code
stringlengths
3
1.05M
repo_name
stringlengths
5
104
path
stringlengths
4
251
language
stringclasses
1 value
license
stringclasses
15 values
size
int64
3
1.05M
from django.conf.urls import include, url urlpatterns = [ url(r'^avatar/', include('avatar.urls')), ]
MachineandMagic/django-avatar
tests/urls.py
Python
bsd-3-clause
108
from testing.test_interpreter import BaseTestInterpreter class TestArray(BaseTestInterpreter): def test_max(self): output = self.run(''' $max = array(6, 6, 4); $res = max( array(0, 1, 2), array(2, 3, 4), array(6, 3, 4), array(0, 0, 2), array(6, 3, 4), array(0, 0, 2), $max, array(0, 0, 2) ); echo $res == $max; $res = max( array(0, 1, 2), array(2, 3, 4), array(6, 3, 4), array(0, 0, 2), array(6, 3, 4), array(0, 0, 2), $max, array(0, 0, 2) ); echo $res == $max; $res = max( array(0, 1, 2), array(2, 3, 4), $max, array(6, 3, 4), array(0, 0, 2), array(6, 3, 4), array(0, 0, 2), array(0, 0, 2) ); echo $res == $max; $res = max( $max, array(0, 1, 2), array(2, 3, 4), array(6, 3, 4), array(0, 0, 2), array(6, 3, 4), array(0, 0, 2), array(0, 0, 2) ); echo $res == $max; $res = max( array(0, 1, 2), array(2, 3, 4), array(6, 3, 4), array(0, 0, 2), array(6, 3, 4), array(0, 0, 2), array(0, 0, 2), $max ); echo $res == $max; echo max(1, 3, 5, 6, 7); // 7 echo max(array(2, 4, 5)); // 5 echo max(0, 'hello'); // 0 echo max('hello', 0); // hello echo max(-1, 'hello'); // hello $a = max('string', array(2, 5, 7), 42); echo $a[2]; echo max('7iuwmssuxue', 1); //returns 7iuwmssuxu echo max('-7suidha', -4); //returns -4 echo max('sdihatewin7wduiw', 3); //returns 3 $d1 = array(450,420,440,430,421); $d2 = array(460,410,410,430,413,375,256,411,656); $d3 = array(430,440,470,435,434,255,198); echo max(max($d1),max($d2),max($d3)); echo max(array("", "t", "b")); echo max(array(1, true, false, true)); echo max("", "t", "b"); echo max(1, true, false, true); ''') space = self.space assert space.int_w(output[0]) == 1 assert space.int_w(output[1]) == 1 assert space.int_w(output[2]) == 1 assert space.int_w(output[3]) == 1 assert space.int_w(output[4]) == 1 assert space.str_w(output[5]) == "7" assert space.str_w(output[6]) == "5" assert space.str_w(output[7]) == "0" assert space.str_w(output[8]) == "hello" assert space.str_w(output[9]) == "hello" assert space.int_w(output[10]) == 7 assert space.str_w(output[11]) == "7iuwmssuxue" assert space.str_w(output[12]) == "-4" assert space.str_w(output[13]) == "3" assert space.str_w(output[14]) == "656" assert space.str_w(output[15]) == "t" assert space.str_w(output[16]) == "1" assert space.str_w(output[17]) == "t" assert space.str_w(output[18]) == "1"
ericpp/hippyvm
testing/test_math.py
Python
mit
3,013
"""Module for resetting states.py""" from os import _exit from states import game_states while True: CONFIRM_RESET = input(""" Are you sure you want to reset the game states?\n Doing so will erase everything the AI has learned while playing.\n Erase everything? [Y/n] """) if CONFIRM_RESET.upper() == 'Y': break elif CONFIRM_RESET.upper() == 'N': print("\n\nReset canceled") _exit(0) MOVES = ['a', 's', 'd'] for state in game_states: for move in MOVES: if type(game_states[state][move]) == int: game_states[state][move] = 1 with open("states.py", "w") as states: states.truncate() states.write('game_states='+str(game_states)) states.close() print("\n\nReset complete")
DavidGrey/game-theory_gunner
shotgun/reset_states.py
Python
mit
750
#!/usr/bin/python3 -i import input_data from input_data import DataSet from tensorflow.python.framework import dtypes from os import path import tensorflow as tf import numpy as np import matplotlib.pyplot as plt import pdb import logging from analysis_model_divergence import get_dist_model_distance, Metrics import ilogger logger = ilogger.setup_logger(__name__) class MNISTSoftmaxRegression(object): def __init__(self, minibatch_size, learning_rate, n_iterations, mnist_train=None, model_name='classifier', write_summary=False, alpha=0.1): self.minibatch_size = minibatch_size self.learning_rate = learning_rate self.n_iterations = n_iterations self.model_name = model_name # only ONE summary key is supported self.write_summary = write_summary self.summaries = ['/'.join([tf.GraphKeys.SUMMARIES, self.model_name])] self.alpha = alpha self.total_iterations = 0 self.history_W = [] self.history_b = [] self.history_accuracy = [] logger.info('data for {0} : images.shape = {1}, labels.shape = {2}'.format(model_name, mnist_train.images.shape, mnist_train.labels.shape)) if mnist_train is None: self.load_mnist_data() else: self.mnist_train = mnist_train self.construct_model() def load_mnist_data(self): self.mnist_train = input_data.read_data_sets("MNIST_data/", one_hot=True).train def construct_model(self): def weight_variable(shape, name): initial = tf.truncated_normal(shape, stddev=0.1) return tf.Variable(initial, name=name) def bias_variable(shape, name): initial = tf.constant(0.1, shape=shape) return tf.Variable(initial, name=name) def l2(weights): return tf.nn.l2_loss(weights) def l1(weights): return tf.reduce_sum( tf.abs(weights) ) with tf.variable_scope(self.model_name): # place holder for input with unknown number of examples with tf.variable_scope('features'): self.x = tf.placeholder(tf.float32, [None, 784], name='x') # model parameters # model: y_hat = softmax( W^T x + b ) # W.shape = n_features x n_classes # also assign model parameters if needed with tf.variable_scope('model_parameters'): self.W_name_list = [] self.W_list = [] self.W_shape_list = [ [784, 10], ] self.W_assign_value_list = [] self.W_assign_list = [] self.b_name_list = [] self.b_list = [] self.b_assign_value_list = [] self.b_assign_list = [] for i, W_shape in enumerate(self.W_shape_list): b_shape = W_shape[-1:] W_name = 'W{0}'.format(i) b_name = 'b{0}'.format(i) W = weight_variable(W_shape, W_name) b = bias_variable(b_shape, b_name) W_assign_value = tf.placeholder(tf.float32, W_shape, name='{0}_assign_value'.format(W_name)) b_assign_value = tf.placeholder(tf.float32, b_shape, name='{0}_assign_value'.format(b_name)) W_assign = tf.assign(W, W_assign_value, name='{0}_assign'.format(W_name)) b_assign = tf.assign(b, b_assign_value, name='{0}_assign'.format(b_name)) self.W_name_list.append(W_name) self.W_list.append(W) self.W_assign_value_list.append(W_assign_value) self.W_assign_list.append(W_assign) self.b_name_list.append(b_name) self.b_list.append(b) self.b_assign_value_list.append(b_assign_value) self.b_assign_list.append(b_assign) network = self.x # output with tf.variable_scope('softmax_layer'): network = tf.add(tf.matmul(network, self.W_list[0]), self.b_list[0]) network = tf.nn.softmax(network, name='softmax_output') self.y = network # labels and training with tf.variable_scope('training'): self.y_ = tf.placeholder(tf.float32, [None, 10], name='labels') self.cross_entropy = tf.reduce_mean( -tf.reduce_sum(self.y_ * tf.log(self.y), reduction_indices=[1]), name='cross_entropy' ) self.regularizer_list = [ self.alpha * l2(self.W_list[0]), self.alpha * l2(self.b_list[0]), ] self.total_loss = self.cross_entropy + sum(self.regularizer_list) global_step = tf.Variable(0, trainable=False) adaptive_learning_rate = tf.train.exponential_decay(self.learning_rate, global_step, 1000, 0.9) optimizer = tf.train.GradientDescentOptimizer(self.learning_rate) self.train_step = optimizer.minimize(self.total_loss) # evaluation with tf.variable_scope('evaluation'): self.correct_prediction = tf.equal(tf.argmax(self.y,1), tf.argmax(self.y_,1)) self.accuracy = tf.reduce_mean(tf.cast(self.correct_prediction, tf.float32)) # summary tf.summary.scalar('xentropy', self.cross_entropy, collections=self.summaries) tf.summary.scalar('accuracy', self.accuracy, collections=self.summaries) self.merge_summaries = tf.summary.merge_all(self.summaries[0]) # get session if tf.get_default_session(): logger.info('default session available; using default session for model') self.sess = tf.get_default_session() else: self.sess = tf.Session() # initialization with tf.variable_scope('initialize'): model_variables = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, scope=self.model_name) self.init = tf.variables_initializer(model_variables) self.sess.run(self.init) def get_W_list_values(self): W_list_values = [ W.eval(session=self.sess) for W in self.W_list ] return W_list_values def set_W_list_values(self, W_list_values): if not hasattr(self, 'history_W'): self.history_W = [] self.history_W.append( self.get_W_list_values() ) for W_assign, W_assign_value, W_value in zip(self.W_assign_list, self.W_assign_value_list, W_list_values): self.sess.run(W_assign, feed_dict={W_assign_value: W_value}) def get_b_list_values(self): b_list_values = [ b.eval(session=self.sess) for b in self.b_list ] return b_list_values def set_b_list_values(self, b_list_values): if not hasattr(self, 'history_b'): self.history_b = [] self.history_b.append( self.get_b_list_values() ) for b_assign, b_assign_value, b_value in zip(self.b_assign_list, self.b_assign_value_list, b_list_values): self.sess.run(b_assign, feed_dict={b_assign_value: b_value}) def train_model(self): if self.write_summary: summary_dir = path.join(path.curdir, 'summary', 'train', self.model_name) summary_writer = tf.train.SummaryWriter(summary_dir, self.sess.graph) for i in range(self.n_iterations): self.total_iterations += 1 batch_xs, batch_ys = self.mnist_train.next_batch(self.minibatch_size) if self.write_summary: summary, _ = self.sess.run([self.merge_summaries, self.train_step], feed_dict={self.x: batch_xs, self.y_: batch_ys}) summary_writer.add_summary(summary, i) else: self.sess.run(self.train_step, feed_dict={self.x: batch_xs, self.y_: batch_ys}) if hasattr(self, 'test_data'): accuracy = self.evaluate_model(self.test_data) self.history_accuracy.append( (self.total_iterations, accuracy) ) def evaluate_model(self, test_data): accuracy_eval = self.sess.run(self.accuracy, feed_dict={self.x: test_data.images, self.y_: test_data.labels}) return accuracy_eval class DistSimulation(MNISTSoftmaxRegression): def __init__(self, n_machines, common_examples_fraction, sync_iterations, averaging_interval, *args, **kwargs): self.n_machines = n_machines self.common_examples_fraction = common_examples_fraction self.sync_iterations = sync_iterations self.averaging_interval = averaging_interval self._initialize_same = False self._sample_with_replacement = False self._adaptive_sampling_scheme = False self.history_dist_model_distance = [] super().__init__(*args, **kwargs) @property def sample_with_replacement(self): return self._sample_with_replacement @sample_with_replacement.setter def sample_with_replacement(self, setting): assert isinstance(setting, bool), "setting should be boolean" self._sample_with_replacement = setting @property def adaptive_sampling_scheme(self): return self._adaptive_sampling_scheme @adaptive_sampling_scheme.setter def adaptive_sampling_scheme(self, setting): assert isinstance(setting, bool), "setting should be boolean" self._adaptive_sampling_scheme = setting @property def initialize_same(self): return self._initialize_same @initialize_same.setter def initialize_same(self, setting): assert isinstance(setting, bool), "setting should be boolean" self._initialize_same = setting def train_model(self): self.partition_data() self.train_distributed_models() def partition_data(self): n_examples = self.mnist_train.images.shape[0] random_order = np.random.permutation(n_examples) n_common_examples = int(self.common_examples_fraction * n_examples) n_subset_examples = int( (n_examples-n_common_examples)/self.n_machines ) common_examples_indices = random_order[0:n_common_examples] common_examples = self.mnist_train.images[common_examples_indices, :] common_examples_labels = self.mnist_train.labels[common_examples_indices, :] if self.sync_iterations: n_examples_per_machine = n_common_examples+n_subset_examples n_epochs_per_machine = int(np.ceil(self.n_iterations*self.minibatch_size/n_examples_per_machine)) perm_list = self.get_permutations(n_epochs_per_machine, n_examples_per_machine, n_common_examples, n_subset_examples) self.training_data_sets = [] for i_machine in range(self.n_machines): slice_start = n_common_examples + n_subset_examples*i_machine slice_end = n_common_examples + n_subset_examples*(i_machine+1) subset_examples_indices = random_order[slice_start:slice_end] subset_examples = self.mnist_train.images[subset_examples_indices, :] subset_examples_labels = self.mnist_train.labels[subset_examples_indices, :] images = np.concatenate([common_examples, subset_examples], axis=0) labels = np.concatenate([common_examples_labels, subset_examples_labels], axis=0) # using dtype = dtypes.uint8 to prevent the DataSet class to scale the features by 1/255 data_set = DataSet(images, labels, reshape=False, dtype=dtypes.uint8) if self.sync_iterations: data_set.perm_list = perm_list self.training_data_sets.append( data_set ) def train_distributed_models(self): assert self.averaging_interval <= self.n_iterations, "averaging_interval MUST be <= n_iterations" self.distributed_models = [] for i_machine, mnist_train in enumerate(self.training_data_sets): dist_model_name = '/'.join([self.model_name, 'dist_model_{0}'.format(i_machine)]) model = MNISTSoftmaxRegression(self.minibatch_size, self.learning_rate, self.averaging_interval, mnist_train, model_name=dist_model_name, write_summary=self.write_summary, alpha=self.alpha) if hasattr(self, 'test_data'): model.test_data = self.test_data self.distributed_models.append(model) # why use the slice [1:] ? # index [0] == 0, zero iterations should not be considered train_stride_list = np.arange(0, self.n_iterations+1, self.averaging_interval)[1:] for stride_n, train_stride in enumerate(train_stride_list): self.total_iterations += self.averaging_interval for model in self.distributed_models: if stride_n == 0 and not self._initialize_same: logger.debug('initializing distributed models with different values') break else: logger.debug('initializing distributed models with same values') model.set_W_list_values(self.get_W_list_values()) model.set_b_list_values(self.get_b_list_values()) for model in self.distributed_models: model.train_model() dist_model_distance_matrix = get_dist_model_distance(self) self.history_dist_model_distance.append( (self.total_iterations, dist_model_distance_matrix) ) self.combine_distributed_models() if hasattr(self, 'test_data'): accuracy = self.evaluate_model(self.test_data) self.history_accuracy.append( (self.total_iterations, accuracy) ) def combine_distributed_models(self): logger.debug('combine_distributed_models()') W_list = [] b_list = [] for i_machine, model in enumerate(self.distributed_models): W_list.append( model.get_W_list_values() ) b_list.append( model.get_b_list_values() ) W_avg = np.mean(W_list, axis=0) b_avg = np.mean(b_list, axis=0) self.set_W_list_values(W_avg) self.set_b_list_values(b_avg) def evaluate_distributed_models(self, test_data): accuracy_list = [] for model in self.distributed_models: accuracy_list.append( model.evaluate_model(test_data) ) return accuracy_list def get_permutations(self, num_perms, perm_length, n_common_examples, n_subset_examples): perm_list = [] for perm_n in range(num_perms): n_total_examples = n_common_examples + n_subset_examples indices = np.arange(n_total_examples) if self._adaptive_sampling_scheme and n_common_examples>0: # maximum possible probability bias # factor of 0.9 to prevent sampling error for without replacement p_bias = n_subset_examples/n_total_examples * 0.9 else: p_bias = 0 decay_coef = 1 try: p_common_examples = 1/n_total_examples + p_bias/n_common_examples * np.exp(-decay_coef*perm_n) except ZeroDivisionError: p_common_examples = 0 try: p_subset_examples = 1/n_total_examples - p_bias/n_subset_examples * np.exp(-decay_coef*perm_n) except ZeroDivisionError: p_subset_examples = 0 assert p_common_examples >= 0 and p_common_examples <= 1, "0 <= p_common_examples <= 1 MUST hold true" assert p_subset_examples >= 0 and p_subset_examples <= 1, "0 <= p_subset_examples <= 1 MUST hold true" p = np.concatenate([ np.repeat(p_common_examples, n_common_examples), np.repeat(p_subset_examples, n_subset_examples), ], axis=0) perm = np.random.choice(indices, perm_length, replace=self._sample_with_replacement, p=p) return perm_list if __name__=='__main__': ilogger.setup_root_logger('/dev/null', logging.DEBUG) minibatch_size = 1 learning_rate = 0.01 n_iterations = 100 mnist = input_data.read_data_sets("MNIST_data/", one_hot=True) mnist_classifier = MNISTSoftmaxRegression(minibatch_size, learning_rate, n_iterations, mnist.train, model_name='UnifiedClassifier', write_summary=False, alpha=0.1) mnist_classifier.test_data = mnist.test mnist_classifier.train_model() accuracy = mnist_classifier.evaluate_model(mnist.test) logger.info('unified model accuracy = {0}'.format(accuracy)) n_machines = 4 common_examples_fraction = 1 sync_iterations = True averaging_interval = n_iterations mnist_distributed = DistSimulation(n_machines, common_examples_fraction, sync_iterations, averaging_interval, minibatch_size, learning_rate, n_iterations, mnist.train, model_name='DistributedClassifier', write_summary=False, alpha=0.1) mnist_distributed.test_data = mnist.test # mnist_distributed.initialize_same = True # mnist_distributed.sample_with_replacement = True # mnist_distributed.adaptive_sampling_scheme = True mnist_distributed.train_model() combined_model_accuracy = mnist_distributed.evaluate_model(mnist.test) dist_model_accuracy_list = mnist_distributed.evaluate_distributed_models(mnist.test) logger.info('combined_model_accuracy = {0}'.format(combined_model_accuracy)) logger.info('dist_model_accuracy_list: {0}'.format(dist_model_accuracy_list))
saraghav/DistributedLearningProject
src/mnist_distributed_sim_strongly_convex.py
Python
gpl-3.0
18,393
""" Copyright 2017-present Airbnb, Inc. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ import copy from datetime import datetime, timedelta import json from nose.tools import ( assert_equal, assert_false, assert_is_instance, assert_not_in, assert_raises, assert_true ) from streamalert.shared.alert import Alert, AlertCreationError class TestAlert: """Test shared Alert class.""" # pylint: disable=no-self-use,protected-access,too-many-public-methods @staticmethod def _basic_alert(): return Alert('test_rule', {'abc': 123}, {'aws-firehose:alerts', 'aws-sns:test-output'}) @staticmethod def _customized_alert(): return Alert( 'test_rule', {'abc': 123}, {'aws-firehose:alerts', 'aws-sns:test-output', 'aws-s3:other-output'}, alert_id='abc-123', attempts=1, cluster='', context={'rule': 'context'}, created=datetime.utcnow(), dispatched=datetime.utcnow(), log_source='source', log_type='csv', merge_by_keys=['abc'], merge_window=timedelta(minutes=5), outputs_sent={'aws-sns:test-output'}, rule_description='A Test Rule', source_entity='entity', source_service='s3', staged=True ) def test_alert_encoder_invalid_json(self): """Alert Class - Alert Encoder - Invalid JSON raises parent exception""" assert_raises(TypeError, json.dumps, RuntimeWarning, default=list) def test_init_invalid_kwargs(self): """Alert Class - Init With Invalid Kwargs""" assert_raises(AlertCreationError, Alert, '', {}, set(), cluster='test', invalid='nonsense') def test_ordering(self): """Alert Class - Alerts Are Sorted By Creation""" alerts = [self._basic_alert() for _ in range(5)] assert_equal(alerts, sorted([alerts[0], alerts[3], alerts[1], alerts[4], alerts[2]])) def test_repr(self): """Alert Class - Complete Alert Representation""" assert_is_instance(repr(self._basic_alert()), str) assert_is_instance(repr(self._customized_alert()), str) def test_str(self): """Alert Class - To String""" alert = self._customized_alert() assert_equal('<Alert abc-123 triggered from test_rule>', str(alert)) def test_dynamo_key(self): """Alert Class - Dynamo Key""" alert = self._customized_alert() assert_equal({'RuleName': 'test_rule', 'AlertID': 'abc-123'}, alert.dynamo_key) def test_remaining_outputs_merge_disabled(self): """Alert Class - Remaining Outputs - No Merge Information""" alert = self._basic_alert() assert_equal(alert.outputs, alert.remaining_outputs) # One output sent successfully alert.outputs_sent = {'aws-sns:test-output'} assert_equal({'aws-firehose:alerts'}, alert.remaining_outputs) # All outputs sent successfully alert.outputs_sent = {'aws-firehose:alerts', 'aws-sns:test-output'} assert_equal(set(), alert.remaining_outputs) def test_remaining_outputs_merge_enabled(self): """Alert Class - Remaining Outputs - With Merge Config""" # Only the required firehose output shows as remaining assert_equal({'aws-firehose:alerts'}, self._customized_alert().remaining_outputs) def test_dynamo_record(self): """Alert Class - Dynamo Record""" # Make sure there are no empty strings nor sets (not allowed in Dynamo) alert = Alert( 'test_rule', {}, {'aws-sns:test-output'}, cluster='', created='', log_source='', log_type='', outputs_sent=set(), rule_description='', source_entity='', source_service='' ) record = alert.dynamo_record() assert_not_in('', list(record.values())) assert_not_in(set(), list(record.values())) def test_create_from_dynamo_record(self): """Alert Class - Create Alert from Dynamo Record""" alert = self._customized_alert() # Converting to a Dynamo record and back again should result in the exact same alert record = alert.dynamo_record() new_alert = Alert.create_from_dynamo_record(record) assert_equal(alert.dynamo_record(), new_alert.dynamo_record()) def test_create_from_dynamo_record_invalid(self): """Alert Class - AlertCreationError raised for an invalid Dynamo Record""" assert_raises(AlertCreationError, Alert.create_from_dynamo_record, {}) def test_output_dict(self): """Alert Class - Output Dict""" alert = self._basic_alert() result = alert.output_dict() # Ensure result is JSON-serializable (no sets) assert_is_instance(json.dumps(result), str) # Ensure result is Athena compatible (no None values) assert_not_in(None, list(result.values())) def test_can_merge_no_config(self): """Alert Class - Can Merge - False if Either Alert Does Not Have Merge Config""" assert_false(self._basic_alert().can_merge(self._customized_alert())) assert_false(self._customized_alert().can_merge(self._basic_alert())) def test_can_merge_too_far_apart(self): """Alert Class - Can Merge - False if Outside Merge Window""" alert1 = Alert( '', {'key': True}, set(), created=datetime(year=2000, month=1, day=1, minute=0), merge_by_keys=['key'], merge_window=timedelta(minutes=10) ) alert2 = Alert( '', {'key': True}, set(), created=datetime(year=2000, month=1, day=1, minute=11), merge_by_keys=['key'], merge_window=timedelta(minutes=10) ) assert_false(alert1.can_merge(alert2)) assert_false(alert2.can_merge(alert1)) def test_can_merge_different_merge_keys(self): """Alert Class - Can Merge - False if Different Merge Keys Defined""" alert1 = Alert( '', {'key': True}, set(), merge_by_keys=['key'], merge_window=timedelta(minutes=10) ) alert2 = Alert( '', {'key': True}, set(), merge_by_keys=['other'], merge_window=timedelta(minutes=10) ) assert_false(alert1.can_merge(alert2)) assert_false(alert2.can_merge(alert1)) def test_can_merge_key_not_common(self): """Alert Class - Can Merge - False if Merge Key Not Present in Both Records""" alert1 = Alert( '', {'key': True}, set(), merge_by_keys=['key'], merge_window=timedelta(minutes=10) ) alert2 = Alert( '', {'other': True}, set(), merge_by_keys=['key'], merge_window=timedelta(minutes=10) ) assert_false(alert1.can_merge(alert2)) assert_false(alert2.can_merge(alert1)) def test_can_merge_different_values(self): """Alert Class - Can Merge - False if Merge Key has Different Values""" alert1 = Alert( '', {'key': True}, set(), merge_by_keys=['key'], merge_window=timedelta(minutes=10) ) alert2 = Alert( '', {'key': False}, set(), merge_by_keys=['key'], merge_window=timedelta(minutes=10) ) assert_false(alert1.can_merge(alert2)) assert_false(alert2.can_merge(alert1)) def test_can_merge_merge_keys_absent(self): """Alert Class - Can Merge - True if Merge Keys Do Not Exist in Either Record""" alert1 = Alert('', {}, set(), merge_by_keys=['key'], merge_window=timedelta(minutes=10)) alert2 = Alert('', {}, set(), merge_by_keys=['key'], merge_window=timedelta(minutes=10)) assert_true(alert1.can_merge(alert2)) assert_true(alert2.can_merge(alert1)) def test_can_merge_true(self): """Alert Class - Can Merge - True Result""" alert1 = Alert( '', {'key': True}, set(), created=datetime(year=2000, month=1, day=1, minute=0), merge_by_keys=['key'], merge_window=timedelta(minutes=10) ) alert2 = Alert( '', {'key': True, 'other': True}, set(), created=datetime(year=2000, month=1, day=1, minute=10), merge_by_keys=['key'], merge_window=timedelta(minutes=10) ) assert_true(alert1.can_merge(alert2)) assert_true(alert2.can_merge(alert1)) def test_compute_common_empty_record(self): """Alert Class - Compute Common - Empty Record List""" assert_equal({}, Alert._compute_common([])) def test_compute_common_single_record(self): """Alert Class - Compute Common - Single Record""" # The greatest common subset of a single record is itself record = {'a': 1, 'b': 2, 'c': {'d': {'e': 3}}} assert_equal(record, Alert._compute_common([record])) def test_compute_common_top_level(self): """Alert Class - Compute Common - No Nested Dictionaries""" record1 = {'a': 1, 'b': 2, 'c': 3} record2 = {'b': 2, 'c': 3, 'd': 4} record3 = {'c': 3, 'd': 4, 'e': 5} assert_equal({'c': 3}, Alert._compute_common([record1, record2, record3])) def test_compute_common_no_similarities(self): """Alert Class - Compute Common - Empty Common Set""" record1 = {'a': -1, 'b': -2, 'c': -3, 'd': {'e': 0}} record2 = {'a': 1, 'b': 2, 'c': 3} assert_equal({}, Alert._compute_common([record1, record2])) def test_compute_common_partial_nested(self): """Alert Class - Compute Common - Some Common Features in Nested Dictionary""" # This is the example given in the docstring record1 = {'abc': 123, 'nested': {'A': 1, 'B': 2}} record2 = {'abc': 123, 'def': 456, 'nested': {'A': 1}} assert_equal({'abc': 123, 'nested': {'A': 1}}, Alert._compute_common([record1, record2])) def test_compute_common_different_types(self): """Alert Class - Compute Common - Same Keys, Different Types""" record1 = {'a': 1, 'b': None, 'c': {'d': {'e': 5}, 'f': {'g': 6}}} record2 = {'a': '1', 'b': 0, 'c': []} assert_equal({}, Alert._compute_common([record1, record2])) def test_compute_common_many_nested(self): """Alert Class - Compute Common - Multiple Levels of Nesting""" record1 = { 'a': { 'b': { 'c': 3, 'd': 4 }, 'e': { 'h': { 'i': 9 } }, 'j': {} } } record2 = { 'a': { 'b': { 'c': 3, }, 'e': { 'f': { 'g': 8 }, 'h': {} }, 'j': {} } } expected = { 'a': { 'b': { 'c': 3 }, 'j': {} } } assert_equal(expected, Alert._compute_common([record1, record2])) def test_compute_common_all_identical(self): """Alert Class - Compute Common - Identical Records""" record = {'a': 1, 'b': 2, 'c': {'d': {'e': 3}}} assert_equal(record, Alert._compute_common([record] * 4)) def test_compute_diff_no_common(self): """Alert Class - Compute Diff - No Common Set""" record = {'a': 1, 'b': 2, 'c': {'d': {'e': 3}}} assert_equal(record, Alert._compute_diff({}, record)) def test_compute_diff_no_diff(self): """Alert Class - Compute Diff - Record Identical to Common""" record = {'a': 1, 'b': 2, 'c': {'d': {'e': 3}}} common = record assert_equal({}, Alert._compute_diff(common, record)) def test_compute_diff_top_level(self): """Alert Class - Compute Diff - Top Level Keys""" common = {'c': 3} record = {'a': 1, 'b': 2, 'c': 3} assert_equal({'a': 1, 'b': 2}, Alert._compute_diff(common, record)) def test_compute_diff_different_types(self): """Alert Class - Compute Diff - Type Mismatch Short-Circuits Recursion""" common = {'b': 2} record = {'a': 1, 'b': {'nested': 'stuff'}} assert_equal(record, Alert._compute_diff(common, record)) def test_compute_diff_nested(self): """Alert Class - Compute Diff - Difference in Nested Dictionary""" # This is the example given in the docstring common = {'abc': 123, 'nested': {'A': 1}} record = {'abc': 123, 'nested': {'A': 1, 'B': 2}} assert_equal({'nested': {'B': 2}}, Alert._compute_diff(common, record)) def test_compute_diff_many_nested(self): """Alert Class - Compute Diff - Multiple Levels of Nesting""" # These values are the same as those from test_compute_common_many_nested record1 = { 'a': { 'b': { 'c': 3, 'd': 4 }, 'e': { 'h': { 'i': 9 } }, 'j': {} } } record2 = { 'a': { 'b': { 'c': 3, }, 'e': { 'f': { 'g': 8 }, 'h': {} }, 'j': {} } } common = { 'a': { 'b': { 'c': 3 }, 'j': {} } } expected_diff1 = { 'a': { 'b': { 'd': 4 }, 'e': { 'h': { 'i': 9 } } } } assert_equal(expected_diff1, Alert._compute_diff(common, record1)) expected_diff2 = { 'a': { 'e': { 'f': { 'g': 8 }, 'h': {} } } } assert_equal(expected_diff2, Alert._compute_diff(common, record2)) def test_merge(self): """Alert Class - Merge - Create Merged Alert""" # Example based on a CarbonBlack log record1 = { 'alliance_data_virustotal': [], 'alliance_link_virustotal': '', 'alliance_score_virustotal': 0, 'cmdline': 'whoami', 'comms_ip': '1.2.3.4', 'hostname': 'my-computer-name', 'path': '/usr/bin/whoami', 'streamalert:ioc': { 'hello': 'world' }, 'timestamp': 1234.5678, 'username': 'user' } alert1 = Alert( 'RuleName', record1, {'aws-sns:topic'}, created=datetime(year=2000, month=1, day=1), merge_by_keys=['hostname', 'username'], merge_window=timedelta(minutes=5) ) # Second alert has slightly different record and different outputs record2 = copy.deepcopy(record1) record2['streamalert:ioc'] = {'goodbye': 'world'} record2['timestamp'] = 9999 alert2 = Alert( 'RuleName', record2, {'slack:channel'}, created=datetime(year=2000, month=1, day=2), merge_by_keys=['hostname', 'username'], merge_window=timedelta(minutes=5) ) merged = Alert.merge([alert1, alert2]) assert_is_instance(merged, Alert) assert_equal({'slack:channel'}, merged.outputs) # Most recent outputs were used expected_record = { 'AlertCount': 2, 'AlertTimeFirst': '2000-01-01T00:00:00.000000Z', 'AlertTimeLast': '2000-01-02T00:00:00.000000Z', 'MergedBy': { 'hostname': 'my-computer-name', 'username': 'user' }, 'OtherCommonKeys': { 'alliance_data_virustotal': [], 'alliance_link_virustotal': '', 'alliance_score_virustotal': 0, 'cmdline': 'whoami', 'comms_ip': '1.2.3.4', 'path': '/usr/bin/whoami', }, 'ValueDiffs': { '2000-01-01T00:00:00.000000Z': { 'streamalert:ioc': {'hello': 'world'}, 'timestamp': 1234.5678 }, '2000-01-02T00:00:00.000000Z': { 'streamalert:ioc': {'goodbye': 'world'}, 'timestamp': 9999 } } } assert_equal(expected_record, merged.record) def test_merge_nested(self): """Alert Class - Merge - Merge with Nested Keys""" record1 = { 'NumMatchedRules': 1, 'FileInfo': { 'Deleted': None, 'Nested': [1, 2, 'three'] }, 'MatchedRules': { 'Rule1': 'MatchedStrings' } } alert1 = Alert( 'RuleName', record1, {'slack:channel'}, created=datetime(year=2000, month=1, day=1), merge_by_keys=['Nested'], merge_window=timedelta(minutes=5) ) record2 = { 'NumMatchedRules': 2, 'FileInfo': { 'Deleted': None, 'Nested': [1, 2, 'three'] }, 'MatchedRules': { 'Rule1': 'MatchedStrings' } } alert2 = Alert( 'RuleName', record2, {'slack:channel'}, created=datetime(year=2000, month=1, day=2), merge_by_keys=['Nested'], merge_window=timedelta(minutes=5) ) record3 = { 'MatchedRules': { 'Rule1': 'MatchedStrings' }, 'Nested': [1, 2, 'three'] # This is in a different place in the record } alert3 = Alert( 'RuleName', record3, {'slack:channel'}, created=datetime(year=2000, month=1, day=3), merge_by_keys=['Nested'], merge_window=timedelta(minutes=5) ) merged = Alert.merge([alert1, alert2, alert3]) expected_record = { 'AlertCount': 3, 'AlertTimeFirst': '2000-01-01T00:00:00.000000Z', 'AlertTimeLast': '2000-01-03T00:00:00.000000Z', 'MergedBy': { 'Nested': [1, 2, 'three'] }, 'OtherCommonKeys': { 'MatchedRules': { 'Rule1': 'MatchedStrings' } }, 'ValueDiffs': { '2000-01-01T00:00:00.000000Z': { 'NumMatchedRules': 1, 'FileInfo': { 'Deleted': None } }, '2000-01-02T00:00:00.000000Z': { 'NumMatchedRules': 2, 'FileInfo': { 'Deleted': None } }, '2000-01-03T00:00:00.000000Z': {} } } assert_equal(expected_record, merged.record)
airbnb/streamalert
tests/unit/streamalert/shared/test_alert.py
Python
apache-2.0
20,111
''' Perform further analysis on 64-bit GO language executables. This module extends code flow analysis to runtime_main for Windows PE binaries. GO binaries start from a single export and proceed thru several functions that initialize GO. Specific application code is launched from the GO function runtime_main(), which is invoked by "call rax" with an address placed on the stack many calls earlier. Vivisect code flow analysis does not track the address; this module finds the address and invokes makeFunction(va). Samples have been found with different instruction sequences for reaching the address of runtime_main(); this module attempts all observed sequences. ''' import envi import envi.archs.i386.disasm import envi.archs.amd64.disasm from vivisect.analysis.i386.golang import golang_collect_opcodes, find_golang_bblock import logging logger = logging.getLogger(__name__) # Opcode sequence, where element [-6] is the important one. _GOLANG_AMD64_INSTRS = ['cld', 'call', 'mov', 'mov', 'mov', 'mov', 'call', 'call', 'call', 'lea', 'push', 'push', 'call', 'pop', 'pop'] def analyze(vw): ''' Perform further analysis on GO language executables. ''' # Make sure it is a PE file, with "Go build ID:" in the first few bytes # of the .text segment (versus a .upxN segment of a packed sample). has_go_build = False for segment in vw.getSegments(): va, size, name, filename = segment if name == '.text': bytez = vw.readMemory(va, 10000) k1 = bytez.find(b'Go build ID: ') if k1 != -1: has_go_build = True break if not has_go_build: return # Search the entry point (public export) for the pointer to runtime_main(). # Most GO executables have a single entry point, but some are more complex. ep = vw.getEntryPoints() ptr_va, runtime_va = golang_search_eps(vw, ep, filename) if runtime_va is None: return # Invoke codeflow on runtime_main(). vw.addEntryPoint(runtime_va) logger.debug('discovered runtime function: 0x%x', runtime_va) vw.makeFunction(runtime_va) # Also mark the ptr_va as a pointer to runtime_va. vw.makePointer(ptr_va, tova=runtime_va) _GOLANG_AMD64_MEP1A_INSTRS \ = ['sub', 'mov', 'mov', 'call', 'call', 'nop', 'nop', 'add', 'ret'] _GOLANG_AMD64_MEP1B_INSTRS \ = ['sub', 'mov', 'call', 'call', 'nop', 'nop', 'add', 'ret'] _GOLANG_AMD64_MEP2A_INSTRS \ = ['mov', 'mov', 'call', 'mov', 'mov', 'mov', 'mov', 'mov', 'mov', 'mov', 'call', 'mov', 'mov', 'test', 'jz'] _GOLANG_AMD64_MEP2B_INSTRS \ = ['mov', 'mov', 'call', 'mov', 'mov', 'mov', 'mov', 'mov', 'mov', 'call', 'mov', 'mov', 'test', 'jz'] def golang_search_eps(vw, ep , filename): ''' Search over all entry points to find main(), and then look for the function that calls runtime_main(). Return two pointers, or None, None if not found. ''' if len(ep) == 1: ep_va = ep[0] bblocks = vw.getFunctionBlocks(ep_va) if not bblocks: return None, None ptr_va, runtime_va = extract_golang_mainmain(vw, bblocks, filename) return ptr_va, runtime_va # Look for an entry point with a single basic block with a specific set # of instructions. One of the call instructions has the next function. # There can be multiple candidate functions meeting this criteria. candidate_fns_1 = set() for next_ep in ep: bblocks = vw.getFunctionBlocks(next_ep) if (not bblocks) or (len(bblocks) != 1): continue instrs = golang_collect_opcodes(vw, bblocks[0]) if (len(instrs) != len(_GOLANG_AMD64_MEP1A_INSTRS)) and \ (len(instrs) != len(_GOLANG_AMD64_MEP1B_INSTRS)): continue instrs_mnem = [ op.mnem for op in instrs ] if (instrs_mnem != _GOLANG_AMD64_MEP1A_INSTRS) and \ (instrs_mnem != _GOLANG_AMD64_MEP1B_INSTRS): continue opcode = instrs[-5] if not isinstance(opcode.opers[0], envi.archs.i386.disasm.i386PcRelOper): continue try: candidate_fns_1.add(opcode.opers[0].getOperValue(opcode)) except Exception: continue if not candidate_fns_1: return None, None # Next function has many basic blocks, one of which makes a call to main(). candidate_fns_2 = set() for fnptr in candidate_fns_1: if not vw.isFunction(fnptr): continue bblocks = vw.getFunctionBlocks(fnptr) for bblock in bblocks: instrs = golang_collect_opcodes(vw, bblock) if (len(instrs) != len(_GOLANG_AMD64_MEP2A_INSTRS)) and \ (len(instrs) != len(_GOLANG_AMD64_MEP2B_INSTRS)): continue instrs_mnem = [ op.mnem for op in instrs ] if (instrs_mnem != _GOLANG_AMD64_MEP2A_INSTRS) and \ (instrs_mnem != _GOLANG_AMD64_MEP2B_INSTRS): continue opcode = instrs[-5] if not isinstance(opcode.opers[0], envi.archs.i386.disasm.i386PcRelOper): continue try: candidate_fns_2.add(opcode.opers[0].getOperValue(opcode)) except Exception: continue # There should be just one candidate function by now. if len(candidate_fns_2) != 1: return None, None ptr = candidate_fns_2.pop() # Analyze the function at the pointer if necessary. if not vw.isFunction(ptr): return None, None bblocks = vw.getFunctionBlocks(ptr) if not bblocks: return None, None # This might be the function that calls runtime_main(), or there might # be one more indirect jump in a single basic block. if len(bblocks) > 1: ptr_va, runtime_va = extract_golang_mainmain(vw, bblocks, filename) if runtime_va is None: return None, None return ptr_va, runtime_va # Look for the indirect jump. # Expect a function with one BB, with an indirect jump to the # address loaded by "lea rax,[rip + immediate]". instrs = golang_collect_opcodes(vw, bblocks[0]) if not instrs: return None, None op = instrs[0] ptr_va, _ = parse_lea_raxriprel(vw, op, filename) if not vw.isFunction(ptr_va): return None, None bblocks = vw.getFunctionBlocks(ptr_va) ptr_va, runtime_va = extract_golang_mainmain(vw, bblocks, filename) return ptr_va, runtime_va def extract_golang_mainmain(vw, basic_blocks, filename): ''' Find the basic block of interest and return the address of the pointer and its contents, runtime_main(). The BB will contain the sequence of opcodes in _GOLANG_AMD64_INSTRS. The push instruction -6 from the end will load the contents of a memory address, and those contents are the runtime_main() address. ''' op = find_golang_bblock(vw, basic_blocks, _GOLANG_AMD64_INSTRS, 6) if op is None: op = find_golang_bblock_via_ind_jmp(vw, filename) if op is None: return None, None # The key opcode is "lea rax,[rip + immediate]", which points to # the GO function runtime_mainPC (aka runtime_main). ptr_va, runtime_va = parse_lea_raxriprel(vw, op, filename, get_content=True) return ptr_va, runtime_va def find_golang_bblock_via_ind_jmp(vw, filename): ''' Find the basic block of interest and return the address where the special sequence of opcodes begins. Return None if not found. Some GO executables use an indirect jmp in the entry point, and special logic is needed to locate the BB of interest. Example: 1897d2de0837090ec350004ef2f9fa87. ''' # Start from the entry point (we already know there is only one). ep_va = vw.getEntryPoints()[0] # Expect a function with one BB, ending with an indirect jump # to the address loaded by "lea rax,[rip + immediate]". basic_blocks = vw.getFunctionBlocks(ep_va) if len(basic_blocks) != 1: return None instrs = golang_collect_opcodes(vw, basic_blocks[0]) if (len(instrs) < 2) or \ (instrs[-1].mnem != 'jmp') or \ (instrs[-2].mnem != 'lea'): return None op = instrs[-2] ptr_va, _ = parse_lea_raxriprel(vw, op, filename) if not ptr_va: return None # Analyze the function at the pointer if necessary. if not vw.isFunction(ptr_va): logger.debug('discovered new function (ptr): 0x%x', ptr_va) vw.makeFunction(ptr_va) # Expect a function with one BB, ending with an indirect jump # to the address loaded by "lea rax,[rip + immediate]". basic_blocks = vw.getFunctionBlocks(ptr_va) if len(basic_blocks) != 1: return None instrs = golang_collect_opcodes(vw, basic_blocks[0]) if (len(instrs) < 2) or \ (instrs[-1].mnem != 'jmp') or \ (instrs[-2].mnem != 'lea'): return None op = instrs[-2] ptr_va, _ = parse_lea_raxriprel(vw, op, filename) if not ptr_va: return None # This function should contain the special basic block. basic_blocks = vw.getFunctionBlocks(ptr_va) return find_golang_bblock(vw, basic_blocks, _GOLANG_AMD64_INSTRS, 6) def parse_lea_raxriprel(vw, opcode, filename, get_content=False): ''' Parse an opcode that should be "lea rax,[rip + immediate]", returning the address of the second operand. Also return the content of the address if so requested. Return None, None if there is an error. ''' if len(opcode.opers) != 2: return None, None if not isinstance(opcode.opers[1], envi.archs.amd64.disasm.Amd64RipRelOper): return None, None try: ptr_va = opcode.opers[1].getOperValue(opcode) if len(vw.readMemory(ptr_va, 8)) != 8: return None, None if get_content: runtime_va = vw.castPointer(ptr_va) if len(vw.readMemory(runtime_va, 8)) != 8: return None, None else: runtime_va = None return ptr_va, runtime_va except Exception as e: return None, None
bat-serjo/vivisect
vivisect/analysis/amd64/golang.py
Python
apache-2.0
10,241
"""rinse SOAP client utility functions.""" from __future__ import print_function import collections import os.path import pprint import textwrap import defusedxml.lxml import lxml.builder from lxml import etree RINSE_DIR = os.path.dirname(__file__) ENVELOPE_XSD = 'soap-1.1_envelope.xsd' NS_SOAPENV = 'http://schemas.xmlsoap.org/soap/envelope/' NS_MAP = { 'soapenv': NS_SOAPENV, } def element_as_tree(element): """Convert an element from within an ElementTree to its own tree.""" # XXX: this is a crude hack, but it works - got any better ideas? return safe_parse_string( etree.tostring( etree.ElementTree(element), ), ) def safe_parse_string(raw_xml, **kwargs): """Safely parse raw XML content into an element tree.""" return defusedxml.lxml.fromstring(raw_xml, **kwargs) def safe_parse_path(xml_path, **kwargs): """Safely parse XML content from path into an element tree.""" return defusedxml.lxml.parse(xml_path, **kwargs) def safe_parse_url(xml_url, **kwargs): """Safely parse XML content from path into an element tree.""" return defusedxml.lxml.parse(xml_url, **kwargs) class ElementMaker(lxml.builder.ElementMaker): """Wrapper around lxml ElementMaker that casts ints as strings.""" def __getattr__(self, name): """Return a lambda that parses int args as strings.""" _cls = super(ElementMaker, self).__getattr__(name) def __cls_wraper(*args, **kwargs): """Wrapper around Element class.""" return _cls( *[ str(arg) if isinstance(arg, int) else arg for arg in args ], **kwargs ) return __cls_wraper RinseResponse = collections.namedtuple('RinseResponse', ['response', 'doc']) class SchemaCache(collections.defaultdict): """Cache of lxml.etree.XMLSchema instances, keyed by XSD basename.""" def get(self, xsd, xpath=None, namespaces=None): """Generate XMLSchema instances as specified.""" if xsd.startswith('/'): pass # absolute path elif ':' in xsd: pass # URL - defused should help protect us. else: # assume XSD is in res/ subdir of rinse project. xsd = os.path.join(RINSE_DIR, 'res', xsd) doc = safe_parse_path(xsd) if xpath: doc = doc.xpath(xpath, namespaces=namespaces)[0] self[xsd] = schema = etree.XMLSchema(doc) return schema def __missing__(self, xsd): """Generate XMLSchema instances on demand.""" return self.get(xsd) SCHEMA = SchemaCache() class ElementMakerCache(collections.defaultdict): """Cache of ElementMaker instances for the given nsmap.""" def __init__(self, nsmap): """Keep reference to the nsmap we're given.""" super(ElementMakerCache, self).__init__() self.nsmap = { name: url for name, url in list(NS_MAP.items()) + list(nsmap.items()) } def __missing__(self, ns_prefix): """Generate ElementMaker instances as required.""" return ElementMaker( namespace=self.nsmap[ns_prefix], nsmap=self.nsmap, ) PRETTY_PARSER = etree.XMLParser( remove_blank_text=True, ) PRETTY_TEXT_WRAPPER = textwrap.TextWrapper( width=78, initial_indent='', subsequent_indent=' ', replace_whitespace=False, drop_whitespace=False, break_long_words=False, break_on_hyphens=False, ) def printxml(doc): """Pretty print an lxml document tree. The XML printed may not be exactly equivalent to the doc provided, as blank text within elements will be stripped to allow etree.tostring() to work with the 'pretty_print' option set. """ pretty_tree = safe_parse_string( etree.tostring(doc), parser=PRETTY_PARSER, ) pretty_xml = etree.tostring( pretty_tree, pretty_print=True, encoding='unicode', ).replace('\t', ' ').rstrip('\n') for line in pretty_xml.split('\n'): line = PRETTY_TEXT_WRAPPER.fill(line.rstrip('\n')).rstrip('\n') for subline in line.split('\n'): if not subline.strip(): continue print(subline) def recursive_dict(element): """Map an XML tree into a dict of dicts.""" if isinstance(element, (tuple, list)): return tuple( recursive_dict(child) for child in element ) return ( '{}{}'.format( element.tag, pprint.pformat(element.attrib, compact=True, width=10000), ), dict( map(recursive_dict, element) ) or element.text )
MarkusH/rinse
rinse/util.py
Python
mit
4,798
from shopdatabase import DatabaseController from parser import Parser import sqlite3 ps = Parser() dbpath = ps.get_db_path() class CheckController(DatabaseController): def __init__(self): DatabaseController.__init__(self) def check_in(self, username, barcode): """ Given a barcode and its corresponding DVD will be re-shelved into the database, the corresponding borrower's borrowed quantity is reduced by 1. Returns True on success check-in, False means the dvd is not yet lent out. """ if self.check_dvd_state(barcode, 0): return False if not self.check_dvd_borrower(barcode) == username.lower(): return False conn = sqlite3.connect(dbpath) c = conn.cursor() c.execute("UPDATE dvdlist SET out=0 WHERE barcode=(?)", (barcode,)) c.execute("UPDATE userdb SET borrowed=borrowed-1 WHERE username=(?)", (username.lower(),)) conn.commit() conn.close() return True def check_dvd_borrower(self, barcode): """ This checks the borrower of a specific DVD, it returns the username of the borrower """ conn = sqlite3.connect(dbpath) c = conn.cursor() raw = c.execute("SELECT borrower FROM dvdlist WHERE barcode=(?)", (barcode,)) try: data = raw.fetchone() name = data[0][0] except TypeError: conn.close() return None except StopIteration: conn.close() return None else: conn.close() return data[0].lower() def check_dvd_state(self, barcode, state): """ Check whether a specific dvd is under a correct state. Return True or False on yes or no. """ conn = sqlite3.connect(dbpath) c = conn.cursor() rawdata = c.execute("SELECT * FROM dvdlist WHERE barcode=(?)", (barcode,)) item = rawdata.fetchone() conn.close() try: item[3] == state except TypeError: return False else: return item[3] == state def check_out(self, username, barcode): """ Given a barcode and a username we can assign the DVD to the customer. Return True on success, False on DVD unavailable. """ if not self.check_dvd_state(barcode, 0): return False if self.check_user_quantity(username.lower()) == 6: return False conn = sqlite3.connect(dbpath) c = conn.cursor() c.execute("UPDATE dvdlist SET out=1, borrower=(?) WHERE barcode=(?)", (username.lower(), barcode)) c.execute("UPDATE userdb SET borrowed = borrowed + 1 \ WHERE username=(?)", (username.lower(),)) conn.commit() conn.close() return True def check_user_quantity(self, username): """ It returns on a user's borrowed quantity. """ conn = sqlite3.connect(dbpath) c = conn.cursor() raw = c.execute("SELECT * FROM userdb WHERE username=(?)", (username.lower(),)) info = raw.fetchone() conn.close() try: info[5] except TypeError: return False else: return info[5]
hlx98007/PyDVDShop
modules/checkcontroller.py
Python
lgpl-3.0
3,437
#!/usr/bin/env python # -*- coding: utf-8 -*- # 使用重复棋子的多个图片训练 import tensorflow as tf import numpy as np import loadTrainData # parameters learning_rate = 0.001 training_epochs = 300 x_data = loadTrainData.getImagesData() pixels = 70*74 # y_data = np.array([[0, 0, 1], [0, 1, 0], [0, 1, 1], [1, 0, 0], [1, 0, 1], [1, 1, 0], [1, 1, 1]], dtype=np.float32) y_data = np.array(loadTrainData .getLabelsData()) X = tf.placeholder(tf.float32) Y = tf.placeholder(tf.float32) W1 = tf.get_variable("W1", shape=[pixels, pixels], initializer=tf.contrib.layers.xavier_initializer()) b1 = tf.Variable(tf.random_normal([pixels])) L1 = tf.nn.relu(tf.matmul(X, W1) + b1) # L1 就是原来的layer1 W2 = tf.get_variable("W2", shape=[pixels, 512], initializer=tf.contrib.layers.xavier_initializer()) b2 = tf.Variable(tf.random_normal([512]), name='bias2') L2 = tf.nn.relu(tf.matmul(L1, W2) + b2) W3 = tf.get_variable("W3", shape=[512, 512], initializer=tf.contrib.layers.xavier_initializer()) b3 = tf.Variable(tf.random_normal([512])) L3 = tf.nn.relu(tf.matmul(L2, W3) + b3) W4 = tf.get_variable("W4", shape=[512, 512], initializer=tf.contrib.layers.xavier_initializer()) b4 = tf.Variable(tf.random_normal([512])) L4 = tf.nn.relu(tf.matmul(L3, W4) + b4) W5 = tf.get_variable("W5", shape=[512, 7], initializer=tf.contrib.layers.xavier_initializer()) b5 = tf.Variable(tf.random_normal([7])) hypothesis = tf.matmul(L4, W5) + b5 # cost/loss function # define cost/loss & optimizer cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=hypothesis, labels=Y)) optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate).minimize(cost) # Accuracy computation # True if hypothesis>0.5 else False predicted = tf.cast(hypothesis > 0.5, dtype=tf.float32) accuracy = tf.reduce_mean(tf.cast(tf.equal(predicted, Y), dtype=tf.float32)) # Test model is_correct = tf.equal(tf.arg_max(hypothesis, 1), tf.arg_max(Y, 1)) # Calculate accuracy accuracy = tf.reduce_mean(tf.cast(is_correct, tf.float32)) # Add ops to save and restore all the variables. saver = tf.train.Saver() # Launch graph with tf.Session() as sess: # Initialize TensorFlow variables sess.run(tf.global_variables_initializer()) for epoch in range(training_epochs): c, _ = sess.run([cost, optimizer], feed_dict={X: x_data, Y: y_data}) print('Epoch:', '%04d' % (epoch + 1), 'cost =', '{:.9f}'.format(c)) #end for save_path = saver.save(sess, "saved/model-deep-nn-xavier.ckpt")
archcra/brt
train/round03/Deep-NN-xavier-train.py
Python
gpl-3.0
2,638
# -*- coding: utf-8 -*- """ Created on Mon May 30 21:15:34 2016 @author: Ben """ import clearplot.plot_functions as pf import numpy as np #Verification that the cropping algorithm works properly with log data #(Select x values that are nearly the same as the limits on a linear scale, #but significantly different on a log scale. Select y values that are totally #within the y limits, so that the data exceeds the x limits and not the y #limits.) xa = np.linspace(5.0e-13, 5.0e-6, 20) ya = np.linspace(1.0e8, 1.0e11, 20) #(Select x values that are totally within the x limits, so that the data #exceeds the y limits and not the x limits. Select y values that are #significantly bigger/smaller than limits on a linear scale, but are nearly #the same on a log scale.) xb = np.linspace(1.0e-11, 1.0e-8, 20) yb = np.linspace(1.0e7 - 0.4e6, 1.0e12 + 0.04e12, 20) pf.plot('curve_cropping-log_axes', \ [xa, xb], [ya, yb], \ x_scale = 'log', y_scale = 'log', \ x_lim = [1.0e-12, 1.0e-7], y_lim = [1.0e7, 1.0e12])
breedlun/clearplot
tests/curve_cropping-log_axes/curve_cropping-log_axes.py
Python
mit
1,028
#!/usr/bin/env python # -*- coding: utf-8 -*- # Modulos import sys import pygame from pygame.locals import * # Constantes venx = 640 veny = 448 # Clases class Pieza(pygame.sprite.Sprite): # 64x64 px tamaño def __init__(self, tipo): pygame.sprite.Sprite.__init__(self) if tipo == 0: self.image = load_image("tablero.png", True) elif tipo == 1: self.image = load_image("laser.png", True) elif tipo == 2: self.image = load_image("diana.png", True) elif tipo == 3: self.image = load_image("diana_espejo.png", True) elif tipo == 4: self.image = load_image("espejo.png", True) elif tipo == 5: self.image = load_image("espejotraves.png", True) elif tipo == 6: self.image = load_image("tunel.png", True) elif tipo == 7: self.image = load_image("bloqueo.png", True) elif tipo == 8: self.image = load_image("bloqueo_g.png", True) elif tipo == 9: self.image = load_image("portal.png", True) else: tipo = 0 self.image = load_image("tablero.png", True) # Funciones def load_image(filename, transparent=False): try: image = pygame.image.load(filename) except pygame.error: raise SystemExit image = image.convert() if transparent: color = image.get_at((0, 0)) image.set_colorkey(color, RLEACCEL) return image #------------------------------------------ def main(): screen = pygame.display.set_mode((venx, veny)) pygame.display.set_caption("Laser Game") background_image = load_image('fondo.png') bola = Bola() while True: for eventos in pygame.event.get(): if eventos.type == QUIT: sys.exit(0) screen.blit(background_image, (0, 0)) screen.blit(bola.image, bola.rect) pygame.display.flip() return 0 if __name__ == '__main__': pygame.init() main()
LordSprit/Laser
main.py
Python
gpl-2.0
2,036
from ConfigAndPackages.all_odd_even_turn_model import all_odd_even_list from networkx import all_shortest_paths, all_simple_paths from ConfigAndPackages import Config import copy import sys from ArchGraphUtilities import AG_Functions from RoutingAlgorithms import Routing from RoutingAlgorithms.RoutingGraph_Reports import draw_rg from RoutingAlgorithms.turn_model_evaluation.list_all_turn_models import check_tm_domination from SystemHealthMonitoring import SystemHealthMonitoringUnit from RoutingAlgorithms.Routing_Functions import extended_degree_of_adaptiveness, degree_of_adaptiveness, \ check_deadlock_freeness from RoutingAlgorithms.Calculate_Reachability import reachability_metric, is_destination_reachable_from_source from ArchGraphUtilities.AG_Functions import manhattan_distance import itertools from random import shuffle import re def update_rg_odd_even(ag, turn_model_odd, turn_model_even, shmu, noc_rg): """ gets a turn model for odd and even columns, along with an noc_rg and a SHMU and updates the SHMU and noc_rg connections based on the turn models """ for node in ag.nodes(): node_x, node_y, node_z = AG_Functions.return_node_location(node) if node_x % 2 == 1: for turn in turn_model_odd: shmu.restore_broken_turn(node, turn, False) from_port = str(node)+str(turn[0])+"I" to_port = str(node)+str(turn[2])+"O" Routing.update_noc_route_graph(noc_rg, from_port, to_port, 'ADD') else: for turn in turn_model_even: shmu.restore_broken_turn(node, turn, False) from_port = str(node)+str(turn[0])+"I" to_port = str(node)+str(turn[2])+"O" Routing.update_noc_route_graph(noc_rg, from_port, to_port, 'ADD') return def clean_rg_from_odd_even(ag, turn_model_odd, turn_model_even, shmu, noc_rg): """ gets a turn model for odd and even columns, along with an noc_rg and a SHMU and removes added connections in the SHMU and noc_rg based on the turn models """ for node in ag.nodes(): node_x, node_y, node_z = AG_Functions.return_node_location(node) if node_x % 2 == 1: for turn in turn_model_odd: shmu.restore_broken_turn(node, turn, False) from_port = str(node)+str(turn[0])+"I" to_port = str(node)+str(turn[2])+"O" Routing.update_noc_route_graph(noc_rg, from_port, to_port, 'REMOVE') else: for turn in turn_model_even: shmu.restore_broken_turn(node, turn, False) from_port = str(node)+str(turn[0])+"I" to_port = str(node)+str(turn[2])+"O" Routing.update_noc_route_graph(noc_rg, from_port, to_port, 'REMOVE') return def evaluate_actual_odd_even_turn_model(): """ evaluates the classic odd-even turn model in terms of DoA and DoA_ex :return: None """ turns_health_2d_network = {"N2W": False, "N2E": False, "S2W": False, "S2E": False, "W2N": False, "W2S": False, "E2N": False, "E2S": False} Config.ag.topology = '2DMesh' Config.ag.x_size = 3 Config.ag.y_size = 3 Config.ag.z_size = 1 Config.RotingType = 'MinimalPath' ag = copy.deepcopy(AG_Functions.generate_ag()) number_of_pairs = len(ag.nodes())*(len(ag.nodes())-1) turn_model_odd = ['E2N', 'E2S', 'W2N', 'W2S', 'S2E', 'N2E'] turn_model_even = ['E2N', 'E2S', 'S2W', 'S2E', 'N2W', 'N2E'] if not check_tm_domination(turn_model_odd, turn_model_even): # taking out the domination! turns_health = copy.deepcopy(turns_health_2d_network) shmu = SystemHealthMonitoringUnit.SystemHealthMonitoringUnit() shmu.setup_noc_shm(ag, turns_health, False) noc_rg = copy.deepcopy(Routing.generate_noc_route_graph(ag, shmu, [], False, False)) update_rg_odd_even(ag, turn_model_odd, turn_model_even, shmu, noc_rg) draw_rg(noc_rg) connectivity_metric = reachability_metric(ag, noc_rg, False) print("connectivity_metric:", connectivity_metric) if check_deadlock_freeness(noc_rg): print("Deadlock free!") doa = degree_of_adaptiveness(ag, noc_rg, False)/float(number_of_pairs) doa_ex = extended_degree_of_adaptiveness(ag, noc_rg, False)/float(number_of_pairs) print("doa:", doa) print("doa_ex", doa_ex) return None def enumerate_all_odd_even_turn_models(network_size, routing_type): all_odd_evens_file = open('Generated_Files/Turn_Model_Lists/'+str(network_size)+"x" +str(network_size)+"_"+str(routing_type)+"_"+'odd_even_tm_list_dl_free.txt', 'w') turns_health_2d_network = {"N2W": False, "N2E": False, "S2W": False, "S2E": False, "W2N": False, "W2S": False, "E2N": False, "E2S": False} Config.ag.topology = '2DMesh' Config.ag.x_size = network_size Config.ag.y_size = network_size Config.ag.z_size = 1 Config.RotingType = routing_type ag = copy.deepcopy(AG_Functions.generate_ag()) number_of_pairs = len(ag.nodes())*(len(ag.nodes())-1) turn_model_list = [] for length in range(0, len(turns_health_2d_network.keys())+1): for item in list(itertools.combinations(turns_health_2d_network.keys(), length)): if len(item) > 0: turn_model_list.append(list(item)) connected_counter = 0 deadlock_free_counter = 0 tm_counter = 0 turns_health = copy.deepcopy(turns_health_2d_network) shmu = SystemHealthMonitoringUnit.SystemHealthMonitoringUnit() shmu.setup_noc_shm(ag, turns_health, False) noc_rg = copy.deepcopy(Routing.generate_noc_route_graph(ag, shmu, [], False, False)) for turn_model_odd in turn_model_list: for turn_model_even in turn_model_list: if not check_tm_domination(turn_model_odd, turn_model_even): # taking out the domination! update_rg_odd_even(ag, turn_model_odd, turn_model_even, shmu, noc_rg) connectivity_metric = reachability_metric(ag, noc_rg, False) if connectivity_metric == number_of_pairs: connected_counter += 1 if check_deadlock_freeness(noc_rg): deadlock_free_counter += 1 all_odd_evens_file.write("["+str(turn_model_odd)+","+str(turn_model_even)+"],\n") tm_counter += 1 sys.stdout.write("\rchecked TM: %i " % tm_counter + " number of fully connected TM: %i" % connected_counter + " number of deadlock free connected TM: %i" % deadlock_free_counter) sys.stdout.flush() clean_rg_from_odd_even(ag, turn_model_odd, turn_model_even, shmu, noc_rg) all_odd_evens_file.write("checked TM: %i " + str(tm_counter) + " number of fully connected TM: %i" +str(connected_counter) + " number of deadlock free connected TM: %i"+str(deadlock_free_counter)) all_odd_evens_file.close() return None def evaluate_doa_for_all_odd_even_turn_model_list(network_size): all_odd_evens_file = open('Generated_Files/Turn_Model_Lists/all_odd_evens_doa.txt', 'w') turns_health_2d_network = {"N2W": False, "N2E": False, "S2W": False, "S2E": False, "W2N": False, "W2S": False, "E2N": False, "E2S": False} Config.ag.topology = '2DMesh' Config.ag.x_size = network_size Config.ag.y_size = network_size Config.ag.z_size = 1 ag = copy.deepcopy(AG_Functions.generate_ag()) number_of_pairs = len(ag.nodes())*(len(ag.nodes())-1) turn_model_list = [] for length in range(0, len(turns_health_2d_network.keys())+1): for item in list(itertools.combinations(turns_health_2d_network.keys(), length)): if len(item) > 0: turn_model_list.append(list(item)) classes_of_doa = {} classes_of_doax = {} tm_counter = 0 all_odd_evens_file.write(" # | "+'%51s' % " "+" \t|") all_odd_evens_file.write(" DoA | DoAx | \tC-metric\n") all_odd_evens_file.write("-------|--------------------------------------------" + "----------------------------|--------|--------|-------------"+"\n") for turn_model in all_odd_even_list: turn_model_odd = turn_model[0] turn_model_even = turn_model[1] turns_health = copy.deepcopy(turns_health_2d_network) shmu = SystemHealthMonitoringUnit.SystemHealthMonitoringUnit() shmu.setup_noc_shm(ag, turns_health, False) noc_rg = copy.deepcopy(Routing.generate_noc_route_graph(ag, shmu, [], False, False)) update_rg_odd_even(ag, turn_model_odd, turn_model_even, shmu, noc_rg) doa = degree_of_adaptiveness(ag, noc_rg, False)/float(number_of_pairs) doa_ex = extended_degree_of_adaptiveness(ag, noc_rg, False)/float(number_of_pairs) if round(doa, 2) not in classes_of_doa.keys(): classes_of_doa[round(doa, 2)] = [tm_counter] else: classes_of_doa[round(doa, 2)].append(tm_counter) if round(doa_ex, 2) not in classes_of_doax.keys(): classes_of_doax[round(doa_ex, 2)] = [tm_counter] else: classes_of_doax[round(doa_ex, 2)].append(tm_counter) all_odd_evens_file.write('%5s' % str(tm_counter)+" | even turn model:"+'%53s' % str(turn_model_even)+"\t|") all_odd_evens_file.write(" | |\n") all_odd_evens_file.write(" | odd turn model: "+'%53s' % str(turn_model_odd)+" \t|") all_odd_evens_file.write('%8s' % str(round(doa, 2)) + "|" + '%8s' % str(round(doa_ex, 2)) + "|\n") # +'%8s' % str(round(connectivity_metric,2))+"\n") all_odd_evens_file.write("-------|--------------------------------------------" + "----------------------------|--------|--------|-------------"+"\n") tm_counter += 1 sys.stdout.write("\rchecked TM: %i " % tm_counter) sys.stdout.flush() all_odd_evens_file.write("----------"*3+"\n") all_odd_evens_file.write("distribution of turn models"+"\n") for item in sorted(classes_of_doa.keys()): temp_list = [] for tm in classes_of_doa[item]: turn_model = all_odd_even_list[tm] number_of_turns = len(turn_model[0])+len(turn_model[1]) temp_list.append(number_of_turns) all_odd_evens_file.write(str(item)+" "+str(temp_list.count(8))+" "+str(temp_list.count(9))+" " + str(temp_list.count(10))+" "+str(temp_list.count(11))+" " + str(temp_list.count(12))+"\n") all_odd_evens_file.write("----------"*3+"\n") all_odd_evens_file.write("distribution of turn models"+"\n") for item in sorted(classes_of_doax.keys()): temp_list = [] for tm in classes_of_doax[item]: turn_model = all_odd_even_list[tm] number_of_turns = len(turn_model[0])+len(turn_model[1]) temp_list.append(number_of_turns) all_odd_evens_file.write(str(item)+" "+str(temp_list.count(8))+" "+str(temp_list.count(9))+" " + str(temp_list.count(10))+" "+str(temp_list.count(11))+" " + str(temp_list.count(12))+"\n") all_odd_evens_file.close() return classes_of_doa, classes_of_doax def report_odd_even_turn_model_fault_tolerance(viz, routing_type, combination, network_size, ft_dictionary, selected_turn_models): """ generates 2D architecture graph with all combinations C(len(ag.nodes), combination) of links and writes the average connectivity metric in a file. :param viz: if true, generates the visualization files :param routing_type: can be "minimal" or "nonminimal" :param combination: number of links to be present in the network :return: ft_dictionary a dictionary with turn mode id (from selected_turn_models) as keys and average connectivity_metric as value. """ turns_health_2d_network = {"N2W": False, "N2E": False, "S2W": False, "S2E": False, "W2N": False, "W2S": False, "E2N": False, "E2S": False} tm_counter = 0 Config.ag.topology = '2DMesh' Config.ag.x_size = network_size Config.ag.y_size = network_size Config.ag.z_size = 1 Config.RotingType = routing_type ag = copy.deepcopy(AG_Functions.generate_ag(report=False)) sub_ag_list = list(itertools.combinations(ag.edges(), combination)) turns_health = copy.deepcopy(turns_health_2d_network) shmu = SystemHealthMonitoringUnit.SystemHealthMonitoringUnit() shmu.setup_noc_shm(ag, turns_health, False) for turn_id in selected_turn_models: counter = 0 metric_sum = 0 turn_model = all_odd_even_list[turn_id] turn_model_odd = turn_model[0] turn_model_even = turn_model[1] file_name = str(tm_counter)+'_eval' turn_model_eval_file = open('Generated_Files/Turn_Model_Eval/'+file_name+'.txt', 'a+') if viz: file_name_viz = str(tm_counter)+'_eval_'+str(len(ag.edges())-counter) turn_model_eval_viz_file = open('Generated_Files/Internal/odd_even'+file_name_viz+'.txt', 'w') else: turn_model_eval_viz_file = None for sub_ag in sub_ag_list: for link in list(sub_ag): shmu.break_link(link, False) noc_rg = copy.deepcopy(Routing.generate_noc_route_graph(ag, shmu, [], False, False)) update_rg_odd_even(ag, turn_model_odd, turn_model_even, shmu, noc_rg) connectivity_metric = reachability_metric(ag, noc_rg, False) counter += 1 metric_sum += connectivity_metric if viz: turn_model_eval_viz_file.write(str(float(metric_sum)/counter)+"\n") for link in list(sub_ag): shmu.restore_broken_link(link, False) clean_rg_from_odd_even(ag, turn_model_odd, turn_model_even, shmu, noc_rg) shuffle(sub_ag_list) if counter > 0: avg_connectivity = float(metric_sum)/counter else: avg_connectivity = 0 turn_model_eval_file.write(str(len(ag.edges())-combination)+"\t\t"+str(avg_connectivity)+"\n") if turn_id in ft_dictionary.keys(): ft_dictionary[turn_id].append(avg_connectivity) else: ft_dictionary[turn_id] = [avg_connectivity] if viz: turn_model_eval_viz_file.close() turn_model_eval_file.close() sys.stdout.write("\rchecked TM: %i " % tm_counter+"\t\t\tnumber of broken links: %i " % combination) sys.stdout.flush() tm_counter += 1 return ft_dictionary def report_odd_even_turn_model_router_fault_tolerance(viz, routing_type, combination, network_size, ft_dictionary, selected_turn_models): """ generates 2D architecture graph with all combinations C(len(ag.nodes), combination) of links and writes the average connectivity metric in a file. :param viz: if true, generates the visualization files :param routing_type: can be "minimal" or "nonminimal" :param combination: number of links to be present in the network :return: ft_dictionary a dictionary with turn mode id (from selected_turn_models) as keys and average connectivity_metric as value. """ turns_health_2d_network = {"N2W": False, "N2E": False, "S2W": False, "S2E": False, "W2N": False, "W2S": False, "E2N": False, "E2S": False} tm_counter = 0 Config.ag.topology = '2DMesh' Config.ag.x_size = network_size Config.ag.y_size = network_size Config.ag.z_size = 1 Config.RotingType = routing_type ag = copy.deepcopy(AG_Functions.generate_ag(report=False)) router_list = list(itertools.combinations(ag.nodes(), combination)) for turn_id in selected_turn_models: counter = 0 metric_sum = 0 turn_model = all_odd_even_list[turn_id] turn_model_odd = turn_model[0] turn_model_even = turn_model[1] file_name = str(tm_counter)+'_eval' turn_model_eval_file = open('Generated_Files/Turn_Model_Eval/'+file_name+'.txt', 'a+') if viz: file_name_viz = str(tm_counter)+'_eval_'+str(len(ag.nodes())-counter) turn_model_eval_viz_file = open('Generated_Files/Internal/odd_even'+file_name_viz+'.txt', 'w') else: turn_model_eval_viz_file = None for sub_router_list in router_list: turns_health = copy.deepcopy(turns_health_2d_network) shmu = SystemHealthMonitoringUnit.SystemHealthMonitoringUnit() shmu.setup_noc_shm(ag, turns_health, False) noc_rg = copy.deepcopy(Routing.generate_noc_route_graph(ag, shmu, [], False, False)) for node in ag.nodes(): if node not in sub_router_list: node_x, node_y, node_z = AG_Functions.return_node_location(node) if node_x % 2 == 1: for turn in turn_model_odd: shmu.restore_broken_turn(node, turn, False) from_port = str(node)+str(turn[0])+"I" to_port = str(node)+str(turn[2])+"O" Routing.update_noc_route_graph(noc_rg, from_port, to_port, 'ADD') else: for turn in turn_model_even: shmu.restore_broken_turn(node, turn, False) from_port = str(node)+str(turn[0])+"I" to_port = str(node)+str(turn[2])+"O" Routing.update_noc_route_graph(noc_rg, from_port, to_port, 'ADD') else: for port_1 in ["N", "S", "E", "W", "L"]: for port_2 in ["N", "S", "E", "W", "L"]: if port_1 != port_2: from_port = str(node)+str(port_1)+"I" to_port = str(node)+str(port_2)+"O" if (from_port, to_port) in noc_rg.edges(): Routing.update_noc_route_graph(noc_rg, from_port, to_port, 'REMOVE') connectivity_metric = reachability_metric(ag, noc_rg, False) counter += 1 metric_sum += connectivity_metric if viz: turn_model_eval_viz_file.write(str(float(metric_sum)/counter)+"\n") shuffle(router_list) if counter > 0: avg_connectivity = float(metric_sum)/counter else: avg_connectivity = 0 turn_model_eval_file.write(str(len(ag.nodes())-combination)+"\t\t"+str(avg_connectivity)+"\n") if turn_id in ft_dictionary.keys(): ft_dictionary[turn_id].append(avg_connectivity) else: ft_dictionary[turn_id] = [avg_connectivity] if viz: turn_model_eval_viz_file.close() turn_model_eval_file.close() sys.stdout.write("\rchecked TM: %i " % tm_counter+"\t\t\tnumber of broken routers: %i " % combination) sys.stdout.flush() tm_counter += 1 return ft_dictionary def return_links_in_path(path): """ gets a path (as a list of ports) as an input and returns a list of links used in the path. :path a list of ports (in form of "node_number""inputdirection""I/O" for example 12SO wich is output port of node 12 in south direction!) :return a list of strings indicating the links in the path in format ["node1_node2", ...] """ links = [] for i in range(0, len(path)-1): start = int(re.findall('\d+', path[i])[0]) end = int(re.findall('\d+', path[i+1])[0]) if start != end: links.append(str(start)+"_"+str(end)) return links def find_similarity_in_paths(link_dict, paths): link_dictionary = {} path_number = len(paths) for i in range(0, path_number): for link in return_links_in_path(paths[i]): if link in link_dictionary.keys(): link_dictionary[link] += 1 else: link_dictionary[link] = 1 for link in sorted(link_dictionary.keys()): if link_dictionary[link] == path_number: if link in link_dict.keys(): link_dict[link] += 1 else: link_dict[link] = 1 return link_dict def odd_even_fault_tolerance_metric(network_size, routing_type): turns_health_2d_network = {"N2W": False, "N2E": False, "S2W": False, "S2E": False, "W2N": False, "W2S": False, "E2N": False, "E2S": False} Config.ag.topology = '2DMesh' Config.ag.x_size = network_size Config.ag.y_size = network_size Config.ag.z_size = 1 Config.RotingType = routing_type all_odd_evens_file = open('Generated_Files/Turn_Model_Eval/'+str(network_size)+"x"+str(network_size)+ '_OE_metric_'+Config.RotingType+'.txt', 'w') all_odd_evens_file.write("TOPOLOGY::"+str(Config.ag.topology)+"\n") all_odd_evens_file.write("X SIZE:"+str(Config.ag.x_size)+"\n") all_odd_evens_file.write("Y SIZE:"+str(Config.ag.y_size)+"\n") all_odd_evens_file.write("Z SIZE:"+str(Config.ag.z_size)+"\n") ag = copy.deepcopy(AG_Functions.generate_ag()) shmu = SystemHealthMonitoringUnit.SystemHealthMonitoringUnit() turns_health = copy.deepcopy(turns_health_2d_network) shmu.setup_noc_shm(ag, turns_health, False) noc_rg = copy.deepcopy(Routing.generate_noc_route_graph(ag, shmu, [], False, False)) classes_of_doa_ratio = [] turn_model_class_dict = {} tm_counter = 0 for turn_model in all_odd_even_list: sys.stdout.write("\rnumber of processed turn models: %i " % tm_counter) sys.stdout.flush() tm_counter += 1 link_dict = {} turn_model_index = all_odd_even_list.index(turn_model) turn_model_odd = turn_model[0] turn_model_even = turn_model[1] update_rg_odd_even(ag, turn_model_odd, turn_model_even, shmu, noc_rg) number_of_pairs = len(ag.nodes())*(len(ag.nodes())-1) all_paths_in_graph = [] for source_node in ag.nodes(): for destination_node in ag.nodes(): if source_node != destination_node: if is_destination_reachable_from_source(noc_rg, source_node, destination_node): if Config.RotingType == 'MinimalPath': shortest_paths = list(all_shortest_paths(noc_rg, str(source_node)+str('L')+str('I'), str(destination_node)+str('L')+str('O'))) paths = [] for path in shortest_paths: minimal_hop_count = manhattan_distance(source_node, destination_node) if (len(path)/2)-1 <= minimal_hop_count: paths.append(path) all_paths_in_graph.append(path) else: paths = list(all_simple_paths(noc_rg, str(source_node)+str('L')+str('I'), str(destination_node)+str('L')+str('O'))) all_paths_in_graph += paths link_dict = find_similarity_in_paths(link_dict, paths) metric = 0 for item in link_dict.keys(): metric += link_dict[item] if Config.RotingType == 'MinimalPath': doa = degree_of_adaptiveness(ag, noc_rg, False)/float(number_of_pairs) metric = 1/(float(metric)/len(ag.edges())) metric = float("{:3.3f}".format(metric)) else: doa_ex = extended_degree_of_adaptiveness(ag, noc_rg, False)/float(number_of_pairs) metric = 1/(float(metric)/len(ag.edges())) metric = float("{:3.3f}".format(metric)) if metric not in classes_of_doa_ratio: classes_of_doa_ratio.append(metric) if metric in turn_model_class_dict.keys(): turn_model_class_dict[metric].append(turn_model_index) else: turn_model_class_dict[metric] = [turn_model_index] # return SHMU and RG back to default clean_rg_from_odd_even(ag, turn_model_odd, turn_model_even, shmu, noc_rg) all_odd_evens_file.write("classes of metric"+str(classes_of_doa_ratio)+"\n") all_odd_evens_file.write("----------"*3+"\n") all_odd_evens_file.write("turn models of class"+"\n") for item in sorted(turn_model_class_dict.keys()): all_odd_evens_file.write(str(item)+" "+str(turn_model_class_dict[item])+"\n") all_odd_evens_file.write("----------"*3+"\n") all_odd_evens_file.write("distribution of turn models"+"\n") for item in sorted(turn_model_class_dict.keys()): temp_list = [] for tm in turn_model_class_dict[item]: turn_model = all_odd_even_list[tm] number_of_turns = len(turn_model[0])+len(turn_model[1]) temp_list.append(number_of_turns) all_odd_evens_file.write(str(item)+" "+str(temp_list.count(8))+" "+str(temp_list.count(9))+" " + str(temp_list.count(10))+" "+str(temp_list.count(11))+" " + str(temp_list.count(12))+"\n") all_odd_evens_file.close() return turn_model_class_dict def evaluate_turn_model_fault_tolerance(selected_turn_models, network_size, routing_type, list_of_broken_links, previously_calculated_ft): ft_dictionary = copy.deepcopy(previously_calculated_ft) temp_turn_list = [] for item in selected_turn_models: if item not in ft_dictionary.keys(): temp_turn_list.append(item) print("number of turn models:", len(selected_turn_models)) print("number of unprocessed turn models:", len(temp_turn_list)) for i in list_of_broken_links: ft_dictionary = report_odd_even_turn_model_fault_tolerance(True, routing_type, i, network_size, ft_dictionary, temp_turn_list) print("\n\n") print("\t\t\tnumber of broken links") print("-------------------"*4) print('%5s' %"#", "\t",end="") for j in list_of_broken_links: print('%6s' %j,"\t",end="") print() print("-"*80) for i in range(0, len(selected_turn_models)): item = selected_turn_models[i] print('%5s' %item, "\t",end="") if i>0: prev_item = selected_turn_models[i-1] for j in range(0, len(ft_dictionary[item])): if ft_dictionary[item][j]<ft_dictionary[prev_item][j]: print('\033[91m'+'%6s' %"{:3.3f}".format(ft_dictionary[item][j])+'\033[0m',"\t",end="") else: print('%6s' %"{:3.3f}".format(ft_dictionary[item][j]),"\t",end="") else: for value in ft_dictionary[item]: print('%6s' %"{:3.3f}".format(value),"\t",end="") print() return ft_dictionary def evaluate_turn_model_router_fault_tolerance(selected_turn_models, network_size, routing_type, list_of_broken_routers, previously_calculated_ft): ft_dictionary = copy.deepcopy(previously_calculated_ft) temp_turn_list = [] for item in selected_turn_models: if item not in ft_dictionary.keys(): temp_turn_list.append(item) print("number of turn models:", len(selected_turn_models)) print("number of unprocessed turn models:", len(temp_turn_list)) for i in list_of_broken_routers: ft_dictionary = report_odd_even_turn_model_router_fault_tolerance(True, routing_type, i, network_size, ft_dictionary, temp_turn_list) print("\n\n") print("\t\t\tnumber of broken routers:") print("-------------------"*4) print('%5s' %"#", "\t",end="") for j in list_of_broken_routers: print('%6s' %j,"\t",end="") print() print("-"*80) for i in range(0, len(selected_turn_models)): item = selected_turn_models[i] print('%5s' %item, "\t",end="") if i>0: prev_item = selected_turn_models[i-1] for j in range(0, len(ft_dictionary[item])): if ft_dictionary[item][j]<ft_dictionary[prev_item][j]: print('\033[91m'+'%6s' %"{:3.3f}".format(ft_dictionary[item][j])+'\033[0m',"\t",end="") else: print('%6s' %"{:3.3f}".format(ft_dictionary[item][j]),"\t",end="") else: for value in ft_dictionary[item]: print('%6s' %"{:3.3f}".format(value),"\t",end="") print() return ft_dictionary def evaluate_robustness_links(max_network_size, max_broken_links): if max_network_size <= 1: raise ValueError("max_network_size should be strictly bigger than 1!") ft_dictionary_minimal = {} ft_dictionary_non_minimal = {} for size in range(2, max_network_size+1): ft_dictionary_minimal = {} ft_dictionary_non_minimal = {} list_of_broken_links = range(0, max_broken_links+1) classes_of_doa, classes_of_doax = evaluate_doa_for_all_odd_even_turn_model_list(size) print() print("======================================="*2) print("starting calculating DoA for size:", size) selected_turn_models = [] for item in sorted(classes_of_doa.keys()): selected_turn_models.append(classes_of_doa[item][0]) print("selected turn models:", selected_turn_models) ft_dictionary_minimal = copy.deepcopy(evaluate_turn_model_fault_tolerance(selected_turn_models, size, "MinimalPath", list_of_broken_links, ft_dictionary_minimal)) print() print("======================================="*2) print("starting calculating DoA_ex for size:", size) selected_turn_models = [] for item in sorted(classes_of_doax.keys()): selected_turn_models.append(classes_of_doax[item][0]) print("selected turn models:", selected_turn_models) ft_dictionary_non_minimal = copy.deepcopy(evaluate_turn_model_fault_tolerance(selected_turn_models, size, "NonMinimalPath", list_of_broken_links, ft_dictionary_non_minimal)) print() for routing_type in ["MinimalPath", "NonMinimalPath"]: selected_turn_models = [] turn_model_class_dict = odd_even_fault_tolerance_metric(size, routing_type) print() for item in sorted(turn_model_class_dict.keys()): selected_turn_models.append(turn_model_class_dict[item][0]) print("======================================="*2) print("calculating new metric for", routing_type, "routing") print("selected turn models:", selected_turn_models) if routing_type == "MinimalPath": ft_dictionary_minimal = copy.deepcopy(evaluate_turn_model_fault_tolerance(selected_turn_models, size, routing_type, list_of_broken_links, ft_dictionary_minimal)) else: ft_dictionary_non_minimal = copy.deepcopy(evaluate_turn_model_fault_tolerance(selected_turn_models, size, routing_type, list_of_broken_links, ft_dictionary_non_minimal)) print() return ft_dictionary_minimal, ft_dictionary_non_minimal def evaluate_robustness_routers(max_network_size): if max_network_size <= 1: raise ValueError("max_network_size should be strictly bigger than 1!") for size in range(2, max_network_size+1): ft_dictionary_minimal = {} ft_dictionary_non_minimal = {} list_of_broken_routers = range(0, size**2+1) classes_of_doa, classes_of_doax = evaluate_doa_for_all_odd_even_turn_model_list(size) print() print("======================================="*2) print("starting calculating DoA for size:", size) selected_turn_models = [] for item in sorted(classes_of_doa.keys()): selected_turn_models.append(classes_of_doa[item][0]) print("selected turn models:", selected_turn_models) ft_dictionary_minimal = copy.deepcopy(evaluate_turn_model_router_fault_tolerance(selected_turn_models, size, "MinimalPath", list_of_broken_routers, ft_dictionary_minimal)) print() print("======================================="*2) print("starting calculating DoA_ex for size:", size) selected_turn_models = [] for item in sorted(classes_of_doax.keys()): selected_turn_models.append(classes_of_doax[item][0]) print("selected turn models:", selected_turn_models) ft_dictionary_non_minimal = copy.deepcopy(evaluate_turn_model_router_fault_tolerance(selected_turn_models, size, "NoneMinimalPath", list_of_broken_routers, ft_dictionary_non_minimal)) print() for routing_type in ["MinimalPath", "NonMinimalPath"]: selected_turn_models = [] turn_model_class_dict = odd_even_fault_tolerance_metric(size, routing_type) print() for item in sorted(turn_model_class_dict.keys()): selected_turn_models.append(turn_model_class_dict[item][0]) print("======================================="*2) print("calculating new metric for", routing_type, "routing") print("selected turn models:", selected_turn_models) if routing_type == "MinimalPath": ft_dictionary_minimal = copy.deepcopy(evaluate_turn_model_router_fault_tolerance(selected_turn_models, size, routing_type, list_of_broken_routers, ft_dictionary_minimal)) else: ft_dictionary_non_minimal = copy.deepcopy(evaluate_turn_model_router_fault_tolerance(selected_turn_models, size, routing_type, list_of_broken_routers, ft_dictionary_non_minimal)) print() return ft_dictionary_minimal, ft_dictionary_non_minimal
siavooshpayandehazad/SoCDep2
src/main/python/RoutingAlgorithms/turn_model_evaluation/odd_even_evaluation.py
Python
gpl-2.0
36,676
import multiprocessing bind = "0.0.0.0:80" workers = multiprocessing.cpu_count() * 2 + 1 errorlog = '/var/log/django-readonly/error.log' accesslog = '/var/log/django-readonly/access.log'
WimpyAnalytics/django-readonly-schema
readonly/readonly/settings/gunicorn.py
Python
mit
188
# -*- coding: utf-8 -*- """ app.tests.test_site ~~~~~~~~~~~~~~ Provides unit tests for the website. """ from json import loads, dumps import pytest from app import create_app, db from app.helper import ( get_table_names, get_models, process, get_init_data, gen_tables, JSON, get_json) @pytest.fixture def client(request): app = create_app(config_mode='Test') client = app.test_client() models = get_models() tables = list(gen_tables(models)) def get_num_results(table): r = client.get(client.prefix + 'commodity_type') return get_json(r)['num_results'] client.prefix = app.config.get('API_URL_PREFIX', '') client.get_num_results = get_num_results with app.test_request_context(): db.create_all() raw = get_init_data() client.tables = get_table_names(tables) client.data = process(raw) return client def test_home(client): r = client.get(client.prefix or '/') assert r.status_code == 200 def test_api_get(client): for piece in client.data: url = client.prefix + piece['table'] for d in piece['data']: r = client.post(url, data=dumps(d), content_type=JSON) if r.status_code != 201: json = get_json(r) # HACK: 'Could not determine specific validation errors' # only appears on py27 and py35 if json.get('validation_errors', '').startswith('Could not d'): continue assert r.status_code == 201 for table in client.tables: assert client.get_num_results(table) >= 0 def test_api_delete(client): for table in client.tables: old = client.get_num_results(table) if old > 0: # delete entry and test that the it was deleted client.delete('{}{}/1'.format(client.prefix, table)) assert client.get_num_results(table) == old - 1
nerevu/prometheus-api
app/tests/test_site.py
Python
mit
1,955
from django.contrib import messages from django.shortcuts import render, redirect from django.template.loader import render_to_string from tower import ugettext as _ from .forms import ReportForm from ..base.utils import notify_admins from ..base.decorators import throttle_view @throttle_view(methods=['POST'], duration=30) def report_form(request): if request.method == 'POST': form = ReportForm(request.POST) if form.is_valid(): report = form.save() context = {'report': report} subject = render_to_string('reports/email_subject.txt', context) subject = ''.join(subject.splitlines()) body = render_to_string('reports/email_body.txt', context) notify_admins(subject, body) messages.success(request, _('Report sent successfully')) return redirect('homepage') else: form = ReportForm() context = {'form': form} return render(request, 'reports/form.html', context)
mozilla/popcorn_maker
popcorn_gallery/reports/views.py
Python
bsd-3-clause
1,003
# -*- coding: utf-8 -*- import re from pyload.plugin.Crypter import Crypter class SexuriaCom(Crypter): __name = "SexuriaCom" __type = "crypter" __version = "0.01" __pattern = r'http://(?:www\.)?sexuria\.com/(v1/)?(Pornos_Kostenlos_.+?_(\d+)\.html|dl_links_\d+_\d+\.html|id=\d+\&part=\d+\&link=\d+)' __config = [("use_subfolder" , "bool", "Save package to subfolder" , True), ("subfolder_per_pack", "bool", "Create a subfolder for each package", True)] __description = """Sexuria.com decrypter plugin""" __license = "GPLv3" __authors = [("NETHead", "NETHead.AT.gmx.DOT.net")] PATTERN_SUPPORTED_MAIN = re.compile(r'http://(www\.)?sexuria\.com/(v1/)?Pornos_Kostenlos_.+?_(\d+)\.html', re.I) PATTERN_SUPPORTED_CRYPT = re.compile(r'http://(www\.)?sexuria\.com/(v1/)?dl_links_\d+_(?P<ID>\d+)\.html', re.I) PATTERN_SUPPORTED_REDIRECT = re.compile(r'http://(www\.)?sexuria\.com/out\.php\?id=(?P<ID>\d+)\&part=\d+\&link=\d+', re.I) PATTERN_TITLE = re.compile(r'<title> - (?P<TITLE>.*) Sexuria - Kostenlose Pornos - Rapidshare XXX Porn</title>', re.I) PATTERN_PASSWORD = re.compile(r'<strong>Passwort: </strong></div></td>.*?bgcolor="#EFEFEF">(?P<PWD>.*?)</td>', re.I | re.S) PATTERN_DL_LINK_PAGE = re.compile(r'"(dl_links_\d+_\d+\.html)"', re.I) PATTERN_REDIRECT_LINKS = re.compile(r'value="(http://sexuria\.com/out\.php\?id=\d+\&part=\d+\&link=\d+)" readonly', re.I) def decrypt(self, pyfile): # Init self.pyfile = pyfile self.package = pyfile.package() # Get package links package_name, self.links, folder_name, package_pwd = self.decryptLinks(self.pyfile.url) self.packages = [(package_name, self.links, folder_name)] def decryptLinks(self, url): linklist = [] name = self.package.name folder = self.package.folder password = None if re.match(self.PATTERN_SUPPORTED_MAIN, url): # Processing main page html = self.load(url) links = re.findall(self.PATTERN_DL_LINK_PAGE, html) for link in links: linklist.append("http://sexuria.com/v1/" + link) elif re.match(self.PATTERN_SUPPORTED_REDIRECT, url): # Processing direct redirect link (out.php), redirecting to main page id = re.search(self.PATTERN_SUPPORTED_REDIRECT, url).group('ID') if id: linklist.append("http://sexuria.com/v1/Pornos_Kostenlos_liebe_%s.html" % id) elif re.match(self.PATTERN_SUPPORTED_CRYPT, url): # Extract info from main file id = re.search(self.PATTERN_SUPPORTED_CRYPT, url).group('ID') html = self.load("http://sexuria.com/v1/Pornos_Kostenlos_info_%s.html" % id, decode=True) title = re.search(self.PATTERN_TITLE, html).group('TITLE').strip() if title: name = folder = title self.logDebug("Package info found, name [%s] and folder [%s]" % (name, folder)) pwd = re.search(self.PATTERN_PASSWORD, html).group('PWD') if pwd: password = pwd.strip() self.logDebug("Password info [%s] found" % password) # Process link (dl_link) html = self.load(url) links = re.findall(self.PATTERN_REDIRECT_LINKS, html) if len(links) == 0: self.LogError("Broken for link %s" % link) else: for link in links: link = link.replace("http://sexuria.com/", "http://www.sexuria.com/") finallink = self.load(link, just_header=True)['location'] if not finallink or "sexuria.com/" in finallink: self.LogError("Broken for link %s" % link) else: linklist.append(finallink) # Debug log self.logDebug("%d supported links" % len(linklist)) for i, link in enumerate(linklist): self.logDebug("Supported link %d, %s" % (i + 1, link)) return name, linklist, folder, password
ardi69/pyload-0.4.10
pyload/plugin/crypter/SexuriaCom.py
Python
gpl-3.0
4,207
# -*- coding: utf-8 -*- from __future__ import unicode_literals from django.db import migrations, models import datetime class Migration(migrations.Migration): dependencies = [ ('delivery', '0050_auto_20160505_2144'), ] operations = [ migrations.AlterField( model_name='delivery', name='name', field=models.CharField(default=b'2016-05-05T21:46:46.069778', max_length=128, null=True, verbose_name='\u0418\u043c\u044f \u0440\u0430\u0441\u0441\u044b\u043b\u043a\u0438', blank=True), ), migrations.AlterField( model_name='mailaccount', name='auto_active_datetime', field=models.DateTimeField(default=datetime.datetime(2016, 5, 5, 21, 46, 46, 62255), verbose_name='\u0414\u0430\u0442\u0430 \u0437\u0430\u043a\u0440\u044b\u0442\u0438\u044f \u0430\u043a\u043a\u0430\u0443\u043d\u0442\u0430'), ), ]
AlexStarov/Shop
applications/delivery/migrations/0051_auto_20160505_2146.py
Python
apache-2.0
924
from .catalogue import remove_detector, register_detector, detector_catalogue from .base import Detector, RegexDetector, RegionLocalisedRegexDetector from .credential import CredentialDetector from .credit_card import CreditCardDetector from .date_of_birth import DateOfBirthDetector from .drivers_licence import DriversLicenceDetector from .email import EmailDetector from .phone import PhoneDetector from .postalcode import PostalCodeDetector from .skype import SkypeDetector from .tagged import TaggedEvaluationFilthDetector from .text_blob import TextBlobNameDetector from .twitter import TwitterDetector from .url import UrlDetector from .user_supplied import UserSuppliedFilthDetector from .vehicle_licence_plate import VehicleLicencePlateDetector from . import en_GB from . import en_US
datascopeanalytics/scrubadub
scrubadub/detectors/__init__.py
Python
mit
796
from Child import Child from Node import Node # noqa: I201 EXPR_NODES = [ # An inout expression. # &x Node('InOutExpr', kind='Expr', children=[ Child('Ampersand', kind='AmpersandToken'), Child('Identifier', kind='IdentifierToken'), ]), # A #column expression. Node('PoundColumnExpr', kind='Expr', children=[ Child('PoundColumn', kind='PoundColumnToken'), ]), Node('FunctionCallArgumentList', kind='SyntaxCollection', element='FunctionCallArgument'), # The try operator. # try foo() # try? foo() # try! foo() Node('TryOperator', kind='Syntax', children=[ Child('TryKeyword', kind='TryToken'), Child('QuestionOrExclamationMark', kind='Token', is_optional=True, token_choices=[ 'PostfixQuestionMarkToken', 'ExclamationMarkToken', ]), ]), # A #line expression. Node('PoundLineExpr', kind='Expr', children=[ Child('PoundLine', kind='PoundLineToken'), ]), # A #file expression. Node('PoundFileExpr', kind='Expr', children=[ Child('PoundFile', kind='PoundFileToken'), ]), # A #function expression. Node('PoundFunctionExpr', kind='Expr', children=[ Child('PoundFunction', kind='PoundFunctionToken'), ]), # symbolic-reference-expression -> identifier generic-argument-clause? Node('SymbolicReferenceExpr', kind='Expr', children=[ Child('Identifier', kind='IdentifierToken'), Child('GenericArgumentClause', kind='GenericArgumentClause', is_optional=True), ]), # A prefix operator expression. # -x # !true Node('PrefixOperatorExpr', kind='Expr', children=[ Child('OperatorToken', kind='PrefixOperatorToken', is_optional=True), Child('PostfixExpression', kind='Expr'), ]), # A floating-point literal # 4.0 # -3.9 # +4e20 Node('FloatLiteralExpr', kind='Expr', children=[ Child('Sign', kind='PrefixOperatorToken', is_optional=True), Child('FloatingDigits', kind='FloatingLiteralToken'), ]), Node('FunctionCallExpr', kind='Expr', children=[ Child('CalledExpression', kind='Expr'), Child('LeftParen', kind='LeftParenToken'), Child('ArgumentList', kind='FunctionCallArgumentList'), Child('RightParen', kind='RightParenToken'), ]), # function-call-argument -> label? ':'? expression ','? Node('FunctionCallArgument', kind='Syntax', children=[ Child('Label', kind='IdentifierToken', is_optional=True), Child('Colon', kind='ColonToken', is_optional=True), Child('Expression', kind='Expr'), Child('TrailingComma', kind='CommaToken', is_optional=True), ]), # An integer literal. # 3 # +3_400 # +0x4f Node('IntegerLiteralExpr', kind='Expr', children=[ Child('Sign', kind='PrefixOperatorToken', is_optional=True), Child('Digits', kind='IntegerLiteralToken'), ]), Node('StringLiteralExpr', kind='Expr', children=[ Child("StringLiteral", kind='StringLiteralToken') ]) ]
return/swift
utils/gyb_syntax_support/ExprNodes.py
Python
apache-2.0
3,611
def create_tree(parent, tree, refs=()): """Creates tree in database by given list of nested lists of tree nodes. This functions accepts list of nested lists [1] and creates database records, maintaining given tree structure. Parameters: - parent: treebeard.models.Node, parent node for the tree to build on. - tree: list of lists with treebeard.models.Node instances. - refs: tuple, used for internaly for protection against endless recursion. Returns: None [1] https://docs.djangoproject.com/en/1.8/ref/templates/builtins/#unordered-list """ child = None refs += (id(tree),) for node in tree: if isinstance(node, list): if id(node) not in refs: create_tree(child, node, refs=refs) else: child = parent.add_child(instance=node) def grow_tree_iter(tree, dfs_tree): """Iterator over dfs_tree. Usually you should use this generator like this: >>> from wagtail.wagtailcore.models import Page >>> dfs_tree = [ ... Page(slug='a', numchild=2), ... Page(slug='b', numchild=0), ... Page(slug='c', numchild=1), ... Page(slug='d', numchild=0), ... Page(slug='e', numchild=0), ... Page(slug='f', numchild=1), ... Page(slug='g', numchild=0), ... ] >>> tree = [] >>> for children, node in grow_tree_iter(tree, dfs_tree): ... children.append(node.slug) >>> tree ['a', ['b', 'c', ['d']], 'e', 'f', ['g']] You can get dfs_tree using treebeard.models.Node.get_descendants method. Parameters: - tree: empty list, this list will be populated with nodes. - dfs_tree: list of nodes ordered as DFS (Depth-first search) [1]. Returns: generator [1] http://en.wikipedia.org/wiki/Depth-first_search """ stack = [(tree, 0)] for node in dfs_tree: children, children_count = stack[-1] children_count = node.get_children_count() yield children, node if children_count > 0: children.append([]) stack.append((children[-1], children_count)) else: while children_count <= 1 and stack: children, children_count = stack.pop() stack.append((children, children_count - 1)) def grow_tree(dfs_tree, callback=(lambda node: node)): """Takes flat tree and grows tree composed of nested lists. Parameters: - tree: empty list, this wilst will be populated with nodes. - dfs_tree: list of nodes ordered as DFS (Depth-first search) [1]. Returns: list of nested lists [2] containing flat tree nodes. [1] http://en.wikipedia.org/wiki/Depth-first_search [2] https://docs.djangoproject.com/en/1.8/ref/templates/builtins/#unordered-list """ tree = [] for children, node in grow_tree_iter(tree, dfs_tree): children.append(callback(node)) return tree def transform(tree): """Transform list of lists to list of tuples containing item and children. It actually transforms ``[a, [b]]`` to ``[(a, [(b, [])])]``. This transformed structure is more convinient to use in recursive functions. While input tree is more convinient to write. Parameters: - tree: list of lists Returns: lists of tuples containing item and children. """ result = [] for node in tree: if isinstance(node, list): result[-1] = (result[-1][0], transform(node)) else: result.append((node, [])) return result
python-dirbtuves/akl.lt
akllt/common/treeutils.py
Python
agpl-3.0
3,590
# -*- coding: utf-8 -*- { 'name': 'Mail Tests', 'version': '1.0', 'category': 'Hidden', 'sequence': 9876, 'summary': 'Mail Tests: performances and tests specific to mail', 'description': """This module contains tests related to mail. Those are present in a separate module as it contains models used only to perform tests independently to functional aspects of other models. """, 'depends': ['test_performance', 'mail'], 'data': [ 'security/ir.model.access.csv', 'security/test_mail_security.xml', 'data/data.xml', 'data/subtype_data.xml', 'data/template_data.xml', ], 'demo': [ ], 'installable': True, 'application': False, }
rven/odoo
addons/test_mail/__manifest__.py
Python
agpl-3.0
720
from networkx.algorithms.assortativity import * from networkx.algorithms.boundary import * from networkx.algorithms.bridges import * from networkx.algorithms.chains import * from networkx.algorithms.centrality import * from networkx.algorithms.chordal import * from networkx.algorithms.cluster import * from networkx.algorithms.clique import * from networkx.algorithms.communicability_alg import * from networkx.algorithms.components import * from networkx.algorithms.coloring import * from networkx.algorithms.core import * from networkx.algorithms.covering import * from networkx.algorithms.cycles import * from networkx.algorithms.cuts import * from networkx.algorithms.dag import * from networkx.algorithms.distance_measures import * from networkx.algorithms.distance_regular import * from networkx.algorithms.dominance import * from networkx.algorithms.dominating import * from networkx.algorithms.efficiency import * from networkx.algorithms.euler import * from networkx.algorithms.graphical import * from networkx.algorithms.hierarchy import * from networkx.algorithms.hybrid import * from networkx.algorithms.link_analysis import * from networkx.algorithms.link_prediction import * from networkx.algorithms.lowest_common_ancestors import * from networkx.algorithms.isolate import * from networkx.algorithms.matching import * from networkx.algorithms.minors import * from networkx.algorithms.mis import * from networkx.algorithms.operators import * from networkx.algorithms.planarity import * from networkx.algorithms.reciprocity import * from networkx.algorithms.richclub import * from networkx.algorithms.shortest_paths import * from networkx.algorithms.similarity import * from networkx.algorithms.simple_paths import * from networkx.algorithms.smallworld import * from networkx.algorithms.smetric import * from networkx.algorithms.structuralholes import * from networkx.algorithms.sparsifiers import * from networkx.algorithms.swap import * from networkx.algorithms.traversal import * from networkx.algorithms.triads import * from networkx.algorithms.vitality import * from networkx.algorithms.voronoi import * from networkx.algorithms.wiener import * # Make certain subpackages available to the user as direct imports from # the `networkx` namespace. import networkx.algorithms.assortativity import networkx.algorithms.bipartite import networkx.algorithms.node_classification import networkx.algorithms.centrality import networkx.algorithms.chordal import networkx.algorithms.cluster import networkx.algorithms.clique import networkx.algorithms.components import networkx.algorithms.connectivity import networkx.algorithms.community import networkx.algorithms.coloring import networkx.algorithms.flow import networkx.algorithms.isomorphism import networkx.algorithms.link_analysis import networkx.algorithms.lowest_common_ancestors import networkx.algorithms.operators import networkx.algorithms.shortest_paths import networkx.algorithms.tournament import networkx.algorithms.traversal import networkx.algorithms.tree # Make certain functions from some of the previous subpackages available # to the user as direct imports from the `networkx` namespace. from networkx.algorithms.bipartite import complete_bipartite_graph from networkx.algorithms.bipartite import is_bipartite from networkx.algorithms.bipartite import project from networkx.algorithms.bipartite import projected_graph from networkx.algorithms.connectivity import all_pairs_node_connectivity from networkx.algorithms.connectivity import all_node_cuts from networkx.algorithms.connectivity import average_node_connectivity from networkx.algorithms.connectivity import edge_connectivity from networkx.algorithms.connectivity import edge_disjoint_paths from networkx.algorithms.connectivity import k_components from networkx.algorithms.connectivity import k_edge_components from networkx.algorithms.connectivity import k_edge_subgraphs from networkx.algorithms.connectivity import k_edge_augmentation from networkx.algorithms.connectivity import is_k_edge_connected from networkx.algorithms.connectivity import minimum_edge_cut from networkx.algorithms.connectivity import minimum_node_cut from networkx.algorithms.connectivity import node_connectivity from networkx.algorithms.connectivity import node_disjoint_paths from networkx.algorithms.connectivity import stoer_wagner from networkx.algorithms.flow import capacity_scaling from networkx.algorithms.flow import cost_of_flow from networkx.algorithms.flow import gomory_hu_tree from networkx.algorithms.flow import max_flow_min_cost from networkx.algorithms.flow import maximum_flow from networkx.algorithms.flow import maximum_flow_value from networkx.algorithms.flow import min_cost_flow from networkx.algorithms.flow import min_cost_flow_cost from networkx.algorithms.flow import minimum_cut from networkx.algorithms.flow import minimum_cut_value from networkx.algorithms.flow import network_simplex from networkx.algorithms.isomorphism import could_be_isomorphic from networkx.algorithms.isomorphism import fast_could_be_isomorphic from networkx.algorithms.isomorphism import faster_could_be_isomorphic from networkx.algorithms.isomorphism import is_isomorphic from networkx.algorithms.tree.branchings import maximum_branching from networkx.algorithms.tree.branchings import maximum_spanning_arborescence from networkx.algorithms.tree.branchings import minimum_branching from networkx.algorithms.tree.branchings import minimum_spanning_arborescence from networkx.algorithms.tree.coding import * from networkx.algorithms.tree.operations import * from networkx.algorithms.tree.recognition import * from networkx.algorithms.tree.mst import *
kenshay/ImageScript
ProgramData/SystemFiles/Python/Lib/site-packages/networkx/algorithms/__init__.py
Python
gpl-3.0
5,673
#!/usr/bin/python # # This file is part of Ansible # # Ansible is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # Ansible is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with Ansible. If not, see <http://www.gnu.org/licenses/>. # ANSIBLE_METADATA = {'metadata_version': '1.0', 'status': ['preview'], 'supported_by': 'core'} DOCUMENTATION = """ --- module: junos_netconf version_added: "2.1" author: "Peter Sprygada (@privateip)" short_description: Configures the Junos Netconf system service description: - This module provides an abstraction that enables and configures the netconf system service running on Junos devices. This module can be used to easily enable the Netconf API. Netconf provides a programmatic interface for working with configuration and state resources as defined in RFC 6242. extends_documentation_fragment: junos options: netconf_port: description: - This argument specifies the port the netconf service should listen on for SSH connections. The default port as defined in RFC 6242 is 830. required: false default: 830 aliases: ['listens_on'] version_added: "2.2" state: description: - Specifies the state of the C(junos_netconf) resource on the remote device. If the I(state) argument is set to I(present) the netconf service will be configured. If the I(state) argument is set to I(absent) the netconf service will be removed from the configuration. required: false default: present choices: ['present', 'absent'] """ EXAMPLES = """ - name: enable netconf service on port 830 junos_netconf: listens_on: 830 state: present - name: disable netconf service junos_netconf: state: absent """ RETURN = """ commands: description: Returns the command sent to the remote device returned: when changed is True type: str sample: 'set system services netconf ssh port 830' """ import re from ansible.module_utils.basic import AnsibleModule from ansible.module_utils.connection import exec_command from ansible.module_utils.junos import junos_argument_spec, check_args from ansible.module_utils.junos import commit_configuration, discard_changes from ansible.module_utils.network_common import to_list from ansible.module_utils.six import iteritems USE_PERSISTENT_CONNECTION = True def map_obj_to_commands(updates, module): want, have = updates commands = list() if want['state'] == 'present' and have['state'] == 'absent': commands.append( 'set system services netconf ssh port %s' % want['netconf_port'] ) elif want['state'] == 'absent' and have['state'] == 'present': commands.append('delete system services netconf') elif want['state'] == 'present': if want['netconf_port'] != have.get('netconf_port'): commands.append( 'set system services netconf ssh port %s' % want['netconf_port'] ) return commands def parse_port(config): match = re.search(r'port (\d+)', config) if match: return int(match.group(1)) def map_config_to_obj(module): cmd = 'show configuration system services netconf' rc, out, err = exec_command(module, cmd) if rc != 0: module.fail_json(msg='unable to retrieve current config', stderr=err) config = str(out).strip() obj = {'state': 'absent'} if config: obj.update({ 'state': 'present', 'netconf_port': parse_port(config) }) return obj def validate_netconf_port(value, module): if not 1 <= value <= 65535: module.fail_json(msg='netconf_port must be between 1 and 65535') def map_params_to_obj(module): obj = { 'netconf_port': module.params['netconf_port'], 'state': module.params['state'] } for key, value in iteritems(obj): # validate the param value (if validator func exists) validator = globals().get('validate_%s' % key) if callable(validator): validator(value, module) return obj def load_config(module, config, commit=False): exec_command(module, 'configure') for item in to_list(config): rc, out, err = exec_command(module, item) if rc != 0: module.fail_json(msg=str(err)) exec_command(module, 'top') rc, diff, err = exec_command(module, 'show | compare') if diff: if commit: exec_command(module, 'commit and-quit') else: for cmd in ['rollback 0', 'exit']: exec_command(module, cmd) return str(diff).strip() def main(): """main entry point for module execution """ argument_spec = dict( netconf_port=dict(type='int', default=830, aliases=['listens_on']), state=dict(default='present', choices=['present', 'absent']), ) argument_spec.update(junos_argument_spec) module = AnsibleModule(argument_spec=argument_spec, supports_check_mode=True) warnings = list() check_args(module, warnings) result = {'changed': False, 'warnings': warnings} want = map_params_to_obj(module) have = map_config_to_obj(module) commands = map_obj_to_commands((want, have), module) result['commands'] = commands if commands: commit = not module.check_mode diff = load_config(module, commands, commit=commit) if diff: if module._diff: result['diff'] = {'prepared': diff} result['changed'] = True module.exit_json(**result) if __name__ == '__main__': main()
fernandezcuesta/ansible
lib/ansible/modules/network/junos/junos_netconf.py
Python
gpl-3.0
6,106
# -*- coding: utf-8 -*- """ Downloader Plugin for cfakes.com. """ from bs4 import BeautifulSoup import common import os import requests import scandir import sys import time from yapsy.IPlugin import IPlugin WEBSITE_NAME = "http://www.deviantart.com" #WEBSITE_BASE_URL = "%s/photos/" % WEBSITE_NAME plugin_name = "deviantart" class PluginOne(IPlugin): """ Actual Plugin for the Downloader package. This contains all the customizable content for the cfakes website. """ def __init__(self): self.session = requests.session() self.root_checker = {} #self.safari_cookies = returnBinaryCookies.main() # self.extracted_cookie = {"www.deviantart.com":urllib.unquote( # self.safari_cookies["www.hypnopics-collective.net"])} # print self.extracted_hp_cookie def parser_options(self, parser): """ Add the parser options for this plugin """ parser.add_option("--da2", "--deviantart", action="store_true", dest="deviantart", default=False, help="Download from deviantart.com with Folders",) parser.add_option("--user", action="store", dest="username", default="", help="UserName to Login with",) parser.add_option("--password", action="store", dest="password", default="", help="Password to Login with",) return parser def print_name(self): """ Example function from yapsy-example. """ print plugin_name # # Verify Login # def login(self, options): """ Not used, since cfakes does not require a login. """ # http://stackoverflow.com/questions/17226080 # /parsing-html-forms-input-tag-with-beautiful-soup print "\nTrying to login to Deviantart\n" # This is the form data that the page sends when logging in # <input type="hidden" name="validate_token" # value="2f1810a29dc923636245" autocomplete="off"> # <input type="hidden" name="validate_key" # value="1376387679" autocomplete="off"> soup = BeautifulSoup(common.fetch_webpage( session=self.session, url="https://www.deviantart.com/users/login", timeout=45, binary=False)) data = soup.find_all("input", type="hidden") validate_token = None validate_key = None search_data = soup.find_all('input', {'type': 'hidden', 'name': 'validate_token'}) validate_token = search_data[0]["value"] search_data = soup.find_all('input', {'type': 'hidden', 'name': 'validate_key'}) validate_key = search_data[0]["value"] form_data = { 'username': options.username, 'password': options.password, 'remember_me': '1', 'submit': 'Login', 'ref': '', 'validate_token': validate_token, 'validate_key': validate_key } data = common.post_webpage(session=self.session, url='https://www.deviantart.com/users/login', data=form_data) data = common.fetch_webpage(session=self.session, url='http://www.deviantart.com/') if data.find('"loggedIn":true') == -1: print "\nUnable to Login! Aborting. \n" print data sys.exit(1) elif data.find('<span class="field_error" rel="password">') != -1: # elif data.find('<span class="field_error" rel="password">The # password you entered was incorrect.</span>') != -1: print "\nBad DeviantArt Password. Aborting. \n" sys.exit(1) else: print "\nLogin to DeviantArt successful!\n" # # Find Folders in Gallery Page # def search_for_folders(self, soup_bowl): """ Takes the contents of a BeautifulSoup container, and checks for known gallery / folder markers. This will return an list of: Folder Name, Folder URL """ found_urls = [] folder_count = 1 # # div's with Class tv150 # tv150_tags = soup_bowl.find_all('div', {'class': 'tv150'}) for tgx in tv150_tags: folder_name = tgx.find_all("div", {"class": "tv150-tag"})[0].text folder_url = tgx.find_all("a", {'class': 'tv150-cover'})[0]["href"] found_urls.append((folder_name, folder_url)) # http://nirufe.deviantart.com/gallery/ # <a href="http://yayacosplay.deviantart.com/gallery/33798593" # class="tv150-cover"></a> # # div's with class rs-customicon-cont # customicons = soup_bowl.find_all( 'div', {'class': 'rs-customicon-cont'}) for c_icon in customicons: folder_url = c_icon.find_all("a",\ {"class": "rs-customicon-link"})[0]["href"] try: folder_name = c_icon.find_all("a", {'class': ''})[0].text except IndexError: print "\t\tFailure to find description" folder_name = "FolderName %s" % folder_count folder_count += 1 found_urls.append((folder_name, folder_url)) # <a href="http://ulorinvex.deviantart.com/gallery/977878" # class="rs-customicon-link"> #<img src="http://a.deviantart.net/gallerythumbs/8/ # 7/000977878.jpg?3" # alt=""> # </a> # # div with class of gl-text # class_a_tags = soup_bowl.find_all('div', {'class': 'gl-text'}) for at_x in class_a_tags: # Class A tags require a filter, since those custom setups # seem to use the class="a" on all hyperlinks, not just for # the gallery folders. # # So check to see if the href has the server name. folder_name = at_x.find_all("a", {"class": "a"})[0].text folder_url = at_x.find_all("a", {"class": "a"})[0]["href"] found_urls.append((folder_name, folder_url)) #<div style="line-height:1.3em" class="gl-text" # collect_rid="20:32170436"> #<a class="a" # href="http://arconius.deviantart.com/gallery/32170436"> # Ponies</a> #</div> return found_urls def download(self, options): """ Start the download process, meta manager. Grab the folder list from DA, and process each folder """ self.session = common.setup_requests(self.session, WEBSITE_NAME) if options.username: # # Use login information, if provided. # self.login(options) status = common.status() status = self.download_gallery(options.url_to_fetch, options.download_folder, options, status, root=True) return status.return_counts() def download_gallery(self, gallery_url, download_path, options, status, root=False): """ Download an complete gallery, calls download_gallery_images for the actual image download. This creates the folder structure, and walks through it calling download_gallery_images to download the images. """ current_webpage = common.fetch_webpage(session=self.session, url=gallery_url, timeout=45) soup = BeautifulSoup(current_webpage) # # Grab the main web page from the URL to fetch # # Search for folders folder_list = self.search_for_folders(soup_bowl=soup) for (subgallery_name, subgallery_url) in folder_list: # # Process the folder list, and download # the images for the subfolders # if options.downloadlimit > 0 and \ status.return_downloads() >= options.downloadlimit: print "X", return status if subgallery_name != None: subgallery_dl_path = download_path + os.sep +\ common.clean_filename(subgallery_name) + os.sep if subgallery_url != gallery_url: # # Clubs typically have the featured gallery which points to # itself and can cause a recursion loop # status = self.download_gallery(subgallery_url, subgallery_dl_path, options, status, root=False) time.sleep(1) gallery_name = soup.title.text gallery_name = gallery_name[0:gallery_name.find(" by ")].strip() if root: for root, dirnames, filenames in scandir.walk(download_path): for filename in filenames: self.root_checker[filename.lower().strip()] = True status = self.download_gallery_images(gallery_url, download_path, options, status, root=root) return status # # Download Gallery # def download_gallery_images(self, gallery_url, download_path, options, status, root=False): """ Download images from a deviantart gallery """ # # Download and process the webpage current_skips = 0 subfolder_data = common.fetch_webpage(session=self.session, url=gallery_url, timeout=60) subfolder = BeautifulSoup(subfolder_data) if gallery_url.find("?offset") == -1: print "\n\tProcessing Gallery - %30s" % (gallery_url), else: print "R", links = subfolder.find_all('a', {'class': 'thumb', 'data-super-img': True}) for xlink in links: if options.downloadlimit > 0 and \ status.return_downloads() >= options.downloadlimit: print "X" return status image_file = xlink["data-super-img"] file_to_download = image_file.replace("-t", "").strip() file_to_download = common.clean_filename( file_to_download, max_length=240) # # Does directory exist? If not create it # if not os.path.exists( download_path): os.makedirs(download_path) # # Check for file already existing, # if so, don't download # if root and os.path.split(file_to_download)[1].lower().strip() in\ self.root_checker: status.add_skipped(filename=file_to_download, options=options) current_skips += 1 if options.skiplimit != 0 and \ current_skips >= options.skiplimit: print "S" return status continue if os.path.exists( download_path + # + gallery_name + os.sep + os.path.split(file_to_download)[1]): status.add_skipped(filename=file_to_download, options=options) current_skips += 1 if options.skiplimit != 0 and \ current_skips >= options.skiplimit: print "S" return status else: if common.download_file( session=self.session, url=file_to_download, filename=os.path.split(file_to_download)[1], download_folder=download_path, timeout=45): status.add_download(filename=file_to_download, options=options) else: status.add_error(filename=file_to_download, options=options) time.sleep(.10) next_data = subfolder.find_all('li', {'class': 'next'}) if next_data: next_data = next_data[0].find("a", {"class": "away"}) if next_data != None: next_data = next_data.get("href") next_gallery_url = \ gallery_url[0:(gallery_url.find(r"/gallery"))]\ + next_data time.sleep(.5) status = self.download_gallery_images(next_gallery_url, download_path, options, status, root=root) return status def plugin_run(self): """ meta function for plugin """ pass # # Add empty folder support # # e.g. http://amazonmandy.deviantart.com/gallery/41236523 #
bschollnick/downloader
plugins/deviantart.py
Python
mpl-2.0
14,502
import view import wx import wx.gizmos as gizmos import wx.lib.mixins.listctrl as listmix import sys from odict import OrderedDict from controls import DictListCtrl from util import rgb, ArtListMixin, has_icon, bidict, button from functools import partial import gdb import os class VariableEditor(wx.Panel): def __init__(self, parent, widget=None): wx.Panel.__init__(self, parent, id=wx.ID_ANY) sizer = wx.BoxSizer(wx.HORIZONTAL) self.widget=widget if widget: self.widget = widget widget.Reparent(self) sizer.AddStretchSpacer(1) sizer.Add(widget, flag=wx.EXPAND) self.SetSizer(sizer) def DoGetBestSize(self): return wx.Size(100,100) class RuntimeTree(gizmos.TreeListCtrl, ArtListMixin): def __init__(self, parent): super(RuntimeTree, self).__init__(id=-1, parent=parent, style=wx.TR_DEFAULT_STYLE | wx.TR_FULL_ROW_HIGHLIGHT | wx.TR_HIDE_ROOT | wx.TR_HAS_BUTTONS | wx.TR_LINES_AT_ROOT) ArtListMixin.__init__(self) self.SetFont(wx.Font(8, wx.FONTFAMILY_MODERN, wx.FONTSTYLE_NORMAL, wx.FONTWEIGHT_NORMAL)) self.Bind(wx.EVT_TREE_ITEM_EXPANDING, self.on_expanding) self.Bind(wx.EVT_TREE_ITEM_GETTOOLTIP, self.on_get_tooltip) self.Bind(wx.EVT_TREE_BEGIN_LABEL_EDIT, self.on_begin_label_edit) self.Bind(wx.EVT_TREE_END_LABEL_EDIT, self.on_end_label_edit) self.Bind(wx.EVT_TREE_SEL_CHANGED, self.on_select_item) self.model = None self.AddColumn('Context') self.AddColumn('Value') self.SetColumnEditable(1, True) self.SetColumnAlignment(1, wx.ALIGN_RIGHT) self.clear() def on_begin_label_edit(self, evt): pass def on_select_item(self, evt): item = evt.GetItem() if item in self.vars: print self.vars[item] def on_end_label_edit(self, evt): item = evt.GetItem() data = self.GetPyData(item) if data in self.vars and data in self.model.vars: new_var_value = evt.GetLabel() self.model.var_assign(data, new_var_value) evt.Veto() def on_get_tooltip(self, evt): item = evt.GetItem() if self.model and item: if item == self.stack_item: evt.SetToolTip(wx.ToolTip("Stack Depth: %d frames" % self.model.stack.depth)) data = self.GetPyData(item) if hasattr(data, 'file'): # This is a stack frame evt.SetToolTip(wx.ToolTip("Stack frame %s() at 0x%x %s" % (data.func, data.addr, "in file %s" % data.file if data.file else ""))) elif data in self.vars: evt.SetToolTip(wx.ToolTip(self.model.vars[data].expression)) def on_expanding(self, evt): item=evt.GetItem() item_data=self.GetPyData(item) if hasattr(item_data, 'level'): #item_data is a stack frame, and we wish to list its locals self.model.stack_list_locals(frame=item_data.level, callback=partial(self.on_listed_locals, item_data)) elif item_data in self.vars: self.model.var_list_children(item_data, callback=partial(self.on_listed_children, item)) def on_listed_children(self, parent, result): if hasattr(result, 'children'): for child in result.children: varname= child['child']['name'] self.pending_vars[varname] = parent def on_listed_locals(self, frame, result): if result.cls != 'error': if hasattr(result, 'locals') and frame.key in self.frames and frame.key not in self.expanded_frames: self.expanded_frames = frame.key for item in result.locals: varname = self.model.var_create(item['name'], frame=frame.level, callback=partial(self.on_created_framevar, frame)) def on_created_framevar(self, frame, result): if hasattr(result, 'name') and frame.key in self.frames: self.pending_vars[result.name] = self.frames[frame.key] self.model.var_update(result.name) #wx.CallAfter(self.add_var_item, self.frames[frame], result.name) def add_var_item(self, parent, name): var = self.model.vars[name] var_item = self.AppendItem(parent, var.expression) self.SetItemPyData(var_item, name) if var.children: self.SetItemHasChildren(var_item, bool(var.children)) else: self.SetItemHasChildren(var_item, False) self.SetItemText(var_item, var.data, 1) icon_name = var.type.icon_name if has_icon(icon_name): self.set_item_art(var_item, icon_name) self.vars[name] = var_item def update_var_item(self, name): var = self.model.vars[name] if name in self.vars: var_item = self.vars[name] self.SetItemText(var_item, var.expression, 0) self.SetItemText(var_item, str(var.data), 1) if var.children: self.SetItemHasChildren(var_item, True) else: self.SetItemHasChildren(var_item, False) def delete_var_item(self, name): if name in self.vars: var_item = self.vars[name] self.Delete(var_item) self.vars.pop(name) def add_frame_item(self, frame): item = self.AppendItem(self.stack_item, frame.func + "( )") self.set_item_art(item, 'frame.png' if frame.level != 0 else 'frame_active.png') self.SetItemHasChildren(item) self.SetItemBold(item, True) self.SetPyData(item, frame) self.frames[frame.key] = item def __get_evt_item(self, evt): pt = evt.GetPosition() item, flags = self.HitTest(pt) return item def set_model(self, model): self.model = model self.model.Bind(gdb.EVT_GDB_UPDATE_VARS, self.on_var_update) self.model.Bind(gdb.EVT_GDB_UPDATE_STACK, self.on_stack_update) self.model.Bind(gdb.EVT_GDB_UPDATE_BREAKPOINTS, self.on_breakpoint_update) def set_item_art(self, item, name, style=wx.TreeItemIcon_Normal): if name not in self.art: self.add_art(name) self.SetItemImage(item, self.art[name], style) def on_var_update(self, evt): names = evt.data for name in names: if name in self.model.vars: if name in self.pending_vars: # Vars that are waiting to get added to the tree parent = self.pending_vars.pop(name) wx.CallAfter(self.add_var_item, parent, name) elif name in self.vars: # Vars that are already in the tree wx.CallAfter(self.update_var_item, name) else: if name in self.pending_vars: self.pending_vars.pop(name) if name in self.vars: wx.CallAfter(self.delete_var_item,name) def on_stack_update(self, evt): if self.model: stack = self.model.stack stack_keys = set([frame.key for frame in stack]) items_to_remove = set() for frame_key, frame_item in self.frames.iteritems(): if not stack.has_key(frame_key): self.Delete(frame_item) items_to_remove.add(frame_key) for frame_key in items_to_remove: self.frames.pop(frame_key) item = None for frame in reversed(list(stack)): if frame.key not in self.frames: self.add_frame_item(frame) if item: self.set_item_art(item, 'frame_active.png') def on_breakpoint_update(self, evt): if self.model: breakpoints = self.model.breakpoints #self.DeletChildren(self.breakpoints_item) self.DeleteChildren(self.breakpoints_item) print breakpoints for bp in breakpoints: if bp.fullname: name = os.path.split(os.path.abspath(bp.fullname))[1] else: name = '0x%x' % bp.address item = self.AppendItem(self.breakpoints_item, name) self.SetPyData(item, bp) self.SetItemText(item, str(bp.line), 1) self.set_item_art(item, 'stop.png' if bp.enabled else 'stop_disabled.png') def update(self): pass def clear(self): self.DeleteAllItems() root_item = self.AddRoot('root') self.root_item = root_item self.stack_item = self.AppendItem(root_item,'Call Stack') self.breakpoints_item = self.AppendItem(root_item, 'Breakpoints') self.registers_item = self.AppendItem(root_item, 'Registers') self.set_item_art(self.registers_item, 'chip.png') self.set_item_art(self.stack_item, 'stack.png') self.set_item_art(self.breakpoints_item, 'breakpoint.png') self.frames = bidict({}) self.vars = bidict({}) self.pending_vars = {} self.expanded_frames = set() class DataView(view.View): def __init__(self, *args, **kwargs): super(DataView, self).__init__(*args, **kwargs) self.tree = RuntimeTree(self) sizer = wx.BoxSizer(wx.VERTICAL) sizer.Add(self.tree, 1, wx.EXPAND) self.SetSizer(sizer) def set_model(self, model): self.tree.set_model(model) def update(self, stack): self.tree.update()
ryansturmer/cuttlebug
cuttlebug/ui/views/data_view.py
Python
mit
9,919
# Initialize variable if 'old_max_temp' not in locals(): old_max_temp = heat_storage.target_temperature if (env.get_day_of_year() > 120) and (env.get_day_of_year() < 273): # In summer the heat_storage can cool down to min_temperature if # target_temperature is reached if abs(heat_storage.target_temperature - heat_storage.get_temperature()) < 5: if old_max_temp == heat_storage.target_temperature: old_max_temp = heat_storage.target_temperature heat_storage.target_temperature = heat_storage.min_temperature # min_temperature is reached and heating should start else: heat_storage.target_temperature = old_max_temp # Set back in winter elif old_max_temp != heat_storage.target_temperature: heat_storage.target_temperature = old_max_temp # 2000 € more expensive (longer bhkw up-time) but 9000 power on's less of bhkw and 1000 more of plb
SEC-i/ecoControl
snippets/hs_summer_max_temp.py
Python
mit
923
from time import sleep import pyupm_servo as s import pyupm_grove as g servo = s.ES08A(5) servo.setAngle(30) temp = g.GroveTemp(0) print 'Setting servo at home position' sleep(1) if __name__ == '__main__': while True: angle = (temp.value()*24)-570 if angle > 180 or angle < 0: servo.setAngle(30) else: servo.setAngle(angle) sleep(1.5) del servo
TheIoTLearningInitiative/CodeLabs
Sandbox/GroveExamples/projects/temperature-monitor/temperature-gauge.py
Python
apache-2.0
435
# Copyright 2016 Casey Jaymes # This file is part of PySCAP. # # PySCAP is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # PySCAP is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with PySCAP. If not, see <http://www.gnu.org/licenses/>. import logging from scap.Model import Model logger = logging.getLogger(__name__) class OverrideableCpe2IdRefType(Model): MODEL_MAP = { 'attributes': { 'override': {'type': 'BooleanType', 'default': False}, } }
cjaymes/pyscap
src/scap/model/xccdf_1_2/OverrideableCpe2IdRefType.py
Python
gpl-3.0
929
from twisted.internet.defer import Deferred def out(s): print s d = Deferred() d.addCallbacks(out, out) d.errback(Exception('First error')) d.callback('First result') print 'Finished' #[Failure instance: Traceback (failure with no frames): <type 'exceptions.Exception'>: First error #] #Traceback (most recent call last): # File "defer-7.py", line 6, in <module> # d.callback('First result') # File "/usr/local/lib/python2.7/site-packages/twisted/internet/defer.py", line 459, in callback # self._startRunCallbacks(result) # File "/usr/local/lib/python2.7/site-packages/twisted/internet/defer.py", line 560, in _startRunCallbacks # raise AlreadyCalledError #twisted.internet.defer.AlreadyCalledError
tidalmelon/twisted-intro
twisted-deferred/defer-7.py
Python
mit
714
#!/usr/bin/env python import six import os from lxml import etree from io import StringIO, BytesIO, IOBase from . import utils from . import elements from . import dtd def create(root_tag, dtd_url=None, dtd_str=None): """Create a python object for the given root_tag :param root_tag: The root tag to create :param dtd_url: The dtd url :param dtd_str: The dtd as string """ url = dtd_url if dtd_url else StringIO(dtd_str) dtd_obj = dtd.DTD(url) dic = dtd_obj.parse() if root_tag not in dic: raise Exception('Bad root_tag %s, ' 'it\'s not supported by the dtd' % root_tag) obj = dic[root_tag]() obj.dtd_url = dtd_url obj.encoding = elements.DEFAULT_ENCODING return obj def load(filename, validate=True): """Generate a python object :param filename: XML filename or Byte like object we should load :param validate: validate the XML before generating the python object. :type filename: str :type validate: bool :return: the generated python object :rtype: :class:`Element` """ parser = etree.XMLParser(strip_cdata=False) tree = etree.parse(filename, parser=parser) dtd_url = tree.docinfo.system_url path = (os.path.dirname(filename) if not isinstance(filename, BytesIO) else None) dtd_obj = dtd.DTD(dtd_url, path) if validate: dtd_obj.validate_xml(tree) dic = dtd_obj.parse() root = tree.getroot() obj = dic[root.tag]() obj.load_from_xml(root) obj.filename = filename obj.dtd_url = dtd_url obj.encoding = tree.docinfo.encoding return obj def load_string(xml_str, validate=True): """Generate a python object :param xml_str: the XML file as string :type xml_str: str :param validate: validate the XML before generating the python object. :type validate: bool :return: the generated python object :rtype: :class:`Element` """ if not isinstance(xml_str, BytesIO): # TODO: Get encoding from the dtd file (xml tag). xml_str = BytesIO(xml_str.encode('utf-8')) return load(xml_str, validate) def generate_form(filename, form_action=None, form_filename=None, validate=True): """Generate the HTML form for the given filename. :param filename: the XML filename we should load :type filename: str :param form_action: the action to put on the HTML form :type form_action: str :param validate: validate the XML before generating the form. :type validate: bool :return: the generated HTML form :rtype: str """ if not form_filename: form_filename = filename obj = load(filename, validate) return generate_form_from_obj(obj, form_action, form_filename, validate) def generate_form_from_obj(obj, form_action=None, form_filename=None, validate=True, form_attrs=None): hidden_inputs = ( '<input type="hidden" name="_xml_filename" ' 'id="_xml_filename" value="%s" />' '<input type="hidden" name="_xml_dtd_url" ' 'id="_xml_dtd_url" value="%s" />' '<input type="hidden" name="_xml_encoding" ' 'id="_xml_encoding" value="%s" />' ) % ( form_filename or '', obj.dtd_url, obj.encoding or elements.DEFAULT_ENCODING, ) attrs = {} if form_attrs: attrs = form_attrs.copy() if 'id' not in attrs: attrs['id'] = 'xmltool-form' if form_action: attrs['action'] = form_action attrs_str = ' '.join(sorted(['%s="%s"' % tple for tple in attrs.items()])) html = ['<form method="POST" %s>' % attrs_str] html += [hidden_inputs] html += [obj._to_html()] html += ['</form>'] return ''.join(html) def update(filename, data, validate=True, transform=None): """Update the file named filename with data. :param filename: the XML filename we should update :param data: the result of the submitted data. :param validate: validate the updated XML before writing it. :type filename: str :type data: dict style like: dict, webob.MultiDict, ... :type validate: bool :param transform: function to transform the XML string just before writing it. :type transform: function :return: the object generated from the data :rtype: :class:`Element` """ data = utils.unflatten_params(data) encoding = data.pop('_xml_encoding') dtd_url = data.pop('_xml_dtd_url') if len(data) != 1: raise Exception('Bad data') root_tag = list(data.keys())[0] dic = dtd.DTD(dtd_url, path=os.path.dirname(filename)).parse() obj = dic[root_tag]() obj.load_from_dict(data) obj.write(filename, encoding, dtd_url=dtd_url, validate=validate, transform=transform) return obj def new(dtd_url, root_tag, form_action=None, form_attrs=None): dic = dtd.DTD(dtd_url).parse() obj = dic[root_tag]() # Merge the following line with the function which generate the form! hidden_inputs = ( '<input type="hidden" name="_xml_filename" ' 'id="_xml_filename" value="" />' '<input type="hidden" name="_xml_dtd_url" ' 'id="_xml_dtd_url" value="%s" />' '<input type="hidden" name="_xml_encoding" ' 'id="_xml_encoding" value="%s" />' ) % ( dtd_url, elements.DEFAULT_ENCODING, ) attrs = {} if form_attrs: attrs = form_attrs.copy() if 'id' not in attrs: attrs['id'] = 'xmltool-form' if form_action: attrs['action'] = form_action attrs_str = ' '.join(sorted(['%s="%s"' % tple for tple in attrs.items()])) html = ['<form method="POST" %s>' % attrs_str] html += [hidden_inputs] html += [obj._to_html()] html += ['</form>'] return ''.join(html) def getElementData(elt_id, data): """Get the dic from data to load last element of elt_id """ data = utils.unflatten_params(data) lis = elt_id.split(':') tagname = lis[-1] for v in lis: try: if isinstance(data, list): v = int(v) data = data[v] except (KeyError, IndexError): data = {} break return {tagname: data} def _get_obj_from_str_id(str_id, dtd_url=None, dtd_str=None, data=None): """Load object according to the given str_id ..note:: If data is passed load the data to this object """ url = dtd_url if dtd_url else StringIO(dtd_str) dic = dtd.DTD(url).parse() splitted = str_id.split(':') s = splitted.pop(0) cls = dic[s] obj = cls() if data: obj.load_from_dict(data) index = None while splitted: s = splitted.pop(0) obj = obj.get_or_add(s, index=index) if len(splitted) > 0: index = None if isinstance(obj, list): index = int(splitted.pop(0)) if isinstance(obj, elements.TextElement) and obj.text is None: obj.set_text('') return obj def _get_parent_to_add_obj(elt_id, tagname, data, dtd_url=None, dtd_str=None): """Create element from data and elt_id and determine if tagname can be added to it or its parent. """ target_obj = _get_obj_from_str_id(elt_id, dtd_url=dtd_url, dtd_str=dtd_str, data=data) if target_obj.is_addable(tagname): return target_obj, 0 if target_obj._parent_obj and target_obj._parent_obj.is_addable(tagname): index = target_obj.position if index is not None: index += 1 else: index = None return target_obj._parent_obj, index return None, None def _get_data_for_html_display(obj): """Returns the data need to display the object in HTML. """ return { 'jstree_data': obj.to_jstree_dict(), 'previous': obj.get_previous_js_selectors(), 'html': obj.to_html(), 'elt_id': ':'.join(obj.prefixes), } def _add_new_element_from_id(elt_id, data, clipboard_data, dtd_url=None, dtd_str=None, skip_extra=False): """Create an element from data and elt_id. This function should be used to make some copy/paste. :param skip_extra: If True we don't load the attributes nor the comments :type skip_extra: bool """ keys = list(clipboard_data.keys()) assert(len(keys) == 1) tagname = keys[0] parentobj, index = _get_parent_to_add_obj( elt_id, tagname, data, dtd_url=dtd_url, dtd_str=dtd_str) if not parentobj: return None obj = parentobj.add(tagname, index=index) obj.load_from_dict(clipboard_data, skip_extra=skip_extra) return obj def get_new_element_data_for_html_display(*args, **kw): """Create new sub object according to the given params and returns the data to display it. """ html_renderer = kw.pop('html_renderer', None) obj = _add_new_element_from_id(*args, **kw) if not obj: return None obj.root.html_renderer = html_renderer return _get_data_for_html_display(obj) def get_data_from_str_id_for_html_display(str_id, dtd_url=None, dtd_str=None, html_renderer=None): """Get the sub object corresponding to the given str_id and returns the data to display it. """ obj = _get_obj_from_str_id(str_id, dtd_url, dtd_str) if not obj: return None obj.root.html_renderer = html_renderer return _get_data_for_html_display(obj)
LeResKP/xmltool
xmltool/factory.py
Python
mit
9,492
import theano from utils import srng def dropout(input, dropout_rate=0): if dropout_rate > 0: retain = 1 - dropout_rate d_output = (input / retain) * srng.binomial(input.shape, p=retain, dtype='int32').astype('float32') else: d_output = input return d_output
ozanarkancan/KuConnect
kuconnect/dropout.py
Python
mit
309
import numpy import time import sys import subprocess import os import random from rnn_slu.rnn.jordan import model from rnn_slu.metrics.accuracy import conlleval from rnn_slu.utils.tools import shuffle, minibatch, contextwin if __name__ == '__main__': if (len(sys.argv) < 7): print "Usage: " + sys.argv[0] + " <model_directory> <test_file> <word_dictionary> <label_dictionary> <config_file> <output_file>" sys.exit(0) #Read word dict words2idx={} word_dict = open(sys.argv[3], "r") for line in word_dict: key,val=line.split() words2idx[key] = int(val) idx2word = dict((k,v) for v,k in words2idx.iteritems()) #Read label dict labels2idx={} label_dict = open(sys.argv[4], "r") for line in label_dict: key,val=line.split() labels2idx[key] = int(val) idx2label = dict((k,v) for v,k in labels2idx.iteritems()) #Read Test Data test_lex=[] test_y = [] temp_lex = [] temp_y = [] test_file = open(sys.argv[2], "r") for line in test_file: if line in ['\n', '\r\n']: if len(temp_lex) > 0: test_lex.append(temp_lex) test_y.append(temp_y) temp_lex=[] temp_y=[] continue token,label=line.split() if token in words2idx.keys(): temp_lex.append(words2idx[token]) else: temp_lex.append(words2idx["<UNK>"]) if label in labels2idx.keys(): temp_y.append(labels2idx[label]) else: temp_y.append(labels2idx["<UNK>"]) folder = os.path.basename(sys.argv[1]) s = {'lr':0.0627142536696559, 'verbose':1, 'decay':False, # decay on the learning rate if improvement stops 'win':7, # number of words in the context window 'bs':10, # mini-batch size 'nhidden':100, # number of hidden units 'seed':345, 'emb_dimension':100, # dimension of word embedding 'nepochs':10} config_file = open(sys.argv[5], "r") for line in config_file: param,val=line.split() if param == "lr:": s['lr'] = float(val) elif param == "win:": s['win'] = int(val) elif param == "bs:": s['bs'] = int(val) elif param == "nhidden:": s['nhidden'] = int(val) elif param == "seed:": s['seed'] = int(val) elif param == "emb_dimension:": s['emb_dimension'] = int(val) elif param == "nepochs:": s['nepochs'] = int(val) vocsize = len(words2idx) nclasses = len(labels2idx) nsentences = len(test_lex) numpy.random.seed(s['seed']) random.seed(s['seed']) rnn = model( nh = s['nhidden'], nc = nclasses, ne = vocsize, de = s['emb_dimension'], cs = s['win'] ) rnn.load(folder) predictions_test = [ map(lambda x: idx2label[x], \ rnn.classify(numpy.asarray(contextwin(x, s['win'])).astype('int32')))\ for x in test_lex ] groundtruth_test = [ map(lambda x: idx2label[x], y) for y in test_y ] words_test = [ map(lambda x: idx2word[x], w) for w in test_lex] res_test = conlleval(predictions_test, groundtruth_test, words_test, sys.argv[6]) print 'Test set performance -- F1: ', res_test['f1'], ' '*20
marcomanciniunitn/Final-LUS-project
RNN/rnn/lus_rnn_lab/rnn_slu/lus/rnn_jordan_test.py
Python
gpl-3.0
3,463
""" Learning python3 """ def document_it(func): ''' decractor for func, only print doc of func. ''' def new_function(*args, **kwargs): ''' internal function for wrappering of func and print out function parameter and result. ''' print('Running functions:', func.__name__) print('Positional arguments:', args) print('Keyword arguments:', kwargs) result = func(*args, **kwargs) print('Result:', result) return result return new_function @document_it def add_ints0(add_a, add_b): ''' add with decrator of @document_it. ''' return add_a + add_b def square_it(func): ''' decractor for func, return square of func returned value. ''' def new_function(*args, **kwargs): ''' internal function for wrappering of func and return square of func as result. ''' result = func(*args, **kwargs) return result * result return new_function @document_it @square_it def add_ints1(add_a, add_b): ''' add with decrator of @square_it @document_it in order. ''' return add_a + add_b @square_it @document_it def add_ints2(add_a, add_b): ''' add with decrator of @document_it @square_it in order. ''' return add_a + add_b
llv22/python3_learning
chapter4/sample.py
Python
apache-2.0
1,306
# -*- coding: utf-8 -*- # ----------------------------------------------------------------------------- # Copyright 2015-2018 by ExopyHqcLegacy Authors, see AUTHORS for more details. # # Distributed under the terms of the BSD license. # # The full license is in the file LICENCE, distributed with this software. # ----------------------------------------------------------------------------- """Tasks to used to load a file in memory. """ import os import numpy as np from atom.api import (Bool, Unicode, List, set_default) from past.builtins import basestring from exopy.tasks.api import SimpleTask, InterfaceableTaskMixin, TaskInterface def _make_array(names, dtypes='f8'): if isinstance(dtypes, basestring): dtypes = [dtypes for i in range(len(names))] dtype = {'names': names, 'formats': dtypes} return np.ones((5,), dtype=dtype) class LoadArrayTask(InterfaceableTaskMixin, SimpleTask): """ Load an array from the disc into the database. """ #: Folder from which to load the data. folder = Unicode().tag(pref=True, fmt=True) #: Name of the file from which to load the data. filename = Unicode().tag(pref=True, fmt=True) #: Kind of file to load. selected_format = Unicode().tag(pref=True) database_entries = set_default({'array': _make_array(['var1', 'var2'])}) def check(self, *args, **kwargs): """Check that the provided path and filename make sense. """ test, traceback = super(LoadArrayTask, self).check(*args, **kwargs) err_path = self.get_error_path() if not test: return test, traceback full_folder_path = self.format_string(self.folder) filename = self.format_string(self.filename) full_path = os.path.join(full_folder_path, filename) if not os.path.isfile(full_path): msg = ('File does not exist, be sure that your measure will ' 'create it before this task is executed.') traceback[err_path + '-file'] = msg return test, traceback class CSVLoadInterface(TaskInterface): """Interface used to load CSV files. """ #: Delimiter used in the file to load. delimiter = Unicode('\t').tag(pref=True) #: Character used to signal a comment. comments = Unicode('#').tag(pref=True) #: Flag indicating whether or not to use the first row as column names. names = Bool(True).tag(pref=True) #: The users can provide the names which will be available in its file #: if the file cannot be found when checks are run. c_names = List(Unicode()).tag(pref=True) #: Class attr used in the UI. file_formats = ['CSV'] def perform(self): """Load a file stored in csv format. """ task = self.task folder = task.format_string(task.folder) filename = task.format_string(task.filename) full_path = os.path.join(folder, filename) comment_lines = 0 with open(full_path) as f: while True: if f.readline().startswith(self.comments): comment_lines += 1 else: break data = np.genfromtxt(full_path, comments=self.comments, delimiter=self.delimiter, names=self.names, skip_header=comment_lines) task.write_in_database('array', data) def check(self, *args, **kwargs): """Try to find the names of the columns to add the array in the database. """ task = self.task if self.c_names: return True, {} try: full_folder_path = task.format_string(task.folder) filename = task.format_string(task.filename) except Exception: return True, {} full_path = os.path.join(full_folder_path, filename) if os.path.isfile(full_path): with open(full_path) as f: while True: line = f.readline() if not line.startswith(self.comments): names = line.split(self.delimiter) names = [n.strip() for n in names if n] self.task.write_in_database('array', _make_array(names)) break return True, {} def _post_setattr_c_names(self, old, new): """Keep the c_names in sync with the array in the database. """ if new: self.task.write_in_database('array', _make_array(new))
Ecpy/ecpy_hqc_legacy
exopy_hqc_legacy/tasks/tasks/util/load_tasks.py
Python
bsd-3-clause
4,610
#!/usr/bin/env python from setuptools import setup setup( name='django-changuito', version='1.2', description='A fork of django-cart with the same simplicity but updated', maintainer='Angel Velasquez', maintainer_email='[email protected]', license="LGPL v3", url='https://github.com/angvp/django-changuito', packages=['changuito'], classifiers=[ "Development Status :: 5 - Production/Stable", "Environment :: Web Environment", "Framework :: Django", "Intended Audience :: Developers", "Operating System :: OS Independent", "Programming Language :: Python", "Topic :: Software Development :: Libraries :: Python Modules", ], )
angvp/django-changuito
setup.py
Python
lgpl-3.0
725
#!/usr/bin/env python import os import sys if __name__ == "__main__": os.environ.setdefault("DJANGO_SETTINGS_MODULE", "FastReading.settings") from django.core.management import execute_from_command_line execute_from_command_line(sys.argv)
vaquer/FastReadingPy
manage.py
Python
gpl-2.0
254
# Copyright 2013 Eucalyptus Systems, Inc. # # Redistribution and use of this software in source and binary forms, # with or without modification, are permitted provided that the following # conditions are met: # # Redistributions of source code must retain the above copyright notice, # this list of conditions and the following disclaimer. # # Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR # A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT # OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, # SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT # LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, # DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY # THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. from euca2ools.commands.autoscaling import AutoScalingRequest from requestbuilder import Arg from requestbuilder.mixins import TabifyingMixin from requestbuilder.response import PaginatedResponse class DescribeLaunchConfigurations(AutoScalingRequest, TabifyingMixin): DESCRIPTION = 'Describe auto-scaling instance launch configurations' ARGS = [Arg('LaunchConfigurationNames.member', metavar='LAUNCHCONFIG', nargs='*', help='limit results to specific launch configurations'), Arg('--show-long', action='store_true', route_to=None, help="show all of the launch configurations' info")] LIST_TAGS = ['LaunchConfigurations', 'SecurityGroups', 'BlockDeviceMappings'] def main(self): return PaginatedResponse(self, (None,), ('LaunchConfigurations',)) def prepare_for_page(self, page): # Pages are defined by NextToken self.params['NextToken'] = page def get_next_page(self, response): return response.get('NextToken') or None def print_result(self, result): for config in result.get('LaunchConfigurations', []): bits = ['LAUNCH-CONFIG', config.get('LaunchConfigurationName'), config.get('ImageId'), config.get('InstanceType')] if self.args['show_long']: bits.append(config.get('KeyName')) bits.append(config.get('KernelId')) bits.append(config.get('RamdiskId')) block_maps = [convert_block_mapping_to_str(mapping) for mapping in config.get('BlockDeviceMappings', [])] if len(block_maps) > 0: bits.append('{' + ','.join(block_maps) + '}') else: bits.append(None) bits.append(','.join(config.get('SecurityGroups', [])) or None) bits.append(config.get('CreatedTime')) bits.append(config.get('InstanceMonitoring', {}).get( 'Enabled')) bits.append(config.get('LaunchConfigurationARN')) bits.append(config.get('SpotPrice')) bits.append(config.get('IamInstanceProfile')) if self.args['show_long']: bits.append(config.get('EbsOptimized')) print self.tabify(bits) def convert_block_mapping_to_str(mapping): if mapping.get('Ebs'): mapped = ':'.join((mapping['Ebs'].get('SnapshotId') or '', mapping['Ebs'].get('VolumeSize') or '')) elif mapping.get('VirtualName'): mapped = mapping['VirtualName'] else: raise ValueError('unexpected block device mapping: {0}'.format( mapping)) return mapping['DeviceName'] + '=' + mapped
Juniper/euca2ools
euca2ools/commands/autoscaling/describelaunchconfigurations.py
Python
bsd-2-clause
4,176
# -*- coding: utf-8 -*- """ This module provide structures for data representation of received model. """ from collections import namedtuple __all__ = ('FieldInfo', 'RelationInfo') FieldInfo = namedtuple('FieldResult', [ 'pk', # Model field instance 'fields', # Dict of field name -> model field instance 'forward_relations', # Dict of field name -> RelationInfo 'reverse_relations', # Dict of field name -> RelationInfo 'fields_and_pk', # Shortcut for 'pk' + 'fields' 'relations' # Shortcut for 'forward_relations' + 'reverse_relations' ]) RelationInfo = namedtuple('RelationInfo', [ 'model_field', 'related_model', 'to_many', 'to_field', 'has_through_model' ])
Relrin/aiorest-ws
aiorest_ws/utils/structures.py
Python
bsd-3-clause
717
from django.conf import settings from hashlib import sha1 from mediagenerator.base import Generator from mediagenerator.utils import get_media_dirs, find_file, prepare_patterns from mimetypes import guess_type import os COPY_MEDIA_FILETYPES = getattr(settings, 'COPY_MEDIA_FILETYPES', ('gif', 'jpg', 'jpeg', 'png', 'svg', 'svgz', 'ico', 'swf', 'ttf', 'otf', 'eot', 'woff')) IGNORE_PATTERN = prepare_patterns(getattr(settings, 'IGNORE_MEDIA_COPY_PATTERNS', ()), 'IGNORE_MEDIA_COPY_PATTERNS') class CopyFiles(Generator): def get_dev_output(self, name): path = find_file(name) fp = open(path, 'rb') content = fp.read() fp.close() mimetype = guess_type(path)[0] return content, mimetype def get_dev_output_names(self): media_files = {} for root in get_media_dirs(): self.collect_copyable_files(media_files, root) for name, source in media_files.items(): fp = open(source, 'rb') hash = sha1(fp.read()).hexdigest() fp.close() yield name, name, hash def collect_copyable_files(self, media_files, root): for root_path, dirs, files in os.walk(root): for file in files: ext = os.path.splitext(file)[1].lstrip('.') path = os.path.join(root_path, file) media_path = path[len(root) + 1:].replace(os.sep, '/') if ext in COPY_MEDIA_FILETYPES and \ not IGNORE_PATTERN.match(media_path): media_files[media_path] = path
umitproject/tease-o-matic
mediagenerator/generators/copyfiles.py
Python
bsd-3-clause
1,592
""" Simple enumeration class and metaclass that can be used in other Biopython modules (or even outside Biopython). """ __all__ = ["Enum"] __author__ = "Tamas Nepusz" __email__ = "[email protected]" __copyright__ = "Copyright (c) 2010, Tamas Nepusz" def first(iter): """Helper function that takes an iterable and returns the first element. No big deal, but it makes the code readable in some cases. It is typically useful when `iter` is (or can be) a generator expression as you can use the indexing operator for ordinary lists and tuples.""" for item in iter: return item raise ValueError("iterable is empty") class EnumMeta(type): """Metaclass for enum classes. Do not use this class directly, there's no need to do that. Derive your enum class from `Enum` instead. """ def __init__(cls, name, bases, attrs): # Call the super-metaclass constructor super(EnumMeta, cls).__init__(name, bases, attrs) # This dict will contain the enum values enum_values = {} # For all the base classes, fetch the inherited items for base in bases: if hasattr(base, "__enum__"): enum_values.update(base.__enum__) # Extend enum_values with the items directly declared here for key, value in attrs.iteritems(): # Skip internal methods, properties and callables if key[:2] != "__" and not callable(value) \ and not isinstance(value, property): inst = cls(key, value, override=True) enum_values[key] = inst super(EnumMeta, cls).__setattr__(key, inst) # Store enum_values in the class cls.__enum__ = enum_values def __setattr__(self, name, value): """Raises an `AttributeError` to prevent users from messing around with enum values""" if name == "__enum__" or name == "__doc__" \ or not self._finalized: return super(EnumMeta, self).__setattr__(name, value) raise AttributeError("Enum attributes are read-only") def __delattr__(self, name, value): """Raises an `AttributeError` to prevent users from messing around with enum values""" raise AttributeError("Enum attributes cannot be deleted") def __repr__(self): return "<Enum '%s'>" % self.__name__ def __len__(self): return len(self.__enum__) def __iter__(self): return iter(self.__enum__) def __contains__(self, key): return key in self.__enum__ def from_name(self, name): """Constructs an instance of this enum from its name""" try: return self.__enum__[name] except KeyError: raise NameError("no enum item with the given name: %r" % name) def from_value(self, value): """Constructs an instance of this enum from its value""" try: return first(val for val in self.__enum__.itervalues() \ if val.value == value) except ValueError: raise ValueError("no enum item with the given value: %r" % value) def has_key(self, key): """Returns whether this enum has the given key or not""" return self.__enum__.has_key(key) def iteritems(self): """Returns an iterator over key-value pairs of this enum""" return self.__enum__.iteritems() def itervalues(self): """Returns an iterator over key-value pairs of this enum""" return self.__enum__.itervalues() def keys(self): """Returns the keys in this enum""" return self.__enum__.keys() def values(self): """Returns the values in this enum""" return self.__enum__.values() class Enum(object): """An instance of an enumeration value and a class representing a whole enum. This is mainly used as a superclass for enumerations. There is a clear distinction between using the class itself or using one of its instances. Using the class means that you are referring to the enum as a whole (with all its possible keys and values). Using one of the instances means that you are using a single key-value pair from the enum. Instances should never be created directly, as all the valid instances are accessible as attributes of the class itself. Usage example:: class GOEvidenceCode(Enum): EXP = "Inferred from Experiment" IDA = "Inferred from Direct Assay" IPI = "Inferred from Physical Interaction" IMP = "Inferred from Mutant Phenotype" [...] >>> GOEvidenceCode.EXP GOEvidenceCode.EXP >>> GOEvidenceCode.EXP.value 'Inferred from Experiment' Think about enums as Python dictionaries that map symbolic keys to values. Enums even provide methods similar to the non-mutating methods of Python dictionaries:: >>> values = GOEvidenceCode.values() [GOEvidenceCode.EXP, GOEvidenceCode.IDA, ...] """ __metaclass__ = EnumMeta __slots__ = ("_key", "_value") def __init__(self, key, value, **kwds): if "override" not in kwds: raise TypeError("Enums should not be instantiated directly") self._key = key self._value = value def __repr__(self): """Returns an executable representation of this instance. Strictly speaking, this method should return a string that allows one to construct this instance, but we don't want anyone to start instantiating `Enum`s by hand, so we return an expression that refers to this very same instance instead. """ return "%s.%s" % (self.__class__.__name__, self._key) def __str__(self): return "%s.%s" % (self.__class__.__name__, self._key)
marco-mariotti/selenoprofiles
libraries/annotations/Enum.py
Python
gpl-2.0
5,881
#!/usr/bin/env python # # Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # from unittest import TestCase, main import time import os from pulsar import Client, MessageId, \ CompressionType, ConsumerType, PartitionsRoutingMode, \ AuthenticationTLS, Authentication, AuthenticationToken from _pulsar import ProducerConfiguration, ConsumerConfiguration from schema_test import * try: # For Python 3.0 and later from urllib.request import urlopen, Request except ImportError: # Fall back to Python 2's urllib2 from urllib2 import urlopen, Request def doHttpPost(url, data): req = Request(url, data.encode()) req.add_header('Content-Type', 'application/json') urlopen(req) def doHttpPut(url, data): try: req = Request(url, data.encode()) req.add_header('Content-Type', 'application/json') req.get_method = lambda: 'PUT' urlopen(req) except Exception as ex: # ignore conflicts exception to have test idempotency if '409' in str(ex): pass else: raise ex def doHttpGet(url): req = Request(url) req.add_header('Accept', 'application/json') return urlopen(req).read() class PulsarTest(TestCase): serviceUrl = 'pulsar://localhost:6650' adminUrl = 'http://localhost:8080' serviceUrlTls = 'pulsar+ssl://localhost:6651' def test_producer_config(self): conf = ProducerConfiguration() conf.send_timeout_millis(12) self.assertEqual(conf.send_timeout_millis(), 12) self.assertEqual(conf.compression_type(), CompressionType.NONE) conf.compression_type(CompressionType.LZ4) self.assertEqual(conf.compression_type(), CompressionType.LZ4) conf.max_pending_messages(120) self.assertEqual(conf.max_pending_messages(), 120) def test_consumer_config(self): conf = ConsumerConfiguration() self.assertEqual(conf.consumer_type(), ConsumerType.Exclusive) conf.consumer_type(ConsumerType.Shared) self.assertEqual(conf.consumer_type(), ConsumerType.Shared) self.assertEqual(conf.consumer_name(), '') conf.consumer_name("my-name") self.assertEqual(conf.consumer_name(), "my-name") def test_simple_producer(self): client = Client(self.serviceUrl) producer = client.create_producer('my-python-topic') producer.send(b'hello') producer.close() client.close() def test_producer_send_async(self): client = Client(self.serviceUrl) producer = client.create_producer('my-python-topic') sent_messages = [] def send_callback(producer, msg): sent_messages.append(msg) producer.send_async(b'hello', send_callback) producer.send_async(b'hello', send_callback) producer.send_async(b'hello', send_callback) i = 0 while len(sent_messages) < 3 and i < 100: time.sleep(0.1) i += 1 self.assertEqual(len(sent_messages), 3) client.close() def test_producer_consumer(self): client = Client(self.serviceUrl) consumer = client.subscribe('my-python-topic-producer-consumer', 'my-sub', consumer_type=ConsumerType.Shared) producer = client.create_producer('my-python-topic-producer-consumer') producer.send(b'hello') msg = consumer.receive(1000) self.assertTrue(msg) self.assertEqual(msg.data(), b'hello') try: msg = consumer.receive(100) self.assertTrue(False) # Should not reach this point except: pass # Exception is expected consumer.unsubscribe() client.close() def test_message_properties(self): client = Client(self.serviceUrl) topic = 'my-python-test-message-properties' consumer = client.subscribe(topic=topic, subscription_name='my-subscription', schema=pulsar.schema.StringSchema()) producer = client.create_producer(topic=topic, schema=StringSchema()) producer.send('hello', properties={ 'a': '1', 'b': '2' }) msg = consumer.receive() self.assertTrue(msg) self.assertEqual(msg.value(), 'hello') self.assertEqual(msg.properties(), { 'a': '1', 'b': '2' }) consumer.unsubscribe() client.close() def test_tls_auth(self): certs_dir = '/pulsar/pulsar-broker/src/test/resources/authentication/tls/' if not os.path.exists(certs_dir): certs_dir = "../../pulsar-broker/src/test/resources/authentication/tls/" client = Client(self.serviceUrlTls, tls_trust_certs_file_path=certs_dir + 'cacert.pem', tls_allow_insecure_connection=False, authentication=AuthenticationTLS(certs_dir + 'client-cert.pem', certs_dir + 'client-key.pem')) consumer = client.subscribe('my-python-topic-producer-consumer', 'my-sub', consumer_type=ConsumerType.Shared) producer = client.create_producer('my-python-topic-producer-consumer') producer.send(b'hello') msg = consumer.receive(1000) self.assertTrue(msg) self.assertEqual(msg.data(), b'hello') try: msg = consumer.receive(100) self.assertTrue(False) # Should not reach this point except: pass # Exception is expected client.close() def test_tls_auth2(self): certs_dir = '/pulsar/pulsar-broker/src/test/resources/authentication/tls/' if not os.path.exists(certs_dir): certs_dir = "../../pulsar-broker/src/test/resources/authentication/tls/" authPlugin = "org.apache.pulsar.client.impl.auth.AuthenticationTls" authParams = "tlsCertFile:%s/client-cert.pem,tlsKeyFile:%s/client-key.pem" % (certs_dir, certs_dir) client = Client(self.serviceUrlTls, tls_trust_certs_file_path=certs_dir + 'cacert.pem', tls_allow_insecure_connection=False, authentication=Authentication(authPlugin, authParams)) consumer = client.subscribe('my-python-topic-producer-consumer', 'my-sub', consumer_type=ConsumerType.Shared) producer = client.create_producer('my-python-topic-producer-consumer') producer.send(b'hello') msg = consumer.receive(1000) self.assertTrue(msg) self.assertEqual(msg.data(), b'hello') try: msg = consumer.receive(100) self.assertTrue(False) # Should not reach this point except: pass # Exception is expected client.close() def test_tls_auth3(self): certs_dir = '/pulsar/pulsar-broker/src/test/resources/authentication/tls/' if not os.path.exists(certs_dir): certs_dir = "../../pulsar-broker/src/test/resources/authentication/tls/" authPlugin = "tls" authParams = "tlsCertFile:%s/client-cert.pem,tlsKeyFile:%s/client-key.pem" % (certs_dir, certs_dir) client = Client(self.serviceUrlTls, tls_trust_certs_file_path=certs_dir + 'cacert.pem', tls_allow_insecure_connection=False, authentication=Authentication(authPlugin, authParams)) consumer = client.subscribe('my-python-topic-producer-consumer', 'my-sub', consumer_type=ConsumerType.Shared) producer = client.create_producer('my-python-topic-producer-consumer') producer.send(b'hello') msg = consumer.receive(1000) self.assertTrue(msg) self.assertEqual(msg.data(), b'hello') try: msg = consumer.receive(100) self.assertTrue(False) # Should not reach this point except: pass # Exception is expected client.close() def test_auth_junk_params(self): certs_dir = '/pulsar/pulsar-broker/src/test/resources/authentication/tls/' if not os.path.exists(certs_dir): certs_dir = "../../pulsar-broker/src/test/resources/authentication/tls/" authPlugin = "someoldjunk.so" authParams = "blah" client = Client(self.serviceUrlTls, tls_trust_certs_file_path=certs_dir + 'cacert.pem', tls_allow_insecure_connection=False, authentication=Authentication(authPlugin, authParams)) try: client.subscribe('my-python-topic-producer-consumer', 'my-sub', consumer_type=ConsumerType.Shared) except: pass # Exception is expected def test_message_listener(self): client = Client(self.serviceUrl) received_messages = [] def listener(consumer, msg): print("Got message: %s" % msg) received_messages.append(msg) consumer.acknowledge(msg) client.subscribe('my-python-topic-listener', 'my-sub', consumer_type=ConsumerType.Exclusive, message_listener=listener) producer = client.create_producer('my-python-topic-listener') producer.send(b'hello-1') producer.send(b'hello-2') producer.send(b'hello-3') time.sleep(0.1) self.assertEqual(len(received_messages), 3) self.assertEqual(received_messages[0].data(), b"hello-1") self.assertEqual(received_messages[1].data(), b"hello-2") self.assertEqual(received_messages[2].data(), b"hello-3") client.close() def test_reader_simple(self): client = Client(self.serviceUrl) reader = client.create_reader('my-python-topic-reader-simple', MessageId.earliest) producer = client.create_producer('my-python-topic-reader-simple') producer.send(b'hello') msg = reader.read_next() self.assertTrue(msg) self.assertEqual(msg.data(), b'hello') try: msg = reader.read_next(100) self.assertTrue(False) # Should not reach this point except: pass # Exception is expected reader.close() client.close() def test_reader_on_last_message(self): client = Client(self.serviceUrl) producer = client.create_producer('my-python-topic-reader-on-last-message') for i in range(10): producer.send(b'hello-%d' % i) reader = client.create_reader('my-python-topic-reader-on-last-message', MessageId.latest) for i in range(10, 20): producer.send(b'hello-%d' % i) for i in range(10, 20): msg = reader.read_next() self.assertTrue(msg) self.assertEqual(msg.data(), b'hello-%d' % i) reader.close() client.close() def test_reader_on_specific_message(self): client = Client(self.serviceUrl) producer = client.create_producer( 'my-python-topic-reader-on-specific-message') for i in range(10): producer.send(b'hello-%d' % i) reader1 = client.create_reader( 'my-python-topic-reader-on-specific-message', MessageId.earliest) for i in range(5): msg = reader1.read_next() last_msg_id = msg.message_id() reader2 = client.create_reader( 'my-python-topic-reader-on-specific-message', last_msg_id) for i in range(5, 10): msg = reader2.read_next() self.assertTrue(msg) self.assertEqual(msg.data(), b'hello-%d' % i) reader1.close() reader2.close() client.close() def test_reader_on_specific_message_with_batches(self): client = Client(self.serviceUrl) producer = client.create_producer( 'my-python-topic-reader-on-specific-message-with-batches', batching_enabled=True, batching_max_publish_delay_ms=1000) for i in range(10): producer.send_async(b'hello-%d' % i, None) # Send one sync message to make sure everything was published producer.send(b'hello-10') reader1 = client.create_reader( 'my-python-topic-reader-on-specific-message-with-batches', MessageId.earliest) for i in range(5): msg = reader1.read_next() last_msg_id = msg.message_id() reader2 = client.create_reader( 'my-python-topic-reader-on-specific-message-with-batches', last_msg_id) for i in range(5, 11): msg = reader2.read_next() self.assertTrue(msg) self.assertEqual(msg.data(), b'hello-%d' % i) reader1.close() reader2.close() client.close() def test_producer_sequence_after_reconnection(self): # Enable deduplication on namespace doHttpPost(self.adminUrl + '/admin/v2/namespaces/public/default/deduplication', 'true') client = Client(self.serviceUrl) topic = 'my-python-test-producer-sequence-after-reconnection-' \ + str(time.time()) producer = client.create_producer(topic, producer_name='my-producer-name') self.assertEqual(producer.last_sequence_id(), -1) for i in range(10): producer.send(b'hello-%d' % i) self.assertEqual(producer.last_sequence_id(), i) producer.close() producer = client.create_producer(topic, producer_name='my-producer-name') self.assertEqual(producer.last_sequence_id(), 9) for i in range(10, 20): producer.send(b'hello-%d' % i) self.assertEqual(producer.last_sequence_id(), i) doHttpPost(self.adminUrl + '/admin/v2/namespaces/public/default/deduplication', 'false') def test_producer_deduplication(self): # Enable deduplication on namespace doHttpPost(self.adminUrl + '/admin/v2/namespaces/public/default/deduplication', 'true') client = Client(self.serviceUrl) topic = 'my-python-test-producer-deduplication-' + str(time.time()) producer = client.create_producer(topic, producer_name='my-producer-name') self.assertEqual(producer.last_sequence_id(), -1) consumer = client.subscribe(topic, 'my-sub') producer.send(b'hello-0', sequence_id=0) producer.send(b'hello-1', sequence_id=1) producer.send(b'hello-2', sequence_id=2) self.assertEqual(producer.last_sequence_id(), 2) # Repeat the messages and verify they're not received by consumer producer.send(b'hello-1', sequence_id=1) producer.send(b'hello-2', sequence_id=2) self.assertEqual(producer.last_sequence_id(), 2) for i in range(3): msg = consumer.receive() self.assertEqual(msg.data(), b'hello-%d' % i) consumer.acknowledge(msg) try: # No other messages should be received consumer.receive(timeout_millis=1000) self.assertTrue(False) except: # Exception is expected pass producer.close() producer = client.create_producer(topic, producer_name='my-producer-name') self.assertEqual(producer.last_sequence_id(), 2) # Repeat the messages and verify they're not received by consumer producer.send(b'hello-1', sequence_id=1) producer.send(b'hello-2', sequence_id=2) self.assertEqual(producer.last_sequence_id(), 2) try: # No other messages should be received consumer.receive(timeout_millis=1000) self.assertTrue(False) except: # Exception is expected pass doHttpPost(self.adminUrl + '/admin/v2/namespaces/public/default/deduplication', 'false') def test_producer_routing_mode(self): client = Client(self.serviceUrl) producer = client.create_producer('my-python-test-producer', message_routing_mode=PartitionsRoutingMode.UseSinglePartition) producer.send(b'test') client.close() def test_message_argument_errors(self): client = Client(self.serviceUrl) topic = 'my-python-test-producer' producer = client.create_producer(topic) content = 'test'.encode('utf-8') self._check_type_error(lambda: producer.send(5)) self._check_value_error(lambda: producer.send(content, properties='test')) self._check_value_error(lambda: producer.send(content, partition_key=5)) self._check_value_error(lambda: producer.send(content, sequence_id='test')) self._check_value_error(lambda: producer.send(content, replication_clusters=5)) self._check_value_error(lambda: producer.send(content, disable_replication='test')) self._check_value_error(lambda: producer.send(content, event_timestamp='test')) client.close() def test_client_argument_errors(self): self._check_value_error(lambda: Client(None)) self._check_value_error(lambda: Client(self.serviceUrl, authentication="test")) self._check_value_error(lambda: Client(self.serviceUrl, operation_timeout_seconds="test")) self._check_value_error(lambda: Client(self.serviceUrl, io_threads="test")) self._check_value_error(lambda: Client(self.serviceUrl, message_listener_threads="test")) self._check_value_error(lambda: Client(self.serviceUrl, concurrent_lookup_requests="test")) self._check_value_error(lambda: Client(self.serviceUrl, log_conf_file_path=5)) self._check_value_error(lambda: Client(self.serviceUrl, use_tls="test")) self._check_value_error(lambda: Client(self.serviceUrl, tls_trust_certs_file_path=5)) self._check_value_error(lambda: Client(self.serviceUrl, tls_allow_insecure_connection="test")) def test_producer_argument_errors(self): client = Client(self.serviceUrl) self._check_value_error(lambda: client.create_producer(None)) topic = 'my-python-test-producer' self._check_value_error(lambda: client.create_producer(topic, producer_name=5)) self._check_value_error(lambda: client.create_producer(topic, initial_sequence_id='test')) self._check_value_error(lambda: client.create_producer(topic, send_timeout_millis='test')) self._check_value_error(lambda: client.create_producer(topic, compression_type=None)) self._check_value_error(lambda: client.create_producer(topic, max_pending_messages='test')) self._check_value_error(lambda: client.create_producer(topic, block_if_queue_full='test')) self._check_value_error(lambda: client.create_producer(topic, batching_enabled='test')) self._check_value_error(lambda: client.create_producer(topic, batching_enabled='test')) self._check_value_error(lambda: client.create_producer(topic, batching_max_allowed_size_in_bytes='test')) self._check_value_error(lambda: client.create_producer(topic, batching_max_publish_delay_ms='test')) client.close() def test_consumer_argument_errors(self): client = Client(self.serviceUrl) topic = 'my-python-test-producer' sub_name = 'my-sub-name' self._check_value_error(lambda: client.subscribe(None, sub_name)) self._check_value_error(lambda: client.subscribe(topic, None)) self._check_value_error(lambda: client.subscribe(topic, sub_name, consumer_type=None)) self._check_value_error(lambda: client.subscribe(topic, sub_name, receiver_queue_size='test')) self._check_value_error(lambda: client.subscribe(topic, sub_name, consumer_name=5)) self._check_value_error(lambda: client.subscribe(topic, sub_name, unacked_messages_timeout_ms='test')) self._check_value_error(lambda: client.subscribe(topic, sub_name, broker_consumer_stats_cache_time_ms='test')) client.close() def test_reader_argument_errors(self): client = Client(self.serviceUrl) topic = 'my-python-test-producer' # This should not raise exception client.create_reader(topic, MessageId.earliest) self._check_value_error(lambda: client.create_reader(None, MessageId.earliest)) self._check_value_error(lambda: client.create_reader(topic, None)) self._check_value_error(lambda: client.create_reader(topic, MessageId.earliest, receiver_queue_size='test')) self._check_value_error(lambda: client.create_reader(topic, MessageId.earliest, reader_name=5)) client.close() def test_publish_compact_and_consume(self): client = Client(self.serviceUrl) topic = 'my-python-test_publish_compact_and_consume' producer = client.create_producer(topic, producer_name='my-producer-name', batching_enabled=False) self.assertEqual(producer.last_sequence_id(), -1) consumer = client.subscribe(topic, 'my-sub1', is_read_compacted=True) consumer.close() consumer2 = client.subscribe(topic, 'my-sub2', is_read_compacted=False) # producer create 2 messages with same key. producer.send(b'hello-0', partition_key='key0') producer.send(b'hello-1', partition_key='key0') producer.close() # issue compact command, and wait success url=self.adminUrl + '/admin/v2/persistent/public/default/my-python-test_publish_compact_and_consume/compaction' doHttpPut(url, '') while True: s=doHttpGet(url).decode('utf-8') if 'RUNNING' in s: print("Compact still running") print(s) time.sleep(0.2) else: self.assertTrue('SUCCESS' in s) print("Compact Complete now") print(s) break # after compact, consumer with `is_read_compacted=True`, expected read only the second message for same key. consumer1 = client.subscribe(topic, 'my-sub1', is_read_compacted=True) msg0 = consumer1.receive() self.assertEqual(msg0.data(), b'hello-1') consumer1.acknowledge(msg0) consumer1.close() # after compact, consumer with `is_read_compacted=False`, expected read 2 messages for same key. msg0 = consumer2.receive() self.assertEqual(msg0.data(), b'hello-0') consumer2.acknowledge(msg0) msg1 = consumer2.receive() self.assertEqual(msg1.data(), b'hello-1') consumer2.acknowledge(msg1) consumer2.close() client.close() def test_reader_has_message_available(self): # create client, producer, reader client = Client(self.serviceUrl) producer = client.create_producer('my-python-topic-reader-has-message-available') reader = client.create_reader('my-python-topic-reader-has-message-available', MessageId.latest) # before produce data, expected not has message available self.assertFalse(reader.has_message_available()); for i in range(10): producer.send(b'hello-%d' % i) # produced data, expected has message available self.assertTrue(reader.has_message_available()); for i in range(10): msg = reader.read_next() self.assertTrue(msg) self.assertEqual(msg.data(), b'hello-%d' % i) # consumed all data, expected not has message available self.assertFalse(reader.has_message_available()); for i in range(10, 20): producer.send(b'hello-%d' % i) # produced data again, expected has message available self.assertTrue(reader.has_message_available()); reader.close() producer.close() client.close() def test_seek(self): client = Client(self.serviceUrl) consumer = client.subscribe('my-python-topic-seek', 'my-sub', consumer_type=ConsumerType.Shared) producer = client.create_producer('my-python-topic-seek') for i in range(100): producer.send(b'hello-%d' % i) for i in range(100): msg = consumer.receive() self.assertEqual(msg.data(), b'hello-%d' % i) consumer.acknowledge(msg) # seek, and after reconnect, expected receive first message. consumer.seek(MessageId.earliest) time.sleep(0.5) msg = consumer.receive() self.assertEqual(msg.data(), b'hello-0') client.close() def test_v2_topics(self): self._v2_topics(self.serviceUrl) def test_v2_topics_http(self): self._v2_topics(self.adminUrl) def _v2_topics(self, url): client = Client(url) consumer = client.subscribe('my-v2-topic-producer-consumer', 'my-sub', consumer_type=ConsumerType.Shared) producer = client.create_producer('my-v2-topic-producer-consumer') producer.send(b'hello') msg = consumer.receive(1000) self.assertTrue(msg) self.assertEqual(msg.data(), b'hello') consumer.acknowledge(msg) try: msg = consumer.receive(100) self.assertTrue(False) # Should not reach this point except: pass # Exception is expected client.close() def test_topics_consumer(self): client = Client(self.serviceUrl) topic1 = 'persistent://public/default/my-python-topics-consumer-1' topic2 = 'persistent://public/default/my-python-topics-consumer-2' topic3 = 'persistent://public/default/my-python-topics-consumer-3' topics = [topic1, topic2, topic3] url1 = self.adminUrl + '/admin/v2/persistent/public/default/my-python-topics-consumer-1/partitions' url2 = self.adminUrl + '/admin/v2/persistent/public/default/my-python-topics-consumer-2/partitions' url3 = self.adminUrl + '/admin/v2/persistent/public/default/my-python-topics-consumer-3/partitions' doHttpPut(url1, '2') doHttpPut(url2, '3') doHttpPut(url3, '4') producer1 = client.create_producer(topic1) producer2 = client.create_producer(topic2) producer3 = client.create_producer(topic3) consumer = client.subscribe(topics, 'my-topics-consumer-sub', consumer_type=ConsumerType.Shared, receiver_queue_size=10 ) for i in range(100): producer1.send(b'hello-1-%d' % i) for i in range(100): producer2.send(b'hello-2-%d' % i) for i in range(100): producer3.send(b'hello-3-%d' % i) for i in range(300): msg = consumer.receive() consumer.acknowledge(msg) try: # No other messages should be received consumer.receive(timeout_millis=500) self.assertTrue(False) except: # Exception is expected pass client.close() def test_topics_pattern_consumer(self): import re client = Client(self.serviceUrl) topics_pattern = 'persistent://public/default/my-python-pattern-consumer.*' topic1 = 'persistent://public/default/my-python-pattern-consumer-1' topic2 = 'persistent://public/default/my-python-pattern-consumer-2' topic3 = 'persistent://public/default/my-python-pattern-consumer-3' url1 = self.adminUrl + '/admin/v2/persistent/public/default/my-python-pattern-consumer-1/partitions' url2 = self.adminUrl + '/admin/v2/persistent/public/default/my-python-pattern-consumer-2/partitions' url3 = self.adminUrl + '/admin/v2/persistent/public/default/my-python-pattern-consumer-3/partitions' doHttpPut(url1, '2') doHttpPut(url2, '3') doHttpPut(url3, '4') producer1 = client.create_producer(topic1) producer2 = client.create_producer(topic2) producer3 = client.create_producer(topic3) consumer = client.subscribe(re.compile(topics_pattern), 'my-pattern-consumer-sub', consumer_type = ConsumerType.Shared, receiver_queue_size = 10, pattern_auto_discovery_period = 1 ) # wait enough time to trigger auto discovery time.sleep(2) for i in range(100): producer1.send(b'hello-1-%d' % i) for i in range(100): producer2.send(b'hello-2-%d' % i) for i in range(100): producer3.send(b'hello-3-%d' % i) for i in range(300): msg = consumer.receive() consumer.acknowledge(msg) try: # No other messages should be received consumer.receive(timeout_millis=500) self.assertTrue(False) except: # Exception is expected pass client.close() def test_message_id(self): s = MessageId.earliest.serialize() self.assertEqual(MessageId.deserialize(s), MessageId.earliest) s = MessageId.latest.serialize() self.assertEqual(MessageId.deserialize(s), MessageId.latest) def test_get_topics_partitions(self): client = Client(self.serviceUrl) topic_partitioned = 'persistent://public/default/test_get_topics_partitions' topic_non_partitioned = 'persistent://public/default/test_get_topics_not-partitioned' url1 = self.adminUrl + '/admin/v2/persistent/public/default/test_get_topics_partitions/partitions' doHttpPut(url1, '3') self.assertEqual(client.get_topic_partitions(topic_partitioned), ['persistent://public/default/test_get_topics_partitions-partition-0', 'persistent://public/default/test_get_topics_partitions-partition-1', 'persistent://public/default/test_get_topics_partitions-partition-2']) self.assertEqual(client.get_topic_partitions(topic_non_partitioned), [topic_non_partitioned]) client.close() def test_token_auth(self): with open('/tmp/pulsar-test-data/tokens/token.txt') as tf: token = tf.read().strip() # Use adminUrl to test both HTTP request and binary protocol client = Client(self.adminUrl, authentication=AuthenticationToken(token)) consumer = client.subscribe('persistent://private/auth/my-python-topic-token-auth', 'my-sub', consumer_type=ConsumerType.Shared) producer = client.create_producer('persistent://private/auth/my-python-topic-token-auth') producer.send(b'hello') msg = consumer.receive(1000) self.assertTrue(msg) self.assertEqual(msg.data(), b'hello') client.close() def test_token_auth_supplier(self): def read_token(): with open('/tmp/pulsar-test-data/tokens/token.txt') as tf: return tf.read().strip() client = Client(self.serviceUrl, authentication=AuthenticationToken(read_token)) consumer = client.subscribe('persistent://private/auth/my-python-topic-token-auth', 'my-sub', consumer_type=ConsumerType.Shared) producer = client.create_producer('persistent://private/auth/my-python-topic-token-auth') producer.send(b'hello') msg = consumer.receive(1000) self.assertTrue(msg) self.assertEqual(msg.data(), b'hello') client.close() def test_producer_consumer_zstd(self): client = Client(self.serviceUrl) consumer = client.subscribe('my-python-topic-producer-consumer-zstd', 'my-sub', consumer_type=ConsumerType.Shared) producer = client.create_producer('my-python-topic-producer-consumer-zstd', compression_type=CompressionType.ZSTD) producer.send(b'hello') msg = consumer.receive(1000) self.assertTrue(msg) self.assertEqual(msg.data(), b'hello') try: msg = consumer.receive(100) self.assertTrue(False) # Should not reach this point except: pass # Exception is expected consumer.unsubscribe() client.close() ##### def test_get_topic_name(self): client = Client(self.serviceUrl) consumer = client.subscribe('persistent://public/default/topic_name_test', 'topic_name_test_sub', consumer_type=ConsumerType.Shared) producer = client.create_producer('persistent://public/default/topic_name_test') producer.send(b'hello') msg = consumer.receive(1000) self.assertEqual(msg.topic_name(), 'persistent://public/default/topic_name_test') client.close() def test_get_partitioned_topic_name(self): client = Client(self.serviceUrl) url1 = self.adminUrl + '/admin/v2/persistent/public/default/partitioned_topic_name_test/partitions' doHttpPut(url1, '3') partitions = ['persistent://public/default/partitioned_topic_name_test-partition-0', 'persistent://public/default/partitioned_topic_name_test-partition-1', 'persistent://public/default/partitioned_topic_name_test-partition-2'] self.assertEqual(client.get_topic_partitions('persistent://public/default/partitioned_topic_name_test'), partitions) consumer = client.subscribe('persistent://public/default/partitioned_topic_name_test', 'partitioned_topic_name_test_sub', consumer_type=ConsumerType.Shared) producer = client.create_producer('persistent://public/default/partitioned_topic_name_test') producer.send(b'hello') msg = consumer.receive(1000) self.assertTrue(msg.topic_name() in partitions) client.close() def _check_value_error(self, fun): try: fun() # Should throw exception self.assertTrue(False) except ValueError: pass # Expected def _check_type_error(self, fun): try: fun() # Should throw exception self.assertTrue(False) except TypeError: pass # Expected if __name__ == '__main__': main()
nkurihar/pulsar
pulsar-client-cpp/python/pulsar_test.py
Python
apache-2.0
36,453
# -*- coding: utf-8 -*- from __future__ import unicode_literals from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('jobs', '0003_auto_20150510_1707'), ] operations = [ migrations.RemoveField( model_name='job', name='reviewers_comment', ), migrations.RemoveField( model_name='meetup', name='reviewers_comment', ), migrations.AddField( model_name='job', name='internal_comment', field=models.TextField(null=True, blank=True, help_text="Write you comments here. They won't be sent to the company/organisation."), ), migrations.AddField( model_name='job', name='message_to_organisation', field=models.TextField(null=True, blank=True, help_text='Write your message to the company/organisation here.'), ), migrations.AddField( model_name='meetup', name='internal_comment', field=models.TextField(null=True, blank=True, help_text="Write you comments here. They won't be sent to the company/organisation."), ), migrations.AddField( model_name='meetup', name='message_to_organisation', field=models.TextField(null=True, blank=True, help_text='Write your message to the company/organisation here.'), ), migrations.AlterField( model_name='job', name='expiration_date', field=models.DateField(null=True, blank=True, help_text='Automatically is set 60 days from posting. You can override this.'), ), migrations.AlterField( model_name='job', name='review_status', field=models.CharField(choices=[('OPN', 'Open'), ('URE', 'Under review'), ('RTP', 'Ready to publish'), ('REJ', 'Rejected'), ('PUB', 'Published')], max_length=3, default='OPN'), ), migrations.AlterField( model_name='job', name='website', field=models.URLField(null=True, blank=True, help_text='Link to your offer or company website.'), ), migrations.AlterField( model_name='meetup', name='expiration_date', field=models.DateField(null=True, blank=True, help_text='Automatically is set 60 days from posting. You can override this.'), ), migrations.AlterField( model_name='meetup', name='meetup_end_date', field=models.DateTimeField(null=True, blank=True, help_text='Date format: YYYY-MM-DD'), ), migrations.AlterField( model_name='meetup', name='meetup_start_date', field=models.DateTimeField(null=True, help_text='If this is a recurring meetup/event, please enter a start date. Date format: YYYY-MM-DD'), ), migrations.AlterField( model_name='meetup', name='meetup_type', field=models.CharField(choices=[('MEET', 'meetup'), ('CONF', 'conference'), ('WORK', 'workshop')], max_length=4, default='MEET'), ), migrations.AlterField( model_name='meetup', name='recurrence', field=models.CharField(null=True, blank=True, max_length=255, help_text='Provide details of recurrence if applicable.'), ), migrations.AlterField( model_name='meetup', name='review_status', field=models.CharField(choices=[('OPN', 'Open'), ('URE', 'Under review'), ('RTP', 'Ready to publish'), ('REJ', 'Rejected'), ('PUB', 'Published')], max_length=3, default='OPN'), ), migrations.AlterField( model_name='meetup', name='website', field=models.URLField(null=True, blank=True, help_text='Link to your meetup or organisation website.'), ), ]
patjouk/djangogirls
jobs/migrations/0004_auto_20150712_1803.py
Python
bsd-3-clause
3,951
""" column 'instances' will be deleted later. Has to be nullable for transition Revision ID: 266658781c00 Revises: 204aae05372a Create Date: 2019-04-15 16:27:22.362244 """ # revision identifiers, used by Alembic. revision = '266658781c00' down_revision = '204aae05372a' from alembic import op import sqlalchemy as sa from sqlalchemy.dialects import postgresql def upgrade(): op.alter_column('equipments_provider', 'instances', existing_type=postgresql.ARRAY(sa.TEXT()), nullable=True) def downgrade(): op.alter_column( 'equipments_provider', 'instances', existing_type=postgresql.ARRAY(sa.TEXT()), nullable=False )
pbougue/navitia
source/tyr/migrations/versions/266658781c00_instances_nullable_in_equipments_provider.py
Python
agpl-3.0
643
from .wikiapi import * class Auxiliar_Functions(object): def getClubShieldImage(self,response_xml): wikiapi = WikiApi({ 'locale' : 'en'}) response_xml = wikiapi.replace(response_xml) ind_i = wikiapi.getIndex_substring("infobox",response_xml) ind_f = wikiapi.getIndex_substring("scope",response_xml) response_xml = response_xml[ind_i:ind_f] ind_i = wikiapi.getIndex_substring("src=\"",response_xml) ind_f = wikiapi.getIndex_substring("\" width",response_xml) return "https:"+response_xml[ind_i+len("src=\""):ind_f] def getStadiumByClub(self,club, hash_stadium_club): for key, value in hash_stadium_club.items(): if key == club: return value def get_river_dynamic_points(self,river_name): data_points = [] with open("static/river_points/"+str(river_name)+".txt", 'r+') as file: for line in file: data_points.append(line.splitlines()) return data_points def do_data_list(self,hash_data): for key in hash_data: if "city" in key: host_city = hash_data[key] if "Motto" in key: lema = hash_data[key] if "Nations" in key: num_nations = hash_data[key] if len(num_nations)>3: num_nations = num_nations.split(" ")[0] if "Athletes" in key: num_athletes = hash_data[key] if len(num_athletes)>6: num_athletes = num_athletes.split(" (")[0] if "Events" in key: num_events = hash_data[key].split(" in")[0] if "Opening" in key: opening_date = hash_data[key] if "Closing" in key: closing_date = hash_data[key] if "Stadium" in key: stadium = hash_data[key] data_list = [host_city,lema,num_nations,num_athletes,num_events,opening_date,closing_date,stadium] return data_list def getCoord_byCity(self,city): city = "\""+city+"\"" sparql = SPARQLWrapper("https://query.wikidata.org/sparql") sparql.setReturnFormat(JSON) sparql.setQuery("""SELECT DISTINCT ?coord WHERE { ?city wdt:P31/wdt:P279* wd:Q515 . ?city wdt:P625 ?coord . ?city rdfs:label ?cityname . FILTER (regex(?cityname,"""+city+""")) FILTER (lang(?cityname) = "en") SERVICE wikibase:label { bd:serviceParam wikibase:language "en" . } } LIMIT 1""") queryResults = sparql.query().convert() for result in queryResults["results"]["bindings"]: coord = result["coord"]["value"] return coord
gbarbosa4/WikimediaDataProject
WDLG/utils/auxiliar_functions.py
Python
mit
3,029
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is regenerated. # -------------------------------------------------------------------------- from typing import Any, AsyncIterable, Callable, Dict, Generic, Optional, TypeVar, Union import warnings from azure.core.async_paging import AsyncItemPaged, AsyncList from azure.core.exceptions import ClientAuthenticationError, HttpResponseError, ResourceExistsError, ResourceNotFoundError, map_error from azure.core.pipeline import PipelineResponse from azure.core.pipeline.transport import AsyncHttpResponse, HttpRequest from azure.core.polling import AsyncLROPoller, AsyncNoPolling, AsyncPollingMethod from azure.mgmt.core.exceptions import ARMErrorFormat from azure.mgmt.core.polling.async_arm_polling import AsyncARMPolling from ... import models as _models T = TypeVar('T') ClsType = Optional[Callable[[PipelineResponse[HttpRequest, AsyncHttpResponse], T, Dict[str, Any]], Any]] class ExpressRouteCircuitsOperations: """ExpressRouteCircuitsOperations async operations. You should not instantiate this class directly. Instead, you should create a Client instance that instantiates it for you and attaches it as an attribute. :ivar models: Alias to model classes used in this operation group. :type models: ~azure.mgmt.network.v2020_04_01.models :param client: Client for service requests. :param config: Configuration of service client. :param serializer: An object model serializer. :param deserializer: An object model deserializer. """ models = _models def __init__(self, client, config, serializer, deserializer) -> None: self._client = client self._serialize = serializer self._deserialize = deserializer self._config = config async def _delete_initial( self, resource_group_name: str, circuit_name: str, **kwargs: Any ) -> None: cls = kwargs.pop('cls', None) # type: ClsType[None] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2020-04-01" accept = "application/json" # Construct URL url = self._delete_initial.metadata['url'] # type: ignore path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'circuitName': self._serialize.url("circuit_name", circuit_name, 'str'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') request = self._client.delete(url, query_parameters, header_parameters) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200, 202, 204]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) if cls: return cls(pipeline_response, None, {}) _delete_initial.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/expressRouteCircuits/{circuitName}'} # type: ignore async def begin_delete( self, resource_group_name: str, circuit_name: str, **kwargs: Any ) -> AsyncLROPoller[None]: """Deletes the specified express route circuit. :param resource_group_name: The name of the resource group. :type resource_group_name: str :param circuit_name: The name of the express route circuit. :type circuit_name: str :keyword callable cls: A custom type or function that will be passed the direct response :keyword str continuation_token: A continuation token to restart a poller from a saved state. :keyword polling: By default, your polling method will be AsyncARMPolling. Pass in False for this operation to not poll, or pass in your own initialized polling object for a personal polling strategy. :paramtype polling: bool or ~azure.core.polling.AsyncPollingMethod :keyword int polling_interval: Default waiting time between two polls for LRO operations if no Retry-After header is present. :return: An instance of AsyncLROPoller that returns either None or the result of cls(response) :rtype: ~azure.core.polling.AsyncLROPoller[None] :raises ~azure.core.exceptions.HttpResponseError: """ polling = kwargs.pop('polling', True) # type: Union[bool, AsyncPollingMethod] cls = kwargs.pop('cls', None) # type: ClsType[None] lro_delay = kwargs.pop( 'polling_interval', self._config.polling_interval ) cont_token = kwargs.pop('continuation_token', None) # type: Optional[str] if cont_token is None: raw_result = await self._delete_initial( resource_group_name=resource_group_name, circuit_name=circuit_name, cls=lambda x,y,z: x, **kwargs ) kwargs.pop('error_map', None) kwargs.pop('content_type', None) def get_long_running_output(pipeline_response): if cls: return cls(pipeline_response, None, {}) path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'circuitName': self._serialize.url("circuit_name", circuit_name, 'str'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } if polling is True: polling_method = AsyncARMPolling(lro_delay, lro_options={'final-state-via': 'location'}, path_format_arguments=path_format_arguments, **kwargs) elif polling is False: polling_method = AsyncNoPolling() else: polling_method = polling if cont_token: return AsyncLROPoller.from_continuation_token( polling_method=polling_method, continuation_token=cont_token, client=self._client, deserialization_callback=get_long_running_output ) else: return AsyncLROPoller(self._client, raw_result, get_long_running_output, polling_method) begin_delete.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/expressRouteCircuits/{circuitName}'} # type: ignore async def get( self, resource_group_name: str, circuit_name: str, **kwargs: Any ) -> "_models.ExpressRouteCircuit": """Gets information about the specified express route circuit. :param resource_group_name: The name of the resource group. :type resource_group_name: str :param circuit_name: The name of express route circuit. :type circuit_name: str :keyword callable cls: A custom type or function that will be passed the direct response :return: ExpressRouteCircuit, or the result of cls(response) :rtype: ~azure.mgmt.network.v2020_04_01.models.ExpressRouteCircuit :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["_models.ExpressRouteCircuit"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2020-04-01" accept = "application/json" # Construct URL url = self.get.metadata['url'] # type: ignore path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'circuitName': self._serialize.url("circuit_name", circuit_name, 'str'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') request = self._client.get(url, query_parameters, header_parameters) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) deserialized = self._deserialize('ExpressRouteCircuit', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized get.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/expressRouteCircuits/{circuitName}'} # type: ignore async def _create_or_update_initial( self, resource_group_name: str, circuit_name: str, parameters: "_models.ExpressRouteCircuit", **kwargs: Any ) -> "_models.ExpressRouteCircuit": cls = kwargs.pop('cls', None) # type: ClsType["_models.ExpressRouteCircuit"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2020-04-01" content_type = kwargs.pop("content_type", "application/json") accept = "application/json" # Construct URL url = self._create_or_update_initial.metadata['url'] # type: ignore path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'circuitName': self._serialize.url("circuit_name", circuit_name, 'str'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Content-Type'] = self._serialize.header("content_type", content_type, 'str') header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') body_content_kwargs = {} # type: Dict[str, Any] body_content = self._serialize.body(parameters, 'ExpressRouteCircuit') body_content_kwargs['content'] = body_content request = self._client.put(url, query_parameters, header_parameters, **body_content_kwargs) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200, 201]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) if response.status_code == 200: deserialized = self._deserialize('ExpressRouteCircuit', pipeline_response) if response.status_code == 201: deserialized = self._deserialize('ExpressRouteCircuit', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized _create_or_update_initial.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/expressRouteCircuits/{circuitName}'} # type: ignore async def begin_create_or_update( self, resource_group_name: str, circuit_name: str, parameters: "_models.ExpressRouteCircuit", **kwargs: Any ) -> AsyncLROPoller["_models.ExpressRouteCircuit"]: """Creates or updates an express route circuit. :param resource_group_name: The name of the resource group. :type resource_group_name: str :param circuit_name: The name of the circuit. :type circuit_name: str :param parameters: Parameters supplied to the create or update express route circuit operation. :type parameters: ~azure.mgmt.network.v2020_04_01.models.ExpressRouteCircuit :keyword callable cls: A custom type or function that will be passed the direct response :keyword str continuation_token: A continuation token to restart a poller from a saved state. :keyword polling: By default, your polling method will be AsyncARMPolling. Pass in False for this operation to not poll, or pass in your own initialized polling object for a personal polling strategy. :paramtype polling: bool or ~azure.core.polling.AsyncPollingMethod :keyword int polling_interval: Default waiting time between two polls for LRO operations if no Retry-After header is present. :return: An instance of AsyncLROPoller that returns either ExpressRouteCircuit or the result of cls(response) :rtype: ~azure.core.polling.AsyncLROPoller[~azure.mgmt.network.v2020_04_01.models.ExpressRouteCircuit] :raises ~azure.core.exceptions.HttpResponseError: """ polling = kwargs.pop('polling', True) # type: Union[bool, AsyncPollingMethod] cls = kwargs.pop('cls', None) # type: ClsType["_models.ExpressRouteCircuit"] lro_delay = kwargs.pop( 'polling_interval', self._config.polling_interval ) cont_token = kwargs.pop('continuation_token', None) # type: Optional[str] if cont_token is None: raw_result = await self._create_or_update_initial( resource_group_name=resource_group_name, circuit_name=circuit_name, parameters=parameters, cls=lambda x,y,z: x, **kwargs ) kwargs.pop('error_map', None) kwargs.pop('content_type', None) def get_long_running_output(pipeline_response): deserialized = self._deserialize('ExpressRouteCircuit', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'circuitName': self._serialize.url("circuit_name", circuit_name, 'str'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } if polling is True: polling_method = AsyncARMPolling(lro_delay, lro_options={'final-state-via': 'azure-async-operation'}, path_format_arguments=path_format_arguments, **kwargs) elif polling is False: polling_method = AsyncNoPolling() else: polling_method = polling if cont_token: return AsyncLROPoller.from_continuation_token( polling_method=polling_method, continuation_token=cont_token, client=self._client, deserialization_callback=get_long_running_output ) else: return AsyncLROPoller(self._client, raw_result, get_long_running_output, polling_method) begin_create_or_update.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/expressRouteCircuits/{circuitName}'} # type: ignore async def update_tags( self, resource_group_name: str, circuit_name: str, parameters: "_models.TagsObject", **kwargs: Any ) -> "_models.ExpressRouteCircuit": """Updates an express route circuit tags. :param resource_group_name: The name of the resource group. :type resource_group_name: str :param circuit_name: The name of the circuit. :type circuit_name: str :param parameters: Parameters supplied to update express route circuit tags. :type parameters: ~azure.mgmt.network.v2020_04_01.models.TagsObject :keyword callable cls: A custom type or function that will be passed the direct response :return: ExpressRouteCircuit, or the result of cls(response) :rtype: ~azure.mgmt.network.v2020_04_01.models.ExpressRouteCircuit :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["_models.ExpressRouteCircuit"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2020-04-01" content_type = kwargs.pop("content_type", "application/json") accept = "application/json" # Construct URL url = self.update_tags.metadata['url'] # type: ignore path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'circuitName': self._serialize.url("circuit_name", circuit_name, 'str'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Content-Type'] = self._serialize.header("content_type", content_type, 'str') header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') body_content_kwargs = {} # type: Dict[str, Any] body_content = self._serialize.body(parameters, 'TagsObject') body_content_kwargs['content'] = body_content request = self._client.patch(url, query_parameters, header_parameters, **body_content_kwargs) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) deserialized = self._deserialize('ExpressRouteCircuit', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized update_tags.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/expressRouteCircuits/{circuitName}'} # type: ignore async def _list_arp_table_initial( self, resource_group_name: str, circuit_name: str, peering_name: str, device_path: str, **kwargs: Any ) -> Optional["_models.ExpressRouteCircuitsArpTableListResult"]: cls = kwargs.pop('cls', None) # type: ClsType[Optional["_models.ExpressRouteCircuitsArpTableListResult"]] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2020-04-01" accept = "application/json" # Construct URL url = self._list_arp_table_initial.metadata['url'] # type: ignore path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'circuitName': self._serialize.url("circuit_name", circuit_name, 'str'), 'peeringName': self._serialize.url("peering_name", peering_name, 'str'), 'devicePath': self._serialize.url("device_path", device_path, 'str'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') request = self._client.post(url, query_parameters, header_parameters) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200, 202]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) deserialized = None if response.status_code == 200: deserialized = self._deserialize('ExpressRouteCircuitsArpTableListResult', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized _list_arp_table_initial.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/expressRouteCircuits/{circuitName}/peerings/{peeringName}/arpTables/{devicePath}'} # type: ignore async def begin_list_arp_table( self, resource_group_name: str, circuit_name: str, peering_name: str, device_path: str, **kwargs: Any ) -> AsyncLROPoller["_models.ExpressRouteCircuitsArpTableListResult"]: """Gets the currently advertised ARP table associated with the express route circuit in a resource group. :param resource_group_name: The name of the resource group. :type resource_group_name: str :param circuit_name: The name of the express route circuit. :type circuit_name: str :param peering_name: The name of the peering. :type peering_name: str :param device_path: The path of the device. :type device_path: str :keyword callable cls: A custom type or function that will be passed the direct response :keyword str continuation_token: A continuation token to restart a poller from a saved state. :keyword polling: By default, your polling method will be AsyncARMPolling. Pass in False for this operation to not poll, or pass in your own initialized polling object for a personal polling strategy. :paramtype polling: bool or ~azure.core.polling.AsyncPollingMethod :keyword int polling_interval: Default waiting time between two polls for LRO operations if no Retry-After header is present. :return: An instance of AsyncLROPoller that returns either ExpressRouteCircuitsArpTableListResult or the result of cls(response) :rtype: ~azure.core.polling.AsyncLROPoller[~azure.mgmt.network.v2020_04_01.models.ExpressRouteCircuitsArpTableListResult] :raises ~azure.core.exceptions.HttpResponseError: """ polling = kwargs.pop('polling', True) # type: Union[bool, AsyncPollingMethod] cls = kwargs.pop('cls', None) # type: ClsType["_models.ExpressRouteCircuitsArpTableListResult"] lro_delay = kwargs.pop( 'polling_interval', self._config.polling_interval ) cont_token = kwargs.pop('continuation_token', None) # type: Optional[str] if cont_token is None: raw_result = await self._list_arp_table_initial( resource_group_name=resource_group_name, circuit_name=circuit_name, peering_name=peering_name, device_path=device_path, cls=lambda x,y,z: x, **kwargs ) kwargs.pop('error_map', None) kwargs.pop('content_type', None) def get_long_running_output(pipeline_response): deserialized = self._deserialize('ExpressRouteCircuitsArpTableListResult', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'circuitName': self._serialize.url("circuit_name", circuit_name, 'str'), 'peeringName': self._serialize.url("peering_name", peering_name, 'str'), 'devicePath': self._serialize.url("device_path", device_path, 'str'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } if polling is True: polling_method = AsyncARMPolling(lro_delay, lro_options={'final-state-via': 'location'}, path_format_arguments=path_format_arguments, **kwargs) elif polling is False: polling_method = AsyncNoPolling() else: polling_method = polling if cont_token: return AsyncLROPoller.from_continuation_token( polling_method=polling_method, continuation_token=cont_token, client=self._client, deserialization_callback=get_long_running_output ) else: return AsyncLROPoller(self._client, raw_result, get_long_running_output, polling_method) begin_list_arp_table.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/expressRouteCircuits/{circuitName}/peerings/{peeringName}/arpTables/{devicePath}'} # type: ignore async def _list_routes_table_initial( self, resource_group_name: str, circuit_name: str, peering_name: str, device_path: str, **kwargs: Any ) -> Optional["_models.ExpressRouteCircuitsRoutesTableListResult"]: cls = kwargs.pop('cls', None) # type: ClsType[Optional["_models.ExpressRouteCircuitsRoutesTableListResult"]] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2020-04-01" accept = "application/json" # Construct URL url = self._list_routes_table_initial.metadata['url'] # type: ignore path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'circuitName': self._serialize.url("circuit_name", circuit_name, 'str'), 'peeringName': self._serialize.url("peering_name", peering_name, 'str'), 'devicePath': self._serialize.url("device_path", device_path, 'str'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') request = self._client.post(url, query_parameters, header_parameters) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200, 202]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) deserialized = None if response.status_code == 200: deserialized = self._deserialize('ExpressRouteCircuitsRoutesTableListResult', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized _list_routes_table_initial.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/expressRouteCircuits/{circuitName}/peerings/{peeringName}/routeTables/{devicePath}'} # type: ignore async def begin_list_routes_table( self, resource_group_name: str, circuit_name: str, peering_name: str, device_path: str, **kwargs: Any ) -> AsyncLROPoller["_models.ExpressRouteCircuitsRoutesTableListResult"]: """Gets the currently advertised routes table associated with the express route circuit in a resource group. :param resource_group_name: The name of the resource group. :type resource_group_name: str :param circuit_name: The name of the express route circuit. :type circuit_name: str :param peering_name: The name of the peering. :type peering_name: str :param device_path: The path of the device. :type device_path: str :keyword callable cls: A custom type or function that will be passed the direct response :keyword str continuation_token: A continuation token to restart a poller from a saved state. :keyword polling: By default, your polling method will be AsyncARMPolling. Pass in False for this operation to not poll, or pass in your own initialized polling object for a personal polling strategy. :paramtype polling: bool or ~azure.core.polling.AsyncPollingMethod :keyword int polling_interval: Default waiting time between two polls for LRO operations if no Retry-After header is present. :return: An instance of AsyncLROPoller that returns either ExpressRouteCircuitsRoutesTableListResult or the result of cls(response) :rtype: ~azure.core.polling.AsyncLROPoller[~azure.mgmt.network.v2020_04_01.models.ExpressRouteCircuitsRoutesTableListResult] :raises ~azure.core.exceptions.HttpResponseError: """ polling = kwargs.pop('polling', True) # type: Union[bool, AsyncPollingMethod] cls = kwargs.pop('cls', None) # type: ClsType["_models.ExpressRouteCircuitsRoutesTableListResult"] lro_delay = kwargs.pop( 'polling_interval', self._config.polling_interval ) cont_token = kwargs.pop('continuation_token', None) # type: Optional[str] if cont_token is None: raw_result = await self._list_routes_table_initial( resource_group_name=resource_group_name, circuit_name=circuit_name, peering_name=peering_name, device_path=device_path, cls=lambda x,y,z: x, **kwargs ) kwargs.pop('error_map', None) kwargs.pop('content_type', None) def get_long_running_output(pipeline_response): deserialized = self._deserialize('ExpressRouteCircuitsRoutesTableListResult', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'circuitName': self._serialize.url("circuit_name", circuit_name, 'str'), 'peeringName': self._serialize.url("peering_name", peering_name, 'str'), 'devicePath': self._serialize.url("device_path", device_path, 'str'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } if polling is True: polling_method = AsyncARMPolling(lro_delay, lro_options={'final-state-via': 'location'}, path_format_arguments=path_format_arguments, **kwargs) elif polling is False: polling_method = AsyncNoPolling() else: polling_method = polling if cont_token: return AsyncLROPoller.from_continuation_token( polling_method=polling_method, continuation_token=cont_token, client=self._client, deserialization_callback=get_long_running_output ) else: return AsyncLROPoller(self._client, raw_result, get_long_running_output, polling_method) begin_list_routes_table.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/expressRouteCircuits/{circuitName}/peerings/{peeringName}/routeTables/{devicePath}'} # type: ignore async def _list_routes_table_summary_initial( self, resource_group_name: str, circuit_name: str, peering_name: str, device_path: str, **kwargs: Any ) -> Optional["_models.ExpressRouteCircuitsRoutesTableSummaryListResult"]: cls = kwargs.pop('cls', None) # type: ClsType[Optional["_models.ExpressRouteCircuitsRoutesTableSummaryListResult"]] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2020-04-01" accept = "application/json" # Construct URL url = self._list_routes_table_summary_initial.metadata['url'] # type: ignore path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'circuitName': self._serialize.url("circuit_name", circuit_name, 'str'), 'peeringName': self._serialize.url("peering_name", peering_name, 'str'), 'devicePath': self._serialize.url("device_path", device_path, 'str'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') request = self._client.post(url, query_parameters, header_parameters) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200, 202]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) deserialized = None if response.status_code == 200: deserialized = self._deserialize('ExpressRouteCircuitsRoutesTableSummaryListResult', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized _list_routes_table_summary_initial.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/expressRouteCircuits/{circuitName}/peerings/{peeringName}/routeTablesSummary/{devicePath}'} # type: ignore async def begin_list_routes_table_summary( self, resource_group_name: str, circuit_name: str, peering_name: str, device_path: str, **kwargs: Any ) -> AsyncLROPoller["_models.ExpressRouteCircuitsRoutesTableSummaryListResult"]: """Gets the currently advertised routes table summary associated with the express route circuit in a resource group. :param resource_group_name: The name of the resource group. :type resource_group_name: str :param circuit_name: The name of the express route circuit. :type circuit_name: str :param peering_name: The name of the peering. :type peering_name: str :param device_path: The path of the device. :type device_path: str :keyword callable cls: A custom type or function that will be passed the direct response :keyword str continuation_token: A continuation token to restart a poller from a saved state. :keyword polling: By default, your polling method will be AsyncARMPolling. Pass in False for this operation to not poll, or pass in your own initialized polling object for a personal polling strategy. :paramtype polling: bool or ~azure.core.polling.AsyncPollingMethod :keyword int polling_interval: Default waiting time between two polls for LRO operations if no Retry-After header is present. :return: An instance of AsyncLROPoller that returns either ExpressRouteCircuitsRoutesTableSummaryListResult or the result of cls(response) :rtype: ~azure.core.polling.AsyncLROPoller[~azure.mgmt.network.v2020_04_01.models.ExpressRouteCircuitsRoutesTableSummaryListResult] :raises ~azure.core.exceptions.HttpResponseError: """ polling = kwargs.pop('polling', True) # type: Union[bool, AsyncPollingMethod] cls = kwargs.pop('cls', None) # type: ClsType["_models.ExpressRouteCircuitsRoutesTableSummaryListResult"] lro_delay = kwargs.pop( 'polling_interval', self._config.polling_interval ) cont_token = kwargs.pop('continuation_token', None) # type: Optional[str] if cont_token is None: raw_result = await self._list_routes_table_summary_initial( resource_group_name=resource_group_name, circuit_name=circuit_name, peering_name=peering_name, device_path=device_path, cls=lambda x,y,z: x, **kwargs ) kwargs.pop('error_map', None) kwargs.pop('content_type', None) def get_long_running_output(pipeline_response): deserialized = self._deserialize('ExpressRouteCircuitsRoutesTableSummaryListResult', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'circuitName': self._serialize.url("circuit_name", circuit_name, 'str'), 'peeringName': self._serialize.url("peering_name", peering_name, 'str'), 'devicePath': self._serialize.url("device_path", device_path, 'str'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } if polling is True: polling_method = AsyncARMPolling(lro_delay, lro_options={'final-state-via': 'location'}, path_format_arguments=path_format_arguments, **kwargs) elif polling is False: polling_method = AsyncNoPolling() else: polling_method = polling if cont_token: return AsyncLROPoller.from_continuation_token( polling_method=polling_method, continuation_token=cont_token, client=self._client, deserialization_callback=get_long_running_output ) else: return AsyncLROPoller(self._client, raw_result, get_long_running_output, polling_method) begin_list_routes_table_summary.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/expressRouteCircuits/{circuitName}/peerings/{peeringName}/routeTablesSummary/{devicePath}'} # type: ignore async def get_stats( self, resource_group_name: str, circuit_name: str, **kwargs: Any ) -> "_models.ExpressRouteCircuitStats": """Gets all the stats from an express route circuit in a resource group. :param resource_group_name: The name of the resource group. :type resource_group_name: str :param circuit_name: The name of the express route circuit. :type circuit_name: str :keyword callable cls: A custom type or function that will be passed the direct response :return: ExpressRouteCircuitStats, or the result of cls(response) :rtype: ~azure.mgmt.network.v2020_04_01.models.ExpressRouteCircuitStats :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["_models.ExpressRouteCircuitStats"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2020-04-01" accept = "application/json" # Construct URL url = self.get_stats.metadata['url'] # type: ignore path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'circuitName': self._serialize.url("circuit_name", circuit_name, 'str'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') request = self._client.get(url, query_parameters, header_parameters) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) deserialized = self._deserialize('ExpressRouteCircuitStats', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized get_stats.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/expressRouteCircuits/{circuitName}/stats'} # type: ignore async def get_peering_stats( self, resource_group_name: str, circuit_name: str, peering_name: str, **kwargs: Any ) -> "_models.ExpressRouteCircuitStats": """Gets all stats from an express route circuit in a resource group. :param resource_group_name: The name of the resource group. :type resource_group_name: str :param circuit_name: The name of the express route circuit. :type circuit_name: str :param peering_name: The name of the peering. :type peering_name: str :keyword callable cls: A custom type or function that will be passed the direct response :return: ExpressRouteCircuitStats, or the result of cls(response) :rtype: ~azure.mgmt.network.v2020_04_01.models.ExpressRouteCircuitStats :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["_models.ExpressRouteCircuitStats"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2020-04-01" accept = "application/json" # Construct URL url = self.get_peering_stats.metadata['url'] # type: ignore path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'circuitName': self._serialize.url("circuit_name", circuit_name, 'str'), 'peeringName': self._serialize.url("peering_name", peering_name, 'str'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') request = self._client.get(url, query_parameters, header_parameters) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) deserialized = self._deserialize('ExpressRouteCircuitStats', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized get_peering_stats.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/expressRouteCircuits/{circuitName}/peerings/{peeringName}/stats'} # type: ignore def list( self, resource_group_name: str, **kwargs: Any ) -> AsyncIterable["_models.ExpressRouteCircuitListResult"]: """Gets all the express route circuits in a resource group. :param resource_group_name: The name of the resource group. :type resource_group_name: str :keyword callable cls: A custom type or function that will be passed the direct response :return: An iterator like instance of either ExpressRouteCircuitListResult or the result of cls(response) :rtype: ~azure.core.async_paging.AsyncItemPaged[~azure.mgmt.network.v2020_04_01.models.ExpressRouteCircuitListResult] :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["_models.ExpressRouteCircuitListResult"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2020-04-01" accept = "application/json" def prepare_request(next_link=None): # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') if not next_link: # Construct URL url = self.list.metadata['url'] # type: ignore path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') request = self._client.get(url, query_parameters, header_parameters) else: url = next_link query_parameters = {} # type: Dict[str, Any] request = self._client.get(url, query_parameters, header_parameters) return request async def extract_data(pipeline_response): deserialized = self._deserialize('ExpressRouteCircuitListResult', pipeline_response) list_of_elem = deserialized.value if cls: list_of_elem = cls(list_of_elem) return deserialized.next_link or None, AsyncList(list_of_elem) async def get_next(next_link=None): request = prepare_request(next_link) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) return pipeline_response return AsyncItemPaged( get_next, extract_data ) list.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/expressRouteCircuits'} # type: ignore def list_all( self, **kwargs: Any ) -> AsyncIterable["_models.ExpressRouteCircuitListResult"]: """Gets all the express route circuits in a subscription. :keyword callable cls: A custom type or function that will be passed the direct response :return: An iterator like instance of either ExpressRouteCircuitListResult or the result of cls(response) :rtype: ~azure.core.async_paging.AsyncItemPaged[~azure.mgmt.network.v2020_04_01.models.ExpressRouteCircuitListResult] :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["_models.ExpressRouteCircuitListResult"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2020-04-01" accept = "application/json" def prepare_request(next_link=None): # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') if not next_link: # Construct URL url = self.list_all.metadata['url'] # type: ignore path_format_arguments = { 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') request = self._client.get(url, query_parameters, header_parameters) else: url = next_link query_parameters = {} # type: Dict[str, Any] request = self._client.get(url, query_parameters, header_parameters) return request async def extract_data(pipeline_response): deserialized = self._deserialize('ExpressRouteCircuitListResult', pipeline_response) list_of_elem = deserialized.value if cls: list_of_elem = cls(list_of_elem) return deserialized.next_link or None, AsyncList(list_of_elem) async def get_next(next_link=None): request = prepare_request(next_link) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) return pipeline_response return AsyncItemPaged( get_next, extract_data ) list_all.metadata = {'url': '/subscriptions/{subscriptionId}/providers/Microsoft.Network/expressRouteCircuits'} # type: ignore
Azure/azure-sdk-for-python
sdk/network/azure-mgmt-network/azure/mgmt/network/v2020_04_01/aio/operations/_express_route_circuits_operations.py
Python
mit
53,747
# Copyright (C) 2006-2013 Music Technology Group - Universitat Pompeu Fabra # # This file is part of Essentia # # Essentia is free software: you can redistribute it and/or modify it under # the terms of the GNU Affero General Public License as published by the Free # Software Foundation (FSF), either version 3 of the License, or (at your # option) any later version. # # This program is distributed in the hope that it will be useful, but WITHOUT # ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS # FOR A PARTICULAR PURPOSE. See the GNU General Public License for more # details. # # You should have received a copy of the Affero GNU General Public License # version 3 along with this program. If not, see http://www.gnu.org/licenses/ #! /usr/bin/python # example script to compute and plot onsetdetection related descriptors from essentia.extractor.onsetdetection import compute def parse_args(): from optparse import OptionParser import sys usage = "usage: %s [-v] <-i input_soundfile> [-g ground_truth_file]" % sys.argv[0] parser = OptionParser(usage=usage) parser.add_option("-v","--verbose", action="store_true", dest="verbose", default=False, help="verbose mode") parser.add_option("-i","--input", action="store", dest="input_file", type="string", help="input file") parser.add_option("-w","--wave-output", default=None, action="store", dest="wave_output", type="string", help="wave output filename") (options, args) = parser.parse_args() if options.input_file is None: print usage sys.exit(1) return options, args if __name__ == '__main__': import sys, os.path, essentia options, args = parse_args() input_file = options.input_file # load audio file audio_file = essentia.AudioFileInput(filename = input_file) audio = audio_file() sampleRate = 44100. pool = essentia.Pool(input_file) compute(audio, pool, sampleRate = sampleRate, verbose = options.verbose) onsets = list(pool.descriptors['rhythm_onsets']['values'][0]) if (options.verbose): print onsets while ((onsets[-1] + 0.020) * sampleRate) > len(audio): onsets.pop(len(onsets)-1) if len(onsets) > 0 and options.wave_output != None: #audio *= 0.# only ticks tick_length = 0.020 # in seconds for tick in onsets: for sample in range( int(round(tick*sampleRate)), int(round( (tick + tick_length ) *sampleRate )) ): audio[sample] += 0.4 * ( sample % 200. - 100. ) output_file = essentia.WaveFileOutput(filename = options.wave_output) output_file(audio)
ChristianFrisson/essentia
test/src/pythontests/onsetdetection_test.py
Python
agpl-3.0
2,659
import SocketServer class ProtoHandler(SocketServer.BaseRequestHandler): def handle(self): msg = self.request.recv(1024) a = msg.split(" ",2) if len(a) >1 and a[0] == "GET": a = a[1].split("/") a =[i for i in a if i != ''] if len(a) == 0: self.request.sendall(self.server.ret) else: self.server.data=a print a class ProtoServer(SocketServer.TCPServer): def __init__(self,hostport,default): self.allow_reuse_address = True SocketServer.TCPServer.__init__(self,hostport, ProtoHandler) with open (default, "r") as myfile: self.ret=myfile.read() if __name__ == "__main__": s = ProtoServer(("192.168.1.253", 6661),"index.html") s.serve_forever()
wizgrav/protobot
server.py
Python
bsd-3-clause
861
# -*- coding: utf-8 -*- # Copyright 2018 OpenSynergy Indonesia # Copyright 2020 PT. Simetri Sinergi Indonesia # License AGPL-3.0 or later (http://www.gnu.org/licenses/agpl). from dateutil.relativedelta import relativedelta from openerp import _, api, fields, models from openerp.exceptions import Warning as UserError class HrAttendance(models.Model): _inherit = "hr.attendance" @api.multi @api.depends("name") def _compute_schedule(self): obj_schedule = self.env["hr.timesheet_attendance_schedule"] for attn in self: company = attn.employee_id.company_id early_buffer = fields.Datetime.from_string(attn.name) + relativedelta( hours=company.early_attendance_buffer ) early_buffer = fields.Datetime.to_string(early_buffer) late_buffer = fields.Datetime.from_string(attn.name) + relativedelta( hours=-company.late_attendance_buffer ) late_buffer = fields.Datetime.to_string(late_buffer) criteria = [ ("employee_id", "=", attn.employee_id.id), ("date_start", "<=", early_buffer), ("date_end", ">=", late_buffer), ] schedules = obj_schedule.search(criteria, limit=1) attn.schedule_id = schedules[0].id if len(schedules) > 0 else False schedule_id = fields.Many2one( string="Attendance Schedule", comodel_name="hr.timesheet_attendance_schedule", compute="_compute_schedule", store=True, ) @api.constrains( "schedule_id", ) def _check_att_sign_in_out(self): for document in self: company = document.employee_id.company_id if not document.schedule_id: continue if company.max_att_sign_in > 0: len_att_sign_in = len( document.schedule_id.attendance_ids.filtered( lambda x: x.action == "sign_in" ) ) if len_att_sign_in > company.max_att_sign_in: msg = _( "Total Sign In has reached maximum " "attempts per schedule" ) raise UserError(msg) if company.max_att_sign_out > 0: len_att_sign_out = len( document.schedule_id.attendance_ids.filtered( lambda x: x.action == "sign_out" ) ) if len_att_sign_out > company.max_att_sign_out: msg = _( "Total Sign Out has reached maximum " "attempts per schedule" ) raise UserError(msg)
open-synergy/opnsynid-hr
hr_timesheet_attendance_schedule/models/hr_attendance.py
Python
agpl-3.0
2,790
import pytest import logging import os import subprocess import tempfile from dtest import Tester from shutil import rmtree since = pytest.mark.since logger = logging.getLogger(__name__) @since('4.0') class TestFQLTool(Tester): """ Makes sure fqltool replay and fqltool compare work @jira_ticket CASSANDRA-14690 """ def test_replay(self): """ Generates a full query log, wipes the nodes and replays the query log, then makes sure that the data is correct. @jira_ticket CASSANDRA-14690 """ self.cluster.populate(2).start(wait_for_binary_proto=True) node1, node2 = self.cluster.nodelist() with tempfile.TemporaryDirectory() as temp_dir: tmpdir = tempfile.mkdtemp(dir=temp_dir) tmpdir2 = tempfile.mkdtemp(dir=temp_dir) node1.nodetool("enablefullquerylog --path={}".format(tmpdir)) node2.nodetool("enablefullquerylog --path={}".format(tmpdir2)) node1.stress(['write', 'n=1000']) node1.flush() node2.flush() node1.nodetool("disablefullquerylog") node2.nodetool("disablefullquerylog") node1.stop(wait_other_notice=True) node2.stop(wait_other_notice=True) node1.clear() node2.clear() node1.start(wait_for_binary_proto=True) node2.start(wait_for_binary_proto=True, wait_other_notice=True) # make sure the node is empty: got_exception = False try: node1.stress(['read', 'n=1000']) except Exception: got_exception = True assert got_exception # replay the log files self._run_fqltool_replay(node1, [tmpdir, tmpdir2], "127.0.0.1", None, None) # and verify the data is there node1.stress(['read', 'n=1000']) def test_compare(self): """ uses fqltool replay to compare two runs of the same query log and makes sure that the results match @jira_ticket CASSANDRA-14690 """ self.cluster.populate(1).start(wait_for_binary_proto=True) node1 = self.cluster.nodelist()[0] with tempfile.TemporaryDirectory() as temp_dir: results1 = tempfile.mkdtemp(dir=temp_dir) queries1 = tempfile.mkdtemp(dir=temp_dir) results2 = tempfile.mkdtemp(dir=temp_dir) queries2 = tempfile.mkdtemp(dir=temp_dir) fqldir = tempfile.mkdtemp(dir=temp_dir) node1.stress(['write', 'n=1000']) node1.flush() node1.nodetool("enablefullquerylog --path={}".format(fqldir)) node1.stress(['read', 'n=1000']) node1.nodetool("disablefullquerylog") self._run_fqltool_replay(node1, [fqldir], "127.0.0.1", queries1, results1) self._run_fqltool_replay(node1, [fqldir], "127.0.0.1", queries2, results2) output = self._run_fqltool_compare(node1, queries1, [results1, results2]) assert b"MISMATCH" not in output # running the same reads against the same data def test_compare_mismatch(self): """ generates two fql log files with different data (seq is different when running stress) then asserts that the replays of each generates a mismatch @jira_ticket CASSANDRA-14690 """ self.cluster.populate(1).start(wait_for_binary_proto=True) node1 = self.cluster.nodelist()[0] with tempfile.TemporaryDirectory() as temp_dir: fqldir1 = tempfile.mkdtemp(dir=temp_dir) fqldir2 = tempfile.mkdtemp(dir=temp_dir) results1 = tempfile.mkdtemp(dir=temp_dir) queries1 = tempfile.mkdtemp(dir=temp_dir) results2 = tempfile.mkdtemp(dir=temp_dir) queries2 = tempfile.mkdtemp(dir=temp_dir) node1.nodetool("enablefullquerylog --path={}".format(fqldir1)) node1.stress(['write', 'n=1000']) node1.flush() node1.stress(['read', 'n=1000']) node1.nodetool("disablefullquerylog") node1.stop() for d in node1.data_directories(): rmtree(d) os.mkdir(d) node1.start(wait_for_binary_proto=True) node1.nodetool("enablefullquerylog --path={}".format(fqldir2)) node1.stress(['write', 'n=1000', '-pop', 'seq=1000..2000']) node1.flush() node1.stress(['read', 'n=1000', '-pop', 'seq=1000..2000']) node1.nodetool("disablefullquerylog") node1.stop() for d in node1.data_directories(): rmtree(d) os.mkdir(d) node1.start(wait_for_binary_proto=True) self._run_fqltool_replay(node1, [fqldir1], "127.0.0.1", queries1, results1) node1.stop() for d in node1.data_directories(): rmtree(d) os.mkdir(d) node1.start(wait_for_binary_proto=True) self._run_fqltool_replay(node1, [fqldir2], "127.0.0.1", queries2, results2) output = self._run_fqltool_compare(node1, queries1, [results1, results2]) assert b"MISMATCH" in output # compares two different stress runs, should mismatch def _run_fqltool_replay(self, node, logdirs, target, queries, results): fqltool = self.fqltool(node) args = [fqltool, "replay", "--target {}".format(target)] if queries is not None: args.append("--store-queries {}".format(queries)) if results is not None: args.append("--results {}".format(results)) args.extend(logdirs) rc = subprocess.call(args) assert rc == 0 def _run_fqltool_compare(self, node, queries, results): fqltool = self.fqltool(node) args = [fqltool, "compare", "--queries {}".format(queries)] args.extend([os.path.join(r, "127.0.0.1") for r in results]) logger.info(args) p = subprocess.Popen(args, stdout=subprocess.PIPE, stderr=subprocess.PIPE) (stdout, stderr) = p.communicate() logger.info(stdout) return stdout def fqltool(self, node): cdir = node.get_install_dir() fqltool = os.path.join(cdir, 'tools', 'bin', 'fqltool') return fqltool
bdeggleston/cassandra-dtest
fqltool_test.py
Python
apache-2.0
6,364
# Lint as: python3 # ============================================================================== # Copyright 2020 Google LLC # # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Implements support for auto-quantization.""" import collections import json import os import re import copy from absl import logging import keras_tuner as kt from keras_tuner import HyperModel from keras_tuner import BayesianOptimization from keras_tuner import Hyperband from keras_tuner import RandomSearch import numpy as np import six import tensorflow as tf import tensorflow.keras.backend as K from tensorflow.keras.metrics import binary_accuracy from tensorflow.keras.metrics import categorical_accuracy from tensorflow.keras.metrics import sparse_categorical_accuracy from qkeras.autoqkeras.forgiving_metrics import forgiving_factor # pylint: disable=line-too-long from qkeras.autoqkeras.forgiving_metrics import ForgivingFactor # pylint: disable=line-too-long from qkeras.autoqkeras.quantization_config import default_quantization_config # pylint: disable=line-too-long from qkeras.autoqkeras.utils import print_qmodel_summary from qkeras.utils import clone_model from qkeras.utils import model_quantize # AutoQKHyperModel is implemented on top of keras_tuner # It basically creates a quantized model based on some rules # and it computes a acc_delta that boosts the accuracy when # choosing smaller models. # Boosting function behaves like this. # We use the following formula to compute the decrease factor: # reference_size: number of parameters + activations of the model, # assuming an 8-bit implementation. # trial_size: number of parameters + activations of trial. # # 1) First, we compute how many times we decresed/increased the model # i = log(reference_size / trial_size) / log(rate) # # 2) Then, we use delta_p / delta_n if model is smaller/bigger # than reference model. # # delta = i * ( # (i < 0) * delta_n + (i >= 0) * delta_p # ) # # 3) the accuracy of the model (score) is adjusted by acc * delta # # The delta "boosts" the accuracy to allow worse model to be # chosen by hypermodel tuner. # REGISTERED_LAYERS = ["Dense", "Conv1D", "Conv2D", "DepthwiseConv2D", "SimpleRNN", "LSTM", "GRU", "Bidirectional", "Conv2DTranspose", "SeparableConv1D", "SeparableConv2D"] Q_LAYERS = list(map(lambda x : 'Q' + x, REGISTERED_LAYERS)) SEQUENCE_LAYERS = ["SimpleRNN", "LSTM", "GRU", "Bidirectional"] class AutoQKHyperModel(HyperModel): """Creates an hypermodel to attempt to quantize a reference model. Arguments: model: Model to be quantized. metrics: List of metrics to be used. custom_objects: Custom objects used by Keras during quantization. target: Secondary metric to chase during search ("bits" or "energy"). transfer_weights: if true, transfer weights from unquantized model. frozen_layers: if true, these layers will not be quantized but weights transferred from original model. activation_bits: parameter to be used by 'model_quantize'. limit: limit the number of bits in quantizers, specified as dictionary. tune_filters: one of "block", "layer", "none" for tuning entire network, each layer separately, or no tuning. tune_filters_exceptions: name of layers that will not be tuned. layer_indexes: we only quantize layers whose ids are in layer_indexes. learning_rate_optimizer: if true, we optimize learning rate along with other parameters. head_name: specify which head to calcuate score/trial-size from in autoqkeras quantization_config: dictionary containing configuration of quantizers for kernel, bias and activation. extend_model_metrics: If to append the trial size and score metrics to model metrics, which are used for AutoQKeras to determine the quality of a model. Returns: quantized model in trial and boosted accuracy function compiled into quantized model. """ def __init__( self, model, metrics, custom_objects=None, target=None, transfer_weights=False, frozen_layers=None, activation_bits=4, limit=None, tune_filters="none", tune_filters_exceptions=None, layer_indexes=None, learning_rate_optimizer=False, head_name=None, quantization_config=None, extend_model_metrics=True, ): self.model = model self.metrics = metrics self.custom_objects = custom_objects if custom_objects else {} self.target = target self.reference_size = self.target.get_reference(model) self.transfer_weights = transfer_weights self.frozen_layers = frozen_layers if frozen_layers else [] self.activation_bits = activation_bits self.head_name = head_name self.extend_model_metrics = extend_model_metrics # make sure we have at least 3 elements in list # first one for kernel, second one for bias and thid one for activations. # # limit is in the format, where default replaces missing values: # '{ # "Conv2D":[weight,bias,activation], # "RNN":[weight,bias,recurrent,activation], # "Dense":[weight,bias,activation], # "Activation":[activation] # "default": value # }' if limit is None: self.limit = {} else: self.limit = limit self.groups = {} assert isinstance(self.limit, dict) if self.limit.get("default", None) is None: default = 8 else: default = self.limit["default"] # make sure we have entries for every type of layer we process self._adjust_limit(default) print("Limit configuration:" + json.dumps(self.limit)) assert tune_filters in ["block", "layer", "none"] self.tune_filters = tune_filters self.tune_filters_exceptions = re.compile(tune_filters_exceptions) self.layer_indexes = layer_indexes self.learning_rate_optimizer = learning_rate_optimizer # load quantizer types for each type of quantizer if quantization_config is None: self.quantization_config = default_quantization_config else: self.quantization_config = quantization_config def _adjust_limit(self, default): """Makes sure limit has all the fields required.""" if isinstance(default, list): assert 3 <= len(default) <= 4 else: default = [default] * 3 # we consider that if name is not there, we will ignore the layer for name in REGISTERED_LAYERS: if name in self.limit: length = len(self.limit[name]) if length < 4 and name in SEQUENCE_LAYERS: assert len(default) == 4 self.limit[name] = self.limit[name] + default[length:] elif length < 3: # No recurrent limit needed for non recurrent layers self.limit[name] = self.limit[name] + default[length:2] + default[-1:] def _n(self, name, s_list): """Creates a unique name for the tuner.""" return name + "_".join([str(v) for v in s_list]) def _get_quantizer(self, hp, head, layer_name, layer_class_name, i_list=None, is_kernel=True, is_linear=False): """Gets a quantizer randomly for kernels/bias/activations.""" # first pick up which group we belong to. if not i_list: i_list = [] if is_linear: # linear quantizers field_name = "linear" kq = self.quantization_config["linear"] index = 0 q_list = list(kq.keys()) q_dict = kq elif "kernel" in head: # kernel quantizers field_name = "kernel" kq = self.quantization_config["kernel"] index = 0 q_list = list(kq.keys()) q_dict = kq elif "bias" in head: # bias quantizers field_name = "bias" bq = self.quantization_config["bias"] index = 1 q_list = list(bq.keys()) q_dict = bq elif "pointwise_kernel" in head: # limit is same as kernel # pointwise kernel quantizers field_name = "pointwise_kernel" kq = self.quantization_config["pointwise_kernel"] index = 2 q_list = list(kq.keys()) q_dict = kq elif "recurrent_kernel" in head: # limit is same as kernel # recurrent kernel quantizers field_name = "recurrent_kernel" kq = self.quantization_config["recurrent_kernel"] index = 2 q_list = list(kq.keys()) q_dict = kq elif "recurrent_activation" in head: # limit is same as kernel # recurrent activation quantizers field_name = "recurrent_activation" raq = self.quantization_config["recurrent_activation"] index = -1 q_list = list(raq.keys()) q_dict = raq else: # activation quantizers field_name = "activation" aq = self.quantization_config["activation"] index = -1 q_list = list(aq.keys()) q_dict = aq # we first we search for layer name. If it is not there, we switch to # layer class name. found_pattern = False name = layer_class_name count = -1 for i, pattern in enumerate(self.limit): if re.match(pattern, layer_name): found_pattern = True name = pattern count = i break # for partially quantized networks we may not have # the layer class name in the set. if name == layer_class_name and name not in self.limit: return None, -1 # groups is a dictionary that contains dictionary of the # patterns so that we can group everything together if found_pattern: if name in self.groups and index in self.groups[name]: return self.groups[name][index] # not there, let's use a different name for # the head and field head = "qk_group_" + str(count) + "_" + field_name head = name + "_" + field_name # limit group can be a list of quantizers or a # number that tells us maximum number of bits if isinstance(self.limit[name][index], list): # we assume this is a subset of the q_keys # entry in quantization_config will be like: # "Conv2D": [ ["q1", "q2", "q3"], ... ] # # we always assume this list is a subset of # the original list or we will raise an # error. q_list = self.limit[name][index] q_dict = { key: q_dict[key] for key in q_list } else: q_dict = { key: value for (key, value) in q_dict.items() if value <= self.limit[name][index] } q_list = list(q_dict.keys()) # didn't found a match in groups, create one. if len(q_list) == 1: q_name = hp.Fixed(self._n(head + "_quantizer", i_list), q_list[0]) else: q_name = hp.Choice(self._n(head + "_quantizer", i_list), q_list) if found_pattern: if name not in self.groups: self.groups[name] = {index: (q_name, q_dict[q_name])} else: self.groups[name][index] = (q_name, q_dict[q_name]) return (q_name, q_dict[q_name]) def quantize_model(self, hp): """Quantize model by hyperparameter search and extracting size schema.""" # configuration for quantization. q_dict = {} model = clone_model(self.model, self.custom_objects) fanin = [] filter_range = [0.5, 0.75, 1.0, 1.5, 2.0] # network_filters=hp.Choice(...) should only be defined if we are sure # current blocks has any layer that need filter sweep. # Otherwise, when no layer needs filter sweep and a hp variable is defined, # there will be uneffective trials that loop around the network # filter range, even though none of the filter sweep was ever applied to # any layers. Therfore, we use filter_sweep_enabled to mark if any layer # in current block needs filter sweep. kernel_quantizer_dict = {} filter_sweep_enabled = False for layer in model.layers: if layer.__class__.__name__ in REGISTERED_LAYERS: kernel_quantizer, bits = self._get_quantizer( hp, layer.name + "_kernel", layer.name, layer.__class__.__name__, is_kernel=True) kernel_quantizer_dict[layer.name] = (kernel_quantizer, bits) # kernel_quantizer is not None -> layer in the current block need # to be quantized if kernel_quantizer: if ( not filter_sweep_enabled and self.tune_filters in ["layer", "block"] and not self.tune_filters_exceptions.search(layer.name) and layer.__class__.__name__ in ["Dense", "Conv1D", "Conv2D", "Conv2DTranspose"] ): filter_sweep_enabled = True if layer.__class__.__name__ in SEQUENCE_LAYERS: recurrent_quantizer, _ = self._get_quantizer( hp, layer.name + "_recurrent_kernel", layer.name, layer.__class__.__name__, is_kernel=True) if layer.__class__.__name__ in ["SeparableConv1D", "SeparableConv2D"]: pointwise_quantizer, _ = self._get_quantizer( hp, layer.name + "_pointwise_kernel", layer.name, layer.__class__.__name__, is_kernel=True) if self.tune_filters == "block" and filter_sweep_enabled: network_filters = hp.Choice( "network_filters", values=filter_range, default=1.0 ) else: network_filters = 1.0 for layer_id, layer in enumerate(model.layers): # we can use these indexes to disable some layers, like the last # layer if self.layer_indexes is not None and layer_id not in self.layer_indexes: continue layer_d = {} if layer.__class__.__name__ in Q_LAYERS: weights = layer.get_weights()[0] if ( layer.get_quantizers()[0] and hasattr(layer.get_quantizers()[0], "bits") ): bits = layer.get_quantizers()[0].bits else: bits = 8 fanin.append(np.prod(weights.shape[:-1]) * (8. - bits) / 8.) if layer.__class__.__name__ in REGISTERED_LAYERS: # difference between depthwise and the rest is just the name # of the kernel. if layer.__class__.__name__ in [ "DepthwiseConv2D", "SeparableConv1D", "SeparableConv2D" ]: kernel_name = "depthwise_quantizer" else: kernel_name = "kernel_quantizer" # sample kernel quantizer. (kernel_quantizer, bits) = kernel_quantizer_dict[layer.name] if not kernel_quantizer: continue # process fanin here if bits < 8: weights = layer.get_weights()[0] fanin.append(np.prod(weights.shape[:-1]) * (8. - bits) / 8.) # we only want to do that if we are going to quantize layer if ( self.tune_filters in ["layer", "block"] and not self.tune_filters_exceptions.search(layer.name) and layer.__class__.__name__ in [ "Dense", "Conv1D", "Conv2D", "Conv2DTranspose", "SeparableConv1D", "SeparableConv2D" ] ): if self.tune_filters == "layer": layer_filters = hp.Choice( "network_filters_" + layer.name, values=filter_range, default=1.0 ) else: layer_filters = network_filters if layer.__class__.__name__ == "Dense": layer.units = max(int(layer.units * layer_filters), 1) elif layer.__class__.__name__ in [ "Conv1D", "Conv2D", "Conv2DTranspose", "SeparableConv1D", "SeparableConv2D" ]: layer.filters = max(int(layer.filters * layer_filters), 1) layer_d[kernel_name] = kernel_quantizer if layer.__class__.__name__ in SEQUENCE_LAYERS: layer_d['recurrent_quantizer'] = recurrent_quantizer if layer.__class__.__name__ in ["SeparableConv1D", "SeparableConv2D"]: layer_d['pointwise_quantizer'] = pointwise_quantizer if layer.__class__.__name__ in ["LSTM", "GRU", "Bidirectional"]: layer_d['recurrent_activation'], _ = self._get_quantizer( hp, layer.name + "_recurrent_activation", layer.name, layer.__class__.__name__, is_kernel=False) # if we use bias, sample quantizer. if layer.__class__.__name__ == "Bidirectional": layer_d["bias_quantizer"], bits = self._get_quantizer( hp, layer.name + "_bias", layer.name, layer.__class__.__name__, is_kernel=False) layer_d["activation"], bits = self._get_quantizer( hp, layer.name + "_activation", layer.name, layer.__class__.__name__, is_kernel=False) q_dict[layer.name] = layer_d else: if layer.use_bias: layer_d["bias_quantizer"], bits = self._get_quantizer( hp, layer.name + "_bias", layer.name, layer.__class__.__name__, is_kernel=False) # if activation is not linear/softmax we need to process it. if layer.activation is None: is_softmax = False is_linear = False else: if isinstance(layer.activation, six.string_types): is_softmax = layer.activation == "softmax" is_linear = layer.activation == "linear" else: is_softmax = layer.activation.__name__ == "softmax" is_linear = layer.activation.__name__ == "linear" if not is_softmax and not is_linear: layer_d["activation"], bits = self._get_quantizer( hp, layer.name + "_activation", layer.name, layer.__class__.__name__, is_kernel=False) q_dict[layer.name] = layer_d elif layer.__class__.__name__ in ["Reshape"]: # we cannot handle fine tuning filters per layer right now. assert self.tune_filters in ["none", "block"] # we need to make sure this pattern exists, this should only occur for # "scheduler", so the name will be complete and not a pattern. if ( self.tune_filters == "none" or layer.name not in self.limit or self.tune_filters_exceptions.search(layer.name) ): continue if K.image_data_format() == "channels_last": layer.target_shape = layer.target_shape[:-1] + ( min(int(layer.target_shape[-1] * network_filters), 1),) else: layer.target_shape = (int(layer.target_shape[0] * network_filters), ) + layer.target_shape[1:] elif layer.__class__.__name__ in ["Activation"]: if isinstance(layer.activation, six.string_types): is_linear = layer.activation == "linear" is_softmax = layer.activation == "softmax" else: is_linear = layer.activation.__name__ == "linear" is_softmax = layer.activation.__name__ == "softmax" # if it is a linear activation, we will notify the # quantizer we are searching for linear type of # quantizers if not is_softmax: activation, bits = self._get_quantizer( hp, layer.name + "_activation", layer.name, layer.__class__.__name__, is_kernel=False, is_linear=is_linear) if not activation: continue # look at documentation on model_quantize q_dict[layer.name] = activation elif layer.__class__.__name__ in self.limit: # mark it for conversion q_dict[layer.name] = {} else: for pattern in self.limit: if re.match(pattern, layer.name): q_dict[layer.name] = {} break q_model = model_quantize( model, q_dict, self.activation_bits, custom_objects=self.custom_objects, transfer_weights=self.transfer_weights) return q_model, fanin def build(self, hp): """Builds hyperparameterized quantized model.""" self.groups = {} # we are not using the fanin right now. q_model, _ = self.quantize_model(hp) # transfer weights from previous run as we know we will not if self.learning_rate_optimizer: # if learning_rate_optimizer, we try to transfer weights from previous run print("... freezing layers {}.".format(", ".join(self.frozen_layers))) for layer_name in self.frozen_layers: o_weights = self.model.get_layer(layer_name).get_weights() layer = q_model.get_layer(layer_name) # don't know if setting trainable to False is good or not yet # try to do "soft-freeze" by transferring weights. More experiments # needed before we decide what to do. # layer.trainable = False weights = layer.get_weights() # because we can be changing number of layers, we do not know # if we can really use some of the weights or not. equal_layer = True for w in range(len(o_weights)): if o_weights[w].shape != weights[w].shape: equal_layer = False break if equal_layer: layer.set_weights(o_weights) self.trial_size = self.target.get_trial(q_model) # we will use a boosted accuracy computation delta = self.target.delta() # by default, we use the first metric specified by the # user to be the target metric. if not self.metrics: score_metric = None elif isinstance(self.metrics, dict): if not self.head_name: # if head_name not provided, find the first metric from the dict score_key = list(self.metrics.keys())[0] else: # find the metric assoicated with the head_name score_key = self.head_name score_metric = self.metrics[score_key] if isinstance(score_metric, list): score_metric = score_metric[0] elif isinstance(self.metrics, list): score_metric = self.metrics[0] self.score = AutoQKHyperModel.adjusted_score( self, delta, score_metric) # some papers suggest that we use learning_rate * sqrt(fanin) / layer # we cannot do that right now, but we can definitely do that # if we are quantizing one layer at a time # # https://arxiv.org/pdf/1511.00363.pdf # we use the magic number to smooth out the average total_factor = self.target.get_total_factor() delta_lr = 1.0 + (total_factor < 0) * total_factor # we assume model has been compiled at least. lr = float(self.model.optimizer.lr.numpy()) # we assume that delta_lr can lower lr to accommodate # for more quantization # # if learning rate scheduler is used, we assume the callback to manage # learning rate. Just set it to constant. if self.learning_rate_optimizer: lr_range = list(lr * np.linspace(delta_lr, 1.1, 5)) lr_choice = hp.Choice("learning_rate", lr_range) self.model.optimizer.learning_rate = lr_choice else: lr_choice = lr print("learning_rate: {}".format(lr)) optimizer = self.model.optimizer q_model.summary() metrics = self.metrics # extend metrics by including score and trial_size metrics if self.extend_model_metrics: ext_metrics = copy.deepcopy(metrics) if isinstance(ext_metrics, dict): # for dict, add trial_size_metric and score metric to target output if not self.head_name: # if head_name not provided, find the first metric from the dict score_key = list(ext_metrics.keys())[0] else: # find the metric assoicated with the head_name score_key = self.head_name score_metric = ext_metrics[score_key] if isinstance(score_metric, list): score_metric += [self.trial_size_metric(self.trial_size), self.score] else: score_metric = [score_metric] score_metric += [self.trial_size_metric(self.trial_size), self.score] ext_metrics[score_key] = score_metric else: ext_metrics += [ self.trial_size_metric(self.trial_size), self.score] metrics = ext_metrics q_model.compile( optimizer=optimizer, loss=self.model.loss, metrics=metrics ) self.q_model = q_model # this just prints a summary of the quantization for debugging # purposes self.target.print_stats() print_qmodel_summary(q_model) return q_model @staticmethod def adjusted_score(hyper_model, delta, metric_function=None): def score(y_true, y_pred): y_t_rank = len(y_true.shape.as_list()) y_p_rank = len(y_pred.shape.as_list()) y_t_last_dim = y_true.shape.as_list()[-1] y_p_last_dim = y_pred.shape.as_list()[-1] is_binary = y_p_last_dim == 1 is_sparse_categorical = ( y_t_rank < y_p_rank or y_t_last_dim == 1 and y_p_last_dim > 1) if isinstance(metric_function, six.string_types): if metric_function in ["accuracy", "acc"]: if is_binary: metric = binary_accuracy(y_true, y_pred) elif is_sparse_categorical: metric = sparse_categorical_accuracy(y_true, y_pred) else: metric = categorical_accuracy(y_true, y_pred) else: metric = categorical_accuracy(y_true, y_pred) else: metric = metric_function(y_true, y_pred) return K.cast(metric * (1.0 + delta), K.floatx()) if not metric_function: metric_function = "accuracy" return score @staticmethod def trial_size_metric(trial_size): def trial(y_true, y_pred): # pylint: disable=unused-argument return K.cast(trial_size, K.floatx()) return trial class AutoQKeras: """Performs autoquantization in Keras model. Arguments: model: Model to be quantized. metrics: List of metrics to be used. custom_objects: Custom objects used by Keras during quantization. goal: Metric to compute secondary goal of search (bits or energy) output_dir: name of output directory to store results. mode: random, hyperband or bayesian used by keras_tuner. custom_tuner: The Keras Tuner class to use to search hyperparams transfer_weights: if true, transfer weights from unquantized model. frozen_layers: if true, these layers will not be quantized but weights transferred from original model. activation_bits: parameter to be used by 'model_quantize'. limit: limit the number of bits in quantizers specified as a dictionary. tune_filters: one of "block", "layer", "none" for tuning entire network, each layer separately, or no tuning. tune_filters_exceptions: name of layers that will not be tuned. layer_indexes: indexes of layers we will quantize. learning_rate_optimizer: if true, user will provide lr scheduler callback. quantization_config: file name of dictionary containing configuration of quantizers for kernel, bias and activation. head_name: specify which head to calcuate score/trial-size from in autoqkeras score_metric: Str. Optional metric name to use to evaluate the trials. Defaults to val_score tuner_kwargs: parameters for keras_tuner depending on whether mode is random, hyperband or baeysian. Please refer to the documentation of kerstuner Tuners. """ def __init__( self, model, metrics=None, custom_objects=None, goal=None, output_dir="result", mode="random", custom_tuner=None, transfer_weights=False, frozen_layers=None, activation_bits=4, limit=None, tune_filters="none", tune_filters_exceptions=None, learning_rate_optimizer=False, layer_indexes=None, quantization_config=None, overwrite=True, head_name=None, score_metric=None, **tuner_kwargs): # Collect input arguments to AutoQKeras for usage by custom tuner autoqkeras_input_args = locals() if not metrics: metrics = [] if not custom_objects: custom_objects = {} # goal: { "type": ["bits", "energy"], "params": {...} } or ForgivingFactor # type # For type == "bits": # delta_p: increment (in %) of the accuracy if trial is smaller. # delta_n: decrement (in %) of the accuracy if trial is bigger. # rate: rate of decrease/increase in model size in terms of bits. # input_bits; size of input tensors. # output_bits; size of output tensors. # stress: parameter to reduce reference size to force tuner to # choose smaller models. # config: configuration on what to compute for each layer # minimum configuration is { "default": ["parameters", "activations"] } # use simplest one - number of bits if not goal: goal = { "type": "bits", "params": { "delta_p": 8.0, "delta_n": 8.0, "rate": 2.0, "stress": 1.0, "input_bits": 8, "output_bits": 8, "ref_bits": 8, "config": { "default": ["parameters", "activations"] } } } self.overwrite = overwrite # for multi-head model, we need to specify which head(/output) that # score and trial metric needs to calculate from self.head_name = head_name # if we have not created it already, create new one. if not isinstance(goal, ForgivingFactor): target = forgiving_factor[goal["type"]](**goal["params"]) else: target = goal # if no metrics were specified, we want to make sure we monitor at least # accuracy. if not metrics: metrics = ["acc"] self.hypermodel = AutoQKHyperModel( model, metrics, custom_objects, target, transfer_weights=transfer_weights, frozen_layers=frozen_layers, activation_bits=activation_bits, limit=limit, tune_filters=tune_filters, tune_filters_exceptions=tune_filters_exceptions, layer_indexes=layer_indexes, learning_rate_optimizer=learning_rate_optimizer, head_name=head_name, quantization_config=quantization_config ) # right now we create unique results directory idx = 0 name = output_dir if self.overwrite: while os.path.exists(name): idx += 1 name = output_dir + "_" + str(idx) output_dir = name self.output_dir = output_dir if score_metric is None: if self.head_name: score_metric = "val_" + self.head_name + "_score" else: score_metric = "val_score" assert mode in ["random", "bayesian", "hyperband"] if custom_tuner is not None: self.tuner = custom_tuner( self.hypermodel, autoqkeras_config=autoqkeras_input_args, objective=kt.Objective(score_metric, "max"), project_name=output_dir, **tuner_kwargs) elif mode == "random": self.tuner = RandomSearch( self.hypermodel, objective=kt.Objective(score_metric, "max"), project_name=output_dir, **tuner_kwargs) elif mode == "bayesian": self.tuner = BayesianOptimization( self.hypermodel, objective=kt.Objective(score_metric, "max"), project_name=output_dir, **tuner_kwargs) elif mode == "hyperband": self.tuner = Hyperband( self.hypermodel, objective=kt.Objective(score_metric, "max"), project_name=output_dir, **tuner_kwargs) else: pass self.tuner.search_space_summary() def _has_earlystopping(self, callbacks): """Check if EarlyStopping has been defined or not.""" if callbacks is None: return False for callback in callbacks: if isinstance(callback, tf.keras.callbacks.EarlyStopping): return True return False def history(self, number_of_trials=-1): """Returns the history of the model search.""" trials = self.tuner.oracle.get_best_trials(number_of_trials) state = [trial.get_state() for trial in trials] result = {} result["score"] = [ state[i]["score"] for i in range(len(state)) if trials[i].score is not None ] for i in range(len(state)): if trials[i].score is not None: keys = state[i]["metrics"]["metrics"].keys() for key in keys: if key != "score" and not key.startswith( "val_") and key != "loss" and key != "trial": cur_accuracy = state[i]["metrics"]["metrics"][key][ "observations"][0]["value"][0] if "val_" + key in state[i]["metrics"]["metrics"].keys(): cur_val_accuracy = state[i]["metrics"]["metrics"]["val_" + key][ "observations"][0]["value"][0] else: cur_val_accuracy = None # only update result if both key and val_key exist if cur_val_accuracy: if key not in result.keys(): result[key] = [cur_accuracy] result["val_" + key] = [cur_val_accuracy] else: result[key].append(cur_accuracy) result["val_" + key].append(cur_val_accuracy) if self.head_name: trial_from_output = self.head_name + "_trial" else: trial_from_output = "trial" result["trial_size"] = [ state[i]["metrics"]["metrics"][trial_from_output]["observations"][0] ["value"][0] for i in range(len(state)) if trials[i].score is not None ] return result def fit(self, *fit_args, **fit_kwargs): """Invokes tuner fit algorithm.""" callbacks = fit_kwargs.get("callbacks", None) if callbacks is None: callbacks = [] epochs = fit_kwargs.get("epochs", None) if epochs is None: epochs = 10 if not self._has_earlystopping(callbacks): callbacks = callbacks + [ tf.keras.callbacks.EarlyStopping( "val_loss", patience=min(20, epochs//5)) ] fit_kwargs["callbacks"] = callbacks self.tuner.search(*fit_args, **fit_kwargs) @staticmethod def get_best_lr(qmodel): """Extracts best lr of model.""" return qmodel.optimizer.lr.numpy() def get_best_model(self): params = self.tuner.get_best_hyperparameters()[0] q_model = self.tuner.hypermodel.build(params) self.learning_rate = q_model.optimizer.lr.numpy() return q_model def get_learning_rate(self): return self.learning_rate class AutoQKerasScheduler: """Performs autoquantization one layer/group at a time. Arguments: model: Model to be quantized. metrics: List of metrics to be monitored. custom_objects: Custom objects used by Keras during quantization. goal: Metric to compute secondary goal of search (bits or energy) output_dir: name of output directory to store results. mode: random, hyperband or bayesian used by keras_tuner. transfer_weights: if true, transfer weights from unquantized model. activation_bits: parameter to be used by 'model_quantize'. limit: limit the number of bits in quantizers specified as a dictionary. tune_filters: one of "block", "layer", "none" for tuning entire network, each layer separately, or no tuning. tune_filters_exceptions: name of layers that will not be tuned. layer_indexes: indexes of layer to be quantized. learning_rate_optimizer: if true, user will provide lr scheduler callback. blocks: list of re patterns specifygin group configuration for layers. schedule_block: "sequential" or "cost". Schedule blocks using the order of the groups or decreasing cost (energy or bits). quantization_config: file name of dictionary containing configuration of quantizers for kernel, bias and activation. debug: if True, fit will just print the groups for debugging purposes. head_name: specify which head to calcuate score/trial-size from in autoqkeras tuner_kwargs: parameters for keras_tuner depending on whether mode is random, hyperband or baeysian. Please refer to the documentation of kerstuner Tuners. """ def __init__( self, model, metrics=None, custom_objects=None, goal=None, output_dir="result", mode="random", transfer_weights=False, activation_bits=4, limit=None, tune_filters="none", tune_filters_exceptions=None, layer_indexes=None, learning_rate_optimizer=False, blocks=None, schedule_block="sequential", quantization_config=None, overwrite=True, debug=False, head_name=None, **tuner_kwargs): if not metrics: metrics = [] if not custom_objects: custom_objects = {} # goal: { "type": ["bits", "energy"], "params": {...} } # For type == "bits": # delta_p: increment (in %) of the accuracy if trial is smaller. # delta_n: decrement (in %) of the accuracy if trial is bigger. # rate: rate of decrease/increase in model size in terms of bits. # input_bits; size of input tensors. # output_bits; size of output tensors. # stress: parameter to reduce reference size to force tuner to # choose smaller models. # config: configuration on what to compute for each layer # minimum configuration is { "default": ["parameters", "activations"] } # use simplest one - number of bits if not goal: goal = { "type": "bits", "params": { "delta_p": 8.0, "delta_n": 8.0, "rate": 2.0, "stress": 1.0, "input_bits": 8, "output_bits": 8, "ref_bits": 8, "config": { "default": ["parameters", "activations"] } } } self.target = forgiving_factor[goal["type"]](**goal["params"]) self.model = model self.metrics = metrics self.custom_objects = custom_objects self.mode = mode self.transfer_weights = transfer_weights self.activation_bits = activation_bits self.limit = limit self.tune_filters = tune_filters self.tune_filters_exceptions = tune_filters_exceptions self.layer_indexes = layer_indexes self.learning_rate_optimizer = learning_rate_optimizer self.blocks = blocks self.schedule_block = schedule_block self.quantization_config = quantization_config self.tuner_kwargs = tuner_kwargs self.debug = debug self.head_name = head_name self.autoqk = None self.learning_rate = model.optimizer.lr.numpy() self.overwrite = overwrite assert self.schedule_block in ["sequential", "cost"] # right now we create unique results directory idx = 0 name = output_dir if self.overwrite: while os.path.exists(name): idx += 1 name = output_dir + "_" + str(idx) output_dir = name self.output_dir = output_dir self.next_block = self.get_next_block(overwrite) if self.next_block > 0: strategy = self.tuner_kwargs.get("distribution_strategy", None) if strategy: with strategy.scope(): self.model = tf.keras.models.load_model( os.path.join( self.output_dir, "model_block_" + str(self.next_block - 1)), custom_objects=self.custom_objects) else: self.model = tf.keras.models.load_model( os.path.join( self.output_dir, "model_block_" + str(self.next_block - 1)), custom_objects=self.custom_objects) print("Load model completed") def get_next_block(self, overwrite): """Get the next block id to be worked on.""" if overwrite: return 0 else: try: with tf.io.gfile.GFile(os.path.join(self.output_dir, "scheduler.json"), "r") as f: scheduler_json = f.read() scheduler = json.loads(scheduler_json) return scheduler["next_block"] except: # pylint: disable=bare-except return 0 def get_limit(self, model, pattern): """Apply patterned group to limit to obtain new limit set.""" limit = self.limit new_limit = {} new_pattern = collections.defaultdict(list) for layer_name in self.grouped_patterns[pattern]: layer = model.get_layer(layer_name) layer_class_name = layer.__class__.__name__ target_quantizers = limit.get(layer_class_name, -1) for limit_pattern in limit: if re.match(limit_pattern, layer_name): target_quantizers = limit[limit_pattern] new_pattern[limit_pattern].append(layer_name) layer_name = limit_pattern break if target_quantizers != -1: new_limit[layer_name] = target_quantizers for key in new_pattern: # grouped pattern in regex need to be ^(word1|word2|...)$ instead of # ^word1|word2|...$; otherwise it cause non-exact match, # e.g., fc.*_0 and fc.*_0_relu were miss-matched new_key = "^" + "(" + "|".join(new_pattern[key]) + ")" + "$" new_limit[new_key] = new_limit[key] if new_key != key: del new_limit[key] return new_limit def fit(self, *fit_args, **fit_kwargs): """Invokes tuner fit algorithm.""" self.history = [] self.compute_block_costs(self.blocks, self.model) if self.tuner_kwargs.get("max_trials", None): max_trials = float(self.tuner_kwargs["max_trials"]) lr = self.model.optimizer.lr.numpy() model = self.model frozen_layers = [] for i, (pattern, cost) in enumerate(self.retrieve_max_block()): # now create new limit pattern if not self.overwrite: if i < self.next_block: print("Resume tuning. Skipping block ", i) continue print("... block cost: {:.0f} / {:.0f}".format(cost, self.reference_size)) if self.tuner_kwargs.get("max_trials", None): self.tuner_kwargs["max_trials"] = int( max(10, max_trials * cost / self.reference_size)) print("... adjusting max_trials for this block to {}".format( self.tuner_kwargs["max_trials"])) limit = self.get_limit(model, pattern) new_frozen_layers = self.grouped_patterns[pattern] # if dictionary is empty we did not match anything. # we have a bug in the patterns specified by the # user. assert limit print("Pattern {} is : {}".format(i, limit)) if self.debug: frozen_layers = frozen_layers + new_frozen_layers continue self.autoqk = AutoQKeras( model, self.metrics, custom_objects=self.custom_objects, goal=self.target, output_dir=self.output_dir + "/" + str(i), mode=self.mode, transfer_weights=self.transfer_weights, frozen_layers=frozen_layers, activation_bits=self.activation_bits, limit=limit, tune_filters=self.tune_filters, tune_filters_exceptions=self.tune_filters_exceptions, layer_indexes=self.layer_indexes, learning_rate_optimizer=self.learning_rate_optimizer, quantization_config=self.quantization_config, overwrite=self.overwrite, head_name=self.head_name, **self.tuner_kwargs) self.autoqk.fit(*fit_args, **fit_kwargs) self.autoqk.tuner.results_summary() self.history.append(self.autoqk.history()) model = self.autoqk.get_best_model() self.learning_rate = model.optimizer.lr.numpy() # restore learning rate # this is just a placeholder for the optimizer. model.compile( model.optimizer, loss=self.model.loss, metrics=self.model.metrics) frozen_layers = frozen_layers + new_frozen_layers filename = self.output_dir + "/model_block_" + str(i) model.save(filename) self.next_block = i + 1 # update scheduler json with tf.io.gfile.GFile(os.path.join(self.output_dir, "scheduler.json"), "w") as f: f.write(json.dumps({"next_block": self.next_block})) if self.debug: return self.best_model = model # make all layers trainable again for layer_name in frozen_layers: layer = model.get_layer(layer_name) layer.trainable = True def compute_block_costs(self, patterns, model): """Computes costs for each block.""" # get block cost for original model self.reference_size = self.target.get_reference(model) self.model_size = self.target.get_reference_stats() # first group layers into the patterns groups = {pattern: [] for pattern in patterns} for layer_id, layer in enumerate(model.layers): if ( self.layer_indexes is not None and layer_id not in self.layer_indexes ): continue for pattern in groups: if re.match(pattern, layer.name): groups[pattern].append(layer.name) self.grouped_patterns = groups # now compute cost for each group self.costs = [] for pattern in patterns: # self.grouped_patterns: total = 0 for layer in self.grouped_patterns[pattern]: if layer in self.model_size: total += self.model_size[layer]["total"] self.costs.append((pattern, total)) # the costs will be sorted by the total cost of the group if self.schedule_block == "cost": self.costs = sorted(self.costs, key=lambda cost_tuple: -cost_tuple[1]) def retrieve_max_block(self): for cost in self.costs: yield cost def get_history(self): """Returns the history of the model search.""" return self.history def get_best_model(self): """Returns the best model.""" # check if we have run fit first. if not self.autoqk: return None self.autoqk.hypermodel.target.print_stats() print_qmodel_summary(self.best_model) return self.best_model def get_learning_rate(self): return self.learning_rate
google/qkeras
qkeras/autoqkeras/autoqkeras_internal.py
Python
apache-2.0
46,533
import tempfile import os from sinz.Util import Util from sinz.cli.PluginManager import PluginManager from sinz.cli.Registry import Registry from sinz.cli.CLI import CLI class TestProject(object): def __init__(self,initCmd = None): self.basepath = tempfile.mkdtemp() self.projectpath = os.path.join(self.basepath,"project") Util.runCmd("git clone . %s"%(self.projectpath,)) self.initCmd = initCmd self.keep = False def reloadPlugins(self): PluginManager.setForceReload(True) Registry.INSTANCE = None self.cli = CLI() PluginManager.setForceReload(False) def __enter__(self): self.oldcwd = os.getcwd() os.chdir(self.projectpath) if self.initCmd: Util.runCmd(self.initCmd) self.reloadPlugins() return self def __exit__(self, tipe, value, traceback): os.chdir(self.oldcwd) self.reloadPlugins() if self.keep: print("keeping %s"%(self.basepath,)) else: cmd = "rm -rf %s" % (self.basepath, ) Util.runCmd(cmd)
magwas/sinz
tests/tests/TestProject.py
Python
gpl-2.0
1,119
import numpy as np import mxnet as mx from import_msgpack import import_params # define encoder model def encoder(data): conv11 = mx.symbol.Convolution(name = 'l1_conv', data = data, kernel = (4, 4), stride = (2, 2), pad = (1, 1), num_filter = 64) relu11 = mx.symbol.LeakyReLU(name = 'l2', data = conv11, slope = 0.2, act_type = 'leaky') conv12 = mx.symbol.Convolution(name = 'l3_conv', data = relu11, kernel = (4, 4), stride = (2, 2), pad = (1, 1), num_filter = 64) bn12 = mx.symbol.BatchNorm(name='l4_bn', data = conv12, eps = 1e-05, momentum = 0.1, fix_gamma = False) relu12 = mx.symbol.LeakyReLU(name = 'l5', data = bn12, slope = 0.2, act_type = 'leaky') conv13 = mx.symbol.Convolution(name = 'l6_conv', data = relu12, kernel = (4, 4), stride = (2, 2), pad = (1, 1), num_filter = 128) bn13 = mx.symbol.BatchNorm(name='l7_bn', data = conv13, eps = 1e-05, momentum = 0.1, fix_gamma = False) relu13 = mx.symbol.LeakyReLU(name = 'l8', data = bn13, slope = 0.2, act_type = 'leaky') conv14 = mx.symbol.Convolution(name = 'l9_conv', data = relu13, kernel = (4, 4), stride = (2, 2), pad = (1, 1), num_filter = 256) bn14 = mx.symbol.BatchNorm(name='l10_bn', data = conv14, eps = 1e-05, momentum = 0.1, fix_gamma = False) relu14 = mx.symbol.LeakyReLU(name = 'l11', data = bn14, slope = 0.2, act_type = 'leaky') conv15 = mx.symbol.Convolution(name = 'l12_conv', data = relu14, kernel = (4, 4), stride = (2, 2), pad = (1, 1), num_filter =512) bn15 = mx.symbol.BatchNorm(name='l13_bn', data = conv15, eps = 1e-05, momentum = 0.1, fix_gamma = False) relu15 = mx.symbol.LeakyReLU(name = 'l14', data = bn15, slope = 0.2, act_type = 'leaky') conv16 = mx.symbol.Convolution(name = 'l15_conv', data = relu15, kernel = (4, 4), stride = (1, 1), pad = (0, 0), num_filter =4000) return conv16 #define inpainting model def inpaintModel(data): data = encoder(data) bn21 = mx.symbol.BatchNorm(name='l16_bn', data = data, eps = 1e-05, momentum = 0.1, fix_gamma = False) relu21 = mx.symbol.LeakyReLU(name = 'l17', data = bn21, slope = 0.2, act_type = 'leaky') convt21 = mx.symbol.Deconvolution(name = 'l18_conv', data = relu21, kernel = (4, 4), stride = (1, 1), pad = (0, 0), num_filter = 512) bn22 = mx.symbol.BatchNorm(name='l19_bn', data = convt21, eps = 1e-05, momentum = 0.1, fix_gamma = False) relu22 = mx.symbol.Activation(name = 'l20', data = bn22, act_type = 'relu') convt22 = mx.symbol.Deconvolution(name = 'l21_conv', data = relu22, kernel = (4, 4), stride = (2, 2), pad = (1, 1), num_filter = 256) bn23 = mx.symbol.BatchNorm(name='l22_bn', data = convt22, eps = 1e-05, momentum = 0.1, fix_gamma = False) relu23 = mx.symbol.Activation(name = 'l23', data = bn23, act_type = 'relu') convt23 = mx.symbol.Deconvolution(name = 'l24_conv', data = relu23, kernel = (4, 4), stride = (2, 2), pad = (1, 1), num_filter = 128) bn24 = mx.symbol.BatchNorm(name='l25_bn', data = convt23, eps = 1e-05, momentum = 0.1, fix_gamma = False) relu24 = mx.symbol.Activation(name = 'l26', data = bn24, act_type = 'relu') convt24 = mx.symbol.Deconvolution(name = 'l27_conv', data = relu24, kernel = (4, 4), stride = (2, 2), pad = (1, 1), num_filter = 64) bn25 = mx.symbol.BatchNorm(name='l28_bn', data = convt24, eps = 1e-05, momentum = 0.1, fix_gamma = False) relu25 = mx.symbol.Activation(name = 'l29', data = bn25, act_type = 'relu') convt25 = mx.symbol.Deconvolution(name = 'l30_conv', data = relu25, kernel = (4, 4), stride = (2, 2), pad = (1, 1), num_filter = 3) tanh21 = mx.symbol.Activation(name = 'l31', data = convt25, act_type = 'tanh') return tanh21 save_path = './msgpack/' arg_params, aux_params = import_params(save_path) print('Successfully imported %d argument parameters and %d auxiliary states' % (len(arg_params), len(aux_params)) ) print(arg_params) print(aux_params) data = mx.symbol.Variable('data') sym = inpaintModel(data) mod_mx = mx.mod.Module(symbol = sym, context = mx.cpu()) mod_mx.bind(for_training = False, data_shapes = [('data', (1, 3, 128, 128))]) mod_mx.set_params(arg_params, aux_params) mod_mx.save_checkpoint('ip_mxnet', 0) print 'ok'
June01/torch2mxnet_msgpack
build_model_mx.py
Python
mit
4,192
#################################### # This file was created by Bohrium. # It allows you to run NumPy code (cells) as Bohrium, by using the magic command # `%%bohrium` in your cells, e.g.: # # %%bohrium # print(numpy) # print(numpy.arange(10)) #################################### from IPython.core.magic import register_cell_magic try: import bohrium have_bohrium = True @bohrium.replace_numpy def execute(__code): exec(__code, globals(), locals()) __excludes = set(["__excludes", "__code", "np", "bohrium"]) try: # Python 2.x for key, value in locals().iteritems(): if key not in __excludes: globals()[key] = value except: # Python 3.x for key, value in locals().items(): if key not in __excludes: globals()[key] = value except ImportError: warning_shown = False # Warning about missin bohrium has been shown def execute(__code): global warning_shown if not warning_shown: print("WARNING: Module bohrium could not be imported.\n" " The magic command '%%bohrium' will have no effect.") warning_shown = True exec(__code, globals()) @register_cell_magic def bohrium(line, cell): # Code must end with \n code = cell if cell.endswith("\n") else cell + "\n" execute(code) return
madsbk/bohrium
ipython-magic.py
Python
apache-2.0
1,459
from ztag.transform import ZGrabTransform, ZMapTransformOutput from ztag import protocols, errors from ztag.transform import Transformable class FTPTransform(ZGrabTransform): name = "ftp/generic" port = 21 protocol = protocols.FTP subprotocol = protocols.FTP.BANNER def __init__(self, *args, **kwargs): super(FTPTransform, self).__init__(*args, **kwargs) def _transform_object(self, obj): ftp_banner = obj ftp = Transformable(obj) zout = ZMapTransformOutput() error = ftp['error'].resolve() if error is not None: raise errors.IgnoreObject("Error") out = dict() banner = ftp['data']['banner'].resolve() if banner is not None: out['banner'] = self.clean_banner(banner) if len(out) == 0: raise errors.IgnoreObject("Empty output dict") out['ip_address'] = obj['ip'] out['timestamp'] = obj['timestamp'] zout.transformed = out return zout
zmap/ztag
ztag/transforms/ftp.py
Python
apache-2.0
1,011
import urlparse from functools import wraps from django.db.models import Q from django.conf import settings from django.core.urlresolvers import reverse from django.utils.decorators import available_attrs, method_decorator from django.views.generic import ListView, CreateView, UpdateView, DeleteView from django.contrib.auth import REDIRECT_FIELD_NAME from privileges.forms import GrantForm from privileges.models import Grant def owner_required(view_func): @wraps(view_func, assigned=available_attrs(view_func)) def _wrapped_view(request, *args, **kwargs): if request.user.is_authenticated(): if request.user.username == kwargs["username"] or \ request.user.is_superuser: return view_func(request, *args, **kwargs) path = request.build_absolute_uri() login_scheme, login_netloc = urlparse.urlparse(settings.LOGIN_URL)[:2] current_scheme, current_netloc = urlparse.urlparse(path)[:2] if ( (not login_scheme or login_scheme == current_scheme) and (not login_netloc or login_netloc == current_netloc) ): path = request.get_full_path() from django.contrib.auth.views import redirect_to_login return redirect_to_login(path, redirect_field_name=REDIRECT_FIELD_NAME) return _wrapped_view def cbv_decorator(decorator): def _decorator(cls): cls.dispatch = method_decorator(decorator)(cls.dispatch) return cls return _decorator class UsernameContextMixin(object): def get_context_data(self, **kwargs): context = super(UsernameContextMixin, self).get_context_data(**kwargs) context.update({ "username": self.kwargs.get("username") }) return context @cbv_decorator(owner_required) class GrantListView(UsernameContextMixin, ListView): model = Grant def get_queryset(self): username = self.kwargs["username"] return super(GrantListView, self).get_queryset().filter( Q(grantor__username=username) | Q(grantee__username=username) ) @cbv_decorator(owner_required) class GrantCreateView(UsernameContextMixin, CreateView): model = Grant form_class = GrantForm def get_form_kwargs(self): kwargs = super(GrantCreateView, self).get_form_kwargs() kwargs.update({ "user": self.request.user }) return kwargs def get_success_url(self): return reverse( "privileges_grant_list", kwargs={"username": self.request.user.username} ) @cbv_decorator(owner_required) class GrantUpdateView(UsernameContextMixin, UpdateView): model = Grant form_class = GrantForm def get_form_kwargs(self): kwargs = super(GrantUpdateView, self).get_form_kwargs() kwargs.update({ "user": self.request.user }) return kwargs def get_success_url(self): return reverse( "privileges_grant_list", kwargs={"username": self.request.user.username} ) @cbv_decorator(owner_required) class GrantDeleteView(UsernameContextMixin, DeleteView): model = Grant def get_success_url(self): return reverse( "privileges_grant_list", kwargs={"username": self.request.user.username} )
jacobwegner/privileges
privileges/views.py
Python
bsd-3-clause
3,352
#!/usr/bin/env python from mininet.topo import Topo class TowerTopo( Topo ): """Create a tower topology""" def build( self, k=4, h=6 ): spines = [] leaves = [] hosts = [] # Create the two spine switches spines.append(self.addSwitch('s1')) spines.append(self.addSwitch('s2')) # Create two links between the spine switches self.addLink(spines[0], spines[1]) #TODO add second link between spines when multi-link topos are supported #self.addLink(spines[0], spines[1]) # Now create the leaf switches, their hosts and connect them together i = 1 c = 0 while i <= k: leaves.append(self.addSwitch('s1%d' % i)) for spine in spines: self.addLink(leaves[i-1], spine) j = 1 while j <= h: hosts.append(self.addHost('h%d%d' % (i, j))) self.addLink(hosts[c], leaves[i-1]) j+=1 c+=1 i+=1 topos = { 'tower': TowerTopo } if __name__ == '__main__': from onosnet import run run( TowerTopo() )
gunine/onos-byon
topos/topo.py
Python
apache-2.0
1,161
import threading import traceback import warnings from _pydev_bundle._pydev_filesystem_encoding import getfilesystemencoding from _pydev_bundle.pydev_imports import xmlrpclib, _queue Queue = _queue.Queue from _pydevd_bundle.pydevd_constants import * #This may happen in IronPython (in Python it shouldn't happen as there are #'fast' replacements that are used in xmlrpclib.py) warnings.filterwarnings( 'ignore', 'The xmllib module is obsolete.*', DeprecationWarning) file_system_encoding = getfilesystemencoding() #======================================================================================================================= # _ServerHolder #======================================================================================================================= class _ServerHolder: ''' Helper so that we don't have to use a global here. ''' SERVER = None #======================================================================================================================= # set_server #======================================================================================================================= def set_server(server): _ServerHolder.SERVER = server #======================================================================================================================= # ParallelNotification #======================================================================================================================= class ParallelNotification(object): def __init__(self, method, args): self.method = method self.args = args def to_tuple(self): return self.method, self.args #======================================================================================================================= # KillServer #======================================================================================================================= class KillServer(object): pass #======================================================================================================================= # ServerFacade #======================================================================================================================= class ServerFacade(object): def __init__(self, notifications_queue): self.notifications_queue = notifications_queue def notifyTestsCollected(self, *args): self.notifications_queue.put_nowait(ParallelNotification('notifyTestsCollected', args)) def notifyConnected(self, *args): self.notifications_queue.put_nowait(ParallelNotification('notifyConnected', args)) def notifyTestRunFinished(self, *args): self.notifications_queue.put_nowait(ParallelNotification('notifyTestRunFinished', args)) def notifyStartTest(self, *args): self.notifications_queue.put_nowait(ParallelNotification('notifyStartTest', args)) def notifyTest(self, *args): new_args = [] for arg in args: new_args.append(_encode_if_needed(arg)) args = tuple(new_args) self.notifications_queue.put_nowait(ParallelNotification('notifyTest', args)) #======================================================================================================================= # ServerComm #======================================================================================================================= class ServerComm(threading.Thread): def __init__(self, notifications_queue, port, daemon=False): threading.Thread.__init__(self) self.setDaemon(daemon) # If False, wait for all the notifications to be passed before exiting! self.finished = False self.notifications_queue = notifications_queue from _pydev_bundle import pydev_localhost # It is necessary to specify an encoding, that matches # the encoding of all bytes-strings passed into an # XMLRPC call: "All 8-bit strings in the data structure are assumed to use the # packet encoding. Unicode strings are automatically converted, # where necessary." # Byte strings most likely come from file names. encoding = file_system_encoding if encoding == "mbcs": # Windos symbolic name for the system encoding CP_ACP. # We need to convert it into a encoding that is recognized by Java. # Unfortunately this is not always possible. You could use # GetCPInfoEx and get a name similar to "windows-1251". Then # you need a table to translate on a best effort basis. Much to complicated. # ISO-8859-1 is good enough. encoding = "ISO-8859-1" self.server = xmlrpclib.Server('http://%s:%s' % (pydev_localhost.get_localhost(), port), encoding=encoding) def run(self): while True: kill_found = False commands = [] command = self.notifications_queue.get(block=True) if isinstance(command, KillServer): kill_found = True else: assert isinstance(command, ParallelNotification) commands.append(command.to_tuple()) try: while True: command = self.notifications_queue.get(block=False) #No block to create a batch. if isinstance(command, KillServer): kill_found = True else: assert isinstance(command, ParallelNotification) commands.append(command.to_tuple()) except: pass #That's OK, we're getting it until it becomes empty so that we notify multiple at once. if commands: try: self.server.notifyCommands(commands) except: traceback.print_exc() if kill_found: self.finished = True return #======================================================================================================================= # initialize_server #======================================================================================================================= def initialize_server(port, daemon=False): if _ServerHolder.SERVER is None: if port is not None: notifications_queue = Queue() _ServerHolder.SERVER = ServerFacade(notifications_queue) _ServerHolder.SERVER_COMM = ServerComm(notifications_queue, port, daemon) _ServerHolder.SERVER_COMM.start() else: #Create a null server, so that we keep the interface even without any connection. _ServerHolder.SERVER = Null() _ServerHolder.SERVER_COMM = Null() try: _ServerHolder.SERVER.notifyConnected() except: traceback.print_exc() #======================================================================================================================= # notifyTest #======================================================================================================================= def notifyTestsCollected(tests_count): assert tests_count is not None try: _ServerHolder.SERVER.notifyTestsCollected(tests_count) except: traceback.print_exc() #======================================================================================================================= # notifyStartTest #======================================================================================================================= def notifyStartTest(file, test): ''' @param file: the tests file (c:/temp/test.py) @param test: the test ran (i.e.: TestCase.test1) ''' assert file is not None if test is None: test = '' #Could happen if we have an import error importing module. try: _ServerHolder.SERVER.notifyStartTest(file, test) except: traceback.print_exc() def _encode_if_needed(obj): # In the java side we expect strings to be ISO-8859-1 (org.python.pydev.debug.pyunit.PyUnitServer.initializeDispatches().new Dispatch() {...}.getAsStr(Object)) if not IS_PY3K: if isinstance(obj, str): try: return xmlrpclib.Binary(obj.decode(sys.stdin.encoding).encode('ISO-8859-1', 'xmlcharrefreplace')) except: return xmlrpclib.Binary(obj) elif isinstance(obj, unicode): return xmlrpclib.Binary(obj.encode('ISO-8859-1', 'xmlcharrefreplace')) else: if isinstance(obj, str): # Unicode in py3 return xmlrpclib.Binary(obj.encode('ISO-8859-1', 'xmlcharrefreplace')) elif isinstance(obj, bytes): try: return xmlrpclib.Binary(obj.decode(sys.stdin.encoding).encode('ISO-8859-1', 'xmlcharrefreplace')) except: return xmlrpclib.Binary(obj) #bytes already return obj #======================================================================================================================= # notifyTest #======================================================================================================================= def notifyTest(cond, captured_output, error_contents, file, test, time): ''' @param cond: ok, fail, error @param captured_output: output captured from stdout @param captured_output: output captured from stderr @param file: the tests file (c:/temp/test.py) @param test: the test ran (i.e.: TestCase.test1) @param time: float with the number of seconds elapsed ''' assert cond is not None assert captured_output is not None assert error_contents is not None assert file is not None if test is None: test = '' #Could happen if we have an import error importing module. assert time is not None try: captured_output = _encode_if_needed(captured_output) error_contents = _encode_if_needed(error_contents) _ServerHolder.SERVER.notifyTest(cond, captured_output, error_contents, file, test, time) except: traceback.print_exc() #======================================================================================================================= # notifyTestRunFinished #======================================================================================================================= def notifyTestRunFinished(total_time): assert total_time is not None try: _ServerHolder.SERVER.notifyTestRunFinished(total_time) except: traceback.print_exc() #======================================================================================================================= # force_server_kill #======================================================================================================================= def force_server_kill(): _ServerHolder.SERVER_COMM.notifications_queue.put_nowait(KillServer())
asedunov/intellij-community
python/helpers/pydev/_pydev_runfiles/pydev_runfiles_xml_rpc.py
Python
apache-2.0
11,010
from alleles_fixation import *
lorix-lpan/alleles-fixation
alleles_fixation/__init__.py
Python
gpl-3.0
31
from getpass import getpass from pycuc.japi import UnityAPI import yaml class Config: def __init__(self, filename): with open(filename, 'r') as stream: config = yaml.load(stream) self.unity_url = config['unity_url'] def get_input(message): return input(message) def get_username_password(): """ Uses get_input function to collect username and password :return: Tuple of username and password """ username = get_input("Please enter your username for unity: ") password = getpass(prompt="Password: ") return username, password def find_users_without(api): """ Wires together the required API Calls to Unity to find users without SingleInbox :param api: UnityAPI Object :return: List of users without SingleInbox or Empty List if None """ users = api.get_list_of_users() no_single_inbox = [] for user in users: service_uri = user["ExternalServiceAccountsURI"] service_accounts = api.get(service_uri) if service_accounts['@total'] == "0": no_single_inbox.append(user['Alias']) return no_single_inbox def ldap_user(api, alias): """ Checks the UnityAPI to determine if user is synced to ActiveDirectory. Returns Boolean Result :param api: UnityAPI Object :param alias: Alias to search for :return: Boolean """ user_config = api.get_user_config(alias) if user_config["LdapType"] == "3": return True else: return False def main(): script_config = Config('config.yml') un, pw = get_username_password() api = UnityAPI(username=un, password=pw, url=script_config.unity_url) no_single_inbox = find_users_without(api) filtered_users = [] for alias in no_single_inbox: if ldap_user(api, alias): filtered_users.append(alias) print(filtered_users) if __name__ == "__main__": main()
shepherdjay/cisco-unified-scripts
singleinbox.py
Python
mit
1,928
import glob import inspect import io import logging import os import pandas as pd import shutil from typing import Any, Dict, Union import ray import ray.cloudpickle as pickle from ray.tune.registry import _ParameterRegistry from ray.tune.utils import detect_checkpoint_function from ray.util import placement_group from six import string_types logger = logging.getLogger(__name__) class TrainableUtil: @staticmethod def process_checkpoint( checkpoint: Union[Dict, str], parent_dir: str, trainable_state: Dict ) -> str: """Creates checkpoint file structure and writes metadata under `parent_dir`. The file structure could either look like: - checkpoint_00000 (returned path) -- .is_checkpoint -- .tune_metadata -- xxx.pkl (or whatever user specifies in their Trainable) Or, - checkpoint_00000 -- .is_checkpoint -- checkpoint (returned path) -- checkpoint.tune_metadata """ saved_as_dict = False if isinstance(checkpoint, string_types): if not checkpoint.startswith(parent_dir): raise ValueError( "The returned checkpoint path must be within the " "given checkpoint dir {}: {}".format(parent_dir, checkpoint) ) checkpoint_path = checkpoint if os.path.isdir(checkpoint_path): # Add trailing slash to prevent tune metadata from # being written outside the directory. checkpoint_path = os.path.join(checkpoint_path, "") elif isinstance(checkpoint, dict): saved_as_dict = True checkpoint_path = os.path.join(parent_dir, "checkpoint") with open(checkpoint_path, "wb") as f: pickle.dump(checkpoint, f) else: raise ValueError( "Returned unexpected type {}. " "Expected str or dict.".format(type(checkpoint)) ) with open(checkpoint_path + ".tune_metadata", "wb") as f: trainable_state["saved_as_dict"] = saved_as_dict pickle.dump(trainable_state, f) return checkpoint_path @staticmethod def pickle_checkpoint(checkpoint_path): """Pickles checkpoint data.""" checkpoint_dir = TrainableUtil.find_checkpoint_dir(checkpoint_path) data = {} for basedir, _, file_names in os.walk(checkpoint_dir): for file_name in file_names: path = os.path.join(basedir, file_name) with open(path, "rb") as f: data[os.path.relpath(path, checkpoint_dir)] = f.read() # Use normpath so that a directory path isn't mapped to empty string. name = os.path.relpath(os.path.normpath(checkpoint_path), checkpoint_dir) name += os.path.sep if os.path.isdir(checkpoint_path) else "" data_dict = pickle.dumps( { "checkpoint_name": name, "data": data, } ) return data_dict @staticmethod def checkpoint_to_object(checkpoint_path): data_dict = TrainableUtil.pickle_checkpoint(checkpoint_path) out = io.BytesIO() if len(data_dict) > 10e6: # getting pretty large logger.info("Checkpoint size is {} bytes".format(len(data_dict))) out.write(data_dict) return out.getvalue() @staticmethod def find_checkpoint_dir(checkpoint_path): """Returns the directory containing the checkpoint path. Raises: FileNotFoundError if the directory is not found. """ if not os.path.exists(checkpoint_path): raise FileNotFoundError("Path does not exist", checkpoint_path) if os.path.isdir(checkpoint_path): checkpoint_dir = checkpoint_path else: checkpoint_dir = os.path.dirname(checkpoint_path) while checkpoint_dir != os.path.dirname(checkpoint_dir): if os.path.exists(os.path.join(checkpoint_dir, ".is_checkpoint")): break checkpoint_dir = os.path.dirname(checkpoint_dir) else: raise FileNotFoundError( "Checkpoint directory not found for {}".format(checkpoint_path) ) return os.path.normpath(checkpoint_dir) @staticmethod def find_rel_checkpoint_dir(logdir, checkpoint_path): """Returns the (relative) directory name of the checkpoint. Note, the assumption here is `logdir` should be the prefix of `checkpoint_path`. For example, returns `checkpoint00000/`. """ assert checkpoint_path.startswith( logdir ), "expecting `logdir` to be a prefix of `checkpoint_path`" rel_path = os.path.relpath(checkpoint_path, logdir) tokens = rel_path.split(os.sep) return os.path.join(tokens[0], "") @staticmethod def make_checkpoint_dir(checkpoint_dir, index, override=False): """Creates a checkpoint directory within the provided path. Args: checkpoint_dir (str): Path to checkpoint directory. index (int|str): A subdirectory will be created at the checkpoint directory named 'checkpoint_{index}'. override (bool): Deletes checkpoint_dir before creating a new one. """ suffix = "checkpoint" if index is not None: suffix += f"_{index:06d}" if isinstance(index, int) else f"_{index}" checkpoint_dir = os.path.join(checkpoint_dir, suffix) if override and os.path.exists(checkpoint_dir): shutil.rmtree(checkpoint_dir) os.makedirs(checkpoint_dir, exist_ok=True) # Drop marker in directory to identify it as a checkpoint dir. open(os.path.join(checkpoint_dir, ".is_checkpoint"), "a").close() return checkpoint_dir @staticmethod def create_from_pickle(obj, tmpdir): info = pickle.loads(obj) data = info["data"] checkpoint_path = os.path.join(tmpdir, info["checkpoint_name"]) for relpath_name, file_contents in data.items(): path = os.path.join(tmpdir, relpath_name) # This may be a subdirectory, hence not just using tmpdir os.makedirs(os.path.dirname(path), exist_ok=True) with open(path, "wb") as f: f.write(file_contents) return checkpoint_path @staticmethod def get_checkpoints_paths(logdir): """Finds the checkpoints within a specific folder. Returns a pandas DataFrame of training iterations and checkpoint paths within a specific folder. Raises: FileNotFoundError if the directory is not found. """ marker_paths = glob.glob( os.path.join(glob.escape(logdir), "checkpoint_*/.is_checkpoint") ) iter_chkpt_pairs = [] for marker_path in marker_paths: chkpt_dir = os.path.dirname(marker_path) metadata_file = glob.glob( os.path.join(glob.escape(chkpt_dir), "*.tune_metadata") ) # glob.glob: filenames starting with a dot are special cases # that are not matched by '*' and '?' patterns. metadata_file += glob.glob( os.path.join(glob.escape(chkpt_dir), ".tune_metadata") ) metadata_file = list(set(metadata_file)) # avoid duplication if len(metadata_file) != 1: raise ValueError( "{} has zero or more than one tune_metadata.".format(chkpt_dir) ) chkpt_path = metadata_file[0][: -len(".tune_metadata")] chkpt_iter = int(chkpt_dir[chkpt_dir.rfind("_") + 1 :]) iter_chkpt_pairs.append([chkpt_iter, chkpt_path]) chkpt_df = pd.DataFrame( iter_chkpt_pairs, columns=["training_iteration", "chkpt_path"] ) return chkpt_df class PlacementGroupUtil: @staticmethod def get_remote_worker_options( num_workers, num_cpus_per_worker, num_gpus_per_worker, num_workers_per_host, timeout_s, ) -> (Dict[str, Any], placement_group): """Returns the option for remote workers. Args: num_workers (int): Number of training workers to include in world. num_cpus_per_worker (int): Number of CPU resources to reserve per training worker. num_gpus_per_worker (int): Number of GPU resources to reserve per training worker. num_workers_per_host: Optional[int]: Number of workers to colocate per host. timeout_s (Optional[int]): Seconds before the torch process group times out. Useful when machines are unreliable. Defaults to 60 seconds. This value is also reused for triggering placement timeouts if forcing colocation. Returns: type(Dict[Str, Any]): option that contains CPU/GPU count of the remote worker and the placement group information. pg(placement_group): return a reference to the placement group """ pg = None options = dict(num_cpus=num_cpus_per_worker, num_gpus=num_gpus_per_worker) if num_workers_per_host: num_hosts = int(num_workers / num_workers_per_host) cpus_per_node = num_cpus_per_worker * num_workers_per_host gpus_per_node = num_gpus_per_worker * num_workers_per_host bundle = {"CPU": cpus_per_node, "GPU": gpus_per_node} all_bundles = [bundle] * num_hosts pg = placement_group(all_bundles, strategy="STRICT_SPREAD") logger.debug("Waiting for placement_group to start.") ray.get(pg.ready(), timeout=timeout_s) logger.debug("Placement_group started.") options["placement_group"] = pg return options, pg def with_parameters(trainable, **kwargs): """Wrapper for trainables to pass arbitrary large data objects. This wrapper function will store all passed parameters in the Ray object store and retrieve them when calling the function. It can thus be used to pass arbitrary data, even datasets, to Tune trainables. This can also be used as an alternative to ``functools.partial`` to pass default arguments to trainables. When used with the function API, the trainable function is called with the passed parameters as keyword arguments. When used with the class API, the ``Trainable.setup()`` method is called with the respective kwargs. If the data already exists in the object store (are instances of ObjectRef), using ``tune.with_parameters()`` is not necessary. You can instead pass the object refs to the training function via the ``config`` or use Python partials. Args: trainable: Trainable to wrap. **kwargs: parameters to store in object store. Function API example: .. code-block:: python from ray import tune def train(config, data=None): for sample in data: loss = update_model(sample) tune.report(loss=loss) data = HugeDataset(download=True) tune.run( tune.with_parameters(train, data=data), # ... ) Class API example: .. code-block:: python from ray import tune class MyTrainable(tune.Trainable): def setup(self, config, data=None): self.data = data self.iter = iter(self.data) self.next_sample = next(self.iter) def step(self): loss = update_model(self.next_sample) try: self.next_sample = next(self.iter) except StopIteration: return {"loss": loss, done: True} return {"loss": loss} data = HugeDataset(download=True) tune.run( tune.with_parameters(MyTrainable, data=data), # ... ) """ from ray.tune.trainable import Trainable if not callable(trainable) or ( inspect.isclass(trainable) and not issubclass(trainable, Trainable) ): raise ValueError( f"`tune.with_parameters() only works with function trainables " f"or classes that inherit from `tune.Trainable()`. Got type: " f"{type(trainable)}." ) parameter_registry = _ParameterRegistry() ray.worker._post_init_hooks.append(parameter_registry.flush) # Objects are moved into the object store prefix = f"{str(trainable)}_" for k, v in kwargs.items(): parameter_registry.put(prefix + k, v) trainable_name = getattr(trainable, "__name__", "tune_with_parameters") if inspect.isclass(trainable): # Class trainable keys = list(kwargs.keys()) class _Inner(trainable): def setup(self, config): setup_kwargs = {} for k in keys: setup_kwargs[k] = parameter_registry.get(prefix + k) super(_Inner, self).setup(config, **setup_kwargs) _Inner.__name__ = trainable_name return _Inner else: # Function trainable use_checkpoint = detect_checkpoint_function(trainable, partial=True) keys = list(kwargs.keys()) def inner(config, checkpoint_dir=None): fn_kwargs = {} if use_checkpoint: default = checkpoint_dir sig = inspect.signature(trainable) if "checkpoint_dir" in sig.parameters: default = sig.parameters["checkpoint_dir"].default or default fn_kwargs["checkpoint_dir"] = default for k in keys: fn_kwargs[k] = parameter_registry.get(prefix + k) trainable(config, **fn_kwargs) inner.__name__ = trainable_name # Use correct function signature if no `checkpoint_dir` parameter # is set if not use_checkpoint: def _inner(config): inner(config, checkpoint_dir=None) _inner.__name__ = trainable_name if hasattr(trainable, "__mixins__"): _inner.__mixins__ = trainable.__mixins__ return _inner if hasattr(trainable, "__mixins__"): inner.__mixins__ = trainable.__mixins__ return inner
ray-project/ray
python/ray/tune/utils/trainable.py
Python
apache-2.0
14,643
#!/usr/bin/python #import websocket import websocket import thread import time import random import json dato_inicial={'com':0,'valorx':0,'valory':0,'valorz':0,'errorx':0,'errory':0,'errorz':0,'control':4} def on_message(ws, message): print "MENSAJE RECIBIDO DESDE LA PLATAFORM" print message def on_error(ws, error): print error def on_close(ws): print "### closed ###" def on_open(ws): def run(*args): ws.send('{"cliente":"controlador"}') time.sleep(1) ws.send(json.dumps(dato_inicial)) for i in range(100): time.sleep(1) dato={'com':random.randint(0,100), 'valorx':random.randint(0,100), 'valory':random.randint(0,100), 'valorz':random.randint(0,100), 'errorx':random.randint(0,100), 'errory':random.randint(0,100), 'errorz':random.randint(0,100), 'control':random.randint(0,4) } ws.send(json.dumps(dato)) print "DATO ENVIADO DESDE CONTROLADOR CORRECTAMENTE!" time.sleep(1) ws.close() print "thread terminating..." thread.start_new_thread(run, ()) if __name__ == "__main__": websocket.enableTrace(True) ws = websocket.WebSocketApp("ws://192.168.1.8:9300", on_message = on_message, on_error = on_error, on_close = on_close) ws.on_open = on_open ws.run_forever(sslopt={"cert_reqs": ssl.CERT_NONE})
dexterx17/nodoSocket
clients/controlador.py
Python
mit
1,468
from django.contrib import admin from badgify.models import Award from badgify.admin import AwardAdmin class CustomAwardAdmin(AwardAdmin): """Override the default AwardAdmin class.""" list_display = ('user_fullname', 'user_email', 'badge', 'awarded_at') search_fields = ( 'user__username', 'user__email', 'user__first_name', 'user__last_name', 'badge__name', 'badge__description', ) raw_id_fields = ('user', ) def user_fullname(self, award): return award.user.get_full_name() user_fullname.admin_order_field = 'user' def user_email(self, award): return award.user.email user_email.admin_order_field = 'user' admin.site.unregister(Award) admin.site.register(Award, CustomAwardAdmin)
tndatacommons/tndata_backend
tndata_backend/badgify_api/admin.py
Python
mit
756
from core.nav_registry import register register('sitetracker_nav.html')
evewspace/eve-wspace
evewspace/SiteTracker/nav_entries.py
Python
apache-2.0
72
""" PaStA - Patch Stack Analysis Copyright (c) OTH Regensburg, 2017-2019 Author: Ralf Ramsauer <[email protected]> This work is licensed under the terms of the GNU GPL, version 2. See the COPYING file in the top-level directory. """ import os import sys from logging import getLogger from multiprocessing import Pool, cpu_count from tqdm import tqdm sys.path.insert(0, os.path.abspath(os.path.join(os.path.dirname(__file__), '..'))) from pypasta import * log = getLogger(__name__[-15:]) repo = None def get_youngest(repo, commits, commit_date): commits = list(commits) youngest = commits[0] oldest = commits[0] if len(commits) == 1: return oldest, youngest if commit_date: for commit in commits[1:]: if repo[youngest].committer.date > repo[commit].committer.date: youngest = commit if repo[oldest].committer.date < repo[commit].committer.date: oldest = commit else: for commit in commits[1:]: if repo[youngest].author.date > repo[commit].author.date: youngest = commit if repo[oldest].author.date < repo[commit].author.date: oldest = commit return oldest, youngest def upstream_duration_of_group(group): def ymd(dt): return dt.strftime('%Y-%m-%d') untagged, tagged = group # get youngest mail and youngest upstream commit oldest_mail, youngest_mail = get_youngest(repo, untagged, False) _, youngest_upstream = get_youngest(repo, tagged, True) oldest_mail_date = repo[oldest_mail].author.date youngest_mail_date = repo[youngest_mail].author.date youngest_upstream_date = repo[youngest_upstream].committer.date delta = youngest_upstream_date - youngest_mail_date delta = delta.days return youngest_upstream, ymd(youngest_mail_date), ymd(oldest_mail_date), \ ymd(youngest_upstream_date), len(untagged), len(tagged), delta def upstream_duration(config, argv): parser = argparse.ArgumentParser(prog='upstream_duration', description='upstream_time') args = parser.parse_args(argv) global repo repo = config.repo _, cluster = config.load_cluster() if config.mode == Config.Mode.MBOX: config.load_ccache_mbox() else: config.load_ccache_stack() log.info('Starting evaluation.') pool = Pool(cpu_count()) tagged_only = [(d, u) for d, u in cluster.iter_split() if len(u) and len(d)] result = list(tqdm(pool.imap(upstream_duration_of_group, tagged_only), total=len(tagged_only))) pool.close() pool.join() log.info(' ↪ done.') # sort by upstream duration result.sort(key = lambda x: x[3]) # save raw results with open(config.f_upstream_duration, 'w') as f: f.write('rep first_submission last_submission integration num_equiv num_up dur\n') for line in result: f.write('%s %s %s %s %d %d %d\n' % line)
lfd/PaStA
bin/pasta_upstream_duration.py
Python
gpl-2.0
3,015
from django.conf.urls import patterns, include, url from django.conf import settings from .views import HomeView, AvatarlessProfileEditView urlpatterns = patterns('', url(r'^$', HomeView.as_view(), name="home"), url(r'^lekcje/', include('catalogue.urls')), url(r'^info/(?P<url>.*)$', 'django.contrib.flatpages.views.flatpage', name="info"), url(r'^szukaj/', include('haystack.urls')), url(r'^zglos/', include('contact.urls')), url(r'^forum/profile/edit/$', AvatarlessProfileEditView.as_view(), name='edit_profile'), url(r'^forum/', include('forum.urls')), url(r'^forum/', include('pybb.urls', namespace='pybb')), url(r'^kompetencje/', include('curriculum.urls')), url(r'^wtem/', include('wtem.urls')), ) # Admin stuff, if necessary. if 'django.contrib.admin' in settings.INSTALLED_APPS: from django.contrib import admin admin.autodiscover() if 'django_cas' in settings.INSTALLED_APPS: urlpatterns += patterns('', (r'^admin/logout/$', 'django_cas.views.logout'), ) urlpatterns += patterns('', url(r'^admin/doc/', include('django.contrib.admindocs.urls')), url(r'^admin/', include(admin.site.urls)), ) # Auth stuff, if necessary if 'django_cas' in settings.INSTALLED_APPS: urlpatterns += patterns('', url(r'^accounts/login/$', 'django_cas.views.login', name='login'), url(r'^accounts/logout/$', 'django_cas.views.logout', name='logout'), ) if settings.DEBUG: urlpatterns += patterns('', url(r'^media/(?P<path>.*)$', 'django.views.static.serve', { 'document_root': settings.MEDIA_ROOT, }), )
fnp/edumed
edumed/urls.py
Python
agpl-3.0
1,669
import contextvars import gettext import os from telebot.asyncio_handler_backends import BaseMiddleware try: from babel.support import LazyProxy babel_imported = True except ImportError: babel_imported = False class I18N(BaseMiddleware): """ This middleware provides high-level tool for internationalization It is based on gettext util. """ context_lang = contextvars.ContextVar('language', default=None) def __init__(self, translations_path, domain_name: str): super().__init__() self.update_types = self.process_update_types() self.path = translations_path self.domain = domain_name self.translations = self.find_translations() @property def available_translations(self): return list(self.translations) def gettext(self, text: str, lang: str = None): """ Singular translations """ if lang is None: lang = self.context_lang.get() if lang not in self.translations: return text translator = self.translations[lang] return translator.gettext(text) def ngettext(self, singular: str, plural: str, lang: str = None, n=1): """ Plural translations """ if lang is None: lang = self.context_lang.get() if lang not in self.translations: if n == 1: return singular return plural translator = self.translations[lang] return translator.ngettext(singular, plural, n) def lazy_gettext(self, text: str, lang: str = None): if not babel_imported: raise RuntimeError('babel module is not imported. Check that you installed it.') return LazyProxy(self.gettext, text, lang, enable_cache=False) def lazy_ngettext(self, singular: str, plural: str, lang: str = None, n=1): if not babel_imported: raise RuntimeError('babel module is not imported. Check that you installed it.') return LazyProxy(self.ngettext, singular, plural, lang, n, enable_cache=False) async def get_user_language(self, obj): """ You need to override this method and return user language """ raise NotImplementedError def process_update_types(self) -> list: """ You need to override this method and return any update types which you want to be processed """ raise NotImplementedError async def pre_process(self, message, data): """ context language variable will be set each time when update from 'process_update_types' comes value is the result of 'get_user_language' method """ self.context_lang.set(await self.get_user_language(obj=message)) async def post_process(self, message, data, exception): pass def find_translations(self): """ Looks for translations with passed 'domain' in passed 'path' """ if not os.path.exists(self.path): raise RuntimeError(f"Translations directory by path: {self.path!r} was not found") result = {} for name in os.listdir(self.path): translations_path = os.path.join(self.path, name, 'LC_MESSAGES') if not os.path.isdir(translations_path): continue po_file = os.path.join(translations_path, self.domain + '.po') mo_file = po_file[:-2] + 'mo' if os.path.isfile(po_file) and not os.path.isfile(mo_file): raise FileNotFoundError(f"Translations for: {name!r} were not compiled!") with open(mo_file, 'rb') as file: result[name] = gettext.GNUTranslations(file) return result
eternnoir/pyTelegramBotAPI
examples/asynchronous_telebot/middleware/i18n_middleware_example/i18n_base_midddleware.py
Python
gpl-2.0
3,751
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. """\ A silly little calculator implemented in JPython using Java components for the UI. Rony G. Flatscher, 2006-08-08 """ import java from java import awt p = bsf.lookupBean('centerPanel') p.setLayout ( awt.BorderLayout () ) p.add ("Center", java.awt.Label ("Middle from Jython")) p.add ("North", java.awt.TextField ("north text from Jython")) p.add ("South", java.awt.TextField ("south text from Jython")) p.add ("East", java.awt.Button ("inner east from Jython")) p.add ("West", java.awt.Button ("inner west from Jython")) p.setBackground (java.awt.Color.orange) f = p.getParent () f.setTitle ("Hello from Jython (title reset from Jython)")
apache/commons-bsf
samples/scriptedui/ui.py
Python
apache-2.0
1,440
# -*- coding: utf-8 -*- # python-holidays # --------------- # A fast, efficient Python library for generating country, province and state # specific sets of holidays on the fly. It aims to make determining whether a # specific date is a holiday as fast and flexible as possible. # # Authors: dr-prodigy <[email protected]> (c) 2017-2022 # ryanss <[email protected]> (c) 2014-2017 # Website: https://github.com/dr-prodigy/python-holidays # License: MIT (see LICENSE file) from datetime import date from holidays.constants import JAN, MAR, MAY, SEP, OCT, DEC from holidays.holiday_base import HolidayBase from holidays.utils import _islamic_to_gre class Uzbekistan(HolidayBase): """ https://www.officeholidays.com/countries/uzbekistan """ country = "UZ" def __init__(self, **kwargs): HolidayBase.__init__(self, **kwargs) def _populate(self, year): """Populate the holidays for a given year""" # New Year's holiday self[date(year, JAN, 1)] = "New Year" # Women's Day self[date(year, MAR, 8)] = "Women's Day" # Nauryz Holiday self[date(year, MAR, 21)] = "Nauryz" # Ramadan Khait # Date of observance is announced yearly, This is an estimate. for hol_date in _islamic_to_gre(year, 10, 1): self[hol_date] = "Ramadan Khait" # Memorial Day self[date(year, MAY, 9)] = "Memorial Day" # Kurban Khait # Date of observance is announced yearly, This is an estimate. for hol_date in _islamic_to_gre(year, 12, 10): self[hol_date] = "Kurban Khait" # Independence Day self[date(year, SEP, 1)] = "Independence Day" # Teacher's Day self[date(year, OCT, 1)] = "Teacher's Day" # Constitution Day self[date(year, DEC, 8)] = "Constitution" class UZ(Uzbekistan): pass class UZB(Uzbekistan): pass
dr-prodigy/python-holidays
holidays/countries/uzbekistan.py
Python
mit
1,955
# -*- coding: utf-8 -*- import pyparsing as pp from config_cwr.accessor import CWRConfiguration from data_cwr.accessor import CWRTables """ Grammar rules for concrete CWR Table/List Lookup fields. These fields all apply the same kind of constraint: all the values not contained in a defined collection are rejected. The only exception is when the field is set as optional. Then an empty string composed of whitespaces is allowed. Additionally, the usual constraints of the Alphanumeric field (non lowercase ASCII) apply. All the values are read from the lists contained in the library, through the CWRTables class. """ __author__ = 'Bernardo Martínez Garrido' __license__ = 'MIT' __status__ = 'Development' """ Configuration classes. """ # Acquires data sources _tables = CWRTables() _config = CWRConfiguration() """ Fields. """ def char_code(columns, name=None): """ Character set code field. :param name: name for the field :return: an instance of the Character set code field rules """ if name is None: name = 'Char Code Field (' + str(columns) + ' columns)' if columns <= 0: raise BaseException() char_sets = None for char_set in _tables.get_data('character_set'): regex = '[ ]{' + str(15 - len(char_set)) + '}' + char_set if char_sets is None: char_sets = regex else: char_sets += '|' + regex # Accepted sets _character_sets = pp.Regex(char_sets) _unicode_1_16b = pp.Regex('U\+0[0-8,A-F]{3}[ ]{' + str(columns - 6) + '}') _unicode_2_21b = pp.Regex('U\+0[0-8,A-F]{4}[ ]{' + str(columns - 7) + '}') # Basic field char_code_field = (_character_sets | _unicode_1_16b | _unicode_2_21b) # Parse action char_code_field = char_code_field.setParseAction(lambda s: s[0].strip()) # Name char_code_field.setName(name) return char_code_field
weso/CWR-DataApi
cwr/grammar/field/table.py
Python
mit
1,900
from __future__ import absolute_import from __future__ import division from __future__ import print_function import sys from six import reraise from tblib import Traceback import numpy as np def to_lodtensor(data, place): """convert tensor to lodtensor """ seq_lens = [len(seq) for seq in data] cur_len = 0 lod = [cur_len] for l in seq_lens: cur_len += l lod.append(cur_len) flattened_data = numpy.concatenate(data, axis=0).astype("int64") flattened_data = flattened_data.reshape([len(flattened_data), 1]) res = fluid.LoDTensor() res.set(flattened_data, place) res.set_lod([lod]) return res def lodtensor_to_ndarray(lod_tensor): """conver lodtensor to ndarray """ dims = lod_tensor._get_dims() ret = np.zeros(shape=dims).astype('float32') for i in xrange(np.product(dims)): ret.ravel()[i] = lod_tensor.get_float_element(i) return ret, lod_tensor.lod() def split_infer_result(infer_seq, lod): infer_batch = [] for i in xrange(0, len(lod[0]) - 1): infer_batch.append(infer_seq[lod[0][i]:lod[0][i + 1]]) return infer_batch class CriticalException(Exception): pass def suppress_signal(signo, stack_frame): pass def suppress_complaints(verbose, notify=None): def decorator_maker(func): def suppress_warpper(*args, **kwargs): try: func(*args, **kwargs) except: et, ev, tb = sys.exc_info() if notify is not None: notify(except_type=et, except_value=ev, traceback=tb) if verbose == 1 or isinstance(ev, CriticalException): reraise(et, ev, Traceback(tb).as_traceback()) return suppress_warpper return decorator_maker class ForceExitWrapper(object): def __init__(self, exit_flag): self._exit_flag = exit_flag @suppress_complaints(verbose=0) def __call__(self, *args, **kwargs): self._exit_flag.value = True def __eq__(self, flag): return self._exit_flag.value == flag
lcy-seso/models
fluid/DeepASR/data_utils/util.py
Python
apache-2.0
2,094
#!/usr/bin/env python import os from app import create_app from flask.ext.script import Manager, Server application = create_app(os.getenv('DM_ENVIRONMENT') or 'development') manager = Manager(application) manager.add_command("runserver", Server(port=5001)) @manager.command def update_index(index_name): from app.main.services.search_service import create_index with application.app_context(): message, status = create_index(index_name) assert status == 200, message application.logger.info("Created index %s", index_name) if __name__ == '__main__': manager.run()
RichardKnop/digitalmarketplace-search-api
application.py
Python
mit
599
# Copyright 2018 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for separable convolutional layers.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from absl.testing import parameterized import numpy as np from tensorflow.python import keras from tensorflow.python.keras import keras_parameterized from tensorflow.python.keras import testing_utils from tensorflow.python.platform import test @keras_parameterized.run_all_keras_modes class SeparableConv1DTest(keras_parameterized.TestCase): def _run_test(self, kwargs): num_samples = 2 stack_size = 3 length = 7 with self.cached_session(use_gpu=True): testing_utils.layer_test( keras.layers.SeparableConv1D, kwargs=kwargs, input_shape=(num_samples, length, stack_size)) @parameterized.named_parameters( ('padding_valid', {'padding': 'valid'}), ('padding_same', {'padding': 'same'}), ('padding_same_dilation_2', {'padding': 'same', 'dilation_rate': 2}), ('padding_causal', {'padding': 'causal'}), ('strides', {'strides': 2}), ('dilation_rate', {'dilation_rate': 2}), ('depth_multiplier', {'depth_multiplier': 2}), ) def test_separable_conv1d(self, kwargs): kwargs['filters'] = 2 kwargs['kernel_size'] = 3 self._run_test(kwargs) def test_separable_conv1d_regularizers(self): kwargs = { 'filters': 3, 'kernel_size': 3, 'padding': 'valid', 'depthwise_regularizer': 'l2', 'pointwise_regularizer': 'l2', 'bias_regularizer': 'l2', 'activity_regularizer': 'l2', 'strides': 1 } with self.cached_session(use_gpu=True): layer = keras.layers.SeparableConv1D(**kwargs) layer.build((None, 5, 2)) self.assertEqual(len(layer.losses), 3) layer(keras.backend.variable(np.ones((1, 5, 2)))) self.assertEqual(len(layer.losses), 4) def test_separable_conv1d_constraints(self): d_constraint = lambda x: x p_constraint = lambda x: x b_constraint = lambda x: x kwargs = { 'filters': 3, 'kernel_size': 3, 'padding': 'valid', 'pointwise_constraint': p_constraint, 'depthwise_constraint': d_constraint, 'bias_constraint': b_constraint, 'strides': 1 } with self.cached_session(use_gpu=True): layer = keras.layers.SeparableConv1D(**kwargs) layer.build((None, 5, 2)) self.assertEqual(layer.depthwise_kernel.constraint, d_constraint) self.assertEqual(layer.pointwise_kernel.constraint, p_constraint) self.assertEqual(layer.bias.constraint, b_constraint) @keras_parameterized.run_all_keras_modes class SeparableConv2DTest(keras_parameterized.TestCase): def _run_test(self, kwargs): num_samples = 2 stack_size = 3 num_row = 7 num_col = 6 with self.cached_session(use_gpu=True): testing_utils.layer_test( keras.layers.SeparableConv2D, kwargs=kwargs, input_shape=(num_samples, num_row, num_col, stack_size)) @parameterized.named_parameters( ('padding_valid', {'padding': 'valid'}), ('padding_same', {'padding': 'same'}), ('padding_same_dilation_2', {'padding': 'same', 'dilation_rate': 2}), ('strides', {'strides': 2}), # Only runs on GPU with CUDA, channels_first is not supported on CPU. # TODO(b/62340061): Support channels_first on CPU. ('data_format', {'data_format': 'channels_first'}), ('dilation_rate', {'dilation_rate': 2}), ('depth_multiplier', {'depth_multiplier': 2}), ) def test_separable_conv2d(self, kwargs): kwargs['filters'] = 2 kwargs['kernel_size'] = 3 if 'data_format' not in kwargs or test.is_gpu_available(cuda_only=True): self._run_test(kwargs) def test_separable_conv2d_regularizers(self): kwargs = { 'filters': 3, 'kernel_size': 3, 'padding': 'valid', 'depthwise_regularizer': 'l2', 'pointwise_regularizer': 'l2', 'bias_regularizer': 'l2', 'activity_regularizer': 'l2', 'strides': 1 } with self.cached_session(use_gpu=True): layer = keras.layers.SeparableConv2D(**kwargs) layer.build((None, 5, 5, 2)) self.assertEqual(len(layer.losses), 3) layer(keras.backend.variable(np.ones((1, 5, 5, 2)))) self.assertEqual(len(layer.losses), 4) def test_separable_conv2d_constraints(self): d_constraint = lambda x: x p_constraint = lambda x: x b_constraint = lambda x: x kwargs = { 'filters': 3, 'kernel_size': 3, 'padding': 'valid', 'pointwise_constraint': p_constraint, 'depthwise_constraint': d_constraint, 'bias_constraint': b_constraint, 'strides': 1 } with self.cached_session(use_gpu=True): layer = keras.layers.SeparableConv2D(**kwargs) layer.build((None, 5, 5, 2)) self.assertEqual(layer.depthwise_kernel.constraint, d_constraint) self.assertEqual(layer.pointwise_kernel.constraint, p_constraint) self.assertEqual(layer.bias.constraint, b_constraint)
kevin-coder/tensorflow-fork
tensorflow/python/keras/layers/separable_convolutional_test.py
Python
apache-2.0
5,792
# Licensed under the GPL: https://www.gnu.org/licenses/old-licenses/gpl-2.0.html # For details: https://github.com/PyCQA/pylint/blob/main/LICENSE import contextlib import os import re import sys import warnings from io import StringIO from os.path import abspath, dirname, join from typing import Iterator, List, TextIO import pytest from pylint.lint import Run HERE = abspath(dirname(__file__)) DATA = join(HERE, "regrtest_data", "duplicate_code") CLEAN_PATH = re.escape(dirname(dirname(__file__)) + os.path.sep) @contextlib.contextmanager def _patch_streams(out: TextIO) -> Iterator: sys.stderr = sys.stdout = out try: yield finally: sys.stderr = sys.__stderr__ sys.stdout = sys.__stdout__ class TestSimilarCodeChecker: def _runtest(self, args: List[str], code: int) -> None: """Runs the tests and sees if output code is as expected.""" out = StringIO() pylint_code = self._run_pylint(args, out=out) output = out.getvalue() msg = f"expected output status {code}, got {pylint_code}" if output is not None: msg = f"{msg}. Below pylint output: \n{output}" assert pylint_code == code, msg @staticmethod def _run_pylint(args: List[str], out: TextIO) -> int: """Runs pylint with a patched output.""" args = args + ["--persistent=no"] with _patch_streams(out): with pytest.raises(SystemExit) as cm: with warnings.catch_warnings(): warnings.simplefilter("ignore") Run(args) return cm.value.code @staticmethod def _clean_paths(output: str) -> str: """Normalize path to the tests directory.""" output = re.sub(CLEAN_PATH, "", output, flags=re.MULTILINE) return output.replace("\\", "/") def _test_output(self, args: List[str], expected_output: str) -> None: """Tests if the output of a pylint run is as expected.""" out = StringIO() self._run_pylint(args, out=out) actual_output = self._clean_paths(out.getvalue()) expected_output = self._clean_paths(expected_output) assert expected_output.strip() in actual_output.strip() def test_duplicate_code_raw_strings_all(self) -> None: """Test similar lines in 3 similar files.""" path = join(DATA, "raw_strings_all") expected_output = "Similar lines in 2 files" self._test_output( [path, "--disable=all", "--enable=duplicate-code"], expected_output=expected_output, ) def test_duplicate_code_raw_strings_disable_file(self) -> None: """Tests disabling duplicate-code at the file level in a single file.""" path = join(DATA, "raw_strings_disable_file") expected_output = "Similar lines in 2 files" self._test_output( [path, "--disable=all", "--enable=duplicate-code"], expected_output=expected_output, ) def test_duplicate_code_raw_strings_disable_file_double(self) -> None: """Tests disabling duplicate-code at the file level in two files.""" path = join(DATA, "raw_strings_disable_file_double") self._runtest([path, "--disable=all", "--enable=duplicate-code"], code=0) def test_duplicate_code_raw_strings_disable_line_two(self) -> None: """Tests disabling duplicate-code at a line at the begin of a piece of similar code.""" path = join(DATA, "raw_strings_disable_line_begin") expected_output = "Similar lines in 2 files" self._test_output( [path, "--disable=all", "--enable=duplicate-code"], expected_output=expected_output, ) def test_duplicate_code_raw_strings_disable_line_disable_all(self) -> None: """Tests disabling duplicate-code with all similar lines disabled per line.""" path = join(DATA, "raw_strings_disable_line_disable_all") self._runtest([path, "--disable=all", "--enable=duplicate-code"], code=0) def test_duplicate_code_raw_strings_disable_line_midle(self) -> None: """Tests disabling duplicate-code at a line in the middle of a piece of similar code.""" path = join(DATA, "raw_strings_disable_line_middle") self._runtest([path, "--disable=all", "--enable=duplicate-code"], code=0) def test_duplicate_code_raw_strings_disable_line_end(self) -> None: """Tests disabling duplicate-code at a line at the end of a piece of similar code.""" path = join(DATA, "raw_strings_disable_line_end") expected_output = "Similar lines in 2 files" self._test_output( [path, "--disable=all", "--enable=duplicate-code"], expected_output=expected_output, ) def test_duplicate_code_raw_strings_disable_scope(self) -> None: """Tests disabling duplicate-code at an inner scope level.""" path = join(DATA, "raw_strings_disable_scope") expected_output = "Similar lines in 2 files" self._test_output( [path, "--disable=all", "--enable=duplicate-code"], expected_output=expected_output, ) def test_duplicate_code_raw_strings_disable_scope_double(self) -> None: """Tests disabling duplicate-code at an inner scope level in two files.""" path = join(DATA, "raw_strings_disable_scope_double") self._runtest([path, "--disable=all", "--enable=duplicate-code"], code=0) def test_duplicate_code_raw_strings_disable_scope_function(self) -> None: """Tests disabling duplicate-code at an inner scope level with another scope with similarity.""" path = join(DATA, "raw_strings_disable_scope_second_function") expected_output = "Similar lines in 2 files" self._test_output( [path, "--disable=all", "--enable=duplicate-code"], expected_output=expected_output, )
PyCQA/pylint
tests/test_similar.py
Python
gpl-2.0
5,923
#!/usr/bin/env python from efl import evas import unittest class TestBoxBasics(unittest.TestCase): def setUp(self): self.canvas = evas.Canvas(method="buffer", size=(400, 500), viewport=(0, 0, 400, 500)) self.canvas.engine_info_set(self.canvas.engine_info_get()) def tearDown(self): self.canvas.delete() def testConstructor(self): box = evas.Box(self.canvas) self.assertEqual(type(box), evas.Box) box.delete() def testConstructorBaseParameters(self): size = (20, 30) pos = (40, 50) geometry = (60, 70, 80, 90) color = (110, 120, 130, 140) # create box using size/pos box1 = evas.Box(self.canvas, name="box1", color=color, size=size, pos=pos) self.assertEqual(box1.name, "box1") self.assertEqual(box1.color, color) self.assertEqual(box1.size, size) self.assertEqual(box1.pos, pos) box1.delete() # cleate box2 using geometry box2 = evas.Box(self.canvas, name="box2", color=color, geometry=geometry) self.assertEqual(box2.name, "box2") self.assertEqual(box2.color, color) self.assertEqual(box2.geometry, geometry) box2.delete() def testRemoveAll(self): box = evas.Box(self.canvas) r1 = evas.Rectangle(self.canvas) r2 = evas.Rectangle(self.canvas) box.append(r1) box.append(r2) box.remove_all(True) self.assertEqual(r1.is_deleted(), True) self.assertEqual(r2.is_deleted(), True) box.delete() if __name__ == '__main__': unittest.main(verbosity=2) evas.shutdown()
maikodaraine/EnlightenmentUbuntu
bindings/python/python-efl/tests/evas/test_04_object_box.py
Python
unlicense
1,720
import numpy as nm from sfepy.base.conf import transform_functions from sfepy.base.testing import TestCommon def get_vertices(coors, domain=None): x, z = coors[:,0], coors[:,2] return nm.where((z < 0.1) & (x < 0.1))[0] def get_cells(coors, domain=None): return nm.where(coors[:, 0] < 0)[0] class Test(TestCommon): @staticmethod def from_conf( conf, options ): from sfepy import data_dir from sfepy.discrete.fem import Mesh, FEDomain from sfepy.discrete import Functions mesh = Mesh.from_file(data_dir + '/meshes/various_formats/abaqus_tet.inp') mesh.nodal_bcs['set0'] = [0, 7] domain = FEDomain('test domain', mesh) conf_functions = { 'get_vertices' : (get_vertices,), 'get_cells' : (get_cells,), } functions = Functions.from_conf(transform_functions(conf_functions)) test = Test(conf=conf, options=options, domain=domain, functions=functions) return test def test_selectors(self): """ Test basic region selectors. """ selectors = [ ['all', 'cell'], ['vertices of surface', 'facet'], ['vertices of group 0', 'facet'], ['vertices of set set0', 'vertex'], ['vertices in (z < 0.1) & (x < 0.1)', 'facet'], ['vertices by get_vertices', 'cell'], ['vertex 0, 1, 2', 'vertex'], ['vertex in r.r6', 'vertex'], ['cells of group 0', 'cell'], # ['cells of set 0', 'cell'], not implemented... ['cells by get_cells', 'cell'], ['cell 1, 4, 5', 'cell'], ['copy r.r5', 'cell'], ['r.r5', 'cell'], ] vertices = [ [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12], [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12], [0, 1, 3, 7], [0, 7], [1, 2, 3, 4, 5, 9, 11], [1, 2, 3, 4, 5, 9, 11], [0, 1, 2], [0], [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12], [0, 1, 2, 3, 4, 5, 6, 9, 10, 11], [0, 1, 2, 3, 4, 5, 6, 8], [1, 2, 3, 4, 5, 9, 11], [1, 2, 3, 4, 5, 9, 11], ] ok = True for ii, sel in enumerate(selectors): self.report('select:', sel) reg = self.domain.create_region('r%d' % ii, sel[0], kind=sel[1], functions=self.functions) _ok = ((len(reg.vertices) == len(vertices[ii])) and (reg.vertices == vertices[ii]).all()) self.report(' vertices:', _ok) ok = ok and _ok return ok def test_operators(self): """ Test operators in region selectors. """ ok = True r1 = self.domain.create_region('r1', 'all') sel = 'r.r1 -v vertices of group 0' self.report('select:', sel) reg = self.domain.create_region('reg', sel, kind='vertex') av = [2, 4, 5, 6, 8, 9, 10, 11, 12] _ok = (reg.vertices == nm.array(av)).all() self.report(' vertices:', _ok) ok = ok and _ok sel = 'vertex 0, 1, 2 +v vertices of group 0' self.report('select:', sel) reg = self.domain.create_region('reg', sel, kind='vertex') av = [0, 1, 2, 3, 7] _ok = (reg.vertices == nm.array(av)).all() self.report(' vertices:', _ok) ok = ok and _ok sel = 'vertex 0, 1, 2 *v vertices of group 0' self.report('select:', sel) reg = self.domain.create_region('reg', sel, kind='vertex') av = [0, 1] _ok = (reg.vertices == nm.array(av)).all() self.report(' vertices:', _ok) ok = ok and _ok sel = 'r.r1 -c cell 1, 4, 5' self.report('select:', sel) reg = self.domain.create_region('reg', sel) _ok = (nm.setdiff1d(r1.cells[0], [1, 4, 5]) == reg.cells[0]).all() self.report(' cells:', _ok) ok = ok and _ok sel = 'cell 8, 3 +c cell 1, 4, 5' self.report('select:', sel) reg = self.domain.create_region('reg', sel) cells = [1, 3, 4, 5, 8] _ok = (reg.cells == nm.array(cells)).all() self.report(' cells:', _ok) ok = ok and _ok sel = 'cell 8, 3, 2 *c cell 8, 4, 2, 7' self.report('select:', sel) reg = self.domain.create_region('reg', sel) cells = [2, 8] _ok = (reg.cells == nm.array(cells)).all() self.report(' cells:', _ok) ok = ok and _ok return ok
RexFuzzle/sfepy
tests/test_regions.py
Python
bsd-3-clause
4,744
# -------------------------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. # -------------------------------------------------------------------------------------------- from knack.log import get_logger from knack.util import CLIError from azure.cli.core.extension import ( ExtensionNotInstalledException, get_extension_modname, get_extension) from azure.cli.core.extension.operations import ( reload_extension, update_extension, add_extension, add_extension_to_path, check_version_compatibility) logger = get_logger(__name__) INTERACTIVE_EXTENSION_NAME = 'interactive' def start_shell(cmd, update=None, style=None): from importlib import import_module try: get_extension(INTERACTIVE_EXTENSION_NAME) if update: logger.warning("Updating the Interactive extension to the latest available...") update_extension(cmd, INTERACTIVE_EXTENSION_NAME) reload_extension(INTERACTIVE_EXTENSION_NAME) except ExtensionNotInstalledException: logger.warning("Installing the Interactive extension...") add_extension(cmd, extension_name=INTERACTIVE_EXTENSION_NAME) ext = get_extension(INTERACTIVE_EXTENSION_NAME) try: check_version_compatibility(ext.get_metadata()) except CLIError: raise CLIError('Run `az interactive --update` and try again.') add_extension_to_path(INTERACTIVE_EXTENSION_NAME, ext_dir=ext.path) interactive_module = get_extension_modname(ext_name=INTERACTIVE_EXTENSION_NAME, ext_dir=ext.path) azext_interactive = import_module(interactive_module) azext_interactive.start_shell(cmd, style=style)
yugangw-msft/azure-cli
src/azure-cli/azure/cli/command_modules/interactive/custom.py
Python
mit
1,810
from twisted.trial import unittest from tipsip.header import Headers from tipsip.header import Header, AddressHeader, ViaHeader class HeadersTest(unittest.TestCase): def test_construct(self): aq = self.assertEqual at = self.assertTrue h = Headers({'Subject': 'lunch'}, f='John', to='abacaba') h['TO'] = 'Carol' aq(h['Subject'], 'lunch') aq(h['from'], 'John') aq(h['t'], 'Carol') r = str(h) for line in r.split('\r\n'): at(line in ['Subject: lunch', 'From: John', 'To: Carol']) def test_manipulation(self): aq = self.assertEqual at = self.assertTrue h = Headers() h['f'] = "from header" h['to'] = "to header" at('FROM' in h) at('To' in h) to = h.pop('t') aq(to, "to header") at(h.has_key('From')) class HeaderTest(unittest.TestCase): def test_construct(self): aq = self.assertEqual at = self.assertTrue h = Header('active', params={'expires': '3600'}) aq(str(h), 'active ;expires=3600') class AddressHeaderTest(unittest.TestCase): def test_parsing(self): aq = self.assertEqual v = AddressHeader.parse('<sips:[email protected]>;expires=60') aq(str(v.uri), 'sips:[email protected]') aq(v.params['expires'], '60') aq(v.display_name, '') v = AddressHeader.parse('<sip:server10.biloxi.com;lr>') aq(str(v.uri), 'sip:server10.biloxi.com;lr') aq(v.params, {}) aq(v.display_name, '') v = AddressHeader.parse('The Operator <sip:[email protected]>;tag=287447') aq(str(v.uri), 'sip:[email protected]') aq(v.display_name, 'The Operator') aq(v.params, {'tag': '287447'}) v = AddressHeader.parse('sip:[email protected]') aq(str(v.uri), 'sip:[email protected]') class ViaHeaderTest(unittest.TestCase): def test_construct(self): aq = self.assertEqual v = ViaHeader(transport='UDP', host='192.168.0.1', port='5060', params={'received': '8.8.8.8'}) aq(str(v), 'SIP/2.0/UDP 192.168.0.1:5060 ;received=8.8.8.8') def test_parsing(self): aq = self.assertEqual at = self.assertTrue v = ViaHeader.parse('SIP/2.0/UDP 127.0.0.1:21375;branch=z9hG4bK-d8754z-2f9c4f090fc81b1f-1---d8754z-;rport') aq(v.version, 'SIP/2.0') aq(v.transport, 'UDP') aq(v.host, '127.0.0.1') aq(v.port, '21375') aq(v.params['branch'], 'z9hG4bK-d8754z-2f9c4f090fc81b1f-1---d8754z-') at('rport' in v.params) v = ViaHeader.parse('SIP/2.0/UDP pc33.atlanta.com:5066;branch=z9hG4bK776asdhds') aq(v.port, '5066') def test_serialize(self): aq = self.assertEqual v = ViaHeader.parse('SIP/2.0/UDP 127.0.0.1:21375;rport') aq(str(v), 'SIP/2.0/UDP 127.0.0.1:21375 ;rport')
ivaxer/tipsip
tipsip/tests/test_header.py
Python
isc
2,901
# Copyright (c) 2001-2016, Canal TP and/or its affiliates. All rights reserved. # # This file is part of Navitia, # the software to build cool stuff with public transport. # # Hope you'll enjoy and contribute to this project, # powered by Canal TP (www.canaltp.fr). # Help us simplify mobility and open public transport: # a non ending quest to the responsive locomotion way of traveling! # # LICENCE: This program is free software; you can redistribute it and/or modify # it under the terms of the GNU Affero General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Affero General Public License for more details. # # You should have received a copy of the GNU Affero General Public License # along with this program. If not, see <http://www.gnu.org/licenses/>. # # Stay tuned using # twitter @navitia # IRC #navitia on freenode # https://groups.google.com/d/forum/navitia # www.navitia.io from __future__ import absolute_import from .tests_mechanism import AbstractTestFixture, dataset from .check_utils import * @dataset({"main_stif_test": {}}) class TestStif(AbstractTestFixture): """ Test the stif scenario responses Possible journeys from A to B: 1/ 8h00 ====(line A)====> 10h00 2/ 9h00 ==(line B + C)==> 11h00 3/ 10h00 ====(line A)====> 12h00 """ def test_stif_simple(self): """ Test of simple request : * we want to make at least 2 journey calls (not only the best journey, but also try next) * we don't want 2 journeys using the same line and changing at same points So here we want journeys 1 and 2 """ query = "journeys?from={from_sp}&to={to_sp}&datetime={datetime}&_override_scenario=new_default" \ "&min_nb_journeys=1&_min_journeys_calls=2&_final_line_filter=true&_max_successive_physical_mode=3"\ .format(from_sp="stopA", to_sp="stopB", datetime="20140614T075500") response = self.query_region(query) assert len(response['journeys']) == 2 assert response['journeys'][0]['arrival_date_time'] == '20140614T100000' assert response['journeys'][1]['arrival_date_time'] == '20140614T110000' def test_stif_override_min_journeys_calls(self): """ Test of simple request : * we only want 1 journey calls (no next call) So here we only want journeys 1 """ query = "journeys?from={from_sp}&to={to_sp}&datetime={datetime}&_override_scenario=new_default" \ "&min_nb_journeys=1&_min_journeys_calls=1&_final_line_filter=true&_max_successive_physical_mode=3"\ .format(from_sp="stopA", to_sp="stopB", datetime="20140614T075500") response = self.query_region(query) assert len(response['journeys']) == 1 assert response['journeys'][0]['arrival_date_time'] == '20140614T100000' def test_stif_override_final_line_filter(self): """ Test of simple request : * we want to make at least 2 journey calls (not only the best journey, but also try next) * we deactivate the filter on journeys using the same line and changing at same points So here we want journeys 1, 2 and 3 """ query = "journeys?from={from_sp}&to={to_sp}&datetime={datetime}&_override_scenario=new_default" \ "&min_nb_journeys=1&_min_journeys_calls=2&_final_line_filter=false&_max_successive_physical_mode=3"\ .format(from_sp="stopA", to_sp="stopB", datetime="20140614T075500") response = self.query_region(query) assert len(response['journeys']) == 3 assert response['journeys'][0]['arrival_date_time'] == '20140614T100000' assert response['journeys'][1]['arrival_date_time'] == '20140614T110000' assert response['journeys'][2]['arrival_date_time'] == '20140614T120000' def test_stif_max_successive_buses(self): """ BUS Bus Bus Bus stopP ----> stopQ ----> stopR ----> stopS ----> stopT 15:00 16:00 17:00 18:00 19:00 Bus stopP ----------------------------------------> stopT 15:00 20:00 Test of request with parameter "_max_successive_physical_mode": * we want to make at least 2 journey calls (not only the best journey, but also try next) * we don't want the journey using more than 3 Buses So here we want journey1 """ query = "journeys?from={from_sp}&to={to_sp}&datetime={datetime}&_override_scenario=new_default" \ "&_max_successive_physical_mode=3&_max_additional_connections=10"\ .format(from_sp="stopP", to_sp="stopT", datetime="20140614T145500") response = self.query_region(query) assert len(response['journeys']) == 1 #As we modify the value of _max_successive_physical_mode to 5 we want two journeys query = "journeys?from={from_sp}&to={to_sp}&datetime={datetime}&_override_scenario=new_default" \ "&_max_successive_physical_mode=5&_max_additional_connections=10"\ .format(from_sp="stopP", to_sp="stopT", datetime="20140614T145500") response = self.query_region(query) assert len(response['journeys']) == 2 def test_stif_max_successive_buses_with_tram_in_between(self): """ BUS Bus Bus Bus Tram Bus Bus stopP ----> stopQ ----> stopR ----> stopS ----> stopT ----> stopU ----> stopV ----> stopW 15:00 16:00 17:00 18:00 19:00 19:30 20:00 20:30 Bus stopP ----------------------------------------------------------------------------> stopW 15:00 21:00 Test of request with parameter "_max_successive_physical_mode": * we want to make at least 2 journey calls (not only the best journey, but also try next) * we don't want the journey using more than 3 Buses successive * we have "Bus" and "Tram" as means of transport """ #As there are 4 buses successive to be used from stopP to stopW and _max_successive_physical_mode = 3 # we have 1 journey query = "journeys?from={from_sp}&to={to_sp}&datetime={datetime}&_override_scenario=new_default"\ "&_max_successive_physical_mode=3&_max_additional_connections=10"\ .format(from_sp="stopP", to_sp="stopW", datetime="20140614T145500") response = self.query_region(query) assert len(response['journeys']) == 1 #As we modify the value of _max_successive_physical_mode to 5 we want two journeys query = "journeys?from={from_sp}&to={to_sp}&datetime={datetime}&_override_scenario=new_default" \ "&_max_successive_physical_mode=5&_max_additional_connections=10"\ .format(from_sp="stopP", to_sp="stopW", datetime="20140614T145500") response = self.query_region(query) assert len(response['journeys']) == 2 # As we modify the value of _max_additional_connections to 2 we delete the second journey because # it contains more then nb_connections + 2 () query = "journeys?from={from_sp}&to={to_sp}&datetime={datetime}&_override_scenario=new_default" \ "&_max_successive_physical_mode=5&_max_additional_connections=2"\ .format(from_sp="stopP", to_sp="stopW", datetime="20140614T145500") response = self.query_region(query) assert len(response['journeys']) == 1
kadhikari/navitia
source/jormungandr/tests/stif_tests.py
Python
agpl-3.0
7,989
import json import platform from datetime import timedelta from unittest import SkipTest from nose.tools import nottest from functools import wraps from acouchbase.cluster import (Cluster, get_event_loop, close_event_loop) from couchbase_tests.async_base import AsyncioTestCase from couchbase.exceptions import DocumentNotFoundException, ValueFormatException, DocumentLockedException from couchbase.transcoder import (JSONTranscoder, RawJSONTranscoder, RawStringTranscoder, RawBinaryTranscoder, LegacyTranscoder) from couchbase.collection import (GetOptions, UpsertOptions, InsertOptions, ReplaceOptions, GetAndTouchOptions, GetAndLockOptions, GetAnyReplicaOptions, GetAllReplicasOptions) @nottest def async_test(func): @wraps(func) def wrapper(self, *args, **kwargs): return self.loop.run_until_complete(func(self, *args, **kwargs)) return wrapper class AcouchbaseDefaultTranscoderTestSuite(object): CONTENT = {"some": "content", "num": 1, "list": [1, 2, 3], "nested": {"a": "b"}} KEY = "imakey" async def initialize(self): try: await self.collection.remove(self.KEY) except DocumentNotFoundException: pass @async_test async def test_default_tc_json_upsert(self): await self.collection.upsert(self.KEY, self.CONTENT) resp = await self.collection.get(self.KEY) result = resp.content_as[dict] self.assertIsNotNone(result) self.assertIsInstance(result, dict) self.assertEqual(self.CONTENT, result) @async_test async def test_default_tc_json_insert(self): await self.collection.insert(self.KEY, self.CONTENT) resp = await self.collection.get(self.KEY) result = resp.content_as[dict] self.assertIsNotNone(result) self.assertIsInstance(result, dict) self.assertEqual(self.CONTENT, result) @async_test async def test_default_tc_json_replace(self): await self.collection.upsert(self.KEY, self.CONTENT) new_content = self.CONTENT new_content["some"] = "new content" await self.collection.replace(self.KEY, new_content) resp = await self.collection.get(self.KEY) result = resp.content_as[dict] self.assertIsNotNone(result) self.assertIsInstance(result, dict) self.assertEqual(new_content, result) @async_test async def test_default_tc_string_upsert(self): content = "some string content" await self.collection.upsert(self.KEY, content) resp = await self.collection.get(self.KEY) result = resp.content_as[str] self.assertIsNotNone(result) self.assertIsInstance(result, str) self.assertEqual(content, result) @async_test async def test_default_tc_string_insert(self): content = "some string content" await self.collection.insert(self.KEY, content) resp = await self.collection.get(self.KEY) result = resp.content_as[str] self.assertIsNotNone(result) self.assertIsInstance(result, str) self.assertEqual(content, result) @async_test async def test_default_tc_string_replace(self): content = "some string content" await self.collection.upsert(self.KEY, content) new_content = "new string content" await self.collection.replace(self.KEY, new_content) resp = await self.collection.get(self.KEY) result = resp.content_as[str] self.assertIsNotNone(result) self.assertIsInstance(result, str) self.assertEqual(new_content, result) @async_test async def test_default_tc_binary_upsert(self): content = bytes(json.dumps("Here are some bytes"), "utf-8") with self.assertRaises(ValueFormatException): await self.collection.upsert(self.KEY, content) @async_test async def test_default_tc_bytearray_upsert(self): content = bytearray(json.dumps("Here are some bytes"), "utf-8") with self.assertRaises(ValueFormatException): await self.collection.upsert(self.KEY, content) @async_test async def test_default_tc_binary_insert(self): content = bytes(json.dumps("Here are some bytes"), "utf-8") with self.assertRaises(ValueFormatException): await self.collection.insert(self.KEY, content) @async_test async def test_default_tc_binary_replace(self): content = "Lets to a str first" await self.collection.upsert(self.KEY, content) new_content = bytes(json.dumps("Here are some newer bytes"), "utf-8") with self.assertRaises(ValueFormatException): await self.collection.replace(self.KEY, new_content) class AcouchbaseDefaultTranscoderTests( AsyncioTestCase, AcouchbaseDefaultTranscoderTestSuite): @classmethod def setUpClass(cls) -> None: super(AcouchbaseDefaultTranscoderTests, cls).setUpClass( get_event_loop(), cluster_class=Cluster) @classmethod def tearDownClass(cls) -> None: super(AcouchbaseDefaultTranscoderTests, cls).tearDownClass() close_event_loop() def setUp(self): super(AcouchbaseDefaultTranscoderTests, self).setUp() self.loop.run_until_complete(self.initialize()) class AcouchbaseDefaultJsonTranscoderTests(AsyncioTestCase, AcouchbaseDefaultTranscoderTestSuite): @classmethod def setUpClass(cls) -> None: super(AcouchbaseDefaultJsonTranscoderTests, cls).setUpClass( get_event_loop(), cluster_class=Cluster, transcoder=JSONTranscoder()) @classmethod def tearDownClass(cls) -> None: super(AcouchbaseDefaultJsonTranscoderTests, cls).tearDownClass() def setUp(self): super(AcouchbaseDefaultJsonTranscoderTests, self).setUp() self.loop.run_until_complete(self.initialize()) class AcouchbaseRawJsonTranscoderTests(AsyncioTestCase): CONTENT = {"some": "content", "num": 1, "list": [1, 2, 3], "nested": {"a": "b"}} KEY = "imakey" @classmethod def setUpClass(cls) -> None: super(AcouchbaseRawJsonTranscoderTests, cls).setUpClass( get_event_loop(), cluster_class=Cluster, transcoder=RawJSONTranscoder()) @classmethod def tearDownClass(cls) -> None: super(AcouchbaseRawJsonTranscoderTests, cls).tearDownClass() async def initialize(self): try: await self.collection.remove(self.KEY) except DocumentNotFoundException: pass def setUp(self): super(AcouchbaseRawJsonTranscoderTests, self).setUp() self.loop.run_until_complete(self.initialize()) @async_test async def test_raw_json_tc_json_upsert(self): with self.assertRaises(ValueFormatException): await self.collection.upsert(self.KEY, self.CONTENT) @async_test async def test_raw_json_tc_json_insert(self): with self.assertRaises(ValueFormatException): await self.collection.insert(self.KEY, self.CONTENT) @async_test async def test_raw_json_tc_json_replace(self): await self.collection.upsert(self.KEY, "some string content") with self.assertRaises(ValueFormatException): await self.collection.replace(self.KEY, self.CONTENT) @async_test async def test_raw_json_tc_string_upsert(self): content = "some string content" await self.collection.upsert(self.KEY, content) resp = await self.collection.get(self.KEY) result = resp.content self.assertIsNotNone(result) self.assertIsInstance(result, bytes) self.assertEqual(content, result.decode("utf-8")) @async_test async def test_raw_json_tc_string_insert(self): content = "some string content" await self.collection.insert(self.KEY, content) resp = await self.collection.get(self.KEY) result = resp.content self.assertIsNotNone(result) self.assertIsInstance(result, bytes) self.assertEqual(content, result.decode("utf-8")) @async_test async def test_raw_json_tc_string_replace(self): content = "some string content" await self.collection.upsert(self.KEY, content) new_content = "new string content" await self.collection.replace(self.KEY, new_content) resp = await self.collection.get(self.KEY) result = resp.content self.assertIsNotNone(result) self.assertIsInstance(result, bytes) self.assertEqual(new_content, result.decode("utf-8")) @async_test async def test_raw_json_tc_binary_upsert(self): content = bytes(json.dumps("Here are some bytes"), "utf-8") await self.collection.upsert(self.KEY, content) resp = await self.collection.get(self.KEY) result = resp.content self.assertIsNotNone(result) self.assertIsInstance(result, bytes) self.assertEqual(content, result) @async_test async def test_raw_json_tc_bytearray_upsert(self): content = bytearray(json.dumps("Here are some bytes"), "utf-8") await self.collection.upsert(self.KEY, content) resp = await self.collection.get(self.KEY) result = resp.content self.assertIsNotNone(result) self.assertIsInstance(result, bytes) self.assertEqual(content, result) @async_test async def test_raw_json_tc_binary_insert(self): content = bytes(json.dumps("Here are some bytes"), "utf-8") await self.collection.insert(self.KEY, content) resp = await self.collection.get(self.KEY) result = resp.content self.assertIsNotNone(result) self.assertIsInstance(result, bytes) self.assertEqual(content, result) @async_test async def test_raw_json_tc_binary_replace(self): content = "Lets to a str first" await self.collection.upsert(self.KEY, content) new_content = bytes(json.dumps("Here are some newer bytes"), "utf-8") await self.collection.replace(self.KEY, new_content) resp = await self.collection.get(self.KEY) result = resp.content self.assertIsNotNone(result) self.assertIsInstance(result, bytes) self.assertEqual(new_content, result) @async_test async def test_pass_through(self): content = json.dumps(self.CONTENT) await self.collection.upsert(self.KEY, content) resp = await self.collection.get(self.KEY) result = resp.content self.assertIsNotNone(result) self.assertIsInstance(result, bytes) self.assertNotEqual(self.CONTENT, result) # json.loads expects a string in Python 3.5 if float(platform.python_version()[:3]) <= 3.5: result = result.decode("utf-8") decoded = json.loads(result) self.assertEqual(self.CONTENT, decoded) class AcouchbaseRawStringTranscoderTests(AsyncioTestCase): CONTENT = {"some": "content", "num": 1, "list": [1, 2, 3], "nested": {"a": "b"}} KEY = "imakey" @classmethod def setUpClass(cls) -> None: super(AcouchbaseRawStringTranscoderTests, cls).setUpClass( get_event_loop(), cluster_class=Cluster, transcoder=RawStringTranscoder()) @classmethod def tearDownClass(cls) -> None: super(AcouchbaseRawStringTranscoderTests, cls).tearDownClass() async def initialize(self): try: await self.collection.remove(self.KEY) except DocumentNotFoundException: pass def setUp(self): super(AcouchbaseRawStringTranscoderTests, self).setUp() self.loop.run_until_complete(self.initialize()) @async_test async def test_raw_str_tc_json_upsert(self): with self.assertRaises(ValueFormatException): await self.collection.upsert(self.KEY, self.CONTENT) @async_test async def test_raw_str_tc_json_insert(self): with self.assertRaises(ValueFormatException): await self.collection.insert(self.KEY, self.CONTENT) @async_test async def test_raw_str_tc_json_replace(self): await self.collection.upsert(self.KEY, "some string content") with self.assertRaises(ValueFormatException): await self.collection.replace(self.KEY, self.CONTENT) @async_test async def test_raw_json_tc_string_upsert(self): content = "some string content" await self.collection.upsert(self.KEY, content) resp = await self.collection.get(self.KEY) result = resp.content self.assertIsNotNone(result) self.assertIsInstance(result, str) self.assertEqual(content, result) @async_test async def test_raw_json_tc_string_insert(self): content = "some string content" await self.collection.insert(self.KEY, content) resp = await self.collection.get(self.KEY) result = resp.content self.assertIsNotNone(result) self.assertIsInstance(result, str) self.assertEqual(content, result) @async_test async def test_raw_json_tc_string_replace(self): content = "some string content" await self.collection.upsert(self.KEY, content) new_content = "new string content" await self.collection.replace(self.KEY, new_content) resp = await self.collection.get(self.KEY) result = resp.content self.assertIsNotNone(result) self.assertIsInstance(result, str) self.assertEqual(new_content, result) @async_test async def test_raw_str_tc_binary_upsert(self): content = bytes(json.dumps("Here are some bytes"), "utf-8") with self.assertRaises(ValueFormatException): await self.collection.upsert(self.KEY, content) @async_test async def test_raw_str_tc_bytearray_upsert(self): content = bytearray(json.dumps("Here are some bytes"), "utf-8") with self.assertRaises(ValueFormatException): await self.collection.upsert(self.KEY, content) @async_test async def test_raw_str_tc_binary_insert(self): content = bytes(json.dumps("Here are some bytes"), "utf-8") with self.assertRaises(ValueFormatException): await self.collection.insert(self.KEY, content) @async_test async def test_raw_str_tc_binary_replace(self): await self.collection.upsert(self.KEY, "some string content") content = bytes(json.dumps("Here are some bytes"), "utf-8") with self.assertRaises(ValueFormatException): await self.collection.replace(self.KEY, content) class AcouchbaseRawBinaryTranscoderTests(AsyncioTestCase): CONTENT = {"some": "content", "num": 1, "list": [1, 2, 3], "nested": {"a": "b"}} KEY = "imakey" @classmethod def setUpClass(cls) -> None: super(AcouchbaseRawBinaryTranscoderTests, cls).setUpClass( get_event_loop(), cluster_class=Cluster, transcoder=RawBinaryTranscoder()) @classmethod def tearDownClass(cls) -> None: super(AcouchbaseRawBinaryTranscoderTests, cls).tearDownClass() async def initialize(self): try: await self.collection.remove(self.KEY) except DocumentNotFoundException: pass def setUp(self): super(AcouchbaseRawBinaryTranscoderTests, self).setUp() self.loop.run_until_complete(self.initialize()) @async_test async def test_raw_bin_tc_json_upsert(self): with self.assertRaises(ValueFormatException): await self.collection.upsert(self.KEY, self.CONTENT) @async_test async def test_raw_bin_tc_json_insert(self): with self.assertRaises(ValueFormatException): await self.collection.insert(self.KEY, self.CONTENT) @async_test async def test_raw_bin_tc_json_replace(self): await self.collection.upsert(self.KEY, bytes("some string content", "utf-8")) with self.assertRaises(ValueFormatException): await self.collection.replace(self.KEY, self.CONTENT) @async_test async def test_raw_bin_tc_str_upsert(self): with self.assertRaises(ValueFormatException): await self.collection.upsert(self.KEY, "some string content") @async_test async def test_raw_bin_tc_str_insert(self): with self.assertRaises(ValueFormatException): await self.collection.insert(self.KEY, "some string content") @async_test async def test_raw_bin_tc_str_replace(self): await self.collection.upsert(self.KEY, bytes("some string content", "utf-8")) with self.assertRaises(ValueFormatException): await self.collection.replace(self.KEY, "some new string content") @async_test async def test_raw_bin_tc_binary_upsert(self): content = bytes(json.dumps("Here are some bytes"), "utf-8") await self.collection.upsert(self.KEY, content) resp = await self.collection.get(self.KEY) result = resp.content self.assertIsNotNone(result) self.assertIsInstance(result, bytes) self.assertEqual(content, result) @async_test async def test_raw_bin_tc_bytearray_upsert(self): content = bytearray(json.dumps("Here are some bytes"), "utf-8") await self.collection.upsert(self.KEY, content) resp = await self.collection.get(self.KEY) result = resp.content self.assertIsNotNone(result) self.assertIsInstance(result, bytes) self.assertEqual(content, result) @async_test async def test_raw_bin_tc_binary_insert(self): content = bytes(json.dumps("Here are some bytes"), "utf-8") await self.collection.insert(self.KEY, content) resp = await self.collection.get(self.KEY) result = resp.content self.assertIsNotNone(result) self.assertIsInstance(result, bytes) self.assertEqual(content, result) @async_test async def test_raw_bin_tc_binary_replace(self): await self.collection.upsert(self.KEY, bytes("Lets to a str first", "utf-8")) new_content = bytes(json.dumps("Here are some newer bytes"), "utf-8") await self.collection.replace(self.KEY, new_content) resp = await self.collection.get(self.KEY) result = resp.content self.assertIsNotNone(result) self.assertIsInstance(result, bytes) self.assertEqual(new_content, result) @nottest class FakeObject(object): PROP = "fake prop" PROP1 = 12345 class AcouchbaseLegacyTranscoderTests(AsyncioTestCase): CONTENT = {"some": "content", "num": 1, "list": [1, 2, 3], "nested": {"a": "b"}} KEY = "imakey" @classmethod def setUpClass(cls) -> None: super(AcouchbaseLegacyTranscoderTests, cls).setUpClass( get_event_loop(), cluster_class=Cluster, transcoder=LegacyTranscoder()) @classmethod def tearDownClass(cls) -> None: super(AcouchbaseLegacyTranscoderTests, cls).tearDownClass() async def initialize(self): try: await self.collection.remove(self.KEY) except DocumentNotFoundException: pass def setUp(self): super(AcouchbaseLegacyTranscoderTests, self).setUp() self.loop.run_until_complete(self.initialize()) @async_test async def test_legacy_tc_json_upsert(self): await self.collection.upsert(self.KEY, self.CONTENT) resp = await self.collection.get(self.KEY) result = resp.content_as[dict] self.assertIsNotNone(result) self.assertIsInstance(result, dict) self.assertEqual(self.CONTENT, result) @async_test async def test_legacy_tc_json_insert(self): await self.collection.insert(self.KEY, self.CONTENT) resp = await self.collection.get(self.KEY) result = resp.content_as[dict] self.assertIsNotNone(result) self.assertIsInstance(result, dict) self.assertEqual(self.CONTENT, result) @async_test async def test_legacy_tc_json_replace(self): await self.collection.upsert(self.KEY, self.CONTENT) new_content = self.CONTENT new_content["some"] = "new content" await self.collection.replace(self.KEY, new_content) resp = await self.collection.get(self.KEY) result = resp.content_as[dict] self.assertIsNotNone(result) self.assertIsInstance(result, dict) self.assertEqual(new_content, result) @async_test async def test_legacy_tc_pickle_upsert(self): fake_obj = FakeObject() await self.collection.upsert(self.KEY, fake_obj) resp = await self.collection.get(self.KEY) result = resp.content self.assertIsNotNone(result) self.assertIsInstance(result, FakeObject) self.assertEqual(fake_obj.PROP, result.PROP) self.assertEqual(fake_obj.PROP1, result.PROP1) @async_test async def test_legacy_tc_pickle_insert(self): fake_obj = FakeObject() await self.collection.insert(self.KEY, fake_obj) resp = await self.collection.get(self.KEY) result = resp.content self.assertIsNotNone(result) self.assertIsInstance(result, FakeObject) self.assertEqual(fake_obj.PROP, result.PROP) self.assertEqual(fake_obj.PROP1, result.PROP1) @async_test async def test_legacy_tc_pickle_replace(self): fake_obj = FakeObject() await self.collection.upsert(self.KEY, self.CONTENT) await self.collection.replace(self.KEY, fake_obj) resp = await self.collection.get(self.KEY) result = resp.content self.assertIsNotNone(result) self.assertIsInstance(result, FakeObject) self.assertEqual(fake_obj.PROP, result.PROP) self.assertEqual(fake_obj.PROP1, result.PROP1) @async_test async def test_legacy_tc_string_upsert(self): content = "some string content" await self.collection.upsert(self.KEY, content) resp = await self.collection.get(self.KEY) result = resp.content_as[str] self.assertIsNotNone(result) self.assertIsInstance(result, str) self.assertEqual(content, result) @async_test async def test_legacy_tc_string_insert(self): content = "some string content" await self.collection.insert(self.KEY, content) resp = await self.collection.get(self.KEY) result = resp.content_as[str] self.assertIsNotNone(result) self.assertIsInstance(result, str) self.assertEqual(content, result) @async_test async def test_legacy_tc_string_replace(self): content = "some string content" await self.collection.upsert(self.KEY, content) new_content = "new string content" await self.collection.replace(self.KEY, new_content) resp = await self.collection.get(self.KEY) result = resp.content_as[str] self.assertIsNotNone(result) self.assertIsInstance(result, str) self.assertEqual(new_content, result) @async_test async def test_legacy_tc_binary_upsert(self): content = bytes(json.dumps("Here are some bytes"), "utf-8") await self.collection.upsert(self.KEY, content) resp = await self.collection.get(self.KEY) result = resp.content self.assertIsNotNone(result) self.assertIsInstance(result, bytes) self.assertEqual(content, result) @async_test async def test_legacy_tc_bytearray_upsert(self): content = bytearray(json.dumps("Here are some bytes"), "utf-8") await self.collection.upsert(self.KEY, content) resp = await self.collection.get(self.KEY) result = resp.content self.assertIsNotNone(result) self.assertIsInstance(result, bytes) self.assertEqual(content, result) @async_test async def test_legacy_tc_binary_insert(self): content = bytes(json.dumps("Here are some bytes"), "utf-8") await self.collection.insert(self.KEY, content) resp = await self.collection.get(self.KEY) result = resp.content self.assertIsNotNone(result) self.assertIsInstance(result, bytes) self.assertEqual(content, result) @async_test async def test_legacy_tc_binary_replace(self): await self.collection.upsert(self.KEY, bytes("Lets to a str first", "utf-8")) new_content = bytes(json.dumps("Here are some newer bytes"), "utf-8") await self.collection.replace(self.KEY, new_content) resp = await self.collection.get(self.KEY) result = resp.content self.assertIsNotNone(result) self.assertIsInstance(result, bytes) self.assertEqual(new_content, result) class AcouchbaseKeyValueOpTranscoderTests(AsyncioTestCase): CONTENT = {"some": "content", "num": 1, "list": [1, 2, 3], "nested": {"a": "b"}} KEY = "imakey" @classmethod def setUpClass(cls) -> None: super(AcouchbaseKeyValueOpTranscoderTests, cls).setUpClass( get_event_loop(), cluster_class=Cluster, transcoder=JSONTranscoder()) @classmethod def tearDownClass(cls) -> None: super(AcouchbaseKeyValueOpTranscoderTests, cls).tearDownClass() async def initialize(self): try: await self.collection.remove(self.KEY) except DocumentNotFoundException: pass def setUp(self): super(AcouchbaseKeyValueOpTranscoderTests, self).setUp() self.loop.run_until_complete(self.initialize()) @async_test async def test_upsert(self): content = bytes(json.dumps(self.CONTENT), "utf-8") # use RawBinaryTranscoder() so that get() fails as excpected # since get() w/o passing in transcoder uses the default JSONTranscoder() await self.collection.upsert(self.KEY, content, UpsertOptions(transcoder=RawBinaryTranscoder())) with self.assertRaises(ValueFormatException): await self.collection.get(self.KEY) @async_test async def test_insert(self): # use RawStringTranscoder() so that get() fails as excpected # since get() w/o passing in transcoder uses the default JSONTranscoder() await self.collection.upsert(self.KEY, "some string content", InsertOptions(transcoder=RawStringTranscoder())) with self.assertRaises(ValueFormatException): await self.collection.get(self.KEY) @async_test async def test_replace(self): content = bytes(json.dumps(self.CONTENT), "utf-8") # use RawBinaryTranscoder() so that get() fails as excpected # since get() w/o passing in transcoder uses the default JSONTranscoder() await self.collection.upsert(self.KEY, self.CONTENT) await self.collection.replace(self.KEY, content, ReplaceOptions(transcoder=RawBinaryTranscoder())) with self.assertRaises(ValueFormatException): await self.collection.get(self.KEY) @async_test async def test_get(self): content = bytes(json.dumps(self.CONTENT), "utf-8") tc = RawBinaryTranscoder() await self.collection.upsert(self.KEY, content, UpsertOptions(transcoder=tc)) with self.assertRaises(ValueFormatException): await self.collection.get(self.KEY) resp = await self.collection.get(self.KEY, GetOptions(transcoder=tc)) result = resp.content self.assertIsNotNone(result) self.assertIsInstance(result, bytes) self.assertEqual(content, result) @async_test async def test_get_and_touch(self): content = bytes(json.dumps(self.CONTENT), "utf-8") tc = RawBinaryTranscoder() await self.collection.upsert(self.KEY, content, UpsertOptions(transcoder=tc)) with self.assertRaises(ValueFormatException): await self.collection.get_and_touch(self.KEY, timedelta(seconds=30)) resp = await self.collection.get_and_touch(self.KEY, timedelta(seconds=3), GetAndTouchOptions(transcoder=tc)) result = resp.content self.assertIsNotNone(result) self.assertIsInstance(result, bytes) self.assertEqual(content, result) await self.try_n_times_till_exception_async( 10, 3, self.collection.get, self.KEY, GetOptions(transcoder=tc), DocumentNotFoundException) @async_test async def test_get_and_lock(self): content = bytes(json.dumps(self.CONTENT), "utf-8") tc = RawBinaryTranscoder() await self.collection.upsert(self.KEY, content, UpsertOptions(transcoder=tc)) with self.assertRaises(ValueFormatException): await self.collection.get_and_lock(self.KEY, timedelta(seconds=1)) await self.try_n_times_async(10, 1, self.collection.upsert, self.KEY, content, UpsertOptions(transcoder=tc)) resp = await self.collection.get_and_lock(self.KEY, timedelta(seconds=3), GetAndLockOptions(transcoder=tc)) result = resp.content self.assertIsNotNone(result) self.assertIsInstance(result, bytes) self.assertEqual(content, result) # upsert should definitely fail with self.assertRaises(DocumentLockedException): await self.collection.upsert(self.KEY, self.CONTENT) # but succeed eventually await self.try_n_times_async(10, 1, self.collection.upsert, self.KEY, self.CONTENT) # TODO: replica ops are not available w/ async # @async_test # async def test_get_any_replica(self): # num_replicas = self.bucket.configured_replica_count # if num_replicas < 2: # raise SkipTest('Need replicas to test') # content = bytes(json.dumps(self.CONTENT), "utf-8") # tc = RawBinaryTranscoder() # await self.collection.upsert(self.KEY, content, UpsertOptions(transcoder=tc)) # with self.assertRaises(ValueFormatException): # await self.collection.get_any_replica(self.KEY) # resp = await self.try_n_times_async( # 10, 3, self.collection.get_any_replica, self.KEY, GetAnyReplicaOptions(transcoder=tc)) # result = resp.content # self.assertIsNotNone(result) # self.assertIsInstance(result, bytes) # self.assertEqual(content, result) # @async_test # async def test_get_all_replicas(self): # num_replicas = self.bucket.configured_replica_count # if num_replicas < 2: # raise SkipTest('Need replicas to test') # # TODO: is this check needed? # # kv_results = self.bucket.ping().endpoints.get(ServiceType.KeyValue, None) # # if not kv_results or len(kv_results) < num_replicas+1: # # raise SkipTest('Not all replicas are online') # content = bytes(json.dumps(self.CONTENT), "utf-8") # tc = RawBinaryTranscoder() # await self.collection.upsert(self.KEY, content, UpsertOptions(transcoder=tc)) # with self.assertRaises(ValueFormatException): # await self.collection.get_all_replicas(self.KEY) # resp = await self.try_n_times_async( # 10, 3, self.collection.get_all_replicas, self.KEY, GetAllReplicasOptions(transcoder=tc)) # for r in resp: # result = r.content # self.assertIsNotNone(result) # self.assertIsInstance(result, bytes) # self.assertEqual(content, result)
couchbase/couchbase-python-client
acouchbase/tests/cases/transcoder_t.py
Python
apache-2.0
31,512
#!/usr/bin/env python # -*- coding: utf-8 -*- # @Author: Eduard Trott # @Date: 2015-09-08 09:23:57 # @Email: [email protected] # @Last modified by: etrott # @Last Modified time: 2015-10-19 09:57:53 from __future__ import unicode_literals, absolute_import import logging import os # EXTERNALLY INSTALLED import yaml from oauth2client import file, client, tools # Load logging before anything else logging.basicConfig(format='>> %(message)s') logr = logging.getLogger('gfreespace') ''' Load the config file so modules can import and reuse ''' dir_path = os.path.dirname(os.path.realpath(__file__)) dir_path = os.path.abspath(os.path.join(dir_path, '..')) CONFIG_FILE = os.path.expanduser('~/.gfreespace') if os.path.exists(CONFIG_FILE): with open(CONFIG_FILE) as _: config = yaml.load(_) else: config = {} CLIENT_SECRET_FILE = os.path.expanduser('~/.gdrive_private') DEFAULT_TOKEN = os.path.expanduser('~/.oauth/calendar.json') SCOPES = ('https://www.googleapis.com/auth/calendar ' 'https://apps-apis.google.com/a/feeds/calendar/resource/') def get_credentials(): """ FIXME DOCs Taken from: https://developers.google.com/drive/web/quickstart/python """ try: import argparse flags = argparse.ArgumentParser( parents=[tools.argparser]).parse_known_args()[0] except ImportError: flags = None logr.error( 'Unable to parse oauth2client args; `pip install argparse`') store = file.Storage(DEFAULT_TOKEN) credentials = store.get() if not credentials or credentials.invalid: flow = client.flow_from_clientsecrets( CLIENT_SECRET_FILE, SCOPES) flow.redirect_uri = client.OOB_CALLBACK_URN if flags: credentials = tools.run_flow(flow, store, flags) else: # Needed only for compatability with Python 2.6 credentials = tools.run(flow, store) logr.info('Storing credentials to ' + DEFAULT_TOKEN) return credentials
maybelinot/gfreespace
gfreespace/utils.py
Python
gpl-3.0
2,023
# -*- coding: utf-8 -*- """ This module defines the specialized Evaluator for segmentation applications All logic except default metrics is delegated to the parent class """ from __future__ import absolute_import, division, print_function from niftynet.evaluation.base_evaluator import CachedSubanalysisEvaluator class SegmentationEvaluator(CachedSubanalysisEvaluator): """ Evaluator for SegmentationApplication Supports caching of intermediate results which is important for boundary error calculations """ def default_evaluation_list(self): """ :return: list of metric names to compute by default """ return ['dice', 'jaccard', 'average_distance']
NifTK/NiftyNet
niftynet/evaluation/segmentation_evaluator.py
Python
apache-2.0
710
# # NEPI, a framework to manage network experiments # Copyright (C) 2014 INRIA # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program. If not, see <http://www.gnu.org/licenses/>. # # Author: Alina Quereilhac <[email protected]> from nepi.execution.attribute import Attribute, Flags, Types from nepi.execution.resource import clsinit_copy, ResourceState from nepi.resources.ns3.ns3ccndceapplication import NS3BaseCCNDceApplication @clsinit_copy class LinuxNS3CCNDceApplication(NS3BaseCCNDceApplication): _rtype = "linux::ns3::dce::CCNApplication" @classmethod def _register_attributes(cls): sources = Attribute("sources", "Path to tar.gz file with sources for the application execute in DCE. " "Sources will be uploaded to ${SRC} and it is the responsibility of " "the build instructions (in the build attribute) to copy the compiled " "binaries to the ${BIN_DCE} directory", flags = Flags.Design) build = Attribute("build", "Instructions to compile sources DCE-compatible way. " "Note that sources will be uploaded to ${SRC} and the " "build instructions are responsible for copying the " "binaries to the ${BIN_DCE} directory. ", flags = Flags.Design) depends = Attribute("depends", "Space-separated list of packages required to run the application", flags = Flags.Design) files = Attribute("files", "Semi-colon separated list of 'key=value' pairs to set as " "DCE files (AddFile). The key should be a path to a local file " "and the key is the path to be set in DCE for that file" , flags = Flags.Design) stdinfile = Attribute("stdinFile", "File to set as StdinFile. The value shoudl be either an empty " "or a path to a local file ", flags = Flags.Design) cls._register_attribute(sources) cls._register_attribute(build) cls._register_attribute(depends) cls._register_attribute(files) cls._register_attribute(stdinfile) def _instantiate_object(self): command = [] # Install package dependencies required to run the binary depends = self.get("depends") if depends: dcmd = self.simulation.install_dependencies(depends = depends) if dcmd: command.append(dcmd) # Upload sources to generate the binary sources = self.get("sources") if sources: scmd = self.simulation.upload_extra_sources(sources = sources) if scmd: command.append(scmd) # Upload instructions to build the binary build = self.get("build") if build: bcmd = self.simulation.build(build = build) if bcmd: command.append(bcmd) # Upload CCN files (e.g. repo) files = self.get("files") if files: upload = [] for file in map(str.strip, files.split(";")): localpath, dcepath = files.split("=") upload.append(localpath) sources = ";".join(upload) fcmd = self.simulation.upload_extra_sources(sources = sources, src_dir = self.simulation.app_home) if fcmd: command.append(fcmd) if command: deploy_command = ";".join(command) prefix = "%d_deploy" % self.guid self.simulation.execute_deploy_command(deploy_command, prefix=prefix)
phiros/nepi
src/nepi/resources/linux/ns3/ccn/ns3ccndceapplication.py
Python
gpl-3.0
4,309
#!/bin/python2 import time from threading import * import signal import sys import netifaces from sniffer_module import * from dblib.dbSender import * # globals shouldQuit = None otherThread = None sender = Sender() hostname = "" # signal handler def sigintHandler(signum, frame): print("Quitting uncleanly") sys.exit() # search for interfaces until we found a monitor interface def findIface(): chosenIface = None while chosenIface is None: ifaces = netifaces.interfaces() for iface in ifaces: if iface[:3] == 'mon': chosenIface = iface return chosenIface # gets hostname for computer def loadHostname(): global hostname hostnameFile = open("/etc/hostname", "r") hostname = hostnameFile.readline() hostnameFile.close() hostname = hostname[:-1] # send the contents of the list def sendData(otherThread): sender.clear() # lock for clearing otherThread.listLock.acquire() # add each of the packets to the list for mac in otherThread.devices: sender.add(mac, hostname, otherThread.devices[mac][0], otherThread.devices[mac][1]) # clear out the device buffer otherThread.devices = {} otherThread.listLock.release() # and send off the data sender.send() def main(): # register signal handler and then sleep until we get a response signal.signal(signal.SIGINT, sigintHandler) # init the processing thread shouldQuit = False listLock = Lock() otherThread = ProcessingThread(listLock, shouldQuit) # find monitor inferaces print("Looking for monitor interfaces...") chosenIface = findIface() print("Found Interface: " + chosenIface) # get the hostname loadHostname() print("Hostname: " + hostname) # start the other thread to start sniffing otherThread.start() # sit and spin while the other thread does things while True: print("sending off data") sendData(otherThread) time.sleep(15) # run main if __name__ == "__main__": main()
DepthDeluxe/dot11sniffer
dot11sniffer.py
Python
mit
2,073
# Copyright (C) 2010 CAMd # Please see the accompanying LICENSE file for further information. """This module provides all the classes and functions associated with the evaluation of exact exchange with k-point sampling.""" from math import pi, sqrt import numpy as np from ase import Atoms from gpaw.xc import XC from gpaw.xc.kernel import XCNull from gpaw.xc.functional import XCFunctional from gpaw.utilities import hartree, pack, unpack2, packed_index from gpaw.lfc import LFC from gpaw.wavefunctions.pw import PWDescriptor from gpaw.kpt_descriptor import KPointDescriptor from gpaw.kpoint import KPoint as KPoint0 from gpaw.mpi import world class KPoint: def __init__(self, kd, kpt=None): """Helper class for parallelizing over k-points. Placeholder for wave functions, occupation numbers, projections, and global k-point index.""" self.kd = kd if kpt is not None: self.psit_nG = kpt.psit_nG self.f_n = kpt.f_n self.P_ani = kpt.P_ani self.k = kpt.k self.s = kpt.s self.requests = [] def next(self): """Create empty object. Data will be received from other processor.""" kpt = KPoint(self.kd) # intialize array for receiving: kpt.psit_nG = np.empty_like(self.psit_nG) kpt.f_n = np.empty_like(self.f_n) # Total number of projector functions: I = sum([P_ni.shape[1] for P_ni in self.P_ani.values()]) kpt.P_In = np.empty((I, len(kpt.f_n)), complex) kpt.P_ani = {} I1 = 0 for a, P_ni in self.P_ani.items(): I2 = I1 + P_ni.shape[1] kpt.P_ani[a] = kpt.P_In[I1:I2].T I1 = I2 kpt.k = (self.k + 1) % self.kd.nibzkpts kpt.s = self.s return kpt def start_sending(self, rank): P_In = np.concatenate([P_ni.T for P_ni in self.P_ani.values()]) self.requests += [ self.kd.comm.send(self.psit_nG, rank, block=False, tag=1), self.kd.comm.send(self.f_n, rank, block=False, tag=2), self.kd.comm.send(P_In, rank, block=False, tag=3)] def start_receiving(self, rank): self.requests += [ self.kd.comm.receive(self.psit_nG, rank, block=False, tag=1), self.kd.comm.receive(self.f_n, rank, block=False, tag=2), self.kd.comm.receive(self.P_In, rank, block=False, tag=3)] def wait(self): self.kd.comm.waitall(self.requests) self.requests = [] class HybridXC(XCFunctional): orbital_dependent = True def __init__(self, name, hybrid=None, xc=None, finegrid=False, alpha=None): """Mix standard functionals with exact exchange. name: str Name of hybrid functional. hybrid: float Fraction of exact exchange. xc: str or XCFunctional object Standard DFT functional with scaled down exchange. finegrid: boolean Use fine grid for energy functional evaluations? """ if name == 'EXX': assert hybrid is None and xc is None hybrid = 1.0 xc = XC(XCNull()) elif name == 'PBE0': assert hybrid is None and xc is None hybrid = 0.25 xc = XC('HYB_GGA_XC_PBEH') elif name == 'B3LYP': assert hybrid is None and xc is None hybrid = 0.2 xc = XC('HYB_GGA_XC_B3LYP') if isinstance(xc, str): xc = XC(xc) self.hybrid = hybrid self.xc = xc self.type = xc.type self.alpha = alpha self.exx = 0.0 XCFunctional.__init__(self, name) def get_setup_name(self): return 'PBE' def calculate_radial(self, rgd, n_sLg, Y_L, v_sg, dndr_sLg=None, rnablaY_Lv=None, tau_sg=None, dedtau_sg=None): return self.xc.calculate_radial(rgd, n_sLg, Y_L, v_sg, dndr_sLg, rnablaY_Lv) def initialize(self, density, hamiltonian, wfs, occupations): self.xc.initialize(density, hamiltonian, wfs, occupations) self.nspins = wfs.nspins self.setups = wfs.setups self.density = density self.kpt_u = wfs.kpt_u self.gd = density.gd self.kd = wfs.kd self.bd = wfs.bd N_c = self.gd.N_c N = self.gd.N_c.prod() vol = self.gd.dv * N if self.alpha is None: self.alpha = 6 * vol**(2 / 3.0) / pi**2 self.gamma = (vol / (2 * pi)**2 * sqrt(pi / self.alpha) * self.kd.nbzkpts) ecut = 0.5 * pi**2 / (self.gd.h_cv**2).sum(1).max() if self.kd.N_c is None: self.bzk_kc = np.zeros((1, 3)) dfghdfgh else: n = self.kd.N_c * 2 - 1 bzk_kc = np.indices(n).transpose((1, 2, 3, 0)) bzk_kc.shape = (-1, 3) bzk_kc -= self.kd.N_c - 1 self.bzk_kc = bzk_kc.astype(float) / self.kd.N_c self.pwd = PWDescriptor(ecut, self.gd, self.bzk_kc) n = 0 for k_c, Gpk2_G in zip(self.bzk_kc[:], self.pwd.G2_qG): if (k_c > -0.5).all() and (k_c <= 0.5).all(): #XXX??? if k_c.any(): self.gamma -= np.dot(np.exp(-self.alpha * Gpk2_G), Gpk2_G**-1) else: self.gamma -= np.dot(np.exp(-self.alpha * Gpk2_G[1:]), Gpk2_G[1:]**-1) n += 1 assert n == self.kd.N_c.prod() self.ghat = LFC(self.gd, [setup.ghat_l for setup in density.setups], dtype=complex ) self.ghat.set_k_points(self.bzk_kc) self.fullkd = KPointDescriptor(self.kd.bzk_kc, nspins=1) class S: id_a = [] def set_symmetry(self, s): pass self.fullkd.set_symmetry(Atoms(pbc=True), S(), False) self.fullkd.set_communicator(world) self.pt = LFC(self.gd, [setup.pt_j for setup in density.setups], dtype=complex) self.pt.set_k_points(self.fullkd.ibzk_kc) self.interpolator = density.interpolator def set_positions(self, spos_ac): self.ghat.set_positions(spos_ac) self.pt.set_positions(spos_ac) def calculate(self, gd, n_sg, v_sg=None, e_g=None): # Normal XC contribution: exc = self.xc.calculate(gd, n_sg, v_sg, e_g) # Add EXX contribution: return exc + self.exx def calculate_exx(self): """Non-selfconsistent calculation.""" kd = self.kd K = self.fullkd.nibzkpts assert self.nspins == 1 Q = K // world.size assert Q * world.size == K parallel = (world.size > self.nspins) self.exx = 0.0 self.exx_skn = np.zeros((self.nspins, K, self.bd.nbands)) kpt_u = [] for k in range(world.rank * Q, (world.rank + 1) * Q): k_c = self.fullkd.ibzk_kc[k] for k1, k1_c in enumerate(kd.bzk_kc): if abs(k1_c - k_c).max() < 1e-10: break # Index of symmetry related point in the irreducible BZ ik = kd.kibz_k[k1] kpt = self.kpt_u[ik] # KPoint from ground-state calculation phase_cd = np.exp(2j * pi * self.gd.sdisp_cd * k_c[:, np.newaxis]) kpt2 = KPoint0(kpt.weight, kpt.s, k, None, phase_cd) kpt2.psit_nG = np.empty_like(kpt.psit_nG) kpt2.f_n = kpt.f_n / kpt.weight / K * 2 for n, psit_G in enumerate(kpt2.psit_nG): psit_G[:] = kd.transform_wave_function(kpt.psit_nG[n], k1) kpt2.P_ani = self.pt.dict(len(kpt.psit_nG)) self.pt.integrate(kpt2.psit_nG, kpt2.P_ani, k) kpt_u.append(kpt2) for s in range(self.nspins): kpt1_q = [KPoint(self.fullkd, kpt) for kpt in kpt_u if kpt.s == s] kpt2_q = kpt1_q[:] if len(kpt1_q) == 0: # No s-spins on this CPU: continue # Send rank: srank = self.fullkd.get_rank_and_index(s, (kpt1_q[0].k - 1) % K)[0] # Receive rank: rrank = self.fullkd.get_rank_and_index(s, (kpt1_q[-1].k + 1) % K)[0] # Shift k-points K // 2 times: for i in range(K // 2 + 1): if i < K // 2: if parallel: kpt = kpt2_q[-1].next() kpt.start_receiving(rrank) kpt2_q[0].start_sending(srank) else: kpt = kpt2_q[0] for kpt1, kpt2 in zip(kpt1_q, kpt2_q): if 2 * i == K: self.apply(kpt1, kpt2, invert=(kpt1.k > kpt2.k)) else: self.apply(kpt1, kpt2) self.apply(kpt1, kpt2, invert=True) if i < K // 2: if parallel: kpt.wait() kpt2_q[0].wait() kpt2_q.pop(0) kpt2_q.append(kpt) self.exx = world.sum(self.exx) world.sum(self.exx_skn) self.exx += self.calculate_paw_correction() def apply(self, kpt1, kpt2, invert=False): #print world.rank,kpt1.k,kpt2.k,invert k1_c = self.fullkd.ibzk_kc[kpt1.k] k2_c = self.fullkd.ibzk_kc[kpt2.k] if invert: k2_c = -k2_c k12_c = k1_c - k2_c N_c = self.gd.N_c eikr_R = np.exp(2j * pi * np.dot(np.indices(N_c).T, k12_c / N_c).T) for q, k_c in enumerate(self.bzk_kc): if abs(k_c + k12_c).max() < 1e-9: q0 = q break for q, k_c in enumerate(self.bzk_kc): if abs(k_c - k12_c).max() < 1e-9: q00 = q break Gpk2_G = self.pwd.G2_qG[q0] if Gpk2_G[0] == 0: Gpk2_G = Gpk2_G.copy() Gpk2_G[0] = 1.0 / self.gamma N = N_c.prod() vol = self.gd.dv * N nspins = self.nspins same = (kpt1.k == kpt2.k) for n1, psit1_R in enumerate(kpt1.psit_nG): f1 = kpt1.f_n[n1] for n2, psit2_R in enumerate(kpt2.psit_nG): if same and n2 > n1: continue f2 = kpt2.f_n[n2] nt_R = self.calculate_pair_density(n1, n2, kpt1, kpt2, q0, invert) nt_G = self.pwd.fft(nt_R * eikr_R) / N vt_G = nt_G.copy() vt_G *= -pi * vol / Gpk2_G e = np.vdot(nt_G, vt_G).real * nspins * self.hybrid if same and n1 == n2: e /= 2 self.exx += e * f1 * f2 self.ekin -= 2 * e * f1 * f2 self.exx_skn[kpt1.s, kpt1.k, n1] += f2 * e self.exx_skn[kpt2.s, kpt2.k, n2] += f1 * e calculate_potential = not True if calculate_potential: vt_R = self.pwd.ifft(vt_G).conj() * eikr_R * N / vol if kpt1 is kpt2 and not invert and n1 == n2: kpt1.vt_nG[n1] = 0.5 * f1 * vt_R if invert: kpt1.Htpsit_nG[n1] += \ f2 * nspins * psit2_R.conj() * vt_R else: kpt1.Htpsit_nG[n1] += f2 * nspins * psit2_R * vt_R if kpt1 is not kpt2: if invert: kpt2.Htpsit_nG[n2] += (f1 * nspins * psit1_R.conj() * vt_R) else: kpt2.Htpsit_nG[n2] += (f1 * nspins * psit1_R * vt_R.conj()) def calculate_paw_correction(self): exx = 0 deg = 2 // self.nspins # spin degeneracy for a, D_sp in self.density.D_asp.items(): setup = self.setups[a] for D_p in D_sp: D_ii = unpack2(D_p) ni = len(D_ii) for i1 in range(ni): for i2 in range(ni): A = 0.0 for i3 in range(ni): p13 = packed_index(i1, i3, ni) for i4 in range(ni): p24 = packed_index(i2, i4, ni) A += setup.M_pp[p13, p24] * D_ii[i3, i4] p12 = packed_index(i1, i2, ni) exx -= self.hybrid / deg * D_ii[i1, i2] * A if setup.X_p is not None: exx -= self.hybrid * np.dot(D_p, setup.X_p) exx += self.hybrid * setup.ExxC return exx def calculate_pair_density(self, n1, n2, kpt1, kpt2, q, invert): if invert: nt_G = kpt1.psit_nG[n1].conj() * kpt2.psit_nG[n2].conj() else: nt_G = kpt1.psit_nG[n1].conj() * kpt2.psit_nG[n2] Q_aL = {} for a, P1_ni in kpt1.P_ani.items(): P1_i = P1_ni[n1] P2_i = kpt2.P_ani[a][n2] if invert: D_ii = np.outer(P1_i.conj(), P2_i.conj()) else: D_ii = np.outer(P1_i.conj(), P2_i) D_p = pack(D_ii) Q_aL[a] = np.dot(D_p, self.setups[a].Delta_pL) self.ghat.add(nt_G, Q_aL, q) return nt_G if __name__ == '__main__': import sys from gpaw import GPAW from gpaw.mpi import serial_comm calc = GPAW(sys.argv[1], txt=None, communicator=serial_comm) alpha = 5.0 e = calc.get_potential_energy() exx = HybridXC('EXX', alpha=alpha) e2 = calc.get_xc_difference(exx) print e, e + e2, exx.exx
qsnake/gpaw
gpaw/xc/hybridk.py
Python
gpl-3.0
14,413
from __future__ import print_function __author__ = 'abuddenberg' from os.path import exists import sys from domain import GcisObject def warning(*objs): print("WARNING: ", *objs, file=sys.stderr) #This function is for adding images to existing figures def move_images_to_gcis(webform_client, gcis_client, webform_url, gcis_id, report_id, subset_images=None): figure = webform_client.get_webform(webform_url, download_images=True) #Now identifiers don't need to be matched figure.identifier = gcis_id #If a subset of identifiers has been provided, only process those if subset_images: images_to_process = [image for image in figure.images if image.identifier in subset_images] else: images_to_process = figure.images for image in images_to_process: if not exists(image.local_path): raise Exception('Local file missing ' + image.local_path) if not gcis_client.image_exists(image.identifier): print('Creating image: {img}'.format(img=image.identifier)) gcis_client.create_image(image, report_id=report_id, figure_id=figure.identifier) def sync_dataset_metadata(gcis_client, datasets, skip=[]): for ds in [ds for ds in datasets if ds.identifier not in skip]: gcis_client.create_or_update_dataset(ds) # gcis_client.create_or_update_activity(ds.activity) def realize_contributors(gcis_client, contributors): for cont in contributors: person = cont.person org = cont.organization if not person.id: name_matches = gcis_client.lookup_person(person.first_name + ' ' + person.last_name) if len(name_matches) == 1: person.id = name_matches[0][0] elif len(name_matches) == 0: warning('No ID found for ' + person.first_name + ' ' + person.last_name) else: warning('Ambiguous results for ' + person.first_name + ' ' + person.last_name) warning(name_matches) if org and org.identifier in (None, '') and org.name not in (None, ''): warning('No ID found for ' + org.name) #Check if we missed any organizations in our hardcoding... if not all(map(lambda c: c.organization is None or c.organization.identifier is not None, contributors)): warning('Missing organizations: ', contributors) def realize_parents(gcis_client, parents): for parent in parents: # print parent.publication_type_identifier, parent.label if parent.url: print(' '.join(('Using hint for', parent.publication_type_identifier, parent.label))) continue parent_matches = gcis_client.lookup_publication(parent.publication_type_identifier, parent.label) if len(parent_matches) == 1: matched_id, matched_name = parent_matches[0] parent.url = '/{type}/{id}'.format(type=parent.publication_type_identifier, id=matched_id) # Need the ability to dynamically identify and retrieve an instance of the parent publication. # Here's a generic, for the time being. parent.publication = GcisObject({'identifier': matched_id}) elif len(parent_matches) == 0: warning(' '.join(('No ID found for', parent.publication_type_identifier, parent.label))) else: warning(' '.join(('Ambiguous results for', parent.publication_type_identifier, parent.label))) warning(parent_matches)
USGCRP/gcis-py-client
gcis_clients/sync_utils.py
Python
bsd-3-clause
3,490
import os import pytest import pytest_mock import cachspeak from test_cachet import cachet_response from test_utils import load_from_json from test_teamspeak import TS3ConnectionMock @pytest.fixture(scope='module') def saved_status_no_updates(): return load_from_json('saved_status_no_updates.json') @pytest.fixture(scope='module') def saved_status_multi_updates(): return load_from_json('saved_status_multi_updates.json') def create_test_persist_file(data, tmpdir_factory): file_path = str(tmpdir_factory.mktemp('data').join('persist_file.db')) with cachspeak.persistence.persistent_storage(file_path) as storage: storage['last_status'] = data return file_path def test_main_no_updates(mocker, tmpdir_factory, saved_status_no_updates, cachet_response): """Assert that no messages are sent if no components were updated""" mock_cachet = mocker.patch('cachetclient.cachet.Components.get') mock_ts3 = mocker.patch('ts3.query.TS3Connection', new=TS3ConnectionMock) mock_ts3.sendtextmessage = mocker.Mock() mock_cachet.return_value = cachet_response persist_file = create_test_persist_file(data=saved_status_no_updates, tmpdir_factory=tmpdir_factory) config_path = os.path.join(os.path.abspath(os.path.dirname(__file__)), 'fixtures', 'cachspeak.ini') cachspeak.main(config_path=config_path, persist_path=persist_file) assert mock_ts3.sendtextmessage.call_count == 0 def test_main_with_updates(mocker, tmpdir_factory, saved_status_multi_updates, cachet_response): """Assert that messages are sent for proper updated components""" mock_cachet = mocker.patch('cachetclient.cachet.Components.get') mock_ts3 = mocker.patch('ts3.query.TS3Connection', new=TS3ConnectionMock) mock_ts3.sendtextmessage = mocker.Mock() mock_cachet.return_value = cachet_response persist_file = create_test_persist_file(data=saved_status_multi_updates, tmpdir_factory=tmpdir_factory) config_path = os.path.join(os.path.abspath(os.path.dirname(__file__)), 'fixtures', 'cachspeak.ini') cachspeak.main(config_path=config_path, persist_path=persist_file, debug=True) assert mock_ts3.sendtextmessage.call_count == 3
enricoghdn/cachspeak
tests/test_cachspeak.py
Python
bsd-3-clause
2,199
from django.conf.urls.defaults import patterns, url urlpatterns = patterns('webapp', url(r'^/?$', 'views.home', name='home'), url(r'^auth_redirect$', 'views.auth_redirect', name='auth_redirect'), url(r'^nights$', 'views.night_index', name='night_index'), url(r'^song$', 'views.song_index', name='song_index'), url(r'^create_song$', 'views.song_create', name='song_create'), url(r'^song/(?P<key>[\w\d]+)$', 'views.song', name='song'), url(r'^song/(?P<key>[\w\d]+).mp3$', 'views.song_mp3', name='song_mp3'), url(r'^song/(?P<key>[\w\d]+)/edit$', 'views.song_edit', name='song_edit'), url(r'^song/(?P<key>[\w\d]+)/wait$', 'views.song_wait_finished', name='song_wait_finished'), url(r'^sign_out$', 'views.sign_out', name='sign_out'), )
beddit/sleep-musicalization-web
webapp/urls.py
Python
bsd-2-clause
806
# -*- coding: utf-8 -*- from __future__ import unicode_literals from django.db import models, migrations import imagekit.models.fields import brasilcomvc.portal.models class Migration(migrations.Migration): dependencies = [ ] operations = [ migrations.CreateModel( name='HomeBanner', fields=[ ('id', models.AutoField(primary_key=True, auto_created=True, verbose_name='ID', serialize=False)), ('image', imagekit.models.fields.ProcessedImageField(help_text='Imagem de alta resolução; será cortada para 1400x550.', upload_to=brasilcomvc.portal.models.homebanner_video_upload_to)), ('content', models.TextField(help_text='Conteúdo (HTML) para sobrepor a imagem no banner.')), ], options={ }, bases=(models.Model,), ), ]
brasilcomvc/brasilcomvc
brasilcomvc/portal/migrations/0001_homebanner.py
Python
apache-2.0
877
"""Installed backends command.""" # Copyright (c) 2001-2009 ElevenCraft Inc. # See LICENSE for details. from textwrap import dedent from schevo.script.command import Command from schevo.script import opt usage = """\ schevo backends Shows a list of installed backends and the options that each one accepts.""" def _parser(): p = opt.parser(usage) return p class Backends(Command): name = 'Installed Backends' description = 'Show a list of installed backends.' def main(self, arg0, args): print print from schevo.backend import backends for backend_name, backend_class in sorted(backends.iteritems()): print backend_name, '-', backend_class.description print '=' * (len(backend_name) + len(backend_class.description) + 3) print 'Available options for --backend-args:' print dedent(backend_class.backend_args_help).strip() print start = Backends
Schevo/schevo
schevo/script/backends.py
Python
mit
969
from django import forms # from crispy_forms.helper import FormHelper, Layout # from crispy_forms.layout import Field, Div, Row # , HTML # from crispy_forms.bootstrap import FormActions # , TabHolder, Tab, \ # # PrependedAppendedText, PrependedText # from backend_apps.utils.forms import smtSave, btnCancel, btnReset from ..models.categoria import Categoria class CategoriaForm(forms.ModelForm): class Meta: model = Categoria fields = ('nombre',) widgets = { 'nombre': forms.TextInput( attrs={'class': 'form-control', 'placeholder': 'Ingrese nombre', 'required': 'true'}), } # class TipoForm(forms.ModelForm): # class Meta: # model = Tipo # fields = ('nombre',) # def __init__(self, *args, **kwargs): # super(TipoForm, self).__init__(*args, **kwargs) # self.fields['nombre'].help_text = u'<small class="help-error"></small> %s' % (u' ') # self.fields['nombre'].widget.attrs = {'placeholder': 'Ingrese nombre', } # self.helper = FormHelper() # self.helper.form_class = 'js-validate form-vertical' # self.helper.form_id = 'form' # self.helper.layout = Layout( # Field('nombre', css_class='input-required'), # FormActions( # smtSave(), # btnCancel(), # btnReset(), # ), # )
gitdealdo/serva
apps/recetario/forms/categoria.py
Python
gpl-2.0
1,444
#!/usr/bin/python import os path = "../jwright/Desktop" flist = os.listdir(path) for file in flist: if file.endswith("jpg"): print file
jjwright55/code_fragments
frags/python/testlistdir.py
Python
unlicense
158
import numpy as np from dnfpy.core.map2D import Map2D import struct def addressToCoordAEDAT1(address,res): pol = address & 0x0001 YAddr = address >> 8 & 0x007f XAddr = address >> 1 & 0x007f return YAddr,XAddr,pol def addressToCoordAEDAT2(address,res): #XAddr = (address >> 17) & 0x00007FFF #YAddr = (address >> 2) & 0x00007FFF #pol = (address >> 1) & 0x00000001 xmask = 0x00fe xshift = 1 ymask = 0x7f00 yshift = 8 pmask = 0x1 pshift = 0 XAddr = (address & xmask) >> xshift YAddr = (address & ymask) >> yshift pol = (address & pmask) >> pshift return YAddr,XAddr,pol def unpackAEDAT1(f,p): f.seek(p) byte = f.read(6) p+=6 address,timeStamp = struct.unpack(">HI",byte) return address,timeStamp,p def unpackAEDAT2(f,p): f.seek(p) byte = f.read(8) p+=8 address,timeStamp = struct.unpack(">II",byte) #print(timeStamp) return address,timeStamp,p class AEDatReader(Map2D): def __init__(self,name,size,fileName,dt=0.1,tick=10,offset=0): """ tick in us timeStep in us """ self.offset = offset super().__init__(name=name,size=size,fileName=fileName,dt=dt,tick=tick,timeStep=dt/(tick*1e-6)) def detectFormat(self,f): p = 0 # pointer for byte line = f.readline() p += len(line) print(line[0:2]) if line[0:2] == b'#!': format = line[2:-2].decode() line=f.readline() p += len(line) while line and line[0:1] == b'#': line=f.readline() p += len(line) else: format = "AER-DAT1.0" return format,p def _compute(self,timeStep,size): self.dataTmp[...] = 0 address,timeStamp,self.p = self.unpack(self.f,self.p) YAddr,XAddr,pol = self.addressToCoord(address,128) if not(self.lastTimeStamp): self.lastTimeStamp = timeStamp self.lastTimeStamp = self.lastTimeStamp + timeStep #print(self.lastTimeStamp/1e6) while timeStamp < self.lastTimeStamp : address,timeStamp,self.p = self.unpack(self.f,self.p) YAddr,XAddr,pol = self.addressToCoord(address,128) self.dataTmp[-YAddr,-XAddr] += 1 self._data[...] = self.dataTmp[:size,:size] def reset(self): super().reset() fileName = self._init_kwargs['fileName'] self.f = open(fileName,"rb") self.lastTimeStamp = None self.dataTmp = np.zeros((128,128)) self.format,self.p = self.detectFormat(self.f) print(self.offset) self.p += self.offset print(self.format,self.p) if self.format == "AER-DAT1.0": self.addressToCoord = addressToCoordAEDAT1 self.unpack = unpackAEDAT1 elif self.format == "AER-DAT2.0": self.addressToCoord = addressToCoordAEDAT2 self.unpack = unpackAEDAT2 else: print("unknown format " + str(self.format))
bchappet/dnfpy
src/dnfpyUtils/camera/aedatReader.py
Python
gpl-2.0
3,057
from lib_nrf24 import *
CarlosPena00/Mobbi
Rasp/nrf/lib_nrf24/__init__.py
Python
mit
23
import config from flask import Flask from flask.ext.migrate import Migrate from flask.ext.sqlalchemy import SQLAlchemy import os from flask.ext.login import LoginManager from flask.ext.openid import OpenID from config import basedir app = Flask(__name__) app.config.from_object(config) app.config db = SQLAlchemy(app) migrate = Migrate(app, db) lm = LoginManager() lm.init_app(app) lm.login_view = 'login' oid = OpenID(app, os.path.join(basedir, 'tmp')) from app import views, models
Adynatos/egida
app/__init__.py
Python
mit
491
### # Copyright 2008-2011 Diamond Light Source Ltd. # This file is part of Diffcalc. # # Diffcalc is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # Diffcalc is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with Diffcalc. If not, see <http://www.gnu.org/licenses/>. ### import time from diffcalc.util import DiffcalcException try: from gda.device.scannable import ScannableBase, ScannaleMotionBase except ImportError: class Scannable(object): pass class ScannableBase(Scannable): """Implementation of a subset of OpenGDA's Scannable interface """ level = 5 inputNames = [] extraNames = [] outputFormat = [] def isBusy(self): raise NotImplementedError() def rawGetPosition(self): raise NotImplementedError() def rawAsynchronousMoveTo(self, newpos): raise NotImplementedError() def waitWhileBusy(self): while self.isBusy(): time.sleep(.1) def getPosition(self): return self.rawGetPosition() def checkPositionValid(self, externalPosition): raise NotImplementedError() def asynchronousMoveTo(self, newpos): self.rawAsynchronousMoveTo(newpos) def atScanStart(self): pass def atScanEnd(self): pass def atCommandFailure(self): pass ### def __repr__(self): pos = self.getPosition() formattedValues = self.formatPositionFields(pos) if len(tuple(self.getInputNames()) + tuple(self.getExtraNames())) > 1: result = self.getName() + ': ' else: result = '' names = tuple(self.getInputNames()) + tuple(self.getExtraNames()) for name, val in zip(names, formattedValues): result += ' ' + name + ': ' + val return result ### def formatPositionFields(self, pos): """Returns position as array of formatted strings""" # Make sure pos is a tuple or list if type(pos) not in (tuple, list): pos = tuple([pos]) # Sanity check if len(pos) != len(self.getOutputFormat()): raise Exception( "In scannable '%s':number of position fields differs from " "number format strings specified" % self.getName()) result = [] for field, frmt in zip(pos, self.getOutputFormat()): if field is None: result.append('???') else: s = (frmt % field) ## if width!=None: ## s = s.ljust(width) result.append(s) return result def getName(self): return self.name def setName(self, value): self.name = value def getLevel(self): return self.level def setLevel(self, value): self.level = value def getInputNames(self): return self.inputNames def setInputNames(self, value): self.inputNames = value def getExtraNames(self): return self.extraNames def setExtraNames(self, value): self.extraNames = value def getOutputFormat(self): return self.outputFormat def setOutputFormat(self, value): if type(value) not in (tuple, list): raise TypeError( "%s.setOutputFormat() expects tuple or list; not %s" % (self.getName(), str(type(value)))) self.outputFormat = value def __call__(self, newpos=None): if newpos is None: return self.getPosition() self.asynchronousMoveTo(newpos) class ScannableLimitsComponent(object): def __init__(self): # Array of lower limits (one for each input name). Null if no limits set. Any value within array may be null if # that input has no corresponding limit. self.internalLowerLim = None # Array of upper limits (one for each input name). Null if no limits set. Any value within array may be null if # that input has no corresponding limit. self.internalUpperLim = None self.hostScannable = None self.limitType = "Scannable" def getInternalLower(self): return self.internalLowerLim def getInternalUpper(self): return self.internalUpperLim def checkInternalPosition(self, internalPosition): # If neither limits are set, return null indicating okay. if self.internalLowerLim is None and self.internalUpperLim is None: return None # Check lower limits if set if self.internalLowerLim: for i, (lim, pos) in enumerate(zip(self.internalLowerLim, internalPosition)): if pos < lim: fieldName = "{}.{}".format(self.getHostScannable().getName(), self.getHostScannable().getInputNames()[i]) return "{} limit violation on {}: {} < {} (internal/hardware/dial values).".format( self.limitType, fieldName, pos, lim) # Check upper limits if set if self.internalUpperLim: for i, (lim, pos) in enumerate(zip(self.internalUpperLim, internalPosition)): if pos > lim: fieldName = "{}.{}".format(self.getHostScannable().getName(), self.getHostScannable().getInputNames()[i]) return "{} limit violation on {}: {} > {} (internal/hardware/dial values).".format( self.limitType, fieldName, pos, lim) return None def checkPositionLength(self, positionArray): if len(positionArray) != len(self.getHostScannable().getInputNames()): raise DiffcalcException( "Expected position of length {} but got position of length {}".format(len(self.getHostScannable().getInputNames().length), len(positionArray))) def setInternalUpper(self, internalUpperLim, index=None, length=None): if index is not None: if not self.internalUpperLim: self.internalUpperLim = [None] * length self.internalUpperLim[index] = internalUpperLim else: if internalUpperLim: self.checkPositionLength(internalUpperLim) self.internalUpperLim = internalUpperLim def setInternalLower(self, internalLowerLim, index=None, length=None): if index is not None: if not self.internalLowerLim: self.internalLowerLim = [None] * length self.internalLowerLim[index] = internalLowerLim else: if internalLowerLim: self.checkPositionLength(internalLowerLim) self.internalLowerLim = internalLowerLim def setHostScannable(self, hostScannable): self.hostScannable = hostScannable def getHostScannable(self): return self.hostScannable class ScannableMotionBase(ScannableBase): """Implementation of a subset of OpenGDA's ScannableMotion interface """ def __init__(self): self.limitsComponent = ScannableLimitsComponent() self.limitsComponent.setHostScannable(self) def asynchronousMoveTo(self, newpos): report = self.checkPositionValid([newpos,]) if report: raise DiffcalcException(report) ScannableBase.asynchronousMoveTo(self, newpos) def checkPositionValid(self, externalPosition): limitsComponentMsg = self.limitsComponent.checkInternalPosition(externalPosition) if limitsComponentMsg: return limitsComponentMsg return None def getLowerInnerLimit(self): limits = self.limitsComponent.getInternalLower() try: return limits[0] except TypeError: return None def getUpperInnerLimit(self): limits = self.limitsComponent.getInternalUpper() try: return limits[0] except TypeError: return None class ScannableAdapter(Scannable): '''Wrap up a Scannable and give it a new name and optionally an offset (added to the delegate when reading up and subtracting when setting down ''' def __init__(self, delegate_scn, name, offset=0): assert len(delegate_scn.getInputNames()) == 1 assert len(delegate_scn.getExtraNames()) == 0 self.delegate_scn = delegate_scn self.name = name self.offset = offset def __getattr__(self, name): return getattr(self.delegate_scn, name) def getName(self): return self.name def getInputNames(self): return [self.name] def getPosition(self): return self.delegate_scn.getPosition() + self.offset def asynchronousMoveTo(self, newpos): self.delegate_scn.asynchronousMoveTo(newpos - self.offset) def __repr__(self): pos = self.getPosition() formatted_values = self.delegate_scn.formatPositionFields(pos) return self.name + ': ' + formatted_values[0] + ' ' + self.get_hint() def get_hint(self): if self.offset: offset_hint = ' + ' if self.offset >= 0 else ' - ' offset_hint += str(self.offset) else: offset_hint = '' return '(%s%s)' % (self.delegate_scn.name, offset_hint) def __call__(self, newpos=None): if newpos is None: return self.getPosition() self.asynchronousMoveTo(newpos) class SingleFieldDummyScannable(ScannableMotionBase): def __init__(self, name, initial_position=0.): ScannableMotionBase.__init__(self) self.name = name self.inputNames = [name,] self.outputFormat = ['% 6.4f',] self.level = 3 self._current_position = float(initial_position) def isBusy(self): return False def waitWhileBusy(self): return def asynchronousMoveTo(self, new_position): report = self.checkPositionValid([new_position,]) if report: raise DiffcalcException(report) self._current_position = float(new_position) def getPosition(self): return self._current_position def setLowerDummyLimit(self, lowLimit): self.limitsComponent.setInternalLower(lowLimit, 0, len(self.getInputNames())) def setUpperDummyLimit(self, upperLimit): self.limitsComponent.setInternalUpper(upperLimit, 0, len(self.getInputNames())) class DummyPD(SingleFieldDummyScannable): """For compatability with the gda's dummy_pd module""" pass class MultiInputExtraFieldsDummyScannable(ScannableMotionBase): '''Multi input Dummy PD Class supporting input and extra fields''' def __init__(self, name, inputNames, extraNames): ScannableMotionBase.__init__(self) self.setName(name) self.setInputNames(inputNames) self.setExtraNames(extraNames) self.setOutputFormat(['%6.4f'] * (len(inputNames) + len(extraNames))) self.setLevel(3) self.currentposition = [0.0] * len(inputNames) def isBusy(self): return 0 def asynchronousMoveTo(self, new_position): if type(new_position) == type(1) or type(new_position) == type(1.0): new_position = [new_position] msg = "Wrong new_position size" assert len(new_position) == len(self.currentposition), msg for i in range(len(new_position)): if new_position[i] != None: self.currentposition[i] = float(new_position[i]) def getPosition(self): extraValues = range(100, 100 + (len(self.getExtraNames()))) return self.currentposition + map(float, extraValues) class ZeroInputExtraFieldsDummyScannable(ScannableMotionBase): '''Zero input/extra field dummy pd ''' def __init__(self, name): ScannableMotionBase.__init__(self) self.setName(name) self.setInputNames([]) self.setOutputFormat([]) def isBusy(self): return 0 def asynchronousMoveTo(self, new_position): pass def getPosition(self): pass class ScannableGroup(ScannableBase): """wraps up motors. Simulates motors if non given.""" def __init__(self, name, motorList): self.setName(name) # Set input format motorNames = [] for scn in motorList: motorNames.append(scn.getName()) self.setInputNames(motorNames) # Set output format frmt = [] for motor in motorList: frmt.append(motor.getOutputFormat()[0]) self.setOutputFormat(frmt) self.__motors = motorList def asynchronousMoveTo(self, position): # if input has any Nones, then replace these with the current positions if None in position: position = list(position) current = self.getPosition() for idx, val in enumerate(position): if val is None: position[idx] = current[idx] for scn, pos in zip(self.__motors, position): scn.asynchronousMoveTo(pos) def getPosition(self): return [scn.getPosition() for scn in self.__motors] def getGroupMembers(self): return self.__motors def getGroupMember(self, name): for scn in self.__motors: if scn.getName() == name: return scn return None def isBusy(self): for scn in self.__motors: if scn.isBusy(): return True return False def configure(self): pass def checkPositionValid(self, positionArray): msg = "Wrong position array size for scannable group" assert len(self.__motors) == len(positionArray), msg for motor, pos in zip(self.__motors, positionArray): reason = motor.checkPositionValid([pos,]) if reason: return reason return None class ScannableMotionWithScannableFieldsBase(ScannableMotionBase): ''' This extended version of ScannableMotionBase contains a completeInstantiation() method which adds a dictionary of MotionScannableParts to an instance. Each part allows one of the instances fields to be interacted with like it itself is a scannable. Fields are dynamically added to the instance linking to these parts allowing dotted access from Jython. They may also be accessed using Jython container access methods (via the __getitem__() method). To acess them from Jave use the getComponent(name) method. When moving a part (via either a pos or scan command), the part calls the parent to perform the actual task. The parts asynchronousMoveto command will call the parent with a list of None values except for the field it represents which will be passed the desired position value. The asynchronousMoveTo method in class that inherats from this base class then must handle these Nones. In some cases the method may actually be able to move the underlying system assoiciated with one field individually from others. If this is not possible the best behaviour may be to simply not support this beahviour and exception or alternatively to substitute the None values with actual current position of parent's scannables associated fields. ScannableMotionBaseWithMemory() inherats from this calss and provides a solution useful for some scenarious: it keeps track of the last position moved to, and replaces the Nones in an asynchronousMoveTo request with these values. There are a number of dangers associated with this which are addressed in that class's documentation, but it provides a way to move one axis within a group of non-orthogonal axis while keeping the others still. ''' childrenDict = {} numInputFields = None numExtraFields = None def completeInstantiation(self): '''This method should be called at the end of all user defined consructors''' # self.validate() self.numInputFields = len(self.getInputNames()) self.numExtraFields = len(self.getExtraNames()) self.addScannableParts() self.autoCompletePartialMoveToTargets = False self.positionAtScanStart = None def setAutoCompletePartialMoveToTargets(self, b): self.autoCompletePartialMoveToTargets = b def atScanStart(self): self.positionAtScanStart = self.getPosition() def atCommandFailure(self): self.positionAtScanStart = None def atScanEnd(self): self.positionAtScanStart = None ### def __repr__(self): pos = self.getPosition() formattedValues = self.formatPositionFields(pos) if len(tuple(self.getInputNames()) + tuple(self.getExtraNames())) > 1: result = self.getName() + ': ' else: result = '' names = tuple(self.getInputNames()) + tuple(self.getExtraNames()) for name, val in zip(names, formattedValues): result += ' ' + name + ': ' + val return result ### def formatPositionFields(self, pos): """Returns position as array of formatted strings""" # Make sure pos is a tuple or list if type(pos) not in (tuple, list): pos = tuple([pos]) # Sanity check if len(pos) != len(self.getOutputFormat()): raise Exception( "In scannable '%s':number of position fields differs from " "number format strings specified" % self.getName()) result = [] for field, frmt in zip(pos, self.getOutputFormat()): if field is None: result.append('???') else: s = (frmt % field) ## if width!=None: ## s = s.ljust(width) result.append(s) return result ### def addScannableParts(self): ''' Creates an array of MotionScannableParts each of which allows access to the scannable's fields. See this class's documentation for more info. ''' self.childrenDict = {} # Add parts to access the input fields for index in range(len(self.getInputNames())): scannableName = self.getInputNames()[index] self.childrenDict[scannableName] = self.MotionScannablePart( scannableName, index, self, isInputField=1) # Add parts to access the extra fields for index in range(len(self.getExtraNames())): scannableName = self.getExtraNames()[index] self.childrenDict[scannableName] = self.MotionScannablePart( scannableName, index + len(self.getInputNames()), self, isInputField=0) def asynchronousMoveTo(self, newpos): if self.autoCompletePartialMoveToTargets: newpos = self.completePosition(newpos) ScannableBase.asynchronousMoveTo(self, newpos) def completePosition(self, position): ''' If position contains any null or None values, these are replaced with the corresponding fields from the scannables current position and then returned.''' # Just return position if it does not need padding if None not in position: return position if self.positionAtScanStart is not None: basePosition = self.positionAtScanStart else: basePosition = self.getPosition()[:self.numInputFields] for i in range(self.numInputFields): if position[i] is None: position[i] = basePosition[i] return position def __getattr__(self, name): try: return self.childrenDict[name] except: raise AttributeError("No child named:" + name) def __getitem__(self, key): '''Provides container like access from Jython''' return self.childrenDict[key] def getPart(self, name): '''Returns the a compnent scannable''' return self.childrenDict[name] class MotionScannablePart(ScannableMotionBase): ''' A scannable to be placed in the parent's childrenDict that allows access to the parent's individual fields.''' def __init__(self, scannableName, index, parentScannable, isInputField): ScannableMotionBase.__init__(self) self.setName(scannableName) if isInputField: self.setInputNames([scannableName]) else: self.setExtraNames([scannableName]) self.index = index self.parentScannable = parentScannable self.setOutputFormat( [self.parentScannable.getOutputFormat()[index]]) def getParent(self): return self.parentScannable def isBusy(self): return self.parentScannable.isBusy() def asynchronousMoveTo(self, new_position): if self.parentScannable.isBusy(): raise Exception( self.parentScannable.getName() + "." + self.getName() + " cannot be moved because " + self.parentScannable.getName() + " is already moving") toMoveTo = [None] * len(self.parentScannable.getInputNames()) toMoveTo[self.index] = new_position self.parentScannable.asynchronousMoveTo(toMoveTo) def moveTo(self, new_position): self.asynchronousMoveTo(new_position) self.waitWhileBusy() def getPosition(self): return self.parentScannable.getPosition()[self.index] def getLowerGdaLimits(self): limit = self.parentScannable.getLowerGdaLimits() return None if limit is None else [limit[self.index]] def getUpperGdaLimits(self): limit = self.parentScannable.getUpperGdaLimits() return None if limit is None else [limit[self.index]] def setLowerGdaLimits(self, lowerLim): try: if len(lowerLim) != 1: raise DiffcalcException("Could not setLowerGdaLmits() on scannable {} to {}. This scannable has only one field.".format( self.getName(), str(lowerLim))) lowerLimValue = lowerLim[0] except TypeError: lowerLimValue = lowerLim limit = self.parentScannable.getLowerGdaLimits() if not limit: limit = [None] * len(self.parentScannable.getInputNames()) limit[self.index] = lowerLimValue self.parentScannable.setLowerGdaLimits(limit) def setUpperGdaLimits(self, upperLim): try: if len(upperLim) != 1: raise DiffcalcException("Could not setUpperGdaLmits() on scannable {} to {}. This scannable has only one field.".format( self.getName(), str(upperLim))) upperLimValue = upperLim[0] except TypeError: upperLimValue = upperLim limit = self.parentScannable.getUpperGdaLimits() if not limit: limit = [None] * len(self.parentScannable.getInputNames()) limit[self.index] = upperLimValue self.parentScannable.setUpperGdaLimits(limit) def __str__(self): return self.__repr__() def __repr__(self): # Get the name of this field # (assume its an input field first and correct if wrong) name = self.getInputNames()[0] if name == 'value': name = self.getExtraNames()[0] parentName = self.parentScannable.getName() return parentName + "." + name + " : " + str(self.getPosition())
DiamondLightSource/diffcalc
diffcalc/gdasupport/minigda/scannable.py
Python
gpl-3.0
25,322
# # Copyright {{ cookiecutter.author_name }}, {{ cookiecutter.initial_year_to_release }} # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ utils.test_environment ---------------------- Test functions for the executing environment """ import unittest import subprocess from {{ cookiecutter.package_name }} import __version__ from {{ cookiecutter.package_name }}.utils.environment import {{ cookiecutter.package_name }}_version from {{ cookiecutter.package_name }}.utils.environment import python_version def shell_python(): """ Compare the default python 3 version with a shell call to the actual interpreter. """ shellpython_version = subprocess.check_output(["python3", "-V", "/dev/null"]) return str(shellpython_version, 'utf-8') class TestUtilsEnvironment(unittest.TestCase): """ Test utils functions. - show released program version - show Python version """ def test_program_version(self): self.assertEqual({{ cookiecutter.package_name }}_version(), __version__) def test_python_version(self): self.assertIn(python_version(), shell_python()) def test_python_major_version(self): self.assertEqual(python_version('major'), '3')
berrak/cookiecutter-py3starter
{{cookiecutter.github_repo_name}}/{{cookiecutter.package_name}}/utils/test/test_environment.py
Python
apache-2.0
1,716
# Copyright 2015 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """TensorFlow versions.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from mxconsole.lib.native import pywrap_tensorflow_fs as pywrap_tensorflow __version__ = pywrap_tensorflow.__version__ __git_version__ = pywrap_tensorflow.__git_version__ __compiler_version__ = pywrap_tensorflow.__compiler_version__ VERSION = __version__ GIT_VERSION = __git_version__ COMPILER_VERSION = __compiler_version__ GRAPH_DEF_VERSION = pywrap_tensorflow.GRAPH_DEF_VERSION GRAPH_DEF_VERSION_MIN_CONSUMER = ( pywrap_tensorflow.GRAPH_DEF_VERSION_MIN_CONSUMER) GRAPH_DEF_VERSION_MIN_PRODUCER = ( pywrap_tensorflow.GRAPH_DEF_VERSION_MIN_PRODUCER) __all__ = [ "__version__", "__git_version__", "__compiler_version__", "COMPILER_VERSION", "GIT_VERSION", "GRAPH_DEF_VERSION", "GRAPH_DEF_VERSION_MIN_CONSUMER", "GRAPH_DEF_VERSION_MIN_PRODUCER", "VERSION", ]
bravomikekilo/mxconsole
mxconsole/framework/versions.py
Python
apache-2.0
1,634
import datetime import pytest import virtool.history.db from aiohttp.test_utils import make_mocked_coro class TestAdd: async def test( self, snapshot, dbi, static_time, test_otu_edit, test_change, tmp_path, config ): app = {"db": dbi, "config": config} old, new = test_otu_edit change = await virtool.history.db.add( app, "edit", old, new, "Edited {}".format(new["name"]), "test" ) assert change == snapshot assert await dbi.history.find_one() == snapshot async def test_create( self, snapshot, dbi, static_time, test_otu_edit, test_change, tmp_path, config ): app = {"db": dbi, "config": config} # There is no old document because this is a change document for a otu creation operation. old = None new, _ = test_otu_edit description = "Created {}".format(new["name"]) change = await virtool.history.db.add( app, "create", old, new, description, "test" ) assert change == snapshot assert await dbi.history.find_one() == snapshot async def test_remove( self, snapshot, dbi, static_time, test_otu_edit, test_change, tmp_path, config ): """ Test that the addition of a change due to otu removal inserts the expected change document. """ app = {"db": dbi, "config": config} # There is no new document because this is a change document for a otu removal operation. new = None old, _ = test_otu_edit description = "Removed {}".format(old["name"]) change = await virtool.history.db.add( app, "remove", old, new, description, "test" ) assert change == snapshot assert await dbi.history.find_one() == snapshot @pytest.mark.parametrize("file", [True, False]) async def test_get(file, mocker, snapshot, dbi, fake, tmp_path, config): user = await fake.users.insert() await dbi.history.insert_one( { "_id": "baz.2", "diff": "file" if file else {"foo": "bar"}, "user": {"id": user["_id"]}, } ) mocker.patch( "virtool.history.utils.read_diff_file", make_mocked_coro(return_value="loaded") ) app = {"db": dbi, "config": config} assert await virtool.history.db.get(app, "baz.2") == snapshot @pytest.mark.parametrize("exists", [True, False]) async def test_get_most_recent_change(exists, snapshot, dbi, static_time): """ Test that the most recent change document is returned for the given ``otu_id``. """ # First change is 3 days before the second delta = datetime.timedelta(3) if exists: await dbi.history.insert_many( [ { "_id": "6116cba1.1", "description": "Description", "method_name": "update", "created_at": static_time.datetime - delta, "user": {"id": "test"}, "otu": {"id": "6116cba1", "name": "Prunus virus F", "version": 1}, "index": {"id": "unbuilt"}, }, { "_id": "6116cba1.2", "description": "Description number 2", "method_name": "update", "created_at": static_time.datetime, "user": {"id": "test"}, "otu": {"id": "6116cba1", "name": "Prunus virus F", "version": 2}, "index": {"id": "unbuilt"}, }, ] ) return_value = await virtool.history.db.get_most_recent_change(dbi, "6116cba1") assert return_value == snapshot @pytest.mark.parametrize("remove", [True, False]) async def test_patch_to_version(remove, snapshot, dbi, create_mock_history): await create_mock_history(remove=remove) app = {"db": dbi} current, patched, reverted_change_ids = await virtool.history.db.patch_to_version( app, "6116cba1", 1 ) assert current == snapshot assert patched == snapshot assert reverted_change_ids == snapshot
igboyes/virtool
tests/history/test_db.py
Python
mit
4,168
# -*- coding: utf-8 -*- # Generated by Django 1.10 on 2016-08-31 18:03 from __future__ import unicode_literals from django.db import migrations, models class Migration(migrations.Migration): initial = True dependencies = [ ] operations = [ migrations.CreateModel( name='ActiveAdminComments', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('namespace', models.CharField(max_length=255)), ('body', models.TextField()), ('resource_id', models.CharField(max_length=255)), ('resource_type', models.CharField(max_length=255)), ('author_id', models.IntegerField()), ('author_type', models.CharField(max_length=255)), ('created_at', models.DateTimeField(auto_now_add=True)), ('updated_at', models.DateTimeField(auto_now=True)), ], options={ 'db_table': 'active_admin_comments', }, ), migrations.CreateModel( name='CkeditorAssets', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('data_file_name', models.CharField(max_length=255)), ('data_content_type', models.CharField(blank=True, max_length=255, null=True)), ('data_file_size', models.IntegerField(blank=True, null=True)), ('assetable_id', models.IntegerField(blank=True, null=True)), ('assetable_type', models.CharField(blank=True, max_length=30, null=True)), ('type', models.CharField(blank=True, max_length=30, null=True)), ('width', models.IntegerField(blank=True, null=True)), ('height', models.IntegerField(blank=True, null=True)), ('created_at', models.DateTimeField(auto_now_add=True)), ('updated_at', models.DateTimeField(auto_now=True)), ], options={ 'db_table': 'ckeditor_assets', }, ), migrations.CreateModel( name='SchemaMigrations', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('version', models.CharField(max_length=255, unique=True)), ], options={ 'db_table': 'schema_migrations', }, ), migrations.CreateModel( name='UserSessions', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('created_at', models.DateTimeField(auto_now_add=True)), ('updated_at', models.DateTimeField(auto_now=True)), ], options={ 'db_table': 'user_sessions', }, ), ]
LernaProject/Lerna
dbtrash/migrations/0001_initial.py
Python
gpl-2.0
3,042
import hazelcast from hazelcast.core import HazelcastJsonValue from hazelcast.predicate import less_or_equal from hazelcast.projection import single_attribute, multi_attribute client = hazelcast.HazelcastClient() people = client.get_map("people").blocking() people.put_all( { 1: HazelcastJsonValue({"name": "Philip", "age": 46}), 2: HazelcastJsonValue({"name": "Elizabeth", "age": 44}), 3: HazelcastJsonValue({"name": "Henry", "age": 13}), 4: HazelcastJsonValue({"name": "Paige", "age": 15}), } ) names = people.project(single_attribute("name")) print("Names of the people are %s." % names) children_names = people.project(single_attribute("name"), less_or_equal("age", 18)) print("Names of the children are %s." % children_names) names_and_ages = people.project(multi_attribute("name", "age")) print("Names and ages of the people are %s." % names_and_ages) client.shutdown()
hazelcast/hazelcast-python-client
examples/projections/projections_example.py
Python
apache-2.0
924