Datasets:
Tasks:
Image Classification
Modalities:
Image
Formats:
parquet
Sub-tasks:
multi-class-image-classification
Languages:
English
Size:
100K - 1M
File size: 7,545 Bytes
dfd36e9 200479b 4b908d8 200479b dfd36e9 b034bc8 dfd36e9 03766a6 dfd36e9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 |
---
annotations_creators:
- crowdsourced
language:
- en
language_creators:
- crowdsourced
license: []
multilinguality:
- monolingual
paperswithcode_id: imagenet
pretty_name: Tiny-ImageNet
size_categories:
- 100K<n<1M
source_datasets:
- extended|imagenet-1k
task_categories:
- image-classification
task_ids:
- multi-class-image-classification
dataset_info:
features:
- name: image
dtype: image
- name: label
dtype:
class_label:
names:
'0': n01443537
'1': n01629819
'2': n01641577
'3': n01644900
'4': n01698640
'5': n01742172
'6': n01768244
'7': n01770393
'8': n01774384
'9': n01774750
'10': n01784675
'11': n01855672
'12': n01882714
'13': n01910747
'14': n01917289
'15': n01944390
'16': n01945685
'17': n01950731
'18': n01983481
'19': n01984695
'20': n02002724
'21': n02056570
'22': n02058221
'23': n02074367
'24': n02085620
'25': n02094433
'26': n02099601
'27': n02099712
'28': n02106662
'29': n02113799
'30': n02123045
'31': n02123394
'32': n02124075
'33': n02125311
'34': n02129165
'35': n02132136
'36': n02165456
'37': n02190166
'38': n02206856
'39': n02226429
'40': n02231487
'41': n02233338
'42': n02236044
'43': n02268443
'44': n02279972
'45': n02281406
'46': n02321529
'47': n02364673
'48': n02395406
'49': n02403003
'50': n02410509
'51': n02415577
'52': n02423022
'53': n02437312
'54': n02480495
'55': n02481823
'56': n02486410
'57': n02504458
'58': n02509815
'59': n02666196
'60': n02669723
'61': n02699494
'62': n02730930
'63': n02769748
'64': n02788148
'65': n02791270
'66': n02793495
'67': n02795169
'68': n02802426
'69': n02808440
'70': n02814533
'71': n02814860
'72': n02815834
'73': n02823428
'74': n02837789
'75': n02841315
'76': n02843684
'77': n02883205
'78': n02892201
'79': n02906734
'80': n02909870
'81': n02917067
'82': n02927161
'83': n02948072
'84': n02950826
'85': n02963159
'86': n02977058
'87': n02988304
'88': n02999410
'89': n03014705
'90': n03026506
'91': n03042490
'92': n03085013
'93': n03089624
'94': n03100240
'95': n03126707
'96': n03160309
'97': n03179701
'98': n03201208
'99': n03250847
'100': n03255030
'101': n03355925
'102': n03388043
'103': n03393912
'104': n03400231
'105': n03404251
'106': n03424325
'107': n03444034
'108': n03447447
'109': n03544143
'110': n03584254
'111': n03599486
'112': n03617480
'113': n03637318
'114': n03649909
'115': n03662601
'116': n03670208
'117': n03706229
'118': n03733131
'119': n03763968
'120': n03770439
'121': n03796401
'122': n03804744
'123': n03814639
'124': n03837869
'125': n03838899
'126': n03854065
'127': n03891332
'128': n03902125
'129': n03930313
'130': n03937543
'131': n03970156
'132': n03976657
'133': n03977966
'134': n03980874
'135': n03983396
'136': n03992509
'137': n04008634
'138': n04023962
'139': n04067472
'140': n04070727
'141': n04074963
'142': n04099969
'143': n04118538
'144': n04133789
'145': n04146614
'146': n04149813
'147': n04179913
'148': n04251144
'149': n04254777
'150': n04259630
'151': n04265275
'152': n04275548
'153': n04285008
'154': n04311004
'155': n04328186
'156': n04356056
'157': n04366367
'158': n04371430
'159': n04376876
'160': n04398044
'161': n04399382
'162': n04417672
'163': n04456115
'164': n04465501
'165': n04486054
'166': n04487081
'167': n04501370
'168': n04507155
'169': n04532106
'170': n04532670
'171': n04540053
'172': n04560804
'173': n04562935
'174': n04596742
'175': n04597913
'176': n06596364
'177': n07579787
'178': n07583066
'179': n07614500
'180': n07615774
'181': n07695742
'182': n07711569
'183': n07715103
'184': n07720875
'185': n07734744
'186': n07747607
'187': n07749582
'188': n07753592
'189': n07768694
'190': n07871810
'191': n07873807
'192': n07875152
'193': n07920052
'194': n09193705
'195': n09246464
'196': n09256479
'197': n09332890
'198': n09428293
'199': n12267677
splits:
- name: train
num_bytes: 192793264.38
num_examples: 98179
- name: validation
num_bytes: 9626623.079
num_examples: 4909
- name: test
num_bytes: 9642629.914
num_examples: 4923
download_size: 165987322
dataset_size: 212062517.373
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
- split: validation
path: data/validation-*
- split: test
path: data/test-*
---
# Dataset Card for tiny-imagenet-200-clean
## Dataset Description
- **Homepage:** https://www.kaggle.com/c/tiny-imagenet
- **Repository:** [Needs More Information]
- **Paper:** http://cs231n.stanford.edu/reports/2017/pdfs/930.pdf
- **Leaderboard:** https://paperswithcode.com/sota/image-classification-on-tiny-imagenet-1
### Dataset Summary
The original Tiny ImageNet contained 100000 images of 200 classes (500 for each class) downsized to 64×64 colored images. Each class has 500 training images, 50 validation images, and 50 test images.
This clean version removed grey scale images and only kept RGB images.
### Languages
The class labels in the dataset are in English.
## Dataset Structure
### Data Instances
```json
{
'image': <PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=64x64 at 0x1A800E8E190,
'label': 15
}
```
### Data Fields
- image: A PIL.Image.Image object containing the image.
- label: an int classification label.
### Data Splits
| | Train | Validation | Test |
| ------------ | ------ | ----- |-----------|
| # of samples | 98179 | 4909 | 4923 |
## Usage
### Example
#### Load Dataset
```python
def example_usage():
tiny_imagenet = load_dataset('slegroux/tiny-imagenet-200-clean', split='train')
print(tiny_imagenet[0])
if __name__ == '__main__':
example_usage()
``` |