging/v1/service/us_app_to_person.py
python
UsAppToPersonList.__init__
(self, version, messaging_service_sid)
Initialize the UsAppToPersonList :param Version version: Version that contains the resource :param messaging_service_sid: The SID of the Messaging Service the resource is associated with :returns: twilio.rest.messaging.v1.service.us_app_to_person.UsAppToPersonList :rtype: twilio.rest.messaging.v1.service.us_app_to_person.UsAppToPersonList
Initialize the UsAppToPersonList
[ "Initialize", "the", "UsAppToPersonList" ]
def __init__(self, version, messaging_service_sid): """ Initialize the UsAppToPersonList :param Version version: Version that contains the resource :param messaging_service_sid: The SID of the Messaging Service the resource is associated with :returns: twilio.rest.messaging.v1.service.us_app_to_person.UsAppToPersonList :rtype: twilio.rest.messaging.v1.service.us_app_to_person.UsAppToPersonList """ super(UsAppToPersonList, self).__init__(version) # Path Solution self._solution = {'messaging_service_sid': messaging_service_sid, } self._uri = '/Services/{messaging_service_sid}/Compliance/Usa2p'.format(**self._solution)
[ "def", "__init__", "(", "self", ",", "version", ",", "messaging_service_sid", ")", ":", "super", "(", "UsAppToPersonList", ",", "self", ")", ".", "__init__", "(", "version", ")", "# Path Solution", "self", ".", "_solution", "=", "{", "'messaging_service_sid'", ":", "messaging_service_sid", ",", "}", "self", ".", "_uri", "=", "'/Services/{messaging_service_sid}/Compliance/Usa2p'", ".", "format", "(", "*", "*", "self", ".", "_solution", ")" ]
https://github.com/twilio/twilio-python/blob/6e1e811ea57a1edfadd5161ace87397c563f6915/twilio/rest/messaging/v1/service/us_app_to_person.py#L22-L36
google/brain-tokyo-workshop
faf12f6bbae773fbe535c7a6cf357dc662c6c1d8
WANNRelease/prettyNeatWann/domain/classify_gym.py
python
ClassifyEnv.__init__
(self, trainSet, target)
Data set is a tuple of [0] input data: [nSamples x nInputs] [1] labels: [nSamples x 1] Example data sets are given at the end of this file
Data set is a tuple of [0] input data: [nSamples x nInputs] [1] labels: [nSamples x 1]
[ "Data", "set", "is", "a", "tuple", "of", "[", "0", "]", "input", "data", ":", "[", "nSamples", "x", "nInputs", "]", "[", "1", "]", "labels", ":", "[", "nSamples", "x", "1", "]" ]
def __init__(self, trainSet, target): """ Data set is a tuple of [0] input data: [nSamples x nInputs] [1] labels: [nSamples x 1] Example data sets are given at the end of this file """ self.t = 0 # Current batch number self.t_limit = 0 # Number of batches if you need them self.batch = 1000 # Number of images per batch self.seed() self.viewer = None self.trainSet = trainSet self.target = target nInputs = np.shape(trainSet)[1] high = np.array([1.0]*nInputs) self.action_space = spaces.Box(np.array(0,dtype=np.float32), \ np.array(1,dtype=np.float32)) self.observation_space = spaces.Box(np.array(0,dtype=np.float32), \ np.array(1,dtype=np.float32)) self.state = None self.trainOrder = None self.currIndx = None
[ "def", "__init__", "(", "self", ",", "trainSet", ",", "target", ")", ":", "self", ".", "t", "=", "0", "# Current batch number", "self", ".", "t_limit", "=", "0", "# Number of batches if you need them", "self", ".", "batch", "=", "1000", "# Number of images per batch", "self", ".", "seed", "(", ")", "self", ".", "viewer", "=", "None", "self", ".", "trainSet", "=", "trainSet", "self", ".", "target", "=", "target", "nInputs", "=", "np", ".", "shape", "(", "trainSet", ")", "[", "1", "]", "high", "=", "np", ".", "array", "(", "[", "1.0", "]", "*", "nInputs", ")", "self", ".", "action_space", "=", "spaces", ".", "Box", "(", "np", ".", "array", "(", "0", ",", "dtype", "=", "np", ".", "float32", ")", ",", "np", ".", "array", "(", "1", ",", "dtype", "=", "np", ".", "float32", ")", ")", "self", ".", "observation_space", "=", "spaces", ".", "Box", "(", "np", ".", "array", "(", "0", ",", "dtype", "=", "np", ".", "float32", ")", ",", "np", ".", "array", "(", "1", ",", "dtype", "=", "np", ".", "float32", ")", ")", "self", ".", "state", "=", "None", "self", ".", "trainOrder", "=", "None", "self", ".", "currIndx", "=", "None" ]
https://github.com/google/brain-tokyo-workshop/blob/faf12f6bbae773fbe535c7a6cf357dc662c6c1d8/WANNRelease/prettyNeatWann/domain/classify_gym.py#L16-L43
chribsen/simple-machine-learning-examples
dc94e52a4cebdc8bb959ff88b81ff8cfeca25022
venv/lib/python2.7/site-packages/pandas/core/base.py
python
StringMixin.__bytes__
(self)
return self.__unicode__().encode(encoding, 'replace')
Return a string representation for a particular object. Invoked by bytes(obj) in py3 only. Yields a bytestring in both py2/py3.
Return a string representation for a particular object.
[ "Return", "a", "string", "representation", "for", "a", "particular", "object", "." ]
def __bytes__(self): """ Return a string representation for a particular object. Invoked by bytes(obj) in py3 only. Yields a bytestring in both py2/py3. """ from pandas.core.config import get_option encoding = get_option("display.encoding") return self.__unicode__().encode(encoding, 'replace')
[ "def", "__bytes__", "(", "self", ")", ":", "from", "pandas", ".", "core", ".", "config", "import", "get_option", "encoding", "=", "get_option", "(", "\"display.encoding\"", ")", "return", "self", ".", "__unicode__", "(", ")", ".", "encode", "(", "encoding", ",", "'replace'", ")" ]
https://github.com/chribsen/simple-machine-learning-examples/blob/dc94e52a4cebdc8bb959ff88b81ff8cfeca25022/venv/lib/python2.7/site-packages/pandas/core/base.py#L53-L63
anki/vector-python-sdk
d61fdb07c6278deba750f987b20441fff2df865f
anki_vector/screen.py
python
dimensions
()
return SCREEN_WIDTH, SCREEN_HEIGHT
Return the dimension (width, height) of the Screen. .. testcode:: import anki_vector screen_dimensions = anki_vector.screen.SCREEN_WIDTH, anki_vector.screen.SCREEN_HEIGHT Returns: A tuple of ints (width, height)
Return the dimension (width, height) of the Screen.
[ "Return", "the", "dimension", "(", "width", "height", ")", "of", "the", "Screen", "." ]
def dimensions(): """Return the dimension (width, height) of the Screen. .. testcode:: import anki_vector screen_dimensions = anki_vector.screen.SCREEN_WIDTH, anki_vector.screen.SCREEN_HEIGHT Returns: A tuple of ints (width, height) """ return SCREEN_WIDTH, SCREEN_HEIGHT
[ "def", "dimensions", "(", ")", ":", "return", "SCREEN_WIDTH", ",", "SCREEN_HEIGHT" ]
https://github.com/anki/vector-python-sdk/blob/d61fdb07c6278deba750f987b20441fff2df865f/anki_vector/screen.py#L39-L51
cortex-lab/phy
9a330b9437a3d0b40a37a201d147224e6e7fb462
phy/cluster/supervisor.py
python
TaskLogger._after_move
(self, task, output)
Tasks that should follow a move.
Tasks that should follow a move.
[ "Tasks", "that", "should", "follow", "a", "move", "." ]
def _after_move(self, task, output): """Tasks that should follow a move.""" which = output.metadata_changed moved = set(self._get_clusters(which)) cluster_ids, next_cluster, similar, next_similar = self.last_state() cluster_ids = set(cluster_ids or ()) similar = set(similar or ()) # Move best. if moved <= cluster_ids: self.enqueue(self.cluster_view, 'next') # Move similar. elif moved <= similar: self.enqueue(self.similarity_view, 'next') # Move all. else: self.enqueue(self.cluster_view, 'next') self.enqueue(self.similarity_view, 'next')
[ "def", "_after_move", "(", "self", ",", "task", ",", "output", ")", ":", "which", "=", "output", ".", "metadata_changed", "moved", "=", "set", "(", "self", ".", "_get_clusters", "(", "which", ")", ")", "cluster_ids", ",", "next_cluster", ",", "similar", ",", "next_similar", "=", "self", ".", "last_state", "(", ")", "cluster_ids", "=", "set", "(", "cluster_ids", "or", "(", ")", ")", "similar", "=", "set", "(", "similar", "or", "(", ")", ")", "# Move best.", "if", "moved", "<=", "cluster_ids", ":", "self", ".", "enqueue", "(", "self", ".", "cluster_view", ",", "'next'", ")", "# Move similar.", "elif", "moved", "<=", "similar", ":", "self", ".", "enqueue", "(", "self", ".", "similarity_view", ",", "'next'", ")", "# Move all.", "else", ":", "self", ".", "enqueue", "(", "self", ".", "cluster_view", ",", "'next'", ")", "self", ".", "enqueue", "(", "self", ".", "similarity_view", ",", "'next'", ")" ]
https://github.com/cortex-lab/phy/blob/9a330b9437a3d0b40a37a201d147224e6e7fb462/phy/cluster/supervisor.py#L163-L179
thespianpy/Thespian
f35e5a74ae99ee3401eb9fc7757620a1cf043ee2
thespian/system/transport/TCPTransport.py
python
TCPTransport.lostRemote
(self, rmtaddr)
[optional] Called by adminstrative levels (e.g. convention.py) to indicate that the indicated remote address is no longer accessible. This is customarily used only by the Admin in "Admin Routing" scenarios when the remote is shutdown or de-registered to allow the transport to cleanup (e.g. close open sockets, etc.). This does *not* do anything to remote TXOnly sockets: those connections were initiated by the remote and should therefore be dropped by the remote. Dropping those connections at this point would be harmful, especially because this is typically called when first reconnecting to the remote.
[optional] Called by adminstrative levels (e.g. convention.py) to indicate that the indicated remote address is no longer accessible. This is customarily used only by the Admin in "Admin Routing" scenarios when the remote is shutdown or de-registered to allow the transport to cleanup (e.g. close open sockets, etc.).
[ "[", "optional", "]", "Called", "by", "adminstrative", "levels", "(", "e", ".", "g", ".", "convention", ".", "py", ")", "to", "indicate", "that", "the", "indicated", "remote", "address", "is", "no", "longer", "accessible", ".", "This", "is", "customarily", "used", "only", "by", "the", "Admin", "in", "Admin", "Routing", "scenarios", "when", "the", "remote", "is", "shutdown", "or", "de", "-", "registered", "to", "allow", "the", "transport", "to", "cleanup", "(", "e", ".", "g", ".", "close", "open", "sockets", "etc", ".", ")", "." ]
def lostRemote(self, rmtaddr): """[optional] Called by adminstrative levels (e.g. convention.py) to indicate that the indicated remote address is no longer accessible. This is customarily used only by the Admin in "Admin Routing" scenarios when the remote is shutdown or de-registered to allow the transport to cleanup (e.g. close open sockets, etc.). This does *not* do anything to remote TXOnly sockets: those connections were initiated by the remote and should therefore be dropped by the remote. Dropping those connections at this point would be harmful, especially because this is typically called when first reconnecting to the remote. """ if isinstance(rmtaddr.addressDetails, TXOnlyAdminTCPv4ActorAddress): return if hasattr(self, '_openSockets'): for rmvkey in [each for each in self._openSockets if rmtaddr.addressDetails.isSameSystem( self._openSockets[each].rmtaddr)]: _safeSocketShutdown(self._openSockets[rmvkey]) del self._openSockets[rmvkey] for each in [i for i in self._transmitIntents if rmtaddr.addressDetails.isSameSystem( self._transmitIntents[i].targetAddr)]: self._cancel_fd_ops(each) for each in [i for i,v in self._incomingSockets.items() if rmtaddr.addressDetails.isSameSystem( v.fromAddress if v.fromAddress.addressDetails else v.socket)]: self._cancel_fd_ops(each)
[ "def", "lostRemote", "(", "self", ",", "rmtaddr", ")", ":", "if", "isinstance", "(", "rmtaddr", ".", "addressDetails", ",", "TXOnlyAdminTCPv4ActorAddress", ")", ":", "return", "if", "hasattr", "(", "self", ",", "'_openSockets'", ")", ":", "for", "rmvkey", "in", "[", "each", "for", "each", "in", "self", ".", "_openSockets", "if", "rmtaddr", ".", "addressDetails", ".", "isSameSystem", "(", "self", ".", "_openSockets", "[", "each", "]", ".", "rmtaddr", ")", "]", ":", "_safeSocketShutdown", "(", "self", ".", "_openSockets", "[", "rmvkey", "]", ")", "del", "self", ".", "_openSockets", "[", "rmvkey", "]", "for", "each", "in", "[", "i", "for", "i", "in", "self", ".", "_transmitIntents", "if", "rmtaddr", ".", "addressDetails", ".", "isSameSystem", "(", "self", ".", "_transmitIntents", "[", "i", "]", ".", "targetAddr", ")", "]", ":", "self", ".", "_cancel_fd_ops", "(", "each", ")", "for", "each", "in", "[", "i", "for", "i", ",", "v", "in", "self", ".", "_incomingSockets", ".", "items", "(", ")", "if", "rmtaddr", ".", "addressDetails", ".", "isSameSystem", "(", "v", ".", "fromAddress", "if", "v", ".", "fromAddress", ".", "addressDetails", "else", "v", ".", "socket", ")", "]", ":", "self", ".", "_cancel_fd_ops", "(", "each", ")" ]
https://github.com/thespianpy/Thespian/blob/f35e5a74ae99ee3401eb9fc7757620a1cf043ee2/thespian/system/transport/TCPTransport.py#L563-L597
oracle/graalpython
577e02da9755d916056184ec441c26e00b70145c
graalpython/lib-python/3/tkinter/ttk.py
python
Panedwindow.pane
(self, pane, option=None, **kw)
return _val_or_dict(self.tk, kw, self._w, "pane", pane)
Query or modify the options of the specified pane. pane is either an integer index or the name of a managed subwindow. If kw is not given, returns a dict of the pane option values. If option is specified then the value for that option is returned. Otherwise, sets the options to the corresponding values.
Query or modify the options of the specified pane.
[ "Query", "or", "modify", "the", "options", "of", "the", "specified", "pane", "." ]
def pane(self, pane, option=None, **kw): """Query or modify the options of the specified pane. pane is either an integer index or the name of a managed subwindow. If kw is not given, returns a dict of the pane option values. If option is specified then the value for that option is returned. Otherwise, sets the options to the corresponding values.""" if option is not None: kw[option] = None return _val_or_dict(self.tk, kw, self._w, "pane", pane)
[ "def", "pane", "(", "self", ",", "pane", ",", "option", "=", "None", ",", "*", "*", "kw", ")", ":", "if", "option", "is", "not", "None", ":", "kw", "[", "option", "]", "=", "None", "return", "_val_or_dict", "(", "self", ".", "tk", ",", "kw", ",", "self", ".", "_w", ",", "\"pane\"", ",", "pane", ")" ]
https://github.com/oracle/graalpython/blob/577e02da9755d916056184ec441c26e00b70145c/graalpython/lib-python/3/tkinter/ttk.py#L969-L978
dimagi/commcare-hq
d67ff1d3b4c51fa050c19e60c3253a79d3452a39
corehq/apps/case_search/filter_dsl.py
python
build_filter_from_xpath
(domain, xpath, fuzzy=False)
[]
def build_filter_from_xpath(domain, xpath, fuzzy=False): error_message = _( "We didn't understand what you were trying to do with {}. " "Please try reformatting your query. " "The operators we accept are: {}" ) try: return build_filter_from_ast(domain, parse_xpath(xpath), fuzzy=fuzzy) except TypeError as e: text_error = re.search(r"Unknown text '(.+)'", str(e)) if text_error: # This often happens if there is a bad operator (e.g. a ~ b) bad_part = text_error.groups()[0] raise CaseFilterError(error_message.format(bad_part, ", ".join(ALL_OPERATORS)), bad_part) raise CaseFilterError(_("Malformed search query"), None) except RuntimeError as e: # eulxml passes us string errors from YACC lex_token_error = re.search(r"LexToken\((\w+),\w?'(.+)'", str(e)) if lex_token_error: bad_part = lex_token_error.groups()[1] raise CaseFilterError(error_message.format(bad_part, ", ".join(ALL_OPERATORS)), bad_part) raise CaseFilterError(_("Malformed search query"), None)
[ "def", "build_filter_from_xpath", "(", "domain", ",", "xpath", ",", "fuzzy", "=", "False", ")", ":", "error_message", "=", "_", "(", "\"We didn't understand what you were trying to do with {}. \"", "\"Please try reformatting your query. \"", "\"The operators we accept are: {}\"", ")", "try", ":", "return", "build_filter_from_ast", "(", "domain", ",", "parse_xpath", "(", "xpath", ")", ",", "fuzzy", "=", "fuzzy", ")", "except", "TypeError", "as", "e", ":", "text_error", "=", "re", ".", "search", "(", "r\"Unknown text '(.+)'\"", ",", "str", "(", "e", ")", ")", "if", "text_error", ":", "# This often happens if there is a bad operator (e.g. a ~ b)", "bad_part", "=", "text_error", ".", "groups", "(", ")", "[", "0", "]", "raise", "CaseFilterError", "(", "error_message", ".", "format", "(", "bad_part", ",", "\", \"", ".", "join", "(", "ALL_OPERATORS", ")", ")", ",", "bad_part", ")", "raise", "CaseFilterError", "(", "_", "(", "\"Malformed search query\"", ")", ",", "None", ")", "except", "RuntimeError", "as", "e", ":", "# eulxml passes us string errors from YACC", "lex_token_error", "=", "re", ".", "search", "(", "r\"LexToken\\((\\w+),\\w?'(.+)'\"", ",", "str", "(", "e", ")", ")", "if", "lex_token_error", ":", "bad_part", "=", "lex_token_error", ".", "groups", "(", ")", "[", "1", "]", "raise", "CaseFilterError", "(", "error_message", ".", "format", "(", "bad_part", ",", "\", \"", ".", "join", "(", "ALL_OPERATORS", ")", ")", ",", "bad_part", ")", "raise", "CaseFilterError", "(", "_", "(", "\"Malformed search query\"", ")", ",", "None", ")" ]
https://github.com/dimagi/commcare-hq/blob/d67ff1d3b4c51fa050c19e60c3253a79d3452a39/corehq/apps/case_search/filter_dsl.py#L248-L269
elastic/eland
72856e2c3f827a0b71d140323009a7a9a3df6e1d
eland/dataframe.py
python
DataFrame.mode
( self, numeric_only: bool = False, dropna: bool = True, es_size: int = 10, )
return self._query_compiler.mode( numeric_only=numeric_only, dropna=True, is_dataframe=True, es_size=es_size )
Calculate mode of a DataFrame Parameters ---------- numeric_only: {True, False} Default is False Which datatype to be returned - True: Returns all numeric or timestamp columns - False: Returns all columns dropna: {True, False} Default is True - True: Don’t consider counts of NaN/NaT. - False: Consider counts of NaN/NaT. es_size: default 10 number of rows to be returned if mode has multiple values See Also -------- :pandas_api_docs:`pandas.DataFrame.mode` Examples -------- >>> ed_ecommerce = ed.DataFrame('http://localhost:9200', 'ecommerce') >>> ed_df = ed_ecommerce.filter(["total_quantity", "geoip.city_name", "customer_birth_date", "day_of_week", "taxful_total_price"]) >>> ed_df.mode(numeric_only=False) total_quantity geoip.city_name customer_birth_date day_of_week taxful_total_price 0 2 New York NaT Thursday 53.98 >>> ed_df.mode(numeric_only=True) total_quantity taxful_total_price 0 2 53.98 >>> ed_df = ed_ecommerce.filter(["products.tax_amount","order_date"]) >>> ed_df.mode() products.tax_amount order_date 0 0.0 2016-12-02 20:36:58 1 NaN 2016-12-04 23:44:10 2 NaN 2016-12-08 06:21:36 3 NaN 2016-12-08 09:38:53 4 NaN 2016-12-12 11:38:24 5 NaN 2016-12-12 19:46:34 6 NaN 2016-12-14 18:00:00 7 NaN 2016-12-15 11:38:24 8 NaN 2016-12-22 19:39:22 9 NaN 2016-12-24 06:21:36 >>> ed_df.mode(es_size = 3) products.tax_amount order_date 0 0.0 2016-12-02 20:36:58 1 NaN 2016-12-04 23:44:10 2 NaN 2016-12-08 06:21:36
Calculate mode of a DataFrame
[ "Calculate", "mode", "of", "a", "DataFrame" ]
def mode( self, numeric_only: bool = False, dropna: bool = True, es_size: int = 10, ) -> pd.DataFrame: """ Calculate mode of a DataFrame Parameters ---------- numeric_only: {True, False} Default is False Which datatype to be returned - True: Returns all numeric or timestamp columns - False: Returns all columns dropna: {True, False} Default is True - True: Don’t consider counts of NaN/NaT. - False: Consider counts of NaN/NaT. es_size: default 10 number of rows to be returned if mode has multiple values See Also -------- :pandas_api_docs:`pandas.DataFrame.mode` Examples -------- >>> ed_ecommerce = ed.DataFrame('http://localhost:9200', 'ecommerce') >>> ed_df = ed_ecommerce.filter(["total_quantity", "geoip.city_name", "customer_birth_date", "day_of_week", "taxful_total_price"]) >>> ed_df.mode(numeric_only=False) total_quantity geoip.city_name customer_birth_date day_of_week taxful_total_price 0 2 New York NaT Thursday 53.98 >>> ed_df.mode(numeric_only=True) total_quantity taxful_total_price 0 2 53.98 >>> ed_df = ed_ecommerce.filter(["products.tax_amount","order_date"]) >>> ed_df.mode() products.tax_amount order_date 0 0.0 2016-12-02 20:36:58 1 NaN 2016-12-04 23:44:10 2 NaN 2016-12-08 06:21:36 3 NaN 2016-12-08 09:38:53 4 NaN 2016-12-12 11:38:24 5 NaN 2016-12-12 19:46:34 6 NaN 2016-12-14 18:00:00 7 NaN 2016-12-15 11:38:24 8 NaN 2016-12-22 19:39:22 9 NaN 2016-12-24 06:21:36 >>> ed_df.mode(es_size = 3) products.tax_amount order_date 0 0.0 2016-12-02 20:36:58 1 NaN 2016-12-04 23:44:10 2 NaN 2016-12-08 06:21:36 """ # TODO dropna=False return self._query_compiler.mode( numeric_only=numeric_only, dropna=True, is_dataframe=True, es_size=es_size )
[ "def", "mode", "(", "self", ",", "numeric_only", ":", "bool", "=", "False", ",", "dropna", ":", "bool", "=", "True", ",", "es_size", ":", "int", "=", "10", ",", ")", "->", "pd", ".", "DataFrame", ":", "# TODO dropna=False", "return", "self", ".", "_query_compiler", ".", "mode", "(", "numeric_only", "=", "numeric_only", ",", "dropna", "=", "True", ",", "is_dataframe", "=", "True", ",", "es_size", "=", "es_size", ")" ]
https://github.com/elastic/eland/blob/72856e2c3f827a0b71d140323009a7a9a3df6e1d/eland/dataframe.py#L1760-L1820
trustedsec/hate_crack
b1d7e39cd1dd963c201a2c0dfdab997ab7d4d69b
PACK/enchant/checker/wxSpellCheckerDialog.py
python
wxSpellCheckerDialog.OnIgnoreAll
(self, evt)
Callback for the "ignore all" button.
Callback for the "ignore all" button.
[ "Callback", "for", "the", "ignore", "all", "button", "." ]
def OnIgnoreAll(self, evt): """Callback for the "ignore all" button.""" self._checker.ignore_always() self.Advance()
[ "def", "OnIgnoreAll", "(", "self", ",", "evt", ")", ":", "self", ".", "_checker", ".", "ignore_always", "(", ")", "self", ".", "Advance", "(", ")" ]
https://github.com/trustedsec/hate_crack/blob/b1d7e39cd1dd963c201a2c0dfdab997ab7d4d69b/PACK/enchant/checker/wxSpellCheckerDialog.py#L211-L214
reel2bits/reel2bits
007ab4f7d1c77d426e1b1b8b51ea57eac6501e13
api/commands/users.py
python
demote_mod
(username)
Remove moderator role from user.
Remove moderator role from user.
[ "Remove", "moderator", "role", "from", "user", "." ]
def demote_mod(username): """ Remove moderator role from user. """ u = User.query.filter(User.name == username, User.local.is_(True)).first() if not u: print(f"Cannot find local user with username '{username}'") exit(1) mod_role = Role.query.filter(Role.name == "moderator").first() if not mod_role: print("Cannot find a role named 'moderator'") exit(1) u.roles.remove(mod_role) db.session.commit() roles_str = ", ".join([r.name for r in u.roles]) print(f"User '{username}' now have roles: {roles_str}")
[ "def", "demote_mod", "(", "username", ")", ":", "u", "=", "User", ".", "query", ".", "filter", "(", "User", ".", "name", "==", "username", ",", "User", ".", "local", ".", "is_", "(", "True", ")", ")", ".", "first", "(", ")", "if", "not", "u", ":", "print", "(", "f\"Cannot find local user with username '{username}'\"", ")", "exit", "(", "1", ")", "mod_role", "=", "Role", ".", "query", ".", "filter", "(", "Role", ".", "name", "==", "\"moderator\"", ")", ".", "first", "(", ")", "if", "not", "mod_role", ":", "print", "(", "\"Cannot find a role named 'moderator'\"", ")", "exit", "(", "1", ")", "u", ".", "roles", ".", "remove", "(", "mod_role", ")", "db", ".", "session", ".", "commit", "(", ")", "roles_str", "=", "\", \"", ".", "join", "(", "[", "r", ".", "name", "for", "r", "in", "u", ".", "roles", "]", ")", "print", "(", "f\"User '{username}' now have roles: {roles_str}\"", ")" ]
https://github.com/reel2bits/reel2bits/blob/007ab4f7d1c77d426e1b1b8b51ea57eac6501e13/api/commands/users.py#L124-L141
pytrainer/pytrainer
66f3e2b30b48c66e03111248faffc43b8e31c583
pytrainer/core/activity.py
python
Activity.get_value_f
(self, param, format=None)
return result
Function to return a value formated as a string - takes into account US/metric - also appends units if required
Function to return a value formated as a string - takes into account US/metric - also appends units if required
[ "Function", "to", "return", "a", "value", "formated", "as", "a", "string", "-", "takes", "into", "account", "US", "/", "metric", "-", "also", "appends", "units", "if", "required" ]
def get_value_f(self, param, format=None): ''' Function to return a value formated as a string - takes into account US/metric - also appends units if required ''' value = self.get_value(param) if not value: #Return blank string if value is None or 0 return "" if format is not None: result = format % value else: result = str(value) return result
[ "def", "get_value_f", "(", "self", ",", "param", ",", "format", "=", "None", ")", ":", "value", "=", "self", ".", "get_value", "(", "param", ")", "if", "not", "value", ":", "#Return blank string if value is None or 0", "return", "\"\"", "if", "format", "is", "not", "None", ":", "result", "=", "format", "%", "value", "else", ":", "result", "=", "str", "(", "value", ")", "return", "result" ]
https://github.com/pytrainer/pytrainer/blob/66f3e2b30b48c66e03111248faffc43b8e31c583/pytrainer/core/activity.py#L651-L664
dmlc/dgl
8d14a739bc9e446d6c92ef83eafe5782398118de
examples/pytorch/gxn/layers.py
python
GraphPool.forward
(self, graph:DGLGraph, feat:Tensor, select_idx:Tensor, non_select_idx:Optional[Tensor]=None, scores:Optional[Tensor]=None, pool_graph=False)
Description ----------- Perform graph pooling. Parameters ---------- graph : dgl.DGLGraph The input graph feat : torch.Tensor The input node feature select_idx : torch.Tensor The index in fine graph of node from coarse graph, this is obtained from previous graph pooling layers. non_select_idx : torch.Tensor, optional The index that not included in output graph. default: :obj:`None` scores : torch.Tensor, optional Scores for nodes used for pooling and scaling. default: :obj:`None` pool_graph : bool, optional Whether perform graph pooling on graph topology. default: :obj:`False`
Description ----------- Perform graph pooling.
[ "Description", "-----------", "Perform", "graph", "pooling", "." ]
def forward(self, graph:DGLGraph, feat:Tensor, select_idx:Tensor, non_select_idx:Optional[Tensor]=None, scores:Optional[Tensor]=None, pool_graph=False): """ Description ----------- Perform graph pooling. Parameters ---------- graph : dgl.DGLGraph The input graph feat : torch.Tensor The input node feature select_idx : torch.Tensor The index in fine graph of node from coarse graph, this is obtained from previous graph pooling layers. non_select_idx : torch.Tensor, optional The index that not included in output graph. default: :obj:`None` scores : torch.Tensor, optional Scores for nodes used for pooling and scaling. default: :obj:`None` pool_graph : bool, optional Whether perform graph pooling on graph topology. default: :obj:`False` """ if self.use_gcn: feat = self.down_sample_gcn(graph, feat) feat = feat[select_idx] if scores is not None: feat = feat * scores.unsqueeze(-1) if pool_graph: num_node_batch = graph.batch_num_nodes() graph = dgl.node_subgraph(graph, select_idx) graph.set_batch_num_nodes(num_node_batch) return feat, graph else: return feat
[ "def", "forward", "(", "self", ",", "graph", ":", "DGLGraph", ",", "feat", ":", "Tensor", ",", "select_idx", ":", "Tensor", ",", "non_select_idx", ":", "Optional", "[", "Tensor", "]", "=", "None", ",", "scores", ":", "Optional", "[", "Tensor", "]", "=", "None", ",", "pool_graph", "=", "False", ")", ":", "if", "self", ".", "use_gcn", ":", "feat", "=", "self", ".", "down_sample_gcn", "(", "graph", ",", "feat", ")", "feat", "=", "feat", "[", "select_idx", "]", "if", "scores", "is", "not", "None", ":", "feat", "=", "feat", "*", "scores", ".", "unsqueeze", "(", "-", "1", ")", "if", "pool_graph", ":", "num_node_batch", "=", "graph", ".", "batch_num_nodes", "(", ")", "graph", "=", "dgl", ".", "node_subgraph", "(", "graph", ",", "select_idx", ")", "graph", ".", "set_batch_num_nodes", "(", "num_node_batch", ")", "return", "feat", ",", "graph", "else", ":", "return", "feat" ]
https://github.com/dmlc/dgl/blob/8d14a739bc9e446d6c92ef83eafe5782398118de/examples/pytorch/gxn/layers.py#L212-L253
Tencent/PocketFlow
53b82cba5a34834400619e7c335a23995d45c2a6
examples/convnet_at_fmnist.py
python
ModelHelper.build_dataset_train
(self, enbl_trn_val_split=False)
return self.dataset_train.build(enbl_trn_val_split)
Build the data subset for training, usually with data augmentation.
Build the data subset for training, usually with data augmentation.
[ "Build", "the", "data", "subset", "for", "training", "usually", "with", "data", "augmentation", "." ]
def build_dataset_train(self, enbl_trn_val_split=False): """Build the data subset for training, usually with data augmentation.""" return self.dataset_train.build(enbl_trn_val_split)
[ "def", "build_dataset_train", "(", "self", ",", "enbl_trn_val_split", "=", "False", ")", ":", "return", "self", ".", "dataset_train", ".", "build", "(", "enbl_trn_val_split", ")" ]
https://github.com/Tencent/PocketFlow/blob/53b82cba5a34834400619e7c335a23995d45c2a6/examples/convnet_at_fmnist.py#L82-L85
home-assistant/core
265ebd17a3f17ed8dc1e9bdede03ac8e323f1ab1
homeassistant/components/rachio/switch.py
python
RachioSwitch.is_on
(self)
return self._state
Return whether the switch is currently on.
Return whether the switch is currently on.
[ "Return", "whether", "the", "switch", "is", "currently", "on", "." ]
def is_on(self) -> bool: """Return whether the switch is currently on.""" return self._state
[ "def", "is_on", "(", "self", ")", "->", "bool", ":", "return", "self", ".", "_state" ]
https://github.com/home-assistant/core/blob/265ebd17a3f17ed8dc1e9bdede03ac8e323f1ab1/homeassistant/components/rachio/switch.py#L191-L193
quodlibet/quodlibet
e3099c89f7aa6524380795d325cc14630031886c
quodlibet/qltk/songlistcolumns.py
python
SongListColumn._needs_update
(self, value)
return True
Call to check if the last passed value was the same. This is used to reduce formatting if the input is the same either because of redraws or all columns have the same value
Call to check if the last passed value was the same.
[ "Call", "to", "check", "if", "the", "last", "passed", "value", "was", "the", "same", "." ]
def _needs_update(self, value): """Call to check if the last passed value was the same. This is used to reduce formatting if the input is the same either because of redraws or all columns have the same value """ if self._last_rendered == value: return False self._last_rendered = value return True
[ "def", "_needs_update", "(", "self", ",", "value", ")", ":", "if", "self", ".", "_last_rendered", "==", "value", ":", "return", "False", "self", ".", "_last_rendered", "=", "value", "return", "True" ]
https://github.com/quodlibet/quodlibet/blob/e3099c89f7aa6524380795d325cc14630031886c/quodlibet/qltk/songlistcolumns.py#L125-L135
IJDykeman/wangTiles
7c1ee2095ebdf7f72bce07d94c6484915d5cae8b
experimental_code/tiles_3d/venv_mac_py3/lib/python2.7/site-packages/pip/_vendor/distlib/metadata.py
python
LegacyMetadata.read
(self, filepath)
Read the metadata values from a file path.
Read the metadata values from a file path.
[ "Read", "the", "metadata", "values", "from", "a", "file", "path", "." ]
def read(self, filepath): """Read the metadata values from a file path.""" fp = codecs.open(filepath, 'r', encoding='utf-8') try: self.read_file(fp) finally: fp.close()
[ "def", "read", "(", "self", ",", "filepath", ")", ":", "fp", "=", "codecs", ".", "open", "(", "filepath", ",", "'r'", ",", "encoding", "=", "'utf-8'", ")", "try", ":", "self", ".", "read_file", "(", "fp", ")", "finally", ":", "fp", ".", "close", "(", ")" ]
https://github.com/IJDykeman/wangTiles/blob/7c1ee2095ebdf7f72bce07d94c6484915d5cae8b/experimental_code/tiles_3d/venv_mac_py3/lib/python2.7/site-packages/pip/_vendor/distlib/metadata.py#L352-L358
munki/munki
4b778f0e5a73ed3df9eb62d93c5227efb29eebe3
code/client/munkilib/installer/core.py
python
skipped_items_that_require_this
(item, skipped_items)
return matched_skipped_items
Looks for items in the skipped_items that require or are update_for the current item. Returns a list of matches.
Looks for items in the skipped_items that require or are update_for the current item. Returns a list of matches.
[ "Looks", "for", "items", "in", "the", "skipped_items", "that", "require", "or", "are", "update_for", "the", "current", "item", ".", "Returns", "a", "list", "of", "matches", "." ]
def skipped_items_that_require_this(item, skipped_items): '''Looks for items in the skipped_items that require or are update_for the current item. Returns a list of matches.''' # shortcut -- if we have no skipped items, just return an empty list # also reduces log noise in the common case if not skipped_items: return [] display.display_debug1( 'Checking for skipped items that require %s' % item['name']) matched_skipped_items = [] for skipped_item in skipped_items: # get list of prerequisites for this skipped_item prerequisites = skipped_item.get('requires', []) prerequisites.extend(skipped_item.get('update_for', [])) display.display_debug1( '%s has these prerequisites: %s' % (skipped_item['name'], ', '.join(prerequisites))) for prereq in prerequisites: (prereq_name, dummy_version) = catalogs.split_name_and_version( prereq) if prereq_name == item['name']: matched_skipped_items.append(skipped_item['name']) return matched_skipped_items
[ "def", "skipped_items_that_require_this", "(", "item", ",", "skipped_items", ")", ":", "# shortcut -- if we have no skipped items, just return an empty list", "# also reduces log noise in the common case", "if", "not", "skipped_items", ":", "return", "[", "]", "display", ".", "display_debug1", "(", "'Checking for skipped items that require %s'", "%", "item", "[", "'name'", "]", ")", "matched_skipped_items", "=", "[", "]", "for", "skipped_item", "in", "skipped_items", ":", "# get list of prerequisites for this skipped_item", "prerequisites", "=", "skipped_item", ".", "get", "(", "'requires'", ",", "[", "]", ")", "prerequisites", ".", "extend", "(", "skipped_item", ".", "get", "(", "'update_for'", ",", "[", "]", ")", ")", "display", ".", "display_debug1", "(", "'%s has these prerequisites: %s'", "%", "(", "skipped_item", "[", "'name'", "]", ",", "', '", ".", "join", "(", "prerequisites", ")", ")", ")", "for", "prereq", "in", "prerequisites", ":", "(", "prereq_name", ",", "dummy_version", ")", "=", "catalogs", ".", "split_name_and_version", "(", "prereq", ")", "if", "prereq_name", "==", "item", "[", "'name'", "]", ":", "matched_skipped_items", ".", "append", "(", "skipped_item", "[", "'name'", "]", ")", "return", "matched_skipped_items" ]
https://github.com/munki/munki/blob/4b778f0e5a73ed3df9eb62d93c5227efb29eebe3/code/client/munkilib/installer/core.py#L442-L467
lovelylain/pyctp
fd304de4b50c4ddc31a4190b1caaeb5dec66bc5d
example/ctp/futures/ApiStruct.py
python
QrySuperUser.__init__
(self, UserID='')
[]
def __init__(self, UserID=''): self.UserID = ''
[ "def", "__init__", "(", "self", ",", "UserID", "=", "''", ")", ":", "self", ".", "UserID", "=", "''" ]
https://github.com/lovelylain/pyctp/blob/fd304de4b50c4ddc31a4190b1caaeb5dec66bc5d/example/ctp/futures/ApiStruct.py#L3132-L3133
fake-name/ReadableWebProxy
ed5c7abe38706acc2684a1e6cd80242a03c5f010
WebMirror/management/rss_parser_funcs/feed_parse_extractElliPhantomhive.py
python
extractElliPhantomhive
(item)
return False
Parser for 'Elli Phantomhive♥'
Parser for 'Elli Phantomhive♥'
[ "Parser", "for", "Elli", "Phantomhive♥" ]
def extractElliPhantomhive(item): """ Parser for 'Elli Phantomhive♥' """ vol, chp, frag, postfix = extractVolChapterFragmentPostfix(item['title']) if not (chp or vol) or 'preview' in item['title'].lower(): return None if 'WATTT' in item['tags']: return buildReleaseMessageWithType(item, 'WATTT', vol, chp, frag=frag, postfix=postfix) return False
[ "def", "extractElliPhantomhive", "(", "item", ")", ":", "vol", ",", "chp", ",", "frag", ",", "postfix", "=", "extractVolChapterFragmentPostfix", "(", "item", "[", "'title'", "]", ")", "if", "not", "(", "chp", "or", "vol", ")", "or", "'preview'", "in", "item", "[", "'title'", "]", ".", "lower", "(", ")", ":", "return", "None", "if", "'WATTT'", "in", "item", "[", "'tags'", "]", ":", "return", "buildReleaseMessageWithType", "(", "item", ",", "'WATTT'", ",", "vol", ",", "chp", ",", "frag", "=", "frag", ",", "postfix", "=", "postfix", ")", "return", "False" ]
https://github.com/fake-name/ReadableWebProxy/blob/ed5c7abe38706acc2684a1e6cd80242a03c5f010/WebMirror/management/rss_parser_funcs/feed_parse_extractElliPhantomhive.py#L1-L10
yzhao062/pyod
13b0cd5f50d5ea5c5321da88c46232ae6f24dff7
pyod/utils/data.py
python
check_consistent_shape
(X_train, y_train, X_test, y_test, y_train_pred, y_test_pred)
return X_train, y_train, X_test, y_test, y_train_pred, y_test_pred
Internal shape to check input data shapes are consistent. Parameters ---------- X_train : numpy array of shape (n_samples, n_features) The training samples. y_train : list or array of shape (n_samples,) The ground truth of training samples. X_test : numpy array of shape (n_samples, n_features) The test samples. y_test : list or array of shape (n_samples,) The ground truth of test samples. y_train_pred : numpy array of shape (n_samples, n_features) The predicted binary labels of the training samples. y_test_pred : numpy array of shape (n_samples, n_features) The predicted binary labels of the test samples. Returns ------- X_train : numpy array of shape (n_samples, n_features) The training samples. y_train : list or array of shape (n_samples,) The ground truth of training samples. X_test : numpy array of shape (n_samples, n_features) The test samples. y_test : list or array of shape (n_samples,) The ground truth of test samples. y_train_pred : numpy array of shape (n_samples, n_features) The predicted binary labels of the training samples. y_test_pred : numpy array of shape (n_samples, n_features) The predicted binary labels of the test samples.
Internal shape to check input data shapes are consistent.
[ "Internal", "shape", "to", "check", "input", "data", "shapes", "are", "consistent", "." ]
def check_consistent_shape(X_train, y_train, X_test, y_test, y_train_pred, y_test_pred): """Internal shape to check input data shapes are consistent. Parameters ---------- X_train : numpy array of shape (n_samples, n_features) The training samples. y_train : list or array of shape (n_samples,) The ground truth of training samples. X_test : numpy array of shape (n_samples, n_features) The test samples. y_test : list or array of shape (n_samples,) The ground truth of test samples. y_train_pred : numpy array of shape (n_samples, n_features) The predicted binary labels of the training samples. y_test_pred : numpy array of shape (n_samples, n_features) The predicted binary labels of the test samples. Returns ------- X_train : numpy array of shape (n_samples, n_features) The training samples. y_train : list or array of shape (n_samples,) The ground truth of training samples. X_test : numpy array of shape (n_samples, n_features) The test samples. y_test : list or array of shape (n_samples,) The ground truth of test samples. y_train_pred : numpy array of shape (n_samples, n_features) The predicted binary labels of the training samples. y_test_pred : numpy array of shape (n_samples, n_features) The predicted binary labels of the test samples. """ # check input data shapes are consistent X_train, y_train = check_X_y(X_train, y_train) X_test, y_test = check_X_y(X_test, y_test) y_test_pred = column_or_1d(y_test_pred) y_train_pred = column_or_1d(y_train_pred) check_consistent_length(y_train, y_train_pred) check_consistent_length(y_test, y_test_pred) if X_train.shape[1] != X_test.shape[1]: raise ValueError("X_train {0} and X_test {1} have different number " "of features.".format(X_train.shape, X_test.shape)) return X_train, y_train, X_test, y_test, y_train_pred, y_test_pred
[ "def", "check_consistent_shape", "(", "X_train", ",", "y_train", ",", "X_test", ",", "y_test", ",", "y_train_pred", ",", "y_test_pred", ")", ":", "# check input data shapes are consistent", "X_train", ",", "y_train", "=", "check_X_y", "(", "X_train", ",", "y_train", ")", "X_test", ",", "y_test", "=", "check_X_y", "(", "X_test", ",", "y_test", ")", "y_test_pred", "=", "column_or_1d", "(", "y_test_pred", ")", "y_train_pred", "=", "column_or_1d", "(", "y_train_pred", ")", "check_consistent_length", "(", "y_train", ",", "y_train_pred", ")", "check_consistent_length", "(", "y_test", ",", "y_test_pred", ")", "if", "X_train", ".", "shape", "[", "1", "]", "!=", "X_test", ".", "shape", "[", "1", "]", ":", "raise", "ValueError", "(", "\"X_train {0} and X_test {1} have different number \"", "\"of features.\"", ".", "format", "(", "X_train", ".", "shape", ",", "X_test", ".", "shape", ")", ")", "return", "X_train", ",", "y_train", ",", "X_test", ",", "y_test", ",", "y_train_pred", ",", "y_test_pred" ]
https://github.com/yzhao062/pyod/blob/13b0cd5f50d5ea5c5321da88c46232ae6f24dff7/pyod/utils/data.py#L198-L257
microsoft/debugpy
be8dd607f6837244e0b565345e497aff7a0c08bf
src/debugpy/_vendored/pydevd/pydevd_attach_to_process/winappdbg/module.py
python
_ModuleContainer.is_system_defined_breakpoint
(self, address)
return False
@type address: int @param address: Memory address. @rtype: bool @return: C{True} if the given address points to a system defined breakpoint. System defined breakpoints are hardcoded into system libraries.
@type address: int @param address: Memory address.
[ "@type", "address", ":", "int", "@param", "address", ":", "Memory", "address", "." ]
def is_system_defined_breakpoint(self, address): """ @type address: int @param address: Memory address. @rtype: bool @return: C{True} if the given address points to a system defined breakpoint. System defined breakpoints are hardcoded into system libraries. """ if address: module = self.get_module_at_address(address) if module: return module.match_name("ntdll") or \ module.match_name("kernel32") return False
[ "def", "is_system_defined_breakpoint", "(", "self", ",", "address", ")", ":", "if", "address", ":", "module", "=", "self", ".", "get_module_at_address", "(", "address", ")", "if", "module", ":", "return", "module", ".", "match_name", "(", "\"ntdll\"", ")", "or", "module", ".", "match_name", "(", "\"kernel32\"", ")", "return", "False" ]
https://github.com/microsoft/debugpy/blob/be8dd607f6837244e0b565345e497aff7a0c08bf/src/debugpy/_vendored/pydevd/pydevd_attach_to_process/winappdbg/module.py#L1702-L1717
erget/StereoVision
7e2aff8e48bdae24becc22e099460acb8476572e
stereovision/blockmatchers.py
python
StereoSGBM.uniquenessRatio
(self)
return self._uniqueness
Return private ``_uniqueness`` value.
Return private ``_uniqueness`` value.
[ "Return", "private", "_uniqueness", "value", "." ]
def uniquenessRatio(self): """Return private ``_uniqueness`` value.""" return self._uniqueness
[ "def", "uniquenessRatio", "(", "self", ")", ":", "return", "self", ".", "_uniqueness" ]
https://github.com/erget/StereoVision/blob/7e2aff8e48bdae24becc22e099460acb8476572e/stereovision/blockmatchers.py#L265-L267
mljar/mljar-supervised
e003daeaa14894b533847cf51cbaf82c87d0c897
supervised/base_automl.py
python
BaseAutoML._validate_results_path
(self)
Validates path parameter
Validates path parameter
[ "Validates", "path", "parameter" ]
def _validate_results_path(self): """Validates path parameter""" if self.results_path is None or isinstance(self.results_path, str): return raise ValueError( f"Expected 'results_path' to be of type string, got '{type(self.results_path)}''" )
[ "def", "_validate_results_path", "(", "self", ")", ":", "if", "self", ".", "results_path", "is", "None", "or", "isinstance", "(", "self", ".", "results_path", ",", "str", ")", ":", "return", "raise", "ValueError", "(", "f\"Expected 'results_path' to be of type string, got '{type(self.results_path)}''\"", ")" ]
https://github.com/mljar/mljar-supervised/blob/e003daeaa14894b533847cf51cbaf82c87d0c897/supervised/base_automl.py#L1801-L1808
dbt-labs/dbt-core
e943b9fc842535e958ef4fd0b8703adc91556bc6
core/dbt/logger.py
python
TimingProcessor.process
(self, record)
[]
def process(self, record): if self.timing_info is not None: record.extra['timing_info'] = self.timing_info.to_dict( omit_none=True)
[ "def", "process", "(", "self", ",", "record", ")", ":", "if", "self", ".", "timing_info", "is", "not", "None", ":", "record", ".", "extra", "[", "'timing_info'", "]", "=", "self", ".", "timing_info", ".", "to_dict", "(", "omit_none", "=", "True", ")" ]
https://github.com/dbt-labs/dbt-core/blob/e943b9fc842535e958ef4fd0b8703adc91556bc6/core/dbt/logger.py#L228-L231
devitocodes/devito
6abd441e3f5f091775ad332be6b95e017b8cbd16
devito/types/sparse.py
python
MatrixSparseTimeFunction._rank_to_points
(self)
return [np.concatenate(( empty, *[gp_map[bi] for bi in global_rank_to_bins.get(rank, [])])) for rank in range(distributor.comm.Get_size())]
For each rank in self.grid.distributor, return a numpy array of int32s for the positions within this rank's self.gridpoints/self.interpolation_coefficients (i.e. the locdim) which must be injected into that rank. Any given location may require injection into several ranks, based on the radius of the injection stencil and its proximity to a rank boundary. It is assumed, for now, that any given location may be completely sampled from within one rank - so when gathering the data, any point sampled from more than one rank may have duplicates discarded. This implies that the radius of the sampling is less than the halo size of the Functions being sampled from. It also requires that the halos be exchanged before interpolation (must verify that this occurs).
For each rank in self.grid.distributor, return a numpy array of int32s for the positions within this rank's self.gridpoints/self.interpolation_coefficients (i.e. the locdim) which must be injected into that rank.
[ "For", "each", "rank", "in", "self", ".", "grid", ".", "distributor", "return", "a", "numpy", "array", "of", "int32s", "for", "the", "positions", "within", "this", "rank", "s", "self", ".", "gridpoints", "/", "self", ".", "interpolation_coefficients", "(", "i", ".", "e", ".", "the", "locdim", ")", "which", "must", "be", "injected", "into", "that", "rank", "." ]
def _rank_to_points(self): """ For each rank in self.grid.distributor, return a numpy array of int32s for the positions within this rank's self.gridpoints/self.interpolation_coefficients (i.e. the locdim) which must be injected into that rank. Any given location may require injection into several ranks, based on the radius of the injection stencil and its proximity to a rank boundary. It is assumed, for now, that any given location may be completely sampled from within one rank - so when gathering the data, any point sampled from more than one rank may have duplicates discarded. This implies that the radius of the sampling is less than the halo size of the Functions being sampled from. It also requires that the halos be exchanged before interpolation (must verify that this occurs). """ distributor = self.grid.distributor # Along each dimension, the coordinate indices are broken into # 2*decomposition_size+3 groups, numbered starting at 0 # Group 2*i contributes only to rank i-1 # Group 2*i+1 contributes to rank i-1 and rank i # Obviously this means groups 0 and 1 are "bad" - they contribute # to points to the left of the domain (rank -1) # So is group 2*decomp_size+1 and 2*decomp_size+2 # (these contributes to rank "decomp_size") # binned_gridpoints will hold which group the particular # point is along that decomposed dimension. binned_gridpoints = np.empty_like(self._gridpoints.data) dim_group_dim_rank = [] for idim, dim in enumerate(self.grid.dimensions): decomp = distributor.decomposition[idim] decomp_size = len(decomp) dim_breaks = np.empty([2*decomp_size+2], dtype=np.int32) dim_r = self.r[dim] if dim_r is None: # size is the whole grid dim_r = self.grid.dimension_map[dim].glb # Define the split dim_breaks[:-2:2] = [ decomp_part[0] - self.r + 1 for decomp_part in decomp] dim_breaks[-2] = decomp[-1][-1] + 1 - self.r + 1 dim_breaks[1:-1:2] = [ decomp_part[0] for decomp_part in decomp] dim_breaks[-1] = decomp[-1][-1] + 1 # Handle the radius is None case by ensuring we treat # all grid points in that direction as zero gridpoints_dim = self._gridpoints.data[:, idim] if self.r[dim] is None: gridpoints_dim = np.zeros_like(gridpoints_dim) try: binned_gridpoints[:, idim] = np.digitize( gridpoints_dim, dim_breaks) except ValueError as e: raise ValueError( "decomposition failed! Are some ranks too skinny?" ) from e this_group_rank_map = { 0: {None}, 1: {None, 0}, **{2*i+2: {i} for i in range(decomp_size)}, **{2*i+2+1: {i, i+1} for i in range(decomp_size-1)}, 2*decomp_size+1: {decomp_size-1, None}, 2*decomp_size+2: {None}} dim_group_dim_rank.append(this_group_rank_map) # This allows the points to be grouped into non-overlapping sets # based on their bin in each dimension. For each set we build a list # of points. bins, inverse, counts = np.unique( binned_gridpoints, return_inverse=True, return_counts=True, axis=0) # inverse is now a "unique bin number" for each point gridpoints # we want to turn that into a list of points for each bin # so we argsort inverse_argsort = np.argsort(inverse).astype(np.int32) cumulative_counts = np.cumsum(counts) gp_map = {tuple(bi): inverse_argsort[cci-ci:cci] for bi, cci, ci in zip(bins, cumulative_counts, counts) } # the result is now going to be a concatenation of these lists # for each of the output ranks # each bin has a set of ranks -> each rank has a set (possibly empty) # of bins # For each rank get the per-dimension coordinates # TODO maybe we should cache this on the distributor dim_ranks_to_glb = { tuple(distributor.comm.Get_coords(rank)): rank for rank in range(distributor.comm.Get_size())} global_rank_to_bins = {} from itertools import product for bi in bins: # This is a list of sets for the dimension-specific rank dim_rank_sets = [dgdr[bii] for dgdr, bii in zip(dim_group_dim_rank, bi)] # Convert these to an absolute rank # This is where we will throw a KeyError if there are points OOB for dim_ranks in product(*dim_rank_sets): global_rank = dim_ranks_to_glb[tuple(dim_ranks)] global_rank_to_bins\ .setdefault(global_rank, set())\ .add(tuple(bi)) empty = np.array([], dtype=np.int32) return [np.concatenate(( empty, *[gp_map[bi] for bi in global_rank_to_bins.get(rank, [])])) for rank in range(distributor.comm.Get_size())]
[ "def", "_rank_to_points", "(", "self", ")", ":", "distributor", "=", "self", ".", "grid", ".", "distributor", "# Along each dimension, the coordinate indices are broken into", "# 2*decomposition_size+3 groups, numbered starting at 0", "# Group 2*i contributes only to rank i-1", "# Group 2*i+1 contributes to rank i-1 and rank i", "# Obviously this means groups 0 and 1 are \"bad\" - they contribute", "# to points to the left of the domain (rank -1)", "# So is group 2*decomp_size+1 and 2*decomp_size+2", "# (these contributes to rank \"decomp_size\")", "# binned_gridpoints will hold which group the particular", "# point is along that decomposed dimension.", "binned_gridpoints", "=", "np", ".", "empty_like", "(", "self", ".", "_gridpoints", ".", "data", ")", "dim_group_dim_rank", "=", "[", "]", "for", "idim", ",", "dim", "in", "enumerate", "(", "self", ".", "grid", ".", "dimensions", ")", ":", "decomp", "=", "distributor", ".", "decomposition", "[", "idim", "]", "decomp_size", "=", "len", "(", "decomp", ")", "dim_breaks", "=", "np", ".", "empty", "(", "[", "2", "*", "decomp_size", "+", "2", "]", ",", "dtype", "=", "np", ".", "int32", ")", "dim_r", "=", "self", ".", "r", "[", "dim", "]", "if", "dim_r", "is", "None", ":", "# size is the whole grid", "dim_r", "=", "self", ".", "grid", ".", "dimension_map", "[", "dim", "]", ".", "glb", "# Define the split", "dim_breaks", "[", ":", "-", "2", ":", "2", "]", "=", "[", "decomp_part", "[", "0", "]", "-", "self", ".", "r", "+", "1", "for", "decomp_part", "in", "decomp", "]", "dim_breaks", "[", "-", "2", "]", "=", "decomp", "[", "-", "1", "]", "[", "-", "1", "]", "+", "1", "-", "self", ".", "r", "+", "1", "dim_breaks", "[", "1", ":", "-", "1", ":", "2", "]", "=", "[", "decomp_part", "[", "0", "]", "for", "decomp_part", "in", "decomp", "]", "dim_breaks", "[", "-", "1", "]", "=", "decomp", "[", "-", "1", "]", "[", "-", "1", "]", "+", "1", "# Handle the radius is None case by ensuring we treat", "# all grid points in that direction as zero", "gridpoints_dim", "=", "self", ".", "_gridpoints", ".", "data", "[", ":", ",", "idim", "]", "if", "self", ".", "r", "[", "dim", "]", "is", "None", ":", "gridpoints_dim", "=", "np", ".", "zeros_like", "(", "gridpoints_dim", ")", "try", ":", "binned_gridpoints", "[", ":", ",", "idim", "]", "=", "np", ".", "digitize", "(", "gridpoints_dim", ",", "dim_breaks", ")", "except", "ValueError", "as", "e", ":", "raise", "ValueError", "(", "\"decomposition failed! Are some ranks too skinny?\"", ")", "from", "e", "this_group_rank_map", "=", "{", "0", ":", "{", "None", "}", ",", "1", ":", "{", "None", ",", "0", "}", ",", "*", "*", "{", "2", "*", "i", "+", "2", ":", "{", "i", "}", "for", "i", "in", "range", "(", "decomp_size", ")", "}", ",", "*", "*", "{", "2", "*", "i", "+", "2", "+", "1", ":", "{", "i", ",", "i", "+", "1", "}", "for", "i", "in", "range", "(", "decomp_size", "-", "1", ")", "}", ",", "2", "*", "decomp_size", "+", "1", ":", "{", "decomp_size", "-", "1", ",", "None", "}", ",", "2", "*", "decomp_size", "+", "2", ":", "{", "None", "}", "}", "dim_group_dim_rank", ".", "append", "(", "this_group_rank_map", ")", "# This allows the points to be grouped into non-overlapping sets", "# based on their bin in each dimension. For each set we build a list", "# of points.", "bins", ",", "inverse", ",", "counts", "=", "np", ".", "unique", "(", "binned_gridpoints", ",", "return_inverse", "=", "True", ",", "return_counts", "=", "True", ",", "axis", "=", "0", ")", "# inverse is now a \"unique bin number\" for each point gridpoints", "# we want to turn that into a list of points for each bin", "# so we argsort", "inverse_argsort", "=", "np", ".", "argsort", "(", "inverse", ")", ".", "astype", "(", "np", ".", "int32", ")", "cumulative_counts", "=", "np", ".", "cumsum", "(", "counts", ")", "gp_map", "=", "{", "tuple", "(", "bi", ")", ":", "inverse_argsort", "[", "cci", "-", "ci", ":", "cci", "]", "for", "bi", ",", "cci", ",", "ci", "in", "zip", "(", "bins", ",", "cumulative_counts", ",", "counts", ")", "}", "# the result is now going to be a concatenation of these lists", "# for each of the output ranks", "# each bin has a set of ranks -> each rank has a set (possibly empty)", "# of bins", "# For each rank get the per-dimension coordinates", "# TODO maybe we should cache this on the distributor", "dim_ranks_to_glb", "=", "{", "tuple", "(", "distributor", ".", "comm", ".", "Get_coords", "(", "rank", ")", ")", ":", "rank", "for", "rank", "in", "range", "(", "distributor", ".", "comm", ".", "Get_size", "(", ")", ")", "}", "global_rank_to_bins", "=", "{", "}", "from", "itertools", "import", "product", "for", "bi", "in", "bins", ":", "# This is a list of sets for the dimension-specific rank", "dim_rank_sets", "=", "[", "dgdr", "[", "bii", "]", "for", "dgdr", ",", "bii", "in", "zip", "(", "dim_group_dim_rank", ",", "bi", ")", "]", "# Convert these to an absolute rank", "# This is where we will throw a KeyError if there are points OOB", "for", "dim_ranks", "in", "product", "(", "*", "dim_rank_sets", ")", ":", "global_rank", "=", "dim_ranks_to_glb", "[", "tuple", "(", "dim_ranks", ")", "]", "global_rank_to_bins", ".", "setdefault", "(", "global_rank", ",", "set", "(", ")", ")", ".", "add", "(", "tuple", "(", "bi", ")", ")", "empty", "=", "np", ".", "array", "(", "[", "]", ",", "dtype", "=", "np", ".", "int32", ")", "return", "[", "np", ".", "concatenate", "(", "(", "empty", ",", "*", "[", "gp_map", "[", "bi", "]", "for", "bi", "in", "global_rank_to_bins", ".", "get", "(", "rank", ",", "[", "]", ")", "]", ")", ")", "for", "rank", "in", "range", "(", "distributor", ".", "comm", ".", "Get_size", "(", ")", ")", "]" ]
https://github.com/devitocodes/devito/blob/6abd441e3f5f091775ad332be6b95e017b8cbd16/devito/types/sparse.py#L1640-L1769
lk-geimfari/mimesis
36653b49f28719c0a2aa20fef6c6df3911811b32
mimesis/providers/finance.py
python
Finance.price
(self, minimum: float = 500, maximum: float = 1500)
return self.random.uniform( minimum, maximum, precision=2, )
Generate random price. :param minimum: Minimum value of price. :param maximum: Maximum value of price. :return: Price.
Generate random price.
[ "Generate", "random", "price", "." ]
def price(self, minimum: float = 500, maximum: float = 1500) -> float: """Generate random price. :param minimum: Minimum value of price. :param maximum: Maximum value of price. :return: Price. """ return self.random.uniform( minimum, maximum, precision=2, )
[ "def", "price", "(", "self", ",", "minimum", ":", "float", "=", "500", ",", "maximum", ":", "float", "=", "1500", ")", "->", "float", ":", "return", "self", ".", "random", ".", "uniform", "(", "minimum", ",", "maximum", ",", "precision", "=", "2", ",", ")" ]
https://github.com/lk-geimfari/mimesis/blob/36653b49f28719c0a2aa20fef6c6df3911811b32/mimesis/providers/finance.py#L91-L102
IdentityPython/pysaml2
6badb32d212257bd83ffcc816f9b625f68281b47
src/saml2/ws/wsaddr.py
python
attributed_q_name_type__from_string
(xml_string)
return saml2.create_class_from_xml_string(AttributedQNameType_, xml_string)
[]
def attributed_q_name_type__from_string(xml_string): return saml2.create_class_from_xml_string(AttributedQNameType_, xml_string)
[ "def", "attributed_q_name_type__from_string", "(", "xml_string", ")", ":", "return", "saml2", ".", "create_class_from_xml_string", "(", "AttributedQNameType_", ",", "xml_string", ")" ]
https://github.com/IdentityPython/pysaml2/blob/6badb32d212257bd83ffcc816f9b625f68281b47/src/saml2/ws/wsaddr.py#L139-L140
triaquae/triaquae
bbabf736b3ba56a0c6498e7f04e16c13b8b8f2b9
TriAquae/models/Ubuntu_12/paramiko/transport.py
python
Transport.is_active
(self)
return self.active
Return true if this session is active (open). @return: True if the session is still active (open); False if the session is closed @rtype: bool
Return true if this session is active (open).
[ "Return", "true", "if", "this", "session", "is", "active", "(", "open", ")", "." ]
def is_active(self): """ Return true if this session is active (open). @return: True if the session is still active (open); False if the session is closed @rtype: bool """ return self.active
[ "def", "is_active", "(", "self", ")", ":", "return", "self", ".", "active" ]
https://github.com/triaquae/triaquae/blob/bbabf736b3ba56a0c6498e7f04e16c13b8b8f2b9/TriAquae/models/Ubuntu_12/paramiko/transport.py#L641-L649
pilotmoon/PopClip-Extensions
29fc472befc09ee350092ac70283bd9fdb456cb6
source/OneNote/requests/packages/urllib3/packages/ordered_dict.py
python
OrderedDict.__setitem__
(self, key, value, dict_setitem=dict.__setitem__)
od.__setitem__(i, y) <==> od[i]=y
od.__setitem__(i, y) <==> od[i]=y
[ "od", ".", "__setitem__", "(", "i", "y", ")", "<", "==", ">", "od", "[", "i", "]", "=", "y" ]
def __setitem__(self, key, value, dict_setitem=dict.__setitem__): 'od.__setitem__(i, y) <==> od[i]=y' # Setting a new item creates a new link which goes at the end of the linked # list, and the inherited dictionary is updated with the new key/value pair. if key not in self: root = self.__root last = root[0] last[1] = root[0] = self.__map[key] = [last, root, key] dict_setitem(self, key, value)
[ "def", "__setitem__", "(", "self", ",", "key", ",", "value", ",", "dict_setitem", "=", "dict", ".", "__setitem__", ")", ":", "# Setting a new item creates a new link which goes at the end of the linked", "# list, and the inherited dictionary is updated with the new key/value pair.", "if", "key", "not", "in", "self", ":", "root", "=", "self", ".", "__root", "last", "=", "root", "[", "0", "]", "last", "[", "1", "]", "=", "root", "[", "0", "]", "=", "self", ".", "__map", "[", "key", "]", "=", "[", "last", ",", "root", ",", "key", "]", "dict_setitem", "(", "self", ",", "key", ",", "value", ")" ]
https://github.com/pilotmoon/PopClip-Extensions/blob/29fc472befc09ee350092ac70283bd9fdb456cb6/source/OneNote/requests/packages/urllib3/packages/ordered_dict.py#L44-L52
tomplus/kubernetes_asyncio
f028cc793e3a2c519be6a52a49fb77ff0b014c9b
kubernetes_asyncio/client/models/v1beta1_pod_security_policy_spec.py
python
V1beta1PodSecurityPolicySpec.allow_privilege_escalation
(self, allow_privilege_escalation)
Sets the allow_privilege_escalation of this V1beta1PodSecurityPolicySpec. allowPrivilegeEscalation determines if a pod can request to allow privilege escalation. If unspecified, defaults to true. # noqa: E501 :param allow_privilege_escalation: The allow_privilege_escalation of this V1beta1PodSecurityPolicySpec. # noqa: E501 :type: bool
Sets the allow_privilege_escalation of this V1beta1PodSecurityPolicySpec.
[ "Sets", "the", "allow_privilege_escalation", "of", "this", "V1beta1PodSecurityPolicySpec", "." ]
def allow_privilege_escalation(self, allow_privilege_escalation): """Sets the allow_privilege_escalation of this V1beta1PodSecurityPolicySpec. allowPrivilegeEscalation determines if a pod can request to allow privilege escalation. If unspecified, defaults to true. # noqa: E501 :param allow_privilege_escalation: The allow_privilege_escalation of this V1beta1PodSecurityPolicySpec. # noqa: E501 :type: bool """ self._allow_privilege_escalation = allow_privilege_escalation
[ "def", "allow_privilege_escalation", "(", "self", ",", "allow_privilege_escalation", ")", ":", "self", ".", "_allow_privilege_escalation", "=", "allow_privilege_escalation" ]
https://github.com/tomplus/kubernetes_asyncio/blob/f028cc793e3a2c519be6a52a49fb77ff0b014c9b/kubernetes_asyncio/client/models/v1beta1_pod_security_policy_spec.py#L178-L187
replit-archive/empythoned
977ec10ced29a3541a4973dc2b59910805695752
dist/lib/python2.7/HTMLParser.py
python
HTMLParser.feed
(self, data)
r"""Feed data to the parser. Call this as often as you want, with as little or as much text as you want (may include '\n').
r"""Feed data to the parser.
[ "r", "Feed", "data", "to", "the", "parser", "." ]
def feed(self, data): r"""Feed data to the parser. Call this as often as you want, with as little or as much text as you want (may include '\n'). """ self.rawdata = self.rawdata + data self.goahead(0)
[ "def", "feed", "(", "self", ",", "data", ")", ":", "self", ".", "rawdata", "=", "self", ".", "rawdata", "+", "data", "self", ".", "goahead", "(", "0", ")" ]
https://github.com/replit-archive/empythoned/blob/977ec10ced29a3541a4973dc2b59910805695752/dist/lib/python2.7/HTMLParser.py#L101-L108
openshift/openshift-tools
1188778e728a6e4781acf728123e5b356380fe6f
ansible/roles/lib_openshift_3.2/library/oadm_registry.py
python
Service.__init__
(self, content)
Service constructor
Service constructor
[ "Service", "constructor" ]
def __init__(self, content): '''Service constructor''' super(Service, self).__init__(content=content)
[ "def", "__init__", "(", "self", ",", "content", ")", ":", "super", "(", "Service", ",", "self", ")", ".", "__init__", "(", "content", "=", "content", ")" ]
https://github.com/openshift/openshift-tools/blob/1188778e728a6e4781acf728123e5b356380fe6f/ansible/roles/lib_openshift_3.2/library/oadm_registry.py#L1005-L1007
HymanLiuTS/flaskTs
286648286976e85d9b9a5873632331efcafe0b21
flasky/lib/python2.7/site-packages/selenium/webdriver/firefox/options.py
python
Options.profile
(self)
return self._profile
Returns the Firefox profile to use.
Returns the Firefox profile to use.
[ "Returns", "the", "Firefox", "profile", "to", "use", "." ]
def profile(self): """Returns the Firefox profile to use.""" return self._profile
[ "def", "profile", "(", "self", ")", ":", "return", "self", ".", "_profile" ]
https://github.com/HymanLiuTS/flaskTs/blob/286648286976e85d9b9a5873632331efcafe0b21/flasky/lib/python2.7/site-packages/selenium/webdriver/firefox/options.py#L65-L67
materialsproject/pymatgen
8128f3062a334a2edd240e4062b5b9bdd1ae6f58
pymatgen/core/units.py
python
FloatWithUnit.from_string
(cls, s)
return cls(num, unit, unit_type=unit_type)
Initialize a FloatWithUnit from a string. Example Memory.from_string("1. Mb")
Initialize a FloatWithUnit from a string. Example Memory.from_string("1. Mb")
[ "Initialize", "a", "FloatWithUnit", "from", "a", "string", ".", "Example", "Memory", ".", "from_string", "(", "1", ".", "Mb", ")" ]
def from_string(cls, s): """ Initialize a FloatWithUnit from a string. Example Memory.from_string("1. Mb") """ # Extract num and unit string. s = s.strip() for i, char in enumerate(s): if char.isalpha() or char.isspace(): break else: raise Exception("Unit is missing in string %s" % s) num, unit = float(s[:i]), s[i:] # Find unit type (set it to None if it cannot be detected) for unit_type, d in BASE_UNITS.items(): if unit in d: break else: unit_type = None return cls(num, unit, unit_type=unit_type)
[ "def", "from_string", "(", "cls", ",", "s", ")", ":", "# Extract num and unit string.", "s", "=", "s", ".", "strip", "(", ")", "for", "i", ",", "char", "in", "enumerate", "(", "s", ")", ":", "if", "char", ".", "isalpha", "(", ")", "or", "char", ".", "isspace", "(", ")", ":", "break", "else", ":", "raise", "Exception", "(", "\"Unit is missing in string %s\"", "%", "s", ")", "num", ",", "unit", "=", "float", "(", "s", "[", ":", "i", "]", ")", ",", "s", "[", "i", ":", "]", "# Find unit type (set it to None if it cannot be detected)", "for", "unit_type", ",", "d", "in", "BASE_UNITS", ".", "items", "(", ")", ":", "if", "unit", "in", "d", ":", "break", "else", ":", "unit_type", "=", "None", "return", "cls", "(", "num", ",", "unit", ",", "unit_type", "=", "unit_type", ")" ]
https://github.com/materialsproject/pymatgen/blob/8128f3062a334a2edd240e4062b5b9bdd1ae6f58/pymatgen/core/units.py#L319-L339
pastas/pastas
efacd4e9433e0bf8fe208429c66d61c41b03087e
pastas/modelplots.py
python
Plotting.decomposition
(self, tmin=None, tmax=None, ytick_base=True, split=True, figsize=(10, 8), axes=None, name=None, return_warmup=False, min_ylim_diff=None, **kwargs)
return axes
Plot the decomposition of a time-series in the different stresses. Parameters ---------- tmin: str or pandas.Timestamp, optional tmax: str or pandas.Timestamp, optional ytick_base: Boolean or float, optional Make the ytick-base constant if True, set this base to float if float. split: bool, optional Split the stresses in multiple stresses when possible. Default is True. axes: matplotlib.axes.Axes instance, optional Matplotlib Axes instance to plot the figure on to. figsize: tuple, optional tuple of size 2 to determine the figure size in inches. name: str, optional Name to give the simulated time series in the legend. return_warmup: bool, optional Show the warmup-period. Default is false. min_ylim_diff: float, optional Float with the difference in the ylimits. Default is None **kwargs: dict, optional Optional arguments, passed on to the plt.subplots method. Returns ------- axes: list of matplotlib.axes.Axes
Plot the decomposition of a time-series in the different stresses.
[ "Plot", "the", "decomposition", "of", "a", "time", "-", "series", "in", "the", "different", "stresses", "." ]
def decomposition(self, tmin=None, tmax=None, ytick_base=True, split=True, figsize=(10, 8), axes=None, name=None, return_warmup=False, min_ylim_diff=None, **kwargs): """Plot the decomposition of a time-series in the different stresses. Parameters ---------- tmin: str or pandas.Timestamp, optional tmax: str or pandas.Timestamp, optional ytick_base: Boolean or float, optional Make the ytick-base constant if True, set this base to float if float. split: bool, optional Split the stresses in multiple stresses when possible. Default is True. axes: matplotlib.axes.Axes instance, optional Matplotlib Axes instance to plot the figure on to. figsize: tuple, optional tuple of size 2 to determine the figure size in inches. name: str, optional Name to give the simulated time series in the legend. return_warmup: bool, optional Show the warmup-period. Default is false. min_ylim_diff: float, optional Float with the difference in the ylimits. Default is None **kwargs: dict, optional Optional arguments, passed on to the plt.subplots method. Returns ------- axes: list of matplotlib.axes.Axes """ o = self.ml.observations(tmin=tmin, tmax=tmax) # determine the simulation sim = self.ml.simulate(tmin=tmin, tmax=tmax, return_warmup=return_warmup) if name is not None: sim.name = name # determine the influence of the different stresses contribs = self.ml.get_contributions(split=split, tmin=tmin, tmax=tmax, return_warmup=return_warmup) names = [s.name for s in contribs] if self.ml.transform: contrib = self.ml.get_transform_contribution(tmin=tmin, tmax=tmax) contribs.append(contrib) names.append(self.ml.transform.name) # determine ylim for every graph, to scale the height ylims = [(min([sim.min(), o[tmin:tmax].min()]), max([sim.max(), o[tmin:tmax].max()]))] for contrib in contribs: hs = contrib[tmin:tmax] if hs.empty: if contrib.empty: ylims.append((0.0, 0.0)) else: ylims.append((contrib.min(), hs.max())) else: ylims.append((hs.min(), hs.max())) if min_ylim_diff is not None: for i, ylim in enumerate(ylims): if np.diff(ylim) < min_ylim_diff: ylims[i] = (np.mean(ylim) - min_ylim_diff / 2, np.mean(ylim) + min_ylim_diff / 2) # determine height ratios height_ratios = _get_height_ratios(ylims) nrows = len(contribs) + 1 if axes is None: # open a new figure gridspec_kw = {'height_ratios': height_ratios} fig, axes = plt.subplots(nrows, sharex=True, figsize=figsize, gridspec_kw=gridspec_kw, **kwargs) axes = np.atleast_1d(axes) o_label = o.name set_axes_properties = True else: if len(axes) != nrows: msg = 'Makes sure the number of axes equals the number of ' \ 'series' raise Exception(msg) fig = axes[0].figure o_label = '' set_axes_properties = False # plot simulation and observations in top graph o_nu = self.ml.oseries.series.drop(o.index) if not o_nu.empty: # plot parts of the oseries that are not used in grey o_nu.plot(linestyle='', marker='.', color='0.5', label='', markersize=2, ax=axes[0], x_compat=True) o.plot(linestyle='', marker='.', color='k', label=o_label, markersize=3, ax=axes[0], x_compat=True) sim.plot(ax=axes[0], x_compat=True) if set_axes_properties: axes[0].set_title('observations vs. simulation') axes[0].set_ylim(ylims[0]) axes[0].grid(True) axes[0].legend(ncol=3, frameon=False, numpoints=3) if ytick_base and set_axes_properties: if isinstance(ytick_base, bool): # determine the ytick-spacing of the top graph yticks = axes[0].yaxis.get_ticklocs() if len(yticks) > 1: ytick_base = yticks[1] - yticks[0] else: ytick_base = None axes[0].yaxis.set_major_locator( MultipleLocator(base=ytick_base)) # plot the influence of the stresses for i, contrib in enumerate(contribs): ax = axes[i + 1] contrib.plot(ax=ax, x_compat=True) if set_axes_properties: if ytick_base: # set the ytick-spacing equal to the top graph locator = MultipleLocator(base=ytick_base) ax.yaxis.set_major_locator(locator) ax.set_title(names[i]) ax.set_ylim(ylims[i + 1]) ax.grid(True) ax.minorticks_off() if set_axes_properties: axes[0].set_xlim(tmin, tmax) fig.tight_layout(pad=0.0) return axes
[ "def", "decomposition", "(", "self", ",", "tmin", "=", "None", ",", "tmax", "=", "None", ",", "ytick_base", "=", "True", ",", "split", "=", "True", ",", "figsize", "=", "(", "10", ",", "8", ")", ",", "axes", "=", "None", ",", "name", "=", "None", ",", "return_warmup", "=", "False", ",", "min_ylim_diff", "=", "None", ",", "*", "*", "kwargs", ")", ":", "o", "=", "self", ".", "ml", ".", "observations", "(", "tmin", "=", "tmin", ",", "tmax", "=", "tmax", ")", "# determine the simulation", "sim", "=", "self", ".", "ml", ".", "simulate", "(", "tmin", "=", "tmin", ",", "tmax", "=", "tmax", ",", "return_warmup", "=", "return_warmup", ")", "if", "name", "is", "not", "None", ":", "sim", ".", "name", "=", "name", "# determine the influence of the different stresses", "contribs", "=", "self", ".", "ml", ".", "get_contributions", "(", "split", "=", "split", ",", "tmin", "=", "tmin", ",", "tmax", "=", "tmax", ",", "return_warmup", "=", "return_warmup", ")", "names", "=", "[", "s", ".", "name", "for", "s", "in", "contribs", "]", "if", "self", ".", "ml", ".", "transform", ":", "contrib", "=", "self", ".", "ml", ".", "get_transform_contribution", "(", "tmin", "=", "tmin", ",", "tmax", "=", "tmax", ")", "contribs", ".", "append", "(", "contrib", ")", "names", ".", "append", "(", "self", ".", "ml", ".", "transform", ".", "name", ")", "# determine ylim for every graph, to scale the height", "ylims", "=", "[", "(", "min", "(", "[", "sim", ".", "min", "(", ")", ",", "o", "[", "tmin", ":", "tmax", "]", ".", "min", "(", ")", "]", ")", ",", "max", "(", "[", "sim", ".", "max", "(", ")", ",", "o", "[", "tmin", ":", "tmax", "]", ".", "max", "(", ")", "]", ")", ")", "]", "for", "contrib", "in", "contribs", ":", "hs", "=", "contrib", "[", "tmin", ":", "tmax", "]", "if", "hs", ".", "empty", ":", "if", "contrib", ".", "empty", ":", "ylims", ".", "append", "(", "(", "0.0", ",", "0.0", ")", ")", "else", ":", "ylims", ".", "append", "(", "(", "contrib", ".", "min", "(", ")", ",", "hs", ".", "max", "(", ")", ")", ")", "else", ":", "ylims", ".", "append", "(", "(", "hs", ".", "min", "(", ")", ",", "hs", ".", "max", "(", ")", ")", ")", "if", "min_ylim_diff", "is", "not", "None", ":", "for", "i", ",", "ylim", "in", "enumerate", "(", "ylims", ")", ":", "if", "np", ".", "diff", "(", "ylim", ")", "<", "min_ylim_diff", ":", "ylims", "[", "i", "]", "=", "(", "np", ".", "mean", "(", "ylim", ")", "-", "min_ylim_diff", "/", "2", ",", "np", ".", "mean", "(", "ylim", ")", "+", "min_ylim_diff", "/", "2", ")", "# determine height ratios", "height_ratios", "=", "_get_height_ratios", "(", "ylims", ")", "nrows", "=", "len", "(", "contribs", ")", "+", "1", "if", "axes", "is", "None", ":", "# open a new figure", "gridspec_kw", "=", "{", "'height_ratios'", ":", "height_ratios", "}", "fig", ",", "axes", "=", "plt", ".", "subplots", "(", "nrows", ",", "sharex", "=", "True", ",", "figsize", "=", "figsize", ",", "gridspec_kw", "=", "gridspec_kw", ",", "*", "*", "kwargs", ")", "axes", "=", "np", ".", "atleast_1d", "(", "axes", ")", "o_label", "=", "o", ".", "name", "set_axes_properties", "=", "True", "else", ":", "if", "len", "(", "axes", ")", "!=", "nrows", ":", "msg", "=", "'Makes sure the number of axes equals the number of '", "'series'", "raise", "Exception", "(", "msg", ")", "fig", "=", "axes", "[", "0", "]", ".", "figure", "o_label", "=", "''", "set_axes_properties", "=", "False", "# plot simulation and observations in top graph", "o_nu", "=", "self", ".", "ml", ".", "oseries", ".", "series", ".", "drop", "(", "o", ".", "index", ")", "if", "not", "o_nu", ".", "empty", ":", "# plot parts of the oseries that are not used in grey", "o_nu", ".", "plot", "(", "linestyle", "=", "''", ",", "marker", "=", "'.'", ",", "color", "=", "'0.5'", ",", "label", "=", "''", ",", "markersize", "=", "2", ",", "ax", "=", "axes", "[", "0", "]", ",", "x_compat", "=", "True", ")", "o", ".", "plot", "(", "linestyle", "=", "''", ",", "marker", "=", "'.'", ",", "color", "=", "'k'", ",", "label", "=", "o_label", ",", "markersize", "=", "3", ",", "ax", "=", "axes", "[", "0", "]", ",", "x_compat", "=", "True", ")", "sim", ".", "plot", "(", "ax", "=", "axes", "[", "0", "]", ",", "x_compat", "=", "True", ")", "if", "set_axes_properties", ":", "axes", "[", "0", "]", ".", "set_title", "(", "'observations vs. simulation'", ")", "axes", "[", "0", "]", ".", "set_ylim", "(", "ylims", "[", "0", "]", ")", "axes", "[", "0", "]", ".", "grid", "(", "True", ")", "axes", "[", "0", "]", ".", "legend", "(", "ncol", "=", "3", ",", "frameon", "=", "False", ",", "numpoints", "=", "3", ")", "if", "ytick_base", "and", "set_axes_properties", ":", "if", "isinstance", "(", "ytick_base", ",", "bool", ")", ":", "# determine the ytick-spacing of the top graph", "yticks", "=", "axes", "[", "0", "]", ".", "yaxis", ".", "get_ticklocs", "(", ")", "if", "len", "(", "yticks", ")", ">", "1", ":", "ytick_base", "=", "yticks", "[", "1", "]", "-", "yticks", "[", "0", "]", "else", ":", "ytick_base", "=", "None", "axes", "[", "0", "]", ".", "yaxis", ".", "set_major_locator", "(", "MultipleLocator", "(", "base", "=", "ytick_base", ")", ")", "# plot the influence of the stresses", "for", "i", ",", "contrib", "in", "enumerate", "(", "contribs", ")", ":", "ax", "=", "axes", "[", "i", "+", "1", "]", "contrib", ".", "plot", "(", "ax", "=", "ax", ",", "x_compat", "=", "True", ")", "if", "set_axes_properties", ":", "if", "ytick_base", ":", "# set the ytick-spacing equal to the top graph", "locator", "=", "MultipleLocator", "(", "base", "=", "ytick_base", ")", "ax", ".", "yaxis", ".", "set_major_locator", "(", "locator", ")", "ax", ".", "set_title", "(", "names", "[", "i", "]", ")", "ax", ".", "set_ylim", "(", "ylims", "[", "i", "+", "1", "]", ")", "ax", ".", "grid", "(", "True", ")", "ax", ".", "minorticks_off", "(", ")", "if", "set_axes_properties", ":", "axes", "[", "0", "]", ".", "set_xlim", "(", "tmin", ",", "tmax", ")", "fig", ".", "tight_layout", "(", "pad", "=", "0.0", ")", "return", "axes" ]
https://github.com/pastas/pastas/blob/efacd4e9433e0bf8fe208429c66d61c41b03087e/pastas/modelplots.py#L274-L405
bayespy/bayespy
0e6e6130c888a4295cc9421d61d4ad27b2960ebb
bayespy/inference/vmp/transformations.py
python
covariance_to_variance
(C, ndim=1, covariance_axis=None)
return np.einsum(C, [Ellipsis]+keys, [Ellipsis]+out_keys)
[]
def covariance_to_variance(C, ndim=1, covariance_axis=None): # Force None to empty list if covariance_axis is None: covariance_axis = [] # Force a list from integer if isinstance(covariance_axis, int): covariance_axis = [covariance_axis] # Force positive axis indices covariance_axis = [axis + ndim if axis < 0 else axis for axis in covariance_axis] # Make a set of the axes covariance_axis = set(covariance_axis) keys = [i+ndim if i in covariance_axis else i for i in range(ndim)] keys += [i+2*ndim if i in covariance_axis else i for i in range(ndim)] out_keys = sorted(list(set(keys))) return np.einsum(C, [Ellipsis]+keys, [Ellipsis]+out_keys)
[ "def", "covariance_to_variance", "(", "C", ",", "ndim", "=", "1", ",", "covariance_axis", "=", "None", ")", ":", "# Force None to empty list", "if", "covariance_axis", "is", "None", ":", "covariance_axis", "=", "[", "]", "# Force a list from integer", "if", "isinstance", "(", "covariance_axis", ",", "int", ")", ":", "covariance_axis", "=", "[", "covariance_axis", "]", "# Force positive axis indices", "covariance_axis", "=", "[", "axis", "+", "ndim", "if", "axis", "<", "0", "else", "axis", "for", "axis", "in", "covariance_axis", "]", "# Make a set of the axes", "covariance_axis", "=", "set", "(", "covariance_axis", ")", "keys", "=", "[", "i", "+", "ndim", "if", "i", "in", "covariance_axis", "else", "i", "for", "i", "in", "range", "(", "ndim", ")", "]", "keys", "+=", "[", "i", "+", "2", "*", "ndim", "if", "i", "in", "covariance_axis", "else", "i", "for", "i", "in", "range", "(", "ndim", ")", "]", "out_keys", "=", "sorted", "(", "list", "(", "set", "(", "keys", ")", ")", ")", "return", "np", ".", "einsum", "(", "C", ",", "[", "Ellipsis", "]", "+", "keys", ",", "[", "Ellipsis", "]", "+", "out_keys", ")" ]
https://github.com/bayespy/bayespy/blob/0e6e6130c888a4295cc9421d61d4ad27b2960ebb/bayespy/inference/vmp/transformations.py#L336-L356
astropy/astroquery
11c9c83fa8e5f948822f8f73c854ec4b72043016
astroquery/vo_conesearch/validator/validate.py
python
_html_subindex
(args)
HTML writer for multiprocessing support.
HTML writer for multiprocessing support.
[ "HTML", "writer", "for", "multiprocessing", "support", "." ]
def _html_subindex(args): """HTML writer for multiprocessing support.""" out_dir, subset, total = args html.write_index_table(out_dir, *subset, total=total)
[ "def", "_html_subindex", "(", "args", ")", ":", "out_dir", ",", "subset", ",", "total", "=", "args", "html", ".", "write_index_table", "(", "out_dir", ",", "*", "subset", ",", "total", "=", "total", ")" ]
https://github.com/astropy/astroquery/blob/11c9c83fa8e5f948822f8f73c854ec4b72043016/astroquery/vo_conesearch/validator/validate.py#L365-L368
google-research/language
61fa7260ac7d690d11ef72ca863e45a37c0bdc80
language/labs/consistent_zero_shot_nmt/models/agreement.py
python
ag_gnmt_bahdanau_att_lm
()
return hparams
Hparams for LSTM with bahdanau attention.
Hparams for LSTM with bahdanau attention.
[ "Hparams", "for", "LSTM", "with", "bahdanau", "attention", "." ]
def ag_gnmt_bahdanau_att_lm(): """Hparams for LSTM with bahdanau attention.""" hparams = ag_gnmt_bahdanau_att() hparams = base_lm(hparams) return hparams
[ "def", "ag_gnmt_bahdanau_att_lm", "(", ")", ":", "hparams", "=", "ag_gnmt_bahdanau_att", "(", ")", "hparams", "=", "base_lm", "(", "hparams", ")", "return", "hparams" ]
https://github.com/google-research/language/blob/61fa7260ac7d690d11ef72ca863e45a37c0bdc80/language/labs/consistent_zero_shot_nmt/models/agreement.py#L646-L650
VirtueSecurity/aws-extender
d123b7e1a845847709ba3a481f11996bddc68a1c
BappModules/docutils/utils/math/math2html.py
python
TaggedText.constant
(self, text, tag, breaklines=False)
return self.complete([constant], tag, breaklines)
Complete the tagged text with a constant
Complete the tagged text with a constant
[ "Complete", "the", "tagged", "text", "with", "a", "constant" ]
def constant(self, text, tag, breaklines=False): "Complete the tagged text with a constant" constant = Constant(text) return self.complete([constant], tag, breaklines)
[ "def", "constant", "(", "self", ",", "text", ",", "tag", ",", "breaklines", "=", "False", ")", ":", "constant", "=", "Constant", "(", "text", ")", "return", "self", ".", "complete", "(", "[", "constant", "]", ",", "tag", ",", "breaklines", ")" ]
https://github.com/VirtueSecurity/aws-extender/blob/d123b7e1a845847709ba3a481f11996bddc68a1c/BappModules/docutils/utils/math/math2html.py#L2423-L2426
securesystemslab/zippy
ff0e84ac99442c2c55fe1d285332cfd4e185e089
zippy/benchmarks/src/benchmarks/whoosh/src/whoosh/analysis/acore.py
python
Token.__repr__
(self)
return "%s(%s)" % (self.__class__.__name__, parms)
[]
def __repr__(self): parms = ", ".join("%s=%r" % (name, value) for name, value in iteritems(self.__dict__)) return "%s(%s)" % (self.__class__.__name__, parms)
[ "def", "__repr__", "(", "self", ")", ":", "parms", "=", "\", \"", ".", "join", "(", "\"%s=%r\"", "%", "(", "name", ",", "value", ")", "for", "name", ",", "value", "in", "iteritems", "(", "self", ".", "__dict__", ")", ")", "return", "\"%s(%s)\"", "%", "(", "self", ".", "__class__", ".", "__name__", ",", "parms", ")" ]
https://github.com/securesystemslab/zippy/blob/ff0e84ac99442c2c55fe1d285332cfd4e185e089/zippy/benchmarks/src/benchmarks/whoosh/src/whoosh/analysis/acore.py#L125-L128
twilio/twilio-python
6e1e811ea57a1edfadd5161ace87397c563f6915
twilio/rest/api/v2010/account/incoming_phone_number/toll_free.py
python
TollFreeInstance.identity_sid
(self)
return self._properties['identity_sid']
:returns: The SID of the Identity resource associated with number :rtype: unicode
:returns: The SID of the Identity resource associated with number :rtype: unicode
[ ":", "returns", ":", "The", "SID", "of", "the", "Identity", "resource", "associated", "with", "number", ":", "rtype", ":", "unicode" ]
def identity_sid(self): """ :returns: The SID of the Identity resource associated with number :rtype: unicode """ return self._properties['identity_sid']
[ "def", "identity_sid", "(", "self", ")", ":", "return", "self", ".", "_properties", "[", "'identity_sid'", "]" ]
https://github.com/twilio/twilio-python/blob/6e1e811ea57a1edfadd5161ace87397c563f6915/twilio/rest/api/v2010/account/incoming_phone_number/toll_free.py#L420-L425
TencentCloud/tencentcloud-sdk-python
3677fd1cdc8c5fd626ce001c13fd3b59d1f279d2
tencentcloud/live/v20180801/live_client.py
python
LiveClient.DescribeUploadStreamNums
(self, request)
直播上行路数查询 :param request: Request instance for DescribeUploadStreamNums. :type request: :class:`tencentcloud.live.v20180801.models.DescribeUploadStreamNumsRequest` :rtype: :class:`tencentcloud.live.v20180801.models.DescribeUploadStreamNumsResponse`
直播上行路数查询
[ "直播上行路数查询" ]
def DescribeUploadStreamNums(self, request): """直播上行路数查询 :param request: Request instance for DescribeUploadStreamNums. :type request: :class:`tencentcloud.live.v20180801.models.DescribeUploadStreamNumsRequest` :rtype: :class:`tencentcloud.live.v20180801.models.DescribeUploadStreamNumsResponse` """ try: params = request._serialize() body = self.call("DescribeUploadStreamNums", params) response = json.loads(body) if "Error" not in response["Response"]: model = models.DescribeUploadStreamNumsResponse() model._deserialize(response["Response"]) return model else: code = response["Response"]["Error"]["Code"] message = response["Response"]["Error"]["Message"] reqid = response["Response"]["RequestId"] raise TencentCloudSDKException(code, message, reqid) except Exception as e: if isinstance(e, TencentCloudSDKException): raise else: raise TencentCloudSDKException(e.message, e.message)
[ "def", "DescribeUploadStreamNums", "(", "self", ",", "request", ")", ":", "try", ":", "params", "=", "request", ".", "_serialize", "(", ")", "body", "=", "self", ".", "call", "(", "\"DescribeUploadStreamNums\"", ",", "params", ")", "response", "=", "json", ".", "loads", "(", "body", ")", "if", "\"Error\"", "not", "in", "response", "[", "\"Response\"", "]", ":", "model", "=", "models", ".", "DescribeUploadStreamNumsResponse", "(", ")", "model", ".", "_deserialize", "(", "response", "[", "\"Response\"", "]", ")", "return", "model", "else", ":", "code", "=", "response", "[", "\"Response\"", "]", "[", "\"Error\"", "]", "[", "\"Code\"", "]", "message", "=", "response", "[", "\"Response\"", "]", "[", "\"Error\"", "]", "[", "\"Message\"", "]", "reqid", "=", "response", "[", "\"Response\"", "]", "[", "\"RequestId\"", "]", "raise", "TencentCloudSDKException", "(", "code", ",", "message", ",", "reqid", ")", "except", "Exception", "as", "e", ":", "if", "isinstance", "(", "e", ",", "TencentCloudSDKException", ")", ":", "raise", "else", ":", "raise", "TencentCloudSDKException", "(", "e", ".", "message", ",", "e", ".", "message", ")" ]
https://github.com/TencentCloud/tencentcloud-sdk-python/blob/3677fd1cdc8c5fd626ce001c13fd3b59d1f279d2/tencentcloud/live/v20180801/live_client.py#L2693-L2718
angr/angr
4b04d56ace135018083d36d9083805be8146688b
angr/tablespecs.py
python
StringTableSpec.append_env
(self, env, add_null=True)
[]
def append_env(self, env, add_null=True): if isinstance(env, dict): for k, v in env.items(): if type(k) is bytes: k = claripy.BVV(k) elif type(k) is str: k = claripy.BVV(k.encode()) elif isinstance(k, claripy.ast.Bits): pass else: raise TypeError("Key in env must be either string or bitvector") if type(v) is bytes: v = claripy.BVV(v) elif type(v) is str: v = claripy.BVV(v.encode()) elif isinstance(v, claripy.ast.Bits): pass else: raise TypeError("Value in env must be either string or bitvector") self.add_string(k.concat(claripy.BVV(b'='), v)) else: for v in env: self.add_string(v) if add_null: self.add_null()
[ "def", "append_env", "(", "self", ",", "env", ",", "add_null", "=", "True", ")", ":", "if", "isinstance", "(", "env", ",", "dict", ")", ":", "for", "k", ",", "v", "in", "env", ".", "items", "(", ")", ":", "if", "type", "(", "k", ")", "is", "bytes", ":", "k", "=", "claripy", ".", "BVV", "(", "k", ")", "elif", "type", "(", "k", ")", "is", "str", ":", "k", "=", "claripy", ".", "BVV", "(", "k", ".", "encode", "(", ")", ")", "elif", "isinstance", "(", "k", ",", "claripy", ".", "ast", ".", "Bits", ")", ":", "pass", "else", ":", "raise", "TypeError", "(", "\"Key in env must be either string or bitvector\"", ")", "if", "type", "(", "v", ")", "is", "bytes", ":", "v", "=", "claripy", ".", "BVV", "(", "v", ")", "elif", "type", "(", "v", ")", "is", "str", ":", "v", "=", "claripy", ".", "BVV", "(", "v", ".", "encode", "(", ")", ")", "elif", "isinstance", "(", "v", ",", "claripy", ".", "ast", ".", "Bits", ")", ":", "pass", "else", ":", "raise", "TypeError", "(", "\"Value in env must be either string or bitvector\"", ")", "self", ".", "add_string", "(", "k", ".", "concat", "(", "claripy", ".", "BVV", "(", "b'='", ")", ",", "v", ")", ")", "else", ":", "for", "v", "in", "env", ":", "self", ".", "add_string", "(", "v", ")", "if", "add_null", ":", "self", ".", "add_null", "(", ")" ]
https://github.com/angr/angr/blob/4b04d56ace135018083d36d9083805be8146688b/angr/tablespecs.py#L15-L41
FSecureLABS/needle
891b6601262020bb2df98f81f6c0ef2d97ddd82c
needle/core/framework/framework.py
python
Framework.do_info
(self, params)
Alias: info == show info.
Alias: info == show info.
[ "Alias", ":", "info", "==", "show", "info", "." ]
def do_info(self, params): """Alias: info == show info.""" if hasattr(self, 'show_info'): self.show_info()
[ "def", "do_info", "(", "self", ",", "params", ")", ":", "if", "hasattr", "(", "self", ",", "'show_info'", ")", ":", "self", ".", "show_info", "(", ")" ]
https://github.com/FSecureLABS/needle/blob/891b6601262020bb2df98f81f6c0ef2d97ddd82c/needle/core/framework/framework.py#L427-L430
missionpinball/mpf
8e6b74cff4ba06d2fec9445742559c1068b88582
mpf/devices/logic_blocks.py
python
Sequence.setup_event_handlers
(self)
Add the handlers for the current step.
Add the handlers for the current step.
[ "Add", "the", "handlers", "for", "the", "current", "step", "." ]
def setup_event_handlers(self): """Add the handlers for the current step.""" for step, events in enumerate(self.config['events']): for event in Util.string_to_event_list(events): # increase priority with steps to prevent advancing multiple steps at once self.machine.events.add_handler(event, self.hit, step=step, priority=step)
[ "def", "setup_event_handlers", "(", "self", ")", ":", "for", "step", ",", "events", "in", "enumerate", "(", "self", ".", "config", "[", "'events'", "]", ")", ":", "for", "event", "in", "Util", ".", "string_to_event_list", "(", "events", ")", ":", "# increase priority with steps to prevent advancing multiple steps at once", "self", ".", "machine", ".", "events", ".", "add_handler", "(", "event", ",", "self", ".", "hit", ",", "step", "=", "step", ",", "priority", "=", "step", ")" ]
https://github.com/missionpinball/mpf/blob/8e6b74cff4ba06d2fec9445742559c1068b88582/mpf/devices/logic_blocks.py#L643-L648
indico/indico
1579ea16235bbe5f22a308b79c5902c85374721f
indico/modules/categories/models/categories.py
python
Category.can_create_events
(self, user)
return user and ((self.event_creation_mode == EventCreationMode.open and self.can_access(user)) or self.can_manage(user, permission='create'))
Check whether the user can create events in the category.
Check whether the user can create events in the category.
[ "Check", "whether", "the", "user", "can", "create", "events", "in", "the", "category", "." ]
def can_create_events(self, user): """Check whether the user can create events in the category.""" # if creation is not restricted anyone who can access the category # can also create events in it, otherwise only people with the # creation role can return user and ((self.event_creation_mode == EventCreationMode.open and self.can_access(user)) or self.can_manage(user, permission='create'))
[ "def", "can_create_events", "(", "self", ",", "user", ")", ":", "# if creation is not restricted anyone who can access the category", "# can also create events in it, otherwise only people with the", "# creation role can", "return", "user", "and", "(", "(", "self", ".", "event_creation_mode", "==", "EventCreationMode", ".", "open", "and", "self", ".", "can_access", "(", "user", ")", ")", "or", "self", ".", "can_manage", "(", "user", ",", "permission", "=", "'create'", ")", ")" ]
https://github.com/indico/indico/blob/1579ea16235bbe5f22a308b79c5902c85374721f/indico/modules/categories/models/categories.py#L338-L344
ytisf/theZoo
385eb68a35770991f34fed58f20b231e5e7a5fef
imports/globals.py
python
init.init
(self)
[]
def init(self): # Global Variables version = "0.6.0 Moat" appname = "theZoo" codename = "Moat" authors = "Yuval Nativ, Lahad Ludar, 5fingers" maintainers = [ "Shahak Shalev", "Yuval Nativ" ] github_add = "https://www.github.com/ytisf/theZoo" licensev = "GPL v3.0" fulllicense = appname + " Copyright (C) 2016 " + authors + "\n" fulllicense += "This program comes with ABSOLUTELY NO WARRANTY; for details type '" + \ sys.argv[0] + " -w'.\n" fulllicense += "This is free software, and you are welcome to redistribute it." usage = '\nUsage: ' + sys.argv[0] + \ ' -s search_query -t trojan -p vb\n\n' usage += 'The search engine can search by regular search or using specified arguments:\n\nOPTIONS:\n -h --help\t\tShow this message\n -t --type\t\tMalware type, can be virus/trojan/botnet/spyware/ransomeware.\n -p --language\tProgramming language, can be c/cpp/vb/asm/bin/java.\n -u --update\t\tUpdate malware index. Rebuilds main CSV file. \n -s --search\t\tSearch query for name or anything. \n -v --version\tPrint the version information.\n -w\t\t\tPrint GNU license.\n' conf_folder = 'conf' eula_file = conf_folder + '/eula_run.conf' maldb_ver_file = conf_folder + '/db.ver' giturl = 'https://github.com/ytisf/theZoo/blob/master'
[ "def", "init", "(", "self", ")", ":", "# Global Variables", "version", "=", "\"0.6.0 Moat\"", "appname", "=", "\"theZoo\"", "codename", "=", "\"Moat\"", "authors", "=", "\"Yuval Nativ, Lahad Ludar, 5fingers\"", "maintainers", "=", "[", "\"Shahak Shalev\"", ",", "\"Yuval Nativ\"", "]", "github_add", "=", "\"https://www.github.com/ytisf/theZoo\"", "licensev", "=", "\"GPL v3.0\"", "fulllicense", "=", "appname", "+", "\" Copyright (C) 2016 \"", "+", "authors", "+", "\"\\n\"", "fulllicense", "+=", "\"This program comes with ABSOLUTELY NO WARRANTY; for details type '\"", "+", "sys", ".", "argv", "[", "0", "]", "+", "\" -w'.\\n\"", "fulllicense", "+=", "\"This is free software, and you are welcome to redistribute it.\"", "usage", "=", "'\\nUsage: '", "+", "sys", ".", "argv", "[", "0", "]", "+", "' -s search_query -t trojan -p vb\\n\\n'", "usage", "+=", "'The search engine can search by regular search or using specified arguments:\\n\\nOPTIONS:\\n -h --help\\t\\tShow this message\\n -t --type\\t\\tMalware type, can be virus/trojan/botnet/spyware/ransomeware.\\n -p --language\\tProgramming language, can be c/cpp/vb/asm/bin/java.\\n -u --update\\t\\tUpdate malware index. Rebuilds main CSV file. \\n -s --search\\t\\tSearch query for name or anything. \\n -v --version\\tPrint the version information.\\n -w\\t\\t\\tPrint GNU license.\\n'", "conf_folder", "=", "'conf'", "eula_file", "=", "conf_folder", "+", "'/eula_run.conf'", "maldb_ver_file", "=", "conf_folder", "+", "'/db.ver'", "giturl", "=", "'https://github.com/ytisf/theZoo/blob/master'" ]
https://github.com/ytisf/theZoo/blob/385eb68a35770991f34fed58f20b231e5e7a5fef/imports/globals.py#L24-L45
kylebebak/Requester
4a9f9f051fa5fc951a8f7ad098a328261ca2db97
deps/graphql/parser.py
python
GraphQLParser.p_object_field_list_single
(self, p)
object_field_list : object_field
object_field_list : object_field
[ "object_field_list", ":", "object_field" ]
def p_object_field_list_single(self, p): """ object_field_list : object_field """ p[0] = p[1]
[ "def", "p_object_field_list_single", "(", "self", ",", "p", ")", ":", "p", "[", "0", "]", "=", "p", "[", "1", "]" ]
https://github.com/kylebebak/Requester/blob/4a9f9f051fa5fc951a8f7ad098a328261ca2db97/deps/graphql/parser.py#L568-L572
CERTCC/tapioca
2370e1724bfb75c0a2be0cc7e776f870f9d6a6ed
tapioca.py
python
Example.updateStatus
(self, test)
Main app module Status update. This hooks into the self.worker.signalStatus event
Main app module Status update. This hooks into the self.worker.signalStatus event
[ "Main", "app", "module", "Status", "update", ".", "This", "hooks", "into", "the", "self", ".", "worker", ".", "signalStatus", "event" ]
def updateStatus(self, test): ''' Main app module Status update. This hooks into the self.worker.signalStatus event ''' #print('*** Main updateStatus : %s ***' % test) test = str(test) if test.endswith('COMPLETE') or test.endswith('ERROR'): if test.startswith('search '): # Search results needs to pass data from worker object to GUI # object #print('Setting search result values in GUI object') self.gui.searchfound = self.worker.searchfound self.gui.foundunenc = self.worker.foundunenc self.gui.foundunprot = self.worker.foundunprot self.gui.foundprot = self.worker.foundprot self.gui.updatesearchresults() else: # This is something handled only by the GUI part pass else: # We need a prompt prompt_msg = test #print('We need a prompt!') reply = QMessageBox.question(self.gui, 'Tapioca', prompt_msg, QMessageBox.Yes, QMessageBox.No) if reply == QMessageBox.Yes: pass else: pass
[ "def", "updateStatus", "(", "self", ",", "test", ")", ":", "#print('*** Main updateStatus : %s ***' % test)", "test", "=", "str", "(", "test", ")", "if", "test", ".", "endswith", "(", "'COMPLETE'", ")", "or", "test", ".", "endswith", "(", "'ERROR'", ")", ":", "if", "test", ".", "startswith", "(", "'search '", ")", ":", "# Search results needs to pass data from worker object to GUI", "# object", "#print('Setting search result values in GUI object')", "self", ".", "gui", ".", "searchfound", "=", "self", ".", "worker", ".", "searchfound", "self", ".", "gui", ".", "foundunenc", "=", "self", ".", "worker", ".", "foundunenc", "self", ".", "gui", ".", "foundunprot", "=", "self", ".", "worker", ".", "foundunprot", "self", ".", "gui", ".", "foundprot", "=", "self", ".", "worker", ".", "foundprot", "self", ".", "gui", ".", "updatesearchresults", "(", ")", "else", ":", "# This is something handled only by the GUI part", "pass", "else", ":", "# We need a prompt", "prompt_msg", "=", "test", "#print('We need a prompt!')", "reply", "=", "QMessageBox", ".", "question", "(", "self", ".", "gui", ",", "'Tapioca'", ",", "prompt_msg", ",", "QMessageBox", ".", "Yes", ",", "QMessageBox", ".", "No", ")", "if", "reply", "==", "QMessageBox", ".", "Yes", ":", "pass", "else", ":", "pass" ]
https://github.com/CERTCC/tapioca/blob/2370e1724bfb75c0a2be0cc7e776f870f9d6a6ed/tapioca.py#L249-L278
pulp/pulp
a0a28d804f997b6f81c391378aff2e4c90183df9
server/pulp/plugins/conduits/cataloger.py
python
CatalogerConduit.add_entry
(self, type_id, unit_key, url)
Add an entry to the content catalog. :param type_id: The content unit type ID. :type type_id: str :param unit_key: The content unit key. :type unit_key: dict :param url: The URL used to download content associated with the unit. :type url: str
Add an entry to the content catalog. :param type_id: The content unit type ID. :type type_id: str :param unit_key: The content unit key. :type unit_key: dict :param url: The URL used to download content associated with the unit. :type url: str
[ "Add", "an", "entry", "to", "the", "content", "catalog", ".", ":", "param", "type_id", ":", "The", "content", "unit", "type", "ID", ".", ":", "type", "type_id", ":", "str", ":", "param", "unit_key", ":", "The", "content", "unit", "key", ".", ":", "type", "unit_key", ":", "dict", ":", "param", "url", ":", "The", "URL", "used", "to", "download", "content", "associated", "with", "the", "unit", ".", ":", "type", "url", ":", "str" ]
def add_entry(self, type_id, unit_key, url): """ Add an entry to the content catalog. :param type_id: The content unit type ID. :type type_id: str :param unit_key: The content unit key. :type unit_key: dict :param url: The URL used to download content associated with the unit. :type url: str """ manager = managers.content_catalog_manager() manager.add_entry(self.source_id, self.expires, type_id, unit_key, url) self.added_count += 1
[ "def", "add_entry", "(", "self", ",", "type_id", ",", "unit_key", ",", "url", ")", ":", "manager", "=", "managers", ".", "content_catalog_manager", "(", ")", "manager", ".", "add_entry", "(", "self", ".", "source_id", ",", "self", ".", "expires", ",", "type_id", ",", "unit_key", ",", "url", ")", "self", ".", "added_count", "+=", "1" ]
https://github.com/pulp/pulp/blob/a0a28d804f997b6f81c391378aff2e4c90183df9/server/pulp/plugins/conduits/cataloger.py#L22-L34
securesystemslab/zippy
ff0e84ac99442c2c55fe1d285332cfd4e185e089
zippy/lib-python/3/idlelib/ZoomHeight.py
python
zoom_height
(top)
[]
def zoom_height(top): geom = top.wm_geometry() m = re.match(r"(\d+)x(\d+)\+(-?\d+)\+(-?\d+)", geom) if not m: top.bell() return width, height, x, y = map(int, m.groups()) newheight = top.winfo_screenheight() if sys.platform == 'win32': newy = 0 newheight = newheight - 72 elif macosxSupport.runningAsOSXApp(): # The '88' below is a magic number that avoids placing the bottom # of the window below the panel on my machine. I don't know how # to calculate the correct value for this with tkinter. newy = 22 newheight = newheight - newy - 88 else: #newy = 24 newy = 0 #newheight = newheight - 96 newheight = newheight - 88 if height >= newheight: newgeom = "" else: newgeom = "%dx%d+%d+%d" % (width, newheight, x, newy) top.wm_geometry(newgeom)
[ "def", "zoom_height", "(", "top", ")", ":", "geom", "=", "top", ".", "wm_geometry", "(", ")", "m", "=", "re", ".", "match", "(", "r\"(\\d+)x(\\d+)\\+(-?\\d+)\\+(-?\\d+)\"", ",", "geom", ")", "if", "not", "m", ":", "top", ".", "bell", "(", ")", "return", "width", ",", "height", ",", "x", ",", "y", "=", "map", "(", "int", ",", "m", ".", "groups", "(", ")", ")", "newheight", "=", "top", ".", "winfo_screenheight", "(", ")", "if", "sys", ".", "platform", "==", "'win32'", ":", "newy", "=", "0", "newheight", "=", "newheight", "-", "72", "elif", "macosxSupport", ".", "runningAsOSXApp", "(", ")", ":", "# The '88' below is a magic number that avoids placing the bottom", "# of the window below the panel on my machine. I don't know how", "# to calculate the correct value for this with tkinter.", "newy", "=", "22", "newheight", "=", "newheight", "-", "newy", "-", "88", "else", ":", "#newy = 24", "newy", "=", "0", "#newheight = newheight - 96", "newheight", "=", "newheight", "-", "88", "if", "height", ">=", "newheight", ":", "newgeom", "=", "\"\"", "else", ":", "newgeom", "=", "\"%dx%d+%d+%d\"", "%", "(", "width", ",", "newheight", ",", "x", ",", "newy", ")", "top", ".", "wm_geometry", "(", "newgeom", ")" ]
https://github.com/securesystemslab/zippy/blob/ff0e84ac99442c2c55fe1d285332cfd4e185e089/zippy/lib-python/3/idlelib/ZoomHeight.py#L23-L51
uqfoundation/mystic
154e6302d1f2f94e8f13e88ecc5f24241cc28ac7
cache/archive.py
python
read_func
(name, keymap=None, type=None, n=0)
return archive.get(entry, None)
read stored function from db with name 'name' Args: name (string): filename of the klepto db keymap (klepto.keymap): keymap used for key encoding type (klepto.archive): type of klepto archive n (int): db entry in reverse order (i.e. most recent is ``0``) Returns: tuple of (stored function, distance information) Notes: If the db is empty, or ``n`` produces a bad index, returns ``None``. Alternately, ``name`` can be the relevant klepto.archive instance.
read stored function from db with name 'name'
[ "read", "stored", "function", "from", "db", "with", "name", "name" ]
def read_func(name, keymap=None, type=None, n=0): """read stored function from db with name 'name' Args: name (string): filename of the klepto db keymap (klepto.keymap): keymap used for key encoding type (klepto.archive): type of klepto archive n (int): db entry in reverse order (i.e. most recent is ``0``) Returns: tuple of (stored function, distance information) Notes: If the db is empty, or ``n`` produces a bad index, returns ``None``. Alternately, ``name`` can be the relevant klepto.archive instance. """ if not isinstance(name, (str, (u'').__class__)): if type is not None: #msg = 'if a klepto.archive instance is provided, type must be None' #raise TypeError(msg) type = None #NOTE: ignore type archive = getattr(name, '__archive__', name) # need cached == False else: archive = _read_func(name, type=type) # read entire archive to get size size = len(archive) - n - 1 entry = size if keymap is None else keymap(size) return archive.get(entry, None)
[ "def", "read_func", "(", "name", ",", "keymap", "=", "None", ",", "type", "=", "None", ",", "n", "=", "0", ")", ":", "if", "not", "isinstance", "(", "name", ",", "(", "str", ",", "(", "u''", ")", ".", "__class__", ")", ")", ":", "if", "type", "is", "not", "None", ":", "#msg = 'if a klepto.archive instance is provided, type must be None'", "#raise TypeError(msg)", "type", "=", "None", "#NOTE: ignore type", "archive", "=", "getattr", "(", "name", ",", "'__archive__'", ",", "name", ")", "# need cached == False", "else", ":", "archive", "=", "_read_func", "(", "name", ",", "type", "=", "type", ")", "# read entire archive to get size", "size", "=", "len", "(", "archive", ")", "-", "n", "-", "1", "entry", "=", "size", "if", "keymap", "is", "None", "else", "keymap", "(", "size", ")", "return", "archive", ".", "get", "(", "entry", ",", "None", ")" ]
https://github.com/uqfoundation/mystic/blob/154e6302d1f2f94e8f13e88ecc5f24241cc28ac7/cache/archive.py#L91-L117
xonsh/xonsh
b76d6f994f22a4078f602f8b386f4ec280c8461f
xonsh/completers/init.py
python
default_completers
()
return collections.OrderedDict( [ # non-exclusive completers: ("end_proc_tokens", complete_end_proc_tokens), ("end_proc_keywords", complete_end_proc_keywords), ("environment_vars", complete_environment_vars), # exclusive completers: ("base", complete_base), ("skip", complete_skipper), ("alias", complete_aliases), ("xompleter", complete_xompletions), ("import", complete_import), ("bash", complete_from_bash), ("man", complete_from_man), ("python", complete_python), ("path", complete_path), ] )
Creates a copy of the default completers.
Creates a copy of the default completers.
[ "Creates", "a", "copy", "of", "the", "default", "completers", "." ]
def default_completers(): """Creates a copy of the default completers.""" return collections.OrderedDict( [ # non-exclusive completers: ("end_proc_tokens", complete_end_proc_tokens), ("end_proc_keywords", complete_end_proc_keywords), ("environment_vars", complete_environment_vars), # exclusive completers: ("base", complete_base), ("skip", complete_skipper), ("alias", complete_aliases), ("xompleter", complete_xompletions), ("import", complete_import), ("bash", complete_from_bash), ("man", complete_from_man), ("python", complete_python), ("path", complete_path), ] )
[ "def", "default_completers", "(", ")", ":", "return", "collections", ".", "OrderedDict", "(", "[", "# non-exclusive completers:", "(", "\"end_proc_tokens\"", ",", "complete_end_proc_tokens", ")", ",", "(", "\"end_proc_keywords\"", ",", "complete_end_proc_keywords", ")", ",", "(", "\"environment_vars\"", ",", "complete_environment_vars", ")", ",", "# exclusive completers:", "(", "\"base\"", ",", "complete_base", ")", ",", "(", "\"skip\"", ",", "complete_skipper", ")", ",", "(", "\"alias\"", ",", "complete_aliases", ")", ",", "(", "\"xompleter\"", ",", "complete_xompletions", ")", ",", "(", "\"import\"", ",", "complete_import", ")", ",", "(", "\"bash\"", ",", "complete_from_bash", ")", ",", "(", "\"man\"", ",", "complete_from_man", ")", ",", "(", "\"python\"", ",", "complete_python", ")", ",", "(", "\"path\"", ",", "complete_path", ")", ",", "]", ")" ]
https://github.com/xonsh/xonsh/blob/b76d6f994f22a4078f602f8b386f4ec280c8461f/xonsh/completers/init.py#L22-L41
openhatch/oh-mainline
ce29352a034e1223141dcc2f317030bbc3359a51
vendor/packages/requests/requests/models.py
python
Response.content
(self)
return self._content
Content of the response, in bytes.
Content of the response, in bytes.
[ "Content", "of", "the", "response", "in", "bytes", "." ]
def content(self): """Content of the response, in bytes.""" if self._content is False: # Read the contents. try: if self._content_consumed: raise RuntimeError( 'The content for this response was already consumed') if self.status_code == 0: self._content = None else: self._content = bytes().join(self.iter_content(CONTENT_CHUNK_SIZE)) or bytes() except AttributeError: self._content = None self._content_consumed = True # don't need to release the connection; that's been handled by urllib3 # since we exhausted the data. return self._content
[ "def", "content", "(", "self", ")", ":", "if", "self", ".", "_content", "is", "False", ":", "# Read the contents.", "try", ":", "if", "self", ".", "_content_consumed", ":", "raise", "RuntimeError", "(", "'The content for this response was already consumed'", ")", "if", "self", ".", "status_code", "==", "0", ":", "self", ".", "_content", "=", "None", "else", ":", "self", ".", "_content", "=", "bytes", "(", ")", ".", "join", "(", "self", ".", "iter_content", "(", "CONTENT_CHUNK_SIZE", ")", ")", "or", "bytes", "(", ")", "except", "AttributeError", ":", "self", ".", "_content", "=", "None", "self", ".", "_content_consumed", "=", "True", "# don't need to release the connection; that's been handled by urllib3", "# since we exhausted the data.", "return", "self", ".", "_content" ]
https://github.com/openhatch/oh-mainline/blob/ce29352a034e1223141dcc2f317030bbc3359a51/vendor/packages/requests/requests/models.py#L737-L758
pabigot/pyxb
14737c23a125fd12c954823ad64fc4497816fae3
pyxb/namespace/builtin.py
python
_InitializeBuiltinNamespaces
(structures_module)
Invoked at the end of the L{pyxb.xmlschema.structures} module to initialize the component models of the built-in namespaces. @param structures_module: The L{pyxb.xmlschema.structures} module may not be importable by that name at the time this is invoked (because it is still being processed), so it gets passed in as a parameter.
Invoked at the end of the L{pyxb.xmlschema.structures} module to initialize the component models of the built-in namespaces.
[ "Invoked", "at", "the", "end", "of", "the", "L", "{", "pyxb", ".", "xmlschema", ".", "structures", "}", "module", "to", "initialize", "the", "component", "models", "of", "the", "built", "-", "in", "namespaces", "." ]
def _InitializeBuiltinNamespaces (structures_module): """Invoked at the end of the L{pyxb.xmlschema.structures} module to initialize the component models of the built-in namespaces. @param structures_module: The L{pyxb.xmlschema.structures} module may not be importable by that name at the time this is invoked (because it is still being processed), so it gets passed in as a parameter.""" global __InitializedBuiltinNamespaces if not __InitializedBuiltinNamespaces: __InitializedBuiltinNamespaces = True [ _ns._defineBuiltins(structures_module) for _ns in BuiltInNamespaces ]
[ "def", "_InitializeBuiltinNamespaces", "(", "structures_module", ")", ":", "global", "__InitializedBuiltinNamespaces", "if", "not", "__InitializedBuiltinNamespaces", ":", "__InitializedBuiltinNamespaces", "=", "True", "[", "_ns", ".", "_defineBuiltins", "(", "structures_module", ")", "for", "_ns", "in", "BuiltInNamespaces", "]" ]
https://github.com/pabigot/pyxb/blob/14737c23a125fd12c954823ad64fc4497816fae3/pyxb/namespace/builtin.py#L289-L299
MenglinLu/Chinese-clinical-NER
9614593ee2e1ba38d0985c44e957d316e178b93c
bert_sklearn/bert_sklearn/sklearn.py
python
BertTokenClassifier.tag_text
(self, text, verbose=True)
return tags
Tokenize text and print most probable token tags.
Tokenize text and print most probable token tags.
[ "Tokenize", "text", "and", "print", "most", "probable", "token", "tags", "." ]
def tag_text(self, text, verbose=True): """ Tokenize text and print most probable token tags. """ tokens = self.basic_tokenizer.tokenize(text) tags = self.predict(np.array([tokens]))[0] if verbose: data = {"token": tokens, "predicted tags": tags} df = pd.DataFrame(data=data) print(df) return tags
[ "def", "tag_text", "(", "self", ",", "text", ",", "verbose", "=", "True", ")", ":", "tokens", "=", "self", ".", "basic_tokenizer", ".", "tokenize", "(", "text", ")", "tags", "=", "self", ".", "predict", "(", "np", ".", "array", "(", "[", "tokens", "]", ")", ")", "[", "0", "]", "if", "verbose", ":", "data", "=", "{", "\"token\"", ":", "tokens", ",", "\"predicted tags\"", ":", "tags", "}", "df", "=", "pd", ".", "DataFrame", "(", "data", "=", "data", ")", "print", "(", "df", ")", "return", "tags" ]
https://github.com/MenglinLu/Chinese-clinical-NER/blob/9614593ee2e1ba38d0985c44e957d316e178b93c/bert_sklearn/bert_sklearn/sklearn.py#L726-L736
idanr1986/cuckoo-droid
1350274639473d3d2b0ac740cae133ca53ab7444
analyzer/android_on_linux/lib/api/androguard/analysis.py
python
is_native_code
(dx)
return False
Native code is present ? :param dx : the analysis virtual machine :type dx: a :class:`VMAnalysis` object :rtype: boolean
Native code is present ? :param dx : the analysis virtual machine :type dx: a :class:`VMAnalysis` object :rtype: boolean
[ "Native", "code", "is", "present", "?", ":", "param", "dx", ":", "the", "analysis", "virtual", "machine", ":", "type", "dx", ":", "a", ":", "class", ":", "VMAnalysis", "object", ":", "rtype", ":", "boolean" ]
def is_native_code(dx) : """ Native code is present ? :param dx : the analysis virtual machine :type dx: a :class:`VMAnalysis` object :rtype: boolean """ paths = dx.get_tainted_packages().search_methods( "Ljava/lang/System;", "loadLibrary", ".") if paths != [] : return True return False
[ "def", "is_native_code", "(", "dx", ")", ":", "paths", "=", "dx", ".", "get_tainted_packages", "(", ")", ".", "search_methods", "(", "\"Ljava/lang/System;\"", ",", "\"loadLibrary\"", ",", "\".\"", ")", "if", "paths", "!=", "[", "]", ":", "return", "True", "return", "False" ]
https://github.com/idanr1986/cuckoo-droid/blob/1350274639473d3d2b0ac740cae133ca53ab7444/analyzer/android_on_linux/lib/api/androguard/analysis.py#L1680-L1691
twilio/twilio-python
6e1e811ea57a1edfadd5161ace87397c563f6915
twilio/rest/verify/v2/service/entity/challenge/__init__.py
python
ChallengeInstance.update
(self, auth_payload=values.unset)
return self._proxy.update(auth_payload=auth_payload, )
Update the ChallengeInstance :param unicode auth_payload: Optional payload to verify the Challenge :returns: The updated ChallengeInstance :rtype: twilio.rest.verify.v2.service.entity.challenge.ChallengeInstance
Update the ChallengeInstance
[ "Update", "the", "ChallengeInstance" ]
def update(self, auth_payload=values.unset): """ Update the ChallengeInstance :param unicode auth_payload: Optional payload to verify the Challenge :returns: The updated ChallengeInstance :rtype: twilio.rest.verify.v2.service.entity.challenge.ChallengeInstance """ return self._proxy.update(auth_payload=auth_payload, )
[ "def", "update", "(", "self", ",", "auth_payload", "=", "values", ".", "unset", ")", ":", "return", "self", ".", "_proxy", ".", "update", "(", "auth_payload", "=", "auth_payload", ",", ")" ]
https://github.com/twilio/twilio-python/blob/6e1e811ea57a1edfadd5161ace87397c563f6915/twilio/rest/verify/v2/service/entity/challenge/__init__.py#L580-L589
zhl2008/awd-platform
0416b31abea29743387b10b3914581fbe8e7da5e
web_hxb2/lib/python3.5/site-packages/pip/_vendor/pyparsing.py
python
_escapeRegexRangeChars
(s)
return _ustr(s)
[]
def _escapeRegexRangeChars(s): #~ escape these chars: ^-] for c in r"\^-]": s = s.replace(c,_bslash+c) s = s.replace("\n",r"\n") s = s.replace("\t",r"\t") return _ustr(s)
[ "def", "_escapeRegexRangeChars", "(", "s", ")", ":", "#~ escape these chars: ^-]", "for", "c", "in", "r\"\\^-]\"", ":", "s", "=", "s", ".", "replace", "(", "c", ",", "_bslash", "+", "c", ")", "s", "=", "s", ".", "replace", "(", "\"\\n\"", ",", "r\"\\n\"", ")", "s", "=", "s", ".", "replace", "(", "\"\\t\"", ",", "r\"\\t\"", ")", "return", "_ustr", "(", "s", ")" ]
https://github.com/zhl2008/awd-platform/blob/0416b31abea29743387b10b3914581fbe8e7da5e/web_hxb2/lib/python3.5/site-packages/pip/_vendor/pyparsing.py#L4524-L4530
IronLanguages/ironpython2
51fdedeeda15727717fb8268a805f71b06c0b9f1
Src/StdLib/Lib/ssl.py
python
SSLSocket.get_channel_binding
(self, cb_type="tls-unique")
return self._sslobj.tls_unique_cb()
Get channel binding data for current connection. Raise ValueError if the requested `cb_type` is not supported. Return bytes of the data or None if the data is not available (e.g. before the handshake).
Get channel binding data for current connection. Raise ValueError if the requested `cb_type` is not supported. Return bytes of the data or None if the data is not available (e.g. before the handshake).
[ "Get", "channel", "binding", "data", "for", "current", "connection", ".", "Raise", "ValueError", "if", "the", "requested", "cb_type", "is", "not", "supported", ".", "Return", "bytes", "of", "the", "data", "or", "None", "if", "the", "data", "is", "not", "available", "(", "e", ".", "g", ".", "before", "the", "handshake", ")", "." ]
def get_channel_binding(self, cb_type="tls-unique"): """Get channel binding data for current connection. Raise ValueError if the requested `cb_type` is not supported. Return bytes of the data or None if the data is not available (e.g. before the handshake). """ if cb_type not in CHANNEL_BINDING_TYPES: raise ValueError("Unsupported channel binding type") if cb_type != "tls-unique": raise NotImplementedError( "{0} channel binding type not implemented" .format(cb_type)) if self._sslobj is None: return None return self._sslobj.tls_unique_cb()
[ "def", "get_channel_binding", "(", "self", ",", "cb_type", "=", "\"tls-unique\"", ")", ":", "if", "cb_type", "not", "in", "CHANNEL_BINDING_TYPES", ":", "raise", "ValueError", "(", "\"Unsupported channel binding type\"", ")", "if", "cb_type", "!=", "\"tls-unique\"", ":", "raise", "NotImplementedError", "(", "\"{0} channel binding type not implemented\"", ".", "format", "(", "cb_type", ")", ")", "if", "self", ".", "_sslobj", "is", "None", ":", "return", "None", "return", "self", ".", "_sslobj", ".", "tls_unique_cb", "(", ")" ]
https://github.com/IronLanguages/ironpython2/blob/51fdedeeda15727717fb8268a805f71b06c0b9f1/Src/StdLib/Lib/ssl.py#L894-L907
NVIDIA/DeepLearningExamples
589604d49e016cd9ef4525f7abcc9c7b826cfc5e
TensorFlow/Segmentation/UNet_3D_Medical/dataset/transforms.py
python
OneHotLabels.__call__
(self, samples, labels, mean, stdev)
return samples, tf.one_hot(labels, self._n_classes)
Run op :param samples: Sample arrays (unused) :param labels: Label arrays :param mean: Mean (unused) :param stdev: Std (unused) :return: One hot encoded labels
Run op
[ "Run", "op" ]
def __call__(self, samples, labels, mean, stdev): """ Run op :param samples: Sample arrays (unused) :param labels: Label arrays :param mean: Mean (unused) :param stdev: Std (unused) :return: One hot encoded labels """ return samples, tf.one_hot(labels, self._n_classes)
[ "def", "__call__", "(", "self", ",", "samples", ",", "labels", ",", "mean", ",", "stdev", ")", ":", "return", "samples", ",", "tf", ".", "one_hot", "(", "labels", ",", "self", ".", "_n_classes", ")" ]
https://github.com/NVIDIA/DeepLearningExamples/blob/589604d49e016cd9ef4525f7abcc9c7b826cfc5e/TensorFlow/Segmentation/UNet_3D_Medical/dataset/transforms.py#L282-L291
andresriancho/w3af
cd22e5252243a87aaa6d0ddea47cf58dacfe00a9
w3af/plugins/attack/db/sqlmap/lib/utils/api.py
python
security_headers
(json_header=True)
Set some headers across all HTTP responses
Set some headers across all HTTP responses
[ "Set", "some", "headers", "across", "all", "HTTP", "responses" ]
def security_headers(json_header=True): """ Set some headers across all HTTP responses """ response.headers["Server"] = "Server" response.headers["X-Content-Type-Options"] = "nosniff" response.headers["X-Frame-Options"] = "DENY" response.headers["X-XSS-Protection"] = "1; mode=block" response.headers["Pragma"] = "no-cache" response.headers["Cache-Control"] = "no-cache" response.headers["Expires"] = "0" if json_header: response.content_type = "application/json; charset=UTF-8"
[ "def", "security_headers", "(", "json_header", "=", "True", ")", ":", "response", ".", "headers", "[", "\"Server\"", "]", "=", "\"Server\"", "response", ".", "headers", "[", "\"X-Content-Type-Options\"", "]", "=", "\"nosniff\"", "response", ".", "headers", "[", "\"X-Frame-Options\"", "]", "=", "\"DENY\"", "response", ".", "headers", "[", "\"X-XSS-Protection\"", "]", "=", "\"1; mode=block\"", "response", ".", "headers", "[", "\"Pragma\"", "]", "=", "\"no-cache\"", "response", ".", "headers", "[", "\"Cache-Control\"", "]", "=", "\"no-cache\"", "response", ".", "headers", "[", "\"Expires\"", "]", "=", "\"0\"", "if", "json_header", ":", "response", ".", "content_type", "=", "\"application/json; charset=UTF-8\"" ]
https://github.com/andresriancho/w3af/blob/cd22e5252243a87aaa6d0ddea47cf58dacfe00a9/w3af/plugins/attack/db/sqlmap/lib/utils/api.py#L316-L329
KU4NG/OPMS_v3
dbeeb74d9c0ff0ee3cfb940da7a1dadefcf9cfd4
extra_apps/webssh/main.py
python
IndexHandler.post
(self)
[]
def post(self): worker_id = None status = None try: worker = self.ssh_connect() except Exception as e: logging.error(traceback.format_exc()) status = str(e) else: worker_id = worker.id workers[worker_id] = worker self.write(dict(id=worker_id, status=status))
[ "def", "post", "(", "self", ")", ":", "worker_id", "=", "None", "status", "=", "None", "try", ":", "worker", "=", "self", ".", "ssh_connect", "(", ")", "except", "Exception", "as", "e", ":", "logging", ".", "error", "(", "traceback", ".", "format_exc", "(", ")", ")", "status", "=", "str", "(", "e", ")", "else", ":", "worker_id", "=", "worker", ".", "id", "workers", "[", "worker_id", "]", "=", "worker", "self", ".", "write", "(", "dict", "(", "id", "=", "worker_id", ",", "status", "=", "status", ")", ")" ]
https://github.com/KU4NG/OPMS_v3/blob/dbeeb74d9c0ff0ee3cfb940da7a1dadefcf9cfd4/extra_apps/webssh/main.py#L232-L245
NanYoMy/DHT-woodworm
e28bbff214bc3c41ea462854256dd499fb8a6eb0
btdht/node.py
python
Node.got_peers
(self, token, values, socket=None, trans_id=None, sender_id=None, lock=None)
Construct reply message for got_peers
Construct reply message for got_peers
[ "Construct", "reply", "message", "for", "got_peers" ]
def got_peers(self, token, values, socket=None, trans_id=None, sender_id=None, lock=None): """ Construct reply message for got_peers """ message = { "y": "r", "r": { "id": sender_id, "nodes": values } } logger.debug("got_peers msg to %s:%d, y:%s, t: %r" % ( self.host, self.port, message["y"], trans_id.encode("hex") )) self._sendmessage(message, socket, trans_id=trans_id, lock=lock)
[ "def", "got_peers", "(", "self", ",", "token", ",", "values", ",", "socket", "=", "None", ",", "trans_id", "=", "None", ",", "sender_id", "=", "None", ",", "lock", "=", "None", ")", ":", "message", "=", "{", "\"y\"", ":", "\"r\"", ",", "\"r\"", ":", "{", "\"id\"", ":", "sender_id", ",", "\"nodes\"", ":", "values", "}", "}", "logger", ".", "debug", "(", "\"got_peers msg to %s:%d, y:%s, t: %r\"", "%", "(", "self", ".", "host", ",", "self", ".", "port", ",", "message", "[", "\"y\"", "]", ",", "trans_id", ".", "encode", "(", "\"hex\"", ")", ")", ")", "self", ".", "_sendmessage", "(", "message", ",", "socket", ",", "trans_id", "=", "trans_id", ",", "lock", "=", "lock", ")" ]
https://github.com/NanYoMy/DHT-woodworm/blob/e28bbff214bc3c41ea462854256dd499fb8a6eb0/btdht/node.py#L186-L201
andreikop/enki
3170059e5cb46dcc77d7fb1457c38a8a5f13af66
enki/plugins/searchreplace/controller.py
python
Controller._updateSearchWidgetFoundItemsHighlighting
(self)
return self._updateFoundItemsHighlighting(self._widget.getRegExp())
[]
def _updateSearchWidgetFoundItemsHighlighting(self): document = core.workspace().currentDocument() if document is None: return if not self._widget.isVisible() or \ not self._widget.isSearchRegExpValid()[0] or \ not self._widget.getRegExp().pattern: document.qutepart.setExtraSelections([]) return return self._updateFoundItemsHighlighting(self._widget.getRegExp())
[ "def", "_updateSearchWidgetFoundItemsHighlighting", "(", "self", ")", ":", "document", "=", "core", ".", "workspace", "(", ")", ".", "currentDocument", "(", ")", "if", "document", "is", "None", ":", "return", "if", "not", "self", ".", "_widget", ".", "isVisible", "(", ")", "or", "not", "self", ".", "_widget", ".", "isSearchRegExpValid", "(", ")", "[", "0", "]", "or", "not", "self", ".", "_widget", ".", "getRegExp", "(", ")", ".", "pattern", ":", "document", ".", "qutepart", ".", "setExtraSelections", "(", "[", "]", ")", "return", "return", "self", ".", "_updateFoundItemsHighlighting", "(", "self", ".", "_widget", ".", "getRegExp", "(", ")", ")" ]
https://github.com/andreikop/enki/blob/3170059e5cb46dcc77d7fb1457c38a8a5f13af66/enki/plugins/searchreplace/controller.py#L239-L250
kanzure/nanoengineer
874e4c9f8a9190f093625b267f9767e19f82e6c4
cad/src/PM/PM_ComboBox.py
python
PM_ComboBox.setCurrentIndex
(self, val, blockSignals = False)
Overrides the superclass method. @param blockSignals: Many times, the caller just wants to setCurrentIndex and don't want to send valueChanged signal. If this flag is set to True, the currentIdexChanged signal won't be emitted. The default value is False. @type blockSignals: bool @see: DnaDisplayStyle_PropertyManager.updateDnaDisplayStyleWidgets()
Overrides the superclass method.
[ "Overrides", "the", "superclass", "method", "." ]
def setCurrentIndex(self, val, blockSignals = False): """ Overrides the superclass method. @param blockSignals: Many times, the caller just wants to setCurrentIndex and don't want to send valueChanged signal. If this flag is set to True, the currentIdexChanged signal won't be emitted. The default value is False. @type blockSignals: bool @see: DnaDisplayStyle_PropertyManager.updateDnaDisplayStyleWidgets() """ #If blockSignals flag is True, the valueChanged signal won't be emitted #This is done by self.blockSignals method below. -- Ninad 2008-08-13 self.blockSignals(blockSignals) QComboBox.setCurrentIndex(self, val) #Make sure to always 'unblock' signals that might have been temporarily #blocked before calling superclass.setValue. self.blockSignals(False)
[ "def", "setCurrentIndex", "(", "self", ",", "val", ",", "blockSignals", "=", "False", ")", ":", "#If blockSignals flag is True, the valueChanged signal won't be emitted", "#This is done by self.blockSignals method below. -- Ninad 2008-08-13", "self", ".", "blockSignals", "(", "blockSignals", ")", "QComboBox", ".", "setCurrentIndex", "(", "self", ",", "val", ")", "#Make sure to always 'unblock' signals that might have been temporarily", "#blocked before calling superclass.setValue.", "self", ".", "blockSignals", "(", "False", ")" ]
https://github.com/kanzure/nanoengineer/blob/874e4c9f8a9190f093625b267f9767e19f82e6c4/cad/src/PM/PM_ComboBox.py#L211-L232