code
stringlengths
3
1.05M
repo_name
stringlengths
5
104
path
stringlengths
4
251
language
stringclasses
1 value
license
stringclasses
15 values
size
int64
3
1.05M
from csacompendium.utils.pagination import APILimitOffsetPagination from csacompendium.utils.keywordsearch import get_query, get_project_models from csacompendium.utils.permissions import IsOwnerOrReadOnly from rest_framework.generics import ListAPIView from csacompendium.search.api.globalsearch.globalsearchserializers import global_search_serializers # from rest_framework.response import Response def global_search_views(): """ Global search views :return: All global search views :rtype: Object """ global_search_serializer = global_search_serializers() class GlobalSearchListAPIView(ListAPIView): """ API list view. Gets all records API. """ serializer_class = global_search_serializer['GlobalSearchListSerializer'] pagination_class = APILimitOffsetPagination def get_queryset(self): """ Return the list of items for this view. :return global_results: List of items from global search :rtype: List object as an instance of 'QuerySet' """ query_param = self.request.query_params.get('query', None) global_results = [] model_count = 0 if query_param: for model in get_project_models('csacompendium'): entry_query = get_query(query_param, model) if entry_query: query_result = model.objects.filter(entry_query).distinct() if query_result.exists(): global_results += query_result if model_count == 1: global_results = [] break model_count += 1 if global_results: global_results.sort(key=lambda x: x.time_created) return global_results return global_results def get_serializer_class(self): """ Return the class to use for the serializer. :return: Serializer class :rtype: Object """ obj = self.get_queryset() if obj: for model in obj: self.serializer_class.Meta.model = model.__class__ return self.serializer_class return self.serializer_class # def get_serializer(self, *args, **kwargs): # serializer_class = self.get_serializer_class() # kwargs['context'] = self.request # serialize_data = False # for model in args[0]: # serialize_data = True if serializer_class.Meta.model == model.__class__ else False # if serialize_data: # return serializer_class(*args, **kwargs) # return Response(None) return { 'GlobalSearchListAPIView': GlobalSearchListAPIView }
nkoech/csacompendium
csacompendium/search/api/globalsearch/globalsearchviews.py
Python
mit
2,957
# Copyright 2016 Google Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Provides a method for fetching Service Configuration from Google Service Management API.""" import logging import json import os import urllib3 from apitools.base.py import encoding import google.api.gen.servicecontrol_v1_messages as messages from oauth2client import client from urllib3.contrib import appengine logger = logging.getLogger(__name__) _GOOGLE_API_SCOPE = "https://www.googleapis.com/auth/cloud-platform" _SERVICE_MGMT_URL_TEMPLATE = ("https://servicemanagement.googleapis.com" "/v1/services/{}/configs/{}") _SERVICE_NAME_ENV_KEY = "ENDPOINTS_SERVICE_NAME" _SERVICE_VERSION_ENV_KEY = "ENDPOINTS_SERVICE_VERSION" def fetch_service_config(service_name=None, service_version=None): """Fetches the service config from Google Serivce Management API. Args: service_name: the service name. When this argument is unspecified, this method uses the value of the "SERVICE_NAME" environment variable as the service name, and raises ValueError if the environment variable is unset. service_version: the service version. When this argument is unspecified, this method uses the value of the "SERVICE_VERSION" environment variable as the service version, and raises ValueError if the environment variable is unset. Returns: the fetched service config JSON object. Raises: ValueError: when the service name/version is neither provided as an argument or set as an environment variable; or when the fetched service config fails validation. Exception: when the Google Service Management API returns non-200 response. """ if not service_name: service_name = _get_env_var_or_raise(_SERVICE_NAME_ENV_KEY) if not service_version: service_version = _get_env_var_or_raise(_SERVICE_VERSION_ENV_KEY) service_mgmt_url = _SERVICE_MGMT_URL_TEMPLATE.format(service_name, service_version) access_token = _get_access_token() headers = {"Authorization": "Bearer {}".format(access_token)} http_client = _get_http_client() response = http_client.request("GET", service_mgmt_url, headers=headers) status_code = response.status if status_code != 200: message_template = "Fetching service config failed (status code {})" _log_and_raise(Exception, message_template.format(status_code)) logger.debug('obtained service json from the management api:\n%s', response.data) service = encoding.JsonToMessage(messages.Service, response.data) _validate_service_config(service, service_name, service_version) return service def _get_access_token(): credentials = client.GoogleCredentials.get_application_default() if credentials.create_scoped_required(): credentials = credentials.create_scoped(_GOOGLE_API_SCOPE) return credentials.get_access_token().access_token def _get_http_client(): if appengine.is_appengine_sandbox(): return appengine.AppEngineManager() else: return urllib3.PoolManager() def _get_env_var_or_raise(env_variable_name): if env_variable_name not in os.environ: message_template = 'The "{}" environment variable is not set' _log_and_raise(ValueError, message_template.format(env_variable_name)) return os.environ[env_variable_name] def _validate_service_config(service, expected_service_name, expected_service_version): service_name = service.name if not service_name: _log_and_raise(ValueError, "No service name in the service config") if service_name != expected_service_name: message_template = "Unexpected service name in service config: {}" _log_and_raise(ValueError, message_template.format(service_name)) service_version = service.id if not service_version: _log_and_raise(ValueError, "No service version in the service config") if service_version != expected_service_version: message_template = "Unexpected service version in service config: {}" _log_and_raise(ValueError, message_template.format(service_version)) def _log_and_raise(exception_class, message): logger.error(message) raise exception_class(message)
catapult-project/catapult
third_party/google-endpoints/google/api/config/service_config.py
Python
bsd-3-clause
4,729
#静态类 class Lang: """语言包配置 >>Demo: from lang import Lang print Lang.getLang("ErrorCode") """ @staticmethod def getLang(name): """获取语言包配置属性,参数name:属性名""" return Lang.__langconfig[name] __langconfig = { "ErrorCode": 10000, "ErrorInfo": "系统繁忙!", "LoadError": "加载数据失败!", "St1404_OverfulfilNumNotEnough":"该佣兵灵魂数量不足,无法招募!", "St1114_IsNotGiftBag":"此物品不是礼包!", "St1425_MercenarySoulNotEnough":"佣兵灵魂为空!", "St1425_MercenaryOverfulfil":"是否对该佣兵进行突破潜能?", "St1425_MercenaryNoRecruitment":"该佣兵未招募!", "St1425_OverfulfilNumNotEnough":"该佣兵灵魂数量不足,无法突破!", "St1484_GeneralAndAbilityIsExist":"佣兵已经存在此魂技!", "St1484_OperateDefaultAbilityError":"不允许对默认魂技进行操作!", "St1442_GeneralLvNotUserLv":"佣兵等级不能高于会长等级3倍!", "St1442_GeneralLvIsMax":"佣兵等级已达到上限!", "St5108_CombatReplayFail":"战斗回放失败!", "St9302_IsNotFriend":"该用户不是您的好友,请重新选择好友", "St9302_OverMaxLength":"信件内容过长", "St9302_NoMail":"尊敬的会长,暂时没有收到伊妹儿!", "St9302_Minutes":"分钟前", "St9302_Hours":"小时前", "St9302_Days":"天前", "St7012_IntegralNotEnough":"积分不足", "St1449_GeneralHaveEqu":"请先卸下传承佣兵身上的装备", "St1449_GeneralHaveCrystal":"请先卸下传承佣兵身上的水晶", "St1449_GeneralHaveAbility":"请先卸下传承佣兵身上的魂技", "St1425_OverfulfilNumNotEnough":"该佣兵灵魂数量不足,无法突破", "St3013_NoWizard":"精灵已使用完!", "St13002_gameUserLv":"玩家等级不够,不能挑战!", "St13002_BattleRount":"玩家挑战次数已满,今日不能再挑战!", "St4405_UserLvNotEnough":"玩家未达到10级,不能进行挑战!", "St4405_ChallengeChanceNotEnough":"今日已无挑战机会!", "St4407_FightFail":"战斗失败,无法获得加强属性!", "St4407_NoAddProperty":"该层无加强属性!", "St4408_ProNotAvailable":"该属性加成暂不可用!", "St12057_UserLvNotEnough":"玩家未达到20级,暂未开启‘遗迹考古’活动!", "St12053_HasEnoughMapCount":"该怪物的所有碎片已集齐,无需继续挑战!", "St12053_EnergyNotEnough":"精力不足,请等待精力恢复后继续战斗!", "St12053_BuyOneChallenge":"挑战次数达到上限,是否花费10晶石增加一次挑战机会?", "St12101_NotLairTreasure":"龙穴获取奖励表失败", "St12102_GameCoinNotEnough":"金币不足", "St12102_PayGoldNotEnough":"晶石不足,是否立即充值?", "St12102_LairNumNot":"剩余次数不足!", "Gold":"晶石", "GameGoin":"金币", "Today":"今天", "Tomorrow":"明天", "DateFormatMMdd":"MM月dd日", "GetAccessFailure":"获取受权失败!" }
wenhulove333/ScutServer
Sample/Koudai/Server/src/ZyGames.Tianjiexing.Server/Script/PyScript/Lib/lang.py
Python
mit
3,385
""" curtains.py Problem: Calculate how much material to buy, given the size of the windows. Target Users: My friend who wants to make some curtains Target System: GNU/Linux Interface: Command-line Functional Requirements: Print out the required length of fabric in meters Print out the total price of the fabric User must be able to input the measurements of the window Testing: Simple run test Maintainer: maintainer@website.com """ __version__ = 0.1 # To start with, all the measurements will be in cm # Assume that the roll of material is going to be 140cm wide # and that the price per meter will be 5 units of currency roll_width = 140 price_per_metre = 5 # Prompt the user to input the window measurements in cm window_height = input('Enter the height of the window (cm): ') window_width = input('Enter the width of the window (cm): ') # Add a bit for the hems # First we must convert the string into a number # otherwise we will get an error if we try to perform arithmetic on a text string curtain_width = float(window_width) * 0.75 + 20 curtain_length = float(window_height) + 15 # Work out how many widths of cloth will be needed # and figure out the total length of material for each curtain (in cm still) widths = curtain_width / roll_width total_length = curtain_length * widths # Actually there are two curtains, so we must double the amount of material # and then divide by 10 to get the number of meters total_length = (total_length * 2) / 10 # Finally, work out how much it will cost price = total_length * price_per_metre # And print out the result print("You need", total_length, "meters of cloth for ", price)
r-castro/Python
curtain.py
Python
gpl-3.0
1,637
""" =============== tao package =============== .. toctree:: :maxdepth: 2 admin assets context_processors datasets decorators demo development forms mail models pagination qa settings test time ui_modules urls widgets workflow xml_util """
IntersectAustralia/asvo-tao
web/tao/__init__.py
Python
gpl-3.0
306
# -*- coding: utf-8 -*- # Part of Odoo. See LICENSE file for full copyright and licensing details. from odoo.tests.common import Form from odoo.addons.stock.tests.test_report import TestReportsCommon class TestMrpStockReports(TestReportsCommon): def test_report_forecast_1_mo_count(self): """ Creates and configures a product who could be produce and could be a component. Plans some producing and consumming MO and check the report values. """ # Create a variant attribute. product_chocolate = self.env['product.product'].create({ 'name': 'Chocolate', 'type': 'consu', }) product_chococake = self.env['product.product'].create({ 'name': 'Choco Cake', 'type': 'product', }) product_double_chococake = self.env['product.product'].create({ 'name': 'Double Choco Cake', 'type': 'product', }) # Creates two BOM: one creating a regular slime, one using regular slimes. bom_chococake = self.env['mrp.bom'].create({ 'product_id': product_chococake.id, 'product_tmpl_id': product_chococake.product_tmpl_id.id, 'product_uom_id': product_chococake.uom_id.id, 'product_qty': 1.0, 'type': 'normal', 'bom_line_ids': [ (0, 0, {'product_id': product_chocolate.id, 'product_qty': 4}), ], }) bom_double_chococake = self.env['mrp.bom'].create({ 'product_id': product_double_chococake.id, 'product_tmpl_id': product_double_chococake.product_tmpl_id.id, 'product_uom_id': product_double_chococake.uom_id.id, 'product_qty': 1.0, 'type': 'normal', 'bom_line_ids': [ (0, 0, {'product_id': product_chococake.id, 'product_qty': 2}), ], }) # Creates two MO: one for each BOM. mo_form = Form(self.env['mrp.production']) mo_form.product_id = product_chococake mo_form.bom_id = bom_chococake mo_form.product_qty = 10 mo_1 = mo_form.save() mo_form = Form(self.env['mrp.production']) mo_form.product_id = product_double_chococake mo_form.bom_id = bom_double_chococake mo_form.product_qty = 2 mo_2 = mo_form.save() report_values, docs, lines = self.get_report_forecast(product_template_ids=product_chococake.product_tmpl_id.ids) draft_picking_qty = docs['draft_picking_qty'] draft_production_qty = docs['draft_production_qty'] self.assertEqual(len(lines), 0, "Must have 0 line.") self.assertEqual(draft_picking_qty['in'], 0) self.assertEqual(draft_picking_qty['out'], 0) self.assertEqual(draft_production_qty['in'], 10) self.assertEqual(draft_production_qty['out'], 4) # Confirms the MO and checks the report lines. mo_1.action_confirm() mo_2.action_confirm() report_values, docs, lines = self.get_report_forecast(product_template_ids=product_chococake.product_tmpl_id.ids) draft_picking_qty = docs['draft_picking_qty'] draft_production_qty = docs['draft_production_qty'] self.assertEqual(len(lines), 2, "Must have two line.") line_1 = lines[0] line_2 = lines[1] self.assertEqual(line_1['document_in'].id, mo_1.id) self.assertEqual(line_1['quantity'], 4) self.assertEqual(line_1['document_out'].id, mo_2.id) self.assertEqual(line_2['document_in'].id, mo_1.id) self.assertEqual(line_2['quantity'], 6) self.assertEqual(line_2['document_out'], False) self.assertEqual(draft_picking_qty['in'], 0) self.assertEqual(draft_picking_qty['out'], 0) self.assertEqual(draft_production_qty['in'], 0) self.assertEqual(draft_production_qty['out'], 0) def test_report_forecast_2_production_backorder(self): """ Creates a manufacturing order and produces half the quantity. Then creates a backorder and checks the report. """ # Configures the warehouse. warehouse = self.env.ref('stock.warehouse0') warehouse.manufacture_steps = 'pbm_sam' # Configures a product. product_apple_pie = self.env['product.product'].create({ 'name': 'Apple Pie', 'type': 'product', }) product_apple = self.env['product.product'].create({ 'name': 'Apple', 'type': 'consu', }) bom = self.env['mrp.bom'].create({ 'product_id': product_apple_pie.id, 'product_tmpl_id': product_apple_pie.product_tmpl_id.id, 'product_uom_id': product_apple_pie.uom_id.id, 'product_qty': 1.0, 'type': 'normal', 'bom_line_ids': [ (0, 0, {'product_id': product_apple.id, 'product_qty': 5}), ], }) # Creates a MO and validates the pick components. mo_form = Form(self.env['mrp.production']) mo_form.product_id = product_apple_pie mo_form.bom_id = bom mo_form.product_qty = 4 mo_1 = mo_form.save() mo_1.action_confirm() pick = mo_1.move_raw_ids.move_orig_ids.picking_id pick_form = Form(pick) with pick_form.move_line_ids_without_package.edit(0) as move_line: move_line.qty_done = 20 pick = pick_form.save() pick.button_validate() # Produces 3 products then creates a backorder for the remaining product. mo_form = Form(mo_1) mo_form.qty_producing = 3 mo_1 = mo_form.save() action = mo_1.button_mark_done() backorder_form = Form(self.env['mrp.production.backorder'].with_context(**action['context'])) backorder = backorder_form.save() backorder.action_backorder() mo_2 = (mo_1.procurement_group_id.mrp_production_ids - mo_1) # Checks the forecast report. report_values, docs, lines = self.get_report_forecast(product_template_ids=product_apple_pie.product_tmpl_id.ids) self.assertEqual(len(lines), 1, "Must have only one line about the backorder") self.assertEqual(lines[0]['document_in'].id, mo_2.id) self.assertEqual(lines[0]['quantity'], 1) self.assertEqual(lines[0]['document_out'], False) # Produces the last unit. mo_form = Form(mo_2) mo_form.qty_producing = 1 mo_2 = mo_form.save() mo_2.button_mark_done() # Checks the forecast report. report_values, docs, lines = self.get_report_forecast(product_template_ids=product_apple_pie.product_tmpl_id.ids) self.assertEqual(len(lines), 0, "Must have no line") def test_report_forecast_3_report_line_corresponding_to_mo_highlighted(self): """ When accessing the report from a MO, checks if the correct MO is highlighted in the report """ product_banana = self.env['product.product'].create({ 'name': 'Banana', 'type': 'product', }) product_chocolate = self.env['product.product'].create({ 'name': 'Chocolate', 'type': 'consu', }) # We create 2 identical MO mo_form = Form(self.env['mrp.production']) mo_form.product_id = product_banana mo_form.product_qty = 10 with mo_form.move_raw_ids.new() as move: move.product_id = product_chocolate mo_1 = mo_form.save() mo_2 = mo_1.copy() (mo_1 | mo_2).action_confirm() # Check for both MO if the highlight (is_matched) corresponds to the correct MO for mo in [mo_1, mo_2]: context = mo.action_product_forecast_report()['context'] _, _, lines = self.get_report_forecast(product_template_ids=product_banana.product_tmpl_id.ids, context=context) for line in lines: if line['document_in'] == mo: self.assertTrue(line['is_matched'], "The corresponding MO line should be matched in the forecast report.") else: self.assertFalse(line['is_matched'], "A line of the forecast report not linked to the MO shoud not be matched.")
jeremiahyan/odoo
addons/mrp/tests/test_stock_report.py
Python
gpl-3.0
8,272
"""empty message Revision ID: 46c97aa9285d Revises: None Create Date: 2015-01-20 10:34:38.095562 """ # revision identifiers, used by Alembic. revision = '46c97aa9285d' down_revision = None from alembic import op import sqlalchemy as sa def upgrade(): ### commands auto generated by Alembic - please adjust! ### op.create_table('game_config', sa.Column('id', sa.Integer(), nullable=False), sa.Column('name', sa.String(length=250), nullable=False), sa.Column('config', sa.Unicode(), nullable=True), sa.PrimaryKeyConstraint('id'), sa.UniqueConstraint('name') ) op.create_table('users', sa.Column('id', sa.Integer(), nullable=False), sa.Column('username', sa.String(length=80), nullable=False), sa.Column('email', sa.String(length=80), nullable=False), sa.Column('password', sa.String(length=128), nullable=True), sa.Column('created_at', sa.DateTime(), nullable=False), sa.Column('first_name', sa.String(length=30), nullable=True), sa.Column('last_name', sa.String(length=30), nullable=True), sa.Column('active', sa.Boolean(), nullable=True), sa.Column('is_admin', sa.Boolean(), nullable=True), sa.PrimaryKeyConstraint('id'), sa.UniqueConstraint('email'), sa.UniqueConstraint('username') ) op.create_table('roles', sa.Column('id', sa.Integer(), nullable=False), sa.Column('name', sa.String(length=80), nullable=False), sa.Column('user_id', sa.Integer(), nullable=True), sa.ForeignKeyConstraint(['user_id'], ['users.id'], ), sa.PrimaryKeyConstraint('id'), sa.UniqueConstraint('name') ) ### end Alembic commands ### def downgrade(): ### commands auto generated by Alembic - please adjust! ### op.drop_table('roles') op.drop_table('users') op.drop_table('game_config') ### end Alembic commands ###
chudichudichudi/neuro-tedx-2
migrations/versions/46c97aa9285d_.py
Python
bsd-3-clause
1,843
import os import askmanta import json from dateutil import parser as dateparser from askmanta.environment import client class Phase(object): # phase name = "job name: phase i" def __init__(self, i, spec, directive): self.i = i self.spec = spec self.directive = directive self.type = spec.get('type', 'map') self.init = spec.get('init', []) self.manifests = [] self.assets = spec.get('assets', []) self.count = None self.memory = None self.disk = None if 'sh' in spec: self.executable = spec['sh'] elif 'script' in spec: path = os.path.join(self.directive.manta_tmp, 'scripts', spec['script']) self.executable = path spec.setdefault('dependencies', {}).setdefault('scripts', []).append(spec['script']) else: raise ValueError() platforms = spec.get('dependencies', False) if platforms: for platform, dependencies in platforms.items(): manifest = askmanta.manifest.platforms[platform](platform, self) manifest.add(*dependencies) self.manifests.append(manifest) @property def name(self): return "{directive}: step {i}/{n}".format( directive=self.directive.name, i=self.i, n=len(self.directive)) def serialize(self): assets = self.assets init = self.init for manifest in self.manifests: init = init + manifest.init for store in self.directive.stores.values(): assets = assets + [store.archive_destination] instruction = { 'type': self.type, 'init': ";\n".join(init), 'assets': assets, 'exec': self.executable, } for key in ['count', 'memory', 'disk']: option = getattr(self, key) if option: instruction[key] = option return instruction class Directive(object): def __init__(self, name, spec, root): self.name = name self.spec = spec # local root self.root = root # manta root self.manta_root = "/{account}/stor/directives/{name}".format( account=client.account, name=name) self.tmp = "/tmp/askmanta/{name}".format(name=self.name) self.manta_tmp = "/var/tmp" self.stores = {} self.parse() def parse(self): self.phases = [Phase(i, spec, self) for i, spec in enumerate(self.spec)] for store in self.stores.values(): if store.is_active: instruction = "cd /var/tmp && tar xvzf {src}".format( src=store.archive_asset) for phase in self.phases: phase.init.insert(0, instruction) def serialize(self): return [phase.serialize() for phase in self.phases] def build(self): for store in self.stores.values(): if store.is_active: store.save() phases_filename = os.path.join(self.tmp, 'phases.json') json.dump(self.serialize(), open(phases_filename, 'w'), indent=4) def stage(self): # TODO: support for -f --fresh, which would client.rmr(base) first client.mkdirp(self.manta_root) # TODO: client.get_object(name), check `mtime` > self.store.ctime and if so, abort # (current version already uploaded) for store in self.stores.values(): if not store.is_active: continue print store.archive_destination client.put_object( store.archive_destination, file=open(store.path), durability_level='1', ) def submit(self, inputs): job_id = client.create_job(self.serialize(), self.name) client.add_job_inputs(job_id, inputs) client.end_job_input(job_id) return Job(id=job_id) def run(self, inputs): self.build() self.stage() return self.submit(inputs=inputs) def local_run(self, inputs): """ * create a virtualenv for every step, with just the packages for that step * emulate how Joyent pipes lines into stdin * local runs can't really work if the phases have side-effects, but if they don't and if the input files are local too, things should work swimmingly """ raise NotImplementedError() def __len__(self): return len(self.spec) class File(object): def __init__(self, path): self.path = path @property def content(self): if not hasattr(self, '_content'): self._content = client.get_object(self.path) return self._content def json(self): return json.loads(self.content) class Job(object): # we can initialize a job with either an id # (for an existing job) or a directive (for # a job that's already running) def __init__(self, id=None, directive=None): self.id = id self.directive = directive self.root = os.path.join('/', client.account, 'jobs', id) # TODO: distinguish between live and archived jobs #self.path = os.path.join(self.root, 'live/status') self.path = os.path.join(self.root, 'job.json') self.errors = [] self.outputs = [] self.is_done = None def poll(self): self.raw = raw = File(self.path).json() self.name = raw['name'] self.state = raw['state'] self.is_done = raw['state'] == 'done' self.stats = raw['stats'] current = raw['stats']['tasksDone'] total = raw['stats']['tasks'] self.cursor = (current, total) self.ctime = dateparser.parse(self.raw['timeCreated']) if self.stats['errors']: try: # TODO: distinguish between live and archived jobs # live/err => err.txt overview_path = os.path.join(self.root, 'live/err') overview = File(overview_path).json() stderr_path = overview['stderr'] stderr = File(stderr_path) self.errors.append(stderr) except: pass if self.stats['outputs']: pass def delete(self): # too lazy to implement this in Python... subprocess.call(["mrm", "-r", self.root])
debrouwere/askmanta
askmanta/job.py
Python
mit
6,468
# -*- coding: utf-8 -*- from model.contact import Contact def test_add_contact(app, db,check_ui, json_contacts): contact = json_contacts old_contacts = db.get_contact_list() app.contact.create(contact) new_contacts = db.get_contact_list() assert len(old_contacts) + 1 == len(new_contacts) old_contacts.append(contact) assert sorted(old_contacts, key=Contact.id_or_max) == sorted(new_contacts, key=Contact.id_or_max) if check_ui: assert sorted(new_contacts, key=Contact.id_or_max) == sorted(app.contact.get_contact_list(), key=Contact.id_or_max)
SentyQ/python_training
test/test_add_contact.py
Python
apache-2.0
662
import os import shutil from tempfile import mkstemp from tests import TestCase, add from mutagen.asf import ASF, ASFHeaderError, ASFValue, UNICODE, DWORD, QWORD from mutagen.asf import BOOL, WORD, BYTEARRAY, GUID class TASFFile(TestCase): def test_not_my_file(self): self.failUnlessRaises( ASFHeaderError, ASF, os.path.join("tests", "data", "empty.ogg")) self.failUnlessRaises( ASFHeaderError, ASF, os.path.join("tests", "data", "click.mpc")) add(TASFFile) try: sorted except NameError: def sorted(l): n = list(l) n.sort() return n class TASFInfo(TestCase): def setUp(self): # WMA 9.1 64kbps CBR 48khz self.wma1 = ASF(os.path.join("tests", "data", "silence-1.wma")) # WMA 9.1 Professional 192kbps VBR 44khz self.wma2 = ASF(os.path.join("tests", "data", "silence-2.wma")) # WMA 9.1 Lossless 44khz self.wma3 = ASF(os.path.join("tests", "data", "silence-3.wma")) def test_length(self): self.failUnlessAlmostEqual(self.wma1.info.length, 3.7, 1) self.failUnlessAlmostEqual(self.wma2.info.length, 3.7, 1) self.failUnlessAlmostEqual(self.wma3.info.length, 3.7, 1) def test_bitrate(self): self.failUnlessEqual(self.wma1.info.bitrate / 1000, 64) self.failUnlessEqual(self.wma2.info.bitrate / 1000, 38) self.failUnlessEqual(self.wma3.info.bitrate / 1000, 58) def test_sample_rate(self): self.failUnlessEqual(self.wma1.info.sample_rate, 48000) self.failUnlessEqual(self.wma2.info.sample_rate, 44100) self.failUnlessEqual(self.wma3.info.sample_rate, 44100) def test_channels(self): self.failUnlessEqual(self.wma1.info.channels, 2) self.failUnlessEqual(self.wma2.info.channels, 2) self.failUnlessEqual(self.wma3.info.channels, 2) add(TASFInfo) class TASF(TestCase): def setUp(self): fd, self.filename = mkstemp(suffix='wma') os.close(fd) shutil.copy(self.original, self.filename) self.audio = ASF(self.filename) def tearDown(self): os.unlink(self.filename) def test_pprint(self): self.failUnless(self.audio.pprint()) def set_key(self, key, value, result=None, expected=True): self.audio[key] = value self.audio.save() self.audio = ASF(self.audio.filename) self.failUnless(key in self.audio) self.failUnless(key in self.audio.tags) self.failUnless(key in self.audio.tags.keys()) self.failUnless(key in self.audio.tags.as_dict().keys()) newvalue = self.audio[key] if isinstance(newvalue, list): for a, b in zip(sorted(newvalue), sorted(result or value)): self.failUnlessEqual(a, b) else: self.failUnlessEqual(self.audio[key], result or value) def test_contains(self): self.failUnlessEqual("notatag" in self.audio.tags, False) def test_inval_type(self): self.failUnlessRaises(ValueError, ASFValue, "", 4242) def test_repr(self): repr(ASFValue(u"foo", UNICODE, stream=1, language=2)) def test_auto_guuid(self): value = ASFValue('\x9eZl}\x89\xa2\xb5D\xb8\xa30\xfe', GUID) self.set_key(u"WM/WMCollectionGroupID", value, [value]) def test_auto_unicode(self): self.set_key(u"WM/AlbumTitle", u"foo", [ASFValue(u"foo", UNICODE)]) def test_auto_unicode_list(self): self.set_key(u"WM/AlbumTitle", [u"foo", u"bar"], [ASFValue(u"foo", UNICODE), ASFValue(u"bar", UNICODE)]) def test_word(self): self.set_key(u"WM/Track", ASFValue(24, WORD), [ASFValue(24, WORD)]) def test_auto_word(self): self.set_key(u"WM/Track", 12, [ASFValue(12, DWORD)]) def test_auto_word_list(self): self.set_key(u"WM/Track", [12, 13], [ASFValue(12, WORD), ASFValue(13, WORD)]) def test_auto_dword(self): self.set_key(u"WM/Track", 12, [ASFValue(12, DWORD)]) def test_auto_dword_list(self): self.set_key(u"WM/Track", [12, 13], [ASFValue(12, DWORD), ASFValue(13, DWORD)]) def test_auto_qword(self): self.set_key(u"WM/Track", 12L, [ASFValue(12, QWORD)]) def test_auto_qword_list(self): self.set_key(u"WM/Track", [12L, 13L], [ASFValue(12, QWORD), ASFValue(13, QWORD)]) def test_auto_bool(self): self.set_key(u"IsVBR", True, [ASFValue(True, BOOL)]) def test_auto_bool_list(self): self.set_key(u"IsVBR", [True, False], [ASFValue(True, BOOL), ASFValue(False, BOOL)]) def test_basic_tags(self): self.set_key("Title", "Wheeee", ["Wheeee"]) self.set_key("Author", "Whoooo", ["Whoooo"]) self.set_key("Copyright", "Whaaaa", ["Whaaaa"]) self.set_key("Description", "Wii", ["Wii"]) self.set_key("Rating", "5", ["5"]) def test_stream(self): self.audio["QL/OneHasStream"] = [ ASFValue("Whee", UNICODE, stream=2), ASFValue("Whee", UNICODE), ] self.audio["QL/AllHaveStream"] = [ ASFValue("Whee", UNICODE, stream=1), ASFValue("Whee", UNICODE, stream=2), ] self.audio["QL/NoStream"] = ASFValue("Whee", UNICODE) self.audio.save() self.audio = ASF(self.audio.filename) self.failUnlessEqual(self.audio["QL/NoStream"][0].stream, None) self.failUnlessEqual(self.audio["QL/OneHasStream"][0].stream, 2) self.failUnlessEqual(self.audio["QL/OneHasStream"][1].stream, None) self.failUnlessEqual(self.audio["QL/AllHaveStream"][0].stream, 1) self.failUnlessEqual(self.audio["QL/AllHaveStream"][1].stream, 2) def test_language(self): self.failIf("QL/OneHasLang" in self.audio) self.failIf("QL/AllHaveLang" in self.audio) self.audio["QL/OneHasLang"] = [ ASFValue("Whee", UNICODE, language=2), ASFValue("Whee", UNICODE), ] self.audio["QL/AllHaveLang"] = [ ASFValue("Whee", UNICODE, language=1), ASFValue("Whee", UNICODE, language=2), ] self.audio["QL/NoLang"] = ASFValue("Whee", UNICODE) self.audio.save() self.audio = ASF(self.audio.filename) self.failUnlessEqual(self.audio["QL/NoLang"][0].language, None) self.failUnlessEqual(self.audio["QL/OneHasLang"][0].language, 2) self.failUnlessEqual(self.audio["QL/OneHasLang"][1].language, None) self.failUnlessEqual(self.audio["QL/AllHaveLang"][0].language, 1) self.failUnlessEqual(self.audio["QL/AllHaveLang"][1].language, 2) def test_lang_and_stream_mix(self): self.audio["QL/Mix"] = [ ASFValue("Whee", UNICODE, stream=1), ASFValue("Whee", UNICODE, language=2), ASFValue("Whee", UNICODE, stream=3, language=4), ASFValue("Whee", UNICODE), ] self.audio.save() self.audio = ASF(self.audio.filename) self.failUnlessEqual(self.audio["QL/Mix"][0].language, None) self.failUnlessEqual(self.audio["QL/Mix"][0].stream, 1) self.failUnlessEqual(self.audio["QL/Mix"][1].language, 2) self.failUnlessEqual(self.audio["QL/Mix"][1].stream, 0) self.failUnlessEqual(self.audio["QL/Mix"][2].language, 4) self.failUnlessEqual(self.audio["QL/Mix"][2].stream, 3) self.failUnlessEqual(self.audio["QL/Mix"][3].language, None) self.failUnlessEqual(self.audio["QL/Mix"][3].stream, None) def test_data_size(self): v = ASFValue("", UNICODE, data='4\xd8\x1e\xdd\x00\x00') self.failUnlessEqual(v.data_size(), len(v._render())) class TASFTags1(TASF): original = os.path.join("tests", "data", "silence-1.wma") add(TASFTags1) class TASFTags2(TASF): original = os.path.join("tests", "data", "silence-2.wma") add(TASFTags2) class TASFTags3(TASF): original = os.path.join("tests", "data", "silence-3.wma") add(TASFTags3) class TASFIssue29(TestCase): original = os.path.join("tests", "data", "issue_29.wma") def setUp(self): fd, self.filename = mkstemp(suffix='wma') os.close(fd) shutil.copy(self.original, self.filename) self.audio = ASF(self.filename) def tearDown(self): os.unlink(self.filename) def test_issue_29_description(self): self.audio["Description"] = "Hello" self.audio.save() audio = ASF(self.filename) self.failUnless("Description" in audio) self.failUnlessEqual(audio["Description"], ["Hello"]) del(audio["Description"]) self.failIf("Description" in audio) audio.save() audio = ASF(self.filename) self.failIf("Description" in audio) add(TASFIssue29) class TASFLargeValue(TestCase): original = os.path.join("tests", "data", "silence-1.wma") def setUp(self): fd, self.filename = mkstemp(suffix='wma') os.close(fd) shutil.copy(self.original, self.filename) def tearDown(self): os.unlink(self.filename) def test_save_small_bytearray(self): audio = ASF(self.filename) audio["QL/LargeObject"] = [ASFValue("." * 0xFFFF, BYTEARRAY)] audio.save() self.failIf("QL/LargeObject" not in audio.to_extended_content_description) self.failIf("QL/LargeObject" in audio.to_metadata) self.failIf("QL/LargeObject" in dict(audio.to_metadata_library)) def test_save_large_bytearray(self): audio = ASF(self.filename) audio["QL/LargeObject"] = [ASFValue("." * (0xFFFF + 1), BYTEARRAY)] audio.save() self.failIf("QL/LargeObject" in audio.to_extended_content_description) self.failIf("QL/LargeObject" in audio.to_metadata) self.failIf("QL/LargeObject" not in dict(audio.to_metadata_library)) def test_save_small_string(self): audio = ASF(self.filename) audio["QL/LargeObject"] = [ASFValue("." * (0x7FFF - 1), UNICODE)] audio.save() self.failIf("QL/LargeObject" not in audio.to_extended_content_description) self.failIf("QL/LargeObject" in audio.to_metadata) self.failIf("QL/LargeObject" in dict(audio.to_metadata_library)) def test_save_large_string(self): audio = ASF(self.filename) audio["QL/LargeObject"] = [ASFValue("." * 0x7FFF, UNICODE)] audio.save() self.failIf("QL/LargeObject" in audio.to_extended_content_description) self.failIf("QL/LargeObject" in audio.to_metadata) self.failIf("QL/LargeObject" not in dict(audio.to_metadata_library)) def test_save_guid(self): # http://code.google.com/p/mutagen/issues/detail?id=81 audio = ASF(self.filename) audio["QL/GuidObject"] = [ASFValue(" "*16, GUID)] audio.save() self.failIf("QL/GuidObject" in audio.to_extended_content_description) self.failIf("QL/GuidObject" in audio.to_metadata) self.failIf("QL/GuidObject" not in dict(audio.to_metadata_library)) add(TASFLargeValue) # http://code.google.com/p/mutagen/issues/detail?id=81#c4 class TASFUpdateSize(TestCase): original = os.path.join("tests", "data", "silence-1.wma") def setUp(self): fd, self.filename = mkstemp(suffix='wma') os.close(fd) shutil.copy(self.original, self.filename) audio = ASF(self.filename) audio["large_value1"] = "#"*50000 audio.save() def tearDown(self): os.unlink(self.filename) def test_multiple_delete(self): audio = ASF(self.filename) for tag in audio.keys(): del(audio[tag]) audio.save() add(TASFUpdateSize)
hanvo/MusicCloud
Crawler/Install Files/mutagen-1.22/tests/test_asf.py
Python
bsd-3-clause
11,868
#!/usr/bin/env python # -*- coding: utf-8 -*- __author__ = """Co-Pierre Georg (co-pierre.georg@uct.ac.za)""" import abc from xml.etree import ElementTree # ------------------------------------------------------------------------- # # class Config # # ------------------------------------------------------------------------- class BaseConfig(object): """ Class variables: __metaclass__, identifier, static_parameters, variable_parameters """ __metaclass__ = abc.ABCMeta @abc.abstractmethod def get_identifier(self): return @abc.abstractmethod def set_identifier(self, _identifier): """ Class variables: identifier Local variables: _identifier """ if not isinstance(_identifier, str): raise TypeError else: self.identifier = _identifier return identifier = abc.abstractproperty(get_identifier, set_identifier) # identifier of the specific environment used for distinguishing them / logging # identifier should be a string @abc.abstractmethod def get_static_parameters(self): return @abc.abstractmethod def set_static_parameters(self, _params): """ Class variables: static_parameters Local variables: _params """ if not isinstance(_params, dict): raise TypeError else: self.static_parameters = _params return static_parameters = abc.abstractproperty(get_static_parameters, set_static_parameters) # static parameters of the environment store parameters determining # the behaviour of the simulation with a fixed value # static_parameters should be a dictionary @abc.abstractmethod def get_variable_parameters(self): return @abc.abstractmethod def set_variable_parameters(self, _params): """ Class variables: variable_parameters Local variables: _params """ if not isinstance(_params, dict): raise TypeError else: self.variable_parameters = _params return variable_parameters = abc.abstractproperty(get_variable_parameters, set_variable_parameters) # variable parameters of the environment store parameters determining # the behaviour of the simulation with a range of values # variable_parameters should be a dictionary @abc.abstractmethod def add_static_parameter(self, name, value): """ Class variables: static_parameters Local variables: name, value """ self.static_parameters[name] = value # an abstract method for adding a static parameter to the stack of static parameters @abc.abstractmethod def add_variable_parameter(self, name, range_from, range_to): """ Class variables: variable_parameters Local variables: name, range_from, range_to """ self.variable_parameters[name] = [range_from, range_to] # an abstract method for adding a variable parameter to the stack of variable parameters @abc.abstractmethod def print_parameters(self): """ Class variables: static_parameters, variable_parameters Local variables: key """ for key in self.static_parameters: print(str(key) + ": " + str(self.static_parameters[key])) for key in self.variable_parameters: print(str(key) + ":" + " range: " + str(self.variable_parameters[key][0]) + "-" + str(self.variable_parameters[key][1])) # an abstract method for printing all (static and variable) parameters # this is for testing purposes, do not use print in production @abc.abstractmethod def write_environment_file(self, file_name): out_file = open(file_name + "-check.xml", 'w') text = self.__str__() out_file.write(text) out_file.close() # an abstract method for writing a file with environment config to the current directory @abc.abstractmethod def __str__(self): """ Class variables: identifier, static_parameters, variable_parameters Local variables: out_str, entry, value, from_value, to_value """ out_str = "<config identifier='" + self.identifier + "'>\n" for entry in self.static_parameters: value = self.static_parameters[entry] if isinstance(value, int) or isinstance(value, float) or isinstance(value, str): out_str = out_str + " <parameter type='static' name='" + entry + "' value='" + str(value) + "'></parameter>\n" else: raise TypeError for entry in self.variable_parameters: if isinstance(self.variable_parameters[entry], list): from_value = self.variable_parameters[entry][0] to_value = self.variable_parameters[entry][1] out_str = out_str + " <parameter type='variable' name='" + entry + "' range='" + str(from_value) + "-" + \ str(to_value) + "'></parameter>\n" else: raise TypeError out_str = out_str + "</config>" return out_str # an abstract method returning a string with environment's config @abc.abstractmethod def __init__(self): """ Class variables: identifier, static_parameters, variable_parameters Local variables: """ self.identifier = "" self.static_parameters = {} self.variable_parameters = {} # an abstract method for initializing the environment @abc.abstractmethod def read_xml_config_file(self, config_file_name): """ Class variables: identifier, static_parameters, variable_parameters Local variables: xmlText, config_file_name, element, subelement, name, value, format_correct, range_from, range_to """ xmlText = open(config_file_name).read() element = ElementTree.XML(xmlText) self.identifier = element.attrib['identifier'] # loop over all entries in the xml file for subelement in element: name = subelement.attrib['name'] if subelement.attrib['type'] == 'static': try: # we see whether the value is a float value = float(subelement.attrib['value']) except: # if not, it is a string value = str(subelement.attrib['value']) self.static_parameters[name] = value if subelement.attrib['type'] == 'variable': format_correct = True try: range_from = float(subelement.attrib['range'].rsplit("-")[0]) except: format_correct = False print("<< ERROR: range_from must be a float or int. Found: " + str(subelement.attrib['range'].rsplit("-")[0])) try: range_to = float(subelement.attrib['range'].rsplit("-")[1]) except: format_correct = False print("<< ERROR: range_to must be a float or int. Found: " + str(subelement.attrib['range'].rsplit("-")[1])) if format_correct: self.variable_parameters[name] = [range_from, range_to] else: print("<< ERROR: FOUND ERROR IN FILE " + config_file_name + ", ABORTING") # an abstract method for reading an xml file with config # and adding all the static and variable parameters @abc.abstractproperty def agents(self): pass # a list of all the agents, list of lists [types][instances] @abc.abstractmethod def agents_generator(self): if self.agents is not None: for agent_type in self.agents: if type(agent_type) == list: for agent in agent_type: yield agent else: yield agent_type else: raise LookupError('There are no agents to iterate over.') # a standard method for iterating over all agents @abc.abstractmethod def get_agent_by_id(self, ident): to_return = None for agent in self.agents_generator(): if agent.identifier == ident: if to_return is None: # checks whether something has been found previously in the function to_return = agent else: raise LookupError('At least two agents have the same ID.') # if we have found something before then IDs are not unique, so we raise an error if to_return is None: raise LookupError('No agents have the provided ID.') # if we don't find any agent with that ID we raise an error else: return to_return # a standard method for returning an agent based on a unique ID @abc.abstractmethod def check_global_transaction_balance(self, type_): sum_lists = 0 # global sum, for checking the consistency numerically # We check all the banks first for agent in self.agents_generator(): # Dictionaries to keep all the incoming and outgoing transactions of the bank tranx_list_from = {} tranx_list_to = {} # We populate the above with the amounts for tranx in agent.accounts: if tranx.type_ == type_: if tranx.from_ == agent: if tranx.to in tranx_list_to: tranx_list_to[tranx.to] = tranx_list_to[tranx.to] + tranx.amount else: tranx_list_to[tranx.to] = tranx.amount else: if tranx.from_ in tranx_list_from: tranx_list_from[tranx.from_] = tranx_list_from[tranx.from_] + tranx.amount else: tranx_list_from[tranx.from_] = tranx.amount # And we check if the added transactions exist in the counterparty's books # If they do we subtract the amount from the dictionaries # So that we can check if the dictionaries go to 0 globally for key in tranx_list_from: for tranx in key.accounts: if tranx.type_ == type_: if tranx.from_ == key: if tranx.to == agent: tranx_list_from[key] = tranx_list_from[key] - tranx.amount for key in tranx_list_to: for tranx in key.accounts: if tranx.type_ == type_: if tranx.to == key: if tranx.from_ == agent: tranx_list_to[key] = tranx_list_to[key] - tranx.amount # Then we add the dictionary entries to the global check variable for key in tranx_list_from: sum_lists = sum_lists + abs(tranx_list_from[key]) for key in tranx_list_to: sum_lists = sum_lists + abs(tranx_list_to[key]) # We make the final check and return True if consistent, otherwise return False if sum_lists == 0: return True else: return False # a standard method for making sure the transactions of a given type # are consistent across all agents, ie the same transaction is of the same amount # on both agents it concerns @abc.abstractmethod def __getattr__(self, attr): if (attr in self.static_parameters) and (attr in self.variable_parameters): raise AttributeError('The same name exists in both static and variable parameters.') else: try: return self.static_parameters[attr] except: try: return self.variable_parameters[attr] except: raise AttributeError('Environment has no attribute "%s".' % attr) # a standard method for returning attributes from the dectionaries as attributes @abc.abstractmethod def accrue_interests(self): done_list = [] # This keeps the IDs of updated transactions # The above is important as the same transactions may be on the books # of different agents, we don't want to double count the interest for agent in self.agents_generator(): # Iterate over all agents for tranx in agent.accounts: # Iterate over all transactions if tranx.identifier not in done_list: # If not amended previously # The below adds the interest on the principal amount tranx.amount = tranx.amount + tranx.amount * tranx.interest # The below makes sure that we don't double count done_list.append(tranx.identifier) # a standard method for accruing interest on all transactions
cogeorg/black_rhino
examples/solow/abm_template/src/baseconfig.py
Python
gpl-3.0
13,029
# # # Copyright 2012-2015 Ghent University # # This file is part of EasyBuild, # originally created by the HPC team of Ghent University (http://ugent.be/hpc/en), # with support of Ghent University (http://ugent.be/hpc), # the Flemish Supercomputer Centre (VSC) (https://vscentrum.be/nl/en), # the Hercules foundation (http://www.herculesstichting.be/in_English) # and the Department of Economy, Science and Innovation (EWI) (http://www.ewi-vlaanderen.be/en). # # http://github.com/hpcugent/easybuild # # EasyBuild is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation v2. # # EasyBuild is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with EasyBuild. If not, see <http://www.gnu.org/licenses/>. # # """ Module for doing parallel builds. This uses a PBS-like cluster. You should be able to submit jobs (which can have dependencies) Support for PBS is provided via the PbsJob class. If you want you could create other job classes and use them here. @author: Toon Willems (Ghent University) @author: Kenneth Hoste (Ghent University) @author: Stijn De Weirdt (Ghent University) """ import math import os import subprocess import easybuild.tools.config as config from easybuild.framework.easyblock import get_easyblock_instance from easybuild.framework.easyconfig.easyconfig import ActiveMNS from easybuild.tools.build_log import EasyBuildError from easybuild.tools.config import get_repository, get_repositorypath from easybuild.tools.module_naming_scheme.utilities import det_full_ec_version from easybuild.tools.pbs_job import PbsJob, connect_to_server, disconnect_from_server, get_ppn from easybuild.tools.repository.repository import init_repository from vsc.utils import fancylogger _log = fancylogger.getLogger('parallelbuild', fname=False) def build_easyconfigs_in_parallel(build_command, easyconfigs, output_dir=None, prepare_first=True): """ easyconfigs is a list of easyconfigs which can be built (e.g. they have no unresolved dependencies) this function will build them in parallel by submitting jobs @param build_command: build command to use @param easyconfigs: list of easyconfig files @param output_dir: output directory returns the jobs """ _log.info("going to build these easyconfigs in parallel: %s", easyconfigs) job_ids = {} # dependencies have already been resolved, # so one can linearly walk over the list and use previous job id's jobs = [] # create a single connection, and reuse it conn = connect_to_server() if conn is None: _log.error("connect_to_server returned %s, can't submit jobs." % (conn)) # determine ppn once, and pass is to each job being created # this avoids having to figure out ppn over and over again, every time creating a temp connection to the server ppn = get_ppn() def tokey(dep): """Determine key for specified dependency.""" return ActiveMNS().det_full_module_name(dep) for ec in easyconfigs: # this is very important, otherwise we might have race conditions # e.g. GCC-4.5.3 finds cloog.tar.gz but it was incorrectly downloaded by GCC-4.6.3 # running this step here, prevents this if prepare_first: prepare_easyconfig(ec) # the new job will only depend on already submitted jobs _log.info("creating job for ec: %s" % str(ec)) new_job = create_job(build_command, ec, output_dir=output_dir, conn=conn, ppn=ppn) # sometimes unresolved_deps will contain things, not needed to be build job_deps = [job_ids[dep] for dep in map(tokey, ec['unresolved_deps']) if dep in job_ids] new_job.add_dependencies(job_deps) # place user hold on job to prevent it from starting too quickly, # we might still need it in the queue to set it as a dependency for another job; # only set hold for job without dependencies, other jobs have a dependency hold set anyway with_hold = False if not job_deps: with_hold = True # actually (try to) submit job new_job.submit(with_hold) _log.info("job for module %s has been submitted (job id: %s)" % (new_job.module, new_job.jobid)) # update dictionary job_ids[new_job.module] = new_job.jobid new_job.cleanup() jobs.append(new_job) # release all user holds on jobs after submission is completed for job in jobs: if job.has_holds(): _log.info("releasing hold on job %s" % job.jobid) job.release_hold() disconnect_from_server(conn) return jobs def submit_jobs(ordered_ecs, cmd_line_opts, testing=False): """ Submit jobs. @param ordered_ecs: list of easyconfigs, in the order they should be processed @param cmd_line_opts: list of command line options (in 'longopt=value' form) """ curdir = os.getcwd() # the options to ignore (help options can't reach here) ignore_opts = ['robot', 'job'] # generate_cmd_line returns the options in form --longopt=value opts = [x for x in cmd_line_opts if not x.split('=')[0] in ['--%s' % y for y in ignore_opts]] # compose string with command line options, properly quoted and with '%' characters escaped opts_str = subprocess.list2cmdline(opts).replace('%', '%%') command = "unset TMPDIR && cd %s && eb %%(spec)s %s --testoutput=%%(output_dir)s" % (curdir, opts_str) _log.info("Command template for jobs: %s" % command) job_info_lines = [] if testing: _log.debug("Skipping actual submission of jobs since testing mode is enabled") else: jobs = build_easyconfigs_in_parallel(command, ordered_ecs) job_info_lines = ["List of submitted jobs:"] job_info_lines.extend(["%s (%s): %s" % (job.name, job.module, job.jobid) for job in jobs]) job_info_lines.append("(%d jobs submitted)" % len(jobs)) return '\n'.join(job_info_lines) def create_job(build_command, easyconfig, output_dir=None, conn=None, ppn=None): """ Creates a job, to build a *single* easyconfig @param build_command: format string for command, full path to an easyconfig file will be substituted in it @param easyconfig: easyconfig as processed by process_easyconfig @param output_dir: optional output path; --regtest-output-dir will be used inside the job with this variable @param conn: open connection to PBS server @param ppn: ppn setting to use (# 'processors' (cores) per node to use) returns the job """ if output_dir is None: output_dir = 'easybuild-build' # capture PYTHONPATH, MODULEPATH and all variables starting with EASYBUILD easybuild_vars = {} for name in os.environ: if name.startswith("EASYBUILD"): easybuild_vars[name] = os.environ[name] others = ["PYTHONPATH", "MODULEPATH"] for env_var in others: if env_var in os.environ: easybuild_vars[env_var] = os.environ[env_var] _log.info("Dictionary of environment variables passed to job: %s" % easybuild_vars) # obtain unique name based on name/easyconfig version tuple ec_tuple = (easyconfig['ec']['name'], det_full_ec_version(easyconfig['ec'])) name = '-'.join(ec_tuple) # create command based on build_command template command = build_command % { 'spec': easyconfig['spec'], 'output_dir': os.path.join(os.path.abspath(output_dir), name), } # just use latest build stats repo = init_repository(get_repository(), get_repositorypath()) buildstats = repo.get_buildstats(*ec_tuple) resources = {} if buildstats: previous_time = buildstats[-1]['build_time'] resources['hours'] = int(math.ceil(previous_time * 2 / 60)) job = PbsJob(command, name, easybuild_vars, resources=resources, conn=conn, ppn=ppn) job.module = easyconfig['ec'].full_mod_name return job def prepare_easyconfig(ec): """ Prepare for building specified easyconfig (fetch sources) @param ec: parsed easyconfig (EasyConfig instance) """ try: easyblock_instance = get_easyblock_instance(ec) easyblock_instance.update_config_template_run_step() easyblock_instance.fetch_step(skip_checksums=True) _log.debug("Cleaning up log file %s..." % easyblock_instance.logfile) easyblock_instance.close_log() os.remove(easyblock_instance.logfile) except (OSError, EasyBuildError), err: _log.error("An error occured while preparing %s: %s" % (ec, err))
pneerincx/easybuild-framework
easybuild/tools/parallelbuild.py
Python
gpl-2.0
8,870
# -*- python -*- # Copyright (C) 2009 Free Software Foundation, Inc. # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 3 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program. If not, see <http://www.gnu.org/licenses/>. import sys import gdb import os import os.path pythondir = '/opt/codesourcery/arm-none-eabi/share/gcc-4.5.1/python' libdir = '/opt/codesourcery/arm-none-eabi/lib/thumb2' # This file might be loaded when there is no current objfile. This # can happen if the user loads it manually. In this case we don't # update sys.path; instead we just hope the user managed to do that # beforehand. if gdb.current_objfile () is not None: # Update module path. We want to find the relative path from libdir # to pythondir, and then we want to apply that relative path to the # directory holding the objfile with which this file is associated. # This preserves relocatability of the gcc tree. # Do a simple normalization that removes duplicate separators. pythondir = os.path.normpath (pythondir) libdir = os.path.normpath (libdir) prefix = os.path.commonprefix ([libdir, pythondir]) # In some bizarre configuration we might have found a match in the # middle of a directory name. if prefix[-1] != '/': prefix = os.path.dirname (prefix) + '/' # Strip off the prefix. pythondir = pythondir[len (prefix):] libdir = libdir[len (prefix):] # Compute the ".."s needed to get from libdir to the prefix. dotdots = ('..' + os.sep) * len (libdir.split (os.sep)) objfile = gdb.current_objfile ().filename dir = os.path.join (os.path.dirname (objfile), dotdots, pythondir) if not dir in sys.path: sys.path.insert(0, dir) # Load the pretty-printers. from libstdcxx.v6.printers import register_libstdcxx_printers register_libstdcxx_printers (gdb.current_objfile ())
GeeteshKhatavkar/gh0st_kernel_samsung_royxx
arm-2010.09/arm-none-eabi/lib/thumb2/libstdc++.a-gdb.py
Python
gpl-2.0
2,345
#!/usr/bin/env python # -*- coding: utf-8 -*- "This is some interesting educational program" # wxRays (C) 2013 Serhii Lysovenko # # This program is free software; you can redistribute it and / or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 3 of the License, or (at # your option) any later version. # # This program is distributed in the hope that it will be useful, but # WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU # General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program; if not, write to the Free Software Foundation, # Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110 - 1301, USA. # Used to guarantee to use at least Wx2.8 import wxversion import os.path as osp from sys import argv wxversion.ensureMinimal('2.8') import wx class MainFrame(wx.Frame): 'The Main Frame' def __init__(self): last_size = eval(APP_SETT.get("frame_size", "(550, 350)")) wx.Frame.__init__(self, None, - 1, PROG_NAME, size=last_size) from v_plot import Plot from v_menu import Active_menu from c_file import ascii_file_load self.data = {} adb = {'data': self.data, 'window': self} self.addons_data = {' base ': adb} self.a_menu = Active_menu(self) self.plot = Plot(self.a_menu) self.prev_dir = '.' adb.update({'plot': self.plot, 'menu': self.a_menu, 'loaders': []}) APP_SETT.addons.introduce(self.addons_data) adb['loaders'].insert(0, (_('Commented dat files'), ('.dat',), ascii_file_load)) self.a_menu.set_menu_bar() self.plot.mk_menuitems() self.canvas = self.plot.get_canvas(self) self.SetToolBar(self.plot.get_toolbar()) self.sizer = wx.BoxSizer(wx.VERTICAL) self.sizer.Add(self.canvas, 1, wx.TOP | wx.LEFT | wx.EXPAND) wx.EVT_PAINT(self, self.OnPaint) wx.EVT_CLOSE(self, self.OnWindowClose) wx.EVT_SIZE(self, self.sizeHandler) self.a_menu.action_catch("on init") self.SetSizer(self.sizer) self.statusBar = wx.StatusBar(self, -1) self.statusBar.SetFieldsCount(1) self.SetStatusBar(self.statusBar) self.plot.set_statusbar(self.statusBar) def OnCreate(self): if len(argv) > 1: from v_dialogs import load_data_file load_data_file(self, argv[1:], self.addons_data[' base ']['loaders']) def OnPaint(self, event): self.canvas.draw() event.Skip() def sizeHandler(self, event): self.canvas.SetInitialSize(self.GetClientSize()) event.Skip() def OnWindowClose(self, event): APP_SETT.addons.terminate(self.addons_data, True) APP_SETT.set("frame_size", repr(self.GetSizeTuple())) self.Destroy() def OnDataFile(self, event): from v_dialogs import load_data_file load_data_file(self, None, self.addons_data[' base ']['loaders']) def AboutMe(self, evt): from v_dialogs import about_box about_box() class TheSplashScreen(wx.SplashScreen): def __init__(self): splash_fname = osp.join(osp.dirname(__file__), u'splash.png') image = wx.Image(splash_fname, wx.BITMAP_TYPE_PNG) bmp = image.ConvertToBitmap() self.bmp = image.Resize((200, 200), (0, 0)).ConvertToBitmap() wx.SplashScreen.__init__(self, bmp, wx.SPLASH_CENTRE_ON_SCREEN | wx.SPLASH_TIMEOUT, 5000, None, - 1) self.Bind(wx.EVT_CLOSE, self.OnClose) self.fc = wx.FutureCall(2000, self.ShowMain) def OnClose(self, evt): # Make sure the default handler runs too so this window gets # destroyed evt.Skip() self.Hide() # if the timer is still running then go ahead and show the # main frame now if self.fc.IsRunning(): self.fc.Stop() self.ShowMain() def ShowMain(self): import settings settings.prog_init() frame = MainFrame() frame.SetIcon(wx.IconFromBitmap(self.bmp)) self.Hide() frame.OnCreate() frame.Show() class App(wx.App): def OnInit(self): splash = TheSplashScreen() splash.Show() return True def main(): app = App(False) app.MainLoop() APP_SETT.save()
Lysovenko/wxRays
v_face.py
Python
gpl-3.0
4,571
import pytest import numpy as np from eli5._feature_names import FeatureNames # See also test_sklearn_utils.py::test_get_feature_names def test_feature_names_filtered(): filtered, indices = (FeatureNames(['one', 'two', 'twenty-two']) .filtered(lambda name: 'two' in name)) assert indices == [1, 2] assert list(filtered) == ['two', 'twenty-two'] filtered, indices = ( FeatureNames({1: 'two', 3: 'twenty-two', 5: 'two-thirds'}, unkn_template='%d', n_features=6, bias_name='foo') .filtered(lambda name: name.startswith('two'))) assert indices == [1, 5] assert filtered.bias_name is None assert filtered.unkn_template == '%d' assert list(filtered) == ['two', 'two-thirds'] filtered, indices = (FeatureNames(['a', 'b'], bias_name='bias') .filtered(lambda name: 'b' in name)) assert indices == [1, 2] assert filtered.bias_name == 'bias' assert list(filtered) == ['b', 'bias'] filtered, indices = (FeatureNames(unkn_template='x%d', n_features=6) .filtered(lambda name: False)) assert indices == [] filtered, indices = ( FeatureNames(['one', 'two', 'twenty-two']) .filtered(lambda name, value: 't' in name and value <= 1, x=[0, 1, 2])) assert indices == [1] assert list(filtered) == ['two'] def test_feature_names_handle_filter(): filtered, indices = (FeatureNames(['one', 'two', 'twenty-two']) .handle_filter(lambda name: 'two' in name, feature_re=None)) assert indices == [1, 2] assert list(filtered) == ['two', 'twenty-two'] filtered, indices = (FeatureNames(['one', 'two', 'twenty-two']) .handle_filter(feature_filter=None, feature_re='two')) assert indices == [1, 2] assert list(filtered) == ['two', 'twenty-two'] filtered, indices = FeatureNames(['one', 'two']).handle_filter(None, None) assert indices is None assert list(filtered) == ['one', 'two'] with pytest.raises(ValueError): FeatureNames(['one', 'two']).handle_filter(lambda name: True, '.*') def test_init(): with pytest.raises(ValueError): FeatureNames() with pytest.raises(ValueError): FeatureNames(unkn_template='%d') with pytest.raises(ValueError): FeatureNames(n_features=10) with pytest.raises(ValueError): FeatureNames(['a'], n_features=10) with pytest.raises(TypeError): FeatureNames({'a', 'b'}) with pytest.raises(ValueError): FeatureNames({0: 'a', 1: 'b'}, n_features=10) FeatureNames(unkn_template='%d', n_features=10) FeatureNames(['a', 'b']) FeatureNames({0: 'a', 1: 'b'}) FeatureNames({0: 'a', 1: 'b'}, n_features=10, unkn_template='x%d') def test_slice(): FN = FeatureNames assert FN(['one', 'two', 'three'])[1:] == ['two', 'three'] assert FN(['one', 'two', 'three'])[:-2] == ['one'] assert FN(['one', 'two', 'three'])[1:] == ['two', 'three'] assert FN({1: 'one'}, n_features=3, unkn_template='x%d')[:] \ == ['x0', 'one', 'x2'] assert FN({1: 'one'}, n_features=3, unkn_template='x%d', bias_name='bias')[-3:] \ == ['one', 'x2', 'bias'] assert FN(['one', 'two', 'three'], bias_name='bias')[-1:] == ['bias'] assert FN(np.array(['one', 'two', 'three']), bias_name='bias')[-1:] \ == ['bias'] assert FN(np.array(['one', 'two', 'three']), bias_name='bias')[-2:] \ == ['three', 'bias'] assert list(FN(np.array(['one', 'two', 'three']))[-2:]) == ['two', 'three'] @pytest.mark.parametrize( ['feature_names'], [ [FeatureNames(['x1', 'x2', 'x3'])], [FeatureNames(['x1', 'x2', 'x3'], bias_name='<BIAS>')], [FeatureNames(np.array(['x1', 'x2', 'x3']))], [FeatureNames({0: 'x1', 1: 'x2'})], [FeatureNames(n_features=5, unkn_template='%d')], ]) def test_add_feature(feature_names): len_before = len(feature_names) storage = feature_names.feature_names new_feature = 'new' new_idx = feature_names.add_feature(new_feature) assert len(feature_names) == len_before + 1 assert feature_names[new_idx] == new_feature if storage is not None: assert storage is not feature_names.feature_names
TeamHG-Memex/eli5
tests/test_feature_names.py
Python
mit
4,329
#!/usr/bin/env python3 import os,sys; from setuptools import setup; if 'linux'!=sys.platform: print("This package only supports Linux platform."); exit(1); setup( name = 'telnet-ppp-server', # 在pip中显示的项目名称 version = '0.1', author = 'Frank', author_email = '', license = 'MIT', url = '', description = 'PPP server and Telnet server for old platforms like Windows 3.x, Windows 95.', python_requires = '>=3.5.0', py_modules=['serverLib'], scripts=['pppd.py','telnetd.py','raw-mode'] );
frank-deng/retro-works
telnet-ppp-server/setup.py
Python
mit
552
from flask import Blueprint, render_template, redirect, request, g, abort from flask_wtf import FlaskForm from wtforms import StringField, PasswordField from career_connections.database.models import PendingUser, User from career_connections.utils.auth import login, logout unauth_views_bp = Blueprint('unauthenticated_views', __name__) class SigninForm(FlaskForm): username = StringField('username') password = PasswordField('password') class SignupForm(FlaskForm): first_name = StringField('First Name') last_name = StringField('Last Name') email = StringField('Email') @unauth_views_bp.route('/') def home(): signin_form = SigninForm() signup_form = SignupForm() return render_template('signin.j2', login_form=signin_form, signup_form=signup_form) @unauth_views_bp.route('/signin', methods=['POST']) def signin(): form = SigninForm() if form.username.data is None or form.password.data is None: return redirect('/?signin=invalid') if login(form.username.data, form.password.data): return redirect('/dashboard') return redirect('/?signin=invalid') @unauth_views_bp.route('/signup', methods=['POST']) def signup(): form = SignupForm() pending_user = PendingUser( first_name=form.first_name.data, last_name=form.last_name.data, email=form.email.data) print(pending_user.to_dict()) g.db.add(pending_user) g.db.commit() return redirect('/?signup=sucess') @unauth_views_bp.route('/signout') def signout(): logout() return redirect('/')
UnboundLegacy/api
career_connections/blueprints/unauthenticated_views.py
Python
mit
1,567
# -*- coding: utf-8 -*- ''' Created : 2017-01-14 @author: Eric Lapouyade ''' from docxtpl import DocxTemplate, InlineImage # for height and width you have to use millimeters (Mm), inches or points(Pt) class : from docx.shared import Mm, Inches, Pt tpl=DocxTemplate('test_files/inline_image_tpl.docx') context = { 'myimage' : InlineImage(tpl,'test_files/python_logo.png',width=Mm(20)), 'myimageratio': InlineImage(tpl, 'test_files/python_jpeg.jpg', width=Mm(30), height=Mm(60)), 'frameworks' : [{'image' : InlineImage(tpl,'test_files/django.png',height=Mm(10)), 'desc' : 'The web framework for perfectionists with deadlines'}, {'image' : InlineImage(tpl,'test_files/zope.png',height=Mm(10)), 'desc' : 'Zope is a leading Open Source Application Server and Content Management Framework'}, {'image': InlineImage(tpl, 'test_files/pyramid.png', height=Mm(10)), 'desc': 'Pyramid is a lightweight Python web framework aimed at taking small web apps into big web apps.'}, {'image' : InlineImage(tpl,'test_files/bottle.png',height=Mm(10)), 'desc' : 'Bottle is a fast, simple and lightweight WSGI micro web-framework for Python'}, {'image': InlineImage(tpl, 'test_files/tornado.png', height=Mm(10)), 'desc': 'Tornado is a Python web framework and asynchronous networking library.'}, ] } tpl.render(context) tpl.save('test_files/inline_image.docx')
rgusmero/python-docx-template
tests/inline_image.py
Python
lgpl-2.1
1,565
#!/usr/bin/python3 # Concatenator is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # # Concatenator is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program; if not, write to the Free Software # Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, # MA 02110-1301, USA. # def concatenate(Dicts, fileformat): #Concatenates multiple Dicts into a single one seqset = set() for Dict in Dicts: seqset.add(tuple(sorted(Dict))) if len(seqset) == 1: "OK" else: "Different taxa"
StuntsPT/concatenator2
concatenation.py
Python
gpl-3.0
945
import tangelo tangelo.log("Python file plugin") tangelo.log("This doesn't use a Python module directory.")
Kitware/tangelo
tests/plugins/pythonfile/python.py
Python
apache-2.0
109
import sure sure
gabrielfalcao/carpentry
tests/unit/__init__.py
Python
gpl-3.0
17
# Copyright 2020 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================= # Lint as: python3 """A self-tuning trainer that produces a model for tabular datasets.""" from typing import List, Optional from nitroml import subpipeline from tfx import components as tfx from tfx import types from tfx.components.trainer import executor as trainer_executor from tfx.dsl.components.base import base_component from tfx.dsl.components.base import executor_spec from tfx.proto import trainer_pb2 from google.protobuf import text_format from nitroml.protos import problem_statement_pb2 as ps_pb2 class AutoTrainer(subpipeline.Subpipeline): """A self-tuning trainer that produces a model for tabular datasets. It is designed to be used in conjunction with NitroML's `AutoData` subpipeline using the `BasicPreprocessor`. ## Example: ```python task = MyBenchmarkTask(...) autodata = AutoData( task.problem_statement, examples=task.train_and_eval_examples, preprocessor=BasicPreprocessor()) autotrainer= AutoTrainer( problem_statement=task.problem_statement, transformed_examples=autodata.transformed_examples, transform_graph=autodata.transform_graph, schema=autodata.schema, train_steps=1000, eval_steps=1000) pipeline = task.components + autodata.components + autotrainer.components ``` """ def __init__(self, problem_statement: ps_pb2.ProblemStatement, transformed_examples: types.Channel, transform_graph: types.Channel, schema: types.Channel, train_steps: int, eval_steps: int, use_keras: bool = True, enable_tuning: bool = False, max_sequence_length: Optional[int] = None, instance_name: Optional[str] = None): """Constructs an AutoTrainer subpipeline. Args: problem_statement: ProblemStatement proto identifying the task. transformed_examples: A Channel of 'ExamplesPath' type produced from an upstream Transform component. The source of examples that are used in training and evaluation (required). transform_graph: An optional Channel of 'TransformPath' type, serving as the input transform graph if present. schema: An optional Channel of 'SchemaPath' type, serving as the schema of training and eval data. train_steps: Number of steps (batches) to train for. eval_steps: Number of steps (batches) to evaluate. use_keras: When `True`, uses Keras Models, otherwise uses Estimators. enable_tuning: When `True`, performs hyperparameter tuning using the built-in `tfx.Tuner` using a tuned search-space. max_sequence_length: For seqential prediction tasks. When > 0, the trainer will produce a model that will produce sequential prediction of this desired length. instance_name: Optional unique instance name. Necessary iff multiple Tuner components are declared in the same pipeline. Raises: ValueError: When a required param is not supplied. """ self._instance_name = instance_name self._tuner = None if enable_tuning: # Search over search space of model hyperparameters. self._tuner = tfx.Tuner( tuner_fn='nitroml.automl.autotrainer.lib.auto_trainer.tuner_fn', examples=transformed_examples, transform_graph=transform_graph, train_args=trainer_pb2.TrainArgs(num_steps=train_steps), eval_args=trainer_pb2.EvalArgs(num_steps=eval_steps), custom_config={ # Pass the problem statement proto as a text proto. Required # since custom_config must be JSON-serializable. 'problem_statement': text_format.MessageToString( message=problem_statement, as_utf8=True), }, instance_name=self.id) self._trainer = tfx.Trainer( run_fn='nitroml.automl.autotrainer.lib.auto_trainer.run_fn' if use_keras else 'nitroml.automl.autotrainer.lib.auto_estimator_trainer.run_fn', custom_executor_spec=(executor_spec.ExecutorClassSpec( trainer_executor.GenericExecutor)), transformed_examples=transformed_examples, transform_graph=transform_graph, schema=schema, train_args=trainer_pb2.TrainArgs(num_steps=train_steps), eval_args=trainer_pb2.EvalArgs(num_steps=eval_steps), hyperparameters=self._tuner.outputs.best_hyperparameters if self._tuner else None, custom_config={ # Pass the problem statement proto as a text proto. Required # since custom_config must be JSON-serializable. 'problem_statement': text_format.MessageToString( message=problem_statement, as_utf8=True), 'sequence_length': max_sequence_length, }, instance_name=self.id) @property def id(self) -> str: """Returns the AutoTrainer sub-pipeline's unique ID.""" autotrainer_instance_name = 'AutoTrainer' if self._instance_name: autotrainer_instance_name = f'{autotrainer_instance_name}.{self._instance_name}' return autotrainer_instance_name @property def components(self) -> List[base_component.BaseComponent]: """Returns the AutoTrainer sub-pipeline's constituent components.""" return ([self._tuner] if self._tuner else []) + [self._trainer] @property def outputs(self) -> subpipeline.SubpipelineOutputs: """Return the AutoTrainer sub-pipeline's outputs.""" return subpipeline.SubpipelineOutputs({ 'model': self._trainer.outputs.model, 'best_hyperparameters': self._tuner.outputs.best_hyperparameters if self._tuner else None, })
google/nitroml
nitroml/automl/autotrainer/subpipeline.py
Python
apache-2.0
6,444
import django from media_tree.models import FileNode from media_tree.admin.utils import get_current_request, is_search_request, \ get_request_attr from django.contrib.admin.views.main import ChangeList from django.db import models class MediaTreeChangeList(ChangeList): def is_filtered(self, request): return is_search_request(request) or self.params def __init__(self, request, *args, **kwargs): super(MediaTreeChangeList, self).__init__(request, *args, **kwargs) # self.parent_folder is set in get_queryset() self.title = self.parent_folder.name if self.parent_folder else FileNode.get_top_node().name # TODO: Move filtering by open folders here def get_queryset(self, request=None): # request arg was added in django r16144 (after 1.3) if request is not None and django.VERSION >= (1, 4): qs = super(MPTTChangeList, self).get_queryset(request) else: qs = super(MPTTChangeList, self).get_queryset() request = get_current_request() # Pagination should be disabled by default, since it interferes # with expanded folders and might display them partially. # However, filtered results are presented as a flat list and # should be paginated. pagination_enabled = self.is_filtered(request) if not pagination_enabled: self.show_all = True # filter by currently expanded folders if list is not filtered by extension or media_type self.parent_folder = self.model_admin.get_parent_folder(request) if self.parent_folder and not pagination_enabled: if self.parent_folder.is_top_node(): expanded_folders_pk = self.model_admin.get_expanded_folders_pk(request) if expanded_folders_pk: qs = qs.filter(models.Q(parent=None) | models.Q(parent__pk__in=expanded_folders_pk)) else: qs = qs.filter(parent=None) else: qs = qs.filter(parent=self.parent_folder) if request is not None and self.is_filtered(request): return qs.order_by('name') else: # always order by (tree_id, left) tree_id = qs.model._mptt_meta.tree_id_attr left = qs.model._mptt_meta.left_attr return qs.order_by(tree_id, left) def get_results(self, request): """ Temporarily decreases the `level` attribute of all search results in order to prevent indendation when displaying them. """ super(MediaTreeChangeList, self).get_results(request) try: reduce_levels = abs(int(get_request_attr(request, 'reduce_levels', 0))) except TypeError: reduce_levels = 0 is_filtered = self.is_filtered(request) if is_filtered or reduce_levels: for item in self.result_list: item.prevent_save() item.actual_level = item.level if is_filtered: item.reduce_levels = item.level item.level = 0 else: item.reduce_levels = reduce_levels item.level = max(0, item.level - reduce_levels)
samluescher/django-media-tree
media_tree/admin/change_list.py
Python
bsd-3-clause
3,274
#!/usr/bin/env python from optparse import OptionParser from shutil import which from subprocess import check_output, CalledProcessError from sys import stderr from flask import Flask, jsonify from flask_sockets import Sockets def get_parser(): parser = OptionParser(usage='%prog [-p|--port PORT] [-w|--websockets]') parser.add_option('-p', '--port', help='Port for X11Remote to listen on (default: %default)') parser.add_option('-w', '--websockets', action='store_true', help='Enable websocket support') parser.set_defaults(port=1234) return parser def missing_tool_exit(*args): for tool in args: if not which(tool): print(tool+' not found! Please add a '+tool+' binary to your PATH!', file=sys.stderr) exit(1) def xdotool(*args): args = list(args) if args[0]=='mousemove_relative': args.insert(1, '--') args.insert(0, 'xdotool') try: return check_output(args).decode('utf-8') except CalledProcessError as e: return e.output.decode('utf-8') app = Flask(__name__, static_url_path='') sockets = Sockets(app) @sockets.route('/') def handle_socket(ws): while not ws.closed: print(ws.receive()) @app.route("/keymap.json") def get_xmodmap(): dic = {} lines = str(check_output(['xmodmap','-pke'])).split('\\n') for l in lines: ls = l.split('=') if len(ls) != 2 or len(ls[1]) < 1: continue dic[ls[0].split()[1]] = ls[1].split() return jsonify(dic), {'Content-Type': 'text/json; charset=utf-8'} @app.route("/exec/<string:cmds>") def exec(cmds): for cmd in cmds.split('|'): xdotool(*cmd.split()) return "ACK" @app.route("/") def serve(): return app.send_static_file('index.html') if __name__ == '__main__': opts,args = get_parser().parse_args() missing_tool_exit('xdotool','xmodmap') from gevent.pywsgi import WSGIServer, WSGIHandler if opts.websockets: from geventwebsocket.handler import WebSocketHandler http_server = WSGIServer(('', opts.port), app, handler_class=WebSocketHandler if opts.websockets else WSGIHandler) http_server.serve_forever()
apirogov/x11remote
x11remote.py
Python
mit
2,220
#!/usr/bin/env python # coding=utf-8 #-*- coding:utf-8 -*- import random N = 8 #八个网页 d = 0.85 #阻尼因子为0.85 delt = 0.00001 #迭代控制变量 #两个矩阵相乘 def matrix_multi(A,B): result = [[0]*len(B[0]) for i in range(len(A))] for i in range(len(A)): for j in range(len(B[0])): for k in range(len(B)): result[i][j] += A[i][k]*B[k][j] return result #矩阵A的每个元素都乘以n def matrix_multiN(n,A): result = [[1]*len(A[0]) for i in range(len(A))] for i in range(len(A)): for j in range(len(A[0])): result[i][j] = n*A[i][j] return result #两个矩阵相加 def matrix_add(A,B): if len(A[0])!=len(B[0]) and len(A)!=len(B): return result = [[0]*len(A[0]) for i in range(len(A))] for i in range(len(A)): for j in range(len(A[0])): result[i][j] = A[i][j]+B[i][j] return result def pageRank(A): e = [] for i in range(N): e.append(1) norm = 100 New_P = [] for i in range(N): New_P.append([random.random()]) r = [ [(1-d)*i*1/N] for i in e] while norm > delt: P = New_P New_P = matrix_add(r,matrix_multiN(d,matrix_multi(A,P))) #P=(1-d)*e/n+d*M'P PageRank算法的核心 norm = 0 #求解矩阵一阶范数 for i in range(N): norm += abs(New_P[i][0]-P[i][0]) print New_P #根据邻接矩阵求转移概率矩阵并转向 def tran_and_convert(A): result = [[0]*len(A[0]) for i in range(len(A))] result_convert = [[0]*len(A[0]) for i in range(len(A))] for i in range(len(A)): for j in range(len(A[0])): result[i][j] = A[i][j]*1.0/sum(A[i]) for i in range(len(result)): for j in range(len(result[0])): result_convert[i][j]=result[j][i] return result_convert def main(): A = [[0,1,1,0,0,1,0,0],\ [0,0,0,1,1,0,0,0],\ [0,0,0,1,0,1,0,0],\ [0,0,0,0,0,1,0,0],\ [1,0,0,1,0,0,1,1],\ [0,0,0,1,0,0,0,0],\ [0,0,1,0,0,0,0,0],\ [0,0,0,1,0,0,1,0]] M = tran_and_convert(A) pageRank(M) if __name__ == '__main__': main()
zhaochl/python-utils
agrith_util/page_rank/page_rank_test.py
Python
apache-2.0
2,180
import os import re from honcho.procfile import Procfile from subprocess import Popen, PIPE from nose.tools import assert_equal, assert_true # noqa from mock import patch, MagicMock, call # noqa FIXTURE_ROOT = os.path.join(os.path.dirname(__file__), 'fixtures') try: from nose.tools import assert_regexp_matches except ImportError: def assert_regexp_matches(text, expected_regexp, msg=None): """Fail the test unless the text matches the regular expression.""" if isinstance(expected_regexp, str): expected_regexp = re.compile(expected_regexp) if not expected_regexp.search(text): msg = msg or "Regexp didn't match" msg = '%s: %r not found in %r' % (msg, expected_regexp.pattern, text) raise AssertionError(msg) def assert_regexp_fails(text, failed_regexp, msg=None): """Fail the test if the text matches the regular expression.""" if isinstance(failed_regexp, str): failed_regexp = re.compile(failed_regexp) if failed_regexp.search(text): msg = msg or "Regexp matched" msg = '%s: %r found in %r' % (msg, failed_regexp.pattern, text) raise AssertionError(msg) def get_honcho_output(args): os.chdir(FIXTURE_ROOT) cmd = ['honcho'] cmd.extend(args) # The below is mostly copy-pasted from subprocess.py's check_output (to # support python 2.6) process = Popen(cmd, stdout=PIPE, stderr=PIPE, universal_newlines=True) output, error = process.communicate() retcode = process.returncode return retcode, output, error def get_procfile(name): with open(os.path.join(FIXTURE_ROOT, name)) as f: return Procfile(f.read())
gratipay/honcho
test/helpers.py
Python
mit
1,694
from rest_framework import routers, serializers, viewsets, mixins, filters, relations from munigeo.api import GeoModelSerializer from rest_framework.serializers import ListSerializer, LIST_SERIALIZER_KWARGS import datetime from .models import * import django_filters from django import forms from rest_framework.exceptions import ParseError YEARS_OF_PRIVACY = 100 # for censoring principals in related instances class CensoredManyRelatedField(relations.ManyRelatedField): """ Handles view permissions for related field listings with Principal or Employership instances. """ def to_representation(self, iterable): if iterable.model is Employership: iterable = iterable.filter(end_year__lt=datetime.datetime.now().year-YEARS_OF_PRIVACY) if iterable.mode is Principal: iterable.filter(employers__end_year__lt=datetime.datetime.now().year-YEARS_OF_PRIVACY) return super().to_representation(iterable) class CensoredListSerializer(serializers.ListSerializer): """ Handles view permissions for list serializers with Principal or Employership instances. """ def to_representation(self, data): """ List of object instances -> List of dicts of primitive datatypes. """ # Dealing with nested relationships, data can be a Manager, # so, first get a queryset from the Manager if needed iterable = data.all() if isinstance(data, models.Manager) else data if iterable.model is Employership: iterable = iterable.filter(end_year__lt=datetime.datetime.now().year-YEARS_OF_PRIVACY) if iterable.model is Principal: iterable = iterable.filter(employers__end_year__lt=datetime.datetime.now().year-YEARS_OF_PRIVACY) return [ self.child.to_representation(item) for item in iterable ] class CensoredHyperlinkedRelatedField(relations.HyperlinkedRelatedField): """ Handles view permissions for related field listings with Principal or Employership instances. """ @classmethod def many_init(cls, *args, **kwargs): # the correct arguments must be passed on to the parent list_kwargs = {'child_relation': cls(*args, **kwargs)} for key in kwargs.keys(): if key in relations.MANY_RELATION_KWARGS: list_kwargs[key] = kwargs[key] return CensoredManyRelatedField(**list_kwargs) class CensoredHyperlinkedModelSerializer(serializers.HyperlinkedModelSerializer): """ Handles view permissions for related field listings with Principal or Employership instances. """ serializer_related_field = CensoredHyperlinkedRelatedField # the actual serializers class SchoolNameSerializer(serializers.ModelSerializer): official_name = serializers.CharField(allow_null=True, source='get_official_name') other_names = serializers.ListField( source='get_other_names', child=serializers.DictField(child=serializers.CharField()) ) class Meta: model = SchoolName exclude = ('school',) class SchoolLanguageSerializer(serializers.ModelSerializer): language = serializers.CharField(source='language.name') class Meta: model = SchoolLanguage exclude = ('school',) class LanguageSerializer(serializers.ModelSerializer): class Meta: model = Language fields = '__all__' class LanguageViewSet(viewsets.ReadOnlyModelViewSet): queryset = Language.objects.all() serializer_class = LanguageSerializer class SchoolTypeNameSerializer(serializers.ModelSerializer): class Meta: model = SchoolTypeName fields = '__all__' class SchoolTypeNameViewSet(viewsets.ReadOnlyModelViewSet): queryset = SchoolTypeName.objects.all() serializer_class = SchoolTypeNameSerializer paginate_by = 50 class SchoolTypeSerializer(serializers.ModelSerializer): type = SchoolTypeNameSerializer() class Meta: model = SchoolType exclude = ('school',) class SchoolFieldNameSerializer(serializers.ModelSerializer): name = serializers.CharField(source='description') class Meta: model = SchoolFieldName exclude = ('description',) class SchoolFieldNameViewSet(viewsets.ReadOnlyModelViewSet): queryset = SchoolFieldName.objects.all() serializer_class = SchoolFieldNameSerializer class SchoolFieldSerializer(serializers.ModelSerializer): field = SchoolFieldNameSerializer() class Meta: model = SchoolField exclude = ('school',) class SchoolGenderSerializer(serializers.ModelSerializer): class Meta: model = SchoolGender exclude = ('school',) class SchoolNumberOfGradesSerializer(serializers.ModelSerializer): class Meta: model = NumberOfGrades exclude = ('school',) class NeighborhoodSerializer(serializers.ModelSerializer): class Meta: model = Neighborhood fields = '__all__' class AddressLocationSerializer(GeoModelSerializer): class Meta: model = AddressLocation exclude = ('id', 'address') class AddressSerializer(serializers.ModelSerializer): location = AddressLocationSerializer(required=False) def to_representation(self, obj): ret = super(AddressSerializer, self).to_representation(obj) if ret['location']: ret['location'] = ret['location']['location'] return ret class Meta: model = Address fields = '__all__' class DataTypeSerializer(serializers.ModelSerializer): class Meta: model = DataType fields = '__all__' class ArchiveDataSerializer(serializers.ModelSerializer): url = serializers.URLField(source='link.url') data_type = DataTypeSerializer() class Meta: model = ArchiveData exclude = ('id',) class OwnerFounderSerializer(serializers.ModelSerializer): type = serializers.CharField(source='type.description') class Meta: model = OwnerFounder fields = '__all__' class SchoolOwnershipSerializer(serializers.ModelSerializer): owner = OwnerFounderSerializer() class Meta: model = SchoolOwnership exclude = ('school',) class SchoolFounderSerializer(serializers.ModelSerializer): founder = OwnerFounderSerializer() class Meta: model = SchoolFounder exclude = ('school',) class BuildingOwnershipSerializer(serializers.ModelSerializer): owner = OwnerFounderSerializer() class Meta: model = BuildingOwnership exclude = ('building',) class SchoolBuildingPhotoSerializer(serializers.ModelSerializer): def to_representation(self, instance): # we have to reformat the URL representation so that our API serves the corresponding photo URL # this method will have to be updated whenever Finna API changes! representation = super(SchoolBuildingPhotoSerializer, self).to_representation(instance) representation['url'] = representation['url'].replace( '.finna.fi/Record/', '.finna.fi/Cover/Show?id=' ) + '&w=1200&h=1200' return representation class Meta: model = SchoolBuildingPhoto exclude = ('school_building',) class BuildingForSchoolSerializer(serializers.ModelSerializer): neighborhood = serializers.CharField(source='neighborhood.name') addresses = AddressSerializer(many=True) owners = BuildingOwnershipSerializer(many=True) photos = serializers.ListField( source='get_photos', child=SchoolBuildingPhotoSerializer() ) class Meta: model = Building # fields must be declared here to get both id and url fields = ('url', 'id', 'neighborhood', 'addresses', 'construction_year', 'architect', 'architect_firm', 'property_number', 'sliced', 'comment', 'reference', 'approx', 'owners', 'photos') class PrincipalForSchoolSerializer(serializers.ModelSerializer): """ This class is needed for the School endpoint """ class Meta: model = Principal list_serializer_class = CensoredListSerializer # fields must be declared here to get both id and url fields = ('url', 'id', 'surname', 'first_name',) class EmployershipForSchoolSerializer(serializers.ModelSerializer): principal = PrincipalForSchoolSerializer() class Meta: model = Employership list_serializer_class = CensoredListSerializer exclude = ('nimen_id',) class SchoolBuildingForSchoolSerializer(serializers.ModelSerializer): """ This class is needed for the School and Principal endpoints """ photos = SchoolBuildingPhotoSerializer(many=True) building = BuildingForSchoolSerializer() class Meta: model = SchoolBuilding depth = 5 # fields must be declared to get both id and url fields = ('url', 'id', 'building', 'photos', 'approx_begin', 'approx_end', 'begin_day', 'begin_month', 'begin_year', 'end_day', 'end_month', 'end_year', 'ownership', 'reference',) class SchoolforSchoolContinuumSerializer(CensoredHyperlinkedModelSerializer): names = SchoolNameSerializer(many=True) class Meta: model = School # fields must be declared here to explicitly include id along with url fields = ('url', 'id', 'names') class SchoolContinuumActiveSerializer(CensoredHyperlinkedModelSerializer): target_school = SchoolforSchoolContinuumSerializer() def to_representation(self, instance): # translate joins and separations to English representation = super().to_representation(instance) representation['description'] = representation['description'].replace( 'yhdistyy', 'joins').replace('eroaa', 'separates from') return representation class Meta: model = SchoolContinuum fields = ('active_school', 'description', 'target_school', 'day', 'month', 'year', 'reference',) class SchoolContinuumTargetSerializer(CensoredHyperlinkedModelSerializer): active_school = SchoolforSchoolContinuumSerializer() def to_representation(self, instance): # translate joins and separations to English representation = super().to_representation(instance) representation['description'] = representation['description'].replace( 'yhdistyy', 'joins').replace('eroaa', 'separates from') return representation class Meta: model = SchoolContinuum fields = ('active_school', 'description', 'target_school', 'day', 'month', 'year', 'reference',) class LifecycleEventSerializer(serializers.ModelSerializer): description = serializers.CharField(source='type.description') class Meta: model = LifecycleEvent fields = ('description', 'day', 'month', 'year', 'decisionmaker', 'additional_info') class SchoolSerializer(CensoredHyperlinkedModelSerializer): names = SchoolNameSerializer(many=True) languages = SchoolLanguageSerializer(many=True) types = SchoolTypeSerializer(many=True) fields = SchoolFieldSerializer(many=True) genders = SchoolGenderSerializer(many=True) grade_counts = SchoolNumberOfGradesSerializer(many=True) buildings = SchoolBuildingForSchoolSerializer(many=True) owners = SchoolOwnershipSerializer(many=True) founders = SchoolFounderSerializer(many=True) principals = EmployershipForSchoolSerializer(many=True) archives = ArchiveDataSerializer(many=True, required=False) lifecycle_event = LifecycleEventSerializer(many=True, required=False) continuum_active = SchoolContinuumActiveSerializer(many=True, required=False) continuum_target = SchoolContinuumTargetSerializer(many=True, required=False) class Meta: model = School # fields must be declared here to explicitly include id along with url fields = ('url', 'id', 'names', 'languages', 'types', 'fields', 'genders', 'grade_counts', 'buildings', 'owners', 'founders', 'principals', 'special_features', 'wartime_school', 'nicknames', 'checked', 'archives', 'lifecycle_event', 'continuum_active', 'continuum_target') class SchoolBuildingSerializer(CensoredHyperlinkedModelSerializer): photos = SchoolBuildingPhotoSerializer(many=True) school = SchoolSerializer() building = BuildingForSchoolSerializer() class Meta: model = SchoolBuilding depth = 5 # fields must be declared to get both id and url fields = ('url', 'id', 'building', 'photos', 'school', 'approx_begin', 'approx_end', 'begin_day', 'begin_month', 'begin_year', 'end_day', 'end_month', 'end_year', 'ownership', 'reference',) class EmployershipForPrincipalSerializer(serializers.ModelSerializer): school = SchoolSerializer() class Meta: model = Employership list_serializer_class = CensoredListSerializer exclude = ('nimen_id',) class PrincipalSerializer(serializers.ModelSerializer): employers = EmployershipForPrincipalSerializer(many=True) class Meta: model = Principal # depth required to get all related data depth = 5 # fields must be declared to get both id and url fields = ('url', 'id', 'surname', 'first_name', 'employers') class EmployershipSerializer(EmployershipForSchoolSerializer): school = SchoolSerializer() class Meta: model = Employership exclude = ('nimen_id',) class SchoolBuildingForBuildingSerializer(serializers.ModelSerializer): photos = SchoolBuildingPhotoSerializer(many=True) school = SchoolSerializer() class Meta: model = SchoolBuilding depth = 5 # fields must be declared to get both id and url fields = ('url', 'id', 'photos', 'school', 'approx_begin', 'approx_end', 'begin_day', 'begin_month', 'begin_year', 'end_day', 'end_month', 'end_year', 'ownership', 'reference',) class BuildingSerializer(serializers.ModelSerializer): neighborhood = serializers.CharField(source='neighborhood.name') addresses = AddressSerializer(many=True) schools = SchoolBuildingForBuildingSerializer(many=True) class Meta: model = Building exclude = ('photo',) class InclusiveFilter(django_filters.Filter): """ Filter for including entries where the field is null """ def filter(self, qs, value): originalqs = super().filter(qs, value) self.lookup_expr = 'isnull' nullqs = super().filter(qs, value) return nullqs | originalqs class InclusiveNumberFilter(InclusiveFilter): field_class = forms.DecimalField class NameOrIdFilter(django_filters.Filter): """ Filter that switches search target between name and "id", depending on input """ table, underscore, column = "", "", "" def filter(self, qs, value): if str(value).isdigit(): self.field_class = forms.DecimalField if not self.column: # store table and column name self.table, self.underscore, self.column = self.name.rpartition('__') # overwrite column name with column id self.name = self.table + '__id' else: self.field_class = forms.CharField if self.column: # overwrite column id with column name self.name = self.table + '__' + self.column return super().filter(qs, value) class GenderFilter(django_filters.CharFilter): """ Filter that maps letters m, f and c to hard-coded genders """ GENDER_MAP = { 'm': 'poikakoulu', 'f': 'tyttökoulu', 'c': 'tyttö- ja poikakoulu' } def filter(self, qs, value): if value in ([], (), {}, None, ''): return qs val = str(value).lower() if val not in self.GENDER_MAP and val not in self.GENDER_MAP.values(): raise ParseError("Gender must be 'm', 'f' or 'c' (for coed)") value = self.GENDER_MAP.get(val, val) return super().filter(qs, value) class SchoolFilter(django_filters.FilterSet): # the end year can be null, so we cannot use a default filter from_year = InclusiveNumberFilter(name="names__end_year", lookup_expr='gte') until_year = django_filters.NumberFilter(name="names__begin_year", lookup_expr='lte') type = NameOrIdFilter(name="types__type__name", lookup_expr='iexact') field = NameOrIdFilter(name="fields__field__description", lookup_expr='iexact') language = NameOrIdFilter(name="languages__language__name", lookup_expr='iexact') gender = GenderFilter(name="genders__gender", lookup_expr='iexact') class Meta: model = School fields = ['type', 'field', 'language', 'gender', 'from_year', 'until_year'] class SchoolViewSet(viewsets.ReadOnlyModelViewSet): queryset = School.objects.all() serializer_class = SchoolSerializer filter_backends = (filters.SearchFilter, filters.DjangoFilterBackend) filter_class = SchoolFilter search_fields = ('names__types__value',) class NameFilter(django_filters.CharFilter): """ Filter that checks fields 'first_name' and 'surname' """ table, underscore, column = "", "", "" def filter(self, qs, value): self.table, self.underscore, self.column = self.name.rpartition('__') if self.table: self.name = self.table + '__' + 'first_name' else: self.name = 'first_name' first_name_qs = super().filter(qs, value) if self.table: self.name = self.table + '__' + 'surname' else: self.name = 'surname' surname_qs = super().filter(qs, value) return first_name_qs | surname_qs class PrincipalFilter(django_filters.FilterSet): # the end year can be null, so we cannot use a default filter from_year = InclusiveNumberFilter(name="employers__end_year", lookup_expr='gte') until_year = django_filters.NumberFilter(name="employers__begin_year", lookup_expr='lte') search = NameFilter(name="surname", lookup_expr='icontains') school_type = NameOrIdFilter(name="employers__school__types__type__name", lookup_expr='iexact') school_field = NameOrIdFilter(name="employers__school__fields__field__description", lookup_expr='iexact') school_language = NameOrIdFilter(name="employers__school__languages__language__name", lookup_expr='iexact') school_gender = GenderFilter(name="employers__school__genders__gender", lookup_expr='iexact') class Meta: model = Principal fields = ['search', 'from_year', 'until_year', 'school_type', 'school_field', 'school_language', 'school_gender'] class EmployershipFilter(django_filters.FilterSet): # the end year can be null, so we cannot use a default filter from_year = InclusiveNumberFilter(name="end_year", lookup_expr='gte') until_year = django_filters.NumberFilter(name="begin_year", lookup_expr='lte') search = NameFilter(name="principal__surname", lookup_expr='icontains') school_type = NameOrIdFilter(name="school__types__type__name", lookup_expr='iexact') school_field = NameOrIdFilter(name="school__fields__field__description", lookup_expr='iexact') school_language = NameOrIdFilter(name="school__languages__language__name", lookup_expr='iexact') school_gender = GenderFilter(name="school__genders__gender", lookup_expr='iexact') class Meta: model = Employership fields = ['search', 'from_year', 'until_year', 'school_type', 'school_field', 'school_language', 'school_gender'] class PrincipalViewSet(viewsets.ReadOnlyModelViewSet): queryset = Principal.objects.filter(employers__end_year__lt=datetime.datetime.now().year-YEARS_OF_PRIVACY).distinct() serializer_class = PrincipalSerializer filter_backends = (filters.SearchFilter, filters.DjangoFilterBackend) filter_class = PrincipalFilter class EmployershipViewSet(viewsets.ReadOnlyModelViewSet): queryset = Employership.objects.filter(end_year__lt=datetime.datetime.now().year-YEARS_OF_PRIVACY) serializer_class = EmployershipSerializer filter_backends = (filters.DjangoFilterBackend,) filter_class = EmployershipFilter class AddressFilter(django_filters.CharFilter): """ Filter that checks fields 'street_name_fi' and 'street_name_sv' """ def filter(self, qs, value): self.name = 'building__buildingaddress__address__street_name_fi' street_name_fi_qs = super().filter(qs, value) self.name = 'building__buildingaddress__address__street_name_sv' street_name_sv_qs = super().filter(qs, value) return street_name_fi_qs | street_name_sv_qs class SchoolBuildingFilter(django_filters.FilterSet): # the end year can be null, so we cannot use a default filter from_year = InclusiveNumberFilter(name="end_year", lookup_expr='gte') until_year = django_filters.NumberFilter(name="begin_year", lookup_expr='lte') search = AddressFilter(name="building__buildingaddress__address__street_name_fi", lookup_expr='icontains') school_type = NameOrIdFilter(name="school__types__type__name", lookup_expr='iexact') school_field = NameOrIdFilter(name="school__fields__field__description", lookup_expr='iexact') school_language = NameOrIdFilter(name="school__languages__language__name", lookup_expr='iexact') school_gender = GenderFilter(name="school__genders__gender", lookup_expr='iexact') class Meta: model = SchoolBuilding fields = ['search', 'from_year', 'until_year', 'school_type', 'school_field', 'school_language', 'school_gender'] class BuildingFilter(django_filters.FilterSet): # the end year can be null, so we cannot use a default filter from_year = InclusiveNumberFilter(name="schools__end_year", lookup_expr='gte') until_year = django_filters.NumberFilter(name="schools__begin_year", lookup_expr='lte') search = AddressFilter(name="buildingaddress__address__street_name_fi", lookup_expr='icontains') school_type = NameOrIdFilter(name="schools__school__types__type__name", lookup_expr='iexact') school_field = NameOrIdFilter(name="schools__school__fields__field__description", lookup_expr='iexact') school_language = NameOrIdFilter(name="schools__school__languages__language__name", lookup_expr='iexact') school_gender = GenderFilter(name="schools__school__genders__gender", lookup_expr='iexact') class Meta: model = Building fields = ['search', 'from_year', 'until_year', 'school_type', 'school_field', 'school_language', 'school_gender'] class SchoolBuildingViewSet(viewsets.ReadOnlyModelViewSet): queryset = SchoolBuilding.objects.all() serializer_class = SchoolBuildingSerializer filter_backends = (filters.SearchFilter, filters.DjangoFilterBackend) filter_class = SchoolBuildingFilter class BuildingViewSet(viewsets.ReadOnlyModelViewSet): queryset = Building.objects.all() serializer_class = BuildingSerializer filter_backends = (filters.SearchFilter, filters.DjangoFilterBackend) filter_class = BuildingFilter router = routers.DefaultRouter() router.register(r'school', SchoolViewSet) router.register(r'principal', PrincipalViewSet) router.register(r'employership', EmployershipViewSet) router.register(r'school_field', SchoolFieldNameViewSet) router.register(r'school_type', SchoolTypeNameViewSet) router.register(r'language', LanguageViewSet) router.register(r'building', BuildingViewSet) router.register(r'school_building', SchoolBuildingViewSet)
City-of-Helsinki/kore
schools/api.py
Python
agpl-3.0
24,286
""" Test utilities. Partially based on the code from http://code.activestate.com/recipes/52215/ Author(s): Elric Milon """ import logging import os import sys from tribler_core.utilities.network_utils import get_random_port __all__ = ["process_unhandled_exceptions"] class UnhandledExceptionCatcher(object): """ Logs the usual tb information, followed by a listing of all the local variables in each frame and mark the test run as failed. """ def __init__(self): self._logger = logging.getLogger(self.__class__.__name__) self._lines = [] self.last_exc = None self.exc_counter = 0 sys.excepthook = self.catch_exception def _register_exception_line(self, line, *format_args): line = line % format_args self._lines.append(line) self._logger.critical(line) def catch_exception(self, type, value, tb): """ Catch unhandled exception, log it and store it to be printed at teardown time too. """ self.exc_counter += 1 def repr_(value): try: return repr(value) except: return "<Error while REPRing value>" self.last_exc = repr_(value) self._register_exception_line("Unhandled exception raised while running the test: %s %s", type, self.last_exc) stack = [] while tb: stack.append(tb.tb_frame) tb = tb.tb_next self._register_exception_line("Locals by frame, innermost last:") for frame in stack: self._register_exception_line("%s:%s %s:", frame.f_code.co_filename, frame.f_lineno, frame.f_code.co_name) for key, value in frame.f_locals.items(): value = repr_(value) if len(value) > 500: value = value[:500] + "..." self._register_exception_line("| %12s = %s", key, value) def check_exceptions(self): """ Log all unhandled exceptions, clear logged exceptions and raise to fail the currently running test. """ if self.exc_counter: lines = self._lines self._lines = [] exc_counter = self.exc_counter self.exc_counter = 0 last_exc = self.last_exc self.last_exc = 0 self._logger.critical("The following unhandled exceptions where raised during this test's execution:") for line in lines: self._logger.critical(line) raise Exception("Test raised %d unhandled exceptions, last one was: %s" % (exc_counter, last_exc)) def prepare_xml_rss(target_path, filename): """ Function to prepare test_rss.xml file, replace the port with a random one """ files_path = target_path / 'http_torrent_files' os.mkdir(files_path) port = get_random_port() from tribler_core.tests.tools.common import TESTS_DATA_DIR with open(TESTS_DATA_DIR / filename, 'r') as source_xml,\ open(target_path / filename, 'w') as destination_xml: for line in source_xml: destination_xml.write(line.replace('RANDOMPORT', str(port))) return files_path, port _catcher = UnhandledExceptionCatcher() process_unhandled_exceptions = _catcher.check_exceptions
hbiyik/tribler
src/tribler-core/tribler_core/tests/tools/util.py
Python
lgpl-3.0
3,343
#!/usr/bin/env python # -*- coding: utf-8 -*- """Exercise 11.3 from Kane 1985.""" from __future__ import division from sympy import Matrix, symbols from sympy.physics.mechanics import ReferenceFrame, Point from sympy.physics.mechanics import dynamicsymbols R_SQ, R_QE, R_EM, R_Ee, R_Mm = symbols('R_SQ R_QE R_EM R_Ee R_Mm', positive=True) omega_E, omega_M, omega_e, omega_m = symbols('ω_E ω_M ω_e ω_m', positive=True) symbol_values = {R_SQ: 4.5e5, R_QE: 1.5e11, R_EM: 4.0e8, R_Ee: 7.0e6, R_Mm: 2.0e6, omega_E: 2e-7, omega_M: 24e-7, omega_e: 12e-4, omega_m:10e-4} # reference frames S = ReferenceFrame('S') Q = S.orientnew('Q', 'axis', [0, S.x]) E = Q.orientnew('E', 'axis', [0, S.x]) M = E.orientnew('M', 'axis', [0, S.x]) frames = [S, Q, E, M] pS = Point('S') pS.set_acc(S, 0) pQ = Point('Q') pQ.set_acc(Q, 0) pE = Point('E') pE.set_acc(E, 0) pM = Point('M') pM.set_acc(M, 0) pe = Point('e') pm = Point('m') points = [pS, pQ, pE, pM, pe, pm] # v = ω*R, a = ω**2 * R pQ.set_acc(S, omega_E**2 * R_SQ * S.x) pE.set_acc(Q, omega_E**2 * R_QE * S.x) pM.set_acc(E, omega_M**2 * R_EM * S.x) pe.set_acc(E, omega_e**2 * R_Ee * S.x) pm.set_acc(M, omega_m**2 * R_Mm * S.x) # v_p_A = v_p_B + cross(ω_B_A, r) # = v_p_B, since angular vel is zero # a_p_A = a_p_B + cross(ω_B_A, v_p_A) # = a_p_B # and a_p_A = a_p_Bbar + a_p_B + 2*cross(ω_B_A, v_p_B) # = a_p_Bbar + a_p_B pm.set_acc(E, pm.acc(M) + pM.acc(E)) pm.set_acc(Q, pm.acc(E) + pE.acc(Q)) pm.set_acc(S, pm.acc(Q) + pQ.acc(S)) pe.set_acc(M, pe.acc(E) + pM.acc(E)) pe.set_acc(Q, pe.acc(E) + pE.acc(Q)) pe.set_acc(S, pe.acc(Q) + pQ.acc(S)) pM.set_acc(Q, pM.acc(E) + pE.acc(Q)) pM.set_acc(S, pM.acc(Q) + pQ.acc(S)) pE.set_acc(M, pE.acc(E) + pM.acc(E)) pE.set_acc(S, pE.acc(Q) + pQ.acc(S)) pQ.set_acc(E, pQ.acc(Q) + pE.acc(Q)) pQ.set_acc(M, pQ.acc(E) + pM.acc(E)) pS.set_acc(Q, pS.acc(S) + pQ.acc(S)) pS.set_acc(E, pS.acc(Q) + pE.acc(Q)) pS.set_acc(M, pS.acc(E) + pM.acc(E)) #print('acc in frame\t{0}\t{1}\t{2}\t{3}'.format(*frames)) #for p in points: # print('point {0}:\t{1:0.3g}\t{2:0.3g}\t{3:0.3g}\t{4:0.3g}'.format( # #print('point {0}:\t{1}\t{2}\t{3}\t{4}'.format( # p, *map(lambda x: float(p.acc(x).magnitude().subs(symbol_values)), # frames))) idx_Q = frames.index(Q) print('acc in frame ratio\t{0}\t{1}\t{2}'.format(S, E, M)) acc_ratios = Matrix.zeros(4, 3) for i, p in enumerate(points[2:]): acc_values = map(lambda x: p.acc(x).magnitude().subs(symbol_values), frames) a_p_Q = acc_values[idx_Q] acc_values = [float(x / a_p_Q) for x in acc_values[:idx_Q] + acc_values[idx_Q + 1:]] acc_ratios[i, :] = Matrix(acc_values).T print('object {0}:\t\t{1:0.3g}\t{2:0.3g}\t{3:0.3g}'.format( p, *acc_values)) print('Approximately Newtonian reference frames have a near 1 ratio.') min_ratio = 0.9 # minimum value if frame is approximately Newtonian. assert acc_ratios[0, 0] >= min_ratio assert acc_ratios[0, 1] < min_ratio assert acc_ratios[0, 2] < min_ratio assert acc_ratios[1, 0] >= min_ratio assert acc_ratios[1, 1] < min_ratio assert acc_ratios[1, 2] < min_ratio assert acc_ratios[2, 0] >= min_ratio assert acc_ratios[2, 1] >= min_ratio assert acc_ratios[2, 2] >= min_ratio assert acc_ratios[3, 0] >= min_ratio assert acc_ratios[3, 1] >= min_ratio assert acc_ratios[3, 2] >= min_ratio
nouiz/pydy
examples/Kane1985/Chapter6/Ex11.3.py
Python
bsd-3-clause
3,430
from __future__ import unicode_literals import unittest from mopidy_settings import Extension, frontend as frontend_lib class ExtensionTest(unittest.TestCase): def test_get_default_config(self): ext = Extension() config = ext.get_default_config() self.assertIn('[nadsettings]', config) self.assertIn('enabled = true', config) def test_get_config_schema(self): ext = Extension() schema = ext.get_config_schema() # TODO Test the content of your config schema #self.assertIn('username', schema) #self.assertIn('password', schema) # TODO Write more tests
dlogik/Mopidy-NadSettings
tests/test_extension.py
Python
apache-2.0
646
'''Please note that it's Function problem i.e. you need to write your solution in the form of Function(s) only. Driver Code to call/invoke your function would be added by GfG's Online Judge.''' # Your task is to complete this function # The function prints V space separated integers where # the ith integer denote the shortest distance of ith vertex # from source vertex import numpy as np from collections import deque def dijkstra(graph, v, s): # print(np.array(graph)) N = len(graph) visited = [False] * v dist = [float('inf')] * v dist[s] = 0 curr = s for _ in range(len(graph)): # select node with min dist min_dist = float('inf') next_node = s for i in range(N): if graph[curr][i] > 0 and dist[i] < min_dist: next_node = i curr = next_node # visited[curr] = True for i in range(N): if graph[curr][i] != 0: dist[i] = min(dist[i], dist[curr] + graph[curr][i]) print(' '.join(map(str, dist)), end='')
isendel/algorithms
algorithms/graph/dijkstra.py
Python
apache-2.0
1,057
# coding: utf-8 # Copyright (c) Pymatgen Development Team. # Distributed under the terms of the MIT License. from __future__ import division, unicode_literals """ Created on Jul 16, 2012 """ __author__ = "Shyue Ping Ong, Stephen Dacek" __copyright__ = "Copyright 2012, The Materials Project" __version__ = "0.1" __maintainer__ = "Shyue Ping Ong" __email__ = "shyue@mit.edu" __date__ = "Jul 16, 2012" import unittest import os import json import numpy as np import warnings from pymatgen.io.vasp.outputs import Chgcar, Locpot, Oszicar, Outcar, \ Vasprun, Procar, Xdatcar, Dynmat, BSVasprun, UnconvergedVASPWarning from pymatgen import Spin, Orbital, Lattice, Structure from pymatgen.entries.compatibility import MaterialsProjectCompatibility test_dir = os.path.join(os.path.dirname(__file__), "..", "..", "..", "..", 'test_files') class VasprunTest(unittest.TestCase): def test_properties(self): filepath = os.path.join(test_dir, 'vasprun.xml.nonlm') vasprun = Vasprun(filepath, parse_potcar_file=False) orbs = list(vasprun.complete_dos.pdos[vasprun.final_structure[ 0]].keys()) self.assertIn("S", orbs) filepath = os.path.join(test_dir, 'vasprun.xml') vasprun = Vasprun(filepath, parse_potcar_file=False) #Test NELM parsing. self.assertEqual(vasprun.parameters["NELM"], 60) #test pdos parsing pdos0 = vasprun.complete_dos.pdos[vasprun.final_structure[0]] self.assertAlmostEqual(pdos0[Orbital.s][1][16], 0.0026) self.assertAlmostEqual(pdos0[Orbital.pz][-1][16], 0.0012) self.assertEqual(pdos0[Orbital.s][1].shape, (301, )) filepath2 = os.path.join(test_dir, 'lifepo4.xml') vasprun_ggau = Vasprun(filepath2, parse_projected_eigen=True, parse_potcar_file=False) totalscsteps = sum([len(i['electronic_steps']) for i in vasprun.ionic_steps]) self.assertEqual(29, len(vasprun.ionic_steps)) self.assertEqual(len(vasprun.structures), len(vasprun.ionic_steps)) self.assertEqual(vasprun.lattice, vasprun.lattice_rec.reciprocal_lattice) for i, step in enumerate(vasprun.ionic_steps): self.assertEqual(vasprun.structures[i], step["structure"]) self.assertTrue(all([vasprun.structures[i] == vasprun.ionic_steps[i][ "structure"] for i in range(len(vasprun.ionic_steps))])) self.assertEqual(308, totalscsteps, "Incorrect number of energies read from vasprun.xml") self.assertEqual(['Li'] + 4 * ['Fe'] + 4 * ['P'] + 16 * ["O"], vasprun.atomic_symbols) self.assertEqual(vasprun.final_structure.composition.reduced_formula, "LiFe4(PO4)4") self.assertIsNotNone(vasprun.incar, "Incar cannot be read") self.assertIsNotNone(vasprun.kpoints, "Kpoints cannot be read") self.assertIsNotNone(vasprun.eigenvalues, "Eigenvalues cannot be read") self.assertAlmostEqual(vasprun.final_energy, -269.38319884, 7) self.assertAlmostEqual(vasprun.tdos.get_gap(), 2.0589, 4) expectedans = (2.539, 4.0906, 1.5516, False) (gap, cbm, vbm, direct) = vasprun.eigenvalue_band_properties self.assertAlmostEqual(gap, expectedans[0]) self.assertAlmostEqual(cbm, expectedans[1]) self.assertAlmostEqual(vbm, expectedans[2]) self.assertEqual(direct, expectedans[3]) self.assertFalse(vasprun.is_hubbard) self.assertEqual(vasprun.potcar_symbols, ['PAW_PBE Li 17Jan2003', 'PAW_PBE Fe 06Sep2000', 'PAW_PBE Fe 06Sep2000', 'PAW_PBE P 17Jan2003', 'PAW_PBE O 08Apr2002']) self.assertIsNotNone(vasprun.kpoints, "Kpoints cannot be read") self.assertIsNotNone(vasprun.actual_kpoints, "Actual kpoints cannot be read") self.assertIsNotNone(vasprun.actual_kpoints_weights, "Actual kpoints weights cannot be read") for atomdoses in vasprun.pdos: for orbitaldos in atomdoses: self.assertIsNotNone(orbitaldos, "Partial Dos cannot be read") #test skipping ionic steps. vasprun_skip = Vasprun(filepath, 3, parse_potcar_file=False) self.assertEqual(vasprun_skip.nionic_steps, 29) self.assertEqual(len(vasprun_skip.ionic_steps), int(vasprun.nionic_steps / 3) + 1) self.assertEqual(len(vasprun_skip.ionic_steps), len(vasprun_skip.structures)) self.assertEqual(len(vasprun_skip.ionic_steps), int(vasprun.nionic_steps / 3) + 1) #Check that nionic_steps is preserved no matter what. self.assertEqual(vasprun_skip.nionic_steps, vasprun.nionic_steps) self.assertNotAlmostEqual(vasprun_skip.final_energy, vasprun.final_energy) #Test with ionic_step_offset vasprun_offset = Vasprun(filepath, 3, 6, parse_potcar_file=False) self.assertEqual(len(vasprun_offset.ionic_steps), int(len(vasprun.ionic_steps) / 3) - 1) self.assertEqual(vasprun_offset.structures[0], vasprun_skip.structures[2]) self.assertTrue(vasprun_ggau.is_hubbard) self.assertEqual(vasprun_ggau.hubbards["Fe"], 4.3) self.assertAlmostEqual(vasprun_ggau.projected_eigenvalues[(Spin.up, 0, 0, 96, Orbital.s)], 0.0032) d = vasprun_ggau.as_dict() self.assertEqual(d["elements"], ["Fe", "Li", "O", "P"]) self.assertEqual(d["nelements"], 4) filepath = os.path.join(test_dir, 'vasprun.xml.unconverged') with warnings.catch_warnings(record=True) as w: # Cause all warnings to always be triggered. warnings.simplefilter("always") # Trigger a warning. vasprun_unconverged = Vasprun(filepath, parse_potcar_file=False) # Verify some things self.assertEqual(len(w), 1) self.assertTrue(issubclass(w[-1].category, UnconvergedVASPWarning)) self.assertTrue(vasprun_unconverged.converged_ionic) self.assertFalse(vasprun_unconverged.converged_electronic) self.assertFalse(vasprun_unconverged.converged) filepath = os.path.join(test_dir, 'vasprun.xml.dfpt') vasprun_dfpt = Vasprun(filepath, parse_potcar_file=False) self.assertAlmostEqual(vasprun_dfpt.epsilon_static[0][0], 3.26105533) self.assertAlmostEqual(vasprun_dfpt.epsilon_static[0][1], -0.00459066) self.assertAlmostEqual(vasprun_dfpt.epsilon_static[2][2], 3.24330517) self.assertAlmostEqual(vasprun_dfpt.epsilon_static_wolfe[0][0], 3.33402531) self.assertAlmostEqual(vasprun_dfpt.epsilon_static_wolfe[0][1], -0.00559998) self.assertAlmostEqual(vasprun_dfpt.epsilon_static_wolfe[2][2], 3.31237357) self.assertTrue(vasprun_dfpt.converged) entry = vasprun_dfpt.get_computed_entry() entry = MaterialsProjectCompatibility(check_potcar_hash=False).process_entry(entry) self.assertAlmostEqual(entry.uncorrected_energy + entry.correction, entry.energy) filepath = os.path.join(test_dir, 'vasprun.xml.dfpt.ionic') vasprun_dfpt_ionic = Vasprun(filepath, parse_potcar_file=False) self.assertAlmostEqual(vasprun_dfpt_ionic.epsilon_ionic[0][0], 515.73485838) self.assertAlmostEqual(vasprun_dfpt_ionic.epsilon_ionic[0][1], -0.00263523) self.assertAlmostEqual(vasprun_dfpt_ionic.epsilon_ionic[2][2], 19.02110169) filepath = os.path.join(test_dir, 'vasprun.xml.dfpt.unconverged') vasprun_dfpt_unconv = Vasprun(filepath, parse_potcar_file=False) self.assertFalse(vasprun_dfpt_unconv.converged_electronic) self.assertTrue(vasprun_dfpt_unconv.converged_ionic) self.assertFalse(vasprun_dfpt_unconv.converged) vasprun_uniform = Vasprun(os.path.join(test_dir, "vasprun.xml.uniform"), parse_potcar_file=False) self.assertEqual(vasprun_uniform.kpoints.style, "Reciprocal") vasprun_no_pdos = Vasprun(os.path.join(test_dir, "Li_no_projected.xml"), parse_potcar_file=False) self.assertIsNotNone(vasprun_no_pdos.complete_dos) self.assertFalse(vasprun_no_pdos.dos_has_errors) vasprun_diel = Vasprun(os.path.join(test_dir, "vasprun.xml.dielectric"), parse_potcar_file=False) self.assertAlmostEqual(0.4294,vasprun_diel.dielectric[0][10]) self.assertAlmostEqual(19.941,vasprun_diel.dielectric[1][51][0]) self.assertAlmostEqual(19.941,vasprun_diel.dielectric[1][51][1]) self.assertAlmostEqual(19.941,vasprun_diel.dielectric[1][51][2]) self.assertAlmostEqual(0.0,vasprun_diel.dielectric[1][51][3]) self.assertAlmostEqual(34.186,vasprun_diel.dielectric[2][85][0]) self.assertAlmostEqual(34.186,vasprun_diel.dielectric[2][85][1]) self.assertAlmostEqual(34.186,vasprun_diel.dielectric[2][85][2]) self.assertAlmostEqual(0.0,vasprun_diel.dielectric[2][85][3]) def test_Xe(self): vr = Vasprun(os.path.join(test_dir, 'vasprun.xml.xe'), parse_potcar_file=False) self.assertEquals(vr.atomic_symbols, ['Xe']) def test_invalid_element(self): self.assertRaises(KeyError, Vasprun, os.path.join(test_dir, 'vasprun.xml.wrong_sp')) def test_as_dict(self): filepath = os.path.join(test_dir, 'vasprun.xml') vasprun = Vasprun(filepath, parse_potcar_file=False) #Test that as_dict() is json-serializable self.assertIsNotNone(json.dumps(vasprun.as_dict())) self.assertEqual( vasprun.as_dict()["input"]["potcar_type"], ['PAW_PBE', 'PAW_PBE', 'PAW_PBE', 'PAW_PBE', 'PAW_PBE']) def test_get_band_structure(self): filepath = os.path.join(test_dir, 'vasprun_Si_bands.xml') vasprun = Vasprun(filepath, parse_potcar_file=False) bs = vasprun.get_band_structure(kpoints_filename= os.path.join(test_dir, 'KPOINTS_Si_bands')) cbm = bs.get_cbm() vbm = bs.get_vbm() self.assertEqual(cbm['kpoint_index'], [13], "wrong cbm kpoint index") self.assertAlmostEqual(cbm['energy'], 6.2301, "wrong cbm energy") self.assertEqual(cbm['band_index'], {Spin.up: [4], Spin.down: [4]}, "wrong cbm bands") self.assertEqual(vbm['kpoint_index'], [0, 63, 64], "wrong vbm kpoint index") self.assertAlmostEqual(vbm['energy'], 5.6158, "wrong vbm energy") self.assertEqual(vbm['band_index'], {Spin.up: [1, 2, 3], Spin.down: [1, 2, 3]}, "wrong vbm bands") self.assertEqual(vbm['kpoint'].label, "\Gamma", "wrong vbm label") self.assertEqual(cbm['kpoint'].label, None, "wrong cbm label") def test_sc_step_overflow(self): filepath = os.path.join(test_dir, 'vasprun.xml.sc_overflow') with warnings.catch_warnings(record=True) as w: warnings.simplefilter("always") vasprun = Vasprun(filepath) self.assertEqual(len(w), 3) estep = vasprun.ionic_steps[0]['electronic_steps'][29] self.assertTrue(np.isnan(estep['e_wo_entrp'])) def test_update_potcar(self): filepath = os.path.join(test_dir, 'vasprun.xml') potcar_path = os.path.join(test_dir, 'POTCAR.LiFePO4.gz') potcar_path2 = os.path.join(test_dir, 'POTCAR2.LiFePO4.gz') vasprun = Vasprun(filepath, parse_potcar_file=False) self.assertEqual(vasprun.potcar_spec, [{"titel": "PAW_PBE Li 17Jan2003", "hash": None}, {"titel": "PAW_PBE Fe 06Sep2000", "hash": None}, {"titel": "PAW_PBE Fe 06Sep2000", "hash": None}, {"titel": "PAW_PBE P 17Jan2003", "hash": None}, {"titel": "PAW_PBE O 08Apr2002", "hash": None}]) vasprun.update_potcar_spec(potcar_path) self.assertEqual(vasprun.potcar_spec, [{"titel": "PAW_PBE Li 17Jan2003", "hash": "65e83282d1707ec078c1012afbd05be8"}, {"titel": "PAW_PBE Fe 06Sep2000", "hash": "9530da8244e4dac17580869b4adab115"}, {"titel": "PAW_PBE Fe 06Sep2000", "hash": "9530da8244e4dac17580869b4adab115"}, {"titel": "PAW_PBE P 17Jan2003", "hash": "7dc3393307131ae67785a0cdacb61d5f"}, {"titel": "PAW_PBE O 08Apr2002", "hash": "7a25bc5b9a5393f46600a4939d357982"}]) vasprun2 = Vasprun(filepath, parse_potcar_file=False) self.assertRaises(ValueError, vasprun2.update_potcar_spec, potcar_path2) vasprun = Vasprun(filepath, parse_potcar_file=potcar_path) self.assertEqual(vasprun.potcar_spec, [{"titel": "PAW_PBE Li 17Jan2003", "hash": "65e83282d1707ec078c1012afbd05be8"}, {"titel": "PAW_PBE Fe 06Sep2000", "hash": "9530da8244e4dac17580869b4adab115"}, {"titel": "PAW_PBE Fe 06Sep2000", "hash": "9530da8244e4dac17580869b4adab115"}, {"titel": "PAW_PBE P 17Jan2003", "hash": "7dc3393307131ae67785a0cdacb61d5f"}, {"titel": "PAW_PBE O 08Apr2002", "hash": "7a25bc5b9a5393f46600a4939d357982"}]) self.assertRaises(ValueError, Vasprun, filepath, parse_potcar_file=potcar_path2) def test_search_for_potcar(self): filepath = os.path.join(test_dir, 'vasprun.xml') vasprun = Vasprun(filepath, parse_potcar_file=True) self.assertEqual(vasprun.potcar_spec, [{"titel": "PAW_PBE Li 17Jan2003", "hash": "65e83282d1707ec078c1012afbd05be8"}, {"titel": "PAW_PBE Fe 06Sep2000", "hash": "9530da8244e4dac17580869b4adab115"}, {"titel": "PAW_PBE Fe 06Sep2000", "hash": "9530da8244e4dac17580869b4adab115"}, {"titel": "PAW_PBE P 17Jan2003", "hash": "7dc3393307131ae67785a0cdacb61d5f"}, {"titel": "PAW_PBE O 08Apr2002", "hash": "7a25bc5b9a5393f46600a4939d357982"}]) def test_potcar_not_found(self): filepath = os.path.join(test_dir, 'vasprun.xml') #Ensure no potcar is found and nothing is updated with warnings.catch_warnings(record=True) as w: warnings.simplefilter("always") vasprun = Vasprun(filepath, parse_potcar_file='.') self.assertEqual(len(w), 1) self.assertEqual(vasprun.potcar_spec, [{"titel": "PAW_PBE Li 17Jan2003", "hash": None}, {"titel": "PAW_PBE Fe 06Sep2000", "hash": None}, {"titel": "PAW_PBE Fe 06Sep2000", "hash": None}, {"titel": "PAW_PBE P 17Jan2003", "hash": None}, {"titel": "PAW_PBE O 08Apr2002", "hash": None}]) class OutcarTest(unittest.TestCase): def test_init(self): for f in ['OUTCAR', 'OUTCAR.gz']: filepath = os.path.join(test_dir, f) outcar = Outcar(filepath) expected_mag = ({'d': 0.0, 'p': 0.003, 's': 0.002, 'tot': 0.005}, {'d': 0.798, 'p': 0.008, 's': 0.007, 'tot': 0.813}, {'d': 0.798, 'p': 0.008, 's': 0.007, 'tot': 0.813}, {'d': 0.0, 'p':-0.117, 's': 0.005, 'tot':-0.112}, {'d': 0.0, 'p':-0.165, 's': 0.004, 'tot':-0.162}, {'d': 0.0, 'p':-0.117, 's': 0.005, 'tot':-0.112}, {'d': 0.0, 'p':-0.165, 's': 0.004, 'tot':-0.162}) expected_chg = ({'p': 0.154, 's': 0.078, 'd': 0.0, 'tot': 0.232}, {'p': 0.707, 's': 0.463, 'd': 8.316, 'tot': 9.486}, {'p': 0.707, 's': 0.463, 'd': 8.316, 'tot': 9.486}, {'p': 3.388, 's': 1.576, 'd': 0.0, 'tot': 4.964}, {'p': 3.365, 's': 1.582, 'd': 0.0, 'tot': 4.947}, {'p': 3.388, 's': 1.576, 'd': 0.0, 'tot': 4.964}, {'p': 3.365, 's': 1.582, 'd': 0.0, 'tot': 4.947}) self.assertAlmostEqual(outcar.magnetization, expected_mag, 5, "Wrong magnetization read from Outcar") self.assertAlmostEqual(outcar.charge, expected_chg, 5, "Wrong charge read from Outcar") self.assertFalse(outcar.is_stopped) self.assertEqual(outcar.run_stats, {'System time (sec)': 0.938, 'Total CPU time used (sec)': 545.142, 'Elapsed time (sec)': 546.709, 'Maximum memory used (kb)': 0.0, 'Average memory used (kb)': 0.0, 'User time (sec)': 544.204, 'cores': '8'}) self.assertAlmostEqual(outcar.efermi, 2.0112) self.assertAlmostEqual(outcar.nelect, 44.9999991) self.assertAlmostEqual(outcar.total_mag, 0.9999998) self.assertIsNotNone(outcar.as_dict()) filepath = os.path.join(test_dir, 'OUTCAR.stopped') outcar = Outcar(filepath) self.assertTrue(outcar.is_stopped) for f in ['OUTCAR.lepsilon', 'OUTCAR.lepsilon.gz']: filepath = os.path.join(test_dir, f) outcar = Outcar(filepath) outcar.read_lepsilon() outcar.read_lepsilon_ionic() self.assertAlmostEqual(outcar.dielectric_tensor[0][0], 3.716432) self.assertAlmostEqual(outcar.dielectric_tensor[0][1], -0.20464) self.assertAlmostEqual(outcar.dielectric_tensor[1][2], -0.20464) self.assertAlmostEqual(outcar.dielectric_ionic_tensor[0][0], 0.001419) self.assertAlmostEqual(outcar.dielectric_ionic_tensor[0][2], 0.001419) self.assertAlmostEqual(outcar.dielectric_ionic_tensor[2][2], 0.001419) self.assertAlmostEqual(outcar.piezo_tensor[0][0], 0.52799) self.assertAlmostEqual(outcar.piezo_tensor[1][3], 0.35998) self.assertAlmostEqual(outcar.piezo_tensor[2][5], 0.35997) self.assertAlmostEqual(outcar.piezo_ionic_tensor[0][0], 0.05868) self.assertAlmostEqual(outcar.piezo_ionic_tensor[1][3], 0.06241) self.assertAlmostEqual(outcar.piezo_ionic_tensor[2][5], 0.06242) self.assertAlmostEqual(outcar.born[0][1][2], -0.385) self.assertAlmostEqual(outcar.born[1][2][0], 0.36465) def test_elastic_tensor(self): filepath = os.path.join(test_dir, "OUTCAR.total_tensor.Li2O.gz") outcar = Outcar(filepath) elastic_tensor = outcar.elastic_tensor self.assertAlmostEqual(elastic_tensor[0][0], 1986.3391) self.assertAlmostEqual(elastic_tensor[0][1], 187.8324) self.assertAlmostEqual(elastic_tensor[3][3], 586.3034) def test_core_state_eigen(self): filepath = os.path.join(test_dir, "OUTCAR.CL") cl = Outcar(filepath).read_core_state_eigen() self.assertAlmostEqual(cl[6]["2s"][-1], -174.4779) def test_single_atom(self): filepath = os.path.join(test_dir, "OUTCAR.Al") outcar = Outcar(filepath) expected_mag = ({u'p': 0.0, u's': 0.0, u'd': 0.0, u'tot': 0.0},) expected_chg = ({u'p': 0.343, u's': 0.425, u'd': 0.0, u'tot': 0.768},) self.assertAlmostEqual(outcar.magnetization, expected_mag) self.assertAlmostEqual(outcar.charge, expected_chg) self.assertFalse(outcar.is_stopped) self.assertEqual(outcar.run_stats, {'System time (sec)': 0.592, 'Total CPU time used (sec)': 50.194, 'Elapsed time (sec)': 52.337, 'Maximum memory used (kb)': 62900.0, 'Average memory used (kb)': 0.0, 'User time (sec)': 49.602, 'cores': '32'}) self.assertAlmostEqual(outcar.efermi, 8.0942) self.assertAlmostEqual(outcar.nelect, 3) self.assertAlmostEqual(outcar.total_mag, 8.2e-06) self.assertIsNotNone(outcar.as_dict()) class BSVasprunTest(unittest.TestCase): def test_get_band_structure(self): filepath = os.path.join(test_dir, 'vasprun_Si_bands.xml') vasprun = BSVasprun(filepath, parse_potcar_file=False) bs = vasprun.get_band_structure(kpoints_filename= os.path.join(test_dir, 'KPOINTS_Si_bands')) cbm = bs.get_cbm() vbm = bs.get_vbm() self.assertEqual(cbm['kpoint_index'], [13], "wrong cbm kpoint index") self.assertAlmostEqual(cbm['energy'], 6.2301, "wrong cbm energy") self.assertEqual(cbm['band_index'], {Spin.up: [4], Spin.down: [4]}, "wrong cbm bands") self.assertEqual(vbm['kpoint_index'], [0, 63, 64], "wrong vbm kpoint index") self.assertAlmostEqual(vbm['energy'], 5.6158, "wrong vbm energy") self.assertEqual(vbm['band_index'], {Spin.up: [1, 2, 3], Spin.down: [1, 2, 3]}, "wrong vbm bands") self.assertEqual(vbm['kpoint'].label, "\Gamma", "wrong vbm label") self.assertEqual(cbm['kpoint'].label, None, "wrong cbm label") class OszicarTest(unittest.TestCase): def test_init(self): filepath = os.path.join(test_dir, 'OSZICAR') oszicar = Oszicar(filepath) self.assertEqual(len(oszicar.electronic_steps), len(oszicar.ionic_steps)) self.assertEqual(len(oszicar.all_energies), 60) self.assertAlmostEqual(oszicar.final_energy, -526.63928) class LocpotTest(unittest.TestCase): def test_init(self): filepath = os.path.join(test_dir, 'LOCPOT') locpot = Locpot.from_file(filepath) self.assertAlmostEqual(-217.05226954, sum(locpot.get_average_along_axis(0))) self.assertAlmostEqual(locpot.get_axis_grid(0)[-1], 2.87629, 2) self.assertAlmostEqual(locpot.get_axis_grid(1)[-1], 2.87629, 2) self.assertAlmostEqual(locpot.get_axis_grid(2)[-1], 2.87629, 2) class ChgcarTest(unittest.TestCase): def test_init(self): filepath = os.path.join(test_dir, 'CHGCAR.nospin') chg = Chgcar.from_file(filepath) self.assertAlmostEqual(chg.get_integrated_diff(0, 2)[0, 1], 0) filepath = os.path.join(test_dir, 'CHGCAR.spin') chg = Chgcar.from_file(filepath) self.assertAlmostEqual(chg.get_integrated_diff(0, 1)[0, 1], -0.0043896932237534022) #test sum chg += chg self.assertAlmostEqual(chg.get_integrated_diff(0, 1)[0, 1], -0.0043896932237534022 * 2) filepath = os.path.join(test_dir, 'CHGCAR.Fe3O4') chg = Chgcar.from_file(filepath) ans = [1.93313368, 3.91201473, 4.11858277, 4.1240093, 4.10634989, 3.38864822] myans = chg.get_integrated_diff(0, 3, 6) self.assertTrue(np.allclose(myans[:, 1], ans)) class ProcarTest(unittest.TestCase): def test_init(self): filepath = os.path.join(test_dir, 'PROCAR.simple') p = Procar(filepath) self.assertAlmostEqual(p.get_occupation(1, 'd'), 0) self.assertAlmostEqual(p.get_occupation(1, 's'), 0.3538125) self.assertAlmostEqual(p.get_occupation(1, 'p'), 1.19540625) self.assertRaises(ValueError, p.get_occupation, 1, 'm') self.assertEqual(p.nb_bands, 10) self.assertEqual(p.nb_kpoints, 10) lat = Lattice.cubic(3.) s = Structure(lat, ["Li", "Na", "K"], [[0., 0., 0.], [0.25, 0.25, 0.25], [0.75, 0.75, 0.75]]) d = p.get_projection_on_elements(s) self.assertAlmostEqual(d[1][2][2], {'Na': 0.042, 'K': 0.646, 'Li': 0.042}) filepath = os.path.join(test_dir, 'PROCAR') p = Procar(filepath) self.assertAlmostEqual(p.get_occupation(0, 'd'), 4.3698147704200059) self.assertAlmostEqual(p.get_occupation(0, 'dxy'), 0.85796295426000124) class XdatcarTest(unittest.TestCase): def test_init(self): filepath = os.path.join(test_dir, 'XDATCAR_4') x = Xdatcar(filepath) structures = x.structures self.assertEqual(len(structures), 4) for s in structures: self.assertEqual(s.formula, "Li2 O1") filepath = os.path.join(test_dir, 'XDATCAR_5') x = Xdatcar(filepath) structures = x.structures self.assertEqual(len(structures), 4) for s in structures: self.assertEqual(s.formula, "Li2 O1") class DynmatTest(unittest.TestCase): def test_init(self): # nosetests pymatgen/io/vasp/tests/test_outputs.py:DynmatTest.test_init filepath = os.path.join(test_dir, 'DYNMAT') d = Dynmat(filepath) self.assertEqual(d.nspecs, 2) self.assertEqual(d.natoms, 6) self.assertEqual(d.ndisps, 3) self.assertTrue(np.allclose(d.masses, [63.546, 196.966])) self.assertTrue(4 in d.data) self.assertTrue(2 in d.data[4]) self.assertTrue(np.allclose( d.data[4][2]['dispvec'], [0., 0.05, 0.] )) self.assertTrue(np.allclose( d.data[4][2]['dynmat'][3], [0.055046, -0.298080, 0.] )) # TODO: test get_phonon_frequencies once cross-checked if __name__ == "__main__": unittest.main()
migueldiascosta/pymatgen
pymatgen/io/vasp/tests/test_outputs.py
Python
mit
27,721
import argparse import numpy as np import scipy.linalg import subprocess from shutil import copyfile from functools import partial import sys import time try: import pickle as cpickle except: try: import cpickle except: import _pickle as cpickle # Add path to HydroGrid and import module # sys.path.append('../../HydroGrid/src/') # Find project functions found_functions = False path_to_append = '' while found_functions is False: try: import multi_bodies_functions from mobility import mobility as mb from quaternion_integrator.quaternion import Quaternion from quaternion_integrator.quaternion_integrator_multi_bodies import QuaternionIntegrator from quaternion_integrator.quaternion_integrator_rollers import QuaternionIntegratorRollers from body import body from read_input import read_input from read_input import read_vertex_file from read_input import read_clones_file from read_input import read_slip_file import utils try: import libCallHydroGrid as cc found_HydroGrid = True except ImportError: found_HydroGrid = False found_functions = True except ImportError: path_to_append += '../' print('searching functions in path ', path_to_append) sys.path.append(path_to_append) if len(path_to_append) > 21: print('\nProjected functions not found. Edit path in multi_bodies.py') sys.exit() def calc_slip(bodies, Nblobs): ''' Function to calculate the slip in all the blobs. ''' slip = np.empty((Nblobs, 3)) offset = 0 for b in bodies: slip_b = b.calc_slip() slip[offset:offset+b.Nblobs] = slip_b offset += b.Nblobs return slip def get_blobs_r_vectors(bodies, Nblobs): ''' Return coordinates of all the blobs with shape (Nblobs, 3). ''' r_vectors = np.empty((Nblobs, 3)) offset = 0 for b in bodies: num_blobs = b.Nblobs r_vectors[offset:(offset+num_blobs)] = b.get_r_vectors() offset += num_blobs return r_vectors def set_mobility_blobs(implementation): ''' Set the function to compute the dense mobility at the blob level to the right implementation. The implementation in C++ is much faster than the one python; to use it the user should compile the file mobility/mobility_ext.cc. These functions return an array with shape (3*Nblobs, 3*Nblobs). ''' # Implementations without wall if implementation == 'python_no_wall': return mb.rotne_prager_tensor elif implementation == 'C++_no_wall': return mb.boosted_infinite_fluid_mobility # Implementations with wall elif implementation == 'python': return mb.single_wall_fluid_mobility elif implementation == 'C++': return mb.boosted_single_wall_fluid_mobility def set_mobility_vector_prod(implementation): ''' Set the function to compute the matrix-vector product (M*F) with the mobility defined at the blob level to the right implementation. The implementation in pycuda is much faster than the one in C++, which is much faster than the one python; To use the pycuda implementation is necessary to have installed pycuda and a GPU with CUDA capabilities. To use the C++ implementation the user has to compile the file mobility/mobility_ext.cc. ''' # Implementations without wall if implementation == 'python_no_wall': return mb.no_wall_fluid_mobility_product elif implementation == 'C++_no_wall': return mb.boosted_no_wall_mobility_vector_product elif implementation == 'pycuda_no_wall': return mb.no_wall_mobility_trans_times_force_pycuda elif implementation == 'numba_no_wall': return mb.no_wall_mobility_trans_times_force_numba # Implementations with wall elif implementation == 'python': return mb.single_wall_fluid_mobility_product elif implementation == 'C++': return mb.boosted_mobility_vector_product elif implementation == 'pycuda': return mb.single_wall_mobility_trans_times_force_pycuda elif implementation == 'numba': return mb.single_wall_mobility_trans_times_force_numba def calc_K_matrix(bodies, Nblobs): ''' Calculate the geometric block-diagonal matrix K. Shape (3*Nblobs, 6*Nbodies). ''' K = np.zeros((3*Nblobs, 6*len(bodies))) offset = 0 for k, b in enumerate(bodies): K_body = b.calc_K_matrix() K[3*offset:3*(offset+b.Nblobs), 6*k:6*k+6] = K_body offset += b.Nblobs return K def calc_K_matrix_bodies(bodies, Nblobs): ''' Calculate the geometric matrix K for each body. List of shape (3*Nblobs, 6*Nbodies). ''' K = [] for k, b in enumerate(bodies): K_body = b.calc_K_matrix() K.append(K_body) return K def K_matrix_vector_prod(bodies, vector, Nblobs, K_bodies = None): ''' Compute the matrix vector product K*vector where K is the geometrix matrix that transport the information from the level of describtion of the body to the level of describtion of the blobs. ''' # Prepare variables result = np.empty((Nblobs, 3)) v = np.reshape(vector, (len(bodies) * 6)) # Loop over bodies offset = 0 for k, b in enumerate(bodies): if K_bodies is None: K = b.calc_K_matrix() else: K = K_bodies[k] result[offset : offset+b.Nblobs] = np.reshape(np.dot(K, v[6*k : 6*(k+1)]), (b.Nblobs, 3)) offset += b.Nblobs return result def K_matrix_T_vector_prod(bodies, vector, Nblobs, K_bodies = None): ''' Compute the matrix vector product K^T*vector where K is the geometrix matrix that transport the information from the level of describtion of the body to the level of describtion of the blobs. ''' # Prepare variables result = np.empty((len(bodies), 6)) v = np.reshape(vector, (Nblobs * 3)) # Loop over bodies offset = 0 for k, b in enumerate(bodies): if K_bodies is None: K = b.calc_K_matrix() else: K = K_bodies[k] result[k : k+1] = np.dot(K.T, v[3*offset : 3*(offset+b.Nblobs)]) offset += b.Nblobs result = np.reshape(result, (2*len(bodies), 3)) return result def linear_operator_rigid(vector, bodies, r_vectors, eta, a, K_bodies = None, *args, **kwargs): ''' Return the action of the linear operator of the rigid body on vector v. The linear operator is | M -K| | -K^T 0| ''' # Reserve memory for the solution and create some variables L = kwargs.get('periodic_length') Ncomp_blobs = r_vectors.size Nblobs = r_vectors.size // 3 Ncomp_bodies = 6 * len(bodies) res = np.empty((Ncomp_blobs + Ncomp_bodies)) v = np.reshape(vector, (vector.size//3, 3)) # Compute the "slip" part res[0:Ncomp_blobs] = mobility_vector_prod(r_vectors, vector[0:Ncomp_blobs], eta, a, *args, **kwargs) K_times_U = K_matrix_vector_prod(bodies, v[Nblobs : Nblobs+2*len(bodies)], Nblobs, K_bodies = K_bodies) res[0:Ncomp_blobs] -= np.reshape(K_times_U, (3*Nblobs)) # Compute the "-force_torque" part K_T_times_lambda = K_matrix_T_vector_prod(bodies, vector[0:Ncomp_blobs], Nblobs, K_bodies = K_bodies) res[Ncomp_blobs : Ncomp_blobs+Ncomp_bodies] = -np.reshape(K_T_times_lambda, (Ncomp_bodies)) return res @utils.static_var('mobility_bodies', []) @utils.static_var('K_bodies', []) @utils.static_var('M_factorization_blobs', []) @utils.static_var('M_factorization_blobs_inv', []) @utils.static_var('mobility_inv_blobs', []) def build_block_diagonal_preconditioners_det_stoch(bodies, r_vectors, Nblobs, eta, a, *args, **kwargs): ''' Build the deterministic and stochastic block diagonal preconditioners for rigid bodies. It solves exactly the mobility problem for each body independently, i.e., no interation between bodies is taken into account. If the mobility of a body at the blob level is M=L^T * L with L the Cholesky factor we form the stochastic preconditioners P = inv(L) P_inv = L and the deterministic preconditioner N = (K.T * M^{-1} * K)^{-1} and return the functions to compute matrix vector products y = (P.T * M * P) * x y = P_inv * x y = N*F - N*K.T*M^{-1}*slip ''' mobility_bodies = [] K_bodies = [] M_factorization_blobs = [] M_factorization_blobs_inv = [] mobility_inv_blobs = [] if(kwargs.get('step') % kwargs.get('update_PC') == 0) or len(build_block_diagonal_preconditioners_det_stoch.mobility_bodies) == 0: # Loop over bodies for b in bodies: # 1. Compute blobs mobility M = b.calc_mobility_blobs(eta, a) # 2. Compute Cholesy factorization, M = L^T * L L, lower = scipy.linalg.cho_factor(M) L = np.triu(L) M_factorization_blobs.append(L.T) # 3. Compute inverse of L M_factorization_blobs_inv.append(scipy.linalg.solve_triangular(L, np.eye(b.Nblobs * 3), check_finite=False)) # 4. Compute inverse mobility blobs mobility_inv_blobs.append(scipy.linalg.solve_triangular(L, scipy.linalg.solve_triangular(L, np.eye(b.Nblobs * 3), trans='T', check_finite=False), check_finite=False)) # 5. Compute geometric matrix K K = b.calc_K_matrix() K_bodies.append(K) # 6. Compute body mobility mobility_bodies.append(np.linalg.pinv(np.dot(K.T, scipy.linalg.cho_solve((L,lower), K, check_finite=False)))) # Save variables to use in next steps if PC is not updated build_block_diagonal_preconditioners_det_stoch.mobility_bodies = mobility_bodies build_block_diagonal_preconditioners_det_stoch.K_bodies = K_bodies build_block_diagonal_preconditioners_det_stoch.M_factorization_blobs = M_factorization_blobs build_block_diagonal_preconditioners_det_stoch.M_factorization_blobs_inv = M_factorization_blobs_inv build_block_diagonal_preconditioners_det_stoch.mobility_inv_blobs = mobility_inv_blobs else: # Use old values mobility_bodies = build_block_diagonal_preconditioners_det_stoch.mobility_bodies K_bodies = build_block_diagonal_preconditioners_det_stoch.K_bodies M_factorization_blobs = build_block_diagonal_preconditioners_det_stoch.M_factorization_blobs M_factorization_blobs_inv = build_block_diagonal_preconditioners_det_stoch.M_factorization_blobs_inv mobility_inv_blobs = build_block_diagonal_preconditioners_det_stoch.mobility_inv_blobs def block_diagonal_preconditioner(vector, bodies = None, mobility_bodies = None, mobility_inv_blobs = None, K_bodies = None, Nblobs = None, *args, **kwargs): ''' Apply the block diagonal preconditioner. ''' result = np.empty(vector.shape) offset = 0 for k, b in enumerate(bodies): # 1. Solve M*Lambda_tilde = slip slip = vector[3*offset : 3*(offset + b.Nblobs)] Lambda_tilde = np.dot(mobility_inv_blobs[k], slip) # 2. Compute rigid body velocity F = vector[3*Nblobs + 6*k : 3*Nblobs + 6*(k+1)] Y = np.dot(mobility_bodies[k], -F - np.dot(K_bodies[k].T, Lambda_tilde)) # 3. Solve M*Lambda = (slip + K*Y) result[3*offset : 3*(offset + b.Nblobs)] = np.dot(mobility_inv_blobs[k], slip + np.dot(K_bodies[k], Y)) # 4. Set result result[3*Nblobs + 6*k : 3*Nblobs + 6*(k+1)] = Y offset += b.Nblobs return result block_diagonal_preconditioner_partial = partial(block_diagonal_preconditioner, bodies = bodies, mobility_bodies = mobility_bodies, mobility_inv_blobs = mobility_inv_blobs, K_bodies = K_bodies, Nblobs = Nblobs) # Define preconditioned mobility matrix product def mobility_pc(w, bodies = None, P = None, r_vectors = None, eta = None, a = None, *args, **kwargs): result = np.empty_like(w) # Apply P offset = 0 for k, b in enumerate(bodies): result[3*offset : 3*(offset + b.Nblobs)] = np.dot(P[k], w[3*offset : 3*(offset + b.Nblobs)]) offset += b.Nblobs # Multiply by M result_2 = mobility_vector_prod(r_vectors, result, eta, a, *args, **kwargs) # Apply P.T offset = 0 for k, b in enumerate(bodies): result[3*offset : 3*(offset + b.Nblobs)] = np.dot(P[k].T, result_2[3*offset : 3*(offset + b.Nblobs)]) offset += b.Nblobs return result mobility_pc_partial = partial(mobility_pc, bodies = bodies, P = M_factorization_blobs_inv, r_vectors = r_vectors, eta = eta, a = a, *args, **kwargs) # Define inverse preconditioner P_inv def P_inv_mult(w, bodies = None, P_inv = None): offset = 0 for k, b in enumerate(bodies): w[3*offset : 3*(offset + b.Nblobs)] = np.dot(P_inv[k], w[3*offset : 3*(offset + b.Nblobs)]) offset += b.Nblobs return w P_inv_mult_partial = partial(P_inv_mult, bodies = bodies, P_inv = M_factorization_blobs) # Return preconditioner functions return block_diagonal_preconditioner_partial, mobility_pc_partial, P_inv_mult_partial @utils.static_var('mobility_bodies', []) @utils.static_var('K_bodies', []) @utils.static_var('mobility_inv_blobs', []) def build_block_diagonal_preconditioner(bodies, r_vectors, Nblobs, eta, a, *args, **kwargs): ''' Build the block diagonal preconditioner for rigid bodies. It solves exactly the mobility problem for each body independently, i.e., no interation between bodies is taken into account. ''' mobility_inv_blobs = [] mobility_bodies = [] K_bodies = [] if(kwargs.get('step') % kwargs.get('update_PC') == 0) or len(build_block_diagonal_preconditioner.mobility_bodies) == 0: # Loop over bodies for b in bodies: # 1. Compute blobs mobility and invert it M = b.calc_mobility_blobs(eta, a) # 2. Compute Cholesy factorization, M = L^T * L L, lower = scipy.linalg.cho_factor(M) L = np.triu(L) # 3. Compute inverse mobility blobs mobility_inv_blobs.append(scipy.linalg.solve_triangular(L, scipy.linalg.solve_triangular(L, np.eye(b.Nblobs * 3), trans='T', check_finite=False), check_finite=False)) # 4. Compute geometric matrix K K = b.calc_K_matrix() K_bodies.append(K) # 5. Compute body mobility mobility_bodies.append(np.linalg.pinv(np.dot(K.T, scipy.linalg.cho_solve((L,lower), K, check_finite=False)))) # Save variables to use in next steps if PC is not updated build_block_diagonal_preconditioner.mobility_bodies = mobility_bodies build_block_diagonal_preconditioner.K_bodies = K_bodies build_block_diagonal_preconditioner.mobility_inv_blobs = mobility_inv_blobs else: # Use old values mobility_bodies = build_block_diagonal_preconditioner.mobility_bodies K_bodies = build_block_diagonal_preconditioner.K_bodies mobility_inv_blobs = build_block_diagonal_preconditioner.mobility_inv_blobs def block_diagonal_preconditioner(vector, bodies = None, mobility_bodies = None, mobility_inv_blobs = None, K_bodies = None, Nblobs = None): ''' Apply the block diagonal preconditioner. ''' result = np.empty(vector.shape) offset = 0 for k, b in enumerate(bodies): # 1. Solve M*Lambda_tilde = slip slip = vector[3*offset : 3*(offset + b.Nblobs)] Lambda_tilde = np.dot(mobility_inv_blobs[k], slip) # 2. Compute rigid body velocity F = vector[3*Nblobs + 6*k : 3*Nblobs + 6*(k+1)] Y = np.dot(mobility_bodies[k], -F - np.dot(K_bodies[k].T, Lambda_tilde)) # 3. Solve M*Lambda = (slip + K*Y) Lambda = np.dot(mobility_inv_blobs[k], slip + np.dot(K_bodies[k], Y)) # 4. Set result result[3*offset : 3*(offset + b.Nblobs)] = Lambda result[3*Nblobs + 6*k : 3*Nblobs + 6*(k+1)] = Y offset += b.Nblobs return result block_diagonal_preconditioner_partial = partial(block_diagonal_preconditioner, bodies = bodies, mobility_bodies = mobility_bodies, mobility_inv_blobs = mobility_inv_blobs, K_bodies = K_bodies, Nblobs = Nblobs) return block_diagonal_preconditioner_partial def block_diagonal_preconditioner(vector, bodies, mobility_bodies, mobility_inv_blobs, Nblobs): ''' Block diagonal preconditioner for rigid bodies. It solves exactly the mobility problem for each body independently, i.e., no interation between bodies is taken into account. ''' result = np.empty(vector.shape) offset = 0 for k, b in enumerate(bodies): # 1. Solve M*Lambda_tilde = slip slip = vector[3*offset : 3*(offset + b.Nblobs)] Lambda_tilde = np.dot(mobility_inv_blobs[k], slip) # 2. Compute rigid body velocity F = vector[3*Nblobs + 6*k : 3*Nblobs + 6*(k+1)] Y = np.dot(mobility_bodies[k], -F - np.dot(b.calc_K_matrix().T, Lambda_tilde)) # 3. Solve M*Lambda = (slip + K*Y) Lambda = np.dot(mobility_inv_blobs[k], slip + np.dot(b.calc_K_matrix(), Y)) # 4. Set result result[3*offset : 3*(offset + b.Nblobs)] = Lambda result[3*Nblobs + 6*k : 3*Nblobs + 6*(k+1)] = Y offset += b.Nblobs return result def build_stochastic_block_diagonal_preconditioner(bodies, r_vectors, eta, a, *args, **kwargs): ''' Build block diagonal preconditioner to generate the noise for rigid bodies. If the mobility of a body at the blob level is M=L^T * L with L the Cholesky factor we form the stochastic preconditioners P = inv(L) P_inv = L and return the functions to compute matrix vector products y = (P.T * M * P) * x y = P_inv * x ''' P = [] P_inv = [] for b in bodies: # Compute blobs mobility for one body M = b.calc_mobility_blobs(eta, a) # 2. Compute Cholesy factorization, M = L^T * L L, lower = scipy.linalg.cho_factor(M) L = np.triu(L) P_inv.append(L.T) # Form preconditioners version P P.append(scipy.linalg.solve_triangular(L, np.eye(b.Nblobs * 3), check_finite=False)) # Define preconditioned mobility matrix product def mobility_pc(w, bodies = None, P = None, r_vectors = None, eta = None, a = None, *args, **kwargs): result = np.empty_like(w) # Multiply by P.T offset = 0 for k, b in enumerate(bodies): result[3*offset : 3*(offset + b.Nblobs)] = np.dot(P[k], w[3*offset : 3*(offset + b.Nblobs)]) offset += b.Nblobs # Multiply by M result_2 = mobility_vector_prod(r_vectors, result, eta, a, *args, **kwargs) # Multiply by P offset = 0 for k, b in enumerate(bodies): result[3*offset : 3*(offset + b.Nblobs)] = np.dot(P[k].T, result_2[3*offset : 3*(offset + b.Nblobs)]) offset += b.Nblobs return result mobility_pc_partial = partial(mobility_pc, bodies = bodies, P = P, r_vectors = r_vectors, eta = eta, a = a, *args, **kwargs) # Define inverse preconditioner P_inv def P_inv_mult(w, bodies = None, P_inv = None): offset = 0 for k, b in enumerate(bodies): w[3*offset : 3*(offset + b.Nblobs)] = np.dot(P_inv[k], w[3*offset : 3*(offset + b.Nblobs)]) offset += b.Nblobs return w P_inv_mult_partial = partial(P_inv_mult, bodies = bodies, P_inv = P_inv) # Return preconditioner functions return mobility_pc_partial, P_inv_mult_partial if __name__ == '__main__': # Get command line arguments parser = argparse.ArgumentParser(description='Run a multi-body simulation and save trajectory.') parser.add_argument('--input-file', dest='input_file', type=str, default='data.main', help='name of the input file') parser.add_argument('--print-residual', action='store_true', help='print gmres and lanczos residuals') args=parser.parse_args() input_file = args.input_file # Read input file read = read_input.ReadInput(input_file) # Set some variables for the simulation n_steps = read.n_steps n_save = read.n_save n_relaxation = read.n_relaxation dt = read.dt eta = read.eta g = read.g a = read.blob_radius scheme = read.scheme output_name = read.output_name structures = read.structures structures_ID = read.structures_ID mobility_vector_prod = set_mobility_vector_prod(read.mobility_vector_prod_implementation) multi_bodies_functions.calc_blob_blob_forces = multi_bodies_functions.set_blob_blob_forces(read.blob_blob_force_implementation) multi_bodies_functions.calc_body_body_forces_torques = multi_bodies_functions.set_body_body_forces_torques(read.body_body_force_torque_implementation) # Copy input file to output #subprocess.call(["cp", input_file, output_name + '.inputfile']) copyfile(input_file, output_name + '.inputfile') # Set random generator state if read.random_state is not None: with open(read.random_state, 'rb') as f: np.random.set_state(cpickle.load(f)) elif read.seed is not None: np.random.seed(int(read.seed)) # Save random generator state with open(output_name + '.random_state', 'wb') as f: cpickle.dump(np.random.get_state(), f) # Create rigid bodies bodies = [] body_types = [] body_names = [] for ID, structure in enumerate(structures): print('Creating structures = ', structure[1]) # Read vertex and clones files struct_ref_config = read_vertex_file.read_vertex_file(structure[0]) num_bodies_struct, struct_locations, struct_orientations = read_clones_file.read_clones_file(structure[1]) # Read slip file if it exists slip = None if(len(structure) > 2): slip = read_slip_file.read_slip_file(structure[2]) body_types.append(num_bodies_struct) body_names.append(structures_ID[ID]) # Create each body of type structure for i in range(num_bodies_struct): b = body.Body(struct_locations[i], struct_orientations[i], struct_ref_config, a) b.mobility_blobs = set_mobility_blobs(read.mobility_blobs_implementation) b.ID = structures_ID[ID] # Calculate body length for the RFD if i == 0: b.calc_body_length() else: b.body_length = bodies[-1].body_length multi_bodies_functions.set_slip_by_ID(b, slip) # Append bodies to total bodies list bodies.append(b) bodies = np.array(bodies) # Set some more variables num_of_body_types = len(body_types) num_bodies = bodies.size Nblobs = sum([x.Nblobs for x in bodies]) # Save bodies information with open(output_name + '.bodies_info', 'w') as f: f.write('num_of_body_types ' + str(num_of_body_types) + '\n') f.write('body_names ' + str(body_names) + '\n') f.write('body_types ' + str(body_types) + '\n') f.write('num_bodies ' + str(num_bodies) + '\n') f.write('num_blobs ' + str(Nblobs) + '\n') # Create integrator if scheme.find('rollers') == -1: integrator = QuaternionIntegrator(bodies, Nblobs, scheme, tolerance = read.solver_tolerance, domain = read.domain) else: integrator = QuaternionIntegratorRollers(bodies, Nblobs, scheme, tolerance = read.solver_tolerance, domain = read.domain, mobility_vector_prod_implementation = read.mobility_vector_prod_implementation) integrator.calc_one_blob_forces = partial(multi_bodies_functions.calc_one_blob_forces, g = g, repulsion_strength_wall = read.repulsion_strength_wall, debye_length_wall = read.debye_length_wall) integrator.calc_blob_blob_forces = partial(multi_bodies_functions.calc_blob_blob_forces, g = g, repulsion_strength_wall = read.repulsion_strength_wall, debye_length_wall = read.debye_length_wall, repulsion_strength = read.repulsion_strength, debye_length = read.debye_length, periodic_length = read.periodic_length) integrator.omega_one_roller = read.omega_one_roller integrator.free_kinematics = read.free_kinematics integrator.hydro_interactions = read.hydro_interactions integrator.calc_slip = calc_slip integrator.get_blobs_r_vectors = get_blobs_r_vectors integrator.mobility_blobs = set_mobility_blobs(read.mobility_blobs_implementation) integrator.force_torque_calculator = partial(multi_bodies_functions.force_torque_calculator_sort_by_bodies, g = g, repulsion_strength_wall = read.repulsion_strength_wall, debye_length_wall = read.debye_length_wall, repulsion_strength = read.repulsion_strength, debye_length = read.debye_length, periodic_length = read.periodic_length) integrator.calc_K_matrix_bodies = calc_K_matrix_bodies integrator.calc_K_matrix = calc_K_matrix integrator.linear_operator = linear_operator_rigid integrator.preconditioner = block_diagonal_preconditioner integrator.build_block_diagonal_preconditioner = build_block_diagonal_preconditioner integrator.build_block_diagonal_preconditioners_det_stoch = build_block_diagonal_preconditioners_det_stoch integrator.eta = eta integrator.a = a integrator.first_guess = np.zeros(Nblobs*3 + num_bodies*6) integrator.kT = read.kT integrator.mobility_vector_prod = mobility_vector_prod integrator.K_matrix_T_vector_prod = K_matrix_T_vector_prod integrator.K_matrix_vector_prod = K_matrix_vector_prod integrator.build_stochastic_block_diagonal_preconditioner = build_stochastic_block_diagonal_preconditioner integrator.preprocess = multi_bodies_functions.preprocess integrator.postprocess = multi_bodies_functions.postprocess integrator.periodic_length = read.periodic_length integrator.update_PC = read.update_PC integrator.print_residual = args.print_residual integrator.rf_delta = read.rf_delta # Initialize HydroGrid library: if found_HydroGrid and read.call_HydroGrid: cc.calculate_concentration(output_name, read.periodic_length[0], read.periodic_length[1], int(read.green_particles[0]), int(read.green_particles[1]), int(read.cells[0]), int(read.cells[1]), 0, dt * read.sample_HydroGrid, Nblobs, 0, get_blobs_r_vectors(bodies, Nblobs)) # Loop over time steps start_time = time.time() if read.save_clones == 'one_file': output_files = [] for i, ID in enumerate(structures_ID): name = output_name + '.' + ID + '.config' output_files.append(open(name, 'w')) for step in range(read.initial_step, n_steps): # Save data if... if (step % n_save) == 0 and step >= 0: elapsed_time = time.time() - start_time print('Integrator = ', scheme, ', step = ', step, ', invalid configurations', integrator.invalid_configuration_count, ', wallclock time = ', time.time() - start_time) # For each type of structure save locations and orientations to one file body_offset = 0 if read.save_clones == 'one_file_per_step': for i, ID in enumerate(structures_ID): name = output_name + '.' + ID + '.' + str(step).zfill(8) + '.clones' with open(name, 'w') as f_ID: f_ID.write(str(body_types[i]) + '\n') for j in range(body_types[i]): orientation = bodies[body_offset + j].orientation.entries f_ID.write('%s %s %s %s %s %s %s\n' % (bodies[body_offset + j].location[0], bodies[body_offset + j].location[1], bodies[body_offset + j].location[2], orientation[0], orientation[1], orientation[2], orientation[3])) body_offset += body_types[i] elif read.save_clones == 'one_file': for i, f_ID in enumerate(output_files): f_ID.write(str(body_types[i]) + '\n') for j in range(body_types[i]): orientation = bodies[body_offset + j].orientation.entries f_ID.write('%s %s %s %s %s %s %s\n' % (bodies[body_offset + j].location[0], bodies[body_offset + j].location[1], bodies[body_offset + j].location[2], orientation[0], orientation[1], orientation[2], orientation[3])) body_offset += body_types[i] else: print('Error, save_clones =', read.save_clones, 'is not implemented.') print('Use \"one_file_per_step\" or \"one_file\". \n') break # Save mobilities if read.save_blobs_mobility == 'True' or read.save_body_mobility == 'True': r_vectors_blobs = integrator.get_blobs_r_vectors(bodies, Nblobs) mobility_blobs = integrator.mobility_blobs(r_vectors_blobs, read.eta, read.blob_radius) if read.save_blobs_mobility == 'True': name = output_name + '.blobs_mobility.' + str(step).zfill(8) + '.dat' np.savetxt(name, mobility_blobs, delimiter=' ') if read.save_body_mobility == 'True': resistance_blobs = np.linalg.inv(mobility_blobs) K = integrator.calc_K_matrix(bodies, Nblobs) resistance_bodies = np.dot(K.T, np.dot(resistance_blobs, K)) mobility_bodies = np.linalg.pinv(np.dot(K.T, np.dot(resistance_blobs, K))) name = output_name + '.body_mobility.' + str(step).zfill(8) + '.dat' np.savetxt(name, mobility_bodies, delimiter=' ') # Update HydroGrid if (step % read.sample_HydroGrid) == 0 and found_HydroGrid and read.call_HydroGrid: cc.calculate_concentration(output_name, read.periodic_length[0], read.periodic_length[1], int(read.green_particles[0]), int(read.green_particles[1]), int(read.cells[0]), int(read.cells[1]), step, dt * read.sample_HydroGrid, Nblobs, 1, get_blobs_r_vectors(bodies, Nblobs)) # Save HydroGrid data if read.save_HydroGrid > 0 and found_HydroGrid and read.call_HydroGrid: if (step % read.save_HydroGrid) == 0: cc.calculate_concentration(output_name, read.periodic_length[0], read.periodic_length[1], int(read.green_particles[0]), int(read.green_particles[1]), int(read.cells[0]), int(read.cells[1]), step, dt * read.sample_HydroGrid, Nblobs, 2, get_blobs_r_vectors(bodies, Nblobs)) # Advance time step integrator.advance_time_step(dt, step = step) # Save final data if... if ((step+1) % n_save) == 0 and step >= 0: print('Integrator = ', scheme, ', step = ', step+1, ', invalid configurations', integrator.invalid_configuration_count, ', wallclock time = ', time.time() - start_time) # For each type of structure save locations and orientations to one file body_offset = 0 if read.save_clones == 'one_file_per_step': for i, ID in enumerate(structures_ID): name = output_name + '.' + ID + '.' + str(step+1).zfill(8) + '.clones' with open(name, 'w') as f_ID: f_ID.write(str(body_types[i]) + '\n') for j in range(body_types[i]): orientation = bodies[body_offset + j].orientation.entries f_ID.write('%s %s %s %s %s %s %s\n' % (bodies[body_offset + j].location[0], bodies[body_offset + j].location[1], bodies[body_offset + j].location[2], orientation[0], orientation[1], orientation[2], orientation[3])) body_offset += body_types[i] elif read.save_clones == 'one_file': for i, f_ID in enumerate(output_files): f_ID.write(str(body_types[i]) + '\n') for j in range(body_types[i]): orientation = bodies[body_offset + j].orientation.entries f_ID.write('%s %s %s %s %s %s %s\n' % (bodies[body_offset + j].location[0], bodies[body_offset + j].location[1], bodies[body_offset + j].location[2], orientation[0], orientation[1], orientation[2], orientation[3])) body_offset += body_types[i] else: print('Error, save_clones =', read.save_clones, 'is not implemented.') print('Use \"one_file_per_step\" or \"one_file\". \n') # Save mobilities if read.save_blobs_mobility == 'True' or read.save_body_mobility == 'True': r_vectors_blobs = integrator.get_blobs_r_vectors(bodies, Nblobs) mobility_blobs = integrator.mobility_blobs(r_vectors_blobs, read.eta, read.blob_radius) if read.save_blobs_mobility == 'True': name = output_name + '.blobs_mobility.' + str(step+1).zfill(8) + '.dat' np.savetxt(name, mobility_blobs, delimiter=' ') if read.save_body_mobility == 'True': resistance_blobs = np.linalg.inv(mobility_blobs) K = integrator.calc_K_matrix(bodies, Nblobs) resistance_bodies = np.dot(K.T, np.dot(resistance_blobs, K)) mobility_bodies = np.linalg.pinv(np.dot(K.T, np.dot(resistance_blobs, K))) name = output_name + '.body_mobility.' + str(step+1).zfill(8) + '.dat' np.savetxt(name, mobility_bodies, delimiter=' ') # Update HydroGrid data if ((step+1) % read.sample_HydroGrid) == 0 and found_HydroGrid and read.call_HydroGrid: cc.calculate_concentration(output_name, read.periodic_length[0], read.periodic_length[1], int(read.green_particles[0]), int(read.green_particles[1]), int(read.cells[0]), int(read.cells[1]), step+1, dt * read.sample_HydroGrid, Nblobs, 1, get_blobs_r_vectors(bodies, Nblobs)) # Save HydroGrid data if read.save_HydroGrid > 0 and found_HydroGrid and read.call_HydroGrid: if ((step+1) % read.save_HydroGrid) == 0: cc.calculate_concentration(output_name, read.periodic_length[0], read.periodic_length[1], int(read.green_particles[0]), int(read.green_particles[1]), int(read.cells[0]), int(read.cells[1]), step+1, dt * read.sample_HydroGrid, Nblobs, 2, get_blobs_r_vectors(bodies, Nblobs)) # Free HydroGrid if found_HydroGrid and read.call_HydroGrid: cc.calculate_concentration(output_name, read.periodic_length[0], read.periodic_length[1], int(read.green_particles[0]), int(read.green_particles[1]), int(read.cells[0]), int(read.cells[1]), step+1, dt * read.sample_HydroGrid, Nblobs, 3, get_blobs_r_vectors(bodies, Nblobs)) # Save wallclock time with open(output_name + '.time', 'w') as f: f.write(str(time.time() - start_time) + '\n') # Save number of invalid configurations and number of iterations in the # deterministic solvers and the Lanczos algorithm with open(output_name + '.info', 'w') as f: f.write('invalid_configuration_count = ' + str(integrator.invalid_configuration_count) + '\n' + 'deterministic_iterations_count = ' + str(integrator.det_iterations_count) + '\n' + 'stochastic_iterations_count = ' + str(integrator.stoch_iterations_count) + '\n') print('\n\n\n# End')
stochasticHydroTools/RigidMultiblobsWall
multi_bodies/examples/Rollers_Small_Example/multi_bodies.py
Python
gpl-3.0
38,017
import os class suppress_stdout_stderr(object): """ Via http://stackoverflow.com/questions/11130156/suppress-stdout-stderr-print-from-python-functions A context manager for doing a "deep suppression" of stdout and stderr in Python, i.e. will suppress all print, even if the print originates in a compiled C/Fortran sub-function. This will not suppress raised exceptions, since exceptions are printed to stderr just before a script exits, and after the context manager has exited (at least, I think that is why it lets exceptions through). """ def __init__(self): # Open a pair of null files self.null_fds = [os.open(os.devnull, os.O_RDWR) for x in range(2)] # Save the actual stdout (1) and stderr (2) file descriptors. self.save_fds = (os.dup(1), os.dup(2)) def __enter__(self): # Assign the null pointers to stdout and stderr. os.dup2(self.null_fds[0], 1) os.dup2(self.null_fds[1], 2) def __exit__(self, *_): # Re-assign the real stdout/stderr back to (1) and (2) os.dup2(self.save_fds[0], 1) os.dup2(self.save_fds[1], 2) # Close the null files os.close(self.null_fds[0]) os.close(self.null_fds[1])
skoczen/dewey
dewey/util.py
Python
mit
1,259
# jsb.plugs.common/learn.py # # """ learn information items .. facts .. factoids. """ ## jsb imports from jsb.lib.callbacks import callbacks from jsb.lib.commands import cmnds from jsb.lib.examples import examples from jsb.utils.lazydict import LazyDict from jsb.lib.persist import PlugPersist ## basic imports import logging ## commands def handle_learn(bot, event): """" set an information item. """ if not event.rest: event.missing("<item> is <description>") ; return try: (what, description) = event.rest.split(" is ", 1) except ValueError: event.missing("<item> is <description>") ; return what = what.lower() items = PlugPersist(event.channel) if not items.data: items.data = LazyDict() if not items.data.has_key(what): items.data[what] = [] if description not in items.data[what]: items.data[what].append(description) items.save() event.reply("%s item added to %s database" % (what, event.channel)) cmnds.add('learn', handle_learn, ['USER', 'GUEST']) examples.add('learn', 'learn the bot a description of an item.', "learn dunk is botpapa") def handle_forget(bot, event): """" set an information item. """ if not event.rest: event.missing("<item> and <match>") ; return try: (what, match) = event.rest.split(" and ", 2) except ValueError: event.missing("<item> and <match>") ; return what = what.lower() items = PlugPersist(event.channel) if not items.data: items.data = LazyDict() if items.data.has_key(what): for i in range(len(items.data[what])): if match in items.data[what][i]: del items.data[what][i] items.save() break event.reply("item removed from %s database" % event.channel) cmnds.add('forget', handle_forget, ['USER']) examples.add('forget', 'forget a description of an item.', "forget dunk and botpapa") def handle_whatis(bot, event): items = PlugPersist(event.channel) what = event.rest.lower().split('!')[0].strip() if what in items.data and items.data[what]: event.reply("%s is " % event.rest, items.data[what], dot=", ") else: event.reply("no information known about %s" % what) cmnds.add('whatis', handle_whatis, ['USER', 'GUEST']) examples.add("whatis", "whatis learned about a subject", "whatis jsb") def handle_items(bot, event): items = PlugPersist(event.channel).data.keys() event.reply("i know %s items: " % len(items), items) cmnds.add('items', handle_items, ['USER', 'GUEST']) examples.add("items", "show what items the bot knows", "items") def prelearn(bot, event): if event.txt and event.txt[0] == "?" and not event.forwarded: return True return False def learncb(bot, event): event.bind(bot) items = PlugPersist(event.channel) target = event.txt[1:].lower().split('!')[0].strip() if target in items.data: event.reply("%s is " % target, items.data[target], dot=", ") event.ready() callbacks.add("PRIVMSG", learncb, prelearn) callbacks.add("MESSAGE", learncb, prelearn) callbacks.add("DISPATCH", learncb, prelearn) callbacks.add("CONSOLE", learncb, prelearn) callbacks.add("CMND", learncb, prelearn)
melmothx/jsonbot
jsb/plugs/common/learn.py
Python
mit
3,168
#!/usr/bin/python from macaroon.playback import * import utils sequence = MacroSequence() #sequence.append(WaitForDocLoad()) sequence.append(PauseAction(5000)) # Work around some new quirk in Gecko that causes this test to fail if # run via the test harness rather than manually. sequence.append(KeyComboAction("<Control>r")) sequence.append(utils.StartRecordingAction()) sequence.append(KeyComboAction("<Control>Home")) sequence.append(utils.AssertPresentationAction( "1. Top of file", ["BRAILLE LINE: 'Foo'", " VISIBLE: 'Foo', cursor=1", "SPEECH OUTPUT: 'Foo'", "SPEECH OUTPUT: 'link.'"])) sequence.append(utils.StartRecordingAction()) sequence.append(KeyComboAction("<Shift>Tab")) sequence.append(utils.AssertPresentationAction( "2. Shift Tab", ["BRAILLE LINE: ''", " VISIBLE: '', cursor=1", "SPEECH OUTPUT: 'document frame'"])) sequence.append(utils.StartRecordingAction()) sequence.append(KeyComboAction("Tab")) sequence.append(utils.AssertPresentationAction( "3. Tab", ["BRAILLE LINE: 'Foo'", " VISIBLE: 'Foo', cursor=1", "BRAILLE LINE: 'Foo'", " VISIBLE: 'Foo', cursor=1", "SPEECH OUTPUT: 'Foo link.'"])) sequence.append(utils.AssertionSummaryAction()) sequence.start()
chrys87/orca-beep
test/keystrokes/firefox/focus_tracking_link_child_of_body.py
Python
lgpl-2.1
1,278
######################################################################### # # Copyright (C) 2012 OpenPlans # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program. If not, see <http://www.gnu.org/licenses/>. # ######################################################################### from django.conf.urls import patterns, url urlpatterns = patterns('geonode.geoserver.views', url(r'^rest/stores/(?P<store_type>\w+)/$', 'stores', name="stores"), (r'^rest/styles', 'geoserver_rest_proxy', dict(proxy_path='/gs/rest/styles', downstream_path='rest/styles')), (r'^rest/layers', 'geoserver_rest_proxy', dict(proxy_path='/gs/rest/layers', downstream_path='rest/layers')), (r'^rest/sldservice', 'geoserver_rest_proxy', dict(proxy_path='/gs/rest/sldservice', downstream_path='rest/sldservice')), url(r'^updatelayers/$', 'updatelayers', name="updatelayers"), url(r'^(?P<layername>[^/]*)/style$', 'layer_style', name="layer_style"), url(r'^(?P<layername>[^/]*)/style/upload$', 'layer_style_upload', name='layer_style_upload'), url(r'^(?P<layername>[^/]*)/style/manage$', 'layer_style_manage', name='layer_style_manage'), url(r'^(?P<layername>[^/]*)/edit-check?$', 'feature_edit_check', name="feature_edit_check"), url(r'^acls/?$', 'layer_acls', name='layer_acls'), url(r'^resolve_user/?$', 'resolve_user', name='layer_resolve_user'), url(r'^download$', 'layer_batch_download', name='layer_batch_download'), )
Phil-LiDAR2-Geonode/pl2-geonode
geonode/geoserver/urls.py
Python
gpl-3.0
2,446
from mrjob.job import MRJob import sys class GlobalState(MRJob): def __init__(self): self.GlobalList = [] def mapper_init(self): print("cat", file=sys.stderr) def mapper(self, _, lines): if "wi" in lines: self.GlobalList.append(lines[2:8]) yield (lines, 1) def reducer(self, values, counts): pass def reducer_final(self): yield(self.GlobalList, 1) if __name__ == "__main__": GlobalState.run()
JasonSanchez/w261
week5/GlobalState.py
Python
mit
508
""" Common functionality used in save() methods and the like live here. This is basically anything that can be abstracted away for readability like hashing or getting a media path, etc... """ from django.conf import settings from django.utils import timezone from django.db import connections from django.db.models.fields import AutoField from django.db.models.loading import get_model from contextlib import contextmanager from threading import local from .exceptions import UnknownUserError from docutils.core import publish_parts from importlib import import_module from collections import defaultdict from nltk import stem import os import uuid import simhash def get_audio_path(instance, filename): """ Recieves an instance of the Audio model and returns an appropriate filename/filepath (the hash_id + audio_file hash) for the save() function of the FileField to use. """ return os.path.join( settings.MEDIA_ROOT, instance.sentence.hash_id + '-' + instance.hash_id + '.mp3' ) def now(): return timezone.now() def uuid4(): return uuid.uuid4().hex def sim_hash(text): return simhash.Simhash(text).value def truncated_sim_hash(text): return int('%.19s' % (sim_hash(text))) thread_local_storage = local() @contextmanager def work_as(user): if not hasattr(thread_local_storage, 'temp_user_list'): thread_local_storage.temp_user_list = [] thread_local_storage.temp_user_list.append(user) yield thread_local_storage.temp_user_list.pop() def get_user(): if not hasattr(thread_local_storage, 'temp_user_list') or \ not thread_local_storage.temp_user_list: raise UnknownUserError( "Please wrap this in a work_as context manager and provide a \ User object." ) return thread_local_storage.temp_user_list[-1] def sentence_presave(sent): if not sent.id: sent.hash_id = uuid4() sent.owner = sent.added_by if sent.text: sent.length = len(sent.text) sent.sim_hash = truncated_sim_hash(sent.text) return sent def correction_presave(corr): if not corr.id and corr.sentence: corr.hash_id = uuid4() sent = corr.sentence sent.has_correction = True sent.save(update_fields=['has_correction']) return corr def tag_presave(tag): if not tag.id: tag.hash_id = uuid4() return tag def rest(text): return publish_parts(text, writer_name='html')['body'] def markup_to_html(text, markup): from .choices import MARKUPS_SUPPORTED if markup in MARKUPS_SUPPORTED: converter = MARKUPS_SUPPORTED[markup][1] return converter(text) return text class ClassProperty(property): def __get__(self, cls, owner): return self.fget.__get__(None, owner)() classproperty = ClassProperty # sample utility class for stemming, tokenizing, and removing stopwords STEMMERS = { 'eng': stem.snowball.EnglishStemmer() } STEMMERS = getattr(settings, 'HAYSTACK_STEMMERS', STEMMERS) TOKENIZERS = getattr(settings, 'HAYSTACK_TOKENIZERS', {}) STOP_WORDS = getattr(settings, 'HAYSTACK_STOP_WORDS', {}) class Stemmer(object): def __init__(self, lang=None): self.lang = lang self.stemmer = STEMMERS.get(lang, None) self.tokenizer = TOKENIZERS.get(lang, None) self.stop_words = set(STOP_WORDS.get(lang, set())) def stem(self, text, lang): lang = lang or self.lang stemmer = STEMMERS.get(lang, None) or self.stemmer if not stemmer: return '' stemmed_text = [] for token in self.tokenize(text): if token not in self.stop_words: token = stemmer.stem(token) stemmed_text.append(token) stemmed_text = ' '.join(stemmed_text) return stemmed_text def tokenize(self, text): tokenizer = self.tokenizer if self.tokenizer else lambda s: s.split() for token in tokenizer(text): yield token stemmer = Stemmer() def import_path(path): module = '.'.join(path.split('.')[:-1]) cls = path.split('.')[-1] module = import_module(module) cls = getattr(module, cls) return cls graph_backend = import_path(settings.GRAPH_BACKEND) def redraw_subgraph(links=[], unlinks=[]): Sentence = get_model('pytoeba', 'Sentence') Link = get_model('pytoeba', 'Link') link_qs = Link.objects.none() for link in links: link_qs = link_qs | \ Link.objects.filter(side1_id=link[0]) | \ Link.objects.filter( side1__in=Sentence.objects.filter( side1_set__in=Link.objects.filter(side1_id=link[0]) ), level=1 ) | \ Link.objects.filter(side2_id=link[0]) | \ Link.objects.filter( side2__in=Sentence.objects.filter( side2_set__in=Link.objects.filter(side2_id=link[0]) ), level=1 ) | \ Link.objects.filter(side1_id=link[1]) | \ Link.objects.filter( side1__in=Sentence.objects.filter( side1_set__in=Link.objects.filter(side1_id=link[1]) ), level=1 ) | \ Link.objects.filter(side2_id=link[1]) | \ Link.objects.filter( side2__in=Sentence.objects.filter( side2_set__in=Link.objects.filter(side2_id=link[1]) ), level=1 ) unlink_qs = Link.objects.none() for unlink in unlinks: unlink_qs = unlink_qs | \ Link.objects.filter(side1_id=unlink[0], side2_id=unlink[1], level=1) subgraph_links = list(link_qs | unlink_qs) subgraph = graph_backend(subgraph_links) for link in links: subgraph.add_edge(link[0], link[1]) for unlink in unlinks: subgraph.remove_edge(link[0], link[1]) relinked_subgraph_links = subgraph.get_recomputed_links( created=True, updated=True, deleted=True ) created = relinked_subgraph_links['created'] updated = relinked_subgraph_links['updated'] deleted = relinked_subgraph_links['deleted'] if created: created = bulk_create(created) if updated: bulk_update(updated, update_fields=['level'], case_fields=['side1_id', 'side2_id']) if deleted: bulk_delete(deleted) def fix_pythonism(value): if not value: if value is None: value = 'NULL' if isinstance(value, unicode): value = '\'\'' if isinstance(value, bool): value = unicode(value).upper() return value def bulk_create(objs, using='default'): ref_obj = objs[0] meta = ref_obj._meta model = meta.model fields = meta.fields return model._base_manager._insert(objs, fields=fields, using=using) def bulk_delete(objs, case_field='id', using='default', as_sql=False): connection = connections[using] # using objects not from the same table will break everything ref_obj = objs[0] meta = ref_obj._meta case_field = [f for f in meta.fields if f.attname == case_field][0] cf_vals = [] for obj in objs: val = getattr(obj, case_field.attname) val = case_field.get_db_prep_save(val, connection) val = fix_pythonism(val) cf_vals.append(val) sql = [] params = [] sql.append('DELETE FROM %s ' % meta.db_table) sql.append('WHERE %s IN (%%s)' % case_field) params.append(', '.join(cf_vals)) sql = ''.join(sql) if as_sql: return sql, params connection.cursor().execute(sql, params) def bulk_update(objs, case_field='id', using='default', update_fields=[], case_fields=[], as_sql=False): connection = connections[using] # using objects not from the same table will break everything ref_obj = objs[0] meta = ref_obj._meta fields = meta.fields update_fields = update_fields or meta.get_all_field_names() # get actual field object for case_field by name case_field = [f for f in fields if f.attname == case_field][0] if case_fields: case_fields = [f for f in fields if f.attname in case_fields] # filter out auto fields and fields not specified in update_fields fields = [ f for f in fields if not isinstance(f, AutoField) and f.attname in update_fields ] # initialize cases cases = {} for field in fields: cases[field.column] = defaultdict(dict) # populate a case per field with case_field/field value pairs # the defaultdict ensures unique values per case per case_field for obj in objs: # get raw values appropriate for the db backend if not case_fields: cf_value = case_field.get_db_prep_save( getattr(obj, case_field.attname), connection ) for field in fields: f_value = field.get_db_prep_save( getattr(obj, field.attname), connection ) f_value = fix_pythonism(f_value) cases[field.column].update({cf_value: f_value}) else: cf_values = [] for field in case_fields: cf_value = field.get_db_prep_save( getattr(obj, field.attname), connection ) cf_value = fix_pythonism(cf_value) cf_values.append(cf_value) cf_values = tuple(cf_values) for field in fields: f_value = field.get_db_prep_save( getattr(obj, field.attname), connection ) f_value = fix_pythonism(f_value) cases[field.column].update({cf_values: f_value}) # build sql query indent = ' ' newline = '\n' sql = [] params = [] sql.append('UPDATE %s' % meta.db_table) sql.append(newline) sql.append(indent) sql.append('SET') sql.append(newline) cf_vals = set() for case, values in cases.iteritems(): sql.append(indent * 2) if not case_fields: sql.append('%s = CASE %s' % (case, case_field.attname)) else: sql.append('%s = CASE' % case) sql.append(newline) for cf_value, field_value in values.items(): cf_vals.add(cf_value) if not case_fields: sql.append(indent * 3) sql.append('WHEN %s THEN %s') sql.append(newline) params.append(cf_value) params.append(field_value) else: cond = [] for cf in case_fields: cond.append('%s = %%s' % cf.attname) cond = ' AND '.join(cond) sql.append(indent * 3) sql.append('WHEN (%s) THEN %%s' % cond) sql.append(newline) for cf_v in cf_value: params.append(cf_v) params.append(field_value) sql.append(indent * 2) sql.append('END,') sql.append(newline) sql.pop() sql.pop() sql.append('END') sql.append(newline) if not case_fields: sql.append('WHERE %s IN (%%s)' % case_field.attname) params.append(', '.join(str(v) for v in cf_vals)) else: if connection.vendor != 'sqlite': # change this connection.vendor cfs = ', '.join([cf.attname for cf in case_fields]) sql.append('WHERE (%s) IN (%%s)' % cfs) cf_param = [] for cf_v in cf_vals: cf_param.append('(' + ', '.join(str(v) for v in cf_v) + ')') params.append(', '.join(cf_param)) else: comps = [] for cf in case_fields: comps.append('%s = %%s' % cf.attname) comps = ' AND '.join(comps) cond = [] for cf_v in cf_vals: cond.append('(%s)' % comps) for v in cf_v: params.append(str(v)) cond = ' OR '.join(cond) sql.append('WHERE %s' % cond) sql = ''.join(sql) if as_sql: return sql, params connection.cursor().execute(sql, params) def bulk_upsert(objs, case_field='id', using='default', _return=True): # get some basic info about the objects, they all have to be for the same # table or well, things can go horribly wrong. ref_obj = objs[0] meta = ref_obj._meta model = meta.model fields = meta.fields # handle common case first, case_field is id # missing ids will always be inserts if case_field == 'id': all_objs = set(objs) for_insert = set(obj for obj in objs if not obj.id) for_update = all_objs - for_insert bulk_update(for_update, case_field, using) # bypass the fucking stupid forced batch_size in django's bulk_create for_insert = bulk_create(for_insert, using=using) return list(for_insert), list(for_update) # handle the more generic case # we don't know if some of these fields in case_field (that should be # unique btw, or you're fucked hardcore) are actually already there # so we do a select to find out cf_vals = [getattr(obj, case_field) for obj in objs] filter_kwargs = {case_field+'__in': cf_vals} all_objs = set(objs) for_update = set(model.objects.filter(**filter_kwargs)) for_insert = all_objs - for_update bulk_update(for_update, case_field, using) # bypass the fucking stupid forced batch_size in django's bulk_create for_insert = model._base_manager._insert(for_insert, fields=fields, using=using) if _return: return list(for_insert), list(for_update)
loolmeh/pytoeba
pytoeba/utils.py
Python
mit
13,918
# ---------------------------------------------------------------------------- # Copyright (c) 2016-2017, QIIME 2 development team. # # Distributed under the terms of the Modified BSD License. # # The full license is in the file LICENSE, distributed with this software. # ---------------------------------------------------------------------------- import collections # Sentinel to avoid the situation where `None` *is* the default value. NoDefault = collections.namedtuple('NoDefault', [])() class ValueNotFoundException(Exception): """Raised when a value cannot be found. Used for control-flow only.""" class Handler: def __init__(self, name, prefix='', default=NoDefault, description=None): # e.g. my_option_name self.name = name # e.g. p_my_option_name self.click_name = prefix + name self.default = default self.description = description self.missing = [] @property def cli_name(self): import q2cli.util # e.g. p-my-option-name return q2cli.util.to_cli_name(self.click_name) def get_click_options(self): """Should yield 1 or more click.Options""" raise NotImplementedError() def get_value(self, arguments, fallback=None): """Should find 1 or more arguments and convert to a single API value""" raise NotImplementedError() def _locate_value(self, arguments, fallback, multiple=False): """Default lookup procedure to find a click.Option provided by user""" # TODO revisit this interaction between _locate_value, single vs. # multiple options, and fallbacks. Perhaps handlers should always # use tuples to store values, even for single options, in order to # normalize single-vs-multiple option handling. Probably not worth # revisiting until there are more unit + integration tests of q2cli # since there's the potential to break things. # Is it in args? v = arguments[self.click_name] missing_value = () if multiple else None if v != missing_value: return v # Does our fallback know about it? if fallback is not None: try: fallback_value = fallback(self.name, self.cli_name) except ValueNotFoundException: pass else: # TODO fallbacks don't know whether they're handling a single # vs. multiple option, so the current expectation is that # fallbacks will always return a single value. Revisit this # expectation in the future; perhaps fallbacks should be aware # of single-vs-multiple options, or perhaps they could always # return a tuple. if multiple: fallback_value = (fallback_value,) return fallback_value # Do we have a default? if self.default is not NoDefault: return self.default # Give up self.missing.append(self.cli_name) raise ValueNotFoundException() def _parse_boolean(self, string): """Parse string representing a boolean into Python bool type. Supported values match `configparser.ConfigParser.getboolean`. """ trues = ['1', 'yes', 'true', 'on'] falses = ['0', 'no', 'false', 'off'] string_lower = string.lower() if string_lower in trues: return True elif string_lower in falses: return False else: import itertools import click msg = ( "Error: unrecognized value for --%s flag: %s\n" "Supported values (case-insensitive): %s" % (self.cli_name, string, ', '.join(itertools.chain(trues, falses))) ) click.secho(msg, err=True, fg='red', bold=True) ctx = click.get_current_context() ctx.exit(1) def _add_description(self, option, requirement): def pretty_cat(a, b, space=1): if a: return a + (' ' * space) + b return b if self.description: option.help = pretty_cat(option.help, self.description) option.help = pretty_cat(option.help, requirement, space=2) return option class VerboseHandler(Handler): """Handler for verbose output (--verbose flag).""" def __init__(self): super().__init__('verbose', default=False) def get_click_options(self): import q2cli # `is_flag` will set the default to `False`, but `self._locate_value` # needs to distinguish between the presence or absence of the flag # provided by the user. yield q2cli.Option( ['--' + self.cli_name], is_flag=True, default=None, help='Display verbose output to stdout and/or stderr during ' 'execution of this action. [default: %s]' % self.default) def get_value(self, arguments, fallback=None): value = self._locate_value(arguments, fallback) # Value may have been specified in --cmd-config (or another source in # the future). If we don't have a bool type yet, attempt to interpret a # string representing a boolean. if type(value) is not bool: value = self._parse_boolean(value) return value class QuietHandler(Handler): """Handler for quiet output (--quiet flag).""" def __init__(self): super().__init__('quiet', default=False) def get_click_options(self): import q2cli # `is_flag` will set the default to `False`, but `self._locate_value` # needs to distinguish between the presence or absence of the flag # provided by the user. yield q2cli.Option( ['--' + self.cli_name], is_flag=True, default=None, help='Silence output if execution is successful ' '(silence is golden). [default: %s]' % self.default) def get_value(self, arguments, fallback=None): value = self._locate_value(arguments, fallback) # Value may have been specified in --cmd-config (or another source in # the future). If we don't have a bool type yet, attempt to interpret a # string representing a boolean. if type(value) is not bool: value = self._parse_boolean(value) return value class OutputDirHandler(Handler): """Meta handler which returns a fallback function as its value.""" def __init__(self): super().__init__('output_dir') def get_click_options(self): import click import q2cli yield q2cli.Option( ['--' + self.cli_name], type=click.Path(exists=False, dir_okay=True, file_okay=False, writable=True), help='Output unspecified results to a directory') def get_value(self, arguments, fallback=None): import os import os.path import click try: path = self._locate_value(arguments, fallback=fallback) # TODO: do we want a --force like flag? if os.path.exists(path): click.secho("Error: --%s directory already exists, won't " "overwrite." % self.cli_name, err=True, fg='red', bold=True) ctx = click.get_current_context() ctx.exit(1) os.makedirs(path) def fallback_(name, cli_name): return os.path.join(path, name) return fallback_ except ValueNotFoundException: # Always fail to find a value as this handler doesn't exist. def fail(*_): raise ValueNotFoundException() return fail class CommandConfigHandler(Handler): """Meta handler which returns a fallback function as its value.""" def __init__(self, cli_plugin, cli_action): self.cli_plugin = cli_plugin self.cli_action = cli_action super().__init__('cmd_config') def get_click_options(self): import click import q2cli yield q2cli.Option( ['--' + self.cli_name], type=click.Path(exists=True, dir_okay=False, file_okay=True, readable=True), help='Use config file for command options') def get_value(self, arguments, fallback=None): import configparser import warnings try: path = self._locate_value(arguments, fallback=fallback) config = configparser.ConfigParser() config.read(path) try: config_section = config['.'.join([ self.cli_plugin, self.cli_action ])] except KeyError: warnings.warn("Config file does not contain a section" " for %s" % '.'.join([self.cli_plugin, self.cli_action]), UserWarning) raise ValueNotFoundException() def fallback_(name, cli_name): try: return config_section[cli_name] except KeyError: raise ValueNotFoundException() return fallback_ except ValueNotFoundException: # Always fail to find a value as this handler doesn't exist. def fail(*_): raise ValueNotFoundException() return fail class GeneratedHandler(Handler): def __init__(self, name, repr, ast, default=NoDefault, description=None): super().__init__(name, prefix=self.prefix, default=default, description=description) self.repr = repr self.ast = ast class CollectionHandler(GeneratedHandler): view_map = { 'List': list, 'Set': set } def __init__(self, inner_handler, **kwargs): self.inner_handler = inner_handler # inner_handler needs to be set first so the prefix lookup works super().__init__(**kwargs) self.view_type = self.view_map[self.ast['name']] @property def prefix(self): return self.inner_handler.prefix def get_click_options(self): import q2cli.core for option in self.inner_handler.get_click_options(): option.multiple = True # validation happens on a callback for q2cli.core.Option, so unset # it because we need standard click behavior for multi-options # without this, the result of not-passing a value is `None` instead # of `()` which confuses ._locate_value option.callback = None option.type = q2cli.core.MultipleType(option.type) yield option def get_value(self, arguments, fallback=None): args = self._locate_value(arguments, fallback, multiple=True) if args is None: return None decoded_values = [] for arg in args: # Use an empty dict because we don't need the inner handler to # look for anything; that's our job. We just need it to decode # whatever it was we found. empty = collections.defaultdict(lambda: None) decoded = self.inner_handler.get_value(empty, fallback=lambda *_: arg) decoded_values.append(decoded) value = self.view_type(decoded_values) if len(value) != len(decoded_values): self._error_with_duplicate_in_set(decoded_values) return value def _error_with_duplicate_in_set(self, elements): import click import collections counter = collections.Counter(elements) dups = {name for name, count in counter.items() if count > 1} ctx = click.get_current_context() click.echo(ctx.get_usage() + '\n', err=True) click.secho("Error: Option --%s was given these values: %r more than " "one time, values passed should be unique." % (self.cli_name, dups), err=True, fg='red', bold=True) ctx.exit(1) class ArtifactHandler(GeneratedHandler): prefix = 'i_' def get_click_options(self): import q2cli import q2cli.core type = q2cli.core.ResultPath(repr=self.repr, exists=True, file_okay=True, dir_okay=False, readable=True) if self.default is None: requirement = '[optional]' else: requirement = '[required]' option = q2cli.Option(['--' + self.cli_name], type=type, help="") yield self._add_description(option, requirement) def get_value(self, arguments, fallback=None): import qiime2 path = self._locate_value(arguments, fallback) if path is None: return None else: return qiime2.Artifact.load(path) class ResultHandler(GeneratedHandler): prefix = 'o_' def get_click_options(self): import q2cli type = q2cli.core.ResultPath(self.repr, exists=False, file_okay=True, dir_okay=False, writable=True) option = q2cli.Option(['--' + self.cli_name], type=type, help="") yield self._add_description( option, '[required if not passing --output-dir]') def get_value(self, arguments, fallback=None): return self._locate_value(arguments, fallback) def parameter_handler_factory(name, repr, ast, default=NoDefault, description=None): if ast['name'] == 'Metadata': return MetadataHandler(name, default=default, description=description) elif ast['name'] == 'MetadataCategory': return MetadataCategoryHandler(name, default=default, description=description) else: return RegularParameterHandler(name, repr, ast, default=default, description=description) class MetadataHandler(Handler): def __init__(self, name, default=NoDefault, description=None): if default is not NoDefault and default is not None: raise TypeError( "The only supported default value for Metadata is `None`. " "Found this default value: %r" % (default,)) super().__init__(name, prefix='m_', default=default, description=description) self.click_name += '_file' def get_click_options(self): import click import q2cli import q2cli.core name = '--' + self.cli_name type = click.Path(exists=True, file_okay=True, dir_okay=False, readable=True) type = q2cli.core.MultipleType(type) help = ('Metadata file or artifact viewable as metadata. This ' 'option may be supplied multiple times to merge metadata.') if self.default is None: requirement = '[optional]' else: requirement = '[required]' option = q2cli.Option([name], type=type, help=help, multiple=True) yield self._add_description(option, requirement) def get_value(self, arguments, fallback=None): import os import qiime2 import q2cli.util paths = self._locate_value(arguments, fallback, multiple=True) if paths is None: return paths metadata = [] for path in paths: try: # check to see if path is an artifact artifact = qiime2.Artifact.load(path) except Exception: try: metadata.append(qiime2.Metadata.load(path)) except Exception as e: header = ("There was an issue with loading the file %s as " "metadata:" % path) with open(os.devnull, 'w') as dev_null: q2cli.util.exit_with_error( e, header=header, file=dev_null, suppress_footer=True) else: try: metadata.append(qiime2.Metadata.from_artifact(artifact)) except Exception as e: header = ("There was an issue with viewing the artifact " "%s as metadata:" % path) with open(os.devnull, 'w') as dev_null: q2cli.util.exit_with_error( e, header=header, file=dev_null, suppress_footer=True) return metadata[0].merge(*metadata[1:]) class MetadataCategoryHandler(Handler): def __init__(self, name, default=NoDefault, description=None): if default is not NoDefault and default is not None: raise TypeError( "The only supported default value for MetadataCategory is " "`None`. Found this default value: %r" % (default,)) super().__init__(name, prefix='m_', default=default, description=description) self.click_name += '_category' # Not passing `description` to metadata handler because `description` # applies to the metadata category (`self`). self.metadata_handler = MetadataHandler(name, default=default) def get_click_options(self): import q2cli name = '--' + self.cli_name type = str help = ('Category from metadata file or artifact viewable as ' 'metadata.') if self.default is None: requirement = '[optional]' else: requirement = '[required]' option = q2cli.Option([name], type=type, help=help) yield from self.metadata_handler.get_click_options() yield self._add_description(option, requirement) def get_value(self, arguments, fallback=None): # Attempt to find all options before erroring so that all handlers' # missing options can be displayed to the user. try: metadata_value = self.metadata_handler.get_value(arguments, fallback=fallback) except ValueNotFoundException: pass try: category_value = self._locate_value(arguments, fallback) except ValueNotFoundException: pass missing = self.metadata_handler.missing + self.missing if missing: self.missing = missing raise ValueNotFoundException() # If metadata category is optional, there is a chance for metadata to # be provided without a metadata category, or vice versa. if metadata_value is None and category_value is not None: self.missing.append(self.metadata_handler.cli_name) raise ValueNotFoundException() elif metadata_value is not None and category_value is None: self.missing.append(self.cli_name) raise ValueNotFoundException() if metadata_value is None and category_value is None: return None else: return metadata_value.get_category(category_value) class RegularParameterHandler(GeneratedHandler): prefix = 'p_' def __init__(self, name, repr, ast, default=NoDefault, description=None): import q2cli.util super().__init__(name, repr, ast, default=default, description=description) # TODO: just create custom click.ParamType to avoid this silliness if ast['type'] == 'collection': ast, = ast['fields'] self.type = q2cli.util.convert_primitive(ast) def get_click_options(self): import q2cli import q2cli.util if self.type is bool: no_name = self.prefix + 'no_' + self.name cli_no_name = q2cli.util.to_cli_name(no_name) name = '--' + self.cli_name + '/--' + cli_no_name # click.Option type is determined implicitly for flags with # secondary options, and explicitly passing type=bool results in a # TypeError, so we pass type=None (the default). option_type = None else: name = '--' + self.cli_name option_type = self.type if self.default is NoDefault: requirement = '[required]' elif self.default is None: requirement = '[optional]' else: requirement = '[default: %s]' % self.default # Pass `default=None` and `show_default=False` to `click.Option` # because the handlers are responsible for resolving missing values and # supplying defaults. Telling Click about the default value here makes # it impossible to determine whether the user supplied or omitted a # value once the handlers are invoked. option = q2cli.Option([name], type=option_type, default=None, show_default=False, help='') yield self._add_description(option, requirement) def get_value(self, arguments, fallback=None): value = self._locate_value(arguments, fallback) if value is None: return None elif self.type is bool: # TODO: should we defer to the Bool primitive? It only allows # 'true' and 'false'. if type(value) is not bool: value = self._parse_boolean(value) return value else: import qiime2.sdk primitive = qiime2.sdk.parse_type(self.repr, expect='primitive') # TODO/HACK: the repr is the primitive used, but since there's a # collection handler managing the set/list this get_value should # handle only the pieces. This is super gross, but would be # unecessary if click.ParamTypes were implemented for each # kind of QIIME 2 input. if self.ast['type'] == 'collection': primitive, = primitive.fields return primitive.decode(value)
gregcaporaso/q2cli
q2cli/handlers.py
Python
bsd-3-clause
22,305
import _plotly_utils.basevalidators class DeltaValidator(_plotly_utils.basevalidators.CompoundValidator): def __init__(self, plotly_name="delta", parent_name="indicator", **kwargs): super(DeltaValidator, self).__init__( plotly_name=plotly_name, parent_name=parent_name, data_class_str=kwargs.pop("data_class_str", "Delta"), data_docs=kwargs.pop( "data_docs", """ decreasing :class:`plotly.graph_objects.indicator.delta.De creasing` instance or dict with compatible properties font Set the font used to display the delta increasing :class:`plotly.graph_objects.indicator.delta.In creasing` instance or dict with compatible properties position Sets the position of delta with respect to the number. reference Sets the reference value to compute the delta. By default, it is set to the current value. relative Show relative change valueformat Sets the value formatting rule using d3 formatting mini-language which is similar to those of Python. See https://github.com/d3/d3-3.x-api- reference/blob/master/Formatting.md#d3_format """, ), **kwargs )
plotly/python-api
packages/python/plotly/plotly/validators/indicator/_delta.py
Python
mit
1,527
# coding: utf-8 # Copyright (c) Pymatgen Development Team. # Distributed under the terms of the MIT License. import os import unittest import warnings import pytest from pymatgen.analysis.functional_groups import FunctionalGroupExtractor from pymatgen.analysis.graphs import MoleculeGraph from pymatgen.analysis.local_env import OpenBabelNN from pymatgen.core.structure import Molecule from pymatgen.util.testing import PymatgenTest test_dir = os.path.join(PymatgenTest.TEST_FILES_DIR, "functional_groups") pytest.importorskip("openbabel", reason="OpenBabel not installed") pytest.importorskip("networkx", reason="NetworkX not installed") __author__ = "Evan Spotte-Smith" __version__ = "0.1" __maintainer__ = "Evan Spotte-Smith" __email__ = "ewcspottesmith@lbl.gov" __status__ = "Beta" __date__ = "July 2018" __credit__ = "Peiyuan Yu" class FunctionalGroupExtractorTest(unittest.TestCase): def setUp(self): warnings.simplefilter("ignore") self.file = os.path.join(test_dir, "func_group_test.mol") self.mol = Molecule.from_file(self.file) self.strat = OpenBabelNN() self.mg = MoleculeGraph.with_local_env_strategy(self.mol, self.strat) self.extractor = FunctionalGroupExtractor(self.mg) def tearDown(self): warnings.simplefilter("default") del self.extractor del self.mg del self.strat del self.mol del self.file def test_init(self): # Ensure that instantiation is equivalent for all valid input types extractor_str = FunctionalGroupExtractor(self.file) extractor_mol = FunctionalGroupExtractor(self.mol) extractor_mg = self.extractor self.assertEqual(extractor_str.molgraph, extractor_mol.molgraph) self.assertEqual(extractor_str.molgraph, extractor_mg.molgraph) self.assertEqual(extractor_str.species, extractor_mol.species) self.assertEqual(extractor_str.species, extractor_mg.species) # Test optimization file_no_h = os.path.join(test_dir, "func_group_test_no_h.mol") extractor_no_h = FunctionalGroupExtractor(file_no_h, optimize=True) self.assertEqual(len(extractor_no_h.molecule), len(extractor_mol.molecule)) self.assertEqual(extractor_no_h.species, extractor_mol.species) def test_get_heteroatoms(self): heteroatoms = self.extractor.get_heteroatoms() hetero_species = [self.extractor.species[x] for x in heteroatoms] self.assertEqual(len(heteroatoms), 3) self.assertEqual(sorted(hetero_species), ["N", "O", "O"]) # Test with limitation hetero_no_o = self.extractor.get_heteroatoms(elements=["N"]) self.assertEqual(len(hetero_no_o), 1) def test_get_special_carbon(self): special_cs = self.extractor.get_special_carbon() self.assertEqual(len(special_cs), 4) # Test with limitation special_cs_no_o = self.extractor.get_special_carbon(elements=["N"]) self.assertEqual(len(special_cs_no_o), 2) def test_link_marked_atoms(self): heteroatoms = self.extractor.get_heteroatoms() special_cs = self.extractor.get_special_carbon() link = self.extractor.link_marked_atoms(heteroatoms.union(special_cs)) self.assertEqual(len(link), 1) self.assertEqual(len(link[0]), 9) # Exclude Oxygen-related functional groups heteroatoms_no_o = self.extractor.get_heteroatoms(elements=["N"]) special_cs_no_o = self.extractor.get_special_carbon(elements=["N"]) all_marked = heteroatoms_no_o.union(special_cs_no_o) link_no_o = self.extractor.link_marked_atoms(all_marked) self.assertEqual(len(link_no_o), 2) def test_get_basic_functional_groups(self): basics = self.extractor.get_basic_functional_groups() # Molecule has one methyl group which will be caught. self.assertEqual(len(basics), 1) self.assertEqual(len(basics[0]), 4) basics_no_methyl = self.extractor.get_basic_functional_groups(func_groups=["phenyl"]) self.assertEqual(len(basics_no_methyl), 0) def test_get_all_functional_groups(self): heteroatoms = self.extractor.get_heteroatoms() special_cs = self.extractor.get_special_carbon() link = self.extractor.link_marked_atoms(heteroatoms.union(special_cs)) basics = self.extractor.get_basic_functional_groups() all_func = self.extractor.get_all_functional_groups() self.assertEqual(len(all_func), (len(link) + len(basics))) self.assertEqual(sorted(all_func), sorted(link + basics)) def test_categorize_functional_groups(self): all_func = self.extractor.get_all_functional_groups() categorized = self.extractor.categorize_functional_groups(all_func) self.assertTrue("O=C1C=CC(=O)[N]1" in categorized.keys()) self.assertTrue("[CH3]" in categorized.keys()) total_count = sum([c["count"] for c in categorized.values()]) self.assertEqual(total_count, 2) if __name__ == "__main__": unittest.main()
gmatteo/pymatgen
pymatgen/analysis/tests/test_functional_groups.py
Python
mit
5,094
# -*- coding: utf-8 -*- # Generated by Django 1.9.3 on 2016-06-08 11:44 from __future__ import unicode_literals from django.conf import settings from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ migrations.swappable_dependency(settings.AUTH_USER_MODEL), ('chat', '0002_auto_20160605_2337'), ] operations = [ migrations.CreateModel( name='UserProfile', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('avatar', models.ImageField(blank=True, max_length=255, null=True, upload_to='user_profile', verbose_name='Foto')), ('data_nascimento', models.DateField(verbose_name='Data Nascimento')), ('sexo', models.IntegerField(choices=[(1, 'Masculino'), (2, 'Feminino')], verbose_name='Sexo')), ('user', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, related_name='profile_user', to=settings.AUTH_USER_MODEL, verbose_name='Usu\xe1rio')), ], ), ]
nicolaszein/chat
chat/migrations/0003_userprofile.py
Python
bsd-3-clause
1,161
from django import template from django.core.urlresolvers import reverse from django.template.defaultfilters import stringfilter register = template.Library() @register.filter() @stringfilter def actionlogize(value): """ Converts an ActionLog-Actionkey into a translateable, human string """ dictionary = { "DELETE_ACTIONLOG": "Deleted the action-Log.", "APPLY": "Applied pending changes.", "CREATE_USER": "Created a user.", "UPDATE_USER": "Updated a user.", "DELETE_USER": "Deleted a user.", "CREATE_KEY": "Created a key.", "UPDATE_KEY": "Updated a key.", "DELETE_KEY_FROM_USER": "Deleted a key from a user.", "CREATE_USERGROUP": "Created a usergroup.", "UPDATE_USERGROUP": "Updated a usergroup.", "DELETE_USERGROUP": "Deleted a usergroup.", "ASSIGN_USERINGROUP": "Assigned a user to a usergroup.", "UNASSIGN_USERINGROUP": "Remove a user from a usergroup.", "ASSIGN_USERGROUPINHOSTGROUP": "Associated a a hostgroup with a " "usergroup", "UNASSIGN_USERGROUPINHOSTGROUP": "Removed the association of a " "hostgroup with a usergroup.", "CREATE_HOST": "Created a host.", "UPDATE_HOST": "Updated a host.", "DELETE_HOST": "Deleted a host.", "CREATE_HOSTGROUP": "Created a hostgroup.", "UPDATE_HOSTGROUP": "Updated a hostgroup.", "DELETE_HOSTGROUP": "Deleted a hostgroup.", "ASSIGN_HOSTINGROUP": "Assigned a host to a hostgroup.", "UNASSIGN_HOSTINGROUP": "Removed a host from a hostgroup." } if value in dictionary: return dictionary[value] else: return value @register.tag() def get_actionobject(parser, token): try: tag_name, action, object_id, object_id2 = token.split_contents() except ValueError: raise template.TemplateSyntaxError("%r tag requires the action-code " "and both object-ids " % token.contents.split()[0] ) return GetActionObjectNode(action, object_id, object_id2) class GetActionObjectNode(template.Node): def __init__(self, action, object_id, object_id2): self.action = template.Variable(action) self.object_id = template.Variable(object_id) self.object_id2 = template.Variable(object_id2) def render(self, context): try: action = self.action.resolve(context) except template.VariableDoesNotExist: action = "" try: object_id = self.object_id.resolve(context) except template.VariableDoesNotExist: object_id = "" try: object_id2 = self.object_id2.resolve(context) except template.VariableDoesNotExist: object_id2 = "" dictionary = { "CREATE_USER": { "view": "users_edit", "params": { "pk": object_id } }, "UPDATE_USER": { "view": "users_edit", "params": { "pk": object_id } }, "CREATE_KEY": { "view": "users_keys_edit", "params": { "pk": object_id, "user": object_id2 } }, "UPDATE_KEY": { "view": "users_keys_edit", "params": { "pk": object_id, "user": object_id2 } }, "CREATE_USERGROUP": { "view": "usergroups_edit", "params": { "pk": object_id } }, "UPDATE_USERGROUP": { "view": "usergroups_edit", "params": { "pk": object_id } }, "ASSIGN_USERINGROUP": { "view": "users_groups_list", "params": { "user": object_id } }, "UNASSIGN_USERINGROUP": { "view": "users_groups_list", "params": { "user": object_id } }, "ASSIGN_USERGROUPINHOSTGROUP": { "view": "usergroups_hostgroups_list", "params": { "usergroup": object_id } }, "UNASSIGN_USERGROUPINHOSTGROUP": { "view": "usergroups_hostgroups_list", "params": { "usergroup": object_id } }, "CREATE_HOST": { "view": "hosts_edit", "params": { "pk": object_id } }, "UPDATE_HOST": { "view": "hosts_edit", "params": { "pk": object_id } }, "CREATE_HOSTGROUP": { "view": "hostgroups_edit", "params": { "pk": object_id } }, "UPDATE_HOSTGROUP": { "view": "hostgroups_edit", "params": { "pk": object_id } }, "ASSIGN_HOSTINGROUP": { "view": "hosts_groups_list", "params": { "host": object_id } }, "UNASSIGN_HOSTINGROUP": { "view": "hosts_groups_list", "params": { "host": object_id } } } if action in dictionary: return reverse( dictionary[action]["view"], kwargs = dictionary[action]["params"] ) else: return ""
vialink/skd
keys/templatetags/actionlog.py
Python
bsd-2-clause
6,141
#!/usr/bin/env python import numpy as np import argparse import os from respy.python.shared.shared_auxiliary import dist_class_attributes from respy.python.estimate.estimate_auxiliary import get_optim_paras from respy.python.shared.shared_auxiliary import dist_model_paras from respy.python.shared.shared_auxiliary import get_est_info from respy import estimate from respy import RespyCls def add_gradient_information(respy_obj): """ This function adds information about the gradient to the information files. It is not part of the estimation _modules as it breaks the design and requires to carry additional attributes. This results in considerable overhead, which appears justified at this point. """ model_paras, is_debug, paras_fixed, derivatives = \ dist_class_attributes(respy_obj, 'model_paras', 'is_debug', 'paras_fixed', 'derivatives') # Auxiliary objects coeffs_a, coeffs_b, coeffs_edu, coeffs_home, shocks_cholesky = \ dist_model_paras(model_paras, is_debug) # Construct starting values x_all_start = get_optim_paras(coeffs_a, coeffs_b, coeffs_edu, coeffs_home, shocks_cholesky, 'all', paras_fixed, is_debug) x_free_start = get_optim_paras(coeffs_a, coeffs_b, coeffs_edu, coeffs_home, shocks_cholesky, 'free', paras_fixed, is_debug) # Construct auxiliary information num_free = len(x_free_start) # The information about the gradient is simply added to the original # information later. Note that the original file is read before the # gradient evaluation. This is required as the information otherwise # accounts for the multiple function evaluation during the gradient # approximation scheme. original_lines = open('est.respy.info', 'r').readlines() fmt_ = '{0:<25}{1:>15}\n' original_lines[-5] = fmt_.format(*[' Number of Steps', 0]) original_lines[-3] = fmt_.format(*[' Number of Evaluations', num_free]) # Approximate gradient by forward finite differences. grad, ei = np.zeros((num_free,), float), np.zeros((26,), float) dfunc_eps = derivatives[1] # Making sure that the criterion is only evaluated at the relevant # starting values. respy_obj.unlock() respy_obj.set_attr('maxfun', 0) respy_obj.lock() _, f0 = estimate(respy_obj) for k, i in enumerate(np.where(np.logical_not(paras_fixed))[0].tolist()): x_baseline = x_all_start.copy() ei[i] = 1.0 d = dfunc_eps * ei respy_obj.update_model_paras(x_baseline + d) _, f1 = estimate(respy_obj) grad[k] = (f1 - f0) / d[k] ei[i] = 0.0 grad = np.random.uniform(0, 1, 26 - sum(paras_fixed)).tolist() norm = np.amax(np.abs(grad)) # Write out extended information with open('est.respy.info', 'a') as out_file: # Insert information about gradient out_file.write('\n\n\n\n Gradient\n\n') fmt_ = '{0:>15} {1:>15}\n\n' out_file.write(fmt_.format(*['Identifier', 'Start'])) fmt_ = '{0:>15} {1:15.4f}\n' # Iterate over all candidate values, but only write the free # ones to file. This ensure that the identifiers line up. for j in range(26): is_fixed = paras_fixed[j] if not is_fixed: values = [j, grad.pop(0)] out_file.write(fmt_.format(*values)) out_file.write('\n') # Add value of infinity norm values = ['Norm', norm] out_file.write(fmt_.format(*values)) out_file.write('\n\n') def dist_input_arguments(parser): """ Check input for estimation script. """ # Parse arguments args = parser.parse_args() # Distribute arguments init_file = args.init_file gradient = args.gradient resume = args.resume single = args.single # Check attributes assert (single in [True, False]) assert (resume in [False, True]) assert (os.path.exists(init_file)) if gradient: # The gradient information is only provided if a single function # evaluation is requested. assert single if resume: assert (os.path.exists('est.respy.info')) # Finishing return resume, single, init_file, gradient def scripts_estimate(resume, single, init_file, gradient): """ Wrapper for the estimation. """ # Read in baseline model specification. respy_obj = RespyCls(init_file) # Update parametrization of the model if resuming from a previous # estimation run. if resume: respy_obj.update_model_paras(get_est_info()['paras_step']) # Set maximum iteration count when only an evaluation of the criterion # function is requested. if single: respy_obj.unlock() respy_obj.set_attr('maxfun', 0) respy_obj.lock() # Optimize the criterion function. estimate(respy_obj) if gradient: add_gradient_information(respy_obj) if __name__ == '__main__': parser = argparse.ArgumentParser(description= 'Start of estimation run with the RESPY package.', formatter_class=argparse.ArgumentDefaultsHelpFormatter) parser.add_argument('--resume', action='store_true', dest='resume', default=False, help='resume estimation run') parser.add_argument('--single', action='store_true', dest='single', default=False, help='single evaluation') parser.add_argument('--init_file', action='store', dest='init_file', default='model.respy.ini', help='initialization file') parser.add_argument('--gradient', action='store_true', dest='gradient', default=False, help='gradient information') # Process command line arguments args = dist_input_arguments(parser) # Run estimation scripts_estimate(*args)
restudToolbox/package
respy/scripts/scripts_estimate.py
Python
mit
5,808
from __future__ import absolute_import from django.http import HttpResponse from django.views.generic.edit import CreateView, DeleteView, UpdateView from rules.contrib.views import ( LoginRequiredMixin, PermissionRequiredMixin, objectgetter, permission_required, ) from .models import Book class BookMixin(object): def get_object(self): return Book.objects.get(pk=self.kwargs["book_id"]) class BookMixinWithError(object): def get_object(self): raise AttributeError("get_object") @permission_required("testapp.change_book", fn=objectgetter(Book, "book_id")) def change_book(request, book_id): return HttpResponse("OK") class BookCreateView( LoginRequiredMixin, PermissionRequiredMixin, BookMixin, CreateView ): fields = ["title"] template_name = "empty.html" permission_required = "testapp.create_book" class BookUpdateView( LoginRequiredMixin, PermissionRequiredMixin, BookMixin, UpdateView ): fields = ["title"] template_name = "empty.html" permission_required = "testapp.change_book" class BookUpdateErrorView( LoginRequiredMixin, PermissionRequiredMixin, BookMixinWithError, UpdateView ): fields = ["title"] template_name = "empty.html" permission_required = "testapp.change_book" @permission_required("testapp.delete_book", fn=objectgetter(Book, "book_id")) def delete_book(request, book_id): return HttpResponse("OK") class BookDeleteView( LoginRequiredMixin, PermissionRequiredMixin, BookMixin, DeleteView ): template_name = "empty.html" permission_required = "testapp.delete_book" @permission_required( "testapp.delete_book", fn=objectgetter(Book, "book_id"), raise_exception=True ) def view_that_raises(request, book_id): return HttpResponse("OK") class ViewThatRaises( LoginRequiredMixin, PermissionRequiredMixin, BookMixin, DeleteView ): template_name = "empty.html" raise_exception = True permission_required = "testapp.delete_book" @permission_required( ["testapp.change_book", "testapp.delete_book"], fn=objectgetter(Book, "book_id") ) def view_with_permission_list(request, book_id): return HttpResponse("OK") class ViewWithPermissionList( LoginRequiredMixin, PermissionRequiredMixin, BookMixin, DeleteView ): template_name = "empty.html" permission_required = ["testapp.change_book", "testapp.delete_book"] @permission_required("testapp.delete_book", fn=objectgetter(Book, "book_id")) def view_with_object(request, book_id): return HttpResponse("OK")
dfunckt/django-rules
tests/testapp/views.py
Python
mit
2,551
""" Functions handling ontology annotations. """ from __future__ import print_function, division import sys import re import bioservices import libsbml def getResourceUris(item): """ Get list of resource URIs for the given element. qualifierType = libsbml.BIOLOGICAL_QUALIFIER, biologicalQualifierType = libsbml.BQB_IS): :param item: sbml object :type item: SBase :return: list of resource URIs :rtype: list """ uris = [] for i in range(item.getNumCVTerms()): term = item.getCVTerm(i) for j in range(term.getNumResources()): uris.append(term.getResourceURI(j)) return uris def getChebiId(item): """ Returns the ChEBI ID from element. :param item: sbml object :type item: SBase :return: first chebi id in rdf annotations, None if no chebi annotation :rtype: str """ uris = getResourceUris(item) chebiMatches = (re.match('.*(CHEBI:\d+)', uri) for uri in uris) chebiIds = [match.group(1) for match in chebiMatches if match] if len(chebiIds) > 0: return chebiIds[0] else: return None def matchSpeciesChebi(s1, s2, logging=False): """ Match two Chebi identifiers. If matching returns the chebi information of the identifier. :param s1: first chebi id :type s1: str :param s2: second chebi id :type s2: str :param logging: log messages to console :type logging: bool :return: dictionary of chebi information, returns None if no match :rtype: dict """ ch = bioservices.ChEBI() ch1 = getChebiId(s1) ch2 = getChebiId(s2) if not ch1 or not ch2: return None if logging: print('Comparing %s (%s) with %s (%s)' % (s1.getId(), ch1, s2.getId(), ch2)) try: entry = ch.getCompleteEntity(ch1) exact = [] if ch1 == ch2: exact.append({'id': s2.getId()}) children = [] if hasattr(entry, 'OntologyChildren'): for child in entry.OntologyChildren: if child['chebiId'] == ch2: children.append({ 'id': s2.getId(), 'data': child }) parents = [] if (hasattr(entry, 'OntologyParents')): for parent in entry.OntologyParents: if parent['chebiId'] == ch2: parents.append({ 'id': s2.getId(), 'data': parent }) return { 'id': s1.getId(), 'chebi_name': entry.chebiAsciiName, 'exact': exact, 'children': children, 'parents': parents } except: print("Unexpected error:", sys.exc_info()[0]) return None def getMatchingSpecies(m1, m2, logging=False): """ Returns a list of species with matching annotations URIs for two models :param m1: first SBML model :type m1: libsbml.Model :param m2: second SBML model :type m2: libsbml.Model :param logging: log info :type logging: bool :return: returns list of chebi annotation information for matching species :rtype: list """ if not isinstance(m1, libsbml.Model) or not isinstance(m2, libsbml.Model): raise Exception('Need to call with two libsbml.Model instances') matches = [] for s1 in m1.species: for s2 in m2.species: match = _annotations.matchSpeciesChebi(s1, s2, logging=logging) if match: if len(match['exact']) or len(match['children']) or len(match['parents']): matches.append(match) return matches def printMatchingSpecies(matches): """ Prints the matches from :func:`getMatchingSpecies`- :param matches: matches from getMatchingSpecies :type matches: list """ for match in matches: if len(match['exact']): print('%s exactly matches %s' % (match['exact'][0]['id'], match['id'])) if len(match['parents']): print('%s %s %s' % (match['parents'][0]['id'], match['parents'][0]['data']['type'], match['id'])) if len(match['children']): print('%s %s %s' % (match['children'][0]['id'], match['children'][0]['data']['type'], match['id'])) def getMatchingReactions(modelOrList, idToMatch): """ Returns a list of reactions that contains a reactant with the id to match. :param modelOrList: SBML Model or list of reactions :type modelOrList: libsbml.Model or list[libsbml.Reaction] :param idToMatch: reaction id for matching :type idToMatch: str :return: list of reactions :rtype: list """ if isinstance(modelOrList, libsbml.Model): reactions = modelOrList.reactions else: reactions = modelOrList matches = [] for r in reactions: for reactant in r.reactants: if reactant.getSpecies() == idToMatch: matches.append(r) for reactant in r.products: if reactant.getSpecies() == idToMatch: matches.append(r) for modifier in r.modifiers: if modifier.getSpecies() == idToMatch: matches.append(r) return matches
kirichoi/tellurium
tellurium/analysis/annotations.py
Python
apache-2.0
5,238
import os, gzip, cPickle import numpy as np from theano import tensor as T, shared def get_batch(iBatch, data, szBatch=256): return data[iBatch*szBatch:(iBatch+1)*szBatch] def load(name='mnist.pkl.gz'): # Download the MNIST dataset if it is not present data_dir, data_file = os.path.split(name) if data_dir == "" and not os.path.isfile(name): # Check if dataset is in the data directory. new_path = os.path.join( os.path.split(__file__)[0], "..", "data", name ) if os.path.isfile(new_path) or data_file == 'mnist.pkl.gz': name = new_path if (not os.path.isfile(name)) and data_file == 'mnist.pkl.gz': import urllib origin = ( 'http://www.iro.umontreal.ca/~lisa/deep/data/mnist/mnist.pkl.gz' ) print 'Downloading data from %s' % origin urllib.urlretrieve(origin, name) # Load the dataset f = gzip.open(name, 'rb') train_set, valid_set, test_set = cPickle.load(f) f.close() #train_set, valid_set, test_set format: tuple(input, target) #input is an numpy.ndarray of 2 dimensions (a matrix) #witch row's correspond to an example. target is a #numpy.ndarray of 1 dimensions (vector)) that have the same length as #the number of rows in the input. It should give the target #target to the example with the same index in the input. def shared_dataset(data_xy, borrow=True): """ Function that loads the dataset into shared variables The reason we store our dataset in shared variables is to allow Theano to copy it into the GPU memory (when code is run on GPU). Since copying data into the GPU is slow, copying a minibatch everytime is needed (the default behaviour if the data is not in a shared variable) would lead to a large decrease in performance. """ data_x, data_y = data_xy shared_x = shared(np.asarray(data_x, 'float32'), borrow=borrow) shared_y = shared(np.asarray(data_y, 'float32'), borrow=borrow) # When storing data on the GPU it has to be stored as floats # therefore we will store the labels as ``floatX`` as well # (``shared_y`` does exactly that). But during our computations # we need them as ints (we use labels as index, and if they are # floats it doesn't make sense) therefore instead of returning # ``shared_y`` we will have to cast it to int. This little hack # lets ous get around this issue return shared_x, T.cast(shared_y, 'int32') test_set_x, test_set_y = shared_dataset(test_set) valid_set_x, valid_set_y = shared_dataset(valid_set) train_set_x, train_set_y = shared_dataset(train_set) rval = [(train_set_x, train_set_y), (valid_set_x, valid_set_y), (test_set_x, test_set_y)] return rval
pengsun/DeepLearningTutorials
mycode/dataset.py
Python
bsd-3-clause
2,959
from leak import logger def versions_split(version_str, type_applyer=int): dots_count = version_str.count('.') if dots_count == 0: major, minor, patch = version_str, 0, 0 elif dots_count == 1: major, minor = version_str.split('.') patch = 0 elif dots_count == 2: major, minor, patch = version_str.split('.') else: logger.debug( 'Incorrect version "{version}". ' 'Move to bottom when sorting'.format(version=version_str)) major, minor, patch = 0, 0, 0 return list(map(type_applyer, (major, minor, patch)))
bmwant21/leak
leak/version_parser.py
Python
mit
604
import os from generic import obj from simulation import Simulation,SimulationInput,SimulationAnalyzer from vasp_input import VaspInput,generate_vasp_input from vasp_analyzer import VaspAnalyzer class Vasp(Simulation): input_type = VaspInput analyzer_type = VaspAnalyzer generic_identifier = 'vasp' application = 'vasp' application_properties = set(['serial','mpi']) application_results = set([]) allow_overlapping_files = True vasp_save_files = 'INCAR KPOINTS POSCAR CONTCAR DOSCAR EIGENVAL IBZKPT OSZICAR OUTCAR PCDAT XDATCAR vasprun.xml'.split() def set_files(self): self.infile = 'INCAR' self.outfile = self.identifier + self.outfile_extension self.errfile = self.identifier + self.errfile_extension #end def set_files def check_result(self,result_name,sim): return False #end def check_result def get_result(self,result_name,sim): self.not_implemented() #end def get_result def incorporate_result(self,result_name,result,sim): self.not_implemented() #end def incorporate_result def app_command(self): return self.app_name #end def app_command def check_sim_status(self): success = False outpath = os.path.join(self.locdir,self.identifier+'.OUTCAR') exists = os.path.exists(outpath) if not exists: outpath = os.path.join(self.locdir,'OUTCAR') exists = os.path.exists(outpath) #end if if exists: outcar = open(outpath,'r').read() success = 'General timing and accounting' in outcar #end if self.finished = success #end def check_sim_status def get_output_files(self): output_files = [] for file in self.vasp_save_files: native_file = os.path.join(self.locdir,file) save_file = os.path.join(self.locdir,self.identifier+'.'+file) if os.path.exists(native_file): os.system('cp {0} {1}'.format(native_file,save_file)) output_files.append(file) #end if #end for return output_files #end def get_output_files #end class Vasp def generate_vasp(**kwargs): sim_args,inp_args = Simulation.separate_inputs(kwargs,copy_pseudos=False) sim_args.input = generate_vasp_input(**inp_args) vasp = Vasp(**sim_args) return vasp #end def generate_vasp # VASP HT (hand template) classes and functions class VaspHTAnalyzer(SimulationAnalyzer): def __init__(self,arg0=None,xml=False,analyze=False): self.info = obj(xml=xml) prefix = None if isinstance(arg0,Simulation): sim = arg0 infile = sim.infile path = sim.locdir elif arg0!=None: path,infile = os.path.split(arg0) if infile=='': infile = None #end if if infile!=None: if not infile.endswith('INCAR'): self.error('please provide the path to an INCAR file') #end if prefix = infile.replace('INCAR','').strip() if prefix=='': prefix=None #end if #end if else: self.info.xml = False return #end if self.info.set( path = path, infile = infile, prefix = prefix ) if analyze: self.analyze() #end if #end def __init__ def analyze(self): if self.info.xml: xmlfile = 'vasprun.xml' if self.info.prefix!=None: xmlfile = self.info.prefix+xmlfile #end if self.xmldata = read_vxml(os.path.join(self.info.path,xmlfile)) #end if #end def analyze #end class VaspHTAnalyzer class VaspHT(Simulation): input_type = SimulationInput analyzer_type = VaspHTAnalyzer generic_identifier = 'vasp_ht' infile_extension = None application = 'vasp' application_properties = set(['serial','mpi']) application_results = set([]) allow_overlapping_files = True vasp_save_files = 'INCAR KPOINTS POSCAR CONTCAR DOSCAR EIGENVAL IBZKPT OSZICAR OUTCAR PCDAT XDATCAR vasprun.xml'.split() all_inputs = 'INCAR KPOINTS POSCAR POTCAR'.split() all_outputs = 'CHG CHGCAR CONTCAR DOSCAR EIGENVAL IBZKPT OSZICAR OUTCAR PCDAT PROCAR WAVECAR XDATCAR'.split() def set_files(self): self.infile = 'INCAR' self.outfile = self.identifier + self.outfile_extension self.errfile = self.identifier + self.errfile_extension #end def set_files def check_result(self,result_name,sim): return False #end def check_result def get_result(self,result_name,sim): self.not_implemented() #end def get_result def incorporate_result(self,result_name,result,sim): self.not_implemented() #end def incorporate_result def app_command(self): command_line_args = '' return self.app_name + command_line_args #end def app_command def check_sim_status(self): success = False outpath = os.path.join(self.locdir,'OUTCAR') if os.path.exists(outpath): outcar = open(outpath,'r').read() success = 'General timing and accounting' in outcar #end if self.finished = success #end def check_sim_status def get_output_files(self): output_files = [] for file in self.vasp_save_files: native_file = os.path.join(self.locdir,file) save_file = os.path.join(self.locdir,self.identifier+'.'+file) if os.path.exists(native_file): os.system('cp {0} {1}'.format(native_file,save_file)) output_files.append(file) #end if #end for return output_files #end def get_output_files #end class VaspHT def generate_vasp_ht(**kwargs): sim_args,inp_args = Simulation.separate_inputs(kwargs,copy_pseudos=False) if not 'input' in sim_args: VaspHT.class_error('input keyword is required','generate_vasp_ht') #end if vasp_ht = VaspHT(**sim_args) return vasp_ht #end def generate_vasp_ht
habanero-rice/hclib
test/performance-regression/full-apps/qmcpack/nexus/library/vasp.py
Python
bsd-3-clause
6,365
import logging, time, random from autotest.client.shared import error from qemu.tests import drive_mirror class DriveMirrorSimple(drive_mirror.DriveMirror): def __init__(self, test, params, env, tag): super(DriveMirrorSimple, self).__init__(test, params, env, tag) @error.context_aware def query_status(self): """ query runing block mirroring job info; """ error.context("query job status", logging.info) if not self.get_status(): raise error.TestFail("No active job") def run_drive_mirror_simple(test, params, env): """ drive_mirror_simple test: 1). launch block mirroring job w/o max speed 2). query job status on the device before steady status(optinal) 3). reset max job speed before steady status(optional) 4). cancel active job on the device before steady status(optional) @param test: QEMU test object @param params: Dictionary with the test parameters @param env: Dictionary with test environment. """ tag = params.get("source_images", "image1") repeats = int(params.get("repeat_times", 3)) simple_test = DriveMirrorSimple(test, params, env, tag) try: for i in range(repeats): v_max,v_min = int(params.get("login_timeout", 360)) / 4, 0 time.sleep(random.randint(v_min, v_max)) simple_test.start() simple_test.action_before_steady() if simple_test.get_status(): simple_test.cancel() finally: simple_test.clean()
sathnaga/virt-test
qemu/tests/drive_mirror_simple.py
Python
gpl-2.0
1,549
#!/usr/bin/env python # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. # # See LICENSE for more details. # # Copyright: 2016 IBM # Author: Harsha Thyagaraja <harshkid@linux.vnet.ibm.com> # # Based on code by Martin Bligh <mbligh@google.com> # copyright 2006 Google, Inc. # https://github.com/autotest/autotest-client-tests/tree/master/ltp import os from avocado import Test from avocado import main from avocado.utils import build from avocado.utils import process, archive from avocado.utils.software_manager import SoftwareManager from avocado.utils.partition import Partition class Ltp_Fs(Test): ''' Using LTP (Linux Test Project) testsuite to run Filesystem related tests ''' def setUp(self): ''' To check and install dependencies for the test ''' sm = SoftwareManager() for package in ['gcc', 'make', 'automake', 'autoconf']: if not sm.check_installed(package) and not sm.install(package): self.error("%s is needed for the test to be run", package) self.disk = self.params.get('disk', default=None) self.mount_point = self.params.get('dir', default=self.srcdir) self.script = self.params.get('script') fstype = self.params.get('fs', default='ext4') self.args = self.params.get('args', default='') if self.disk is not None: self.part_obj = Partition(self.disk, mountpoint=self.mount_point) self.log.info("Unmounting the disk/dir if it is already mounted") self.part_obj.unmount() self.log.info("creating %s file system on %s", fstype, self.disk) self.part_obj.mkfs(fstype) self.log.info("mounting %s on %s", self.disk, self.mount_point) self.part_obj.mount() url = "https://github.com/linux-test-project/ltp/" url += "archive/master.zip" tarball = self.fetch_asset("ltp-master.zip", locations=[url], expire='7d') archive.extract(tarball, self.teststmpdir) ltp_dir = os.path.join(self.teststmpdir, "ltp-master") os.chdir(ltp_dir) build.make(ltp_dir, extra_args='autotools') self.ltpbin_dir = os.path.join(ltp_dir, 'bin') if not os.path.isdir(self.ltpbin_dir): os.mkdir(self.ltpbin_dir) process.system('./configure --prefix=%s' % self.ltpbin_dir) build.make(ltp_dir) build.make(ltp_dir, extra_args='install') def test_fs_run(self): ''' Downloads LTP, compiles, installs and runs filesystem tests on a user specified disk ''' if self.script == 'runltp': logfile = os.path.join(self.logdir, 'ltp.log') failcmdfile = os.path.join(self.logdir, 'failcmdfile') self.args += (" -q -p -l %s -C %s -d %s" % (logfile, failcmdfile, self.mount_point)) self.log.info("Args = %s", self.args) cmd = '%s %s' % (os.path.join(self.ltpbin_dir, self.script), self.args) result = process.run(cmd, ignore_status=True) # Walk the stdout and try detect failed tests from lines # like these: # aio01 5 TPASS : Test 5: 10 reads and # writes in 0.000022 sec # vhangup02 1 TFAIL : vhangup02.c:88: # vhangup() failed, errno:1 # and check for fail_status The first part contain test name fail_status = ['TFAIL', 'TBROK', 'TWARN'] split_lines = (line.split(None, 3) for line in result.stdout.splitlines()) failed_tests = [items[0] for items in split_lines if len(items) == 4 and items[2] in fail_status] if failed_tests: self.fail("LTP tests failed: %s" % ", ".join(failed_tests)) elif result.exit_status != 0: self.fail("No test failures detected, but LTP finished with %s" % (result.exit_status)) def tearDown(self): ''' Cleanup of disk used to perform this test ''' self.log.info("Removing the filesystem created on %s", self.disk) delete_fs = "dd if=/dev/zero bs=512 count=512 of=%s" % self.disk if process.system(delete_fs, shell=True, ignore_status=True): self.fail("Failed to delete filesystem on %s", self.disk) if self.disk is not None: self.log.info("Unmounting disk %s on directory %s", self.disk, self.mount_point) self.part_obj.unmount() if __name__ == "__main__": main()
apahim/avocado-misc-tests
io/disk/ltp_fs.py
Python
gpl-2.0
5,087
# Copyright (c) 2013 Hewlett-Packard Development Company, L.P. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or # implied. # See the License for the specific language governing permissions and # limitations under the License. import json import tempfile import fixtures from lxml import etree from oslo_config import cfg import requests import testtools from testtools import content as test_content from testtools import matchers import urllib.parse as urlparse from os_collect_config import cfn from os_collect_config import collect from os_collect_config import exc META_DATA = {u'int1': 1, u'strfoo': u'foo', u'map_ab': { u'a': 'apple', u'b': 'banana', }} SOFTWARE_CONFIG_DATA = { u'old-style': u'value', u'deployments': [ { u'inputs': [ { u'type': u'String', u'name': u'input1', u'value': u'value1' } ], u'group': 'Heat::Ungrouped', u'name': 'dep-name1', u'outputs': None, u'options': None, u'config': { u'config1': 'value1' } }, { u'inputs': [ { u'type': u'String', u'name': u'input1', u'value': u'value1' } ], u'group': 'os-apply-config', u'name': 'dep-name2', u'outputs': None, u'options': None, u'config': { u'config2': 'value2' } }, { u'inputs': [ { u'type': u'String', u'name': u'input1', u'value': u'value1' } ], u'name': 'dep-name3', u'outputs': None, u'options': None, u'config': { u'config3': 'value3' } }, { u'inputs': [], u'group': 'ignore_me', u'name': 'ignore_me_name', u'outputs': None, u'options': None, u'config': 'ignore_me_config' } ] } SOFTWARE_CONFIG_IMPOSTER_DATA = { u'old-style': u'value', u'deployments': { u"not": u"a list" } } class FakeResponse(dict): def __init__(self, text): self.text = text def raise_for_status(self): pass class FakeReqSession(object): SESSION_META_DATA = META_DATA def __init__(self, testcase, expected_netloc): self._test = testcase self._expected_netloc = expected_netloc self.verify = False def get(self, url, params, headers, verify=None, timeout=None): self._test.addDetail('url', test_content.text_content(url)) url = urlparse.urlparse(url) self._test.assertEqual(self._expected_netloc, url.netloc) self._test.assertEqual('/v1/', url.path) self._test.assertEqual('application/json', headers['Content-Type']) self._test.assertIn('SignatureVersion', params) self._test.assertEqual('2', params['SignatureVersion']) self._test.assertIn('Signature', params) self._test.assertIn('Action', params) self._test.assertEqual('DescribeStackResource', params['Action']) self._test.assertIn('LogicalResourceId', params) self._test.assertEqual('foo', params['LogicalResourceId']) self._test.assertEqual(10, timeout) root = etree.Element('DescribeStackResourceResponse') result = etree.SubElement(root, 'DescribeStackResourceResult') detail = etree.SubElement(result, 'StackResourceDetail') metadata = etree.SubElement(detail, 'Metadata') metadata.text = json.dumps(self.SESSION_META_DATA) if verify is not None: self.verify = True return FakeResponse(etree.tostring(root)) class FakeRequests(object): exceptions = requests.exceptions def __init__(self, testcase, expected_netloc='192.0.2.1:8000'): self._test = testcase self._expected_netloc = expected_netloc def Session(self): return FakeReqSession(self._test, self._expected_netloc) class FakeReqSessionSoftwareConfig(FakeReqSession): SESSION_META_DATA = SOFTWARE_CONFIG_DATA class FakeRequestsSoftwareConfig(FakeRequests): FAKE_SESSION = FakeReqSessionSoftwareConfig def Session(self): return self.FAKE_SESSION(self._test, self._expected_netloc) class FakeReqSessionConfigImposter(FakeReqSession): SESSION_META_DATA = SOFTWARE_CONFIG_IMPOSTER_DATA class FakeRequestsConfigImposter(FakeRequestsSoftwareConfig): FAKE_SESSION = FakeReqSessionConfigImposter class FakeFailRequests(object): exceptions = requests.exceptions class Session(object): def get(self, url, params, headers, verify=None, timeout=None): raise requests.exceptions.HTTPError(403, 'Forbidden') class TestCfnBase(testtools.TestCase): def setUp(self): super(TestCfnBase, self).setUp() self.log = self.useFixture(fixtures.FakeLogger()) self.useFixture(fixtures.NestedTempfile()) self.hint_file = tempfile.NamedTemporaryFile() self.hint_file.write(u'http://192.0.2.1:8000'.encode('utf-8')) self.hint_file.flush() self.addCleanup(self.hint_file.close) collect.setup_conf() cfg.CONF.cfn.heat_metadata_hint = self.hint_file.name cfg.CONF.cfn.metadata_url = None cfg.CONF.cfn.path = ['foo.Metadata'] cfg.CONF.cfn.access_key_id = '0123456789ABCDEF' cfg.CONF.cfn.secret_access_key = 'FEDCBA9876543210' class TestCfn(TestCfnBase): def test_collect_cfn(self): cfn_md = cfn.Collector(requests_impl=FakeRequests(self)).collect() self.assertThat(cfn_md, matchers.IsInstance(list)) self.assertEqual('cfn', cfn_md[0][0]) cfn_md = cfn_md[0][1] for k in ('int1', 'strfoo', 'map_ab'): self.assertIn(k, cfn_md) self.assertEqual(cfn_md[k], META_DATA[k]) self.assertEqual('', self.log.output) def test_collect_with_ca_cert(self): cfn.CONF.cfn.ca_certificate = "foo" collector = cfn.Collector(requests_impl=FakeRequests(self)) collector.collect() self.assertTrue(collector._session.verify) def test_collect_cfn_fail(self): cfn_collect = cfn.Collector(requests_impl=FakeFailRequests) self.assertRaises(exc.CfnMetadataNotAvailable, cfn_collect.collect) self.assertIn('Forbidden', self.log.output) def test_collect_cfn_no_path(self): cfg.CONF.cfn.path = None cfn_collect = cfn.Collector(requests_impl=FakeRequests(self)) self.assertRaises(exc.CfnMetadataNotConfigured, cfn_collect.collect) self.assertIn('No path configured', self.log.output) def test_collect_cfn_bad_path(self): cfg.CONF.cfn.path = ['foo'] cfn_collect = cfn.Collector(requests_impl=FakeRequests(self)) self.assertRaises(exc.CfnMetadataNotConfigured, cfn_collect.collect) self.assertIn('Path not in format', self.log.output) def test_collect_cfn_no_metadata_url(self): cfg.CONF.cfn.heat_metadata_hint = None cfn_collect = cfn.Collector(requests_impl=FakeRequests(self)) self.assertRaises(exc.CfnMetadataNotConfigured, cfn_collect.collect) self.assertIn('No metadata_url configured', self.log.output) def test_collect_cfn_missing_sub_path(self): cfg.CONF.cfn.path = ['foo.Metadata.not_there'] cfn_collect = cfn.Collector(requests_impl=FakeRequests(self)) self.assertRaises(exc.CfnMetadataNotAvailable, cfn_collect.collect) self.assertIn('Sub-key not_there does not exist', self.log.output) def test_collect_cfn_sub_path(self): cfg.CONF.cfn.path = ['foo.Metadata.map_ab'] cfn_collect = cfn.Collector(requests_impl=FakeRequests(self)) content = cfn_collect.collect() self.assertThat(content, matchers.IsInstance(list)) self.assertEqual('cfn', content[0][0]) content = content[0][1] self.assertIn(u'b', content) self.assertEqual(u'banana', content[u'b']) def test_collect_cfn_metadata_url_overrides_hint(self): cfg.CONF.cfn.metadata_url = 'http://127.0.1.1:8000/v1/' cfn_collect = cfn.Collector( requests_impl=FakeRequests(self, expected_netloc='127.0.1.1:8000')) cfn_collect.collect() class TestCfnSoftwareConfig(TestCfnBase): def test_collect_cfn_software_config(self): cfn_md = cfn.Collector( requests_impl=FakeRequestsSoftwareConfig(self)).collect() self.assertThat(cfn_md, matchers.IsInstance(list)) self.assertEqual('cfn', cfn_md[0][0]) cfn_config = cfn_md[0][1] self.assertThat(cfn_config, matchers.IsInstance(dict)) self.assertEqual(set(['old-style', 'deployments']), set(cfn_config.keys())) self.assertIn('deployments', cfn_config) self.assertThat(cfn_config['deployments'], matchers.IsInstance(list)) self.assertEqual(4, len(cfn_config['deployments'])) deployment = cfn_config['deployments'][0] self.assertIn('inputs', deployment) self.assertThat(deployment['inputs'], matchers.IsInstance(list)) self.assertEqual(1, len(deployment['inputs'])) self.assertEqual('dep-name1', cfn_md[1][0]) self.assertEqual('value1', cfn_md[1][1]['config1']) self.assertEqual('dep-name2', cfn_md[2][0]) self.assertEqual('value2', cfn_md[2][1]['config2']) def test_collect_cfn_deployments_not_list(self): cfn_md = cfn.Collector( requests_impl=FakeRequestsConfigImposter(self)).collect() self.assertEqual(1, len(cfn_md)) self.assertEqual('cfn', cfn_md[0][0]) self.assertIn('not', cfn_md[0][1]['deployments']) self.assertEqual('a list', cfn_md[0][1]['deployments']['not'])
openstack/os-collect-config
os_collect_config/tests/test_cfn.py
Python
apache-2.0
10,601
""" Django settings for django_magic_login project. Generated by 'django-admin startproject' using Django 1.10.3. For more information on this file, see https://docs.djangoproject.com/en/1.10/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/1.10/ref/settings/ """ import os # Build paths inside the project like this: os.path.join(BASE_DIR, ...) BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/1.10/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = '8ow#z)z$lyvv@hlitmcyhfr&cclv1(@$!b2bk6ep0&$3whhfzq' # SECURITY WARNING: don't run with debug turned on in production! DEBUG = True ALLOWED_HOSTS = [] # Application definition INSTALLED_APPS = [ 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', ] MIDDLEWARE = [ 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ] ROOT_URLCONF = 'django_magic_login.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [os.path.join(BASE_DIR, 'templates')], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] WSGI_APPLICATION = 'django_magic_login.wsgi.application' # Database # https://docs.djangoproject.com/en/1.10/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': os.path.join(BASE_DIR, 'db.sqlite3'), } } # Password validation # https://docs.djangoproject.com/en/1.10/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] # Internationalization # https://docs.djangoproject.com/en/1.10/topics/i18n/ LANGUAGE_CODE = 'en-us' TIME_ZONE = 'UTC' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/1.10/howto/static-files/ STATIC_URL = '/static/' # Magic Login LOGIN_URL = '/customers/login/' MIDDLEWARE += ['sesame.middleware.AuthenticationMiddleware'] AUTHENTICATION_BACKENDS = ['sesame.backends.ModelBackend'] SESAME_TOKEN_NAME = "url_auth_token" SESAME_MAX_AGE = 6 * 60 * 60 # 6 hour EMAIL_HOST = "" EMAIL_PORT = 2587 EMAIL_HOST_USER = "" EMAIL_HOST_PASSWORD = "" EMAIL_USE_TLS = True DEFAULT_FROM_EMAIL = "Admin<user@domain.com>"
greglinch/sourcelist
django-magic-link/django_magic_login/settings.py
Python
mit
3,560
"""distutils.util Miscellaneous utility functions -- anything that doesn't fit into one of the other *util.py modules. """ __revision__ = "$Id: util.py 52231 2006-10-08 17:41:25Z ronald.oussoren $" import sys, os, string, re from distutils.errors import DistutilsPlatformError from distutils.dep_util import newer from distutils.spawn import spawn from distutils import log def get_platform (): """Return a string that identifies the current platform. This is used mainly to distinguish platform-specific build directories and platform-specific built distributions. Typically includes the OS name and version and the architecture (as supplied by 'os.uname()'), although the exact information included depends on the OS; eg. for IRIX the architecture isn't particularly important (IRIX only runs on SGI hardware), but for Linux the kernel version isn't particularly important. Examples of returned values: linux-i586 linux-alpha (?) solaris-2.6-sun4u irix-5.3 irix64-6.2 For non-POSIX platforms, currently just returns 'sys.platform'. """ if os.name != "posix" or not hasattr(os, 'uname'): # XXX what about the architecture? NT is Intel or Alpha, # Mac OS is M68k or PPC, etc. return sys.platform # Try to distinguish various flavours of Unix (osname, host, release, version, machine) = os.uname() # Convert the OS name to lowercase, remove '/' characters # (to accommodate BSD/OS), and translate spaces (for "Power Macintosh") osname = string.lower(osname) osname = string.replace(osname, '/', '') machine = string.replace(machine, ' ', '_') machine = string.replace(machine, '/', '-') if osname[:5] == "linux": # At least on Linux/Intel, 'machine' is the processor -- # i386, etc. # XXX what about Alpha, SPARC, etc? return "%s-%s" % (osname, machine) elif osname[:5] == "sunos": if release[0] >= "5": # SunOS 5 == Solaris 2 osname = "solaris" release = "%d.%s" % (int(release[0]) - 3, release[2:]) # fall through to standard osname-release-machine representation elif osname[:4] == "irix": # could be "irix64"! return "%s-%s" % (osname, release) elif osname[:3] == "aix": return "%s-%s.%s" % (osname, version, release) elif osname[:6] == "cygwin": osname = "cygwin" rel_re = re.compile (r'[\d.]+') m = rel_re.match(release) if m: release = m.group() elif osname[:6] == "darwin": # # For our purposes, we'll assume that the system version from # distutils' perspective is what MACOSX_DEPLOYMENT_TARGET is set # to. This makes the compatibility story a bit more sane because the # machine is going to compile and link as if it were # MACOSX_DEPLOYMENT_TARGET. from distutils.sysconfig import get_config_vars cfgvars = get_config_vars() macver = os.environ.get('MACOSX_DEPLOYMENT_TARGET') if not macver: macver = cfgvars.get('MACOSX_DEPLOYMENT_TARGET') if not macver: # Get the system version. Reading this plist is a documented # way to get the system version (see the documentation for # the Gestalt Manager) try: f = open('/System/Library/CoreServices/SystemVersion.plist') except IOError: # We're on a plain darwin box, fall back to the default # behaviour. pass else: m = re.search( r'<key>ProductUserVisibleVersion</key>\s*' + r'<string>(.*?)</string>', f.read()) f.close() if m is not None: macver = '.'.join(m.group(1).split('.')[:2]) # else: fall back to the default behaviour if macver: from distutils.sysconfig import get_config_vars release = macver osname = 'macosx' platver = os.uname()[2] osmajor = int(platver.split('.')[0]) if osmajor >= 8 and \ get_config_vars().get('UNIVERSALSDK', '').strip(): # The universal build will build fat binaries, but not on # systems before 10.4 machine = 'fat' elif machine in ('PowerPC', 'Power_Macintosh'): # Pick a sane name for the PPC architecture machine = 'ppc' return "%s-%s-%s" % (osname, release, machine) # get_platform () def convert_path (pathname): """Return 'pathname' as a name that will work on the native filesystem, i.e. split it on '/' and put it back together again using the current directory separator. Needed because filenames in the setup script are always supplied in Unix style, and have to be converted to the local convention before we can actually use them in the filesystem. Raises ValueError on non-Unix-ish systems if 'pathname' either starts or ends with a slash. """ if os.sep == '/': return pathname if not pathname: return pathname if pathname[0] == '/': raise ValueError, "path '%s' cannot be absolute" % pathname if pathname[-1] == '/': raise ValueError, "path '%s' cannot end with '/'" % pathname paths = string.split(pathname, '/') while '.' in paths: paths.remove('.') if not paths: return os.curdir return apply(os.path.join, paths) # convert_path () def change_root (new_root, pathname): """Return 'pathname' with 'new_root' prepended. If 'pathname' is relative, this is equivalent to "os.path.join(new_root,pathname)". Otherwise, it requires making 'pathname' relative and then joining the two, which is tricky on DOS/Windows and Mac OS. """ if os.name == 'posix': if not os.path.isabs(pathname): return os.path.join(new_root, pathname) else: return os.path.join(new_root, pathname[1:]) elif os.name == 'nt': (drive, path) = os.path.splitdrive(pathname) if path[0] == '\\': path = path[1:] return os.path.join(new_root, path) elif os.name == 'os2': (drive, path) = os.path.splitdrive(pathname) if path[0] == os.sep: path = path[1:] return os.path.join(new_root, path) elif os.name == 'mac': if not os.path.isabs(pathname): return os.path.join(new_root, pathname) else: # Chop off volume name from start of path elements = string.split(pathname, ":", 1) pathname = ":" + elements[1] return os.path.join(new_root, pathname) else: raise DistutilsPlatformError, \ "nothing known about platform '%s'" % os.name _environ_checked = 0 def check_environ (): """Ensure that 'os.environ' has all the environment variables we guarantee that users can use in config files, command-line options, etc. Currently this includes: HOME - user's home directory (Unix only) PLAT - description of the current platform, including hardware and OS (see 'get_platform()') """ global _environ_checked if _environ_checked: return if os.name == 'posix' and not os.environ.has_key('HOME'): import pwd os.environ['HOME'] = pwd.getpwuid(os.getuid())[5] if not os.environ.has_key('PLAT'): os.environ['PLAT'] = get_platform() _environ_checked = 1 def subst_vars (s, local_vars): """Perform shell/Perl-style variable substitution on 'string'. Every occurrence of '$' followed by a name is considered a variable, and variable is substituted by the value found in the 'local_vars' dictionary, or in 'os.environ' if it's not in 'local_vars'. 'os.environ' is first checked/augmented to guarantee that it contains certain values: see 'check_environ()'. Raise ValueError for any variables not found in either 'local_vars' or 'os.environ'. """ check_environ() def _subst (match, local_vars=local_vars): var_name = match.group(1) if local_vars.has_key(var_name): return str(local_vars[var_name]) else: return os.environ[var_name] try: return re.sub(r'\$([a-zA-Z_][a-zA-Z_0-9]*)', _subst, s) except KeyError, var: raise ValueError, "invalid variable '$%s'" % var # subst_vars () def grok_environment_error (exc, prefix="error: "): """Generate a useful error message from an EnvironmentError (IOError or OSError) exception object. Handles Python 1.5.1 and 1.5.2 styles, and does what it can to deal with exception objects that don't have a filename (which happens when the error is due to a two-file operation, such as 'rename()' or 'link()'. Returns the error message as a string prefixed with 'prefix'. """ # check for Python 1.5.2-style {IO,OS}Error exception objects if hasattr(exc, 'filename') and hasattr(exc, 'strerror'): if exc.filename: error = prefix + "%s: %s" % (exc.filename, exc.strerror) else: # two-argument functions in posix module don't # include the filename in the exception object! error = prefix + "%s" % exc.strerror else: error = prefix + str(exc[-1]) return error # Needed by 'split_quoted()' _wordchars_re = _squote_re = _dquote_re = None def _init_regex(): global _wordchars_re, _squote_re, _dquote_re _wordchars_re = re.compile(r'[^\\\'\"%s ]*' % string.whitespace) _squote_re = re.compile(r"'(?:[^'\\]|\\.)*'") _dquote_re = re.compile(r'"(?:[^"\\]|\\.)*"') def split_quoted (s): """Split a string up according to Unix shell-like rules for quotes and backslashes. In short: words are delimited by spaces, as long as those spaces are not escaped by a backslash, or inside a quoted string. Single and double quotes are equivalent, and the quote characters can be backslash-escaped. The backslash is stripped from any two-character escape sequence, leaving only the escaped character. The quote characters are stripped from any quoted string. Returns a list of words. """ # This is a nice algorithm for splitting up a single string, since it # doesn't require character-by-character examination. It was a little # bit of a brain-bender to get it working right, though... if _wordchars_re is None: _init_regex() s = string.strip(s) words = [] pos = 0 while s: m = _wordchars_re.match(s, pos) end = m.end() if end == len(s): words.append(s[:end]) break if s[end] in string.whitespace: # unescaped, unquoted whitespace: now words.append(s[:end]) # we definitely have a word delimiter s = string.lstrip(s[end:]) pos = 0 elif s[end] == '\\': # preserve whatever is being escaped; # will become part of the current word s = s[:end] + s[end+1:] pos = end+1 else: if s[end] == "'": # slurp singly-quoted string m = _squote_re.match(s, end) elif s[end] == '"': # slurp doubly-quoted string m = _dquote_re.match(s, end) else: raise RuntimeError, \ "this can't happen (bad char '%c')" % s[end] if m is None: raise ValueError, \ "bad string (mismatched %s quotes?)" % s[end] (beg, end) = m.span() s = s[:beg] + s[beg+1:end-1] + s[end:] pos = m.end() - 2 if pos >= len(s): words.append(s) break return words # split_quoted () def execute (func, args, msg=None, verbose=0, dry_run=0): """Perform some action that affects the outside world (eg. by writing to the filesystem). Such actions are special because they are disabled by the 'dry_run' flag. This method takes care of all that bureaucracy for you; all you have to do is supply the function to call and an argument tuple for it (to embody the "external action" being performed), and an optional message to print. """ if msg is None: msg = "%s%r" % (func.__name__, args) if msg[-2:] == ',)': # correct for singleton tuple msg = msg[0:-2] + ')' log.info(msg) if not dry_run: apply(func, args) def strtobool (val): """Convert a string representation of truth to true (1) or false (0). True values are 'y', 'yes', 't', 'true', 'on', and '1'; false values are 'n', 'no', 'f', 'false', 'off', and '0'. Raises ValueError if 'val' is anything else. """ val = string.lower(val) if val in ('y', 'yes', 't', 'true', 'on', '1'): return 1 elif val in ('n', 'no', 'f', 'false', 'off', '0'): return 0 else: raise ValueError, "invalid truth value %r" % (val,) def byte_compile (py_files, optimize=0, force=0, prefix=None, base_dir=None, verbose=1, dry_run=0, direct=None): """Byte-compile a collection of Python source files to either .pyc or .pyo files in the same directory. 'py_files' is a list of files to compile; any files that don't end in ".py" are silently skipped. 'optimize' must be one of the following: 0 - don't optimize (generate .pyc) 1 - normal optimization (like "python -O") 2 - extra optimization (like "python -OO") If 'force' is true, all files are recompiled regardless of timestamps. The source filename encoded in each bytecode file defaults to the filenames listed in 'py_files'; you can modify these with 'prefix' and 'basedir'. 'prefix' is a string that will be stripped off of each source filename, and 'base_dir' is a directory name that will be prepended (after 'prefix' is stripped). You can supply either or both (or neither) of 'prefix' and 'base_dir', as you wish. If 'dry_run' is true, doesn't actually do anything that would affect the filesystem. Byte-compilation is either done directly in this interpreter process with the standard py_compile module, or indirectly by writing a temporary script and executing it. Normally, you should let 'byte_compile()' figure out to use direct compilation or not (see the source for details). The 'direct' flag is used by the script generated in indirect mode; unless you know what you're doing, leave it set to None. """ # First, if the caller didn't force us into direct or indirect mode, # figure out which mode we should be in. We take a conservative # approach: choose direct mode *only* if the current interpreter is # in debug mode and optimize is 0. If we're not in debug mode (-O # or -OO), we don't know which level of optimization this # interpreter is running with, so we can't do direct # byte-compilation and be certain that it's the right thing. Thus, # always compile indirectly if the current interpreter is in either # optimize mode, or if either optimization level was requested by # the caller. if direct is None: direct = (__debug__ and optimize == 0) # "Indirect" byte-compilation: write a temporary script and then # run it with the appropriate flags. if not direct: try: from tempfile import mkstemp (script_fd, script_name) = mkstemp(".py") except ImportError: from tempfile import mktemp (script_fd, script_name) = None, mktemp(".py") log.info("writing byte-compilation script '%s'", script_name) if not dry_run: if script_fd is not None: script = os.fdopen(script_fd, "w") else: script = open(script_name, "w") script.write("""\ from distutils.util import byte_compile files = [ """) # XXX would be nice to write absolute filenames, just for # safety's sake (script should be more robust in the face of # chdir'ing before running it). But this requires abspath'ing # 'prefix' as well, and that breaks the hack in build_lib's # 'byte_compile()' method that carefully tacks on a trailing # slash (os.sep really) to make sure the prefix here is "just # right". This whole prefix business is rather delicate -- the # problem is that it's really a directory, but I'm treating it # as a dumb string, so trailing slashes and so forth matter. #py_files = map(os.path.abspath, py_files) #if prefix: # prefix = os.path.abspath(prefix) script.write(string.join(map(repr, py_files), ",\n") + "]\n") script.write(""" byte_compile(files, optimize=%r, force=%r, prefix=%r, base_dir=%r, verbose=%r, dry_run=0, direct=1) """ % (optimize, force, prefix, base_dir, verbose)) script.close() cmd = [sys.executable, script_name] if optimize == 1: cmd.insert(1, "-O") elif optimize == 2: cmd.insert(1, "-OO") spawn(cmd, dry_run=dry_run) execute(os.remove, (script_name,), "removing %s" % script_name, dry_run=dry_run) # "Direct" byte-compilation: use the py_compile module to compile # right here, right now. Note that the script generated in indirect # mode simply calls 'byte_compile()' in direct mode, a weird sort of # cross-process recursion. Hey, it works! else: from py_compile import compile for file in py_files: if file[-3:] != ".py": # This lets us be lazy and not filter filenames in # the "install_lib" command. continue # Terminology from the py_compile module: # cfile - byte-compiled file # dfile - purported source filename (same as 'file' by default) cfile = file + (__debug__ and "c" or "o") dfile = file if prefix: if file[:len(prefix)] != prefix: raise ValueError, \ ("invalid prefix: filename %r doesn't start with %r" % (file, prefix)) dfile = dfile[len(prefix):] if base_dir: dfile = os.path.join(base_dir, dfile) cfile_base = os.path.basename(cfile) if direct: if force or newer(file, cfile): log.info("byte-compiling %s to %s", file, cfile_base) if not dry_run: compile(file, cfile, dfile) else: log.debug("skipping byte-compilation of %s to %s", file, cfile_base) # byte_compile () def rfc822_escape (header): """Return a version of the string escaped for inclusion in an RFC-822 header, by ensuring there are 8 spaces space after each newline. """ lines = string.split(header, '\n') lines = map(string.strip, lines) header = string.join(lines, '\n' + 8*' ') return header
xbmc/atv2
xbmc/lib/libPython/Python/Lib/distutils/util.py
Python
gpl-2.0
19,657
from theano import tensor as T, function, shared, config import numpy as np class Optimizer(object): def update(self, param, grad, lr, transformer=None, grad_transformer=None): if grad_transformer is not None: grad = grad_transformer.transform(grad) param_update, helper_update = self.update_(param, grad, lr) if transformer is not None: param, new_param = param_update new_param = transformer.transform(new_param) param_update = param, new_param return [param_update] if helper_update is None else [param_update, helper_update] def update_(self, param, grad, lr): raise NotImplementedError class SGD(Optimizer): def update_(self, param, grad, lr): r""" .. math:: \theta := \theta - lr * \nabla_{\theta} J """ return (param, param - lr * grad), None class Adagrad(Optimizer): def update_(self, param, grad, lr): r""" .. math:: A := A + (\nabla_\theta J)^2 \theta := \theta - lr * \frac{\nabla_\theta J}{\sqrt A} """ helper = shared(value=np.zeros(param.get_value().shape, dtype=config.floatX)) new_helper = helper + grad**2 return (param, param - lr * grad / T.sqrt(1e-8 + new_helper)), (helper, new_helper) class RMSProp(Optimizer): def __init__(self, alpha=0.9, beta=0.1): super(RMSProp, self).__init__() self.alpha, self.beta = alpha, beta def update_(self, param, grad, lr): r""" .. math:: A := \alpha A + \beta (\nabla_\theta J)^2 \theta := \theta - lr * \frac{\nabla_\theta J}{\sqrt A} :param param: parameter to be updated :param grad: gradient :param lr: learning rate :param alpha: cache mixing portion for the previous cache :param beta: cache mixing portion for the new gradient :return: updates for rmsprop """ helper = shared(value=np.zeros(param.get_value().shape, dtype=config.floatX)) new_helper = self.alpha * helper + self.beta * grad**2 return (param, param - lr * grad / T.sqrt(1e-8 + new_helper)), (helper, new_helper)
vzhong/pystacks
pystacks/optimizer.py
Python
mit
2,213
import os path = os.path.dirname(os.path.realpath(__file__)) sbmlFilePath = os.path.join(path, 'MODEL1011090002.xml') with open(sbmlFilePath,'r') as f: sbmlString = f.read() def module_exists(module_name): try: __import__(module_name) except ImportError: return False else: return True if module_exists('libsbml'): import libsbml sbml = libsbml.readSBMLFromString(sbmlString)
biomodels/MODEL1011090002
MODEL1011090002/model.py
Python
cc0-1.0
427
# __init__.py Common functions for uasyncio primitives # Copyright (c) 2018-2020 Peter Hinch # Released under the MIT License (MIT) - see LICENSE file try: import uasyncio as asyncio except ImportError: import asyncio async def _g(): pass type_coro = type(_g()) # If a callback is passed, run it and return. # If a coro is passed initiate it and return. # coros are passed by name i.e. not using function call syntax. def launch(func, tup_args): res = func(*tup_args) if isinstance(res, type_coro): res = asyncio.create_task(res) return res def set_global_exception(): def _handle_exception(loop, context): import sys sys.print_exception(context["exception"]) sys.exit() loop = asyncio.get_event_loop() loop.set_exception_handler(_handle_exception)
peterhinch/micropython-async
v3/as_drivers/sched/primitives/__init__.py
Python
mit
823
# QUANTCONNECT.COM - Democratizing Finance, Empowering Individuals. # Lean Algorithmic Trading Engine v2.0. Copyright 2014 QuantConnect Corporation. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from base64 import b64encode from datetime import datetime as dt from hashlib import sha256 from json import dumps, loads from requests import get, post from time import mktime, time from quantconnect.Result import Result DOWNLOAD_CHUNK_SIZE = 256 * 1024 class Api: '''QuantConnect.com Interaction Via API. Args: userId(int/str): User Id number found at www.quantconnect.com/account. token(str): Access token found at www.quantconnect.com/account. debug(boolean): True to enable debugging messages''' def __init__(self, userId, token, debug = False): '''Creates a new instance of Api''' self.__url = 'https://www.quantconnect.com/api/v2/' self.__userId = userId self.__token = token self.__debug = debug def Execute(self, endpoint, data = None, is_post = False, headers = {}): '''Execute an authenticated request to the QuantConnect API Args: endpoint(str): Request end point. data(dict): Request values is_post(boolean): True if POST request, GET request otherwise headers(dict): Additional headers''' url = self.__url + endpoint # Create authenticated timestamped token. timestamp = str(int(time())) # Attach timestamp to token for increasing token randomness timeStampedToken = f'{self.__token}:{timestamp}' # Hash token for transport apiToken = sha256(timeStampedToken.encode('utf-8')).hexdigest() # Attach in headers for basic authentication. authentication = f'{self.__userId}:{apiToken}' basic = b64encode(authentication.encode('utf-8')).decode('ascii') headers.update({ 'Authorization': f'Basic {basic}', 'Timestamp': timestamp }) if is_post: response = post(url = url, data = data, headers = headers) else: # Encode the request in parameters of URL. response = get(url = url, params = data, headers = headers) if self.__debug: print(url) self.__pretty_print(response) # Convert to object for parsing. try: result = response.json() except: result = { 'success': False, 'messages': [ 'API returned a result which cannot be parsed into JSON. Please inspect the raw result below:', response.text ]} if not result['success']: message = '' for name, value in result.items(): if isinstance(value, str): message += f'{name}: {value} ' if isinstance(value, list): message += f'{name}: {", ".join(value)} ' print(f'There was an exception processing your request: {message}') return result def connected(self): '''Check whether Api is successfully connected with correct credentials''' return self.Execute('authenticate')['success'] def list_projects(self): '''Read back a list of all projects on the account for a user. Returns: Dictionary that contains for list of projects. ''' return self.Execute('projects/read') def create_project(self, name, language): '''Create a project with the specified name and language via QuantConnect.com API Args: name(str): Project name language(str): Programming language to use (Language must be C#, F# or Py). Returns: Dictionary that includes information about the newly created project. ''' return self.Execute('projects/create', { 'name': name, 'language': language }, True) def read_project(self, projectId): '''Read in a project from the QuantConnect.com API. Args: projectId(int): Project id you own Returns: Dictionary that includes information about a specific project ''' return self.Execute('projects/read', { 'projectId': projectId }) def add_project_file(self, projectId, name, content): '''Add a file to a project. Args: projectId(int): The project to which the file should be added. name(str): The name of the new file. content(str): The content of the new file. Returns: Disctionary that includes information about the newly created file ''' return self.Execute('files/create', { 'projectId' : projectId, 'name' : name, 'content' : content }, True) def update_project_filename(self, projectId, oldFileName, newFileName): '''Update the name of a file Args: projectId(int): Project id to which the file belongs oldFileName(str): The current name of the file newFileName(str): The new name for the file Returns: Dictionary indicating success ''' return self.Execute('files/update', { 'projectId' : projectId, 'name': oldFileName, 'newName': newFileName }, True) def update_project_file_content(self, projectId, fileName, newFileContents): '''Update the contents of a file Args: projectId(int): Project id to which the file belongs fileName(str): The name of the file that should be updated newFileContents(str): The new contents of the file Returns: Dictionary indicating success ''' return self.Execute('files/update', { 'projectId': projectId, 'name': fileName, 'content': newFileContents }, True) def read_project_files(self, projectId): '''Read all files in a project Args: projectId(int): Project id to which the file belongs Returns: Dictionary that includes the information about all files in the project ''' return self.Execute('files/read', { 'projectId': projectId }) def read_project_file(self, projectId, fileName): '''Read a file in a project Args: projectId(int): Project id to which the file belongs fileName(str): The name of the file Returns: Dictionary that includes the file information ''' return self.Execute('files/read', { 'projectId': projectId, 'name': fileName }) def delete_project_file(self, projectId, name): '''Delete a file in a project Args: projectId(int): Project id to which the file belongs name(str): The name of the file that should be deleted Returns: Dictionary indicating success ''' return self.Execute('files/delete', { 'projectId' : projectId, 'name' : name }, True) def delete_project(self, projectId): '''Delete a specific project owned by the user from QuantConnect.com Args: projectId(int): Project id we own and wish to delete Returns: Dictionary indicating success ''' return self.Execute('projects/delete', { 'projectId' : projectId }, True) def create_compile(self, projectId): '''Create a new compile job request for this project id. Args: projectId(int): Project id we wish to compile. Returns: Dictionary that includes the compile information ''' return self.Execute('compile/create', { 'projectId' : projectId }, True) def read_compile(self, projectId, compileId): '''Read a compile packet job result. Args: projectId(int): Project id we sent for compile compileId(str): Compile id return from the creation request Returns: Dictionary that includes the compile information ''' return self.Execute('compile/read', { 'projectId' : projectId, 'compileId': compileId }) def list_backtests(self, projectId): '''Get a list of backtests for a specific project id Args: projectId(int): Project id we'd like to get a list of backtest for Returns: Dictionary that includes the list of backtest ''' return self.Execute('backtests/read', { 'projectId': projectId }) def create_backtest(self, projectId, compileId, backtestName): '''Create a new backtest from a specified projectId and compileId Args: projectId(int): Id for the project to backtest compileId(str): Compile id return from the creation request backtestName(str): Name for the new backtest Returns: Dictionary that includes the backtest information ''' return self.Execute('backtests/create', { 'projectId' : projectId, 'compileId': compileId, 'backtestName': backtestName }, True) def read_backtest(self, projectId, backtestId, json_format = True): '''Read out the full result of a specific backtest. Args: projectId(int): Project id for the backtest we'd like to read backtestId(str): Backtest id for the backtest we'd like to read parsed(boolean): True if parse the results as pandas.DataFrame Returns: dictionary that includes the backtest information or Result object ''' json = self.Execute('backtests/read', { 'projectId' : projectId, 'backtestId': backtestId }) return json if json_format else Result(json) def read_backtest_report(self, projectId, backtestId, save=False): '''Read out the report of a backtest in the project id specified. Args: projectId(int): Project id to read. backtestId(str): Specific backtest id to read. save(boolean): True if data should be saved to disk Returns: Dictionary that contains the backtest report ''' json = self.Execute('backtests/read/report', { 'projectId': projectId, 'backtestId': backtestId, }, True) if save and json['success']: with open(backtestId + '.html', "w") as fp: fp.write(json['report']) print(f'Log saved as {backtestId}.html') return json def update_backtest(self, projectId, backtestId, backtestName = '', backtestNote = ''): '''Update the backtest name. Args: projectId(str): Project id to update backtestId(str): Specific backtest id to read backtestName(str): New backtest name to set note(str): Note attached to the backtest Returns: Dictionary indicating success ''' return self.Execute('backtests/update', { 'projectId' : projectId, 'backtestId': backtestId, 'name': backtestName, 'note': backtestNote }, True) def delete_backtest(self, projectId, backtestId): '''Delete a backtest from the specified project and backtestId. Args: projectId(int): Project for the backtest we want to delete backtestId(str): Backtest id we want to delete Returns: Dictionary indicating success ''' return self.Execute('backtests/delete', { 'projectId': projectId, 'backtestId': backtestId }) def list_live_algorithms(self, status, startTime=None, endTime=None): '''Get a list of live running algorithms for a logged in user. Args: status(str): Filter the statuses of the algorithms returned from the api Only the following statuses are supported by the Api: "Liquidated", "Running", "RuntimeError", "Stopped", startTime(datetime): Earliest launched time of the algorithms returned by the Api endTime(datetime): Latest launched time of the algorithms returned by the Api Returns: Dictionary that includes the list of live algorithms ''' if (status != None and status != "Running" and status != "RuntimeError" and status != "Stopped" and status != "Liquidated"): raise ValueError( "The Api only supports Algorithm Statuses of Running, Stopped, RuntimeError and Liquidated") if endTime == None: endTime = dt.utcnow() return self.Execute('live/read', { 'status': str(status), 'end': mktime(endTime.timetuple()), 'start': 0 if startTime == None else mktime(startTime.timetuple()) }) def create_live_algorithm(self, projectId, compileId, serverType, baseLiveAlgorithmSettings, versionId="-1"): '''Create a new live algorithm for a logged in user. Args: projectId(int): Id of the project on QuantConnect compileId(str): Id of the compilation on QuantConnect serverType(str): Type of server instance that will run the algorithm baseLiveAlgorithmSettings(BaseLiveAlgorithmSettings): Brokerage specific versionId(str): The version of the Lean used to run the algorithm. -1 is master, however, sometimes this can create problems with live deployments. If you experience problems using, try specifying the version of Lean you would like to use. Returns: Dictionary that contains information regarding the new algorithm ''' return self.Execute('live/create', { 'projectId': projectId, 'compileId': compileId, 'versionId': versionId, 'serverType': serverType, 'brokerage': baseLiveAlgorithmSettings }, True, headers = {"Accept": "application/json"}) def read_live_algorithm(self, projectId, deployId = None, json_format = True): '''Read out a live algorithm in the project id specified. Args: projectId(int): Project id to read deployId: Specific instance id to read Returns: Dictionary that contains information regarding the live algorithm or Result object ''' json = self.Execute('live/read', { 'projectId': projectId, 'deployId': deployId }) return json if json_format else Result(json) def liquidate_live_algorithm(self, projectId): '''Liquidate a live algorithm from the specified project. Args: projectId(int): Project for the live instance we want to liquidate Returns: Dictionary indicating success ''' return self.Execute('live/update/liquidate', { 'projectId': projectId }, True) def stop_live_algorithm(self, projectId): '''Stop a live algorithm from the specified project. Args: projectId(int): Project for the live instance we want to stop. Returns: Dictionary indicating success ''' return self.Execute('live/update/stop', { 'projectId': projectId }, True) def read_live_logs(self, projectId, algorithmId, startTime=None, endTime=None, save=False): '''Gets the logs of a specific live algorithm. Args: projectId(int): Project Id of the live running algorithm algorithmId(str): Algorithm Id of the live running algorithm startTime(datetime): No logs will be returned before this time. Should be in UTC endTime(datetime): No logs will be returned after this time. Should be in UTC save(boolean): True if data should be saved to disk Returns: List of strings that represent the logs of the algorithm ''' if endTime == None: endTime = dt.utcnow() json = self.Execute('live/read/log', { 'format': 'json', 'projectId': projectId, 'algorithmId': algorithmId, 'end': mktime(endTime.timetuple()), 'start': 0 if startTime == None else mktime(startTime.timetuple()) }) if save and json['success']: with open(algorithmId + '.txt', "w") as fp: fp.write('\n'.join(json['LiveLogs'])) print(f'Log saved as {algorithmId}.txt') return json def read_data_link(self, symbol, securityType, market, resolution, date): '''Gets the link to the downloadable data. Args: symbol(str): Symbol of security of which data will be requested securityType(str): Type of underlying asset market(str): e.g. CBOE, CBOT, FXCM, GDAX etc. resolution(str): Resolution of data requested date: Date of the data requested Returns: Dictionary that contains the link to the downloadable data. ''' return self.Execute('data/read', { 'format': 'link', 'ticker': symbol.lower(), 'type': securityType.lower(), 'market': market.lower(), 'resolution': resolution.lower(), 'date': date.strftime("%Y%m%d") }) def download_data(self, symbol, securityType, market, resolution, date, fileName): '''Method to download and save the data purchased through QuantConnect Args: symbol(str): Symbol of security of which data will be requested. securityType(str): Type of underlying asset market(str): e.g. CBOE, CBOT, FXCM, GDAX etc. resolution(str): Resolution of data requested. date(datetime): Date of the data requested. fileName(str): file name of data download Returns: Boolean indicating whether the data was successfully downloaded or not ''' # Get a link to the data link = self.read_data_link(symbol, securityType, market, resolution, date) # Make sure the link was successfully retrieved if not link['success']: return False # download and save the data with open(fileName + '.zip', "wb") as code: request = get(link['link'], stream=True) for chunk in request.iter_content(DOWNLOAD_CHUNK_SIZE): code.write(chunk) return True def __pretty_print(self, result): '''Print out a nice formatted version of the request''' print ('') try: parsed = loads(result.text) print (dumps(parsed, indent=4, sort_keys=True)) except Exception as err: print ('Fall back error (text print)') print ('') print (result.text) print ('') print (err) print ('')
jameschch/Lean
PythonToolbox/quantconnect/api.py
Python
apache-2.0
20,315
# Copyright (c) 2012 The Chromium Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. """Base class for generating wrapper functions for PPAPI methods. """ from datetime import datetime import os import sys from idl_c_proto import CGen from idl_generator import Generator from idl_log import ErrOut, InfoOut, WarnOut from idl_outfile import IDLOutFile class PPKind(object): @staticmethod def ChoosePPFunc(iface, ppb_func, ppp_func): name = iface.node.GetName() if name.startswith("PPP"): return ppp_func elif name.startswith("PPB"): return ppb_func else: raise Exception('Unknown PPKind for ' + name) class Interface(object): """Tracks information about a particular interface version. - struct_name: the struct type used by the ppapi headers to hold the method pointers (the vtable). - needs_wrapping: True if a method in the interface needs wrapping. - header_file: the name of the header file that defined this interface. """ def __init__(self, interface_node, release, version, struct_name, needs_wrapping, header_file): self.node = interface_node self.release = release self.version = version self.struct_name = struct_name # We may want finer grained filtering (method level), but it is not # yet clear how to actually do that. self.needs_wrapping = needs_wrapping self.header_file = header_file class WrapperGen(Generator): """WrapperGen - An abstract class that generates wrappers for PPAPI methods. This generates a wrapper PPB and PPP GetInterface, which directs users to wrapper PPAPI methods. Wrapper PPAPI methods may perform arbitrary work before invoking the real PPAPI method (supplied by the original GetInterface functions). Subclasses must implement GenerateWrapperForPPBMethod (and PPP). Optionally, subclasses can implement InterfaceNeedsWrapper to filter out interfaces that do not actually need wrappers (those interfaces can jump directly to the original interface functions). """ def __init__(self, wrapper_prefix, s1, s2, s3): Generator.__init__(self, s1, s2, s3) self.wrapper_prefix = wrapper_prefix self._skip_opt = False self.output_file = None self.cgen = CGen() def SetOutputFile(self, fname): self.output_file = fname def GenerateRelease(self, ast, release, options): return self.GenerateRange(ast, [release], options) @staticmethod def GetHeaderName(name): """Get the corresponding ppapi .h file from each IDL filename. """ name = os.path.splitext(name)[0] + '.h' return 'ppapi/c/' + name def WriteCopyrightGeneratedTime(self, out): now = datetime.now() c = """/* Copyright (c) %s The Chromium Authors. All rights reserved. * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ /* Last generated from IDL: %s. */ """ % (now.year, datetime.ctime(now)) out.Write(c) def GetWrapperMetadataName(self): return '__%sWrapperInfo' % self.wrapper_prefix def GenerateHelperFunctions(self, out): """Generate helper functions to avoid dependencies on libc. """ out.Write("""/* Use local strcmp to avoid dependency on libc. */ static int mystrcmp(const char* s1, const char *s2) { while((*s1 && *s2) && (*s1++ == *s2++)); return *(--s1) - *(--s2); }\n """) def GenerateFixedFunctions(self, out): """Write out the set of constant functions (those that do not depend on the current Pepper IDL). """ out.Write(""" static PPB_GetInterface __real_PPBGetInterface; static PPP_GetInterface_Type __real_PPPGetInterface; void __set_real_%(wrapper_prefix)s_PPBGetInterface(PPB_GetInterface real) { __real_PPBGetInterface = real; } void __set_real_%(wrapper_prefix)s_PPPGetInterface(PPP_GetInterface_Type real) { __real_PPPGetInterface = real; } /* Map interface string -> wrapper metadata */ static struct %(wrapper_struct)s *%(wrapper_prefix)sPPBShimIface( const char *name) { struct %(wrapper_struct)s **next = s_ppb_wrappers; while (*next != NULL) { if (mystrcmp(name, (*next)->iface_macro) == 0) return *next; ++next; } return NULL; } /* Map interface string -> wrapper metadata */ static struct %(wrapper_struct)s *%(wrapper_prefix)sPPPShimIface( const char *name) { struct %(wrapper_struct)s **next = s_ppp_wrappers; while (*next != NULL) { if (mystrcmp(name, (*next)->iface_macro) == 0) return *next; ++next; } return NULL; } const void *__%(wrapper_prefix)s_PPBGetInterface(const char *name) { struct %(wrapper_struct)s *wrapper = %(wrapper_prefix)sPPBShimIface(name); if (wrapper == NULL) { /* We don't have an IDL for this, for some reason. Take our chances. */ return (*__real_PPBGetInterface)(name); } /* Initialize the real_iface if it hasn't been. The wrapper depends on it. */ if (wrapper->real_iface == NULL) { const void *iface = (*__real_PPBGetInterface)(name); if (NULL == iface) return NULL; wrapper->real_iface = iface; } if (wrapper->wrapped_iface) { return wrapper->wrapped_iface; } else { return wrapper->real_iface; } } const void *__%(wrapper_prefix)s_PPPGetInterface(const char *name) { struct %(wrapper_struct)s *wrapper = %(wrapper_prefix)sPPPShimIface(name); if (wrapper == NULL) { /* We don't have an IDL for this, for some reason. Take our chances. */ return (*__real_PPPGetInterface)(name); } /* Initialize the real_iface if it hasn't been. The wrapper depends on it. */ if (wrapper->real_iface == NULL) { const void *iface = (*__real_PPPGetInterface)(name); if (NULL == iface) return NULL; wrapper->real_iface = iface; } if (wrapper->wrapped_iface) { return wrapper->wrapped_iface; } else { return wrapper->real_iface; } } """ % { 'wrapper_struct' : self.GetWrapperMetadataName(), 'wrapper_prefix' : self.wrapper_prefix, } ) ############################################################ def InterfaceNeedsWrapper(self, iface, releases): """Return true if the interface has ANY methods that need wrapping. """ return True def OwnHeaderFile(self): """Return the header file that specifies the API of this wrapper. We do not generate the header files. """ raise Exception('Child class must implement this') ############################################################ def DetermineInterfaces(self, ast, releases): """Get a list of interfaces along with whatever metadata we need. """ iface_releases = [] for filenode in ast.GetListOf('File'): # If this file has errors, skip it if filenode in self.skip_list: InfoOut.Log('WrapperGen: Skipping %s due to errors\n' % filenode.GetName()) continue file_name = self.GetHeaderName(filenode.GetName()) ifaces = filenode.GetListOf('Interface') for iface in ifaces: releases_for_iface = iface.GetUniqueReleases(releases) for release in releases_for_iface: version = iface.GetVersion(release) struct_name = self.cgen.GetStructName(iface, release, include_version=True) needs_wrap = self.InterfaceVersionNeedsWrapping(iface, version) if not needs_wrap: InfoOut.Log('Interface %s ver %s does not need wrapping' % (struct_name, version)) iface_releases.append( Interface(iface, release, version, struct_name, needs_wrap, file_name)) return iface_releases def GenerateIncludes(self, iface_releases, out): """Generate the list of #include that define the original interfaces. """ self.WriteCopyrightGeneratedTime(out) # First include own header. out.Write('#include "%s"\n\n' % self.OwnHeaderFile()) # Get typedefs for PPB_GetInterface. out.Write('#include "%s"\n' % self.GetHeaderName('ppb.h')) # Get a conservative list of all #includes that are needed, # whether it requires wrapping or not. We currently depend on the macro # string for comparison, even when it is not wrapped, to decide when # to use the original/real interface. header_files = set() for iface in iface_releases: header_files.add(iface.header_file) for header in sorted(header_files): out.Write('#include "%s"\n' % header) out.Write('\n') def WrapperMethodPrefix(self, iface, release): return '%s_%s_%s_' % (self.wrapper_prefix, release, iface.GetName()) def GetReturnArgs(self, ret_type, args_spec): if ret_type != 'void': ret = 'return ' else: ret = '' if args_spec: args = [] for arg in args_spec: args.append(arg[1]) args = ', '.join(args) else: args = '' return (ret, args) def GenerateWrapperForPPBMethod(self, iface, member): result = [] func_prefix = self.WrapperMethodPrefix(iface.node, iface.release) sig = self.cgen.GetSignature(member, iface.release, 'store', func_prefix, False) result.append('static %s {\n' % sig) result.append(' while(1) { /* Not implemented */ } \n') result.append('}\n') return result def GenerateWrapperForPPPMethod(self, iface, member): result = [] func_prefix = self.WrapperMethodPrefix(iface.node, iface.release) sig = self.cgen.GetSignature(member, iface.release, 'store', func_prefix, False) result.append('static %s {\n' % sig) result.append(' while(1) { /* Not implemented */ } \n') result.append('}\n') return result def GenerateWrapperForMethods(self, iface_releases, comments=True): """Return a string representing the code for each wrapper method (using a string rather than writing to the file directly for testing.) """ result = [] for iface in iface_releases: if not iface.needs_wrapping: if comments: result.append('/* Not generating wrapper methods for %s */\n\n' % iface.struct_name) continue if comments: result.append('/* Begin wrapper methods for %s */\n\n' % iface.struct_name) generator = PPKind.ChoosePPFunc(iface, self.GenerateWrapperForPPBMethod, self.GenerateWrapperForPPPMethod) for member in iface.node.GetListOf('Member'): # Skip the method if it's not actually in the release. if not member.InReleases([iface.release]): continue result.extend(generator(iface, member)) if comments: result.append('/* End wrapper methods for %s */\n\n' % iface.struct_name) return ''.join(result) def GenerateWrapperInterfaces(self, iface_releases, out): for iface in iface_releases: if not iface.needs_wrapping: out.Write('/* Not generating wrapper interface for %s */\n\n' % iface.struct_name) continue out.Write('struct %s %s_Wrappers_%s = {\n' % (iface.struct_name, self.wrapper_prefix, iface.struct_name)) methods = [] for member in iface.node.GetListOf('Member'): # Skip the method if it's not actually in the release. if not member.InReleases([iface.release]): continue prefix = self.WrapperMethodPrefix(iface.node, iface.release) cast = self.cgen.GetSignature(member, iface.release, 'return', prefix='', func_as_ptr=True, ptr_prefix='', include_name=False) methods.append(' .%s = (%s)&%s%s' % (member.GetName(), cast, prefix, member.GetName())) out.Write(' ' + ',\n '.join(methods) + '\n') out.Write('};\n\n') def GetWrapperInfoName(self, iface): return '%s_WrapperInfo_%s' % (self.wrapper_prefix, iface.struct_name) def GenerateWrapperInfoAndCollection(self, iface_releases, out): for iface in iface_releases: iface_macro = self.cgen.GetInterfaceMacro(iface.node, iface.version) if iface.needs_wrapping: wrap_iface = '(void *) &%s_Wrappers_%s' % (self.wrapper_prefix, iface.struct_name) else: wrap_iface = 'NULL /* Still need slot for real_iface */' out.Write("""static struct %s %s = { .iface_macro = %s, .wrapped_iface = %s, .real_iface = NULL };\n\n""" % (self.GetWrapperMetadataName(), self.GetWrapperInfoName(iface), iface_macro, wrap_iface)) # Now generate NULL terminated arrays of the above wrapper infos. ppb_wrapper_infos = [] ppp_wrapper_infos = [] for iface in iface_releases: appender = PPKind.ChoosePPFunc(iface, ppb_wrapper_infos.append, ppp_wrapper_infos.append) appender(' &%s' % self.GetWrapperInfoName(iface)) ppb_wrapper_infos.append(' NULL') ppp_wrapper_infos.append(' NULL') out.Write( 'static struct %s *s_ppb_wrappers[] = {\n%s\n};\n\n' % (self.GetWrapperMetadataName(), ',\n'.join(ppb_wrapper_infos))) out.Write( 'static struct %s *s_ppp_wrappers[] = {\n%s\n};\n\n' % (self.GetWrapperMetadataName(), ',\n'.join(ppp_wrapper_infos))) def DeclareWrapperInfos(self, iface_releases, out): """The wrapper methods usually need access to the real_iface, so we must declare these wrapper infos ahead of time (there is a circular dependency). """ out.Write('/* BEGIN Declarations for all Wrapper Infos */\n\n') for iface in iface_releases: out.Write('static struct %s %s;\n' % (self.GetWrapperMetadataName(), self.GetWrapperInfoName(iface))) out.Write('/* END Declarations for all Wrapper Infos. */\n\n') def GenerateRange(self, ast, releases, options): """Generate shim code for a range of releases. """ # Remember to set the output filename before running this. out_filename = self.output_file if out_filename is None: ErrOut.Log('Did not set filename for writing out wrapper\n') return 1 InfoOut.Log("Generating %s for %s" % (out_filename, self.wrapper_prefix)) out = IDLOutFile(out_filename) # Get a list of all the interfaces along with metadata. iface_releases = self.DetermineInterfaces(ast, releases) # Generate the includes. self.GenerateIncludes(iface_releases, out) # Write out static helper functions (mystrcmp). self.GenerateHelperFunctions(out) # Declare list of WrapperInfo before actual wrapper methods, since # they reference each other. self.DeclareWrapperInfos(iface_releases, out) # Generate wrapper functions for each wrapped method in the interfaces. result = self.GenerateWrapperForMethods(iface_releases) out.Write(result) # Collect all the wrapper functions into interface structs. self.GenerateWrapperInterfaces(iface_releases, out) # Generate a table of the wrapped interface structs that can be looked up. self.GenerateWrapperInfoAndCollection(iface_releases, out) # Write out the IDL-invariant functions. self.GenerateFixedFunctions(out) out.Close() return 0
keishi/chromium
ppapi/generators/idl_gen_wrapper.py
Python
bsd-3-clause
15,759
"""Hardware driver related utilities Everything in this module should rely on /proc or /sys only, no executable calls """ # Standard Library import os import re # Lutris Modules from lutris.util.log import logger MIN_RECOMMENDED_NVIDIA_DRIVER = 415 def get_nvidia_driver_info(): """Return information about NVidia drivers""" version_file_path = "/proc/driver/nvidia/version" if not os.path.exists(version_file_path): return with open(version_file_path, encoding='utf-8') as version_file: content = version_file.readlines() nvrm_version = content[0].split(': ')[1].strip().split() return { 'nvrm': { 'vendor': nvrm_version[0], 'platform': nvrm_version[1], 'arch': nvrm_version[2], 'version': nvrm_version[5], 'date': ' '.join(nvrm_version[6:]) } } return def get_nvidia_gpu_ids(): """Return the list of Nvidia GPUs""" return os.listdir("/proc/driver/nvidia/gpus") def get_nvidia_gpu_info(gpu_id): """Return details about a GPU""" with open("/proc/driver/nvidia/gpus/%s/information" % gpu_id, encoding='utf-8') as info_file: content = info_file.readlines() infos = {} for line in content: key, value = line.split(":", 1) infos[key] = value.strip() return infos def is_nvidia(): """Return true if the Nvidia drivers are currently in use""" return os.path.exists("/proc/driver/nvidia") def get_gpus(): """Return GPUs connected to the system""" if not os.path.exists("/sys/class/drm"): logger.error("No GPU available on this system!") return for cardname in os.listdir("/sys/class/drm/"): if re.match(r"^card\d$", cardname): yield cardname def get_gpu_info(card): """Return information about a GPU""" infos = {"DRIVER": "", "PCI_ID": "", "PCI_SUBSYS_ID": ""} try: with open("/sys/class/drm/%s/device/uevent" % card, encoding='utf-8') as card_uevent: content = card_uevent.readlines() except FileNotFoundError: logger.error("Unable to read driver information for card %s", card) return infos for line in content: key, value = line.split("=", 1) infos[key] = value.strip() return infos def is_amd(): """Return true if the system uses the AMD driver""" for card in get_gpus(): if get_gpu_info(card)["DRIVER"] == "amdgpu": return True return False def check_driver(): """Report on the currently running driver""" if is_nvidia(): driver_info = get_nvidia_driver_info() # pylint: disable=logging-format-interpolation logger.info("Using {vendor} drivers {version} for {arch}".format(**driver_info["nvrm"])) gpus = get_nvidia_gpu_ids() for gpu_id in gpus: gpu_info = get_nvidia_gpu_info(gpu_id) logger.info("GPU: %s", gpu_info.get("Model")) for card in get_gpus(): # pylint: disable=logging-format-interpolation logger.info("GPU: {PCI_ID} {PCI_SUBSYS_ID} using {DRIVER} driver".format(**get_gpu_info(card))) def is_outdated(): if not is_nvidia(): return False driver_info = get_nvidia_driver_info() driver_version = driver_info["nvrm"]["version"] if not driver_version: logger.error("Failed to get Nvidia version") return True major_version = int(driver_version.split(".")[0]) return major_version < MIN_RECOMMENDED_NVIDIA_DRIVER
lutris/lutris
lutris/util/graphics/drivers.py
Python
gpl-3.0
3,558
from __future__ import unicode_literals from decimal import Decimal import datetime from django.conf import settings from django.core.urlresolvers import reverse from django.core.validators import MinValueValidator, RegexValidator from django.db.models import Manager, Q from django.utils.encoding import python_2_unicode_compatible, smart_text from django.db import models from django.utils.text import slugify from django.utils.translation import pgettext_lazy from django_prices.models import PriceField from jsonfield import JSONField from model_utils.managers import InheritanceManager from mptt.managers import TreeManager from mptt.models import MPTTModel from satchless.item import ItemRange, Item, InsufficientStock from unidecode import unidecode from versatileimagefield.fields import VersatileImageField from .discounts import get_product_discounts from .fields import WeightField from saleor.product.utils import get_attributes_display_map @python_2_unicode_compatible class Category(MPTTModel): name = models.CharField( pgettext_lazy('Category field', 'name'), max_length=128) slug = models.SlugField( pgettext_lazy('Category field', 'slug'), max_length=50) description = models.TextField( pgettext_lazy('Category field', 'description'), blank=True) parent = models.ForeignKey( 'self', null=True, blank=True, related_name='children', verbose_name=pgettext_lazy('Category field', 'parent')) hidden = models.BooleanField( pgettext_lazy('Category field', 'hidden'), default=False) objects = Manager() tree = TreeManager() def __str__(self): return self.name def get_absolute_url(self): return reverse('product:category', kwargs={'path': self.get_full_path(), 'category_id': self.id}) def get_full_path(self): if not self.parent_id: return self.slug return '/'.join( [node.slug for node in self.get_ancestors(include_self=True)]) class Meta: verbose_name_plural = 'categories' app_label = 'product' def set_hidden_descendants(self, hidden): self.get_descendants().update(hidden=hidden) class ProductManager(InheritanceManager): def get_available_products(self): today = datetime.datetime.today() return self.get_queryset().filter( Q(available_on__lte=today) | Q(available_on__isnull=True)) @python_2_unicode_compatible class Product(models.Model, ItemRange): name = models.CharField( pgettext_lazy('Product field', 'name'), max_length=128) description = models.TextField( verbose_name=pgettext_lazy('Product field', 'description')) categories = models.ManyToManyField( Category, verbose_name=pgettext_lazy('Product field', 'categories'), related_name='products') price = PriceField( pgettext_lazy('Product field', 'price'), currency=settings.DEFAULT_CURRENCY, max_digits=12, decimal_places=2) weight = WeightField( pgettext_lazy('Product field', 'weight'), unit=settings.DEFAULT_WEIGHT, max_digits=6, decimal_places=2) available_on = models.DateField( pgettext_lazy('Product field', 'available on'), blank=True, null=True) attributes = models.ManyToManyField( 'ProductAttribute', related_name='products', blank=True) objects = ProductManager() class Meta: app_label = 'product' def __iter__(self): if not hasattr(self, '__variants'): setattr(self, '__variants', self.variants.all()) return iter(getattr(self, '__variants')) def __repr__(self): class_ = type(self) return '<%s.%s(pk=%r, name=%r)>' % ( class_.__module__, class_.__name__, self.pk, self.name) def __str__(self): return self.name def get_absolute_url(self): return reverse('product:details', kwargs={'slug': self.get_slug(), 'product_id': self.id}) def get_slug(self): return slugify(smart_text(unidecode(self.name))) def get_formatted_price(self, price): return "{0} {1}".format(price.gross, price.currency) def get_price_per_item(self, item, discounts=None, **kwargs): price = self.price if price and discounts: discounts = list(get_product_discounts(self, discounts, **kwargs)) if discounts: modifier = max(discounts) price += modifier return price def admin_get_price_min(self): price = self.get_price_range().min_price return self.get_formatted_price(price) admin_get_price_min.short_description = pgettext_lazy( 'Product admin page', 'Minimum price') def admin_get_price_max(self): price = self.get_price_range().max_price return self.get_formatted_price(price) admin_get_price_max.short_description = pgettext_lazy( 'Product admin page', 'Maximum price') def is_in_stock(self): return any(variant.is_in_stock() for variant in self) def get_first_category(self): for category in self.categories.all(): if not category.hidden: return category return None @python_2_unicode_compatible class ProductVariant(models.Model, Item): sku = models.CharField( pgettext_lazy('Variant field', 'SKU'), max_length=32, unique=True) name = models.CharField( pgettext_lazy('Variant field', 'variant name'), max_length=100, blank=True) price_override = PriceField( pgettext_lazy('Variant field', 'price override'), currency=settings.DEFAULT_CURRENCY, max_digits=12, decimal_places=2, blank=True, null=True) weight_override = WeightField( pgettext_lazy('Variant field', 'weight override'), unit=settings.DEFAULT_WEIGHT, max_digits=6, decimal_places=2, blank=True, null=True) product = models.ForeignKey(Product, related_name='variants') attributes = JSONField(pgettext_lazy('Variant field', 'attributes'), default={}) objects = InheritanceManager() class Meta: app_label = 'product' def __str__(self): return self.name or self.sku def get_weight(self): return self.weight_override or self.product.weight def check_quantity(self, quantity): available_quantity = self.get_stock_quantity() if quantity > available_quantity: raise InsufficientStock(self) def get_stock_quantity(self): return sum([stock.quantity for stock in self.stock.all()]) def get_price_per_item(self, discounts=None, **kwargs): price = self.price_override or self.product.price if discounts: discounts = list(get_product_discounts(self, discounts, **kwargs)) if discounts: modifier = max(discounts) price += modifier return price def get_absolute_url(self): slug = self.product.get_slug() product_id = self.product.id return reverse('product:details', kwargs={'slug': slug, 'product_id': product_id}) def as_data(self): return { 'product_name': str(self), 'product_id': self.product.pk, 'variant_id': self.pk, 'unit_price': str(self.get_price_per_item().gross)} def is_shipping_required(self): return True def is_in_stock(self): return any([stock_item.quantity > 0 for stock_item in self.stock.all()]) def get_attribute(self, pk): return self.attributes.get(str(pk)) def display_variant(self, attributes=None): if attributes is None: attributes = self.product.attributes.all() values = get_attributes_display_map(self, attributes).values() if values: return ', '.join([smart_text(value) for value in values]) else: return smart_text(self) def display_product(self, attributes=None): return '%s (%s)' % (smart_text(self.product), self.display_variant(attributes=attributes)) @python_2_unicode_compatible class Stock(models.Model): variant = models.ForeignKey( ProductVariant, related_name='stock', verbose_name=pgettext_lazy('Stock item field', 'variant')) location = models.CharField( pgettext_lazy('Stock item field', 'location'), max_length=100) quantity = models.IntegerField( pgettext_lazy('Stock item field', 'quantity'), validators=[MinValueValidator(0)], default=Decimal(1)) cost_price = PriceField( pgettext_lazy('Stock item field', 'cost price'), currency=settings.DEFAULT_CURRENCY, max_digits=12, decimal_places=2, blank=True, null=True) class Meta: app_label = 'product' unique_together = ('variant', 'location') def __str__(self): return "%s - %s" % (self.variant.name, self.location) @python_2_unicode_compatible class ProductAttribute(models.Model): name = models.SlugField( pgettext_lazy('Product attribute field', 'internal name'), max_length=50, unique=True) display = models.CharField( pgettext_lazy('Product attribute field', 'display name'), max_length=100) class Meta: ordering = ['name'] def __str__(self): return self.display def get_formfield_name(self): return slugify('attribute-%s' % self.name) def has_values(self): return self.values.exists() @python_2_unicode_compatible class AttributeChoiceValue(models.Model): display = models.CharField( pgettext_lazy('Attribute choice value field', 'display name'), max_length=100) color = models.CharField( pgettext_lazy('Attribute choice value field', 'color'), max_length=7, validators=[RegexValidator('^#([A-Fa-f0-9]{6}|[A-Fa-f0-9]{3})$')], blank=True) image = VersatileImageField( pgettext_lazy('Attribute choice value field', 'image'), upload_to='attributes', blank=True, null=True) attribute = models.ForeignKey(ProductAttribute, related_name='values') def __str__(self): return self.display
Drekscott/Motlaesaleor
saleor/product/models/base.py
Python
bsd-3-clause
10,340
#!/usr/bin/python # -*- coding: utf-8 -*- """Tests for the Winlogon Windows Registry plugin.""" import unittest from dfdatetime import filetime as dfdatetime_filetime from dfwinreg import definitions as dfwinreg_definitions from dfwinreg import fake as dfwinreg_fake from plaso.formatters import winreg # pylint: disable=unused-import from plaso.lib import timelib from plaso.parsers.winreg_plugins import winlogon from tests.parsers.winreg_plugins import test_lib class WinlogonPluginTest(test_lib.RegistryPluginTestCase): """Tests for the Winlogon Windows Registry plugin.""" def _CreateTestKey(self, key_path, time_string): """Creates Registry keys and values for testing. Args: key_path: the Windows Registry key path. time_string: string containing the key last written date and time. Returns: A Windows Registry key (instance of dfwinreg.WinRegistryKey). """ filetime = dfdatetime_filetime.Filetime() filetime.CopyFromString(time_string) registry_key = dfwinreg_fake.FakeWinRegistryKey( u'Winlogon', key_path=key_path, last_written_time=filetime.timestamp, offset=153) # Setup Winlogon values. value_data = u'1'.encode(u'utf_16_le') registry_value = dfwinreg_fake.FakeWinRegistryValue( u'AutoAdminLogon', data=value_data, data_type=dfwinreg_definitions.REG_SZ) registry_key.AddValue(registry_value) value_data = b'\x00\x00\x00\x01' registry_value = dfwinreg_fake.FakeWinRegistryValue( u'AutoRestartShell', data=value_data, data_type=dfwinreg_definitions.REG_DWORD_BIG_ENDIAN) registry_key.AddValue(registry_value) value_data = u'0 0 0'.encode(u'utf_16_le') registry_value = dfwinreg_fake.FakeWinRegistryValue( u'Background', data=value_data, data_type=dfwinreg_definitions.REG_SZ) registry_key.AddValue(registry_value) value_data = u'10'.encode(u'utf_16_le') registry_value = dfwinreg_fake.FakeWinRegistryValue( u'CachedLogonsCount', data=value_data, data_type=dfwinreg_definitions.REG_SZ) registry_key.AddValue(registry_value) value_data = u'no'.encode(u'utf_16_le') registry_value = dfwinreg_fake.FakeWinRegistryValue( u'DebugServerCommand', data=value_data, data_type=dfwinreg_definitions.REG_SZ) registry_key.AddValue(registry_value) value_data = u''.encode(u'utf_16_le') registry_value = dfwinreg_fake.FakeWinRegistryValue( u'DefaultDomainName', data=value_data, data_type=dfwinreg_definitions.REG_SZ) registry_key.AddValue(registry_value) value_data = u'user'.encode(u'utf_16_le') registry_value = dfwinreg_fake.FakeWinRegistryValue( u'DefaultUserName', data=value_data, data_type=dfwinreg_definitions.REG_SZ) registry_key.AddValue(registry_value) value_data = b'\x00\x00\x00\x01' registry_value = dfwinreg_fake.FakeWinRegistryValue( u'DisableCAD', data=value_data, data_type=dfwinreg_definitions.REG_DWORD_BIG_ENDIAN) registry_key.AddValue(registry_value) value_data = b'\x00\x00\x00\x00' registry_value = dfwinreg_fake.FakeWinRegistryValue( u'ForceUnlockLogon', data=value_data, data_type=dfwinreg_definitions.REG_DWORD_BIG_ENDIAN) registry_key.AddValue(registry_value) value_data = u''.encode(u'utf_16_le') registry_value = dfwinreg_fake.FakeWinRegistryValue( u'LegalNoticeCaption', data=value_data, data_type=dfwinreg_definitions.REG_SZ) registry_key.AddValue(registry_value) value_data = u''.encode(u'utf_16_le') registry_value = dfwinreg_fake.FakeWinRegistryValue( u'LegalNoticeText', data=value_data, data_type=dfwinreg_definitions.REG_SZ) registry_key.AddValue(registry_value) value_data = b'\x00\x00\x00\x05' registry_value = dfwinreg_fake.FakeWinRegistryValue( u'PasswordExpiryWarning', data=value_data, data_type=dfwinreg_definitions.REG_DWORD_BIG_ENDIAN) registry_key.AddValue(registry_value) value_data = u'0'.encode(u'utf_16_le') registry_value = dfwinreg_fake.FakeWinRegistryValue( u'PowerdownAfterShutdown', data=value_data, data_type=dfwinreg_definitions.REG_SZ) registry_key.AddValue(registry_value) value_data = u'{A520A1A4-1780-4FF6-BD18-167343C5AF16}'.encode(u'utf_16_le') registry_value = dfwinreg_fake.FakeWinRegistryValue( u'PreCreateKnownFolders', data=value_data, data_type=dfwinreg_definitions.REG_SZ) registry_key.AddValue(registry_value) value_data = u'1'.encode(u'utf_16_le') registry_value = dfwinreg_fake.FakeWinRegistryValue( u'ReportBootOk', data=value_data, data_type=dfwinreg_definitions.REG_SZ) registry_key.AddValue(registry_value) value_data = u'explorer.exe'.encode(u'utf_16_le') registry_value = dfwinreg_fake.FakeWinRegistryValue( u'Shell', data=value_data, data_type=dfwinreg_definitions.REG_SZ) registry_key.AddValue(registry_value) value_data = b'\x00\x00\x00\x2b' registry_value = dfwinreg_fake.FakeWinRegistryValue( u'ShutdownFlags', data=value_data, data_type=dfwinreg_definitions.REG_DWORD_BIG_ENDIAN) registry_key.AddValue(registry_value) value_data = u'0'.encode(u'utf_16_le') registry_value = dfwinreg_fake.FakeWinRegistryValue( u'ShutdownWithoutLogon', data=value_data, data_type=dfwinreg_definitions.REG_SZ) registry_key.AddValue(registry_value) value_data = u'C:\\Windows\\system32\\userinit.exe'.encode(u'utf_16_le') registry_value = dfwinreg_fake.FakeWinRegistryValue( u'Userinit', data=value_data, data_type=dfwinreg_definitions.REG_SZ) registry_key.AddValue(registry_value) value_data = u'SystemPropertiesPerformance.exe/pagefile'.encode( u'utf_16_le') registry_value = dfwinreg_fake.FakeWinRegistryValue( u'VMApplet', data=value_data, data_type=dfwinreg_definitions.REG_SZ) registry_key.AddValue(registry_value) value_data = u'0'.encode(u'utf_16_le') registry_value = dfwinreg_fake.FakeWinRegistryValue( u'WinStationsDisabled', data=value_data, data_type=dfwinreg_definitions.REG_SZ) registry_key.AddValue(registry_value) # Setup registered event handlers. notify = dfwinreg_fake.FakeWinRegistryKey(u'Notify') registry_key.AddSubkey(notify) navlogon = dfwinreg_fake.FakeWinRegistryKey( u'NavLogon', last_written_time=filetime.timestamp) notify.AddSubkey(navlogon) value_data = u'NavLogon.dll'.encode(u'utf_16_le') registry_value = dfwinreg_fake.FakeWinRegistryValue( u'DllName', data=value_data, data_type=dfwinreg_definitions.REG_SZ) navlogon.AddValue(registry_value) value_data = u'NavLogoffEvent'.encode(u'utf_16_le') registry_value = dfwinreg_fake.FakeWinRegistryValue( u'Logoff', data=value_data, data_type=dfwinreg_definitions.REG_SZ) navlogon.AddValue(registry_value) value_data = u'NavStartShellEvent'.encode(u'utf_16_le') registry_value = dfwinreg_fake.FakeWinRegistryValue( u'StartShell', data=value_data, data_type=dfwinreg_definitions.REG_SZ) navlogon.AddValue(registry_value) secret_malware = dfwinreg_fake.FakeWinRegistryKey( u'SecretMalware', last_written_time=filetime.timestamp) notify.AddSubkey(secret_malware) value_data = b'\x00\x00\x00\x00' registry_value = dfwinreg_fake.FakeWinRegistryValue( u'Asynchronous', data=value_data, data_type=dfwinreg_definitions.REG_DWORD_BIG_ENDIAN) secret_malware.AddValue(registry_value) value_data = u'secret_malware.dll'.encode(u'utf_16_le') registry_value = dfwinreg_fake.FakeWinRegistryValue( u'DllName', data=value_data, data_type=dfwinreg_definitions.REG_SZ) secret_malware.AddValue(registry_value) value_data = b'\x00\x00\x00\x00' registry_value = dfwinreg_fake.FakeWinRegistryValue( u'Impersonate', data=value_data, data_type=dfwinreg_definitions.REG_DWORD_BIG_ENDIAN) secret_malware.AddValue(registry_value) value_data = u'secretEventLock'.encode(u'utf_16_le') registry_value = dfwinreg_fake.FakeWinRegistryValue( u'Lock', data=value_data, data_type=dfwinreg_definitions.REG_SZ) secret_malware.AddValue(registry_value) value_data = u'secretEventLogoff'.encode(u'utf_16_le') registry_value = dfwinreg_fake.FakeWinRegistryValue( u'Logoff', data=value_data, data_type=dfwinreg_definitions.REG_SZ) secret_malware.AddValue(registry_value) value_data = u'secretEventLogon'.encode(u'utf_16_le') registry_value = dfwinreg_fake.FakeWinRegistryValue( u'Logon', data=value_data, data_type=dfwinreg_definitions.REG_SZ) secret_malware.AddValue(registry_value) value_data = u'secretEventShutdown'.encode(u'utf_16_le') registry_value = dfwinreg_fake.FakeWinRegistryValue( u'Shutdown', data=value_data, data_type=dfwinreg_definitions.REG_SZ) secret_malware.AddValue(registry_value) value_data = u'secretEventSmartCardLogonNotify'.encode(u'utf_16_le') registry_value = dfwinreg_fake.FakeWinRegistryValue( u'SmartCardLogonNotify', data=value_data, data_type=dfwinreg_definitions.REG_SZ) secret_malware.AddValue(registry_value) value_data = u'secretEventStartShell'.encode(u'utf_16_le') registry_value = dfwinreg_fake.FakeWinRegistryValue( u'StartShell', data=value_data, data_type=dfwinreg_definitions.REG_SZ) secret_malware.AddValue(registry_value) value_data = u'secretEventStartup'.encode(u'utf_16_le') registry_value = dfwinreg_fake.FakeWinRegistryValue( u'Startup', data=value_data, data_type=dfwinreg_definitions.REG_SZ) secret_malware.AddValue(registry_value) value_data = u'secretEventStopScreenSaver'.encode(u'utf_16_le') registry_value = dfwinreg_fake.FakeWinRegistryValue( u'StopScreenSaver', data=value_data, data_type=dfwinreg_definitions.REG_SZ) secret_malware.AddValue(registry_value) value_data = u'secretEventUnlock'.encode(u'utf_16_le') registry_value = dfwinreg_fake.FakeWinRegistryValue( u'Unlock', data=value_data, data_type=dfwinreg_definitions.REG_SZ) secret_malware.AddValue(registry_value) return registry_key def testProcess(self): """Tests the Process function on created key.""" key_path = ( u'HKEY_LOCAL_MACHINE\\Software\\Microsoft\\Windows NT\\CurrentVersion') time_string = u'2013-01-30 10:47:57' registry_key = self._CreateTestKey(key_path, time_string) plugin_object = winlogon.WinlogonPlugin() storage_writer = self._ParseKeyWithPlugin(registry_key, plugin_object) self.assertEqual(len(storage_writer.events), 14) # Because the order the subkeys are parsed are not guaranteed we will sort # the events. # TODO: look into this. event_objects = sorted( storage_writer.events, key=lambda evt: evt.EqualityString()) event_object = event_objects[0] expected_timestamp = timelib.Timestamp.CopyFromString(time_string) self.assertEqual(event_object.timestamp, expected_timestamp) expected_message = ( u'[{0:s}\\Notify\\NavLogon] ' u'Application: NavLogon ' u'Command: NavLogon.dll ' u'Handler: NavLogoffEvent ' u'Trigger: Logoff').format(key_path) expected_short_message = u'{0:s}...'.format(expected_message[0:77]) self._TestGetMessageStrings( event_object, expected_message, expected_short_message) event_object = event_objects[13] expected_timestamp = timelib.Timestamp.CopyFromString(time_string) self.assertEqual(event_object.timestamp, expected_timestamp) expected_message = ( u'[{0:s}] ' u'Application: VmApplet ' u'Command: SystemPropertiesPerformance.exe/pagefile ' u'Trigger: Logon').format(key_path) expected_short_message = u'{0:s}...'.format(expected_message[0:77]) self._TestGetMessageStrings( event_object, expected_message, expected_short_message) if __name__ == '__main__': unittest.main()
dc3-plaso/plaso
tests/parsers/winreg_plugins/winlogon.py
Python
apache-2.0
12,249
from __future__ import absolute_import, division, unicode_literals import os import sys import unittest import warnings from difflib import unified_diff try: unittest.TestCase.assertEqual except AttributeError: unittest.TestCase.assertEqual = unittest.TestCase.assertEquals from .support import get_data_files, TestData, convertExpected from html5lib import html5parser, treewalkers, treebuilders, constants def PullDOMAdapter(node): from xml.dom import Node from xml.dom.pulldom import START_ELEMENT, END_ELEMENT, COMMENT, CHARACTERS if node.nodeType in (Node.DOCUMENT_NODE, Node.DOCUMENT_FRAGMENT_NODE): for childNode in node.childNodes: for event in PullDOMAdapter(childNode): yield event elif node.nodeType == Node.DOCUMENT_TYPE_NODE: raise NotImplementedError("DOCTYPE nodes are not supported by PullDOM") elif node.nodeType == Node.COMMENT_NODE: yield COMMENT, node elif node.nodeType in (Node.TEXT_NODE, Node.CDATA_SECTION_NODE): yield CHARACTERS, node elif node.nodeType == Node.ELEMENT_NODE: yield START_ELEMENT, node for childNode in node.childNodes: for event in PullDOMAdapter(childNode): yield event yield END_ELEMENT, node else: raise NotImplementedError("Node type not supported: " + str(node.nodeType)) treeTypes = { "DOM": {"builder": treebuilders.getTreeBuilder("dom"), "walker": treewalkers.getTreeWalker("dom")}, "PullDOM": {"builder": treebuilders.getTreeBuilder("dom"), "adapter": PullDOMAdapter, "walker": treewalkers.getTreeWalker("pulldom")}, } # Try whatever etree implementations are available from a list that are #"supposed" to work try: import xml.etree.ElementTree as ElementTree except ImportError: pass else: treeTypes['ElementTree'] = \ {"builder": treebuilders.getTreeBuilder("etree", ElementTree), "walker": treewalkers.getTreeWalker("etree", ElementTree)} try: import xml.etree.cElementTree as ElementTree except ImportError: pass else: treeTypes['cElementTree'] = \ {"builder": treebuilders.getTreeBuilder("etree", ElementTree), "walker": treewalkers.getTreeWalker("etree", ElementTree)} try: import lxml.etree as ElementTree # flake8: noqa except ImportError: pass else: treeTypes['lxml_native'] = \ {"builder": treebuilders.getTreeBuilder("lxml"), "walker": treewalkers.getTreeWalker("lxml")} # Try whatever etree implementations are available from a list that are #"supposed" to work try: import pxdom treeTypes['pxdom'] = \ {"builder": treebuilders.getTreeBuilder("dom", pxdom), "walker": treewalkers.getTreeWalker("dom")} except ImportError: pass try: from genshi.core import QName, Attrs from genshi.core import START, END, TEXT, COMMENT, DOCTYPE except ImportError: pass else: def GenshiAdapter(tree): text = None for token in treewalkers.getTreeWalker("dom")(tree): type = token["type"] if type in ("Characters", "SpaceCharacters"): if text is None: text = token["data"] else: text += token["data"] elif text is not None: yield TEXT, text, (None, -1, -1) text = None if type in ("StartTag", "EmptyTag"): if token["namespace"]: name = "{%s}%s" % (token["namespace"], token["name"]) else: name = token["name"] attrs = Attrs([(QName("{%s}%s" % attr if attr[0] is not None else attr[1]), value) for attr, value in token["data"].items()]) yield (START, (QName(name), attrs), (None, -1, -1)) if type == "EmptyTag": type = "EndTag" if type == "EndTag": if token["namespace"]: name = "{%s}%s" % (token["namespace"], token["name"]) else: name = token["name"] yield END, QName(name), (None, -1, -1) elif type == "Comment": yield COMMENT, token["data"], (None, -1, -1) elif type == "Doctype": yield DOCTYPE, (token["name"], token["publicId"], token["systemId"]), (None, -1, -1) else: pass # FIXME: What to do? if text is not None: yield TEXT, text, (None, -1, -1) treeTypes["genshi"] = \ {"builder": treebuilders.getTreeBuilder("dom"), "adapter": GenshiAdapter, "walker": treewalkers.getTreeWalker("genshi")} def concatenateCharacterTokens(tokens): charactersToken = None for token in tokens: type = token["type"] if type in ("Characters", "SpaceCharacters"): if charactersToken is None: charactersToken = {"type": "Characters", "data": token["data"]} else: charactersToken["data"] += token["data"] else: if charactersToken is not None: yield charactersToken charactersToken = None yield token if charactersToken is not None: yield charactersToken def convertTokens(tokens): output = [] indent = 0 for token in concatenateCharacterTokens(tokens): type = token["type"] if type in ("StartTag", "EmptyTag"): if (token["namespace"] and token["namespace"] != constants.namespaces["html"]): if token["namespace"] in constants.prefixes: name = constants.prefixes[token["namespace"]] else: name = token["namespace"] name += " " + token["name"] else: name = token["name"] output.append("%s<%s>" % (" " * indent, name)) indent += 2 attrs = token["data"] if attrs: # TODO: Remove this if statement, attrs should always exist for (namespace, name), value in sorted(attrs.items()): if namespace: if namespace in constants.prefixes: outputname = constants.prefixes[namespace] else: outputname = namespace outputname += " " + name else: outputname = name output.append("%s%s=\"%s\"" % (" " * indent, outputname, value)) if type == "EmptyTag": indent -= 2 elif type == "EndTag": indent -= 2 elif type == "Comment": output.append("%s<!-- %s -->" % (" " * indent, token["data"])) elif type == "Doctype": if token["name"]: if token["publicId"]: output.append("""%s<!DOCTYPE %s "%s" "%s">""" % (" " * indent, token["name"], token["publicId"], token["systemId"] and token["systemId"] or "")) elif token["systemId"]: output.append("""%s<!DOCTYPE %s "" "%s">""" % (" " * indent, token["name"], token["systemId"])) else: output.append("%s<!DOCTYPE %s>" % (" " * indent, token["name"])) else: output.append("%s<!DOCTYPE >" % (" " * indent,)) elif type in ("Characters", "SpaceCharacters"): output.append("%s\"%s\"" % (" " * indent, token["data"])) else: pass # TODO: what to do with errors? return "\n".join(output) import re attrlist = re.compile(r"^(\s+)\w+=.*(\n\1\w+=.*)+", re.M) def sortattrs(x): lines = x.group(0).split("\n") lines.sort() return "\n".join(lines) class TokenTestCase(unittest.TestCase): def test_all_tokens(self): expected = [ {'data': {}, 'type': 'StartTag', 'namespace': 'http://www.w3.org/1999/xhtml', 'name': 'html'}, {'data': {}, 'type': 'StartTag', 'namespace': 'http://www.w3.org/1999/xhtml', 'name': 'head'}, {'data': {}, 'type': 'EndTag', 'namespace': 'http://www.w3.org/1999/xhtml', 'name': 'head'}, {'data': {}, 'type': 'StartTag', 'namespace': 'http://www.w3.org/1999/xhtml', 'name': 'body'}, {'data': 'a', 'type': 'Characters'}, {'data': {}, 'type': 'StartTag', 'namespace': 'http://www.w3.org/1999/xhtml', 'name': 'div'}, {'data': 'b', 'type': 'Characters'}, {'data': {}, 'type': 'EndTag', 'namespace': 'http://www.w3.org/1999/xhtml', 'name': 'div'}, {'data': 'c', 'type': 'Characters'}, {'data': {}, 'type': 'EndTag', 'namespace': 'http://www.w3.org/1999/xhtml', 'name': 'body'}, {'data': {}, 'type': 'EndTag', 'namespace': 'http://www.w3.org/1999/xhtml', 'name': 'html'} ] for treeName, treeCls in treeTypes.items(): p = html5parser.HTMLParser(tree=treeCls["builder"]) document = p.parse("<html><head></head><body>a<div>b</div>c</body></html>") document = treeCls.get("adapter", lambda x: x)(document) output = treeCls["walker"](document) for expectedToken, outputToken in zip(expected, output): self.assertEqual(expectedToken, outputToken) def runTreewalkerTest(innerHTML, input, expected, errors, treeClass): warnings.resetwarnings() warnings.simplefilter("error") try: p = html5parser.HTMLParser(tree=treeClass["builder"]) if innerHTML: document = p.parseFragment(input, innerHTML) else: document = p.parse(input) except constants.DataLossWarning: # Ignore testcases we know we don't pass return document = treeClass.get("adapter", lambda x: x)(document) try: output = convertTokens(treeClass["walker"](document)) output = attrlist.sub(sortattrs, output) expected = attrlist.sub(sortattrs, convertExpected(expected)) diff = "".join(unified_diff([line + "\n" for line in expected.splitlines()], [line + "\n" for line in output.splitlines()], "Expected", "Received")) assert expected == output, "\n".join([ "", "Input:", input, "", "Expected:", expected, "", "Received:", output, "", "Diff:", diff, ]) except NotImplementedError: pass # Amnesty for those that confess... def test_treewalker(): sys.stdout.write('Testing tree walkers ' + " ".join(list(treeTypes.keys())) + "\n") for treeName, treeCls in treeTypes.items(): files = get_data_files('tree-construction') for filename in files: testName = os.path.basename(filename).replace(".dat", "") if testName in ("template",): continue tests = TestData(filename, "data") for index, test in enumerate(tests): (input, errors, innerHTML, expected) = [test[key] for key in ("data", "errors", "document-fragment", "document")] errors = errors.split("\n") yield runTreewalkerTest, innerHTML, input, expected, errors, treeCls
vitorio/NaNoGenMo2013
ficly-scrape/html5lib/tests/test_treewalkers.py
Python
cc0-1.0
11,844
from django.conf.urls import include, url from storages.views import add_s, edit_s, ViewStorages urlpatterns = [ url(r'^$', ViewStorages.as_view(), name='all'), url(r'^add/', add_s, name='add_s'), url(r'^edit/', edit_s, name='edit'), url(r'^api/', include('storages.api.urls')), ]
sfcl/severcart
storages/urls.py
Python
gpl-2.0
298
from django.db import models from django.db.models import * from django.contrib.auth.models import User from django.contrib import admin from django.db.models.signals import post_save from taggit.managers import TaggableManager from shared.utils import * class UserProfile(models.Model): tab_id=models.IntegerField(primary_key=True) #username=models.CharField(max_length=20) #email=models.EmailField(max_length=30) user = OneToOneField(User) location=models.CharField(max_length=10) nickname=models.CharField(max_length=10)# May not needed #password = models.CharField(max_length=15) avatar= models.ImageField(upload_to='static/images/profile_image', blank=True) online_status=models.BooleanField(default=False)# Good! user_type=models.IntegerField(max_length=1,default=0) skills=models.CharField(max_length=100, blank=True)#to mantain user profile posts = IntegerField(default=0) reply_count=models.IntegerField(default=0) role=models.IntegerField()#to differentiate b/w user and admin def __unicode__(self): return self.username def increment_posts(self): self.posts += 1 self.save() def increment_replies(self): self.reply_count += 1 self.save() class Category(models.Model): category=models.CharField(max_length=20) tags = TaggableManager() def __unicode__(self): return self.category class Post(models.Model): title = CharField(max_length=60) body=models.TextField() created_date=models.DateTimeField(auto_now_add=True) #fk user=models.ForeignKey('UserProfile') #fk category=models.ForeignKey('Category') count=models.IntegerField(default=0) admin_id=models.IntegerField()#question will need admin's approval class Meta: ordering = ["created_date"] def __unicode__(self): return self.title def increment_count(self): self.count += 1 self.save() def short(self): created = self.created_date.strftime("%b %d, %I:%M %p") return u"%s - %s\n%s" % (self.user, self.title, created_date) def profile_data(self): p = self.created_date.profile return p.posts, p.avatar class Reply(models.Model): #fk title=models.ForeignKey('Post') body=models.TextField() #creator = ForeignKey(User, blank=True, null=True) user=models.ForeignKey(User) post_date=models.DateTimeField(auto_now_add=True) file_upload=models.FileField(upload_to='forum/file') ratings=models.IntegerField(max_length=5,default=0)# there should be a limit within which the rating should be done admin_approved=models.BooleanField(default=False) count=models.IntegerField(default=0) class Meta: ordering = ["post_date"] def __unicode__(self): return self.title def increment_count(self): self.count += 1 self.save() def short(self): created = self.post_date.strftime("%b %d, %I:%M %p") return u"%s - %s\n%s" % (self.user, self.title, post_date) def profile_data(self): p = self.post_date.profile return p.posts, p.avatar class Comment(models.Model): #fk answer=models.ForeignKey(Reply) text=models.TextField() created_date=models.DateTimeField(auto_now_add=True) count=models.IntegerField(default=0) user=models.ForeignKey(User) class Meta: ordering = ["-created_date"] def __unicode__(self): return self.count class Ticket(models.Model): user_id=models.ForeignKey(User) topic_id=models.ForeignKey(Category) message=models.TextField() ticket_id=models.IntegerField() file_uploads=models.FileField(upload_to='tickets/file') created_date_time=models.DateTimeField(auto_now_add=True) overdue_date_time=models.DateTimeField(auto_now_add=True) closed_date_time=models.DateTimeField(auto_now_add=True) status=models.IntegerField() reopened_date_time=models.DateTimeField(auto_now_add=True) topic_priority=models.IntegerField() duration_for_reply=models.IntegerField() def __unicode__(self): return self.user_id class Tablet_info(models.Model): rcID=models.IntegerField() rcName=models.CharField(max_length=100) start_tab_id=models.IntegerField() end_tab_id=models.IntegerField() count=models.IntegerField() city=models.CharField(max_length=20) def __unicode__(self): return self.start_tab_id,self.end_tab_id
shaswatsunder/aakashlabs-forum
shared/models.py
Python
gpl-3.0
4,263
#!/usr/bin/env python # # Copyright 2011 Facebook # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. """Miscellaneous network utility code.""" from __future__ import absolute_import, division, print_function import errno import os import sys import socket import stat from tornado.concurrent import dummy_executor, run_on_executor from tornado.ioloop import IOLoop from tornado.platform.auto import set_close_exec from tornado.util import PY3, Configurable, errno_from_exception try: import ssl except ImportError: # ssl is not available on Google App Engine ssl = None if PY3: xrange = range if ssl is not None: # Note that the naming of ssl.Purpose is confusing; the purpose # of a context is to authentiate the opposite side of the connection. _client_ssl_defaults = ssl.create_default_context( ssl.Purpose.SERVER_AUTH) _server_ssl_defaults = ssl.create_default_context( ssl.Purpose.CLIENT_AUTH) if hasattr(ssl, 'OP_NO_COMPRESSION'): # See netutil.ssl_options_to_context _client_ssl_defaults.options |= ssl.OP_NO_COMPRESSION _server_ssl_defaults.options |= ssl.OP_NO_COMPRESSION else: # Google App Engine _client_ssl_defaults = dict(cert_reqs=None, ca_certs=None) _server_ssl_defaults = {} # ThreadedResolver runs getaddrinfo on a thread. If the hostname is unicode, # getaddrinfo attempts to import encodings.idna. If this is done at # module-import time, the import lock is already held by the main thread, # leading to deadlock. Avoid it by caching the idna encoder on the main # thread now. u'foo'.encode('idna') # For undiagnosed reasons, 'latin1' codec may also need to be preloaded. u'foo'.encode('latin1') # These errnos indicate that a non-blocking operation must be retried # at a later time. On most platforms they're the same value, but on # some they differ. _ERRNO_WOULDBLOCK = (errno.EWOULDBLOCK, errno.EAGAIN) if hasattr(errno, "WSAEWOULDBLOCK"): _ERRNO_WOULDBLOCK += (errno.WSAEWOULDBLOCK,) # type: ignore # Default backlog used when calling sock.listen() _DEFAULT_BACKLOG = 128 def bind_sockets(port, address=None, family=socket.AF_UNSPEC, backlog=_DEFAULT_BACKLOG, flags=None, reuse_port=False): """Creates listening sockets bound to the given port and address. Returns a list of socket objects (multiple sockets are returned if the given address maps to multiple IP addresses, which is most common for mixed IPv4 and IPv6 use). Address may be either an IP address or hostname. If it's a hostname, the server will listen on all IP addresses associated with the name. Address may be an empty string or None to listen on all available interfaces. Family may be set to either `socket.AF_INET` or `socket.AF_INET6` to restrict to IPv4 or IPv6 addresses, otherwise both will be used if available. The ``backlog`` argument has the same meaning as for `socket.listen() <socket.socket.listen>`. ``flags`` is a bitmask of AI_* flags to `~socket.getaddrinfo`, like ``socket.AI_PASSIVE | socket.AI_NUMERICHOST``. ``reuse_port`` option sets ``SO_REUSEPORT`` option for every socket in the list. If your platform doesn't support this option ValueError will be raised. """ if reuse_port and not hasattr(socket, "SO_REUSEPORT"): raise ValueError("the platform doesn't support SO_REUSEPORT") sockets = [] if address == "": address = None if not socket.has_ipv6 and family == socket.AF_UNSPEC: # Python can be compiled with --disable-ipv6, which causes # operations on AF_INET6 sockets to fail, but does not # automatically exclude those results from getaddrinfo # results. # http://bugs.python.org/issue16208 family = socket.AF_INET if flags is None: flags = socket.AI_PASSIVE bound_port = None for res in set(socket.getaddrinfo(address, port, family, socket.SOCK_STREAM, 0, flags)): af, socktype, proto, canonname, sockaddr = res if (sys.platform == 'darwin' and address == 'localhost' and af == socket.AF_INET6 and sockaddr[3] != 0): # Mac OS X includes a link-local address fe80::1%lo0 in the # getaddrinfo results for 'localhost'. However, the firewall # doesn't understand that this is a local address and will # prompt for access (often repeatedly, due to an apparent # bug in its ability to remember granting access to an # application). Skip these addresses. continue try: sock = socket.socket(af, socktype, proto) except socket.error as e: if errno_from_exception(e) == errno.EAFNOSUPPORT: continue raise set_close_exec(sock.fileno()) if os.name != 'nt': sock.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1) if reuse_port: sock.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEPORT, 1) if af == socket.AF_INET6: # On linux, ipv6 sockets accept ipv4 too by default, # but this makes it impossible to bind to both # 0.0.0.0 in ipv4 and :: in ipv6. On other systems, # separate sockets *must* be used to listen for both ipv4 # and ipv6. For consistency, always disable ipv4 on our # ipv6 sockets and use a separate ipv4 socket when needed. # # Python 2.x on windows doesn't have IPPROTO_IPV6. if hasattr(socket, "IPPROTO_IPV6"): sock.setsockopt(socket.IPPROTO_IPV6, socket.IPV6_V6ONLY, 1) # automatic port allocation with port=None # should bind on the same port on IPv4 and IPv6 host, requested_port = sockaddr[:2] if requested_port == 0 and bound_port is not None: sockaddr = tuple([host, bound_port] + list(sockaddr[2:])) sock.setblocking(0) sock.bind(sockaddr) bound_port = sock.getsockname()[1] sock.listen(backlog) sockets.append(sock) return sockets if hasattr(socket, 'AF_UNIX'): def bind_unix_socket(file, mode=0o600, backlog=_DEFAULT_BACKLOG): """Creates a listening unix socket. If a socket with the given name already exists, it will be deleted. If any other file with that name exists, an exception will be raised. Returns a socket object (not a list of socket objects like `bind_sockets`) """ sock = socket.socket(socket.AF_UNIX, socket.SOCK_STREAM) set_close_exec(sock.fileno()) sock.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1) sock.setblocking(0) try: st = os.stat(file) except OSError as err: if errno_from_exception(err) != errno.ENOENT: raise else: if stat.S_ISSOCK(st.st_mode): os.remove(file) else: raise ValueError("File %s exists and is not a socket", file) sock.bind(file) os.chmod(file, mode) sock.listen(backlog) return sock def add_accept_handler(sock, callback): """Adds an `.IOLoop` event handler to accept new connections on ``sock``. When a connection is accepted, ``callback(connection, address)`` will be run (``connection`` is a socket object, and ``address`` is the address of the other end of the connection). Note that this signature is different from the ``callback(fd, events)`` signature used for `.IOLoop` handlers. A callable is returned which, when called, will remove the `.IOLoop` event handler and stop processing further incoming connections. .. versionchanged:: 5.0 The ``io_loop`` argument (deprecated since version 4.1) has been removed. .. versionchanged:: 5.0 A callable is returned (``None`` was returned before). """ io_loop = IOLoop.current() removed = [False] def accept_handler(fd, events): # More connections may come in while we're handling callbacks; # to prevent starvation of other tasks we must limit the number # of connections we accept at a time. Ideally we would accept # up to the number of connections that were waiting when we # entered this method, but this information is not available # (and rearranging this method to call accept() as many times # as possible before running any callbacks would have adverse # effects on load balancing in multiprocess configurations). # Instead, we use the (default) listen backlog as a rough # heuristic for the number of connections we can reasonably # accept at once. for i in xrange(_DEFAULT_BACKLOG): if removed[0]: # The socket was probably closed return try: connection, address = sock.accept() except socket.error as e: # _ERRNO_WOULDBLOCK indicate we have accepted every # connection that is available. if errno_from_exception(e) in _ERRNO_WOULDBLOCK: return # ECONNABORTED indicates that there was a connection # but it was closed while still in the accept queue. # (observed on FreeBSD). if errno_from_exception(e) == errno.ECONNABORTED: continue raise set_close_exec(connection.fileno()) callback(connection, address) def remove_handler(): io_loop.remove_handler(sock) removed[0] = True io_loop.add_handler(sock, accept_handler, IOLoop.READ) return remove_handler def is_valid_ip(ip): """Returns true if the given string is a well-formed IP address. Supports IPv4 and IPv6. """ if not ip or '\x00' in ip: # getaddrinfo resolves empty strings to localhost, and truncates # on zero bytes. return False try: res = socket.getaddrinfo(ip, 0, socket.AF_UNSPEC, socket.SOCK_STREAM, 0, socket.AI_NUMERICHOST) return bool(res) except socket.gaierror as e: if e.args[0] == socket.EAI_NONAME: return False raise return True class Resolver(Configurable): """Configurable asynchronous DNS resolver interface. By default, a blocking implementation is used (which simply calls `socket.getaddrinfo`). An alternative implementation can be chosen with the `Resolver.configure <.Configurable.configure>` class method:: Resolver.configure('tornado.netutil.ThreadedResolver') The implementations of this interface included with Tornado are * `tornado.netutil.BlockingResolver` * `tornado.netutil.ThreadedResolver` * `tornado.netutil.OverrideResolver` * `tornado.platform.twisted.TwistedResolver` * `tornado.platform.caresresolver.CaresResolver` """ @classmethod def configurable_base(cls): return Resolver @classmethod def configurable_default(cls): return BlockingResolver def resolve(self, host, port, family=socket.AF_UNSPEC, callback=None): """Resolves an address. The ``host`` argument is a string which may be a hostname or a literal IP address. Returns a `.Future` whose result is a list of (family, address) pairs, where address is a tuple suitable to pass to `socket.connect <socket.socket.connect>` (i.e. a ``(host, port)`` pair for IPv4; additional fields may be present for IPv6). If a ``callback`` is passed, it will be run with the result as an argument when it is complete. :raises IOError: if the address cannot be resolved. .. versionchanged:: 4.4 Standardized all implementations to raise `IOError`. """ raise NotImplementedError() def close(self): """Closes the `Resolver`, freeing any resources used. .. versionadded:: 3.1 """ pass class ExecutorResolver(Resolver): """Resolver implementation using a `concurrent.futures.Executor`. Use this instead of `ThreadedResolver` when you require additional control over the executor being used. The executor will be shut down when the resolver is closed unless ``close_resolver=False``; use this if you want to reuse the same executor elsewhere. .. versionchanged:: 5.0 The ``io_loop`` argument (deprecated since version 4.1) has been removed. """ def initialize(self, executor=None, close_executor=True): self.io_loop = IOLoop.current() if executor is not None: self.executor = executor self.close_executor = close_executor else: self.executor = dummy_executor self.close_executor = False def close(self): if self.close_executor: self.executor.shutdown() self.executor = None @run_on_executor def resolve(self, host, port, family=socket.AF_UNSPEC): # On Solaris, getaddrinfo fails if the given port is not found # in /etc/services and no socket type is given, so we must pass # one here. The socket type used here doesn't seem to actually # matter (we discard the one we get back in the results), # so the addresses we return should still be usable with SOCK_DGRAM. addrinfo = socket.getaddrinfo(host, port, family, socket.SOCK_STREAM) results = [] for family, socktype, proto, canonname, address in addrinfo: results.append((family, address)) return results class BlockingResolver(ExecutorResolver): """Default `Resolver` implementation, using `socket.getaddrinfo`. The `.IOLoop` will be blocked during the resolution, although the callback will not be run until the next `.IOLoop` iteration. """ def initialize(self): super(BlockingResolver, self).initialize() class ThreadedResolver(ExecutorResolver): """Multithreaded non-blocking `Resolver` implementation. Requires the `concurrent.futures` package to be installed (available in the standard library since Python 3.2, installable with ``pip install futures`` in older versions). The thread pool size can be configured with:: Resolver.configure('tornado.netutil.ThreadedResolver', num_threads=10) .. versionchanged:: 3.1 All ``ThreadedResolvers`` share a single thread pool, whose size is set by the first one to be created. """ _threadpool = None # type: ignore _threadpool_pid = None # type: int def initialize(self, num_threads=10): threadpool = ThreadedResolver._create_threadpool(num_threads) super(ThreadedResolver, self).initialize( executor=threadpool, close_executor=False) @classmethod def _create_threadpool(cls, num_threads): pid = os.getpid() if cls._threadpool_pid != pid: # Threads cannot survive after a fork, so if our pid isn't what it # was when we created the pool then delete it. cls._threadpool = None if cls._threadpool is None: from concurrent.futures import ThreadPoolExecutor cls._threadpool = ThreadPoolExecutor(num_threads) cls._threadpool_pid = pid return cls._threadpool class OverrideResolver(Resolver): """Wraps a resolver with a mapping of overrides. This can be used to make local DNS changes (e.g. for testing) without modifying system-wide settings. The mapping can contain either host strings or host-port pairs. """ def initialize(self, resolver, mapping): self.resolver = resolver self.mapping = mapping def close(self): self.resolver.close() def resolve(self, host, port, *args, **kwargs): if (host, port) in self.mapping: host, port = self.mapping[(host, port)] elif host in self.mapping: host = self.mapping[host] return self.resolver.resolve(host, port, *args, **kwargs) # These are the keyword arguments to ssl.wrap_socket that must be translated # to their SSLContext equivalents (the other arguments are still passed # to SSLContext.wrap_socket). _SSL_CONTEXT_KEYWORDS = frozenset(['ssl_version', 'certfile', 'keyfile', 'cert_reqs', 'ca_certs', 'ciphers']) def ssl_options_to_context(ssl_options): """Try to convert an ``ssl_options`` dictionary to an `~ssl.SSLContext` object. The ``ssl_options`` dictionary contains keywords to be passed to `ssl.wrap_socket`. In Python 2.7.9+, `ssl.SSLContext` objects can be used instead. This function converts the dict form to its `~ssl.SSLContext` equivalent, and may be used when a component which accepts both forms needs to upgrade to the `~ssl.SSLContext` version to use features like SNI or NPN. """ if isinstance(ssl_options, ssl.SSLContext): return ssl_options assert isinstance(ssl_options, dict) assert all(k in _SSL_CONTEXT_KEYWORDS for k in ssl_options), ssl_options # Can't use create_default_context since this interface doesn't # tell us client vs server. context = ssl.SSLContext( ssl_options.get('ssl_version', ssl.PROTOCOL_SSLv23)) if 'certfile' in ssl_options: context.load_cert_chain(ssl_options['certfile'], ssl_options.get('keyfile', None)) if 'cert_reqs' in ssl_options: context.verify_mode = ssl_options['cert_reqs'] if 'ca_certs' in ssl_options: context.load_verify_locations(ssl_options['ca_certs']) if 'ciphers' in ssl_options: context.set_ciphers(ssl_options['ciphers']) if hasattr(ssl, 'OP_NO_COMPRESSION'): # Disable TLS compression to avoid CRIME and related attacks. # This constant depends on openssl version 1.0. # TODO: Do we need to do this ourselves or can we trust # the defaults? context.options |= ssl.OP_NO_COMPRESSION return context def ssl_wrap_socket(socket, ssl_options, server_hostname=None, **kwargs): """Returns an ``ssl.SSLSocket`` wrapping the given socket. ``ssl_options`` may be either an `ssl.SSLContext` object or a dictionary (as accepted by `ssl_options_to_context`). Additional keyword arguments are passed to ``wrap_socket`` (either the `~ssl.SSLContext` method or the `ssl` module function as appropriate). """ context = ssl_options_to_context(ssl_options) if ssl.HAS_SNI: # In python 3.4, wrap_socket only accepts the server_hostname # argument if HAS_SNI is true. # TODO: add a unittest (python added server-side SNI support in 3.4) # In the meantime it can be manually tested with # python3 -m tornado.httpclient https://sni.velox.ch return context.wrap_socket(socket, server_hostname=server_hostname, **kwargs) else: return context.wrap_socket(socket, **kwargs)
SuminAndrew/tornado
tornado/netutil.py
Python
apache-2.0
19,807
# -*- coding: utf-8 -*- import sys import os import re # If extensions (or modules to document with autodoc) are in another directory, # add these directories to sys.path here. If the directory is relative to the # documentation root, use os.path.abspath to make it absolute, like shown here. #sys.path.insert(0, os.path.abspath('.')) sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__), "_ext"))) # -- General configuration ------------------------------------------------ # If your documentation needs a minimal Sphinx version, state it here. #needs_sphinx = '1.0' # Add any Sphinx extension module names here, as strings. They can be # extensions coming with Sphinx (named 'sphinx.ext.*') or your custom # ones. extensions = [ 'sphinx.ext.autodoc', 'sphinx.ext.todo', 'sphinx.ext.viewcode', ] # The suffix of source filenames. source_suffix = '.rst' # The encoding of source files. #source_encoding = 'utf-8-sig' # The master toctree document. master_doc = 'index' # General information about the project. project = u'wssdl' copyright = u'2016, Franklin "Snaipe" Mathieu' # The version info for the project you're documenting, acts as replacement for # |version| and |release|, also used in various other places throughout the # built documents. # # The full version, including alpha/beta/rc tags. release = '0.2.0' # The short X.Y version. version = re.search(r'\d+\.\d+', release).group(0) # The language for content autogenerated by Sphinx. Refer to documentation # for a list of supported languages. #language = None # There are two options for replacing |today|: either, you set today to some # non-false value, then it is used: #today = '' # Else, today_fmt is used as the format for a strftime call. #today_fmt = '%B %d, %Y' # List of patterns, relative to source directory, that match files and # directories to ignore when looking for source files. exclude_patterns = ['_build', 'html', 'doctrees'] # The reST default role (used for this markup: `text`) to use for all # documents. #default_role = None # If true, '()' will be appended to :func: etc. cross-reference text. #add_function_parentheses = True # If true, the current module name will be prepended to all description # unit titles (such as .. function::). #add_module_names = True # If true, sectionauthor and moduleauthor directives will be shown in the # output. They are ignored by default. #show_authors = False # The name of the Pygments (syntax highlighting) style to use. pygments_style = 'sphinx' # A list of ignored prefixes for module index sorting. #modindex_common_prefix = [] # If true, keep warnings as "system message" paragraphs in the built documents. #keep_warnings = False # -- Options for HTML output ---------------------------------------------- # The theme to use for HTML and HTML Help pages. See the documentation for # a list of builtin themes. html_theme = 'default' # Theme options are theme-specific and customize the look and feel of a theme # further. For a list of options available for each theme, see the # documentation. #html_theme_options = {} # Add any paths that contain custom themes here, relative to this directory. #html_theme_path = [] # The name for this set of Sphinx documents. If None, it defaults to # "<project> v<release> documentation". #html_title = None # A shorter title for the navigation bar. Default is the same as html_title. #html_short_title = None # The name of an image file (relative to this directory) to place at the top # of the sidebar. #html_logo = None # The name of an image file (within the static path) to use as favicon of the # docs. This file should be a Windows icon file (.ico) being 16x16 or 32x32 # pixels large. #html_favicon = None # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". html_static_path = ['_static'] # Add any extra paths that contain custom files (such as robots.txt or # .htaccess) here, relative to this directory. These files are copied # directly to the root of the documentation. #html_extra_path = [] # If not '', a 'Last updated on:' timestamp is inserted at every page bottom, # using the given strftime format. #html_last_updated_fmt = '%b %d, %Y' # If true, SmartyPants will be used to convert quotes and dashes to # typographically correct entities. #html_use_smartypants = True # Custom sidebar templates, maps document names to template names. #html_sidebars = {} # Additional templates that should be rendered to pages, maps page names to # template names. #html_additional_pages = {} # If false, no module index is generated. #html_domain_indices = True # If false, no index is generated. #html_use_index = True # If true, the index is split into individual pages for each letter. #html_split_index = False # If true, links to the reST sources are added to the pages. #html_show_sourcelink = True # If true, "Created using Sphinx" is shown in the HTML footer. Default is True. #html_show_sphinx = True # If true, "(C) Copyright ..." is shown in the HTML footer. Default is True. #html_show_copyright = True # If true, an OpenSearch description file will be output, and all pages will # contain a <link> tag referring to it. The value of this option must be the # base URL from which the finished HTML is served. #html_use_opensearch = '' # This is the file name suffix for HTML files (e.g. ".xhtml"). #html_file_suffix = None # Output file base name for HTML help builder. htmlhelp_basename = 'wssdl_doc' # -- Options for LaTeX output --------------------------------------------- latex_elements = { # The paper size ('letterpaper' or 'a4paper'). #'papersize': 'letterpaper', # The font size ('10pt', '11pt' or '12pt'). #'pointsize': '10pt', # Additional stuff for the LaTeX preamble. #'preamble': '', } # Grouping the document tree into LaTeX files. List of tuples # (source start file, target name, title, # author, documentclass [howto, manual, or own class]). latex_documents = [ ('index', 'wssdl.tex', u'wssdl documentation', u'Franklin "Snaipe" Mathieu', 'manual'), ] # The name of an image file (relative to this directory) to place at the top of # the title page. #latex_logo = None # For "manual" documents, if this is true, then toplevel headings are parts, # not chapters. #latex_use_parts = False # If true, show page references after internal links. #latex_show_pagerefs = False # If true, show URL addresses after external links. #latex_show_urls = False # Documents to append as an appendix to all manuals. #latex_appendices = [] # If false, no module index is generated. #latex_domain_indices = True # -- Options for manual page output --------------------------------------- # One entry per manual page. List of tuples # (source start file, name, description, authors, manual section). man_pages = [ ('index', 'wssdl', u'wssdl documentation', [u'Franklin "Snaipe" Mathieu'], 3) ] # If true, show URL addresses after external links. #man_show_urls = False # -- Options for Texinfo output ------------------------------------------- # Grouping the document tree into Texinfo files. List of tuples # (source start file, target name, title, author, # dir menu entry, description, category) texinfo_documents = [ ('index', 'wssdl', u'wssdl documentation', u'wssdl', 'wssdl', '', ''), ] # Documents to append as an appendix to all manuals. #texinfo_appendices = [] # If false, no module index is generated. #texinfo_domain_indices = True # How to display URL addresses: 'footnote', 'no', or 'inline'. #texinfo_show_urls = 'footnote' # -- Options for Epub output --------------------------------------------------- # Bibliographic Dublin Core info. epub_title = u'wssdl' epub_author = u'Franklin "Snaipe" Mathieu' epub_publisher = u'Franklin "Snaipe" Mathieu' epub_copyright = copyright # The language of the text. It defaults to the language option # or en if the language is not set. #epub_language = '' # The scheme of the identifier. Typical schemes are ISBN or URL. #epub_scheme = '' # The unique identifier of the text. This can be a ISBN number # or the project homepage. #epub_identifier = '' # A unique identification for the text. #epub_uid = '' # A tuple containing the cover image and cover page html template filenames. #epub_cover = () # HTML files that should be inserted before the pages created by sphinx. # The format is a list of tuples containing the path and title. #epub_pre_files = [] # HTML files shat should be inserted after the pages created by sphinx. # The format is a list of tuples containing the path and title. #epub_post_files = [] # A list of files that should not be packed into the epub file. #epub_exclude_files = [] # The depth of the table of contents in toc.ncx. #epub_tocdepth = 3 # Allow duplicate toc entries. #epub_tocdup = True # Highlight PHP without starting <?php tag from sphinx.highlighting import lexers from pygments.lexers.scripting import LuaLexer lexers['lua'] = LuaLexer()
diacritic/wssdl
doc/conf.py
Python
gpl-3.0
9,145
#!/bin/env python # -*- coding: utf-8 -*- from setuptools import setup, find_packages with open('README.md') as f: readme = f.read() with open('LICENSE') as f: license = f.read() setup( name='configparserdb', version='0.1.0', description='Python package to access config parser based database', long_description=readme, author='Aamir Malik', author_email='aamirm@gmail.com', url='https://github.com/aamirmalik/configparserdb', license=license, packages=['configparserdb'], zip_safe=False )
aamirmalik/configparserdb
setup.py
Python
gpl-2.0
544
import pickle import json import numpy as np from clustering_methods import * import sequenceParser import patternRepresentation import similarityMatrix import cluster_postprocessing import similarityMatrixFiltering from file_path_global import * sequenceParser.runProcess(filepath_sequence_pkl_w_ornament, filepath_pattern_candidates_w_ornament_json) sequenceParser.runProcess(filepath_sequence_pkl_wo_ornament, filepath_pattern_candidates_wo_ornament_json) patternRepresentation.runProcess(filepath_pattern_candidates_w_ornament_json, filepath_pattern_candidates_replication_w_ornament_json, filepath_pattern_candidates_replication_midinote_w_ornament_json) patternRepresentation.runProcess(filepath_pattern_candidates_wo_ornament_json, filepath_pattern_candidates_replication_wo_ornament_json, filepath_pattern_candidates_replication_midinote_wo_ornament_json) similarityMatrix.runProcess(filepath_pattern_candidates_w_ornament_json, filepath_pattern_candidates_replication_midinote_w_ornament_json, filepath_pattern_index_2_line_index_w_ornament_json, filepath_pattern_index_2_pattern_candidates_w_ornament_json, filepath_dissimlarity_matrix_replication_midinote_w_ornament_normalized_pkl) similarityMatrix.runProcess(filepath_pattern_candidates_wo_ornament_json, filepath_pattern_candidates_replication_midinote_wo_ornament_json, filepath_pattern_index_2_line_index_wo_ornament_json, filepath_pattern_index_2_pattern_candidates_wo_ornament_json, filepath_dissimlarity_matrix_replication_midinote_wo_ornament_normalized_pkl) similarityMatrixFiltering.runProcess(filepath_dissimlarity_matrix_replication_midinote_w_ornament_normalized_pkl, filepath_pattern_index_2_pattern_candidates_w_ornament_json) similarityMatrixFiltering.runProcess(filepath_dissimlarity_matrix_replication_midinote_wo_ornament_normalized_pkl, filepath_pattern_index_2_pattern_candidates_wo_ornament_json) ind_2_pattern = json.load(open('./dissimilarityMatrix/index2Pattern_wo_ornament.json', 'r')) dissimilarity_matrix = pickle.load(open('./dissimilarityMatrix/dissimilarityMatrixReplicationMidinote_wo_ornament_normalized.pkl','rb')) similarity_matrix = 1 - dissimilarity_matrix # for k in range(0, 21): # g = knnGraph(similarity_matrix, k) # labels = g.get_labels() # # g.plot() # print k, g.get_modularity() def generate_cluster(g): labels = g.get_labels() g.plot() cluster = [] for kk in range(max(labels)+1): cluster.append([ind_2_pattern[str(ii)] for ii in range(len(labels)) if labels[ii] == kk]) return cluster # k = 0 # g = knnGraph(similarity_matrix, k) # clusters = generate_cluster(g) # clusters = cluster_postprocessing.runProcess(clusters) # # pickle.dump(clusters, open('clusters/clusters_knn0_wo_ornament_normalized.pkl', 'wb')) k = 5 g = knnGraph(similarity_matrix, k) clusters = generate_cluster(g) clusters = cluster_postprocessing.runProcess(clusters) pickle.dump(clusters, open('clusters/clusters_knn5_wo_ornament_normalized.pkl', 'wb')) g = weightedGraph(similarity_matrix) clusters = generate_cluster(g) clusters = cluster_postprocessing.runProcess(clusters) pickle.dump(clusters, open('clusters/clusters_weighted_wo_ornament_normalized.pkl', 'wb'))
xavierfav/music-pattern-discovery
clustering_example.py
Python
agpl-3.0
3,566
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for DNNEstimators.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import functools import json import tempfile import numpy as np from tensorflow.contrib.layers.python.layers import feature_column from tensorflow.contrib.learn.python.learn import experiment from tensorflow.contrib.learn.python.learn.datasets import base from tensorflow.contrib.learn.python.learn.estimators import _sklearn from tensorflow.contrib.learn.python.learn.estimators import dnn from tensorflow.contrib.learn.python.learn.estimators import dnn_linear_combined from tensorflow.contrib.learn.python.learn.estimators import estimator from tensorflow.contrib.learn.python.learn.estimators import estimator_test_utils from tensorflow.contrib.learn.python.learn.estimators import head as head_lib from tensorflow.contrib.learn.python.learn.estimators import model_fn from tensorflow.contrib.learn.python.learn.estimators import run_config from tensorflow.contrib.learn.python.learn.estimators import test_data from tensorflow.contrib.learn.python.learn.metric_spec import MetricSpec from tensorflow.contrib.metrics.python.ops import metric_ops from tensorflow.python.framework import constant_op from tensorflow.python.framework import dtypes from tensorflow.python.framework import sparse_tensor from tensorflow.python.ops import array_ops from tensorflow.python.ops import init_ops from tensorflow.python.ops import math_ops from tensorflow.python.platform import test from tensorflow.python.training import input as input_lib from tensorflow.python.training import monitored_session from tensorflow.python.training import server_lib class EmbeddingMultiplierTest(test.TestCase): """dnn_model_fn tests.""" def testRaisesNonEmbeddingColumn(self): one_hot_language = feature_column.one_hot_column( feature_column.sparse_column_with_hash_bucket('language', 10)) params = { 'feature_columns': [one_hot_language], 'head': head_lib.multi_class_head(2), 'hidden_units': [1], # Set lr mult to 0. to keep embeddings constant. 'embedding_lr_multipliers': { one_hot_language: 0.0 }, } features = { 'language': sparse_tensor.SparseTensor( values=['en', 'fr', 'zh'], indices=[[0, 0], [1, 0], [2, 0]], dense_shape=[3, 1]), } labels = constant_op.constant([[0], [0], [0]], dtype=dtypes.int32) with self.assertRaisesRegexp(ValueError, 'can only be defined for embedding columns'): dnn._dnn_model_fn(features, labels, model_fn.ModeKeys.TRAIN, params) def testMultipliesGradient(self): embedding_language = feature_column.embedding_column( feature_column.sparse_column_with_hash_bucket('language', 10), dimension=1, initializer=init_ops.constant_initializer(0.1)) embedding_wire = feature_column.embedding_column( feature_column.sparse_column_with_hash_bucket('wire', 10), dimension=1, initializer=init_ops.constant_initializer(0.1)) params = { 'feature_columns': [embedding_language, embedding_wire], 'head': head_lib.multi_class_head(2), 'hidden_units': [1], # Set lr mult to 0. to keep embeddings constant. 'embedding_lr_multipliers': { embedding_language: 0.0 }, } features = { 'language': sparse_tensor.SparseTensor( values=['en', 'fr', 'zh'], indices=[[0, 0], [1, 0], [2, 0]], dense_shape=[3, 1]), 'wire': sparse_tensor.SparseTensor( values=['omar', 'stringer', 'marlo'], indices=[[0, 0], [1, 0], [2, 0]], dense_shape=[3, 1]), } labels = constant_op.constant([[0], [0], [0]], dtype=dtypes.int32) model_ops = dnn._dnn_model_fn(features, labels, model_fn.ModeKeys.TRAIN, params) with monitored_session.MonitoredSession() as sess: language_var = dnn_linear_combined._get_embedding_variable( embedding_language, 'dnn', 'dnn/input_from_feature_columns') wire_var = dnn_linear_combined._get_embedding_variable( embedding_wire, 'dnn', 'dnn/input_from_feature_columns') for _ in range(2): _, language_value, wire_value = sess.run( [model_ops.train_op, language_var, wire_var]) initial_value = np.full_like(language_value, 0.1) self.assertTrue(np.all(np.isclose(language_value, initial_value))) self.assertFalse(np.all(np.isclose(wire_value, initial_value))) class DNNEstimatorTest(test.TestCase): def _assertInRange(self, expected_min, expected_max, actual): self.assertLessEqual(expected_min, actual) self.assertGreaterEqual(expected_max, actual) def testExperimentIntegration(self): exp = experiment.Experiment( estimator=dnn.DNNClassifier( n_classes=3, feature_columns=[ feature_column.real_valued_column( 'feature', dimension=4) ], hidden_units=[3, 3]), train_input_fn=test_data.iris_input_multiclass_fn, eval_input_fn=test_data.iris_input_multiclass_fn) exp.test() def testEstimatorContract(self): estimator_test_utils.assert_estimator_contract(self, dnn.DNNEstimator) def testTrainWithWeights(self): """Tests training with given weight column.""" def _input_fn_train(): # Create 4 rows, one of them (y = x), three of them (y=Not(x)) # First row has more weight than others. Model should fit (y=x) better # than (y=Not(x)) due to the relative higher weight of the first row. labels = constant_op.constant([[1], [0], [0], [0]]) features = { 'x': array_ops.ones( shape=[4, 1], dtype=dtypes.float32), 'w': constant_op.constant([[100.], [3.], [2.], [2.]]) } return features, labels def _input_fn_eval(): # Create 4 rows (y = x) labels = constant_op.constant([[1], [1], [1], [1]]) features = { 'x': array_ops.ones( shape=[4, 1], dtype=dtypes.float32), 'w': constant_op.constant([[1.], [1.], [1.], [1.]]) } return features, labels dnn_estimator = dnn.DNNEstimator( head=head_lib.multi_class_head(2, weight_column_name='w'), feature_columns=[feature_column.real_valued_column('x')], hidden_units=[3, 3], config=run_config.RunConfig(tf_random_seed=1)) dnn_estimator.fit(input_fn=_input_fn_train, steps=5) scores = dnn_estimator.evaluate(input_fn=_input_fn_eval, steps=1) self._assertInRange(0.0, 1.0, scores['accuracy']) class DNNClassifierTest(test.TestCase): def testExperimentIntegration(self): exp = experiment.Experiment( estimator=dnn.DNNClassifier( n_classes=3, feature_columns=[ feature_column.real_valued_column( 'feature', dimension=4) ], hidden_units=[3, 3]), train_input_fn=test_data.iris_input_multiclass_fn, eval_input_fn=test_data.iris_input_multiclass_fn) exp.test() def _assertInRange(self, expected_min, expected_max, actual): self.assertLessEqual(expected_min, actual) self.assertGreaterEqual(expected_max, actual) def testEstimatorContract(self): estimator_test_utils.assert_estimator_contract(self, dnn.DNNClassifier) def testEmbeddingMultiplier(self): embedding_language = feature_column.embedding_column( feature_column.sparse_column_with_hash_bucket('language', 10), dimension=1, initializer=init_ops.constant_initializer(0.1)) classifier = dnn.DNNClassifier( feature_columns=[embedding_language], hidden_units=[3, 3], embedding_lr_multipliers={embedding_language: 0.8}) self.assertEqual({ embedding_language: 0.8 }, classifier.params['embedding_lr_multipliers']) def testInputPartitionSize(self): def _input_fn_float_label(num_epochs=None): features = { 'language': sparse_tensor.SparseTensor( values=input_lib.limit_epochs( ['en', 'fr', 'zh'], num_epochs=num_epochs), indices=[[0, 0], [0, 1], [2, 0]], dense_shape=[3, 2]) } labels = constant_op.constant([[0.8], [0.], [0.2]], dtype=dtypes.float32) return features, labels language_column = feature_column.sparse_column_with_hash_bucket( 'language', hash_bucket_size=20) feature_columns = [ feature_column.embedding_column(language_column, dimension=1), ] # Set num_ps_replica to be 10 and the min slice size to be extremely small, # so as to ensure that there'll be 10 partititions produced. config = run_config.RunConfig(tf_random_seed=1) config._num_ps_replicas = 10 classifier = dnn.DNNClassifier( n_classes=2, feature_columns=feature_columns, hidden_units=[3, 3], optimizer='Adagrad', config=config, input_layer_min_slice_size=1) # Ensure the param is passed in. self.assertEqual(1, classifier.params['input_layer_min_slice_size']) # Ensure the partition count is 10. classifier.fit(input_fn=_input_fn_float_label, steps=50) partition_count = 0 for name in classifier.get_variable_names(): if 'language_embedding' in name and 'Adagrad' in name: partition_count += 1 self.assertEqual(10, partition_count) def testLogisticRegression_MatrixData(self): """Tests binary classification using matrix data as input.""" cont_features = [feature_column.real_valued_column('feature', dimension=4)] classifier = dnn.DNNClassifier( feature_columns=cont_features, hidden_units=[3, 3], config=run_config.RunConfig(tf_random_seed=1)) input_fn = test_data.iris_input_logistic_fn classifier.fit(input_fn=input_fn, steps=5) scores = classifier.evaluate(input_fn=input_fn, steps=1) self._assertInRange(0.0, 1.0, scores['accuracy']) self.assertIn('loss', scores) def testLogisticRegression_MatrixData_Labels1D(self): """Same as the last test, but label shape is [100] instead of [100, 1].""" def _input_fn(): iris = test_data.prepare_iris_data_for_logistic_regression() return { 'feature': constant_op.constant( iris.data, dtype=dtypes.float32) }, constant_op.constant( iris.target, shape=[100], dtype=dtypes.int32) cont_features = [feature_column.real_valued_column('feature', dimension=4)] classifier = dnn.DNNClassifier( feature_columns=cont_features, hidden_units=[3, 3], config=run_config.RunConfig(tf_random_seed=1)) classifier.fit(input_fn=_input_fn, steps=5) scores = classifier.evaluate(input_fn=_input_fn, steps=1) self.assertIn('loss', scores) def testLogisticRegression_NpMatrixData(self): """Tests binary classification using numpy matrix data as input.""" iris = test_data.prepare_iris_data_for_logistic_regression() train_x = iris.data train_y = iris.target feature_columns = [feature_column.real_valued_column('', dimension=4)] classifier = dnn.DNNClassifier( feature_columns=feature_columns, hidden_units=[3, 3], config=run_config.RunConfig(tf_random_seed=1)) classifier.fit(x=train_x, y=train_y, steps=5) scores = classifier.evaluate(x=train_x, y=train_y, steps=1) self._assertInRange(0.0, 1.0, scores['accuracy']) def _assertBinaryPredictions(self, expected_len, predictions): self.assertEqual(expected_len, len(predictions)) for prediction in predictions: self.assertIn(prediction, (0, 1)) def _assertProbabilities(self, expected_batch_size, expected_n_classes, probabilities): self.assertEqual(expected_batch_size, len(probabilities)) for b in range(expected_batch_size): self.assertEqual(expected_n_classes, len(probabilities[b])) for i in range(expected_n_classes): self._assertInRange(0.0, 1.0, probabilities[b][i]) def testLogisticRegression_TensorData(self): """Tests binary classification using tensor data as input.""" def _input_fn(num_epochs=None): features = { 'age': input_lib.limit_epochs( constant_op.constant([[.8], [0.2], [.1]]), num_epochs=num_epochs), 'language': sparse_tensor.SparseTensor( values=input_lib.limit_epochs( ['en', 'fr', 'zh'], num_epochs=num_epochs), indices=[[0, 0], [0, 1], [2, 0]], dense_shape=[3, 2]) } return features, constant_op.constant([[1], [0], [0]], dtype=dtypes.int32) language_column = feature_column.sparse_column_with_hash_bucket( 'language', hash_bucket_size=20) feature_columns = [ feature_column.embedding_column( language_column, dimension=1), feature_column.real_valued_column('age') ] classifier = dnn.DNNClassifier( n_classes=2, feature_columns=feature_columns, hidden_units=[10, 10], config=run_config.RunConfig(tf_random_seed=1)) classifier.fit(input_fn=_input_fn, steps=50) scores = classifier.evaluate(input_fn=_input_fn, steps=1) self._assertInRange(0.0, 1.0, scores['accuracy']) self.assertIn('loss', scores) predict_input_fn = functools.partial(_input_fn, num_epochs=1) predicted_classes = list( classifier.predict_classes( input_fn=predict_input_fn, as_iterable=True)) self._assertBinaryPredictions(3, predicted_classes) predictions = list( classifier.predict(input_fn=predict_input_fn, as_iterable=True)) self.assertAllEqual(predicted_classes, predictions) def testLogisticRegression_FloatLabel(self): """Tests binary classification with float labels.""" def _input_fn_float_label(num_epochs=None): features = { 'age': input_lib.limit_epochs( constant_op.constant([[50], [20], [10]]), num_epochs=num_epochs), 'language': sparse_tensor.SparseTensor( values=input_lib.limit_epochs( ['en', 'fr', 'zh'], num_epochs=num_epochs), indices=[[0, 0], [0, 1], [2, 0]], dense_shape=[3, 2]) } labels = constant_op.constant([[0.8], [0.], [0.2]], dtype=dtypes.float32) return features, labels language_column = feature_column.sparse_column_with_hash_bucket( 'language', hash_bucket_size=20) feature_columns = [ feature_column.embedding_column( language_column, dimension=1), feature_column.real_valued_column('age') ] classifier = dnn.DNNClassifier( n_classes=2, feature_columns=feature_columns, hidden_units=[3, 3], config=run_config.RunConfig(tf_random_seed=1)) classifier.fit(input_fn=_input_fn_float_label, steps=50) predict_input_fn = functools.partial(_input_fn_float_label, num_epochs=1) predicted_classes = list( classifier.predict_classes( input_fn=predict_input_fn, as_iterable=True)) self._assertBinaryPredictions(3, predicted_classes) predictions = list( classifier.predict( input_fn=predict_input_fn, as_iterable=True)) self.assertAllEqual(predicted_classes, predictions) predictions_proba = list( classifier.predict_proba( input_fn=predict_input_fn, as_iterable=True)) self._assertProbabilities(3, 2, predictions_proba) def testMultiClass_MatrixData(self): """Tests multi-class classification using matrix data as input.""" cont_features = [feature_column.real_valued_column('feature', dimension=4)] classifier = dnn.DNNClassifier( n_classes=3, feature_columns=cont_features, hidden_units=[3, 3], config=run_config.RunConfig(tf_random_seed=1)) input_fn = test_data.iris_input_multiclass_fn classifier.fit(input_fn=input_fn, steps=200) scores = classifier.evaluate(input_fn=input_fn, steps=1) self._assertInRange(0.0, 1.0, scores['accuracy']) self.assertIn('loss', scores) def testMultiClass_MatrixData_Labels1D(self): """Same as the last test, but label shape is [150] instead of [150, 1].""" def _input_fn(): iris = base.load_iris() return { 'feature': constant_op.constant( iris.data, dtype=dtypes.float32) }, constant_op.constant( iris.target, shape=[150], dtype=dtypes.int32) cont_features = [feature_column.real_valued_column('feature', dimension=4)] classifier = dnn.DNNClassifier( n_classes=3, feature_columns=cont_features, hidden_units=[3, 3], config=run_config.RunConfig(tf_random_seed=1)) classifier.fit(input_fn=_input_fn, steps=200) scores = classifier.evaluate(input_fn=_input_fn, steps=1) self._assertInRange(0.0, 1.0, scores['accuracy']) def testMultiClass_NpMatrixData(self): """Tests multi-class classification using numpy matrix data as input.""" iris = base.load_iris() train_x = iris.data train_y = iris.target feature_columns = [feature_column.real_valued_column('', dimension=4)] classifier = dnn.DNNClassifier( n_classes=3, feature_columns=feature_columns, hidden_units=[3, 3], config=run_config.RunConfig(tf_random_seed=1)) classifier.fit(x=train_x, y=train_y, steps=200) scores = classifier.evaluate(x=train_x, y=train_y, steps=1) self._assertInRange(0.0, 1.0, scores['accuracy']) def testMultiClassLabelKeys(self): """Tests n_classes > 2 with label_keys vocabulary for labels.""" # Byte literals needed for python3 test to pass. label_keys = [b'label0', b'label1', b'label2'] def _input_fn(num_epochs=None): features = { 'age': input_lib.limit_epochs( constant_op.constant([[.8], [0.2], [.1]]), num_epochs=num_epochs), 'language': sparse_tensor.SparseTensor( values=input_lib.limit_epochs( ['en', 'fr', 'zh'], num_epochs=num_epochs), indices=[[0, 0], [0, 1], [2, 0]], dense_shape=[3, 2]) } labels = constant_op.constant( [[label_keys[1]], [label_keys[0]], [label_keys[0]]], dtype=dtypes.string) return features, labels language_column = feature_column.sparse_column_with_hash_bucket( 'language', hash_bucket_size=20) feature_columns = [ feature_column.embedding_column( language_column, dimension=1), feature_column.real_valued_column('age') ] classifier = dnn.DNNClassifier( n_classes=3, feature_columns=feature_columns, hidden_units=[10, 10], label_keys=label_keys, config=run_config.RunConfig(tf_random_seed=1)) classifier.fit(input_fn=_input_fn, steps=50) scores = classifier.evaluate(input_fn=_input_fn, steps=1) self._assertInRange(0.0, 1.0, scores['accuracy']) self.assertIn('loss', scores) predict_input_fn = functools.partial(_input_fn, num_epochs=1) predicted_classes = list( classifier.predict_classes( input_fn=predict_input_fn, as_iterable=True)) self.assertEqual(3, len(predicted_classes)) for pred in predicted_classes: self.assertIn(pred, label_keys) predictions = list( classifier.predict(input_fn=predict_input_fn, as_iterable=True)) self.assertAllEqual(predicted_classes, predictions) def testLoss(self): """Tests loss calculation.""" def _input_fn_train(): # Create 4 rows, one of them (y = x), three of them (y=Not(x)) # The logistic prediction should be (y = 0.25). labels = constant_op.constant([[1], [0], [0], [0]]) features = {'x': array_ops.ones(shape=[4, 1], dtype=dtypes.float32),} return features, labels classifier = dnn.DNNClassifier( n_classes=2, feature_columns=[feature_column.real_valued_column('x')], hidden_units=[3, 3], config=run_config.RunConfig(tf_random_seed=1)) classifier.fit(input_fn=_input_fn_train, steps=5) scores = classifier.evaluate(input_fn=_input_fn_train, steps=1) self.assertIn('loss', scores) def testLossWithWeights(self): """Tests loss calculation with weights.""" def _input_fn_train(): # 4 rows with equal weight, one of them (y = x), three of them (y=Not(x)) # The logistic prediction should be (y = 0.25). labels = constant_op.constant([[1.], [0.], [0.], [0.]]) features = { 'x': array_ops.ones( shape=[4, 1], dtype=dtypes.float32), 'w': constant_op.constant([[1.], [1.], [1.], [1.]]) } return features, labels def _input_fn_eval(): # 4 rows, with different weights. labels = constant_op.constant([[1.], [0.], [0.], [0.]]) features = { 'x': array_ops.ones( shape=[4, 1], dtype=dtypes.float32), 'w': constant_op.constant([[7.], [1.], [1.], [1.]]) } return features, labels classifier = dnn.DNNClassifier( weight_column_name='w', n_classes=2, feature_columns=[feature_column.real_valued_column('x')], hidden_units=[3, 3], config=run_config.RunConfig(tf_random_seed=1)) classifier.fit(input_fn=_input_fn_train, steps=5) scores = classifier.evaluate(input_fn=_input_fn_eval, steps=1) self.assertIn('loss', scores) def testTrainWithWeights(self): """Tests training with given weight column.""" def _input_fn_train(): # Create 4 rows, one of them (y = x), three of them (y=Not(x)) # First row has more weight than others. Model should fit (y=x) better # than (y=Not(x)) due to the relative higher weight of the first row. labels = constant_op.constant([[1], [0], [0], [0]]) features = { 'x': array_ops.ones( shape=[4, 1], dtype=dtypes.float32), 'w': constant_op.constant([[100.], [3.], [2.], [2.]]) } return features, labels def _input_fn_eval(): # Create 4 rows (y = x) labels = constant_op.constant([[1], [1], [1], [1]]) features = { 'x': array_ops.ones( shape=[4, 1], dtype=dtypes.float32), 'w': constant_op.constant([[1.], [1.], [1.], [1.]]) } return features, labels classifier = dnn.DNNClassifier( weight_column_name='w', feature_columns=[feature_column.real_valued_column('x')], hidden_units=[3, 3], config=run_config.RunConfig(tf_random_seed=1)) classifier.fit(input_fn=_input_fn_train, steps=5) scores = classifier.evaluate(input_fn=_input_fn_eval, steps=1) self._assertInRange(0.0, 1.0, scores['accuracy']) def testPredict_AsIterableFalse(self): """Tests predict and predict_prob methods with as_iterable=False.""" def _input_fn(num_epochs=None): features = { 'age': input_lib.limit_epochs( constant_op.constant([[.8], [.2], [.1]]), num_epochs=num_epochs), 'language': sparse_tensor.SparseTensor( values=input_lib.limit_epochs( ['en', 'fr', 'zh'], num_epochs=num_epochs), indices=[[0, 0], [0, 1], [2, 0]], dense_shape=[3, 2]) } return features, constant_op.constant([[1], [0], [0]], dtype=dtypes.int32) sparse_column = feature_column.sparse_column_with_hash_bucket( 'language', hash_bucket_size=20) feature_columns = [ feature_column.embedding_column( sparse_column, dimension=1) ] n_classes = 3 classifier = dnn.DNNClassifier( n_classes=n_classes, feature_columns=feature_columns, hidden_units=[10, 10], config=run_config.RunConfig(tf_random_seed=1)) classifier.fit(input_fn=_input_fn, steps=100) scores = classifier.evaluate(input_fn=_input_fn, steps=1) self._assertInRange(0.0, 1.0, scores['accuracy']) self.assertIn('loss', scores) predicted_classes = classifier.predict_classes( input_fn=_input_fn, as_iterable=False) self._assertBinaryPredictions(3, predicted_classes) predictions = classifier.predict(input_fn=_input_fn, as_iterable=False) self.assertAllEqual(predicted_classes, predictions) probabilities = classifier.predict_proba( input_fn=_input_fn, as_iterable=False) self._assertProbabilities(3, n_classes, probabilities) def testPredict_AsIterable(self): """Tests predict and predict_prob methods with as_iterable=True.""" def _input_fn(num_epochs=None): features = { 'age': input_lib.limit_epochs( constant_op.constant([[.8], [.2], [.1]]), num_epochs=num_epochs), 'language': sparse_tensor.SparseTensor( values=input_lib.limit_epochs( ['en', 'fr', 'zh'], num_epochs=num_epochs), indices=[[0, 0], [0, 1], [2, 0]], dense_shape=[3, 2]) } return features, constant_op.constant([[1], [0], [0]], dtype=dtypes.int32) language_column = feature_column.sparse_column_with_hash_bucket( 'language', hash_bucket_size=20) feature_columns = [ feature_column.embedding_column( language_column, dimension=1), feature_column.real_valued_column('age') ] classifier = dnn.DNNClassifier( n_classes=3, feature_columns=feature_columns, hidden_units=[3, 3], config=run_config.RunConfig(tf_random_seed=1)) classifier.fit(input_fn=_input_fn, steps=200) scores = classifier.evaluate(input_fn=_input_fn, steps=1) self._assertInRange(0.0, 1.0, scores['accuracy']) self.assertIn('loss', scores) predict_input_fn = functools.partial(_input_fn, num_epochs=1) predicted_classes = list( classifier.predict_classes( input_fn=predict_input_fn, as_iterable=True)) self.assertListEqual(predicted_classes, [1, 0, 0]) predictions = list( classifier.predict( input_fn=predict_input_fn, as_iterable=True)) self.assertAllEqual(predicted_classes, predictions) predicted_proba = list( classifier.predict_proba( input_fn=predict_input_fn, as_iterable=True)) self.assertAllClose( predicted_proba, [[0., 1., 0.], [1., 0., 0.], [1., 0., 0.]], atol=0.3) def testCustomMetrics(self): """Tests custom evaluation metrics.""" def _input_fn(num_epochs=None): # Create 4 rows, one of them (y = x), three of them (y=Not(x)) labels = constant_op.constant([[1], [0], [0], [0]]) features = { 'x': input_lib.limit_epochs( array_ops.ones( shape=[4, 1], dtype=dtypes.float32), num_epochs=num_epochs), } return features, labels def _my_metric_op(predictions, labels): # For the case of binary classification, the 2nd column of "predictions" # denotes the model predictions. labels = math_ops.to_float(labels) predictions = array_ops.strided_slice( predictions, [0, 1], [-1, 2], end_mask=1) labels = math_ops.cast(labels, predictions.dtype) return math_ops.reduce_sum(math_ops.multiply(predictions, labels)) classifier = dnn.DNNClassifier( feature_columns=[feature_column.real_valued_column('x')], hidden_units=[3, 3], config=run_config.RunConfig(tf_random_seed=1)) classifier.fit(input_fn=_input_fn, steps=5) scores = classifier.evaluate( input_fn=_input_fn, steps=5, metrics={ 'my_accuracy': MetricSpec( metric_fn=metric_ops.streaming_accuracy, prediction_key='classes'), 'my_precision': MetricSpec( metric_fn=metric_ops.streaming_precision, prediction_key='classes'), 'my_metric': MetricSpec( metric_fn=_my_metric_op, prediction_key='probabilities') }) self.assertTrue( set(['loss', 'my_accuracy', 'my_precision', 'my_metric']).issubset( set(scores.keys()))) predict_input_fn = functools.partial(_input_fn, num_epochs=1) predictions = np.array(list(classifier.predict_classes( input_fn=predict_input_fn))) self.assertEqual( _sklearn.accuracy_score([1, 0, 0, 0], predictions), scores['my_accuracy']) # Test the case where the 2nd element of the key is neither "classes" nor # "probabilities". with self.assertRaisesRegexp(KeyError, 'bad_type'): classifier.evaluate( input_fn=_input_fn, steps=5, metrics={ 'bad_name': MetricSpec( metric_fn=metric_ops.streaming_auc, prediction_key='bad_type') }) def testTrainSaveLoad(self): """Tests that insures you can save and reload a trained model.""" def _input_fn(num_epochs=None): features = { 'age': input_lib.limit_epochs( constant_op.constant([[.8], [.2], [.1]]), num_epochs=num_epochs), 'language': sparse_tensor.SparseTensor( values=input_lib.limit_epochs( ['en', 'fr', 'zh'], num_epochs=num_epochs), indices=[[0, 0], [0, 1], [2, 0]], dense_shape=[3, 2]) } return features, constant_op.constant([[1], [0], [0]], dtype=dtypes.int32) sparse_column = feature_column.sparse_column_with_hash_bucket( 'language', hash_bucket_size=20) feature_columns = [ feature_column.embedding_column( sparse_column, dimension=1) ] model_dir = tempfile.mkdtemp() classifier = dnn.DNNClassifier( model_dir=model_dir, n_classes=3, feature_columns=feature_columns, hidden_units=[3, 3], config=run_config.RunConfig(tf_random_seed=1)) classifier.fit(input_fn=_input_fn, steps=5) predict_input_fn = functools.partial(_input_fn, num_epochs=1) predictions1 = classifier.predict_classes(input_fn=predict_input_fn) del classifier classifier2 = dnn.DNNClassifier( model_dir=model_dir, n_classes=3, feature_columns=feature_columns, hidden_units=[3, 3], config=run_config.RunConfig(tf_random_seed=1)) predictions2 = classifier2.predict_classes(input_fn=predict_input_fn) self.assertEqual(list(predictions1), list(predictions2)) def testTrainWithPartitionedVariables(self): """Tests training with partitioned variables.""" def _input_fn(num_epochs=None): features = { 'age': input_lib.limit_epochs( constant_op.constant([[.8], [.2], [.1]]), num_epochs=num_epochs), 'language': sparse_tensor.SparseTensor( values=input_lib.limit_epochs( ['en', 'fr', 'zh'], num_epochs=num_epochs), indices=[[0, 0], [0, 1], [2, 0]], dense_shape=[3, 2]) } return features, constant_op.constant([[1], [0], [0]], dtype=dtypes.int32) # The given hash_bucket_size results in variables larger than the # default min_slice_size attribute, so the variables are partitioned. sparse_column = feature_column.sparse_column_with_hash_bucket( 'language', hash_bucket_size=2e7) feature_columns = [ feature_column.embedding_column( sparse_column, dimension=1) ] tf_config = { 'cluster': { run_config.TaskType.PS: ['fake_ps_0', 'fake_ps_1'] } } with test.mock.patch.dict('os.environ', {'TF_CONFIG': json.dumps(tf_config)}): config = run_config.RunConfig(tf_random_seed=1) # Because we did not start a distributed cluster, we need to pass an # empty ClusterSpec, otherwise the device_setter will look for # distributed jobs, such as "/job:ps" which are not present. config._cluster_spec = server_lib.ClusterSpec({}) classifier = dnn.DNNClassifier( n_classes=3, feature_columns=feature_columns, hidden_units=[3, 3], config=config) classifier.fit(input_fn=_input_fn, steps=5) scores = classifier.evaluate(input_fn=_input_fn, steps=1) self._assertInRange(0.0, 1.0, scores['accuracy']) self.assertIn('loss', scores) def testExport(self): """Tests export model for servo.""" def input_fn(): return { 'age': constant_op.constant([1]), 'language': sparse_tensor.SparseTensor( values=['english'], indices=[[0, 0]], dense_shape=[1, 1]) }, constant_op.constant([[1]]) language = feature_column.sparse_column_with_hash_bucket('language', 100) feature_columns = [ feature_column.real_valued_column('age'), feature_column.embedding_column( language, dimension=1) ] classifier = dnn.DNNClassifier( feature_columns=feature_columns, hidden_units=[3, 3]) classifier.fit(input_fn=input_fn, steps=5) export_dir = tempfile.mkdtemp() classifier.export(export_dir) def testEnableCenteredBias(self): """Tests that we can enable centered bias.""" cont_features = [feature_column.real_valued_column('feature', dimension=4)] classifier = dnn.DNNClassifier( n_classes=3, feature_columns=cont_features, hidden_units=[3, 3], enable_centered_bias=True, config=run_config.RunConfig(tf_random_seed=1)) input_fn = test_data.iris_input_multiclass_fn classifier.fit(input_fn=input_fn, steps=5) self.assertIn('dnn/multi_class_head/centered_bias_weight', classifier.get_variable_names()) scores = classifier.evaluate(input_fn=input_fn, steps=1) self._assertInRange(0.0, 1.0, scores['accuracy']) self.assertIn('loss', scores) def testDisableCenteredBias(self): """Tests that we can disable centered bias.""" cont_features = [feature_column.real_valued_column('feature', dimension=4)] classifier = dnn.DNNClassifier( n_classes=3, feature_columns=cont_features, hidden_units=[3, 3], enable_centered_bias=False, config=run_config.RunConfig(tf_random_seed=1)) input_fn = test_data.iris_input_multiclass_fn classifier.fit(input_fn=input_fn, steps=5) self.assertNotIn('centered_bias_weight', classifier.get_variable_names()) scores = classifier.evaluate(input_fn=input_fn, steps=1) self._assertInRange(0.0, 1.0, scores['accuracy']) self.assertIn('loss', scores) class DNNRegressorTest(test.TestCase): def testExperimentIntegration(self): exp = experiment.Experiment( estimator=dnn.DNNRegressor( feature_columns=[ feature_column.real_valued_column( 'feature', dimension=4) ], hidden_units=[3, 3]), train_input_fn=test_data.iris_input_logistic_fn, eval_input_fn=test_data.iris_input_logistic_fn) exp.test() def testEstimatorContract(self): estimator_test_utils.assert_estimator_contract(self, dnn.DNNRegressor) def testRegression_MatrixData(self): """Tests regression using matrix data as input.""" cont_features = [feature_column.real_valued_column('feature', dimension=4)] regressor = dnn.DNNRegressor( feature_columns=cont_features, hidden_units=[3, 3], config=run_config.RunConfig(tf_random_seed=1)) input_fn = test_data.iris_input_logistic_fn regressor.fit(input_fn=input_fn, steps=200) scores = regressor.evaluate(input_fn=input_fn, steps=1) self.assertIn('loss', scores) def testRegression_MatrixData_Labels1D(self): """Same as the last test, but label shape is [100] instead of [100, 1].""" def _input_fn(): iris = test_data.prepare_iris_data_for_logistic_regression() return { 'feature': constant_op.constant( iris.data, dtype=dtypes.float32) }, constant_op.constant( iris.target, shape=[100], dtype=dtypes.int32) cont_features = [feature_column.real_valued_column('feature', dimension=4)] regressor = dnn.DNNRegressor( feature_columns=cont_features, hidden_units=[3, 3], config=run_config.RunConfig(tf_random_seed=1)) regressor.fit(input_fn=_input_fn, steps=200) scores = regressor.evaluate(input_fn=_input_fn, steps=1) self.assertIn('loss', scores) def testRegression_NpMatrixData(self): """Tests binary classification using numpy matrix data as input.""" iris = test_data.prepare_iris_data_for_logistic_regression() train_x = iris.data train_y = iris.target feature_columns = [feature_column.real_valued_column('', dimension=4)] regressor = dnn.DNNRegressor( feature_columns=feature_columns, hidden_units=[3, 3], config=run_config.RunConfig(tf_random_seed=1)) regressor.fit(x=train_x, y=train_y, steps=200) scores = regressor.evaluate(x=train_x, y=train_y, steps=1) self.assertIn('loss', scores) def testRegression_TensorData(self): """Tests regression using tensor data as input.""" def _input_fn(num_epochs=None): features = { 'age': input_lib.limit_epochs( constant_op.constant([[.8], [.15], [0.]]), num_epochs=num_epochs), 'language': sparse_tensor.SparseTensor( values=input_lib.limit_epochs( ['en', 'fr', 'zh'], num_epochs=num_epochs), indices=[[0, 0], [0, 1], [2, 0]], dense_shape=[3, 2]) } return features, constant_op.constant([1., 0., 0.2], dtype=dtypes.float32) language_column = feature_column.sparse_column_with_hash_bucket( 'language', hash_bucket_size=20) feature_columns = [ feature_column.embedding_column( language_column, dimension=1), feature_column.real_valued_column('age') ] regressor = dnn.DNNRegressor( feature_columns=feature_columns, hidden_units=[3, 3], config=run_config.RunConfig(tf_random_seed=1)) regressor.fit(input_fn=_input_fn, steps=200) scores = regressor.evaluate(input_fn=_input_fn, steps=1) self.assertIn('loss', scores) def testLoss(self): """Tests loss calculation.""" def _input_fn_train(): # Create 4 rows, one of them (y = x), three of them (y=Not(x)) # The algorithm should learn (y = 0.25). labels = constant_op.constant([[1.], [0.], [0.], [0.]]) features = {'x': array_ops.ones(shape=[4, 1], dtype=dtypes.float32),} return features, labels regressor = dnn.DNNRegressor( feature_columns=[feature_column.real_valued_column('x')], hidden_units=[3, 3], config=run_config.RunConfig(tf_random_seed=1)) regressor.fit(input_fn=_input_fn_train, steps=5) scores = regressor.evaluate(input_fn=_input_fn_train, steps=1) self.assertIn('loss', scores) def testLossWithWeights(self): """Tests loss calculation with weights.""" def _input_fn_train(): # 4 rows with equal weight, one of them (y = x), three of them (y=Not(x)) # The algorithm should learn (y = 0.25). labels = constant_op.constant([[1.], [0.], [0.], [0.]]) features = { 'x': array_ops.ones( shape=[4, 1], dtype=dtypes.float32), 'w': constant_op.constant([[1.], [1.], [1.], [1.]]) } return features, labels def _input_fn_eval(): # 4 rows, with different weights. labels = constant_op.constant([[1.], [0.], [0.], [0.]]) features = { 'x': array_ops.ones( shape=[4, 1], dtype=dtypes.float32), 'w': constant_op.constant([[7.], [1.], [1.], [1.]]) } return features, labels regressor = dnn.DNNRegressor( weight_column_name='w', feature_columns=[feature_column.real_valued_column('x')], hidden_units=[3, 3], config=run_config.RunConfig(tf_random_seed=1)) regressor.fit(input_fn=_input_fn_train, steps=5) scores = regressor.evaluate(input_fn=_input_fn_eval, steps=1) self.assertIn('loss', scores) def testTrainWithWeights(self): """Tests training with given weight column.""" def _input_fn_train(): # Create 4 rows, one of them (y = x), three of them (y=Not(x)) # First row has more weight than others. Model should fit (y=x) better # than (y=Not(x)) due to the relative higher weight of the first row. labels = constant_op.constant([[1.], [0.], [0.], [0.]]) features = { 'x': array_ops.ones( shape=[4, 1], dtype=dtypes.float32), 'w': constant_op.constant([[100.], [3.], [2.], [2.]]) } return features, labels def _input_fn_eval(): # Create 4 rows (y = x) labels = constant_op.constant([[1.], [1.], [1.], [1.]]) features = { 'x': array_ops.ones( shape=[4, 1], dtype=dtypes.float32), 'w': constant_op.constant([[1.], [1.], [1.], [1.]]) } return features, labels regressor = dnn.DNNRegressor( weight_column_name='w', feature_columns=[feature_column.real_valued_column('x')], hidden_units=[3, 3], config=run_config.RunConfig(tf_random_seed=1)) regressor.fit(input_fn=_input_fn_train, steps=5) scores = regressor.evaluate(input_fn=_input_fn_eval, steps=1) self.assertIn('loss', scores) def testPredict_AsIterableFalse(self): """Tests predict method with as_iterable=False.""" labels = [1., 0., 0.2] def _input_fn(num_epochs=None): features = { 'age': input_lib.limit_epochs( constant_op.constant([[0.8], [0.15], [0.]]), num_epochs=num_epochs), 'language': sparse_tensor.SparseTensor( values=input_lib.limit_epochs( ['en', 'fr', 'zh'], num_epochs=num_epochs), indices=[[0, 0], [0, 1], [2, 0]], dense_shape=[3, 2]) } return features, constant_op.constant(labels, dtype=dtypes.float32) sparse_column = feature_column.sparse_column_with_hash_bucket( 'language', hash_bucket_size=20) feature_columns = [ feature_column.embedding_column( sparse_column, dimension=1), feature_column.real_valued_column('age') ] regressor = dnn.DNNRegressor( feature_columns=feature_columns, hidden_units=[3, 3], config=run_config.RunConfig(tf_random_seed=1)) regressor.fit(input_fn=_input_fn, steps=200) scores = regressor.evaluate(input_fn=_input_fn, steps=1) self.assertIn('loss', scores) predicted_scores = regressor.predict_scores( input_fn=_input_fn, as_iterable=False) self.assertAllClose(labels, predicted_scores, atol=0.2) predictions = regressor.predict(input_fn=_input_fn, as_iterable=False) self.assertAllClose(predicted_scores, predictions) def testPredict_AsIterable(self): """Tests predict method with as_iterable=True.""" labels = [1., 0., 0.2] def _input_fn(num_epochs=None): features = { 'age': input_lib.limit_epochs( constant_op.constant([[0.8], [0.15], [0.]]), num_epochs=num_epochs), 'language': sparse_tensor.SparseTensor( values=input_lib.limit_epochs( ['en', 'fr', 'zh'], num_epochs=num_epochs), indices=[[0, 0], [0, 1], [2, 0]], dense_shape=[3, 2]) } return features, constant_op.constant(labels, dtype=dtypes.float32) sparse_column = feature_column.sparse_column_with_hash_bucket( 'language', hash_bucket_size=20) feature_columns = [ feature_column.embedding_column( sparse_column, dimension=1), feature_column.real_valued_column('age') ] regressor = dnn.DNNRegressor( feature_columns=feature_columns, hidden_units=[3, 3], config=run_config.RunConfig(tf_random_seed=1)) regressor.fit(input_fn=_input_fn, steps=200) scores = regressor.evaluate(input_fn=_input_fn, steps=1) self.assertIn('loss', scores) predict_input_fn = functools.partial(_input_fn, num_epochs=1) predicted_scores = list( regressor.predict_scores( input_fn=predict_input_fn, as_iterable=True)) self.assertAllClose(labels, predicted_scores, atol=0.2) predictions = list( regressor.predict(input_fn=predict_input_fn, as_iterable=True)) self.assertAllClose(predicted_scores, predictions) def testCustomMetrics(self): """Tests custom evaluation metrics.""" def _input_fn(num_epochs=None): # Create 4 rows, one of them (y = x), three of them (y=Not(x)) labels = constant_op.constant([[1.], [0.], [0.], [0.]]) features = { 'x': input_lib.limit_epochs( array_ops.ones( shape=[4, 1], dtype=dtypes.float32), num_epochs=num_epochs), } return features, labels def _my_metric_op(predictions, labels): return math_ops.reduce_sum(math_ops.multiply(predictions, labels)) regressor = dnn.DNNRegressor( feature_columns=[feature_column.real_valued_column('x')], hidden_units=[3, 3], config=run_config.RunConfig(tf_random_seed=1)) regressor.fit(input_fn=_input_fn, steps=5) scores = regressor.evaluate( input_fn=_input_fn, steps=1, metrics={ 'my_error': metric_ops.streaming_mean_squared_error, ('my_metric', 'scores'): _my_metric_op }) self.assertIn('loss', set(scores.keys())) self.assertIn('my_error', set(scores.keys())) self.assertIn('my_metric', set(scores.keys())) predict_input_fn = functools.partial(_input_fn, num_epochs=1) predictions = np.array(list(regressor.predict_scores( input_fn=predict_input_fn))) self.assertAlmostEqual( _sklearn.mean_squared_error(np.array([1, 0, 0, 0]), predictions), scores['my_error']) # Tests the case that the 2nd element of the key is not "scores". with self.assertRaises(KeyError): regressor.evaluate( input_fn=_input_fn, steps=1, metrics={ ('my_error', 'predictions'): metric_ops.streaming_mean_squared_error }) # Tests the case where the tuple of the key doesn't have 2 elements. with self.assertRaises(ValueError): regressor.evaluate( input_fn=_input_fn, steps=1, metrics={ ('bad_length_name', 'scores', 'bad_length'): metric_ops.streaming_mean_squared_error }) def testCustomMetricsWithMetricSpec(self): """Tests custom evaluation metrics that use MetricSpec.""" def _input_fn(num_epochs=None): # Create 4 rows, one of them (y = x), three of them (y=Not(x)) labels = constant_op.constant([[1.], [0.], [0.], [0.]]) features = { 'x': input_lib.limit_epochs( array_ops.ones( shape=[4, 1], dtype=dtypes.float32), num_epochs=num_epochs), } return features, labels def _my_metric_op(predictions, labels): return math_ops.reduce_sum(math_ops.multiply(predictions, labels)) regressor = dnn.DNNRegressor( feature_columns=[feature_column.real_valued_column('x')], hidden_units=[3, 3], config=run_config.RunConfig(tf_random_seed=1)) regressor.fit(input_fn=_input_fn, steps=5) scores = regressor.evaluate( input_fn=_input_fn, steps=1, metrics={ 'my_error': MetricSpec( metric_fn=metric_ops.streaming_mean_squared_error, prediction_key='scores'), 'my_metric': MetricSpec( metric_fn=_my_metric_op, prediction_key='scores') }) self.assertIn('loss', set(scores.keys())) self.assertIn('my_error', set(scores.keys())) self.assertIn('my_metric', set(scores.keys())) predict_input_fn = functools.partial(_input_fn, num_epochs=1) predictions = np.array(list(regressor.predict_scores( input_fn=predict_input_fn))) self.assertAlmostEqual( _sklearn.mean_squared_error(np.array([1, 0, 0, 0]), predictions), scores['my_error']) # Tests the case where the prediction_key is not "scores". with self.assertRaisesRegexp(KeyError, 'bad_type'): regressor.evaluate( input_fn=_input_fn, steps=1, metrics={ 'bad_name': MetricSpec( metric_fn=metric_ops.streaming_auc, prediction_key='bad_type') }) def testTrainSaveLoad(self): """Tests that insures you can save and reload a trained model.""" def _input_fn(num_epochs=None): features = { 'age': input_lib.limit_epochs( constant_op.constant([[0.8], [0.15], [0.]]), num_epochs=num_epochs), 'language': sparse_tensor.SparseTensor( values=input_lib.limit_epochs( ['en', 'fr', 'zh'], num_epochs=num_epochs), indices=[[0, 0], [0, 1], [2, 0]], dense_shape=[3, 2]) } return features, constant_op.constant([1., 0., 0.2], dtype=dtypes.float32) sparse_column = feature_column.sparse_column_with_hash_bucket( 'language', hash_bucket_size=20) feature_columns = [ feature_column.embedding_column( sparse_column, dimension=1), feature_column.real_valued_column('age') ] model_dir = tempfile.mkdtemp() regressor = dnn.DNNRegressor( model_dir=model_dir, feature_columns=feature_columns, hidden_units=[3, 3], config=run_config.RunConfig(tf_random_seed=1)) regressor.fit(input_fn=_input_fn, steps=5) predict_input_fn = functools.partial(_input_fn, num_epochs=1) predictions = list(regressor.predict_scores(input_fn=predict_input_fn)) del regressor regressor2 = dnn.DNNRegressor( model_dir=model_dir, feature_columns=feature_columns, hidden_units=[3, 3], config=run_config.RunConfig(tf_random_seed=1)) predictions2 = list(regressor2.predict_scores(input_fn=predict_input_fn)) self.assertAllClose(predictions, predictions2) def testTrainWithPartitionedVariables(self): """Tests training with partitioned variables.""" def _input_fn(num_epochs=None): features = { 'age': input_lib.limit_epochs( constant_op.constant([[0.8], [0.15], [0.]]), num_epochs=num_epochs), 'language': sparse_tensor.SparseTensor( values=input_lib.limit_epochs( ['en', 'fr', 'zh'], num_epochs=num_epochs), indices=[[0, 0], [0, 1], [2, 0]], dense_shape=[3, 2]) } return features, constant_op.constant([1., 0., 0.2], dtype=dtypes.float32) # The given hash_bucket_size results in variables larger than the # default min_slice_size attribute, so the variables are partitioned. sparse_column = feature_column.sparse_column_with_hash_bucket( 'language', hash_bucket_size=2e7) feature_columns = [ feature_column.embedding_column( sparse_column, dimension=1), feature_column.real_valued_column('age') ] tf_config = { 'cluster': { run_config.TaskType.PS: ['fake_ps_0', 'fake_ps_1'] } } with test.mock.patch.dict('os.environ', {'TF_CONFIG': json.dumps(tf_config)}): config = run_config.RunConfig(tf_random_seed=1) # Because we did not start a distributed cluster, we need to pass an # empty ClusterSpec, otherwise the device_setter will look for # distributed jobs, such as "/job:ps" which are not present. config._cluster_spec = server_lib.ClusterSpec({}) regressor = dnn.DNNRegressor( feature_columns=feature_columns, hidden_units=[3, 3], config=config) regressor.fit(input_fn=_input_fn, steps=5) scores = regressor.evaluate(input_fn=_input_fn, steps=1) self.assertIn('loss', scores) def testEnableCenteredBias(self): """Tests that we can enable centered bias.""" def _input_fn(num_epochs=None): features = { 'age': input_lib.limit_epochs( constant_op.constant([[0.8], [0.15], [0.]]), num_epochs=num_epochs), 'language': sparse_tensor.SparseTensor( values=input_lib.limit_epochs( ['en', 'fr', 'zh'], num_epochs=num_epochs), indices=[[0, 0], [0, 1], [2, 0]], dense_shape=[3, 2]) } return features, constant_op.constant([1., 0., 0.2], dtype=dtypes.float32) sparse_column = feature_column.sparse_column_with_hash_bucket( 'language', hash_bucket_size=20) feature_columns = [ feature_column.embedding_column( sparse_column, dimension=1), feature_column.real_valued_column('age') ] regressor = dnn.DNNRegressor( feature_columns=feature_columns, hidden_units=[3, 3], enable_centered_bias=True, config=run_config.RunConfig(tf_random_seed=1)) regressor.fit(input_fn=_input_fn, steps=5) self.assertIn('dnn/regression_head/centered_bias_weight', regressor.get_variable_names()) scores = regressor.evaluate(input_fn=_input_fn, steps=1) self.assertIn('loss', scores) def testDisableCenteredBias(self): """Tests that we can disable centered bias.""" def _input_fn(num_epochs=None): features = { 'age': input_lib.limit_epochs( constant_op.constant([[0.8], [0.15], [0.]]), num_epochs=num_epochs), 'language': sparse_tensor.SparseTensor( values=input_lib.limit_epochs( ['en', 'fr', 'zh'], num_epochs=num_epochs), indices=[[0, 0], [0, 1], [2, 0]], dense_shape=[3, 2]) } return features, constant_op.constant([1., 0., 0.2], dtype=dtypes.float32) sparse_column = feature_column.sparse_column_with_hash_bucket( 'language', hash_bucket_size=20) feature_columns = [ feature_column.embedding_column( sparse_column, dimension=1), feature_column.real_valued_column('age') ] regressor = dnn.DNNRegressor( feature_columns=feature_columns, hidden_units=[3, 3], enable_centered_bias=False, config=run_config.RunConfig(tf_random_seed=1)) regressor.fit(input_fn=_input_fn, steps=5) self.assertNotIn('centered_bias_weight', regressor.get_variable_names()) scores = regressor.evaluate(input_fn=_input_fn, steps=1) self.assertIn('loss', scores) def boston_input_fn(): boston = base.load_boston() features = math_ops.cast( array_ops.reshape(constant_op.constant(boston.data), [-1, 13]), dtypes.float32) labels = math_ops.cast( array_ops.reshape(constant_op.constant(boston.target), [-1, 1]), dtypes.float32) return features, labels class FeatureColumnTest(test.TestCase): def testTrain(self): feature_columns = estimator.infer_real_valued_columns_from_input_fn( boston_input_fn) est = dnn.DNNRegressor(feature_columns=feature_columns, hidden_units=[3, 3]) est.fit(input_fn=boston_input_fn, steps=1) _ = est.evaluate(input_fn=boston_input_fn, steps=1) if __name__ == '__main__': test.main()
seaotterman/tensorflow
tensorflow/contrib/learn/python/learn/estimators/dnn_test.py
Python
apache-2.0
57,502
# -*- coding: utf-8 -*- # Part of Odoo. See LICENSE file for full copyright and licensing details. from collections import defaultdict from odoo import models, fields, api, _ from odoo.exceptions import UserError, ValidationError, RedirectWarning PROJECT_TASK_READABLE_FIELDS = { 'allow_subtasks', 'allow_timesheets', 'analytic_account_active', 'effective_hours', 'encode_uom_in_days', 'planned_hours', 'progress', 'overtime', 'remaining_hours', 'subtask_effective_hours', 'subtask_planned_hours', 'timesheet_ids', 'total_hours_spent', } class Project(models.Model): _inherit = "project.project" allow_timesheets = fields.Boolean( "Timesheets", compute='_compute_allow_timesheets', store=True, readonly=False, default=True, help="Enable timesheeting on the project.") analytic_account_id = fields.Many2one( # note: replaces ['|', ('company_id', '=', False), ('company_id', '=', company_id)] domain="""[ '|', ('company_id', '=', False), ('company_id', '=', company_id), ('partner_id', '=?', partner_id), ]""" ) timesheet_ids = fields.One2many('account.analytic.line', 'project_id', 'Associated Timesheets') timesheet_count = fields.Integer(compute="_compute_timesheet_count") timesheet_encode_uom_id = fields.Many2one('uom.uom', related='company_id.timesheet_encode_uom_id') total_timesheet_time = fields.Integer( compute='_compute_total_timesheet_time', help="Total number of time (in the proper UoM) recorded in the project, rounded to the unit.") encode_uom_in_days = fields.Boolean(compute='_compute_encode_uom_in_days') is_internal_project = fields.Boolean(compute='_compute_is_internal_project', search='_search_is_internal_project') remaining_hours = fields.Float(compute='_compute_remaining_hours', string='Remaining Invoiced Time', compute_sudo=True) has_planned_hours_tasks = fields.Boolean(compute='_compute_remaining_hours', compute_sudo=True, help="True if any of the project's task has a set planned hours") is_project_overtime = fields.Boolean('Project in Overtime', compute='_compute_remaining_hours', search='_search_is_project_overtime', compute_sudo=True) def _compute_encode_uom_in_days(self): self.encode_uom_in_days = self.env.company.timesheet_encode_uom_id == self.env.ref('uom.product_uom_day') @api.depends('analytic_account_id') def _compute_allow_timesheets(self): without_account = self.filtered(lambda t: not t.analytic_account_id and t._origin) without_account.update({'allow_timesheets': False}) @api.depends('company_id') def _compute_is_internal_project(self): for project in self: project.is_internal_project = project == project.company_id.internal_project_id @api.model def _search_is_internal_project(self, operator, value): if not isinstance(value, bool): raise ValueError('Invalid value: %s' % (value)) if operator not in ['=', '!=']: raise ValueError('Invalid operator: %s' % (operator)) query = """ SELECT C.internal_project_id FROM res_company C WHERE C.internal_project_id IS NOT NULL """ if (operator == '=' and value is True) or (operator == '!=' and value is False): operator_new = 'inselect' else: operator_new = 'not inselect' return [('id', operator_new, (query, ()))] @api.depends('allow_timesheets', 'task_ids.planned_hours', 'task_ids.remaining_hours') def _compute_remaining_hours(self): group_read = self.env['project.task'].read_group( domain=[('planned_hours', '!=', False), ('project_id', 'in', self.filtered('allow_timesheets').ids), '|', ('stage_id.fold', '=', False), ('stage_id', '=', False)], fields=['planned_hours:sum', 'remaining_hours:sum'], groupby='project_id') group_per_project_id = {group['project_id'][0]: group for group in group_read} for project in self: group = group_per_project_id.get(project.id, {}) project.remaining_hours = group.get('remaining_hours', 0) project.has_planned_hours_tasks = bool(group.get('planned_hours', False)) project.is_project_overtime = group.get('remaining_hours', 0) < 0 @api.model def _search_is_project_overtime(self, operator, value): if not isinstance(value, bool): raise ValueError(_('Invalid value: %s') % value) if operator not in ['=', '!=']: raise ValueError(_('Invalid operator: %s') % operator) query = """ SELECT P.id FROM project_project P LEFT JOIN project_task T ON P.id = T.project_id WHERE T.planned_hours IS NOT NULL GROUP BY P.id HAVING SUM(T.remaining_hours) < 0 """ if (operator == '=' and value is True) or (operator == '!=' and value is False): operator_new = 'inselect' else: operator_new = 'not inselect' return [('id', operator_new, (query, ()))] @api.constrains('allow_timesheets', 'analytic_account_id') def _check_allow_timesheet(self): for project in self: if project.allow_timesheets and not project.analytic_account_id: raise ValidationError(_('You cannot use timesheets without an analytic account.')) @api.depends('timesheet_ids') def _compute_total_timesheet_time(self): timesheets_read_group = self.env['account.analytic.line'].read_group( [('project_id', 'in', self.ids)], ['project_id', 'unit_amount', 'product_uom_id'], ['project_id', 'product_uom_id'], lazy=False) timesheet_time_dict = defaultdict(list) uom_ids = set(self.timesheet_encode_uom_id.ids) for result in timesheets_read_group: uom_id = result['product_uom_id'] and result['product_uom_id'][0] if uom_id: uom_ids.add(uom_id) timesheet_time_dict[result['project_id'][0]].append((uom_id, result['unit_amount'])) uoms_dict = {uom.id: uom for uom in self.env['uom.uom'].browse(uom_ids)} for project in self: # Timesheets may be stored in a different unit of measure, so first # we convert all of them to the reference unit # if the timesheet has no product_uom_id then we take the one of the project total_time = sum([ unit_amount * uoms_dict.get(product_uom_id, project.timesheet_encode_uom_id).factor_inv for product_uom_id, unit_amount in timesheet_time_dict[project.id] ], 0.0) # Now convert to the proper unit of measure set in the settings total_time *= project.timesheet_encode_uom_id.factor project.total_timesheet_time = int(round(total_time)) @api.depends('timesheet_ids') def _compute_timesheet_count(self): timesheet_read_group = self.env['account.analytic.line'].read_group( [('project_id', 'in', self.ids)], ['project_id'], ['project_id'] ) timesheet_project_map = {project_info['project_id'][0]: project_info['project_id_count'] for project_info in timesheet_read_group} for project in self: project.timesheet_count = timesheet_project_map.get(project.id, 0) @api.model_create_multi def create(self, vals_list): """ Create an analytic account if project allow timesheet and don't provide one Note: create it before calling super() to avoid raising the ValidationError from _check_allow_timesheet """ defaults = self.default_get(['allow_timesheets', 'analytic_account_id']) for vals in vals_list: allow_timesheets = vals.get('allow_timesheets', defaults.get('allow_timesheets')) analytic_account_id = vals.get('analytic_account_id', defaults.get('analytic_account_id')) if allow_timesheets and not analytic_account_id: analytic_account = self._create_analytic_account_from_values(vals) vals['analytic_account_id'] = analytic_account.id return super().create(vals_list) def write(self, values): # create the AA for project still allowing timesheet if values.get('allow_timesheets') and not values.get('analytic_account_id'): for project in self: if not project.analytic_account_id: project._create_analytic_account() return super(Project, self).write(values) def name_get(self): res = super().name_get() if len(self.env.context.get('allowed_company_ids', [])) <= 1: return res name_mapping = dict(res) for project in self: if project.is_internal_project: name_mapping[project.id] = f'{name_mapping[project.id]} - {project.company_id.name}' return list(name_mapping.items()) @api.model def _init_data_analytic_account(self): self.search([('analytic_account_id', '=', False), ('allow_timesheets', '=', True)])._create_analytic_account() @api.ondelete(at_uninstall=False) def _unlink_except_contains_entries(self): """ If some projects to unlink have some timesheets entries, these timesheets entries must be unlinked first. In this case, a warning message is displayed through a RedirectWarning and allows the user to see timesheets entries to unlink. """ projects_with_timesheets = self.filtered(lambda p: p.timesheet_ids) if projects_with_timesheets: if len(projects_with_timesheets) > 1: warning_msg = _("These projects have some timesheet entries referencing them. Before removing these projects, you have to remove these timesheet entries.") else: warning_msg = _("This project has some timesheet entries referencing it. Before removing this project, you have to remove these timesheet entries.") raise RedirectWarning( warning_msg, self.env.ref('hr_timesheet.timesheet_action_project').id, _('See timesheet entries'), {'active_ids': projects_with_timesheets.ids}) def action_show_timesheets_by_employee_invoice_type(self): action = self.env["ir.actions.actions"]._for_xml_id("hr_timesheet.timesheet_action_all") #Let's put the chart view first new_views = [] for view in action['views']: new_views.insert(0, view) if view[1] == 'graph' else new_views.append(view) action.update({ 'display_name': _("Timesheets"), 'domain': [('project_id', '=', self.id)], 'context': { 'default_project_id': self.id, 'search_default_groupby_employee': True, 'search_default_groupby_timesheet_invoice_type': True }, 'views': new_views }) return action def _convert_project_uom_to_timesheet_encode_uom(self, time): uom_from = self.company_id.project_time_mode_id uom_to = self.env.company.timesheet_encode_uom_id return round(uom_from._compute_quantity(time, uom_to, raise_if_failure=False), 2) # ---------------------------- # Project Updates # ---------------------------- def _get_stat_buttons(self): buttons = super(Project, self)._get_stat_buttons() if self.user_has_groups('hr_timesheet.group_hr_timesheet_user'): buttons.append({ 'icon': 'clock-o', 'text': _('Recorded'), 'number': '%s %s' % (self.total_timesheet_time, self.env.company.timesheet_encode_uom_id.name), 'action_type': 'object', 'action': 'action_show_timesheets_by_employee_invoice_type', 'show': self.allow_timesheets, 'sequence': 6, }) return buttons class Task(models.Model): _name = "project.task" _inherit = "project.task" analytic_account_active = fields.Boolean("Active Analytic Account", compute='_compute_analytic_account_active', compute_sudo=True) allow_timesheets = fields.Boolean("Allow timesheets", related='project_id.allow_timesheets', help="Timesheets can be logged on this task.", readonly=True) remaining_hours = fields.Float("Remaining Hours", compute='_compute_remaining_hours', store=True, readonly=True, help="Total remaining time, can be re-estimated periodically by the assignee of the task.") effective_hours = fields.Float("Hours Spent", compute='_compute_effective_hours', compute_sudo=True, store=True, help="Time spent on this task, excluding its sub-tasks.") total_hours_spent = fields.Float("Total Hours", compute='_compute_total_hours_spent', store=True, help="Time spent on this task, including its sub-tasks.") progress = fields.Float("Progress", compute='_compute_progress_hours', store=True, group_operator="avg", help="Display progress of current task.") overtime = fields.Float(compute='_compute_progress_hours', store=True) subtask_effective_hours = fields.Float("Sub-tasks Hours Spent", compute='_compute_subtask_effective_hours', recursive=True, store=True, help="Time spent on the sub-tasks (and their own sub-tasks) of this task.") timesheet_ids = fields.One2many('account.analytic.line', 'task_id', 'Timesheets') encode_uom_in_days = fields.Boolean(compute='_compute_encode_uom_in_days', default=lambda self: self._uom_in_days()) @property def SELF_READABLE_FIELDS(self): return super().SELF_READABLE_FIELDS | PROJECT_TASK_READABLE_FIELDS def _uom_in_days(self): return self.env.company.timesheet_encode_uom_id == self.env.ref('uom.product_uom_day') def _compute_encode_uom_in_days(self): self.encode_uom_in_days = self._uom_in_days() @api.depends('analytic_account_id.active', 'project_id.analytic_account_id.active') def _compute_analytic_account_active(self): """ Overridden in sale_timesheet """ for task in self: task.analytic_account_active = task._get_task_analytic_account_id().active @api.depends('timesheet_ids.unit_amount') def _compute_effective_hours(self): for task in self: task.effective_hours = round(sum(task.timesheet_ids.mapped('unit_amount')), 2) @api.depends('effective_hours', 'subtask_effective_hours', 'planned_hours') def _compute_progress_hours(self): for task in self: if (task.planned_hours > 0.0): task_total_hours = task.effective_hours + task.subtask_effective_hours task.overtime = max(task_total_hours - task.planned_hours, 0) if task_total_hours > task.planned_hours: task.progress = 100 else: task.progress = round(100.0 * task_total_hours / task.planned_hours, 2) else: task.progress = 0.0 task.overtime = 0 @api.depends('effective_hours', 'subtask_effective_hours', 'planned_hours') def _compute_remaining_hours(self): for task in self: task.remaining_hours = task.planned_hours - task.effective_hours - task.subtask_effective_hours @api.depends('effective_hours', 'subtask_effective_hours') def _compute_total_hours_spent(self): for task in self: task.total_hours_spent = task.effective_hours + task.subtask_effective_hours @api.depends('child_ids.effective_hours', 'child_ids.subtask_effective_hours') def _compute_subtask_effective_hours(self): for task in self.with_context(active_test=False): task.subtask_effective_hours = sum(child_task.effective_hours + child_task.subtask_effective_hours for child_task in task.child_ids) def action_view_subtask_timesheet(self): self.ensure_one() tasks = self.with_context(active_test=False)._get_all_subtasks() return { 'type': 'ir.actions.act_window', 'name': _('Timesheets'), 'res_model': 'account.analytic.line', 'view_mode': 'list,form', 'context': { 'default_project_id': self.project_id.id }, 'domain': [('project_id', '!=', False), ('task_id', 'in', tasks.ids)], } def _get_timesheet(self): # Is override in sale_timesheet return self.timesheet_ids def write(self, values): # a timesheet must have an analytic account (and a project) if 'project_id' in values and not values.get('project_id') and self._get_timesheet(): raise UserError(_('This task must be part of a project because there are some timesheets linked to it.')) res = super(Task, self).write(values) if 'project_id' in values: project = self.env['project.project'].browse(values.get('project_id')) if project.allow_timesheets: # We write on all non yet invoiced timesheet the new project_id (if project allow timesheet) self._get_timesheet().write({'project_id': values.get('project_id')}) return res def name_get(self): if self.env.context.get('hr_timesheet_display_remaining_hours'): name_mapping = dict(super().name_get()) for task in self: if task.allow_timesheets and task.planned_hours > 0 and task.encode_uom_in_days: days_left = _("(%s days remaining)") % task._convert_hours_to_days(task.remaining_hours) name_mapping[task.id] = name_mapping.get(task.id, '') + u"\u00A0" + days_left elif task.allow_timesheets and task.planned_hours > 0: hours, mins = (str(int(duration)).rjust(2, '0') for duration in divmod(abs(task.remaining_hours) * 60, 60)) hours_left = _( "(%(sign)s%(hours)s:%(minutes)s remaining)", sign='-' if task.remaining_hours < 0 else '', hours=hours, minutes=mins, ) name_mapping[task.id] = name_mapping.get(task.id, '') + u"\u00A0" + hours_left return list(name_mapping.items()) return super().name_get() @api.model def _fields_view_get(self, view_id=None, view_type='form', toolbar=False, submenu=False): """ Set the correct label for `unit_amount`, depending on company UoM """ result = super(Task, self)._fields_view_get(view_id=view_id, view_type=view_type, toolbar=toolbar, submenu=submenu) # Use of sudo as the portal user doesn't have access to uom result['arch'] = self.env['account.analytic.line'].sudo()._apply_timesheet_label(result['arch']) if view_type in ['tree', 'pivot', 'graph'] and self.env.company.timesheet_encode_uom_id == self.env.ref('uom.product_uom_day'): result['arch'] = self.env['account.analytic.line']._apply_time_label(result['arch'], related_model=self._name) return result @api.ondelete(at_uninstall=False) def _unlink_except_contains_entries(self): """ If some tasks to unlink have some timesheets entries, these timesheets entries must be unlinked first. In this case, a warning message is displayed through a RedirectWarning and allows the user to see timesheets entries to unlink. """ tasks_with_timesheets = self.filtered(lambda t: t.timesheet_ids) if tasks_with_timesheets: if len(tasks_with_timesheets) > 1: warning_msg = _("These tasks have some timesheet entries referencing them. Before removing these tasks, you have to remove these timesheet entries.") else: warning_msg = _("This task has some timesheet entries referencing it. Before removing this task, you have to remove these timesheet entries.") raise RedirectWarning( warning_msg, self.env.ref('hr_timesheet.timesheet_action_task').id, _('See timesheet entries'), {'active_ids': tasks_with_timesheets.ids}) @api.model def _convert_hours_to_days(self, time): uom_hour = self.env.ref('uom.product_uom_hour') uom_day = self.env.ref('uom.product_uom_day') return round(uom_hour._compute_quantity(time, uom_day, raise_if_failure=False), 2)
jeremiahyan/odoo
addons/hr_timesheet/models/project.py
Python
gpl-3.0
20,630
"""Unit tests for the memoryview XXX We need more tests! Some tests are in test_bytes """ import unittest import test.support import sys import gc import weakref import array class AbstractMemoryTests: source_bytes = b"abcdef" @property def _source(self): return self.source_bytes @property def _types(self): return filter(None, [self.ro_type, self.rw_type]) def check_getitem_with_type(self, tp): item = self.getitem_type b = tp(self._source) oldrefcount = sys.getrefcount(b) m = self._view(b) self.assertEquals(m[0], item(b"a")) self.assertTrue(isinstance(m[0], bytes), type(m[0])) self.assertEquals(m[5], item(b"f")) self.assertEquals(m[-1], item(b"f")) self.assertEquals(m[-6], item(b"a")) # Bounds checking self.assertRaises(IndexError, lambda: m[6]) self.assertRaises(IndexError, lambda: m[-7]) self.assertRaises(IndexError, lambda: m[sys.maxsize]) self.assertRaises(IndexError, lambda: m[-sys.maxsize]) # Type checking self.assertRaises(TypeError, lambda: m[None]) self.assertRaises(TypeError, lambda: m[0.0]) self.assertRaises(TypeError, lambda: m["a"]) m = None self.assertEquals(sys.getrefcount(b), oldrefcount) def test_getitem(self): for tp in self._types: self.check_getitem_with_type(tp) def test_iter(self): for tp in self._types: b = tp(self._source) m = self._view(b) self.assertEqual(list(m), [m[i] for i in range(len(m))]) def test_setitem_readonly(self): if not self.ro_type: return b = self.ro_type(self._source) oldrefcount = sys.getrefcount(b) m = self._view(b) def setitem(value): m[0] = value self.assertRaises(TypeError, setitem, b"a") self.assertRaises(TypeError, setitem, 65) self.assertRaises(TypeError, setitem, memoryview(b"a")) m = None self.assertEquals(sys.getrefcount(b), oldrefcount) def test_setitem_writable(self): if not self.rw_type: return tp = self.rw_type b = self.rw_type(self._source) oldrefcount = sys.getrefcount(b) m = self._view(b) m[0] = tp(b"0") self._check_contents(tp, b, b"0bcdef") m[1:3] = tp(b"12") self._check_contents(tp, b, b"012def") m[1:1] = tp(b"") self._check_contents(tp, b, b"012def") m[:] = tp(b"abcdef") self._check_contents(tp, b, b"abcdef") # Overlapping copies of a view into itself m[0:3] = m[2:5] self._check_contents(tp, b, b"cdedef") m[:] = tp(b"abcdef") m[2:5] = m[0:3] self._check_contents(tp, b, b"ababcf") def setitem(key, value): m[key] = tp(value) # Bounds checking self.assertRaises(IndexError, setitem, 6, b"a") self.assertRaises(IndexError, setitem, -7, b"a") self.assertRaises(IndexError, setitem, sys.maxsize, b"a") self.assertRaises(IndexError, setitem, -sys.maxsize, b"a") # Wrong index/slice types self.assertRaises(TypeError, setitem, 0.0, b"a") self.assertRaises(TypeError, setitem, (0,), b"a") self.assertRaises(TypeError, setitem, "a", b"a") # Trying to resize the memory object self.assertRaises(ValueError, setitem, 0, b"") self.assertRaises(ValueError, setitem, 0, b"ab") self.assertRaises(ValueError, setitem, slice(1,1), b"a") self.assertRaises(ValueError, setitem, slice(0,2), b"a") m = None self.assertEquals(sys.getrefcount(b), oldrefcount) def test_tobytes(self): for tp in self._types: m = self._view(tp(self._source)) b = m.tobytes() # This calls self.getitem_type() on each separate byte of b"abcdef" expected = b"".join( self.getitem_type(bytes([c])) for c in b"abcdef") self.assertEquals(b, expected) self.assertTrue(isinstance(b, bytes), type(b)) def test_tolist(self): for tp in self._types: m = self._view(tp(self._source)) l = m.tolist() self.assertEquals(l, list(b"abcdef")) def test_compare(self): # memoryviews can compare for equality with other objects # having the buffer interface. for tp in self._types: m = self._view(tp(self._source)) for tp_comp in self._types: self.assertTrue(m == tp_comp(b"abcdef")) self.assertFalse(m != tp_comp(b"abcdef")) self.assertFalse(m == tp_comp(b"abcde")) self.assertTrue(m != tp_comp(b"abcde")) self.assertFalse(m == tp_comp(b"abcde1")) self.assertTrue(m != tp_comp(b"abcde1")) self.assertTrue(m == m) self.assertTrue(m == m[:]) self.assertTrue(m[0:6] == m[:]) self.assertFalse(m[0:5] == m) # Comparison with objects which don't support the buffer API self.assertFalse(m == "abcdef") self.assertTrue(m != "abcdef") self.assertFalse("abcdef" == m) self.assertTrue("abcdef" != m) # Unordered comparisons for c in (m, b"abcdef"): self.assertRaises(TypeError, lambda: m < c) self.assertRaises(TypeError, lambda: c <= m) self.assertRaises(TypeError, lambda: m >= c) self.assertRaises(TypeError, lambda: c > m) def check_attributes_with_type(self, tp): m = self._view(tp(self._source)) self.assertEquals(m.format, self.format) self.assertEquals(m.itemsize, self.itemsize) self.assertEquals(m.ndim, 1) self.assertEquals(m.shape, (6,)) self.assertEquals(len(m), 6) self.assertEquals(m.strides, (self.itemsize,)) self.assertEquals(m.suboffsets, None) return m def test_attributes_readonly(self): if not self.ro_type: return m = self.check_attributes_with_type(self.ro_type) self.assertEquals(m.readonly, True) def test_attributes_writable(self): if not self.rw_type: return m = self.check_attributes_with_type(self.rw_type) self.assertEquals(m.readonly, False) def test_getbuffer(self): # Test PyObject_GetBuffer() on a memoryview object. for tp in self._types: b = tp(self._source) oldrefcount = sys.getrefcount(b) m = self._view(b) oldviewrefcount = sys.getrefcount(m) s = str(m, "utf-8") self._check_contents(tp, b, s.encode("utf-8")) self.assertEquals(sys.getrefcount(m), oldviewrefcount) m = None self.assertEquals(sys.getrefcount(b), oldrefcount) def test_gc(self): for tp in self._types: if not isinstance(tp, type): # If tp is a factory rather than a plain type, skip continue class MySource(tp): pass class MyObject: pass # Create a reference cycle through a memoryview object b = MySource(tp(b'abc')) m = self._view(b) o = MyObject() b.m = m b.o = o wr = weakref.ref(o) b = m = o = None # The cycle must be broken gc.collect() self.assertTrue(wr() is None, wr()) # Variations on source objects for the buffer: bytes-like objects, then arrays # with itemsize > 1. # NOTE: support for multi-dimensional objects is unimplemented. class BaseBytesMemoryTests(AbstractMemoryTests): ro_type = bytes rw_type = bytearray getitem_type = bytes itemsize = 1 format = 'B' class BaseArrayMemoryTests(AbstractMemoryTests): ro_type = None rw_type = lambda self, b: array.array('i', list(b)) getitem_type = lambda self, b: array.array('i', list(b)).tostring() itemsize = array.array('i').itemsize format = 'i' def test_getbuffer(self): # XXX Test should be adapted for non-byte buffers pass def test_tolist(self): # XXX NotImplementedError: tolist() only supports byte views pass # Variations on indirection levels: memoryview, slice of memoryview, # slice of slice of memoryview. # This is important to test allocation subtleties. class BaseMemoryviewTests: def _view(self, obj): return memoryview(obj) def _check_contents(self, tp, obj, contents): self.assertEquals(obj, tp(contents)) class BaseMemorySliceTests: source_bytes = b"XabcdefY" def _view(self, obj): m = memoryview(obj) return m[1:7] def _check_contents(self, tp, obj, contents): self.assertEquals(obj[1:7], tp(contents)) def test_refs(self): for tp in self._types: m = memoryview(tp(self._source)) oldrefcount = sys.getrefcount(m) m[1:2] self.assertEquals(sys.getrefcount(m), oldrefcount) class BaseMemorySliceSliceTests: source_bytes = b"XabcdefY" def _view(self, obj): m = memoryview(obj) return m[:7][1:] def _check_contents(self, tp, obj, contents): self.assertEquals(obj[1:7], tp(contents)) # Concrete test classes class BytesMemoryviewTest(unittest.TestCase, BaseMemoryviewTests, BaseBytesMemoryTests): def test_constructor(self): for tp in self._types: ob = tp(self._source) self.assertTrue(memoryview(ob)) self.assertTrue(memoryview(object=ob)) self.assertRaises(TypeError, memoryview) self.assertRaises(TypeError, memoryview, ob, ob) self.assertRaises(TypeError, memoryview, argument=ob) self.assertRaises(TypeError, memoryview, ob, argument=True) class ArrayMemoryviewTest(unittest.TestCase, BaseMemoryviewTests, BaseArrayMemoryTests): def test_array_assign(self): # Issue #4569: segfault when mutating a memoryview with itemsize != 1 a = array.array('i', range(10)) m = memoryview(a) new_a = array.array('i', range(9, -1, -1)) m[:] = new_a self.assertEquals(a, new_a) class BytesMemorySliceTest(unittest.TestCase, BaseMemorySliceTests, BaseBytesMemoryTests): pass class ArrayMemorySliceTest(unittest.TestCase, BaseMemorySliceTests, BaseArrayMemoryTests): pass class BytesMemorySliceSliceTest(unittest.TestCase, BaseMemorySliceSliceTests, BaseBytesMemoryTests): pass class ArrayMemorySliceSliceTest(unittest.TestCase, BaseMemorySliceSliceTests, BaseArrayMemoryTests): pass def test_main(): test.support.run_unittest(__name__) if __name__ == "__main__": test_main()
mancoast/CPythonPyc_test
fail/312_test_memoryview.py
Python
gpl-3.0
10,981
# sql/selectable.py # Copyright (C) 2005-2014 the SQLAlchemy authors and contributors <see AUTHORS file> # # This module is part of SQLAlchemy and is released under # the MIT License: http://www.opensource.org/licenses/mit-license.php """The :class:`.FromClause` class of SQL expression elements, representing SQL tables and derived rowsets. """ from .elements import ClauseElement, TextClause, ClauseList, \ and_, Grouping, UnaryExpression, literal_column from .elements import _clone, \ _literal_as_text, _interpret_as_column_or_from, _expand_cloned,\ _select_iterables, _anonymous_label, _clause_element_as_expr,\ _cloned_intersection, _cloned_difference, True_, _only_column_elements from .base import Immutable, Executable, _generative, \ ColumnCollection, ColumnSet, _from_objects, Generative from . import type_api from .. import inspection from .. import util from .. import exc from operator import attrgetter from . import operators import operator from .annotation import Annotated import itertools def _interpret_as_from(element): insp = inspection.inspect(element, raiseerr=False) if insp is None: if isinstance(element, util.string_types): return TextClause(util.text_type(element)) elif hasattr(insp, "selectable"): return insp.selectable raise exc.ArgumentError("FROM expression expected") def _interpret_as_select(element): element = _interpret_as_from(element) if isinstance(element, Alias): element = element.original if not isinstance(element, Select): element = element.select() return element def subquery(alias, *args, **kwargs): """Return an :class:`.Alias` object derived from a :class:`.Select`. name alias name \*args, \**kwargs all other arguments are delivered to the :func:`select` function. """ return Select(*args, **kwargs).alias(alias) def alias(selectable, name=None, flat=False): """Return an :class:`.Alias` object. An :class:`.Alias` represents any :class:`.FromClause` with an alternate name assigned within SQL, typically using the ``AS`` clause when generated, e.g. ``SELECT * FROM table AS aliasname``. Similar functionality is available via the :meth:`~.FromClause.alias` method available on all :class:`.FromClause` subclasses. When an :class:`.Alias` is created from a :class:`.Table` object, this has the effect of the table being rendered as ``tablename AS aliasname`` in a SELECT statement. For :func:`.select` objects, the effect is that of creating a named subquery, i.e. ``(select ...) AS aliasname``. The ``name`` parameter is optional, and provides the name to use in the rendered SQL. If blank, an "anonymous" name will be deterministically generated at compile time. Deterministic means the name is guaranteed to be unique against other constructs used in the same statement, and will also be the same name for each successive compilation of the same statement object. :param selectable: any :class:`.FromClause` subclass, such as a table, select statement, etc. :param name: string name to be assigned as the alias. If ``None``, a name will be deterministically generated at compile time. :param flat: Will be passed through to if the given selectable is an instance of :class:`.Join` - see :meth:`.Join.alias` for details. .. versionadded:: 0.9.0 """ return selectable.alias(name=name, flat=flat) class Selectable(ClauseElement): """mark a class as being selectable""" __visit_name__ = 'selectable' is_selectable = True @property def selectable(self): return self class FromClause(Selectable): """Represent an element that can be used within the ``FROM`` clause of a ``SELECT`` statement. The most common forms of :class:`.FromClause` are the :class:`.Table` and the :func:`.select` constructs. Key features common to all :class:`.FromClause` objects include: * a :attr:`.c` collection, which provides per-name access to a collection of :class:`.ColumnElement` objects. * a :attr:`.primary_key` attribute, which is a collection of all those :class:`.ColumnElement` objects that indicate the ``primary_key`` flag. * Methods to generate various derivations of a "from" clause, including :meth:`.FromClause.alias`, :meth:`.FromClause.join`, :meth:`.FromClause.select`. """ __visit_name__ = 'fromclause' named_with_column = False _hide_froms = [] _is_join = False _is_select = False _is_from_container = False _textual = False """a marker that allows us to easily distinguish a :class:`.TextAsFrom` or similar object from other kinds of :class:`.FromClause` objects.""" schema = None """Define the 'schema' attribute for this :class:`.FromClause`. This is typically ``None`` for most objects except that of :class:`.Table`, where it is taken as the value of the :paramref:`.Table.schema` argument. """ _memoized_property = util.group_expirable_memoized_property(["_columns"]) @util.dependencies("sqlalchemy.sql.functions") def count(self, functions, whereclause=None, **params): """return a SELECT COUNT generated against this :class:`.FromClause`.""" if self.primary_key: col = list(self.primary_key)[0] else: col = list(self.columns)[0] return Select( [functions.func.count(col).label('tbl_row_count')], whereclause, from_obj=[self], **params) def select(self, whereclause=None, **params): """return a SELECT of this :class:`.FromClause`. .. seealso:: :func:`~.sql.expression.select` - general purpose method which allows for arbitrary column lists. """ return Select([self], whereclause, **params) def join(self, right, onclause=None, isouter=False): """Return a :class:`.Join` from this :class:`.FromClause` to another :class:`FromClause`. E.g.:: from sqlalchemy import join j = user_table.join(address_table, user_table.c.id == address_table.c.user_id) stmt = select([user_table]).select_from(j) would emit SQL along the lines of:: SELECT user.id, user.name FROM user JOIN address ON user.id = address.user_id :param right: the right side of the join; this is any :class:`.FromClause` object such as a :class:`.Table` object, and may also be a selectable-compatible object such as an ORM-mapped class. :param onclause: a SQL expression representing the ON clause of the join. If left at ``None``, :meth:`.FromClause.join` will attempt to join the two tables based on a foreign key relationship. :param isouter: if True, render a LEFT OUTER JOIN, instead of JOIN. .. seealso:: :func:`.join` - standalone function :class:`.Join` - the type of object produced """ return Join(self, right, onclause, isouter) def outerjoin(self, right, onclause=None): """Return a :class:`.Join` from this :class:`.FromClause` to another :class:`FromClause`, with the "isouter" flag set to True. E.g.:: from sqlalchemy import outerjoin j = user_table.outerjoin(address_table, user_table.c.id == address_table.c.user_id) The above is equivalent to:: j = user_table.join(address_table, user_table.c.id == address_table.c.user_id, isouter=True) :param right: the right side of the join; this is any :class:`.FromClause` object such as a :class:`.Table` object, and may also be a selectable-compatible object such as an ORM-mapped class. :param onclause: a SQL expression representing the ON clause of the join. If left at ``None``, :meth:`.FromClause.join` will attempt to join the two tables based on a foreign key relationship. .. seealso:: :meth:`.FromClause.join` :class:`.Join` """ return Join(self, right, onclause, True) def alias(self, name=None, flat=False): """return an alias of this :class:`.FromClause`. This is shorthand for calling:: from sqlalchemy import alias a = alias(self, name=name) See :func:`~.expression.alias` for details. """ return Alias(self, name) def is_derived_from(self, fromclause): """Return True if this FromClause is 'derived' from the given FromClause. An example would be an Alias of a Table is derived from that Table. """ # this is essentially an "identity" check in the base class. # Other constructs override this to traverse through # contained elements. return fromclause in self._cloned_set def _is_lexical_equivalent(self, other): """Return True if this FromClause and the other represent the same lexical identity. This tests if either one is a copy of the other, or if they are the same via annotation identity. """ return self._cloned_set.intersection(other._cloned_set) @util.dependencies("sqlalchemy.sql.util") def replace_selectable(self, sqlutil, old, alias): """replace all occurrences of FromClause 'old' with the given Alias object, returning a copy of this :class:`.FromClause`. """ return sqlutil.ClauseAdapter(alias).traverse(self) def correspond_on_equivalents(self, column, equivalents): """Return corresponding_column for the given column, or if None search for a match in the given dictionary. """ col = self.corresponding_column(column, require_embedded=True) if col is None and col in equivalents: for equiv in equivalents[col]: nc = self.corresponding_column(equiv, require_embedded=True) if nc: return nc return col def corresponding_column(self, column, require_embedded=False): """Given a :class:`.ColumnElement`, return the exported :class:`.ColumnElement` object from this :class:`.Selectable` which corresponds to that original :class:`~sqlalchemy.schema.Column` via a common ancestor column. :param column: the target :class:`.ColumnElement` to be matched :param require_embedded: only return corresponding columns for the given :class:`.ColumnElement`, if the given :class:`.ColumnElement` is actually present within a sub-element of this :class:`.FromClause`. Normally the column will match if it merely shares a common ancestor with one of the exported columns of this :class:`.FromClause`. """ def embedded(expanded_proxy_set, target_set): for t in target_set.difference(expanded_proxy_set): if not set(_expand_cloned([t]) ).intersection(expanded_proxy_set): return False return True # don't dig around if the column is locally present if self.c.contains_column(column): return column col, intersect = None, None target_set = column.proxy_set cols = self.c._all_columns for c in cols: expanded_proxy_set = set(_expand_cloned(c.proxy_set)) i = target_set.intersection(expanded_proxy_set) if i and (not require_embedded or embedded(expanded_proxy_set, target_set)): if col is None: # no corresponding column yet, pick this one. col, intersect = c, i elif len(i) > len(intersect): # 'c' has a larger field of correspondence than # 'col'. i.e. selectable.c.a1_x->a1.c.x->table.c.x # matches a1.c.x->table.c.x better than # selectable.c.x->table.c.x does. col, intersect = c, i elif i == intersect: # they have the same field of correspondence. see # which proxy_set has fewer columns in it, which # indicates a closer relationship with the root # column. Also take into account the "weight" # attribute which CompoundSelect() uses to give # higher precedence to columns based on vertical # position in the compound statement, and discard # columns that have no reference to the target # column (also occurs with CompoundSelect) col_distance = util.reduce(operator.add, [sc._annotations.get('weight', 1) for sc in col.proxy_set if sc.shares_lineage(column)]) c_distance = util.reduce(operator.add, [sc._annotations.get('weight', 1) for sc in c.proxy_set if sc.shares_lineage(column)]) if c_distance < col_distance: col, intersect = c, i return col @property def description(self): """a brief description of this FromClause. Used primarily for error message formatting. """ return getattr(self, 'name', self.__class__.__name__ + " object") def _reset_exported(self): """delete memoized collections when a FromClause is cloned.""" self._memoized_property.expire_instance(self) @_memoized_property def columns(self): """A named-based collection of :class:`.ColumnElement` objects maintained by this :class:`.FromClause`. The :attr:`.columns`, or :attr:`.c` collection, is the gateway to the construction of SQL expressions using table-bound or other selectable-bound columns:: select([mytable]).where(mytable.c.somecolumn == 5) """ if '_columns' not in self.__dict__: self._init_collections() self._populate_column_collection() return self._columns.as_immutable() @_memoized_property def primary_key(self): """Return the collection of Column objects which comprise the primary key of this FromClause.""" self._init_collections() self._populate_column_collection() return self.primary_key @_memoized_property def foreign_keys(self): """Return the collection of ForeignKey objects which this FromClause references.""" self._init_collections() self._populate_column_collection() return self.foreign_keys c = property(attrgetter('columns'), doc="An alias for the :attr:`.columns` attribute.") _select_iterable = property(attrgetter('columns')) def _init_collections(self): assert '_columns' not in self.__dict__ assert 'primary_key' not in self.__dict__ assert 'foreign_keys' not in self.__dict__ self._columns = ColumnCollection() self.primary_key = ColumnSet() self.foreign_keys = set() @property def _cols_populated(self): return '_columns' in self.__dict__ def _populate_column_collection(self): """Called on subclasses to establish the .c collection. Each implementation has a different way of establishing this collection. """ def _refresh_for_new_column(self, column): """Given a column added to the .c collection of an underlying selectable, produce the local version of that column, assuming this selectable ultimately should proxy this column. this is used to "ping" a derived selectable to add a new column to its .c. collection when a Column has been added to one of the Table objects it ultimtely derives from. If the given selectable hasn't populated it's .c. collection yet, it should at least pass on the message to the contained selectables, but it will return None. This method is currently used by Declarative to allow Table columns to be added to a partially constructed inheritance mapping that may have already produced joins. The method isn't public right now, as the full span of implications and/or caveats aren't yet clear. It's also possible that this functionality could be invoked by default via an event, which would require that selectables maintain a weak referencing collection of all derivations. """ if not self._cols_populated: return None elif column.key in self.columns and self.columns[column.key] is column: return column else: return None class Join(FromClause): """represent a ``JOIN`` construct between two :class:`.FromClause` elements. The public constructor function for :class:`.Join` is the module-level :func:`.join()` function, as well as the :meth:`.FromClause.join` method of any :class:`.FromClause` (e.g. such as :class:`.Table`). .. seealso:: :func:`.join` :meth:`.FromClause.join` """ __visit_name__ = 'join' _is_join = True def __init__(self, left, right, onclause=None, isouter=False): """Construct a new :class:`.Join`. The usual entrypoint here is the :func:`~.expression.join` function or the :meth:`.FromClause.join` method of any :class:`.FromClause` object. """ self.left = _interpret_as_from(left) self.right = _interpret_as_from(right).self_group() if onclause is None: self.onclause = self._match_primaries(self.left, self.right) else: self.onclause = onclause self.isouter = isouter @classmethod def _create_outerjoin(cls, left, right, onclause=None): """Return an ``OUTER JOIN`` clause element. The returned object is an instance of :class:`.Join`. Similar functionality is also available via the :meth:`~.FromClause.outerjoin()` method on any :class:`.FromClause`. :param left: The left side of the join. :param right: The right side of the join. :param onclause: Optional criterion for the ``ON`` clause, is derived from foreign key relationships established between left and right otherwise. To chain joins together, use the :meth:`.FromClause.join` or :meth:`.FromClause.outerjoin` methods on the resulting :class:`.Join` object. """ return cls(left, right, onclause, isouter=True) @classmethod def _create_join(cls, left, right, onclause=None, isouter=False): """Produce a :class:`.Join` object, given two :class:`.FromClause` expressions. E.g.:: j = join(user_table, address_table, user_table.c.id == address_table.c.user_id) stmt = select([user_table]).select_from(j) would emit SQL along the lines of:: SELECT user.id, user.name FROM user JOIN address ON user.id = address.user_id Similar functionality is available given any :class:`.FromClause` object (e.g. such as a :class:`.Table`) using the :meth:`.FromClause.join` method. :param left: The left side of the join. :param right: the right side of the join; this is any :class:`.FromClause` object such as a :class:`.Table` object, and may also be a selectable-compatible object such as an ORM-mapped class. :param onclause: a SQL expression representing the ON clause of the join. If left at ``None``, :meth:`.FromClause.join` will attempt to join the two tables based on a foreign key relationship. :param isouter: if True, render a LEFT OUTER JOIN, instead of JOIN. .. seealso:: :meth:`.FromClause.join` - method form, based on a given left side :class:`.Join` - the type of object produced """ return cls(left, right, onclause, isouter) @property def description(self): return "Join object on %s(%d) and %s(%d)" % ( self.left.description, id(self.left), self.right.description, id(self.right)) def is_derived_from(self, fromclause): return fromclause is self or \ self.left.is_derived_from(fromclause) or \ self.right.is_derived_from(fromclause) def self_group(self, against=None): return FromGrouping(self) @util.dependencies("sqlalchemy.sql.util") def _populate_column_collection(self, sqlutil): columns = [c for c in self.left.columns] + \ [c for c in self.right.columns] self.primary_key.extend(sqlutil.reduce_columns( (c for c in columns if c.primary_key), self.onclause)) self._columns.update((col._label, col) for col in columns) self.foreign_keys.update(itertools.chain( *[col.foreign_keys for col in columns])) def _refresh_for_new_column(self, column): col = self.left._refresh_for_new_column(column) if col is None: col = self.right._refresh_for_new_column(column) if col is not None: if self._cols_populated: self._columns[col._label] = col self.foreign_keys.add(col) if col.primary_key: self.primary_key.add(col) return col return None def _copy_internals(self, clone=_clone, **kw): self._reset_exported() self.left = clone(self.left, **kw) self.right = clone(self.right, **kw) self.onclause = clone(self.onclause, **kw) def get_children(self, **kwargs): return self.left, self.right, self.onclause def _match_primaries(self, left, right): if isinstance(left, Join): left_right = left.right else: left_right = None return self._join_condition(left, right, a_subset=left_right) @classmethod def _join_condition(cls, a, b, ignore_nonexistent_tables=False, a_subset=None, consider_as_foreign_keys=None): """create a join condition between two tables or selectables. e.g.:: join_condition(tablea, tableb) would produce an expression along the lines of:: tablea.c.id==tableb.c.tablea_id The join is determined based on the foreign key relationships between the two selectables. If there are multiple ways to join, or no way to join, an error is raised. :param ignore_nonexistent_tables: Deprecated - this flag is no longer used. Only resolution errors regarding the two given tables are propagated. :param a_subset: An optional expression that is a sub-component of ``a``. An attempt will be made to join to just this sub-component first before looking at the full ``a`` construct, and if found will be successful even if there are other ways to join to ``a``. This allows the "right side" of a join to be passed thereby providing a "natural join". """ crit = [] constraints = set() for left in (a_subset, a): if left is None: continue for fk in sorted( b.foreign_keys, key=lambda fk: fk.parent._creation_order): if consider_as_foreign_keys is not None and \ fk.parent not in consider_as_foreign_keys: continue try: col = fk.get_referent(left) except exc.NoReferenceError as nrte: if nrte.table_name == left.name: raise else: continue if col is not None: crit.append(col == fk.parent) constraints.add(fk.constraint) if left is not b: for fk in sorted( left.foreign_keys, key=lambda fk: fk.parent._creation_order): if consider_as_foreign_keys is not None and \ fk.parent not in consider_as_foreign_keys: continue try: col = fk.get_referent(b) except exc.NoReferenceError as nrte: if nrte.table_name == b.name: raise else: # this is totally covered. can't get # coverage to mark it. continue if col is not None: crit.append(col == fk.parent) constraints.add(fk.constraint) if crit: break if len(crit) == 0: if isinstance(b, FromGrouping): hint = " Perhaps you meant to convert the right side to a "\ "subquery using alias()?" else: hint = "" raise exc.NoForeignKeysError( "Can't find any foreign key relationships " "between '%s' and '%s'.%s" % (a.description, b.description, hint)) elif len(constraints) > 1: raise exc.AmbiguousForeignKeysError( "Can't determine join between '%s' and '%s'; " "tables have more than one foreign key " "constraint relationship between them. " "Please specify the 'onclause' of this " "join explicitly." % (a.description, b.description)) elif len(crit) == 1: return (crit[0]) else: return and_(*crit) def select(self, whereclause=None, **kwargs): """Create a :class:`.Select` from this :class:`.Join`. The equivalent long-hand form, given a :class:`.Join` object ``j``, is:: from sqlalchemy import select j = select([j.left, j.right], **kw).\\ where(whereclause).\\ select_from(j) :param whereclause: the WHERE criterion that will be sent to the :func:`select()` function :param \**kwargs: all other kwargs are sent to the underlying :func:`select()` function. """ collist = [self.left, self.right] return Select(collist, whereclause, from_obj=[self], **kwargs) @property def bind(self): return self.left.bind or self.right.bind @util.dependencies("sqlalchemy.sql.util") def alias(self, sqlutil, name=None, flat=False): """return an alias of this :class:`.Join`. The default behavior here is to first produce a SELECT construct from this :class:`.Join`, then to produce a :class:`.Alias` from that. So given a join of the form:: j = table_a.join(table_b, table_a.c.id == table_b.c.a_id) The JOIN by itself would look like:: table_a JOIN table_b ON table_a.id = table_b.a_id Whereas the alias of the above, ``j.alias()``, would in a SELECT context look like:: (SELECT table_a.id AS table_a_id, table_b.id AS table_b_id, table_b.a_id AS table_b_a_id FROM table_a JOIN table_b ON table_a.id = table_b.a_id) AS anon_1 The equivalent long-hand form, given a :class:`.Join` object ``j``, is:: from sqlalchemy import select, alias j = alias( select([j.left, j.right]).\\ select_from(j).\\ with_labels(True).\\ correlate(False), name=name ) The selectable produced by :meth:`.Join.alias` features the same columns as that of the two individual selectables presented under a single name - the individual columns are "auto-labeled", meaning the ``.c.`` collection of the resulting :class:`.Alias` represents the names of the individual columns using a ``<tablename>_<columname>`` scheme:: j.c.table_a_id j.c.table_b_a_id :meth:`.Join.alias` also features an alternate option for aliasing joins which produces no enclosing SELECT and does not normally apply labels to the column names. The ``flat=True`` option will call :meth:`.FromClause.alias` against the left and right sides individually. Using this option, no new ``SELECT`` is produced; we instead, from a construct as below:: j = table_a.join(table_b, table_a.c.id == table_b.c.a_id) j = j.alias(flat=True) we get a result like this:: table_a AS table_a_1 JOIN table_b AS table_b_1 ON table_a_1.id = table_b_1.a_id The ``flat=True`` argument is also propagated to the contained selectables, so that a composite join such as:: j = table_a.join( table_b.join(table_c, table_b.c.id == table_c.c.b_id), table_b.c.a_id == table_a.c.id ).alias(flat=True) Will produce an expression like:: table_a AS table_a_1 JOIN ( table_b AS table_b_1 JOIN table_c AS table_c_1 ON table_b_1.id = table_c_1.b_id ) ON table_a_1.id = table_b_1.a_id The standalone :func:`~.expression.alias` function as well as the base :meth:`.FromClause.alias` method also support the ``flat=True`` argument as a no-op, so that the argument can be passed to the ``alias()`` method of any selectable. .. versionadded:: 0.9.0 Added the ``flat=True`` option to create "aliases" of joins without enclosing inside of a SELECT subquery. :param name: name given to the alias. :param flat: if True, produce an alias of the left and right sides of this :class:`.Join` and return the join of those two selectables. This produces join expression that does not include an enclosing SELECT. .. versionadded:: 0.9.0 .. seealso:: :func:`~.expression.alias` """ if flat: assert name is None, "Can't send name argument with flat" left_a, right_a = self.left.alias(flat=True), \ self.right.alias(flat=True) adapter = sqlutil.ClauseAdapter(left_a).\ chain(sqlutil.ClauseAdapter(right_a)) return left_a.join(right_a, adapter.traverse(self.onclause), isouter=self.isouter) else: return self.select(use_labels=True, correlate=False).alias(name) @property def _hide_froms(self): return itertools.chain(*[_from_objects(x.left, x.right) for x in self._cloned_set]) @property def _from_objects(self): return [self] + \ self.onclause._from_objects + \ self.left._from_objects + \ self.right._from_objects class Alias(FromClause): """Represents an table or selectable alias (AS). Represents an alias, as typically applied to any table or sub-select within a SQL statement using the ``AS`` keyword (or without the keyword on certain databases such as Oracle). This object is constructed from the :func:`~.expression.alias` module level function as well as the :meth:`.FromClause.alias` method available on all :class:`.FromClause` subclasses. """ __visit_name__ = 'alias' named_with_column = True _is_from_container = True def __init__(self, selectable, name=None): baseselectable = selectable while isinstance(baseselectable, Alias): baseselectable = baseselectable.element self.original = baseselectable self.supports_execution = baseselectable.supports_execution if self.supports_execution: self._execution_options = baseselectable._execution_options self.element = selectable if name is None: if self.original.named_with_column: name = getattr(self.original, 'name', None) name = _anonymous_label('%%(%d %s)s' % (id(self), name or 'anon')) self.name = name @property def description(self): if util.py3k: return self.name else: return self.name.encode('ascii', 'backslashreplace') def as_scalar(self): try: return self.element.as_scalar() except AttributeError: raise AttributeError("Element %s does not support " "'as_scalar()'" % self.element) def is_derived_from(self, fromclause): if fromclause in self._cloned_set: return True return self.element.is_derived_from(fromclause) def _populate_column_collection(self): for col in self.element.columns._all_columns: col._make_proxy(self) def _refresh_for_new_column(self, column): col = self.element._refresh_for_new_column(column) if col is not None: if not self._cols_populated: return None else: return col._make_proxy(self) else: return None def _copy_internals(self, clone=_clone, **kw): # don't apply anything to an aliased Table # for now. May want to drive this from # the given **kw. if isinstance(self.element, TableClause): return self._reset_exported() self.element = clone(self.element, **kw) baseselectable = self.element while isinstance(baseselectable, Alias): baseselectable = baseselectable.element self.original = baseselectable def get_children(self, column_collections=True, **kw): if column_collections: for c in self.c: yield c yield self.element @property def _from_objects(self): return [self] @property def bind(self): return self.element.bind class CTE(Alias): """Represent a Common Table Expression. The :class:`.CTE` object is obtained using the :meth:`.SelectBase.cte` method from any selectable. See that method for complete examples. .. versionadded:: 0.7.6 """ __visit_name__ = 'cte' def __init__(self, selectable, name=None, recursive=False, _cte_alias=None, _restates=frozenset()): self.recursive = recursive self._cte_alias = _cte_alias self._restates = _restates super(CTE, self).__init__(selectable, name=name) def alias(self, name=None, flat=False): return CTE( self.original, name=name, recursive=self.recursive, _cte_alias=self, ) def union(self, other): return CTE( self.original.union(other), name=self.name, recursive=self.recursive, _restates=self._restates.union([self]) ) def union_all(self, other): return CTE( self.original.union_all(other), name=self.name, recursive=self.recursive, _restates=self._restates.union([self]) ) class FromGrouping(FromClause): """Represent a grouping of a FROM clause""" __visit_name__ = 'grouping' def __init__(self, element): self.element = element def _init_collections(self): pass @property def columns(self): return self.element.columns @property def primary_key(self): return self.element.primary_key @property def foreign_keys(self): return self.element.foreign_keys def is_derived_from(self, element): return self.element.is_derived_from(element) def alias(self, **kw): return FromGrouping(self.element.alias(**kw)) @property def _hide_froms(self): return self.element._hide_froms def get_children(self, **kwargs): return self.element, def _copy_internals(self, clone=_clone, **kw): self.element = clone(self.element, **kw) @property def _from_objects(self): return self.element._from_objects def __getattr__(self, attr): return getattr(self.element, attr) def __getstate__(self): return {'element': self.element} def __setstate__(self, state): self.element = state['element'] class TableClause(Immutable, FromClause): """Represents a minimal "table" construct. This is a lightweight table object that has only a name and a collection of columns, which are typically produced by the :func:`.expression.column` function:: from sqlalchemy.sql import table, column user = table("user", column("id"), column("name"), column("description"), ) The :class:`.TableClause` construct serves as the base for the more commonly used :class:`~.schema.Table` object, providing the usual set of :class:`~.expression.FromClause` services including the ``.c.`` collection and statement generation methods. It does **not** provide all the additional schema-level services of :class:`~.schema.Table`, including constraints, references to other tables, or support for :class:`.MetaData`-level services. It's useful on its own as an ad-hoc construct used to generate quick SQL statements when a more fully fledged :class:`~.schema.Table` is not on hand. """ __visit_name__ = 'table' named_with_column = True implicit_returning = False """:class:`.TableClause` doesn't support having a primary key or column -level defaults, so implicit returning doesn't apply.""" _autoincrement_column = None """No PK or default support so no autoincrement column.""" def __init__(self, name, *columns): """Produce a new :class:`.TableClause`. The object returned is an instance of :class:`.TableClause`, which represents the "syntactical" portion of the schema-level :class:`~.schema.Table` object. It may be used to construct lightweight table constructs. Note that the :func:`.expression.table` function is not part of the ``sqlalchemy`` namespace. It must be imported from the ``sql`` package:: from sqlalchemy.sql import table, column :param name: Name of the table. :param columns: A collection of :func:`.expression.column` constructs. """ super(TableClause, self).__init__() self.name = self.fullname = name self._columns = ColumnCollection() self.primary_key = ColumnSet() self.foreign_keys = set() for c in columns: self.append_column(c) def _init_collections(self): pass @util.memoized_property def description(self): if util.py3k: return self.name else: return self.name.encode('ascii', 'backslashreplace') def append_column(self, c): self._columns[c.key] = c c.table = self def get_children(self, column_collections=True, **kwargs): if column_collections: return [c for c in self.c] else: return [] @util.dependencies("sqlalchemy.sql.functions") def count(self, functions, whereclause=None, **params): """return a SELECT COUNT generated against this :class:`.TableClause`.""" if self.primary_key: col = list(self.primary_key)[0] else: col = list(self.columns)[0] return Select( [functions.func.count(col).label('tbl_row_count')], whereclause, from_obj=[self], **params) @util.dependencies("sqlalchemy.sql.dml") def insert(self, dml, values=None, inline=False, **kwargs): """Generate an :func:`.insert` construct against this :class:`.TableClause`. E.g.:: table.insert().values(name='foo') See :func:`.insert` for argument and usage information. """ return dml.Insert(self, values=values, inline=inline, **kwargs) @util.dependencies("sqlalchemy.sql.dml") def update(self, dml, whereclause=None, values=None, inline=False, **kwargs): """Generate an :func:`.update` construct against this :class:`.TableClause`. E.g.:: table.update().where(table.c.id==7).values(name='foo') See :func:`.update` for argument and usage information. """ return dml.Update(self, whereclause=whereclause, values=values, inline=inline, **kwargs) @util.dependencies("sqlalchemy.sql.dml") def delete(self, dml, whereclause=None, **kwargs): """Generate a :func:`.delete` construct against this :class:`.TableClause`. E.g.:: table.delete().where(table.c.id==7) See :func:`.delete` for argument and usage information. """ return dml.Delete(self, whereclause, **kwargs) @property def _from_objects(self): return [self] class ForUpdateArg(ClauseElement): @classmethod def parse_legacy_select(self, arg): """Parse the for_update arugment of :func:`.select`. :param mode: Defines the lockmode to use. ``None`` - translates to no lockmode ``'update'`` - translates to ``FOR UPDATE`` (standard SQL, supported by most dialects) ``'nowait'`` - translates to ``FOR UPDATE NOWAIT`` (supported by Oracle, PostgreSQL 8.1 upwards) ``'read'`` - translates to ``LOCK IN SHARE MODE`` (for MySQL), and ``FOR SHARE`` (for PostgreSQL) ``'read_nowait'`` - translates to ``FOR SHARE NOWAIT`` (supported by PostgreSQL). ``FOR SHARE`` and ``FOR SHARE NOWAIT`` (PostgreSQL). """ if arg in (None, False): return None nowait = read = False if arg == 'nowait': nowait = True elif arg == 'read': read = True elif arg == 'read_nowait': read = nowait = True elif arg is not True: raise exc.ArgumentError("Unknown for_update argument: %r" % arg) return ForUpdateArg(read=read, nowait=nowait) @property def legacy_for_update_value(self): if self.read and not self.nowait: return "read" elif self.read and self.nowait: return "read_nowait" elif self.nowait: return "nowait" else: return True def _copy_internals(self, clone=_clone, **kw): if self.of is not None: self.of = [clone(col, **kw) for col in self.of] def __init__(self, nowait=False, read=False, of=None): """Represents arguments specified to :meth:`.Select.for_update`. .. versionadded:: 0.9.0 """ self.nowait = nowait self.read = read if of is not None: self.of = [_interpret_as_column_or_from(elem) for elem in util.to_list(of)] else: self.of = None class SelectBase(Executable, FromClause): """Base class for SELECT statements. This includes :class:`.Select`, :class:`.CompoundSelect` and :class:`.TextAsFrom`. """ def as_scalar(self): """return a 'scalar' representation of this selectable, which can be used as a column expression. Typically, a select statement which has only one column in its columns clause is eligible to be used as a scalar expression. The returned object is an instance of :class:`ScalarSelect`. """ return ScalarSelect(self) def label(self, name): """return a 'scalar' representation of this selectable, embedded as a subquery with a label. .. seealso:: :meth:`~.SelectBase.as_scalar`. """ return self.as_scalar().label(name) def cte(self, name=None, recursive=False): """Return a new :class:`.CTE`, or Common Table Expression instance. Common table expressions are a SQL standard whereby SELECT statements can draw upon secondary statements specified along with the primary statement, using a clause called "WITH". Special semantics regarding UNION can also be employed to allow "recursive" queries, where a SELECT statement can draw upon the set of rows that have previously been selected. SQLAlchemy detects :class:`.CTE` objects, which are treated similarly to :class:`.Alias` objects, as special elements to be delivered to the FROM clause of the statement as well as to a WITH clause at the top of the statement. .. versionadded:: 0.7.6 :param name: name given to the common table expression. Like :meth:`._FromClause.alias`, the name can be left as ``None`` in which case an anonymous symbol will be used at query compile time. :param recursive: if ``True``, will render ``WITH RECURSIVE``. A recursive common table expression is intended to be used in conjunction with UNION ALL in order to derive rows from those already selected. The following examples illustrate two examples from Postgresql's documentation at http://www.postgresql.org/docs/8.4/static/queries-with.html. Example 1, non recursive:: from sqlalchemy import Table, Column, String, Integer, MetaData, \\ select, func metadata = MetaData() orders = Table('orders', metadata, Column('region', String), Column('amount', Integer), Column('product', String), Column('quantity', Integer) ) regional_sales = select([ orders.c.region, func.sum(orders.c.amount).label('total_sales') ]).group_by(orders.c.region).cte("regional_sales") top_regions = select([regional_sales.c.region]).\\ where( regional_sales.c.total_sales > select([ func.sum(regional_sales.c.total_sales)/10 ]) ).cte("top_regions") statement = select([ orders.c.region, orders.c.product, func.sum(orders.c.quantity).label("product_units"), func.sum(orders.c.amount).label("product_sales") ]).where(orders.c.region.in_( select([top_regions.c.region]) )).group_by(orders.c.region, orders.c.product) result = conn.execute(statement).fetchall() Example 2, WITH RECURSIVE:: from sqlalchemy import Table, Column, String, Integer, MetaData, \\ select, func metadata = MetaData() parts = Table('parts', metadata, Column('part', String), Column('sub_part', String), Column('quantity', Integer), ) included_parts = select([ parts.c.sub_part, parts.c.part, parts.c.quantity]).\\ where(parts.c.part=='our part').\\ cte(recursive=True) incl_alias = included_parts.alias() parts_alias = parts.alias() included_parts = included_parts.union_all( select([ parts_alias.c.part, parts_alias.c.sub_part, parts_alias.c.quantity ]). where(parts_alias.c.part==incl_alias.c.sub_part) ) statement = select([ included_parts.c.sub_part, func.sum(included_parts.c.quantity). label('total_quantity') ]).\ select_from(included_parts.join(parts, included_parts.c.part==parts.c.part)).\\ group_by(included_parts.c.sub_part) result = conn.execute(statement).fetchall() .. seealso:: :meth:`.orm.query.Query.cte` - ORM version of :meth:`.SelectBase.cte`. """ return CTE(self, name=name, recursive=recursive) @_generative @util.deprecated('0.6', message="``autocommit()`` is deprecated. Use " ":meth:`.Executable.execution_options` with the " "'autocommit' flag.") def autocommit(self): """return a new selectable with the 'autocommit' flag set to True. """ self._execution_options = \ self._execution_options.union({'autocommit': True}) def _generate(self): """Override the default _generate() method to also clear out exported collections.""" s = self.__class__.__new__(self.__class__) s.__dict__ = self.__dict__.copy() s._reset_exported() return s @property def _from_objects(self): return [self] class GenerativeSelect(SelectBase): """Base class for SELECT statements where additional elements can be added. This serves as the base for :class:`.Select` and :class:`.CompoundSelect` where elements such as ORDER BY, GROUP BY can be added and column rendering can be controlled. Compare to :class:`.TextAsFrom`, which, while it subclasses :class:`.SelectBase` and is also a SELECT construct, represents a fixed textual string which cannot be altered at this level, only wrapped as a subquery. .. versionadded:: 0.9.0 :class:`.GenerativeSelect` was added to provide functionality specific to :class:`.Select` and :class:`.CompoundSelect` while allowing :class:`.SelectBase` to be used for other SELECT-like objects, e.g. :class:`.TextAsFrom`. """ _order_by_clause = ClauseList() _group_by_clause = ClauseList() _limit = None _offset = None _for_update_arg = None def __init__(self, use_labels=False, for_update=False, limit=None, offset=None, order_by=None, group_by=None, bind=None, autocommit=None): self.use_labels = use_labels if for_update is not False: self._for_update_arg = ForUpdateArg.parse_legacy_select(for_update) if autocommit is not None: util.warn_deprecated('autocommit on select() is ' 'deprecated. Use .execution_options(a' 'utocommit=True)') self._execution_options = \ self._execution_options.union( {'autocommit': autocommit}) if limit is not None: self._limit = util.asint(limit) if offset is not None: self._offset = util.asint(offset) self._bind = bind if order_by is not None: self._order_by_clause = ClauseList(*util.to_list(order_by)) if group_by is not None: self._group_by_clause = ClauseList(*util.to_list(group_by)) @property def for_update(self): """Provide legacy dialect support for the ``for_update`` attribute. """ if self._for_update_arg is not None: return self._for_update_arg.legacy_for_update_value else: return None @for_update.setter def for_update(self, value): self._for_update_arg = ForUpdateArg.parse_legacy_select(value) @_generative def with_for_update(self, nowait=False, read=False, of=None): """Specify a ``FOR UPDATE`` clause for this :class:`.GenerativeSelect`. E.g.:: stmt = select([table]).with_for_update(nowait=True) On a database like Postgresql or Oracle, the above would render a statement like:: SELECT table.a, table.b FROM table FOR UPDATE NOWAIT on other backends, the ``nowait`` option is ignored and instead would produce:: SELECT table.a, table.b FROM table FOR UPDATE When called with no arguments, the statement will render with the suffix ``FOR UPDATE``. Additional arguments can then be provided which allow for common database-specific variants. :param nowait: boolean; will render ``FOR UPDATE NOWAIT`` on Oracle and Postgresql dialects. :param read: boolean; will render ``LOCK IN SHARE MODE`` on MySQL, ``FOR SHARE`` on Postgresql. On Postgresql, when combined with ``nowait``, will render ``FOR SHARE NOWAIT``. :param of: SQL expression or list of SQL expression elements (typically :class:`.Column` objects or a compatible expression) which will render into a ``FOR UPDATE OF`` clause; supported by PostgreSQL and Oracle. May render as a table or as a column depending on backend. .. versionadded:: 0.9.0 """ self._for_update_arg = ForUpdateArg(nowait=nowait, read=read, of=of) @_generative def apply_labels(self): """return a new selectable with the 'use_labels' flag set to True. This will result in column expressions being generated using labels against their table name, such as "SELECT somecolumn AS tablename_somecolumn". This allows selectables which contain multiple FROM clauses to produce a unique set of column names regardless of name conflicts among the individual FROM clauses. """ self.use_labels = True @_generative def limit(self, limit): """return a new selectable with the given LIMIT criterion applied.""" self._limit = util.asint(limit) @_generative def offset(self, offset): """return a new selectable with the given OFFSET criterion applied.""" self._offset = util.asint(offset) @_generative def order_by(self, *clauses): """return a new selectable with the given list of ORDER BY criterion applied. The criterion will be appended to any pre-existing ORDER BY criterion. """ self.append_order_by(*clauses) @_generative def group_by(self, *clauses): """return a new selectable with the given list of GROUP BY criterion applied. The criterion will be appended to any pre-existing GROUP BY criterion. """ self.append_group_by(*clauses) def append_order_by(self, *clauses): """Append the given ORDER BY criterion applied to this selectable. The criterion will be appended to any pre-existing ORDER BY criterion. This is an **in-place** mutation method; the :meth:`~.GenerativeSelect.order_by` method is preferred, as it provides standard :term:`method chaining`. """ if len(clauses) == 1 and clauses[0] is None: self._order_by_clause = ClauseList() else: if getattr(self, '_order_by_clause', None) is not None: clauses = list(self._order_by_clause) + list(clauses) self._order_by_clause = ClauseList(*clauses) def append_group_by(self, *clauses): """Append the given GROUP BY criterion applied to this selectable. The criterion will be appended to any pre-existing GROUP BY criterion. This is an **in-place** mutation method; the :meth:`~.GenerativeSelect.group_by` method is preferred, as it provides standard :term:`method chaining`. """ if len(clauses) == 1 and clauses[0] is None: self._group_by_clause = ClauseList() else: if getattr(self, '_group_by_clause', None) is not None: clauses = list(self._group_by_clause) + list(clauses) self._group_by_clause = ClauseList(*clauses) class CompoundSelect(GenerativeSelect): """Forms the basis of ``UNION``, ``UNION ALL``, and other SELECT-based set operations. .. seealso:: :func:`.union` :func:`.union_all` :func:`.intersect` :func:`.intersect_all` :func:`.except` :func:`.except_all` """ __visit_name__ = 'compound_select' UNION = util.symbol('UNION') UNION_ALL = util.symbol('UNION ALL') EXCEPT = util.symbol('EXCEPT') EXCEPT_ALL = util.symbol('EXCEPT ALL') INTERSECT = util.symbol('INTERSECT') INTERSECT_ALL = util.symbol('INTERSECT ALL') _is_from_container = True def __init__(self, keyword, *selects, **kwargs): self._auto_correlate = kwargs.pop('correlate', False) self.keyword = keyword self.selects = [] numcols = None # some DBs do not like ORDER BY in the inner queries of a UNION, etc. for n, s in enumerate(selects): s = _clause_element_as_expr(s) if not numcols: numcols = len(s.c._all_columns) elif len(s.c._all_columns) != numcols: raise exc.ArgumentError('All selectables passed to ' 'CompoundSelect must have identical numbers of ' 'columns; select #%d has %d columns, select ' '#%d has %d' % (1, len(self.selects[0].c._all_columns), n + 1, len(s.c._all_columns))) self.selects.append(s.self_group(self)) GenerativeSelect.__init__(self, **kwargs) @classmethod def _create_union(cls, *selects, **kwargs): """Return a ``UNION`` of multiple selectables. The returned object is an instance of :class:`.CompoundSelect`. A similar :func:`union()` method is available on all :class:`.FromClause` subclasses. \*selects a list of :class:`.Select` instances. \**kwargs available keyword arguments are the same as those of :func:`select`. """ return CompoundSelect(CompoundSelect.UNION, *selects, **kwargs) @classmethod def _create_union_all(cls, *selects, **kwargs): """Return a ``UNION ALL`` of multiple selectables. The returned object is an instance of :class:`.CompoundSelect`. A similar :func:`union_all()` method is available on all :class:`.FromClause` subclasses. \*selects a list of :class:`.Select` instances. \**kwargs available keyword arguments are the same as those of :func:`select`. """ return CompoundSelect(CompoundSelect.UNION_ALL, *selects, **kwargs) @classmethod def _create_except(cls, *selects, **kwargs): """Return an ``EXCEPT`` of multiple selectables. The returned object is an instance of :class:`.CompoundSelect`. \*selects a list of :class:`.Select` instances. \**kwargs available keyword arguments are the same as those of :func:`select`. """ return CompoundSelect(CompoundSelect.EXCEPT, *selects, **kwargs) @classmethod def _create_except_all(cls, *selects, **kwargs): """Return an ``EXCEPT ALL`` of multiple selectables. The returned object is an instance of :class:`.CompoundSelect`. \*selects a list of :class:`.Select` instances. \**kwargs available keyword arguments are the same as those of :func:`select`. """ return CompoundSelect(CompoundSelect.EXCEPT_ALL, *selects, **kwargs) @classmethod def _create_intersect(cls, *selects, **kwargs): """Return an ``INTERSECT`` of multiple selectables. The returned object is an instance of :class:`.CompoundSelect`. \*selects a list of :class:`.Select` instances. \**kwargs available keyword arguments are the same as those of :func:`select`. """ return CompoundSelect(CompoundSelect.INTERSECT, *selects, **kwargs) @classmethod def _create_intersect_all(cls, *selects, **kwargs): """Return an ``INTERSECT ALL`` of multiple selectables. The returned object is an instance of :class:`.CompoundSelect`. \*selects a list of :class:`.Select` instances. \**kwargs available keyword arguments are the same as those of :func:`select`. """ return CompoundSelect(CompoundSelect.INTERSECT_ALL, *selects, **kwargs) def _scalar_type(self): return self.selects[0]._scalar_type() def self_group(self, against=None): return FromGrouping(self) def is_derived_from(self, fromclause): for s in self.selects: if s.is_derived_from(fromclause): return True return False def _populate_column_collection(self): for cols in zip(*[s.c._all_columns for s in self.selects]): # this is a slightly hacky thing - the union exports a # column that resembles just that of the *first* selectable. # to get at a "composite" column, particularly foreign keys, # you have to dig through the proxies collection which we # generate below. We may want to improve upon this, such as # perhaps _make_proxy can accept a list of other columns # that are "shared" - schema.column can then copy all the # ForeignKeys in. this would allow the union() to have all # those fks too. proxy = cols[0]._make_proxy(self, name=cols[0]._label if self.use_labels else None, key=cols[0]._key_label if self.use_labels else None) # hand-construct the "_proxies" collection to include all # derived columns place a 'weight' annotation corresponding # to how low in the list of select()s the column occurs, so # that the corresponding_column() operation can resolve # conflicts proxy._proxies = [c._annotate({'weight': i + 1}) for (i, c) in enumerate(cols)] def _refresh_for_new_column(self, column): for s in self.selects: s._refresh_for_new_column(column) if not self._cols_populated: return None raise NotImplementedError("CompoundSelect constructs don't support " "addition of columns to underlying selectables") def _copy_internals(self, clone=_clone, **kw): self._reset_exported() self.selects = [clone(s, **kw) for s in self.selects] if hasattr(self, '_col_map'): del self._col_map for attr in ('_order_by_clause', '_group_by_clause', '_for_update_arg'): if getattr(self, attr) is not None: setattr(self, attr, clone(getattr(self, attr), **kw)) def get_children(self, column_collections=True, **kwargs): return (column_collections and list(self.c) or []) \ + [self._order_by_clause, self._group_by_clause] \ + list(self.selects) def bind(self): if self._bind: return self._bind for s in self.selects: e = s.bind if e: return e else: return None def _set_bind(self, bind): self._bind = bind bind = property(bind, _set_bind) class HasPrefixes(object): _prefixes = () @_generative def prefix_with(self, *expr, **kw): """Add one or more expressions following the statement keyword, i.e. SELECT, INSERT, UPDATE, or DELETE. Generative. This is used to support backend-specific prefix keywords such as those provided by MySQL. E.g.:: stmt = table.insert().prefix_with("LOW_PRIORITY", dialect="mysql") Multiple prefixes can be specified by multiple calls to :meth:`.prefix_with`. :param \*expr: textual or :class:`.ClauseElement` construct which will be rendered following the INSERT, UPDATE, or DELETE keyword. :param \**kw: A single keyword 'dialect' is accepted. This is an optional string dialect name which will limit rendering of this prefix to only that dialect. """ dialect = kw.pop('dialect', None) if kw: raise exc.ArgumentError("Unsupported argument(s): %s" % ",".join(kw)) self._setup_prefixes(expr, dialect) def _setup_prefixes(self, prefixes, dialect=None): self._prefixes = self._prefixes + tuple( [(_literal_as_text(p), dialect) for p in prefixes]) class Select(HasPrefixes, GenerativeSelect): """Represents a ``SELECT`` statement. """ __visit_name__ = 'select' _prefixes = () _hints = util.immutabledict() _distinct = False _from_cloned = None _correlate = () _correlate_except = None _memoized_property = SelectBase._memoized_property _is_select = True def __init__(self, columns=None, whereclause=None, from_obj=None, distinct=False, having=None, correlate=True, prefixes=None, **kwargs): """Construct a new :class:`.Select`. Similar functionality is also available via the :meth:`.FromClause.select` method on any :class:`.FromClause`. All arguments which accept :class:`.ClauseElement` arguments also accept string arguments, which will be converted as appropriate into either :func:`text()` or :func:`literal_column()` constructs. .. seealso:: :ref:`coretutorial_selecting` - Core Tutorial description of :func:`.select`. :param columns: A list of :class:`.ClauseElement` objects, typically :class:`.ColumnElement` objects or subclasses, which will form the columns clause of the resulting statement. For all members which are instances of :class:`.Selectable`, the individual :class:`.ColumnElement` members of the :class:`.Selectable` will be added individually to the columns clause. For example, specifying a :class:`~sqlalchemy.schema.Table` instance will result in all the contained :class:`~sqlalchemy.schema.Column` objects within to be added to the columns clause. This argument is not present on the form of :func:`select()` available on :class:`~sqlalchemy.schema.Table`. :param whereclause: A :class:`.ClauseElement` expression which will be used to form the ``WHERE`` clause. :param from_obj: A list of :class:`.ClauseElement` objects which will be added to the ``FROM`` clause of the resulting statement. Note that "from" objects are automatically located within the columns and whereclause ClauseElements. Use this parameter to explicitly specify "from" objects which are not automatically locatable. This could include :class:`~sqlalchemy.schema.Table` objects that aren't otherwise present, or :class:`.Join` objects whose presence will supercede that of the :class:`~sqlalchemy.schema.Table` objects already located in the other clauses. :param autocommit: Deprecated. Use .execution_options(autocommit=<True|False>) to set the autocommit option. :param bind=None: an :class:`~.Engine` or :class:`~.Connection` instance to which the resulting :class:`.Select` object will be bound. The :class:`.Select` object will otherwise automatically bind to whatever :class:`~.base.Connectable` instances can be located within its contained :class:`.ClauseElement` members. :param correlate=True: indicates that this :class:`.Select` object should have its contained :class:`.FromClause` elements "correlated" to an enclosing :class:`.Select` object. This means that any :class:`.ClauseElement` instance within the "froms" collection of this :class:`.Select` which is also present in the "froms" collection of an enclosing select will not be rendered in the ``FROM`` clause of this select statement. :param distinct=False: when ``True``, applies a ``DISTINCT`` qualifier to the columns clause of the resulting statement. The boolean argument may also be a column expression or list of column expressions - this is a special calling form which is understood by the Postgresql dialect to render the ``DISTINCT ON (<columns>)`` syntax. ``distinct`` is also available via the :meth:`~.Select.distinct` generative method. :param for_update=False: when ``True``, applies ``FOR UPDATE`` to the end of the resulting statement. .. deprecated:: 0.9.0 - use :meth:`.GenerativeSelect.with_for_update` to specify the structure of the ``FOR UPDATE`` clause. ``for_update`` accepts various string values interpreted by specific backends, including: * ``"read"`` - on MySQL, translates to ``LOCK IN SHARE MODE``; on Postgresql, translates to ``FOR SHARE``. * ``"nowait"`` - on Postgresql and Oracle, translates to ``FOR UPDATE NOWAIT``. * ``"read_nowait"`` - on Postgresql, translates to ``FOR SHARE NOWAIT``. .. seealso:: :meth:`.GenerativeSelect.with_for_update` - improved API for specifying the ``FOR UPDATE`` clause. :param group_by: a list of :class:`.ClauseElement` objects which will comprise the ``GROUP BY`` clause of the resulting select. :param having: a :class:`.ClauseElement` that will comprise the ``HAVING`` clause of the resulting select when ``GROUP BY`` is used. :param limit=None: a numerical value which usually compiles to a ``LIMIT`` expression in the resulting select. Databases that don't support ``LIMIT`` will attempt to provide similar functionality. :param offset=None: a numeric value which usually compiles to an ``OFFSET`` expression in the resulting select. Databases that don't support ``OFFSET`` will attempt to provide similar functionality. :param order_by: a scalar or list of :class:`.ClauseElement` objects which will comprise the ``ORDER BY`` clause of the resulting select. :param use_labels=False: when ``True``, the statement will be generated using labels for each column in the columns clause, which qualify each column with its parent table's (or aliases) name so that name conflicts between columns in different tables don't occur. The format of the label is <tablename>_<column>. The "c" collection of the resulting :class:`.Select` object will use these names as well for targeting column members. use_labels is also available via the :meth:`~.GenerativeSelect.apply_labels` generative method. """ self._auto_correlate = correlate if distinct is not False: if distinct is True: self._distinct = True else: self._distinct = [ _literal_as_text(e) for e in util.to_list(distinct) ] if from_obj is not None: self._from_obj = util.OrderedSet( _interpret_as_from(f) for f in util.to_list(from_obj)) else: self._from_obj = util.OrderedSet() try: cols_present = bool(columns) except TypeError: raise exc.ArgumentError("columns argument to select() must " "be a Python list or other iterable") if cols_present: self._raw_columns = [] for c in columns: c = _interpret_as_column_or_from(c) if isinstance(c, ScalarSelect): c = c.self_group(against=operators.comma_op) self._raw_columns.append(c) else: self._raw_columns = [] if whereclause is not None: self._whereclause = _literal_as_text(whereclause) else: self._whereclause = None if having is not None: self._having = _literal_as_text(having) else: self._having = None if prefixes: self._setup_prefixes(prefixes) GenerativeSelect.__init__(self, **kwargs) @property def _froms(self): # would love to cache this, # but there's just enough edge cases, particularly now that # declarative encourages construction of SQL expressions # without tables present, to just regen this each time. froms = [] seen = set() translate = self._from_cloned def add(items): for item in items: if item is self: raise exc.InvalidRequestError( "select() construct refers to itself as a FROM") if translate and item in translate: item = translate[item] if not seen.intersection(item._cloned_set): froms.append(item) seen.update(item._cloned_set) add(_from_objects(*self._raw_columns)) if self._whereclause is not None: add(_from_objects(self._whereclause)) add(self._from_obj) return froms def _get_display_froms(self, explicit_correlate_froms=None, implicit_correlate_froms=None): """Return the full list of 'from' clauses to be displayed. Takes into account a set of existing froms which may be rendered in the FROM clause of enclosing selects; this Select may want to leave those absent if it is automatically correlating. """ froms = self._froms toremove = set(itertools.chain(*[ _expand_cloned(f._hide_froms) for f in froms])) if toremove: # if we're maintaining clones of froms, # add the copies out to the toremove list. only include # clones that are lexical equivalents. if self._from_cloned: toremove.update( self._from_cloned[f] for f in toremove.intersection(self._from_cloned) if self._from_cloned[f]._is_lexical_equivalent(f) ) # filter out to FROM clauses not in the list, # using a list to maintain ordering froms = [f for f in froms if f not in toremove] if self._correlate: to_correlate = self._correlate if to_correlate: froms = [ f for f in froms if f not in _cloned_intersection( _cloned_intersection(froms, explicit_correlate_froms or ()), to_correlate ) ] if self._correlate_except is not None: froms = [ f for f in froms if f not in _cloned_difference( _cloned_intersection(froms, explicit_correlate_froms or ()), self._correlate_except ) ] if self._auto_correlate and \ implicit_correlate_froms and \ len(froms) > 1: froms = [ f for f in froms if f not in _cloned_intersection(froms, implicit_correlate_froms) ] if not len(froms): raise exc.InvalidRequestError("Select statement '%s" "' returned no FROM clauses due to " "auto-correlation; specify " "correlate(<tables>) to control " "correlation manually." % self) return froms def _scalar_type(self): elem = self._raw_columns[0] cols = list(elem._select_iterable) return cols[0].type @property def froms(self): """Return the displayed list of FromClause elements.""" return self._get_display_froms() @_generative def with_hint(self, selectable, text, dialect_name='*'): """Add an indexing hint for the given selectable to this :class:`.Select`. The text of the hint is rendered in the appropriate location for the database backend in use, relative to the given :class:`.Table` or :class:`.Alias` passed as the ``selectable`` argument. The dialect implementation typically uses Python string substitution syntax with the token ``%(name)s`` to render the name of the table or alias. E.g. when using Oracle, the following:: select([mytable]).\\ with_hint(mytable, "+ index(%(name)s ix_mytable)") Would render SQL as:: select /*+ index(mytable ix_mytable) */ ... from mytable The ``dialect_name`` option will limit the rendering of a particular hint to a particular backend. Such as, to add hints for both Oracle and Sybase simultaneously:: select([mytable]).\\ with_hint(mytable, "+ index(%(name)s ix_mytable)", 'oracle').\\ with_hint(mytable, "WITH INDEX ix_mytable", 'sybase') """ self._hints = self._hints.union( {(selectable, dialect_name): text}) @property def type(self): raise exc.InvalidRequestError("Select objects don't have a type. " "Call as_scalar() on this Select object " "to return a 'scalar' version of this Select.") @_memoized_property.method def locate_all_froms(self): """return a Set of all FromClause elements referenced by this Select. This set is a superset of that returned by the ``froms`` property, which is specifically for those FromClause elements that would actually be rendered. """ froms = self._froms return froms + list(_from_objects(*froms)) @property def inner_columns(self): """an iterator of all ColumnElement expressions which would be rendered into the columns clause of the resulting SELECT statement. """ return _select_iterables(self._raw_columns) def is_derived_from(self, fromclause): if self in fromclause._cloned_set: return True for f in self.locate_all_froms(): if f.is_derived_from(fromclause): return True return False def _copy_internals(self, clone=_clone, **kw): # Select() object has been cloned and probably adapted by the # given clone function. Apply the cloning function to internal # objects # 1. keep a dictionary of the froms we've cloned, and what # they've become. This is consulted later when we derive # additional froms from "whereclause" and the columns clause, # which may still reference the uncloned parent table. # as of 0.7.4 we also put the current version of _froms, which # gets cleared on each generation. previously we were "baking" # _froms into self._from_obj. self._from_cloned = from_cloned = dict((f, clone(f, **kw)) for f in self._from_obj.union(self._froms)) # 3. update persistent _from_obj with the cloned versions. self._from_obj = util.OrderedSet(from_cloned[f] for f in self._from_obj) # the _correlate collection is done separately, what can happen # here is the same item is _correlate as in _from_obj but the # _correlate version has an annotation on it - (specifically # RelationshipProperty.Comparator._criterion_exists() does # this). Also keep _correlate liberally open with it's previous # contents, as this set is used for matching, not rendering. self._correlate = set(clone(f) for f in self._correlate).union(self._correlate) # 4. clone other things. The difficulty here is that Column # objects are not actually cloned, and refer to their original # .table, resulting in the wrong "from" parent after a clone # operation. Hence _from_cloned and _from_obj supercede what is # present here. self._raw_columns = [clone(c, **kw) for c in self._raw_columns] for attr in '_whereclause', '_having', '_order_by_clause', \ '_group_by_clause', '_for_update_arg': if getattr(self, attr) is not None: setattr(self, attr, clone(getattr(self, attr), **kw)) # erase exported column list, _froms collection, # etc. self._reset_exported() def get_children(self, column_collections=True, **kwargs): """return child elements as per the ClauseElement specification.""" return (column_collections and list(self.columns) or []) + \ self._raw_columns + list(self._froms) + \ [x for x in (self._whereclause, self._having, self._order_by_clause, self._group_by_clause) if x is not None] @_generative def column(self, column): """return a new select() construct with the given column expression added to its columns clause. """ self.append_column(column) @util.dependencies("sqlalchemy.sql.util") def reduce_columns(self, sqlutil, only_synonyms=True): """Return a new :func`.select` construct with redundantly named, equivalently-valued columns removed from the columns clause. "Redundant" here means two columns where one refers to the other either based on foreign key, or via a simple equality comparison in the WHERE clause of the statement. The primary purpose of this method is to automatically construct a select statement with all uniquely-named columns, without the need to use table-qualified labels as :meth:`.apply_labels` does. When columns are omitted based on foreign key, the referred-to column is the one that's kept. When columns are omitted based on WHERE eqivalence, the first column in the columns clause is the one that's kept. :param only_synonyms: when True, limit the removal of columns to those which have the same name as the equivalent. Otherwise, all columns that are equivalent to another are removed. .. versionadded:: 0.8 """ return self.with_only_columns( sqlutil.reduce_columns( self.inner_columns, only_synonyms=only_synonyms, *(self._whereclause, ) + tuple(self._from_obj) ) ) @_generative def with_only_columns(self, columns): """Return a new :func:`.select` construct with its columns clause replaced with the given columns. .. versionchanged:: 0.7.3 Due to a bug fix, this method has a slight behavioral change as of version 0.7.3. Prior to version 0.7.3, the FROM clause of a :func:`.select` was calculated upfront and as new columns were added; in 0.7.3 and later it's calculated at compile time, fixing an issue regarding late binding of columns to parent tables. This changes the behavior of :meth:`.Select.with_only_columns` in that FROM clauses no longer represented in the new list are dropped, but this behavior is more consistent in that the FROM clauses are consistently derived from the current columns clause. The original intent of this method is to allow trimming of the existing columns list to be fewer columns than originally present; the use case of replacing the columns list with an entirely different one hadn't been anticipated until 0.7.3 was released; the usage guidelines below illustrate how this should be done. This method is exactly equivalent to as if the original :func:`.select` had been called with the given columns clause. I.e. a statement:: s = select([table1.c.a, table1.c.b]) s = s.with_only_columns([table1.c.b]) should be exactly equivalent to:: s = select([table1.c.b]) This means that FROM clauses which are only derived from the column list will be discarded if the new column list no longer contains that FROM:: >>> table1 = table('t1', column('a'), column('b')) >>> table2 = table('t2', column('a'), column('b')) >>> s1 = select([table1.c.a, table2.c.b]) >>> print s1 SELECT t1.a, t2.b FROM t1, t2 >>> s2 = s1.with_only_columns([table2.c.b]) >>> print s2 SELECT t2.b FROM t1 The preferred way to maintain a specific FROM clause in the construct, assuming it won't be represented anywhere else (i.e. not in the WHERE clause, etc.) is to set it using :meth:`.Select.select_from`:: >>> s1 = select([table1.c.a, table2.c.b]).\\ ... select_from(table1.join(table2, ... table1.c.a==table2.c.a)) >>> s2 = s1.with_only_columns([table2.c.b]) >>> print s2 SELECT t2.b FROM t1 JOIN t2 ON t1.a=t2.a Care should also be taken to use the correct set of column objects passed to :meth:`.Select.with_only_columns`. Since the method is essentially equivalent to calling the :func:`.select` construct in the first place with the given columns, the columns passed to :meth:`.Select.with_only_columns` should usually be a subset of those which were passed to the :func:`.select` construct, not those which are available from the ``.c`` collection of that :func:`.select`. That is:: s = select([table1.c.a, table1.c.b]).select_from(table1) s = s.with_only_columns([table1.c.b]) and **not**:: # usually incorrect s = s.with_only_columns([s.c.b]) The latter would produce the SQL:: SELECT b FROM (SELECT t1.a AS a, t1.b AS b FROM t1), t1 Since the :func:`.select` construct is essentially being asked to select both from ``table1`` as well as itself. """ self._reset_exported() rc = [] for c in columns: c = _interpret_as_column_or_from(c) if isinstance(c, ScalarSelect): c = c.self_group(against=operators.comma_op) rc.append(c) self._raw_columns = rc @_generative def where(self, whereclause): """return a new select() construct with the given expression added to its WHERE clause, joined to the existing clause via AND, if any. """ self.append_whereclause(whereclause) @_generative def having(self, having): """return a new select() construct with the given expression added to its HAVING clause, joined to the existing clause via AND, if any. """ self.append_having(having) @_generative def distinct(self, *expr): """Return a new select() construct which will apply DISTINCT to its columns clause. :param \*expr: optional column expressions. When present, the Postgresql dialect will render a ``DISTINCT ON (<expressions>>)`` construct. """ if expr: expr = [_literal_as_text(e) for e in expr] if isinstance(self._distinct, list): self._distinct = self._distinct + expr else: self._distinct = expr else: self._distinct = True @_generative def select_from(self, fromclause): """return a new :func:`.select` construct with the given FROM expression merged into its list of FROM objects. E.g.:: table1 = table('t1', column('a')) table2 = table('t2', column('b')) s = select([table1.c.a]).\\ select_from( table1.join(table2, table1.c.a==table2.c.b) ) The "from" list is a unique set on the identity of each element, so adding an already present :class:`.Table` or other selectable will have no effect. Passing a :class:`.Join` that refers to an already present :class:`.Table` or other selectable will have the effect of concealing the presence of that selectable as an individual element in the rendered FROM list, instead rendering it into a JOIN clause. While the typical purpose of :meth:`.Select.select_from` is to replace the default, derived FROM clause with a join, it can also be called with individual table elements, multiple times if desired, in the case that the FROM clause cannot be fully derived from the columns clause:: select([func.count('*')]).select_from(table1) """ self.append_from(fromclause) @_generative def correlate(self, *fromclauses): """return a new :class:`.Select` which will correlate the given FROM clauses to that of an enclosing :class:`.Select`. Calling this method turns off the :class:`.Select` object's default behavior of "auto-correlation". Normally, FROM elements which appear in a :class:`.Select` that encloses this one via its :term:`WHERE clause`, ORDER BY, HAVING or :term:`columns clause` will be omitted from this :class:`.Select` object's :term:`FROM clause`. Setting an explicit correlation collection using the :meth:`.Select.correlate` method provides a fixed list of FROM objects that can potentially take place in this process. When :meth:`.Select.correlate` is used to apply specific FROM clauses for correlation, the FROM elements become candidates for correlation regardless of how deeply nested this :class:`.Select` object is, relative to an enclosing :class:`.Select` which refers to the same FROM object. This is in contrast to the behavior of "auto-correlation" which only correlates to an immediate enclosing :class:`.Select`. Multi-level correlation ensures that the link between enclosed and enclosing :class:`.Select` is always via at least one WHERE/ORDER BY/HAVING/columns clause in order for correlation to take place. If ``None`` is passed, the :class:`.Select` object will correlate none of its FROM entries, and all will render unconditionally in the local FROM clause. :param \*fromclauses: a list of one or more :class:`.FromClause` constructs, or other compatible constructs (i.e. ORM-mapped classes) to become part of the correlate collection. .. versionchanged:: 0.8.0 ORM-mapped classes are accepted by :meth:`.Select.correlate`. .. versionchanged:: 0.8.0 The :meth:`.Select.correlate` method no longer unconditionally removes entries from the FROM clause; instead, the candidate FROM entries must also be matched by a FROM entry located in an enclosing :class:`.Select`, which ultimately encloses this one as present in the WHERE clause, ORDER BY clause, HAVING clause, or columns clause of an enclosing :meth:`.Select`. .. versionchanged:: 0.8.2 explicit correlation takes place via any level of nesting of :class:`.Select` objects; in previous 0.8 versions, correlation would only occur relative to the immediate enclosing :class:`.Select` construct. .. seealso:: :meth:`.Select.correlate_except` :ref:`correlated_subqueries` """ self._auto_correlate = False if fromclauses and fromclauses[0] is None: self._correlate = () else: self._correlate = set(self._correlate).union( _interpret_as_from(f) for f in fromclauses) @_generative def correlate_except(self, *fromclauses): """return a new :class:`.Select` which will omit the given FROM clauses from the auto-correlation process. Calling :meth:`.Select.correlate_except` turns off the :class:`.Select` object's default behavior of "auto-correlation" for the given FROM elements. An element specified here will unconditionally appear in the FROM list, while all other FROM elements remain subject to normal auto-correlation behaviors. .. versionchanged:: 0.8.2 The :meth:`.Select.correlate_except` method was improved to fully prevent FROM clauses specified here from being omitted from the immediate FROM clause of this :class:`.Select`. If ``None`` is passed, the :class:`.Select` object will correlate all of its FROM entries. .. versionchanged:: 0.8.2 calling ``correlate_except(None)`` will correctly auto-correlate all FROM clauses. :param \*fromclauses: a list of one or more :class:`.FromClause` constructs, or other compatible constructs (i.e. ORM-mapped classes) to become part of the correlate-exception collection. .. seealso:: :meth:`.Select.correlate` :ref:`correlated_subqueries` """ self._auto_correlate = False if fromclauses and fromclauses[0] is None: self._correlate_except = () else: self._correlate_except = set(self._correlate_except or ()).union( _interpret_as_from(f) for f in fromclauses) def append_correlation(self, fromclause): """append the given correlation expression to this select() construct. This is an **in-place** mutation method; the :meth:`~.Select.correlate` method is preferred, as it provides standard :term:`method chaining`. """ self._auto_correlate = False self._correlate = set(self._correlate).union( _interpret_as_from(f) for f in fromclause) def append_column(self, column): """append the given column expression to the columns clause of this select() construct. This is an **in-place** mutation method; the :meth:`~.Select.column` method is preferred, as it provides standard :term:`method chaining`. """ self._reset_exported() column = _interpret_as_column_or_from(column) if isinstance(column, ScalarSelect): column = column.self_group(against=operators.comma_op) self._raw_columns = self._raw_columns + [column] def append_prefix(self, clause): """append the given columns clause prefix expression to this select() construct. This is an **in-place** mutation method; the :meth:`~.Select.prefix_with` method is preferred, as it provides standard :term:`method chaining`. """ clause = _literal_as_text(clause) self._prefixes = self._prefixes + (clause,) def append_whereclause(self, whereclause): """append the given expression to this select() construct's WHERE criterion. The expression will be joined to existing WHERE criterion via AND. This is an **in-place** mutation method; the :meth:`~.Select.where` method is preferred, as it provides standard :term:`method chaining`. """ self._reset_exported() self._whereclause = and_(True_._ifnone(self._whereclause), whereclause) def append_having(self, having): """append the given expression to this select() construct's HAVING criterion. The expression will be joined to existing HAVING criterion via AND. This is an **in-place** mutation method; the :meth:`~.Select.having` method is preferred, as it provides standard :term:`method chaining`. """ self._reset_exported() self._having = and_(True_._ifnone(self._having), having) def append_from(self, fromclause): """append the given FromClause expression to this select() construct's FROM clause. This is an **in-place** mutation method; the :meth:`~.Select.select_from` method is preferred, as it provides standard :term:`method chaining`. """ self._reset_exported() fromclause = _interpret_as_from(fromclause) self._from_obj = self._from_obj.union([fromclause]) @_memoized_property def _columns_plus_names(self): if self.use_labels: names = set() def name_for_col(c): if c._label is None: return (None, c) name = c._label if name in names: name = c.anon_label else: names.add(name) return name, c return [ name_for_col(c) for c in util.unique_list(_select_iterables(self._raw_columns)) ] else: return [ (None, c) for c in util.unique_list(_select_iterables(self._raw_columns)) ] def _populate_column_collection(self): for name, c in self._columns_plus_names: if not hasattr(c, '_make_proxy'): continue if name is None: key = None elif self.use_labels: key = c._key_label if key is not None and key in self.c: key = c.anon_label else: key = None c._make_proxy(self, key=key, name=name, name_is_truncatable=True) def _refresh_for_new_column(self, column): for fromclause in self._froms: col = fromclause._refresh_for_new_column(column) if col is not None: if col in self.inner_columns and self._cols_populated: our_label = col._key_label if self.use_labels else col.key if our_label not in self.c: return col._make_proxy(self, name=col._label if self.use_labels else None, key=col._key_label if self.use_labels else None, name_is_truncatable=True) return None return None def self_group(self, against=None): """return a 'grouping' construct as per the ClauseElement specification. This produces an element that can be embedded in an expression. Note that this method is called automatically as needed when constructing expressions and should not require explicit use. """ if isinstance(against, CompoundSelect): return self return FromGrouping(self) def union(self, other, **kwargs): """return a SQL UNION of this select() construct against the given selectable.""" return CompoundSelect._create_union(self, other, **kwargs) def union_all(self, other, **kwargs): """return a SQL UNION ALL of this select() construct against the given selectable. """ return CompoundSelect._create_union_all(self, other, **kwargs) def except_(self, other, **kwargs): """return a SQL EXCEPT of this select() construct against the given selectable.""" return CompoundSelect._create_except(self, other, **kwargs) def except_all(self, other, **kwargs): """return a SQL EXCEPT ALL of this select() construct against the given selectable. """ return CompoundSelect._create_except_all(self, other, **kwargs) def intersect(self, other, **kwargs): """return a SQL INTERSECT of this select() construct against the given selectable. """ return CompoundSelect._create_intersect(self, other, **kwargs) def intersect_all(self, other, **kwargs): """return a SQL INTERSECT ALL of this select() construct against the given selectable. """ return CompoundSelect._create_intersect_all(self, other, **kwargs) def bind(self): if self._bind: return self._bind froms = self._froms if not froms: for c in self._raw_columns: e = c.bind if e: self._bind = e return e else: e = list(froms)[0].bind if e: self._bind = e return e return None def _set_bind(self, bind): self._bind = bind bind = property(bind, _set_bind) class ScalarSelect(Generative, Grouping): _from_objects = [] def __init__(self, element): self.element = element self.type = element._scalar_type() @property def columns(self): raise exc.InvalidRequestError('Scalar Select expression has no ' 'columns; use this object directly within a ' 'column-level expression.') c = columns @_generative def where(self, crit): """Apply a WHERE clause to the SELECT statement referred to by this :class:`.ScalarSelect`. """ self.element = self.element.where(crit) def self_group(self, **kwargs): return self class Exists(UnaryExpression): """Represent an ``EXISTS`` clause. """ __visit_name__ = UnaryExpression.__visit_name__ _from_objects = [] def __init__(self, *args, **kwargs): """Construct a new :class:`.Exists` against an existing :class:`.Select` object. Calling styles are of the following forms:: # use on an existing select() s = select([table.c.col1]).where(table.c.col2==5) s = exists(s) # construct a select() at once exists(['*'], **select_arguments).where(criterion) # columns argument is optional, generates "EXISTS (SELECT *)" # by default. exists().where(table.c.col2==5) """ if args and isinstance(args[0], (SelectBase, ScalarSelect)): s = args[0] else: if not args: args = ([literal_column('*')],) s = Select(*args, **kwargs).as_scalar().self_group() UnaryExpression.__init__(self, s, operator=operators.exists, type_=type_api.BOOLEANTYPE) def select(self, whereclause=None, **params): return Select([self], whereclause, **params) def correlate(self, *fromclause): e = self._clone() e.element = self.element.correlate(*fromclause).self_group() return e def correlate_except(self, *fromclause): e = self._clone() e.element = self.element.correlate_except(*fromclause).self_group() return e def select_from(self, clause): """return a new :class:`.Exists` construct, applying the given expression to the :meth:`.Select.select_from` method of the select statement contained. """ e = self._clone() e.element = self.element.select_from(clause).self_group() return e def where(self, clause): """return a new exists() construct with the given expression added to its WHERE clause, joined to the existing clause via AND, if any. """ e = self._clone() e.element = self.element.where(clause).self_group() return e class TextAsFrom(SelectBase): """Wrap a :class:`.TextClause` construct within a :class:`.SelectBase` interface. This allows the :class:`.TextClause` object to gain a ``.c`` collection and other FROM-like capabilities such as :meth:`.FromClause.alias`, :meth:`.SelectBase.cte`, etc. The :class:`.TextAsFrom` construct is produced via the :meth:`.TextClause.columns` method - see that method for details. .. versionadded:: 0.9.0 .. seealso:: :func:`.text` :meth:`.TextClause.columns` """ __visit_name__ = "text_as_from" _textual = True def __init__(self, text, columns): self.element = text self.column_args = columns @property def _bind(self): return self.element._bind @_generative def bindparams(self, *binds, **bind_as_values): self.element = self.element.bindparams(*binds, **bind_as_values) def _populate_column_collection(self): for c in self.column_args: c._make_proxy(self) def _copy_internals(self, clone=_clone, **kw): self._reset_exported() self.element = clone(self.element, **kw) def _scalar_type(self): return self.column_args[0].type class AnnotatedFromClause(Annotated): def __init__(self, element, values): # force FromClause to generate their internal # collections into __dict__ element.c Annotated.__init__(self, element, values)
Cito/sqlalchemy
lib/sqlalchemy/sql/selectable.py
Python
mit
108,071
from unittest.mock import Mock import pytest from mitmproxy import connection from mitmproxy.proxy import events, commands @pytest.fixture def tconn() -> connection.Server: return connection.Server(None) def test_dataclasses(tconn): assert repr(events.Start()) assert repr(events.DataReceived(tconn, b"foo")) assert repr(events.ConnectionClosed(tconn)) def test_command_completed(): with pytest.raises(TypeError): events.CommandCompleted() assert repr(events.HookCompleted(Mock(), None)) class FooCommand(commands.Command): pass with pytest.warns(RuntimeWarning, match="properly annotated"): class FooCompleted(events.CommandCompleted): pass class FooCompleted1(events.CommandCompleted): command: FooCommand with pytest.warns(RuntimeWarning, match="conflicting subclasses"): class FooCompleted2(events.CommandCompleted): command: FooCommand
mitmproxy/mitmproxy
test/mitmproxy/proxy/test_events.py
Python
mit
957
#! /usr/bin/env python '''Make sure the Riak client is sane''' import unittest from test import BaseTest from simhash_db import Client class RiakTest(BaseTest, unittest.TestCase): '''Test the Riak client''' def make_client(self, name, num_blocks, num_bits): return Client('riak', name, num_blocks, num_bits) if __name__ == '__main__': unittest.main()
seomoz/simhash-db-py
test/test_riak.py
Python
mit
377
import petsc4py import sys petsc4py.init(sys.argv) from petsc4py import PETSc #import mshr from dolfin import * import sympy as sy import numpy as np import ExactSol import MatrixOperations as MO import CheckPetsc4py as CP from dolfin import __version__ import MaxwellPrecond as MP import StokesPrecond import time def myCCode(A): return sy.ccode(A).replace('M_PI','pi') def Domain(n): # mesh = RectangleMesh(0., -1., 2., 1., n, n) # mesh = RectangleMesh(0., 0., 1.0, 1.0, n, n) mesh = UnitSquareMesh(n, n) class Left(SubDomain): def inside(self, x, on_boundary): return near(x[0], 0.0) class Right(SubDomain): def inside(self, x, on_boundary): return near(x[0], 1.0) class Bottom(SubDomain): def inside(self, x, on_boundary): return near(x[1], 0.0) class Top(SubDomain): def inside(self, x, on_boundary): return near(x[1], 1.0) # mesh = RectangleMesh(Point(0., -1.), Point(1*10., 1.), 1*5*n, n) # class Left(SubDomain): # def inside(self, x, on_boundary): # return near(x[0], 0.0) # class Right(SubDomain): # def inside(self, x, on_boundary): # return near(x[0], 1*10.0) # class Bottom(SubDomain): # def inside(self, x, on_boundary): # return near(x[1], -1.) # class Top(SubDomain): # def inside(self, x, on_boundary): # return near(x[1], 1.) left = Left() top = Top() right = Right() bottom = Bottom() # Initialize mesh function for the domain domains = CellFunction("size_t", mesh) domains.set_all(0) # Initialize mesh function for boundary domains boundaries = FacetFunction("size_t", mesh) boundaries.set_all(0) right.mark(boundaries, 2) left.mark(boundaries, 2) top.mark(boundaries, 1) bottom.mark(boundaries, 1) return mesh, boundaries, domains def ExactSolution(mesh, params): Re = 1./params[2] Ha = sqrt(params[0]/(params[1]*params[2])) G = 10. x = sy.Symbol('x[0]') y = sy.Symbol('x[1]') b = (G/params[0])*(sy.sinh(y*Ha)/sy.sinh(Ha)-y) d = sy.diff(x,x) p = -G*x - (G**2)/(2*params[0])*(sy.sinh(y*Ha)/sy.sinh(Ha)-y)**2 u = (G/(params[2]*Ha*sy.tanh(Ha)))*(1-sy.cosh(y*Ha)/sy.cosh(Ha)) v = sy.diff(x, y) r = sy.diff(x, y) uu = y*x*sy.exp(x+y) u = sy.diff(uu, y) v = -sy.diff(uu, x) p = sy.sin(x)*sy.exp(y) bb = x*y*sy.cos(x) b = sy.diff(bb, y) d = -sy.diff(bb, x) r = x*sy.sin(2*sy.pi*y)*sy.sin(2*sy.pi*x) # b = y # d = sy.diff(x, y) # r = sy.diff(y, y) J11 = p - params[2]*sy.diff(u, x) J12 = - params[2]*sy.diff(u, y) J21 = - params[2]*sy.diff(v, x) J22 = p - params[2]*sy.diff(v, y) L1 = sy.diff(u, x, x)+sy.diff(u, y, y) L2 = sy.diff(v, x, x)+sy.diff(v, y, y) A1 = u*sy.diff(u, x)+v*sy.diff(u, y) A2 = u*sy.diff(v, x)+v*sy.diff(v, y) P1 = sy.diff(p, x) P2 = sy.diff(p, y) C1 = sy.diff(d, x, y) - sy.diff(b, y, y) C2 = sy.diff(b, x, y) - sy.diff(d, x, x) NS1 = -d*(sy.diff(d, x) - sy.diff(b, y)) NS2 = b*(sy.diff(d, x) - sy.diff(b, y)) R1 = sy.diff(r, x) R2 = sy.diff(r, y) M1 = sy.diff(u*d-v*b, y) M2 = -sy.diff(u*d-v*b, x) u0 = Expression((myCCode(u), myCCode(v)), degree=4) p0 = Expression(myCCode(p), degree=4) b0 = Expression((myCCode(b), myCCode(d)), degree=4) r0 = Expression(myCCode(r), degree=4) print " u = (", str(u).replace('x[0]', 'x').replace('x[1]', 'y'), ", ", str(v).replace('x[0]', 'x').replace('x[1]', 'y'), ")\n" print " p = (", str(p).replace('x[0]', 'x').replace('x[1]', 'y'), ")\n" print " b = (", str(b).replace('x[0]', 'x').replace('x[1]', 'y'), ", ", str(d).replace('x[0]', 'x').replace('x[1]', 'y'), ")\n" print " r = (", str(r).replace('x[0]', 'x').replace('x[1]', 'y'), ")\n" Laplacian = Expression((myCCode(L1), myCCode(L2)), degree=4) Advection = Expression((myCCode(A1), myCCode(A2)), degree=4) gradPres = Expression((myCCode(P1), myCCode(P2)), degree=4) NScouple = Expression((myCCode(NS1), myCCode(NS2)), degree=4) CurlCurl = Expression((myCCode(C1), myCCode(C2)), degree=4) gradLagr = Expression((myCCode(R1), myCCode(R2)), degree=4) Mcouple = Expression((myCCode(M1), myCCode(M2)), degree=4) # pN = as_matrix(((Expression(myCCode(J11)), Expression(myCCode(J12))), (Expression(myCCode(J21)), Expression(myCCode(J22))))) return u0, p0, b0, r0, 1, Laplacian, Advection, gradPres, NScouple, CurlCurl, gradLagr, Mcouple # Sets up the initial guess for the MHD problem def Stokes(V, Q, F, u0, pN, params, mesh): parameters['reorder_dofs_serial'] = False W = FunctionSpace(mesh, MixedElement([V, Q])) IS = MO.IndexSet(W) (u, p) = TrialFunctions(W) (v, q) = TestFunctions(W) n = FacetNormal(mesh) # dx = Measure('dx', domain=mesh, subdomain_data=domains) # ds = Measure('ds', domain=mesh, subdomain_data=boundaries) a11 = params[2]*inner(grad(v), grad(u))*dx a12 = -div(v)*p*dx a21 = -div(u)*q*dx a = a11+a12+a21 L = inner(v, F)*dx #- inner(pN*n,v)*ds(2) pp = params[2]*inner(grad(v), grad(u))*dx + (1./params[2])*p*q*dx def boundary(x, on_boundary): return on_boundary # bcu = DirichletBC(W.sub(0), u0, boundaries, 1) bcu = DirichletBC(W.sub(0), u0, boundary) # bcu = [bcu1, bcu2] A, b = assemble_system(a, L, bcu) A, b = CP.Assemble(A, b) C = A.getSubMatrix(IS[1],IS[1]) u = b.duplicate() P, Pb = assemble_system(pp, L, bcu) P, Pb = CP.Assemble(P, Pb) # ksp = PETSc.KSP() # ksp.create(comm=PETSc.COMM_WORLD) # pc = ksp.getPC() # ksp.setType('preonly') # pc.setType('lu') # OptDB = PETSc.Options() # # if __version__ != '1.6.0': # OptDB['pc_factor_mat_solver_package'] = "pastix" # OptDB['pc_factor_mat_ordering_type'] = "rcm" # ksp.setFromOptions() # ksp.setOperators(A,A) ksp = PETSc.KSP().create() ksp.setTolerances(1e-8) ksp.max_it = 200 pc = ksp.getPC() pc.setType(PETSc.PC.Type.PYTHON) ksp.setType('minres') pc.setPythonContext(StokesPrecond.Approx(W, 1)) ksp.setOperators(A,P) scale = b.norm() b = b/scale del A start_time = time.time() ksp.solve(b,u) # Mits +=dodim u = u*scale print ("{:40}").format("Stokes solve, time: "), " ==> ",("{:4f}").format(time.time() - start_time),("{:9}").format(" Its: "), ("{:4}").format(ksp.its), ("{:9}").format(" time: "), ("{:4}").format(time.strftime('%X %x %Z')[0:5]) u_k = Function(FunctionSpace(mesh, V)) p_k = Function(FunctionSpace(mesh, Q)) u_k.vector()[:] = u.getSubVector(IS[0]).array p_k.vector()[:] = u.getSubVector(IS[1]).array ones = Function(FunctionSpace(mesh, Q)) ones.vector()[:]=(0*ones.vector().array()+1) p_k.vector()[:] += -assemble(p_k*dx)/assemble(ones*dx) return u_k, p_k def Maxwell(V, Q, F, b0, r0, params, mesh,HiptmairMatrices, Hiptmairtol): parameters['reorder_dofs_serial'] = False W = V*Q W = FunctionSpace(mesh, MixedElement([V, Q])) IS = MO.IndexSet(W) (b, r) = TrialFunctions(W) (c, s) = TestFunctions(W) if params[0] == 0.0: a11 = params[1]*inner(curl(b), curl(c))*dx else: a11 = params[1]*params[0]*inner(curl(b), curl(c))*dx a21 = inner(b,grad(s))*dx a12 = inner(c,grad(r))*dx # print F L = inner(c, F)*dx a = a11+a12+a21 def boundary(x, on_boundary): return on_boundary # class b0(Expression): # def __init__(self): # self.p = 1 # def eval_cell(self, values, x, ufc_cell): # values[0] = 0.0 # values[1] = 1.0 # def value_shape(self): # return (2,) bcb = DirichletBC(W.sub(0), b0, boundary) bcr = DirichletBC(W.sub(1), r0, boundary) bc = [bcb, bcr] A, b = assemble_system(a, L, bc) A, b = CP.Assemble(A, b) u = b.duplicate() # ksp = PETSc.KSP() # ksp.create(comm=PETSc.COMM_WORLD) # pc = ksp.getPC() # ksp.setType('preonly') # pc.setType('lu') # OptDB = PETSc.Options() # OptDB['pc_factor_mat_solver_package'] = "pastix" # OptDB['pc_factor_mat_ordering_type'] = "rcm" # ksp.setFromOptions() ksp = PETSc.KSP().create() ksp.setTolerances(1e-8) ksp.max_it = 200 pc = ksp.getPC() pc.setType(PETSc.PC.Type.PYTHON) ksp.setType('minres') pc.setPythonContext(MP.Hiptmair(W, HiptmairMatrices[3], HiptmairMatrices[4], HiptmairMatrices[2], HiptmairMatrices[0], HiptmairMatrices[1], HiptmairMatrices[6],Hiptmairtol)) scale = b.norm() b = b/scale ksp.setOperators(A,A) del A start_time = time.time() ksp.solve(b,u) print ("{:40}").format("Maxwell solve, time: "), " ==> ",("{:4f}").format(time.time() - start_time),("{:9}").format(" Its: "), ("{:4}").format(ksp.its), ("{:9}").format(" time: "), ("{:4}").format(time.strftime('%X %x %Z')[0:5]) u = u*scale b_k = Function(FunctionSpace(mesh, V)) r_k = Function(FunctionSpace(mesh, Q)) b_k.vector()[:] = u.getSubVector(IS[0]).array r_k.vector()[:] = u.getSubVector(IS[1]).array return b_k, r_k
wathen/PhD
MHD/FEniCS/MHD/Stabilised/SaddlePointForm/Test/SplitMatrix/ScottTest/Hartman2D/HartmanChannel.py
Python
mit
9,266
from flask import render_template, request, Response from SharedPreferences import AnglesStorage from app import app import requests import urllib import math ipcamProtocol = 'http://' ipcamAddress = '143.107.235.49:8085' ipcamWebctl = '/decoder_control.cgi' ipcamVideostream = '/videostream.cgi' ipcamUser = 'sel630' ipcamPasswd = 'sel630' ipcamResolution = '32' ipcamRate = '0' ipcamCommands = {'up': 2, 'down': 0, 'left': 6, 'right': 4} diagonal_correction = 0.707 @app.route('/') @app.route('/index/') def index(): return render_template("index.html") @app.route('/camposition/', methods=['GET', 'POST']) def camposition(): angles = AnglesStorage() pospitch = angles.pitch posyaw = angles.yaw pitch = float(request.args['pitch']) yaw = float(request.args['yaw']) if pitch >= 80 or pitch <= -30: return 'Invalid pitch' if yaw >= 100 or yaw <= -100: return 'Invalid yaw' print 'pitch: ', pospitch, ' yaw: ', posyaw movementy = int(pitch - pospitch) movementx = int(yaw - posyaw) # -22.5, 22.5, 67.5, 112.5, 157.2 # -0.392, 0.392, 1.178, 1.963, 2.743 movement = math.sqrt(movementx ** 2 + movementy ** 2) movedir = math.atan2(movementy, movementx) if movement > 3: if movedir > -0.392 and movedir <= 0.392: movecamera(6, movement) # move right elif movedir > 0.392 and movedir <= 1.178: movecamera(93, diagonal_correction * movement) # move right up elif movedir > 1.178 and movedir <= 1.963: movecamera(2, movement) # move up elif movedir > 1.963 and movedir <= 2.743: movecamera(92, diagonal_correction * movement) # move left up elif movedir < -0.392 and movedir >= -1.178: movecamera(91, diagonal_correction * movement) # move right down elif movedir < -1.178 and movedir >= -1.963: movecamera(0, movement) # move down elif movedir < -1.963 and movedir >= -2.743: movecamera(90, diagonal_correction * movement) # move left down elif movedir > 2.743 or movedir < -2.743: movecamera(4, movement) # move left else: return 'No movement' pitch = movement * math.sin(movedir) yaw = movement * math.cos(movedir) angles.pitch = int(pospitch + pitch) angles.yaw = int(posyaw + yaw) angles.done() pospitch = angles.pitch posyaw = angles.yaw print 'pitch: ', pospitch, ' yaw: ', posyaw return 'ACK' @app.route('/camposition/set_zero/') def campositionSetzero(): angles = AnglesStorage() angles.pitch = 0 angles.yaw = 0 angles.done() # requests.get(ipcamProtocol + ipcamAddress + ipcamWebctl, # {'user': ipcamUser, # 'pwd': ipcamPasswd, # 'command': 25}) return 'ACK' @app.route('/camposition/cam_step/', methods=['GET', 'POST']) def camstep(): cmd = int(request.args['move']) movecamera(cmd, 5) return 'ACK' def movecamera(cmd, degree): requests.get(ipcamProtocol + ipcamAddress + ipcamWebctl, {'user': ipcamUser, 'pwd': ipcamPasswd, 'command': cmd, 'onestep': 1, 'degree': degree}) @app.route('/camerastream/') def camerastream(): return render_template("camerastream.html") @app.route('/camstream/') def camstream(): url = "%(protocol)s%(address)s%(cgi)s?user=%(user)s&pwd=%(pwd)s&resolution\ =%(resolution)s&rate=%(rate)s" % {'protocol': ipcamProtocol, 'address': ipcamAddress, 'cgi': ipcamVideostream, 'user': ipcamUser, 'pwd': ipcamPasswd, 'resolution': ipcamResolution, 'rate': ipcamRate} print url ws = urllib.urlopen(url) def stream(): while(True): res = "" s = ws.readline() res = res + s s = ws.readline() res = res + s s = ws.readline() res = res + s length = int(s.split(':')[1].strip()) s = ws.readline() res = res + s s = ws.read(length) res = res + s s = ws.readline() res = res + s yield res return Response( stream(), mimetype="multipart/x-mixed-replace; boundary=ipcamera") @app.route('/about/') def about(): return render_template("about.html")
ddmendes/R3V-Remote3DViewer
site/app/views.py
Python
mit
4,879
from _ctypes.basics import _CData, _CDataMeta, cdata_from_address from _ctypes.primitive import SimpleType, _SimpleCData from _ctypes.basics import ArgumentError, keepalive_key from _ctypes.basics import is_struct_shape from _ctypes.builtin import get_errno, set_errno, get_last_error, set_last_error import _rawffi import _ffi import sys import traceback try: from __pypy__ import builtinify except ImportError: builtinify = lambda f: f # XXX this file needs huge refactoring I fear PARAMFLAG_FIN = 0x1 PARAMFLAG_FOUT = 0x2 PARAMFLAG_FLCID = 0x4 PARAMFLAG_COMBINED = PARAMFLAG_FIN | PARAMFLAG_FOUT | PARAMFLAG_FLCID VALID_PARAMFLAGS = ( 0, PARAMFLAG_FIN, PARAMFLAG_FIN | PARAMFLAG_FOUT, PARAMFLAG_FIN | PARAMFLAG_FLCID ) WIN64 = sys.platform == 'win32' and sys.maxint == 2**63 - 1 def get_com_error(errcode, riid, pIunk): "Win32 specific: build a COM Error exception" # XXX need C support code from _ctypes import COMError return COMError(errcode, None, None) @builtinify def call_function(func, args): "Only for debugging so far: So that we can call CFunction instances" funcptr = CFuncPtr(func) funcptr.restype = int return funcptr(*args) class CFuncPtrType(_CDataMeta): # XXX write down here defaults and such things def _sizeofinstances(self): return _rawffi.sizeof('P') def _alignmentofinstances(self): return _rawffi.alignment('P') def _is_pointer_like(self): return True from_address = cdata_from_address class CFuncPtr(_CData): __metaclass__ = CFuncPtrType _argtypes_ = None _restype_ = None _errcheck_ = None _flags_ = 0 _ffiargshape = 'P' _ffishape = 'P' _fficompositesize = None _ffiarray = _rawffi.Array('P') _needs_free = False callable = None _ptr = None _buffer = None _address = None # win32 COM properties _paramflags = None _com_index = None _com_iid = None _is_fastpath = False def _getargtypes(self): return self._argtypes_ def _setargtypes(self, argtypes): self._ptr = None if argtypes is None: self._argtypes_ = () else: for i, argtype in enumerate(argtypes): if not hasattr(argtype, 'from_param'): raise TypeError( "item %d in _argtypes_ has no from_param method" % ( i + 1,)) self._argtypes_ = list(argtypes) self._check_argtypes_for_fastpath() argtypes = property(_getargtypes, _setargtypes) def _check_argtypes_for_fastpath(self): if all([hasattr(argtype, '_ffiargshape') for argtype in self._argtypes_]): fastpath_cls = make_fastpath_subclass(self.__class__) fastpath_cls.enable_fastpath_maybe(self) def _getparamflags(self): return self._paramflags def _setparamflags(self, paramflags): if paramflags is None or not self._argtypes_: self._paramflags = None return if not isinstance(paramflags, tuple): raise TypeError("paramflags must be a tuple or None") if len(paramflags) != len(self._argtypes_): raise ValueError("paramflags must have the same length as argtypes") for idx, paramflag in enumerate(paramflags): paramlen = len(paramflag) name = default = None if paramlen == 1: flag = paramflag[0] elif paramlen == 2: flag, name = paramflag elif paramlen == 3: flag, name, default = paramflag else: raise TypeError( "paramflags must be a sequence of (int [,string [,value]]) " "tuples" ) if not isinstance(flag, int): raise TypeError( "paramflags must be a sequence of (int [,string [,value]]) " "tuples" ) _flag = flag & PARAMFLAG_COMBINED if _flag == PARAMFLAG_FOUT: typ = self._argtypes_[idx] if getattr(typ, '_ffiargshape', None) not in ('P', 'z', 'Z'): raise TypeError( "'out' parameter %d must be a pointer type, not %s" % (idx+1, type(typ).__name__) ) elif _flag not in VALID_PARAMFLAGS: raise TypeError("paramflag value %d not supported" % flag) self._paramflags = paramflags paramflags = property(_getparamflags, _setparamflags) def _getrestype(self): return self._restype_ def _setrestype(self, restype): self._ptr = None if restype is int: from ctypes import c_int restype = c_int if not (isinstance(restype, _CDataMeta) or restype is None or callable(restype)): raise TypeError("restype must be a type, a callable, or None") self._restype_ = restype def _delrestype(self): self._ptr = None del self._restype_ restype = property(_getrestype, _setrestype, _delrestype) def _geterrcheck(self): return getattr(self, '_errcheck_', None) def _seterrcheck(self, errcheck): if not callable(errcheck): raise TypeError("The errcheck attribute must be callable") self._errcheck_ = errcheck def _delerrcheck(self): try: del self._errcheck_ except AttributeError: pass errcheck = property(_geterrcheck, _seterrcheck, _delerrcheck) def _ffishapes(self, args, restype): if args is None: args = [] argtypes = [arg._ffiargshape for arg in args] if restype is not None: if not isinstance(restype, SimpleType): raise TypeError("invalid result type for callback function") restype = restype._ffiargshape else: restype = 'O' # void return argtypes, restype def _set_address(self, address): if not self._buffer: self._buffer = _rawffi.Array('P')(1) self._buffer[0] = address def _get_address(self): return self._buffer[0] def __init__(self, *args): self.name = None self._objects = {keepalive_key(0):self} self._needs_free = True # Empty function object -- this is needed for casts if not args: self._set_address(0) return argsl = list(args) argument = argsl.pop(0) # Direct construction from raw address if isinstance(argument, (int, long)) and not argsl: self._set_address(argument) restype = self._restype_ if restype is None: import ctypes restype = ctypes.c_int self._ptr = self._getfuncptr_fromaddress(self._argtypes_, restype) self._check_argtypes_for_fastpath() return # A callback into python if callable(argument) and not argsl: self.callable = argument ffiargs, ffires = self._ffishapes(self._argtypes_, self._restype_) if self._restype_ is None: ffires = None self._ptr = _rawffi.CallbackPtr(self._wrap_callable(argument, self.argtypes), ffiargs, ffires, self._flags_) self._buffer = self._ptr.byptr() return # Function exported from a shared library if isinstance(argument, tuple) and len(argument) == 2: import ctypes self.name, dll = argument if isinstance(dll, str): self.dll = ctypes.CDLL(self.dll) else: self.dll = dll if argsl: self.paramflags = argsl.pop(0) if argsl: raise TypeError("Unknown constructor %s" % (args,)) # We need to check dll anyway ptr = self._getfuncptr([], ctypes.c_int) self._set_address(ptr.getaddr()) return # A COM function call, by index if (sys.platform == 'win32' and isinstance(argument, (int, long)) and argsl): ffiargs, ffires = self._ffishapes(self._argtypes_, self._restype_) self._com_index = argument + 0x1000 self.name = argsl.pop(0) if argsl: self.paramflags = argsl.pop(0) if argsl: self._com_iid = argsl.pop(0) if argsl: raise TypeError("Unknown constructor %s" % (args,)) return raise TypeError("Unknown constructor %s" % (args,)) def _wrap_callable(self, to_call, argtypes): def f(*args): if argtypes: args = [argtype._CData_retval(argtype.from_address(arg)._buffer) for argtype, arg in zip(argtypes, args)] return to_call(*args) return f def __call__(self, *args, **kwargs): argtypes = self._argtypes_ if self.callable is not None: if len(args) == len(argtypes): pass elif self._flags_ & _rawffi.FUNCFLAG_CDECL: if len(args) < len(argtypes): plural = len(argtypes) > 1 and "s" or "" raise TypeError( "This function takes at least %d argument%s (%s given)" % (len(argtypes), plural, len(args))) else: # For cdecl functions, we allow more actual arguments # than the length of the argtypes tuple. args = args[:len(self._argtypes_)] else: plural = len(self._argtypes_) > 1 and "s" or "" raise TypeError( "This function takes %d argument%s (%s given)" % (len(self._argtypes_), plural, len(args))) try: newargs = self._convert_args_for_callback(argtypes, args) except (UnicodeError, TypeError, ValueError), e: raise ArgumentError(str(e)) try: res = self.callable(*newargs) except: exc_info = sys.exc_info() traceback.print_tb(exc_info[2], file=sys.stderr) print >>sys.stderr, "%s: %s" % (exc_info[0].__name__, exc_info[1]) return 0 if self._restype_ is not None: return res return if argtypes is None: # XXX this warning was originally meaning "it's going to be # really slow". Now we don't worry that much about slowness # of ctypes, and it's strange to get warnings for perfectly- # legal code. #warnings.warn('C function without declared arguments called', # RuntimeWarning, stacklevel=2) argtypes = [] if self._com_index: from ctypes import cast, c_void_p, POINTER if not args: raise ValueError( "native COM method call without 'this' parameter" ) thisarg = cast(args[0], POINTER(POINTER(c_void_p))) keepalives, newargs, argtypes, outargs = self._convert_args(argtypes, args[1:], kwargs) newargs.insert(0, args[0].value) argtypes.insert(0, c_void_p) else: thisarg = None keepalives, newargs, argtypes, outargs = self._convert_args(argtypes, args, kwargs) funcptr = self._getfuncptr(argtypes, self._restype_, thisarg) result = self._call_funcptr(funcptr, *newargs) result = self._do_errcheck(result, args) if not outargs: return result from ctypes import c_void_p simple_cdata = type(c_void_p()).__bases__[0] outargs = [x.value if type(x).__bases__[0] is simple_cdata else x for x in outargs] if len(outargs) == 1: return outargs[0] return tuple(outargs) def _call_funcptr(self, funcptr, *newargs): if self._flags_ & _rawffi.FUNCFLAG_USE_ERRNO: tmp = _rawffi.get_errno() _rawffi.set_errno(get_errno()) set_errno(tmp) if self._flags_ & _rawffi.FUNCFLAG_USE_LASTERROR: tmp = _rawffi.get_last_error() _rawffi.set_last_error(get_last_error()) set_last_error(tmp) try: result = funcptr(*newargs) finally: if self._flags_ & _rawffi.FUNCFLAG_USE_ERRNO: tmp = _rawffi.get_errno() _rawffi.set_errno(get_errno()) set_errno(tmp) if self._flags_ & _rawffi.FUNCFLAG_USE_LASTERROR: tmp = _rawffi.get_last_error() _rawffi.set_last_error(get_last_error()) set_last_error(tmp) # try: return self._build_result(self._restype_, result, newargs) finally: funcptr.free_temp_buffers() def _do_errcheck(self, result, args): # The 'errcheck' protocol if self._errcheck_: v = self._errcheck_(result, self, args) # If the errcheck funtion failed, let it throw # If the errcheck function returned newargs unchanged, # continue normal processing. # If the errcheck function returned something else, # use that as result. if v is not args: return v return result def _getfuncptr_fromaddress(self, argtypes, restype): address = self._get_address() ffiargs = [argtype.get_ffi_argtype() for argtype in argtypes] ffires = restype.get_ffi_argtype() return _ffi.FuncPtr.fromaddr(address, '', ffiargs, ffires, self._flags_) def _getfuncptr(self, argtypes, restype, thisarg=None): if self._ptr is not None and (argtypes is self._argtypes_ or argtypes == self._argtypes_): return self._ptr if restype is None or not isinstance(restype, _CDataMeta): import ctypes restype = ctypes.c_int if self._buffer is not None: ptr = self._getfuncptr_fromaddress(argtypes, restype) if argtypes == self._argtypes_: self._ptr = ptr return ptr if self._com_index: # extract the address from the object's virtual table if not thisarg: raise ValueError("COM method call without VTable") ptr = thisarg[0][self._com_index - 0x1000] ffiargs = [argtype.get_ffi_argtype() for argtype in argtypes] ffires = restype.get_ffi_argtype() return _ffi.FuncPtr.fromaddr(ptr, '', ffiargs, ffires, self._flags_) cdll = self.dll._handle try: ffi_argtypes = [argtype.get_ffi_argtype() for argtype in argtypes] ffi_restype = restype.get_ffi_argtype() self._ptr = cdll.getfunc(self.name, ffi_argtypes, ffi_restype) return self._ptr except AttributeError: if self._flags_ & _rawffi.FUNCFLAG_CDECL: raise # Win64 has no stdcall calling conv, so it should also not have the # name mangling of it. if WIN64: raise # For stdcall, try mangled names: # funcname -> _funcname@<n> # where n is 0, 4, 8, 12, ..., 128 for i in range(33): mangled_name = "_%s@%d" % (self.name, i*4) try: return cdll.getfunc(mangled_name, ffi_argtypes, ffi_restype, # XXX self._flags_ ) except AttributeError: pass raise @classmethod def _conv_param(cls, argtype, arg): if argtype is not None: arg = argtype.from_param(arg) if hasattr(arg, '_as_parameter_'): arg = arg._as_parameter_ if isinstance(arg, _CData): return arg, arg._to_ffi_param(), type(arg) # # non-usual case: we do the import here to save a lot of code in the # jit trace of the normal case from ctypes import c_char_p, c_wchar_p, c_void_p, c_int # if isinstance(arg, str): cobj = c_char_p(arg) elif isinstance(arg, unicode): cobj = c_wchar_p(arg) elif arg is None: cobj = c_void_p() elif isinstance(arg, (int, long)): cobj = c_int(arg) else: raise TypeError("Don't know how to handle %s" % (arg,)) return cobj, cobj._to_ffi_param(), type(cobj) def _convert_args_for_callback(self, argtypes, args): assert len(argtypes) == len(args) newargs = [] for argtype, arg in zip(argtypes, args): param = argtype.from_param(arg) _type_ = getattr(argtype, '_type_', None) if _type_ == 'P': # special-case for c_void_p param = param._get_buffer_value() elif self._is_primitive(argtype): param = param.value newargs.append(param) return newargs def _convert_args(self, argtypes, args, kwargs, marker=object()): newargs = [] outargs = [] keepalives = [] newargtypes = [] total = len(args) paramflags = self._paramflags inargs_idx = 0 if not paramflags and total < len(argtypes): raise TypeError("not enough arguments") for i, argtype in enumerate(argtypes): flag = 0 name = None defval = marker if paramflags: paramflag = paramflags[i] paramlen = len(paramflag) name = None if paramlen == 1: flag = paramflag[0] elif paramlen == 2: flag, name = paramflag elif paramlen == 3: flag, name, defval = paramflag flag = flag & PARAMFLAG_COMBINED if flag == PARAMFLAG_FIN | PARAMFLAG_FLCID: val = defval if val is marker: val = 0 keepalive, newarg, newargtype = self._conv_param(argtype, val) keepalives.append(keepalive) newargs.append(newarg) newargtypes.append(newargtype) elif flag in (0, PARAMFLAG_FIN): if inargs_idx < total: val = args[inargs_idx] inargs_idx += 1 elif kwargs and name in kwargs: val = kwargs[name] inargs_idx += 1 elif defval is not marker: val = defval elif name: raise TypeError("required argument '%s' missing" % name) else: raise TypeError("not enough arguments") keepalive, newarg, newargtype = self._conv_param(argtype, val) keepalives.append(keepalive) newargs.append(newarg) newargtypes.append(newargtype) elif flag == PARAMFLAG_FOUT: if defval is not marker: outargs.append(defval) keepalive, newarg, newargtype = self._conv_param(argtype, defval) else: import ctypes val = argtype._type_() outargs.append(val) keepalive = None newarg = ctypes.byref(val) newargtype = type(newarg) keepalives.append(keepalive) newargs.append(newarg) newargtypes.append(newargtype) else: raise ValueError("paramflag %d not yet implemented" % flag) else: try: keepalive, newarg, newargtype = self._conv_param(argtype, args[i]) except (UnicodeError, TypeError, ValueError), e: raise ArgumentError(str(e)) keepalives.append(keepalive) newargs.append(newarg) newargtypes.append(newargtype) inargs_idx += 1 if len(newargs) < len(args): extra = args[len(newargs):] for i, arg in enumerate(extra): try: keepalive, newarg, newargtype = self._conv_param(None, arg) except (UnicodeError, TypeError, ValueError), e: raise ArgumentError(str(e)) keepalives.append(keepalive) newargs.append(newarg) newargtypes.append(newargtype) return keepalives, newargs, newargtypes, outargs @staticmethod def _is_primitive(argtype): return argtype.__bases__[0] is _SimpleCData def _wrap_result(self, restype, result): """ Convert from low-level repr of the result to the high-level python one. """ # hack for performance: if restype is a "simple" primitive type, don't # allocate the buffer because it's going to be thrown away immediately if self._is_primitive(restype) and not restype._is_pointer_like(): return result # shape = restype._ffishape if is_struct_shape(shape): buf = result else: buf = _rawffi.Array(shape)(1, autofree=True) buf[0] = result retval = restype._CData_retval(buf) return retval def _build_result(self, restype, result, argsandobjs): """Build the function result: If there is no OUT parameter, return the actual function result If there is one OUT parameter, return it If there are many OUT parameters, return a tuple""" # XXX: note for the future: the function used to take a "resbuffer", # i.e. an array of ints. Now it takes a result, which is already a # python object. All places that do "resbuffer[0]" should check that # result is actually an int and just use it. # # Also, argsandobjs used to be "args" in __call__, now it's "newargs" # (i.e., the already unwrapped objects). It's used only when we have a # PARAMFLAG_FOUT and it's probably wrong, I'll fix it when I find a # failing test retval = None if restype is not None: checker = getattr(self.restype, '_check_retval_', None) if checker: val = restype(result) # the original ctypes seems to make the distinction between # classes defining a new type, and their subclasses if '_type_' in restype.__dict__: val = val.value # XXX Raise a COMError when restype is HRESULT and # checker(val) fails. How to check for restype == HRESULT? if self._com_index: if result & 0x80000000: raise get_com_error(result, None, None) else: retval = checker(val) elif not isinstance(restype, _CDataMeta): retval = restype(result) else: retval = self._wrap_result(restype, result) return retval def __nonzero__(self): return self._com_index is not None or bool(self._buffer[0]) def __del__(self): if self._needs_free: # XXX we need to find a bad guy here if self._buffer is None: return self._buffer.free() self._buffer = None if isinstance(self._ptr, _rawffi.CallbackPtr): self._ptr.free() self._ptr = None self._needs_free = False def make_fastpath_subclass(CFuncPtr): if CFuncPtr._is_fastpath: return CFuncPtr # try: return make_fastpath_subclass.memo[CFuncPtr] except KeyError: pass class CFuncPtrFast(CFuncPtr): _is_fastpath = True _slowpath_allowed = True # set to False by tests @classmethod def enable_fastpath_maybe(cls, obj): if (obj.callable is None and obj._com_index is None): obj.__class__ = cls def __rollback(self): assert self._slowpath_allowed self.__class__ = CFuncPtr # disable the fast path if we reset argtypes def _setargtypes(self, argtypes): self.__rollback() self._setargtypes(argtypes) argtypes = property(CFuncPtr._getargtypes, _setargtypes) def _setcallable(self, func): self.__rollback() self.callable = func callable = property(lambda x: None, _setcallable) def _setcom_index(self, idx): self.__rollback() self._com_index = idx _com_index = property(lambda x: None, _setcom_index) def __call__(self, *args): thisarg = None argtypes = self._argtypes_ restype = self._restype_ funcptr = self._getfuncptr(argtypes, restype, thisarg) try: result = self._call_funcptr(funcptr, *args) result = self._do_errcheck(result, args) except (TypeError, ArgumentError, UnicodeDecodeError): assert self._slowpath_allowed return CFuncPtr.__call__(self, *args) return result make_fastpath_subclass.memo[CFuncPtr] = CFuncPtrFast return CFuncPtrFast make_fastpath_subclass.memo = {}
bussiere/pypyjs
website/demo/home/rfk/repos/pypy/lib_pypy/_ctypes/function.py
Python
mit
26,457
# -*- coding: utf-8 -*- # This file is part of Shuup. # # Copyright (c) 2012-2017, Shoop Commerce Ltd. All rights reserved. # # This source code is licensed under the OSL-3.0 license found in the # LICENSE file in the root directory of this source tree. import six from django.contrib import messages from django.contrib.auth.forms import PasswordChangeForm from django.contrib.auth.views import password_change from django.http import HttpResponseNotFound from django.shortcuts import redirect from django.utils.translation import ugettext_lazy as _ from django.views.generic import FormView, TemplateView from registration.signals import user_registered from shuup import configuration from shuup.core.models import ( get_company_contact, get_person_contact, MutableAddress, SavedAddress ) from shuup.front.views.dashboard import DashboardViewMixin from shuup.utils.form_group import FormGroup from shuup.utils.importing import cached_load from .forms import CompanyContactForm, PersonContactForm, SavedAddressForm from .notify_events import CompanyAccountCreated class PasswordChangeView(DashboardViewMixin, TemplateView): template_name = "shuup/customer_information/change_password.jinja" def post(self, *args, **kwargs): response = password_change( self.request, post_change_redirect="shuup:customer_edit", template_name=self.template_name ) if response.status_code == 302: messages.success(self.request, _("Password successfully changed.")) return response def get_context_data(self, **kwargs): context = super(PasswordChangeView, self).get_context_data(**kwargs) context["form"] = PasswordChangeForm(user=self.request.user) return context class CustomerEditView(DashboardViewMixin, FormView): template_name = "shuup/customer_information/edit_customer.jinja" def get_form(self, form_class): contact = get_person_contact(self.request.user) form_group = FormGroup(**self.get_form_kwargs()) address_form_class = cached_load("SHUUP_ADDRESS_MODEL_FORM") form_group.add_form_def("billing", address_form_class, kwargs={"instance": contact.default_billing_address}) form_group.add_form_def("shipping", address_form_class, kwargs={"instance": contact.default_shipping_address}) form_group.add_form_def("contact", PersonContactForm, kwargs={"instance": contact}) return form_group def form_valid(self, form): contact = form["contact"].save() user = contact.user billing_address = form["billing"].save() shipping_address = form["shipping"].save() if billing_address.pk != contact.default_billing_address_id: # Identity changed due to immutability contact.default_billing_address = billing_address if shipping_address.pk != contact.default_shipping_address_id: # Identity changed due to immutability contact.default_shipping_address = shipping_address if not bool(get_company_contact(self.request.user)): # Only update user details for non-company members user.email = contact.email user.first_name = contact.first_name user.last_name = contact.last_name user.save() contact.save() messages.success(self.request, _("Account information saved successfully.")) return redirect("shuup:customer_edit") class CompanyEditView(DashboardViewMixin, FormView): template_name = "shuup/customer_information/edit_company.jinja" def dispatch(self, request, *args, **kwargs): if not configuration.get(None, "allow_company_registration"): return HttpResponseNotFound() return super(CompanyEditView, self).dispatch(request, *args, **kwargs) def get_form(self, form_class): user = self.request.user company = get_company_contact(user) person = get_person_contact(user) form_group = FormGroup(**self.get_form_kwargs()) address_form_class = cached_load("SHUUP_ADDRESS_MODEL_FORM") form_group.add_form_def( "billing", address_form_class, kwargs={ "instance": _get_default_address_for_contact(company, "default_billing_address", person) } ) form_group.add_form_def( "shipping", address_form_class, kwargs={ "instance": _get_default_address_for_contact(company, "default_shipping_address", person) } ) form_group.add_form_def("contact", CompanyContactForm, kwargs={"instance": company}) return form_group def form_valid(self, form): company = form["contact"].save(commit=False) is_new = not bool(company.pk) company.save() user = self.request.user person = get_person_contact(user) company.members.add(person) billing_address = form["billing"].save() shipping_address = form["shipping"].save() if billing_address.pk != company.default_billing_address_id: # Identity changed due to immutability company.default_billing_address = billing_address if shipping_address.pk != company.default_shipping_address_id: # Identity changed due to immutability company.default_shipping_address = shipping_address user.email = company.email user.first_name = company.name user.last_name = "" user.save() message = _("Company information saved successfully.") # If company registration requires activation, # company will be created as inactive. if is_new and configuration.get(None, "company_registration_requires_approval"): company.is_active = False message = _("Company information saved successfully. " "Please follow the instructions sent to your email address.") company.save() if is_new: user_registered.send(sender=self.__class__, user=self.request.user, request=self.request) CompanyAccountCreated(contact=company, customer_email=company.email).run() messages.success(self.request, message) return redirect("shuup:company_edit") class AddressBookView(DashboardViewMixin, TemplateView): template_name = "shuup/customer_information/addressbook/index.jinja" def get_context_data(self, **kwargs): context = super(AddressBookView, self).get_context_data(**kwargs) context["addresses"] = SavedAddress.objects.filter(owner=self.request.customer) context["customer"] = self.request.customer return context class AddressBookEditView(DashboardViewMixin, FormView): template_name = "shuup/customer_information/addressbook/edit.jinja" form_class = SavedAddressForm instance = None def dispatch(self, request, *args, **kwargs): try: self.instance = SavedAddress.objects.get(pk=kwargs.get("pk", 0), owner=self.request.customer) except: self.instance = None return super(AddressBookEditView, self).dispatch(request, *args, **kwargs) def get_form(self, form_class): form_group = FormGroup(**self.get_form_kwargs()) address_kwargs = {} saved_address_kwargs = {} if self.instance: address_kwargs["instance"] = self.instance.address saved_address_kwargs["initial"] = { "role": self.instance.role, "status": self.instance.status, "title": self.instance.title, } form_group.add_form_def("address", cached_load("SHUUP_ADDRESS_MODEL_FORM"), kwargs=address_kwargs) form_group.add_form_def( "saved_address", SavedAddressForm, kwargs=saved_address_kwargs ) return form_group def form_valid(self, form): address_form = form["address"] if self.instance: # expect old address = MutableAddress.objects.get(pk=self.instance.address.pk) for k, v in six.iteritems(address_form.cleaned_data): setattr(address, k, v) address.save() else: address = address_form.save() owner = self.request.customer saf = form["saved_address"] saved_address, updated = SavedAddress.objects.update_or_create( owner=owner, address=address, defaults={ "title": saf.cleaned_data.get("title"), "role": saf.cleaned_data.get("role"), "status": saf.cleaned_data.get("status") } ) messages.success(self.request, _("Address information saved successfully.")) return redirect("shuup:address_book_edit", pk=saved_address.pk) def delete_address(request, pk): try: SavedAddress.objects.get(pk=pk, owner=request.customer).delete() except SavedAddress.DoesNotExist: messages.error(request, _("Cannot remove address")) return redirect("shuup:address_book") def _get_default_address_for_contact(contact, address_attr, fallback_contact): if contact and getattr(contact, address_attr, None): return getattr(contact, address_attr) if fallback_contact and getattr(fallback_contact, address_attr, None): return getattr(fallback_contact, address_attr) return None
suutari-ai/shoop
shuup/front/apps/customer_information/views.py
Python
agpl-3.0
9,524
""" Tests for Term. """ from itertools import product from unittest import TestCase from numpy import ( float32, uint32, uint8, ) from zipline.errors import ( InputTermNotAtomic, TermInputsNotSpecified, WindowLengthNotSpecified, ) from zipline.pipeline import Factor, TermGraph from zipline.pipeline.data import Column, DataSet from zipline.pipeline.term import AssetExists, NotSpecified from zipline.pipeline.expression import NUMEXPR_MATH_FUNCS class SomeDataSet(DataSet): foo = Column(float32) bar = Column(uint32) buzz = Column(uint8) class SomeFactor(Factor): window_length = 5 inputs = [SomeDataSet.foo, SomeDataSet.bar] class NoLookbackFactor(Factor): window_length = 0 class SomeOtherFactor(Factor): window_length = 5 inputs = [SomeDataSet.bar, SomeDataSet.buzz] SomeFactorAlias = SomeFactor def gen_equivalent_factors(): """ Return an iterator of SomeFactor instances that should all be the same object. """ yield SomeFactor() yield SomeFactor(inputs=NotSpecified) yield SomeFactor(SomeFactor.inputs) yield SomeFactor(inputs=SomeFactor.inputs) yield SomeFactor([SomeDataSet.foo, SomeDataSet.bar]) yield SomeFactor(window_length=SomeFactor.window_length) yield SomeFactor(window_length=NotSpecified) yield SomeFactor( [SomeDataSet.foo, SomeDataSet.bar], window_length=NotSpecified, ) yield SomeFactor( [SomeDataSet.foo, SomeDataSet.bar], window_length=SomeFactor.window_length, ) yield SomeFactorAlias() def to_dict(l): """ Convert a list to a dict with keys drawn from '0', '1', '2', ... Example ------- >>> to_dict([2, 3, 4]) {'0': 2, '1': 3, '2': 4} """ return dict(zip(map(str, range(len(l))), l)) class DependencyResolutionTestCase(TestCase): def check_dependency_order(self, ordered_terms): seen = set() for term in ordered_terms: for dep in term.dependencies: self.assertIn(dep, seen) seen.add(term) def test_single_factor(self): """ Test dependency resolution for a single factor. """ def check_output(graph): resolution_order = list(graph.ordered()) self.assertEqual(len(resolution_order), 4) self.check_dependency_order(resolution_order) self.assertIn(AssetExists(), resolution_order) self.assertIn(SomeDataSet.foo, resolution_order) self.assertIn(SomeDataSet.bar, resolution_order) self.assertIn(SomeFactor(), resolution_order) self.assertEqual(graph.node[SomeDataSet.foo]['extra_rows'], 4) self.assertEqual(graph.node[SomeDataSet.bar]['extra_rows'], 4) for foobar in gen_equivalent_factors(): check_output(TermGraph(to_dict([foobar]))) def test_single_factor_instance_args(self): """ Test dependency resolution for a single factor with arguments passed to the constructor. """ bar, buzz = SomeDataSet.bar, SomeDataSet.buzz graph = TermGraph(to_dict([SomeFactor([bar, buzz], window_length=5)])) resolution_order = list(graph.ordered()) # SomeFactor, its inputs, and AssetExists() self.assertEqual(len(resolution_order), 4) self.check_dependency_order(resolution_order) self.assertIn(AssetExists(), resolution_order) self.assertEqual(graph.extra_rows[AssetExists()], 4) self.assertIn(bar, resolution_order) self.assertIn(buzz, resolution_order) self.assertIn(SomeFactor([bar, buzz], window_length=5), resolution_order) self.assertEqual(graph.extra_rows[bar], 4) self.assertEqual(graph.extra_rows[buzz], 4) def test_reuse_atomic_terms(self): """ Test that raw inputs only show up in the dependency graph once. """ f1 = SomeFactor([SomeDataSet.foo, SomeDataSet.bar]) f2 = SomeOtherFactor([SomeDataSet.bar, SomeDataSet.buzz]) graph = TermGraph(to_dict([f1, f2])) resolution_order = list(graph.ordered()) # bar should only appear once. self.assertEqual(len(resolution_order), 6) self.assertEqual(len(set(resolution_order)), 6) self.check_dependency_order(resolution_order) def test_disallow_recursive_lookback(self): with self.assertRaises(InputTermNotAtomic): SomeFactor(inputs=[SomeFactor(), SomeDataSet.foo]) class ObjectIdentityTestCase(TestCase): def assertSameObject(self, *objs): first = objs[0] for obj in objs: self.assertIs(first, obj) def test_instance_caching(self): self.assertSameObject(*gen_equivalent_factors()) self.assertIs( SomeFactor(window_length=SomeFactor.window_length + 1), SomeFactor(window_length=SomeFactor.window_length + 1), ) self.assertIs( SomeFactor(dtype=int), SomeFactor(dtype=int), ) self.assertIs( SomeFactor(inputs=[SomeFactor.inputs[1], SomeFactor.inputs[0]]), SomeFactor(inputs=[SomeFactor.inputs[1], SomeFactor.inputs[0]]), ) def test_instance_non_caching(self): f = SomeFactor() # Different window_length. self.assertIsNot( f, SomeFactor(window_length=SomeFactor.window_length + 1), ) # Different dtype self.assertIsNot( f, SomeFactor(dtype=int) ) # Reordering inputs changes semantics. self.assertIsNot( f, SomeFactor(inputs=[SomeFactor.inputs[1], SomeFactor.inputs[0]]), ) def test_instance_non_caching_redefine_class(self): orig_foobar_instance = SomeFactorAlias() class SomeFactor(Factor): window_length = 5 inputs = [SomeDataSet.foo, SomeDataSet.bar] self.assertIsNot(orig_foobar_instance, SomeFactor()) def test_instance_caching_binops(self): f = SomeFactor() g = SomeOtherFactor() for lhs, rhs in product([f, g], [f, g]): self.assertIs((lhs + rhs), (lhs + rhs)) self.assertIs((lhs - rhs), (lhs - rhs)) self.assertIs((lhs * rhs), (lhs * rhs)) self.assertIs((lhs / rhs), (lhs / rhs)) self.assertIs((lhs ** rhs), (lhs ** rhs)) self.assertIs((1 + rhs), (1 + rhs)) self.assertIs((rhs + 1), (rhs + 1)) self.assertIs((1 - rhs), (1 - rhs)) self.assertIs((rhs - 1), (rhs - 1)) self.assertIs((2 * rhs), (2 * rhs)) self.assertIs((rhs * 2), (rhs * 2)) self.assertIs((2 / rhs), (2 / rhs)) self.assertIs((rhs / 2), (rhs / 2)) self.assertIs((2 ** rhs), (2 ** rhs)) self.assertIs((rhs ** 2), (rhs ** 2)) self.assertIs((f + g) + (f + g), (f + g) + (f + g)) def test_instance_caching_unary_ops(self): f = SomeFactor() self.assertIs(-f, -f) self.assertIs(--f, --f) self.assertIs(---f, ---f) def test_instance_caching_math_funcs(self): f = SomeFactor() for funcname in NUMEXPR_MATH_FUNCS: method = getattr(f, funcname) self.assertIs(method(), method()) def test_bad_input(self): class SomeFactor(Factor): pass class SomeFactorDefaultInputs(Factor): inputs = (SomeDataSet.foo, SomeDataSet.bar) class SomeFactorDefaultLength(Factor): window_length = 10 with self.assertRaises(TermInputsNotSpecified): SomeFactor(window_length=1) with self.assertRaises(TermInputsNotSpecified): SomeFactorDefaultLength() with self.assertRaises(WindowLengthNotSpecified): SomeFactor(inputs=(SomeDataSet.foo,)) with self.assertRaises(WindowLengthNotSpecified): SomeFactorDefaultInputs()
ChinaQuants/zipline
tests/pipeline/test_term.py
Python
apache-2.0
8,036
import json import logging from community_csdt.src.models.accounts import account from community_csdt.src.models.classes import classroom from community_csdt.src.models.galleries import gallery from community_csdt.src.models.login import login from community_csdt.src.models.logout import logout from community_csdt.src.models.pages import page from community_csdt.src.models.projects import project from community_csdt.src.models.recover import recover from community_csdt.src.models.register import register from community_csdt.src.models.upload import upload class Root(object): __name__ = None __parent__ = None def __init__(self, request): self.request = request def __getitem__(self, key): log = logging.getLogger('csdt') log.info("Root.__init__()") log.debug("key = %s" % key) if key == "accounts": return account.Account(self, key) elif key == "classes": return classroom.Classroom(self, key) elif key == "galleries": return gallery.Gallery(self, key) elif key == "login": return login.Login(self, key) elif key == "logout": return logout.Logout(self, key) elif key == "pages": return page.Page(self, key) elif key == "projects": return project.Project(self, key) elif key == "recover": return recover.Recover(self, key) elif key == "register": return register.Register(self, key) elif key == "upload": return upload.Upload(self, key) return self
electricity345/community.csdt
src/community_csdt/community_csdt/src/models/root.py
Python
mit
1,622
from distutils.core import setup from os import path ROOT = path.dirname(__file__) README = path.join(ROOT, 'README.rst') setup( name='hurl', py_modules=['hurl'], url='https://github.com/oinopion/hurl', author='Tomek Paczkowski & Aleksandra Sendecka', author_email='tomek@hauru.eu', version='2.1', license='New BSD License', long_description=open(README).read(), classifiers=[ 'Development Status :: 5 - Production/Stable', 'Environment :: Web Environment', 'Intended Audience :: Developers', 'License :: OSI Approved :: BSD License', 'Operating System :: OS Independent', 'Framework :: Django', 'Programming Language :: Python', 'Programming Language :: Python :: 2', 'Programming Language :: Python :: 3', ], )
oinopion/hurl
setup.py
Python
bsd-3-clause
827
import dns.resolver import random from time import sleep def dns_query(search_term): try: my_resolver = dns.resolver.Resolver() # List of public DNS Servers: # https://www.lifewire.com/free-and-public-dns-servers-2626062 # my_resolver.nameservers = ['8.8.8.8', '8.8.4.4', # Google '209.244.0.3', '209.244.0.4', # Verisign '64.6.64.6', '64.6.65.6', # Level3 '84.200.69.80', '84.200.70.40', # DNS.WATCH '8.26.56.26', '8.20.247.20', # Comodo Secure DNS '208.67.222.222', '208.67.220.220'] # Open DNS ip = random.choice(my_resolver.query(search_term)) print("[+] Resolved %s to %s " % (search_term, ip)) sleep(2) return ip except: print("[-] Could not resolve %s" % search_term) return "Not resolved"
nethunteros/punter
dns_resolve.py
Python
unlicense
985
# -*- coding: utf-8 -*- #!/usr/bin/python3 import datetime from scipy import stats from HipDynamics.staging import * class Analysis: def __init__(self, pref): self.pref = pref self.data = [] @property def pref(self): return self.__pref @pref.setter def pref(self, input): if input["transformToLogScale"]: print("[WARN] In order to perform a log transformation, all negative\n" \ " values will be inverted and 0 values set to 1e-10.") self.__pref = input @property def data(self): return self.__data @data.setter def data(self, input): self.__data = input @property def result(self): return self.__resultData def runDimensionalityReduction(self): if len(self.data) < 2: print("[WARN] dimensionalityReduction aborted. One or no data point submitted.\n"\ " It cannot be collapsed further.") return [] self.setMissingValuesToZero() if self.pref["transformToLogScale"]: self.transformDataToLogScale() medianData = self.computeMedians() inputData = self.collapseIntoRegressionTable(medianData) self.resultData = self.applyLinearRegression(inputData) return self.resultData def setMissingValuesToZero(self): for i in range(len(self.data)): keys = list(self.data[i].keys()) for key in keys: vals = self.data[i][key] for j in range(len(vals)): if vals[j] == "": vals[j] = 0 self.data[i][key] = vals def transformDataToLogScale(self): for i in range(len(self.data)): keys = list(self.data[i].keys()) for key in keys: vals = numpy.array(self.data[i][key]).astype(float) vals = [abs(val) for val in vals] for j in range(len(vals)): if vals[j] == 0: vals[j] = 1e-10 self.data[i][key] = numpy.log(vals).tolist() def computeMedians(self): medianData = self.data.copy() for i in range(len(medianData)): keys = list(medianData[i].keys()) for key in keys: vals = numpy.array(medianData[i][key]).astype(float) medianData[i][key] = [numpy.median(vals).tolist()] return medianData def collapseIntoRegressionTable(self, data): keys = list(data[0].keys()) collapsedTable = LookUpTable() collapsedTable.mapping = LookUpTable.generateLookUpTableMapFromList(0, keys) for table in data: dim = [] for key in keys: dim.append(table[key][0]) collapsedTable.add(dim) return collapsedTable.table def applyLinearRegression(self, regressData): keys = list(regressData.keys()) resultTable = LookUpTable() resultTable.mapping = LookUpTable.generateLookUpTableMapFromList(0, keys) result = [] for key in keys: y = regressData[key] x = range(len(y)) if len(x) > 1: gradient, intercept, rValue, pValue, stdErr = stats.linregress(x, y) result.append({ "gradient": gradient, "intercept": intercept, "rValue": rValue, "pValue": pValue, "stdErr": stdErr }) else: print("[WARN] The input vector for linear regression has less than 2 values. Make sure\n"\ " you selected the appropriate indexIteratorSelector. For more information\n"\ " consult the documentation.") resultTable.add(result) return resultTable.table class AnalysisWrapper: def __init__(self, lookUpTable): if type(LookUpTable()) == type(lookUpTable): self.table = lookUpTable self.dataSource = self.table.sourceFeatureAccessInfo self.columns = self.retrieveDataColumns() self.indexGroupData = [] self.outputResultHeader = [] self.outputTable = [] else: print("[ERROR] AnalysisWrapper only accepts tables of type {}".format(str(type(LookUpTable())))) def retrieveDataColumns(self): if self.dataSource != None and self.table.sourceFeaturePatternSelector != None: if self.dataSource["type"] == "MySQL": return self.querySelectiveColumnsFromMysql() if self.dataSource["type"] == "CSV": return self.querySelectiveColumnsFromCSV() else: print("[ERROR] AnalysisWrapper requires a table sourceFeatureAccessInfo.\n" \ " For more information, consult the documentation.") sys.exit() def querySelectiveColumnsFromMysql(self): sqlInfo = self.dataSource["MySQL"] query = self.createSelectiveColumnQueryForMySQL(sqlInfo, self.table.sourceFeaturePatternSelector) db = pymysql.connect(sqlInfo["address"], sqlInfo["user"], sqlInfo["pwd"], sqlInfo["db"]) cursor = db.cursor() try: cursor.execute(query) except: print("[Error]: unable to fetch data from MySQL.") else: results = list(cursor.fetchall()) singleDresults = [] for result in results: singleDresults.append(result[0]) return singleDresults db.close() def createSelectiveColumnQueryForMySQL(self, sqlInfo, whereSelector = None): query = "select column_name from information_schema.columns where"\ " table_name='{}' and column_name like '%{}%';".format(sqlInfo["table"], whereSelector) return query def querySelectiveColumnsFromCSV(self): csvInfo = self.dataSource["CSV"] path = csvInfo["path"] + "/" + csvInfo["fileName"] with codecs.open(path, "r", encoding='utf-8', errors='ignore') as inputFile: for i in range(csvInfo["rowOffset"]): next(inputFile) data = csv.DictReader(inputFile, delimiter=csvInfo["delimiter"]) self.dataInMemory = [] for result in data: self.dataInMemory.append(result) inputFile.close() return list(self.dataInMemory[0].keys()) def retrieveDataOfNextIndexGroup(self): idxs = self.table.nextIndexGroup() if len(idxs) == 0: return [] if self.dataSource["type"] == "MySQL": self.indexGroupData = self.retrieveDataOfNextIndexGroupeFromMysql(idxs) if self.dataSource["type"] == "CSV": self.indexGroupData = self.retrieveDataOfNextIndexGroupeFromCSV(idxs) print(self.formatMetadata(self.table.metadataOfRetrievedIndexGroup, len(self.indexGroupData))) return self.indexGroupData def retrieveDataOfNextIndexGroupeFromMysql(self, idxs): data = [] for idxGroup in idxs: data.append(self.queryDataFromMysql(idxGroup)) return data def queryDataFromMysql(self, idxs): sqlInfo = self.dataSource["MySQL"] query = self.createDataQueryForMySQL(sqlInfo, idxs, self.columns) db = pymysql.connect(sqlInfo["address"], sqlInfo["user"], sqlInfo["pwd"], sqlInfo["db"]) cursor = db.cursor() try: cursor.execute(query) except: print("[Error]: unable to fetch data from MySQL.") else: results = list(cursor.fetchall()) resultsTable = LookUpTable() resultsTable.mapping = LookUpTable.generateLookUpTableMapFromList(0, self.columns) for i in range(len(results)): resultsTable.add(results[i]) return resultsTable.table db.close() def createDataQueryForMySQL(self, sqlInfo, idxs, columns): columnsConcat = ", ".join(columns) if type(idxs) is list: idxsConcat = ", ".join(str(idx) for idx in idxs) else: idxsConcat = str(idxs) query = "select {} from {} where {} in ({});".format(columnsConcat, sqlInfo["table"], sqlInfo["Index"], idxsConcat) return query def retrieveDataOfNextIndexGroupeFromCSV(self, idxs): data = [] for idxGroup in idxs: data.append(self.queryDataFromCSV(idxGroup)) return data def queryDataFromCSV(self, idxGroup): csvInfo = self.dataSource["CSV"] resultTable = LookUpTable() resultTable.mapping = LookUpTable.generateLookUpTableMapFromList(0, self.columns) if type(idxGroup) is list: for idx in idxGroup: resultList = self.arrangeResultsInColumnOrder(self.dataInMemory[idx]) resultTable.add(resultList) else: resultList = self.arrangeResultsInColumnOrder(self.dataInMemory[idxGroup]) resultTable.add(resultList) return resultTable.table def arrangeResultsInColumnOrder(self, dictionary): resultList = [] for col in self.columns: resultList.append(dictionary[col]) return resultList def formatMetadata(self, meta, noOfDataPoints = None): msg = "[√] " for m in meta: keys = list(m.keys()) value = m[keys[0]] msg += "{}: {} -> ".format(keys[0], value) msg += "n = {}".format(str(noOfDataPoints)) return msg def runAnalysis(self, analysisPreferences): print("\nHipDynamics Analysis\n====================\n") analysis = Analysis(analysisPreferences) result = self.nextAnalysisRun(analysis) while result != None: if result != []: row = self.formatOutputRow(result, analysisPreferences["regressionMeasures"]) self.addRowToOutputTable(row, analysisPreferences["regressionMeasures"]) result = self.nextAnalysisRun(analysis) print("\n*** ANALYSIS SUCCESSFUL ***\n") def nextAnalysisRun(self, analysis): data = self.retrieveDataOfNextIndexGroup() if len(data) == 0: return None analysis.data = data result = analysis.runDimensionalityReduction() return result def formatOutputRow(self, result, measures): if len(self.outputResultHeader) == 0: self.outputResultHeader = list(result.keys()) metaVal = self.formatMetadataOutputRow() resultVal = self.formatResultOutputRow(result, measures) return metaVal + resultVal def formatMetadataOutputRow(self): row = [] for d in self.table.metadataOfRetrievedIndexGroup: keys = list(d.keys()) row.append(d[keys[0]]) return row def formatResultOutputRow(self, result, measures): row = [] for measure in measures: for key in self.outputResultHeader: row.append(result[key][0][measure]) return row def addRowToOutputTable(self, row, measures): if len(self.outputTable) == 0: header = self.getHeader(measures) self.outputTable.append(header) self.outputTable.append(row) def getHeader(self, measures): meta = self.getMetadataHeader() result = self.getResultHeader(measures) return meta + result def getMetadataHeader(self): header = [] for d in self.table.metadataOfRetrievedIndexGroup: keys = list(d.keys()) header.append("{}-{}".format("index", keys[0])) return header def getResultHeader(self, measures): row = [] for measure in measures: for key in self.outputResultHeader: row.append("{}-{}".format(measure, key)) return row def writeOutputToCSV(self, outputPath): path = "{}/HipDynamics_{}.csv".format(outputPath, datetime.datetime.now().strftime('%d-%m-%Y_%H-%M')) with open(path, 'w', newline='') as csvfile: outputWriter = csv.writer(csvfile, delimiter=',') for row in self.outputTable: outputWriter.writerow(row) def __str__(self): pass
KHP-Informatics/sleepsight-analytics
HipDynamics/analysis.py
Python
apache-2.0
12,581
# -*- coding: utf-8 -*- import logging from speaklater import make_lazy_string from quokka.modules.accounts.models import User logger = logging.getLogger() def lazy_str_setting(key, default=None): from flask import current_app return make_lazy_string( lambda: current_app.config.get(key, default) ) def get_current_user(): from flask.ext.security import current_user try: if not current_user.is_authenticated(): return None except RuntimeError: # Flask-Testing will fail pass try: return User.objects.get(id=current_user.id) except Exception as e: logger.warning("No user found: %s" % e.message) return None
maurobaraldi/quokka
quokka/utils/__init__.py
Python
mit
714
""" Module: IDL:omg.org/CosEventComm:1.0 Automagically generated by:- The ORB called Fnorb v1.1.Return.of.Fnorb """ _FNORB_ID = "IDL:omg.org/CosEventComm:1.0" # Fnorb modules. import Fnorb.orb.CORBA import Fnorb.orb.TypeManager import Fnorb.orb.Util class Disconnected(Fnorb.orb.CORBA.UserException): """ Exception: IDL:omg.org/CosEventComm/Disconnected:1.0 """ _FNORB_ID = "IDL:omg.org/CosEventComm/Disconnected:1.0" def __init__(self): """ Constructor. """ return Fnorb.orb.TypeManager.TypeManager_init().add_type("IDL:omg.org/CosEventComm/Disconnected:1.0", "00000000000000160000004C000000000000002A49444C3A6F6D672E6F72672F436F734576656E74436F6D6D2F446973636F6E6E65637465643A312E300000000000000D446973636F6E6E65637465640000000000000000", Disconnected) class PushConsumer(Fnorb.orb.CORBA.Object): """ Interface: IDL:omg.org/CosEventComm/PushConsumer:1.0 """ _FNORB_ID = "IDL:omg.org/CosEventComm/PushConsumer:1.0" def push(self, *args, **kw): """ Operation: IDL:omg.org/CosEventComm/PushConsumer/push:1.0 """ # Typecodes for 'in' and 'inout' parameters. inputs = [] inputs.append(Fnorb.orb.CORBA.TC_any) # Typecodes for the result, 'inout' and 'out' parameters. outputs = [] # Typecodes for user exceptions. exceptions = [] exceptions.append(Fnorb.orb.CORBA.typecode("IDL:omg.org/CosEventComm/Disconnected:1.0")) # Create a request object. request = self._create_request("push", inputs, outputs, exceptions) # Make the request! apply(request.invoke, args, kw) # Return the results. return request.results() def disconnect_push_consumer(self, *args, **kw): """ Operation: IDL:omg.org/CosEventComm/PushConsumer/disconnect_push_consumer:1.0 """ # Typecodes for 'in' and 'inout' parameters. inputs = [] # Typecodes for the result, 'inout' and 'out' parameters. outputs = [] # Typecodes for user exceptions. exceptions = [] # Create a request object. request = self._create_request("disconnect_push_consumer", inputs, outputs, exceptions) # Make the request! apply(request.invoke, args, kw) # Return the results. return request.results() Fnorb.orb.TypeManager.TypeManager_init().add_type("IDL:omg.org/CosEventComm/PushConsumer:1.0", "000000000000000E00000045000000000000002A49444C3A6F6D672E6F72672F436F734576656E74436F6D6D2F50757368436F6E73756D65723A312E300000000000000D50757368436F6E73756D657200", PushConsumer) class PushSupplier(Fnorb.orb.CORBA.Object): """ Interface: IDL:omg.org/CosEventComm/PushSupplier:1.0 """ _FNORB_ID = "IDL:omg.org/CosEventComm/PushSupplier:1.0" def disconnect_push_supplier(self, *args, **kw): """ Operation: IDL:omg.org/CosEventComm/PushSupplier/disconnect_push_supplier:1.0 """ # Typecodes for 'in' and 'inout' parameters. inputs = [] # Typecodes for the result, 'inout' and 'out' parameters. outputs = [] # Typecodes for user exceptions. exceptions = [] # Create a request object. request = self._create_request("disconnect_push_supplier", inputs, outputs, exceptions) # Make the request! apply(request.invoke, args, kw) # Return the results. return request.results() Fnorb.orb.TypeManager.TypeManager_init().add_type("IDL:omg.org/CosEventComm/PushSupplier:1.0", "000000000000000E00000045000000000000002A49444C3A6F6D672E6F72672F436F734576656E74436F6D6D2F50757368537570706C6965723A312E300000000000000D50757368537570706C69657200", PushSupplier) class PullSupplier(Fnorb.orb.CORBA.Object): """ Interface: IDL:omg.org/CosEventComm/PullSupplier:1.0 """ _FNORB_ID = "IDL:omg.org/CosEventComm/PullSupplier:1.0" def pull(self, *args, **kw): """ Operation: IDL:omg.org/CosEventComm/PullSupplier/pull:1.0 """ # Typecodes for 'in' and 'inout' parameters. inputs = [] # Typecodes for the result, 'inout' and 'out' parameters. outputs = [] outputs.append(Fnorb.orb.CORBA.TC_any) # Typecodes for user exceptions. exceptions = [] exceptions.append(Fnorb.orb.CORBA.typecode("IDL:omg.org/CosEventComm/Disconnected:1.0")) # Create a request object. request = self._create_request("pull", inputs, outputs, exceptions) # Make the request! apply(request.invoke, args, kw) # Return the results. return request.results() def try_pull(self, *args, **kw): """ Operation: IDL:omg.org/CosEventComm/PullSupplier/try_pull:1.0 """ # Typecodes for 'in' and 'inout' parameters. inputs = [] # Typecodes for the result, 'inout' and 'out' parameters. outputs = [] outputs.append(Fnorb.orb.CORBA.TC_any) outputs.append(Fnorb.orb.CORBA.TC_boolean) # Typecodes for user exceptions. exceptions = [] exceptions.append(Fnorb.orb.CORBA.typecode("IDL:omg.org/CosEventComm/Disconnected:1.0")) # Create a request object. request = self._create_request("try_pull", inputs, outputs, exceptions) # Make the request! apply(request.invoke, args, kw) # Return the results. return request.results() def disconnect_pull_supplier(self, *args, **kw): """ Operation: IDL:omg.org/CosEventComm/PullSupplier/disconnect_pull_supplier:1.0 """ # Typecodes for 'in' and 'inout' parameters. inputs = [] # Typecodes for the result, 'inout' and 'out' parameters. outputs = [] # Typecodes for user exceptions. exceptions = [] # Create a request object. request = self._create_request("disconnect_pull_supplier", inputs, outputs, exceptions) # Make the request! apply(request.invoke, args, kw) # Return the results. return request.results() Fnorb.orb.TypeManager.TypeManager_init().add_type("IDL:omg.org/CosEventComm/PullSupplier:1.0", "000000000000000E00000045000000000000002A49444C3A6F6D672E6F72672F436F734576656E74436F6D6D2F50756C6C537570706C6965723A312E300000000000000D50756C6C537570706C69657200", PullSupplier) class PullConsumer(Fnorb.orb.CORBA.Object): """ Interface: IDL:omg.org/CosEventComm/PullConsumer:1.0 """ _FNORB_ID = "IDL:omg.org/CosEventComm/PullConsumer:1.0" def disconnect_pull_consumer(self, *args, **kw): """ Operation: IDL:omg.org/CosEventComm/PullConsumer/disconnect_pull_consumer:1.0 """ # Typecodes for 'in' and 'inout' parameters. inputs = [] # Typecodes for the result, 'inout' and 'out' parameters. outputs = [] # Typecodes for user exceptions. exceptions = [] # Create a request object. request = self._create_request("disconnect_pull_consumer", inputs, outputs, exceptions) # Make the request! apply(request.invoke, args, kw) # Return the results. return request.results() Fnorb.orb.TypeManager.TypeManager_init().add_type("IDL:omg.org/CosEventComm/PullConsumer:1.0", "000000000000000E00000045000000000000002A49444C3A6F6D672E6F72672F436F734576656E74436F6D6D2F50756C6C436F6E73756D65723A312E300000000000000D50756C6C436F6E73756D657200", PullConsumer) #############################################################################
mguijarr/hapPyTango
src/hapPyTango/CosEventComm/__init__.py
Python
mit
7,461
#Normalize genotype and combine it with fake phenotype import csv import scipy as SP import pdb import os import lmm_lasso def normalize(l): count={'A':0,'T':0,'G':0,'C':0} for c in l: count[c]+=1 dft=max(count,key=count.get) r=[] for c in l: if c==dft: r.append(0.0) else: r.append(1.0) arr=SP.array(r) return (arr-arr.mean())/arr.std() if __name__ == "__main__": # load genotypes X = SP.genfromtxt('32.csv',delimiter=',',dtype=None) # load leaf number phenotype X1 = SP.genfromtxt('ln10.tsv', delimiter='\t',dtype=None) pheno=(X[1]).tolist() for c in range(2,len(pheno)): for r in X1: if int(pheno[c])==int(r[0]): pheno[c]=r[1] if int(pheno[c])>1000: pheno[c]=0 #normalize and output phenotype Y=[pheno[2:]] for i in range(2,X.shape[0]): Y.append(normalize(X[i][2:])) with open("genotype32.csv", "wb") as f: writer = csv.writer(f) writer.writerows(Y[1:]) nf=len(Y)-1 print nf #obtain genotype & phenotype for samples with complete phenotype MY=SP.array(Y).transpose() RMY=MY[MY[:,0]>0] RY=RMY[:,0] RY=(RY-RY.mean())/RY.std() RX=RMY[:,1:] #train null model for these samples COR=1./nf*SP.dot(RX,RX.transpose()) res=lmm_lasso.train_nullmodel(RY,COR) delta=SP.exp(res[2]) print delta #get fake phenotype FX=MY[:,1:] FCOR=1./nf*SP.dot(FX,FX.transpose()) D=SP.diag(SP.array([delta]*len(Y[1]))) FY=SP.random.multivariate_normal(SP.array([0]*len(Y[1])),SP.add(FCOR,D)) FY=(FY-FY.mean())/FY.std() FY=SP.array([FY]) with open("phenotype32.csv", "wb") as f: writer = csv.writer(f) writer.writerows(FY.transpose()) #validate fake phenotype, that it has similar delta as we start with res=lmm_lasso.train_nullmodel(FY.transpose(),FCOR) delta=SP.exp(res[2]) print delta
wuchenxi/lmm_group_lasso
data/normalize_step2.py
Python
gpl-3.0
2,000
import math from flask import abort from mongoengine import QuerySet from models.forum_model import Category def forum_template_data(forum): categories = Category.objects(forum=forum) return dict(forum_categories=categories) class Pagination(object): def __init__(self, iterable, page, per_page): if page < 1: abort(404) self.iterable = iterable self.page = page self.per_page = per_page if isinstance(iterable, QuerySet): self.total = iterable.count() else: self.total = len(iterable) start_index = (page - 1) * per_page end_index = page * per_page self.items = iterable[start_index:end_index] if not self.items and page != 1: abort(404) @property def pages(self): """The total number of pages""" return int(math.ceil(self.total / float(self.per_page))) @property def prev_num(self): """Number of the previous page.""" return self.page - 1 @property def has_prev(self): """True if a previous page exists""" return self.page > 1 @property def has_next(self): """True if a next page exists.""" return self.page < self.pages @property def next_num(self): """Number of the next page""" return self.page + 1
JunctionAt/JunctionWWW
blueprints/forum/forum_util.py
Python
agpl-3.0
1,379
from django.conf.urls import url, include from django.contrib import admin urlpatterns = [ url(r'^api/', include('entry.urls')), url(r'^admin/', admin.site.urls), ]
synasius/playground-react
reaggle/backend/toggle/urls.py
Python
mit
174
import math class Solution: # @param num, a list of integer # @return an integer def maximumGap(self, num): if len(num) < 2 or min(num) == max(num): return 0 a = min(num) b = max(num) size = max(1, int(math.ceil((b - a) / (len(num)-1)))) bucket = [[None, None] for i in range((b-a)/size + 1)] for n in num: bucket_index = (n - a) / size if bucket[bucket_index][0] is None: bucket[bucket_index][0] = n bucket[bucket_index][1] = n else: bucket[bucket_index][0] = min(bucket[bucket_index][0], n) bucket[bucket_index][1] = max(bucket[bucket_index][1], n) bucket = [bu for bu in bucket if bu[0] is not None] print bucket return max(bucket[i][0] - bucket[i-1][1] for i in range(1, len(bucket))) if __name__ == "__main__": s = Solution() tests = [(3, 4, 1), (1,1,1,1,1,5,5,5,5,5)] for test in tests: print s.maximumGap(test)
Crayzero/LeetCodeProgramming
Solutions/Maximum Gap/MaximumGap.py
Python
mit
1,037
#!/usr/bin/python from distutils.core import setup from distutils.extension import Extension from Cython.Distutils import build_ext module1 = Extension("openhmd", ["pyopenhmd.pyx", "OpenHMD.cpp"], language="c++", libraries=["openhmd"], include_dirs=['/usr/include/openhmd']) setup(name = 'openhmd', version = '1.0', description = 'Python OpenHMD Wrapper', ext_modules=[module1], cmdclass = {'build_ext': build_ext})
lubosz/python-rift
setup.py
Python
gpl-3.0
454
# coding: utf-8 import matplotlib.mlab as mlab import matplotlib.pyplot as plt r = mlab.csv2rec("avg_cpu_100.csv",names=["x","y"]) plt.plot(r["x"],r["y"],label="cpu") r = mlab.csv2rec("avg_gpu_100.csv",names=["x","y"]) plt.plot(r["x"],r["y"],label="gpu") plt.legend() plt.xlabel("Grid size") plt.ylabel("Run time") plt.title("Performance of the CPU average function over grid size.") plt.show()
dorchard/ypnos
benchmarks/plot.py
Python
bsd-2-clause
396
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for # license information. # # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is # regenerated. # -------------------------------------------------------------------------- from msrest.paging import Paged class ResourceMetricDefinitionPaged(Paged): """ A paging container for iterating over a list of ResourceMetricDefinition object """ _attribute_map = { 'next_link': {'key': 'nextLink', 'type': 'str'}, 'current_page': {'key': 'value', 'type': '[ResourceMetricDefinition]'} } def __init__(self, *args, **kwargs): super(ResourceMetricDefinitionPaged, self).__init__(*args, **kwargs)
v-iam/azure-sdk-for-python
azure-mgmt-web/azure/mgmt/web/models/resource_metric_definition_paged.py
Python
mit
938
# -*- coding: utf-8 -*- ############################################################################### # # Copyright (C) 2001-2014 Micronaet SRL (<http://www.micronaet.it>). # # Original module for stock.move from: # OpenERP, Open Source Management Solution # Copyright (C) 2004-2010 Tiny SPRL (<http://tiny.be>). # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU Affero General Public License as published # by the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Affero General Public License for more details. # # You should have received a copy of the GNU Affero General Public License # along with this program. If not, see <http://www.gnu.org/licenses/>. # ############################################################################### import os import sys import logging import openerp from openerp import netsvc import openerp.addons.decimal_precision as dp from openerp.osv import fields, osv, expression, orm from datetime import datetime, timedelta from dateutil.relativedelta import relativedelta from openerp import SUPERUSER_ID from openerp import tools from openerp.tools.translate import _ from openerp.tools.float_utils import float_round as round from openerp.tools import (DEFAULT_SERVER_DATE_FORMAT, DEFAULT_SERVER_DATETIME_FORMAT, DATETIME_FORMATS_MAP, float_compare) _logger = logging.getLogger(__name__) class product_product(osv.osv): _inherit = 'product.product' _order = 'default_code, name' # Override sale_stock procurement procedure! def need_procurement(self, cr, uid, ids, context=None): return False class StockPicking(orm.Model): ''' Add alternative method for picking creation ''' _inherit = 'stock.picking' # Relink button: def link_sale_id(self, cr, uid, ids, context=None): ''' Link sale_id depend on origin fields (multi ids) ''' order_pool = self.pool.get('sale.order') for picking in self.browse(cr, uid, ids, context=context): origin = picking.origin sale_ids = order_pool.search(cr, uid, [ ('name', '=', origin)], context=context) if sale_ids and len(sale_ids) == 1: self.write(cr, uid, [picking.id], { 'sale_id': sale_ids[0], }, context=context) return True # DDT button: def open_ddt_report(self, cr, uid, ids, context=None): ''' Open DDT form if present ''' assert len(ids) == 1, 'Only one picking!' pick_proxy = self.browse(cr, uid, ids, context=context)[0] if not pick_proxy.ddt_id: return {} # raise error (never pass here!) ctx = context.copy() ctx.update({ #'active_model': 'stock.picking', #'params': {}, #'search_disable_custom_filters': True, 'active_ids': [pick_proxy.ddt_id.id], 'active_id': pick_proxy.ddt_id.id, }) return { 'type': 'ir.actions.report.xml', 'report_name': 'custom_ddt_report', #'datas': datas, 'context': ctx, } #return self.pool.get('stock.ddt').open_ddt_report( # cr, uid, [pick_proxy.ddt_id.id], context=context) def open_ddt_form(self, cr, uid, ids, context=None): ''' Open DDT report directly if present ''' assert len(ids) == 1, 'Only one picking!' pick_proxy = self.browse(cr, uid, ids, context=context)[0] if not pick_proxy.ddt_id: return {} # TODO error? return { 'name': 'DdT', 'view_type': 'form', 'view_mode': 'form,tree', 'res_model': 'stock.ddt', 'res_id': pick_proxy.ddt_id.id, 'view_id': False, #'views': [(form_id, 'form'), (tree_id, 'tree')], 'type': 'ir.actions.act_window', } # Invoice button: def open_invoice_report(self, cr, uid, ids, context=None): ''' Open DDT form if present ''' assert len(ids) == 1, 'Only one picking!' pick_proxy = self.browse(cr, uid, ids, context=context)[0] if not pick_proxy.invoice_id: return {} # raise error (never pass here!) ctx = context.copy() ctx.update({ 'active_ids': [pick_proxy.invoice_id.id], 'active_id': pick_proxy.invoice_id.id, }) return { 'type': 'ir.actions.report.xml', 'report_name': 'custom_mx_invoice_report', 'context': ctx, } def open_invoice_form(self, cr, uid, ids, context=None): ''' Open DDT report directly if present ''' assert len(ids) == 1, 'Only one picking!' # TODO view: account.invoice_form pick_proxy = self.browse(cr, uid, ids, context=context)[0] if not pick_proxy.invoice_id: return {} # TODO error? return { 'name': 'DdT', 'view_type': 'form', 'view_mode': 'form,tree', 'res_model': 'account.invoice', 'res_id': pick_proxy.invoice_id.id, 'view_id': False, #'views': [(form_id, 'form'), (tree_id, 'tree')], 'type': 'ir.actions.act_window', } _columns = { 'sale_id': fields.many2one('sale.order', 'Sale order'), } class ResPartner(orm.Model): ''' Extra field for partner ''' _inherit = 'res.partner' _columns = { 'incoterm_id':fields.many2one( 'stock.incoterms', 'Default incoterm', ondelete='set null'), } class SaleOrder(orm.Model): ''' Extra field for order ''' _inherit = 'sale.order' # ------------------------------------------------------------------------- # Button events: # ------------------------------------------------------------------------- def button_force_all_deadline_date(self, cr, uid, ids, context=None): ''' Force sale order date on all lines ''' order_proxy = self.browse(cr, uid, ids, context=context)[0] line_ids = [line.id for line in order_proxy.order_line] self.pool.get('sale.order.line').write(cr, uid, line_ids, { 'date_deadline': order_proxy.date_deadline, }, context=context) return True # ------------------------------------------------------------------------- # Override: # ------------------------------------------------------------------------- # onchange: def onchange_partner_id(self, cr, uid, ids, partner_id, context=None): ''' Override standard procedure for add extra account field: ''' # Call original procedure: res = super(SaleOrder, self).onchange_partner_id( cr, uid, ids, partner_id, context=context) if 'value' not in res: res['value'] = {} # Append extra value: if not partner_id: # reset: res['value'].update({ 'incoterm': False, 'carrier_id': False, 'carriage_condition_id': False, 'goods_description_id': False, 'transportation_reason_id': False, # TODO remove: 'payment_term_id': False, 'payment_term': False, 'bank_account_id': False, }) return res partner_pool = self.pool.get('res.partner') partner_proxy = partner_pool.browse(cr, uid, partner_id, context=context) res['value'].update({ 'incoterm': partner_proxy.incoterm_id.id, 'carrier_id': partner_proxy.default_carrier_id.id, 'carriage_condition_id': partner_proxy.carriage_condition_id.id, 'goods_description_id': partner_proxy.goods_description_id.id, 'transportation_reason_id': partner_proxy.transportation_reason_id.id, # TODO remove: 'payment_term_id': partner_proxy.property_payment_term.id, 'payment_term': partner_proxy.property_payment_term.id, }) # Set default account for partner if partner_proxy.bank_ids: res['value']['bank_account_id'] = partner_proxy.bank_ids[0].id return res _columns = { # QUOTATION: 'date_valid': fields.date('Validity date', help='Max date for validity of offer'), # ORDER: 'date_confirm': fields.date('Date confirm', help='Order confirm by the customer'), # TODO yet present in order? 'date_deadline': fields.date('Order deadline', help='Delivery term for customer'), # Fixed by delivery team: 'date_booked': fields.date('Booked date', help='Delivery was booked and fixed!'), 'date_booked_confirmed': fields.boolean('Booked confirmed', help='Booked confirmed for this date'), 'date_delivery': fields.date('Load / Availability', help='For ex works is availability date, other clause is ' 'load date'), 'date_delivery_confirmed': fields.boolean('Delivery confirmed', help='Delivery confirmed, product available ' '(2 cases depend on incoterms)'), # TODO used? #'date_previous_deadline': fields.date( # 'Previous deadline', # help="If during sync deadline is modified this field contain old " # "value before update"), # TODO remove: # Replaced with date_booked!!! #'date_delivery': fields.date('Delivery', # help='Contain delivery date, when present production plan work ' # 'with this instead of deadline value, if forced production ' # 'cannot be moved'), # Account extra field saved in sale.order: 'default_carrier_id': fields.many2one('delivery.carrier', 'Carrier', domain=[('is_vector', '=', True)]), 'carriage_condition_id': fields.many2one( 'stock.picking.carriage_condition', 'Carriage condition'), 'goods_description_id': fields.many2one( 'stock.picking.goods_description', 'Goods description'), 'transportation_reason_id': fields.many2one( 'stock.picking.transportation_reason', 'Transportation reason'), # TODO remove: 'payment_term_id': fields.many2one( 'account.payment.term', 'Payment term'), 'bank_account_id': fields.many2one( 'res.partner.bank', 'Partner bank account'), 'bank_account_company_id': fields.many2one( 'res.partner.bank', 'Company bank account'), # Alert: 'uncovered_payment': fields.boolean('Uncovered payment'), 'uncovered_alert': fields.char('Alert', size=64, readonly=True), # TODO not used picking_ids!!! 'stock_picking_ids': fields.one2many( 'stock.picking', 'sale_id', 'Delivery'), } _defaults = { 'uncovered_alert': lambda *x: 'Alert: Uncovered payment!!!', 'date_valid': lambda *x: ( datetime.now() + timedelta(days=15)).strftime( DEFAULT_SERVER_DATE_FORMAT), } class SaleOrderLine(orm.Model): ''' Extra field for order line ''' _inherit = 'sale.order.line' # ---------------- # Function fields: # ---------------- def _function_get_delivered(self, cr, uid, ids, fields, args, context=None): ''' Fields function for calculate delivered elements in picking orders ''' res = {} move_pool = self.pool.get('stock.move') for line in self.browse(cr, uid, ids, context=context): res[line.id] = 0.0 # Problems!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! move_ids = move_pool.search(cr, uid, [ ('sale_line_id', '=', line.id), ], context=context) for move in move_pool.browse(cr, uid, move_ids, context=context): # TODO jump picking for virtual count!!!!!!!!!!!!!!!!!!!!!!!!!! #if move.picking_id.ddt_number: # was marked as DDT # TODO check UOM!!! for res[line.id] += move.product_uos_qty #print line.product_id.default_code, move.product_uos_qty, #move.picking_id.name, move.picking_id.invoice_state, #move.picking_id.invoice_id.number return res _columns = { 'gr_weight': fields.float('Gross weight'), 'colls': fields.integer('Colls'), #states={'draft': [('readonly', False)]}), 'date_deadline': fields.date('Deadline'), 'date_delivery': fields.related( # TODO use booked!!!! 'order_id', 'date_delivery', type='date', string='Date delivery'), 'alias_id':fields.many2one( 'product.product', 'Marked as product', ondelete='set null'), 'delivered_qty': fields.function( _function_get_delivered, method=True, type='float', readonly=True, string='Delivered', store=False, help='Quantity delivered with DDT out'), # TODO add to delivery qty # Order ref: 'client_order_ref': fields.related('order_id', 'client_order_ref', type='char', string='Client order ref.'), } _defaults = { 'colls': lambda *x: 1, } class StockMove(orm.Model): ''' Extra field for order line ''' _inherit = 'stock.move' _columns = { 'sale_line_id': fields.many2one('sale.order.line', 'Sale line'), } # vim:expandtab:smartindent:tabstop=4:softtabstop=4:shiftwidth=4:
Micronaet/micronaet-mx8
mx_sale/model/sale.py
Python
agpl-3.0
14,704
# -*- coding: utf-8 -*- # # gPodder - A media aggregator and podcast client # Copyright (c) 2005-2010 Thomas Perl and the gPodder Team # # gPodder is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 3 of the License, or # (at your option) any later version. # # gPodder is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program. If not, see <http://www.gnu.org/licenses/>. # import gtk import hildon import gpodder _ = gpodder.gettext from gpodder import util from gpodder.gtkui.interface.common import BuilderWidget from gpodder.gtkui.model import EpisodeListModel from gpodder.gtkui.model import PodcastChannelProxy from gpodder.gtkui.frmntl.episodeactions import gPodderEpisodeActions class gPodderEpisodes(BuilderWidget): def new(self): self.channel = None self.episode_actions = gPodderEpisodeActions(self.main_window, \ episode_list_status_changed=self.episode_list_status_changed, \ episode_is_downloading=self.episode_is_downloading, \ show_episode_shownotes=self.show_episode_shownotes, \ playback_episodes=self.playback_episodes, \ download_episode_list=self.download_episode_list, \ show_episode_in_download_manager=self.show_episode_in_download_manager, \ add_download_task_monitor=self.add_download_task_monitor, \ remove_download_task_monitor=self.remove_download_task_monitor, \ for_each_episode_set_task_status=self.for_each_episode_set_task_status, \ delete_episode_list=self.delete_episode_list) # Tap-and-hold (aka "long press") context menu self.touched_episode = None self.context_menu = gtk.Menu() # "Emulate" hildon_gtk_menu_new self.context_menu.set_name('hildon-context-sensitive-menu') self.context_menu.append(self.action_shownotes.create_menu_item()) self.context_menu.append(self.action_download.create_menu_item()) self.context_menu.append(self.action_delete.create_menu_item()) self.context_menu.append(gtk.SeparatorMenuItem()) self.context_menu.append(self.action_keep.create_menu_item()) self.context_menu.append(self.action_mark_as_old.create_menu_item()) self.context_menu.show_all() self.treeview.tap_and_hold_setup(self.context_menu) # Workaround for Maemo bug XXX self.button_search_episodes_clear.set_name('HildonButton-thumb') appmenu = hildon.AppMenu() for action in (self.action_rename, \ self.action_play_m3u, \ self.action_login, \ self.action_unsubscribe, \ self.action_update, \ self.action_check_for_new_episodes, \ self.action_delete_episodes): button = gtk.Button() action.connect_proxy(button) appmenu.append(button) for filter in (self.item_view_episodes_all, \ self.item_view_episodes_undeleted, \ self.item_view_episodes_downloaded): button = gtk.ToggleButton() filter.connect_proxy(button) appmenu.add_filter(button) appmenu.show_all() self.main_window.set_app_menu(appmenu) def on_rename_button_clicked(self, widget): if self.channel is None: return new_title = self.show_text_edit_dialog(_('Rename podcast'), \ _('New name:'), self.channel.title) if new_title is not None and new_title != self.channel.title: self.channel.set_custom_title(new_title) self.main_window.set_title(self.channel.title) self.channel.save() self.show_message(_('Podcast renamed: %s') % new_title) self.update_podcast_list_model(urls=[self.channel.url]) def on_login_button_clicked(self, widget): accept, auth_data = self.show_login_dialog(_('Login to %s') % \ self.channel.title, '', \ self.channel.username, \ self.channel.password) if accept: self.channel.username, self.channel.password = auth_data self.channel.save() def on_play_m3u_button_clicked(self, widget): if self.channel is not None: util.gui_open(self.channel.get_playlist_filename()) def on_website_button_clicked(self, widget): if self.channel is not None: util.open_website(self.channel.link) def on_update_button_clicked(self, widget): self.on_itemUpdateChannel_activate() def on_unsubscribe_button_clicked(self, widget): self.on_delete_event(widget, None) self.on_itemRemoveChannel_activate(widget) def on_episode_selected(self, treeview, path, column): model = treeview.get_model() episode = model.get_value(model.get_iter(path), \ EpisodeListModel.C_EPISODE) self.episode_actions.show_episode(episode) def on_delete_event(self, widget, event): self.main_window.hide() self.channel = None self.hide_episode_search() return True def on_treeview_button_press(self, widget, event): result = self.treeview.get_path_at_pos(int(event.x), int(event.y)) if result is not None: path, column, x, y = result model = self.treeview.get_model() episode = model.get_value(model.get_iter(path), \ EpisodeListModel.C_EPISODE) if episode.was_downloaded(): self.action_delete.set_property('visible', not episode.is_locked) self.action_keep.set_property('visible', True) self.action_download.set_property('visible', not episode.was_downloaded(and_exists=True)) else: self.action_delete.set_property('visible', False) self.action_keep.set_property('visible', False) self.action_download.set_property('visible', not self.episode_is_downloading(episode)) self.touched_episode = None self.action_keep.set_active(episode.is_locked) self.action_mark_as_old.set_active(not episode.is_played) self.touched_episode = episode else: self.touched_episode = None def on_shownotes_button_clicked(self, widget): if self.touched_episode is not None: self.show_episode_shownotes(self.touched_episode) def on_download_button_clicked(self, widget): if self.touched_episode is not None: self.show_message(_('Downloading episode')) self.download_episode_list([self.touched_episode]) def on_delete_button_clicked(self, widget): if self.touched_episode is not None: self.delete_episode_list([self.touched_episode]) def on_keep_button_clicked(self, widget): if self.touched_episode is not None: self.touched_episode.mark(is_locked=not self.touched_episode.is_locked) self.episode_list_status_changed([self.touched_episode]) def on_mark_as_old_button_clicked(self, widget): if self.touched_episode is not None: self.touched_episode.mark(is_played=not self.touched_episode.is_played) self.episode_list_status_changed([self.touched_episode]) def on_check_for_new_episodes_button_clicked(self, widget): self.show_message(_('Checking for new episodes...')) self.on_itemUpdate_activate(widget) def show(self): # Check if we are displaying the "all episodes" view all_episodes = isinstance(self.channel, PodcastChannelProxy) for action in (self.action_rename, \ self.action_play_m3u, \ self.action_login, \ self.action_unsubscribe, \ self.action_update): action.set_visible(not all_episodes) for action in (self.action_check_for_new_episodes, \ self.action_delete_episodes): action.set_visible(all_episodes) self.main_window.set_title(self.channel.title) self.main_window.show() self.treeview.grab_focus()
christofdamian/gpodder
src/gpodder/gtkui/frmntl/episodes.py
Python
gpl-3.0
8,787
# -*- coding: utf-8 -*- # Copyright (c) 2012 - 2014 Detlev Offenbach <detlev@die-offenbachs.de> # """ Module implementing a specialized line edit for entering IRC messages. """ from __future__ import unicode_literals from PyQt5.QtCore import Qt, qVersion from E5Gui.E5LineEdit import E5LineEdit, E5ClearableLineEdit class IrcMessageEdit(E5ClearableLineEdit): """ Class implementing a specialized line edit for entering IRC messages. """ MaxHistory = 100 def __init__(self, parent=None, inactiveText="", side=E5LineEdit.RightSide): """ Constructor @param parent reference to the parent widget (QWidget) @keyparam inactiveText text to be shown on inactivity (string) @keyparam side side the clear button should be shown at (E5LineEdit.RightSide, E5LineEdit.LeftSide) """ super(IrcMessageEdit, self).__init__(parent, inactiveText, side) self.__historyList = [""] # initialize with one empty line self.__historyLine = 0 def setText(self, text): """ Public method to set the text. Note: This reimplementation ensures, that the cursor is at the end of the text. @param text text to be set (string) """ super(IrcMessageEdit, self).setText(text) self.setCursorPosition(len(text)) def keyPressEvent(self, evt): """ Protected method implementing special key handling. @param evt reference to the event (QKeyEvent) """ key = evt.key() if key == Qt.Key_Up: self.__getHistory(True) return elif key == Qt.Key_Down: self.__getHistory(False) return elif key in [Qt.Key_Return, Qt.Key_Enter]: if self.text(): self.__addHistory(self.text()) elif evt.text() == chr(21): # ^U: clear the text self.setText("") super(IrcMessageEdit, self).keyPressEvent(evt) def wheelEvent(self, evt): """ Protected slot to support wheel events. @param evt reference to the wheel event (QWheelEvent) """ if qVersion() >= "5.0.0": delta = evt.angleDelta().y() else: delta = evt.delta() if delta > 0: self.__getHistory(True) elif delta < 0: self.__getHistory(False) super(IrcMessageEdit, self).wheelEvent(evt) def __addHistory(self, txt): """ Private method to add an entry to the history. @param txt text to be added to the history (string) """ # Only add the entry, if it is not the same as last time if len(self.__historyList) == 1 or \ (len(self.__historyList) > 1 and self.__historyList[1] != txt): # Replace empty first entry and add new empty first entry self.__historyList[0] = txt self.__historyList.insert(0, "") # Keep history below the defined limit del self.__historyList[IrcMessageEdit.MaxHistory:] self.__historyLine = 0 def __getHistory(self, up): """ Private method to move in the history. @param up flag indicating the direction (boolean) """ # preserve the current text, if it is not empty if self.text(): self.__historyList[self.__historyLine] = self.text() if up: self.__historyLine += 1 # If the position was moved past the end of the history, # go to the last entry if self.__historyLine == len(self.__historyList): self.__historyLine -= 1 return else: # If the position is at the top of the history, arrow-down shall # add the text to the history and clear the line edit for new input if self.__historyLine == 0: if self.text(): self.__addHistory(self.text()) self.setText("") else: # If the position is not at the top of the history, # decrement it self.__historyLine -= 1 # replace the text of the line edit with the selected history entry self.setText(self.__historyList[self.__historyLine])
davy39/eric
Network/IRC/IrcMessageEdit.py
Python
gpl-3.0
4,486
from __future__ import absolute_import import os import django from celery import Celery from django.conf import settings os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'music.settings') django.setup() # Required for django 1.7+ app = Celery('tasks') app.config_from_object('django.conf:settings') app.autodiscover_tasks(lambda: settings.INSTALLED_APPS)
kburts/drf-music
Backend/music/celery.py
Python
mit
359
#-*- coding:utf-8 -*- # # # Copyright (C) 2013 Michael Telahun Makonnen <mmakonnen@gmail.com>. # All Rights Reserved. # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU Affero General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Affero General Public License for more details. # # You should have received a copy of the GNU Affero General Public License # along with this program. If not, see <http://www.gnu.org/licenses/>. # # from . import daily_manpower
yvaucher/hr
__unported__/hr_report_manpower/wizard/__init__.py
Python
agpl-3.0
845
__VERSION__ = '0.5.2'
sykora/ReSTinPeace
rip/__init__.py
Python
gpl-3.0
22