Datasets:
File size: 7,650 Bytes
77e8cfb 2115cf0 b5defd1 a6d0ea5 b4939b8 a6d0ea5 a58c919 a6d0ea5 5f23ef5 7ff7fa2 5f23ef5 3ef81a7 169a35c 3ef81a7 169a35c 3ef81a7 a6d0ea5 92f4962 a6d0ea5 4a22566 a6d0ea5 6488c76 2cc1ad2 24f8225 a6d0ea5 24f8225 a6d0ea5 1295430 a6d0ea5 1295430 d367ae9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 |
---
task_categories:
- question-answering
- text-classification
license: apache-2.0
language:
- en
size_categories:
- 1K<n<10K
---
# Dataset Card for ROPE
<!-- Provide a quick summary of the dataset. -->
The dataset used in this study is designed to evaluate and analyze multi-object hallucination by leveraging existing panoptic segmentation datasets. Specifically, it includes data from MSCOCO-Panoptic and ADE20K, ensuring access to diverse objects and their instance-level semantic annotations.
For more information, please visit [Multi-Object Hallucination](https://multi-object-hallucination.github.io).
## Dataset Construction
The dataset is divided into several subsets based on the distribution of object classes within each image at test time. This division allows for a more granular analysis of how different distributions affect the hallucination behavior of large vision-language models (LVLMs).
- **Homogeneous**: All tested objects in an image belong to the same class (e.g., AAAAA).
- **Heterogeneous**: All tested objects in an image belong to different classes (e.g., ABCDE).
- **In-the-Wild**: A mixed distribution where the tested objects are randomly chosen and ordered within each image.
- **Adversarial**: A subset designed to challenge the models with difficult object distributionsοΌAAAAB,BAAAA).
## Dataset Statistics
### Training Data Statistics
| Dataset | Total | COCO | ADE |
| :---: | :---: | :---: | :---: |
| Wild | 1539 | 732 | 807 |
| Hom. | 312 | 168 | 144 |
| Het. | 400 | 200 | 200 |
| Adv. | 168 | 54 | 114 |
### Validation Data Statistics
| Dataset | Total | COCO | ADE |
| :---: | :---: | :---: | :---: |
| Wild | 1172 | 547 | 625 |
| Het. | 246 | 76 | 170 |
| Hom. | 490 | 289 | 201 |
| Adv. | 334 | 170 | 164 |
## Dataset File Structure
The `ROPE` dataset is structured into training and validation directories, each containing images divided by their object class distributions. Each image directory includes visualizations of bounding boxes (`bbox`) and raw images (`raw`), further categorized into `ADE` and `COCO` sources. The `raw` directory contains the original images, while the `bbox` directory contains the same images with bounding boxes visualized on them.
```arduino
ROPE/
β
βββ train/
β βββ image/
β β βββ AAAAB-images/
β β β βββ bbox/
β β β β βββ ADE/
β β β β βββ COCO/
β β β βββ raw/
β β β β βββ ADE/
β β β β βββ COCO/
β β βββ BAAAA-images/
β β β βββ bbox/
β β β β βββ ADE/
β β β β βββ COCO/
β β β βββ raw/
β β β β βββ ADE/
β β β β βββ COCO/
β β βββ heterogenous-images/
β β β βββ bbox/
β β β β βββ ADE/
β β β β βββ COCO/
β β β βββ raw/
β β β β βββ ADE/
β β β β βββ COCO/
β β βββ homogenous-images/
β β β βββ bbox/
β β β β βββ ADE/
β β β β βββ COCO/
β β β βββ raw/
β β β β βββ ADE/
β β β β βββ COCO/
β β βββ mixed-images/
β β β βββ bbox/
β β β β βββ ADE/
β β β β βββ COCO/
β β β βββ raw/
β β β β βββ ADE/
β β β β βββ COCO/
β βββ AAAAB_data.json
β βββ BAAAA_data.json
β βββ merged_heterogenous_data.json
β βββ merged_homogenous_data.json
β βββ merged_mixed_data.json
β
βββ validation/ #similar to train part
β βββ image/
β β βββ AAAAB-images/
β β βββ BAAAA-images/
β β βββ heterogenous-images/
β β βββ homogenous-images/
β β βββ mixed-images/
β βββ AAAAB_data.json
β βββ BAAAA_data.json
β βββ merged_heterogenous_data.json
β βββ merged_homogenous_data.json
β βββ merged_mixed_data.json
β
βββ .gitattributes
βββ README.md
βββ train.zip
βββ validation.zip
```
## Json file Structure
<!-- Provide a longer summary of what this dataset is. -->
```json
{
"features": [
{
"name": "folder",
"dtype": "string"
},
{
"name": "filename",
"dtype": "string"
},
{
"name": "source",
"dtype": "struct",
"fields": [
{
"name": "database",
"dtype": "string"
},
{
"name": "image_id",
"dtype": "string"
},
{
"name": "coco_id",
"dtype": "string"
},
{
"name": "flickr_id",
"dtype": "string"
}
]
},
{
"name": "size",
"dtype": "struct",
"fields": [
{
"name": "width",
"dtype": "int32"
},
{
"name": "height",
"dtype": "int32"
},
{
"name": "depth",
"dtype": "int32"
}
]
},
{
"name": "segmented",
"dtype": "int32"
},
{
"name": "objects",
"dtype": "list",
"item": {
"dtype": "struct",
"fields": [
{
"name": "name",
"dtype": "string"
},
{
"name": "object_id",
"dtype": "string"
},
{
"name": "difficult",
"dtype": "int32"
},
{
"name": "bndbox",
"dtype": "struct",
"fields": [
{
"name": "xmin",
"dtype": "int32"
},
{
"name": "ymin",
"dtype": "int32"
},
{
"name": "xmax",
"dtype": "int32"
},
{
"name": "ymax",
"dtype": "int32"
}
]
},
{
"name": "area",
"dtype": "int32"
},
{
"name": "bbox_number",
"dtype": "int32"
}
]
}
},
{
"name": "relations",
"dtype": "list",
"item": {
"dtype": "string"
}
},
{
"name": "object_set",
"dtype": "list",
"item": {
"dtype": "string"
}
},
{
"name": "data_source",
"dtype": "string"
}
]
}
```
## Dataset Construction
The dataset used in this study is constructed following the guidelines and protocols outlined by the SLED group. Detailed information and code about the data annotation process can be found in the official repository.
For more information, please visit the [dataset construction guidelines](https://github.com/sled-group/moh/tree/main/data-annotation).
## Citation
<!-- If there is a paper or blog post introducing the dataset, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
```bibtex
@inproceedings{chen2024multiobject,
title={Multi-Object Hallucination in Vision Language Models},
author={Chen, Xuweiyi and Ma, Ziqiao and Zhang, Xuejun and Xu, Sihan and Qian, Shengyi and Yang, Jianing and Fouhey, David and Chai, Joyce},
booktitle={3rd Workshop on Advances in Language and Vision Research (ALVR)},
year={2024}
} |