code
stringlengths
3
1.05M
repo_name
stringlengths
5
104
path
stringlengths
4
251
language
stringclasses
1 value
license
stringclasses
15 values
size
int64
3
1.05M
# -*- coding: utf-8 -*- import datetime from south.db import db from south.v2 import SchemaMigration from django.db import models class Migration(SchemaMigration): def forwards(self, orm): # Adding model 'Post' db.create_table(u'blog_post', ( (u'id', self.gf('django.db.models.fields.AutoField')(primary_key=True)), ('created', self.gf('django.db.models.fields.DateTimeField')(auto_now_add=True, blank=True)), ('changed', self.gf('django.db.models.fields.DateTimeField')(auto_now=True, blank=True)), ('title', self.gf('django.db.models.fields.CharField')(max_length=255)), ('uuid', self.gf('django.db.models.fields.CharField')(unique=True, max_length=255)), ('author', self.gf('django.db.models.fields.related.ForeignKey')(to=orm['auth.User'])), ('pubdate', self.gf('django.db.models.fields.DateTimeField')(default=datetime.datetime(2013, 5, 18, 0, 0))), ('status', self.gf('django.db.models.fields.CharField')(max_length=1)), ('body', self.gf('django.db.models.fields.TextField')()), ('drupal_id', self.gf('django.db.models.fields.IntegerField')(unique=True, null=True, blank=True)), )) db.send_create_signal(u'blog', ['Post']) # Adding model 'Image' db.create_table(u'blog_image', ( (u'id', self.gf('django.db.models.fields.AutoField')(primary_key=True)), ('created', self.gf('django.db.models.fields.DateTimeField')(auto_now_add=True, blank=True)), ('changed', self.gf('django.db.models.fields.DateTimeField')(auto_now=True, blank=True)), ('title', self.gf('django.db.models.fields.CharField')(max_length=255)), ('uuid', self.gf('django.db.models.fields.CharField')(unique=True, max_length=255)), ('alt', self.gf('django.db.models.fields.CharField')(max_length=255, blank=True)), ('status', self.gf('django.db.models.fields.BooleanField')(default=True)), ('image', self.gf('django.db.models.fields.files.ImageField')(max_length=100)), ('post', self.gf('django.db.models.fields.related.ForeignKey')(to=orm['blog.Post'])), )) db.send_create_signal(u'blog', ['Image']) def backwards(self, orm): # Deleting model 'Post' db.delete_table(u'blog_post') # Deleting model 'Image' db.delete_table(u'blog_image') models = { u'auth.group': { 'Meta': {'object_name': 'Group'}, u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'unique': 'True', 'max_length': '80'}), 'permissions': ('django.db.models.fields.related.ManyToManyField', [], {'to': u"orm['auth.Permission']", 'symmetrical': 'False', 'blank': 'True'}) }, u'auth.permission': { 'Meta': {'ordering': "(u'content_type__app_label', u'content_type__model', u'codename')", 'unique_together': "((u'content_type', u'codename'),)", 'object_name': 'Permission'}, 'codename': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'content_type': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['contenttypes.ContentType']"}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '50'}) }, u'auth.user': { 'Meta': {'object_name': 'User'}, 'date_joined': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now'}), 'email': ('django.db.models.fields.EmailField', [], {'max_length': '75', 'blank': 'True'}), 'first_name': ('django.db.models.fields.CharField', [], {'max_length': '30', 'blank': 'True'}), 'groups': ('django.db.models.fields.related.ManyToManyField', [], {'to': u"orm['auth.Group']", 'symmetrical': 'False', 'blank': 'True'}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'is_active': ('django.db.models.fields.BooleanField', [], {'default': 'True'}), 'is_staff': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'is_superuser': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'last_login': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now'}), 'last_name': ('django.db.models.fields.CharField', [], {'max_length': '30', 'blank': 'True'}), 'password': ('django.db.models.fields.CharField', [], {'max_length': '128'}), 'user_permissions': ('django.db.models.fields.related.ManyToManyField', [], {'to': u"orm['auth.Permission']", 'symmetrical': 'False', 'blank': 'True'}), 'username': ('django.db.models.fields.CharField', [], {'unique': 'True', 'max_length': '30'}) }, u'blog.image': { 'Meta': {'ordering': "['-post__pubdate', '-created']", 'object_name': 'Image'}, 'alt': ('django.db.models.fields.CharField', [], {'max_length': '255', 'blank': 'True'}), 'changed': ('django.db.models.fields.DateTimeField', [], {'auto_now': 'True', 'blank': 'True'}), 'created': ('django.db.models.fields.DateTimeField', [], {'auto_now_add': 'True', 'blank': 'True'}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'image': ('django.db.models.fields.files.ImageField', [], {'max_length': '100'}), 'post': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['blog.Post']"}), 'status': ('django.db.models.fields.BooleanField', [], {'default': 'True'}), 'title': ('django.db.models.fields.CharField', [], {'max_length': '255'}), 'uuid': ('django.db.models.fields.CharField', [], {'unique': 'True', 'max_length': '255'}) }, u'blog.post': { 'Meta': {'ordering': "['-pubdate']", 'object_name': 'Post'}, 'author': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['auth.User']"}), 'body': ('django.db.models.fields.TextField', [], {}), 'changed': ('django.db.models.fields.DateTimeField', [], {'auto_now': 'True', 'blank': 'True'}), 'created': ('django.db.models.fields.DateTimeField', [], {'auto_now_add': 'True', 'blank': 'True'}), 'drupal_id': ('django.db.models.fields.IntegerField', [], {'unique': 'True', 'null': 'True', 'blank': 'True'}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'pubdate': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime(2013, 5, 18, 0, 0)'}), 'status': ('django.db.models.fields.CharField', [], {'max_length': '1'}), 'title': ('django.db.models.fields.CharField', [], {'max_length': '255'}), 'uuid': ('django.db.models.fields.CharField', [], {'unique': 'True', 'max_length': '255'}) }, u'contenttypes.contenttype': { 'Meta': {'ordering': "('name',)", 'unique_together': "(('app_label', 'model'),)", 'object_name': 'ContentType', 'db_table': "'django_content_type'"}, 'app_label': ('django.db.models.fields.CharField', [], {'max_length': '100'}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'model': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '100'}) } } complete_apps = ['blog']
megaprojectske/megaprojects.co.ke
megaprojects/blog/migrations/0001_initial.py
Python
apache-2.0
7,726
from linecache import getline, clearcache, checkcache from datetime import datetime import os ''' with open('fort.63', 'r') as f: for i in range(0,5): print f.readline() with open('fort.63', 'r') as f: end = len(f.readlines()) ''' #---enter # of nodes in mesh nnodes = 165290 #----nodes of interest node_list = [60643, 63290] #---number of recordings tsteps = 289 #directories to loop through if desired (one only should work fine) dirs = ['P:\\02\\LakeOntario\\Storm\\20080203','P:\\02\\LakeOntario\\Storm\\19701120', 'P:\\02\\LakeOntario\\Storm\\19710210','P:\\02\\LakeOntario\\Storm\\19731103', 'P:\\02\\LakeOntario\\Storm\\19710124'] clearcache() a = datetime.now() for i, d in enumerate(dirs): print d os.chdir(d) #----Read fort.63 clearcache() for cur_node in node_list: name = str(cur_node) with open('fort'+str(i) +'_'+ name +'.txt', 'w') as f: for j in range(cur_node,(tsteps-1)*nnodes,nnodes+1): if j == cur_node: f.write(getline('fort.63',j+3).rstrip() + '\n') else: #print i, getline('fort.63',i+3).rstrip() f.write(getline('fort.63',j+3).rstrip() +'\n') print os.getcwd(), 'maxele' clearcache() ''' #----Read swan_HS.63 for cur_node in node_list: with open('C:\Users\slawler\Desktop\\HS'+str(i) +'_'+ name +'.txt', 'w') as f: for i in range(cur_node,(tsteps-1)*nnodes,nnodes+1): if i == cur_node: f.write(getline('swan_HS.63',j+3).rstrip() + '\n') else: #print i, getline('swan_HS.63',j+3).rstrip() f.write(getline('swan_HS.63',j+3).rstrip() +'\n') print os.getcwd(), 'HS' clearcache() #----Read swan_TP.63 for cur_node in node_list: with open('C:\Users\slawler\Desktop\\TP'+str(i) +'_'+ name +'.txt', 'w') as f: for i in range(cur_node,(tsteps-1)*nnodes,nnodes+1): if i == cur_node: f.write(getline('swan_TP.63',j+3).rstrip() + '\n') else: #print i, getline('swan_TP.63',j+3).rstrip() f.write(getline('swan_TP.63',j+3).rstrip() +'\n') print os.getcwd(), 'TP' clearcache() ''' b = datetime.now() print b-a #---For 5 storms: 0:09:14.214000
jdorvi/CSHORE
extract_adcirc_63/extract63.py
Python
apache-2.0
2,541
# # File : utils.py # This file is part of RT-Thread RTOS # COPYRIGHT (C) 2006 - 2015, RT-Thread Development Team # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License along # with this program; if not, write to the Free Software Foundation, Inc., # 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. # # Change Logs: # Date Author Notes # 2015-01-20 Bernard Add copyright information # import sys import os def splitall(loc): """ Return a list of the path components in loc. (Used by relpath_). The first item in the list will be either ``os.curdir``, ``os.pardir``, empty, or the root directory of loc (for example, ``/`` or ``C:\\). The other items in the list will be strings. Adapted from *path.py* by Jason Orendorff. """ parts = [] while loc != os.curdir and loc != os.pardir: prev = loc loc, child = os.path.split(prev) if loc == prev: break parts.append(child) parts.append(loc) parts.reverse() return parts def _make_path_relative(origin, dest): """ Return the relative path between origin and dest. If it's not possible return dest. If they are identical return ``os.curdir`` Adapted from `path.py <http://www.jorendorff.com/articles/python/path/>`_ by Jason Orendorff. """ origin = os.path.abspath(origin).replace('\\', '/') dest = os.path.abspath(dest).replace('\\', '/') # orig_list = splitall(os.path.normcase(origin)) # Don't normcase dest! We want to preserve the case. dest_list = splitall(dest) # if orig_list[0] != os.path.normcase(dest_list[0]): # Can't get here from there. return dest # # Find the location where the two paths start to differ. i = 0 for start_seg, dest_seg in zip(orig_list, dest_list): if start_seg != os.path.normcase(dest_seg): break i += 1 # # Now i is the point where the two paths diverge. # Need a certain number of "os.pardir"s to work up # from the origin to the point of divergence. segments = [os.pardir] * (len(orig_list) - i) # Need to add the diverging part of dest_list. segments += dest_list[i:] if len(segments) == 0: # If they happen to be identical, use os.curdir. return os.curdir else: # return os.path.join(*segments).replace('\\', '/') return os.path.join(*segments) def xml_indent(elem, level=0): i = "\n" + level*" " if len(elem): if not elem.text or not elem.text.strip(): elem.text = i + " " if not elem.tail or not elem.tail.strip(): elem.tail = i for elem in elem: xml_indent(elem, level+1) if not elem.tail or not elem.tail.strip(): elem.tail = i else: if level and (not elem.tail or not elem.tail.strip()): elem.tail = i source_ext = ["c", "h", "s", "S", "cpp", "xpm"] source_list = [] def walk_children(child): global source_list global source_ext # print child full_path = child.rfile().abspath file_type = full_path.rsplit('.',1)[1] #print file_type if file_type in source_ext: if full_path not in source_list: source_list.append(full_path) children = child.all_children() if children != []: for item in children: walk_children(item)
aozima/rt-thread
tools/utils.py
Python
gpl-2.0
3,953
# # pyip is a Python package offering assembling/disassembling of raw ip packet # including ip, udp, and icmp. Also it includes 2 utilities based on raw ip, # traceroute and ping. # # pyip is released under PYTHON SOFTWARE FOUNDATION LICENSE VERSION 2, and is # a project inspired by 'ping' written by Jeremy Hylton. # # Author: Kenneth Jiang, [email protected] # """Internet packet basic Simple operations like performing checksums and swapping byte orders. """ #from _ip import * import array import struct from socket import htons, ntohs def cksum(s): if len(s) & 1: s = s + '\0' words = array.array('h', s) sum = 0 for word in words: sum = sum + (word & 0xffff) hi = sum >> 16 lo = sum & 0xffff sum = hi + lo sum = sum + (sum >> 16) return (~sum) & 0xffff # Should generalize from the *h2net patterns # This python code is suboptimal because it is based on C code where # it doesn't cost much to take a raw buffer and treat a section of it # as a u_short. # ntohs on Solaris has problem when MSB is set. Replace it with # struct 'H' and '!H' format def __ntohs(s): return struct.pack('H', struct.unpack('!H', s)[0]) def __htons(s): return struct.pack('!H', struct.unpack('H', s)[0]) def iph2net(s): return s[:2] + __htons(s[2:4]) + __htons(s[4:6]) + __htons(s[6:8]) + s[8:] def net2iph(s): return s[:2] + __ntohs(s[2:4]) + __ntohs(s[4:6]) + __ntohs(s[6:8]) + s[8:] def udph2net(s): return __htons(s[0:2]) + __htons(s[2:4]) + __htons(s[4:6]) + s[6:] def net2updh(s): return __ntohs(s[0:2]) + __ntohs(s[2:4]) + __ntohs(s[4:6]) + s[6:]
Zulan/PBStats
tests/fix_upload_bug/Linux/python3-pyip-0.7/inetutils.py
Python
gpl-2.0
1,635
# -*- coding: utf-8 -*- from __future__ import unicode_literals import re import string from typing import Any from typing import Generator from typing import List from typing import Optional from typing import Tuple from typing import Union from ._compat import chr from ._compat import decode from ._utils import RFC_3339_LOOSE from ._utils import _escaped from ._utils import parse_rfc3339 from .container import Container from .exceptions import EmptyKeyError from .exceptions import EmptyTableNameError from .exceptions import InternalParserError from .exceptions import InvalidCharInStringError from .exceptions import InvalidControlChar from .exceptions import InvalidDateError from .exceptions import InvalidDateTimeError from .exceptions import InvalidNumberError from .exceptions import InvalidTimeError from .exceptions import InvalidUnicodeValueError from .exceptions import ParseError from .exceptions import UnexpectedCharError from .exceptions import UnexpectedEofError from .items import AoT from .items import Array from .items import Bool from .items import BoolType from .items import Comment from .items import Date from .items import DateTime from .items import Float from .items import InlineTable from .items import Integer from .items import Item from .items import Key from .items import KeyType from .items import Null from .items import String from .items import StringType from .items import Table from .items import Time from .items import Trivia from .items import Whitespace from .source import Source from .toml_char import TOMLChar from .toml_document import TOMLDocument CTRL_I = 0x09 # Tab CTRL_J = 0x0A # Line feed CTRL_M = 0x0D # Carriage return CTRL_CHAR_LIMIT = 0x1F CHR_DEL = 0x7F class Parser: """ Parser for TOML documents. """ def __init__(self, string): # type: (str) -> None # Input to parse self._src = Source(decode(string)) self._aot_stack = [] @property def _state(self): return self._src.state @property def _idx(self): return self._src.idx @property def _current(self): return self._src.current @property def _marker(self): return self._src.marker def extract(self): # type: () -> str """ Extracts the value between marker and index """ return self._src.extract() def inc(self, exception=None): # type: (Optional[ParseError.__class__]) -> bool """ Increments the parser if the end of the input has not been reached. Returns whether or not it was able to advance. """ return self._src.inc(exception=exception) def inc_n(self, n, exception=None): # type: (int, Optional[ParseError]) -> bool """ Increments the parser by n characters if the end of the input has not been reached. """ return self._src.inc_n(n=n, exception=exception) def consume(self, chars, min=0, max=-1): """ Consume chars until min/max is satisfied is valid. """ return self._src.consume(chars=chars, min=min, max=max) def end(self): # type: () -> bool """ Returns True if the parser has reached the end of the input. """ return self._src.end() def mark(self): # type: () -> None """ Sets the marker to the index's current position """ self._src.mark() def parse_error(self, exception=ParseError, *args): """ Creates a generic "parse error" at the current position. """ return self._src.parse_error(exception, *args) def parse(self): # type: () -> TOMLDocument body = TOMLDocument(True) # Take all keyvals outside of tables/AoT's. while not self.end(): # Break out if a table is found if self._current == "[": break # Otherwise, take and append one KV item = self._parse_item() if not item: break key, value = item if key is not None and key.is_dotted(): # We actually have a table self._handle_dotted_key(body, key, value) elif not self._merge_ws(value, body): body.append(key, value) self.mark() while not self.end(): key, value = self._parse_table() if isinstance(value, Table) and value.is_aot_element(): # This is just the first table in an AoT. Parse the rest of the array # along with it. value = self._parse_aot(value, key.key) body.append(key, value) body.parsing(False) return body def _merge_ws(self, item, container): # type: (Item, Container) -> bool """ Merges the given Item with the last one currently in the given Container if both are whitespace items. Returns True if the items were merged. """ last = container.last_item() if not last: return False if not isinstance(item, Whitespace) or not isinstance(last, Whitespace): return False start = self._idx - (len(last.s) + len(item.s)) container.body[-1] = ( container.body[-1][0], Whitespace(self._src[start : self._idx]), ) return True def _is_child(self, parent, child): # type: (str, str) -> bool """ Returns whether a key is strictly a child of another key. AoT siblings are not considered children of one another. """ parent_parts = tuple(self._split_table_name(parent)) child_parts = tuple(self._split_table_name(child)) if parent_parts == child_parts: return False return parent_parts == child_parts[: len(parent_parts)] def _split_table_name(self, name): # type: (str) -> Generator[Key] in_name = False current = "" t = KeyType.Bare parts = 0 for c in name: c = TOMLChar(c) if c == ".": if in_name: current += c continue if not current: raise self.parse_error() yield Key(current.strip(), t=t, sep="", original=current) parts += 1 current = "" t = KeyType.Bare continue elif c in {"'", '"'}: if in_name: if ( t == KeyType.Literal and c == '"' or t == KeyType.Basic and c == "'" ): current += c continue if c != t.value: raise self.parse_error() in_name = False else: if ( current.strip() and TOMLChar(current[-1]).is_spaces() and not parts ): raise self.parse_error() in_name = True t = KeyType.Literal if c == "'" else KeyType.Basic continue elif in_name or c.is_bare_key_char(): current += c elif c.is_spaces(): # A space is only valid at this point # if it's in between parts. # We store it for now and will check # later if it's valid current += c continue else: raise self.parse_error() if current.strip(): yield Key(current.strip(), t=t, sep="", original=current) def _parse_item(self): # type: () -> Optional[Tuple[Optional[Key], Item]] """ Attempts to parse the next item and returns it, along with its key if the item is value-like. """ self.mark() with self._state as state: while True: c = self._current if c == "\n": # Found a newline; Return all whitespace found up to this point. self.inc() return None, Whitespace(self.extract()) elif c in " \t\r": # Skip whitespace. if not self.inc(): return None, Whitespace(self.extract()) elif c == "#": # Found a comment, parse it indent = self.extract() cws, comment, trail = self._parse_comment_trail() return None, Comment(Trivia(indent, cws, comment, trail)) elif c == "[": # Found a table, delegate to the calling function. return else: # Begining of a KV pair. # Return to beginning of whitespace so it gets included # as indentation for the KV about to be parsed. state.restore = True break return self._parse_key_value(True) def _parse_comment_trail(self): # type: () -> Tuple[str, str, str] """ Returns (comment_ws, comment, trail) If there is no comment, comment_ws and comment will simply be empty. """ if self.end(): return "", "", "" comment = "" comment_ws = "" self.mark() while True: c = self._current if c == "\n": break elif c == "#": comment_ws = self.extract() self.mark() self.inc() # Skip # # The comment itself while not self.end() and not self._current.is_nl(): code = ord(self._current) if code == CHR_DEL or code <= CTRL_CHAR_LIMIT and code != CTRL_I: raise self.parse_error(InvalidControlChar, code, "comments") if not self.inc(): break comment = self.extract() self.mark() break elif c in " \t\r": self.inc() else: raise self.parse_error(UnexpectedCharError, c) if self.end(): break while self._current.is_spaces() and self.inc(): pass if self._current == "\r": self.inc() if self._current == "\n": self.inc() trail = "" if self._idx != self._marker or self._current.is_ws(): trail = self.extract() return comment_ws, comment, trail def _parse_key_value(self, parse_comment=False): # type: (bool) -> (Key, Item) # Leading indent self.mark() while self._current.is_spaces() and self.inc(): pass indent = self.extract() # Key key = self._parse_key() self.mark() found_equals = self._current == "=" while self._current.is_kv_sep() and self.inc(): if self._current == "=": if found_equals: raise self.parse_error(UnexpectedCharError, "=") else: found_equals = True pass if not key.sep: key.sep = self.extract() else: key.sep += self.extract() # Value val = self._parse_value() # Comment if parse_comment: cws, comment, trail = self._parse_comment_trail() meta = val.trivia if not meta.comment_ws: meta.comment_ws = cws meta.comment = comment meta.trail = trail else: val.trivia.trail = "" val.trivia.indent = indent return key, val def _parse_key(self): # type: () -> Key """ Parses a Key at the current position; WS before the key must be exhausted first at the callsite. """ if self._current in "\"'": return self._parse_quoted_key() else: return self._parse_bare_key() def _parse_quoted_key(self): # type: () -> Key """ Parses a key enclosed in either single or double quotes. """ quote_style = self._current key_type = None dotted = False for t in KeyType: if t.value == quote_style: key_type = t break if key_type is None: raise RuntimeError("Should not have entered _parse_quoted_key()") self.inc() self.mark() while self._current != quote_style and self.inc(): pass key = self.extract() if self._current == ".": self.inc() dotted = True key += "." + self._parse_key().as_string() key_type = KeyType.Bare else: self.inc() return Key(key, key_type, "", dotted) def _parse_bare_key(self): # type: () -> Key """ Parses a bare key. """ key_type = None dotted = False self.mark() while ( self._current.is_bare_key_char() or self._current.is_spaces() ) and self.inc(): pass original = self.extract() key = original.strip() if not key: # Empty key raise self.parse_error(ParseError, "Empty key found") if " " in key: # Bare key with spaces in it raise self.parse_error(ParseError, 'Invalid key "{}"'.format(key)) if self._current == ".": self.inc() dotted = True original += "." + self._parse_key().as_string() key = original.strip() key_type = KeyType.Bare return Key(key, key_type, "", dotted, original=original) def _handle_dotted_key( self, container, key, value ): # type: (Union[Container, Table], Key, Any) -> None names = tuple(self._split_table_name(key.as_string())) name = names[0] name._dotted = True if name in container: if not isinstance(value, Table): table = Table(Container(True), Trivia(), False, is_super_table=True) _table = table for i, _name in enumerate(names[1:]): if i == len(names) - 2: _name.sep = key.sep _table.append(_name, value) else: _name._dotted = True _table.append( _name, Table( Container(True), Trivia(), False, is_super_table=i < len(names) - 2, ), ) _table = _table[_name] value = table container.append(name, value) return else: table = Table(Container(True), Trivia(), False, is_super_table=True) if isinstance(container, Table): container.raw_append(name, table) else: container.append(name, table) for i, _name in enumerate(names[1:]): if i == len(names) - 2: _name.sep = key.sep table.append(_name, value) else: _name._dotted = True if _name in table.value: table = table.value[_name] else: table.append( _name, Table( Container(True), Trivia(), False, is_super_table=i < len(names) - 2, ), ) table = table[_name] def _parse_value(self): # type: () -> Item """ Attempts to parse a value at the current position. """ self.mark() c = self._current trivia = Trivia() if c == StringType.SLB.value: return self._parse_basic_string() elif c == StringType.SLL.value: return self._parse_literal_string() elif c == BoolType.TRUE.value[0]: return self._parse_true() elif c == BoolType.FALSE.value[0]: return self._parse_false() elif c == "[": return self._parse_array() elif c == "{": return self._parse_inline_table() elif c in "+-" or self._peek(4) in { "+inf", "-inf", "inf", "+nan", "-nan", "nan", }: # Number while self._current not in " \t\n\r#,]}" and self.inc(): pass raw = self.extract() item = self._parse_number(raw, trivia) if item is not None: return item raise self.parse_error(InvalidNumberError) elif c in string.digits: # Integer, Float, Date, Time or DateTime while self._current not in " \t\n\r#,]}" and self.inc(): pass raw = self.extract() m = RFC_3339_LOOSE.match(raw) if m: if m.group(1) and m.group(5): # datetime try: dt = parse_rfc3339(raw) return DateTime( dt.year, dt.month, dt.day, dt.hour, dt.minute, dt.second, dt.microsecond, dt.tzinfo, trivia, raw, ) except ValueError: raise self.parse_error(InvalidDateTimeError) if m.group(1): try: dt = parse_rfc3339(raw) date = Date(dt.year, dt.month, dt.day, trivia, raw) self.mark() while self._current not in "\t\n\r#,]}" and self.inc(): pass time_raw = self.extract() if not time_raw.strip(): trivia.comment_ws = time_raw return date dt = parse_rfc3339(raw + time_raw) return DateTime( dt.year, dt.month, dt.day, dt.hour, dt.minute, dt.second, dt.microsecond, dt.tzinfo, trivia, raw + time_raw, ) except ValueError: raise self.parse_error(InvalidDateError) if m.group(5): try: t = parse_rfc3339(raw) return Time( t.hour, t.minute, t.second, t.microsecond, t.tzinfo, trivia, raw, ) except ValueError: raise self.parse_error(InvalidTimeError) item = self._parse_number(raw, trivia) if item is not None: return item raise self.parse_error(InvalidNumberError) else: raise self.parse_error(UnexpectedCharError, c) def _parse_true(self): return self._parse_bool(BoolType.TRUE) def _parse_false(self): return self._parse_bool(BoolType.FALSE) def _parse_bool(self, style): # type: (BoolType) -> Bool with self._state: style = BoolType(style) # only keep parsing for bool if the characters match the style # try consuming rest of chars in style for c in style: self.consume(c, min=1, max=1) return Bool(style, Trivia()) def _parse_array(self): # type: () -> Array # Consume opening bracket, EOF here is an issue (middle of array) self.inc(exception=UnexpectedEofError) elems = [] # type: List[Item] prev_value = None while True: # consume whitespace mark = self._idx self.consume(TOMLChar.SPACES) newline = self.consume(TOMLChar.NL) indent = self._src[mark : self._idx] if newline: elems.append(Whitespace(indent)) continue # consume comment if self._current == "#": cws, comment, trail = self._parse_comment_trail() elems.append(Comment(Trivia(indent, cws, comment, trail))) continue # consume indent if indent: elems.append(Whitespace(indent)) continue # consume value if not prev_value: try: elems.append(self._parse_value()) prev_value = True continue except UnexpectedCharError: pass # consume comma if prev_value and self._current == ",": self.inc(exception=UnexpectedEofError) elems.append(Whitespace(",")) prev_value = False continue # consume closing bracket if self._current == "]": # consume closing bracket, EOF here doesn't matter self.inc() break raise self.parse_error(UnexpectedCharError, self._current) try: res = Array(elems, Trivia()) except ValueError: pass else: return res def _parse_inline_table(self): # type: () -> InlineTable # consume opening bracket, EOF here is an issue (middle of array) self.inc(exception=UnexpectedEofError) elems = Container(True) trailing_comma = None while True: # consume leading whitespace mark = self._idx self.consume(TOMLChar.SPACES) raw = self._src[mark : self._idx] if raw: elems.add(Whitespace(raw)) if not trailing_comma: # None: empty inline table # False: previous key-value pair was not followed by a comma if self._current == "}": # consume closing bracket, EOF here doesn't matter self.inc() break if ( trailing_comma is False or trailing_comma is None and self._current == "," ): # Either the previous key-value pair was not followed by a comma # or the table has an unexpected leading comma. raise self.parse_error(UnexpectedCharError, self._current) else: # True: previous key-value pair was followed by a comma if self._current == "}" or self._current == ",": raise self.parse_error(UnexpectedCharError, self._current) key, val = self._parse_key_value(False) if key.is_dotted(): self._handle_dotted_key(elems, key, val) else: elems.add(key, val) # consume trailing whitespace mark = self._idx self.consume(TOMLChar.SPACES) raw = self._src[mark : self._idx] if raw: elems.add(Whitespace(raw)) # consume trailing comma trailing_comma = self._current == "," if trailing_comma: # consume closing bracket, EOF here is an issue (middle of inline table) self.inc(exception=UnexpectedEofError) return InlineTable(elems, Trivia()) def _parse_number(self, raw, trivia): # type: (str, Trivia) -> Optional[Item] # Leading zeros are not allowed sign = "" if raw.startswith(("+", "-")): sign = raw[0] raw = raw[1:] if ( len(raw) > 1 and raw.startswith("0") and not raw.startswith(("0.", "0o", "0x", "0b", "0e")) ): return if raw.startswith(("0o", "0x", "0b")) and sign: return digits = "[0-9]" base = 10 if raw.startswith("0b"): digits = "[01]" base = 2 elif raw.startswith("0o"): digits = "[0-7]" base = 8 elif raw.startswith("0x"): digits = "[0-9a-f]" base = 16 # Underscores should be surrounded by digits clean = re.sub("(?i)(?<={})_(?={})".format(digits, digits), "", raw) if "_" in clean: return if clean.endswith("."): return try: return Integer(int(sign + clean, base), trivia, sign + raw) except ValueError: try: return Float(float(sign + clean), trivia, sign + raw) except ValueError: return def _parse_literal_string(self): # type: () -> String with self._state: return self._parse_string(StringType.SLL) def _parse_basic_string(self): # type: () -> String with self._state: return self._parse_string(StringType.SLB) def _parse_escaped_char(self, multiline): if multiline and self._current.is_ws(): # When the last non-whitespace character on a line is # a \, it will be trimmed along with all whitespace # (including newlines) up to the next non-whitespace # character or closing delimiter. # """\ # hello \ # world""" tmp = "" while self._current.is_ws(): tmp += self._current # consume the whitespace, EOF here is an issue # (middle of string) self.inc(exception=UnexpectedEofError) continue # the escape followed by whitespace must have a newline # before any other chars if "\n" not in tmp: raise self.parse_error(InvalidCharInStringError, self._current) return "" if self._current in _escaped: c = _escaped[self._current] # consume this char, EOF here is an issue (middle of string) self.inc(exception=UnexpectedEofError) return c if self._current in {"u", "U"}: # this needs to be a unicode u, ue = self._peek_unicode(self._current == "U") if u is not None: # consume the U char and the unicode value self.inc_n(len(ue) + 1) return u raise self.parse_error(InvalidUnicodeValueError) raise self.parse_error(InvalidCharInStringError, self._current) def _parse_string(self, delim): # type: (StringType) -> String # only keep parsing for string if the current character matches the delim if self._current != delim.unit: raise self.parse_error( InternalParserError, "Invalid character for string type {}".format(delim), ) # consume the opening/first delim, EOF here is an issue # (middle of string or middle of delim) self.inc(exception=UnexpectedEofError) if self._current == delim.unit: # consume the closing/second delim, we do not care if EOF occurs as # that would simply imply an empty single line string if not self.inc() or self._current != delim.unit: # Empty string return String(delim, "", "", Trivia()) # consume the third delim, EOF here is an issue (middle of string) self.inc(exception=UnexpectedEofError) delim = delim.toggle() # convert delim to multi delim self.mark() # to extract the original string with whitespace and all value = "" # A newline immediately following the opening delimiter will be trimmed. if delim.is_multiline() and self._current == "\n": # consume the newline, EOF here is an issue (middle of string) self.inc(exception=UnexpectedEofError) escaped = False # whether the previous key was ESCAPE while True: code = ord(self._current) if ( delim.is_singleline() and not escaped and (code == CHR_DEL or code <= CTRL_CHAR_LIMIT and code != CTRL_I) ): raise self.parse_error(InvalidControlChar, code, "strings") elif ( delim.is_multiline() and not escaped and ( code == CHR_DEL or code <= CTRL_CHAR_LIMIT and code not in [CTRL_I, CTRL_J, CTRL_M] ) ): raise self.parse_error(InvalidControlChar, code, "strings") elif not escaped and self._current == delim.unit: # try to process current as a closing delim original = self.extract() close = "" if delim.is_multiline(): # Consume the delimiters to see if we are at the end of the string close = "" while self._current == delim.unit: close += self._current self.inc() if len(close) < 3: # Not a triple quote, leave in result as-is. # Adding back the characters we already consumed value += close continue if len(close) == 3: # We are at the end of the string return String(delim, value, original, Trivia()) if len(close) >= 6: raise self.parse_error(InvalidCharInStringError, self._current) value += close[:-3] original += close[:-3] return String(delim, value, original, Trivia()) else: # consume the closing delim, we do not care if EOF occurs as # that would simply imply the end of self._src self.inc() return String(delim, value, original, Trivia()) elif delim.is_basic() and escaped: # attempt to parse the current char as an escaped value, an exception # is raised if this fails value += self._parse_escaped_char(delim.is_multiline()) # no longer escaped escaped = False elif delim.is_basic() and self._current == "\\": # the next char is being escaped escaped = True # consume this char, EOF here is an issue (middle of string) self.inc(exception=UnexpectedEofError) else: # this is either a literal string where we keep everything as is, # or this is not a special escaped char in a basic string value += self._current # consume this char, EOF here is an issue (middle of string) self.inc(exception=UnexpectedEofError) def _parse_table( self, parent_name=None, parent=None ): # type: (Optional[str], Optional[Table]) -> Tuple[Key, Union[Table, AoT]] """ Parses a table element. """ if self._current != "[": raise self.parse_error( InternalParserError, "_parse_table() called on non-bracket character." ) indent = self.extract() self.inc() # Skip opening bracket if self.end(): raise self.parse_error(UnexpectedEofError) is_aot = False if self._current == "[": if not self.inc(): raise self.parse_error(UnexpectedEofError) is_aot = True # Consume any whitespace self.mark() while self._current.is_spaces() and self.inc(): pass ws_prefix = self.extract() # Key if self._current in [StringType.SLL.value, StringType.SLB.value]: delimiter = ( StringType.SLL if self._current == StringType.SLL.value else StringType.SLB ) name = self._parse_string(delimiter) name = "{delimiter}{name}{delimiter}".format( delimiter=delimiter.value, name=name ) self.mark() while self._current != "]" and self.inc(): if self.end(): raise self.parse_error(UnexpectedEofError) pass ws_suffix = self.extract() name += ws_suffix else: self.mark() while self._current != "]" and self.inc(): if self.end(): raise self.parse_error(UnexpectedEofError) pass name = self.extract() name = ws_prefix + name if not name.strip(): raise self.parse_error(EmptyTableNameError) key = Key(name, sep="") name_parts = tuple(self._split_table_name(name)) if any(" " in part.key.strip() and part.is_bare() for part in name_parts): raise self.parse_error(ParseError, 'Invalid table name "{}"'.format(name)) missing_table = False if parent_name: parent_name_parts = tuple(self._split_table_name(parent_name)) else: parent_name_parts = tuple() if len(name_parts) > len(parent_name_parts) + 1: missing_table = True name_parts = name_parts[len(parent_name_parts) :] values = Container(True) self.inc() # Skip closing bracket if is_aot: # TODO: Verify close bracket self.inc() cws, comment, trail = self._parse_comment_trail() result = Null() table = Table( values, Trivia(indent, cws, comment, trail), is_aot, name=name, display_name=name, ) if len(name_parts) > 1: if missing_table: # Missing super table # i.e. a table initialized like this: [foo.bar] # without initializing [foo] # # So we have to create the parent tables table = Table( Container(True), Trivia(indent, cws, comment, trail), is_aot and name_parts[0].key in self._aot_stack, is_super_table=True, name=name_parts[0].key, ) result = table key = name_parts[0] for i, _name in enumerate(name_parts[1:]): if _name in table: child = table[_name] else: child = Table( Container(True), Trivia(indent, cws, comment, trail), is_aot and i == len(name_parts[1:]) - 1, is_super_table=i < len(name_parts[1:]) - 1, name=_name.key, display_name=name if i == len(name_parts[1:]) - 1 else None, ) if is_aot and i == len(name_parts[1:]) - 1: table.append(_name, AoT([child], name=table.name, parsed=True)) else: table.append(_name, child) table = child values = table.value else: if name_parts: key = name_parts[0] while not self.end(): item = self._parse_item() if item: _key, item = item if not self._merge_ws(item, values): if _key is not None and _key.is_dotted(): self._handle_dotted_key(table, _key, item) else: table.raw_append(_key, item) else: if self._current == "[": is_aot_next, name_next = self._peek_table() if self._is_child(name, name_next): key_next, table_next = self._parse_table(name, table) table.raw_append(key_next, table_next) # Picking up any sibling while not self.end(): _, name_next = self._peek_table() if not self._is_child(name, name_next): break key_next, table_next = self._parse_table(name, table) table.raw_append(key_next, table_next) break else: raise self.parse_error( InternalParserError, "_parse_item() returned None on a non-bracket character.", ) if isinstance(result, Null): result = table if is_aot and (not self._aot_stack or name != self._aot_stack[-1]): result = self._parse_aot(result, name) return key, result def _peek_table(self): # type: () -> Tuple[bool, str] """ Peeks ahead non-intrusively by cloning then restoring the initial state of the parser. Returns the name of the table about to be parsed, as well as whether it is part of an AoT. """ # we always want to restore after exiting this scope with self._state(save_marker=True, restore=True): if self._current != "[": raise self.parse_error( InternalParserError, "_peek_table() entered on non-bracket character", ) # AoT self.inc() is_aot = False if self._current == "[": self.inc() is_aot = True self.mark() while self._current != "]" and self.inc(): table_name = self.extract() return is_aot, table_name def _parse_aot(self, first, name_first): # type: (Table, str) -> AoT """ Parses all siblings of the provided table first and bundles them into an AoT. """ payload = [first] self._aot_stack.append(name_first) while not self.end(): is_aot_next, name_next = self._peek_table() if is_aot_next and name_next == name_first: _, table = self._parse_table(name_first) payload.append(table) else: break self._aot_stack.pop() return AoT(payload, parsed=True) def _peek(self, n): # type: (int) -> str """ Peeks ahead n characters. n is the max number of characters that will be peeked. """ # we always want to restore after exiting this scope with self._state(restore=True): buf = "" for _ in range(n): if self._current not in " \t\n\r#,]}": buf += self._current self.inc() continue break return buf def _peek_unicode( self, is_long ): # type: (bool) -> Tuple[Optional[str], Optional[str]] """ Peeks ahead non-intrusively by cloning then restoring the initial state of the parser. Returns the unicode value is it's a valid one else None. """ # we always want to restore after exiting this scope with self._state(save_marker=True, restore=True): if self._current not in {"u", "U"}: raise self.parse_error( InternalParserError, "_peek_unicode() entered on non-unicode value" ) self.inc() # Dropping prefix self.mark() if is_long: chars = 8 else: chars = 4 if not self.inc_n(chars): value, extracted = None, None else: extracted = self.extract() if extracted[0].lower() == "d" and extracted[1].strip("01234567"): return None, None try: value = chr(int(extracted, 16)) except (ValueError, OverflowError): value = None return value, extracted
python-poetry/poetry-core
src/poetry/core/_vendor/tomlkit/parser.py
Python
mit
42,075
from setuptools import setup, find_packages setup( name="python-turbovote", version="0.0.2", author="Fight for the Future", author_email="", packages=find_packages(), license="LICENSE.txt", description="Python wrapper for the TurboVote API", long_description=open("README.txt").read(), install_requires=[ "requests >= 0.10.4"], )
fightforthefuture/python-turbovote
setup.py
Python
gpl-3.0
375
import pytest import pymasapi.client as client class Test_Asset_Liability: def setup_class(cls): cls.c = client.Client() def teardown_method(cls): cls.c = None @pytest.mark.parametrize("period,limit", [("m", 5), ("y", 5)]) def test_mas_asset_liability(cls, period, limit): ''' testing monthly/annual MAS Asset/Liability stats ''' data = cls.c.mas_asset_liability(period, limit) assert data is not None, "data should not be None"
laisee/pymasapi
test/test_pymaspi_mas_assetliab.py
Python
mit
489
# -*- coding: utf-8 -*- ''' Production Configurations - Use djangosecure - Use Amazon's S3 for storing static files and uploaded media - Use sendgrid to send emails - Use MEMCACHIER on Heroku ''' from configurations import values # See: http://django-storages.readthedocs.org/en/latest/backends/amazon-S3.html#settings try: from S3 import CallingFormat AWS_CALLING_FORMAT = CallingFormat.SUBDOMAIN except ImportError: # TODO: Fix this where even if in Dev this class is called. pass from .common import Common class Production(Common): # This ensures that Django will be able to detect a secure connection # properly on Heroku. SECURE_PROXY_SSL_HEADER = ('HTTP_X_FORWARDED_PROTO', 'https') # INSTALLED_APPS INSTALLED_APPS = Common.INSTALLED_APPS # END INSTALLED_APPS # SECRET KEY SECRET_KEY = values.SecretValue() # END SECRET KEY # django-secure INSTALLED_APPS += ("djangosecure", ) # set this to 60 seconds and then to 518400 when you can prove it works SECURE_HSTS_SECONDS = 60 SECURE_HSTS_INCLUDE_SUBDOMAINS = values.BooleanValue(True) SECURE_FRAME_DENY = values.BooleanValue(True) SECURE_CONTENT_TYPE_NOSNIFF = values.BooleanValue(True) SECURE_BROWSER_XSS_FILTER = values.BooleanValue(True) SESSION_COOKIE_SECURE = values.BooleanValue(False) SESSION_COOKIE_HTTPONLY = values.BooleanValue(True) SECURE_SSL_REDIRECT = values.BooleanValue(True) # end django-secure # SITE CONFIGURATION # Hosts/domain names that are valid for this site # See https://docs.djangoproject.com/en/1.6/ref/settings/#allowed-hosts ALLOWED_HOSTS = ["*"] # END SITE CONFIGURATION INSTALLED_APPS += ("gunicorn", ) # STORAGE CONFIGURATION # See: http://django-storages.readthedocs.org/en/latest/index.html INSTALLED_APPS += ( 'storages', ) # See: http://django-storages.readthedocs.org/en/latest/backends/amazon-S3.html#settings STATICFILES_STORAGE = DEFAULT_FILE_STORAGE = 'storages.backends.s3boto.S3BotoStorage' # See: http://django-storages.readthedocs.org/en/latest/backends/amazon-S3.html#settings AWS_ACCESS_KEY_ID = values.SecretValue() AWS_SECRET_ACCESS_KEY = values.SecretValue() AWS_STORAGE_BUCKET_NAME = values.SecretValue() AWS_AUTO_CREATE_BUCKET = True AWS_QUERYSTRING_AUTH = False # see: https://github.com/antonagestam/collectfast AWS_PRELOAD_METADATA = True INSTALLED_APPS += ('collectfast', ) # AWS cache settings, don't change unless you know what you're doing: AWS_EXPIRY = 60 * 60 * 24 * 7 AWS_HEADERS = { 'Cache-Control': 'max-age=%d, s-maxage=%d, must-revalidate' % ( AWS_EXPIRY, AWS_EXPIRY) } # See: https://docs.djangoproject.com/en/dev/ref/settings/#static-url STATIC_URL = 'https://s3.amazonaws.com/%s/' % AWS_STORAGE_BUCKET_NAME # END STORAGE CONFIGURATION # EMAIL DEFAULT_FROM_EMAIL = values.Value('portfolio <[email protected]>') EMAIL_HOST = values.Value('smtp.sendgrid.com') EMAIL_HOST_PASSWORD = values.SecretValue(environ_prefix="", environ_name="SENDGRID_PASSWORD") EMAIL_HOST_USER = values.SecretValue(environ_prefix="", environ_name="SENDGRID_USERNAME") EMAIL_PORT = values.IntegerValue(587, environ_prefix="", environ_name="EMAIL_PORT") EMAIL_SUBJECT_PREFIX = values.Value('[portfolio] ', environ_name="EMAIL_SUBJECT_PREFIX") EMAIL_USE_TLS = True SERVER_EMAIL = EMAIL_HOST_USER # END EMAIL # TEMPLATE CONFIGURATION # See: https://docs.djangoproject.com/en/dev/ref/settings/#template-dirs TEMPLATE_LOADERS = ( ('django.template.loaders.cached.Loader', ( 'django.template.loaders.filesystem.Loader', 'django.template.loaders.app_directories.Loader', )), ) # END TEMPLATE CONFIGURATION # CACHING # Only do this here because thanks to django-pylibmc-sasl and pylibmc # memcacheify is painful to install on windows. try: # See: https://github.com/rdegges/django-heroku-memcacheify from memcacheify import memcacheify CACHES = memcacheify() except ImportError: CACHES = values.CacheURLValue(default="memcached://127.0.0.1:11211") # END CACHING # Your production stuff: Below this line define 3rd party libary settings
Innogator/portfolio
portfolio/config/production.py
Python
bsd-3-clause
4,349
prediction = simple_seq2seq(first_test_sequence).numpy() print("prediction shape:", prediction.shape) # Let's use `argmax` to extract the predicted token ids at each step: predicted_token_ids = prediction[0].argmax(-1) print("prediction token ids:", predicted_token_ids) # We can use the shared reverse vocabulary to map # this back to the string representation of the tokens, # as well as removing Padding and EOS symbols predicted_numbers = [rev_shared_vocab[token_id] for token_id in predicted_token_ids if token_id not in (shared_vocab[PAD], shared_vocab[EOS])] print("predicted number:", "".join(predicted_numbers)) print("test number:", num_test[0]) # The model successfully predicted the test sequence. # However, we provided the full sequence as input, including all the solution # (except for the last number). In a real testing condition, one wouldn't # have the full input sequence, but only what is provided before the "GO" # symbol
m2dsupsdlclass/lectures-labs
labs/07_seq2seq/solutions/interpret_output.py
Python
mit
969
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for Keras regularizers.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from absl.testing import parameterized import numpy as np from tensorflow.python import keras from tensorflow.python.framework import test_util from tensorflow.python.keras import keras_parameterized from tensorflow.python.keras import testing_utils from tensorflow.python.platform import test DATA_DIM = 5 NUM_CLASSES = 2 class KerasRegularizersTest(keras_parameterized.TestCase): def create_model(self, kernel_regularizer=None, activity_regularizer=None): model = keras.models.Sequential() model.add(keras.layers.Dense(NUM_CLASSES, kernel_regularizer=kernel_regularizer, activity_regularizer=activity_regularizer, input_shape=(DATA_DIM,))) return model def get_data(self): (x_train, y_train), (x_test, y_test) = testing_utils.get_test_data( train_samples=10, test_samples=10, input_shape=(DATA_DIM,), num_classes=NUM_CLASSES) y_train = keras.utils.to_categorical(y_train, NUM_CLASSES) y_test = keras.utils.to_categorical(y_test, NUM_CLASSES) return (x_train, y_train), (x_test, y_test) @parameterized.named_parameters([ ('l1', keras.regularizers.l1()), ('l2', keras.regularizers.l2()), ('l1_l2', keras.regularizers.l1_l2()), ]) def test_kernel_regularization(self, regularizer): with self.cached_session(): (x_train, y_train), _ = self.get_data() model = self.create_model(kernel_regularizer=regularizer) model.compile(loss='categorical_crossentropy', optimizer='sgd') assert len(model.losses) == 1 model.fit(x_train, y_train, batch_size=10, epochs=1, verbose=0) @parameterized.named_parameters([ ('l1', keras.regularizers.l1()), ('l2', keras.regularizers.l2()), ('l2_zero', keras.regularizers.l2(0.)), ]) @test_util.deprecated_graph_mode_only def test_activity_regularization(self, regularizer): with self.cached_session(): (x_train, y_train), _ = self.get_data() model = self.create_model(activity_regularizer=regularizer) model.compile(loss='categorical_crossentropy', optimizer='sgd') assert len(model.losses) == 1 model.fit(x_train, y_train, batch_size=10, epochs=1, verbose=0) @keras_parameterized.run_all_keras_modes @keras_parameterized.run_with_all_model_types def test_zero_regularization(self): # Verifies that training with zero regularization works. x, y = np.ones((10, 10)), np.ones((10, 3)) model = testing_utils.get_model_from_layers( [keras.layers.Dense(3, kernel_regularizer=keras.regularizers.l2(0))], input_shape=(10,)) model.compile('sgd', 'mse', run_eagerly=testing_utils.should_run_eagerly()) model.fit(x, y, batch_size=5, epochs=1) if __name__ == '__main__': test.main()
kevin-coder/tensorflow-fork
tensorflow/python/keras/regularizers_test.py
Python
apache-2.0
3,702
#! /usr/bin/env python ''' Demonstrates how simple group can be used as one-to-many relationship using a column family ''' import util from pycassa.columnfamily import ColumnFamily from pycassa.types import * import time from threading import Thread import json import datetime import random # Load data from data/movies def loadData(): events = util.readCSV('data/events.csv') eventsList = [] for event in events: e = { 'user': event[0], 'page': event[1], 'event': event[2], 'element': event[3] } eventsList.append(e) for i in range(2): t = Thread(target=randomEvent, args=(i, eventsList)) t.start() def randomEvent(i, events): event = random.choice(events) con = util.getConnection() eventsCF = ColumnFamily(con, 'event_log') for j in range(50): event = random.choice(events) rowkey = event['user'] timestamp = datetime.datetime.utcnow() colval = json.dumps(event) print '[Thread:{3}] Inserting: [{0}=> {{{1}:{2}}}]'.format(rowkey, timestamp, colval, i) eventsCF.insert(rowkey, {timestamp: colval}) time.sleep(0.1) #100 milliseconds print 'finishished insertion.' con.dispose() def getByTag(tag): print '''-- MOVIES GROUPED BY USER FOR A GIVE TAG --''' print '''tag: {}'''.format(tag) con = util.getConnection() tagCF = ColumnFamily(con, 'tag_videos_composite') movies = tagCF.get(tag.strip().lower()) for key, val in movies.iteritems(): compositeCol = key print '([{0}],[{1}]) => {2}'.format(compositeCol[0], compositeCol[1], val) movieSlice = tagCF.get(tag.strip().lower(), column_start=("Kara", "The Croods:Kara"), column_finish=("Sally","Gx" )) #movieSlice = tagCF.get(tag.strip().lower(), column_start=("Kara", ), column_finish=(("Leo Scott",False),)) print '-- SLICES --' for key, val in movieSlice.iteritems(): compositeCol = key print '([{0}],[{1}]) => {2}'.format(compositeCol[0], compositeCol[1], val) con.dispose() if __name__ == '__main__': loadData() #getByTag('action')
naishe/mastering_cassandra
chapter_3/ch3_2.3.1_time_series1.py
Python
apache-2.0
2,069
# coding=utf-8 # Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team. # Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """PyTorch BERT model. """ import math import os import warnings from dataclasses import dataclass from typing import Optional, Tuple import torch import torch.utils.checkpoint from torch import nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACT2FN from ...file_utils import ( ModelOutput, add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, replace_return_docstrings, ) from ...modeling_outputs import ( BaseModelOutputWithPastAndCrossAttentions, BaseModelOutputWithPoolingAndCrossAttentions, CausalLMOutputWithCrossAttentions, MaskedLMOutput, MultipleChoiceModelOutput, NextSentencePredictorOutput, QuestionAnsweringModelOutput, SequenceClassifierOutput, TokenClassifierOutput, ) from ...modeling_utils import ( PreTrainedModel, apply_chunking_to_forward, find_pruneable_heads_and_indices, prune_linear_layer, ) from ...utils import logging from .configuration_bert import BertConfig logger = logging.get_logger(__name__) _CHECKPOINT_FOR_DOC = "bert-base-uncased" _CONFIG_FOR_DOC = "BertConfig" _TOKENIZER_FOR_DOC = "BertTokenizer" BERT_PRETRAINED_MODEL_ARCHIVE_LIST = [ "bert-base-uncased", "bert-large-uncased", "bert-base-cased", "bert-large-cased", "bert-base-multilingual-uncased", "bert-base-multilingual-cased", "bert-base-chinese", "bert-base-german-cased", "bert-large-uncased-whole-word-masking", "bert-large-cased-whole-word-masking", "bert-large-uncased-whole-word-masking-finetuned-squad", "bert-large-cased-whole-word-masking-finetuned-squad", "bert-base-cased-finetuned-mrpc", "bert-base-german-dbmdz-cased", "bert-base-german-dbmdz-uncased", "cl-tohoku/bert-base-japanese", "cl-tohoku/bert-base-japanese-whole-word-masking", "cl-tohoku/bert-base-japanese-char", "cl-tohoku/bert-base-japanese-char-whole-word-masking", "TurkuNLP/bert-base-finnish-cased-v1", "TurkuNLP/bert-base-finnish-uncased-v1", "wietsedv/bert-base-dutch-cased", # See all BERT models at https://huggingface.co/models?filter=bert ] def load_tf_weights_in_bert(model, config, tf_checkpoint_path): """Load tf checkpoints in a pytorch model.""" try: import re import numpy as np import tensorflow as tf except ImportError: logger.error( "Loading a TensorFlow model in PyTorch, requires TensorFlow to be installed. Please see " "https://www.tensorflow.org/install/ for installation instructions." ) raise tf_path = os.path.abspath(tf_checkpoint_path) logger.info(f"Converting TensorFlow checkpoint from {tf_path}") # Load weights from TF model init_vars = tf.train.list_variables(tf_path) names = [] arrays = [] for name, shape in init_vars: logger.info(f"Loading TF weight {name} with shape {shape}") array = tf.train.load_variable(tf_path, name) names.append(name) arrays.append(array) for name, array in zip(names, arrays): name = name.split("/") # adam_v and adam_m are variables used in AdamWeightDecayOptimizer to calculated m and v # which are not required for using pretrained model if any( n in ["adam_v", "adam_m", "AdamWeightDecayOptimizer", "AdamWeightDecayOptimizer_1", "global_step"] for n in name ): logger.info(f"Skipping {'/'.join(name)}") continue pointer = model for m_name in name: if re.fullmatch(r"[A-Za-z]+_\d+", m_name): scope_names = re.split(r"_(\d+)", m_name) else: scope_names = [m_name] if scope_names[0] == "kernel" or scope_names[0] == "gamma": pointer = getattr(pointer, "weight") elif scope_names[0] == "output_bias" or scope_names[0] == "beta": pointer = getattr(pointer, "bias") elif scope_names[0] == "output_weights": pointer = getattr(pointer, "weight") elif scope_names[0] == "squad": pointer = getattr(pointer, "classifier") else: try: pointer = getattr(pointer, scope_names[0]) except AttributeError: logger.info(f"Skipping {'/'.join(name)}") continue if len(scope_names) >= 2: num = int(scope_names[1]) pointer = pointer[num] if m_name[-11:] == "_embeddings": pointer = getattr(pointer, "weight") elif m_name == "kernel": array = np.transpose(array) try: assert ( pointer.shape == array.shape ), f"Pointer shape {pointer.shape} and array shape {array.shape} mismatched" except AssertionError as e: e.args += (pointer.shape, array.shape) raise logger.info(f"Initialize PyTorch weight {name}") pointer.data = torch.from_numpy(array) return model class BertEmbeddings(nn.Module): """Construct the embeddings from word, position and token_type embeddings.""" def __init__(self, config): super().__init__() self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id) self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size) self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size) # self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load # any TensorFlow checkpoint file self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.dropout = nn.Dropout(config.hidden_dropout_prob) # position_ids (1, len position emb) is contiguous in memory and exported when serialized self.register_buffer("position_ids", torch.arange(config.max_position_embeddings).expand((1, -1))) self.position_embedding_type = getattr(config, "position_embedding_type", "absolute") def forward( self, input_ids=None, token_type_ids=None, position_ids=None, inputs_embeds=None, past_key_values_length=0 ): if input_ids is not None: input_shape = input_ids.size() else: input_shape = inputs_embeds.size()[:-1] seq_length = input_shape[1] if position_ids is None: position_ids = self.position_ids[:, past_key_values_length : seq_length + past_key_values_length] if token_type_ids is None: token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=self.position_ids.device) if inputs_embeds is None: inputs_embeds = self.word_embeddings(input_ids) token_type_embeddings = self.token_type_embeddings(token_type_ids) embeddings = inputs_embeds + token_type_embeddings if self.position_embedding_type == "absolute": position_embeddings = self.position_embeddings(position_ids) embeddings += position_embeddings embeddings = self.LayerNorm(embeddings) embeddings = self.dropout(embeddings) return embeddings class BertSelfAttention(nn.Module): def __init__(self, config): super().__init__() if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"): raise ValueError( f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention " f"heads ({config.num_attention_heads})" ) self.num_attention_heads = config.num_attention_heads self.attention_head_size = int(config.hidden_size / config.num_attention_heads) self.all_head_size = self.num_attention_heads * self.attention_head_size self.query = nn.Linear(config.hidden_size, self.all_head_size) self.key = nn.Linear(config.hidden_size, self.all_head_size) self.value = nn.Linear(config.hidden_size, self.all_head_size) self.dropout = nn.Dropout(config.attention_probs_dropout_prob) self.position_embedding_type = getattr(config, "position_embedding_type", "absolute") if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query": self.max_position_embeddings = config.max_position_embeddings self.distance_embedding = nn.Embedding(2 * config.max_position_embeddings - 1, self.attention_head_size) self.is_decoder = config.is_decoder def transpose_for_scores(self, x): new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size) x = x.view(*new_x_shape) return x.permute(0, 2, 1, 3) def forward( self, hidden_states, attention_mask=None, head_mask=None, encoder_hidden_states=None, encoder_attention_mask=None, past_key_value=None, output_attentions=False, ): mixed_query_layer = self.query(hidden_states) # If this is instantiated as a cross-attention module, the keys # and values come from an encoder; the attention mask needs to be # such that the encoder's padding tokens are not attended to. is_cross_attention = encoder_hidden_states is not None if is_cross_attention and past_key_value is not None: # reuse k,v, cross_attentions key_layer = past_key_value[0] value_layer = past_key_value[1] attention_mask = encoder_attention_mask elif is_cross_attention: key_layer = self.transpose_for_scores(self.key(encoder_hidden_states)) value_layer = self.transpose_for_scores(self.value(encoder_hidden_states)) attention_mask = encoder_attention_mask elif past_key_value is not None: key_layer = self.transpose_for_scores(self.key(hidden_states)) value_layer = self.transpose_for_scores(self.value(hidden_states)) key_layer = torch.cat([past_key_value[0], key_layer], dim=2) value_layer = torch.cat([past_key_value[1], value_layer], dim=2) else: key_layer = self.transpose_for_scores(self.key(hidden_states)) value_layer = self.transpose_for_scores(self.value(hidden_states)) query_layer = self.transpose_for_scores(mixed_query_layer) if self.is_decoder: # if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states. # Further calls to cross_attention layer can then reuse all cross-attention # key/value_states (first "if" case) # if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of # all previous decoder key/value_states. Further calls to uni-directional self-attention # can concat previous decoder key/value_states to current projected key/value_states (third "elif" case) # if encoder bi-directional self-attention `past_key_value` is always `None` past_key_value = (key_layer, value_layer) # Take the dot product between "query" and "key" to get the raw attention scores. attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2)) if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query": seq_length = hidden_states.size()[1] position_ids_l = torch.arange(seq_length, dtype=torch.long, device=hidden_states.device).view(-1, 1) position_ids_r = torch.arange(seq_length, dtype=torch.long, device=hidden_states.device).view(1, -1) distance = position_ids_l - position_ids_r positional_embedding = self.distance_embedding(distance + self.max_position_embeddings - 1) positional_embedding = positional_embedding.to(dtype=query_layer.dtype) # fp16 compatibility if self.position_embedding_type == "relative_key": relative_position_scores = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding) attention_scores = attention_scores + relative_position_scores elif self.position_embedding_type == "relative_key_query": relative_position_scores_query = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding) relative_position_scores_key = torch.einsum("bhrd,lrd->bhlr", key_layer, positional_embedding) attention_scores = attention_scores + relative_position_scores_query + relative_position_scores_key attention_scores = attention_scores / math.sqrt(self.attention_head_size) if attention_mask is not None: # Apply the attention mask is (precomputed for all layers in BertModel forward() function) attention_scores = attention_scores + attention_mask # Normalize the attention scores to probabilities. attention_probs = nn.Softmax(dim=-1)(attention_scores) # This is actually dropping out entire tokens to attend to, which might # seem a bit unusual, but is taken from the original Transformer paper. attention_probs = self.dropout(attention_probs) # Mask heads if we want to if head_mask is not None: attention_probs = attention_probs * head_mask context_layer = torch.matmul(attention_probs, value_layer) context_layer = context_layer.permute(0, 2, 1, 3).contiguous() new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,) context_layer = context_layer.view(*new_context_layer_shape) outputs = (context_layer, attention_probs) if output_attentions else (context_layer,) if self.is_decoder: outputs = outputs + (past_key_value,) return outputs class BertSelfOutput(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward(self, hidden_states, input_tensor): hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states) hidden_states = self.LayerNorm(hidden_states + input_tensor) return hidden_states class BertAttention(nn.Module): def __init__(self, config): super().__init__() self.self = BertSelfAttention(config) self.output = BertSelfOutput(config) self.pruned_heads = set() def prune_heads(self, heads): if len(heads) == 0: return heads, index = find_pruneable_heads_and_indices( heads, self.self.num_attention_heads, self.self.attention_head_size, self.pruned_heads ) # Prune linear layers self.self.query = prune_linear_layer(self.self.query, index) self.self.key = prune_linear_layer(self.self.key, index) self.self.value = prune_linear_layer(self.self.value, index) self.output.dense = prune_linear_layer(self.output.dense, index, dim=1) # Update hyper params and store pruned heads self.self.num_attention_heads = self.self.num_attention_heads - len(heads) self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads self.pruned_heads = self.pruned_heads.union(heads) def forward( self, hidden_states, attention_mask=None, head_mask=None, encoder_hidden_states=None, encoder_attention_mask=None, past_key_value=None, output_attentions=False, ): self_outputs = self.self( hidden_states, attention_mask, head_mask, encoder_hidden_states, encoder_attention_mask, past_key_value, output_attentions, ) attention_output = self.output(self_outputs[0], hidden_states) outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them return outputs class BertIntermediate(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.intermediate_size) if isinstance(config.hidden_act, str): self.intermediate_act_fn = ACT2FN[config.hidden_act] else: self.intermediate_act_fn = config.hidden_act def forward(self, hidden_states): hidden_states = self.dense(hidden_states) hidden_states = self.intermediate_act_fn(hidden_states) return hidden_states class BertOutput(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.intermediate_size, config.hidden_size) self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward(self, hidden_states, input_tensor): hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states) hidden_states = self.LayerNorm(hidden_states + input_tensor) return hidden_states class BertLayer(nn.Module): def __init__(self, config): super().__init__() self.chunk_size_feed_forward = config.chunk_size_feed_forward self.seq_len_dim = 1 self.attention = BertAttention(config) self.is_decoder = config.is_decoder self.add_cross_attention = config.add_cross_attention if self.add_cross_attention: assert self.is_decoder, f"{self} should be used as a decoder model if cross attention is added" self.crossattention = BertAttention(config) self.intermediate = BertIntermediate(config) self.output = BertOutput(config) def forward( self, hidden_states, attention_mask=None, head_mask=None, encoder_hidden_states=None, encoder_attention_mask=None, past_key_value=None, output_attentions=False, ): # decoder uni-directional self-attention cached key/values tuple is at positions 1,2 self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None self_attention_outputs = self.attention( hidden_states, attention_mask, head_mask, output_attentions=output_attentions, past_key_value=self_attn_past_key_value, ) attention_output = self_attention_outputs[0] # if decoder, the last output is tuple of self-attn cache if self.is_decoder: outputs = self_attention_outputs[1:-1] present_key_value = self_attention_outputs[-1] else: outputs = self_attention_outputs[1:] # add self attentions if we output attention weights cross_attn_present_key_value = None if self.is_decoder and encoder_hidden_states is not None: assert hasattr( self, "crossattention" ), f"If `encoder_hidden_states` are passed, {self} has to be instantiated with cross-attention layers by setting `config.add_cross_attention=True`" # cross_attn cached key/values tuple is at positions 3,4 of past_key_value tuple cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None cross_attention_outputs = self.crossattention( attention_output, attention_mask, head_mask, encoder_hidden_states, encoder_attention_mask, cross_attn_past_key_value, output_attentions, ) attention_output = cross_attention_outputs[0] outputs = outputs + cross_attention_outputs[1:-1] # add cross attentions if we output attention weights # add cross-attn cache to positions 3,4 of present_key_value tuple cross_attn_present_key_value = cross_attention_outputs[-1] present_key_value = present_key_value + cross_attn_present_key_value layer_output = apply_chunking_to_forward( self.feed_forward_chunk, self.chunk_size_feed_forward, self.seq_len_dim, attention_output ) outputs = (layer_output,) + outputs # if decoder, return the attn key/values as the last output if self.is_decoder: outputs = outputs + (present_key_value,) return outputs def feed_forward_chunk(self, attention_output): intermediate_output = self.intermediate(attention_output) layer_output = self.output(intermediate_output, attention_output) return layer_output class BertEncoder(nn.Module): def __init__(self, config): super().__init__() self.config = config self.layer = nn.ModuleList([BertLayer(config) for _ in range(config.num_hidden_layers)]) def forward( self, hidden_states, attention_mask=None, head_mask=None, encoder_hidden_states=None, encoder_attention_mask=None, past_key_values=None, use_cache=None, output_attentions=False, output_hidden_states=False, return_dict=True, ): all_hidden_states = () if output_hidden_states else None all_self_attentions = () if output_attentions else None all_cross_attentions = () if output_attentions and self.config.add_cross_attention else None next_decoder_cache = () if use_cache else None for i, layer_module in enumerate(self.layer): if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) layer_head_mask = head_mask[i] if head_mask is not None else None past_key_value = past_key_values[i] if past_key_values is not None else None if getattr(self.config, "gradient_checkpointing", False) and self.training: if use_cache: logger.warning( "`use_cache=True` is incompatible with `config.gradient_checkpointing=True`. Setting " "`use_cache=False`..." ) use_cache = False def create_custom_forward(module): def custom_forward(*inputs): return module(*inputs, past_key_value, output_attentions) return custom_forward layer_outputs = torch.utils.checkpoint.checkpoint( create_custom_forward(layer_module), hidden_states, attention_mask, layer_head_mask, encoder_hidden_states, encoder_attention_mask, ) else: layer_outputs = layer_module( hidden_states, attention_mask, layer_head_mask, encoder_hidden_states, encoder_attention_mask, past_key_value, output_attentions, ) hidden_states = layer_outputs[0] if use_cache: next_decoder_cache += (layer_outputs[-1],) if output_attentions: all_self_attentions = all_self_attentions + (layer_outputs[1],) if self.config.add_cross_attention: all_cross_attentions = all_cross_attentions + (layer_outputs[2],) if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) if not return_dict: return tuple( v for v in [ hidden_states, next_decoder_cache, all_hidden_states, all_self_attentions, all_cross_attentions, ] if v is not None ) return BaseModelOutputWithPastAndCrossAttentions( last_hidden_state=hidden_states, past_key_values=next_decoder_cache, hidden_states=all_hidden_states, attentions=all_self_attentions, cross_attentions=all_cross_attentions, ) class BertPooler(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) self.activation = nn.Tanh() def forward(self, hidden_states): # We "pool" the model by simply taking the hidden state corresponding # to the first token. first_token_tensor = hidden_states[:, 0] pooled_output = self.dense(first_token_tensor) pooled_output = self.activation(pooled_output) return pooled_output class BertPredictionHeadTransform(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) if isinstance(config.hidden_act, str): self.transform_act_fn = ACT2FN[config.hidden_act] else: self.transform_act_fn = config.hidden_act self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) def forward(self, hidden_states): hidden_states = self.dense(hidden_states) hidden_states = self.transform_act_fn(hidden_states) hidden_states = self.LayerNorm(hidden_states) return hidden_states class BertLMPredictionHead(nn.Module): def __init__(self, config): super().__init__() self.transform = BertPredictionHeadTransform(config) # The output weights are the same as the input embeddings, but there is # an output-only bias for each token. self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False) self.bias = nn.Parameter(torch.zeros(config.vocab_size)) # Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings` self.decoder.bias = self.bias def forward(self, hidden_states): hidden_states = self.transform(hidden_states) hidden_states = self.decoder(hidden_states) return hidden_states class BertOnlyMLMHead(nn.Module): def __init__(self, config): super().__init__() self.predictions = BertLMPredictionHead(config) def forward(self, sequence_output): prediction_scores = self.predictions(sequence_output) return prediction_scores class BertOnlyNSPHead(nn.Module): def __init__(self, config): super().__init__() self.seq_relationship = nn.Linear(config.hidden_size, 2) def forward(self, pooled_output): seq_relationship_score = self.seq_relationship(pooled_output) return seq_relationship_score class BertPreTrainingHeads(nn.Module): def __init__(self, config): super().__init__() self.predictions = BertLMPredictionHead(config) self.seq_relationship = nn.Linear(config.hidden_size, 2) def forward(self, sequence_output, pooled_output): prediction_scores = self.predictions(sequence_output) seq_relationship_score = self.seq_relationship(pooled_output) return prediction_scores, seq_relationship_score class BertPreTrainedModel(PreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = BertConfig load_tf_weights = load_tf_weights_in_bert base_model_prefix = "bert" _keys_to_ignore_on_load_missing = [r"position_ids"] def _init_weights(self, module): """Initialize the weights""" if isinstance(module, nn.Linear): # Slightly different from the TF version which uses truncated_normal for initialization # cf https://github.com/pytorch/pytorch/pull/5617 module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.Embedding): module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if module.padding_idx is not None: module.weight.data[module.padding_idx].zero_() elif isinstance(module, nn.LayerNorm): module.bias.data.zero_() module.weight.data.fill_(1.0) @dataclass class BertForPreTrainingOutput(ModelOutput): """ Output type of :class:`~transformers.BertForPreTraining`. Args: loss (`optional`, returned when ``labels`` is provided, ``torch.FloatTensor`` of shape :obj:`(1,)`): Total loss as the sum of the masked language modeling loss and the next sequence prediction (classification) loss. prediction_logits (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, config.vocab_size)`): Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax). seq_relationship_logits (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, 2)`): Prediction scores of the next sequence prediction (classification) head (scores of True/False continuation before SoftMax). hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``): Tuple of :obj:`torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of shape :obj:`(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the initial embedding outputs. attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``): Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape :obj:`(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. """ loss: Optional[torch.FloatTensor] = None prediction_logits: torch.FloatTensor = None seq_relationship_logits: torch.FloatTensor = None hidden_states: Optional[Tuple[torch.FloatTensor]] = None attentions: Optional[Tuple[torch.FloatTensor]] = None BERT_START_DOCSTRING = r""" This model inherits from :class:`~transformers.PreTrainedModel`. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.) This model is also a PyTorch `torch.nn.Module <https://pytorch.org/docs/stable/nn.html#torch.nn.Module>`__ subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config (:class:`~transformers.BertConfig`): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the :meth:`~transformers.PreTrainedModel.from_pretrained` method to load the model weights. """ BERT_INPUTS_DOCSTRING = r""" Args: input_ids (:obj:`torch.LongTensor` of shape :obj:`({0})`): Indices of input sequence tokens in the vocabulary. Indices can be obtained using :class:`~transformers.BertTokenizer`. See :meth:`transformers.PreTrainedTokenizer.encode` and :meth:`transformers.PreTrainedTokenizer.__call__` for details. `What are input IDs? <../glossary.html#input-ids>`__ attention_mask (:obj:`torch.FloatTensor` of shape :obj:`({0})`, `optional`): Mask to avoid performing attention on padding token indices. Mask values selected in ``[0, 1]``: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. `What are attention masks? <../glossary.html#attention-mask>`__ token_type_ids (:obj:`torch.LongTensor` of shape :obj:`({0})`, `optional`): Segment token indices to indicate first and second portions of the inputs. Indices are selected in ``[0, 1]``: - 0 corresponds to a `sentence A` token, - 1 corresponds to a `sentence B` token. `What are token type IDs? <../glossary.html#token-type-ids>`_ position_ids (:obj:`torch.LongTensor` of shape :obj:`({0})`, `optional`): Indices of positions of each input sequence tokens in the position embeddings. Selected in the range ``[0, config.max_position_embeddings - 1]``. `What are position IDs? <../glossary.html#position-ids>`_ head_mask (:obj:`torch.FloatTensor` of shape :obj:`(num_heads,)` or :obj:`(num_layers, num_heads)`, `optional`): Mask to nullify selected heads of the self-attention modules. Mask values selected in ``[0, 1]``: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. inputs_embeds (:obj:`torch.FloatTensor` of shape :obj:`({0}, hidden_size)`, `optional`): Optionally, instead of passing :obj:`input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert :obj:`input_ids` indices into associated vectors than the model's internal embedding lookup matrix. output_attentions (:obj:`bool`, `optional`): Whether or not to return the attentions tensors of all attention layers. See ``attentions`` under returned tensors for more detail. output_hidden_states (:obj:`bool`, `optional`): Whether or not to return the hidden states of all layers. See ``hidden_states`` under returned tensors for more detail. return_dict (:obj:`bool`, `optional`): Whether or not to return a :class:`~transformers.file_utils.ModelOutput` instead of a plain tuple. """ @add_start_docstrings( "The bare Bert Model transformer outputting raw hidden-states without any specific head on top.", BERT_START_DOCSTRING, ) class BertModel(BertPreTrainedModel): """ The model can behave as an encoder (with only self-attention) as well as a decoder, in which case a layer of cross-attention is added between the self-attention layers, following the architecture described in `Attention is all you need <https://arxiv.org/abs/1706.03762>`__ by Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser and Illia Polosukhin. To behave as an decoder the model needs to be initialized with the :obj:`is_decoder` argument of the configuration set to :obj:`True`. To be used in a Seq2Seq model, the model needs to initialized with both :obj:`is_decoder` argument and :obj:`add_cross_attention` set to :obj:`True`; an :obj:`encoder_hidden_states` is then expected as an input to the forward pass. """ def __init__(self, config, add_pooling_layer=True): super().__init__(config) self.config = config self.embeddings = BertEmbeddings(config) self.encoder = BertEncoder(config) self.pooler = BertPooler(config) if add_pooling_layer else None self.init_weights() def get_input_embeddings(self): return self.embeddings.word_embeddings def set_input_embeddings(self, value): self.embeddings.word_embeddings = value def _prune_heads(self, heads_to_prune): """ Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base class PreTrainedModel """ for layer, heads in heads_to_prune.items(): self.encoder.layer[layer].attention.prune_heads(heads) @add_start_docstrings_to_model_forward(BERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( tokenizer_class=_TOKENIZER_FOR_DOC, checkpoint=_CHECKPOINT_FOR_DOC, output_type=BaseModelOutputWithPoolingAndCrossAttentions, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids=None, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, inputs_embeds=None, encoder_hidden_states=None, encoder_attention_mask=None, past_key_values=None, use_cache=None, output_attentions=None, output_hidden_states=None, return_dict=None, ): r""" encoder_hidden_states (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, hidden_size)`, `optional`): Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if the model is configured as a decoder. encoder_attention_mask (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`): Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in the cross-attention if the model is configured as a decoder. Mask values selected in ``[0, 1]``: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. past_key_values (:obj:`tuple(tuple(torch.FloatTensor))` of length :obj:`config.n_layers` with each tuple having 4 tensors of shape :obj:`(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`): Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding. If :obj:`past_key_values` are used, the user can optionally input only the last :obj:`decoder_input_ids` (those that don't have their past key value states given to this model) of shape :obj:`(batch_size, 1)` instead of all :obj:`decoder_input_ids` of shape :obj:`(batch_size, sequence_length)`. use_cache (:obj:`bool`, `optional`): If set to :obj:`True`, :obj:`past_key_values` key value states are returned and can be used to speed up decoding (see :obj:`past_key_values`). """ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict if self.config.is_decoder: use_cache = use_cache if use_cache is not None else self.config.use_cache else: use_cache = False if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") elif input_ids is not None: input_shape = input_ids.size() batch_size, seq_length = input_shape elif inputs_embeds is not None: input_shape = inputs_embeds.size()[:-1] batch_size, seq_length = input_shape else: raise ValueError("You have to specify either input_ids or inputs_embeds") device = input_ids.device if input_ids is not None else inputs_embeds.device # past_key_values_length past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0 if attention_mask is None: attention_mask = torch.ones(((batch_size, seq_length + past_key_values_length)), device=device) if token_type_ids is None: token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device) # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] # ourselves in which case we just need to make it broadcastable to all heads. extended_attention_mask: torch.Tensor = self.get_extended_attention_mask(attention_mask, input_shape, device) # If a 2D or 3D attention mask is provided for the cross-attention # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length] if self.config.is_decoder and encoder_hidden_states is not None: encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size() encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length) if encoder_attention_mask is None: encoder_attention_mask = torch.ones(encoder_hidden_shape, device=device) encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask) else: encoder_extended_attention_mask = None # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers) embedding_output = self.embeddings( input_ids=input_ids, position_ids=position_ids, token_type_ids=token_type_ids, inputs_embeds=inputs_embeds, past_key_values_length=past_key_values_length, ) encoder_outputs = self.encoder( embedding_output, attention_mask=extended_attention_mask, head_mask=head_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_extended_attention_mask, past_key_values=past_key_values, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = encoder_outputs[0] pooled_output = self.pooler(sequence_output) if self.pooler is not None else None if not return_dict: return (sequence_output, pooled_output) + encoder_outputs[1:] return BaseModelOutputWithPoolingAndCrossAttentions( last_hidden_state=sequence_output, pooler_output=pooled_output, past_key_values=encoder_outputs.past_key_values, hidden_states=encoder_outputs.hidden_states, attentions=encoder_outputs.attentions, cross_attentions=encoder_outputs.cross_attentions, ) @add_start_docstrings( """ Bert Model with two heads on top as done during the pretraining: a `masked language modeling` head and a `next sentence prediction (classification)` head. """, BERT_START_DOCSTRING, ) class BertForPreTraining(BertPreTrainedModel): def __init__(self, config): super().__init__(config) self.bert = BertModel(config) self.cls = BertPreTrainingHeads(config) self.init_weights() def get_output_embeddings(self): return self.cls.predictions.decoder def set_output_embeddings(self, new_embeddings): self.cls.predictions.decoder = new_embeddings @add_start_docstrings_to_model_forward(BERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @replace_return_docstrings(output_type=BertForPreTrainingOutput, config_class=_CONFIG_FOR_DOC) def forward( self, input_ids=None, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, inputs_embeds=None, labels=None, next_sentence_label=None, output_attentions=None, output_hidden_states=None, return_dict=None, ): r""" labels (:obj:`torch.LongTensor` of shape ``(batch_size, sequence_length)``, `optional`): Labels for computing the masked language modeling loss. Indices should be in ``[-100, 0, ..., config.vocab_size]`` (see ``input_ids`` docstring) Tokens with indices set to ``-100`` are ignored (masked), the loss is only computed for the tokens with labels in ``[0, ..., config.vocab_size]`` next_sentence_label (``torch.LongTensor`` of shape ``(batch_size,)``, `optional`): Labels for computing the next sequence prediction (classification) loss. Input should be a sequence pair (see :obj:`input_ids` docstring) Indices should be in ``[0, 1]``: - 0 indicates sequence B is a continuation of sequence A, - 1 indicates sequence B is a random sequence. kwargs (:obj:`Dict[str, any]`, optional, defaults to `{}`): Used to hide legacy arguments that have been deprecated. Returns: Example:: >>> from transformers import BertTokenizer, BertForPreTraining >>> import torch >>> tokenizer = BertTokenizer.from_pretrained('bert-base-uncased') >>> model = BertForPreTraining.from_pretrained('bert-base-uncased') >>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt") >>> outputs = model(**inputs) >>> prediction_logits = outputs.prediction_logits >>> seq_relationship_logits = outputs.seq_relationship_logits """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.bert( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output, pooled_output = outputs[:2] prediction_scores, seq_relationship_score = self.cls(sequence_output, pooled_output) total_loss = None if labels is not None and next_sentence_label is not None: loss_fct = CrossEntropyLoss() masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), labels.view(-1)) next_sentence_loss = loss_fct(seq_relationship_score.view(-1, 2), next_sentence_label.view(-1)) total_loss = masked_lm_loss + next_sentence_loss if not return_dict: output = (prediction_scores, seq_relationship_score) + outputs[2:] return ((total_loss,) + output) if total_loss is not None else output return BertForPreTrainingOutput( loss=total_loss, prediction_logits=prediction_scores, seq_relationship_logits=seq_relationship_score, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) @add_start_docstrings( """Bert Model with a `language modeling` head on top for CLM fine-tuning. """, BERT_START_DOCSTRING ) class BertLMHeadModel(BertPreTrainedModel): _keys_to_ignore_on_load_unexpected = [r"pooler"] _keys_to_ignore_on_load_missing = [r"position_ids", r"predictions.decoder.bias"] def __init__(self, config): super().__init__(config) if not config.is_decoder: logger.warning("If you want to use `BertLMHeadModel` as a standalone, add `is_decoder=True.`") self.bert = BertModel(config, add_pooling_layer=False) self.cls = BertOnlyMLMHead(config) self.init_weights() def get_output_embeddings(self): return self.cls.predictions.decoder def set_output_embeddings(self, new_embeddings): self.cls.predictions.decoder = new_embeddings @add_start_docstrings_to_model_forward(BERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @replace_return_docstrings(output_type=CausalLMOutputWithCrossAttentions, config_class=_CONFIG_FOR_DOC) def forward( self, input_ids=None, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, inputs_embeds=None, encoder_hidden_states=None, encoder_attention_mask=None, labels=None, past_key_values=None, use_cache=None, output_attentions=None, output_hidden_states=None, return_dict=None, ): r""" encoder_hidden_states (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, hidden_size)`, `optional`): Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if the model is configured as a decoder. encoder_attention_mask (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`): Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in the cross-attention if the model is configured as a decoder. Mask values selected in ``[0, 1]``: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`): Labels for computing the left-to-right language modeling loss (next word prediction). Indices should be in ``[-100, 0, ..., config.vocab_size]`` (see ``input_ids`` docstring) Tokens with indices set to ``-100`` are ignored (masked), the loss is only computed for the tokens with labels n ``[0, ..., config.vocab_size]`` past_key_values (:obj:`tuple(tuple(torch.FloatTensor))` of length :obj:`config.n_layers` with each tuple having 4 tensors of shape :obj:`(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`): Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding. If :obj:`past_key_values` are used, the user can optionally input only the last :obj:`decoder_input_ids` (those that don't have their past key value states given to this model) of shape :obj:`(batch_size, 1)` instead of all :obj:`decoder_input_ids` of shape :obj:`(batch_size, sequence_length)`. use_cache (:obj:`bool`, `optional`): If set to :obj:`True`, :obj:`past_key_values` key value states are returned and can be used to speed up decoding (see :obj:`past_key_values`). Returns: Example:: >>> from transformers import BertTokenizer, BertLMHeadModel, BertConfig >>> import torch >>> tokenizer = BertTokenizer.from_pretrained('bert-base-cased') >>> config = BertConfig.from_pretrained("bert-base-cased") >>> config.is_decoder = True >>> model = BertLMHeadModel.from_pretrained('bert-base-cased', config=config) >>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt") >>> outputs = model(**inputs) >>> prediction_logits = outputs.logits """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict if labels is not None: use_cache = False outputs = self.bert( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, past_key_values=past_key_values, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = outputs[0] prediction_scores = self.cls(sequence_output) lm_loss = None if labels is not None: # we are doing next-token prediction; shift prediction scores and input ids by one shifted_prediction_scores = prediction_scores[:, :-1, :].contiguous() labels = labels[:, 1:].contiguous() loss_fct = CrossEntropyLoss() lm_loss = loss_fct(shifted_prediction_scores.view(-1, self.config.vocab_size), labels.view(-1)) if not return_dict: output = (prediction_scores,) + outputs[2:] return ((lm_loss,) + output) if lm_loss is not None else output return CausalLMOutputWithCrossAttentions( loss=lm_loss, logits=prediction_scores, past_key_values=outputs.past_key_values, hidden_states=outputs.hidden_states, attentions=outputs.attentions, cross_attentions=outputs.cross_attentions, ) def prepare_inputs_for_generation(self, input_ids, past=None, attention_mask=None, **model_kwargs): input_shape = input_ids.shape # if model is used as a decoder in encoder-decoder model, the decoder attention mask is created on the fly if attention_mask is None: attention_mask = input_ids.new_ones(input_shape) # cut decoder_input_ids if past is used if past is not None: input_ids = input_ids[:, -1:] return {"input_ids": input_ids, "attention_mask": attention_mask, "past_key_values": past} def _reorder_cache(self, past, beam_idx): reordered_past = () for layer_past in past: reordered_past += (tuple(past_state.index_select(0, beam_idx) for past_state in layer_past),) return reordered_past @add_start_docstrings("""Bert Model with a `language modeling` head on top. """, BERT_START_DOCSTRING) class BertForMaskedLM(BertPreTrainedModel): _keys_to_ignore_on_load_unexpected = [r"pooler"] _keys_to_ignore_on_load_missing = [r"position_ids", r"predictions.decoder.bias"] def __init__(self, config): super().__init__(config) if config.is_decoder: logger.warning( "If you want to use `BertForMaskedLM` make sure `config.is_decoder=False` for " "bi-directional self-attention." ) self.bert = BertModel(config, add_pooling_layer=False) self.cls = BertOnlyMLMHead(config) self.init_weights() def get_output_embeddings(self): return self.cls.predictions.decoder def set_output_embeddings(self, new_embeddings): self.cls.predictions.decoder = new_embeddings @add_start_docstrings_to_model_forward(BERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( tokenizer_class=_TOKENIZER_FOR_DOC, checkpoint=_CHECKPOINT_FOR_DOC, output_type=MaskedLMOutput, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids=None, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, inputs_embeds=None, encoder_hidden_states=None, encoder_attention_mask=None, labels=None, output_attentions=None, output_hidden_states=None, return_dict=None, ): r""" labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`): Labels for computing the masked language modeling loss. Indices should be in ``[-100, 0, ..., config.vocab_size]`` (see ``input_ids`` docstring) Tokens with indices set to ``-100`` are ignored (masked), the loss is only computed for the tokens with labels in ``[0, ..., config.vocab_size]`` """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.bert( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = outputs[0] prediction_scores = self.cls(sequence_output) masked_lm_loss = None if labels is not None: loss_fct = CrossEntropyLoss() # -100 index = padding token masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), labels.view(-1)) if not return_dict: output = (prediction_scores,) + outputs[2:] return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output return MaskedLMOutput( loss=masked_lm_loss, logits=prediction_scores, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) def prepare_inputs_for_generation(self, input_ids, attention_mask=None, **model_kwargs): input_shape = input_ids.shape effective_batch_size = input_shape[0] # add a dummy token assert self.config.pad_token_id is not None, "The PAD token should be defined for generation" attention_mask = torch.cat([attention_mask, attention_mask.new_zeros((attention_mask.shape[0], 1))], dim=-1) dummy_token = torch.full( (effective_batch_size, 1), self.config.pad_token_id, dtype=torch.long, device=input_ids.device ) input_ids = torch.cat([input_ids, dummy_token], dim=1) return {"input_ids": input_ids, "attention_mask": attention_mask} @add_start_docstrings( """Bert Model with a `next sentence prediction (classification)` head on top. """, BERT_START_DOCSTRING, ) class BertForNextSentencePrediction(BertPreTrainedModel): def __init__(self, config): super().__init__(config) self.bert = BertModel(config) self.cls = BertOnlyNSPHead(config) self.init_weights() @add_start_docstrings_to_model_forward(BERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @replace_return_docstrings(output_type=NextSentencePredictorOutput, config_class=_CONFIG_FOR_DOC) def forward( self, input_ids=None, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, inputs_embeds=None, labels=None, output_attentions=None, output_hidden_states=None, return_dict=None, **kwargs, ): r""" labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`): Labels for computing the next sequence prediction (classification) loss. Input should be a sequence pair (see ``input_ids`` docstring). Indices should be in ``[0, 1]``: - 0 indicates sequence B is a continuation of sequence A, - 1 indicates sequence B is a random sequence. Returns: Example:: >>> from transformers import BertTokenizer, BertForNextSentencePrediction >>> import torch >>> tokenizer = BertTokenizer.from_pretrained('bert-base-uncased') >>> model = BertForNextSentencePrediction.from_pretrained('bert-base-uncased') >>> prompt = "In Italy, pizza served in formal settings, such as at a restaurant, is presented unsliced." >>> next_sentence = "The sky is blue due to the shorter wavelength of blue light." >>> encoding = tokenizer(prompt, next_sentence, return_tensors='pt') >>> outputs = model(**encoding, labels=torch.LongTensor([1])) >>> logits = outputs.logits >>> assert logits[0, 0] < logits[0, 1] # next sentence was random """ if "next_sentence_label" in kwargs: warnings.warn( "The `next_sentence_label` argument is deprecated and will be removed in a future version, use `labels` instead.", FutureWarning, ) labels = kwargs.pop("next_sentence_label") return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.bert( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) pooled_output = outputs[1] seq_relationship_scores = self.cls(pooled_output) next_sentence_loss = None if labels is not None: loss_fct = CrossEntropyLoss() next_sentence_loss = loss_fct(seq_relationship_scores.view(-1, 2), labels.view(-1)) if not return_dict: output = (seq_relationship_scores,) + outputs[2:] return ((next_sentence_loss,) + output) if next_sentence_loss is not None else output return NextSentencePredictorOutput( loss=next_sentence_loss, logits=seq_relationship_scores, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) @add_start_docstrings( """ Bert Model transformer with a sequence classification/regression head on top (a linear layer on top of the pooled output) e.g. for GLUE tasks. """, BERT_START_DOCSTRING, ) class BertForSequenceClassification(BertPreTrainedModel): def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.config = config self.bert = BertModel(config) self.dropout = nn.Dropout(config.hidden_dropout_prob) self.classifier = nn.Linear(config.hidden_size, config.num_labels) self.init_weights() @add_start_docstrings_to_model_forward(BERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( tokenizer_class=_TOKENIZER_FOR_DOC, checkpoint=_CHECKPOINT_FOR_DOC, output_type=SequenceClassifierOutput, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids=None, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, inputs_embeds=None, labels=None, output_attentions=None, output_hidden_states=None, return_dict=None, ): r""" labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`): Labels for computing the sequence classification/regression loss. Indices should be in :obj:`[0, ..., config.num_labels - 1]`. If :obj:`config.num_labels == 1` a regression loss is computed (Mean-Square loss), If :obj:`config.num_labels > 1` a classification loss is computed (Cross-Entropy). """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.bert( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) pooled_output = outputs[1] pooled_output = self.dropout(pooled_output) logits = self.classifier(pooled_output) loss = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: self.config.problem_type = "regression" elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): self.config.problem_type = "single_label_classification" else: self.config.problem_type = "multi_label_classification" if self.config.problem_type == "regression": loss_fct = MSELoss() if self.num_labels == 1: loss = loss_fct(logits.squeeze(), labels.squeeze()) else: loss = loss_fct(logits, labels) elif self.config.problem_type == "single_label_classification": loss_fct = CrossEntropyLoss() loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) elif self.config.problem_type == "multi_label_classification": loss_fct = BCEWithLogitsLoss() loss = loss_fct(logits, labels) if not return_dict: output = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return SequenceClassifierOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) @add_start_docstrings( """ Bert Model with a multiple choice classification head on top (a linear layer on top of the pooled output and a softmax) e.g. for RocStories/SWAG tasks. """, BERT_START_DOCSTRING, ) class BertForMultipleChoice(BertPreTrainedModel): def __init__(self, config): super().__init__(config) self.bert = BertModel(config) self.dropout = nn.Dropout(config.hidden_dropout_prob) self.classifier = nn.Linear(config.hidden_size, 1) self.init_weights() @add_start_docstrings_to_model_forward(BERT_INPUTS_DOCSTRING.format("batch_size, num_choices, sequence_length")) @add_code_sample_docstrings( tokenizer_class=_TOKENIZER_FOR_DOC, checkpoint=_CHECKPOINT_FOR_DOC, output_type=MultipleChoiceModelOutput, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids=None, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, inputs_embeds=None, labels=None, output_attentions=None, output_hidden_states=None, return_dict=None, ): r""" labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`): Labels for computing the multiple choice classification loss. Indices should be in ``[0, ..., num_choices-1]`` where :obj:`num_choices` is the size of the second dimension of the input tensors. (See :obj:`input_ids` above) """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict num_choices = input_ids.shape[1] if input_ids is not None else inputs_embeds.shape[1] input_ids = input_ids.view(-1, input_ids.size(-1)) if input_ids is not None else None attention_mask = attention_mask.view(-1, attention_mask.size(-1)) if attention_mask is not None else None token_type_ids = token_type_ids.view(-1, token_type_ids.size(-1)) if token_type_ids is not None else None position_ids = position_ids.view(-1, position_ids.size(-1)) if position_ids is not None else None inputs_embeds = ( inputs_embeds.view(-1, inputs_embeds.size(-2), inputs_embeds.size(-1)) if inputs_embeds is not None else None ) outputs = self.bert( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) pooled_output = outputs[1] pooled_output = self.dropout(pooled_output) logits = self.classifier(pooled_output) reshaped_logits = logits.view(-1, num_choices) loss = None if labels is not None: loss_fct = CrossEntropyLoss() loss = loss_fct(reshaped_logits, labels) if not return_dict: output = (reshaped_logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return MultipleChoiceModelOutput( loss=loss, logits=reshaped_logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) @add_start_docstrings( """ Bert Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for Named-Entity-Recognition (NER) tasks. """, BERT_START_DOCSTRING, ) class BertForTokenClassification(BertPreTrainedModel): _keys_to_ignore_on_load_unexpected = [r"pooler"] def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.bert = BertModel(config, add_pooling_layer=False) self.dropout = nn.Dropout(config.hidden_dropout_prob) self.classifier = nn.Linear(config.hidden_size, config.num_labels) self.init_weights() @add_start_docstrings_to_model_forward(BERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( tokenizer_class=_TOKENIZER_FOR_DOC, checkpoint=_CHECKPOINT_FOR_DOC, output_type=TokenClassifierOutput, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids=None, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, inputs_embeds=None, labels=None, output_attentions=None, output_hidden_states=None, return_dict=None, ): r""" labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`): Labels for computing the token classification loss. Indices should be in ``[0, ..., config.num_labels - 1]``. """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.bert( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = outputs[0] sequence_output = self.dropout(sequence_output) logits = self.classifier(sequence_output) loss = None if labels is not None: loss_fct = CrossEntropyLoss() # Only keep active parts of the loss if attention_mask is not None: active_loss = attention_mask.view(-1) == 1 active_logits = logits.view(-1, self.num_labels) active_labels = torch.where( active_loss, labels.view(-1), torch.tensor(loss_fct.ignore_index).type_as(labels) ) loss = loss_fct(active_logits, active_labels) else: loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) if not return_dict: output = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return TokenClassifierOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) @add_start_docstrings( """ Bert Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear layers on top of the hidden-states output to compute `span start logits` and `span end logits`). """, BERT_START_DOCSTRING, ) class BertForQuestionAnswering(BertPreTrainedModel): _keys_to_ignore_on_load_unexpected = [r"pooler"] def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.bert = BertModel(config, add_pooling_layer=False) self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels) self.init_weights() @add_start_docstrings_to_model_forward(BERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( tokenizer_class=_TOKENIZER_FOR_DOC, checkpoint=_CHECKPOINT_FOR_DOC, output_type=QuestionAnsweringModelOutput, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids=None, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, inputs_embeds=None, start_positions=None, end_positions=None, output_attentions=None, output_hidden_states=None, return_dict=None, ): r""" start_positions (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`): Labels for position (index) of the start of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (:obj:`sequence_length`). Position outside of the sequence are not taken into account for computing the loss. end_positions (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`): Labels for position (index) of the end of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (:obj:`sequence_length`). Position outside of the sequence are not taken into account for computing the loss. """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.bert( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = outputs[0] logits = self.qa_outputs(sequence_output) start_logits, end_logits = logits.split(1, dim=-1) start_logits = start_logits.squeeze(-1) end_logits = end_logits.squeeze(-1) total_loss = None if start_positions is not None and end_positions is not None: # If we are on multi-GPU, split add a dimension if len(start_positions.size()) > 1: start_positions = start_positions.squeeze(-1) if len(end_positions.size()) > 1: end_positions = end_positions.squeeze(-1) # sometimes the start/end positions are outside our model inputs, we ignore these terms ignored_index = start_logits.size(1) start_positions.clamp_(0, ignored_index) end_positions.clamp_(0, ignored_index) loss_fct = CrossEntropyLoss(ignore_index=ignored_index) start_loss = loss_fct(start_logits, start_positions) end_loss = loss_fct(end_logits, end_positions) total_loss = (start_loss + end_loss) / 2 if not return_dict: output = (start_logits, end_logits) + outputs[2:] return ((total_loss,) + output) if total_loss is not None else output return QuestionAnsweringModelOutput( loss=total_loss, start_logits=start_logits, end_logits=end_logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, )
huggingface/pytorch-transformers
src/transformers/models/bert/modeling_bert.py
Python
apache-2.0
77,484
import json import os import time from urllib.parse import quote def test_standard_requests(): """ Tests app controller methods. These tests should be compartmentalized. Also these methods should be made to not retest the behavior of the associated Manager class. """ from .test_utils import test_pulsar_app with test_pulsar_app(test_conf={"extra_environ": {"REMOTE_ADDR": "127.101.101.98"}}) as app: staging_directory = app.app.staging_directory setup_response = app.post("/jobs?job_id=12345") setup_config = json.loads(setup_response.body.decode("utf-8")) assert setup_config["working_directory"].startswith(staging_directory) outputs_directory = setup_config["outputs_directory"] assert outputs_directory.startswith(staging_directory) assert setup_config["path_separator"] == os.sep job_id = setup_config["job_id"] def test_upload(upload_type): url = "/jobs/{}/files?name=input1&type={}".format(job_id, upload_type) upload_input_response = app.post(url, "Test Contents") upload_input_config = json.loads(upload_input_response.body.decode("utf-8")) staged_input_path = upload_input_config["path"] staged_input = open(staged_input_path) try: assert staged_input.read() == "Test Contents" finally: staged_input.close() test_upload("input") test_upload("tool") test_output = open(os.path.join(outputs_directory, "test_output"), "w") try: test_output.write("Hello World!") finally: test_output.close() download_response = app.get("/jobs/%s/files?name=test_output&type=output" % job_id) assert download_response.body.decode("utf-8") == "Hello World!" try: app.get("/jobs/%s/files?name=test_output2&type=output" % job_id) raise AssertionError() # Should throw exception except Exception: pass command_line = quote("""python -c "import sys; sys.stdout.write('test_out')" """) launch_response = app.post("/jobs/{}/submit?command_line={}".format(job_id, command_line)) assert launch_response.body.decode("utf-8") == 'OK' # Hack: Call twice to ensure postprocessing occurs and has time to # complete. Monitor thread should get this. time.sleep(.3) check_response = app.get("/jobs/%s/status" % job_id) time.sleep(.3) check_response = app.get("/jobs/%s/status" % job_id) check_config = json.loads(check_response.body.decode("utf-8")) assert check_config['returncode'] == 0 assert check_config['stdout'] == "test_out" assert check_config['stderr'] == "" kill_response = app.put("/jobs/%s/cancel" % job_id) assert kill_response.body.decode("utf-8") == 'OK' clean_response = app.delete("/jobs/%s" % job_id) assert clean_response.body.decode("utf-8") == 'OK' assert os.listdir(staging_directory) == []
galaxyproject/pulsar
test/wsgi_app_test.py
Python
apache-2.0
3,083
# -*- coding: utf-8 -*- ''' Flixnet Add-on Copyright (C) 2016 Flixnet This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see <http://www.gnu.org/licenses/>. ''' import re,urllib,json,urlparse,base64,random from resources.lib.modules import client from resources.lib.modules import control class Flixnet trailer: def __init__(self): self.base_link = 'http://www.youtube.com' self.key_link = random.choice(['QUl6YVN5RDd2aFpDLTYta2habTVuYlVyLTZ0Q0JRQnZWcnFkeHNz', 'QUl6YVN5Q2RiNEFNenZpVG0yaHJhSFY3MXo2Nl9HNXBhM2ZvVXd3']) self.key_link = '&key=%s' % base64.urlsafe_b64decode(self.key_link) self.search_link = 'https://www.googleapis.com/youtube/v3/search?part=snippet&type=video&maxResults=5&q=%s' self.youtube_search = 'https://www.googleapis.com/youtube/v3/search?q=' self.youtube_watch = 'http://www.youtube.com/watch?v=%s' def play(self, name, url=None): try: url = self.worker(name, url) if url == None: return title = control.infoLabel('listitem.title') if title == '': title = control.infoLabel('listitem.label') icon = control.infoLabel('listitem.icon') item = control.item(path=url, iconImage=icon, thumbnailImage=icon) try: item.setArt({'icon': icon}) except: pass item.setInfo(type='Video', infoLabels = {'title': title}) control.player.play(url, item) except: pass def worker(self, name, url): try: if url.startswith(self.base_link): url = self.resolve(url) if url == None: raise Exception() return url elif not url.startswith('http://'): url = self.youtube_watch % url url = self.resolve(url) if url == None: raise Exception() return url else: raise Exception() except: query = name + ' Flixnet trailer' query = self.youtube_search + query url = self.search(query) if url == None: return return url def search(self, url): try: query = urlparse.parse_qs(urlparse.urlparse(url).query)['q'][0] apiLang = control.apiLanguage()['youtube'] if apiLang != 'en': query += ' %s' % control.apiLanguage(True)['youtube'] url += "&relevanceLanguage=%s" % apiLang url = self.search_link % urllib.quote_plus(query) + self.key_link result = client.request(url) items = json.loads(result)['items'] items = [(i['id']['videoId']) for i in items] for url in items: url = self.resolve(url) if not url is None: return url except: return def resolve(self, url): try: id = url.split('?v=')[-1].split('/')[-1].split('?')[0].split('&')[0] result = client.request('http://www.youtube.com/watch?v=%s' % id) message = client.parseDOM(result, 'div', attrs = {'id': 'unavailable-submessage'}) message = ''.join(message) alert = client.parseDOM(result, 'div', attrs = {'id': 'watch7-notification-area'}) if len(alert) > 0: raise Exception() if re.search('[a-zA-Z]', message): raise Exception() url = 'plugin://plugin.video.youtube/play/?video_id=%s' % id return url except: return
azumimuo/family-xbmc-addon
plugin.video.showboxarize/resources/lib/modules/trailer.py
Python
gpl-2.0
4,137
# encoding: utf-8 # 2009 © Václav Šmilauer <[email protected]> """ Core functionality (Scene in c++), such as accessing bodies, materials, interactions. Specific functionality tests should go to engines.py or elsewhere, not here. """ import woo import unittest import random import os from minieigen import * from math import * import woo from woo import utils from woo.core import * from woo.dem import * from woo.pre import * try: from woo.sparc import * except: pass try: from woo.gl import * except: pass try: from woo.voro import * except: pass try: from woo.cld import * except: pass try: from woo.qt import * except: pass import woo woo.master.usesApi=10104 ## TODO tests class TestInteractions(unittest.TestCase): pass class TestForce(unittest.TestCase): pass class TestTags(unittest.TestCase): pass class TestScene(unittest.TestCase): def setUp(self): self.scene=woo.core.Scene() #def _testTags(self): # 'Core: Scene.tags are str (not unicode) objects' # S=self.scene # S.tags['str']='asdfasd' # S.tags['uni']=u'→ Σ' # self.assertTrue(type(S.tags['str']==unicode)) # def tagError(S): S.tags['error']=234 # self.assertTrue(type(S.tags['uni']==unicode)) # self.assertRaises(TypeError,lambda: tagError(S)) class TestObjectInstantiation(unittest.TestCase): def setUp(self): self.t=woo.core.WooTestClass() # usually disabled and will be removed completely if hasattr(woo.core,'WooTestClassStatic'): self.ts=woo.core.WooTestClassStatic() def testClassCtors(self): "Core: correct types are instantiated" # correct instances created with Foo() syntax import woo.system for r in woo.system.childClasses(woo.core.Object): obj=r(); self.assertTrue(obj.__class__==r,'Failed for '+r.__name__) def testRootDerivedCtors_attrs_few(self): "Core: class ctor's attributes" # attributes passed when using the Foo(attr1=value1,attr2=value2) syntax gm=Shape(color=1.); self.assertTrue(gm.color==1.) def testDeepcopy(self): 'Core: Object.deepcopy' t=woo.core.WooTestClass() t.mass=0. t2=t.deepcopy(mass=1.0) self.assertTrue(t2.mass==1.0 and t.mass==0.) def testPyRunnerCtor(self): "Core: PyRunner with positional args" p1,p2,p3=PyRunner('one'),PyRunner(2,'two'),PyRunner(3,'three') self.assertEqual((p1.command,p1.stepPeriod),('one',1)) self.assertEqual((p2.command,p2.stepPeriod),('two',2)) self.assertEqual((p3.command,p3.stepPeriod),('three',3)) self.assertRaises(ValueError,lambda: PyRunner(111)) # must be a string self.assertRaises(ValueError,lambda: PyRunner(123,456)) # must be string and number self.assertRaises(ValueError,lambda: PyRunner('ab','cd')) self.assertRaises(ValueError,lambda: PyRunner(1,2,3)) def testDispatcherCtor(self): "Core: dispatcher ctors with functors" # dispatchers take list of their functors in the ctor # same functors are collapsed in one cld1=LawDispatcher([Law2_L6Geom_FrictPhys_IdealElPl(),Law2_L6Geom_FrictPhys_IdealElPl()]); self.assertTrue(len(cld1.functors)==1) # two different make two different cld2=LawDispatcher([Law2_L6Geom_FrictPhys_IdealElPl(),Law2_L6Geom_FrictPhys_LinEl6()]); self.assertTrue(len(cld2.functors)==2) def testContactLoopCtor(self): "Core: ContactLoop special ctor" # ContactLoop takes 3 lists id=ContactLoop([Cg2_Facet_Sphere_L6Geom(),Cg2_Sphere_Sphere_L6Geom()],[Cp2_FrictMat_FrictPhys()],[Law2_L6Geom_FrictPhys_IdealElPl()],) self.assertTrue(len(id.geoDisp.functors)==2) self.assertTrue(id.geoDisp.__class__==CGeomDispatcher) self.assertTrue(id.phyDisp.functors[0].__class__==Cp2_FrictMat_FrictPhys) self.assertTrue(id.lawDisp.functors[0].__class__==Law2_L6Geom_FrictPhys_IdealElPl) def testParallelEngineCtor(self): "Core: ParallelEngine special ctor" pe=ParallelEngine([InsertionSortCollider(),[BoundDispatcher(),ForceResetter()]]) self.assertTrue(pe.slaves[0].__class__==InsertionSortCollider) self.assertTrue(len(pe.slaves[1])==2) pe.slaves=[] self.assertTrue(len(pe.slaves)==0) ## ## testing incorrect operations that should raise exceptions ## def testWrongFunctorType(self): "Core: dispatcher and functor type mismatch is detected" # dispatchers accept only correct functors # pybind11: RuntimeError self.assertRaises((TypeError,RuntimeError),lambda: LawDispatcher([Bo1_Sphere_Aabb()])) def testInvalidAttr(self): 'Core: invalid attribute access raises AttributeError' # accessing invalid attributes raises AttributeError self.assertRaises(AttributeError,lambda: Sphere(attributeThatDoesntExist=42)) self.assertRaises(AttributeError,lambda: Sphere().attributeThatDoesntExist) ### ### shared ownership semantics ### def testShared(self): "Core: shared_ptr really shared" m=woo.utils.defaultMaterial() s1,s2=woo.utils.sphere((0,0,0),1,mat=m),woo.utils.sphere((0,0,0),2,mat=m) s1.mat.young=2342333 self.assertTrue(s1.mat.young==s2.mat.young) def testSharedAfterReload(self): "Core: shared_ptr preserved when saving/loading" S=Scene(fields=[DemField()]) m=woo.utils.defaultMaterial() S.dem.par.add([woo.utils.sphere((0,0,0),1,mat=m),woo.utils.sphere((0,0,0),2,mat=m)]) S.saveTmp(quiet=True); S=Scene.loadTmp() S.dem.par[0].mat.young=9087438484 self.assertTrue(S.dem.par[0].mat.young==S.dem.par[1].mat.young) ## ## attribute flags ## def testNoSave(self): 'Core: Attr::noSave' # update bound of the particle t=self.t i0=t.noSaveAttr t.noSaveAttr=i0+10 t.saveTmp('t') t2=woo.core.WooTestClass.loadTmp('t') # loaded copy has the default value self.assertTrue(t2.noSaveAttr==i0) @unittest.skipIf(not hasattr(woo.core,'WooTestClassStatic'),'Built without static attrs') def testNoSave_static(self): 'Core: Attr::noSave (static)' ts=self.ts ts.noSave=344 ts.namedEnum='one' ts.saveTmp('ts') ts.noSave=123 self.assertTrue(ts.noSave==123) ts2=woo.core.WooTestClassStatic.loadTmp('ts') self.assertTrue(ts2.noSave==123) # was not saved self.assertTrue(ts2.namedEnum=='one') # was saved # since it is static, self.ts is changed as well now self.assertTrue(ts.namedEnum==ts2.namedEnum) self.assertTrue(id(ts.namedEnum)==id(ts2.namedEnum)) def testReadonly(self): 'Core: Attr::readonly' self.assertTrue(self.t.meaning42==42) self.assertRaises(AttributeError,lambda: setattr(self.t,'meaning42',43)) @unittest.skipIf(not hasattr(woo.core,'WooTestClassStatic'),'Built without static attrs') def testReaonly_static(self): 'Core: Attr::readonly (static)' self.assertRaises(AttributeError,lambda: setattr(self.ts,'readonly',2)) def testTriggerPostLoad(self): 'Core: postLoad & Attr::triggerPostLoad' WTC=woo.core.WooTestClass # stage right after construction self.assertEqual(self.t.postLoadStage,WTC.postLoad_ctor) baz0=self.t.baz self.t.foo_incBaz=1 # assign whatever, baz should be incremented self.assertEqual(self.t.baz,baz0+1) self.assertEqual(self.t.postLoadStage,WTC.postLoad_foo) self.t.foo_incBaz=1 # again self.assertEqual(self.t.baz,baz0+2) self.t.bar_zeroBaz=1 # assign to reset baz self.assertEqual(self.t.baz,0) self.assertEqual(self.t.postLoadStage,WTC.postLoad_bar) # assign to baz to test postLoad again self.t.baz=-1 self.assertTrue(self.t.postLoadStage==WTC.postLoad_baz) def testUnicodeStrConverter(self): 'Core: std::string attributes can be assigned unicode string' t=woo.core.WooTestClass(strVar=u'abc') t.strVar=u'abc' self.assertTrue(t.strVar=='abc') def testNamedEnum(self): 'Core: Attr::namedEnum' t=woo.core.WooTestClass() self.assertRaises(ValueError,lambda: setattr(t,'namedEnum','nonsense')) self.assertRaises(ValueError,lambda: setattr(t,'namedEnum',-2)) self.assertRaises(TypeError,lambda: setattr(t,'namedEnum',[])) t.namedEnum='zero' self.assertTrue(t.namedEnum=='zero') # try with unicode string t.namedEnum=u'zero' self.assertTrue(t.namedEnum=='zero') t.namedEnum='nothing' self.assertTrue(t.namedEnum=='zero') t.namedEnum=0 self.assertTrue(t.namedEnum=='zero') # ctor self.assertRaises(ValueError,lambda: woo.core.WooTestClass(namedEnum='nonsense')) tt=woo.core.WooTestClass(namedEnum='single') self.assertTrue(tt.namedEnum=='one') @unittest.skipIf(not hasattr(woo.core,'WooTestClassStatic'),'Built without static attrs') def testNamedEnum_static(self): 'Core: Attr::namedEnum (static)' ts=self.ts self.assertRaises(ValueError,lambda: setattr(ts,'namedEnum','nonsense')) self.assertRaises(ValueError,lambda: setattr(ts,'namedEnum',-2)) self.assertRaises(TypeError,lambda: setattr(ts,'namedEnum',[])) ts.namedEnum='zero' self.assertTrue(ts.namedEnum=='zero') ts.namedEnum=-1 self.assertTrue(ts.namedEnum=='minus one') # test passing it in the ctor tt=woo.core.WooTestClass(namedEnum='NULL') # use the alternative name self.assertTrue(tt.namedEnum=='zero') tt=woo.core.WooTestClass(namedEnum=1) # use number self.assertTrue(tt.namedEnum=='one') def testBits(self): 'Core: AttrTrait.bits accessors' t=self.t # flags and bits read-write t.bits=1 self.assertTrue(t.bit0) t.bit2=True self.assertTrue(t.bits==5) # flags read-only, bits midifiable self.assertRaises(AttributeError,lambda: setattr(t,'bitsRw',1)) t.bit2rw=True t.bit3rw=True self.assertTrue(t.bitsRw==12) # both flags and bits read-only self.assertRaises(AttributeError,lambda: setattr(t,'bitsRo',1)) self.assertRaises(AttributeError,lambda: setattr(t,'bit1ro',True)) self.assertTrue(t.bitsRo==3) self.assertTrue((t.bit0ro,t.bit1ro,t.bit2ro)==(True,True,False)) def testDeprecated(self): 'Core: AttrTrait.deprecated raises exception on access' self.assertRaises(ValueError,lambda: getattr(self.t,'deprecatedAttr')) self.assertRaises(ValueError,lambda: setattr(self.t,'deprecatedAttr',1)) ## not (yet) supported for static attributes # def testBits_static(self): def testHidden(self): 'Core: Attr::hidden' # hidden attributes are not wrapped in python at all self.assertTrue(not hasattr(self.t,'hiddenAttr')) @unittest.skipIf(not hasattr(woo.core,'WooTestClassStatic'),'Built without static attrs') def testHidden_static(self): 'Core: Attr::hidden (static)' self.assertRaises(AttributeError,lambda: getattr(self.ts,'hidden')) def testNotifyDead(self): 'Core: PeriodicEngine::notifyDead' e=woo.core.WooTestPeriodicEngine() self.assertTrue(e.deadCounter==0) prev=e.deadCounter e.dead=True self.assertTrue(e.deadCounter>prev) # ideally, this should be 1, not 4 by now!! prev=e.deadCounter e.dead=True self.assertTrue(e.deadCounter>prev) prev=e.deadCounter e.dead=False self.assertTrue(e.deadCounter>prev) def testNodeDataCtorAssign(self): 'Core: assign node data using shorthands in the ctor' n=woo.core.Node(pos=(1,2,3),dem=woo.dem.DemData(mass=100)) self.assertTrue(n.dem.mass==100) # pybind11: RuntimeError self.assertRaises((TypeError,RuntimeError),lambda: woo.core.Node(dem=1)) if 'gl' in woo.config.features: # type mismatch self.assertRaises(RuntimeError,lambda: woo.core.Node(dem=woo.gl.GlData())) class TestLoop(unittest.TestCase): def setUp(self): woo.master.reset() woo.master.scene.fields=[DemField()] woo.master.scene.dt=1e-8 def testSubstepping(self): 'Loop: substepping' S=woo.master.scene S.engines=[PyRunner(1,'pass'),PyRunner(1,'pass'),PyRunner(1,'pass')] # value outside the loop self.assertTrue(S.subStep==-1) # O.subStep is meaningful when substepping S.subStepping=True S.one(); self.assertTrue(S.subStep==0) S.one(); self.assertTrue(S.subStep==1) # when substepping is turned off in the middle of the loop, the next step finishes the loop S.subStepping=False S.one(); self.assertTrue(S.subStep==-1) # subStep==0 inside the loop without substepping S.engines=[PyRunner(1,'if scene.subStep!=0: raise RuntimeError("scene.subStep!=0 inside the loop with Scene.subStepping==False!")')] S.one() def testEnginesModificationInsideLoop(self): 'Loop: Scene.engines can be modified inside the loop transparently.' S=woo.master.scene S.engines=[ PyRunner(stepPeriod=1,command='from woo.core import *; from woo.dem import *; scene.engines=[ForceResetter(),ForceResetter(),Leapfrog(reset=False)]'), # change engines here ForceResetter() # useless engine ] S.subStepping=True # run prologue and the first engine, which modifies O.engines S.one(); S.one(); self.assertTrue(S.subStep==1) self.assertTrue(len(S.engines)==3) # gives modified engine sequence transparently self.assertTrue(len(S._nextEngines)==3) self.assertTrue(len(S._currEngines)==2) S.one(); S.one(); # run the 2nd ForceResetter, and epilogue self.assertTrue(S.subStep==-1) # start the next step, nextEngines should replace engines automatically S.one() self.assertTrue(S.subStep==0) self.assertTrue(len(S._nextEngines)==0) self.assertTrue(len(S.engines)==3) self.assertTrue(len(S._currEngines)==3) def testDead(self): 'Loop: dead engines are not run' S=woo.master.scene S.engines=[PyRunner(1,'pass',dead=True)] S.one(); self.assertTrue(S.engines[0].nDone==0) def testPausedContext(self): 'Loop: "with Scene.paused()" context manager' import time S=woo.master.scene S.engines=[] S.run() with S.paused(): i=S.step time.sleep(.1) self.assertTrue(i==S.step) # check there was no advance during those .1 secs self.assertTrue(S.running) # running should return true nevertheless time.sleep(.1) self.assertTrue(i<S.step) # check we run during those .1 secs again S.stop() def testNoneEngine(self): 'Loop: None engine raises exception.' S=woo.master.scene self.assertRaises(RuntimeError,lambda: setattr(S,'engines',[ContactLoop(),None,ContactLoop()])) def testStopAtStep(self): 'Loop: S.stopAtStep and S.run(steps=...)' S=woo.core.Scene(dt=1.) S.stopAtStep=100 # absolute value S.run(wait=True) self.assertEqual(S.step,100) S.run(steps=100,wait=True) # relative value self.assertEqual(S.step,200) def testStopAtTime(self): 'Loop: S.stopAtTime and S.run(time=...)' S=woo.core.Scene(dt=1e-3) S.stopAtTime=1.0001 # absolute value S.run(wait=True) self.assertAlmostEqual(S.time,1.001,delta=1e-3) S.run(time=.5,wait=True) # relative value self.assertAlmostEqual(S.time,1.501,delta=1e-3) def testStopAtHook(self): 'Loop: S.stopAtHook' S=woo.core.Scene(dt=1e-3) # both of them should trivver stopAtHook S.stopAtTime=10e-3 S.stopAtStep=1000 S.lab.a=1 S.lab._setWritable('a') S.stopAtHook='S.lab.a+=1' S.run(wait=True) # stopAtTime applies first self.assertEqual(S.lab.a,2) S.run(wait=True) # stopAtStep applies now self.assertEqual(S.lab.a,3) def testWait(self): 'Loop: Scene.wait() returns only after the current step finished' S=woo.core.Scene(dt=1e-3,engines=[PyRunner(1,'import time; S.stop(); time.sleep(.3); S.lab.aa=True')]) S.run(wait=True) self.assertTrue(hasattr(S.lab,'aa')) def testWaitTimeout(self): 'Loop: Scene.wait(timeout=...)' S=woo.core.Scene(dt=1,engines=[PyRunner(1,'import time; time.sleep(1)')]) S.run() self.assertRaises(RuntimeError,lambda: S.wait(timeout=.01)) def testWaitException(self): 'Loop: Scene.wait() returns on exception' # silence loggers ll=dict([(l,woo.log.level(l)) for l in ('Engine','Scene')]) for l in ll.keys(): woo.log.setLevel(l,woo.log.OFF) S=woo.core.Scene(dt=1,engines=[PyRunner(1,'raise ValueError("Some error error")')]) self.assertRaises(RuntimeError,lambda: S.run(wait=True)) for l,lev in ll.items(): woo.log.setLevel(l,lev) def testWaitForScenes(self): 'Loop: Master.waitForScenes correctly handles reassignment of the master scene' S=woo.master.scene=woo.core.Scene(dt=1e-3,engines=[PyRunner(1,'import time; S.stop(); time.sleep(.3); woo.master.scene=woo.core.Scene(dt=1e-4,engines=[woo.core.PyRunner(1,"S.stop()")])')]) S.run() woo.master.waitForScenes() self.assertTrue(woo.master.scene.dt==1e-4) # check master scene is the second one class TestIO(unittest.TestCase): def testSaveAllClasses(self): 'I/O: All classes can be saved and loaded with boost::serialization' import woo.system failed=set() for c in woo.system.childClasses(woo.core.Object): t=woo.core.WooTestClass() try: t.any=c() t.saveTmp(quiet=True) woo.master.loadTmpAny() except (RuntimeError,ValueError): print(20*'*'+' error with class '+c.__name__) import traceback traceback.print_exc() failed.add(c.__name__) failed=list(failed); failed.sort() if failed: print(80*'#'+'\nFailed classes were: '+' '.join(failed)) self.assertTrue(len(failed)==0,'Failed classes were: '+' '.join(failed)+'\n'+80*'#') class TestContact(unittest.TestCase): def setUp(self): self.S=S=woo.core.Scene(fields=[DemField()],engines=DemField.minimalEngines()) for i in range(0,10): S.dem.par.add(woo.dem.Sphere.make((0,0,i),1.1)) S.one() def testForceSign(self): 'Contact: forceSign' S=self.S c45=S.dem.con[4,5] inc=(c45.id1==4) self.assertTrue(c45.forceSign(4)==(1 if inc else -1)) self.assertTrue(c45.forceSign(5)==(-1 if inc else 1)) self.assertRaises(RuntimeError,lambda: c45.forceSign(6)) self.assertTrue(c45.forceSign(S.dem.par[4])==(1 if inc else -1)) self.assertTrue(c45.forceSign(S.dem.par[5])==(-1 if inc else 1)) self.assertRaises(RuntimeError,lambda: c45.forceSign(S.dem.par[6])) class TestParticles(unittest.TestCase): def setUp(self): woo.master.reset() woo.master.scene.fields=[DemField()] S=woo.master.scene self.count=100 S.dem.par.add([utils.sphere([random.random(),random.random(),random.random()],random.random()) for i in range(0,self.count)]) random.seed() def testIterate(self): "Particles: iteration" counted=0 S=woo.master.scene for b in S.dem.par: counted+=1 self.assertTrue(counted==self.count) def testLen(self): "Particles: len(S.dem.par)" S=woo.master.scene self.assertTrue(len(S.dem.par)==self.count) def testRemove(self): "Particles: acessing removed particles raises IndexError" S=woo.master.scene S.dem.par.remove(0) self.assertRaises(IndexError,lambda: S.dem.par[0]) def testRemoveShrink(self): "Particles: removing particles shrinks storage size" S=woo.master.scene for i in range(self.count-1,-1,-1): S.dem.par.remove(i) self.assertTrue(len(S.dem.par)==i) def testNegativeIndex(self): "Particles: negative index counts backwards (like python sequences)." S=woo.master.scene self.assertTrue(S.dem.par[-1]==S.dem.par[self.count-1]) def testRemovedIterate(self): "Particles: iterator silently skips erased particles" S=woo.master.scene removed,counted=0,0 for i in range(0,10): id=random.randint(0,self.count-1) if S.dem.par.exists(id): S.dem.par.remove(id); removed+=1 for b in S.dem.par: counted+=1 self.assertTrue(counted==self.count-removed) class TestArrayAccu(unittest.TestCase): def setUp(self): self.t=woo.core.WooTestClass() self.N=woo.master.numThreads #def testRead(self): # 'OpenMP array accu: implicit conversion to python list' # print(self.t.aaccu) def testResize(self): 'OpenMP array accu: resizing' self.assertEqual(len(self.t.aaccuRaw),0) # initial zero size for sz in (4,8,16,32,33): self.t.aaccuRaw=[i for i in range(0,sz)] r=self.t.aaccuRaw for i in range(0,sz): self.assertTrue(r[i][0]==i) # first thread is assigned the value for n in range(1,self.N): self.assertTrue(r[i][n]==0) # other threads are reset def testPreserveResize(self): 'OpenMP array accu: preserve old data on resize' self.t.aaccuRaw=(0,1) self.t.aaccuWriteThreads(2,[2]) # write whatever to index 2: resizes, but should preserve 0,1 self.assertEqual(self.t.aaccuRaw[0][0],0) self.assertEqual(self.t.aaccuRaw[1][0],1) def testThreadWrite(self): 'OpenMP array accu: concurrent writes' self.t.aaccuWriteThreads(0,list(range(self.N))) for i in range(0,self.N): self.assertEqual(self.t.aaccuRaw[0][i],i) # each thread has written its own index class _TestPyClass(woo.core.Object,woo.pyderived.PyWooObject): 'Sample pure-python class integrated into woo (mainly used with preprocessors), for use with :obj:`TestPyDerived`.' PAT=woo.pyderived.PyAttrTrait _attrTraits=[ PAT(float,'aF',1.,'float attr'), PAT([float,],'aFF',[0.,1.,2.],'list of floats attr'), PAT(Vector2,'aV2',(0.,1.),'vector2 attr'), PAT([Vector2,],'aVV2',[(0.,0.),(1.,1.)],'list of vector2 attr'), PAT(woo.core.Node,'aNode',woo.core.Node(pos=(1,1,1)),'node attr'), PAT(woo.core.Node,'aNodeNone',None,'node attr, uninitialized'), PAT([woo.core.Node,],'aNNode',[woo.core.Node(pos=(1,1,1)),woo.core.Node(pos=(2,2,2))],'List of nodes'), PAT(float,'aF_trigger',1.,triggerPostLoad=True,doc='Float triggering postLoad, copying its value to aF'), PAT(int,'postLoadCounter',0,doc='counter for postLoad (readonly). Incremented by 1 after construction, incremented by 10 when assigning to aF_trigger.'), PAT(int,'deprecAttr',-1,deprecated=True,doc='deprecated, here should be the explanation.'), PAT(str,'sChoice','aa',choice=['aa','bb','cc'],doc='String choice attribute') ] def postLoad(self,I): if I is None: self.postLoadCounter+=1 elif I=='aF_trigger': # print 'postLoad / aF_trigger' self.postLoadCounter+=10 self.aF=self.aF_trigger else: raise RuntimeError(self.__class__.__name__+'.postLoad called with unknown attribute id %s'%I) def __new__(klass,**kw): self=super().__new__(klass) self.wooPyInit(klass,woo.core.Object,**kw) return self def __init__(self,**kw): woo.core.Object.__init__(self) self.wooPyInit(_TestPyClass,woo.core.Object,**kw) class _TestPyClass2(_TestPyClass): 'Python class deriving from python base class (which in turn derives from c++).' _PAT=woo.pyderived.PyAttrTrait def postLoad(self,I): if I=='f2' or I is None: self.f2counter+=1 else: super(_TestPyClass2,self).postLoad(I) _attrTraits=[ _PAT(int,'f2',0,triggerPostLoad=True,doc='Float attr in derived class'), _PAT(int,'f2counter',0,doc='Count how many times was f2 manipulated (to test triggerPostLoad in class with python parent)'), ] def __new__(klass,**kw): self=super().__new__(klass) self.wooPyInit(klass,_TestPyClass,**kw) return self def __init__(self,**kw): _TestPyClass.__init__(self) self.wooPyInit(_TestPyClass2,_TestPyClass,**kw) class TestPyDerived(unittest.TestCase): import woo.pyderived, woo.core def setUp(self): self.t=_TestPyClass() self.t2=_TestPyClass2() def testTrigger(self): 'PyDerived: postLoad triggers' # print 'postLoadCounter after ctor:',self.t.postLoadCounter self.assertTrue(self.t.postLoadCounter==1) self.t.aF_trigger=514. self.assertTrue(self.t.aF_trigger==514.) self.assertTrue(self.t.aF==514.) self.assertTrue(self.t.postLoadCounter==11) def testPickle(self): 'PyDerived: deepcopy' self.assertTrue(self.t.aF==1.) self.assertTrue(self.t.aNode.pos==Vector3(1,1,1)) self.t.aF=2. self.t.aNode.pos=Vector3(0,0,0) self.assertTrue(self.t.aF==2.) self.assertTrue(self.t.aNode.pos==Vector3(0,0,0)) # pickle needs the class to be found in the module itself # PicklingError: Can't pickle <class 'woo.tests.core._TestPyClass'>: it's not found as woo.tests.core._TestPyClass # this is fixed now the class is defined at the module level t2=self.t.deepcopy() self.assertTrue(t2.aF==2.) self.assertTrue(t2.aNode.pos==Vector3(0,0,0)) self.t.aF=0. t3=self.t.deepcopy(aF=1.0) # with kw arg self.assertTrue(t3.aF==1. and self.t.aF==0.) def testTypeCoerceFloats(self): 'PyDerived: type coercion (primitive types)' # numbers and number sequences self.assertRaises(TypeError,lambda:setattr(self.t,'aF','asd')) self.assertRaises(TypeError,lambda:setattr(self.t,'aF','123')) # disallow conversion from strings self.assertRaises(TypeError,lambda:setattr(self.t,'aFF',(1,2,'ab'))) self.assertRaises(TypeError,lambda:setattr(self.t,'aFF','ab')) self.assertRaises(TypeError,lambda:setattr(self.t,'aFF',[(1,2,3),(4,5,6)])) try: self.t.aFF=[] except: self.fail("Empty list not accepter for list of floats") try: self.t.aFF=Vector3(1,2,3) except: self.fail("Vector3 not accepted for list of floats") try: self.t.aV2=(0,1.) except: self.fail("2-tuple not accepted for Vector2") def testTypeCoerceObject(self): 'PyDerived: type coercion (woo.core.Object)' # c++ objects try: self.t.aNode=None except: self.fail("None not accepted as woo.core.Node") self.assertRaises(TypeError,lambda:setattr(self.t,'aNode',woo.core.Scene())) # list of c++ objects self.assertRaises(TypeError,lambda:setattr(self.t,'aNNode',(woo.core.Node(),woo.core.Scene()))) try: self.t.aNNode=[None,woo.core.Node()] except: self.fail("[None,Node] not accepted for list of Nodes") def testTypeCoerceCtor(self): 'PyDerived: type coercion (ctor)' self.assertRaises(TypeError,lambda:_TestPyClass(aF='abc')) def testTraits(self): 'PyDerived: PyAttrTraits' self.assertTrue(self.t._attrTraits[0].ini==1.) self.assertTrue(self.t._attrTraits[0].pyType==float) def testIniDefault(self): 'PyDerived: default initialization' self.assertTrue(self.t.aF==1.) self.assertTrue(self.t.aFF==[0.,1.,2.]) self.assertTrue(self.t.aNodeNone==None) def testIniUser(self): 'PyDerived: user initialization' t2=_TestPyClass(aF=2.) self.assertTrue(t2.aF==2.) self.assertRaises(AttributeError,lambda: _TestPyClass(nonsense=123)) def testStrValidation(self): 'PyDerived: string choice is validated' try: self.t.sChoice='bb' except: self.fail("Valid choice value not accepted as new attribute value") self.assertRaises(ValueError, lambda: setattr(self.t,'sChoice','abc')) self.assertRaises(ValueError, lambda: _TestPyClass(sChoice='abc')) try: _TestPyClass(sChoice='bb') except: self.fail("Valid choice value not accepted in ctor") def testBoostSaveError(self): 'PyDerived: refuses to save via Object::save (data loss; dump must be used instead)' self.assertRaises(IOError,lambda: self.t.save('whatever')) self.assertRaises(IOError,lambda: self.t2.save('whatever')) def testBoostDumpError(self): 'PyDerived: refuses to dump with boost::serialization format (data loss)' self.assertRaises(IOError,lambda: self.t.dump('whatever.xml')) self.assertRaises(IOError,lambda: self.t2.dump('whatever.xml')) def testDeprecated(self): 'PyDerived: deprecated attribute raises ValueError on access' self.assertRaises(ValueError,lambda: getattr(self.t,'deprecAttr')) self.assertRaises(ValueError,lambda: setattr(self.t,'deprecAttr',1)) def testPickle2(self): 'PyDerived: deepcopy (python parent)' self.t2.f2=3 self.t2.aF=0 tt=self.t2.deepcopy() self.assertTrue(tt.aF==0) self.assertTrue(tt.f2==3) def testIniUser(self): 'PyDerived: user initialization (python parent)' t2=_TestPyClass2(aF=0,f2=3) self.assertTrue(t2.aF==0) self.assertTrue(t2.f2==3) def testTrigger(self): 'PyDerived: postLoad trigger (python parent)' c1=self.t2.postLoadCounter c2=self.t2.f2counter self.t2.f2=4. self.t2.aF_trigger=5. self.assertTrue(self.t2.f2counter>c2) self.assertTrue(self.t2.postLoadCounter>c1)
woodem/woo
py/tests/test_core.py
Python
gpl-2.0
30,561
from HTMLParser import HTMLParser import simplejson as json import database import re class MyHTMLParser(HTMLParser): def array(self): self.dataArray = [] def handle_data(self, data): self.dataArray.append(data) def htmlFormat(json_dump): html = "<p><img src=\"https://graph.facebook.com/%s/picture\" > Name: %s - Link: <a href=\"%s\">facebook profile</a> - Gender: %s -Locale: %s</p>" %(json_dump['username'],json_dump['name'], json_dump['link'], json_dump['gender'], json_dump['locale']) return html def parceros(json_dump): parser = MyHTMLParser() parser.array() names = [] userIds = [] try: to_parse = str(json_dump['domops'][0][3]['__html']) parser.feed(to_parse) except: print 'Error in json dump or parser.feed' i = 0 while True: if ((parser.dataArray[i] == 'Test Users') or (parser.dataArray[i] == 'Delete') or (parser.dataArray[i] == 'Add') or (parser.dataArray[i] == 'Name') or (parser.dataArray[i] == 'User ID') or (parser.dataArray[i] == 'Email') or (parser.dataArray[i] == 'Edit') or (parser.dataArray[i] == 'tfbnw.net')): del parser.dataArray[i] else: i += 1 if i == len(parser.dataArray): break i = 0 while i < (len(parser.dataArray) - 2): names.append(parser.dataArray[i]) userIds.append(parser.dataArray[i+1]) i = i + 3 if ( userIds!=[] and names!=[]) and (parser.dataArray[0] != 'This app has no Test Users.'): database.insertTestUsersDev(userIds,names) return 1 else: return -1 def parseData(dataRaw): parser = MyHTMLParser() parser.array() names = [] userIds = [] emails = [] passwords = [] for data in dataRaw: if data=="": continue text = data.strip("for (;;);") json_dump = json.loads(text) try: to_parse = str(json_dump['jsmods']['markup'][0][1]['__html']) parser.feed(to_parse) except: print 'Error in json dump or parser.feed' for i in range(len(parser.dataArray)): if parser.dataArray[i] == 'Name': names.append(parser.dataArray[i+1]) continue if parser.dataArray[i] == 'User ID': userIds.append(parser.dataArray[i+1]) continue if parser.dataArray[i] == 'Login email': emails.append(parser.dataArray[i+1]+'@'+parser.dataArray[i+2]) continue if parser.dataArray[i] == 'Login password': passwords.append(parser.dataArray[i+1]) continue if ( userIds!=[] and names!=[] and emails!=[] and passwords!=[] ): database.insertTestUsers(userIds,names,emails,passwords) return 1 else: return -1 ''' try: for i in range(len(names)): print names[i] + ' ' + userIds[i] + ' ' + emails[i] + ' ' + passwords[i] + ' ' except: print 'for error in MyParser' ''' def parseOnline(data): buddies = [] start = 0 while True: match = re.search("fbid=", data[start:]) if match is not None: start += match.end() matchBis = re.search("&",data[start:]) if matchBis is not None: end = matchBis.end() + start buddies.append(str(data[start:end-1])) start = end end = 0 else: break return buddies def parseFriends(data): start = 0 end = 0 lines = [] friends = [] while True: match = re.search(r'href="/([a-zA-Z]*[0-9]*[\.]*)+(\?fref=fr_tab)',data[start:]) if match is not None: lines.append(match.group()) start += match.end() else: break for linea in lines: name = linea.split('/')[1].split('?')[0] friends.append(name) match = re.search("[a-zA-Z]+\?v=friends&amp;mutual&amp;startindex=[0-9]+",data) if match is not None: raw = match.group() next = raw.replace("&amp;","&") else: match = re.search("[a-zA-Z]+/friends\?([a-zA-Z]+=[0-9]+)+(&amp;)*([a-zA-Z]+=[0-9]+)*",data) if match is not None: raw = match.group() next = raw.replace("&amp;","&") else: next = -1 return friends,next def parsePending(): response = open("respuesta.html","r") struct = [] aux = [] while True: linea = response.readline() if not linea: break match = re.search('/ajax/reqs.php'+'(.+)',str(linea)) if match is not None: struct.append(re.search('/ajax/reqs.php'+'(.+)',str(linea)).group()) for lines in struct: start = 0 while True: match = re.search('[0-9]{15}',str(lines)[start:]) if match is not None: if str(lines)[start + match.start():start + match.end()] not in aux: aux.append(str(lines)[start + match.start():start + match.end()]) start += match.end() else: break; return aux
chinoogawa/fbht
MyParser.py
Python
bsd-2-clause
5,245
"""Super useful module""" def print_num(number): print(number)
brooth/far.vim
test/very long directory name with spaces/very long file name also with spaces.py
Python
mit
68
import fuse
hubearth/odoo_fuse
models/__init__.py
Python
gpl-3.0
14
from classifip.models.qda import EuclideanDiscriminant, LinearDiscriminant, QuadraticDiscriminant, NaiveDiscriminant from sklearn.discriminant_analysis import LinearDiscriminantAnalysis, QuadraticDiscriminantAnalysis import random, numpy as np, pandas as pd, sys from sklearn.model_selection import KFold from collections import Counter from numpy import linalg INFIMUM, SUPREMUM = "inf", "sup" class BaseEstimator: def __init__(self, store_covariance=False): self._data, self._N, self._p = None, 0, 0 self._clazz, self._nb_clazz = None, None self._means, self._prior = dict(), dict() self._icov, self._dcov = dict(), dict() def fit(self, X, y): self._N, self._p = X.shape self._data = pd.concat([pd.DataFrame(X, dtype="float64"), pd.Series(y, dtype="category")], axis=1) columns = ["x" + i for i in map(str, range(self._p))] columns.extend('y') self._data.columns = columns self._clazz = np.array(self._data.y.cat.categories.tolist()) self._nb_clazz = len(self._clazz) def pdf(self, query, mean, inv_cov, det_cov): _exp = -0.5 * ((query - mean).T @ inv_cov @ (query - mean)) _const = np.power(det_cov, -0.5) / np.power(2 * np.pi, self._p / 2) return _const * np.exp(_exp) def predict(self, queries): predict_clazz = list() for query in queries: pbs = np.array( [self.pdf(query, self._means[clazz], self._icov[clazz], self._dcov[clazz]) * self._prior[clazz] \ for clazz in self._clazz]) predict_clazz.append(self._clazz[pbs.argmax()]) return predict_clazz class EuclideanDiscriminantPrecise(BaseEstimator): def fit(self, X, y): super(EuclideanDiscriminantPrecise, self).fit(X, y) for clazz in self._clazz: self._means[clazz] = self._data[self._data.y == clazz].iloc[:, :-1].mean().as_matrix() self._prior[clazz] = len(self._data[self._data.y == clazz]) / self._N self._icov[clazz] = np.identity(self._p) self._dcov[clazz] = 1 class NaiveDiscriminantPrecise(BaseEstimator): def fit(self, X, y): super(NaiveDiscriminantPrecise, self).fit(X, y) # cov_total = np.diag(np.var(self._data.iloc[:, :-1])) # Naive with variance global for clazz in self._clazz: self._means[clazz] = self._data[self._data.y == clazz].iloc[:, :-1].mean().as_matrix() self._prior[clazz] = len(self._data[self._data.y == clazz]) / self._N cov_clazz = np.diag(np.var(self._data[self._data.y == clazz].iloc[:, :-1])) if linalg.cond(cov_clazz) < 1 / sys.float_info.epsilon: self._icov[clazz] = linalg.inv(cov_clazz) self._dcov[clazz] = linalg.det(cov_clazz) else: # computing pseudo inverse/determinant to a singular covariance matrix self._icov[clazz] = linalg.pinv(cov_clazz) eig_values, _ = linalg.eig(cov_clazz) self._dcov[clazz] = np.product(eig_values[(eig_values > 1e-12)]) MODEL_TYPES = {'ieda': EuclideanDiscriminant, 'ilda': LinearDiscriminant, 'iqda': QuadraticDiscriminant, 'inda': NaiveDiscriminant} def __factory_model(model_type, **kwargs): try: return MODEL_TYPES[model_type.lower()](**kwargs) except Exception as _: raise Exception("Selected model does not exist") MODEL_TYPES_PRECISE = {'lda': LinearDiscriminantAnalysis, 'qda': QuadraticDiscriminantAnalysis, 'eda': EuclideanDiscriminantPrecise, 'nda': NaiveDiscriminantPrecise} def __factory_model_precise(model_type, **kwargs): try: if model_type == 'lda': kwargs["solver"] = "svd"; return MODEL_TYPES_PRECISE[model_type.lower()](**kwargs) except Exception as _: raise Exception("Selected model does not exist") def generate_seeds(nb_seeds): return [random.randrange(pow(2, 20)) for _ in range(nb_seeds)] def generate_sample_cross_validation(data_labels, nb_fold_cv=2, minimum_by_label=1): nb_by_label = Counter(data_labels) # int(xxx*(1-1/nb_fold_cv)) split minimum 2 training and other testing if len(nb_by_label) > 0 and minimum_by_label > int(min(nb_by_label.values()) * (1 - 1 / nb_fold_cv)): raise Exception('It is not possible to split a minimum number %s of labels for training ' ' and others for testing.' % minimum_by_label) while True: kf = KFold(n_splits=nb_fold_cv, random_state=None, shuffle=True) splits, is_minimum_OK = list([]), True for idx_train, idx_test in kf.split(data_labels): splits.append((idx_train, idx_test)) nb_by_label = Counter(data_labels[idx_train]) if len(nb_by_label) > 0 and minimum_by_label > min(nb_by_label.values()): is_minimum_OK = False break if is_minimum_OK: break return splits
sdestercke/classifip
experiments/classification/qda/qda_common.py
Python
gpl-2.0
4,995
# -*- coding: utf-8 -*- # Generated by Django 1.10.6 on 2017-06-01 11:42 from __future__ import unicode_literals from django.db import migrations class Migration(migrations.Migration): dependencies = [ ('website', '0028_auto_20170601_1436'), ] operations = [ migrations.DeleteModel( name='Github_user', ), ]
hiezust/teask
website/migrations/0029_delete_github_user.py
Python
gpl-3.0
365
# reference: https://tkipf.github.io/graph-convolutional-networks/ import numpy as np import matplotlib.pyplot as plt import networkx as nx from scipy.special import expit # np.random.seed(1) G = nx.karate_club_graph() A = nx.adjacency_matrix(G) A = np.array(A.todense()) # parameters for synthtization n = 50 # size of matrix size_cluster = 10 number_cluster = n / size_cluster noise_ratio = 0.01 # relation table R R = np.zeros((n, n), dtype=np.float) for i in range(number_cluster): R[i*size_cluster:(i+1)*size_cluster, i*size_cluster:(i+1)*size_cluster] = 1 # add some noise # for i in range(int(n*n*noise_ratio)): # x = np.random.randint(0, n) # y = np.random.randint(0, n) # R[x, y] = 1 - R[x, y] # apply permutation # R_ = R[np.random.permutation(n)].T[np.random.permutation(n)].T R_ = R # Display R # fig, axes = plt.subplots(1,1) # axes.imshow(R_, interpolation='None', cmap='Greys') # plt.show() # Construct adjacency matrix A = np.vstack((np.hstack((np.zeros((50, 50), dtype=np.float), R_)), np.hstack((R_.T, np.zeros((50, 50), dtype=np.float))))) D = np.diag(np.sum(A, axis=1)**-0.5) DAD = np.dot(np.dot(D, (A + np.identity(A.shape[0], dtype=np.float))), D) # propagation W = np.random.rand(100, 100) * 2 - 1 H = np.tanh(np.dot(DAD, W)) H = H / np.sum(H, axis=1)[:, np.newaxis] for i in range(20): W = np.random.rand(100, 100) * 2 - 1 # initialize weight H = np.tanh(np.dot(np.dot(DAD, H), W)) H = H / np.sum(H, axis=1)[:, np.newaxis] W = np.random.rand(100, 2) * 2 - 1 H = np.tanh(np.dot(np.dot(DAD, H), W)) # print DAD fig, ax = plt.subplots() for color, i in zip(['red', 'green', 'blue', 'grey', 'brown'], range(number_cluster)): x, y = H[i*size_cluster:(i+1)*size_cluster,0], H[i*size_cluster:(i+1)*size_cluster,1] ax.scatter(x, y, c=color, label=color, edgecolors='none') # ax.legend() ax.grid(True) # plt.scatter(H4[:,0], H4[:,1], marker='x') plt.show()
acgacgacgacg/biclustering
test_WL.py
Python
agpl-3.0
1,934
# # Proximate - Peer-to-peer social networking # # Copyright (c) 2008-2011 Nokia Corporation # # All rights reserved. # # This software is licensed under The Clear BSD license. # See the LICENSE file for more details. # from errno import EAGAIN, EINTR from gobject import io_add_watch, IO_IN import socket from random import randint from bencode import fmt_bdecode, bencode from ioutils import create_udp_socket, send_broadcast, TCP_Queue from plugins import Plugin, get_plugins, get_plugin_by_type from support import warning, info, debug, get_debug_mode from proximateprotocol import DEFAULT_COMMUNITY_NAME, FRIENDS_COMMUNITY_NAME, \ BLACKLIST_COMMUNITY_NAME, USER_STATUS_LIST, \ TP_HELLO, TP_QUIT, TP_SCAN_INTERVAL, TP_CONNECT_TIMEOUT, \ PROXIMATE_PROTOCOL_VERSION, valid_community, \ valid_nick, valid_port, valid_uid, valid_protocol_version, \ PLUGIN_TYPE_COMMUNITY, PLUGIN_TYPE_FETCHER, \ PLUGIN_TYPE_NOTIFICATION, PLUGIN_TYPE_SCHEDULER, PROFILE_ICON_CHANGED, \ PLUGIN_TYPE_NETWORK_CONTROL, \ PLUGIN_TYPE_SETTINGS, DEFAULT_PROXIMATE_PORT, TP_MIN_PORT, TP_MAX_PORT from proximatestate import create_community, find_communities, get_community_dir, \ get_broadcast_ports, delete_community, \ seek_community_icon_name, get_myself, get_ordinary_community, get_user, \ get_users, get_user_dir, save_user, \ save_community_icon, save_communities, save_face, seek_face_name, \ create_user, delete_face, create_user_communities, delete_community_icon, \ normal_traffic_mode from typevalidator import validate, ZERO_OR_MORE from utils import read_file_contents, Rate_Limiter from pathname import get_path, FRIEND_COMMUNITY_ICON from meta import is_unsigned_int from user import User from communitymeta import Community community = None REQUEST_INTERVAL = 300 // TP_SCAN_INTERVAL ICON_PUSH_INTERVAL = 60 # Avoid icon transfers with huge number of online users MAX_ICON_ACTIVE = 30 class Community_Plugin(Plugin): IP_NETWORK = 0 def __init__(self, options): self.register_plugin(PLUGIN_TYPE_COMMUNITY) self.register_server(TP_HELLO, Hello_Server) self.fetcher = None self.fetchhandlers = { TP_HELLO: self.handle_hello, 'uprofile': self.handle_user_profile_fetch, 'iconrequest': self.handle_icon_request, 'iconpush': self.handle_icon_push, 'cprofile': self.handle_community_profile_fetch, 'cprofiles': self.handle_community_profiles_fetch, 'cinvite': self.handle_invite_community, } self.notify = None self.net = None self.community_gui = None self.req_counter = 0 self.activeport = options.activeport # Note ipactive is not dependent on udp_listen and udp_send variables self.ipactive = True self.activeusers = {} self.remoteusers = {} for user in self.get_users(False): remotes = user.get('remotes') if remotes != None and len(remotes) > 0: self.remoteusers[user] = 0 self.myself = get_myself() self.myuid = self.myself.get('uid') self.udp_listen = (options.udpmode & 1) != 0 self.udp_send = (options.udpmode & 2) != 0 if not self.udp_listen or not self.udp_send: info('UDP broadcast listen: %s send: %s\n' % (self.udp_listen, self.udp_send)) self.blacklist = {} self.blistcom = self.create_community(BLACKLIST_COMMUNITY_NAME, peer=False, public=False) self.blistcom.set('invisible', True) self.iconfetchlimiters = {'user': Rate_Limiter(ICON_PUSH_INTERVAL)} self.personal_communities = options.personal_communities # Create a community of friends, if it doesn't already exist friends = self.get_friend_community() if friends == None: friends = self.create_community(FRIENDS_COMMUNITY_NAME, peer=False, public=False, desc='My friends') self.set_community_icon(friends, get_path(FRIEND_COMMUNITY_ICON)) def register_ui(self, ui): self.community_gui = ui def add_friend(self, user): assert(isinstance(user, User)) self.get_friend_community().add_member(user) self.announce_user_change(user) def add_member(self, com, user): """ Add member to a personal community. """ assert(isinstance(com, Community)) assert(isinstance(user, User)) if com.get('peer'): warning('Can not add member to peer community\n') return False if com == self.blistcom: self.blacklist[user] = None com.add_member(user) self.save_communities([com]) self.announce_user_change(user, allowme=True) self.notify.notify('%s added to community %s' % (user.tag(), com.get('name'))) return True def add_or_update_user(self, uid, updatelist, profileversion, ip, port, profile=None): user = get_user(uid) newuser = (user == None) if newuser: user = create_user(uid) if not user: warning('community: Unable to create a new user %s\n' % uid) return if ip != None: user.set('ip', ip) user.set('port', port) if newuser or user.get('v') != profileversion: user.update_attributes(updatelist, user.get('v')) if profile != None: self.got_user_profile(user, profile, None) elif not user.inprogress: debug('Fetching new profile from user %s\n' % user.tag()) request = {'t': 'uprofile'} if self.fetcher.fetch(user, PLUGIN_TYPE_COMMUNITY, request, self.got_user_profile): user.inprogress = True elif not user.present and not user.inprogress: # User appears and user profile is already up-to-date self.request_user_icon(user) self.fetch_community_profiles(user) if user.update_presence(True): self.announce_user(user) def broadcast(self, msg): if not self.get_network_state(self.IP_NETWORK): # Act like there is no IP network return for (dev, state) in self.net.get_interfaces().items(): (ip, bcast) = state if ip == None: continue for port in get_broadcast_ports(): send_broadcast(bcast, port, msg) def cleanup(self): self.log_users(0, None) if self.udp_send: self.broadcast(self.gen_rpc_bye()) for user in self.activeusers.keys(): self.depart_user(user) def create_community(self, name, peer=True, public=True, desc=None): existing = self.find_communities(name, peer=peer, public=public) if len(existing) > 0: assert(len(existing) == 1) community = existing[0] else: community = create_community(name) community.set('peer', peer) community.set('public', public) community.set('creator', self.myself.get('nick')) community.set('creatoruid', self.myself.get('uid')) community.set('description', desc) self.save_communities([community]) if peer == False: self.announce_user_change(self.myself, allowme=True) return community def create_udp_listener(self): if self.activeport != None: # Port specified in the command line port = self.activeport else: port = self.listener_port_setting.value rfd = create_udp_socket('', port, False, reuse = True) if rfd == None: warning('Can not listen to UDP broadcasts on port %d\n' % port) return info('Listening to UDP broadcasts on port %d\n' % port) rfd.setblocking(False) io_add_watch(rfd, IO_IN, self.udp_listener_read) def depart_user(self, user): """ This is called when user is denounced or the program quits. In the latter case this method is called for all active users. """ user.update_presence(False) def denounce_user(self, user): try: self.activeusers.pop(user) except KeyError: # we got a false bye-bye message return if not user.is_present(): return if get_debug_mode(): self.notify.user_notify(user, 'disappears') user.set('ip', None) user.set('port', None) self.depart_user(user) if self.community_gui != None: self.community_gui.user_disappears(user) for plugin in get_plugins(): plugin.user_disappears(user) if user.dirty: self.save_user(user) def announce_community_change(self, com): if self.community_gui != None: self.community_gui.community_changes(com) for plugin in get_plugins(): plugin.community_changes(com) def announce_user_change(self, user, allowme=False, what=None): """ Report a modified user to plugins and subsystems """ if allowme == False and user == self.myself: return if self.community_gui != None: self.community_gui.user_changes(user, what) for plugin in get_plugins(): plugin.user_changes(user, what) def announce_user(self, user): """ Report a new user to plugins and subsystems """ if user == self.myself: self.notify.notify('Announce bug, not announcing myself') return self.activeusers[user] = None if get_debug_mode() or user.get('friend'): appearsmsg = 'appears' hops = user.get('hops') if hops != None: appearsmsg += ' at %d hops distance' % hops self.notify.user_notify(user, appearsmsg) if self.community_gui != None: self.community_gui.user_appears(user) for plugin in get_plugins(): plugin.user_appears(user) def fetch_community_profiles(self, user): cnames = [] versions = [] for com in self.get_user_communities(user): if com.get('name') != DEFAULT_COMMUNITY_NAME: cnames.append(com.get('name')) versions.append(com.get('v')) if len(cnames) == 0: return request = {'t': 'cprofiles', 'cname': cnames, 'version': versions} self.fetcher.fetch(user, PLUGIN_TYPE_COMMUNITY, request, self.got_community_profiles) def find_communities(self, name=None, peer=None, public=None): """ Search for communities given 3 criteria. 'name' is the name of a community to search for, or None. name == None means all community names. 'peer' and 'public' have 3 possible values: None, False and True. None means both False and True.""" return find_communities(name, peer, public) def gen_rpc_hello(self): return {'t': TP_HELLO, 'v': PROXIMATE_PROTOCOL_VERSION, 'pv': self.myself.get('v'), 'port': self.myself.get('port'), 'nick': self.myself.get('nick'), 'uid': self.myuid, } def gen_rpc_bye(self): return bencode({'t': TP_QUIT, 'uid': self.myuid}) def get_community_dir(self, community): return get_community_dir(community) def get_community_members(self, community): """ Get users belonging to the community """ if not community.get('peer'): members = self.personal_community_members(community) return filter(lambda user: user.is_present(), members) users = self.activeusers.keys() cname = community.get('name') return filter(lambda user: cname in user.get('communities'), users) def get_default_community(self): return self.get_ordinary_community(DEFAULT_COMMUNITY_NAME) def get_friend_community(self): l = self.find_communities(FRIENDS_COMMUNITY_NAME, peer=False, public=False) assert(len(l) <= 1) if len(l) == 0: return None return l[0] def get_friends(self): return self.get_friend_community().get('members') def get_myself(self): return self.myself def get_myuid(self): return self.myuid def get_network_state(self, network): assert(network == self.IP_NETWORK) if network == self.IP_NETWORK: return self.ipactive return False def get_ordinary_community(self, cname): return get_ordinary_community(cname) def get_user(self, uid): return get_user(uid) def get_user_communities(self, user): """ Get list of peer communities the user is member of. """ communities = [] for cname in user.get('communities'): community = self.get_ordinary_community(cname) if community != None: communities.append(community) return communities def get_user_dir(self, user=None): """ If user == None, use myself """ assert(user == None or isinstance(user, User)) if user == None: user = self.myself return get_user_dir(user) def get_users(self, active): if active: return self.activeusers.keys() else: return get_users() def got_community_profiles(self, user, reply, ctx): if reply == None: return validator = { 'cname': [ZERO_OR_MORE, str], 'profile': [ZERO_OR_MORE, {}] } if not validate(validator, reply): warning('Invalid community profiles reply\n' % str(reply)) return communities = self.get_user_communities(user) for (cname, profile) in zip(reply['cname'], reply['profile']): if cname == DEFAULT_COMMUNITY_NAME: continue com = self.get_ordinary_community(cname) if com in communities: self.update_community_profile(com, user, profile) communities.remove(com) # Do icon requests for the rest of communities for com in communities: if com.get('name') != DEFAULT_COMMUNITY_NAME: self.request_com_icon(user, com) def got_user_profile(self, user, reply, ctx): """ This is called when other person's profile has been received """ user.inprogress = False if reply == None: return profile = reply.get('uprofile') if profile == None: warning('Invalid user profile: %s\n' % str(reply)) return uid = profile.get('uid') if not valid_uid(uid): warning('Invalid uid: %s\n' % str(uid)) return if uid == self.myuid or uid != user.get('uid'): warning('uid treason detected. Message from %s: %s\n' % (user.get('uid'), str(profile))) return oldstatus = (user.get('status'), user.get('status_icon')) if not user.unserialize(profile): warning('Invalid user profile: %s\n' % str(profile)) return # Now we know the profile is valid create_user_communities(user) self.announce_user_change(user) self.save_user(user) if oldstatus != (user.get('status'), user.get('status_icon')): self.show_status_change(user) # The user profile is now up-to-date. Now we can fetch everything else. self.request_user_icon(user) self.fetch_community_profiles(user) def handle_icon_push(self, user, request): """ This is called when is received. Save the icon image. """ validator = {'icon': str, 'iconid': str, 'version': lambda i: is_unsigned_int('version', i) } if not validate(validator, request): return None icon = request['icon'] iconid = request['iconid'] if iconid == 'user': if user.get('faceversion') != request['version']: # This is an outdated version of the icon.. return None if icon == '': # if we got an empty string, user removed the icon # giving None to save_face removes the picture delete_face(user) elif not save_face(user, icon): warning('Could not save face for %s: %d bytes\n' % (user.tag(), len(icon))) return None user.set('myfaceversion', request['version']) self.announce_user_change(user, what=(PROFILE_ICON_CHANGED, None)) elif iconid.startswith('c:'): cname = iconid[2:] if cname == DEFAULT_COMMUNITY_NAME: return None com = self.get_ordinary_community(cname) if com == None: return None if com.get('iconversion') != request['version']: # This is an outdated version of the icon.. return None if com.get('iconlocked'): return None if icon == '': delete_community_icon(com) elif not save_community_icon(com, icon): warning('Failed to update community icon: %s\n' % cname) return None com.set('myiconversion', request['version']) self.announce_community_change(com) return None def handle_community_profile_fetch(self, user, request): cname = request.get('cname') if type(cname) != str: warning('Invalid community profile fetch\n' % str(request)) return None community = self.get_ordinary_community(cname) if community == None: return None return {'cprofile': community.serialize()} def handle_community_profiles_fetch(self, user, request): validator = { 'cname': [ZERO_OR_MORE, str], 'version': [ZERO_OR_MORE, lambda i: is_unsigned_int('version', i)] } if not validate(validator, request): warning('Invalid community profiles fetch\n' % str(request)) return None cnames = [] profiles = [] for (cname, version) in zip(request['cname'], request['version']): com = self.get_ordinary_community(cname) if com == None: continue if version < com.get('v'): cnames.append(cname) profiles.append(com.serialize()) debug('Sending %s community profile to %s\n' % (com.get('name'), user.get('nick'))) return {'cname': cnames, 'profile': profiles} def handle_request(self, user, request): handler = self.fetchhandlers.get(request['t']) if handler == None: warning('Community not handling request: %s\n' % str(request)) return None return handler(user, request) def handle_hello(self, user, hello): self.remoteusers[user] = 0 self.got_hello(hello, None) return {} def handle_invite_community(self, user, request): cname = request.get('cname') if cname == None: return None community = self.get_ordinary_community(cname) if community == None: warning('Got invite to unknown community: %s\n' % cname) return None if community in self.get_user_communities(self.myself): warning('Got invite to community I am already in: %s\n' % cname) return None self.notify.notify_with_response('%s invited you to community %s. Join the community?' % (user.tag(), community.get('name')), \ self.invite_response, community) return {} def invite_response(self, response, msg, community): if response == self.notify.RESPONSE_ACTIVATED: self.join_community(community) return True return False def handle_icon_request(self, user, request): iconid = request.get('iconid') if iconid == None or type(iconid) != str: return None debug('Icon request from %s: %s\n' % (user.get('nick'), iconid)) if iconid == 'user': icon = read_file_contents(seek_face_name(self.myself)) version = self.myself.get('faceversion') limiter = self.iconfetchlimiters['user'] elif iconid.startswith('c:'): cname = iconid[2:] if not valid_community(cname): return None if cname not in self.myself.get('communities'): return None com = self.get_ordinary_community(cname) if com == None: return None if com.get('myiconversion') != com.get('iconversion'): # Do not reply with a old version of the icon! return icon = read_file_contents(seek_community_icon_name(com)) version = com.get('iconversion') limiter = self.iconfetchlimiters.get(iconid) if limiter == None: limiter = Rate_Limiter(ICON_PUSH_INTERVAL) self.iconfetchlimiters[iconid] = limiter else: return None if icon == None: icon = '' if version == None: version = 0 request = {'t': 'iconpush', 'iconid': iconid, 'icon': icon, 'version': version} if normal_traffic_mode(): self.fetcher.fetch(user, PLUGIN_TYPE_COMMUNITY, request, None, ack=False) elif limiter == None or limiter.check(): self.fetcher.fetch_community(self.get_default_community(), PLUGIN_TYPE_COMMUNITY, request, None, ack=False) return {} def handle_user_profile_fetch(self, user, request): return {'uprofile': self.myself.serialize()} def is_blacklisted(self, user): return self.blacklist.has_key(user) def is_me(self, user): return user == self.myself def is_member(self, user, com, allowtemporary=True): """ Test if a user belongs to a community """ if user == self.myself and com.get('peer') == False: return True return user.in_community(com, allowtemporary=allowtemporary) def is_my_friend(self, user): assert(isinstance(user, User)) return user.get('uid') in self.get_friends() def invite_member(self, com, user, cb): """ Invite user to a peer community. """ request = {'t': 'cinvite', 'cname': com.get('name')} return self.fetcher.fetch(user, PLUGIN_TYPE_COMMUNITY, request, self.invite_sent, cb, retries=1) def invite_sent(self, user, reply, cb): success = (reply != None) cb(success) def join_community(self, community, temporary=False): """ Join to a peer community. """ if not community.get('peer'): warning('Can not join to personal communities\n') return False self.myself.join_community(community, temporary) self.announce_user_change(self.myself, allowme=True) self.notify.notify('Joined to community %s' % community.get('name')) return True def leave_community(self, community): """ Leave a peer community """ if not community.get('peer'): warning('Can not leave a personal community\n') return False self.myself.leave_community(community) self.announce_user_change(self.myself, allowme=True) self.notify.notify('Left community %s' % community.get('name')) return True def log_users(self, t, ctx): users = {} for user in self.activeusers.keys(): d = {} for attr, val in user.d.items(): if attr in ['uid', 'v', 'fscounter', 'faceversion', 'status_icon']: continue if val == None: continue ma = user.metaattributes.get(attr) if ma == None or ma.public == False: continue if type(val) == list or type(val) == str: x = len(val) else: x = 1 d[attr] = x users[user.get('uid')] = d def delete_personal_community(self, community): # Don't delete friends community if community.get('peer') or community == self.get_friend_community(): return False for uid in community.get('members'): self.remove_member(community, self.get_user(uid)) delete_community(community) self.announce_user_change(self.myself, allowme=True) return True def request_user_icon(self, user): if user.get('myfaceversion') != user.get('faceversion') and \ len(self.activeusers) < MAX_ICON_ACTIVE: request = {'t': 'iconrequest', 'iconid': 'user'} self.fetcher.fetch(user, PLUGIN_TYPE_COMMUNITY, request, None, ack=False) def request_com_icon(self, user, com): if com.get('myiconversion') != com.get('iconversion') and \ not com.get('iconlocked') and len(self.activeusers) < MAX_ICON_ACTIVE: iconid = 'c:' + com.get('name') request = {'t': 'iconrequest', 'iconid': iconid} self.fetcher.fetch(user, PLUGIN_TYPE_COMMUNITY, request, None, com, ack=False) def remote_discovery(self): """ remote discovery keeps remote connections open in each possible directions to bypass one-sided firewalls. """ if self.get_network_state(self.IP_NETWORK) == False: return hello = None benhello = None for user in self.remoteusers: counter = self.remoteusers[user] if self.activeusers.has_key(user): # Hello period is 15s self.remoteusers[user] = (counter + 1) % 3 if counter != 0: continue if hello == None: hello = self.gen_rpc_hello() self.fetcher.fetch(user, PLUGIN_TYPE_COMMUNITY, hello, None) continue addresses = user.get('remotes') if addresses == None or len(addresses) == 0: continue # Try connection period is 30s -> 2880 connections/day self.remoteusers[user] = (counter + 1) % 6 if counter != 0: continue if benhello == None: if hello == None: hello = self.gen_rpc_hello() benhello = bencode(hello) for address in addresses: port = address[1] if port == None: port = DEFAULT_PROXIMATE_PORT Hello_Client((address[0], port), benhello) def periodic_event(self, t, ctx): if self.udp_send: self.broadcast(bencode(self.gen_rpc_hello())) for user in self.activeusers.keys(): if user.timeout(): self.denounce_user(user) self.remote_discovery() self.req_counter += 1 if self.req_counter >= REQUEST_INTERVAL: for user in self.activeusers.keys(): self.request_user_icon(user) self.req_counter = 0 if self.myself.dirty: self.save_user(self.myself) return True def personal_community_members(self, community): assert(community.get('peer') == False) members = community.get('members') assert(type(members) == list) return filter(lambda u: u != None, map(lambda uid: self.get_user(uid), members)) def ready(self): global community community = self self.fetcher = get_plugin_by_type(PLUGIN_TYPE_FETCHER) self.notify = get_plugin_by_type(PLUGIN_TYPE_NOTIFICATION) self.net = get_plugin_by_type(PLUGIN_TYPE_NETWORK_CONTROL) self.fetcher.register_handler(PLUGIN_TYPE_COMMUNITY, self.handle_request, 'community fetch') settings = get_plugin_by_type(PLUGIN_TYPE_SETTINGS) self.default_rpc_port_setting = settings.register('community.rpc_port', int, 'TCP listening port; 0 means a random port.\nTakes effect after restart', default=0, validator=valid_port) self.listener_port_setting = settings.register('community.listener_port', int, 'Peer discovery (UDP) listening port.\nTakes effect after restart', default=DEFAULT_PROXIMATE_PORT, validator=valid_port) # The command line setting has the highest priority, then comes # the config file port, and random port has the least priority. if self.activeport != None: self.myself.set('port', self.activeport) else: port = self.default_rpc_port_setting.value if port != 0: self.myself.set('port', port) else: self.gen_port() if self.udp_listen: self.create_udp_listener() sch = get_plugin_by_type(PLUGIN_TYPE_SCHEDULER) sch.call_periodic(TP_SCAN_INTERVAL * sch.SECOND, self.periodic_event, callnow=True) # Set periodic active user logging sch.call_periodic(15 * 60 * sch.SECOND, self.log_users) def remove_friend(self, user): assert(isinstance(user, User)) self.get_friend_community().remove_member(user) self.announce_user_change(user) def remove_member(self, com, user): """ Remove member from a personal community. """ assert(isinstance(com, Community)) assert(isinstance(user, User)) if com.get('peer'): warning('Can not remove member from peer community\n') return False if com == self.blistcom: self.blacklist.pop(user, None) com.remove_member(user) self.save_communities([com]) self.announce_user_change(user, allowme=True) self.notify.notify('%s removed from community %s' % (user.tag(), com.get('name'))) return True def get_rpc_port(self): return self.myself.get('port') def gen_port(self): port = randint(TP_MIN_PORT, TP_MAX_PORT) self.myself.set('port', port) def got_rpc_msg(self, data, address): if not self.ipactive: return d = fmt_bdecode({'t': str}, data) if d == None: return if d['t'] == TP_HELLO: self.got_hello(d, address) elif d['t'] == TP_QUIT: self.got_bye(d, address) else: info('Invalid RPC hello type: %s\n' % d['t']) def got_hello(self, d, address): """ Check validity of Proximate hello, and register the other party. """ validator = { 'v': valid_protocol_version, 'pv': lambda x: type(x) == int and x >= 0, 'port': valid_port, 'nick': valid_nick, 'uid': lambda s: valid_uid(s) and s != self.myuid, } if not validate(validator, d): if type(d) != dict or d.get('uid') != self.myuid: info('Rejecting signature: %s\n' % str(d)) return updatelist = [('nick', d['nick']), ('protocolversion', d['v'])] if address != None: ip = address[0] else: ip = None self.add_or_update_user(d['uid'], updatelist, d['pv'], ip, d['port']) def got_bye(self, d, address): """ User quit, denounce """ validator = { 'uid': lambda s: valid_uid(s) and s != self.myuid, } if not validate(validator, d): return user = self.safe_get_user(d.get('uid'), address[0]) if user == None: info('Rejecting quit message from uid %s\n' % d.get('uid')) else: self.denounce_user(user) def safe_get_user(self, uid, ip): if valid_uid(uid) == False or uid == self.myuid: return None user = self.get_user(uid) if user == None: # Create a minimal user object for the peer so that we can reply return create_user(uid) oldip = user.get('ip') if ip != None and oldip != None and ip != oldip: return None if self.is_blacklisted(user): return None return user def save_communities(self, communities): save_communities(communities) def save_user(self, user): save_user(user) def set_community_icon(self, com, icon_fname): if icon_fname == None: delete_community_icon(com) else: icon = read_file_contents(icon_fname) if icon == None: warning('Can not set community icon from %s\n' % icon_fname) return False if not save_community_icon(com, icon): warning('Could not save community icon from %s\n' % icon_fname) return False # New icon version so other users will be notified. Random number # because this is a distributed system version = randint(0, 1 << 32 - 1) com.set('iconversion', version) com.set('myiconversion', version) self.announce_community_change(com) return True def set_network_state(self, network, state): """ set_network_state() is used to disable networks """ assert(network == self.IP_NETWORK) if self.ipactive == state: return self.ipactive = state if state == False: # Close IP network: rpc.py will react indirectly msg = 'IP networking disabled' self.fetcher.close_ip_connections(msg) self.notify.notify(msg + ' (this is a fake disable)', highpri=True) else: self.notify.notify('IP networking enabled', highpri=True) def set_my_face(self, face_fname): """ Set new profile picture for given user. Should be myself! """ if not face_fname: delete_face(self.myself) else: face = read_file_contents(face_fname) if face == None: warning('Can not set user face from %s\n' % face_fname) return False if not save_face(self.myself, face): warning('Could not save user face from %s\n' % face_fname) return False if self.myself.get('faceversion') == None: self.myself.set('faceversion', 0) else: self.myself.set('faceversion', self.myself.get('faceversion') + 1) self.announce_user_change(self.myself, allowme=True) return True def udp_listener_read(self, rfd, condition): """ Receive packet from listening socket and check Proximate hello """ try: data, address = rfd.recvfrom(1024) except socket.error, (errno, strerror): ret = (errno == EAGAIN or errno == EINTR) if not ret: warning('WLAN UDP Listen: Socket error(%s): %s\n' % (errno, strerror)) return ret self.got_rpc_msg(data, address) return True def update_community_profile(self, com, user, profile): if com.get('name') != profile.get('name'): warning('Name mismatch in community profile: %s vs %s\n' % (com.get('name'), str(profile))) return if not com.unserialize(profile): warning('At least part of the community profile failed: %s\n' % profile) return self.announce_community_change(com) self.save_communities([com]) self.request_com_icon(user, com) def get_user_personal_communities(self, user): uid = user.get('uid') coms = [] for com in self.find_communities(peer=False): members = com.get('members') assert(type(members) == list) if uid in members: coms.append(com) return coms def show_status_change(self, user): status = user.get('status') status_icon = user.get('status_icon') text = 'changed status to ' if status: text += status if status_icon: if status: text += ' (%s)' % status_icon else: text += status_icon self.notify.user_notify(user, text) class Hello_Client: def __init__(self, address, benhello): self.address = address self.q = TCP_Queue(self.msghandler) if not self.q.connect(address, TP_CONNECT_TIMEOUT): return prefix = TP_HELLO + '\n' self.q.write(prefix, writelength=False) self.q.write(benhello) self.q.set_timeout(TP_CONNECT_TIMEOUT) def msghandler(self, q, data, ctx): community.got_rpc_msg(data, self.address) return False class Hello_Server: def __init__(self, address, sock, data): self.q = TCP_Queue(self.msghandler) self.q.set_timeout(TP_CONNECT_TIMEOUT) self.address = address self.q.append_input(data) self.q.initialize(sock) def msghandler(self, q, benhello, ctx): community.got_rpc_msg(benhello, self.address) self.q.write(bencode(community.gen_rpc_hello())) self.q.close_after_send() return True def init(options): Community_Plugin(options)
proximate/proximate
community.py
Python
bsd-3-clause
37,731
#!/usr/bin/env python import rospy import math import time from sensor_msgs.msg import Range from sensor_msgs.msg import LaserScan from geometry_msgs.msg import Twist from sonar_data_aggregator import SonarDataAggregator from laser_data_aggregator import LaserDataAggregator from navigation import Navigation # Class for assigning the robot speeds class RobotController: # Constructor def __init__(self): # Debugging purposes self.print_velocities = rospy.get_param('print_velocities') # Where and when should you use this? self.stop_robot = False # Create the needed objects self.sonar_aggregation = SonarDataAggregator() self.laser_aggregation = LaserDataAggregator() self.navigation = Navigation() self.linear_velocity = 0 self.angular_velocity = 0 # Check if the robot moves with target or just wanders self.move_with_target = rospy.get_param("calculate_target") # The timer produces events for sending the speeds every 110 ms rospy.Timer(rospy.Duration(0.11), self.publishSpeeds) self.velocity_publisher = rospy.Publisher(\ rospy.get_param('speeds_pub_topic'), Twist,\ queue_size = 10) # This function publishes the speeds and moves the robot def publishSpeeds(self, event): # Produce speeds self.produceSpeeds() # Create the commands message twist = Twist() twist.linear.x = self.linear_velocity twist.linear.y = 0 twist.linear.z = 0 twist.angular.x = 0 twist.angular.y = 0 twist.angular.z = self.angular_velocity # Send the command self.velocity_publisher.publish(twist) # Print the speeds for debuggind purposes if self.print_velocities == True: print "[L,R] = [" + str(twist.linear.x) + " , " + \ str(twist.angular.z) + "]" # Produces speeds from the laser def produceSpeedsLaser(self): scan = self.laser_aggregation.laser_scan linear = 0 angular = 0 ############################### NOTE QUESTION ############################ # Check what laser_scan contains and create linear and angular speeds # for obstacle avoidance ########################################################################## return [linear, angular] # Combines the speeds into one output using a motor schema approach def produceSpeeds(self): # Produce target if not existent if self.move_with_target == True and \ self.navigation.target_exists == False: # Create the commands message twist = Twist() twist.linear.x = 0 twist.linear.y = 0 twist.linear.z = 0 twist.angular.x = 0 twist.angular.y = 0 twist.angular.z = 0 # Send the command self.velocity_publisher.publish(twist) self.navigation.selectTarget() # Get the submodule's speeds [l_laser, a_laser] = self.produceSpeedsLaser() # You must fill these self.linear_velocity = 0 self.angular_velocity = 0 if self.move_with_target == True: [l_goal, a_goal] = self.navigation.velocitiesToNextSubtarget() ############################### NOTE QUESTION ############################ # You must combine the two sets of speeds. You can use motor schema, # subsumption of whatever suits your better. ########################################################################## else: ############################### NOTE QUESTION ############################ # Implement obstacle avoidance here using the laser speeds. # Hint: Subtract them from something constant pass ########################################################################## # Assistive functions def stopRobot(self): self.stop_robot = True def resumeRobot(self): self.stop_robot = False
etsardou/intelligent_robot_systems_2016
art_autonomous_exploration/src/speeds_assignment.py
Python
gpl-3.0
4,002
# This library is free software, distributed under the terms of # the GNU Lesser General Public License Version 3, or any later version. # See the COPYING file included in this archive """ Entangled DHT and distributed tuple space The distributed hash table (DHT) used by Entangled is based on Kademlia, and be accessed by the C{entangled.kademlia package}, or by simply instantiating/subclassing the exposed C{KademliaNode} in the main C{entangled} package. On top of this Kademlia node Entangled provides some extra functionality in the form of a "C{DELETE}" RPC and keyword-based search operations; these functions are accessible via the C{EntangledNode} class in the main C{entangled} package. The Entangled distributed tuple space is exposed as the C{DistributedTupleSpacePeer} class, accessible via the main C{entangled} package or its C{dtuple} module. """ from kademlia.node import Node as KademliaNode from node import EntangledNode from dtuple import DistributedTupleSpacePeer
anupcshan/buddyfs
entangled/__init__.py
Python
mit
992
""" Test PEP 0448 -- Additional Unpacking Generalizations https://www.python.org/dev/peps/pep-0448/ """ # pylint: disable=superfluous-parens, unnecessary-comprehension UNPACK_TUPLE = (*range(4), 4) UNPACK_LIST = [*range(4), 4] UNPACK_SET = {*range(4), 4} UNPACK_DICT = {'a': 1, **{'b': '2'}} UNPACK_DICT2 = {**UNPACK_DICT, "x": 1, "y": 2} UNPACK_DICT3 = {**{'a': 1}, 'a': 2, **{'a': 3}} UNPACK_IN_COMP = {elem for elem in (*range(10))} # [star-needs-assignment-target]
ruchee/vimrc
vimfiles/bundle/vim-python/submodules/pylint/tests/functional/s/star/star_needs_assignment_target_py35.py
Python
mit
472
# _*_ coding:utf-8 _*_ """ Created on 2015-06-13 @author: lujin """ from django.conf.urls import url from app.setup import views urlpatterns = [ url(r'^website/$', views.website), url(r'^personal/$', views.personal), ]
myangeline/rorobot
app/setup/urls.py
Python
apache-2.0
228
''' >>> p = Portfolio() >>> stocks = (('APPL', 1000, 251.80, 252.73), ... ('CSCO', 5000, 23.09, 23.74), ... ('GOOG', 500, 489.23, 491.34), ... ('MSFT', 2000, 24.63, 25.44)) ... >>> for stock in stocks: ... p.add(Investment(*stock)) >>> print p['APPL'] 1000 shares of APPL worth 252730.00 >>> p['GOOG'].quantity 500 >>> p['GOOG'].close 491.33999999999997 >>> p['GOOG'].open 489.23000000000002 >>> for stock in p: ... print stock 1000 shares of APPL worth 252730.00 5000 shares of CSCO worth 118700.00 500 shares of GOOG worth 245670.00 2000 shares of MSFT worth 50880.00 >>> for stock in p.sorted('open'): ... print stock.name CSCO MSFT APPL GOOG >>> p['MSFT'].gain 0.81000000000000227 >>> p['CSCO'].total_gain 3249.9999999999927 >>> 'GOOG' in p True >>> 'YHOO' in p False ''' if __name__ == '__main__': import doctest doctest.testmod()
csuttles/utils
python/py-book/oop/oop-3-portfolio.py
Python
apache-2.0
887
# -*- coding: utf-8 -*- # © 2014 Elico Corp (https://www.elico-corp.com) # Licence AGPL-3.0 or later(http://www.gnu.org/licenses/agpl.html) from openerp.addons.connector.unit.mapper import (ExportMapper, ExportMapChild) class ICOPSExportMapChild(ExportMapChild): """ :py:class:`MapChild` for the Exports """ def _child_mapper(self): mapper = self.get_connector_unit_for_model( ExportMapper, self.model._name) mapper._icops = self._icops mapper._backend_to = self._backend_to return mapper def format_items(self, items_values): items = super(ICOPSExportMapChild, self).format_items(items_values) return [(5, 0)] + [(0, 0, data) for data in items] class ICOPSExportMapper(ExportMapper): _map_child_class = ICOPSExportMapChild def __init__(self, environment): """ :param environment: current environment (backend, session, ...) :type environment: :py:class:`connector.connector.Environment` """ super(ICOPSExportMapper, self).__init__(environment) self._icops = None self._backend_to = None def _get_map_child_unit(self, model_name): mapper = super(ICOPSExportMapper, self)._get_map_child_unit(model_name) mapper._icops = self._icops mapper._backend_to = self._backend_to return mapper def _get_mapping(self, name, record): res = {} for method in dir(self): if method.startswith('%s_' % name): new_dict = getattr(self, method)(record) res = dict(res.items() + new_dict.items()) return res
Elico-Corp/openerp-7.0
base_intercompany/unit/mapper.py
Python
agpl-3.0
1,643
#!/usr/bin/env python # -*- coding: utf-8 -*- # # || ____ _ __ # +------+ / __ )(_) /_______________ _____ ___ # | 0xBC | / __ / / __/ ___/ ___/ __ `/_ / / _ \ # +------+ / /_/ / / /_/ /__/ / / /_/ / / /_/ __/ # || || /_____/_/\__/\___/_/ \__,_/ /___/\___/ # # Copyright (C) 2011-2013 Bitcraze AB # # Crazyflie Nano Quadcopter Client # # This program is free software; you can redistribute it and/or # modify it under the terms of the GNU General Public License # as published by the Free Software Foundation; either version 2 # of the License, or (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # You should have received a copy of the GNU General Public License # along with this program; if not, write to the Free Software # Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, # MA 02110-1301, USA. """ Crazyflie radio bootloader for flashing firmware. """ import logging import time import struct import math import random import cflib.crtp from cflib.crtp.crtpstack import CRTPPacket, CRTPPort from .boottypes import TargetTypes, Target __author__ = 'Bitcraze AB' __all__ = ['Cloader'] logger = logging.getLogger(__name__) class Cloader: """Bootloader utility for the Crazyflie""" def __init__(self, link, info_cb=None, in_boot_cb=None): """Init the communication class by starting to communicate with the link given. clink is the link address used after resetting to the bootloader. The device is actually considered in firmware mode. """ self.link = None self.uri = link self.in_loader = False self.page_size = 0 self.buffer_pages = 0 self.flash_pages = 0 self.start_page = 0 self.cpuid = "N/A" self.error_code = 0 self.protocol_version = 0xFF self._info_cb = info_cb self._in_boot_cb = in_boot_cb self.targets = {} self.mapping = None self._available_boot_uri = ("radio://0/110/2M", "radio://0/0/2M") def close(self): """ Close the link """ if self.link: self.link.close() def scan_for_bootloader(self): link = cflib.crtp.get_link_driver("radio://0") ts = time.time() res = () while len(res) == 0 and (time.time() - ts) < 10: res = link.scan_selected(self._available_boot_uri) link.close() if len(res) > 0: return res[0] return None def reset_to_bootloader(self, target_id): retry_counter = 5 pk = CRTPPacket() pk.set_header(0xFF, 0xFF) pk.data = (target_id, 0xFF) self.link.send_packet(pk) pk = self.link.receive_packet(1) while ((not pk or pk.header != 0xFF or struct.unpack("<BB", pk.data[0:2]) != (target_id, 0xFF) ) and retry_counter >= 0): pk = self.link.receive_packet(1) retry_counter -= 1 if pk: new_address = (0xb1,) + struct.unpack("<BBBB", pk.data[2:6][::-1]) pk = CRTPPacket() pk.set_header(0xFF, 0xFF) pk.data = (target_id, 0xF0, 0x00) self.link.send_packet(pk) addr = int(struct.pack("B" * 5, *new_address).encode('hex'), 16) time.sleep(0.2) self.link.close() time.sleep(0.2) self.link = cflib.crtp.get_link_driver( "radio://0/0/2M/{}".format(addr)) return True else: return False def reset_to_bootloader1(self, cpu_id): """ Reset to the bootloader The parameter cpuid shall correspond to the device to reset. Return true if the reset has been done and the contact with the bootloader is established. """ # Send an echo request and wait for the answer # Mainly aim to bypass a bug of the crazyflie firmware that prevents # reset before normal CRTP communication pk = CRTPPacket() pk.port = CRTPPort.LINKCTRL pk.data = (1, 2, 3) + cpu_id self.link.send_packet(pk) pk = None while True: pk = self.link.receive_packet(2) if not pk: return False if pk.port == CRTPPort.LINKCTRL: break # Send the reset to bootloader request pk = CRTPPacket() pk.set_header(0xFF, 0xFF) pk.data = (0xFF, 0xFE) + cpu_id self.link.send_packet(pk) # Wait to ack the reset ... pk = None while True: pk = self.link.receive_packet(2) if not pk: return False if pk.port == 0xFF and tuple(pk.data) == (0xFF, 0xFE) + cpu_id: pk.data = (0xFF, 0xF0) + cpu_id self.link.send_packet(pk) break time.sleep(0.1) self.link.close() self.link = cflib.crtp.get_link_driver(self.clink_address) # time.sleep(0.1) return self._update_info() def reset_to_firmware(self, target_id): """ Reset to firmware The parameter cpuid shall correspond to the device to reset. Return true if the reset has been done """ # The fake CPU ID is legacy from the Crazyflie 1.0 # In order to reset the CPU id had to be sent, but this # was removed before launching it. But the length check is # still in the bootloader. So to work around this bug so # some extra data needs to be sent. fake_cpu_id = (1, 2, 4, 5, 6, 7, 8, 9, 10, 11, 12) # Send the reset to bootloader request pk = CRTPPacket() pk.set_header(0xFF, 0xFF) pk.data = (target_id, 0xFF) + fake_cpu_id self.link.send_packet(pk) # Wait to ack the reset ... pk = None while True: pk = self.link.receive_packet(2) if not pk: return False if (pk.header == 0xFF and struct.unpack( "B" * len(pk.data), pk.data)[:2] == (target_id, 0xFF)): # Difference in CF1 and CF2 (CPU ID) if target_id == 0xFE: pk.data = (target_id, 0xF0, 0x01) else: pk.data = (target_id, 0xF0) + fake_cpu_id self.link.send_packet(pk) break time.sleep(0.1) def open_bootloader_uri(self, uri=None): if self.link: self.link.close() if uri: self.link = cflib.crtp.get_link_driver(uri) else: self.link = cflib.crtp.get_link_driver(self.clink_address) def check_link_and_get_info(self, target_id=0xFF): """Try to get a connection with the bootloader by requesting info 5 times. This let roughly 10 seconds to boot the copter ...""" for _ in range(0, 5): if self._update_info(target_id): if self._in_boot_cb: self._in_boot_cb.call(True, self.targets[ target_id].protocol_version) if self._info_cb: self._info_cb.call(self.targets[target_id]) if self.protocol_version != 1: return True # Set radio link to a random address addr = [0xbc] + [random.randint(0, 255) for x in range(4)] return self._set_address(addr) return False def _set_address(self, new_address): """ Change copter radio address. This function works only with crazyradio CRTP link. """ logging.debug("Setting bootloader radio address to" " {}".format(new_address)) if len(new_address) != 5: raise Exception("Radio address should be 5 bytes long") self.link.pause() for _ in range(10): logging.debug("Trying to set new radio address") self.link.cradio.set_address((0xE7,) * 5) pkdata = (0xFF, 0xFF, 0x11) + tuple(new_address) self.link.cradio.send_packet(pkdata) self.link.cradio.set_address(tuple(new_address)) if self.link.cradio.send_packet((0xff,)).ack: logging.info("Bootloader set to radio address" " {}".format(new_address)) self.link.restart() return True self.link.restart() return False def request_info_update(self, target_id): if target_id not in self.targets: self._update_info(target_id) if self._info_cb: self._info_cb.call(self.targets[target_id]) return self.targets[target_id] def _update_info(self, target_id): """ Call the command getInfo and fill up the information received in the fields of the object """ # Call getInfo ... pk = CRTPPacket() pk.set_header(0xFF, 0xFF) pk.data = (target_id, 0x10) self.link.send_packet(pk) # Wait for the answer pk = self.link.receive_packet(2) if (pk and pk.header == 0xFF and struct.unpack("<BB", pk.data[0:2]) == (target_id, 0x10)): tab = struct.unpack("BBHHHH", pk.data[0:10]) cpuid = struct.unpack("B" * 12, pk.data[10:22]) if target_id not in self.targets: self.targets[target_id] = Target(target_id) self.targets[target_id].addr = target_id if len(pk.data) > 22: self.targets[target_id].protocol_version = pk.datat[22] self.protocol_version = pk.datat[22] self.targets[target_id].page_size = tab[2] self.targets[target_id].buffer_pages = tab[3] self.targets[target_id].flash_pages = tab[4] self.targets[target_id].start_page = tab[5] self.targets[target_id].cpuid = "%02X" % cpuid[0] for i in cpuid[1:]: self.targets[target_id].cpuid += ":%02X" % i if (self.protocol_version == 0x10 and target_id == TargetTypes.STM32): self._update_mapping(target_id) return True return False def _update_mapping(self, target_id): pk = CRTPPacket() pk.set_header(0xff, 0xff) pk.data = (target_id, 0x12) self.link.send_packet(pk) pk = self.link.receive_packet(2) if (pk and pk.header == 0xFF and struct.unpack("<BB", pk.data[0:2]) == (target_id, 0x12)): m = pk.datat[2:] if (len(m) % 2) != 0: raise Exception("Malformed flash mapping packet") self.mapping = [] page = 0 for i in range(int(len(m) / 2)): for j in range(m[2 * i]): self.mapping.append(page) page += m[(2 * i) + 1] def upload_buffer(self, target_id, page, address, buff): """Upload data into a buffer on the Crazyflie""" # print len(buff) count = 0 pk = CRTPPacket() pk.set_header(0xFF, 0xFF) pk.data = struct.pack("=BBHH", target_id, 0x14, page, address) for i in range(0, len(buff)): pk.data.append(buff[i]) count += 1 if count > 24: self.link.send_packet(pk) count = 0 pk = CRTPPacket() pk.set_header(0xFF, 0xFF) pk.data = struct.pack("=BBHH", target_id, 0x14, page, i + address + 1) self.link.send_packet(pk) def read_flash(self, addr=0xFF, page=0x00): """Read back a flash page from the Crazyflie and return it""" buff = bytearray() page_size = self.targets[addr].page_size for i in range(0, int(math.ceil(page_size / 25.0))): pk = None retry_counter = 5 while ((not pk or pk.header != 0xFF or struct.unpack("<BB", pk.data[0:2]) != (addr, 0x1C)) and retry_counter >= 0): pk = CRTPPacket() pk.set_header(0xFF, 0xFF) pk.data = struct.pack("<BBHH", addr, 0x1C, page, (i * 25)) self.link.send_packet(pk) pk = self.link.receive_packet(1) retry_counter -= 1 if (retry_counter < 0): return None else: buff += pk.data[6:] # For some reason we get one byte extra here... return buff[0:page_size] def write_flash(self, addr, page_buffer, target_page, page_count): """Initiate flashing of data in the buffer to flash.""" # print "Write page", flashPage # print "Writing page [%d] and [%d] forward" % (flashPage, nPage) pk = None retry_counter = 5 # print "Flasing to 0x{:X}".format(addr) while ((not pk or pk.header != 0xFF or struct.unpack("<BB", pk.data[0:2]) != (addr, 0x18)) and retry_counter >= 0): pk = CRTPPacket() pk.set_header(0xFF, 0xFF) pk.data = struct.pack("<BBHHH", addr, 0x18, page_buffer, target_page, page_count) self.link.send_packet(pk) pk = self.link.receive_packet(1) retry_counter -= 1 if retry_counter < 0: self.error_code = -1 return False self.error_code = pk.data[3] return pk.data[2] == 1 def decode_cpu_id(self, cpuid): """Decode the CPU id into a string""" ret = () for i in cpuid.split(':'): ret += (eval("0x" + i),) return ret
manojngb/Crazyfly_simple_lift
src/cflib/cflib/bootloader/cloader.py
Python
gpl-2.0
14,059
# -*- coding: utf-8 -*- # # Copyright: (c) 2017, F5 Networks Inc. # GNU General Public License v3.0 (see COPYING or https://www.gnu.org/licenses/gpl-3.0.txt) from __future__ import (absolute_import, division, print_function) __metaclass__ = type import os import json import pytest import sys if sys.version_info < (2, 7): pytestmark = pytest.mark.skip("F5 Ansible modules require Python >= 2.7") from ansible.module_utils.basic import AnsibleModule from ansible_collections.f5networks.f5_modules.plugins.modules.bigip_gtm_monitor_tcp import ( ApiParameters, ModuleParameters, ModuleManager, ArgumentSpec ) from ansible_collections.f5networks.f5_modules.tests.unit.compat import unittest from ansible_collections.f5networks.f5_modules.tests.unit.compat.mock import Mock, patch from ansible_collections.f5networks.f5_modules.tests.unit.modules.utils import set_module_args fixture_path = os.path.join(os.path.dirname(__file__), 'fixtures') fixture_data = {} def load_fixture(name): path = os.path.join(fixture_path, name) if path in fixture_data: return fixture_data[path] with open(path) as f: data = f.read() try: data = json.loads(data) except Exception: pass fixture_data[path] = data return data class TestParameters(unittest.TestCase): def test_module_parameters(self): args = dict( name='foo', parent='/Common/my-tcp', send='the send string', receive='the receive string', ip='1.1.1.1', port='80', interval='10', timeout='20', ignore_down_response=True, transparent=False, probe_timeout='30', reverse=True ) p = ModuleParameters(params=args) assert p.name == 'foo' assert p.parent == '/Common/my-tcp' assert p.send == 'the send string' assert p.receive == 'the receive string' assert p.destination == '1.1.1.1:80' assert p.ip == '1.1.1.1' assert p.port == 80 assert p.interval == 10 assert p.timeout == 20 assert p.ignore_down_response is True assert p.transparent is False assert p.probe_timeout == 30 assert p.reverse is True def test_api_parameters(self): args = load_fixture('load_gtm_monitor_tcp_1.json') p = ApiParameters(params=args) assert p.name == 'foo' assert p.parent == '/Common/tcp' assert p.send == 'the send string' assert p.receive == 'the receive string' assert p.destination == '1.1.1.1:80' assert p.ip == '1.1.1.1' assert p.port == 80 assert p.interval == 30 assert p.timeout == 120 assert p.ignore_down_response is False assert p.transparent is True assert p.probe_timeout == 5 assert p.reverse is True class TestManager(unittest.TestCase): def setUp(self): self.spec = ArgumentSpec() self.p1 = patch('ansible_collections.f5networks.f5_modules.plugins.modules.bigip_gtm_monitor_tcp.module_provisioned') self.m1 = self.p1.start() self.m1.return_value = True self.p2 = patch('ansible_collections.f5networks.f5_modules.plugins.modules.bigip_gtm_monitor_tcp.tmos_version') self.p3 = patch('ansible_collections.f5networks.f5_modules.plugins.modules.bigip_gtm_monitor_tcp.send_teem') self.m2 = self.p2.start() self.m2.return_value = '14.1.0' self.m3 = self.p3.start() self.m3.return_value = True def tearDown(self): self.p1.stop() self.p2.stop() self.p3.stop() def test_create_monitor(self, *args): set_module_args(dict( name='foo', ip='10.10.10.10', port=80, interval=20, timeout=30, provider=dict( server='localhost', password='password', user='admin' ) )) module = AnsibleModule( argument_spec=self.spec.argument_spec, supports_check_mode=self.spec.supports_check_mode ) # Override methods in the specific type of manager mm = ModuleManager(module=module) mm.exists = Mock(side_effect=[False, True]) mm.create_on_device = Mock(return_value=True) mm.module_provisioned = Mock(return_value=True) results = mm.exec_module() assert results['changed'] is True def test_change_ip(self, *args): set_module_args(dict( name='foo', ip='10.10.10.10', port=80, interval=20, timeout=30, provider=dict( server='localhost', password='password', user='admin' ) )) current = ApiParameters(params=load_fixture('load_gtm_monitor_tcp_1.json')) module = AnsibleModule( argument_spec=self.spec.argument_spec, supports_check_mode=self.spec.supports_check_mode ) # Override methods in the specific type of manager mm = ModuleManager(module=module) mm.exists = Mock(side_effect=[True, True]) mm.update_on_device = Mock(return_value=True) mm.read_current_from_device = Mock(return_value=current) mm.module_provisioned = Mock(return_value=True) results = mm.exec_module() assert results['changed'] is True assert results['ip'] == '10.10.10.10' def test_change_ignore_down_response(self, *args): set_module_args(dict( name='foo', ignore_down_response=True, provider=dict( server='localhost', password='password', user='admin' ) )) current = ApiParameters(params=load_fixture('load_gtm_monitor_tcp_1.json')) module = AnsibleModule( argument_spec=self.spec.argument_spec, supports_check_mode=self.spec.supports_check_mode ) # Override methods in the specific type of manager mm = ModuleManager(module=module) mm.exists = Mock(side_effect=[True, True]) mm.update_on_device = Mock(return_value=True) mm.read_current_from_device = Mock(return_value=current) mm.module_provisioned = Mock(return_value=True) results = mm.exec_module() assert results['changed'] is True assert results['ignore_down_response'] is True
F5Networks/f5-ansible-modules
ansible_collections/f5networks/f5_modules/tests/unit/modules/network/f5/test_bigip_gtm_monitor_tcp.py
Python
mit
6,578
from __future__ import division from sympy.external import import_module from sympy.plotting.intervalmath import ( Abs, acos, acosh, And, asin, asinh, atan, atanh, ceil, cos, cosh, exp, floor, imax, imin, interval, log, log10, Or, sin, sinh, sqrt, tan, tanh, ) np = import_module('numpy') if not np: disabled = True #requires Numpy. Hence included in interval_functions def test_interval_pow(): a = 2**interval(1, 2) == interval(2, 4) assert a == (True, True) a = interval(1, 2)**interval(1, 2) == interval(1, 4) assert a == (True, True) a = interval(-1, 1)**interval(0.5, 2) assert a.is_valid is None a = interval(-2, -1) ** interval(1, 2) assert a.is_valid is False a = interval(-2, -1) ** (1 / 2) assert a.is_valid is False a = interval(-1, 1)**(1 / 2) assert a.is_valid is None a = interval(-1, 1)**(1 / 3) == interval(-1, 1) assert a == (True, True) a = interval(-1, 1)**2 == interval(0, 1) assert a == (True, True) a = interval(-1, 1) ** (1 / 29) == interval(-1, 1) assert a == (True, True) a = -2**interval(1, 1) == interval(-2, -2) assert a == (True, True) a = interval(1, 2, is_valid=False)**2 assert a.is_valid is False a = (-3)**interval(1, 2) assert a.is_valid is False a = (-4)**interval(0.5, 0.5) assert a.is_valid is False assert ((-3)**interval(1, 1) == interval(-3, -3)) == (True, True) a = interval(8, 64)**(2 / 3) assert abs(a.start - 4) < 1e-10 # eps assert abs(a.end - 16) < 1e-10 a = interval(-8, 64)**(2 / 3) assert abs(a.start - 4) < 1e-10 # eps assert abs(a.end - 16) < 1e-10 def test_exp(): a = exp(interval(-np.inf, 0)) assert a.start == np.exp(-np.inf) assert a.end == np.exp(0) a = exp(interval(1, 2)) assert a.start == np.exp(1) assert a.end == np.exp(2) a = exp(1) assert a.start == np.exp(1) assert a.end == np.exp(1) def test_log(): a = log(interval(1, 2)) assert a.start == 0 assert a.end == np.log(2) a = log(interval(-1, 1)) assert a.is_valid is None a = log(interval(-3, -1)) assert a.is_valid is False a = log(-3) assert a.is_valid is False a = log(2) assert a.start == np.log(2) assert a.end == np.log(2) def test_log10(): a = log10(interval(1, 2)) assert a.start == 0 assert a.end == np.log10(2) a = log10(interval(-1, 1)) assert a.is_valid is None a = log10(interval(-3, -1)) assert a.is_valid is False a = log10(-3) assert a.is_valid is False a = log10(2) assert a.start == np.log10(2) assert a.end == np.log10(2) def test_atan(): a = atan(interval(0, 1)) assert a.start == np.arctan(0) assert a.end == np.arctan(1) a = atan(1) assert a.start == np.arctan(1) assert a.end == np.arctan(1) def test_sin(): a = sin(interval(0, np.pi / 4)) assert a.start == np.sin(0) assert a.end == np.sin(np.pi / 4) a = sin(interval(-np.pi / 4, np.pi / 4)) assert a.start == np.sin(-np.pi / 4) assert a.end == np.sin(np.pi / 4) a = sin(interval(np.pi / 4, 3 * np.pi / 4)) assert a.start == np.sin(np.pi / 4) assert a.end == 1 a = sin(interval(7 * np.pi / 6, 7 * np.pi / 4)) assert a.start == -1 assert a.end == np.sin(7 * np.pi / 6) a = sin(interval(0, 3 * np.pi)) assert a.start == -1 assert a.end == 1 a = sin(interval(np.pi / 3, 7 * np.pi / 4)) assert a.start == -1 assert a.end == 1 a = sin(np.pi / 4) assert a.start == np.sin(np.pi / 4) assert a.end == np.sin(np.pi / 4) a = sin(interval(1, 2, is_valid=False)) assert a.is_valid is False def test_cos(): a = cos(interval(0, np.pi / 4)) assert a.start == np.cos(np.pi / 4) assert a.end == 1 a = cos(interval(-np.pi / 4, np.pi / 4)) assert a.start == np.cos(-np.pi / 4) assert a.end == 1 a = cos(interval(np.pi / 4, 3 * np.pi / 4)) assert a.start == np.cos(3 * np.pi / 4) assert a.end == np.cos(np.pi / 4) a = cos(interval(3 * np.pi / 4, 5 * np.pi / 4)) assert a.start == -1 assert a.end == np.cos(3 * np.pi / 4) a = cos(interval(0, 3 * np.pi)) assert a.start == -1 assert a.end == 1 a = cos(interval(- np.pi / 3, 5 * np.pi / 4)) assert a.start == -1 assert a.end == 1 a = cos(interval(1, 2, is_valid=False)) assert a.is_valid is False def test_tan(): a = tan(interval(0, np.pi / 4)) assert a.start == 0 assert a.end == np.tan(np.pi / 4) a = tan(interval(np.pi / 4, 3 * np.pi / 4)) #discontinuity assert a.is_valid is None def test_sqrt(): a = sqrt(interval(1, 4)) assert a.start == 1 assert a.end == 2 a = sqrt(interval(0.01, 1)) assert a.start == np.sqrt(0.01) assert a.end == 1 a = sqrt(interval(-1, 1)) assert a.is_valid is None a = sqrt(interval(-3, -1)) assert a.is_valid is False a = sqrt(4) assert (a == interval(2, 2)) == (True, True) a = sqrt(-3) assert a.is_valid is False def test_imin(): a = imin(interval(1, 3), interval(2, 5), interval(-1, 3)) assert a.start == -1 assert a.end == 3 a = imin(-2, interval(1, 4)) assert a.start == -2 assert a.end == -2 a = imin(5, interval(3, 4), interval(-2, 2, is_valid=False)) assert a.start == 3 assert a.end == 4 def test_imax(): a = imax(interval(-2, 2), interval(2, 7), interval(-3, 9)) assert a.start == 2 assert a.end == 9 a = imax(8, interval(1, 4)) assert a.start == 8 assert a.end == 8 a = imax(interval(1, 2), interval(3, 4), interval(-2, 2, is_valid=False)) assert a.start == 3 assert a.end == 4 def test_sinh(): a = sinh(interval(-1, 1)) assert a.start == np.sinh(-1) assert a.end == np.sinh(1) a = sinh(1) assert a.start == np.sinh(1) assert a.end == np.sinh(1) def test_cosh(): a = cosh(interval(1, 2)) assert a.start == np.cosh(1) assert a.end == np.cosh(2) a = cosh(interval(-2, -1)) assert a.start == np.cosh(-1) assert a.end == np.cosh(-2) a = cosh(interval(-2, 1)) assert a.start == 1 assert a.end == np.cosh(-2) a = cosh(1) assert a.start == np.cosh(1) assert a.end == np.cosh(1) def test_tanh(): a = tanh(interval(-3, 3)) assert a.start == np.tanh(-3) assert a.end == np.tanh(3) a = tanh(3) assert a.start == np.tanh(3) assert a.end == np.tanh(3) def test_asin(): a = asin(interval(-0.5, 0.5)) assert a.start == np.arcsin(-0.5) assert a.end == np.arcsin(0.5) a = asin(interval(-1.5, 1.5)) assert a.is_valid is None a = asin(interval(-2, -1.5)) assert a.is_valid is False a = asin(interval(0, 2)) assert a.is_valid is None a = asin(interval(2, 5)) assert a.is_valid is False a = asin(0.5) assert a.start == np.arcsin(0.5) assert a.end == np.arcsin(0.5) a = asin(1.5) assert a.is_valid is False def test_acos(): a = acos(interval(-0.5, 0.5)) assert a.start == np.arccos(0.5) assert a.end == np.arccos(-0.5) a = acos(interval(-1.5, 1.5)) assert a.is_valid is None a = acos(interval(-2, -1.5)) assert a.is_valid is False a = acos(interval(0, 2)) assert a.is_valid is None a = acos(interval(2, 5)) assert a.is_valid is False a = acos(0.5) assert a.start == np.arccos(0.5) assert a.end == np.arccos(0.5) a = acos(1.5) assert a.is_valid is False def test_ceil(): a = ceil(interval(0.2, 0.5)) assert a.start == 1 assert a.end == 1 a = ceil(interval(0.5, 1.5)) assert a.start == 1 assert a.end == 2 assert a.is_valid is None a = ceil(interval(-5, 5)) assert a.is_valid is None a = ceil(5.4) assert a.start == 6 assert a.end == 6 def test_floor(): a = floor(interval(0.2, 0.5)) assert a.start == 0 assert a.end == 0 a = floor(interval(0.5, 1.5)) assert a.start == 0 assert a.end == 1 assert a.is_valid is None a = floor(interval(-5, 5)) assert a.is_valid is None a = floor(5.4) assert a.start == 5 assert a.end == 5 def test_asinh(): a = asinh(interval(1, 2)) assert a.start == np.arcsinh(1) assert a.end == np.arcsinh(2) a = asinh(0.5) assert a.start == np.arcsinh(0.5) assert a.end == np.arcsinh(0.5) def test_acosh(): a = acosh(interval(3, 5)) assert a.start == np.arccosh(3) assert a.end == np.arccosh(5) a = acosh(interval(0, 3)) assert a.is_valid is None a = acosh(interval(-3, 0.5)) assert a.is_valid is False a = acosh(0.5) assert a.is_valid is False a = acosh(2) assert a.start == np.arccosh(2) assert a.end == np.arccosh(2) def test_atanh(): a = atanh(interval(-0.5, 0.5)) assert a.start == np.arctanh(-0.5) assert a.end == np.arctanh(0.5) a = atanh(interval(0, 3)) assert a.is_valid is None a = atanh(interval(-3, -2)) assert a.is_valid is False a = atanh(0.5) assert a.start == np.arctanh(0.5) assert a.end == np.arctanh(0.5) a = atanh(1.5) assert a.is_valid is False def test_Abs(): assert (Abs(interval(-0.5, 0.5)) == interval(0, 0.5)) == (True, True) assert (Abs(interval(-3, -2)) == interval(2, 3)) == (True, True) assert (Abs(-3) == interval(3, 3)) == (True, True) def test_And(): args = [(True, True), (True, False), (True, None)] assert And(*args) == (True, False) args = [(False, True), (None, None), (True, True)] assert And(*args) == (False, None) def test_Or(): args = [(True, True), (True, False), (False, None)] assert Or(*args) == (True, True) args = [(None, None), (False, None), (False, False)] assert Or(*args) == (None, None)
wolfram74/numerical_methods_iserles_notes
venv/lib/python2.7/site-packages/sympy/plotting/intervalmath/tests/test_interval_functions.py
Python
mit
9,816
import tests.model_control.test_ozone_custom_models_enabled as testmod testmod.build_model( ['RelativeDifference'] , ['MovingAverage'] , ['Seasonal_Minute'] , ['AR'] );
antoinecarme/pyaf
tests/model_control/detailed/transf_RelativeDifference/model_control_one_enabled_RelativeDifference_MovingAverage_Seasonal_Minute_AR.py
Python
bsd-3-clause
170
"""Script to build the xpi add-in for firefox Usage : python build-implicit-wait.py "x.x.x.x" """ import os, re, sys, shutil, datetime, zipfile, glob CD = os.path.dirname(os.path.abspath(__file__)) SRC_DIR = CD + r'\implicit-wait' OUT_DIR = CD + r'\bin' RDF_PATH = CD + r'\implicit-wait\install.rdf' def main(args): arg_version = args and args[0] set_working_dir(CD) last_modified_time = get_file_mtime(RDF_PATH, '%Y-%m-%d %H:%M:%S') current_version = find_in_file(RDF_PATH, r'version>([.\d]+)<'); print __doc__ print 'Last compilation : ' + (last_modified_time or 'none') print 'Current Version : ' + current_version new_version = arg_version or get_input_version(current_version) print 'New version : ' + new_version + '\n' print 'Update version number ...' replace_in_file(RDF_PATH, r'(?<=version>)[.\d]+(?=<)', new_version) print 'Build formater xpi ...' make_dir(OUT_DIR) set_working_dir(SRC_DIR) with ZipFile(OUT_DIR + r'\implicit-wait.xpi', 'w') as zip: zip.add(r'*') print '\nDone' def set_working_dir(directory): make_dir(directory) os.chdir(directory) def make_dir(directory): if not os.path.isdir(directory): os.makedirs(directory) def clear_dir(directory): if os.path.isdir(directory): shutil.rmtree(directory) os.makedirs(directory) def get_file_mtime(filepath, format=None): if(not os.path.isfile(filepath)): return None dt = datetime.datetime.fromtimestamp(os.path.getmtime(filepath)) if format: return dt.strftime(format) return dt def delete_file(filepath): if(os.path.isfile(filepath)): os.remove(filepath) def find_in_file(filepath, pattern): with open(filepath, 'r') as f: result = re.search(pattern, f.read()) return result.group(result.re.groups) def replace_in_file(filepath, pattern, replacement): with open(filepath, 'r') as f: text = re.sub(pattern, replacement, f.read()) with open(filepath, 'w') as f: f.write(text) def get_input(message): try: return raw_input(message) except NameError: return input(message) def get_input_version(version): while True: input = get_input('Digit to increment [w.x.y.z] or version [0.0.0.0] or skip [s] ? ').strip() if re.match(r's|w|x|y|z', input) : idx = {'s': 99, 'w': 0, 'x': 1, 'y': 2, 'z': 3}[input] return '.'.join([str((int(v)+(i == idx))*(i <= idx)) for i, v in enumerate(version.split('.'))]) elif re.match(r'\d+\.\d+\.\d+\.\d+', input): return input class ZipFile(zipfile.ZipFile): def __init__(cls, file, mode): zipfile.ZipFile.__init__(cls, file, mode) def add(self, path): for item in glob.glob(path): if os.path.isdir(item): self.add(item + r'\*'); else: self.write(item) if __name__ == '__main__': main(sys.argv[1:])
florentbr/SeleniumBasic
FirefoxAddons/build-implicit-wait.py
Python
bsd-3-clause
3,005
#!/usr/bin/python # -*- coding: utf-8 -*- # (c) 2012, Michael DeHaan <[email protected]> # (c) 2012, Jayson Vantuyl <[email protected]> # # This file is part of Ansible # # Ansible is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # Ansible is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with Ansible. If not, see <http://www.gnu.org/licenses/>. DOCUMENTATION = ''' --- module: apt_key author: "Jayson Vantuyl & others (@jvantuyl)" version_added: "1.0" short_description: Add or remove an apt key description: - Add or remove an I(apt) key, optionally downloading it notes: - doesn't download the key unless it really needs it - as a sanity check, downloaded key id must match the one specified - best practice is to specify the key id and the url options: id: required: false default: none description: - identifier of key. Including this allows check mode to correctly report the changed state. - "If specifying a subkey's id be aware that apt-key does not understand how to remove keys via a subkey id. Specify the primary key's id instead." data: required: false default: none description: - keyfile contents to add to the keyring file: required: false default: none description: - path to a keyfile to add to the keyring keyring: required: false default: none description: - path to specific keyring file in /etc/apt/trusted.gpg.d version_added: "1.3" url: required: false default: none description: - url to retrieve key from. keyserver: version_added: "1.6" required: false default: none description: - keyserver to retrieve key from. state: required: false choices: [ absent, present ] default: present description: - used to specify if key is being added or revoked validate_certs: description: - If C(no), SSL certificates for the target url will not be validated. This should only be used on personally controlled sites using self-signed certificates. required: false default: 'yes' choices: ['yes', 'no'] ''' EXAMPLES = ''' # Add an apt key by id from a keyserver - apt_key: keyserver=keyserver.ubuntu.com id=36A1D7869245C8950F966E92D8576A8BA88D21E9 # Add an Apt signing key, uses whichever key is at the URL - apt_key: url=https://ftp-master.debian.org/keys/archive-key-6.0.asc state=present # Add an Apt signing key, will not download if present - apt_key: id=473041FA url=https://ftp-master.debian.org/keys/archive-key-6.0.asc state=present # Remove an Apt signing key, uses whichever key is at the URL - apt_key: url=https://ftp-master.debian.org/keys/archive-key-6.0.asc state=absent # Remove a Apt specific signing key, leading 0x is valid - apt_key: id=0x473041FA state=absent # Add a key from a file on the Ansible server - apt_key: data="{{ lookup('file', 'apt.gpg') }}" state=present # Add an Apt signing key to a specific keyring file - apt_key: id=473041FA url=https://ftp-master.debian.org/keys/archive-key-6.0.asc keyring=/etc/apt/trusted.gpg.d/debian.gpg state=present ''' # FIXME: standardize into module_common from traceback import format_exc from ansible.module_utils.basic import AnsibleModule from ansible.module_utils._text import to_native from ansible.module_utils.urls import fetch_url apt_key_bin = None def find_needed_binaries(module): global apt_key_bin apt_key_bin = module.get_bin_path('apt-key', required=True) ### FIXME: Is there a reason that gpg and grep are checked? Is it just # cruft or does the apt .deb package not require them (and if they're not # installed, /usr/bin/apt-key fails?) module.get_bin_path('gpg', required=True) module.get_bin_path('grep', required=True) def parse_key_id(key_id): """validate the key_id and break it into segments :arg key_id: The key_id as supplied by the user. A valid key_id will be 8, 16, or more hexadecimal chars with an optional leading ``0x``. :returns: The portion of key_id suitable for apt-key del, the portion suitable for comparisons with --list-public-keys, and the portion that can be used with --recv-key. If key_id is long enough, these will be the last 8 characters of key_id, the last 16 characters, and all of key_id. If key_id is not long enough, some of the values will be the same. * apt-key del <= 1.10 has a bug with key_id != 8 chars * apt-key adv --list-public-keys prints 16 chars * apt-key adv --recv-key can take more chars """ # Make sure the key_id is valid hexadecimal int(key_id, 16) key_id = key_id.upper() if key_id.startswith('0X'): key_id = key_id[2:] key_id_len = len(key_id) if (key_id_len != 8 and key_id_len != 16) and key_id_len <= 16: raise ValueError('key_id must be 8, 16, or 16+ hexadecimal characters in length') short_key_id = key_id[-8:] fingerprint = key_id if key_id_len > 16: fingerprint = key_id[-16:] return short_key_id, fingerprint, key_id def all_keys(module, keyring, short_format): if keyring: cmd = "%s --keyring %s adv --list-public-keys --keyid-format=long" % (apt_key_bin, keyring) else: cmd = "%s adv --list-public-keys --keyid-format=long" % apt_key_bin (rc, out, err) = module.run_command(cmd) results = [] lines = to_native(out).split('\n') for line in lines: if line.startswith("pub") or line.startswith("sub"): tokens = line.split() code = tokens[1] (len_type, real_code) = code.split("/") results.append(real_code) if short_format: results = shorten_key_ids(results) return results def shorten_key_ids(key_id_list): """ Takes a list of key ids, and converts them to the 'short' format, by reducing them to their last 8 characters. """ short = [] for key in key_id_list: short.append(key[-8:]) return short def download_key(module, url): # FIXME: move get_url code to common, allow for in-memory D/L, support proxies # and reuse here if url is None: module.fail_json(msg="needed a URL but was not specified") try: rsp, info = fetch_url(module, url) if info['status'] != 200: module.fail_json(msg="Failed to download key at %s: %s" % (url, info['msg'])) return rsp.read() except Exception: module.fail_json(msg="error getting key id from url: %s" % url, traceback=format_exc()) def import_key(module, keyring, keyserver, key_id): if keyring: cmd = "%s --keyring %s adv --keyserver %s --recv %s" % (apt_key_bin, keyring, keyserver, key_id) else: cmd = "%s adv --keyserver %s --recv %s" % (apt_key_bin, keyserver, key_id) for retry in range(5): lang_env = dict(LANG='C', LC_ALL='C', LC_MESSAGES='C') (rc, out, err) = module.run_command(cmd, environ_update=lang_env) if rc == 0: break else: # Out of retries if rc == 2 and 'not found on keyserver' in out: msg = 'Key %s not found on keyserver %s' % (key_id, keyserver) module.fail_json(cmd=cmd, msg=msg) else: msg = "Error fetching key %s from keyserver: %s" % (key_id, keyserver) module.fail_json(cmd=cmd, msg=msg, rc=rc, stdout=out, stderr=err) return True def add_key(module, keyfile, keyring, data=None): if data is not None: if keyring: cmd = "%s --keyring %s add -" % (apt_key_bin, keyring) else: cmd = "%s add -" % apt_key_bin (rc, out, err) = module.run_command(cmd, data=data, check_rc=True, binary_data=True) else: if keyring: cmd = "%s --keyring %s add %s" % (apt_key_bin, keyring, keyfile) else: cmd = "%s add %s" % (apt_key_bin, keyfile) (rc, out, err) = module.run_command(cmd, check_rc=True) return True def remove_key(module, key_id, keyring): # FIXME: use module.run_command, fail at point of error and don't discard useful stdin/stdout if keyring: cmd = '%s --keyring %s del %s' % (apt_key_bin, keyring, key_id) else: cmd = '%s del %s' % (apt_key_bin, key_id) (rc, out, err) = module.run_command(cmd, check_rc=True) return True def main(): module = AnsibleModule( argument_spec=dict( id=dict(required=False, default=None), url=dict(required=False), data=dict(required=False), file=dict(required=False, type='path'), key=dict(required=False), keyring=dict(required=False, type='path'), validate_certs=dict(default='yes', type='bool'), keyserver=dict(required=False), state=dict(required=False, choices=['present', 'absent'], default='present') ), supports_check_mode=True, mutually_exclusive=(('filename', 'keyserver', 'data', 'url'),), ) key_id = module.params['id'] url = module.params['url'] data = module.params['data'] filename = module.params['file'] keyring = module.params['keyring'] state = module.params['state'] keyserver = module.params['keyserver'] changed = False fingerprint = short_key_id = key_id short_format = False if key_id: try: short_key_id, fingerprint, key_id = parse_key_id(key_id) except ValueError: module.fail_json(msg='Invalid key_id', id=key_id) if len(fingerprint) == 8: short_format = True find_needed_binaries(module) keys = all_keys(module, keyring, short_format) return_values = {} if state == 'present': if fingerprint and fingerprint in keys: module.exit_json(changed=False) elif fingerprint and fingerprint not in keys and module.check_mode: ### TODO: Someday we could go further -- write keys out to # a temporary file and then extract the key id from there via gpg # to decide if the key is installed or not. module.exit_json(changed=True) else: if not filename and not data and not keyserver: data = download_key(module, url) if filename: add_key(module, filename, keyring) elif keyserver: import_key(module, keyring, keyserver, key_id) else: add_key(module, "-", keyring, data) changed = False keys2 = all_keys(module, keyring, short_format) if len(keys) != len(keys2): changed=True if fingerprint and fingerprint not in keys2: module.fail_json(msg="key does not seem to have been added", id=key_id) module.exit_json(changed=changed) elif state == 'absent': if not key_id: module.fail_json(msg="key is required") if fingerprint in keys: if module.check_mode: module.exit_json(changed=True) # we use the "short" id: key_id[-8:], short_format=True # it's a workaround for https://bugs.launchpad.net/ubuntu/+source/apt/+bug/1481871 if remove_key(module, short_key_id, keyring): keys = all_keys(module, keyring, short_format) if fingerprint in keys: module.fail_json(msg="apt-key del did not return an error but the key was not removed (check that the id is correct and *not* a subkey)", id=key_id) changed = True else: # FIXME: module.fail_json or exit-json immediately at point of failure module.fail_json(msg="error removing key_id", **return_values) module.exit_json(changed=changed, **return_values) if __name__ == '__main__': main()
Jmainguy/ansible-modules-core
packaging/os/apt_key.py
Python
gpl-3.0
12,627
from __future__ import (absolute_import, division, print_function) from PyQt4 import QtGui import Muon.GUI.Common.message_box as message_box from qtpy import PYQT4 # determine whether the interface is opened from within Mantid or not # (outside of Mantid we cannot use the "Manage user directories" functionality) STANDALONE_EXEC = True try: from mantidqtpython import MantidQt except: STANDALONE_EXEC = False if PYQT4: IN_MANTIDPLOT = False try: from pymantidplot import proxies IN_MANTIDPLOT = True except ImportError: # We are not in MantidPlot e.g. testing pass class HelpWidgetView(QtGui.QWidget): @staticmethod def warning_popup(message): message_box.warning(str(message)) def __init__(self, parent=None): super(HelpWidgetView, self).__init__(parent) self.setup_interface_layout() def setup_interface_layout(self): self.setObjectName("HelpWidget") self.resize(500, 100) self.help_label = QtGui.QLabel(self) self.help_label.setObjectName("helpLabel") self.help_label.setText("Help : ") self.help_button = QtGui.QToolButton(self) self.help_button.setObjectName("helpButton") self.help_button.setText("?") self.manage_user_dir_button = QtGui.QPushButton(self) self.manage_user_dir_button.setObjectName("manageUserDirectoriesButton") self.manage_user_dir_button.setText("Manage User Directories") self.horizontal_layout = QtGui.QHBoxLayout() self.horizontal_layout.setObjectName("horizontalLayout") self.horizontal_layout.addWidget(self.help_label) self.horizontal_layout.addWidget(self.help_button) self.horizontal_layout.addStretch(0) self.horizontal_layout.addWidget(self.manage_user_dir_button) self.setLayout(self.horizontal_layout) def getLayout(self): return self.horizontal_layout def on_manage_user_directories_clicked(self, slot): self.manage_user_dir_button.clicked.connect(slot) def on_help_button_clicked(self, slot): self.help_button.clicked.connect(slot) def show_directory_manager(self): if STANDALONE_EXEC: MantidQt.API.ManageUserDirectories.openUserDirsDialog(self) else: self.warning_popup("Cannot open user directories dailog outside MantidPlot.") def _on_help_button_clicked(self): if PYQT4: proxies.showCustomInterfaceHelp('Frequency Domain Analysis')
mganeva/mantid
scripts/Muon/GUI/Common/help_widget/help_widget_view.py
Python
gpl-3.0
2,535
# coding=utf-8 # Copyright 2021 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import from __future__ import division from __future__ import print_function from setuptools import setup, find_packages import unittest def all_tests(): test_loader = unittest.TestLoader() test_suite = test_loader.discover('.', pattern='*_test.py') return test_suite setup( name="google-pasta", version="0.2.0", packages=find_packages(), # metadata for upload to PyPI author="Nick Smith", author_email="[email protected]", description="pasta is an AST-based Python refactoring library", license="Apache 2.0", keywords="python refactoring ast", url="https://github.com/google/pasta", test_suite='setup.all_tests', classifiers=[ "Development Status :: 2 - Pre-Alpha", "License :: OSI Approved :: Apache Software License", 'Programming Language :: Python', 'Programming Language :: Python :: 2.7', 'Programming Language :: Python :: 3', 'Programming Language :: Python :: 3.4', 'Programming Language :: Python :: 3.5', 'Programming Language :: Python :: 3.6', 'Programming Language :: Python :: 3.7', 'Programming Language :: Python :: 3.8', ], install_requires=[ 'six', ], )
google/pasta
setup.py
Python
apache-2.0
1,865
#!/usr/bin/env python # -*- coding: utf-8 -*- "Fully test this module's functionality through the use of fixtures." from megacosm.generators import Gem import unittest2 as unittest import fakeredis from config import TestConfiguration import fixtures class TestGem(unittest.TestCase): def setUp(self): """ """ self.redis = fakeredis.FakeRedis() fixtures.gem.import_fixtures(self) def tearDown(self): self.redis.flushall() def test_random_gem(self): """ """ gem = Gem(self.redis) self.assertNotEquals('', gem.text) self.assertNotEquals('', gem.count) self.assertNotEquals('', gem.color) self.assertNotEquals('', str(gem)) def test_static_gem(self): """ """ gem = Gem(self.redis, {'text':'foo bar', 'count':3, 'color':'green'}) self.assertEqual('Foo bar', gem.text) self.assertEqual(3, gem.count) self.assertEqual('green', gem.color)
CityGenerator/Megacosm-Generator
tests/test_gem.py
Python
gpl-2.0
980
""" Object containing dynamic simulation state. """ import opiniongame.IO as og_io import opiniongame.coupling as og_coupling import opiniongame.opinions as og_opinions import opiniongame.adjacency as og_adj import numpy as np class WorldState: def __init__(self, adj, couplingWeights, initialOpinions, initialHistorySize=100, historyGrowthScale=2): self.adj = adj self.couplingWeights = couplingWeights self.initialOpinions = initialOpinions self.individualCount = np.size(initialOpinions, 0) self.initialHistorySize = initialHistorySize self.historyGrowthScale = historyGrowthScale self.initializeHistory() self.iterCount = 0 @classmethod def fromCmdlineArguments(cls, cmdline, config): # # check optional arguments and generate defaults if missing # weights = None initialOpinions = None adj = None if cmdline.args.weights is not None: weights = og_io.loadNamedMatrix(cmdline.args.weights, 'weights') else: weights = og_coupling.weights_no_coupling(config.popSize, config.ntopics) if cmdline.args.initialOpinions is not None: initialOpinions = og_io.loadNamedMatrix(cmdline.args.initialOpinions, 'initialOpinions') else: initialOpinions = og_opinions.initialize_opinions(config.popSize, config.ntopics) if cmdline.args.adjacency is not None: adj = og_io.loadNamedMatrix(cmdline.args.adjacency, 'adjacency') else: adj = og_adj.make_adj(config.popSize, 'full') state = cls(adj, weights, initialOpinions) state.validate() # # set popsize and ntopics based on current state. warn if config # disagrees with loaded files. # wPopsize = np.shape(weights)[0] wNtopics = np.shape(weights)[1] if wPopsize != config.popSize: print("WARNING: popsize from data files disagrees with cfg.") config.popSize = wPopsize if wNtopics != config.ntopics: print("WARNING: ntopics from data files disagrees with cfg.") config.ntopics = wNtopics return state def initializeHistory(self): self.individualCount = np.size(self.initialOpinions, 0) self.numTopics = np.size(self.initialOpinions, 1) self.history = np.zeros([self.initialHistorySize, self.individualCount, self.numTopics]) self.history[0,:,:] = self.initialOpinions[:,:] self.nextHistoryIndex = 1 def appendToHistory(self, newOpinions): curHistorySize = np.size(self.history,0) if curHistorySize == self.nextHistoryIndex: newhist = np.zeros([int(curHistorySize * self.historyGrowthScale), self.individualCount, self.numTopics]) newhist[0:curHistorySize, :, :] = self.history self.history = newhist self.history[self.nextHistoryIndex,:,:] = newOpinions[:,:] self.nextHistoryIndex += 1 def reset(self): self.history[:,:,:] = 0 self.nextHistoryIndex = 0 self.iterCount = 0 def currentOpinions(self): return self.history[self.nextHistoryIndex-1] # def previousOpinions(self): # return self.history[self.nextHistoryIndex-2] def validate(self): # validation of data sizes print("WEIGHT SHAPE : "+str(np.shape(self.couplingWeights))) print("OPINION SHAPE : "+str(np.shape(self.initialOpinions))) print("ADJACENCY SHAPE: "+str(np.shape(self.adj))) wPopsize = np.shape(self.couplingWeights)[0] wNtopics1 = np.shape(self.couplingWeights)[1] wNtopics2 = np.shape(self.couplingWeights)[2] oPopsize = np.shape(self.initialOpinions)[0] oNtopics = np.shape(self.initialOpinions)[1] aPopsize1 = np.shape(self.adj)[0] aPopsize2 = np.shape(self.adj)[1] if aPopsize1 != aPopsize2: raise ValueError("Adjacency matrix must be square.") if wNtopics1 != wNtopics2: raise ValueError("Per-topic weight matrix must be square.") if wPopsize != oPopsize or wPopsize != aPopsize1 or aPopsize1 != oPopsize: raise ValueError("Weight tensor, opinion state, and adjacency matrix disagree on population size.") if oNtopics != wNtopics1: raise ValueError("Weight tensor and opinion state disagree on topic count.") print("==> World state validation passed.") print("")
HNoorazar/PyOpinionGame
opiniongame/state.py
Python
gpl-3.0
4,551
"""Unit tests for reviewboard.reviews.views.ReviewRequestDetailView.""" from datetime import timedelta from django.contrib.auth.models import User from django.test.html import parse_html from djblets.extensions.hooks import TemplateHook from djblets.extensions.models import RegisteredExtension from djblets.siteconfig.models import SiteConfiguration from kgb import SpyAgency from reviewboard.extensions.base import Extension, get_extension_manager from reviewboard.reviews.detail import InitialStatusUpdatesEntry, ReviewEntry from reviewboard.reviews.fields import get_review_request_fieldsets from reviewboard.reviews.models import Comment, GeneralComment, Review from reviewboard.site.urlresolvers import local_site_reverse from reviewboard.testing import TestCase class ReviewRequestDetailViewTests(SpyAgency, TestCase): """Unit tests for reviewboard.reviews.views.ReviewRequestDetailView.""" fixtures = ['test_users', 'test_scmtools', 'test_site'] def test_get(self): """Testing ReviewRequestDetailView.get""" review_request = self.create_review_request(publish=True) response = self.client.get('/r/%d/' % review_request.id) self.assertEqual(response.status_code, 200) self.assertEqual(response.context['review_request'].pk, review_request.pk) def test_context(self): """Testing ReviewRequestDetailView context variables""" # Make sure this request is made while logged in, to catch the # login-only pieces of the review_detail view. self.client.login(username='admin', password='admin') username = 'admin' summary = 'This is a test summary' description = 'This is my description' testing_done = 'Some testing' review_request = self.create_review_request( publish=True, submitter=username, summary=summary, description=description, testing_done=testing_done) response = self.client.get('/r/%s/' % review_request.pk) self.assertEqual(response.status_code, 200) review_request = response.context['review_request'] self.assertEqual(review_request.submitter.username, username) self.assertEqual(review_request.summary, summary) self.assertEqual(review_request.description, description) self.assertEqual(review_request.testing_done, testing_done) self.assertEqual(review_request.pk, review_request.pk) def test_diff_comment_ordering(self): """Testing ReviewRequestDetailView and ordering of diff comments on a review """ comment_text_1 = 'Comment text 1' comment_text_2 = 'Comment text 2' comment_text_3 = 'Comment text 3' review_request = self.create_review_request(create_repository=True, publish=True) diffset = self.create_diffset(review_request) filediff = self.create_filediff(diffset) # Create the users who will be commenting. user1 = User.objects.get(username='doc') user2 = User.objects.get(username='dopey') # Create the master review. main_review = self.create_review(review_request, user=user1) main_comment = self.create_diff_comment(main_review, filediff, text=comment_text_1) main_review.publish() # First reply reply1 = self.create_reply( main_review, user=user1, timestamp=(main_review.timestamp + timedelta(days=1))) self.create_diff_comment(reply1, filediff, text=comment_text_2, reply_to=main_comment) # Second reply reply2 = self.create_reply( main_review, user=user2, timestamp=(main_review.timestamp + timedelta(days=2))) self.create_diff_comment(reply2, filediff, text=comment_text_3, reply_to=main_comment) # Publish them out of order. reply2.publish() reply1.publish() # Make sure they published in the order expected. self.assertTrue(reply1.timestamp > reply2.timestamp) # Make sure they're looked up in the order expected. comments = list( Comment.objects .filter(review__review_request=review_request) .order_by('timestamp') ) self.assertEqual(len(comments), 3) self.assertEqual(comments[0].text, comment_text_1) self.assertEqual(comments[1].text, comment_text_3) self.assertEqual(comments[2].text, comment_text_2) # Now figure out the order on the page. response = self.client.get('/r/%d/' % review_request.pk) self.assertEqual(response.status_code, 200) entries = response.context['entries'] initial_entries = entries['initial'] self.assertEqual(len(initial_entries), 1) self.assertIsInstance(initial_entries[0], InitialStatusUpdatesEntry) main_entries = entries['main'] self.assertEqual(len(main_entries), 1) entry = main_entries[0] self.assertIsInstance(entry, ReviewEntry) comments = entry.comments['diff_comments'] self.assertEqual(len(comments), 1) self.assertEqual(comments[0].text, comment_text_1) replies = comments[0].public_replies() self.assertEqual(len(replies), 2) self.assertEqual(replies[0].text, comment_text_3) self.assertEqual(replies[1].text, comment_text_2) def test_general_comment_ordering(self): """Testing ReviewRequestDetailView and ordering of general comments on a review """ comment_text_1 = 'Comment text 1' comment_text_2 = 'Comment text 2' comment_text_3 = 'Comment text 3' review_request = self.create_review_request(create_repository=True, publish=True) # Create the users who will be commenting. user1 = User.objects.get(username='doc') user2 = User.objects.get(username='dopey') # Create the master review. main_review = self.create_review(review_request, user=user1) main_comment = self.create_general_comment(main_review, text=comment_text_1) main_review.publish() # First reply reply1 = self.create_reply( main_review, user=user1, timestamp=(main_review.timestamp + timedelta(days=1))) self.create_general_comment(reply1, text=comment_text_2, reply_to=main_comment) # Second reply reply2 = self.create_reply( main_review, user=user2, timestamp=(main_review.timestamp + timedelta(days=2))) self.create_general_comment(reply2, text=comment_text_3, reply_to=main_comment) # Publish them out of order. reply2.publish() reply1.publish() # Make sure they published in the order expected. self.assertTrue(reply1.timestamp > reply2.timestamp) # Make sure they're looked up in the order expected. comments = list( GeneralComment.objects .filter(review__review_request=review_request) .order_by('timestamp') ) self.assertEqual(len(comments), 3) self.assertEqual(comments[0].text, comment_text_1) self.assertEqual(comments[1].text, comment_text_3) self.assertEqual(comments[2].text, comment_text_2) def test_file_attachments_visibility(self): """Testing ReviewRequestDetailView default visibility of file attachments """ caption_1 = 'File Attachment 1' caption_2 = 'File Attachment 2' caption_3 = 'File Attachment 3' comment_text_1 = 'Comment text 1' comment_text_2 = 'Comment text 2' user1 = User.objects.get(username='doc') review_request = self.create_review_request() # Add two file attachments. One active, one inactive. file1 = self.create_file_attachment(review_request, caption=caption_1) file2 = self.create_file_attachment(review_request, caption=caption_2, active=False) review_request.publish(user1) # Create a third file attachment on a draft. self.create_file_attachment(review_request, caption=caption_3, draft=True) # Create the review with comments for each screenshot. review = Review.objects.create(review_request=review_request, user=user1) review.file_attachment_comments.create(file_attachment=file1, text=comment_text_1) review.file_attachment_comments.create(file_attachment=file2, text=comment_text_2) review.publish() # Check that we can find all the objects we expect on the page. self.client.login(username='doc', password='doc') response = self.client.get('/r/%d/' % review_request.pk) self.assertEqual(response.status_code, 200) file_attachments = response.context['file_attachments'] self.assertEqual(len(file_attachments), 2) self.assertEqual(file_attachments[0].caption, caption_1) self.assertEqual(file_attachments[1].caption, caption_3) # Make sure that other users won't see the draft one. self.client.logout() response = self.client.get('/r/%d/' % review_request.pk) self.assertEqual(response.status_code, 200) file_attachments = response.context['file_attachments'] self.assertEqual(len(file_attachments), 1) self.assertEqual(file_attachments[0].caption, caption_1) # Make sure we loaded the reviews and all data correctly. entries = response.context['entries'] initial_entries = entries['initial'] self.assertEqual(len(initial_entries), 1) self.assertIsInstance(initial_entries[0], InitialStatusUpdatesEntry) main_entries = entries['main'] self.assertEqual(len(main_entries), 1) entry = main_entries[0] self.assertIsInstance(entry, ReviewEntry) comments = entry.comments['file_attachment_comments'] self.assertEqual(len(comments), 2) self.assertEqual(comments[0].text, comment_text_1) self.assertEqual(comments[1].text, comment_text_2) def test_screenshots_visibility(self): """Testing ReviewRequestDetailView default visibility of screenshots""" caption_1 = 'Screenshot 1' caption_2 = 'Screenshot 2' caption_3 = 'Screenshot 3' comment_text_1 = 'Comment text 1' comment_text_2 = 'Comment text 2' user1 = User.objects.get(username='doc') review_request = self.create_review_request() # Add two screenshots. One active, one inactive. screenshot1 = self.create_screenshot(review_request, caption=caption_1) screenshot2 = self.create_screenshot(review_request, caption=caption_2, active=False) review_request.publish(user1) # Add a third screenshot on a draft. self.create_screenshot(review_request, caption=caption_3, draft=True) # Create the review with comments for each screenshot. user1 = User.objects.get(username='doc') review = Review.objects.create(review_request=review_request, user=user1) review.screenshot_comments.create(screenshot=screenshot1, text=comment_text_1, x=10, y=10, w=20, h=20) review.screenshot_comments.create(screenshot=screenshot2, text=comment_text_2, x=0, y=0, w=10, h=10) review.publish() # Check that we can find all the objects we expect on the page. self.client.login(username='doc', password='doc') response = self.client.get('/r/%d/' % review_request.pk) self.assertEqual(response.status_code, 200) screenshots = response.context['screenshots'] self.assertEqual(len(screenshots), 2) self.assertEqual(screenshots[0].caption, caption_1) self.assertEqual(screenshots[1].caption, caption_3) # Make sure that other users won't see the draft one. self.client.logout() response = self.client.get('/r/%d/' % review_request.pk) self.assertEqual(response.status_code, 200) screenshots = response.context['screenshots'] self.assertEqual(len(screenshots), 1) self.assertEqual(screenshots[0].caption, caption_1) entries = response.context['entries'] initial_entries = entries['initial'] self.assertEqual(len(initial_entries), 1) self.assertIsInstance(initial_entries[0], InitialStatusUpdatesEntry) main_entries = entries['main'] self.assertEqual(len(main_entries), 1) entry = main_entries[0] self.assertIsInstance(entry, ReviewEntry) # Make sure we loaded the reviews and all data correctly. comments = entry.comments['screenshot_comments'] self.assertEqual(len(comments), 2) self.assertEqual(comments[0].text, comment_text_1) self.assertEqual(comments[1].text, comment_text_2) def test_with_anonymous_and_requires_site_wide_login(self): """Testing ReviewRequestDetailView with anonymous user and site-wide login required """ with self.siteconfig_settings({'auth_require_sitewide_login': True}, reload_settings=False): self.create_review_request(publish=True) response = self.client.get('/r/1/') self.assertEqual(response.status_code, 302) def test_etag_with_issues(self): """Testing ReviewRequestDetailView ETags with issue status toggling""" self.client.login(username='doc', password='doc') # Some objects we need. user = User.objects.get(username='doc') review_request = self.create_review_request(create_repository=True, publish=True) diffset = self.create_diffset(review_request) filediff = self.create_filediff(diffset) # Create a review. review = self.create_review(review_request, user=user) comment = self.create_diff_comment(review, filediff, issue_opened=True) review.publish() # Get the etag response = self.client.get(review_request.get_absolute_url()) self.assertEqual(response.status_code, 200) etag1 = response['ETag'] self.assertNotEqual(etag1, '') # Change the issue status comment.issue_status = Comment.RESOLVED comment.save() # Check the etag again response = self.client.get(review_request.get_absolute_url()) self.assertEqual(response.status_code, 200) etag2 = response['ETag'] self.assertNotEqual(etag2, '') # Make sure they're not equal self.assertNotEqual(etag1, etag2) def test_review_request_box_template_hooks(self): """Testing ReviewRequestDetailView template hooks for the review request box """ class ContentTemplateHook(TemplateHook): def initialize(self, name, content): super(ContentTemplateHook, self).initialize(name) self.content = content def render_to_string(self, request, context): return self.content class TestExtension(Extension): registration = RegisteredExtension.objects.create( class_name='test-extension', name='test-extension', enabled=True, installed=True) extension = TestExtension(get_extension_manager()) review_request = self.create_review_request(publish=True) hooks = [] for name in ('before-review-request-summary', 'review-request-summary-pre', 'review-request-summary-post', 'after-review-request-summary-post', 'before-review-request-fields', 'after-review-request-fields', 'before-review-request-extra-panes', 'review-request-extra-panes-pre', 'review-request-extra-panes-post', 'after-review-request-extra-panes'): hooks.append(ContentTemplateHook(extension, name, '[%s here]' % name)) # Turn off some parts of the page, to simplify the resulting HTML # and shorten render/parse times. self.spy_on(get_review_request_fieldsets, call_fake=lambda *args, **kwargs: []) response = self.client.get( local_site_reverse('review-request-detail', args=[review_request.display_id])) self.assertEqual(response.status_code, 200) parsed_html = str(parse_html(response.content.decode('utf-8'))) self.assertIn( '<div class="review-request-body">\n' '[before-review-request-summary here]', parsed_html) self.assertIn( '<div class="review-request-section review-request-summary">\n' '[review-request-summary-pre here]', parsed_html) self.assertIn( '</time>\n</p>[review-request-summary-post here]\n</div>', parsed_html) self.assertIn( '[before-review-request-fields here]' '<table class="review-request-section"' ' id="review-request-details">', parsed_html) self.assertIn( '</div>' '[after-review-request-fields here] ' '[before-review-request-extra-panes here]' '<div id="review-request-extra">\n' '[review-request-extra-panes-pre here]', parsed_html) self.assertIn( '</div>[review-request-extra-panes-post here]\n' '</div>[after-review-request-extra-panes here]\n' '</div>', parsed_html)
reviewboard/reviewboard
reviewboard/reviews/tests/test_review_request_detail_view.py
Python
mit
18,961
# Copyright 2012 Christoph Reiter <[email protected]>, # 2012,2014 Nick Boultbee # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. from tests.plugin import PluginTestCase from quodlibet import config class TTitlecase(PluginTestCase): def setUp(self): globals().update(vars(self.modules["Title Case"])) config.init() self.plugin = self.plugins["Title Case"].cls def test_all_caps(self): self.plugin.config_set("allow_all_caps", True) p = self.plugin("", "") self.failUnlessEqual(p.activated("", "foo bar")[0][1], "Foo Bar") self.failUnlessEqual(p.activated("", "FOO BAR")[0][1], "FOO BAR") def test_no_all_caps(self): self.plugin.config_set("allow_all_caps", False) p = self.plugin("", "") self.failUnlessEqual(p.activated("", "foo bar")[0][1], "Foo Bar") self.failUnlessEqual(p.activated("", "FOO BAR")[0][1], "Foo Bar") def test_humanise(self): self.plugin.config_set("human_title_case", True) self.plugin.config_set("allow_all_caps", False) p = self.plugin("", "") self.failUnlessEqual(p.activated("", "foo bar")[0][1], "Foo Bar") self.failUnlessEqual(p.activated("", "FOO the bAR")[0][1], "Foo the Bar") def tearDown(self): config.quit()
Mellthas/quodlibet
tests/plugin/test_titlecase.py
Python
gpl-2.0
1,547
#!/usr/bin/env python3 import os import gzip import sys # Run this scrpipt under 33208_Vertebrate folder, mirroring the following site. # http://eggnog5.embl.de/download/eggnog_5.0/per_tax_level/33208/ dirname_curr = os.path.dirname(os.path.realpath(__file__)) dirname_output = 'MODtree_ENOG50.raw_alg' filename_out_base = 'MODtree_ENOG50' # Run under 33208_Metazoa with following file. filename_members = '33208_members.tsv.gz' # Directory generated from 33208_raw_algs.tar dirname_align = '33208' # Make it by grep 'BLAST_UniProt_GN' e5.sequence_aliases.tsv filename_GN = os.path.join(dirname_curr, 'MODtree_ENOG50.gene_names.tsv.gz') filename_species = os.path.join(dirname_curr, 'MODtree_species.txt') # UniProt_ID UP_taxId EN_taxId sp_code sp_name GOA_name # UP000005640 9606 9606 HUMAN homo_sapiens 25.H_sapiens.goa species_list = dict() f_species = open(filename_species, 'r') for line in f_species: if line.startswith('#'): continue tokens = line.strip().split("\t") tax_id = tokens[2] sp_code = tokens[3] species_list[tax_id] = sp_code f_species.close() sys.stderr.write('Read gene names...') gene_names = dict() # 9541.XP_005587739.1 RFX2 BLAST_KEGG_NAME BLAST_UniProt_GN RefSeq_gene f_GN = gzip.open(filename_GN, 'rt') for line in f_GN: tokens = line.strip().split("\t") seq_id = tokens[0] tmp_name = tokens[1] tax_id = seq_id.split('.')[0] if tax_id in species_list: gene_names[seq_id] = tmp_name f_GN.close() sys.stderr.write('Done.\n') f_out_members = open('%s.members.tsv' % filename_out_base, 'w') f_out_members.write('# %s\t%s\t%s\t%s\t%s\t%s\n' % ('EN_Id', 'TotalSpecies', 'TotalSeqs', 'MODtreeSpecies', 'MODtreeSeqs', 'MODtreeSpeciesList')) family2seq = dict() exclude_family = dict() f_members = open(filename_members, 'r') if filename_members.endswith('.gz'): f_members = gzip.open(filename_members, 'rt') for line in f_members: tokens = line.strip().split("\t") family_id = tokens[1] total_seqs = int(tokens[2]) total_species = int(tokens[3]) seq_list = [] sp_code_list = [] for tmp_id in tokens[4].split(','): tmp_tax_id = tmp_id.split('.')[0] if tmp_tax_id in species_list: sp_code_list.append(species_list[tmp_tax_id]) seq_list.append(tmp_id) count_seqs = len(seq_list) if count_seqs == 0: continue sp_code_list = sorted(list(set(sp_code_list))) count_species = len(sp_code_list) species_str = ','.join(sp_code_list) f_out_members.write('%s\t%d\t%d\t%d\t%d\t%s\n' % (family_id, total_species, total_seqs, count_species, count_seqs, species_str)) if count_seqs > 1: family2seq[family_id] = seq_list if count_seqs > 150: exclude_family[family_id] = 1 f_members.close() sys.stderr.write('Processed members.tsv.\n') f_out_combined = open('%s.combined.faa' % filename_out_base, 'w') for tmp_family_id in family2seq.keys(): tmp_filename_fa = os.path.join(dirname_align, '%s.raw_alg.faa.gz' % tmp_family_id) tmp_seq_list = dict() f_fa = gzip.open(tmp_filename_fa, 'rt') for line in f_fa: if line.startswith('>'): tmp_h = line.strip().lstrip('>') tmp_seq_list[tmp_h] = [] else: tmp_seq_list[tmp_h].append(line.strip()) f_fa.close() tmp_filename_out = os.path.join(dirname_output, '%s.raw_alg.faa' % tmp_family_id) if tmp_family_id in exclude_family: tmp_filename_out = os.path.join('excluded_%s.raw_alg.faa' % tmp_family_id) f_fa_out = open(tmp_filename_out, 'w') for tmp_seq_id in family2seq[tmp_family_id]: tmp_tax_id = tmp_seq_id.split('.')[0] if tmp_seq_id not in tmp_seq_list: sys.stderr.write('%s has no sequences. (%s)\n' % (tmp_seq_id, tmp_filename_fa)) continue tmp_sp_code = species_list[tmp_tax_id] tmp_name = 'NotAvail' if tmp_seq_id in gene_names: tmp_name = gene_names[tmp_seq_id] # Refine the gene name # because of DANRE name like si:ch211-151m7.6 tmp_name = tmp_name.replace(':', '_') tmp_name = tmp_name.replace(' ', '_') # because of CIOIN name like zf(cchc)-22 tmp_name = tmp_name.replace('(', '_').replace(')', '_') tmp_name = tmp_name.replace('/', '_') tmp_id = tmp_seq_id.split('.')[1] tmp_new_h = '%s|%s|%s|%s' % (tmp_name, tmp_sp_code, tmp_family_id, tmp_id) tmp_seq = ''.join(tmp_seq_list[tmp_seq_id]) tmp_new_seq = tmp_seq.replace('-', '') if tmp_family_id in exclude_family: tmp_new_h = '%s|excluded' % tmp_new_h f_fa_out.write('>%s\n%s\n' % (tmp_new_h, tmp_seq)) f_out_combined.write('>%s\n%s\n' % (tmp_new_h, tmp_new_seq)) f_fa_out.close() f_out_combined.write
taejoonlab/NuevoTx
MODtree/eggnog/ENOG50-to-MODtree.py
Python
apache-2.0
5,092
# Copyright (c) 2015 by Ecreall under licence AGPL terms # available on http://www.gnu.org/licenses/agpl.html # licence: AGPL # author: Amen Souissi, Sophie Jazwiecki import os import time from zope.interface import Interface, implementer from elasticsearch.client import Elasticsearch from arango import Arango from dace.util import utility from lac import log ELASTICSEARCH_PORT = os.getenv('ELASTICSEARCH_PORT', 'localhost:9200') es = Elasticsearch(ELASTICSEARCH_PORT) ARANGO_HOST, ARANGO_PORT = os.getenv( 'ARANGO_PORT', 'localhost:8529').split(':') ARANGO_ROOT_PASSWORD = os.getenv('ARANGO_ROOT_PASSWORD', '') arango_server = Arango( host=ARANGO_HOST, port=ARANGO_PORT, password=ARANGO_ROOT_PASSWORD) class IResourceManager(Interface): def add_entry(self, key, value, mapping={}, id=None): pass def set_entry(self, key, value, id): pass def get_entry(self, id): pass def get_entries(self, key=None, query={"match_all": {}}, params={}, sort={}, fields=[]): pass def remove_entries(self, key=None, query={}): pass def remove_entry(self, id): pass def normalize_value_types(value): if isinstance(value, dict): return {key: normalize_value_types(v) for key, v in value.items()} if isinstance(value, (list, tuple, set)): return [normalize_value_types(v) for v in value] return value def normalize_value(values): result = {} for key, value in values.items(): if key.endswith('suggest'): result[key] = normalize_value_types(value) elif isinstance(value, dict): for key_value in value: new_key = key + "_" + key_value new_value = value[key_value] if isinstance(new_value, set): new_value = list(new_value) result[new_key] = new_value else: if isinstance(value, set): value = list(value) result[key] = value return normalize_value_types(result) @utility(name='elasticsearch_resource_manager') @implementer(IResourceManager) class ElasticSearchResourceManager(object): def create_index(self): try: try: exists = es.indices.exists('lac') except Exception: # wait elasticsearch start and check again time.sleep(5) exists = es.indices.exists('lac') if not exists: es.indices.create( index='lac', body={'settings': { 'number_of_replicas': 0, 'number_of_shards': 1, }}, ignore=400) # RequestError: TransportError(400, u'IndexAlreadyExistsException[[lac] already exists]') return False except Exception as e: log.warning(e) return True def remove_index(self): try: es.indices.delete(index='lac', ignore=[400, 404]) except Exception as e: # NotFoundError: TransportError(404, u'IndexMissingException[[lac] missing]') log.warning(e) @property def index(self): return es def add_entry(self, key, value, mapping={}, id=None): """Send entry to elasticsearch.""" result = normalize_value(value) if not es.indices.exists_type('lac', key): es.indices.put_mapping( index='lac', doc_type=key, body={ key: { 'properties': mapping } } ) return es.index(index='lac', doc_type=key, body=result, id=id, refresh=True) def set_entry(self, key, value, id): result = normalize_value(value) return es.index(index='lac', doc_type=key, body=result, id=id, refresh=True) def get_entry(self, id): try: results = es.get(index='lac', id=id) except Exception as e: log.warning(e) return None if results: return results['_source'] return None def get_entries(self, key=None, query={"match_all": {}}, params={}, sort={}, fields=[]): try: body = {'query': query, 'sort': sort } if fields: body['fields'] = fields results = es.search(index='lac', doc_type=key, params=params, body=body) except Exception as e: log.warning(e) return None, 0 total = results['hits']['total'] return results['hits']['hits'], total def remove_entries(self, key=None, query={}): pass def remove_entry(self, key, id): try: results = es.delete(index='lac', doc_type=key, id=id, refresh=True) except Exception as e: log.warning(e) default_resourcemanager = 'elasticsearch_resource_manager' def arango_db__check(): try: arango_server.create_database("lac") except Exception: pass arango_db__check() def create_collection(db, id_): try: db.create_collection(id_) except Exception: pass return db.col(id_)
ecreall/lagendacommun
lac/content/resources.py
Python
agpl-3.0
5,692
# -*- coding: utf-8 -*- # Generated by Django 1.9.7 on 2016-06-21 23:11 from __future__ import unicode_literals from django.conf import settings from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): initial = True dependencies = [ migrations.swappable_dependency(settings.AUTH_USER_MODEL), ] operations = [ migrations.CreateModel( name='Post', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('title', models.CharField(max_length=50)), ('image', models.CharField(max_length=500)), ('content', models.CharField(max_length=255)), ('upvotes', models.IntegerField(default=0)), ('downvotes', models.IntegerField(default=0)), ('score', models.IntegerField(default=0)), ('published', models.DateTimeField(auto_now_add=True, verbose_name='time published')), ('user', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to=settings.AUTH_USER_MODEL)), ], ), ]
Mxious/Mxious
posts/migrations/0001_initial.py
Python
gpl-2.0
1,210
#!/usr/bin/env python import unittest class TestGood(unittest.TestCase): def test_zero(self): self.assertEqual(0, 0) if __name__ == '__main__': unittest.main()
davetcoleman/catkin_tools
tests/integrated/resources/pkg_with_test/test_good.py
Python
apache-2.0
180
# # Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # import unittest from airflow.models import Connection from airflow.providers.apache.spark.hooks.spark_jdbc import SparkJDBCHook from airflow.utils import db class TestSparkJDBCHook(unittest.TestCase): _config = { 'cmd_type': 'spark_to_jdbc', 'jdbc_table': 'tableMcTableFace', 'jdbc_driver': 'org.postgresql.Driver', 'metastore_table': 'hiveMcHiveFace', 'jdbc_truncate': False, 'save_mode': 'append', 'save_format': 'parquet', 'batch_size': 100, 'fetch_size': 200, 'num_partitions': 10, 'partition_column': 'columnMcColumnFace', 'lower_bound': '10', 'upper_bound': '20', 'create_table_column_types': 'columnMcColumnFace INTEGER(100), name CHAR(64),' 'comments VARCHAR(1024)' } # this config is invalid because if one of [partitionColumn, lowerBound, upperBound] # is set, all of the options must be enabled (enforced by Spark) _invalid_config = { 'cmd_type': 'spark_to_jdbc', 'jdbc_table': 'tableMcTableFace', 'jdbc_driver': 'org.postgresql.Driver', 'metastore_table': 'hiveMcHiveFace', 'jdbc_truncate': False, 'save_mode': 'append', 'save_format': 'parquet', 'batch_size': 100, 'fetch_size': 200, 'num_partitions': 10, 'partition_column': 'columnMcColumnFace', 'upper_bound': '20', 'create_table_column_types': 'columnMcColumnFace INTEGER(100), name CHAR(64),' 'comments VARCHAR(1024)' } def setUp(self): db.merge_conn( Connection( conn_id='spark-default', conn_type='spark', host='yarn://yarn-master', extra='{"queue": "root.etl", "deploy-mode": "cluster"}') ) db.merge_conn( Connection( conn_id='jdbc-default', conn_type='postgres', host='localhost', schema='default', port=5432, login='user', password='supersecret', extra='{"conn_prefix":"jdbc:postgresql://"}' ) ) def test_resolve_jdbc_connection(self): # Given hook = SparkJDBCHook(jdbc_conn_id='jdbc-default') expected_connection = { 'url': 'localhost:5432', 'schema': 'default', 'conn_prefix': 'jdbc:postgresql://', 'user': 'user', 'password': 'supersecret' } # When connection = hook._resolve_jdbc_connection() # Then self.assertEqual(connection, expected_connection) def test_build_jdbc_arguments(self): # Given hook = SparkJDBCHook(**self._config) # When cmd = hook._build_jdbc_application_arguments(hook._resolve_jdbc_connection()) # Then expected_jdbc_arguments = [ '-cmdType', 'spark_to_jdbc', '-url', 'jdbc:postgresql://localhost:5432/default', '-user', 'user', '-password', 'supersecret', '-metastoreTable', 'hiveMcHiveFace', '-jdbcTable', 'tableMcTableFace', '-jdbcDriver', 'org.postgresql.Driver', '-batchsize', '100', '-fetchsize', '200', '-numPartitions', '10', '-partitionColumn', 'columnMcColumnFace', '-lowerBound', '10', '-upperBound', '20', '-saveMode', 'append', '-saveFormat', 'parquet', '-createTableColumnTypes', 'columnMcColumnFace INTEGER(100), name CHAR(64),' 'comments VARCHAR(1024)' ] self.assertEqual(expected_jdbc_arguments, cmd) def test_build_jdbc_arguments_invalid(self): # Given hook = SparkJDBCHook(**self._invalid_config) # Expect Exception hook._build_jdbc_application_arguments(hook._resolve_jdbc_connection())
wooga/airflow
tests/providers/apache/spark/hooks/test_spark_jdbc.py
Python
apache-2.0
4,769
from __future__ import print_function from itertools import chain import ast import cgi import re import sys from . import codegen from . import runtime PY35 = sys.version_info >= (3, 5, 0) class Base(object): def __init__(self): self.inline_child = None self.children = [] def iter_all_children(self): '''Return an iterator that yields every node which is a child of this one. This includes inline children, and control structure `else` clauses. ''' if self.inline_child: yield self.inline_child for x in self.children: yield x def add_child(self, node, inline=False): if inline: self.inline_child = node else: self.children.append(node) def consume_sibling(self, node): return False def render(self, engine): return chain( self.render_start(engine), self.render_content(engine), self.render_end(engine), ) def render_start(self, engine): return [] def render_content(self, engine): to_chain = [] if self.inline_child: to_chain.append(self.inline_child.render(engine)) for child in self.children: to_chain.append(child.render(engine)) return chain(*to_chain) def render_end(self, engine): return [] def __repr__(self): return '<%s at 0x%x>' % (self.__class__.__name__, id(self)) def print_tree(self, _depth=0, _inline=False): if _inline: print('-> ' + repr(self), end='') else: print('| ' * _depth + repr(self), end='') _depth += int(not _inline) if self.inline_child: self.inline_child.print_tree(_depth, True) else: print() for child in self.children: child.print_tree(_depth) class FilterBase(Base): def __init__(self, *args, **kwargs): super(FilterBase, self).__init__(*args, **kwargs) self._content = [] def add_line(self, indent, content): self._content.append((indent, content)) def iter_dedented(self): indent_to_remove = None for indent, content in self._content: if indent_to_remove is None: yield content if content: indent_to_remove = len(indent) else: yield (indent + content)[indent_to_remove:] class GreedyBase(Base): def __init__(self, *args, **kwargs): super(GreedyBase, self).__init__(*args, **kwargs) self._greedy_root = self def add_child(self, child, *args): super(GreedyBase, self).add_child(child, *args) child._greedy_root = self._greedy_root class Document(Base): def render_start(self, engine): yield engine.start_document() class Content(Base): def __init__(self, content): super(Content, self).__init__() self.content = content def render_start(self, engine): yield engine.indent() yield self.content yield engine.endl yield engine.inc_depth def render_end(self, engine): yield engine.dec_depth def __repr__(self): return '%s(%r)' % (self.__class__.__name__, self.content) class Expression(Content, GreedyBase): def __init__(self, content, filters=''): super(Expression, self).__init__(content) self.filters = filters def render_start(self, engine): if self.content.strip(): yield engine.indent() filters = self._greedy_root.filters yield '${%s%s}' % (self.content.strip(), ('|' + filters if filters else '')) yield engine.endl yield engine.inc_depth # This is countered by the Content.render_end def __repr__(self): return '%s(%r, %r)' % (self.__class__.__name__, self.content, self.filters) class Tag(Base): self_closing_names = set(''' br hr img input link meta '''.strip().split()) def __init__(self, name, id, class_, kwargs_expr=None, object_reference=None, object_reference_prefix=None, self_closing=False, strip_inner=False, strip_outer=False, ): super(Tag, self).__init__() self.name = (name or 'div').lower() self.id = id self.class_ = (class_ or '').replace('.', ' ').strip() self.kwargs_expr = kwargs_expr self.object_reference = object_reference self.object_reference_prefix = object_reference_prefix self.self_closing = self_closing self.strip_inner = strip_inner self.strip_outer = strip_outer def render_start(self, engine): const_attrs = {} if self.id: const_attrs['id'] = self.id if self.class_: const_attrs['class'] = self.class_ kwargs_expr = self.kwargs_expr or '' # Object references are actually handled by the attribute formatting # function. if self.object_reference: kwargs_expr += (', ' if kwargs_expr else '') + '__obj_ref=' + self.object_reference if self.object_reference_prefix: kwargs_expr += ', __obj_ref_pre=' + self.object_reference_prefix # Mako tags should not convert camel case. if self.name.startswith('%'): const_attrs['__adapt_camelcase'] = False if kwargs_expr: # If all of the kwargs are literals, then lets convert them up front. try: root = ast.parse('func(%s)' % kwargs_expr) except SyntaxError: valid = False else: valid = True func = root.body[0].value literal_attrs = {} # Python 3.5 changed how this works, so our logic is a little # wacky here. if PY35: args = [] starargs = [] for x in func.args: if isinstance(x, ast.Starred): starargs.append(x) else: args.append(x) kwargs = [] starkwargs = [] for x in func.keywords: if x.arg is None: starkwargs.append(x.value) else: kwargs.append(x) else: args = func.args starargs = [func.starargs] if func.starargs else [] kwargs = func.keywords starkwargs = [func.kwargs] if func.kwargs else [] if valid: for x in args: try: value = ast.literal_eval(x) except ValueError: valid = False break else: literal_attrs.update(value) if valid: for x in kwargs: try: value = ast.literal_eval(x.value) except ValueError: valid = False break else: literal_attrs[x.arg] = value if valid: for x in starargs: try: value = ast.literal_eval(x) except ValueError: valid = False break else: for map_ in value: literal_attrs.update(map_) if valid: for x in starkwargs: try: value = ast.literal_eval(x) except ValueError: valid = False break else: literal_attrs.update(value) if valid: const_attrs.update(literal_attrs) kwargs_expr = None if not kwargs_expr: attr_str = runtime.attribute_str(const_attrs) elif not const_attrs: attr_str = '<%% __M_writer(__HAML.attribute_str(%s)) %%>' % kwargs_expr else: attr_str = '<%% __M_writer(__HAML.attribute_str(%r, %s)) %%>' % (const_attrs, kwargs_expr) if self.strip_outer: yield engine.lstrip yield engine.indent() if self.self_closing or self.name in self.self_closing_names: yield '<%s%s />' % (self.name, attr_str) if self.strip_outer: yield engine.rstrip else: yield engine.endl else: yield '<%s%s>' % (self.name, attr_str) if self.children: if self.strip_inner or self.inline_child: yield engine.rstrip else: yield engine.endl yield engine.inc_depth def render_content(self, engine): if self.inline_child: return chain( [engine.lstrip, engine.rstrip], super(Tag, self).render_content(engine), [engine.lstrip, engine.rstrip], ) else: return super(Tag, self).render_content(engine) def render_end(self, engine): if self.strip_inner or self.inline_child: yield engine.lstrip if not (self.self_closing or self.name in self.self_closing_names): if self.children: yield engine.dec_depth yield engine.indent() yield '</%s>' % self.name if self.strip_outer: yield engine.rstrip yield engine.endl elif self.strip_outer: yield engine.rstrip def __repr__(self): return '%s(%s)' % (self.__class__.__name__, ', '.join('%s=%r' % (k, getattr(self, k)) for k in ( 'name', 'id', 'class_', 'kwargs_expr', 'strip_inner', 'strip_outer' ) if getattr(self, k)) ) class MixinDef(Tag): def __init__(self, name, argspec): super(MixinDef, self).__init__( '%def', # tag name None, # ID None, # class 'name=%r' % ('%s(%s)' % (name, argspec or '')), # kwargs expr strip_inner=True, ) class MixinCall(Tag): def __init__(self, name, argspec): super(MixinCall, self).__init__( '%call', # tag name None, # ID None, # class 'expr=%r' % ('%s(%s)' % (name, argspec or '')), # kwargs expr ) class HTMLComment(Base): def __init__(self, inline_content, IE_condition=''): super(HTMLComment, self).__init__() self.inline_content = inline_content self.IE_condition = IE_condition def render_start(self, engine): yield engine.indent() yield '<!--' if self.IE_condition: yield self.IE_condition yield '>' if self.inline_content: yield ' ' yield self.inline_content yield ' ' if self.children: yield engine.inc_depth yield engine.endl def render_end(self, engine): if self.children: yield engine.dec_depth yield engine.indent() if self.IE_condition: yield '<![endif]' yield '-->' yield engine.endl def __repr__(self): return '%s()' % self.__class__.__name__ class Control(Base): def __init__(self, type, test): super(Control, self).__init__() self.type = type self.test = test self.elifs = [] self.else_ = None def iter_all_children(self): for x in super(Control, self).iter_all_children(): yield x for x in self.elifs: yield x if self.else_: yield x def consume_sibling(self, node): if not isinstance(node, Control): return False if node.type == 'elif': self.elifs.append(node) return True if node.type == 'else' and self.else_ is None: self.else_ = node return True def print_tree(self, depth, inline=False): super(Control, self).print_tree(depth) for node in self.elifs: node.print_tree(depth) if self.else_ is not None: self.else_.print_tree(depth) def render(self, engine): to_chain = [self.render_start(engine), self.render_content(engine)] for node in self.elifs: to_chain.append(node.render(engine)) if self.else_: to_chain.append(self.else_.render(engine)) to_chain.append(self.render_end(engine)) return chain(*to_chain) def render_start(self, engine): yield engine.line_continuation yield engine.indent(-1) if self.test is not None: yield '%% %s %s: ' % (self.type, self.test) else: yield '%% %s: ' % (self.type) yield engine.no_strip(engine.endl) def render_end(self, engine): if self.type in ('else', 'elif'): return yield engine.line_continuation yield engine.indent(-1) yield '%% end%s' % self.type yield engine.no_strip(engine.endl) def __repr__(self): if self.test is not None: return '%s(type=%r, test=%r)' % ( self.__class__.__name__, self.type, self.test ) else: return '%s(type=%r)' % (self.__class__.__name__, self.type) class Python(FilterBase): def __init__(self, content, module=False): super(Python, self).__init__() if content.strip(): self.add_line('', content) self.module = module def render(self, engine): if self.module: yield '<%! ' else: yield '<% ' yield engine.endl for line in self.iter_dedented(): yield line yield engine.endl yield '%>' yield engine.endl_no_break def __repr__(self): return '%s(%r%s)' % ( self.__class__.__name__, self._content, ', module=True' if self.module else '' ) class Filter(FilterBase): def __init__(self, content, filter): super(Filter, self).__init__() if content and content.strip(): self.add_line('', content) self.filter = filter def _escape_expressions(self, source): parts = re.split(r'(\${.*?})', source) for i in range(0, len(parts), 2): parts[i] = parts[i] and ('<%%text>%s</%%text>' % parts[i]) return ''.join(parts) def render(self, engine): # Hopefully this chain respects proper scope resolution. yield '<%%block filter="locals().get(%r) or globals().get(%r) or getattr(__HAML.filters, %r, UNDEFINED)">' % (self.filter, self.filter, self.filter) yield engine.endl_no_break yield self._escape_expressions(engine.endl.join(self.iter_dedented()).strip()) yield '</%block>' yield engine.endl def __repr__(self): return '%s(%r, %r)' % (self.__class__.__name__, self._content, self.filter) class HAMLComment(Base): def __init__(self, comment): super(HAMLComment, self).__init__() self.comment = comment def __repr__(self): return '%s(%r)' % ( self.__class__.__name__, self.comment ) def render(self, engine): return [] class Doctype(Base): doctypes = { 'xml': { None: """<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">""", "strict": """<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">""", "frameset": """<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Frameset//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-frameset.dtd">""", "5": """<!DOCTYPE html>""", "1.1": """<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1//EN" "http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd">""", "basic": """<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML Basic 1.1//EN" "http://www.w3.org/TR/xhtml-basic/xhtml-basic11.dtd">""", "mobile": """<!DOCTYPE html PUBLIC "-//WAPFORUM//DTD XHTML Mobile 1.2//EN" "http://www.openmobilealliance.org/tech/DTD/xhtml-mobile12.dtd">""", "rdfa": """<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML+RDFa 1.0//EN" "http://www.w3.org/MarkUp/DTD/xhtml-rdfa-1.dtd">""", }, 'html': { None: """<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">""", "strict": """<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01//EN" "http://www.w3.org/TR/html4/strict.dtd">""", "frameset": """<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Frameset//EN" "http://www.w3.org/TR/html4/frameset.dtd">""", "5": """<!DOCTYPE html>""", }} def __init__(self, name=None, charset=None): super(Doctype, self).__init__() self.name = name.lower() if name else None self.charset = charset def __repr__(self): return '%s(%r, %r)' % ( self.__class__.__name__, self.name, self.charset ) def render_start(self, engine): if self.name in ('xml', 'html'): mode = self.name engine.node_data['Doctype.mode'] = mode else: mode = engine.node_data.get('Doctype.mode', 'html') if self.name == 'xml': charset = self.charset or 'utf-8' yield "<?xml version='1.0' encoding='%s' ?>" % charset yield engine.no_strip('\n') return yield self.doctypes[mode][self.name] yield engine.no_strip('\n')
mikeboers/PyHAML
haml/nodes.py
Python
bsd-3-clause
18,376
import functools from pyp2rpm import settings def memoize_by_args(func): """Memoizes return value of a func based on args.""" memory = {} @functools.wraps(func) def memoized(*args): if not args in memory.keys(): value = func(*args) memory[args] = value return memory[args] return memoized def license_from_trove(trove): """Finds out license from list of trove classifiers. Args: trove: list of trove classifiers Returns: Fedora name of the package license or empty string, if no licensing information is found in trove classifiers. """ license = [] for classifier in trove: if classifier is None: continue if 'License' in classifier != -1: stripped = classifier.strip() # if taken from EGG-INFO, begins with Classifier: stripped = stripped[stripped.find('License'):] if stripped in settings.TROVE_LICENSES: license.append(settings.TROVE_LICENSES[stripped]) return ' and '.join(license)
henrysher/spec4pypi
pyp2rpm/utils.py
Python
mit
1,076
# Author: Mr_Orange <[email protected]> # URL: http://code.google.com/p/sickbeard/ # # This file is part of Sick Beard. # # Sick Beard is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # Sick Beard is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with Sick Beard. If not, see <http://www.gnu.org/licenses/>. import sys import os import traceback import urllib, urllib2 import re import sickbeard import generic from sickbeard.common import Quality, Overview from sickbeard.name_parser.parser import NameParser, InvalidNameException from sickbeard import logger from sickbeard import tvcache from sickbeard import helpers from sickbeard.show_name_helpers import allPossibleShowNames, sanitizeSceneName from sickbeard.exceptions import ex from sickbeard import encodingKludge as ek from sickbeard import clients from lib import requests from bs4 import BeautifulSoup from lib.unidecode import unidecode class KATProvider(generic.TorrentProvider): def __init__(self): generic.TorrentProvider.__init__(self, "KickAssTorrents") self.supportsBacklog = True self.cache = KATCache(self) self.url = 'http://katproxy.com/' self.searchurl = self.url+'usearch/%s/?field=seeders&sorder=desc' #order by seed def isEnabled(self): return sickbeard.KAT def imageName(self): return 'kat.png' def getQuality(self, item): quality = Quality.sceneQuality(item[0]) return quality def _reverseQuality(self, quality): quality_string = '' if quality == Quality.SDTV: quality_string = 'HDTV x264' if quality == Quality.SDDVD: quality_string = 'DVDRIP' elif quality == Quality.HDTV: quality_string = '720p HDTV x264' elif quality == Quality.FULLHDTV: quality_string = '1080p HDTV x264' elif quality == Quality.RAWHDTV: quality_string = '1080i HDTV mpeg2' elif quality == Quality.HDWEBDL: quality_string = '720p WEB-DL h264' elif quality == Quality.FULLHDWEBDL: quality_string = '1080p WEB-DL h264' elif quality == Quality.HDBLURAY: quality_string = '720p Bluray x264' elif quality == Quality.FULLHDBLURAY: quality_string = '1080p Bluray x264' return quality_string def _find_season_quality(self,title, torrent_link, ep_number): """ Return the modified title of a Season Torrent with the quality found inspecting torrent file list """ mediaExtensions = ['avi', 'mkv', 'wmv', 'divx', 'vob', 'dvr-ms', 'wtv', 'ts' 'ogv', 'rar', 'zip', 'mp4'] quality = Quality.UNKNOWN fileName = None data = self.getURL(torrent_link) if not data: return None try: soup = BeautifulSoup(data, features=["html5lib", "permissive"]) file_table = soup.find('table', attrs = {'class': 'torrentFileList'}) if not file_table: return None files = [x.text for x in file_table.find_all('td', attrs = {'class' : 'torFileName'} )] videoFiles = filter(lambda x: x.rpartition(".")[2].lower() in mediaExtensions, files) #Filtering SingleEpisode/MultiSeason Torrent if len(videoFiles) < ep_number or len(videoFiles) > float(ep_number * 1.1 ): logger.log(u"Result " + title + " Seem to be a Single Episode or MultiSeason torrent, skipping result...", logger.DEBUG) return None for fileName in videoFiles: quality = Quality.sceneQuality(os.path.basename(fileName)) if quality != Quality.UNKNOWN: break if fileName!=None and quality == Quality.UNKNOWN: quality = Quality.assumeQuality(os.path.basename(fileName)) if quality == Quality.UNKNOWN: logger.log(u"Unable to obtain a Season Quality for " + title, logger.DEBUG) return None try: myParser = NameParser() parse_result = myParser.parse(fileName) except InvalidNameException: return None logger.log(u"Season quality for "+title+" is "+Quality.qualityStrings[quality], logger.DEBUG) if parse_result.series_name and parse_result.season_number: title = parse_result.series_name+' S%02d' % int(parse_result.season_number)+' '+self._reverseQuality(quality) return title except Exception, e: logger.log(u"Failed parsing " + self.name + " Traceback: " + traceback.format_exc(), logger.ERROR) def _get_season_search_strings(self, show, season=None): search_string = {'Episode': []} if not show: return [] self.show = show seasonEp = show.getAllEpisodes(season) wantedEp = [x for x in seasonEp if show.getOverview(x.status) in (Overview.WANTED, Overview.QUAL)] #If Every episode in Season is a wanted Episode then search for Season first if wantedEp == seasonEp and not show.air_by_date: search_string = {'Season': [], 'Episode': []} for show_name in set(allPossibleShowNames(show)): ep_string = show_name +' S%02d' % int(season) + ' -S%02d' % int(season) + 'E' + ' category:tv' #1) ShowName SXX -SXXE search_string['Season'].append(ep_string) ep_string = show_name+' Season '+str(season)+' -Ep*' + ' category:tv' #2) ShowName Season X search_string['Season'].append(ep_string) #Building the search string with the episodes we need for ep_obj in wantedEp: search_string['Episode'] += self._get_episode_search_strings(ep_obj)[0]['Episode'] #If no Episode is needed then return an empty list if not search_string['Episode']: return [] return [search_string] def _get_episode_search_strings(self, ep_obj): search_string = {'Episode': []} if not ep_obj: return [] self.show = ep_obj.show if ep_obj.show.air_by_date: for show_name in set(allPossibleShowNames(ep_obj.show)): ep_string = sanitizeSceneName(show_name) +' '+ str(ep_obj.airdate) search_string['Episode'].append(ep_string) else: for show_name in set(allPossibleShowNames(ep_obj.show)): ep_string = sanitizeSceneName(show_name) +' '+ \ sickbeard.config.naming_ep_type[2] % {'seasonnumber': ep_obj.season, 'episodenumber': ep_obj.episode} +'|'+\ sickbeard.config.naming_ep_type[0] % {'seasonnumber': ep_obj.season, 'episodenumber': ep_obj.episode} +'|'+\ sickbeard.config.naming_ep_type[3] % {'seasonnumber': ep_obj.season, 'episodenumber': ep_obj.episode} + ' category:tv' \ search_string['Episode'].append(ep_string) return [search_string] def _doSearch(self, search_params): results = [] items = {'Season': [], 'Episode': [], 'RSS': []} for mode in search_params.keys(): for search_string in search_params[mode]: if mode != 'RSS': searchURL = self.searchurl %(urllib.quote(unidecode(search_string))) logger.log(u"Search string: " + searchURL, logger.DEBUG) else: searchURL = self.url + 'tv/?field=time_add&sorder=desc' logger.log(u"KAT cache update URL: "+ searchURL, logger.DEBUG) html = self.getURL(searchURL) if not html: continue try: soup = BeautifulSoup(html, features=["html5lib", "permissive"]) torrent_table = soup.find('table', attrs = {'class' : 'data'}) torrent_rows = torrent_table.find_all('tr') if torrent_table else [] if not torrent_rows: # logger.log(u"The Data returned from " + self.name + " do not contains any torrent", logger.ERROR) continue for tr in torrent_rows[1:]: link = self.url + (tr.find('div', {'class': 'torrentname'}).find_all('a')[1])['href'] id = tr.get('id')[-7:] title = (tr.find('div', {'class': 'torrentname'}).find_all('a')[1]).text url = tr.find('a', 'imagnet')['href'] verified = True if tr.find('a', 'iverify') else False trusted = True if tr.find('img', {'alt': 'verified'}) else False seeders = int(tr.find_all('td')[-2].text) leechers = int(tr.find_all('td')[-1].text) if mode != 'RSS' and seeders == 0: continue if sickbeard.KAT_VERIFIED and not verified: logger.log(u"KAT Provider found result "+title+" but that doesn't seem like a verified result so I'm ignoring it",logger.DEBUG) continue if mode == 'Season' and Quality.sceneQuality(title) == Quality.UNKNOWN: ep_number = int(len(search_params['Episode']) / len(set(allPossibleShowNames(self.show)))) title = self._find_season_quality(title, link, ep_number) if not title: continue item = title, url, id, seeders, leechers items[mode].append(item) except Exception, e: logger.log(u"Failed to parsing " + self.name + (" Exceptions: " + str(e) if e else ''), logger.ERROR) #For each search mode sort all the items by seeders items[mode].sort(key=lambda tup: tup[3], reverse=True) results += items[mode] return results def _get_title_and_url(self, item): title, url, id, seeders, leechers = item if url: url = url.replace('&amp;','&') return (title, url) def getURL(self, url, headers=None): try: r = requests.get(url) except (requests.exceptions.ConnectionError, requests.exceptions.HTTPError), e: logger.log(u"Error loading "+self.name+" URL: " + str(sys.exc_info()) + " - " + ex(e), logger.ERROR) return None if r.status_code != 200: logger.log(self.name + u" page requested with url " + url +" returned status code is " + str(r.status_code) + ': ' + clients.http_error_code[r.status_code], logger.WARNING) return None return r.content def downloadResult(self, result): """ Save the result to disk. """ torrent_hash = re.findall('urn:btih:([\w]{32,40})', result.url)[0].upper() if not torrent_hash: logger.log("Unable to extract torrent hash from link: " + ex(result.url), logger.ERROR) return False try: r = requests.get('http://torcache.net/torrent/' + torrent_hash + '.torrent') except Exception, e: logger.log("Unable to connect to Torcache: " + ex(e), logger.ERROR) return False if not r.status_code == 200: return False magnetFileName = ek.ek(os.path.join, sickbeard.TORRENT_DIR, helpers.sanitizeFileName(result.name) + '.' + self.providerType) magnetFileContent = r.content try: fileOut = open(magnetFileName, 'wb') fileOut.write(magnetFileContent) fileOut.close() helpers.chmodAsParent(magnetFileName) except IOError, e: logger.log("Unable to save the file: " + ex(e), logger.ERROR) return False logger.log(u"Saved magnet link to " + magnetFileName + " ", logger.MESSAGE) return True class KATCache(tvcache.TVCache): def __init__(self, provider): tvcache.TVCache.__init__(self, provider) # only poll ThePirateBay every 10 minutes max self.minTime = 20 def updateCache(self): if not self.shouldUpdate(): return search_params = {'RSS': ['rss']} rss_results = self.provider._doSearch(search_params) if rss_results: self.setLastUpdate() else: return [] logger.log(u"Clearing " + self.provider.name + " cache and updating with new information") self._clearCache() for result in rss_results: item = (result[0], result[1]) self._parseItem(item) def _parseItem(self, item): (title, url) = item if not title or not url: return logger.log(u"Adding item to cache: "+title, logger.DEBUG) self._addCacheEntry(title, url) provider = KATProvider()
fernandog/Sick-Beard
sickbeard/providers/kat.py
Python
gpl-3.0
14,136
from django_filters.filters import MultipleChoiceFilter, ModelMultipleChoiceFilter from django_filters.filterset import FilterSet from account.models import School, Profile from tag.models import TreeTag class SchoolGenericFilterSet(FilterSet): id = MultipleChoiceFilter(name='id', # here extra parameter will be passed to field_class choices=School.objects.values_list('id', 'name')) class Meta: model = School class ProfileGenericFilterSet(FilterSet): id = MultipleChoiceFilter(name='id', choices=Profile.objects.values_list('id', 'phone_num')) tags = ModelMultipleChoiceFilter(name='tags', queryset=TreeTag.objects.all()) class Meta: model = Profile
ace-han/onedegree
admin/account/api/v1/filtersets.py
Python
bsd-3-clause
822
# -*- coding: utf-8 -*- """Docx renderer module.""" import sys import bleach if not sys.version_info >= (3, 0): from pydocx.parsers import Docx2Html from mfr import RenderResult def render_docx(fp, *args, **kwargs): """Generate an html representation of the docx file using PyDocx :param fp: File pointer :return: RenderResult object containing the content html """ bleach.ALLOWED_TAGS.append(u'h1') bleach.ALLOWED_TAGS.append(u'span') content = Docx2Html(fp).parsed_without_head content = bleach.clean(content, styles=None, strip=True) return RenderResult(content=content.encode('ascii', 'ignore'), assets={})
chrisseto/modular-file-renderer
mfr/ext/docx/render.py
Python
apache-2.0
699
#!/usr/bin/env python # Copyright (c) 2013 Google Inc. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. """ Make sure LTCG is working properly. """ import TestGyp import sys if sys.platform == 'win32': test = TestGyp.TestGyp(formats=['msvs', 'ninja']) CHDIR = 'linker-flags' test.run_gyp('ltcg.gyp', chdir=CHDIR) # Here we expect LTCG is able to inline functions beyond compile unit. # Note: This marker is embedded in 'inline_test_main.cc' INLINE_MARKER = '==== inlined ====' # test 'LinkTimeCodeGenerationOptionDefault' test.build('ltcg.gyp', 'test_ltcg_off', chdir=CHDIR) test.run_built_executable('test_ltcg_off', chdir=CHDIR) test.must_not_contain_any_line(test.stdout(), [INLINE_MARKER]) # test 'LinkTimeCodeGenerationOptionUse' test.build('ltcg.gyp', 'test_ltcg_on', chdir=CHDIR) test.must_contain_any_line(test.stdout(), ['Generating code']) test.run_built_executable('test_ltcg_on', chdir=CHDIR) test.must_contain_any_line(test.stdout(), [INLINE_MARKER]) test.pass_test()
Jet-Streaming/gyp
test/win/gyptest-link-ltcg.py
Python
bsd-3-clause
1,133
#!/usr/bin/env python # coding: utf-8 # Copyright (c) 2012, Machinalis S.R.L. # This file is part of quepy and is distributed under the Modified BSD License. # You should have received a copy of license in the LICENSE file. # # Authors: Rafael Carrascosa <[email protected]> # Gonzalo Garcia Berrotaran <[email protected]> """ This file implements the ``Expression`` class. ``Expression`` is the base class for all the semantic representations in quepy. It's meant to carry all the information necessary to build a database query in an abstract form. By desing it's aimed specifically to represent a SPARQL query, but it should be able to represent queries in other database languages too. A (simple) SPARQL query can be thought as a subgraph that has to match into a larger graph (the database). Each node of the subgraph is a variable and every edge a relation. So in order to represent a query, ``Expression`` implements a this subgraph using adjacency lists. Also, ``Expression`` instances are meant to be combined with each other somehow to make complex queries out of simple ones (this is one main objectives of quepy). To do that, every ``Expression`` has a special node called the ``head``, which is the target node (variable) of the represented query. All operations over ``Expression`` instances work on the ``head`` node, leaving the rest of the nodes intact. So ``Expression`` graphs are not built by explicitly adding nodes and edges like any other normal graph. Instead they are built by a combination of the following basic operations: - ``__init__``: When a ``Expression`` is instantiated a single solitary node is created in the graph. - ``decapitate``: Creates a blank node and makes it the new ``head`` of the ``Expression``. Then it adds an edge (a relation) linking this new head to the old one. So in a single operation a node and an edge are added. Used to represent stuff like ``?x rdf:type ?y``. - ``add_data``: Adds a relation into some constant data from the ``head`` node of the ``Expression``. Used to represent stuff like ``?x rdf:label "John Von Neumann"``. - ``merge``: Given two ``Expressions``, it joins their graphs preserving every node and every edge intact except for their ``head`` nodes. The ``head`` nodes are merged into a single node that is the new ``head`` and shares all the edges of the previous heads. This is used to combine two graphs like this: :: A = ?x rdf:type ?y B = ?x rdf:label "John Von Neumann" Into a new one: :: A + B = ?x rdf:type ?y; ?x rdf:label "John Von Neumann" You might be saying "Why?! oh gosh why you did it like this?!". The reasons are: - It allows other parts of the code to build queries in a super intuive language, like ``IsPerson() + HasKeyword("Russell")``. Go and see the DBpedia example. - You can only build connected graphs (ie, no useless variables in query). - You cannot have variable name clashes. - You cannot build cycles into the graph (could be a con to some, a plus to other(it's a plus to me)) - There are just 3 really basic operations and their semantics are defined consisely without special cases (if you care for that kind of stuff (I do)). """ from collections import defaultdict from copy import deepcopy def isnode(x): return isinstance(x, int) class Expression(object): def __init__(self): """ Creates a new graph with a single solitary blank node. """ self.nodes = [] self.head = self._add_node() def _add_node(self): """ Adds a blank node to the graph and returns it's index (a unique identifier). """ i = len(self.nodes) self.nodes.append([]) return i def get_head(self): """ Returns the index (the unique identifier) of the head node. """ return self.head def merge(self, other): """ Given other Expression, it joins their graphs preserving every node and every edge intact except for the ``head`` nodes. The ``head`` nodes are merged into a single node that is the new ``head`` and shares all the edges of the previous heads. """ translation = defaultdict(self._add_node) translation[other.head] = self.head for node in other.iter_nodes(): for relation, dest in other.iter_edges(node): xs = self.nodes[translation[node]] if isnode(dest): dest = translation[dest] xs.append((relation, dest)) def decapitate(self, relation, reverse=False): """ Creates a new blank node and makes it the ``head`` of the Expression. Then it adds an edge (a ``relation``) linking the the new head to the old one. So in a single operation a node and an edge are added. If ``reverse`` is ``True`` then the ``relation`` links the old head to the new head instead of the opposite (some relations are not commutative). """ oldhead = self.head self.head = self._add_node() if reverse: self.nodes[oldhead].append((relation, self.head)) else: self.nodes[self.head].append((relation, oldhead)) def add_data(self, relation, value): """ Adds a ``relation`` to some constant ``value`` to the ``head`` of the Expression. ``value`` is recommended be of type: - ``unicode`` - ``str`` and can be decoded using the default encoding (settings.py) - A custom class that implements a ``__unicode__`` method. - It can *NEVER* be an ``int``. You should not use this to relate nodes in the graph, only to add data fields to a node. To relate nodes in a graph use a combination of merge and decapitate. """ assert not isnode(value) self.nodes[self.head].append((relation, value)) def iter_nodes(self): """ Iterates the indexes (the unique identifiers) of the Expression nodes. """ return xrange(len(self.nodes)) def iter_edges(self, node): """ Iterates over the pairs: ``(relation, index)`` which are the neighbors of ``node`` in the expression graph, where: - ``node`` is the index of the node (the unique identifier). - ``relation`` is the label of the edge between the nodes - ``index`` is the index of the neighbor (the unique identifier). """ return iter(self.nodes[node]) def __add__(self, other): """ Merges ``self`` and ``other`` in a new Expression instance. Ie, ``self`` and ``other`` are not modified. """ new = deepcopy(self) new.merge(other) return new def __iadd__(self, other): """ Merges ``self`` and ``other`` into ``self`` ``other`` is not modified but the original data in ``self`` is lost. """ self.merge(other) return self def __len__(self): """ Amount of nodes in the graph. """ return len(self.nodes) def make_canonical_expression(e): i = 0 q = [e.get_head()] seen = set() while i != len(q): node = q[i] i += 1 assert node not in seen, "Nouuu, expression is cyclic!" for relation, child in e.iter_edges(node): if isnode(child): q.append(child) q.reverse() canon = {} for node in q: childs = [] for label, child in e.iter_edges(node): if isnode(child): child = canon[child] childs.append((label, child)) childs.sort() canon[node] = tuple(childs) return canon[e.get_head()] if __name__ == "__main__": from AIML.CAML.semiotics.quepy.quepy.printout import expression_to_dot, expression_to_sparql def HasKeyword(x): e = Expression() e.add_data("Keyword", x) return e def HasTopic(e, reverse=False): e.decapitate("HasTopic", reverse) return e def WasBornIn(e, reverse=False): e.decapitate("WasBornIn", reverse) return e poet = HasKeyword("poet") + HasKeyword("famous") drama = HasKeyword("drama") germany = HasKeyword("germany") E = poet + HasTopic(drama) + WasBornIn(germany) print expression_to_dot(E) print expression_to_sparql(E)[1] from pprint import pprint pprint(make_canonical_expression(E))
mpetyx/pychatbot
AIML/CAML/semiotics/quepy/quepy/expression.py
Python
apache-2.0
8,937
#!/usr/bin/python2.4 # # # Copyright 2017 Google Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # """This Script will prompt the user if portable server is running.""" import os import sys import urllib import portable_config import Tkinter import tkMessageBox def IsServerRunning(port): """Returns whether server is already running.""" try: fp = urllib.urlopen('http://localhost:%s/ping'% port) fp.close() # sOk, if there isn't a server running. except: return False return True def main(): """Display Error Message, if the server is running.""" port = portable_config.PortableConfig().Port() root = Tkinter.Tk() root.title('Uninstall portable server') root.withdraw() uninstaller_flag = os.getenv('GEE_PORTABLE_SILENT_UNINSTALLER_DELETE_DATA') unistall_msg = ('Portable Server is Running. \n' 'Please Stop the server for Uninstallation.') if IsServerRunning(port): if uninstaller_flag is None: tkMessageBox.showerror('Uninstallation Failed!', '%s'% unistall_msg) else: print 'Uninstallation Failed!\n%s '% unistall_msg sys.exit(1) if __name__ == '__main__': main()
iparanza/earthenterprise
earth_enterprise/legacy_installer/Scripts/portable/windows-installer/check_server_running.py
Python
apache-2.0
1,661
# This file is part of Indico. # Copyright (C) 2002 - 2022 CERN # # Indico is free software; you can redistribute it and/or # modify it under the terms of the MIT License; see the # LICENSE file for more details. from indico.core import signals from indico.core.db import db from indico.modules.events.agreements.models.agreements import Agreement from indico.modules.events.agreements.notifications import notify_agreement_new from indico.util.signals import named_objects_from_signal def get_agreement_definitions(): return named_objects_from_signal(signals.agreements.get_definitions.send(), plugin_attr='plugin') def send_new_agreements(event, name, people, email_body, cc_addresses, from_address): """Create and send agreements for a list of people on a given event. :param event: The `Event` associated with the agreement :param name: The agreement type matcing a :class:`AgreementDefinition` name :param people: The list of people for whom agreements will be created :param email_body: The body of the email :param cc_addresses: Email addresses to send CCs to :param from_address: Email address of the sender """ agreements = [] for person in people.values(): agreement = Agreement.create_from_data(event=event, type_=name, person=person) db.session.add(agreement) agreements.append(agreement) db.session.flush() for agreement in agreements: notify_agreement_new(agreement, email_body, cc_addresses, from_address) return agreements
indico/indico
indico/modules/events/agreements/util.py
Python
mit
1,533
from django.core.urlresolvers import reverse from testbase.unit import UnitTestCase class TestAssertContextValueEqual(UnitTestCase): def test_raisesNoErrorIfContextContainsExpectedValue(self): response = self.get('home') self.assertContextValueEqual(response, 'context_var', 'expected') def test_raisesAssertionErrorIfValueIsIncorrect(self): response = self.get('home') self.assertRaises(AssertionError, self.assertContextValueEqual, response, 'context_var', self.randStr()) def test_raisesAssertionErrorIfContextValueNotPresent(self): response = self.get('home') self.assertRaises(AssertionError, self.assertContextValueEqual, response, self.randStr(), self.randStr()) def test_lastContextConsidersContextFromLastResponse(self): self.get('home') self.assertLastContextValueEqual('context_var', 'expected')
tctimmeh/django-testing-base
testsite/testapp/tests/unit/testAssertContextValueEqual.py
Python
mit
892
from __future__ import (absolute_import, unicode_literals, division, print_function) import sys import collections import numbers from six import string_types import warnings import numpy as np # If numba is installed, import jit. Otherwise, define an empty decorator with # the same name. HAS_NUMBA = False try: from numba import jit HAS_NUMBA = True except ImportError: warnings.warn("Numba not installed. Faking it") class jit(object): def __init__(self, *args, **kwargs): pass def __call__(self, func): def wrapped_f(*args, **kwargs): return func(*args, **kwargs) return wrapped_f def _root_squared_mean(array): return np.sqrt(np.sum(array ** 2)) / len(array) def simon(message, **kwargs): """The Statistical Interpretation MONitor. A warning system designed to always remind the user that Simon is watching him/her. Parameters ---------- message : string The message that is thrown kwargs : dict The rest of the arguments that are passed to warnings.warn """ warnings.warn("SIMON says: {0}".format(message), **kwargs) def rebin_data(x, y, dx_new, yerr=None, method='sum', dx=None): """Rebin some data to an arbitrary new data resolution. Either sum the data points in the new bins or average them. Parameters ---------- x: iterable The dependent variable with some resolution dx_old = x[1]-x[0] y: iterable The independent variable to be binned dx_new: float The new resolution of the dependent variable x Other parameters ---------------- yerr: iterable, optional The uncertainties of y, to be propagated during binning. method: {"sum" | "average" | "mean"}, optional, default "sum" The method to be used in binning. Either sum the samples y in each new bin of x, or take the arithmetic mean. dx: float The old resolution (otherwise, calculated from median diff) Returns ------- xbin: numpy.ndarray The midpoints of the new bins in x ybin: numpy.ndarray The binned quantity y ybin_err: numpy.ndarray The uncertainties of the binned values of y. step_size: float The size of the binning step """ y = np.asarray(y) yerr = np.asarray(assign_value_if_none(yerr, np.zeros_like(y))) dx_old = assign_value_if_none(dx, np.median(np.diff(x))) if dx_new < dx_old: raise ValueError("New frequency resolution must be larger than " "old frequency resolution.") step_size = dx_new / dx_old output = [] outputerr = [] for i in np.arange(0, y.shape[0], step_size): total = 0 totalerr = 0 int_i = int(i) prev_frac = int_i + 1 - i prev_bin = int_i total += prev_frac * y[prev_bin] totalerr += prev_frac * (yerr[prev_bin] ** 2) if i + step_size < len(x): # Fractional part of next bin: next_frac = i + step_size - int(i + step_size) next_bin = int(i + step_size) total += next_frac * y[next_bin] totalerr += next_frac * (yerr[next_bin] ** 2) total += sum(y[int(i + 1):int(i + step_size)]) totalerr += sum(yerr[int(i + 1):int(step_size)] ** 2) output.append(total) outputerr.append(np.sqrt(totalerr)) output = np.asarray(output) outputerr = np.asarray(outputerr) if method in ['mean', 'avg', 'average', 'arithmetic mean']: ybin = output / np.float(step_size) ybinerr = outputerr / np.sqrt(np.float(step_size)) elif method == "sum": ybin = output ybinerr = outputerr else: raise ValueError("Method for summing or averaging not recognized. " "Please enter either 'sum' or 'mean'.") tseg = x[-1] - x[0] + dx_old if (tseg / dx_new % 1) > 0: ybin = ybin[:-1] ybinerr = ybinerr[:-1] new_x0 = (x[0] - (0.5 * dx_old)) + (0.5 * dx_new) xbin = np.arange(ybin.shape[0]) * dx_new + new_x0 return xbin, ybin, ybinerr, step_size def rebin_data_log(x, y, f, y_err=None, dx=None): """Logarithmic rebin of the periodogram. The new frequency depends on the previous frequency modified by a factor f: dnu_j = dnu_{j-1}*(1+f) Parameters ---------- x: iterable The dependent variable with some resolution dx_old = x[1]-x[0] y: iterable The independent variable to be binned f: float The factor of increase of each bin wrt the previous one. Other Parameters ---------------- yerr: iterable, optional The uncertainties of y, to be propagated during binning. method: {"sum" | "average" | "mean"}, optional, default "sum" The method to be used in binning. Either sum the samples y in each new bin of x, or take the arithmetic mean. dx: float, optional The binning step of the initial xs Returns ------- xbin: numpy.ndarray The midpoints of the new bins in x ybin: numpy.ndarray The binned quantity y ybin_err: numpy.ndarray The uncertainties of the binned values of y. step_size: float The size of the binning step """ import scipy dx_init = assign_value_if_none(dx, np.median(np.diff(x))) y = np.asarray(y) y_err = np.asarray(assign_value_if_none(y_err, np.zeros_like(y))) minx = x[1] * 0.5 # frequency to start from maxx = x[-1] # maximum frequency to end binx = [minx, minx + dx_init] # first dx = x[1] # the frequency resolution of the first bin # until we reach the maximum frequency, increase the width of each # frequency bin by f while binx[-1] <= maxx: binx.append(binx[-1] + dx * (1.0 + f)) dx = binx[-1] - binx[-2] # compute the mean of the ys that fall into each new frequency bin. # we cast to np.double due to scipy's bad handling of longdoubles biny, bin_edges, binno = scipy.stats.binned_statistic( x.astype(np.double), y.astype(np.double), statistic="mean", bins=binx) biny_err, bin_edges, binno = scipy.stats.binned_statistic( x.astype(np.double), y_err.astype(np.double), statistic=_root_squared_mean, bins=binx) # compute the number of powers in each frequency bin nsamples = np.array([len(binno[np.where(binno == i)[0]]) for i in range(np.max(binno))]) return binx, biny, biny_err, nsamples def assign_value_if_none(value, default): return default if value is None else value def look_for_array_in_array(array1, array2): return next((i for i in array1 if i in array2), None) def is_string(s): # pragma : no cover """Portable function to answer this question.""" PY2 = sys.version_info[0] == 2 if PY2: return isinstance(s, basestring) # NOQA else: return isinstance(s, str) # NOQA def is_iterable(stuff): """Test if stuff is an iterable.""" return isinstance(stuff, collections.Iterable) def order_list_of_arrays(data, order): if hasattr(data, 'items'): data = dict([(key, value[order]) for key, value in data.items()]) elif is_iterable(data): data = [i[order] for i in data] else: data = None return data def optimal_bin_time(fftlen, tbin): """Vary slightly the bin time to have a power of two number of bins. Given an FFT length and a proposed bin time, return a bin time slightly shorter than the original, that will produce a power-of-two number of FFT bins. """ return fftlen / (2 ** np.ceil(np.log2(fftlen / tbin))) def contiguous_regions(condition): """Find contiguous True regions of the boolean array "condition". Return a 2D array where the first column is the start index of the region and the second column is the end index. Parameters ---------- condition : boolean array Returns ------- idx : [[i0_0, i0_1], [i1_0, i1_1], ...] A list of integer couples, with the start and end of each True blocks in the original array Notes ----- From : http://stackoverflow.com/questions/4494404/find-large-number-of-consecutive-values- fulfilling-condition-in-a-numpy-array """ # NOQA # Find the indices of changes in "condition" diff = np.logical_xor(condition[1:], condition[:-1]) idx, = diff.nonzero() # We need to start things after the change in "condition". Therefore, # we'll shift the index by 1 to the right. idx += 1 if condition[0]: # If the start of condition is True prepend a 0 idx = np.r_[0, idx] if condition[-1]: # If the end of condition is True, append the length of the array idx = np.r_[idx, condition.size] # Reshape the result into two columns idx.shape = (-1, 2) return idx def is_int(obj): return isinstance(obj, (numbers.Integral, np.integer)) def get_random_state(random_state=None): if not random_state: random_state = np.random.mtrand._rand else: if is_int(random_state): random_state = np.random.RandomState(random_state) elif not isinstance(random_state, np.random.RandomState): raise ValueError("{value} can't be used to generate a numpy.random.RandomState".format( value=random_state )) return random_state def baseline_als(y, lam, p, niter=10): """Baseline Correction with Asymmetric Least Squares Smoothing. Modifications to the routine from Eilers & Boelens 2005 https://www.researchgate.net/publication/228961729_Technical_Report_Baseline_Correction_with_Asymmetric_Least_Squares_Smoothing The Python translation is partly from http://stackoverflow.com/questions/29156532/python-baseline-correction-library Parameters ---------- y : array of floats the "light curve". It assumes equal spacing. lam : float "smoothness" parameter. Larger values make the baseline stiffer Typically 1e2 < lam < 1e9 p : float "asymmetry" parameter. Smaller values make the baseline more "horizontal". Typically 0.001 < p < 0.1, but not necessary. """ from scipy import sparse L = len(y) D = sparse.csc_matrix(np.diff(np.eye(L), 2)) w = np.ones(L) for i in range(niter): W = sparse.spdiags(w, 0, L, L) Z = W + lam * D.dot(D.transpose()) z = sparse.linalg.spsolve(Z, w * y) w = p * (y > z) + (1 - p) * (y < z) return z def excess_variance(lc, normalization='fvar'): """Calculate the excess variance. Vaughan+03 Parameters ---------- lc : a :class:`Lightcurve` object normalization : str if 'fvar', return normalized square-root excess variance. If 'none', return the unnormalized variance Returns ------- var_xs : float var_xs_err : float """ lc_mean_var = np.mean(lc.counts_err ** 2) lc_actual_var = np.var(lc.counts) var_xs = lc_actual_var - lc_mean_var mean_lc = np.mean(lc.counts) mean_ctvar = mean_lc ** 2 fvar = np.sqrt(var_xs / mean_ctvar) N = len(lc.counts) var_xs_err_A = np.sqrt(2 / N) * lc_mean_var / mean_lc ** 2 var_xs_err_B = np.sqrt(mean_lc ** 2 / N) * 2 * fvar / mean_lc var_xs_err = np.sqrt(var_xs_err_A ** 2 + var_xs_err_B ** 2) fvar_err = var_xs_err / (2 * fvar) if normalization == 'fvar': return fvar, fvar_err elif normalization == 'none' or normalization is None: return var_xs, var_xs_err def create_window(N, window_type='uniform'): """ A method to create window functions commonly used in signal processing. Windows supported are: Hamming, Hanning, uniform(rectangular window), triangular window, blackmann window among others. Parameters ---------- N : int Total number of data points in window. If negative, abs is taken. window_type : {'uniform', 'parzen', 'hamming', 'hanning', 'traingular', 'welch', 'blackmann', 'flat-top'}, optional, default 'uniform' Type of window to create. Returns ------- window: numpy.ndarray Window function of length N. """ if not isinstance(N, int): raise TypeError('N (window length) must be an integer') WINDOWS = ['uniform', 'parzen', 'hamming', 'hanning', 'triangular', 'welch', 'blackmann', 'flat-top'] if not isinstance(window_type, string_types): raise TypeError('type of window must be specified as string!') window_type = window_type.lower() if window_type not in WINDOWS: raise ValueError("Wrong window type specified or window function is not available") # Return empty array as window if N = 0 if N == 0: return np.array([]) window = None N = abs(N) # Window samples index n = np.arange(N) # Constants N_minus_1 = N - 1 N_by_2 = np.int((np.floor((N_minus_1) / 2))) # Create Windows if window_type == 'uniform': window = np.ones(N) if window_type == 'parzen': N_parzen = np.int(np.ceil((N + 1) / 2)) N2_plus_1 = np.int(np.floor((N_parzen / 2))) + 1 window = np.zeros(N_parzen) windlag0 = np.arange(0, N2_plus_1) / (N_parzen - 1) windlag1 = 1 - np.arange(N2_plus_1, N_parzen) / (N_parzen - 1) window[:N2_plus_1] = 1 - (1 - windlag0) * windlag0 * windlag0 * 6 window[N2_plus_1:] = windlag1 * windlag1 * windlag1 * 2 lagindex = np.arange(N_parzen - 1, 0, -1) window = np.concatenate((window[lagindex], window)) window = window[:N] if window_type == 'hamming': window = 0.54 - 0.46 * np.cos((2 * np.pi * n) / N_minus_1) if window_type == 'hanning': window = 0.5 * (1 - np.cos(2 * np.pi * n / N_minus_1)) if window_type == 'triangular': window = 1 - np.abs((n - (N_by_2)) / N) if window_type == 'welch': N_minus_1_by_2 = N_minus_1 / 2 window = 1 - np.square((n - N_minus_1_by_2) / N_minus_1_by_2) if window_type == 'blackmann': a0 = 0.42659 a1 = 0.49656 a2 = 0.076849 window = a0 - a1 * np.cos((2 * np.pi * n) / N_minus_1) + a2 * np.cos((4 * np.pi * n) / N_minus_1) if window_type == 'flat-top': a0 = 1 a1 = 1.93 a2 = 1.29 a3 = 0.388 a4 = 0.028 window = a0 - a1 * np.cos((2 * np.pi * n) / N_minus_1) + \ a2 * np.cos((4 * np.pi * n) / N_minus_1) - \ a3 * np.cos((6 * np.pi * n) / N_minus_1) + \ a4 * np.cos((8 * np.pi * n) / N_minus_1) return window
pabell/stingray
stingray/utils.py
Python
mit
14,885
from pylab import * def func(tt): if tt=='aa': print " ----> hell!" raise SystemExit else: return 999. print func('uu') print func('aa')
jimsrc/seatos
mcs/src/tmp/te.py
Python
mit
171
#!/usr/bin/python import Tkinter from Tkinter import * from PIL import ImageTk, Image import os import time root = Tk() frame = Frame(root) root.wm_title("Switch to Windows") frame.pack() bottomframe = Frame(root) bottomframe.pack( side = BOTTOM ) def shutdownPress(): text.config(text = "Shutting down...") os.system("sudo /mnt/sd/Downloads/Software/Portable/BootOpts/bootWindows.sh") os.system("systemctl poweroff") root.update() def restartPress(): text.config(text = "Restarting...") os.system("sudo /mnt/sd/Downloads/Software/Portable/BootOpts/bootWindows.sh") os.system("systemctl reboot") root.update() def cancelPress(): quit() root.update() text = Label(frame, text="Do you want to switch to Windows?") text.pack( side = TOP) redbutton = Button(frame, text="Restart", command=restartPress) redbutton.pack( side = LEFT) greenbutton = Button(frame, text="Shutdown", command=shutdownPress) greenbutton.pack( side = LEFT ) bluebutton = Button(frame, text="Cancel", command=cancelPress) bluebutton.pack( side = LEFT ) root.mainloop()
billwi/Ubuntu-setup
Configs/SwitchToWindows/windowsStartup.py
Python
mpl-2.0
1,090
import warnings from asl_data import SinglesData def recognize(models: dict, test_set: SinglesData): """ Recognize test word sequences from word models set :param models: dict of trained models {'SOMEWORD': GaussianHMM model object, 'SOMEOTHERWORD': GaussianHMM model object, ...} :param test_set: SinglesData object :return: (list, list) as probabilities, guesses both lists are ordered by the test set word_id probabilities is a list of dictionaries where each key a word and value is Log Liklihood [{SOMEWORD': LogLvalue, 'SOMEOTHERWORD' LogLvalue, ... }, {SOMEWORD': LogLvalue, 'SOMEOTHERWORD' LogLvalue, ... }, ] guesses is a list of the best guess words ordered by the test set word_id ['WORDGUESS0', 'WORDGUESS1', 'WORDGUESS2',...] """ warnings.filterwarnings("ignore", category=DeprecationWarning) probabilities = [] guesses = [] # TODO implement the recognizer # return probabilities, guesses for word_id in range(0, len(test_set.get_all_Xlengths())): current_sequence, current_length = test_set.get_item_Xlengths(word_id) probability_dict = {} for word, model in models.items(): try: probability_dict[word] = model.score(current_sequence, current_length) except: probability_dict[word] = float('-inf') continue probabilities.append(probability_dict) best_score = max(probability_dict, key = probability_dict.get) guesses.append(best_score) return probabilities, guesses
loredanacirstea/ai-algos
hidden_markov_models/my_recognizer.py
Python
gpl-3.0
1,646
""" Testing for the tree module (sklearn.tree). """ import numpy as np from numpy.testing import assert_array_equal from numpy.testing import assert_array_almost_equal from numpy.testing import assert_almost_equal from numpy.testing import assert_equal from nose.tools import assert_raises from sklearn import tree from sklearn import datasets from sklearn.externals.six import StringIO from sklearn.preprocessing import balance_weights # toy sample X = [[-2, -1], [-1, -1], [-1, -2], [1, 1], [1, 2], [2, 1]] y = [-1, -1, -1, 1, 1, 1] T = [[-1, -1], [2, 2], [3, 2]] true_result = [-1, 1, 1] # also load the iris dataset # and randomly permute it iris = datasets.load_iris() rng = np.random.RandomState(1) perm = rng.permutation(iris.target.size) iris.data = iris.data[perm] iris.target = iris.target[perm] # also load the boston dataset # and randomly permute it boston = datasets.load_boston() perm = rng.permutation(boston.target.size) boston.data = boston.data[perm] boston.target = boston.target[perm] def test_classification_toy(): """Check classification on a toy dataset.""" # Decision trees clf = tree.DecisionTreeClassifier() clf.fit(X, y) assert_array_equal(clf.predict(T), true_result) clf = tree.DecisionTreeClassifier(max_features=1, random_state=1) clf.fit(X, y) assert_array_equal(clf.predict(T), true_result) # Extra-trees clf = tree.ExtraTreeClassifier() clf.fit(X, y) assert_array_equal(clf.predict(T), true_result) clf = tree.ExtraTreeClassifier(max_features=1, random_state=1) clf.fit(X, y) assert_array_equal(clf.predict(T), true_result) def test_weighted_classification_toy(): """Check classification on a weighted toy dataset.""" clf = tree.DecisionTreeClassifier() clf.fit(X, y, sample_weight=np.ones(len(X))) assert_array_equal(clf.predict(T), true_result) clf.fit(X, y, sample_weight=np.ones(len(X)) * 0.5) assert_array_equal(clf.predict(T), true_result) def test_regression_toy(): """Check regression on a toy dataset.""" # Decision trees clf = tree.DecisionTreeRegressor() clf.fit(X, y) assert_almost_equal(clf.predict(T), true_result) clf = tree.DecisionTreeRegressor(max_features=1, random_state=1) clf.fit(X, y) assert_almost_equal(clf.predict(T), true_result) # Extra-trees clf = tree.ExtraTreeRegressor() clf.fit(X, y) assert_almost_equal(clf.predict(T), true_result) clf = tree.ExtraTreeRegressor(max_features=1, random_state=1) clf.fit(X, y) assert_almost_equal(clf.predict(T), true_result) def test_xor(): """Check on a XOR problem""" y = np.zeros((10, 10)) y[:5, :5] = 1 y[5:, 5:] = 1 gridx, gridy = np.indices(y.shape) X = np.vstack([gridx.ravel(), gridy.ravel()]).T y = y.ravel() clf = tree.DecisionTreeClassifier() clf.fit(X, y) assert_equal(clf.score(X, y), 1.0) clf = tree.DecisionTreeClassifier(max_features=1) clf.fit(X, y) assert_equal(clf.score(X, y), 1.0) clf = tree.ExtraTreeClassifier() clf.fit(X, y) assert_equal(clf.score(X, y), 1.0) clf = tree.ExtraTreeClassifier(max_features=1) clf.fit(X, y) assert_equal(clf.score(X, y), 1.0) def test_graphviz_toy(): """Check correctness of graphviz output on a toy dataset.""" clf = tree.DecisionTreeClassifier(max_depth=3, min_samples_split=1) clf.fit(X, y) # test export code out = StringIO() tree.export_graphviz(clf, out_file=out) contents1 = out.getvalue() tree_toy = StringIO( "digraph Tree {\n" "0 [label=\"X[0] <= 0.0000\\nerror = 0.5" "\\nsamples = 6\\nvalue = [ 3. 3.]\", shape=\"box\"] ;\n" "1 [label=\"error = 0.0000\\nsamples = 3\\n" "value = [ 3. 0.]\", shape=\"box\"] ;\n" "0 -> 1 ;\n" "2 [label=\"error = 0.0000\\nsamples = 3\\n" "value = [ 0. 3.]\", shape=\"box\"] ;\n" "0 -> 2 ;\n" "}") contents2 = tree_toy.getvalue() assert contents1 == contents2, \ "graphviz output test failed\n: %s != %s" % (contents1, contents2) # test with feature_names out = StringIO() out = tree.export_graphviz(clf, out_file=out, feature_names=["feature1", ""]) contents1 = out.getvalue() tree_toy = StringIO( "digraph Tree {\n" "0 [label=\"feature1 <= 0.0000\\nerror = 0.5" "\\nsamples = 6\\nvalue = [ 3. 3.]\", shape=\"box\"] ;\n" "1 [label=\"error = 0.0000\\nsamples = 3\\n" "value = [ 3. 0.]\", shape=\"box\"] ;\n" "0 -> 1 ;\n" "2 [label=\"error = 0.0000\\nsamples = 3\\n" "value = [ 0. 3.]\", shape=\"box\"] ;\n" "0 -> 2 ;\n" "}") contents2 = tree_toy.getvalue() assert contents1 == contents2, \ "graphviz output test failed\n: %s != %s" % (contents1, contents2) # test improperly formed feature_names out = StringIO() assert_raises(IndexError, tree.export_graphviz, clf, out, feature_names=[]) def test_iris(): """Check consistency on dataset iris.""" for c in ('gini', 'entropy'): clf = tree.DecisionTreeClassifier(criterion=c).fit(iris.data, iris.target) score = np.mean(clf.predict(iris.data) == iris.target) assert score > 0.9, "Failed with criterion " + c + \ " and score = " + str(score) clf = tree.DecisionTreeClassifier(criterion=c, max_features=2, random_state=1).fit(iris.data, iris.target) score = np.mean(clf.predict(iris.data) == iris.target) assert score > 0.5, "Failed with criterion " + c + \ " and score = " + str(score) def test_boston(): """Check consistency on dataset boston house prices.""" for c in ('mse',): clf = tree.DecisionTreeRegressor(criterion=c).fit(boston.data, boston.target) score = np.mean(np.power(clf.predict(boston.data) - boston.target, 2)) assert score < 1, "Failed with criterion " + c + \ " and score = " + str(score) clf = tree.DecisionTreeRegressor(criterion=c, max_features=6, random_state=1).fit(boston.data, boston.target) # using fewer features reduces the learning ability of this tree, # but reduces training time. score = np.mean(np.power(clf.predict(boston.data) - boston.target, 2)) assert score < 2, "Failed with criterion " + c + \ " and score = " + str(score) def test_probability(): """Predict probabilities using DecisionTreeClassifier.""" clf = tree.DecisionTreeClassifier(max_depth=1, max_features=1, random_state=42) clf.fit(iris.data, iris.target) prob_predict = clf.predict_proba(iris.data) assert_array_almost_equal( np.sum(prob_predict, 1), np.ones(iris.data.shape[0])) assert np.mean(np.argmax(prob_predict, 1) == clf.predict(iris.data)) > 0.9 assert_almost_equal(clf.predict_proba(iris.data), np.exp(clf.predict_log_proba(iris.data)), 8) def test_arrayrepr(): """Check the array representation.""" # Check resize clf = tree.DecisionTreeRegressor(max_depth=None) X = np.arange(10000)[:, np.newaxis] y = np.arange(10000) clf.fit(X, y) def test_pure_set(): """Check when y is pure.""" X = [[-2, -1], [-1, -1], [-1, -2], [1, 1], [1, 2], [2, 1]] y = [1, 1, 1, 1, 1, 1] clf = tree.DecisionTreeClassifier().fit(X, y) assert_array_equal(clf.predict(X), y) clf = tree.DecisionTreeRegressor().fit(X, y) assert_array_equal(clf.predict(X), y) def test_numerical_stability(): """Check numerical stability.""" old_settings = np.geterr() np.seterr(all="raise") X = np.array([ [152.08097839, 140.40744019, 129.75102234, 159.90493774], [142.50700378, 135.81935120, 117.82884979, 162.75781250], [127.28772736, 140.40744019, 129.75102234, 159.90493774], [132.37025452, 143.71923828, 138.35694885, 157.84558105], [103.10237122, 143.71928406, 138.35696411, 157.84559631], [127.71276855, 143.71923828, 138.35694885, 157.84558105], [120.91514587, 140.40744019, 129.75102234, 159.90493774]]) y = np.array( [1., 0.70209277, 0.53896582, 0., 0.90914464, 0.48026916, 0.49622521]) dt = tree.DecisionTreeRegressor() dt.fit(X, y) dt.fit(X, -y) dt.fit(-X, y) dt.fit(-X, -y) np.seterr(**old_settings) def test_importances(): """Check variable importances.""" X, y = datasets.make_classification(n_samples=1000, n_features=10, n_informative=3, n_redundant=0, n_repeated=0, shuffle=False, random_state=0) clf = tree.DecisionTreeClassifier() clf.fit(X, y) importances = clf.feature_importances_ n_important = sum(importances > 0.1) assert_equal(importances.shape[0], 10) assert_equal(n_important, 3) X_new = clf.transform(X, threshold="mean") assert 0 < X_new.shape[1] < X.shape[1] def test_error(): """Test that it gives proper exception on deficient input.""" # Invalid values for parameters assert_raises(ValueError, tree.DecisionTreeClassifier(min_samples_leaf=-1).fit, X, y) assert_raises(ValueError, tree.DecisionTreeClassifier(min_samples_split=-1).fit, X, y) assert_raises(ValueError, tree.DecisionTreeClassifier(max_depth=-1).fit, X, y) assert_raises(ValueError, tree.DecisionTreeClassifier(min_density=2.0).fit, X, y) assert_raises(ValueError, tree.DecisionTreeClassifier(max_features=42).fit, X, y) # Wrong dimensions clf = tree.DecisionTreeClassifier() y2 = y[:-1] assert_raises(ValueError, clf.fit, X, y2) # Test with arrays that are non-contiguous. Xf = np.asfortranarray(X) clf = tree.DecisionTreeClassifier() clf.fit(Xf, y) assert_array_equal(clf.predict(T), true_result) # predict before fitting clf = tree.DecisionTreeClassifier() assert_raises(Exception, clf.predict, T) # predict on vector with different dims clf.fit(X, y) t = np.asarray(T) assert_raises(ValueError, clf.predict, t[:, 1:]) # use values of max_features that are invalid clf = tree.DecisionTreeClassifier(max_features=10) assert_raises(ValueError, clf.fit, X, y) clf = tree.DecisionTreeClassifier(max_features=-1) assert_raises(ValueError, clf.fit, X, y) clf = tree.DecisionTreeClassifier(max_features="foobar") assert_raises(ValueError, clf.fit, X, y) tree.DecisionTreeClassifier(max_features="auto").fit(X, y) tree.DecisionTreeClassifier(max_features="sqrt").fit(X, y) tree.DecisionTreeClassifier(max_features="log2").fit(X, y) tree.DecisionTreeClassifier(max_features=None).fit(X, y) # predict before fit clf = tree.DecisionTreeClassifier() assert_raises(Exception, clf.predict_proba, X) clf.fit(X, y) X2 = [-2, -1, 1] # wrong feature shape for sample assert_raises(ValueError, clf.predict_proba, X2) # wrong sample shape Xt = np.array(X).T clf = tree.DecisionTreeClassifier() clf.fit(np.dot(X, Xt), y) assert_raises(ValueError, clf.predict, X) clf = tree.DecisionTreeClassifier() clf.fit(X, y) assert_raises(ValueError, clf.predict, Xt) # wrong length of sample mask clf = tree.DecisionTreeClassifier() sample_mask = np.array([1]) assert_raises(ValueError, clf.fit, X, y, sample_mask=sample_mask) # wrong length of X_argsorted clf = tree.DecisionTreeClassifier() X_argsorted = np.array([1]) assert_raises(ValueError, clf.fit, X, y, X_argsorted=X_argsorted) def test_min_samples_leaf(): """Test if leaves contain more than leaf_count training examples""" X = np.asfortranarray(iris.data.astype(tree._tree.DTYPE)) y = iris.target for tree_class in [tree.DecisionTreeClassifier, tree.ExtraTreeClassifier]: clf = tree_class(min_samples_leaf=5).fit(X, y) out = clf.tree_.apply(X) node_counts = np.bincount(out) leaf_count = node_counts[node_counts != 0] # drop inner nodes assert np.min(leaf_count) >= 5 def test_pickle(): import pickle # classification obj = tree.DecisionTreeClassifier() obj.fit(iris.data, iris.target) score = obj.score(iris.data, iris.target) s = pickle.dumps(obj) obj2 = pickle.loads(s) assert_equal(type(obj2), obj.__class__) score2 = obj2.score(iris.data, iris.target) assert score == score2, "Failed to generate same score " + \ " after pickling (classification) " # regression obj = tree.DecisionTreeRegressor() obj.fit(boston.data, boston.target) score = obj.score(boston.data, boston.target) s = pickle.dumps(obj) obj2 = pickle.loads(s) assert_equal(type(obj2), obj.__class__) score2 = obj2.score(boston.data, boston.target) assert score == score2, "Failed to generate same score " + \ " after pickling (regression) " def test_multioutput(): """Check estimators on multi-output problems.""" X = [[-2, -1], [-1, -1], [-1, -2], [1, 1], [1, 2], [2, 1], [-2, 1], [-1, 1], [-1, 2], [2, -1], [1, -1], [1, -2]] y = [[-1, 0], [-1, 0], [-1, 0], [1, 1], [1, 1], [1, 1], [-1, 2], [-1, 2], [-1, 2], [1, 3], [1, 3], [1, 3]] T = [[-1, -1], [1, 1], [-1, 1], [1, -1]] y_true = [[-1, 0], [1, 1], [-1, 2], [1, 3]] # toy classification problem clf = tree.DecisionTreeClassifier() y_hat = clf.fit(X, y).predict(T) assert_array_equal(y_hat, y_true) assert_equal(y_hat.shape, (4, 2)) proba = clf.predict_proba(T) assert_equal(len(proba), 2) assert_equal(proba[0].shape, (4, 2)) assert_equal(proba[1].shape, (4, 4)) log_proba = clf.predict_log_proba(T) assert_equal(len(log_proba), 2) assert_equal(log_proba[0].shape, (4, 2)) assert_equal(log_proba[1].shape, (4, 4)) # toy regression problem clf = tree.DecisionTreeRegressor() y_hat = clf.fit(X, y).predict(T) assert_almost_equal(y_hat, y_true) assert_equal(y_hat.shape, (4, 2)) def test_sample_mask(): """Test sample_mask argument. """ # test list sample_mask clf = tree.DecisionTreeClassifier() sample_mask = [1] * len(X) clf.fit(X, y, sample_mask=sample_mask) assert_array_equal(clf.predict(T), true_result) # test different dtype clf = tree.DecisionTreeClassifier() sample_mask = np.ones((len(X),), dtype=np.int32) clf.fit(X, y, sample_mask=sample_mask) assert_array_equal(clf.predict(T), true_result) def test_X_argsorted(): """Test X_argsorted argument. """ # test X_argsorted with different layout and dtype clf = tree.DecisionTreeClassifier() X_argsorted = np.argsort(np.array(X).T, axis=1).T clf.fit(X, y, X_argsorted=X_argsorted) assert_array_equal(clf.predict(T), true_result) def test_classes_shape(): """Test that n_classes_ and classes_ have proper shape.""" # Classification, single output clf = tree.DecisionTreeClassifier() clf.fit(X, y) assert_equal(clf.n_classes_, 2) assert_equal(clf.classes_, [-1, 1]) # Classification, multi-output _y = np.vstack((y, np.array(y) * 2)).T clf = tree.DecisionTreeClassifier() clf.fit(X, _y) assert_equal(len(clf.n_classes_), 2) assert_equal(len(clf.classes_), 2) assert_equal(clf.n_classes_, [2, 2]) assert_equal(clf.classes_, [[-1, 1], [-2, 2]]) def test_unbalanced_iris(): """Check class rebalancing.""" unbalanced_X = iris.data[:125] unbalanced_y = iris.target[:125] sample_weight = balance_weights(unbalanced_y) clf = tree.DecisionTreeClassifier() clf.fit(unbalanced_X, unbalanced_y, sample_weight=sample_weight) assert_almost_equal(clf.predict(unbalanced_X), unbalanced_y) def test_sample_weight(): """Check sample weighting.""" # Test that zero-weighted samples are not taken into account X = np.arange(100)[:, np.newaxis] y = np.ones(100) y[:50] = 0.0 sample_weight = np.ones(100) sample_weight[y == 0] = 0.0 clf = tree.DecisionTreeClassifier() clf.fit(X, y, sample_weight=sample_weight) assert_array_equal(clf.predict(X), np.ones(100)) # Test that low weighted samples are not taken into account at low depth X = np.arange(200)[:, np.newaxis] y = np.zeros(200) y[50:100] = 1 y[100:200] = 2 X[100:200, 0] = 200 sample_weight = np.ones(200) sample_weight[y == 2] = .51 # Samples of class '2' are still weightier clf = tree.DecisionTreeClassifier(max_depth=1) clf.fit(X, y, sample_weight=sample_weight) assert_equal(clf.tree_.threshold[0], 149.5) sample_weight[y == 2] = .50 # Samples of class '2' are no longer weightier clf = tree.DecisionTreeClassifier(max_depth=1) clf.fit(X, y, sample_weight=sample_weight) assert_equal(clf.tree_.threshold[0], 49.5) # Threshold should have moved # Test that sample weighting is the same as having duplicates X = iris.data y = iris.target duplicates = rng.randint(0, X.shape[0], 1000) clf = tree.DecisionTreeClassifier(random_state=1) clf.fit(X[duplicates], y[duplicates]) from sklearn.utils.fixes import bincount sample_weight = bincount(duplicates, minlength=X.shape[0]) clf2 = tree.DecisionTreeClassifier(random_state=1) clf2.fit(X, y, sample_weight=sample_weight) internal = clf.tree_.children_left != tree._tree.TREE_LEAF assert_array_equal(clf.tree_.threshold[internal], clf2.tree_.threshold[internal]) # Test negative weights X = iris.data y = iris.target sample_weight = -np.ones(X.shape[0]) clf = tree.DecisionTreeClassifier(random_state=1) assert_raises(ValueError, clf.fit, X, y, sample_weight=sample_weight) sample_weight = np.ones(X.shape[0]) sample_weight[0] = -1 clf = tree.DecisionTreeClassifier(random_state=1) clf.fit(X, y, sample_weight=sample_weight) # Check that predict_proba returns valid probabilities in the presence of # samples with negative weight X = iris.data y = iris.target sample_weight = rng.normal(.5, 1.0, X.shape[0]) clf = tree.DecisionTreeClassifier(random_state=1) clf.fit(X, y, sample_weight=sample_weight) proba = clf.predict_proba(X) assert (proba >= 0).all() and (proba <= 1).all() if __name__ == "__main__": import nose nose.runmodule()
maxlikely/scikit-learn
sklearn/tree/tests/test_tree.py
Python
bsd-3-clause
19,420
import os from botplugin import BotPlugin gifs = [] def get_doggif(): import random global gifs if not len(gifs): fname = os.path.join(os.path.dirname(__file__), 'doggif.txt') f = open(fname, 'r') gifs = f.read().split() f.close() random.shuffle(gifs) return gifs.pop() class DogGif(BotPlugin): def command_doggif(self, bot, command, args, nick): bot.speak(get_doggif()) def page_generator(): import requests url = 'http://fuckyeahdoggifs.tumblr.com/page/%d' page_num = 1 finished = False while not finished: r = requests.get(url % page_num) if r.ok: yield r.text else: finished = True page_num += 1 def generate_gif_list(): from BeautifulSoup import BeautifulSoup import re doggif_urls = [] pages = page_generator() for page in pages: s = BeautifulSoup(page) images = s.findAll('img') for image in images: url = image.get('src') if re.search('\.gif$', url): doggif_urls.append(url) if len(images) < 5: # beyond final page break return doggif_urls if __name__ == '__main__': doggif_urls = generate_gif_list() f = open('botplugins/doggif.txt', 'w') f.write('\n'.join(doggif_urls)) f.close()
aelse/MrHappy
botplugins/cmd_doggif.py
Python
gpl-3.0
1,369
from sklearn.linear_model import Lasso def get_lasso_prediction(train_data, train_truth, test_data, test_truth, alpha=1.0, iter_id=0): clf = Lasso(alpha=alpha) clf.fit(train_data, train_truth) predicted = clf.predict(test_data) return predicted.ravel()
rileymcdowell/genomic-neuralnet
genomic_neuralnet/methods/lasso_regression.py
Python
mit
270
# Copyright 2020 The Chromium Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. """Class for storing Skia Gold comparison properties. Examples: * git revision being tested * Whether the test is being run locally or on a bot * What the continuous integration system is """ import logging import os class SkiaGoldProperties(object): def __init__(self, args): """Abstract class to validate and store properties related to Skia Gold. Args: args: The parsed arguments from an argparse.ArgumentParser. """ self._git_revision = None self._issue = None self._patchset = None self._job_id = None self._local_pixel_tests = None self._no_luci_auth = None self._bypass_skia_gold_functionality = None self._code_review_system = None self._continuous_integration_system = None self._local_png_directory = None self._InitializeProperties(args) def IsTryjobRun(self): return self.issue is not None @property def continuous_integration_system(self): return self._continuous_integration_system or 'buildbucket' @property def code_review_system(self): return self._code_review_system or 'gerrit' @property def git_revision(self): return self._GetGitRevision() @property def issue(self): return self._issue @property def job_id(self): return self._job_id @property def local_pixel_tests(self): return self._IsLocalRun() @property def local_png_directory(self): return self._local_png_directory @property def no_luci_auth(self): return self._no_luci_auth @property def patchset(self): return self._patchset @property def bypass_skia_gold_functionality(self): return self._bypass_skia_gold_functionality @staticmethod def _GetGitOriginMainHeadSha1(): raise NotImplementedError() def _GetGitRevision(self): if not self._git_revision: # Automated tests should always pass the revision, so assume we're on # a workstation and try to get the local origin/master HEAD. if not self._IsLocalRun(): raise RuntimeError( '--git-revision was not passed when running on a bot') revision = self._GetGitOriginMainHeadSha1() if not revision or len(revision) != 40: raise RuntimeError( '--git-revision not passed and unable to determine from git') self._git_revision = revision return self._git_revision def _IsLocalRun(self): if self._local_pixel_tests is None: # Look for the presence of the SWARMING_SERVER environment variable as a # heuristic to determine whether we're running on a workstation or a bot. # This should always be set on swarming, but would be strange to be set on # a workstation. self._local_pixel_tests = 'SWARMING_SERVER' not in os.environ if self._local_pixel_tests: logging.warning( 'Automatically determined that test is running on a workstation') else: logging.warning( 'Automatically determined that test is running on a bot') return self._local_pixel_tests def _InitializeProperties(self, args): if hasattr(args, 'local_pixel_tests'): # If not set, will be automatically determined later if needed. self._local_pixel_tests = args.local_pixel_tests if hasattr(args, 'skia_gold_local_png_write_directory'): self._local_png_directory = args.skia_gold_local_png_write_directory if hasattr(args, 'no_luci_auth'): self._no_luci_auth = args.no_luci_auth if hasattr(args, 'bypass_skia_gold_functionality'): self._bypass_skia_gold_functionality = args.bypass_skia_gold_functionality if hasattr(args, 'code_review_system'): self._code_review_system = args.code_review_system if hasattr(args, 'continuous_integration_system'): self._continuous_integration_system = args.continuous_integration_system # Will be automatically determined later if needed. if not hasattr(args, 'git_revision') or not args.git_revision: return self._git_revision = args.git_revision # Only expected on tryjob runs. if not hasattr(args, 'gerrit_issue') or not args.gerrit_issue: return self._issue = args.gerrit_issue if not hasattr(args, 'gerrit_patchset') or not args.gerrit_patchset: raise RuntimeError( '--gerrit-issue passed, but --gerrit-patchset not passed.') self._patchset = args.gerrit_patchset if not hasattr(args, 'buildbucket_id') or not args.buildbucket_id: raise RuntimeError( '--gerrit-issue passed, but --buildbucket-id not passed.') self._job_id = args.buildbucket_id
ric2b/Vivaldi-browser
chromium/build/skia_gold_common/skia_gold_properties.py
Python
bsd-3-clause
4,742
from .fw1 import get_dot_completions, get_script_completions, get_inline_documentation from .. import completions, inline_documentation completions.add_completion_source('script', get_script_completions) completions.add_completion_source('dot', get_dot_completions) inline_documentation.add_documentation_source(get_inline_documentation)
jcberquist/SublimeText-Lucee
src/fw1/__init__.py
Python
mit
339
import zstackwoodpecker.test_state as ts_header TestAction = ts_header.TestAction def path(): return dict(initial_formation="template2", path_list=[ [TestAction.create_volume, "volume1", "=scsi"], [TestAction.create_volume, "volume2", "=scsi"], #[TestAction.create_volume, "volume3", "=scsi"], #[TestAction.create_volume, "volume4", "=scsi"], #[TestAction.create_volume, "volume5", "=scsi"], #[TestAction.create_volume, "volume6", "=scsi"], #[TestAction.create_volume, "volume7", "=scsi"], #[TestAction.create_volume, "volume8", "=scsi"], [TestAction.attach_volume, "vm1", "volume1"], [TestAction.attach_volume, "vm1", "volume2"], #[TestAction.attach_volume, "vm1", "volume3"], #[TestAction.attach_volume, "vm1", "volume4"], #[TestAction.attach_volume, "vm1", "volume5"], #[TestAction.attach_volume, "vm1", "volume6"], #[TestAction.attach_volume, "vm1", "volume7"], #[TestAction.attach_volume, "vm1", "volume8"], [TestAction.create_volume_snapshot, "volume2", "snapshot2-1"], [TestAction.delete_volume_snapshot, "snapshot2-1"], [TestAction.detach_volume, "volume1"], [TestAction.create_volume_snapshot, "vm1-root", "snapshot1"], [TestAction.attach_volume, "vm1", "volume1"], [TestAction.create_volume_backup, "volume1", "backup1"], [TestAction.detach_volume, "volume1"], [TestAction.stop_vm, "vm1"], [TestAction.change_vm_image, "vm1"], [TestAction.start_vm, "vm1"], [TestAction.attach_volume, "vm1", "volume1"], [TestAction.resize_data_volume, "volume1", 5*1024*1024], [TestAction.detach_volume, "volume1"], [TestAction.attach_volume, "vm1", "volume1"], [TestAction.stop_vm, "vm1"], [TestAction.use_volume_backup, "backup1"], [TestAction.start_vm, "vm1"], [TestAction.detach_volume, "volume1"], [TestAction.detach_volume, "volume2"], #[TestAction.detach_volume, "volume3"], #[TestAction.detach_volume, "volume4"], #[TestAction.detach_volume, "volume5"], #[TestAction.detach_volume, "volume6"], #[TestAction.detach_volume, "volume7"], #[TestAction.detach_volume, "volume8"], [TestAction.stop_vm, "vm1"], [TestAction.ps_migrate_volume, "vm1-root"], [TestAction.start_vm, "vm1"], [TestAction.delete_volume_snapshot, "snapshot1"], [TestAction.reboot_vm, "vm1"]])
zstackio/zstack-woodpecker
integrationtest/vm/multihosts/volumes/paths/path99.py
Python
apache-2.0
2,275
# Implementation of Binary Search algorithm import random def main(): _list = random.sample(xrange(1, 101), 10) value = 87 print("Searching for the value: " + str(value)) if binarySearch(value): print("The number " + str(value) + " found in the list") else: print("The number " + str(value) + " not found in the list") def binarySearch(theValues, target): # Start with the entire sequence of elements. 0:length low = 0 high = len(theValues - 1) # Repeatedly subdivide the sequence in half until the target is found. while low <= high: # Find the midpoint of the sequence. mid = (high + low) // 2 # Does the midpoint contain the target? if theValues[mid] == target: return True # Or does the target precede the midpoint? elif target < theValues[mid]: high = mid - 1 # Update the upper bound # Or does it follow the midpoint else: low = mid + 1 # Update the lower bound # If the sequence cannot be subdivided further, we're done. return False if __name__ == '__main__': main()
eneskemalergin/Data_Structures_and_Algorithms
Chapter5/binarysearch.py
Python
gpl-3.0
1,151
from modularui import csv_autolog csv_autolog()
jasongtz/RataTAT-web
csvonly.py
Python
mit
48
import random import datetime import time import hashlib from django.db import models from django.conf import settings from django.urls import reverse from django.contrib.auth.models import User, Group from django.db.models.signals import post_save from djangopress.core.models import Property from django.utils import timezone from PIL import Image DEFAULT_USER_GROUP = getattr(settings, 'DEFAULT_USER_GROUP', None) def avatar_path(instance, filename): return ("avatars/%s/%s-%s-%s" % (time.strftime("%y/%m"), instance.user.pk, instance.user.username.lower(), filename.lower())) class UserProfile(models.Model): EMAIL_SETTINGS = ( ('HI', 'Hide Email'), ('SW', 'Show Email'), ('HB', 'Use Web Form') ) title = models.CharField(max_length=100, default="New member") homepage = models.CharField(max_length=100, blank=True, null=True) #IM contact (jabber, icq, msn, aim, yahoo, gtalk, twitter, facebook) location = models.CharField(max_length=50, blank=True, null=True) avatar = models.ImageField(blank=True, null=True, upload_to=avatar_path) signature = models.TextField(blank=True, null=True) timezone = models.CharField(max_length=50, null=True, blank=True) language = models.CharField(max_length=50, null=True, blank=True) registration_ip = models.GenericIPAddressField(blank=True, null=True, ) last_ip_used = models.GenericIPAddressField(blank=True, null=True) admin_note = models.TextField(blank=True, null=True) activate_key = models.CharField(max_length=127, blank=True, editable=False) activate_key_expirary = models.DateTimeField(blank=True, editable=False) banned = models.BooleanField(default=False) #remember_between_visits = models.BooleanField(default=True) user = models.OneToOneField(User, related_name="profile", on_delete=models.CASCADE) email_settings = models.CharField(choices=EMAIL_SETTINGS, default='HI', max_length=2) gender = models.CharField(max_length=1, blank=True, null=True, default=None, choices=(('', 'Private'), ('M', 'Male'), ('F', 'Female'))) date_of_birth = models.DateTimeField(blank=True, null=True) def get_ip(self): if self.last_ip_used: return self.last_ip_used return self.registration_ip def __getattr__(self, name): if name.startswith("social_"): try: return self.user.social.filter(account=name[7:])[0] except: raise AttributeError(name) return super(UserProfile, self).__getattr__(name) def get_absolute_url(self): return reverse('accounts-profile', kwargs={"username": self.user.username}) def __init__(self, *args, **kwargs): super(UserProfile, self).__init__(*args, **kwargs) self._banned = self.banned self._avatar = self.avatar def save(self, force_insert=False, force_update=False): if self._banned == False and self.banned == True: # if we banned them, they can't then login self.user.is_active = False self.user.save() if self._avatar != self.avatar and self.avatar: image = Image.open(self.avatar) size = settings.ACCOUNTS_USER_LIMITS.get('avatar', {}).get('size', 50) image.resize((size, size), Image.ANTIALIAS) image.save(self.avatar.path) super(UserProfile, self).save(force_insert, force_update) self._banned = self.banned self._avatar = self.avatar def set_activate_key(self): salt = hashlib.sha1((str(random.random()) + str(random.random())).encode('utf-8')).hexdigest()[:5] key = "".join(str(item) for item in (self.user.username, self.user.email, datetime.datetime.now())) hsh = hashlib.sha1((salt + key).encode('utf-8')).hexdigest() self.activate_key = hsh self.activate_key_expirary = datetime.datetime.fromtimestamp(time.time() + (7 * 24 * 60 * 60)) def check_activate_key(self, hsh): return (hsh == self.activate_key and timezone.now() <= self.activate_key_expirary) class UserSocial(models.Model): ACCOUNTS = ( ('twitter', 'Twitter'), ('google_plus', 'Google Plus'), ('facebook', 'Facebook'), ('linkedin', 'Linked In'), ('pinterest', 'Pinterest'), ) account = models.CharField(max_length=20, choices=ACCOUNTS) value = models.CharField(max_length=100) user_profile = models.ForeignKey(User, related_name="social", on_delete=models.CASCADE) class UserProperty(Property): user_profile = models.ForeignKey(User, related_name="properties", on_delete=models.CASCADE) def create_profile(sender, **kargs): if kargs.get("created", False): profile = UserProfile(user=kargs.get("instance")) profile.set_activate_key() profile.save() post_save.connect(create_profile, User, dispatch_uid="djangopress.accounts.create_profile") def add_to_group(sender, **kargs): if DEFAULT_USER_GROUP and kargs.get("created", False): user = kargs.get("instance") user.groups.add(Group.objects.get(name=DEFAULT_USER_GROUP)) post_save.connect(add_to_group, User, dispatch_uid="djangopress.accounts.add_to_group")
codefisher/djangopress
djangopress/accounts/models.py
Python
mit
5,282
######################################################################## # Copyright 2012 wst, [email protected] # # This file is part of wstbot. # # wstbot is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # wstbot is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with wstbot. If not, see <http://www.gnu.org/licenses/>. ######################################################################## # converts media files to an sqlite db # will _not_ be updated anymore import sqlite3 import os import json from util import str_list_to_int MEDIA_PATH = os.path.join("data", "media") MEDIA_DB_PATH = os.path.join("data", "media.db") def main(): filelist = os.listdir(MEDIA_PATH) if filelist is None or (len(filelist)) <= 0: print("no files found") return filelist_int = str_list_to_int(filelist) filelist = [str(x) for x in sorted(filelist_int)] with sqlite3.connect(MEDIA_DB_PATH) as conn: cur = conn.cursor() for filename in filelist: with open(os.path.join(MEDIA_PATH, filename), "r") as mfile: for line in mfile.readlines(): data = json.loads(line) if type(data) != dict: continue if "title" not in data: data["title"] = "" cur.execute("insert into media (type, title, url) values (?, ?, ?)", (data["type"], data["title"], data["url"])) conn.commit() if __name__ == "__main__": main()
salamiwst/wstbot
patches/media_to_db.py
Python
gpl-3.0
1,982
# This file helps to compute a version number in source trees obtained from # git-archive tarball (such as those provided by githubs download-from-tag # feature). Distribution tarballs (built by setup.py sdist) and build # directories (produced by setup.py build) will contain a much shorter file # that just contains the computed version number. # This file is released into the public domain. Generated by # versioneer-0.15 (https://github.com/warner/python-versioneer) import errno import os import re import subprocess import sys def get_keywords(): # these strings will be replaced by git during git-archive. # setup.py/versioneer.py will grep for the variable names, so they must # each be defined on a line of their own. _version.py will just call # get_keywords(). git_refnames = "$Format:%d$" git_full = "$Format:%H$" keywords = {"refnames": git_refnames, "full": git_full} return keywords class VersioneerConfig: pass def get_config(): # these strings are filled in when 'setup.py versioneer' creates # _version.py cfg = VersioneerConfig() cfg.VCS = "git" cfg.style = "pep440" cfg.tag_prefix = "v" cfg.parentdir_prefix = "bom_data_parser" cfg.versionfile_source = "bom_data_parser/_version.py" cfg.verbose = False return cfg class NotThisMethod(Exception): pass LONG_VERSION_PY = {} HANDLERS = {} def register_vcs_handler(vcs, method): # decorator def decorate(f): if vcs not in HANDLERS: HANDLERS[vcs] = {} HANDLERS[vcs][method] = f return f return decorate def run_command(commands, args, cwd=None, verbose=False, hide_stderr=False): assert isinstance(commands, list) p = None for c in commands: try: dispcmd = str([c] + args) # remember shell=False, so use git.cmd on windows, not just git p = subprocess.Popen([c] + args, cwd=cwd, stdout=subprocess.PIPE, stderr=(subprocess.PIPE if hide_stderr else None)) break except EnvironmentError: e = sys.exc_info()[1] if e.errno == errno.ENOENT: continue if verbose: print("unable to run %s" % dispcmd) print(e) return None else: if verbose: print("unable to find command, tried %s" % (commands,)) return None stdout = p.communicate()[0].strip() if sys.version_info[0] >= 3: stdout = stdout.decode() if p.returncode != 0: if verbose: print("unable to run %s (error)" % dispcmd) return None return stdout def versions_from_parentdir(parentdir_prefix, root, verbose): # Source tarballs conventionally unpack into a directory that includes # both the project name and a version string. dirname = os.path.basename(root) if not dirname.startswith(parentdir_prefix): if verbose: print("guessing rootdir is '%s', but '%s' doesn't start with " "prefix '%s'" % (root, dirname, parentdir_prefix)) raise NotThisMethod("rootdir doesn't start with parentdir_prefix") return {"version": dirname[len(parentdir_prefix):], "full-revisionid": None, "dirty": False, "error": None} @register_vcs_handler("git", "get_keywords") def git_get_keywords(versionfile_abs): # the code embedded in _version.py can just fetch the value of these # keywords. When used from setup.py, we don't want to import _version.py, # so we do it with a regexp instead. This function is not used from # _version.py. keywords = {} try: f = open(versionfile_abs, "r") for line in f.readlines(): if line.strip().startswith("git_refnames ="): mo = re.search(r'=\s*"(.*)"', line) if mo: keywords["refnames"] = mo.group(1) if line.strip().startswith("git_full ="): mo = re.search(r'=\s*"(.*)"', line) if mo: keywords["full"] = mo.group(1) f.close() except EnvironmentError: pass return keywords @register_vcs_handler("git", "keywords") def git_versions_from_keywords(keywords, tag_prefix, verbose): if not keywords: raise NotThisMethod("no keywords at all, weird") refnames = keywords["refnames"].strip() if refnames.startswith("$Format"): if verbose: print("keywords are unexpanded, not using") raise NotThisMethod("unexpanded keywords, not a git-archive tarball") refs = set([r.strip() for r in refnames.strip("()").split(",")]) # starting in git-1.8.3, tags are listed as "tag: foo-1.0" instead of # just "foo-1.0". If we see a "tag: " prefix, prefer those. TAG = "tag: " tags = set([r[len(TAG):] for r in refs if r.startswith(TAG)]) if not tags: # Either we're using git < 1.8.3, or there really are no tags. We use # a heuristic: assume all version tags have a digit. The old git %d # expansion behaves like git log --decorate=short and strips out the # refs/heads/ and refs/tags/ prefixes that would let us distinguish # between branches and tags. By ignoring refnames without digits, we # filter out many common branch names like "release" and # "stabilization", as well as "HEAD" and "master". tags = set([r for r in refs if re.search(r'\d', r)]) if verbose: print("discarding '%s', no digits" % ",".join(refs-tags)) if verbose: print("likely tags: %s" % ",".join(sorted(tags))) for ref in sorted(tags): # sorting will prefer e.g. "2.0" over "2.0rc1" if ref.startswith(tag_prefix): r = ref[len(tag_prefix):] if verbose: print("picking %s" % r) return {"version": r, "full-revisionid": keywords["full"].strip(), "dirty": False, "error": None } # no suitable tags, so version is "0+unknown", but full hex is still there if verbose: print("no suitable tags, using unknown + full revision id") return {"version": "0+unknown", "full-revisionid": keywords["full"].strip(), "dirty": False, "error": "no suitable tags"} @register_vcs_handler("git", "pieces_from_vcs") def git_pieces_from_vcs(tag_prefix, root, verbose, run_command=run_command): # this runs 'git' from the root of the source tree. This only gets called # if the git-archive 'subst' keywords were *not* expanded, and # _version.py hasn't already been rewritten with a short version string, # meaning we're inside a checked out source tree. if not os.path.exists(os.path.join(root, ".git")): if verbose: print("no .git in %s" % root) raise NotThisMethod("no .git directory") GITS = ["git"] if sys.platform == "win32": GITS = ["git.cmd", "git.exe"] # if there is a tag, this yields TAG-NUM-gHEX[-dirty] # if there are no tags, this yields HEX[-dirty] (no NUM) describe_out = run_command(GITS, ["describe", "--tags", "--dirty", "--always", "--long"], cwd=root) # --long was added in git-1.5.5 if describe_out is None: raise NotThisMethod("'git describe' failed") describe_out = describe_out.strip() full_out = run_command(GITS, ["rev-parse", "HEAD"], cwd=root) if full_out is None: raise NotThisMethod("'git rev-parse' failed") full_out = full_out.strip() pieces = {} pieces["long"] = full_out pieces["short"] = full_out[:7] # maybe improved later pieces["error"] = None # parse describe_out. It will be like TAG-NUM-gHEX[-dirty] or HEX[-dirty] # TAG might have hyphens. git_describe = describe_out # look for -dirty suffix dirty = git_describe.endswith("-dirty") pieces["dirty"] = dirty if dirty: git_describe = git_describe[:git_describe.rindex("-dirty")] # now we have TAG-NUM-gHEX or HEX if "-" in git_describe: # TAG-NUM-gHEX mo = re.search(r'^(.+)-(\d+)-g([0-9a-f]+)$', git_describe) if not mo: # unparseable. Maybe git-describe is misbehaving? pieces["error"] = ("unable to parse git-describe output: '%s'" % describe_out) return pieces # tag full_tag = mo.group(1) if not full_tag.startswith(tag_prefix): if verbose: fmt = "tag '%s' doesn't start with prefix '%s'" print(fmt % (full_tag, tag_prefix)) pieces["error"] = ("tag '%s' doesn't start with prefix '%s'" % (full_tag, tag_prefix)) return pieces pieces["closest-tag"] = full_tag[len(tag_prefix):] # distance: number of commits since tag pieces["distance"] = int(mo.group(2)) # commit: short hex revision ID pieces["short"] = mo.group(3) else: # HEX: no tags pieces["closest-tag"] = None count_out = run_command(GITS, ["rev-list", "HEAD", "--count"], cwd=root) pieces["distance"] = int(count_out) # total number of commits return pieces def plus_or_dot(pieces): if "+" in pieces.get("closest-tag", ""): return "." return "+" def render_pep440(pieces): # now build up version string, with post-release "local version # identifier". Our goal: TAG[+DISTANCE.gHEX[.dirty]] . Note that if you # get a tagged build and then dirty it, you'll get TAG+0.gHEX.dirty # exceptions: # 1: no tags. git_describe was just HEX. 0+untagged.DISTANCE.gHEX[.dirty] if pieces["closest-tag"]: rendered = pieces["closest-tag"] if pieces["distance"] or pieces["dirty"]: rendered += plus_or_dot(pieces) rendered += "%d.g%s" % (pieces["distance"], pieces["short"]) if pieces["dirty"]: rendered += ".dirty" else: # exception #1 rendered = "0+untagged.%d.g%s" % (pieces["distance"], pieces["short"]) if pieces["dirty"]: rendered += ".dirty" return rendered def render_pep440_pre(pieces): # TAG[.post.devDISTANCE] . No -dirty # exceptions: # 1: no tags. 0.post.devDISTANCE if pieces["closest-tag"]: rendered = pieces["closest-tag"] if pieces["distance"]: rendered += ".post.dev%d" % pieces["distance"] else: # exception #1 rendered = "0.post.dev%d" % pieces["distance"] return rendered def render_pep440_post(pieces): # TAG[.postDISTANCE[.dev0]+gHEX] . The ".dev0" means dirty. Note that # .dev0 sorts backwards (a dirty tree will appear "older" than the # corresponding clean one), but you shouldn't be releasing software with # -dirty anyways. # exceptions: # 1: no tags. 0.postDISTANCE[.dev0] if pieces["closest-tag"]: rendered = pieces["closest-tag"] if pieces["distance"] or pieces["dirty"]: rendered += ".post%d" % pieces["distance"] if pieces["dirty"]: rendered += ".dev0" rendered += plus_or_dot(pieces) rendered += "g%s" % pieces["short"] else: # exception #1 rendered = "0.post%d" % pieces["distance"] if pieces["dirty"]: rendered += ".dev0" rendered += "+g%s" % pieces["short"] return rendered def render_pep440_old(pieces): # TAG[.postDISTANCE[.dev0]] . The ".dev0" means dirty. # exceptions: # 1: no tags. 0.postDISTANCE[.dev0] if pieces["closest-tag"]: rendered = pieces["closest-tag"] if pieces["distance"] or pieces["dirty"]: rendered += ".post%d" % pieces["distance"] if pieces["dirty"]: rendered += ".dev0" else: # exception #1 rendered = "0.post%d" % pieces["distance"] if pieces["dirty"]: rendered += ".dev0" return rendered def render_git_describe(pieces): # TAG[-DISTANCE-gHEX][-dirty], like 'git describe --tags --dirty # --always' # exceptions: # 1: no tags. HEX[-dirty] (note: no 'g' prefix) if pieces["closest-tag"]: rendered = pieces["closest-tag"] if pieces["distance"]: rendered += "-%d-g%s" % (pieces["distance"], pieces["short"]) else: # exception #1 rendered = pieces["short"] if pieces["dirty"]: rendered += "-dirty" return rendered def render_git_describe_long(pieces): # TAG-DISTANCE-gHEX[-dirty], like 'git describe --tags --dirty # --always -long'. The distance/hash is unconditional. # exceptions: # 1: no tags. HEX[-dirty] (note: no 'g' prefix) if pieces["closest-tag"]: rendered = pieces["closest-tag"] rendered += "-%d-g%s" % (pieces["distance"], pieces["short"]) else: # exception #1 rendered = pieces["short"] if pieces["dirty"]: rendered += "-dirty" return rendered def render(pieces, style): if pieces["error"]: return {"version": "unknown", "full-revisionid": pieces.get("long"), "dirty": None, "error": pieces["error"]} if not style or style == "default": style = "pep440" # the default if style == "pep440": rendered = render_pep440(pieces) elif style == "pep440-pre": rendered = render_pep440_pre(pieces) elif style == "pep440-post": rendered = render_pep440_post(pieces) elif style == "pep440-old": rendered = render_pep440_old(pieces) elif style == "git-describe": rendered = render_git_describe(pieces) elif style == "git-describe-long": rendered = render_git_describe_long(pieces) else: raise ValueError("unknown style '%s'" % style) return {"version": rendered, "full-revisionid": pieces["long"], "dirty": pieces["dirty"], "error": None} def get_versions(): # I am in _version.py, which lives at ROOT/VERSIONFILE_SOURCE. If we have # __file__, we can work backwards from there to the root. Some # py2exe/bbfreeze/non-CPython implementations don't do __file__, in which # case we can only use expanded keywords. cfg = get_config() verbose = cfg.verbose try: return git_versions_from_keywords(get_keywords(), cfg.tag_prefix, verbose) except NotThisMethod: pass try: root = os.path.realpath(__file__) # versionfile_source is the relative path from the top of the source # tree (where the .git directory might live) to this file. Invert # this to find the root from __file__. for i in cfg.versionfile_source.split('/'): root = os.path.dirname(root) except NameError: return {"version": "0+unknown", "full-revisionid": None, "dirty": None, "error": "unable to find root of source tree"} try: pieces = git_pieces_from_vcs(cfg.tag_prefix, root, verbose) return render(pieces, cfg.style) except NotThisMethod: pass try: if cfg.parentdir_prefix: return versions_from_parentdir(cfg.parentdir_prefix, root, verbose) except NotThisMethod: pass return {"version": "0+unknown", "full-revisionid": None, "dirty": None, "error": "unable to compute version"}
amacd31/bom_data_parser
bom_data_parser/_version.py
Python
bsd-3-clause
15,781
#!/usr/bin/env python # Copyright 2018 The Chromium Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. """Script for generating new binary protobuf seeds for fuzzers. Currently supports creating a single seed binary protobuf of the form zucchini.fuzzer.FilePair. """ import argparse import hashlib import logging import os import platform import subprocess import sys ABS_PATH = os.path.abspath(os.path.join(os.path.dirname(__file__))) ABS_TESTDATA_PATH = os.path.join(ABS_PATH, 'testdata') def parse_args(): """Parses arguments from command-line.""" parser = argparse.ArgumentParser() parser.add_argument('--raw', help='Whether to use Raw Zucchini.', action='store_true') parser.add_argument('old_file', help='Old file to generate/apply patch.') parser.add_argument('new_file', help='New file to generate patch from.') parser.add_argument('patch_file', help='Patch filename to use.') parser.add_argument('output_file', help='File to write binary protobuf to.') return parser.parse_args() def gen(old_file, new_file, patch_file, output_file, is_raw, is_win): """Generates a new patch and binary encodes a protobuf pair.""" # Create output directory if missing. output_dir = os.path.dirname(output_file) if not os.path.exists(output_dir): os.makedirs(output_dir) # Handle Windows executable names. zucchini = 'zucchini' protoc = 'protoc' if is_win: zucchini += '.exe' protoc += '.exe' zuc_cmd = [os.path.abspath(zucchini), '-gen'] if is_raw: zuc_cmd.append('-raw') # Generate a new patch. ret = subprocess.call(zuc_cmd + [old_file, new_file, patch_file], stdout=subprocess.PIPE, stderr=subprocess.PIPE) if ret: logging.error('Patch generation failed for ({}, {})'.format(old_file, new_file)) return ret # Binary encode the protobuf pair. ret = subprocess.call([sys.executable, os.path.join(ABS_PATH, 'create_seed_file_pair.py'), os.path.abspath(protoc), old_file, patch_file, output_file]) os.remove(patch_file) return ret def main(): args = parse_args() return gen(os.path.join(ABS_TESTDATA_PATH, args.old_file), os.path.join(ABS_TESTDATA_PATH, args.new_file), os.path.abspath(args.patch_file), os.path.abspath(args.output_file), args.raw, platform.system() == 'Windows') if __name__ == '__main__': sys.exit(main())
chromium/chromium
components/zucchini/fuzzers/generate_fuzzer_data.py
Python
bsd-3-clause
2,665
# -*- Mode: python; coding: utf-8; tab-width: 8; indent-tabs-mode: t; -*- # # Copyright (C) 2010 Jonathan Matthew # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2, or (at your option) # any later version. # # The Rhythmbox authors hereby grant permission for non-GPL compatible # GStreamer plugins to be used and distributed together with GStreamer # and Rhythmbox. This permission is above and beyond the permissions granted # by the GPL license by which Rhythmbox is covered. If you modify this code # you may extend this exception to your version of the code, but you are not # obligated to do so. If you do not wish to do so, delete this exception # statement from your version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program; if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. # import rb from config import ReplayGainConfigDialog from player import ReplayGainPlayer class ReplayGainPlugin(rb.Plugin): def __init__ (self): rb.Plugin.__init__ (self) self.config_dialog = None def activate (self, shell): self.player = ReplayGainPlayer(shell) def deactivate (self, shell): self.config_dialog = None self.player.deactivate() self.player = None def create_configure_dialog(self, dialog=None): if self.config_dialog is None: self.config_dialog = ReplayGainConfigDialog(self) self.config_dialog.connect('response', self.config_dialog_response_cb) self.config_dialog.present() return self.config_dialog def config_dialog_response_cb(self, dialog, response): dialog.hide()
dignan/control
plugins/replaygain/replaygain/__init__.py
Python
gpl-2.0
2,008
import traci import os, sys import environment_state if 'SUMO_HOME' not in os.environ: print "SUMO setup incomplete. Exiting." exit() tools = os.path.join(os.environ['SUMO_HOME'], 'tools') sys.path.append(tools) sumoBinary = "C:/Program Files (x86)/DLR/Sumo/bin/sumo-gui" sumoCmd = [sumoBinary, "-c", "C:/Users/sreeniva/Desktop/Reinforcement Learning/madrl_traffic_control/Sumo Stuff/hello.sumocfg"] traci.start(sumoCmd) # run the entire RL workflow environment_state.test_workflow()
kamikazekartik/madrl_traffic_control
Sumo Stuff/main.py
Python
mit
491
from __future__ import absolute_import, division, unicode_literals import re from xml.sax.saxutils import escape, unescape from pipenv.patched.notpip._vendor.six.moves import urllib_parse as urlparse from . import base from ..constants import namespaces, prefixes __all__ = ["Filter"] allowed_elements = frozenset(( (namespaces['html'], 'a'), (namespaces['html'], 'abbr'), (namespaces['html'], 'acronym'), (namespaces['html'], 'address'), (namespaces['html'], 'area'), (namespaces['html'], 'article'), (namespaces['html'], 'aside'), (namespaces['html'], 'audio'), (namespaces['html'], 'b'), (namespaces['html'], 'big'), (namespaces['html'], 'blockquote'), (namespaces['html'], 'br'), (namespaces['html'], 'button'), (namespaces['html'], 'canvas'), (namespaces['html'], 'caption'), (namespaces['html'], 'center'), (namespaces['html'], 'cite'), (namespaces['html'], 'code'), (namespaces['html'], 'col'), (namespaces['html'], 'colgroup'), (namespaces['html'], 'command'), (namespaces['html'], 'datagrid'), (namespaces['html'], 'datalist'), (namespaces['html'], 'dd'), (namespaces['html'], 'del'), (namespaces['html'], 'details'), (namespaces['html'], 'dfn'), (namespaces['html'], 'dialog'), (namespaces['html'], 'dir'), (namespaces['html'], 'div'), (namespaces['html'], 'dl'), (namespaces['html'], 'dt'), (namespaces['html'], 'em'), (namespaces['html'], 'event-source'), (namespaces['html'], 'fieldset'), (namespaces['html'], 'figcaption'), (namespaces['html'], 'figure'), (namespaces['html'], 'footer'), (namespaces['html'], 'font'), (namespaces['html'], 'form'), (namespaces['html'], 'header'), (namespaces['html'], 'h1'), (namespaces['html'], 'h2'), (namespaces['html'], 'h3'), (namespaces['html'], 'h4'), (namespaces['html'], 'h5'), (namespaces['html'], 'h6'), (namespaces['html'], 'hr'), (namespaces['html'], 'i'), (namespaces['html'], 'img'), (namespaces['html'], 'input'), (namespaces['html'], 'ins'), (namespaces['html'], 'keygen'), (namespaces['html'], 'kbd'), (namespaces['html'], 'label'), (namespaces['html'], 'legend'), (namespaces['html'], 'li'), (namespaces['html'], 'm'), (namespaces['html'], 'map'), (namespaces['html'], 'menu'), (namespaces['html'], 'meter'), (namespaces['html'], 'multicol'), (namespaces['html'], 'nav'), (namespaces['html'], 'nextid'), (namespaces['html'], 'ol'), (namespaces['html'], 'output'), (namespaces['html'], 'optgroup'), (namespaces['html'], 'option'), (namespaces['html'], 'p'), (namespaces['html'], 'pre'), (namespaces['html'], 'progress'), (namespaces['html'], 'q'), (namespaces['html'], 's'), (namespaces['html'], 'samp'), (namespaces['html'], 'section'), (namespaces['html'], 'select'), (namespaces['html'], 'small'), (namespaces['html'], 'sound'), (namespaces['html'], 'source'), (namespaces['html'], 'spacer'), (namespaces['html'], 'span'), (namespaces['html'], 'strike'), (namespaces['html'], 'strong'), (namespaces['html'], 'sub'), (namespaces['html'], 'sup'), (namespaces['html'], 'table'), (namespaces['html'], 'tbody'), (namespaces['html'], 'td'), (namespaces['html'], 'textarea'), (namespaces['html'], 'time'), (namespaces['html'], 'tfoot'), (namespaces['html'], 'th'), (namespaces['html'], 'thead'), (namespaces['html'], 'tr'), (namespaces['html'], 'tt'), (namespaces['html'], 'u'), (namespaces['html'], 'ul'), (namespaces['html'], 'var'), (namespaces['html'], 'video'), (namespaces['mathml'], 'maction'), (namespaces['mathml'], 'math'), (namespaces['mathml'], 'merror'), (namespaces['mathml'], 'mfrac'), (namespaces['mathml'], 'mi'), (namespaces['mathml'], 'mmultiscripts'), (namespaces['mathml'], 'mn'), (namespaces['mathml'], 'mo'), (namespaces['mathml'], 'mover'), (namespaces['mathml'], 'mpadded'), (namespaces['mathml'], 'mphantom'), (namespaces['mathml'], 'mprescripts'), (namespaces['mathml'], 'mroot'), (namespaces['mathml'], 'mrow'), (namespaces['mathml'], 'mspace'), (namespaces['mathml'], 'msqrt'), (namespaces['mathml'], 'mstyle'), (namespaces['mathml'], 'msub'), (namespaces['mathml'], 'msubsup'), (namespaces['mathml'], 'msup'), (namespaces['mathml'], 'mtable'), (namespaces['mathml'], 'mtd'), (namespaces['mathml'], 'mtext'), (namespaces['mathml'], 'mtr'), (namespaces['mathml'], 'munder'), (namespaces['mathml'], 'munderover'), (namespaces['mathml'], 'none'), (namespaces['svg'], 'a'), (namespaces['svg'], 'animate'), (namespaces['svg'], 'animateColor'), (namespaces['svg'], 'animateMotion'), (namespaces['svg'], 'animateTransform'), (namespaces['svg'], 'clipPath'), (namespaces['svg'], 'circle'), (namespaces['svg'], 'defs'), (namespaces['svg'], 'desc'), (namespaces['svg'], 'ellipse'), (namespaces['svg'], 'font-face'), (namespaces['svg'], 'font-face-name'), (namespaces['svg'], 'font-face-src'), (namespaces['svg'], 'g'), (namespaces['svg'], 'glyph'), (namespaces['svg'], 'hkern'), (namespaces['svg'], 'linearGradient'), (namespaces['svg'], 'line'), (namespaces['svg'], 'marker'), (namespaces['svg'], 'metadata'), (namespaces['svg'], 'missing-glyph'), (namespaces['svg'], 'mpath'), (namespaces['svg'], 'path'), (namespaces['svg'], 'polygon'), (namespaces['svg'], 'polyline'), (namespaces['svg'], 'radialGradient'), (namespaces['svg'], 'rect'), (namespaces['svg'], 'set'), (namespaces['svg'], 'stop'), (namespaces['svg'], 'svg'), (namespaces['svg'], 'switch'), (namespaces['svg'], 'text'), (namespaces['svg'], 'title'), (namespaces['svg'], 'tspan'), (namespaces['svg'], 'use'), )) allowed_attributes = frozenset(( # HTML attributes (None, 'abbr'), (None, 'accept'), (None, 'accept-charset'), (None, 'accesskey'), (None, 'action'), (None, 'align'), (None, 'alt'), (None, 'autocomplete'), (None, 'autofocus'), (None, 'axis'), (None, 'background'), (None, 'balance'), (None, 'bgcolor'), (None, 'bgproperties'), (None, 'border'), (None, 'bordercolor'), (None, 'bordercolordark'), (None, 'bordercolorlight'), (None, 'bottompadding'), (None, 'cellpadding'), (None, 'cellspacing'), (None, 'ch'), (None, 'challenge'), (None, 'char'), (None, 'charoff'), (None, 'choff'), (None, 'charset'), (None, 'checked'), (None, 'cite'), (None, 'class'), (None, 'clear'), (None, 'color'), (None, 'cols'), (None, 'colspan'), (None, 'compact'), (None, 'contenteditable'), (None, 'controls'), (None, 'coords'), (None, 'data'), (None, 'datafld'), (None, 'datapagesize'), (None, 'datasrc'), (None, 'datetime'), (None, 'default'), (None, 'delay'), (None, 'dir'), (None, 'disabled'), (None, 'draggable'), (None, 'dynsrc'), (None, 'enctype'), (None, 'end'), (None, 'face'), (None, 'for'), (None, 'form'), (None, 'frame'), (None, 'galleryimg'), (None, 'gutter'), (None, 'headers'), (None, 'height'), (None, 'hidefocus'), (None, 'hidden'), (None, 'high'), (None, 'href'), (None, 'hreflang'), (None, 'hspace'), (None, 'icon'), (None, 'id'), (None, 'inputmode'), (None, 'ismap'), (None, 'keytype'), (None, 'label'), (None, 'leftspacing'), (None, 'lang'), (None, 'list'), (None, 'longdesc'), (None, 'loop'), (None, 'loopcount'), (None, 'loopend'), (None, 'loopstart'), (None, 'low'), (None, 'lowsrc'), (None, 'max'), (None, 'maxlength'), (None, 'media'), (None, 'method'), (None, 'min'), (None, 'multiple'), (None, 'name'), (None, 'nohref'), (None, 'noshade'), (None, 'nowrap'), (None, 'open'), (None, 'optimum'), (None, 'pattern'), (None, 'ping'), (None, 'point-size'), (None, 'poster'), (None, 'pqg'), (None, 'preload'), (None, 'prompt'), (None, 'radiogroup'), (None, 'readonly'), (None, 'rel'), (None, 'repeat-max'), (None, 'repeat-min'), (None, 'replace'), (None, 'required'), (None, 'rev'), (None, 'rightspacing'), (None, 'rows'), (None, 'rowspan'), (None, 'rules'), (None, 'scope'), (None, 'selected'), (None, 'shape'), (None, 'size'), (None, 'span'), (None, 'src'), (None, 'start'), (None, 'step'), (None, 'style'), (None, 'summary'), (None, 'suppress'), (None, 'tabindex'), (None, 'target'), (None, 'template'), (None, 'title'), (None, 'toppadding'), (None, 'type'), (None, 'unselectable'), (None, 'usemap'), (None, 'urn'), (None, 'valign'), (None, 'value'), (None, 'variable'), (None, 'volume'), (None, 'vspace'), (None, 'vrml'), (None, 'width'), (None, 'wrap'), (namespaces['xml'], 'lang'), # MathML attributes (None, 'actiontype'), (None, 'align'), (None, 'columnalign'), (None, 'columnalign'), (None, 'columnalign'), (None, 'columnlines'), (None, 'columnspacing'), (None, 'columnspan'), (None, 'depth'), (None, 'display'), (None, 'displaystyle'), (None, 'equalcolumns'), (None, 'equalrows'), (None, 'fence'), (None, 'fontstyle'), (None, 'fontweight'), (None, 'frame'), (None, 'height'), (None, 'linethickness'), (None, 'lspace'), (None, 'mathbackground'), (None, 'mathcolor'), (None, 'mathvariant'), (None, 'mathvariant'), (None, 'maxsize'), (None, 'minsize'), (None, 'other'), (None, 'rowalign'), (None, 'rowalign'), (None, 'rowalign'), (None, 'rowlines'), (None, 'rowspacing'), (None, 'rowspan'), (None, 'rspace'), (None, 'scriptlevel'), (None, 'selection'), (None, 'separator'), (None, 'stretchy'), (None, 'width'), (None, 'width'), (namespaces['xlink'], 'href'), (namespaces['xlink'], 'show'), (namespaces['xlink'], 'type'), # SVG attributes (None, 'accent-height'), (None, 'accumulate'), (None, 'additive'), (None, 'alphabetic'), (None, 'arabic-form'), (None, 'ascent'), (None, 'attributeName'), (None, 'attributeType'), (None, 'baseProfile'), (None, 'bbox'), (None, 'begin'), (None, 'by'), (None, 'calcMode'), (None, 'cap-height'), (None, 'class'), (None, 'clip-path'), (None, 'color'), (None, 'color-rendering'), (None, 'content'), (None, 'cx'), (None, 'cy'), (None, 'd'), (None, 'dx'), (None, 'dy'), (None, 'descent'), (None, 'display'), (None, 'dur'), (None, 'end'), (None, 'fill'), (None, 'fill-opacity'), (None, 'fill-rule'), (None, 'font-family'), (None, 'font-size'), (None, 'font-stretch'), (None, 'font-style'), (None, 'font-variant'), (None, 'font-weight'), (None, 'from'), (None, 'fx'), (None, 'fy'), (None, 'g1'), (None, 'g2'), (None, 'glyph-name'), (None, 'gradientUnits'), (None, 'hanging'), (None, 'height'), (None, 'horiz-adv-x'), (None, 'horiz-origin-x'), (None, 'id'), (None, 'ideographic'), (None, 'k'), (None, 'keyPoints'), (None, 'keySplines'), (None, 'keyTimes'), (None, 'lang'), (None, 'marker-end'), (None, 'marker-mid'), (None, 'marker-start'), (None, 'markerHeight'), (None, 'markerUnits'), (None, 'markerWidth'), (None, 'mathematical'), (None, 'max'), (None, 'min'), (None, 'name'), (None, 'offset'), (None, 'opacity'), (None, 'orient'), (None, 'origin'), (None, 'overline-position'), (None, 'overline-thickness'), (None, 'panose-1'), (None, 'path'), (None, 'pathLength'), (None, 'points'), (None, 'preserveAspectRatio'), (None, 'r'), (None, 'refX'), (None, 'refY'), (None, 'repeatCount'), (None, 'repeatDur'), (None, 'requiredExtensions'), (None, 'requiredFeatures'), (None, 'restart'), (None, 'rotate'), (None, 'rx'), (None, 'ry'), (None, 'slope'), (None, 'stemh'), (None, 'stemv'), (None, 'stop-color'), (None, 'stop-opacity'), (None, 'strikethrough-position'), (None, 'strikethrough-thickness'), (None, 'stroke'), (None, 'stroke-dasharray'), (None, 'stroke-dashoffset'), (None, 'stroke-linecap'), (None, 'stroke-linejoin'), (None, 'stroke-miterlimit'), (None, 'stroke-opacity'), (None, 'stroke-width'), (None, 'systemLanguage'), (None, 'target'), (None, 'text-anchor'), (None, 'to'), (None, 'transform'), (None, 'type'), (None, 'u1'), (None, 'u2'), (None, 'underline-position'), (None, 'underline-thickness'), (None, 'unicode'), (None, 'unicode-range'), (None, 'units-per-em'), (None, 'values'), (None, 'version'), (None, 'viewBox'), (None, 'visibility'), (None, 'width'), (None, 'widths'), (None, 'x'), (None, 'x-height'), (None, 'x1'), (None, 'x2'), (namespaces['xlink'], 'actuate'), (namespaces['xlink'], 'arcrole'), (namespaces['xlink'], 'href'), (namespaces['xlink'], 'role'), (namespaces['xlink'], 'show'), (namespaces['xlink'], 'title'), (namespaces['xlink'], 'type'), (namespaces['xml'], 'base'), (namespaces['xml'], 'lang'), (namespaces['xml'], 'space'), (None, 'y'), (None, 'y1'), (None, 'y2'), (None, 'zoomAndPan'), )) attr_val_is_uri = frozenset(( (None, 'href'), (None, 'src'), (None, 'cite'), (None, 'action'), (None, 'longdesc'), (None, 'poster'), (None, 'background'), (None, 'datasrc'), (None, 'dynsrc'), (None, 'lowsrc'), (None, 'ping'), (namespaces['xlink'], 'href'), (namespaces['xml'], 'base'), )) svg_attr_val_allows_ref = frozenset(( (None, 'clip-path'), (None, 'color-profile'), (None, 'cursor'), (None, 'fill'), (None, 'filter'), (None, 'marker'), (None, 'marker-start'), (None, 'marker-mid'), (None, 'marker-end'), (None, 'mask'), (None, 'stroke'), )) svg_allow_local_href = frozenset(( (None, 'altGlyph'), (None, 'animate'), (None, 'animateColor'), (None, 'animateMotion'), (None, 'animateTransform'), (None, 'cursor'), (None, 'feImage'), (None, 'filter'), (None, 'linearGradient'), (None, 'pattern'), (None, 'radialGradient'), (None, 'textpath'), (None, 'tref'), (None, 'set'), (None, 'use') )) allowed_css_properties = frozenset(( 'azimuth', 'background-color', 'border-bottom-color', 'border-collapse', 'border-color', 'border-left-color', 'border-right-color', 'border-top-color', 'clear', 'color', 'cursor', 'direction', 'display', 'elevation', 'float', 'font', 'font-family', 'font-size', 'font-style', 'font-variant', 'font-weight', 'height', 'letter-spacing', 'line-height', 'overflow', 'pause', 'pause-after', 'pause-before', 'pitch', 'pitch-range', 'richness', 'speak', 'speak-header', 'speak-numeral', 'speak-punctuation', 'speech-rate', 'stress', 'text-align', 'text-decoration', 'text-indent', 'unicode-bidi', 'vertical-align', 'voice-family', 'volume', 'white-space', 'width', )) allowed_css_keywords = frozenset(( 'auto', 'aqua', 'black', 'block', 'blue', 'bold', 'both', 'bottom', 'brown', 'center', 'collapse', 'dashed', 'dotted', 'fuchsia', 'gray', 'green', '!important', 'italic', 'left', 'lime', 'maroon', 'medium', 'none', 'navy', 'normal', 'nowrap', 'olive', 'pointer', 'purple', 'red', 'right', 'solid', 'silver', 'teal', 'top', 'transparent', 'underline', 'white', 'yellow', )) allowed_svg_properties = frozenset(( 'fill', 'fill-opacity', 'fill-rule', 'stroke', 'stroke-width', 'stroke-linecap', 'stroke-linejoin', 'stroke-opacity', )) allowed_protocols = frozenset(( 'ed2k', 'ftp', 'http', 'https', 'irc', 'mailto', 'news', 'gopher', 'nntp', 'telnet', 'webcal', 'xmpp', 'callto', 'feed', 'urn', 'aim', 'rsync', 'tag', 'ssh', 'sftp', 'rtsp', 'afs', 'data', )) allowed_content_types = frozenset(( 'image/png', 'image/jpeg', 'image/gif', 'image/webp', 'image/bmp', 'text/plain', )) data_content_type = re.compile(r''' ^ # Match a content type <application>/<type> (?P<content_type>[-a-zA-Z0-9.]+/[-a-zA-Z0-9.]+) # Match any character set and encoding (?:(?:;charset=(?:[-a-zA-Z0-9]+)(?:;(?:base64))?) |(?:;(?:base64))?(?:;charset=(?:[-a-zA-Z0-9]+))?) # Assume the rest is data ,.* $ ''', re.VERBOSE) class Filter(base.Filter): """Sanitizes token stream of XHTML+MathML+SVG and of inline style attributes""" def __init__(self, source, allowed_elements=allowed_elements, allowed_attributes=allowed_attributes, allowed_css_properties=allowed_css_properties, allowed_css_keywords=allowed_css_keywords, allowed_svg_properties=allowed_svg_properties, allowed_protocols=allowed_protocols, allowed_content_types=allowed_content_types, attr_val_is_uri=attr_val_is_uri, svg_attr_val_allows_ref=svg_attr_val_allows_ref, svg_allow_local_href=svg_allow_local_href): """Creates a Filter :arg allowed_elements: set of elements to allow--everything else will be escaped :arg allowed_attributes: set of attributes to allow in elements--everything else will be stripped :arg allowed_css_properties: set of CSS properties to allow--everything else will be stripped :arg allowed_css_keywords: set of CSS keywords to allow--everything else will be stripped :arg allowed_svg_properties: set of SVG properties to allow--everything else will be removed :arg allowed_protocols: set of allowed protocols for URIs :arg allowed_content_types: set of allowed content types for ``data`` URIs. :arg attr_val_is_uri: set of attributes that have URI values--values that have a scheme not listed in ``allowed_protocols`` are removed :arg svg_attr_val_allows_ref: set of SVG attributes that can have references :arg svg_allow_local_href: set of SVG elements that can have local hrefs--these are removed """ super(Filter, self).__init__(source) self.allowed_elements = allowed_elements self.allowed_attributes = allowed_attributes self.allowed_css_properties = allowed_css_properties self.allowed_css_keywords = allowed_css_keywords self.allowed_svg_properties = allowed_svg_properties self.allowed_protocols = allowed_protocols self.allowed_content_types = allowed_content_types self.attr_val_is_uri = attr_val_is_uri self.svg_attr_val_allows_ref = svg_attr_val_allows_ref self.svg_allow_local_href = svg_allow_local_href def __iter__(self): for token in base.Filter.__iter__(self): token = self.sanitize_token(token) if token: yield token # Sanitize the +html+, escaping all elements not in ALLOWED_ELEMENTS, and # stripping out all attributes not in ALLOWED_ATTRIBUTES. Style attributes # are parsed, and a restricted set, specified by ALLOWED_CSS_PROPERTIES and # ALLOWED_CSS_KEYWORDS, are allowed through. attributes in ATTR_VAL_IS_URI # are scanned, and only URI schemes specified in ALLOWED_PROTOCOLS are # allowed. # # sanitize_html('<script> do_nasty_stuff() </script>') # => &lt;script> do_nasty_stuff() &lt;/script> # sanitize_html('<a href="javascript: sucker();">Click here for $100</a>') # => <a>Click here for $100</a> def sanitize_token(self, token): # accommodate filters which use token_type differently token_type = token["type"] if token_type in ("StartTag", "EndTag", "EmptyTag"): name = token["name"] namespace = token["namespace"] if ((namespace, name) in self.allowed_elements or (namespace is None and (namespaces["html"], name) in self.allowed_elements)): return self.allowed_token(token) else: return self.disallowed_token(token) elif token_type == "Comment": pass else: return token def allowed_token(self, token): if "data" in token: attrs = token["data"] attr_names = set(attrs.keys()) # Remove forbidden attributes for to_remove in (attr_names - self.allowed_attributes): del token["data"][to_remove] attr_names.remove(to_remove) # Remove attributes with disallowed URL values for attr in (attr_names & self.attr_val_is_uri): assert attr in attrs # I don't have a clue where this regexp comes from or why it matches those # characters, nor why we call unescape. I just know it's always been here. # Should you be worried by this comment in a sanitizer? Yes. On the other hand, all # this will do is remove *more* than it otherwise would. val_unescaped = re.sub("[`\x00-\x20\x7f-\xa0\\s]+", '', unescape(attrs[attr])).lower() # remove replacement characters from unescaped characters val_unescaped = val_unescaped.replace("\ufffd", "") try: uri = urlparse.urlparse(val_unescaped) except ValueError: uri = None del attrs[attr] if uri and uri.scheme: if uri.scheme not in self.allowed_protocols: del attrs[attr] if uri.scheme == 'data': m = data_content_type.match(uri.path) if not m: del attrs[attr] elif m.group('content_type') not in self.allowed_content_types: del attrs[attr] for attr in self.svg_attr_val_allows_ref: if attr in attrs: attrs[attr] = re.sub(r'url\s*\(\s*[^#\s][^)]+?\)', ' ', unescape(attrs[attr])) if (token["name"] in self.svg_allow_local_href and (namespaces['xlink'], 'href') in attrs and re.search(r'^\s*[^#\s].*', attrs[(namespaces['xlink'], 'href')])): del attrs[(namespaces['xlink'], 'href')] if (None, 'style') in attrs: attrs[(None, 'style')] = self.sanitize_css(attrs[(None, 'style')]) token["data"] = attrs return token def disallowed_token(self, token): token_type = token["type"] if token_type == "EndTag": token["data"] = "</%s>" % token["name"] elif token["data"]: assert token_type in ("StartTag", "EmptyTag") attrs = [] for (ns, name), v in token["data"].items(): attrs.append(' %s="%s"' % (name if ns is None else "%s:%s" % (prefixes[ns], name), escape(v))) token["data"] = "<%s%s>" % (token["name"], ''.join(attrs)) else: token["data"] = "<%s>" % token["name"] if token.get("selfClosing"): token["data"] = token["data"][:-1] + "/>" token["type"] = "Characters" del token["name"] return token def sanitize_css(self, style): # disallow urls style = re.compile(r'url\s*\(\s*[^\s)]+?\s*\)\s*').sub(' ', style) # gauntlet if not re.match(r"""^([:,;#%.\sa-zA-Z0-9!]|\w-\w|'[\s\w]+'|"[\s\w]+"|\([\d,\s]+\))*$""", style): return '' if not re.match(r"^\s*([-\w]+\s*:[^:;]*(;\s*|$))*$", style): return '' clean = [] for prop, value in re.findall(r"([-\w]+)\s*:\s*([^:;]*)", style): if not value: continue if prop.lower() in self.allowed_css_properties: clean.append(prop + ': ' + value + ';') elif prop.split('-')[0].lower() in ['background', 'border', 'margin', 'padding']: for keyword in value.split(): if keyword not in self.allowed_css_keywords and \ not re.match(r"^(#[0-9a-fA-F]+|rgb\(\d+%?,\d*%?,?\d*%?\)?|\d{0,2}\.?\d{0,2}(cm|em|ex|in|mm|pc|pt|px|%|,|\))?)$", keyword): # noqa break else: clean.append(prop + ': ' + value + ';') elif prop.lower() in self.allowed_svg_properties: clean.append(prop + ': ' + value + ';') return ' '.join(clean)
kennethreitz/pipenv
pipenv/patched/notpip/_vendor/html5lib/filters/sanitizer.py
Python
mit
26,266
# Copyright (C) 2010 Michael Foord # E-mail: fuzzyman AT voidspace DOT org DOT uk # This software is licensed under the terms of the BSD license. # http://www.voidspace.org.uk/python/license.shtml from __future__ import with_statement from _weakref import ref __all__ = ['WeakSet'] __version__ = '1.0.0' class _IterationGuard(object): # This context manager registers itself in the current iterators of the # weak container, such as to delay all removals until the context manager # exits. # This technique should be relatively thread-safe (since sets are). def __init__(self, weakcontainer): # Don't create cycles self.weakcontainer = ref(weakcontainer) def __enter__(self): w = self.weakcontainer() if w is not None: w._iterating.add(self) return self def __exit__(self, e, t, b): w = self.weakcontainer() if w is not None: s = w._iterating s.remove(self) if not s: w._commit_removals() class WeakSet(object): def __init__(self, data=None): self.data = set() def _remove(item, selfref=ref(self)): self = selfref() if self is not None: if self._iterating: self._pending_removals.append(item) else: self.data.discard(item) self._remove = _remove # A list of keys to be removed self._pending_removals = [] self._iterating = set() if data is not None: self.update(data) def _commit_removals(self): l = self._pending_removals discard = self.data.discard while l: discard(l.pop()) def __iter__(self): with _IterationGuard(self): for itemref in self.data: item = itemref() if item is not None: yield item def __len__(self): return sum(x() is not None for x in self.data) def __contains__(self, item): return ref(item) in self.data def __reduce__(self): return (self.__class__, (list(self),), getattr(self, '__dict__', None)) __hash__ = None def add(self, item): if self._pending_removals: self._commit_removals() self.data.add(ref(item, self._remove)) def clear(self): if self._pending_removals: self._commit_removals() self.data.clear() def copy(self): return self.__class__(self) def pop(self): if self._pending_removals: self._commit_removals() while True: try: itemref = self.data.pop() except KeyError: raise KeyError('pop from empty WeakSet') item = itemref() if item is not None: return item def remove(self, item): if self._pending_removals: self._commit_removals() self.data.remove(ref(item)) def discard(self, item): if self._pending_removals: self._commit_removals() self.data.discard(ref(item)) def update(self, other): if self._pending_removals: self._commit_removals() if isinstance(other, self.__class__): self.data.update(other.data) else: for element in other: self.add(element) def __ior__(self, other): self.update(other) return self # Helper functions for simple delegating methods. def _apply(self, other, method): if not isinstance(other, self.__class__): other = self.__class__(other) newdata = method(other.data) newset = self.__class__() newset.data = newdata return newset def difference(self, other): return self._apply(other, self.data.difference) __sub__ = difference def difference_update(self, other): if self._pending_removals: self._commit_removals() if self is other: self.data.clear() else: self.data.difference_update(ref(item) for item in other) def __isub__(self, other): if self._pending_removals: self._commit_removals() if self is other: self.data.clear() else: self.data.difference_update(ref(item) for item in other) return self def intersection(self, other): return self._apply(other, self.data.intersection) __and__ = intersection def intersection_update(self, other): if self._pending_removals: self._commit_removals() self.data.intersection_update(ref(item) for item in other) def __iand__(self, other): if self._pending_removals: self._commit_removals() self.data.intersection_update(ref(item) for item in other) return self def issubset(self, other): return self.data.issubset(ref(item) for item in other) __lt__ = issubset def __le__(self, other): return self.data <= set(ref(item) for item in other) def issuperset(self, other): return self.data.issuperset(ref(item) for item in other) __gt__ = issuperset def __ge__(self, other): return self.data >= set(ref(item) for item in other) def __eq__(self, other): if not isinstance(other, self.__class__): return NotImplemented return self.data == set(ref(item) for item in other) def symmetric_difference(self, other): return self._apply(other, self.data.symmetric_difference) __xor__ = symmetric_difference def symmetric_difference_update(self, other): if self._pending_removals: self._commit_removals() if self is other: self.data.clear() else: self.data.symmetric_difference_update(ref(item) for item in other) def __ixor__(self, other): if self._pending_removals: self._commit_removals() if self is other: self.data.clear() else: self.data.symmetric_difference_update(ref(item) for item in other) return self def union(self, other): return self._apply(other, self.data.union) __or__ = union def isdisjoint(self, other): return len(self.intersection(other)) == 0
spacetelescope/PyFITS
pyfits/_compat/_weakset_py2/__init__.py
Python
bsd-3-clause
6,423
from parser.calc.base import calc
tehmaze/parser
parser/calc/__init__.py
Python
mit
34
from ..PulsePrimitives import * from ..Compiler import compile_to_hardware from ..PulseSequencePlotter import plot_pulse_files from .helpers import create_cal_seqs from itertools import product import operator from ..ControlFlow import * from ..TdmInstructions import * from functools import reduce from typing import Iterable, Union, Tuple @qfunction def qreset(qubits: Channels.LogicalChannel, signVec: Tuple[bool], measDelay: Union[int,float], buf: Union[int,float], reg_size: int = None, TDM_map: Iterable[Union[int,bool]] = None) -> list: """ For each qubit, build the set of feedback actions to perform when receiving a zero or one in the comparison register Parameters ---------- qubits : Channels.LogicalChannel tuple A hashable (immutable) tuple of qubits to reset signVec : boolean tuple A hashable (immutable) tuple of binary values from the compairison register indicating the measured state of each qubit in the register before reset. measDelay : int/float Delay after measurement before performing the LOADCMP comparison with value in the register (seconds) buf : int/float Wait time between (seconds) reg_size : int, optional Size of the register in number of qubits, including those not reset. Default value is set to len(qubits). TDM_map : bit mask, optional Map each qubit to a TDM digital input. If True, arguments reset a subset of the qubit register (see Reset). Default: np.array(qN, qN-1, ..., q1) from MSB to LSB. Returns ------- seq : QGL.ControlFlow.Call QGL sequence with the qreset calls Examples -------- >>> qreset((q1, q2), (0,1), 2e-6, 2e-6); CALL(H:) """ if not reg_size: reg_size = len(qubits) TDM_map = np.arange(reg_size,0,-1) FbGates = [] for ct, q in enumerate(qubits): if signVec[ct] == 0: FbGates.append([gate(q) for gate in [Id, X]]) else: # inverted logic FbGates.append([gate(q) for gate in [X, Id]]) FbSeq = [reduce(operator.mul, x) for x in product(*FbGates)] # load register seq = [Id(qubits[0], measDelay), qwait(kind='CMP'), Id(qubits[0], buf)] # create a branch for each possible comparison value for ct in range(2**reg_size): # duplicate branches for the irrelevant results # if reg_size > len(TDM_map) meas_result = [(ct & TDM_bit)>0 for TDM_bit in 2**(np.array(TDM_map)-1)] branch_idx = sum([t*2**(len(qubits)-ind-1) for ind,t in enumerate((meas_result))]) seq += qif(ct, [FbSeq[branch_idx]]) return seq def Reset(qubits: Iterable[Channels.LogicalChannel], measDelay: Union[int,float]=1e-6, signVec: Tuple[bool] = None, doubleRound: bool = True, buf: Union[int,float] = 20e-9, showPlot: bool = False, measChans: Channels.LogicalChannel = None, add_cals: bool = True, calRepeats: int = 2, reg_size: int = None, TDM_map: Iterable[Union[int,bool]]=None) -> str: """ Preparation, simultanoeus reset, and measurement of an arbitrary number of qubits Parameters ---------- qubits : Channels.LogicalChannel tuple A hashable (immutable) tuple of qubits to reset measDelay : int/float, optional Delay after measurement before performing the LOADCMP compairison with value in the register (seconds) signVec : boolean tuple, optional conditions for feedback. Tuple of 0 (flip if signal is above threshold) and 1 (flip if below) for each qubit. Default = 0 for all qubits doubleRound : boolean, optional If true, do two rounds of feedback showPlot : boolean, optional Whether to plot measChans : LogicalChannel tuple, optional A hashable (immutable) tuple of qubits to measured. add_cals : boolean, optional Whether to append calibration pulses to the end of the sequence calRepeats : int, optional How many times to repeat calibration scalings (default 2) reg_size : int, optional Size of the register in number of qubits, including those not reset. Default value is set to len(qubits). TDM_map : bit mask, optional Map each qubit to a TDM digital input. If True, arguments reset a subset of the qubit register (see Reset). Default: np.array(qN, qN-1, ..., q1) from MSB to LSB. Returns ------- metafile : string Path to a json metafile with details about the sequences and paths to compiled machine files Examples -------- >>> Reset((q1, q2)); Compiled 12 sequences. >>> mf '/path/to/exp/exp-meta.json' """ if measChans is None: measChans = qubits if signVec == None: signVec = (0, ) * len(qubits) seqs = [prep + [qreset(qubits, signVec, measDelay, buf, reg_size=reg_size, TDM_map=TDM_map)] for prep in create_cal_seqs(qubits, 1)] measBlock = reduce(operator.mul, [MEAS(q) for q in qubits]) if doubleRound: for seq in seqs: seq += [measBlock] seq.append(qreset(qubits, signVec, measDelay, buf, reg_size=reg_size, TDM_map=TDM_map)) # add final measurement for seq in seqs: seq += [measBlock, Id(qubits[0], measDelay), qwait(kind='CMP')] if add_cals: seqs += create_cal_seqs(qubits, calRepeats, measChans=measChans, waitcmp=True) metafile = compile_to_hardware(seqs, 'Reset/Reset') if showPlot: plot_pulse_files(metafile) return metafile # do not make it a subroutine for now def BitFlip3(data_qs: Iterable[Channels.LogicalChannel], ancilla_qs: Iterable[Channels.LogicalChannel], theta: Union[int,float] = None, phi: Union[int,float] = None, nrounds: int = 1, meas_delay: Union[int,float] = 1e-6, add_cals: bool = False, calRepeats: int = 2) -> str: """ Encoding on 3-qubit bit-flip code, followed by n rounds of syndrome detection, and final correction using the n results. Parameters ---------- data_qs : Channels.LogicalChannel tuple A hashable (immutable) tuple of qubits of the 3 code qubits ancilla_qs : Channels.LogicalChannel tuple A hashable (immutable) tuple of qubits of the 2 syndrome qubits theta : int/float, optional Longitudinal rotation angle for the encoded state (radians). Default = None. phi : int/float, optional Azimuthal rotation angle for the encoded state (radians). Default = None. nrounds: int, optional Number of consecutive measurements measDelay : int/float, optional Delay between syndrome check rounds (seconds) add_cals : boolean, optional Whether to append calibration pulses to the end of the sequence calRepeats : int, optional How many times to repeat calibration scalings (default 2) Returns ------- metafile : string Path to a json metafile with details about the sequences and paths to compiled machine files Examples -------- >>> mf = BitFlip3((q1, q2, q3), (q4, q5)); Compiled 12 sequences. >>> mf '/path/to/exp/exp-meta.json' """ if len(data_qs) != 3 or len(ancilla_qs) != 2: raise Exception("Wrong number of qubits") seqs = [ DecodeSetRounds(1,0,nrounds), Invalidate(10, 2*nrounds), Invalidate(11, 0x1)] # encode single-qubit state into 3 qubits if theta and phi: seqs+=[Utheta(data_qs[1], theta, phi), CNOT(data_qs[1], data_qs[0]), CNOT(data_qs[1], data_qs[2])] # multiple rounds of syndrome measurements for n in range(nrounds): seqs+= [CNOT(data_qs[0],ancilla_qs[0])*CNOT(data_qs[1],ancilla_qs[1])], seqs+= [CNOT(data_qs[1], ancilla_qs[0])*CNOT(data_qs[2],ancilla_qs[1])], seqs+= [MEASA(ancilla_qs[0], maddr=(10, 2*n))* MEASA(ancilla_qs[1], maddr=(10, 2*n+1)), Id(ancilla_qs[0], meas_delay), MEAS(data_qs[0], amp=0)* MEAS(data_qs[1], amp=0)* MEAS(data_qs[2], amp=0)] # virtual msmt's just to keep the number of segments # uniform across digitizer channels seqs+=Decode(10, 11, 2*nrounds) seqs+=qwait("RAM",11) seqs+=[MEAS(data_qs[0])* MEAS(data_qs[1])* MEAS(data_qs[2])* MEAS(ancilla_qs[0], amp=0)* MEAS(ancilla_qs[1], amp=0)] # virtual msmt's # apply corrective pulses depending on the decoder result FbGates = [] for q in data_qs: FbGates.append([gate(q) for gate in [Id, X]]) FbSeq = [reduce(operator.mul, x) for x in product(*FbGates)] for k in range(8): seqs += qif(k, [FbSeq[k]]) if add_cals: seqs += create_cal_seqs(qubits, calRepeats) metafile = compile_to_hardware(seqs, 'BitFlip/BitFlip', tdm_seq=True) return metafile def MajorityVoteN(qubits: Iterable[Channels.LogicalChannel], nrounds: int, prep: Iterable[bool] = [], meas_delay: float = 1e-6, add_cals: bool = False, calRepeats: int = 2) -> str: """ Majority vote across multiple measurement results (same or different qubits) Parameters ---------- qubits : Channels.LogicalChannel tuple A hashable (immutable) tuple of qubits for majority vote nrounds: int Number of consecutive measurements prep : boolean iterable, optional Array of binary values mapping X(q) pulses to the list of qubits proivided. Ex: (q1,q2), prep=(1,0) -> would apply a pi pulse to q1 before the majority vote measurement. Default = [] measDelay : int/float, optional Delay between syndrome check rounds (seconds) add_cals : boolean, optional Whether to append calibration pulses to the end of the sequence calRepeats : int, optional How many times to repeat calibration scalings (default 2) Returns ------- metafile : string Path to a json metafile with details about the sequences and paths to compiled machine files Examples -------- >>> mf = MajorityVoteN((q1, q2, q3), 10); Compiled 1 sequences. o INVALIDATE(channel=None, addr=0x1, mask=0x0) o WRITEADDR(channel=None, addr=0x1, value=0xfffff) MAJORITYMASK(in_addr=1, out_addr=0) o INVALIDATE(channel=None, addr=0xa, mask=0xfffff) o INVALIDATE(channel=None, addr=0xb, mask=0x1) MAJORITY(in_addr=a, out_addr=b) >>> mf '/path/to/exp/exp-meta.json' """ nqubits = len(qubits) seqs = [MajorityMask(1, 0, nrounds*nqubits), Invalidate(10, nrounds*nqubits), Invalidate(11, 1)] if prep: seqs += [reduce(operator.mul, [X(q) for n,q in enumerate(qubits) if prep[n]])] for n in range(nrounds): seqs += [reduce(operator.mul, [MEASA(q, (10, nqubits*n+m)) for m,q in enumerate(qubits)]), Id(qubits[0],meas_delay)] seqs+=MajorityVote(10,11, nrounds*nqubits) seqs+=qwait("RAM", 11) seqs+=[Id(qubits[0],100e-9)] seqs+=qif(1,[X(qubits[0])]) # placeholder for any conditional operation seqs=[seqs] if add_cals: seqs += create_cal_seqs(qubits, calRepeats) metafile = compile_to_hardware(seqs, 'MajorityVote/MajorityVote', tdm_seq=True) return metafile
BBN-Q/QGL
QGL/BasicSequences/Feedback.py
Python
apache-2.0
12,237
# coding: utf-8 # # Copyright 2017 The Oppia Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS-IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Test functions relating to roles and actions.""" from core.domain import role_services from core.tests import test_utils import feconf class RoleDomainUnitTests(test_utils.GenericTestBase): """Tests for PARENT_ROLES and ROLE_ACTIONS.""" PARENT_ROLES = role_services.PARENT_ROLES ACTIONS = role_services.ROLE_ACTIONS def test_dicts_have_same_keys(self): """Test that PARENT_ROLES and ROLE_ACTIONS have same keys.""" self.assertEqual( set(self.PARENT_ROLES.keys()), set(self.ACTIONS.keys())) def test_dicts_have_list_value(self): """Test that PARENT_ROLES and ROLE_ACTIONS, both have list as value to all the keys. """ for role_name in self.PARENT_ROLES: self.assertTrue(isinstance(self.PARENT_ROLES[role_name], list)) for role_name in self.ACTIONS: self.assertTrue(isinstance(self.ACTIONS[role_name], list)) def test_every_dict_entry_is_string(self): """Test that all keys and values(elements in lists) in PARENT_ROLES and ROLE_ACTIONS are string. """ for role_name in self.PARENT_ROLES: self.assertTrue(isinstance(role_name, str)) for role in self.PARENT_ROLES[role_name]: self.assertTrue(isinstance(role, str)) for role_name in self.ACTIONS: self.assertTrue(isinstance(role_name, str)) for action_name in self.ACTIONS[role_name]: self.assertTrue(isinstance(action_name, str)) def test_valid_parents(self): """Test that all the roles present in value list for any key in PARENT_ROLES are valid(i.e there exists a key with that name). """ valid_roles = self.PARENT_ROLES.keys() for role_name in self.PARENT_ROLES: for role in self.PARENT_ROLES[role_name]: self.assertIn(role, valid_roles) def test_that_role_graph_has_no_directed_cycles(self): """Visits each role and checks that there is no cycle from that role. """ visited = set() def check_cycle(source, roles): """Checks that source is not reachable from any of the given roles. Args: source: str. Role that should not be reachable via any path from roles. roles: list(str). List of roles that should not be able to reach source. """ for role in roles: self.assertNotEqual(role, source) if role not in visited: visited.add(role) check_cycle(source, self.PARENT_ROLES[role]) for role_name in self.PARENT_ROLES: visited = set() check_cycle(role_name, self.PARENT_ROLES[role_name]) def test_get_all_actions(self): """Test that get_all_actions works as expected.""" # Case when wrong input is given. with self.assertRaisesRegexp( Exception, 'Role TEST_ROLE does not exist.'): role_services.get_all_actions('TEST_ROLE') # Case for collection editor is checked. collection_editor_actions = list( set(role_services.ROLE_ACTIONS[feconf.ROLE_ID_EXPLORATION_EDITOR]) | set(role_services.ROLE_ACTIONS[feconf.ROLE_ID_BANNED_USER]) | set(role_services.ROLE_ACTIONS[feconf.ROLE_ID_GUEST]) | set(role_services.ROLE_ACTIONS[feconf.ROLE_ID_COLLECTION_EDITOR])) # Sets are compared as their element order don't need to be same. self.assertEqual(set(collection_editor_actions), set(role_services.get_all_actions( feconf.ROLE_ID_COLLECTION_EDITOR)))
souravbadami/oppia
core/domain/role_services_test.py
Python
apache-2.0
4,392
from django.conf.urls import patterns, include, url from django.conf import settings # Here, user contacts.profile will cause some 'mismatch' since contacts is also a module from profile import ProfileView from contacts import ContactsView from authen import Authenticate strid = settings.CONTACT_URL['strid'] user = settings.CONTACT_URL['user'] contact = settings.CONTACT_URL['contact'] auth = settings.CONTACT_URL['auth'] urlpatterns = patterns('', url(r'^api/'+auth+'$', Authenticate.as_view()), url(r'^api/(?P<'+strid+r'>\w{16})/$', ProfileView.as_view()), url(r'^api/(?P<'+strid+r'>\w{16})/(?P<'+contact+r'>\d+)/$', ContactsView.as_view()), url(r'^(?P<'+user+r'>\w{5,18})/(?P<'+strid+r'>\w{16})/$', ProfileView.as_view()), url(r'^(?P<'+user+r'>\w{5,18})/(?P<'+strid+r'>\w{16})/(?P<'+contact+r'>\d+)/$', ContactsView.as_view()), )
sharehub/DBRest
dbrest/contacts/urls.py
Python
mit
858
# Copyright (c) 2018 Ultimaker B.V. # Cura is released under the terms of the LGPLv3 or higher. from typing import Any, Optional from UM.Application import Application from UM.Decorators import override from UM.Settings.Interfaces import PropertyEvaluationContext from UM.Settings.SettingInstance import InstanceState from .CuraContainerStack import CuraContainerStack class PerObjectContainerStack(CuraContainerStack): def isDirty(self): # This stack should never be auto saved, so always return that there is nothing to save. return False @override(CuraContainerStack) def getProperty(self, key: str, property_name: str, context: Optional[PropertyEvaluationContext] = None) -> Any: if context is None: context = PropertyEvaluationContext() context.pushContainer(self) global_stack = Application.getInstance().getGlobalContainerStack() if not global_stack: return None # Return the user defined value if present, otherwise, evaluate the value according to the default routine. if self.getContainer(0).hasProperty(key, property_name): if self.getContainer(0).getProperty(key, "state") == InstanceState.User: result = super().getProperty(key, property_name, context) context.popContainer() return result # Handle the "limit_to_extruder" property. limit_to_extruder = super().getProperty(key, "limit_to_extruder", context) if limit_to_extruder is not None: limit_to_extruder = str(limit_to_extruder) # if this stack has the limit_to_extruder "not overridden", use the original limit_to_extruder as the current # limit_to_extruder, so the values retrieved will be from the perspective of the original limit_to_extruder # stack. if limit_to_extruder == "-1": if "original_limit_to_extruder" in context.context: limit_to_extruder = context.context["original_limit_to_extruder"] if limit_to_extruder is not None and limit_to_extruder != "-1" and limit_to_extruder in global_stack.extruders: # set the original limit_to_extruder if this is the first stack that has a non-overridden limit_to_extruder if "original_limit_to_extruder" not in context.context: context.context["original_limit_to_extruder"] = limit_to_extruder if super().getProperty(key, "settable_per_extruder", context): result = global_stack.extruders[str(limit_to_extruder)].getProperty(key, property_name, context) if result is not None: context.popContainer() return result result = super().getProperty(key, property_name, context) context.popContainer() return result @override(CuraContainerStack) def setNextStack(self, stack: CuraContainerStack) -> None: super().setNextStack(stack) # trigger signal to re-evaluate all default settings for key in self.getContainer(0).getAllKeys(): # only evaluate default settings if self.getContainer(0).getProperty(key, "state") != InstanceState.Default: continue self._collectPropertyChanges(key, "value") self._emitCollectedPropertyChanges()
thopiekar/Cura
cura/Settings/PerObjectContainerStack.py
Python
lgpl-3.0
3,365
from bottle import template print template('form', {})
alixedi/recline
test.py
Python
mit
56
""" Tools for formulating interpretable/implementable MDPs as mathematical optimization problems (MILP). This solves the models as described in: Petrik, M., & Luss, R. (2016). Interpretable Policies for Dynamic Product Recommendations. In Uncertainty in Artificial Intelligence (UAI). Usage: - Use get_milp_model to create "model.mod" MILP model to run with the data output. - create_opl_data can be used to transform an interpretable MDP data to a MILP - solve_opl solves the model """ import numpy as np import subprocess import json import io #%% Create OPL data file import random def create_opl_data(name, mdp, p0, observations, discount, filename="milp_output.dat", action_decomposition = None): """ Creates an OPL representation of the interpretable MDP. OPL is a modelling language included with CPLEX optimizer. This representation can be used to conveniently solve LP and MILP formulations of MDPs Parameters ---------- name : string Name of the problem mdp : craam.MDP MDP specification with no robustness observations : array-like Observation index for each state discount : float Discount factor filename : string, optional Name of the opl data output file If None, the outputs the string action_decomposition : list of lists, optional If actions can be decomposed then for each action it lists the indexes of decomposed actions. Returns ------- ident : string Identifier of the problem (to check that the solution is for the same) string_rep : string Only if provided with filename=None, also returns OPL string representation """ ident = str(random.randint(0,1e6)) if filename is not None: f = open(filename,"w") else: f = io.StringIO() try: f.write('problemName="'+name+'";\n') f.write('discount='+str(discount)+';\n') f.write('upper_bound='+str(1/discount)+';\n') f.write('generatedID="' + ident + '";\n') f.write('initial = {') first = True for s in range(mdp.state_count()): if p0[s] > 0: if first: f.write('<') first = False else: f.write(',<') f.write(str(s) + ',' + str(p0[s]) + '>') f.write('};\n') f.write('states = {') first = True for s in range(mdp.state_count()): if first: first = False else: f.write(',') f.write(str(s)); f.write('};\n') f.write('samples = {') first = True for s in range(mdp.state_count()): for a in range(mdp.action_count(s)): for ts, prob, rew in zip(mdp.get_toids(s,a), mdp.get_probabilities(s,a), mdp.get_rewards(s,a)): if first: f.write('<') first = False else: f.write(',<') f.write(','.join((str(s),str(a),str(ts),str(prob),str(rew))) + '>') f.write('};\n') f.write('observation_states = {') first = True for s in range(mdp.state_count()): if first: f.write('<') first = False else: f.write(',<') f.write(str(observations[s]) + ',' + str(s) + '>') f.write('};\n') if action_decomposition is not None: assert len(action_decomposition) == mdp.action_count(1) f.write('decomposed_actions = {') first = True for i,ad in enumerate(action_decomposition): if first: f.write('<') first = False else: f.write(',<') f.write(str(i)+',') f.write(','.join(str(a) for a in ad)) f.write('>') f.write('};\n') if filename is not None: return ident else: return ident, f.getvalue() finally: f.close() def solve_opl(model='milp.mod', data="milp_output.dat", result="solution.json", \ ident = None, oplrun_exec="oplrun", verbose=False): """ Solves the OPL formulation constructed by create_opl_data. All files must be in the same directory. Parameters ---------- model : string, optional Name of the model to run data : string Name of the data file result : string, optional Name of the output file ident : string, optional Solution identifier to make sure that the solution is for the correct problem oplrun_exec : string, optional Path to the oplrun executable "CPLEX" Note ---- One may also need to set the path to the OPL libraries (e,g., libicuuc.so), by using: oplrun_exec = 'export LD_LIBRARY_PATH=/opt/ibm/ILOG/CPLEX_Studio_Community1263/opl/bin/x86-64_linux/; /opt/ibm/ILOG/CPLEX_Studio_Community1263/opl/bin/x86-64_linux/oplrun' The method requires a shell to be present Returns ------- obj : float Objective value psi : array Interpretable policy, action index for each observation """ try: command = [oplrun_exec, model, data] if verbose: print("Executing:", " ".join(command)) stdout = subprocess.check_output(" ".join(command), shell=True) if verbose: print("Output") print(stdout.decode('utf-8')) except subprocess.CalledProcessError as e: print('OPL failed with:') print(e.output.decode('utf-8')) raise e with open("solution.json", mode='r') as fileinput: datainput = fileinput.read() d = json.JSONDecoder().decode(datainput) if ident is not None: ident_sol = d['GeneratedId'] assert ident == ident_sol, "Solution identifier does not match problem identifier" obj = d['Objective'] oc = d['ObservCount'] ac = d['ActionCount'] psi = d['psi'] psi = np.reshape(psi,(oc,ac)) psi = psi.argmax(1) return obj, psi def get_milp_model(): """ Returns a string definition a MILP model that work with the generated OPL data. Save the output as model.mod """ return \ r""" /******************************************************************** * MILP formulation for interpretable MDPs *********************************************************************/ execute {cplex.tilim = 180;}; // Used to identify the problem string problemName = ...; // Used to identify the problem run string generatedID = ...; float upper_bound = ...; // The discount factor float discount = ...; // Sample definition tuple Sample { int sourceid; int action; int targetid; float probability; float reward; }; tuple Initial{ int stateid; float probability; }; tuple Observation { int observid; int stateid; }; {Initial} initial = ...; {Sample} samples = ...; {Observation} observation_states = ...; {int} states = ...; //{s.sourceid | s in samples}; {int} actions = {s.action | s in samples}; {int} observations = {os.observid | os in observation_states}; // Occupancy frequency dvar float+ u[states][actions]; // Interpretable policy //dvar int psi[observations][actions] in 0..1; dvar boolean psi[observations][actions]; dexpr float reward[s in states][a in actions] = sum(ss in samples : ss.sourceid == s && ss.action == a) ss.reward * ss.probability; dexpr float d[s in states] = sum(a in actions) u[s][a]; dexpr float initdist[s in states] = sum(ss in initial : ss.stateid == s) ss.probability; dexpr float objective = sum(s in states, a in actions) u[s][a] * reward[s][a]; maximize objective; subject to { forall(s in states){ d[s] == initdist[s] + sum(ss in samples : ss.targetid == s) (discount * u[ss.sourceid][ss.action] * ss.probability); }; forall(o in observations){ forall(os in observation_states : os.observid == o){ forall(a in actions){ u[os.stateid][a] <= upper_bound * psi[o][a]; upper_bound*(psi[o][a] -1) + d[os.stateid] <= u[os.stateid][a]; }; }; }; forall(o in observations){ sum(a in actions) psi[o][a] == 1; }; }; execute{ var result = new IloOplOutputFile("solution.json"); var counter = 0; result.write("{"); result.write("\"ProblemName\" : \"" + problemName + "\",\n"); result.write("\"GeneratedId\" : \"" + generatedID + "\",\n"); result.write("\"Algorithm\" : "); result.write("\"MILP\",\n"); result.write("\"Objective\" : "); var obj = "" + objective; //prevent a trailing dot if(obj.indexOf(".") == obj.length-1) obj = obj + "0"; result.write(obj); result.write(",\n"); result.write("\"StateCount\" : "); result.write(thisOplModel.states.size); result.write(",\n"); result.write("\"ObservCount\" : "); result.write(thisOplModel.observations.size); result.write(",\n"); result.write("\"ActionCount\" : "); result.write(thisOplModel.actions.size); result.write(",\n"); result.write("\"psi\" : ["); for(var o in thisOplModel.observations){ for(var a in thisOplModel.actions){ if(counter > 0) result.write(","); var val = "" + thisOplModel.psi[o][a]; //prevent trailing dot if(val.indexOf(".") == val.length - 1) val = val + "0"; result.write(val); counter = counter + 1; } } result.write("]"); result.write("}\n"); result.close(); } """
marekpetrik/RAAM
raam/implementable.py
Python
mit
11,043
""" kombu.utils.eventio =================== Evented IO support for multiple platforms. """ from __future__ import absolute_import import errno import select as __select__ import socket from numbers import Integral _selectf = __select__.select _selecterr = __select__.error epoll = getattr(__select__, 'epoll', None) kqueue = getattr(__select__, 'kqueue', None) kevent = getattr(__select__, 'kevent', None) KQ_EV_ADD = getattr(__select__, 'KQ_EV_ADD', 1) KQ_EV_DELETE = getattr(__select__, 'KQ_EV_DELETE', 2) KQ_EV_ENABLE = getattr(__select__, 'KQ_EV_ENABLE', 4) KQ_EV_CLEAR = getattr(__select__, 'KQ_EV_CLEAR', 32) KQ_EV_ERROR = getattr(__select__, 'KQ_EV_ERROR', 16384) KQ_EV_EOF = getattr(__select__, 'KQ_EV_EOF', 32768) KQ_FILTER_READ = getattr(__select__, 'KQ_FILTER_READ', -1) KQ_FILTER_WRITE = getattr(__select__, 'KQ_FILTER_WRITE', -2) KQ_FILTER_AIO = getattr(__select__, 'KQ_FILTER_AIO', -3) KQ_FILTER_VNODE = getattr(__select__, 'KQ_FILTER_VNODE', -4) KQ_FILTER_PROC = getattr(__select__, 'KQ_FILTER_PROC', -5) KQ_FILTER_SIGNAL = getattr(__select__, 'KQ_FILTER_SIGNAL', -6) KQ_FILTER_TIMER = getattr(__select__, 'KQ_FILTER_TIMER', -7) KQ_NOTE_LOWAT = getattr(__select__, 'KQ_NOTE_LOWAT', 1) KQ_NOTE_DELETE = getattr(__select__, 'KQ_NOTE_DELETE', 1) KQ_NOTE_WRITE = getattr(__select__, 'KQ_NOTE_WRITE', 2) KQ_NOTE_EXTEND = getattr(__select__, 'KQ_NOTE_EXTEND', 4) KQ_NOTE_ATTRIB = getattr(__select__, 'KQ_NOTE_ATTRIB', 8) KQ_NOTE_LINK = getattr(__select__, 'KQ_NOTE_LINK', 16) KQ_NOTE_RENAME = getattr(__select__, 'KQ_NOTE_RENAME', 32) KQ_NOTE_REVOKE = getattr(__select__, 'kQ_NOTE_REVOKE', 64) from kombu.syn import detect_environment from . import fileno from .compat import get_errno __all__ = ['poll'] READ = POLL_READ = 0x001 WRITE = POLL_WRITE = 0x004 ERR = POLL_ERR = 0x008 | 0x010 try: SELECT_BAD_FD = set((errno.EBADF, errno.WSAENOTSOCK)) except AttributeError: SELECT_BAD_FD = set((errno.EBADF,)) class Poller(object): def poll(self, timeout): try: return self._poll(timeout) except Exception as exc: if get_errno(exc) != errno.EINTR: raise class _epoll(Poller): def __init__(self): self._epoll = epoll() def register(self, fd, events): try: self._epoll.register(fd, events) except Exception as exc: if get_errno(exc) != errno.EEXIST: raise def unregister(self, fd): try: self._epoll.unregister(fd) except (socket.error, ValueError, KeyError, TypeError): pass except (IOError, OSError) as exc: if get_errno(exc) not in (errno.ENOENT, errno.EPERM): raise def _poll(self, timeout): return self._epoll.poll(timeout if timeout is not None else -1) def close(self): self._epoll.close() class _kqueue(Poller): w_fflags = (KQ_NOTE_WRITE | KQ_NOTE_EXTEND | KQ_NOTE_ATTRIB | KQ_NOTE_DELETE) def __init__(self): self._kqueue = kqueue() self._active = {} self.on_file_change = None self._kcontrol = self._kqueue.control def register(self, fd, events): self._control(fd, events, KQ_EV_ADD) self._active[fd] = events def unregister(self, fd): events = self._active.pop(fd, None) if events: try: self._control(fd, events, KQ_EV_DELETE) except socket.error: pass def watch_file(self, fd): ev = kevent(fd, filter=KQ_FILTER_VNODE, flags=KQ_EV_ADD | KQ_EV_ENABLE | KQ_EV_CLEAR, fflags=self.w_fflags) self._kcontrol([ev], 0) def unwatch_file(self, fd): ev = kevent(fd, filter=KQ_FILTER_VNODE, flags=KQ_EV_DELETE, fflags=self.w_fflags) self._kcontrol([ev], 0) def _control(self, fd, events, flags): if not events: return kevents = [] if events & WRITE: kevents.append(kevent(fd, filter=KQ_FILTER_WRITE, flags=flags)) if not kevents or events & READ: kevents.append( kevent(fd, filter=KQ_FILTER_READ, flags=flags), ) control = self._kcontrol for e in kevents: try: control([e], 0) except ValueError: pass def _poll(self, timeout): kevents = self._kcontrol(None, 1000, timeout) events, file_changes = {}, [] for k in kevents: fd = k.ident if k.filter == KQ_FILTER_READ: events[fd] = events.get(fd, 0) | READ elif k.filter == KQ_FILTER_WRITE: if k.flags & KQ_EV_EOF: events[fd] = ERR else: events[fd] = events.get(fd, 0) | WRITE elif k.filter == KQ_EV_ERROR: events[fd] = events.get(fd, 0) | ERR elif k.filter == KQ_FILTER_VNODE: if k.fflags & KQ_NOTE_DELETE: self.unregister(fd) file_changes.append(k) if file_changes: self.on_file_change(file_changes) return list(events.items()) def close(self): self._kqueue.close() class _select(Poller): def __init__(self): self._all = (self._rfd, self._wfd, self._efd) = set(), set(), set() def register(self, fd, events): fd = fileno(fd) if events & ERR: self._efd.add(fd) if events & WRITE: self._wfd.add(fd) if events & READ: self._rfd.add(fd) def _remove_bad(self): for fd in self._rfd | self._wfd | self._efd: try: _selectf([fd], [], [], 0) except (_selecterr, socket.error) as exc: if get_errno(exc) in SELECT_BAD_FD: self.unregister(fd) def unregister(self, fd): try: fd = fileno(fd) except socket.error as exc: # we don't know the previous fd of this object # but it will be removed by the next poll iteration. if get_errno(exc) in SELECT_BAD_FD: return raise self._rfd.discard(fd) self._wfd.discard(fd) self._efd.discard(fd) def _poll(self, timeout): try: read, write, error = _selectf( self._rfd, self._wfd, self._efd, timeout, ) except (_selecterr, socket.error) as exc: if get_errno(exc) == errno.EINTR: return elif get_errno(exc) in SELECT_BAD_FD: return self._remove_bad() raise events = {} for fd in read: if not isinstance(fd, Integral): fd = fd.fileno() events[fd] = events.get(fd, 0) | READ for fd in write: if not isinstance(fd, Integral): fd = fd.fileno() events[fd] = events.get(fd, 0) | WRITE for fd in error: if not isinstance(fd, Integral): fd = fd.fileno() events[fd] = events.get(fd, 0) | ERR return list(events.items()) def close(self): self._rfd.clear() self._wfd.clear() self._efd.clear() def _get_poller(): if detect_environment() != 'default': # greenlet return _select elif epoll: # Py2.6+ Linux return _epoll elif kqueue: # Py2.6+ on BSD / Darwin return _select # was: _kqueue else: return _select def poll(*args, **kwargs): return _get_poller()(*args, **kwargs)
sunze/py_flask
venv/lib/python3.4/site-packages/kombu/utils/eventio.py
Python
mit
7,868
#import uncertainties #from uncertainties import ufloat import math import numpy import numpy import pylab from scipy.optimize import curve_fit import math import scipy.stats import uncertainties from uncertainties import ufloat, unumpy import matplotlib.pyplot as plt def ff(x, a, I, V): return I*(numpy.exp(a*(V-x))-1) bucket = numpy.linspace(0,2700, 1000) #ARANCIO f, V, dV, I, dI = pylab.loadtxt("C:\\Users\\marco\\Desktop\\Laboratorio3\\Fotoelettrico\\datiArancio.txt", unpack = True) popt = (.1, -2.0, 300.0) pars, cov = curve_fit(ff, V, I, popt, dI, absolute_sigma = "true") #plot x1 = plt.subplot(321) pylab.xlabel("V (mV)", size = "14") pylab.ylabel("I (nA)", size = "14") pylab.xlim(0, 2700) pylab.grid(color = "gray") pylab.errorbar(V, I, dI, dV, color = 'blue', marker = 'o', linestyle = '', label = "Arancio") pylab.legend(loc = "upper-right") pylab.plot(bucket, ff(bucket, pars[0], pars[1], pars[2]), color = "red") #GIALLO f, V, dV, I, dI = pylab.loadtxt("C:\\Users\\marco\\Desktop\\Laboratorio3\\Fotoelettrico\\datiGialli.txt", unpack = True) popt = (.1, -2.0, 300.0) pars, cov = curve_fit(ff, V, I, popt, dI, absolute_sigma = "true") #plot x2 = plt.subplot(322) pylab.xlabel("V (mV)", size = "14") pylab.ylabel("I (nA)", size = "14") pylab.xlim(0, 2700) pylab.grid(color = "gray") pylab.errorbar(V, I, dI, dV, color = 'blue', marker = 'o', linestyle = '', label = "Giallo") pylab.legend(loc = "upper-right") pylab.plot(bucket, ff(bucket, pars[0], pars[1], pars[2]), color = "red") #VERDE f, V, dV, I, dI = pylab.loadtxt("C:\\Users\\marco\\Desktop\\Laboratorio3\\Fotoelettrico\\datiVerdi.txt", unpack = True) popt = (.1, -2.0, 300.0) pars, cov = curve_fit(ff, V, I, popt, dI, absolute_sigma = "true") #plot x3 = plt.subplot(323) pylab.xlabel("V (mV)", size = "14") pylab.ylabel("I (nA)", size = "14") pylab.xlim(0, 2700) pylab.grid(color = "gray") pylab.errorbar(V, I, dI, dV, color = 'blue', marker = 'o', linestyle = '', label = "Verde") pylab.legend(loc = "upper-right") pylab.plot(bucket, ff(bucket, pars[0], pars[1], pars[2]), color = "red") #VERDE-AZZURRO f, V, dV, I, dI = pylab.loadtxt("C:\\Users\\marco\\Desktop\\Laboratorio3\\Fotoelettrico\\datiVerdeAzzurro.txt", unpack = True) popt = (.1, -2.0, 300.0) pars, cov = curve_fit(ff, V, I, popt, dI, absolute_sigma = "true") #plot x4 = plt.subplot(324) pylab.xlabel("V (mV)", size = "14") pylab.ylabel("I (nA)", size = "14") pylab.xlim(0, 2700) pylab.grid(color = "gray") pylab.errorbar(V, I, dI, dV, color = 'blue', marker = 'o', linestyle = '', label = "Verde-Azzurro") pylab.plot(bucket, ff(bucket, pars[0], pars[1], pars[2]), color = "red") pylab.legend(loc = "upper-right") #AZZURRO f, V, dV, I, dI = pylab.loadtxt("C:\\Users\\marco\\Desktop\\Laboratorio3\\Fotoelettrico\\datiAzzurro.txt", unpack = True) popt = (.1, -2.0, 300.0) pars, cov = curve_fit(ff, V, I, popt, dI, absolute_sigma = "true") #plot x5 = plt.subplot(325) pylab.xlabel("V (mV)", size = "14") pylab.ylabel("I (nA)", size = "14") pylab.xlim(0, 2700) pylab.grid(color = "gray") pylab.errorbar(V, I, dI, dV, color = 'blue', marker = 'o', linestyle = '', label = "Azzurro") pylab.legend(loc = "upper-right") pylab.plot(bucket, ff(bucket, pars[0], pars[1], pars[2]), color = "red") #BLU f, V, dV, I, dI = pylab.loadtxt("C:\\Users\\marco\\Desktop\\Laboratorio3\\Fotoelettrico\\datiBlu.txt", unpack = True) popt = (.1, -2.0, 300.0) pars, cov = curve_fit(ff, V, I, popt, dI, absolute_sigma = "true") #plot x6 = plt.subplot(326) pylab.xlabel("V (mV)", size = "14") pylab.ylabel("I (nA)", size = "14") pylab.xlim(0, 2700) pylab.grid(color = "gray") pylab.errorbar(V, I, dI, dV, color = 'blue', marker = 'o', linestyle = '', label = "Blu") pylab.legend(loc = "upper-right") pylab.plot(bucket, ff(bucket, pars[0], pars[1], pars[2]), color = "red") plt.suptitle('Corrente vs Potenziale di frenamento: fit esponenziale', size = 18) pylab.show()
fedebell/Laboratorio3
Fotoelettrico/subplotexp.py
Python
gpl-3.0
3,927
from sensor import Sensor import grovepi # (5 * grovepi.analogRead(0) * 100) / 1024 <--- formula for LM35 sensor class Temperature(Sensor): name = 'Temperature' def __init__(self, pin, logger=None): Sensor.__init__(self, self.name, logger) self.pin = pin self.connect() def connect(self): if(not isinstance(self.pin, int)): self.validPin = False else: self.validPin = True grovepi.pinMode(self.pin, "INPUT") def read(self): if(not self.validPin): self.logError('No valid pin provided') return 0 try: analogValue = grovepi.analogRead(self.pin) temperature = (5.0 * analogValue * 100.0) / 1024 return temperature except (IOError, TypeError) as e: self.logError('Could not read value from sensor') return 0 if __name__ == '__main__': t = Temperature(0) temp = t.read() print str(temp)
GoMake/gomake-telemetry
telemetry/internaltemp.py
Python
mit
841
from typing import List, Tuple from ...pipeline import Lemmatizer from ...tokens import Token class DutchLemmatizer(Lemmatizer): @classmethod def get_lookups_config(cls, mode: str) -> Tuple[List[str], List[str]]: if mode == "rule": required = ["lemma_lookup", "lemma_rules", "lemma_exc", "lemma_index"] return (required, []) else: return super().get_lookups_config(mode) def lookup_lemmatize(self, token: Token) -> List[str]: """Overrides parent method so that a lowercased version of the string is used to search the lookup table. This is necessary because our lookup table consists entirely of lowercase keys.""" lookup_table = self.lookups.get_table("lemma_lookup", {}) string = token.text.lower() return [lookup_table.get(string, string)] # Note: CGN does not distinguish AUX verbs, so we treat AUX as VERB. def rule_lemmatize(self, token: Token) -> List[str]: # Difference 1: self.rules is assumed to be non-None, so no # 'is None' check required. # String lowercased from the get-go. All lemmatization results in # lowercased strings. For most applications, this shouldn't pose # any problems, and it keeps the exceptions indexes small. If this # creates problems for proper nouns, we can introduce a check for # univ_pos == "PROPN". cache_key = (token.lower, token.pos) if cache_key in self.cache: return self.cache[cache_key] string = token.text univ_pos = token.pos_.lower() if univ_pos in ("", "eol", "space"): forms = [string.lower()] self.cache[cache_key] = forms return forms index_table = self.lookups.get_table("lemma_index", {}) exc_table = self.lookups.get_table("lemma_exc", {}) rules_table = self.lookups.get_table("lemma_rules", {}) index = index_table.get(univ_pos, {}) exceptions = exc_table.get(univ_pos, {}) rules = rules_table.get(univ_pos, {}) string = string.lower() if univ_pos not in ( "noun", "verb", "aux", "adj", "adv", "pron", "det", "adp", "num", ): forms = [string] self.cache[cache_key] = forms return forms lemma_index = index_table.get(univ_pos, {}) # string is already lemma if string in lemma_index: forms = [string] self.cache[cache_key] = forms return forms exc_table = self.lookups.get_table("lemma_exc", {}) exceptions = exc_table.get(univ_pos, {}) # string is irregular token contained in exceptions index. try: forms = [exceptions[string][0]] self.cache[cache_key] = forms return forms except KeyError: pass # string corresponds to key in lookup table lookup_table = self.lookups.get_table("lemma_lookup", {}) looked_up_lemma = lookup_table.get(string) if looked_up_lemma and looked_up_lemma in lemma_index: forms = [looked_up_lemma] self.cache[cache_key] = forms return forms rules_table = self.lookups.get_table("lemma_rules", {}) oov_forms = [] for old, new in rules: if string.endswith(old): form = string[: len(string) - len(old)] + new if not form: pass elif form in index: forms = [form] self.cache[cache_key] = forms return forms else: oov_forms.append(form) forms = list(set(oov_forms)) # Back-off through remaining return value candidates. if forms: for form in forms: if form in exceptions: forms = [form] self.cache[cache_key] = forms return forms if looked_up_lemma: forms = [looked_up_lemma] self.cache[cache_key] = forms return forms else: self.cache[cache_key] = forms return forms elif looked_up_lemma: forms = [looked_up_lemma] self.cache[cache_key] = forms return forms else: forms = [string] self.cache[cache_key] = forms return forms
spacy-io/spaCy
spacy/lang/nl/lemmatizer.py
Python
mit
4,608
# -*- coding: utf-8 -*- from __future__ import unicode_literals from django.db import models, migrations class Migration(migrations.Migration): dependencies = [ ('quiz', '0011_sentence'), ] operations = [ migrations.AddField( model_name='sentence', name='article', field=models.ForeignKey(to='quiz.Article', default=None), preserve_default=True, ), migrations.AddField( model_name='sentence', name='language', field=models.TextField(default=''), preserve_default=True, ), migrations.AddField( model_name='sentence', name='order', field=models.PositiveSmallIntegerField(default=0), preserve_default=True, ), migrations.AddField( model_name='sentence', name='sentence', field=models.TextField(default=''), preserve_default=True, ), ]
leehosung/writing_sandbox
quiz/migrations/0012_auto_20150127_0316.py
Python
mit
1,017
#!/usr/bin/env python # -*- coding: utf-8 -*- from base import * DEBUG = True TEMPLATE_DEBUG = True DATABASES = { 'default': { 'ENGINE': 'django.contrib.gis.db.backends.postgis', 'NAME': 'map_review', 'HOST': 'localhost' } }
stringfellow/map_review
map_review/settings/devel.py
Python
gpl-2.0
258
from threading import Thread import Queue class TQueue(Queue.Queue): def __init__(self, workers=5, maxsize=0): #super(TQueue, self).__init__(maxsize=maxsize) Queue.Queue.__init__(self, maxsize=maxsize) self._workers = workers self._start_workers() def add_task(self, task, *args, **kwargs): args = args or () kwargs = kwargs or {} self.put((task, args, kwargs)) def _start_workers(self): for i in xrange(self._workers): t = Thread(target=self._worker) t.setDaemon(True) #后台,完成后自动删除 t.start() def _worker(self): while True: task,args,kwargs = self.get() task(*args, **kwargs) self.task_done()
hellopanpy/myscript
zabbix/alarter/thread.py
Python
gpl-3.0
805
# Copyright (c) 2011 OpenStack Foundation # All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. """Policy Engine For Cue.""" from oslo.config import cfg from cue.common.i18n import _ from cue.common.i18n import _LI from cue.common import exception from cue.common import utils from cue.openstack.common import log as logging from cue.openstack.common import policy LOG = logging.getLogger(__name__) _ENFORCER = None def reset(): global _ENFORCER if _ENFORCER: _ENFORCER.clear() _ENFORCER = None def set_rules(data, default_rule=None, overwrite=True): default_rule = default_rule or cfg.CONF.policy_default_rule if not _ENFORCER: LOG.debug("Enforcer not present, recreating at rules stage.") init() if default_rule: _ENFORCER.default_rule = default_rule msg = "Loading rules %s, default: %s, overwrite: %s" LOG.debug(msg, data, default_rule, overwrite) if isinstance(data, dict): rules = dict((k, policy.parse_rule(v)) for k, v in data.items()) rules = policy.Rules(rules, default_rule) else: rules = policy.Rules.load_json(data, default_rule) _ENFORCER.set_rules(rules, overwrite=overwrite) def init(default_rule=None): policy_file = cfg.CONF.find_file(cfg.CONF.policy_file) if len(policy_file) == 0: msg = 'Unable to determine appropriate policy json file' raise exception.ConfigurationError(msg) LOG.info(_LI('Using policy_file found at: %s') % policy_file) with open(policy_file) as fh: policy_string = fh.read() rules = policy.Rules.load_json(policy_string, default_rule=default_rule) global _ENFORCER if not _ENFORCER: LOG.debug("Enforcer is not present, recreating.") _ENFORCER = policy.Enforcer() _ENFORCER.set_rules(rules) def check(rule, ctxt, target=None, do_raise=True, exc=exception.NotAuthorized): #creds = ctxt.to_dict() target = target or {} try: result = _ENFORCER.enforce(rule, target, ctxt, do_raise, exc) except Exception: result = False raise else: return result finally: extra = {'policy': {'rule': rule, 'target': target}} if result: LOG.info(_("Policy check succeeded for rule '%(rule)s' " "on target %(target)s") % {'rule': rule, 'target': repr(target)}, extra=extra) else: LOG.info(_("Policy check failed for rule '%(rule)s' " "on target %(target)s") % {'rule': rule, 'target': repr(target)}, extra=extra)
vipulsabhaya/cue
cue/common/policy.py
Python
apache-2.0
3,164
from django.contrib.auth.models import User from .models import Profile from django.db.models.signals import post_save from django.dispatch import receiver @receiver(post_save, sender=User) def create_user_profile(sender, instance, created, **kwargs): if created: Profile.objects.create(user=instance) @receiver(post_save, sender=User) def save_user_profile(sender, instance, **kwargs): try: instance.profile.save() except User.DoesNotExist: Profile.objects.create(user=instance)
NeverWalkAloner/collectiveblogs
users/signals.py
Python
gpl-3.0
520
""" These are debug machines used for content creators, so they're kind of a cross between dev machines and AWS machines. """ # We intentionally define lots of variables that aren't used, and # want to import all variables from base settings files # pylint: disable=wildcard-import, unused-wildcard-import from .aws import * DEBUG = True TEMPLATE_DEBUG = True EMAIL_BACKEND = 'django.core.mail.backends.console.EmailBackend' ################################ DEBUG TOOLBAR ################################# INSTALLED_APPS += ('debug_toolbar',) MIDDLEWARE_CLASSES += ('debug_toolbar.middleware.DebugToolbarMiddleware',) DEBUG_TOOLBAR_PANELS = ( 'debug_toolbar.panels.version.VersionDebugPanel', 'debug_toolbar.panels.timer.TimerDebugPanel', 'debug_toolbar.panels.settings_vars.SettingsVarsDebugPanel', 'debug_toolbar.panels.headers.HeaderDebugPanel', 'debug_toolbar.panels.request_vars.RequestVarsDebugPanel', 'debug_toolbar.panels.sql.SQLDebugPanel', 'debug_toolbar.panels.signals.SignalDebugPanel', 'debug_toolbar.panels.logger.LoggingPanel', # Enabling the profiler has a weird bug as of django-debug-toolbar==0.9.4 and # Django=1.3.1/1.4 where requests to views get duplicated (your method gets # hit twice). So you can uncomment when you need to diagnose performance # problems, but you shouldn't leave it on. # 'debug_toolbar.panels.profiling.ProfilingDebugPanel', )
jswope00/griffinx
lms/envs/content.py
Python
agpl-3.0
1,435
# http://www.creatis.insa-lyon.fr/~bernard/creaseg/ # http://ascratchpad.blogspot.com/2011/03/image-segmentation-using-active.html #------------------------------------------------------------------------ # Region Based Active Contour Segmentation # # seg = region_seg(I,init_mask,max_its,alpha,display) # # Inputs: I 2D image # init_mask Initialization (1 = foreground, 0 = bg) # max_its Number of iterations to run segmentation for # alpha (optional) Weight of smoothing term # higer = smoother. default = 0.2 # display (optional) displays intermediate outputs # default = true # # Outputs: seg Final segmentation mask (1=fg, 0=bg) # # Description: This code implements the paper: "Active Contours Without # Edges" By Chan Vese. This is a nice way to segment images whose # foregrounds and backgrounds are statistically different and homogeneous. # # Example: # img = imread('tire.tif'); # m = zeros(size(img)); # m(33:33+117,44:44+128) = 1; # seg = region_seg(img,m,500); # # Coded by: Shawn Lankton (www.shawnlankton.com) #------------------------------------------------------------------------ import numpy as np import scipy.ndimage as nd import matplotlib.pyplot as plt eps = np.finfo(np.float).eps def chanvese(I,init_mask,max_its=200,alpha=0.2,thresh=0,color='r',display=False): I = I.astype('float') #-- Create a signed distance map (SDF) from mask phi = mask2phi(init_mask) if display: plt.ion() showCurveAndPhi(I, phi, color) plt.savefig('levelset_start.pdf',bbox_inches='tight') #--main loop its = 0 stop = False prev_mask = init_mask c = 0 while (its < max_its and not stop): # get the curve's narrow band idx = np.flatnonzero( np.logical_and( phi <= 1.2, phi >= -1.2) ) if len(idx) > 0: #-- intermediate output if display: if np.mod(its,50) == 0: #set(ud.txtInfo1,'string',sprintf('iteration: %d',its),'color',[1 1 0]); print 'iteration:', its showCurveAndPhi(I, phi, color) else: if np.mod(its,10) == 0: print 'iteration:', its #set(ud.txtInfo1,'string',sprintf('iteration: %d',its),'color',[1 1 0]); #drawnow; #-- find interior and exterior mean upts = np.flatnonzero(phi<=0) # interior points vpts = np.flatnonzero(phi>0) # exterior points u = np.sum(I.flat[upts])/(len(upts)+eps) # interior mean v = np.sum(I.flat[vpts])/(len(vpts)+eps) # exterior mean F = (I.flat[idx]-u)**2-(I.flat[idx]-v)**2 # force from image information curvature = get_curvature(phi,idx) # force from curvature penalty dphidt = F /np.max(np.abs(F)) + alpha*curvature # gradient descent to minimize energy #-- maintain the CFL condition dt = 0.45/(np.max(np.abs(dphidt))+eps) #-- evolve the curve phi.flat[idx] += dt*dphidt #-- Keep SDF smooth phi = sussman(phi, 0.5) new_mask = phi<=0 c = convergence(prev_mask,new_mask,thresh,c) if c <= 5: its = its + 1 prev_mask = new_mask else: stop = True else: break #-- final output if display: showCurveAndPhi(I, phi, color) #plt.savefig('levelset_end.pdf',bbox_inches='tight') time.sleep(10) #-- make mask from SDF seg = phi<=0 #-- Get mask from levelset return seg,phi,its #--------------------------------------------------------------------- #--------------------------------------------------------------------- #-- AUXILIARY FUNCTIONS ---------------------------------------------- #--------------------------------------------------------------------- #--------------------------------------------------------------------- def bwdist(a): """ this is an intermediary function, 'a' has only True, False vals, so we convert them into 0, 1 values -- in reverse. True is 0, False is 1, distance_transform_edt wants it that way. """ return nd.distance_transform_edt(a == 0) import time #-- Displays the image with curve superimposed def showCurveAndPhi(I, phi, color): # subplot(numRows, numCols, plotNum) #myplot = plt.subplot(121) #fig, axes = plt.subplots() #axes = myplot.axes #axes.get_xaxis().set_visible(False) #axes.get_yaxis().set_visible(False) plt.clf() plt.imshow(I, cmap='gray') #plt.hold(True) CS = plt.contour(phi, 0, colors=color) plt.draw() #plt.hold(False) # myplot = plt.subplot(122) # axes = myplot.axes # axes.get_xaxis().set_visible(False) # axes.get_yaxis().set_visible(False) # plt.imshow(phi) plt.draw() #time.sleep(1) def im2double(a): a = a.astype('float') a /= a.max() return a #-- converts a mask to a SDF def mask2phi(init_a): phi = bwdist(init_a)-bwdist(1-init_a)+im2double(init_a) -0.5 return phi #-- compute curvature along SDF def get_curvature(phi,idx): dimy, dimx = phi.shape yx = np.array([np.unravel_index(i, phi.shape)for i in idx]) # get subscripts y = yx[:,0] x = yx[:,1] #-- get subscripts of neighbors ym1 = y-1; xm1 = x-1; yp1 = y+1; xp1 = x+1; #-- bounds checking ym1[ym1<0] = 0; xm1[xm1<0] = 0; yp1[yp1>=dimy]=dimy - 1; xp1[xp1>=dimx] = dimx - 1; #-- get indexes for 8 neighbors idup = np.ravel_multi_index( (yp1,x),phi.shape) iddn = np.ravel_multi_index( (ym1,x),phi.shape) idlt = np.ravel_multi_index( (y,xm1),phi.shape) idrt = np.ravel_multi_index( (y,xp1),phi.shape) idul = np.ravel_multi_index( (yp1,xm1),phi.shape) idur = np.ravel_multi_index( (yp1,xp1),phi.shape) iddl = np.ravel_multi_index( (ym1,xm1),phi.shape) iddr = np.ravel_multi_index( (ym1,xp1),phi.shape) #-- get central derivatives of SDF at x,y phi_x = -phi.flat[idlt]+phi.flat[idrt] phi_y = -phi.flat[iddn]+phi.flat[idup] phi_xx = phi.flat[idlt]-2*phi.flat[idx]+phi.flat[idrt] phi_yy = phi.flat[iddn]-2*phi.flat[idx]+phi.flat[idup] phi_xy = (-0.25*phi.flat[iddl]-0.25*phi.flat[idur] +0.25*phi.flat[iddr]+0.25*phi.flat[idul]) phi_x2 = phi_x**2 phi_y2 = phi_y**2 #-- compute curvature (Kappa) curvature = ( ((phi_x2*phi_yy + phi_y2*phi_xx - 2*phi_x*phi_y*phi_xy) / (phi_x2 + phi_y2 +eps)**(3/2)) *(phi_x2 + phi_y2)**(1/2)) return curvature #-- level set re-initialization by the sussman method def sussman(D, dt): # forward/backward differences a = D - shiftR(D) # backward b = shiftL(D) - D # forward c = D - shiftD(D) # backward d = shiftU(D) - D # forward a_p = a.copy(); a_n = a.copy(); # a+ and a- b_p = b.copy(); b_n = b.copy(); c_p = c.copy(); c_n = c.copy(); d_p = d.copy(); d_n = d.copy(); a_p[a < 0] = 0 a_n[a > 0] = 0 b_p[b < 0] = 0 b_n[b > 0] = 0 c_p[c < 0] = 0 c_n[c > 0] = 0 d_p[d < 0] = 0 d_n[d > 0] = 0 dD = np.zeros(D.shape) D_neg_ind = np.flatnonzero(D < 0) D_pos_ind = np.flatnonzero(D > 0) dD.flat[D_pos_ind] = np.sqrt( np.max( np.concatenate( ([a_p.flat[D_pos_ind]**2], [b_n.flat[D_pos_ind]**2]) ), axis=0 ) + np.max( np.concatenate( ([c_p.flat[D_pos_ind]**2], [d_n.flat[D_pos_ind]**2])), axis=0 ) ) - 1 dD.flat[D_neg_ind] = np.sqrt( np.max( np.concatenate( ([a_n.flat[D_neg_ind]**2], [b_p.flat[D_neg_ind]**2])), axis=0 ) + np.max( np.concatenate( ([c_n.flat[D_neg_ind]**2], [d_p.flat[D_neg_ind]**2]) ), axis=0 ) ) - 1 D = D - dt * sussman_sign(D) * dD return D #-- whole matrix derivatives def shiftD(M): return shiftR(M.transpose()).transpose() def shiftL(M): #shift = np.concatenate( (M[:,1:], np.zeros((M.shape[1],1))), axis=1 ) #shift = np.concatenate( (M[:,1:], M[:,-1]), axis=1 ) shift = M[:,range(1,M.shape[1])+[M.shape[1]-1]] return shift def shiftR(M): #shift = np.concatenate( (np.zeros((M.shape[1],1)), M[:,:-1]), axis=1 ) #shift = np.concatenate( (M[:,0], M[:,:-1]), axis=1 ) shift = M[:,[0]+range(0,M.shape[1]-1)] return shift def shiftU(M): return shiftL(M.transpose()).transpose() def sussman_sign(D): return D / np.sqrt(D**2 + 1) # Convergence Test def convergence(p_mask,n_mask,thresh,c): diff = p_mask - n_mask n_diff = np.sum(np.abs(diff)) if n_diff < thresh: c = c + 1 else: c = 0 return c if __name__ == "__main__": import cv2 img = cv2.imread("/home/kevin/Imperial/PhD/DATASETS/Training/positive/246_cropped_c/8.png_0022_0115_0117_0132_0132_0.png",0) #img = nd.imread('sagittal8.png') mask = np.zeros(img.shape) mask[55:65,55:65] = 1 chanvese(img,mask,max_its=2000,display=True,alpha=0.1)
BioMedIA/irtk-legacy
wrapping/cython/irtk/ext/chanvese.py
Python
bsd-3-clause
9,929
# MIT licensed # Copyright (c) 2013-2020 lilydjwg <[email protected]>, et al. import pytest pytestmark = pytest.mark.asyncio async def test_substitute_prefix(get_version): assert await get_version("example", { "source": "manual", "manual": "v1.0", "prefix": "v", }) == "1.0" async def test_substitute_prefix_missing_ok(get_version): assert await get_version("example", { "source": "manual", "manual": "1.0", "prefix": "v", }) == "1.0" async def test_substitute_regex(get_version): assert await get_version("example", { "source": "manual", "manual": "r15c", "from_pattern": r"r(\d+)([a-z])", "to_pattern": r"r\1.\2", }) == "r15.c" async def test_substitute_regex_missing_ok(get_version): assert await get_version("example", { "source": "manual", "manual": "r15", "from_pattern": r"r(\d+)([a-z])", "to_pattern": r"r\1.\2", }) == "r15" async def test_substitute_regex_empty_to_pattern(get_version): assert await get_version("example", { "source": "manual", "manual": "15-debian", "from_pattern": r"-\w+$", "to_pattern": r"", }) == "15" async def test_substitute_prefix_has_higher_priority(get_version): assert await get_version("example", { "source": "manual", "manual": "r15", "prefix": "r", "from_pattern": r"r(\d+)", "to_pattern": r"R\1", }) == "15"
lilydjwg/nvchecker
tests/test_substitute.py
Python
mit
1,490
import contextlib # closing import pytest from journal import app from journal import connect_db from journal import get_database_connection from journal import init_db # The walkthrough implied this manages browser cookies when used... from flask import session TEST_DSN = 'dbname=test_learning_journal user=fried' SUBMIT_BTN = '<input type="submit" value="Share" name="Share"/>' # Used for testing isolation. The wipe half of reinitting the database. def clear_db(): # This ensures the connection is closed later. # Context library is all for this kind of context stuff. with contextlib.closing(connect_db()) as db: # Testing is not supposed to be used with a deployed database, # apparently. That's where TEST_DSN's specification comes in: # This will all be done in the test_learning_journal db. # ... # NOTE: This database must be created manually on the CLI. # Done with: # createdb test_learning_journal db.cursor().execute("DROP TABLE entries") db.commit() @pytest.fixture(scope='session') def test_app(): ''' Configure the app for use in testing. ''' # What test_app() will do here is access the testing database # (which is created outside of my python, on the CLI (for now)) # Flask apps have config dictionaries in them by design. app.config['DATABASE'] = TEST_DSN app.config['TESTING'] = True # "The fixture function is defined with parameters. # The names of the parameters must match registered fixtures. # The fixtures named as parameters will be run surrounding the new fixture." @pytest.fixture(scope='session') def db(test_app, request): ''' Initialize the entries table and drop it when finished. ''' # This is the "fixture function" with its "registered fixture" parameters. # The request parameter is a fixture that pytest gives you; you use it # to connect the cleanup() function to the db fixture. init_db() # Unexplained methods: cleardb addfinalizer cleanup # "The request parameter is a fixture that pytest registers. # You use it to connect the cleanup function to the db fixture. # This means that cleanup will be run after tests are complete # as a tear-down action." def cleanup(): clear_db() # I THINK @app.teardown_request is a finalizer? Maaaaybe... ??? request.addfinalizer(cleanup) # This one makes helps tests run in isolation from each other. # Specifically it makes a generator function fixture. # This is critical because generators preserve internal state. # As a result, "the entire test happens inside context manager scope" @pytest.yield_fixture(scope='function') def req_context(db): ''' Run tests within a test request context so that 'g' is present. ''' # Wait... flask.g would not be available if we didn't make this # "request context" function? with app.test_request_context('/'): # First, yield nothing. # Wat. yield con = get_database_connection() con.rollback() # "Flask creates g when a cycle begines, but tests # have no request/response cycle. # Flasks's app.test_request_context is a "context provider". # Used in a with statement, it creates a mock request/response cycle." # ... # What this means is, there's no web server running to test this, # BUT we can simulate what would happen if there was.. by calling # appname.app.test_request_context() # "The request only exists inside the with block, so the # callback pattern used in the db fixture would not work." # I think that is referring to the request.addfinalizer(cleanup) # line? # "Because yield preserves internal state, the entire test # happens inside the context manager scope" # "When control returns to the fixture, code after the yield # statement is executed as the tear-down action." # Now begins the testing of the database schema. def run_independent_query(query, params=[]): # This function simply formalizes what I've been doing all along # to make DB queries inside Python. con = get_database_connection() cur = con.cursor() cur.execute(query, params) return cur.fetchall() def test_write_entry(req_context): from journal import write_entry expected = ("My Title", "My Text") # Remember, star args are just how you unpack things. # ((double star args unpack things into a dict.)) write_entry(*expected) # "run_independent_query() is a 'helper function' you can re-use." # Where's it come from, pytest? By way of the decorator?? rows = run_independent_query("SELECT * FROM entries") # Huh, so this is just assertEquals... from pytest? # Maybe not, since it's its own freestanding operation? assert len(rows) == 1 for val in expected: assert val in rows[0] def test_edit_entry(req_context): from journal import edit_entry from journal import write_entry expected = ("My Title", "My Text") write_entry(*expected) the_row_we_added = run_independent_query("SELECT * FROM entries") def test_get_all_entries_empty(req_context): from journal import get_all_entries entries = get_all_entries() assert len(entries) == 0 def test_get_all_entries(req_context): from journal import get_all_entries, write_entry expected = ("My Title", "My Test") write_entry(*expected) entries = get_all_entries() assert len(entries) == 1 for entry in entries: assert expected[0] == entry['title'] assert expected[1] == entry['text'] assert 'created' in entry def test_get_entry(req_context): from journal import get_entry, write_entry, get_all_entries # Verify it's empty entries = get_all_entries() assert len(entries) == 0 expected = ("Get Entry Title", "Get Entry Test") write_entry(*expected) # Verify it isn't empty entries = get_all_entries() assert len(entries) == 1 # Derive the id and use it to get_entry(): the_only_entry = get_entry(entries[0]['id']) # I wish I had more time to do that properly, but it works. assert expected[0] == the_only_entry['title'] assert expected[1] == the_only_entry['text'] assert 'created' in the_only_entry def test_empty_listing(db): # "app.test_client() returns a mock HTTP client, # like a web browser for development." # "Because this test actually creates a request, we don't need to use # the req_context fixture. Having an initialized database is enough" # "The data attribute of the response returned by client.get() # holds the full rendered HTML of our page." actual = app.test_client().get('/').data expected = 'No entries here so far' assert expected in actual @pytest.fixture(scope='function') def with_entry(db, request): from journal import write_entry expected = (u'Test Title)', u'Test Text') with app.test_request_context('/'): write_entry(*expected) get_database_connection().commit() def cleanup(): # NOTE: "You use a test_request_context in both setup and # teardown to ensure that flask.g exists." with app.test_request_context('/'): con = get_database_connection() cur = con.cursor() cur.execute("DELETE FROM entries") con.commit() # Also note that allowing the two "with" blocks to close commits the # transactions for each test context. request.addfinalizer(cleanup) return expected def test_listing(with_entry): expected = with_entry actual = app.test_client().get('/').data for value in expected: assert value in actual def test_add_entries(db): entry_data = { u'title': u'Hello', u'text': u'This is a post', } # "The post method of the Flask test_client sends an HTTP POST # request to the provided URL." actual = app.test_client().post( '/add', data=entry_data, follow_redirects=True ).data assert 'No entries here so far' not in actual for expected in entry_data.values(): # "assert that the line in entry data is also in the actual data" assert expected in actual def test_do_login_success(req_context): username, password = ('admin', 'admin') # In-function imports look weird and wrong. # Shouldn't they be for things that might be optional # and thus could be skipped? Such as not unit tests? from journal import do_login assert 'logged_in' not in session do_login(username, password) assert 'logged_in' in session def test_do_login_bad_password(req_context): username = 'admin' bad_password = 'wrongpassword' from journal import do_login with pytest.raises(ValueError): do_login(username, bad_password) def test_do_login_bad_username(req_context): bad_username = 'wronguser' password = 'admin' from journal import do_login with pytest.raises(ValueError): do_login(bad_username, password) def login_helper(username, password): login_data = { 'username': username, 'password': password } client = app.test_client() return client.post( '/login', data=login_data, follow_redirects=True ) def test_start_as_anonymous(db): client = app.test_client() anon_home = client.get('/').data assert SUBMIT_BTN not in anon_home def test_login_success(db): # Is this unencrypted password okay because it's not deployed? # The walkthrough DID say "never" store passwords unencrypted... # "Anywhere". username, password = ('admin', 'admin') response = login_helper(username, password) assert SUBMIT_BTN in response.data def test_login_fails(db): username, password = ('admin', 'wrong') response = login_helper(username, password) assert 'Login Failed' in response.data def test_logout(db): home = login_helper('admin', 'admin').data assert SUBMIT_BTN in home client = app.test_client() response = client.get('/logout') assert SUBMIT_BTN not in response.data assert response.status_code == 302
defzzd/learning_journal
test_journal.py
Python
mit
10,338
# ----------------------------------------------------------------------------- # Karajlug.org # Copyright (C) 2010 Karajlug community # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License along # with this program; if not, write to the Free Software Foundation, Inc., # 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. # ----------------------------------------------------------------------------- from django.conf.urls.defaults import patterns urlpatterns = patterns( '', (r'^([^\.]+)/$', 'books.views.book_view'), (r'^$', 'books.views.books_index'), )
Karajlug/karajlug
books/urls.py
Python
gpl-2.0
1,132
#!/usr/bin/env python3 # Set up imports and paths bufferpath = "../../dataAcq/buffer/python" sigProcPath = "../signalProc" from psychopy import visual, core, event, gui, sound, data, monitors import numpy as np import sys import socket from time import sleep, time import os bufhelpPath = "../../python/signalProc" sys.path.append(os.path.join(os.path.dirname(os.path.abspath(__file__)),bufhelpPath)) import bufhelp sys.path.append(os.path.join(os.path.dirname(os.path.abspath(__file__)),sigProcPath)) # init connection to the buffer ftc,hdr=bufhelp.connect(); def showText(text): text.draw() mywin.flip() def waitForKeypress(): allKeys = event.getKeys() while len(allKeys)==0: allKeys = event.getKeys() if 'escape' in allKeys[0]: mywin.close() # quit core.quit() # Setup the stimulus window screenWidth = 600 screenHeight = 400 mywin = visual.Window(size=(screenWidth, screenHeight), fullscr=False, screen=1, allowGUI=False, allowStencil=False, monitor='testMonitor', units="pix",color=[1,1,1], colorSpace='rgb',blendMode='avg', useFBO=True) #define variables stim = [' ', '+'] nr_sequences = 5 nr_trials = 10 interStimDuration= 0.8 stimDuration = 0.2 #create some stimuli welcome_text = visual.TextStim(mywin, text='Welcome! \n\nPress a key to start...',color=(-1,-1,-1),wrapWidth = 800) # ************** Start run sentences ************** showText(welcome_text) # label data bufhelp.sendEvent('experiment','start') waitForKeypress() # inject an ERP into the trigger channel socket.socket(socket.AF_INET,socket.SOCK_DGRAM,0).sendto(bytes(1),('localhost',8300)) # pause core.wait(stimDuration) # refresh the screen mywin.flip()
jadref/buffer_bci
tutorial/lect3-helloworld/ERPviewer_stimulus_psychopy_skel.py
Python
gpl-3.0
1,698
from sage.all import RealDistribution from yanntricks import * def ChiSquared(): pspict,fig = SinglePicture("ChiSquared") pspict.dilatation_X(0.5) pspict.dilatation_Y(50) f=phyFunction(RealDistribution("chisquared",10).distribution_function).graph(0,30) f.linearr_plotpoints=1000 pspict.DrawGraphs(f) pspict.axes.single_axeX.Dx=5 pspict.axes.single_axeY.Dx=0.05 pspict.DrawDefaultAxes() fig.conclude() fig.write_the_file()
LaurentClaessens/mazhe
src_yanntricks/yanntricksChiSquared.py
Python
gpl-3.0
471
# -*- coding: utf-8 -*- # This Source Code Form is subject to the terms of the Mozilla Public # License, v. 2.0. If a copy of the MPL was not distributed with this # file, You can obtain one at http://mozilla.org/MPL/2.0/. PROJECT_NAME = 'tooltool/api' APP_NAME = 'tooltool_api' PULSE_ROUTE_CHECK_FILE_PENDING_UPLOADS = 'check_file_pending_uploads' SCOPE_PREFIX = f'project:releng:services/{PROJECT_NAME}' SCOPE_MANAGE = f'{SCOPE_PREFIX}/manage'
La0/mozilla-relengapi
src/tooltool/api/tooltool_api/config.py
Python
mpl-2.0
447
# -*- coding: utf-8 -*- import logging from logging import DEBUG, INFO, WARN, ERROR, CRITICAL import sys import warnings # # Exceptions # class MarkdownException(Exception): """ A Markdown Exception. """ pass class MarkdownWarning(Warning): """ A Markdown Warning. """ pass # # Global functions # def message(level, text): """ A wrapper method for logging debug messages. """ logger = logging.getLogger('MARKDOWN') if logger.handlers: # The logger is configured logger.log(level, text) if level > WARN: sys.exit(0) elif level > WARN: raise MarkdownException, text else: warnings.warn(text, MarkdownWarning)
DJMelonz/basic-blog
markdown/md_logging.py
Python
bsd-3-clause
702