repo_id
stringlengths
15
86
file_path
stringlengths
28
180
content
stringlengths
1
1.75M
__index_level_0__
int64
0
0
hf_public_repos/transformers/src/transformers/models
hf_public_repos/transformers/src/transformers/models/swinv2/modeling_swinv2.py
# coding=utf-8 # Copyright 2022 Microsoft Research and The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ PyTorch Swinv2 Transformer model.""" import collections.abc import math import warnings from dataclasses import dataclass from typing import Optional, Tuple, Union import torch import torch.utils.checkpoint from torch import nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACT2FN from ...modeling_utils import PreTrainedModel from ...pytorch_utils import find_pruneable_heads_and_indices, meshgrid, prune_linear_layer from ...utils import ( ModelOutput, add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings, ) from .configuration_swinv2 import Swinv2Config logger = logging.get_logger(__name__) # General docstring _CONFIG_FOR_DOC = "Swinv2Config" # Base docstring _CHECKPOINT_FOR_DOC = "microsoft/swinv2-tiny-patch4-window8-256" _EXPECTED_OUTPUT_SHAPE = [1, 64, 768] # Image classification docstring _IMAGE_CLASS_CHECKPOINT = "microsoft/swinv2-tiny-patch4-window8-256" _IMAGE_CLASS_EXPECTED_OUTPUT = "Egyptian cat" SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST = [ "microsoft/swinv2-tiny-patch4-window8-256", # See all Swinv2 models at https://huggingface.co/models?filter=swinv2 ] # drop_path, Swinv2PatchEmbeddings, Swinv2PatchMerging and Swinv2DropPath are from https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/swin_transformer_v2.py. @dataclass # Copied from transformers.models.swin.modeling_swin.SwinEncoderOutput with Swin->Swinv2 class Swinv2EncoderOutput(ModelOutput): """ Swinv2 encoder's outputs, with potential hidden states and attentions. Args: last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`): Sequence of hidden-states at the output of the last layer of the model. hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each stage) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the initial embedding outputs. attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each stage) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. reshaped_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each stage) of shape `(batch_size, hidden_size, height, width)`. Hidden-states of the model at the output of each layer plus the initial embedding outputs reshaped to include the spatial dimensions. """ last_hidden_state: torch.FloatTensor = None hidden_states: Optional[Tuple[torch.FloatTensor]] = None attentions: Optional[Tuple[torch.FloatTensor]] = None reshaped_hidden_states: Optional[Tuple[torch.FloatTensor]] = None @dataclass # Copied from transformers.models.swin.modeling_swin.SwinModelOutput with Swin->Swinv2 class Swinv2ModelOutput(ModelOutput): """ Swinv2 model's outputs that also contains a pooling of the last hidden states. Args: last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`): Sequence of hidden-states at the output of the last layer of the model. pooler_output (`torch.FloatTensor` of shape `(batch_size, hidden_size)`, *optional*, returned when `add_pooling_layer=True` is passed): Average pooling of the last layer hidden-state. hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each stage) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the initial embedding outputs. attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each stage) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. reshaped_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each stage) of shape `(batch_size, hidden_size, height, width)`. Hidden-states of the model at the output of each layer plus the initial embedding outputs reshaped to include the spatial dimensions. """ last_hidden_state: torch.FloatTensor = None pooler_output: Optional[torch.FloatTensor] = None hidden_states: Optional[Tuple[torch.FloatTensor]] = None attentions: Optional[Tuple[torch.FloatTensor]] = None reshaped_hidden_states: Optional[Tuple[torch.FloatTensor]] = None @dataclass # Copied from transformers.models.swin.modeling_swin.SwinMaskedImageModelingOutput with Swin->Swinv2 class Swinv2MaskedImageModelingOutput(ModelOutput): """ Swinv2 masked image model outputs. Args: loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `bool_masked_pos` is provided): Masked image modeling (MLM) loss. reconstruction (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Reconstructed pixel values. hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each stage) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the initial embedding outputs. attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each stage) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. reshaped_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each stage) of shape `(batch_size, hidden_size, height, width)`. Hidden-states of the model at the output of each layer plus the initial embedding outputs reshaped to include the spatial dimensions. """ loss: Optional[torch.FloatTensor] = None reconstruction: torch.FloatTensor = None hidden_states: Optional[Tuple[torch.FloatTensor]] = None attentions: Optional[Tuple[torch.FloatTensor]] = None reshaped_hidden_states: Optional[Tuple[torch.FloatTensor]] = None @property def logits(self): warnings.warn( "logits attribute is deprecated and will be removed in version 5 of Transformers." " Please use the reconstruction attribute to retrieve the final output instead.", FutureWarning, ) return self.reconstruction @dataclass # Copied from transformers.models.swin.modeling_swin.SwinImageClassifierOutput with Swin->Swinv2 class Swinv2ImageClassifierOutput(ModelOutput): """ Swinv2 outputs for image classification. Args: loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided): Classification (or regression if config.num_labels==1) loss. logits (`torch.FloatTensor` of shape `(batch_size, config.num_labels)`): Classification (or regression if config.num_labels==1) scores (before SoftMax). hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each stage) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the initial embedding outputs. attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each stage) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. reshaped_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each stage) of shape `(batch_size, hidden_size, height, width)`. Hidden-states of the model at the output of each layer plus the initial embedding outputs reshaped to include the spatial dimensions. """ loss: Optional[torch.FloatTensor] = None logits: torch.FloatTensor = None hidden_states: Optional[Tuple[torch.FloatTensor]] = None attentions: Optional[Tuple[torch.FloatTensor]] = None reshaped_hidden_states: Optional[Tuple[torch.FloatTensor]] = None # Copied from transformers.models.swin.modeling_swin.window_partition def window_partition(input_feature, window_size): """ Partitions the given input into windows. """ batch_size, height, width, num_channels = input_feature.shape input_feature = input_feature.view( batch_size, height // window_size, window_size, width // window_size, window_size, num_channels ) windows = input_feature.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size, window_size, num_channels) return windows # Copied from transformers.models.swin.modeling_swin.window_reverse def window_reverse(windows, window_size, height, width): """ Merges windows to produce higher resolution features. """ num_channels = windows.shape[-1] windows = windows.view(-1, height // window_size, width // window_size, window_size, window_size, num_channels) windows = windows.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, height, width, num_channels) return windows # Copied from transformers.models.swin.modeling_swin.drop_path def drop_path(input, drop_prob=0.0, training=False, scale_by_keep=True): """ Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks). Comment by Ross Wightman: This is the same as the DropConnect impl I created for EfficientNet, etc networks, however, the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper... See discussion: https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ... I've opted for changing the layer and argument names to 'drop path' rather than mix DropConnect as a layer name and use 'survival rate' as the argument. """ if drop_prob == 0.0 or not training: return input keep_prob = 1 - drop_prob shape = (input.shape[0],) + (1,) * (input.ndim - 1) # work with diff dim tensors, not just 2D ConvNets random_tensor = keep_prob + torch.rand(shape, dtype=input.dtype, device=input.device) random_tensor.floor_() # binarize output = input.div(keep_prob) * random_tensor return output # Copied from transformers.models.swin.modeling_swin.SwinDropPath with Swin->Swinv2 class Swinv2DropPath(nn.Module): """Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).""" def __init__(self, drop_prob: Optional[float] = None) -> None: super().__init__() self.drop_prob = drop_prob def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: return drop_path(hidden_states, self.drop_prob, self.training) def extra_repr(self) -> str: return "p={}".format(self.drop_prob) # Copied from transformers.models.swin.modeling_swin.SwinEmbeddings with Swin->Swinv2 class Swinv2Embeddings(nn.Module): """ Construct the patch and position embeddings. Optionally, also the mask token. """ def __init__(self, config, use_mask_token=False): super().__init__() self.patch_embeddings = Swinv2PatchEmbeddings(config) num_patches = self.patch_embeddings.num_patches self.patch_grid = self.patch_embeddings.grid_size self.mask_token = nn.Parameter(torch.zeros(1, 1, config.embed_dim)) if use_mask_token else None if config.use_absolute_embeddings: self.position_embeddings = nn.Parameter(torch.zeros(1, num_patches + 1, config.embed_dim)) else: self.position_embeddings = None self.norm = nn.LayerNorm(config.embed_dim) self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward( self, pixel_values: Optional[torch.FloatTensor], bool_masked_pos: Optional[torch.BoolTensor] = None ) -> Tuple[torch.Tensor]: embeddings, output_dimensions = self.patch_embeddings(pixel_values) embeddings = self.norm(embeddings) batch_size, seq_len, _ = embeddings.size() if bool_masked_pos is not None: mask_tokens = self.mask_token.expand(batch_size, seq_len, -1) # replace the masked visual tokens by mask_tokens mask = bool_masked_pos.unsqueeze(-1).type_as(mask_tokens) embeddings = embeddings * (1.0 - mask) + mask_tokens * mask if self.position_embeddings is not None: embeddings = embeddings + self.position_embeddings embeddings = self.dropout(embeddings) return embeddings, output_dimensions # Copied from transformers.models.swin.modeling_swin.SwinPatchEmbeddings with Swin->Swinv2 class Swinv2PatchEmbeddings(nn.Module): """ This class turns `pixel_values` of shape `(batch_size, num_channels, height, width)` into the initial `hidden_states` (patch embeddings) of shape `(batch_size, seq_length, hidden_size)` to be consumed by a Transformer. """ def __init__(self, config): super().__init__() image_size, patch_size = config.image_size, config.patch_size num_channels, hidden_size = config.num_channels, config.embed_dim image_size = image_size if isinstance(image_size, collections.abc.Iterable) else (image_size, image_size) patch_size = patch_size if isinstance(patch_size, collections.abc.Iterable) else (patch_size, patch_size) num_patches = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.image_size = image_size self.patch_size = patch_size self.num_channels = num_channels self.num_patches = num_patches self.grid_size = (image_size[0] // patch_size[0], image_size[1] // patch_size[1]) self.projection = nn.Conv2d(num_channels, hidden_size, kernel_size=patch_size, stride=patch_size) def maybe_pad(self, pixel_values, height, width): if width % self.patch_size[1] != 0: pad_values = (0, self.patch_size[1] - width % self.patch_size[1]) pixel_values = nn.functional.pad(pixel_values, pad_values) if height % self.patch_size[0] != 0: pad_values = (0, 0, 0, self.patch_size[0] - height % self.patch_size[0]) pixel_values = nn.functional.pad(pixel_values, pad_values) return pixel_values def forward(self, pixel_values: Optional[torch.FloatTensor]) -> Tuple[torch.Tensor, Tuple[int]]: _, num_channels, height, width = pixel_values.shape if num_channels != self.num_channels: raise ValueError( "Make sure that the channel dimension of the pixel values match with the one set in the configuration." ) # pad the input to be divisible by self.patch_size, if needed pixel_values = self.maybe_pad(pixel_values, height, width) embeddings = self.projection(pixel_values) _, _, height, width = embeddings.shape output_dimensions = (height, width) embeddings = embeddings.flatten(2).transpose(1, 2) return embeddings, output_dimensions class Swinv2PatchMerging(nn.Module): """ Patch Merging Layer. Args: input_resolution (`Tuple[int]`): Resolution of input feature. dim (`int`): Number of input channels. norm_layer (`nn.Module`, *optional*, defaults to `nn.LayerNorm`): Normalization layer class. """ def __init__(self, input_resolution: Tuple[int], dim: int, norm_layer: nn.Module = nn.LayerNorm) -> None: super().__init__() self.input_resolution = input_resolution self.dim = dim self.reduction = nn.Linear(4 * dim, 2 * dim, bias=False) self.norm = norm_layer(2 * dim) def maybe_pad(self, input_feature, height, width): should_pad = (height % 2 == 1) or (width % 2 == 1) if should_pad: pad_values = (0, 0, 0, width % 2, 0, height % 2) input_feature = nn.functional.pad(input_feature, pad_values) return input_feature def forward(self, input_feature: torch.Tensor, input_dimensions: Tuple[int, int]) -> torch.Tensor: height, width = input_dimensions # `dim` is height * width batch_size, dim, num_channels = input_feature.shape input_feature = input_feature.view(batch_size, height, width, num_channels) # pad input to be disible by width and height, if needed input_feature = self.maybe_pad(input_feature, height, width) # [batch_size, height/2, width/2, num_channels] input_feature_0 = input_feature[:, 0::2, 0::2, :] # [batch_size, height/2, width/2, num_channels] input_feature_1 = input_feature[:, 1::2, 0::2, :] # [batch_size, height/2, width/2, num_channels] input_feature_2 = input_feature[:, 0::2, 1::2, :] # [batch_size, height/2, width/2, num_channels] input_feature_3 = input_feature[:, 1::2, 1::2, :] # [batch_size, height/2 * width/2, 4*num_channels] input_feature = torch.cat([input_feature_0, input_feature_1, input_feature_2, input_feature_3], -1) input_feature = input_feature.view(batch_size, -1, 4 * num_channels) # [batch_size, height/2 * width/2, 4*C] input_feature = self.reduction(input_feature) input_feature = self.norm(input_feature) return input_feature class Swinv2SelfAttention(nn.Module): def __init__(self, config, dim, num_heads, window_size, pretrained_window_size=[0, 0]): super().__init__() if dim % num_heads != 0: raise ValueError( f"The hidden size ({dim}) is not a multiple of the number of attention heads ({num_heads})" ) self.num_attention_heads = num_heads self.attention_head_size = int(dim / num_heads) self.all_head_size = self.num_attention_heads * self.attention_head_size self.window_size = ( window_size if isinstance(window_size, collections.abc.Iterable) else (window_size, window_size) ) self.pretrained_window_size = pretrained_window_size self.logit_scale = nn.Parameter(torch.log(10 * torch.ones((num_heads, 1, 1)))) # mlp to generate continuous relative position bias self.continuous_position_bias_mlp = nn.Sequential( nn.Linear(2, 512, bias=True), nn.ReLU(inplace=True), nn.Linear(512, num_heads, bias=False) ) # get relative_coords_table relative_coords_h = torch.arange(-(self.window_size[0] - 1), self.window_size[0], dtype=torch.float32) relative_coords_w = torch.arange(-(self.window_size[1] - 1), self.window_size[1], dtype=torch.float32) relative_coords_table = ( torch.stack(meshgrid([relative_coords_h, relative_coords_w], indexing="ij")) .permute(1, 2, 0) .contiguous() .unsqueeze(0) ) # [1, 2*window_height - 1, 2*window_width - 1, 2] if pretrained_window_size[0] > 0: relative_coords_table[:, :, :, 0] /= pretrained_window_size[0] - 1 relative_coords_table[:, :, :, 1] /= pretrained_window_size[1] - 1 else: relative_coords_table[:, :, :, 0] /= self.window_size[0] - 1 relative_coords_table[:, :, :, 1] /= self.window_size[1] - 1 relative_coords_table *= 8 # normalize to -8, 8 relative_coords_table = ( torch.sign(relative_coords_table) * torch.log2(torch.abs(relative_coords_table) + 1.0) / math.log2(8) ) self.register_buffer("relative_coords_table", relative_coords_table, persistent=False) # get pair-wise relative position index for each token inside the window coords_h = torch.arange(self.window_size[0]) coords_w = torch.arange(self.window_size[1]) coords = torch.stack(meshgrid([coords_h, coords_w], indexing="ij")) coords_flatten = torch.flatten(coords, 1) relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :] relative_coords = relative_coords.permute(1, 2, 0).contiguous() relative_coords[:, :, 0] += self.window_size[0] - 1 relative_coords[:, :, 1] += self.window_size[1] - 1 relative_coords[:, :, 0] *= 2 * self.window_size[1] - 1 relative_position_index = relative_coords.sum(-1) self.register_buffer("relative_position_index", relative_position_index, persistent=False) self.query = nn.Linear(self.all_head_size, self.all_head_size, bias=config.qkv_bias) self.key = nn.Linear(self.all_head_size, self.all_head_size, bias=False) self.value = nn.Linear(self.all_head_size, self.all_head_size, bias=config.qkv_bias) self.dropout = nn.Dropout(config.attention_probs_dropout_prob) def transpose_for_scores(self, x): new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size) x = x.view(new_x_shape) return x.permute(0, 2, 1, 3) def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.FloatTensor] = None, head_mask: Optional[torch.FloatTensor] = None, output_attentions: Optional[bool] = False, ) -> Tuple[torch.Tensor]: batch_size, dim, num_channels = hidden_states.shape mixed_query_layer = self.query(hidden_states) key_layer = self.transpose_for_scores(self.key(hidden_states)) value_layer = self.transpose_for_scores(self.value(hidden_states)) query_layer = self.transpose_for_scores(mixed_query_layer) # cosine attention attention_scores = nn.functional.normalize(query_layer, dim=-1) @ nn.functional.normalize( key_layer, dim=-1 ).transpose(-2, -1) logit_scale = torch.clamp(self.logit_scale, max=math.log(1.0 / 0.01)).exp() attention_scores = attention_scores * logit_scale relative_position_bias_table = self.continuous_position_bias_mlp(self.relative_coords_table).view( -1, self.num_attention_heads ) # [window_height*window_width,window_height*window_width,num_attention_heads] relative_position_bias = relative_position_bias_table[self.relative_position_index.view(-1)].view( self.window_size[0] * self.window_size[1], self.window_size[0] * self.window_size[1], -1 ) # [num_attention_heads,window_height*window_width,window_height*window_width] relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous() # nH, Wh*Ww, Wh*Ww relative_position_bias = 16 * torch.sigmoid(relative_position_bias) attention_scores = attention_scores + relative_position_bias.unsqueeze(0) if attention_mask is not None: # Apply the attention mask is (precomputed for all layers in Swinv2Model forward() function) mask_shape = attention_mask.shape[0] attention_scores = attention_scores.view( batch_size // mask_shape, mask_shape, self.num_attention_heads, dim, dim ) + attention_mask.unsqueeze(1).unsqueeze(0) attention_scores = attention_scores + attention_mask.unsqueeze(1).unsqueeze(0) attention_scores = attention_scores.view(-1, self.num_attention_heads, dim, dim) # Normalize the attention scores to probabilities. attention_probs = nn.functional.softmax(attention_scores, dim=-1) # This is actually dropping out entire tokens to attend to, which might # seem a bit unusual, but is taken from the original Transformer paper. attention_probs = self.dropout(attention_probs) # Mask heads if we want to if head_mask is not None: attention_probs = attention_probs * head_mask context_layer = torch.matmul(attention_probs, value_layer) context_layer = context_layer.permute(0, 2, 1, 3).contiguous() new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,) context_layer = context_layer.view(new_context_layer_shape) outputs = (context_layer, attention_probs) if output_attentions else (context_layer,) return outputs # Copied from transformers.models.swin.modeling_swin.SwinSelfOutput with Swin->Swinv2 class Swinv2SelfOutput(nn.Module): def __init__(self, config, dim): super().__init__() self.dense = nn.Linear(dim, dim) self.dropout = nn.Dropout(config.attention_probs_dropout_prob) def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states) return hidden_states class Swinv2Attention(nn.Module): def __init__(self, config, dim, num_heads, window_size, pretrained_window_size=0): super().__init__() self.self = Swinv2SelfAttention( config=config, dim=dim, num_heads=num_heads, window_size=window_size, pretrained_window_size=pretrained_window_size if isinstance(pretrained_window_size, collections.abc.Iterable) else (pretrained_window_size, pretrained_window_size), ) self.output = Swinv2SelfOutput(config, dim) self.pruned_heads = set() def prune_heads(self, heads): if len(heads) == 0: return heads, index = find_pruneable_heads_and_indices( heads, self.self.num_attention_heads, self.self.attention_head_size, self.pruned_heads ) # Prune linear layers self.self.query = prune_linear_layer(self.self.query, index) self.self.key = prune_linear_layer(self.self.key, index) self.self.value = prune_linear_layer(self.self.value, index) self.output.dense = prune_linear_layer(self.output.dense, index, dim=1) # Update hyper params and store pruned heads self.self.num_attention_heads = self.self.num_attention_heads - len(heads) self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads self.pruned_heads = self.pruned_heads.union(heads) def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.FloatTensor] = None, head_mask: Optional[torch.FloatTensor] = None, output_attentions: Optional[bool] = False, ) -> Tuple[torch.Tensor]: self_outputs = self.self(hidden_states, attention_mask, head_mask, output_attentions) attention_output = self.output(self_outputs[0], hidden_states) outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them return outputs # Copied from transformers.models.swin.modeling_swin.SwinIntermediate with Swin->Swinv2 class Swinv2Intermediate(nn.Module): def __init__(self, config, dim): super().__init__() self.dense = nn.Linear(dim, int(config.mlp_ratio * dim)) if isinstance(config.hidden_act, str): self.intermediate_act_fn = ACT2FN[config.hidden_act] else: self.intermediate_act_fn = config.hidden_act def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.intermediate_act_fn(hidden_states) return hidden_states # Copied from transformers.models.swin.modeling_swin.SwinOutput with Swin->Swinv2 class Swinv2Output(nn.Module): def __init__(self, config, dim): super().__init__() self.dense = nn.Linear(int(config.mlp_ratio * dim), dim) self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states) return hidden_states class Swinv2Layer(nn.Module): def __init__(self, config, dim, input_resolution, num_heads, shift_size=0, pretrained_window_size=0): super().__init__() self.chunk_size_feed_forward = config.chunk_size_feed_forward self.shift_size = shift_size self.window_size = config.window_size self.input_resolution = input_resolution self.set_shift_and_window_size(input_resolution) self.attention = Swinv2Attention( config=config, dim=dim, num_heads=num_heads, window_size=self.window_size, pretrained_window_size=pretrained_window_size if isinstance(pretrained_window_size, collections.abc.Iterable) else (pretrained_window_size, pretrained_window_size), ) self.layernorm_before = nn.LayerNorm(dim, eps=config.layer_norm_eps) self.drop_path = Swinv2DropPath(config.drop_path_rate) if config.drop_path_rate > 0.0 else nn.Identity() self.intermediate = Swinv2Intermediate(config, dim) self.output = Swinv2Output(config, dim) self.layernorm_after = nn.LayerNorm(dim, eps=config.layer_norm_eps) def set_shift_and_window_size(self, input_resolution): target_window_size = ( self.window_size if isinstance(self.window_size, collections.abc.Iterable) else (self.window_size, self.window_size) ) target_shift_size = ( self.shift_size if isinstance(self.shift_size, collections.abc.Iterable) else (self.shift_size, self.shift_size) ) window_dim = input_resolution[0].item() if torch.is_tensor(input_resolution[0]) else input_resolution[0] self.window_size = window_dim if window_dim <= target_window_size[0] else target_window_size[0] self.shift_size = ( 0 if input_resolution <= ( self.window_size if isinstance(self.window_size, collections.abc.Iterable) else (self.window_size, self.window_size) ) else target_shift_size[0] ) def get_attn_mask(self, height, width, dtype): if self.shift_size > 0: # calculate attention mask for shifted window multihead self attention img_mask = torch.zeros((1, height, width, 1), dtype=dtype) height_slices = ( slice(0, -self.window_size), slice(-self.window_size, -self.shift_size), slice(-self.shift_size, None), ) width_slices = ( slice(0, -self.window_size), slice(-self.window_size, -self.shift_size), slice(-self.shift_size, None), ) count = 0 for height_slice in height_slices: for width_slice in width_slices: img_mask[:, height_slice, width_slice, :] = count count += 1 mask_windows = window_partition(img_mask, self.window_size) mask_windows = mask_windows.view(-1, self.window_size * self.window_size) attn_mask = mask_windows.unsqueeze(1) - mask_windows.unsqueeze(2) attn_mask = attn_mask.masked_fill(attn_mask != 0, float(-100.0)).masked_fill(attn_mask == 0, float(0.0)) else: attn_mask = None return attn_mask def maybe_pad(self, hidden_states, height, width): pad_right = (self.window_size - width % self.window_size) % self.window_size pad_bottom = (self.window_size - height % self.window_size) % self.window_size pad_values = (0, 0, 0, pad_right, 0, pad_bottom) hidden_states = nn.functional.pad(hidden_states, pad_values) return hidden_states, pad_values def forward( self, hidden_states: torch.Tensor, input_dimensions: Tuple[int, int], head_mask: Optional[torch.FloatTensor] = None, output_attentions: Optional[bool] = False, always_partition: Optional[bool] = False, ) -> Tuple[torch.Tensor, torch.Tensor]: if not always_partition: self.set_shift_and_window_size(input_dimensions) else: pass height, width = input_dimensions batch_size, _, channels = hidden_states.size() shortcut = hidden_states # pad hidden_states to multiples of window size hidden_states = hidden_states.view(batch_size, height, width, channels) hidden_states, pad_values = self.maybe_pad(hidden_states, height, width) _, height_pad, width_pad, _ = hidden_states.shape # cyclic shift if self.shift_size > 0: shifted_hidden_states = torch.roll(hidden_states, shifts=(-self.shift_size, -self.shift_size), dims=(1, 2)) else: shifted_hidden_states = hidden_states # partition windows hidden_states_windows = window_partition(shifted_hidden_states, self.window_size) hidden_states_windows = hidden_states_windows.view(-1, self.window_size * self.window_size, channels) attn_mask = self.get_attn_mask(height_pad, width_pad, dtype=hidden_states.dtype) if attn_mask is not None: attn_mask = attn_mask.to(hidden_states_windows.device) attention_outputs = self.attention( hidden_states_windows, attn_mask, head_mask, output_attentions=output_attentions ) attention_output = attention_outputs[0] attention_windows = attention_output.view(-1, self.window_size, self.window_size, channels) shifted_windows = window_reverse(attention_windows, self.window_size, height_pad, width_pad) # reverse cyclic shift if self.shift_size > 0: attention_windows = torch.roll(shifted_windows, shifts=(self.shift_size, self.shift_size), dims=(1, 2)) else: attention_windows = shifted_windows was_padded = pad_values[3] > 0 or pad_values[5] > 0 if was_padded: attention_windows = attention_windows[:, :height, :width, :].contiguous() attention_windows = attention_windows.view(batch_size, height * width, channels) hidden_states = self.layernorm_before(attention_windows) hidden_states = shortcut + self.drop_path(hidden_states) layer_output = self.intermediate(hidden_states) layer_output = self.output(layer_output) layer_output = hidden_states + self.drop_path(self.layernorm_after(layer_output)) layer_outputs = (layer_output, attention_outputs[1]) if output_attentions else (layer_output,) return layer_outputs class Swinv2Stage(nn.Module): def __init__( self, config, dim, input_resolution, depth, num_heads, drop_path, downsample, pretrained_window_size=0 ): super().__init__() self.config = config self.dim = dim self.blocks = nn.ModuleList( [ Swinv2Layer( config=config, dim=dim, input_resolution=input_resolution, num_heads=num_heads, shift_size=0 if (i % 2 == 0) else config.window_size // 2, pretrained_window_size=pretrained_window_size, ) for i in range(depth) ] ) # patch merging layer if downsample is not None: self.downsample = downsample(input_resolution, dim=dim, norm_layer=nn.LayerNorm) else: self.downsample = None self.pointing = False # Copied from transformers.models.swin.modeling_swin.SwinStage.forward def forward( self, hidden_states: torch.Tensor, input_dimensions: Tuple[int, int], head_mask: Optional[torch.FloatTensor] = None, output_attentions: Optional[bool] = False, always_partition: Optional[bool] = False, ) -> Tuple[torch.Tensor]: height, width = input_dimensions for i, layer_module in enumerate(self.blocks): layer_head_mask = head_mask[i] if head_mask is not None else None layer_outputs = layer_module( hidden_states, input_dimensions, layer_head_mask, output_attentions, always_partition ) hidden_states = layer_outputs[0] hidden_states_before_downsampling = hidden_states if self.downsample is not None: height_downsampled, width_downsampled = (height + 1) // 2, (width + 1) // 2 output_dimensions = (height, width, height_downsampled, width_downsampled) hidden_states = self.downsample(hidden_states_before_downsampling, input_dimensions) else: output_dimensions = (height, width, height, width) stage_outputs = (hidden_states, hidden_states_before_downsampling, output_dimensions) if output_attentions: stage_outputs += layer_outputs[1:] return stage_outputs class Swinv2Encoder(nn.Module): def __init__(self, config, grid_size, pretrained_window_sizes=(0, 0, 0, 0)): super().__init__() self.num_layers = len(config.depths) self.config = config if self.config.pretrained_window_sizes is not None: pretrained_window_sizes = config.pretrained_window_sizes dpr = [x.item() for x in torch.linspace(0, config.drop_path_rate, sum(config.depths))] self.layers = nn.ModuleList( [ Swinv2Stage( config=config, dim=int(config.embed_dim * 2**i_layer), input_resolution=(grid_size[0] // (2**i_layer), grid_size[1] // (2**i_layer)), depth=config.depths[i_layer], num_heads=config.num_heads[i_layer], drop_path=dpr[sum(config.depths[:i_layer]) : sum(config.depths[: i_layer + 1])], downsample=Swinv2PatchMerging if (i_layer < self.num_layers - 1) else None, pretrained_window_size=pretrained_window_sizes[i_layer], ) for i_layer in range(self.num_layers) ] ) self.gradient_checkpointing = False # Copied from transformers.models.swin.modeling_swin.SwinEncoder.forward with SwinEncoderOutput->Swinv2EncoderOutput def forward( self, hidden_states: torch.Tensor, input_dimensions: Tuple[int, int], head_mask: Optional[torch.FloatTensor] = None, output_attentions: Optional[bool] = False, output_hidden_states: Optional[bool] = False, output_hidden_states_before_downsampling: Optional[bool] = False, always_partition: Optional[bool] = False, return_dict: Optional[bool] = True, ) -> Union[Tuple, Swinv2EncoderOutput]: all_hidden_states = () if output_hidden_states else None all_reshaped_hidden_states = () if output_hidden_states else None all_self_attentions = () if output_attentions else None if output_hidden_states: batch_size, _, hidden_size = hidden_states.shape # rearrange b (h w) c -> b c h w reshaped_hidden_state = hidden_states.view(batch_size, *input_dimensions, hidden_size) reshaped_hidden_state = reshaped_hidden_state.permute(0, 3, 1, 2) all_hidden_states += (hidden_states,) all_reshaped_hidden_states += (reshaped_hidden_state,) for i, layer_module in enumerate(self.layers): layer_head_mask = head_mask[i] if head_mask is not None else None if self.gradient_checkpointing and self.training: def create_custom_forward(module): def custom_forward(*inputs): return module(*inputs, output_attentions) return custom_forward layer_outputs = torch.utils.checkpoint.checkpoint( create_custom_forward(layer_module), hidden_states, input_dimensions, layer_head_mask ) else: layer_outputs = layer_module( hidden_states, input_dimensions, layer_head_mask, output_attentions, always_partition ) hidden_states = layer_outputs[0] hidden_states_before_downsampling = layer_outputs[1] output_dimensions = layer_outputs[2] input_dimensions = (output_dimensions[-2], output_dimensions[-1]) if output_hidden_states and output_hidden_states_before_downsampling: batch_size, _, hidden_size = hidden_states_before_downsampling.shape # rearrange b (h w) c -> b c h w # here we use the original (not downsampled) height and width reshaped_hidden_state = hidden_states_before_downsampling.view( batch_size, *(output_dimensions[0], output_dimensions[1]), hidden_size ) reshaped_hidden_state = reshaped_hidden_state.permute(0, 3, 1, 2) all_hidden_states += (hidden_states_before_downsampling,) all_reshaped_hidden_states += (reshaped_hidden_state,) elif output_hidden_states and not output_hidden_states_before_downsampling: batch_size, _, hidden_size = hidden_states.shape # rearrange b (h w) c -> b c h w reshaped_hidden_state = hidden_states.view(batch_size, *input_dimensions, hidden_size) reshaped_hidden_state = reshaped_hidden_state.permute(0, 3, 1, 2) all_hidden_states += (hidden_states,) all_reshaped_hidden_states += (reshaped_hidden_state,) if output_attentions: all_self_attentions += layer_outputs[3:] if not return_dict: return tuple(v for v in [hidden_states, all_hidden_states, all_self_attentions] if v is not None) return Swinv2EncoderOutput( last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_self_attentions, reshaped_hidden_states=all_reshaped_hidden_states, ) # Copied from transformers.models.swin.modeling_swin.SwinPreTrainedModel with Swin->Swinv2,swin->swinv2 class Swinv2PreTrainedModel(PreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = Swinv2Config base_model_prefix = "swinv2" main_input_name = "pixel_values" supports_gradient_checkpointing = True def _init_weights(self, module): """Initialize the weights""" if isinstance(module, (nn.Linear, nn.Conv2d)): # Slightly different from the TF version which uses truncated_normal for initialization # cf https://github.com/pytorch/pytorch/pull/5617 module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.LayerNorm): module.bias.data.zero_() module.weight.data.fill_(1.0) def _set_gradient_checkpointing(self, module, value=False): if isinstance(module, Swinv2Encoder): module.gradient_checkpointing = value SWINV2_START_DOCSTRING = r""" This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`Swinv2Config`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ SWINV2_INPUTS_DOCSTRING = r""" Args: pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`ViTImageProcessor.__call__`] for details. head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ @add_start_docstrings( "The bare Swinv2 Model transformer outputting raw hidden-states without any specific head on top.", SWINV2_START_DOCSTRING, ) # Copied from transformers.models.swin.modeling_swin.SwinModel with SWIN->SWINV2,Swin->Swinv2 class Swinv2Model(Swinv2PreTrainedModel): def __init__(self, config, add_pooling_layer=True, use_mask_token=False): super().__init__(config) self.config = config self.num_layers = len(config.depths) self.num_features = int(config.embed_dim * 2 ** (self.num_layers - 1)) self.embeddings = Swinv2Embeddings(config, use_mask_token=use_mask_token) self.encoder = Swinv2Encoder(config, self.embeddings.patch_grid) self.layernorm = nn.LayerNorm(self.num_features, eps=config.layer_norm_eps) self.pooler = nn.AdaptiveAvgPool1d(1) if add_pooling_layer else None # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.embeddings.patch_embeddings def _prune_heads(self, heads_to_prune): """ Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base class PreTrainedModel """ for layer, heads in heads_to_prune.items(): self.encoder.layer[layer].attention.prune_heads(heads) @add_start_docstrings_to_model_forward(SWINV2_INPUTS_DOCSTRING) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=Swinv2ModelOutput, config_class=_CONFIG_FOR_DOC, modality="vision", expected_output=_EXPECTED_OUTPUT_SHAPE, ) def forward( self, pixel_values: Optional[torch.FloatTensor] = None, bool_masked_pos: Optional[torch.BoolTensor] = None, head_mask: Optional[torch.FloatTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, Swinv2ModelOutput]: r""" bool_masked_pos (`torch.BoolTensor` of shape `(batch_size, num_patches)`, *optional*): Boolean masked positions. Indicates which patches are masked (1) and which aren't (0). """ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict if pixel_values is None: raise ValueError("You have to specify pixel_values") # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] head_mask = self.get_head_mask(head_mask, len(self.config.depths)) embedding_output, input_dimensions = self.embeddings(pixel_values, bool_masked_pos=bool_masked_pos) encoder_outputs = self.encoder( embedding_output, input_dimensions, head_mask=head_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = encoder_outputs[0] sequence_output = self.layernorm(sequence_output) pooled_output = None if self.pooler is not None: pooled_output = self.pooler(sequence_output.transpose(1, 2)) pooled_output = torch.flatten(pooled_output, 1) if not return_dict: output = (sequence_output, pooled_output) + encoder_outputs[1:] return output return Swinv2ModelOutput( last_hidden_state=sequence_output, pooler_output=pooled_output, hidden_states=encoder_outputs.hidden_states, attentions=encoder_outputs.attentions, reshaped_hidden_states=encoder_outputs.reshaped_hidden_states, ) @add_start_docstrings( """Swinv2 Model with a decoder on top for masked image modeling, as proposed in [SimMIM](https://arxiv.org/abs/2111.09886). <Tip> Note that we provide a script to pre-train this model on custom data in our [examples directory](https://github.com/huggingface/transformers/tree/main/examples/pytorch/image-pretraining). </Tip> """, SWINV2_START_DOCSTRING, ) # Copied from transformers.models.swin.modeling_swin.SwinForMaskedImageModeling with swin->swinv2, base-simmim-window6-192->tiny-patch4-window8-256,SWIN->SWINV2,Swin->Swinv2,192->256 class Swinv2ForMaskedImageModeling(Swinv2PreTrainedModel): def __init__(self, config): super().__init__(config) self.swinv2 = Swinv2Model(config, add_pooling_layer=False, use_mask_token=True) num_features = int(config.embed_dim * 2 ** (config.num_layers - 1)) self.decoder = nn.Sequential( nn.Conv2d( in_channels=num_features, out_channels=config.encoder_stride**2 * config.num_channels, kernel_size=1 ), nn.PixelShuffle(config.encoder_stride), ) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(SWINV2_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=Swinv2MaskedImageModelingOutput, config_class=_CONFIG_FOR_DOC) def forward( self, pixel_values: Optional[torch.FloatTensor] = None, bool_masked_pos: Optional[torch.BoolTensor] = None, head_mask: Optional[torch.FloatTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, Swinv2MaskedImageModelingOutput]: r""" bool_masked_pos (`torch.BoolTensor` of shape `(batch_size, num_patches)`): Boolean masked positions. Indicates which patches are masked (1) and which aren't (0). Returns: Examples: ```python >>> from transformers import AutoImageProcessor, Swinv2ForMaskedImageModeling >>> import torch >>> from PIL import Image >>> import requests >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" >>> image = Image.open(requests.get(url, stream=True).raw) >>> image_processor = AutoImageProcessor.from_pretrained("microsoft/swinv2-tiny-patch4-window8-256") >>> model = Swinv2ForMaskedImageModeling.from_pretrained("microsoft/swinv2-tiny-patch4-window8-256") >>> num_patches = (model.config.image_size // model.config.patch_size) ** 2 >>> pixel_values = image_processor(images=image, return_tensors="pt").pixel_values >>> # create random boolean mask of shape (batch_size, num_patches) >>> bool_masked_pos = torch.randint(low=0, high=2, size=(1, num_patches)).bool() >>> outputs = model(pixel_values, bool_masked_pos=bool_masked_pos) >>> loss, reconstructed_pixel_values = outputs.loss, outputs.reconstruction >>> list(reconstructed_pixel_values.shape) [1, 3, 256, 256] ```""" return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.swinv2( pixel_values, bool_masked_pos=bool_masked_pos, head_mask=head_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = outputs[0] # Reshape to (batch_size, num_channels, height, width) sequence_output = sequence_output.transpose(1, 2) batch_size, num_channels, sequence_length = sequence_output.shape height = width = math.floor(sequence_length**0.5) sequence_output = sequence_output.reshape(batch_size, num_channels, height, width) # Reconstruct pixel values reconstructed_pixel_values = self.decoder(sequence_output) masked_im_loss = None if bool_masked_pos is not None: size = self.config.image_size // self.config.patch_size bool_masked_pos = bool_masked_pos.reshape(-1, size, size) mask = ( bool_masked_pos.repeat_interleave(self.config.patch_size, 1) .repeat_interleave(self.config.patch_size, 2) .unsqueeze(1) .contiguous() ) reconstruction_loss = nn.functional.l1_loss(pixel_values, reconstructed_pixel_values, reduction="none") masked_im_loss = (reconstruction_loss * mask).sum() / (mask.sum() + 1e-5) / self.config.num_channels if not return_dict: output = (reconstructed_pixel_values,) + outputs[2:] return ((masked_im_loss,) + output) if masked_im_loss is not None else output return Swinv2MaskedImageModelingOutput( loss=masked_im_loss, reconstruction=reconstructed_pixel_values, hidden_states=outputs.hidden_states, attentions=outputs.attentions, reshaped_hidden_states=outputs.reshaped_hidden_states, ) @add_start_docstrings( """ Swinv2 Model transformer with an image classification head on top (a linear layer on top of the final hidden state of the [CLS] token) e.g. for ImageNet. """, SWINV2_START_DOCSTRING, ) # Copied from transformers.models.swin.modeling_swin.SwinForImageClassification with SWIN->SWINV2,Swin->Swinv2,swin->swinv2 class Swinv2ForImageClassification(Swinv2PreTrainedModel): def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.swinv2 = Swinv2Model(config) # Classifier head self.classifier = ( nn.Linear(self.swinv2.num_features, config.num_labels) if config.num_labels > 0 else nn.Identity() ) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(SWINV2_INPUTS_DOCSTRING) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT, output_type=Swinv2ImageClassifierOutput, config_class=_CONFIG_FOR_DOC, expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT, ) def forward( self, pixel_values: Optional[torch.FloatTensor] = None, head_mask: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, Swinv2ImageClassifierOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the image classification/regression loss. Indices should be in `[0, ..., config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If `config.num_labels > 1` a classification loss is computed (Cross-Entropy). """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.swinv2( pixel_values, head_mask=head_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) pooled_output = outputs[1] logits = self.classifier(pooled_output) loss = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: self.config.problem_type = "regression" elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): self.config.problem_type = "single_label_classification" else: self.config.problem_type = "multi_label_classification" if self.config.problem_type == "regression": loss_fct = MSELoss() if self.num_labels == 1: loss = loss_fct(logits.squeeze(), labels.squeeze()) else: loss = loss_fct(logits, labels) elif self.config.problem_type == "single_label_classification": loss_fct = CrossEntropyLoss() loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) elif self.config.problem_type == "multi_label_classification": loss_fct = BCEWithLogitsLoss() loss = loss_fct(logits, labels) if not return_dict: output = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return Swinv2ImageClassifierOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, reshaped_hidden_states=outputs.reshaped_hidden_states, )
0
hf_public_repos/transformers/src/transformers/models
hf_public_repos/transformers/src/transformers/models/clip/modeling_tf_clip.py
# coding=utf-8 # Copyright 2021 The OpenAI Team Authors and The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ TF 2.0 CLIP model.""" from __future__ import annotations import math from dataclasses import dataclass from typing import Any, Optional, Tuple, Union import numpy as np import tensorflow as tf from ...activations_tf import get_tf_activation from ...modeling_tf_outputs import TFBaseModelOutput, TFBaseModelOutputWithPooling # Public API from ...modeling_tf_utils import ( TFModelInputType, TFPreTrainedModel, get_initializer, keras_serializable, unpack_inputs, ) from ...tf_utils import check_embeddings_within_bounds, shape_list, stable_softmax from ...utils import ( ModelOutput, add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings, ) from .configuration_clip import CLIPConfig, CLIPTextConfig, CLIPVisionConfig logger = logging.get_logger(__name__) _CHECKPOINT_FOR_DOC = "openai/clip-vit-base-patch32" TF_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST = [ "openai/clip-vit-base-patch32", # See all CLIP models at https://huggingface.co/models?filter=clip ] LARGE_NEGATIVE = -1e8 # Copied from transformers.models.bart.modeling_tf_bart._expand_mask def _expand_mask(mask: tf.Tensor, tgt_len: Optional[int] = None): """ Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`. """ src_len = shape_list(mask)[1] tgt_len = tgt_len if tgt_len is not None else src_len one_cst = tf.constant(1.0) mask = tf.cast(mask, dtype=one_cst.dtype) expanded_mask = tf.tile(mask[:, None, None, :], (1, 1, tgt_len, 1)) return (one_cst - expanded_mask) * LARGE_NEGATIVE # contrastive loss function, adapted from # https://sachinruk.github.io/blog/pytorch/pytorch%20lightning/loss%20function/gpu/2021/03/07/CLIP.html def contrastive_loss(logits: tf.Tensor) -> tf.Tensor: return tf.math.reduce_mean( tf.keras.metrics.sparse_categorical_crossentropy( y_true=tf.range(shape_list(logits)[0]), y_pred=logits, from_logits=True ) ) def clip_loss(similarity: tf.Tensor) -> tf.Tensor: caption_loss = contrastive_loss(similarity) image_loss = contrastive_loss(tf.transpose(similarity)) return (caption_loss + image_loss) / 2.0 @dataclass class TFCLIPOutput(ModelOutput): """ Args: loss (`tf.Tensor` of shape `(1,)`, *optional*, returned when `return_loss` is `True`): Contrastive loss for image-text similarity. logits_per_image:(`tf.Tensor` of shape `(image_batch_size, text_batch_size)`): The scaled dot product scores between `image_embeds` and `text_embeds`. This represents the image-text similarity scores. logits_per_text:(`tf.Tensor` of shape `(text_batch_size, image_batch_size)`): The scaled dot product scores between `text_embeds` and `image_embeds`. This represents the text-image similarity scores. text_embeds(`tf.Tensor` of shape `(batch_size, output_dim`): The text embeddings obtained by applying the projection layer to the pooled output of [`TFCLIPTextModel`]. image_embeds(`tf.Tensor` of shape `(batch_size, output_dim`): The image embeddings obtained by applying the projection layer to the pooled output of [`TFCLIPVisionModel`]. text_model_output([`~modeling_tf_utils.TFBaseModelOutputWithPooling`]): The output of the [`TFCLIPTextModel`]. vision_model_output([`~modeling_tf_utils.TFBaseModelOutputWithPooling`]): The output of the [`TFCLIPVisionModel`]. """ loss: tf.Tensor | None = None logits_per_image: tf.Tensor = None logits_per_text: tf.Tensor = None text_embeds: tf.Tensor = None image_embeds: tf.Tensor = None text_model_output: TFBaseModelOutputWithPooling = None vision_model_output: TFBaseModelOutputWithPooling = None def to_tuple(self) -> Tuple[Any]: return tuple( self[k] if k not in ["text_model_output", "vision_model_output"] else getattr(self, k).to_tuple() for k in self.keys() ) class TFCLIPVisionEmbeddings(tf.keras.layers.Layer): def __init__(self, config: CLIPVisionConfig, **kwargs): super().__init__(**kwargs) self.embed_dim = config.hidden_size self.image_size = config.image_size self.patch_size = config.patch_size self.num_patches = (self.image_size // self.patch_size) ** 2 self.num_positions = self.num_patches + 1 self.config = config self.patch_embedding = tf.keras.layers.Conv2D( filters=self.embed_dim, kernel_size=self.patch_size, strides=self.patch_size, padding="valid", data_format="channels_last", use_bias=False, kernel_initializer=get_initializer(self.config.initializer_range * self.config.initializer_factor), name="patch_embedding", ) def build(self, input_shape: tf.TensorShape = None): factor = self.config.initializer_factor self.class_embedding = self.add_weight( shape=(self.embed_dim,), initializer=get_initializer(self.embed_dim**-0.5 * factor), trainable=True, name="class_embedding", ) with tf.name_scope("position_embedding"): self.position_embedding = self.add_weight( shape=(self.num_positions, self.embed_dim), initializer=get_initializer(self.config.initializer_range * factor), trainable=True, name="embeddings", ) super().build(input_shape) def call(self, pixel_values: tf.Tensor) -> tf.Tensor: """`pixel_values` is expected to be of NCHW format.""" batch_size, num_channels, height, width = shape_list(pixel_values) # When running on CPU, `tf.nn.conv2d` doesn't support `NCHW` format. # So change the input format from `NCHW` to `NHWC`. # shape = (batch_size, in_height, in_width, in_channels=num_channels) pixel_values = tf.transpose(pixel_values, perm=(0, 2, 3, 1)) patch_embeds = self.patch_embedding(pixel_values) # Change the 2D spatial dimensions to a single temporal dimension. # shape = (batch_size, num_patches, out_channels=embed_dim) patch_embeds = tf.reshape(tensor=patch_embeds, shape=(batch_size, self.num_patches, -1)) # add the [CLS] token to the embedded patch tokens class_embeds = tf.broadcast_to(self.class_embedding, shape=(batch_size, 1, self.embed_dim)) embeddings = tf.concat((class_embeds, patch_embeds), axis=1) embeddings = embeddings + self.position_embedding return embeddings class TFCLIPTextEmbeddings(tf.keras.layers.Layer): def __init__(self, config: CLIPTextConfig, **kwargs): super().__init__(**kwargs) self.embed_dim = config.hidden_size self.config = config def build(self, input_shape: tf.TensorShape = None): with tf.name_scope("token_embedding"): self.weight = self.add_weight( shape=(self.config.vocab_size, self.embed_dim), initializer=get_initializer(self.config.initializer_factor * self.config.initializer_range), trainable=True, name="weight", ) with tf.name_scope("position_embedding"): self.position_embedding = self.add_weight( shape=(self.config.max_position_embeddings, self.embed_dim), initializer=get_initializer(self.config.initializer_factor * self.config.initializer_range), trainable=True, name="embeddings", ) super().build(input_shape) def call( self, input_ids: tf.Tensor = None, position_ids: tf.Tensor = None, inputs_embeds: tf.Tensor = None, ) -> tf.Tensor: """ Applies embedding based on inputs tensor. Returns: final_embeddings (`tf.Tensor`): output embedding tensor. """ if input_ids is None and inputs_embeds is None: raise ValueError("You have to specify either input_ids or inputs_embeds") if inputs_embeds is None: check_embeddings_within_bounds(input_ids, self.config.vocab_size) inputs_embeds = tf.gather(params=self.weight, indices=input_ids) input_shape = shape_list(inputs_embeds)[:-1] if position_ids is None: position_ids = tf.expand_dims(tf.range(start=0, limit=input_shape[-1]), axis=0) position_embeds = tf.gather(params=self.position_embedding, indices=position_ids) position_embeds = tf.tile(input=position_embeds, multiples=(input_shape[0], 1, 1)) final_embeddings = inputs_embeds + position_embeds return final_embeddings class TFCLIPAttention(tf.keras.layers.Layer): """Multi-headed attention from 'Attention Is All You Need' paper""" def __init__(self, config: CLIPConfig, **kwargs): super().__init__(**kwargs) self.embed_dim = config.hidden_size self.num_attention_heads = config.num_attention_heads self.attention_head_size = self.embed_dim // self.num_attention_heads if self.attention_head_size * self.num_attention_heads != self.embed_dim: raise ValueError( f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:" f" {self.num_attention_heads})." ) factor = config.initializer_factor in_proj_std = (self.embed_dim**-0.5) * ((2 * config.num_hidden_layers) ** -0.5) * factor out_proj_std = (self.embed_dim**-0.5) * factor self.sqrt_att_head_size = math.sqrt(self.attention_head_size) self.q_proj = tf.keras.layers.Dense( units=self.embed_dim, kernel_initializer=get_initializer(in_proj_std), name="q_proj" ) self.k_proj = tf.keras.layers.Dense( units=self.embed_dim, kernel_initializer=get_initializer(in_proj_std), name="k_proj" ) self.v_proj = tf.keras.layers.Dense( units=self.embed_dim, kernel_initializer=get_initializer(in_proj_std), name="v_proj" ) self.dropout = tf.keras.layers.Dropout(rate=config.attention_dropout) self.out_proj = tf.keras.layers.Dense( units=self.embed_dim, kernel_initializer=get_initializer(out_proj_std), name="out_proj" ) # copied from transformers.models.bert.modeling_tf_bert.TFBertSelfAttention.transpose_for_scores def transpose_for_scores(self, tensor: tf.Tensor, batch_size: int) -> tf.Tensor: # Reshape from [batch_size, seq_length, all_head_size] to [batch_size, seq_length, num_attention_heads, attention_head_size] tensor = tf.reshape(tensor=tensor, shape=(batch_size, -1, self.num_attention_heads, self.attention_head_size)) # Transpose the tensor from [batch_size, seq_length, num_attention_heads, attention_head_size] to [batch_size, num_attention_heads, seq_length, attention_head_size] return tf.transpose(tensor, perm=[0, 2, 1, 3]) def call( self, hidden_states: tf.Tensor, attention_mask: tf.Tensor, causal_attention_mask: tf.Tensor, output_attentions: bool, training: bool = False, ) -> Tuple[tf.Tensor]: """Input shape: Batch x Time x Channel""" batch_size = shape_list(hidden_states)[0] mixed_query_layer = self.q_proj(inputs=hidden_states) mixed_key_layer = self.k_proj(inputs=hidden_states) mixed_value_layer = self.v_proj(inputs=hidden_states) query_layer = self.transpose_for_scores(mixed_query_layer, batch_size) key_layer = self.transpose_for_scores(mixed_key_layer, batch_size) value_layer = self.transpose_for_scores(mixed_value_layer, batch_size) # Take the dot product between "query" and "key" to get the raw attention scores. # (batch size, num_heads, seq_len_q, seq_len_k) attention_scores = tf.matmul(query_layer, key_layer, transpose_b=True) dk = tf.cast(self.sqrt_att_head_size, dtype=attention_scores.dtype) attention_scores = tf.divide(attention_scores, dk) # apply the causal_attention_mask first if causal_attention_mask is not None: # Apply the causal attention mask (precomputed for all layers in TFCLIPModel call() function) attention_scores = tf.add(attention_scores, causal_attention_mask) if attention_mask is not None: # Apply the attention mask (precomputed for all layers in TFCLIPModel call() function) attention_scores = tf.add(attention_scores, attention_mask) # Normalize the attention scores to probabilities. _attention_probs = stable_softmax(logits=attention_scores, axis=-1) # This is actually dropping out entire tokens to attend to, which might # seem a bit unusual, but is taken from the original Transformer paper. attention_probs = self.dropout(inputs=_attention_probs, training=training) attention_output = tf.matmul(attention_probs, value_layer) attention_output = tf.transpose(attention_output, perm=[0, 2, 1, 3]) # (batch_size, seq_len_q, embed_dim) attention_output = tf.reshape(tensor=attention_output, shape=(batch_size, -1, self.embed_dim)) attention_output = self.out_proj(attention_output, training=training) # In TFBert, attention weights are returned after dropout. # However, in CLIP, they are returned before dropout. outputs = (attention_output, _attention_probs) if output_attentions else (attention_output,) return outputs class TFCLIPMLP(tf.keras.layers.Layer): def __init__(self, config: CLIPConfig, **kwargs): super().__init__(**kwargs) self.activation_fn = get_tf_activation(config.hidden_act) factor = config.initializer_factor in_proj_std = (config.hidden_size**-0.5) * ((2 * config.num_hidden_layers) ** -0.5) * factor fc_std = (2 * config.hidden_size) ** -0.5 * factor self.fc1 = tf.keras.layers.Dense( units=config.intermediate_size, kernel_initializer=get_initializer(fc_std), name="fc1" ) self.fc2 = tf.keras.layers.Dense( units=config.hidden_size, kernel_initializer=get_initializer(in_proj_std), name="fc2" ) def call(self, hidden_states: tf.Tensor) -> tf.Tensor: hidden_states = self.fc1(inputs=hidden_states) hidden_states = self.activation_fn(hidden_states) hidden_states = self.fc2(inputs=hidden_states) return hidden_states class TFCLIPEncoderLayer(tf.keras.layers.Layer): def __init__(self, config: CLIPConfig, **kwargs): super().__init__(**kwargs) self.embed_dim = config.hidden_size self.self_attn = TFCLIPAttention(config, name="self_attn") self.layer_norm1 = tf.keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="layer_norm1") self.mlp = TFCLIPMLP(config, name="mlp") self.layer_norm2 = tf.keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="layer_norm2") def call( self, hidden_states: tf.Tensor, attention_mask: tf.Tensor, causal_attention_mask: tf.Tensor, output_attentions: bool, training: bool = False, ) -> Tuple[tf.Tensor]: """ Args: hidden_states (`tf.Tensor`): input to the layer of shape `(batch, seq_len, embed_dim)` attention_mask (`tf.Tensor`): attention mask of size `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values. causal_attention_mask (`tf.Tensor`): causal attention mask of size `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values. output_attentions (`bool`): Whether or not to return the attentions tensors of all attention layers. See `outputs` under returned tensors for more detail. """ residual = hidden_states hidden_states = self.layer_norm1(inputs=hidden_states) attention_outputs = self.self_attn( hidden_states=hidden_states, attention_mask=attention_mask, causal_attention_mask=causal_attention_mask, output_attentions=output_attentions, training=training, ) hidden_states = attention_outputs[0] hidden_states = residual + hidden_states residual = hidden_states hidden_states = self.layer_norm2(inputs=hidden_states) hidden_states = self.mlp(hidden_states=hidden_states) hidden_states = residual + hidden_states outputs = (hidden_states,) + attention_outputs[1:] # add attentions if we output them return outputs class TFCLIPEncoder(tf.keras.layers.Layer): """ Transformer encoder consisting of `config.num_hidden_layers` self attention layers. Each layer is a [`TFCLIPEncoderLayer`]. Args: config: CLIPConfig """ def __init__(self, config: CLIPConfig, **kwargs): super().__init__(**kwargs) self.layers = [TFCLIPEncoderLayer(config, name=f"layers_._{i}") for i in range(config.num_hidden_layers)] def call( self, hidden_states: tf.Tensor, attention_mask: tf.Tensor, causal_attention_mask: tf.Tensor, output_attentions: bool, output_hidden_states: bool, return_dict: bool, training: bool = False, ) -> Union[TFBaseModelOutput, Tuple[tf.Tensor]]: all_hidden_states = () if output_hidden_states else None all_attentions = () if output_attentions else None for i, layer_module in enumerate(self.layers): if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) layer_outputs = layer_module( hidden_states=hidden_states, attention_mask=attention_mask, causal_attention_mask=causal_attention_mask, output_attentions=output_attentions, training=training, ) hidden_states = layer_outputs[0] if output_attentions: all_attentions = all_attentions + (layer_outputs[1],) # Add last layer if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) if not return_dict: return tuple(v for v in [hidden_states, all_hidden_states, all_attentions] if v is not None) return TFBaseModelOutput( last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_attentions ) class TFCLIPTextTransformer(tf.keras.layers.Layer): def __init__(self, config: CLIPTextConfig, **kwargs): super().__init__(**kwargs) self.embeddings = TFCLIPTextEmbeddings(config, name="embeddings") self.encoder = TFCLIPEncoder(config, name="encoder") self.final_layer_norm = tf.keras.layers.LayerNormalization( epsilon=config.layer_norm_eps, name="final_layer_norm" ) # For `pooled_output` computation self.eos_token_id = config.eos_token_id def call( self, input_ids: TFModelInputType, attention_mask: tf.Tensor, position_ids: tf.Tensor, output_attentions: bool, output_hidden_states: bool, return_dict: bool, training: bool = False, ) -> Union[TFBaseModelOutputWithPooling, Tuple[tf.Tensor]]: input_shape = shape_list(input_ids) embedding_output = self.embeddings(input_ids=input_ids, position_ids=position_ids) batch_size, seq_length = input_shape # CLIP's text model uses causal mask, prepare it here. # https://github.com/openai/CLIP/blob/cfcffb90e69f37bf2ff1e988237a0fbe41f33c04/clip/model.py#L324 causal_attention_mask = self._build_causal_attention_mask(batch_size, seq_length, dtype=embedding_output.dtype) # check attention mask and invert # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len] attention_mask = _expand_mask(attention_mask) encoder_outputs = self.encoder( hidden_states=embedding_output, attention_mask=attention_mask, causal_attention_mask=causal_attention_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) sequence_output = encoder_outputs[0] sequence_output = self.final_layer_norm(inputs=sequence_output) if self.eos_token_id == 2: # The `eos_token_id` was incorrect before PR #24773: Let's keep what have been done here. # A CLIP model with such `eos_token_id` in the config can't work correctly with extra new tokens added # ------------------------------------------------------------ # text_embeds.shape = [batch_size, n_ctx, transformer.width] # take features from the eot embedding (eot_token is the highest number in each sequence) pooled_output = tf.gather_nd( params=sequence_output, indices=tf.stack( values=(tf.range(input_shape[0], dtype=tf.int64), tf.math.argmax(input_ids, axis=-1)), axis=1 ), ) else: # The config gets updated `eos_token_id` from PR #24773 (so the use of exta new tokens is possible) pooled_output = tf.gather_nd( params=sequence_output, indices=tf.stack( values=( tf.range(input_shape[0], dtype=tf.int64), tf.math.argmax(tf.cast(input_ids == self.eos_token_id, dtype=tf.int8), axis=-1), ), axis=1, ), ) if not return_dict: return (sequence_output, pooled_output) + encoder_outputs[1:] return TFBaseModelOutputWithPooling( last_hidden_state=sequence_output, pooler_output=pooled_output, hidden_states=encoder_outputs.hidden_states, attentions=encoder_outputs.attentions, ) def _build_causal_attention_mask(self, batch_size, seq_length, dtype=tf.float32): # It is possible with an unspecified sequence length for seq_length to be # a runtime value, which is unsupported by tf.constant. Per the TensorFlow # docs, tf.fill can handle runtime dynamic shapes: # https://www.tensorflow.org/api_docs/python/tf/fill diag = tf.cast(tf.fill((seq_length,), 0.0), dtype) # set an additive 2D attention mask with all places being masked to_mask = tf.cast(tf.fill((seq_length, seq_length), -10000.0), dtype) # set diagonal & lower triangular parts to 0 (i.e. the places not to be masked) # TIP: think the 2D matrix as the space of (query_seq, key_seq) to_mask = tf.linalg.band_part(to_mask, 0, -1) # to_mask = tf.linalg.band_part(to_mask, -1, 0) to_mask = tf.linalg.set_diag(to_mask, diagonal=diag) return tf.broadcast_to(input=to_mask, shape=(batch_size, 1, seq_length, seq_length)) @keras_serializable class TFCLIPTextMainLayer(tf.keras.layers.Layer): config_class = CLIPTextConfig def __init__(self, config: CLIPTextConfig, **kwargs): super().__init__(**kwargs) self.config = config self.text_model = TFCLIPTextTransformer(config, name="text_model") def get_input_embeddings(self) -> tf.keras.layers.Layer: return self.text_model.embeddings def set_input_embeddings(self, value: tf.Variable): self.text_model.embeddings.weight = value self.text_model.embeddings.vocab_size = shape_list(value)[0] @unpack_inputs def call( self, input_ids: TFModelInputType | None = None, attention_mask: np.ndarray | tf.Tensor | None = None, position_ids: np.ndarray | tf.Tensor | None = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, training: bool = False, ) -> Union[TFBaseModelOutputWithPooling, Tuple[tf.Tensor]]: if input_ids is None: raise ValueError("You have to specify input_ids") input_shape = shape_list(input_ids) if attention_mask is None: attention_mask = tf.fill(dims=input_shape, value=1) text_model_outputs = self.text_model( input_ids=input_ids, attention_mask=attention_mask, position_ids=position_ids, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) return text_model_outputs class TFCLIPVisionTransformer(tf.keras.layers.Layer): def __init__(self, config: CLIPVisionConfig, **kwargs): super().__init__(**kwargs) self.embeddings = TFCLIPVisionEmbeddings(config, name="embeddings") self.pre_layernorm = tf.keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="pre_layrnorm") self.encoder = TFCLIPEncoder(config, name="encoder") self.post_layernorm = tf.keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="post_layernorm") def call( self, pixel_values: TFModelInputType, output_attentions: bool, output_hidden_states: bool, return_dict: bool, training: bool = False, ) -> Union[TFBaseModelOutputWithPooling, Tuple[tf.Tensor]]: embedding_output = self.embeddings(pixel_values=pixel_values) embedding_output = self.pre_layernorm(inputs=embedding_output) encoder_outputs = self.encoder( hidden_states=embedding_output, attention_mask=None, causal_attention_mask=None, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) sequence_output = encoder_outputs[0] pooled_output = sequence_output[:, 0, :] pooled_output = self.post_layernorm(inputs=pooled_output) if not return_dict: return (sequence_output, pooled_output) + encoder_outputs[1:] return TFBaseModelOutputWithPooling( last_hidden_state=sequence_output, pooler_output=pooled_output, hidden_states=encoder_outputs.hidden_states, attentions=encoder_outputs.attentions, ) @keras_serializable class TFCLIPVisionMainLayer(tf.keras.layers.Layer): config_class = CLIPVisionConfig def __init__(self, config: CLIPVisionConfig, **kwargs): super().__init__(**kwargs) self.config = config self.vision_model = TFCLIPVisionTransformer(config, name="vision_model") def get_input_embeddings(self) -> tf.keras.layers.Layer: return self.vision_model.embeddings @unpack_inputs def call( self, pixel_values: TFModelInputType | None = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, training: bool = False, ) -> Union[TFBaseModelOutputWithPooling, Tuple[tf.Tensor]]: if pixel_values is None: raise ValueError("You have to specify pixel_values") vision_model_outputs = self.vision_model( pixel_values=pixel_values, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) return vision_model_outputs @keras_serializable class TFCLIPMainLayer(tf.keras.layers.Layer): config_class = CLIPConfig def __init__(self, config: CLIPConfig, **kwargs): super().__init__(**kwargs) if not isinstance(config.text_config, CLIPTextConfig): raise ValueError( "config.text_config is expected to be of type CLIPTextConfig but is of type" f" {type(config.text_config)}." ) if not isinstance(config.vision_config, CLIPVisionConfig): raise ValueError( "config.vision_config is expected to be of type CLIPVisionConfig but is of type" f" {type(config.vision_config)}." ) self.config = config text_config = config.text_config vision_config = config.vision_config self.projection_dim = config.projection_dim self.text_model = TFCLIPTextTransformer(text_config, name="text_model") self.vision_model = TFCLIPVisionTransformer(vision_config, name="vision_model") self.visual_projection = tf.keras.layers.Dense( units=self.projection_dim, kernel_initializer=get_initializer(vision_config.hidden_size**-0.5 * self.config.initializer_factor), use_bias=False, name="visual_projection", ) self.text_projection = tf.keras.layers.Dense( units=self.projection_dim, kernel_initializer=get_initializer(text_config.hidden_size**-0.5 * self.config.initializer_factor), use_bias=False, name="text_projection", ) def build(self, input_shape: tf.TensorShape = None): self.logit_scale = self.add_weight( shape=(1,), initializer=tf.keras.initializers.Constant(self.config.logit_scale_init_value), trainable=True, name="logit_scale", ) super().build(input_shape) @unpack_inputs def get_text_features( self, input_ids: TFModelInputType | None = None, attention_mask: np.ndarray | tf.Tensor | None = None, position_ids: np.ndarray | tf.Tensor | None = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, training: bool = False, ) -> tf.Tensor: if input_ids is None: raise ValueError("You have to specify either input_ids") input_shape = shape_list(input_ids) if attention_mask is None: attention_mask = tf.fill(dims=input_shape, value=1) text_outputs = self.text_model( input_ids=input_ids, attention_mask=attention_mask, position_ids=position_ids, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) pooled_output = text_outputs[1] text_features = self.text_projection(inputs=pooled_output) return text_features @unpack_inputs def get_image_features( self, pixel_values: TFModelInputType | None = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, training: bool = False, ) -> tf.Tensor: if pixel_values is None: raise ValueError("You have to specify pixel_values") vision_outputs = self.vision_model( pixel_values=pixel_values, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) pooled_output = vision_outputs[1] # pooled_output image_features = self.visual_projection(inputs=pooled_output) return image_features @unpack_inputs def call( self, input_ids: TFModelInputType | None = None, pixel_values: TFModelInputType | None = None, attention_mask: np.ndarray | tf.Tensor | None = None, position_ids: np.ndarray | tf.Tensor | None = None, return_loss: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, training: bool = False, ) -> Union[TFCLIPOutput, Tuple[tf.Tensor]]: if input_ids is None: raise ValueError("You have to specify either input_ids") if pixel_values is None: raise ValueError("You have to specify pixel_values") input_shape = shape_list(input_ids) if attention_mask is None: attention_mask = tf.fill(dims=input_shape, value=1) vision_outputs = self.vision_model( pixel_values=pixel_values, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) text_outputs = self.text_model( input_ids=input_ids, attention_mask=attention_mask, position_ids=position_ids, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) image_embeds = vision_outputs[1] image_embeds = self.visual_projection(inputs=image_embeds) text_embeds = text_outputs[1] text_embeds = self.text_projection(inputs=text_embeds) # normalized features image_embeds = image_embeds / tf.norm(tensor=image_embeds, ord="euclidean", axis=-1, keepdims=True) text_embeds = text_embeds / tf.norm(tensor=text_embeds, ord="euclidean", axis=-1, keepdims=True) # cosine similarity as logits logit_scale = tf.math.exp(self.logit_scale) logits_per_text = tf.matmul(text_embeds, image_embeds, transpose_b=True) * logit_scale logits_per_image = tf.transpose(logits_per_text) loss = None if return_loss: loss = clip_loss(logits_per_text) loss = tf.reshape(loss, (1,)) if not return_dict: output = (logits_per_image, logits_per_text, text_embeds, image_embeds, text_outputs, vision_outputs) return (loss,) + output if loss is not None else output return TFCLIPOutput( loss=loss, logits_per_image=logits_per_image, logits_per_text=logits_per_text, text_embeds=text_embeds, image_embeds=image_embeds, text_model_output=text_outputs, vision_model_output=vision_outputs, ) class TFCLIPPreTrainedModel(TFPreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = CLIPConfig base_model_prefix = "clip" _keys_to_ignore_on_load_missing = [r"position_ids"] _keys_to_ignore_on_load_unexpected = [r"position_ids"] CLIP_START_DOCSTRING = r""" This model inherits from [`TFPreTrainedModel`]. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.) This model is also a [tf.keras.Model](https://www.tensorflow.org/api_docs/python/tf/keras/Model) subclass. Use it as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to general usage and behavior. <Tip> TensorFlow models and layers in `transformers` accept two formats as input: - having all inputs as keyword arguments (like PyTorch models), or - having all inputs as a list, tuple or dict in the first positional argument. The reason the second format is supported is that Keras methods prefer this format when passing inputs to models and layers. Because of this support, when using methods like `model.fit()` things should "just work" for you - just pass your inputs and labels in any format that `model.fit()` supports! If, however, you want to use the second format outside of Keras methods like `fit()` and `predict()`, such as when creating your own layers or models with the Keras `Functional` API, there are three possibilities you can use to gather all the input Tensors in the first positional argument: - a single Tensor with `input_ids` only and nothing else: `model(input_ids)` - a list of varying length with one or several input Tensors IN THE ORDER given in the docstring: `model([input_ids, attention_mask])` or `model([input_ids, attention_mask, token_type_ids])` - a dictionary with one or several input Tensors associated to the input names given in the docstring: `model({"input_ids": input_ids, "token_type_ids": token_type_ids})` Note that when creating models and layers with [subclassing](https://keras.io/guides/making_new_layers_and_models_via_subclassing/) then you don't need to worry about any of this, as you can just pass inputs like you would to any other Python function! </Tip> Args: config ([`CLIPConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~TFPreTrainedModel.from_pretrained`] method to load the model weights. """ CLIP_TEXT_INPUTS_DOCSTRING = r""" Args: input_ids (`np.ndarray`, `tf.Tensor`, `List[tf.Tensor]` ``Dict[str, tf.Tensor]` or `Dict[str, np.ndarray]` and each example must have the shape `({0})`): Indices of input sequence tokens in the vocabulary. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.__call__`] and [`PreTrainedTokenizer.encode`] for details. [What are input IDs?](../glossary#input-ids) attention_mask (`np.ndarray` or `tf.Tensor` of shape `({0})`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) position_ids (`np.ndarray` or `tf.Tensor` of shape `({0})`, *optional*): Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, config.max_position_embeddings - 1]`. [What are position IDs?](../glossary#position-ids) output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the config will be used instead. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the config will be used instead. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. This argument can be used in eager mode, in graph mode the value will always be set to True. training (`bool`, *optional*, defaults to `False``): Whether or not to use the model in training mode (some modules like dropout modules have different behaviors between training and evaluation). """ CLIP_VISION_INPUTS_DOCSTRING = r""" Args: pixel_values (`np.ndarray`, `tf.Tensor`, `List[tf.Tensor]` ``Dict[str, tf.Tensor]` or `Dict[str, np.ndarray]` and each example must have the shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`CLIPImageProcessor.__call__`] for details. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the config will be used instead. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the config will be used instead. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. This argument can be used in eager mode, in graph mode the value will always be set to True. training (`bool`, *optional*, defaults to `False``): Whether or not to use the model in training mode (some modules like dropout modules have different behaviors between training and evaluation). """ CLIP_INPUTS_DOCSTRING = r""" Args: input_ids (`np.ndarray`, `tf.Tensor`, `List[tf.Tensor]` ``Dict[str, tf.Tensor]` or `Dict[str, np.ndarray]` and each example must have the shape `({0})`): Indices of input sequence tokens in the vocabulary. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.__call__`] and [`PreTrainedTokenizer.encode`] for details. [What are input IDs?](../glossary#input-ids) pixel_values (`np.ndarray`, `tf.Tensor`, `List[tf.Tensor]` `Dict[str, tf.Tensor]` or `Dict[str, np.ndarray]` and each example must have the shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`CLIPImageProcessor.__call__`] for details. attention_mask (`np.ndarray` or `tf.Tensor` of shape `({0})`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) position_ids (`np.ndarray` or `tf.Tensor` of shape `({0})`, *optional*): Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, config.max_position_embeddings - 1]`. [What are position IDs?](../glossary#position-ids) return_loss (`bool`, *optional*): Whether or not to return the contrastive loss. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the config will be used instead. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the config will be used instead. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. This argument can be used in eager mode, in graph mode the value will always be set to True. training (`bool`, *optional*, defaults to `False``): Whether or not to use the model in training mode (some modules like dropout modules have different behaviors between training and evaluation). """ class TFCLIPTextModel(TFCLIPPreTrainedModel): config_class = CLIPTextConfig def __init__(self, config: CLIPTextConfig, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) self.clip = TFCLIPTextMainLayer(config, name="clip") @unpack_inputs @add_start_docstrings_to_model_forward(CLIP_TEXT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @replace_return_docstrings(output_type=TFBaseModelOutputWithPooling, config_class=CLIPTextConfig) def call( self, input_ids: TFModelInputType | None = None, attention_mask: np.ndarray | tf.Tensor | None = None, position_ids: np.ndarray | tf.Tensor | None = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, training: Optional[bool] = False, ) -> Union[TFBaseModelOutputWithPooling, Tuple[tf.Tensor]]: r""" Returns: Examples: ```python >>> from transformers import AutoTokenizer, TFCLIPTextModel >>> model = TFCLIPTextModel.from_pretrained("openai/clip-vit-base-patch32") >>> tokenizer = AutoTokenizer.from_pretrained("openai/clip-vit-base-patch32") >>> inputs = tokenizer(["a photo of a cat", "a photo of a dog"], padding=True, return_tensors="tf") >>> outputs = model(**inputs) >>> last_hidden_state = outputs.last_hidden_state >>> pooled_output = outputs.pooler_output # pooled (EOS token) states ```""" outputs = self.clip( input_ids=input_ids, attention_mask=attention_mask, position_ids=position_ids, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) return outputs class TFCLIPVisionModel(TFCLIPPreTrainedModel): config_class = CLIPVisionConfig main_input_name = "pixel_values" def __init__(self, config: CLIPVisionConfig, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) self.clip = TFCLIPVisionMainLayer(config, name="clip") @unpack_inputs @add_start_docstrings_to_model_forward(CLIP_VISION_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=TFBaseModelOutputWithPooling, config_class=CLIPVisionConfig) def call( self, pixel_values: TFModelInputType | None = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, training: Optional[bool] = False, ) -> Union[TFBaseModelOutputWithPooling, Tuple[tf.Tensor]]: r""" Returns: Examples: ```python >>> from PIL import Image >>> import requests >>> from transformers import AutoProcessor, TFCLIPVisionModel >>> model = TFCLIPVisionModel.from_pretrained("openai/clip-vit-base-patch32") >>> processor = AutoProcessor.from_pretrained("openai/clip-vit-base-patch32") >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" >>> image = Image.open(requests.get(url, stream=True).raw) >>> inputs = processor(images=image, return_tensors="tf") >>> outputs = model(**inputs) >>> last_hidden_state = outputs.last_hidden_state >>> pooled_output = outputs.pooler_output # pooled CLS states ```""" outputs = self.clip( pixel_values=pixel_values, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) return outputs @add_start_docstrings(CLIP_START_DOCSTRING) class TFCLIPModel(TFCLIPPreTrainedModel): config_class = CLIPConfig def __init__(self, config: CLIPConfig, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) self.clip = TFCLIPMainLayer(config, name="clip") @unpack_inputs @add_start_docstrings_to_model_forward(CLIP_TEXT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) def get_text_features( self, input_ids: TFModelInputType | None = None, attention_mask: np.ndarray | tf.Tensor | None = None, position_ids: np.ndarray | tf.Tensor | None = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, training: bool = False, ) -> tf.Tensor: r""" Returns: text_features (`tf.Tensor` of shape `(batch_size, output_dim`): The text embeddings obtained by applying the projection layer to the pooled output of [`TFCLIPTextModel`]. Examples: ```python >>> from transformers import AutoTokenizer, TFCLIPModel >>> model = TFCLIPModel.from_pretrained("openai/clip-vit-base-patch32") >>> tokenizer = AutoTokenizer.from_pretrained("openai/clip-vit-base-patch32") >>> inputs = tokenizer(["a photo of a cat", "a photo of a dog"], padding=True, return_tensors="tf") >>> text_features = model.get_text_features(**inputs) ```""" text_features = self.clip.get_text_features( input_ids=input_ids, attention_mask=attention_mask, position_ids=position_ids, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) return text_features @unpack_inputs @add_start_docstrings_to_model_forward(CLIP_VISION_INPUTS_DOCSTRING) def get_image_features( self, pixel_values: TFModelInputType | None = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, training: bool = False, ) -> tf.Tensor: r""" Returns: image_features (`tf.Tensor` of shape `(batch_size, output_dim`): The image embeddings obtained by applying the projection layer to the pooled output of [`TFCLIPVisionModel`]. Examples: ```python >>> from PIL import Image >>> import requests >>> from transformers import AutoProcessor, TFCLIPModel >>> model = TFCLIPModel.from_pretrained("openai/clip-vit-base-patch32") >>> processor = AutoProcessor.from_pretrained("openai/clip-vit-base-patch32") >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" >>> image = Image.open(requests.get(url, stream=True).raw) >>> inputs = processor(images=image, return_tensors="tf") >>> image_features = model.get_image_features(**inputs) ```""" image_features = self.clip.get_image_features( pixel_values=pixel_values, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) return image_features @unpack_inputs @add_start_docstrings_to_model_forward(CLIP_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @replace_return_docstrings(output_type=TFCLIPOutput, config_class=CLIPConfig) def call( self, input_ids: TFModelInputType | None = None, pixel_values: TFModelInputType | None = None, attention_mask: np.ndarray | tf.Tensor | None = None, position_ids: np.ndarray | tf.Tensor | None = None, return_loss: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, training: bool = False, ) -> Union[TFCLIPOutput, Tuple[tf.Tensor]]: r""" Returns: Examples: ```python >>> import tensorflow as tf >>> from PIL import Image >>> import requests >>> from transformers import AutoProcessor, TFCLIPModel >>> model = TFCLIPModel.from_pretrained("openai/clip-vit-base-patch32") >>> processor = AutoProcessor.from_pretrained("openai/clip-vit-base-patch32") >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" >>> image = Image.open(requests.get(url, stream=True).raw) >>> inputs = processor( ... text=["a photo of a cat", "a photo of a dog"], images=image, return_tensors="tf", padding=True ... ) >>> outputs = model(**inputs) >>> logits_per_image = outputs.logits_per_image # this is the image-text similarity score >>> probs = tf.nn.softmax(logits_per_image, axis=1) # we can take the softmax to get the label probabilities ```""" outputs = self.clip( input_ids=input_ids, pixel_values=pixel_values, attention_mask=attention_mask, position_ids=position_ids, return_loss=return_loss, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) return outputs def serving_output(self, output: TFCLIPOutput) -> TFCLIPOutput: # TODO: As is this currently fails with saved_model=True, because # TensorFlow cannot trace through nested dataclasses. Reference: # https://github.com/huggingface/transformers/pull/16886 return output
0
hf_public_repos/transformers/src/transformers/models
hf_public_repos/transformers/src/transformers/models/clip/tokenization_clip_fast.py
# coding=utf-8 # Copyright 2021 The Open AI Team Authors and The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tokenization classes for OpenAI GPT.""" from typing import List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_clip import CLIPTokenizer logger = logging.get_logger(__name__) VOCAB_FILES_NAMES = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"} PRETRAINED_VOCAB_FILES_MAP = { "vocab_file": { "openai/clip-vit-base-patch32": "https://huggingface.co/openai/clip-vit-base-patch32/resolve/main/vocab.json", }, "merges_file": { "openai/clip-vit-base-patch32": "https://huggingface.co/openai/clip-vit-base-patch32/resolve/main/merges.txt", }, "tokenizer_file": { "openai/clip-vit-base-patch32": ( "https://huggingface.co/openai/clip-vit-base-patch32/resolve/main/tokenizer.json" ), }, } PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = { "openai/clip-vit-base-patch32": 77, } class CLIPTokenizerFast(PreTrainedTokenizerFast): """ Construct a "fast" CLIP tokenizer (backed by HuggingFace's *tokenizers* library). Based on byte-level Byte-Pair-Encoding. This tokenizer inherits from [`PreTrainedTokenizerFast`] which contains most of the main methods. Users should refer to this superclass for more information regarding those methods. Args: vocab_file (`str`): Path to the vocabulary file. merges_file (`str`): Path to the merges file. unk_token (`str`, *optional*, defaults to `<|endoftext|>`): The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this token instead. bos_token (`str`, *optional*, defaults to `<|startoftext|>`): The beginning of sequence token. eos_token (`str`, *optional*, defaults to `<|endoftext|>`): The end of sequence token. """ vocab_files_names = VOCAB_FILES_NAMES pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES model_input_names = ["input_ids", "attention_mask"] slow_tokenizer_class = CLIPTokenizer def __init__( self, vocab_file=None, merges_file=None, tokenizer_file=None, unk_token="<|endoftext|>", bos_token="<|startoftext|>", eos_token="<|endoftext|>", pad_token="<|endoftext|>", # hack to enable padding **kwargs, ): super().__init__( vocab_file, merges_file, tokenizer_file=tokenizer_file, unk_token=unk_token, bos_token=bos_token, eos_token=eos_token, pad_token=pad_token, **kwargs, ) if not isinstance(self.backend_tokenizer.pre_tokenizer, pre_tokenizers.Sequence): raise ValueError( "The `backend_tokenizer` provided does not match the expected format. The CLIP tokenizer has been" " heavily modified from transformers version 4.17.0. You need to convert the tokenizer you are using" " to be compatible with this version.The easiest way to do so is" ' `CLIPTokenizerFast.from_pretrained("path_to_local_folder_or_hub_repo, from_slow=True)`. If you want' " to use your existing tokenizer, you will have to revert to a version prior to 4.17.0 of" " transformers." ) self._wrap_decode_method_backend_tokenizer() # Very ugly hack to enable padding to have a correct decoding see https://github.com/huggingface/tokenizers/issues/872 def _wrap_decode_method_backend_tokenizer(self): orig_decode_method = self.backend_tokenizer.decode def new_decode_method(*args, **kwargs): text = orig_decode_method(*args, **kwargs) text = text.replace(self.backend_tokenizer.model.end_of_word_suffix, " ").strip() return text self.backend_tokenizer.decode = new_decode_method def build_inputs_with_special_tokens( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None ) -> List[int]: """ Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and adding special tokens. A CLIP sequence has the following format: - single sequence: `<|startoftext|> X <|endoftext|>` Pairs of sequences are not the expected use case, but they will be handled without a separator. Args: token_ids_0 (`List[int]`): List of IDs to which the special tokens will be added. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. Returns: `List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens. """ bos_token = [self.bos_token_id] eos_token = [self.eos_token_id] if token_ids_1 is None: return bos_token + token_ids_0 + eos_token return bos_token + token_ids_0 + eos_token + eos_token + token_ids_1 + eos_token def create_token_type_ids_from_sequences( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None ) -> List[int]: """ Create a mask from the two sequences passed. CLIP does not make use of token type ids, therefore a list of zeros is returned. Args: token_ids_0 (`List[int]`): List of IDs. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. Returns: `List[int]`: List of zeros. """ bos_token = [self.bos_token_id] eos_token = [self.eos_token_id] if token_ids_1 is None: return len(bos_token + token_ids_0 + eos_token) * [0] return len(bos_token + token_ids_0 + eos_token + eos_token + token_ids_1 + eos_token) * [0] def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]: files = self._tokenizer.model.save(save_directory, name=filename_prefix) return tuple(files)
0
hf_public_repos/transformers/src/transformers/models
hf_public_repos/transformers/src/transformers/models/clip/__init__.py
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, is_vision_available, ) _import_structure = { "configuration_clip": [ "CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP", "CLIPConfig", "CLIPOnnxConfig", "CLIPTextConfig", "CLIPVisionConfig", ], "processing_clip": ["CLIPProcessor"], "tokenization_clip": ["CLIPTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["tokenization_clip_fast"] = ["CLIPTokenizerFast"] try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["feature_extraction_clip"] = ["CLIPFeatureExtractor"] _import_structure["image_processing_clip"] = ["CLIPImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["modeling_clip"] = [ "CLIP_PRETRAINED_MODEL_ARCHIVE_LIST", "CLIPModel", "CLIPPreTrainedModel", "CLIPTextModel", "CLIPTextModelWithProjection", "CLIPVisionModel", "CLIPVisionModelWithProjection", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["modeling_tf_clip"] = [ "TF_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST", "TFCLIPModel", "TFCLIPPreTrainedModel", "TFCLIPTextModel", "TFCLIPVisionModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["modeling_flax_clip"] = [ "FlaxCLIPModel", "FlaxCLIPPreTrainedModel", "FlaxCLIPTextModel", "FlaxCLIPTextPreTrainedModel", "FlaxCLIPVisionModel", "FlaxCLIPVisionPreTrainedModel", ] if TYPE_CHECKING: from .configuration_clip import ( CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, CLIPConfig, CLIPOnnxConfig, CLIPTextConfig, CLIPVisionConfig, ) from .processing_clip import CLIPProcessor from .tokenization_clip import CLIPTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_clip_fast import CLIPTokenizerFast try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_clip import CLIPFeatureExtractor from .image_processing_clip import CLIPImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_clip import ( CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, CLIPModel, CLIPPreTrainedModel, CLIPTextModel, CLIPTextModelWithProjection, CLIPVisionModel, CLIPVisionModelWithProjection, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_clip import ( TF_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, TFCLIPModel, TFCLIPPreTrainedModel, TFCLIPTextModel, TFCLIPVisionModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_clip import ( FlaxCLIPModel, FlaxCLIPPreTrainedModel, FlaxCLIPTextModel, FlaxCLIPTextPreTrainedModel, FlaxCLIPVisionModel, FlaxCLIPVisionPreTrainedModel, ) else: import sys sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
0
hf_public_repos/transformers/src/transformers/models
hf_public_repos/transformers/src/transformers/models/clip/feature_extraction_clip.py
# coding=utf-8 # Copyright 2021 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Feature extractor class for CLIP.""" import warnings from ...utils import logging from .image_processing_clip import CLIPImageProcessor logger = logging.get_logger(__name__) class CLIPFeatureExtractor(CLIPImageProcessor): def __init__(self, *args, **kwargs) -> None: warnings.warn( "The class CLIPFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please" " use CLIPImageProcessor instead.", FutureWarning, ) super().__init__(*args, **kwargs)
0
hf_public_repos/transformers/src/transformers/models
hf_public_repos/transformers/src/transformers/models/clip/processing_clip.py
# coding=utf-8 # Copyright 2021 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Image/Text processor class for CLIP """ import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class CLIPProcessor(ProcessorMixin): r""" Constructs a CLIP processor which wraps a CLIP image processor and a CLIP tokenizer into a single processor. [`CLIPProcessor`] offers all the functionalities of [`CLIPImageProcessor`] and [`CLIPTokenizerFast`]. See the [`~CLIPProcessor.__call__`] and [`~CLIPProcessor.decode`] for more information. Args: image_processor ([`CLIPImageProcessor`]): The image processor is a required input. tokenizer ([`CLIPTokenizerFast`]): The tokenizer is a required input. """ attributes = ["image_processor", "tokenizer"] image_processor_class = "CLIPImageProcessor" tokenizer_class = ("CLIPTokenizer", "CLIPTokenizerFast") def __init__(self, image_processor=None, tokenizer=None, **kwargs): feature_extractor = None if "feature_extractor" in kwargs: warnings.warn( "The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`" " instead.", FutureWarning, ) feature_extractor = kwargs.pop("feature_extractor") image_processor = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("You need to specify an `image_processor`.") if tokenizer is None: raise ValueError("You need to specify a `tokenizer`.") super().__init__(image_processor, tokenizer) def __call__(self, text=None, images=None, return_tensors=None, **kwargs): """ Main method to prepare for the model one or several sequences(s) and image(s). This method forwards the `text` and `kwargs` arguments to CLIPTokenizerFast's [`~CLIPTokenizerFast.__call__`] if `text` is not `None` to encode the text. To prepare the image(s), this method forwards the `images` and `kwrags` arguments to CLIPImageProcessor's [`~CLIPImageProcessor.__call__`] if `images` is not `None`. Please refer to the doctsring of the above two methods for more information. Args: text (`str`, `List[str]`, `List[List[str]]`): The sequence or batch of sequences to be encoded. Each sequence can be a string or a list of strings (pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set `is_split_into_words=True` (to lift the ambiguity with a batch of sequences). images (`PIL.Image.Image`, `np.ndarray`, `torch.Tensor`, `List[PIL.Image.Image]`, `List[np.ndarray]`, `List[torch.Tensor]`): The image or batch of images to be prepared. Each image can be a PIL image, NumPy array or PyTorch tensor. In case of a NumPy array/PyTorch tensor, each image should be of shape (C, H, W), where C is a number of channels, H and W are image height and width. return_tensors (`str` or [`~utils.TensorType`], *optional*): If set, will return tensors of a particular framework. Acceptable values are: - `'tf'`: Return TensorFlow `tf.constant` objects. - `'pt'`: Return PyTorch `torch.Tensor` objects. - `'np'`: Return NumPy `np.ndarray` objects. - `'jax'`: Return JAX `jnp.ndarray` objects. Returns: [`BatchEncoding`]: A [`BatchEncoding`] with the following fields: - **input_ids** -- List of token ids to be fed to a model. Returned when `text` is not `None`. - **attention_mask** -- List of indices specifying which tokens should be attended to by the model (when `return_attention_mask=True` or if *"attention_mask"* is in `self.model_input_names` and if `text` is not `None`). - **pixel_values** -- Pixel values to be fed to a model. Returned when `images` is not `None`. """ if text is None and images is None: raise ValueError("You have to specify either text or images. Both cannot be none.") if text is not None: encoding = self.tokenizer(text, return_tensors=return_tensors, **kwargs) if images is not None: image_features = self.image_processor(images, return_tensors=return_tensors, **kwargs) if text is not None and images is not None: encoding["pixel_values"] = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**image_features), tensor_type=return_tensors) def batch_decode(self, *args, **kwargs): """ This method forwards all its arguments to CLIPTokenizerFast's [`~PreTrainedTokenizer.batch_decode`]. Please refer to the docstring of this method for more information. """ return self.tokenizer.batch_decode(*args, **kwargs) def decode(self, *args, **kwargs): """ This method forwards all its arguments to CLIPTokenizerFast's [`~PreTrainedTokenizer.decode`]. Please refer to the docstring of this method for more information. """ return self.tokenizer.decode(*args, **kwargs) @property def model_input_names(self): tokenizer_input_names = self.tokenizer.model_input_names image_processor_input_names = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names)) @property def feature_extractor_class(self): warnings.warn( "`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.", FutureWarning, ) return self.image_processor_class @property def feature_extractor(self): warnings.warn( "`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.", FutureWarning, ) return self.image_processor
0
hf_public_repos/transformers/src/transformers/models
hf_public_repos/transformers/src/transformers/models/clip/image_processing_clip.py
# coding=utf-8 # Copyright 2022 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Image processor class for CLIP.""" from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( convert_to_rgb, get_resize_output_image_size, resize, to_channel_dimension_format, ) from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging logger = logging.get_logger(__name__) if is_vision_available(): import PIL class CLIPImageProcessor(BaseImageProcessor): r""" Constructs a CLIP image processor. Args: do_resize (`bool`, *optional*, defaults to `True`): Whether to resize the image's (height, width) dimensions to the specified `size`. Can be overridden by `do_resize` in the `preprocess` method. size (`Dict[str, int]` *optional*, defaults to `{"shortest_edge": 224}`): Size of the image after resizing. The shortest edge of the image is resized to size["shortest_edge"], with the longest edge resized to keep the input aspect ratio. Can be overridden by `size` in the `preprocess` method. resample (`PILImageResampling`, *optional*, defaults to `PILImageResampling.BICUBIC`): Resampling filter to use if resizing the image. Can be overridden by `resample` in the `preprocess` method. do_center_crop (`bool`, *optional*, defaults to `True`): Whether to center crop the image to the specified `crop_size`. Can be overridden by `do_center_crop` in the `preprocess` method. crop_size (`Dict[str, int]` *optional*, defaults to 224): Size of the output image after applying `center_crop`. Can be overridden by `crop_size` in the `preprocess` method. do_rescale (`bool`, *optional*, defaults to `True`): Whether to rescale the image by the specified scale `rescale_factor`. Can be overridden by `do_rescale` in the `preprocess` method. rescale_factor (`int` or `float`, *optional*, defaults to `1/255`): Scale factor to use if rescaling the image. Can be overridden by `rescale_factor` in the `preprocess` method. do_normalize: Whether to normalize the image. Can be overridden by `do_normalize` in the `preprocess` method. image_mean (`float` or `List[float]`, *optional*, defaults to `[0.48145466, 0.4578275, 0.40821073]`): Mean to use if normalizing the image. This is a float or list of floats the length of the number of channels in the image. Can be overridden by the `image_mean` parameter in the `preprocess` method. image_std (`float` or `List[float]`, *optional*, defaults to `[0.26862954, 0.26130258, 0.27577711]`): Image standard deviation. do_convert_rgb (`bool`, *optional*, defaults to `True`): Standard deviation to use if normalizing the image. This is a float or list of floats the length of the number of channels in the image. Can be overridden by the `image_std` parameter in the `preprocess` method. """ model_input_names = ["pixel_values"] def __init__( self, do_resize: bool = True, size: Dict[str, int] = None, resample: PILImageResampling = PILImageResampling.BICUBIC, do_center_crop: bool = True, crop_size: Dict[str, int] = None, do_rescale: bool = True, rescale_factor: Union[int, float] = 1 / 255, do_normalize: bool = True, image_mean: Optional[Union[float, List[float]]] = None, image_std: Optional[Union[float, List[float]]] = None, do_convert_rgb: bool = True, **kwargs, ) -> None: super().__init__(**kwargs) size = size if size is not None else {"shortest_edge": 224} size = get_size_dict(size, default_to_square=False) crop_size = crop_size if crop_size is not None else {"height": 224, "width": 224} crop_size = get_size_dict(crop_size, default_to_square=True, param_name="crop_size") self.do_resize = do_resize self.size = size self.resample = resample self.do_center_crop = do_center_crop self.crop_size = crop_size self.do_rescale = do_rescale self.rescale_factor = rescale_factor self.do_normalize = do_normalize self.image_mean = image_mean if image_mean is not None else OPENAI_CLIP_MEAN self.image_std = image_std if image_std is not None else OPENAI_CLIP_STD self.do_convert_rgb = do_convert_rgb def resize( self, image: np.ndarray, size: Dict[str, int], resample: PILImageResampling = PILImageResampling.BICUBIC, data_format: Optional[Union[str, ChannelDimension]] = None, **kwargs, ) -> np.ndarray: """ Resize an image. The shortest edge of the image is resized to size["shortest_edge"], with the longest edge resized to keep the input aspect ratio. Args: image (`np.ndarray`): Image to resize. size (`Dict[str, int]`): Size of the output image. resample (`PILImageResampling`, *optional*, defaults to `PILImageResampling.BICUBIC`): Resampling filter to use when resiizing the image. data_format (`str` or `ChannelDimension`, *optional*): The channel dimension format of the image. If not provided, it will be the same as the input image. """ size = get_size_dict(size, default_to_square=False) if "shortest_edge" not in size: raise ValueError(f"The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}") output_size = get_resize_output_image_size(image, size=size["shortest_edge"], default_to_square=False) return resize(image, size=output_size, resample=resample, data_format=data_format, **kwargs) def preprocess( self, images: ImageInput, do_resize: bool = None, size: Dict[str, int] = None, resample: PILImageResampling = None, do_center_crop: bool = None, crop_size: int = None, do_rescale: bool = None, rescale_factor: float = None, do_normalize: bool = None, image_mean: Optional[Union[float, List[float]]] = None, image_std: Optional[Union[float, List[float]]] = None, do_convert_rgb: bool = None, return_tensors: Optional[Union[str, TensorType]] = None, data_format: Optional[ChannelDimension] = ChannelDimension.FIRST, **kwargs, ) -> PIL.Image.Image: """ Preprocess an image or batch of images. Args: images (`ImageInput`): Image to preprocess. do_resize (`bool`, *optional*, defaults to `self.do_resize`): Whether to resize the image. size (`Dict[str, int]`, *optional*, defaults to `self.size`): Size of the image after resizing. Shortest edge of the image is resized to size["shortest_edge"], with the longest edge resized to keep the input aspect ratio. resample (`int`, *optional*, defaults to `self.resample`): Resampling filter to use if resizing the image. This can be one of the enum `PILImageResampling`. Only has an effect if `do_resize` is set to `True`. do_center_crop (`bool`, *optional*, defaults to `self.do_center_crop`): Whether to center crop the image. crop_size (`Dict[str, int]`, *optional*, defaults to `self.crop_size`): Size of the center crop. Only has an effect if `do_center_crop` is set to `True`. do_rescale (`bool`, *optional*, defaults to `self.do_rescale`): Whether to rescale the image. rescale_factor (`float`, *optional*, defaults to `self.rescale_factor`): Rescale factor to rescale the image by if `do_rescale` is set to `True`. do_normalize (`bool`, *optional*, defaults to `self.do_normalize`): Whether to normalize the image. image_mean (`float` or `List[float]`, *optional*, defaults to `self.image_mean`): Image mean to use for normalization. Only has an effect if `do_normalize` is set to `True`. image_std (`float` or `List[float]`, *optional*, defaults to `self.image_std`): Image standard deviation to use for normalization. Only has an effect if `do_normalize` is set to `True`. do_convert_rgb (`bool`, *optional*, defaults to `self.do_convert_rgb`): Whether to convert the image to RGB. return_tensors (`str` or `TensorType`, *optional*): The type of tensors to return. Can be one of: - Unset: Return a list of `np.ndarray`. - `TensorType.TENSORFLOW` or `'tf'`: Return a batch of type `tf.Tensor`. - `TensorType.PYTORCH` or `'pt'`: Return a batch of type `torch.Tensor`. - `TensorType.NUMPY` or `'np'`: Return a batch of type `np.ndarray`. - `TensorType.JAX` or `'jax'`: Return a batch of type `jax.numpy.ndarray`. data_format (`ChannelDimension` or `str`, *optional*, defaults to `ChannelDimension.FIRST`): The channel dimension format for the output image. Can be one of: - `ChannelDimension.FIRST`: image in (num_channels, height, width) format. - `ChannelDimension.LAST`: image in (height, width, num_channels) format. - Unset: defaults to the channel dimension format of the input image. """ do_resize = do_resize if do_resize is not None else self.do_resize size = size if size is not None else self.size size = get_size_dict(size, param_name="size", default_to_square=False) resample = resample if resample is not None else self.resample do_center_crop = do_center_crop if do_center_crop is not None else self.do_center_crop crop_size = crop_size if crop_size is not None else self.crop_size crop_size = get_size_dict(crop_size, param_name="crop_size", default_to_square=True) do_rescale = do_rescale if do_rescale is not None else self.do_rescale rescale_factor = rescale_factor if rescale_factor is not None else self.rescale_factor do_normalize = do_normalize if do_normalize is not None else self.do_normalize image_mean = image_mean if image_mean is not None else self.image_mean image_std = image_std if image_std is not None else self.image_std do_convert_rgb = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb images = make_list_of_images(images) if not valid_images(images): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None: raise ValueError("Size must be specified if do_resize is True.") if do_center_crop and crop_size is None: raise ValueError("Crop size must be specified if do_center_crop is True.") if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True.") if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True.") # PIL RGBA images are converted to RGB if do_convert_rgb: images = [convert_to_rgb(image) for image in images] # All transformations expect numpy arrays. images = [to_numpy_array(image) for image in images] if do_resize: images = [self.resize(image=image, size=size, resample=resample) for image in images] if do_center_crop: images = [self.center_crop(image=image, size=crop_size) for image in images] if do_rescale: images = [self.rescale(image=image, scale=rescale_factor) for image in images] if do_normalize: images = [self.normalize(image=image, mean=image_mean, std=image_std) for image in images] images = [to_channel_dimension_format(image, data_format) for image in images] data = {"pixel_values": images} return BatchFeature(data=data, tensor_type=return_tensors)
0
hf_public_repos/transformers/src/transformers/models
hf_public_repos/transformers/src/transformers/models/clip/modeling_flax_clip.py
# coding=utf-8 # Copyright 2021 The OpenAI Team Authors, The Google Flax Team Authors and The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Any, Optional, Tuple, Union import flax import flax.linen as nn import jax import jax.numpy as jnp from flax.core.frozen_dict import FrozenDict, freeze, unfreeze from flax.linen import combine_masks, make_causal_mask from flax.linen.attention import dot_product_attention_weights from flax.traverse_util import flatten_dict, unflatten_dict from jax import lax from ...modeling_flax_outputs import FlaxBaseModelOutput, FlaxBaseModelOutputWithPooling from ...modeling_flax_utils import ( ACT2FN, FlaxPreTrainedModel, append_replace_return_docstrings, overwrite_call_docstring, ) from ...utils import ModelOutput, add_start_docstrings, logging from .configuration_clip import CLIPConfig, CLIPTextConfig, CLIPVisionConfig logger = logging.get_logger(__name__) CLIP_START_DOCSTRING = r""" This model inherits from [`FlaxPreTrainedModel`]. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading, saving and converting weights from PyTorch models) This model is also a Flax Linen [flax.linen.Module](https://flax.readthedocs.io/en/latest/flax.linen.html#module) subclass. Use it as a regular Flax linen Module and refer to the Flax documentation for all matter related to general usage and behavior. Finally, this model supports inherent JAX features such as: - [Just-In-Time (JIT) compilation](https://jax.readthedocs.io/en/latest/jax.html#just-in-time-compilation-jit) - [Automatic Differentiation](https://jax.readthedocs.io/en/latest/jax.html#automatic-differentiation) - [Vectorization](https://jax.readthedocs.io/en/latest/jax.html#vectorization-vmap) - [Parallelization](https://jax.readthedocs.io/en/latest/jax.html#parallelization-pmap) Parameters: config ([`CLIPConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~FlaxPreTrainedModel.from_pretrained`] method to load the model weights. dtype (`jax.numpy.dtype`, *optional*, defaults to `jax.numpy.float32`): The data type of the computation. Can be one of `jax.numpy.float32`, `jax.numpy.float16` (on GPUs) and `jax.numpy.bfloat16` (on TPUs). This can be used to enable mixed-precision training or half-precision inference on GPUs or TPUs. If specified all the computation will be performed with the given `dtype`. **Note that this only specifies the dtype of the computation and does not influence the dtype of model parameters.** If you wish to change the dtype of the model parameters, see [`~FlaxPreTrainedModel.to_fp16`] and [`~FlaxPreTrainedModel.to_bf16`]. """ CLIP_TEXT_INPUTS_DOCSTRING = r""" Args: input_ids (`numpy.ndarray` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide it. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) attention_mask (`numpy.ndarray` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) position_ids (`numpy.ndarray` of shape `(batch_size, sequence_length)`, *optional*): Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, config.max_position_embeddings - 1]`. [What are position IDs?](../glossary#position-ids) output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ CLIP_VISION_INPUTS_DOCSTRING = r""" Args: pixel_values (`numpy.ndarray` of shape `(batch_size, num_channels, height, width)`): Pixel values. Padding will be ignored by default should you provide it. Pixel values can be obtained using [`AutoImageProcessor`]. See [`CLIPImageProcessor.__call__`] for details. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ CLIP_INPUTS_DOCSTRING = r""" Args: input_ids (`numpy.ndarray` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide it. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) attention_mask (`numpy.ndarray` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) position_ids (`numpy.ndarray` of shape `(batch_size, sequence_length)`, *optional*): Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, config.max_position_embeddings - 1]`. [What are position IDs?](../glossary#position-ids) pixel_values (`numpy.ndarray` of shape `(batch_size, num_channels, height, width)`): Pixel values. Padding will be ignored by default should you provide it. Pixel values can be obtained using [`AutoImageProcessor`]. See [`CLIPImageProcessor.__call__`] for details. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ @flax.struct.dataclass class FlaxCLIPOutput(ModelOutput): """ Args: logits_per_image:(`jnp.ndarray` of shape `(image_batch_size, text_batch_size)`): The scaled dot product scores between `image_embeds` and `text_embeds`. This represents the image-text similarity scores. logits_per_text:(`jnp.ndarray` of shape `(text_batch_size, image_batch_size)`): The scaled dot product scores between `text_embeds` and `image_embeds`. This represents the text-image similarity scores. text_embeds(`jnp.ndarray` of shape `(batch_size, output_dim`): The text embeddings obtained by applying the projection layer to the pooled output of [`FlaxCLIPTextModel`]. image_embeds(`jnp.ndarray` of shape `(batch_size, output_dim`): The image embeddings obtained by applying the projection layer to the pooled output of [`FlaxCLIPVisionModel`]. text_model_output(`FlaxBaseModelOutputWithPooling`): The output of the [`FlaxCLIPTextModel`]. vision_model_output(`FlaxBaseModelOutputWithPooling`): The output of the [`FlaxCLIPVisionModel`]. """ logits_per_image: jnp.ndarray = None logits_per_text: jnp.ndarray = None text_embeds: jnp.ndarray = None image_embeds: jnp.ndarray = None text_model_output: FlaxBaseModelOutputWithPooling = None vision_model_output: FlaxBaseModelOutputWithPooling = None def to_tuple(self) -> Tuple[Any]: return tuple( self[k] if k not in ["text_model_output", "vision_model_output"] else getattr(self, k).to_tuple() for k in self.keys() ) class FlaxCLIPVisionEmbeddings(nn.Module): config: CLIPVisionConfig dtype: jnp.dtype = jnp.float32 def setup(self): embed_dim = self.config.hidden_size image_size = self.config.image_size patch_size = self.config.patch_size self.class_embedding = self.param("class_embedding", jax.nn.initializers.normal(stddev=0.02), (embed_dim,)) self.patch_embedding = nn.Conv( embed_dim, kernel_size=(patch_size, patch_size), strides=(patch_size, patch_size), padding="VALID", use_bias=False, dtype=self.dtype, kernel_init=jax.nn.initializers.normal(), ) self.num_patches = (image_size // patch_size) ** 2 num_positions = self.num_patches + 1 self.position_embedding = nn.Embed(num_positions, embed_dim, embedding_init=jax.nn.initializers.normal()) self.position_ids = jnp.expand_dims(jnp.arange(0, num_positions, dtype="i4"), axis=0) def __call__(self, pixel_values): patch_embeds = self.patch_embedding(pixel_values) batch_size, height, width, channels = patch_embeds.shape patch_embeds = jnp.reshape(patch_embeds, (batch_size, height * width, channels)) class_embeds = jnp.expand_dims(self.class_embedding, axis=(0, 1)) class_embeds = jnp.tile(class_embeds, (batch_size, 1, 1)) embeddings = jnp.concatenate([class_embeds, patch_embeds], axis=1) embeddings = embeddings + self.position_embedding(self.position_ids) return embeddings class FlaxCLIPTextEmbeddings(nn.Module): config: CLIPTextConfig dtype: jnp.dtype = jnp.float32 def setup(self): embed_dim = self.config.hidden_size self.token_embedding = nn.Embed(self.config.vocab_size, embed_dim, embedding_init=jax.nn.initializers.normal()) self.position_embedding = nn.Embed( self.config.max_position_embeddings, embed_dim, embedding_init=jax.nn.initializers.normal() ) self.position_ids = jnp.expand_dims( jnp.arange(0, self.config.max_position_embeddings, dtype="i4"), axis=(0, 1) ) def __call__(self, input_ids, position_ids): input_embeds = self.token_embedding(input_ids.astype("i4")) position_embeds = self.position_embedding(position_ids.astype("i4")) embeddings = input_embeds + position_embeds return embeddings class FlaxCLIPAttention(nn.Module): config: Union[CLIPTextConfig, CLIPVisionConfig] dtype: jnp.dtype = jnp.float32 def setup(self): self.embed_dim = self.config.hidden_size self.num_heads = self.config.num_attention_heads self.head_dim = self.embed_dim // self.num_heads if self.head_dim * self.num_heads != self.embed_dim: raise ValueError( f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:" f" {self.num_heads})." ) self.scale = self.head_dim**-0.5 self.dropout = self.config.attention_dropout self.k_proj = nn.Dense(self.embed_dim, dtype=self.dtype, kernel_init=jax.nn.initializers.normal(0.01)) self.v_proj = nn.Dense(self.embed_dim, dtype=self.dtype, kernel_init=jax.nn.initializers.normal(0.01)) self.q_proj = nn.Dense(self.embed_dim, dtype=self.dtype, kernel_init=jax.nn.initializers.normal(0.01)) self.out_proj = nn.Dense(self.embed_dim, dtype=self.dtype, kernel_init=jax.nn.initializers.normal(0.01)) self.causal = isinstance(self.config, CLIPTextConfig) if self.causal: self.causal_mask = make_causal_mask(jnp.ones((1, self.config.max_position_embeddings), dtype="i4")) def _split_heads(self, hidden_states): return hidden_states.reshape(hidden_states.shape[:2] + (self.num_heads, self.head_dim)) def _merge_heads(self, hidden_states): return hidden_states.reshape(hidden_states.shape[:2] + (self.embed_dim,)) def __call__( self, hidden_states, attention_mask=None, deterministic: bool = True, output_attentions: bool = False, ): query = self.q_proj(hidden_states) key = self.k_proj(hidden_states) value = self.v_proj(hidden_states) query = self._split_heads(query) key = self._split_heads(key) value = self._split_heads(value) causal_attention_mask = None if self.causal: query_length, key_length = query.shape[1], key.shape[1] causal_attention_mask = self.causal_mask[:, :, key_length - query_length : key_length, :key_length] if attention_mask is not None and causal_attention_mask is not None: attention_mask = jnp.expand_dims(attention_mask, axis=(-3, -2)) attention_mask = combine_masks(attention_mask, causal_attention_mask, dtype="i4") elif causal_attention_mask is not None: attention_mask = causal_attention_mask elif attention_mask is not None: attention_mask = jnp.expand_dims(attention_mask, axis=(-3, -2)) if attention_mask is not None: attention_bias = lax.select( attention_mask > 0, jnp.full(attention_mask.shape, 0.0).astype(self.dtype), jnp.full(attention_mask.shape, jnp.finfo(self.dtype).min).astype(self.dtype), ) else: attention_bias = None dropout_rng = None if not deterministic and self.dropout > 0.0: dropout_rng = self.make_rng("dropout") attn_weights = dot_product_attention_weights( query, key, bias=attention_bias, dropout_rng=dropout_rng, dropout_rate=self.dropout, deterministic=deterministic, dtype=self.dtype, precision=None, ) attn_output = jnp.einsum("...hqk,...khd->...qhd", attn_weights, value) attn_output = self._merge_heads(attn_output) attn_output = self.out_proj(attn_output) outputs = (attn_output, attn_weights) if output_attentions else (attn_output,) return outputs class FlaxCLIPMLP(nn.Module): config: Union[CLIPTextConfig, CLIPVisionConfig] dtype: jnp.dtype = jnp.float32 def setup(self): self.activation_fn = ACT2FN[self.config.hidden_act] self.fc1 = nn.Dense( self.config.intermediate_size, dtype=self.dtype, kernel_init=jax.nn.initializers.normal(0.01), ) self.fc2 = nn.Dense(self.config.hidden_size, dtype=self.dtype, kernel_init=jax.nn.initializers.normal(0.01)) def __call__(self, hidden_states): hidden_states = self.fc1(hidden_states) hidden_states = self.activation_fn(hidden_states) hidden_states = self.fc2(hidden_states) return hidden_states class FlaxCLIPEncoderLayer(nn.Module): config: Union[CLIPTextConfig, CLIPVisionConfig] dtype: jnp.dtype = jnp.float32 def setup(self): self.self_attn = FlaxCLIPAttention(self.config, dtype=self.dtype) self.layer_norm1 = nn.LayerNorm(epsilon=self.config.layer_norm_eps, dtype=self.dtype) self.mlp = FlaxCLIPMLP(self.config, dtype=self.dtype) self.layer_norm2 = nn.LayerNorm(epsilon=self.config.layer_norm_eps, dtype=self.dtype) def __call__( self, hidden_states, attention_mask, deterministic: bool = True, output_attentions: bool = False, ): residual = hidden_states hidden_states = self.layer_norm1(hidden_states) attn_outputs = self.self_attn( hidden_states=hidden_states, attention_mask=attention_mask, deterministic=deterministic, output_attentions=output_attentions, ) hidden_states = attn_outputs[0] hidden_states = residual + hidden_states residual = hidden_states hidden_states = self.layer_norm2(hidden_states) hidden_states = self.mlp(hidden_states) hidden_states = residual + hidden_states outputs = (hidden_states,) if output_attentions: outputs += attn_outputs[1:] return outputs class FlaxCLIPLayerCollection(nn.Module): config: Union[CLIPTextConfig, CLIPVisionConfig] dtype: jnp.dtype = jnp.float32 def setup(self): self.layers = [ FlaxCLIPEncoderLayer(self.config, name=str(i), dtype=self.dtype) for i in range(self.config.num_hidden_layers) ] def __call__( self, hidden_states, attention_mask=None, deterministic: bool = True, output_attentions: bool = False, output_hidden_states: bool = False, return_dict: bool = True, ): all_attentions = () if output_attentions else None all_hidden_states = () if output_hidden_states else None for layer in self.layers: if output_hidden_states: all_hidden_states += (hidden_states,) layer_outputs = layer( hidden_states, attention_mask, deterministic=deterministic, output_attentions=output_attentions ) hidden_states = layer_outputs[0] if output_attentions: all_attentions += (layer_outputs[1],) if output_hidden_states: all_hidden_states += (hidden_states,) outputs = (hidden_states,) if not return_dict: return tuple(v for v in outputs if v is not None) return FlaxBaseModelOutput( last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_attentions ) class FlaxCLIPEncoder(nn.Module): config: Union[CLIPTextConfig, CLIPVisionConfig] dtype: jnp.dtype = jnp.float32 def setup(self): self.layers = FlaxCLIPLayerCollection(self.config, dtype=self.dtype) def __call__( self, inputs_embeds, attention_mask=None, deterministic: bool = True, output_attentions: bool = False, output_hidden_states: bool = False, return_dict: bool = True, ): return self.layers( hidden_states=inputs_embeds, attention_mask=attention_mask, deterministic=deterministic, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) class FlaxCLIPTextTransformer(nn.Module): config: CLIPTextConfig dtype: jnp.dtype = jnp.float32 def setup(self): self.embeddings = FlaxCLIPTextEmbeddings(self.config, dtype=self.dtype) self.encoder = FlaxCLIPEncoder(self.config, dtype=self.dtype) self.final_layer_norm = nn.LayerNorm(epsilon=self.config.layer_norm_eps, dtype=self.dtype) # For `pooled_output` computation self.eos_token_id = self.config.eos_token_id def __call__( self, input_ids, attention_mask, position_ids, deterministic: bool = True, output_attentions: bool = False, output_hidden_states: bool = False, return_dict: bool = True, ): output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict hidden_states = self.embeddings(input_ids=input_ids, position_ids=position_ids) encoder_outputs = self.encoder( inputs_embeds=hidden_states, attention_mask=attention_mask, deterministic=deterministic, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) last_hidden_state = encoder_outputs[0] last_hidden_state = self.final_layer_norm(last_hidden_state) if self.eos_token_id == 2: # The `eos_token_id` was incorrect before PR #24773: Let's keep what have been done here. # A CLIP model with such `eos_token_id` in the config can't work correctly with extra new tokens added # ------------------------------------------------------------ # text_embeds.shape = [batch_size, sequence_length, transformer.width] # take features from the EOS embedding (eos_token_id is the highest number in each sequence) pooled_output = last_hidden_state[jnp.arange(last_hidden_state.shape[0]), input_ids.argmax(axis=-1)] else: # (no need to cast from bool to int after comparing to `eos_token_id`) pooled_output = last_hidden_state[ jnp.arange(last_hidden_state.shape[0]), (input_ids == self.eos_token_id).argmax(axis=-1) ] if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return FlaxBaseModelOutputWithPooling( last_hidden_state=last_hidden_state, pooler_output=pooled_output, hidden_states=encoder_outputs.hidden_states, attentions=encoder_outputs.attentions, ) class FlaxCLIPVisionTransformer(nn.Module): config: CLIPVisionConfig dtype: jnp.dtype = jnp.float32 def setup(self): self.embeddings = FlaxCLIPVisionEmbeddings(self.config, dtype=self.dtype) self.pre_layrnorm = nn.LayerNorm(epsilon=self.config.layer_norm_eps, dtype=self.dtype) self.encoder = FlaxCLIPEncoder(self.config, dtype=self.dtype) self.post_layernorm = nn.LayerNorm(epsilon=self.config.layer_norm_eps, dtype=self.dtype) def __call__( self, pixel_values=None, deterministic: bool = True, output_attentions=None, output_hidden_states=None, return_dict: bool = True, ): output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict hidden_states = self.embeddings(pixel_values) hidden_states = self.pre_layrnorm(hidden_states) encoder_outputs = self.encoder( inputs_embeds=hidden_states, deterministic=deterministic, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) last_hidden_state = encoder_outputs[0] pooled_output = last_hidden_state[:, 0, :] pooled_output = self.post_layernorm(pooled_output) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return FlaxBaseModelOutputWithPooling( last_hidden_state=last_hidden_state, pooler_output=pooled_output, hidden_states=encoder_outputs.hidden_states, attentions=encoder_outputs.attentions, ) class FlaxCLIPTextPreTrainedModel(FlaxPreTrainedModel): config_class = CLIPTextConfig module_class: nn.Module = None def __init__( self, config: CLIPTextConfig, input_shape=(1, 1), seed: int = 0, dtype: jnp.dtype = jnp.float32, _do_init: bool = True, **kwargs, ): module = self.module_class(config=config, dtype=dtype, **kwargs) super().__init__(config, module, input_shape=input_shape, seed=seed, dtype=dtype, _do_init=_do_init) def init_weights(self, rng: jax.random.PRNGKey, input_shape: Tuple, params: FrozenDict = None) -> FrozenDict: # init input tensor input_ids = jnp.zeros(input_shape, dtype="i4") position_ids = jnp.broadcast_to(jnp.arange(jnp.atleast_2d(input_ids).shape[-1]), input_shape) attention_mask = jnp.ones_like(input_ids) params_rng, dropout_rng = jax.random.split(rng) rngs = {"params": params_rng, "dropout": dropout_rng} random_params = self.module.init(rngs, input_ids, attention_mask, position_ids)["params"] if params is not None: random_params = flatten_dict(unfreeze(random_params)) params = flatten_dict(unfreeze(params)) for missing_key in self._missing_keys: params[missing_key] = random_params[missing_key] self._missing_keys = set() return freeze(unflatten_dict(params)) else: return random_params def __call__( self, input_ids, attention_mask=None, position_ids=None, params: dict = None, dropout_rng: jax.random.PRNGKey = None, train: bool = False, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ): output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.return_dict if position_ids is None: position_ids = jnp.broadcast_to(jnp.arange(jnp.atleast_2d(input_ids).shape[-1]), input_ids.shape) if attention_mask is None: attention_mask = jnp.ones_like(input_ids) # Handle any PRNG if needed rngs = {} if dropout_rng is not None: rngs["dropout"] = dropout_rng return self.module.apply( {"params": params or self.params}, jnp.array(input_ids, dtype="i4"), jnp.array(attention_mask, dtype="i4"), jnp.array(position_ids, dtype="i4"), not train, output_attentions, output_hidden_states, return_dict, rngs=rngs, ) class FlaxCLIPVisionPreTrainedModel(FlaxPreTrainedModel): config_class = CLIPVisionConfig main_input_name = "pixel_values" module_class: nn.Module = None def __init__( self, config: CLIPVisionConfig, input_shape: Optional[Tuple] = None, seed: int = 0, dtype: jnp.dtype = jnp.float32, _do_init: bool = True, **kwargs, ): if input_shape is None: input_shape = (1, config.image_size, config.image_size, 3) module = self.module_class(config=config, dtype=dtype, **kwargs) super().__init__(config, module, input_shape=input_shape, seed=seed, dtype=dtype, _do_init=_do_init) def init_weights(self, rng: jax.random.PRNGKey, input_shape: Tuple, params: FrozenDict = None) -> FrozenDict: # init input tensor pixel_values = jax.random.normal(rng, input_shape) params_rng, dropout_rng = jax.random.split(rng) rngs = {"params": params_rng, "dropout": dropout_rng} random_params = self.module.init(rngs, pixel_values)["params"] if params is not None: random_params = flatten_dict(unfreeze(random_params)) params = flatten_dict(unfreeze(params)) for missing_key in self._missing_keys: params[missing_key] = random_params[missing_key] self._missing_keys = set() return freeze(unflatten_dict(params)) else: return random_params def __call__( self, pixel_values, params: dict = None, dropout_rng: jax.random.PRNGKey = None, train: bool = False, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ): output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.return_dict pixel_values = jnp.transpose(pixel_values, (0, 2, 3, 1)) # Handle any PRNG if needed rngs = {} if dropout_rng is not None: rngs["dropout"] = dropout_rng return self.module.apply( {"params": params or self.params}, jnp.array(pixel_values, dtype=jnp.float32), not train, output_attentions, output_hidden_states, return_dict, rngs=rngs, ) class FlaxCLIPPreTrainedModel(FlaxPreTrainedModel): config_class = CLIPConfig module_class: nn.Module = None def __init__( self, config: CLIPConfig, input_shape: Optional[Tuple] = None, seed: int = 0, dtype: jnp.dtype = jnp.float32, _do_init: bool = True, **kwargs, ): if input_shape is None: input_shape = ((1, 1), (1, config.vision_config.image_size, config.vision_config.image_size, 3)) module = self.module_class(config=config, dtype=dtype, **kwargs) super().__init__(config, module, input_shape=input_shape, seed=seed, dtype=dtype, _do_init=_do_init) def init_weights(self, rng: jax.random.PRNGKey, input_shape: Tuple, params: FrozenDict = None) -> FrozenDict: # init input tensor input_ids = jnp.zeros(input_shape[0], dtype="i4") position_ids = jnp.broadcast_to(jnp.arange(jnp.atleast_2d(input_ids).shape[-1]), input_shape[0]) attention_mask = jnp.ones_like(input_ids) pixel_values = jax.random.normal(rng, input_shape[1]) params_rng, dropout_rng = jax.random.split(rng) rngs = {"params": params_rng, "dropout": dropout_rng} random_params = self.module.init(rngs, input_ids, pixel_values, attention_mask, position_ids)["params"] if params is not None: random_params = flatten_dict(unfreeze(random_params)) params = flatten_dict(unfreeze(params)) for missing_key in self._missing_keys: params[missing_key] = random_params[missing_key] self._missing_keys = set() return freeze(unflatten_dict(params)) else: return random_params def __call__( self, input_ids, pixel_values, attention_mask=None, position_ids=None, params: dict = None, dropout_rng: jax.random.PRNGKey = None, train: bool = False, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ): output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.return_dict if position_ids is None: position_ids = jnp.broadcast_to(jnp.arange(jnp.atleast_2d(input_ids).shape[-1]), input_ids.shape) if attention_mask is None: attention_mask = jnp.ones_like(input_ids) pixel_values = jnp.transpose(pixel_values, (0, 2, 3, 1)) # Handle any PRNG if needed rngs = {} if dropout_rng is not None: rngs["dropout"] = dropout_rng return self.module.apply( {"params": params or self.params}, jnp.array(input_ids, dtype="i4"), jnp.array(pixel_values, dtype=jnp.float32), jnp.array(attention_mask, dtype="i4"), jnp.array(position_ids, dtype="i4"), not train, output_attentions, output_hidden_states, return_dict, rngs=rngs, ) def get_text_features( self, input_ids, attention_mask=None, position_ids=None, params: dict = None, dropout_rng: jax.random.PRNGKey = None, train=False, ): r""" Args: input_ids (`numpy.ndarray` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide it. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) Returns: text_features (`jnp.ndarray` of shape `(batch_size, output_dim`): The text embeddings obtained by applying the projection layer to the pooled output of [`FlaxCLIPTextModel`]. Examples: ```python >>> from transformers import AutoTokenizer, FlaxCLIPModel >>> model = FlaxCLIPModel.from_pretrained("openai/clip-vit-base-patch32") >>> tokenizer = AutoTokenizer.from_pretrained("openai/clip-vit-base-patch32") >>> inputs = tokenizer(["a photo of a cat", "a photo of a dog"], padding=True, return_tensors="np") >>> text_features = model.get_text_features(**inputs) ```""" if position_ids is None: position_ids = jnp.broadcast_to(jnp.arange(jnp.atleast_2d(input_ids).shape[-1]), input_ids.shape) if attention_mask is None: attention_mask = jnp.ones_like(input_ids) # Handle any PRNG if needed rngs = {} if dropout_rng is not None: rngs["dropout"] = dropout_rng def _get_features(module, input_ids, attention_mask, position_ids, deterministic): text_outputs = module.text_model( input_ids=input_ids, attention_mask=attention_mask, position_ids=position_ids, deterministic=deterministic, ) pooled_output = text_outputs[1] text_features = module.text_projection(pooled_output) return text_features return self.module.apply( {"params": params or self.params}, jnp.array(input_ids, dtype="i4"), jnp.array(attention_mask, dtype="i4"), jnp.array(position_ids, dtype="i4"), not train, method=_get_features, rngs=rngs, ) def get_image_features( self, pixel_values, params: dict = None, dropout_rng: jax.random.PRNGKey = None, train=False ): r""" Args: pixel_values (`numpy.ndarray` of shape `(batch_size, num_channels, height, width)`): Pixel values. Padding will be ignored by default should you provide it. Pixel values can be obtained using [`AutoImageProcessor`]. See [`CLIPImageProcessor.__call__`] for details. Returns: image_features (`jnp.ndarray` of shape `(batch_size, output_dim`): The image embeddings obtained by applying the projection layer to the pooled output of [`FlaxCLIPVisionModel`] Examples: ```python >>> from PIL import Image >>> import requests >>> from transformers import AutoProcessor, FlaxCLIPModel >>> model = FlaxCLIPModel.from_pretrained("openai/clip-vit-base-patch32") >>> processor = AutoProcessor.from_pretrained("openai/clip-vit-base-patch32") >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" >>> image = Image.open(requests.get(url, stream=True).raw) >>> inputs = processor(images=image, return_tensors="np") >>> image_features = model.get_image_features(**inputs) ```""" pixel_values = jnp.transpose(pixel_values, (0, 2, 3, 1)) # Handle any PRNG if needed rngs = {} if dropout_rng is not None: rngs["dropout"] = dropout_rng def _get_features(module, pixel_values, deterministic): vision_outputs = module.vision_model(pixel_values=pixel_values, deterministic=deterministic) pooled_output = vision_outputs[1] # pooled_output image_features = module.visual_projection(pooled_output) return image_features return self.module.apply( {"params": params or self.params}, jnp.array(pixel_values, dtype=jnp.float32), not train, method=_get_features, rngs=rngs, ) class FlaxCLIPTextModule(nn.Module): config: CLIPTextConfig dtype: jnp.dtype = jnp.float32 def setup(self): self.text_model = FlaxCLIPTextTransformer(self.config, dtype=self.dtype) def __call__( self, input_ids, attention_mask, position_ids, deterministic: bool = True, output_attentions: bool = False, output_hidden_states: bool = False, return_dict: bool = True, ): return self.text_model( input_ids=input_ids, attention_mask=attention_mask, position_ids=position_ids, deterministic=deterministic, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) class FlaxCLIPTextModel(FlaxCLIPTextPreTrainedModel): module_class = FlaxCLIPTextModule FLAX_CLIP_TEXT_MODEL_DOCSTRING = """ Returns: Example: ```python >>> from transformers import AutoTokenizer, FlaxCLIPTextModel >>> model = FlaxCLIPTextModel.from_pretrained("openai/clip-vit-base-patch32") >>> tokenizer = AutoTokenizer.from_pretrained("openai/clip-vit-base-patch32") >>> inputs = tokenizer(["a photo of a cat", "a photo of a dog"], padding=True, return_tensors="np") >>> outputs = model(**inputs) >>> last_hidden_state = outputs.last_hidden_state >>> pooler_output = outputs.pooler_output # pooled (EOS token) states ``` """ overwrite_call_docstring(FlaxCLIPTextModel, CLIP_TEXT_INPUTS_DOCSTRING + FLAX_CLIP_TEXT_MODEL_DOCSTRING) append_replace_return_docstrings( FlaxCLIPTextModel, output_type=FlaxBaseModelOutputWithPooling, config_class=CLIPTextConfig ) class FlaxCLIPVisionModule(nn.Module): config: CLIPVisionConfig dtype: jnp.dtype = jnp.float32 def setup(self): self.vision_model = FlaxCLIPVisionTransformer(self.config, dtype=self.dtype) def __call__( self, pixel_values, deterministic: bool = True, output_attentions: bool = False, output_hidden_states: bool = False, return_dict: bool = True, ): return self.vision_model( pixel_values=pixel_values, deterministic=deterministic, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) class FlaxCLIPVisionModel(FlaxCLIPVisionPreTrainedModel): module_class = FlaxCLIPVisionModule FLAX_CLIP_VISION_MODEL_DOCSTRING = """ Returns: Example: ```python >>> from PIL import Image >>> import requests >>> from transformers import AutoProcessor, FlaxCLIPVisionModel >>> model = FlaxCLIPVisionModel.from_pretrained("openai/clip-vit-base-patch32") >>> processor = AutoProcessor.from_pretrained("openai/clip-vit-base-patch32") >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" >>> image = Image.open(requests.get(url, stream=True).raw) >>> inputs = processor(images=image, return_tensors="np") >>> outputs = model(**inputs) >>> last_hidden_state = outputs.last_hidden_state >>> pooler_output = outputs.pooler_output # pooled CLS states ``` """ overwrite_call_docstring(FlaxCLIPVisionModel, CLIP_VISION_INPUTS_DOCSTRING + FLAX_CLIP_VISION_MODEL_DOCSTRING) append_replace_return_docstrings( FlaxCLIPVisionModel, output_type=FlaxBaseModelOutputWithPooling, config_class=CLIPVisionConfig ) class FlaxCLIPModule(nn.Module): config: CLIPConfig dtype: jnp.dtype = jnp.float32 def setup(self): text_config = self.config.text_config vision_config = self.config.vision_config self.projection_dim = self.config.projection_dim self.text_embed_dim = text_config.hidden_size self.vision_embed_dim = vision_config.hidden_size self.text_model = FlaxCLIPTextTransformer(text_config, dtype=self.dtype) self.vision_model = FlaxCLIPVisionTransformer(vision_config, dtype=self.dtype) self.visual_projection = nn.Dense( self.projection_dim, dtype=self.dtype, kernel_init=jax.nn.initializers.normal(0.02), use_bias=False, ) self.text_projection = nn.Dense( self.projection_dim, dtype=self.dtype, kernel_init=jax.nn.initializers.normal(0.02), use_bias=False, ) self.logit_scale = self.param( "logit_scale", lambda _, shape: jnp.ones(shape) * self.config.logit_scale_init_value, [] ) def __call__( self, input_ids=None, pixel_values=None, attention_mask=None, position_ids=None, deterministic: bool = True, output_attentions=None, output_hidden_states=None, return_dict=None, ): return_dict = return_dict if return_dict is not None else self.config.return_dict vision_outputs = self.vision_model( pixel_values=pixel_values, deterministic=deterministic, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) text_outputs = self.text_model( input_ids=input_ids, attention_mask=attention_mask, position_ids=position_ids, deterministic=deterministic, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) image_embeds = vision_outputs[1] image_embeds = self.visual_projection(image_embeds) text_embeds = text_outputs[1] text_embeds = self.text_projection(text_embeds) # normalized features image_embeds = image_embeds / jnp.linalg.norm(image_embeds, axis=-1, keepdims=True) text_embeds = text_embeds / jnp.linalg.norm(text_embeds, axis=-1, keepdims=True) # cosine similarity as logits logit_scale = jnp.exp(self.logit_scale) logits_per_text = jnp.matmul(text_embeds, image_embeds.T) * logit_scale logits_per_image = logits_per_text.T if not return_dict: return (logits_per_image, logits_per_text, text_embeds, image_embeds, text_outputs, vision_outputs) return FlaxCLIPOutput( logits_per_image=logits_per_image, logits_per_text=logits_per_text, text_embeds=text_embeds, image_embeds=image_embeds, text_model_output=text_outputs, vision_model_output=vision_outputs, ) @add_start_docstrings(CLIP_START_DOCSTRING) class FlaxCLIPModel(FlaxCLIPPreTrainedModel): module_class = FlaxCLIPModule FLAX_CLIP_MODEL_DOCSTRING = """ Returns: Example: ```python >>> import jax >>> from PIL import Image >>> import requests >>> from transformers import AutoProcessor, FlaxCLIPModel >>> model = FlaxCLIPModel.from_pretrained("openai/clip-vit-base-patch32") >>> processor = AutoProcessor.from_pretrained("openai/clip-vit-base-patch32") >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" >>> image = Image.open(requests.get(url, stream=True).raw) >>> inputs = processor( ... text=["a photo of a cat", "a photo of a dog"], images=image, return_tensors="np", padding=True ... ) >>> outputs = model(**inputs) >>> logits_per_image = outputs.logits_per_image # this is the image-text similarity score >>> probs = jax.nn.softmax(logits_per_image, axis=1) # we can take the softmax to get the label probabilities ``` """ overwrite_call_docstring(FlaxCLIPModel, CLIP_INPUTS_DOCSTRING + FLAX_CLIP_MODEL_DOCSTRING) append_replace_return_docstrings(FlaxCLIPModel, output_type=FlaxCLIPOutput, config_class=CLIPConfig)
0
hf_public_repos/transformers/src/transformers/models
hf_public_repos/transformers/src/transformers/models/clip/tokenization_clip.py
# coding=utf-8 # Copyright 2021 The Open AI Team Authors and The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tokenization classes for CLIP.""" import json import os import unicodedata from functools import lru_cache from typing import List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer, _is_control, _is_punctuation, _is_whitespace from ...utils import logging logger = logging.get_logger(__name__) VOCAB_FILES_NAMES = { "vocab_file": "vocab.json", "merges_file": "merges.txt", } PRETRAINED_VOCAB_FILES_MAP = { "vocab_file": { "openai/clip-vit-base-patch32": "https://huggingface.co/openai/clip-vit-base-patch32/resolve/main/vocab.json", }, "merges_file": { "openai/clip-vit-base-patch32": "https://huggingface.co/openai/clip-vit-base-patch32/resolve/main/merges.txt", }, } PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = { "openai/clip-vit-base-patch32": 77, } PRETRAINED_INIT_CONFIGURATION = { "openai/clip-vit-base-patch32": {}, } @lru_cache() def bytes_to_unicode(): """ Returns list of utf-8 byte and a mapping to unicode strings. We specifically avoids mapping to whitespace/control characters the bpe code barfs on. The reversible bpe codes work on unicode strings. This means you need a large # of unicode characters in your vocab if you want to avoid UNKs. When you're at something like a 10B token dataset you end up needing around 5K for decent coverage. This is a significant percentage of your normal, say, 32K bpe vocab. To avoid that, we want lookup tables between utf-8 bytes and unicode strings. """ bs = ( list(range(ord("!"), ord("~") + 1)) + list(range(ord("¡"), ord("¬") + 1)) + list(range(ord("®"), ord("ÿ") + 1)) ) cs = bs[:] n = 0 for b in range(2**8): if b not in bs: bs.append(b) cs.append(2**8 + n) n += 1 cs = [chr(n) for n in cs] return dict(zip(bs, cs)) def get_pairs(word): """ Return set of symbol pairs in a word. Word is represented as tuple of symbols (symbols being variable-length strings). """ pairs = set() prev_char = word[0] for char in word[1:]: pairs.add((prev_char, char)) prev_char = char return pairs def whitespace_clean(text): text = re.sub(r"\s+", " ", text) text = text.strip() return text # Copied from transformers.models.bert.tokenization_bert.whitespace_tokenize def whitespace_tokenize(text): """Runs basic whitespace cleaning and splitting on a piece of text.""" text = text.strip() if not text: return [] tokens = text.split() return tokens # Copied from transformers.models.bert.tokenization_bert.BasicTokenizer class BasicTokenizer(object): """ Constructs a BasicTokenizer that will run basic tokenization (punctuation splitting, lower casing, etc.). Args: do_lower_case (`bool`, *optional*, defaults to `True`): Whether or not to lowercase the input when tokenizing. never_split (`Iterable`, *optional*): Collection of tokens which will never be split during tokenization. Only has an effect when `do_basic_tokenize=True` tokenize_chinese_chars (`bool`, *optional*, defaults to `True`): Whether or not to tokenize Chinese characters. This should likely be deactivated for Japanese (see this [issue](https://github.com/huggingface/transformers/issues/328)). strip_accents (`bool`, *optional*): Whether or not to strip all accents. If this option is not specified, then it will be determined by the value for `lowercase` (as in the original BERT). do_split_on_punc (`bool`, *optional*, defaults to `True`): In some instances we want to skip the basic punctuation splitting so that later tokenization can capture the full context of the words, such as contractions. """ def __init__( self, do_lower_case=True, never_split=None, tokenize_chinese_chars=True, strip_accents=None, do_split_on_punc=True, ): if never_split is None: never_split = [] self.do_lower_case = do_lower_case self.never_split = set(never_split) self.tokenize_chinese_chars = tokenize_chinese_chars self.strip_accents = strip_accents self.do_split_on_punc = do_split_on_punc def tokenize(self, text, never_split=None): """ Basic Tokenization of a piece of text. For sub-word tokenization, see WordPieceTokenizer. Args: never_split (`List[str]`, *optional*) Kept for backward compatibility purposes. Now implemented directly at the base class level (see [`PreTrainedTokenizer.tokenize`]) List of token not to split. """ # union() returns a new set by concatenating the two sets. never_split = self.never_split.union(set(never_split)) if never_split else self.never_split text = self._clean_text(text) # This was added on November 1st, 2018 for the multilingual and Chinese # models. This is also applied to the English models now, but it doesn't # matter since the English models were not trained on any Chinese data # and generally don't have any Chinese data in them (there are Chinese # characters in the vocabulary because Wikipedia does have some Chinese # words in the English Wikipedia.). if self.tokenize_chinese_chars: text = self._tokenize_chinese_chars(text) # prevents treating the same character with different unicode codepoints as different characters unicode_normalized_text = unicodedata.normalize("NFC", text) orig_tokens = whitespace_tokenize(unicode_normalized_text) split_tokens = [] for token in orig_tokens: if token not in never_split: if self.do_lower_case: token = token.lower() if self.strip_accents is not False: token = self._run_strip_accents(token) elif self.strip_accents: token = self._run_strip_accents(token) split_tokens.extend(self._run_split_on_punc(token, never_split)) output_tokens = whitespace_tokenize(" ".join(split_tokens)) return output_tokens def _run_strip_accents(self, text): """Strips accents from a piece of text.""" text = unicodedata.normalize("NFD", text) output = [] for char in text: cat = unicodedata.category(char) if cat == "Mn": continue output.append(char) return "".join(output) def _run_split_on_punc(self, text, never_split=None): """Splits punctuation on a piece of text.""" if not self.do_split_on_punc or (never_split is not None and text in never_split): return [text] chars = list(text) i = 0 start_new_word = True output = [] while i < len(chars): char = chars[i] if _is_punctuation(char): output.append([char]) start_new_word = True else: if start_new_word: output.append([]) start_new_word = False output[-1].append(char) i += 1 return ["".join(x) for x in output] def _tokenize_chinese_chars(self, text): """Adds whitespace around any CJK character.""" output = [] for char in text: cp = ord(char) if self._is_chinese_char(cp): output.append(" ") output.append(char) output.append(" ") else: output.append(char) return "".join(output) def _is_chinese_char(self, cp): """Checks whether CP is the codepoint of a CJK character.""" # This defines a "chinese character" as anything in the CJK Unicode block: # https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block) # # Note that the CJK Unicode block is NOT all Japanese and Korean characters, # despite its name. The modern Korean Hangul alphabet is a different block, # as is Japanese Hiragana and Katakana. Those alphabets are used to write # space-separated words, so they are not treated specially and handled # like the all of the other languages. if ( (cp >= 0x4E00 and cp <= 0x9FFF) or (cp >= 0x3400 and cp <= 0x4DBF) # or (cp >= 0x20000 and cp <= 0x2A6DF) # or (cp >= 0x2A700 and cp <= 0x2B73F) # or (cp >= 0x2B740 and cp <= 0x2B81F) # or (cp >= 0x2B820 and cp <= 0x2CEAF) # or (cp >= 0xF900 and cp <= 0xFAFF) or (cp >= 0x2F800 and cp <= 0x2FA1F) # ): # return True return False def _clean_text(self, text): """Performs invalid character removal and whitespace cleanup on text.""" output = [] for char in text: cp = ord(char) if cp == 0 or cp == 0xFFFD or _is_control(char): continue if _is_whitespace(char): output.append(" ") else: output.append(char) return "".join(output) class CLIPTokenizer(PreTrainedTokenizer): """ Construct a CLIP tokenizer. Based on byte-level Byte-Pair-Encoding. This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to this superclass for more information regarding those methods. Args: vocab_file (`str`): Path to the vocabulary file. merges_file (`str`): Path to the merges file. errors (`str`, *optional*, defaults to `"replace"`): Paradigm to follow when decoding bytes to UTF-8. See [bytes.decode](https://docs.python.org/3/library/stdtypes.html#bytes.decode) for more information. unk_token (`str`, *optional*, defaults to `<|endoftext|>`): The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this token instead. bos_token (`str`, *optional*, defaults to `<|startoftext|>`): The beginning of sequence token. eos_token (`str`, *optional*, defaults to `<|endoftext|>`): The end of sequence token. """ vocab_files_names = VOCAB_FILES_NAMES pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES model_input_names = ["input_ids", "attention_mask"] def __init__( self, vocab_file, merges_file, errors="replace", unk_token="<|endoftext|>", bos_token="<|startoftext|>", eos_token="<|endoftext|>", pad_token="<|endoftext|>", # hack to enable padding **kwargs, ): bos_token = AddedToken(bos_token, lstrip=False, rstrip=False) if isinstance(bos_token, str) else bos_token eos_token = AddedToken(eos_token, lstrip=False, rstrip=False) if isinstance(eos_token, str) else eos_token unk_token = AddedToken(unk_token, lstrip=False, rstrip=False) if isinstance(unk_token, str) else unk_token super().__init__( errors=errors, unk_token=unk_token, bos_token=bos_token, eos_token=eos_token, pad_token=pad_token, **kwargs, ) try: import ftfy self.fix_text = ftfy.fix_text except ImportError: logger.info("ftfy or spacy is not installed using custom BasicTokenizer instead of ftfy.") self.nlp = BasicTokenizer(strip_accents=False, do_split_on_punc=False) self.fix_text = None with open(vocab_file, encoding="utf-8") as vocab_handle: self.encoder = json.load(vocab_handle) self.decoder = {v: k for k, v in self.encoder.items()} self.errors = errors # how to handle errors in decoding self.byte_encoder = bytes_to_unicode() self.byte_decoder = {v: k for k, v in self.byte_encoder.items()} with open(merges_file, encoding="utf-8") as merges_handle: bpe_merges = merges_handle.read().strip().split("\n")[1 : 49152 - 256 - 2 + 1] bpe_merges = [tuple(merge.split()) for merge in bpe_merges] self.bpe_ranks = dict(zip(bpe_merges, range(len(bpe_merges)))) self.cache = {"<|startoftext|>": "<|startoftext|>", "<|endoftext|>": "<|endoftext|>"} self.pat = re.compile( r"""<\|startoftext\|>|<\|endoftext\|>|'s|'t|'re|'ve|'m|'ll|'d|[\p{L}]+|[\p{N}]|[^\s\p{L}\p{N}]+""", re.IGNORECASE, ) @property def vocab_size(self): return len(self.encoder) def get_vocab(self): return dict(self.encoder, **self.added_tokens_encoder) def build_inputs_with_special_tokens( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None ) -> List[int]: """ Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and adding special tokens. A CLIP sequence has the following format: - single sequence: `<|startoftext|> X <|endoftext|>` Pairs of sequences are not the expected use case, but they will be handled without a separator. Args: token_ids_0 (`List[int]`): List of IDs to which the special tokens will be added. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. Returns: `List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens. """ bos_token = [self.bos_token_id] eos_token = [self.eos_token_id] if token_ids_1 is None: return bos_token + token_ids_0 + eos_token return bos_token + token_ids_0 + eos_token + eos_token + token_ids_1 + eos_token def get_special_tokens_mask( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False ) -> List[int]: """ Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding special tokens using the tokenizer `prepare_for_model` method. Args: token_ids_0 (`List[int]`): List of IDs. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. already_has_special_tokens (`bool`, *optional*, defaults to `False`): Whether or not the token list is already formatted with special tokens for the model. Returns: `List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token. """ if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True ) if token_ids_1 is None: return [1] + ([0] * len(token_ids_0)) + [1] return [1] + ([0] * len(token_ids_0)) + [1] + [1] + ([0] * len(token_ids_1)) + [1] def create_token_type_ids_from_sequences( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None ) -> List[int]: """ Create a mask from the two sequences passed. CLIP does not make use of token type ids, therefore a list of zeros is returned. Args: token_ids_0 (`List[int]`): List of IDs. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. Returns: `List[int]`: List of zeros. """ bos_token = [self.bos_token_id] eos_token = [self.eos_token_id] if token_ids_1 is None: return len(bos_token + token_ids_0 + eos_token) * [0] return len(bos_token + token_ids_0 + eos_token + eos_token + token_ids_1 + eos_token) * [0] def bpe(self, token): if token in self.cache: return self.cache[token] word = tuple(token[:-1]) + (token[-1] + "</w>",) pairs = get_pairs(word) if not pairs: return token + "</w>" while True: bigram = min(pairs, key=lambda pair: self.bpe_ranks.get(pair, float("inf"))) if bigram not in self.bpe_ranks: break first, second = bigram new_word = [] i = 0 while i < len(word): try: j = word.index(first, i) except ValueError: new_word.extend(word[i:]) break else: new_word.extend(word[i:j]) i = j if word[i] == first and i < len(word) - 1 and word[i + 1] == second: new_word.append(first + second) i += 2 else: new_word.append(word[i]) i += 1 new_word = tuple(new_word) word = new_word if len(word) == 1: break else: pairs = get_pairs(word) word = " ".join(word) self.cache[token] = word return word def _tokenize(self, text): """Tokenize a string.""" bpe_tokens = [] if self.fix_text is None: text = " ".join(self.nlp.tokenize(text)) else: text = whitespace_clean(self.fix_text(text)).lower() for token in re.findall(self.pat, text): token = "".join( self.byte_encoder[b] for b in token.encode("utf-8") ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(token).split(" ")) return bpe_tokens def _convert_token_to_id(self, token): """Converts a token (str) in an id using the vocab.""" return self.encoder.get(token, self.encoder.get(self.unk_token)) def _convert_id_to_token(self, index): """Converts an index (integer) in a token (str) using the vocab.""" return self.decoder.get(index) def convert_tokens_to_string(self, tokens): """Converts a sequence of tokens (string) in a single string.""" text = "".join(tokens) byte_array = bytearray([self.byte_decoder[c] for c in text]) text = byte_array.decode("utf-8", errors=self.errors).replace("</w>", " ").strip() return text def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]: if not os.path.isdir(save_directory): logger.error("Vocabulary path ({}) should be a directory".format(save_directory)) return vocab_file = os.path.join( save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) merge_file = os.path.join( save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] ) with open(vocab_file, "w", encoding="utf-8") as f: f.write(json.dumps(self.encoder, indent=2, sort_keys=True, ensure_ascii=False) + "\n") index = 0 with open(merge_file, "w", encoding="utf-8") as writer: writer.write("#version: 0.2\n") for bpe_tokens, token_index in sorted(self.bpe_ranks.items(), key=lambda kv: kv[1]): if index != token_index: logger.warning( "Saving vocabulary to {}: BPE merge indices are not consecutive." " Please check that the tokenizer is not corrupted!".format(merge_file) ) index = token_index writer.write(" ".join(bpe_tokens) + "\n") index += 1 return vocab_file, merge_file
0
hf_public_repos/transformers/src/transformers/models
hf_public_repos/transformers/src/transformers/models/clip/configuration_clip.py
# coding=utf-8 # Copyright 2021 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ CLIP model configuration""" import copy import os from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional, Union if TYPE_CHECKING: from ...processing_utils import ProcessorMixin from ...utils import TensorType from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging logger = logging.get_logger(__name__) CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP = { "openai/clip-vit-base-patch32": "https://huggingface.co/openai/clip-vit-base-patch32/resolve/main/config.json", # See all CLIP models at https://huggingface.co/models?filter=clip } class CLIPTextConfig(PretrainedConfig): r""" This is the configuration class to store the configuration of a [`CLIPTextModel`]. It is used to instantiate a CLIP text encoder according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the text encoder of the CLIP [openai/clip-vit-base-patch32](https://huggingface.co/openai/clip-vit-base-patch32) architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: vocab_size (`int`, *optional*, defaults to 49408): Vocabulary size of the CLIP text model. Defines the number of different tokens that can be represented by the `inputs_ids` passed when calling [`CLIPModel`]. hidden_size (`int`, *optional*, defaults to 512): Dimensionality of the encoder layers and the pooler layer. intermediate_size (`int`, *optional*, defaults to 2048): Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder. num_hidden_layers (`int`, *optional*, defaults to 12): Number of hidden layers in the Transformer encoder. num_attention_heads (`int`, *optional*, defaults to 8): Number of attention heads for each attention layer in the Transformer encoder. max_position_embeddings (`int`, *optional*, defaults to 77): The maximum sequence length that this model might ever be used with. Typically set this to something large just in case (e.g., 512 or 1024 or 2048). hidden_act (`str` or `function`, *optional*, defaults to `"quick_gelu"`): The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, `"relu"`, `"selu"` and `"gelu_new"` `"quick_gelu"` are supported. layer_norm_eps (`float`, *optional*, defaults to 1e-5): The epsilon used by the layer normalization layers. attention_dropout (`float`, *optional*, defaults to 0.0): The dropout ratio for the attention probabilities. initializer_range (`float`, *optional*, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. initializer_factor (`float`, *optional*, defaults to 1): A factor for initializing all weight matrices (should be kept to 1, used internally for initialization testing). Example: ```python >>> from transformers import CLIPTextConfig, CLIPTextModel >>> # Initializing a CLIPTextConfig with openai/clip-vit-base-patch32 style configuration >>> configuration = CLIPTextConfig() >>> # Initializing a CLIPTextModel (with random weights) from the openai/clip-vit-base-patch32 style configuration >>> model = CLIPTextModel(configuration) >>> # Accessing the model configuration >>> configuration = model.config ```""" model_type = "clip_text_model" def __init__( self, vocab_size=49408, hidden_size=512, intermediate_size=2048, projection_dim=512, num_hidden_layers=12, num_attention_heads=8, max_position_embeddings=77, hidden_act="quick_gelu", layer_norm_eps=1e-5, attention_dropout=0.0, initializer_range=0.02, initializer_factor=1.0, # This differs from `CLIPTokenizer`'s default and from openai/clip # See https://github.com/huggingface/transformers/pull/24773#issuecomment-1632287538 pad_token_id=1, bos_token_id=49406, eos_token_id=49407, **kwargs, ): super().__init__(pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs) self.vocab_size = vocab_size self.hidden_size = hidden_size self.intermediate_size = intermediate_size self.projection_dim = projection_dim self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.max_position_embeddings = max_position_embeddings self.layer_norm_eps = layer_norm_eps self.hidden_act = hidden_act self.initializer_range = initializer_range self.initializer_factor = initializer_factor self.attention_dropout = attention_dropout @classmethod def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> "PretrainedConfig": cls._set_token_in_kwargs(kwargs) config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs) # get the text config dict if we are loading from CLIPConfig if config_dict.get("model_type") == "clip": config_dict = config_dict["text_config"] if "model_type" in config_dict and hasattr(cls, "model_type") and config_dict["model_type"] != cls.model_type: logger.warning( f"You are using a model of type {config_dict['model_type']} to instantiate a model of type " f"{cls.model_type}. This is not supported for all configurations of models and can yield errors." ) return cls.from_dict(config_dict, **kwargs) class CLIPVisionConfig(PretrainedConfig): r""" This is the configuration class to store the configuration of a [`CLIPVisionModel`]. It is used to instantiate a CLIP vision encoder according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the vision encoder of the CLIP [openai/clip-vit-base-patch32](https://huggingface.co/openai/clip-vit-base-patch32) architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: hidden_size (`int`, *optional*, defaults to 768): Dimensionality of the encoder layers and the pooler layer. intermediate_size (`int`, *optional*, defaults to 3072): Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder. num_hidden_layers (`int`, *optional*, defaults to 12): Number of hidden layers in the Transformer encoder. num_attention_heads (`int`, *optional*, defaults to 12): Number of attention heads for each attention layer in the Transformer encoder. image_size (`int`, *optional*, defaults to 224): The size (resolution) of each image. patch_size (`int`, *optional*, defaults to 32): The size (resolution) of each patch. hidden_act (`str` or `function`, *optional*, defaults to `"quick_gelu"`): The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, `"relu"`, `"selu"` and `"gelu_new"` ``"quick_gelu"` are supported. layer_norm_eps (`float`, *optional*, defaults to 1e-5): The epsilon used by the layer normalization layers. attention_dropout (`float`, *optional*, defaults to 0.0): The dropout ratio for the attention probabilities. initializer_range (`float`, *optional*, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. initializer_factor (`float`, *optional*, defaults to 1): A factor for initializing all weight matrices (should be kept to 1, used internally for initialization testing). Example: ```python >>> from transformers import CLIPVisionConfig, CLIPVisionModel >>> # Initializing a CLIPVisionConfig with openai/clip-vit-base-patch32 style configuration >>> configuration = CLIPVisionConfig() >>> # Initializing a CLIPVisionModel (with random weights) from the openai/clip-vit-base-patch32 style configuration >>> model = CLIPVisionModel(configuration) >>> # Accessing the model configuration >>> configuration = model.config ```""" model_type = "clip_vision_model" def __init__( self, hidden_size=768, intermediate_size=3072, projection_dim=512, num_hidden_layers=12, num_attention_heads=12, num_channels=3, image_size=224, patch_size=32, hidden_act="quick_gelu", layer_norm_eps=1e-5, attention_dropout=0.0, initializer_range=0.02, initializer_factor=1.0, **kwargs, ): super().__init__(**kwargs) self.hidden_size = hidden_size self.intermediate_size = intermediate_size self.projection_dim = projection_dim self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.num_channels = num_channels self.patch_size = patch_size self.image_size = image_size self.initializer_range = initializer_range self.initializer_factor = initializer_factor self.attention_dropout = attention_dropout self.layer_norm_eps = layer_norm_eps self.hidden_act = hidden_act @classmethod def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> "PretrainedConfig": cls._set_token_in_kwargs(kwargs) config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs) # get the vision config dict if we are loading from CLIPConfig if config_dict.get("model_type") == "clip": config_dict = config_dict["vision_config"] if "model_type" in config_dict and hasattr(cls, "model_type") and config_dict["model_type"] != cls.model_type: logger.warning( f"You are using a model of type {config_dict['model_type']} to instantiate a model of type " f"{cls.model_type}. This is not supported for all configurations of models and can yield errors." ) return cls.from_dict(config_dict, **kwargs) class CLIPConfig(PretrainedConfig): r""" [`CLIPConfig`] is the configuration class to store the configuration of a [`CLIPModel`]. It is used to instantiate a CLIP model according to the specified arguments, defining the text model and vision model configs. Instantiating a configuration with the defaults will yield a similar configuration to that of the CLIP [openai/clip-vit-base-patch32](https://huggingface.co/openai/clip-vit-base-patch32) architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: text_config (`dict`, *optional*): Dictionary of configuration options used to initialize [`CLIPTextConfig`]. vision_config (`dict`, *optional*): Dictionary of configuration options used to initialize [`CLIPVisionConfig`]. projection_dim (`int`, *optional*, defaults to 512): Dimentionality of text and vision projection layers. logit_scale_init_value (`float`, *optional*, defaults to 2.6592): The inital value of the *logit_scale* paramter. Default is used as per the original CLIP implementation. kwargs (*optional*): Dictionary of keyword arguments. Example: ```python >>> from transformers import CLIPConfig, CLIPModel >>> # Initializing a CLIPConfig with openai/clip-vit-base-patch32 style configuration >>> configuration = CLIPConfig() >>> # Initializing a CLIPModel (with random weights) from the openai/clip-vit-base-patch32 style configuration >>> model = CLIPModel(configuration) >>> # Accessing the model configuration >>> configuration = model.config >>> # We can also initialize a CLIPConfig from a CLIPTextConfig and a CLIPVisionConfig >>> from transformers import CLIPTextConfig, CLIPVisionConfig >>> # Initializing a CLIPText and CLIPVision configuration >>> config_text = CLIPTextConfig() >>> config_vision = CLIPVisionConfig() >>> config = CLIPConfig.from_text_vision_configs(config_text, config_vision) ```""" model_type = "clip" is_composition = True def __init__( self, text_config=None, vision_config=None, projection_dim=512, logit_scale_init_value=2.6592, **kwargs ): # If `_config_dict` exist, we use them for the backward compatibility. # We pop out these 2 attributes before calling `super().__init__` to avoid them being saved (which causes a lot # of confusion!). text_config_dict = kwargs.pop("text_config_dict", None) vision_config_dict = kwargs.pop("vision_config_dict", None) super().__init__(**kwargs) # Instead of simply assigning `[text|vision]_config_dict` to `[text|vision]_config`, we use the values in # `[text|vision]_config_dict` to update the values in `[text|vision]_config`. The values should be same in most # cases, but we don't want to break anything regarding `_config_dict` that existed before commit `8827e1b2`. if text_config_dict is not None: if text_config is None: text_config = {} # This is the complete result when using `text_config_dict`. _text_config_dict = CLIPTextConfig(**text_config_dict).to_dict() # Give a warning if the values exist in both `_text_config_dict` and `text_config` but being different. for key, value in _text_config_dict.items(): if key in text_config and value != text_config[key] and key not in ["transformers_version"]: # If specified in `text_config_dict` if key in text_config_dict: message = ( f"`{key}` is found in both `text_config_dict` and `text_config` but with different values. " f'The value `text_config_dict["{key}"]` will be used instead.' ) # If inferred from default argument values (just to be super careful) else: message = ( f"`text_config_dict` is provided which will be used to initialize `CLIPTextConfig`. The " f'value `text_config["{key}"]` will be overriden.' ) logger.warning(message) # Update all values in `text_config` with the ones in `_text_config_dict`. text_config.update(_text_config_dict) if vision_config_dict is not None: if vision_config is None: vision_config = {} # This is the complete result when using `vision_config_dict`. _vision_config_dict = CLIPVisionConfig(**vision_config_dict).to_dict() # convert keys to string instead of integer if "id2label" in _vision_config_dict: _vision_config_dict["id2label"] = { str(key): value for key, value in _vision_config_dict["id2label"].items() } # Give a warning if the values exist in both `_vision_config_dict` and `vision_config` but being different. for key, value in _vision_config_dict.items(): if key in vision_config and value != vision_config[key] and key not in ["transformers_version"]: # If specified in `vision_config_dict` if key in vision_config_dict: message = ( f"`{key}` is found in both `vision_config_dict` and `vision_config` but with different " f'values. The value `vision_config_dict["{key}"]` will be used instead.' ) # If inferred from default argument values (just to be super careful) else: message = ( f"`vision_config_dict` is provided which will be used to initialize `CLIPVisionConfig`. " f'The value `vision_config["{key}"]` will be overriden.' ) logger.warning(message) # Update all values in `vision_config` with the ones in `_vision_config_dict`. vision_config.update(_vision_config_dict) if text_config is None: text_config = {} logger.info("`text_config` is `None`. Initializing the `CLIPTextConfig` with default values.") if vision_config is None: vision_config = {} logger.info("`vision_config` is `None`. initializing the `CLIPVisionConfig` with default values.") self.text_config = CLIPTextConfig(**text_config) self.vision_config = CLIPVisionConfig(**vision_config) self.projection_dim = projection_dim self.logit_scale_init_value = logit_scale_init_value self.initializer_factor = 1.0 @classmethod def from_text_vision_configs(cls, text_config: CLIPTextConfig, vision_config: CLIPVisionConfig, **kwargs): r""" Instantiate a [`CLIPConfig`] (or a derived class) from clip text model configuration and clip vision model configuration. Returns: [`CLIPConfig`]: An instance of a configuration object """ return cls(text_config=text_config.to_dict(), vision_config=vision_config.to_dict(), **kwargs) def to_dict(self): """ Serializes this instance to a Python dictionary. Override the default [`~PretrainedConfig.to_dict`]. Returns: `Dict[str, any]`: Dictionary of all the attributes that make up this configuration instance, """ output = copy.deepcopy(self.__dict__) output["text_config"] = self.text_config.to_dict() output["vision_config"] = self.vision_config.to_dict() output["model_type"] = self.__class__.model_type return output class CLIPOnnxConfig(OnnxConfig): @property def inputs(self) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ("input_ids", {0: "batch", 1: "sequence"}), ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ("attention_mask", {0: "batch", 1: "sequence"}), ] ) @property def outputs(self) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ("logits_per_image", {0: "batch"}), ("logits_per_text", {0: "batch"}), ("text_embeds", {0: "batch"}), ("image_embeds", {0: "batch"}), ] ) @property def atol_for_validation(self) -> float: return 1e-4 def generate_dummy_inputs( self, processor: "ProcessorMixin", batch_size: int = -1, seq_length: int = -1, framework: Optional["TensorType"] = None, ) -> Mapping[str, Any]: text_input_dict = super().generate_dummy_inputs( processor.tokenizer, batch_size=batch_size, seq_length=seq_length, framework=framework ) image_input_dict = super().generate_dummy_inputs( processor.image_processor, batch_size=batch_size, framework=framework ) return {**text_input_dict, **image_input_dict} @property def default_onnx_opset(self) -> int: return 14
0
hf_public_repos/transformers/src/transformers/models
hf_public_repos/transformers/src/transformers/models/clip/modeling_clip.py
# coding=utf-8 # Copyright 2021 The OpenAI Team Authors and The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ PyTorch CLIP model.""" from dataclasses import dataclass from typing import Any, Optional, Tuple, Union import torch import torch.utils.checkpoint from torch import nn from ...activations import ACT2FN from ...modeling_outputs import BaseModelOutput, BaseModelOutputWithPooling from ...modeling_utils import PreTrainedModel from ...utils import ( ModelOutput, add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings, ) from .configuration_clip import CLIPConfig, CLIPTextConfig, CLIPVisionConfig logger = logging.get_logger(__name__) _CHECKPOINT_FOR_DOC = "openai/clip-vit-base-patch32" CLIP_PRETRAINED_MODEL_ARCHIVE_LIST = [ "openai/clip-vit-base-patch32", # See all CLIP models at https://huggingface.co/models?filter=clip ] # Copied from transformers.models.bart.modeling_bart._expand_mask def _expand_mask(mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int] = None): """ Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`. """ bsz, src_len = mask.size() tgt_len = tgt_len if tgt_len is not None else src_len expanded_mask = mask[:, None, None, :].expand(bsz, 1, tgt_len, src_len).to(dtype) inverted_mask = 1.0 - expanded_mask return inverted_mask.masked_fill(inverted_mask.to(torch.bool), torch.finfo(dtype).min) # contrastive loss function, adapted from # https://sachinruk.github.io/blog/2021-03-07-clip.html def contrastive_loss(logits: torch.Tensor) -> torch.Tensor: return nn.functional.cross_entropy(logits, torch.arange(len(logits), device=logits.device)) def clip_loss(similarity: torch.Tensor) -> torch.Tensor: caption_loss = contrastive_loss(similarity) image_loss = contrastive_loss(similarity.t()) return (caption_loss + image_loss) / 2.0 @dataclass class CLIPVisionModelOutput(ModelOutput): """ Base class for vision model's outputs that also contains image embeddings of the pooling of the last hidden states. Args: image_embeds (`torch.FloatTensor` of shape `(batch_size, output_dim)` *optional* returned when model is initialized with `with_projection=True`): The image embeddings obtained by applying the projection layer to the pooler_output. last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`): Sequence of hidden-states at the output of the last layer of the model. hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the optional initial embedding outputs. attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. """ image_embeds: Optional[torch.FloatTensor] = None last_hidden_state: torch.FloatTensor = None hidden_states: Optional[Tuple[torch.FloatTensor]] = None attentions: Optional[Tuple[torch.FloatTensor]] = None @dataclass class CLIPTextModelOutput(ModelOutput): """ Base class for text model's outputs that also contains a pooling of the last hidden states. Args: text_embeds (`torch.FloatTensor` of shape `(batch_size, output_dim)` *optional* returned when model is initialized with `with_projection=True`): The text embeddings obtained by applying the projection layer to the pooler_output. last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`): Sequence of hidden-states at the output of the last layer of the model. hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the optional initial embedding outputs. attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. """ text_embeds: Optional[torch.FloatTensor] = None last_hidden_state: torch.FloatTensor = None hidden_states: Optional[Tuple[torch.FloatTensor]] = None attentions: Optional[Tuple[torch.FloatTensor]] = None @dataclass class CLIPOutput(ModelOutput): """ Args: loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `return_loss` is `True`): Contrastive loss for image-text similarity. logits_per_image:(`torch.FloatTensor` of shape `(image_batch_size, text_batch_size)`): The scaled dot product scores between `image_embeds` and `text_embeds`. This represents the image-text similarity scores. logits_per_text:(`torch.FloatTensor` of shape `(text_batch_size, image_batch_size)`): The scaled dot product scores between `text_embeds` and `image_embeds`. This represents the text-image similarity scores. text_embeds(`torch.FloatTensor` of shape `(batch_size, output_dim`): The text embeddings obtained by applying the projection layer to the pooled output of [`CLIPTextModel`]. image_embeds(`torch.FloatTensor` of shape `(batch_size, output_dim`): The image embeddings obtained by applying the projection layer to the pooled output of [`CLIPVisionModel`]. text_model_output(`BaseModelOutputWithPooling`): The output of the [`CLIPTextModel`]. vision_model_output(`BaseModelOutputWithPooling`): The output of the [`CLIPVisionModel`]. """ loss: Optional[torch.FloatTensor] = None logits_per_image: torch.FloatTensor = None logits_per_text: torch.FloatTensor = None text_embeds: torch.FloatTensor = None image_embeds: torch.FloatTensor = None text_model_output: BaseModelOutputWithPooling = None vision_model_output: BaseModelOutputWithPooling = None def to_tuple(self) -> Tuple[Any]: return tuple( self[k] if k not in ["text_model_output", "vision_model_output"] else getattr(self, k).to_tuple() for k in self.keys() ) class CLIPVisionEmbeddings(nn.Module): def __init__(self, config: CLIPVisionConfig): super().__init__() self.config = config self.embed_dim = config.hidden_size self.image_size = config.image_size self.patch_size = config.patch_size self.class_embedding = nn.Parameter(torch.randn(self.embed_dim)) self.patch_embedding = nn.Conv2d( in_channels=config.num_channels, out_channels=self.embed_dim, kernel_size=self.patch_size, stride=self.patch_size, bias=False, ) self.num_patches = (self.image_size // self.patch_size) ** 2 self.num_positions = self.num_patches + 1 self.position_embedding = nn.Embedding(self.num_positions, self.embed_dim) self.register_buffer("position_ids", torch.arange(self.num_positions).expand((1, -1)), persistent=False) def forward(self, pixel_values: torch.FloatTensor) -> torch.Tensor: batch_size = pixel_values.shape[0] target_dtype = self.patch_embedding.weight.dtype patch_embeds = self.patch_embedding(pixel_values.to(dtype=target_dtype)) # shape = [*, width, grid, grid] patch_embeds = patch_embeds.flatten(2).transpose(1, 2) class_embeds = self.class_embedding.expand(batch_size, 1, -1) embeddings = torch.cat([class_embeds, patch_embeds], dim=1) embeddings = embeddings + self.position_embedding(self.position_ids) return embeddings class CLIPTextEmbeddings(nn.Module): def __init__(self, config: CLIPTextConfig): super().__init__() embed_dim = config.hidden_size self.token_embedding = nn.Embedding(config.vocab_size, embed_dim) self.position_embedding = nn.Embedding(config.max_position_embeddings, embed_dim) # position_ids (1, len position emb) is contiguous in memory and exported when serialized self.register_buffer( "position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)), persistent=False ) def forward( self, input_ids: Optional[torch.LongTensor] = None, position_ids: Optional[torch.LongTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, ) -> torch.Tensor: seq_length = input_ids.shape[-1] if input_ids is not None else inputs_embeds.shape[-2] if position_ids is None: position_ids = self.position_ids[:, :seq_length] if inputs_embeds is None: inputs_embeds = self.token_embedding(input_ids) position_embeddings = self.position_embedding(position_ids) embeddings = inputs_embeds + position_embeddings return embeddings class CLIPAttention(nn.Module): """Multi-headed attention from 'Attention Is All You Need' paper""" def __init__(self, config): super().__init__() self.config = config self.embed_dim = config.hidden_size self.num_heads = config.num_attention_heads self.head_dim = self.embed_dim // self.num_heads if self.head_dim * self.num_heads != self.embed_dim: raise ValueError( f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:" f" {self.num_heads})." ) self.scale = self.head_dim**-0.5 self.dropout = config.attention_dropout self.k_proj = nn.Linear(self.embed_dim, self.embed_dim) self.v_proj = nn.Linear(self.embed_dim, self.embed_dim) self.q_proj = nn.Linear(self.embed_dim, self.embed_dim) self.out_proj = nn.Linear(self.embed_dim, self.embed_dim) def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int): return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous() def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, causal_attention_mask: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = False, ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: """Input shape: Batch x Time x Channel""" bsz, tgt_len, embed_dim = hidden_states.size() # get query proj query_states = self.q_proj(hidden_states) * self.scale key_states = self._shape(self.k_proj(hidden_states), -1, bsz) value_states = self._shape(self.v_proj(hidden_states), -1, bsz) proj_shape = (bsz * self.num_heads, -1, self.head_dim) query_states = self._shape(query_states, tgt_len, bsz).view(*proj_shape) key_states = key_states.view(*proj_shape) value_states = value_states.view(*proj_shape) src_len = key_states.size(1) attn_weights = torch.bmm(query_states, key_states.transpose(1, 2)) if attn_weights.size() != (bsz * self.num_heads, tgt_len, src_len): raise ValueError( f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is" f" {attn_weights.size()}" ) # apply the causal_attention_mask first if causal_attention_mask is not None: if causal_attention_mask.size() != (bsz, 1, tgt_len, src_len): raise ValueError( f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is" f" {causal_attention_mask.size()}" ) attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + causal_attention_mask attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len) if attention_mask is not None: if attention_mask.size() != (bsz, 1, tgt_len, src_len): raise ValueError( f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is {attention_mask.size()}" ) attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + attention_mask attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len) attn_weights = nn.functional.softmax(attn_weights, dim=-1) if output_attentions: # this operation is a bit akward, but it's required to # make sure that attn_weights keeps its gradient. # In order to do so, attn_weights have to reshaped # twice and have to be reused in the following attn_weights_reshaped = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) attn_weights = attn_weights_reshaped.view(bsz * self.num_heads, tgt_len, src_len) else: attn_weights_reshaped = None attn_probs = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training) attn_output = torch.bmm(attn_probs, value_states) if attn_output.size() != (bsz * self.num_heads, tgt_len, self.head_dim): raise ValueError( f"`attn_output` should be of size {(bsz, self.num_heads, tgt_len, self.head_dim)}, but is" f" {attn_output.size()}" ) attn_output = attn_output.view(bsz, self.num_heads, tgt_len, self.head_dim) attn_output = attn_output.transpose(1, 2) attn_output = attn_output.reshape(bsz, tgt_len, embed_dim) attn_output = self.out_proj(attn_output) return attn_output, attn_weights_reshaped class CLIPMLP(nn.Module): def __init__(self, config): super().__init__() self.config = config self.activation_fn = ACT2FN[config.hidden_act] self.fc1 = nn.Linear(config.hidden_size, config.intermediate_size) self.fc2 = nn.Linear(config.intermediate_size, config.hidden_size) def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: hidden_states = self.fc1(hidden_states) hidden_states = self.activation_fn(hidden_states) hidden_states = self.fc2(hidden_states) return hidden_states class CLIPEncoderLayer(nn.Module): def __init__(self, config: CLIPConfig): super().__init__() self.embed_dim = config.hidden_size self.self_attn = CLIPAttention(config) self.layer_norm1 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps) self.mlp = CLIPMLP(config) self.layer_norm2 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps) def forward( self, hidden_states: torch.Tensor, attention_mask: torch.Tensor, causal_attention_mask: torch.Tensor, output_attentions: Optional[bool] = False, ) -> Tuple[torch.FloatTensor]: """ Args: hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)` attention_mask (`torch.FloatTensor`): attention mask of size `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values. `(config.encoder_attention_heads,)`. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. """ residual = hidden_states hidden_states = self.layer_norm1(hidden_states) hidden_states, attn_weights = self.self_attn( hidden_states=hidden_states, attention_mask=attention_mask, causal_attention_mask=causal_attention_mask, output_attentions=output_attentions, ) hidden_states = residual + hidden_states residual = hidden_states hidden_states = self.layer_norm2(hidden_states) hidden_states = self.mlp(hidden_states) hidden_states = residual + hidden_states outputs = (hidden_states,) if output_attentions: outputs += (attn_weights,) return outputs class CLIPPreTrainedModel(PreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = CLIPConfig base_model_prefix = "clip" supports_gradient_checkpointing = True def _init_weights(self, module): """Initialize the weights""" factor = self.config.initializer_factor if isinstance(module, CLIPTextEmbeddings): module.token_embedding.weight.data.normal_(mean=0.0, std=factor * 0.02) module.position_embedding.weight.data.normal_(mean=0.0, std=factor * 0.02) elif isinstance(module, CLIPVisionEmbeddings): factor = self.config.initializer_factor nn.init.normal_(module.class_embedding, mean=0.0, std=module.embed_dim**-0.5 * factor) nn.init.normal_(module.patch_embedding.weight, std=module.config.initializer_range * factor) nn.init.normal_(module.position_embedding.weight, std=module.config.initializer_range * factor) elif isinstance(module, CLIPAttention): factor = self.config.initializer_factor in_proj_std = (module.embed_dim**-0.5) * ((2 * module.config.num_hidden_layers) ** -0.5) * factor out_proj_std = (module.embed_dim**-0.5) * factor nn.init.normal_(module.q_proj.weight, std=in_proj_std) nn.init.normal_(module.k_proj.weight, std=in_proj_std) nn.init.normal_(module.v_proj.weight, std=in_proj_std) nn.init.normal_(module.out_proj.weight, std=out_proj_std) elif isinstance(module, CLIPMLP): factor = self.config.initializer_factor in_proj_std = ( (module.config.hidden_size**-0.5) * ((2 * module.config.num_hidden_layers) ** -0.5) * factor ) fc_std = (2 * module.config.hidden_size) ** -0.5 * factor nn.init.normal_(module.fc1.weight, std=fc_std) nn.init.normal_(module.fc2.weight, std=in_proj_std) elif isinstance(module, CLIPModel): nn.init.normal_( module.text_projection.weight, std=module.text_embed_dim**-0.5 * self.config.initializer_factor, ) nn.init.normal_( module.visual_projection.weight, std=module.vision_embed_dim**-0.5 * self.config.initializer_factor, ) elif isinstance(module, CLIPVisionModelWithProjection): nn.init.normal_( module.visual_projection.weight, std=self.config.hidden_size**-0.5 * self.config.initializer_factor, ) elif isinstance(module, CLIPTextModelWithProjection): nn.init.normal_( module.text_projection.weight, std=self.config.hidden_size**-0.5 * self.config.initializer_factor, ) if isinstance(module, nn.LayerNorm): module.bias.data.zero_() module.weight.data.fill_(1.0) if isinstance(module, nn.Linear) and module.bias is not None: module.bias.data.zero_() def _set_gradient_checkpointing(self, module, value=False): if isinstance(module, CLIPEncoder): module.gradient_checkpointing = value CLIP_START_DOCSTRING = r""" This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.) This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`CLIPConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ CLIP_TEXT_INPUTS_DOCSTRING = r""" Args: input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide it. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, config.max_position_embeddings - 1]`. [What are position IDs?](../glossary#position-ids) output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ CLIP_VISION_INPUTS_DOCSTRING = r""" Args: pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Padding will be ignored by default should you provide it. Pixel values can be obtained using [`AutoImageProcessor`]. See [`CLIPImageProcessor.__call__`] for details. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ CLIP_INPUTS_DOCSTRING = r""" Args: input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide it. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, config.max_position_embeddings - 1]`. [What are position IDs?](../glossary#position-ids) pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Padding will be ignored by default should you provide it. Pixel values can be obtained using [`AutoImageProcessor`]. See [`CLIPImageProcessor.__call__`] for details. return_loss (`bool`, *optional*): Whether or not to return the contrastive loss. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ class CLIPEncoder(nn.Module): """ Transformer encoder consisting of `config.num_hidden_layers` self attention layers. Each layer is a [`CLIPEncoderLayer`]. Args: config: CLIPConfig """ def __init__(self, config: CLIPConfig): super().__init__() self.config = config self.layers = nn.ModuleList([CLIPEncoderLayer(config) for _ in range(config.num_hidden_layers)]) self.gradient_checkpointing = False def forward( self, inputs_embeds, attention_mask: Optional[torch.Tensor] = None, causal_attention_mask: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, BaseModelOutput]: r""" Args: inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`): Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert `input_ids` indices into associated vectors than the model's internal embedding lookup matrix. attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) causal_attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Causal mask for the text model. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict encoder_states = () if output_hidden_states else None all_attentions = () if output_attentions else None hidden_states = inputs_embeds for idx, encoder_layer in enumerate(self.layers): if output_hidden_states: encoder_states = encoder_states + (hidden_states,) if self.gradient_checkpointing and self.training: def create_custom_forward(module): def custom_forward(*inputs): return module(*inputs, output_attentions) return custom_forward layer_outputs = torch.utils.checkpoint.checkpoint( create_custom_forward(encoder_layer), hidden_states, attention_mask, causal_attention_mask, ) else: layer_outputs = encoder_layer( hidden_states, attention_mask, causal_attention_mask, output_attentions=output_attentions, ) hidden_states = layer_outputs[0] if output_attentions: all_attentions = all_attentions + (layer_outputs[1],) if output_hidden_states: encoder_states = encoder_states + (hidden_states,) if not return_dict: return tuple(v for v in [hidden_states, encoder_states, all_attentions] if v is not None) return BaseModelOutput( last_hidden_state=hidden_states, hidden_states=encoder_states, attentions=all_attentions ) # Copied from transformers.models.bart.modeling_bart._make_causal_mask def _make_causal_mask( input_ids_shape: torch.Size, dtype: torch.dtype, device: torch.device, past_key_values_length: int = 0 ): """ Make causal mask used for bi-directional self-attention. """ bsz, tgt_len = input_ids_shape mask = torch.full((tgt_len, tgt_len), torch.finfo(dtype).min, device=device) mask_cond = torch.arange(mask.size(-1), device=device) mask.masked_fill_(mask_cond < (mask_cond + 1).view(mask.size(-1), 1), 0) mask = mask.to(dtype) if past_key_values_length > 0: mask = torch.cat([torch.zeros(tgt_len, past_key_values_length, dtype=dtype, device=device), mask], dim=-1) return mask[None, None, :, :].expand(bsz, 1, tgt_len, tgt_len + past_key_values_length) class CLIPTextTransformer(nn.Module): def __init__(self, config: CLIPTextConfig): super().__init__() self.config = config embed_dim = config.hidden_size self.embeddings = CLIPTextEmbeddings(config) self.encoder = CLIPEncoder(config) self.final_layer_norm = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps) # For `pooled_output` computation self.eos_token_id = config.eos_token_id @add_start_docstrings_to_model_forward(CLIP_TEXT_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=BaseModelOutputWithPooling, config_class=CLIPTextConfig) def forward( self, input_ids: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, BaseModelOutputWithPooling]: r""" Returns: """ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict if input_ids is None: raise ValueError("You have to specify input_ids") input_shape = input_ids.size() input_ids = input_ids.view(-1, input_shape[-1]) hidden_states = self.embeddings(input_ids=input_ids, position_ids=position_ids) # CLIP's text model uses causal mask, prepare it here. # https://github.com/openai/CLIP/blob/cfcffb90e69f37bf2ff1e988237a0fbe41f33c04/clip/model.py#L324 causal_attention_mask = _make_causal_mask(input_shape, hidden_states.dtype, device=hidden_states.device) # expand attention_mask if attention_mask is not None: # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len] attention_mask = _expand_mask(attention_mask, hidden_states.dtype) encoder_outputs = self.encoder( inputs_embeds=hidden_states, attention_mask=attention_mask, causal_attention_mask=causal_attention_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) last_hidden_state = encoder_outputs[0] last_hidden_state = self.final_layer_norm(last_hidden_state) if self.eos_token_id == 2: # The `eos_token_id` was incorrect before PR #24773: Let's keep what have been done here. # A CLIP model with such `eos_token_id` in the config can't work correctly with extra new tokens added # ------------------------------------------------------------ # text_embeds.shape = [batch_size, sequence_length, transformer.width] # take features from the eot embedding (eot_token is the highest number in each sequence) # casting to torch.int for onnx compatibility: argmax doesn't support int64 inputs with opset 14 pooled_output = last_hidden_state[ torch.arange(last_hidden_state.shape[0], device=last_hidden_state.device), input_ids.to(dtype=torch.int, device=last_hidden_state.device).argmax(dim=-1), ] else: # The config gets updated `eos_token_id` from PR #24773 (so the use of exta new tokens is possible) pooled_output = last_hidden_state[ torch.arange(last_hidden_state.shape[0], device=last_hidden_state.device), # We need to get the first position of `eos_token_id` value (`pad_token_ids` might equal to `eos_token_id`) (input_ids.to(dtype=torch.int, device=last_hidden_state.device) == self.eos_token_id) .int() .argmax(dim=-1), ] if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return BaseModelOutputWithPooling( last_hidden_state=last_hidden_state, pooler_output=pooled_output, hidden_states=encoder_outputs.hidden_states, attentions=encoder_outputs.attentions, ) @add_start_docstrings( """The text model from CLIP without any head or projection on top.""", CLIP_START_DOCSTRING, ) class CLIPTextModel(CLIPPreTrainedModel): config_class = CLIPTextConfig _no_split_modules = ["CLIPEncoderLayer"] def __init__(self, config: CLIPTextConfig): super().__init__(config) self.text_model = CLIPTextTransformer(config) # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self) -> nn.Module: return self.text_model.embeddings.token_embedding def set_input_embeddings(self, value): self.text_model.embeddings.token_embedding = value @add_start_docstrings_to_model_forward(CLIP_TEXT_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=BaseModelOutputWithPooling, config_class=CLIPTextConfig) def forward( self, input_ids: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, BaseModelOutputWithPooling]: r""" Returns: Examples: ```python >>> from transformers import AutoTokenizer, CLIPTextModel >>> model = CLIPTextModel.from_pretrained("openai/clip-vit-base-patch32") >>> tokenizer = AutoTokenizer.from_pretrained("openai/clip-vit-base-patch32") >>> inputs = tokenizer(["a photo of a cat", "a photo of a dog"], padding=True, return_tensors="pt") >>> outputs = model(**inputs) >>> last_hidden_state = outputs.last_hidden_state >>> pooled_output = outputs.pooler_output # pooled (EOS token) states ```""" return_dict = return_dict if return_dict is not None else self.config.use_return_dict return self.text_model( input_ids=input_ids, attention_mask=attention_mask, position_ids=position_ids, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) class CLIPVisionTransformer(nn.Module): def __init__(self, config: CLIPVisionConfig): super().__init__() self.config = config embed_dim = config.hidden_size self.embeddings = CLIPVisionEmbeddings(config) self.pre_layrnorm = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps) self.encoder = CLIPEncoder(config) self.post_layernorm = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps) @add_start_docstrings_to_model_forward(CLIP_VISION_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=BaseModelOutputWithPooling, config_class=CLIPVisionConfig) def forward( self, pixel_values: Optional[torch.FloatTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, BaseModelOutputWithPooling]: r""" Returns: """ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict if pixel_values is None: raise ValueError("You have to specify pixel_values") hidden_states = self.embeddings(pixel_values) hidden_states = self.pre_layrnorm(hidden_states) encoder_outputs = self.encoder( inputs_embeds=hidden_states, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) last_hidden_state = encoder_outputs[0] pooled_output = last_hidden_state[:, 0, :] pooled_output = self.post_layernorm(pooled_output) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return BaseModelOutputWithPooling( last_hidden_state=last_hidden_state, pooler_output=pooled_output, hidden_states=encoder_outputs.hidden_states, attentions=encoder_outputs.attentions, ) @add_start_docstrings( """The vision model from CLIP without any head or projection on top.""", CLIP_START_DOCSTRING, ) class CLIPVisionModel(CLIPPreTrainedModel): config_class = CLIPVisionConfig main_input_name = "pixel_values" def __init__(self, config: CLIPVisionConfig): super().__init__(config) self.vision_model = CLIPVisionTransformer(config) # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self) -> nn.Module: return self.vision_model.embeddings.patch_embedding @add_start_docstrings_to_model_forward(CLIP_VISION_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=BaseModelOutputWithPooling, config_class=CLIPVisionConfig) def forward( self, pixel_values: Optional[torch.FloatTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, BaseModelOutputWithPooling]: r""" Returns: Examples: ```python >>> from PIL import Image >>> import requests >>> from transformers import AutoProcessor, CLIPVisionModel >>> model = CLIPVisionModel.from_pretrained("openai/clip-vit-base-patch32") >>> processor = AutoProcessor.from_pretrained("openai/clip-vit-base-patch32") >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" >>> image = Image.open(requests.get(url, stream=True).raw) >>> inputs = processor(images=image, return_tensors="pt") >>> outputs = model(**inputs) >>> last_hidden_state = outputs.last_hidden_state >>> pooled_output = outputs.pooler_output # pooled CLS states ```""" return_dict = return_dict if return_dict is not None else self.config.use_return_dict return self.vision_model( pixel_values=pixel_values, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) @add_start_docstrings(CLIP_START_DOCSTRING) class CLIPModel(CLIPPreTrainedModel): config_class = CLIPConfig def __init__(self, config: CLIPConfig): super().__init__(config) if not isinstance(config.text_config, CLIPTextConfig): raise ValueError( "config.text_config is expected to be of type CLIPTextConfig but is of type" f" {type(config.text_config)}." ) if not isinstance(config.vision_config, CLIPVisionConfig): raise ValueError( "config.vision_config is expected to be of type CLIPVisionConfig but is of type" f" {type(config.vision_config)}." ) text_config = config.text_config vision_config = config.vision_config self.projection_dim = config.projection_dim self.text_embed_dim = text_config.hidden_size self.vision_embed_dim = vision_config.hidden_size self.text_model = CLIPTextTransformer(text_config) self.vision_model = CLIPVisionTransformer(vision_config) self.visual_projection = nn.Linear(self.vision_embed_dim, self.projection_dim, bias=False) self.text_projection = nn.Linear(self.text_embed_dim, self.projection_dim, bias=False) self.logit_scale = nn.Parameter(torch.tensor(self.config.logit_scale_init_value)) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(CLIP_TEXT_INPUTS_DOCSTRING) def get_text_features( self, input_ids: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> torch.FloatTensor: r""" Returns: text_features (`torch.FloatTensor` of shape `(batch_size, output_dim`): The text embeddings obtained by applying the projection layer to the pooled output of [`CLIPTextModel`]. Examples: ```python >>> from transformers import AutoTokenizer, CLIPModel >>> model = CLIPModel.from_pretrained("openai/clip-vit-base-patch32") >>> tokenizer = AutoTokenizer.from_pretrained("openai/clip-vit-base-patch32") >>> inputs = tokenizer(["a photo of a cat", "a photo of a dog"], padding=True, return_tensors="pt") >>> text_features = model.get_text_features(**inputs) ```""" # Use CLIP model's config for some fields (if specified) instead of those of vision & text components. output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict text_outputs = self.text_model( input_ids=input_ids, attention_mask=attention_mask, position_ids=position_ids, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) pooled_output = text_outputs[1] text_features = self.text_projection(pooled_output) return text_features @add_start_docstrings_to_model_forward(CLIP_VISION_INPUTS_DOCSTRING) def get_image_features( self, pixel_values: Optional[torch.FloatTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> torch.FloatTensor: r""" Returns: image_features (`torch.FloatTensor` of shape `(batch_size, output_dim`): The image embeddings obtained by applying the projection layer to the pooled output of [`CLIPVisionModel`]. Examples: ```python >>> from PIL import Image >>> import requests >>> from transformers import AutoProcessor, CLIPModel >>> model = CLIPModel.from_pretrained("openai/clip-vit-base-patch32") >>> processor = AutoProcessor.from_pretrained("openai/clip-vit-base-patch32") >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" >>> image = Image.open(requests.get(url, stream=True).raw) >>> inputs = processor(images=image, return_tensors="pt") >>> image_features = model.get_image_features(**inputs) ```""" # Use CLIP model's config for some fields (if specified) instead of those of vision & text components. output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict vision_outputs = self.vision_model( pixel_values=pixel_values, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) pooled_output = vision_outputs[1] # pooled_output image_features = self.visual_projection(pooled_output) return image_features @add_start_docstrings_to_model_forward(CLIP_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=CLIPOutput, config_class=CLIPConfig) def forward( self, input_ids: Optional[torch.LongTensor] = None, pixel_values: Optional[torch.FloatTensor] = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, return_loss: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, CLIPOutput]: r""" Returns: Examples: ```python >>> from PIL import Image >>> import requests >>> from transformers import AutoProcessor, CLIPModel >>> model = CLIPModel.from_pretrained("openai/clip-vit-base-patch32") >>> processor = AutoProcessor.from_pretrained("openai/clip-vit-base-patch32") >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" >>> image = Image.open(requests.get(url, stream=True).raw) >>> inputs = processor( ... text=["a photo of a cat", "a photo of a dog"], images=image, return_tensors="pt", padding=True ... ) >>> outputs = model(**inputs) >>> logits_per_image = outputs.logits_per_image # this is the image-text similarity score >>> probs = logits_per_image.softmax(dim=1) # we can take the softmax to get the label probabilities ```""" # Use CLIP model's config for some fields (if specified) instead of those of vision & text components. output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict vision_outputs = self.vision_model( pixel_values=pixel_values, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) text_outputs = self.text_model( input_ids=input_ids, attention_mask=attention_mask, position_ids=position_ids, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) image_embeds = vision_outputs[1] image_embeds = self.visual_projection(image_embeds) text_embeds = text_outputs[1] text_embeds = self.text_projection(text_embeds) # normalized features image_embeds = image_embeds / image_embeds.norm(p=2, dim=-1, keepdim=True) text_embeds = text_embeds / text_embeds.norm(p=2, dim=-1, keepdim=True) # cosine similarity as logits logit_scale = self.logit_scale.exp() logits_per_text = torch.matmul(text_embeds, image_embeds.t()) * logit_scale logits_per_image = logits_per_text.t() loss = None if return_loss: loss = clip_loss(logits_per_text) if not return_dict: output = (logits_per_image, logits_per_text, text_embeds, image_embeds, text_outputs, vision_outputs) return ((loss,) + output) if loss is not None else output return CLIPOutput( loss=loss, logits_per_image=logits_per_image, logits_per_text=logits_per_text, text_embeds=text_embeds, image_embeds=image_embeds, text_model_output=text_outputs, vision_model_output=vision_outputs, ) @add_start_docstrings( """ CLIP Text Model with a projection layer on top (a linear layer on top of the pooled output). """, CLIP_START_DOCSTRING, ) class CLIPTextModelWithProjection(CLIPPreTrainedModel): config_class = CLIPTextConfig _no_split_modules = ["CLIPEncoderLayer"] def __init__(self, config: CLIPTextConfig): super().__init__(config) self.text_model = CLIPTextTransformer(config) self.text_projection = nn.Linear(config.hidden_size, config.projection_dim, bias=False) # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self) -> nn.Module: return self.text_model.embeddings.token_embedding def set_input_embeddings(self, value): self.text_model.embeddings.token_embedding = value @add_start_docstrings_to_model_forward(CLIP_TEXT_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=CLIPTextModelOutput, config_class=CLIPTextConfig) def forward( self, input_ids: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, CLIPTextModelOutput]: r""" Returns: Examples: ```python >>> from transformers import AutoTokenizer, CLIPTextModelWithProjection >>> model = CLIPTextModelWithProjection.from_pretrained("openai/clip-vit-base-patch32") >>> tokenizer = AutoTokenizer.from_pretrained("openai/clip-vit-base-patch32") >>> inputs = tokenizer(["a photo of a cat", "a photo of a dog"], padding=True, return_tensors="pt") >>> outputs = model(**inputs) >>> text_embeds = outputs.text_embeds ```""" return_dict = return_dict if return_dict is not None else self.config.use_return_dict text_outputs = self.text_model( input_ids=input_ids, attention_mask=attention_mask, position_ids=position_ids, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) pooled_output = text_outputs[1] text_embeds = self.text_projection(pooled_output) if not return_dict: outputs = (text_embeds, text_outputs[0]) + text_outputs[2:] return tuple(output for output in outputs if output is not None) return CLIPTextModelOutput( text_embeds=text_embeds, last_hidden_state=text_outputs.last_hidden_state, hidden_states=text_outputs.hidden_states, attentions=text_outputs.attentions, ) @add_start_docstrings( """ CLIP Vision Model with a projection layer on top (a linear layer on top of the pooled output). """, CLIP_START_DOCSTRING, ) class CLIPVisionModelWithProjection(CLIPPreTrainedModel): config_class = CLIPVisionConfig main_input_name = "pixel_values" def __init__(self, config: CLIPVisionConfig): super().__init__(config) self.vision_model = CLIPVisionTransformer(config) self.visual_projection = nn.Linear(config.hidden_size, config.projection_dim, bias=False) # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self) -> nn.Module: return self.vision_model.embeddings.patch_embedding @add_start_docstrings_to_model_forward(CLIP_VISION_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=CLIPVisionModelOutput, config_class=CLIPVisionConfig) def forward( self, pixel_values: Optional[torch.FloatTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, CLIPVisionModelOutput]: r""" Returns: Examples: ```python >>> from PIL import Image >>> import requests >>> from transformers import AutoProcessor, CLIPVisionModelWithProjection >>> model = CLIPVisionModelWithProjection.from_pretrained("openai/clip-vit-base-patch32") >>> processor = AutoProcessor.from_pretrained("openai/clip-vit-base-patch32") >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" >>> image = Image.open(requests.get(url, stream=True).raw) >>> inputs = processor(images=image, return_tensors="pt") >>> outputs = model(**inputs) >>> image_embeds = outputs.image_embeds ```""" return_dict = return_dict if return_dict is not None else self.config.use_return_dict vision_outputs = self.vision_model( pixel_values=pixel_values, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) pooled_output = vision_outputs[1] # pooled_output image_embeds = self.visual_projection(pooled_output) if not return_dict: outputs = (image_embeds, vision_outputs[0]) + vision_outputs[2:] return tuple(output for output in outputs if output is not None) return CLIPVisionModelOutput( image_embeds=image_embeds, last_hidden_state=vision_outputs.last_hidden_state, hidden_states=vision_outputs.hidden_states, attentions=vision_outputs.attentions, )
0
hf_public_repos/transformers/src/transformers/models
hf_public_repos/transformers/src/transformers/models/clip/convert_clip_original_pytorch_to_hf.py
# coding=utf-8 # Copyright 2021 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import torch from clip import load from transformers import CLIPConfig, CLIPModel def copy_attn_layer(hf_attn_layer, pt_attn_layer): q_proj, k_proj, v_proj = pt_attn_layer.in_proj_weight.chunk(3, dim=0) q_proj_bias, k_proj_bias, v_proj_bias = pt_attn_layer.in_proj_bias.chunk(3, dim=0) out_proj_weights = pt_attn_layer.out_proj.weight out_proj_bias = pt_attn_layer.out_proj.bias hf_attn_layer.q_proj.weight.data = q_proj hf_attn_layer.q_proj.bias.data = q_proj_bias hf_attn_layer.k_proj.weight.data = k_proj hf_attn_layer.k_proj.bias.data = k_proj_bias hf_attn_layer.v_proj.weight.data = v_proj hf_attn_layer.v_proj.bias.data = v_proj_bias hf_attn_layer.out_proj.weight = out_proj_weights hf_attn_layer.out_proj.bias = out_proj_bias def copy_mlp(hf_mlp, pt_mlp): copy_linear(hf_mlp.fc1, pt_mlp.c_fc) copy_linear(hf_mlp.fc2, pt_mlp.c_proj) def copy_linear(hf_linear, pt_linear): hf_linear.weight = pt_linear.weight hf_linear.bias = pt_linear.bias def copy_layer(hf_layer, pt_layer): # copy layer norms copy_linear(hf_layer.layer_norm1, pt_layer.ln_1) copy_linear(hf_layer.layer_norm2, pt_layer.ln_2) # copy MLP copy_mlp(hf_layer.mlp, pt_layer.mlp) # copy attn copy_attn_layer(hf_layer.self_attn, pt_layer.attn) def copy_layers(hf_layers, pt_layers): for hf_layer, pt_layer in zip(hf_layers, pt_layers): copy_layer(hf_layer, pt_layer) def copy_encoder(hf_encoder, pt_model): # copy embeds hf_encoder.embeddings.token_embedding.weight = pt_model.token_embedding.weight hf_encoder.embeddings.position_embedding.weight.data = pt_model.positional_embedding # copy layer norm copy_linear(hf_encoder.final_layer_norm, pt_model.ln_final) # copy hidden layers copy_layers(hf_encoder.encoder.layers, pt_model.transformer.resblocks) def copy_text_model_and_projection(hf_model, pt_model): # copy projection hf_model.text_projection.weight.data = pt_model.text_projection.data.T # copy text encoder copy_encoder(hf_model.text_model, pt_model) def copy_vison_model_and_projection(hf_model, pt_model): # copy projection hf_model.visual_projection.weight.data = pt_model.visual.proj.data.T # copy layer norms copy_linear(hf_model.vision_model.pre_layrnorm, pt_model.visual.ln_pre) copy_linear(hf_model.vision_model.post_layernorm, pt_model.visual.ln_post) # copy embeds hf_model.vision_model.embeddings.patch_embedding.weight.data = pt_model.visual.conv1.weight.data hf_model.vision_model.embeddings.class_embedding = pt_model.visual.class_embedding hf_model.vision_model.embeddings.position_embedding.weight.data = pt_model.visual.positional_embedding.data # copy encoder copy_layers(hf_model.vision_model.encoder.layers, pt_model.visual.transformer.resblocks) @torch.no_grad() def convert_clip_checkpoint(checkpoint_path, pytorch_dump_folder_path, config_path=None): """ Copy/paste/tweak model's weights to transformers design. """ if config_path is not None: config = CLIPConfig.from_pretrained(config_path) else: config = CLIPConfig(projection_dim=512, text_config={}, vision_config={}) hf_model = CLIPModel(config).eval() pt_model, _ = load(checkpoint_path, device="cpu", jit=False) pt_model = pt_model.eval() copy_text_model_and_projection(hf_model, pt_model) copy_vison_model_and_projection(hf_model, pt_model) hf_model.logit_scale = pt_model.logit_scale input_ids = torch.arange(0, 77).unsqueeze(0) pixel_values = torch.randn(1, 3, 224, 224) hf_outputs = hf_model(input_ids=input_ids, pixel_values=pixel_values, return_dict=True) hf_logits_per_image = hf_outputs.logits_per_image hf_logits_per_text = hf_outputs.logits_per_text pt_logits_per_image, pt_logits_per_text = pt_model(pixel_values, input_ids) assert torch.allclose(hf_logits_per_image, pt_logits_per_image, atol=1e-3) assert torch.allclose(hf_logits_per_text, pt_logits_per_text, atol=1e-3) hf_model.save_pretrained(pytorch_dump_folder_path) if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") args = parser.parse_args() convert_clip_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path)
0
hf_public_repos/transformers/src/transformers/models
hf_public_repos/transformers/src/transformers/models/bertweet/__init__.py
# Copyright 2020 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import _LazyModule _import_structure = {"tokenization_bertweet": ["BertweetTokenizer"]} if TYPE_CHECKING: from .tokenization_bertweet import BertweetTokenizer else: import sys sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
0
hf_public_repos/transformers/src/transformers/models
hf_public_repos/transformers/src/transformers/models/bertweet/tokenization_bertweet.py
# coding=utf-8 # Copyright (c) 2020, VinAI Research and the HuggingFace Inc. team. # Copyright 2018 The Open AI Team Authors and The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Tokenization classes for BERTweet""" import html import os import re from shutil import copyfile from typing import List, Optional, Tuple import regex from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging logger = logging.get_logger(__name__) VOCAB_FILES_NAMES = { "vocab_file": "vocab.txt", "merges_file": "bpe.codes", } PRETRAINED_VOCAB_FILES_MAP = { "vocab_file": { "vinai/bertweet-base": "https://huggingface.co/vinai/bertweet-base/resolve/main/vocab.txt", }, "merges_file": { "vinai/bertweet-base": "https://huggingface.co/vinai/bertweet-base/resolve/main/bpe.codes", }, } PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = { "vinai/bertweet-base": 128, } def get_pairs(word): """ Return set of symbol pairs in a word. Word is represented as tuple of symbols (symbols being variable-length strings). """ pairs = set() prev_char = word[0] for char in word[1:]: pairs.add((prev_char, char)) prev_char = char pairs = set(pairs) return pairs class BertweetTokenizer(PreTrainedTokenizer): """ Constructs a BERTweet tokenizer, using Byte-Pair-Encoding. This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to this superclass for more information regarding those methods. Args: vocab_file (`str`): Path to the vocabulary file. merges_file (`str`): Path to the merges file. normalization (`bool`, *optional*, defaults to `False`) Whether or not to apply a normalization preprocess. bos_token (`str`, *optional*, defaults to `"<s>"`): The beginning of sequence token that was used during pretraining. Can be used a sequence classifier token. <Tip> When building a sequence using special tokens, this is not the token that is used for the beginning of sequence. The token used is the `cls_token`. </Tip> eos_token (`str`, *optional*, defaults to `"</s>"`): The end of sequence token. <Tip> When building a sequence using special tokens, this is not the token that is used for the end of sequence. The token used is the `sep_token`. </Tip> sep_token (`str`, *optional*, defaults to `"</s>"`): The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for sequence classification or for a text and a question for question answering. It is also used as the last token of a sequence built with special tokens. cls_token (`str`, *optional*, defaults to `"<s>"`): The classifier token which is used when doing sequence classification (classification of the whole sequence instead of per-token classification). It is the first token of the sequence when built with special tokens. unk_token (`str`, *optional*, defaults to `"<unk>"`): The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this token instead. pad_token (`str`, *optional*, defaults to `"<pad>"`): The token used for padding, for example when batching sequences of different lengths. mask_token (`str`, *optional*, defaults to `"<mask>"`): The token used for masking values. This is the token used when training this model with masked language modeling. This is the token which the model will try to predict. """ vocab_files_names = VOCAB_FILES_NAMES pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self, vocab_file, merges_file, normalization=False, bos_token="<s>", eos_token="</s>", sep_token="</s>", cls_token="<s>", unk_token="<unk>", pad_token="<pad>", mask_token="<mask>", **kwargs, ): super().__init__( normalization=normalization, bos_token=bos_token, eos_token=eos_token, sep_token=sep_token, cls_token=cls_token, unk_token=unk_token, pad_token=pad_token, mask_token=mask_token, **kwargs, ) try: from emoji import demojize self.demojizer = demojize except ImportError: logger.warning( "emoji is not installed, thus not converting emoticons or emojis into text. Install emoji: pip3" " install emoji==0.6.0" ) self.demojizer = None self.vocab_file = vocab_file self.merges_file = merges_file self.encoder = {} self.encoder[self.bos_token] = 0 self.encoder[self.pad_token] = 1 self.encoder[self.eos_token] = 2 self.encoder[self.unk_token] = 3 self.add_from_file(vocab_file) self.decoder = {v: k for k, v in self.encoder.items()} with open(merges_file, encoding="utf-8") as merges_handle: merges = merges_handle.read().split("\n")[:-1] merges = [tuple(merge.split()[:-1]) for merge in merges] self.bpe_ranks = dict(zip(merges, range(len(merges)))) self.cache = {} self.normalization = normalization self.tweetPreprocessor = TweetTokenizer() self.special_puncts = {"’": "'", "…": "..."} def build_inputs_with_special_tokens( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None ) -> List[int]: """ Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and adding special tokens. A BERTweet sequence has the following format: - single sequence: `<s> X </s>` - pair of sequences: `<s> A </s></s> B </s>` Args: token_ids_0 (`List[int]`): List of IDs to which the special tokens will be added. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. Returns: `List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens. """ if token_ids_1 is None: return [self.cls_token_id] + token_ids_0 + [self.sep_token_id] cls = [self.cls_token_id] sep = [self.sep_token_id] return cls + token_ids_0 + sep + sep + token_ids_1 + sep def get_special_tokens_mask( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False ) -> List[int]: """ Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding special tokens using the tokenizer `prepare_for_model` method. Args: token_ids_0 (`List[int]`): List of IDs. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. already_has_special_tokens (`bool`, *optional*, defaults to `False`): Whether or not the token list is already formatted with special tokens for the model. Returns: `List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token. """ if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True ) if token_ids_1 is None: return [1] + ([0] * len(token_ids_0)) + [1] return [1] + ([0] * len(token_ids_0)) + [1, 1] + ([0] * len(token_ids_1)) + [1] def create_token_type_ids_from_sequences( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None ) -> List[int]: """ Create a mask from the two sequences passed to be used in a sequence-pair classification task. BERTweet does not make use of token type ids, therefore a list of zeros is returned. Args: token_ids_0 (`List[int]`): List of IDs. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. Returns: `List[int]`: List of zeros. """ sep = [self.sep_token_id] cls = [self.cls_token_id] if token_ids_1 is None: return len(cls + token_ids_0 + sep) * [0] return len(cls + token_ids_0 + sep + sep + token_ids_1 + sep) * [0] @property def vocab_size(self): return len(self.encoder) def get_vocab(self): return dict(self.encoder, **self.added_tokens_encoder) def bpe(self, token): if token in self.cache: return self.cache[token] word = tuple(token) word = tuple(list(word[:-1]) + [word[-1] + "</w>"]) pairs = get_pairs(word) if not pairs: return token while True: bigram = min(pairs, key=lambda pair: self.bpe_ranks.get(pair, float("inf"))) if bigram not in self.bpe_ranks: break first, second = bigram new_word = [] i = 0 while i < len(word): try: j = word.index(first, i) except ValueError: new_word.extend(word[i:]) break else: new_word.extend(word[i:j]) i = j if word[i] == first and i < len(word) - 1 and word[i + 1] == second: new_word.append(first + second) i += 2 else: new_word.append(word[i]) i += 1 new_word = tuple(new_word) word = new_word if len(word) == 1: break else: pairs = get_pairs(word) word = "@@ ".join(word) word = word[:-4] self.cache[token] = word return word def _tokenize(self, text): """Tokenize a string.""" if self.normalization: # Perform Tweet normalization before performing BPE text = self.normalizeTweet(text) split_tokens = [] words = re.findall(r"\S+\n?", text) for token in words: split_tokens.extend(list(self.bpe(token).split(" "))) return split_tokens def normalizeTweet(self, tweet): """ Normalize a raw Tweet """ for punct in self.special_puncts: tweet = tweet.replace(punct, self.special_puncts[punct]) tokens = self.tweetPreprocessor.tokenize(tweet) normTweet = " ".join([self.normalizeToken(token) for token in tokens]) normTweet = ( normTweet.replace("cannot ", "can not ") .replace("n't ", " n't ") .replace("n 't ", " n't ") .replace("ca n't", "can't") .replace("ai n't", "ain't") ) normTweet = ( normTweet.replace("'m ", " 'm ") .replace("'re ", " 're ") .replace("'s ", " 's ") .replace("'ll ", " 'll ") .replace("'d ", " 'd ") .replace("'ve ", " 've ") ) normTweet = ( normTweet.replace(" p . m .", " p.m.") .replace(" p . m ", " p.m ") .replace(" a . m .", " a.m.") .replace(" a . m ", " a.m ") ) return " ".join(normTweet.split()) def normalizeToken(self, token): """ Normalize tokens in a Tweet """ lowercased_token = token.lower() if token.startswith("@"): return "@USER" elif lowercased_token.startswith("http") or lowercased_token.startswith("www"): return "HTTPURL" elif len(token) == 1: if token in self.special_puncts: return self.special_puncts[token] if self.demojizer is not None: return self.demojizer(token) else: return token else: return token def _convert_token_to_id(self, token): """Converts a token (str) in an id using the vocab.""" return self.encoder.get(token, self.encoder.get(self.unk_token)) def _convert_id_to_token(self, index): """Converts an index (integer) in a token (str) using the vocab.""" return self.decoder.get(index, self.unk_token) def convert_tokens_to_string(self, tokens): """Converts a sequence of tokens (string) in a single string.""" out_string = " ".join(tokens).replace("@@ ", "").strip() return out_string def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]: if not os.path.isdir(save_directory): logger.error(f"Vocabulary path ({save_directory}) should be a directory") return out_vocab_file = os.path.join( save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) out_merge_file = os.path.join( save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] ) if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file): copyfile(self.vocab_file, out_vocab_file) if os.path.abspath(self.merges_file) != os.path.abspath(out_merge_file): copyfile(self.merges_file, out_merge_file) return out_vocab_file, out_merge_file # def decode(self, token_ids, skip_special_tokens=False, clean_up_tokenization_spaces=True): # filtered_tokens = ' '.join(self.convert_ids_to_tokens(token_ids, skip_special_tokens=skip_special_tokens)) # tokens_generated_so_far = re.sub('(@@ )', '', string=filtered_tokens) # tokens_generated_so_far = re.sub('(@@ ?$)', '', string=tokens_generated_so_far) # return ''.join(tokens_generated_so_far) def add_from_file(self, f): """ Loads a pre-existing dictionary from a text file and adds its symbols to this instance. """ if isinstance(f, str): try: with open(f, "r", encoding="utf-8") as fd: self.add_from_file(fd) except FileNotFoundError as fnfe: raise fnfe except UnicodeError: raise Exception(f"Incorrect encoding detected in {f}, please rebuild the dataset") return lines = f.readlines() for lineTmp in lines: line = lineTmp.strip() idx = line.rfind(" ") if idx == -1: raise ValueError("Incorrect dictionary format, expected '<token> <cnt>'") word = line[:idx] self.encoder[word] = len(self.encoder) # Natural Language Toolkit: Twitter Tokenizer # # Copyright (C) 2001-2020 NLTK Project # Author: Christopher Potts <[email protected]> # Ewan Klein <[email protected]> (modifications) # Pierpaolo Pantone <> (modifications) # URL: http://nltk.org/ # For license information, see LICENSE.TXT # """ Twitter-aware tokenizer, designed to be flexible and easy to adapt to new domains and tasks. The basic logic is this: 1. The tuple regex_strings defines a list of regular expression strings. 2. The regex_strings strings are put, in order, into a compiled regular expression object called word_re. 3. The tokenization is done by word_re.findall(s), where s is the user-supplied string, inside the tokenize() method of the class Tokenizer. 4. When instantiating Tokenizer objects, there is a single option: preserve_case. By default, it is set to True. If it is set to False, then the tokenizer will lowercase everything except for emoticons. """ ###################################################################### # # import regex # https://github.com/nltk/nltk/issues/2409 # import html # ###################################################################### # The following strings are components in the regular expression # that is used for tokenizing. It's important that phone_number # appears first in the final regex (since it can contain whitespace). # It also could matter that tags comes after emoticons, due to the # possibility of having text like # # <:| and some text >:) # # Most importantly, the final element should always be last, since it # does a last ditch whitespace-based tokenization of whatever is left. # ToDo: Update with http://en.wikipedia.org/wiki/List_of_emoticons ? # This particular element is used in a couple ways, so we define it # with a name: # docstyle-ignore EMOTICONS = r""" (?: [<>]? [:;=8] # eyes [\-o\*\']? # optional nose [\)\]\(\[dDpP/\:\}\{@\|\\] # mouth | [\)\]\(\[dDpP/\:\}\{@\|\\] # mouth [\-o\*\']? # optional nose [:;=8] # eyes [<>]? | <3 # heart )""" # URL pattern due to John Gruber, modified by Tom Winzig. See # https://gist.github.com/winzig/8894715 # docstyle-ignore URLS = r""" # Capture 1: entire matched URL (?: https?: # URL protocol and colon (?: /{1,3} # 1-3 slashes | # or [a-z0-9%] # Single letter or digit or '%' # (Trying not to match e.g. "URI::Escape") ) | # or # looks like domain name followed by a slash: [a-z0-9.\-]+[.] (?:[a-z]{2,13}) / ) (?: # One or more: [^\s()<>{}\[\]]+ # Run of non-space, non-()<>{}[] | # or \([^\s()]*?\([^\s()]+\)[^\s()]*?\) # balanced parens, one level deep: (...(...)...) | \([^\s]+?\) # balanced parens, non-recursive: (...) )+ (?: # End with: \([^\s()]*?\([^\s()]+\)[^\s()]*?\) # balanced parens, one level deep: (...(...)...) | \([^\s]+?\) # balanced parens, non-recursive: (...) | # or [^\s`!()\[\]{};:'".,<>?«»“”‘’] # not a space or one of these punct chars ) | # OR, the following to match naked domains: (?: (?<!@) # not preceded by a @, avoid matching foo@_gmail.com_ [a-z0-9]+ (?:[.\-][a-z0-9]+)* [.] (?:[a-z]{2,13}) \b /? (?!@) # not succeeded by a @, # avoid matching "foo.na" in "[email protected]" ) """ # docstyle-ignore # The components of the tokenizer: REGEXPS = ( URLS, # Phone numbers: r""" (?: (?: # (international) \+?[01] [ *\-.\)]* )? (?: # (area code) [\(]? \d{3} [ *\-.\)]* )? \d{3} # exchange [ *\-.\)]* \d{4} # base )""", # ASCII Emoticons EMOTICONS, # HTML tags: r"""<[^>\s]+>""", # ASCII Arrows r"""[\-]+>|<[\-]+""", # Twitter username: r"""(?:@[\w_]+)""", # Twitter hashtags: r"""(?:\#+[\w_]+[\w\'_\-]*[\w_]+)""", # email addresses r"""[\w.+-]+@[\w-]+\.(?:[\w-]\.?)+[\w-]""", # docstyle-ignore # Remaining word types: r""" (?:[^\W\d_](?:[^\W\d_]|['\-_])+[^\W\d_]) # Words with apostrophes or dashes. | (?:[+\-]?\d+[,/.:-]\d+[+\-]?) # Numbers, including fractions, decimals. | (?:[\w_]+) # Words without apostrophes or dashes. | (?:\.(?:\s*\.){1,}) # Ellipsis dots. | (?:\S) # Everything else that isn't whitespace. """, ) ###################################################################### # This is the core tokenizing regex: WORD_RE = regex.compile(r"""(%s)""" % "|".join(REGEXPS), regex.VERBOSE | regex.I | regex.UNICODE) # WORD_RE performs poorly on these patterns: HANG_RE = regex.compile(r"([^a-zA-Z0-9])\1{3,}") # The emoticon string gets its own regex so that we can preserve case for # them as needed: EMOTICON_RE = regex.compile(EMOTICONS, regex.VERBOSE | regex.I | regex.UNICODE) # These are for regularizing HTML entities to Unicode: ENT_RE = regex.compile(r"&(#?(x?))([^&;\s]+);") ###################################################################### # Functions for converting html entities ###################################################################### def _str_to_unicode(text, encoding=None, errors="strict"): if encoding is None: encoding = "utf-8" if isinstance(text, bytes): return text.decode(encoding, errors) return text def _replace_html_entities(text, keep=(), remove_illegal=True, encoding="utf-8"): """ Remove entities from text by converting them to their corresponding unicode character. Args: text: A unicode string or a byte string encoded in the given *encoding* (which defaults to 'utf-8'). keep (list): List of entity names which should not be replaced. This supports both numeric entities (`&#nnnn;` and `&#hhhh;`) and named entities (such as `&nbsp;` or `&gt;`). remove_illegal (bool): If `True`, entities that can't be converted are removed. Otherwise, entities that can't be converted are kept "as is". Returns: A unicode string with the entities removed. See https://github.com/scrapy/w3lib/blob/master/w3lib/html.py Examples: ```python >>> from nltk.tokenize.casual import _replace_html_entities >>> _replace_html_entities(b"Price: &pound;100") 'Price: \\xa3100' >>> print(_replace_html_entities(b"Price: &pound;100")) Price: £100 ```""" def _convert_entity(match): entity_body = match.group(3) if match.group(1): try: if match.group(2): number = int(entity_body, 16) else: number = int(entity_body, 10) # Numeric character references in the 80-9F range are typically # interpreted by browsers as representing the characters mapped # to bytes 80-9F in the Windows-1252 encoding. For more info # see: https://en.wikipedia.org/wiki/ISO/IEC_8859-1#Similar_character_sets if 0x80 <= number <= 0x9F: return bytes((number,)).decode("cp1252") except ValueError: number = None else: if entity_body in keep: return match.group(0) else: number = html.entities.name2codepoint.get(entity_body) if number is not None: try: return chr(number) except (ValueError, OverflowError): pass return "" if remove_illegal else match.group(0) return ENT_RE.sub(_convert_entity, _str_to_unicode(text, encoding)) ###################################################################### class TweetTokenizer: r""" Examples: ```python >>> # Tokenizer for tweets. >>> from nltk.tokenize import TweetTokenizer >>> tknzr = TweetTokenizer() >>> s0 = "This is a cooool #dummysmiley: :-) :-P <3 and some arrows < > -> <--" >>> tknzr.tokenize(s0) ['This', 'is', 'a', 'cooool', '#dummysmiley', ':', ':-)', ':-P', '<3', 'and', 'some', 'arrows', '<', '>', '->', '<--'] >>> # Examples using *strip_handles* and *reduce_len parameters*: >>> tknzr = TweetTokenizer(strip_handles=True, reduce_len=True) >>> s1 = "@remy: This is waaaaayyyy too much for you!!!!!!" >>> tknzr.tokenize(s1) [':', 'This', 'is', 'waaayyy', 'too', 'much', 'for', 'you', '!', '!', '!'] ```""" def __init__(self, preserve_case=True, reduce_len=False, strip_handles=False): self.preserve_case = preserve_case self.reduce_len = reduce_len self.strip_handles = strip_handles def tokenize(self, text): """ Args: text: str Returns: list(str) A tokenized list of strings; concatenating this list returns the original string if `preserve_case=False` """ # Fix HTML character entities: text = _replace_html_entities(text) # Remove username handles if self.strip_handles: text = remove_handles(text) # Normalize word lengthening if self.reduce_len: text = reduce_lengthening(text) # Shorten problematic sequences of characters safe_text = HANG_RE.sub(r"\1\1\1", text) # Tokenize: words = WORD_RE.findall(safe_text) # Possibly alter the case, but avoid changing emoticons like :D into :d: if not self.preserve_case: words = [x if EMOTICON_RE.search(x) else x.lower() for x in words] return words ###################################################################### # Normalization Functions ###################################################################### def reduce_lengthening(text): """ Replace repeated character sequences of length 3 or greater with sequences of length 3. """ pattern = regex.compile(r"(.)\1{2,}") return pattern.sub(r"\1\1\1", text) def remove_handles(text): """ Remove Twitter username handles from text. """ pattern = regex.compile( r"(?<![A-Za-z0-9_!@#\$%&*])@(([A-Za-z0-9_]){20}(?!@))|(?<![A-Za-z0-9_!@#\$%&*])@(([A-Za-z0-9_]){1,19})(?![A-Za-z0-9_]*@)" ) # Substitute handles with ' ' to ensure that text on either side of removed handles are tokenized correctly return pattern.sub(" ", text) ###################################################################### # Tokenization Function ###################################################################### def casual_tokenize(text, preserve_case=True, reduce_len=False, strip_handles=False): """ Convenience function for wrapping the tokenizer. """ return TweetTokenizer(preserve_case=preserve_case, reduce_len=reduce_len, strip_handles=strip_handles).tokenize( text ) ###############################################################################
0
hf_public_repos/transformers/src/transformers/models
hf_public_repos/transformers/src/transformers/models/tapas/__init__.py
# Copyright 2020 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available _import_structure = { "configuration_tapas": ["TAPAS_PRETRAINED_CONFIG_ARCHIVE_MAP", "TapasConfig"], "tokenization_tapas": ["TapasTokenizer"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["modeling_tapas"] = [ "TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST", "TapasForMaskedLM", "TapasForQuestionAnswering", "TapasForSequenceClassification", "TapasModel", "TapasPreTrainedModel", "load_tf_weights_in_tapas", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["modeling_tf_tapas"] = [ "TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST", "TFTapasForMaskedLM", "TFTapasForQuestionAnswering", "TFTapasForSequenceClassification", "TFTapasModel", "TFTapasPreTrainedModel", ] if TYPE_CHECKING: from .configuration_tapas import TAPAS_PRETRAINED_CONFIG_ARCHIVE_MAP, TapasConfig from .tokenization_tapas import TapasTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tapas import ( TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST, TapasForMaskedLM, TapasForQuestionAnswering, TapasForSequenceClassification, TapasModel, TapasPreTrainedModel, load_tf_weights_in_tapas, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_tapas import ( TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST, TFTapasForMaskedLM, TFTapasForQuestionAnswering, TFTapasForSequenceClassification, TFTapasModel, TFTapasPreTrainedModel, ) else: import sys sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
0
hf_public_repos/transformers/src/transformers/models
hf_public_repos/transformers/src/transformers/models/tapas/modeling_tf_tapas.py
# coding=utf-8 # Copyright 2021 Google Research and The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """TF 2.0 TAPAS model.""" from __future__ import annotations import enum import math from dataclasses import dataclass from typing import Dict, Optional, Tuple, Union import numpy as np import tensorflow as tf from ...activations_tf import get_tf_activation from ...modeling_tf_outputs import ( TFBaseModelOutputWithPastAndCrossAttentions, TFBaseModelOutputWithPooling, TFMaskedLMOutput, TFSequenceClassifierOutput, ) from ...modeling_tf_utils import ( TFMaskedLanguageModelingLoss, TFModelInputType, TFPreTrainedModel, TFSequenceClassificationLoss, get_initializer, keras_serializable, unpack_inputs, ) from ...tf_utils import check_embeddings_within_bounds, shape_list, stable_softmax from ...utils import ( ModelOutput, add_start_docstrings, add_start_docstrings_to_model_forward, is_tensorflow_probability_available, logging, replace_return_docstrings, requires_backends, ) from .configuration_tapas import TapasConfig logger = logging.get_logger(__name__) # soft dependency if is_tensorflow_probability_available(): try: import tensorflow_probability as tfp # On the first call, check whether a compatible version of TensorFlow is installed # TensorFlow Probability depends on a recent stable release of TensorFlow n = tfp.distributions.Normal(loc=0.0, scale=1.0) except ImportError: logger.error( "TAPAS models are not usable since `tensorflow_probability` can't be loaded." "It seems you have `tensorflow_probability` installed with the wrong tensorflow version." "Please try to reinstall it following the instructions here: https://github.com/tensorflow/probability." ) _CONFIG_FOR_DOC = "TapasConfig" _CHECKPOINT_FOR_DOC = "google/tapas-base" TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST = [ # large models "google/tapas-large", "google/tapas-large-finetuned-sqa", "google/tapas-large-finetuned-wtq", "google/tapas-large-finetuned-wikisql-supervised", "google/tapas-large-finetuned-tabfact", # base models "google/tapas-base", "google/tapas-base-finetuned-sqa", "google/tapas-base-finetuned-wtq", "google/tapas-base-finetuned-wikisql-supervised", "google/tapas-base-finetuned-tabfact", # small models "google/tapas-small", "google/tapas-small-finetuned-sqa", "google/tapas-small-finetuned-wtq", "google/tapas-small-finetuned-wikisql-supervised", "google/tapas-small-finetuned-tabfact", # mini models "google/tapas-mini", "google/tapas-mini-finetuned-sqa", "google/tapas-mini-finetuned-wtq", "google/tapas-mini-finetuned-wikisql-supervised", "google/tapas-mini-finetuned-tabfact", # tiny models "google/tapas-tiny", "google/tapas-tiny-finetuned-sqa", "google/tapas-tiny-finetuned-wtq", "google/tapas-tiny-finetuned-wikisql-supervised", "google/tapas-tiny-finetuned-tabfact", # See all TAPAS models at https://huggingface.co/models?filter=tapas ] EPSILON_ZERO_DIVISION = 1e-10 CLOSE_ENOUGH_TO_LOG_ZERO = -10000.0 @dataclass class TFTableQuestionAnsweringOutput(ModelOutput): """ Output type of [`TFTapasForQuestionAnswering`]. Args: loss (`tf.Tensor` of shape `(1,)`, *optional*, returned when `labels` (and possibly `answer`, `aggregation_labels`, `numeric_values` and `numeric_values_scale` are provided)): Total loss as the sum of the hierarchical cell selection log-likelihood loss and (optionally) the semi-supervised regression loss and (optionally) supervised loss for aggregations. logits (`tf.Tensor` of shape `(batch_size, sequence_length)`): Prediction scores of the cell selection head, for every token. logits_aggregation (`tf.Tensor`, *optional*, of shape `(batch_size, num_aggregation_labels)`): Prediction scores of the aggregation head, for every aggregation operator. hidden_states (`tuple(tf.Tensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `tf.Tensor` (one for the output of the embeddings + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the initial embedding outputs. attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `tf.Tensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. """ loss: tf.Tensor | None = None logits: tf.Tensor = None logits_aggregation: tf.Tensor | None = None hidden_states: Tuple[tf.Tensor] | None = None attentions: Tuple[tf.Tensor] | None = None class TFTapasEmbeddings(tf.keras.layers.Layer): """ Construct the embeddings from word, position and token_type embeddings. Same as BertEmbeddings but with a number of additional token type embeddings to encode tabular structure. """ def __init__(self, config: TapasConfig, **kwargs): super().__init__(**kwargs) self.config = config self.number_of_token_type_embeddings = len(config.type_vocab_sizes) self.reset_position_index_per_cell = config.reset_position_index_per_cell self.hidden_size = config.hidden_size self.max_position_embeddings = config.max_position_embeddings self.initializer_range = config.initializer_range self.LayerNorm = tf.keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="LayerNorm") self.dropout = tf.keras.layers.Dropout(rate=config.hidden_dropout_prob) def build(self, input_shape: tf.TensorShape): with tf.name_scope("word_embeddings"): self.weight = self.add_weight( name="weight", shape=[self.config.vocab_size, self.hidden_size], initializer=get_initializer(self.initializer_range), ) with tf.name_scope("position_embeddings"): self.position_embeddings = self.add_weight( name="embeddings", shape=[self.max_position_embeddings, self.hidden_size], initializer=get_initializer(self.initializer_range), ) for i, type_vocab_size in enumerate(self.config.type_vocab_sizes): with tf.name_scope(f"token_type_embeddings_{i}"): setattr( self, f"token_type_embeddings_{i}", self.add_weight( name="embeddings", shape=[type_vocab_size, self.hidden_size], initializer=get_initializer(self.initializer_range), ), ) super().build(input_shape) def call( self, input_ids: tf.Tensor = None, position_ids: tf.Tensor = None, token_type_ids: tf.Tensor = None, inputs_embeds: tf.Tensor = None, training: bool = False, ) -> tf.Tensor: """ Applies embedding based on inputs tensor. Returns: final_embeddings (`tf.Tensor`): output embedding tensor. """ assert not (input_ids is None and inputs_embeds is None) if input_ids is not None: input_shape = shape_list(input_ids) else: input_shape = shape_list(inputs_embeds)[:-1] seq_length = input_shape[1] if token_type_ids is None: token_type_ids = tf.fill(dims=input_shape + [self.number_of_token_type_embeddings], value=0) if position_ids is None: # create absolute position embeddings position_ids = tf.expand_dims(tf.range(start=0, limit=seq_length), axis=0) position_ids = tf.broadcast_to(position_ids, shape=input_shape) # when self.config.reset_position_index_per_cell is set to True, create relative position embeddings if self.reset_position_index_per_cell: # shape (batch_size, seq_len) col_index = IndexMap(token_type_ids[:, :, 1], self.config.type_vocab_sizes[1], batch_dims=1) # shape (batch_size, seq_len) row_index = IndexMap(token_type_ids[:, :, 2], self.config.type_vocab_sizes[2], batch_dims=1) # shape (batch_size, seq_len) full_index = ProductIndexMap(col_index, row_index) # shape (max_rows * max_columns,). First absolute position for every cell first_position_per_segment = reduce_min(position_ids, full_index)[0] # ? shape (batch_size, seq_len). First absolute position of the cell for every token first_position = gather(first_position_per_segment, full_index) # shape (1, seq_len) position = tf.expand_dims(tf.range(start=0, limit=seq_length), axis=0) position_ids = tf.math.minimum(self.max_position_embeddings - 1, position - first_position) if input_ids is not None: check_embeddings_within_bounds(input_ids, self.config.vocab_size) inputs_embeds = tf.gather(params=self.weight, indices=input_ids) position_embeddings = tf.gather(self.position_embeddings, indices=position_ids) final_embeddings = inputs_embeds + position_embeddings for i in range(self.number_of_token_type_embeddings): name = f"token_type_embeddings_{i}" final_embeddings += tf.gather(params=getattr(self, name), indices=token_type_ids[:, :, i]) final_embeddings = self.LayerNorm(inputs=final_embeddings) final_embeddings = self.dropout(inputs=final_embeddings, training=training) return final_embeddings # Copied from transformers.models.bert.modeling_tf_bert.TFBertSelfAttention with Bert->Tapas class TFTapasSelfAttention(tf.keras.layers.Layer): def __init__(self, config: TapasConfig, **kwargs): super().__init__(**kwargs) if config.hidden_size % config.num_attention_heads != 0: raise ValueError( f"The hidden size ({config.hidden_size}) is not a multiple of the number " f"of attention heads ({config.num_attention_heads})" ) self.num_attention_heads = config.num_attention_heads self.attention_head_size = int(config.hidden_size / config.num_attention_heads) self.all_head_size = self.num_attention_heads * self.attention_head_size self.sqrt_att_head_size = math.sqrt(self.attention_head_size) self.query = tf.keras.layers.Dense( units=self.all_head_size, kernel_initializer=get_initializer(config.initializer_range), name="query" ) self.key = tf.keras.layers.Dense( units=self.all_head_size, kernel_initializer=get_initializer(config.initializer_range), name="key" ) self.value = tf.keras.layers.Dense( units=self.all_head_size, kernel_initializer=get_initializer(config.initializer_range), name="value" ) self.dropout = tf.keras.layers.Dropout(rate=config.attention_probs_dropout_prob) self.is_decoder = config.is_decoder def transpose_for_scores(self, tensor: tf.Tensor, batch_size: int) -> tf.Tensor: # Reshape from [batch_size, seq_length, all_head_size] to [batch_size, seq_length, num_attention_heads, attention_head_size] tensor = tf.reshape(tensor=tensor, shape=(batch_size, -1, self.num_attention_heads, self.attention_head_size)) # Transpose the tensor from [batch_size, seq_length, num_attention_heads, attention_head_size] to [batch_size, num_attention_heads, seq_length, attention_head_size] return tf.transpose(tensor, perm=[0, 2, 1, 3]) def call( self, hidden_states: tf.Tensor, attention_mask: tf.Tensor, head_mask: tf.Tensor, encoder_hidden_states: tf.Tensor, encoder_attention_mask: tf.Tensor, past_key_value: Tuple[tf.Tensor], output_attentions: bool, training: bool = False, ) -> Tuple[tf.Tensor]: batch_size = shape_list(hidden_states)[0] mixed_query_layer = self.query(inputs=hidden_states) # If this is instantiated as a cross-attention module, the keys # and values come from an encoder; the attention mask needs to be # such that the encoder's padding tokens are not attended to. is_cross_attention = encoder_hidden_states is not None if is_cross_attention and past_key_value is not None: # reuse k,v, cross_attentions key_layer = past_key_value[0] value_layer = past_key_value[1] attention_mask = encoder_attention_mask elif is_cross_attention: key_layer = self.transpose_for_scores(self.key(inputs=encoder_hidden_states), batch_size) value_layer = self.transpose_for_scores(self.value(inputs=encoder_hidden_states), batch_size) attention_mask = encoder_attention_mask elif past_key_value is not None: key_layer = self.transpose_for_scores(self.key(inputs=hidden_states), batch_size) value_layer = self.transpose_for_scores(self.value(inputs=hidden_states), batch_size) key_layer = tf.concat([past_key_value[0], key_layer], axis=2) value_layer = tf.concat([past_key_value[1], value_layer], axis=2) else: key_layer = self.transpose_for_scores(self.key(inputs=hidden_states), batch_size) value_layer = self.transpose_for_scores(self.value(inputs=hidden_states), batch_size) query_layer = self.transpose_for_scores(mixed_query_layer, batch_size) if self.is_decoder: # if cross_attention save Tuple(tf.Tensor, tf.Tensor) of all cross attention key/value_states. # Further calls to cross_attention layer can then reuse all cross-attention # key/value_states (first "if" case) # if uni-directional self-attention (decoder) save Tuple(tf.Tensor, tf.Tensor) of # all previous decoder key/value_states. Further calls to uni-directional self-attention # can concat previous decoder key/value_states to current projected key/value_states (third "elif" case) # if encoder bi-directional self-attention `past_key_value` is always `None` past_key_value = (key_layer, value_layer) # Take the dot product between "query" and "key" to get the raw attention scores. # (batch size, num_heads, seq_len_q, seq_len_k) attention_scores = tf.matmul(query_layer, key_layer, transpose_b=True) dk = tf.cast(self.sqrt_att_head_size, dtype=attention_scores.dtype) attention_scores = tf.divide(attention_scores, dk) if attention_mask is not None: # Apply the attention mask is (precomputed for all layers in TFTapasModel call() function) attention_scores = tf.add(attention_scores, attention_mask) # Normalize the attention scores to probabilities. attention_probs = stable_softmax(logits=attention_scores, axis=-1) # This is actually dropping out entire tokens to attend to, which might # seem a bit unusual, but is taken from the original Transformer paper. attention_probs = self.dropout(inputs=attention_probs, training=training) # Mask heads if we want to if head_mask is not None: attention_probs = tf.multiply(attention_probs, head_mask) attention_output = tf.matmul(attention_probs, value_layer) attention_output = tf.transpose(attention_output, perm=[0, 2, 1, 3]) # (batch_size, seq_len_q, all_head_size) attention_output = tf.reshape(tensor=attention_output, shape=(batch_size, -1, self.all_head_size)) outputs = (attention_output, attention_probs) if output_attentions else (attention_output,) if self.is_decoder: outputs = outputs + (past_key_value,) return outputs # Copied from transformers.models.bert.modeling_tf_bert.TFBertSelfOutput with Bert->Tapas class TFTapasSelfOutput(tf.keras.layers.Layer): def __init__(self, config: TapasConfig, **kwargs): super().__init__(**kwargs) self.dense = tf.keras.layers.Dense( units=config.hidden_size, kernel_initializer=get_initializer(config.initializer_range), name="dense" ) self.LayerNorm = tf.keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="LayerNorm") self.dropout = tf.keras.layers.Dropout(rate=config.hidden_dropout_prob) def call(self, hidden_states: tf.Tensor, input_tensor: tf.Tensor, training: bool = False) -> tf.Tensor: hidden_states = self.dense(inputs=hidden_states) hidden_states = self.dropout(inputs=hidden_states, training=training) hidden_states = self.LayerNorm(inputs=hidden_states + input_tensor) return hidden_states # Copied from transformers.models.bert.modeling_tf_bert.TFBertAttention with Bert->Tapas class TFTapasAttention(tf.keras.layers.Layer): def __init__(self, config: TapasConfig, **kwargs): super().__init__(**kwargs) self.self_attention = TFTapasSelfAttention(config, name="self") self.dense_output = TFTapasSelfOutput(config, name="output") def prune_heads(self, heads): raise NotImplementedError def call( self, input_tensor: tf.Tensor, attention_mask: tf.Tensor, head_mask: tf.Tensor, encoder_hidden_states: tf.Tensor, encoder_attention_mask: tf.Tensor, past_key_value: Tuple[tf.Tensor], output_attentions: bool, training: bool = False, ) -> Tuple[tf.Tensor]: self_outputs = self.self_attention( hidden_states=input_tensor, attention_mask=attention_mask, head_mask=head_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, past_key_value=past_key_value, output_attentions=output_attentions, training=training, ) attention_output = self.dense_output( hidden_states=self_outputs[0], input_tensor=input_tensor, training=training ) # add attentions (possibly with past_key_value) if we output them outputs = (attention_output,) + self_outputs[1:] return outputs # Copied from transformers.models.bert.modeling_tf_bert.TFBertIntermediate with Bert->Tapas class TFTapasIntermediate(tf.keras.layers.Layer): def __init__(self, config: TapasConfig, **kwargs): super().__init__(**kwargs) self.dense = tf.keras.layers.Dense( units=config.intermediate_size, kernel_initializer=get_initializer(config.initializer_range), name="dense" ) if isinstance(config.hidden_act, str): self.intermediate_act_fn = get_tf_activation(config.hidden_act) else: self.intermediate_act_fn = config.hidden_act def call(self, hidden_states: tf.Tensor) -> tf.Tensor: hidden_states = self.dense(inputs=hidden_states) hidden_states = self.intermediate_act_fn(hidden_states) return hidden_states # Copied from transformers.models.bert.modeling_tf_bert.TFBertOutput with Bert->Tapas class TFTapasOutput(tf.keras.layers.Layer): def __init__(self, config: TapasConfig, **kwargs): super().__init__(**kwargs) self.dense = tf.keras.layers.Dense( units=config.hidden_size, kernel_initializer=get_initializer(config.initializer_range), name="dense" ) self.LayerNorm = tf.keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="LayerNorm") self.dropout = tf.keras.layers.Dropout(rate=config.hidden_dropout_prob) def call(self, hidden_states: tf.Tensor, input_tensor: tf.Tensor, training: bool = False) -> tf.Tensor: hidden_states = self.dense(inputs=hidden_states) hidden_states = self.dropout(inputs=hidden_states, training=training) hidden_states = self.LayerNorm(inputs=hidden_states + input_tensor) return hidden_states # Copied from transformers.models.bert.modeling_tf_bert.TFBertLayer with Bert->Tapas class TFTapasLayer(tf.keras.layers.Layer): def __init__(self, config: TapasConfig, **kwargs): super().__init__(**kwargs) self.attention = TFTapasAttention(config, name="attention") self.is_decoder = config.is_decoder self.add_cross_attention = config.add_cross_attention if self.add_cross_attention: if not self.is_decoder: raise ValueError(f"{self} should be used as a decoder model if cross attention is added") self.crossattention = TFTapasAttention(config, name="crossattention") self.intermediate = TFTapasIntermediate(config, name="intermediate") self.bert_output = TFTapasOutput(config, name="output") def call( self, hidden_states: tf.Tensor, attention_mask: tf.Tensor, head_mask: tf.Tensor, encoder_hidden_states: tf.Tensor | None, encoder_attention_mask: tf.Tensor | None, past_key_value: Tuple[tf.Tensor] | None, output_attentions: bool, training: bool = False, ) -> Tuple[tf.Tensor]: # decoder uni-directional self-attention cached key/values tuple is at positions 1,2 self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None self_attention_outputs = self.attention( input_tensor=hidden_states, attention_mask=attention_mask, head_mask=head_mask, encoder_hidden_states=None, encoder_attention_mask=None, past_key_value=self_attn_past_key_value, output_attentions=output_attentions, training=training, ) attention_output = self_attention_outputs[0] # if decoder, the last output is tuple of self-attn cache if self.is_decoder: outputs = self_attention_outputs[1:-1] present_key_value = self_attention_outputs[-1] else: outputs = self_attention_outputs[1:] # add self attentions if we output attention weights cross_attn_present_key_value = None if self.is_decoder and encoder_hidden_states is not None: if not hasattr(self, "crossattention"): raise ValueError( f"If `encoder_hidden_states` are passed, {self} has to be instantiated with cross-attention layers" " by setting `config.add_cross_attention=True`" ) # cross_attn cached key/values tuple is at positions 3,4 of past_key_value tuple cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None cross_attention_outputs = self.crossattention( input_tensor=attention_output, attention_mask=attention_mask, head_mask=head_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, past_key_value=cross_attn_past_key_value, output_attentions=output_attentions, training=training, ) attention_output = cross_attention_outputs[0] outputs = outputs + cross_attention_outputs[1:-1] # add cross attentions if we output attention weights # add cross-attn cache to positions 3,4 of present_key_value tuple cross_attn_present_key_value = cross_attention_outputs[-1] present_key_value = present_key_value + cross_attn_present_key_value intermediate_output = self.intermediate(hidden_states=attention_output) layer_output = self.bert_output( hidden_states=intermediate_output, input_tensor=attention_output, training=training ) outputs = (layer_output,) + outputs # add attentions if we output them # if decoder, return the attn key/values as the last output if self.is_decoder: outputs = outputs + (present_key_value,) return outputs # Copied from transformers.models.bert.modeling_tf_bert.TFBertEncoder with Bert->Tapas class TFTapasEncoder(tf.keras.layers.Layer): def __init__(self, config: TapasConfig, **kwargs): super().__init__(**kwargs) self.config = config self.layer = [TFTapasLayer(config, name=f"layer_._{i}") for i in range(config.num_hidden_layers)] def call( self, hidden_states: tf.Tensor, attention_mask: tf.Tensor, head_mask: tf.Tensor, encoder_hidden_states: tf.Tensor | None, encoder_attention_mask: tf.Tensor | None, past_key_values: Tuple[Tuple[tf.Tensor]] | None, use_cache: Optional[bool], output_attentions: bool, output_hidden_states: bool, return_dict: bool, training: bool = False, ) -> Union[TFBaseModelOutputWithPastAndCrossAttentions, Tuple[tf.Tensor]]: all_hidden_states = () if output_hidden_states else None all_attentions = () if output_attentions else None all_cross_attentions = () if output_attentions and self.config.add_cross_attention else None next_decoder_cache = () if use_cache else None for i, layer_module in enumerate(self.layer): if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) past_key_value = past_key_values[i] if past_key_values is not None else None layer_outputs = layer_module( hidden_states=hidden_states, attention_mask=attention_mask, head_mask=head_mask[i], encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, past_key_value=past_key_value, output_attentions=output_attentions, training=training, ) hidden_states = layer_outputs[0] if use_cache: next_decoder_cache += (layer_outputs[-1],) if output_attentions: all_attentions = all_attentions + (layer_outputs[1],) if self.config.add_cross_attention and encoder_hidden_states is not None: all_cross_attentions = all_cross_attentions + (layer_outputs[2],) # Add last layer if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) if not return_dict: return tuple( v for v in [hidden_states, all_hidden_states, all_attentions, all_cross_attentions] if v is not None ) return TFBaseModelOutputWithPastAndCrossAttentions( last_hidden_state=hidden_states, past_key_values=next_decoder_cache, hidden_states=all_hidden_states, attentions=all_attentions, cross_attentions=all_cross_attentions, ) # Copied from transformers.models.bert.modeling_tf_bert.TFBertPooler with Bert->Tapas class TFTapasPooler(tf.keras.layers.Layer): def __init__(self, config: TapasConfig, **kwargs): super().__init__(**kwargs) self.dense = tf.keras.layers.Dense( units=config.hidden_size, kernel_initializer=get_initializer(config.initializer_range), activation="tanh", name="dense", ) def call(self, hidden_states: tf.Tensor) -> tf.Tensor: # We "pool" the model by simply taking the hidden state corresponding # to the first token. first_token_tensor = hidden_states[:, 0] pooled_output = self.dense(inputs=first_token_tensor) return pooled_output # Copied from transformers.models.bert.modeling_tf_bert.TFBertPredictionHeadTransform with Bert->Tapas class TFTapasPredictionHeadTransform(tf.keras.layers.Layer): def __init__(self, config: TapasConfig, **kwargs): super().__init__(**kwargs) self.dense = tf.keras.layers.Dense( units=config.hidden_size, kernel_initializer=get_initializer(config.initializer_range), name="dense", ) if isinstance(config.hidden_act, str): self.transform_act_fn = get_tf_activation(config.hidden_act) else: self.transform_act_fn = config.hidden_act self.LayerNorm = tf.keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="LayerNorm") def call(self, hidden_states: tf.Tensor) -> tf.Tensor: hidden_states = self.dense(inputs=hidden_states) hidden_states = self.transform_act_fn(hidden_states) hidden_states = self.LayerNorm(inputs=hidden_states) return hidden_states # Copied from transformers.models.bert.modeling_tf_bert.TFBertLMPredictionHead with Bert->Tapas class TFTapasLMPredictionHead(tf.keras.layers.Layer): def __init__(self, config: TapasConfig, input_embeddings: tf.keras.layers.Layer, **kwargs): super().__init__(**kwargs) self.config = config self.hidden_size = config.hidden_size self.transform = TFTapasPredictionHeadTransform(config, name="transform") # The output weights are the same as the input embeddings, but there is # an output-only bias for each token. self.input_embeddings = input_embeddings def build(self, input_shape: tf.TensorShape): self.bias = self.add_weight(shape=(self.config.vocab_size,), initializer="zeros", trainable=True, name="bias") super().build(input_shape) def get_output_embeddings(self) -> tf.keras.layers.Layer: return self.input_embeddings def set_output_embeddings(self, value: tf.Variable): self.input_embeddings.weight = value self.input_embeddings.vocab_size = shape_list(value)[0] def get_bias(self) -> Dict[str, tf.Variable]: return {"bias": self.bias} def set_bias(self, value: tf.Variable): self.bias = value["bias"] self.config.vocab_size = shape_list(value["bias"])[0] def call(self, hidden_states: tf.Tensor) -> tf.Tensor: hidden_states = self.transform(hidden_states=hidden_states) seq_length = shape_list(hidden_states)[1] hidden_states = tf.reshape(tensor=hidden_states, shape=[-1, self.hidden_size]) hidden_states = tf.matmul(a=hidden_states, b=self.input_embeddings.weight, transpose_b=True) hidden_states = tf.reshape(tensor=hidden_states, shape=[-1, seq_length, self.config.vocab_size]) hidden_states = tf.nn.bias_add(value=hidden_states, bias=self.bias) return hidden_states # Copied from transformers.models.bert.modeling_tf_bert.TFBertMLMHead with Bert->Tapas class TFTapasMLMHead(tf.keras.layers.Layer): def __init__(self, config: TapasConfig, input_embeddings: tf.keras.layers.Layer, **kwargs): super().__init__(**kwargs) self.predictions = TFTapasLMPredictionHead(config, input_embeddings, name="predictions") def call(self, sequence_output: tf.Tensor) -> tf.Tensor: prediction_scores = self.predictions(hidden_states=sequence_output) return prediction_scores @keras_serializable class TFTapasMainLayer(tf.keras.layers.Layer): config_class = TapasConfig def __init__(self, config: TapasConfig, add_pooling_layer: bool = True, **kwargs): requires_backends(self, "tensorflow_probability") super().__init__(**kwargs) self.config = config self.embeddings = TFTapasEmbeddings(config, name="embeddings") self.encoder = TFTapasEncoder(config, name="encoder") self.pooler = TFTapasPooler(config, name="pooler") if add_pooling_layer else None def get_input_embeddings(self) -> tf.keras.layers.Layer: return self.embeddings def set_input_embeddings(self, value: tf.Variable): self.embeddings.weight = value self.embeddings.vocab_size = shape_list(value)[0] def _prune_heads(self, heads_to_prune): """ Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base class PreTrainedModel """ raise NotImplementedError @unpack_inputs def call( self, input_ids: TFModelInputType | None = None, attention_mask: np.ndarray | tf.Tensor | None = None, token_type_ids: np.ndarray | tf.Tensor | None = None, position_ids: np.ndarray | tf.Tensor | None = None, head_mask: np.ndarray | tf.Tensor | None = None, inputs_embeds: np.ndarray | tf.Tensor | None = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, training: bool = False, ) -> Union[TFBaseModelOutputWithPooling, Tuple[tf.Tensor]]: if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") elif input_ids is not None: input_shape = shape_list(input_ids) elif inputs_embeds is not None: input_shape = shape_list(inputs_embeds)[:-1] else: raise ValueError("You have to specify either input_ids or inputs_embeds") if attention_mask is None: attention_mask = tf.fill(dims=input_shape, value=1) if token_type_ids is None: token_type_ids = tf.fill(dims=input_shape + [len(self.config.type_vocab_sizes)], value=0) embedding_output = self.embeddings( input_ids=input_ids, position_ids=position_ids, token_type_ids=token_type_ids, inputs_embeds=inputs_embeds, training=training, ) # We create a 3D attention mask from a 2D tensor mask. # Sizes are [batch_size, 1, 1, to_seq_length] # So we can broadcast to [batch_size, num_heads, from_seq_length, to_seq_length] # this attention mask is more simple than the triangular masking of causal attention # used in OpenAI GPT, we just need to prepare the broadcast dimension here. extended_attention_mask = tf.reshape(attention_mask, (input_shape[0], 1, 1, input_shape[1])) # Since attention_mask is 1.0 for positions we want to attend and 0.0 for # masked positions, this operation will create a tensor which is 0.0 for # positions we want to attend and -10000.0 for masked positions. # Since we are adding it to the raw scores before the softmax, this is # effectively the same as removing these entirely. extended_attention_mask = tf.cast(extended_attention_mask, dtype=embedding_output.dtype) one_cst = tf.constant(1.0, dtype=embedding_output.dtype) ten_thousand_cst = tf.constant(-10000.0, dtype=embedding_output.dtype) extended_attention_mask = tf.multiply(tf.subtract(one_cst, extended_attention_mask), ten_thousand_cst) # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] if head_mask is not None: raise NotImplementedError else: head_mask = [None] * self.config.num_hidden_layers encoder_outputs = self.encoder( hidden_states=embedding_output, attention_mask=extended_attention_mask, head_mask=head_mask, encoder_hidden_states=None, encoder_attention_mask=None, past_key_values=None, use_cache=None, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) sequence_output = encoder_outputs[0] pooled_output = self.pooler(hidden_states=sequence_output) if self.pooler is not None else None if not return_dict: return ( sequence_output, pooled_output, ) + encoder_outputs[1:] return TFBaseModelOutputWithPooling( last_hidden_state=sequence_output, pooler_output=pooled_output, hidden_states=encoder_outputs.hidden_states, attentions=encoder_outputs.attentions, ) class TFTapasPreTrainedModel(TFPreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = TapasConfig base_model_prefix = "tapas" @property def input_signature(self): return { "input_ids": tf.TensorSpec((None, None), tf.int32, name="input_ids"), "attention_mask": tf.TensorSpec((None, None), tf.float32, name="attention_mask"), "token_type_ids": tf.TensorSpec((None, None, 7), tf.int32, name="token_type_ids"), } TAPAS_START_DOCSTRING = r""" This model inherits from [`TFPreTrainedModel`]. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.) This model is also a [tf.keras.Model](https://www.tensorflow.org/api_docs/python/tf/keras/Model) subclass. Use it as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to general usage and behavior. <Tip> TensorFlow models and layers in `transformers` accept two formats as input: - having all inputs as keyword arguments (like PyTorch models), or - having all inputs as a list, tuple or dict in the first positional argument. The reason the second format is supported is that Keras methods prefer this format when passing inputs to models and layers. Because of this support, when using methods like `model.fit()` things should "just work" for you - just pass your inputs and labels in any format that `model.fit()` supports! If, however, you want to use the second format outside of Keras methods like `fit()` and `predict()`, such as when creating your own layers or models with the Keras `Functional` API, there are three possibilities you can use to gather all the input Tensors in the first positional argument: - a single Tensor with `input_ids` only and nothing else: `model(input_ids)` - a list of varying length with one or several input Tensors IN THE ORDER given in the docstring: `model([input_ids, attention_mask])` or `model([input_ids, attention_mask, token_type_ids])` - a dictionary with one or several input Tensors associated to the input names given in the docstring: `model({"input_ids": input_ids, "token_type_ids": token_type_ids})` Note that when creating models and layers with [subclassing](https://keras.io/guides/making_new_layers_and_models_via_subclassing/) then you don't need to worry about any of this, as you can just pass inputs like you would to any other Python function! </Tip> Parameters: config ([`TapasConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ TAPAS_INPUTS_DOCSTRING = r""" Args: input_ids (`np.ndarray`, `tf.Tensor`, `List[tf.Tensor]` ``Dict[str, tf.Tensor]` or `Dict[str, np.ndarray]` and each example must have the shape `({0})`): Indices of input sequence tokens in the vocabulary. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.__call__`] and [`PreTrainedTokenizer.encode`] for details. [What are input IDs?](../glossary#input-ids) attention_mask (`np.ndarray` or `tf.Tensor` of shape `({0})`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) token_type_ids (`np.ndarray` or `tf.Tensor` of shape `({0}, 7)`, *optional*): Token indices that encode tabular structure. Indices can be obtained using [`AutoTokenizer`]. See this class for more info. [What are token type IDs?](../glossary#token-type-ids) position_ids (`np.ndarray` or `tf.Tensor` of shape `({0})`, *optional*): Indices of positions of each input sequence tokens in the position embeddings. If `reset_position_index_per_cell` of [`TapasConfig`] is set to `True`, relative position embeddings will be used. Selected in the range `[0, config.max_position_embeddings - 1]`. [What are position IDs?](../glossary#position-ids) head_mask (`np.ndarray` or `tf.Tensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. inputs_embeds (`np.ndarray` or `tf.Tensor` of shape `({0}, hidden_size)`, *optional*): Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert `input_ids` indices into associated vectors than the model's internal embedding lookup matrix. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the config will be used instead. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the config will be used instead. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. This argument can be used in eager mode, in graph mode the value will always be set to True. training (`bool`, *optional*, defaults to `False``): Whether or not to use the model in training mode (some modules like dropout modules have different behaviors between training and evaluation). """ @add_start_docstrings( "The bare Tapas Model transformer outputting raw hidden-states without any specific head on top.", TAPAS_START_DOCSTRING, ) class TFTapasModel(TFTapasPreTrainedModel): def __init__(self, config: TapasConfig, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) self.tapas = TFTapasMainLayer(config, name="tapas") @unpack_inputs @add_start_docstrings_to_model_forward(TAPAS_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @replace_return_docstrings(output_type=TFBaseModelOutputWithPooling, config_class=_CONFIG_FOR_DOC) def call( self, input_ids: TFModelInputType | None = None, attention_mask: np.ndarray | tf.Tensor | None = None, token_type_ids: np.ndarray | tf.Tensor | None = None, position_ids: np.ndarray | tf.Tensor | None = None, head_mask: np.ndarray | tf.Tensor | None = None, inputs_embeds: np.ndarray | tf.Tensor | None = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, training: Optional[bool] = False, ) -> Union[TFBaseModelOutputWithPooling, Tuple[tf.Tensor]]: r""" Returns: Examples: ```python >>> from transformers import AutoTokenizer, TapasModel >>> import pandas as pd >>> tokenizer = AutoTokenizer.from_pretrained("google/tapas-base") >>> model = TapasModel.from_pretrained("google/tapas-base") >>> data = { ... "Actors": ["Brad Pitt", "Leonardo Di Caprio", "George Clooney"], ... "Age": ["56", "45", "59"], ... "Number of movies": ["87", "53", "69"], ... } >>> table = pd.DataFrame.from_dict(data) >>> queries = ["How many movies has George Clooney played in?", "How old is Brad Pitt?"] >>> inputs = tokenizer(table=table, queries=queries, padding="max_length", return_tensors="tf") >>> outputs = model(**inputs) >>> last_hidden_states = outputs.last_hidden_state ```""" outputs = self.tapas( input_ids=input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) return outputs @add_start_docstrings("""Tapas Model with a `language modeling` head on top.""", TAPAS_START_DOCSTRING) class TFTapasForMaskedLM(TFTapasPreTrainedModel, TFMaskedLanguageModelingLoss): def __init__(self, config: TapasConfig, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) if config.is_decoder: logger.warning( "If you want to use `TFTapasForMaskedLM` make sure `config.is_decoder=False` for " "bi-directional self-attention." ) self.tapas = TFTapasMainLayer(config, add_pooling_layer=False, name="tapas") self.lm_head = TFTapasMLMHead(config, input_embeddings=self.tapas.embeddings, name="cls") def get_lm_head(self) -> tf.keras.layers.Layer: return self.lm_head.predictions @unpack_inputs @add_start_docstrings_to_model_forward(TAPAS_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @replace_return_docstrings(output_type=TFMaskedLMOutput, config_class=_CONFIG_FOR_DOC) def call( self, input_ids: TFModelInputType | None = None, attention_mask: np.ndarray | tf.Tensor | None = None, token_type_ids: np.ndarray | tf.Tensor | None = None, position_ids: np.ndarray | tf.Tensor | None = None, head_mask: np.ndarray | tf.Tensor | None = None, inputs_embeds: np.ndarray | tf.Tensor | None = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, labels: np.ndarray | tf.Tensor | None = None, training: Optional[bool] = False, ) -> Union[TFMaskedLMOutput, Tuple[tf.Tensor]]: r""" labels (`tf.Tensor` or `np.ndarray` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ..., config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]` Returns: Examples: ```python >>> from transformers import AutoTokenizer, TapasForMaskedLM >>> import pandas as pd >>> tokenizer = AutoTokenizer.from_pretrained("google/tapas-base") >>> model = TapasForMaskedLM.from_pretrained("google/tapas-base") >>> data = { ... "Actors": ["Brad Pitt", "Leonardo Di Caprio", "George Clooney"], ... "Age": ["56", "45", "59"], ... "Number of movies": ["87", "53", "69"], ... } >>> table = pd.DataFrame.from_dict(data) >>> inputs = tokenizer( ... table=table, queries="How many [MASK] has George [MASK] played in?", return_tensors="tf" ... ) >>> labels = tokenizer( ... table=table, queries="How many movies has George Clooney played in?", return_tensors="tf" ... )["input_ids"] >>> outputs = model(**inputs, labels=labels) >>> logits = outputs.logits ```""" outputs = self.tapas( input_ids=input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) sequence_output = outputs[0] prediction_scores = self.lm_head(sequence_output) loss = None if labels is None else self.hf_compute_loss(labels=labels, logits=prediction_scores) if not return_dict: output = (prediction_scores,) + outputs[2:] return ((loss,) + output) if loss is not None else output return TFMaskedLMOutput( loss=loss, logits=prediction_scores, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) class TFTapasComputeTokenLogits(tf.keras.layers.Layer): def __init__(self, config: TapasConfig, **kwargs): super().__init__(**kwargs) self.temperature = config.temperature # cell selection heads with tf.name_scope("output"): self.output_weights = self.add_weight( name="output_weights", shape=(config.hidden_size,), dtype=tf.float32, trainable=True, initializer=tf.zeros_initializer() if config.init_cell_selection_weights_to_zero else tf.keras.initializers.TruncatedNormal(stddev=config.initializer_range), ) self.output_bias = self.add_weight( name="output_bias", shape=(), trainable=True, initializer=tf.zeros_initializer() ) def call(self, sequence_output: tf.Tensor) -> tf.Tensor: """ Computes logits per token Args: sequence_output (`tf.Tensor` of shape `(batch_size, sequence_length, hidden_size)`): Also known as last_hidden_state. Sequence of hidden-states at the output of the last layer of the model. Returns: logits (`tf.Tensor` of shape `(batch_size, sequence_length)`): Logits per token. """ logits = (tf.einsum("bsj,j->bs", sequence_output, self.output_weights) + self.output_bias) / self.temperature return logits class TFTapasComputeColumnLogits(tf.keras.layers.Layer): def __init__(self, config: TapasConfig, **kwargs): super().__init__(**kwargs) with tf.name_scope("column_output"): self.column_output_weights = self.add_weight( name="column_output_weights", shape=[config.hidden_size], dtype=tf.float32, trainable=True, initializer=tf.zeros_initializer() if config.init_cell_selection_weights_to_zero else tf.keras.initializers.TruncatedNormal(stddev=config.initializer_range), ) self.column_output_bias = self.add_weight( name="column_output_bias", shape=(), trainable=True, initializer=tf.zeros_initializer() ) def call(self, sequence_output, cell_index, cell_mask, allow_empty_column_selection) -> tf.Tensor: """ Computes the column logits. Args: sequence_output (`tf.Tensor` of shape `(batch_size, sequence_length, hidden_size)`): Also known as last_hidden_state. Sequence of hidden-states at the output of the last layer of the model. cell_index (`ProductIndexMap`): Index that groups tokens into cells. cell_mask (`tf.Tensor` of shape `(batch_size, max_num_rows * max_num_cols)`): Mask for cells that exist in the table (i.e. that are not padding). allow_empty_column_selection (`bool`): Whether to allow not to select any column Returns: column_logits (`tf.Tensor`of shape `(batch_size, max_num_cols)`): Tensor containing the column logits for every example in the batch. """ # First, compute the token logits (batch_size, seq_len) - without temperature token_logits = tf.einsum("bsj,j->bs", sequence_output, self.column_output_weights) + self.column_output_bias # Next, average the logits per cell (batch_size, max_num_cols*max_num_rows) cell_logits, cell_logits_index = reduce_mean(token_logits, cell_index) # Finally, average the logits per column (batch_size, max_num_cols) column_index = cell_index.project_inner(cell_logits_index) column_logits, out_index = reduce_sum(cell_logits * cell_mask, column_index) cell_count, _ = reduce_sum(cell_mask, column_index) column_logits /= cell_count + EPSILON_ZERO_DIVISION # Mask columns that do not appear in the example. is_padding = tf.logical_and(cell_count < 0.5, tf.not_equal(out_index.indices, 0)) column_logits += CLOSE_ENOUGH_TO_LOG_ZERO * tf.cast(is_padding, tf.float32) if not allow_empty_column_selection: column_logits += CLOSE_ENOUGH_TO_LOG_ZERO * tf.cast(tf.equal(out_index.indices, 0), tf.float32) return column_logits @add_start_docstrings( """ Tapas Model with a cell selection head and optional aggregation head on top for question-answering tasks on tables (linear layers on top of the hidden-states output to compute `logits` and optional `logits_aggregation`), e.g. for SQA, WTQ or WikiSQL-supervised tasks. """, TAPAS_START_DOCSTRING, ) class TFTapasForQuestionAnswering(TFTapasPreTrainedModel): def __init__(self, config: TapasConfig, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) # base model self.tapas = TFTapasMainLayer(config, name="tapas") # dropout self.dropout = tf.keras.layers.Dropout(config.hidden_dropout_prob) self.compute_token_logits = TFTapasComputeTokenLogits(config, name="compute_token_logits") self.compute_column_logits = TFTapasComputeColumnLogits(config, name="compute_column_logits") if config.num_aggregation_labels > 0: self.aggregation_classifier = tf.keras.layers.Dense( config.num_aggregation_labels, kernel_initializer=get_initializer(config.initializer_range), name="aggregation_classifier", ) self.config = config @unpack_inputs @add_start_docstrings_to_model_forward(TAPAS_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @replace_return_docstrings(output_type=TFTableQuestionAnsweringOutput, config_class=_CONFIG_FOR_DOC) def call( self, input_ids: TFModelInputType | None = None, attention_mask: np.ndarray | tf.Tensor | None = None, token_type_ids: np.ndarray | tf.Tensor | None = None, position_ids: np.ndarray | tf.Tensor | None = None, head_mask: np.ndarray | tf.Tensor | None = None, inputs_embeds: np.ndarray | tf.Tensor | None = None, table_mask: np.ndarray | tf.Tensor | None = None, aggregation_labels: np.ndarray | tf.Tensor | None = None, float_answer: np.ndarray | tf.Tensor | None = None, numeric_values: np.ndarray | tf.Tensor | None = None, numeric_values_scale: np.ndarray | tf.Tensor | None = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, labels: np.ndarray | tf.Tensor | None = None, training: Optional[bool] = False, ) -> Union[TFTableQuestionAnsweringOutput, Tuple[tf.Tensor]]: r""" table_mask (`tf.Tensor` of shape `(batch_size, seq_length)`, *optional*): Mask for the table. Indicates which tokens belong to the table (1). Question tokens, table headers and padding are 0. labels (`tf.Tensor` of shape `(batch_size, seq_length)`, *optional*): Labels per token for computing the hierarchical cell selection loss. This encodes the positions of the answer appearing in the table. Can be obtained using [`AutoTokenizer`]. - 1 for tokens that are **part of the answer**, - 0 for tokens that are **not part of the answer**. aggregation_labels (`tf.Tensor` of shape `(batch_size, )`, *optional*): Aggregation function index for every example in the batch for computing the aggregation loss. Indices should be in `[0, ..., config.num_aggregation_labels - 1]`. Only required in case of strong supervision for aggregation (WikiSQL-supervised). float_answer (`tf.Tensor` of shape `(batch_size, )`, *optional*): Float answer for every example in the batch. Set to *float('nan')* for cell selection questions. Only required in case of weak supervision (WTQ) to calculate the aggregate mask and regression loss. numeric_values (`tf.Tensor` of shape `(batch_size, seq_length)`, *optional*): Numeric values of every token, NaN for tokens which are not numeric values. Can be obtained using [`AutoTokenizer`]. Only required in case of weak supervision for aggregation (WTQ) to calculate the regression loss. numeric_values_scale (`tf.Tensor` of shape `(batch_size, seq_length)`, *optional*): Scale of the numeric values of every token. Can be obtained using [`AutoTokenizer`]. Only required in case of weak supervision for aggregation (WTQ) to calculate the regression loss. Returns: Examples: ```python >>> from transformers import AutoTokenizer, TapasForQuestionAnswering >>> import pandas as pd >>> tokenizer = AutoTokenizer.from_pretrained("google/tapas-base-finetuned-wtq") >>> model = TapasForQuestionAnswering.from_pretrained("google/tapas-base-finetuned-wtq") >>> data = { ... "Actors": ["Brad Pitt", "Leonardo Di Caprio", "George Clooney"], ... "Age": ["56", "45", "59"], ... "Number of movies": ["87", "53", "69"], ... } >>> table = pd.DataFrame.from_dict(data) >>> queries = ["How many movies has George Clooney played in?", "How old is Brad Pitt?"] >>> inputs = tokenizer(table=table, queries=queries, padding="max_length", return_tensors="tf") >>> outputs = model(**inputs) >>> logits = outputs.logits >>> logits_aggregation = outputs.logits_aggregation ```""" outputs = self.tapas( input_ids=input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) sequence_output = outputs[0] pooled_output = outputs[1] sequence_output = self.dropout(sequence_output) if input_ids is not None: input_shape = shape_list(input_ids) else: input_shape = shape_list(inputs_embeds)[:-1] # Construct indices for the table. if token_type_ids is None: token_type_ids = tf.fill(input_shape + [len(self.config.type_vocab_sizes)], 0) token_types = [ "segment_ids", "column_ids", "row_ids", "prev_labels", "column_ranks", "inv_column_ranks", "numeric_relations", ] row_ids = token_type_ids[:, :, token_types.index("row_ids")] column_ids = token_type_ids[:, :, token_types.index("column_ids")] # Construct indices for the table. row_index = IndexMap( indices=tf.minimum(tf.cast(row_ids, tf.int32), self.config.max_num_rows - 1), num_segments=self.config.max_num_rows, batch_dims=1, ) col_index = IndexMap( indices=tf.minimum(tf.cast(column_ids, tf.int32), self.config.max_num_columns - 1), num_segments=self.config.max_num_columns, batch_dims=1, ) cell_index = ProductIndexMap(row_index, col_index) # Masks. input_shape = shape_list(input_ids) if input_ids is not None else shape_list(inputs_embeds)[:-1] if attention_mask is None: attention_mask = tf.ones(input_shape) # Table cells only, without question tokens and table headers. if table_mask is None: table_mask = tf.where(row_ids > 0, tf.ones_like(row_ids), tf.zeros_like(row_ids)) # <float32>[batch_size, seq_length] input_mask_float = tf.cast(attention_mask, tf.float32) table_mask_float = tf.cast(table_mask, tf.float32) # Mask for cells that exist in the table (i.e. that are not padding). cell_mask, _ = reduce_mean(input_mask_float, cell_index) # Compute logits per token. These are used to select individual cells. logits = self.compute_token_logits(sequence_output) # Compute logits per column. These are used to select a column. column_logits = None if self.config.select_one_column: column_logits = self.compute_column_logits( sequence_output, cell_index, cell_mask, self.config.allow_empty_column_selection ) # Aggregate logits. logits_aggregation = None if self.config.num_aggregation_labels > 0: logits_aggregation = self.aggregation_classifier(pooled_output) # Total loss calculation total_loss = tf.zeros(shape=(1,), dtype=tf.float32) calculate_loss = False if labels is not None: calculate_loss = True is_supervised = not self.config.num_aggregation_labels > 0 or not self.config.use_answer_as_supervision # Semi-supervised cell selection in case of no aggregation: # If the answer (the denotation) appears directly in the table we might # select the answer without applying any aggregation function. There are # some ambiguous cases, see utils._calculate_aggregate_mask for more info. # `aggregate_mask` is 1 for examples where we chose to aggregate and 0 # for examples where we chose to select the answer directly. # `labels` encodes the positions of the answer appearing in the table. if is_supervised: aggregate_mask = None else: if float_answer is not None: assert ( shape_list(labels)[0] == shape_list(float_answer)[0] ), "Make sure the answers are a FloatTensor of shape (batch_size,)" # <float32>[batch_size] aggregate_mask = _calculate_aggregate_mask( float_answer, pooled_output, self.config.cell_selection_preference, labels, self.aggregation_classifier, ) else: aggregate_mask = None raise ValueError("You have to specify float answers in order to calculate the aggregate mask") # Cell selection log-likelihood if self.config.average_logits_per_cell: logits_per_cell, _ = reduce_mean(logits, cell_index) logits = gather(logits_per_cell, cell_index) dist_per_token = tfp.distributions.Bernoulli(logits=logits) # Compute cell selection loss per example. selection_loss_per_example = None if not self.config.select_one_column: weight = tf.where( labels == 0, tf.ones_like(labels, dtype=tf.float32), self.config.positive_label_weight * tf.ones_like(labels, dtype=tf.float32), ) selection_loss_per_token = -dist_per_token.log_prob(labels) * weight selection_loss_per_example = tf.reduce_sum(selection_loss_per_token * input_mask_float, axis=1) / ( tf.reduce_sum(input_mask_float, axis=1) + EPSILON_ZERO_DIVISION ) else: selection_loss_per_example, logits = _single_column_cell_selection_loss( logits, column_logits, labels, cell_index, col_index, cell_mask ) dist_per_token = tfp.distributions.Bernoulli(logits=logits) # Supervised cell selection if self.config.disable_per_token_loss: pass elif is_supervised: total_loss += tf.reduce_mean(selection_loss_per_example) else: # For the not supervised case, do not assign loss for cell selection total_loss += tf.reduce_mean(selection_loss_per_example * (1.0 - aggregate_mask)) # Semi-supervised regression loss and supervised loss for aggregations if self.config.num_aggregation_labels > 0: if is_supervised: # Note that `aggregate_mask` is None if the setting is supervised. if aggregation_labels is not None: assert ( shape_list(labels)[0] == shape_list(aggregation_labels)[0] ), "Make sure the aggregation labels are a LongTensor of shape (batch_size,)" per_example_additional_loss = _calculate_aggregation_loss( logits_aggregation, aggregate_mask, aggregation_labels, self.config.use_answer_as_supervision, self.config.num_aggregation_labels, self.config.aggregation_loss_weight, ) else: raise ValueError( "You have to specify aggregation labels in order to calculate the aggregation loss" ) else: aggregation_labels = tf.zeros(shape_list(labels)[0], dtype=tf.int32) per_example_additional_loss = _calculate_aggregation_loss( logits_aggregation, aggregate_mask, aggregation_labels, self.config.use_answer_as_supervision, self.config.num_aggregation_labels, self.config.aggregation_loss_weight, ) if self.config.use_answer_as_supervision: if numeric_values is not None and numeric_values_scale is not None: assert shape_list(numeric_values) == shape_list(numeric_values_scale) # Add regression loss for numeric answers which require aggregation. answer_loss, large_answer_loss_mask = _calculate_regression_loss( float_answer, aggregate_mask, dist_per_token, numeric_values, numeric_values_scale, table_mask_float, logits_aggregation, self.config, ) per_example_additional_loss += answer_loss # Zero loss for examples with answer_loss > cutoff. per_example_additional_loss *= large_answer_loss_mask else: raise ValueError( "You have to specify numeric values and numeric values scale in order to calculate the" " regression loss" ) total_loss += tf.reduce_mean(per_example_additional_loss) else: # if no label ids are provided, set them to zeros in order to properly compute logits labels = tf.zeros_like(logits) _, logits = _single_column_cell_selection_loss( logits, column_logits, labels, cell_index, col_index, cell_mask ) if not return_dict: output = (logits, logits_aggregation) + outputs[2:] return ((total_loss,) + output) if calculate_loss else output return TFTableQuestionAnsweringOutput( loss=total_loss if calculate_loss else None, logits=logits, logits_aggregation=logits_aggregation, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) @add_start_docstrings( """ Tapas Model with a sequence classification head on top (a linear layer on top of the pooled output), e.g. for table entailment tasks, such as TabFact (Chen et al., 2020). """, TAPAS_START_DOCSTRING, ) class TFTapasForSequenceClassification(TFTapasPreTrainedModel, TFSequenceClassificationLoss): def __init__(self, config: TapasConfig, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) self.num_labels = config.num_labels self.tapas = TFTapasMainLayer(config, name="tapas") self.dropout = tf.keras.layers.Dropout(config.hidden_dropout_prob, name="dropout") self.classifier = tf.keras.layers.Dense( config.num_labels, kernel_initializer=get_initializer(config.initializer_range), name="classifier" ) @unpack_inputs @add_start_docstrings_to_model_forward(TAPAS_INPUTS_DOCSTRING.format("batch_size, num_choices, sequence_length")) @replace_return_docstrings(output_type=TFSequenceClassifierOutput, config_class=_CONFIG_FOR_DOC) def call( self, input_ids: TFModelInputType | None = None, attention_mask: np.ndarray | tf.Tensor | None = None, token_type_ids: np.ndarray | tf.Tensor | None = None, position_ids: np.ndarray | tf.Tensor | None = None, head_mask: np.ndarray | tf.Tensor | None = None, inputs_embeds: np.ndarray | tf.Tensor | None = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, labels: np.ndarray | tf.Tensor | None = None, training: Optional[bool] = False, ) -> Union[TFSequenceClassifierOutput, Tuple[tf.Tensor]]: r""" labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If `config.num_labels > 1` a classification loss is computed (Cross-Entropy). Note: this is called "classification_class_index" in the original implementation. Returns: Examples: ```python >>> from transformers import AutoTokenizer, TapasForSequenceClassification >>> import tensorflow as tf >>> import pandas as pd >>> tokenizer = AutoTokenizer.from_pretrained("google/tapas-base-finetuned-tabfact") >>> model = TapasForSequenceClassification.from_pretrained("google/tapas-base-finetuned-tabfact") >>> data = { ... "Actors": ["Brad Pitt", "Leonardo Di Caprio", "George Clooney"], ... "Age": ["56", "45", "59"], ... "Number of movies": ["87", "53", "69"], ... } >>> table = pd.DataFrame.from_dict(data) >>> queries = [ ... "There is only one actor who is 45 years old", ... "There are 3 actors which played in more than 60 movies", ... ] >>> inputs = tokenizer(table=table, queries=queries, padding="max_length", return_tensors="tf") >>> labels = tf.convert_to_tensor([1, 0]) # 1 means entailed, 0 means refuted >>> outputs = model(**inputs, labels=labels) >>> loss = outputs.loss >>> logits = outputs.logits ```""" outputs = self.tapas( input_ids=input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) pooled_output = outputs[1] pooled_output = self.dropout(inputs=pooled_output, training=training) logits = self.classifier(inputs=pooled_output) loss = None if labels is None else self.hf_compute_loss(labels=labels, logits=logits) if not return_dict: output = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return TFSequenceClassifierOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) """ TAPAS utilities.""" class AverageApproximationFunction(str, enum.Enum): RATIO = "ratio" FIRST_ORDER = "first_order" SECOND_ORDER = "second_order" # Beginning of everything related to segmented tensors class IndexMap(object): """Index grouping entries within a tensor.""" def __init__(self, indices, num_segments, batch_dims=0): """ Creates an index. Args: indices: <int32> Tensor of indices, same shape as `values`. num_segments: <int32> Scalar tensor, the number of segments. All elements in a batched segmented tensor must have the same number of segments (although many segments can be empty). batch_dims: Python integer, the number of batch dimensions. The first `batch_dims` dimensions of a SegmentedTensor are treated as batch dimensions. Segments in different batch elements are always distinct even if they have the same index. """ self.indices = tf.convert_to_tensor(indices) self.num_segments = tf.convert_to_tensor(num_segments) self.batch_dims = batch_dims def batch_shape(self): return tf.shape(self.indices)[: self.batch_dims] class ProductIndexMap(IndexMap): """The product of two indices.""" def __init__(self, outer_index, inner_index): """ Combines indices i and j into pairs (i, j). The result is an index where each segment (i, j) is the intersection of segments i and j. For example if the inputs represent table cells indexed by respectively rows and columns the output will be a table indexed by (row, column) pairs, i.e. by cell. The implementation combines indices {0, .., n - 1} and {0, .., m - 1} into {0, .., nm - 1}. The output has `num_segments` equal to `outer_index.num_segements` * `inner_index.num_segments`. Args: outer_index: IndexMap. inner_index: IndexMap, must have the same shape as `outer_index`. """ if outer_index.batch_dims != inner_index.batch_dims: raise ValueError("outer_index.batch_dims and inner_index.batch_dims must be the same.") super(ProductIndexMap, self).__init__( indices=( inner_index.indices + outer_index.indices * tf.cast(inner_index.num_segments, inner_index.indices.dtype) ), num_segments=inner_index.num_segments * outer_index.num_segments, batch_dims=inner_index.batch_dims, ) self.outer_index = outer_index self.inner_index = inner_index def project_outer(self, index): """Projects an index with the same index set onto the outer components.""" return IndexMap( indices=tf.math.floordiv(index.indices, self.inner_index.num_segments), num_segments=self.outer_index.num_segments, batch_dims=index.batch_dims, ) def project_inner(self, index): """Projects an index with the same index set onto the inner components.""" return IndexMap( indices=tf.math.floormod(index.indices, self.inner_index.num_segments), num_segments=self.inner_index.num_segments, batch_dims=index.batch_dims, ) def gather(values, index, name="segmented_gather"): """ Gathers from `values` using the index map. For each element in the domain of the index map this operation looks up a value for that index in `values`. Two elements from the same segment always get assigned the same value. Args: values: [B1, ..., Bn, num_segments, V1, ...] Tensor with segment values. index: [B1, ..., Bn, I1, ..., Ik] IndexMap. name: Name for the TensorFlow operation. Returns: [B1, ..., Bn, I1, ..., Ik, V1, ...] Tensor with the gathered values. """ return tf.gather(values, index.indices, batch_dims=index.batch_dims, name=name) def flatten(index, name="segmented_flatten"): """ Flattens a batched index map to a 1d index map. This operation relabels the segments to keep batch elements distinct. The k-th batch element will have indices shifted by `num_segments` * (k - 1). The result is a tensor with `num_segments` multiplied by the number of elements in the batch. Args: index: IndexMap to flatten. name: Name for the TensorFlow operation. Returns: The flattened IndexMap. """ batch_size = tf.reduce_prod(index.batch_shape()) offset = tf.range(batch_size) * index.num_segments offset = tf.reshape(offset, index.batch_shape()) for _ in range(index.batch_dims, index.indices.shape.rank): offset = tf.expand_dims(offset, -1) indices = tf.cast(offset, index.indices.dtype) + index.indices return IndexMap(indices=tf.reshape(indices, [-1]), num_segments=index.num_segments * batch_size, batch_dims=0) def range_index_map(batch_shape, num_segments, name="range_index_map"): """ Constructs an index map equal to range(num_segments). Args: batch_shape (`tf.Tensor`): Batch shape num_segments (`int`): Number of segments name (`str`, *optional*, defaults to 'range_index_map'): Name for the operation. Currently not used Returns: (`IndexMap`): IndexMap of shape batch_shape with elements equal to range(num_segments). """ batch_shape = tf.convert_to_tensor(batch_shape) batch_shape.shape.assert_has_rank(1) num_segments = tf.convert_to_tensor(num_segments) num_segments.shape.assert_has_rank(0) indices = tf.range(num_segments) shape = tf.concat([tf.ones_like(batch_shape, dtype=tf.int32), tf.expand_dims(num_segments, axis=0)], axis=0) indices = tf.reshape(indices, shape) multiples = tf.concat([batch_shape, [1]], axis=0) indices = tf.tile(indices, multiples) return IndexMap(indices=indices, num_segments=num_segments, batch_dims=batch_shape.shape.as_list()[0]) def _segment_reduce(values, index, segment_reduce_fn, name): """ Applies a segment reduction segment-wise. Args: values (`tf.Tensor`): Tensor with segment values. index (`IndexMap`): IndexMap. segment_reduce_fn (`str`): Name for the reduce operation. One of "sum", "mean", "max" or "min". name (`str`): Name for the operation. Currently not used Returns: (`IndexMap`): IndexMap of shape batch_shape with elements equal to range(num_segments). """ # Flatten the batch dimensions, as segments ops do not support batching. # However if `values` has extra dimensions to the right keep them # unflattened. Segmented ops support vector-valued operations. flat_index = flatten(index) vector_shape = tf.shape(values)[index.indices.shape.rank :] flattened_shape = tf.concat([[-1], vector_shape], axis=0) flat_values = tf.reshape(values, flattened_shape) segment_means = segment_reduce_fn( data=flat_values, segment_ids=flat_index.indices, num_segments=flat_index.num_segments ) # Unflatten the values. new_shape = tf.concat([index.batch_shape(), [index.num_segments], vector_shape], axis=0) output_values = tf.reshape(segment_means, new_shape) output_index = range_index_map(index.batch_shape(), index.num_segments) return output_values, output_index def reduce_mean(values, index, name="segmented_reduce_mean"): """ Averages a tensor over its segments. Outputs 0 for empty segments. This operations computes the mean over segments, with support for: - Batching using the first dimensions [B1, B2, ..., Bn]. Each element in a batch can have different indices. - Vectorization using the last dimension [V1, V2, ...]. If they are present the output will be a mean of vectors rather than scalars. Only the middle dimensions [I1, ..., Ik] are reduced by the operation. Args: values: [B1, B2, ..., Bn, I1, .., Ik, V1, V2, ..] tensor of values to be averaged. index: IndexMap [B1, B2, ..., Bn, I1, .., Ik] index defining the segments. name: Name for the TensorFlow ops. Returns: A pair (output_values, output_index) where `output_values` is a tensor of shape [B1, B2, ..., Bn, num_segments, V1, V2, ..] and `index` is an IndexMap with shape [B1, B2, ..., Bn, num_segments]. """ return _segment_reduce(values, index, tf.math.unsorted_segment_mean, name) def reduce_sum(values, index, name="segmented_reduce_sum"): """ Sums a tensor over its segments. Outputs 0 for empty segments. This operations computes the sum over segments, with support for: - Batching using the first dimensions [B1, B2, ..., Bn]. Each element in a batch can have different indices. - Vectorization using the last dimension [V1, V2, ...]. If they are present the output will be a sum of vectors rather than scalars. Only the middle dimensions [I1, ..., Ik] are reduced by the operation. Args: values: [B1, B2, ..., Bn, I1, .., Ik, V1, V2, ..] tensor of values to be averaged. index: IndexMap [B1, B2, ..., Bn, I1, .., Ik] index defining the segments. name: Name for the TensorFlow ops. Returns: A pair (output_values, output_index) where `output_values` is a tensor of shape [B1, B2, ..., Bn, num_segments, V1, V2, ..] and `index` is an IndexMap with shape [B1, B2, ..., Bn, num_segments]. """ return _segment_reduce(values, index, tf.math.unsorted_segment_sum, name) def reduce_max(values, index, name="segmented_reduce_max"): """ Computes the maximum over segments. This operations computes the maximum over segments, with support for: - Batching using the first dimensions [B1, B2, ..., Bn]. Each element in a batch can have different indices. - Vectorization using the last dimension [V1, V2, ...]. If they are present the output will be an element-wise maximum of vectors rather than scalars. Only the middle dimensions [I1, ..., Ik] are reduced by the operation. Args: values: [B1, B2, ..., Bn, I1, .., Ik, V1, V2, ..] tensor of values to be averaged. index: IndexMap [B1, B2, ..., Bn, I1, .., Ik] index defining the segments. name: Name for the TensorFlow ops. Returns: A pair (output_values, output_index) where `output_values` is a tensor of shape [B1, B2, ..., Bn, num_segments, V1, V2, ..] and `index` is an IndexMap with shape [B1, B2, ..., Bn, num_segments]. """ return _segment_reduce(values, index, tf.math.unsorted_segment_max, name) def reduce_min(values, index, name="segmented_reduce_min"): """Computes the minimum over segments.""" return _segment_reduce(values, index, tf.math.unsorted_segment_min, name) def _single_column_cell_selection_loss(token_logits, column_logits, labels, cell_index, col_index, cell_mask): """ Computes the loss for cell selection constrained to a single column. The loss is a hierarchical log-likelihood. The model first predicts a column and then selects cells within that column (conditioned on the column). Cells outside the selected column are never selected. Args: token_logits (`tf.Tensor` of shape `(batch_size, sequence_length)`): Tensor containing the logits per token. column_logits (`tf.Tensor` of shape `(batch_size, max_num_cols)`): Tensor containing the logits per column. labels (`tf.Tensor` of shape `(batch_size, sequence_length)`): Labels per token. cell_index (`ProductIndexMap`): Index that groups tokens into cells. col_index (`IndexMap`): Index that groups tokens into columns. cell_mask (`tf.Tensor` of shape `(batch_size, max_num_rows * max_num_cols)`): Mask for cells that exist in the table (i.e. that are not padding). Returns: selection_loss_per_example (`tf.Tensor` of shape `(batch_size,)`): Loss for each example. logits (`tf.Tensor` of shape `(batch_size, sequence_length)`): New logits which are only allowed to select cells in a single column. Logits outside of the most likely column according to *column_logits* will be set to a very low value (such that the probabilities are 0). """ # First find the column we should select. We use the column with maximum # number of selected cells. labels_per_column, _ = reduce_sum(tf.cast(labels, tf.float32), col_index) column_label = tf.argmax(labels_per_column, axis=-1, output_type=tf.int32) # Check if there are no selected cells in the column. In that case the model # should predict the special column id 0, which means "select nothing". no_cell_selected = tf.equal(tf.reduce_max(labels_per_column, axis=-1), 0) column_label = tf.where(no_cell_selected, tf.zeros_like(column_label), column_label) column_dist = tfp.distributions.Categorical(logits=column_logits) column_loss_per_example = -column_dist.log_prob(column_label) # Reduce the labels and logits to per-cell from per-token. logits_per_cell, _ = reduce_mean(token_logits, cell_index) labels_per_cell, labels_index = reduce_max(tf.cast(labels, tf.int32), cell_index) # Mask for the selected column. column_id_for_cells = cell_index.project_inner(labels_index).indices column_mask = tf.cast(tf.equal(column_id_for_cells, tf.expand_dims(column_label, axis=1)), tf.float32) # Compute the log-likelihood for cells, but only for the selected column. cell_dist = tfp.distributions.Bernoulli(logits=logits_per_cell) cell_log_prob = cell_dist.log_prob(labels_per_cell) cell_loss = -tf.reduce_sum(cell_log_prob * column_mask * cell_mask, axis=1) # We need to normalize the loss by the number of cells in the column. cell_loss /= tf.reduce_sum(column_mask * cell_mask, axis=1) + EPSILON_ZERO_DIVISION selection_loss_per_example = column_loss_per_example selection_loss_per_example += tf.where(no_cell_selected, tf.zeros_like(selection_loss_per_example), cell_loss) # Set the probs outside the selected column (selected by the *model*) # to 0. This ensures backwards compatibility with models that select # cells from multiple columns. selected_column_id = tf.argmax(column_logits, axis=-1, output_type=tf.int32) selected_column_mask = tf.cast( tf.equal(column_id_for_cells, tf.expand_dims(selected_column_id, axis=-1)), tf.float32 ) # Never select cells with the special column id 0. selected_column_mask = tf.where( tf.equal(column_id_for_cells, 0), tf.zeros_like(selected_column_mask), selected_column_mask ) logits_per_cell += CLOSE_ENOUGH_TO_LOG_ZERO * (1.0 - cell_mask * selected_column_mask) logits = gather(logits_per_cell, cell_index) return selection_loss_per_example, logits def _calculate_aggregate_mask(answer, pooled_output, cell_selection_preference, labels, aggregation_classifier): """ Finds examples where the model should select cells with no aggregation. Returns a mask that determines for which examples should the model select answers directly from the table, without any aggregation function. If the answer is a piece of text the case is unambiguous as aggregation functions only apply to numbers. If the answer is a number but does not appear in the table then we must use some aggregation case. The ambiguous case is when the answer is a number that also appears in the table. In this case we use the aggregation function probabilities predicted by the model to decide whether to select or aggregate. The threshold for this is a hyperparameter *cell_selection_preference* Args: answer (`tf.Tensor` of shape `(batch_size, )`): Answer for every example in the batch. Nan if there is no scalar answer. pooled_output (`tf.Tensor` of shape `(batch_size, hidden_size)`): Output of the pooler (BertPooler) on top of the encoder layer. cell_selection_preference (`float`): Preference for cell selection in ambiguous cases. labels (`tf.Tensor` of shape `(batch_size, sequence_length)`): Labels per token. aggregation_classifier (`torch.nn.Linear`): Aggregation head Returns: aggregate_mask (`tf.Tensor` of shape `(batch_size,)`): A mask set to 1 for examples that should use aggregation functions. """ # tf.Tensor(batch_size,) aggregate_mask_init = tf.cast(tf.logical_not(tf.math.is_nan(answer)), tf.float32) logits_aggregation = aggregation_classifier(pooled_output) dist_aggregation = tfp.distributions.Categorical(logits=logits_aggregation) # Index 0 corresponds to "no aggregation". aggregation_ops_total_mass = tf.reduce_sum(dist_aggregation.probs_parameter()[:, 1:], axis=1) # Cell selection examples according to current model. is_pred_cell_selection = aggregation_ops_total_mass <= cell_selection_preference # Examples with non-empty cell selection supervision. is_cell_supervision_available = tf.reduce_sum(labels, axis=1) > 0 aggregate_mask = tf.where( tf.logical_and(is_pred_cell_selection, is_cell_supervision_available), tf.zeros_like(aggregate_mask_init, dtype=tf.float32), aggregate_mask_init, ) aggregate_mask = tf.stop_gradient(aggregate_mask) return aggregate_mask def _calculate_aggregation_loss_known( logits_aggregation, aggregate_mask, aggregation_labels, use_answer_as_supervision, num_aggregation_labels ): """ Calculates aggregation loss when its type is known during training. In the weakly supervised setting, the only known information is that for cell selection examples, "no aggregation" should be predicted. For other examples (those that require aggregation), no loss is accumulated. In the setting where aggregation type is always known, standard cross entropy loss is accumulated for all examples Args: logits_aggregation (`tf.Tensor` of shape `(batch_size, num_aggregation_labels)`): Logits per aggregation operation. aggregate_mask (`tf.Tensor` of shape `(batch_size, )`): A mask set to 1 for examples that should use aggregation functions. aggregation_labels (`tf.Tensor` of shape `(batch_size, )`): Aggregation function id for every example in the batch. use_answer_as_supervision (`bool`, *optional*): Whether to use the answer as the only supervision for aggregation examples. num_aggregation_labels (`int`, *optional*, defaults to 0): The number of aggregation operators to predict. Returns: aggregation_loss_known (`tf.Tensor` of shape `(batch_size,)`): Aggregation loss (when its type is known during training) per example. """ if use_answer_as_supervision: # Prepare "no aggregation" targets for cell selection examples. target_aggregation = tf.zeros_like(aggregate_mask, dtype=tf.int32) else: # Use aggregation supervision as the target. target_aggregation = aggregation_labels one_hot_labels = tf.one_hot(target_aggregation, depth=num_aggregation_labels, dtype=tf.float32) log_probs = tf.nn.log_softmax(logits_aggregation, axis=-1) # <float32>[batch_size] per_example_aggregation_intermediate = -tf.reduce_sum(one_hot_labels * log_probs, axis=-1) if use_answer_as_supervision: # Accumulate loss only for examples requiring cell selection # (no aggregation). return per_example_aggregation_intermediate * (1 - aggregate_mask) else: return per_example_aggregation_intermediate def _calculate_aggregation_loss_unknown(logits_aggregation, aggregate_mask): """ Calculates aggregation loss in the case of answer supervision. Args: logits_aggregation (`tf.Tensor` of shape `(batch_size, num_aggregation_labels)`): Logits per aggregation operation. aggregate_mask (`tf.Tensor` of shape `(batch_size, )`): A mask set to 1 for examples that should use aggregation functions Returns: aggregation_loss_unknown (`tf.Tensor` of shape `(batch_size,)`): Aggregation loss (in case of answer supervision) per example. """ dist_aggregation = tfp.distributions.Categorical(logits=logits_aggregation) # Index 0 corresponds to "no aggregation". aggregation_ops_total_mass = tf.reduce_sum(dist_aggregation.probs_parameter()[:, 1:], axis=1) # Predict some aggregation in case of an answer that needs aggregation. # This increases the probability of all aggregation functions, in a way # similar to MML, but without considering whether the function gives the # correct answer. return -tf.math.log(aggregation_ops_total_mass) * aggregate_mask def _calculate_aggregation_loss( logits_aggregation, aggregate_mask, aggregation_labels, use_answer_as_supervision, num_aggregation_labels, aggregation_loss_weight, ): """ Calculates the aggregation loss per example. Args: logits_aggregation (`tf.Tensor` of shape `(batch_size, num_aggregation_labels)`): Logits per aggregation operation. aggregate_mask (`tf.Tensor` of shape `(batch_size, )`): A mask set to 1 for examples that should use aggregation functions. aggregation_labels (`tf.Tensor` of shape `(batch_size, )`): Aggregation function id for every example in the batch. use_answer_as_supervision (`bool`, *optional*): Whether to use the answer as the only supervision for aggregation examples. num_aggregation_labels (`int`, *optional*, defaults to 0): The number of aggregation operators to predict. aggregation_loss_weight (`float`, *optional*, defaults to 1.0): Importance weight for the aggregation loss. Returns: aggregation_loss (`tf.Tensor` of shape `(batch_size,)`): Aggregation loss per example. """ per_example_aggregation_loss = _calculate_aggregation_loss_known( logits_aggregation, aggregate_mask, aggregation_labels, use_answer_as_supervision, num_aggregation_labels ) if use_answer_as_supervision: # Add aggregation loss for numeric answers that need aggregation. per_example_aggregation_loss += _calculate_aggregation_loss_unknown(logits_aggregation, aggregate_mask) return aggregation_loss_weight * per_example_aggregation_loss def _calculate_expected_result( dist_per_cell, numeric_values, numeric_values_scale, input_mask_float, logits_aggregation, config ): """ Calculates the expected result given cell and aggregation probabilities. Args: dist_per_cell (`tfp.distributions.Bernoulli`): Cell selection distribution for each cell. numeric_values (`tf.Tensor` of shape `(batch_size, seq_length)`): Numeric values of every token. Nan for tokens which are not numeric values. numeric_values_scale (`tf.Tensor` of shape `(batch_size, seq_length)`): Scale of the numeric values of every token. input_mask_float (`tf.Tensor` of shape `(batch_size, seq_length)`): Mask for the table, without question tokens and table headers. logits_aggregation (`tf.Tensor` of shape `(batch_size, num_aggregation_labels)`): Logits per aggregation operation. config ([`TapasConfig`]): Model configuration class with all the hyperparameters of the model Returns: expected_result (`tf.Tensor` of shape `(batch_size,)`): The expected result per example. """ if config.use_gumbel_for_cells: gumbel_dist = tfp.distributions.RelaxedBernoulli( # The token logits where already divided by the temperature and used for # computing cell selection errors so we need to multiply it again here config.temperature, logits=dist_per_cell.logits_parameter() * config.temperature, ) scaled_probability_per_cell = gumbel_dist.sample() else: scaled_probability_per_cell = dist_per_cell.probs_parameter() # <float32>[batch_size, seq_length] scaled_probability_per_cell = (scaled_probability_per_cell / numeric_values_scale) * input_mask_float count_result = tf.reduce_sum(scaled_probability_per_cell, axis=1) numeric_values_masked = tf.where( tf.math.is_nan(numeric_values), tf.zeros_like(numeric_values), numeric_values ) # Mask non-numeric table values to zero. sum_result = tf.reduce_sum(scaled_probability_per_cell * numeric_values_masked, axis=1) avg_approximation = config.average_approximation_function if avg_approximation == AverageApproximationFunction.RATIO: average_result = sum_result / (count_result + EPSILON_ZERO_DIVISION) elif avg_approximation == AverageApproximationFunction.FIRST_ORDER: # The sum of all probabilities exept that correspond to other cells ex = tf.reduce_sum(scaled_probability_per_cell, axis=1, keepdims=True) - scaled_probability_per_cell + 1 average_result = tf.reduce_sum(numeric_values_masked * scaled_probability_per_cell / ex, axis=1) elif avg_approximation == AverageApproximationFunction.SECOND_ORDER: # The sum of all probabilities exept that correspond to other cells ex = tf.reduce_sum(scaled_probability_per_cell, axis=1, keepdims=True) - scaled_probability_per_cell + 1 pointwise_var = scaled_probability_per_cell * (1 - scaled_probability_per_cell) var = tf.reduce_sum(pointwise_var, axis=1, keepdims=True) - pointwise_var multiplier = (var / tf.math.square(ex) + 1) / ex average_result = tf.reduce_sum(numeric_values_masked * scaled_probability_per_cell * multiplier, axis=1) else: raise ValueError("Invalid average_approximation_function: %s", config.average_approximation_function) if config.use_gumbel_for_aggregation: gumbel_dist = tfp.distributions.RelaxedOneHotCategorical( config.aggregation_temperature, logits=logits_aggregation[:, 1:] ) # <float32>[batch_size, num_aggregation_labels - 1] aggregation_op_only_probs = gumbel_dist.sample() else: # <float32>[batch_size, num_aggregation_labels - 1] aggregation_op_only_probs = stable_softmax(logits_aggregation[:, 1:] / config.aggregation_temperature, axis=-1) all_results = tf.concat( [ tf.expand_dims(sum_result, axis=1), tf.expand_dims(average_result, axis=1), tf.expand_dims(count_result, axis=1), ], axis=1, ) expected_result = tf.reduce_sum(all_results * aggregation_op_only_probs, axis=1) return expected_result def _calculate_regression_loss( answer, aggregate_mask, dist_per_cell, numeric_values, numeric_values_scale, input_mask_float, logits_aggregation, config, ): """ Calculates the regression loss per example. Args: answer (`tf.Tensor` of shape `(batch_size,)`): Answer for every example in the batch. Nan if there is no scalar answer. aggregate_mask (`tf.Tensor` of shape `(batch_size,)`): A mask set to 1 for examples that should use aggregation functions. dist_per_cell (`torch.distributions.Bernoulli`): Cell selection distribution for each cell. numeric_values (`tf.Tensor` of shape `(batch_size, seq_length)`): Numeric values of every token. Nan for tokens which are not numeric values. numeric_values_scale (`tf.Tensor` of shape `(batch_size, seq_length)`): Scale of the numeric values of every token. input_mask_float (`tf.Tensor` of shape `(batch_size, seq_length)`): Mask for the table, without question tokens and table headers. logits_aggregation (`tf.Tensor` of shape `(batch_size, num_aggregation_labels)`): Logits per aggregation operation. config ([`TapasConfig`]): Model configuration class with all the parameters of the model Returns: per_example_answer_loss_scaled (`tf.Tensor` of shape `(batch_size,)`): Scales answer loss for each example in the batch. large_answer_loss_mask (`tf.Tensor` of shape `(batch_size,)`): A mask which is 1 for examples for which their answer loss is larger than the answer_loss_cutoff. """ # float32 (batch_size,) expected_result = _calculate_expected_result( dist_per_cell, numeric_values, numeric_values_scale, input_mask_float, logits_aggregation, config ) # <float32>[batch_size] answer_masked = tf.where(tf.math.is_nan(answer), tf.zeros_like(answer), answer) if config.use_normalized_answer_loss: normalizer = tf.stop_gradient( tf.math.maximum(tf.math.abs(expected_result), tf.math.abs(answer_masked)) + EPSILON_ZERO_DIVISION ) normalized_answer_masked = answer_masked / normalizer normalized_expected_result = expected_result / normalizer per_example_answer_loss = tf.compat.v1.losses.huber_loss( normalized_answer_masked * aggregate_mask, normalized_expected_result * aggregate_mask, delta=tf.cast(1.0, tf.float32), reduction=tf.losses.Reduction.NONE, ) else: per_example_answer_loss = tf.compat.v1.losses.huber_loss( answer_masked * aggregate_mask, expected_result * aggregate_mask, delta=tf.cast(config.huber_loss_delta, tf.float32), reduction=tf.losses.Reduction.NONE, ) if config.answer_loss_cutoff is None: large_answer_loss_mask = tf.ones_like(per_example_answer_loss, dtype=tf.float32) else: large_answer_loss_mask = tf.where( per_example_answer_loss > config.answer_loss_cutoff, tf.zeros_like(per_example_answer_loss, dtype=tf.float32), tf.ones_like(per_example_answer_loss, dtype=tf.float32), ) per_example_answer_loss_scaled = config.answer_loss_importance * (per_example_answer_loss * aggregate_mask) return per_example_answer_loss_scaled, large_answer_loss_mask
0
hf_public_repos/transformers/src/transformers/models
hf_public_repos/transformers/src/transformers/models/tapas/tokenization_tapas.py
# coding=utf-8 # Copyright 2020 Google Research and The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Tokenization class for TAPAS model.""" import collections import datetime import enum import itertools import math import os import re import unicodedata from dataclasses import dataclass from typing import Callable, Dict, Generator, List, Optional, Text, Tuple, Union import numpy as np from ...tokenization_utils import PreTrainedTokenizer, _is_control, _is_punctuation, _is_whitespace from ...tokenization_utils_base import ( ENCODE_KWARGS_DOCSTRING, BatchEncoding, EncodedInput, PreTokenizedInput, TextInput, ) from ...utils import ExplicitEnum, PaddingStrategy, TensorType, add_end_docstrings, is_pandas_available, logging if is_pandas_available(): import pandas as pd logger = logging.get_logger(__name__) VOCAB_FILES_NAMES = {"vocab_file": "vocab.txt"} PRETRAINED_VOCAB_FILES_MAP = { "vocab_file": { # large models "google/tapas-large-finetuned-sqa": ( "https://huggingface.co/google/tapas-large-finetuned-sqa/resolve/main/vocab.txt" ), "google/tapas-large-finetuned-wtq": ( "https://huggingface.co/google/tapas-large-finetuned-wtq/resolve/main/vocab.txt" ), "google/tapas-large-finetuned-wikisql-supervised": ( "https://huggingface.co/google/tapas-large-finetuned-wikisql-supervised/resolve/main/vocab.txt" ), "google/tapas-large-finetuned-tabfact": ( "https://huggingface.co/google/tapas-large-finetuned-tabfact/resolve/main/vocab.txt" ), # base models "google/tapas-base-finetuned-sqa": ( "https://huggingface.co/google/tapas-base-finetuned-sqa/resolve/main/vocab.txt" ), "google/tapas-base-finetuned-wtq": ( "https://huggingface.co/google/tapas-base-finetuned-wtq/resolve/main/vocab.txt" ), "google/tapas-base-finetuned-wikisql-supervised": ( "https://huggingface.co/google/tapas-base-finetuned-wikisql-supervised/resolve/main/vocab.txt" ), "google/tapas-base-finetuned-tabfact": ( "https://huggingface.co/google/tapas-base-finetuned-tabfact/resolve/main/vocab.txt" ), # medium models "google/tapas-medium-finetuned-sqa": ( "https://huggingface.co/google/tapas-medium-finetuned-sqa/resolve/main/vocab.txt" ), "google/tapas-medium-finetuned-wtq": ( "https://huggingface.co/google/tapas-medium-finetuned-wtq/resolve/main/vocab.txt" ), "google/tapas-medium-finetuned-wikisql-supervised": ( "https://huggingface.co/google/tapas-medium-finetuned-wikisql-supervised/resolve/main/vocab.txt" ), "google/tapas-medium-finetuned-tabfact": ( "https://huggingface.co/google/tapas-medium-finetuned-tabfact/resolve/main/vocab.txt" ), # small models "google/tapas-small-finetuned-sqa": ( "https://huggingface.co/google/tapas-small-finetuned-sqa/resolve/main/vocab.txt" ), "google/tapas-small-finetuned-wtq": ( "https://huggingface.co/google/tapas-small-finetuned-wtq/resolve/main/vocab.txt" ), "google/tapas-small-finetuned-wikisql-supervised": ( "https://huggingface.co/google/tapas-small-finetuned-wikisql-supervised/resolve/main/vocab.txt" ), "google/tapas-small-finetuned-tabfact": ( "https://huggingface.co/google/tapas-small-finetuned-tabfact/resolve/main/vocab.txt" ), # tiny models "google/tapas-tiny-finetuned-sqa": ( "https://huggingface.co/google/tapas-tiny-finetuned-sqa/resolve/main/vocab.txt" ), "google/tapas-tiny-finetuned-wtq": ( "https://huggingface.co/google/tapas-tiny-finetuned-wtq/resolve/main/vocab.txt" ), "google/tapas-tiny-finetuned-wikisql-supervised": ( "https://huggingface.co/google/tapas-tiny-finetuned-wikisql-supervised/resolve/main/vocab.txt" ), "google/tapas-tiny-finetuned-tabfact": ( "https://huggingface.co/google/tapas-tiny-finetuned-tabfact/resolve/main/vocab.txt" ), # mini models "google/tapas-mini-finetuned-sqa": ( "https://huggingface.co/google/tapas-mini-finetuned-sqa/resolve/main/vocab.txt" ), "google/tapas-mini-finetuned-wtq": ( "https://huggingface.co/google/tapas-mini-finetuned-wtq/resolve/main/vocab.txt" ), "google/tapas-mini-finetuned-wikisql-supervised": ( "https://huggingface.co/google/tapas-mini-finetuned-wikisql-supervised/resolve/main/vocab.txt" ), "google/tapas-mini-finetuned-tabfact": ( "https://huggingface.co/google/tapas-mini-finetuned-tabfact/resolve/main/vocab.txt" ), } } PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = {name: 512 for name in PRETRAINED_VOCAB_FILES_MAP.keys()} PRETRAINED_INIT_CONFIGURATION = {name: {"do_lower_case": True} for name in PRETRAINED_VOCAB_FILES_MAP.keys()} class TapasTruncationStrategy(ExplicitEnum): """ Possible values for the `truncation` argument in [`~TapasTokenizer.__call__`]. Useful for tab-completion in an IDE. """ DROP_ROWS_TO_FIT = "drop_rows_to_fit" DO_NOT_TRUNCATE = "do_not_truncate" TableValue = collections.namedtuple("TokenValue", ["token", "column_id", "row_id"]) @dataclass(frozen=True) class TokenCoordinates: column_index: int row_index: int token_index: int @dataclass class TokenizedTable: rows: List[List[List[Text]]] selected_tokens: List[TokenCoordinates] @dataclass(frozen=True) class SerializedExample: tokens: List[Text] column_ids: List[int] row_ids: List[int] segment_ids: List[int] def _is_inner_wordpiece(token: Text): return token.startswith("##") def load_vocab(vocab_file): """Loads a vocabulary file into a dictionary.""" vocab = collections.OrderedDict() with open(vocab_file, "r", encoding="utf-8") as reader: tokens = reader.readlines() for index, token in enumerate(tokens): token = token.rstrip("\n") vocab[token] = index return vocab def whitespace_tokenize(text): """Runs basic whitespace cleaning and splitting on a piece of text.""" text = text.strip() if not text: return [] tokens = text.split() return tokens TAPAS_ENCODE_PLUS_ADDITIONAL_KWARGS_DOCSTRING = r""" add_special_tokens (`bool`, *optional*, defaults to `True`): Whether or not to encode the sequences with the special tokens relative to their model. padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`): Activates and controls padding. Accepts the following values: - `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single sequence if provided). - `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. - `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different lengths). truncation (`bool`, `str` or [`TapasTruncationStrategy`], *optional*, defaults to `False`): Activates and controls truncation. Accepts the following values: - `True` or `'drop_rows_to_fit'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will truncate row by row, removing rows from the table. - `False` or `'do_not_truncate'` (default): No truncation (i.e., can output batch with sequence lengths greater than the model maximum admissible input size). max_length (`int`, *optional*): Controls the maximum length to use by one of the truncation/padding parameters. If left unset or set to `None`, this will use the predefined model maximum length if a maximum length is required by one of the truncation/padding parameters. If the model has no specific maximum input length (like XLNet) truncation/padding to a maximum length will be deactivated. is_split_into_words (`bool`, *optional*, defaults to `False`): Whether or not the input is already pre-tokenized (e.g., split into words). If set to `True`, the tokenizer assumes the input is already split into words (for instance, by splitting it on whitespace) which it will tokenize. This is useful for NER or token classification. pad_to_multiple_of (`int`, *optional*): If set will pad the sequence to a multiple of the provided value. This is especially useful to enable the use of Tensor Cores on NVIDIA hardware with compute capability `>= 7.5` (Volta). return_tensors (`str` or [`~utils.TensorType`], *optional*): If set, will return tensors instead of list of python integers. Acceptable values are: - `'tf'`: Return TensorFlow `tf.constant` objects. - `'pt'`: Return PyTorch `torch.Tensor` objects. - `'np'`: Return Numpy `np.ndarray` objects. """ class TapasTokenizer(PreTrainedTokenizer): r""" Construct a TAPAS tokenizer. Based on WordPiece. Flattens a table and one or more related sentences to be used by TAPAS models. This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to this superclass for more information regarding those methods. [`TapasTokenizer`] creates several token type ids to encode tabular structure. To be more precise, it adds 7 token type ids, in the following order: `segment_ids`, `column_ids`, `row_ids`, `prev_labels`, `column_ranks`, `inv_column_ranks` and `numeric_relations`: - segment_ids: indicate whether a token belongs to the question (0) or the table (1). 0 for special tokens and padding. - column_ids: indicate to which column of the table a token belongs (starting from 1). Is 0 for all question tokens, special tokens and padding. - row_ids: indicate to which row of the table a token belongs (starting from 1). Is 0 for all question tokens, special tokens and padding. Tokens of column headers are also 0. - prev_labels: indicate whether a token was (part of) an answer to the previous question (1) or not (0). Useful in a conversational setup (such as SQA). - column_ranks: indicate the rank of a table token relative to a column, if applicable. For example, if you have a column "number of movies" with values 87, 53 and 69, then the column ranks of these tokens are 3, 1 and 2 respectively. 0 for all question tokens, special tokens and padding. - inv_column_ranks: indicate the inverse rank of a table token relative to a column, if applicable. For example, if you have a column "number of movies" with values 87, 53 and 69, then the inverse column ranks of these tokens are 1, 3 and 2 respectively. 0 for all question tokens, special tokens and padding. - numeric_relations: indicate numeric relations between the question and the tokens of the table. 0 for all question tokens, special tokens and padding. [`TapasTokenizer`] runs end-to-end tokenization on a table and associated sentences: punctuation splitting and wordpiece. Args: vocab_file (`str`): File containing the vocabulary. do_lower_case (`bool`, *optional*, defaults to `True`): Whether or not to lowercase the input when tokenizing. do_basic_tokenize (`bool`, *optional*, defaults to `True`): Whether or not to do basic tokenization before WordPiece. never_split (`Iterable`, *optional*): Collection of tokens which will never be split during tokenization. Only has an effect when `do_basic_tokenize=True` unk_token (`str`, *optional*, defaults to `"[UNK]"`): The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this token instead. sep_token (`str`, *optional*, defaults to `"[SEP]"`): The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for sequence classification or for a text and a question for question answering. It is also used as the last token of a sequence built with special tokens. pad_token (`str`, *optional*, defaults to `"[PAD]"`): The token used for padding, for example when batching sequences of different lengths. cls_token (`str`, *optional*, defaults to `"[CLS]"`): The classifier token which is used when doing sequence classification (classification of the whole sequence instead of per-token classification). It is the first token of the sequence when built with special tokens. mask_token (`str`, *optional*, defaults to `"[MASK]"`): The token used for masking values. This is the token used when training this model with masked language modeling. This is the token which the model will try to predict. empty_token (`str`, *optional*, defaults to `"[EMPTY]"`): The token used for empty cell values in a table. Empty cell values include "", "n/a", "nan" and "?". tokenize_chinese_chars (`bool`, *optional*, defaults to `True`): Whether or not to tokenize Chinese characters. This should likely be deactivated for Japanese (see this [issue](https://github.com/huggingface/transformers/issues/328)). strip_accents (`bool`, *optional*): Whether or not to strip all accents. If this option is not specified, then it will be determined by the value for `lowercase` (as in the original BERT). cell_trim_length (`int`, *optional*, defaults to -1): If > 0: Trim cells so that the length is <= this value. Also disables further cell trimming, should thus be used with `truncation` set to `True`. max_column_id (`int`, *optional*): Max column id to extract. max_row_id (`int`, *optional*): Max row id to extract. strip_column_names (`bool`, *optional*, defaults to `False`): Whether to add empty strings instead of column names. update_answer_coordinates (`bool`, *optional*, defaults to `False`): Whether to recompute the answer coordinates from the answer text. min_question_length (`int`, *optional*): Minimum length of each question in terms of tokens (will be skipped otherwise). max_question_length (`int`, *optional*): Maximum length of each question in terms of tokens (will be skipped otherwise). """ vocab_files_names = VOCAB_FILES_NAMES pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self, vocab_file, do_lower_case=True, do_basic_tokenize=True, never_split=None, unk_token="[UNK]", sep_token="[SEP]", pad_token="[PAD]", cls_token="[CLS]", mask_token="[MASK]", empty_token="[EMPTY]", tokenize_chinese_chars=True, strip_accents=None, cell_trim_length: int = -1, max_column_id: int = None, max_row_id: int = None, strip_column_names: bool = False, update_answer_coordinates: bool = False, min_question_length=None, max_question_length=None, model_max_length: int = 512, additional_special_tokens: Optional[List[str]] = None, **kwargs, ): if not is_pandas_available(): raise ImportError("Pandas is required for the TAPAS tokenizer.") if additional_special_tokens is not None: if empty_token not in additional_special_tokens: additional_special_tokens.append(empty_token) else: additional_special_tokens = [empty_token] super().__init__( do_lower_case=do_lower_case, do_basic_tokenize=do_basic_tokenize, never_split=never_split, unk_token=unk_token, sep_token=sep_token, pad_token=pad_token, cls_token=cls_token, mask_token=mask_token, empty_token=empty_token, tokenize_chinese_chars=tokenize_chinese_chars, strip_accents=strip_accents, cell_trim_length=cell_trim_length, max_column_id=max_column_id, max_row_id=max_row_id, strip_column_names=strip_column_names, update_answer_coordinates=update_answer_coordinates, min_question_length=min_question_length, max_question_length=max_question_length, model_max_length=model_max_length, additional_special_tokens=additional_special_tokens, **kwargs, ) if not os.path.isfile(vocab_file): raise ValueError( f"Can't find a vocabulary file at path '{vocab_file}'. To load the vocabulary from a Google pretrained" " model use `tokenizer = BertTokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`" ) self.vocab = load_vocab(vocab_file) self.ids_to_tokens = collections.OrderedDict([(ids, tok) for tok, ids in self.vocab.items()]) self.do_basic_tokenize = do_basic_tokenize if do_basic_tokenize: self.basic_tokenizer = BasicTokenizer( do_lower_case=do_lower_case, never_split=never_split, tokenize_chinese_chars=tokenize_chinese_chars, strip_accents=strip_accents, ) self.wordpiece_tokenizer = WordpieceTokenizer(vocab=self.vocab, unk_token=self.unk_token) # Additional properties self.cell_trim_length = cell_trim_length self.max_column_id = max_column_id if max_column_id is not None else self.model_max_length self.max_row_id = max_row_id if max_row_id is not None else self.model_max_length self.strip_column_names = strip_column_names self.update_answer_coordinates = update_answer_coordinates self.min_question_length = min_question_length self.max_question_length = max_question_length @property def do_lower_case(self): return self.basic_tokenizer.do_lower_case @property def vocab_size(self): return len(self.vocab) def get_vocab(self): return dict(self.vocab, **self.added_tokens_encoder) def _tokenize(self, text): if format_text(text) == EMPTY_TEXT: return [self.additional_special_tokens[0]] split_tokens = [] if self.do_basic_tokenize: for token in self.basic_tokenizer.tokenize(text, never_split=self.all_special_tokens): # If the token is part of the never_split set if token in self.basic_tokenizer.never_split: split_tokens.append(token) else: split_tokens += self.wordpiece_tokenizer.tokenize(token) else: split_tokens = self.wordpiece_tokenizer.tokenize(text) return split_tokens def _convert_token_to_id(self, token): """Converts a token (str) in an id using the vocab.""" return self.vocab.get(token, self.vocab.get(self.unk_token)) def _convert_id_to_token(self, index): """Converts an index (integer) in a token (str) using the vocab.""" return self.ids_to_tokens.get(index, self.unk_token) def convert_tokens_to_string(self, tokens): """Converts a sequence of tokens (string) in a single string.""" out_string = " ".join(tokens).replace(" ##", "").strip() return out_string def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]: index = 0 if os.path.isdir(save_directory): vocab_file = os.path.join( save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) else: vocab_file = (filename_prefix + "-" if filename_prefix else "") + save_directory with open(vocab_file, "w", encoding="utf-8") as writer: for token, token_index in sorted(self.vocab.items(), key=lambda kv: kv[1]): if index != token_index: logger.warning( f"Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive." " Please check that the vocabulary is not corrupted!" ) index = token_index writer.write(token + "\n") index += 1 return (vocab_file,) def create_attention_mask_from_sequences(self, query_ids: List[int], table_values: List[TableValue]) -> List[int]: """ Creates the attention mask according to the query token IDs and a list of table values. Args: query_ids (`List[int]`): list of token IDs corresponding to the ID. table_values (`List[TableValue]`): lift of table values, which are named tuples containing the token value, the column ID and the row ID of said token. Returns: `List[int]`: List of ints containing the attention mask values. """ return [1] * (1 + len(query_ids) + 1 + len(table_values)) def create_segment_token_type_ids_from_sequences( self, query_ids: List[int], table_values: List[TableValue] ) -> List[int]: """ Creates the segment token type IDs according to the query token IDs and a list of table values. Args: query_ids (`List[int]`): list of token IDs corresponding to the ID. table_values (`List[TableValue]`): lift of table values, which are named tuples containing the token value, the column ID and the row ID of said token. Returns: `List[int]`: List of ints containing the segment token type IDs values. """ table_ids = list(zip(*table_values))[0] if table_values else [] return [0] * (1 + len(query_ids) + 1) + [1] * len(table_ids) def create_column_token_type_ids_from_sequences( self, query_ids: List[int], table_values: List[TableValue] ) -> List[int]: """ Creates the column token type IDs according to the query token IDs and a list of table values. Args: query_ids (`List[int]`): list of token IDs corresponding to the ID. table_values (`List[TableValue]`): lift of table values, which are named tuples containing the token value, the column ID and the row ID of said token. Returns: `List[int]`: List of ints containing the column token type IDs values. """ table_column_ids = list(zip(*table_values))[1] if table_values else [] return [0] * (1 + len(query_ids) + 1) + list(table_column_ids) def create_row_token_type_ids_from_sequences( self, query_ids: List[int], table_values: List[TableValue] ) -> List[int]: """ Creates the row token type IDs according to the query token IDs and a list of table values. Args: query_ids (`List[int]`): list of token IDs corresponding to the ID. table_values (`List[TableValue]`): lift of table values, which are named tuples containing the token value, the column ID and the row ID of said token. Returns: `List[int]`: List of ints containing the row token type IDs values. """ table_row_ids = list(zip(*table_values))[2] if table_values else [] return [0] * (1 + len(query_ids) + 1) + list(table_row_ids) def build_inputs_with_special_tokens( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None ) -> List[int]: """ Build model inputs from a question and flattened table for question answering or sequence classification tasks by concatenating and adding special tokens. Args: token_ids_0 (`List[int]`): The ids of the question. token_ids_1 (`List[int]`, *optional*): The ids of the flattened table. Returns: `List[int]`: The model input with special tokens. """ if token_ids_1 is None: raise ValueError("With TAPAS, you must provide both question IDs and table IDs.") return [self.cls_token_id] + token_ids_0 + [self.sep_token_id] + token_ids_1 def get_special_tokens_mask( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False ) -> List[int]: """ Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding special tokens using the tokenizer `prepare_for_model` method. Args: token_ids_0 (`List[int]`): List of question IDs. token_ids_1 (`List[int]`, *optional*): List of flattened table IDs. already_has_special_tokens (`bool`, *optional*, defaults to `False`): Whether or not the token list is already formatted with special tokens for the model. Returns: `List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token. """ if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True ) if token_ids_1 is not None: return [1] + ([0] * len(token_ids_0)) + [1] + ([0] * len(token_ids_1)) return [1] + ([0] * len(token_ids_0)) + [1] @add_end_docstrings(TAPAS_ENCODE_PLUS_ADDITIONAL_KWARGS_DOCSTRING) def __call__( self, table: "pd.DataFrame", queries: Optional[ Union[ TextInput, PreTokenizedInput, EncodedInput, List[TextInput], List[PreTokenizedInput], List[EncodedInput], ] ] = None, answer_coordinates: Optional[Union[List[Tuple], List[List[Tuple]]]] = None, answer_text: Optional[Union[List[TextInput], List[List[TextInput]]]] = None, add_special_tokens: bool = True, padding: Union[bool, str, PaddingStrategy] = False, truncation: Union[bool, str, TapasTruncationStrategy] = False, max_length: Optional[int] = None, pad_to_multiple_of: Optional[int] = None, return_tensors: Optional[Union[str, TensorType]] = None, return_token_type_ids: Optional[bool] = None, return_attention_mask: Optional[bool] = None, return_overflowing_tokens: bool = False, return_special_tokens_mask: bool = False, return_offsets_mapping: bool = False, return_length: bool = False, verbose: bool = True, **kwargs, ) -> BatchEncoding: """ Main method to tokenize and prepare for the model one or several sequence(s) related to a table. Args: table (`pd.DataFrame`): Table containing tabular data. Note that all cell values must be text. Use *.astype(str)* on a Pandas dataframe to convert it to string. queries (`str` or `List[str]`): Question or batch of questions related to a table to be encoded. Note that in case of a batch, all questions must refer to the **same** table. answer_coordinates (`List[Tuple]` or `List[List[Tuple]]`, *optional*): Answer coordinates of each table-question pair in the batch. In case only a single table-question pair is provided, then the answer_coordinates must be a single list of one or more tuples. Each tuple must be a (row_index, column_index) pair. The first data row (not the column header row) has index 0. The first column has index 0. In case a batch of table-question pairs is provided, then the answer_coordinates must be a list of lists of tuples (each list corresponding to a single table-question pair). answer_text (`List[str]` or `List[List[str]]`, *optional*): Answer text of each table-question pair in the batch. In case only a single table-question pair is provided, then the answer_text must be a single list of one or more strings. Each string must be the answer text of a corresponding answer coordinate. In case a batch of table-question pairs is provided, then the answer_coordinates must be a list of lists of strings (each list corresponding to a single table-question pair). """ assert isinstance(table, pd.DataFrame), "Table must be of type pd.DataFrame" # Input type checking for clearer error valid_query = False # Check that query has a valid type if queries is None or isinstance(queries, str): valid_query = True elif isinstance(queries, (list, tuple)): if len(queries) == 0 or isinstance(queries[0], str): valid_query = True if not valid_query: raise ValueError( "queries input must of type `str` (single example), `List[str]` (batch or single pretokenized" " example). " ) is_batched = isinstance(queries, (list, tuple)) if is_batched: return self.batch_encode_plus( table=table, queries=queries, answer_coordinates=answer_coordinates, answer_text=answer_text, add_special_tokens=add_special_tokens, padding=padding, truncation=truncation, max_length=max_length, pad_to_multiple_of=pad_to_multiple_of, return_tensors=return_tensors, return_token_type_ids=return_token_type_ids, return_attention_mask=return_attention_mask, return_overflowing_tokens=return_overflowing_tokens, return_special_tokens_mask=return_special_tokens_mask, return_offsets_mapping=return_offsets_mapping, return_length=return_length, verbose=verbose, **kwargs, ) else: return self.encode_plus( table=table, query=queries, answer_coordinates=answer_coordinates, answer_text=answer_text, add_special_tokens=add_special_tokens, padding=padding, truncation=truncation, max_length=max_length, pad_to_multiple_of=pad_to_multiple_of, return_tensors=return_tensors, return_token_type_ids=return_token_type_ids, return_attention_mask=return_attention_mask, return_overflowing_tokens=return_overflowing_tokens, return_special_tokens_mask=return_special_tokens_mask, return_offsets_mapping=return_offsets_mapping, return_length=return_length, verbose=verbose, **kwargs, ) @add_end_docstrings(ENCODE_KWARGS_DOCSTRING, TAPAS_ENCODE_PLUS_ADDITIONAL_KWARGS_DOCSTRING) def batch_encode_plus( self, table: "pd.DataFrame", queries: Optional[ Union[ List[TextInput], List[PreTokenizedInput], List[EncodedInput], ] ] = None, answer_coordinates: Optional[List[List[Tuple]]] = None, answer_text: Optional[List[List[TextInput]]] = None, add_special_tokens: bool = True, padding: Union[bool, str, PaddingStrategy] = False, truncation: Union[bool, str, TapasTruncationStrategy] = False, max_length: Optional[int] = None, pad_to_multiple_of: Optional[int] = None, return_tensors: Optional[Union[str, TensorType]] = None, return_token_type_ids: Optional[bool] = None, return_attention_mask: Optional[bool] = None, return_overflowing_tokens: bool = False, return_special_tokens_mask: bool = False, return_offsets_mapping: bool = False, return_length: bool = False, verbose: bool = True, **kwargs, ) -> BatchEncoding: """ Prepare a table and a list of strings for the model. <Tip warning={true}> This method is deprecated, `__call__` should be used instead. </Tip> Args: table (`pd.DataFrame`): Table containing tabular data. Note that all cell values must be text. Use *.astype(str)* on a Pandas dataframe to convert it to string. queries (`List[str]`): Batch of questions related to a table to be encoded. Note that all questions must refer to the **same** table. answer_coordinates (`List[Tuple]` or `List[List[Tuple]]`, *optional*): Answer coordinates of each table-question pair in the batch. Each tuple must be a (row_index, column_index) pair. The first data row (not the column header row) has index 0. The first column has index 0. The answer_coordinates must be a list of lists of tuples (each list corresponding to a single table-question pair). answer_text (`List[str]` or `List[List[str]]`, *optional*): Answer text of each table-question pair in the batch. In case a batch of table-question pairs is provided, then the answer_coordinates must be a list of lists of strings (each list corresponding to a single table-question pair). Each string must be the answer text of a corresponding answer coordinate. """ if return_token_type_ids is not None and not add_special_tokens: raise ValueError( "Asking to return token_type_ids while setting add_special_tokens to False " "results in an undefined behavior. Please set add_special_tokens to True or " "set return_token_type_ids to None." ) if (answer_coordinates and not answer_text) or (not answer_coordinates and answer_text): raise ValueError("In case you provide answers, both answer_coordinates and answer_text should be provided") elif answer_coordinates is None and answer_text is None: answer_coordinates = answer_text = [None] * len(queries) if "is_split_into_words" in kwargs: raise NotImplementedError("Currently TapasTokenizer only supports questions as strings.") if return_offsets_mapping: raise NotImplementedError( "return_offset_mapping is not available when using Python tokenizers. " "To use this feature, change your tokenizer to one deriving from " "transformers.PreTrainedTokenizerFast." ) return self._batch_encode_plus( table=table, queries=queries, answer_coordinates=answer_coordinates, answer_text=answer_text, add_special_tokens=add_special_tokens, padding=padding, truncation=truncation, max_length=max_length, pad_to_multiple_of=pad_to_multiple_of, return_tensors=return_tensors, return_token_type_ids=return_token_type_ids, return_attention_mask=return_attention_mask, return_overflowing_tokens=return_overflowing_tokens, return_special_tokens_mask=return_special_tokens_mask, return_offsets_mapping=return_offsets_mapping, return_length=return_length, verbose=verbose, **kwargs, ) def _get_question_tokens(self, query): """Tokenizes the query, taking into account the max and min question length.""" query_tokens = self.tokenize(query) if self.max_question_length is not None and len(query_tokens) > self.max_question_length: logger.warning("Skipping query as its tokens are longer than the max question length") return "", [] if self.min_question_length is not None and len(query_tokens) < self.min_question_length: logger.warning("Skipping query as its tokens are shorter than the min question length") return "", [] return query, query_tokens def _batch_encode_plus( self, table, queries: Union[ List[TextInput], List[PreTokenizedInput], List[EncodedInput], ], answer_coordinates: Optional[List[List[Tuple]]] = None, answer_text: Optional[List[List[TextInput]]] = None, add_special_tokens: bool = True, padding: Union[bool, str, PaddingStrategy] = False, truncation: Union[bool, str, TapasTruncationStrategy] = False, max_length: Optional[int] = None, pad_to_multiple_of: Optional[int] = None, return_tensors: Optional[Union[str, TensorType]] = None, return_token_type_ids: Optional[bool] = True, return_attention_mask: Optional[bool] = None, return_overflowing_tokens: bool = False, return_special_tokens_mask: bool = False, return_offsets_mapping: bool = False, return_length: bool = False, verbose: bool = True, **kwargs, ) -> BatchEncoding: table_tokens = self._tokenize_table(table) queries_tokens = [] for idx, query in enumerate(queries): query, query_tokens = self._get_question_tokens(query) queries[idx] = query queries_tokens.append(query_tokens) batch_outputs = self._batch_prepare_for_model( table, queries, tokenized_table=table_tokens, queries_tokens=queries_tokens, answer_coordinates=answer_coordinates, padding=padding, truncation=truncation, answer_text=answer_text, add_special_tokens=add_special_tokens, max_length=max_length, pad_to_multiple_of=pad_to_multiple_of, return_tensors=return_tensors, prepend_batch_axis=True, return_attention_mask=return_attention_mask, return_token_type_ids=return_token_type_ids, return_overflowing_tokens=return_overflowing_tokens, return_special_tokens_mask=return_special_tokens_mask, return_length=return_length, verbose=verbose, ) return BatchEncoding(batch_outputs) def _batch_prepare_for_model( self, raw_table: "pd.DataFrame", raw_queries: Union[ List[TextInput], List[PreTokenizedInput], List[EncodedInput], ], tokenized_table: Optional[TokenizedTable] = None, queries_tokens: Optional[List[List[str]]] = None, answer_coordinates: Optional[List[List[Tuple]]] = None, answer_text: Optional[List[List[TextInput]]] = None, add_special_tokens: bool = True, padding: Union[bool, str, PaddingStrategy] = False, truncation: Union[bool, str, TapasTruncationStrategy] = False, max_length: Optional[int] = None, pad_to_multiple_of: Optional[int] = None, return_tensors: Optional[Union[str, TensorType]] = None, return_token_type_ids: Optional[bool] = True, return_attention_mask: Optional[bool] = True, return_special_tokens_mask: bool = False, return_offsets_mapping: bool = False, return_length: bool = False, verbose: bool = True, prepend_batch_axis: bool = False, **kwargs, ) -> BatchEncoding: batch_outputs = {} for index, example in enumerate(zip(raw_queries, queries_tokens, answer_coordinates, answer_text)): raw_query, query_tokens, answer_coords, answer_txt = example outputs = self.prepare_for_model( raw_table, raw_query, tokenized_table=tokenized_table, query_tokens=query_tokens, answer_coordinates=answer_coords, answer_text=answer_txt, add_special_tokens=add_special_tokens, padding=PaddingStrategy.DO_NOT_PAD.value, # we pad in batch afterwards truncation=truncation, max_length=max_length, pad_to_multiple_of=None, # we pad in batch afterwards return_attention_mask=False, # we pad in batch afterwards return_token_type_ids=return_token_type_ids, return_special_tokens_mask=return_special_tokens_mask, return_length=return_length, return_tensors=None, # We convert the whole batch to tensors at the end prepend_batch_axis=False, verbose=verbose, prev_answer_coordinates=answer_coordinates[index - 1] if index != 0 else None, prev_answer_text=answer_text[index - 1] if index != 0 else None, ) for key, value in outputs.items(): if key not in batch_outputs: batch_outputs[key] = [] batch_outputs[key].append(value) batch_outputs = self.pad( batch_outputs, padding=padding, max_length=max_length, pad_to_multiple_of=pad_to_multiple_of, return_attention_mask=return_attention_mask, ) batch_outputs = BatchEncoding(batch_outputs, tensor_type=return_tensors) return batch_outputs @add_end_docstrings(ENCODE_KWARGS_DOCSTRING) def encode( self, table: "pd.DataFrame", query: Optional[ Union[ TextInput, PreTokenizedInput, EncodedInput, ] ] = None, add_special_tokens: bool = True, padding: Union[bool, str, PaddingStrategy] = False, truncation: Union[bool, str, TapasTruncationStrategy] = False, max_length: Optional[int] = None, return_tensors: Optional[Union[str, TensorType]] = None, **kwargs, ) -> List[int]: """ Prepare a table and a string for the model. This method does not return token type IDs, attention masks, etc. which are necessary for the model to work correctly. Use that method if you want to build your processing on your own, otherwise refer to `__call__`. Args: table (`pd.DataFrame`): Table containing tabular data. Note that all cell values must be text. Use *.astype(str)* on a Pandas dataframe to convert it to string. query (`str` or `List[str]`): Question related to a table to be encoded. """ encoded_inputs = self.encode_plus( table, query=query, add_special_tokens=add_special_tokens, padding=padding, truncation=truncation, max_length=max_length, return_tensors=return_tensors, **kwargs, ) return encoded_inputs["input_ids"] @add_end_docstrings(ENCODE_KWARGS_DOCSTRING, TAPAS_ENCODE_PLUS_ADDITIONAL_KWARGS_DOCSTRING) def encode_plus( self, table: "pd.DataFrame", query: Optional[ Union[ TextInput, PreTokenizedInput, EncodedInput, ] ] = None, answer_coordinates: Optional[List[Tuple]] = None, answer_text: Optional[List[TextInput]] = None, add_special_tokens: bool = True, padding: Union[bool, str, PaddingStrategy] = False, truncation: Union[bool, str, TapasTruncationStrategy] = False, max_length: Optional[int] = None, pad_to_multiple_of: Optional[int] = None, return_tensors: Optional[Union[str, TensorType]] = None, return_token_type_ids: Optional[bool] = None, return_attention_mask: Optional[bool] = None, return_special_tokens_mask: bool = False, return_offsets_mapping: bool = False, return_length: bool = False, verbose: bool = True, **kwargs, ) -> BatchEncoding: """ Prepare a table and a string for the model. Args: table (`pd.DataFrame`): Table containing tabular data. Note that all cell values must be text. Use *.astype(str)* on a Pandas dataframe to convert it to string. query (`str` or `List[str]`): Question related to a table to be encoded. answer_coordinates (`List[Tuple]` or `List[List[Tuple]]`, *optional*): Answer coordinates of each table-question pair in the batch. The answer_coordinates must be a single list of one or more tuples. Each tuple must be a (row_index, column_index) pair. The first data row (not the column header row) has index 0. The first column has index 0. answer_text (`List[str]` or `List[List[str]]`, *optional*): Answer text of each table-question pair in the batch. The answer_text must be a single list of one or more strings. Each string must be the answer text of a corresponding answer coordinate. """ if return_token_type_ids is not None and not add_special_tokens: raise ValueError( "Asking to return token_type_ids while setting add_special_tokens to False " "results in an undefined behavior. Please set add_special_tokens to True or " "set return_token_type_ids to None." ) if (answer_coordinates and not answer_text) or (not answer_coordinates and answer_text): raise ValueError("In case you provide answers, both answer_coordinates and answer_text should be provided") if "is_split_into_words" in kwargs: raise NotImplementedError("Currently TapasTokenizer only supports questions as strings.") if return_offsets_mapping: raise NotImplementedError( "return_offset_mapping is not available when using Python tokenizers. " "To use this feature, change your tokenizer to one deriving from " "transformers.PreTrainedTokenizerFast." ) return self._encode_plus( table=table, query=query, answer_coordinates=answer_coordinates, answer_text=answer_text, add_special_tokens=add_special_tokens, truncation=truncation, padding=padding, max_length=max_length, pad_to_multiple_of=pad_to_multiple_of, return_tensors=return_tensors, return_token_type_ids=return_token_type_ids, return_attention_mask=return_attention_mask, return_special_tokens_mask=return_special_tokens_mask, return_offsets_mapping=return_offsets_mapping, return_length=return_length, verbose=verbose, **kwargs, ) def _encode_plus( self, table: "pd.DataFrame", query: Union[ TextInput, PreTokenizedInput, EncodedInput, ], answer_coordinates: Optional[List[Tuple]] = None, answer_text: Optional[List[TextInput]] = None, add_special_tokens: bool = True, padding: Union[bool, str, PaddingStrategy] = False, truncation: Union[bool, str, TapasTruncationStrategy] = False, max_length: Optional[int] = None, pad_to_multiple_of: Optional[int] = None, return_tensors: Optional[Union[str, TensorType]] = None, return_token_type_ids: Optional[bool] = True, return_attention_mask: Optional[bool] = True, return_special_tokens_mask: bool = False, return_offsets_mapping: bool = False, return_length: bool = False, verbose: bool = True, **kwargs, ): if query is None: query = "" logger.warning( "TAPAS is a question answering model but you have not passed a query. Please be aware that the " "model will probably not behave correctly." ) table_tokens = self._tokenize_table(table) query, query_tokens = self._get_question_tokens(query) return self.prepare_for_model( table, query, tokenized_table=table_tokens, query_tokens=query_tokens, answer_coordinates=answer_coordinates, answer_text=answer_text, add_special_tokens=add_special_tokens, truncation=truncation, padding=padding, max_length=max_length, pad_to_multiple_of=pad_to_multiple_of, return_tensors=return_tensors, prepend_batch_axis=True, return_attention_mask=return_attention_mask, return_token_type_ids=return_token_type_ids, return_special_tokens_mask=return_special_tokens_mask, return_length=return_length, verbose=verbose, ) @add_end_docstrings(ENCODE_KWARGS_DOCSTRING, TAPAS_ENCODE_PLUS_ADDITIONAL_KWARGS_DOCSTRING) def prepare_for_model( self, raw_table: "pd.DataFrame", raw_query: Union[ TextInput, PreTokenizedInput, EncodedInput, ], tokenized_table: Optional[TokenizedTable] = None, query_tokens: Optional[TokenizedTable] = None, answer_coordinates: Optional[List[Tuple]] = None, answer_text: Optional[List[TextInput]] = None, add_special_tokens: bool = True, padding: Union[bool, str, PaddingStrategy] = False, truncation: Union[bool, str, TapasTruncationStrategy] = False, max_length: Optional[int] = None, pad_to_multiple_of: Optional[int] = None, return_tensors: Optional[Union[str, TensorType]] = None, return_token_type_ids: Optional[bool] = True, return_attention_mask: Optional[bool] = True, return_special_tokens_mask: bool = False, return_offsets_mapping: bool = False, return_length: bool = False, verbose: bool = True, prepend_batch_axis: bool = False, **kwargs, ) -> BatchEncoding: """ Prepares a sequence of input id so that it can be used by the model. It adds special tokens, truncates sequences if overflowing while taking into account the special tokens. Args: raw_table (`pd.DataFrame`): The original table before any transformation (like tokenization) was applied to it. raw_query (`TextInput` or `PreTokenizedInput` or `EncodedInput`): The original query before any transformation (like tokenization) was applied to it. tokenized_table (`TokenizedTable`): The table after tokenization. query_tokens (`List[str]`): The query after tokenization. answer_coordinates (`List[Tuple]` or `List[List[Tuple]]`, *optional*): Answer coordinates of each table-question pair in the batch. The answer_coordinates must be a single list of one or more tuples. Each tuple must be a (row_index, column_index) pair. The first data row (not the column header row) has index 0. The first column has index 0. answer_text (`List[str]` or `List[List[str]]`, *optional*): Answer text of each table-question pair in the batch. The answer_text must be a single list of one or more strings. Each string must be the answer text of a corresponding answer coordinate. """ if isinstance(padding, bool): if padding and (max_length is not None or pad_to_multiple_of is not None): padding = PaddingStrategy.MAX_LENGTH else: padding = PaddingStrategy.DO_NOT_PAD elif not isinstance(padding, PaddingStrategy): padding = PaddingStrategy(padding) if isinstance(truncation, bool): if truncation: truncation = TapasTruncationStrategy.DROP_ROWS_TO_FIT else: truncation = TapasTruncationStrategy.DO_NOT_TRUNCATE elif not isinstance(truncation, TapasTruncationStrategy): truncation = TapasTruncationStrategy(truncation) encoded_inputs = {} is_part_of_batch = False prev_answer_coordinates, prev_answer_text = None, None if "prev_answer_coordinates" in kwargs and "prev_answer_text" in kwargs: is_part_of_batch = True prev_answer_coordinates = kwargs["prev_answer_coordinates"] prev_answer_text = kwargs["prev_answer_text"] num_rows = self._get_num_rows(raw_table, truncation != TapasTruncationStrategy.DO_NOT_TRUNCATE) num_columns = self._get_num_columns(raw_table) _, _, num_tokens = self._get_table_boundaries(tokenized_table) if truncation != TapasTruncationStrategy.DO_NOT_TRUNCATE: num_rows, num_tokens = self._get_truncated_table_rows( query_tokens, tokenized_table, num_rows, num_columns, max_length, truncation_strategy=truncation ) table_data = list(self._get_table_values(tokenized_table, num_columns, num_rows, num_tokens)) query_ids = self.convert_tokens_to_ids(query_tokens) table_ids = list(zip(*table_data))[0] if len(table_data) > 0 else list(zip(*table_data)) table_ids = self.convert_tokens_to_ids(list(table_ids)) if "return_overflowing_tokens" in kwargs and kwargs["return_overflowing_tokens"]: raise ValueError("TAPAS does not return overflowing tokens as it works on tables.") if add_special_tokens: input_ids = self.build_inputs_with_special_tokens(query_ids, table_ids) else: input_ids = query_ids + table_ids if max_length is not None and len(input_ids) > max_length: raise ValueError( "Could not encode the query and table header given the maximum length. Encoding the query and table " f"header results in a length of {len(input_ids)} which is higher than the max_length of {max_length}" ) encoded_inputs["input_ids"] = input_ids segment_ids = self.create_segment_token_type_ids_from_sequences(query_ids, table_data) column_ids = self.create_column_token_type_ids_from_sequences(query_ids, table_data) row_ids = self.create_row_token_type_ids_from_sequences(query_ids, table_data) if not is_part_of_batch or (prev_answer_coordinates is None and prev_answer_text is None): # simply set the prev_labels to zeros prev_labels = [0] * len(row_ids) else: prev_labels = self.get_answer_ids( column_ids, row_ids, table_data, prev_answer_text, prev_answer_coordinates ) # FIRST: parse both the table and question in terms of numeric values raw_table = add_numeric_table_values(raw_table) raw_query = add_numeric_values_to_question(raw_query) # SECOND: add numeric-related features (and not parse them in these functions): column_ranks, inv_column_ranks = self._get_numeric_column_ranks(column_ids, row_ids, raw_table) numeric_relations = self._get_numeric_relations(raw_query, column_ids, row_ids, raw_table) # Load from model defaults if return_token_type_ids is None: return_token_type_ids = "token_type_ids" in self.model_input_names if return_attention_mask is None: return_attention_mask = "attention_mask" in self.model_input_names if return_attention_mask: attention_mask = self.create_attention_mask_from_sequences(query_ids, table_data) encoded_inputs["attention_mask"] = attention_mask if answer_coordinates is not None and answer_text is not None: labels = self.get_answer_ids(column_ids, row_ids, table_data, answer_text, answer_coordinates) numeric_values = self._get_numeric_values(raw_table, column_ids, row_ids) numeric_values_scale = self._get_numeric_values_scale(raw_table, column_ids, row_ids) encoded_inputs["labels"] = labels encoded_inputs["numeric_values"] = numeric_values encoded_inputs["numeric_values_scale"] = numeric_values_scale if return_token_type_ids: token_type_ids = [ segment_ids, column_ids, row_ids, prev_labels, column_ranks, inv_column_ranks, numeric_relations, ] token_type_ids = [list(ids) for ids in list(zip(*token_type_ids))] encoded_inputs["token_type_ids"] = token_type_ids if return_special_tokens_mask: if add_special_tokens: encoded_inputs["special_tokens_mask"] = self.get_special_tokens_mask(query_ids, table_ids) else: encoded_inputs["special_tokens_mask"] = [0] * len(input_ids) # Check lengths if max_length is None and len(encoded_inputs["input_ids"]) > self.model_max_length and verbose: if not self.deprecation_warnings.get("sequence-length-is-longer-than-the-specified-maximum", False): logger.warning( "Token indices sequence length is longer than the specified maximum sequence length " f"for this model ({len(encoded_inputs['input_ids'])} > {self.model_max_length}). Running this " "sequence through the model will result in indexing errors." ) self.deprecation_warnings["sequence-length-is-longer-than-the-specified-maximum"] = True # Padding if padding != PaddingStrategy.DO_NOT_PAD or return_attention_mask: encoded_inputs = self.pad( encoded_inputs, max_length=max_length, padding=padding.value, pad_to_multiple_of=pad_to_multiple_of, return_attention_mask=return_attention_mask, ) if return_length: encoded_inputs["length"] = len(encoded_inputs["input_ids"]) batch_outputs = BatchEncoding( encoded_inputs, tensor_type=return_tensors, prepend_batch_axis=prepend_batch_axis ) return batch_outputs def _get_truncated_table_rows( self, query_tokens: List[str], tokenized_table: TokenizedTable, num_rows: int, num_columns: int, max_length: int, truncation_strategy: Union[str, TapasTruncationStrategy], ) -> Tuple[int, int]: """ Truncates a sequence pair in-place following the strategy. Args: query_tokens (`List[str]`): List of strings corresponding to the tokenized query. tokenized_table (`TokenizedTable`): Tokenized table num_rows (`int`): Total number of table rows num_columns (`int`): Total number of table columns max_length (`int`): Total maximum length. truncation_strategy (`str` or [`TapasTruncationStrategy`]): Truncation strategy to use. Seeing as this method should only be called when truncating, the only available strategy is the `"drop_rows_to_fit"` strategy. Returns: `Tuple(int, int)`: tuple containing the number of rows after truncation, and the number of tokens available for each table element. """ if not isinstance(truncation_strategy, TapasTruncationStrategy): truncation_strategy = TapasTruncationStrategy(truncation_strategy) if max_length is None: max_length = self.model_max_length if truncation_strategy == TapasTruncationStrategy.DROP_ROWS_TO_FIT: while True: num_tokens = self._get_max_num_tokens( query_tokens, tokenized_table, num_rows=num_rows, num_columns=num_columns, max_length=max_length ) if num_tokens is not None: # We could fit the table. break # Try to drop a row to fit the table. num_rows -= 1 if num_rows < 1: break elif truncation_strategy != TapasTruncationStrategy.DO_NOT_TRUNCATE: raise ValueError(f"Unknown truncation strategy {truncation_strategy}.") return num_rows, num_tokens or 1 def _tokenize_table( self, table=None, ): """ Tokenizes column headers and cell texts of a table. Args: table (`pd.Dataframe`): Table. Returns: `TokenizedTable`: TokenizedTable object. """ tokenized_rows = [] tokenized_row = [] # tokenize column headers for column in table: if self.strip_column_names: tokenized_row.append(self.tokenize("")) else: tokenized_row.append(self.tokenize(column)) tokenized_rows.append(tokenized_row) # tokenize cell values for idx, row in table.iterrows(): tokenized_row = [] for cell in row: tokenized_row.append(self.tokenize(cell)) tokenized_rows.append(tokenized_row) token_coordinates = [] for row_index, row in enumerate(tokenized_rows): for column_index, cell in enumerate(row): for token_index, _ in enumerate(cell): token_coordinates.append( TokenCoordinates( row_index=row_index, column_index=column_index, token_index=token_index, ) ) return TokenizedTable( rows=tokenized_rows, selected_tokens=token_coordinates, ) def _question_encoding_cost(self, question_tokens): # Two extra spots of SEP and CLS. return len(question_tokens) + 2 def _get_token_budget(self, question_tokens, max_length=None): """ Computes the number of tokens left for the table after tokenizing a question, taking into account the max sequence length of the model. Args: question_tokens (`List[String]`): List of question tokens. Returns: `int`: the number of tokens left for the table, given the model max length. """ return (max_length if max_length is not None else self.model_max_length) - self._question_encoding_cost( question_tokens ) def _get_table_values(self, table, num_columns, num_rows, num_tokens) -> Generator[TableValue, None, None]: """Iterates over partial table and returns token, column and row indexes.""" for tc in table.selected_tokens: # First row is header row. if tc.row_index >= num_rows + 1: continue if tc.column_index >= num_columns: continue cell = table.rows[tc.row_index][tc.column_index] token = cell[tc.token_index] word_begin_index = tc.token_index # Don't add partial words. Find the starting word piece and check if it # fits in the token budget. while word_begin_index >= 0 and _is_inner_wordpiece(cell[word_begin_index]): word_begin_index -= 1 if word_begin_index >= num_tokens: continue yield TableValue(token, tc.column_index + 1, tc.row_index) def _get_table_boundaries(self, table): """Return maximal number of rows, columns and tokens.""" max_num_tokens = 0 max_num_columns = 0 max_num_rows = 0 for tc in table.selected_tokens: max_num_columns = max(max_num_columns, tc.column_index + 1) max_num_rows = max(max_num_rows, tc.row_index + 1) max_num_tokens = max(max_num_tokens, tc.token_index + 1) max_num_columns = min(self.max_column_id, max_num_columns) max_num_rows = min(self.max_row_id, max_num_rows) return max_num_rows, max_num_columns, max_num_tokens def _get_table_cost(self, table, num_columns, num_rows, num_tokens): return sum(1 for _ in self._get_table_values(table, num_columns, num_rows, num_tokens)) def _get_max_num_tokens(self, question_tokens, tokenized_table, num_columns, num_rows, max_length): """Computes max number of tokens that can be squeezed into the budget.""" token_budget = self._get_token_budget(question_tokens, max_length) _, _, max_num_tokens = self._get_table_boundaries(tokenized_table) if self.cell_trim_length >= 0 and max_num_tokens > self.cell_trim_length: max_num_tokens = self.cell_trim_length num_tokens = 0 for num_tokens in range(max_num_tokens + 1): cost = self._get_table_cost(tokenized_table, num_columns, num_rows, num_tokens + 1) if cost > token_budget: break if num_tokens < max_num_tokens: if self.cell_trim_length >= 0: # We don't allow dynamic trimming if a cell_trim_length is set. return None if num_tokens == 0: return None return num_tokens def _get_num_columns(self, table): num_columns = table.shape[1] if num_columns >= self.max_column_id: raise ValueError("Too many columns") return num_columns def _get_num_rows(self, table, drop_rows_to_fit): num_rows = table.shape[0] if num_rows >= self.max_row_id: if drop_rows_to_fit: num_rows = self.max_row_id - 1 else: raise ValueError("Too many rows") return num_rows def _serialize_text(self, question_tokens): """Serializes texts in index arrays.""" tokens = [] segment_ids = [] column_ids = [] row_ids = [] # add [CLS] token at the beginning tokens.append(self.cls_token) segment_ids.append(0) column_ids.append(0) row_ids.append(0) for token in question_tokens: tokens.append(token) segment_ids.append(0) column_ids.append(0) row_ids.append(0) return tokens, segment_ids, column_ids, row_ids def _serialize( self, question_tokens, table, num_columns, num_rows, num_tokens, ): """Serializes table and text.""" tokens, segment_ids, column_ids, row_ids = self._serialize_text(question_tokens) # add [SEP] token between question and table tokens tokens.append(self.sep_token) segment_ids.append(0) column_ids.append(0) row_ids.append(0) for token, column_id, row_id in self._get_table_values(table, num_columns, num_rows, num_tokens): tokens.append(token) segment_ids.append(1) column_ids.append(column_id) row_ids.append(row_id) return SerializedExample( tokens=tokens, segment_ids=segment_ids, column_ids=column_ids, row_ids=row_ids, ) def _get_column_values(self, table, col_index): table_numeric_values = {} for row_index, row in table.iterrows(): cell = row[col_index] if cell.numeric_value is not None: table_numeric_values[row_index] = cell.numeric_value return table_numeric_values def _get_cell_token_indexes(self, column_ids, row_ids, column_id, row_id): for index in range(len(column_ids)): if column_ids[index] - 1 == column_id and row_ids[index] - 1 == row_id: yield index def _get_numeric_column_ranks(self, column_ids, row_ids, table): """Returns column ranks for all numeric columns.""" ranks = [0] * len(column_ids) inv_ranks = [0] * len(column_ids) # original code from tf_example_utils.py of the original implementation if table is not None: for col_index in range(len(table.columns)): table_numeric_values = self._get_column_values(table, col_index) if not table_numeric_values: continue try: key_fn = get_numeric_sort_key_fn(table_numeric_values.values()) except ValueError: continue table_numeric_values = {row_index: key_fn(value) for row_index, value in table_numeric_values.items()} table_numeric_values_inv = collections.defaultdict(list) for row_index, value in table_numeric_values.items(): table_numeric_values_inv[value].append(row_index) unique_values = sorted(table_numeric_values_inv.keys()) for rank, value in enumerate(unique_values): for row_index in table_numeric_values_inv[value]: for index in self._get_cell_token_indexes(column_ids, row_ids, col_index, row_index): ranks[index] = rank + 1 inv_ranks[index] = len(unique_values) - rank return ranks, inv_ranks def _get_numeric_sort_key_fn(self, table_numeric_values, value): """ Returns the sort key function for comparing value to table values. The function returned will be a suitable input for the key param of the sort(). See number_annotation_utils._get_numeric_sort_key_fn for details Args: table_numeric_values: Numeric values of a column value: Numeric value in the question Returns: A function key function to compare column and question values. """ if not table_numeric_values: return None all_values = list(table_numeric_values.values()) all_values.append(value) try: return get_numeric_sort_key_fn(all_values) except ValueError: return None def _get_numeric_relations(self, question, column_ids, row_ids, table): """ Returns numeric relations embeddings Args: question: Question object. column_ids: Maps word piece position to column id. row_ids: Maps word piece position to row id. table: The table containing the numeric cell values. """ numeric_relations = [0] * len(column_ids) # first, we add any numeric value spans to the question: # Create a dictionary that maps a table cell to the set of all relations # this cell has with any value in the question. cell_indices_to_relations = collections.defaultdict(set) if question is not None and table is not None: for numeric_value_span in question.numeric_spans: for value in numeric_value_span.values: for column_index in range(len(table.columns)): table_numeric_values = self._get_column_values(table, column_index) sort_key_fn = self._get_numeric_sort_key_fn(table_numeric_values, value) if sort_key_fn is None: continue for row_index, cell_value in table_numeric_values.items(): relation = get_numeric_relation(value, cell_value, sort_key_fn) if relation is not None: cell_indices_to_relations[column_index, row_index].add(relation) # For each cell add a special feature for all its word pieces. for (column_index, row_index), relations in cell_indices_to_relations.items(): relation_set_index = 0 for relation in relations: assert relation.value >= Relation.EQ.value relation_set_index += 2 ** (relation.value - Relation.EQ.value) for cell_token_index in self._get_cell_token_indexes(column_ids, row_ids, column_index, row_index): numeric_relations[cell_token_index] = relation_set_index return numeric_relations def _get_numeric_values(self, table, column_ids, row_ids): """Returns numeric values for computation of answer loss.""" numeric_values = [float("nan")] * len(column_ids) if table is not None: num_rows = table.shape[0] num_columns = table.shape[1] for col_index in range(num_columns): for row_index in range(num_rows): numeric_value = table.iloc[row_index, col_index].numeric_value if numeric_value is not None: if numeric_value.float_value is None: continue float_value = numeric_value.float_value if float_value == float("inf"): continue for index in self._get_cell_token_indexes(column_ids, row_ids, col_index, row_index): numeric_values[index] = float_value return numeric_values def _get_numeric_values_scale(self, table, column_ids, row_ids): """Returns a scale to each token to down weigh the value of long words.""" numeric_values_scale = [1.0] * len(column_ids) if table is None: return numeric_values_scale num_rows = table.shape[0] num_columns = table.shape[1] for col_index in range(num_columns): for row_index in range(num_rows): indices = list(self._get_cell_token_indexes(column_ids, row_ids, col_index, row_index)) num_indices = len(indices) if num_indices > 1: for index in indices: numeric_values_scale[index] = float(num_indices) return numeric_values_scale def _pad_to_seq_length(self, inputs): while len(inputs) > self.model_max_length: inputs.pop() while len(inputs) < self.model_max_length: inputs.append(0) def _get_all_answer_ids_from_coordinates( self, column_ids, row_ids, answers_list, ): """Maps lists of answer coordinates to token indexes.""" answer_ids = [0] * len(column_ids) found_answers = set() all_answers = set() for answers in answers_list: column_index, row_index = answers all_answers.add((column_index, row_index)) for index in self._get_cell_token_indexes(column_ids, row_ids, column_index, row_index): found_answers.add((column_index, row_index)) answer_ids[index] = 1 missing_count = len(all_answers) - len(found_answers) return answer_ids, missing_count def _get_all_answer_ids(self, column_ids, row_ids, answer_coordinates): """ Maps answer coordinates of a question to token indexes. In the SQA format (TSV), the coordinates are given as (row, column) tuples. Here, we first swap them to (column, row) format before calling _get_all_answer_ids_from_coordinates. """ def _to_coordinates(answer_coordinates_question): return [(coords[1], coords[0]) for coords in answer_coordinates_question] return self._get_all_answer_ids_from_coordinates( column_ids, row_ids, answers_list=(_to_coordinates(answer_coordinates)) ) def _find_tokens(self, text, segment): """Return start index of segment in text or None.""" logging.info(f"text: {text} {segment}") for index in range(1 + len(text) - len(segment)): for seg_index, seg_token in enumerate(segment): if text[index + seg_index].piece != seg_token.piece: break else: return index return None def _find_answer_coordinates_from_answer_text( self, tokenized_table, answer_text, ): """Returns all occurrences of answer_text in the table.""" logging.info(f"answer text: {answer_text}") for row_index, row in enumerate(tokenized_table.rows): if row_index == 0: # We don't search for answers in the header. continue for col_index, cell in enumerate(row): token_index = self._find_tokens(cell, answer_text) if token_index is not None: yield TokenCoordinates( row_index=row_index, column_index=col_index, token_index=token_index, ) def _find_answer_ids_from_answer_texts( self, column_ids, row_ids, tokenized_table, answer_texts, ): """Maps question with answer texts to the first matching token indexes.""" answer_ids = [0] * len(column_ids) for answer_text in answer_texts: for coordinates in self._find_answer_coordinates_from_answer_text( tokenized_table, answer_text, ): # Maps answer coordinates to indexes this can fail if tokens / rows have # been pruned. indexes = list( self._get_cell_token_indexes( column_ids, row_ids, column_id=coordinates.column_index, row_id=coordinates.row_index - 1, ) ) indexes.sort() coordinate_answer_ids = [] if indexes: begin_index = coordinates.token_index + indexes[0] end_index = begin_index + len(answer_text) for index in indexes: if index >= begin_index and index < end_index: coordinate_answer_ids.append(index) if len(coordinate_answer_ids) == len(answer_text): for index in coordinate_answer_ids: answer_ids[index] = 1 break return answer_ids def _get_answer_ids(self, column_ids, row_ids, answer_coordinates): """Maps answer coordinates of a question to token indexes.""" answer_ids, missing_count = self._get_all_answer_ids(column_ids, row_ids, answer_coordinates) if missing_count: raise ValueError("Couldn't find all answers") return answer_ids def get_answer_ids(self, column_ids, row_ids, tokenized_table, answer_texts_question, answer_coordinates_question): if self.update_answer_coordinates: return self._find_answer_ids_from_answer_texts( column_ids, row_ids, tokenized_table, answer_texts=[self.tokenize(at) for at in answer_texts_question], ) return self._get_answer_ids(column_ids, row_ids, answer_coordinates_question) def _pad( self, encoded_inputs: Union[Dict[str, EncodedInput], BatchEncoding], max_length: Optional[int] = None, padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD, pad_to_multiple_of: Optional[int] = None, return_attention_mask: Optional[bool] = None, ) -> dict: """ Pad encoded inputs (on left/right and up to predefined length or max length in the batch) Args: encoded_inputs: Dictionary of tokenized inputs (`List[int]`) or batch of tokenized inputs (`List[List[int]]`). max_length: maximum length of the returned list and optionally padding length (see below). Will truncate by taking into account the special tokens. padding_strategy: PaddingStrategy to use for padding. - PaddingStrategy.LONGEST Pad to the longest sequence in the batch - PaddingStrategy.MAX_LENGTH: Pad to the max length (default) - PaddingStrategy.DO_NOT_PAD: Do not pad The tokenizer padding sides are defined in self.padding_side: - 'left': pads on the left of the sequences - 'right': pads on the right of the sequences pad_to_multiple_of: (optional) Integer if set will pad the sequence to a multiple of the provided value. This is especially useful to enable the use of Tensor Core on NVIDIA hardware with compute capability `>= 7.5` (Volta). return_attention_mask: (optional) Set to False to avoid returning attention mask (default: set to model specifics) """ # Load from model defaults if return_attention_mask is None: return_attention_mask = "attention_mask" in self.model_input_names if padding_strategy == PaddingStrategy.LONGEST: max_length = len(encoded_inputs["input_ids"]) if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0): max_length = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of needs_to_be_padded = ( padding_strategy != PaddingStrategy.DO_NOT_PAD and len(encoded_inputs["input_ids"]) != max_length ) # Initialize attention mask if not present. if return_attention_mask and "attention_mask" not in encoded_inputs: encoded_inputs["attention_mask"] = [1] * len(encoded_inputs["input_ids"]) if needs_to_be_padded: difference = max_length - len(encoded_inputs["input_ids"]) if self.padding_side == "right": if return_attention_mask: encoded_inputs["attention_mask"] = encoded_inputs["attention_mask"] + [0] * difference if "token_type_ids" in encoded_inputs: encoded_inputs["token_type_ids"] = ( encoded_inputs["token_type_ids"] + [[self.pad_token_type_id] * 7] * difference ) if "labels" in encoded_inputs: encoded_inputs["labels"] = encoded_inputs["labels"] + [0] * difference if "numeric_values" in encoded_inputs: encoded_inputs["numeric_values"] = encoded_inputs["numeric_values"] + [float("nan")] * difference if "numeric_values_scale" in encoded_inputs: encoded_inputs["numeric_values_scale"] = ( encoded_inputs["numeric_values_scale"] + [1.0] * difference ) if "special_tokens_mask" in encoded_inputs: encoded_inputs["special_tokens_mask"] = encoded_inputs["special_tokens_mask"] + [1] * difference encoded_inputs["input_ids"] = encoded_inputs["input_ids"] + [self.pad_token_id] * difference elif self.padding_side == "left": if return_attention_mask: encoded_inputs["attention_mask"] = [0] * difference + encoded_inputs["attention_mask"] if "token_type_ids" in encoded_inputs: encoded_inputs["token_type_ids"] = [[self.pad_token_type_id] * 7] * difference + encoded_inputs[ "token_type_ids" ] if "labels" in encoded_inputs: encoded_inputs["labels"] = [0] * difference + encoded_inputs["labels"] if "numeric_values" in encoded_inputs: encoded_inputs["numeric_values"] = [float("nan")] * difference + encoded_inputs["numeric_values"] if "numeric_values_scale" in encoded_inputs: encoded_inputs["numeric_values_scale"] = [1.0] * difference + encoded_inputs[ "numeric_values_scale" ] if "special_tokens_mask" in encoded_inputs: encoded_inputs["special_tokens_mask"] = [1] * difference + encoded_inputs["special_tokens_mask"] encoded_inputs["input_ids"] = [self.pad_token_id] * difference + encoded_inputs["input_ids"] else: raise ValueError("Invalid padding strategy:" + str(self.padding_side)) return encoded_inputs # Everything related to converting logits to predictions def _get_cell_token_probs(self, probabilities, segment_ids, row_ids, column_ids): for i, p in enumerate(probabilities): segment_id = segment_ids[i] col = column_ids[i] - 1 row = row_ids[i] - 1 if col >= 0 and row >= 0 and segment_id == 1: yield i, p def _get_mean_cell_probs(self, probabilities, segment_ids, row_ids, column_ids): """Computes average probability per cell, aggregating over tokens.""" coords_to_probs = collections.defaultdict(list) for i, prob in self._get_cell_token_probs(probabilities, segment_ids, row_ids, column_ids): col = column_ids[i] - 1 row = row_ids[i] - 1 coords_to_probs[(col, row)].append(prob) return {coords: np.array(cell_probs).mean() for coords, cell_probs in coords_to_probs.items()} def convert_logits_to_predictions(self, data, logits, logits_agg=None, cell_classification_threshold=0.5): """ Converts logits of [`TapasForQuestionAnswering`] to actual predicted answer coordinates and optional aggregation indices. The original implementation, on which this function is based, can be found [here](https://github.com/google-research/tapas/blob/4908213eb4df7aa988573350278b44c4dbe3f71b/tapas/experiments/prediction_utils.py#L288). Args: data (`dict`): Dictionary mapping features to actual values. Should be created using [`TapasTokenizer`]. logits (`torch.Tensor` or `tf.Tensor` of shape `(batch_size, sequence_length)`): Tensor containing the logits at the token level. logits_agg (`torch.Tensor` or `tf.Tensor` of shape `(batch_size, num_aggregation_labels)`, *optional*): Tensor containing the aggregation logits. cell_classification_threshold (`float`, *optional*, defaults to 0.5): Threshold to be used for cell selection. All table cells for which their probability is larger than this threshold will be selected. Returns: `tuple` comprising various elements depending on the inputs: - predicted_answer_coordinates (`List[List[[tuple]]` of length `batch_size`): Predicted answer coordinates as a list of lists of tuples. Each element in the list contains the predicted answer coordinates of a single example in the batch, as a list of tuples. Each tuple is a cell, i.e. (row index, column index). - predicted_aggregation_indices (`List[int]`of length `batch_size`, *optional*, returned when `logits_aggregation` is provided): Predicted aggregation operator indices of the aggregation head. """ # converting to numpy arrays to work with PT/TF logits = logits.numpy() if logits_agg is not None: logits_agg = logits_agg.numpy() data = {key: value.numpy() for key, value in data.items() if key != "training"} # input data is of type float32 # np.log(np.finfo(np.float32).max) = 88.72284 # Any value over 88.72284 will overflow when passed through the exponential, sending a warning # We disable this warning by truncating the logits. logits[logits < -88.7] = -88.7 # Compute probabilities from token logits probabilities = 1 / (1 + np.exp(-logits)) * data["attention_mask"] token_types = [ "segment_ids", "column_ids", "row_ids", "prev_labels", "column_ranks", "inv_column_ranks", "numeric_relations", ] # collect input_ids, segment ids, row ids and column ids of batch. Shape (batch_size, seq_len) input_ids = data["input_ids"] segment_ids = data["token_type_ids"][:, :, token_types.index("segment_ids")] row_ids = data["token_type_ids"][:, :, token_types.index("row_ids")] column_ids = data["token_type_ids"][:, :, token_types.index("column_ids")] # next, get answer coordinates for every example in the batch num_batch = input_ids.shape[0] predicted_answer_coordinates = [] for i in range(num_batch): probabilities_example = probabilities[i].tolist() segment_ids_example = segment_ids[i] row_ids_example = row_ids[i] column_ids_example = column_ids[i] max_width = column_ids_example.max() max_height = row_ids_example.max() if max_width == 0 and max_height == 0: continue cell_coords_to_prob = self._get_mean_cell_probs( probabilities_example, segment_ids_example.tolist(), row_ids_example.tolist(), column_ids_example.tolist(), ) # Select the answers above the classification threshold. answer_coordinates = [] for col in range(max_width): for row in range(max_height): cell_prob = cell_coords_to_prob.get((col, row), None) if cell_prob is not None: if cell_prob > cell_classification_threshold: answer_coordinates.append((row, col)) answer_coordinates = sorted(answer_coordinates) predicted_answer_coordinates.append(answer_coordinates) output = (predicted_answer_coordinates,) if logits_agg is not None: predicted_aggregation_indices = logits_agg.argmax(axis=-1) output = (predicted_answer_coordinates, predicted_aggregation_indices.tolist()) return output # End of everything related to converting logits to predictions # Copied from transformers.models.bert.tokenization_bert.BasicTokenizer class BasicTokenizer(object): """ Constructs a BasicTokenizer that will run basic tokenization (punctuation splitting, lower casing, etc.). Args: do_lower_case (`bool`, *optional*, defaults to `True`): Whether or not to lowercase the input when tokenizing. never_split (`Iterable`, *optional*): Collection of tokens which will never be split during tokenization. Only has an effect when `do_basic_tokenize=True` tokenize_chinese_chars (`bool`, *optional*, defaults to `True`): Whether or not to tokenize Chinese characters. This should likely be deactivated for Japanese (see this [issue](https://github.com/huggingface/transformers/issues/328)). strip_accents (`bool`, *optional*): Whether or not to strip all accents. If this option is not specified, then it will be determined by the value for `lowercase` (as in the original BERT). do_split_on_punc (`bool`, *optional*, defaults to `True`): In some instances we want to skip the basic punctuation splitting so that later tokenization can capture the full context of the words, such as contractions. """ def __init__( self, do_lower_case=True, never_split=None, tokenize_chinese_chars=True, strip_accents=None, do_split_on_punc=True, ): if never_split is None: never_split = [] self.do_lower_case = do_lower_case self.never_split = set(never_split) self.tokenize_chinese_chars = tokenize_chinese_chars self.strip_accents = strip_accents self.do_split_on_punc = do_split_on_punc def tokenize(self, text, never_split=None): """ Basic Tokenization of a piece of text. For sub-word tokenization, see WordPieceTokenizer. Args: never_split (`List[str]`, *optional*) Kept for backward compatibility purposes. Now implemented directly at the base class level (see [`PreTrainedTokenizer.tokenize`]) List of token not to split. """ # union() returns a new set by concatenating the two sets. never_split = self.never_split.union(set(never_split)) if never_split else self.never_split text = self._clean_text(text) # This was added on November 1st, 2018 for the multilingual and Chinese # models. This is also applied to the English models now, but it doesn't # matter since the English models were not trained on any Chinese data # and generally don't have any Chinese data in them (there are Chinese # characters in the vocabulary because Wikipedia does have some Chinese # words in the English Wikipedia.). if self.tokenize_chinese_chars: text = self._tokenize_chinese_chars(text) # prevents treating the same character with different unicode codepoints as different characters unicode_normalized_text = unicodedata.normalize("NFC", text) orig_tokens = whitespace_tokenize(unicode_normalized_text) split_tokens = [] for token in orig_tokens: if token not in never_split: if self.do_lower_case: token = token.lower() if self.strip_accents is not False: token = self._run_strip_accents(token) elif self.strip_accents: token = self._run_strip_accents(token) split_tokens.extend(self._run_split_on_punc(token, never_split)) output_tokens = whitespace_tokenize(" ".join(split_tokens)) return output_tokens def _run_strip_accents(self, text): """Strips accents from a piece of text.""" text = unicodedata.normalize("NFD", text) output = [] for char in text: cat = unicodedata.category(char) if cat == "Mn": continue output.append(char) return "".join(output) def _run_split_on_punc(self, text, never_split=None): """Splits punctuation on a piece of text.""" if not self.do_split_on_punc or (never_split is not None and text in never_split): return [text] chars = list(text) i = 0 start_new_word = True output = [] while i < len(chars): char = chars[i] if _is_punctuation(char): output.append([char]) start_new_word = True else: if start_new_word: output.append([]) start_new_word = False output[-1].append(char) i += 1 return ["".join(x) for x in output] def _tokenize_chinese_chars(self, text): """Adds whitespace around any CJK character.""" output = [] for char in text: cp = ord(char) if self._is_chinese_char(cp): output.append(" ") output.append(char) output.append(" ") else: output.append(char) return "".join(output) def _is_chinese_char(self, cp): """Checks whether CP is the codepoint of a CJK character.""" # This defines a "chinese character" as anything in the CJK Unicode block: # https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block) # # Note that the CJK Unicode block is NOT all Japanese and Korean characters, # despite its name. The modern Korean Hangul alphabet is a different block, # as is Japanese Hiragana and Katakana. Those alphabets are used to write # space-separated words, so they are not treated specially and handled # like the all of the other languages. if ( (cp >= 0x4E00 and cp <= 0x9FFF) or (cp >= 0x3400 and cp <= 0x4DBF) # or (cp >= 0x20000 and cp <= 0x2A6DF) # or (cp >= 0x2A700 and cp <= 0x2B73F) # or (cp >= 0x2B740 and cp <= 0x2B81F) # or (cp >= 0x2B820 and cp <= 0x2CEAF) # or (cp >= 0xF900 and cp <= 0xFAFF) or (cp >= 0x2F800 and cp <= 0x2FA1F) # ): # return True return False def _clean_text(self, text): """Performs invalid character removal and whitespace cleanup on text.""" output = [] for char in text: cp = ord(char) if cp == 0 or cp == 0xFFFD or _is_control(char): continue if _is_whitespace(char): output.append(" ") else: output.append(char) return "".join(output) # Copied from transformers.models.bert.tokenization_bert.WordpieceTokenizer class WordpieceTokenizer(object): """Runs WordPiece tokenization.""" def __init__(self, vocab, unk_token, max_input_chars_per_word=100): self.vocab = vocab self.unk_token = unk_token self.max_input_chars_per_word = max_input_chars_per_word def tokenize(self, text): """ Tokenizes a piece of text into its word pieces. This uses a greedy longest-match-first algorithm to perform tokenization using the given vocabulary. For example, `input = "unaffable"` wil return as output `["un", "##aff", "##able"]`. Args: text: A single token or whitespace separated tokens. This should have already been passed through *BasicTokenizer*. Returns: A list of wordpiece tokens. """ output_tokens = [] for token in whitespace_tokenize(text): chars = list(token) if len(chars) > self.max_input_chars_per_word: output_tokens.append(self.unk_token) continue is_bad = False start = 0 sub_tokens = [] while start < len(chars): end = len(chars) cur_substr = None while start < end: substr = "".join(chars[start:end]) if start > 0: substr = "##" + substr if substr in self.vocab: cur_substr = substr break end -= 1 if cur_substr is None: is_bad = True break sub_tokens.append(cur_substr) start = end if is_bad: output_tokens.append(self.unk_token) else: output_tokens.extend(sub_tokens) return output_tokens # Below: utilities for TAPAS tokenizer (independent from PyTorch/Tensorflow). # This includes functions to parse numeric values (dates and numbers) from both the table and questions in order # to create the column_ranks, inv_column_ranks, numeric_values, numeric values_scale and numeric_relations in # prepare_for_model of TapasTokenizer. # These are meant to be used in an academic setup, for production use cases Gold mine or Aqua should be used. # taken from constants.py of the original implementation # URL: https://github.com/google-research/tapas/blob/master/tapas/utils/constants.py class Relation(enum.Enum): HEADER_TO_CELL = 1 # Connects header to cell. CELL_TO_HEADER = 2 # Connects cell to header. QUERY_TO_HEADER = 3 # Connects query to headers. QUERY_TO_CELL = 4 # Connects query to cells. ROW_TO_CELL = 5 # Connects row to cells. CELL_TO_ROW = 6 # Connects cells to row. EQ = 7 # Annotation value is same as cell value LT = 8 # Annotation value is less than cell value GT = 9 # Annotation value is greater than cell value @dataclass class Date: year: Optional[int] = None month: Optional[int] = None day: Optional[int] = None @dataclass class NumericValue: float_value: Optional[float] = None date: Optional[Date] = None @dataclass class NumericValueSpan: begin_index: int = None end_index: int = None values: List[NumericValue] = None @dataclass class Cell: text: Text numeric_value: Optional[NumericValue] = None @dataclass class Question: original_text: Text # The original raw question string. text: Text # The question string after normalization. numeric_spans: Optional[List[NumericValueSpan]] = None # Below: all functions from number_utils.py as well as 2 functions (namely get_all_spans and normalize_for_match) # from text_utils.py of the original implementation. URL's: # - https://github.com/google-research/tapas/blob/master/tapas/utils/number_utils.py # - https://github.com/google-research/tapas/blob/master/tapas/utils/text_utils.py # Constants for parsing date expressions. # Masks that specify (by a bool) which of (year, month, day) will be populated. _DateMask = collections.namedtuple("_DateMask", ["year", "month", "day"]) _YEAR = _DateMask(True, False, False) _YEAR_MONTH = _DateMask(True, True, False) _YEAR_MONTH_DAY = _DateMask(True, True, True) _MONTH = _DateMask(False, True, False) _MONTH_DAY = _DateMask(False, True, True) # Pairs of patterns to pass to 'datetime.strptime' and masks specifying which # fields will be set by the corresponding pattern. _DATE_PATTERNS = ( ("%B", _MONTH), ("%Y", _YEAR), ("%Ys", _YEAR), ("%b %Y", _YEAR_MONTH), ("%B %Y", _YEAR_MONTH), ("%B %d", _MONTH_DAY), ("%b %d", _MONTH_DAY), ("%d %b", _MONTH_DAY), ("%d %B", _MONTH_DAY), ("%B %d, %Y", _YEAR_MONTH_DAY), ("%d %B %Y", _YEAR_MONTH_DAY), ("%m-%d-%Y", _YEAR_MONTH_DAY), ("%Y-%m-%d", _YEAR_MONTH_DAY), ("%Y-%m", _YEAR_MONTH), ("%B %Y", _YEAR_MONTH), ("%d %b %Y", _YEAR_MONTH_DAY), ("%Y-%m-%d", _YEAR_MONTH_DAY), ("%b %d, %Y", _YEAR_MONTH_DAY), ("%d.%m.%Y", _YEAR_MONTH_DAY), ("%A, %b %d", _MONTH_DAY), ("%A, %B %d", _MONTH_DAY), ) # This mapping is used to convert date patterns to regex patterns. _FIELD_TO_REGEX = ( ("%A", r"\w+"), # Weekday as locale’s full name. ("%B", r"\w+"), # Month as locale’s full name. ("%Y", r"\d{4}"), # Year with century as a decimal number. ("%b", r"\w{3}"), # Month as locale’s abbreviated name. ("%d", r"\d{1,2}"), # Day of the month as a zero-padded decimal number. ("%m", r"\d{1,2}"), # Month as a zero-padded decimal number. ) def _process_date_pattern(dp): """Compute a regex for each date pattern to use as a prefilter.""" pattern, mask = dp regex = pattern regex = regex.replace(".", re.escape(".")) regex = regex.replace("-", re.escape("-")) regex = regex.replace(" ", r"\s+") for field, field_regex in _FIELD_TO_REGEX: regex = regex.replace(field, field_regex) # Make sure we didn't miss any of the fields. assert "%" not in regex, regex return pattern, mask, re.compile("^" + regex + "$") def _process_date_patterns(): return tuple(_process_date_pattern(dp) for dp in _DATE_PATTERNS) _PROCESSED_DATE_PATTERNS = _process_date_patterns() _MAX_DATE_NGRAM_SIZE = 5 # Following DynSp: # https://github.com/Microsoft/DynSP/blob/master/util.py#L414. _NUMBER_WORDS = [ "zero", "one", "two", "three", "four", "five", "six", "seven", "eight", "nine", "ten", "eleven", "twelve", ] _ORDINAL_WORDS = [ "zeroth", "first", "second", "third", "fourth", "fith", "sixth", "seventh", "eighth", "ninth", "tenth", "eleventh", "twelfth", ] _ORDINAL_SUFFIXES = ["st", "nd", "rd", "th"] _NUMBER_PATTERN = re.compile(r"((^|\s)[+-])?((\.\d+)|(\d+(,\d\d\d)*(\.\d*)?))") # Following DynSp: # https://github.com/Microsoft/DynSP/blob/master/util.py#L293. _MIN_YEAR = 1700 _MAX_YEAR = 2016 _INF = float("INF") def _get_numeric_value_from_date(date, mask): """Converts date (datetime Python object) to a NumericValue object with a Date object value.""" if date.year < _MIN_YEAR or date.year > _MAX_YEAR: raise ValueError(f"Invalid year: {date.year}") new_date = Date() if mask.year: new_date.year = date.year if mask.month: new_date.month = date.month if mask.day: new_date.day = date.day return NumericValue(date=new_date) def _get_span_length_key(span): """Sorts span by decreasing length first and increasing first index second.""" return span[1] - span[0], -span[0] def _get_numeric_value_from_float(value): """Converts float (Python) to a NumericValue object with a float value.""" return NumericValue(float_value=value) # Doesn't parse ordinal expressions such as '18th of february 1655'. def _parse_date(text): """Attempts to format a text as a standard date string (yyyy-mm-dd).""" text = re.sub(r"Sept\b", "Sep", text) for in_pattern, mask, regex in _PROCESSED_DATE_PATTERNS: if not regex.match(text): continue try: date = datetime.datetime.strptime(text, in_pattern).date() except ValueError: continue try: return _get_numeric_value_from_date(date, mask) except ValueError: continue return None def _parse_number(text): """Parses simple cardinal and ordinals numbers.""" for suffix in _ORDINAL_SUFFIXES: if text.endswith(suffix): text = text[: -len(suffix)] break text = text.replace(",", "") try: value = float(text) except ValueError: return None if math.isnan(value): return None if value == _INF: return None return value def get_all_spans(text, max_ngram_length): """ Split a text into all possible ngrams up to 'max_ngram_length'. Split points are white space and punctuation. Args: text: Text to split. max_ngram_length: maximal ngram length. Yields: Spans, tuples of begin-end index. """ start_indexes = [] for index, char in enumerate(text): if not char.isalnum(): continue if index == 0 or not text[index - 1].isalnum(): start_indexes.append(index) if index + 1 == len(text) or not text[index + 1].isalnum(): for start_index in start_indexes[-max_ngram_length:]: yield start_index, index + 1 def normalize_for_match(text): return " ".join(text.lower().split()) def format_text(text): """Lowercases and strips punctuation.""" text = text.lower().strip() if text == "n/a" or text == "?" or text == "nan": text = EMPTY_TEXT text = re.sub(r"[^\w\d]+", " ", text).replace("_", " ") text = " ".join(text.split()) text = text.strip() if text: return text return EMPTY_TEXT def parse_text(text): """ Extracts longest number and date spans. Args: text: text to annotate Returns: List of longest numeric value spans. """ span_dict = collections.defaultdict(list) for match in _NUMBER_PATTERN.finditer(text): span_text = text[match.start() : match.end()] number = _parse_number(span_text) if number is not None: span_dict[match.span()].append(_get_numeric_value_from_float(number)) for begin_index, end_index in get_all_spans(text, max_ngram_length=1): if (begin_index, end_index) in span_dict: continue span_text = text[begin_index:end_index] number = _parse_number(span_text) if number is not None: span_dict[begin_index, end_index].append(_get_numeric_value_from_float(number)) for number, word in enumerate(_NUMBER_WORDS): if span_text == word: span_dict[begin_index, end_index].append(_get_numeric_value_from_float(float(number))) break for number, word in enumerate(_ORDINAL_WORDS): if span_text == word: span_dict[begin_index, end_index].append(_get_numeric_value_from_float(float(number))) break for begin_index, end_index in get_all_spans(text, max_ngram_length=_MAX_DATE_NGRAM_SIZE): span_text = text[begin_index:end_index] date = _parse_date(span_text) if date is not None: span_dict[begin_index, end_index].append(date) spans = sorted(span_dict.items(), key=lambda span_value: _get_span_length_key(span_value[0]), reverse=True) selected_spans = [] for span, value in spans: for selected_span, _ in selected_spans: if selected_span[0] <= span[0] and span[1] <= selected_span[1]: break else: selected_spans.append((span, value)) selected_spans.sort(key=lambda span_value: span_value[0][0]) numeric_value_spans = [] for span, values in selected_spans: numeric_value_spans.append(NumericValueSpan(begin_index=span[0], end_index=span[1], values=values)) return numeric_value_spans # Below: all functions from number_annotation_utils.py and 2 functions (namely filter_invalid_unicode # and filter_invalid_unicode_from_table) from text_utils.py of the original implementation. URL's: # - https://github.com/google-research/tapas/blob/master/tapas/utils/number_annotation_utils.py # - https://github.com/google-research/tapas/blob/master/tapas/utils/text_utils.py _PrimitiveNumericValue = Union[float, Tuple[Optional[float], Optional[float], Optional[float]]] _SortKeyFn = Callable[[NumericValue], Tuple[float, Ellipsis]] _DATE_TUPLE_SIZE = 3 EMPTY_TEXT = "EMPTY" NUMBER_TYPE = "number" DATE_TYPE = "date" def _get_value_type(numeric_value): if numeric_value.float_value is not None: return NUMBER_TYPE elif numeric_value.date is not None: return DATE_TYPE raise ValueError(f"Unknown type: {numeric_value}") def _get_value_as_primitive_value(numeric_value): """Maps a NumericValue proto to a float or tuple of float.""" if numeric_value.float_value is not None: return numeric_value.float_value if numeric_value.date is not None: date = numeric_value.date value_tuple = [None, None, None] # All dates fields are cased to float to produce a simple primitive value. if date.year is not None: value_tuple[0] = float(date.year) if date.month is not None: value_tuple[1] = float(date.month) if date.day is not None: value_tuple[2] = float(date.day) return tuple(value_tuple) raise ValueError(f"Unknown type: {numeric_value}") def _get_all_types(numeric_values): return {_get_value_type(value) for value in numeric_values} def get_numeric_sort_key_fn(numeric_values): """ Creates a function that can be used as a sort key or to compare the values. Maps to primitive types and finds the biggest common subset. Consider the values "05/05/2010" and "August 2007". With the corresponding primitive values (2010.,5.,5.) and (2007.,8., None). These values can be compared by year and date so we map to the sequence (2010., 5.), (2007., 8.). If we added a third value "2006" with primitive value (2006., None, None), we could only compare by the year so we would map to (2010.,), (2007.,) and (2006.,). Args: numeric_values: Values to compare Returns: A function that can be used as a sort key function (mapping numeric values to a comparable tuple) Raises: ValueError if values don't have a common type or are not comparable. """ value_types = _get_all_types(numeric_values) if len(value_types) != 1: raise ValueError(f"No common value type in {numeric_values}") value_type = next(iter(value_types)) if value_type == NUMBER_TYPE: # Primitive values are simple floats, nothing to do here. return _get_value_as_primitive_value # The type can only be Date at this point which means the primitive type # is a float triple. valid_indexes = set(range(_DATE_TUPLE_SIZE)) for numeric_value in numeric_values: value = _get_value_as_primitive_value(numeric_value) assert isinstance(value, tuple) for tuple_index, inner_value in enumerate(value): if inner_value is None: valid_indexes.discard(tuple_index) if not valid_indexes: raise ValueError(f"No common value in {numeric_values}") def _sort_key_fn(numeric_value): value = _get_value_as_primitive_value(numeric_value) return tuple(value[index] for index in valid_indexes) return _sort_key_fn def _consolidate_numeric_values(row_index_to_values, min_consolidation_fraction, debug_info): """ Finds the most common numeric values in a column and returns them Args: row_index_to_values: For each row index all the values in that cell. min_consolidation_fraction: Fraction of cells that need to have consolidated value. debug_info: Additional information only used for logging Returns: For each row index the first value that matches the most common value. Rows that don't have a matching value are dropped. Empty list if values can't be consolidated. """ type_counts = collections.Counter() for numeric_values in row_index_to_values.values(): type_counts.update(_get_all_types(numeric_values)) if not type_counts: return {} max_count = max(type_counts.values()) if max_count < len(row_index_to_values) * min_consolidation_fraction: # logging.log_every_n(logging.INFO, f'Can\'t consolidate types: {debug_info} {row_index_to_values} {max_count}', 100) return {} valid_types = set() for value_type, count in type_counts.items(): if count == max_count: valid_types.add(value_type) if len(valid_types) > 1: assert DATE_TYPE in valid_types max_type = DATE_TYPE else: max_type = next(iter(valid_types)) new_row_index_to_value = {} for index, values in row_index_to_values.items(): # Extract the first matching value. for value in values: if _get_value_type(value) == max_type: new_row_index_to_value[index] = value break return new_row_index_to_value def _get_numeric_values(text): """Parses text and returns numeric values.""" numeric_spans = parse_text(text) return itertools.chain(*(span.values for span in numeric_spans)) def _get_column_values(table, col_index): """ Parses text in column and returns a dict mapping row_index to values. This is the _get_column_values function from number_annotation_utils.py of the original implementation Args: table: Pandas dataframe col_index: integer, indicating the index of the column to get the numeric values of """ index_to_values = {} for row_index, row in table.iterrows(): text = normalize_for_match(row[col_index].text) index_to_values[row_index] = list(_get_numeric_values(text)) return index_to_values def get_numeric_relation(value, other_value, sort_key_fn): """Compares two values and returns their relation or None.""" value = sort_key_fn(value) other_value = sort_key_fn(other_value) if value == other_value: return Relation.EQ if value < other_value: return Relation.LT if value > other_value: return Relation.GT return None def add_numeric_values_to_question(question): """Adds numeric value spans to a question.""" original_text = question question = normalize_for_match(question) numeric_spans = parse_text(question) return Question(original_text=original_text, text=question, numeric_spans=numeric_spans) def filter_invalid_unicode(text): """Return an empty string and True if 'text' is in invalid unicode.""" return ("", True) if isinstance(text, bytes) else (text, False) def filter_invalid_unicode_from_table(table): """ Removes invalid unicode from table. Checks whether a table cell text contains an invalid unicode encoding. If yes, reset the table cell text to an empty str and log a warning for each invalid cell Args: table: table to clean. """ # to do: add table id support if not hasattr(table, "table_id"): table.table_id = 0 for row_index, row in table.iterrows(): for col_index, cell in enumerate(row): cell, is_invalid = filter_invalid_unicode(cell) if is_invalid: logging.warning( f"Scrub an invalid table body @ table_id: {table.table_id}, row_index: {row_index}, " f"col_index: {col_index}", ) for col_index, column in enumerate(table.columns): column, is_invalid = filter_invalid_unicode(column) if is_invalid: logging.warning(f"Scrub an invalid table header @ table_id: {table.table_id}, col_index: {col_index}") def add_numeric_table_values(table, min_consolidation_fraction=0.7, debug_info=None): """ Parses text in table column-wise and adds the consolidated values. Consolidation refers to finding values with a common types (date or number) Args: table: Table to annotate. min_consolidation_fraction: Fraction of cells in a column that need to have consolidated value. debug_info: Additional information used for logging. """ table = table.copy() # First, filter table on invalid unicode filter_invalid_unicode_from_table(table) # Second, replace cell values by Cell objects for row_index, row in table.iterrows(): for col_index, cell in enumerate(row): table.iloc[row_index, col_index] = Cell(text=cell) # Third, add numeric_value attributes to these Cell objects for col_index, column in enumerate(table.columns): column_values = _consolidate_numeric_values( _get_column_values(table, col_index), min_consolidation_fraction=min_consolidation_fraction, debug_info=(debug_info, column), ) for row_index, numeric_value in column_values.items(): table.iloc[row_index, col_index].numeric_value = numeric_value return table
0
hf_public_repos/transformers/src/transformers/models
hf_public_repos/transformers/src/transformers/models/tapas/convert_tapas_original_tf_checkpoint_to_pytorch.py
# coding=utf-8 # Copyright 2020 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Convert TAPAS checkpoint.""" import argparse from transformers import ( TapasConfig, TapasForMaskedLM, TapasForQuestionAnswering, TapasForSequenceClassification, TapasModel, TapasTokenizer, load_tf_weights_in_tapas, ) from transformers.utils import logging logging.set_verbosity_info() def convert_tf_checkpoint_to_pytorch( task, reset_position_index_per_cell, tf_checkpoint_path, tapas_config_file, pytorch_dump_path ): # Initialise PyTorch model. # If you want to convert a checkpoint that uses absolute position embeddings, make sure to set reset_position_index_per_cell of # TapasConfig to False. # initialize configuration from json file config = TapasConfig.from_json_file(tapas_config_file) # set absolute/relative position embeddings parameter config.reset_position_index_per_cell = reset_position_index_per_cell # set remaining parameters of TapasConfig as well as the model based on the task if task == "SQA": model = TapasForQuestionAnswering(config=config) elif task == "WTQ": # run_task_main.py hparams config.num_aggregation_labels = 4 config.use_answer_as_supervision = True # hparam_utils.py hparams config.answer_loss_cutoff = 0.664694 config.cell_selection_preference = 0.207951 config.huber_loss_delta = 0.121194 config.init_cell_selection_weights_to_zero = True config.select_one_column = True config.allow_empty_column_selection = False config.temperature = 0.0352513 model = TapasForQuestionAnswering(config=config) elif task == "WIKISQL_SUPERVISED": # run_task_main.py hparams config.num_aggregation_labels = 4 config.use_answer_as_supervision = False # hparam_utils.py hparams config.answer_loss_cutoff = 36.4519 config.cell_selection_preference = 0.903421 config.huber_loss_delta = 222.088 config.init_cell_selection_weights_to_zero = True config.select_one_column = True config.allow_empty_column_selection = True config.temperature = 0.763141 model = TapasForQuestionAnswering(config=config) elif task == "TABFACT": model = TapasForSequenceClassification(config=config) elif task == "MLM": model = TapasForMaskedLM(config=config) elif task == "INTERMEDIATE_PRETRAINING": model = TapasModel(config=config) else: raise ValueError(f"Task {task} not supported.") print(f"Building PyTorch model from configuration: {config}") # Load weights from tf checkpoint load_tf_weights_in_tapas(model, config, tf_checkpoint_path) # Save pytorch-model (weights and configuration) print(f"Save PyTorch model to {pytorch_dump_path}") model.save_pretrained(pytorch_dump_path) # Save tokenizer files print(f"Save tokenizer files to {pytorch_dump_path}") tokenizer = TapasTokenizer(vocab_file=tf_checkpoint_path[:-10] + "vocab.txt", model_max_length=512) tokenizer.save_pretrained(pytorch_dump_path) print("Used relative position embeddings:", model.config.reset_position_index_per_cell) if __name__ == "__main__": parser = argparse.ArgumentParser() # Required parameters parser.add_argument( "--task", default="SQA", type=str, help="Model task for which to convert a checkpoint. Defaults to SQA." ) parser.add_argument( "--reset_position_index_per_cell", default=False, action="store_true", help="Whether to use relative position embeddings or not. Defaults to True.", ) parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--tapas_config_file", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained TAPAS model. \n" "This specifies the model architecture." ), ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) args = parser.parse_args() convert_tf_checkpoint_to_pytorch( args.task, args.reset_position_index_per_cell, args.tf_checkpoint_path, args.tapas_config_file, args.pytorch_dump_path, )
0
hf_public_repos/transformers/src/transformers/models
hf_public_repos/transformers/src/transformers/models/tapas/configuration_tapas.py
# coding=utf-8 # Copyright 2020 Google Research and The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ TAPAS configuration. Based on the BERT configuration with added parameters. Hyperparameters are taken from run_task_main.py and hparam_utils.py of the original implementation. URLS: - https://github.com/google-research/tapas/blob/master/tapas/run_task_main.py - https://github.com/google-research/tapas/blob/master/tapas/utils/hparam_utils.py """ from ...configuration_utils import PretrainedConfig TAPAS_PRETRAINED_CONFIG_ARCHIVE_MAP = { "google/tapas-base-finetuned-sqa": ( "https://huggingface.co/google/tapas-base-finetuned-sqa/resolve/main/config.json" ), "google/tapas-base-finetuned-wtq": ( "https://huggingface.co/google/tapas-base-finetuned-wtq/resolve/main/config.json" ), "google/tapas-base-finetuned-wikisql-supervised": ( "https://huggingface.co/google/tapas-base-finetuned-wikisql-supervised/resolve/main/config.json" ), "google/tapas-base-finetuned-tabfact": ( "https://huggingface.co/google/tapas-base-finetuned-tabfact/resolve/main/config.json" ), } class TapasConfig(PretrainedConfig): r""" This is the configuration class to store the configuration of a [`TapasModel`]. It is used to instantiate a TAPAS model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the TAPAS [google/tapas-base-finetuned-sqa](https://huggingface.co/google/tapas-base-finetuned-sqa) architecture. Configuration objects inherit from [`PreTrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Hyperparameters additional to BERT are taken from run_task_main.py and hparam_utils.py of the original implementation. Original implementation available at https://github.com/google-research/tapas/tree/master. Args: vocab_size (`int`, *optional*, defaults to 30522): Vocabulary size of the TAPAS model. Defines the number of different tokens that can be represented by the `inputs_ids` passed when calling [`TapasModel`]. hidden_size (`int`, *optional*, defaults to 768): Dimensionality of the encoder layers and the pooler layer. num_hidden_layers (`int`, *optional*, defaults to 12): Number of hidden layers in the Transformer encoder. num_attention_heads (`int`, *optional*, defaults to 12): Number of attention heads for each attention layer in the Transformer encoder. intermediate_size (`int`, *optional*, defaults to 3072): Dimensionality of the "intermediate" (often named feed-forward) layer in the Transformer encoder. hidden_act (`str` or `Callable`, *optional*, defaults to `"gelu"`): The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, `"relu"`, `"swish"` and `"gelu_new"` are supported. hidden_dropout_prob (`float`, *optional*, defaults to 0.1): The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1): The dropout ratio for the attention probabilities. max_position_embeddings (`int`, *optional*, defaults to 1024): The maximum sequence length that this model might ever be used with. Typically set this to something large just in case (e.g., 512 or 1024 or 2048). type_vocab_sizes (`List[int]`, *optional*, defaults to `[3, 256, 256, 2, 256, 256, 10]`): The vocabulary sizes of the `token_type_ids` passed when calling [`TapasModel`]. initializer_range (`float`, *optional*, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. layer_norm_eps (`float`, *optional*, defaults to 1e-12): The epsilon used by the layer normalization layers. positive_label_weight (`float`, *optional*, defaults to 10.0): Weight for positive labels. num_aggregation_labels (`int`, *optional*, defaults to 0): The number of aggregation operators to predict. aggregation_loss_weight (`float`, *optional*, defaults to 1.0): Importance weight for the aggregation loss. use_answer_as_supervision (`bool`, *optional*): Whether to use the answer as the only supervision for aggregation examples. answer_loss_importance (`float`, *optional*, defaults to 1.0): Importance weight for the regression loss. use_normalized_answer_loss (`bool`, *optional*, defaults to `False`): Whether to normalize the answer loss by the maximum of the predicted and expected value. huber_loss_delta (`float`, *optional*): Delta parameter used to calculate the regression loss. temperature (`float`, *optional*, defaults to 1.0): Value used to control (OR change) the skewness of cell logits probabilities. aggregation_temperature (`float`, *optional*, defaults to 1.0): Scales aggregation logits to control the skewness of probabilities. use_gumbel_for_cells (`bool`, *optional*, defaults to `False`): Whether to apply Gumbel-Softmax to cell selection. use_gumbel_for_aggregation (`bool`, *optional*, defaults to `False`): Whether to apply Gumbel-Softmax to aggregation selection. average_approximation_function (`string`, *optional*, defaults to `"ratio"`): Method to calculate the expected average of cells in the weak supervision case. One of `"ratio"`, `"first_order"` or `"second_order"`. cell_selection_preference (`float`, *optional*): Preference for cell selection in ambiguous cases. Only applicable in case of weak supervision for aggregation (WTQ, WikiSQL). If the total mass of the aggregation probabilities (excluding the "NONE" operator) is higher than this hyperparameter, then aggregation is predicted for an example. answer_loss_cutoff (`float`, *optional*): Ignore examples with answer loss larger than cutoff. max_num_rows (`int`, *optional*, defaults to 64): Maximum number of rows. max_num_columns (`int`, *optional*, defaults to 32): Maximum number of columns. average_logits_per_cell (`bool`, *optional*, defaults to `False`): Whether to average logits per cell. select_one_column (`bool`, *optional*, defaults to `True`): Whether to constrain the model to only select cells from a single column. allow_empty_column_selection (`bool`, *optional*, defaults to `False`): Whether to allow not to select any column. init_cell_selection_weights_to_zero (`bool`, *optional*, defaults to `False`): Whether to initialize cell selection weights to 0 so that the initial probabilities are 50%. reset_position_index_per_cell (`bool`, *optional*, defaults to `True`): Whether to restart position indexes at every cell (i.e. use relative position embeddings). disable_per_token_loss (`bool`, *optional*, defaults to `False`): Whether to disable any (strong or weak) supervision on cells. aggregation_labels (`Dict[int, label]`, *optional*): The aggregation labels used to aggregate the results. For example, the WTQ models have the following aggregation labels: `{0: "NONE", 1: "SUM", 2: "AVERAGE", 3: "COUNT"}` no_aggregation_label_index (`int`, *optional*): If the aggregation labels are defined and one of these labels represents "No aggregation", this should be set to its index. For example, the WTQ models have the "NONE" aggregation label at index 0, so that value should be set to 0 for these models. Example: ```python >>> from transformers import TapasModel, TapasConfig >>> # Initializing a default (SQA) Tapas configuration >>> configuration = TapasConfig() >>> # Initializing a model from the configuration >>> model = TapasModel(configuration) >>> # Accessing the model configuration >>> configuration = model.config ```""" model_type = "tapas" def __init__( self, vocab_size=30522, hidden_size=768, num_hidden_layers=12, num_attention_heads=12, intermediate_size=3072, hidden_act="gelu", hidden_dropout_prob=0.1, attention_probs_dropout_prob=0.1, max_position_embeddings=1024, type_vocab_sizes=[3, 256, 256, 2, 256, 256, 10], initializer_range=0.02, layer_norm_eps=1e-12, pad_token_id=0, positive_label_weight=10.0, num_aggregation_labels=0, aggregation_loss_weight=1.0, use_answer_as_supervision=None, answer_loss_importance=1.0, use_normalized_answer_loss=False, huber_loss_delta=None, temperature=1.0, aggregation_temperature=1.0, use_gumbel_for_cells=False, use_gumbel_for_aggregation=False, average_approximation_function="ratio", cell_selection_preference=None, answer_loss_cutoff=None, max_num_rows=64, max_num_columns=32, average_logits_per_cell=False, select_one_column=True, allow_empty_column_selection=False, init_cell_selection_weights_to_zero=False, reset_position_index_per_cell=True, disable_per_token_loss=False, aggregation_labels=None, no_aggregation_label_index=None, **kwargs, ): super().__init__(pad_token_id=pad_token_id, **kwargs) # BERT hyperparameters (with updated max_position_embeddings and type_vocab_sizes) self.vocab_size = vocab_size self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.hidden_act = hidden_act self.intermediate_size = intermediate_size self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.max_position_embeddings = max_position_embeddings self.type_vocab_sizes = type_vocab_sizes self.initializer_range = initializer_range self.layer_norm_eps = layer_norm_eps # Fine-tuning task hyperparameters self.positive_label_weight = positive_label_weight self.num_aggregation_labels = num_aggregation_labels self.aggregation_loss_weight = aggregation_loss_weight self.use_answer_as_supervision = use_answer_as_supervision self.answer_loss_importance = answer_loss_importance self.use_normalized_answer_loss = use_normalized_answer_loss self.huber_loss_delta = huber_loss_delta self.temperature = temperature self.aggregation_temperature = aggregation_temperature self.use_gumbel_for_cells = use_gumbel_for_cells self.use_gumbel_for_aggregation = use_gumbel_for_aggregation self.average_approximation_function = average_approximation_function self.cell_selection_preference = cell_selection_preference self.answer_loss_cutoff = answer_loss_cutoff self.max_num_rows = max_num_rows self.max_num_columns = max_num_columns self.average_logits_per_cell = average_logits_per_cell self.select_one_column = select_one_column self.allow_empty_column_selection = allow_empty_column_selection self.init_cell_selection_weights_to_zero = init_cell_selection_weights_to_zero self.reset_position_index_per_cell = reset_position_index_per_cell self.disable_per_token_loss = disable_per_token_loss # Aggregation hyperparameters self.aggregation_labels = aggregation_labels self.no_aggregation_label_index = no_aggregation_label_index if isinstance(self.aggregation_labels, dict): self.aggregation_labels = {int(k): v for k, v in aggregation_labels.items()}
0
hf_public_repos/transformers/src/transformers/models
hf_public_repos/transformers/src/transformers/models/tapas/modeling_tapas.py
# coding=utf-8 # Copyright 2020 Google Research and The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """PyTorch TAPAS model.""" import enum import math import os from dataclasses import dataclass from typing import Optional, Tuple, Union import torch import torch.utils.checkpoint from torch import nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACT2FN from ...modeling_outputs import BaseModelOutput, BaseModelOutputWithPooling, MaskedLMOutput, SequenceClassifierOutput from ...modeling_utils import PreTrainedModel from ...pytorch_utils import ( apply_chunking_to_forward, find_pruneable_heads_and_indices, is_torch_greater_or_equal_than_1_12, prune_linear_layer, ) from ...utils import ( ModelOutput, add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings, ) from .configuration_tapas import TapasConfig logger = logging.get_logger(__name__) if not is_torch_greater_or_equal_than_1_12: logger.warning( f"You are using torch=={torch.__version__}, but torch>=1.12.0 is required to use " "TapasModel. Please upgrade torch." ) _CONFIG_FOR_DOC = "TapasConfig" _CHECKPOINT_FOR_DOC = "google/tapas-base" TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST = [ # large models "google/tapas-large", "google/tapas-large-finetuned-sqa", "google/tapas-large-finetuned-wtq", "google/tapas-large-finetuned-wikisql-supervised", "google/tapas-large-finetuned-tabfact", # base models "google/tapas-base", "google/tapas-base-finetuned-sqa", "google/tapas-base-finetuned-wtq", "google/tapas-base-finetuned-wikisql-supervised", "google/tapas-base-finetuned-tabfact", # small models "google/tapas-small", "google/tapas-small-finetuned-sqa", "google/tapas-small-finetuned-wtq", "google/tapas-small-finetuned-wikisql-supervised", "google/tapas-small-finetuned-tabfact", # mini models "google/tapas-mini", "google/tapas-mini-finetuned-sqa", "google/tapas-mini-finetuned-wtq", "google/tapas-mini-finetuned-wikisql-supervised", "google/tapas-mini-finetuned-tabfact", # tiny models "google/tapas-tiny", "google/tapas-tiny-finetuned-sqa", "google/tapas-tiny-finetuned-wtq", "google/tapas-tiny-finetuned-wikisql-supervised", "google/tapas-tiny-finetuned-tabfact", # See all TAPAS models at https://huggingface.co/models?filter=tapas ] EPSILON_ZERO_DIVISION = 1e-10 CLOSE_ENOUGH_TO_LOG_ZERO = -10000.0 @dataclass class TableQuestionAnsweringOutput(ModelOutput): """ Output type of [`TapasForQuestionAnswering`]. Args: loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` (and possibly `answer`, `aggregation_labels`, `numeric_values` and `numeric_values_scale` are provided)): Total loss as the sum of the hierarchical cell selection log-likelihood loss and (optionally) the semi-supervised regression loss and (optionally) supervised loss for aggregations. logits (`torch.FloatTensor` of shape `(batch_size, sequence_length)`): Prediction scores of the cell selection head, for every token. logits_aggregation (`torch.FloatTensor`, *optional*, of shape `(batch_size, num_aggregation_labels)`): Prediction scores of the aggregation head, for every aggregation operator. hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the initial embedding outputs. attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. """ loss: Optional[torch.FloatTensor] = None logits: torch.FloatTensor = None logits_aggregation: torch.FloatTensor = None hidden_states: Optional[Tuple[torch.FloatTensor]] = None attentions: Optional[Tuple[torch.FloatTensor]] = None def load_tf_weights_in_tapas(model, config, tf_checkpoint_path): """ Load tf checkpoints in a PyTorch model. This is an adaptation from load_tf_weights_in_bert - add cell selection and aggregation heads - take into account additional token type embedding layers """ try: import re import numpy as np import tensorflow as tf except ImportError: logger.error( "Loading a TensorFlow model in PyTorch, requires TensorFlow to be installed. Please see " "https://www.tensorflow.org/install/ for installation instructions." ) raise tf_path = os.path.abspath(tf_checkpoint_path) logger.info(f"Converting TensorFlow checkpoint from {tf_path}") # Load weights from TF model init_vars = tf.train.list_variables(tf_path) names = [] arrays = [] for name, shape in init_vars: logger.info(f"Loading TF weight {name} with shape {shape}") array = tf.train.load_variable(tf_path, name) names.append(name) arrays.append(array) for name, array in zip(names, arrays): name = name.split("/") # adam_v and adam_m are variables used in AdamWeightDecayOptimizer to calculate m and v # which are not required for using pretrained model if any( n in [ "adam_v", "adam_m", "AdamWeightDecayOptimizer", "AdamWeightDecayOptimizer_1", "global_step", "seq_relationship", ] for n in name ): logger.info(f"Skipping {'/'.join(name)}") continue # in case the model is TapasForSequenceClassification, we skip output_bias and output_weights # since these are not used for classification if isinstance(model, TapasForSequenceClassification): if any(n in ["output_bias", "output_weights"] for n in name): logger.info(f"Skipping {'/'.join(name)}") continue # in case the model is TapasModel, we skip output_bias, output_weights, output_bias_cls and output_weights_cls # since this model does not have MLM and NSP heads if isinstance(model, TapasModel): if any(n in ["output_bias", "output_weights", "output_bias_cls", "output_weights_cls"] for n in name): logger.info(f"Skipping {'/'.join(name)}") continue # in case the model is TapasForMaskedLM, we skip the pooler if isinstance(model, TapasForMaskedLM): if any(n in ["pooler"] for n in name): logger.info(f"Skipping {'/'.join(name)}") continue # if first scope name starts with "bert", change it to "tapas" if name[0] == "bert": name[0] = "tapas" pointer = model for m_name in name: if re.fullmatch(r"[A-Za-z]+_\d+", m_name): scope_names = re.split(r"_(\d+)", m_name) else: scope_names = [m_name] if scope_names[0] == "kernel" or scope_names[0] == "gamma": pointer = getattr(pointer, "weight") elif scope_names[0] == "beta": pointer = getattr(pointer, "bias") # cell selection heads elif scope_names[0] == "output_bias": if not isinstance(model, TapasForMaskedLM): pointer = getattr(pointer, "output_bias") else: pointer = getattr(pointer, "bias") elif scope_names[0] == "output_weights": pointer = getattr(pointer, "output_weights") elif scope_names[0] == "column_output_bias": pointer = getattr(pointer, "column_output_bias") elif scope_names[0] == "column_output_weights": pointer = getattr(pointer, "column_output_weights") # aggregation head elif scope_names[0] == "output_bias_agg": pointer = getattr(pointer, "aggregation_classifier") pointer = getattr(pointer, "bias") elif scope_names[0] == "output_weights_agg": pointer = getattr(pointer, "aggregation_classifier") pointer = getattr(pointer, "weight") # classification head elif scope_names[0] == "output_bias_cls": pointer = getattr(pointer, "classifier") pointer = getattr(pointer, "bias") elif scope_names[0] == "output_weights_cls": pointer = getattr(pointer, "classifier") pointer = getattr(pointer, "weight") else: try: pointer = getattr(pointer, scope_names[0]) except AttributeError: logger.info(f"Skipping {'/'.join(name)}") continue if len(scope_names) >= 2: num = int(scope_names[1]) pointer = pointer[num] if m_name[-11:] == "_embeddings": pointer = getattr(pointer, "weight") elif m_name[-13:] in [f"_embeddings_{i}" for i in range(7)]: pointer = getattr(pointer, "weight") elif m_name == "kernel": array = np.transpose(array) try: if pointer.shape != array.shape: raise ValueError(f"Pointer shape {pointer.shape} and array shape {array.shape} mismatched") except AssertionError as e: e.args += (pointer.shape, array.shape) raise logger.info(f"Initialize PyTorch weight {name}") # Added a check to see whether the array is a scalar (because bias terms in Tapas checkpoints can be # scalar => should first be converted to numpy arrays) if np.isscalar(array): array = np.array(array) pointer.data = torch.from_numpy(array) return model class TapasEmbeddings(nn.Module): """ Construct the embeddings from word, position and token_type embeddings. Same as BertEmbeddings but with a number of additional token type embeddings to encode tabular structure. """ def __init__(self, config): super().__init__() # we do not include config.disabled_features and config.disable_position_embeddings from the original implementation # word embeddings self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id) # position embeddings self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size) # token type embeddings for i, type_vocab_sizes in enumerate(config.type_vocab_sizes): name = f"token_type_embeddings_{i}" setattr(self, name, nn.Embedding(type_vocab_sizes, config.hidden_size)) self.number_of_token_type_embeddings = len(config.type_vocab_sizes) # self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load # any TensorFlow checkpoint file self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.dropout = nn.Dropout(config.hidden_dropout_prob) self.config = config def forward(self, input_ids=None, token_type_ids=None, position_ids=None, inputs_embeds=None): if input_ids is not None: input_shape = input_ids.size() else: input_shape = inputs_embeds.size()[:-1] seq_length = input_shape[1] device = input_ids.device if input_ids is not None else inputs_embeds.device if position_ids is None: # create absolute position embeddings position_ids = torch.arange(seq_length, dtype=torch.long, device=device) position_ids = position_ids.unsqueeze(0).expand(input_shape) # when self.config.reset_position_index_per_cell is set to True, create relative position embeddings if self.config.reset_position_index_per_cell: # shape (batch_size, seq_len) col_index = IndexMap(token_type_ids[:, :, 1], self.config.type_vocab_sizes[1], batch_dims=1) # shape (batch_size, seq_len) row_index = IndexMap(token_type_ids[:, :, 2], self.config.type_vocab_sizes[2], batch_dims=1) # shape (batch_size, seq_len) full_index = ProductIndexMap(col_index, row_index) # shape (max_rows * max_columns,). First absolute position for every cell first_position_per_segment = reduce_min(position_ids, full_index)[0] # ? shape (batch_size, seq_len). First absolute position of the cell for every token first_position = gather(first_position_per_segment, full_index) # shape (1, seq_len) position = torch.arange(seq_length, dtype=torch.long, device=device).unsqueeze(0) position_ids = torch.min( torch.as_tensor(self.config.max_position_embeddings - 1, device=device), position - first_position ) if token_type_ids is None: token_type_ids = torch.zeros( (input_shape + self.number_of_token_type_embeddings), dtype=torch.long, device=device ) if inputs_embeds is None: inputs_embeds = self.word_embeddings(input_ids) position_embeddings = self.position_embeddings(position_ids) embeddings = inputs_embeds + position_embeddings for i in range(self.number_of_token_type_embeddings): name = f"token_type_embeddings_{i}" embeddings += getattr(self, name)(token_type_ids[:, :, i]) embeddings = self.LayerNorm(embeddings) embeddings = self.dropout(embeddings) return embeddings class TapasSelfAttention(nn.Module): def __init__(self, config): super().__init__() if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"): raise ValueError( f"The hidden size {config.hidden_size} is not a multiple of the number of attention " f"heads {config.num_attention_heads}" ) self.num_attention_heads = config.num_attention_heads self.attention_head_size = int(config.hidden_size / config.num_attention_heads) self.all_head_size = self.num_attention_heads * self.attention_head_size self.query = nn.Linear(config.hidden_size, self.all_head_size) self.key = nn.Linear(config.hidden_size, self.all_head_size) self.value = nn.Linear(config.hidden_size, self.all_head_size) self.dropout = nn.Dropout(config.attention_probs_dropout_prob) self.is_decoder = config.is_decoder def transpose_for_scores(self, x): new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size) x = x.view(*new_x_shape) return x.permute(0, 2, 1, 3) def forward( self, hidden_states, attention_mask=None, head_mask=None, encoder_hidden_states=None, encoder_attention_mask=None, past_key_value=None, output_attentions=False, ): mixed_query_layer = self.query(hidden_states) # If this is instantiated as a cross-attention module, the keys # and values come from an encoder; the attention mask needs to be # such that the encoder's padding tokens are not attended to. is_cross_attention = encoder_hidden_states is not None if is_cross_attention and past_key_value is not None: # reuse k,v, cross_attentions key_layer = past_key_value[0] value_layer = past_key_value[1] attention_mask = encoder_attention_mask elif is_cross_attention: key_layer = self.transpose_for_scores(self.key(encoder_hidden_states)) value_layer = self.transpose_for_scores(self.value(encoder_hidden_states)) attention_mask = encoder_attention_mask elif past_key_value is not None: key_layer = self.transpose_for_scores(self.key(hidden_states)) value_layer = self.transpose_for_scores(self.value(hidden_states)) key_layer = torch.cat([past_key_value[0], key_layer], dim=2) value_layer = torch.cat([past_key_value[1], value_layer], dim=2) else: key_layer = self.transpose_for_scores(self.key(hidden_states)) value_layer = self.transpose_for_scores(self.value(hidden_states)) query_layer = self.transpose_for_scores(mixed_query_layer) if self.is_decoder: past_key_value = (key_layer, value_layer) # Take the dot product between "query" and "key" to get the raw attention scores. attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2)) attention_scores = attention_scores / math.sqrt(self.attention_head_size) if attention_mask is not None: # Apply the attention mask is (precomputed for all layers in TapasModel forward() function) attention_scores = attention_scores + attention_mask # Normalize the attention scores to probabilities. attention_probs = nn.functional.softmax(attention_scores, dim=-1) # This is actually dropping out entire tokens to attend to, which might # seem a bit unusual, but is taken from the original Transformer paper. attention_probs = self.dropout(attention_probs) # Mask heads if we want to if head_mask is not None: attention_probs = attention_probs * head_mask context_layer = torch.matmul(attention_probs, value_layer) context_layer = context_layer.permute(0, 2, 1, 3).contiguous() new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,) context_layer = context_layer.view(*new_context_layer_shape) outputs = (context_layer, attention_probs) if output_attentions else (context_layer,) if self.is_decoder: outputs = outputs + (past_key_value,) return outputs # Copied from transformers.models.bert.modeling_bert.BertSelfOutput class TapasSelfOutput(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states) hidden_states = self.LayerNorm(hidden_states + input_tensor) return hidden_states class TapasAttention(nn.Module): def __init__(self, config): super().__init__() self.self = TapasSelfAttention(config) self.output = TapasSelfOutput(config) self.pruned_heads = set() # Copied from transformers.models.bert.modeling_bert.BertAttention.prune_heads def prune_heads(self, heads): if len(heads) == 0: return heads, index = find_pruneable_heads_and_indices( heads, self.self.num_attention_heads, self.self.attention_head_size, self.pruned_heads ) # Prune linear layers self.self.query = prune_linear_layer(self.self.query, index) self.self.key = prune_linear_layer(self.self.key, index) self.self.value = prune_linear_layer(self.self.value, index) self.output.dense = prune_linear_layer(self.output.dense, index, dim=1) # Update hyper params and store pruned heads self.self.num_attention_heads = self.self.num_attention_heads - len(heads) self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads self.pruned_heads = self.pruned_heads.union(heads) # Copied from transformers.models.bert.modeling_bert.BertAttention.forward def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.FloatTensor] = None, head_mask: Optional[torch.FloatTensor] = None, encoder_hidden_states: Optional[torch.FloatTensor] = None, encoder_attention_mask: Optional[torch.FloatTensor] = None, past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, output_attentions: Optional[bool] = False, ) -> Tuple[torch.Tensor]: self_outputs = self.self( hidden_states, attention_mask, head_mask, encoder_hidden_states, encoder_attention_mask, past_key_value, output_attentions, ) attention_output = self.output(self_outputs[0], hidden_states) outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them return outputs # Copied from transformers.models.bert.modeling_bert.BertIntermediate class TapasIntermediate(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.intermediate_size) if isinstance(config.hidden_act, str): self.intermediate_act_fn = ACT2FN[config.hidden_act] else: self.intermediate_act_fn = config.hidden_act def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.intermediate_act_fn(hidden_states) return hidden_states # Copied from transformers.models.bert.modeling_bert.BertOutput class TapasOutput(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.intermediate_size, config.hidden_size) self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states) hidden_states = self.LayerNorm(hidden_states + input_tensor) return hidden_states class TapasLayer(nn.Module): def __init__(self, config): super().__init__() self.chunk_size_feed_forward = config.chunk_size_feed_forward self.seq_len_dim = 1 self.attention = TapasAttention(config) self.is_decoder = config.is_decoder self.add_cross_attention = config.add_cross_attention if self.add_cross_attention: if not self.is_decoder: raise ValueError(f"{self} should be used as a decoder model if cross attention is added") self.crossattention = TapasAttention(config) self.intermediate = TapasIntermediate(config) self.output = TapasOutput(config) # Copied from transformers.models.bert.modeling_bert.BertLayer.forward def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.FloatTensor] = None, head_mask: Optional[torch.FloatTensor] = None, encoder_hidden_states: Optional[torch.FloatTensor] = None, encoder_attention_mask: Optional[torch.FloatTensor] = None, past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, output_attentions: Optional[bool] = False, ) -> Tuple[torch.Tensor]: # decoder uni-directional self-attention cached key/values tuple is at positions 1,2 self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None self_attention_outputs = self.attention( hidden_states, attention_mask, head_mask, output_attentions=output_attentions, past_key_value=self_attn_past_key_value, ) attention_output = self_attention_outputs[0] # if decoder, the last output is tuple of self-attn cache if self.is_decoder: outputs = self_attention_outputs[1:-1] present_key_value = self_attention_outputs[-1] else: outputs = self_attention_outputs[1:] # add self attentions if we output attention weights cross_attn_present_key_value = None if self.is_decoder and encoder_hidden_states is not None: if not hasattr(self, "crossattention"): raise ValueError( f"If `encoder_hidden_states` are passed, {self} has to be instantiated with cross-attention layers" " by setting `config.add_cross_attention=True`" ) # cross_attn cached key/values tuple is at positions 3,4 of past_key_value tuple cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None cross_attention_outputs = self.crossattention( attention_output, attention_mask, head_mask, encoder_hidden_states, encoder_attention_mask, cross_attn_past_key_value, output_attentions, ) attention_output = cross_attention_outputs[0] outputs = outputs + cross_attention_outputs[1:-1] # add cross attentions if we output attention weights # add cross-attn cache to positions 3,4 of present_key_value tuple cross_attn_present_key_value = cross_attention_outputs[-1] present_key_value = present_key_value + cross_attn_present_key_value layer_output = apply_chunking_to_forward( self.feed_forward_chunk, self.chunk_size_feed_forward, self.seq_len_dim, attention_output ) outputs = (layer_output,) + outputs # if decoder, return the attn key/values as the last output if self.is_decoder: outputs = outputs + (present_key_value,) return outputs # Copied from transformers.models.bert.modeling_bert.BertLayer.feed_forward_chunk def feed_forward_chunk(self, attention_output): intermediate_output = self.intermediate(attention_output) layer_output = self.output(intermediate_output, attention_output) return layer_output class TapasEncoder(nn.Module): def __init__(self, config): super().__init__() self.config = config self.layer = nn.ModuleList([TapasLayer(config) for _ in range(config.num_hidden_layers)]) self.gradient_checkpointing = False def forward( self, hidden_states, attention_mask=None, head_mask=None, encoder_hidden_states=None, encoder_attention_mask=None, past_key_values=None, use_cache=None, output_attentions=False, output_hidden_states=False, return_dict=True, ): all_hidden_states = () if output_hidden_states else None all_attentions = () if output_attentions else None for i, layer_module in enumerate(self.layer): if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) layer_head_mask = head_mask[i] if head_mask is not None else None if self.gradient_checkpointing and self.training: def create_custom_forward(module): def custom_forward(*inputs): return module(*inputs, past_key_values, output_attentions) return custom_forward layer_outputs = torch.utils.checkpoint.checkpoint( create_custom_forward(layer_module), hidden_states, attention_mask, layer_head_mask, encoder_hidden_states, encoder_attention_mask, ) else: layer_outputs = layer_module( hidden_states, attention_mask, layer_head_mask, encoder_hidden_states, encoder_attention_mask, past_key_values, output_attentions, ) hidden_states = layer_outputs[0] if output_attentions: all_attentions = all_attentions + (layer_outputs[1],) if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) if not return_dict: return tuple(v for v in [hidden_states, all_hidden_states, all_attentions] if v is not None) return BaseModelOutput( last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_attentions ) # Copied from transformers.models.bert.modeling_bert.BertPooler class TapasPooler(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) self.activation = nn.Tanh() def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: # We "pool" the model by simply taking the hidden state corresponding # to the first token. first_token_tensor = hidden_states[:, 0] pooled_output = self.dense(first_token_tensor) pooled_output = self.activation(pooled_output) return pooled_output # Copied from transformers.models.bert.modeling_bert.BertPredictionHeadTransform with Bert->Tapas class TapasPredictionHeadTransform(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) if isinstance(config.hidden_act, str): self.transform_act_fn = ACT2FN[config.hidden_act] else: self.transform_act_fn = config.hidden_act self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.transform_act_fn(hidden_states) hidden_states = self.LayerNorm(hidden_states) return hidden_states # Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->Tapas class TapasLMPredictionHead(nn.Module): def __init__(self, config): super().__init__() self.transform = TapasPredictionHeadTransform(config) # The output weights are the same as the input embeddings, but there is # an output-only bias for each token. self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False) self.bias = nn.Parameter(torch.zeros(config.vocab_size)) # Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings` self.decoder.bias = self.bias def forward(self, hidden_states): hidden_states = self.transform(hidden_states) hidden_states = self.decoder(hidden_states) return hidden_states # Copied from transformers.models.bert.modeling_bert.BertOnlyMLMHead with Bert->Tapas class TapasOnlyMLMHead(nn.Module): def __init__(self, config): super().__init__() self.predictions = TapasLMPredictionHead(config) def forward(self, sequence_output: torch.Tensor) -> torch.Tensor: prediction_scores = self.predictions(sequence_output) return prediction_scores class TapasPreTrainedModel(PreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = TapasConfig base_model_prefix = "tapas" supports_gradient_checkpointing = True # Copied from transformers.models.bert.modeling_bert.BertPreTrainedModel._init_weights def _init_weights(self, module): """Initialize the weights""" if isinstance(module, nn.Linear): # Slightly different from the TF version which uses truncated_normal for initialization # cf https://github.com/pytorch/pytorch/pull/5617 module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.Embedding): module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if module.padding_idx is not None: module.weight.data[module.padding_idx].zero_() elif isinstance(module, nn.LayerNorm): module.bias.data.zero_() module.weight.data.fill_(1.0) def _set_gradient_checkpointing(self, module, value=False): if isinstance(module, TapasEncoder): module.gradient_checkpointing = value TAPAS_START_DOCSTRING = r""" This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the library implements for all its models (such as downloading or saving, resizing the input embeddings, pruning heads etc.) This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`TapasConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ TAPAS_INPUTS_DOCSTRING = r""" Args: input_ids (`torch.LongTensor` of shape `({0})`): Indices of input sequence tokens in the vocabulary. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) token_type_ids (`torch.LongTensor` of shape `({0}, 7)`, *optional*): Token indices that encode tabular structure. Indices can be obtained using [`AutoTokenizer`]. See this class for more info. [What are token type IDs?](../glossary#token-type-ids) position_ids (`torch.LongTensor` of shape `({0})`, *optional*): Indices of positions of each input sequence tokens in the position embeddings. If `reset_position_index_per_cell` of [`TapasConfig`] is set to `True`, relative position embeddings will be used. Selected in the range `[0, config.max_position_embeddings - 1]`. [What are position IDs?](../glossary#position-ids) head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. inputs_embeds (`torch.FloatTensor` of shape `({0}, hidden_size)`, *optional*): Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert `input_ids` indices into associated vectors than the model's internal embedding lookup matrix. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ @add_start_docstrings( "The bare Tapas Model transformer outputting raw hidden-states without any specific head on top.", TAPAS_START_DOCSTRING, ) class TapasModel(TapasPreTrainedModel): """ This class is a small change compared to [`BertModel`], taking into account the additional token type ids. The model can behave as an encoder (with only self-attention) as well as a decoder, in which case a layer of cross-attention is added between the self-attention layers, following the architecture described in [Attention is all you need](https://arxiv.org/abs/1706.03762) by Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser and Illia Polosukhin. """ def __init__(self, config, add_pooling_layer=True): super().__init__(config) self.config = config self.embeddings = TapasEmbeddings(config) self.encoder = TapasEncoder(config) self.pooler = TapasPooler(config) if add_pooling_layer else None # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.embeddings.word_embeddings def set_input_embeddings(self, value): self.embeddings.word_embeddings = value def _prune_heads(self, heads_to_prune): """ Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base class PreTrainedModel """ for layer, heads in heads_to_prune.items(): self.encoder.layer[layer].attention.prune_heads(heads) @add_start_docstrings_to_model_forward(TAPAS_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @replace_return_docstrings(output_type=BaseModelOutputWithPooling, config_class=_CONFIG_FOR_DOC) def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.FloatTensor] = None, token_type_ids: Optional[torch.LongTensor] = None, position_ids: Optional[torch.LongTensor] = None, head_mask: Optional[torch.FloatTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, encoder_hidden_states: Optional[torch.FloatTensor] = None, encoder_attention_mask: Optional[torch.FloatTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, BaseModelOutputWithPooling]: r""" Returns: Examples: ```python >>> from transformers import AutoTokenizer, TapasModel >>> import pandas as pd >>> tokenizer = AutoTokenizer.from_pretrained("google/tapas-base") >>> model = TapasModel.from_pretrained("google/tapas-base") >>> data = { ... "Actors": ["Brad Pitt", "Leonardo Di Caprio", "George Clooney"], ... "Age": ["56", "45", "59"], ... "Number of movies": ["87", "53", "69"], ... } >>> table = pd.DataFrame.from_dict(data) >>> queries = ["How many movies has George Clooney played in?", "How old is Brad Pitt?"] >>> inputs = tokenizer(table=table, queries=queries, padding="max_length", return_tensors="pt") >>> outputs = model(**inputs) >>> last_hidden_states = outputs.last_hidden_state ```""" output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") elif input_ids is not None: input_shape = input_ids.size() elif inputs_embeds is not None: input_shape = inputs_embeds.size()[:-1] else: raise ValueError("You have to specify either input_ids or inputs_embeds") device = input_ids.device if input_ids is not None else inputs_embeds.device if attention_mask is None: attention_mask = torch.ones(input_shape, device=device) if token_type_ids is None: token_type_ids = torch.zeros( (*input_shape, len(self.config.type_vocab_sizes)), dtype=torch.long, device=device ) # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] # ourselves in which case we just need to make it broadcastable to all heads. extended_attention_mask: torch.Tensor = self.get_extended_attention_mask(attention_mask, input_shape) # If a 2D ou 3D attention mask is provided for the cross-attention # we need to make broadcastabe to [batch_size, num_heads, seq_length, seq_length] if self.config.is_decoder and encoder_hidden_states is not None: encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size() encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length) if encoder_attention_mask is None: encoder_attention_mask = torch.ones(encoder_hidden_shape, device=device) encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask) else: encoder_extended_attention_mask = None # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers) embedding_output = self.embeddings( input_ids=input_ids, position_ids=position_ids, token_type_ids=token_type_ids, inputs_embeds=inputs_embeds ) encoder_outputs = self.encoder( embedding_output, attention_mask=extended_attention_mask, head_mask=head_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_extended_attention_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = encoder_outputs[0] pooled_output = self.pooler(sequence_output) if self.pooler is not None else None if not return_dict: return (sequence_output, pooled_output) + encoder_outputs[1:] return BaseModelOutputWithPooling( last_hidden_state=sequence_output, pooler_output=pooled_output, hidden_states=encoder_outputs.hidden_states, attentions=encoder_outputs.attentions, ) @add_start_docstrings("""Tapas Model with a `language modeling` head on top.""", TAPAS_START_DOCSTRING) class TapasForMaskedLM(TapasPreTrainedModel): _tied_weights_keys = ["cls.predictions.decoder.weight", "cls.predictions.decoder.bias"] config_class = TapasConfig base_model_prefix = "tapas" def __init__(self, config): super().__init__(config) self.tapas = TapasModel(config, add_pooling_layer=False) self.cls = TapasOnlyMLMHead(config) # Initialize weights and apply final processing self.post_init() def get_output_embeddings(self): return self.cls.predictions.decoder def set_output_embeddings(self, new_embeddings): self.cls.predictions.decoder = new_embeddings @add_start_docstrings_to_model_forward(TAPAS_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @replace_return_docstrings(output_type=MaskedLMOutput, config_class=_CONFIG_FOR_DOC) def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.FloatTensor] = None, token_type_ids: Optional[torch.LongTensor] = None, position_ids: Optional[torch.LongTensor] = None, head_mask: Optional[torch.FloatTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, encoder_hidden_states: Optional[torch.FloatTensor] = None, encoder_attention_mask: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, **kwargs, ) -> Union[Tuple, MaskedLMOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ..., config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]` Returns: Examples: ```python >>> from transformers import AutoTokenizer, TapasForMaskedLM >>> import pandas as pd >>> tokenizer = AutoTokenizer.from_pretrained("google/tapas-base") >>> model = TapasForMaskedLM.from_pretrained("google/tapas-base") >>> data = { ... "Actors": ["Brad Pitt", "Leonardo Di Caprio", "George Clooney"], ... "Age": ["56", "45", "59"], ... "Number of movies": ["87", "53", "69"], ... } >>> table = pd.DataFrame.from_dict(data) >>> inputs = tokenizer( ... table=table, queries="How many [MASK] has George [MASK] played in?", return_tensors="pt" ... ) >>> labels = tokenizer( ... table=table, queries="How many movies has George Clooney played in?", return_tensors="pt" ... )["input_ids"] >>> outputs = model(**inputs, labels=labels) >>> logits = outputs.logits ```""" return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.tapas( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = outputs[0] prediction_scores = self.cls(sequence_output) masked_lm_loss = None if labels is not None: loss_fct = CrossEntropyLoss() # -100 index = padding token masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), labels.view(-1)) if not return_dict: output = (prediction_scores,) + outputs[2:] return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output return MaskedLMOutput( loss=masked_lm_loss, logits=prediction_scores, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) @add_start_docstrings( """ Tapas Model with a cell selection head and optional aggregation head on top for question-answering tasks on tables (linear layers on top of the hidden-states output to compute `logits` and optional `logits_aggregation`), e.g. for SQA, WTQ or WikiSQL-supervised tasks. """, TAPAS_START_DOCSTRING, ) class TapasForQuestionAnswering(TapasPreTrainedModel): def __init__(self, config: TapasConfig): super().__init__(config) # base model self.tapas = TapasModel(config) # dropout (only used when training) self.dropout = nn.Dropout(config.hidden_dropout_prob) # cell selection heads if config.init_cell_selection_weights_to_zero: # init_cell_selection_weights_to_zero: Whether the initial weights should be # set to 0. This ensures that all tokens have the same prior probability. self.output_weights = nn.Parameter(torch.zeros(config.hidden_size)) self.column_output_weights = nn.Parameter(torch.zeros(config.hidden_size)) else: self.output_weights = nn.Parameter(torch.empty(config.hidden_size)) nn.init.normal_( self.output_weights, std=config.initializer_range ) # here, a truncated normal is used in the original implementation self.column_output_weights = nn.Parameter(torch.empty(config.hidden_size)) nn.init.normal_( self.column_output_weights, std=config.initializer_range ) # here, a truncated normal is used in the original implementation self.output_bias = nn.Parameter(torch.zeros([])) self.column_output_bias = nn.Parameter(torch.zeros([])) # aggregation head if config.num_aggregation_labels > 0: self.aggregation_classifier = nn.Linear(config.hidden_size, config.num_aggregation_labels) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(TAPAS_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @replace_return_docstrings(output_type=TableQuestionAnsweringOutput, config_class=_CONFIG_FOR_DOC) def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.FloatTensor] = None, token_type_ids: Optional[torch.LongTensor] = None, position_ids: Optional[torch.LongTensor] = None, head_mask: Optional[torch.FloatTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, table_mask: Optional[torch.LongTensor] = None, labels: Optional[torch.LongTensor] = None, aggregation_labels: Optional[torch.LongTensor] = None, float_answer: Optional[torch.FloatTensor] = None, numeric_values: Optional[torch.FloatTensor] = None, numeric_values_scale: Optional[torch.FloatTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, TableQuestionAnsweringOutput]: r""" table_mask (`torch.LongTensor` of shape `(batch_size, seq_length)`, *optional*): Mask for the table. Indicates which tokens belong to the table (1). Question tokens, table headers and padding are 0. labels (`torch.LongTensor` of shape `(batch_size, seq_length)`, *optional*): Labels per token for computing the hierarchical cell selection loss. This encodes the positions of the answer appearing in the table. Can be obtained using [`AutoTokenizer`]. - 1 for tokens that are **part of the answer**, - 0 for tokens that are **not part of the answer**. aggregation_labels (`torch.LongTensor` of shape `(batch_size, )`, *optional*): Aggregation function index for every example in the batch for computing the aggregation loss. Indices should be in `[0, ..., config.num_aggregation_labels - 1]`. Only required in case of strong supervision for aggregation (WikiSQL-supervised). float_answer (`torch.FloatTensor` of shape `(batch_size, )`, *optional*): Float answer for every example in the batch. Set to *float('nan')* for cell selection questions. Only required in case of weak supervision (WTQ) to calculate the aggregate mask and regression loss. numeric_values (`torch.FloatTensor` of shape `(batch_size, seq_length)`, *optional*): Numeric values of every token, NaN for tokens which are not numeric values. Can be obtained using [`AutoTokenizer`]. Only required in case of weak supervision for aggregation (WTQ) to calculate the regression loss. numeric_values_scale (`torch.FloatTensor` of shape `(batch_size, seq_length)`, *optional*): Scale of the numeric values of every token. Can be obtained using [`AutoTokenizer`]. Only required in case of weak supervision for aggregation (WTQ) to calculate the regression loss. Returns: Examples: ```python >>> from transformers import AutoTokenizer, TapasForQuestionAnswering >>> import pandas as pd >>> tokenizer = AutoTokenizer.from_pretrained("google/tapas-base-finetuned-wtq") >>> model = TapasForQuestionAnswering.from_pretrained("google/tapas-base-finetuned-wtq") >>> data = { ... "Actors": ["Brad Pitt", "Leonardo Di Caprio", "George Clooney"], ... "Age": ["56", "45", "59"], ... "Number of movies": ["87", "53", "69"], ... } >>> table = pd.DataFrame.from_dict(data) >>> queries = ["How many movies has George Clooney played in?", "How old is Brad Pitt?"] >>> inputs = tokenizer(table=table, queries=queries, padding="max_length", return_tensors="pt") >>> outputs = model(**inputs) >>> logits = outputs.logits >>> logits_aggregation = outputs.logits_aggregation ```""" return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.tapas( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = outputs[0] pooled_output = outputs[1] sequence_output = self.dropout(sequence_output) if input_ids is not None: input_shape = input_ids.size() else: input_shape = inputs_embeds.size()[:-1] device = input_ids.device if input_ids is not None else inputs_embeds.device # Construct indices for the table. if token_type_ids is None: token_type_ids = torch.zeros( (*input_shape, len(self.config.type_vocab_sizes)), dtype=torch.long, device=device ) token_types = [ "segment_ids", "column_ids", "row_ids", "prev_labels", "column_ranks", "inv_column_ranks", "numeric_relations", ] row_ids = token_type_ids[:, :, token_types.index("row_ids")] column_ids = token_type_ids[:, :, token_types.index("column_ids")] row_index = IndexMap( indices=torch.min(row_ids, torch.as_tensor(self.config.max_num_rows - 1, device=row_ids.device)), num_segments=self.config.max_num_rows, batch_dims=1, ) col_index = IndexMap( indices=torch.min(column_ids, torch.as_tensor(self.config.max_num_columns - 1, device=column_ids.device)), num_segments=self.config.max_num_columns, batch_dims=1, ) cell_index = ProductIndexMap(row_index, col_index) # Masks. input_shape = input_ids.size() if input_ids is not None else inputs_embeds.size()[:-1] device = input_ids.device if input_ids is not None else inputs_embeds.device if attention_mask is None: attention_mask = torch.ones(input_shape, device=device) # Table cells only, without question tokens and table headers. if table_mask is None: table_mask = torch.where(row_ids > 0, torch.ones_like(row_ids), torch.zeros_like(row_ids)) # torch.FloatTensor[batch_size, seq_length] input_mask_float = attention_mask.float().to(device) table_mask_float = table_mask.float().to(device) # Mask for cells that exist in the table (i.e. that are not padding). cell_mask, _ = reduce_mean(input_mask_float, cell_index) # Compute logits per token. These are used to select individual cells. logits = compute_token_logits(sequence_output, self.config.temperature, self.output_weights, self.output_bias) # Compute logits per column. These are used to select a column. column_logits = None if self.config.select_one_column: column_logits = compute_column_logits( sequence_output, self.column_output_weights, self.column_output_bias, cell_index, cell_mask, self.config.allow_empty_column_selection, ) # Aggregation logits logits_aggregation = None if self.config.num_aggregation_labels > 0: logits_aggregation = self.aggregation_classifier(pooled_output) # Total loss calculation total_loss = 0.0 calculate_loss = False if labels is not None: calculate_loss = True is_supervised = not self.config.num_aggregation_labels > 0 or not self.config.use_answer_as_supervision # Semi-supervised cell selection in case of no aggregation: # If the answer (the denotation) appears directly in the table we might # select the answer without applying any aggregation function. There are # some ambiguous cases, see utils._calculate_aggregate_mask for more info. # `aggregate_mask` is 1 for examples where we chose to aggregate and 0 # for examples where we chose to select the answer directly. # `labels` encodes the positions of the answer appearing in the table. if is_supervised: aggregate_mask = None else: if float_answer is not None: assert ( labels.shape[0] == float_answer.shape[0] ), "Make sure the answers are a FloatTensor of shape (batch_size,)" # <float32>[batch_size] aggregate_mask = _calculate_aggregate_mask( float_answer, pooled_output, self.config.cell_selection_preference, labels, self.aggregation_classifier, ) else: raise ValueError("You have to specify float answers in order to calculate the aggregate mask") # Cell selection log-likelihood if self.config.average_logits_per_cell: logits_per_cell, _ = reduce_mean(logits, cell_index) logits = gather(logits_per_cell, cell_index) dist_per_token = torch.distributions.Bernoulli(logits=logits) # Compute cell selection loss per example. selection_loss_per_example = None if not self.config.select_one_column: weight = torch.where( labels == 0, torch.ones_like(labels, dtype=torch.float32), self.config.positive_label_weight * torch.ones_like(labels, dtype=torch.float32), ) selection_loss_per_token = -dist_per_token.log_prob(labels) * weight selection_loss_per_example = torch.sum(selection_loss_per_token * input_mask_float, dim=1) / ( torch.sum(input_mask_float, dim=1) + EPSILON_ZERO_DIVISION ) else: selection_loss_per_example, logits = _single_column_cell_selection_loss( logits, column_logits, labels, cell_index, col_index, cell_mask ) dist_per_token = torch.distributions.Bernoulli(logits=logits) # Supervised cell selection if self.config.disable_per_token_loss: pass elif is_supervised: total_loss += torch.mean(selection_loss_per_example) else: # For the not supervised case, do not assign loss for cell selection total_loss += torch.mean(selection_loss_per_example * (1.0 - aggregate_mask)) # Semi-supervised regression loss and supervised loss for aggregations if self.config.num_aggregation_labels > 0: if is_supervised: # Note that `aggregate_mask` is None if the setting is supervised. if aggregation_labels is not None: assert ( labels.shape[0] == aggregation_labels.shape[0] ), "Make sure the aggregation labels are a LongTensor of shape (batch_size,)" per_example_additional_loss = _calculate_aggregation_loss( logits_aggregation, aggregate_mask, aggregation_labels, self.config.use_answer_as_supervision, self.config.num_aggregation_labels, self.config.aggregation_loss_weight, ) else: raise ValueError( "You have to specify aggregation labels in order to calculate the aggregation loss" ) else: # Set aggregation labels to zeros aggregation_labels = torch.zeros(labels.shape[0], dtype=torch.long, device=labels.device) per_example_additional_loss = _calculate_aggregation_loss( logits_aggregation, aggregate_mask, aggregation_labels, self.config.use_answer_as_supervision, self.config.num_aggregation_labels, self.config.aggregation_loss_weight, ) if self.config.use_answer_as_supervision: if numeric_values is not None and numeric_values_scale is not None: assert numeric_values.shape == numeric_values_scale.shape # Add regression loss for numeric answers which require aggregation. answer_loss, large_answer_loss_mask = _calculate_regression_loss( float_answer, aggregate_mask, dist_per_token, numeric_values, numeric_values_scale, table_mask_float, logits_aggregation, self.config, ) per_example_additional_loss += answer_loss # Zero loss for examples with answer_loss > cutoff. per_example_additional_loss *= large_answer_loss_mask else: raise ValueError( "You have to specify numeric values and numeric values scale in order to calculate the" " regression loss" ) total_loss += torch.mean(per_example_additional_loss) else: # if no label ids are provided, set them to zeros in order to properly compute logits labels = torch.zeros_like(logits) _, logits = _single_column_cell_selection_loss( logits, column_logits, labels, cell_index, col_index, cell_mask ) if not return_dict: output = (logits, logits_aggregation) + outputs[2:] return ((total_loss,) + output) if calculate_loss else output return TableQuestionAnsweringOutput( loss=total_loss if calculate_loss else None, logits=logits, logits_aggregation=logits_aggregation, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) @add_start_docstrings( """ Tapas Model with a sequence classification head on top (a linear layer on top of the pooled output), e.g. for table entailment tasks, such as TabFact (Chen et al., 2020). """, TAPAS_START_DOCSTRING, ) class TapasForSequenceClassification(TapasPreTrainedModel): def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.tapas = TapasModel(config) self.dropout = nn.Dropout(config.hidden_dropout_prob) self.classifier = nn.Linear(config.hidden_size, config.num_labels) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(TAPAS_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @replace_return_docstrings(output_type=SequenceClassifierOutput, config_class=_CONFIG_FOR_DOC) def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.FloatTensor] = None, token_type_ids: Optional[torch.LongTensor] = None, position_ids: Optional[torch.LongTensor] = None, head_mask: Optional[torch.FloatTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple[torch.Tensor], SequenceClassifierOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If `config.num_labels > 1` a classification loss is computed (Cross-Entropy). Note: this is called "classification_class_index" in the original implementation. Returns: Examples: ```python >>> from transformers import AutoTokenizer, TapasForSequenceClassification >>> import torch >>> import pandas as pd >>> tokenizer = AutoTokenizer.from_pretrained("google/tapas-base-finetuned-tabfact") >>> model = TapasForSequenceClassification.from_pretrained("google/tapas-base-finetuned-tabfact") >>> data = { ... "Actors": ["Brad Pitt", "Leonardo Di Caprio", "George Clooney"], ... "Age": ["56", "45", "59"], ... "Number of movies": ["87", "53", "69"], ... } >>> table = pd.DataFrame.from_dict(data) >>> queries = [ ... "There is only one actor who is 45 years old", ... "There are 3 actors which played in more than 60 movies", ... ] >>> inputs = tokenizer(table=table, queries=queries, padding="max_length", return_tensors="pt") >>> labels = torch.tensor([1, 0]) # 1 means entailed, 0 means refuted >>> outputs = model(**inputs, labels=labels) >>> loss = outputs.loss >>> logits = outputs.logits ```""" return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.tapas( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) pooled_output = outputs[1] pooled_output = self.dropout(pooled_output) logits = self.classifier(pooled_output) loss = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: self.config.problem_type = "regression" elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): self.config.problem_type = "single_label_classification" else: self.config.problem_type = "multi_label_classification" if self.config.problem_type == "regression": loss_fct = MSELoss() if self.num_labels == 1: loss = loss_fct(logits.squeeze(), labels.squeeze()) else: loss = loss_fct(logits, labels) elif self.config.problem_type == "single_label_classification": loss_fct = CrossEntropyLoss() loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) elif self.config.problem_type == "multi_label_classification": loss_fct = BCEWithLogitsLoss() loss = loss_fct(logits, labels) if not return_dict: output = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return SequenceClassifierOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) """ TAPAS utilities.""" class AverageApproximationFunction(str, enum.Enum): RATIO = "ratio" FIRST_ORDER = "first_order" SECOND_ORDER = "second_order" # Beginning of everything related to segmented tensors class IndexMap(object): """Index grouping entries within a tensor.""" def __init__(self, indices, num_segments, batch_dims=0): """ Creates an index Args: indices (`torch.LongTensor`, same shape as a *values* Tensor to which the indices refer): Tensor containing the indices. num_segments (`torch.LongTensor`): Scalar tensor, the number of segments. All elements in a batched segmented tensor must have the same number of segments (although many segments can be empty). batch_dims (`int`, *optional*, defaults to 0): The number of batch dimensions. The first *batch_dims* dimensions of a SegmentedTensor are treated as batch dimensions. Segments in different batch elements are always distinct even if they have the same index. """ self.indices = torch.as_tensor(indices) self.num_segments = torch.as_tensor(num_segments, device=indices.device) self.batch_dims = batch_dims def batch_shape(self): return self.indices.size()[: self.batch_dims] # returns a torch.Size object class ProductIndexMap(IndexMap): """The product of two indices.""" def __init__(self, outer_index, inner_index): """ Combines indices i and j into pairs (i, j). The result is an index where each segment (i, j) is the intersection of segments i and j. For example if the inputs represent table cells indexed by respectively rows and columns the output will be a table indexed by (row, column) pairs, i.e. by cell. The implementation combines indices {0, .., n - 1} and {0, .., m - 1} into {0, .., nm - 1}. The output has *num_segments* equal to *outer_index.num_segments* * *inner_index.num_segments* Args: outer_index (`IndexMap`): IndexMap. inner_index (`IndexMap`): IndexMap, must have the same shape as *outer_index*. """ if outer_index.batch_dims != inner_index.batch_dims: raise ValueError("outer_index.batch_dims and inner_index.batch_dims must be the same.") super().__init__( indices=(inner_index.indices + outer_index.indices * inner_index.num_segments), num_segments=inner_index.num_segments * outer_index.num_segments, batch_dims=inner_index.batch_dims, ) self.outer_index = outer_index self.inner_index = inner_index def project_outer(self, index): """Projects an index with the same index set onto the outer components.""" indices = torch.div(index.indices, self.inner_index.num_segments, rounding_mode="floor").type(torch.long) return IndexMap(indices=indices, num_segments=self.outer_index.num_segments, batch_dims=index.batch_dims) def project_inner(self, index): """Projects an index with the same index set onto the inner components.""" return IndexMap( indices=torch.fmod(index.indices, self.inner_index.num_segments) .type(torch.float) .floor() .type(torch.long), num_segments=self.inner_index.num_segments, batch_dims=index.batch_dims, ) def gather(values, index, name="segmented_gather"): """ Gathers from *values* using the index map. For each element in the domain of the index map this operation looks up a value for that index in *values*. Two elements from the same segment always get assigned the same value. Args: values (`torch.Tensor` of shape (B1, ..., Bn, num_segments, V1, ...)): Tensor with segment values. index (`IndexMap` of shape (B1, ..., Bn, I1, ..., Ik)): IndexMap. name (`str`, *optional*, defaults to 'segmented_gather'): Name for the operation. Currently not used Returns: `tuple(torch.Tensor)`: Tensor of shape (B1, ..., Bn, I1, ..., Ik, V1, ...) with the gathered values. """ indices = index.indices # first, check whether the indices of the index represent scalar values (i.e. not vectorized) if len(values.shape[index.batch_dims :]) < 2: return torch.gather( values, index.batch_dims, indices.view( values.size()[0], -1 ), # torch.gather expects index to have the same number of dimensions as values ).view(indices.size()) else: # this means we have a vectorized version # we have to adjust the index indices = indices.unsqueeze(-1).expand(values.shape) return torch.gather(values, index.batch_dims, indices) def flatten(index, name="segmented_flatten"): """ Flattens a batched index map (which is typically of shape batch_size, seq_length) to a 1d index map. This operation relabels the segments to keep batch elements distinct. The k-th batch element will have indices shifted by *num_segments* * (k - 1). The result is a tensor with *num_segments* multiplied by the number of elements in the batch. Args: index (`IndexMap`): IndexMap to flatten. name (`str`, *optional*, defaults to 'segmented_flatten'): Name for the operation. Currently not used Returns: (`IndexMap`): The flattened IndexMap. """ # first, get batch_size as scalar tensor batch_size = torch.prod(torch.tensor(list(index.batch_shape()))) # next, create offset as 1-D tensor of length batch_size, # and multiply element-wise by num segments (to offset different elements in the batch) e.g. if batch size is 2: [0, 64] offset = torch.arange(start=0, end=batch_size, device=index.num_segments.device) * index.num_segments offset = offset.view(index.batch_shape()) for _ in range(index.batch_dims, len(index.indices.size())): # typically range(1,2) offset = offset.unsqueeze(-1) indices = offset + index.indices return IndexMap(indices=indices.view(-1), num_segments=index.num_segments * batch_size, batch_dims=0) def range_index_map(batch_shape, num_segments, name="range_index_map"): """ Constructs an index map equal to range(num_segments). Args: batch_shape (`torch.Size`): Batch shape num_segments (`int`): Number of segments name (`str`, *optional*, defaults to 'range_index_map'): Name for the operation. Currently not used Returns: (`IndexMap`): IndexMap of shape batch_shape with elements equal to range(num_segments). """ batch_shape = torch.as_tensor( batch_shape, dtype=torch.long ) # create a rank 1 tensor vector containing batch_shape (e.g. [2]) assert len(batch_shape.size()) == 1 num_segments = torch.as_tensor(num_segments) # create a rank 0 tensor (scalar) containing num_segments (e.g. 64) assert len(num_segments.size()) == 0 indices = torch.arange( start=0, end=num_segments, device=num_segments.device ) # create a rank 1 vector with num_segments elements new_tensor = torch.cat( [torch.ones_like(batch_shape, dtype=torch.long, device=num_segments.device), num_segments.unsqueeze(dim=0)], dim=0, ) # new_tensor is just a vector of [1 64] for example (assuming only 1 batch dimension) new_shape = [int(x) for x in new_tensor.tolist()] indices = indices.view(new_shape) multiples = torch.cat([batch_shape, torch.as_tensor([1])], dim=0) indices = indices.repeat(multiples.tolist()) # equivalent (in Numpy:) # indices = torch.as_tensor(np.tile(indices.numpy(), multiples.tolist())) return IndexMap(indices=indices, num_segments=num_segments, batch_dims=list(batch_shape.size())[0]) def _segment_reduce(values, index, segment_reduce_fn, name): """ Applies a segment reduction segment-wise. Args: values (`torch.Tensor`): Tensor with segment values. index (`IndexMap`): IndexMap. segment_reduce_fn (`str`): Name for the reduce operation. One of "sum", "mean", "max" or "min". name (`str`): Name for the operation. Currently not used Returns: (`IndexMap`): IndexMap of shape batch_shape with elements equal to range(num_segments). """ # Flatten the batch dimensions, as segments ops (scatter) do not support batching. # However if `values` has extra dimensions to the right keep them # unflattened. Segmented ops support vector-valued operations. flat_index = flatten(index) vector_shape = values.size()[len(index.indices.size()) :] # torch.Size object flattened_shape = torch.cat( [torch.as_tensor([-1], dtype=torch.long), torch.as_tensor(vector_shape, dtype=torch.long)], dim=0 ) # changed "view" by "reshape" in the following line flat_values = values.reshape(flattened_shape.tolist()) out = torch.zeros(int(flat_index.num_segments), dtype=torch.float, device=flat_values.device) segment_means = out.scatter_reduce( dim=0, index=flat_index.indices.long(), src=flat_values.float(), reduce=segment_reduce_fn, include_self=False ) # Unflatten the values. new_shape = torch.cat( [ torch.as_tensor(index.batch_shape(), dtype=torch.long), torch.as_tensor([index.num_segments], dtype=torch.long), torch.as_tensor(vector_shape, dtype=torch.long), ], dim=0, ) output_values = segment_means.clone().view(new_shape.tolist()).to(values.dtype) output_index = range_index_map(index.batch_shape(), index.num_segments) return output_values, output_index def reduce_sum(values, index, name="segmented_reduce_sum"): """ Sums a tensor over its segments. Outputs 0 for empty segments. This operations computes the sum over segments, with support for: - Batching using the first dimensions [B1, B2, ..., Bn]. Each element in a batch can have different indices. - Vectorization using the last dimension [V1, V2, ...]. If they are present, the output will be a sum of vectors rather than scalars. Only the middle dimensions [I1, ..., Ik] are reduced by the operation. Args: values (`torch.Tensor` of shape [B1, B2, ..., Bn, I1, .., Ik, V1, V2, ..]): Tensor containing the values of which the sum must be taken segment-wise. index (`IndexMap`, indices are of shape [B1, B2, ..., Bn, I1, .., Ik].): Index defining the segments. name (`str`, *optional*, defaults to 'segmented_reduce_sum'): Name for the operation. Currently not used Returns: output_values (`torch.Tensor`of shape [B1, B2, ..., Bn, num_segments, V1, V2, ..]): Tensor containing the output values. output_index (`IndexMap`): IndexMap with shape [B1, B2, ..., Bn, num_segments]. . """ return _segment_reduce(values, index, "sum", name) def reduce_mean(values, index, name="segmented_reduce_mean"): """ Averages a tensor over its segments. Outputs 0 for empty segments. This operations computes the mean over segments, with support for: - Batching using the first dimensions [B1, B2, ..., Bn]. Each element in a batch can have different indices. - Vectorization using the last dimension [V1, V2, ...]. If they are present, the output will be a mean of vectors rather than scalars. Only the middle dimensions [I1, ..., Ik] are reduced by the operation. Args: values (`torch.Tensor` of shape [B1, B2, ..., Bn, I1, .., Ik, V1, V2, ..]): Tensor containing the values of which the mean must be taken segment-wise. index (`IndexMap`, indices are of shape [B1, B2, ..., Bn, I1, .., Ik].): Index defining the segments. name (`str`, *optional*, defaults to 'segmented_reduce_sum'): Name for the operation. Currently not used Returns: output_values (`torch.Tensor`of shape [B1, B2, ..., Bn, num_segments, V1, V2, ..]): Tensor containing the output values. output_index (`IndexMap`): IndexMap with shape [B1, B2, ..., Bn, num_segments]. """ return _segment_reduce(values, index, "mean", name) def reduce_max(values, index, name="segmented_reduce_max"): """ Computes the maximum over segments. This operation computes the maximum over segments, with support for: - Batching using the first dimensions [B1, B2, ..., Bn]. Each element in a batch can have different indices. - Vectorization using the last dimension [V1, V2, ...]. If they are present, the output will be an element-wise maximum of vectors rather than scalars. Only the middle dimensions [I1, ..., Ik] are reduced by the operation. Args: values (`torch.Tensor` of shape [B1, B2, ..., Bn, I1, .., Ik, V1, V2, ..]): Tensor containing the values of which the max must be taken segment-wise. index (`IndexMap`, indices are of shape [B1, B2, ..., Bn, I1, .., Ik].): Index defining the segments. name (`str`, *optional*, defaults to 'segmented_reduce_sum'): Name for the operation. Currently not used Returns: output_values (`torch.Tensor`of shape [B1, B2, ..., Bn, num_segments, V1, V2, ..]): Tensor containing the output values. output_index (`IndexMap`): IndexMap with shape [B1, B2, ..., Bn, num_segments]. """ return _segment_reduce(values, index, "amax", name) def reduce_min(values, index, name="segmented_reduce_min"): """ Computes the minimum over segments. This operations computes the minimum over segments, with support for: - Batching using the first dimensions [B1, B2, ..., Bn]. Each element in a batch can have different indices. - Vectorization using the last dimension [V1, V2, ...]. If they are present, the output will be an element-wise minimum of vectors rather than scalars. Only the middle dimensions [I1, ..., Ik] are reduced by the operation. Args: values (`torch.Tensor` of shape [B1, B2, ..., Bn, I1, .., Ik, V1, V2, ..]): Tensor containing the values of which the min must be taken segment-wise. index (`IndexMap`, indices are of shape [B1, B2, ..., Bn, I1, .., Ik].): Index defining the segments. name (`str`, *optional*, defaults to 'segmented_reduce_sum'): Name for the operation. Currently not used Returns: output_values (`torch.Tensor`of shape [B1, B2, ..., Bn, num_segments, V1, V2, ..]): Tensor containing the output values. output_index (`IndexMap`): IndexMap with shape [B1, B2, ..., Bn, num_segments]. """ return _segment_reduce(values, index, "amin", name) # End of everything related to segmented tensors def compute_column_logits( sequence_output, column_output_weights, column_output_bias, cell_index, cell_mask, allow_empty_column_selection ): """ Computes the column logits. Args: sequence_output (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`): Also known as last_hidden_state. Sequence of hidden-states at the output of the last layer of the model. column_output_weights (`torch.FloatTensor` of shape `(hidden_size)`): Weights of the linear layer for column selection. column_output_bias (`torch.FloatTensor` of shape `()`): Bias of the linear layer for column selection. cell_index (`ProductIndexMap`): Index that groups tokens into cells. cell_mask (`torch.FloatTensor` of shape `(batch_size, max_num_rows * max_num_cols)`): Mask for cells that exist in the table (i.e. that are not padding). allow_empty_column_selection (`bool`): Whether to allow not to select any column Returns: column_logits (`torch.FloatTensor`of shape `(batch_size, max_num_cols)`): Tensor containing the column logits for every example in the batch. """ # First, compute the token logits (batch_size, seq_len) - without temperature token_logits = torch.einsum("bsj,j->bs", sequence_output, column_output_weights) + column_output_bias # Next, average the logits per cell (batch_size, max_num_cols*max_num_rows) cell_logits, cell_logits_index = reduce_mean(token_logits, cell_index) # Finally, average the logits per column (batch_size, max_num_cols) column_index = cell_index.project_inner(cell_logits_index) column_logits, out_index = reduce_sum(cell_logits * cell_mask, column_index) cell_count, _ = reduce_sum(cell_mask, column_index) column_logits /= cell_count + EPSILON_ZERO_DIVISION # Mask columns that do not appear in the example. is_padding = torch.logical_and(cell_count < 0.5, ~torch.eq(out_index.indices, 0)) column_logits += CLOSE_ENOUGH_TO_LOG_ZERO * torch.as_tensor( is_padding, dtype=torch.float32, device=is_padding.device ) if not allow_empty_column_selection: column_logits += CLOSE_ENOUGH_TO_LOG_ZERO * torch.as_tensor( torch.eq(out_index.indices, 0), dtype=torch.float32, device=out_index.indices.device ) return column_logits def _single_column_cell_selection_loss(token_logits, column_logits, labels, cell_index, col_index, cell_mask): """ Computes the loss for cell selection constrained to a single column. The loss is a hierarchical log-likelihood. The model first predicts a column and then selects cells within that column (conditioned on the column). Cells outside the selected column are never selected. Args: token_logits (`torch.FloatTensor` of shape `(batch_size, sequence_length)`): Tensor containing the logits per token. column_logits (`torch.FloatTensor` of shape `(batch_size, max_num_cols)`): Tensor containing the logits per column. labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`): Labels per token. cell_index (`ProductIndexMap`): Index that groups tokens into cells. col_index (`IndexMap`): Index that groups tokens into columns. cell_mask (`torch.FloatTensor` of shape `(batch_size, max_num_rows * max_num_cols)`): Mask for cells that exist in the table (i.e. that are not padding). Returns: selection_loss_per_example (`torch.FloatTensor` of shape `(batch_size,)`): Loss for each example. logits (`torch.FloatTensor` of shape `(batch_size, sequence_length)`): New logits which are only allowed to select cells in a single column. Logits outside of the most likely column according to *column_logits* will be set to a very low value (such that the probabilities are 0). """ # Part 1: column loss # First find the column we should select. We use the column with maximum number of selected cells. labels_per_column, _ = reduce_sum(torch.as_tensor(labels, dtype=torch.float32, device=labels.device), col_index) # shape of labels_per_column is (batch_size, max_num_cols). It contains the number of label ids for every column, for every example column_label = torch.argmax(labels_per_column, dim=-1) # shape (batch_size,) # Check if there are no selected cells in the column. In that case the model # should predict the special column id 0, which means "select nothing". no_cell_selected = torch.eq( torch.max(labels_per_column, dim=-1)[0], 0 ) # no_cell_selected is of shape (batch_size,) and equals True # if an example of the batch has no cells selected (i.e. if there are no labels set to 1 for that example) column_label = torch.where( no_cell_selected.view(column_label.size()), torch.zeros_like(column_label), column_label ) column_dist = torch.distributions.Categorical(logits=column_logits) # shape (batch_size, max_num_cols) column_loss_per_example = -column_dist.log_prob(column_label) # Part 2: cell loss # Reduce the labels and logits to per-cell from per-token. # logits_per_cell: shape (batch_size, max_num_rows*max_num_cols) i.e. (batch_size, 64*32) logits_per_cell, _ = reduce_mean(token_logits, cell_index) # labels_per_cell: shape (batch_size, 64*32), indicating whether each cell should be selected (1) or not (0) labels_per_cell, labels_index = reduce_max( torch.as_tensor(labels, dtype=torch.long, device=labels.device), cell_index ) # Mask for the selected column. # column_id_for_cells: shape (batch_size, 64*32), indicating to which column each cell belongs column_id_for_cells = cell_index.project_inner(labels_index).indices # column_mask: shape (batch_size, 64*32), equal to 1 if cell belongs to column to be selected column_mask = torch.as_tensor( torch.eq(column_id_for_cells, torch.unsqueeze(column_label, dim=-1)), dtype=torch.float32, device=cell_mask.device, ) # Compute the log-likelihood for cells, but only for the selected column. cell_dist = torch.distributions.Bernoulli(logits=logits_per_cell) # shape (batch_size, 64*32) cell_log_prob = cell_dist.log_prob(labels_per_cell.type(torch.float32)) # shape(batch_size, 64*32) cell_loss = -torch.sum(cell_log_prob * column_mask * cell_mask, dim=1) # We need to normalize the loss by the number of cells in the column. cell_loss /= torch.sum(column_mask * cell_mask, dim=1) + EPSILON_ZERO_DIVISION selection_loss_per_example = column_loss_per_example selection_loss_per_example += torch.where( no_cell_selected.view(selection_loss_per_example.size()), torch.zeros_like(selection_loss_per_example), cell_loss, ) # Set the probs outside the selected column (selected by the *model*) # to 0. This ensures backwards compatibility with models that select # cells from multiple columns. selected_column_id = torch.as_tensor( torch.argmax(column_logits, dim=-1), dtype=torch.long, device=column_logits.device ) # shape (batch_size,) # selected_column_mask: shape (batch_size, 64*32), equal to 1 if cell belongs to column selected by the model selected_column_mask = torch.as_tensor( torch.eq(column_id_for_cells, torch.unsqueeze(selected_column_id, dim=-1)), dtype=torch.float32, device=selected_column_id.device, ) # Never select cells with the special column id 0. selected_column_mask = torch.where( torch.eq(column_id_for_cells, 0).view(selected_column_mask.size()), torch.zeros_like(selected_column_mask), selected_column_mask, ) new_logits_per_cell = logits_per_cell + CLOSE_ENOUGH_TO_LOG_ZERO * (1.0 - cell_mask * selected_column_mask) logits = gather(new_logits_per_cell, cell_index) return selection_loss_per_example, logits def compute_token_logits(sequence_output, temperature, output_weights, output_bias): """ Computes logits per token Args: sequence_output (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`): Also known as last_hidden_state. Sequence of hidden-states at the output of the last layer of the model. temperature (`float`): Temperature for the Bernoulli distribution. output_weights (`torch.FloatTensor` of shape `(hidden_size,)`): Weights of the linear layer for cell selection. output_bias (`torch.FloatTensor` of shape `()`): Bias of the linear layer for cell selection Returns: logits (`torch.FloatTensor` of shape `(batch_size, sequence_length)`): Logits per token. """ logits = (torch.einsum("bsj,j->bs", sequence_output, output_weights) + output_bias) / temperature return logits def _calculate_aggregate_mask(answer, pooled_output, cell_selection_preference, labels, aggregation_classifier): """ Finds examples where the model should select cells with no aggregation. Returns a mask that determines for which examples should the model select answers directly from the table, without any aggregation function. If the answer is a piece of text the case is unambiguous as aggregation functions only apply to numbers. If the answer is a number but does not appear in the table then we must use some aggregation case. The ambiguous case is when the answer is a number that also appears in the table. In this case we use the aggregation function probabilities predicted by the model to decide whether to select or aggregate. The threshold for this is a hyperparameter *cell_selection_preference* Args: answer (`torch.FloatTensor` of shape `(batch_size, )`): Answer for every example in the batch. Nan if there is no scalar answer. pooled_output (`torch.FloatTensor` of shape `(batch_size, hidden_size)`): Output of the pooler (BertPooler) on top of the encoder layer. cell_selection_preference (`float`): Preference for cell selection in ambiguous cases. labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`): Labels per token. aggregation_classifier (`torch.nn.Linear`): Aggregation head Returns: aggregate_mask (`torch.FloatTensor` of shape `(batch_size,)`): A mask set to 1 for examples that should use aggregation functions. """ # torch.FloatTensor(batch_size,) aggregate_mask_init = torch.logical_not(torch.isnan(answer)).type(torch.FloatTensor).to(answer.device) logits_aggregation = aggregation_classifier(pooled_output) dist_aggregation = torch.distributions.categorical.Categorical(logits=logits_aggregation) # Index 0 corresponds to "no aggregation". aggregation_ops_total_mass = torch.sum(dist_aggregation.probs[:, 1:], dim=1) # Cell selection examples according to current model. is_pred_cell_selection = aggregation_ops_total_mass <= cell_selection_preference # Examples with non-empty cell selection supervision. is_cell_supervision_available = torch.sum(labels, dim=1) > 0 # torch.where is not equivalent to tf.where (in tensorflow 1) # hence the added .view on the condition to match the shape of the first tensor aggregate_mask = torch.where( torch.logical_and(is_pred_cell_selection, is_cell_supervision_available).view(aggregate_mask_init.size()), torch.zeros_like(aggregate_mask_init, dtype=torch.float32), aggregate_mask_init, ) aggregate_mask = aggregate_mask.detach() return aggregate_mask def _calculate_aggregation_loss_known( logits_aggregation, aggregate_mask, aggregation_labels, use_answer_as_supervision, num_aggregation_labels ): """ Calculates aggregation loss when its type is known during training. In the weakly supervised setting, the only known information is that for cell selection examples, "no aggregation" should be predicted. For other examples (those that require aggregation), no loss is accumulated. In the setting where aggregation type is always known, standard cross entropy loss is accumulated for all examples Args: logits_aggregation (`torch.FloatTensor` of shape `(batch_size, num_aggregation_labels)`): Logits per aggregation operation. aggregate_mask (`torch.FloatTensor` of shape `(batch_size, )`): A mask set to 1 for examples that should use aggregation functions. aggregation_labels (`torch.LongTensor` of shape `(batch_size, )`): Aggregation function id for every example in the batch. use_answer_as_supervision (`bool`, *optional*): Whether to use the answer as the only supervision for aggregation examples. num_aggregation_labels (`int`, *optional*, defaults to 0): The number of aggregation operators to predict. Returns: aggregation_loss_known (`torch.FloatTensor` of shape `(batch_size,)`): Aggregation loss (when its type is known during training) per example. """ if use_answer_as_supervision: # Prepare "no aggregation" targets for cell selection examples. target_aggregation = torch.zeros_like(aggregate_mask, dtype=torch.long) else: # Use aggregation supervision as the target. target_aggregation = aggregation_labels one_hot_labels = nn.functional.one_hot(target_aggregation, num_classes=num_aggregation_labels).type(torch.float32) log_probs = nn.functional.log_softmax(logits_aggregation, dim=-1) # torch.FloatTensor[batch_size] per_example_aggregation_intermediate = -torch.sum(one_hot_labels * log_probs, dim=-1) if use_answer_as_supervision: # Accumulate loss only for examples requiring cell selection # (no aggregation). return per_example_aggregation_intermediate * (1 - aggregate_mask) else: return per_example_aggregation_intermediate def _calculate_aggregation_loss_unknown(logits_aggregation, aggregate_mask): """ Calculates aggregation loss in the case of answer supervision. Args: logits_aggregation (`torch.FloatTensor` of shape `(batch_size, num_aggregation_labels)`): Logits per aggregation operation. aggregate_mask (`torch.FloatTensor` of shape `(batch_size, )`): A mask set to 1 for examples that should use aggregation functions Returns: aggregation_loss_unknown (`torch.FloatTensor` of shape `(batch_size,)`): Aggregation loss (in case of answer supervision) per example. """ dist_aggregation = torch.distributions.categorical.Categorical(logits=logits_aggregation) # Index 0 corresponds to "no aggregation". aggregation_ops_total_mass = torch.sum(dist_aggregation.probs[:, 1:], dim=1) # Predict some aggregation in case of an answer that needs aggregation. # This increases the probability of all aggregation functions, in a way # similar to MML, but without considering whether the function gives the # correct answer. return -torch.log(aggregation_ops_total_mass) * aggregate_mask def _calculate_aggregation_loss( logits_aggregation, aggregate_mask, aggregation_labels, use_answer_as_supervision, num_aggregation_labels, aggregation_loss_weight, ): """ Calculates the aggregation loss per example. Args: logits_aggregation (`torch.FloatTensor` of shape `(batch_size, num_aggregation_labels)`): Logits per aggregation operation. aggregate_mask (`torch.FloatTensor` of shape `(batch_size, )`): A mask set to 1 for examples that should use aggregation functions. aggregation_labels (`torch.LongTensor` of shape `(batch_size, )`): Aggregation function id for every example in the batch. use_answer_as_supervision (`bool`, *optional*): Whether to use the answer as the only supervision for aggregation examples. num_aggregation_labels (`int`, *optional*, defaults to 0): The number of aggregation operators to predict. aggregation_loss_weight (`float`, *optional*, defaults to 1.0): Importance weight for the aggregation loss. Returns: aggregation_loss (`torch.FloatTensor` of shape `(batch_size,)`): Aggregation loss per example. """ per_example_aggregation_loss = _calculate_aggregation_loss_known( logits_aggregation, aggregate_mask, aggregation_labels, use_answer_as_supervision, num_aggregation_labels ) if use_answer_as_supervision: # Add aggregation loss for numeric answers that need aggregation. per_example_aggregation_loss += _calculate_aggregation_loss_unknown(logits_aggregation, aggregate_mask) return aggregation_loss_weight * per_example_aggregation_loss def _calculate_expected_result( dist_per_cell, numeric_values, numeric_values_scale, input_mask_float, logits_aggregation, config ): """ Calculates the expected result given cell and aggregation probabilities. Args: dist_per_cell (`torch.distributions.Bernoulli`): Cell selection distribution for each cell. numeric_values (`torch.FloatTensor` of shape `(batch_size, seq_length)`): Numeric values of every token. Nan for tokens which are not numeric values. numeric_values_scale (`torch.FloatTensor` of shape `(batch_size, seq_length)`): Scale of the numeric values of every token. input_mask_float (`torch.FloatTensor` of shape `(batch_size, seq_length)`): Mask for the table, without question tokens and table headers. logits_aggregation (`torch.FloatTensor` of shape `(batch_size, num_aggregation_labels)`): Logits per aggregation operation. config ([`TapasConfig`]): Model configuration class with all the hyperparameters of the model Returns: expected_result (`torch.FloatTensor` of shape `(batch_size,)`): The expected result per example. """ if config.use_gumbel_for_cells: gumbel_dist = torch.distributions.RelaxedBernoulli( # The token logits where already divided by the temperature and used for # computing cell selection errors so we need to multiply it again here temperature=config.temperature, logits=dist_per_cell.logits * config.temperature, ) scaled_probability_per_cell = gumbel_dist.sample() else: scaled_probability_per_cell = dist_per_cell.probs # <float32>[batch_size, seq_length] scaled_probability_per_cell = (scaled_probability_per_cell / numeric_values_scale) * input_mask_float count_result = torch.sum(scaled_probability_per_cell, dim=1) numeric_values_masked = torch.where( torch.isnan(numeric_values), torch.zeros_like(numeric_values), numeric_values ) # Mask non-numeric table values to zero. sum_result = torch.sum(scaled_probability_per_cell * numeric_values_masked, dim=1) avg_approximation = config.average_approximation_function if avg_approximation == AverageApproximationFunction.RATIO: average_result = sum_result / (count_result + EPSILON_ZERO_DIVISION) elif avg_approximation == AverageApproximationFunction.FIRST_ORDER: # The sum of all probabilities except that correspond to other cells # Ex here stands for expectation, more explicitly the expectation of the sum of N-1 Bernoulli random variables plus # the constant 1, which is computed as adding all N expected values and subtracting the extra one. It corresponds to X_c # in Appendix D of the original TAPAS paper which is trying to approximate the average of a random set. ex = torch.sum(scaled_probability_per_cell, dim=1, keepdim=True) - scaled_probability_per_cell + 1 average_result = torch.sum(numeric_values_masked * scaled_probability_per_cell / ex, dim=1) elif avg_approximation == AverageApproximationFunction.SECOND_ORDER: # The sum of all probabilities except that correspond to other cells ex = torch.sum(scaled_probability_per_cell, dim=1, keepdim=True) - scaled_probability_per_cell + 1 pointwise_var = scaled_probability_per_cell * (1 - scaled_probability_per_cell) var = torch.sum(pointwise_var, dim=1, keepdim=True) - pointwise_var multiplier = (var / torch.square(ex) + 1) / ex average_result = torch.sum(numeric_values_masked * scaled_probability_per_cell * multiplier, dim=1) else: raise ValueError(f"Invalid average_approximation_function: {config.average_approximation_function}") if config.use_gumbel_for_aggregation: gumbel_dist = torch.distributions.RelaxedOneHotCategorical( config.aggregation_temperature, logits=logits_aggregation[:, 1:] ) # <float32>[batch_size, num_aggregation_labels - 1] aggregation_op_only_probs = gumbel_dist.sample() else: # <float32>[batch_size, num_aggregation_labels - 1] aggregation_op_only_probs = nn.functional.softmax( logits_aggregation[:, 1:] / config.aggregation_temperature, dim=-1 ) all_results = torch.cat( [ torch.unsqueeze(sum_result, dim=1), torch.unsqueeze(average_result, dim=1), torch.unsqueeze(count_result, dim=1), ], dim=1, ) expected_result = torch.sum(all_results * aggregation_op_only_probs, dim=1) return expected_result # PyTorch does not currently support Huber loss with custom delta so we define it ourself def huber_loss(input, target, delta: float = 1.0): errors = torch.abs(input - target) # shape (batch_size,) return torch.where(errors < delta, 0.5 * errors**2, errors * delta - (0.5 * delta**2)) def _calculate_regression_loss( answer, aggregate_mask, dist_per_cell, numeric_values, numeric_values_scale, input_mask_float, logits_aggregation, config, ): """ Calculates the regression loss per example. Args: answer (`torch.FloatTensor` of shape `(batch_size,)`): Answer for every example in the batch. Nan if there is no scalar answer. aggregate_mask (`torch.FloatTensor` of shape `(batch_size,)`): A mask set to 1 for examples that should use aggregation functions. dist_per_cell (`torch.distributions.Bernoulli`): Cell selection distribution for each cell. numeric_values (`torch.FloatTensor` of shape `(batch_size, seq_length)`): Numeric values of every token. Nan for tokens which are not numeric values. numeric_values_scale (`torch.FloatTensor` of shape `(batch_size, seq_length)`): Scale of the numeric values of every token. input_mask_float (`torch.FloatTensor` of shape `(batch_size, seq_length)`): Mask for the table, without question tokens and table headers. logits_aggregation (`torch.FloatTensor` of shape `(batch_size, num_aggregation_labels)`): Logits per aggregation operation. config ([`TapasConfig`]): Model configuration class with all the parameters of the model Returns: per_example_answer_loss_scaled (`torch.FloatTensor` of shape `(batch_size,)`): Scales answer loss for each example in the batch. large_answer_loss_mask (`torch.FloatTensor` of shape `(batch_size,)`): A mask which is 1 for examples for which their answer loss is larger than the answer_loss_cutoff. """ # float32 (batch_size,) expected_result = _calculate_expected_result( dist_per_cell, numeric_values, numeric_values_scale, input_mask_float, logits_aggregation, config ) # float32 (batch_size,) answer_masked = torch.where(torch.isnan(answer), torch.zeros_like(answer), answer) if config.use_normalized_answer_loss: normalizer = (torch.max(torch.abs(expected_result), torch.abs(answer_masked)) + EPSILON_ZERO_DIVISION).detach() normalized_answer_masked = answer_masked / normalizer normalized_expected_result = expected_result / normalizer per_example_answer_loss = huber_loss( normalized_expected_result * aggregate_mask, normalized_answer_masked * aggregate_mask ) else: per_example_answer_loss = huber_loss( expected_result * aggregate_mask, answer_masked * aggregate_mask, delta=config.huber_loss_delta ) if config.answer_loss_cutoff is None: large_answer_loss_mask = torch.ones_like(per_example_answer_loss, dtype=torch.float32) else: large_answer_loss_mask = torch.where( per_example_answer_loss > config.answer_loss_cutoff, torch.zeros_like(per_example_answer_loss, dtype=torch.float32), torch.ones_like(per_example_answer_loss, dtype=torch.float32), ) per_example_answer_loss_scaled = config.answer_loss_importance * (per_example_answer_loss * aggregate_mask) return per_example_answer_loss_scaled, large_answer_loss_mask
0
hf_public_repos/transformers/src/transformers/models
hf_public_repos/transformers/src/transformers/models/efficientformer/__init__.py
# Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) _import_structure = { "configuration_efficientformer": [ "EFFICIENTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "EfficientFormerConfig", ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["image_processing_efficientformer"] = ["EfficientFormerImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["modeling_efficientformer"] = [ "EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "EfficientFormerForImageClassification", "EfficientFormerForImageClassificationWithTeacher", "EfficientFormerModel", "EfficientFormerPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["modeling_tf_efficientformer"] = [ "TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "TFEfficientFormerForImageClassification", "TFEfficientFormerForImageClassificationWithTeacher", "TFEfficientFormerModel", "TFEfficientFormerPreTrainedModel", ] if TYPE_CHECKING: from .configuration_efficientformer import EFFICIENTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, EfficientFormerConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_efficientformer import EfficientFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_efficientformer import ( EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, EfficientFormerForImageClassification, EfficientFormerForImageClassificationWithTeacher, EfficientFormerModel, EfficientFormerPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_efficientformer import ( TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TFEfficientFormerForImageClassification, TFEfficientFormerForImageClassificationWithTeacher, TFEfficientFormerModel, TFEfficientFormerPreTrainedModel, ) else: import sys sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
0
hf_public_repos/transformers/src/transformers/models
hf_public_repos/transformers/src/transformers/models/efficientformer/configuration_efficientformer.py
# coding=utf-8 # Copyright 2022 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ EfficientFormer model configuration""" from typing import List from ...configuration_utils import PretrainedConfig from ...utils import logging logger = logging.get_logger(__name__) EFFICIENTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP = { "snap-research/efficientformer-l1-300": ( "https://huggingface.co/snap-research/efficientformer-l1-300/resolve/main/config.json" ), } class EfficientFormerConfig(PretrainedConfig): r""" This is the configuration class to store the configuration of an [`EfficientFormerModel`]. It is used to instantiate an EfficientFormer model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the EfficientFormer [snap-research/efficientformer-l1](https://huggingface.co/snap-research/efficientformer-l1) architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: depths (`List(int)`, *optional*, defaults to `[3, 2, 6, 4]`) Depth of each stage. hidden_sizes (`List(int)`, *optional*, defaults to `[48, 96, 224, 448]`) Dimensionality of each stage. downsamples (`List(bool)`, *optional*, defaults to `[True, True, True, True]`) Whether or not to downsample inputs between two stages. dim (`int`, *optional*, defaults to 448): Number of channels in Meta3D layers key_dim (`int`, *optional*, defaults to 32): The size of the key in meta3D block. attention_ratio (`int`, *optional*, defaults to 4): Ratio of the dimension of the query and value to the dimension of the key in MSHA block resolution (`int`, *optional*, defaults to 7) Size of each patch num_hidden_layers (`int`, *optional*, defaults to 5): Number of hidden layers in the Transformer encoder. num_attention_heads (`int`, *optional*, defaults to 8): Number of attention heads for each attention layer in the 3D MetaBlock. mlp_expansion_ratio (`int`, *optional*, defaults to 4): Ratio of size of the hidden dimensionality of an MLP to the dimensionality of its input. hidden_dropout_prob (`float`, *optional*, defaults to 0.1): The dropout probability for all fully connected layers in the embeddings and encoder. patch_size (`int`, *optional*, defaults to 16): The size (resolution) of each patch. num_channels (`int`, *optional*, defaults to 3): The number of input channels. pool_size (`int`, *optional*, defaults to 3): Kernel size of pooling layers. downsample_patch_size (`int`, *optional*, defaults to 3): The size of patches in downsampling layers. downsample_stride (`int`, *optional*, defaults to 2): The stride of convolution kernels in downsampling layers. downsample_pad (`int`, *optional*, defaults to 1): Padding in downsampling layers. drop_path_rate (`int`, *optional*, defaults to 0): Rate at which to increase dropout probability in DropPath. num_meta3d_blocks (`int`, *optional*, defaults to 1): The number of 3D MetaBlocks in the last stage. distillation (`bool`, *optional*, defaults to `True`): Whether to add a distillation head. use_layer_scale (`bool`, *optional*, defaults to `True`): Whether to scale outputs from token mixers. layer_scale_init_value (`float`, *optional*, defaults to 1e-5): Factor by which outputs from token mixers are scaled. hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`): The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, `"relu"`, `"selu"` and `"gelu_new"` are supported. initializer_range (`float`, *optional*, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. layer_norm_eps (`float`, *optional*, defaults to 1e-12): The epsilon used by the layer normalization layers. image_size (`int`, *optional*, defaults to `224`): The size (resolution) of each image. Example: ```python >>> from transformers import EfficientFormerConfig, EfficientFormerModel >>> # Initializing a EfficientFormer efficientformer-l1 style configuration >>> configuration = EfficientFormerConfig() >>> # Initializing a EfficientFormerModel (with random weights) from the efficientformer-l3 style configuration >>> model = EfficientFormerModel(configuration) >>> # Accessing the model configuration >>> configuration = model.config ```""" model_type = "efficientformer" def __init__( self, depths: List[int] = [3, 2, 6, 4], hidden_sizes: List[int] = [48, 96, 224, 448], downsamples: List[bool] = [True, True, True, True], dim: int = 448, key_dim: int = 32, attention_ratio: int = 4, resolution: int = 7, num_hidden_layers: int = 5, num_attention_heads: int = 8, mlp_expansion_ratio: int = 4, hidden_dropout_prob: float = 0.0, patch_size: int = 16, num_channels: int = 3, pool_size: int = 3, downsample_patch_size: int = 3, downsample_stride: int = 2, downsample_pad: int = 1, drop_path_rate: float = 0.0, num_meta3d_blocks: int = 1, distillation: bool = True, use_layer_scale: bool = True, layer_scale_init_value: float = 1e-5, hidden_act: str = "gelu", initializer_range: float = 0.02, layer_norm_eps: float = 1e-12, image_size: int = 224, batch_norm_eps: float = 1e-05, **kwargs, ) -> None: super().__init__(**kwargs) self.hidden_act = hidden_act self.hidden_dropout_prob = hidden_dropout_prob self.hidden_sizes = hidden_sizes self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.initializer_range = initializer_range self.layer_norm_eps = layer_norm_eps self.patch_size = patch_size self.num_channels = num_channels self.depths = depths self.mlp_expansion_ratio = mlp_expansion_ratio self.downsamples = downsamples self.dim = dim self.key_dim = key_dim self.attention_ratio = attention_ratio self.resolution = resolution self.pool_size = pool_size self.downsample_patch_size = downsample_patch_size self.downsample_stride = downsample_stride self.downsample_pad = downsample_pad self.drop_path_rate = drop_path_rate self.num_meta3d_blocks = num_meta3d_blocks self.distillation = distillation self.use_layer_scale = use_layer_scale self.layer_scale_init_value = layer_scale_init_value self.image_size = image_size self.batch_norm_eps = batch_norm_eps
0
hf_public_repos/transformers/src/transformers/models
hf_public_repos/transformers/src/transformers/models/efficientformer/modeling_tf_efficientformer.py
# coding=utf-8 # Copyright 2023 Snapchat Research and The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ TensorFlow EfficientFormer model.""" import itertools from dataclasses import dataclass from typing import Optional, Tuple, Union import tensorflow as tf from ...activations_tf import ACT2FN from ...modeling_tf_outputs import ( TFBaseModelOutput, TFBaseModelOutputWithPooling, TFImageClassifierOutput, ) from ...modeling_tf_utils import ( TFPreTrainedModel, TFSequenceClassificationLoss, get_initializer, keras_serializable, unpack_inputs, ) from ...tf_utils import shape_list, stable_softmax from ...utils import ( ModelOutput, add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging, ) from .configuration_efficientformer import EfficientFormerConfig logger = logging.get_logger(__name__) # General docstring _CONFIG_FOR_DOC = "EfficientFormerConfig" # Base docstring _CHECKPOINT_FOR_DOC = "snap-research/efficientformer-l1-300" _EXPECTED_OUTPUT_SHAPE = [1, 49, 448] # Image classification docstring _IMAGE_CLASS_CHECKPOINT = "snap-research/efficientformer-l1-300" _IMAGE_CLASS_EXPECTED_OUTPUT = "LABEL_281" TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST = [ "snap-research/efficientformer-l1-300", # See all EfficientFormer models at https://huggingface.co/models?filter=efficientformer ] class TFEfficientFormerPatchEmbeddings(tf.keras.layers.Layer): """ This class performs downsampling between two stages. For the input tensor with the shape [batch_size, num_channels, height, width] it produces output tensor with the shape [batch_size, num_channels, height/stride, width/stride] """ def __init__( self, config: EfficientFormerConfig, num_channels: int, embed_dim: int, apply_norm: bool = True, **kwargs ) -> None: super().__init__(**kwargs) self.num_channels = num_channels self.padding = tf.keras.layers.ZeroPadding2D(padding=config.downsample_pad) self.projection = tf.keras.layers.Conv2D( filters=embed_dim, kernel_size=config.downsample_patch_size, strides=config.downsample_stride, padding="valid", name="projection", ) # Use same default momentum and epsilon as PyTorch equivalent for BatchNormalization self.norm = ( tf.keras.layers.BatchNormalization(axis=-1, epsilon=config.batch_norm_eps, momentum=0.9, name="norm") if apply_norm else tf.identity ) def call(self, pixel_values: tf.Tensor, training: bool = False) -> tf.Tensor: tf.debugging.assert_shapes( [(pixel_values, (..., None, None, self.num_channels))], message="Make sure that the channel dimension of the pixel values match with the one set in the configuration.", ) embeddings = self.projection(self.padding(pixel_values)) embeddings = self.norm(embeddings, training=training) return embeddings class TFEfficientFormerSelfAttention(tf.keras.layers.Layer): def __init__( self, dim: int, key_dim: int, num_heads: int, attention_ratio: int, resolution: int, config: EfficientFormerConfig, **kwargs, ): super().__init__(**kwargs) self.num_heads = num_heads self.key_dim = key_dim self.attention_ratio = attention_ratio self.scale = key_dim**-0.5 self.total_key_dim = key_dim * num_heads self.expanded_key_dim = int(attention_ratio * key_dim) self.total_expanded_key_dim = int(self.expanded_key_dim * num_heads) hidden_size = self.total_expanded_key_dim + self.total_key_dim * 2 self.qkv = tf.keras.layers.Dense( units=hidden_size, kernel_initializer=get_initializer(config.initializer_range), name="qkv" ) self.projection = tf.keras.layers.Dense( units=dim, kernel_initializer=get_initializer(config.initializer_range), name="projection" ) self.resolution = resolution def build(self, input_shape: tf.TensorShape) -> None: points = list(itertools.product(range(self.resolution), range(self.resolution))) num_points = len(points) attention_offsets = {} idxs = [] for point_1 in points: for point_2 in points: offset = (abs(point_1[0] - point_2[0]), abs(point_1[1] - point_2[1])) if offset not in attention_offsets: attention_offsets[offset] = len(attention_offsets) idxs.append(attention_offsets[offset]) self.attention_biases = self.add_weight( shape=(self.num_heads, len(attention_offsets)), initializer=tf.keras.initializers.zeros(), trainable=True, name="attention_biases", ) self.attention_bias_idxs = self.add_weight( shape=(num_points, num_points), trainable=False, dtype=tf.int32, name="attention_bias_idxs", ) self.attention_bias_idxs.assign(tf.reshape(tf.cast(idxs, dtype=tf.int32), (num_points, num_points))) super().build(input_shape) def call( self, hidden_states: tf.Tensor, output_attentions: bool = False, training: bool = False ) -> Tuple[tf.Tensor]: batch_size, sequence_length, *_ = shape_list(hidden_states) qkv = self.qkv(inputs=hidden_states) query_layer, key_layer, value_layer = tf.split( tf.reshape(tensor=qkv, shape=(batch_size, sequence_length, self.num_heads, -1)), num_or_size_splits=[self.key_dim, self.key_dim, self.expanded_key_dim], axis=3, ) query_layer = tf.transpose(query_layer, perm=[0, 2, 1, 3]) key_layer = tf.transpose(key_layer, perm=[0, 2, 1, 3]) value_layer = tf.transpose(value_layer, perm=[0, 2, 1, 3]) attention_probs = tf.matmul(query_layer, tf.transpose(key_layer, perm=[0, 1, 3, 2])) scale = tf.cast(self.scale, dtype=attention_probs.dtype) attention_probs = tf.multiply(attention_probs, scale) attention_biases = tf.gather(params=self.attention_biases, indices=self.attention_bias_idxs, axis=1) attention_probs = attention_probs + attention_biases attention_probs = stable_softmax(logits=attention_probs, axis=-1) context_layer = tf.matmul(attention_probs, value_layer) context_layer = tf.transpose(context_layer, perm=[0, 2, 1, 3]) context_layer = tf.reshape( tensor=context_layer, shape=(batch_size, sequence_length, self.total_expanded_key_dim) ) context_layer = self.projection(context_layer) outputs = (context_layer, attention_probs) if output_attentions else (context_layer,) return outputs class TFEfficientFormerConvStem(tf.keras.layers.Layer): def __init__(self, config: EfficientFormerConfig, out_channels: int, **kwargs): super().__init__(**kwargs) self.padding = tf.keras.layers.ZeroPadding2D(padding=1) self.convolution1 = tf.keras.layers.Conv2D( filters=out_channels // 2, kernel_size=3, strides=2, padding="valid", name="convolution1" ) # Use same default momentum and epsilon as PyTorch equivalent for BatchNormalization self.batchnorm_before = tf.keras.layers.BatchNormalization( axis=-1, epsilon=config.batch_norm_eps, momentum=0.9, name="batchnorm_before" ) self.convolution2 = tf.keras.layers.Conv2D( filters=out_channels, kernel_size=3, strides=2, padding="valid", name="convolution2", ) # Use same default momentum and epsilon as PyTorch equivalent for BatchNormalization self.batchnorm_after = tf.keras.layers.BatchNormalization( axis=-1, epsilon=config.batch_norm_eps, momentum=0.9, name="batchnorm_after" ) self.activation = tf.keras.layers.Activation(activation=tf.keras.activations.relu, name="activation") def call(self, pixel_values: tf.Tensor, training: bool = False) -> tf.Tensor: features = self.batchnorm_before(self.convolution1(self.padding(pixel_values)), training=training) features = self.activation(features) features = self.batchnorm_after(self.convolution2(self.padding(features)), training=training) features = self.activation(features) return features class TFEfficientFormerPooling(tf.keras.layers.Layer): def __init__(self, pool_size: int, **kwargs): super().__init__(**kwargs) self.pool = tf.keras.layers.AveragePooling2D(pool_size=pool_size, strides=1, padding="same") def call(self, hidden_states: tf.Tensor) -> tf.Tensor: output = self.pool(hidden_states) output = output - hidden_states return output class TFEfficientFormerDenseMlp(tf.keras.layers.Layer): def __init__( self, config: EfficientFormerConfig, in_features: int, hidden_features: Optional[int] = None, out_features: Optional[int] = None, **kwargs, ): super().__init__(**kwargs) out_features = out_features or in_features hidden_features = hidden_features or in_features self.linear_in = tf.keras.layers.Dense( units=hidden_features, kernel_initializer=get_initializer(config.initializer_range), name="linear_in" ) self.activation = ACT2FN[config.hidden_act] self.dropout = tf.keras.layers.Dropout(rate=config.hidden_dropout_prob) self.linear_out = tf.keras.layers.Dense( units=out_features, kernel_initializer=get_initializer(config.initializer_range), name="linear_out" ) def call(self, hidden_states: tf.Tensor, training: bool = False) -> tf.Tensor: hidden_states = self.linear_in(inputs=hidden_states) hidden_states = self.activation(hidden_states) hidden_states = self.dropout(inputs=hidden_states, training=training) hidden_states = self.linear_out(inputs=hidden_states) hidden_states = self.dropout(inputs=hidden_states, training=training) return hidden_states class TFEfficientFormerConvMlp(tf.keras.layers.Layer): def __init__( self, config: EfficientFormerConfig, in_features: int, hidden_features: Optional[int] = None, out_features: Optional[int] = None, drop: float = 0.0, **kwargs, ): super().__init__(**kwargs) out_features = out_features or in_features hidden_features = hidden_features or in_features self.convolution1 = tf.keras.layers.Conv2D( filters=hidden_features, kernel_size=1, name="convolution1", padding="valid", ) self.activation = ACT2FN[config.hidden_act] self.convolution2 = tf.keras.layers.Conv2D( filters=out_features, kernel_size=1, name="convolution2", padding="valid", ) self.dropout = tf.keras.layers.Dropout(rate=drop) # Use same default momentum and epsilon as PyTorch equivalent for BatchNormalization self.batchnorm_before = tf.keras.layers.BatchNormalization( axis=-1, epsilon=config.batch_norm_eps, momentum=0.9, name="batchnorm_before" ) # Use same default momentum and epsilon as PyTorch equivalent for BatchNormalization self.batchnorm_after = tf.keras.layers.BatchNormalization( axis=-1, epsilon=config.batch_norm_eps, momentum=0.9, name="batchnorm_after" ) def call(self, hidden_state: tf.Tensor, training: bool = False) -> tf.Tensor: hidden_state = self.convolution1(hidden_state) hidden_state = self.batchnorm_before(hidden_state, training=training) hidden_state = self.activation(hidden_state) hidden_state = self.dropout(hidden_state, training=training) hidden_state = self.convolution2(hidden_state) hidden_state = self.batchnorm_after(hidden_state, training=training) hidden_state = self.dropout(hidden_state, training=training) return hidden_state # Copied from transformers.models.convnext.modeling_tf_convnext.TFConvNextDropPath with ConvNext->EfficientFormer class TFEfficientFormerDropPath(tf.keras.layers.Layer): """Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks). References: (1) github.com:rwightman/pytorch-image-models """ def __init__(self, drop_path, **kwargs): super().__init__(**kwargs) self.drop_path = drop_path def call(self, x, training=None): if training: keep_prob = 1 - self.drop_path shape = (tf.shape(x)[0],) + (1,) * (len(tf.shape(x)) - 1) random_tensor = keep_prob + tf.random.uniform(shape, 0, 1) random_tensor = tf.floor(random_tensor) return (x / keep_prob) * random_tensor return x class TFEfficientFormerFlat(tf.keras.layers.Layer): def __init__(self, **kwargs): super().__init__(**kwargs) def call(self, hidden_states: tf.Tensor) -> Tuple[tf.Tensor]: batch_size, _, _, in_channels = shape_list(hidden_states) hidden_states = tf.reshape(hidden_states, shape=[batch_size, -1, in_channels]) return hidden_states class TFEfficientFormerMeta3D(tf.keras.layers.Layer): def __init__(self, config: EfficientFormerConfig, dim: int, drop_path: float = 0.0, **kwargs): super().__init__(**kwargs) self.token_mixer = TFEfficientFormerSelfAttention( dim=config.dim, key_dim=config.key_dim, num_heads=config.num_attention_heads, attention_ratio=config.attention_ratio, resolution=config.resolution, name="token_mixer", config=config, ) self.dim = dim self.config = config self.layernorm1 = tf.keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="layernorm1") self.layernorm2 = tf.keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="layernorm2") mlp_hidden_dim = int(dim * config.mlp_expansion_ratio) self.mlp = TFEfficientFormerDenseMlp(config, in_features=dim, hidden_features=mlp_hidden_dim, name="mlp") # Using `layers.Activation` instead of `tf.identity` to better control `training' behavior. self.drop_path = ( TFEfficientFormerDropPath(drop_path) if drop_path > 0.0 else tf.keras.layers.Activation("linear", name="drop_path") ) self.config = config def build(self, input_shape: tf.TensorShape): self.layer_scale_1 = None self.layer_scale_2 = None if self.config.use_layer_scale: self.layer_scale_1 = self.add_weight( shape=(self.dim,), initializer=tf.keras.initializers.Constant(value=self.config.layer_scale_init_value), trainable=True, name="layer_scale_1", ) self.layer_scale_2 = self.add_weight( shape=(self.dim,), initializer=tf.keras.initializers.Constant(value=self.config.layer_scale_init_value), trainable=True, name="layer_scale_2", ) super().build(input_shape) def call( self, hidden_states: tf.Tensor, output_attentions: bool = False, training: bool = False ) -> Tuple[tf.Tensor]: self_attention_outputs = self.token_mixer( hidden_states=self.layernorm1(hidden_states, training=training), output_attentions=output_attentions, training=training, ) attention_output = self_attention_outputs[0] outputs = self_attention_outputs[1:] # add self attentions if we output attention weights if self.config.use_layer_scale: layer_output = hidden_states + self.drop_path( tf.expand_dims(tf.expand_dims(self.layer_scale_1, 0), 0) * attention_output, training=training, ) layer_output = layer_output + self.drop_path( tf.expand_dims(tf.expand_dims(self.layer_scale_2, 0), 0) * self.mlp(hidden_states=self.layernorm2(inputs=layer_output, training=training), training=training), training=training, ) else: layer_output = hidden_states + self.drop_path(attention_output, training=training) layer_output = layer_output + self.drop_path( self.mlp(hidden_states=self.layernorm2(inputs=layer_output, training=training), training=training), training=training, ) outputs = (layer_output,) + outputs return outputs class TFEfficientFormerMeta3DLayers(tf.keras.layers.Layer): def __init__(self, config: EfficientFormerConfig, **kwargs): super().__init__(**kwargs) drop_paths = [ config.drop_path_rate * (block_idx + sum(config.depths[:-1])) for block_idx in range(config.num_meta3d_blocks) ] self.blocks = [ TFEfficientFormerMeta3D(config, config.hidden_sizes[-1], drop_path=drop_path, name=f"blocks.{i}") for i, drop_path in enumerate(drop_paths) ] def call( self, hidden_states: tf.Tensor, output_attentions: bool = False, training: bool = False ) -> Tuple[tf.Tensor]: all_attention_outputs = () if output_attentions else None for i, layer_module in enumerate(self.blocks): if isinstance(hidden_states, tuple): hidden_states = hidden_states[0] hidden_states = layer_module( hidden_states=hidden_states, output_attentions=output_attentions, training=training ) if output_attentions: all_attention_outputs = all_attention_outputs + (hidden_states[1],) if output_attentions: outputs = (hidden_states[0],) + all_attention_outputs return outputs return hidden_states class TFEfficientFormerMeta4D(tf.keras.layers.Layer): def __init__(self, config: EfficientFormerConfig, dim: int, drop_path: float = 0.0, **kwargs): super().__init__(**kwargs) pool_size = config.pool_size if config.pool_size is not None else 3 self.token_mixer = TFEfficientFormerPooling(pool_size=pool_size, name="token_mixer") self.dim = dim mlp_hidden_dim = int(dim * config.mlp_expansion_ratio) self.mlp = TFEfficientFormerConvMlp( config=config, in_features=dim, hidden_features=mlp_hidden_dim, drop=config.hidden_dropout_prob, name="mlp" ) self.drop_path = ( TFEfficientFormerDropPath(drop_path, name="drop_path") if drop_path > 0.0 else tf.keras.layers.Activation("linear", name="drop_path") ) self.config = config def build(self, input_shape: tf.TensorShape): self.layer_scale_1 = None self.layer_scale_2 = None if self.config.use_layer_scale: self.layer_scale_1 = self.add_weight( shape=(self.dim), initializer=tf.keras.initializers.Constant(value=self.config.layer_scale_init_value), trainable=True, name="layer_scale_1", ) self.layer_scale_2 = self.add_weight( shape=(self.dim), initializer=tf.keras.initializers.Constant(value=self.config.layer_scale_init_value), trainable=True, name="layer_scale_2", ) super().build(input_shape) def call(self, hidden_states: tf.Tensor, training: bool = False) -> Tuple[tf.Tensor]: outputs = self.token_mixer(hidden_states) if self.config.use_layer_scale: layer_output = hidden_states + self.drop_path( tf.expand_dims(tf.expand_dims(self.layer_scale_1, 0), 0) * outputs, training=training, ) layer_output = layer_output + self.drop_path( tf.expand_dims(tf.expand_dims(self.layer_scale_2, 0), 0) * self.mlp(hidden_state=layer_output, training=training), training=training, ) else: layer_output = hidden_states + self.drop_path(outputs, training=training) layer_output = layer_output + self.drop_path( self.mlp(hidden_state=layer_output, training=training), training=training ) return layer_output class TFEfficientFormerMeta4DLayers(tf.keras.layers.Layer): def __init__(self, config: EfficientFormerConfig, stage_idx: int, **kwargs): super().__init__(**kwargs) num_layers = ( config.depths[stage_idx] if stage_idx != -1 else config.depths[stage_idx] - config.num_meta3d_blocks ) drop_paths = [ config.drop_path_rate * (block_idx + sum(config.depths[:stage_idx])) for block_idx in range(num_layers) ] self.blocks = [ TFEfficientFormerMeta4D( config=config, dim=config.hidden_sizes[stage_idx], drop_path=drop_paths[i], name=f"blocks.{i}" ) for i in range(len(drop_paths)) ] def call(self, hidden_states: tf.Tensor, training: bool = False) -> Tuple[tf.Tensor]: for layer_module in self.blocks: hidden_states = layer_module(hidden_states=hidden_states, training=training) return hidden_states class TFEfficientFormerIntermediateStage(tf.keras.layers.Layer): def __init__(self, config: EfficientFormerConfig, index: int, **kwargs): super().__init__(**kwargs) self.meta4D_layers = TFEfficientFormerMeta4DLayers(config=config, stage_idx=index, name="meta4D_layers") def call(self, hidden_states: tf.Tensor, training: bool = False) -> Tuple[tf.Tensor]: hidden_states = self.meta4D_layers(hidden_states=hidden_states, training=training) return hidden_states class TFEfficientFormerLastStage(tf.keras.layers.Layer): def __init__(self, config: EfficientFormerConfig, **kwargs): super().__init__(**kwargs) self.meta4D_layers = TFEfficientFormerMeta4DLayers(config=config, stage_idx=-1, name="meta4D_layers") self.flat = TFEfficientFormerFlat(name="flat") self.meta3D_layers = TFEfficientFormerMeta3DLayers(config, name="meta3D_layers") def call( self, hidden_states: tf.Tensor, output_attentions: bool = False, training: bool = False ) -> Tuple[tf.Tensor]: hidden_states = self.meta4D_layers(hidden_states=hidden_states, training=training) hidden_states = self.flat(hidden_states=hidden_states) hidden_states = self.meta3D_layers( hidden_states=hidden_states, output_attentions=output_attentions, training=training ) return hidden_states class TFEfficientFormerEncoder(tf.keras.layers.Layer): def __init__(self, config: EfficientFormerConfig, **kwargs): super().__init__(**kwargs) self.config = config num_intermediate_stages = len(config.depths) - 1 downsamples = [ config.downsamples[i] or config.hidden_sizes[i] != config.hidden_sizes[i + 1] for i in range(num_intermediate_stages) ] intermediate_stages = [] layer_count = -1 for i in range(num_intermediate_stages): layer_count += 1 intermediate_stages.append( TFEfficientFormerIntermediateStage(config, i, name=f"intermediate_stages.{layer_count}") ) if downsamples[i]: layer_count += 1 intermediate_stages.append( TFEfficientFormerPatchEmbeddings( config, config.hidden_sizes[i], config.hidden_sizes[i + 1], name=f"intermediate_stages.{layer_count}", ) ) self.intermediate_stages = intermediate_stages self.last_stage = TFEfficientFormerLastStage(config, name="last_stage") def call( self, hidden_states: tf.Tensor, output_hidden_states: bool, output_attentions: bool, return_dict: bool, training: bool = False, ) -> TFBaseModelOutput: all_hidden_states = () if output_hidden_states else None all_self_attentions = () if output_attentions else None if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) for layer_module in self.intermediate_stages: hidden_states = layer_module(hidden_states, training=training) if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) layer_output = self.last_stage(hidden_states, output_attentions=output_attentions, training=training) if output_attentions: all_self_attentions = all_self_attentions + layer_output[1:] if output_hidden_states: all_hidden_states = all_hidden_states + (layer_output[0],) if not return_dict: return tuple(v for v in [layer_output[0], all_hidden_states, all_self_attentions] if v is not None) return TFBaseModelOutput( last_hidden_state=layer_output[0], hidden_states=all_hidden_states, attentions=all_self_attentions, ) @keras_serializable class TFEfficientFormerMainLayer(tf.keras.layers.Layer): config_class = EfficientFormerConfig def __init__(self, config: EfficientFormerConfig, **kwargs) -> None: super().__init__(**kwargs) self.config = config self.patch_embed = TFEfficientFormerConvStem(config, config.hidden_sizes[0], name="patch_embed") self.encoder = TFEfficientFormerEncoder(config, name="encoder") self.layernorm = tf.keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="layernorm") @unpack_inputs def call( self, pixel_values: Optional[tf.Tensor] = None, output_attentions: Optional[tf.Tensor] = None, output_hidden_states: Optional[tf.Tensor] = None, return_dict: Optional[bool] = None, training: bool = False, ) -> Union[TFBaseModelOutput, Tuple[tf.Tensor, ...]]: output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict if pixel_values is None: raise ValueError("You have to specify pixel_values") # When running on CPU, tf.keras.layers.Conv2D and tf.keras.layers.AveragePool2D do not # support channels first NCHW format. A number of blocks contain both. # So change the input format from (batch_size, num_channels, height, width) to # (batch_size, height, width, num_channels) here. # shape = (batch_size, in_height, in_width, in_channels=num_channels) pixel_values = tf.transpose(pixel_values, perm=(0, 2, 3, 1)) embedding_output = self.patch_embed(pixel_values, training=training) encoder_outputs = self.encoder( hidden_states=embedding_output, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) sequence_output = encoder_outputs[0] sequence_output = self.layernorm(sequence_output, training=training) # Change the hidden states from (batch_size, height, width, num_channels) to # (batch_size, num_channels, height, width). # The hidden states are in (batch_size, height, width, num_channels) # shape after all stages except the MB3D blocks. if output_hidden_states: hidden_states = tuple([tf.transpose(h, perm=(0, 3, 1, 2)) for h in encoder_outputs[1][:-1]]) + ( encoder_outputs[1][-1], ) if not return_dict: head_outputs = (sequence_output,) return head_outputs + encoder_outputs[1:] return TFBaseModelOutput( last_hidden_state=sequence_output, hidden_states=hidden_states if output_hidden_states else encoder_outputs.hidden_states, attentions=encoder_outputs.attentions, ) class TFEfficientFormerPreTrainedModel(TFPreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = EfficientFormerConfig base_model_prefix = "efficientformer" main_input_name = "pixel_values" EFFICIENTFORMER_START_DOCSTRING = r""" This model is a TensorFlow [tf.keras.layers.Layer](https://www.tensorflow.org/api_docs/python/tf/keras/layers/Layer). Use it as a regular TensorFlow Module and refer to the TensorFlow documentation for all matter related to general usage and behavior. Parameters: config ([`EfficientFormerConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ EFFICIENTFORMER_INPUTS_DOCSTRING = r""" Args: pixel_values ((`tf.Tensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`EfficientFormerImageProcessor.__call__`] for details. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ @add_start_docstrings( "The bare EfficientFormer Model transformer outputting raw hidden-states without any specific head on top.", EFFICIENTFORMER_START_DOCSTRING, ) class TFEfficientFormerModel(TFEfficientFormerPreTrainedModel): def __init__(self, config: EfficientFormerConfig, **kwargs) -> None: super().__init__(config, **kwargs) self.efficientformer = TFEfficientFormerMainLayer(config, name="efficientformer") @unpack_inputs @add_start_docstrings_to_model_forward(EFFICIENTFORMER_INPUTS_DOCSTRING) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=TFBaseModelOutputWithPooling, config_class=_CONFIG_FOR_DOC, modality="vision", expected_output=_EXPECTED_OUTPUT_SHAPE, ) def call( self, pixel_values: Optional[tf.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, training: bool = False, ) -> Union[Tuple, TFBaseModelOutput]: outputs = self.efficientformer( pixel_values=pixel_values, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) return outputs @add_start_docstrings( """ EfficientFormer Model transformer with an image classification head on top of pooled last hidden state, e.g. for ImageNet. """, EFFICIENTFORMER_START_DOCSTRING, ) class TFEfficientFormerForImageClassification(TFEfficientFormerPreTrainedModel, TFSequenceClassificationLoss): def __init__(self, config: EfficientFormerConfig): super().__init__(config) self.num_labels = config.num_labels self.efficientformer = TFEfficientFormerMainLayer(config, name="efficientformer") # Classifier head self.classifier = ( tf.keras.layers.Dense(config.num_labels, name="classifier") if config.num_labels > 0 else tf.keras.layers.Activation("linear", name="classifier") ) @unpack_inputs @add_start_docstrings_to_model_forward(EFFICIENTFORMER_INPUTS_DOCSTRING) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT, output_type=TFImageClassifierOutput, config_class=_CONFIG_FOR_DOC, expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT, ) def call( self, pixel_values: Optional[tf.Tensor] = None, labels: Optional[tf.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, training: bool = False, ) -> Union[tf.Tensor, TFImageClassifierOutput]: r""" labels (`tf.Tensor` of shape `(batch_size,)`, *optional*): Labels for computing the image classification/regression loss. Indices should be in `[0, ..., config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If `config.num_labels > 1` a classification loss is computed (Cross-Entropy). """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.efficientformer( pixel_values=pixel_values, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) sequence_output = outputs[0] logits = self.classifier(tf.reduce_mean(sequence_output, axis=-2)) loss = None if labels is None else self.hf_compute_loss(labels, logits) if not return_dict: output = (logits,) + outputs[1:] return ((loss,) + output) if loss is not None else output return TFImageClassifierOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions ) @dataclass class TFEfficientFormerForImageClassificationWithTeacherOutput(ModelOutput): """ Args: Output type of [`EfficientFormerForImageClassificationWithTeacher`]. logits (`tf.Tensor` of shape `(batch_size, config.num_labels)`): Prediction scores as the average of the cls_logits and distillation logits. cls_logits (`tf.Tensor` of shape `(batch_size, config.num_labels)`): Prediction scores of the classification head (i.e. the linear layer on top of the final hidden state of the class token). distillation_logits (`tf.Tensor` of shape `(batch_size, config.num_labels)`): Prediction scores of the distillation head (i.e. the linear layer on top of the final hidden state of the distillation token). hidden_states (`tuple(tf.Tensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `tf.Tensor` (one for the output of the embeddings + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the initial embedding outputs. attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `tf.Tensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. """ logits: tf.Tensor = None cls_logits: tf.Tensor = None distillation_logits: tf.Tensor = None hidden_states: Optional[Tuple[tf.Tensor]] = None attentions: Optional[Tuple[tf.Tensor]] = None @add_start_docstrings( """ EfficientFormer Model transformer with image classification heads on top (a linear layer on top of the final hidden state and a linear layer on top of the final hidden state of the distillation token) e.g. for ImageNet. .. warning:: This model supports inference-only. Fine-tuning with distillation (i.e. with a teacher) is not yet supported. """, EFFICIENTFORMER_START_DOCSTRING, ) class TFEfficientFormerForImageClassificationWithTeacher(TFEfficientFormerPreTrainedModel): def __init__(self, config: EfficientFormerConfig) -> None: super().__init__(config) self.num_labels = config.num_labels self.efficientformer = TFEfficientFormerMainLayer(config, name="efficientformer") # Classifier heads self.classifier = ( tf.keras.layers.Dense(config.num_labels, name="classifier") if config.num_labels > 0 else tf.keras.layers.Activation("linear", name="classifier") ) self.distillation_classifier = ( tf.keras.layers.Dense(config.num_labels, name="distillation_classifier") if config.num_labels > 0 else tf.keras.layers.Activation("linear", name="distillation_classifier") ) @unpack_inputs @add_start_docstrings_to_model_forward(EFFICIENTFORMER_INPUTS_DOCSTRING) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT, output_type=TFEfficientFormerForImageClassificationWithTeacherOutput, config_class=_CONFIG_FOR_DOC, expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT, ) def call( self, pixel_values: Optional[tf.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, training: bool = False, ) -> Union[tuple, TFEfficientFormerForImageClassificationWithTeacherOutput]: return_dict = return_dict if return_dict is not None else self.config.use_return_dict if training: raise Exception( "This model supports inference-only. Fine-tuning with distillation (i.e. with a teacher) is not yet supported." ) outputs = self.efficientformer( pixel_values=pixel_values, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) sequence_output = outputs[0] cls_logits = self.classifier(tf.reduce_mean(sequence_output, axis=-2)) distillation_logits = self.distillation_classifier(tf.reduce_mean(sequence_output, axis=-2)) logits = (cls_logits + distillation_logits) / 2 if not return_dict: output = (logits, cls_logits, distillation_logits) + outputs[1:] return output return TFEfficientFormerForImageClassificationWithTeacherOutput( logits=logits, cls_logits=cls_logits, distillation_logits=distillation_logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, )
0
hf_public_repos/transformers/src/transformers/models
hf_public_repos/transformers/src/transformers/models/efficientformer/convert_efficientformer_original_pytorch_checkpoint_to_pytorch.py
# coding=utf-8 # Copyright 2022 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Convert EfficientFormer checkpoints from the original repository. URL: https://github.com/snap-research/EfficientFormer """ import argparse import re from pathlib import Path import requests import torch from PIL import Image from torchvision.transforms import CenterCrop, Compose, Normalize, Resize, ToTensor from transformers import ( EfficientFormerConfig, EfficientFormerForImageClassificationWithTeacher, EfficientFormerImageProcessor, ) from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, PILImageResampling def rename_key(old_name, num_meta4D_last_stage): new_name = old_name if "patch_embed" in old_name: _, layer, param = old_name.split(".") if layer == "0": new_name = old_name.replace("0", "convolution1") elif layer == "1": new_name = old_name.replace("1", "batchnorm_before") elif layer == "3": new_name = old_name.replace("3", "convolution2") else: new_name = old_name.replace("4", "batchnorm_after") if "network" in old_name and re.search(r"\d\.\d", old_name): two_digit_num = r"\b\d{2}\b" if bool(re.search(two_digit_num, old_name)): match = re.search(r"\d\.\d\d.", old_name).group() else: match = re.search(r"\d\.\d.", old_name).group() if int(match[0]) < 6: trimmed_name = old_name.replace(match, "") trimmed_name = trimmed_name.replace("network", match[0] + ".meta4D_layers.blocks." + match[2:-1]) new_name = "intermediate_stages." + trimmed_name else: trimmed_name = old_name.replace(match, "") if int(match[2]) < num_meta4D_last_stage: trimmed_name = trimmed_name.replace("network", "meta4D_layers.blocks." + match[2]) else: layer_index = str(int(match[2]) - num_meta4D_last_stage) trimmed_name = trimmed_name.replace("network", "meta3D_layers.blocks." + layer_index) if "norm1" in old_name: trimmed_name = trimmed_name.replace("norm1", "layernorm1") elif "norm2" in old_name: trimmed_name = trimmed_name.replace("norm2", "layernorm2") elif "fc1" in old_name: trimmed_name = trimmed_name.replace("fc1", "linear_in") elif "fc2" in old_name: trimmed_name = trimmed_name.replace("fc2", "linear_out") new_name = "last_stage." + trimmed_name elif "network" in old_name and re.search(r".\d.", old_name): new_name = old_name.replace("network", "intermediate_stages") if "fc" in new_name: new_name = new_name.replace("fc", "convolution") elif ("norm1" in new_name) and ("layernorm1" not in new_name): new_name = new_name.replace("norm1", "batchnorm_before") elif ("norm2" in new_name) and ("layernorm2" not in new_name): new_name = new_name.replace("norm2", "batchnorm_after") if "proj" in new_name: new_name = new_name.replace("proj", "projection") if "dist_head" in new_name: new_name = new_name.replace("dist_head", "distillation_classifier") elif "head" in new_name: new_name = new_name.replace("head", "classifier") elif "patch_embed" in new_name: new_name = "efficientformer." + new_name elif new_name == "norm.weight" or new_name == "norm.bias": new_name = new_name.replace("norm", "layernorm") new_name = "efficientformer." + new_name else: new_name = "efficientformer.encoder." + new_name return new_name def convert_torch_checkpoint(checkpoint, num_meta4D_last_stage): for key in checkpoint.copy().keys(): val = checkpoint.pop(key) checkpoint[rename_key(key, num_meta4D_last_stage)] = val return checkpoint # We will verify our results on a COCO image def prepare_img(): url = "http://images.cocodataset.org/val2017/000000039769.jpg" image = Image.open(requests.get(url, stream=True).raw) return image def convert_efficientformer_checkpoint( checkpoint_path: Path, efficientformer_config_file: Path, pytorch_dump_path: Path, push_to_hub: bool ): orig_state_dict = torch.load(checkpoint_path, map_location="cpu")["model"] config = EfficientFormerConfig.from_json_file(efficientformer_config_file) model = EfficientFormerForImageClassificationWithTeacher(config) model_name = "_".join(checkpoint_path.split("/")[-1].split(".")[0].split("_")[:-1]) num_meta4D_last_stage = config.depths[-1] - config.num_meta3d_blocks + 1 new_state_dict = convert_torch_checkpoint(orig_state_dict, num_meta4D_last_stage) model.load_state_dict(new_state_dict) model.eval() pillow_resamplings = { "bilinear": PILImageResampling.BILINEAR, "bicubic": PILImageResampling.BICUBIC, "nearest": PILImageResampling.NEAREST, } # prepare image image = prepare_img() image_size = 256 crop_size = 224 processor = EfficientFormerImageProcessor( size={"shortest_edge": image_size}, crop_size={"height": crop_size, "width": crop_size}, resample=pillow_resamplings["bicubic"], ) pixel_values = processor(images=image, return_tensors="pt").pixel_values # original processing pipeline image_transforms = Compose( [ Resize(image_size, interpolation=pillow_resamplings["bicubic"]), CenterCrop(crop_size), ToTensor(), Normalize(IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD), ] ) original_pixel_values = image_transforms(image).unsqueeze(0) assert torch.allclose(original_pixel_values, pixel_values) outputs = model(pixel_values) logits = outputs.logits expected_shape = (1, 1000) if "l1" in model_name: expected_logits = torch.Tensor( [-0.1312, 0.4353, -1.0499, -0.5124, 0.4183, -0.6793, -1.3777, -0.0893, -0.7358, -2.4328] ) assert torch.allclose(logits[0, :10], expected_logits, atol=1e-3) assert logits.shape == expected_shape elif "l3" in model_name: expected_logits = torch.Tensor( [-1.3150, -1.5456, -1.2556, -0.8496, -0.7127, -0.7897, -0.9728, -0.3052, 0.3751, -0.3127] ) assert torch.allclose(logits[0, :10], expected_logits, atol=1e-3) assert logits.shape == expected_shape elif "l7" in model_name: expected_logits = torch.Tensor( [-1.0283, -1.4131, -0.5644, -1.3115, -0.5785, -1.2049, -0.7528, 0.1992, -0.3822, -0.0878] ) assert logits.shape == expected_shape else: raise ValueError( f"Unknown model checkpoint: {checkpoint_path}. Supported version of efficientformer are l1, l3 and l7" ) # Save Checkpoints Path(pytorch_dump_path).mkdir(exist_ok=True) model.save_pretrained(pytorch_dump_path) print(f"Checkpoint successfuly converted. Model saved at {pytorch_dump_path}") processor.save_pretrained(pytorch_dump_path) print(f"Processor successfuly saved at {pytorch_dump_path}") if push_to_hub: print("Pushing model to the hub...") model.push_to_hub( repo_id=f"Bearnardd/{pytorch_dump_path}", commit_message="Add model", use_temp_dir=True, ) processor.push_to_hub( repo_id=f"Bearnardd/{pytorch_dump_path}", commit_message="Add image processor", use_temp_dir=True, ) if __name__ == "__main__": parser = argparse.ArgumentParser() # Required parameters parser.add_argument( "--pytorch_model_path", default=None, type=str, required=True, help="Path to EfficientFormer pytorch checkpoint.", ) parser.add_argument( "--config_file", default=None, type=str, required=True, help="The json file for EfficientFormer model config.", ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) parser.add_argument("--push_to_hub", action="store_true", help="Push model and image processor to the hub") parser.add_argument( "--no-push_to_hub", dest="push_to_hub", action="store_false", help="Do not push model and image processor to the hub", ) parser.set_defaults(push_to_hub=True) args = parser.parse_args() convert_efficientformer_checkpoint( checkpoint_path=args.pytorch_model_path, efficientformer_config_file=args.config_file, pytorch_dump_path=args.pytorch_dump_path, push_to_hub=args.push_to_hub, )
0
hf_public_repos/transformers/src/transformers/models
hf_public_repos/transformers/src/transformers/models/efficientformer/image_processing_efficientformer.py
# coding=utf-8 # Copyright 2022 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Image processor class for EfficientFormer.""" from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( get_resize_output_image_size, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, ChannelDimension, ImageInput, PILImageResampling, is_batched, to_numpy_array, valid_images, ) from ...utils import TensorType, logging logger = logging.get_logger(__name__) class EfficientFormerImageProcessor(BaseImageProcessor): r""" Constructs a EfficientFormer image processor. Args: do_resize (`bool`, *optional*, defaults to `True`): Whether to resize the image's (height, width) dimensions to the specified `(size["height"], size["width"])`. Can be overridden by the `do_resize` parameter in the `preprocess` method. size (`dict`, *optional*, defaults to `{"height": 224, "width": 224}`): Size of the output image after resizing. Can be overridden by the `size` parameter in the `preprocess` method. resample (`PILImageResampling`, *optional*, defaults to `PILImageResampling.BILINEAR`): Resampling filter to use if resizing the image. Can be overridden by the `resample` parameter in the `preprocess` method. do_center_crop (`bool`, *optional*, defaults to `True`): Whether to center crop the image to the specified `crop_size`. Can be overridden by `do_center_crop` in the `preprocess` method. crop_size (`Dict[str, int]` *optional*, defaults to 224): Size of the output image after applying `center_crop`. Can be overridden by `crop_size` in the `preprocess` method. do_rescale (`bool`, *optional*, defaults to `True`): Whether to rescale the image by the specified scale `rescale_factor`. Can be overridden by the `do_rescale` parameter in the `preprocess` method. rescale_factor (`int` or `float`, *optional*, defaults to `1/255`): Scale factor to use if rescaling the image. Can be overridden by the `rescale_factor` parameter in the `preprocess` method. do_normalize: Whether to normalize the image. Can be overridden by the `do_normalize` parameter in the `preprocess` method. image_mean (`float` or `List[float]`, *optional*, defaults to `IMAGENET_STANDARD_MEAN`): Mean to use if normalizing the image. This is a float or list of floats the length of the number of channels in the image. Can be overridden by the `image_mean` parameter in the `preprocess` method. image_std (`float` or `List[float]`, *optional*, defaults to `IMAGENET_STANDARD_STD`): Standard deviation to use if normalizing the image. This is a float or list of floats the length of the number of channels in the image. Can be overridden by the `image_std` parameter in the `preprocess` method. """ model_input_names = ["pixel_values"] def __init__( self, do_resize: bool = True, size: Optional[Dict[str, int]] = None, resample: PILImageResampling = PILImageResampling.BICUBIC, do_center_crop: bool = True, do_rescale: bool = True, rescale_factor: Union[int, float] = 1 / 255, crop_size: Dict[str, int] = None, do_normalize: bool = True, image_mean: Optional[Union[float, List[float]]] = None, image_std: Optional[Union[float, List[float]]] = None, **kwargs, ) -> None: super().__init__(**kwargs) size = size if size is not None else {"height": 224, "width": 224} size = get_size_dict(size) crop_size = crop_size if crop_size is not None else {"height": 224, "width": 224} crop_size = get_size_dict(crop_size, default_to_square=True, param_name="crop_size") self.do_resize = do_resize self.do_rescale = do_rescale self.do_normalize = do_normalize self.do_center_crop = do_center_crop self.crop_size = crop_size self.size = size self.resample = resample self.rescale_factor = rescale_factor self.image_mean = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN self.image_std = image_std if image_std is not None else IMAGENET_DEFAULT_STD def resize( self, image: np.ndarray, size: Dict[str, int], resample: PILImageResampling = PILImageResampling.BILINEAR, data_format: Optional[Union[str, ChannelDimension]] = None, **kwargs, ) -> np.ndarray: """ Resize an image to `(size["height"], size["width"])`. Args: image (`np.ndarray`): Image to resize. size (`Dict[str, int]`): Dictionary in the format `{"height": int, "width": int}` specifying the size of the output image. resample: `PILImageResampling` filter to use when resizing the image e.g. `PILImageResampling.BILINEAR`. data_format (`ChannelDimension` or `str`, *optional*): The channel dimension format for the output image. If unset, the channel dimension format of the input image is used. Can be one of: - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format. - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format. Returns: `np.ndarray`: The resized image. """ size = get_size_dict(size) if "shortest_edge" in size: size = get_resize_output_image_size(image, size=size["shortest_edge"], default_to_square=False) # size = get_resize_output_image_size(image, size["shortest_edge"], size["longest_edge"]) elif "height" in size and "width" in size: size = (size["height"], size["width"]) else: raise ValueError(f"Size must contain 'height' and 'width' keys or 'shortest_edge' key. Got {size.keys()}") return resize(image, size=size, resample=resample, data_format=data_format, **kwargs) def preprocess( self, images: ImageInput, do_resize: Optional[bool] = None, size: Dict[str, int] = None, resample: PILImageResampling = None, do_center_crop: bool = None, crop_size: int = None, do_rescale: Optional[bool] = None, rescale_factor: Optional[float] = None, do_normalize: Optional[bool] = None, image_mean: Optional[Union[float, List[float]]] = None, image_std: Optional[Union[float, List[float]]] = None, return_tensors: Optional[Union[str, TensorType]] = None, data_format: Union[str, ChannelDimension] = ChannelDimension.FIRST, **kwargs, ) -> BatchFeature: """ Preprocess an image or batch of images. Args: images (`ImageInput`): Image to preprocess. do_resize (`bool`, *optional*, defaults to `self.do_resize`): Whether to resize the image. size (`Dict[str, int]`, *optional*, defaults to `self.size`): Dictionary in the format `{"height": h, "width": w}` specifying the size of the output image after resizing. resample (`PILImageResampling` filter, *optional*, defaults to `self.resample`): `PILImageResampling` filter to use if resizing the image e.g. `PILImageResampling.BILINEAR`. Only has an effect if `do_resize` is set to `True`. do_center_crop (`bool`, *optional*, defaults to `self.do_center_crop`): Whether to center crop the image. do_rescale (`bool`, *optional*, defaults to `self.do_rescale`): Whether to rescale the image values between [0 - 1]. rescale_factor (`float`, *optional*, defaults to `self.rescale_factor`): Rescale factor to rescale the image by if `do_rescale` is set to `True`. crop_size (`Dict[str, int]`, *optional*, defaults to `self.crop_size`): Size of the center crop. Only has an effect if `do_center_crop` is set to `True`. do_normalize (`bool`, *optional*, defaults to `self.do_normalize`): Whether to normalize the image. image_mean (`float` or `List[float]`, *optional*, defaults to `self.image_mean`): Image mean to use if `do_normalize` is set to `True`. image_std (`float` or `List[float]`, *optional*, defaults to `self.image_std`): Image standard deviation to use if `do_normalize` is set to `True`. return_tensors (`str` or `TensorType`, *optional*): The type of tensors to return. Can be one of: - Unset: Return a list of `np.ndarray`. - `TensorType.TENSORFLOW` or `'tf'`: Return a batch of type `tf.Tensor`. - `TensorType.PYTORCH` or `'pt'`: Return a batch of type `torch.Tensor`. - `TensorType.NUMPY` or `'np'`: Return a batch of type `np.ndarray`. - `TensorType.JAX` or `'jax'`: Return a batch of type `jax.numpy.ndarray`. data_format (`ChannelDimension` or `str`, *optional*, defaults to `ChannelDimension.FIRST`): The channel dimension format for the output image. Can be one of: - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format. - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format. - Unset: Use the channel dimension format of the input image. """ do_resize = do_resize if do_resize is not None else self.do_resize do_rescale = do_rescale if do_rescale is not None else self.do_rescale do_normalize = do_normalize if do_normalize is not None else self.do_normalize do_center_crop = do_center_crop if do_center_crop is not None else self.do_center_crop crop_size = crop_size if crop_size is not None else self.crop_size crop_size = get_size_dict(crop_size, param_name="crop_size", default_to_square=True) resample = resample if resample is not None else self.resample rescale_factor = rescale_factor if rescale_factor is not None else self.rescale_factor image_mean = image_mean if image_mean is not None else self.image_mean image_std = image_std if image_std is not None else self.image_std size = size if size is not None else self.size size_dict = get_size_dict(size) if not is_batched(images): images = [images] if not valid_images(images): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None: raise ValueError("Size must be specified if do_resize is True.") if do_center_crop and crop_size is None: raise ValueError("Crop size must be specified if do_center_crop is True.") if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True.") # All transformations expect numpy arrays. images = [to_numpy_array(image) for image in images] if do_resize: images = [self.resize(image=image, size=size_dict, resample=resample) for image in images] if do_center_crop: images = [self.center_crop(image=image, size=crop_size) for image in images] if do_rescale: images = [self.rescale(image=image, scale=rescale_factor) for image in images] if do_normalize: images = [self.normalize(image=image, mean=image_mean, std=image_std) for image in images] images = [to_channel_dimension_format(image, data_format) for image in images] data = {"pixel_values": images} return BatchFeature(data=data, tensor_type=return_tensors)
0
hf_public_repos/transformers/src/transformers/models
hf_public_repos/transformers/src/transformers/models/efficientformer/modeling_efficientformer.py
# coding=utf-8 # Copyright 2022 Snapchat Research and The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ PyTorch EfficientFormer model.""" import itertools from dataclasses import dataclass from typing import Optional, Tuple, Union import torch import torch.utils.checkpoint from torch import nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACT2FN from ...modeling_outputs import BaseModelOutput, BaseModelOutputWithPooling, ImageClassifierOutput from ...modeling_utils import PreTrainedModel from ...utils import ( ModelOutput, add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging, ) from .configuration_efficientformer import EfficientFormerConfig logger = logging.get_logger(__name__) # General docstring _CONFIG_FOR_DOC = "EfficientFormerConfig" # Base docstring _CHECKPOINT_FOR_DOC = "snap-research/efficientformer-l1-300" _EXPECTED_OUTPUT_SHAPE = [1, 49, 448] # Image classification docstring _IMAGE_CLASS_CHECKPOINT = "snap-research/efficientformer-l1-300" _IMAGE_CLASS_EXPECTED_OUTPUT = "Egyptian cat" EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST = [ "snap-research/efficientformer-l1-300", # See all EfficientFormer models at https://huggingface.co/models?filter=efficientformer ] class EfficientFormerPatchEmbeddings(nn.Module): """ This class performs downsampling between two stages. For the input tensor with the shape [batch_size, num_channels, height, width] it produces output tensor with the shape [batch_size, num_channels, height/stride, width/stride] """ def __init__(self, config: EfficientFormerConfig, num_channels: int, embed_dim: int, apply_norm: bool = True): super().__init__() self.num_channels = num_channels self.projection = nn.Conv2d( num_channels, embed_dim, kernel_size=config.downsample_patch_size, stride=config.downsample_stride, padding=config.downsample_pad, ) self.norm = nn.BatchNorm2d(embed_dim, eps=config.batch_norm_eps) if apply_norm else nn.Identity() def forward(self, pixel_values: torch.Tensor) -> torch.Tensor: batch_size, num_channels, height, width = pixel_values.shape if num_channels != self.num_channels: raise ValueError( "Make sure that the channel dimension of the pixel values match with the one set in the configuration." ) embeddings = self.projection(pixel_values) embeddings = self.norm(embeddings) return embeddings class EfficientFormerSelfAttention(nn.Module): def __init__(self, dim: int, key_dim: int, num_heads: int, attention_ratio: int, resolution: int): super().__init__() self.num_heads = num_heads self.key_dim = key_dim self.attention_ratio = attention_ratio self.scale = key_dim**-0.5 self.total_key_dim = key_dim * num_heads self.expanded_key_dim = int(attention_ratio * key_dim) self.total_expanded_key_dim = int(self.expanded_key_dim * num_heads) hidden_size = self.total_expanded_key_dim + self.total_key_dim * 2 self.qkv = nn.Linear(dim, hidden_size) self.projection = nn.Linear(self.total_expanded_key_dim, dim) points = list(itertools.product(range(resolution), range(resolution))) num_points = len(points) attention_offsets = {} idxs = [] for point_1 in points: for point_2 in points: offset = (abs(point_1[0] - point_2[0]), abs(point_1[1] - point_2[1])) if offset not in attention_offsets: attention_offsets[offset] = len(attention_offsets) idxs.append(attention_offsets[offset]) self.attention_biases = torch.nn.Parameter(torch.zeros(num_heads, len(attention_offsets))) self.register_buffer("attention_bias_idxs", torch.LongTensor(idxs).view(num_points, num_points)) @torch.no_grad() def train(self, mode=True): super().train(mode) if mode and hasattr(self, "ab"): del self.ab else: self.ab = self.attention_biases[:, self.attention_bias_idxs] def forward(self, hidden_states: torch.Tensor, output_attentions: bool = False) -> Tuple[torch.Tensor]: batch_size, sequence_length, num_channels = hidden_states.shape qkv = self.qkv(hidden_states) query_layer, key_layer, value_layer = qkv.reshape(batch_size, sequence_length, self.num_heads, -1).split( [self.key_dim, self.key_dim, self.expanded_key_dim], dim=3 ) query_layer = query_layer.permute(0, 2, 1, 3) key_layer = key_layer.permute(0, 2, 1, 3) value_layer = value_layer.permute(0, 2, 1, 3) # set `model.to(torch_device)` won't change `self.ab.device`, if there is no follow-up `train` or `eval` call. # Let's do it manually here, so users won't have to do this everytime. if not self.training: self.ab = self.ab.to(self.attention_biases.device) attention_probs = (torch.matmul(query_layer, key_layer.transpose(-2, -1))) * self.scale + ( self.attention_biases[:, self.attention_bias_idxs] if self.training else self.ab ) attention_probs = attention_probs.softmax(dim=-1) context_layer = torch.matmul(attention_probs, value_layer).transpose(1, 2) context_layer = context_layer.reshape(batch_size, sequence_length, self.total_expanded_key_dim) context_layer = self.projection(context_layer) outputs = (context_layer, attention_probs) if output_attentions else (context_layer,) return outputs class EfficientFormerConvStem(nn.Module): def __init__(self, config: EfficientFormerConfig, out_channels: int): super().__init__() self.convolution1 = nn.Conv2d(config.num_channels, out_channels // 2, kernel_size=3, stride=2, padding=1) self.batchnorm_before = nn.BatchNorm2d(out_channels // 2, eps=config.batch_norm_eps) self.convolution2 = nn.Conv2d(out_channels // 2, out_channels, kernel_size=3, stride=2, padding=1) self.batchnorm_after = nn.BatchNorm2d(out_channels, eps=config.batch_norm_eps) self.activation = nn.ReLU() def forward(self, pixel_values: torch.Tensor) -> torch.Tensor: features = self.batchnorm_before(self.convolution1(pixel_values)) features = self.activation(features) features = self.batchnorm_after(self.convolution2(features)) features = self.activation(features) return features class EfficientFormerPooling(nn.Module): def __init__(self, pool_size: int): super().__init__() self.pool = nn.AvgPool2d(pool_size, stride=1, padding=pool_size // 2, count_include_pad=False) def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: output = self.pool(hidden_states) - hidden_states return output class EfficientFormerDenseMlp(nn.Module): def __init__( self, config: EfficientFormerConfig, in_features: int, hidden_features: Optional[int] = None, out_features: Optional[int] = None, ): super().__init__() out_features = out_features or in_features hidden_features = hidden_features or in_features self.linear_in = nn.Linear(in_features, hidden_features) self.activation = ACT2FN[config.hidden_act] self.dropout = nn.Dropout(config.hidden_dropout_prob) self.linear_out = nn.Linear(hidden_features, out_features) def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: hidden_states = self.linear_in(hidden_states) hidden_states = self.activation(hidden_states) hidden_states = self.dropout(hidden_states) hidden_states = self.linear_out(hidden_states) hidden_states = self.dropout(hidden_states) return hidden_states class EfficientFormerConvMlp(nn.Module): def __init__( self, config: EfficientFormerConfig, in_features: int, hidden_features: Optional[int] = None, out_features: Optional[int] = None, drop: float = 0.0, ): super().__init__() out_features = out_features or in_features hidden_features = hidden_features or in_features self.convolution1 = nn.Conv2d(in_features, hidden_features, 1) self.activation = ACT2FN[config.hidden_act] self.convolution2 = nn.Conv2d(hidden_features, out_features, 1) self.dropout = nn.Dropout(drop) self.batchnorm_before = nn.BatchNorm2d(hidden_features, eps=config.batch_norm_eps) self.batchnorm_after = nn.BatchNorm2d(out_features, eps=config.batch_norm_eps) def forward(self, hidden_state: torch.Tensor) -> torch.Tensor: hidden_state = self.convolution1(hidden_state) hidden_state = self.batchnorm_before(hidden_state) hidden_state = self.activation(hidden_state) hidden_state = self.dropout(hidden_state) hidden_state = self.convolution2(hidden_state) hidden_state = self.batchnorm_after(hidden_state) hidden_state = self.dropout(hidden_state) return hidden_state # Copied from transformers.models.convnext.modeling_convnext.drop_path def drop_path(input, drop_prob: float = 0.0, training: bool = False): """ Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks). Comment by Ross Wightman: This is the same as the DropConnect impl I created for EfficientNet, etc networks, however, the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper... See discussion: https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ... I've opted for changing the layer and argument names to 'drop path' rather than mix DropConnect as a layer name and use 'survival rate' as the argument. """ if drop_prob == 0.0 or not training: return input keep_prob = 1 - drop_prob shape = (input.shape[0],) + (1,) * (input.ndim - 1) # work with diff dim tensors, not just 2D ConvNets random_tensor = keep_prob + torch.rand(shape, dtype=input.dtype, device=input.device) random_tensor.floor_() # binarize output = input.div(keep_prob) * random_tensor return output # Copied from transformers.models.beit.modeling_beit.BeitDropPath with Beit->EfficientFormer class EfficientFormerDropPath(nn.Module): """Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).""" def __init__(self, drop_prob: Optional[float] = None) -> None: super().__init__() self.drop_prob = drop_prob def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: return drop_path(hidden_states, self.drop_prob, self.training) def extra_repr(self) -> str: return "p={}".format(self.drop_prob) class EfficientFormerFlat(nn.Module): def __init__(self): super().__init__() def forward(self, hidden_states: torch.Tensor) -> Tuple[torch.Tensor]: hidden_states = hidden_states.flatten(2).transpose(1, 2) return hidden_states class EfficientFormerMeta3D(nn.Module): def __init__(self, config: EfficientFormerConfig, dim: int, drop_path: float = 0.0): super().__init__() self.token_mixer = EfficientFormerSelfAttention( dim=config.dim, key_dim=config.key_dim, num_heads=config.num_attention_heads, attention_ratio=config.attention_ratio, resolution=config.resolution, ) self.layernorm1 = nn.LayerNorm(dim, eps=config.layer_norm_eps) self.layernorm2 = nn.LayerNorm(dim, eps=config.layer_norm_eps) mlp_hidden_dim = int(dim * config.mlp_expansion_ratio) self.mlp = EfficientFormerDenseMlp(config, in_features=dim, hidden_features=mlp_hidden_dim) self.drop_path = EfficientFormerDropPath(drop_path) if drop_path > 0.0 else nn.Identity() self.use_layer_scale = config.use_layer_scale if config.use_layer_scale: self.layer_scale_1 = nn.Parameter(config.layer_scale_init_value * torch.ones((dim)), requires_grad=True) self.layer_scale_2 = nn.Parameter(config.layer_scale_init_value * torch.ones((dim)), requires_grad=True) def forward(self, hidden_states: torch.Tensor, output_attentions: bool = False) -> Tuple[torch.Tensor]: self_attention_outputs = self.token_mixer(self.layernorm1(hidden_states), output_attentions) attention_output = self_attention_outputs[0] outputs = self_attention_outputs[1:] # add self attentions if we output attention weights if self.use_layer_scale: layer_output = hidden_states + self.drop_path( self.layer_scale_1.unsqueeze(0).unsqueeze(0) * attention_output ) layer_output = layer_output + self.drop_path( self.layer_scale_2.unsqueeze(0).unsqueeze(0) * self.mlp(self.layernorm2(layer_output)) ) else: layer_output = hidden_states + self.drop_path(attention_output) layer_output = layer_output + self.drop_path(self.mlp(self.layernorm2(layer_output))) outputs = (layer_output,) + outputs return outputs class EfficientFormerMeta3DLayers(nn.Module): def __init__(self, config: EfficientFormerConfig): super().__init__() drop_paths = [ config.drop_path_rate * (block_idx + sum(config.depths[:-1])) for block_idx in range(config.num_meta3d_blocks) ] self.blocks = nn.ModuleList( [EfficientFormerMeta3D(config, config.hidden_sizes[-1], drop_path=drop_path) for drop_path in drop_paths] ) def forward(self, hidden_states: torch.Tensor, output_attentions: bool = False) -> Tuple[torch.Tensor]: all_attention_outputs = () if output_attentions else None for layer_module in self.blocks: if isinstance(hidden_states, tuple): hidden_states = hidden_states[0] hidden_states = layer_module(hidden_states, output_attentions) if output_attentions: all_attention_outputs = all_attention_outputs + (hidden_states[1],) if output_attentions: outputs = (hidden_states[0],) + all_attention_outputs return outputs return hidden_states class EfficientFormerMeta4D(nn.Module): def __init__(self, config: EfficientFormerConfig, dim: int, drop_path: float = 0.0): super().__init__() pool_size = config.pool_size if config.pool_size is not None else 3 self.token_mixer = EfficientFormerPooling(pool_size=pool_size) mlp_hidden_dim = int(dim * config.mlp_expansion_ratio) self.mlp = EfficientFormerConvMlp( config, in_features=dim, hidden_features=mlp_hidden_dim, drop=config.hidden_dropout_prob ) self.drop_path = EfficientFormerDropPath(drop_path) if drop_path > 0.0 else nn.Identity() self.use_layer_scale = config.use_layer_scale if config.use_layer_scale: self.layer_scale_1 = nn.Parameter(config.layer_scale_init_value * torch.ones((dim)), requires_grad=True) self.layer_scale_2 = nn.Parameter(config.layer_scale_init_value * torch.ones((dim)), requires_grad=True) def forward(self, hidden_states: torch.Tensor) -> Tuple[torch.Tensor]: outputs = self.token_mixer(hidden_states) if self.use_layer_scale: layer_output = hidden_states + self.drop_path(self.layer_scale_1.unsqueeze(-1).unsqueeze(-1) * outputs) layer_output = layer_output + self.drop_path( self.layer_scale_2.unsqueeze(-1).unsqueeze(-1) * self.mlp(layer_output) ) else: layer_output = hidden_states + self.drop_path(outputs) layer_output = layer_output + self.drop_path(self.mlp(layer_output)) return layer_output class EfficientFormerMeta4DLayers(nn.Module): def __init__(self, config: EfficientFormerConfig, stage_idx: int): super().__init__() num_layers = ( config.depths[stage_idx] if stage_idx != -1 else config.depths[stage_idx] - config.num_meta3d_blocks ) drop_paths = [ config.drop_path_rate * (block_idx + sum(config.depths[:stage_idx])) for block_idx in range(num_layers) ] self.blocks = nn.ModuleList( [ EfficientFormerMeta4D(config, config.hidden_sizes[stage_idx], drop_path=drop_path) for drop_path in drop_paths ] ) def forward(self, hidden_states: torch.Tensor) -> Tuple[torch.Tensor]: for layer_module in self.blocks: hidden_states = layer_module(hidden_states) return hidden_states class EfficientFormerIntermediateStage(nn.Module): def __init__(self, config: EfficientFormerConfig, index: int): super().__init__() self.meta4D_layers = EfficientFormerMeta4DLayers(config, index) def forward(self, hidden_states: torch.Tensor) -> Tuple[torch.Tensor]: hidden_states = self.meta4D_layers(hidden_states) return hidden_states class EfficientFormerLastStage(nn.Module): def __init__(self, config: EfficientFormerConfig): super().__init__() self.meta4D_layers = EfficientFormerMeta4DLayers(config, -1) self.flat = EfficientFormerFlat() self.meta3D_layers = EfficientFormerMeta3DLayers(config) def forward(self, hidden_states: torch.Tensor, output_attentions: bool = False) -> Tuple[torch.Tensor]: hidden_states = self.meta4D_layers(hidden_states) hidden_states = self.flat(hidden_states) hidden_states = self.meta3D_layers(hidden_states, output_attentions) return hidden_states class EfficientFormerEncoder(nn.Module): def __init__(self, config: EfficientFormerConfig): super().__init__() self.config = config num_intermediate_stages = len(config.depths) - 1 downsamples = [ config.downsamples[i] or config.hidden_sizes[i] != config.hidden_sizes[i + 1] for i in range(num_intermediate_stages) ] intermediate_stages = [] for i in range(num_intermediate_stages): intermediate_stages.append(EfficientFormerIntermediateStage(config, i)) if downsamples[i]: intermediate_stages.append( EfficientFormerPatchEmbeddings(config, config.hidden_sizes[i], config.hidden_sizes[i + 1]) ) self.intermediate_stages = nn.ModuleList(intermediate_stages) self.last_stage = EfficientFormerLastStage(config) def forward( self, hidden_states: torch.Tensor, output_hidden_states: bool = False, output_attentions: bool = False, return_dict: bool = True, ) -> BaseModelOutput: all_hidden_states = () if output_hidden_states else None all_self_attentions = () if output_attentions else None if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) for layer_module in self.intermediate_stages: hidden_states = layer_module(hidden_states) if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) layer_output = self.last_stage(hidden_states, output_attentions=output_attentions) if output_attentions: all_self_attentions = all_self_attentions + layer_output[1:] if output_hidden_states: all_hidden_states = all_hidden_states + (layer_output[0],) if not return_dict: return tuple(v for v in [layer_output[0], all_hidden_states, all_self_attentions] if v is not None) return BaseModelOutput( last_hidden_state=layer_output[0], hidden_states=all_hidden_states, attentions=all_self_attentions, ) class EfficientFormerPreTrainedModel(PreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = EfficientFormerConfig base_model_prefix = "efficientformer" main_input_name = "pixel_values" supports_gradient_checkpointing = False def _init_weights(self, module: nn.Module): """Initialize the weights""" if isinstance(module, (nn.Linear, nn.Conv2d)): module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.LayerNorm): module.bias.data.zero_() module.weight.data.fill_(1.0) EFFICIENTFORMER_START_DOCSTRING = r""" This model is a PyTorch [nn.Module](https://pytorch.org/docs/stable/nn.html#nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`EfficientFormerConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ EFFICIENTFORMER_INPUTS_DOCSTRING = r""" Args: pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`ViTImageProcessor`]. See [`ViTImageProcessor.preprocess`] for details. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ @add_start_docstrings( "The bare EfficientFormer Model transformer outputting raw hidden-states without any specific head on top.", EFFICIENTFORMER_START_DOCSTRING, ) class EfficientFormerModel(EfficientFormerPreTrainedModel): def __init__(self, config: EfficientFormerConfig): super().__init__(config) self.config = config self.patch_embed = EfficientFormerConvStem(config, config.hidden_sizes[0]) self.encoder = EfficientFormerEncoder(config) self.layernorm = nn.LayerNorm(config.hidden_sizes[-1], eps=config.layer_norm_eps) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(EFFICIENTFORMER_INPUTS_DOCSTRING) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=BaseModelOutputWithPooling, config_class=_CONFIG_FOR_DOC, modality="vision", expected_output=_EXPECTED_OUTPUT_SHAPE, ) def forward( self, pixel_values: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[tuple, BaseModelOutput]: output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict if pixel_values is None: raise ValueError("You have to specify pixel_values") embedding_output = self.patch_embed(pixel_values) encoder_outputs = self.encoder( embedding_output, output_attentions=output_attentions, output_hidden_states=output_hidden_states ) sequence_output = encoder_outputs[0] sequence_output = self.layernorm(sequence_output) if not return_dict: head_outputs = (sequence_output,) return head_outputs + encoder_outputs[1:] return BaseModelOutput( last_hidden_state=sequence_output, hidden_states=encoder_outputs.hidden_states, attentions=encoder_outputs.attentions, ) @add_start_docstrings( """ EfficientFormer Model transformer with an image classification head on top (a linear layer on top of the final hidden state of the [CLS] token) e.g. for ImageNet. """, EFFICIENTFORMER_START_DOCSTRING, ) class EfficientFormerForImageClassification(EfficientFormerPreTrainedModel): def __init__(self, config: EfficientFormerConfig): super().__init__(config) self.num_labels = config.num_labels self.efficientformer = EfficientFormerModel(config) # Classifier head self.classifier = ( nn.Linear(config.hidden_sizes[-1], config.num_labels) if config.num_labels > 0 else nn.Identity() ) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(EFFICIENTFORMER_INPUTS_DOCSTRING) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT, output_type=ImageClassifierOutput, config_class=_CONFIG_FOR_DOC, expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT, ) def forward( self, pixel_values: Optional[torch.Tensor] = None, labels: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[tuple, ImageClassifierOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the image classification/regression loss. Indices should be in `[0, ..., config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If `config.num_labels > 1` a classification loss is computed (Cross-Entropy). """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.efficientformer( pixel_values, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = outputs[0] logits = self.classifier(sequence_output.mean(-2)) loss = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: self.config.problem_type = "regression" elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): self.config.problem_type = "single_label_classification" else: self.config.problem_type = "multi_label_classification" if self.config.problem_type == "regression": loss_fct = MSELoss() if self.num_labels == 1: loss = loss_fct(logits.squeeze(), labels.squeeze()) else: loss = loss_fct(logits, labels) elif self.config.problem_type == "single_label_classification": loss_fct = CrossEntropyLoss() loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) elif self.config.problem_type == "multi_label_classification": loss_fct = BCEWithLogitsLoss() loss = loss_fct(logits, labels) if not return_dict: output = (logits,) + outputs[1:] return ((loss,) + output) if loss is not None else output return ImageClassifierOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) @dataclass class EfficientFormerForImageClassificationWithTeacherOutput(ModelOutput): """ Output type of [`EfficientFormerForImageClassificationWithTeacher`]. Args: logits (`torch.FloatTensor` of shape `(batch_size, config.num_labels)`): Prediction scores as the average of the cls_logits and distillation logits. cls_logits (`torch.FloatTensor` of shape `(batch_size, config.num_labels)`): Prediction scores of the classification head (i.e. the linear layer on top of the final hidden state of the class token). distillation_logits (`torch.FloatTensor` of shape `(batch_size, config.num_labels)`): Prediction scores of the distillation head (i.e. the linear layer on top of the final hidden state of the distillation token). hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the initial embedding outputs. attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. """ logits: torch.FloatTensor = None cls_logits: torch.FloatTensor = None distillation_logits: torch.FloatTensor = None hidden_states: Optional[Tuple[torch.FloatTensor]] = None attentions: Optional[Tuple[torch.FloatTensor]] = None @add_start_docstrings( """ EfficientFormer Model transformer with image classification heads on top (a linear layer on top of the final hidden state of the [CLS] token and a linear layer on top of the final hidden state of the distillation token) e.g. for ImageNet. <Tip warning={true}> This model supports inference-only. Fine-tuning with distillation (i.e. with a teacher) is not yet supported. </Tip> """, EFFICIENTFORMER_START_DOCSTRING, ) class EfficientFormerForImageClassificationWithTeacher(EfficientFormerPreTrainedModel): def __init__(self, config: EfficientFormerConfig): super().__init__(config) self.num_labels = config.num_labels self.efficientformer = EfficientFormerModel(config) # Classifier head self.classifier = nn.Linear(config.hidden_size, config.num_labels) if config.num_labels > 0 else nn.Identity() # Distillation head self.distillation_classifier = ( nn.Linear(config.hidden_size, config.num_labels) if config.num_labels > 0 else nn.Identity() ) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(EFFICIENTFORMER_INPUTS_DOCSTRING) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT, output_type=EfficientFormerForImageClassificationWithTeacherOutput, config_class=_CONFIG_FOR_DOC, expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT, ) def forward( self, pixel_values: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[tuple, EfficientFormerForImageClassificationWithTeacherOutput]: return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.efficientformer( pixel_values, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = outputs[0] cls_logits = self.classifier(sequence_output.mean(-2)) distillation_logits = self.distillation_classifier(sequence_output.mean(-2)) # during inference, return the average of both classifier predictions logits = (cls_logits + distillation_logits) / 2 if not return_dict: output = (logits, cls_logits, distillation_logits) + outputs[1:] return output return EfficientFormerForImageClassificationWithTeacherOutput( logits=logits, cls_logits=cls_logits, distillation_logits=distillation_logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, )
0
hf_public_repos/transformers/src/transformers/models
hf_public_repos/transformers/src/transformers/models/camembert/__init__.py
# Copyright 2020 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) _import_structure = { "configuration_camembert": ["CAMEMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "CamembertConfig", "CamembertOnnxConfig"], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["tokenization_camembert"] = ["CamembertTokenizer"] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["tokenization_camembert_fast"] = ["CamembertTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["modeling_camembert"] = [ "CAMEMBERT_PRETRAINED_MODEL_ARCHIVE_LIST", "CamembertForCausalLM", "CamembertForMaskedLM", "CamembertForMultipleChoice", "CamembertForQuestionAnswering", "CamembertForSequenceClassification", "CamembertForTokenClassification", "CamembertModel", "CamembertPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["modeling_tf_camembert"] = [ "TF_CAMEMBERT_PRETRAINED_MODEL_ARCHIVE_LIST", "TFCamembertForCausalLM", "TFCamembertForMaskedLM", "TFCamembertForMultipleChoice", "TFCamembertForQuestionAnswering", "TFCamembertForSequenceClassification", "TFCamembertForTokenClassification", "TFCamembertModel", "TFCamembertPreTrainedModel", ] if TYPE_CHECKING: from .configuration_camembert import CAMEMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, CamembertConfig, CamembertOnnxConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_camembert import CamembertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_camembert_fast import CamembertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_camembert import ( CAMEMBERT_PRETRAINED_MODEL_ARCHIVE_LIST, CamembertForCausalLM, CamembertForMaskedLM, CamembertForMultipleChoice, CamembertForQuestionAnswering, CamembertForSequenceClassification, CamembertForTokenClassification, CamembertModel, CamembertPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_camembert import ( TF_CAMEMBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFCamembertForCausalLM, TFCamembertForMaskedLM, TFCamembertForMultipleChoice, TFCamembertForQuestionAnswering, TFCamembertForSequenceClassification, TFCamembertForTokenClassification, TFCamembertModel, TFCamembertPreTrainedModel, ) else: import sys sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
0
hf_public_repos/transformers/src/transformers/models
hf_public_repos/transformers/src/transformers/models/camembert/configuration_camembert.py
# coding=utf-8 # Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team. # Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ CamemBERT configuration""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging logger = logging.get_logger(__name__) CAMEMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP = { "camembert-base": "https://huggingface.co/camembert-base/resolve/main/config.json", "umberto-commoncrawl-cased-v1": ( "https://huggingface.co/Musixmatch/umberto-commoncrawl-cased-v1/resolve/main/config.json" ), "umberto-wikipedia-uncased-v1": ( "https://huggingface.co/Musixmatch/umberto-wikipedia-uncased-v1/resolve/main/config.json" ), } class CamembertConfig(PretrainedConfig): """ This is the configuration class to store the configuration of a [`CamembertModel`] or a [`TFCamembertModel`]. It is used to instantiate a Camembert model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the Camembert [camembert-base](https://huggingface.co/camembert-base) architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: vocab_size (`int`, *optional*, defaults to 30522): Vocabulary size of the BERT model. Defines the number of different tokens that can be represented by the `inputs_ids` passed when calling [`CamembertModel`] or [`TFCamembertModel`]. hidden_size (`int`, *optional*, defaults to 768): Dimensionality of the encoder layers and the pooler layer. num_hidden_layers (`int`, *optional*, defaults to 12): Number of hidden layers in the Transformer encoder. num_attention_heads (`int`, *optional*, defaults to 12): Number of attention heads for each attention layer in the Transformer encoder. intermediate_size (`int`, *optional*, defaults to 3072): Dimensionality of the "intermediate" (often named feed-forward) layer in the Transformer encoder. hidden_act (`str` or `Callable`, *optional*, defaults to `"gelu"`): The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, `"relu"`, `"silu"` and `"gelu_new"` are supported. hidden_dropout_prob (`float`, *optional*, defaults to 0.1): The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1): The dropout ratio for the attention probabilities. max_position_embeddings (`int`, *optional*, defaults to 512): The maximum sequence length that this model might ever be used with. Typically set this to something large just in case (e.g., 512 or 1024 or 2048). type_vocab_size (`int`, *optional*, defaults to 2): The vocabulary size of the `token_type_ids` passed when calling [`CamembertModel`] or [`TFCamembertModel`]. initializer_range (`float`, *optional*, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. layer_norm_eps (`float`, *optional*, defaults to 1e-12): The epsilon used by the layer normalization layers. position_embedding_type (`str`, *optional*, defaults to `"absolute"`): Type of position embedding. Choose one of `"absolute"`, `"relative_key"`, `"relative_key_query"`. For positional embeddings use `"absolute"`. For more information on `"relative_key"`, please refer to [Self-Attention with Relative Position Representations (Shaw et al.)](https://arxiv.org/abs/1803.02155). For more information on `"relative_key_query"`, please refer to *Method 4* in [Improve Transformer Models with Better Relative Position Embeddings (Huang et al.)](https://arxiv.org/abs/2009.13658). is_decoder (`bool`, *optional*, defaults to `False`): Whether the model is used as a decoder or not. If `False`, the model is used as an encoder. use_cache (`bool`, *optional*, defaults to `True`): Whether or not the model should return the last key/values attentions (not used by all models). Only relevant if `config.is_decoder=True`. classifier_dropout (`float`, *optional*): The dropout ratio for the classification head. Example: ```python >>> from transformers import CamembertConfig, CamembertModel >>> # Initializing a Camembert camembert-base style configuration >>> configuration = CamembertConfig() >>> # Initializing a model (with random weights) from the camembert-base style configuration >>> model = CamembertModel(configuration) >>> # Accessing the model configuration >>> configuration = model.config ```""" model_type = "camembert" def __init__( self, vocab_size=30522, hidden_size=768, num_hidden_layers=12, num_attention_heads=12, intermediate_size=3072, hidden_act="gelu", hidden_dropout_prob=0.1, attention_probs_dropout_prob=0.1, max_position_embeddings=512, type_vocab_size=2, initializer_range=0.02, layer_norm_eps=1e-12, pad_token_id=1, bos_token_id=0, eos_token_id=2, position_embedding_type="absolute", use_cache=True, classifier_dropout=None, **kwargs, ): super().__init__(pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs) self.vocab_size = vocab_size self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.hidden_act = hidden_act self.intermediate_size = intermediate_size self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.max_position_embeddings = max_position_embeddings self.type_vocab_size = type_vocab_size self.initializer_range = initializer_range self.layer_norm_eps = layer_norm_eps self.position_embedding_type = position_embedding_type self.use_cache = use_cache self.classifier_dropout = classifier_dropout class CamembertOnnxConfig(OnnxConfig): @property def inputs(self) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": dynamic_axis = {0: "batch", 1: "choice", 2: "sequence"} else: dynamic_axis = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ] )
0
hf_public_repos/transformers/src/transformers/models
hf_public_repos/transformers/src/transformers/models/camembert/tokenization_camembert_fast.py
# coding=utf-8 # Copyright 2018 Google AI, Google Brain and Carnegie Mellon University Authors and the HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License """ Fast tokenization classes for Camembert model.""" import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_camembert import CamembertTokenizer else: CamembertTokenizer = None logger = logging.get_logger(__name__) VOCAB_FILES_NAMES = {"vocab_file": "sentencepiece.bpe.model", "tokenizer_file": "tokenizer.json"} PRETRAINED_VOCAB_FILES_MAP = { "vocab_file": { "camembert-base": "https://huggingface.co/camembert-base/resolve/main/sentencepiece.bpe.model", }, "tokenizer_file": { "camembert-base": "https://huggingface.co/camembert-base/resolve/main/tokenizer.json", }, } PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = { "camembert-base": 512, } SPIECE_UNDERLINE = "▁" class CamembertTokenizerFast(PreTrainedTokenizerFast): """ Construct a "fast" CamemBERT tokenizer (backed by HuggingFace's *tokenizers* library). Adapted from [`RobertaTokenizer`] and [`XLNetTokenizer`]. Based on [BPE](https://huggingface.co/docs/tokenizers/python/latest/components.html?highlight=BPE#models). This tokenizer inherits from [`PreTrainedTokenizerFast`] which contains most of the main methods. Users should refer to this superclass for more information regarding those methods. Args: vocab_file (`str`): [SentencePiece](https://github.com/google/sentencepiece) file (generally has a *.spm* extension) that contains the vocabulary necessary to instantiate a tokenizer. bos_token (`str`, *optional*, defaults to `"<s>"`): The beginning of sequence token that was used during pretraining. Can be used a sequence classifier token. <Tip> When building a sequence using special tokens, this is not the token that is used for the beginning of sequence. The token used is the `cls_token`. </Tip> eos_token (`str`, *optional*, defaults to `"</s>"`): The end of sequence token. <Tip> When building a sequence using special tokens, this is not the token that is used for the end of sequence. The token used is the `sep_token`. </Tip> sep_token (`str`, *optional*, defaults to `"</s>"`): The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for sequence classification or for a text and a question for question answering. It is also used as the last token of a sequence built with special tokens. cls_token (`str`, *optional*, defaults to `"<s>"`): The classifier token which is used when doing sequence classification (classification of the whole sequence instead of per-token classification). It is the first token of the sequence when built with special tokens. unk_token (`str`, *optional*, defaults to `"<unk>"`): The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this token instead. pad_token (`str`, *optional*, defaults to `"<pad>"`): The token used for padding, for example when batching sequences of different lengths. mask_token (`str`, *optional*, defaults to `"<mask>"`): The token used for masking values. This is the token used when training this model with masked language modeling. This is the token which the model will try to predict. additional_special_tokens (`List[str]`, *optional*, defaults to `["<s>NOTUSED", "</s>NOTUSED"]`): Additional special tokens used by the tokenizer. """ vocab_files_names = VOCAB_FILES_NAMES pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES model_input_names = ["input_ids", "attention_mask"] slow_tokenizer_class = CamembertTokenizer def __init__( self, vocab_file=None, tokenizer_file=None, bos_token="<s>", eos_token="</s>", sep_token="</s>", cls_token="<s>", unk_token="<unk>", pad_token="<pad>", mask_token="<mask>", additional_special_tokens=["<s>NOTUSED", "</s>NOTUSED"], **kwargs, ): # Mask token behave like a normal word, i.e. include the space before it mask_token = AddedToken(mask_token, lstrip=True, rstrip=False) if isinstance(mask_token, str) else mask_token super().__init__( vocab_file, tokenizer_file=tokenizer_file, bos_token=bos_token, eos_token=eos_token, sep_token=sep_token, cls_token=cls_token, unk_token=unk_token, pad_token=pad_token, mask_token=mask_token, additional_special_tokens=additional_special_tokens, **kwargs, ) self.vocab_file = vocab_file self.can_save_slow_tokenizer = False if not self.vocab_file else True def build_inputs_with_special_tokens( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None ) -> List[int]: """ Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and adding special tokens. An CamemBERT sequence has the following format: - single sequence: `<s> X </s>` - pair of sequences: `<s> A </s></s> B </s>` Args: token_ids_0 (`List[int]`): List of IDs to which the special tokens will be added. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. Returns: `List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens. """ if token_ids_1 is None: return [self.cls_token_id] + token_ids_0 + [self.sep_token_id] cls = [self.cls_token_id] sep = [self.sep_token_id] return cls + token_ids_0 + sep + sep + token_ids_1 + sep def create_token_type_ids_from_sequences( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None ) -> List[int]: """ Create a mask from the two sequences passed to be used in a sequence-pair classification task. CamemBERT, like RoBERTa, does not make use of token type ids, therefore a list of zeros is returned. Args: token_ids_0 (`List[int]`): List of IDs. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. Returns: `List[int]`: List of zeros. """ sep = [self.sep_token_id] cls = [self.cls_token_id] if token_ids_1 is None: return len(cls + token_ids_0 + sep) * [0] return len(cls + token_ids_0 + sep + sep + token_ids_1 + sep) * [0] def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]: if not self.can_save_slow_tokenizer: raise ValueError( "Your fast tokenizer does not have the necessary information to save the vocabulary for a slow " "tokenizer." ) if not os.path.isdir(save_directory): logger.error(f"Vocabulary path ({save_directory}) should be a directory") return out_vocab_file = os.path.join( save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file): copyfile(self.vocab_file, out_vocab_file) return (out_vocab_file,)
0
hf_public_repos/transformers/src/transformers/models
hf_public_repos/transformers/src/transformers/models/camembert/modeling_tf_camembert.py
# coding=utf-8 # Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team. # Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ TF 2.0 CamemBERT model.""" from __future__ import annotations import math import warnings from typing import Optional, Tuple, Union import numpy as np import tensorflow as tf from ...activations_tf import get_tf_activation from ...modeling_tf_outputs import ( TFBaseModelOutputWithPastAndCrossAttentions, TFBaseModelOutputWithPoolingAndCrossAttentions, TFCausalLMOutputWithCrossAttentions, TFMaskedLMOutput, TFMultipleChoiceModelOutput, TFQuestionAnsweringModelOutput, TFSequenceClassifierOutput, TFTokenClassifierOutput, ) from ...modeling_tf_utils import ( TFCausalLanguageModelingLoss, TFMaskedLanguageModelingLoss, TFModelInputType, TFMultipleChoiceLoss, TFPreTrainedModel, TFQuestionAnsweringLoss, TFSequenceClassificationLoss, TFTokenClassificationLoss, get_initializer, keras_serializable, unpack_inputs, ) from ...tf_utils import check_embeddings_within_bounds, shape_list, stable_softmax from ...utils import ( add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging, ) from .configuration_camembert import CamembertConfig logger = logging.get_logger(__name__) _CHECKPOINT_FOR_DOC = "camembert-base" _CONFIG_FOR_DOC = "CamembertConfig" TF_CAMEMBERT_PRETRAINED_MODEL_ARCHIVE_LIST = [ # See all CamemBERT models at https://huggingface.co/models?filter=camembert ] CAMEMBERT_START_DOCSTRING = r""" This model inherits from [`TFPreTrainedModel`]. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.) This model is also a [tf.keras.Model](https://www.tensorflow.org/api_docs/python/tf/keras/Model) subclass. Use it as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to general usage and behavior. <Tip> TensorFlow models and layers in `transformers` accept two formats as input: - having all inputs as keyword arguments (like PyTorch models), or - having all inputs as a list, tuple or dict in the first positional argument. The reason the second format is supported is that Keras methods prefer this format when passing inputs to models and layers. Because of this support, when using methods like `model.fit()` things should "just work" for you - just pass your inputs and labels in any format that `model.fit()` supports! If, however, you want to use the second format outside of Keras methods like `fit()` and `predict()`, such as when creating your own layers or models with the Keras `Functional` API, there are three possibilities you can use to gather all the input Tensors in the first positional argument: - a single Tensor with `input_ids` only and nothing else: `model(input_ids)` - a list of varying length with one or several input Tensors IN THE ORDER given in the docstring: `model([input_ids, attention_mask])` or `model([input_ids, attention_mask, token_type_ids])` - a dictionary with one or several input Tensors associated to the input names given in the docstring: `model({"input_ids": input_ids, "token_type_ids": token_type_ids})` Note that when creating models and layers with [subclassing](https://keras.io/guides/making_new_layers_and_models_via_subclassing/) then you don't need to worry about any of this, as you can just pass inputs like you would to any other Python function! </Tip> Parameters: config ([`CamembertConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ CAMEMBERT_INPUTS_DOCSTRING = r""" Args: input_ids (`Numpy array` or `tf.Tensor` of shape `({0})`): Indices of input sequence tokens in the vocabulary. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.__call__`] and [`PreTrainedTokenizer.encode`] for details. [What are input IDs?](../glossary#input-ids) attention_mask (`Numpy array` or `tf.Tensor` of shape `({0})`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) token_type_ids (`Numpy array` or `tf.Tensor` of shape `({0})`, *optional*): Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0, 1]`: - 0 corresponds to a *sentence A* token, - 1 corresponds to a *sentence B* token. [What are token type IDs?](../glossary#token-type-ids) position_ids (`Numpy array` or `tf.Tensor` of shape `({0})`, *optional*): Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, config.max_position_embeddings - 1]`. [What are position IDs?](../glossary#position-ids) head_mask (`Numpy array` or `tf.Tensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. inputs_embeds (`tf.Tensor` of shape `({0}, hidden_size)`, *optional*): Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert `input_ids` indices into associated vectors than the model's internal embedding lookup matrix. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the config will be used instead. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the config will be used instead. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. This argument can be used in eager mode, in graph mode the value will always be set to True. training (`bool`, *optional*, defaults to `False`): Whether or not to use the model in training mode (some modules like dropout modules have different behaviors between training and evaluation). """ # Copied from transformers.models.roberta.modeling_tf_roberta.TFRobertaEmbeddings class TFCamembertEmbeddings(tf.keras.layers.Layer): """ Same as BertEmbeddings with a tiny tweak for positional embeddings indexing. """ def __init__(self, config, **kwargs): super().__init__(**kwargs) self.padding_idx = 1 self.config = config self.hidden_size = config.hidden_size self.max_position_embeddings = config.max_position_embeddings self.initializer_range = config.initializer_range self.LayerNorm = tf.keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="LayerNorm") self.dropout = tf.keras.layers.Dropout(rate=config.hidden_dropout_prob) def build(self, input_shape: tf.TensorShape): with tf.name_scope("word_embeddings"): self.weight = self.add_weight( name="weight", shape=[self.config.vocab_size, self.hidden_size], initializer=get_initializer(self.initializer_range), ) with tf.name_scope("token_type_embeddings"): self.token_type_embeddings = self.add_weight( name="embeddings", shape=[self.config.type_vocab_size, self.hidden_size], initializer=get_initializer(self.initializer_range), ) with tf.name_scope("position_embeddings"): self.position_embeddings = self.add_weight( name="embeddings", shape=[self.max_position_embeddings, self.hidden_size], initializer=get_initializer(self.initializer_range), ) super().build(input_shape) def create_position_ids_from_input_ids(self, input_ids, past_key_values_length=0): """ Replace non-padding symbols with their position numbers. Position numbers begin at padding_idx+1. Padding symbols are ignored. This is modified from fairseq's `utils.make_positions`. Args: input_ids: tf.Tensor Returns: tf.Tensor """ mask = tf.cast(tf.math.not_equal(input_ids, self.padding_idx), dtype=input_ids.dtype) incremental_indices = (tf.math.cumsum(mask, axis=1) + past_key_values_length) * mask return incremental_indices + self.padding_idx def call( self, input_ids=None, position_ids=None, token_type_ids=None, inputs_embeds=None, past_key_values_length=0, training=False, ): """ Applies embedding based on inputs tensor. Returns: final_embeddings (`tf.Tensor`): output embedding tensor. """ assert not (input_ids is None and inputs_embeds is None) if input_ids is not None: check_embeddings_within_bounds(input_ids, self.config.vocab_size) inputs_embeds = tf.gather(params=self.weight, indices=input_ids) input_shape = shape_list(inputs_embeds)[:-1] if token_type_ids is None: token_type_ids = tf.fill(dims=input_shape, value=0) if position_ids is None: if input_ids is not None: # Create the position ids from the input token ids. Any padded tokens remain padded. position_ids = self.create_position_ids_from_input_ids( input_ids=input_ids, past_key_values_length=past_key_values_length ) else: position_ids = tf.expand_dims( tf.range(start=self.padding_idx + 1, limit=input_shape[-1] + self.padding_idx + 1), axis=0 ) position_embeds = tf.gather(params=self.position_embeddings, indices=position_ids) token_type_embeds = tf.gather(params=self.token_type_embeddings, indices=token_type_ids) final_embeddings = inputs_embeds + position_embeds + token_type_embeds final_embeddings = self.LayerNorm(inputs=final_embeddings) final_embeddings = self.dropout(inputs=final_embeddings, training=training) return final_embeddings # Copied from transformers.models.bert.modeling_tf_bert.TFBertPooler with Bert->Camembert class TFCamembertPooler(tf.keras.layers.Layer): def __init__(self, config: CamembertConfig, **kwargs): super().__init__(**kwargs) self.dense = tf.keras.layers.Dense( units=config.hidden_size, kernel_initializer=get_initializer(config.initializer_range), activation="tanh", name="dense", ) def call(self, hidden_states: tf.Tensor) -> tf.Tensor: # We "pool" the model by simply taking the hidden state corresponding # to the first token. first_token_tensor = hidden_states[:, 0] pooled_output = self.dense(inputs=first_token_tensor) return pooled_output # Copied from transformers.models.bert.modeling_tf_bert.TFBertSelfAttention with Bert->Camembert class TFCamembertSelfAttention(tf.keras.layers.Layer): def __init__(self, config: CamembertConfig, **kwargs): super().__init__(**kwargs) if config.hidden_size % config.num_attention_heads != 0: raise ValueError( f"The hidden size ({config.hidden_size}) is not a multiple of the number " f"of attention heads ({config.num_attention_heads})" ) self.num_attention_heads = config.num_attention_heads self.attention_head_size = int(config.hidden_size / config.num_attention_heads) self.all_head_size = self.num_attention_heads * self.attention_head_size self.sqrt_att_head_size = math.sqrt(self.attention_head_size) self.query = tf.keras.layers.Dense( units=self.all_head_size, kernel_initializer=get_initializer(config.initializer_range), name="query" ) self.key = tf.keras.layers.Dense( units=self.all_head_size, kernel_initializer=get_initializer(config.initializer_range), name="key" ) self.value = tf.keras.layers.Dense( units=self.all_head_size, kernel_initializer=get_initializer(config.initializer_range), name="value" ) self.dropout = tf.keras.layers.Dropout(rate=config.attention_probs_dropout_prob) self.is_decoder = config.is_decoder def transpose_for_scores(self, tensor: tf.Tensor, batch_size: int) -> tf.Tensor: # Reshape from [batch_size, seq_length, all_head_size] to [batch_size, seq_length, num_attention_heads, attention_head_size] tensor = tf.reshape(tensor=tensor, shape=(batch_size, -1, self.num_attention_heads, self.attention_head_size)) # Transpose the tensor from [batch_size, seq_length, num_attention_heads, attention_head_size] to [batch_size, num_attention_heads, seq_length, attention_head_size] return tf.transpose(tensor, perm=[0, 2, 1, 3]) def call( self, hidden_states: tf.Tensor, attention_mask: tf.Tensor, head_mask: tf.Tensor, encoder_hidden_states: tf.Tensor, encoder_attention_mask: tf.Tensor, past_key_value: Tuple[tf.Tensor], output_attentions: bool, training: bool = False, ) -> Tuple[tf.Tensor]: batch_size = shape_list(hidden_states)[0] mixed_query_layer = self.query(inputs=hidden_states) # If this is instantiated as a cross-attention module, the keys # and values come from an encoder; the attention mask needs to be # such that the encoder's padding tokens are not attended to. is_cross_attention = encoder_hidden_states is not None if is_cross_attention and past_key_value is not None: # reuse k,v, cross_attentions key_layer = past_key_value[0] value_layer = past_key_value[1] attention_mask = encoder_attention_mask elif is_cross_attention: key_layer = self.transpose_for_scores(self.key(inputs=encoder_hidden_states), batch_size) value_layer = self.transpose_for_scores(self.value(inputs=encoder_hidden_states), batch_size) attention_mask = encoder_attention_mask elif past_key_value is not None: key_layer = self.transpose_for_scores(self.key(inputs=hidden_states), batch_size) value_layer = self.transpose_for_scores(self.value(inputs=hidden_states), batch_size) key_layer = tf.concat([past_key_value[0], key_layer], axis=2) value_layer = tf.concat([past_key_value[1], value_layer], axis=2) else: key_layer = self.transpose_for_scores(self.key(inputs=hidden_states), batch_size) value_layer = self.transpose_for_scores(self.value(inputs=hidden_states), batch_size) query_layer = self.transpose_for_scores(mixed_query_layer, batch_size) if self.is_decoder: # if cross_attention save Tuple(tf.Tensor, tf.Tensor) of all cross attention key/value_states. # Further calls to cross_attention layer can then reuse all cross-attention # key/value_states (first "if" case) # if uni-directional self-attention (decoder) save Tuple(tf.Tensor, tf.Tensor) of # all previous decoder key/value_states. Further calls to uni-directional self-attention # can concat previous decoder key/value_states to current projected key/value_states (third "elif" case) # if encoder bi-directional self-attention `past_key_value` is always `None` past_key_value = (key_layer, value_layer) # Take the dot product between "query" and "key" to get the raw attention scores. # (batch size, num_heads, seq_len_q, seq_len_k) attention_scores = tf.matmul(query_layer, key_layer, transpose_b=True) dk = tf.cast(self.sqrt_att_head_size, dtype=attention_scores.dtype) attention_scores = tf.divide(attention_scores, dk) if attention_mask is not None: # Apply the attention mask is (precomputed for all layers in TFCamembertModel call() function) attention_scores = tf.add(attention_scores, attention_mask) # Normalize the attention scores to probabilities. attention_probs = stable_softmax(logits=attention_scores, axis=-1) # This is actually dropping out entire tokens to attend to, which might # seem a bit unusual, but is taken from the original Transformer paper. attention_probs = self.dropout(inputs=attention_probs, training=training) # Mask heads if we want to if head_mask is not None: attention_probs = tf.multiply(attention_probs, head_mask) attention_output = tf.matmul(attention_probs, value_layer) attention_output = tf.transpose(attention_output, perm=[0, 2, 1, 3]) # (batch_size, seq_len_q, all_head_size) attention_output = tf.reshape(tensor=attention_output, shape=(batch_size, -1, self.all_head_size)) outputs = (attention_output, attention_probs) if output_attentions else (attention_output,) if self.is_decoder: outputs = outputs + (past_key_value,) return outputs # Copied from transformers.models.bert.modeling_tf_bert.TFBertSelfOutput with Bert->Camembert class TFCamembertSelfOutput(tf.keras.layers.Layer): def __init__(self, config: CamembertConfig, **kwargs): super().__init__(**kwargs) self.dense = tf.keras.layers.Dense( units=config.hidden_size, kernel_initializer=get_initializer(config.initializer_range), name="dense" ) self.LayerNorm = tf.keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="LayerNorm") self.dropout = tf.keras.layers.Dropout(rate=config.hidden_dropout_prob) def call(self, hidden_states: tf.Tensor, input_tensor: tf.Tensor, training: bool = False) -> tf.Tensor: hidden_states = self.dense(inputs=hidden_states) hidden_states = self.dropout(inputs=hidden_states, training=training) hidden_states = self.LayerNorm(inputs=hidden_states + input_tensor) return hidden_states # Copied from transformers.models.bert.modeling_tf_bert.TFBertAttention with Bert->Camembert class TFCamembertAttention(tf.keras.layers.Layer): def __init__(self, config: CamembertConfig, **kwargs): super().__init__(**kwargs) self.self_attention = TFCamembertSelfAttention(config, name="self") self.dense_output = TFCamembertSelfOutput(config, name="output") def prune_heads(self, heads): raise NotImplementedError def call( self, input_tensor: tf.Tensor, attention_mask: tf.Tensor, head_mask: tf.Tensor, encoder_hidden_states: tf.Tensor, encoder_attention_mask: tf.Tensor, past_key_value: Tuple[tf.Tensor], output_attentions: bool, training: bool = False, ) -> Tuple[tf.Tensor]: self_outputs = self.self_attention( hidden_states=input_tensor, attention_mask=attention_mask, head_mask=head_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, past_key_value=past_key_value, output_attentions=output_attentions, training=training, ) attention_output = self.dense_output( hidden_states=self_outputs[0], input_tensor=input_tensor, training=training ) # add attentions (possibly with past_key_value) if we output them outputs = (attention_output,) + self_outputs[1:] return outputs # Copied from transformers.models.bert.modeling_tf_bert.TFBertIntermediate with Bert->Camembert class TFCamembertIntermediate(tf.keras.layers.Layer): def __init__(self, config: CamembertConfig, **kwargs): super().__init__(**kwargs) self.dense = tf.keras.layers.Dense( units=config.intermediate_size, kernel_initializer=get_initializer(config.initializer_range), name="dense" ) if isinstance(config.hidden_act, str): self.intermediate_act_fn = get_tf_activation(config.hidden_act) else: self.intermediate_act_fn = config.hidden_act def call(self, hidden_states: tf.Tensor) -> tf.Tensor: hidden_states = self.dense(inputs=hidden_states) hidden_states = self.intermediate_act_fn(hidden_states) return hidden_states # Copied from transformers.models.bert.modeling_tf_bert.TFBertOutput with Bert->Camembert class TFCamembertOutput(tf.keras.layers.Layer): def __init__(self, config: CamembertConfig, **kwargs): super().__init__(**kwargs) self.dense = tf.keras.layers.Dense( units=config.hidden_size, kernel_initializer=get_initializer(config.initializer_range), name="dense" ) self.LayerNorm = tf.keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="LayerNorm") self.dropout = tf.keras.layers.Dropout(rate=config.hidden_dropout_prob) def call(self, hidden_states: tf.Tensor, input_tensor: tf.Tensor, training: bool = False) -> tf.Tensor: hidden_states = self.dense(inputs=hidden_states) hidden_states = self.dropout(inputs=hidden_states, training=training) hidden_states = self.LayerNorm(inputs=hidden_states + input_tensor) return hidden_states # Copied from transformers.models.bert.modeling_tf_bert.TFBertLayer with Bert->Camembert class TFCamembertLayer(tf.keras.layers.Layer): def __init__(self, config: CamembertConfig, **kwargs): super().__init__(**kwargs) self.attention = TFCamembertAttention(config, name="attention") self.is_decoder = config.is_decoder self.add_cross_attention = config.add_cross_attention if self.add_cross_attention: if not self.is_decoder: raise ValueError(f"{self} should be used as a decoder model if cross attention is added") self.crossattention = TFCamembertAttention(config, name="crossattention") self.intermediate = TFCamembertIntermediate(config, name="intermediate") self.bert_output = TFCamembertOutput(config, name="output") def call( self, hidden_states: tf.Tensor, attention_mask: tf.Tensor, head_mask: tf.Tensor, encoder_hidden_states: tf.Tensor | None, encoder_attention_mask: tf.Tensor | None, past_key_value: Tuple[tf.Tensor] | None, output_attentions: bool, training: bool = False, ) -> Tuple[tf.Tensor]: # decoder uni-directional self-attention cached key/values tuple is at positions 1,2 self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None self_attention_outputs = self.attention( input_tensor=hidden_states, attention_mask=attention_mask, head_mask=head_mask, encoder_hidden_states=None, encoder_attention_mask=None, past_key_value=self_attn_past_key_value, output_attentions=output_attentions, training=training, ) attention_output = self_attention_outputs[0] # if decoder, the last output is tuple of self-attn cache if self.is_decoder: outputs = self_attention_outputs[1:-1] present_key_value = self_attention_outputs[-1] else: outputs = self_attention_outputs[1:] # add self attentions if we output attention weights cross_attn_present_key_value = None if self.is_decoder and encoder_hidden_states is not None: if not hasattr(self, "crossattention"): raise ValueError( f"If `encoder_hidden_states` are passed, {self} has to be instantiated with cross-attention layers" " by setting `config.add_cross_attention=True`" ) # cross_attn cached key/values tuple is at positions 3,4 of past_key_value tuple cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None cross_attention_outputs = self.crossattention( input_tensor=attention_output, attention_mask=attention_mask, head_mask=head_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, past_key_value=cross_attn_past_key_value, output_attentions=output_attentions, training=training, ) attention_output = cross_attention_outputs[0] outputs = outputs + cross_attention_outputs[1:-1] # add cross attentions if we output attention weights # add cross-attn cache to positions 3,4 of present_key_value tuple cross_attn_present_key_value = cross_attention_outputs[-1] present_key_value = present_key_value + cross_attn_present_key_value intermediate_output = self.intermediate(hidden_states=attention_output) layer_output = self.bert_output( hidden_states=intermediate_output, input_tensor=attention_output, training=training ) outputs = (layer_output,) + outputs # add attentions if we output them # if decoder, return the attn key/values as the last output if self.is_decoder: outputs = outputs + (present_key_value,) return outputs # Copied from transformers.models.bert.modeling_tf_bert.TFBertEncoder with Bert->Camembert class TFCamembertEncoder(tf.keras.layers.Layer): def __init__(self, config: CamembertConfig, **kwargs): super().__init__(**kwargs) self.config = config self.layer = [TFCamembertLayer(config, name=f"layer_._{i}") for i in range(config.num_hidden_layers)] def call( self, hidden_states: tf.Tensor, attention_mask: tf.Tensor, head_mask: tf.Tensor, encoder_hidden_states: tf.Tensor | None, encoder_attention_mask: tf.Tensor | None, past_key_values: Tuple[Tuple[tf.Tensor]] | None, use_cache: Optional[bool], output_attentions: bool, output_hidden_states: bool, return_dict: bool, training: bool = False, ) -> Union[TFBaseModelOutputWithPastAndCrossAttentions, Tuple[tf.Tensor]]: all_hidden_states = () if output_hidden_states else None all_attentions = () if output_attentions else None all_cross_attentions = () if output_attentions and self.config.add_cross_attention else None next_decoder_cache = () if use_cache else None for i, layer_module in enumerate(self.layer): if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) past_key_value = past_key_values[i] if past_key_values is not None else None layer_outputs = layer_module( hidden_states=hidden_states, attention_mask=attention_mask, head_mask=head_mask[i], encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, past_key_value=past_key_value, output_attentions=output_attentions, training=training, ) hidden_states = layer_outputs[0] if use_cache: next_decoder_cache += (layer_outputs[-1],) if output_attentions: all_attentions = all_attentions + (layer_outputs[1],) if self.config.add_cross_attention and encoder_hidden_states is not None: all_cross_attentions = all_cross_attentions + (layer_outputs[2],) # Add last layer if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) if not return_dict: return tuple( v for v in [hidden_states, all_hidden_states, all_attentions, all_cross_attentions] if v is not None ) return TFBaseModelOutputWithPastAndCrossAttentions( last_hidden_state=hidden_states, past_key_values=next_decoder_cache, hidden_states=all_hidden_states, attentions=all_attentions, cross_attentions=all_cross_attentions, ) @keras_serializable # Copied from transformers.models.roberta.modeling_tf_roberta.TFRobertaMainLayer with Roberta->Camembert class TFCamembertMainLayer(tf.keras.layers.Layer): config_class = CamembertConfig def __init__(self, config, add_pooling_layer=True, **kwargs): super().__init__(**kwargs) self.config = config self.is_decoder = config.is_decoder self.num_hidden_layers = config.num_hidden_layers self.initializer_range = config.initializer_range self.output_attentions = config.output_attentions self.output_hidden_states = config.output_hidden_states self.return_dict = config.use_return_dict self.encoder = TFCamembertEncoder(config, name="encoder") self.pooler = TFCamembertPooler(config, name="pooler") if add_pooling_layer else None # The embeddings must be the last declaration in order to follow the weights order self.embeddings = TFCamembertEmbeddings(config, name="embeddings") # Copied from transformers.models.bert.modeling_tf_bert.TFBertMainLayer.get_input_embeddings def get_input_embeddings(self) -> tf.keras.layers.Layer: return self.embeddings # Copied from transformers.models.bert.modeling_tf_bert.TFBertMainLayer.set_input_embeddings def set_input_embeddings(self, value: tf.Variable): self.embeddings.weight = value self.embeddings.vocab_size = shape_list(value)[0] # Copied from transformers.models.bert.modeling_tf_bert.TFBertMainLayer._prune_heads def _prune_heads(self, heads_to_prune): """ Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base class PreTrainedModel """ raise NotImplementedError @unpack_inputs # Copied from transformers.models.bert.modeling_tf_bert.TFBertMainLayer.call def call( self, input_ids: TFModelInputType | None = None, attention_mask: np.ndarray | tf.Tensor | None = None, token_type_ids: np.ndarray | tf.Tensor | None = None, position_ids: np.ndarray | tf.Tensor | None = None, head_mask: np.ndarray | tf.Tensor | None = None, inputs_embeds: np.ndarray | tf.Tensor | None = None, encoder_hidden_states: np.ndarray | tf.Tensor | None = None, encoder_attention_mask: np.ndarray | tf.Tensor | None = None, past_key_values: Optional[Tuple[Tuple[Union[np.ndarray, tf.Tensor]]]] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, training: bool = False, ) -> Union[TFBaseModelOutputWithPoolingAndCrossAttentions, Tuple[tf.Tensor]]: if not self.config.is_decoder: use_cache = False if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") elif input_ids is not None: input_shape = shape_list(input_ids) elif inputs_embeds is not None: input_shape = shape_list(inputs_embeds)[:-1] else: raise ValueError("You have to specify either input_ids or inputs_embeds") batch_size, seq_length = input_shape if past_key_values is None: past_key_values_length = 0 past_key_values = [None] * len(self.encoder.layer) else: past_key_values_length = shape_list(past_key_values[0][0])[-2] if attention_mask is None: attention_mask = tf.fill(dims=(batch_size, seq_length + past_key_values_length), value=1) if token_type_ids is None: token_type_ids = tf.fill(dims=input_shape, value=0) embedding_output = self.embeddings( input_ids=input_ids, position_ids=position_ids, token_type_ids=token_type_ids, inputs_embeds=inputs_embeds, past_key_values_length=past_key_values_length, training=training, ) # We create a 3D attention mask from a 2D tensor mask. # Sizes are [batch_size, 1, 1, to_seq_length] # So we can broadcast to [batch_size, num_heads, from_seq_length, to_seq_length] # this attention mask is more simple than the triangular masking of causal attention # used in OpenAI GPT, we just need to prepare the broadcast dimension here. attention_mask_shape = shape_list(attention_mask) mask_seq_length = seq_length + past_key_values_length # Copied from `modeling_tf_t5.py` # Provided a padding mask of dimensions [batch_size, mask_seq_length] # - if the model is a decoder, apply a causal mask in addition to the padding mask # - if the model is an encoder, make the mask broadcastable to [batch_size, num_heads, mask_seq_length, mask_seq_length] if self.is_decoder: seq_ids = tf.range(mask_seq_length) causal_mask = tf.less_equal( tf.tile(seq_ids[None, None, :], (batch_size, mask_seq_length, 1)), seq_ids[None, :, None], ) causal_mask = tf.cast(causal_mask, dtype=attention_mask.dtype) extended_attention_mask = causal_mask * attention_mask[:, None, :] attention_mask_shape = shape_list(extended_attention_mask) extended_attention_mask = tf.reshape( extended_attention_mask, (attention_mask_shape[0], 1, attention_mask_shape[1], attention_mask_shape[2]) ) if past_key_values[0] is not None: # attention_mask needs to be sliced to the shape `[batch_size, 1, from_seq_length - cached_seq_length, to_seq_length] extended_attention_mask = extended_attention_mask[:, :, -seq_length:, :] else: extended_attention_mask = tf.reshape( attention_mask, (attention_mask_shape[0], 1, 1, attention_mask_shape[1]) ) # Since attention_mask is 1.0 for positions we want to attend and 0.0 for # masked positions, this operation will create a tensor which is 0.0 for # positions we want to attend and -10000.0 for masked positions. # Since we are adding it to the raw scores before the softmax, this is # effectively the same as removing these entirely. extended_attention_mask = tf.cast(extended_attention_mask, dtype=embedding_output.dtype) one_cst = tf.constant(1.0, dtype=embedding_output.dtype) ten_thousand_cst = tf.constant(-10000.0, dtype=embedding_output.dtype) extended_attention_mask = tf.multiply(tf.subtract(one_cst, extended_attention_mask), ten_thousand_cst) # Copied from `modeling_tf_t5.py` with -1e9 -> -10000 if self.is_decoder and encoder_attention_mask is not None: # If a 2D ou 3D attention mask is provided for the cross-attention # we need to make broadcastable to [batch_size, num_heads, mask_seq_length, mask_seq_length] # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length] encoder_attention_mask = tf.cast(encoder_attention_mask, dtype=extended_attention_mask.dtype) num_dims_encoder_attention_mask = len(shape_list(encoder_attention_mask)) if num_dims_encoder_attention_mask == 3: encoder_extended_attention_mask = encoder_attention_mask[:, None, :, :] if num_dims_encoder_attention_mask == 2: encoder_extended_attention_mask = encoder_attention_mask[:, None, None, :] # T5 has a mask that can compare sequence ids, we can simulate this here with this transposition # Cf. https://github.com/tensorflow/mesh/blob/8d2465e9bc93129b913b5ccc6a59aa97abd96ec6/mesh_tensorflow/transformer/transformer_layers.py#L270 # encoder_extended_attention_mask = tf.math.equal(encoder_extended_attention_mask, # tf.transpose(encoder_extended_attention_mask, perm=(-1, -2))) encoder_extended_attention_mask = (1.0 - encoder_extended_attention_mask) * -10000.0 else: encoder_extended_attention_mask = None # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] if head_mask is not None: raise NotImplementedError else: head_mask = [None] * self.config.num_hidden_layers encoder_outputs = self.encoder( hidden_states=embedding_output, attention_mask=extended_attention_mask, head_mask=head_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_extended_attention_mask, past_key_values=past_key_values, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) sequence_output = encoder_outputs[0] pooled_output = self.pooler(hidden_states=sequence_output) if self.pooler is not None else None if not return_dict: return ( sequence_output, pooled_output, ) + encoder_outputs[1:] return TFBaseModelOutputWithPoolingAndCrossAttentions( last_hidden_state=sequence_output, pooler_output=pooled_output, past_key_values=encoder_outputs.past_key_values, hidden_states=encoder_outputs.hidden_states, attentions=encoder_outputs.attentions, cross_attentions=encoder_outputs.cross_attentions, ) class TFCamembertPreTrainedModel(TFPreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = CamembertConfig base_model_prefix = "roberta" @add_start_docstrings( "The bare CamemBERT Model transformer outputting raw hidden-states without any specific head on top.", CAMEMBERT_START_DOCSTRING, ) # Copied from transformers.models.roberta.modeling_tf_roberta.TFRobertaModel with Roberta->Camembert, ROBERTA->CAMEMBERT class TFCamembertModel(TFCamembertPreTrainedModel): def __init__(self, config, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) self.roberta = TFCamembertMainLayer(config, name="roberta") @unpack_inputs @add_start_docstrings_to_model_forward(CAMEMBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=TFBaseModelOutputWithPoolingAndCrossAttentions, config_class=_CONFIG_FOR_DOC, ) def call( self, input_ids: TFModelInputType | None = None, attention_mask: np.ndarray | tf.Tensor | None = None, token_type_ids: np.ndarray | tf.Tensor | None = None, position_ids: np.ndarray | tf.Tensor | None = None, head_mask: np.ndarray | tf.Tensor | None = None, inputs_embeds: np.ndarray | tf.Tensor | None = None, encoder_hidden_states: np.ndarray | tf.Tensor | None = None, encoder_attention_mask: np.ndarray | tf.Tensor | None = None, past_key_values: Optional[Tuple[Tuple[Union[np.ndarray, tf.Tensor]]]] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, training: Optional[bool] = False, ) -> Union[Tuple, TFBaseModelOutputWithPoolingAndCrossAttentions]: r""" encoder_hidden_states (`tf.Tensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if the model is configured as a decoder. encoder_attention_mask (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. past_key_values (`Tuple[Tuple[tf.Tensor]]` of length `config.n_layers`) contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding. If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `decoder_input_ids` of shape `(batch_size, sequence_length)`. use_cache (`bool`, *optional*, defaults to `True`): If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see `past_key_values`). Set to `False` during training, `True` during generation """ outputs = self.roberta( input_ids=input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, past_key_values=past_key_values, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) return outputs # Copied from transformers.models.roberta.modeling_tf_roberta.TFRobertaLMHead with Roberta->Camembert class TFCamembertLMHead(tf.keras.layers.Layer): """Camembert Head for masked language modeling.""" def __init__(self, config, input_embeddings, **kwargs): super().__init__(**kwargs) self.config = config self.hidden_size = config.hidden_size self.dense = tf.keras.layers.Dense( config.hidden_size, kernel_initializer=get_initializer(config.initializer_range), name="dense" ) self.layer_norm = tf.keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="layer_norm") self.act = get_tf_activation("gelu") # The output weights are the same as the input embeddings, but there is # an output-only bias for each token. self.decoder = input_embeddings def build(self, input_shape): self.bias = self.add_weight(shape=(self.config.vocab_size,), initializer="zeros", trainable=True, name="bias") super().build(input_shape) def get_output_embeddings(self): return self.decoder def set_output_embeddings(self, value): self.decoder.weight = value self.decoder.vocab_size = shape_list(value)[0] def get_bias(self): return {"bias": self.bias} def set_bias(self, value): self.bias = value["bias"] self.config.vocab_size = shape_list(value["bias"])[0] def call(self, hidden_states): hidden_states = self.dense(hidden_states) hidden_states = self.act(hidden_states) hidden_states = self.layer_norm(hidden_states) # project back to size of vocabulary with bias seq_length = shape_list(tensor=hidden_states)[1] hidden_states = tf.reshape(tensor=hidden_states, shape=[-1, self.hidden_size]) hidden_states = tf.matmul(a=hidden_states, b=self.decoder.weight, transpose_b=True) hidden_states = tf.reshape(tensor=hidden_states, shape=[-1, seq_length, self.config.vocab_size]) hidden_states = tf.nn.bias_add(value=hidden_states, bias=self.bias) return hidden_states @add_start_docstrings( """CamemBERT Model with a `language modeling` head on top.""", CAMEMBERT_START_DOCSTRING, ) # Copied from transformers.models.roberta.modeling_tf_roberta.TFRobertaForMaskedLM with Roberta->Camembert, ROBERTA->CAMEMBERT class TFCamembertForMaskedLM(TFCamembertPreTrainedModel, TFMaskedLanguageModelingLoss): # names with a '.' represents the authorized unexpected/missing layers when a TF model is loaded from a PT model _keys_to_ignore_on_load_unexpected = [r"pooler", r"lm_head.decoder.weight"] def __init__(self, config, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) self.roberta = TFCamembertMainLayer(config, add_pooling_layer=False, name="roberta") self.lm_head = TFCamembertLMHead(config, self.roberta.embeddings, name="lm_head") def get_lm_head(self): return self.lm_head def get_prefix_bias_name(self): warnings.warn("The method get_prefix_bias_name is deprecated. Please use `get_bias` instead.", FutureWarning) return self.name + "/" + self.lm_head.name @unpack_inputs @add_start_docstrings_to_model_forward(CAMEMBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=TFMaskedLMOutput, config_class=_CONFIG_FOR_DOC, mask="<mask>", expected_output="' Paris'", expected_loss=0.1, ) def call( self, input_ids: TFModelInputType | None = None, attention_mask: np.ndarray | tf.Tensor | None = None, token_type_ids: np.ndarray | tf.Tensor | None = None, position_ids: np.ndarray | tf.Tensor | None = None, head_mask: np.ndarray | tf.Tensor | None = None, inputs_embeds: np.ndarray | tf.Tensor | None = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, labels: np.ndarray | tf.Tensor | None = None, training: Optional[bool] = False, ) -> Union[TFMaskedLMOutput, Tuple[tf.Tensor]]: r""" labels (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ..., config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]` """ outputs = self.roberta( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) sequence_output = outputs[0] prediction_scores = self.lm_head(sequence_output) loss = None if labels is None else self.hf_compute_loss(labels, prediction_scores) if not return_dict: output = (prediction_scores,) + outputs[2:] return ((loss,) + output) if loss is not None else output return TFMaskedLMOutput( loss=loss, logits=prediction_scores, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) # Copied from transformers.models.roberta.modeling_tf_roberta.TFRobertaClassificationHead class TFCamembertClassificationHead(tf.keras.layers.Layer): """Head for sentence-level classification tasks.""" def __init__(self, config, **kwargs): super().__init__(**kwargs) self.dense = tf.keras.layers.Dense( config.hidden_size, kernel_initializer=get_initializer(config.initializer_range), activation="tanh", name="dense", ) classifier_dropout = ( config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob ) self.dropout = tf.keras.layers.Dropout(classifier_dropout) self.out_proj = tf.keras.layers.Dense( config.num_labels, kernel_initializer=get_initializer(config.initializer_range), name="out_proj" ) def call(self, features, training=False): x = features[:, 0, :] # take <s> token (equiv. to [CLS]) x = self.dropout(x, training=training) x = self.dense(x) x = self.dropout(x, training=training) x = self.out_proj(x) return x @add_start_docstrings( """ CamemBERT Model transformer with a sequence classification/regression head on top (a linear layer on top of the pooled output) e.g. for GLUE tasks. """, CAMEMBERT_START_DOCSTRING, ) # Copied from transformers.models.roberta.modeling_tf_roberta.TFRobertaForSequenceClassification with Roberta->Camembert, ROBERTA->CAMEMBERT class TFCamembertForSequenceClassification(TFCamembertPreTrainedModel, TFSequenceClassificationLoss): # names with a '.' represents the authorized unexpected/missing layers when a TF model is loaded from a PT model _keys_to_ignore_on_load_unexpected = [r"pooler", r"lm_head"] def __init__(self, config, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) self.num_labels = config.num_labels self.roberta = TFCamembertMainLayer(config, add_pooling_layer=False, name="roberta") self.classifier = TFCamembertClassificationHead(config, name="classifier") @unpack_inputs @add_start_docstrings_to_model_forward(CAMEMBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint="cardiffnlp/twitter-roberta-base-emotion", output_type=TFSequenceClassifierOutput, config_class=_CONFIG_FOR_DOC, expected_output="'optimism'", expected_loss=0.08, ) def call( self, input_ids: TFModelInputType | None = None, attention_mask: np.ndarray | tf.Tensor | None = None, token_type_ids: np.ndarray | tf.Tensor | None = None, position_ids: np.ndarray | tf.Tensor | None = None, head_mask: np.ndarray | tf.Tensor | None = None, inputs_embeds: np.ndarray | tf.Tensor | None = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, labels: np.ndarray | tf.Tensor | None = None, training: Optional[bool] = False, ) -> Union[TFSequenceClassifierOutput, Tuple[tf.Tensor]]: r""" labels (`tf.Tensor` of shape `(batch_size,)`, *optional*): Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If `config.num_labels > 1` a classification loss is computed (Cross-Entropy). """ outputs = self.roberta( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) sequence_output = outputs[0] logits = self.classifier(sequence_output, training=training) loss = None if labels is None else self.hf_compute_loss(labels, logits) if not return_dict: output = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return TFSequenceClassifierOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) @add_start_docstrings( """ CamemBERT Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for Named-Entity-Recognition (NER) tasks. """, CAMEMBERT_START_DOCSTRING, ) # Copied from transformers.models.roberta.modeling_tf_roberta.TFRobertaForTokenClassification with Roberta->Camembert, ROBERTA->CAMEMBERT class TFCamembertForTokenClassification(TFCamembertPreTrainedModel, TFTokenClassificationLoss): # names with a '.' represents the authorized unexpected/missing layers when a TF model is loaded from a PT model _keys_to_ignore_on_load_unexpected = [r"pooler", r"lm_head"] _keys_to_ignore_on_load_missing = [r"dropout"] def __init__(self, config, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) self.num_labels = config.num_labels self.roberta = TFCamembertMainLayer(config, add_pooling_layer=False, name="roberta") classifier_dropout = ( config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob ) self.dropout = tf.keras.layers.Dropout(classifier_dropout) self.classifier = tf.keras.layers.Dense( config.num_labels, kernel_initializer=get_initializer(config.initializer_range), name="classifier" ) @unpack_inputs @add_start_docstrings_to_model_forward(CAMEMBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint="ydshieh/roberta-large-ner-english", output_type=TFTokenClassifierOutput, config_class=_CONFIG_FOR_DOC, expected_output="['O', 'ORG', 'ORG', 'O', 'O', 'O', 'O', 'O', 'LOC', 'O', 'LOC', 'LOC']", expected_loss=0.01, ) def call( self, input_ids: TFModelInputType | None = None, attention_mask: np.ndarray | tf.Tensor | None = None, token_type_ids: np.ndarray | tf.Tensor | None = None, position_ids: np.ndarray | tf.Tensor | None = None, head_mask: np.ndarray | tf.Tensor | None = None, inputs_embeds: np.ndarray | tf.Tensor | None = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, labels: np.ndarray | tf.Tensor | None = None, training: Optional[bool] = False, ) -> Union[TFTokenClassifierOutput, Tuple[tf.Tensor]]: r""" labels (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`. """ outputs = self.roberta( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) sequence_output = outputs[0] sequence_output = self.dropout(sequence_output, training=training) logits = self.classifier(sequence_output) loss = None if labels is None else self.hf_compute_loss(labels, logits) if not return_dict: output = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return TFTokenClassifierOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) @add_start_docstrings( """ CamemBERT Model with a multiple choice classification head on top (a linear layer on top of the pooled output and a softmax) e.g. for RocStories/SWAG tasks. """, CAMEMBERT_START_DOCSTRING, ) # Copied from transformers.models.roberta.modeling_tf_roberta.TFRobertaForMultipleChoice with Roberta->Camembert, ROBERTA->CAMEMBERT class TFCamembertForMultipleChoice(TFCamembertPreTrainedModel, TFMultipleChoiceLoss): # names with a '.' represents the authorized unexpected/missing layers when a TF model is loaded from a PT model _keys_to_ignore_on_load_unexpected = [r"lm_head"] _keys_to_ignore_on_load_missing = [r"dropout"] def __init__(self, config, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) self.roberta = TFCamembertMainLayer(config, name="roberta") self.dropout = tf.keras.layers.Dropout(config.hidden_dropout_prob) self.classifier = tf.keras.layers.Dense( 1, kernel_initializer=get_initializer(config.initializer_range), name="classifier" ) @unpack_inputs @add_start_docstrings_to_model_forward( CAMEMBERT_INPUTS_DOCSTRING.format("batch_size, num_choices, sequence_length") ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=TFMultipleChoiceModelOutput, config_class=_CONFIG_FOR_DOC, ) def call( self, input_ids: TFModelInputType | None = None, attention_mask: np.ndarray | tf.Tensor | None = None, token_type_ids: np.ndarray | tf.Tensor | None = None, position_ids: np.ndarray | tf.Tensor | None = None, head_mask: np.ndarray | tf.Tensor | None = None, inputs_embeds: np.ndarray | tf.Tensor | None = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, labels: np.ndarray | tf.Tensor | None = None, training: Optional[bool] = False, ) -> Union[TFMultipleChoiceModelOutput, Tuple[tf.Tensor]]: r""" labels (`tf.Tensor` of shape `(batch_size,)`, *optional*): Labels for computing the multiple choice classification loss. Indices should be in `[0, ..., num_choices]` where `num_choices` is the size of the second dimension of the input tensors. (See `input_ids` above) """ if input_ids is not None: num_choices = shape_list(input_ids)[1] seq_length = shape_list(input_ids)[2] else: num_choices = shape_list(inputs_embeds)[1] seq_length = shape_list(inputs_embeds)[2] flat_input_ids = tf.reshape(input_ids, (-1, seq_length)) if input_ids is not None else None flat_attention_mask = tf.reshape(attention_mask, (-1, seq_length)) if attention_mask is not None else None flat_token_type_ids = tf.reshape(token_type_ids, (-1, seq_length)) if token_type_ids is not None else None flat_position_ids = tf.reshape(position_ids, (-1, seq_length)) if position_ids is not None else None outputs = self.roberta( flat_input_ids, flat_attention_mask, flat_token_type_ids, flat_position_ids, head_mask, inputs_embeds, output_attentions, output_hidden_states, return_dict=return_dict, training=training, ) pooled_output = outputs[1] pooled_output = self.dropout(pooled_output, training=training) logits = self.classifier(pooled_output) reshaped_logits = tf.reshape(logits, (-1, num_choices)) loss = None if labels is None else self.hf_compute_loss(labels, reshaped_logits) if not return_dict: output = (reshaped_logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return TFMultipleChoiceModelOutput( loss=loss, logits=reshaped_logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) @add_start_docstrings( """ CamemBERT Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear layers on top of the hidden-states output to compute `span start logits` and `span end logits`). """, CAMEMBERT_START_DOCSTRING, ) # Copied from transformers.models.roberta.modeling_tf_roberta.TFRobertaForQuestionAnswering with Roberta->Camembert, ROBERTA->CAMEMBERT class TFCamembertForQuestionAnswering(TFCamembertPreTrainedModel, TFQuestionAnsweringLoss): # names with a '.' represents the authorized unexpected/missing layers when a TF model is loaded from a PT model _keys_to_ignore_on_load_unexpected = [r"pooler", r"lm_head"] def __init__(self, config, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) self.num_labels = config.num_labels self.roberta = TFCamembertMainLayer(config, add_pooling_layer=False, name="roberta") self.qa_outputs = tf.keras.layers.Dense( config.num_labels, kernel_initializer=get_initializer(config.initializer_range), name="qa_outputs" ) @unpack_inputs @add_start_docstrings_to_model_forward(CAMEMBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint="ydshieh/roberta-base-squad2", output_type=TFQuestionAnsweringModelOutput, config_class=_CONFIG_FOR_DOC, expected_output="' puppet'", expected_loss=0.86, ) def call( self, input_ids: TFModelInputType | None = None, attention_mask: np.ndarray | tf.Tensor | None = None, token_type_ids: np.ndarray | tf.Tensor | None = None, position_ids: np.ndarray | tf.Tensor | None = None, head_mask: np.ndarray | tf.Tensor | None = None, inputs_embeds: np.ndarray | tf.Tensor | None = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, start_positions: np.ndarray | tf.Tensor | None = None, end_positions: np.ndarray | tf.Tensor | None = None, training: Optional[bool] = False, ) -> Union[TFQuestionAnsweringModelOutput, Tuple[tf.Tensor]]: r""" start_positions (`tf.Tensor` of shape `(batch_size,)`, *optional*): Labels for position (index) of the start of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence are not taken into account for computing the loss. end_positions (`tf.Tensor` of shape `(batch_size,)`, *optional*): Labels for position (index) of the end of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence are not taken into account for computing the loss. """ outputs = self.roberta( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) sequence_output = outputs[0] logits = self.qa_outputs(sequence_output) start_logits, end_logits = tf.split(logits, 2, axis=-1) start_logits = tf.squeeze(start_logits, axis=-1) end_logits = tf.squeeze(end_logits, axis=-1) loss = None if start_positions is not None and end_positions is not None: labels = {"start_position": start_positions} labels["end_position"] = end_positions loss = self.hf_compute_loss(labels, (start_logits, end_logits)) if not return_dict: output = (start_logits, end_logits) + outputs[2:] return ((loss,) + output) if loss is not None else output return TFQuestionAnsweringModelOutput( loss=loss, start_logits=start_logits, end_logits=end_logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) @add_start_docstrings( """CamemBERT Model with a `language modeling` head on top for CLM fine-tuning.""", CAMEMBERT_START_DOCSTRING ) # Copied from transformers.models.roberta.modeling_tf_roberta.TFRobertaForCausalLM with Roberta->Camembert, ROBERTA->CAMEMBERT class TFCamembertForCausalLM(TFCamembertPreTrainedModel, TFCausalLanguageModelingLoss): # names with a '.' represents the authorized unexpected/missing layers when a TF model is loaded from a PT model _keys_to_ignore_on_load_unexpected = [r"pooler", r"lm_head.decoder.weight"] def __init__(self, config: CamembertConfig, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) if not config.is_decoder: logger.warning("If you want to use `TFCamembertLMHeadModel` as a standalone, add `is_decoder=True.`") self.roberta = TFCamembertMainLayer(config, add_pooling_layer=False, name="roberta") self.lm_head = TFCamembertLMHead(config, input_embeddings=self.roberta.embeddings, name="lm_head") def get_lm_head(self): return self.lm_head def get_prefix_bias_name(self): warnings.warn("The method get_prefix_bias_name is deprecated. Please use `get_bias` instead.", FutureWarning) return self.name + "/" + self.lm_head.name # Copied from transformers.models.bert.modeling_tf_bert.TFBertLMHeadModel.prepare_inputs_for_generation def prepare_inputs_for_generation(self, input_ids, past_key_values=None, attention_mask=None, **model_kwargs): input_shape = input_ids.shape # if model is used as a decoder in encoder-decoder model, the decoder attention mask is created on the fly if attention_mask is None: attention_mask = tf.ones(input_shape) # cut decoder_input_ids if past is used if past_key_values is not None: input_ids = input_ids[:, -1:] return {"input_ids": input_ids, "attention_mask": attention_mask, "past_key_values": past_key_values} @unpack_inputs @add_start_docstrings_to_model_forward(CAMEMBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=TFCausalLMOutputWithCrossAttentions, config_class=_CONFIG_FOR_DOC, ) def call( self, input_ids: TFModelInputType | None = None, attention_mask: np.ndarray | tf.Tensor | None = None, token_type_ids: np.ndarray | tf.Tensor | None = None, position_ids: np.ndarray | tf.Tensor | None = None, head_mask: np.ndarray | tf.Tensor | None = None, inputs_embeds: np.ndarray | tf.Tensor | None = None, encoder_hidden_states: np.ndarray | tf.Tensor | None = None, encoder_attention_mask: np.ndarray | tf.Tensor | None = None, past_key_values: Optional[Tuple[Tuple[Union[np.ndarray, tf.Tensor]]]] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, labels: np.ndarray | tf.Tensor | None = None, training: Optional[bool] = False, ) -> Union[TFCausalLMOutputWithCrossAttentions, Tuple[tf.Tensor]]: r""" encoder_hidden_states (`tf.Tensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if the model is configured as a decoder. encoder_attention_mask (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. past_key_values (`Tuple[Tuple[tf.Tensor]]` of length `config.n_layers`) contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding. If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `decoder_input_ids` of shape `(batch_size, sequence_length)`. use_cache (`bool`, *optional*, defaults to `True`): If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see `past_key_values`). Set to `False` during training, `True` during generation labels (`tf.Tensor` or `np.ndarray` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the cross entropy classification loss. Indices should be in `[0, ..., config.vocab_size - 1]`. """ outputs = self.roberta( input_ids=input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, past_key_values=past_key_values, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) sequence_output = outputs[0] logits = self.lm_head(hidden_states=sequence_output, training=training) loss = None if labels is not None: # shift labels to the left and cut last logit token shifted_logits = logits[:, :-1] labels = labels[:, 1:] loss = self.hf_compute_loss(labels=labels, logits=shifted_logits) if not return_dict: output = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return TFCausalLMOutputWithCrossAttentions( loss=loss, logits=logits, past_key_values=outputs.past_key_values, hidden_states=outputs.hidden_states, attentions=outputs.attentions, cross_attentions=outputs.cross_attentions, )
0
hf_public_repos/transformers/src/transformers/models
hf_public_repos/transformers/src/transformers/models/camembert/tokenization_camembert.py
# coding=utf-8 # Copyright 2018 Google AI, Google Brain and Carnegie Mellon University Authors and the HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License """ Tokenization classes for Camembert model.""" import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging logger = logging.get_logger(__name__) VOCAB_FILES_NAMES = {"vocab_file": "sentencepiece.bpe.model"} PRETRAINED_VOCAB_FILES_MAP = { "vocab_file": { "camembert-base": "https://huggingface.co/camembert-base/resolve/main/sentencepiece.bpe.model", } } PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = { "camembert-base": 512, } SPIECE_UNDERLINE = "▁" class CamembertTokenizer(PreTrainedTokenizer): """ Adapted from [`RobertaTokenizer`] and [`XLNetTokenizer`]. Construct a CamemBERT tokenizer. Based on [SentencePiece](https://github.com/google/sentencepiece). This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to this superclass for more information regarding those methods. Args: vocab_file (`str`): [SentencePiece](https://github.com/google/sentencepiece) file (generally has a *.spm* extension) that contains the vocabulary necessary to instantiate a tokenizer. bos_token (`str`, *optional*, defaults to `"<s>"`): The beginning of sequence token that was used during pretraining. Can be used a sequence classifier token. <Tip> When building a sequence using special tokens, this is not the token that is used for the beginning of sequence. The token used is the `cls_token`. </Tip> eos_token (`str`, *optional*, defaults to `"</s>"`): The end of sequence token. <Tip> When building a sequence using special tokens, this is not the token that is used for the end of sequence. The token used is the `sep_token`. </Tip> sep_token (`str`, *optional*, defaults to `"</s>"`): The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for sequence classification or for a text and a question for question answering. It is also used as the last token of a sequence built with special tokens. cls_token (`str`, *optional*, defaults to `"<s>"`): The classifier token which is used when doing sequence classification (classification of the whole sequence instead of per-token classification). It is the first token of the sequence when built with special tokens. unk_token (`str`, *optional*, defaults to `"<unk>"`): The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this token instead. pad_token (`str`, *optional*, defaults to `"<pad>"`): The token used for padding, for example when batching sequences of different lengths. mask_token (`str`, *optional*, defaults to `"<mask>"`): The token used for masking values. This is the token used when training this model with masked language modeling. This is the token which the model will try to predict. additional_special_tokens (`List[str]`, *optional*, defaults to `["<s>NOTUSED", "</s>NOTUSED"]`): Additional special tokens used by the tokenizer. sp_model_kwargs (`dict`, *optional*): Will be passed to the `SentencePieceProcessor.__init__()` method. The [Python wrapper for SentencePiece](https://github.com/google/sentencepiece/tree/master/python) can be used, among other things, to set: - `enable_sampling`: Enable subword regularization. - `nbest_size`: Sampling parameters for unigram. Invalid for BPE-Dropout. - `nbest_size = {0,1}`: No sampling is performed. - `nbest_size > 1`: samples from the nbest_size results. - `nbest_size < 0`: assuming that nbest_size is infinite and samples from the all hypothesis (lattice) using forward-filtering-and-backward-sampling algorithm. - `alpha`: Smoothing parameter for unigram sampling, and dropout probability of merge operations for BPE-dropout. Attributes: sp_model (`SentencePieceProcessor`): The *SentencePiece* processor that is used for every conversion (string, tokens and IDs). """ vocab_files_names = VOCAB_FILES_NAMES pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES model_input_names = ["input_ids", "attention_mask"] def __init__( self, vocab_file, bos_token="<s>", eos_token="</s>", sep_token="</s>", cls_token="<s>", unk_token="<unk>", pad_token="<pad>", mask_token="<mask>", additional_special_tokens=["<s>NOTUSED", "</s>NOTUSED"], sp_model_kwargs: Optional[Dict[str, Any]] = None, **kwargs, ) -> None: # Mask token behave like a normal word, i.e. include the space before it mask_token = AddedToken(mask_token, lstrip=True, rstrip=False) if isinstance(mask_token, str) else mask_token self.sp_model_kwargs = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=bos_token, eos_token=eos_token, unk_token=unk_token, sep_token=sep_token, cls_token=cls_token, pad_token=pad_token, mask_token=mask_token, additional_special_tokens=additional_special_tokens, sp_model_kwargs=self.sp_model_kwargs, **kwargs, ) self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(str(vocab_file)) self.vocab_file = vocab_file # HACK: These tokens were added by fairseq but don't seem to be actually used when duplicated in the actual # sentencepiece vocabulary (this is the case for <s> and </s> self.fairseq_tokens_to_ids = {"<s>NOTUSED": 0, "<pad>": 1, "</s>NOTUSED": 2, "<unk>": 3} self.fairseq_offset = len(self.fairseq_tokens_to_ids) self.fairseq_tokens_to_ids["<mask>"] = len(self.sp_model) + len(self.fairseq_tokens_to_ids) self.fairseq_ids_to_tokens = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def build_inputs_with_special_tokens( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None ) -> List[int]: """ Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and adding special tokens. An CamemBERT sequence has the following format: - single sequence: `<s> X </s>` - pair of sequences: `<s> A </s></s> B </s>` Args: token_ids_0 (`List[int]`): List of IDs to which the special tokens will be added. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. Returns: `List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens. """ if token_ids_1 is None: return [self.cls_token_id] + token_ids_0 + [self.sep_token_id] cls = [self.cls_token_id] sep = [self.sep_token_id] return cls + token_ids_0 + sep + sep + token_ids_1 + sep def get_special_tokens_mask( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False ) -> List[int]: """ Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding special tokens using the tokenizer `prepare_for_model` method. Args: token_ids_0 (`List[int]`): List of IDs. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. already_has_special_tokens (`bool`, *optional*, defaults to `False`): Whether or not the token list is already formatted with special tokens for the model. Returns: `List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token. """ if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True ) if token_ids_1 is None: return [1] + ([0] * len(token_ids_0)) + [1] return [1] + ([0] * len(token_ids_0)) + [1, 1] + ([0] * len(token_ids_1)) + [1] def create_token_type_ids_from_sequences( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None ) -> List[int]: """ Create a mask from the two sequences passed to be used in a sequence-pair classification task. CamemBERT, like RoBERTa, does not make use of token type ids, therefore a list of zeros is returned. Args: token_ids_0 (`List[int]`): List of IDs. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. Returns: `List[int]`: List of zeros. """ sep = [self.sep_token_id] cls = [self.cls_token_id] if token_ids_1 is None: return len(cls + token_ids_0 + sep) * [0] return len(cls + token_ids_0 + sep + sep + token_ids_1 + sep) * [0] @property def vocab_size(self): return len(self.fairseq_tokens_to_ids) + len(self.sp_model) def get_vocab(self): vocab = {self.convert_ids_to_tokens(i): i for i in range(self.vocab_size)} vocab.update(self.added_tokens_encoder) return vocab def _tokenize(self, text: str) -> List[str]: return self.sp_model.encode(text, out_type=str) def _convert_token_to_id(self, token): """Converts a token (str) in an id using the vocab.""" if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] elif self.sp_model.PieceToId(token) == 0: # Convert sentence piece unk token to fairseq unk token index return self.unk_token_id return self.fairseq_offset + self.sp_model.PieceToId(token) def _convert_id_to_token(self, index): """Converts an index (integer) in a token (str) using the vocab.""" if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset) def convert_tokens_to_string(self, tokens): """Converts a sequence of tokens (string) in a single string.""" current_sub_tokens = [] out_string = "" prev_is_special = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(current_sub_tokens) + token prev_is_special = True current_sub_tokens = [] else: current_sub_tokens.append(token) prev_is_special = False out_string += self.sp_model.decode(current_sub_tokens) return out_string.strip() def __getstate__(self): state = self.__dict__.copy() state["sp_model"] = None return state def __setstate__(self, d): self.__dict__ = d # for backward compatibility if not hasattr(self, "sp_model_kwargs"): self.sp_model_kwargs = {} self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(self.vocab_file) def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]: if not os.path.isdir(save_directory): logger.error(f"Vocabulary path ({save_directory}) should be a directory") return out_vocab_file = os.path.join( save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file) and os.path.isfile(self.vocab_file): copyfile(self.vocab_file, out_vocab_file) elif not os.path.isfile(self.vocab_file): with open(out_vocab_file, "wb") as fi: content_spiece_model = self.sp_model.serialized_model_proto() fi.write(content_spiece_model) return (out_vocab_file,)
0
hf_public_repos/transformers/src/transformers/models
hf_public_repos/transformers/src/transformers/models/camembert/modeling_camembert.py
# coding=utf-8 # Copyright 2019 Inria, Facebook AI Research and the HuggingFace Inc. team. # Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """PyTorch CamemBERT model.""" import math from typing import List, Optional, Tuple, Union import torch import torch.utils.checkpoint from torch import nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACT2FN, gelu from ...modeling_outputs import ( BaseModelOutputWithPastAndCrossAttentions, BaseModelOutputWithPoolingAndCrossAttentions, CausalLMOutputWithCrossAttentions, MaskedLMOutput, MultipleChoiceModelOutput, QuestionAnsweringModelOutput, SequenceClassifierOutput, TokenClassifierOutput, ) from ...modeling_utils import PreTrainedModel from ...pytorch_utils import apply_chunking_to_forward, find_pruneable_heads_and_indices, prune_linear_layer from ...utils import ( add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings, ) from .configuration_camembert import CamembertConfig logger = logging.get_logger(__name__) _CHECKPOINT_FOR_DOC = "camembert-base" _CONFIG_FOR_DOC = "CamembertConfig" CAMEMBERT_PRETRAINED_MODEL_ARCHIVE_LIST = [ "camembert-base", "Musixmatch/umberto-commoncrawl-cased-v1", "Musixmatch/umberto-wikipedia-uncased-v1", # See all CamemBERT models at https://huggingface.co/models?filter=camembert ] CAMEMBERT_START_DOCSTRING = r""" This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.) This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`CamembertConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ # Copied from transformers.models.roberta.modeling_roberta.RobertaEmbeddings with Roberta->Camembert class CamembertEmbeddings(nn.Module): """ Same as BertEmbeddings with a tiny tweak for positional embeddings indexing. """ # Copied from transformers.models.bert.modeling_bert.BertEmbeddings.__init__ def __init__(self, config): super().__init__() self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id) self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size) self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size) # self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load # any TensorFlow checkpoint file self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.dropout = nn.Dropout(config.hidden_dropout_prob) # position_ids (1, len position emb) is contiguous in memory and exported when serialized self.position_embedding_type = getattr(config, "position_embedding_type", "absolute") self.register_buffer( "position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)), persistent=False ) self.register_buffer( "token_type_ids", torch.zeros(self.position_ids.size(), dtype=torch.long), persistent=False ) # End copy self.padding_idx = config.pad_token_id self.position_embeddings = nn.Embedding( config.max_position_embeddings, config.hidden_size, padding_idx=self.padding_idx ) def forward( self, input_ids=None, token_type_ids=None, position_ids=None, inputs_embeds=None, past_key_values_length=0 ): if position_ids is None: if input_ids is not None: # Create the position ids from the input token ids. Any padded tokens remain padded. position_ids = create_position_ids_from_input_ids(input_ids, self.padding_idx, past_key_values_length) else: position_ids = self.create_position_ids_from_inputs_embeds(inputs_embeds) if input_ids is not None: input_shape = input_ids.size() else: input_shape = inputs_embeds.size()[:-1] seq_length = input_shape[1] # Setting the token_type_ids to the registered buffer in constructor where it is all zeros, which usually occurs # when its auto-generated, registered buffer helps users when tracing the model without passing token_type_ids, solves # issue #5664 if token_type_ids is None: if hasattr(self, "token_type_ids"): buffered_token_type_ids = self.token_type_ids[:, :seq_length] buffered_token_type_ids_expanded = buffered_token_type_ids.expand(input_shape[0], seq_length) token_type_ids = buffered_token_type_ids_expanded else: token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=self.position_ids.device) if inputs_embeds is None: inputs_embeds = self.word_embeddings(input_ids) token_type_embeddings = self.token_type_embeddings(token_type_ids) embeddings = inputs_embeds + token_type_embeddings if self.position_embedding_type == "absolute": position_embeddings = self.position_embeddings(position_ids) embeddings += position_embeddings embeddings = self.LayerNorm(embeddings) embeddings = self.dropout(embeddings) return embeddings def create_position_ids_from_inputs_embeds(self, inputs_embeds): """ We are provided embeddings directly. We cannot infer which are padded so just generate sequential position ids. Args: inputs_embeds: torch.Tensor Returns: torch.Tensor """ input_shape = inputs_embeds.size()[:-1] sequence_length = input_shape[1] position_ids = torch.arange( self.padding_idx + 1, sequence_length + self.padding_idx + 1, dtype=torch.long, device=inputs_embeds.device ) return position_ids.unsqueeze(0).expand(input_shape) # Copied from transformers.models.roberta.modeling_roberta.RobertaSelfAttention with Roberta->Camembert class CamembertSelfAttention(nn.Module): def __init__(self, config, position_embedding_type=None): super().__init__() if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"): raise ValueError( f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention " f"heads ({config.num_attention_heads})" ) self.num_attention_heads = config.num_attention_heads self.attention_head_size = int(config.hidden_size / config.num_attention_heads) self.all_head_size = self.num_attention_heads * self.attention_head_size self.query = nn.Linear(config.hidden_size, self.all_head_size) self.key = nn.Linear(config.hidden_size, self.all_head_size) self.value = nn.Linear(config.hidden_size, self.all_head_size) self.dropout = nn.Dropout(config.attention_probs_dropout_prob) self.position_embedding_type = position_embedding_type or getattr( config, "position_embedding_type", "absolute" ) if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query": self.max_position_embeddings = config.max_position_embeddings self.distance_embedding = nn.Embedding(2 * config.max_position_embeddings - 1, self.attention_head_size) self.is_decoder = config.is_decoder def transpose_for_scores(self, x: torch.Tensor) -> torch.Tensor: new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size) x = x.view(new_x_shape) return x.permute(0, 2, 1, 3) def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.FloatTensor] = None, head_mask: Optional[torch.FloatTensor] = None, encoder_hidden_states: Optional[torch.FloatTensor] = None, encoder_attention_mask: Optional[torch.FloatTensor] = None, past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, output_attentions: Optional[bool] = False, ) -> Tuple[torch.Tensor]: mixed_query_layer = self.query(hidden_states) # If this is instantiated as a cross-attention module, the keys # and values come from an encoder; the attention mask needs to be # such that the encoder's padding tokens are not attended to. is_cross_attention = encoder_hidden_states is not None if is_cross_attention and past_key_value is not None: # reuse k,v, cross_attentions key_layer = past_key_value[0] value_layer = past_key_value[1] attention_mask = encoder_attention_mask elif is_cross_attention: key_layer = self.transpose_for_scores(self.key(encoder_hidden_states)) value_layer = self.transpose_for_scores(self.value(encoder_hidden_states)) attention_mask = encoder_attention_mask elif past_key_value is not None: key_layer = self.transpose_for_scores(self.key(hidden_states)) value_layer = self.transpose_for_scores(self.value(hidden_states)) key_layer = torch.cat([past_key_value[0], key_layer], dim=2) value_layer = torch.cat([past_key_value[1], value_layer], dim=2) else: key_layer = self.transpose_for_scores(self.key(hidden_states)) value_layer = self.transpose_for_scores(self.value(hidden_states)) query_layer = self.transpose_for_scores(mixed_query_layer) use_cache = past_key_value is not None if self.is_decoder: # if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states. # Further calls to cross_attention layer can then reuse all cross-attention # key/value_states (first "if" case) # if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of # all previous decoder key/value_states. Further calls to uni-directional self-attention # can concat previous decoder key/value_states to current projected key/value_states (third "elif" case) # if encoder bi-directional self-attention `past_key_value` is always `None` past_key_value = (key_layer, value_layer) # Take the dot product between "query" and "key" to get the raw attention scores. attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2)) if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query": query_length, key_length = query_layer.shape[2], key_layer.shape[2] if use_cache: position_ids_l = torch.tensor(key_length - 1, dtype=torch.long, device=hidden_states.device).view( -1, 1 ) else: position_ids_l = torch.arange(query_length, dtype=torch.long, device=hidden_states.device).view(-1, 1) position_ids_r = torch.arange(key_length, dtype=torch.long, device=hidden_states.device).view(1, -1) distance = position_ids_l - position_ids_r positional_embedding = self.distance_embedding(distance + self.max_position_embeddings - 1) positional_embedding = positional_embedding.to(dtype=query_layer.dtype) # fp16 compatibility if self.position_embedding_type == "relative_key": relative_position_scores = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding) attention_scores = attention_scores + relative_position_scores elif self.position_embedding_type == "relative_key_query": relative_position_scores_query = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding) relative_position_scores_key = torch.einsum("bhrd,lrd->bhlr", key_layer, positional_embedding) attention_scores = attention_scores + relative_position_scores_query + relative_position_scores_key attention_scores = attention_scores / math.sqrt(self.attention_head_size) if attention_mask is not None: # Apply the attention mask is (precomputed for all layers in CamembertModel forward() function) attention_scores = attention_scores + attention_mask # Normalize the attention scores to probabilities. attention_probs = nn.functional.softmax(attention_scores, dim=-1) # This is actually dropping out entire tokens to attend to, which might # seem a bit unusual, but is taken from the original Transformer paper. attention_probs = self.dropout(attention_probs) # Mask heads if we want to if head_mask is not None: attention_probs = attention_probs * head_mask context_layer = torch.matmul(attention_probs, value_layer) context_layer = context_layer.permute(0, 2, 1, 3).contiguous() new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,) context_layer = context_layer.view(new_context_layer_shape) outputs = (context_layer, attention_probs) if output_attentions else (context_layer,) if self.is_decoder: outputs = outputs + (past_key_value,) return outputs # Copied from transformers.models.roberta.modeling_roberta.RobertaSelfOutput with Roberta->Camembert class CamembertSelfOutput(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states) hidden_states = self.LayerNorm(hidden_states + input_tensor) return hidden_states # Copied from transformers.models.roberta.modeling_roberta.RobertaAttention with Roberta->Camembert class CamembertAttention(nn.Module): def __init__(self, config, position_embedding_type=None): super().__init__() self.self = CamembertSelfAttention(config, position_embedding_type=position_embedding_type) self.output = CamembertSelfOutput(config) self.pruned_heads = set() def prune_heads(self, heads): if len(heads) == 0: return heads, index = find_pruneable_heads_and_indices( heads, self.self.num_attention_heads, self.self.attention_head_size, self.pruned_heads ) # Prune linear layers self.self.query = prune_linear_layer(self.self.query, index) self.self.key = prune_linear_layer(self.self.key, index) self.self.value = prune_linear_layer(self.self.value, index) self.output.dense = prune_linear_layer(self.output.dense, index, dim=1) # Update hyper params and store pruned heads self.self.num_attention_heads = self.self.num_attention_heads - len(heads) self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads self.pruned_heads = self.pruned_heads.union(heads) def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.FloatTensor] = None, head_mask: Optional[torch.FloatTensor] = None, encoder_hidden_states: Optional[torch.FloatTensor] = None, encoder_attention_mask: Optional[torch.FloatTensor] = None, past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, output_attentions: Optional[bool] = False, ) -> Tuple[torch.Tensor]: self_outputs = self.self( hidden_states, attention_mask, head_mask, encoder_hidden_states, encoder_attention_mask, past_key_value, output_attentions, ) attention_output = self.output(self_outputs[0], hidden_states) outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them return outputs # Copied from transformers.models.bert.modeling_bert.BertIntermediate with Bert->Roberta->Camembert class CamembertIntermediate(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.intermediate_size) if isinstance(config.hidden_act, str): self.intermediate_act_fn = ACT2FN[config.hidden_act] else: self.intermediate_act_fn = config.hidden_act def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.intermediate_act_fn(hidden_states) return hidden_states # Copied from transformers.models.bert.modeling_bert.BertOutput with Bert->Roberta->Camembert class CamembertOutput(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.intermediate_size, config.hidden_size) self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states) hidden_states = self.LayerNorm(hidden_states + input_tensor) return hidden_states # Copied from transformers.models.roberta.modeling_roberta.RobertaLayer with Roberta->Camembert class CamembertLayer(nn.Module): def __init__(self, config): super().__init__() self.chunk_size_feed_forward = config.chunk_size_feed_forward self.seq_len_dim = 1 self.attention = CamembertAttention(config) self.is_decoder = config.is_decoder self.add_cross_attention = config.add_cross_attention if self.add_cross_attention: if not self.is_decoder: raise ValueError(f"{self} should be used as a decoder model if cross attention is added") self.crossattention = CamembertAttention(config, position_embedding_type="absolute") self.intermediate = CamembertIntermediate(config) self.output = CamembertOutput(config) def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.FloatTensor] = None, head_mask: Optional[torch.FloatTensor] = None, encoder_hidden_states: Optional[torch.FloatTensor] = None, encoder_attention_mask: Optional[torch.FloatTensor] = None, past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, output_attentions: Optional[bool] = False, ) -> Tuple[torch.Tensor]: # decoder uni-directional self-attention cached key/values tuple is at positions 1,2 self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None self_attention_outputs = self.attention( hidden_states, attention_mask, head_mask, output_attentions=output_attentions, past_key_value=self_attn_past_key_value, ) attention_output = self_attention_outputs[0] # if decoder, the last output is tuple of self-attn cache if self.is_decoder: outputs = self_attention_outputs[1:-1] present_key_value = self_attention_outputs[-1] else: outputs = self_attention_outputs[1:] # add self attentions if we output attention weights cross_attn_present_key_value = None if self.is_decoder and encoder_hidden_states is not None: if not hasattr(self, "crossattention"): raise ValueError( f"If `encoder_hidden_states` are passed, {self} has to be instantiated with cross-attention layers" " by setting `config.add_cross_attention=True`" ) # cross_attn cached key/values tuple is at positions 3,4 of past_key_value tuple cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None cross_attention_outputs = self.crossattention( attention_output, attention_mask, head_mask, encoder_hidden_states, encoder_attention_mask, cross_attn_past_key_value, output_attentions, ) attention_output = cross_attention_outputs[0] outputs = outputs + cross_attention_outputs[1:-1] # add cross attentions if we output attention weights # add cross-attn cache to positions 3,4 of present_key_value tuple cross_attn_present_key_value = cross_attention_outputs[-1] present_key_value = present_key_value + cross_attn_present_key_value layer_output = apply_chunking_to_forward( self.feed_forward_chunk, self.chunk_size_feed_forward, self.seq_len_dim, attention_output ) outputs = (layer_output,) + outputs # if decoder, return the attn key/values as the last output if self.is_decoder: outputs = outputs + (present_key_value,) return outputs def feed_forward_chunk(self, attention_output): intermediate_output = self.intermediate(attention_output) layer_output = self.output(intermediate_output, attention_output) return layer_output # Copied from transformers.models.roberta.modeling_roberta.RobertaEncoder with Roberta->Camembert class CamembertEncoder(nn.Module): def __init__(self, config): super().__init__() self.config = config self.layer = nn.ModuleList([CamembertLayer(config) for _ in range(config.num_hidden_layers)]) self.gradient_checkpointing = False def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.FloatTensor] = None, head_mask: Optional[torch.FloatTensor] = None, encoder_hidden_states: Optional[torch.FloatTensor] = None, encoder_attention_mask: Optional[torch.FloatTensor] = None, past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = False, output_hidden_states: Optional[bool] = False, return_dict: Optional[bool] = True, ) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPastAndCrossAttentions]: all_hidden_states = () if output_hidden_states else None all_self_attentions = () if output_attentions else None all_cross_attentions = () if output_attentions and self.config.add_cross_attention else None if self.gradient_checkpointing and self.training: if use_cache: logger.warning_once( "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..." ) use_cache = False next_decoder_cache = () if use_cache else None for i, layer_module in enumerate(self.layer): if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) layer_head_mask = head_mask[i] if head_mask is not None else None past_key_value = past_key_values[i] if past_key_values is not None else None if self.gradient_checkpointing and self.training: def create_custom_forward(module): def custom_forward(*inputs): return module(*inputs, past_key_value, output_attentions) return custom_forward layer_outputs = torch.utils.checkpoint.checkpoint( create_custom_forward(layer_module), hidden_states, attention_mask, layer_head_mask, encoder_hidden_states, encoder_attention_mask, ) else: layer_outputs = layer_module( hidden_states, attention_mask, layer_head_mask, encoder_hidden_states, encoder_attention_mask, past_key_value, output_attentions, ) hidden_states = layer_outputs[0] if use_cache: next_decoder_cache += (layer_outputs[-1],) if output_attentions: all_self_attentions = all_self_attentions + (layer_outputs[1],) if self.config.add_cross_attention: all_cross_attentions = all_cross_attentions + (layer_outputs[2],) if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) if not return_dict: return tuple( v for v in [ hidden_states, next_decoder_cache, all_hidden_states, all_self_attentions, all_cross_attentions, ] if v is not None ) return BaseModelOutputWithPastAndCrossAttentions( last_hidden_state=hidden_states, past_key_values=next_decoder_cache, hidden_states=all_hidden_states, attentions=all_self_attentions, cross_attentions=all_cross_attentions, ) # Copied from transformers.models.bert.modeling_bert.BertPooler class CamembertPooler(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) self.activation = nn.Tanh() def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: # We "pool" the model by simply taking the hidden state corresponding # to the first token. first_token_tensor = hidden_states[:, 0] pooled_output = self.dense(first_token_tensor) pooled_output = self.activation(pooled_output) return pooled_output class CamembertPreTrainedModel(PreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = CamembertConfig base_model_prefix = "roberta" supports_gradient_checkpointing = True # Copied from transformers.models.bert.modeling_bert.BertPreTrainedModel._init_weights def _init_weights(self, module): """Initialize the weights""" if isinstance(module, nn.Linear): # Slightly different from the TF version which uses truncated_normal for initialization # cf https://github.com/pytorch/pytorch/pull/5617 module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.Embedding): module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if module.padding_idx is not None: module.weight.data[module.padding_idx].zero_() elif isinstance(module, nn.LayerNorm): module.bias.data.zero_() module.weight.data.fill_(1.0) def _set_gradient_checkpointing(self, module, value=False): if isinstance(module, CamembertEncoder): module.gradient_checkpointing = value CAMEMBERT_INPUTS_DOCSTRING = r""" Args: input_ids (`torch.LongTensor` of shape `({0})`): Indices of input sequence tokens in the vocabulary. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) token_type_ids (`torch.LongTensor` of shape `({0})`, *optional*): Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0, 1]`: - 0 corresponds to a *sentence A* token, - 1 corresponds to a *sentence B* token. [What are token type IDs?](../glossary#token-type-ids) position_ids (`torch.LongTensor` of shape `({0})`, *optional*): Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, config.max_position_embeddings - 1]`. [What are position IDs?](../glossary#position-ids) head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. inputs_embeds (`torch.FloatTensor` of shape `({0}, hidden_size)`, *optional*): Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert `input_ids` indices into associated vectors than the model's internal embedding lookup matrix. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ # Copied from transformers.models.roberta.modeling_roberta.RobertaClassificationHead with Roberta->Camembert class CamembertClassificationHead(nn.Module): """Head for sentence-level classification tasks.""" def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) classifier_dropout = ( config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob ) self.dropout = nn.Dropout(classifier_dropout) self.out_proj = nn.Linear(config.hidden_size, config.num_labels) def forward(self, features, **kwargs): x = features[:, 0, :] # take <s> token (equiv. to [CLS]) x = self.dropout(x) x = self.dense(x) x = torch.tanh(x) x = self.dropout(x) x = self.out_proj(x) return x # Copied from transformers.models.roberta.modeling_roberta.RobertaLMHead with Roberta->Camembert class CamembertLMHead(nn.Module): """Camembert Head for masked language modeling.""" def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) self.layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.decoder = nn.Linear(config.hidden_size, config.vocab_size) self.bias = nn.Parameter(torch.zeros(config.vocab_size)) self.decoder.bias = self.bias def forward(self, features, **kwargs): x = self.dense(features) x = gelu(x) x = self.layer_norm(x) # project back to size of vocabulary with bias x = self.decoder(x) return x def _tie_weights(self): # To tie those two weights if they get disconnected (on TPU or when the bias is resized) # For accelerate compatibility and to not break backward compatibility if self.decoder.bias.device.type == "meta": self.decoder.bias = self.bias else: self.bias = self.decoder.bias @add_start_docstrings( "The bare CamemBERT Model transformer outputting raw hidden-states without any specific head on top.", CAMEMBERT_START_DOCSTRING, ) class CamembertModel(CamembertPreTrainedModel): """ The model can behave as an encoder (with only self-attention) as well as a decoder, in which case a layer of cross-attention is added between the self-attention layers, following the architecture described in *Attention is all you need*_ by Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser and Illia Polosukhin. To behave as a decoder the model needs to be initialized with the `is_decoder` argument of the configuration set to `True`. To be used in a Seq2Seq model, the model needs to initialized with both `is_decoder` argument and `add_cross_attention` set to `True`; an `encoder_hidden_states` is then expected as an input to the forward pass. .. _*Attention is all you need*: https://arxiv.org/abs/1706.03762 """ _no_split_modules = [] # Copied from transformers.models.bert.modeling_bert.BertModel.__init__ with Bert->Camembert def __init__(self, config, add_pooling_layer=True): super().__init__(config) self.config = config self.embeddings = CamembertEmbeddings(config) self.encoder = CamembertEncoder(config) self.pooler = CamembertPooler(config) if add_pooling_layer else None # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.embeddings.word_embeddings def set_input_embeddings(self, value): self.embeddings.word_embeddings = value def _prune_heads(self, heads_to_prune): """ Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base class PreTrainedModel """ for layer, heads in heads_to_prune.items(): self.encoder.layer[layer].attention.prune_heads(heads) @add_start_docstrings_to_model_forward(CAMEMBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=BaseModelOutputWithPoolingAndCrossAttentions, config_class=_CONFIG_FOR_DOC, ) # Copied from transformers.models.bert.modeling_bert.BertModel.forward def forward( self, input_ids: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, token_type_ids: Optional[torch.Tensor] = None, position_ids: Optional[torch.Tensor] = None, head_mask: Optional[torch.Tensor] = None, inputs_embeds: Optional[torch.Tensor] = None, encoder_hidden_states: Optional[torch.Tensor] = None, encoder_attention_mask: Optional[torch.Tensor] = None, past_key_values: Optional[List[torch.FloatTensor]] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPoolingAndCrossAttentions]: r""" encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if the model is configured as a decoder. encoder_attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`): Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding. If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `decoder_input_ids` of shape `(batch_size, sequence_length)`. use_cache (`bool`, *optional*): If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see `past_key_values`). """ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict if self.config.is_decoder: use_cache = use_cache if use_cache is not None else self.config.use_cache else: use_cache = False if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") elif input_ids is not None: input_shape = input_ids.size() self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask) elif inputs_embeds is not None: input_shape = inputs_embeds.size()[:-1] else: raise ValueError("You have to specify either input_ids or inputs_embeds") batch_size, seq_length = input_shape device = input_ids.device if input_ids is not None else inputs_embeds.device # past_key_values_length past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0 if attention_mask is None: attention_mask = torch.ones(((batch_size, seq_length + past_key_values_length)), device=device) if token_type_ids is None: if hasattr(self.embeddings, "token_type_ids"): buffered_token_type_ids = self.embeddings.token_type_ids[:, :seq_length] buffered_token_type_ids_expanded = buffered_token_type_ids.expand(batch_size, seq_length) token_type_ids = buffered_token_type_ids_expanded else: token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device) # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] # ourselves in which case we just need to make it broadcastable to all heads. extended_attention_mask: torch.Tensor = self.get_extended_attention_mask(attention_mask, input_shape) # If a 2D or 3D attention mask is provided for the cross-attention # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length] if self.config.is_decoder and encoder_hidden_states is not None: encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size() encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length) if encoder_attention_mask is None: encoder_attention_mask = torch.ones(encoder_hidden_shape, device=device) encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask) else: encoder_extended_attention_mask = None # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers) embedding_output = self.embeddings( input_ids=input_ids, position_ids=position_ids, token_type_ids=token_type_ids, inputs_embeds=inputs_embeds, past_key_values_length=past_key_values_length, ) encoder_outputs = self.encoder( embedding_output, attention_mask=extended_attention_mask, head_mask=head_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_extended_attention_mask, past_key_values=past_key_values, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = encoder_outputs[0] pooled_output = self.pooler(sequence_output) if self.pooler is not None else None if not return_dict: return (sequence_output, pooled_output) + encoder_outputs[1:] return BaseModelOutputWithPoolingAndCrossAttentions( last_hidden_state=sequence_output, pooler_output=pooled_output, past_key_values=encoder_outputs.past_key_values, hidden_states=encoder_outputs.hidden_states, attentions=encoder_outputs.attentions, cross_attentions=encoder_outputs.cross_attentions, ) @add_start_docstrings( """CamemBERT Model with a `language modeling` head on top.""", CAMEMBERT_START_DOCSTRING, ) # Copied from transformers.models.roberta.modeling_roberta.RobertaForMaskedLM with Roberta->Camembert, ROBERTA->CAMEMBERT class CamembertForMaskedLM(CamembertPreTrainedModel): _tied_weights_keys = ["lm_head.decoder.weight", "lm_head.decoder.bias"] def __init__(self, config): super().__init__(config) if config.is_decoder: logger.warning( "If you want to use `CamembertForMaskedLM` make sure `config.is_decoder=False` for " "bi-directional self-attention." ) self.roberta = CamembertModel(config, add_pooling_layer=False) self.lm_head = CamembertLMHead(config) # Initialize weights and apply final processing self.post_init() def get_output_embeddings(self): return self.lm_head.decoder def set_output_embeddings(self, new_embeddings): self.lm_head.decoder = new_embeddings @add_start_docstrings_to_model_forward(CAMEMBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=MaskedLMOutput, config_class=_CONFIG_FOR_DOC, mask="<mask>", expected_output="' Paris'", expected_loss=0.1, ) def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.FloatTensor] = None, token_type_ids: Optional[torch.LongTensor] = None, position_ids: Optional[torch.LongTensor] = None, head_mask: Optional[torch.FloatTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, encoder_hidden_states: Optional[torch.FloatTensor] = None, encoder_attention_mask: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple[torch.Tensor], MaskedLMOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ..., config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]` kwargs (`Dict[str, any]`, optional, defaults to *{}*): Used to hide legacy arguments that have been deprecated. """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.roberta( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = outputs[0] prediction_scores = self.lm_head(sequence_output) masked_lm_loss = None if labels is not None: # move labels to correct device to enable model parallelism labels = labels.to(prediction_scores.device) loss_fct = CrossEntropyLoss() masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), labels.view(-1)) if not return_dict: output = (prediction_scores,) + outputs[2:] return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output return MaskedLMOutput( loss=masked_lm_loss, logits=prediction_scores, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) @add_start_docstrings( """ CamemBERT Model transformer with a sequence classification/regression head on top (a linear layer on top of the pooled output) e.g. for GLUE tasks. """, CAMEMBERT_START_DOCSTRING, ) # Copied from transformers.models.roberta.modeling_roberta.RobertaForSequenceClassification with Roberta->Camembert, ROBERTA->CAMEMBERT class CamembertForSequenceClassification(CamembertPreTrainedModel): def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.config = config self.roberta = CamembertModel(config, add_pooling_layer=False) self.classifier = CamembertClassificationHead(config) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(CAMEMBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint="cardiffnlp/twitter-roberta-base-emotion", output_type=SequenceClassifierOutput, config_class=_CONFIG_FOR_DOC, expected_output="'optimism'", expected_loss=0.08, ) def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.FloatTensor] = None, token_type_ids: Optional[torch.LongTensor] = None, position_ids: Optional[torch.LongTensor] = None, head_mask: Optional[torch.FloatTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple[torch.Tensor], SequenceClassifierOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If `config.num_labels > 1` a classification loss is computed (Cross-Entropy). """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.roberta( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = outputs[0] logits = self.classifier(sequence_output) loss = None if labels is not None: # move labels to correct device to enable model parallelism labels = labels.to(logits.device) if self.config.problem_type is None: if self.num_labels == 1: self.config.problem_type = "regression" elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): self.config.problem_type = "single_label_classification" else: self.config.problem_type = "multi_label_classification" if self.config.problem_type == "regression": loss_fct = MSELoss() if self.num_labels == 1: loss = loss_fct(logits.squeeze(), labels.squeeze()) else: loss = loss_fct(logits, labels) elif self.config.problem_type == "single_label_classification": loss_fct = CrossEntropyLoss() loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) elif self.config.problem_type == "multi_label_classification": loss_fct = BCEWithLogitsLoss() loss = loss_fct(logits, labels) if not return_dict: output = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return SequenceClassifierOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) @add_start_docstrings( """ CamemBERT Model with a multiple choice classification head on top (a linear layer on top of the pooled output and a softmax) e.g. for RocStories/SWAG tasks. """, CAMEMBERT_START_DOCSTRING, ) # Copied from transformers.models.roberta.modeling_roberta.RobertaForMultipleChoice with Roberta->Camembert, ROBERTA->CAMEMBERT class CamembertForMultipleChoice(CamembertPreTrainedModel): def __init__(self, config): super().__init__(config) self.roberta = CamembertModel(config) self.dropout = nn.Dropout(config.hidden_dropout_prob) self.classifier = nn.Linear(config.hidden_size, 1) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward( CAMEMBERT_INPUTS_DOCSTRING.format("batch_size, num_choices, sequence_length") ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=MultipleChoiceModelOutput, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids: Optional[torch.LongTensor] = None, token_type_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, position_ids: Optional[torch.LongTensor] = None, head_mask: Optional[torch.FloatTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple[torch.Tensor], MultipleChoiceModelOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the multiple choice classification loss. Indices should be in `[0, ..., num_choices-1]` where `num_choices` is the size of the second dimension of the input tensors. (See `input_ids` above) """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict num_choices = input_ids.shape[1] if input_ids is not None else inputs_embeds.shape[1] flat_input_ids = input_ids.view(-1, input_ids.size(-1)) if input_ids is not None else None flat_position_ids = position_ids.view(-1, position_ids.size(-1)) if position_ids is not None else None flat_token_type_ids = token_type_ids.view(-1, token_type_ids.size(-1)) if token_type_ids is not None else None flat_attention_mask = attention_mask.view(-1, attention_mask.size(-1)) if attention_mask is not None else None flat_inputs_embeds = ( inputs_embeds.view(-1, inputs_embeds.size(-2), inputs_embeds.size(-1)) if inputs_embeds is not None else None ) outputs = self.roberta( flat_input_ids, position_ids=flat_position_ids, token_type_ids=flat_token_type_ids, attention_mask=flat_attention_mask, head_mask=head_mask, inputs_embeds=flat_inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) pooled_output = outputs[1] pooled_output = self.dropout(pooled_output) logits = self.classifier(pooled_output) reshaped_logits = logits.view(-1, num_choices) loss = None if labels is not None: # move labels to correct device to enable model parallelism labels = labels.to(reshaped_logits.device) loss_fct = CrossEntropyLoss() loss = loss_fct(reshaped_logits, labels) if not return_dict: output = (reshaped_logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return MultipleChoiceModelOutput( loss=loss, logits=reshaped_logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) @add_start_docstrings( """ CamemBERT Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for Named-Entity-Recognition (NER) tasks. """, CAMEMBERT_START_DOCSTRING, ) # Copied from transformers.models.roberta.modeling_roberta.RobertaForTokenClassification with Roberta->Camembert, ROBERTA->CAMEMBERT class CamembertForTokenClassification(CamembertPreTrainedModel): def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.roberta = CamembertModel(config, add_pooling_layer=False) classifier_dropout = ( config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob ) self.dropout = nn.Dropout(classifier_dropout) self.classifier = nn.Linear(config.hidden_size, config.num_labels) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(CAMEMBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint="Jean-Baptiste/roberta-large-ner-english", output_type=TokenClassifierOutput, config_class=_CONFIG_FOR_DOC, expected_output="['O', 'ORG', 'ORG', 'O', 'O', 'O', 'O', 'O', 'LOC', 'O', 'LOC', 'LOC']", expected_loss=0.01, ) def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.FloatTensor] = None, token_type_ids: Optional[torch.LongTensor] = None, position_ids: Optional[torch.LongTensor] = None, head_mask: Optional[torch.FloatTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple[torch.Tensor], TokenClassifierOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`. """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.roberta( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = outputs[0] sequence_output = self.dropout(sequence_output) logits = self.classifier(sequence_output) loss = None if labels is not None: # move labels to correct device to enable model parallelism labels = labels.to(logits.device) loss_fct = CrossEntropyLoss() loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) if not return_dict: output = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return TokenClassifierOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) @add_start_docstrings( """ CamemBERT Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear layers on top of the hidden-states output to compute `span start logits` and `span end logits` """, CAMEMBERT_START_DOCSTRING, ) # Copied from transformers.models.roberta.modeling_roberta.RobertaForQuestionAnswering with Roberta->Camembert, ROBERTA->CAMEMBERT class CamembertForQuestionAnswering(CamembertPreTrainedModel): def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.roberta = CamembertModel(config, add_pooling_layer=False) self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(CAMEMBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint="deepset/roberta-base-squad2", output_type=QuestionAnsweringModelOutput, config_class=_CONFIG_FOR_DOC, expected_output="' puppet'", expected_loss=0.86, ) def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.FloatTensor] = None, token_type_ids: Optional[torch.LongTensor] = None, position_ids: Optional[torch.LongTensor] = None, head_mask: Optional[torch.FloatTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, start_positions: Optional[torch.LongTensor] = None, end_positions: Optional[torch.LongTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple[torch.Tensor], QuestionAnsweringModelOutput]: r""" start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for position (index) of the start of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence are not taken into account for computing the loss. end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for position (index) of the end of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence are not taken into account for computing the loss. """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.roberta( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = outputs[0] logits = self.qa_outputs(sequence_output) start_logits, end_logits = logits.split(1, dim=-1) start_logits = start_logits.squeeze(-1).contiguous() end_logits = end_logits.squeeze(-1).contiguous() total_loss = None if start_positions is not None and end_positions is not None: # If we are on multi-GPU, split add a dimension if len(start_positions.size()) > 1: start_positions = start_positions.squeeze(-1) if len(end_positions.size()) > 1: end_positions = end_positions.squeeze(-1) # sometimes the start/end positions are outside our model inputs, we ignore these terms ignored_index = start_logits.size(1) start_positions = start_positions.clamp(0, ignored_index) end_positions = end_positions.clamp(0, ignored_index) loss_fct = CrossEntropyLoss(ignore_index=ignored_index) start_loss = loss_fct(start_logits, start_positions) end_loss = loss_fct(end_logits, end_positions) total_loss = (start_loss + end_loss) / 2 if not return_dict: output = (start_logits, end_logits) + outputs[2:] return ((total_loss,) + output) if total_loss is not None else output return QuestionAnsweringModelOutput( loss=total_loss, start_logits=start_logits, end_logits=end_logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) @add_start_docstrings( """CamemBERT Model with a `language modeling` head on top for CLM fine-tuning.""", CAMEMBERT_START_DOCSTRING ) # Copied from transformers.models.roberta.modeling_roberta.RobertaForCausalLM with Roberta->Camembert, ROBERTA->CAMEMBERT, roberta-base->camembert-base class CamembertForCausalLM(CamembertPreTrainedModel): _tied_weights_keys = ["lm_head.decoder.weight", "lm_head.decoder.bias"] def __init__(self, config): super().__init__(config) if not config.is_decoder: logger.warning("If you want to use `CamembertLMHeadModel` as a standalone, add `is_decoder=True.`") self.roberta = CamembertModel(config, add_pooling_layer=False) self.lm_head = CamembertLMHead(config) # Initialize weights and apply final processing self.post_init() def get_output_embeddings(self): return self.lm_head.decoder def set_output_embeddings(self, new_embeddings): self.lm_head.decoder = new_embeddings @add_start_docstrings_to_model_forward(CAMEMBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @replace_return_docstrings(output_type=CausalLMOutputWithCrossAttentions, config_class=_CONFIG_FOR_DOC) def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.FloatTensor] = None, token_type_ids: Optional[torch.LongTensor] = None, position_ids: Optional[torch.LongTensor] = None, head_mask: Optional[torch.FloatTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, encoder_hidden_states: Optional[torch.FloatTensor] = None, encoder_attention_mask: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, past_key_values: Tuple[Tuple[torch.FloatTensor]] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple[torch.Tensor], CausalLMOutputWithCrossAttentions]: r""" encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if the model is configured as a decoder. encoder_attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the left-to-right language modeling loss (next word prediction). Indices should be in `[-100, 0, ..., config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]` past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`): Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding. If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `decoder_input_ids` of shape `(batch_size, sequence_length)`. use_cache (`bool`, *optional*): If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see `past_key_values`). Returns: Example: ```python >>> from transformers import AutoTokenizer, CamembertForCausalLM, AutoConfig >>> import torch >>> tokenizer = AutoTokenizer.from_pretrained("camembert-base") >>> config = AutoConfig.from_pretrained("camembert-base") >>> config.is_decoder = True >>> model = CamembertForCausalLM.from_pretrained("camembert-base", config=config) >>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt") >>> outputs = model(**inputs) >>> prediction_logits = outputs.logits ```""" return_dict = return_dict if return_dict is not None else self.config.use_return_dict if labels is not None: use_cache = False outputs = self.roberta( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, past_key_values=past_key_values, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = outputs[0] prediction_scores = self.lm_head(sequence_output) lm_loss = None if labels is not None: # move labels to correct device to enable model parallelism labels = labels.to(prediction_scores.device) # we are doing next-token prediction; shift prediction scores and input ids by one shifted_prediction_scores = prediction_scores[:, :-1, :].contiguous() labels = labels[:, 1:].contiguous() loss_fct = CrossEntropyLoss() lm_loss = loss_fct(shifted_prediction_scores.view(-1, self.config.vocab_size), labels.view(-1)) if not return_dict: output = (prediction_scores,) + outputs[2:] return ((lm_loss,) + output) if lm_loss is not None else output return CausalLMOutputWithCrossAttentions( loss=lm_loss, logits=prediction_scores, past_key_values=outputs.past_key_values, hidden_states=outputs.hidden_states, attentions=outputs.attentions, cross_attentions=outputs.cross_attentions, ) def prepare_inputs_for_generation(self, input_ids, past_key_values=None, attention_mask=None, **model_kwargs): input_shape = input_ids.shape # if model is used as a decoder in encoder-decoder model, the decoder attention mask is created on the fly if attention_mask is None: attention_mask = input_ids.new_ones(input_shape) # cut decoder_input_ids if past is used if past_key_values is not None: input_ids = input_ids[:, -1:] return {"input_ids": input_ids, "attention_mask": attention_mask, "past_key_values": past_key_values} def _reorder_cache(self, past_key_values, beam_idx): reordered_past = () for layer_past in past_key_values: reordered_past += (tuple(past_state.index_select(0, beam_idx) for past_state in layer_past),) return reordered_past # Copied from transformers.models.roberta.modeling_roberta.create_position_ids_from_input_ids def create_position_ids_from_input_ids(input_ids, padding_idx, past_key_values_length=0): """ Replace non-padding symbols with their position numbers. Position numbers begin at padding_idx+1. Padding symbols are ignored. This is modified from fairseq's `utils.make_positions`. Args: x: torch.Tensor x: Returns: torch.Tensor """ # The series of casts and type-conversions here are carefully balanced to both work with ONNX export and XLA. mask = input_ids.ne(padding_idx).int() incremental_indices = (torch.cumsum(mask, dim=1).type_as(mask) + past_key_values_length) * mask return incremental_indices.long() + padding_idx
0
hf_public_repos/transformers/src/transformers/models
hf_public_repos/transformers/src/transformers/models/gpt_neox_japanese/__init__.py
# Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...file_utils import _LazyModule, is_torch_available from ...utils import OptionalDependencyNotAvailable _import_structure = { "configuration_gpt_neox_japanese": ["GPT_NEOX_JAPANESE_PRETRAINED_CONFIG_ARCHIVE_MAP", "GPTNeoXJapaneseConfig"], "tokenization_gpt_neox_japanese": ["GPTNeoXJapaneseTokenizer"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["modeling_gpt_neox_japanese"] = [ "GPT_NEOX_JAPANESE_PRETRAINED_MODEL_ARCHIVE_LIST", "GPTNeoXJapaneseForCausalLM", "GPTNeoXJapaneseLayer", "GPTNeoXJapaneseModel", "GPTNeoXJapanesePreTrainedModel", ] if TYPE_CHECKING: from .configuration_gpt_neox_japanese import GPT_NEOX_JAPANESE_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTNeoXJapaneseConfig from .tokenization_gpt_neox_japanese import GPTNeoXJapaneseTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_neox_japanese import ( GPT_NEOX_JAPANESE_PRETRAINED_MODEL_ARCHIVE_LIST, GPTNeoXJapaneseForCausalLM, GPTNeoXJapaneseLayer, GPTNeoXJapaneseModel, GPTNeoXJapanesePreTrainedModel, ) else: import sys sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
0
hf_public_repos/transformers/src/transformers/models
hf_public_repos/transformers/src/transformers/models/gpt_neox_japanese/tokenization_gpt_neox_japanese.py
# coding=utf-8 # Copyright 2022 ABEJA, Inc. and The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tokenization classes for GPTNeoXJapanese.""" import collections import json import os import re from typing import TYPE_CHECKING, List, Optional, Tuple import numpy as np from ...tokenization_utils_fast import PreTrainedTokenizer from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation logger = logging.get_logger(__name__) VOCAB_FILES_NAMES = {"vocab_file": "vocab.txt", "emoji_file": "emoji.json"} PRETRAINED_VOCAB_FILES_MAP = { "vocab_file": { "abeja/gpt-neox-japanese-2.7b": "https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/vocab.txt", }, "emoji_file": { "abeja/gpt-neox-japanese-2.7b": "https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/emoji.json", }, } PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = { "abeja/gpt-neox-japanese-2.7b": 2048, } def load_vocab_and_emoji(vocab_file, emoji_file): """Loads a vocabulary file and emoji file into a dictionary.""" with open(emoji_file, "r", encoding="utf-8") as f: emoji = json.loads(f.read()) vocab = collections.OrderedDict() raw_vocab = collections.OrderedDict() ids_to_tokens = collections.OrderedDict() with open(vocab_file, "r", encoding="utf-8") as f: token = f.readlines() token = [[t.rstrip("\n")] if (t == "," or "," not in t) else t.rstrip("\n").split(",") for t in token] for idx, b in enumerate(token): ids_to_tokens[idx] = b raw_vocab[",".join(b)] = idx for wd in b: vocab[wd] = idx return vocab, raw_vocab, ids_to_tokens, emoji class GPTNeoXJapaneseTokenizer(PreTrainedTokenizer): """ This tokenizer inherits from [`PreTrainedTokenizer`] and is based on Japanese special Sub-Word-Encoding that is used in this repository (https://github.com/tanreinama/Japanese-BPEEncoder_V2). Check the repository for details. Japanese has a relatively large vocabulary and there is no separation between words. Furthermore, the language is a combination of hiragana, katakana, and kanji, and variants such as "1" and "①" are often used. In order to cope with these, this tokenizer has the following features - Subword-by-subword segmentation, which is intermediate between byte strings and morphological analysis. - BPEs are created for each Kanji, Hiragana, and Katakana character, and there are no BPEs that cross character types, such as Kanji + Hiragana or Hiragana + Katakana. - All-byte encoding that does not require <unk>. - Independent of UTF codes such as 2-byte and 3-byte characters - Conversion of heterographs to the same token_id - Emoji and Emoticon are grouped into 12 types as special tags. Example: ```python >>> from transformers import GPTNeoXJapaneseTokenizer >>> tokenizer = GPTNeoXJapaneseTokenizer.from_pretrained("abeja/gpt-neox-japanese-2.7b") >>> # You can confirm both 慶応 and 慶應 are encoded to 17749 >>> tokenizer("吾輩は猫である🐯。実は慶応(慶應)大学出身")["input_ids"] [30014, 26883, 26638, 27228, 25, 26650, 31732, 31679, 27809, 26638, 17749, 31592, 17749, 31593, 321, 1281] >>> # Both 慶応 and 慶應 are decoded to 慶応 >>> tokenizer.decode(tokenizer("吾輩は猫である🐯。実は慶応(慶應)大学出身")["input_ids"]) '吾輩は猫である🐯。実は慶応(慶応)大学出身' ``` Args: vocab_file (`str`): File containing the vocabulary. emoji_file (`str`): File containing the emoji. unk_token (`str`, *optional*, defaults to `"<|endoftext|>"`): The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this token instead. pad_token (`str`, *optional*, defaults to `"<|endoftext|>"`): The token used for padding bos_token (`str`, *optional*, defaults to `"<|startoftext|>"`): The beginning of sequence token. eos_token (`str`, *optional*, defaults to `"<|endoftext|>"`): The end of sequence token. do_clean_text (`bool`, *optional*, defaults to `False`): Whether or not to clean text for URL, EMAIL, TEL, Japanese DATE and Japanese PRICE. """ vocab_files_names = VOCAB_FILES_NAMES pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES model_input_names = ["input_ids", "attention_mask"] def __init__( self, vocab_file, emoji_file, unk_token="<|endoftext|>", pad_token="<|endoftext|>", bos_token="<|startoftext|>", eos_token="<|endoftext|>", do_clean_text=False, **kwargs, ): super().__init__( unk_token=unk_token, pad_token=pad_token, bos_token=bos_token, eos_token=eos_token, do_clean_text=do_clean_text, **kwargs, ) if not os.path.isfile(vocab_file): raise ValueError( f"Can't find a vocabulary file at path '{vocab_file}'. To load the vocabulary from a Google pretrained" " model use `tokenizer = GPTNeoXJapaneseokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`" ) if not os.path.isfile(emoji_file): raise ValueError( f"Can't find a emoji file at path '{emoji_file}'. To load the emoji information from a Google" " pretrained model use `tokenizer = GPTNeoXJapaneseokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`" ) self.do_clean_text = do_clean_text self.vocab, self.raw_vocab, self.ids_to_tokens, self.emoji = load_vocab_and_emoji(vocab_file, emoji_file) self.subword_tokenizer = SubWordJapaneseTokenizer( vocab=self.vocab, ids_to_tokens=self.ids_to_tokens, emoji=self.emoji ) @property def vocab_size(self): # self.vocab contains support for character fluctuation unique to Japanese, and has a large number of vocab return len(self.raw_vocab) def get_vocab(self): return dict(self.raw_vocab, **self.added_tokens_encoder) def _tokenize(self, text): return self.subword_tokenizer.tokenize(text, clean=self.do_clean_text) def _convert_token_to_id(self, token): """Converts a token (str) in an id using the vocab.""" return self.vocab.get(token, self.vocab.get(self.unk_token)) def _convert_id_to_token(self, index): """Converts an index (integer) in a token (str) using the vocab.""" return self.subword_tokenizer.convert_id_to_token(index) def convert_tokens_to_string(self, tokens): """Converts a sequence of tokens (string) in a single string.""" out_string = "".join(tokens).strip() return out_string def _build_conversation_input_ids(self, conversation: "Conversation") -> List[int]: """This corresponds to DialoGPT variants of models.""" input_ids = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(text, add_special_tokens=False) + [self.eos_token_id]) if len(input_ids) > self.model_max_length: input_ids = input_ids[-self.model_max_length :] return input_ids def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]: index = 0 if os.path.isdir(save_directory): vocab_file = os.path.join( save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) emoji_file = os.path.join( save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["emoji_file"] ) else: vocab_file = ( (filename_prefix + "-" if filename_prefix else "") + save_directory + VOCAB_FILES_NAMES["vocab_file"] ) emoji_file = ( (filename_prefix + "-" if filename_prefix else "") + save_directory + VOCAB_FILES_NAMES["emoji_file"] ) with open(vocab_file, "w", encoding="utf-8") as writer: for token_index, token in self.ids_to_tokens.items(): if index != token_index: logger.warning( f"Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive." " Please check that the vocabulary is not corrupted!" ) index = token_index writer.write(",".join(token) + "\n") index += 1 with open(emoji_file, "w", encoding="utf-8") as writer: json.dump(self.emoji, writer) return vocab_file, emoji_file class SubWordJapaneseTokenizer(object): """ https://github.com/tanreinama/Japanese-BPEEncoder_V2 This tokenizer class is under MIT Lisence according to the original repository. MIT License Copyright (c) 2020 tanreinama Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ def __init__(self, vocab, ids_to_tokens, emoji): self.vocab = vocab # same as swe self.ids_to_tokens = ids_to_tokens # same as bpe self.emoji = emoji self.maxlen = np.max([len(w) for w in self.vocab.keys()]) self.content_repatter1 = re.compile(r"(https?|ftp)(:\/\/[-_\.!~*\'()a-zA-Z0-9;\/?:\@&=\+$,%#]+)") self.content_repatter2 = re.compile(r"[A-Za-z0-9\._+]*@[\-_0-9A-Za-z]+(\.[A-Za-z]+)*") self.content_repatter3 = re.compile(r"[\(]{0,1}[0-9]{2,4}[\)\-\(]{0,1}[0-9]{2,4}[\)\-]{0,1}[0-9]{3,4}") self.content_repatter4 = re.compile( r"([12]\d{3}[/\-年])*(0?[1-9]|1[0-2])[/\-月]((0?[1-9]|[12][0-9]|3[01])日?)*(\d{1,2}|:|\d{1,2}時|\d{1,2}分|\(日\)|\(月\)|\(火\)|\(水\)|\(木\)|\(金\)|\(土\)|㈰|㈪|㈫|㈬|㈭|㈮|㈯)*" ) self.content_repatter5 = re.compile( r"(明治|大正|昭和|平成|令和|㍾|㍽|㍼|㍻|\u32ff)\d{1,2}年(0?[1-9]|1[0-2])月(0?[1-9]|[12][0-9]|3[01])日(\d{1,2}|:|\d{1,2}時|\d{1,2}分|\(日\)|\(月\)|\(火\)|\(水\)|\(木\)|\(金\)|\(土\)|㈰|㈪|㈫|㈬|㈭|㈮|㈯)*" ) self.content_repatter6 = re.compile( r"((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*億)*((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*万)*((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*千)*(0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*(千円|万円|千万円|円|千ドル|万ドル|千万ドル|ドル|千ユーロ|万ユーロ|千万ユーロ|ユーロ)+(\(税込\)|\(税抜\)|\+tax)*" ) keisen = "─━│┃┄┅┆┇┈┉┊┋┌┍┎┏┐┑┒┓└┕┖┗┘┙┚┛├┝┞┟┠┡┢┣┤┥┦┧┨┩┪┫┬┭┮┯┰┱┲┳┴┵┶┷┸┹┺┻┼┽┾┿╀╁╂╃╄╅╆╇╈╉╊╋╌╍╎╏═║╒╓╔╕╖╗╘╙╚╛╜╝╞╟╠╡╢╣╤╥╦╧╨╩╪╫╬╭╮╯╰╱╲╳╴╵╶╷╸╹╺╻╼╽╾╿" blocks = "▀▁▂▃▄▅▆▇█▉▊▋▌▍▎▏▐░▒▓▔▕▖▗▘▙▚▛▜▝▞▟" self.content_trans1 = str.maketrans({k: "<BLOCK>" for k in keisen + blocks}) def __len__(self): return len(self.ids_to_tokens) def clean_text(self, content): content = self.content_repatter1.sub("<URL>", content) content = self.content_repatter2.sub("<EMAIL>", content) content = self.content_repatter3.sub("<TEL>", content) content = self.content_repatter4.sub("<DATE>", content) content = self.content_repatter5.sub("<DATE>", content) content = self.content_repatter6.sub("<PRICE>", content) content = content.translate(self.content_trans1) while "<BLOCK><BLOCK>" in content: content = content.replace("<BLOCK><BLOCK>", "<BLOCK>") return content def tokenize(self, text, clean=False): text = text.replace(" ", "<SP>") text = text.replace(" ", "<SP>") text = text.replace("\r\n", "<BR>") text = text.replace("\n", "<BR>") text = text.replace("\r", "<BR>") text = text.replace("\t", "<TAB>") text = text.replace("—", "ー") text = text.replace("−", "ー") for k, v in self.emoji["emoji"].items(): if k in text: text = text.replace(k, v) if clean: text = self.clean_text(text) def check_simbol(x): e = x.encode() if len(x) == 1 and len(e) == 2: c = (int(e[0]) << 8) + int(e[1]) if ( (c >= 0xC2A1 and c <= 0xC2BF) or (c >= 0xC780 and c <= 0xC783) or (c >= 0xCAB9 and c <= 0xCBBF) or (c >= 0xCC80 and c <= 0xCDA2) ): return True return False def checku2e(x): e = x.encode() if len(x) == 1 and len(e) == 3: c = (int(e[0]) << 16) + (int(e[1]) << 8) + int(e[2]) if c >= 0xE28080 and c <= 0xE2B07F: return True return False pos = 0 result = [] while pos < len(text): end = min(len(text), pos + self.maxlen + 1) if text[pos] == "<" else pos + 3 candidates = [] # (token_id, token, pos) for e in range(end, pos, -1): wd = text[pos:e] if wd in self.vocab: if wd[0] == "<" and len(wd) > 2: candidates = [(self.vocab[wd], wd, e)] break else: candidates.append((self.vocab[wd], wd, e)) if len(candidates) > 0: # the smallest token_id is adopted _, wd, e = sorted(candidates, key=lambda x: x[0])[0] result.append(wd) pos = e else: end = pos + 1 wd = text[pos:end] if check_simbol(wd): result.append("<KIGOU>") elif checku2e(wd): result.append("<U2000U2BFF>") else: for i in wd.encode("utf-8"): result.append("<|byte%d|>" % i) pos = end return result def convert_id_to_token(self, index, breakline="\n"): words = [] byte_tokens = [] word = self.ids_to_tokens[index][0] if word[:6] == "<|byte" and word[-2:] == "|>": byte_tokens.append(int(word[6:-2])) else: if len(byte_tokens) > 0: words.append(bytearray(byte_tokens).decode("utf-8", errors="replace")) byte_tokens = [] if word[:7] == "<|emoji" and word[-2:] == "|>": words.append(self.emoji["emoji_inv"][word]) elif word == "<SP>": words.append(" ") elif word == "<BR>": words.append(breakline) elif word == "<TAB>": words.append("\t") elif word == "<BLOCK>": words.append("▀") elif word == "<KIGOU>": words.append("ǀ") elif word == "<U2000U2BFF>": words.append("‖") else: words.append(word) if len(byte_tokens) > 0: words.append(bytearray(byte_tokens).decode("utf-8", errors="replace")) text = "".join(words) return text
0
hf_public_repos/transformers/src/transformers/models
hf_public_repos/transformers/src/transformers/models/gpt_neox_japanese/configuration_gpt_neox_japanese.py
# coding=utf-8 # Copyright 2022 ABEJA, Inc. and The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ GPTNeoX Japanese model configuration""" from ...configuration_utils import PretrainedConfig from ...utils import logging logger = logging.get_logger(__name__) GPT_NEOX_JAPANESE_PRETRAINED_CONFIG_ARCHIVE_MAP = { "abeja/gpt-neox-japanese-2.7b": "https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/config.json", } class GPTNeoXJapaneseConfig(PretrainedConfig): r""" This is the configuration class to store the configuration of a [`GPTNeoXModelJapanese`]. It is used to instantiate a GPTNeoX model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the GPTNeoXJapanese [abeja/gpt-neox-japanese-2.7b](https://huggingface.co/abeja/gpt-neox-japanese-2.7b) architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Default configs is set as 2.7B model Args: vocab_size (`int`, *optional*, defaults to 32000): Vocabulary size of the GPTNeoXJapanese model. Defines the number of different tokens that can be represented by the `inputs_ids` passed when calling [`GPTNeoXJapanese`]. hidden_size (`int`, *optional*, defaults to 2560): Dimension of the encoder layers and the pooler layer. num_hidden_layers (`int`, *optional*, defaults to 32): Number of hidden layers in the Transformer encoder. num_attention_heads (`int`, *optional*, defaults to 32): Number of attention heads for each attention layer in the Transformer encoder. intermediate_multiple_size (`int`, *optional*, defaults to 4): Dimension of the "intermediate" layer in the Transformer encoder is calculated by hidden_size * intermediate_multiple_size. hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`): The non-linear activation function (function or string) in the encoder and pooler. rotary_pct (`float`, *optional*, defaults to 1.00): percentage of hidden dimensions to allocate to rotary embeddings rotary_emb_base (`int`, *optional*, defaults to 10000) base for computing rotary embeddings frequency max_position_embeddings (`int`, *optional*, defaults to 2048): The maximum sequence length that this model might ever be used with. initializer_range (`float`, *optional*, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. layer_norm_eps (`float`, *optional*, defaults to 1e-5): The epsilon used by the layer normalization layers. use_cache (`bool`, *optional*, defaults to `True`): Whether or not the model should return the last key/values attentions (not used by all models). Only relevant if `config.is_decoder=True`. attention_dropout (`float`, *optional*, defaults to 0.1): The dropout ratio for the attention. hidden_dropout (`float`, *optional*, defaults to 0.0): The dropout ratio for the hidden layer. Example: ```python >>> from transformers import GPTNeoXJapaneseConfig, GPTNeoXJapaneseModel >>> # Initializing a GPTNeoXJapanese gpt-neox-japanese-2.7b style configuration >>> configuration = GPTNeoXJapaneseConfig() >>> # Initializing a model (with random weights) from the gpt-neox-japanese-2.7b style configuration >>> model = GPTNeoXJapaneseModel(configuration) >>> # Accessing the model configuration >>> configuration = model.config ```""" model_type = "gpt_neox_japanese" def __init__( self, vocab_size=32000, hidden_size=2560, num_hidden_layers=32, num_attention_heads=32, intermediate_multiple_size=4, hidden_act="gelu", rotary_pct=1.00, rotary_emb_base=10000, max_position_embeddings=2048, initializer_range=0.02, layer_norm_eps=1e-5, use_cache=True, bos_token_id=31996, eos_token_id=31999, attention_dropout=0.1, hidden_dropout=0.0, **kwargs, ): super().__init__(bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs) self.vocab_size = vocab_size self.max_position_embeddings = max_position_embeddings self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.intermediate_multiple_size = intermediate_multiple_size self.hidden_act = hidden_act self.rotary_pct = rotary_pct self.rotary_emb_base = rotary_emb_base self.initializer_range = initializer_range self.layer_norm_eps = layer_norm_eps self.use_cache = use_cache self.attention_dropout = attention_dropout self.hidden_dropout = hidden_dropout
0
hf_public_repos/transformers/src/transformers/models
hf_public_repos/transformers/src/transformers/models/gpt_neox_japanese/modeling_gpt_neox_japanese.py
# coding=utf-8 # Copyright 2022 ABEJA, Inc. and The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ PyTorch GPTNeoX model.""" from typing import Optional, Tuple, Union import torch import torch.utils.checkpoint from torch import Tensor, nn from torch.nn import CrossEntropyLoss from ...activations import ACT2FN from ...file_utils import add_start_docstrings, add_start_docstrings_to_model_forward, replace_return_docstrings from ...modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast from ...modeling_utils import PreTrainedModel from ...utils import logging from .configuration_gpt_neox_japanese import GPTNeoXJapaneseConfig logger = logging.get_logger(__name__) _CHECKPOINT_FOR_DOC = "abeja/gpt-neox-japanese-2.7b" _CONFIG_FOR_DOC = "GPTNeoXJapaneseConfig" GPT_NEOX_JAPANESE_PRETRAINED_MODEL_ARCHIVE_LIST = { "https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/config.json", # See all GPTNeoXJapanese models at https://huggingface.co/models?filter=gpt_neox_japanese } class GPTNeoXJapanesePreTrainedModel(PreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = GPTNeoXJapaneseConfig base_model_prefix = "gpt_neox_japanese" supports_gradient_checkpointing = True _no_split_modules = ["GPTNeoXJapaneseLayer"] _skip_keys_device_placement = "past_key_values" def _init_weights(self, module): """Initialize the weights""" if isinstance(module, nn.Linear): module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.Embedding): module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if module.padding_idx is not None: module.weight.data[module.padding_idx].zero_() elif isinstance(module, nn.LayerNorm): module.bias.data.zero_() module.weight.data.fill_(1.0) def _set_gradient_checkpointing(self, module, value=False): if isinstance(module, GPTNeoXJapaneseModel): module.gradient_checkpointing = value class GPTNeoXJapaneseAttention(nn.Module): def __init__(self, config, use_bias=False): super().__init__() self.num_attention_heads = config.num_attention_heads self.hidden_size = config.hidden_size self.head_size = self.hidden_size // self.num_attention_heads self.rotary_ndims = int(self.head_size * config.rotary_pct) self.rotary_emb = RotaryEmbedding( self.rotary_ndims, config.max_position_embeddings, base=config.rotary_emb_base ) self.max_positions = config.max_position_embeddings self.attention_dropout = nn.Dropout(config.attention_dropout) self.norm_factor = torch.sqrt(torch.tensor(self.head_size, dtype=torch.float32)).to(torch.get_default_dtype()) self.query_key_value = nn.Linear(config.hidden_size, 3 * config.hidden_size, bias=False) self.dense = nn.Linear(config.hidden_size, config.hidden_size, bias=False) # Activate bias if the last layer self.use_bias = use_bias self.dense_bias = nn.Parameter(torch.zeros(config.hidden_size)) if use_bias else None def forward( self, hidden_states, attention_mask, head_mask=None, layer_past=None, use_cache=False, output_attentions=False, ): has_layer_past = layer_past is not None and layer_past[0].numel() > 0 # Compute QKV # Attention heads [batch, seq_len, hidden_size] # --> [batch, seq_len, (np * 3 * head_size)] qkv = self.query_key_value(hidden_states) # [batch, seq_len, (num_heads * 3 * head_size)] # --> [batch, seq_len, num_heads, 3 * head_size] new_qkv_shape = qkv.size()[:-1] + (self.num_attention_heads, 3 * self.head_size) qkv = qkv.view(*new_qkv_shape) # [batch, seq_len, num_attention_heads, 3 * head_size] --> 3 [batch, num_attention_heads, seq_len, head_size] query = qkv[..., : self.head_size].permute(0, 2, 1, 3) key = qkv[..., self.head_size : 2 * self.head_size].permute(0, 2, 1, 3) value = qkv[..., 2 * self.head_size :].permute(0, 2, 1, 3) # Compute rotary embeddings on rotary_ndims query_rot = query[..., : self.rotary_ndims] query_pass = query[..., self.rotary_ndims :] key_rot = key[..., : self.rotary_ndims] key_pass = key[..., self.rotary_ndims :] # Compute token offset for rotary embeddings (when decoding) seq_len = key.shape[-2] offset = 0 if has_layer_past: offset = layer_past[0].shape[-2] seq_len += offset cos, sin = self.rotary_emb(value, seq_len=seq_len) query, key = apply_rotary_pos_emb(query_rot, key_rot, cos, sin, offset=offset) query = torch.cat((query, query_pass), dim=-1) key = torch.cat((key, key_pass), dim=-1) # Cache QKV values if has_layer_past: past_key = layer_past[0] past_value = layer_past[1] key = torch.cat((past_key, key), dim=-2) value = torch.cat((past_value, value), dim=-2) present = (key, value) if use_cache else None # Compute attention attn_output, attn_weights = self._attn(query, key, value, attention_mask, head_mask) # Reshape outputs attn_output = self._merge_heads(attn_output, self.num_attention_heads, self.head_size) attn_output = self.dense(attn_output) outputs = (attn_output, present) if output_attentions: outputs += (attn_weights,) return outputs, self.dense_bias @classmethod def _split_heads(cls, tensor, num_attention_heads, attn_head_size): """ Splits hidden dim into attn_head_size and num_attention_heads """ # tensor: [bs, seq_len, hidden_size] new_shape = tensor.size()[:-1] + (num_attention_heads, attn_head_size) # -> [bs, seq_len, num_attention_heads, attn_head_size] tensor = tensor.view(new_shape) # -> [bs, num_attention_heads, seq_len, attn_head_size] tensor = tensor.permute(0, 2, 1, 3) return tensor @classmethod def _merge_heads(cls, tensor, num_attention_heads, attn_head_size): """ Merges attn_head_size dim and num_attn_heads dim into hidden dim """ # tensor [bs, num_attention_heads, seq_len, attn_head_size] tensor = tensor.permute(0, 2, 1, 3).contiguous() # -> [bs, seq_len, num_attention_heads, attn_head_size] tensor = tensor.view(tensor.size(0), tensor.size(1), num_attention_heads * attn_head_size) # -> [bs, seq_len, hidden_size] return tensor def _create_causal_mask(self, key_length, query_length): causal_mask = torch.tril( torch.ones((self.max_positions, self.max_positions), dtype=torch.bool).view( 1, 1, self.max_positions, self.max_positions ) ) return causal_mask[:, :, key_length - query_length : key_length, :key_length] def _attn(self, query, key, value, attention_mask=None, head_mask=None): # q, k, v: [bs, num_attention_heads, seq_len, attn_head_size] # compute causal mask from causal mask buffer batch_size, num_attention_heads, query_length, attn_head_size = query.size() key_length = key.size(-2) causal_mask = self._create_causal_mask(key_length, query_length) query = query.view(batch_size * num_attention_heads, query_length, attn_head_size) key = key.view(batch_size * num_attention_heads, key_length, attn_head_size) attn_scores = torch.zeros( batch_size * num_attention_heads, query_length, key_length, dtype=query.dtype, device=key.device, ) attn_scores = torch.baddbmm( attn_scores, query, key.transpose(1, 2), beta=1.0, alpha=(torch.tensor(1.0, dtype=self.norm_factor.dtype, device=self.norm_factor.device) / self.norm_factor), ) attn_scores = attn_scores.view(batch_size, num_attention_heads, query_length, key_length) mask_value = torch.finfo(attn_scores.dtype).min # Need to be a tensor, otherwise we get error: `RuntimeError: expected scalar type float but found double`. # Need to be on the same device, otherwise `RuntimeError: ..., x and y to be on the same device` mask_value = torch.tensor(mask_value, dtype=attn_scores.dtype).to(attn_scores.device) causal_mask = causal_mask.to(attn_scores.device) attn_scores = torch.where(causal_mask, attn_scores, mask_value) if attention_mask is not None: # Apply the attention mask attn_scores = attn_scores + attention_mask attn_weights = nn.functional.softmax(attn_scores, dim=-1) attn_weights = self.attention_dropout(attn_weights) attn_weights = attn_weights.to(value.dtype) # Mask heads if we want to if head_mask is not None: attn_weights = attn_weights * head_mask attn_output = torch.matmul(attn_weights, value) return attn_output, attn_weights # Copied from transformers.models.gpt_neox.modeling_gpt_neox.GPTNeoXRotaryEmbedding class RotaryEmbedding(torch.nn.Module): def __init__(self, dim, max_position_embeddings, base=10000, device=None): super().__init__() self.dim = dim self.max_position_embeddings = max_position_embeddings self.base = base inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim)) self.register_buffer("inv_freq", inv_freq) # Build here to make `torch.jit.trace` work. self._set_cos_sin_cache(seq_len=max_position_embeddings, device=self.inv_freq.device) def _set_cos_sin_cache(self, seq_len, device): self.max_seq_len_cached = seq_len t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype) freqs = torch.einsum("i,j->ij", t, self.inv_freq) # Different from paper, but it uses a different permutation in order to obtain the same calculation emb = torch.cat((freqs, freqs), dim=-1) self.cos_cached = emb.cos()[None, None, :, :] self.sin_cached = emb.sin()[None, None, :, :] def forward(self, x, seq_len=None): # x: [bs, num_attention_heads, seq_len, head_size] if seq_len > self.max_seq_len_cached: self._set_cos_sin_cache(seq_len=seq_len, device=x.device) return self.cos_cached[:seq_len, ...].to(x.device), self.sin_cached[:seq_len, ...].to(x.device) def rotate_half(x): """Rotates half the hidden dims of the input.""" x1 = x[..., : x.shape[-1] // 2] x2 = x[..., x.shape[-1] // 2 :] return torch.cat((-x2, x1), dim=-1) def apply_rotary_pos_emb(q, k, cos, sin, offset: int = 0): cos = cos[..., offset : q.shape[-2] + offset, :] sin = sin[..., offset : q.shape[-2] + offset, :] q_embed = (q * cos) + (rotate_half(q) * sin) k_embed = (k * cos) + (rotate_half(k) * sin) return q_embed, k_embed def bias_dropout_add(x: Tensor, bias: Tensor, residual: Optional[Tensor], prob: float, training: bool) -> Tensor: """add bias to x, apply dropout and residual connection Args: x (Tensor): main path of output bias (Tensor): None or attn_bias of the last attention layer residual (Optional[Tensor]): residual value prob (float): dropout probability training (bool): whether in training mode or not Returns: Tensor: dropout(x + bias) + residual """ if bias is not None: x = x + bias out = torch.nn.functional.dropout(x, p=prob, training=training) if residual is not None: out = residual + out return out class GPTNeoXJapaneseMLP(nn.Module): def __init__(self, config): super().__init__() intermediate_size = int(config.hidden_size * config.intermediate_multiple_size) self.dense_h_to_4h = nn.Linear(config.hidden_size, intermediate_size, bias=False) # Project back to h. self.dense_4h_to_h = nn.Linear(intermediate_size, config.hidden_size, bias=False) self.act = ACT2FN[config.hidden_act] def forward(self, hidden_states): intermediate = self.dense_h_to_4h(hidden_states) intermediate = self.act(intermediate) output = self.dense_4h_to_h(intermediate) return output class GPTNeoXJapaneseLayer(nn.Module): def __init__(self, config, layer_number): super().__init__() self.layer_number = layer_number self.input_layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.post_attention_layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) # activate bias only last layer self.attention = GPTNeoXJapaneseAttention(config=config, use_bias=layer_number == config.num_hidden_layers - 1) self.mlp = GPTNeoXJapaneseMLP(config) self.hidden_dropout = config.hidden_dropout def forward( self, hidden_states, attention_mask=None, head_mask=None, use_cache=False, layer_past=None, output_attentions=False, ): residual = hidden_states ln_out = self.input_layernorm(hidden_states) attention_layer_outputs, attn_bias = self.attention( ln_out, attention_mask=attention_mask, layer_past=layer_past, head_mask=head_mask, use_cache=use_cache, output_attentions=output_attentions, ) attn_output = attention_layer_outputs[0] # output_attn: a, present, (attentions) outputs = attention_layer_outputs[1:] # attn_output = (atten_output + bias) + residual attn_output = bias_dropout_add( attn_output, bias=attn_bias.expand_as(residual) if attn_bias is not None else attn_bias, residual=residual, prob=self.hidden_dropout, training=self.training, ) mlp_output = self.mlp(self.post_attention_layernorm(attn_output)) # attn_output = (mlp_output + mlp_bias) + atten_output attn_output = bias_dropout_add( mlp_output, bias=None, residual=attn_output, prob=self.hidden_dropout, training=self.training ) if use_cache: outputs = (attn_output,) + outputs else: outputs = (attn_output,) + outputs[1:] return outputs # hidden_states, present, (attentions) GPT_NEOX_JAPANESE_START_DOCSTRING = r""" This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`~GPTNeoXJapaneseConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ GPT_NEOX_JAPANESE_INPUTS_DOCSTRING = r""" Args: input_ids (`torch.LongTensor` of shape `({0})`): Indices of input sequence tokens in the vocabulary. Indices can be obtained using [`AutoTokenizer`]. attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. token_type_ids (`torch.LongTensor` of shape `({0})`, *optional*): Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0, 1]`: - 0 corresponds to a *sentence A* token, - 1 corresponds to a *sentence B* token. position_ids (`torch.LongTensor` of shape `({0})`, *optional*): Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, config.max_position_embeddings - 1]`. head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. inputs_embeds (`torch.FloatTensor` of shape `({0}, hidden_size)`, *optional*): Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert *input_ids* indices into associated vectors than the model's internal embedding lookup matrix. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~file_utils.ModelOutput`] instead of a plain tuple. """ @add_start_docstrings( "The bare GPTNeoXJapanese Model transformer outputting raw hidden-states without any specific head on top.", GPT_NEOX_JAPANESE_START_DOCSTRING, ) class GPTNeoXJapaneseModel(GPTNeoXJapanesePreTrainedModel): def __init__(self, config): super().__init__(config) self.config = config self.embed_in = nn.Embedding(config.vocab_size, config.hidden_size) self.layers = nn.ModuleList( [GPTNeoXJapaneseLayer(config=config, layer_number=i) for i in range(config.num_hidden_layers)] ) self.final_layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.embed_in def set_input_embeddings(self, value): self.embed_in = value @add_start_docstrings_to_model_forward(GPT_NEOX_JAPANESE_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @replace_return_docstrings(output_type=BaseModelOutputWithPast, config_class=_CONFIG_FOR_DOC) def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.FloatTensor] = None, head_mask: Optional[torch.FloatTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, BaseModelOutputWithPast]: r""" past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`): Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding. If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `decoder_input_ids` of shape `(batch_size, sequence_length)`. use_cache (`bool`, *optional*): If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see `past_key_values`). Returns: Example: ```python >>> from transformers import AutoTokenizer, GPTNeoXJapaneseModel >>> import torch >>> tokenizer = AutoTokenizer.from_pretrained("abeja/gpt-neox-japanese-2.7b") >>> model = GPTNeoXJapaneseModel.from_pretrained("abeja/gpt-neox-japanese-2.7b") >>> inputs = tokenizer("日本語のGPT-neoxがHugging Faceで使えます😀", return_tensors="pt") >>> outputs = model(**inputs) >>> last_hidden_states = outputs.last_hidden_state ``` """ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict use_cache = use_cache if use_cache is not None else self.config.use_cache if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") elif input_ids is not None: input_shape = input_ids.size() elif inputs_embeds is not None: input_shape = inputs_embeds.size()[:-1] else: raise ValueError("You have to specify either input_ids or inputs_embeds") batch_size, seq_length = input_shape if past_key_values is None: past_key_values = tuple([None] * self.config.num_hidden_layers) # Attention mask. if attention_mask is not None: if not batch_size > 0: raise ValueError("batch_size has to be defined and > 0") attention_mask = attention_mask.view(batch_size, -1) # We create a 3D attention mask from a 2D tensor mask. # Sizes are [batch_size, 1, 1, to_seq_length] # So we can broadcast to [batch_size, num_heads, from_seq_length, to_seq_length] # this attention mask is more simple than the triangular masking of causal attention # used in OpenAI GPT, we just need to prepare the broadcast dimension here. attention_mask = attention_mask[:, None, None, :] # Since attention_mask is 1.0 for positions we want to attend and 0.0 for # masked positions, this operation will create a tensor which is 0.0 for # positions we want to attend and -10000.0 for masked positions. # Since we are adding it to the raw scores before the softmax, this is # effectively the same as removing these entirely. attention_mask = attention_mask.to(dtype=self.dtype) # fp16 compatibility attention_mask = (1.0 - attention_mask) * torch.finfo(self.dtype).min # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers) if inputs_embeds is None: inputs_embeds = self.embed_in(input_ids) hidden_states = inputs_embeds presents = () if use_cache else None all_attentions = () if output_attentions else None all_hidden_states = () if output_hidden_states else None for i, (layer, layer_past) in enumerate(zip(self.layers, past_key_values)): if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) outputs = layer( hidden_states, attention_mask=attention_mask, head_mask=head_mask[i], layer_past=layer_past, use_cache=use_cache, output_attentions=output_attentions, ) hidden_states = outputs[0] if use_cache is True: presents = presents + (outputs[1],) if output_attentions: all_attentions = all_attentions + (outputs[2 if use_cache else 1],) hidden_states = self.final_layer_norm(hidden_states) # Add last hidden state if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) if not return_dict: return tuple(v for v in [hidden_states, presents, all_hidden_states, all_attentions] if v is not None) return BaseModelOutputWithPast( last_hidden_state=hidden_states, past_key_values=presents, hidden_states=all_hidden_states, attentions=all_attentions, ) @add_start_docstrings( """GPTNeoXJapanese Model with a `language modeling` head on top for Classifier Model fine-tuning.""", GPT_NEOX_JAPANESE_START_DOCSTRING, ) class GPTNeoXJapaneseForCausalLM(GPTNeoXJapanesePreTrainedModel): _tied_weights_keys = ["embed_out.weight"] def __init__(self, config): super().__init__(config) self.config = config self.gpt_neox_japanese = GPTNeoXJapaneseModel(config) self.embed_out = nn.Linear(config.hidden_size, config.vocab_size, bias=False) # Initialize weights and apply final processing self.post_init() def get_output_embeddings(self): return self.embed_out def set_output_embeddings(self, new_embeddings): self.embed_out = new_embeddings @add_start_docstrings_to_model_forward(GPT_NEOX_JAPANESE_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC) def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.FloatTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, head_mask: Optional[torch.FloatTensor] = None, past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, labels: Optional[torch.LongTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, CausalLMOutputWithPast]: r""" past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`): Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape `(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`. The two additional tensors are only required when the model is used as a decoder in a Sequence to Sequence model. Contains pre-computed hidden-states (key and values in the self-attention blocks that can be used (see `past_key_values` input) to speed up sequential decoding. If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `decoder_input_ids` of shape `(batch_size, sequence_length)`. labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the left-to-right language modeling loss (next word prediction). Indices should be in `[-100, 0, ..., config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the loss is only computed for the tokens with labels n `[0, ..., config.vocab_size]`. use_cache (`bool`, *optional*): If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see `past_key_values`). Returns: Example: ```python >>> from transformers import AutoTokenizer, GPTNeoXJapaneseForCausalLM, GPTNeoXJapaneseConfig >>> import torch >>> tokenizer = AutoTokenizer.from_pretrained("abeja/gpt-neox-japanese-2.7b") >>> config = GPTNeoXJapaneseConfig.from_pretrained("abeja/gpt-neox-japanese-2.7b") >>> config.is_decoder = True >>> model = GPTNeoXJapaneseForCausalLM.from_pretrained("abeja/gpt-neox-japanese-2.7b", config=config) >>> inputs = tokenizer("日本語のGPT-neoxがHugging Faceで使えます😀", return_tensors="pt") >>> outputs = model(**inputs) >>> prediction_logits = outputs.logits ``` """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.gpt_neox_japanese( input_ids, attention_mask=attention_mask, head_mask=head_mask, inputs_embeds=inputs_embeds, past_key_values=past_key_values, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) hidden_states = outputs[0] lm_logits = self.embed_out(hidden_states) lm_loss = None if labels is not None: # move labels to correct device to enable model parallelism labels = labels.to(lm_logits.device) # we are doing next-token prediction; shift prediction scores and input ids by one shift_logits = lm_logits[:, :-1, :].contiguous() labels = labels[:, 1:].contiguous() loss_fct = CrossEntropyLoss() lm_loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), labels.view(-1)) if not return_dict: output = (lm_logits,) + outputs[1:] return ((lm_loss,) + output) if lm_loss is not None else output return CausalLMOutputWithPast( loss=lm_loss, logits=lm_logits, past_key_values=outputs.past_key_values, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) def prepare_inputs_for_generation(self, input_ids, past_key_values=None, attention_mask=None, **model_kwargs): input_shape = input_ids.shape # if model is used as a decoder in encoder-decoder model, the decoder attention mask is created on the fly if attention_mask is None: attention_mask = input_ids.new_ones(input_shape) # cut decoder_input_ids if past is used if past_key_values and past_key_values[0] is not None: input_ids = input_ids[:, -1:] return {"input_ids": input_ids, "attention_mask": attention_mask, "past_key_values": past_key_values} def _reorder_cache(self, past_key_values, beam_idx): reordered_past = () for layer_past in past_key_values: reordered_past += ( tuple(past_state.index_select(0, beam_idx) for past_state in layer_past[:2]) + layer_past[2:], ) return reordered_past
0
hf_public_repos/transformers/src/transformers/models
hf_public_repos/transformers/src/transformers/models/esm/__init__.py
# Copyright 2022 Facebook and The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available _import_structure = { "configuration_esm": ["ESM_PRETRAINED_CONFIG_ARCHIVE_MAP", "EsmConfig"], "tokenization_esm": ["EsmTokenizer"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["modeling_esm"] = [ "ESM_PRETRAINED_MODEL_ARCHIVE_LIST", "EsmForMaskedLM", "EsmForSequenceClassification", "EsmForTokenClassification", "EsmModel", "EsmPreTrainedModel", ] _import_structure["modeling_esmfold"] = ["EsmForProteinFolding", "EsmFoldPreTrainedModel"] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["modeling_tf_esm"] = [ "TF_ESM_PRETRAINED_MODEL_ARCHIVE_LIST", "TFEsmForMaskedLM", "TFEsmForSequenceClassification", "TFEsmForTokenClassification", "TFEsmModel", "TFEsmPreTrainedModel", ] if TYPE_CHECKING: from .configuration_esm import ESM_PRETRAINED_CONFIG_ARCHIVE_MAP, EsmConfig from .tokenization_esm import EsmTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_esm import ( ESM_PRETRAINED_MODEL_ARCHIVE_LIST, EsmForMaskedLM, EsmForSequenceClassification, EsmForTokenClassification, EsmModel, EsmPreTrainedModel, ) from .modeling_esmfold import EsmFoldPreTrainedModel, EsmForProteinFolding try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_esm import ( TF_ESM_PRETRAINED_MODEL_ARCHIVE_LIST, TFEsmForMaskedLM, TFEsmForSequenceClassification, TFEsmForTokenClassification, TFEsmModel, TFEsmPreTrainedModel, ) else: import sys sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure)
0
hf_public_repos/transformers/src/transformers/models
hf_public_repos/transformers/src/transformers/models/esm/modeling_esmfold.py
# coding=utf-8 # Copyright 2022 Meta and The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import math import sys from dataclasses import dataclass from functools import partial from typing import Callable, Dict, List, Optional, Sequence, Tuple, Union import numpy as np import torch import torch.nn as nn from torch.nn import LayerNorm from ...deepspeed import is_deepspeed_available from ...modeling_outputs import ModelOutput from ...utils import ( ContextManagers, add_start_docstrings, add_start_docstrings_to_model_forward, is_scipy_available, logging, replace_return_docstrings, ) from .configuration_esm import EsmConfig from .modeling_esm import ESM_START_DOCSTRING, EsmModel, EsmPreTrainedModel from .openfold_utils import ( OFProtein, Rigid, Rotation, atom14_to_atom37, chunk_layer, compute_predicted_aligned_error, compute_tm, frames_and_literature_positions_to_atom14_pos, make_atom14_masks, residue_constants, to_pdb, torsion_angles_to_frames, ) logger = logging.get_logger(__name__) _CHECKPOINT_FOR_DOC = "facebook/esmfold_v1" _CONFIG_FOR_DOC = "EsmConfig" @dataclass class EsmForProteinFoldingOutput(ModelOutput): """ Output type of [`EsmForProteinFoldingOutput`]. Args: frames (`torch.FloatTensor`): Output frames. sidechain_frames (`torch.FloatTensor`): Output sidechain frames. unnormalized_angles (`torch.FloatTensor`): Predicted unnormalized backbone and side chain torsion angles. angles (`torch.FloatTensor`): Predicted backbone and side chain torsion angles. positions (`torch.FloatTensor`): Predicted positions of the backbone and side chain atoms. states (`torch.FloatTensor`): Hidden states from the protein folding trunk. s_s (`torch.FloatTensor`): Per-residue embeddings derived by concatenating the hidden states of each layer of the ESM-2 LM stem. s_z (`torch.FloatTensor`): Pairwise residue embeddings. distogram_logits (`torch.FloatTensor`): Input logits to the distogram used to compute residue distances. lm_logits (`torch.FloatTensor`): Logits output by the ESM-2 protein language model stem. aatype (`torch.FloatTensor`): Input amino acids (AlphaFold2 indices). atom14_atom_exists (`torch.FloatTensor`): Whether each atom exists in the atom14 representation. residx_atom14_to_atom37 (`torch.FloatTensor`): Mapping between atoms in the atom14 and atom37 representations. residx_atom37_to_atom14 (`torch.FloatTensor`): Mapping between atoms in the atom37 and atom14 representations. atom37_atom_exists (`torch.FloatTensor`): Whether each atom exists in the atom37 representation. residue_index (`torch.FloatTensor`): The index of each residue in the protein chain. Unless internal padding tokens are used, this will just be a sequence of integers from 0 to `sequence_length`. lddt_head (`torch.FloatTensor`): Raw outputs from the lddt head used to compute plddt. plddt (`torch.FloatTensor`): Per-residue confidence scores. Regions of low confidence may indicate areas where the model's prediction is uncertain, or where the protein structure is disordered. ptm_logits (`torch.FloatTensor`): Raw logits used for computing ptm. ptm (`torch.FloatTensor`): TM-score output representing the model's high-level confidence in the overall structure. aligned_confidence_probs (`torch.FloatTensor`): Per-residue confidence scores for the aligned structure. predicted_aligned_error (`torch.FloatTensor`): Predicted error between the model's prediction and the ground truth. max_predicted_aligned_error (`torch.FloatTensor`): Per-sample maximum predicted error. """ frames: torch.FloatTensor = None sidechain_frames: torch.FloatTensor = None unnormalized_angles: torch.FloatTensor = None angles: torch.FloatTensor = None positions: torch.FloatTensor = None states: torch.FloatTensor = None s_s: torch.FloatTensor = None s_z: torch.FloatTensor = None distogram_logits: torch.FloatTensor = None lm_logits: torch.FloatTensor = None aatype: torch.FloatTensor = None atom14_atom_exists: torch.FloatTensor = None residx_atom14_to_atom37: torch.FloatTensor = None residx_atom37_to_atom14: torch.FloatTensor = None atom37_atom_exists: torch.FloatTensor = None residue_index: torch.FloatTensor = None lddt_head: torch.FloatTensor = None plddt: torch.FloatTensor = None ptm_logits: torch.FloatTensor = None ptm: torch.FloatTensor = None aligned_confidence_probs: torch.FloatTensor = None predicted_aligned_error: torch.FloatTensor = None max_predicted_aligned_error: torch.FloatTensor = None ESMFOLD_INPUTS_DOCSTRING = r""" Args: input_ids (`torch.LongTensor` of shape `({0})`): Indices of input sequence tokens in the vocabulary. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) position_ids (`torch.LongTensor` of shape `({0})`, *optional*): Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, config.max_position_embeddings - 1]`. [What are position IDs?](../glossary#position-ids) masking_pattern (`torch.LongTensor` of shape `({0})`, *optional*): Locations of tokens to mask during training as a form of regularization. Mask values selected in `[0, 1]`. num_recycles (`int`, *optional*, defaults to `None`): Number of times to recycle the input sequence. If `None`, defaults to `config.num_recycles`. "Recycling" consists of passing the output of the folding trunk back in as input to the trunk. During training, the number of recycles should vary with each batch, to ensure that the model learns to output valid predictions after each recycle. During inference, num_recycles should be set to the highest value that the model was trained with for maximum accuracy. Accordingly, when this value is set to `None`, config.max_recycles is used. """ def is_fp16_enabled(): # Autocast world fp16_enabled = torch.get_autocast_gpu_dtype() == torch.float16 fp16_enabled = fp16_enabled and torch.is_autocast_enabled() return fp16_enabled def is_deepspeed_initialized(): if is_deepspeed_available(): return False else: try: import deepspeed # This is not available in all DeepSpeed versions. return deepspeed.utils.is_initialized() except Exception: return False def collate_dense_tensors(samples: List[torch.Tensor], pad_v: float = 0) -> torch.Tensor: """ Takes a list of tensors with the following dimensions: [(d_11, ..., d_1K), (d_21, ..., d_2K), ..., (d_N1, ..., d_NK)] and stack + pads them into a single tensor of: (N, max_i=1,N { d_i1 }, ..., max_i=1,N {diK}) """ if len(samples) == 0: return torch.Tensor() if len({x.dim() for x in samples}) != 1: raise RuntimeError(f"Samples has varying dimensions: {[x.dim() for x in samples]}") (device,) = tuple({x.device for x in samples}) # assumes all on same device max_shape = [max(lst) for lst in zip(*[x.shape for x in samples])] result = torch.empty(len(samples), *max_shape, dtype=samples[0].dtype, device=device) result.fill_(pad_v) for i in range(len(samples)): result_i = result[i] t = samples[i] result_i[tuple(slice(0, k) for k in t.shape)] = t return result def flatten_final_dims(t: torch.Tensor, no_dims: int): return t.reshape(t.shape[:-no_dims] + (-1,)) def permute_final_dims(tensor: torch.Tensor, inds: List[int]): zero_index = -1 * len(inds) first_inds = list(range(len(tensor.shape[:zero_index]))) return tensor.permute(first_inds + [zero_index + i for i in inds]) def dict_multimap(fn, dicts): first = dicts[0] new_dict = {} for k, v in first.items(): all_v = [d[k] for d in dicts] if type(v) is dict: new_dict[k] = dict_multimap(fn, all_v) else: new_dict[k] = fn(all_v) return new_dict def trunc_normal_init_(weights, scale=1.0, fan="fan_in"): shape = weights.shape scale = scale / max(1, shape[1]) if not is_scipy_available(): logger.warning( "This init requires scipy, but scipy was not found, default to an approximation that might not be" " equivalent." ) std = math.sqrt(scale) torch.nn.init.normal_(weights, std=std).clamp(min=0.0, max=2.0 * std) else: from scipy.stats import truncnorm std = math.sqrt(scale) / truncnorm.std(a=-2, b=2, loc=0, scale=1) samples = truncnorm.rvs(a=-2, b=2, loc=0, scale=std, size=weights.numel()) samples = np.reshape(samples, shape) weights.copy_(torch.tensor(samples, device=weights.device)) def ipa_point_weights_init_(weights): with torch.no_grad(): softplus_inverse_1 = 0.541324854612918 weights.fill_(softplus_inverse_1) class EsmFoldLinear(nn.Linear): """ A Linear layer with built-in nonstandard initializations. Called just like torch.nn.Linear. Implements the initializers in 1.11.4, plus some additional ones found in the code. """ def __init__( self, in_dim: int, out_dim: int, bias: bool = True, init: str = "default", init_fn: Optional[Callable[[torch.Tensor, torch.Tensor], None]] = None, ): """ Args: in_dim: The final dimension of inputs to the layer out_dim: The final dimension of layer outputs bias: Whether to learn an additive bias. True by default init: The initializer to use. Choose from: "default": LeCun fan-in truncated normal initialization "relu": He initialization w/ truncated normal distribution "glorot": Fan-average Glorot uniform initialization "gating": Weights=0, Bias=1 "normal": Normal initialization with std=1/sqrt(fan_in) "final": Weights=0, Bias=0 Overridden by init_fn if the latter is not None. init_fn: A custom initializer taking weight and bias as inputs. Overrides init if not None. """ super().__init__(in_dim, out_dim, bias=bias) if bias: with torch.no_grad(): self.bias.fill_(0) self.init = init self.init_fn = init_fn if init not in ["default", "relu", "glorot", "gating", "normal", "final"]: raise ValueError("Invalid init string.") class EsmFoldLayerNorm(nn.Module): def __init__(self, c_in, eps=1e-5): super().__init__() self.c_in = (c_in,) self.eps = eps self.weight = nn.Parameter(torch.ones(c_in)) self.bias = nn.Parameter(torch.zeros(c_in)) def forward(self, x): d = x.dtype if d is torch.bfloat16 and not is_deepspeed_initialized(): with torch.cuda.amp.autocast(enabled=False): out = nn.functional.layer_norm(x, self.c_in, self.weight.to(dtype=d), self.bias.to(dtype=d), self.eps) else: out = nn.functional.layer_norm(x, self.c_in, self.weight, self.bias, self.eps) return out @torch.jit.ignore def softmax_no_cast(t: torch.Tensor, dim: int = -1) -> torch.Tensor: """ Softmax, but without automatic casting to fp32 when the input is of type bfloat16 """ d = t.dtype if d is torch.bfloat16 and not is_deepspeed_initialized(): with torch.cuda.amp.autocast(enabled=False): s = torch.nn.functional.softmax(t, dim=dim) else: s = torch.nn.functional.softmax(t, dim=dim) return s class EsmFoldAttention(nn.Module): """ Standard multi-head attention using AlphaFold's default layer initialization. Allows multiple bias vectors. """ def __init__( self, c_q: int, c_k: int, c_v: int, c_hidden: int, no_heads: int, gating: bool = True, ): """ Args: c_q: Input dimension of query data c_k: Input dimension of key data c_v: Input dimension of value data c_hidden: Per-head hidden dimension no_heads: Number of attention heads gating: Whether the output should be gated using query data """ super().__init__() self.c_q = c_q self.c_k = c_k self.c_v = c_v self.c_hidden = c_hidden self.no_heads = no_heads self.gating = gating # DISCREPANCY: c_hidden is not the per-head channel dimension, as # stated in the supplement, but the overall channel dimension. self.linear_q = EsmFoldLinear(self.c_q, self.c_hidden * self.no_heads, bias=False, init="glorot") self.linear_k = EsmFoldLinear(self.c_k, self.c_hidden * self.no_heads, bias=False, init="glorot") self.linear_v = EsmFoldLinear(self.c_v, self.c_hidden * self.no_heads, bias=False, init="glorot") self.linear_o = EsmFoldLinear(self.c_hidden * self.no_heads, self.c_q, init="final") self.linear_g = None if self.gating: self.linear_g = EsmFoldLinear(self.c_q, self.c_hidden * self.no_heads, init="gating") self.sigmoid = nn.Sigmoid() def _prep_qkv(self, q_x: torch.Tensor, kv_x: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]: # [*, Q/K/V, H * C_hidden] q = self.linear_q(q_x) k = self.linear_k(kv_x) v = self.linear_v(kv_x) # [*, Q/K, H, C_hidden] q = q.view(q.shape[:-1] + (self.no_heads, -1)) k = k.view(k.shape[:-1] + (self.no_heads, -1)) v = v.view(v.shape[:-1] + (self.no_heads, -1)) # [*, H, Q/K, C_hidden] q = q.transpose(-2, -3) k = k.transpose(-2, -3) v = v.transpose(-2, -3) q /= math.sqrt(self.c_hidden) return q, k, v def _wrap_up(self, o: torch.Tensor, q_x: torch.Tensor) -> torch.Tensor: if self.linear_g is not None: g = self.sigmoid(self.linear_g(q_x)) # [*, Q, H, C_hidden] g = g.view(g.shape[:-1] + (self.no_heads, -1)) o = o * g # [*, Q, H * C_hidden] o = flatten_final_dims(o, 2) # [*, Q, C_q] o = self.linear_o(o) return o def forward( self, q_x: torch.Tensor, kv_x: torch.Tensor, biases: Optional[List[torch.Tensor]] = None, use_memory_efficient_kernel: bool = False, use_lma: bool = False, lma_q_chunk_size: int = 1024, lma_kv_chunk_size: int = 4096, use_flash: bool = False, flash_mask: Optional[torch.Tensor] = None, ) -> torch.Tensor: """ Args: q_x: [*, Q, C_q] query data kv_x: [*, K, C_k] key data biases: List of biases that broadcast to [*, H, Q, K] use_memory_efficient_kernel: Whether to use a custom memory-efficient attention kernel. This should be the default choice for most. If none of the "use_<...>" flags are True, a stock PyTorch implementation is used instead use_lma: Whether to use low-memory attention (Staats & Rabe 2021). If none of the "use_<...>" flags are True, a stock PyTorch implementation is used instead lma_q_chunk_size: Query chunk size (for LMA) lma_kv_chunk_size: Key/Value chunk size (for LMA) Returns [*, Q, C_q] attention update """ if use_lma and (lma_q_chunk_size is None or lma_kv_chunk_size is None): raise ValueError("If use_lma is specified, lma_q_chunk_size and lma_kv_chunk_size must be provided") if use_flash and biases is not None: raise ValueError("use_flash is incompatible with the bias option. For masking, use flash_mask instead") attn_options = [use_memory_efficient_kernel, use_lma, use_flash] if sum(attn_options) > 1: raise ValueError("Choose at most one alternative attention algorithm") if biases is None: biases = [] # [*, H, Q/K, C_hidden] query, key, value = self._prep_qkv(q_x, kv_x) key = permute_final_dims(key, (1, 0)) # [*, H, Q, K] output = torch.matmul(query, key) for b in biases: output += b output = softmax_no_cast(output, -1) # [*, H, Q, C_hidden] output = torch.matmul(output, value) output = output.transpose(-2, -3) output = self._wrap_up(output, q_x) return output class EsmFoldTriangleAttention(nn.Module): def __init__(self, c_in, c_hidden, no_heads, starting=True, inf=1e9): """ Args: c_in: Input channel dimension c_hidden: Overall hidden channel dimension (not per-head) no_heads: Number of attention heads """ super().__init__() self.c_in = c_in self.c_hidden = c_hidden self.no_heads = no_heads self.starting = starting self.inf = inf self.layer_norm = LayerNorm(self.c_in) self.linear = EsmFoldLinear(c_in, self.no_heads, bias=False, init="normal") self.mha = EsmFoldAttention(self.c_in, self.c_in, self.c_in, self.c_hidden, self.no_heads) @torch.jit.ignore def _chunk( self, x: torch.Tensor, biases: List[torch.Tensor], chunk_size: int, use_memory_efficient_kernel: bool = False, use_lma: bool = False, inplace_safe: bool = False, ) -> torch.Tensor: "triangle! triangle!" mha_inputs = { "q_x": x, "kv_x": x, "biases": biases, } return chunk_layer( partial(self.mha, use_memory_efficient_kernel=use_memory_efficient_kernel, use_lma=use_lma), mha_inputs, chunk_size=chunk_size, no_batch_dims=len(x.shape[:-2]), _out=x if inplace_safe else None, ) def forward( self, x: torch.Tensor, mask: Optional[torch.Tensor] = None, chunk_size: Optional[int] = None, use_memory_efficient_kernel: bool = False, use_lma: bool = False, inplace_safe: bool = False, ) -> torch.Tensor: """ Args: x: [*, I, J, C_in] input tensor (e.g. the pair representation) Returns: [*, I, J, C_in] output tensor """ if mask is None: # [*, I, J] mask = x.new_ones( x.shape[:-1], ) if not self.starting: x = x.transpose(-2, -3) mask = mask.transpose(-1, -2) # [*, I, J, C_in] x = self.layer_norm(x) # [*, I, 1, 1, J] mask_bias = (self.inf * (mask - 1))[..., :, None, None, :] # [*, H, I, J] triangle_bias = permute_final_dims(self.linear(x), (2, 0, 1)) # [*, 1, H, I, J] triangle_bias = triangle_bias.unsqueeze(-4) biases = [mask_bias, triangle_bias] if chunk_size is not None: x = self._chunk( x, biases, chunk_size, use_memory_efficient_kernel=use_memory_efficient_kernel, use_lma=use_lma, inplace_safe=inplace_safe, ) else: x = self.mha( q_x=x, kv_x=x, biases=biases, use_memory_efficient_kernel=use_memory_efficient_kernel, use_lma=use_lma ) if not self.starting: x = x.transpose(-2, -3) return x class EsmFoldTriangleMultiplicativeUpdate(nn.Module): """ Implements Algorithms 11 and 12. """ def __init__(self, config, _outgoing=True): super().__init__() c_hidden = config.pairwise_state_dim self._outgoing = _outgoing self.linear_a_p = EsmFoldLinear(c_hidden, c_hidden) self.linear_a_g = EsmFoldLinear(c_hidden, c_hidden, init="gating") self.linear_b_p = EsmFoldLinear(c_hidden, c_hidden) self.linear_b_g = EsmFoldLinear(c_hidden, c_hidden, init="gating") self.linear_g = EsmFoldLinear(c_hidden, c_hidden, init="gating") self.linear_z = EsmFoldLinear(c_hidden, c_hidden, init="final") self.layer_norm_in = LayerNorm(c_hidden) self.layer_norm_out = LayerNorm(c_hidden) self.sigmoid = nn.Sigmoid() def _combine_projections( self, a: torch.Tensor, b: torch.Tensor, _inplace_chunk_size: Optional[int] = None ) -> torch.Tensor: if self._outgoing: a = permute_final_dims(a, (2, 0, 1)) b = permute_final_dims(b, (2, 1, 0)) else: a = permute_final_dims(a, (2, 1, 0)) b = permute_final_dims(b, (2, 0, 1)) if _inplace_chunk_size is not None: # To be replaced by torch vmap for i in range(0, a.shape[-3], _inplace_chunk_size): a_chunk = a[..., i : i + _inplace_chunk_size, :, :] b_chunk = b[..., i : i + _inplace_chunk_size, :, :] a[..., i : i + _inplace_chunk_size, :, :] = torch.matmul( a_chunk, b_chunk, ) p = a else: p = torch.matmul(a, b) return permute_final_dims(p, (1, 2, 0)) def _inference_forward( self, z: torch.Tensor, mask: Optional[torch.Tensor] = None, inplace_chunk_size: Optional[int] = None, with_add: bool = True, ): """ Args: z: A [*, N, N, C_z] pair representation mask: A [*, N, N] pair mask inplace_chunk_size: Size of chunks used in the main computation. Increase to trade memory for speed. with_add: If True, z is overwritten with (z + update). Otherwise, it is overwritten with (update). Returns: A reference to the overwritten z More memory-efficient, inference-only version of the forward function. Uses in-place operations, fusion of the addition that happens after this module in the Evoformer, a smidge of recomputation, and a cache of overwritten values to lower peak memory consumption of this module from 5x the size of the input tensor z to 2.5x its size. Useful for inference on extremely long sequences. It works as follows. We will make reference to variables used in the default forward implementation below. Naively, triangle multiplication attention requires the manifestation of 5 tensors the size of z: 1) z, the "square" input tensor, 2) a, the first projection of z, 3) b, the second projection of b, 4) g, a z-sized mask, and 5) a z-sized tensor for intermediate computations. For large N, this is prohibitively expensive; for N=4000, for example, z is more than 8GB alone. To avoid this problem, we compute b, g, and all intermediate tensors in small chunks, noting that the chunks required to compute a chunk of the output depend only on the tensor a and corresponding vertical and horizontal chunks of z. This suggests an algorithm that loops over pairs of chunks of z: hereafter "columns" and "rows" of z, even though each "column" and "row" in fact contains inplace_chunk_size contiguous true columns and rows of z. Writing output chunks to a new tensor would bring total memory consumption down to 3x the size of z. However, more memory can be saved by writing output chunks directly to z in-place. WLOG, we choose to write output chunks vertically, overwriting the ith "column" of z at the end of the ith iteration of the main loop. Despite this overwriting, the ith column is always one column ahead of previously overwritten columns and can be recovered directly from z. After the first iteration, however, the ith row of z is always at least partially overwritten. For this reason, we introduce the z-cache, a tensor one-half the size of z. The z-cache initially contains the left half (2nd and 3rd quadrants) of z. For 0 < i < N/2, the missing left part of the ith row of z is recovered from this cache at the beginning of the ith iteration. Once i exceeds n/2, the cache is "reoriented" to encompass the 3rd and 4th quadrants of z instead. Though the 3rd quadrant of the original z is entirely overwritten at this point, it can be recovered from the z-cache itself. Thereafter, the ith row of z can be recovered in its entirety from the reoriented z-cache. After the final iteration, z has been completely overwritten and contains the triangular multiplicative update. If with_add is True, it instead contains the sum of z and the triangular multiplicative update. In either case, peak memory consumption is just 2.5x the size of z, disregarding memory used for chunks and other small variables. """ if mask is None: mask = z.new_ones(z.shape[:-1]) mask = mask.unsqueeze(-1) def compute_projection_helper(pair, mask, a=True): if a: linear_g = self.linear_a_g linear_p = self.linear_a_p else: linear_g = self.linear_b_g linear_p = self.linear_b_p pair = self.layer_norm_in(pair) p = linear_g(pair) p.sigmoid_() p *= linear_p(pair) p *= mask p = permute_final_dims(p, (2, 0, 1)) return p def compute_projection(pair, mask, a=True, chunked=True): need_transpose = self._outgoing ^ a if not chunked: p = compute_projection_helper(pair, mask, a) if need_transpose: p = p.transpose(-1, -2) else: # This computation is chunked so as not to exceed our 2.5x # budget with a large intermediate tensor linear_g = self.linear_a_g if a else self.linear_b_g c = linear_g.bias.shape[-1] out_shape = pair.shape[:-3] + (c,) + pair.shape[-3:-1] p = pair.new_zeros(out_shape) for i in range(0, pair.shape[-3], inplace_chunk_size): pair_chunk = pair[..., i : i + inplace_chunk_size, :, :] pair_chunk = compute_projection_helper( pair[..., i : i + inplace_chunk_size, :, :], mask[..., i : i + inplace_chunk_size, :, :], a, ) if need_transpose: pair_chunk = pair_chunk.transpose(-1, -2) p[..., i : i + inplace_chunk_size] = pair_chunk else: p[..., i : i + inplace_chunk_size, :] = pair_chunk del pair_chunk return p # We start by fully manifesting a. In addition to the input, this # brings total memory consumption to 2x z (disregarding size of chunks) # [*, N, N, c] a = compute_projection(z, mask, True, chunked=True) if inplace_chunk_size is not None: n = a.shape[-1] half_n = n // 2 + n % 2 row_dim = -3 col_dim = -2 b_chunk_dim = row_dim if self._outgoing else col_dim def empty_slicer(t): return [slice(None) for _ in t.shape] def slice_tensor(t, start, end, dim): # Slices start:end from the dim dimension of t s = empty_slicer(t) s[dim] = slice(start, end) return t[s] def flip_z_cache_(z_cache, z): # "Reorient" the z_cache (see below), filling it with quadrants # 3---recovered from the z_cache---and 4---recovered from z--- # of the input tensor z. quadrant_3 = slice_tensor(z_cache, half_n, None, row_dim) z_cache = z_cache.transpose(row_dim, col_dim) # If n is odd, we need to shrink the z_cache by one row z_cache = z_cache[..., : (n // 2), :, :] # Move the 3rd quadrant of z into the first_half_slicer = empty_slicer(z_cache) first_half_slicer[col_dim] = slice(0, half_n) z_cache[first_half_slicer] = quadrant_3 # Get the fourth quadrant of z quadrant_4 = slice_tensor(z, half_n, None, row_dim) quadrant_4 = slice_tensor(quadrant_4, half_n, None, col_dim) # Insert said quadrant into the rotated z-cache quadrant_3_slicer = empty_slicer(z_cache) quadrant_3_slicer[col_dim] = slice(half_n, None) z_cache[quadrant_3_slicer] = quadrant_4 return z_cache # Initialize the z cache to the left half of z. z_cache_shape = list(z.shape) z_cache_shape[col_dim] = half_n z_cache = z.new_zeros(z_cache_shape) z_cache_slicer = empty_slicer(z_cache) z_cache_slicer[col_dim] = slice(0, half_n) z_cache.copy_(z[z_cache_slicer]) z_cache_rotated = False # We need to reorient the z-cache at the halfway point, and we # don't want a single chunk to straddle that point. We contract one # of the chunks in the middle to address that problem. i_range = list(range(0, half_n, inplace_chunk_size)) initial_offsets = [i_2 - i_1 for i_1, i_2 in zip(i_range, i_range[1:] + [half_n])] after_half = list(range(half_n, n, inplace_chunk_size)) after_half_offsets = [inplace_chunk_size for _ in after_half] combined_range_with_offsets = zip(i_range + after_half, initial_offsets + after_half_offsets) for i, offset in combined_range_with_offsets: if not z_cache_rotated and i >= half_n: z_cache = flip_z_cache_(z_cache, z) z_cache_rotated = True z_chunk_b = slice_tensor(z, i, i + offset, b_chunk_dim) mask_chunk = slice_tensor(mask, i, i + offset, b_chunk_dim) z_chunk_b = z_chunk_b.clone() if b_chunk_dim == col_dim: z_chunk_b = slice_tensor(z, i, i + offset, col_dim) else: # b_chunk_dim == row_dim # In this case, the b-dimension (b_chunk_dim) is partially # overwritten at the end of each iteration. We need to # restore the missing component from the z-cache. if not z_cache_rotated: z_chunk_slicer = empty_slicer(z_chunk_b) z_chunk_slicer[col_dim] = slice(0, half_n) z_chunk_b[z_chunk_slicer] = slice_tensor(z_cache, i, i + offset, row_dim) else: z_cache_offset = i - half_n z_chunk_b = slice_tensor(z_cache, z_cache_offset, z_cache_offset + offset, row_dim) b_chunk = compute_projection(z_chunk_b, mask_chunk, a=False, chunked=False) del z_chunk_b x_chunk = torch.matmul(a, b_chunk) x_chunk = permute_final_dims(x_chunk, (1, 2, 0)) x_chunk = self.layer_norm_out(x_chunk) x_chunk = self.linear_z(x_chunk) # The g dimension (col_dim) is parallel to and ahead of the # overwrites in z. We can extract the g chunk normally. z_chunk_g = slice_tensor(z, i, i + offset, col_dim) g_chunk = self.linear_g(self.layer_norm_in(z_chunk_g)) g_chunk.sigmoid_() del z_chunk_g x_chunk *= g_chunk # Write the columns into z in-place z_slicer = empty_slicer(z) z_slicer[col_dim] = slice(i, i + offset) if with_add: z[z_slicer] += x_chunk else: z[z_slicer] = x_chunk else: b = compute_projection(z, mask, False, False) x = torch.matmul(a, b) x = self.layer_norm_out(x) x = self.linear_z(x) g = self.linear_g(z) g.sigmoid_() x *= g if with_add: z += x else: z = x return z def forward( self, z: torch.Tensor, mask: Optional[torch.Tensor] = None, inplace_safe: bool = False, _add_with_inplace: bool = False, _inplace_chunk_size: Optional[int] = 256, ) -> torch.Tensor: """ Args: x: [*, N_res, N_res, C_z] input tensor mask: [*, N_res, N_res] input mask Returns: [*, N_res, N_res, C_z] output tensor """ if inplace_safe: x = self._inference_forward( z, mask, inplace_chunk_size=_inplace_chunk_size, with_add=_add_with_inplace, ) return x if mask is None: mask = z.new_ones(z.shape[:-1]) mask = mask.unsqueeze(-1) z = self.layer_norm_in(z) a = mask a = a * self.sigmoid(self.linear_a_g(z)) a = a * self.linear_a_p(z) b = mask b = b * self.sigmoid(self.linear_b_g(z)) b = b * self.linear_b_p(z) if is_fp16_enabled(): with torch.cuda.amp.autocast(enabled=False): x = self._combine_projections(a.float(), b.float()) else: x = self._combine_projections(a, b) del a, b x = self.layer_norm_out(x) x = self.linear_z(x) g = self.sigmoid(self.linear_g(z)) x = x * g return x class EsmFoldPreTrainedModel(EsmPreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ # Subclass `EsMPreTrainedModel` to deal with special init def _init_weights(self, module): """Initialize the weights""" if isinstance(module, EsmFoldLinear): with torch.no_grad(): if module.init_fn is not None: module.init_fn(module.weight, module.bias) elif module.init == "default": trunc_normal_init_(module.weight, scale=1.0) elif module.init == "relu": trunc_normal_init_(module.weight, scale=2.0) elif module.init == "glorot": nn.init.xavier_uniform_(module.weight, gain=1) elif module.init == "gating": module.weight.fill_(0.0) if module.bias: module.bias.fill_(1.0) elif module.init == "normal": torch.nn.init.kaiming_normal_(module.weight, nonlinearity="linear") elif module.init == "final": module.weight.fill_(0.0) elif isinstance(module, EsmFoldInvariantPointAttention): ipa_point_weights_init_(module.head_weights) elif isinstance(module, EsmFoldTriangularSelfAttentionBlock): torch.nn.init.zeros_(module.tri_mul_in.linear_z.weight) torch.nn.init.zeros_(module.tri_mul_in.linear_z.bias) torch.nn.init.zeros_(module.tri_mul_out.linear_z.weight) torch.nn.init.zeros_(module.tri_mul_out.linear_z.bias) torch.nn.init.zeros_(module.tri_att_start.mha.linear_o.weight) torch.nn.init.zeros_(module.tri_att_start.mha.linear_o.bias) torch.nn.init.zeros_(module.tri_att_end.mha.linear_o.weight) torch.nn.init.zeros_(module.tri_att_end.mha.linear_o.bias) torch.nn.init.zeros_(module.sequence_to_pair.o_proj.weight) torch.nn.init.zeros_(module.sequence_to_pair.o_proj.bias) torch.nn.init.zeros_(module.pair_to_sequence.linear.weight) torch.nn.init.zeros_(module.seq_attention.o_proj.weight) torch.nn.init.zeros_(module.seq_attention.o_proj.bias) torch.nn.init.zeros_(module.mlp_seq.mlp[-2].weight) torch.nn.init.zeros_(module.mlp_seq.mlp[-2].bias) torch.nn.init.zeros_(module.mlp_pair.mlp[-2].weight) torch.nn.init.zeros_(module.mlp_pair.mlp[-2].bias) else: super()._init_weights(module) class EsmFoldSelfAttention(nn.Module): def __init__(self, embed_dim, num_heads, head_width, gated=False): super().__init__() assert embed_dim == num_heads * head_width self.embed_dim = embed_dim self.num_heads = num_heads self.head_width = head_width self.proj = nn.Linear(embed_dim, embed_dim * 3, bias=False) self.o_proj = nn.Linear(embed_dim, embed_dim, bias=True) self.gated = gated if gated: self.g_proj = nn.Linear(embed_dim, embed_dim) torch.nn.init.zeros_(self.g_proj.weight) torch.nn.init.ones_(self.g_proj.bias) self.rescale_factor = self.head_width**-0.5 torch.nn.init.zeros_(self.o_proj.bias) def forward(self, x, mask=None, bias=None, indices=None): """ Basic self attention with optional mask and external pairwise bias. To handle sequences of different lengths, use mask. Inputs: x: batch of input sequneces (.. x L x C) mask: batch of boolean masks where 1=valid, 0=padding position (.. x L_k) bias: batch of scalar pairwise attention biases (.. x Lq x Lk x num_heads) Outputs: sequence projection (B x L x embed_dim), attention maps (B x L x L x num_heads) """ t = self.proj(x).view(*x.shape[:2], self.num_heads, -1) t = t.permute(0, 2, 1, 3) q, k, v = t.chunk(3, dim=-1) q = self.rescale_factor * q a = torch.einsum("...qc,...kc->...qk", q, k) # Add external attention bias. if bias is not None: a = a + bias.permute(0, 3, 1, 2) # Do not attend to padding tokens. if mask is not None: mask = mask[:, None, None] a = a.masked_fill(mask == False, -np.inf) # noqa: E712 a = nn.functional.softmax(a, dim=-1) y = torch.einsum("...hqk,...hkc->...qhc", a, v) y = y.reshape(*y.shape[:2], -1) if self.gated: y = self.g_proj(x).sigmoid() * y y = self.o_proj(y) return y, a.permute(0, 3, 1, 2) class EsmFoldDropout(nn.Module): """ Implementation of dropout with the ability to share the dropout mask along a particular dimension. """ def __init__(self, r: float, batch_dim: Union[int, List[int]]): super().__init__() self.r = r if type(batch_dim) == int: batch_dim = [batch_dim] self.batch_dim = batch_dim self.dropout = nn.Dropout(self.r) def forward(self, x: torch.Tensor) -> torch.Tensor: shape = list(x.shape) if self.batch_dim is not None: for bd in self.batch_dim: shape[bd] = 1 return x * self.dropout(x.new_ones(shape)) class EsmFoldSequenceToPair(nn.Module): def __init__(self, sequence_state_dim, inner_dim, pairwise_state_dim): super().__init__() self.layernorm = nn.LayerNorm(sequence_state_dim) self.proj = nn.Linear(sequence_state_dim, inner_dim * 2, bias=True) self.o_proj = nn.Linear(2 * inner_dim, pairwise_state_dim, bias=True) torch.nn.init.zeros_(self.proj.bias) torch.nn.init.zeros_(self.o_proj.bias) def forward(self, sequence_state): """ Inputs: sequence_state: B x L x sequence_state_dim Output: pairwise_state: B x L x L x pairwise_state_dim Intermediate state: B x L x L x 2*inner_dim """ assert len(sequence_state.shape) == 3 s = self.layernorm(sequence_state) s = self.proj(s) q, k = s.chunk(2, dim=-1) prod = q[:, None, :, :] * k[:, :, None, :] diff = q[:, None, :, :] - k[:, :, None, :] x = torch.cat([prod, diff], dim=-1) x = self.o_proj(x) return x class EsmFoldPairToSequence(nn.Module): def __init__(self, pairwise_state_dim, num_heads): super().__init__() self.layernorm = nn.LayerNorm(pairwise_state_dim) self.linear = nn.Linear(pairwise_state_dim, num_heads, bias=False) def forward(self, pairwise_state): """ Inputs: pairwise_state: B x L x L x pairwise_state_dim Output: pairwise_bias: B x L x L x num_heads """ assert len(pairwise_state.shape) == 4 z = self.layernorm(pairwise_state) pairwise_bias = self.linear(z) return pairwise_bias class EsmFoldResidueMLP(nn.Module): def __init__(self, embed_dim, inner_dim, dropout=0): super().__init__() self.mlp = nn.Sequential( nn.LayerNorm(embed_dim), nn.Linear(embed_dim, inner_dim), nn.ReLU(), nn.Linear(inner_dim, embed_dim), nn.Dropout(dropout), ) def forward(self, x): return x + self.mlp(x) class EsmFoldTriangularSelfAttentionBlock(nn.Module): def __init__(self, config): super().__init__() self.config = config sequence_state_dim = config.sequence_state_dim pairwise_state_dim = config.pairwise_state_dim sequence_num_heads = sequence_state_dim // config.sequence_head_width pairwise_num_heads = pairwise_state_dim // config.pairwise_head_width self.layernorm_1 = nn.LayerNorm(sequence_state_dim) self.sequence_to_pair = EsmFoldSequenceToPair(sequence_state_dim, pairwise_state_dim // 2, pairwise_state_dim) self.pair_to_sequence = EsmFoldPairToSequence(pairwise_state_dim, sequence_num_heads) self.seq_attention = EsmFoldSelfAttention( sequence_state_dim, sequence_num_heads, config.sequence_head_width, gated=True ) self.tri_mul_out = EsmFoldTriangleMultiplicativeUpdate(config, _outgoing=True) self.tri_mul_in = EsmFoldTriangleMultiplicativeUpdate(config, _outgoing=False) self.tri_att_start = EsmFoldTriangleAttention( pairwise_state_dim, config.pairwise_head_width, pairwise_num_heads, inf=1e9, starting=True ) self.tri_att_end = EsmFoldTriangleAttention( pairwise_state_dim, config.pairwise_head_width, pairwise_num_heads, inf=1e9, starting=False ) self.mlp_seq = EsmFoldResidueMLP(sequence_state_dim, 4 * sequence_state_dim, dropout=config.dropout) self.mlp_pair = EsmFoldResidueMLP(pairwise_state_dim, 4 * pairwise_state_dim, dropout=config.dropout) self.drop = nn.Dropout(config.dropout) self.row_drop = EsmFoldDropout(config.dropout * 2, 2) self.col_drop = EsmFoldDropout(config.dropout * 2, 1) def forward(self, sequence_state, pairwise_state, mask=None, chunk_size=None, **__kwargs): """ Inputs: sequence_state: B x L x sequence_state_dim pairwise_state: B x L x L x pairwise_state_dim mask: B x L boolean tensor of valid positions Output: sequence_state: B x L x sequence_state_dim pairwise_state: B x L x L x pairwise_state_dim """ if len(sequence_state.shape) != 3: raise ValueError(f"`sequence_state` should be a 3d-tensor, got {len(sequence_state.shape)} dims.") if len(pairwise_state.shape) != 4: raise ValueError(f"`pairwise_state` should be a 4d-tensor, got {len(pairwise_state.shape)} dims.") if mask is not None and len(mask.shape) != 2: raise ValueError(f"`mask` should be a 2d-tensor, got {len(mask.shape)} dims.") batch_dim, seq_dim, sequence_state_dim = sequence_state.shape pairwise_state_dim = pairwise_state.shape[3] if sequence_state_dim != self.config.sequence_state_dim: raise ValueError( "`sequence_state` last dimension should be equal to `self.sequence_state_dim`. Got" f"{sequence_state_dim} != {self.config.sequence_state_dim}." ) if pairwise_state_dim != self.config.pairwise_state_dim: raise ValueError( "`pairwise_state` last dimension should be equal to `self.pairwise_state_dim`. Got " f"{pairwise_state_dim} != {self.config.pairwise_state_dim}." ) if batch_dim != pairwise_state.shape[0]: raise ValueError( f"`sequence_state` and `pairwise_state` have inconsistent batch size: {batch_dim} != " f"{pairwise_state.shape[0]}." ) if seq_dim != pairwise_state.shape[1] or seq_dim != pairwise_state.shape[2]: raise ValueError( f"`sequence_state` and `pairwise_state` have inconsistent sequence length: {seq_dim} != " f"{pairwise_state.shape[1]} or {pairwise_state.shape[2]}." ) # Update sequence state bias = self.pair_to_sequence(pairwise_state) # Self attention with bias + mlp. y = self.layernorm_1(sequence_state) y, _ = self.seq_attention(y, mask=mask, bias=bias) sequence_state = sequence_state + self.drop(y) sequence_state = self.mlp_seq(sequence_state) # Update pairwise state pairwise_state = pairwise_state + self.sequence_to_pair(sequence_state) # Axial attention with triangular bias. tri_mask = mask.unsqueeze(2) * mask.unsqueeze(1) if mask is not None else None pairwise_state = pairwise_state + self.row_drop(self.tri_mul_out(pairwise_state, mask=tri_mask)) pairwise_state = pairwise_state + self.col_drop(self.tri_mul_in(pairwise_state, mask=tri_mask)) pairwise_state = pairwise_state + self.row_drop( self.tri_att_start(pairwise_state, mask=tri_mask, chunk_size=chunk_size) ) pairwise_state = pairwise_state + self.col_drop( self.tri_att_end(pairwise_state, mask=tri_mask, chunk_size=chunk_size) ) # MLP over pairs. pairwise_state = self.mlp_pair(pairwise_state) return sequence_state, pairwise_state class EsmCategoricalMixture: def __init__(self, param, bins=50, start=0, end=1): # All tensors are of shape ..., bins. self.logits = param bins = torch.linspace(start, end, bins + 1, device=self.logits.device, dtype=self.logits.dtype) self.v_bins = (bins[:-1] + bins[1:]) / 2 def log_prob(self, true): # Shapes are: # self.probs: ... x bins # true : ... true_index = (true.unsqueeze(-1) - self.v_bins[[None] * true.ndim]).abs().argmin(-1) nll = self.logits.log_softmax(-1) return torch.take_along_dim(nll, true_index.unsqueeze(-1), dim=-1).squeeze(-1) def mean(self): return (self.logits.softmax(-1) @ self.v_bins.unsqueeze(1)).squeeze(-1) def categorical_lddt(logits, bins=50): # Logits are ..., 37, bins. return EsmCategoricalMixture(logits, bins=bins).mean() def get_axial_mask(mask): """ Helper to convert B x L mask of valid positions to axial mask used in row column attentions. Input: mask: B x L tensor of booleans Output: mask: B x L x L tensor of booleans """ if mask is None: return None if len(mask.shape) != 2: raise ValueError(f"`mask` should be a 2d-tensor, got {len(mask.shape)} dims.") batch_dim, seq_dim = mask.shape m = mask.unsqueeze(1).expand(batch_dim, seq_dim, seq_dim) m = m.reshape(batch_dim * seq_dim, seq_dim) return m class EsmFoldRelativePosition(nn.Module): def __init__(self, config): super().__init__() self.bins = config.position_bins # Note an additional offset is used so that the 0th position # is reserved for masked pairs. self.embedding = torch.nn.Embedding(2 * self.bins + 2, config.pairwise_state_dim) def forward(self, residue_index, mask=None): """ Input: residue_index: B x L tensor of indices (dytpe=torch.long) mask: B x L tensor of booleans Output: pairwise_state: B x L x L x pairwise_state_dim tensor of embeddings """ if residue_index.dtype != torch.long: raise ValueError(f"`residue_index` has dtype {residue_index.dtype}, it should be `torch.long`.") if mask is not None and residue_index.shape != mask.shape: raise ValueError( f"`residue_index` and `mask` have inconsistent shapes: {residue_index.shape} != {mask.shape}." ) diff = residue_index[:, None, :] - residue_index[:, :, None] diff = diff.clamp(-self.bins, self.bins) diff = diff + self.bins + 1 # Add 1 to adjust for padding index. if mask is not None: mask = mask[:, None, :] * mask[:, :, None] diff[mask == False] = 0 # noqa: E712 output = self.embedding(diff) return output class EsmFoldAngleResnetBlock(nn.Module): def __init__(self, config): super().__init__() self.linear_1 = EsmFoldLinear(config.resnet_dim, config.resnet_dim, init="relu") self.linear_2 = EsmFoldLinear(config.resnet_dim, config.resnet_dim, init="final") self.relu = nn.ReLU() def forward(self, a: torch.Tensor) -> torch.Tensor: s_initial = a a = self.relu(a) a = self.linear_1(a) a = self.relu(a) a = self.linear_2(a) return a + s_initial class EsmFoldAngleResnet(nn.Module): """ Implements Algorithm 20, lines 11-14 """ def __init__(self, config): super().__init__() self.config = config self.linear_in = EsmFoldLinear(config.sequence_dim, config.resnet_dim) self.linear_initial = EsmFoldLinear(config.sequence_dim, config.resnet_dim) self.layers = nn.ModuleList() for _ in range(config.num_resnet_blocks): layer = EsmFoldAngleResnetBlock(config) self.layers.append(layer) self.linear_out = EsmFoldLinear(config.resnet_dim, config.num_angles * 2) self.relu = nn.ReLU() def forward(self, s: torch.Tensor, s_initial: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]: """ Args: s: [*, C_hidden] single embedding s_initial: [*, C_hidden] single embedding as of the start of the StructureModule Returns: [*, no_angles, 2] predicted angles """ # NOTE: The ReLU's applied to the inputs are absent from the supplement # pseudocode but present in the source. For maximal compatibility with # the pretrained weights, I'm going with the source. # [*, C_hidden] s_initial = self.relu(s_initial) s_initial = self.linear_initial(s_initial) s = self.relu(s) s = self.linear_in(s) s = s + s_initial for l in self.layers: s = l(s) s = self.relu(s) # [*, no_angles * 2] s = self.linear_out(s) # [*, no_angles, 2] s = s.view(s.shape[:-1] + (-1, 2)) unnormalized_s = s norm_denom = torch.sqrt( torch.clamp( torch.sum(s**2, dim=-1, keepdim=True), min=self.config.epsilon, ) ) s = s / norm_denom return unnormalized_s, s class EsmFoldInvariantPointAttention(nn.Module): """ Implements Algorithm 22. """ def __init__(self, config): super().__init__() self.config = config c_s = config.sequence_dim c_z = config.pairwise_dim self.hidden_dim = config.ipa_dim self.num_heads = config.num_heads_ipa self.num_qk_points = config.num_qk_points self.num_v_points = config.num_v_points # These linear layers differ from their specifications in the # supplement. There, they lack bias and use Glorot initialization. # Here as in the official source, they have bias and use the default # Lecun initialization. hc = config.ipa_dim * config.num_heads_ipa self.linear_q = EsmFoldLinear(c_s, hc) self.linear_kv = EsmFoldLinear(c_s, 2 * hc) hpq = config.num_heads_ipa * config.num_qk_points * 3 self.linear_q_points = EsmFoldLinear(c_s, hpq) hpkv = config.num_heads_ipa * (config.num_qk_points + config.num_v_points) * 3 self.linear_kv_points = EsmFoldLinear(c_s, hpkv) self.linear_b = EsmFoldLinear(c_z, config.num_heads_ipa) self.head_weights = nn.Parameter(torch.zeros((config.num_heads_ipa))) concat_out_dim = config.num_heads_ipa * (c_z + config.ipa_dim + config.num_v_points * 4) self.linear_out = EsmFoldLinear(concat_out_dim, c_s, init="final") self.softmax = nn.Softmax(dim=-1) self.softplus = nn.Softplus() def forward( self, s: torch.Tensor, z: Optional[torch.Tensor], r: Rigid, mask: torch.Tensor, _offload_inference: bool = False, _z_reference_list: Optional[Sequence[torch.Tensor]] = None, ) -> torch.Tensor: """ Args: s: [*, N_res, C_s] single representation z: [*, N_res, N_res, C_z] pair representation r: [*, N_res] transformation object mask: [*, N_res] mask Returns: [*, N_res, C_s] single representation update """ z = [z] ####################################### # Generate scalar and point activations ####################################### # [*, N_res, H * C_hidden] q = self.linear_q(s) kv = self.linear_kv(s) # [*, N_res, H, C_hidden] q = q.view(q.shape[:-1] + (self.num_heads, -1)) # [*, N_res, H, 2 * C_hidden] kv = kv.view(kv.shape[:-1] + (self.num_heads, -1)) # [*, N_res, H, C_hidden] k, v = torch.split(kv, self.hidden_dim, dim=-1) # [*, N_res, H * P_q * 3] q_pts = self.linear_q_points(s) # This is kind of clunky, but it's how the original does it # [*, N_res, H * P_q, 3] q_pts = torch.split(q_pts, q_pts.shape[-1] // 3, dim=-1) q_pts = torch.stack(q_pts, dim=-1) q_pts = r[..., None].apply(q_pts) # [*, N_res, H, P_q, 3] q_pts = q_pts.view(q_pts.shape[:-2] + (self.num_heads, self.num_qk_points, 3)) # [*, N_res, H * (P_q + P_v) * 3] kv_pts = self.linear_kv_points(s) # [*, N_res, H * (P_q + P_v), 3] kv_pts = torch.split(kv_pts, kv_pts.shape[-1] // 3, dim=-1) kv_pts = torch.stack(kv_pts, dim=-1) kv_pts = r[..., None].apply(kv_pts) # [*, N_res, H, (P_q + P_v), 3] kv_pts = kv_pts.view(kv_pts.shape[:-2] + (self.num_heads, -1, 3)) # [*, N_res, H, P_q/P_v, 3] k_pts, v_pts = torch.split(kv_pts, [self.num_qk_points, self.num_v_points], dim=-2) ########################## # Compute attention scores ########################## # [*, N_res, N_res, H] b = self.linear_b(z[0]) if _offload_inference: assert sys.getrefcount(z[0]) == 2 z[0] = z[0].cpu() # [*, H, N_res, N_res] if is_fp16_enabled(): with torch.cuda.amp.autocast(enabled=False): a = torch.matmul( permute_final_dims(q.float(), (1, 0, 2)), # [*, H, N_res, C_hidden] permute_final_dims(k.float(), (1, 2, 0)), # [*, H, C_hidden, N_res] ) else: a = torch.matmul( permute_final_dims(q, (1, 0, 2)), # [*, H, N_res, C_hidden] permute_final_dims(k, (1, 2, 0)), # [*, H, C_hidden, N_res] ) a *= math.sqrt(1.0 / (3 * self.hidden_dim)) a += math.sqrt(1.0 / 3) * permute_final_dims(b, (2, 0, 1)) # [*, N_res, N_res, H, P_q, 3] pt_att = q_pts.unsqueeze(-4) - k_pts.unsqueeze(-5) pt_att = pt_att**2 # [*, N_res, N_res, H, P_q] pt_att = sum(torch.unbind(pt_att, dim=-1)) head_weights = self.softplus(self.head_weights).view(*((1,) * len(pt_att.shape[:-2]) + (-1, 1))) head_weights = head_weights * math.sqrt(1.0 / (3 * (self.num_qk_points * 9.0 / 2))) pt_att = pt_att * head_weights # [*, N_res, N_res, H] pt_att = torch.sum(pt_att, dim=-1) * (-0.5) # [*, N_res, N_res] square_mask = mask.unsqueeze(-1) * mask.unsqueeze(-2) square_mask = self.config.inf * (square_mask - 1) # [*, H, N_res, N_res] pt_att = permute_final_dims(pt_att, (2, 0, 1)) a = a + pt_att a = a + square_mask.unsqueeze(-3) a = self.softmax(a) ################ # Compute output ################ # [*, N_res, H, C_hidden] o = torch.matmul(a, v.transpose(-2, -3).to(dtype=a.dtype)).transpose(-2, -3) # [*, N_res, H * C_hidden] o = flatten_final_dims(o, 2) # [*, H, 3, N_res, P_v] o_pt = torch.sum( (a[..., None, :, :, None] * permute_final_dims(v_pts, (1, 3, 0, 2))[..., None, :, :]), dim=-2, ) # [*, N_res, H, P_v, 3] o_pt = permute_final_dims(o_pt, (2, 0, 3, 1)) o_pt = r[..., None, None].invert_apply(o_pt) # [*, N_res, H * P_v] o_pt_norm = flatten_final_dims(torch.sqrt(torch.sum(o_pt**2, dim=-1) + self.config.epsilon), 2) # [*, N_res, H * P_v, 3] o_pt = o_pt.reshape(*o_pt.shape[:-3], -1, 3) if _offload_inference: z[0] = z[0].to(o_pt.device) # [*, N_res, H, C_z] o_pair = torch.matmul(a.transpose(-2, -3), z[0].to(dtype=a.dtype)) # [*, N_res, H * C_z] o_pair = flatten_final_dims(o_pair, 2) # [*, N_res, C_s] s = self.linear_out( torch.cat((o, *torch.unbind(o_pt, dim=-1), o_pt_norm, o_pair), dim=-1).to(dtype=z[0].dtype) ) return s class EsmFoldBackboneUpdate(nn.Module): """ Implements part of Algorithm 23. """ def __init__(self, config): super().__init__() self.linear = EsmFoldLinear(config.sequence_dim, 6, init="final") def forward(self, s: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]: """ Args: [*, N_res, C_s] single representation Returns: [*, N_res, 6] update vector """ # [*, 6] update = self.linear(s) return update class EsmFoldStructureModuleTransitionLayer(nn.Module): def __init__(self, config): super().__init__() self.linear_1 = EsmFoldLinear(config.sequence_dim, config.sequence_dim, init="relu") self.linear_2 = EsmFoldLinear(config.sequence_dim, config.sequence_dim, init="relu") self.linear_3 = EsmFoldLinear(config.sequence_dim, config.sequence_dim, init="final") self.relu = nn.ReLU() def forward(self, s): s_initial = s s = self.linear_1(s) s = self.relu(s) s = self.linear_2(s) s = self.relu(s) s = self.linear_3(s) s = s + s_initial return s class EsmFoldStructureModuleTransition(nn.Module): def __init__(self, config): super().__init__() self.config = config self.layers = nn.ModuleList() for _ in range(config.num_transition_layers): l = EsmFoldStructureModuleTransitionLayer(config) self.layers.append(l) self.dropout = nn.Dropout(config.dropout_rate) self.layer_norm = LayerNorm(config.sequence_dim) def forward(self, s): for l in self.layers: s = l(s) s = self.dropout(s) s = self.layer_norm(s) return s class EsmFoldStructureModule(nn.Module): def __init__(self, config): super().__init__() self.config = config # Buffers to be lazily initialized later # self.default_frames # self.group_idx # self.atom_mask # self.lit_positions self.layer_norm_s = LayerNorm(config.sequence_dim) self.layer_norm_z = LayerNorm(config.pairwise_dim) self.linear_in = EsmFoldLinear(config.sequence_dim, config.sequence_dim) self.ipa = EsmFoldInvariantPointAttention(config) self.ipa_dropout = nn.Dropout(config.dropout_rate) self.layer_norm_ipa = LayerNorm(config.sequence_dim) self.transition = EsmFoldStructureModuleTransition(config) self.bb_update = EsmFoldBackboneUpdate(config) self.angle_resnet = EsmFoldAngleResnet(config) def forward( self, evoformer_output_dict, aatype, mask=None, _offload_inference=False, ): """ Args: evoformer_output_dict: Dictionary containing: "single": [*, N_res, C_s] single representation "pair": [*, N_res, N_res, C_z] pair representation aatype: [*, N_res] amino acid indices mask: Optional [*, N_res] sequence mask Returns: A dictionary of outputs """ s = evoformer_output_dict["single"] if mask is None: # [*, N] mask = s.new_ones(s.shape[:-1]) # [*, N, C_s] s = self.layer_norm_s(s) # [*, N, N, C_z] z = self.layer_norm_z(evoformer_output_dict["pair"]) z_reference_list = None if _offload_inference: assert sys.getrefcount(evoformer_output_dict["pair"]) == 2 evoformer_output_dict["pair"] = evoformer_output_dict["pair"].cpu() z_reference_list = [z] z = None # [*, N, C_s] s_initial = s s = self.linear_in(s) # [*, N] rigids = Rigid.identity( s.shape[:-1], s.dtype, s.device, self.training, fmt="quat", ) outputs = [] for i in range(self.config.num_blocks): # [*, N, C_s] s = s + self.ipa( s, z, rigids, mask, _offload_inference=_offload_inference, _z_reference_list=z_reference_list, ) s = self.ipa_dropout(s) s = self.layer_norm_ipa(s) s = self.transition(s) # [*, N] rigids = rigids.compose_q_update_vec(self.bb_update(s)) # To hew as closely as possible to AlphaFold, we convert our # quaternion-based transformations to rotation-matrix ones # here backb_to_global = Rigid( Rotation(rot_mats=rigids.get_rots().get_rot_mats(), quats=None), rigids.get_trans(), ) backb_to_global = backb_to_global.scale_translation(self.config.trans_scale_factor) # [*, N, 7, 2] unnormalized_angles, angles = self.angle_resnet(s, s_initial) all_frames_to_global = self.torsion_angles_to_frames(backb_to_global, angles, aatype) pred_xyz = self.frames_and_literature_positions_to_atom14_pos(all_frames_to_global, aatype) scaled_rigids = rigids.scale_translation(self.config.trans_scale_factor) preds = { "frames": scaled_rigids.to_tensor_7(), "sidechain_frames": all_frames_to_global.to_tensor_4x4(), "unnormalized_angles": unnormalized_angles, "angles": angles, "positions": pred_xyz, "states": s, } outputs.append(preds) rigids = rigids.stop_rot_gradient() del z, z_reference_list if _offload_inference: evoformer_output_dict["pair"] = evoformer_output_dict["pair"].to(s.device) outputs = dict_multimap(torch.stack, outputs) outputs["single"] = s return outputs def _init_residue_constants(self, float_dtype, device): if not hasattr(self, "default_frames"): self.register_buffer( "default_frames", torch.tensor( residue_constants.restype_rigid_group_default_frame, dtype=float_dtype, device=device, requires_grad=False, ), persistent=False, ) if not hasattr(self, "group_idx"): self.register_buffer( "group_idx", torch.tensor( residue_constants.restype_atom14_to_rigid_group, device=device, requires_grad=False, ), persistent=False, ) if not hasattr(self, "atom_mask"): self.register_buffer( "atom_mask", torch.tensor( residue_constants.restype_atom14_mask, dtype=float_dtype, device=device, requires_grad=False, ), persistent=False, ) if not hasattr(self, "lit_positions"): self.register_buffer( "lit_positions", torch.tensor( residue_constants.restype_atom14_rigid_group_positions, dtype=float_dtype, device=device, requires_grad=False, ), persistent=False, ) def torsion_angles_to_frames(self, r, alpha, f): # Lazily initialize the residue constants on the correct device self._init_residue_constants(alpha.dtype, alpha.device) # Separated purely to make testing less annoying return torsion_angles_to_frames(r, alpha, f, self.default_frames) def frames_and_literature_positions_to_atom14_pos(self, r, f): # [*, N, 8] # [*, N] # Lazily initialize the residue constants on the correct device self._init_residue_constants(r.get_rots().dtype, r.get_rots().device) return frames_and_literature_positions_to_atom14_pos( r, f, self.default_frames, self.group_idx, self.atom_mask, self.lit_positions, ) class EsmFoldingTrunk(nn.Module): def __init__(self, config): super().__init__() self.config = config c_s = config.sequence_state_dim c_z = config.pairwise_state_dim self.pairwise_positional_embedding = EsmFoldRelativePosition(config) self.blocks = nn.ModuleList([EsmFoldTriangularSelfAttentionBlock(config) for _ in range(config.num_blocks)]) self.recycle_bins = 15 self.recycle_s_norm = nn.LayerNorm(c_s) self.recycle_z_norm = nn.LayerNorm(c_z) self.recycle_disto = nn.Embedding(self.recycle_bins, c_z) self.recycle_disto.weight[0].detach().zero_() self.structure_module = EsmFoldStructureModule(config.structure_module) self.trunk2sm_s = nn.Linear(c_s, config.structure_module.sequence_dim) self.trunk2sm_z = nn.Linear(c_z, config.structure_module.pairwise_dim) self.chunk_size = config.chunk_size def set_chunk_size(self, chunk_size): # This parameter means the axial attention will be computed # in a chunked manner. This should make the memory used more or less O(L) instead of O(L^2). # It's equivalent to running a for loop over chunks of the dimension we're iterative over, # where the chunk_size is the size of the chunks, so 128 would mean to parse 128-lengthed chunks. self.chunk_size = chunk_size def forward(self, seq_feats, pair_feats, true_aa, residx, mask, no_recycles): """ Inputs: seq_feats: B x L x C tensor of sequence features pair_feats: B x L x L x C tensor of pair features residx: B x L long tensor giving the position in the sequence mask: B x L boolean tensor indicating valid residues Output: predicted_structure: B x L x (num_atoms_per_residue * 3) tensor wrapped in a Coordinates object """ device = seq_feats.device s_s_0 = seq_feats s_z_0 = pair_feats if no_recycles is None: no_recycles = self.config.max_recycles else: if no_recycles < 0: raise ValueError("Number of recycles must not be negative.") no_recycles += 1 # First 'recycle' is just the standard forward pass through the model. def trunk_iter(s, z, residx, mask): z = z + self.pairwise_positional_embedding(residx, mask=mask) for block in self.blocks: s, z = block(s, z, mask=mask, residue_index=residx, chunk_size=self.chunk_size) return s, z s_s = s_s_0 s_z = s_z_0 recycle_s = torch.zeros_like(s_s) recycle_z = torch.zeros_like(s_z) recycle_bins = torch.zeros(*s_z.shape[:-1], device=device, dtype=torch.int64) for recycle_idx in range(no_recycles): with ContextManagers([] if recycle_idx == no_recycles - 1 else [torch.no_grad()]): # === Recycling === recycle_s = self.recycle_s_norm(recycle_s.detach()).to(device) recycle_z = self.recycle_z_norm(recycle_z.detach()).to(device) recycle_z += self.recycle_disto(recycle_bins.detach()).to(device) s_s, s_z = trunk_iter(s_s_0 + recycle_s, s_z_0 + recycle_z, residx, mask) # === Structure module === structure = self.structure_module( {"single": self.trunk2sm_s(s_s), "pair": self.trunk2sm_z(s_z)}, true_aa, mask.float(), ) recycle_s = s_s recycle_z = s_z # Distogram needs the N, CA, C coordinates, and bin constants same as alphafold. recycle_bins = EsmFoldingTrunk.distogram( structure["positions"][-1][:, :, :3], 3.375, 21.375, self.recycle_bins, ) structure["s_s"] = s_s structure["s_z"] = s_z return structure @staticmethod def distogram(coords, min_bin, max_bin, num_bins): # Coords are [... L x 3 x 3], where it's [N, CA, C] x 3 coordinates. boundaries = torch.linspace( min_bin, max_bin, num_bins - 1, device=coords.device, ) boundaries = boundaries**2 N, CA, C = [x.squeeze(-2) for x in coords.chunk(3, dim=-2)] # Infer CB coordinates. b = CA - N c = C - CA a = b.cross(c, dim=-1) CB = -0.58273431 * a + 0.56802827 * b - 0.54067466 * c + CA dists = (CB[..., None, :, :] - CB[..., :, None, :]).pow(2).sum(dim=-1, keepdims=True) bins = torch.sum(dists > boundaries, dim=-1) # [..., L, L] return bins # TODO Add information to the docstring about any methods that convert to PDB format, or otherwise prepare # the outputs for downstream use. @add_start_docstrings( """ ESMForProteinFolding is the HuggingFace port of the original ESMFold model. It consists of an ESM-2 "stem" followed by a protein folding "head", although unlike most other output heads, this "head" is similar in size and runtime to the rest of the model combined! It outputs a dictionary containing predicted structural information about the input protein(s). """, ESM_START_DOCSTRING, ) class EsmForProteinFolding(EsmPreTrainedModel): def __init__(self, config): super().__init__(config) self.config = config self.distogram_bins = 64 self.esm = EsmModel(config, add_pooling_layer=False) self.esm.requires_grad_(False) if self.config.esmfold_config.fp16_esm: self.esm.half() self.esm_feats = self.config.hidden_size self.esm_attns = self.config.num_hidden_layers * self.config.num_attention_heads self.esm_layers = self.config.num_hidden_layers self.register_buffer("af2_to_esm", self._af2_to_esm_from_vocab_list(config.vocab_list)) self.esm_s_combine = nn.Parameter(torch.zeros(self.esm_layers + 1)) trunk_config = self.config.esmfold_config.trunk c_s = trunk_config.sequence_state_dim c_z = trunk_config.pairwise_state_dim self.esm_s_mlp = nn.Sequential( LayerNorm(self.esm_feats), nn.Linear(self.esm_feats, c_s), nn.ReLU(), nn.Linear(c_s, c_s), ) # 0 is padding, N is unknown residues, N + 1 is mask. self.n_tokens_embed = residue_constants.restype_num + 3 self.pad_idx = 0 self.unk_idx = self.n_tokens_embed - 2 self.mask_idx = self.n_tokens_embed - 1 self.esm_dict_cls_idx = self.config.vocab_list.index("<cls>") self.esm_dict_mask_idx = self.config.vocab_list.index("<mask>") self.esm_dict_eos_idx = self.config.vocab_list.index("<eos>") self.esm_dict_padding_idx = self.config.vocab_list.index("<pad>") if self.config.esmfold_config.embed_aa: self.embedding = nn.Embedding(self.n_tokens_embed, c_s, padding_idx=0) self.trunk = EsmFoldingTrunk(trunk_config) self.distogram_head = nn.Linear(c_z, self.distogram_bins) self.ptm_head = nn.Linear(c_z, self.distogram_bins) self.lm_head = nn.Linear(c_s, self.n_tokens_embed) self.lddt_bins = 50 structure_module_config = trunk_config.structure_module self.lddt_head = nn.Sequential( nn.LayerNorm(structure_module_config.sequence_dim), nn.Linear(structure_module_config.sequence_dim, self.config.esmfold_config.lddt_head_hid_dim), nn.Linear(self.config.esmfold_config.lddt_head_hid_dim, self.config.esmfold_config.lddt_head_hid_dim), nn.Linear(self.config.esmfold_config.lddt_head_hid_dim, 37 * self.lddt_bins), ) @staticmethod def _af2_to_esm_from_vocab_list(vocab_list: List[str]) -> torch.Tensor: # Remember that t is shifted from residue_constants by 1 (0 is padding). esm_reorder = [vocab_list.index("<pad>")] + [vocab_list.index(v) for v in residue_constants.restypes_with_x] return torch.tensor(esm_reorder) @add_start_docstrings_to_model_forward(ESMFOLD_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @replace_return_docstrings(output_type=EsmForProteinFoldingOutput, config_class=EsmConfig) def forward( self, input_ids: torch.Tensor, attention_mask: torch.Tensor = None, position_ids: Optional[torch.Tensor] = None, masking_pattern: Optional[torch.Tensor] = None, num_recycles: Optional[int] = None, ): r""" Returns: Example: ```python >>> from transformers import AutoTokenizer, EsmForProteinFolding >>> model = EsmForProteinFolding.from_pretrained("facebook/esmfold_v1") >>> tokenizer = AutoTokenizer.from_pretrained("facebook/esmfold_v1") >>> inputs = tokenizer(["MLKNVQVQLV"], return_tensors="pt", add_special_tokens=False) # A tiny random peptide >>> outputs = model(**inputs) >>> folded_positions = outputs.positions ``` """ cfg = self.config.esmfold_config aa = input_ids # B x L B = aa.shape[0] L = aa.shape[1] device = input_ids.device if attention_mask is None: attention_mask = torch.ones_like(aa, device=device) if position_ids is None: position_ids = torch.arange(L, device=device).expand_as(input_ids) # === ESM === esmaa = self.af2_idx_to_esm_idx(aa, attention_mask) if masking_pattern is not None: masked_aa, esmaa, mlm_targets = self.bert_mask(aa, esmaa, attention_mask, masking_pattern) else: masked_aa = aa mlm_targets = None # We get sequence and pair representations from whatever version of ESM / # configuration we are using. The sequence representation esm_s is always # present. The pair embedding esm_z may be present depending on the # configuration of the model. If esm_z is not used by the model then it # is returned as None here. esm_s = self.compute_language_model_representations(esmaa) # Convert esm_s and esm_z, if present, to the precision used by the trunk and # the structure module. These tensors may be a lower precision if, for example, # we're running the language model in fp16 precision. esm_s = esm_s.to(self.esm_s_combine.dtype) if cfg.esm_ablate_sequence: esm_s = esm_s * 0 esm_s = esm_s.detach() # === preprocessing === esm_s = (self.esm_s_combine.softmax(0).unsqueeze(0) @ esm_s).squeeze(2) s_s_0 = self.esm_s_mlp(esm_s) s_z_0 = s_s_0.new_zeros(B, L, L, cfg.trunk.pairwise_state_dim) if self.config.esmfold_config.embed_aa: s_s_0 += self.embedding(masked_aa) structure: dict = self.trunk(s_s_0, s_z_0, aa, position_ids, attention_mask, no_recycles=num_recycles) # Documenting what we expect: structure = { k: v for k, v in structure.items() if k in [ "s_z", "s_s", "frames", "sidechain_frames", "unnormalized_angles", "angles", "positions", "states", ] } # Add BERT mask for the loss to use, if available. if mlm_targets: structure["mlm_targets"] = mlm_targets disto_logits = self.distogram_head(structure["s_z"]) disto_logits = (disto_logits + disto_logits.transpose(1, 2)) / 2 structure["distogram_logits"] = disto_logits lm_logits = self.lm_head(structure["s_s"]) structure["lm_logits"] = lm_logits structure["aatype"] = aa make_atom14_masks(structure) # Of course, this doesn't respect the true mask because it doesn't know about it... # We're not going to properly mask change of index tensors: # "residx_atom14_to_atom37", # "residx_atom37_to_atom14", for k in [ "atom14_atom_exists", "atom37_atom_exists", ]: structure[k] *= attention_mask.unsqueeze(-1) structure["residue_index"] = position_ids lddt_head = self.lddt_head(structure["states"]).reshape(structure["states"].shape[0], B, L, -1, self.lddt_bins) structure["lddt_head"] = lddt_head plddt = categorical_lddt(lddt_head[-1], bins=self.lddt_bins) structure["plddt"] = plddt ptm_logits = self.ptm_head(structure["s_z"]) structure["ptm_logits"] = ptm_logits structure["ptm"] = compute_tm(ptm_logits, max_bin=31, no_bins=self.distogram_bins) structure.update(compute_predicted_aligned_error(ptm_logits, max_bin=31, no_bins=self.distogram_bins)) return EsmForProteinFoldingOutput(**structure) def af2_idx_to_esm_idx(self, aa, mask): # avoid indexing on different devices if self.af2_to_esm.device != aa.device: self.af2_to_esm = self.af2_to_esm.to(aa.device) aa = (aa + 1).masked_fill(mask != 1, 0) return self.af2_to_esm[aa] def compute_language_model_representations(self, esmaa: torch.Tensor) -> torch.Tensor: device = next(self.parameters()).device B, L = esmaa.shape # B = batch size, L = sequence length. if self.config.esmfold_config.bypass_lm: esm_s = torch.zeros(B, L, self.esm_s_combine.size[0], -1, self.esm_feats, device=device) return esm_s bosi, eosi = self.esm_dict_cls_idx, self.esm_dict_eos_idx bos = esmaa.new_full((B, 1), bosi) eos = esmaa.new_full((B, 1), self.esm_dict_padding_idx) esmaa = torch.cat([bos, esmaa, eos], dim=1) # Use the first padding index as eos during inference. esmaa[range(B), (esmaa != 1).sum(1)] = eosi # _, esm_z, esm_s = self.esm(esmaa, return_pairs=self.config.esmfold_config.use_esm_attn_map) # Because we do not support use_esm_attn_map in the HF port as it is not used in any public models, # esm_z is always None esm_hidden_states = self.esm(esmaa, attention_mask=esmaa != 1, output_hidden_states=True)["hidden_states"] esm_s = torch.stack(esm_hidden_states, dim=2) esm_s = esm_s[:, 1:-1] # B, L, nLayers, C return esm_s def bert_mask(self, aa, esmaa, mask, pattern): new_aa = aa.clone() target = aa.clone() new_esmaa = esmaa.clone() new_aa[pattern == 1] = self.mask_idx target[pattern != 1] = 0 new_esmaa[pattern == 1] = self.esm_dict_mask_idx return new_aa, new_esmaa, target @torch.no_grad() def infer( self, seqs: Union[str, List[str]], position_ids=None, ): if type(seqs) is str: lst = [seqs] else: lst = seqs # Returns the raw outputs of the model given an input sequence. device = next(self.parameters()).device aatype = collate_dense_tensors( [ torch.from_numpy( residue_constants.sequence_to_onehot( sequence=seq, mapping=residue_constants.restype_order_with_x, map_unknown_to_x=True, ) ) .to(device) .argmax(dim=1) for seq in lst ] ) # B=1 x L mask = collate_dense_tensors([aatype.new_ones(len(seq)) for seq in lst]) position_ids = ( torch.arange(aatype.shape[1], device=device).expand(len(lst), -1) if position_ids is None else position_ids.to(device) ) if position_ids.ndim == 1: position_ids = position_ids.unsqueeze(0) return self.forward( aatype, mask, position_ids=position_ids, ) @staticmethod def output_to_pdb(output: Dict) -> List[str]: """Returns the pbd (file) string from the model given the model output.""" output = {k: v.to("cpu").numpy() for k, v in output.items()} pdbs = [] final_atom_positions = atom14_to_atom37(output["positions"][-1], output) final_atom_mask = output["atom37_atom_exists"] for i in range(output["aatype"].shape[0]): aa = output["aatype"][i] pred_pos = final_atom_positions[i] mask = final_atom_mask[i] resid = output["residue_index"][i] + 1 pred = OFProtein( aatype=aa, atom_positions=pred_pos, atom_mask=mask, residue_index=resid, b_factors=output["plddt"][i], ) pdbs.append(to_pdb(pred)) return pdbs def infer_pdb(self, seqs, *args, **kwargs) -> str: """Returns the pdb (file) string from the model given an input sequence.""" assert type(seqs) is str output = self.infer(seqs, *args, **kwargs) return self.output_to_pdb(output)[0] def infer_pdbs(self, seqs: List[str], *args, **kwargs) -> List[str]: """Returns the pdb (file) string from the model given an input sequence.""" output = self.infer(seqs, *args, **kwargs) return self.output_to_pdb(output)
0
hf_public_repos/transformers/src/transformers/models
hf_public_repos/transformers/src/transformers/models/esm/convert_esm.py
# coding=utf-8 # Copyright 2022 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Convert ESM checkpoint.""" import argparse import pathlib from pathlib import Path from tempfile import TemporaryDirectory import esm as esm_module import torch from esm.esmfold.v1.misc import batch_encode_sequences as esmfold_encode_sequences from esm.esmfold.v1.pretrained import esmfold_v1 from transformers.models.esm.configuration_esm import EsmConfig, EsmFoldConfig from transformers.models.esm.modeling_esm import ( EsmForMaskedLM, EsmForSequenceClassification, EsmIntermediate, EsmLayer, EsmOutput, EsmSelfAttention, EsmSelfOutput, ) from transformers.models.esm.modeling_esmfold import EsmForProteinFolding from transformers.models.esm.tokenization_esm import EsmTokenizer from transformers.utils import logging logging.set_verbosity_info() logger = logging.get_logger(__name__) SAMPLE_DATA = [ ( "protein1", "MNGTEGPNFYVPFSNATGVVRSPFEYPQYYLAEPWQFSMLAAYMFLLIVLGFPINFLTLYVTVQHKKLRTPLNYILLNLAVADLFMVLGGFTSTLYTSLHGYFVFGPTGCNLEGFFATLGGEIALWSLVVLAIERYVVVCKPMSNFRFGENHAIMGVAFTWVMALACAAPPLAGWSRYIPEGLQCSCGIDYYTLKPEVNNESFVIYMFVVHFTIPMIIIFFCYGQLVFTVKEAAAQQQESATTQKAEKEVTRMVIIMVIAFLICWVPYASVAFYIFTHQGSNFGPIFMTIPAFFAKSAAIYNPVIYIMMNKQFRNCMLTTICCGKNPLGDDEASATVSKTETSQVAPA", ), ("protein2", "MKTVRQERLKSIVRILERSKEPVSGAQLAEELSVSRQVIVQDIAYLRSLGYNIVATPRGYVLA"), ("protein3", "MKTVRQERLKSI<mask>RILERSKEPVSGAQLAEELS<mask>SRQVIVQDIAYLRSLGYN<mask>VATPRGYVLAGG"), ("protein4", "MKTVRQERLKSI<mask>RILERSKEPVSGAQLAEELS<mask>SRQVIVQDIAYLRSLGYN<mask>VATPRGYVLA"), ] MODEL_MAPPING = { "esm1b_t33_650M_UR50S": esm_module.pretrained.esm1b_t33_650M_UR50S, "esm1v_t33_650M_UR90S_1": esm_module.pretrained.esm1v_t33_650M_UR90S_1, "esm1v_t33_650M_UR90S_2": esm_module.pretrained.esm1v_t33_650M_UR90S_2, "esm1v_t33_650M_UR90S_3": esm_module.pretrained.esm1v_t33_650M_UR90S_3, "esm1v_t33_650M_UR90S_4": esm_module.pretrained.esm1v_t33_650M_UR90S_4, "esm1v_t33_650M_UR90S_5": esm_module.pretrained.esm1v_t33_650M_UR90S_5, "esm2_t48_15B_UR50D": esm_module.pretrained.esm2_t48_15B_UR50D, "esm2_t36_3B_UR50D": esm_module.pretrained.esm2_t36_3B_UR50D, "esm2_t33_650M_UR50D": esm_module.pretrained.esm2_t33_650M_UR50D, "esm2_t30_150M_UR50D": esm_module.pretrained.esm2_t30_150M_UR50D, "esm2_t12_35M_UR50D": esm_module.pretrained.esm2_t12_35M_UR50D, "esm2_t6_8M_UR50D": esm_module.pretrained.esm2_t6_8M_UR50D, "esmfold_v1": esmfold_v1, } restypes = list("ARNDCQEGHILKMFPSTWYV") restypes_with_x = restypes + ["X"] restypes_with_extras = restypes_with_x + ["<pad>", "<mask>", "<cls>", "<sep>", "<eos>"] def get_esmfold_tokenizer(): with TemporaryDirectory() as tempdir: vocab = "\n".join(restypes_with_extras) vocab_file = Path(tempdir) / "vocab.txt" vocab_file.write_text(vocab) hf_tokenizer = EsmTokenizer(vocab_file=str(vocab_file)) hf_tokenizer.pad_token_id = 0 # Overlaps with 'A' but that seems to be what they want return hf_tokenizer def transfer_and_check_weights(original_module, our_module): status = our_module.load_state_dict(original_module.state_dict()) if status.missing_keys: raise ValueError(f"Missing keys: {status.missing_keys}") if status.unexpected_keys: raise ValueError(f"Unexpected keys: {status.unexpected_keys}") def convert_esm_checkpoint_to_pytorch( model: str, pytorch_dump_folder_path: str, classification_head: bool, push_to_repo: str, auth_token: str ): """ Copy/paste/tweak esm's weights to our BERT structure. """ if model.startswith("esmfold"): esm = MODEL_MAPPING[model]() else: esm, alphabet = MODEL_MAPPING[model]() esm.eval() # disable dropout if model.startswith("esmfold"): embed_dim = esm.esm.embed_dim num_layers = esm.esm.num_layers num_attention_heads = esm.esm.attention_heads intermediate_size = 4 * embed_dim token_dropout = esm.esm.token_dropout emb_layer_norm_before = False # This code path does not exist in ESM-2 position_embedding_type = "rotary" is_folding_model = True esmfold_config = EsmFoldConfig() for key, val in esm.cfg.items(): if hasattr(esmfold_config, key) and key != "trunk": setattr(esmfold_config, key, val) for key, val in esm.cfg.trunk.items(): if hasattr(esmfold_config.trunk, key) and key != "structure_module": setattr(esmfold_config.trunk, key, val) for key, val in esm.cfg.trunk.structure_module.items(): if hasattr(esmfold_config.trunk.structure_module, key): setattr(esmfold_config.trunk.structure_module, key, val) elif hasattr(esm, "args"): # Indicates an ESM-1b or ESM-1v model embed_dim = esm.args.embed_dim num_layers = esm.args.layers num_attention_heads = esm.args.attention_heads intermediate_size = esm.args.ffn_embed_dim token_dropout = esm.args.token_dropout emb_layer_norm_before = True if esm.emb_layer_norm_before else False position_embedding_type = "absolute" is_folding_model = False esmfold_config = None else: # Indicates an ESM-2 model embed_dim = esm.embed_dim num_layers = esm.num_layers num_attention_heads = esm.attention_heads intermediate_size = 4 * embed_dim # This is hardcoded in ESM-2 token_dropout = esm.token_dropout emb_layer_norm_before = False # This code path does not exist in ESM-2 position_embedding_type = "rotary" is_folding_model = False esmfold_config = None if is_folding_model: alphabet = esm.esm.alphabet vocab_list = tuple(alphabet.all_toks) mask_token_id = alphabet.mask_idx pad_token_id = alphabet.padding_idx if is_folding_model: original_esm_model = esm.esm else: original_esm_model = esm config = EsmConfig( vocab_size=original_esm_model.embed_tokens.num_embeddings, mask_token_id=mask_token_id, hidden_size=embed_dim, num_hidden_layers=num_layers, num_attention_heads=num_attention_heads, intermediate_size=intermediate_size, max_position_embeddings=1026, layer_norm_eps=1e-5, # PyTorch default used in fairseq attention_probs_dropout_prob=0.0, hidden_dropout_prob=0.0, pad_token_id=pad_token_id, emb_layer_norm_before=emb_layer_norm_before, token_dropout=token_dropout, position_embedding_type=position_embedding_type, is_folding_model=is_folding_model, esmfold_config=esmfold_config, vocab_list=vocab_list, ) if classification_head: config.num_labels = esm.classification_heads["mnli"].out_proj.weight.shape[0] print("Our ESM config:", config) if model.startswith("esmfold"): model_class = EsmForProteinFolding elif classification_head: model_class = EsmForSequenceClassification else: model_class = EsmForMaskedLM model = model_class(config) model.eval() # Now let's copy all the weights. # Embeddings model.esm.embeddings.word_embeddings.weight = original_esm_model.embed_tokens.weight if position_embedding_type == "absolute": model.esm.embeddings.position_embeddings.weight = original_esm_model.embed_positions.weight if config.emb_layer_norm_before: model.esm.embeddings.layer_norm.weight = original_esm_model.emb_layer_norm_before.weight model.esm.embeddings.layer_norm.bias = original_esm_model.emb_layer_norm_before.bias model.esm.encoder.emb_layer_norm_after.weight = original_esm_model.emb_layer_norm_after.weight model.esm.encoder.emb_layer_norm_after.bias = original_esm_model.emb_layer_norm_after.bias for i in range(config.num_hidden_layers): # Encoder: start of layer layer: EsmLayer = model.esm.encoder.layer[i] # esm_layer: TransformerSentenceEncoderLayer = original_esm_model.layers[i] esm_layer = original_esm_model.layers[i] # self attention self_attn: EsmSelfAttention = layer.attention.self assert ( esm_layer.self_attn.k_proj.weight.data.shape == esm_layer.self_attn.q_proj.weight.data.shape == esm_layer.self_attn.v_proj.weight.data.shape == torch.Size((config.hidden_size, config.hidden_size)) ) self_attn.query.weight.data = esm_layer.self_attn.q_proj.weight self_attn.query.bias.data = esm_layer.self_attn.q_proj.bias self_attn.key.weight.data = esm_layer.self_attn.k_proj.weight self_attn.key.bias.data = esm_layer.self_attn.k_proj.bias self_attn.value.weight.data = esm_layer.self_attn.v_proj.weight self_attn.value.bias.data = esm_layer.self_attn.v_proj.bias if getattr(esm_layer.self_attn, "rot_emb", None) is not None: # Matt: Although inv_freq is not a trainable weight, it is computed at model init and cached. # During the training of ESM-2 the model was converted to float16 precision, which also converts # the inv_freq tensor, and the loss of precision remains even if the model is loaded later as float32. # If we recompute inv_freq without this loss of precision then we will get subtly different rotary # embeddings, which are enough to cause significant discrepancies in model outputs. To avoid this, # we make sure the new model copies the data from the old inv_freq. self_attn.rotary_embeddings.inv_freq.data = esm_layer.self_attn.rot_emb.inv_freq # LayerNorm changes for pre-activation layer.attention.LayerNorm.weight = esm_layer.self_attn_layer_norm.weight layer.attention.LayerNorm.bias = esm_layer.self_attn_layer_norm.bias layer.LayerNorm.weight = esm_layer.final_layer_norm.weight layer.LayerNorm.bias = esm_layer.final_layer_norm.bias # self-attention output self_output: EsmSelfOutput = layer.attention.output assert self_output.dense.weight.shape == esm_layer.self_attn.out_proj.weight.shape self_output.dense.weight = esm_layer.self_attn.out_proj.weight self_output.dense.bias = esm_layer.self_attn.out_proj.bias # intermediate intermediate: EsmIntermediate = layer.intermediate assert intermediate.dense.weight.shape == esm_layer.fc1.weight.shape intermediate.dense.weight = esm_layer.fc1.weight intermediate.dense.bias = esm_layer.fc1.bias # output bert_output: EsmOutput = layer.output assert bert_output.dense.weight.shape == esm_layer.fc2.weight.shape bert_output.dense.weight = esm_layer.fc2.weight bert_output.dense.bias = esm_layer.fc2.bias # end of layer if is_folding_model: model.esm_s_combine.data = esm.esm_s_combine.data model.af2_to_esm.data = esm.af2_to_esm.data transfer_and_check_weights(esm.embedding, model.embedding) transfer_and_check_weights(esm.esm_s_mlp, model.esm_s_mlp) transfer_and_check_weights(esm.trunk, model.trunk) transfer_and_check_weights(esm.distogram_head, model.distogram_head) transfer_and_check_weights(esm.ptm_head, model.ptm_head) transfer_and_check_weights(esm.lm_head, model.lm_head) transfer_and_check_weights(esm.lddt_head, model.lddt_head) elif classification_head: model.classifier.dense.weight = esm.esm.classification_heads["mnli"].dense.weight model.classifier.dense.bias = esm.classification_heads["mnli"].dense.bias model.classifier.out_proj.weight = esm.classification_heads["mnli"].out_proj.weight model.classifier.out_proj.bias = esm.classification_heads["mnli"].out_proj.bias else: # LM Head model.lm_head.dense.weight = esm.lm_head.dense.weight model.lm_head.dense.bias = esm.lm_head.dense.bias model.lm_head.layer_norm.weight = esm.lm_head.layer_norm.weight model.lm_head.layer_norm.bias = esm.lm_head.layer_norm.bias model.lm_head.decoder.weight = esm.lm_head.weight model.lm_head.bias = esm.lm_head.bias # Contact prediction head transfer_and_check_weights(esm.contact_head, model.esm.contact_head) # Prepare data (first 2 sequences from ESMStructuralSplitDataset superfamily / 4) if is_folding_model: # Folding models aren't trained on masked inputs and don't like mask tokens. sample_data = SAMPLE_DATA[:2] else: sample_data = SAMPLE_DATA if is_folding_model: hf_tokenizer = get_esmfold_tokenizer() hf_tokens = hf_tokenizer( [row[1] for row in sample_data], return_tensors="pt", padding=True, add_special_tokens=False ) esmfold_aas, esmfold_mask, _, _, _ = esmfold_encode_sequences([row[1] for row in sample_data]) success = torch.all(hf_tokens["input_ids"] == esmfold_aas) and torch.all( hf_tokens["attention_mask"] == esmfold_mask ) else: # Let's check that we get the same results. batch_converter = alphabet.get_batch_converter() batch_labels, batch_strs, batch_tokens = batch_converter(sample_data) # Prepare tokenizer and make sure it matches with TemporaryDirectory() as tempdir: vocab = "\n".join(alphabet.all_toks) vocab_file = Path(tempdir) / "vocab.txt" vocab_file.write_text(vocab) hf_tokenizer = EsmTokenizer(vocab_file=str(vocab_file)) hf_tokens = hf_tokenizer([row[1] for row in sample_data], return_tensors="pt", padding=True) success = torch.all(hf_tokens["input_ids"] == batch_tokens) print("Do both models tokenizers output the same tokens?", "🔥" if success else "💩") if not success: raise Exception("Tokenization does not match!") with torch.no_grad(): if is_folding_model: # Let's test the model in parts # ESMFold always converts the ESM stem to float16, which requires float16 ops # that don't exist on CPU. Therefore, to test it we need to run it on GPU. However, # ESMFold is what we in the community call a "big boy" and so we desperately avoid putting both the # original and the converted model on the GPU at the same time. their_output = esm.cuda().infer([row[1] for row in sample_data]) our_output = model.cuda()( input_ids=hf_tokens["input_ids"].cuda(), attention_mask=hf_tokens["attention_mask"].cuda() ) else: our_output = model(**hf_tokens, output_hidden_states=True) our_output = our_output["logits"] if classification_head: their_output = esm.model.classification_heads["mnli"](esm.extract_features(batch_tokens)) else: their_output = esm(hf_tokens["input_ids"], repr_layers=list(range(999))) their_output = their_output["logits"] if is_folding_model: max_absolute_diff = torch.max(torch.abs(our_output["positions"] - their_output["positions"])).item() success = torch.allclose(our_output["positions"], their_output["positions"], atol=1e-5) else: max_absolute_diff = torch.max(torch.abs(our_output - their_output)).item() success = torch.allclose(our_output, their_output, atol=1e-5) print(f"max_absolute_diff = {max_absolute_diff}") # ~ 1e-5 print("Do both models output the same tensors?", "🔥" if success else "💩") if not success: raise Exception("Something went wRoNg") if not is_folding_model: # Let's check contact prediction too our_output = model.predict_contacts(hf_tokens["input_ids"], hf_tokens["attention_mask"]) their_output = esm.predict_contacts(hf_tokens["input_ids"]) max_absolute_diff = torch.max(torch.abs(our_output - their_output)).item() success = torch.allclose(our_output, their_output, atol=1e-5) print("Contact prediction testing:") print(f"max_absolute_diff = {max_absolute_diff}") # ~ 1e-5 print("Do both models output the same tensors?", "🔥" if success else "💩") if not success: raise Exception("Something went wRoNg") pathlib.Path(pytorch_dump_folder_path).mkdir(parents=True, exist_ok=True) print(f"Saving model to {pytorch_dump_folder_path}") model.save_pretrained(pytorch_dump_folder_path) del esm # Free up some memory before continuing print(f"Saving tokenizer to {pytorch_dump_folder_path}") hf_tokenizer.save_pretrained(pytorch_dump_folder_path) if push_to_repo: model.push_to_hub(repo_id=push_to_repo, token_token=auth_token) hf_tokenizer.push_to_hub(repo_id=push_to_repo, token_token=auth_token) if __name__ == "__main__": parser = argparse.ArgumentParser() # Required parameters parser.add_argument( "--pytorch_dump_folder_path", type=str, required=True, help="Path to the output PyTorch model." ) parser.add_argument( "--classification_head", action="store_true", help="Whether to convert a final classification head." ) parser.add_argument("--model", default=None, type=str, required=True, help="Name of model to convert.") parser.add_argument("--push_to_repo", type=str, help="Repo to upload to (including username!).") parser.add_argument("--auth_token", type=str, help="HuggingFace auth token.") args = parser.parse_args() convert_esm_checkpoint_to_pytorch( args.model, args.pytorch_dump_folder_path, args.classification_head, args.push_to_repo, args.auth_token )
0
hf_public_repos/transformers/src/transformers/models
hf_public_repos/transformers/src/transformers/models/esm/modeling_esm.py
# coding=utf-8 # Copyright 2022 Meta and The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ PyTorch ESM model.""" import math from typing import List, Optional, Tuple, Union import torch import torch.utils.checkpoint from torch import nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward from ...modeling_outputs import ( BaseModelOutputWithPastAndCrossAttentions, BaseModelOutputWithPoolingAndCrossAttentions, MaskedLMOutput, SequenceClassifierOutput, TokenClassifierOutput, ) from ...modeling_utils import PreTrainedModel, find_pruneable_heads_and_indices, prune_linear_layer from ...utils import logging from .configuration_esm import EsmConfig logger = logging.get_logger(__name__) _CHECKPOINT_FOR_DOC = "facebook/esm2_t6_8M_UR50D" _CONFIG_FOR_DOC = "EsmConfig" ESM_PRETRAINED_MODEL_ARCHIVE_LIST = [ "facebook/esm2_t6_8M_UR50D", "facebook/esm2_t12_35M_UR50D", # This is not a complete list of all ESM models! # See all ESM models at https://huggingface.co/models?filter=esm ] def rotate_half(x): x1, x2 = x.chunk(2, dim=-1) return torch.cat((-x2, x1), dim=-1) def apply_rotary_pos_emb(x, cos, sin): cos = cos[:, :, : x.shape[-2], :] sin = sin[:, :, : x.shape[-2], :] return (x * cos) + (rotate_half(x) * sin) def gelu(x): """ This is the gelu implementation from the original ESM repo. Using F.gelu yields subtly wrong results. """ return x * 0.5 * (1.0 + torch.erf(x / math.sqrt(2.0))) def symmetrize(x): "Make layer symmetric in final two dimensions, used for contact prediction." return x + x.transpose(-1, -2) def average_product_correct(x): "Perform average product correct, used for contact prediction." a1 = x.sum(-1, keepdims=True) a2 = x.sum(-2, keepdims=True) a12 = x.sum((-1, -2), keepdims=True) avg = a1 * a2 avg.div_(a12) # in-place to reduce memory normalized = x - avg return normalized class RotaryEmbedding(torch.nn.Module): """ Rotary position embeddings based on those in [RoFormer](https://huggingface.co/docs/transformers/model_doc/roformer). Query and keys are transformed by rotation matrices which depend on their relative positions. """ def __init__(self, dim: int): super().__init__() # Generate and save the inverse frequency buffer (non trainable) inv_freq = 1.0 / (10000 ** (torch.arange(0, dim, 2).float() / dim)) inv_freq = inv_freq self.register_buffer("inv_freq", inv_freq) self._seq_len_cached = None self._cos_cached = None self._sin_cached = None def _update_cos_sin_tables(self, x, seq_dimension=2): seq_len = x.shape[seq_dimension] # Reset the tables if the sequence length has changed, # or if we're on a new device (possibly due to tracing for instance) if seq_len != self._seq_len_cached or self._cos_cached.device != x.device: self._seq_len_cached = seq_len t = torch.arange(x.shape[seq_dimension], device=x.device).type_as(self.inv_freq) freqs = torch.outer(t, self.inv_freq) emb = torch.cat((freqs, freqs), dim=-1).to(x.device) self._cos_cached = emb.cos()[None, None, :, :] self._sin_cached = emb.sin()[None, None, :, :] return self._cos_cached, self._sin_cached def forward(self, q: torch.Tensor, k: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]: self._cos_cached, self._sin_cached = self._update_cos_sin_tables(k, seq_dimension=-2) return ( apply_rotary_pos_emb(q, self._cos_cached, self._sin_cached), apply_rotary_pos_emb(k, self._cos_cached, self._sin_cached), ) class EsmContactPredictionHead(nn.Module): """Performs symmetrization, apc, and computes a logistic regression on the output features""" def __init__( self, in_features: int, bias=True, eos_idx: int = 2, ): super().__init__() self.in_features = in_features self.eos_idx = eos_idx self.regression = nn.Linear(in_features, 1, bias) self.activation = nn.Sigmoid() def forward(self, tokens, attentions): # remove eos token attentions eos_mask = tokens.ne(self.eos_idx).to(attentions) eos_mask = eos_mask.unsqueeze(1) * eos_mask.unsqueeze(2) attentions = attentions * eos_mask[:, None, None, :, :] attentions = attentions[..., :-1, :-1] # remove cls token attentions attentions = attentions[..., 1:, 1:] batch_size, layers, heads, seqlen, _ = attentions.size() attentions = attentions.view(batch_size, layers * heads, seqlen, seqlen) # features: batch x channels x tokens x tokens (symmetric) attentions = attentions.to( self.regression.weight.device ) # attentions always float32, may need to convert to float16 attentions = average_product_correct(symmetrize(attentions)) attentions = attentions.permute(0, 2, 3, 1) return self.activation(self.regression(attentions).squeeze(3)) class EsmEmbeddings(nn.Module): """ Same as BertEmbeddings with a tiny tweak for positional embeddings indexing. """ def __init__(self, config): super().__init__() self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id) if config.emb_layer_norm_before: self.layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) else: self.layer_norm = None self.dropout = nn.Dropout(config.hidden_dropout_prob) # position_ids (1, len position emb) is contiguous in memory and exported when serialized self.position_embedding_type = getattr(config, "position_embedding_type", "absolute") self.register_buffer( "position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)), persistent=False ) self.padding_idx = config.pad_token_id self.position_embeddings = nn.Embedding( config.max_position_embeddings, config.hidden_size, padding_idx=self.padding_idx ) self.token_dropout = config.token_dropout self.mask_token_id = config.mask_token_id def forward( self, input_ids=None, attention_mask=None, position_ids=None, inputs_embeds=None, past_key_values_length=0 ): if position_ids is None: if input_ids is not None: # Create the position ids from the input token ids. Any padded tokens remain padded. position_ids = create_position_ids_from_input_ids(input_ids, self.padding_idx, past_key_values_length) else: position_ids = self.create_position_ids_from_inputs_embeds(inputs_embeds) if inputs_embeds is None: inputs_embeds = self.word_embeddings(input_ids) # Note that if we want to support ESM-1 (not 1b!) in future then we need to support an # embedding_scale factor here. embeddings = inputs_embeds # Matt: ESM has the option to handle masking in MLM in a slightly unusual way. If the token_dropout # flag is False then it is handled in the same was as BERT/RoBERTa. If it is set to True, however, # masked tokens are treated as if they were selected for input dropout and zeroed out. # This "mask-dropout" is compensated for when masked tokens are not present, by scaling embeddings by # a factor of (fraction of unmasked tokens during training) / (fraction of unmasked tokens in sample). # This is analogous to the way that dropout layers scale down outputs during evaluation when not # actually dropping out values (or, equivalently, scale up their un-dropped outputs in training). if self.token_dropout: embeddings.masked_fill_((input_ids == self.mask_token_id).unsqueeze(-1), 0.0) mask_ratio_train = 0.15 * 0.8 # Hardcoded as the ratio used in all ESM model training runs src_lengths = attention_mask.sum(-1) mask_ratio_observed = (input_ids == self.mask_token_id).sum(-1).float() / src_lengths embeddings = (embeddings * (1 - mask_ratio_train) / (1 - mask_ratio_observed)[:, None, None]).to( embeddings.dtype ) if self.position_embedding_type == "absolute": position_embeddings = self.position_embeddings(position_ids) embeddings += position_embeddings if self.layer_norm is not None: embeddings = self.layer_norm(embeddings) if attention_mask is not None: embeddings = (embeddings * attention_mask.unsqueeze(-1)).to(embeddings.dtype) # Matt: I think this line was copied incorrectly from BERT, disabling it for now. # embeddings = self.dropout(embeddings) return embeddings def create_position_ids_from_inputs_embeds(self, inputs_embeds): """ We are provided embeddings directly. We cannot infer which are padded so just generate sequential position ids. Args: inputs_embeds: torch.Tensor Returns: torch.Tensor """ input_shape = inputs_embeds.size()[:-1] sequence_length = input_shape[1] position_ids = torch.arange( self.padding_idx + 1, sequence_length + self.padding_idx + 1, dtype=torch.long, device=inputs_embeds.device ) return position_ids.unsqueeze(0).expand(input_shape) class EsmSelfAttention(nn.Module): def __init__(self, config, position_embedding_type=None): super().__init__() if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"): raise ValueError( f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention " f"heads ({config.num_attention_heads})" ) self.num_attention_heads = config.num_attention_heads self.attention_head_size = int(config.hidden_size / config.num_attention_heads) self.all_head_size = self.num_attention_heads * self.attention_head_size self.query = nn.Linear(config.hidden_size, self.all_head_size) self.key = nn.Linear(config.hidden_size, self.all_head_size) self.value = nn.Linear(config.hidden_size, self.all_head_size) self.dropout = nn.Dropout(config.attention_probs_dropout_prob) self.position_embedding_type = position_embedding_type or getattr( config, "position_embedding_type", "absolute" ) self.rotary_embeddings = None if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query": self.max_position_embeddings = config.max_position_embeddings self.distance_embedding = nn.Embedding(2 * config.max_position_embeddings - 1, self.attention_head_size) elif self.position_embedding_type == "rotary": self.rotary_embeddings = RotaryEmbedding(dim=self.attention_head_size) self.is_decoder = config.is_decoder def transpose_for_scores(self, x: torch.Tensor) -> torch.Tensor: new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size) x = x.view(new_x_shape) return x.permute(0, 2, 1, 3) def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.FloatTensor] = None, head_mask: Optional[torch.FloatTensor] = None, encoder_hidden_states: Optional[torch.FloatTensor] = None, encoder_attention_mask: Optional[torch.FloatTensor] = None, past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, output_attentions: Optional[bool] = False, ) -> Tuple[torch.Tensor]: mixed_query_layer = self.query(hidden_states) # If this is instantiated as a cross-attention module, the keys # and values come from an encoder; the attention mask needs to be # such that the encoder's padding tokens are not attended to. is_cross_attention = encoder_hidden_states is not None if is_cross_attention and past_key_value is not None: # reuse k,v, cross_attentions key_layer = past_key_value[0] value_layer = past_key_value[1] attention_mask = encoder_attention_mask elif is_cross_attention: key_layer = self.transpose_for_scores(self.key(encoder_hidden_states)) value_layer = self.transpose_for_scores(self.value(encoder_hidden_states)) attention_mask = encoder_attention_mask elif past_key_value is not None: key_layer = self.transpose_for_scores(self.key(hidden_states)) value_layer = self.transpose_for_scores(self.value(hidden_states)) key_layer = torch.cat([past_key_value[0], key_layer], dim=2) value_layer = torch.cat([past_key_value[1], value_layer], dim=2) else: key_layer = self.transpose_for_scores(self.key(hidden_states)) value_layer = self.transpose_for_scores(self.value(hidden_states)) query_layer = self.transpose_for_scores(mixed_query_layer) # Matt: Our BERT model (which this code was derived from) scales attention logits down by sqrt(head_dim). # ESM scales the query down by the same factor instead. Modulo numerical stability these are equivalent, # but not when rotary embeddings get involved. Therefore, we scale the query here to match the original # ESM code and fix rotary embeddings. query_layer = query_layer * self.attention_head_size**-0.5 if self.is_decoder: # if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states. # Further calls to cross_attention layer can then reuse all cross-attention # key/value_states (first "if" case) # if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of # all previous decoder key/value_states. Further calls to uni-directional self-attention # can concat previous decoder key/value_states to current projected key/value_states (third "elif" case) # if encoder bi-directional self-attention `past_key_value` is always `None` past_key_value = (key_layer, value_layer) if self.position_embedding_type == "rotary": query_layer, key_layer = self.rotary_embeddings(query_layer, key_layer) # Take the dot product between "query" and "key" to get the raw attention scores. attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2)) if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query": seq_length = hidden_states.size()[1] position_ids_l = torch.arange(seq_length, dtype=torch.long, device=hidden_states.device).view(-1, 1) position_ids_r = torch.arange(seq_length, dtype=torch.long, device=hidden_states.device).view(1, -1) distance = position_ids_l - position_ids_r positional_embedding = self.distance_embedding(distance + self.max_position_embeddings - 1) positional_embedding = positional_embedding.to(dtype=query_layer.dtype) # fp16 compatibility if self.position_embedding_type == "relative_key": relative_position_scores = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding) attention_scores = attention_scores + relative_position_scores elif self.position_embedding_type == "relative_key_query": relative_position_scores_query = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding) relative_position_scores_key = torch.einsum("bhrd,lrd->bhlr", key_layer, positional_embedding) attention_scores = attention_scores + relative_position_scores_query + relative_position_scores_key if attention_mask is not None: # Apply the attention mask is (precomputed for all layers in EsmModel forward() function) attention_scores = attention_scores + attention_mask # Normalize the attention scores to probabilities. attention_probs = nn.functional.softmax(attention_scores, dim=-1) # This is actually dropping out entire tokens to attend to, which might # seem a bit unusual, but is taken from the original Transformer paper. attention_probs = self.dropout(attention_probs) # Mask heads if we want to if head_mask is not None: attention_probs = attention_probs * head_mask context_layer = torch.matmul(attention_probs, value_layer) context_layer = context_layer.permute(0, 2, 1, 3).contiguous() new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,) context_layer = context_layer.view(new_context_layer_shape) outputs = (context_layer, attention_probs) if output_attentions else (context_layer,) if self.is_decoder: outputs = outputs + (past_key_value,) return outputs class EsmSelfOutput(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward(self, hidden_states, input_tensor): hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states) hidden_states += input_tensor return hidden_states class EsmAttention(nn.Module): def __init__(self, config): super().__init__() self.self = EsmSelfAttention(config) self.output = EsmSelfOutput(config) self.pruned_heads = set() self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) def prune_heads(self, heads): if len(heads) == 0: return heads, index = find_pruneable_heads_and_indices( heads, self.self.num_attention_heads, self.self.attention_head_size, self.pruned_heads ) # Prune linear layers self.self.query = prune_linear_layer(self.self.query, index) self.self.key = prune_linear_layer(self.self.key, index) self.self.value = prune_linear_layer(self.self.value, index) self.output.dense = prune_linear_layer(self.output.dense, index, dim=1) # Update hyper params and store pruned heads self.self.num_attention_heads = self.self.num_attention_heads - len(heads) self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads self.pruned_heads = self.pruned_heads.union(heads) def forward( self, hidden_states, attention_mask=None, head_mask=None, encoder_hidden_states=None, encoder_attention_mask=None, past_key_value=None, output_attentions=False, ): hidden_states_ln = self.LayerNorm(hidden_states) self_outputs = self.self( hidden_states_ln, attention_mask, head_mask, encoder_hidden_states, encoder_attention_mask, past_key_value, output_attentions, ) attention_output = self.output(self_outputs[0], hidden_states) outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them return outputs class EsmIntermediate(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.intermediate_size) def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: hidden_states = self.dense(hidden_states) hidden_states = gelu(hidden_states) return hidden_states class EsmOutput(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.intermediate_size, config.hidden_size) self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward(self, hidden_states, input_tensor): hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states) hidden_states += input_tensor return hidden_states class EsmLayer(nn.Module): def __init__(self, config): super().__init__() self.chunk_size_feed_forward = config.chunk_size_feed_forward self.seq_len_dim = 1 self.attention = EsmAttention(config) self.is_decoder = config.is_decoder self.add_cross_attention = config.add_cross_attention if self.add_cross_attention: if not self.is_decoder: raise RuntimeError(f"{self} should be used as a decoder model if cross attention is added") self.crossattention = EsmAttention(config) self.intermediate = EsmIntermediate(config) self.output = EsmOutput(config) self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) def forward( self, hidden_states, attention_mask=None, head_mask=None, encoder_hidden_states=None, encoder_attention_mask=None, past_key_value=None, output_attentions=False, ): # decoder uni-directional self-attention cached key/values tuple is at positions 1,2 self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None self_attention_outputs = self.attention( hidden_states, attention_mask, head_mask, output_attentions=output_attentions, past_key_value=self_attn_past_key_value, ) attention_output = self_attention_outputs[0] # if decoder, the last output is tuple of self-attn cache if self.is_decoder: outputs = self_attention_outputs[1:-1] present_key_value = self_attention_outputs[-1] else: outputs = self_attention_outputs[1:] # add self attentions if we output attention weights cross_attn_present_key_value = None if self.is_decoder and encoder_hidden_states is not None: if not hasattr(self, "crossattention"): raise AttributeError( f"If `encoder_hidden_states` are passed, {self} has to be instantiated" " with cross-attention layers by setting `config.add_cross_attention=True`" ) # cross_attn cached key/values tuple is at positions 3,4 of past_key_value tuple cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None cross_attention_outputs = self.crossattention( attention_output, attention_mask, head_mask, encoder_hidden_states, encoder_attention_mask, cross_attn_past_key_value, output_attentions, ) attention_output = cross_attention_outputs[0] outputs = outputs + cross_attention_outputs[1:-1] # add cross attentions if we output attention weights # add cross-attn cache to positions 3,4 of present_key_value tuple cross_attn_present_key_value = cross_attention_outputs[-1] present_key_value = present_key_value + cross_attn_present_key_value layer_output = self.feed_forward_chunk(attention_output) outputs = (layer_output,) + outputs # if decoder, return the attn key/values as the last output if self.is_decoder: outputs = outputs + (present_key_value,) return outputs def feed_forward_chunk(self, attention_output): attention_output_ln = self.LayerNorm(attention_output) intermediate_output = self.intermediate(attention_output_ln) layer_output = self.output(intermediate_output, attention_output) return layer_output class EsmEncoder(nn.Module): def __init__(self, config): super().__init__() self.config = config self.layer = nn.ModuleList([EsmLayer(config) for _ in range(config.num_hidden_layers)]) self.emb_layer_norm_after = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.gradient_checkpointing = False def forward( self, hidden_states, attention_mask=None, head_mask=None, encoder_hidden_states=None, encoder_attention_mask=None, past_key_values=None, use_cache=None, output_attentions=False, output_hidden_states=False, return_dict=True, ): if self.gradient_checkpointing and self.training: if use_cache: logger.warning_once( "`use_cache=True` is incompatible with `config.gradient_checkpointing=True`. Setting " "`use_cache=False`..." ) use_cache = False all_hidden_states = () if output_hidden_states else None all_self_attentions = () if output_attentions else None all_cross_attentions = () if output_attentions and self.config.add_cross_attention else None next_decoder_cache = () if use_cache else None for i, layer_module in enumerate(self.layer): if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) layer_head_mask = head_mask[i] if head_mask is not None else None past_key_value = past_key_values[i] if past_key_values is not None else None if self.gradient_checkpointing and self.training: def create_custom_forward(module): def custom_forward(*inputs): return module(*inputs, past_key_value, output_attentions) return custom_forward layer_outputs = torch.utils.checkpoint.checkpoint( create_custom_forward(layer_module), hidden_states, attention_mask, layer_head_mask, encoder_hidden_states, encoder_attention_mask, ) else: layer_outputs = layer_module( hidden_states, attention_mask, layer_head_mask, encoder_hidden_states, encoder_attention_mask, past_key_value, output_attentions, ) hidden_states = layer_outputs[0] if use_cache: next_decoder_cache += (layer_outputs[-1],) if output_attentions: all_self_attentions = all_self_attentions + (layer_outputs[1],) if self.config.add_cross_attention: all_cross_attentions = all_cross_attentions + (layer_outputs[2],) if self.emb_layer_norm_after: hidden_states = self.emb_layer_norm_after(hidden_states) if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) if not return_dict: return tuple( v for v in [ hidden_states, next_decoder_cache, all_hidden_states, all_self_attentions, all_cross_attentions, ] if v is not None ) return BaseModelOutputWithPastAndCrossAttentions( last_hidden_state=hidden_states, past_key_values=next_decoder_cache, hidden_states=all_hidden_states, attentions=all_self_attentions, cross_attentions=all_cross_attentions, ) # Copied from transformers.models.bert.modeling_bert.BertPooler class EsmPooler(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) self.activation = nn.Tanh() def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: # We "pool" the model by simply taking the hidden state corresponding # to the first token. first_token_tensor = hidden_states[:, 0] pooled_output = self.dense(first_token_tensor) pooled_output = self.activation(pooled_output) return pooled_output class EsmPreTrainedModel(PreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = EsmConfig base_model_prefix = "esm" _no_split_modules = ["EsmLayer", "EsmFoldTriangularSelfAttentionBlock"] # Copied from transformers.models.bert.modeling_bert.BertPreTrainedModel._init_weights def _init_weights(self, module): """Initialize the weights""" if isinstance(module, nn.Linear): # Slightly different from the TF version which uses truncated_normal for initialization # cf https://github.com/pytorch/pytorch/pull/5617 module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.Embedding): module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if module.padding_idx is not None: module.weight.data[module.padding_idx].zero_() elif isinstance(module, nn.LayerNorm): module.bias.data.zero_() module.weight.data.fill_(1.0) ESM_START_DOCSTRING = r""" This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.) This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`EsmConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ ESM_INPUTS_DOCSTRING = r""" Args: input_ids (`torch.LongTensor` of shape `({0})`): Indices of input sequence tokens in the vocabulary. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) position_ids (`torch.LongTensor` of shape `({0})`, *optional*): Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, config.max_position_embeddings - 1]`. [What are position IDs?](../glossary#position-ids) head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. inputs_embeds (`torch.FloatTensor` of shape `({0}, hidden_size)`, *optional*): Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert `input_ids` indices into associated vectors than the model's internal embedding lookup matrix. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~file_utils.ModelOutput`] instead of a plain tuple. """ @add_start_docstrings( "The bare ESM Model transformer outputting raw hidden-states without any specific head on top.", ESM_START_DOCSTRING, ) class EsmModel(EsmPreTrainedModel): """ The model can behave as an encoder (with only self-attention) as well as a decoder, in which case a layer of cross-attention is added between the self-attention layers, following the architecture described in [Attention is all you need](https://arxiv.org/abs/1706.03762) by Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser and Illia Polosukhin. To behave as an decoder the model needs to be initialized with the `is_decoder` argument of the configuration set to `True`. To be used in a Seq2Seq model, the model needs to initialized with both `is_decoder` argument and `add_cross_attention` set to `True`; an `encoder_hidden_states` is then expected as an input to the forward pass. """ supports_gradient_checkpointing = False def __init__(self, config, add_pooling_layer=True): super().__init__(config) self.config = config self.embeddings = EsmEmbeddings(config) self.encoder = EsmEncoder(config) self.pooler = EsmPooler(config) if add_pooling_layer else None self.contact_head = EsmContactPredictionHead( in_features=config.num_hidden_layers * config.num_attention_heads, bias=True ) # Initialize weights and apply final processing self.post_init() def _set_gradient_checkpointing(self, module, value=False): if isinstance(module, EsmEncoder): module.gradient_checkpointing = value def get_input_embeddings(self): return self.embeddings.word_embeddings def set_input_embeddings(self, value): self.embeddings.word_embeddings = value def _prune_heads(self, heads_to_prune): """ Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base class PreTrainedModel """ for layer, heads in heads_to_prune.items(): self.encoder.layer[layer].attention.prune_heads(heads) @add_start_docstrings_to_model_forward(ESM_INPUTS_DOCSTRING.format("(batch_size, sequence_length)")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=BaseModelOutputWithPoolingAndCrossAttentions, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.Tensor] = None, head_mask: Optional[torch.Tensor] = None, inputs_embeds: Optional[torch.Tensor] = None, encoder_hidden_states: Optional[torch.Tensor] = None, encoder_attention_mask: Optional[torch.Tensor] = None, past_key_values: Optional[List[torch.FloatTensor]] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPoolingAndCrossAttentions]: r""" encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if the model is configured as a decoder. encoder_attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`): Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding. If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `decoder_input_ids` of shape `(batch_size, sequence_length)`. use_cache (`bool`, *optional*): If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see `past_key_values`). """ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict if self.config.is_decoder: use_cache = use_cache if use_cache is not None else self.config.use_cache else: use_cache = False if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") elif input_ids is not None: input_shape = input_ids.size() elif inputs_embeds is not None: input_shape = inputs_embeds.size()[:-1] else: raise ValueError("You have to specify either input_ids or inputs_embeds") batch_size, seq_length = input_shape device = input_ids.device if input_ids is not None else inputs_embeds.device # past_key_values_length past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0 if attention_mask is None: attention_mask = torch.ones(((batch_size, seq_length + past_key_values_length)), device=device) # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] # ourselves in which case we just need to make it broadcastable to all heads. extended_attention_mask: torch.Tensor = self.get_extended_attention_mask(attention_mask, input_shape) # If a 2D or 3D attention mask is provided for the cross-attention # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length] if self.config.is_decoder and encoder_hidden_states is not None: encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size() encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length) if encoder_attention_mask is None: encoder_attention_mask = torch.ones(encoder_hidden_shape, device=device) encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask) else: encoder_extended_attention_mask = None # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers) embedding_output = self.embeddings( input_ids=input_ids, position_ids=position_ids, attention_mask=attention_mask, inputs_embeds=inputs_embeds, past_key_values_length=past_key_values_length, ) encoder_outputs = self.encoder( embedding_output, attention_mask=extended_attention_mask, head_mask=head_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_extended_attention_mask, past_key_values=past_key_values, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = encoder_outputs[0] pooled_output = self.pooler(sequence_output) if self.pooler is not None else None if not return_dict: return (sequence_output, pooled_output) + encoder_outputs[1:] return BaseModelOutputWithPoolingAndCrossAttentions( last_hidden_state=sequence_output, pooler_output=pooled_output, past_key_values=encoder_outputs.past_key_values, hidden_states=encoder_outputs.hidden_states, attentions=encoder_outputs.attentions, cross_attentions=encoder_outputs.cross_attentions, ) def predict_contacts(self, tokens, attention_mask): attns = self(tokens, attention_mask=attention_mask, return_dict=True, output_attentions=True).attentions attns = torch.stack(attns, dim=1) # Matches the original model layout # In the original model, attentions for padding tokens are completely zeroed out. # This makes no difference most of the time because the other tokens won't attend to them, # but it does for the contact prediction task, which takes attentions as input, # so we have to mimic that here. attns *= attention_mask.unsqueeze(1).unsqueeze(2).unsqueeze(3) attns *= attention_mask.unsqueeze(1).unsqueeze(2).unsqueeze(4) return self.contact_head(tokens, attns) @add_start_docstrings("""ESM Model with a `language modeling` head on top.""", ESM_START_DOCSTRING) class EsmForMaskedLM(EsmPreTrainedModel): _tied_weights_keys = ["lm_head.decoder.weight"] def __init__(self, config): super().__init__(config) if config.is_decoder: logger.warning( "If you want to use `EsmForMaskedLM` make sure `config.is_decoder=False` for " "bi-directional self-attention." ) self.esm = EsmModel(config, add_pooling_layer=False) self.lm_head = EsmLMHead(config) self.init_weights() def get_output_embeddings(self): return self.lm_head.decoder def set_output_embeddings(self, new_embeddings): self.lm_head.decoder = new_embeddings @add_start_docstrings_to_model_forward(ESM_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=MaskedLMOutput, config_class=_CONFIG_FOR_DOC, mask="<mask>", ) def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, head_mask: Optional[torch.Tensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, encoder_hidden_states: Optional[torch.FloatTensor] = None, encoder_attention_mask: Optional[torch.Tensor] = None, labels: Optional[torch.LongTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, MaskedLMOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ..., config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]` kwargs (`Dict[str, any]`, optional, defaults to *{}*): Used to hide legacy arguments that have been deprecated. """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.esm( input_ids, attention_mask=attention_mask, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = outputs[0] prediction_scores = self.lm_head(sequence_output) masked_lm_loss = None if labels is not None: loss_fct = CrossEntropyLoss() labels = labels.to(prediction_scores.device) masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), labels.view(-1)) if not return_dict: output = (prediction_scores,) + outputs[2:] return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output return MaskedLMOutput( loss=masked_lm_loss, logits=prediction_scores, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) def predict_contacts(self, tokens, attention_mask): return self.esm.predict_contacts(tokens, attention_mask=attention_mask) class EsmLMHead(nn.Module): """ESM Head for masked language modeling.""" def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) self.layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False) self.bias = nn.Parameter(torch.zeros(config.vocab_size)) def forward(self, features, **kwargs): x = self.dense(features) x = gelu(x) x = self.layer_norm(x) # project back to size of vocabulary with bias x = self.decoder(x) + self.bias return x @add_start_docstrings( """ ESM Model transformer with a sequence classification/regression head on top (a linear layer on top of the pooled output) e.g. for GLUE tasks. """, ESM_START_DOCSTRING, ) class EsmForSequenceClassification(EsmPreTrainedModel): def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.config = config self.esm = EsmModel(config, add_pooling_layer=False) self.classifier = EsmClassificationHead(config) self.init_weights() @add_start_docstrings_to_model_forward(ESM_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=SequenceClassifierOutput, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, head_mask: Optional[torch.Tensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, SequenceClassifierOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If `config.num_labels > 1` a classification loss is computed (Cross-Entropy). """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.esm( input_ids, attention_mask=attention_mask, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = outputs[0] logits = self.classifier(sequence_output) loss = None if labels is not None: labels = labels.to(logits.device) if self.config.problem_type is None: if self.num_labels == 1: self.config.problem_type = "regression" elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): self.config.problem_type = "single_label_classification" else: self.config.problem_type = "multi_label_classification" if self.config.problem_type == "regression": loss_fct = MSELoss() if self.num_labels == 1: loss = loss_fct(logits.squeeze(), labels.squeeze()) else: loss = loss_fct(logits, labels) elif self.config.problem_type == "single_label_classification": loss_fct = CrossEntropyLoss() loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) elif self.config.problem_type == "multi_label_classification": loss_fct = BCEWithLogitsLoss() loss = loss_fct(logits, labels) if not return_dict: output = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return SequenceClassifierOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) @add_start_docstrings( """ ESM Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for Named-Entity-Recognition (NER) tasks. """, ESM_START_DOCSTRING, ) class EsmForTokenClassification(EsmPreTrainedModel): def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.esm = EsmModel(config, add_pooling_layer=False) self.dropout = nn.Dropout(config.hidden_dropout_prob) self.classifier = nn.Linear(config.hidden_size, config.num_labels) self.init_weights() @add_start_docstrings_to_model_forward(ESM_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=TokenClassifierOutput, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, head_mask: Optional[torch.Tensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, TokenClassifierOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`. """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.esm( input_ids, attention_mask=attention_mask, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = outputs[0] sequence_output = self.dropout(sequence_output) logits = self.classifier(sequence_output) loss = None if labels is not None: loss_fct = CrossEntropyLoss() labels = labels.to(logits.device) loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) if not return_dict: output = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return TokenClassifierOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) class EsmClassificationHead(nn.Module): """Head for sentence-level classification tasks.""" def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) self.dropout = nn.Dropout(config.hidden_dropout_prob) self.out_proj = nn.Linear(config.hidden_size, config.num_labels) def forward(self, features, **kwargs): x = features[:, 0, :] # take <s> token (equiv. to [CLS]) x = self.dropout(x) x = self.dense(x) x = torch.tanh(x) x = self.dropout(x) x = self.out_proj(x) return x def create_position_ids_from_input_ids(input_ids, padding_idx, past_key_values_length=0): """ Replace non-padding symbols with their position numbers. Position numbers begin at padding_idx+1. Padding symbols are ignored. This is modified from fairseq's `utils.make_positions`. Args: x: torch.Tensor x: Returns: torch.Tensor """ # The series of casts and type-conversions here are carefully balanced to both work with ONNX export and XLA. mask = input_ids.ne(padding_idx).int() incremental_indices = (torch.cumsum(mask, dim=1).type_as(mask) + past_key_values_length) * mask return incremental_indices.long() + padding_idx
0
hf_public_repos/transformers/src/transformers/models
hf_public_repos/transformers/src/transformers/models/esm/tokenization_esm.py
# coding=utf-8 # Copyright 2022 Meta and The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tokenization classes for ESM.""" import os from typing import List, Optional, Union from ...tokenization_utils import PreTrainedTokenizer from ...tokenization_utils_base import AddedToken from ...utils import logging logger = logging.get_logger(__name__) VOCAB_FILES_NAMES = {"vocab_file": "vocab.txt"} PRETRAINED_VOCAB_FILES_MAP = { "vocab_file": { "facebook/esm2_t6_8M_UR50D": "https://huggingface.co/facebook/esm2_t6_8M_UR50D/resolve/main/vocab.txt", "facebook/esm2_t12_35M_UR50D": "https://huggingface.co/facebook/esm2_t12_35M_UR50D/resolve/main/vocab.txt", }, } PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = { "facebook/esm2_t6_8M_UR50D": 1024, "facebook/esm2_t12_35M_UR50D": 1024, } def load_vocab_file(vocab_file): with open(vocab_file, "r") as f: lines = f.read().splitlines() return [l.strip() for l in lines] class EsmTokenizer(PreTrainedTokenizer): """ Constructs an ESM tokenizer. """ vocab_files_names = VOCAB_FILES_NAMES pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES model_input_names = ["input_ids", "attention_mask"] def __init__( self, vocab_file, unk_token="<unk>", cls_token="<cls>", pad_token="<pad>", mask_token="<mask>", eos_token="<eos>", **kwargs, ): super().__init__(**kwargs) self.all_tokens = load_vocab_file(vocab_file) self._id_to_token = dict(enumerate(self.all_tokens)) self._token_to_id = {tok: ind for ind, tok in enumerate(self.all_tokens)} self.unk_token = unk_token self.cls_token = cls_token self.pad_token = pad_token self.mask_token = mask_token self.eos_token = eos_token self.unique_no_split_tokens = self.all_tokens self._create_trie(self.unique_no_split_tokens) def _convert_id_to_token(self, index: int) -> str: return self._id_to_token.get(index, self.unk_token) def _convert_token_to_id(self, token: str) -> int: return self._token_to_id.get(token, self._token_to_id.get(self.unk_token)) def _tokenize(self, text, **kwargs): return text.split() def get_vocab_size(self, with_added_tokens=False): return len(self._id_to_token) def get_vocab(self): return {token: i for i, token in enumerate(self.all_tokens)} def token_to_id(self, token: str) -> int: return self._token_to_id.get(token, self._token_to_id.get(self.unk_token)) def id_to_token(self, index: int) -> str: return self._id_to_token.get(index, self.unk_token) def build_inputs_with_special_tokens( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None ) -> List[int]: cls = [self.cls_token_id] sep = [self.eos_token_id] # No sep token in ESM vocabulary if token_ids_1 is None: if self.eos_token_id is None: return cls + token_ids_0 else: return cls + token_ids_0 + sep elif self.eos_token_id is None: raise ValueError("Cannot tokenize multiple sequences when EOS token is not set!") return cls + token_ids_0 + sep + token_ids_1 + sep # Multiple inputs always have an EOS token def get_special_tokens_mask( self, token_ids_0: List, token_ids_1: Optional[List] = None, already_has_special_tokens: bool = False ) -> List[int]: """ Retrieves sequence ids from a token list that has no special tokens added. This method is called when adding special tokens using the tokenizer `prepare_for_model` or `encode_plus` methods. Args: token_ids_0 (`List[int]`): List of ids of the first sequence. token_ids_1 (`List[int]`, *optional*): List of ids of the second sequence. already_has_special_tokens (`bool`, *optional*, defaults to `False`): Whether or not the token list is already formatted with special tokens for the model. Returns: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token. """ if already_has_special_tokens: if token_ids_1 is not None: raise ValueError( "You should not supply a second sequence if the provided sequence of " "ids is already formatted with special tokens for the model." ) return [1 if token in self.all_special_ids else 0 for token in token_ids_0] mask = [1] + ([0] * len(token_ids_0)) + [1] if token_ids_1 is not None: mask += [0] * len(token_ids_1) + [1] return mask def save_vocabulary(self, save_directory, filename_prefix): vocab_file = os.path.join(save_directory, (filename_prefix + "-" if filename_prefix else "") + "vocab.txt") with open(vocab_file, "w") as f: f.write("\n".join(self.all_tokens)) return (vocab_file,) @property def vocab_size(self) -> int: return self.get_vocab_size(with_added_tokens=False) def _add_tokens(self, new_tokens: Union[List[str], List[AddedToken]], special_tokens: bool = False) -> int: return super()._add_tokens(new_tokens, special_tokens=True)
0
hf_public_repos/transformers/src/transformers/models
hf_public_repos/transformers/src/transformers/models/esm/configuration_esm.py
# coding=utf-8 # Copyright 2022 Meta and The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ ESM model configuration""" from dataclasses import asdict, dataclass from typing import Optional from ...configuration_utils import PretrainedConfig from ...utils import logging logger = logging.get_logger(__name__) # TODO Update this ESM_PRETRAINED_CONFIG_ARCHIVE_MAP = { "facebook/esm-1b": "https://huggingface.co/facebook/esm-1b/resolve/main/config.json", # See all ESM models at https://huggingface.co/models?filter=esm } class EsmConfig(PretrainedConfig): r""" This is the configuration class to store the configuration of a [`ESMModel`]. It is used to instantiate a ESM model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the ESM [facebook/esm-1b](https://huggingface.co/facebook/esm-1b) architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: vocab_size (`int`, *optional*): Vocabulary size of the ESM model. Defines the number of different tokens that can be represented by the `inputs_ids` passed when calling [`ESMModel`]. mask_token_id (`int`, *optional*): The index of the mask token in the vocabulary. This must be included in the config because of the "mask-dropout" scaling trick, which will scale the inputs depending on the number of masked tokens. pad_token_id (`int`, *optional*): The index of the padding token in the vocabulary. This must be included in the config because certain parts of the ESM code use this instead of the attention mask. hidden_size (`int`, *optional*, defaults to 768): Dimensionality of the encoder layers and the pooler layer. num_hidden_layers (`int`, *optional*, defaults to 12): Number of hidden layers in the Transformer encoder. num_attention_heads (`int`, *optional*, defaults to 12): Number of attention heads for each attention layer in the Transformer encoder. intermediate_size (`int`, *optional*, defaults to 3072): Dimensionality of the "intermediate" (often named feed-forward) layer in the Transformer encoder. hidden_dropout_prob (`float`, *optional*, defaults to 0.1): The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1): The dropout ratio for the attention probabilities. max_position_embeddings (`int`, *optional*, defaults to 1026): The maximum sequence length that this model might ever be used with. Typically set this to something large just in case (e.g., 512 or 1024 or 2048). initializer_range (`float`, *optional*, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. layer_norm_eps (`float`, *optional*, defaults to 1e-12): The epsilon used by the layer normalization layers. position_embedding_type (`str`, *optional*, defaults to `"absolute"`): Type of position embedding. Choose one of `"absolute"`, `"relative_key"`, `"relative_key_query", "rotary"`. For positional embeddings use `"absolute"`. For more information on `"relative_key"`, please refer to [Self-Attention with Relative Position Representations (Shaw et al.)](https://arxiv.org/abs/1803.02155). For more information on `"relative_key_query"`, please refer to *Method 4* in [Improve Transformer Models with Better Relative Position Embeddings (Huang et al.)](https://arxiv.org/abs/2009.13658). is_decoder (`bool`, *optional*, defaults to `False`): Whether the model is used as a decoder or not. If `False`, the model is used as an encoder. use_cache (`bool`, *optional*, defaults to `True`): Whether or not the model should return the last key/values attentions (not used by all models). Only relevant if `config.is_decoder=True`. emb_layer_norm_before (`bool`, *optional*): Whether to apply layer normalization after embeddings but before the main stem of the network. token_dropout (`bool`, defaults to `False`): When this is enabled, masked tokens are treated as if they had been dropped out by input dropout. Examples: ```python >>> from transformers import EsmModel, EsmConfig >>> # Initializing a ESM facebook/esm-1b style configuration >>> configuration = EsmConfig() >>> # Initializing a model from the configuration >>> model = ESMModel(configuration) >>> # Accessing the model configuration >>> configuration = model.config ```""" model_type = "esm" def __init__( self, vocab_size=None, mask_token_id=None, pad_token_id=None, hidden_size=768, num_hidden_layers=12, num_attention_heads=12, intermediate_size=3072, hidden_dropout_prob=0.1, attention_probs_dropout_prob=0.1, max_position_embeddings=1026, initializer_range=0.02, layer_norm_eps=1e-12, position_embedding_type="absolute", use_cache=True, emb_layer_norm_before=None, token_dropout=False, is_folding_model=False, esmfold_config=None, vocab_list=None, **kwargs, ): super().__init__(pad_token_id=pad_token_id, mask_token_id=mask_token_id, **kwargs) self.vocab_size = vocab_size self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.intermediate_size = intermediate_size self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.max_position_embeddings = max_position_embeddings self.initializer_range = initializer_range self.layer_norm_eps = layer_norm_eps self.position_embedding_type = position_embedding_type self.use_cache = use_cache self.emb_layer_norm_before = emb_layer_norm_before self.token_dropout = token_dropout self.is_folding_model = is_folding_model if is_folding_model: if esmfold_config is None: logger.info("No esmfold_config supplied for folding model, using default values.") esmfold_config = EsmFoldConfig() elif isinstance(esmfold_config, dict): esmfold_config = EsmFoldConfig(**esmfold_config) self.esmfold_config = esmfold_config if vocab_list is None: logger.warning("No vocab_list supplied for folding model, assuming the ESM-2 vocabulary!") self.vocab_list = get_default_vocab_list() else: self.vocab_list = vocab_list else: self.esmfold_config = None self.vocab_list = None if self.esmfold_config is not None and getattr(self.esmfold_config, "use_esm_attn_map", False): raise ValueError("The HuggingFace port of ESMFold does not support use_esm_attn_map at this time!") def to_dict(self): """ Serializes this instance to a Python dictionary. Override the default [`~PretrainedConfig.to_dict`]. Returns: `Dict[str, any]`: Dictionary of all the attributes that make up this configuration instance, """ output = super().to_dict() if isinstance(self.esmfold_config, EsmFoldConfig): output["esmfold_config"] = self.esmfold_config.to_dict() return output @dataclass class EsmFoldConfig: esm_type: str = None fp16_esm: bool = True use_esm_attn_map: bool = False esm_ablate_pairwise: bool = False esm_ablate_sequence: bool = False esm_input_dropout: float = 0 embed_aa: bool = True bypass_lm: bool = False lddt_head_hid_dim: int = 128 trunk: "TrunkConfig" = None def __post_init__(self): if self.trunk is None: self.trunk = TrunkConfig() elif isinstance(self.trunk, dict): self.trunk = TrunkConfig(**self.trunk) def to_dict(self): """ Serializes this instance to a Python dictionary. Override the default [`~PretrainedConfig.to_dict`]. Returns: `Dict[str, any]`: Dictionary of all the attributes that make up this configuration instance, """ output = asdict(self) output["trunk"] = self.trunk.to_dict() return output @dataclass class TrunkConfig: num_blocks: int = 48 sequence_state_dim: int = 1024 pairwise_state_dim: int = 128 sequence_head_width: int = 32 pairwise_head_width: int = 32 position_bins: int = 32 dropout: float = 0 layer_drop: float = 0 cpu_grad_checkpoint: bool = False max_recycles: int = 4 chunk_size: Optional[int] = 128 structure_module: "StructureModuleConfig" = None def __post_init__(self): if self.structure_module is None: self.structure_module = StructureModuleConfig() elif isinstance(self.structure_module, dict): self.structure_module = StructureModuleConfig(**self.structure_module) if self.max_recycles <= 0: raise ValueError(f"`max_recycles` should be positive, got {self.max_recycles}.") if self.sequence_state_dim % self.sequence_state_dim != 0: raise ValueError( "`sequence_state_dim` should be a round multiple of `sequence_state_dim`, got" f" {self.sequence_state_dim} and {self.sequence_state_dim}." ) if self.pairwise_state_dim % self.pairwise_state_dim != 0: raise ValueError( "`pairwise_state_dim` should be a round multiple of `pairwise_state_dim`, got" f" {self.pairwise_state_dim} and {self.pairwise_state_dim}." ) sequence_num_heads = self.sequence_state_dim // self.sequence_head_width pairwise_num_heads = self.pairwise_state_dim // self.pairwise_head_width if self.sequence_state_dim != sequence_num_heads * self.sequence_head_width: raise ValueError( "`sequence_state_dim` should be equal to `sequence_num_heads * sequence_head_width, got" f" {self.sequence_state_dim} != {sequence_num_heads} * {self.sequence_head_width}." ) if self.pairwise_state_dim != pairwise_num_heads * self.pairwise_head_width: raise ValueError( "`pairwise_state_dim` should be equal to `pairwise_num_heads * pairwise_head_width, got" f" {self.pairwise_state_dim} != {pairwise_num_heads} * {self.pairwise_head_width}." ) if self.pairwise_state_dim % 2 != 0: raise ValueError(f"`pairwise_state_dim` should be even, got {self.pairwise_state_dim}.") if self.dropout >= 0.4: raise ValueError(f"`dropout` should not be greater than 0.4, got {self.dropout}.") def to_dict(self): """ Serializes this instance to a Python dictionary. Override the default [`~PretrainedConfig.to_dict`]. Returns: `Dict[str, any]`: Dictionary of all the attributes that make up this configuration instance, """ output = asdict(self) output["structure_module"] = self.structure_module.to_dict() return output @dataclass class StructureModuleConfig: """ Args: sequence_dim: Single representation channel dimension pairwise_dim: Pair representation channel dimension ipa_dim: IPA hidden channel dimension resnet_dim: Angle resnet (Alg. 23 lines 11-14) hidden channel dimension num_heads_ipa: Number of IPA heads num_qk_points: Number of query/key points to generate during IPA num_v_points: Number of value points to generate during IPA dropout_rate: Dropout rate used throughout the layer num_blocks: Number of structure module blocks num_transition_layers: Number of layers in the single representation transition (Alg. 23 lines 8-9) num_resnet_blocks: Number of blocks in the angle resnet num_angles: Number of angles to generate in the angle resnet trans_scale_factor: Scale of single representation transition hidden dimension epsilon: Small number used in angle resnet normalization inf: Large number used for attention masking """ sequence_dim: int = 384 pairwise_dim: int = 128 ipa_dim: int = 16 resnet_dim: int = 128 num_heads_ipa: int = 12 num_qk_points: int = 4 num_v_points: int = 8 dropout_rate: float = 0.1 num_blocks: int = 8 num_transition_layers: int = 1 num_resnet_blocks: int = 2 num_angles: int = 7 trans_scale_factor: int = 10 epsilon: float = 1e-8 inf: float = 1e5 def to_dict(self): return asdict(self) def get_default_vocab_list(): return ( "<cls>", "<pad>", "<eos>", "<unk>", "L", "A", "G", "V", "S", "E", "R", "T", "I", "D", "P", "K", "Q", "N", "F", "Y", "M", "H", "W", "C", "X", "B", "U", "Z", "O", ".", "-", "<null_1>", "<mask>", )
0
hf_public_repos/transformers/src/transformers/models
hf_public_repos/transformers/src/transformers/models/esm/modeling_tf_esm.py
# coding=utf-8 # Copyright 2022 Meta and The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ PyTorch ESM model.""" from __future__ import annotations import os from typing import Optional, Tuple, Union import numpy as np import tensorflow as tf from tensorflow.keras.activations import gelu from tensorflow.keras.layers import Dense, Dropout, Embedding, Layer, LayerNormalization from ...file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward from ...modeling_tf_outputs import ( TFBaseModelOutputWithPastAndCrossAttentions, TFBaseModelOutputWithPoolingAndCrossAttentions, TFMaskedLMOutput, TFSequenceClassifierOutput, TFTokenClassifierOutput, ) from ...modeling_tf_utils import ( TFMaskedLanguageModelingLoss, TFModelInputType, TFPreTrainedModel, TFSequenceClassificationLoss, TFTokenClassificationLoss, get_initializer, shape_list, unpack_inputs, ) from ...tf_utils import check_embeddings_within_bounds, stable_softmax from ...utils import logging from .configuration_esm import EsmConfig logger = logging.get_logger(__name__) _CHECKPOINT_FOR_DOC = "facebook/esm2_t6_8M_UR50D" _CONFIG_FOR_DOC = "EsmConfig" TF_ESM_PRETRAINED_MODEL_ARCHIVE_LIST = [ "facebook/esm2_t6_8M_UR50D", "facebook/esm2_t12_35M_UR50D", # This is not a complete list of all ESM models! # See all ESM models at https://huggingface.co/models?filter=esm ] def rotate_half(x): x1, x2 = tf.split(x, 2, axis=-1) return tf.concat((-x2, x1), axis=-1) def apply_rotary_pos_emb(x, cos, sin): cos = cos[:, :, : tf.shape(x)[-2], :] sin = sin[:, :, : tf.shape(x)[-2], :] return (x * cos) + (rotate_half(x) * sin) def symmetrize(x): "Make layer symmetric in final two dimensions, used for contact prediction." return x + tf.linalg.matrix_transpose(x) # Transposes last two dimensions only def average_product_correct(x): "Perform average product correct, used for contact prediction." a1 = tf.reduce_sum(x, -1, keepdims=True) a2 = tf.reduce_sum(x, -2, keepdims=True) a12 = tf.reduce_sum(x, (-1, -2), keepdims=True) avg = a1 * a2 avg = avg / a12 normalized = x - avg return normalized class TFRotaryEmbedding(Layer): """ Rotary position embeddings based on those in [RoFormer](https://huggingface.co/docs/transformers/model_doc/roformer). Query and keys are transformed by rotation matrices which depend on their relative positions. """ def __init__(self, dim: int, name=None): super().__init__(name=name) # Matt: The PyTorch version of this layer does a lot of work to cache values, but we just rely on TF compilation # and/or XLA to sort out constants like that. It actually may not seem like this layer needs to be stateful at # all when we benefit from TF compilation, but it does. The reason is that self.inv_freq is a buffer in the # original implementation, but all the shared ESM checkpoints were trained with fp16 params. This means that # the inv_freq tensor was stored as a float16, and we need to replicate those lower-precision values or our # models give different outputs from the original. self.dim = dim def build(self, input_shape): super().build(input_shape) self.inv_freq = self.add_weight( "inv_freq", shape=(self.dim // 2,), dtype=tf.float32, initializer=get_initializer(1.0), trainable=False ) self.inv_freq.assign( 1.0 / (10000 ** (tf.range(start=0, limit=self.dim, delta=2, dtype=tf.float32) / self.dim)) ) def _compute_cos_sin(self, x, seq_dimension=2): seq_len = tf.shape(x)[seq_dimension] t = tf.range(seq_len, dtype=self.inv_freq.dtype) freqs = tf.einsum("i, j -> ij", t, self.inv_freq) # Outer multiplication emb = tf.concat((freqs, freqs), axis=-1)[None, None, :, :] return tf.cos(emb), tf.sin(emb) def call(self, q: tf.Tensor, k: tf.Tensor) -> Tuple[tf.Tensor, tf.Tensor]: cos_emb, sin_emb = self._compute_cos_sin(k, seq_dimension=-2) return ( apply_rotary_pos_emb(q, cos_emb, sin_emb), apply_rotary_pos_emb(k, cos_emb, sin_emb), ) class TFEsmContactPredictionHead(Layer): """Performs symmetrization, apc, and computes a logistic regression on the output features""" def __init__( self, in_features: int, bias=True, eos_idx: int = 2, name=None, ): super().__init__(name=name) self.eos_idx = eos_idx self.in_features = in_features self.regression = Dense(1, use_bias=bias, activation="sigmoid", name="regression") def build(self, input_shape): super().build(input_shape) with tf.name_scope("regression"): self.regression.build((None, self.in_features)) def call(self, tokens, attentions): # remove eos token attentions eos_mask = tf.cast(tokens != self.eos_idx, attentions.dtype) eos_mask = tf.expand_dims(eos_mask, 1) * tf.expand_dims(eos_mask, 2) attentions = attentions * eos_mask[:, None, None, :, :] attentions = attentions[..., :-1, :-1] # remove cls token attentions attentions = attentions[..., 1:, 1:] batch_size, layers, heads, seqlen, _ = shape_list(attentions) attentions = tf.reshape(attentions, (batch_size, layers * heads, seqlen, seqlen)) # features: batch x channels x tokens x tokens (symmetric) attentions = average_product_correct(symmetrize(attentions)) attentions = tf.transpose(attentions, perm=(0, 2, 3, 1)) return tf.squeeze(self.regression(attentions), 3) class TFEsmEmbeddings(Layer): """ Same as BertEmbeddings with a tiny tweak for positional embeddings indexing. """ def __init__(self, config, name=None): super().__init__(name=name) self.word_embeddings = Embedding( config.vocab_size, config.hidden_size, embeddings_initializer=get_initializer(config.initializer_range), name="word_embeddings", ) self.position_embeddings = Embedding( config.max_position_embeddings, config.hidden_size, embeddings_initializer=get_initializer(config.initializer_range), name="position_embeddings", ) if config.emb_layer_norm_before: self.layer_norm = LayerNormalization(epsilon=config.layer_norm_eps, name="layer_norm") else: self.layer_norm = None # Matt: I think this line was copied incorrectly from BERT, disabling for now # self.dropout = Dropout(config.hidden_dropout_prob) self.position_embedding_type = getattr(config, "position_embedding_type", "absolute") self.position_ids = tf.range(config.max_position_embeddings)[None, :] self.padding_idx = config.pad_token_id self.token_dropout = config.token_dropout self.mask_token_id = config.mask_token_id self.config = config def call( self, input_ids=None, attention_mask=None, position_ids=None, inputs_embeds=None, past_key_values_length=0 ): if position_ids is None: if input_ids is not None: # Create the position ids from the input token ids. Any padded tokens remain padded. position_ids = create_position_ids_from_input_ids(input_ids, self.padding_idx, past_key_values_length) else: position_ids = self.create_position_ids_from_inputs_embeds(inputs_embeds) if inputs_embeds is None: check_embeddings_within_bounds(input_ids, self.config.vocab_size) inputs_embeds = self.word_embeddings(input_ids) # Note that if we want to support ESM-1 (not 1b!) in future then we need to support an # embedding_scale factor here. embeddings = inputs_embeds # Matt: ESM has the option to handle masking in MLM in a slightly unusual way. If the token_dropout # flag is False then it is handled in the same was as BERT/RoBERTa. If it is set to True, however, # masked tokens are treated as if they were selected for input dropout and zeroed out. # This "mask-dropout" is compensated for when masked tokens are not present, by scaling embeddings by # a factor of (fraction of unmasked tokens during training) / (fraction of unmasked tokens in sample). # This is analogous to the way that dropout layers scale down outputs during evaluation when not # actually dropping out values (or, equivalently, scale up their un-dropped outputs in training). if self.token_dropout: embeddings = tf.where((input_ids == self.mask_token_id)[:, :, None], 0.0, embeddings) mask_ratio_train = 0.15 * 0.8 # Hardcoded as the ratio used in all ESM model training runs src_lengths = tf.cast(tf.reduce_sum(attention_mask, axis=-1), tf.float32) masked_tokens = input_ids == self.mask_token_id mask_ratio_observed = tf.math.count_nonzero(masked_tokens, dtype=tf.float32, axis=-1) / src_lengths embeddings = embeddings * (1 - mask_ratio_train) / (1 - mask_ratio_observed)[:, None, None] if self.position_embedding_type == "absolute": position_embeddings = self.position_embeddings(position_ids) embeddings += position_embeddings if self.layer_norm is not None: embeddings = self.layer_norm(embeddings) if attention_mask is not None: embeddings = embeddings * tf.cast(tf.expand_dims(attention_mask, -1), embeddings.dtype) # Matt: I think this line was copied incorrectly from BERT, disabling it for now. # embeddings = self.dropout(embeddings) return embeddings def create_position_ids_from_inputs_embeds(self, inputs_embeds): """ We are provided embeddings directly. We cannot infer which are padded so just generate sequential position ids. Args: inputs_embeds: tf.Tensor Returns: tf.Tensor """ input_shape = shape_list(inputs_embeds)[:-1] sequence_length = input_shape[1] position_ids = tf.range( start=self.padding_idx + 1, limit=sequence_length + self.padding_idx + 1, dtype=tf.int64 ) return tf.broadcast_to(tf.expand_dims(position_ids, 0), input_shape) class TFEsmSelfAttention(Layer): def __init__(self, config, position_embedding_type=None, name=None): super().__init__(name=name) if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"): raise ValueError( f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention " f"heads ({config.num_attention_heads})" ) self.num_attention_heads = config.num_attention_heads self.attention_head_size = int(config.hidden_size / config.num_attention_heads) self.all_head_size = self.num_attention_heads * self.attention_head_size self.query = Dense( self.all_head_size, kernel_initializer=get_initializer(config.initializer_range), name="query" ) self.key = Dense(self.all_head_size, kernel_initializer=get_initializer(config.initializer_range), name="key") self.value = Dense( self.all_head_size, kernel_initializer=get_initializer(config.initializer_range), name="value" ) self.dropout = Dropout(config.attention_probs_dropout_prob) self.position_embedding_type = position_embedding_type or getattr( config, "position_embedding_type", "absolute" ) self.rotary_embeddings = None if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query": self.max_position_embeddings = config.max_position_embeddings self.distance_embedding = Embedding( 2 * config.max_position_embeddings - 1, self.attention_head_size, embeddings_initializer=get_initializer(config.initializer_range), ) elif self.position_embedding_type == "rotary": self.rotary_embeddings = TFRotaryEmbedding(dim=self.attention_head_size, name="rotary_embeddings") self.is_decoder = config.is_decoder def transpose_for_scores(self, x: tf.Tensor) -> tf.Tensor: new_x_shape = shape_list(x)[:-1] + [self.num_attention_heads, self.attention_head_size] x = tf.reshape(x, new_x_shape) return tf.transpose(x, perm=(0, 2, 1, 3)) def call( self, hidden_states: tf.Tensor, attention_mask: tf.Tensor | None = None, head_mask: tf.Tensor | None = None, encoder_hidden_states: tf.Tensor | None = None, encoder_attention_mask: tf.Tensor | None = None, past_key_value: Tuple[Tuple[tf.Tensor]] | None = None, output_attentions: Optional[bool] = False, training: bool = False, ) -> Tuple[tf.Tensor]: mixed_query_layer = self.query(hidden_states) # If this is instantiated as a cross-attention module, the keys # and values come from an encoder; the attention mask needs to be # such that the encoder's padding tokens are not attended to. is_cross_attention = encoder_hidden_states is not None if is_cross_attention and past_key_value is not None: # reuse k,v, cross_attentions key_layer = past_key_value[0] value_layer = past_key_value[1] attention_mask = encoder_attention_mask elif is_cross_attention: key_layer = self.transpose_for_scores(self.key(encoder_hidden_states)) value_layer = self.transpose_for_scores(self.value(encoder_hidden_states)) attention_mask = encoder_attention_mask elif past_key_value is not None: key_layer = self.transpose_for_scores(self.key(hidden_states)) value_layer = self.transpose_for_scores(self.value(hidden_states)) key_layer = tf.concat([past_key_value[0], key_layer], axis=2) value_layer = tf.concat([past_key_value[1], value_layer], axis=2) else: key_layer = self.transpose_for_scores(self.key(hidden_states)) value_layer = self.transpose_for_scores(self.value(hidden_states)) query_layer = self.transpose_for_scores(mixed_query_layer) # Matt: Our BERT model (which this code was derived from) scales attention logits down by sqrt(head_dim). # ESM scales the query down by the same factor instead. Modulo numerical stability these are equivalent, # but not when rotary embeddings get involved. Therefore, we scale the query here to match the original # ESM code and fix rotary embeddings. query_layer = query_layer * self.attention_head_size**-0.5 if self.is_decoder: # if cross_attention save Tuple(tf.Tensor, tf.Tensor) of all cross attention key/value_states. # Further calls to cross_attention layer can then reuse all cross-attention # key/value_states (first "if" case) # if uni-directional self-attention (decoder) save Tuple(tf.Tensor, tf.Tensor) of # all previous decoder key/value_states. Further calls to uni-directional self-attention # can concat previous decoder key/value_states to current projected key/value_states (third "elif" case) # if encoder bi-directional self-attention `past_key_value` is always `None` past_key_value = (key_layer, value_layer) if self.position_embedding_type == "rotary": query_layer, key_layer = self.rotary_embeddings(query_layer, key_layer) # Take the dot product between "query" and "key" to get the raw attention scores. attention_scores = tf.matmul(query_layer, key_layer, transpose_b=True) if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query": seq_length = shape_list(hidden_states)[1] position_ids_l = tf.expand_dims(tf.range(seq_length, dtype=tf.int64), -1) position_ids_r = tf.expand_dims(tf.range(seq_length, dtype=tf.int64), 0) distance = position_ids_l - position_ids_r positional_embedding = self.distance_embedding(distance + self.max_position_embeddings - 1) positional_embedding = tf.cast(positional_embedding, query_layer.dtype) # fp16 compatibility if self.position_embedding_type == "relative_key": relative_position_scores = tf.einsum("bhld,lrd->bhlr", query_layer, positional_embedding) attention_scores = attention_scores + relative_position_scores elif self.position_embedding_type == "relative_key_query": relative_position_scores_query = tf.einsum("bhld,lrd->bhlr", query_layer, positional_embedding) relative_position_scores_key = tf.einsum("bhrd,lrd->bhlr", key_layer, positional_embedding) attention_scores = attention_scores + relative_position_scores_query + relative_position_scores_key if attention_mask is not None: # Apply the attention mask is (precomputed for all layers in EsmModel forward() function) attention_scores = attention_scores + attention_mask # Normalize the attention scores to probabilities. attention_probs = stable_softmax(attention_scores, axis=-1) # This is actually dropping out entire tokens to attend to, which might # seem a bit unusual, but is taken from the original Transformer paper. attention_probs = self.dropout(attention_probs, training=training) # Mask heads if we want to if head_mask is not None: attention_probs = attention_probs * head_mask context_layer = attention_probs @ value_layer context_layer = tf.transpose(context_layer, perm=(0, 2, 1, 3)) new_context_layer_shape = shape_list(context_layer)[:-2] + [self.all_head_size] context_layer = tf.reshape(context_layer, new_context_layer_shape) outputs = (context_layer, attention_probs) if output_attentions else (context_layer,) if self.is_decoder: outputs = outputs + (past_key_value,) return outputs class TFEsmSelfOutput(Layer): def __init__(self, config, name=None): super().__init__(name=name) self.dense = Dense( config.hidden_size, kernel_initializer=get_initializer(config.initializer_range), name="dense" ) self.dropout = Dropout(config.hidden_dropout_prob) def call(self, hidden_states, input_tensor, training=False): hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states, training=training) hidden_states += input_tensor return hidden_states class TFEsmAttention(Layer): def __init__(self, config, name=None): super().__init__(name=name) self.self = TFEsmSelfAttention(config, name="self") self.output_layer = TFEsmSelfOutput(config, name="output") self.pruned_heads = set() self.LayerNorm = LayerNormalization(epsilon=config.layer_norm_eps, name="LayerNorm") def prune_heads(self, heads): raise NotImplementedError def call( self, hidden_states, attention_mask=None, head_mask=None, encoder_hidden_states=None, encoder_attention_mask=None, past_key_value=None, output_attentions=False, training=False, ): hidden_states_ln = self.LayerNorm(hidden_states) self_outputs = self.self( hidden_states_ln, attention_mask, head_mask, encoder_hidden_states, encoder_attention_mask, past_key_value, output_attentions, training, ) attention_output = self.output_layer(self_outputs[0], hidden_states) outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them return outputs class TFEsmIntermediate(tf.keras.layers.Layer): def __init__(self, config: EsmConfig, **kwargs): super().__init__(**kwargs) self.dense = tf.keras.layers.Dense( units=config.intermediate_size, kernel_initializer=get_initializer(config.initializer_range), name="dense", ) def call(self, hidden_states: tf.Tensor) -> tf.Tensor: hidden_states = self.dense(inputs=hidden_states) hidden_states = tf.nn.gelu(hidden_states) return hidden_states class TFEsmOutput(Layer): def __init__(self, config, name=None): super().__init__(name=name) self.dense = Dense( config.hidden_size, kernel_initializer=get_initializer(config.initializer_range), name="dense" ) self.dropout = Dropout(config.hidden_dropout_prob) def call(self, hidden_states, input_tensor, training=False): hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states, training=training) hidden_states += input_tensor return hidden_states class TFEsmLayer(Layer): def __init__(self, config, name=None): super().__init__(name=name) self.chunk_size_feed_forward = config.chunk_size_feed_forward self.seq_len_dim = 1 self.attention = TFEsmAttention(config, name="attention") self.is_decoder = config.is_decoder self.add_cross_attention = config.add_cross_attention if self.add_cross_attention: if not self.is_decoder: raise RuntimeError(f"{self} should be used as a decoder model if cross attention is added") self.crossattention = TFEsmAttention(config) self.intermediate = TFEsmIntermediate(config, name="intermediate") self.output_layer = TFEsmOutput(config, name="output") self.LayerNorm = LayerNormalization(epsilon=config.layer_norm_eps, name="LayerNorm") def call( self, hidden_states, attention_mask=None, head_mask=None, encoder_hidden_states=None, encoder_attention_mask=None, past_key_value=None, output_attentions=False, training=False, ): # decoder uni-directional self-attention cached key/values tuple is at positions 1,2 self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None self_attention_outputs = self.attention( hidden_states, attention_mask, head_mask, output_attentions=output_attentions, past_key_value=self_attn_past_key_value, training=training, ) attention_output = self_attention_outputs[0] # if decoder, the last output is tuple of self-attn cache if self.is_decoder: outputs = self_attention_outputs[1:-1] present_key_value = self_attention_outputs[-1] else: outputs = self_attention_outputs[1:] # add self attentions if we output attention weights cross_attn_present_key_value = None if self.is_decoder and encoder_hidden_states is not None: if not hasattr(self, "crossattention"): raise AttributeError( f"If `encoder_hidden_states` are passed, {self} has to be instantiated" " with cross-attention layers by setting `config.add_cross_attention=True`" ) # cross_attn cached key/values tuple is at positions 3,4 of past_key_value tuple cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None cross_attention_outputs = self.crossattention( attention_output, attention_mask, head_mask, encoder_hidden_states, encoder_attention_mask, cross_attn_past_key_value, output_attentions, training=training, ) attention_output = cross_attention_outputs[0] outputs = outputs + cross_attention_outputs[1:-1] # add cross attentions if we output attention weights # add cross-attn cache to positions 3,4 of present_key_value tuple cross_attn_present_key_value = cross_attention_outputs[-1] present_key_value = present_key_value + cross_attn_present_key_value layernorm_output = self.LayerNorm(attention_output) intermediate_output = self.intermediate(hidden_states=layernorm_output) layer_output = self.output_layer( hidden_states=intermediate_output, input_tensor=attention_output, training=training ) outputs = (layer_output,) + outputs # add attentions if we output them # if decoder, return the attn key/values as the last output if self.is_decoder: outputs = outputs + (present_key_value,) return outputs class TFEsmEncoder(Layer): def __init__(self, config, name=None): super().__init__(name=name) self.config = config self.layer = [TFEsmLayer(config, name=f"layer_._{i}") for i in range(config.num_hidden_layers)] self.emb_layer_norm_after = LayerNormalization(epsilon=config.layer_norm_eps, name="emb_layer_norm_after") def call( self, hidden_states, attention_mask=None, head_mask=None, encoder_hidden_states=None, encoder_attention_mask=None, past_key_values=None, use_cache=None, output_attentions=False, output_hidden_states=False, return_dict=True, training=False, ): all_hidden_states = () if output_hidden_states else None all_self_attentions = () if output_attentions else None all_cross_attentions = () if output_attentions and self.config.add_cross_attention else None next_decoder_cache = () if use_cache else None for i, layer_module in enumerate(self.layer): if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) layer_head_mask = head_mask[i] if head_mask is not None else None past_key_value = past_key_values[i] if past_key_values is not None else None layer_outputs = layer_module( hidden_states, attention_mask, layer_head_mask, encoder_hidden_states, encoder_attention_mask, past_key_value, output_attentions, training, ) hidden_states = layer_outputs[0] if use_cache: next_decoder_cache += (layer_outputs[-1],) if output_attentions: all_self_attentions = all_self_attentions + (layer_outputs[1],) if self.config.add_cross_attention: all_cross_attentions = all_cross_attentions + (layer_outputs[2],) if self.emb_layer_norm_after: hidden_states = self.emb_layer_norm_after(hidden_states) if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) if not return_dict: return tuple( v for v in [ hidden_states, next_decoder_cache, all_hidden_states, all_self_attentions, all_cross_attentions, ] if v is not None ) return TFBaseModelOutputWithPastAndCrossAttentions( last_hidden_state=hidden_states, past_key_values=next_decoder_cache, hidden_states=all_hidden_states, attentions=all_self_attentions, cross_attentions=all_cross_attentions, ) # Copied from transformers.models.bert.modeling_tf_bert.TFBertPooler with Bert->Esm class TFEsmPooler(Layer): def __init__(self, config: EsmConfig, **kwargs): super().__init__(**kwargs) self.dense = tf.keras.layers.Dense( units=config.hidden_size, kernel_initializer=get_initializer(config.initializer_range), activation="tanh", name="dense", ) def call(self, hidden_states: tf.Tensor) -> tf.Tensor: # We "pool" the model by simply taking the hidden state corresponding # to the first token. first_token_tensor = hidden_states[:, 0] pooled_output = self.dense(inputs=first_token_tensor) return pooled_output class TFEsmPreTrainedModel(TFPreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = EsmConfig base_model_prefix = "esm" ESM_START_DOCSTRING = r""" This model inherits from [`TFPreTrainedModel`]. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.) This model is also a Keras [Model](https://www.tensorflow.org/api_docs/python/tf/keras/Model) subclass. Use it as a regular Keras model and refer to the TF/Keras documentation for all matters related to general usage and behavior. Parameters: config ([`EsmConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~TFPreTrainedModel.from_pretrained`] method to load the model weights. """ ESM_INPUTS_DOCSTRING = r""" Args: input_ids (`tf.Tensor` of shape `({0})`): Indices of input sequence tokens in the vocabulary. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) attention_mask (`tf.Tensor` of shape `({0})`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) position_ids (`tf.Tensor` of shape `({0})`, *optional*): Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, config.max_position_embeddings - 1]`. [What are position IDs?](../glossary#position-ids) head_mask (`tf.Tensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. inputs_embeds (`tf.Tensor` of shape `({0}, hidden_size)`, *optional*): Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert `input_ids` indices into associated vectors than the model's internal embedding lookup matrix. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~file_utils.ModelOutput`] instead of a plain tuple. """ @add_start_docstrings( "The bare ESM Model transformer outputting raw hidden-states without any specific head on top.", ESM_START_DOCSTRING, ) class TFEsmMainLayer(Layer): """ The model can behave as an encoder (with only self-attention) as well as a decoder, in which case a layer of cross-attention is added between the self-attention layers, following the architecture described in [Attention is all you need](https://arxiv.org/abs/1706.03762) by Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser and Illia Polosukhin. To behave as an decoder the model needs to be initialized with the `is_decoder` argument of the configuration set to `True`. To be used in a Seq2Seq model, the model needs to initialized with both `is_decoder` argument and `add_cross_attention` set to `True`; an `encoder_hidden_states` is then expected as an input to the forward pass. """ _keys_to_ignore_on_load_missing = [r"position_ids"] def __init__(self, config, add_pooling_layer=True, name=None, **kwargs): super().__init__(name=name, **kwargs) self.config = config self.is_decoder = config.is_decoder self.embeddings = TFEsmEmbeddings(config, name="embeddings") self.encoder = TFEsmEncoder(config, name="encoder") self.pooler = TFEsmPooler(config, name="pooler") if add_pooling_layer else None self.contact_head = TFEsmContactPredictionHead( in_features=self.config.num_hidden_layers * self.config.num_attention_heads, bias=True, name="contact_head" ) def build(self, input_shape): super().build(input_shape) with tf.name_scope("contact_head"): self.contact_head.build(input_shape) def get_input_embeddings(self): return self.embeddings.word_embeddings def set_input_embeddings(self, value: tf.Variable): self.embeddings.word_embeddings.weight = value self.embeddings.vocab_size = shape_list(value)[0] def _prune_heads(self, heads_to_prune): raise NotImplementedError def call( self, input_ids: TFModelInputType | None = None, attention_mask: np.ndarray | tf.Tensor | None = None, position_ids: np.ndarray | tf.Tensor | None = None, head_mask: np.ndarray | tf.Tensor | None = None, inputs_embeds: np.ndarray | tf.Tensor | None = None, encoder_hidden_states: np.ndarray | tf.Tensor | None = None, encoder_attention_mask: np.ndarray | tf.Tensor | None = None, past_key_values: Optional[Tuple[Tuple[Union[np.ndarray, tf.Tensor]]]] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, training: bool = False, ) -> Union[TFBaseModelOutputWithPoolingAndCrossAttentions, Tuple[tf.Tensor]]: if not self.config.is_decoder: use_cache = False if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") elif input_ids is not None: input_shape = shape_list(input_ids) elif inputs_embeds is not None: input_shape = shape_list(inputs_embeds)[:-1] else: raise ValueError("You have to specify either input_ids or inputs_embeds") batch_size, seq_length = input_shape if past_key_values is None: past_key_values_length = 0 past_key_values = [None] * len(self.encoder.layer) else: past_key_values_length = shape_list(past_key_values[0][0])[-2] if attention_mask is None: attention_mask = tf.fill(dims=(batch_size, seq_length + past_key_values_length), value=1) embedding_output = self.embeddings( input_ids=input_ids, attention_mask=attention_mask, position_ids=position_ids, inputs_embeds=inputs_embeds, past_key_values_length=past_key_values_length, training=training, ) # We create a 3D attention mask from a 2D tensor mask. # Sizes are [batch_size, 1, 1, to_seq_length] # So we can broadcast to [batch_size, num_heads, from_seq_length, to_seq_length] # this attention mask is more simple than the triangular masking of causal attention # used in OpenAI GPT, we just need to prepare the broadcast dimension here. attention_mask_shape = shape_list(attention_mask) mask_seq_length = seq_length + past_key_values_length # Copied from `modeling_tf_t5.py` # Provided a padding mask of dimensions [batch_size, mask_seq_length] # - if the model is a decoder, apply a causal mask in addition to the padding mask # - if the model is an encoder, make the mask broadcastable to [batch_size, num_heads, mask_seq_length, mask_seq_length] if self.is_decoder: seq_ids = tf.range(mask_seq_length) causal_mask = tf.less_equal( tf.tile(seq_ids[None, None, :], (batch_size, mask_seq_length, 1)), seq_ids[None, :, None], ) causal_mask = tf.cast(causal_mask, dtype=attention_mask.dtype) extended_attention_mask = causal_mask * attention_mask[:, None, :] attention_mask_shape = shape_list(extended_attention_mask) extended_attention_mask = tf.reshape( extended_attention_mask, (attention_mask_shape[0], 1, attention_mask_shape[1], attention_mask_shape[2]) ) if past_key_values[0] is not None: # attention_mask needs to be sliced to the shape `[batch_size, 1, from_seq_length - cached_seq_length, to_seq_length] extended_attention_mask = extended_attention_mask[:, :, -seq_length:, :] else: extended_attention_mask = tf.reshape( attention_mask, (attention_mask_shape[0], 1, 1, attention_mask_shape[1]) ) # Since attention_mask is 1.0 for positions we want to attend and 0.0 for # masked positions, this operation will create a tensor which is 0.0 for # positions we want to attend and -10000.0 for masked positions. # Since we are adding it to the raw scores before the softmax, this is # effectively the same as removing these entirely. extended_attention_mask = tf.cast(extended_attention_mask, dtype=embedding_output.dtype) one_cst = tf.constant(1.0, dtype=embedding_output.dtype) ten_thousand_cst = tf.constant(-10000.0, dtype=embedding_output.dtype) extended_attention_mask = tf.multiply(tf.subtract(one_cst, extended_attention_mask), ten_thousand_cst) # Copied from `modeling_tf_t5.py` with -1e9 -> -10000 if self.is_decoder and encoder_attention_mask is not None: # If a 2D ou 3D attention mask is provided for the cross-attention # we need to make broadcastable to [batch_size, num_heads, mask_seq_length, mask_seq_length] # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length] encoder_attention_mask = tf.cast(encoder_attention_mask, dtype=extended_attention_mask.dtype) num_dims_encoder_attention_mask = len(shape_list(encoder_attention_mask)) if num_dims_encoder_attention_mask == 3: encoder_extended_attention_mask = encoder_attention_mask[:, None, :, :] if num_dims_encoder_attention_mask == 2: encoder_extended_attention_mask = encoder_attention_mask[:, None, None, :] # T5 has a mask that can compare sequence ids, we can simulate this here with this transposition # Cf. https://github.com/tensorflow/mesh/blob/8d2465e9bc93129b913b5ccc6a59aa97abd96ec6/mesh_tensorflow/transformer/transformer_layers.py#L270 # encoder_extended_attention_mask = tf.math.equal(encoder_extended_attention_mask, # tf.transpose(encoder_extended_attention_mask, perm=(-1, -2))) encoder_extended_attention_mask = (1.0 - encoder_extended_attention_mask) * -10000.0 else: encoder_extended_attention_mask = None # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] if head_mask is not None: raise NotImplementedError else: head_mask = [None] * self.config.num_hidden_layers encoder_outputs = self.encoder( hidden_states=embedding_output, attention_mask=extended_attention_mask, head_mask=head_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_extended_attention_mask, past_key_values=past_key_values, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) sequence_output = encoder_outputs[0] pooled_output = self.pooler(hidden_states=sequence_output) if self.pooler is not None else None if not return_dict: return ( sequence_output, pooled_output, ) + encoder_outputs[1:] return TFBaseModelOutputWithPoolingAndCrossAttentions( last_hidden_state=sequence_output, pooler_output=pooled_output, past_key_values=encoder_outputs.past_key_values, hidden_states=encoder_outputs.hidden_states, attentions=encoder_outputs.attentions, cross_attentions=encoder_outputs.cross_attentions, ) def predict_contacts(self, tokens, attention_mask): attns = self(tokens, attention_mask=attention_mask, return_dict=True, output_attentions=True).attentions attns = tf.stack(attns, axis=1) # Matches the original model layout # In the original model, attentions for padding tokens are completely zeroed out. # This makes no difference most of the time because the other tokens won't attend to them, # but it does for the contact prediction task, which takes attentions as input, # so we have to mimic that here. attention_mask = tf.cast(attention_mask, attns.dtype) attns *= attention_mask[:, None, None, None] attns *= attention_mask[:, None, None, :, None] return self.contact_head(tokens, attns) @add_start_docstrings( "The bare ESM Model transformer outputting raw hidden-states without any specific head on top.", ESM_START_DOCSTRING, ) class TFEsmModel(TFEsmPreTrainedModel): def __init__(self, config: EsmConfig, add_pooling_layer=True, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) self.esm = TFEsmMainLayer(config, add_pooling_layer=add_pooling_layer, name="esm") @unpack_inputs @add_start_docstrings_to_model_forward(ESM_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=TFBaseModelOutputWithPoolingAndCrossAttentions, config_class=_CONFIG_FOR_DOC, ) def call( self, input_ids: TFModelInputType | None = None, attention_mask: np.ndarray | tf.Tensor | None = None, position_ids: np.ndarray | tf.Tensor | None = None, head_mask: np.ndarray | tf.Tensor | None = None, inputs_embeds: np.ndarray | tf.Tensor | None = None, encoder_hidden_states: np.ndarray | tf.Tensor | None = None, encoder_attention_mask: np.ndarray | tf.Tensor | None = None, past_key_values: Optional[Tuple[Tuple[Union[np.ndarray, tf.Tensor]]]] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, training: Optional[bool] = False, ) -> Union[TFBaseModelOutputWithPoolingAndCrossAttentions, Tuple[tf.Tensor]]: r""" encoder_hidden_states (`tf.Tensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if the model is configured as a decoder. encoder_attention_mask (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. past_key_values (`Tuple[Tuple[tf.Tensor]]` of length `config.n_layers`) contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding. If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `decoder_input_ids` of shape `(batch_size, sequence_length)`. use_cache (`bool`, *optional*, defaults to `True`): If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see `past_key_values`). Set to `False` during training, `True` during generation """ outputs = self.esm( input_ids=input_ids, attention_mask=attention_mask, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, past_key_values=past_key_values, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) return outputs def predict_contacts(self, tokens, attention_mask): return self.esm.predict_contacts(tokens, attention_mask) @add_start_docstrings("""ESM Model with a `language modeling` head on top.""", ESM_START_DOCSTRING) class TFEsmForMaskedLM(TFEsmPreTrainedModel, TFMaskedLanguageModelingLoss): _keys_to_ignore_on_load_missing = [r"position_ids"] _keys_to_ignore_on_load_unexpected = [r"pooler"] def __init__(self, config): super().__init__(config) if config.is_decoder: logger.warning( "If you want to use `EsmForMaskedLM` make sure `config.is_decoder=False` for " "bi-directional self-attention." ) self.esm = TFEsmMainLayer(config, add_pooling_layer=False, name="esm") self.lm_head = TFEsmLMHead(config, name="lm_head") if config.tie_word_embeddings: # Ensure word embeddings are built so that we actually have something to tie with tf.name_scope(os.path.join(self._name_scope(), "esm", "embeddings", "word_embeddings")): self.esm.embeddings.word_embeddings.build((None, None)) self.lm_head.decoder = self.esm.embeddings.word_embeddings.weights[0] def get_output_embeddings(self): return self.lm_head.decoder def set_output_embeddings(self, new_embeddings): self.lm_head.decoder = new_embeddings def get_lm_head(self): return self.lm_head @unpack_inputs @add_start_docstrings_to_model_forward(ESM_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=TFMaskedLMOutput, config_class=_CONFIG_FOR_DOC, mask="<mask>", ) def call( self, input_ids: TFModelInputType | None = None, attention_mask: np.ndarray | tf.Tensor | None = None, position_ids: np.ndarray | tf.Tensor | None = None, head_mask: np.ndarray | tf.Tensor | None = None, inputs_embeds: np.ndarray | tf.Tensor | None = None, encoder_hidden_states: np.ndarray | tf.Tensor | None = None, encoder_attention_mask: np.ndarray | tf.Tensor | None = None, labels: np.ndarray | tf.Tensor | None = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, training: bool = False, ) -> Union[TFMaskedLMOutput, Tuple[tf.Tensor]]: r""" labels (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ..., config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]` kwargs (`Dict[str, any]`, optional, defaults to *{}*): Used to hide legacy arguments that have been deprecated. """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.esm( input_ids, attention_mask=attention_mask, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) sequence_output = outputs[0] prediction_scores = self.lm_head(sequence_output) masked_lm_loss = None if labels is not None: masked_lm_loss = self.hf_compute_loss(labels=labels, logits=prediction_scores) if not return_dict: output = (prediction_scores,) + outputs[2:] return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output return TFMaskedLMOutput( loss=masked_lm_loss, logits=prediction_scores, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) def predict_contacts(self, tokens, attention_mask): return self.esm.predict_contacts(tokens, attention_mask) class TFEsmLMHead(Layer): """ESM Head for masked language modeling.""" def __init__(self, config, name=None): super().__init__(name=name) self.dense = Dense( config.hidden_size, kernel_initializer=get_initializer(config.initializer_range), name="dense" ) self.layer_norm = LayerNormalization(epsilon=config.layer_norm_eps, name="layer_norm") if config.tie_word_embeddings: self.decoder = None else: self.decoder = Dense( config.vocab_size, kernel_initializer=get_initializer(config.initializer_range), name="decoder", use_bias=False, ) self.config = config def build(self, input_shape): super().build(input_shape) # Separate bias to match the PT model and allow weight cross-loading to work # Put it in the build so it gets the right name when adding it as a weight self.bias = self.add_weight("bias", shape=(self.config.vocab_size,), initializer="zeros", trainable=True) def get_bias(self): return {"bias": self.bias} def call(self, features): x = self.dense(features) x = gelu(x) x = self.layer_norm(x) # project back to size of vocabulary with bias if self.config.tie_word_embeddings: x = tf.matmul(x, self.decoder, transpose_b=True) + self.bias else: x = self.decoder(x) + self.bias return x @add_start_docstrings( """ ESM Model transformer with a sequence classification/regression head on top (a linear layer on top of the pooled output) e.g. for GLUE tasks. """, ESM_START_DOCSTRING, ) class TFEsmForSequenceClassification(TFEsmPreTrainedModel, TFSequenceClassificationLoss): _keys_to_ignore_on_load_missing = [r"position_ids"] def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.config = config self.esm = TFEsmMainLayer(config, add_pooling_layer=False, name="esm") self.classifier = TFEsmClassificationHead(config, name="classifier") @unpack_inputs @add_start_docstrings_to_model_forward(ESM_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=TFSequenceClassifierOutput, config_class=_CONFIG_FOR_DOC, ) def call( self, input_ids: TFModelInputType | None = None, attention_mask: np.ndarray | tf.Tensor | None = None, position_ids: np.ndarray | tf.Tensor | None = None, head_mask: np.ndarray | tf.Tensor | None = None, inputs_embeds: np.ndarray | tf.Tensor | None = None, labels: np.ndarray | tf.Tensor | None = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, training: bool = False, ) -> Union[TFSequenceClassifierOutput, Tuple[tf.Tensor]]: r""" labels (`tf.Tensor` of shape `(batch_size,)`, *optional*): Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If `config.num_labels > 1` a classification loss is computed (Cross-Entropy). """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.esm( input_ids, attention_mask=attention_mask, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) sequence_output = outputs[0] logits = self.classifier(sequence_output) loss = None if labels is None else self.hf_compute_loss(labels, logits) if not return_dict: output = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return TFSequenceClassifierOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) @add_start_docstrings( """ ESM Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for Named-Entity-Recognition (NER) tasks. """, ESM_START_DOCSTRING, ) class TFEsmForTokenClassification(TFEsmPreTrainedModel, TFTokenClassificationLoss): _keys_to_ignore_on_load_unexpected = [r"pooler"] _keys_to_ignore_on_load_missing = [r"position_ids"] def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.esm = TFEsmMainLayer(config, add_pooling_layer=False, name="esm") self.dropout = Dropout(config.hidden_dropout_prob) self.classifier = Dense(config.num_labels, name="classifier") @unpack_inputs @add_start_docstrings_to_model_forward(ESM_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=TFTokenClassifierOutput, config_class=_CONFIG_FOR_DOC, ) def call( self, input_ids: TFModelInputType | None = None, attention_mask: np.ndarray | tf.Tensor | None = None, position_ids: np.ndarray | tf.Tensor | None = None, head_mask: np.ndarray | tf.Tensor | None = None, inputs_embeds: np.ndarray | tf.Tensor | None = None, labels: np.ndarray | tf.Tensor | None = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, training: bool = False, ) -> Union[TFTokenClassifierOutput, Tuple[tf.Tensor]]: r""" labels (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`. """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.esm( input_ids, attention_mask=attention_mask, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) sequence_output = outputs[0] sequence_output = self.dropout(sequence_output, training=training) logits = self.classifier(sequence_output) loss = None if labels is None else self.hf_compute_loss(labels, logits) if not return_dict: output = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return TFTokenClassifierOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) class TFEsmClassificationHead(Layer): """Head for sentence-level classification tasks.""" def __init__(self, config, name=None): super().__init__(name=name) self.dense = Dense( config.hidden_size, kernel_initializer=get_initializer(config.initializer_range), activation="tanh", name="dense", ) self.dropout = Dropout(config.hidden_dropout_prob) self.out_proj = Dense( config.num_labels, kernel_initializer=get_initializer(config.initializer_range), activation="linear", name="out_proj", ) def call(self, features, training=False): x = features[:, 0, :] # take <s> token (equiv. to [CLS]) x = self.dropout(x, training=training) x = self.dense(x) x = self.dropout(x, training=training) x = self.out_proj(x) return x def create_position_ids_from_input_ids(input_ids, padding_idx, past_key_values_length=0): """ Replace non-padding symbols with their position numbers. Position numbers begin at padding_idx+1. Padding symbols are ignored. This is modified from fairseq's `utils.make_positions`. Args: x: tf.Tensor x: Returns: tf.Tensor """ # The series of casts and type-conversions here are carefully balanced to both work with ONNX export and XLA. mask = tf.cast(input_ids != padding_idx, tf.int64) incremental_indices = (tf.cumsum(mask, axis=1) + past_key_values_length) * mask return incremental_indices + padding_idx
0
hf_public_repos/transformers/src/transformers/models/esm
hf_public_repos/transformers/src/transformers/models/esm/openfold_utils/__init__.py
from .chunk_utils import chunk_layer from .data_transforms import make_atom14_masks from .feats import atom14_to_atom37, frames_and_literature_positions_to_atom14_pos, torsion_angles_to_frames from .loss import compute_predicted_aligned_error, compute_tm from .protein import Protein as OFProtein from .protein import to_pdb from .rigid_utils import Rigid, Rotation from .tensor_utils import dict_multimap, flatten_final_dims, permute_final_dims
0
hf_public_repos/transformers/src/transformers/models/esm
hf_public_repos/transformers/src/transformers/models/esm/openfold_utils/protein.py
# Copyright 2021 AlQuraishi Laboratory # Copyright 2021 DeepMind Technologies Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Protein data type.""" import dataclasses import re import string from typing import Any, Dict, Iterator, List, Mapping, Optional, Sequence, Tuple import numpy as np from . import residue_constants FeatureDict = Mapping[str, np.ndarray] ModelOutput = Mapping[str, Any] # Is a nested dict. PICO_TO_ANGSTROM = 0.01 @dataclasses.dataclass(frozen=True) class Protein: """Protein structure representation.""" # Cartesian coordinates of atoms in angstroms. The atom types correspond to # residue_constants.atom_types, i.e. the first three are N, CA, CB. atom_positions: np.ndarray # [num_res, num_atom_type, 3] # Amino-acid type for each residue represented as an integer between 0 and # 20, where 20 is 'X'. aatype: np.ndarray # [num_res] # Binary float mask to indicate presence of a particular atom. 1.0 if an atom # is present and 0.0 if not. This should be used for loss masking. atom_mask: np.ndarray # [num_res, num_atom_type] # Residue index as used in PDB. It is not necessarily continuous or 0-indexed. residue_index: np.ndarray # [num_res] # B-factors, or temperature factors, of each residue (in sq. angstroms units), # representing the displacement of the residue from its ground truth mean # value. b_factors: np.ndarray # [num_res, num_atom_type] # Chain indices for multi-chain predictions chain_index: Optional[np.ndarray] = None # Optional remark about the protein. Included as a comment in output PDB # files remark: Optional[str] = None # Templates used to generate this protein (prediction-only) parents: Optional[Sequence[str]] = None # Chain corresponding to each parent parents_chain_index: Optional[Sequence[int]] = None def from_proteinnet_string(proteinnet_str: str) -> Protein: tag_re = r"(\[[A-Z]+\]\n)" tags: List[str] = [tag.strip() for tag in re.split(tag_re, proteinnet_str) if len(tag) > 0] groups: Iterator[Tuple[str, List[str]]] = zip(tags[0::2], [l.split("\n") for l in tags[1::2]]) atoms: List[str] = ["N", "CA", "C"] aatype = None atom_positions = None atom_mask = None for g in groups: if "[PRIMARY]" == g[0]: seq = g[1][0].strip() for i in range(len(seq)): if seq[i] not in residue_constants.restypes: seq[i] = "X" # FIXME: strings are immutable aatype = np.array( [residue_constants.restype_order.get(res_symbol, residue_constants.restype_num) for res_symbol in seq] ) elif "[TERTIARY]" == g[0]: tertiary: List[List[float]] = [] for axis in range(3): tertiary.append(list(map(float, g[1][axis].split()))) tertiary_np = np.array(tertiary) atom_positions = np.zeros((len(tertiary[0]) // 3, residue_constants.atom_type_num, 3)).astype(np.float32) for i, atom in enumerate(atoms): atom_positions[:, residue_constants.atom_order[atom], :] = np.transpose(tertiary_np[:, i::3]) atom_positions *= PICO_TO_ANGSTROM elif "[MASK]" == g[0]: mask = np.array(list(map({"-": 0, "+": 1}.get, g[1][0].strip()))) atom_mask = np.zeros( ( len(mask), residue_constants.atom_type_num, ) ).astype(np.float32) for i, atom in enumerate(atoms): atom_mask[:, residue_constants.atom_order[atom]] = 1 atom_mask *= mask[..., None] assert aatype is not None return Protein( atom_positions=atom_positions, atom_mask=atom_mask, aatype=aatype, residue_index=np.arange(len(aatype)), b_factors=None, ) def get_pdb_headers(prot: Protein, chain_id: int = 0) -> List[str]: pdb_headers: List[str] = [] remark = prot.remark if remark is not None: pdb_headers.append(f"REMARK {remark}") parents = prot.parents parents_chain_index = prot.parents_chain_index if parents is not None and parents_chain_index is not None: parents = [p for i, p in zip(parents_chain_index, parents) if i == chain_id] if parents is None or len(parents) == 0: parents = ["N/A"] pdb_headers.append(f"PARENT {' '.join(parents)}") return pdb_headers def add_pdb_headers(prot: Protein, pdb_str: str) -> str: """Add pdb headers to an existing PDB string. Useful during multi-chain recycling """ out_pdb_lines: List[str] = [] lines = pdb_str.split("\n") remark = prot.remark if remark is not None: out_pdb_lines.append(f"REMARK {remark}") parents_per_chain: List[List[str]] if prot.parents is not None and len(prot.parents) > 0: parents_per_chain = [] if prot.parents_chain_index is not None: parent_dict: Dict[str, List[str]] = {} for p, i in zip(prot.parents, prot.parents_chain_index): parent_dict.setdefault(str(i), []) parent_dict[str(i)].append(p) max_idx = max([int(chain_idx) for chain_idx in parent_dict]) for i in range(max_idx + 1): chain_parents = parent_dict.get(str(i), ["N/A"]) parents_per_chain.append(chain_parents) else: parents_per_chain.append(list(prot.parents)) else: parents_per_chain = [["N/A"]] def make_parent_line(p: Sequence[str]) -> str: return f"PARENT {' '.join(p)}" out_pdb_lines.append(make_parent_line(parents_per_chain[0])) chain_counter = 0 for i, l in enumerate(lines): if "PARENT" not in l and "REMARK" not in l: out_pdb_lines.append(l) if "TER" in l and "END" not in lines[i + 1]: chain_counter += 1 if not chain_counter >= len(parents_per_chain): chain_parents = parents_per_chain[chain_counter] else: chain_parents = ["N/A"] out_pdb_lines.append(make_parent_line(chain_parents)) return "\n".join(out_pdb_lines) def to_pdb(prot: Protein) -> str: """Converts a `Protein` instance to a PDB string. Args: prot: The protein to convert to PDB. Returns: PDB string. """ restypes = residue_constants.restypes + ["X"] def res_1to3(r: int) -> str: return residue_constants.restype_1to3.get(restypes[r], "UNK") atom_types = residue_constants.atom_types pdb_lines: List[str] = [] atom_mask = prot.atom_mask aatype = prot.aatype atom_positions = prot.atom_positions residue_index = prot.residue_index.astype(np.int32) b_factors = prot.b_factors chain_index = prot.chain_index if np.any(aatype > residue_constants.restype_num): raise ValueError("Invalid aatypes.") headers = get_pdb_headers(prot) if len(headers) > 0: pdb_lines.extend(headers) n = aatype.shape[0] atom_index = 1 prev_chain_index = 0 chain_tags = string.ascii_uppercase chain_tag = None # Add all atom sites. for i in range(n): res_name_3 = res_1to3(aatype[i]) for atom_name, pos, mask, b_factor in zip(atom_types, atom_positions[i], atom_mask[i], b_factors[i]): if mask < 0.5: continue record_type = "ATOM" name = atom_name if len(atom_name) == 4 else f" {atom_name}" alt_loc = "" insertion_code = "" occupancy = 1.00 element = atom_name[0] # Protein supports only C, N, O, S, this works. charge = "" chain_tag = "A" if chain_index is not None: chain_tag = chain_tags[chain_index[i]] # PDB is a columnar format, every space matters here! atom_line = ( f"{record_type:<6}{atom_index:>5} {name:<4}{alt_loc:>1}" f"{res_name_3:>3} {chain_tag:>1}" f"{residue_index[i]:>4}{insertion_code:>1} " f"{pos[0]:>8.3f}{pos[1]:>8.3f}{pos[2]:>8.3f}" f"{occupancy:>6.2f}{b_factor:>6.2f} " f"{element:>2}{charge:>2}" ) pdb_lines.append(atom_line) atom_index += 1 should_terminate = i == n - 1 if chain_index is not None: if i != n - 1 and chain_index[i + 1] != prev_chain_index: should_terminate = True prev_chain_index = chain_index[i + 1] if should_terminate: # Close the chain. chain_end = "TER" chain_termination_line = ( f"{chain_end:<6}{atom_index:>5} {res_1to3(aatype[i]):>3} {chain_tag:>1}{residue_index[i]:>4}" ) pdb_lines.append(chain_termination_line) atom_index += 1 if i != n - 1: # "prev" is a misnomer here. This happens at the beginning of # each new chain. pdb_lines.extend(get_pdb_headers(prot, prev_chain_index)) pdb_lines.append("END") pdb_lines.append("") return "\n".join(pdb_lines) def ideal_atom_mask(prot: Protein) -> np.ndarray: """Computes an ideal atom mask. `Protein.atom_mask` typically is defined according to the atoms that are reported in the PDB. This function computes a mask according to heavy atoms that should be present in the given sequence of amino acids. Args: prot: `Protein` whose fields are `numpy.ndarray` objects. Returns: An ideal atom mask. """ return residue_constants.STANDARD_ATOM_MASK[prot.aatype] def from_prediction( features: FeatureDict, result: ModelOutput, b_factors: Optional[np.ndarray] = None, chain_index: Optional[np.ndarray] = None, remark: Optional[str] = None, parents: Optional[Sequence[str]] = None, parents_chain_index: Optional[Sequence[int]] = None, ) -> Protein: """Assembles a protein from a prediction. Args: features: Dictionary holding model inputs. result: Dictionary holding model outputs. b_factors: (Optional) B-factors to use for the protein. chain_index: (Optional) Chain indices for multi-chain predictions remark: (Optional) Remark about the prediction parents: (Optional) List of template names Returns: A protein instance. """ return Protein( aatype=features["aatype"], atom_positions=result["final_atom_positions"], atom_mask=result["final_atom_mask"], residue_index=features["residue_index"] + 1, b_factors=b_factors if b_factors is not None else np.zeros_like(result["final_atom_mask"]), chain_index=chain_index, remark=remark, parents=parents, parents_chain_index=parents_chain_index, )
0
hf_public_repos/transformers/src/transformers/models/esm
hf_public_repos/transformers/src/transformers/models/esm/openfold_utils/feats.py
# Copyright 2021 AlQuraishi Laboratory # Copyright 2021 DeepMind Technologies Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Dict, Tuple, overload import torch import torch.types from torch import nn from . import residue_constants as rc from .rigid_utils import Rigid, Rotation from .tensor_utils import batched_gather @overload def pseudo_beta_fn(aatype: torch.Tensor, all_atom_positions: torch.Tensor, all_atom_masks: None) -> torch.Tensor: ... @overload def pseudo_beta_fn( aatype: torch.Tensor, all_atom_positions: torch.Tensor, all_atom_masks: torch.Tensor ) -> Tuple[torch.Tensor, torch.Tensor]: ... def pseudo_beta_fn(aatype, all_atom_positions, all_atom_masks): is_gly = aatype == rc.restype_order["G"] ca_idx = rc.atom_order["CA"] cb_idx = rc.atom_order["CB"] pseudo_beta = torch.where( is_gly[..., None].expand(*((-1,) * len(is_gly.shape)), 3), all_atom_positions[..., ca_idx, :], all_atom_positions[..., cb_idx, :], ) if all_atom_masks is not None: pseudo_beta_mask = torch.where( is_gly, all_atom_masks[..., ca_idx], all_atom_masks[..., cb_idx], ) return pseudo_beta, pseudo_beta_mask else: return pseudo_beta def atom14_to_atom37(atom14: torch.Tensor, batch: Dict[str, torch.Tensor]) -> torch.Tensor: atom37_data = batched_gather( atom14, batch["residx_atom37_to_atom14"], dim=-2, no_batch_dims=len(atom14.shape[:-2]), ) atom37_data = atom37_data * batch["atom37_atom_exists"][..., None] return atom37_data def build_template_angle_feat(template_feats: Dict[str, torch.Tensor]) -> torch.Tensor: template_aatype = template_feats["template_aatype"] torsion_angles_sin_cos = template_feats["template_torsion_angles_sin_cos"] alt_torsion_angles_sin_cos = template_feats["template_alt_torsion_angles_sin_cos"] torsion_angles_mask = template_feats["template_torsion_angles_mask"] template_angle_feat = torch.cat( [ nn.functional.one_hot(template_aatype, 22), torsion_angles_sin_cos.reshape(*torsion_angles_sin_cos.shape[:-2], 14), alt_torsion_angles_sin_cos.reshape(*alt_torsion_angles_sin_cos.shape[:-2], 14), torsion_angles_mask, ], dim=-1, ) return template_angle_feat def build_template_pair_feat( batch: Dict[str, torch.Tensor], min_bin: torch.types.Number, max_bin: torch.types.Number, no_bins: int, use_unit_vector: bool = False, eps: float = 1e-20, inf: float = 1e8, ) -> torch.Tensor: template_mask = batch["template_pseudo_beta_mask"] template_mask_2d = template_mask[..., None] * template_mask[..., None, :] # Compute distogram (this seems to differ slightly from Alg. 5) tpb = batch["template_pseudo_beta"] dgram = torch.sum((tpb[..., None, :] - tpb[..., None, :, :]) ** 2, dim=-1, keepdim=True) lower = torch.linspace(min_bin, max_bin, no_bins, device=tpb.device) ** 2 upper = torch.cat([lower[1:], lower.new_tensor([inf])], dim=-1) dgram = ((dgram > lower) * (dgram < upper)).type(dgram.dtype) to_concat = [dgram, template_mask_2d[..., None]] aatype_one_hot: torch.LongTensor = nn.functional.one_hot( batch["template_aatype"], rc.restype_num + 2, ) n_res = batch["template_aatype"].shape[-1] to_concat.append(aatype_one_hot[..., None, :, :].expand(*aatype_one_hot.shape[:-2], n_res, -1, -1)) to_concat.append(aatype_one_hot[..., None, :].expand(*aatype_one_hot.shape[:-2], -1, n_res, -1)) n, ca, c = [rc.atom_order[a] for a in ["N", "CA", "C"]] rigids = Rigid.make_transform_from_reference( n_xyz=batch["template_all_atom_positions"][..., n, :], ca_xyz=batch["template_all_atom_positions"][..., ca, :], c_xyz=batch["template_all_atom_positions"][..., c, :], eps=eps, ) points = rigids.get_trans()[..., None, :, :] rigid_vec = rigids[..., None].invert_apply(points) inv_distance_scalar = torch.rsqrt(eps + torch.sum(rigid_vec**2, dim=-1)) t_aa_masks = batch["template_all_atom_mask"] template_mask = t_aa_masks[..., n] * t_aa_masks[..., ca] * t_aa_masks[..., c] template_mask_2d = template_mask[..., None] * template_mask[..., None, :] inv_distance_scalar = inv_distance_scalar * template_mask_2d unit_vector = rigid_vec * inv_distance_scalar[..., None] if not use_unit_vector: unit_vector = unit_vector * 0.0 to_concat.extend(torch.unbind(unit_vector[..., None, :], dim=-1)) to_concat.append(template_mask_2d[..., None]) act = torch.cat(to_concat, dim=-1) act = act * template_mask_2d[..., None] return act def build_extra_msa_feat(batch: Dict[str, torch.Tensor]) -> torch.Tensor: msa_1hot: torch.LongTensor = nn.functional.one_hot(batch["extra_msa"], 23) msa_feat = [ msa_1hot, batch["extra_has_deletion"].unsqueeze(-1), batch["extra_deletion_value"].unsqueeze(-1), ] return torch.cat(msa_feat, dim=-1) def torsion_angles_to_frames( r: Rigid, alpha: torch.Tensor, aatype: torch.Tensor, rrgdf: torch.Tensor, ) -> Rigid: # [*, N, 8, 4, 4] default_4x4 = rrgdf[aatype, ...] # [*, N, 8] transformations, i.e. # One [*, N, 8, 3, 3] rotation matrix and # One [*, N, 8, 3] translation matrix default_r = r.from_tensor_4x4(default_4x4) bb_rot = alpha.new_zeros((*((1,) * len(alpha.shape[:-1])), 2)) bb_rot[..., 1] = 1 # [*, N, 8, 2] alpha = torch.cat([bb_rot.expand(*alpha.shape[:-2], -1, -1), alpha], dim=-2) # [*, N, 8, 3, 3] # Produces rotation matrices of the form: # [ # [1, 0 , 0 ], # [0, a_2,-a_1], # [0, a_1, a_2] # ] # This follows the original code rather than the supplement, which uses # different indices. all_rots = alpha.new_zeros(default_r.get_rots().get_rot_mats().shape) all_rots[..., 0, 0] = 1 all_rots[..., 1, 1] = alpha[..., 1] all_rots[..., 1, 2] = -alpha[..., 0] all_rots[..., 2, 1:] = alpha all_frames = default_r.compose(Rigid(Rotation(rot_mats=all_rots), None)) chi2_frame_to_frame = all_frames[..., 5] chi3_frame_to_frame = all_frames[..., 6] chi4_frame_to_frame = all_frames[..., 7] chi1_frame_to_bb = all_frames[..., 4] chi2_frame_to_bb = chi1_frame_to_bb.compose(chi2_frame_to_frame) chi3_frame_to_bb = chi2_frame_to_bb.compose(chi3_frame_to_frame) chi4_frame_to_bb = chi3_frame_to_bb.compose(chi4_frame_to_frame) all_frames_to_bb = Rigid.cat( [ all_frames[..., :5], chi2_frame_to_bb.unsqueeze(-1), chi3_frame_to_bb.unsqueeze(-1), chi4_frame_to_bb.unsqueeze(-1), ], dim=-1, ) all_frames_to_global = r[..., None].compose(all_frames_to_bb) return all_frames_to_global def frames_and_literature_positions_to_atom14_pos( r: Rigid, aatype: torch.Tensor, default_frames: torch.Tensor, group_idx: torch.Tensor, atom_mask: torch.Tensor, lit_positions: torch.Tensor, ) -> torch.Tensor: # [*, N, 14] group_mask = group_idx[aatype, ...] # [*, N, 14, 8] group_mask_one_hot: torch.LongTensor = nn.functional.one_hot( group_mask, num_classes=default_frames.shape[-3], ) # [*, N, 14, 8] t_atoms_to_global = r[..., None, :] * group_mask_one_hot # [*, N, 14] t_atoms_to_global = t_atoms_to_global.map_tensor_fn(lambda x: torch.sum(x, dim=-1)) # [*, N, 14, 1] atom_mask = atom_mask[aatype, ...].unsqueeze(-1) # [*, N, 14, 3] lit_positions = lit_positions[aatype, ...] pred_positions = t_atoms_to_global.apply(lit_positions) pred_positions = pred_positions * atom_mask return pred_positions
0
hf_public_repos/transformers/src/transformers/models/esm
hf_public_repos/transformers/src/transformers/models/esm/openfold_utils/rigid_utils.py
# Copyright 2021 AlQuraishi Laboratory # Copyright 2021 DeepMind Technologies Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import annotations from functools import lru_cache from typing import Any, Callable, Dict, List, Optional, Sequence, Tuple import numpy as np import torch def rot_matmul(a: torch.Tensor, b: torch.Tensor) -> torch.Tensor: """ Performs matrix multiplication of two rotation matrix tensors. Written out by hand to avoid AMP downcasting. Args: a: [*, 3, 3] left multiplicand b: [*, 3, 3] right multiplicand Returns: The product ab """ def row_mul(i: int) -> torch.Tensor: return torch.stack( [ a[..., i, 0] * b[..., 0, 0] + a[..., i, 1] * b[..., 1, 0] + a[..., i, 2] * b[..., 2, 0], a[..., i, 0] * b[..., 0, 1] + a[..., i, 1] * b[..., 1, 1] + a[..., i, 2] * b[..., 2, 1], a[..., i, 0] * b[..., 0, 2] + a[..., i, 1] * b[..., 1, 2] + a[..., i, 2] * b[..., 2, 2], ], dim=-1, ) return torch.stack( [ row_mul(0), row_mul(1), row_mul(2), ], dim=-2, ) def rot_vec_mul(r: torch.Tensor, t: torch.Tensor) -> torch.Tensor: """ Applies a rotation to a vector. Written out by hand to avoid transfer to avoid AMP downcasting. Args: r: [*, 3, 3] rotation matrices t: [*, 3] coordinate tensors Returns: [*, 3] rotated coordinates """ x, y, z = torch.unbind(t, dim=-1) return torch.stack( [ r[..., 0, 0] * x + r[..., 0, 1] * y + r[..., 0, 2] * z, r[..., 1, 0] * x + r[..., 1, 1] * y + r[..., 1, 2] * z, r[..., 2, 0] * x + r[..., 2, 1] * y + r[..., 2, 2] * z, ], dim=-1, ) @lru_cache(maxsize=None) def identity_rot_mats( batch_dims: Tuple[int, ...], dtype: Optional[torch.dtype] = None, device: Optional[torch.device] = None, requires_grad: bool = True, ) -> torch.Tensor: rots = torch.eye(3, dtype=dtype, device=device, requires_grad=requires_grad) rots = rots.view(*((1,) * len(batch_dims)), 3, 3) rots = rots.expand(*batch_dims, -1, -1) rots = rots.contiguous() return rots @lru_cache(maxsize=None) def identity_trans( batch_dims: Tuple[int, ...], dtype: Optional[torch.dtype] = None, device: Optional[torch.device] = None, requires_grad: bool = True, ) -> torch.Tensor: trans = torch.zeros((*batch_dims, 3), dtype=dtype, device=device, requires_grad=requires_grad) return trans @lru_cache(maxsize=None) def identity_quats( batch_dims: Tuple[int, ...], dtype: Optional[torch.dtype] = None, device: Optional[torch.device] = None, requires_grad: bool = True, ) -> torch.Tensor: quat = torch.zeros((*batch_dims, 4), dtype=dtype, device=device, requires_grad=requires_grad) with torch.no_grad(): quat[..., 0] = 1 return quat _quat_elements: List[str] = ["a", "b", "c", "d"] _qtr_keys: List[str] = [l1 + l2 for l1 in _quat_elements for l2 in _quat_elements] _qtr_ind_dict: Dict[str, int] = {key: ind for ind, key in enumerate(_qtr_keys)} def _to_mat(pairs: List[Tuple[str, int]]) -> np.ndarray: mat = np.zeros((4, 4)) for key, value in pairs: ind = _qtr_ind_dict[key] mat[ind // 4][ind % 4] = value return mat _QTR_MAT = np.zeros((4, 4, 3, 3)) _QTR_MAT[..., 0, 0] = _to_mat([("aa", 1), ("bb", 1), ("cc", -1), ("dd", -1)]) _QTR_MAT[..., 0, 1] = _to_mat([("bc", 2), ("ad", -2)]) _QTR_MAT[..., 0, 2] = _to_mat([("bd", 2), ("ac", 2)]) _QTR_MAT[..., 1, 0] = _to_mat([("bc", 2), ("ad", 2)]) _QTR_MAT[..., 1, 1] = _to_mat([("aa", 1), ("bb", -1), ("cc", 1), ("dd", -1)]) _QTR_MAT[..., 1, 2] = _to_mat([("cd", 2), ("ab", -2)]) _QTR_MAT[..., 2, 0] = _to_mat([("bd", 2), ("ac", -2)]) _QTR_MAT[..., 2, 1] = _to_mat([("cd", 2), ("ab", 2)]) _QTR_MAT[..., 2, 2] = _to_mat([("aa", 1), ("bb", -1), ("cc", -1), ("dd", 1)]) def quat_to_rot(quat: torch.Tensor) -> torch.Tensor: """ Converts a quaternion to a rotation matrix. Args: quat: [*, 4] quaternions Returns: [*, 3, 3] rotation matrices """ # [*, 4, 4] quat = quat[..., None] * quat[..., None, :] # [4, 4, 3, 3] mat = _get_quat("_QTR_MAT", dtype=quat.dtype, device=quat.device) # [*, 4, 4, 3, 3] shaped_qtr_mat = mat.view((1,) * len(quat.shape[:-2]) + mat.shape) quat = quat[..., None, None] * shaped_qtr_mat # [*, 3, 3] return torch.sum(quat, dim=(-3, -4)) def rot_to_quat(rot: torch.Tensor) -> torch.Tensor: if rot.shape[-2:] != (3, 3): raise ValueError("Input rotation is incorrectly shaped") [[xx, xy, xz], [yx, yy, yz], [zx, zy, zz]] = [[rot[..., i, j] for j in range(3)] for i in range(3)] k = [ [ xx + yy + zz, zy - yz, xz - zx, yx - xy, ], [ zy - yz, xx - yy - zz, xy + yx, xz + zx, ], [ xz - zx, xy + yx, yy - xx - zz, yz + zy, ], [ yx - xy, xz + zx, yz + zy, zz - xx - yy, ], ] _, vectors = torch.linalg.eigh((1.0 / 3.0) * torch.stack([torch.stack(t, dim=-1) for t in k], dim=-2)) return vectors[..., -1] _QUAT_MULTIPLY = np.zeros((4, 4, 4)) _QUAT_MULTIPLY[:, :, 0] = [[1, 0, 0, 0], [0, -1, 0, 0], [0, 0, -1, 0], [0, 0, 0, -1]] _QUAT_MULTIPLY[:, :, 1] = [[0, 1, 0, 0], [1, 0, 0, 0], [0, 0, 0, 1], [0, 0, -1, 0]] _QUAT_MULTIPLY[:, :, 2] = [[0, 0, 1, 0], [0, 0, 0, -1], [1, 0, 0, 0], [0, 1, 0, 0]] _QUAT_MULTIPLY[:, :, 3] = [[0, 0, 0, 1], [0, 0, 1, 0], [0, -1, 0, 0], [1, 0, 0, 0]] _QUAT_MULTIPLY_BY_VEC = _QUAT_MULTIPLY[:, 1:, :] _CACHED_QUATS: Dict[str, np.ndarray] = { "_QTR_MAT": _QTR_MAT, "_QUAT_MULTIPLY": _QUAT_MULTIPLY, "_QUAT_MULTIPLY_BY_VEC": _QUAT_MULTIPLY_BY_VEC, } @lru_cache(maxsize=None) def _get_quat(quat_key: str, dtype: torch.dtype, device: torch.device) -> torch.Tensor: return torch.tensor(_CACHED_QUATS[quat_key], dtype=dtype, device=device) def quat_multiply(quat1: torch.Tensor, quat2: torch.Tensor) -> torch.Tensor: """Multiply a quaternion by another quaternion.""" mat = _get_quat("_QUAT_MULTIPLY", dtype=quat1.dtype, device=quat1.device) reshaped_mat = mat.view((1,) * len(quat1.shape[:-1]) + mat.shape) return torch.sum(reshaped_mat * quat1[..., :, None, None] * quat2[..., None, :, None], dim=(-3, -2)) def quat_multiply_by_vec(quat: torch.Tensor, vec: torch.Tensor) -> torch.Tensor: """Multiply a quaternion by a pure-vector quaternion.""" mat = _get_quat("_QUAT_MULTIPLY_BY_VEC", dtype=quat.dtype, device=quat.device) reshaped_mat = mat.view((1,) * len(quat.shape[:-1]) + mat.shape) return torch.sum(reshaped_mat * quat[..., :, None, None] * vec[..., None, :, None], dim=(-3, -2)) def invert_rot_mat(rot_mat: torch.Tensor) -> torch.Tensor: return rot_mat.transpose(-1, -2) def invert_quat(quat: torch.Tensor) -> torch.Tensor: quat_prime = quat.clone() quat_prime[..., 1:] *= -1 inv = quat_prime / torch.sum(quat**2, dim=-1, keepdim=True) return inv class Rotation: """ A 3D rotation. Depending on how the object is initialized, the rotation is represented by either a rotation matrix or a quaternion, though both formats are made available by helper functions. To simplify gradient computation, the underlying format of the rotation cannot be changed in-place. Like Rigid, the class is designed to mimic the behavior of a torch Tensor, almost as if each Rotation object were a tensor of rotations, in one format or another. """ def __init__( self, rot_mats: Optional[torch.Tensor] = None, quats: Optional[torch.Tensor] = None, normalize_quats: bool = True, ): """ Args: rot_mats: A [*, 3, 3] rotation matrix tensor. Mutually exclusive with quats quats: A [*, 4] quaternion. Mutually exclusive with rot_mats. If normalize_quats is not True, must be a unit quaternion normalize_quats: If quats is specified, whether to normalize quats """ if (rot_mats is None and quats is None) or (rot_mats is not None and quats is not None): raise ValueError("Exactly one input argument must be specified") if (rot_mats is not None and rot_mats.shape[-2:] != (3, 3)) or (quats is not None and quats.shape[-1] != 4): raise ValueError("Incorrectly shaped rotation matrix or quaternion") # Force full-precision if quats is not None: quats = quats.to(dtype=torch.float32) if rot_mats is not None: rot_mats = rot_mats.to(dtype=torch.float32) if quats is not None and normalize_quats: quats = quats / torch.linalg.norm(quats, dim=-1, keepdim=True) self._rot_mats = rot_mats self._quats = quats @staticmethod def identity( shape, dtype: Optional[torch.dtype] = None, device: Optional[torch.device] = None, requires_grad: bool = True, fmt: str = "quat", ) -> Rotation: """ Returns an identity Rotation. Args: shape: The "shape" of the resulting Rotation object. See documentation for the shape property dtype: The torch dtype for the rotation device: The torch device for the new rotation requires_grad: Whether the underlying tensors in the new rotation object should require gradient computation fmt: One of "quat" or "rot_mat". Determines the underlying format of the new object's rotation Returns: A new identity rotation """ if fmt == "rot_mat": rot_mats = identity_rot_mats( shape, dtype, device, requires_grad, ) return Rotation(rot_mats=rot_mats, quats=None) elif fmt == "quat": quats = identity_quats(shape, dtype, device, requires_grad) return Rotation(rot_mats=None, quats=quats, normalize_quats=False) else: raise ValueError(f"Invalid format: f{fmt}") # Magic methods def __getitem__(self, index: Any) -> Rotation: """ Allows torch-style indexing over the virtual shape of the rotation object. See documentation for the shape property. Args: index: A torch index. E.g. (1, 3, 2), or (slice(None,)) Returns: The indexed rotation """ if type(index) != tuple: index = (index,) if self._rot_mats is not None: rot_mats = self._rot_mats[index + (slice(None), slice(None))] return Rotation(rot_mats=rot_mats) elif self._quats is not None: quats = self._quats[index + (slice(None),)] return Rotation(quats=quats, normalize_quats=False) else: raise ValueError("Both rotations are None") def __mul__(self, right: torch.Tensor) -> Rotation: """ Pointwise left multiplication of the rotation with a tensor. Can be used to e.g. mask the Rotation. Args: right: The tensor multiplicand Returns: The product """ if not (isinstance(right, torch.Tensor)): raise TypeError("The other multiplicand must be a Tensor") if self._rot_mats is not None: rot_mats = self._rot_mats * right[..., None, None] return Rotation(rot_mats=rot_mats, quats=None) elif self._quats is not None: quats = self._quats * right[..., None] return Rotation(rot_mats=None, quats=quats, normalize_quats=False) else: raise ValueError("Both rotations are None") def __rmul__(self, left: torch.Tensor) -> Rotation: """ Reverse pointwise multiplication of the rotation with a tensor. Args: left: The left multiplicand Returns: The product """ return self.__mul__(left) # Properties @property def shape(self) -> torch.Size: """ Returns the virtual shape of the rotation object. This shape is defined as the batch dimensions of the underlying rotation matrix or quaternion. If the Rotation was initialized with a [10, 3, 3] rotation matrix tensor, for example, the resulting shape would be [10]. Returns: The virtual shape of the rotation object """ if self._rot_mats is not None: return self._rot_mats.shape[:-2] elif self._quats is not None: return self._quats.shape[:-1] else: raise ValueError("Both rotations are None") @property def dtype(self) -> torch.dtype: """ Returns the dtype of the underlying rotation. Returns: The dtype of the underlying rotation """ if self._rot_mats is not None: return self._rot_mats.dtype elif self._quats is not None: return self._quats.dtype else: raise ValueError("Both rotations are None") @property def device(self) -> torch.device: """ The device of the underlying rotation Returns: The device of the underlying rotation """ if self._rot_mats is not None: return self._rot_mats.device elif self._quats is not None: return self._quats.device else: raise ValueError("Both rotations are None") @property def requires_grad(self) -> bool: """ Returns the requires_grad property of the underlying rotation Returns: The requires_grad property of the underlying tensor """ if self._rot_mats is not None: return self._rot_mats.requires_grad elif self._quats is not None: return self._quats.requires_grad else: raise ValueError("Both rotations are None") def get_rot_mats(self) -> torch.Tensor: """ Returns the underlying rotation as a rotation matrix tensor. Returns: The rotation as a rotation matrix tensor """ if self._rot_mats is not None: return self._rot_mats elif self._quats is not None: return quat_to_rot(self._quats) else: raise ValueError("Both rotations are None") def get_quats(self) -> torch.Tensor: """ Returns the underlying rotation as a quaternion tensor. Depending on whether the Rotation was initialized with a quaternion, this function may call torch.linalg.eigh. Returns: The rotation as a quaternion tensor. """ if self._rot_mats is not None: return rot_to_quat(self._rot_mats) elif self._quats is not None: return self._quats else: raise ValueError("Both rotations are None") def get_cur_rot(self) -> torch.Tensor: """ Return the underlying rotation in its current form Returns: The stored rotation """ if self._rot_mats is not None: return self._rot_mats elif self._quats is not None: return self._quats else: raise ValueError("Both rotations are None") # Rotation functions def compose_q_update_vec(self, q_update_vec: torch.Tensor, normalize_quats: bool = True) -> Rotation: """ Returns a new quaternion Rotation after updating the current object's underlying rotation with a quaternion update, formatted as a [*, 3] tensor whose final three columns represent x, y, z such that (1, x, y, z) is the desired (not necessarily unit) quaternion update. Args: q_update_vec: A [*, 3] quaternion update tensor normalize_quats: Whether to normalize the output quaternion Returns: An updated Rotation """ quats = self.get_quats() new_quats = quats + quat_multiply_by_vec(quats, q_update_vec) return Rotation( rot_mats=None, quats=new_quats, normalize_quats=normalize_quats, ) def compose_r(self, r: Rotation) -> Rotation: """ Compose the rotation matrices of the current Rotation object with those of another. Args: r: An update rotation object Returns: An updated rotation object """ r1 = self.get_rot_mats() r2 = r.get_rot_mats() new_rot_mats = rot_matmul(r1, r2) return Rotation(rot_mats=new_rot_mats, quats=None) def compose_q(self, r: Rotation, normalize_quats: bool = True) -> Rotation: """ Compose the quaternions of the current Rotation object with those of another. Depending on whether either Rotation was initialized with quaternions, this function may call torch.linalg.eigh. Args: r: An update rotation object Returns: An updated rotation object """ q1 = self.get_quats() q2 = r.get_quats() new_quats = quat_multiply(q1, q2) return Rotation(rot_mats=None, quats=new_quats, normalize_quats=normalize_quats) def apply(self, pts: torch.Tensor) -> torch.Tensor: """ Apply the current Rotation as a rotation matrix to a set of 3D coordinates. Args: pts: A [*, 3] set of points Returns: [*, 3] rotated points """ rot_mats = self.get_rot_mats() return rot_vec_mul(rot_mats, pts) def invert_apply(self, pts: torch.Tensor) -> torch.Tensor: """ The inverse of the apply() method. Args: pts: A [*, 3] set of points Returns: [*, 3] inverse-rotated points """ rot_mats = self.get_rot_mats() inv_rot_mats = invert_rot_mat(rot_mats) return rot_vec_mul(inv_rot_mats, pts) def invert(self) -> Rotation: """ Returns the inverse of the current Rotation. Returns: The inverse of the current Rotation """ if self._rot_mats is not None: return Rotation(rot_mats=invert_rot_mat(self._rot_mats), quats=None) elif self._quats is not None: return Rotation( rot_mats=None, quats=invert_quat(self._quats), normalize_quats=False, ) else: raise ValueError("Both rotations are None") # "Tensor" stuff def unsqueeze(self, dim: int) -> Rotation: """ Analogous to torch.unsqueeze. The dimension is relative to the shape of the Rotation object. Args: dim: A positive or negative dimension index. Returns: The unsqueezed Rotation. """ if dim >= len(self.shape): raise ValueError("Invalid dimension") if self._rot_mats is not None: rot_mats = self._rot_mats.unsqueeze(dim if dim >= 0 else dim - 2) return Rotation(rot_mats=rot_mats, quats=None) elif self._quats is not None: quats = self._quats.unsqueeze(dim if dim >= 0 else dim - 1) return Rotation(rot_mats=None, quats=quats, normalize_quats=False) else: raise ValueError("Both rotations are None") @staticmethod def cat(rs: Sequence[Rotation], dim: int) -> Rotation: """ Concatenates rotations along one of the batch dimensions. Analogous to torch.cat(). Note that the output of this operation is always a rotation matrix, regardless of the format of input rotations. Args: rs: A list of rotation objects dim: The dimension along which the rotations should be concatenated Returns: A concatenated Rotation object in rotation matrix format """ rot_mats = torch.cat( [r.get_rot_mats() for r in rs], dim=dim if dim >= 0 else dim - 2, ) return Rotation(rot_mats=rot_mats, quats=None) def map_tensor_fn(self, fn: Callable[[torch.Tensor], torch.Tensor]) -> Rotation: """ Apply a Tensor -> Tensor function to underlying rotation tensors, mapping over the rotation dimension(s). Can be used e.g. to sum out a one-hot batch dimension. Args: fn: A Tensor -> Tensor function to be mapped over the Rotation Returns: The transformed Rotation object """ if self._rot_mats is not None: rot_mats = self._rot_mats.view(self._rot_mats.shape[:-2] + (9,)) rot_mats = torch.stack(list(map(fn, torch.unbind(rot_mats, dim=-1))), dim=-1) rot_mats = rot_mats.view(rot_mats.shape[:-1] + (3, 3)) return Rotation(rot_mats=rot_mats, quats=None) elif self._quats is not None: quats = torch.stack(list(map(fn, torch.unbind(self._quats, dim=-1))), dim=-1) return Rotation(rot_mats=None, quats=quats, normalize_quats=False) else: raise ValueError("Both rotations are None") def cuda(self) -> Rotation: """ Analogous to the cuda() method of torch Tensors Returns: A copy of the Rotation in CUDA memory """ if self._rot_mats is not None: return Rotation(rot_mats=self._rot_mats.cuda(), quats=None) elif self._quats is not None: return Rotation(rot_mats=None, quats=self._quats.cuda(), normalize_quats=False) else: raise ValueError("Both rotations are None") def to(self, device: Optional[torch.device], dtype: Optional[torch.dtype]) -> Rotation: """ Analogous to the to() method of torch Tensors Args: device: A torch device dtype: A torch dtype Returns: A copy of the Rotation using the new device and dtype """ if self._rot_mats is not None: return Rotation( rot_mats=self._rot_mats.to(device=device, dtype=dtype), quats=None, ) elif self._quats is not None: return Rotation( rot_mats=None, quats=self._quats.to(device=device, dtype=dtype), normalize_quats=False, ) else: raise ValueError("Both rotations are None") def detach(self) -> Rotation: """ Returns a copy of the Rotation whose underlying Tensor has been detached from its torch graph. Returns: A copy of the Rotation whose underlying Tensor has been detached from its torch graph """ if self._rot_mats is not None: return Rotation(rot_mats=self._rot_mats.detach(), quats=None) elif self._quats is not None: return Rotation( rot_mats=None, quats=self._quats.detach(), normalize_quats=False, ) else: raise ValueError("Both rotations are None") class Rigid: """ A class representing a rigid transformation. Little more than a wrapper around two objects: a Rotation object and a [*, 3] translation Designed to behave approximately like a single torch tensor with the shape of the shared batch dimensions of its component parts. """ def __init__(self, rots: Optional[Rotation], trans: Optional[torch.Tensor]): """ Args: rots: A [*, 3, 3] rotation tensor trans: A corresponding [*, 3] translation tensor """ # (we need device, dtype, etc. from at least one input) batch_dims, dtype, device, requires_grad = None, None, None, None if trans is not None: batch_dims = trans.shape[:-1] dtype = trans.dtype device = trans.device requires_grad = trans.requires_grad elif rots is not None: batch_dims = rots.shape dtype = rots.dtype device = rots.device requires_grad = rots.requires_grad else: raise ValueError("At least one input argument must be specified") if rots is None: rots = Rotation.identity( batch_dims, dtype, device, requires_grad, ) elif trans is None: trans = identity_trans( batch_dims, dtype, device, requires_grad, ) assert rots is not None assert trans is not None if (rots.shape != trans.shape[:-1]) or (rots.device != trans.device): raise ValueError("Rots and trans incompatible") # Force full precision. Happens to the rotations automatically. trans = trans.to(dtype=torch.float32) self._rots = rots self._trans = trans @staticmethod def identity( shape: Tuple[int, ...], dtype: Optional[torch.dtype] = None, device: Optional[torch.device] = None, requires_grad: bool = True, fmt: str = "quat", ) -> Rigid: """ Constructs an identity transformation. Args: shape: The desired shape dtype: The dtype of both internal tensors device: The device of both internal tensors requires_grad: Whether grad should be enabled for the internal tensors Returns: The identity transformation """ return Rigid( Rotation.identity(shape, dtype, device, requires_grad, fmt=fmt), identity_trans(shape, dtype, device, requires_grad), ) def __getitem__(self, index: Any) -> Rigid: """ Indexes the affine transformation with PyTorch-style indices. The index is applied to the shared dimensions of both the rotation and the translation. E.g.:: r = Rotation(rot_mats=torch.rand(10, 10, 3, 3), quats=None) t = Rigid(r, torch.rand(10, 10, 3)) indexed = t[3, 4:6] assert(indexed.shape == (2,)) assert(indexed.get_rots().shape == (2,)) assert(indexed.get_trans().shape == (2, 3)) Args: index: A standard torch tensor index. E.g. 8, (10, None, 3), or (3, slice(0, 1, None)) Returns: The indexed tensor """ if type(index) != tuple: index = (index,) return Rigid( self._rots[index], self._trans[index + (slice(None),)], ) def __mul__(self, right: torch.Tensor) -> Rigid: """ Pointwise left multiplication of the transformation with a tensor. Can be used to e.g. mask the Rigid. Args: right: The tensor multiplicand Returns: The product """ if not (isinstance(right, torch.Tensor)): raise TypeError("The other multiplicand must be a Tensor") new_rots = self._rots * right new_trans = self._trans * right[..., None] return Rigid(new_rots, new_trans) def __rmul__(self, left: torch.Tensor) -> Rigid: """ Reverse pointwise multiplication of the transformation with a tensor. Args: left: The left multiplicand Returns: The product """ return self.__mul__(left) @property def shape(self) -> torch.Size: """ Returns the shape of the shared dimensions of the rotation and the translation. Returns: The shape of the transformation """ return self._trans.shape[:-1] @property def device(self) -> torch.device: """ Returns the device on which the Rigid's tensors are located. Returns: The device on which the Rigid's tensors are located """ return self._trans.device def get_rots(self) -> Rotation: """ Getter for the rotation. Returns: The rotation object """ return self._rots def get_trans(self) -> torch.Tensor: """ Getter for the translation. Returns: The stored translation """ return self._trans def compose_q_update_vec(self, q_update_vec: torch.Tensor) -> Rigid: """ Composes the transformation with a quaternion update vector of shape [*, 6], where the final 6 columns represent the x, y, and z values of a quaternion of form (1, x, y, z) followed by a 3D translation. Args: q_vec: The quaternion update vector. Returns: The composed transformation. """ q_vec, t_vec = q_update_vec[..., :3], q_update_vec[..., 3:] new_rots = self._rots.compose_q_update_vec(q_vec) trans_update = self._rots.apply(t_vec) new_translation = self._trans + trans_update return Rigid(new_rots, new_translation) def compose(self, r: Rigid) -> Rigid: """ Composes the current rigid object with another. Args: r: Another Rigid object Returns: The composition of the two transformations """ new_rot = self._rots.compose_r(r._rots) new_trans = self._rots.apply(r._trans) + self._trans return Rigid(new_rot, new_trans) def apply(self, pts: torch.Tensor) -> torch.Tensor: """ Applies the transformation to a coordinate tensor. Args: pts: A [*, 3] coordinate tensor. Returns: The transformed points. """ rotated = self._rots.apply(pts) return rotated + self._trans def invert_apply(self, pts: torch.Tensor) -> torch.Tensor: """ Applies the inverse of the transformation to a coordinate tensor. Args: pts: A [*, 3] coordinate tensor Returns: The transformed points. """ pts = pts - self._trans return self._rots.invert_apply(pts) def invert(self) -> Rigid: """ Inverts the transformation. Returns: The inverse transformation. """ rot_inv = self._rots.invert() trn_inv = rot_inv.apply(self._trans) return Rigid(rot_inv, -1 * trn_inv) def map_tensor_fn(self, fn: Callable[[torch.Tensor], torch.Tensor]) -> Rigid: """ Apply a Tensor -> Tensor function to underlying translation and rotation tensors, mapping over the translation/rotation dimensions respectively. Args: fn: A Tensor -> Tensor function to be mapped over the Rigid Returns: The transformed Rigid object """ new_rots = self._rots.map_tensor_fn(fn) new_trans = torch.stack(list(map(fn, torch.unbind(self._trans, dim=-1))), dim=-1) return Rigid(new_rots, new_trans) def to_tensor_4x4(self) -> torch.Tensor: """ Converts a transformation to a homogenous transformation tensor. Returns: A [*, 4, 4] homogenous transformation tensor """ tensor = self._trans.new_zeros((*self.shape, 4, 4)) tensor[..., :3, :3] = self._rots.get_rot_mats() tensor[..., :3, 3] = self._trans tensor[..., 3, 3] = 1 return tensor @staticmethod def from_tensor_4x4(t: torch.Tensor) -> Rigid: """ Constructs a transformation from a homogenous transformation tensor. Args: t: [*, 4, 4] homogenous transformation tensor Returns: T object with shape [*] """ if t.shape[-2:] != (4, 4): raise ValueError("Incorrectly shaped input tensor") rots = Rotation(rot_mats=t[..., :3, :3], quats=None) trans = t[..., :3, 3] return Rigid(rots, trans) def to_tensor_7(self) -> torch.Tensor: """ Converts a transformation to a tensor with 7 final columns, four for the quaternion followed by three for the translation. Returns: A [*, 7] tensor representation of the transformation """ tensor = self._trans.new_zeros((*self.shape, 7)) tensor[..., :4] = self._rots.get_quats() tensor[..., 4:] = self._trans return tensor @staticmethod def from_tensor_7(t: torch.Tensor, normalize_quats: bool = False) -> Rigid: if t.shape[-1] != 7: raise ValueError("Incorrectly shaped input tensor") quats, trans = t[..., :4], t[..., 4:] rots = Rotation(rot_mats=None, quats=quats, normalize_quats=normalize_quats) return Rigid(rots, trans) @staticmethod def from_3_points( p_neg_x_axis: torch.Tensor, origin: torch.Tensor, p_xy_plane: torch.Tensor, eps: float = 1e-8 ) -> Rigid: """ Implements algorithm 21. Constructs transformations from sets of 3 points using the Gram-Schmidt algorithm. Args: p_neg_x_axis: [*, 3] coordinates origin: [*, 3] coordinates used as frame origins p_xy_plane: [*, 3] coordinates eps: Small epsilon value Returns: A transformation object of shape [*] """ p_neg_x_axis_unbound = torch.unbind(p_neg_x_axis, dim=-1) origin_unbound = torch.unbind(origin, dim=-1) p_xy_plane_unbound = torch.unbind(p_xy_plane, dim=-1) e0 = [c1 - c2 for c1, c2 in zip(origin_unbound, p_neg_x_axis_unbound)] e1 = [c1 - c2 for c1, c2 in zip(p_xy_plane_unbound, origin_unbound)] denom = torch.sqrt(sum(c * c for c in e0) + eps * torch.ones_like(e0[0])) e0 = [c / denom for c in e0] dot = sum((c1 * c2 for c1, c2 in zip(e0, e1))) e1 = [c2 - c1 * dot for c1, c2 in zip(e0, e1)] denom = torch.sqrt(sum((c * c for c in e1)) + eps * torch.ones_like(e1[0])) e1 = [c / denom for c in e1] e2 = [ e0[1] * e1[2] - e0[2] * e1[1], e0[2] * e1[0] - e0[0] * e1[2], e0[0] * e1[1] - e0[1] * e1[0], ] rots = torch.stack([c for tup in zip(e0, e1, e2) for c in tup], dim=-1) rots = rots.reshape(rots.shape[:-1] + (3, 3)) rot_obj = Rotation(rot_mats=rots, quats=None) return Rigid(rot_obj, torch.stack(origin_unbound, dim=-1)) def unsqueeze(self, dim: int) -> Rigid: """ Analogous to torch.unsqueeze. The dimension is relative to the shared dimensions of the rotation/translation. Args: dim: A positive or negative dimension index. Returns: The unsqueezed transformation. """ if dim >= len(self.shape): raise ValueError("Invalid dimension") rots = self._rots.unsqueeze(dim) trans = self._trans.unsqueeze(dim if dim >= 0 else dim - 1) return Rigid(rots, trans) @staticmethod def cat(ts: Sequence[Rigid], dim: int) -> Rigid: """ Concatenates transformations along a new dimension. Args: ts: A list of T objects dim: The dimension along which the transformations should be concatenated Returns: A concatenated transformation object """ rots = Rotation.cat([t._rots for t in ts], dim) trans = torch.cat([t._trans for t in ts], dim=dim if dim >= 0 else dim - 1) return Rigid(rots, trans) def apply_rot_fn(self, fn: Callable[[Rotation], Rotation]) -> Rigid: """ Applies a Rotation -> Rotation function to the stored rotation object. Args: fn: A function of type Rotation -> Rotation Returns: A transformation object with a transformed rotation. """ return Rigid(fn(self._rots), self._trans) def apply_trans_fn(self, fn: Callable[[torch.Tensor], torch.Tensor]) -> Rigid: """ Applies a Tensor -> Tensor function to the stored translation. Args: fn: A function of type Tensor -> Tensor to be applied to the translation Returns: A transformation object with a transformed translation. """ return Rigid(self._rots, fn(self._trans)) def scale_translation(self, trans_scale_factor: float) -> Rigid: """ Scales the translation by a constant factor. Args: trans_scale_factor: The constant factor Returns: A transformation object with a scaled translation. """ return self.apply_trans_fn(lambda t: t * trans_scale_factor) def stop_rot_gradient(self) -> Rigid: """ Detaches the underlying rotation object Returns: A transformation object with detached rotations """ return self.apply_rot_fn(lambda r: r.detach()) @staticmethod def make_transform_from_reference( n_xyz: torch.Tensor, ca_xyz: torch.Tensor, c_xyz: torch.Tensor, eps: float = 1e-20 ) -> Rigid: """ Returns a transformation object from reference coordinates. Note that this method does not take care of symmetries. If you provide the atom positions in the non-standard way, the N atom will end up not at [-0.527250, 1.359329, 0.0] but instead at [-0.527250, -1.359329, 0.0]. You need to take care of such cases in your code. Args: n_xyz: A [*, 3] tensor of nitrogen xyz coordinates. ca_xyz: A [*, 3] tensor of carbon alpha xyz coordinates. c_xyz: A [*, 3] tensor of carbon xyz coordinates. Returns: A transformation object. After applying the translation and rotation to the reference backbone, the coordinates will approximately equal to the input coordinates. """ translation = -1 * ca_xyz n_xyz = n_xyz + translation c_xyz = c_xyz + translation c_x, c_y, c_z = [c_xyz[..., i] for i in range(3)] norm = torch.sqrt(eps + c_x**2 + c_y**2) sin_c1 = -c_y / norm cos_c1 = c_x / norm c1_rots = sin_c1.new_zeros((*sin_c1.shape, 3, 3)) c1_rots[..., 0, 0] = cos_c1 c1_rots[..., 0, 1] = -1 * sin_c1 c1_rots[..., 1, 0] = sin_c1 c1_rots[..., 1, 1] = cos_c1 c1_rots[..., 2, 2] = 1 norm = torch.sqrt(eps + c_x**2 + c_y**2 + c_z**2) sin_c2 = c_z / norm cos_c2 = torch.sqrt(c_x**2 + c_y**2) / norm c2_rots = sin_c2.new_zeros((*sin_c2.shape, 3, 3)) c2_rots[..., 0, 0] = cos_c2 c2_rots[..., 0, 2] = sin_c2 c2_rots[..., 1, 1] = 1 c2_rots[..., 2, 0] = -1 * sin_c2 c2_rots[..., 2, 2] = cos_c2 c_rots = rot_matmul(c2_rots, c1_rots) n_xyz = rot_vec_mul(c_rots, n_xyz) _, n_y, n_z = [n_xyz[..., i] for i in range(3)] norm = torch.sqrt(eps + n_y**2 + n_z**2) sin_n = -n_z / norm cos_n = n_y / norm n_rots = sin_c2.new_zeros((*sin_c2.shape, 3, 3)) n_rots[..., 0, 0] = 1 n_rots[..., 1, 1] = cos_n n_rots[..., 1, 2] = -1 * sin_n n_rots[..., 2, 1] = sin_n n_rots[..., 2, 2] = cos_n rots = rot_matmul(n_rots, c_rots) rots = rots.transpose(-1, -2) translation = -1 * translation rot_obj = Rotation(rot_mats=rots, quats=None) return Rigid(rot_obj, translation) def cuda(self) -> Rigid: """ Moves the transformation object to GPU memory Returns: A version of the transformation on GPU """ return Rigid(self._rots.cuda(), self._trans.cuda())
0
hf_public_repos/transformers/src/transformers/models/esm
hf_public_repos/transformers/src/transformers/models/esm/openfold_utils/chunk_utils.py
# Copyright 2021 AlQuraishi Laboratory # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import logging import math from functools import partial from typing import Any, Callable, Dict, Iterable, List, Optional, Sequence, Tuple, Union import torch from .tensor_utils import tensor_tree_map, tree_map def _fetch_dims(tree: Union[dict, list, tuple, torch.Tensor]) -> List[Tuple[int, ...]]: shapes = [] if isinstance(tree, dict): for v in tree.values(): shapes.extend(_fetch_dims(v)) elif isinstance(tree, (list, tuple)): for t in tree: shapes.extend(_fetch_dims(t)) elif isinstance(tree, torch.Tensor): shapes.append(tree.shape) else: raise ValueError("Not supported") return shapes @torch.jit.ignore def _flat_idx_to_idx(flat_idx: int, dims: Tuple[int, ...]) -> Tuple[int, ...]: idx = [] for d in reversed(dims): idx.append(flat_idx % d) flat_idx = flat_idx // d return tuple(reversed(idx)) @torch.jit.ignore def _get_minimal_slice_set( start: Sequence[int], end: Sequence[int], dims: Sequence[int], start_edges: Optional[Sequence[bool]] = None, end_edges: Optional[Sequence[bool]] = None, ) -> List[Tuple[slice, ...]]: """ Produces an ordered sequence of tensor slices that, when used in sequence on a tensor with shape dims, yields tensors that contain every leaf in the contiguous range [start, end]. Care is taken to yield a short sequence of slices, and perhaps even the shortest possible (I'm pretty sure it's the latter). end is INCLUSIVE. """ # start_edges and end_edges both indicate whether, starting from any given # dimension, the start/end index is at the top/bottom edge of the # corresponding tensor, modeled as a tree def reduce_edge_list(l: List[bool]) -> None: tally = True for i in range(len(l)): reversed_idx = -1 * (i + 1) l[reversed_idx] &= tally tally = l[reversed_idx] if start_edges is None: start_edges = [s == 0 for s in start] reduce_edge_list(start_edges) if end_edges is None: end_edges = [e == (d - 1) for e, d in zip(end, dims)] reduce_edge_list(end_edges) # Base cases. Either start/end are empty and we're done, or the final, # one-dimensional tensor can be simply sliced if len(start) == 0: return [()] elif len(start) == 1: return [(slice(start[0], end[0] + 1),)] slices: List[Tuple[slice, ...]] = [] path_list: List[slice] = [] # Dimensions common to start and end can be selected directly for s, e in zip(start, end): if s == e: path_list.append(slice(s, s + 1)) else: break path: Tuple[slice, ...] = tuple(path_list) divergence_idx = len(path) # start == end, and we're done if divergence_idx == len(dims): return [path] def upper() -> Tuple[Tuple[slice, ...], ...]: assert start_edges is not None assert end_edges is not None sdi = start[divergence_idx] return tuple( path + (slice(sdi, sdi + 1),) + s for s in _get_minimal_slice_set( start[divergence_idx + 1 :], [d - 1 for d in dims[divergence_idx + 1 :]], dims[divergence_idx + 1 :], start_edges=start_edges[divergence_idx + 1 :], end_edges=[True for _ in end_edges[divergence_idx + 1 :]], ) ) def lower() -> Tuple[Tuple[slice, ...], ...]: assert start_edges is not None assert end_edges is not None edi = end[divergence_idx] return tuple( path + (slice(edi, edi + 1),) + s for s in _get_minimal_slice_set( [0 for _ in start[divergence_idx + 1 :]], end[divergence_idx + 1 :], dims[divergence_idx + 1 :], start_edges=[True for _ in start_edges[divergence_idx + 1 :]], end_edges=end_edges[divergence_idx + 1 :], ) ) # If both start and end are at the edges of the subtree rooted at # divergence_idx, we can just select the whole subtree at once if start_edges[divergence_idx] and end_edges[divergence_idx]: slices.append(path + (slice(start[divergence_idx], end[divergence_idx] + 1),)) # If just start is at the edge, we can grab almost all of the subtree, # treating only the ragged bottom edge as an edge case elif start_edges[divergence_idx]: slices.append(path + (slice(start[divergence_idx], end[divergence_idx]),)) slices.extend(lower()) # Analogous to the previous case, but the top is ragged this time elif end_edges[divergence_idx]: slices.extend(upper()) slices.append(path + (slice(start[divergence_idx] + 1, end[divergence_idx] + 1),)) # If both sides of the range are ragged, we need to handle both sides # separately. If there's contiguous meat in between them, we can index it # in one big chunk else: slices.extend(upper()) middle_ground = end[divergence_idx] - start[divergence_idx] if middle_ground > 1: slices.append(path + (slice(start[divergence_idx] + 1, end[divergence_idx]),)) slices.extend(lower()) return slices @torch.jit.ignore def _chunk_slice(t: torch.Tensor, flat_start: int, flat_end: int, no_batch_dims: int) -> torch.Tensor: """ Equivalent to t.reshape((-1,) + t.shape[no_batch_dims:])[flat_start:flat_end] but without the need for the initial reshape call, which can be memory-intensive in certain situations. The only reshape operations in this function are performed on sub-tensors that scale with (flat_end - flat_start), the chunk size. """ batch_dims = t.shape[:no_batch_dims] start_idx = list(_flat_idx_to_idx(flat_start, batch_dims)) # _get_minimal_slice_set is inclusive end_idx = list(_flat_idx_to_idx(flat_end - 1, batch_dims)) # Get an ordered list of slices to perform slices = _get_minimal_slice_set( start_idx, end_idx, batch_dims, ) sliced_tensors = [t[s] for s in slices] return torch.cat([s.view((-1,) + t.shape[no_batch_dims:]) for s in sliced_tensors]) def chunk_layer( layer: Callable, inputs: Dict[str, Any], chunk_size: int, no_batch_dims: int, low_mem: bool = False, _out: Any = None, _add_into_out: bool = False, ) -> Any: """ Implements the "chunking" procedure described in section 1.11.8. Layer outputs and inputs are assumed to be simple "pytrees," consisting only of (arbitrarily nested) lists, tuples, and dicts with torch.Tensor leaves. Args: layer: The layer to be applied chunk-wise inputs: A (non-nested) dictionary of keyworded inputs. All leaves must be tensors and must share the same batch dimensions. chunk_size: The number of sub-batches per chunk. If multiple batch dimensions are specified, a "sub-batch" is defined as a single indexing of all batch dimensions simultaneously (s.t. the number of sub-batches is the product of the batch dimensions). no_batch_dims: How many of the initial dimensions of each input tensor can be considered batch dimensions. low_mem: Avoids flattening potentially large input tensors. Unnecessary in most cases, and is ever so slightly slower than the default setting. Returns: The reassembled output of the layer on the inputs. """ if not (len(inputs) > 0): raise ValueError("Must provide at least one input") initial_dims = [shape[:no_batch_dims] for shape in _fetch_dims(inputs)] orig_batch_dims = tuple([max(s) for s in zip(*initial_dims)]) def _prep_inputs(t: torch.Tensor) -> torch.Tensor: if not low_mem: if not sum(t.shape[:no_batch_dims]) == no_batch_dims: t = t.expand(orig_batch_dims + t.shape[no_batch_dims:]) t = t.reshape(-1, *t.shape[no_batch_dims:]) else: t = t.expand(orig_batch_dims + t.shape[no_batch_dims:]) return t prepped_inputs: Dict[str, Any] = tensor_tree_map(_prep_inputs, inputs) prepped_outputs = None if _out is not None: prepped_outputs = tensor_tree_map(lambda t: t.view([-1] + list(t.shape[no_batch_dims:])), _out) flat_batch_dim = 1 for d in orig_batch_dims: flat_batch_dim *= d no_chunks = flat_batch_dim // chunk_size + (flat_batch_dim % chunk_size != 0) def _select_chunk(t: torch.Tensor) -> torch.Tensor: return t[i : i + chunk_size] if t.shape[0] != 1 else t i = 0 out = prepped_outputs for _ in range(no_chunks): # Chunk the input if not low_mem: select_chunk = _select_chunk else: select_chunk = partial( _chunk_slice, flat_start=i, flat_end=min(flat_batch_dim, i + chunk_size), no_batch_dims=len(orig_batch_dims), ) chunks: Dict[str, Any] = tensor_tree_map(select_chunk, prepped_inputs) # Run the layer on the chunk output_chunk = layer(**chunks) # Allocate space for the output if out is None: out = tensor_tree_map(lambda t: t.new_zeros((flat_batch_dim,) + t.shape[1:]), output_chunk) # Put the chunk in its pre-allocated space if isinstance(output_chunk, dict): def assign(d1: dict, d2: dict) -> None: for k, v in d1.items(): if isinstance(v, dict): assign(v, d2[k]) else: if _add_into_out: v[i : i + chunk_size] += d2[k] else: v[i : i + chunk_size] = d2[k] assign(out, output_chunk) elif isinstance(output_chunk, tuple): for x1, x2 in zip(out, output_chunk): if _add_into_out: x1[i : i + chunk_size] += x2 else: x1[i : i + chunk_size] = x2 elif isinstance(output_chunk, torch.Tensor): if _add_into_out: out[i : i + chunk_size] += output_chunk else: out[i : i + chunk_size] = output_chunk else: raise ValueError("Not supported") i += chunk_size out = tensor_tree_map(lambda t: t.view(orig_batch_dims + t.shape[1:]), out) return out class ChunkSizeTuner: def __init__( self, # Heuristically, runtimes for most of the modules in the network # plateau earlier than this on all GPUs I've run the model on. max_chunk_size: int = 512, ): self.max_chunk_size = max_chunk_size self.cached_chunk_size: Optional[int] = None self.cached_arg_data: Optional[tuple] = None def _determine_favorable_chunk_size(self, fn: Callable, args: tuple, min_chunk_size: int) -> int: logging.info("Tuning chunk size...") if min_chunk_size >= self.max_chunk_size: return min_chunk_size candidates: List[int] = [2**l for l in range(int(math.log(self.max_chunk_size, 2)) + 1)] candidates = [c for c in candidates if c > min_chunk_size] candidates = [min_chunk_size] + candidates candidates[-1] += 4 def test_chunk_size(chunk_size: int) -> bool: try: with torch.no_grad(): fn(*args, chunk_size=chunk_size) return True except RuntimeError: return False min_viable_chunk_size_index = 0 i = len(candidates) - 1 while i > min_viable_chunk_size_index: viable = test_chunk_size(candidates[i]) if not viable: i = (min_viable_chunk_size_index + i) // 2 else: min_viable_chunk_size_index = i i = (i + len(candidates) - 1) // 2 return candidates[min_viable_chunk_size_index] def _compare_arg_caches(self, ac1: Iterable, ac2: Iterable) -> bool: consistent = True for a1, a2 in zip(ac1, ac2): assert type(ac1) == type(ac2) if isinstance(ac1, (list, tuple)): consistent &= self._compare_arg_caches(a1, a2) elif isinstance(ac1, dict): a1_items = [v for _, v in sorted(a1.items(), key=lambda x: x[0])] a2_items = [v for _, v in sorted(a2.items(), key=lambda x: x[0])] consistent &= self._compare_arg_caches(a1_items, a2_items) else: consistent &= a1 == a2 return consistent def tune_chunk_size( self, representative_fn: Callable, args: tuple, min_chunk_size: int, ) -> int: consistent = True arg_data: tuple = tree_map(lambda a: a.shape if isinstance(a, torch.Tensor) else a, args, object) if self.cached_arg_data is not None: # If args have changed shape/value, we need to re-tune assert len(self.cached_arg_data) == len(arg_data) consistent = self._compare_arg_caches(self.cached_arg_data, arg_data) else: # Otherwise, we can reuse the precomputed value consistent = False if not consistent: self.cached_chunk_size = self._determine_favorable_chunk_size( representative_fn, args, min_chunk_size, ) self.cached_arg_data = arg_data assert self.cached_chunk_size is not None return self.cached_chunk_size
0
hf_public_repos/transformers/src/transformers/models/esm
hf_public_repos/transformers/src/transformers/models/esm/openfold_utils/data_transforms.py
# Copyright 2021 AlQuraishi Laboratory # Copyright 2021 DeepMind Technologies Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Dict import numpy as np import torch from . import residue_constants as rc from .tensor_utils import tensor_tree_map, tree_map def make_atom14_masks(protein: Dict[str, torch.Tensor]) -> Dict[str, torch.Tensor]: """Construct denser atom positions (14 dimensions instead of 37).""" restype_atom14_to_atom37_list = [] restype_atom37_to_atom14_list = [] restype_atom14_mask_list = [] for rt in rc.restypes: atom_names = rc.restype_name_to_atom14_names[rc.restype_1to3[rt]] restype_atom14_to_atom37_list.append([(rc.atom_order[name] if name else 0) for name in atom_names]) atom_name_to_idx14 = {name: i for i, name in enumerate(atom_names)} restype_atom37_to_atom14_list.append( [(atom_name_to_idx14[name] if name in atom_name_to_idx14 else 0) for name in rc.atom_types] ) restype_atom14_mask_list.append([(1.0 if name else 0.0) for name in atom_names]) # Add dummy mapping for restype 'UNK' restype_atom14_to_atom37_list.append([0] * 14) restype_atom37_to_atom14_list.append([0] * 37) restype_atom14_mask_list.append([0.0] * 14) restype_atom14_to_atom37 = torch.tensor( restype_atom14_to_atom37_list, dtype=torch.int32, device=protein["aatype"].device, ) restype_atom37_to_atom14 = torch.tensor( restype_atom37_to_atom14_list, dtype=torch.int32, device=protein["aatype"].device, ) restype_atom14_mask = torch.tensor( restype_atom14_mask_list, dtype=torch.float32, device=protein["aatype"].device, ) protein_aatype = protein["aatype"].to(torch.long) # create the mapping for (residx, atom14) --> atom37, i.e. an array # with shape (num_res, 14) containing the atom37 indices for this protein residx_atom14_to_atom37 = restype_atom14_to_atom37[protein_aatype] residx_atom14_mask = restype_atom14_mask[protein_aatype] protein["atom14_atom_exists"] = residx_atom14_mask protein["residx_atom14_to_atom37"] = residx_atom14_to_atom37.long() # create the gather indices for mapping back residx_atom37_to_atom14 = restype_atom37_to_atom14[protein_aatype] protein["residx_atom37_to_atom14"] = residx_atom37_to_atom14.long() # create the corresponding mask restype_atom37_mask = torch.zeros([21, 37], dtype=torch.float32, device=protein["aatype"].device) for restype, restype_letter in enumerate(rc.restypes): restype_name = rc.restype_1to3[restype_letter] atom_names = rc.residue_atoms[restype_name] for atom_name in atom_names: atom_type = rc.atom_order[atom_name] restype_atom37_mask[restype, atom_type] = 1 residx_atom37_mask = restype_atom37_mask[protein_aatype] protein["atom37_atom_exists"] = residx_atom37_mask return protein def make_atom14_masks_np(batch: Dict[str, torch.Tensor]) -> Dict[str, np.ndarray]: batch = tree_map(lambda n: torch.tensor(n, device=batch["aatype"].device), batch, np.ndarray) out = tensor_tree_map(lambda t: np.array(t), make_atom14_masks(batch)) return out
0
hf_public_repos/transformers/src/transformers/models/esm
hf_public_repos/transformers/src/transformers/models/esm/openfold_utils/residue_constants.py
# Copyright 2021 AlQuraishi Laboratory # Copyright 2021 DeepMind Technologies Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Constants used in AlphaFold.""" import collections import copy import functools from importlib import resources from typing import Dict, List, Mapping, Sequence, Tuple import numpy as np # Internal import (35fd). # Distance from one CA to next CA [trans configuration: omega = 180]. ca_ca = 3.80209737096 # Format: The list for each AA type contains chi1, chi2, chi3, chi4 in # this order (or a relevant subset from chi1 onwards). ALA and GLY don't have # chi angles so their chi angle lists are empty. chi_angles_atoms: Dict[str, List[List[str]]] = { "ALA": [], # Chi5 in arginine is always 0 +- 5 degrees, so ignore it. "ARG": [["N", "CA", "CB", "CG"], ["CA", "CB", "CG", "CD"], ["CB", "CG", "CD", "NE"], ["CG", "CD", "NE", "CZ"]], "ASN": [["N", "CA", "CB", "CG"], ["CA", "CB", "CG", "OD1"]], "ASP": [["N", "CA", "CB", "CG"], ["CA", "CB", "CG", "OD1"]], "CYS": [["N", "CA", "CB", "SG"]], "GLN": [["N", "CA", "CB", "CG"], ["CA", "CB", "CG", "CD"], ["CB", "CG", "CD", "OE1"]], "GLU": [["N", "CA", "CB", "CG"], ["CA", "CB", "CG", "CD"], ["CB", "CG", "CD", "OE1"]], "GLY": [], "HIS": [["N", "CA", "CB", "CG"], ["CA", "CB", "CG", "ND1"]], "ILE": [["N", "CA", "CB", "CG1"], ["CA", "CB", "CG1", "CD1"]], "LEU": [["N", "CA", "CB", "CG"], ["CA", "CB", "CG", "CD1"]], "LYS": [["N", "CA", "CB", "CG"], ["CA", "CB", "CG", "CD"], ["CB", "CG", "CD", "CE"], ["CG", "CD", "CE", "NZ"]], "MET": [["N", "CA", "CB", "CG"], ["CA", "CB", "CG", "SD"], ["CB", "CG", "SD", "CE"]], "PHE": [["N", "CA", "CB", "CG"], ["CA", "CB", "CG", "CD1"]], "PRO": [["N", "CA", "CB", "CG"], ["CA", "CB", "CG", "CD"]], "SER": [["N", "CA", "CB", "OG"]], "THR": [["N", "CA", "CB", "OG1"]], "TRP": [["N", "CA", "CB", "CG"], ["CA", "CB", "CG", "CD1"]], "TYR": [["N", "CA", "CB", "CG"], ["CA", "CB", "CG", "CD1"]], "VAL": [["N", "CA", "CB", "CG1"]], } # If chi angles given in fixed-length array, this matrix determines how to mask # them for each AA type. The order is as per restype_order (see below). chi_angles_mask: List[List[float]] = [ [0.0, 0.0, 0.0, 0.0], # ALA [1.0, 1.0, 1.0, 1.0], # ARG [1.0, 1.0, 0.0, 0.0], # ASN [1.0, 1.0, 0.0, 0.0], # ASP [1.0, 0.0, 0.0, 0.0], # CYS [1.0, 1.0, 1.0, 0.0], # GLN [1.0, 1.0, 1.0, 0.0], # GLU [0.0, 0.0, 0.0, 0.0], # GLY [1.0, 1.0, 0.0, 0.0], # HIS [1.0, 1.0, 0.0, 0.0], # ILE [1.0, 1.0, 0.0, 0.0], # LEU [1.0, 1.0, 1.0, 1.0], # LYS [1.0, 1.0, 1.0, 0.0], # MET [1.0, 1.0, 0.0, 0.0], # PHE [1.0, 1.0, 0.0, 0.0], # PRO [1.0, 0.0, 0.0, 0.0], # SER [1.0, 0.0, 0.0, 0.0], # THR [1.0, 1.0, 0.0, 0.0], # TRP [1.0, 1.0, 0.0, 0.0], # TYR [1.0, 0.0, 0.0, 0.0], # VAL ] # The following chi angles are pi periodic: they can be rotated by a multiple # of pi without affecting the structure. chi_pi_periodic: List[List[float]] = [ [0.0, 0.0, 0.0, 0.0], # ALA [0.0, 0.0, 0.0, 0.0], # ARG [0.0, 0.0, 0.0, 0.0], # ASN [0.0, 1.0, 0.0, 0.0], # ASP [0.0, 0.0, 0.0, 0.0], # CYS [0.0, 0.0, 0.0, 0.0], # GLN [0.0, 0.0, 1.0, 0.0], # GLU [0.0, 0.0, 0.0, 0.0], # GLY [0.0, 0.0, 0.0, 0.0], # HIS [0.0, 0.0, 0.0, 0.0], # ILE [0.0, 0.0, 0.0, 0.0], # LEU [0.0, 0.0, 0.0, 0.0], # LYS [0.0, 0.0, 0.0, 0.0], # MET [0.0, 1.0, 0.0, 0.0], # PHE [0.0, 0.0, 0.0, 0.0], # PRO [0.0, 0.0, 0.0, 0.0], # SER [0.0, 0.0, 0.0, 0.0], # THR [0.0, 0.0, 0.0, 0.0], # TRP [0.0, 1.0, 0.0, 0.0], # TYR [0.0, 0.0, 0.0, 0.0], # VAL [0.0, 0.0, 0.0, 0.0], # UNK ] # Atoms positions relative to the 8 rigid groups, defined by the pre-omega, phi, # psi and chi angles: # 0: 'backbone group', # 1: 'pre-omega-group', (empty) # 2: 'phi-group', (currently empty, because it defines only hydrogens) # 3: 'psi-group', # 4,5,6,7: 'chi1,2,3,4-group' # The atom positions are relative to the axis-end-atom of the corresponding # rotation axis. The x-axis is in direction of the rotation axis, and the y-axis # is defined such that the dihedral-angle-definiting atom (the last entry in # chi_angles_atoms above) is in the xy-plane (with a positive y-coordinate). # format: [atomname, group_idx, rel_position] rigid_group_atom_positions: Dict[str, List[Tuple[str, int, Tuple[float, float, float]]]] = { "ALA": [ ("N", 0, (-0.525, 1.363, 0.000)), ("CA", 0, (0.000, 0.000, 0.000)), ("C", 0, (1.526, -0.000, -0.000)), ("CB", 0, (-0.529, -0.774, -1.205)), ("O", 3, (0.627, 1.062, 0.000)), ], "ARG": [ ("N", 0, (-0.524, 1.362, -0.000)), ("CA", 0, (0.000, 0.000, 0.000)), ("C", 0, (1.525, -0.000, -0.000)), ("CB", 0, (-0.524, -0.778, -1.209)), ("O", 3, (0.626, 1.062, 0.000)), ("CG", 4, (0.616, 1.390, -0.000)), ("CD", 5, (0.564, 1.414, 0.000)), ("NE", 6, (0.539, 1.357, -0.000)), ("NH1", 7, (0.206, 2.301, 0.000)), ("NH2", 7, (2.078, 0.978, -0.000)), ("CZ", 7, (0.758, 1.093, -0.000)), ], "ASN": [ ("N", 0, (-0.536, 1.357, 0.000)), ("CA", 0, (0.000, 0.000, 0.000)), ("C", 0, (1.526, -0.000, -0.000)), ("CB", 0, (-0.531, -0.787, -1.200)), ("O", 3, (0.625, 1.062, 0.000)), ("CG", 4, (0.584, 1.399, 0.000)), ("ND2", 5, (0.593, -1.188, 0.001)), ("OD1", 5, (0.633, 1.059, 0.000)), ], "ASP": [ ("N", 0, (-0.525, 1.362, -0.000)), ("CA", 0, (0.000, 0.000, 0.000)), ("C", 0, (1.527, 0.000, -0.000)), ("CB", 0, (-0.526, -0.778, -1.208)), ("O", 3, (0.626, 1.062, -0.000)), ("CG", 4, (0.593, 1.398, -0.000)), ("OD1", 5, (0.610, 1.091, 0.000)), ("OD2", 5, (0.592, -1.101, -0.003)), ], "CYS": [ ("N", 0, (-0.522, 1.362, -0.000)), ("CA", 0, (0.000, 0.000, 0.000)), ("C", 0, (1.524, 0.000, 0.000)), ("CB", 0, (-0.519, -0.773, -1.212)), ("O", 3, (0.625, 1.062, -0.000)), ("SG", 4, (0.728, 1.653, 0.000)), ], "GLN": [ ("N", 0, (-0.526, 1.361, -0.000)), ("CA", 0, (0.000, 0.000, 0.000)), ("C", 0, (1.526, 0.000, 0.000)), ("CB", 0, (-0.525, -0.779, -1.207)), ("O", 3, (0.626, 1.062, -0.000)), ("CG", 4, (0.615, 1.393, 0.000)), ("CD", 5, (0.587, 1.399, -0.000)), ("NE2", 6, (0.593, -1.189, -0.001)), ("OE1", 6, (0.634, 1.060, 0.000)), ], "GLU": [ ("N", 0, (-0.528, 1.361, 0.000)), ("CA", 0, (0.000, 0.000, 0.000)), ("C", 0, (1.526, -0.000, -0.000)), ("CB", 0, (-0.526, -0.781, -1.207)), ("O", 3, (0.626, 1.062, 0.000)), ("CG", 4, (0.615, 1.392, 0.000)), ("CD", 5, (0.600, 1.397, 0.000)), ("OE1", 6, (0.607, 1.095, -0.000)), ("OE2", 6, (0.589, -1.104, -0.001)), ], "GLY": [ ("N", 0, (-0.572, 1.337, 0.000)), ("CA", 0, (0.000, 0.000, 0.000)), ("C", 0, (1.517, -0.000, -0.000)), ("O", 3, (0.626, 1.062, -0.000)), ], "HIS": [ ("N", 0, (-0.527, 1.360, 0.000)), ("CA", 0, (0.000, 0.000, 0.000)), ("C", 0, (1.525, 0.000, 0.000)), ("CB", 0, (-0.525, -0.778, -1.208)), ("O", 3, (0.625, 1.063, 0.000)), ("CG", 4, (0.600, 1.370, -0.000)), ("CD2", 5, (0.889, -1.021, 0.003)), ("ND1", 5, (0.744, 1.160, -0.000)), ("CE1", 5, (2.030, 0.851, 0.002)), ("NE2", 5, (2.145, -0.466, 0.004)), ], "ILE": [ ("N", 0, (-0.493, 1.373, -0.000)), ("CA", 0, (0.000, 0.000, 0.000)), ("C", 0, (1.527, -0.000, -0.000)), ("CB", 0, (-0.536, -0.793, -1.213)), ("O", 3, (0.627, 1.062, -0.000)), ("CG1", 4, (0.534, 1.437, -0.000)), ("CG2", 4, (0.540, -0.785, -1.199)), ("CD1", 5, (0.619, 1.391, 0.000)), ], "LEU": [ ("N", 0, (-0.520, 1.363, 0.000)), ("CA", 0, (0.000, 0.000, 0.000)), ("C", 0, (1.525, -0.000, -0.000)), ("CB", 0, (-0.522, -0.773, -1.214)), ("O", 3, (0.625, 1.063, -0.000)), ("CG", 4, (0.678, 1.371, 0.000)), ("CD1", 5, (0.530, 1.430, -0.000)), ("CD2", 5, (0.535, -0.774, 1.200)), ], "LYS": [ ("N", 0, (-0.526, 1.362, -0.000)), ("CA", 0, (0.000, 0.000, 0.000)), ("C", 0, (1.526, 0.000, 0.000)), ("CB", 0, (-0.524, -0.778, -1.208)), ("O", 3, (0.626, 1.062, -0.000)), ("CG", 4, (0.619, 1.390, 0.000)), ("CD", 5, (0.559, 1.417, 0.000)), ("CE", 6, (0.560, 1.416, 0.000)), ("NZ", 7, (0.554, 1.387, 0.000)), ], "MET": [ ("N", 0, (-0.521, 1.364, -0.000)), ("CA", 0, (0.000, 0.000, 0.000)), ("C", 0, (1.525, 0.000, 0.000)), ("CB", 0, (-0.523, -0.776, -1.210)), ("O", 3, (0.625, 1.062, -0.000)), ("CG", 4, (0.613, 1.391, -0.000)), ("SD", 5, (0.703, 1.695, 0.000)), ("CE", 6, (0.320, 1.786, -0.000)), ], "PHE": [ ("N", 0, (-0.518, 1.363, 0.000)), ("CA", 0, (0.000, 0.000, 0.000)), ("C", 0, (1.524, 0.000, -0.000)), ("CB", 0, (-0.525, -0.776, -1.212)), ("O", 3, (0.626, 1.062, -0.000)), ("CG", 4, (0.607, 1.377, 0.000)), ("CD1", 5, (0.709, 1.195, -0.000)), ("CD2", 5, (0.706, -1.196, 0.000)), ("CE1", 5, (2.102, 1.198, -0.000)), ("CE2", 5, (2.098, -1.201, -0.000)), ("CZ", 5, (2.794, -0.003, -0.001)), ], "PRO": [ ("N", 0, (-0.566, 1.351, -0.000)), ("CA", 0, (0.000, 0.000, 0.000)), ("C", 0, (1.527, -0.000, 0.000)), ("CB", 0, (-0.546, -0.611, -1.293)), ("O", 3, (0.621, 1.066, 0.000)), ("CG", 4, (0.382, 1.445, 0.0)), # ('CD', 5, (0.427, 1.440, 0.0)), ("CD", 5, (0.477, 1.424, 0.0)), # manually made angle 2 degrees larger ], "SER": [ ("N", 0, (-0.529, 1.360, -0.000)), ("CA", 0, (0.000, 0.000, 0.000)), ("C", 0, (1.525, -0.000, -0.000)), ("CB", 0, (-0.518, -0.777, -1.211)), ("O", 3, (0.626, 1.062, -0.000)), ("OG", 4, (0.503, 1.325, 0.000)), ], "THR": [ ("N", 0, (-0.517, 1.364, 0.000)), ("CA", 0, (0.000, 0.000, 0.000)), ("C", 0, (1.526, 0.000, -0.000)), ("CB", 0, (-0.516, -0.793, -1.215)), ("O", 3, (0.626, 1.062, 0.000)), ("CG2", 4, (0.550, -0.718, -1.228)), ("OG1", 4, (0.472, 1.353, 0.000)), ], "TRP": [ ("N", 0, (-0.521, 1.363, 0.000)), ("CA", 0, (0.000, 0.000, 0.000)), ("C", 0, (1.525, -0.000, 0.000)), ("CB", 0, (-0.523, -0.776, -1.212)), ("O", 3, (0.627, 1.062, 0.000)), ("CG", 4, (0.609, 1.370, -0.000)), ("CD1", 5, (0.824, 1.091, 0.000)), ("CD2", 5, (0.854, -1.148, -0.005)), ("CE2", 5, (2.186, -0.678, -0.007)), ("CE3", 5, (0.622, -2.530, -0.007)), ("NE1", 5, (2.140, 0.690, -0.004)), ("CH2", 5, (3.028, -2.890, -0.013)), ("CZ2", 5, (3.283, -1.543, -0.011)), ("CZ3", 5, (1.715, -3.389, -0.011)), ], "TYR": [ ("N", 0, (-0.522, 1.362, 0.000)), ("CA", 0, (0.000, 0.000, 0.000)), ("C", 0, (1.524, -0.000, -0.000)), ("CB", 0, (-0.522, -0.776, -1.213)), ("O", 3, (0.627, 1.062, -0.000)), ("CG", 4, (0.607, 1.382, -0.000)), ("CD1", 5, (0.716, 1.195, -0.000)), ("CD2", 5, (0.713, -1.194, -0.001)), ("CE1", 5, (2.107, 1.200, -0.002)), ("CE2", 5, (2.104, -1.201, -0.003)), ("OH", 5, (4.168, -0.002, -0.005)), ("CZ", 5, (2.791, -0.001, -0.003)), ], "VAL": [ ("N", 0, (-0.494, 1.373, -0.000)), ("CA", 0, (0.000, 0.000, 0.000)), ("C", 0, (1.527, -0.000, -0.000)), ("CB", 0, (-0.533, -0.795, -1.213)), ("O", 3, (0.627, 1.062, -0.000)), ("CG1", 4, (0.540, 1.429, -0.000)), ("CG2", 4, (0.533, -0.776, 1.203)), ], } # A list of atoms (excluding hydrogen) for each AA type. PDB naming convention. residue_atoms: Dict[str, List[str]] = { "ALA": ["C", "CA", "CB", "N", "O"], "ARG": ["C", "CA", "CB", "CG", "CD", "CZ", "N", "NE", "O", "NH1", "NH2"], "ASP": ["C", "CA", "CB", "CG", "N", "O", "OD1", "OD2"], "ASN": ["C", "CA", "CB", "CG", "N", "ND2", "O", "OD1"], "CYS": ["C", "CA", "CB", "N", "O", "SG"], "GLU": ["C", "CA", "CB", "CG", "CD", "N", "O", "OE1", "OE2"], "GLN": ["C", "CA", "CB", "CG", "CD", "N", "NE2", "O", "OE1"], "GLY": ["C", "CA", "N", "O"], "HIS": ["C", "CA", "CB", "CG", "CD2", "CE1", "N", "ND1", "NE2", "O"], "ILE": ["C", "CA", "CB", "CG1", "CG2", "CD1", "N", "O"], "LEU": ["C", "CA", "CB", "CG", "CD1", "CD2", "N", "O"], "LYS": ["C", "CA", "CB", "CG", "CD", "CE", "N", "NZ", "O"], "MET": ["C", "CA", "CB", "CG", "CE", "N", "O", "SD"], "PHE": ["C", "CA", "CB", "CG", "CD1", "CD2", "CE1", "CE2", "CZ", "N", "O"], "PRO": ["C", "CA", "CB", "CG", "CD", "N", "O"], "SER": ["C", "CA", "CB", "N", "O", "OG"], "THR": ["C", "CA", "CB", "CG2", "N", "O", "OG1"], "TRP": ["C", "CA", "CB", "CG", "CD1", "CD2", "CE2", "CE3", "CZ2", "CZ3", "CH2", "N", "NE1", "O"], "TYR": ["C", "CA", "CB", "CG", "CD1", "CD2", "CE1", "CE2", "CZ", "N", "O", "OH"], "VAL": ["C", "CA", "CB", "CG1", "CG2", "N", "O"], } # Naming swaps for ambiguous atom names. # Due to symmetries in the amino acids the naming of atoms is ambiguous in # 4 of the 20 amino acids. # (The LDDT paper lists 7 amino acids as ambiguous, but the naming ambiguities # in LEU, VAL and ARG can be resolved by using the 3d constellations of # the 'ambiguous' atoms and their neighbours) # TODO: ^ interpret this residue_atom_renaming_swaps: Dict[str, Dict[str, str]] = { "ASP": {"OD1": "OD2"}, "GLU": {"OE1": "OE2"}, "PHE": {"CD1": "CD2", "CE1": "CE2"}, "TYR": {"CD1": "CD2", "CE1": "CE2"}, } # Van der Waals radii [Angstroem] of the atoms (from Wikipedia) van_der_waals_radius: Dict[str, float] = { "C": 1.7, "N": 1.55, "O": 1.52, "S": 1.8, } Bond = collections.namedtuple("Bond", ["atom1_name", "atom2_name", "length", "stddev"]) BondAngle = collections.namedtuple( "BondAngle", ["atom1_name", "atom2_name", "atom3name", "angle_rad", "stddev"], ) def map_structure_with_atom_order(in_list: list, first_call: bool = True) -> list: # Maps strings in a nested list structure to their corresponding index in atom_order if first_call: in_list = copy.deepcopy(in_list) for i in range(len(in_list)): if isinstance(in_list[i], list): in_list[i] = map_structure_with_atom_order(in_list[i], first_call=False) elif isinstance(in_list[i], str): in_list[i] = atom_order[in_list[i]] else: raise ValueError("Unexpected type when mapping nested lists!") return in_list @functools.lru_cache(maxsize=None) def load_stereo_chemical_props() -> ( Tuple[ Mapping[str, List[Bond]], Mapping[str, List[Bond]], Mapping[str, List[BondAngle]], ] ): """Load stereo_chemical_props.txt into a nice structure. Load literature values for bond lengths and bond angles and translate bond angles into the length of the opposite edge of the triangle ("residue_virtual_bonds"). Returns: residue_bonds: dict that maps resname --> list of Bond tuples residue_virtual_bonds: dict that maps resname --> list of Bond tuples residue_bond_angles: dict that maps resname --> list of BondAngle tuples """ # TODO: this file should be downloaded in a setup script stereo_chemical_props = resources.read_text("openfold.resources", "stereo_chemical_props.txt") lines_iter = iter(stereo_chemical_props.splitlines()) # Load bond lengths. residue_bonds: Dict[str, List[Bond]] = {} next(lines_iter) # Skip header line. for line in lines_iter: if line.strip() == "-": break bond, resname, bond_length, stddev = line.split() atom1, atom2 = bond.split("-") if resname not in residue_bonds: residue_bonds[resname] = [] residue_bonds[resname].append(Bond(atom1, atom2, float(bond_length), float(stddev))) residue_bonds["UNK"] = [] # Load bond angles. residue_bond_angles: Dict[str, List[BondAngle]] = {} next(lines_iter) # Skip empty line. next(lines_iter) # Skip header line. for line in lines_iter: if line.strip() == "-": break bond, resname, angle_degree, stddev_degree = line.split() atom1, atom2, atom3 = bond.split("-") if resname not in residue_bond_angles: residue_bond_angles[resname] = [] residue_bond_angles[resname].append( BondAngle( atom1, atom2, atom3, float(angle_degree) / 180.0 * np.pi, float(stddev_degree) / 180.0 * np.pi, ) ) residue_bond_angles["UNK"] = [] def make_bond_key(atom1_name: str, atom2_name: str) -> str: """Unique key to lookup bonds.""" return "-".join(sorted([atom1_name, atom2_name])) # Translate bond angles into distances ("virtual bonds"). residue_virtual_bonds: Dict[str, List[Bond]] = {} for resname, bond_angles in residue_bond_angles.items(): # Create a fast lookup dict for bond lengths. bond_cache: Dict[str, Bond] = {} for b in residue_bonds[resname]: bond_cache[make_bond_key(b.atom1_name, b.atom2_name)] = b residue_virtual_bonds[resname] = [] for ba in bond_angles: bond1 = bond_cache[make_bond_key(ba.atom1_name, ba.atom2_name)] bond2 = bond_cache[make_bond_key(ba.atom2_name, ba.atom3name)] # Compute distance between atom1 and atom3 using the law of cosines # c^2 = a^2 + b^2 - 2ab*cos(gamma). gamma = ba.angle_rad length = np.sqrt(bond1.length**2 + bond2.length**2 - 2 * bond1.length * bond2.length * np.cos(gamma)) # Propagation of uncertainty assuming uncorrelated errors. dl_outer = 0.5 / length dl_dgamma = (2 * bond1.length * bond2.length * np.sin(gamma)) * dl_outer dl_db1 = (2 * bond1.length - 2 * bond2.length * np.cos(gamma)) * dl_outer dl_db2 = (2 * bond2.length - 2 * bond1.length * np.cos(gamma)) * dl_outer stddev = np.sqrt( (dl_dgamma * ba.stddev) ** 2 + (dl_db1 * bond1.stddev) ** 2 + (dl_db2 * bond2.stddev) ** 2 ) residue_virtual_bonds[resname].append(Bond(ba.atom1_name, ba.atom3name, length, stddev)) return (residue_bonds, residue_virtual_bonds, residue_bond_angles) # Between-residue bond lengths for general bonds (first element) and for Proline # (second element). between_res_bond_length_c_n: Tuple[float, float] = (1.329, 1.341) between_res_bond_length_stddev_c_n: Tuple[float, float] = (0.014, 0.016) # Between-residue cos_angles. between_res_cos_angles_c_n_ca: Tuple[float, float] = (-0.5203, 0.0353) # degrees: 121.352 +- 2.315 between_res_cos_angles_ca_c_n: Tuple[float, float] = (-0.4473, 0.0311) # degrees: 116.568 +- 1.995 # This mapping is used when we need to store atom data in a format that requires # fixed atom data size for every residue (e.g. a numpy array). atom_types: List[str] = [ "N", "CA", "C", "CB", "O", "CG", "CG1", "CG2", "OG", "OG1", "SG", "CD", "CD1", "CD2", "ND1", "ND2", "OD1", "OD2", "SD", "CE", "CE1", "CE2", "CE3", "NE", "NE1", "NE2", "OE1", "OE2", "CH2", "NH1", "NH2", "OH", "CZ", "CZ2", "CZ3", "NZ", "OXT", ] atom_order: Dict[str, int] = {atom_type: i for i, atom_type in enumerate(atom_types)} atom_type_num = len(atom_types) # := 37. # A compact atom encoding with 14 columns # pylint: disable=line-too-long # pylint: disable=bad-whitespace restype_name_to_atom14_names: Dict[str, List[str]] = { "ALA": ["N", "CA", "C", "O", "CB", "", "", "", "", "", "", "", "", ""], "ARG": ["N", "CA", "C", "O", "CB", "CG", "CD", "NE", "CZ", "NH1", "NH2", "", "", ""], "ASN": ["N", "CA", "C", "O", "CB", "CG", "OD1", "ND2", "", "", "", "", "", ""], "ASP": ["N", "CA", "C", "O", "CB", "CG", "OD1", "OD2", "", "", "", "", "", ""], "CYS": ["N", "CA", "C", "O", "CB", "SG", "", "", "", "", "", "", "", ""], "GLN": ["N", "CA", "C", "O", "CB", "CG", "CD", "OE1", "NE2", "", "", "", "", ""], "GLU": ["N", "CA", "C", "O", "CB", "CG", "CD", "OE1", "OE2", "", "", "", "", ""], "GLY": ["N", "CA", "C", "O", "", "", "", "", "", "", "", "", "", ""], "HIS": ["N", "CA", "C", "O", "CB", "CG", "ND1", "CD2", "CE1", "NE2", "", "", "", ""], "ILE": ["N", "CA", "C", "O", "CB", "CG1", "CG2", "CD1", "", "", "", "", "", ""], "LEU": ["N", "CA", "C", "O", "CB", "CG", "CD1", "CD2", "", "", "", "", "", ""], "LYS": ["N", "CA", "C", "O", "CB", "CG", "CD", "CE", "NZ", "", "", "", "", ""], "MET": ["N", "CA", "C", "O", "CB", "CG", "SD", "CE", "", "", "", "", "", ""], "PHE": ["N", "CA", "C", "O", "CB", "CG", "CD1", "CD2", "CE1", "CE2", "CZ", "", "", ""], "PRO": ["N", "CA", "C", "O", "CB", "CG", "CD", "", "", "", "", "", "", ""], "SER": ["N", "CA", "C", "O", "CB", "OG", "", "", "", "", "", "", "", ""], "THR": ["N", "CA", "C", "O", "CB", "OG1", "CG2", "", "", "", "", "", "", ""], "TRP": ["N", "CA", "C", "O", "CB", "CG", "CD1", "CD2", "NE1", "CE2", "CE3", "CZ2", "CZ3", "CH2"], "TYR": ["N", "CA", "C", "O", "CB", "CG", "CD1", "CD2", "CE1", "CE2", "CZ", "OH", "", ""], "VAL": ["N", "CA", "C", "O", "CB", "CG1", "CG2", "", "", "", "", "", "", ""], "UNK": ["", "", "", "", "", "", "", "", "", "", "", "", "", ""], } # pylint: enable=line-too-long # pylint: enable=bad-whitespace # This is the standard residue order when coding AA type as a number. # Reproduce it by taking 3-letter AA codes and sorting them alphabetically. restypes: List[str] = [ "A", "R", "N", "D", "C", "Q", "E", "G", "H", "I", "L", "K", "M", "F", "P", "S", "T", "W", "Y", "V", ] restype_order: Dict[str, int] = {restype: i for i, restype in enumerate(restypes)} restype_num = len(restypes) # := 20. unk_restype_index = restype_num # Catch-all index for unknown restypes. restypes_with_x: List[str] = restypes + ["X"] restype_order_with_x: Dict[str, int] = {restype: i for i, restype in enumerate(restypes_with_x)} def sequence_to_onehot(sequence: str, mapping: Mapping[str, int], map_unknown_to_x: bool = False) -> np.ndarray: """Maps the given sequence into a one-hot encoded matrix. Args: sequence: An amino acid sequence. mapping: A dictionary mapping amino acids to integers. map_unknown_to_x: If True, any amino acid that is not in the mapping will be mapped to the unknown amino acid 'X'. If the mapping doesn't contain amino acid 'X', an error will be thrown. If False, any amino acid not in the mapping will throw an error. Returns: A numpy array of shape (seq_len, num_unique_aas) with one-hot encoding of the sequence. Raises: ValueError: If the mapping doesn't contain values from 0 to num_unique_aas - 1 without any gaps. """ num_entries = max(mapping.values()) + 1 if sorted(set(mapping.values())) != list(range(num_entries)): raise ValueError( "The mapping must have values from 0 to num_unique_aas-1 without any gaps. Got: %s" % sorted(mapping.values()) ) one_hot_arr = np.zeros((len(sequence), num_entries), dtype=np.int32) for aa_index, aa_type in enumerate(sequence): if map_unknown_to_x: if aa_type.isalpha() and aa_type.isupper(): aa_id = mapping.get(aa_type, mapping["X"]) else: raise ValueError(f"Invalid character in the sequence: {aa_type}") else: aa_id = mapping[aa_type] one_hot_arr[aa_index, aa_id] = 1 return one_hot_arr restype_1to3: Dict[str, str] = { "A": "ALA", "R": "ARG", "N": "ASN", "D": "ASP", "C": "CYS", "Q": "GLN", "E": "GLU", "G": "GLY", "H": "HIS", "I": "ILE", "L": "LEU", "K": "LYS", "M": "MET", "F": "PHE", "P": "PRO", "S": "SER", "T": "THR", "W": "TRP", "Y": "TYR", "V": "VAL", } # NB: restype_3to1 differs from Bio.PDB.protein_letters_3to1 by being a simple # 1-to-1 mapping of 3 letter names to one letter names. The latter contains # many more, and less common, three letter names as keys and maps many of these # to the same one letter name (including 'X' and 'U' which we don't use here). restype_3to1: Dict[str, str] = {v: k for k, v in restype_1to3.items()} # Define a restype name for all unknown residues. unk_restype = "UNK" resnames: List[str] = [restype_1to3[r] for r in restypes] + [unk_restype] resname_to_idx: Dict[str, int] = {resname: i for i, resname in enumerate(resnames)} # The mapping here uses hhblits convention, so that B is mapped to D, J and O # are mapped to X, U is mapped to C, and Z is mapped to E. Other than that the # remaining 20 amino acids are kept in alphabetical order. # There are 2 non-amino acid codes, X (representing any amino acid) and # "-" representing a missing amino acid in an alignment. The id for these # codes is put at the end (20 and 21) so that they can easily be ignored if # desired. HHBLITS_AA_TO_ID: Dict[str, int] = { "A": 0, "B": 2, "C": 1, "D": 2, "E": 3, "F": 4, "G": 5, "H": 6, "I": 7, "J": 20, "K": 8, "L": 9, "M": 10, "N": 11, "O": 20, "P": 12, "Q": 13, "R": 14, "S": 15, "T": 16, "U": 1, "V": 17, "W": 18, "X": 20, "Y": 19, "Z": 3, "-": 21, } # Partial inversion of HHBLITS_AA_TO_ID. ID_TO_HHBLITS_AA: Dict[int, str] = { 0: "A", 1: "C", # Also U. 2: "D", # Also B. 3: "E", # Also Z. 4: "F", 5: "G", 6: "H", 7: "I", 8: "K", 9: "L", 10: "M", 11: "N", 12: "P", 13: "Q", 14: "R", 15: "S", 16: "T", 17: "V", 18: "W", 19: "Y", 20: "X", # Includes J and O. 21: "-", } restypes_with_x_and_gap: List[str] = restypes + ["X", "-"] MAP_HHBLITS_AATYPE_TO_OUR_AATYPE: Tuple[int, ...] = tuple( restypes_with_x_and_gap.index(ID_TO_HHBLITS_AA[i]) for i in range(len(restypes_with_x_and_gap)) ) def _make_standard_atom_mask() -> np.ndarray: """Returns [num_res_types, num_atom_types] mask array.""" # +1 to account for unknown (all 0s). mask = np.zeros([restype_num + 1, atom_type_num], dtype=np.int32) for restype, restype_letter in enumerate(restypes): restype_name = restype_1to3[restype_letter] atom_names = residue_atoms[restype_name] for atom_name in atom_names: atom_type = atom_order[atom_name] mask[restype, atom_type] = 1 return mask STANDARD_ATOM_MASK = _make_standard_atom_mask() # A one hot representation for the first and second atoms defining the axis # of rotation for each chi-angle in each residue. def chi_angle_atom(atom_index: int) -> np.ndarray: """Define chi-angle rigid groups via one-hot representations.""" chi_angles_index = {} one_hots = [] for k, v in chi_angles_atoms.items(): indices = [atom_types.index(s[atom_index]) for s in v] indices.extend([-1] * (4 - len(indices))) chi_angles_index[k] = indices for r in restypes: res3 = restype_1to3[r] one_hot = np.eye(atom_type_num)[chi_angles_index[res3]] one_hots.append(one_hot) one_hots.append(np.zeros([4, atom_type_num])) # Add zeros for residue `X`. one_hot = np.stack(one_hots, axis=0) one_hot = np.transpose(one_hot, [0, 2, 1]) return one_hot chi_atom_1_one_hot = chi_angle_atom(1) chi_atom_2_one_hot = chi_angle_atom(2) # An array like chi_angles_atoms but using indices rather than names. chi_angles_atom_indices_list: List[List[List[str]]] = [chi_angles_atoms[restype_1to3[r]] for r in restypes] chi_angles_atom_indices_ours: list = map_structure_with_atom_order(chi_angles_atom_indices_list) chi_angles_atom_indices = np.array( [chi_atoms + ([[0, 0, 0, 0]] * (4 - len(chi_atoms))) for chi_atoms in chi_angles_atom_indices_list] ) # Mapping from (res_name, atom_name) pairs to the atom's chi group index # and atom index within that group. chi_groups_for_atom: Dict[Tuple[str, str], List[Tuple[int, int]]] = collections.defaultdict(list) for res_name, chi_angle_atoms_for_res in chi_angles_atoms.items(): for chi_group_i, chi_group in enumerate(chi_angle_atoms_for_res): for atom_i, atom in enumerate(chi_group): chi_groups_for_atom[(res_name, atom)].append((chi_group_i, atom_i)) chi_groups_for_atom = dict(chi_groups_for_atom) def _make_rigid_transformation_4x4(ex: np.ndarray, ey: np.ndarray, translation: np.ndarray) -> np.ndarray: """Create a rigid 4x4 transformation matrix from two axes and transl.""" # Normalize ex. ex_normalized = ex / np.linalg.norm(ex) # make ey perpendicular to ex ey_normalized = ey - np.dot(ey, ex_normalized) * ex_normalized ey_normalized /= np.linalg.norm(ey_normalized) # compute ez as cross product eznorm = np.cross(ex_normalized, ey_normalized) m = np.stack([ex_normalized, ey_normalized, eznorm, translation]).transpose() m = np.concatenate([m, [[0.0, 0.0, 0.0, 1.0]]], axis=0) return m # create an array with (restype, atomtype) --> rigid_group_idx # and an array with (restype, atomtype, coord) for the atom positions # and compute affine transformation matrices (4,4) from one rigid group to the # previous group restype_atom37_to_rigid_group = np.zeros([21, 37], dtype=int) restype_atom37_mask = np.zeros([21, 37], dtype=np.float32) restype_atom37_rigid_group_positions = np.zeros([21, 37, 3], dtype=np.float32) restype_atom14_to_rigid_group = np.zeros([21, 14], dtype=int) restype_atom14_mask = np.zeros([21, 14], dtype=np.float32) restype_atom14_rigid_group_positions = np.zeros([21, 14, 3], dtype=np.float32) restype_rigid_group_default_frame = np.zeros([21, 8, 4, 4], dtype=np.float32) def _make_rigid_group_constants() -> None: """Fill the arrays above.""" for restype, restype_letter in enumerate(restypes): resname = restype_1to3[restype_letter] for atomname, group_idx, atom_position in rigid_group_atom_positions[resname]: atomtype = atom_order[atomname] restype_atom37_to_rigid_group[restype, atomtype] = group_idx restype_atom37_mask[restype, atomtype] = 1 restype_atom37_rigid_group_positions[restype, atomtype, :] = atom_position atom14idx = restype_name_to_atom14_names[resname].index(atomname) restype_atom14_to_rigid_group[restype, atom14idx] = group_idx restype_atom14_mask[restype, atom14idx] = 1 restype_atom14_rigid_group_positions[restype, atom14idx, :] = atom_position for restype, restype_letter in enumerate(restypes): resname = restype_1to3[restype_letter] atom_positions: Dict[str, np.ndarray] = { name: np.array(pos) for name, _, pos in rigid_group_atom_positions[resname] } # backbone to backbone is the identity transform restype_rigid_group_default_frame[restype, 0, :, :] = np.eye(4) # pre-omega-frame to backbone (currently dummy identity matrix) restype_rigid_group_default_frame[restype, 1, :, :] = np.eye(4) # phi-frame to backbone mat = _make_rigid_transformation_4x4( ex=atom_positions["N"] - atom_positions["CA"], ey=np.array([1.0, 0.0, 0.0]), translation=atom_positions["N"], ) restype_rigid_group_default_frame[restype, 2, :, :] = mat # psi-frame to backbone mat = _make_rigid_transformation_4x4( ex=atom_positions["C"] - atom_positions["CA"], ey=atom_positions["CA"] - atom_positions["N"], translation=atom_positions["C"], ) restype_rigid_group_default_frame[restype, 3, :, :] = mat # chi1-frame to backbone if chi_angles_mask[restype][0]: base_atom_names = chi_angles_atoms[resname][0] base_atom_positions = [atom_positions[name] for name in base_atom_names] mat = _make_rigid_transformation_4x4( ex=base_atom_positions[2] - base_atom_positions[1], ey=base_atom_positions[0] - base_atom_positions[1], translation=base_atom_positions[2], ) restype_rigid_group_default_frame[restype, 4, :, :] = mat # chi2-frame to chi1-frame # chi3-frame to chi2-frame # chi4-frame to chi3-frame # luckily all rotation axes for the next frame start at (0,0,0) of the # previous frame for chi_idx in range(1, 4): if chi_angles_mask[restype][chi_idx]: axis_end_atom_name = chi_angles_atoms[resname][chi_idx][2] axis_end_atom_position = atom_positions[axis_end_atom_name] mat = _make_rigid_transformation_4x4( ex=axis_end_atom_position, ey=np.array([-1.0, 0.0, 0.0]), translation=axis_end_atom_position, ) restype_rigid_group_default_frame[restype, 4 + chi_idx, :, :] = mat _make_rigid_group_constants() def make_atom14_dists_bounds( overlap_tolerance: float = 1.5, bond_length_tolerance_factor: int = 15, ) -> Dict[str, np.ndarray]: """compute upper and lower bounds for bonds to assess violations.""" restype_atom14_bond_lower_bound = np.zeros([21, 14, 14], np.float32) restype_atom14_bond_upper_bound = np.zeros([21, 14, 14], np.float32) restype_atom14_bond_stddev = np.zeros([21, 14, 14], np.float32) residue_bonds, residue_virtual_bonds, _ = load_stereo_chemical_props() for restype, restype_letter in enumerate(restypes): resname = restype_1to3[restype_letter] atom_list = restype_name_to_atom14_names[resname] # create lower and upper bounds for clashes for atom1_idx, atom1_name in enumerate(atom_list): if not atom1_name: continue atom1_radius = van_der_waals_radius[atom1_name[0]] for atom2_idx, atom2_name in enumerate(atom_list): if (not atom2_name) or atom1_idx == atom2_idx: continue atom2_radius = van_der_waals_radius[atom2_name[0]] lower = atom1_radius + atom2_radius - overlap_tolerance upper = 1e10 restype_atom14_bond_lower_bound[restype, atom1_idx, atom2_idx] = lower restype_atom14_bond_lower_bound[restype, atom2_idx, atom1_idx] = lower restype_atom14_bond_upper_bound[restype, atom1_idx, atom2_idx] = upper restype_atom14_bond_upper_bound[restype, atom2_idx, atom1_idx] = upper # overwrite lower and upper bounds for bonds and angles for b in residue_bonds[resname] + residue_virtual_bonds[resname]: atom1_idx = atom_list.index(b.atom1_name) atom2_idx = atom_list.index(b.atom2_name) lower = b.length - bond_length_tolerance_factor * b.stddev upper = b.length + bond_length_tolerance_factor * b.stddev restype_atom14_bond_lower_bound[restype, atom1_idx, atom2_idx] = lower restype_atom14_bond_lower_bound[restype, atom2_idx, atom1_idx] = lower restype_atom14_bond_upper_bound[restype, atom1_idx, atom2_idx] = upper restype_atom14_bond_upper_bound[restype, atom2_idx, atom1_idx] = upper restype_atom14_bond_stddev[restype, atom1_idx, atom2_idx] = b.stddev restype_atom14_bond_stddev[restype, atom2_idx, atom1_idx] = b.stddev return { "lower_bound": restype_atom14_bond_lower_bound, # shape (21,14,14) "upper_bound": restype_atom14_bond_upper_bound, # shape (21,14,14) "stddev": restype_atom14_bond_stddev, # shape (21,14,14) } restype_atom14_ambiguous_atoms = np.zeros((21, 14), dtype=np.float32) restype_atom14_ambiguous_atoms_swap_idx: np.ndarray = np.tile(np.arange(14, dtype=int), (21, 1)) def _make_atom14_ambiguity_feats() -> None: for res, pairs in residue_atom_renaming_swaps.items(): res_idx = restype_order[restype_3to1[res]] for atom1, atom2 in pairs.items(): atom1_idx = restype_name_to_atom14_names[res].index(atom1) atom2_idx = restype_name_to_atom14_names[res].index(atom2) restype_atom14_ambiguous_atoms[res_idx, atom1_idx] = 1 restype_atom14_ambiguous_atoms[res_idx, atom2_idx] = 1 restype_atom14_ambiguous_atoms_swap_idx[res_idx, atom1_idx] = atom2_idx restype_atom14_ambiguous_atoms_swap_idx[res_idx, atom2_idx] = atom1_idx _make_atom14_ambiguity_feats() def aatype_to_str_sequence(aatype: Sequence[int]) -> str: return "".join([restypes_with_x[aatype[i]] for i in range(len(aatype))])
0
hf_public_repos/transformers/src/transformers/models/esm
hf_public_repos/transformers/src/transformers/models/esm/openfold_utils/loss.py
# Copyright 2021 AlQuraishi Laboratory # Copyright 2021 DeepMind Technologies Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Dict, Optional, Tuple import torch def _calculate_bin_centers(boundaries: torch.Tensor) -> torch.Tensor: step = boundaries[1] - boundaries[0] bin_centers = boundaries + step / 2 bin_centers = torch.cat([bin_centers, (bin_centers[-1] + step).unsqueeze(-1)], dim=0) return bin_centers def _calculate_expected_aligned_error( alignment_confidence_breaks: torch.Tensor, aligned_distance_error_probs: torch.Tensor, ) -> Tuple[torch.Tensor, torch.Tensor]: bin_centers = _calculate_bin_centers(alignment_confidence_breaks) return ( torch.sum(aligned_distance_error_probs * bin_centers, dim=-1), bin_centers[-1], ) def compute_predicted_aligned_error( logits: torch.Tensor, max_bin: int = 31, no_bins: int = 64, **kwargs, ) -> Dict[str, torch.Tensor]: """Computes aligned confidence metrics from logits. Args: logits: [*, num_res, num_res, num_bins] the logits output from PredictedAlignedErrorHead. max_bin: Maximum bin value no_bins: Number of bins Returns: aligned_confidence_probs: [*, num_res, num_res, num_bins] the predicted aligned error probabilities over bins for each residue pair. predicted_aligned_error: [*, num_res, num_res] the expected aligned distance error for each pair of residues. max_predicted_aligned_error: [*] the maximum predicted error possible. """ boundaries = torch.linspace(0, max_bin, steps=(no_bins - 1), device=logits.device) aligned_confidence_probs = torch.nn.functional.softmax(logits, dim=-1) predicted_aligned_error, max_predicted_aligned_error = _calculate_expected_aligned_error( alignment_confidence_breaks=boundaries, aligned_distance_error_probs=aligned_confidence_probs, ) return { "aligned_confidence_probs": aligned_confidence_probs, "predicted_aligned_error": predicted_aligned_error, "max_predicted_aligned_error": max_predicted_aligned_error, } def compute_tm( logits: torch.Tensor, residue_weights: Optional[torch.Tensor] = None, max_bin: int = 31, no_bins: int = 64, eps: float = 1e-8, **kwargs, ) -> torch.Tensor: if residue_weights is None: residue_weights = logits.new_ones(logits.shape[-2]) boundaries = torch.linspace(0, max_bin, steps=(no_bins - 1), device=logits.device) bin_centers = _calculate_bin_centers(boundaries) torch.sum(residue_weights) n = logits.shape[-2] clipped_n = max(n, 19) d0 = 1.24 * (clipped_n - 15) ** (1.0 / 3) - 1.8 probs = torch.nn.functional.softmax(logits, dim=-1) tm_per_bin = 1.0 / (1 + (bin_centers**2) / (d0**2)) predicted_tm_term = torch.sum(probs * tm_per_bin, dim=-1) normed_residue_mask = residue_weights / (eps + residue_weights.sum()) per_alignment = torch.sum(predicted_tm_term * normed_residue_mask, dim=-1) weighted = per_alignment * residue_weights argmax = (weighted == torch.max(weighted)).nonzero()[0] return per_alignment[tuple(argmax)]
0
hf_public_repos/transformers/src/transformers/models/esm
hf_public_repos/transformers/src/transformers/models/esm/openfold_utils/tensor_utils.py
# Copyright 2021 AlQuraishi Laboratory # Copyright 2021 DeepMind Technologies Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from functools import partial from typing import Any, Callable, Dict, List, Type, TypeVar, Union, overload import torch import torch.nn as nn import torch.types def add(m1: torch.Tensor, m2: torch.Tensor, inplace: bool) -> torch.Tensor: # The first operation in a checkpoint can't be in-place, but it's # nice to have in-place addition during inference. Thus... if not inplace: m1 = m1 + m2 else: m1 += m2 return m1 def permute_final_dims(tensor: torch.Tensor, inds: List[int]) -> torch.Tensor: zero_index = -1 * len(inds) first_inds = list(range(len(tensor.shape[:zero_index]))) return tensor.permute(first_inds + [zero_index + i for i in inds]) def flatten_final_dims(t: torch.Tensor, no_dims: int) -> torch.Tensor: return t.reshape(t.shape[:-no_dims] + (-1,)) def masked_mean(mask: torch.Tensor, value: torch.Tensor, dim: int, eps: float = 1e-4) -> torch.Tensor: mask = mask.expand(*value.shape) return torch.sum(mask * value, dim=dim) / (eps + torch.sum(mask, dim=dim)) def pts_to_distogram( pts: torch.Tensor, min_bin: torch.types.Number = 2.3125, max_bin: torch.types.Number = 21.6875, no_bins: int = 64 ) -> torch.Tensor: boundaries = torch.linspace(min_bin, max_bin, no_bins - 1, device=pts.device) dists = torch.sqrt(torch.sum((pts.unsqueeze(-2) - pts.unsqueeze(-3)) ** 2, dim=-1)) return torch.bucketize(dists, boundaries) def dict_multimap(fn: Callable[[list], Any], dicts: List[dict]) -> dict: first = dicts[0] new_dict = {} for k, v in first.items(): all_v = [d[k] for d in dicts] if isinstance(v, dict): new_dict[k] = dict_multimap(fn, all_v) else: new_dict[k] = fn(all_v) return new_dict def one_hot(x: torch.Tensor, v_bins: torch.Tensor) -> torch.Tensor: reshaped_bins = v_bins.view(((1,) * len(x.shape)) + (len(v_bins),)) diffs = x[..., None] - reshaped_bins am = torch.argmin(torch.abs(diffs), dim=-1) return nn.functional.one_hot(am, num_classes=len(v_bins)).float() def batched_gather(data: torch.Tensor, inds: torch.Tensor, dim: int = 0, no_batch_dims: int = 0) -> torch.Tensor: ranges: List[Union[slice, torch.Tensor]] = [] for i, s in enumerate(data.shape[:no_batch_dims]): r = torch.arange(s) r = r.view(*(*((1,) * i), -1, *((1,) * (len(inds.shape) - i - 1)))) ranges.append(r) remaining_dims: List[Union[slice, torch.Tensor]] = [slice(None) for _ in range(len(data.shape) - no_batch_dims)] remaining_dims[dim - no_batch_dims if dim >= 0 else dim] = inds ranges.extend(remaining_dims) # Matt note: Editing this to get around the behaviour of using a list as an array index changing # in recent Numpy versions return data[tuple(ranges)] T = TypeVar("T") # With tree_map, a poor man's JAX tree_map def dict_map( fn: Callable[[T], Any], dic: Dict[Any, Union[dict, list, tuple, T]], leaf_type: Type[T] ) -> Dict[Any, Union[dict, list, tuple, Any]]: new_dict: Dict[Any, Union[dict, list, tuple, Any]] = {} for k, v in dic.items(): if isinstance(v, dict): new_dict[k] = dict_map(fn, v, leaf_type) else: new_dict[k] = tree_map(fn, v, leaf_type) return new_dict @overload def tree_map(fn: Callable[[T], Any], tree: T, leaf_type: Type[T]) -> Any: ... @overload def tree_map(fn: Callable[[T], Any], tree: dict, leaf_type: Type[T]) -> dict: ... @overload def tree_map(fn: Callable[[T], Any], tree: list, leaf_type: Type[T]) -> list: ... @overload def tree_map(fn: Callable[[T], Any], tree: tuple, leaf_type: Type[T]) -> tuple: ... def tree_map(fn, tree, leaf_type): if isinstance(tree, dict): return dict_map(fn, tree, leaf_type) elif isinstance(tree, list): return [tree_map(fn, x, leaf_type) for x in tree] elif isinstance(tree, tuple): return tuple(tree_map(fn, x, leaf_type) for x in tree) elif isinstance(tree, leaf_type): return fn(tree) else: print(type(tree)) raise ValueError("Not supported") tensor_tree_map = partial(tree_map, leaf_type=torch.Tensor)
0
hf_public_repos/transformers/src/transformers/models
hf_public_repos/transformers/src/transformers/models/layoutxlm/__init__.py
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, is_vision_available, ) _import_structure = {"processing_layoutxlm": ["LayoutXLMProcessor"]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["tokenization_layoutxlm"] = ["LayoutXLMTokenizer"] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["tokenization_layoutxlm_fast"] = ["LayoutXLMTokenizerFast"] if TYPE_CHECKING: from .processing_layoutxlm import LayoutXLMProcessor try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutxlm import LayoutXLMTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutxlm_fast import LayoutXLMTokenizerFast else: import sys sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
0
hf_public_repos/transformers/src/transformers/models
hf_public_repos/transformers/src/transformers/models/layoutxlm/tokenization_layoutxlm_fast.py
# coding=utf-8 # Copyright 2021 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License """ Tokenization classes for LayoutXLM model.""" import os from shutil import copyfile from typing import Dict, List, Optional, Tuple, Union from ...tokenization_utils import AddedToken from ...tokenization_utils_base import ( BatchEncoding, EncodedInput, PreTokenizedInput, TextInput, TextInputPair, TruncationStrategy, ) from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import PaddingStrategy, TensorType, add_end_docstrings, is_sentencepiece_available, logging from ..xlm_roberta.tokenization_xlm_roberta_fast import ( PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES, PRETRAINED_VOCAB_FILES_MAP, VOCAB_FILES_NAMES, ) if is_sentencepiece_available(): from .tokenization_layoutxlm import LayoutXLMTokenizer else: LayoutXLMTokenizer = None logger = logging.get_logger(__name__) LAYOUTXLM_ENCODE_KWARGS_DOCSTRING = r""" add_special_tokens (`bool`, *optional*, defaults to `True`): Whether or not to encode the sequences with the special tokens relative to their model. padding (`bool`, `str` or [`~file_utils.PaddingStrategy`], *optional*, defaults to `False`): Activates and controls padding. Accepts the following values: - `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single sequence if provided). - `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. - `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different lengths). truncation (`bool`, `str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`): Activates and controls truncation. Accepts the following values: - `True` or `'longest_first'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will truncate token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a batch of pairs) is provided. - `'only_first'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will only truncate the first sequence of a pair if a pair of sequences (or a batch of pairs) is provided. - `'only_second'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will only truncate the second sequence of a pair if a pair of sequences (or a batch of pairs) is provided. - `False` or `'do_not_truncate'` (default): No truncation (i.e., can output batch with sequence lengths greater than the model maximum admissible input size). max_length (`int`, *optional*): Controls the maximum length to use by one of the truncation/padding parameters. If left unset or set to `None`, this will use the predefined model maximum length if a maximum length is required by one of the truncation/padding parameters. If the model has no specific maximum input length (like XLNet) truncation/padding to a maximum length will be deactivated. stride (`int`, *optional*, defaults to 0): If set to a number along with `max_length`, the overflowing tokens returned when `return_overflowing_tokens=True` will contain some tokens from the end of the truncated sequence returned to provide some overlap between truncated and overflowing sequences. The value of this argument defines the number of overlapping tokens. pad_to_multiple_of (`int`, *optional*): If set will pad the sequence to a multiple of the provided value. This is especially useful to enable the use of Tensor Cores on NVIDIA hardware with compute capability `>= 7.5` (Volta). return_tensors (`str` or [`~file_utils.TensorType`], *optional*): If set, will return tensors instead of list of python integers. Acceptable values are: - `'tf'`: Return TensorFlow `tf.constant` objects. - `'pt'`: Return PyTorch `torch.Tensor` objects. - `'np'`: Return Numpy `np.ndarray` objects. return_token_type_ids (`bool`, *optional*): Whether to return token type IDs. If left to the default, will return the token type IDs according to the specific tokenizer's default, defined by the `return_outputs` attribute. [What are token type IDs?](../glossary#token-type-ids) return_attention_mask (`bool`, *optional*): Whether to return the attention mask. If left to the default, will return the attention mask according to the specific tokenizer's default, defined by the `return_outputs` attribute. [What are attention masks?](../glossary#attention-mask) return_overflowing_tokens (`bool`, *optional*, defaults to `False`): Whether or not to return overflowing token sequences. If a pair of sequences of input ids (or a batch of pairs) is provided with `truncation_strategy = longest_first` or `True`, an error is raised instead of returning overflowing tokens. return_special_tokens_mask (`bool`, *optional*, defaults to `False`): Whether or not to return special tokens mask information. return_offsets_mapping (`bool`, *optional*, defaults to `False`): Whether or not to return `(char_start, char_end)` for each token. This is only available on fast tokenizers inheriting from [`PreTrainedTokenizerFast`], if using Python's tokenizer, this method will raise `NotImplementedError`. return_length (`bool`, *optional*, defaults to `False`): Whether or not to return the lengths of the encoded inputs. verbose (`bool`, *optional*, defaults to `True`): Whether or not to print more information and warnings. **kwargs: passed to the `self.tokenize()` method Return: [`BatchEncoding`]: A [`BatchEncoding`] with the following fields: - **input_ids** -- List of token ids to be fed to a model. [What are input IDs?](../glossary#input-ids) - **bbox** -- List of bounding boxes to be fed to a model. - **token_type_ids** -- List of token type ids to be fed to a model (when `return_token_type_ids=True` or if *"token_type_ids"* is in `self.model_input_names`). [What are token type IDs?](../glossary#token-type-ids) - **attention_mask** -- List of indices specifying which tokens should be attended to by the model (when `return_attention_mask=True` or if *"attention_mask"* is in `self.model_input_names`). [What are attention masks?](../glossary#attention-mask) - **labels** -- List of labels to be fed to a model. (when `word_labels` is specified). - **overflowing_tokens** -- List of overflowing tokens sequences (when a `max_length` is specified and `return_overflowing_tokens=True`). - **num_truncated_tokens** -- Number of tokens truncated (when a `max_length` is specified and `return_overflowing_tokens=True`). - **special_tokens_mask** -- List of 0s and 1s, with 1 specifying added special tokens and 0 specifying regular sequence tokens (when `add_special_tokens=True` and `return_special_tokens_mask=True`). - **length** -- The length of the inputs (when `return_length=True`). """ class LayoutXLMTokenizerFast(PreTrainedTokenizerFast): """ Construct a "fast" LayoutXLM tokenizer (backed by HuggingFace's *tokenizers* library). Adapted from [`RobertaTokenizer`] and [`XLNetTokenizer`]. Based on [BPE](https://huggingface.co/docs/tokenizers/python/latest/components.html?highlight=BPE#models). This tokenizer inherits from [`PreTrainedTokenizerFast`] which contains most of the main methods. Users should refer to this superclass for more information regarding those methods. Args: vocab_file (`str`): Path to the vocabulary file. bos_token (`str`, *optional*, defaults to `"<s>"`): The beginning of sequence token that was used during pretraining. Can be used a sequence classifier token. <Tip> When building a sequence using special tokens, this is not the token that is used for the beginning of sequence. The token used is the `cls_token`. </Tip> eos_token (`str`, *optional*, defaults to `"</s>"`): The end of sequence token. <Tip> When building a sequence using special tokens, this is not the token that is used for the end of sequence. The token used is the `sep_token`. </Tip> sep_token (`str`, *optional*, defaults to `"</s>"`): The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for sequence classification or for a text and a question for question answering. It is also used as the last token of a sequence built with special tokens. cls_token (`str`, *optional*, defaults to `"<s>"`): The classifier token which is used when doing sequence classification (classification of the whole sequence instead of per-token classification). It is the first token of the sequence when built with special tokens. unk_token (`str`, *optional*, defaults to `"<unk>"`): The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this token instead. pad_token (`str`, *optional*, defaults to `"<pad>"`): The token used for padding, for example when batching sequences of different lengths. mask_token (`str`, *optional*, defaults to `"<mask>"`): The token used for masking values. This is the token used when training this model with masked language modeling. This is the token which the model will try to predict. cls_token_box (`List[int]`, *optional*, defaults to `[0, 0, 0, 0]`): The bounding box to use for the special [CLS] token. sep_token_box (`List[int]`, *optional*, defaults to `[1000, 1000, 1000, 1000]`): The bounding box to use for the special [SEP] token. pad_token_box (`List[int]`, *optional*, defaults to `[0, 0, 0, 0]`): The bounding box to use for the special [PAD] token. pad_token_label (`int`, *optional*, defaults to -100): The label to use for padding tokens. Defaults to -100, which is the `ignore_index` of PyTorch's CrossEntropyLoss. only_label_first_subword (`bool`, *optional*, defaults to `True`): Whether or not to only label the first subword, in case word labels are provided. additional_special_tokens (`List[str]`, *optional*, defaults to `["<s>NOTUSED", "</s>NOTUSED"]`): Additional special tokens used by the tokenizer. """ vocab_files_names = VOCAB_FILES_NAMES pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES model_input_names = ["input_ids", "attention_mask"] slow_tokenizer_class = LayoutXLMTokenizer def __init__( self, vocab_file=None, tokenizer_file=None, bos_token="<s>", eos_token="</s>", sep_token="</s>", cls_token="<s>", unk_token="<unk>", pad_token="<pad>", mask_token="<mask>", cls_token_box=[0, 0, 0, 0], sep_token_box=[1000, 1000, 1000, 1000], pad_token_box=[0, 0, 0, 0], pad_token_label=-100, only_label_first_subword=True, **kwargs, ): # Mask token behave like a normal word, i.e. include the space before it mask_token = AddedToken(mask_token, lstrip=True, rstrip=False) if isinstance(mask_token, str) else mask_token super().__init__( vocab_file, tokenizer_file=tokenizer_file, bos_token=bos_token, eos_token=eos_token, sep_token=sep_token, cls_token=cls_token, unk_token=unk_token, pad_token=pad_token, mask_token=mask_token, cls_token_box=cls_token_box, sep_token_box=sep_token_box, pad_token_box=pad_token_box, pad_token_label=pad_token_label, only_label_first_subword=only_label_first_subword, **kwargs, ) self.vocab_file = vocab_file self.can_save_slow_tokenizer = False if not self.vocab_file else True # additional properties self.cls_token_box = cls_token_box self.sep_token_box = sep_token_box self.pad_token_box = pad_token_box self.pad_token_label = pad_token_label self.only_label_first_subword = only_label_first_subword @add_end_docstrings(LAYOUTXLM_ENCODE_KWARGS_DOCSTRING) def __call__( self, text: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]], text_pair: Optional[Union[PreTokenizedInput, List[PreTokenizedInput]]] = None, boxes: Union[List[List[int]], List[List[List[int]]]] = None, word_labels: Optional[Union[List[int], List[List[int]]]] = None, add_special_tokens: bool = True, padding: Union[bool, str, PaddingStrategy] = False, truncation: Union[bool, str, TruncationStrategy] = None, max_length: Optional[int] = None, stride: int = 0, pad_to_multiple_of: Optional[int] = None, return_tensors: Optional[Union[str, TensorType]] = None, return_token_type_ids: Optional[bool] = None, return_attention_mask: Optional[bool] = None, return_overflowing_tokens: bool = False, return_special_tokens_mask: bool = False, return_offsets_mapping: bool = False, return_length: bool = False, verbose: bool = True, **kwargs, ) -> BatchEncoding: """ Main method to tokenize and prepare for the model one or several sequence(s) or one or several pair(s) of sequences with word-level normalized bounding boxes and optional labels. Args: text (`str`, `List[str]`, `List[List[str]]`): The sequence or batch of sequences to be encoded. Each sequence can be a string, a list of strings (words of a single example or questions of a batch of examples) or a list of list of strings (batch of words). text_pair (`List[str]`, `List[List[str]]`): The sequence or batch of sequences to be encoded. Each sequence should be a list of strings (pretokenized string). boxes (`List[List[int]]`, `List[List[List[int]]]`): Word-level bounding boxes. Each bounding box should be normalized to be on a 0-1000 scale. word_labels (`List[int]`, `List[List[int]]`, *optional*): Word-level integer labels (for token classification tasks such as FUNSD, CORD). """ # Input type checking for clearer error def _is_valid_text_input(t): if isinstance(t, str): # Strings are fine return True elif isinstance(t, (list, tuple)): # List are fine as long as they are... if len(t) == 0: # ... empty return True elif isinstance(t[0], str): # ... list of strings return True elif isinstance(t[0], (list, tuple)): # ... list with an empty list or with a list of strings return len(t[0]) == 0 or isinstance(t[0][0], str) else: return False else: return False if text_pair is not None: # in case text + text_pair are provided, text = questions, text_pair = words if not _is_valid_text_input(text): raise ValueError("text input must of type `str` (single example) or `List[str]` (batch of examples). ") if not isinstance(text_pair, (list, tuple)): raise ValueError( "words must of type `List[str]` (single pretokenized example), " "or `List[List[str]]` (batch of pretokenized examples)." ) else: # in case only text is provided => must be words if not isinstance(text, (list, tuple)): raise ValueError( "Words must of type `List[str]` (single pretokenized example), " "or `List[List[str]]` (batch of pretokenized examples)." ) if text_pair is not None: is_batched = isinstance(text, (list, tuple)) else: is_batched = isinstance(text, (list, tuple)) and text and isinstance(text[0], (list, tuple)) words = text if text_pair is None else text_pair if boxes is None: raise ValueError("You must provide corresponding bounding boxes") if is_batched: if len(words) != len(boxes): raise ValueError("You must provide words and boxes for an equal amount of examples") for words_example, boxes_example in zip(words, boxes): if len(words_example) != len(boxes_example): raise ValueError("You must provide as many words as there are bounding boxes") else: if len(words) != len(boxes): raise ValueError("You must provide as many words as there are bounding boxes") if is_batched: if text_pair is not None and len(text) != len(text_pair): raise ValueError( f"batch length of `text`: {len(text)} does not match batch length of `text_pair`:" f" {len(text_pair)}." ) batch_text_or_text_pairs = list(zip(text, text_pair)) if text_pair is not None else text is_pair = bool(text_pair is not None) return self.batch_encode_plus( batch_text_or_text_pairs=batch_text_or_text_pairs, is_pair=is_pair, boxes=boxes, word_labels=word_labels, add_special_tokens=add_special_tokens, padding=padding, truncation=truncation, max_length=max_length, stride=stride, pad_to_multiple_of=pad_to_multiple_of, return_tensors=return_tensors, return_token_type_ids=return_token_type_ids, return_attention_mask=return_attention_mask, return_overflowing_tokens=return_overflowing_tokens, return_special_tokens_mask=return_special_tokens_mask, return_offsets_mapping=return_offsets_mapping, return_length=return_length, verbose=verbose, **kwargs, ) else: return self.encode_plus( text=text, text_pair=text_pair, boxes=boxes, word_labels=word_labels, add_special_tokens=add_special_tokens, padding=padding, truncation=truncation, max_length=max_length, stride=stride, pad_to_multiple_of=pad_to_multiple_of, return_tensors=return_tensors, return_token_type_ids=return_token_type_ids, return_attention_mask=return_attention_mask, return_overflowing_tokens=return_overflowing_tokens, return_special_tokens_mask=return_special_tokens_mask, return_offsets_mapping=return_offsets_mapping, return_length=return_length, verbose=verbose, **kwargs, ) def tokenize(self, text: str, pair: Optional[str] = None, add_special_tokens: bool = False, **kwargs) -> List[str]: batched_input = [(text, pair)] if pair else [text] encodings = self._tokenizer.encode_batch( batched_input, add_special_tokens=add_special_tokens, is_pretokenized=False, **kwargs ) return encodings[0].tokens def _batch_encode_plus( self, batch_text_or_text_pairs: Union[ List[TextInput], List[TextInputPair], List[PreTokenizedInput], ], is_pair: bool = None, boxes: Optional[List[List[List[int]]]] = None, word_labels: Optional[List[List[int]]] = None, add_special_tokens: bool = True, padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD, truncation_strategy: TruncationStrategy = TruncationStrategy.DO_NOT_TRUNCATE, max_length: Optional[int] = None, stride: int = 0, pad_to_multiple_of: Optional[int] = None, return_tensors: Optional[str] = None, return_token_type_ids: Optional[bool] = None, return_attention_mask: Optional[bool] = None, return_overflowing_tokens: bool = False, return_special_tokens_mask: bool = False, return_offsets_mapping: bool = False, return_length: bool = False, verbose: bool = True, **kwargs, ) -> BatchEncoding: if not isinstance(batch_text_or_text_pairs, list): raise TypeError(f"batch_text_or_text_pairs has to be a list (got {type(batch_text_or_text_pairs)})") # Set the truncation and padding strategy and restore the initial configuration self.set_truncation_and_padding( padding_strategy=padding_strategy, truncation_strategy=truncation_strategy, max_length=max_length, stride=stride, pad_to_multiple_of=pad_to_multiple_of, ) if is_pair: batch_text_or_text_pairs = [(text.split(), text_pair) for text, text_pair in batch_text_or_text_pairs] encodings = self._tokenizer.encode_batch( batch_text_or_text_pairs, add_special_tokens=add_special_tokens, is_pretokenized=True, # we set this to True as LayoutLMv2 always expects pretokenized inputs ) # Convert encoding to dict # `Tokens` has type: Tuple[ # List[Dict[str, List[List[int]]]] or List[Dict[str, 2D-Tensor]], # List[EncodingFast] # ] # with nested dimensions corresponding to batch, overflows, sequence length tokens_and_encodings = [ self._convert_encoding( encoding=encoding, return_token_type_ids=return_token_type_ids, return_attention_mask=return_attention_mask, return_overflowing_tokens=return_overflowing_tokens, return_special_tokens_mask=return_special_tokens_mask, return_offsets_mapping=True if word_labels is not None else return_offsets_mapping, # we use offsets to create the labels return_length=return_length, verbose=verbose, ) for encoding in encodings ] # Convert the output to have dict[list] from list[dict] and remove the additional overflows dimension # From (variable) shape (batch, overflows, sequence length) to ~ (batch * overflows, sequence length) # (we say ~ because the number of overflow varies with the example in the batch) # # To match each overflowing sample with the original sample in the batch # we add an overflow_to_sample_mapping array (see below) sanitized_tokens = {} for key in tokens_and_encodings[0][0].keys(): stack = [e for item, _ in tokens_and_encodings for e in item[key]] sanitized_tokens[key] = stack sanitized_encodings = [e for _, item in tokens_and_encodings for e in item] # If returning overflowing tokens, we need to return a mapping # from the batch idx to the original sample if return_overflowing_tokens: overflow_to_sample_mapping = [] for i, (toks, _) in enumerate(tokens_and_encodings): overflow_to_sample_mapping += [i] * len(toks["input_ids"]) sanitized_tokens["overflow_to_sample_mapping"] = overflow_to_sample_mapping for input_ids in sanitized_tokens["input_ids"]: self._eventual_warn_about_too_long_sequence(input_ids, max_length, verbose) # create the token boxes token_boxes = [] for batch_index in range(len(sanitized_tokens["input_ids"])): if return_overflowing_tokens: original_index = sanitized_tokens["overflow_to_sample_mapping"][batch_index] else: original_index = batch_index token_boxes_example = [] for id, sequence_id, word_id in zip( sanitized_tokens["input_ids"][batch_index], sanitized_encodings[batch_index].sequence_ids, sanitized_encodings[batch_index].word_ids, ): if word_id is not None: if is_pair and sequence_id == 0: token_boxes_example.append(self.pad_token_box) else: token_boxes_example.append(boxes[original_index][word_id]) else: if id == self.cls_token_id: token_boxes_example.append(self.cls_token_box) elif id == self.sep_token_id: token_boxes_example.append(self.sep_token_box) elif id == self.pad_token_id: token_boxes_example.append(self.pad_token_box) else: raise ValueError("Id not recognized") token_boxes.append(token_boxes_example) sanitized_tokens["bbox"] = token_boxes # optionally, create the labels if word_labels is not None: labels = [] for batch_index in range(len(sanitized_tokens["input_ids"])): if return_overflowing_tokens: original_index = sanitized_tokens["overflow_to_sample_mapping"][batch_index] else: original_index = batch_index labels_example = [] for id, offset, word_id in zip( sanitized_tokens["input_ids"][batch_index], sanitized_tokens["offset_mapping"][batch_index], sanitized_encodings[batch_index].word_ids, ): if word_id is not None: if self.only_label_first_subword: if offset[0] == 0: # Use the real label id for the first token of the word, and padding ids for the remaining tokens labels_example.append(word_labels[original_index][word_id]) else: labels_example.append(self.pad_token_label) else: labels_example.append(word_labels[original_index][word_id]) else: labels_example.append(self.pad_token_label) labels.append(labels_example) sanitized_tokens["labels"] = labels # finally, remove offsets if the user didn't want them if not return_offsets_mapping: del sanitized_tokens["offset_mapping"] return BatchEncoding(sanitized_tokens, sanitized_encodings, tensor_type=return_tensors) def _encode_plus( self, text: Union[TextInput, PreTokenizedInput], text_pair: Optional[PreTokenizedInput] = None, boxes: Optional[List[List[int]]] = None, word_labels: Optional[List[int]] = None, add_special_tokens: bool = True, padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD, truncation_strategy: TruncationStrategy = TruncationStrategy.DO_NOT_TRUNCATE, max_length: Optional[int] = None, stride: int = 0, pad_to_multiple_of: Optional[int] = None, return_tensors: Optional[bool] = None, return_token_type_ids: Optional[bool] = None, return_attention_mask: Optional[bool] = None, return_overflowing_tokens: bool = False, return_special_tokens_mask: bool = False, return_offsets_mapping: bool = False, return_length: bool = False, verbose: bool = True, **kwargs, ) -> BatchEncoding: # make it a batched input # 2 options: # 1) only text, in case text must be a list of str # 2) text + text_pair, in which case text = str and text_pair a list of str batched_input = [(text, text_pair)] if text_pair else [text] batched_boxes = [boxes] batched_word_labels = [word_labels] if word_labels is not None else None batched_output = self._batch_encode_plus( batched_input, is_pair=bool(text_pair is not None), boxes=batched_boxes, word_labels=batched_word_labels, add_special_tokens=add_special_tokens, padding_strategy=padding_strategy, truncation_strategy=truncation_strategy, max_length=max_length, stride=stride, pad_to_multiple_of=pad_to_multiple_of, return_tensors=return_tensors, return_token_type_ids=return_token_type_ids, return_attention_mask=return_attention_mask, return_overflowing_tokens=return_overflowing_tokens, return_special_tokens_mask=return_special_tokens_mask, return_offsets_mapping=return_offsets_mapping, return_length=return_length, verbose=verbose, **kwargs, ) # Return tensor is None, then we can remove the leading batch axis # Overflowing tokens are returned as a batch of output so we keep them in this case if return_tensors is None and not return_overflowing_tokens: batched_output = BatchEncoding( { key: value[0] if len(value) > 0 and isinstance(value[0], list) else value for key, value in batched_output.items() }, batched_output.encodings, ) self._eventual_warn_about_too_long_sequence(batched_output["input_ids"], max_length, verbose) return batched_output def _pad( self, encoded_inputs: Union[Dict[str, EncodedInput], BatchEncoding], max_length: Optional[int] = None, padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD, pad_to_multiple_of: Optional[int] = None, return_attention_mask: Optional[bool] = None, ) -> dict: """ Pad encoded inputs (on left/right and up to predefined length or max length in the batch) Args: encoded_inputs: Dictionary of tokenized inputs (`List[int]`) or batch of tokenized inputs (`List[List[int]]`). max_length: maximum length of the returned list and optionally padding length (see below). Will truncate by taking into account the special tokens. padding_strategy: PaddingStrategy to use for padding. - PaddingStrategy.LONGEST Pad to the longest sequence in the batch - PaddingStrategy.MAX_LENGTH: Pad to the max length (default) - PaddingStrategy.DO_NOT_PAD: Do not pad The tokenizer padding sides are defined in self.padding_side: - 'left': pads on the left of the sequences - 'right': pads on the right of the sequences pad_to_multiple_of: (optional) Integer if set will pad the sequence to a multiple of the provided value. This is especially useful to enable the use of Tensor Core on NVIDIA hardware with compute capability `>= 7.5` (Volta). return_attention_mask: (optional) Set to False to avoid returning attention mask (default: set to model specifics) """ # Load from model defaults if return_attention_mask is None: return_attention_mask = "attention_mask" in self.model_input_names required_input = encoded_inputs[self.model_input_names[0]] if padding_strategy == PaddingStrategy.LONGEST: max_length = len(required_input) if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0): max_length = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of needs_to_be_padded = padding_strategy != PaddingStrategy.DO_NOT_PAD and len(required_input) != max_length # Initialize attention mask if not present. if return_attention_mask and "attention_mask" not in encoded_inputs: encoded_inputs["attention_mask"] = [1] * len(required_input) if needs_to_be_padded: difference = max_length - len(required_input) if self.padding_side == "right": if return_attention_mask: encoded_inputs["attention_mask"] = encoded_inputs["attention_mask"] + [0] * difference if "token_type_ids" in encoded_inputs: encoded_inputs["token_type_ids"] = ( encoded_inputs["token_type_ids"] + [self.pad_token_type_id] * difference ) if "bbox" in encoded_inputs: encoded_inputs["bbox"] = encoded_inputs["bbox"] + [self.pad_token_box] * difference if "labels" in encoded_inputs: encoded_inputs["labels"] = encoded_inputs["labels"] + [self.pad_token_label] * difference if "special_tokens_mask" in encoded_inputs: encoded_inputs["special_tokens_mask"] = encoded_inputs["special_tokens_mask"] + [1] * difference encoded_inputs[self.model_input_names[0]] = required_input + [self.pad_token_id] * difference elif self.padding_side == "left": if return_attention_mask: encoded_inputs["attention_mask"] = [0] * difference + encoded_inputs["attention_mask"] if "token_type_ids" in encoded_inputs: encoded_inputs["token_type_ids"] = [self.pad_token_type_id] * difference + encoded_inputs[ "token_type_ids" ] if "bbox" in encoded_inputs: encoded_inputs["bbox"] = [self.pad_token_box] * difference + encoded_inputs["bbox"] if "labels" in encoded_inputs: encoded_inputs["labels"] = [self.pad_token_label] * difference + encoded_inputs["labels"] if "special_tokens_mask" in encoded_inputs: encoded_inputs["special_tokens_mask"] = [1] * difference + encoded_inputs["special_tokens_mask"] encoded_inputs[self.model_input_names[0]] = [self.pad_token_id] * difference + required_input else: raise ValueError("Invalid padding strategy:" + str(self.padding_side)) return encoded_inputs def build_inputs_with_special_tokens( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None ) -> List[int]: """ Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and adding special tokens. An XLM-RoBERTa sequence has the following format: - single sequence: `<s> X </s>` - pair of sequences: `<s> A </s></s> B </s>` Args: token_ids_0 (`List[int]`): List of IDs to which the special tokens will be added. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. Returns: `List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens. """ if token_ids_1 is None: return [self.cls_token_id] + token_ids_0 + [self.sep_token_id] cls = [self.cls_token_id] sep = [self.sep_token_id] return cls + token_ids_0 + sep + sep + token_ids_1 + sep def create_token_type_ids_from_sequences( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None ) -> List[int]: """ Create a mask from the two sequences passed to be used in a sequence-pair classification task. XLM-RoBERTa does not make use of token type ids, therefore a list of zeros is returned. Args: token_ids_0 (`List[int]`): List of IDs. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. Returns: `List[int]`: List of zeros. """ sep = [self.sep_token_id] cls = [self.cls_token_id] if token_ids_1 is None: return len(cls + token_ids_0 + sep) * [0] return len(cls + token_ids_0 + sep + sep + token_ids_1 + sep) * [0] def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]: if not self.can_save_slow_tokenizer: raise ValueError( "Your fast tokenizer does not have the necessary information to save the vocabulary for a slow " "tokenizer." ) if not os.path.isdir(save_directory): logger.error(f"Vocabulary path ({save_directory}) should be a directory.") return out_vocab_file = os.path.join( save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file): copyfile(self.vocab_file, out_vocab_file) return (out_vocab_file,)
0
hf_public_repos/transformers/src/transformers/models
hf_public_repos/transformers/src/transformers/models/layoutxlm/processing_layoutxlm.py
# coding=utf-8 # Copyright 2021 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Processor class for LayoutXLM. """ import warnings from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class LayoutXLMProcessor(ProcessorMixin): r""" Constructs a LayoutXLM processor which combines a LayoutXLM image processor and a LayoutXLM tokenizer into a single processor. [`LayoutXLMProcessor`] offers all the functionalities you need to prepare data for the model. It first uses [`LayoutLMv2ImageProcessor`] to resize document images to a fixed size, and optionally applies OCR to get words and normalized bounding boxes. These are then provided to [`LayoutXLMTokenizer`] or [`LayoutXLMTokenizerFast`], which turns the words and bounding boxes into token-level `input_ids`, `attention_mask`, `token_type_ids`, `bbox`. Optionally, one can provide integer `word_labels`, which are turned into token-level `labels` for token classification tasks (such as FUNSD, CORD). Args: image_processor (`LayoutLMv2ImageProcessor`): An instance of [`LayoutLMv2ImageProcessor`]. The image processor is a required input. tokenizer (`LayoutXLMTokenizer` or `LayoutXLMTokenizerFast`): An instance of [`LayoutXLMTokenizer`] or [`LayoutXLMTokenizerFast`]. The tokenizer is a required input. """ attributes = ["image_processor", "tokenizer"] image_processor_class = "LayoutLMv2ImageProcessor" tokenizer_class = ("LayoutXLMTokenizer", "LayoutXLMTokenizerFast") def __init__(self, image_processor=None, tokenizer=None, **kwargs): if "feature_extractor" in kwargs: warnings.warn( "The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`" " instead.", FutureWarning, ) feature_extractor = kwargs.pop("feature_extractor") image_processor = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("You need to specify an `image_processor`.") if tokenizer is None: raise ValueError("You need to specify a `tokenizer`.") super().__init__(image_processor, tokenizer) def __call__( self, images, text: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None, text_pair: Optional[Union[PreTokenizedInput, List[PreTokenizedInput]]] = None, boxes: Union[List[List[int]], List[List[List[int]]]] = None, word_labels: Optional[Union[List[int], List[List[int]]]] = None, add_special_tokens: bool = True, padding: Union[bool, str, PaddingStrategy] = False, truncation: Union[bool, str, TruncationStrategy] = None, max_length: Optional[int] = None, stride: int = 0, pad_to_multiple_of: Optional[int] = None, return_token_type_ids: Optional[bool] = None, return_attention_mask: Optional[bool] = None, return_overflowing_tokens: bool = False, return_special_tokens_mask: bool = False, return_offsets_mapping: bool = False, return_length: bool = False, verbose: bool = True, return_tensors: Optional[Union[str, TensorType]] = None, **kwargs, ) -> BatchEncoding: """ This method first forwards the `images` argument to [`~LayoutLMv2ImagePrpcessor.__call__`]. In case [`LayoutLMv2ImagePrpcessor`] was initialized with `apply_ocr` set to `True`, it passes the obtained words and bounding boxes along with the additional arguments to [`~LayoutXLMTokenizer.__call__`] and returns the output, together with resized `images`. In case [`LayoutLMv2ImagePrpcessor`] was initialized with `apply_ocr` set to `False`, it passes the words (`text`/``text_pair`) and `boxes` specified by the user along with the additional arguments to [`~LayoutXLMTokenizer.__call__`] and returns the output, together with resized `images``. Please refer to the docstring of the above two methods for more information. """ # verify input if self.image_processor.apply_ocr and (boxes is not None): raise ValueError( "You cannot provide bounding boxes " "if you initialized the image processor with apply_ocr set to True." ) if self.image_processor.apply_ocr and (word_labels is not None): raise ValueError( "You cannot provide word labels if you initialized the image processor with apply_ocr set to True." ) if return_overflowing_tokens is True and return_offsets_mapping is False: raise ValueError("You cannot return overflowing tokens without returning the offsets mapping.") # first, apply the image processor features = self.image_processor(images=images, return_tensors=return_tensors) # second, apply the tokenizer if text is not None and self.image_processor.apply_ocr and text_pair is None: if isinstance(text, str): text = [text] # add batch dimension (as the image processor always adds a batch dimension) text_pair = features["words"] encoded_inputs = self.tokenizer( text=text if text is not None else features["words"], text_pair=text_pair if text_pair is not None else None, boxes=boxes if boxes is not None else features["boxes"], word_labels=word_labels, add_special_tokens=add_special_tokens, padding=padding, truncation=truncation, max_length=max_length, stride=stride, pad_to_multiple_of=pad_to_multiple_of, return_token_type_ids=return_token_type_ids, return_attention_mask=return_attention_mask, return_overflowing_tokens=return_overflowing_tokens, return_special_tokens_mask=return_special_tokens_mask, return_offsets_mapping=return_offsets_mapping, return_length=return_length, verbose=verbose, return_tensors=return_tensors, **kwargs, ) # add pixel values images = features.pop("pixel_values") if return_overflowing_tokens is True: images = self.get_overflowing_images(images, encoded_inputs["overflow_to_sample_mapping"]) encoded_inputs["image"] = images return encoded_inputs def get_overflowing_images(self, images, overflow_to_sample_mapping): # in case there's an overflow, ensure each `input_ids` sample is mapped to its corresponding image images_with_overflow = [] for sample_idx in overflow_to_sample_mapping: images_with_overflow.append(images[sample_idx]) if len(images_with_overflow) != len(overflow_to_sample_mapping): raise ValueError( "Expected length of images to be the same as the length of `overflow_to_sample_mapping`, but got" f" {len(images_with_overflow)} and {len(overflow_to_sample_mapping)}" ) return images_with_overflow def batch_decode(self, *args, **kwargs): """ This method forwards all its arguments to PreTrainedTokenizer's [`~PreTrainedTokenizer.batch_decode`]. Please refer to the docstring of this method for more information. """ return self.tokenizer.batch_decode(*args, **kwargs) def decode(self, *args, **kwargs): """ This method forwards all its arguments to PreTrainedTokenizer's [`~PreTrainedTokenizer.decode`]. Please refer to the docstring of this method for more information. """ return self.tokenizer.decode(*args, **kwargs) @property def model_input_names(self): return ["input_ids", "bbox", "attention_mask", "image"] @property def feature_extractor_class(self): warnings.warn( "`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.", FutureWarning, ) return self.image_processor_class @property def feature_extractor(self): warnings.warn( "`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.", FutureWarning, ) return self.image_processor
0
hf_public_repos/transformers/src/transformers/models
hf_public_repos/transformers/src/transformers/models/layoutxlm/tokenization_layoutxlm.py
# coding=utf-8 # Copyright 2021 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License """ Tokenization classes for LayoutXLM model.""" import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple, Union import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...tokenization_utils_base import ( BatchEncoding, EncodedInput, PreTokenizedInput, TextInput, TextInputPair, TruncationStrategy, ) from ...utils import PaddingStrategy, TensorType, add_end_docstrings, logging from ..xlm_roberta.tokenization_xlm_roberta import ( PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES, PRETRAINED_VOCAB_FILES_MAP, SPIECE_UNDERLINE, VOCAB_FILES_NAMES, ) logger = logging.get_logger(__name__) LAYOUTXLM_ENCODE_KWARGS_DOCSTRING = r""" add_special_tokens (`bool`, *optional*, defaults to `True`): Whether or not to encode the sequences with the special tokens relative to their model. padding (`bool`, `str` or [`~file_utils.PaddingStrategy`], *optional*, defaults to `False`): Activates and controls padding. Accepts the following values: - `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single sequence if provided). - `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. - `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different lengths). truncation (`bool`, `str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`): Activates and controls truncation. Accepts the following values: - `True` or `'longest_first'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will truncate token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a batch of pairs) is provided. - `'only_first'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will only truncate the first sequence of a pair if a pair of sequences (or a batch of pairs) is provided. - `'only_second'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will only truncate the second sequence of a pair if a pair of sequences (or a batch of pairs) is provided. - `False` or `'do_not_truncate'` (default): No truncation (i.e., can output batch with sequence lengths greater than the model maximum admissible input size). max_length (`int`, *optional*): Controls the maximum length to use by one of the truncation/padding parameters. If left unset or set to `None`, this will use the predefined model maximum length if a maximum length is required by one of the truncation/padding parameters. If the model has no specific maximum input length (like XLNet) truncation/padding to a maximum length will be deactivated. stride (`int`, *optional*, defaults to 0): If set to a number along with `max_length`, the overflowing tokens returned when `return_overflowing_tokens=True` will contain some tokens from the end of the truncated sequence returned to provide some overlap between truncated and overflowing sequences. The value of this argument defines the number of overlapping tokens. pad_to_multiple_of (`int`, *optional*): If set will pad the sequence to a multiple of the provided value. This is especially useful to enable the use of Tensor Cores on NVIDIA hardware with compute capability `>= 7.5` (Volta). return_tensors (`str` or [`~file_utils.TensorType`], *optional*): If set, will return tensors instead of list of python integers. Acceptable values are: - `'tf'`: Return TensorFlow `tf.constant` objects. - `'pt'`: Return PyTorch `torch.Tensor` objects. - `'np'`: Return Numpy `np.ndarray` objects. return_token_type_ids (`bool`, *optional*): Whether to return token type IDs. If left to the default, will return the token type IDs according to the specific tokenizer's default, defined by the `return_outputs` attribute. [What are token type IDs?](../glossary#token-type-ids) return_attention_mask (`bool`, *optional*): Whether to return the attention mask. If left to the default, will return the attention mask according to the specific tokenizer's default, defined by the `return_outputs` attribute. [What are attention masks?](../glossary#attention-mask) return_overflowing_tokens (`bool`, *optional*, defaults to `False`): Whether or not to return overflowing token sequences. If a pair of sequences of input ids (or a batch of pairs) is provided with `truncation_strategy = longest_first` or `True`, an error is raised instead of returning overflowing tokens. return_special_tokens_mask (`bool`, *optional*, defaults to `False`): Whether or not to return special tokens mask information. return_offsets_mapping (`bool`, *optional*, defaults to `False`): Whether or not to return `(char_start, char_end)` for each token. This is only available on fast tokenizers inheriting from [`PreTrainedTokenizerFast`], if using Python's tokenizer, this method will raise `NotImplementedError`. return_length (`bool`, *optional*, defaults to `False`): Whether or not to return the lengths of the encoded inputs. verbose (`bool`, *optional*, defaults to `True`): Whether or not to print more information and warnings. **kwargs: passed to the `self.tokenize()` method Return: [`BatchEncoding`]: A [`BatchEncoding`] with the following fields: - **input_ids** -- List of token ids to be fed to a model. [What are input IDs?](../glossary#input-ids) - **bbox** -- List of bounding boxes to be fed to a model. - **token_type_ids** -- List of token type ids to be fed to a model (when `return_token_type_ids=True` or if *"token_type_ids"* is in `self.model_input_names`). [What are token type IDs?](../glossary#token-type-ids) - **attention_mask** -- List of indices specifying which tokens should be attended to by the model (when `return_attention_mask=True` or if *"attention_mask"* is in `self.model_input_names`). [What are attention masks?](../glossary#attention-mask) - **labels** -- List of labels to be fed to a model. (when `word_labels` is specified). - **overflowing_tokens** -- List of overflowing tokens sequences (when a `max_length` is specified and `return_overflowing_tokens=True`). - **num_truncated_tokens** -- Number of tokens truncated (when a `max_length` is specified and `return_overflowing_tokens=True`). - **special_tokens_mask** -- List of 0s and 1s, with 1 specifying added special tokens and 0 specifying regular sequence tokens (when `add_special_tokens=True` and `return_special_tokens_mask=True`). - **length** -- The length of the inputs (when `return_length=True`). """ class LayoutXLMTokenizer(PreTrainedTokenizer): """ Adapted from [`RobertaTokenizer`] and [`XLNetTokenizer`]. Based on [SentencePiece](https://github.com/google/sentencepiece). This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to this superclass for more information regarding those methods. Args: vocab_file (`str`): Path to the vocabulary file. bos_token (`str`, *optional*, defaults to `"<s>"`): The beginning of sequence token that was used during pretraining. Can be used a sequence classifier token. <Tip> When building a sequence using special tokens, this is not the token that is used for the beginning of sequence. The token used is the `cls_token`. </Tip> eos_token (`str`, *optional*, defaults to `"</s>"`): The end of sequence token. <Tip> When building a sequence using special tokens, this is not the token that is used for the end of sequence. The token used is the `sep_token`. </Tip> sep_token (`str`, *optional*, defaults to `"</s>"`): The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for sequence classification or for a text and a question for question answering. It is also used as the last token of a sequence built with special tokens. cls_token (`str`, *optional*, defaults to `"<s>"`): The classifier token which is used when doing sequence classification (classification of the whole sequence instead of per-token classification). It is the first token of the sequence when built with special tokens. unk_token (`str`, *optional*, defaults to `"<unk>"`): The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this token instead. pad_token (`str`, *optional*, defaults to `"<pad>"`): The token used for padding, for example when batching sequences of different lengths. mask_token (`str`, *optional*, defaults to `"<mask>"`): The token used for masking values. This is the token used when training this model with masked language modeling. This is the token which the model will try to predict. cls_token_box (`List[int]`, *optional*, defaults to `[0, 0, 0, 0]`): The bounding box to use for the special [CLS] token. sep_token_box (`List[int]`, *optional*, defaults to `[1000, 1000, 1000, 1000]`): The bounding box to use for the special [SEP] token. pad_token_box (`List[int]`, *optional*, defaults to `[0, 0, 0, 0]`): The bounding box to use for the special [PAD] token. pad_token_label (`int`, *optional*, defaults to -100): The label to use for padding tokens. Defaults to -100, which is the `ignore_index` of PyTorch's CrossEntropyLoss. only_label_first_subword (`bool`, *optional*, defaults to `True`): Whether or not to only label the first subword, in case word labels are provided. additional_special_tokens (`List[str]`, *optional*, defaults to `["<s>NOTUSED", "</s>NOTUSED"]`): Additional special tokens used by the tokenizer. sp_model_kwargs (`dict`, *optional*): Will be passed to the `SentencePieceProcessor.__init__()` method. The [Python wrapper for SentencePiece](https://github.com/google/sentencepiece/tree/master/python) can be used, among other things, to set: - `enable_sampling`: Enable subword regularization. - `nbest_size`: Sampling parameters for unigram. Invalid for BPE-Dropout. - `nbest_size = {0,1}`: No sampling is performed. - `nbest_size > 1`: samples from the nbest_size results. - `nbest_size < 0`: assuming that nbest_size is infinite and samples from the all hypothesis (lattice) using forward-filtering-and-backward-sampling algorithm. - `alpha`: Smoothing parameter for unigram sampling, and dropout probability of merge operations for BPE-dropout. Attributes: sp_model (`SentencePieceProcessor`): The *SentencePiece* processor that is used for every conversion (string, tokens and IDs). """ vocab_files_names = VOCAB_FILES_NAMES pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES model_input_names = ["input_ids", "attention_mask"] def __init__( self, vocab_file, bos_token="<s>", eos_token="</s>", sep_token="</s>", cls_token="<s>", unk_token="<unk>", pad_token="<pad>", mask_token="<mask>", cls_token_box=[0, 0, 0, 0], sep_token_box=[1000, 1000, 1000, 1000], pad_token_box=[0, 0, 0, 0], pad_token_label=-100, only_label_first_subword=True, sp_model_kwargs: Optional[Dict[str, Any]] = None, **kwargs, ) -> None: # Mask token behave like a normal word, i.e. include the space before it mask_token = AddedToken(mask_token, lstrip=True, rstrip=False) if isinstance(mask_token, str) else mask_token self.sp_model_kwargs = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=bos_token, eos_token=eos_token, unk_token=unk_token, sep_token=sep_token, cls_token=cls_token, pad_token=pad_token, mask_token=mask_token, cls_token_box=cls_token_box, sep_token_box=sep_token_box, pad_token_box=pad_token_box, pad_token_label=pad_token_label, only_label_first_subword=only_label_first_subword, sp_model_kwargs=self.sp_model_kwargs, **kwargs, ) self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(str(vocab_file)) self.vocab_file = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # Mimic fairseq token-to-id alignment for the first 4 token self.fairseq_tokens_to_ids = {"<s>": 0, "<pad>": 1, "</s>": 2, "<unk>": 3} # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab self.fairseq_offset = 1 self.fairseq_tokens_to_ids["<mask>"] = len(self.sp_model) + self.fairseq_offset self.fairseq_ids_to_tokens = {v: k for k, v in self.fairseq_tokens_to_ids.items()} # additional properties self.cls_token_box = cls_token_box self.sep_token_box = sep_token_box self.pad_token_box = pad_token_box self.pad_token_label = pad_token_label self.only_label_first_subword = only_label_first_subword def __getstate__(self): state = self.__dict__.copy() state["sp_model"] = None state["sp_model_proto"] = self.sp_model.serialized_model_proto() return state def __setstate__(self, d): self.__dict__ = d # for backward compatibility if not hasattr(self, "sp_model_kwargs"): self.sp_model_kwargs = {} self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.LoadFromSerializedProto(self.sp_model_proto) def build_inputs_with_special_tokens( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None ) -> List[int]: """ Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and adding special tokens. An XLM-RoBERTa sequence has the following format: - single sequence: `<s> X </s>` - pair of sequences: `<s> A </s></s> B </s>` Args: token_ids_0 (`List[int]`): List of IDs to which the special tokens will be added. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. Returns: `List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens. """ if token_ids_1 is None: return [self.cls_token_id] + token_ids_0 + [self.sep_token_id] cls = [self.cls_token_id] sep = [self.sep_token_id] return cls + token_ids_0 + sep + sep + token_ids_1 + sep def get_special_tokens_mask( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False ) -> List[int]: """ Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding special tokens using the tokenizer `prepare_for_model` method. Args: token_ids_0 (`List[int]`): List of IDs. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. already_has_special_tokens (`bool`, *optional*, defaults to `False`): Whether or not the token list is already formatted with special tokens for the model. Returns: `List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token. """ if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True ) if token_ids_1 is None: return [1] + ([0] * len(token_ids_0)) + [1] return [1] + ([0] * len(token_ids_0)) + [1, 1] + ([0] * len(token_ids_1)) + [1] def create_token_type_ids_from_sequences( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None ) -> List[int]: """ Create a mask from the two sequences passed to be used in a sequence-pair classification task. XLM-RoBERTa does not make use of token type ids, therefore a list of zeros is returned. Args: token_ids_0 (`List[int]`): List of IDs. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. Returns: `List[int]`: List of zeros. """ sep = [self.sep_token_id] cls = [self.cls_token_id] if token_ids_1 is None: return len(cls + token_ids_0 + sep) * [0] return len(cls + token_ids_0 + sep + sep + token_ids_1 + sep) * [0] @property def vocab_size(self): return len(self.sp_model) + self.fairseq_offset + 1 # Add the <mask> token def get_vocab(self): vocab = {self.convert_ids_to_tokens(i): i for i in range(self.vocab_size)} vocab.update(self.added_tokens_encoder) return vocab def _tokenize(self, text: str) -> List[str]: return self.sp_model.encode(text, out_type=str) def _convert_token_to_id(self, token): """Converts a token (str) in an id using the vocab.""" if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] spm_id = self.sp_model.PieceToId(token) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def _convert_id_to_token(self, index): """Converts an index (integer) in a token (str) using the vocab.""" if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset) def convert_tokens_to_string(self, tokens): """Converts a sequence of tokens (strings for sub-words) in a single string.""" out_string = "".join(tokens).replace(SPIECE_UNDERLINE, " ").strip() return out_string def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]: if not os.path.isdir(save_directory): logger.error(f"Vocabulary path ({save_directory}) should be a directory") return out_vocab_file = os.path.join( save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file) and os.path.isfile(self.vocab_file): copyfile(self.vocab_file, out_vocab_file) elif not os.path.isfile(self.vocab_file): with open(out_vocab_file, "wb") as fi: content_spiece_model = self.sp_model.serialized_model_proto() fi.write(content_spiece_model) return (out_vocab_file,) @add_end_docstrings(LAYOUTXLM_ENCODE_KWARGS_DOCSTRING) def __call__( self, text: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]], text_pair: Optional[Union[PreTokenizedInput, List[PreTokenizedInput]]] = None, boxes: Union[List[List[int]], List[List[List[int]]]] = None, word_labels: Optional[Union[List[int], List[List[int]]]] = None, add_special_tokens: bool = True, padding: Union[bool, str, PaddingStrategy] = False, truncation: Union[bool, str, TruncationStrategy] = None, max_length: Optional[int] = None, stride: int = 0, pad_to_multiple_of: Optional[int] = None, return_tensors: Optional[Union[str, TensorType]] = None, return_token_type_ids: Optional[bool] = None, return_attention_mask: Optional[bool] = None, return_overflowing_tokens: bool = False, return_special_tokens_mask: bool = False, return_offsets_mapping: bool = False, return_length: bool = False, verbose: bool = True, **kwargs, ) -> BatchEncoding: """ Main method to tokenize and prepare for the model one or several sequence(s) or one or several pair(s) of sequences with word-level normalized bounding boxes and optional labels. Args: text (`str`, `List[str]`, `List[List[str]]`): The sequence or batch of sequences to be encoded. Each sequence can be a string, a list of strings (words of a single example or questions of a batch of examples) or a list of list of strings (batch of words). text_pair (`List[str]`, `List[List[str]]`): The sequence or batch of sequences to be encoded. Each sequence should be a list of strings (pretokenized string). boxes (`List[List[int]]`, `List[List[List[int]]]`): Word-level bounding boxes. Each bounding box should be normalized to be on a 0-1000 scale. word_labels (`List[int]`, `List[List[int]]`, *optional*): Word-level integer labels (for token classification tasks such as FUNSD, CORD). """ # Input type checking for clearer error def _is_valid_text_input(t): if isinstance(t, str): # Strings are fine return True elif isinstance(t, (list, tuple)): # List are fine as long as they are... if len(t) == 0: # ... empty return True elif isinstance(t[0], str): # ... list of strings return True elif isinstance(t[0], (list, tuple)): # ... list with an empty list or with a list of strings return len(t[0]) == 0 or isinstance(t[0][0], str) else: return False else: return False if text_pair is not None: # in case text + text_pair are provided, text = questions, text_pair = words if not _is_valid_text_input(text): raise ValueError("text input must of type `str` (single example) or `List[str]` (batch of examples). ") if not isinstance(text_pair, (list, tuple)): raise ValueError( "words must of type `List[str]` (single pretokenized example), " "or `List[List[str]]` (batch of pretokenized examples)." ) else: # in case only text is provided => must be words if not isinstance(text, (list, tuple)): raise ValueError( "Words must of type `List[str]` (single pretokenized example), " "or `List[List[str]]` (batch of pretokenized examples)." ) if text_pair is not None: is_batched = isinstance(text, (list, tuple)) else: is_batched = isinstance(text, (list, tuple)) and text and isinstance(text[0], (list, tuple)) words = text if text_pair is None else text_pair if boxes is None: raise ValueError("You must provide corresponding bounding boxes") if is_batched: if len(words) != len(boxes): raise ValueError("You must provide words and boxes for an equal amount of examples") for words_example, boxes_example in zip(words, boxes): if len(words_example) != len(boxes_example): raise ValueError("You must provide as many words as there are bounding boxes") else: if len(words) != len(boxes): raise ValueError("You must provide as many words as there are bounding boxes") if is_batched: if text_pair is not None and len(text) != len(text_pair): raise ValueError( f"batch length of `text`: {len(text)} does not match batch length of `text_pair`:" f" {len(text_pair)}." ) batch_text_or_text_pairs = list(zip(text, text_pair)) if text_pair is not None else text is_pair = bool(text_pair is not None) return self.batch_encode_plus( batch_text_or_text_pairs=batch_text_or_text_pairs, is_pair=is_pair, boxes=boxes, word_labels=word_labels, add_special_tokens=add_special_tokens, padding=padding, truncation=truncation, max_length=max_length, stride=stride, pad_to_multiple_of=pad_to_multiple_of, return_tensors=return_tensors, return_token_type_ids=return_token_type_ids, return_attention_mask=return_attention_mask, return_overflowing_tokens=return_overflowing_tokens, return_special_tokens_mask=return_special_tokens_mask, return_offsets_mapping=return_offsets_mapping, return_length=return_length, verbose=verbose, **kwargs, ) else: return self.encode_plus( text=text, text_pair=text_pair, boxes=boxes, word_labels=word_labels, add_special_tokens=add_special_tokens, padding=padding, truncation=truncation, max_length=max_length, stride=stride, pad_to_multiple_of=pad_to_multiple_of, return_tensors=return_tensors, return_token_type_ids=return_token_type_ids, return_attention_mask=return_attention_mask, return_overflowing_tokens=return_overflowing_tokens, return_special_tokens_mask=return_special_tokens_mask, return_offsets_mapping=return_offsets_mapping, return_length=return_length, verbose=verbose, **kwargs, ) def _batch_encode_plus( self, batch_text_or_text_pairs: Union[ List[TextInput], List[TextInputPair], List[PreTokenizedInput], ], is_pair: bool = None, boxes: Optional[List[List[List[int]]]] = None, word_labels: Optional[List[List[int]]] = None, add_special_tokens: bool = True, padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD, truncation_strategy: TruncationStrategy = TruncationStrategy.DO_NOT_TRUNCATE, max_length: Optional[int] = None, stride: int = 0, pad_to_multiple_of: Optional[int] = None, return_tensors: Optional[Union[str, TensorType]] = None, return_token_type_ids: Optional[bool] = None, return_attention_mask: Optional[bool] = None, return_overflowing_tokens: bool = False, return_special_tokens_mask: bool = False, return_offsets_mapping: bool = False, return_length: bool = False, verbose: bool = True, **kwargs, ) -> BatchEncoding: if return_offsets_mapping: raise NotImplementedError( "return_offset_mapping is not available when using Python tokenizers. " "To use this feature, change your tokenizer to one deriving from " "transformers.PreTrainedTokenizerFast." ) batch_outputs = self._batch_prepare_for_model( batch_text_or_text_pairs=batch_text_or_text_pairs, is_pair=is_pair, boxes=boxes, word_labels=word_labels, add_special_tokens=add_special_tokens, padding_strategy=padding_strategy, truncation_strategy=truncation_strategy, max_length=max_length, stride=stride, pad_to_multiple_of=pad_to_multiple_of, return_attention_mask=return_attention_mask, return_token_type_ids=return_token_type_ids, return_overflowing_tokens=return_overflowing_tokens, return_special_tokens_mask=return_special_tokens_mask, return_length=return_length, return_tensors=return_tensors, verbose=verbose, ) return BatchEncoding(batch_outputs) @add_end_docstrings(LAYOUTXLM_ENCODE_KWARGS_DOCSTRING) def _batch_prepare_for_model( self, batch_text_or_text_pairs, is_pair: bool = None, boxes: Optional[List[List[int]]] = None, word_labels: Optional[List[List[int]]] = None, add_special_tokens: bool = True, padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD, truncation_strategy: TruncationStrategy = TruncationStrategy.DO_NOT_TRUNCATE, max_length: Optional[int] = None, stride: int = 0, pad_to_multiple_of: Optional[int] = None, return_tensors: Optional[str] = None, return_token_type_ids: Optional[bool] = None, return_attention_mask: Optional[bool] = None, return_overflowing_tokens: bool = False, return_special_tokens_mask: bool = False, return_length: bool = False, verbose: bool = True, ) -> BatchEncoding: """ Prepares a sequence of input id, or a pair of sequences of inputs ids so that it can be used by the model. It adds special tokens, truncates sequences if overflowing while taking into account the special tokens and manages a moving window (with user defined stride) for overflowing tokens Args: batch_ids_pairs: list of tokenized input ids or input ids pairs """ batch_outputs = {} for idx, example in enumerate(zip(batch_text_or_text_pairs, boxes)): batch_text_or_text_pair, boxes_example = example outputs = self.prepare_for_model( batch_text_or_text_pair[0] if is_pair else batch_text_or_text_pair, batch_text_or_text_pair[1] if is_pair else None, boxes_example, word_labels=word_labels[idx] if word_labels is not None else None, add_special_tokens=add_special_tokens, padding=PaddingStrategy.DO_NOT_PAD.value, # we pad in batch afterward truncation=truncation_strategy.value, max_length=max_length, stride=stride, pad_to_multiple_of=None, # we pad in batch afterward return_attention_mask=False, # we pad in batch afterward return_token_type_ids=return_token_type_ids, return_overflowing_tokens=return_overflowing_tokens, return_special_tokens_mask=return_special_tokens_mask, return_length=return_length, return_tensors=None, # We convert the whole batch to tensors at the end prepend_batch_axis=False, verbose=verbose, ) for key, value in outputs.items(): if key not in batch_outputs: batch_outputs[key] = [] batch_outputs[key].append(value) batch_outputs = self.pad( batch_outputs, padding=padding_strategy.value, max_length=max_length, pad_to_multiple_of=pad_to_multiple_of, return_attention_mask=return_attention_mask, ) batch_outputs = BatchEncoding(batch_outputs, tensor_type=return_tensors) return batch_outputs def _encode_plus( self, text: Union[TextInput, PreTokenizedInput], text_pair: Optional[PreTokenizedInput] = None, boxes: Optional[List[List[int]]] = None, word_labels: Optional[List[int]] = None, add_special_tokens: bool = True, padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD, truncation_strategy: TruncationStrategy = TruncationStrategy.DO_NOT_TRUNCATE, max_length: Optional[int] = None, stride: int = 0, pad_to_multiple_of: Optional[int] = None, return_tensors: Optional[Union[str, TensorType]] = None, return_token_type_ids: Optional[bool] = None, return_attention_mask: Optional[bool] = None, return_overflowing_tokens: bool = False, return_special_tokens_mask: bool = False, return_offsets_mapping: bool = False, return_length: bool = False, verbose: bool = True, **kwargs, ) -> BatchEncoding: if return_offsets_mapping: raise NotImplementedError( "return_offset_mapping is not available when using Python tokenizers. " "To use this feature, change your tokenizer to one deriving from " "transformers.PreTrainedTokenizerFast. " "More information on available tokenizers at " "https://github.com/huggingface/transformers/pull/2674" ) return self.prepare_for_model( text=text, text_pair=text_pair, boxes=boxes, word_labels=word_labels, add_special_tokens=add_special_tokens, padding=padding_strategy.value, truncation=truncation_strategy.value, max_length=max_length, stride=stride, pad_to_multiple_of=pad_to_multiple_of, return_tensors=return_tensors, prepend_batch_axis=True, return_attention_mask=return_attention_mask, return_token_type_ids=return_token_type_ids, return_overflowing_tokens=return_overflowing_tokens, return_special_tokens_mask=return_special_tokens_mask, return_length=return_length, verbose=verbose, ) @add_end_docstrings(LAYOUTXLM_ENCODE_KWARGS_DOCSTRING) def prepare_for_model( self, text: Union[TextInput, PreTokenizedInput], text_pair: Optional[PreTokenizedInput] = None, boxes: Optional[List[List[int]]] = None, word_labels: Optional[List[int]] = None, add_special_tokens: bool = True, padding: Union[bool, str, PaddingStrategy] = False, truncation: Union[bool, str, TruncationStrategy] = None, max_length: Optional[int] = None, stride: int = 0, pad_to_multiple_of: Optional[int] = None, return_tensors: Optional[Union[str, TensorType]] = None, return_token_type_ids: Optional[bool] = None, return_attention_mask: Optional[bool] = None, return_overflowing_tokens: bool = False, return_special_tokens_mask: bool = False, return_offsets_mapping: bool = False, return_length: bool = False, verbose: bool = True, prepend_batch_axis: bool = False, **kwargs, ) -> BatchEncoding: """ Prepares a sequence or a pair of sequences so that it can be used by the model. It adds special tokens, truncates sequences if overflowing while taking into account the special tokens and manages a moving window (with user defined stride) for overflowing tokens. Word-level `boxes` are turned into token-level `bbox`. If provided, word-level `word_labels` are turned into token-level `labels`. The word label is used for the first token of the word, while remaining tokens are labeled with -100, such that they will be ignored by the loss function. Args: text (`str`, `List[str]`, `List[List[str]]`): The first sequence to be encoded. This can be a string, a list of strings or a list of list of strings. text_pair (`List[str]` or `List[int]`, *optional*): Optional second sequence to be encoded. This can be a list of strings (words of a single example) or a list of list of strings (words of a batch of examples). """ # Backward compatibility for 'truncation_strategy', 'pad_to_max_length' padding_strategy, truncation_strategy, max_length, kwargs = self._get_padding_truncation_strategies( padding=padding, truncation=truncation, max_length=max_length, pad_to_multiple_of=pad_to_multiple_of, verbose=verbose, **kwargs, ) tokens = [] pair_tokens = [] token_boxes = [] pair_token_boxes = [] labels = [] if text_pair is None: if word_labels is None: # CASE 1: document image classification (training + inference) + CASE 2: token classification (inference) for word, box in zip(text, boxes): if len(word) < 1: # skip empty words continue word_tokens = self.tokenize(word) tokens.extend(word_tokens) token_boxes.extend([box] * len(word_tokens)) else: # CASE 2: token classification (training) for word, box, label in zip(text, boxes, word_labels): if len(word) < 1: # skip empty words continue word_tokens = self.tokenize(word) tokens.extend(word_tokens) token_boxes.extend([box] * len(word_tokens)) if self.only_label_first_subword: # Use the real label id for the first token of the word, and padding ids for the remaining tokens labels.extend([label] + [self.pad_token_label] * (len(word_tokens) - 1)) else: labels.extend([label] * len(word_tokens)) else: # CASE 3: document visual question answering (inference) # text = question # text_pair = words tokens = self.tokenize(text) token_boxes = [self.pad_token_box for _ in range(len(tokens))] + [self.sep_token_box] for word, box in zip(text_pair, boxes): if len(word) < 1: # skip empty words continue word_tokens = self.tokenize(word) pair_tokens.extend(word_tokens) pair_token_boxes.extend([box] * len(word_tokens)) # Create ids + pair_ids ids = self.convert_tokens_to_ids(tokens) pair_ids = self.convert_tokens_to_ids(pair_tokens) if pair_tokens else None # Compute the total size of the returned encodings pair = bool(pair_ids is not None) len_ids = len(ids) len_pair_ids = len(pair_ids) if pair else 0 total_len = len_ids + len_pair_ids + (self.num_special_tokens_to_add(pair=pair) if add_special_tokens else 0) # Truncation: Handle max sequence length overflowing_tokens = [] overflowing_token_boxes = [] overflowing_labels = [] if truncation_strategy != TruncationStrategy.DO_NOT_TRUNCATE and max_length and total_len > max_length: ( ids, token_boxes, pair_ids, pair_token_boxes, labels, overflowing_tokens, overflowing_token_boxes, overflowing_labels, ) = self.truncate_sequences( ids, token_boxes, pair_ids=pair_ids, pair_token_boxes=pair_token_boxes, labels=labels, num_tokens_to_remove=total_len - max_length, truncation_strategy=truncation_strategy, stride=stride, ) if return_token_type_ids and not add_special_tokens: raise ValueError( "Asking to return token_type_ids while setting add_special_tokens to False " "results in an undefined behavior. Please set add_special_tokens to True or " "set return_token_type_ids to None." ) # Load from model defaults if return_token_type_ids is None: return_token_type_ids = "token_type_ids" in self.model_input_names if return_attention_mask is None: return_attention_mask = "attention_mask" in self.model_input_names encoded_inputs = {} if return_overflowing_tokens: encoded_inputs["overflowing_tokens"] = overflowing_tokens encoded_inputs["overflowing_token_boxes"] = overflowing_token_boxes encoded_inputs["overflowing_labels"] = overflowing_labels encoded_inputs["num_truncated_tokens"] = total_len - max_length # Add special tokens if add_special_tokens: sequence = self.build_inputs_with_special_tokens(ids, pair_ids) token_type_ids = self.create_token_type_ids_from_sequences(ids, pair_ids) token_boxes = [self.cls_token_box] + token_boxes + [self.sep_token_box] if pair_token_boxes: pair_token_boxes = pair_token_boxes + [self.sep_token_box] if labels: labels = [self.pad_token_label] + labels + [self.pad_token_label] else: sequence = ids + pair_ids if pair else ids token_type_ids = [0] * len(ids) + ([0] * len(pair_ids) if pair else []) # Build output dictionary encoded_inputs["input_ids"] = sequence encoded_inputs["bbox"] = token_boxes + pair_token_boxes if return_token_type_ids: encoded_inputs["token_type_ids"] = token_type_ids if return_special_tokens_mask: if add_special_tokens: encoded_inputs["special_tokens_mask"] = self.get_special_tokens_mask(ids, pair_ids) else: encoded_inputs["special_tokens_mask"] = [0] * len(sequence) if labels: encoded_inputs["labels"] = labels # Check lengths self._eventual_warn_about_too_long_sequence(encoded_inputs["input_ids"], max_length, verbose) # Padding if padding_strategy != PaddingStrategy.DO_NOT_PAD or return_attention_mask: encoded_inputs = self.pad( encoded_inputs, max_length=max_length, padding=padding_strategy.value, pad_to_multiple_of=pad_to_multiple_of, return_attention_mask=return_attention_mask, ) if return_length: encoded_inputs["length"] = len(encoded_inputs["input_ids"]) batch_outputs = BatchEncoding( encoded_inputs, tensor_type=return_tensors, prepend_batch_axis=prepend_batch_axis ) return batch_outputs def truncate_sequences( self, ids: List[int], token_boxes: List[List[int]], pair_ids: Optional[List[int]] = None, pair_token_boxes: Optional[List[List[int]]] = None, labels: Optional[List[int]] = None, num_tokens_to_remove: int = 0, truncation_strategy: Union[str, TruncationStrategy] = "longest_first", stride: int = 0, ) -> Tuple[List[int], List[int], List[int]]: """ Truncates a sequence pair in-place following the strategy. Args: ids (`List[int]`): Tokenized input ids of the first sequence. Can be obtained from a string by chaining the `tokenize` and `convert_tokens_to_ids` methods. token_boxes (`List[List[int]]`): Bounding boxes of the first sequence. pair_ids (`List[int]`, *optional*): Tokenized input ids of the second sequence. Can be obtained from a string by chaining the `tokenize` and `convert_tokens_to_ids` methods. pair_token_boxes (`List[List[int]]`, *optional*): Bounding boxes of the second sequence. labels (`List[int]`, *optional*): Labels of the first sequence (for token classification tasks). num_tokens_to_remove (`int`, *optional*, defaults to 0): Number of tokens to remove using the truncation strategy. truncation_strategy (`str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`): The strategy to follow for truncation. Can be: - `'longest_first'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will truncate token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a batch of pairs) is provided. - `'only_first'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will only truncate the first sequence of a pair if a pair of sequences (or a batch of pairs) is provided. - `'only_second'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will only truncate the second sequence of a pair if a pair of sequences (or a batch of pairs) is provided. - `'do_not_truncate'` (default): No truncation (i.e., can output batch with sequence lengths greater than the model maximum admissible input size). stride (`int`, *optional*, defaults to 0): If set to a positive number, the overflowing tokens returned will contain some tokens from the main sequence returned. The value of this argument defines the number of additional tokens. Returns: `Tuple[List[int], List[int], List[int]]`: The truncated `ids`, the truncated `pair_ids` and the list of overflowing tokens. """ if num_tokens_to_remove <= 0: return ids, token_boxes, pair_ids, pair_token_boxes, labels, [], [], [] if not isinstance(truncation_strategy, TruncationStrategy): truncation_strategy = TruncationStrategy(truncation_strategy) overflowing_tokens = [] overflowing_token_boxes = [] overflowing_labels = [] if truncation_strategy == TruncationStrategy.LONGEST_FIRST: for _ in range(num_tokens_to_remove): if pair_ids is None or len(ids) > len(pair_ids): if not overflowing_tokens: window_len = min(len(ids), stride + 1) else: window_len = 1 overflowing_tokens.extend(ids[-window_len:]) overflowing_token_boxes.extend(token_boxes[-window_len:]) overflowing_labels.extend(labels[-window_len:]) ids = ids[:-1] token_boxes = token_boxes[:-1] labels = labels[:-1] else: if not overflowing_tokens: window_len = min(len(pair_ids), stride + 1) else: window_len = 1 overflowing_tokens.extend(pair_ids[-window_len:]) overflowing_token_boxes.extend(pair_token_boxes[-window_len:]) pair_ids = pair_ids[:-1] pair_token_boxes = pair_token_boxes[:-1] elif truncation_strategy == TruncationStrategy.ONLY_FIRST: if len(ids) > num_tokens_to_remove: window_len = min(len(ids), stride + num_tokens_to_remove) overflowing_tokens = ids[-window_len:] overflowing_token_boxes = token_boxes[-window_len:] overflowing_labels = labels[-window_len:] ids = ids[:-num_tokens_to_remove] token_boxes = token_boxes[:-num_tokens_to_remove] labels = labels[:-num_tokens_to_remove] else: logger.error( f"We need to remove {num_tokens_to_remove} to truncate the input " f"but the first sequence has a length {len(ids)}. " f"Please select another truncation strategy than {truncation_strategy}, " "for instance 'longest_first' or 'only_second'." ) elif truncation_strategy == TruncationStrategy.ONLY_SECOND and pair_ids is not None: if len(pair_ids) > num_tokens_to_remove: window_len = min(len(pair_ids), stride + num_tokens_to_remove) overflowing_tokens = pair_ids[-window_len:] overflowing_token_boxes = pair_token_boxes[-window_len:] pair_ids = pair_ids[:-num_tokens_to_remove] pair_token_boxes = pair_token_boxes[:-num_tokens_to_remove] else: logger.error( f"We need to remove {num_tokens_to_remove} to truncate the input " f"but the second sequence has a length {len(pair_ids)}. " f"Please select another truncation strategy than {truncation_strategy}, " "for instance 'longest_first' or 'only_first'." ) return ( ids, token_boxes, pair_ids, pair_token_boxes, labels, overflowing_tokens, overflowing_token_boxes, overflowing_labels, ) def _pad( self, encoded_inputs: Union[Dict[str, EncodedInput], BatchEncoding], max_length: Optional[int] = None, padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD, pad_to_multiple_of: Optional[int] = None, return_attention_mask: Optional[bool] = None, ) -> dict: """ Pad encoded inputs (on left/right and up to predefined length or max length in the batch) Args: encoded_inputs: Dictionary of tokenized inputs (`List[int]`) or batch of tokenized inputs (`List[List[int]]`). max_length: maximum length of the returned list and optionally padding length (see below). Will truncate by taking into account the special tokens. padding_strategy: PaddingStrategy to use for padding. - PaddingStrategy.LONGEST Pad to the longest sequence in the batch - PaddingStrategy.MAX_LENGTH: Pad to the max length (default) - PaddingStrategy.DO_NOT_PAD: Do not pad The tokenizer padding sides are defined in self.padding_side: - 'left': pads on the left of the sequences - 'right': pads on the right of the sequences pad_to_multiple_of: (optional) Integer if set will pad the sequence to a multiple of the provided value. This is especially useful to enable the use of Tensor Core on NVIDIA hardware with compute capability `>= 7.5` (Volta). return_attention_mask: (optional) Set to False to avoid returning attention mask (default: set to model specifics) """ # Load from model defaults if return_attention_mask is None: return_attention_mask = "attention_mask" in self.model_input_names required_input = encoded_inputs[self.model_input_names[0]] if padding_strategy == PaddingStrategy.LONGEST: max_length = len(required_input) if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0): max_length = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of needs_to_be_padded = padding_strategy != PaddingStrategy.DO_NOT_PAD and len(required_input) != max_length # Initialize attention mask if not present. if return_attention_mask and "attention_mask" not in encoded_inputs: encoded_inputs["attention_mask"] = [1] * len(required_input) if needs_to_be_padded: difference = max_length - len(required_input) if self.padding_side == "right": if return_attention_mask: encoded_inputs["attention_mask"] = encoded_inputs["attention_mask"] + [0] * difference if "token_type_ids" in encoded_inputs: encoded_inputs["token_type_ids"] = ( encoded_inputs["token_type_ids"] + [self.pad_token_type_id] * difference ) if "bbox" in encoded_inputs: encoded_inputs["bbox"] = encoded_inputs["bbox"] + [self.pad_token_box] * difference if "labels" in encoded_inputs: encoded_inputs["labels"] = encoded_inputs["labels"] + [self.pad_token_label] * difference if "special_tokens_mask" in encoded_inputs: encoded_inputs["special_tokens_mask"] = encoded_inputs["special_tokens_mask"] + [1] * difference encoded_inputs[self.model_input_names[0]] = required_input + [self.pad_token_id] * difference elif self.padding_side == "left": if return_attention_mask: encoded_inputs["attention_mask"] = [0] * difference + encoded_inputs["attention_mask"] if "token_type_ids" in encoded_inputs: encoded_inputs["token_type_ids"] = [self.pad_token_type_id] * difference + encoded_inputs[ "token_type_ids" ] if "bbox" in encoded_inputs: encoded_inputs["bbox"] = [self.pad_token_box] * difference + encoded_inputs["bbox"] if "labels" in encoded_inputs: encoded_inputs["labels"] = [self.pad_token_label] * difference + encoded_inputs["labels"] if "special_tokens_mask" in encoded_inputs: encoded_inputs["special_tokens_mask"] = [1] * difference + encoded_inputs["special_tokens_mask"] encoded_inputs[self.model_input_names[0]] = [self.pad_token_id] * difference + required_input else: raise ValueError("Invalid padding strategy:" + str(self.padding_side)) return encoded_inputs
0
hf_public_repos/transformers/src/transformers/models
hf_public_repos/transformers/src/transformers/models/big_bird/__init__.py
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) _import_structure = { "configuration_big_bird": ["BIG_BIRD_PRETRAINED_CONFIG_ARCHIVE_MAP", "BigBirdConfig", "BigBirdOnnxConfig"], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["tokenization_big_bird"] = ["BigBirdTokenizer"] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["tokenization_big_bird_fast"] = ["BigBirdTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["modeling_big_bird"] = [ "BIG_BIRD_PRETRAINED_MODEL_ARCHIVE_LIST", "BigBirdForCausalLM", "BigBirdForMaskedLM", "BigBirdForMultipleChoice", "BigBirdForPreTraining", "BigBirdForQuestionAnswering", "BigBirdForSequenceClassification", "BigBirdForTokenClassification", "BigBirdLayer", "BigBirdModel", "BigBirdPreTrainedModel", "load_tf_weights_in_big_bird", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["modeling_flax_big_bird"] = [ "FlaxBigBirdForCausalLM", "FlaxBigBirdForMaskedLM", "FlaxBigBirdForMultipleChoice", "FlaxBigBirdForPreTraining", "FlaxBigBirdForQuestionAnswering", "FlaxBigBirdForSequenceClassification", "FlaxBigBirdForTokenClassification", "FlaxBigBirdModel", "FlaxBigBirdPreTrainedModel", ] if TYPE_CHECKING: from .configuration_big_bird import BIG_BIRD_PRETRAINED_CONFIG_ARCHIVE_MAP, BigBirdConfig, BigBirdOnnxConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_big_bird import BigBirdTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_big_bird_fast import BigBirdTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_big_bird import ( BIG_BIRD_PRETRAINED_MODEL_ARCHIVE_LIST, BigBirdForCausalLM, BigBirdForMaskedLM, BigBirdForMultipleChoice, BigBirdForPreTraining, BigBirdForQuestionAnswering, BigBirdForSequenceClassification, BigBirdForTokenClassification, BigBirdLayer, BigBirdModel, BigBirdPreTrainedModel, load_tf_weights_in_big_bird, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_big_bird import ( FlaxBigBirdForCausalLM, FlaxBigBirdForMaskedLM, FlaxBigBirdForMultipleChoice, FlaxBigBirdForPreTraining, FlaxBigBirdForQuestionAnswering, FlaxBigBirdForSequenceClassification, FlaxBigBirdForTokenClassification, FlaxBigBirdModel, FlaxBigBirdPreTrainedModel, ) else: import sys sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
0
hf_public_repos/transformers/src/transformers/models
hf_public_repos/transformers/src/transformers/models/big_bird/modeling_big_bird.py
# coding=utf-8 # Copyright 2021 Google Research and The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ PyTorch BigBird model.""" import math import os from dataclasses import dataclass from typing import Optional, Tuple, Union import numpy as np import torch import torch.utils.checkpoint from torch import nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACT2FN from ...modeling_outputs import ( BaseModelOutputWithPastAndCrossAttentions, BaseModelOutputWithPoolingAndCrossAttentions, CausalLMOutputWithCrossAttentions, MaskedLMOutput, MultipleChoiceModelOutput, SequenceClassifierOutput, TokenClassifierOutput, ) from ...modeling_utils import PreTrainedModel from ...pytorch_utils import apply_chunking_to_forward from ...utils import ( ModelOutput, add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings, ) from .configuration_big_bird import BigBirdConfig logger = logging.get_logger(__name__) _CHECKPOINT_FOR_DOC = "google/bigbird-roberta-base" _CONFIG_FOR_DOC = "BigBirdConfig" BIG_BIRD_PRETRAINED_MODEL_ARCHIVE_LIST = [ "google/bigbird-roberta-base", "google/bigbird-roberta-large", "google/bigbird-base-trivia-itc", # See all BigBird models at https://huggingface.co/models?filter=big_bird ] _TRIVIA_QA_MAPPING = { "big_bird_attention": "attention/self", "output_layer_norm": "output/LayerNorm", "attention_output": "attention/output/dense", "output": "output/dense", "self_attention_layer_norm": "attention/output/LayerNorm", "intermediate": "intermediate/dense", "word_embeddings": "bert/embeddings/word_embeddings", "position_embedding": "bert/embeddings/position_embeddings", "type_embeddings": "bert/embeddings/token_type_embeddings", "embeddings": "bert/embeddings", "layer_normalization": "output/LayerNorm", "layer_norm": "LayerNorm", "trivia_qa_head": "qa_classifier", "dense": "intermediate/dense", "dense_1": "qa_outputs", } def load_tf_weights_in_big_bird(model, tf_checkpoint_path, is_trivia_qa=False): """Load tf checkpoints in a pytorch model.""" def load_tf_weights_bert(init_vars, tf_path): names = [] tf_weights = {} for name, shape in init_vars: array = tf.train.load_variable(tf_path, name) name = name.replace("bert/encoder/LayerNorm", "bert/embeddings/LayerNorm") logger.info(f"Loading TF weight {name} with shape {shape}") names.append(name) tf_weights[name] = array return names, tf_weights def load_tf_weights_trivia_qa(init_vars): names = [] tf_weights = {} for i, var in enumerate(init_vars): name_items = var.name.split("/") if "transformer_scaffold" in name_items[0]: layer_name_items = name_items[0].split("_") if len(layer_name_items) < 3: layer_name_items += [0] name_items[0] = f"bert/encoder/layer_{layer_name_items[2]}" name = "/".join([_TRIVIA_QA_MAPPING[x] if x in _TRIVIA_QA_MAPPING else x for x in name_items])[ :-2 ] # remove last :0 in variable if "self/attention/output" in name: name = name.replace("self/attention/output", "output") if i >= len(init_vars) - 2: name = name.replace("intermediate", "output") logger.info(f"Loading TF weight {name} with shape {var.shape}") array = var.value().numpy() names.append(name) tf_weights[name] = array return names, tf_weights try: import re import numpy as np import tensorflow as tf except ImportError: logger.error( "Loading a TensorFlow model in PyTorch, requires TensorFlow to be installed. Please see " "https://www.tensorflow.org/install/ for installation instructions." ) raise tf_path = os.path.abspath(tf_checkpoint_path) logger.info(f"Converting TensorFlow checkpoint from {tf_path}") # Load weights from TF model init_vars = tf.saved_model.load(tf_path).variables if is_trivia_qa else tf.train.list_variables(tf_path) if len(init_vars) <= 0: raise ValueError("Loaded trained variables cannot be empty.") pt_names = list(model.state_dict().keys()) if is_trivia_qa: names, tf_weights = load_tf_weights_trivia_qa(init_vars) else: names, tf_weights = load_tf_weights_bert(init_vars, tf_path) for txt_name in names: array = tf_weights[txt_name] name = txt_name.split("/") # adam_v and adam_m are variables used in AdamWeightDecayOptimizer to calculated m and v # which are not required for using pretrained model if any( n in ["adam_v", "adam_m", "AdamWeightDecayOptimizer", "AdamWeightDecayOptimizer_1", "global_step"] for n in name ): logger.info(f"Skipping {'/'.join(name)}") continue pointer = model pt_name = [] for m_name in name: if re.fullmatch(r"[A-Za-z]+_\d+", m_name): scope_names = re.split(r"_(\d+)", m_name) else: scope_names = [m_name] if scope_names[0] == "kernel" or scope_names[0] == "gamma": pointer = getattr(pointer, "weight") pt_name.append("weight") elif scope_names[0] == "output_bias" or scope_names[0] == "beta": pointer = getattr(pointer, "bias") pt_name.append("bias") elif scope_names[0] == "output_weights": pointer = getattr(pointer, "weight") pt_name.append("weight") elif scope_names[0] == "squad": pointer = getattr(pointer, "classifier") pt_name.append("classifier") elif scope_names[0] == "transform": pointer = getattr(pointer, "transform") pt_name.append("transform") if ("bias" in name) or ("kernel" in name): pointer = getattr(pointer, "dense") pt_name.append("dense") elif ("beta" in name) or ("gamma" in name): pointer = getattr(pointer, "LayerNorm") pt_name.append("LayerNorm") else: try: pointer = getattr(pointer, scope_names[0]) pt_name.append(f"{scope_names[0]}") except AttributeError: logger.info(f"Skipping {m_name}") continue if len(scope_names) >= 2: num = int(scope_names[1]) pointer = pointer[num] pt_name.append(f"{num}") if m_name[-11:] == "_embeddings" or m_name == "embeddings": pointer = getattr(pointer, "weight") pt_name.append("weight") elif m_name == "kernel": array = np.transpose(array) try: if len(array.shape) > len(pointer.shape) and math.prod(array.shape) == math.prod(pointer.shape): # print(txt_name, array.shape) if ( txt_name.endswith("attention/self/key/kernel") or txt_name.endswith("attention/self/query/kernel") or txt_name.endswith("attention/self/value/kernel") ): array = array.transpose(1, 0, 2).reshape(pointer.shape) elif txt_name.endswith("attention/output/dense/kernel"): array = array.transpose(0, 2, 1).reshape(pointer.shape) else: array = array.reshape(pointer.shape) if pointer.shape != array.shape: raise ValueError( f"Pointer shape {pointer.shape} and array shape {array.shape} mismatched of {txt_name}." ) except ValueError as e: e.args += (pointer.shape, array.shape) raise pt_weight_name = ".".join(pt_name) logger.info(f"Initialize PyTorch weight {pt_weight_name} from {txt_name}.") pointer.data = torch.from_numpy(array) tf_weights.pop(txt_name, None) pt_names.remove(pt_weight_name) logger.info(f"Weights not copied to PyTorch model: {', '.join(tf_weights.keys())}.") logger.info(f"Weights not initialized in PyTorch model: {', '.join(pt_names)}.") return model class BigBirdEmbeddings(nn.Module): """Construct the embeddings from word, position and token_type embeddings.""" # Copied from transformers.models.bert.modeling_bert.BertEmbeddings.__init__ def __init__(self, config): super().__init__() self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id) self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size) self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size) # self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load # any TensorFlow checkpoint file self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.dropout = nn.Dropout(config.hidden_dropout_prob) # position_ids (1, len position emb) is contiguous in memory and exported when serialized self.position_embedding_type = getattr(config, "position_embedding_type", "absolute") self.register_buffer( "position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)), persistent=False ) self.register_buffer( "token_type_ids", torch.zeros(self.position_ids.size(), dtype=torch.long), persistent=False ) # End copy self.rescale_embeddings = config.rescale_embeddings self.hidden_size = config.hidden_size def forward( self, input_ids=None, token_type_ids=None, position_ids=None, inputs_embeds=None, past_key_values_length=0 ): if input_ids is not None: input_shape = input_ids.size() else: input_shape = inputs_embeds.size()[:-1] seq_length = input_shape[1] if position_ids is None: position_ids = self.position_ids[:, past_key_values_length : seq_length + past_key_values_length] # Setting the token_type_ids to the registered buffer in constructor where it is all zeros, which usually occurs # when its auto-generated, registered buffer helps users when tracing the model without passing token_type_ids, solves # issue #5664 if token_type_ids is None: if hasattr(self, "token_type_ids"): buffered_token_type_ids = self.token_type_ids[:, :seq_length] buffered_token_type_ids_expanded = buffered_token_type_ids.expand(input_shape[0], seq_length) token_type_ids = buffered_token_type_ids_expanded else: token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=self.position_ids.device) if inputs_embeds is None: inputs_embeds = self.word_embeddings(input_ids) if self.rescale_embeddings: inputs_embeds = inputs_embeds * (self.hidden_size**0.5) token_type_embeddings = self.token_type_embeddings(token_type_ids) embeddings = inputs_embeds + token_type_embeddings position_embeddings = self.position_embeddings(position_ids) embeddings += position_embeddings embeddings = self.dropout(embeddings) embeddings = self.LayerNorm(embeddings) return embeddings class BigBirdSelfAttention(nn.Module): def __init__(self, config): super().__init__() if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"): raise ValueError( f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention " f"heads ({config.num_attention_heads})" ) self.num_attention_heads = config.num_attention_heads self.attention_head_size = int(config.hidden_size / config.num_attention_heads) self.all_head_size = self.num_attention_heads * self.attention_head_size self.query = nn.Linear(config.hidden_size, self.all_head_size, bias=config.use_bias) self.key = nn.Linear(config.hidden_size, self.all_head_size, bias=config.use_bias) self.value = nn.Linear(config.hidden_size, self.all_head_size, bias=config.use_bias) self.dropout = nn.Dropout(config.attention_probs_dropout_prob) self.is_decoder = config.is_decoder def transpose_for_scores(self, x): new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size) x = x.view(*new_x_shape) return x.permute(0, 2, 1, 3) def forward( self, hidden_states, attention_mask=None, head_mask=None, encoder_hidden_states=None, encoder_attention_mask=None, past_key_value=None, output_attentions=False, ): mixed_query_layer = self.query(hidden_states) # If this is instantiated as a cross-attention module, the keys # and values come from an encoder; the attention mask needs to be # such that the encoder's padding tokens are not attended to. is_cross_attention = encoder_hidden_states is not None if is_cross_attention and past_key_value is not None: # reuse k,v, cross_attentions key_layer = past_key_value[0] value_layer = past_key_value[1] attention_mask = encoder_attention_mask elif is_cross_attention: key_layer = self.transpose_for_scores(self.key(encoder_hidden_states)) value_layer = self.transpose_for_scores(self.value(encoder_hidden_states)) attention_mask = encoder_attention_mask elif past_key_value is not None: key_layer = self.transpose_for_scores(self.key(hidden_states)) value_layer = self.transpose_for_scores(self.value(hidden_states)) key_layer = torch.cat([past_key_value[0], key_layer], dim=2) value_layer = torch.cat([past_key_value[1], value_layer], dim=2) else: key_layer = self.transpose_for_scores(self.key(hidden_states)) value_layer = self.transpose_for_scores(self.value(hidden_states)) query_layer = self.transpose_for_scores(mixed_query_layer) if self.is_decoder: # if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states. # Further calls to cross_attention layer can then reuse all cross-attention # key/value_states (first "if" case) # if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of # all previous decoder key/value_states. Further calls to uni-directional self-attention # can concat previous decoder key/value_states to current projected key/value_states (third "elif" case) # if encoder bi-directional self-attention `past_key_value` is always `None` past_key_value = (key_layer, value_layer) # Take the dot product between "query" and "key" to get the raw attention scores. attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2)) attention_scores = attention_scores / math.sqrt(self.attention_head_size) if attention_mask is not None: # Apply the attention mask is (precomputed for all layers in BigBirdModel forward() function) attention_scores = attention_scores + attention_mask # Normalize the attention scores to probabilities. attention_probs = nn.functional.softmax(attention_scores, dim=-1) # This is actually dropping out entire tokens to attend to, which might # seem a bit unusual, but is taken from the original Transformer paper. attention_probs = self.dropout(attention_probs) # Mask heads if we want to if head_mask is not None: attention_probs = attention_probs * head_mask context_layer = torch.matmul(attention_probs, value_layer) context_layer = context_layer.permute(0, 2, 1, 3).contiguous() new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,) context_layer = context_layer.view(*new_context_layer_shape) outputs = (context_layer, attention_probs) if output_attentions else (context_layer,) if self.is_decoder: outputs = outputs + (past_key_value,) return outputs class BigBirdBlockSparseAttention(nn.Module): def __init__(self, config, seed=None): super().__init__() self.max_seqlen = config.max_position_embeddings self.seed = seed if config.hidden_size % config.num_attention_heads != 0: raise ValueError( f"The hidden size {config.hidden_size} is not a multiple of the number of attention " f"heads {config.num_attention_heads}." ) self.num_attention_heads = config.num_attention_heads self.num_random_blocks = config.num_random_blocks self.block_size = config.block_size self.attention_head_size = int(config.hidden_size / config.num_attention_heads) self.all_head_size = self.num_attention_heads * self.attention_head_size self.query = nn.Linear(config.hidden_size, self.all_head_size, bias=config.use_bias) self.key = nn.Linear(config.hidden_size, self.all_head_size, bias=config.use_bias) self.value = nn.Linear(config.hidden_size, self.all_head_size, bias=config.use_bias) def transpose_for_scores(self, x): new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size) x = x.view(*new_x_shape) return x.permute(0, 2, 1, 3) def forward( self, hidden_states, band_mask=None, from_mask=None, to_mask=None, from_blocked_mask=None, to_blocked_mask=None, output_attentions=None, ): # Currently this `class` can't be used in decoder. batch_size, seqlen, _ = hidden_states.size() to_seq_length = from_seq_length = seqlen from_block_size = to_block_size = self.block_size if from_seq_length % from_block_size != 0: raise ValueError("Query sided sequence length must be multiple of block size") if to_seq_length % to_block_size != 0: raise ValueError("Key/Value sided sequence length must be multiple of block size") query_layer = self.transpose_for_scores(self.query(hidden_states)) key_layer = self.transpose_for_scores(self.key(hidden_states)) value_layer = self.transpose_for_scores(self.value(hidden_states)) context_layer, attention_probs = self.bigbird_block_sparse_attention( query_layer, key_layer, value_layer, band_mask, from_mask, to_mask, from_blocked_mask, to_blocked_mask, self.num_attention_heads, self.num_random_blocks, self.attention_head_size, from_block_size, to_block_size, batch_size, from_seq_length, to_seq_length, seed=self.seed, plan_from_length=None, plan_num_rand_blocks=None, output_attentions=output_attentions, ) context_layer = context_layer.contiguous().view(batch_size, from_seq_length, -1) outputs = (context_layer, attention_probs) if output_attentions else (context_layer,) return outputs @staticmethod def torch_bmm_nd(inp_1, inp_2, ndim=None): """Fast nd matrix multiplication""" # faster replacement of torch.einsum ("bhqk,bhkd->bhqd") return torch.bmm(inp_1.reshape((-1,) + inp_1.shape[-2:]), inp_2.reshape((-1,) + inp_2.shape[-2:])).view( inp_1.shape[: ndim - 2] + (inp_1.shape[ndim - 2], inp_2.shape[ndim - 1]) ) @staticmethod def torch_bmm_nd_transpose(inp_1, inp_2, ndim=None): """Fast nd matrix multiplication with transpose""" # faster replacement of torch.einsum (bhqd,bhkd->bhqk) return torch.bmm( inp_1.reshape((-1,) + inp_1.shape[-2:]), inp_2.reshape((-1,) + inp_2.shape[-2:]).transpose(1, 2) ).view(inp_1.shape[: ndim - 2] + (inp_1.shape[ndim - 2], inp_2.shape[ndim - 2])) def bigbird_block_sparse_attention( self, query_layer, key_layer, value_layer, band_mask, from_mask, to_mask, from_blocked_mask, to_blocked_mask, n_heads, n_rand_blocks, attention_head_size, from_block_size, to_block_size, batch_size, from_seq_len, to_seq_len, seed, plan_from_length, plan_num_rand_blocks, output_attentions, ): # BigBird block-sparse attention as suggested in paper # ITC: # global tokens: 2 x block_size # window tokens: 3 x block_size # random tokens: num_rand_tokens x block_size # ETC: # global tokens: extra_globals_tokens + 2 x block_size # window tokens: 3 x block_size # random tokens: num_rand_tokens x block_size # Note: # 1) Currently, ETC is not supported. # 2) Window size is fixed to 3 blocks & it can be changed only by # changing `block_size`. # 3) Number of global blocks are fixed (2 blocks here) & global tokens can be # controlled only by `block_size`. # attention is calculated separately for q[0], q[1], q[2:-2], q[-2], q[-1] in order to use special trick of shifting tokens (for calculating sliding attention) # hence following code can be divided into 5 parts. if from_seq_len // from_block_size != to_seq_len // to_block_size: raise ValueError("Error the number of blocks needs to be same!") rsqrt_d = 1 / math.sqrt(attention_head_size) bsz = batch_size attn_mask_penalty = -10000.0 # generate random attention and corresponding masks np.random.seed(seed) if from_seq_len in [1024, 3072, 4096]: # old plans used in paper rand_attn = [ self._bigbird_block_rand_mask( self.max_seqlen, self.max_seqlen, from_block_size, to_block_size, n_rand_blocks, last_idx=1024 )[: (from_seq_len // from_block_size - 2)] for _ in range(n_heads) ] else: if plan_from_length is None: plan_from_length, plan_num_rand_blocks = self._get_rand_attn_plan( from_seq_len, from_block_size, n_rand_blocks ) rand_attn = self._bigbird_block_rand_mask_with_head( from_seq_length=from_seq_len, to_seq_length=to_seq_len, from_block_size=from_block_size, to_block_size=to_block_size, num_heads=n_heads, plan_from_length=plan_from_length, plan_num_rand_blocks=plan_num_rand_blocks, ) rand_attn = np.stack(rand_attn, axis=0) rand_attn = torch.tensor(rand_attn, device=query_layer.device, dtype=torch.long) rand_attn.unsqueeze_(0) rand_attn = torch.cat([rand_attn for _ in range(batch_size)], dim=0) rand_mask = self._create_rand_mask_from_inputs( from_blocked_mask, to_blocked_mask, rand_attn, n_heads, n_rand_blocks, bsz, from_seq_len, from_block_size ) blocked_query_matrix = query_layer.view(bsz, n_heads, from_seq_len // from_block_size, from_block_size, -1) blocked_key_matrix = key_layer.view(bsz, n_heads, to_seq_len // to_block_size, to_block_size, -1) blocked_value_matrix = value_layer.view(bsz, n_heads, to_seq_len // to_block_size, to_block_size, -1) # preparing block for randn attn gathered_key = self.torch_gather_b2(blocked_key_matrix, rand_attn) gathered_key = gathered_key.view( bsz, n_heads, to_seq_len // to_block_size - 2, n_rand_blocks * to_block_size, -1 ) # [bsz, n_heads, to_seq_len//to_block_size-2, n_rand_blocks, to_block_size, -1] gathered_value = self.torch_gather_b2(blocked_value_matrix, rand_attn) gathered_value = gathered_value.view( bsz, n_heads, to_seq_len // to_block_size - 2, n_rand_blocks * to_block_size, -1 ) # [bsz, n_heads, to_seq_len//to_block_size-2, n_rand_blocks, to_block_size, -1] # 1st PART # 1st block (global block) attention scores # q[0] x (k[0], k[1], k[2], k[3], k[4] .... ) # [bsz, n_heads, from_block_size, -1] x [bsz, n_heads, to_seq_len, -1] ==> [bsz, n_heads, from_block_size, to_seq_len] first_product = self.torch_bmm_nd_transpose(blocked_query_matrix[:, :, 0], key_layer, ndim=4) first_product = first_product * rsqrt_d first_product += (1.0 - to_mask) * attn_mask_penalty first_attn_weights = nn.functional.softmax( first_product, dim=-1 ) # [bsz, n_heads, from_block_size, to_seq_len] # [bsz, n_heads, from_block_size, to_seq_len] x [bsz, n_heads, to_seq_len, -1] ==> [bsz, n_heads, from_block_size, -1] first_context_layer = self.torch_bmm_nd(first_attn_weights, value_layer, ndim=4) first_context_layer.unsqueeze_(2) # 2nd PART # 2nd block attention scores # q[1] x (sliding_keys, random_keys, global_keys) # sliding key blocks -> 2nd, 3rd blocks # global key blocks -> 1st block second_key_mat = torch.cat( [ blocked_key_matrix[:, :, 0], blocked_key_matrix[:, :, 1], blocked_key_matrix[:, :, 2], blocked_key_matrix[:, :, -1], gathered_key[:, :, 0], ], dim=2, ) # [bsz, n_heads, (4+n_rand_blocks)*to_block_size, -1] second_value_mat = torch.cat( [ blocked_value_matrix[:, :, 0], blocked_value_matrix[:, :, 1], blocked_value_matrix[:, :, 2], blocked_value_matrix[:, :, -1], gathered_value[:, :, 0], ], dim=2, ) # [bsz, n_heads, (4+n_rand_blocks)*to_block_size, -1] # [bsz, n_heads, from_block_size, -1] x [bsz, n_heads, (4+n_rand_blocks)*to_block_size, -1] ==> [bsz, n_heads, from_block_size, (4+n_rand_blocks)*to_block_size] second_product = self.torch_bmm_nd_transpose(blocked_query_matrix[:, :, 1], second_key_mat, ndim=4) second_seq_pad = torch.cat( [ to_mask[:, :, :, : 3 * to_block_size], to_mask[:, :, :, -to_block_size:], to_mask.new_ones([bsz, 1, 1, n_rand_blocks * to_block_size]), ], dim=3, ) second_rand_pad = torch.cat( [ rand_mask.new_ones([bsz, n_heads, from_block_size, 4 * to_block_size]), rand_mask[:, :, 0], ], dim=3, ) second_product = second_product * rsqrt_d second_product += (1.0 - torch.minimum(second_seq_pad, second_rand_pad)) * attn_mask_penalty second_attn_weights = nn.functional.softmax( second_product, dim=-1 ) # [bsz, n_heads, from_block_size, (4+n_rand_blocks)*to_block_size] # [bsz, n_heads, from_block_size, (4+n_rand_blocks)*to_block_size] x [bsz, n_heads, (4+n_rand_blocks)*to_block_size, -1] ==> [bsz, n_heads, from_block_size, -1] second_context_layer = self.torch_bmm_nd(second_attn_weights, second_value_mat, ndim=4) second_context_layer.unsqueeze_(2) # 3rd PART # Middle blocks attention scores # q[-2:2] x (sliding_keys, random_keys, global_keys) # sliding attn is calculated using special trick of shifting tokens as discussed in paper # random keys are generated by taking random indices as per `rand_attn` # global keys -> 1st & last block exp_blocked_key_matrix = torch.cat( [blocked_key_matrix[:, :, 1:-3], blocked_key_matrix[:, :, 2:-2], blocked_key_matrix[:, :, 3:-1]], dim=3 ) # [bsz, n_heads, from_seq_len//from_block_size-4, 3*to_block_size, -1] exp_blocked_value_matrix = torch.cat( [blocked_value_matrix[:, :, 1:-3], blocked_value_matrix[:, :, 2:-2], blocked_value_matrix[:, :, 3:-1]], dim=3, ) # [bsz, n_heads, from_seq_len//from_block_size-4, 3*to_block_size, -1] middle_query_matrix = blocked_query_matrix[:, :, 2:-2] # sliding attention scores for q[-2:2] # [bsz, n_heads, from_seq_len//from_block_size-4, from_block_size, -1] x [b, n_heads, from_seq_len//from_block_size-4, 3*to_block_size, -1] inner_band_product = self.torch_bmm_nd_transpose(middle_query_matrix, exp_blocked_key_matrix, ndim=5) # ==> [bsz, n_heads, from_seq_len//from_block_size-4, from_block_size, 3*to_block_size] inner_band_product = inner_band_product * rsqrt_d # randn attention scores for q[-2:2] # [bsz, n_heads, from_seq_len//from_block_size-4, from_block_size, -1] x [bsz, n_heads, from_seq_len//from_block_size-4, n_rand_blocks*to_block_size, -1] rand_band_product = self.torch_bmm_nd_transpose(middle_query_matrix, gathered_key[:, :, 1:-1], ndim=5) # ==> [bsz, n_heads, from_seq_len//from_block_size-4, from_block_size, n_rand_blocks*to_block_size] rand_band_product = rand_band_product * rsqrt_d # Including 1st block (since it's global) first_band_product = torch.einsum( "bhlqd,bhkd->bhlqk", middle_query_matrix, blocked_key_matrix[:, :, 0] ) # [bsz, n_heads, from_seq_len//from_block_size-4, from_block_size, -1] x [bsz, n_heads, to_block_size, -1] ==> [bsz, n_heads, from_seq_len//from_block_size-4, from_block_size, to_block_size] first_band_product = first_band_product * rsqrt_d # Including last block (since it's global) last_band_product = torch.einsum( "bhlqd,bhkd->bhlqk", middle_query_matrix, blocked_key_matrix[:, :, -1] ) # [bsz, n_heads, from_seq_len//from_block_size-4, from_block_size, -1] x [bsz, n_heads, to_block_size, -1] ==> [bsz, n_heads, from_seq_len//from_block_size-4, from_block_size, to_block_size] last_band_product = last_band_product * rsqrt_d # masking padded tokens inner_band_product += (1.0 - band_mask) * attn_mask_penalty first_band_product += (1.0 - to_mask[:, :, :, :to_block_size].unsqueeze(3)) * attn_mask_penalty last_band_product += (1.0 - to_mask[:, :, :, -to_block_size:].unsqueeze(3)) * attn_mask_penalty rand_band_product += (1.0 - rand_mask[:, :, 1:-1]) * attn_mask_penalty # completing attention scores matrix for all q[-2:2] band_product = torch.cat( [first_band_product, inner_band_product, rand_band_product, last_band_product], dim=-1 ) # [bsz, n_heads, from_seq_len//from_block_size-4, from_block_size, (5+n_rand_blocks)*to_block_size] # safely doing softmax since attention matrix is completed attn_weights = nn.functional.softmax( band_product, dim=-1 ) # [bsz, n_heads, from_seq_len//from_block_size-4, from_block_size, (5+n_rand_blocks)*to_block_size] # contribution of sliding keys # [bsz, n_heads, m//from_block_size-4, from_block_size, 3*to_block_size] x [bsz, n_heads, from_seq_len//from_block_size-4, 3*to_block_size, -1] context_layer = self.torch_bmm_nd( attn_weights[:, :, :, :, to_block_size : 4 * to_block_size], exp_blocked_value_matrix, ndim=5 ) # ==> [bsz, n_heads, from_seq_len//from_block_size-4, from_block_size, -1] # adding contribution of random keys # [bsz, n_heads, from_seq_len//from_block_size-4, from_block_size, n_rand_blocks*to_block_size] x [bsz, n_heads, from_seq_len//from_block_size-4, n_rand_blocks*to_block_size, -1] context_layer += self.torch_bmm_nd( attn_weights[:, :, :, :, 4 * to_block_size : -to_block_size], gathered_value[:, :, 1:-1], ndim=5 ) # ==> [bsz, n_heads, from_seq_len//from_block_size-4, from_block_size, -1] # adding contribution of global keys context_layer += torch.einsum( "bhlqk,bhkd->bhlqd", attn_weights[:, :, :, :, :to_block_size], blocked_value_matrix[:, :, 0] ) # [bsz, n_heads, from_seq_len//from_block_size-4, from_block_size, to_block_size] x [bsz, n_heads, to_block_size, -1] ==> [bsz, n_heads, from_seq_len//from_block_size-4, from_block_size, -1] context_layer += torch.einsum( "bhlqk,bhkd->bhlqd", attn_weights[:, :, :, :, -to_block_size:], blocked_value_matrix[:, :, -1] ) # [bsz, n_heads, from_seq_len//from_block_size-4, from_block_size, to_block_size] x [bsz, n_heads, to_block_size, -1] ==> [bsz, n_heads, from_seq_len//from_block_size-4, from_block_size, -1] # 4th PART # last 2nd token attention scores # q[-2] x (sliding_keys, random_keys, global_keys) # sliding key blocks -> last 3 blocks # global key block -> 1st block # random key block -> based on indices stored in `randn_attn` second_last_key_mat = torch.cat( [ blocked_key_matrix[:, :, 0], blocked_key_matrix[:, :, -3], blocked_key_matrix[:, :, -2], blocked_key_matrix[:, :, -1], gathered_key[:, :, -1], ], dim=2, ) # [bsz, n_heads, (4+n_random_blocks)*to_block_size, -1] second_last_value_mat = torch.cat( [ blocked_value_matrix[:, :, 0], blocked_value_matrix[:, :, -3], blocked_value_matrix[:, :, -2], blocked_value_matrix[:, :, -1], gathered_value[:, :, -1], ], dim=2, ) # [bsz, n_heads, (4+r)*to_block_size, -1] # [bsz, n_heads, from_block_size, -1] x [bsz, n_heads, (4+n_rand_blocks)*to_block_size, -1] ==> [bsz, n_heads, from_block_size, (4+n_rand_blocks)*to_block_size] second_last_product = self.torch_bmm_nd_transpose(blocked_query_matrix[:, :, -2], second_last_key_mat, ndim=4) second_last_seq_pad = torch.cat( [ to_mask[:, :, :, :to_block_size], to_mask[:, :, :, -3 * to_block_size :], to_mask.new_ones([bsz, 1, 1, n_rand_blocks * to_block_size]), ], dim=3, ) second_last_rand_pad = torch.cat( [ rand_mask.new_ones([bsz, n_heads, from_block_size, 4 * to_block_size]), rand_mask[:, :, -1], ], dim=3, ) second_last_product = second_last_product * rsqrt_d second_last_product += (1.0 - torch.minimum(second_last_seq_pad, second_last_rand_pad)) * attn_mask_penalty second_last_attn_weights = nn.functional.softmax( second_last_product, dim=-1 ) # [bsz, n_heads, from_block_size, (4+n_rand_blocks)*to_block_size] # [bsz, n_heads, from_block_size, (4+n_rand_blocks)*to_block_size] x [bsz, n_heads, (4+n_rand_blocks)*to_block_size, -1] ==> [bsz, n_heads, from_block_size, -1] second_last_context_layer = self.torch_bmm_nd(second_last_attn_weights, second_last_value_mat, ndim=4) second_last_context_layer.unsqueeze_(2) # 5th PART # last block (global) attention scores # q[-1] x (k[0], k[1], k[2], k[3], .... ) # [bsz, n_heads, from_block_size, -1] x [bsz, n_heads, to_seq_len, -1] ==> [bsz, n_heads, from_block_size, to_seq_len] last_product = self.torch_bmm_nd_transpose(blocked_query_matrix[:, :, -1], key_layer, ndim=4) last_product = last_product * rsqrt_d last_product += (1.0 - to_mask) * attn_mask_penalty last_attn_weights = nn.functional.softmax(last_product, dim=-1) # [bsz, n_heads, from_block_size, n] # [bsz, n_heads, from_block_size, to_seq_len] x [bsz, n_heads, to_seq_len, -1] ==> [bsz, n_heads, from_block_size, -1] last_context_layer = self.torch_bmm_nd(last_attn_weights, value_layer, ndim=4) last_context_layer.unsqueeze_(2) # combining representations of all tokens context_layer = torch.cat( [first_context_layer, second_context_layer, context_layer, second_last_context_layer, last_context_layer], dim=2, ) context_layer = context_layer.view((bsz, n_heads, from_seq_len, -1)) * from_mask context_layer = torch.transpose(context_layer, 1, 2) # this is just for visualizing; forward pass doesn't depend on following code if output_attentions: # TODO(PVP): need to verify if below code is correct attention_probs = torch.zeros( bsz, n_heads, from_seq_len, to_seq_len, dtype=torch.float, device=context_layer.device ) # 1st query block # corresponding to `first_context_layer` attention_probs[:, :, :from_block_size, :] = first_attn_weights # all keys global # 2nd query block # corresponding to `second_context_layer` attention_probs[:, :, from_block_size : 2 * from_block_size, : 3 * to_block_size] = second_attn_weights[ :, :, :, : 3 * to_block_size ] # 1st three key blocks (global + sliding) attention_probs[:, :, from_block_size : 2 * from_block_size, -to_block_size:] = second_attn_weights[ :, :, :, 3 * to_block_size : 4 * to_block_size ] # last key block (global) # random keys for p1, i1, w1 in zip(range(bsz), rand_attn, second_attn_weights): # p1, i1, w1 corresponds to batch_dim i.e. following operation is done for each sequence in batch for p2, i2, w2 in zip(range(n_heads), i1, w1): # p2, i2, w2 corresponds to head_dim i.e. following operation is done for each heads attn_probs_view = attention_probs.view( bsz, n_heads, from_seq_len // from_block_size, from_block_size, to_seq_len // to_block_size, to_block_size, ) right_slice = w2[:, 4 * to_block_size :] attn_probs_view[p1, p2, 1, :, i2[0]] = right_slice.view( from_block_size, n_rand_blocks, to_block_size ) # Middle query blocks # corresponding to `context_layer` # sliding keys for q_idx in range(from_seq_len // from_block_size - 4): attn_probs_view = attention_probs.view( bsz, n_heads, from_seq_len // from_block_size, from_block_size, to_seq_len // to_block_size, to_block_size, )[:, :, 2:-2, :, 1:-1, :] right_slice = attn_weights[:, :, q_idx, :, to_block_size : 4 * to_block_size] attn_probs_view[:, :, q_idx, :, q_idx : q_idx + 3, :] = right_slice.view( bsz, n_heads, from_block_size, 3, to_block_size ) # inner_band_product # global keys (corresponding to 1st key block) attention_probs[:, :, 2 * from_block_size : -2 * from_block_size, :to_block_size] = attn_weights[ :, :, :, :, :to_block_size ].view( bsz, n_heads, -1, to_block_size ) # first_band_product # global keys (corresponding to last key block) attention_probs[:, :, 2 * from_block_size : -2 * from_block_size, -to_block_size:] = attn_weights[ :, :, :, :, -to_block_size: ].view( bsz, n_heads, -1, to_block_size ) # last_band_product # random keys for p1, i1, w1 in zip(range(bsz), rand_attn, attn_weights): # p1, i1, w1 corresponds to batch_dim i.e. following operation is done for each sequence in batch for p2, i2, w2 in zip(range(n_heads), i1, w1): # p2, i2, w2 corresponds to head_dim i.e. following operation is done for each heads for q_idx in range(1, len(i2) - 1): attn_probs_view = attention_probs.view( bsz, n_heads, from_seq_len // from_block_size, from_block_size, to_seq_len // to_block_size, to_block_size, ) right_slice = w2[q_idx - 1, :, 4 * to_block_size : -to_block_size] attn_probs_view[p1, p2, q_idx + 1, :, i2[q_idx]] = right_slice.view( from_block_size, n_rand_blocks, to_block_size ) # Second-last query block # corresponding to `second_last_context_layer` attention_probs[:, :, -2 * from_block_size : -from_block_size, :to_block_size] = second_last_attn_weights[ :, :, :, :to_block_size ] # 1st key block (global) attention_probs[ :, :, -2 * from_block_size : -from_block_size, -3 * to_block_size : ] = second_last_attn_weights[ :, :, :, to_block_size : 4 * to_block_size ] # last three blocks (global + sliding) # random keys for p1, i1, w1 in zip(range(bsz), rand_attn, second_last_attn_weights): # p1, i1, w1 corresponds to batch_dim i.e. following operation is done for each sequence in batch for p2, i2, w2 in zip(range(n_heads), i1, w1): # p2, i2, w2 corresponds to head_dim i.e. following operation is done for each heads attn_probs_view = attention_probs.view( bsz, n_heads, from_seq_len // from_block_size, from_block_size, to_seq_len // to_block_size, to_block_size, ) right_slice = w2[:, 4 * to_block_size :] attn_probs_view[p1, p2, -2, :, i2[-1]] = right_slice.view( from_block_size, n_rand_blocks, to_block_size ) # last query block # corresponding to `last_context_layer` attention_probs[:, :, -from_block_size:, :] = last_attn_weights # all keys global else: attention_probs = None return context_layer, attention_probs @staticmethod def torch_gather_b2(params, indices): # this operation is equivalent to tf.gather when batch_dims=2 if params.shape[:2] != indices.shape[:2]: raise ValueError( "Make sure that the first two dimensions of params and indices are identical, but" f" they are params: {params.shape[:2]} vs. indices: {indices.shape[:2]}" ) num_indices_to_gather = indices.shape[-2] * indices.shape[-1] num_indices_to_pick_from = params.shape[2] shift = torch.arange(indices.shape[0] * indices.shape[1] * num_indices_to_gather, device=indices.device) indices_shift = torch.div(shift, num_indices_to_gather, rounding_mode="floor") * num_indices_to_pick_from flattened_indices = indices.view(-1) + indices_shift flattened_params = params.reshape(-1, params.shape[-2], params.shape[-1]) out_flattened = flattened_params.index_select(0, flattened_indices) out = out_flattened.reshape(params.shape[:2] + (num_indices_to_gather,) + params.shape[3:]) return out @staticmethod def _create_rand_mask_from_inputs( from_blocked_mask, to_blocked_mask, rand_attn, num_attention_heads, num_rand_blocks, batch_size, from_seq_length, from_block_size, ): """ Create 3D attention mask from a 2D tensor mask. Args: from_blocked_mask: 2D Tensor of shape [batch_size, from_seq_length//from_block_size, from_block_size]. to_blocked_mask: int32 Tensor of shape [batch_size, to_seq_length//to_block_size, to_block_size]. rand_attn: [batch_size, num_attention_heads, from_seq_length//from_block_size-2, num_rand_blocks] num_attention_heads: int. Number of attention heads. num_rand_blocks: int. Number of random chunks per row. batch_size: int. Batch size for computation. from_seq_length: int. length of from sequence. from_block_size: int. size of block in from sequence. Returns: float Tensor of shape [batch_size, num_attention_heads, from_seq_length//from_block_size-2, from_block_size, num_rand_blocks*to_block_size]. """ num_windows = from_seq_length // from_block_size - 2 rand_mask = torch.stack([p1[i1.flatten()] for p1, i1 in zip(to_blocked_mask, rand_attn)]) rand_mask = rand_mask.view(batch_size, num_attention_heads, num_windows, num_rand_blocks * from_block_size) rand_mask = torch.einsum("blq,bhlk->bhlqk", from_blocked_mask[:, 1:-1], rand_mask) return rand_mask @staticmethod def _get_rand_attn_plan(from_seq_length, from_block_size, num_rand_blocks): """ Gives the plan of where to put random attention. Args: from_seq_length: int. length of from sequence. from_block_size: int. size of block in from sequence. num_rand_blocks: int. Number of random chunks per row. Returns: plan_from_length: ending location of from block plan_num_rand_blocks: number of random ending location for each block """ plan_from_length = [] plan_num_rand_blocks = [] if (2 * num_rand_blocks + 5) < (from_seq_length // from_block_size): plan_from_length.append(int((2 * num_rand_blocks + 5) * from_block_size)) plan_num_rand_blocks.append(num_rand_blocks) plan_from_length.append(from_seq_length) plan_num_rand_blocks.append(0) elif (num_rand_blocks + 5) < (from_seq_length // from_block_size): plan_from_length.append(int((num_rand_blocks + 5) * from_block_size)) plan_num_rand_blocks.append(num_rand_blocks // 2) plan_from_length.append(from_seq_length) plan_num_rand_blocks.append(num_rand_blocks - (num_rand_blocks // 2)) else: plan_from_length.append(from_seq_length) plan_num_rand_blocks.append(num_rand_blocks) return plan_from_length, plan_num_rand_blocks def _bigbird_block_rand_mask( self, from_seq_length, to_seq_length, from_block_size, to_block_size, num_rand_blocks, last_idx=-1 ): """ Create adjacency list of random attention. Args: from_seq_length: int. length of from sequence. to_seq_length: int. length of to sequence. from_block_size: int. size of block in from sequence. to_block_size: int. size of block in to sequence. num_rand_blocks: int. Number of random chunks per row. last_idx: if -1 then num_rand_blocks blocks chosen anywhere in to sequence, if positive then num_rand_blocks blocks chosen only up to last_idx. Returns: adjacency list of size from_seq_length//from_block_size-2 by num_rand_blocks """ # using this method when from_seq_length in [1024, 3072, 4096] if from_seq_length // from_block_size != to_seq_length // to_block_size: raise ValueError("Error the number of blocks needs to be same!") rand_attn = np.zeros((from_seq_length // from_block_size - 2, num_rand_blocks), dtype=np.int32) # During inference (eval) no randomness if not self.training: return rand_attn middle_seq = np.arange(1, to_seq_length // to_block_size - 1, dtype=np.int32) last = to_seq_length // to_block_size - 1 if last_idx > (2 * to_block_size): last = (last_idx // to_block_size) - 1 r = num_rand_blocks # shorthand for i in range(1, from_seq_length // from_block_size - 1): start = i - 2 end = i if i == 1: rand_attn[i - 1, :] = np.random.permutation(middle_seq[2:last])[:r] elif i == 2: rand_attn[i - 1, :] = np.random.permutation(middle_seq[3:last])[:r] elif i == from_seq_length // from_block_size - 3: rand_attn[i - 1, :] = np.random.permutation(middle_seq[:last])[:r] # Missing -3: should have been sliced till last-3 elif i == from_seq_length // from_block_size - 2: rand_attn[i - 1, :] = np.random.permutation(middle_seq[:last])[:r] # Missing -4: should have been sliced till last-4 else: if start > last: start = last rand_attn[i - 1, :] = np.random.permutation(middle_seq[:start])[:r] elif (end + 1) == last: rand_attn[i - 1, :] = np.random.permutation(middle_seq[:start])[:r] else: rand_attn[i - 1, :] = np.random.permutation( np.concatenate((middle_seq[:start], middle_seq[end + 1 : last])) )[:r] return rand_attn def _bigbird_block_rand_mask_with_head( self, from_seq_length, to_seq_length, from_block_size, to_block_size, num_heads, plan_from_length, plan_num_rand_blocks, window_block_left=1, window_block_right=1, global_block_top=1, global_block_bottom=1, global_block_left=1, global_block_right=1, ): """ Create adjacency list of random attention. Args: from_seq_length: int. length of from sequence. to_seq_length: int. length of to sequence. from_block_size: int. size of block in from sequence. to_block_size: int. size of block in to sequence. num_heads: int. total number of heads. plan_from_length: list. plan from length where num_random_blocks are chosen from. plan_num_rand_blocks: list. number of rand blocks within the plan. window_block_left: int. number of blocks of window to left of a block. window_block_right: int. number of blocks of window to right of a block. global_block_top: int. number of blocks at the top. global_block_bottom: int. number of blocks at the bottom. global_block_left: int. Number of blocks globally used to the left. global_block_right: int. Number of blocks globally used to the right. Returns: adjacency list of size num_head where each element is of size from_seq_length//from_block_size-2 by num_rand_blocks """ # using this method when from_seq_length not in [1024, 3072, 4096] if from_seq_length // from_block_size != to_seq_length // to_block_size: raise ValueError("Error the number of blocks needs to be same!") if from_seq_length not in plan_from_length: raise ValueError("Error from sequence length not in plan!") # Total number of blocks in the mmask num_blocks = from_seq_length // from_block_size # Number of blocks per plan plan_block_length = np.array(plan_from_length) // from_block_size # till when to follow plan max_plan_idx = plan_from_length.index(from_seq_length) # Random Attention adjacency list rand_attn = [ np.zeros((num_blocks, np.sum(plan_num_rand_blocks[: max_plan_idx + 1])), dtype=np.int32) for i in range(num_heads) ] # During inference (eval) no randomness if not self.training: for nh in range(num_heads): rand_attn[nh] = rand_attn[nh][global_block_top : num_blocks - global_block_bottom, :] return rand_attn # We will go iteratively over the plan blocks and pick random number of # Attention blocks from the legally allowed blocks for plan_idx in range(max_plan_idx + 1): rnd_r_cnt = 0 if plan_idx > 0: # set the row for all from_blocks starting from 0 to # plan_block_length[plan_idx-1] # column indx start fromm plan_block_length[plan_idx-1] and ends at # plan_block_length[plan_idx] if plan_num_rand_blocks[plan_idx] > 0: rnd_r_cnt = int(np.sum(plan_num_rand_blocks[:plan_idx])) curr_r_cnt = int(np.sum(plan_num_rand_blocks[: plan_idx + 1])) for blk_rw_idx in range(global_block_top, plan_block_length[plan_idx - 1]): for h in range(num_heads): rand_attn[h][blk_rw_idx, rnd_r_cnt:curr_r_cnt] = self._get_single_block_row_attention( block_id=blk_rw_idx, to_start_block_id=plan_block_length[plan_idx - 1], to_end_block_id=plan_block_length[plan_idx], num_rand_blocks=plan_num_rand_blocks[plan_idx], window_block_left=window_block_left, window_block_right=window_block_right, global_block_left=global_block_left, global_block_right=global_block_right, ) for pl_id in range(plan_idx): if plan_num_rand_blocks[pl_id] == 0: continue for blk_rw_idx in range(plan_block_length[plan_idx - 1], plan_block_length[plan_idx]): rnd_r_cnt = 0 to_start_block_id = 0 if pl_id > 0: rnd_r_cnt = int(np.sum(plan_num_rand_blocks[:pl_id])) to_start_block_id = plan_block_length[pl_id - 1] curr_r_cnt = int(np.sum(plan_num_rand_blocks[: pl_id + 1])) for h in range(num_heads): rand_attn[h][blk_rw_idx, rnd_r_cnt:curr_r_cnt] = self._get_single_block_row_attention( block_id=blk_rw_idx, to_start_block_id=to_start_block_id, to_end_block_id=plan_block_length[pl_id], num_rand_blocks=plan_num_rand_blocks[pl_id], window_block_left=window_block_left, window_block_right=window_block_right, global_block_left=global_block_left, global_block_right=global_block_right, ) if plan_num_rand_blocks[plan_idx] == 0: continue curr_r_cnt = int(np.sum(plan_num_rand_blocks[: plan_idx + 1])) from_start_block_id = global_block_top to_start_block_id = 0 if plan_idx > 0: rnd_r_cnt = int(np.sum(plan_num_rand_blocks[:plan_idx])) from_start_block_id = plan_block_length[plan_idx - 1] to_start_block_id = plan_block_length[plan_idx - 1] for blk_rw_idx in range(from_start_block_id, plan_block_length[plan_idx]): for h in range(num_heads): rand_attn[h][blk_rw_idx, rnd_r_cnt:curr_r_cnt] = self._get_single_block_row_attention( block_id=blk_rw_idx, to_start_block_id=to_start_block_id, to_end_block_id=plan_block_length[plan_idx], num_rand_blocks=plan_num_rand_blocks[plan_idx], window_block_left=window_block_left, window_block_right=window_block_right, global_block_left=global_block_left, global_block_right=global_block_right, ) for nh in range(num_heads): rand_attn[nh] = rand_attn[nh][global_block_top : num_blocks - global_block_bottom, :] return rand_attn @staticmethod def _get_single_block_row_attention( block_id, to_start_block_id, to_end_block_id, num_rand_blocks, window_block_left=1, window_block_right=1, global_block_left=1, global_block_right=1, ): """ For a single row block get random row attention. Args: block_id: int. block id of row. to_start_block_id: int. random attention column start id. to_end_block_id: int. random attention column end id. num_rand_blocks: int. number of random blocks to be selected. window_block_left: int. number of blocks of window to left of a block. window_block_right: int. number of blocks of window to right of a block. global_block_left: int. Number of blocks globally used to the left. global_block_right: int. Number of blocks globally used to the right. Returns: row containing the random attention vector of size num_rand_blocks. """ # list of to_blocks from which to choose random attention to_block_list = np.arange(to_start_block_id, to_end_block_id, dtype=np.int32) # permute the blocks perm_block = np.random.permutation(to_block_list) # illegal blocks for the current block id, using window illegal_blocks = list(range(block_id - window_block_left, block_id + window_block_right + 1)) # Add blocks at the start and at the end illegal_blocks.extend(list(range(global_block_left))) illegal_blocks.extend(list(range(to_end_block_id - global_block_right, to_end_block_id))) # The second from_block cannot choose random attention on second last to_block if block_id == 1: illegal_blocks.append(to_end_block_id - 2) # The second last from_block cannot choose random attention on second to_block if block_id == to_end_block_id - 2: illegal_blocks.append(1) selected_random_blokcs = [] for i in range(to_end_block_id - to_start_block_id): if perm_block[i] not in illegal_blocks: selected_random_blokcs.append(perm_block[i]) if len(selected_random_blokcs) == num_rand_blocks: break return np.array(selected_random_blokcs, dtype=np.int32) # Copied from transformers.models.bert.modeling_bert.BertSelfOutput with Bert->BigBird class BigBirdSelfOutput(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states) hidden_states = self.LayerNorm(hidden_states + input_tensor) return hidden_states class BigBirdAttention(nn.Module): def __init__(self, config, seed=None): super().__init__() self.attention_type = config.attention_type self.config = config self.seed = seed if self.config.attention_type == "original_full": self.self = BigBirdSelfAttention(config) elif self.config.attention_type == "block_sparse": self.self = BigBirdBlockSparseAttention(config, seed) else: raise ValueError( f"attention_type can either be original_full or block_sparse, but is {self.config.attention_type}" ) self.output = BigBirdSelfOutput(config) def set_attention_type(self, value: str): if value not in ["original_full", "block_sparse"]: raise ValueError( f"attention_type can only be set to either 'original_full' or 'block_sparse', but is {value}" ) # attention type is already correctly set if value == self.attention_type: return self.attention_type = value if value == "original_full": # copy all weights to new full attention class attn_weights = BigBirdSelfAttention(self.config) else: # copy all weights to new sparse attention class attn_weights = BigBirdBlockSparseAttention(self.config, self.seed) attn_weights.query = self.self.query attn_weights.value = self.self.value attn_weights.key = self.self.key self.self = attn_weights self.attention_type = value if not self.training: self.self.eval() def forward( self, hidden_states, attention_mask=None, head_mask=None, encoder_hidden_states=None, encoder_attention_mask=None, past_key_value=None, output_attentions=False, # block_sparse config band_mask=None, from_mask=None, to_mask=None, from_blocked_mask=None, to_blocked_mask=None, ): # fp16 compatibility if band_mask is not None: band_mask = band_mask.to(hidden_states.dtype) if from_mask is not None: from_mask = from_mask.to(hidden_states.dtype) if to_mask is not None: to_mask = to_mask.to(hidden_states.dtype) if self.attention_type == "original_full": self_outputs = self.self( hidden_states, attention_mask, head_mask, encoder_hidden_states, encoder_attention_mask, past_key_value, output_attentions, ) else: if encoder_hidden_states is not None: raise ValueError("BigBird cannot be used as a decoder when config.attention_type != 'original_full'") self_outputs = self.self( hidden_states, band_mask, from_mask, to_mask, from_blocked_mask, to_blocked_mask, output_attentions ) attention_output = self.output(self_outputs[0], hidden_states) outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them return outputs # Copied from transformers.models.bert.modeling_bert.BertIntermediate with Bert->BigBird class BigBirdIntermediate(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.intermediate_size) if isinstance(config.hidden_act, str): self.intermediate_act_fn = ACT2FN[config.hidden_act] else: self.intermediate_act_fn = config.hidden_act def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.intermediate_act_fn(hidden_states) return hidden_states # Copied from transformers.models.bert.modeling_bert.BertOutput with Bert->BigBird class BigBirdOutput(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.intermediate_size, config.hidden_size) self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states) hidden_states = self.LayerNorm(hidden_states + input_tensor) return hidden_states class BigBirdLayer(nn.Module): def __init__(self, config, seed=None): super().__init__() self.config = config self.attention_type = config.attention_type self.chunk_size_feed_forward = config.chunk_size_feed_forward self.seq_len_dim = 1 self.attention = BigBirdAttention(config, seed=seed) self.is_decoder = config.is_decoder self.add_cross_attention = config.add_cross_attention if self.add_cross_attention: if not self.is_decoder: raise TypeError(f"{self} should be used as a decoder model if cross attention is added") self.crossattention = BigBirdAttention(config) self.intermediate = BigBirdIntermediate(config) self.output = BigBirdOutput(config) def set_attention_type(self, value: str): if value not in ["original_full", "block_sparse"]: raise ValueError( f"attention_type can only be set to either 'original_full' or 'block_sparse', but is {value}" ) # attention type is already correctly set if value == self.attention_type: return self.attention_type = value self.attention.set_attention_type(value) if self.add_cross_attention: self.crossattention.set_attention_type(value) def forward( self, hidden_states, attention_mask=None, head_mask=None, encoder_hidden_states=None, encoder_attention_mask=None, band_mask=None, from_mask=None, to_mask=None, blocked_encoder_mask=None, past_key_value=None, output_attentions=False, ): # decoder uni-directional self-attention cached key/values tuple is at positions 1,2 self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None self_attention_outputs = self.attention( hidden_states, attention_mask, head_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, past_key_value=self_attn_past_key_value, output_attentions=output_attentions, band_mask=band_mask, from_mask=from_mask, to_mask=to_mask, from_blocked_mask=blocked_encoder_mask, to_blocked_mask=blocked_encoder_mask, ) attention_output = self_attention_outputs[0] # if decoder, the last output is tuple of self-attn cache if self.is_decoder: outputs = self_attention_outputs[1:-1] present_key_value = self_attention_outputs[-1] else: outputs = self_attention_outputs[1:] # add self attentions if we output attention weights cross_attn_present_key_value = None if self.is_decoder and encoder_hidden_states is not None: if not hasattr(self, "crossattention"): raise ValueError( f"If `encoder_hidden_states` are passed, {self} has to be instantiated with " " cross-attention layers by setting `config.add_cross_attention=True`" ) # cross_attn cached key/values tuple is at positions 3,4 of past_key_value tuple cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None cross_attention_outputs = self.crossattention( attention_output, attention_mask, head_mask, encoder_hidden_states, encoder_attention_mask, cross_attn_past_key_value, output_attentions, ) attention_output = cross_attention_outputs[0] outputs = outputs + cross_attention_outputs[1:-1] # add cross attentions if we output attention weights # add cross-attn cache to positions 3,4 of present_key_value tuple cross_attn_present_key_value = cross_attention_outputs[-1] present_key_value = present_key_value + cross_attn_present_key_value layer_output = apply_chunking_to_forward( self.feed_forward_chunk, self.chunk_size_feed_forward, self.seq_len_dim, attention_output ) outputs = (layer_output,) + outputs # if decoder, return the attn key/values as the last output if self.is_decoder: outputs = outputs + (present_key_value,) return outputs def feed_forward_chunk(self, attention_output): intermediate_output = self.intermediate(attention_output) layer_output = self.output(intermediate_output, attention_output) return layer_output class BigBirdEncoder(nn.Module): def __init__(self, config): super().__init__() self.config = config self.attention_type = config.attention_type self.layer = nn.ModuleList( [BigBirdLayer(config, seed=layer_idx) for layer_idx in range(config.num_hidden_layers)] ) self.gradient_checkpointing = False def set_attention_type(self, value: str): if value not in ["original_full", "block_sparse"]: raise ValueError( f"attention_type can only be set to either 'original_full' or 'block_sparse', but is {value}" ) # attention type is already correctly set if value == self.attention_type: return self.attention_type = value for layer in self.layer: layer.set_attention_type(value) def forward( self, hidden_states, attention_mask=None, head_mask=None, encoder_hidden_states=None, encoder_attention_mask=None, past_key_values=None, use_cache=None, output_attentions=False, output_hidden_states=False, band_mask=None, from_mask=None, to_mask=None, blocked_encoder_mask=None, return_dict=True, ) -> Union[BaseModelOutputWithPastAndCrossAttentions, Tuple]: all_hidden_states = () if output_hidden_states else None all_self_attentions = () if output_attentions else None all_cross_attentions = () if output_attentions and self.config.add_cross_attention else None if self.gradient_checkpointing and self.training: if use_cache: logger.warning_once( "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..." ) use_cache = False next_decoder_cache = () if use_cache else None for i, layer_module in enumerate(self.layer): if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) layer_head_mask = head_mask[i] if head_mask is not None else None past_key_value = past_key_values[i] if past_key_values is not None else None if self.gradient_checkpointing and self.training: def create_custom_forward(module): def custom_forward(*inputs): return module(*inputs, past_key_value, output_attentions) return custom_forward layer_outputs = torch.utils.checkpoint.checkpoint( create_custom_forward(layer_module), hidden_states, attention_mask, layer_head_mask, encoder_hidden_states, encoder_attention_mask, band_mask, from_mask, to_mask, blocked_encoder_mask, ) else: layer_outputs = layer_module( hidden_states, attention_mask, layer_head_mask, encoder_hidden_states, encoder_attention_mask, band_mask, from_mask, to_mask, blocked_encoder_mask, past_key_value, output_attentions, ) hidden_states = layer_outputs[0] if use_cache: next_decoder_cache += (layer_outputs[-1],) if output_attentions: all_self_attentions = all_self_attentions + (layer_outputs[1],) if self.config.add_cross_attention: all_cross_attentions = all_cross_attentions + (layer_outputs[2],) if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) if not return_dict: return tuple( v for v in [ hidden_states, next_decoder_cache, all_hidden_states, all_self_attentions, all_cross_attentions, ] if v is not None ) return BaseModelOutputWithPastAndCrossAttentions( last_hidden_state=hidden_states, past_key_values=next_decoder_cache, hidden_states=all_hidden_states, attentions=all_self_attentions, cross_attentions=all_cross_attentions, ) # Copied from transformers.models.bert.modeling_bert.BertPredictionHeadTransform with Bert->BigBird class BigBirdPredictionHeadTransform(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) if isinstance(config.hidden_act, str): self.transform_act_fn = ACT2FN[config.hidden_act] else: self.transform_act_fn = config.hidden_act self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.transform_act_fn(hidden_states) hidden_states = self.LayerNorm(hidden_states) return hidden_states # Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->BigBird class BigBirdLMPredictionHead(nn.Module): def __init__(self, config): super().__init__() self.transform = BigBirdPredictionHeadTransform(config) # The output weights are the same as the input embeddings, but there is # an output-only bias for each token. self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False) self.bias = nn.Parameter(torch.zeros(config.vocab_size)) # Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings` self.decoder.bias = self.bias def forward(self, hidden_states): hidden_states = self.transform(hidden_states) hidden_states = self.decoder(hidden_states) return hidden_states # Copied from transformers.models.bert.modeling_bert.BertOnlyMLMHead with Bert->BigBird class BigBirdOnlyMLMHead(nn.Module): def __init__(self, config): super().__init__() self.predictions = BigBirdLMPredictionHead(config) def forward(self, sequence_output: torch.Tensor) -> torch.Tensor: prediction_scores = self.predictions(sequence_output) return prediction_scores # Copied from transformers.models.bert.modeling_bert.BertOnlyNSPHead with Bert->BigBird class BigBirdOnlyNSPHead(nn.Module): def __init__(self, config): super().__init__() self.seq_relationship = nn.Linear(config.hidden_size, 2) def forward(self, pooled_output): seq_relationship_score = self.seq_relationship(pooled_output) return seq_relationship_score # Copied from transformers.models.bert.modeling_bert.BertPreTrainingHeads with Bert->BigBird class BigBirdPreTrainingHeads(nn.Module): def __init__(self, config): super().__init__() self.predictions = BigBirdLMPredictionHead(config) self.seq_relationship = nn.Linear(config.hidden_size, 2) def forward(self, sequence_output, pooled_output): prediction_scores = self.predictions(sequence_output) seq_relationship_score = self.seq_relationship(pooled_output) return prediction_scores, seq_relationship_score class BigBirdPreTrainedModel(PreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = BigBirdConfig load_tf_weights = load_tf_weights_in_big_bird base_model_prefix = "bert" supports_gradient_checkpointing = True def _init_weights(self, module): """Initialize the weights""" if isinstance(module, nn.Linear): # Slightly different from the TF version which uses truncated_normal for initialization # cf https://github.com/pytorch/pytorch/pull/5617 module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.Embedding): module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if module.padding_idx is not None: module.weight.data[module.padding_idx].zero_() elif isinstance(module, nn.LayerNorm): module.bias.data.zero_() module.weight.data.fill_(1.0) def _set_gradient_checkpointing(self, module, value=False): if isinstance(module, BigBirdEncoder): module.gradient_checkpointing = value BIG_BIRD_START_DOCSTRING = r""" This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`BigBirdConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ BIG_BIRD_INPUTS_DOCSTRING = r""" Args: input_ids (`torch.LongTensor` of shape `({0})`): Indices of input sequence tokens in the vocabulary. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) token_type_ids (`torch.LongTensor` of shape `({0})`, *optional*): Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0, 1]`: - 0 corresponds to a *sentence A* token, - 1 corresponds to a *sentence B* token. [What are token type IDs?](../glossary#token-type-ids) position_ids (`torch.LongTensor` of shape `({0})`, *optional*): Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, config.max_position_embeddings - 1]`. [What are position IDs?](../glossary#position-ids) head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. inputs_embeds (`torch.FloatTensor` of shape `({0}, hidden_size)`, *optional*): Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert *input_ids* indices into associated vectors than the model's internal embedding lookup matrix. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ @dataclass class BigBirdForPreTrainingOutput(ModelOutput): """ Output type of [`BigBirdForPreTraining`]. Args: loss (*optional*, returned when `labels` is provided, `torch.FloatTensor` of shape `(1,)`): Total loss as the sum of the masked language modeling loss and the next sequence prediction (classification) loss. prediction_logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`): Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax). seq_relationship_logits (`torch.FloatTensor` of shape `(batch_size, 2)`): Prediction scores of the next sequence prediction (classification) head (scores of True/False continuation before SoftMax). hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the initial embedding outputs. attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. """ loss: Optional[torch.FloatTensor] = None prediction_logits: torch.FloatTensor = None seq_relationship_logits: torch.FloatTensor = None hidden_states: Optional[Tuple[torch.FloatTensor]] = None attentions: Optional[Tuple[torch.FloatTensor]] = None @dataclass class BigBirdForQuestionAnsweringModelOutput(ModelOutput): """ Base class for outputs of question answering models. Args: loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided): Total span extraction loss is the sum of a Cross-Entropy for the start and end positions. start_logits (`torch.FloatTensor` of shape `(batch_size, sequence_length)`): Span-start scores (before SoftMax). end_logits (`torch.FloatTensor` of shape `(batch_size, sequence_length)`): Span-end scores (before SoftMax). pooler_output (`torch.FloatTensor` of shape `(batch_size, 1)`): pooler output from BigBigModel hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the initial embedding outputs. attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. """ loss: Optional[torch.FloatTensor] = None start_logits: torch.FloatTensor = None end_logits: torch.FloatTensor = None pooler_output: torch.FloatTensor = None hidden_states: Optional[Tuple[torch.FloatTensor]] = None attentions: Optional[Tuple[torch.FloatTensor]] = None @add_start_docstrings( "The bare BigBird Model transformer outputting raw hidden-states without any specific head on top.", BIG_BIRD_START_DOCSTRING, ) class BigBirdModel(BigBirdPreTrainedModel): """ The model can behave as an encoder (with only self-attention) as well as a decoder, in which case a layer of cross-attention is added between the self-attention layers, following the architecture described in [Attention is all you need](https://arxiv.org/abs/1706.03762) by Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser and Illia Polosukhin. To behave as an decoder the model needs to be initialized with the `is_decoder` argument of the configuration set to `True`. To be used in a Seq2Seq model, the model needs to initialized with both `is_decoder` argument and `add_cross_attention` set to `True`; an `encoder_hidden_states` is then expected as an input to the forward pass. """ def __init__(self, config, add_pooling_layer=True): super().__init__(config) self.attention_type = self.config.attention_type self.config = config self.block_size = self.config.block_size self.embeddings = BigBirdEmbeddings(config) self.encoder = BigBirdEncoder(config) if add_pooling_layer: self.pooler = nn.Linear(config.hidden_size, config.hidden_size) self.activation = nn.Tanh() else: self.pooler = None self.activation = None if self.attention_type != "original_full" and config.add_cross_attention: logger.warning( "When using `BigBirdForCausalLM` as decoder, then `attention_type` must be `original_full`. Setting" " `attention_type=original_full`" ) self.set_attention_type("original_full") # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.embeddings.word_embeddings def set_input_embeddings(self, value): self.embeddings.word_embeddings = value def set_attention_type(self, value: str): if value not in ["original_full", "block_sparse"]: raise ValueError( f"attention_type can only be set to either 'original_full' or 'block_sparse', but is {value}" ) # attention type is already correctly set if value == self.attention_type: return self.attention_type = value self.encoder.set_attention_type(value) @add_start_docstrings_to_model_forward(BIG_BIRD_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=BaseModelOutputWithPoolingAndCrossAttentions, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids: torch.LongTensor = None, attention_mask: Optional[torch.FloatTensor] = None, token_type_ids: Optional[torch.LongTensor] = None, position_ids: Optional[torch.LongTensor] = None, head_mask: Optional[torch.FloatTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, encoder_hidden_states: Optional[torch.FloatTensor] = None, encoder_attention_mask: Optional[torch.FloatTensor] = None, past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[BaseModelOutputWithPoolingAndCrossAttentions, Tuple[torch.FloatTensor]]: r""" encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if the model is configured as a decoder. encoder_attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`): Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding. If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `decoder_input_ids` of shape `(batch_size, sequence_length)`. use_cache (`bool`, *optional*): If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see `past_key_values`). """ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict if self.config.is_decoder: use_cache = use_cache if use_cache is not None else self.config.use_cache else: use_cache = False if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") elif input_ids is not None: input_shape = input_ids.size() elif inputs_embeds is not None: input_shape = inputs_embeds.size()[:-1] else: raise ValueError("You have to specify either input_ids or inputs_embeds") batch_size, seq_length = input_shape device = input_ids.device if input_ids is not None else inputs_embeds.device # past_key_values_length past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0 if attention_mask is None: attention_mask = torch.ones(((batch_size, seq_length + past_key_values_length)), device=device) if token_type_ids is None: if hasattr(self.embeddings, "token_type_ids"): buffered_token_type_ids = self.embeddings.token_type_ids[:, :seq_length] buffered_token_type_ids_expanded = buffered_token_type_ids.expand(batch_size, seq_length) token_type_ids = buffered_token_type_ids_expanded else: token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device) # in order to use block_sparse attention, sequence_length has to be at least # bigger than all global attentions: 2 * block_size # + sliding tokens: 3 * block_size # + random tokens: 2 * num_random_blocks * block_size max_tokens_to_attend = (5 + 2 * self.config.num_random_blocks) * self.config.block_size if self.attention_type == "block_sparse" and seq_length <= max_tokens_to_attend: # change attention_type from block_sparse to original_full sequence_length = input_ids.size(1) if input_ids is not None else inputs_embeds.size(1) logger.warning( "Attention type 'block_sparse' is not possible if sequence_length: " f"{sequence_length} <= num global tokens: 2 * config.block_size " "+ min. num sliding tokens: 3 * config.block_size " "+ config.num_random_blocks * config.block_size " "+ additional buffer: config.num_random_blocks * config.block_size " f"= {max_tokens_to_attend} with config.block_size " f"= {self.config.block_size}, config.num_random_blocks " f"= {self.config.num_random_blocks}. " "Changing attention type to 'original_full'..." ) self.set_attention_type("original_full") if self.attention_type == "block_sparse": ( padding_len, input_ids, attention_mask, token_type_ids, position_ids, inputs_embeds, ) = self._pad_to_block_size( input_ids=input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, inputs_embeds=inputs_embeds, pad_token_id=self.config.pad_token_id, ) else: padding_len = 0 if self.attention_type == "block_sparse": blocked_encoder_mask, band_mask, from_mask, to_mask = self.create_masks_for_block_sparse_attn( attention_mask, self.block_size ) extended_attention_mask = None elif self.attention_type == "original_full": blocked_encoder_mask = None band_mask = None from_mask = None to_mask = None # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] # ourselves in which case we just need to make it broadcastable to all heads. extended_attention_mask: torch.Tensor = self.get_extended_attention_mask(attention_mask, input_shape) else: raise ValueError( f"attention_type can either be original_full or block_sparse, but is {self.attention_type}" ) # If a 2D or 3D attention mask is provided for the cross-attention # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length] if self.config.is_decoder and encoder_hidden_states is not None: encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size() encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length) if encoder_attention_mask is None: encoder_attention_mask = torch.ones(encoder_hidden_shape, device=device) encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask) else: encoder_extended_attention_mask = None # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers) embedding_output = self.embeddings( input_ids=input_ids, position_ids=position_ids, token_type_ids=token_type_ids, inputs_embeds=inputs_embeds, past_key_values_length=past_key_values_length, ) encoder_outputs = self.encoder( embedding_output, attention_mask=extended_attention_mask, head_mask=head_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_extended_attention_mask, past_key_values=past_key_values, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, band_mask=band_mask, from_mask=from_mask, to_mask=to_mask, blocked_encoder_mask=blocked_encoder_mask, return_dict=return_dict, ) sequence_output = encoder_outputs[0] pooler_output = self.activation(self.pooler(sequence_output[:, 0, :])) if (self.pooler is not None) else None # undo padding if padding_len > 0: # unpad `sequence_output` because the calling function is expecting a length == input_ids.size(1) sequence_output = sequence_output[:, :-padding_len] if not return_dict: return (sequence_output, pooler_output) + encoder_outputs[1:] return BaseModelOutputWithPoolingAndCrossAttentions( last_hidden_state=sequence_output, pooler_output=pooler_output, past_key_values=encoder_outputs.past_key_values, hidden_states=encoder_outputs.hidden_states, attentions=encoder_outputs.attentions, cross_attentions=encoder_outputs.cross_attentions, ) @staticmethod def create_masks_for_block_sparse_attn(attention_mask: torch.Tensor, block_size: int): batch_size, seq_length = attention_mask.size() if seq_length % block_size != 0: raise ValueError( f"Sequence length must be multiple of block size, but sequence length is {seq_length}, while block" f" size is {block_size}." ) def create_band_mask_from_inputs(from_blocked_mask, to_blocked_mask): """ Create 3D attention mask from a 2D tensor mask. Args: from_blocked_mask: 2D Tensor of shape [batch_size, from_seq_length//from_block_size, from_block_size]. to_blocked_mask: int32 Tensor of shape [batch_size, to_seq_length//to_block_size, to_block_size]. Returns: float Tensor of shape [batch_size, 1, from_seq_length//from_block_size-4, from_block_size, 3*to_block_size]. """ exp_blocked_to_pad = torch.cat( [to_blocked_mask[:, 1:-3], to_blocked_mask[:, 2:-2], to_blocked_mask[:, 3:-1]], dim=2 ) band_mask = torch.einsum("blq,blk->blqk", from_blocked_mask[:, 2:-2], exp_blocked_to_pad) band_mask.unsqueeze_(1) return band_mask blocked_encoder_mask = attention_mask.view(batch_size, seq_length // block_size, block_size) band_mask = create_band_mask_from_inputs(blocked_encoder_mask, blocked_encoder_mask) from_mask = attention_mask.view(batch_size, 1, seq_length, 1) to_mask = attention_mask.view(batch_size, 1, 1, seq_length) return blocked_encoder_mask, band_mask, from_mask, to_mask def _pad_to_block_size( self, input_ids: torch.Tensor, attention_mask: torch.Tensor, token_type_ids: torch.Tensor, position_ids: torch.Tensor, inputs_embeds: torch.Tensor, pad_token_id: int, ): """A helper function to pad tokens and mask to work with implementation of BigBird block-sparse attention.""" # padding block_size = self.config.block_size input_shape = input_ids.shape if input_ids is not None else inputs_embeds.shape batch_size, seq_len = input_shape[:2] padding_len = (block_size - seq_len % block_size) % block_size if padding_len > 0: logger.info( f"Input ids are automatically padded from {seq_len} to {seq_len + padding_len} to be a multiple of " f"`config.block_size`: {block_size}" ) if input_ids is not None: input_ids = nn.functional.pad(input_ids, (0, padding_len), value=pad_token_id) if position_ids is not None: # pad with position_id = pad_token_id as in modeling_bigbird.BigBirdEmbeddings position_ids = nn.functional.pad(position_ids, (0, padding_len), value=pad_token_id) if inputs_embeds is not None: input_ids_padding = inputs_embeds.new_full( (batch_size, padding_len), self.config.pad_token_id, dtype=torch.long, ) inputs_embeds_padding = self.embeddings(input_ids_padding) inputs_embeds = torch.cat([inputs_embeds, inputs_embeds_padding], dim=-2) attention_mask = nn.functional.pad( attention_mask, (0, padding_len), value=False ) # no attention on the padding tokens token_type_ids = nn.functional.pad(token_type_ids, (0, padding_len), value=0) # pad with token_type_id = 0 return padding_len, input_ids, attention_mask, token_type_ids, position_ids, inputs_embeds class BigBirdForPreTraining(BigBirdPreTrainedModel): _tied_weights_keys = ["cls.predictions.decoder.weight", "cls.predictions.decoder.bias"] def __init__(self, config): super().__init__(config) self.bert = BigBirdModel(config, add_pooling_layer=True) self.cls = BigBirdPreTrainingHeads(config) # Initialize weights and apply final processing self.post_init() def get_output_embeddings(self): return self.cls.predictions.decoder def set_output_embeddings(self, new_embeddings): self.cls.predictions.decoder = new_embeddings @add_start_docstrings_to_model_forward(BIG_BIRD_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @replace_return_docstrings(output_type=BigBirdForPreTrainingOutput, config_class=_CONFIG_FOR_DOC) def forward( self, input_ids: torch.LongTensor = None, attention_mask: Optional[torch.FloatTensor] = None, token_type_ids: Optional[torch.LongTensor] = None, position_ids: Optional[torch.LongTensor] = None, head_mask: Optional[torch.FloatTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.FloatTensor] = None, next_sentence_label: Optional[torch.LongTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[BigBirdForPreTrainingOutput, Tuple[torch.FloatTensor]]: r""" labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ..., config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]` next_sentence_label (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the next sequence prediction (classification) loss. If specified, nsp loss will be added to masked_lm loss. Input should be a sequence pair (see `input_ids` docstring) Indices should be in `[0, 1]`: - 0 indicates sequence B is a continuation of sequence A, - 1 indicates sequence B is a random sequence. kwargs (`Dict[str, any]`, optional, defaults to *{}*): Used to hide legacy arguments that have been deprecated. Returns: Example: ```python >>> from transformers import AutoTokenizer, BigBirdForPreTraining >>> import torch >>> tokenizer = AutoTokenizer.from_pretrained("google/bigbird-roberta-base") >>> model = BigBirdForPreTraining.from_pretrained("google/bigbird-roberta-base") >>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt") >>> outputs = model(**inputs) >>> prediction_logits = outputs.prediction_logits >>> seq_relationship_logits = outputs.seq_relationship_logits ```""" return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.bert( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output, pooled_output = outputs[:2] prediction_scores, seq_relationship_score = self.cls(sequence_output, pooled_output) total_loss = None if labels is not None: loss_fct = CrossEntropyLoss() total_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), labels.view(-1)) if next_sentence_label is not None and total_loss is not None: next_sentence_loss = loss_fct(seq_relationship_score.view(-1, 2), next_sentence_label.view(-1)) total_loss = total_loss + next_sentence_loss if not return_dict: output = (prediction_scores, seq_relationship_score) + outputs[2:] return ((total_loss,) + output) if total_loss is not None else output return BigBirdForPreTrainingOutput( loss=total_loss, prediction_logits=prediction_scores, seq_relationship_logits=seq_relationship_score, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) @add_start_docstrings("""BigBird Model with a `language modeling` head on top.""", BIG_BIRD_START_DOCSTRING) class BigBirdForMaskedLM(BigBirdPreTrainedModel): _tied_weights_keys = ["cls.predictions.decoder.weight", "cls.predictions.decoder.bias"] def __init__(self, config): super().__init__(config) if config.is_decoder: logger.warning( "If you want to use `BigBirdForMaskedLM` make sure `config.is_decoder=False` for " "bi-directional self-attention." ) self.bert = BigBirdModel(config) self.cls = BigBirdOnlyMLMHead(config) # Initialize weights and apply final processing self.post_init() def get_output_embeddings(self): return self.cls.predictions.decoder def set_output_embeddings(self, new_embeddings): self.cls.predictions.decoder = new_embeddings @add_start_docstrings_to_model_forward(BIG_BIRD_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @replace_return_docstrings(output_type=MaskedLMOutput, config_class=_CONFIG_FOR_DOC) def forward( self, input_ids: torch.LongTensor = None, attention_mask: Optional[torch.FloatTensor] = None, token_type_ids: Optional[torch.LongTensor] = None, position_ids: Optional[torch.LongTensor] = None, head_mask: Optional[torch.FloatTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, encoder_hidden_states: Optional[torch.FloatTensor] = None, encoder_attention_mask: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[MaskedLMOutput, Tuple[torch.FloatTensor]]: r""" labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ..., config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`. Returns: Example: ```python >>> import torch >>> from transformers import AutoTokenizer, BigBirdForMaskedLM >>> from datasets import load_dataset >>> tokenizer = AutoTokenizer.from_pretrained("google/bigbird-roberta-base") >>> model = BigBirdForMaskedLM.from_pretrained("google/bigbird-roberta-base") >>> squad_ds = load_dataset("squad_v2", split="train") # doctest: +IGNORE_RESULT >>> # select random long article >>> LONG_ARTICLE_TARGET = squad_ds[81514]["context"] >>> # select random sentence >>> LONG_ARTICLE_TARGET[332:398] 'the highest values are very close to the theoretical maximum value' >>> # add mask_token >>> LONG_ARTICLE_TO_MASK = LONG_ARTICLE_TARGET.replace("maximum", "[MASK]") >>> inputs = tokenizer(LONG_ARTICLE_TO_MASK, return_tensors="pt") >>> # long article input >>> list(inputs["input_ids"].shape) [1, 919] >>> with torch.no_grad(): ... logits = model(**inputs).logits >>> # retrieve index of [MASK] >>> mask_token_index = (inputs.input_ids == tokenizer.mask_token_id)[0].nonzero(as_tuple=True)[0] >>> predicted_token_id = logits[0, mask_token_index].argmax(axis=-1) >>> tokenizer.decode(predicted_token_id) 'maximum' ``` ```python >>> labels = tokenizer(LONG_ARTICLE_TARGET, return_tensors="pt")["input_ids"] >>> labels = torch.where(inputs.input_ids == tokenizer.mask_token_id, labels, -100) >>> outputs = model(**inputs, labels=labels) >>> round(outputs.loss.item(), 2) 1.99 ``` """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.bert( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = outputs[0] prediction_scores = self.cls(sequence_output) masked_lm_loss = None if labels is not None: loss_fct = CrossEntropyLoss() # -100 index = padding token masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), labels.view(-1)) if not return_dict: output = (prediction_scores,) + outputs[2:] return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output return MaskedLMOutput( loss=masked_lm_loss, logits=prediction_scores, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) def prepare_inputs_for_generation(self, input_ids, attention_mask=None, **model_kwargs): input_shape = input_ids.shape effective_batch_size = input_shape[0] # add a dummy token if self.config.pad_token_id is None: raise ValueError("The PAD token should be defined for generation") attention_mask = torch.cat([attention_mask, attention_mask.new_zeros((attention_mask.shape[0], 1))], dim=-1) dummy_token = torch.full( (effective_batch_size, 1), self.config.pad_token_id, dtype=torch.long, device=input_ids.device ) input_ids = torch.cat([input_ids, dummy_token], dim=1) return {"input_ids": input_ids, "attention_mask": attention_mask} @add_start_docstrings( """BigBird Model with a `language modeling` head on top for CLM fine-tuning.""", BIG_BIRD_START_DOCSTRING ) class BigBirdForCausalLM(BigBirdPreTrainedModel): _tied_weights_keys = ["cls.predictions.decoder.weight", "cls.predictions.decoder.bias"] def __init__(self, config): super().__init__(config) if not config.is_decoder: logger.warning("If you want to use `BigBirdForCausalLM` as a standalone, add `is_decoder=True.`") self.bert = BigBirdModel(config) self.cls = BigBirdOnlyMLMHead(config) # Initialize weights and apply final processing self.post_init() def get_output_embeddings(self): return self.cls.predictions.decoder def set_output_embeddings(self, new_embeddings): self.cls.predictions.decoder = new_embeddings @add_start_docstrings_to_model_forward(BIG_BIRD_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=CausalLMOutputWithCrossAttentions, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids: torch.LongTensor = None, attention_mask: Optional[torch.FloatTensor] = None, token_type_ids: Optional[torch.LongTensor] = None, position_ids: Optional[torch.LongTensor] = None, head_mask: Optional[torch.FloatTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, encoder_hidden_states: Optional[torch.FloatTensor] = None, encoder_attention_mask: Optional[torch.FloatTensor] = None, past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, labels: Optional[torch.LongTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[CausalLMOutputWithCrossAttentions, Tuple[torch.FloatTensor]]: r""" encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if the model is configured as a decoder. encoder_attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`): Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding. If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `decoder_input_ids` of shape `(batch_size, sequence_length)`. labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the left-to-right language modeling loss (next word prediction). Indices should be in `[-100, 0, ..., config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the loss is only computed for the tokens with labels n `[0, ..., config.vocab_size]`. use_cache (`bool`, *optional*): If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see `past_key_values`). """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.bert( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, past_key_values=past_key_values, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = outputs[0] prediction_scores = self.cls(sequence_output) lm_loss = None if labels is not None: # we are doing next-token prediction; shift prediction scores and input ids by one shifted_prediction_scores = prediction_scores[:, :-1, :].contiguous() labels = labels[:, 1:].contiguous() loss_fct = CrossEntropyLoss() lm_loss = loss_fct(shifted_prediction_scores.view(-1, self.config.vocab_size), labels.view(-1)) if not return_dict: output = (prediction_scores,) + outputs[2:] return ((lm_loss,) + output) if lm_loss is not None else output return CausalLMOutputWithCrossAttentions( loss=lm_loss, logits=prediction_scores, past_key_values=outputs.past_key_values, hidden_states=outputs.hidden_states, attentions=outputs.attentions, cross_attentions=outputs.cross_attentions, ) def prepare_inputs_for_generation(self, input_ids, past_key_values=None, attention_mask=None, **model_kwargs): input_shape = input_ids.shape # if model is used as a decoder in encoder-decoder model, the decoder attention mask is created on the fly if attention_mask is None: attention_mask = input_ids.new_ones(input_shape) # cut decoder_input_ids if past is used if past_key_values is not None: input_ids = input_ids[:, -1:] return {"input_ids": input_ids, "attention_mask": attention_mask, "past_key_values": past_key_values} def _reorder_cache(self, past_key_values, beam_idx): reordered_past = () for layer_past in past_key_values: reordered_past += ( tuple(past_state.index_select(0, beam_idx) for past_state in layer_past[:2]) + layer_past[2:], ) return reordered_past class BigBirdClassificationHead(nn.Module): """Head for sentence-level classification tasks.""" def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) classifier_dropout = ( config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob ) self.dropout = nn.Dropout(classifier_dropout) self.out_proj = nn.Linear(config.hidden_size, config.num_labels) self.config = config def forward(self, features, **kwargs): x = features[:, 0, :] # take <s> token (equiv. to [CLS]) x = self.dropout(x) x = self.dense(x) x = ACT2FN[self.config.hidden_act](x) x = self.dropout(x) x = self.out_proj(x) return x @add_start_docstrings( """ BigBird Model transformer with a sequence classification/regression head on top (a linear layer on top of the pooled output) e.g. for GLUE tasks. """, BIG_BIRD_START_DOCSTRING, ) class BigBirdForSequenceClassification(BigBirdPreTrainedModel): def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.config = config self.bert = BigBirdModel(config) self.classifier = BigBirdClassificationHead(config) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(BIG_BIRD_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @replace_return_docstrings(output_type=SequenceClassifierOutput, config_class=_CONFIG_FOR_DOC) def forward( self, input_ids: torch.LongTensor = None, attention_mask: Optional[torch.FloatTensor] = None, token_type_ids: Optional[torch.LongTensor] = None, position_ids: Optional[torch.LongTensor] = None, head_mask: Optional[torch.FloatTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[SequenceClassifierOutput, Tuple[torch.FloatTensor]]: r""" labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If `config.num_labels > 1` a classification loss is computed (Cross-Entropy). Returns: Example: ```python >>> import torch >>> from transformers import AutoTokenizer, BigBirdForSequenceClassification >>> from datasets import load_dataset >>> tokenizer = AutoTokenizer.from_pretrained("l-yohai/bigbird-roberta-base-mnli") >>> model = BigBirdForSequenceClassification.from_pretrained("l-yohai/bigbird-roberta-base-mnli") >>> squad_ds = load_dataset("squad_v2", split="train") # doctest: +IGNORE_RESULT >>> LONG_ARTICLE = squad_ds[81514]["context"] >>> inputs = tokenizer(LONG_ARTICLE, return_tensors="pt") >>> # long input article >>> list(inputs["input_ids"].shape) [1, 919] >>> with torch.no_grad(): ... logits = model(**inputs).logits >>> predicted_class_id = logits.argmax().item() >>> model.config.id2label[predicted_class_id] 'LABEL_0' ``` ```python >>> num_labels = len(model.config.id2label) >>> model = BigBirdForSequenceClassification.from_pretrained( ... "l-yohai/bigbird-roberta-base-mnli", num_labels=num_labels ... ) >>> labels = torch.tensor(1) >>> loss = model(**inputs, labels=labels).loss >>> round(loss.item(), 2) 1.13 ``` """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.bert( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = outputs[0] logits = self.classifier(sequence_output) loss = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: self.config.problem_type = "regression" elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): self.config.problem_type = "single_label_classification" else: self.config.problem_type = "multi_label_classification" if self.config.problem_type == "regression": loss_fct = MSELoss() if self.num_labels == 1: loss = loss_fct(logits.squeeze(), labels.squeeze()) else: loss = loss_fct(logits, labels) elif self.config.problem_type == "single_label_classification": loss_fct = CrossEntropyLoss() loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) elif self.config.problem_type == "multi_label_classification": loss_fct = BCEWithLogitsLoss() loss = loss_fct(logits, labels) if not return_dict: output = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return SequenceClassifierOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) @add_start_docstrings( """ BigBird Model with a multiple choice classification head on top (a linear layer on top of the pooled output and a softmax) e.g. for RocStories/SWAG tasks. """, BIG_BIRD_START_DOCSTRING, ) class BigBirdForMultipleChoice(BigBirdPreTrainedModel): def __init__(self, config): super().__init__(config) self.bert = BigBirdModel(config) self.dropout = nn.Dropout(config.hidden_dropout_prob) self.classifier = nn.Linear(config.hidden_size, 1) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward( BIG_BIRD_INPUTS_DOCSTRING.format("batch_size, num_choices, sequence_length") ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=MultipleChoiceModelOutput, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids: torch.LongTensor = None, attention_mask: Optional[torch.FloatTensor] = None, token_type_ids: Optional[torch.LongTensor] = None, position_ids: Optional[torch.LongTensor] = None, head_mask: Optional[torch.FloatTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[MultipleChoiceModelOutput, Tuple[torch.FloatTensor]]: r""" labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the multiple choice classification loss. Indices should be in `[0, ..., num_choices-1]` where `num_choices` is the size of the second dimension of the input tensors. (See `input_ids` above) """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict num_choices = input_ids.shape[1] if input_ids is not None else inputs_embeds.shape[1] input_ids = input_ids.view(-1, input_ids.size(-1)) if input_ids is not None else None attention_mask = attention_mask.view(-1, attention_mask.size(-1)) if attention_mask is not None else None token_type_ids = token_type_ids.view(-1, token_type_ids.size(-1)) if token_type_ids is not None else None position_ids = position_ids.view(-1, position_ids.size(-1)) if position_ids is not None else None inputs_embeds = ( inputs_embeds.view(-1, inputs_embeds.size(-2), inputs_embeds.size(-1)) if inputs_embeds is not None else None ) outputs = self.bert( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) pooled_output = outputs[1] pooled_output = self.dropout(pooled_output) logits = self.classifier(pooled_output) reshaped_logits = logits.view(-1, num_choices) loss = None if labels is not None: loss_fct = CrossEntropyLoss() loss = loss_fct(reshaped_logits, labels) if not return_dict: output = (reshaped_logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return MultipleChoiceModelOutput( loss=loss, logits=reshaped_logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) @add_start_docstrings( """ BigBird Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for Named-Entity-Recognition (NER) tasks. """, BIG_BIRD_START_DOCSTRING, ) class BigBirdForTokenClassification(BigBirdPreTrainedModel): def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.bert = BigBirdModel(config) classifier_dropout = ( config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob ) self.dropout = nn.Dropout(classifier_dropout) self.classifier = nn.Linear(config.hidden_size, config.num_labels) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(BIG_BIRD_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=TokenClassifierOutput, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids: torch.LongTensor = None, attention_mask: Optional[torch.FloatTensor] = None, token_type_ids: Optional[torch.LongTensor] = None, position_ids: Optional[torch.LongTensor] = None, head_mask: Optional[torch.FloatTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[TokenClassifierOutput, Tuple[torch.FloatTensor]]: r""" labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`. """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.bert( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = outputs[0] sequence_output = self.dropout(sequence_output) logits = self.classifier(sequence_output) loss = None if labels is not None: loss_fct = CrossEntropyLoss() loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) if not return_dict: output = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return TokenClassifierOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) class BigBirdForQuestionAnsweringHead(nn.Module): """Head for question answering tasks.""" def __init__(self, config): super().__init__() self.dropout = nn.Dropout(config.hidden_dropout_prob) self.intermediate = BigBirdIntermediate(config) self.output = BigBirdOutput(config) self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels) def forward(self, encoder_output): hidden_states = self.dropout(encoder_output) hidden_states = self.intermediate(hidden_states) hidden_states = self.output(hidden_states, encoder_output) hidden_states = self.qa_outputs(hidden_states) return hidden_states @add_start_docstrings( """ BigBird Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear layers on top of the hidden-states output to compute `span start logits` and `span end logits`). """, BIG_BIRD_START_DOCSTRING, ) class BigBirdForQuestionAnswering(BigBirdPreTrainedModel): def __init__(self, config, add_pooling_layer=False): super().__init__(config) config.num_labels = 2 self.num_labels = config.num_labels self.sep_token_id = config.sep_token_id self.bert = BigBirdModel(config, add_pooling_layer=add_pooling_layer) self.qa_classifier = BigBirdForQuestionAnsweringHead(config) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(BIG_BIRD_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @replace_return_docstrings(output_type=BigBirdForQuestionAnsweringModelOutput, config_class=_CONFIG_FOR_DOC) def forward( self, input_ids: torch.LongTensor = None, attention_mask: Optional[torch.FloatTensor] = None, question_lengths=None, token_type_ids: Optional[torch.LongTensor] = None, position_ids: Optional[torch.LongTensor] = None, head_mask: Optional[torch.FloatTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, start_positions: Optional[torch.LongTensor] = None, end_positions: Optional[torch.LongTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[BigBirdForQuestionAnsweringModelOutput, Tuple[torch.FloatTensor]]: r""" start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for position (index) of the start of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence are not taken into account for computing the loss. end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for position (index) of the end of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence are not taken into account for computing the loss. Returns: Example: ```python >>> import torch >>> from transformers import AutoTokenizer, BigBirdForQuestionAnswering >>> from datasets import load_dataset >>> tokenizer = AutoTokenizer.from_pretrained("google/bigbird-roberta-base") >>> model = BigBirdForQuestionAnswering.from_pretrained("google/bigbird-roberta-base") >>> squad_ds = load_dataset("squad_v2", split="train") # doctest: +IGNORE_RESULT >>> # select random article and question >>> LONG_ARTICLE = squad_ds[81514]["context"] >>> QUESTION = squad_ds[81514]["question"] >>> QUESTION 'During daytime how high can the temperatures reach?' >>> inputs = tokenizer(QUESTION, LONG_ARTICLE, return_tensors="pt") >>> # long article and question input >>> list(inputs["input_ids"].shape) [1, 929] >>> with torch.no_grad(): ... outputs = model(**inputs) >>> answer_start_index = outputs.start_logits.argmax() >>> answer_end_index = outputs.end_logits.argmax() >>> predict_answer_token_ids = inputs.input_ids[0, answer_start_index : answer_end_index + 1] >>> predict_answer_token = tokenizer.decode(predict_answer_token_ids) ``` ```python >>> target_start_index, target_end_index = torch.tensor([130]), torch.tensor([132]) >>> outputs = model(**inputs, start_positions=target_start_index, end_positions=target_end_index) >>> loss = outputs.loss ``` """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict seqlen = input_ids.size(1) if input_ids is not None else inputs_embeds.size(1) if question_lengths is None and input_ids is not None: # assuming input_ids format: <cls> <question> <sep> context <sep> question_lengths = torch.argmax(input_ids.eq(self.sep_token_id).int(), dim=-1) + 1 question_lengths.unsqueeze_(1) logits_mask = None if question_lengths is not None: # setting lengths logits to `-inf` logits_mask = self.prepare_question_mask(question_lengths, seqlen) if token_type_ids is None: token_type_ids = torch.ones(logits_mask.size(), dtype=int, device=logits_mask.device) - logits_mask logits_mask = logits_mask logits_mask[:, 0] = False logits_mask.unsqueeze_(2) outputs = self.bert( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = outputs[0] logits = self.qa_classifier(sequence_output) if logits_mask is not None: # removing question tokens from the competition logits = logits - logits_mask * 1e6 start_logits, end_logits = logits.split(1, dim=-1) start_logits = start_logits.squeeze(-1).contiguous() end_logits = end_logits.squeeze(-1).contiguous() total_loss = None if start_positions is not None and end_positions is not None: # If we are on multi-GPU, split add a dimension if len(start_positions.size()) > 1: start_positions = start_positions.squeeze(-1) if len(end_positions.size()) > 1: end_positions = end_positions.squeeze(-1) # sometimes the start/end positions are outside our model inputs, we ignore these terms ignored_index = start_logits.size(1) start_positions = start_positions.clamp(0, ignored_index) end_positions = end_positions.clamp(0, ignored_index) loss_fct = CrossEntropyLoss(ignore_index=ignored_index) start_loss = loss_fct(start_logits, start_positions) end_loss = loss_fct(end_logits, end_positions) total_loss = (start_loss + end_loss) / 2 if not return_dict: output = (start_logits, end_logits) + outputs[2:] return ((total_loss,) + output) if total_loss is not None else output return BigBirdForQuestionAnsweringModelOutput( loss=total_loss, start_logits=start_logits, end_logits=end_logits, pooler_output=outputs.pooler_output, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) @staticmethod def prepare_question_mask(q_lengths: torch.Tensor, maxlen: int): # q_lengths -> (bz, 1) mask = torch.arange(0, maxlen).to(q_lengths.device) mask.unsqueeze_(0) # -> (1, maxlen) mask = torch.where(mask < q_lengths, 1, 0) return mask
0
hf_public_repos/transformers/src/transformers/models
hf_public_repos/transformers/src/transformers/models/big_bird/configuration_big_bird.py
# coding=utf-8 # Copyright 2021 Google Research and The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ BigBird model configuration""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging logger = logging.get_logger(__name__) BIG_BIRD_PRETRAINED_CONFIG_ARCHIVE_MAP = { "google/bigbird-roberta-base": "https://huggingface.co/google/bigbird-roberta-base/resolve/main/config.json", "google/bigbird-roberta-large": "https://huggingface.co/google/bigbird-roberta-large/resolve/main/config.json", "google/bigbird-base-trivia-itc": "https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/config.json", # See all BigBird models at https://huggingface.co/models?filter=big_bird } class BigBirdConfig(PretrainedConfig): r""" This is the configuration class to store the configuration of a [`BigBirdModel`]. It is used to instantiate an BigBird model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the BigBird [google/bigbird-roberta-base](https://huggingface.co/google/bigbird-roberta-base) architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: vocab_size (`int`, *optional*, defaults to 50358): Vocabulary size of the BigBird model. Defines the number of different tokens that can be represented by the `inputs_ids` passed when calling [`BigBirdModel`]. hidden_size (`int`, *optional*, defaults to 768): Dimension of the encoder layers and the pooler layer. num_hidden_layers (`int`, *optional*, defaults to 12): Number of hidden layers in the Transformer encoder. num_attention_heads (`int`, *optional*, defaults to 12): Number of attention heads for each attention layer in the Transformer encoder. intermediate_size (`int`, *optional*, defaults to 3072): Dimension of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder. hidden_act (`str` or `function`, *optional*, defaults to `"gelu_new"`): The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, `"relu"`, `"selu"` and `"gelu_new"` are supported. hidden_dropout_prob (`float`, *optional*, defaults to 0.1): The dropout probabilitiy for all fully connected layers in the embeddings, encoder, and pooler. attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1): The dropout ratio for the attention probabilities. max_position_embeddings (`int`, *optional*, defaults to 4096): The maximum sequence length that this model might ever be used with. Typically set this to something large just in case (e.g., 1024 or 2048 or 4096). type_vocab_size (`int`, *optional*, defaults to 2): The vocabulary size of the `token_type_ids` passed when calling [`BigBirdModel`]. initializer_range (`float`, *optional*, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. layer_norm_eps (`float`, *optional*, defaults to 1e-12): The epsilon used by the layer normalization layers. is_decoder (`bool`, *optional*, defaults to `False`): Whether the model is used as a decoder or not. If `False`, the model is used as an encoder. use_cache (`bool`, *optional*, defaults to `True`): Whether or not the model should return the last key/values attentions (not used by all models). Only relevant if `config.is_decoder=True`. attention_type (`str`, *optional*, defaults to `"block_sparse"`) Whether to use block sparse attention (with n complexity) as introduced in paper or original attention layer (with n^2 complexity). Possible values are `"original_full"` and `"block_sparse"`. use_bias (`bool`, *optional*, defaults to `True`) Whether to use bias in query, key, value. rescale_embeddings (`bool`, *optional*, defaults to `False`) Whether to rescale embeddings with (hidden_size ** 0.5). block_size (`int`, *optional*, defaults to 64) Size of each block. Useful only when `attention_type == "block_sparse"`. num_random_blocks (`int`, *optional*, defaults to 3) Each query is going to attend these many number of random blocks. Useful only when `attention_type == "block_sparse"`. classifier_dropout (`float`, *optional*): The dropout ratio for the classification head. Example: ```python >>> from transformers import BigBirdConfig, BigBirdModel >>> # Initializing a BigBird google/bigbird-roberta-base style configuration >>> configuration = BigBirdConfig() >>> # Initializing a model (with random weights) from the google/bigbird-roberta-base style configuration >>> model = BigBirdModel(configuration) >>> # Accessing the model configuration >>> configuration = model.config ```""" model_type = "big_bird" def __init__( self, vocab_size=50358, hidden_size=768, num_hidden_layers=12, num_attention_heads=12, intermediate_size=3072, hidden_act="gelu_new", hidden_dropout_prob=0.1, attention_probs_dropout_prob=0.1, max_position_embeddings=4096, type_vocab_size=2, initializer_range=0.02, layer_norm_eps=1e-12, use_cache=True, pad_token_id=0, bos_token_id=1, eos_token_id=2, sep_token_id=66, attention_type="block_sparse", use_bias=True, rescale_embeddings=False, block_size=64, num_random_blocks=3, classifier_dropout=None, **kwargs, ): super().__init__( pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id, sep_token_id=sep_token_id, **kwargs, ) self.vocab_size = vocab_size self.max_position_embeddings = max_position_embeddings self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.intermediate_size = intermediate_size self.hidden_act = hidden_act self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.initializer_range = initializer_range self.type_vocab_size = type_vocab_size self.layer_norm_eps = layer_norm_eps self.use_cache = use_cache self.rescale_embeddings = rescale_embeddings self.attention_type = attention_type self.use_bias = use_bias self.block_size = block_size self.num_random_blocks = num_random_blocks self.classifier_dropout = classifier_dropout class BigBirdOnnxConfig(OnnxConfig): @property def inputs(self) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": dynamic_axis = {0: "batch", 1: "choice", 2: "sequence"} else: dynamic_axis = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ] )
0
hf_public_repos/transformers/src/transformers/models
hf_public_repos/transformers/src/transformers/models/big_bird/convert_bigbird_original_tf_checkpoint_to_pytorch.py
# coding=utf-8 # Copyright 2021 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Convert BigBird checkpoint.""" import argparse from transformers import BigBirdConfig, BigBirdForPreTraining, BigBirdForQuestionAnswering, load_tf_weights_in_big_bird from transformers.utils import logging logging.set_verbosity_info() def convert_tf_checkpoint_to_pytorch(tf_checkpoint_path, big_bird_config_file, pytorch_dump_path, is_trivia_qa): # Initialise PyTorch model config = BigBirdConfig.from_json_file(big_bird_config_file) print(f"Building PyTorch model from configuration: {config}") if is_trivia_qa: model = BigBirdForQuestionAnswering(config) else: model = BigBirdForPreTraining(config) # Load weights from tf checkpoint load_tf_weights_in_big_bird(model, tf_checkpoint_path, is_trivia_qa=is_trivia_qa) # Save pytorch-model print(f"Save PyTorch model to {pytorch_dump_path}") model.save_pretrained(pytorch_dump_path) if __name__ == "__main__": parser = argparse.ArgumentParser() # Required parameters parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--big_bird_config_file", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained BERT model. \n" "This specifies the model architecture." ), ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) parser.add_argument( "--is_trivia_qa", action="store_true", help="Whether to convert a model with a trivia_qa head." ) args = parser.parse_args() convert_tf_checkpoint_to_pytorch( args.tf_checkpoint_path, args.big_bird_config_file, args.pytorch_dump_path, args.is_trivia_qa )
0
hf_public_repos/transformers/src/transformers/models
hf_public_repos/transformers/src/transformers/models/big_bird/tokenization_big_bird_fast.py
# coding=utf-8 # Copyright 2018 Google AI, Google Brain and the HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Tokenization classes for Big Bird model.""" import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_big_bird import BigBirdTokenizer else: BigBirdTokenizer = None logger = logging.get_logger(__name__) VOCAB_FILES_NAMES = {"vocab_file": "spiece.model", "tokenizer_file": "tokenizer.json"} PRETRAINED_VOCAB_FILES_MAP = { "vocab_file": { "google/bigbird-roberta-base": "https://huggingface.co/google/bigbird-roberta-base/resolve/main/spiece.model", "google/bigbird-roberta-large": ( "https://huggingface.co/google/bigbird-roberta-large/resolve/main/spiece.model" ), "google/bigbird-base-trivia-itc": ( "https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/spiece.model" ), }, "tokenizer_file": { "google/bigbird-roberta-base": ( "https://huggingface.co/google/bigbird-roberta-base/resolve/main/tokenizer.json" ), "google/bigbird-roberta-large": ( "https://huggingface.co/google/bigbird-roberta-large/resolve/main/tokenizer.json" ), "google/bigbird-base-trivia-itc": ( "https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/tokenizer.json" ), }, } PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = { "google/bigbird-roberta-base": 4096, "google/bigbird-roberta-large": 4096, "google/bigbird-base-trivia-itc": 4096, } SPIECE_UNDERLINE = "▁" class BigBirdTokenizerFast(PreTrainedTokenizerFast): """ Construct a "fast" BigBird tokenizer (backed by HuggingFace's *tokenizers* library). Based on [Unigram](https://huggingface.co/docs/tokenizers/python/latest/components.html?highlight=unigram#models). This tokenizer inherits from [`PreTrainedTokenizerFast`] which contains most of the main methods. Users should refer to this superclass for more information regarding those methods Args: vocab_file (`str`): [SentencePiece](https://github.com/google/sentencepiece) file (generally has a *.spm* extension) that contains the vocabulary necessary to instantiate a tokenizer. bos_token (`str`, *optional*, defaults to `"<s>"`): The beginning of sequence token that was used during pretraining. Can be used a sequence classifier token. <Tip> When building a sequence using special tokens, this is not the token that is used for the beginning of sequence. The token used is the `cls_token`. </Tip> eos_token (`str`, *optional*, defaults to `"</s>"`): The end of sequence token. .. note:: When building a sequence using special tokens, this is not the token that is used for the end of sequence. The token used is the `sep_token`. unk_token (`str`, *optional*, defaults to `"<unk>"`): The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this token instead. sep_token (`str`, *optional*, defaults to `"[SEP]"`): The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for sequence classification or for a text and a question for question answering. It is also used as the last token of a sequence built with special tokens. pad_token (`str`, *optional*, defaults to `"<pad>"`): The token used for padding, for example when batching sequences of different lengths. cls_token (`str`, *optional*, defaults to `"[CLS]"`): The classifier token which is used when doing sequence classification (classification of the whole sequence instead of per-token classification). It is the first token of the sequence when built with special tokens. mask_token (`str`, *optional*, defaults to `"[MASK]"`): The token used for masking values. This is the token used when training this model with masked language modeling. This is the token which the model will try to predict. """ vocab_files_names = VOCAB_FILES_NAMES pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES slow_tokenizer_class = BigBirdTokenizer model_input_names = ["input_ids", "attention_mask"] prefix_tokens: List[int] = [] def __init__( self, vocab_file=None, tokenizer_file=None, unk_token="<unk>", bos_token="<s>", eos_token="</s>", pad_token="<pad>", sep_token="[SEP]", mask_token="[MASK]", cls_token="[CLS]", **kwargs, ): bos_token = AddedToken(bos_token, lstrip=False, rstrip=False) if isinstance(bos_token, str) else bos_token eos_token = AddedToken(eos_token, lstrip=False, rstrip=False) if isinstance(eos_token, str) else eos_token unk_token = AddedToken(unk_token, lstrip=False, rstrip=False) if isinstance(unk_token, str) else unk_token pad_token = AddedToken(pad_token, lstrip=False, rstrip=False) if isinstance(pad_token, str) else pad_token cls_token = AddedToken(cls_token, lstrip=False, rstrip=False) if isinstance(cls_token, str) else cls_token sep_token = AddedToken(sep_token, lstrip=False, rstrip=False) if isinstance(sep_token, str) else sep_token # Mask token behave like a normal word, i.e. include the space before it mask_token = AddedToken(mask_token, lstrip=True, rstrip=False) if isinstance(mask_token, str) else mask_token super().__init__( vocab_file, tokenizer_file=tokenizer_file, bos_token=bos_token, eos_token=eos_token, unk_token=unk_token, sep_token=sep_token, pad_token=pad_token, cls_token=cls_token, mask_token=mask_token, **kwargs, ) self.vocab_file = vocab_file self.can_save_slow_tokenizer = False if not self.vocab_file else True def build_inputs_with_special_tokens( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None ) -> List[int]: """ Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and adding special tokens. An BigBird sequence has the following format: - single sequence: `[CLS] X [SEP]` - pair of sequences: `[CLS] A [SEP] B [SEP]` Args: token_ids_0 (`List[int]`): List of IDs to which the special tokens will be added token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. Returns: `List[int]`: list of [input IDs](../glossary#input-ids) with the appropriate special tokens. """ sep = [self.sep_token_id] cls = [self.cls_token_id] if token_ids_1 is None: return cls + token_ids_0 + sep return cls + token_ids_0 + sep + token_ids_1 + sep def get_special_tokens_mask( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False ) -> List[int]: """ Retrieves sequence ids from a token list that has no special tokens added. This method is called when adding special tokens using the tokenizer `prepare_for_model` method. Args: token_ids_0 (`List[int]`): List of ids. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. already_has_special_tokens (`bool`, *optional*, defaults to `False`): Set to True if the token list is already formatted with special tokens for the model Returns: `List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token. """ if already_has_special_tokens: if token_ids_1 is not None: raise ValueError( "You should not supply a second sequence if the provided sequence of " "ids is already formatted with special tokens for the model." ) return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_0] if token_ids_1 is None: return [1] + ([0] * len(token_ids_0)) + [1] return [1] + ([0] * len(token_ids_0)) + [1] + ([0] * len(token_ids_1)) + [1] def create_token_type_ids_from_sequences( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None ) -> List[int]: """ Creates a mask from the two sequences passed to be used in a sequence-pair classification task. An ALBERT sequence pair mask has the following format: ``` 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 | first sequence | second sequence | ``` if token_ids_1 is None, only returns the first portion of the mask (0s). Args: token_ids_0 (`List[int]`): List of ids. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. Returns: `List[int]`: List of [token type IDs](../glossary#token-type-ids) according to the given sequence(s). """ sep = [self.sep_token_id] cls = [self.cls_token_id] if token_ids_1 is None: return len(cls + token_ids_0 + sep) * [0] return len(cls + token_ids_0 + sep) * [0] + len(token_ids_1 + sep) * [1] def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]: if not self.can_save_slow_tokenizer: raise ValueError( "Your fast tokenizer does not have the necessary information to save the vocabulary for a slow " "tokenizer." ) if not os.path.isdir(save_directory): logger.error(f"Vocabulary path ({save_directory}) should be a directory") return out_vocab_file = os.path.join( save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file): copyfile(self.vocab_file, out_vocab_file) return (out_vocab_file,)
0
hf_public_repos/transformers/src/transformers/models
hf_public_repos/transformers/src/transformers/models/big_bird/tokenization_big_bird.py
# coding=utf-8 # Copyright 2021 Google Research and The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tokenization classes for BigBird.""" import os import re from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging logger = logging.get_logger(__name__) VOCAB_FILES_NAMES = {"vocab_file": "spiece.model"} PRETRAINED_VOCAB_FILES_MAP = { "vocab_file": { "google/bigbird-roberta-base": "https://huggingface.co/google/bigbird-roberta-base/resolve/main/spiece.model", "google/bigbird-roberta-large": ( "https://huggingface.co/google/bigbird-roberta-large/resolve/main/spiece.model" ), "google/bigbird-base-trivia-itc": ( "https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/spiece.model" ), } } PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = { "google/bigbird-roberta-base": 4096, "google/bigbird-roberta-large": 4096, "google/bigbird-base-trivia-itc": 4096, } class BigBirdTokenizer(PreTrainedTokenizer): """ Construct a BigBird tokenizer. Based on [SentencePiece](https://github.com/google/sentencepiece). This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to this superclass for more information regarding those methods. Args: vocab_file (`str`): [SentencePiece](https://github.com/google/sentencepiece) file (generally has a *.spm* extension) that contains the vocabulary necessary to instantiate a tokenizer. eos_token (`str`, *optional*, defaults to `"</s>"`): The end of sequence token. bos_token (`str`, *optional*, defaults to `"<s>"`): The begin of sequence token. unk_token (`str`, *optional*, defaults to `"<unk>"`): The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this token instead. pad_token (`str`, *optional*, defaults to `"<pad>"`): The token used for padding, for example when batching sequences of different lengths. sep_token (`str`, *optional*, defaults to `"[SEP]"`): The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for sequence classification or for a text and a question for question answering. It is also used as the last token of a sequence built with special tokens. cls_token (`str`, *optional*, defaults to `"[CLS]"`): The classifier token which is used when doing sequence classification (classification of the whole sequence instead of per-token classification). It is the first token of the sequence when built with special tokens. mask_token (`str`, *optional*, defaults to `"[MASK]"`): The token used for masking values. This is the token used when training this model with masked language modeling. This is the token which the model will try to predict. sp_model_kwargs (`dict`, *optional*): Will be passed to the `SentencePieceProcessor.__init__()` method. The [Python wrapper for SentencePiece](https://github.com/google/sentencepiece/tree/master/python) can be used, among other things, to set: - `enable_sampling`: Enable subword regularization. - `nbest_size`: Sampling parameters for unigram. Invalid for BPE-Dropout. - `nbest_size = {0,1}`: No sampling is performed. - `nbest_size > 1`: samples from the nbest_size results. - `nbest_size < 0`: assuming that nbest_size is infinite and samples from the all hypothesis (lattice) using forward-filtering-and-backward-sampling algorithm. - `alpha`: Smoothing parameter for unigram sampling, and dropout probability of merge operations for BPE-dropout. """ vocab_files_names = VOCAB_FILES_NAMES pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES model_input_names = ["input_ids", "attention_mask"] prefix_tokens: List[int] = [] def __init__( self, vocab_file, unk_token="<unk>", bos_token="<s>", eos_token="</s>", pad_token="<pad>", sep_token="[SEP]", mask_token="[MASK]", cls_token="[CLS]", sp_model_kwargs: Optional[Dict[str, Any]] = None, **kwargs, ) -> None: bos_token = AddedToken(bos_token, lstrip=False, rstrip=False) if isinstance(bos_token, str) else bos_token eos_token = AddedToken(eos_token, lstrip=False, rstrip=False) if isinstance(eos_token, str) else eos_token unk_token = AddedToken(unk_token, lstrip=False, rstrip=False) if isinstance(unk_token, str) else unk_token pad_token = AddedToken(pad_token, lstrip=False, rstrip=False) if isinstance(pad_token, str) else pad_token cls_token = AddedToken(cls_token, lstrip=False, rstrip=False) if isinstance(cls_token, str) else cls_token sep_token = AddedToken(sep_token, lstrip=False, rstrip=False) if isinstance(sep_token, str) else sep_token # Mask token behave like a normal word, i.e. include the space before it mask_token = AddedToken(mask_token, lstrip=True, rstrip=False) if isinstance(mask_token, str) else mask_token self.sp_model_kwargs = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=bos_token, eos_token=eos_token, unk_token=unk_token, pad_token=pad_token, sep_token=sep_token, mask_token=mask_token, cls_token=cls_token, sp_model_kwargs=self.sp_model_kwargs, **kwargs, ) self.vocab_file = vocab_file self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(vocab_file) @property def vocab_size(self): return self.sp_model.get_piece_size() def get_vocab(self): vocab = {self.convert_ids_to_tokens(i): i for i in range(self.vocab_size)} vocab.update(self.added_tokens_encoder) return vocab def __getstate__(self): state = self.__dict__.copy() state["sp_model"] = None return state def __setstate__(self, d): self.__dict__ = d # for backward compatibility if not hasattr(self, "sp_model_kwargs"): self.sp_model_kwargs = {} self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(self.vocab_file) def _tokenize(self, text: str) -> List[str]: """Take as input a string and return a list of strings (tokens) for words/sub-words""" return self.sp_model.encode(text, out_type=str) def _convert_token_to_id(self, token): """Converts a token (str) in an id using the vocab.""" return self.sp_model.piece_to_id(token) def _convert_id_to_token(self, index): """Converts an index (integer) in a token (str) using the vocab.""" token = self.sp_model.IdToPiece(index) return token def convert_tokens_to_string(self, tokens): """Converts a sequence of tokens (string) in a single string.""" current_sub_tokens = [] out_string = "" prev_is_special = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(current_sub_tokens) + token prev_is_special = True current_sub_tokens = [] else: current_sub_tokens.append(token) prev_is_special = False out_string += self.sp_model.decode(current_sub_tokens) return out_string.strip() def _decode( self, token_ids: List[int], skip_special_tokens: bool = False, clean_up_tokenization_spaces: bool = None, spaces_between_special_tokens: bool = True, **kwargs, ) -> str: self._decode_use_source_tokenizer = kwargs.pop("use_source_tokenizer", False) filtered_tokens = self.convert_ids_to_tokens(token_ids, skip_special_tokens=skip_special_tokens) # To avoid mixing byte-level and unicode for byte-level BPT # we need to build string separately for added tokens and byte-level tokens # cf. https://github.com/huggingface/transformers/issues/1133 sub_texts = [] current_sub_text = [] for token in filtered_tokens: if skip_special_tokens and token in self.all_special_ids: continue if token in self.added_tokens_encoder: if current_sub_text: sub_texts.append(self.convert_tokens_to_string(current_sub_text)) current_sub_text = [] sub_texts.append(token) else: current_sub_text.append(token) if current_sub_text: sub_texts.append(self.convert_tokens_to_string(current_sub_text)) # Mimic the behavior of the Rust tokenizer: # No space before [MASK] and [SEP] if spaces_between_special_tokens: text = re.sub(r" (\[(MASK|SEP)\])", r"\1", " ".join(sub_texts)) else: text = "".join(sub_texts) clean_up_tokenization_spaces = ( clean_up_tokenization_spaces if clean_up_tokenization_spaces is not None else self.clean_up_tokenization_spaces ) if clean_up_tokenization_spaces: clean_text = self.clean_up_tokenization(text) return clean_text else: return text def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]: if not os.path.isdir(save_directory): logger.error(f"Vocabulary path ({save_directory}) should be a directory") return out_vocab_file = os.path.join( save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file) and os.path.isfile(self.vocab_file): copyfile(self.vocab_file, out_vocab_file) elif not os.path.isfile(self.vocab_file): with open(out_vocab_file, "wb") as fi: content_spiece_model = self.sp_model.serialized_model_proto() fi.write(content_spiece_model) return (out_vocab_file,) def build_inputs_with_special_tokens( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None ) -> List[int]: """ Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and adding special tokens. A Big Bird sequence has the following format: - single sequence: `[CLS] X [SEP]` - pair of sequences: `[CLS] A [SEP] B [SEP]` Args: token_ids_0 (`List[int]`): List of IDs to which the special tokens will be added. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. Returns: `List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens. """ if token_ids_1 is None: return [self.cls_token_id] + token_ids_0 + [self.sep_token_id] cls = [self.cls_token_id] sep = [self.sep_token_id] return cls + token_ids_0 + sep + token_ids_1 + sep def get_special_tokens_mask( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False ) -> List[int]: """ Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding special tokens using the tokenizer `prepare_for_model` method. Args: token_ids_0 (`List[int]`): List of IDs. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. already_has_special_tokens (`bool`, *optional*, defaults to `False`): Whether or not the token list is already formatted with special tokens for the model. Returns: `List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token. """ if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True ) if token_ids_1 is None: return [1] + ([0] * len(token_ids_0)) + [1] return [1] + ([0] * len(token_ids_0)) + [1] + ([0] * len(token_ids_1)) + [1] def create_token_type_ids_from_sequences( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None ) -> List[int]: """ Create a mask from the two sequences passed to be used in a sequence-pair classification task. A BERT sequence pair mask has the following format: :: 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 | first sequence | second sequence | If `token_ids_1` is `None`, this method only returns the first portion of the mask (0s). Args: token_ids_0 (`List[int]`): List of IDs. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. Returns: `List[int]`: List of [token type IDs](../glossary#token-type-ids) according to the given sequence(s). """ sep = [self.sep_token_id] cls = [self.cls_token_id] if token_ids_1 is None: return len(cls + token_ids_0 + sep) * [0] return len(cls + token_ids_0 + sep) * [0] + len(token_ids_1 + sep) * [1]
0
hf_public_repos/transformers/src/transformers/models
hf_public_repos/transformers/src/transformers/models/big_bird/modeling_flax_big_bird.py
# coding=utf-8 # Copyright 2021 The Google Flax Team Authors and The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Callable, Optional, Tuple import flax import flax.linen as nn import jax import jax.numpy as jnp from flax.core.frozen_dict import FrozenDict, freeze, unfreeze from flax.linen import combine_masks, make_causal_mask from flax.linen import partitioning as nn_partitioning from flax.linen.attention import dot_product_attention_weights from flax.traverse_util import flatten_dict, unflatten_dict from jax import lax from ...modeling_flax_outputs import ( FlaxBaseModelOutputWithPastAndCrossAttentions, FlaxBaseModelOutputWithPooling, FlaxBaseModelOutputWithPoolingAndCrossAttentions, FlaxCausalLMOutputWithCrossAttentions, FlaxMaskedLMOutput, FlaxMultipleChoiceModelOutput, FlaxSequenceClassifierOutput, FlaxTokenClassifierOutput, ) from ...modeling_flax_utils import ( ACT2FN, FlaxPreTrainedModel, append_call_sample_docstring, append_replace_return_docstrings, overwrite_call_docstring, ) from ...utils import ModelOutput, add_start_docstrings, add_start_docstrings_to_model_forward, logging from .configuration_big_bird import BigBirdConfig logger = logging.get_logger(__name__) _CHECKPOINT_FOR_DOC = "google/bigbird-roberta-base" _CONFIG_FOR_DOC = "BigBirdConfig" remat = nn_partitioning.remat @flax.struct.dataclass class FlaxBigBirdForPreTrainingOutput(ModelOutput): """ Output type of [`BigBirdForPreTraining`]. Args: prediction_logits (`jnp.ndarray` of shape `(batch_size, sequence_length, config.vocab_size)`): Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax). seq_relationship_logits (`jnp.ndarray` of shape `(batch_size, 2)`): Prediction scores of the next sequence prediction (classification) head (scores of True/False continuation before SoftMax). hidden_states (`tuple(jnp.ndarray)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `jnp.ndarray` (one for the output of the embeddings + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the initial embedding outputs. attentions (`tuple(jnp.ndarray)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `jnp.ndarray` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. """ prediction_logits: jnp.ndarray = None seq_relationship_logits: jnp.ndarray = None hidden_states: Optional[Tuple[jnp.ndarray]] = None attentions: Optional[Tuple[jnp.ndarray]] = None @flax.struct.dataclass class FlaxBigBirdForQuestionAnsweringModelOutput(ModelOutput): """ Base class for outputs of question answering models. Args: start_logits (`jnp.ndarray` of shape `(batch_size, sequence_length)`): Span-start scores (before SoftMax). end_logits (`jnp.ndarray` of shape `(batch_size, sequence_length)`): Span-end scores (before SoftMax). pooled_output (`jnp.ndarray` of shape `(batch_size, hidden_size)`): pooled_output returned by FlaxBigBirdModel. hidden_states (`tuple(jnp.ndarray)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `jnp.ndarray` (one for the output of the embeddings + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the initial embedding outputs. attentions (`tuple(jnp.ndarray)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `jnp.ndarray` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. """ start_logits: jnp.ndarray = None end_logits: jnp.ndarray = None pooled_output: jnp.ndarray = None hidden_states: Optional[Tuple[jnp.ndarray]] = None attentions: Optional[Tuple[jnp.ndarray]] = None BIG_BIRD_START_DOCSTRING = r""" This model inherits from [`FlaxPreTrainedModel`]. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading, saving and converting weights from PyTorch models) This model is also a Flax Linen [flax.linen.Module](https://flax.readthedocs.io/en/latest/flax.linen.html#module) subclass. Use it as a regular Flax linen Module and refer to the Flax documentation for all matter related to general usage and behavior. Finally, this model supports inherent JAX features such as: - [Just-In-Time (JIT) compilation](https://jax.readthedocs.io/en/latest/jax.html#just-in-time-compilation-jit) - [Automatic Differentiation](https://jax.readthedocs.io/en/latest/jax.html#automatic-differentiation) - [Vectorization](https://jax.readthedocs.io/en/latest/jax.html#vectorization-vmap) - [Parallelization](https://jax.readthedocs.io/en/latest/jax.html#parallelization-pmap) Parameters: config ([`BigBirdConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~FlaxPreTrainedModel.from_pretrained`] method to load the model weights. dtype (`jax.numpy.dtype`, *optional*, defaults to `jax.numpy.float32`): The data type of the computation. Can be one of `jax.numpy.float32`, `jax.numpy.float16` (on GPUs) and `jax.numpy.bfloat16` (on TPUs). This can be used to enable mixed-precision training or half-precision inference on GPUs or TPUs. If specified all the computation will be performed with the given `dtype`. **Note that this only specifies the dtype of the computation and does not influence the dtype of model parameters.** If you wish to change the dtype of the model parameters, see [`~FlaxPreTrainedModel.to_fp16`] and [`~FlaxPreTrainedModel.to_bf16`]. """ BIG_BIRD_INPUTS_DOCSTRING = r""" Args: input_ids (`numpy.ndarray` of shape `({0})`): Indices of input sequence tokens in the vocabulary. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) attention_mask (`numpy.ndarray` of shape `({0})`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) token_type_ids (`numpy.ndarray` of shape `({0})`, *optional*): Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0, 1]`: - 0 corresponds to a *sentence A* token, - 1 corresponds to a *sentence B* token. [What are token type IDs?](../glossary#token-type-ids) position_ids (`numpy.ndarray` of shape `({0})`, *optional*): Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, config.max_position_embeddings - 1]`. head_mask (`numpy.ndarray` of shape `({0})`, `optional): Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ class FlaxBigBirdEmbeddings(nn.Module): """Construct the embeddings from word, position and token_type embeddings.""" config: BigBirdConfig dtype: jnp.dtype = jnp.float32 # the dtype of the computation # Copied from transformers.models.bert.modeling_flax_bert.FlaxBertEmbeddings.setup def setup(self): self.word_embeddings = nn.Embed( self.config.vocab_size, self.config.hidden_size, embedding_init=jax.nn.initializers.normal(stddev=self.config.initializer_range), dtype=self.dtype, ) self.position_embeddings = nn.Embed( self.config.max_position_embeddings, self.config.hidden_size, embedding_init=jax.nn.initializers.normal(stddev=self.config.initializer_range), dtype=self.dtype, ) self.token_type_embeddings = nn.Embed( self.config.type_vocab_size, self.config.hidden_size, embedding_init=jax.nn.initializers.normal(stddev=self.config.initializer_range), dtype=self.dtype, ) self.LayerNorm = nn.LayerNorm(epsilon=self.config.layer_norm_eps, dtype=self.dtype) self.dropout = nn.Dropout(rate=self.config.hidden_dropout_prob) def __call__(self, input_ids, token_type_ids, position_ids, attention_mask, deterministic: bool = True): # Embed inputs_embeds = self.word_embeddings(input_ids.astype("i4")) position_embeds = self.position_embeddings(position_ids.astype("i4")) token_type_embeddings = self.token_type_embeddings(token_type_ids.astype("i4")) if self.config.rescale_embeddings: inputs_embeds *= self.config.hidden_size**0.5 # Sum all embeddings hidden_states = inputs_embeds + token_type_embeddings + position_embeds # Layer Norm hidden_states = self.dropout(hidden_states, deterministic=deterministic) hidden_states = self.LayerNorm(hidden_states) return hidden_states # Copied from transformers.models.bert.modeling_flax_bert.FlaxBertSelfAttention with Bert->BigBird class FlaxBigBirdSelfAttention(nn.Module): config: BigBirdConfig causal: bool = False dtype: jnp.dtype = jnp.float32 # the dtype of the computation def setup(self): self.head_dim = self.config.hidden_size // self.config.num_attention_heads if self.config.hidden_size % self.config.num_attention_heads != 0: raise ValueError( "`config.hidden_size`: {self.config.hidden_size} has to be a multiple of `config.num_attention_heads` " " : {self.config.num_attention_heads}" ) self.query = nn.Dense( self.config.hidden_size, dtype=self.dtype, kernel_init=jax.nn.initializers.normal(self.config.initializer_range), ) self.key = nn.Dense( self.config.hidden_size, dtype=self.dtype, kernel_init=jax.nn.initializers.normal(self.config.initializer_range), ) self.value = nn.Dense( self.config.hidden_size, dtype=self.dtype, kernel_init=jax.nn.initializers.normal(self.config.initializer_range), ) if self.causal: self.causal_mask = make_causal_mask( jnp.ones((1, self.config.max_position_embeddings), dtype="bool"), dtype="bool" ) def _split_heads(self, hidden_states): return hidden_states.reshape(hidden_states.shape[:2] + (self.config.num_attention_heads, self.head_dim)) def _merge_heads(self, hidden_states): return hidden_states.reshape(hidden_states.shape[:2] + (self.config.hidden_size,)) @nn.compact # Copied from transformers.models.bart.modeling_flax_bart.FlaxBartAttention._concatenate_to_cache def _concatenate_to_cache(self, key, value, query, attention_mask): """ This function takes projected key, value states from a single input token and concatenates the states to cached states from previous steps. This function is slighly adapted from the official Flax repository: https://github.com/google/flax/blob/491ce18759622506588784b4fca0e4bf05f8c8cd/flax/linen/attention.py#L252 """ # detect if we're initializing by absence of existing cache data. is_initialized = self.has_variable("cache", "cached_key") cached_key = self.variable("cache", "cached_key", jnp.zeros, key.shape, key.dtype) cached_value = self.variable("cache", "cached_value", jnp.zeros, value.shape, value.dtype) cache_index = self.variable("cache", "cache_index", lambda: jnp.array(0, dtype=jnp.int32)) if is_initialized: *batch_dims, max_length, num_heads, depth_per_head = cached_key.value.shape # update key, value caches with our new 1d spatial slices cur_index = cache_index.value indices = (0,) * len(batch_dims) + (cur_index, 0, 0) key = lax.dynamic_update_slice(cached_key.value, key, indices) value = lax.dynamic_update_slice(cached_value.value, value, indices) cached_key.value = key cached_value.value = value num_updated_cache_vectors = query.shape[1] cache_index.value = cache_index.value + num_updated_cache_vectors # causal mask for cached decoder self-attention: our single query position should only attend to those key positions that have already been generated and cached, not the remaining zero elements. pad_mask = jnp.broadcast_to( jnp.arange(max_length) < cur_index + num_updated_cache_vectors, tuple(batch_dims) + (1, num_updated_cache_vectors, max_length), ) attention_mask = combine_masks(pad_mask, attention_mask) return key, value, attention_mask def __call__( self, hidden_states, attention_mask, layer_head_mask, key_value_states: Optional[jnp.array] = None, init_cache: bool = False, deterministic=True, output_attentions: bool = False, ): # if key_value_states are provided this layer is used as a cross-attention layer # for the decoder is_cross_attention = key_value_states is not None batch_size = hidden_states.shape[0] # get query proj query_states = self.query(hidden_states) # get key, value proj if is_cross_attention: # cross_attentions key_states = self.key(key_value_states) value_states = self.value(key_value_states) else: # self_attention key_states = self.key(hidden_states) value_states = self.value(hidden_states) query_states = self._split_heads(query_states) key_states = self._split_heads(key_states) value_states = self._split_heads(value_states) # handle cache prepare causal attention mask if self.causal: query_length, key_length = query_states.shape[1], key_states.shape[1] if self.has_variable("cache", "cached_key"): mask_shift = self.variables["cache"]["cache_index"] max_decoder_length = self.variables["cache"]["cached_key"].shape[1] causal_mask = lax.dynamic_slice( self.causal_mask, (0, 0, mask_shift, 0), (1, 1, query_length, max_decoder_length) ) else: causal_mask = self.causal_mask[:, :, :query_length, :key_length] causal_mask = jnp.broadcast_to(causal_mask, (batch_size,) + causal_mask.shape[1:]) # combine masks if needed if attention_mask is not None and self.causal: attention_mask = jnp.broadcast_to(jnp.expand_dims(attention_mask, axis=(-3, -2)), causal_mask.shape) attention_mask = combine_masks(attention_mask, causal_mask) elif self.causal: attention_mask = causal_mask elif attention_mask is not None: attention_mask = jnp.expand_dims(attention_mask, axis=(-3, -2)) # During fast autoregressive decoding, we feed one position at a time, # and cache the keys and values step by step. if self.causal and (self.has_variable("cache", "cached_key") or init_cache): key_states, value_states, attention_mask = self._concatenate_to_cache( key_states, value_states, query_states, attention_mask ) # Convert the boolean attention mask to an attention bias. if attention_mask is not None: # attention mask in the form of attention bias attention_bias = lax.select( attention_mask > 0, jnp.full(attention_mask.shape, 0.0).astype(self.dtype), jnp.full(attention_mask.shape, jnp.finfo(self.dtype).min).astype(self.dtype), ) else: attention_bias = None dropout_rng = None if not deterministic and self.config.attention_probs_dropout_prob > 0.0: dropout_rng = self.make_rng("dropout") attn_weights = dot_product_attention_weights( query_states, key_states, bias=attention_bias, dropout_rng=dropout_rng, dropout_rate=self.config.attention_probs_dropout_prob, broadcast_dropout=True, deterministic=deterministic, dtype=self.dtype, precision=None, ) # Mask heads if we want to if layer_head_mask is not None: attn_weights = jnp.einsum("...hqk,h->...hqk", attn_weights, layer_head_mask) attn_output = jnp.einsum("...hqk,...khd->...qhd", attn_weights, value_states) attn_output = attn_output.reshape(attn_output.shape[:2] + (-1,)) outputs = (attn_output, attn_weights) if output_attentions else (attn_output,) return outputs class FlaxBigBirdBlockSparseAttention(nn.Module): config: BigBirdConfig block_sparse_seed: int = None dtype: jnp.dtype = jnp.float32 def setup(self): self.query = nn.Dense( self.config.hidden_size, dtype=self.dtype, use_bias=self.config.use_bias, kernel_init=jax.nn.initializers.normal(self.config.initializer_range), ) self.key = nn.Dense( self.config.hidden_size, dtype=self.dtype, use_bias=self.config.use_bias, kernel_init=jax.nn.initializers.normal(self.config.initializer_range), ) self.value = nn.Dense( self.config.hidden_size, dtype=self.dtype, use_bias=self.config.use_bias, kernel_init=jax.nn.initializers.normal(self.config.initializer_range), ) @staticmethod def transpose_for_scores(x, n_heads, head_size): new_x_shape = x.shape[:-1] + (n_heads, head_size) x = x.reshape(*new_x_shape) return jnp.transpose(x, axes=(0, 2, 1, 3)) def __call__( self, hidden_states, attention_mask, deterministic=True, output_attentions=False, ): n_heads = self.config.num_attention_heads head_size = self.config.hidden_size // n_heads blocked_encoder_mask, band_mask, from_mask, to_mask = self.create_masks_for_block_sparse_attn( attention_mask, self.config.block_size ) query_layer = self.transpose_for_scores(self.query(hidden_states), n_heads, head_size) key_layer = self.transpose_for_scores(self.key(hidden_states), n_heads, head_size) value_layer = self.transpose_for_scores(self.value(hidden_states), n_heads, head_size) indices_prng_key = None if not deterministic: indices_prng_key = self.make_rng("indices") attn_output, attn_weights = self.bigbird_block_sparse_attention( query_layer, key_layer, value_layer, band_mask, from_mask, to_mask, blocked_encoder_mask, blocked_encoder_mask, n_heads, head_size, indices_prng_key=indices_prng_key, deterministic=deterministic, plan_from_length=None, plan_num_rand_blocks=None, output_attentions=output_attentions, ) outputs = (attn_output, attn_weights) if output_attentions else (attn_output,) return outputs @staticmethod def create_masks_for_block_sparse_attn(attention_mask, block_size: int): batch_size, seq_length = attention_mask.shape if seq_length % block_size != 0: raise ValueError( f"Sequence length must be multiple of block size, but sequence length is {seq_length}, while block" f" size is {block_size}." ) def create_band_mask_from_inputs(from_blocked_mask, to_blocked_mask): """ Create 3D attention mask from a 2D tensor mask. Args: from_blocked_mask: 2D Tensor of shape [batch_size, from_seq_length//from_block_size, from_block_size]. to_blocked_mask: int32 Tensor of shape [batch_size, to_seq_length//to_block_size, to_block_size]. Returns: float Tensor of shape [batch_size, 1, from_seq_length//from_block_size-4, from_block_size, 3*to_block_size]. """ exp_blocked_to_pad = jnp.concatenate( [to_blocked_mask[:, 1:-3], to_blocked_mask[:, 2:-2], to_blocked_mask[:, 3:-1]], axis=2 ) band_mask = jnp.einsum("blq,blk->blqk", from_blocked_mask[:, 2:-2], exp_blocked_to_pad) band_mask = jnp.expand_dims(band_mask, 1) return band_mask blocked_encoder_mask = attention_mask.reshape(batch_size, seq_length // block_size, block_size) band_mask = create_band_mask_from_inputs(blocked_encoder_mask, blocked_encoder_mask) from_mask = attention_mask.reshape(batch_size, 1, seq_length, 1) to_mask = attention_mask.reshape(batch_size, 1, 1, seq_length) return blocked_encoder_mask, band_mask, from_mask, to_mask def bigbird_block_sparse_attention( self, query_layer, key_layer, value_layer, band_mask, from_mask, to_mask, from_blocked_mask, to_blocked_mask, n_heads, head_size, indices_prng_key: Optional[jax.random.PRNGKey] = None, deterministic: Optional[bool] = True, plan_from_length=None, plan_num_rand_blocks=None, output_attentions=None, ): # BigBird block-sparse attention as suggested in paper # ITC: # global tokens: 2 x block_size # window tokens: 3 x block_size # random tokens: num_rand_tokens x block_size # ETC: # global tokens: extra_globals_tokens + 2 x block_size # window tokens: 3 x block_size # random tokens: num_rand_tokens x block_size # Note: # 1) Currently, ETC is not supported. # 2) Window size is fixed to 3 blocks & it can be changed only by # changing `block_size`. # 3) Number of global blocks are fixed (2 blocks here) & global tokens can be # controlled only by `block_size`. # attention is calculated separately for q[0], q[1], q[2:-2], q[-2], q[-1] in order to use special trick of # shifting tokens (for calculating sliding attention). hence following code can be divided into 5 parts. bsz, _, from_seq_len, _ = query_layer.shape to_seq_len = key_layer.shape[2] from_block_size = to_block_size = self.config.block_size if from_seq_len % from_block_size != 0: raise ValueError("Query sided sequence length must be multiple of block size") if to_seq_len % to_block_size != 0: raise ValueError("Key/Value sided sequence length must be multiple of block size") if from_seq_len // from_block_size != to_seq_len // to_block_size: raise ValueError("Error the number of blocks needs to be same!") n_rand_blocks = self.config.num_random_blocks rsqrt_d = 1 / jnp.sqrt(head_size) attn_mask_penalty = -10000.0 if from_seq_len in [1024, 3072, 4096]: # old plans used in paper max_seqlen = self.config.max_position_embeddings rand_attn = [ self._bigbird_block_rand_mask( max_seqlen, max_seqlen, from_block_size, to_block_size, n_rand_blocks, indices_prng_key=indices_prng_key, deterministic=deterministic, last_idx=1024, )[: (from_seq_len // from_block_size - 2)] for _ in range(n_heads) ] else: if plan_from_length is None: plan_from_length, plan_num_rand_blocks = self._get_rand_attn_plan( from_seq_len, from_block_size, n_rand_blocks ) rand_attn = self._bigbird_block_rand_mask_with_head( from_seq_length=from_seq_len, to_seq_length=to_seq_len, from_block_size=from_block_size, to_block_size=to_block_size, num_heads=n_heads, plan_from_length=plan_from_length, plan_num_rand_blocks=plan_num_rand_blocks, indices_prng_key=indices_prng_key, ) rand_attn = jnp.stack(rand_attn, axis=0) rand_attn = jnp.broadcast_to(rand_attn, (bsz,) + rand_attn.shape) rand_mask = self._create_rand_mask_from_inputs( from_blocked_mask, to_blocked_mask, rand_attn, n_heads, n_rand_blocks, bsz, from_seq_len, from_block_size ) blocked_query_matrix = query_layer.reshape(bsz, n_heads, from_seq_len // from_block_size, from_block_size, -1) blocked_key_matrix = key_layer.reshape(bsz, n_heads, to_seq_len // to_block_size, to_block_size, -1) blocked_value_matrix = value_layer.reshape(bsz, n_heads, to_seq_len // to_block_size, to_block_size, -1) shape = (bsz, n_heads, to_seq_len // to_block_size - 2, n_rand_blocks * to_block_size, -1) gathered_key = self.jax_gather(blocked_key_matrix, rand_attn, batch_dims=2).reshape(*shape) gathered_value = self.jax_gather(blocked_value_matrix, rand_attn, batch_dims=2).reshape(*shape) # 1st PART # 1st block (global block) attention scores # q[0] x (k[0], k[1], k[2], k[3], k[4] .... ) # [bsz, n_heads, from_block_size, -1] x [bsz, n_heads, to_seq_len, -1] ==> [bsz, n_heads, from_block_size, to_seq_len] first_product = jnp.einsum("bhqd,bhkd->bhqk", blocked_query_matrix[:, :, 0], key_layer) first_product = first_product * rsqrt_d first_product += (1.0 - to_mask) * attn_mask_penalty first_attn_weights = jax.nn.softmax(first_product, axis=-1) # [bsz, n_heads, from_block_size, to_seq_len] # [bsz, n_heads, from_block_size, to_seq_len] x [bsz, n_heads, to_seq_len, -1] ==> [bsz, n_heads, from_block_size, -1] first_context_layer = jnp.einsum("bhqk,bhkd->bhqd", first_attn_weights, value_layer) first_context_layer = jnp.expand_dims(first_context_layer, 2) # 2nd PART # 2nd block attention scores # q[1] x (sliding_keys, random_keys, global_keys) # sliding key blocks -> 2nd, 3rd blocks # global key blocks -> 1st block second_key_mat = jnp.concatenate( [ blocked_key_matrix[:, :, 0], blocked_key_matrix[:, :, 1], blocked_key_matrix[:, :, 2], blocked_key_matrix[:, :, -1], gathered_key[:, :, 0], ], axis=2, ) # [bsz, n_heads, (4+n_rand_blocks)*to_block_size, -1] second_value_mat = jnp.concatenate( [ blocked_value_matrix[:, :, 0], blocked_value_matrix[:, :, 1], blocked_value_matrix[:, :, 2], blocked_value_matrix[:, :, -1], gathered_value[:, :, 0], ], axis=2, ) # [bsz, n_heads, (4+n_rand_blocks)*to_block_size, -1] # [bsz, n_heads, from_block_size, -1] x [bsz, n_heads, (4+n_rand_blocks)*to_block_size, -1] # ==> [bsz, n_heads, from_block_size, (4+n_rand_blocks)*to_block_size] second_product = jnp.einsum("bhqd,bhkd->bhqk", blocked_query_matrix[:, :, 1], second_key_mat) second_seq_pad = jnp.concatenate( [ to_mask[:, :, :, : 3 * to_block_size], to_mask[:, :, :, -to_block_size:], jnp.ones([bsz, 1, 1, n_rand_blocks * to_block_size], dtype=to_mask.dtype), ], axis=3, ) second_rand_pad = jnp.concatenate( [ jnp.ones([bsz, n_heads, from_block_size, 4 * to_block_size], dtype=rand_mask.dtype), rand_mask[:, :, 0], ], axis=3, ) second_product = second_product * rsqrt_d second_product += (1.0 - jnp.minimum(second_seq_pad, second_rand_pad)) * attn_mask_penalty second_attn_weights = jax.nn.softmax( second_product, axis=-1 ) # [bsz, n_heads, from_block_size, (4+n_rand_blocks)*to_block_size] # [bsz, n_heads, from_block_size, (4+r)*to_block_size] x [bsz, n_heads, (4+r)*to_block_size, -1] # ==> [bsz, n_heads, from_block_size, -1] second_context_layer = jnp.einsum("bhqk,bhkd->bhqd", second_attn_weights, second_value_mat) second_context_layer = jnp.expand_dims(second_context_layer, 2) # 3rd PART # Middle blocks attention scores # q[-2:2] x (sliding_keys, random_keys, global_keys) # sliding attn is calculated using special trick of shifting tokens as discussed in paper # random keys are generated by taking random indices as per `rand_attn` # global keys -> 1st & last block exp_blocked_key_matrix = jnp.concatenate( [blocked_key_matrix[:, :, 1:-3], blocked_key_matrix[:, :, 2:-2], blocked_key_matrix[:, :, 3:-1]], axis=3 ) # [bsz, n_heads, from_seq_len//from_block_size-4, 3*to_block_size, -1] exp_blocked_value_matrix = jnp.concatenate( [blocked_value_matrix[:, :, 1:-3], blocked_value_matrix[:, :, 2:-2], blocked_value_matrix[:, :, 3:-1]], axis=3, ) # [bsz, n_heads, from_seq_len//from_block_size-4, 3*to_block_size, -1] middle_query_matrix = blocked_query_matrix[:, :, 2:-2] # sliding attention scores for q[-2:2] # [bsz, n_heads, from_seq_len//from_block_size-4, from_block_size, -1] x [b, n_heads, from_seq_len//from_block_size-4, 3*to_block_size, -1] inner_band_product = jnp.einsum("bhlqd,bhlkd->bhlqk", middle_query_matrix, exp_blocked_key_matrix) # ==> [bsz, n_heads, from_seq_len//from_block_size-4, from_block_size, 3*to_block_size] inner_band_product = inner_band_product * rsqrt_d # randn attention scores for q[-2:2] # [bsz, n_heads, from_seq_len//from_block_size-4, from_block_size, -1] # x [bsz, n_heads, from_seq_len//from_block_size-4, n_rand_blocks*to_block_size, -1] rand_band_product = jnp.einsum("bhlqd,bhlkd->bhlqk", middle_query_matrix, gathered_key[:, :, 1:-1]) # ==> [bsz, n_heads, from_seq_len//from_block_size-4, from_block_size, n_rand_blocks*to_block_size] rand_band_product = rand_band_product * rsqrt_d # Including 1st block (since it's global) # [bsz, n_heads, from_seq_len//from_block_size-4, from_block_size, -1] x [bsz, n_heads, to_block_size, -1] # ==> [bsz, n_heads, from_seq_len//from_block_size-4, from_block_size, to_block_size] first_band_product = jnp.einsum("bhlqd,bhkd->bhlqk", middle_query_matrix, blocked_key_matrix[:, :, 0]) first_band_product = first_band_product * rsqrt_d # Including last block (since it's global) # [bsz, n_heads, from_seq_len//from_block_size-4, from_block_size, -1] x [bsz, n_heads, to_block_size, -1] # ==> [bsz, n_heads, from_seq_len//from_block_size-4, from_block_size, to_block_size] last_band_product = jnp.einsum("bhlqd,bhkd->bhlqk", middle_query_matrix, blocked_key_matrix[:, :, -1]) last_band_product = last_band_product * rsqrt_d # masking padded tokens inner_band_product += (1.0 - band_mask) * attn_mask_penalty first_band_product += (1.0 - jnp.expand_dims(to_mask[:, :, :, :to_block_size], 3)) * attn_mask_penalty last_band_product += (1.0 - jnp.expand_dims(to_mask[:, :, :, -to_block_size:], 3)) * attn_mask_penalty rand_band_product += (1.0 - rand_mask[:, :, 1:-1]) * attn_mask_penalty # completing attention scores matrix for all q[-2:2] band_product = jnp.concatenate( [first_band_product, inner_band_product, rand_band_product, last_band_product], axis=-1 ) # [bsz, n_heads, from_seq_len//from_block_size-4, from_block_size, (5+n_rand_blocks)*to_block_size] # safely doing softmax since attention matrix is completed attn_weights = jax.nn.softmax( band_product, axis=-1 ) # [bsz, n_heads, from_seq_len//from_block_size-4, from_block_size, (5+n_rand_blocks)*to_block_size] # contribution of sliding keys # [bsz, n_heads, m//from_block_size-4, from_block_size, 3*to_block_size] # x [bsz, n_heads, from_seq_len//from_block_size-4, 3*to_block_size, -1] context_layer = jnp.einsum( "bhlqk,bhlkd->bhlqd", attn_weights[:, :, :, :, to_block_size : 4 * to_block_size], exp_blocked_value_matrix ) # ==> [bsz, n_heads, from_seq_len//from_block_size-4, from_block_size, -1] # adding contribution of random keys # [bsz, n_heads, from_seq_len//from_block_size-4, from_block_size, n_rand_blocks*to_block_size] # x [bsz, n_heads, from_seq_len//from_block_size-4, n_rand_blocks*to_block_size, -1] context_layer += jnp.einsum( "bhlqk,bhlkd->bhlqd", attn_weights[:, :, :, :, 4 * to_block_size : -to_block_size], gathered_value[:, :, 1:-1], ) # ==> [bsz, n_heads, from_seq_len//from_block_size-4, from_block_size, -1] # adding contribution of global keys # [bsz, n_heads, from_seq_len//from_block_size-4, from_block_size, to_block_size] x [bsz, n_heads, to_block_size, -1] # ==> [bsz, n_heads, from_seq_len//from_block_size-4, from_block_size, -1] context_layer += jnp.einsum( "bhlqk,bhkd->bhlqd", attn_weights[:, :, :, :, :to_block_size], blocked_value_matrix[:, :, 0] ) # [bsz, n_heads, from_seq_len//from_block_size-4, from_block_size, to_block_size] x [bsz, n_heads, to_block_size, -1] # ==> [bsz, n_heads, from_seq_len//from_block_size-4, from_block_size, -1] context_layer += jnp.einsum( "bhlqk,bhkd->bhlqd", attn_weights[:, :, :, :, -to_block_size:], blocked_value_matrix[:, :, -1] ) # 4th PART # last 2nd token attention scores # q[-2] x (sliding_keys, random_keys, global_keys) # sliding key blocks -> last 3 blocks # global key block -> 1st block # random key block -> based on indices stored in `randn_attn` second_last_key_mat = jnp.concatenate( [ blocked_key_matrix[:, :, 0], blocked_key_matrix[:, :, -3], blocked_key_matrix[:, :, -2], blocked_key_matrix[:, :, -1], gathered_key[:, :, -1], ], axis=2, ) # [bsz, n_heads, (4+n_random_blocks)*to_block_size, -1] second_last_value_mat = jnp.concatenate( [ blocked_value_matrix[:, :, 0], blocked_value_matrix[:, :, -3], blocked_value_matrix[:, :, -2], blocked_value_matrix[:, :, -1], gathered_value[:, :, -1], ], axis=2, ) # [bsz, n_heads, (4+r)*to_block_size, -1] # [bsz, n_heads, from_block_size, -1] x [bsz, n_heads, (4+n_rand_blocks)*to_block_size, -1] # ==> [bsz, n_heads, from_block_size, (4+n_rand_blocks)*to_block_size] second_last_product = jnp.einsum("bhqd,bhkd->bhqk", blocked_query_matrix[:, :, -2], second_last_key_mat) second_last_seq_pad = jnp.concatenate( [ to_mask[:, :, :, :to_block_size], to_mask[:, :, :, -3 * to_block_size :], jnp.ones([bsz, 1, 1, n_rand_blocks * to_block_size], dtype=to_mask.dtype), ], axis=3, ) second_last_rand_pad = jnp.concatenate( [ jnp.ones([bsz, n_heads, from_block_size, 4 * to_block_size], dtype=rand_mask.dtype), rand_mask[:, :, -1], ], axis=3, ) second_last_product = second_last_product * rsqrt_d second_last_product += (1.0 - jnp.minimum(second_last_seq_pad, second_last_rand_pad)) * attn_mask_penalty second_last_attn_weights = jax.nn.softmax( second_last_product, axis=-1 ) # [bsz, n_heads, from_block_size, (4+n_rand_blocks)*to_block_size] # [bsz, n_heads, from_block_size, (4+n_rand_blocks)*to_block_size] x [bsz, n_heads, (4+n_rand_blocks)*to_block_size, -1] # ==> [bsz, n_heads, from_block_size, -1] second_last_context_layer = jnp.einsum("bhqk,bhkd->bhqd", second_last_attn_weights, second_last_value_mat) second_last_context_layer = jnp.expand_dims(second_last_context_layer, 2) # 5th PART # last block (global) attention scores # q[-1] x (k[0], k[1], k[2], k[3], .... ) # [bsz, n_heads, from_block_size, -1] x [bsz, n_heads, to_seq_len, -1] ==> [bsz, n_heads, from_block_size, to_seq_len] last_product = jnp.einsum("bhqd,bhkd->bhqk", blocked_query_matrix[:, :, -1], key_layer) last_product = last_product * rsqrt_d last_product += (1.0 - to_mask) * attn_mask_penalty last_attn_weights = jax.nn.softmax(last_product, axis=-1) # [bsz, n_heads, from_block_size, n] # [bsz, n_heads, from_block_size, to_seq_len] x [bsz, n_heads, to_seq_len, -1] ==> [bsz, n_heads, from_block_size, -1] last_context_layer = jnp.einsum("bhqk,bhkd->bhqd", last_attn_weights, value_layer) last_context_layer = jnp.expand_dims(last_context_layer, 2) # combining representations of all tokens context_layer = jnp.concatenate( [first_context_layer, second_context_layer, context_layer, second_last_context_layer, last_context_layer], axis=2, ) context_layer = context_layer.reshape(bsz, n_heads, from_seq_len, -1) * from_mask context_layer = jnp.transpose(context_layer, axes=(0, 2, 1, 3)).reshape(bsz, from_seq_len, -1) attention_probs = None return context_layer, attention_probs @staticmethod def jax_gather(params, indices, batch_dims=2): """ Gather the indices from params correctly (equivalent to tf.gather but with modifications) Args: params: (bsz, n_heads, num_blocks, block_size, head_dim) indices: (<num_blocks, 1) """ def _jax_gather(params, indices): return params[indices] for _ in range(batch_dims): _jax_gather = jax.vmap(_jax_gather, in_axes=(0, 0)) return _jax_gather(params, indices) # params.shape[:batch_dims] + indices.shape + params.shape[batch_dims+1:] def _create_rand_mask_from_inputs( self, from_blocked_mask, to_blocked_mask, broadcasted_rand_attn, num_attention_heads, num_random_blocks, batch_size, from_seq_length, from_block_size, ): """ Create 3D attention mask from a 2D tensor mask. Args: from_blocked_mask: 2D Tensor of shape [batch_size, from_seq_length//from_block_size, from_block_size]. to_blocked_mask: int32 Tensor of shape [batch_size, to_seq_length//to_block_size, to_block_size]. broadcasted_rand_attn: [batch_size, num_attention_heads, from_seq_length//from_block_size-2, num_rand_blocks] num_attention_heads: int. Number of attention heads. num_random_blocks: int. Number of random chunks per row. batch_size: int. Batch size for computation. from_seq_length: int. length of from sequence. from_block_size: int. size of block in from sequence. Returns: float Tensor of shape [batch_size, num_attention_heads, from_seq_length//from_block_size-2, from_block_size, num_rand_blocks*to_block_size]. """ num_windows = from_seq_length // from_block_size - 2 rand_mask = self.jax_gather(to_blocked_mask, broadcasted_rand_attn, batch_dims=1) rand_mask = rand_mask.reshape( batch_size, num_attention_heads, num_windows, num_random_blocks * from_block_size ) rand_mask = jnp.einsum("blq,bhlk->bhlqk", from_blocked_mask[:, 1:-1], rand_mask) return rand_mask @staticmethod def _get_rand_attn_plan(from_seq_length, from_block_size, num_rand_blocks): """ Gives the plan of where to put random attention. Args: from_seq_length: int. length of from sequence. from_block_size: int. size of block in from sequence. num_rand_blocks: int. Number of random chunks per row. Returns: plan_from_length: ending location of from block plan_num_rand_blocks: number of random ending location for each block """ plan_from_length = [] plan_num_rand_blocks = [] if (2 * num_rand_blocks + 5) < (from_seq_length // from_block_size): plan_from_length.append(int((2 * num_rand_blocks + 5) * from_block_size)) plan_num_rand_blocks.append(num_rand_blocks) plan_from_length.append(from_seq_length) plan_num_rand_blocks.append(0) elif (num_rand_blocks + 5) < (from_seq_length // from_block_size): plan_from_length.append(int((num_rand_blocks + 5) * from_block_size)) plan_num_rand_blocks.append(num_rand_blocks // 2) plan_from_length.append(from_seq_length) plan_num_rand_blocks.append(num_rand_blocks - (num_rand_blocks // 2)) else: plan_from_length.append(from_seq_length) plan_num_rand_blocks.append(num_rand_blocks) return plan_from_length, plan_num_rand_blocks @staticmethod def _bigbird_block_rand_mask( from_seq_length, to_seq_length, from_block_size, to_block_size, num_rand_blocks, indices_prng_key: Optional[jax.random.PRNGKey] = None, deterministic: Optional[bool] = True, last_idx: Optional[int] = -1, ): """ Create adjacency list of random attention. Args: from_seq_length: int. length of from sequence. to_seq_length: int. length of to sequence. from_block_size: int. size of block in from sequence. to_block_size: int. size of block in to sequence. num_rand_blocks: int. Number of random chunks per row. indices_prng_key: jax.random.PRNGKey. PRNG key that is used to perform random jax operations. deterministic: bool. When False random attention will be used. last_idx: if -1 then num_rand_blocks blocks chosen anywhere in to sequence, if positive then num_rand_blocks blocks chosen only up to last_idx. Returns: adjacency list of size from_seq_length//from_block_size-2 by num_rand_blocks """ # using this method when from_seq_length in [1024, 3072, 4096] if from_seq_length // from_block_size != to_seq_length // to_block_size: raise ValueError("Error the number of blocks needs to be same!") rand_attn = jnp.zeros((from_seq_length // from_block_size - 2, num_rand_blocks), dtype=jnp.int32) # deterministic nor randomness if deterministic: return rand_attn middle_seq = jnp.arange(1, to_seq_length // to_block_size - 1, dtype=jnp.int32) last = to_seq_length // to_block_size - 1 if last_idx > (2 * to_block_size): last = (last_idx // to_block_size) - 1 r = num_rand_blocks # shorthand for i in range(1, from_seq_length // from_block_size - 1): start = i - 2 end = i if i == 1: seq_values = jax.random.permutation(indices_prng_key, middle_seq[2:last])[:r] rand_attn = rand_attn.at[i - 1].set(seq_values) elif i == 2: seq_values = jax.random.permutation(indices_prng_key, middle_seq[3:last])[:r] rand_attn = rand_attn.at[i - 1].set(seq_values) elif i == from_seq_length // from_block_size - 3: seq_values = jax.random.permutation(indices_prng_key, middle_seq[:last])[:r] rand_attn = rand_attn.at[i - 1].set(seq_values) # Missing -3: should have been sliced till last-3 elif i == from_seq_length // from_block_size - 2: seq_values = jax.random.permutation(indices_prng_key, middle_seq[:last])[:r] rand_attn = rand_attn.at[i - 1].set(seq_values) # Missing -4: should have been sliced till last-4 else: if start > last: start = last seq_values = jax.random.permutation(indices_prng_key, middle_seq[:start])[:r] rand_attn = rand_attn.at[i - 1].set(seq_values) elif (end + 1) == last: seq_values = jax.random.permutation(indices_prng_key, middle_seq[:start])[:r] rand_attn = rand_attn.at[i - 1].set(seq_values) else: concat_values = jnp.concatenate((middle_seq[:start], middle_seq[end + 1 : last])) seq_values = jax.random.permutation(indices_prng_key, concat_values)[:r] rand_attn = rand_attn.at[i - 1].set(seq_values) return rand_attn def _bigbird_block_rand_mask_with_head( self, from_seq_length, to_seq_length, from_block_size, to_block_size, num_heads, plan_from_length, plan_num_rand_blocks, indices_prng_key: Optional[jax.random.PRNGKey] = None, deterministic: Optional[bool] = True, window_block_left=1, window_block_right=1, global_block_top=1, global_block_bottom=1, global_block_left=1, global_block_right=1, ): """ Create adjacency list of random attention. Args: from_seq_length: int. length of from sequence. to_seq_length: int. length of to sequence. from_block_size: int. size of block in from sequence. to_block_size: int. size of block in to sequence. num_heads: int. total number of heads. plan_from_length: list. plan from length where num_random_blocks are choosen from. plan_num_rand_blocks: list. number of rand blocks within the plan. indices_prng_key: jax.random.PRNGKey. PRNG key that is used to perform random jax operations. deterministic: bool. When False random attention will be used. window_block_left: int. number of blocks of window to left of a block. window_block_right: int. number of blocks of window to right of a block. global_block_top: int. number of blocks at the top. global_block_bottom: int. number of blocks at the bottom. global_block_left: int. Number of blocks globally used to the left. global_block_right: int. Number of blocks globally used to the right. Returns: adjacency list of size num_head where each element is of size from_seq_length//from_block_size-2 by num_rand_blocks """ # using this method when from_seq_length not in [1024, 3072, 4096] if from_seq_length // from_block_size != to_seq_length // to_block_size: raise ValueError("Error the number of blocks needs to be same!") if from_seq_length not in plan_from_length: raise ValueError("Error from sequence length not in plan!") # Total number of blocks in the mmask num_blocks = from_seq_length // from_block_size # Number of blocks per plan plan_block_length = jnp.array(plan_from_length) // from_block_size # till when to follow plan max_plan_idx = plan_from_length.index(from_seq_length) # Random Attention adjacency list rand_attn = [ jnp.zeros((num_blocks, sum(plan_num_rand_blocks[: max_plan_idx + 1])), dtype=jnp.int32) for i in range(num_heads) ] # deterministic if deterministic: for nh in range(num_heads): rand_attn[nh] = rand_attn[nh][global_block_top : num_blocks - global_block_bottom, :] return rand_attn # We will go iteratively over the plan blocks and pick random number of # Attention blocks from the legally allowed blocks for plan_idx in range(max_plan_idx + 1): rnd_r_cnt = 0 if plan_idx > 0: # set the row for all from_blocks starting from 0 to # plan_block_length[plan_idx-1] # column indx start fromm plan_block_length[plan_idx-1] and ends at # plan_block_length[plan_idx] if plan_num_rand_blocks[plan_idx] > 0: rnd_r_cnt = int(sum(plan_num_rand_blocks[:plan_idx])) curr_r_cnt = int(sum(plan_num_rand_blocks[: plan_idx + 1])) for blk_rw_idx in range(global_block_top, plan_block_length[plan_idx - 1]): for h in range(num_heads): single_block_row_attention = self._get_single_block_row_attention( block_id=blk_rw_idx, to_start_block_id=plan_block_length[plan_idx - 1], to_end_block_id=plan_block_length[plan_idx], num_rand_blocks=plan_num_rand_blocks[plan_idx], window_block_left=window_block_left, window_block_right=window_block_right, global_block_left=global_block_left, global_block_right=global_block_right, indices_prng_key=indices_prng_key, ) rand_attn[h] = ( rand_attn[h].at[blk_rw_idx, rnd_r_cnt:curr_r_cnt].set(single_block_row_attention) ) for pl_id in range(plan_idx): if plan_num_rand_blocks[pl_id] == 0: continue for blk_rw_idx in range(plan_block_length[plan_idx - 1], plan_block_length[plan_idx]): rnd_r_cnt = 0 to_start_block_id = 0 if pl_id > 0: rnd_r_cnt = int(sum(plan_num_rand_blocks[:pl_id])) to_start_block_id = plan_block_length[pl_id - 1] curr_r_cnt = int(sum(plan_num_rand_blocks[: pl_id + 1])) for h in range(num_heads): single_block_row_attention = self._get_single_block_row_attention( block_id=blk_rw_idx, to_start_block_id=to_start_block_id, to_end_block_id=plan_block_length[pl_id], num_rand_blocks=plan_num_rand_blocks[pl_id], window_block_left=window_block_left, window_block_right=window_block_right, global_block_left=global_block_left, global_block_right=global_block_right, indices_prng_key=indices_prng_key, ) rand_attn[h] = ( rand_attn[h].at[blk_rw_idx, rnd_r_cnt:curr_r_cnt].set(single_block_row_attention) ) if plan_num_rand_blocks[plan_idx] == 0: continue curr_r_cnt = int(sum(plan_num_rand_blocks[: plan_idx + 1])) from_start_block_id = global_block_top to_start_block_id = 0 if plan_idx > 0: rnd_r_cnt = int(sum(plan_num_rand_blocks[:plan_idx])) from_start_block_id = plan_block_length[plan_idx - 1] to_start_block_id = plan_block_length[plan_idx - 1] for blk_rw_idx in range(from_start_block_id, plan_block_length[plan_idx]): for h in range(num_heads): single_block_row_attention = self._get_single_block_row_attention( block_id=blk_rw_idx, to_start_block_id=to_start_block_id, to_end_block_id=plan_block_length[plan_idx], num_rand_blocks=plan_num_rand_blocks[plan_idx], window_block_left=window_block_left, window_block_right=window_block_right, global_block_left=global_block_left, global_block_right=global_block_right, indices_prng_key=indices_prng_key, ) rand_attn[h] = rand_attn[h].at[blk_rw_idx, rnd_r_cnt:curr_r_cnt].set(single_block_row_attention) for nh in range(num_heads): rand_attn[nh] = rand_attn[nh][global_block_top : num_blocks - global_block_bottom, :] return rand_attn @staticmethod def _get_single_block_row_attention( block_id, to_start_block_id, to_end_block_id, num_rand_blocks, indices_prng_key: Optional[jax.random.PRNGKey] = None, window_block_left=1, window_block_right=1, global_block_left=1, global_block_right=1, ): """ For a single row block get random row attention. Args: block_id: int. block id of row. to_start_block_id: int. random attention column start id. to_end_block_id: int. random attention column end id. num_rand_blocks: int. number of random blocks to be selected. indices_prng_key: jax.random.PRNGKey. PRNG key that is used to perform random jax operations window_block_left: int. number of blocks of window to left of a block. window_block_right: int. number of blocks of window to right of a block. global_block_left: int. Number of blocks globally used to the left. global_block_right: int. Number of blocks globally used to the right. Returns: row containing the random attention vector of size num_rand_blocks. """ # list of to_blocks from which to choose random attention to_block_list = jnp.arange(to_start_block_id, to_end_block_id, dtype=jnp.int32) # permute the blocks perm_block = jax.random.permutation(indices_prng_key, to_block_list) # illegal blocks for the current block id, using window illegal_blocks = list(range(block_id - window_block_left, block_id + window_block_right + 1)) # Add blocks at the start and at the end illegal_blocks.extend(list(range(global_block_left))) illegal_blocks.extend(list(range(to_end_block_id - global_block_right, to_end_block_id))) # The second from_block cannot choose random attention on second last to_block if block_id == 1: illegal_blocks.append(to_end_block_id - 2) # The second last from_block cannot choose random attention on second to_block if block_id == to_end_block_id - 2: illegal_blocks.append(1) selected_random_blocks = [] for i in range(to_end_block_id - to_start_block_id): if perm_block[i] not in illegal_blocks: selected_random_blocks.append(perm_block[i]) if len(selected_random_blocks) == num_rand_blocks: break return jnp.array(selected_random_blocks, dtype=jnp.int32) # Copied from transformers.models.bert.modeling_flax_bert.FlaxBertSelfOutput with Bert->BigBird class FlaxBigBirdSelfOutput(nn.Module): config: BigBirdConfig dtype: jnp.dtype = jnp.float32 # the dtype of the computation def setup(self): self.dense = nn.Dense( self.config.hidden_size, kernel_init=jax.nn.initializers.normal(self.config.initializer_range), dtype=self.dtype, ) self.LayerNorm = nn.LayerNorm(epsilon=self.config.layer_norm_eps, dtype=self.dtype) self.dropout = nn.Dropout(rate=self.config.hidden_dropout_prob) def __call__(self, hidden_states, input_tensor, deterministic: bool = True): hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states, deterministic=deterministic) hidden_states = self.LayerNorm(hidden_states + input_tensor) return hidden_states class FlaxBigBirdAttention(nn.Module): config: BigBirdConfig layer_id: int = None causal: bool = False dtype: jnp.dtype = jnp.float32 def setup(self): if self.config.attention_type == "original_full": self.self = FlaxBigBirdSelfAttention(self.config, causal=self.causal, dtype=self.dtype) elif self.config.attention_type == "block_sparse": self.self = FlaxBigBirdBlockSparseAttention(self.config, block_sparse_seed=self.layer_id, dtype=self.dtype) else: raise ValueError( f"Your `config.attention_type` is {self.config.attention_type} but it can either be `original_full` or" " `block_sparse`" ) self.output = FlaxBigBirdSelfOutput(self.config, dtype=self.dtype) def __call__( self, hidden_states, attention_mask, layer_head_mask, key_value_states=None, init_cache=False, deterministic=True, output_attentions: bool = False, ): # Attention mask comes in as attention_mask.shape == (*batch_sizes, kv_length) # FLAX expects: attention_mask.shape == (*batch_sizes, 1, 1, kv_length) such that it is broadcastable # with attn_weights.shape == (*batch_sizes, num_heads, q_length, kv_length) if self.config.attention_type == "original_full": attn_outputs = self.self( hidden_states, attention_mask, layer_head_mask=layer_head_mask, key_value_states=key_value_states, init_cache=init_cache, deterministic=deterministic, output_attentions=output_attentions, ) else: attn_outputs = self.self( hidden_states, attention_mask, deterministic=deterministic, output_attentions=output_attentions, ) attn_output = attn_outputs[0] hidden_states = self.output(attn_output, hidden_states, deterministic=deterministic) outputs = (hidden_states,) if output_attentions: outputs += (attn_outputs[1],) return outputs # Copied from transformers.models.bert.modeling_flax_bert.FlaxBertIntermediate with Bert->BigBird class FlaxBigBirdIntermediate(nn.Module): config: BigBirdConfig dtype: jnp.dtype = jnp.float32 # the dtype of the computation def setup(self): self.dense = nn.Dense( self.config.intermediate_size, kernel_init=jax.nn.initializers.normal(self.config.initializer_range), dtype=self.dtype, ) self.activation = ACT2FN[self.config.hidden_act] def __call__(self, hidden_states): hidden_states = self.dense(hidden_states) hidden_states = self.activation(hidden_states) return hidden_states # Copied from transformers.models.bert.modeling_flax_bert.FlaxBertOutput with Bert->BigBird class FlaxBigBirdOutput(nn.Module): config: BigBirdConfig dtype: jnp.dtype = jnp.float32 # the dtype of the computation def setup(self): self.dense = nn.Dense( self.config.hidden_size, kernel_init=jax.nn.initializers.normal(self.config.initializer_range), dtype=self.dtype, ) self.dropout = nn.Dropout(rate=self.config.hidden_dropout_prob) self.LayerNorm = nn.LayerNorm(epsilon=self.config.layer_norm_eps, dtype=self.dtype) def __call__(self, hidden_states, attention_output, deterministic: bool = True): hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states, deterministic=deterministic) hidden_states = self.LayerNorm(hidden_states + attention_output) return hidden_states class FlaxBigBirdLayer(nn.Module): config: BigBirdConfig layer_id: int = None dtype: jnp.dtype = jnp.float32 # the dtype of the computation def setup(self): self.attention = FlaxBigBirdAttention( self.config, layer_id=self.layer_id, causal=self.config.is_decoder, dtype=self.dtype ) self.intermediate = FlaxBigBirdIntermediate(self.config, dtype=self.dtype) self.output = FlaxBigBirdOutput(self.config, dtype=self.dtype) if self.config.add_cross_attention: self.crossattention = FlaxBigBirdAttention(self.config, causal=False, dtype=self.dtype) # Copied from transformers.models.bert.modeling_flax_bert.FlaxBertLayer.__call__ with Bert->BigBird def __call__( self, hidden_states, attention_mask, layer_head_mask, encoder_hidden_states: Optional[jnp.ndarray] = None, encoder_attention_mask: Optional[jnp.ndarray] = None, init_cache: bool = False, deterministic: bool = True, output_attentions: bool = False, ): # Self Attention attention_outputs = self.attention( hidden_states, attention_mask, layer_head_mask=layer_head_mask, init_cache=init_cache, deterministic=deterministic, output_attentions=output_attentions, ) attention_output = attention_outputs[0] # Cross-Attention Block if encoder_hidden_states is not None: cross_attention_outputs = self.crossattention( attention_output, attention_mask=encoder_attention_mask, layer_head_mask=layer_head_mask, key_value_states=encoder_hidden_states, deterministic=deterministic, output_attentions=output_attentions, ) attention_output = cross_attention_outputs[0] hidden_states = self.intermediate(attention_output) hidden_states = self.output(hidden_states, attention_output, deterministic=deterministic) outputs = (hidden_states,) if output_attentions: outputs += (attention_outputs[1],) if encoder_hidden_states is not None: outputs += (cross_attention_outputs[1],) return outputs class FlaxBigBirdLayerCollection(nn.Module): config: BigBirdConfig dtype: jnp.dtype = jnp.float32 # the dtype of the computation gradient_checkpointing: bool = False def setup(self): if self.gradient_checkpointing: FlaxBigBirdCheckpointLayer = remat(FlaxBigBirdLayer, static_argnums=(5, 6, 7)) self.layers = [ FlaxBigBirdCheckpointLayer(self.config, layer_id=i, name=str(i), dtype=self.dtype) for i in range(self.config.num_hidden_layers) ] else: self.layers = [ FlaxBigBirdLayer(self.config, layer_id=i, name=str(i), dtype=self.dtype) for i in range(self.config.num_hidden_layers) ] # Copied from transformers.models.bert.modeling_flax_bert.FlaxBertLayerCollection.__call__ with Bert->BigBird def __call__( self, hidden_states, attention_mask, head_mask, encoder_hidden_states: Optional[jnp.ndarray] = None, encoder_attention_mask: Optional[jnp.ndarray] = None, init_cache: bool = False, deterministic: bool = True, output_attentions: bool = False, output_hidden_states: bool = False, return_dict: bool = True, ): all_attentions = () if output_attentions else None all_hidden_states = () if output_hidden_states else None all_cross_attentions = () if (output_attentions and encoder_hidden_states is not None) else None # Check if head_mask has a correct number of layers specified if desired if head_mask is not None: if head_mask.shape[0] != (len(self.layers)): raise ValueError( f"The head_mask should be specified for {len(self.layers)} layers, but it is for " f" {head_mask.shape[0]}." ) for i, layer in enumerate(self.layers): if output_hidden_states: all_hidden_states += (hidden_states,) layer_outputs = layer( hidden_states, attention_mask, head_mask[i] if head_mask is not None else None, encoder_hidden_states, encoder_attention_mask, init_cache, deterministic, output_attentions, ) hidden_states = layer_outputs[0] if output_attentions: all_attentions += (layer_outputs[1],) if encoder_hidden_states is not None: all_cross_attentions += (layer_outputs[2],) if output_hidden_states: all_hidden_states += (hidden_states,) outputs = (hidden_states, all_hidden_states, all_attentions, all_cross_attentions) if not return_dict: return tuple(v for v in outputs if v is not None) return FlaxBaseModelOutputWithPastAndCrossAttentions( last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_attentions, cross_attentions=all_cross_attentions, ) # Copied from transformers.models.bert.modeling_flax_bert.FlaxBertEncoder with Bert->BigBird class FlaxBigBirdEncoder(nn.Module): config: BigBirdConfig dtype: jnp.dtype = jnp.float32 # the dtype of the computation gradient_checkpointing: bool = False def setup(self): self.layer = FlaxBigBirdLayerCollection( self.config, dtype=self.dtype, gradient_checkpointing=self.gradient_checkpointing, ) def __call__( self, hidden_states, attention_mask, head_mask, encoder_hidden_states: Optional[jnp.ndarray] = None, encoder_attention_mask: Optional[jnp.ndarray] = None, init_cache: bool = False, deterministic: bool = True, output_attentions: bool = False, output_hidden_states: bool = False, return_dict: bool = True, ): return self.layer( hidden_states, attention_mask, head_mask=head_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, init_cache=init_cache, deterministic=deterministic, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) # Copied from transformers.models.bert.modeling_flax_bert.FlaxBertPredictionHeadTransform with Bert->BigBird class FlaxBigBirdPredictionHeadTransform(nn.Module): config: BigBirdConfig dtype: jnp.dtype = jnp.float32 def setup(self): self.dense = nn.Dense(self.config.hidden_size, dtype=self.dtype) self.activation = ACT2FN[self.config.hidden_act] self.LayerNorm = nn.LayerNorm(epsilon=self.config.layer_norm_eps, dtype=self.dtype) def __call__(self, hidden_states): hidden_states = self.dense(hidden_states) hidden_states = self.activation(hidden_states) return self.LayerNorm(hidden_states) # Copied from transformers.models.bert.modeling_flax_bert.FlaxBertLMPredictionHead with Bert->BigBird, np.ndarray->jnp.ndarray class FlaxBigBirdLMPredictionHead(nn.Module): config: BigBirdConfig dtype: jnp.dtype = jnp.float32 bias_init: Callable[..., jnp.ndarray] = jax.nn.initializers.zeros def setup(self): self.transform = FlaxBigBirdPredictionHeadTransform(self.config, dtype=self.dtype) self.decoder = nn.Dense(self.config.vocab_size, dtype=self.dtype, use_bias=False) self.bias = self.param("bias", self.bias_init, (self.config.vocab_size,)) def __call__(self, hidden_states, shared_embedding=None): hidden_states = self.transform(hidden_states) if shared_embedding is not None: hidden_states = self.decoder.apply({"params": {"kernel": shared_embedding.T}}, hidden_states) else: hidden_states = self.decoder(hidden_states) bias = jnp.asarray(self.bias, self.dtype) hidden_states += bias return hidden_states # Copied from transformers.models.bert.modeling_flax_bert.FlaxBertOnlyMLMHead with Bert->BigBird class FlaxBigBirdOnlyMLMHead(nn.Module): config: BigBirdConfig dtype: jnp.dtype = jnp.float32 def setup(self): self.predictions = FlaxBigBirdLMPredictionHead(self.config, dtype=self.dtype) def __call__(self, hidden_states, shared_embedding=None): hidden_states = self.predictions(hidden_states, shared_embedding=shared_embedding) return hidden_states class FlaxBigBirdPreTrainingHeads(nn.Module): config: BigBirdConfig dtype: jnp.dtype = jnp.float32 def setup(self): self.predictions = FlaxBigBirdLMPredictionHead(self.config, dtype=self.dtype) self.seq_relationship = nn.Dense(2, dtype=self.dtype) def __call__(self, hidden_states, pooled_output, shared_embedding=None): prediction_scores = self.predictions(hidden_states, shared_embedding=shared_embedding) seq_relationship_score = self.seq_relationship(pooled_output) return prediction_scores, seq_relationship_score class FlaxBigBirdPreTrainedModel(FlaxPreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = BigBirdConfig base_model_prefix = "bert" module_class: nn.Module = None def __init__( self, config: BigBirdConfig, input_shape: Optional[tuple] = None, seed: int = 0, dtype: jnp.dtype = jnp.float32, _do_init: bool = True, gradient_checkpointing: bool = False, **kwargs, ): module = self.module_class(config=config, dtype=dtype, gradient_checkpointing=gradient_checkpointing, **kwargs) if config.attention_type == "block_sparse" and input_shape is None: input_shape = (1, 12 * config.block_size) elif input_shape is None: input_shape = (1, 1) super().__init__(config, module, input_shape=input_shape, seed=seed, dtype=dtype, _do_init=_do_init) # Copied from transformers.models.bert.modeling_flax_bert.FlaxBertPreTrainedModel.enable_gradient_checkpointing def enable_gradient_checkpointing(self): self._module = self.module_class( config=self.config, dtype=self.dtype, gradient_checkpointing=True, ) def init_weights(self, rng: jax.random.PRNGKey, input_shape: Tuple, params: FrozenDict = None) -> FrozenDict: # init input tensors input_ids = jnp.zeros(input_shape, dtype="i4") token_type_ids = jnp.zeros_like(input_ids) position_ids = jnp.broadcast_to(jnp.arange(jnp.atleast_2d(input_ids).shape[-1]), input_shape) attention_mask = jnp.ones_like(input_ids) head_mask = jnp.ones((self.config.num_hidden_layers, self.config.num_attention_heads)) params_rng, dropout_rng, indices_rng = jax.random.split(rng, num=3) rngs = {"params": params_rng, "dropout": dropout_rng, "indices": indices_rng} if self.config.add_cross_attention: encoder_hidden_states = jnp.zeros(input_shape + (self.config.hidden_size,)) encoder_attention_mask = attention_mask module_init_outputs = self.module.init( rngs, input_ids, attention_mask, token_type_ids, position_ids, head_mask, encoder_hidden_states, encoder_attention_mask, return_dict=False, ) else: module_init_outputs = self.module.init( rngs, input_ids, attention_mask, token_type_ids, position_ids, head_mask, return_dict=False, ) random_params = module_init_outputs["params"] if params is not None: random_params = flatten_dict(unfreeze(random_params)) params = flatten_dict(unfreeze(params)) for missing_key in self._missing_keys: params[missing_key] = random_params[missing_key] self._missing_keys = set() return freeze(unflatten_dict(params)) else: return random_params # Copied from transformers.models.bart.modeling_flax_bart.FlaxBartDecoderPreTrainedModel.init_cache def init_cache(self, batch_size, max_length): r""" Args: batch_size (`int`): batch_size used for fast auto-regressive decoding. Defines the batch size of the initialized cache. max_length (`int`): maximum possible length for auto-regressive decoding. Defines the sequence length of the initialized cache. """ # init input variables to retrieve cache input_ids = jnp.ones((batch_size, max_length), dtype="i4") attention_mask = jnp.ones_like(input_ids, dtype="i4") position_ids = jnp.broadcast_to(jnp.arange(jnp.atleast_2d(input_ids).shape[-1]), input_ids.shape) init_variables = self.module.init( jax.random.PRNGKey(0), input_ids, attention_mask, position_ids, return_dict=False, init_cache=True ) return unfreeze(init_variables["cache"]) @add_start_docstrings_to_model_forward(BIG_BIRD_INPUTS_DOCSTRING.format("batch_size, sequence_length")) def __call__( self, input_ids, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, encoder_hidden_states=None, encoder_attention_mask=None, params: dict = None, dropout_rng: Optional[jax.random.PRNGKey] = None, indices_rng: Optional[jax.random.PRNGKey] = None, train: bool = False, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, past_key_values: dict = None, ): output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.return_dict # init input tensors if not passed if token_type_ids is None: token_type_ids = jnp.zeros_like(input_ids) if position_ids is None: position_ids = jnp.broadcast_to(jnp.arange(jnp.atleast_2d(input_ids).shape[-1]), input_ids.shape) if attention_mask is None: attention_mask = jnp.ones_like(input_ids) if head_mask is None: head_mask = jnp.ones((self.config.num_hidden_layers, self.config.num_attention_heads)) # Handle any PRNG if needed rngs = {} if indices_rng is not None: rngs["indices"] = indices_rng if dropout_rng is not None: rngs["dropout"] = dropout_rng inputs = {"params": params or self.params} if self.config.add_cross_attention: # if past_key_values are passed then cache is already initialized a private flag init_cache has to be passed # down to ensure cache is used. It has to be made sure that cache is marked as mutable so that it can be # changed by FlaxBigBirdAttention module if past_key_values: inputs["cache"] = past_key_values mutable = ["cache"] else: mutable = False outputs = self.module.apply( inputs, jnp.array(input_ids, dtype="i4"), jnp.array(attention_mask, dtype="i4"), token_type_ids=jnp.array(token_type_ids, dtype="i4"), position_ids=jnp.array(position_ids, dtype="i4"), head_mask=jnp.array(head_mask, dtype="i4"), encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, deterministic=not train, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, rngs=rngs, mutable=mutable, ) # add updated cache to model output if past_key_values is not None and return_dict: outputs, past_key_values = outputs outputs["past_key_values"] = unfreeze(past_key_values["cache"]) return outputs elif past_key_values is not None and not return_dict: outputs, past_key_values = outputs outputs = outputs[:1] + (unfreeze(past_key_values["cache"]),) + outputs[1:] else: outputs = self.module.apply( inputs, jnp.array(input_ids, dtype="i4"), jnp.array(attention_mask, dtype="i4"), token_type_ids=jnp.array(token_type_ids, dtype="i4"), position_ids=jnp.array(position_ids, dtype="i4"), head_mask=jnp.array(head_mask, dtype="i4"), deterministic=not train, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, rngs=rngs, ) return outputs class FlaxBigBirdModule(nn.Module): config: BigBirdConfig dtype: jnp.dtype = jnp.float32 # the dtype of the computation add_pooling_layer: bool = True gradient_checkpointing: bool = False def setup(self): self.embeddings = FlaxBigBirdEmbeddings(self.config, dtype=self.dtype) self.encoder = FlaxBigBirdEncoder( self.config, dtype=self.dtype, gradient_checkpointing=self.gradient_checkpointing ) self.pooler = nn.Dense( self.config.hidden_size, kernel_init=jax.nn.initializers.normal(self.config.initializer_range), dtype=self.dtype, ) def __call__( self, input_ids, attention_mask, token_type_ids, position_ids, head_mask, encoder_hidden_states: Optional[jnp.ndarray] = None, encoder_attention_mask: Optional[jnp.ndarray] = None, init_cache: bool = False, deterministic: bool = True, output_attentions: bool = False, output_hidden_states: bool = False, return_dict: bool = True, ): hidden_states = self.embeddings( input_ids, token_type_ids, position_ids, attention_mask, deterministic=deterministic ) outputs = self.encoder( hidden_states, attention_mask, head_mask=head_mask, deterministic=deterministic, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, init_cache=init_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) hidden_states = outputs[0] pooled = nn.tanh(self.pooler(hidden_states[:, 0, :])) if self.add_pooling_layer else None if not return_dict: # if pooled is None, don't return it if pooled is None: return (hidden_states,) + outputs[1:] return (hidden_states, pooled) + outputs[1:] return FlaxBaseModelOutputWithPoolingAndCrossAttentions( last_hidden_state=hidden_states, pooler_output=pooled, hidden_states=outputs.hidden_states, attentions=outputs.attentions, cross_attentions=outputs.cross_attentions, ) @add_start_docstrings( "The bare BigBird Model transformer outputting raw hidden-states without any specific head on top.", BIG_BIRD_START_DOCSTRING, ) # Copied from transformers.models.bert.modeling_flax_bert.FlaxBertModel with Bert->BigBird class FlaxBigBirdModel(FlaxBigBirdPreTrainedModel): module_class = FlaxBigBirdModule append_call_sample_docstring(FlaxBigBirdModel, _CHECKPOINT_FOR_DOC, FlaxBaseModelOutputWithPooling, _CONFIG_FOR_DOC) # Copied from transformers.models.bert.modeling_flax_bert.FlaxBertForPreTrainingModule with Bert->BigBird class FlaxBigBirdForPreTrainingModule(nn.Module): config: BigBirdConfig dtype: jnp.dtype = jnp.float32 gradient_checkpointing: bool = False def setup(self): self.bert = FlaxBigBirdModule( config=self.config, dtype=self.dtype, gradient_checkpointing=self.gradient_checkpointing, ) self.cls = FlaxBigBirdPreTrainingHeads(config=self.config, dtype=self.dtype) def __call__( self, input_ids, attention_mask, token_type_ids, position_ids, head_mask, deterministic: bool = True, output_attentions: bool = False, output_hidden_states: bool = False, return_dict: bool = True, ): # Model outputs = self.bert( input_ids, attention_mask, token_type_ids, position_ids, head_mask, deterministic=deterministic, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) if self.config.tie_word_embeddings: shared_embedding = self.bert.variables["params"]["embeddings"]["word_embeddings"]["embedding"] else: shared_embedding = None hidden_states = outputs[0] pooled_output = outputs[1] prediction_scores, seq_relationship_score = self.cls( hidden_states, pooled_output, shared_embedding=shared_embedding ) if not return_dict: return (prediction_scores, seq_relationship_score) + outputs[2:] return FlaxBigBirdForPreTrainingOutput( prediction_logits=prediction_scores, seq_relationship_logits=seq_relationship_score, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) @add_start_docstrings( """ BigBird Model with two heads on top as done during the pretraining: a `masked language modeling` head and a `next sentence prediction (classification)` head. """, BIG_BIRD_START_DOCSTRING, ) # Copied from transformers.models.bert.modeling_flax_bert.FlaxBertForPreTraining with Bert->BigBird class FlaxBigBirdForPreTraining(FlaxBigBirdPreTrainedModel): module_class = FlaxBigBirdForPreTrainingModule FLAX_BIG_BIRD_FOR_PRETRAINING_DOCSTRING = """ Returns: Example: ```python >>> from transformers import AutoTokenizer, FlaxBigBirdForPreTraining >>> tokenizer = AutoTokenizer.from_pretrained("google/bigbird-roberta-base") >>> model = FlaxBigBirdForPreTraining.from_pretrained("google/bigbird-roberta-base") >>> inputs = tokenizer("Hello, my dog is cute", return_tensors="np") >>> outputs = model(**inputs) >>> prediction_logits = outputs.prediction_logits >>> seq_relationship_logits = outputs.seq_relationship_logits ``` """ overwrite_call_docstring( FlaxBigBirdForPreTraining, BIG_BIRD_INPUTS_DOCSTRING.format("batch_size, sequence_length") + FLAX_BIG_BIRD_FOR_PRETRAINING_DOCSTRING, ) append_replace_return_docstrings( FlaxBigBirdForPreTraining, output_type=FlaxBigBirdForPreTrainingOutput, config_class=_CONFIG_FOR_DOC ) # Copied from transformers.models.bert.modeling_flax_bert.FlaxBertForMaskedLMModule with Bert->BigBird class FlaxBigBirdForMaskedLMModule(nn.Module): config: BigBirdConfig dtype: jnp.dtype = jnp.float32 gradient_checkpointing: bool = False def setup(self): self.bert = FlaxBigBirdModule( config=self.config, add_pooling_layer=False, dtype=self.dtype, gradient_checkpointing=self.gradient_checkpointing, ) self.cls = FlaxBigBirdOnlyMLMHead(config=self.config, dtype=self.dtype) def __call__( self, input_ids, attention_mask, token_type_ids, position_ids, head_mask, deterministic: bool = True, output_attentions: bool = False, output_hidden_states: bool = False, return_dict: bool = True, ): # Model outputs = self.bert( input_ids, attention_mask, token_type_ids, position_ids, head_mask, deterministic=deterministic, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) hidden_states = outputs[0] if self.config.tie_word_embeddings: shared_embedding = self.bert.variables["params"]["embeddings"]["word_embeddings"]["embedding"] else: shared_embedding = None # Compute the prediction scores logits = self.cls(hidden_states, shared_embedding=shared_embedding) if not return_dict: return (logits,) + outputs[1:] return FlaxMaskedLMOutput( logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) @add_start_docstrings("""BigBird Model with a `language modeling` head on top.""", BIG_BIRD_START_DOCSTRING) # Copied from transformers.models.bert.modeling_flax_bert.FlaxBertForMaskedLM with Bert->BigBird class FlaxBigBirdForMaskedLM(FlaxBigBirdPreTrainedModel): module_class = FlaxBigBirdForMaskedLMModule append_call_sample_docstring(FlaxBigBirdForMaskedLM, _CHECKPOINT_FOR_DOC, FlaxMaskedLMOutput, _CONFIG_FOR_DOC) class FlaxBigBirdClassificationHead(nn.Module): """Head for sentence-level classification tasks.""" config: BigBirdConfig dtype: jnp.dtype = jnp.float32 def setup(self): self.dense = nn.Dense(self.config.hidden_size, dtype=self.dtype) classifier_dropout = ( self.config.classifier_dropout if self.config.classifier_dropout is not None else self.config.hidden_dropout_prob ) self.dropout = nn.Dropout(classifier_dropout) self.out_proj = nn.Dense(self.config.num_labels, dtype=self.dtype) def __call__(self, features, deterministic=True): x = features[:, 0, :] # take <s> token (equiv. to [CLS]) x = self.dropout(x, deterministic=deterministic) x = self.dense(x) x = ACT2FN[self.config.hidden_act](x) x = self.dropout(x, deterministic=deterministic) x = self.out_proj(x) return x class FlaxBigBirdForSequenceClassificationModule(nn.Module): config: BigBirdConfig dtype: jnp.dtype = jnp.float32 gradient_checkpointing: bool = False def setup(self): self.bert = FlaxBigBirdModule( config=self.config, dtype=self.dtype, gradient_checkpointing=self.gradient_checkpointing ) self.classifier = FlaxBigBirdClassificationHead(self.config, dtype=self.dtype) def __call__( self, input_ids, attention_mask, token_type_ids, position_ids, head_mask, deterministic: bool = True, output_attentions: bool = False, output_hidden_states: bool = False, return_dict: bool = True, ): # Model outputs = self.bert( input_ids, attention_mask, token_type_ids, position_ids, head_mask, deterministic=deterministic, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = outputs[0] logits = self.classifier(sequence_output, deterministic=deterministic) if not return_dict: return (logits,) + outputs[2:] return FlaxSequenceClassifierOutput( logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) @add_start_docstrings( """ BigBird Model transformer with a sequence classification/regression head on top (a linear layer on top of the pooled output) e.g. for GLUE tasks. """, BIG_BIRD_START_DOCSTRING, ) # Copied from transformers.models.bert.modeling_flax_bert.FlaxBertForSequenceClassification with Bert->BigBird class FlaxBigBirdForSequenceClassification(FlaxBigBirdPreTrainedModel): module_class = FlaxBigBirdForSequenceClassificationModule append_call_sample_docstring( FlaxBigBirdForSequenceClassification, _CHECKPOINT_FOR_DOC, FlaxSequenceClassifierOutput, _CONFIG_FOR_DOC, ) # Copied from transformers.models.bert.modeling_flax_bert.FlaxBertForMultipleChoiceModule with Bert->BigBird class FlaxBigBirdForMultipleChoiceModule(nn.Module): config: BigBirdConfig dtype: jnp.dtype = jnp.float32 gradient_checkpointing: bool = False def setup(self): self.bert = FlaxBigBirdModule( config=self.config, dtype=self.dtype, gradient_checkpointing=self.gradient_checkpointing, ) self.dropout = nn.Dropout(rate=self.config.hidden_dropout_prob) self.classifier = nn.Dense(1, dtype=self.dtype) def __call__( self, input_ids, attention_mask, token_type_ids, position_ids, head_mask, deterministic: bool = True, output_attentions: bool = False, output_hidden_states: bool = False, return_dict: bool = True, ): num_choices = input_ids.shape[1] input_ids = input_ids.reshape(-1, input_ids.shape[-1]) if input_ids is not None else None attention_mask = attention_mask.reshape(-1, attention_mask.shape[-1]) if attention_mask is not None else None token_type_ids = token_type_ids.reshape(-1, token_type_ids.shape[-1]) if token_type_ids is not None else None position_ids = position_ids.reshape(-1, position_ids.shape[-1]) if position_ids is not None else None # Model outputs = self.bert( input_ids, attention_mask, token_type_ids, position_ids, head_mask, deterministic=deterministic, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) pooled_output = outputs[1] pooled_output = self.dropout(pooled_output, deterministic=deterministic) logits = self.classifier(pooled_output) reshaped_logits = logits.reshape(-1, num_choices) if not return_dict: return (reshaped_logits,) + outputs[2:] return FlaxMultipleChoiceModelOutput( logits=reshaped_logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) @add_start_docstrings( """ BigBird Model with a multiple choice classification head on top (a linear layer on top of the pooled output and a softmax) e.g. for RocStories/SWAG tasks. """, BIG_BIRD_START_DOCSTRING, ) class FlaxBigBirdForMultipleChoice(FlaxBigBirdPreTrainedModel): module_class = FlaxBigBirdForMultipleChoiceModule def __init__( self, config: BigBirdConfig, input_shape: Optional[tuple] = None, seed: int = 0, dtype: jnp.dtype = jnp.float32, _do_init: bool = True, **kwargs, ): if config.attention_type == "block_sparse" and input_shape is None: input_shape = (1, 1, 12 * config.block_size) elif input_shape is None: input_shape = (1, 1) super().__init__(config, input_shape=input_shape, seed=seed, dtype=dtype, _do_init=_do_init) overwrite_call_docstring( FlaxBigBirdForMultipleChoice, BIG_BIRD_INPUTS_DOCSTRING.format("batch_size, num_choices, sequence_length") ) append_call_sample_docstring( FlaxBigBirdForMultipleChoice, _CHECKPOINT_FOR_DOC, FlaxMultipleChoiceModelOutput, _CONFIG_FOR_DOC, ) # Copied from transformers.models.bert.modeling_flax_bert.FlaxBertForTokenClassificationModule with Bert->BigBird class FlaxBigBirdForTokenClassificationModule(nn.Module): config: BigBirdConfig dtype: jnp.dtype = jnp.float32 gradient_checkpointing: bool = False def setup(self): self.bert = FlaxBigBirdModule( config=self.config, dtype=self.dtype, add_pooling_layer=False, gradient_checkpointing=self.gradient_checkpointing, ) classifier_dropout = ( self.config.classifier_dropout if self.config.classifier_dropout is not None else self.config.hidden_dropout_prob ) self.dropout = nn.Dropout(rate=classifier_dropout) self.classifier = nn.Dense(self.config.num_labels, dtype=self.dtype) def __call__( self, input_ids, attention_mask, token_type_ids, position_ids, head_mask, deterministic: bool = True, output_attentions: bool = False, output_hidden_states: bool = False, return_dict: bool = True, ): # Model outputs = self.bert( input_ids, attention_mask, token_type_ids, position_ids, head_mask, deterministic=deterministic, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) hidden_states = outputs[0] hidden_states = self.dropout(hidden_states, deterministic=deterministic) logits = self.classifier(hidden_states) if not return_dict: return (logits,) + outputs[1:] return FlaxTokenClassifierOutput( logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) @add_start_docstrings( """ BigBird Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for Named-Entity-Recognition (NER) tasks. """, BIG_BIRD_START_DOCSTRING, ) # Copied from transformers.models.bert.modeling_flax_bert.FlaxBertForTokenClassification with Bert->BigBird class FlaxBigBirdForTokenClassification(FlaxBigBirdPreTrainedModel): module_class = FlaxBigBirdForTokenClassificationModule append_call_sample_docstring( FlaxBigBirdForTokenClassification, _CHECKPOINT_FOR_DOC, FlaxTokenClassifierOutput, _CONFIG_FOR_DOC, ) class FlaxBigBirdForQuestionAnsweringHead(nn.Module): config: BigBirdConfig dtype: jnp.dtype = jnp.float32 def setup(self): self.dropout = nn.Dropout(rate=self.config.hidden_dropout_prob) self.intermediate = FlaxBigBirdIntermediate(self.config, dtype=self.dtype) self.output = FlaxBigBirdOutput(self.config, dtype=self.dtype) self.qa_outputs = nn.Dense(self.config.num_labels, dtype=self.dtype) def __call__(self, encoder_output, deterministic=True): hidden_states = self.dropout(encoder_output, deterministic=deterministic) hidden_states = self.intermediate(hidden_states) hidden_states = self.output(hidden_states, encoder_output) hidden_states = self.qa_outputs(hidden_states) return hidden_states class FlaxBigBirdForQuestionAnsweringModule(nn.Module): config: BigBirdConfig dtype: jnp.dtype = jnp.float32 add_pooling_layer: bool = False gradient_checkpointing: bool = False def setup(self): self.config.num_labels = 2 self.bert = FlaxBigBirdModule( self.config, dtype=self.dtype, add_pooling_layer=self.add_pooling_layer, gradient_checkpointing=self.gradient_checkpointing, ) self.qa_classifier = FlaxBigBirdForQuestionAnsweringHead(self.config, dtype=self.dtype) def __call__( self, input_ids, attention_mask, token_type_ids, position_ids, head_mask, logits_mask=None, deterministic: bool = True, output_attentions: bool = False, output_hidden_states: bool = False, return_dict: bool = True, ): # Model outputs = self.bert( input_ids, attention_mask, token_type_ids, position_ids, head_mask, deterministic=deterministic, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) hidden_states = outputs[0] pooled_output = outputs[1] if self.add_pooling_layer else None logits = self.qa_classifier(hidden_states, deterministic=deterministic) if logits_mask is not None: # removing question tokens from the competition logits = logits - logits_mask * 1e6 start_logits, end_logits = logits.split(self.config.num_labels, axis=-1) start_logits = start_logits.squeeze(-1) end_logits = end_logits.squeeze(-1) if not return_dict: return (start_logits, end_logits) + outputs[1:] return FlaxBigBirdForQuestionAnsweringModelOutput( start_logits=start_logits, end_logits=end_logits, pooled_output=pooled_output, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) @add_start_docstrings( """ BigBird Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear layers on top of the hidden-states output to compute `span start logits` and `span end logits`). """, BIG_BIRD_START_DOCSTRING, ) class FlaxBigBirdForQuestionAnswering(FlaxBigBirdPreTrainedModel): module_class = FlaxBigBirdForQuestionAnsweringModule @add_start_docstrings_to_model_forward(BIG_BIRD_INPUTS_DOCSTRING.format("batch_size, sequence_length")) def __call__( self, input_ids, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, question_lengths=None, params: dict = None, dropout_rng: Optional[jax.random.PRNGKey] = None, indices_rng: Optional[jax.random.PRNGKey] = None, train: bool = False, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ): output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.return_dict if position_ids is None: position_ids = jnp.broadcast_to(jnp.arange(jnp.atleast_2d(input_ids).shape[-1]), input_ids.shape) if attention_mask is None: attention_mask = jnp.ones_like(input_ids) if head_mask is None: head_mask = jnp.ones((self.config.num_hidden_layers, self.config.num_attention_heads)) if question_lengths is None and input_ids is not None: # assuming input_ids format: <cls> <question> <sep> context <sep> question_lengths = jnp.argmax((input_ids == self.config.sep_token_id).astype("i4"), axis=-1) + 1 question_lengths = jnp.expand_dims(question_lengths, axis=1) seqlen = input_ids.shape[1] logits_mask = None if question_lengths is not None: # setting lengths logits to `-inf` logits_mask = self.prepare_question_mask(question_lengths, seqlen) if token_type_ids is None: token_type_ids = (~logits_mask).astype("i4") logits_mask = jnp.expand_dims(logits_mask, axis=2) logits_mask = logits_mask.at[:, 0].set(False) # init input tensors if not passed if token_type_ids is None: token_type_ids = jnp.zeros_like(input_ids) # Handle any PRNG if needed rngs = {} if dropout_rng is not None: rngs["dropout"] = dropout_rng if indices_rng is not None: rngs["indices"] = indices_rng return self.module.apply( {"params": params or self.params}, jnp.array(input_ids, dtype="i4"), jnp.array(attention_mask, dtype="i4"), token_type_ids, jnp.array(position_ids, dtype="i4"), jnp.array(head_mask, dtype="i4"), logits_mask, not train, output_attentions, output_hidden_states, return_dict, rngs=rngs, ) @staticmethod def prepare_question_mask(q_lengths, maxlen: int): # q_lengths -> (bz, 1) mask = jnp.arange(0, maxlen) mask = jnp.expand_dims(mask, axis=0) < q_lengths return mask append_call_sample_docstring( FlaxBigBirdForQuestionAnswering, _CHECKPOINT_FOR_DOC, FlaxBigBirdForQuestionAnsweringModelOutput, _CONFIG_FOR_DOC, ) class FlaxBigBirdForCausalLMModule(nn.Module): config: BigBirdConfig dtype: jnp.dtype = jnp.float32 gradient_checkpointing: bool = False def setup(self): self.bert = FlaxBigBirdModule( config=self.config, add_pooling_layer=False, dtype=self.dtype, gradient_checkpointing=self.gradient_checkpointing, ) self.cls = FlaxBigBirdOnlyMLMHead(config=self.config, dtype=self.dtype) def __call__( self, input_ids, attention_mask, position_ids, token_type_ids: Optional[jnp.ndarray] = None, head_mask: Optional[jnp.ndarray] = None, encoder_hidden_states: Optional[jnp.ndarray] = None, encoder_attention_mask: Optional[jnp.ndarray] = None, init_cache: bool = False, deterministic: bool = True, output_attentions: bool = False, output_hidden_states: bool = False, return_dict: bool = True, ): # Model outputs = self.bert( input_ids=input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, init_cache=init_cache, deterministic=deterministic, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) hidden_states = outputs[0] if self.config.tie_word_embeddings: shared_embedding = self.bert.variables["params"]["embeddings"]["word_embeddings"]["embedding"] else: shared_embedding = None # Compute the prediction scores logits = self.cls(hidden_states, shared_embedding=shared_embedding) if not return_dict: return (logits,) + outputs[1:] return FlaxCausalLMOutputWithCrossAttentions( logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, cross_attentions=outputs.cross_attentions, ) @add_start_docstrings( """ BigBird Model with a language modeling head on top (a linear layer on top of the hidden-states output) e.g for autoregressive tasks. """, BIG_BIRD_START_DOCSTRING, ) # Copied from transformers.models.bert.modeling_flax_bert.FlaxBertForCausalLM with Bert->BigBird class FlaxBigBirdForCausalLM(FlaxBigBirdPreTrainedModel): module_class = FlaxBigBirdForCausalLMModule def prepare_inputs_for_generation(self, input_ids, max_length, attention_mask: Optional[jnp.DeviceArray] = None): # initializing the cache batch_size, seq_length = input_ids.shape past_key_values = self.init_cache(batch_size, max_length) # Note that usually one would have to put 0's in the attention_mask for x > input_ids.shape[-1] and x < cache_length. # But since the decoder uses a causal mask, those positions are masked anyway. # Thus, we can create a single static attention_mask here, which is more efficient for compilation extended_attention_mask = jnp.ones((batch_size, max_length), dtype="i4") if attention_mask is not None: position_ids = attention_mask.cumsum(axis=-1) - 1 extended_attention_mask = lax.dynamic_update_slice(extended_attention_mask, attention_mask, (0, 0)) else: position_ids = jnp.broadcast_to(jnp.arange(seq_length, dtype="i4")[None, :], (batch_size, seq_length)) return { "past_key_values": past_key_values, "attention_mask": extended_attention_mask, "position_ids": position_ids, } def update_inputs_for_generation(self, model_outputs, model_kwargs): model_kwargs["past_key_values"] = model_outputs.past_key_values model_kwargs["position_ids"] = model_kwargs["position_ids"][:, -1:] + 1 return model_kwargs append_call_sample_docstring( FlaxBigBirdForCausalLM, _CHECKPOINT_FOR_DOC, FlaxCausalLMOutputWithCrossAttentions, _CONFIG_FOR_DOC, )
0
hf_public_repos/transformers/src/transformers/models
hf_public_repos/transformers/src/transformers/models/gptsan_japanese/__init__.py
# Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) _import_structure = { "configuration_gptsan_japanese": ["GPTSAN_JAPANESE_PRETRAINED_CONFIG_ARCHIVE_MAP", "GPTSanJapaneseConfig"], "tokenization_gptsan_japanese": ["GPTSanJapaneseTokenizer"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["modeling_gptsan_japanese"] = [ "GPTSAN_JAPANESE_PRETRAINED_MODEL_ARCHIVE_LIST", "GPTSanJapaneseForConditionalGeneration", "GPTSanJapaneseModel", "GPTSanJapanesePreTrainedModel", ] _import_structure["tokenization_gptsan_japanese"] = [ "GPTSanJapaneseTokenizer", ] if TYPE_CHECKING: from .configuration_gptsan_japanese import GPTSAN_JAPANESE_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTSanJapaneseConfig from .tokenization_gptsan_japanese import GPTSanJapaneseTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gptsan_japanese import ( GPTSAN_JAPANESE_PRETRAINED_MODEL_ARCHIVE_LIST, GPTSanJapaneseForConditionalGeneration, GPTSanJapaneseModel, GPTSanJapanesePreTrainedModel, ) from .tokenization_gptsan_japanese import GPTSanJapaneseTokenizer else: import sys sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
0
hf_public_repos/transformers/src/transformers/models
hf_public_repos/transformers/src/transformers/models/gptsan_japanese/configuration_gptsan_japanese.py
# coding=utf-8 # Copyright 2023, HuggingFace Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ GPTSAN-japanese model configuration""" from ...configuration_utils import PretrainedConfig from ...utils import logging logger = logging.get_logger(__name__) GPTSAN_JAPANESE_PRETRAINED_CONFIG_ARCHIVE_MAP = { "tanreinama/GPTSAN-2.8B-spout_is_uniform": ( "https://huggingface.co/tanreinama/GPTSAN-2.8B-spout_is_uniform/resolve/main/config.json" ), } class GPTSanJapaneseConfig(PretrainedConfig): r""" This is the configuration class to store the configuration of a [`GPTSanJapaneseModel`]. It is used to instantiate a GPTSANJapanese model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the GPTSANJapanese [Tanrei/GPTSAN-japanese](https://huggingface.co/Tanrei/GPTSAN-japanese) architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Arguments: vocab_size (`int`, *optional*, defaults to 36000): Vocabulary size of the GPTSANJapanese model. Defines the number of different tokens that can be represented by the `inputs_ids` passed when calling [`GPTSanJapaneseModel`]. max_position_embeddings (`int`, *optional*, defaults to 1280): The maximum sequence length that this model might ever be used with. Defaults set this to 1280. d_model (`int`, *optional*, defaults to 1024): Size of the encoder layers and the pooler layer. d_ff (`int`, *optional*, defaults to 8192): Size of the intermediate feed forward layer in each `SwitchTransformersBlock`. d_ext (`int`, *optional*, defaults to 4096): Size of the intermediate feed forward layer in each Extra-layers. d_spout (`int`, *optional*, defaults to 128): Size of the `spout` vector. num_switch_layers (`int`, *optional*, defaults to 10): Number of layers in the Switch Transformer layer. num_ext_layers (`int`, *optional*, defaults to 0): Number of layers in the Extra-layers. num_heads (`int`, *optional*, defaults to 16): Number of attention heads for each attention layer in the Transformer encoder. num_experts (`int`, *optional*, defaults to 16): Number of experts for each SwitchTransformer layer. expert_capacity (`int`, *optional*, defaults to 128): Number of tokens that can be stored in each expert. If set to 1, the model will behave like a regular Transformer. dropout_rate (`float`, *optional*, defaults to 0.0): The ratio for all dropout layers. layer_norm_eps (`float`, *optional*, defaults to 1e-5): The epsilon used by the layer normalization layers. router_bias (`bool`, *optional*, defaults to `False`): Whether to add a bias to the router. router_jitter_noise (`float`, *optional*, defaults to 0.0): Amount of noise to add to the router. Set it to 0.0 during prediction or set small value (usually 1e-2) during training. router_dtype (`str`, *optional*, default to `"float32"`): The `dtype` used for the routers. It is preferable to keep the `dtype` to `"float32"` as specified in the *selective precision* discussion in [the paper](https://arxiv.org/abs/2101.03961). router_ignore_padding_tokens (`bool`, *optional*, defaults to `False`): Whether to ignore padding tokens when routing. output_hidden_states (`bool`, *optional*, default to `False`): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. output_attentions (`bool`, *optional*, defaults to `False`): Whether or not to return the attentions tensors of all attention layers. initializer_factor (`float`, *optional*, defaults to 0.002): A factor for initializing all weight matrices. output_router_logits (`bool`, *optional*, default to `False`): Whether or not to return the router logits of all experts. use_cache (`bool`, *optional*, defaults to `True`): Whether or not the model should return the last key/values attentions (not used by all models) """ model_type = "gptsan-japanese" keys_to_ignore_at_inference = [ "past_key_values", ] attribute_map = { "hidden_size": "d_model", "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers", } def __init__( self, vocab_size=36000, max_position_embeddings=1280, d_model=1024, d_ff=8192, d_ext=4096, d_spout=128, num_switch_layers=10, num_ext_layers=0, num_heads=16, num_experts=16, expert_capacity=128, dropout_rate=0.0, layer_norm_epsilon=1e-5, router_bias=False, router_jitter_noise=0.0, router_dtype="float32", router_ignore_padding_tokens=False, output_hidden_states=False, output_attentions=False, initializer_factor=0.002, output_router_logits=False, use_cache=True, separator_token_id=35998, pad_token_id=35995, eos_token_id=35999, **kwargs, ): self.vocab_size = vocab_size self.max_position_embeddings = max_position_embeddings self.d_model = d_model self.d_ff = d_ff self.d_ext = d_ext self.d_spout = d_spout self.num_switch_layers = num_switch_layers self.num_ext_layers = num_ext_layers self.num_layers = num_switch_layers + num_ext_layers self.num_heads = num_heads self.num_experts = num_experts self.expert_capacity = expert_capacity self.dropout_rate = dropout_rate self.layer_norm_epsilon = layer_norm_epsilon self.router_bias = router_bias self.router_jitter_noise = router_jitter_noise self.router_dtype = router_dtype self.router_ignore_padding_tokens = router_ignore_padding_tokens self.output_hidden_states = output_hidden_states self.output_attentions = output_attentions self.initializer_factor = initializer_factor self.output_router_logits = output_router_logits self.use_cache = use_cache super().__init__( separator_token_id=separator_token_id, pad_token_id=pad_token_id, eos_token_id=eos_token_id, **kwargs, )
0
hf_public_repos/transformers/src/transformers/models
hf_public_repos/transformers/src/transformers/models/gptsan_japanese/convert_gptsan_tf_checkpoint_to_pytorch.py
# coding=utf-8 # Copyright 2023 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Convert GPTSANJapanese checkpoints from the original repository to pytorch model.""" import argparse import json import os from collections import OrderedDict import numpy as np import tensorflow as tf import torch def convert_tf_gptsan_to_pt(args): parameter_file = os.path.join(args.tf_model_dir, "parameters.json") params = json.loads(open(parameter_file).read()) if not params: raise ValueError( f"It seems that the json file at {parameter_file} is empty. Make sure you have a correct json file." ) if not args.output.endswith(".pt"): args.output = args.output + ".pt" new_state = OrderedDict() with tf.device("/CPU:0"): reader = tf.train.load_checkpoint(args.tf_model_dir) shapes = reader.get_variable_to_shape_map() for key_name in shapes.keys(): vnp = reader.get_tensor(key_name).astype(np.float16) if key_name.endswith("/adam_m") or key_name.endswith("/adam_v"): continue if key_name.startswith("pasts/"): if key_name.startswith("pasts/mlp"): player = int(key_name[9]) elif key_name.startswith("pasts/out"): player = 8 name = "model.sqout.%d.weight" % (player * 2) # enter to nn.Sequencial with Tanh, so 2 at a time state = vnp.transpose([1, 0]).copy() # Mesh-Tensorflow is a diagonal matrix new_state[name] = torch.tensor(state) elif key_name.startswith("model/moe"): player = int(key_name[9:].split("/")[0]) if key_name.endswith("/switch_gating/kernel"): name = "model.blocks.%d.feed_forward.mlp.router.classifier.weight" % player state = vnp.transpose([1, 0]).copy() # Mesh-Tensorflow is a diagonal matrix new_state[name] = torch.tensor(state) elif key_name.endswith("/softmlp/kernel"): name = "model.blocks.%d.feed_forward.soft_bypass_mlp.weight" % player state = vnp.transpose([1, 0]).copy() # Mesh-Tensorflow is a diagonal matrix new_state[name] = torch.tensor(state) elif key_name.endswith("/wo/kernel") or key_name.endswith("/wi/kernel"): nlayer = key_name[-9:-7] for i in range(16): name = "model.blocks.%d.feed_forward.mlp.experts.expert_%d.%s.weight" % (player, i, nlayer) state = ( vnp[i].transpose([1, 0]).copy() ) # In Mesh-Tensorflow, it is one array, so it is divided new_state[name] = torch.tensor(state) elif key_name.startswith("model/mlp"): player = int(key_name[9:].split("/")[0]) if key_name.endswith("/p1/kernel"): name = "model.blocks.%d.feed_forward.mlp.wi.weight" % player state = vnp.transpose([1, 0]).copy() # Mesh-Tensorflow is a diagonal matrix new_state[name] = torch.tensor(state) elif key_name.endswith("/p1/bias"): name = "model.blocks.%d.feed_forward.mlp.wi.bias" % player state = vnp.copy() # same because it is one dimensional new_state[name] = torch.tensor(state) elif key_name.endswith("/p2/kernel"): name = "model.blocks.%d.feed_forward.mlp.wo.weight" % player state = vnp.transpose([1, 0]).copy() # Mesh-Tensorflow is a diagonal matrix new_state[name] = torch.tensor(state) elif key_name.endswith("/p2/bias"): name = "model.blocks.%d.feed_forward.mlp.wo.bias" % player state = vnp.copy() # same because it is one dimensional new_state[name] = torch.tensor(state) elif key_name.startswith("model/ln"): player = int(key_name[8:].split("/")[0]) if key_name.endswith("/b"): name = "model.blocks.%d.feed_forward.norm.bias" % player state = vnp.copy() # same because it is one dimensional new_state[name] = torch.tensor(state) elif key_name.endswith("/g"): name = "model.blocks.%d.feed_forward.norm.weight" % player state = vnp.copy() # same because it is one dimensional new_state[name] = torch.tensor(state) elif key_name.startswith("model/att"): player = int(key_name[9:].split("/")[0]) if key_name.endswith("/qkv/kernel"): state = vnp.copy() # Compute same dimension as Mesh-tensorflow using einsum state_q = state[:, 0, :, :] state_k = state[:, 1, :, :] state_v = state[:, 2, :, :] state_q = ( state_q.reshape([state_q.shape[0], state_q.shape[1] * state_q.shape[2]]) .transpose([1, 0]) .copy() ) # Mesh-Tensorflow is a diagonal matrix state_k = ( state_k.reshape([state_k.shape[0], state_k.shape[1] * state_k.shape[2]]) .transpose([1, 0]) .copy() ) # Mesh-Tensorflow is a diagonal matrix state_v = ( state_v.reshape([state_v.shape[0], state_v.shape[1] * state_v.shape[2]]) .transpose([1, 0]) .copy() ) # Mesh-Tensorflow is a diagonal matrix name = "model.blocks.%d.self_attn.self_attn.q_proj.weight" % player new_state[name] = torch.tensor(state_q) name = "model.blocks.%d.self_attn.self_attn.k_proj.weight" % player new_state[name] = torch.tensor(state_k) name = "model.blocks.%d.self_attn.self_attn.v_proj.weight" % player new_state[name] = torch.tensor(state_v) elif key_name.endswith("/o/kernel"): name = "model.blocks.%d.self_attn.self_attn.out_proj.weight" % player state = ( vnp.reshape([vnp.shape[0] * vnp.shape[1], vnp.shape[2]]).transpose([1, 0]).copy() ) # Mesh-Tensorflow is a diagonal matrix new_state[name] = torch.tensor(state) elif key_name.startswith("model/an"): player = int(key_name[8:].split("/")[0]) if key_name.endswith("/b"): name = "model.blocks.%d.self_attn.norm.bias" % player state = vnp.copy() # same because it is one dimensional new_state[name] = torch.tensor(state) elif key_name.endswith("/g"): name = "model.blocks.%d.self_attn.norm.weight" % player state = vnp.copy() # same because it is one dimensional new_state[name] = torch.tensor(state) elif ( key_name.startswith("model/wte") or key_name.startswith("model/wpe") or key_name.startswith("model/ete") ): nlayer = {"wte": "embed_tokens", "wpe": "position_embeddings", "ete": "extra_position_embeddings"}[ key_name[-3:] ] name = "model.%s.weight" % nlayer state = vnp.copy() # same in embedded new_state[name] = torch.tensor(state) if key_name.startswith("model/wte"): name = "lm_head.weight" state = vnp.copy() # same in embedded new_state[name] = torch.tensor(state) elif key_name.startswith("model/wob"): name = "final_logits_bias" state = vnp.copy() # same in embedded state = state.reshape((1, -1)) new_state[name] = torch.tensor(state) elif key_name == "model/dense/kernel": name = "model.last_project.weight" state = vnp.transpose([1, 0]).copy() # Mesh-Tensorflow is a diagonal matrix new_state[name] = torch.tensor(state) elif key_name == "model/dense_1/bias": name = "model.last_project.bias" state = vnp.copy() # same because it is one dimensional new_state[name] = torch.tensor(state) torch.save(new_state, args.output) if __name__ == "__main__": parser = argparse.ArgumentParser( description="model converter.", formatter_class=argparse.ArgumentDefaultsHelpFormatter ) parser.add_argument("--tf_model_dir", metavar="PATH", type=str, required=True, help="import model") parser.add_argument("--output", metavar="PATH", type=str, required=True, help="output model") args = parser.parse_args() convert_tf_gptsan_to_pt(args)
0
hf_public_repos/transformers/src/transformers/models
hf_public_repos/transformers/src/transformers/models/gptsan_japanese/modeling_gptsan_japanese.py
# coding=utf-8 # Copyright 2023 Toshiyuki Sakamoto(tanreinama) and HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ PyTorch GPTSANJapanese model.""" import copy from typing import List, Optional, Tuple, Union import torch import torch.nn as nn from ...activations import ACT2FN from ...modeling_outputs import MoECausalLMOutputWithPast, MoEModelOutputWithPastAndCrossAttentions from ...modeling_utils import PreTrainedModel from ...utils import ( DUMMY_INPUTS, DUMMY_MASK, add_start_docstrings, add_start_docstrings_to_model_forward, is_torch_fx_proxy, logging, ) from .configuration_gptsan_japanese import GPTSanJapaneseConfig logger = logging.get_logger(__name__) _CONFIG_FOR_DOC = "GPTSanJapaneseConfig" _CHECKPOINT_FOR_DOC = "Tanrei/GPTSAN-japanese" #################################################### # This dict contains ids and associated url # for the pretrained weights provided with the models #################################################### GPTSAN_JAPANESE_PRETRAINED_MODEL_ARCHIVE_LIST = [ "Tanrei/GPTSAN-japanese", # See all GPTSAN-japanese models at https://huggingface.co/models?filter=gptsan-japanese ] # Copied from transformers.models.switch_transformers.modeling_switch_transformers.router_z_loss_func def router_z_loss_func(router_logits: torch.Tensor) -> float: r""" Compute the router z-loss implemented in PyTorch. The router z-loss was introduced in [Designing Effective Sparse Expert Models](https://arxiv.org/abs/2202.08906). It encourages router logits to remain small in an effort to improve stability. Args: router_logits (`float`): Input logits of shape [batch_size, sequence_length, num_experts] Returns: Scalar router z-loss. """ num_groups, tokens_per_group, _ = router_logits.shape log_z = torch.logsumexp(router_logits, dim=-1) z_loss = log_z**2 return torch.sum(z_loss) / (num_groups * tokens_per_group) # Copied from transformers.models.switch_transformers.modeling_switch_transformers.load_balancing_loss_func def load_balancing_loss_func(router_probs: torch.Tensor, expert_indices: torch.Tensor) -> float: r""" Computes auxiliary load balancing loss as in Switch Transformer - implemented in Pytorch. See Switch Transformer (https://arxiv.org/abs/2101.03961) for more details. This function implements the loss function presented in equations (4) - (6) of the paper. It aims at penalizing cases where the routing between experts is too unbalanced. Args: router_probs (`torch.Tensor`): Probability assigned to each expert per token. Shape: [batch_size, seqeunce_length, num_experts]. expert_indices (`torch.Tensor`): Indices tensor of shape [batch_size, seqeunce_length] identifying the selected expert for a given token. Returns: The auxiliary loss. """ num_experts = router_probs.shape[-1] # cast the expert indices to int64, otherwise one-hot encoding will fail if expert_indices.dtype != torch.int64: expert_indices = expert_indices.to(torch.int64) if len(expert_indices.shape) == 2: expert_indices = expert_indices.unsqueeze(2) expert_mask = torch.nn.functional.one_hot(expert_indices, num_experts) # For a given token, determine if it was routed to a given expert. expert_mask = torch.max(expert_mask, axis=-2).values # cast to float32 otherwise mean will fail expert_mask = expert_mask.to(torch.float32) tokens_per_group_and_expert = torch.mean(expert_mask, axis=-2) router_prob_per_group_and_expert = torch.mean(router_probs, axis=-2) return torch.mean(tokens_per_group_and_expert * router_prob_per_group_and_expert) * (num_experts**2) class GPTSanJapaneseDenseActDense(nn.Module): """ FFN Layer for Switch Transformer and Extra layers GPTSAN can mix Switch Transformer layers and normal Transformer layers This class is used as Expert in Switch Transformer layers and as FFN in regular Transformer layers. RELU is used in the Switch Transformer layer, and Swish is used in the normal Transformer layer, so there is a choice of which is used in the argument. """ def __init__(self, config: GPTSanJapaneseConfig, ext_layer=False): super().__init__() d_inter = config.d_ext if ext_layer else config.d_ff self.wi = nn.Linear(config.d_model, d_inter, bias=ext_layer) self.wo = nn.Linear(d_inter, config.d_model, bias=ext_layer) self.dropout = nn.Identity() if ext_layer else nn.Dropout(config.dropout_rate) self.act = ACT2FN["swish" if ext_layer else "relu"] def forward(self, hidden_states): r""" Args: hidden_states (`torch.Tensor`) : [num_groups, tokens_per_group, hidden_dim] inputs to send to experts. Returns: torch.Tensor[num_groups, tokens_per_group, hidden_dim] """ hidden_states = self.wi(hidden_states) hidden_states = self.act(hidden_states) hidden_states = self.dropout(hidden_states) hidden_states = self.wo(hidden_states) return hidden_states # Copied from transformers.models.switch_transformers.modeling_switch_transformers.SwitchTransformersTop1Router with SwitchTransformers->GPTSanJapanese class GPTSanJapaneseTop1Router(nn.Module): """ Router using tokens choose top-1 experts assignment. This router uses the same mechanism as in Switch Transformer (https://arxiv.org/abs/2101.03961) and V-MoE (https://arxiv.org/abs/2106.05974): tokens choose their top experts. Items are sorted by router_probs and then routed to their choice of expert until the expert's expert_capacity is reached. **There is no guarantee that each token is processed by an expert**, or that each expert receives at least one token. """ def __init__(self, config: GPTSanJapaneseConfig): super().__init__() self.num_experts = config.num_experts self.expert_capacity = config.expert_capacity self.classifier = nn.Linear(config.hidden_size, self.num_experts, bias=config.router_bias) self.jitter_noise = config.router_jitter_noise self.ignore_padding_tokens = config.router_ignore_padding_tokens self.dtype = getattr(torch, config.router_dtype) def _compute_router_probabilities(self, hidden_states: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]: r""" Computes router probabilities from input hidden states. Args: hidden_states (`torch.Tensor`): (batch_size, sequence_length, hidden_dim) from which router probabilities are computed. Returns: router_probabilities (`torch.Tensor`): Tensor of shape (batch_size, sequence_length, num_experts) corresponding to the probabilities for each token and expert. Used for routing tokens to experts. router_logits (`torch.Tensor`): Logits tensor of shape (batch_size, sequence_length, num_experts) corresponding to raw router logits. This is used later for computing router z-loss. """ # float32 is used to ensure stability. See the discussion of "selective precision" in # https://arxiv.org/abs/2101.03961. # We also store the previous dtype to cast back the output to the previous dtype self.input_dtype = hidden_states.dtype hidden_states = hidden_states.to(self.dtype) if self.jitter_noise > 0: # Get the lower and upper bound of the uniform distribution # Adapted from: https://stackoverflow.com/questions/44328530/how-to-get-a-uniform-distribution-in-a-range-r1-r2-in-pytorch distrib_lower_bound = 1.0 - self.jitter_noise distrib_upper_bound = 1.0 + self.jitter_noise uniform_distrib = torch.rand(hidden_states.shape, device=hidden_states.device, dtype=self.dtype) uniform_distrib = uniform_distrib * (distrib_lower_bound - distrib_upper_bound) uniform_distrib = uniform_distrib + distrib_upper_bound # Multiply the token inputs by the uniform distribution - adding some noise hidden_states *= uniform_distrib # Shape: [num_groups, tokens_per_group, num_experts] self._cast_classifier() router_logits = self.classifier(hidden_states) # Apply Softmax and cast back to the original `dtype` router_probabilities = nn.functional.softmax(router_logits, dim=-1, dtype=self.dtype).to(self.input_dtype) return router_probabilities, router_logits def _cast_classifier(self): r""" `bitsandbytes` `Linear8bitLt` layers does not support manual casting Therefore we need to check if they are an instance of the `Linear8bitLt` class by checking special attributes. """ if not (hasattr(self.classifier, "SCB") or hasattr(self.classifier, "CB")): self.classifier = self.classifier.to(self.dtype) def forward(self, hidden_states: torch.Tensor) -> Tuple: r""" Generic forward function for every Router class. Each Router expects to have the same input hidden states (`hidden_states`) corresponding to the hidden states for each token, the `expert_capacity` corresponding to the number of tokens the Router will send to each expert, some Routers can send up to few tokens to each expert. Each Router works as the following: it expects the hidden states for each token, gets the `router_probs` and `router_logits` from the `router_weights`. This will assign for each token, the raw probability to be assigned to an expert. Then each Router class will have to define its own `_compute_routing_instructions`. Args: hidden_states (`torch.Tensor`) : [num_groups, tokens_per_group, hidden_dim] inputs to send to experts. Returns: Tuple[`torch.Tensor`, `torch.Tensor`, `torch.Tensor`] Tuple containing the expert index, the router probs and the router logits. The router probabilities and logits are required to compute the loss. """ router_probs, router_logits = self._compute_router_probabilities(hidden_states) expert_index = torch.argmax(router_probs, dim=-1) expert_index = torch.nn.functional.one_hot(expert_index, num_classes=self.num_experts) # Mask tokens outside expert capacity. Sum over each sequence token_priority = torch.cumsum(expert_index, dim=-2) # mask if the token routed to to the expert will overflow expert_capacity_mask = token_priority <= self.expert_capacity expert_index = expert_index * expert_capacity_mask router_probs = torch.max(router_probs, dim=-1).values.unsqueeze(-1) return expert_index, router_probs, router_logits # Copied from transformers.models.switch_transformers.modeling_switch_transformers.SwitchTransformersSparseMLP with SwitchTransformers->GPTSanJapanese class GPTSanJapaneseSparseMLP(nn.Module): r""" Implementation of the Switch Transformers Sparse MLP module. """ def __init__(self, config: GPTSanJapaneseConfig, expert_class: nn.Module = GPTSanJapaneseDenseActDense): super().__init__() # Step 1: Get the correct router according to its class self.router = GPTSanJapaneseTop1Router(config) # Step 2: Get the experts self.experts = nn.ModuleDict() for idx in range(config.num_experts): self.experts[f"expert_{idx}"] = expert_class(config) def forward(self, hidden_states): r""" Hold on, this will be slightly tricky to understand In the correct order, a MoE layer does the following: 1- Gets the `router_mask` from the router. The shape of the mask is `(batch_size, sequence_length, num_expert)` and corresponds to the argmax of the `router_probs`. The probabilities are needed in the computation of the hidden states : they are broadcasted to the hidden states values (can be interpreted as a scaling factor). 2- Dispatch the tokens to its associated experts. We do a classic for loop over the experts and assign for each expert the corresponding hidden states. """ # Step 1: Get the router_mask from the router as wel as the probabilities router_mask, router_probs, router_logits = self.router(hidden_states) expert_index = torch.argmax(router_mask, dim=-1) # The routers introduced might not always map all the tokens, to a router, which means that some hidden states # can be unchanged from one layer to another. That is why the hidden states are cloned before updating only the seleced ones. next_states = hidden_states.clone() for idx, expert in enumerate(self.experts.values()): token_indices = router_mask[:, :, idx].bool() next_states[token_indices] = expert(hidden_states[token_indices]) hidden_states = router_probs * next_states return hidden_states, (router_logits, expert_index) class GPTSanJapaneseLayerSparseFF(nn.Module): r""" Switch Transformers Feed Forward layer module. This is a wrapper around the Mixture of Experts module. Parameters: config : ([`GPTSanJapaneseConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ def __init__(self, config: GPTSanJapaneseConfig): super().__init__() self.mlp = GPTSanJapaneseSparseMLP(config) self.soft_bypass_mlp = nn.Linear(config.d_model, config.d_model, bias=False) self.norm = nn.LayerNorm(config.d_model, eps=config.layer_norm_epsilon) def forward(self, hidden_states, output_router_logits): r""" Args: hidden_states (`torch.Tensor`) : [num_groups, tokens_per_group, hidden_dim] inputs to send to experts. output_router_logits (`bool`) : output experts router output. Returns: torch.Tensor[num_groups, tokens_per_group, hidden_dim] """ forwarded_states, router_tuple = self.mlp(hidden_states) forwarded_states += torch.tanh(self.soft_bypass_mlp(hidden_states)) output = hidden_states + self.norm(forwarded_states) if output_router_logits and router_tuple is not None: return output, router_tuple else: return output class GPTSanJapaneseLayerDenseFF(nn.Module): r""" Extra Transformers Feed Forward layer module. Parameters: config : ([`GPTSanJapaneseConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ def __init__(self, config: GPTSanJapaneseConfig): super().__init__() # Check if it is a sparse layer, if not then it is a dense layer self.mlp = GPTSanJapaneseDenseActDense(config, ext_layer=True) self.norm = nn.LayerNorm(config.d_model, eps=config.layer_norm_epsilon) def forward(self, hidden_states): r""" Args: hidden_states (`torch.Tensor`) : [num_groups, tokens_per_group, hidden_dim] inputs to send to experts. Returns: torch.Tensor[num_groups, tokens_per_group, hidden_dim] """ forwarded_states = self.mlp(hidden_states) output = hidden_states + self.norm(forwarded_states) return output # Copied from transformers.models.bart.modeling_bart.BartAttention with Bart->GPTSanJapanese class GPTSanJapaneseAttention(nn.Module): """Multi-headed attention from 'Attention Is All You Need' paper""" def __init__( self, embed_dim: int, num_heads: int, dropout: float = 0.0, is_decoder: bool = False, bias: bool = True, ): super().__init__() self.embed_dim = embed_dim self.num_heads = num_heads self.dropout = dropout self.head_dim = embed_dim // num_heads if (self.head_dim * num_heads) != self.embed_dim: raise ValueError( f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim}" f" and `num_heads`: {num_heads})." ) self.scaling = self.head_dim**-0.5 self.is_decoder = is_decoder self.k_proj = nn.Linear(embed_dim, embed_dim, bias=bias) self.v_proj = nn.Linear(embed_dim, embed_dim, bias=bias) self.q_proj = nn.Linear(embed_dim, embed_dim, bias=bias) self.out_proj = nn.Linear(embed_dim, embed_dim, bias=bias) def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int): return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous() def forward( self, hidden_states: torch.Tensor, key_value_states: Optional[torch.Tensor] = None, past_key_value: Optional[Tuple[torch.Tensor]] = None, attention_mask: Optional[torch.Tensor] = None, layer_head_mask: Optional[torch.Tensor] = None, output_attentions: bool = False, ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: """Input shape: Batch x Time x Channel""" # if key_value_states are provided this layer is used as a cross-attention layer # for the decoder is_cross_attention = key_value_states is not None bsz, tgt_len, _ = hidden_states.size() # get query proj query_states = self.q_proj(hidden_states) * self.scaling # get key, value proj # `past_key_value[0].shape[2] == key_value_states.shape[1]` # is checking that the `sequence_length` of the `past_key_value` is the same as # the provided `key_value_states` to support prefix tuning if ( is_cross_attention and past_key_value is not None and past_key_value[0].shape[2] == key_value_states.shape[1] ): # reuse k,v, cross_attentions key_states = past_key_value[0] value_states = past_key_value[1] elif is_cross_attention: # cross_attentions key_states = self._shape(self.k_proj(key_value_states), -1, bsz) value_states = self._shape(self.v_proj(key_value_states), -1, bsz) elif past_key_value is not None: # reuse k, v, self_attention key_states = self._shape(self.k_proj(hidden_states), -1, bsz) value_states = self._shape(self.v_proj(hidden_states), -1, bsz) key_states = torch.cat([past_key_value[0], key_states], dim=2) value_states = torch.cat([past_key_value[1], value_states], dim=2) else: # self_attention key_states = self._shape(self.k_proj(hidden_states), -1, bsz) value_states = self._shape(self.v_proj(hidden_states), -1, bsz) if self.is_decoder: # if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states. # Further calls to cross_attention layer can then reuse all cross-attention # key/value_states (first "if" case) # if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of # all previous decoder key/value_states. Further calls to uni-directional self-attention # can concat previous decoder key/value_states to current projected key/value_states (third "elif" case) # if encoder bi-directional self-attention `past_key_value` is always `None` past_key_value = (key_states, value_states) proj_shape = (bsz * self.num_heads, -1, self.head_dim) query_states = self._shape(query_states, tgt_len, bsz).view(*proj_shape) key_states = key_states.reshape(*proj_shape) value_states = value_states.reshape(*proj_shape) src_len = key_states.size(1) attn_weights = torch.bmm(query_states, key_states.transpose(1, 2)) if attn_weights.size() != (bsz * self.num_heads, tgt_len, src_len): raise ValueError( f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is" f" {attn_weights.size()}" ) if attention_mask is not None: if attention_mask.size() != (bsz, 1, tgt_len, src_len): raise ValueError( f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is {attention_mask.size()}" ) attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + attention_mask attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len) attn_weights = nn.functional.softmax(attn_weights, dim=-1) if layer_head_mask is not None: if layer_head_mask.size() != (self.num_heads,): raise ValueError( f"Head mask for a single layer should be of size {(self.num_heads,)}, but is" f" {layer_head_mask.size()}" ) attn_weights = layer_head_mask.view(1, -1, 1, 1) * attn_weights.view(bsz, self.num_heads, tgt_len, src_len) attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len) if output_attentions: # this operation is a bit awkward, but it's required to # make sure that attn_weights keeps its gradient. # In order to do so, attn_weights have to be reshaped # twice and have to be reused in the following attn_weights_reshaped = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) attn_weights = attn_weights_reshaped.view(bsz * self.num_heads, tgt_len, src_len) else: attn_weights_reshaped = None attn_probs = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training) attn_output = torch.bmm(attn_probs, value_states) if attn_output.size() != (bsz * self.num_heads, tgt_len, self.head_dim): raise ValueError( f"`attn_output` should be of size {(bsz * self.num_heads, tgt_len, self.head_dim)}, but is" f" {attn_output.size()}" ) attn_output = attn_output.view(bsz, self.num_heads, tgt_len, self.head_dim) attn_output = attn_output.transpose(1, 2) # Use the `embed_dim` from the config (stored in the class) rather than `hidden_state` because `attn_output` can be # partitioned across GPUs when using tensor-parallelism. attn_output = attn_output.reshape(bsz, tgt_len, self.embed_dim) attn_output = self.out_proj(attn_output) return attn_output, attn_weights_reshaped, past_key_value class GPTSanJapaneseLayerSelfAttention(nn.Module): """ Self Attention and Normalization Unit """ def __init__(self, config, has_relative_attention_bias=False): super().__init__() self.self_attn = GPTSanJapaneseAttention( embed_dim=config.d_model, num_heads=config.num_heads, is_decoder=True, bias=has_relative_attention_bias, ) self.norm = nn.LayerNorm(config.d_model, eps=config.layer_norm_epsilon) def forward( self, hidden_states: Optional[Tuple[torch.FloatTensor]], past_key_value: Optional[Tuple[torch.Tensor]] = None, attention_mask: Optional[torch.FloatTensor] = None, head_mask: Optional[torch.FloatTensor] = None, use_cache: Optional[bool] = False, output_attentions: Optional[bool] = False, ) -> Tuple[Union[torch.Tensor, Tuple[torch.Tensor]], ...]: r""" Self-attention and normalize block. Args: hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if the model is configured as a decoder. past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`): Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding. If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `decoder_input_ids` of shape `(batch_size, sequence_length)`. attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. head_mask (`numpy.ndarray` of shape `({0})`, `optional): Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. use_cache (`bool`, *optional*): If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see `past_key_values`). output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. Returns: Tuple[torch.Tensor[num_groups, tokens_per_group, hidden_dim],...] """ # Self Attention # decoder uni-directional self-attention cached key/values tuple is at positions 1,2 self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None # add present self-attn cache to positions 1,2 of present_key_value tuple atten_out = self.self_attn( hidden_states=hidden_states, past_key_value=self_attn_past_key_value, attention_mask=(1 - attention_mask) * torch.finfo(hidden_states.dtype).min, layer_head_mask=head_mask, output_attentions=output_attentions, ) if output_attentions: attn_weights = (atten_out[1],) else: attn_weights = () attention_output = atten_out[0] hidden = hidden_states + self.norm(attention_output) if use_cache: outputs = (hidden, atten_out[2]) # hidden, present, (attentions) else: outputs = (hidden,) # hidden, (attentions) return outputs + attn_weights class GPTSanJapaneseBlock(nn.Module): """ Self Attention and FFN Unit """ def __init__(self, config, ext_layer=False): super().__init__() self.self_attn = GPTSanJapaneseLayerSelfAttention(config) self.feed_forward = GPTSanJapaneseLayerDenseFF(config) if ext_layer else GPTSanJapaneseLayerSparseFF(config) def forward( self, hidden_states: Optional[Tuple[torch.FloatTensor]], past_key_value: Optional[Tuple[torch.Tensor]] = None, attention_mask: Optional[torch.FloatTensor] = None, head_mask: Optional[torch.FloatTensor] = None, use_cache: Optional[bool] = False, output_attentions: Optional[bool] = False, output_router_tuple: Optional[bool] = False, ) -> Tuple[Union[torch.Tensor, Tuple[torch.Tensor]], ...]: r""" GPTSAN transformer block. Args: hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if the model is configured as a decoder. past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`): Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding. If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `decoder_input_ids` of shape `(batch_size, sequence_length)`. attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. head_mask (`numpy.ndarray` of shape `({0})`, `optional): Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. use_cache (`bool`, *optional*): If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see `past_key_values`). output_attentions (`bool`) : output attention probabirities. output_router_tuple: output experts router logits and expert id. Returns: Tuple[torch.Tensor[num_groups, tokens_per_group, hidden_dim],...] """ atten_out = self.self_attn( hidden_states=hidden_states, past_key_value=past_key_value, attention_mask=attention_mask, head_mask=head_mask, use_cache=use_cache, output_attentions=output_attentions, ) attention_output = atten_out[0] if isinstance(self.feed_forward, GPTSanJapaneseLayerSparseFF): sparse_out = self.feed_forward(attention_output, output_router_tuple) if output_router_tuple: hidden, router_tuple = sparse_out else: hidden = sparse_out else: hidden = self.feed_forward(attention_output) outputs = (hidden,) + atten_out[1:] if isinstance(self.feed_forward, GPTSanJapaneseLayerSparseFF) and output_router_tuple: outputs += (router_tuple,) return outputs class GPTSanJapanesePreTrainedModel(PreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = GPTSanJapaneseConfig base_model_prefix = "gptsan_japanese" supports_gradient_checkpointing = False _no_split_modules = ["GPTSanJapaneseBlock"] _skip_keys_device_placement = "past_key_values" @property def dummy_inputs(self): input_ids = torch.tensor(DUMMY_INPUTS) input_mask = torch.tensor(DUMMY_MASK) dummy_inputs = { "input_ids": input_ids, "attention_mask": input_mask, } return dummy_inputs def _init_weights(self, module): """Initialize the weights""" factor = self.config.initializer_factor # Used for testing weights initialization if isinstance(module, nn.LayerNorm): module.weight.data.fill_(factor * 1.0) module.bias.data.zero_() elif isinstance(module, nn.Linear): module.weight.data.normal_(mean=0.0, std=factor * ((self.config.d_model) ** -0.5)) if hasattr(module, "bias") and module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.Embedding): module.weight.data.normal_(mean=0.0, std=factor * 1.0) elif isinstance(module, GPTSanJapaneseModel): # Mesh TensorFlow embeddings initialization # See https://github.com/tensorflow/mesh/blob/fa19d69eafc9a482aff0b59ddd96b025c0cb207d/mesh_tensorflow/layers.py#L1624 module.embed_tokens.weight.data.normal_(mean=0.0, std=factor * 1.0) module.position_embeddings.weight.data.normal_(mean=0.0, std=factor * 1.0) if hasattr(module, "extra_position_embeddings") and module.extra_position_embeddings is not None: module.extra_position_embeddings.weight.data.normal_(mean=0.0, std=factor * 1.0) elif isinstance(module, (GPTSanJapaneseModel, GPTSanJapaneseForConditionalGeneration)): # Mesh TensorFlow embeddings initialization # See https://github.com/tensorflow/mesh/blob/fa19d69eafc9a482aff0b59ddd96b025c0cb207d/mesh_tensorflow/layers.py#L1624 module.final_logits_bias.data.normal_(mean=0.0, std=factor * 1.0) if hasattr(module, "lm_head") and not self.config.tie_word_embeddings: module.lm_head.weight.data.normal_(mean=0.0, std=factor * 1.0) elif isinstance(module, GPTSanJapaneseDenseActDense): # Mesh TensorFlow FF initialization # See https://github.com/tensorflow/mesh/blob/master/mesh_tensorflow/transformer/transformer_layers.py#L56 # and https://github.com/tensorflow/mesh/blob/fa19d69eafc9a482aff0b59ddd96b025c0cb207d/mesh_tensorflow/layers.py#L89 module.wi.weight.data.normal_(mean=0.0, std=factor * ((self.config.d_model) ** -0.5)) if hasattr(module.wi, "bias") and module.wi.bias is not None: module.wi.bias.data.zero_() module.wo.weight.data.normal_(mean=0.0, std=factor * ((self.config.d_ff) ** -0.5)) if hasattr(module.wo, "bias") and module.wo.bias is not None: module.wo.bias.data.zero_() elif isinstance(module, GPTSanJapaneseAttention): # Multi-headed attention d_model = self.config.d_model key_value_proj_dim = self.config.d_model n_heads = self.config.num_heads module.k_proj.weight.data.normal_(mean=0.0, std=factor * ((d_model * key_value_proj_dim) ** -0.5)) module.v_proj.weight.data.normal_(mean=0.0, std=factor * ((d_model * key_value_proj_dim) ** -0.5)) module.q_proj.weight.data.normal_(mean=0.0, std=factor * ((d_model * key_value_proj_dim) ** -0.5)) module.out_proj.weight.data.normal_(mean=0.0, std=factor * ((n_heads * key_value_proj_dim) ** -0.5)) elif isinstance(module, GPTSanJapaneseSparseMLP): # Mesh TensorFlow attention initialization to avoid scaling before softmax # See https://github.com/tensorflow/mesh/blob/fa19d69eafc9a482aff0b59ddd96b025c0cb207d/mesh_tensorflow/transformer/attention.py#L136 d_model = self.config.d_model key_value_proj_dim = self.config.d_model n_heads = self.config.num_heads module.router.classifier.weight.data.normal_(mean=0.0, std=factor * 1) for idx in range(self.config.num_experts): module.experts[f"expert_{idx}"].wi.weight.data.normal_(mean=0.0, std=factor * (d_model**-0.5)) module.experts[f"expert_{idx}"].wo.weight.data.normal_(mean=0.0, std=factor * (d_model**-0.5)) def _set_gradient_checkpointing(self, module, value=False): if isinstance(module, (GPTSanJapaneseAttention,)): module.gradient_checkpointing = value # Copied from transformers.models.t5.modeling_t5.T5PreTrainedModel._shift_right def _shift_right(self, input_ids): decoder_start_token_id = self.config.decoder_start_token_id pad_token_id = self.config.pad_token_id if decoder_start_token_id is None: raise ValueError( "self.model.config.decoder_start_token_id has to be defined. In T5 it is usually set to the pad_token_id." "See T5 docs for more information." ) # shift inputs to the right if is_torch_fx_proxy(input_ids): # Item assignment is not supported natively for proxies. shifted_input_ids = torch.full(input_ids.shape[:-1] + (1,), decoder_start_token_id) shifted_input_ids = torch.cat([shifted_input_ids, input_ids[..., :-1]], dim=-1) else: shifted_input_ids = input_ids.new_zeros(input_ids.shape) shifted_input_ids[..., 1:] = input_ids[..., :-1].clone() shifted_input_ids[..., 0] = decoder_start_token_id if pad_token_id is None: raise ValueError("self.model.config.pad_token_id has to be defined.") # replace possible -100 values in labels by `pad_token_id` shifted_input_ids.masked_fill_(shifted_input_ids == -100, pad_token_id) return shifted_input_ids GPTSAN_JAPANESE_START_DOCSTRING = r""" The [GPTSAN-japanese](https://github.com/tanreinama/GPTSAN) model was proposed in General-purpose Swich transformer based Japanese language model This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`GPTSanJapaneseConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ GPTSAN_JAPANESE_INPUTS_DOCSTRING = r""" Args: input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. GPTSAN-japanese is a model that generates sentence continuations or predicts tokens at mask positions. Special tokens required for inputs to the model are automatically appended. attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) token_type_ids (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*): An input that masks the Prefix part in the Prefix-LM input. Mask values selected in `[0, 1]`: - 1 for tokens that are **prefix** input, - 0 for tokens that are **not-prefix** input. spout (`torch.Tensor` of shape `(batch_size, config.d_spout)`): This vector is transformed through an 8-layer FFN and can be used instead of `past_key_values`. past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`): Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding. If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `decoder_input_ids` of shape `(batch_size, sequence_length)`. head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`: use_cache (`bool`, *optional*): If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see `past_key_values`). inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert `input_ids` indices into associated vectors than the model's internal embedding lookup matrix. decoder_inputs_embeds (`torch.FloatTensor` of shape `(batch_size, target_sequence_length, hidden_size)`, *optional*): Optionally, instead of passing `decoder_input_ids` you can choose to directly pass an embedded representation. If `past_key_values` is used, optionally only the last `decoder_inputs_embeds` have to be input (see `past_key_values`). This is useful if you want more control over how to convert `decoder_input_ids` indices into associated vectors than the model's internal embedding lookup matrix. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. router_logits (`tuple(torch.FloatTensor)`, *optional*, returned when `output_router_logits=True` is passed or when `config.add_router_probs=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, sequence_length, num_experts)`. Router logits of the decoder model, useful to compute the auxiliary loss for Mixture of Experts models. """ @add_start_docstrings( "The bare GPTSAN-japanese Model transformer outputting raw hidden-states without any specific head on top.", GPTSAN_JAPANESE_START_DOCSTRING, ) class GPTSanJapaneseModel(GPTSanJapanesePreTrainedModel): def __init__(self, config: GPTSanJapaneseConfig): super().__init__(config) self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.d_model) self.config = copy.deepcopy(config) self.embed_tokens = nn.Embedding(config.vocab_size, config.d_model) self.last_project = nn.Linear(config.d_model, config.d_model, bias=True) self.act = ACT2FN["swish"] self.blocks = torch.nn.ModuleList([]) for _ in range(config.num_switch_layers): self.blocks.append(GPTSanJapaneseBlock(config)) for _ in range(config.num_ext_layers): self.blocks.append(GPTSanJapaneseBlock(config, ext_layer=True)) if config.num_ext_layers > 0: self.extra_position_embeddings = nn.Embedding(config.max_position_embeddings, config.d_model) if config.d_spout: spouts = [] for _ in range(8): spouts.append(nn.Linear(config.d_spout, config.d_spout, bias=False)) spouts.append(nn.Tanh()) spouts.append(nn.Linear(config.d_spout, config.num_layers * 2 * config.d_model, bias=False)) self.spout = nn.Sequential(*spouts) self.post_init() def get_input_embeddings(self): return self.embed_tokens def set_input_embeddings(self, new_embeddings): self.embed_tokens = new_embeddings @add_start_docstrings_to_model_forward(GPTSAN_JAPANESE_INPUTS_DOCSTRING) def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.FloatTensor] = None, token_type_ids: Optional[torch.FloatTensor] = None, spout: Optional[torch.FloatTensor] = None, past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, head_mask: Optional[torch.FloatTensor] = None, use_cache: Optional[bool] = False, inputs_embeds: Optional[torch.FloatTensor] = None, decoder_inputs_embeds: Optional[torch.FloatTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, output_router_logits: Optional[bool] = None, num_precontext: Optional[torch.LongTensor] = None, ) -> Union[MoEModelOutputWithPastAndCrossAttentions, Tuple[torch.FloatTensor]]: r""" num_precontext (`torch.LongTensor` of shape `(batch_size,1)`): length of `hybrid` input tokens in the input. Tokens up to this length refer to both front and back like BERT, tokens after that refer only to front like GPT. see also: https://github.com/tanreinama/GPTSAN/blob/main/report/model.md Returns: `MoEModelOutputWithPastAndCrossAttentions` or `tuple` if `return_dict` returns MoEModelOutputWithPastAndCrossAttentions insted of tuple """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict device = self.position_embeddings.weight.device if input_ids is None: input_ids = torch.zeros([1, 1]).int().to(device) # dummy for input_ids was None num_pasts_contexts = 0 num_batch = input_ids.shape[0] pasts_or_spout_value = None if past_key_values is not None: num_pasts_contexts = past_key_values[0][0].shape[2] elif self.config.d_spout and spout is not None: # `spout` is a special input vector specific to GPTSAN # This controls the output by projecting embedded information such as the class of sentences during learning. # It should passed instead of the first past_key_value. # See the original GPTSAN repository for details num_pasts_contexts += 1 # If there is an attention_mask, increase first one for spout if self.config.d_spout and spout is not None and attention_mask is not None: attention_mask_with_spout = torch.ones(num_batch, attention_mask.shape[1] + 1, device=device) attention_mask_with_spout[:, 1:] -= 1 - attention_mask # 1st token should be spout attention_mask = attention_mask_with_spout # update attention_mask if num_precontext is not None: # `num_precontext` is the number of tokens that refer to each other in prefix-lm # created per batch, so dimension of num_precontext should be [batch, 1] if not ( len(num_precontext.shape) == 2 and num_precontext.shape[1] == 1 ): # num_precontext Should be [batch,1] raise ValueError("num_precontext should be [batch, 1] size.") num_precontext = torch.reshape(num_precontext, [-1]) else: num_precontext = torch.zeros([num_batch]).int().to(device) num_input_contexts = input_ids.shape[1] num_output_contexts = num_input_contexts + num_pasts_contexts hidden_states = self.embed_tokens(input_ids) if past_key_values is not None: pasts_or_spout_value = past_key_values elif self.config.d_spout and spout is not None: # Make vector from `spout` of GPTSAN to the same shape as past_key_values pasts_or_spout_value = self.spout(spout) # projecting `spout` vector pasts_or_spout_value = torch.reshape( pasts_or_spout_value, [ num_batch, self.config.num_layers, 2, self.config.num_heads, num_pasts_contexts, self.config.d_model // self.config.num_heads, ], ) pasts_or_spout_value = torch.split(pasts_or_spout_value, [1] * self.config.num_layers, dim=1) # make same shape as past_key_values pasts_or_spout_value = tuple( tuple([b.squeeze(1) for b in torch.split(a.squeeze(1), [1, 1], dim=1)]) for a in pasts_or_spout_value ) else: pasts_or_spout_value = [None] * self.config.num_layers # Token position considering spout and pasts token_position = torch.arange(num_input_contexts).to(device) + num_pasts_contexts if attention_mask is None: attention_mask = torch.ones(num_batch, num_input_contexts, device=device) # positions for get position_embeddings gather_position = ( ( torch.zeros((num_batch, self.config.d_model, num_input_contexts)).to(device) + token_position.unsqueeze(0) ) .transpose(1, 2) .long() ) # When padding with padding_side="left", zeros line up on the left side of attention_mask, so position_embeddings is shifted accordingly gather_position -= (1 - attention_mask).argmin(dim=-1).unsqueeze(1).unsqueeze(2) gather_position = torch.clip(gather_position, num_pasts_contexts, self.config.max_position_embeddings - 1) # attention_mask is applied per batch for i in range(num_batch): hidden_states[i] += torch.gather(self.position_embeddings.weight, dim=0, index=gather_position[i]) # Create a mask to be used when making the prefix Input length of Prefix-LM variable causal_mask = ( torch.tril(torch.ones((num_output_contexts, num_output_contexts), dtype=torch.uint8)) .view(1, 1, num_output_contexts, num_output_contexts) .to(device) ) prefix_lm_mask = causal_mask[:, :, -num_input_contexts:, :] if token_type_ids is not None: token_type_ids = token_type_ids.unsqueeze(1).unsqueeze(2) prefix_lm_mask = ((prefix_lm_mask + token_type_ids) > 0).float() # Marge prefix_lm_mask and attention_mask extended_attention_mask = prefix_lm_mask * attention_mask.unsqueeze(1).unsqueeze(2) # Prepare head mask if needed if head_mask is not None: head_mask = self.get_head_mask( head_mask, self.config.num_switch_layers + self.config.num_ext_layers ) # n_layer x batch x n_heads x N x N # outputs present_key_value_states = () if self.config.use_cache or use_cache else None all_hidden_states = () if self.config.output_hidden_states or output_hidden_states else None all_attentions = () if self.config.output_attentions or output_attentions else None all_router_probs = () if self.config.output_router_logits or output_router_logits else None for layer, past in enumerate(pasts_or_spout_value): if layer == self.config.num_switch_layers: if self.config.num_ext_layers > 0: # extra_position_embeddings are extra position embeddings that are only created when extending the model with code from the original GPTSAN repository. Not used in the default model. # However, it is created when you create an additional layer and partially train only that location. # Therefore, convert_gptsan_tf_checkpoint_to_pytorch.py is used when converting and loading models created in the original GPTSAN repository. for i in range(num_batch): hidden_states[i] += torch.gather( self.extra_position_embeddings.weight, dim=0, index=gather_position[i] ) output_router_tuple = ( self.config.output_router_logits or output_router_logits ) and layer < self.config.num_switch_layers block_output = self.blocks[layer]( hidden_states=hidden_states, past_key_value=past, attention_mask=extended_attention_mask, head_mask=head_mask, use_cache=self.config.use_cache or use_cache, output_attentions=self.config.output_attentions or output_attentions, output_router_tuple=output_router_tuple, ) outpos = 0 hidden_states = block_output[outpos] if self.config.output_hidden_states or output_hidden_states: all_hidden_states += (hidden_states,) if self.config.use_cache or use_cache: outpos += 1 present = block_output[outpos] present_key_value_states += (present,) if self.config.output_attentions or output_attentions: outpos += 1 attention_probs = block_output[outpos] all_attentions += (attention_probs,) if output_router_tuple: outpos += 1 router_tuple = block_output[outpos] all_router_probs.append(router_tuple[0]) hidden_states = self.last_project(hidden_states) hidden_states = self.act(hidden_states) if self.config.output_hidden_states or output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) if not return_dict: return tuple( v for v in [ hidden_states, present_key_value_states, all_hidden_states, all_attentions, all_router_probs, ] if v is not None ) return MoEModelOutputWithPastAndCrossAttentions( last_hidden_state=hidden_states, past_key_values=present_key_value_states, hidden_states=all_hidden_states, attentions=all_attentions, router_probs=all_router_probs, ) @add_start_docstrings( "The bare GPTSAN-japanese Model with a language modeling head.", GPTSAN_JAPANESE_START_DOCSTRING, ) class GPTSanJapaneseForConditionalGeneration(GPTSanJapanesePreTrainedModel): _tied_weights_keys = ["lm_head.weight"] def __init__(self, config: GPTSanJapaneseConfig): super().__init__(config) self.model = GPTSanJapaneseModel(config) self.register_buffer("final_logits_bias", torch.zeros([1, config.vocab_size])) self.lm_head = nn.Linear(config.d_model, config.vocab_size, bias=False) if not self.config.torchscript: self.lm_head.weight = self.model.embed_tokens.weight @add_start_docstrings_to_model_forward(GPTSAN_JAPANESE_INPUTS_DOCSTRING) def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.FloatTensor] = None, token_type_ids: Optional[torch.FloatTensor] = None, spout: Optional[torch.FloatTensor] = None, past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, head_mask: Optional[torch.FloatTensor] = None, use_cache: Optional[bool] = False, inputs_embeds: Optional[torch.FloatTensor] = None, decoder_inputs_embeds: Optional[torch.FloatTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, output_router_logits: Optional[bool] = None, labels: Optional[torch.LongTensor] = None, ) -> Union[Tuple[torch.FloatTensor], MoECausalLMOutputWithPast]: r""" labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the sequence classification loss. Indices should be in `[-100, 0, ..., config.vocab_size - 1]`. All labels set to `-100` are ignored (masked), the loss is only computed for labels in `[0, ..., config.vocab_size]` Returns: `MoECausalLMOutputWithPast` or `tuple` if `return_dict` returns MoECausalLMOutputWithPast insted of tuple Example: Text Generation with regular LM Model ```python >>> from transformers import AutoModel, AutoTokenizer, trainer_utils >>> device = "cuda" >>> model = AutoModel.from_pretrained("Tanrei/GPTSAN-japanese").to(device) >>> tokenizer = AutoTokenizer.from_pretrained("Tanrei/GPTSAN-japanese") >>> x_token = tokenizer("織田信長は、", return_tensors="pt") >>> trainer_utils.set_seed(30) >>> input_ids = x_token.input_ids.to(device) >>> gen_token = model.generate(input_ids, max_new_tokens=50) >>> tokenizer.decode(gen_token[0]) "織田信長は、政治・軍事の中枢まで掌握した政治家であり、日本史上類を見ない驚異的な軍事侵攻を続け..." ``` Text Generation with Prefix-LM Model ```python >>> from transformers import AutoModel, AutoTokenizer, trainer_utils >>> device = "cuda" >>> model = AutoModel.from_pretrained("Tanrei/GPTSAN-japanese").to(device) >>> tokenizer = AutoTokenizer.from_pretrained("Tanrei/GPTSAN-japanese") >>> x_token = tokenizer("", prefix_text="織田信長は、", return_tensors="pt") >>> trainer_utils.set_seed(30) >>> input_ids = x_token.input_ids.to(device) >>> token_type_ids = x_token.token_type_ids.to(device) >>> gen_token = model.generate(input_ids, token_type_ids=token_type_ids, max_new_tokens=50) >>> tokenizer.decode(gen_token[0]) "織田信長は、政治・外交で数々の戦果を上げるが、1568年からは、いわゆる本能寺の変で細川晴元に暗殺される..." ``` Simultaneously Text Generation And Masked Language Model ```python >>> from transformers import AutoModel, AutoTokenizer, trainer_utils >>> device = "cuda" >>> model = AutoModel.from_pretrained("Tanrei/GPTSAN-japanese").to(device) >>> tokenizer = AutoTokenizer.from_pretrained("Tanrei/GPTSAN-japanese") >>> masked_sentence = "武田信玄は、<|inputmask|>時代ファンならぜひ押さえ<|inputmask|>きたい名将の一人。" >>> x_token = tokenizer("", prefix_text=masked_sentence, return_tensors="pt") >>> trainer_utils.set_seed(30) >>> input_ids = x_token.input_ids.to(device) >>> token_type_ids = x_token.token_type_ids.to(device) >>> out_lm_token = model.generate(input_ids, token_type_ids=token_type_ids, max_new_tokens=50) >>> out_mlm_token = model(input_ids, token_type_ids=token_type_ids).logits.argmax(axis=-1) >>> tokenizer.decode(out_mlm_token[0]) "武田信玄は、戦国時代ファンならぜひ押さえておきたい名将の一人。" >>> tokenizer.decode(out_lm_token[0][input_ids.shape[1] :]) "武田氏の三代に渡った武田家のひとり\n甲斐市に住む、日本史上最大の戦国大名。..." ```""" SEG_TOKEN = self.config.separator_token_id use_cache = use_cache or self.config.use_cache return_dict = return_dict if return_dict is not None else self.config.use_return_dict model_return_dict = True num_precontext = None if input_ids is not None: num_batch = input_ids.shape[0] num_precontext = torch.zeros([num_batch]).int().to(input_ids.device) where_separators = torch.where(input_ids == SEG_TOKEN) num_precontext[where_separators[0]] += where_separators[1] num_precontext = num_precontext.unsqueeze(1) outputs = self.model( input_ids, attention_mask, token_type_ids, spout, past_key_values, head_mask, use_cache, inputs_embeds, decoder_inputs_embeds, output_attentions, output_hidden_states, model_return_dict, output_router_logits, num_precontext, ) lm_logits = self.lm_head(outputs[0]) if lm_logits.shape[-1] == self.final_logits_bias.shape[-1]: lm_logits = lm_logits + self.final_logits_bias loss = None z_loss = None router_probs = None aux_loss = None if labels is not None: # move labels to correct device to enable model parallelism labels = labels.to(lm_logits.device) loss_fct = nn.CrossEntropyLoss(ignore_index=-100) if output_router_logits: # Compute the router loss (z_loss + auxiliary loss) for each router in the encoder and decoder router_logits, expert_indexes = self._unpack_router_logits(outputs.router_probs) z_loss = router_z_loss_func(router_logits) router_probs = nn.Softmax(dim=-1)(router_logits) aux_loss = load_balancing_loss_func(router_probs, expert_indexes) loss = loss_fct(lm_logits.view(-1, lm_logits.size(-1)), labels.view(-1)) if not return_dict: return tuple( v for v in [ loss, lm_logits, outputs.past_key_values, outputs.hidden_states, outputs.router_probs, z_loss, aux_loss, ] if v is not None ) return MoECausalLMOutputWithPast( loss=loss, logits=lm_logits, past_key_values=outputs.past_key_values, hidden_states=outputs.hidden_states, attentions=outputs.attentions, router_logits=outputs.router_probs, z_loss=z_loss, aux_loss=aux_loss, ) def prepare_inputs_for_generation( self, input_ids: torch.LongTensor, attention_mask: torch.FloatTensor, token_type_ids: Optional[torch.FloatTensor] = None, spout: Optional[Union[List, torch.FloatTensor]] = None, past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, **kwargs, ): if type(spout) is list: spout = torch.tensor(spout).float() if input_ids is not None: spout = spout.to(input_ids.device) if past_key_values is not None: return { "input_ids": input_ids[:, -1:] if input_ids is not None else None, "attention_mask": attention_mask, "token_type_ids": token_type_ids[:, -1:] if token_type_ids is not None else None, "spout": spout, "past_key_values": past_key_values, } return { "input_ids": input_ids, "attention_mask": attention_mask, "token_type_ids": token_type_ids, "spout": spout, "past_key_values": None, } # Copied from transformers.models.switch_transformers.modeling_switch_transformers.SwitchTransformersForConditionalGeneration.prepare_decoder_input_ids_from_labels with SwitchTransformers->GPTSanJapanese def prepare_decoder_input_ids_from_labels(self, labels: torch.Tensor): return self._shift_right(labels) # Copied from transformers.models.mbart.modeling_mbart.MBartForConditionalGeneration.resize_token_embeddings with MBart->GPTSanJapanese def resize_token_embeddings(self, new_num_tokens: int) -> nn.Embedding: new_embeddings = super().resize_token_embeddings(new_num_tokens) self._resize_final_logits_bias(new_num_tokens) return new_embeddings # Copied from transformers.models.mbart.modeling_mbart.MBartForConditionalGeneration._resize_final_logits_bias with MBart->GPTSanJapanese def _resize_final_logits_bias(self, new_num_tokens: int) -> None: old_num_tokens = self.final_logits_bias.shape[-1] if new_num_tokens <= old_num_tokens: new_bias = self.final_logits_bias[:, :new_num_tokens] else: extra_bias = torch.zeros((1, new_num_tokens - old_num_tokens), device=self.final_logits_bias.device) new_bias = torch.cat([self.final_logits_bias, extra_bias], dim=1) self.register_buffer("final_logits_bias", new_bias) def get_input_embeddings(self): return self.model.get_input_embeddings() def set_input_embeddings(self, new_embeddings): self.model.set_input_embeddings(new_embeddings) # Copied from transformers.models.switch_transformers.modeling_switch_transformers.SwitchTransformersForConditionalGeneration.set_output_embeddings with SwitchTransformers->GPTSanJapanese def set_output_embeddings(self, new_embeddings): self.lm_head = new_embeddings # Copied from transformers.models.switch_transformers.modeling_switch_transformers.SwitchTransformersForConditionalGeneration.get_output_embeddings with SwitchTransformers->GPTSanJapanese def get_output_embeddings(self): return self.lm_head # Copied from transformers.models.switch_transformers.modeling_switch_transformers.SwitchTransformersForConditionalGeneration._unpack_router_logits with SwitchTransformers->GPTSanJapanese def _unpack_router_logits(self, router_outputs): total_router_logits = [] total_expert_indexes = [] for router_output in router_outputs: if len(router_output[0].shape) > 1: router_logits, expert_indexes = router_output total_router_logits.append(router_logits) total_expert_indexes.append(expert_indexes) return torch.cat(total_router_logits, dim=1), torch.cat(total_expert_indexes, dim=1)
0
hf_public_repos/transformers/src/transformers/models
hf_public_repos/transformers/src/transformers/models/gptsan_japanese/tokenization_gptsan_japanese.py
# coding=utf-8 # Copyright 2023 HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tokenization classes for GPTSANJapanese.""" import collections import json import os import re from typing import TYPE_CHECKING, List, Optional, Tuple, Union import numpy as np from ...tokenization_utils import PreTrainedTokenizer from ...tokenization_utils_base import ( BatchEncoding, PreTokenizedInput, PreTokenizedInputPair, TextInput, TextInputPair, TruncationStrategy, ) from ...utils import PaddingStrategy, logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation logger = logging.get_logger(__name__) VOCAB_FILES_NAMES = {"vocab_file": "vocab.txt", "emoji_file": "emoji.json"} PRETRAINED_VOCAB_FILES_MAP = { "vocab_file": { "Tanrei/GPTSAN-japanese": "https://huggingface.co/Tanrei/GPTSAN-japanese/blob/main/vocab.txt", }, "emoji_file": { "Tanrei/GPTSAN-japanese": "https://huggingface.co/Tanrei/GPTSAN-japanese/blob/main/emoji.json", }, } PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = { "Tanrei/GPTSAN-japanese": 1280, } def load_vocab_and_emoji(vocab_file, emoji_file): """Loads a vocabulary file and emoji file into a dictionary.""" with open(emoji_file, "r", encoding="utf-8") as f: emoji = json.loads(f.read()) vocab = collections.OrderedDict() raw_vocab = collections.OrderedDict() ids_to_tokens = collections.OrderedDict() with open(vocab_file, "r", encoding="utf-8") as f: token = f.readlines() token = [[t.rstrip("\n")] if (t == ",\n" or "," not in t) else t.rstrip("\n").split(",") for t in token] for idx, b in enumerate(token): ids_to_tokens[idx] = b raw_vocab[",".join(b)] = idx for wd in b: vocab[wd] = idx return vocab, raw_vocab, ids_to_tokens, emoji class GPTSanJapaneseTokenizer(PreTrainedTokenizer): """ This tokenizer is based on GPTNeoXJapaneseTokenizer and has the following modifications - Decoding byte0~byte255 tokens correctly - Added bagofword token handling - Return token_type_ids for Prefix-LM model The bagofword token represents a repetition of the previous token and is converted to 3 consecutive tokens when decoding In addition, the original Japanese special Sub-Word-Encoding has been released in this repository (https://github.com/tanreinama/Japanese-BPEEncoder_V2). The token_type_ids is a mask indicating the prefix input position of the Prefix-LM model. To specify a prefix position, specify a prefix input for prefix_text, or specify a sentence of the prefix part and the part after it as a text pair of batch input. Example: ```python >>> from transformers import GPTSanJapaneseTokenizer >>> tokenizer = GPTSanJapaneseTokenizer.from_pretrained("Tanrei/GPTSAN-japanese") >>> # You can confirm both 慶応 and 慶應 are encoded to 17750 >>> tokenizer("吾輩は猫である🐯。実は慶応(慶應)大学出身")["input_ids"] [35993, 35998, 34347, 31459, 30647, 31448, 25, 30659, 35729, 35676, 32417, 30647, 17750, 35589, 17750, 35590, 321, 1281] >>> # Both 慶応 and 慶應 are decoded to 慶応 >>> tokenizer.decode(tokenizer("吾輩は猫である🐯。実は慶応(慶應)大学出身")["input_ids"]) '吾輩は猫である🐯。実は慶応(慶応)大学出身' ``` Example for Prefix-LM: ```python >>> from transformers import GPTSanJapaneseTokenizer >>> tokenizer = GPTSanJapaneseTokenizer.from_pretrained("Tanrei/GPTSAN-japanese") >>> tokenizer("実は慶応(慶應)大学出身", prefix_text="吾輩は猫である🐯。")["input_ids"] [35993, 34347, 31459, 30647, 31448, 25, 30659, 35729, 35676, 35998, 32417, 30647, 17750, 35589, 17750, 35590, 321, 1281] >>> # Mask for Prefix-LM inputs >>> tokenizer("実は慶応(慶應)大学出身", prefix_text="吾輩は猫である🐯。")["token_type_ids"] [1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0] ``` Example for batch encode: ```python >>> from transformers import GPTSanJapaneseTokenizer >>> tokenizer = GPTSanJapaneseTokenizer.from_pretrained("Tanrei/GPTSAN-japanese") >>> tokenizer([["武田信玄", "は、"], ["織田信長", "の配下の、"]], padding=True)["input_ids"] [[35993, 8640, 25948, 35998, 30647, 35675, 35999, 35999], [35993, 10382, 9868, 35998, 30646, 9459, 30646, 35675]] >>> # Mask for Prefix-LM inputs >>> tokenizer([["武田信玄", "は、"], ["織田信長", "の配下の、"]], padding=True)["token_type_ids"] [[1, 1, 1, 0, 0, 0, 0, 0], [1, 1, 1, 0, 0, 0, 0, 0]] >>> # Mask for padding >>> tokenizer([["武田信玄", "は、"], ["織田信長", "の配下の、"]], padding=True)["attention_mask"] [[1, 1, 1, 1, 1, 1, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1]] ``` Args: vocab_file (`str`): File containing the vocabulary. emoji_file (`str`): File containing the emoji. unk_token (`str`, *optional*, defaults to `"<|nottoken|>"`): The token used for unknown charactor pad_token (`str`, *optional*, defaults to `"<|separator|>"`): The token used for padding bos_token (`str`, *optional*, defaults to `"<|startoftext|>""`): The beginning of sequence token. eos_token (`str`, *optional*, defaults to `"<|endoftext|>"`): The end of sequence token. sep_token (`str`, *optional*, defaults to `"<|segmenter|>"`): A special token to separate token to prefix part and general input part. do_clean_text (`bool`, *optional*, defaults to `False`): Whether or not to clean text for URL, EMAIL, TEL, Japanese DATE and Japanese PRICE. """ vocab_files_names = VOCAB_FILES_NAMES pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES model_input_names = ["input_ids", "attention_mask", "token_type_ids"] def __init__( self, vocab_file, emoji_file, unk_token="<|nottoken|>", pad_token="<|separator|>", bos_token="<|startoftext|>", eos_token="<|endoftext|>", sep_token="<|segmenter|>", do_clean_text=False, **kwargs, ): super().__init__( unk_token=unk_token, pad_token=pad_token, bos_token=bos_token, eos_token=eos_token, sep_token=sep_token, do_clean_text=do_clean_text, **kwargs, ) if not os.path.isfile(vocab_file): raise ValueError( f"Can't find a vocabulary file at path '{vocab_file}'. To load the vocabulary from a Google pretrained" " model use `tokenizer = GPTSanJapaneseTokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`" ) if not os.path.isfile(emoji_file): raise ValueError( f"Can't find a emoji file at path '{emoji_file}'. To load the emoji information from a Google" " pretrained model use `tokenizer = GPTSanJapaneseTokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`" ) self.do_clean_text = do_clean_text self.vocab, self.raw_vocab, self.ids_to_tokens, self.emoji = load_vocab_and_emoji(vocab_file, emoji_file) self.subword_tokenizer = SubWordJapaneseTokenizer( vocab=self.vocab, ids_to_tokens=self.ids_to_tokens, emoji=self.emoji ) @property # Copied from tokenization_gpt_neox_japanese.GPTNeoXJapaneseTokenizer.vocab_size def vocab_size(self): # self.vocab contains support for character fluctuation unique to Japanese, and has a large number of vocab return len(self.raw_vocab) # Copied from tokenization_gpt_neox_japanese.GPTNeoXJapaneseTokenizer.get_vocab def get_vocab(self): return dict(self.raw_vocab, **self.added_tokens_encoder) # Copied from tokenization_gpt_neox_japanese.GPTNeoXJapaneseTokenizer._tokenize def _tokenize(self, text): return self.subword_tokenizer.tokenize(text, clean=self.do_clean_text) # Copied from tokenization_gpt_neox_japanese.GPTNeoXJapaneseTokenizer._convert_token_to_id def _convert_token_to_id(self, token): """Converts a token (str) in an id using the vocab.""" return self.vocab.get(token, self.vocab.get(self.unk_token)) # Copied from tokenization_gpt_neox_japanese.GPTNeoXJapaneseTokenizer._convert_id_to_token def _convert_id_to_token(self, index): """Converts an index (integer) in a token (str) using the vocab.""" return self.subword_tokenizer.convert_id_to_token(index) def convert_tokens_to_string(self, tokens): """Converts a sequence of tokens (string) in a single string.""" words = [] byte_tokens = [] for word in tokens: if word[:6] == "<|byte" and word[-2:] == "|>": byte_tokens.append(int(word[6:-2])) else: if len(byte_tokens) > 0: words.append(bytearray(byte_tokens).decode("utf-8", errors="replace")) byte_tokens = [] if word[:7] == "<|emoji" and word[-2:] == "|>": words.append(self.emoji["emoji_inv"][word]) elif word == "<SP>": words.append(" ") elif word == "<BR>": words.append("\n") elif word == "<TAB>": words.append("\t") elif word == "<BLOCK>": words.append("▀") elif word == "<KIGOU>": words.append("ǀ") elif word == "<U2000U2BFF>": words.append("‖") elif word == "<|bagoftoken|>": if len(words) > 0: words.append(words[-1]) words.append(words[-1]) words.append(words[-1]) elif word.startswith("<|") and word.endswith("|>"): words.append("") else: words.append(word) if len(byte_tokens) > 0: words.append(bytearray(byte_tokens).decode("utf-8", errors="replace")) text = "".join(words) return text # Copied from tokenization_gpt_neox_japanese.GPTNeoXJapaneseTokenizer._build_conversation_input_ids def _build_conversation_input_ids(self, conversation: "Conversation") -> List[int]: """This corresponds to DialoGPT variants of models.""" input_ids = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(text, add_special_tokens=False) + [self.eos_token_id]) if len(input_ids) > self.model_max_length: input_ids = input_ids[-self.model_max_length :] return input_ids # Copied from tokenization_gpt_neox_japanese.GPTNeoXJapaneseTokenizer.save_vocabulary def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]: index = 0 if os.path.isdir(save_directory): vocab_file = os.path.join( save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) emoji_file = os.path.join( save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["emoji_file"] ) else: vocab_file = ( (filename_prefix + "-" if filename_prefix else "") + save_directory + VOCAB_FILES_NAMES["vocab_file"] ) emoji_file = ( (filename_prefix + "-" if filename_prefix else "") + save_directory + VOCAB_FILES_NAMES["emoji_file"] ) with open(vocab_file, "w", encoding="utf-8") as writer: for token_index, token in self.ids_to_tokens.items(): if index != token_index: logger.warning( f"Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive." " Please check that the vocabulary is not corrupted!" ) index = token_index writer.write(",".join(token) + "\n") index += 1 with open(emoji_file, "w", encoding="utf-8") as writer: json.dump(self.emoji, writer) return vocab_file, emoji_file def create_token_type_ids_from_sequences( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None ) -> List[int]: # docstyle-ignore """ The tokenizer returns token_type_ids as separators between the Prefix part and the rest. token_type_ids is 1 for the Prefix part and 0 for the rest of the token. Example: ```python >>> from transformers import GPTSanJapaneseTokenizer >>> tokenizer = GPTSanJapaneseTokenizer.from_pretrained("Tanrei/GPTSAN-japanese") >>> x_token = tokenizer("アイウエ") >>> # input_ids: | SOT | SEG | ア | イ | ウ | エ | >>> # token_type_ids: | 1 | 0 | 0 | 0 | 0 | 0 | >>> x_token = tokenizer("", prefix_text="アイウエ") >>> # input_ids: | SOT | ア | イ | ウ | エ | SEG | >>> # token_type_ids: | 1 | 1 | 1 | 1 | 1 | 0 | >>> x_token = tokenizer("ウエ", prefix_text="アイ") >>> # input_ids: | SOT | ア | イ | SEG | ウ | エ | >>> # token_type_ids: | 1 | 1 | 1 | 0 | 0 | 0 | ```""" prefix_len = 0 if self.sep_token in self.vocab: segid = self.vocab[self.sep_token] if segid in token_ids_0: prefix_len = token_ids_0.index(segid) if token_ids_1 is None: total_len = len(token_ids_0) else: total_len = len(token_ids_0 + token_ids_1) return prefix_len * [1] + (total_len - prefix_len) * [0] def prepare_for_tokenization(self, text, prefix_text=None, add_sep_token=None, **kwargs): # GPTSAN inserts extra SEP tokens in Prefix-LM in addition to SOT for text generation. # SOT at the beginning of the text, and SEP at the separator between the Prefix part and the rest. if add_sep_token is None: add_sep_token = self.sep_token not in text # If insert un-prefix position explicitly prepared = self.bos_token if self.bos_token in self.vocab else "" prepared += prefix_text if prefix_text is not None else "" if add_sep_token: prepared += self.sep_token if self.sep_token in self.vocab else "" prepared += text return (prepared, kwargs) def _batch_encode_plus( self, batch_text_or_text_pairs: Union[ List[TextInput], List[TextInputPair], List[PreTokenizedInput], List[PreTokenizedInputPair] ], add_special_tokens: bool = True, padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD, truncation_strategy: TruncationStrategy = TruncationStrategy.DO_NOT_TRUNCATE, max_length: Optional[int] = None, stride: int = 0, is_split_into_words: bool = False, pad_to_multiple_of: Optional[int] = None, return_tensors: Optional[str] = None, return_token_type_ids: Optional[bool] = None, return_attention_mask: Optional[bool] = None, return_overflowing_tokens: bool = False, return_special_tokens_mask: bool = False, return_offsets_mapping: bool = False, return_length: bool = False, verbose: bool = True, ) -> BatchEncoding: # This tokenizer converts input text pairs into Prefix input and subsequent input if type(batch_text_or_text_pairs[0]) is tuple or type(batch_text_or_text_pairs[0]) is list: # As a single text with an explicit un-prefix position batch_prefix_texts = [] for pref, txt in batch_text_or_text_pairs: batch_prefix_texts.append(pref + self.sep_token + txt) batch_text_or_text_pairs = batch_prefix_texts return super()._batch_encode_plus( batch_text_or_text_pairs, add_special_tokens, padding_strategy, truncation_strategy, max_length, stride, is_split_into_words, pad_to_multiple_of, return_tensors, return_token_type_ids, return_attention_mask, return_overflowing_tokens, return_special_tokens_mask, return_offsets_mapping, return_length, verbose, ) class SubWordJapaneseTokenizer(object): """ This tokenizer is based on GPTNeoXJapaneseTokenizer and has the following modifications - Decoding byte0~byte255 tokens correctly - Added bagofword token handling https://github.com/tanreinama/Japanese-BPEEncoder_V2 This tokenizer class is under MIT Lisence according to the original repository. MIT License Copyright (c) 2020 tanreinama Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ # Copied from tokenization_gpt_neox_japanese.SubWordJapaneseTokenizer.__init__ def __init__(self, vocab, ids_to_tokens, emoji): self.vocab = vocab # same as swe self.ids_to_tokens = ids_to_tokens # same as bpe self.emoji = emoji self.maxlen = np.max([len(w) for w in self.vocab.keys()]) self.content_repatter1 = re.compile(r"(https?|ftp)(:\/\/[-_\.!~*\'()a-zA-Z0-9;\/?:\@&=\+$,%#]+)") self.content_repatter2 = re.compile(r"[A-Za-z0-9\._+]*@[\-_0-9A-Za-z]+(\.[A-Za-z]+)*") self.content_repatter3 = re.compile(r"[\(]{0,1}[0-9]{2,4}[\)\-\(]{0,1}[0-9]{2,4}[\)\-]{0,1}[0-9]{3,4}") self.content_repatter4 = re.compile( r"([12]\d{3}[/\-年])*(0?[1-9]|1[0-2])[/\-月]((0?[1-9]|[12][0-9]|3[01])日?)*(\d{1,2}|:|\d{1,2}時|\d{1,2}分|\(日\)|\(月\)|\(火\)|\(水\)|\(木\)|\(金\)|\(土\)|㈰|㈪|㈫|㈬|㈭|㈮|㈯)*" ) self.content_repatter5 = re.compile( r"(明治|大正|昭和|平成|令和|㍾|㍽|㍼|㍻|\u32ff)\d{1,2}年(0?[1-9]|1[0-2])月(0?[1-9]|[12][0-9]|3[01])日(\d{1,2}|:|\d{1,2}時|\d{1,2}分|\(日\)|\(月\)|\(火\)|\(水\)|\(木\)|\(金\)|\(土\)|㈰|㈪|㈫|㈬|㈭|㈮|㈯)*" ) self.content_repatter6 = re.compile( r"((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*億)*((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*万)*((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*千)*(0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*(千円|万円|千万円|円|千ドル|万ドル|千万ドル|ドル|千ユーロ|万ユーロ|千万ユーロ|ユーロ)+(\(税込\)|\(税抜\)|\+tax)*" ) keisen = "─━│┃┄┅┆┇┈┉┊┋┌┍┎┏┐┑┒┓└┕┖┗┘┙┚┛├┝┞┟┠┡┢┣┤┥┦┧┨┩┪┫┬┭┮┯┰┱┲┳┴┵┶┷┸┹┺┻┼┽┾┿╀╁╂╃╄╅╆╇╈╉╊╋╌╍╎╏═║╒╓╔╕╖╗╘╙╚╛╜╝╞╟╠╡╢╣╤╥╦╧╨╩╪╫╬╭╮╯╰╱╲╳╴╵╶╷╸╹╺╻╼╽╾╿" blocks = "▀▁▂▃▄▅▆▇█▉▊▋▌▍▎▏▐░▒▓▔▕▖▗▘▙▚▛▜▝▞▟" self.content_trans1 = str.maketrans({k: "<BLOCK>" for k in keisen + blocks}) # Copied from tokenization_gpt_neox_japanese.SubWordJapaneseTokenizer.__len__ def __len__(self): return len(self.ids_to_tokens) # Copied from tokenization_gpt_neox_japanese.SubWordJapaneseTokenizer.clean_text def clean_text(self, content): content = self.content_repatter1.sub("<URL>", content) content = self.content_repatter2.sub("<EMAIL>", content) content = self.content_repatter3.sub("<TEL>", content) content = self.content_repatter4.sub("<DATE>", content) content = self.content_repatter5.sub("<DATE>", content) content = self.content_repatter6.sub("<PRICE>", content) content = content.translate(self.content_trans1) while "<BLOCK><BLOCK>" in content: content = content.replace("<BLOCK><BLOCK>", "<BLOCK>") return content # Copied from tokenization_gpt_neox_japanese.SubWordJapaneseTokenizer.tokenize def tokenize(self, text, clean=False): text = text.replace(" ", "<SP>") text = text.replace(" ", "<SP>") text = text.replace("\r\n", "<BR>") text = text.replace("\n", "<BR>") text = text.replace("\r", "<BR>") text = text.replace("\t", "<TAB>") text = text.replace("—", "ー") text = text.replace("−", "ー") for k, v in self.emoji["emoji"].items(): if k in text: text = text.replace(k, v) if clean: text = self.clean_text(text) def check_simbol(x): e = x.encode() if len(x) == 1 and len(e) == 2: c = (int(e[0]) << 8) + int(e[1]) if ( (c >= 0xC2A1 and c <= 0xC2BF) or (c >= 0xC780 and c <= 0xC783) or (c >= 0xCAB9 and c <= 0xCBBF) or (c >= 0xCC80 and c <= 0xCDA2) ): return True return False def checku2e(x): e = x.encode() if len(x) == 1 and len(e) == 3: c = (int(e[0]) << 16) + (int(e[1]) << 8) + int(e[2]) if c >= 0xE28080 and c <= 0xE2B07F: return True return False pos = 0 result = [] while pos < len(text): end = min(len(text), pos + self.maxlen + 1) if text[pos] == "<" else pos + 3 candidates = [] # (token_id, token, pos) for e in range(end, pos, -1): wd = text[pos:e] if wd in self.vocab: if wd[0] == "<" and len(wd) > 2: candidates = [(self.vocab[wd], wd, e)] break else: candidates.append((self.vocab[wd], wd, e)) if len(candidates) > 0: # the smallest token_id is adopted _, wd, e = sorted(candidates, key=lambda x: x[0])[0] result.append(wd) pos = e else: end = pos + 1 wd = text[pos:end] if check_simbol(wd): result.append("<KIGOU>") elif checku2e(wd): result.append("<U2000U2BFF>") else: for i in wd.encode("utf-8"): result.append("<|byte%d|>" % i) pos = end return result def convert_id_to_token(self, index): return self.ids_to_tokens[index][0]
0
hf_public_repos/transformers/src/transformers/models
hf_public_repos/transformers/src/transformers/models/segformer/__init__.py
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) _import_structure = { "configuration_segformer": ["SEGFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "SegformerConfig", "SegformerOnnxConfig"] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["feature_extraction_segformer"] = ["SegformerFeatureExtractor"] _import_structure["image_processing_segformer"] = ["SegformerImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["modeling_segformer"] = [ "SEGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "SegformerDecodeHead", "SegformerForImageClassification", "SegformerForSemanticSegmentation", "SegformerLayer", "SegformerModel", "SegformerPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["modeling_tf_segformer"] = [ "TF_SEGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "TFSegformerDecodeHead", "TFSegformerForImageClassification", "TFSegformerForSemanticSegmentation", "TFSegformerModel", "TFSegformerPreTrainedModel", ] if TYPE_CHECKING: from .configuration_segformer import SEGFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, SegformerConfig, SegformerOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_segformer import SegformerFeatureExtractor from .image_processing_segformer import SegformerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_segformer import ( SEGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, SegformerDecodeHead, SegformerForImageClassification, SegformerForSemanticSegmentation, SegformerLayer, SegformerModel, SegformerPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_segformer import ( TF_SEGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TFSegformerDecodeHead, TFSegformerForImageClassification, TFSegformerForSemanticSegmentation, TFSegformerModel, TFSegformerPreTrainedModel, ) else: import sys sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
0
hf_public_repos/transformers/src/transformers/models
hf_public_repos/transformers/src/transformers/models/segformer/modeling_tf_segformer.py
# coding=utf-8 # Copyright 2022 NVIDIA The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ TensorFlow SegFormer model.""" from __future__ import annotations import math from typing import Optional, Tuple, Union import tensorflow as tf from ...activations_tf import get_tf_activation from ...file_utils import ( add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, replace_return_docstrings, ) from ...modeling_tf_outputs import TFBaseModelOutput, TFSemanticSegmenterOutput, TFSequenceClassifierOutput from ...modeling_tf_utils import TFPreTrainedModel, TFSequenceClassificationLoss, keras_serializable, unpack_inputs from ...tf_utils import shape_list, stable_softmax from ...utils import logging from .configuration_segformer import SegformerConfig logger = logging.get_logger(__name__) # General docstring _CONFIG_FOR_DOC = "SegformerConfig" # Base docstring _CHECKPOINT_FOR_DOC = "nvidia/mit-b0" _EXPECTED_OUTPUT_SHAPE = [1, 256, 16, 16] # Image classification docstring _IMAGE_CLASS_CHECKPOINT = "nvidia/mit-b0" _IMAGE_CLASS_EXPECTED_OUTPUT = "tabby, tabby cat" TF_SEGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST = [ "nvidia/segformer-b0-finetuned-ade-512-512", # See all SegFormer models at https://huggingface.co/models?filter=segformer ] # Copied from transformers.models.convnext.modeling_tf_convnext.TFConvNextDropPath with ConvNext->Segformer class TFSegformerDropPath(tf.keras.layers.Layer): """Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks). References: (1) github.com:rwightman/pytorch-image-models """ def __init__(self, drop_path, **kwargs): super().__init__(**kwargs) self.drop_path = drop_path def call(self, x, training=None): if training: keep_prob = 1 - self.drop_path shape = (tf.shape(x)[0],) + (1,) * (len(tf.shape(x)) - 1) random_tensor = keep_prob + tf.random.uniform(shape, 0, 1) random_tensor = tf.floor(random_tensor) return (x / keep_prob) * random_tensor return x class TFSegformerOverlapPatchEmbeddings(tf.keras.layers.Layer): """Construct the overlapping patch embeddings.""" def __init__(self, patch_size, stride, hidden_size, **kwargs): super().__init__(**kwargs) self.padding = tf.keras.layers.ZeroPadding2D(padding=patch_size // 2) self.proj = tf.keras.layers.Conv2D( filters=hidden_size, kernel_size=patch_size, strides=stride, padding="VALID", name="proj" ) self.layer_norm = tf.keras.layers.LayerNormalization(epsilon=1e-05, name="layer_norm") def call(self, pixel_values: tf.Tensor) -> Tuple[tf.Tensor, int, int]: embeddings = self.proj(self.padding(pixel_values)) height = shape_list(embeddings)[1] width = shape_list(embeddings)[2] hidden_dim = shape_list(embeddings)[3] # (batch_size, height, width, num_channels) -> (batch_size, height*width, num_channels) # this can be fed to a Transformer layer embeddings = tf.reshape(embeddings, (-1, height * width, hidden_dim)) embeddings = self.layer_norm(embeddings) return embeddings, height, width class TFSegformerEfficientSelfAttention(tf.keras.layers.Layer): """SegFormer's efficient self-attention mechanism. Employs the sequence reduction process introduced in the [PvT paper](https://arxiv.org/abs/2102.12122).""" def __init__( self, config: SegformerConfig, hidden_size: int, num_attention_heads: int, sequence_reduction_ratio: int, **kwargs, ): super().__init__(**kwargs) self.hidden_size = hidden_size self.num_attention_heads = num_attention_heads if self.hidden_size % self.num_attention_heads != 0: raise ValueError( f"The hidden size ({self.hidden_size}) is not a multiple of the number of attention " f"heads ({self.num_attention_heads})" ) self.attention_head_size = self.hidden_size // self.num_attention_heads self.all_head_size = self.num_attention_heads * self.attention_head_size self.sqrt_att_head_size = math.sqrt(self.attention_head_size) self.query = tf.keras.layers.Dense(self.all_head_size, name="query") self.key = tf.keras.layers.Dense(self.all_head_size, name="key") self.value = tf.keras.layers.Dense(self.all_head_size, name="value") self.dropout = tf.keras.layers.Dropout(config.attention_probs_dropout_prob) self.sr_ratio = sequence_reduction_ratio if sequence_reduction_ratio > 1: self.sr = tf.keras.layers.Conv2D( filters=hidden_size, kernel_size=sequence_reduction_ratio, strides=sequence_reduction_ratio, name="sr" ) self.layer_norm = tf.keras.layers.LayerNormalization(epsilon=1e-05, name="layer_norm") def transpose_for_scores(self, tensor: tf.Tensor) -> tf.Tensor: # Reshape from [batch_size, seq_length, all_head_size] # to [batch_size, seq_length, num_attention_heads, attention_head_size] batch_size = shape_list(tensor)[0] tensor = tf.reshape(tensor=tensor, shape=(batch_size, -1, self.num_attention_heads, self.attention_head_size)) # Transpose the tensor from [batch_size, seq_length, num_attention_heads, attention_head_size] # to [batch_size, num_attention_heads, seq_length, attention_head_size] return tf.transpose(tensor, perm=[0, 2, 1, 3]) def call( self, hidden_states: tf.Tensor, height: int, width: int, output_attentions: bool = False, training: bool = False, ) -> Union[tf.Tensor, Tuple[tf.Tensor, tf.Tensor]]: batch_size = shape_list(hidden_states)[0] num_channels = shape_list(hidden_states)[2] query_layer = self.transpose_for_scores(self.query(hidden_states)) if self.sr_ratio > 1: # Reshape to (batch_size, height, width, num_channels) hidden_states = tf.reshape(hidden_states, (batch_size, height, width, num_channels)) # Apply sequence reduction hidden_states = self.sr(hidden_states) # Reshape back to (batch_size, seq_len, num_channels) hidden_states = tf.reshape(hidden_states, (batch_size, -1, num_channels)) hidden_states = self.layer_norm(hidden_states) key_layer = self.transpose_for_scores(self.key(hidden_states)) value_layer = self.transpose_for_scores(self.value(hidden_states)) # Take the dot product between "query" and "key" to get the raw attention scores. attention_scores = tf.matmul(query_layer, key_layer, transpose_b=True) scale = tf.cast(self.sqrt_att_head_size, dtype=attention_scores.dtype) attention_scores = tf.divide(attention_scores, scale) # Normalize the attention scores to probabilities. attention_probs = stable_softmax(logits=attention_scores, axis=-1) # This is actually dropping out entire tokens to attend to, which might # seem a bit unusual, but is taken from the original Transformer paper. attention_probs = self.dropout(attention_probs, training=training) context_layer = tf.matmul(attention_probs, value_layer) context_layer = tf.transpose(context_layer, perm=[0, 2, 1, 3]) # (batch_size, seq_len_q, all_head_size) context_layer = tf.reshape(context_layer, (batch_size, -1, self.all_head_size)) outputs = (context_layer, attention_probs) if output_attentions else (context_layer,) return outputs class TFSegformerSelfOutput(tf.keras.layers.Layer): def __init__(self, config: SegformerConfig, hidden_size: int, **kwargs): super().__init__(**kwargs) self.dense = tf.keras.layers.Dense(hidden_size, name="dense") self.dropout = tf.keras.layers.Dropout(config.hidden_dropout_prob) def call(self, hidden_states: tf.Tensor, training: bool = False) -> tf.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states, training=training) return hidden_states class TFSegformerAttention(tf.keras.layers.Layer): def __init__( self, config: SegformerConfig, hidden_size: int, num_attention_heads: int, sequence_reduction_ratio: int, **kwargs, ): super().__init__(**kwargs) self.self = TFSegformerEfficientSelfAttention( config=config, hidden_size=hidden_size, num_attention_heads=num_attention_heads, sequence_reduction_ratio=sequence_reduction_ratio, name="self", ) self.dense_output = TFSegformerSelfOutput(config, hidden_size=hidden_size, name="output") def call( self, hidden_states: tf.Tensor, height: int, width: int, output_attentions: bool = False ) -> Union[tf.Tensor, Tuple[tf.Tensor, tf.Tensor]]: self_outputs = self.self(hidden_states, height, width, output_attentions) attention_output = self.dense_output(self_outputs[0]) outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them return outputs class TFSegformerDWConv(tf.keras.layers.Layer): def __init__(self, dim: int = 768, **kwargs): super().__init__(**kwargs) self.depthwise_convolution = tf.keras.layers.Conv2D( filters=dim, kernel_size=3, strides=1, padding="same", groups=dim, name="dwconv" ) def call(self, hidden_states: tf.Tensor, height: int, width: int) -> tf.Tensor: batch_size = shape_list(hidden_states)[0] num_channels = shape_list(hidden_states)[-1] hidden_states = tf.reshape(hidden_states, (batch_size, height, width, num_channels)) hidden_states = self.depthwise_convolution(hidden_states) new_height = shape_list(hidden_states)[1] new_width = shape_list(hidden_states)[2] num_channels = shape_list(hidden_states)[3] hidden_states = tf.reshape(hidden_states, (batch_size, new_height * new_width, num_channels)) return hidden_states class TFSegformerMixFFN(tf.keras.layers.Layer): def __init__( self, config: SegformerConfig, in_features: int, hidden_features: int = None, out_features: int = None, **kwargs, ): super().__init__(**kwargs) out_features = out_features or in_features self.dense1 = tf.keras.layers.Dense(hidden_features, name="dense1") self.depthwise_convolution = TFSegformerDWConv(hidden_features, name="dwconv") if isinstance(config.hidden_act, str): self.intermediate_act_fn = get_tf_activation(config.hidden_act) else: self.intermediate_act_fn = config.hidden_act self.dense2 = tf.keras.layers.Dense(out_features, name="dense2") self.dropout = tf.keras.layers.Dropout(config.hidden_dropout_prob) def call(self, hidden_states: tf.Tensor, height: int, width: int, training: bool = False) -> tf.Tensor: hidden_states = self.dense1(hidden_states) hidden_states = self.depthwise_convolution(hidden_states, height, width) hidden_states = self.intermediate_act_fn(hidden_states) hidden_states = self.dropout(hidden_states, training=training) hidden_states = self.dense2(hidden_states) hidden_states = self.dropout(hidden_states, training=training) return hidden_states class TFSegformerLayer(tf.keras.layers.Layer): """This corresponds to the Block class in the original implementation.""" def __init__( self, config, hidden_size: int, num_attention_heads: int, drop_path: float, sequence_reduction_ratio: int, mlp_ratio: int, **kwargs, ): super().__init__(**kwargs) self.layer_norm_1 = tf.keras.layers.LayerNormalization(epsilon=1e-05, name="layer_norm_1") self.attention = TFSegformerAttention( config, hidden_size=hidden_size, num_attention_heads=num_attention_heads, sequence_reduction_ratio=sequence_reduction_ratio, name="attention", ) self.drop_path = TFSegformerDropPath(drop_path) if drop_path > 0.0 else tf.keras.layers.Activation("linear") self.layer_norm_2 = tf.keras.layers.LayerNormalization(epsilon=1e-05, name="layer_norm_2") mlp_hidden_size = int(hidden_size * mlp_ratio) self.mlp = TFSegformerMixFFN(config, in_features=hidden_size, hidden_features=mlp_hidden_size, name="mlp") def call( self, hidden_states: tf.Tensor, height: int, width: int, output_attentions: bool = False, training: bool = False, ) -> Tuple: self_attention_outputs = self.attention( self.layer_norm_1(hidden_states), # in Segformer, layernorm is applied before self-attention height, width, output_attentions=output_attentions, training=training, ) attention_output = self_attention_outputs[0] outputs = self_attention_outputs[1:] # add self attentions if we output attention weights # first residual connection (with stochastic depth) attention_output = self.drop_path(attention_output, training=training) hidden_states = attention_output + hidden_states mlp_output = self.mlp(self.layer_norm_2(hidden_states), height, width) # second residual connection (with stochastic depth) mlp_output = self.drop_path(mlp_output, training=training) layer_output = mlp_output + hidden_states outputs = (layer_output,) + outputs return outputs class TFSegformerEncoder(tf.keras.layers.Layer): def __init__(self, config: SegformerConfig, **kwargs): super().__init__(**kwargs) self.config = config # stochastic depth decay rule drop_path_decays = [x.numpy() for x in tf.linspace(0.0, config.drop_path_rate, sum(config.depths))] # patch embeddings embeddings = [] for i in range(config.num_encoder_blocks): embeddings.append( TFSegformerOverlapPatchEmbeddings( patch_size=config.patch_sizes[i], stride=config.strides[i], hidden_size=config.hidden_sizes[i], name=f"patch_embeddings.{i}", ) ) self.embeddings = embeddings # Transformer blocks blocks = [] cur = 0 for i in range(config.num_encoder_blocks): # each block consists of layers layers = [] if i != 0: cur += config.depths[i - 1] for j in range(config.depths[i]): layers.append( TFSegformerLayer( config, hidden_size=config.hidden_sizes[i], num_attention_heads=config.num_attention_heads[i], drop_path=drop_path_decays[cur + j], sequence_reduction_ratio=config.sr_ratios[i], mlp_ratio=config.mlp_ratios[i], name=f"block.{i}.{j}", ) ) blocks.append(layers) self.block = blocks # Layer norms self.layer_norms = [ tf.keras.layers.LayerNormalization(epsilon=1e-05, name=f"layer_norm.{i}") for i in range(config.num_encoder_blocks) ] def call( self, pixel_values: tf.Tensor, output_attentions: Optional[bool] = False, output_hidden_states: Optional[bool] = False, return_dict: Optional[bool] = True, training: bool = False, ) -> Union[Tuple, TFBaseModelOutput]: all_hidden_states = () if output_hidden_states else None all_self_attentions = () if output_attentions else None batch_size = shape_list(pixel_values)[0] hidden_states = pixel_values for idx, x in enumerate(zip(self.embeddings, self.block, self.layer_norms)): embedding_layer, block_layer, norm_layer = x # first, obtain patch embeddings hidden_states, height, width = embedding_layer(hidden_states) # second, send embeddings through blocks # (each block consists of multiple layers i.e., list of layers) for i, blk in enumerate(block_layer): layer_outputs = blk( hidden_states, height, width, output_attentions, training=training, ) hidden_states = layer_outputs[0] if output_attentions: all_self_attentions = all_self_attentions + (layer_outputs[1],) # third, apply layer norm hidden_states = norm_layer(hidden_states) # fourth, optionally reshape back to (batch_size, height, width, num_channels) if idx != len(self.embeddings) - 1 or (idx == len(self.embeddings) - 1 and self.config.reshape_last_stage): num_channels = shape_list(hidden_states)[-1] hidden_states = tf.reshape(hidden_states, (batch_size, height, width, num_channels)) if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) if not return_dict: return tuple(v for v in [hidden_states, all_hidden_states, all_self_attentions] if v is not None) return TFBaseModelOutput( last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_self_attentions ) @keras_serializable class TFSegformerMainLayer(tf.keras.layers.Layer): config_class = SegformerConfig def __init__(self, config: SegformerConfig, **kwargs): super().__init__(**kwargs) self.config = config # hierarchical Transformer encoder self.encoder = TFSegformerEncoder(config, name="encoder") @unpack_inputs def call( self, pixel_values: tf.Tensor, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, training: bool = False, ) -> Union[Tuple, TFBaseModelOutput]: output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict # When running on CPU, `tf.keras.layers.Conv2D` doesn't support `NCHW` format. # So change the input format from `NCHW` to `NHWC`. # shape = (batch_size, in_height, in_width, in_channels=num_channels) pixel_values = tf.transpose(pixel_values, perm=(0, 2, 3, 1)) encoder_outputs = self.encoder( pixel_values, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) sequence_output = encoder_outputs[0] # Change to NCHW output format to have uniformity in the modules sequence_output = tf.transpose(sequence_output, perm=[0, 3, 1, 2]) # Change the other hidden state outputs to NCHW as well if output_hidden_states: hidden_states = tuple([tf.transpose(h, perm=(0, 3, 1, 2)) for h in encoder_outputs[1]]) if not return_dict: if tf.greater(len(encoder_outputs[1:]), 0): transposed_encoder_outputs = tuple(tf.transpose(v, perm=[0, 3, 1, 2]) for v in encoder_outputs[1:][0]) return (sequence_output,) + (transposed_encoder_outputs,) else: return (sequence_output,) + encoder_outputs[1:] return TFBaseModelOutput( last_hidden_state=sequence_output, hidden_states=hidden_states if output_hidden_states else encoder_outputs.hidden_states, attentions=encoder_outputs.attentions, ) class TFSegformerPreTrainedModel(TFPreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = SegformerConfig base_model_prefix = "segformer" main_input_name = "pixel_values" @property def input_signature(self): return {"pixel_values": tf.TensorSpec(shape=(None, self.config.num_channels, 512, 512), dtype=tf.float32)} SEGFORMER_START_DOCSTRING = r""" This model inherits from [`TFPreTrainedModel`]. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.) This model is also a [tf.keras.Model](https://www.tensorflow.org/api_docs/python/tf/keras/Model) subclass. Use it as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to general usage and behavior. Parameters: config ([`SegformerConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~TFPreTrainedModel.from_pretrained`] method to load the model weights. """ SEGFORMER_INPUTS_DOCSTRING = r""" Args: pixel_values (`np.ndarray`, `tf.Tensor`, `List[tf.Tensor]` ``Dict[str, tf.Tensor]` or `Dict[str, np.ndarray]` and each example must have the shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`SegformerImageProcessor.__call__`] for details. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the config will be used instead. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the config will be used instead. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. This argument can be used in eager mode, in graph mode the value will always be set to True. training (`bool`, *optional*, defaults to `False``): Whether or not to use the model in training mode (some modules like dropout modules have different behaviors between training and evaluation). """ @add_start_docstrings( "The bare SegFormer encoder (Mix-Transformer) outputting raw hidden-states without any specific head on top.", SEGFORMER_START_DOCSTRING, ) class TFSegformerModel(TFSegformerPreTrainedModel): def __init__(self, config: SegformerConfig, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) self.config = config # hierarchical Transformer encoder self.segformer = TFSegformerMainLayer(config, name="segformer") @unpack_inputs @add_start_docstrings_to_model_forward(SEGFORMER_INPUTS_DOCSTRING.format("(batch_size, sequence_length)")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=TFBaseModelOutput, config_class=_CONFIG_FOR_DOC, modality="vision", expected_output=_EXPECTED_OUTPUT_SHAPE, ) def call( self, pixel_values: tf.Tensor, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, training: bool = False, ) -> Union[Tuple, TFBaseModelOutput]: outputs = self.segformer( pixel_values, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) return outputs @add_start_docstrings( """ SegFormer Model transformer with an image classification head on top (a linear layer on top of the final hidden states) e.g. for ImageNet. """, SEGFORMER_START_DOCSTRING, ) class TFSegformerForImageClassification(TFSegformerPreTrainedModel, TFSequenceClassificationLoss): def __init__(self, config: SegformerConfig, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) self.num_labels = config.num_labels self.segformer = TFSegformerMainLayer(config, name="segformer") # Classifier head self.classifier = tf.keras.layers.Dense(config.num_labels, name="classifier") @unpack_inputs @add_start_docstrings_to_model_forward(SEGFORMER_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT, output_type=TFSequenceClassifierOutput, config_class=_CONFIG_FOR_DOC, expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT, ) def call( self, pixel_values: tf.Tensor | None = None, labels: tf.Tensor | None = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, TFSequenceClassifierOutput]: outputs = self.segformer( pixel_values, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = outputs[0] # convert last hidden states to (batch_size, height*width, hidden_size) batch_size = shape_list(sequence_output)[0] sequence_output = tf.transpose(sequence_output, perm=[0, 2, 3, 1]) sequence_output = tf.reshape(sequence_output, (batch_size, -1, self.config.hidden_sizes[-1])) # global average pooling sequence_output = tf.reduce_mean(sequence_output, axis=1) logits = self.classifier(sequence_output) loss = None if labels is None else self.hf_compute_loss(labels=labels, logits=logits) if not return_dict: output = (logits,) + outputs[1:] return ((loss,) + output) if loss is not None else output return TFSequenceClassifierOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions ) class TFSegformerMLP(tf.keras.layers.Layer): """ Linear Embedding. """ def __init__(self, config: SegformerConfig, **kwargs): super().__init__(**kwargs) self.proj = tf.keras.layers.Dense(config.decoder_hidden_size, name="proj") def call(self, hidden_states: tf.Tensor) -> tf.Tensor: height = shape_list(hidden_states)[1] width = shape_list(hidden_states)[2] hidden_dim = shape_list(hidden_states)[-1] hidden_states = tf.reshape(hidden_states, (-1, height * width, hidden_dim)) hidden_states = self.proj(hidden_states) return hidden_states class TFSegformerDecodeHead(TFSegformerPreTrainedModel): def __init__(self, config: SegformerConfig, **kwargs): super().__init__(config, **kwargs) # linear layers which will unify the channel dimension of each of the encoder blocks to the same config.decoder_hidden_size mlps = [] for i in range(config.num_encoder_blocks): mlp = TFSegformerMLP(config, name=f"linear_c.{i}") mlps.append(mlp) self.mlps = mlps # the following 3 layers implement the ConvModule of the original implementation self.linear_fuse = tf.keras.layers.Conv2D( filters=config.decoder_hidden_size, kernel_size=1, use_bias=False, name="linear_fuse" ) self.batch_norm = tf.keras.layers.BatchNormalization(epsilon=1e-5, momentum=0.9, name="batch_norm") self.activation = tf.keras.layers.Activation("relu") self.dropout = tf.keras.layers.Dropout(config.classifier_dropout_prob) self.classifier = tf.keras.layers.Conv2D(filters=config.num_labels, kernel_size=1, name="classifier") self.config = config def call(self, encoder_hidden_states, training: bool = False): all_hidden_states = () for encoder_hidden_state, mlp in zip(encoder_hidden_states, self.mlps): if self.config.reshape_last_stage is False and len(shape_list(encoder_hidden_state)) == 3: height = tf.math.sqrt(tf.cast(shape_list(encoder_hidden_state)[1], tf.float32)) height = width = tf.cast(height, tf.int32) channel_dim = shape_list(encoder_hidden_state)[-1] encoder_hidden_state = tf.reshape(encoder_hidden_state, (-1, height, width, channel_dim)) # unify channel dimension encoder_hidden_state = tf.transpose(encoder_hidden_state, perm=[0, 2, 3, 1]) height, width = shape_list(encoder_hidden_state)[1:3] encoder_hidden_state = mlp(encoder_hidden_state) channel_dim = shape_list(encoder_hidden_state)[-1] encoder_hidden_state = tf.reshape(encoder_hidden_state, (-1, height, width, channel_dim)) # upsample temp_state = tf.transpose(encoder_hidden_states[0], perm=[0, 2, 3, 1]) upsample_resolution = shape_list(temp_state)[1:-1] encoder_hidden_state = tf.image.resize(encoder_hidden_state, size=upsample_resolution, method="bilinear") all_hidden_states += (encoder_hidden_state,) hidden_states = self.linear_fuse(tf.concat(all_hidden_states[::-1], axis=-1)) hidden_states = self.batch_norm(hidden_states, training=training) hidden_states = self.activation(hidden_states) hidden_states = self.dropout(hidden_states, training=training) # logits of shape (batch_size, height/4, width/4, num_labels) logits = self.classifier(hidden_states) return logits @add_start_docstrings( """SegFormer Model transformer with an all-MLP decode head on top e.g. for ADE20k, CityScapes.""", SEGFORMER_START_DOCSTRING, ) class TFSegformerForSemanticSegmentation(TFSegformerPreTrainedModel): def __init__(self, config: SegformerConfig, **kwargs): super().__init__(config, **kwargs) self.segformer = TFSegformerMainLayer(config, name="segformer") self.decode_head = TFSegformerDecodeHead(config, name="decode_head") def hf_compute_loss(self, logits, labels): # upsample logits to the images' original size # `labels` is of shape (batch_size, height, width) label_interp_shape = shape_list(labels)[1:] upsampled_logits = tf.image.resize(logits, size=label_interp_shape, method="bilinear") # compute weighted loss loss_fct = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True, reduction="none") def masked_loss(real, pred): unmasked_loss = loss_fct(real, pred) mask = tf.cast(real != self.config.semantic_loss_ignore_index, dtype=unmasked_loss.dtype) masked_loss = unmasked_loss * mask # Reduction strategy in the similar spirit with # https://github.com/huggingface/transformers/blob/main/src/transformers/modeling_tf_utils.py#L210 reduced_masked_loss = tf.reduce_sum(masked_loss) / tf.reduce_sum(mask) return tf.reshape(reduced_masked_loss, (1,)) return masked_loss(labels, upsampled_logits) @unpack_inputs @add_start_docstrings_to_model_forward(SEGFORMER_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @replace_return_docstrings(output_type=TFSemanticSegmenterOutput, config_class=_CONFIG_FOR_DOC) def call( self, pixel_values: tf.Tensor, labels: tf.Tensor | None = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, TFSemanticSegmenterOutput]: r""" labels (`tf.Tensor` of shape `(batch_size, height, width)`, *optional*): Ground truth semantic segmentation maps for computing the loss. Indices should be in `[0, ..., config.num_labels - 1]`. If `config.num_labels > 1`, a (per-pixel) classification loss is computed (Cross-Entropy). Returns: Examples: ```python >>> from transformers import AutoImageProcessor, TFSegformerForSemanticSegmentation >>> from PIL import Image >>> import requests >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" >>> image = Image.open(requests.get(url, stream=True).raw) >>> image_processor = AutoImageProcessor.from_pretrained("nvidia/segformer-b0-finetuned-ade-512-512") >>> model = TFSegformerForSemanticSegmentation.from_pretrained("nvidia/segformer-b0-finetuned-ade-512-512") >>> inputs = image_processor(images=image, return_tensors="tf") >>> outputs = model(**inputs, training=False) >>> # logits are of shape (batch_size, num_labels, height/4, width/4) >>> logits = outputs.logits >>> list(logits.shape) [1, 150, 128, 128] ```""" return_dict = return_dict if return_dict is not None else self.config.use_return_dict output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) outputs = self.segformer( pixel_values, output_attentions=output_attentions, output_hidden_states=True, # we need the intermediate hidden states return_dict=return_dict, ) encoder_hidden_states = outputs.hidden_states if return_dict else outputs[1] logits = self.decode_head(encoder_hidden_states) loss = None if labels is not None: if not self.config.num_labels > 1: raise ValueError("The number of labels should be greater than one") else: loss = self.hf_compute_loss(logits=logits, labels=labels) # make logits of shape (batch_size, num_labels, height, width) to # keep them consistent across APIs logits = tf.transpose(logits, perm=[0, 3, 1, 2]) if not return_dict: if output_hidden_states: output = (logits,) + outputs[1:] else: output = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return TFSemanticSegmenterOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states if output_hidden_states else None, attentions=outputs.attentions, )
0
hf_public_repos/transformers/src/transformers/models
hf_public_repos/transformers/src/transformers/models/segformer/image_processing_segformer.py
# coding=utf-8 # Copyright 2022 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Image processor class for Segformer.""" import warnings from typing import Any, Dict, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import resize, to_channel_dimension_format from ...image_utils import ( IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_torch_available, is_torch_tensor, is_vision_available, logging if is_vision_available(): import PIL.Image if is_torch_available(): import torch logger = logging.get_logger(__name__) class SegformerImageProcessor(BaseImageProcessor): r""" Constructs a Segformer image processor. Args: do_resize (`bool`, *optional*, defaults to `True`): Whether to resize the image's (height, width) dimensions to the specified `(size["height"], size["width"])`. Can be overridden by the `do_resize` parameter in the `preprocess` method. size (`Dict[str, int]` *optional*, defaults to `{"height": 512, "width": 512}`): Size of the output image after resizing. Can be overridden by the `size` parameter in the `preprocess` method. resample (`PILImageResampling`, *optional*, defaults to `PILImageResampling.BILINEAR`): Resampling filter to use if resizing the image. Can be overridden by the `resample` parameter in the `preprocess` method. do_rescale (`bool`, *optional*, defaults to `True`): Whether to rescale the image by the specified scale `rescale_factor`. Can be overridden by the `do_rescale` parameter in the `preprocess` method. rescale_factor (`int` or `float`, *optional*, defaults to `1/255`): Whether to normalize the image. Can be overridden by the `do_normalize` parameter in the `preprocess` method. do_normalize (`bool`, *optional*, defaults to `True`): Whether to normalize the image. Can be overridden by the `do_normalize` parameter in the `preprocess` method. image_mean (`float` or `List[float]`, *optional*, defaults to `IMAGENET_STANDARD_MEAN`): Mean to use if normalizing the image. This is a float or list of floats the length of the number of channels in the image. Can be overridden by the `image_mean` parameter in the `preprocess` method. image_std (`float` or `List[float]`, *optional*, defaults to `IMAGENET_STANDARD_STD`): Standard deviation to use if normalizing the image. This is a float or list of floats the length of the number of channels in the image. Can be overridden by the `image_std` parameter in the `preprocess` method. do_reduce_labels (`bool`, *optional*, defaults to `False`): Whether or not to reduce all label values of segmentation maps by 1. Usually used for datasets where 0 is used for background, and background itself is not included in all classes of a dataset (e.g. ADE20k). The background label will be replaced by 255. Can be overridden by the `do_reduce_labels` parameter in the `preprocess` method. """ model_input_names = ["pixel_values"] def __init__( self, do_resize: bool = True, size: Dict[str, int] = None, resample: PILImageResampling = PILImageResampling.BILINEAR, do_rescale: bool = True, rescale_factor: Union[int, float] = 1 / 255, do_normalize: bool = True, image_mean: Optional[Union[float, List[float]]] = None, image_std: Optional[Union[float, List[float]]] = None, do_reduce_labels: bool = False, **kwargs, ) -> None: if "reduce_labels" in kwargs: warnings.warn( "The `reduce_labels` parameter is deprecated and will be removed in a future version. Please use " "`do_reduce_labels` instead.", FutureWarning, ) do_reduce_labels = kwargs.pop("reduce_labels") super().__init__(**kwargs) size = size if size is not None else {"height": 512, "width": 512} size = get_size_dict(size) self.do_resize = do_resize self.size = size self.resample = resample self.do_rescale = do_rescale self.rescale_factor = rescale_factor self.do_normalize = do_normalize self.image_mean = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN self.image_std = image_std if image_std is not None else IMAGENET_DEFAULT_STD self.do_reduce_labels = do_reduce_labels @classmethod def from_dict(cls, image_processor_dict: Dict[str, Any], **kwargs): """ Overrides the `from_dict` method from the base class to make sure `do_reduce_labels` is updated if image processor is created using from_dict and kwargs e.g. `SegformerImageProcessor.from_pretrained(checkpoint, reduce_labels=True)` """ image_processor_dict = image_processor_dict.copy() if "reduce_labels" in kwargs: image_processor_dict["reduce_labels"] = kwargs.pop("reduce_labels") return super().from_dict(image_processor_dict, **kwargs) def resize( self, image: np.ndarray, size: Dict[str, int], resample: PILImageResampling = PILImageResampling.BILINEAR, data_format: Optional[Union[str, ChannelDimension]] = None, **kwargs, ) -> np.ndarray: """ Resize an image to `(size["height"], size["width"])`. Args: image (`np.ndarray`): Image to resize. size (`Dict[str, int]`): Size of the output image. resample (`PILImageResampling`, *optional*, defaults to `PIL.Image.BILINEAR`): Resampling filter to use when resiizing the image. data_format (`str` or `ChannelDimension`, *optional*): The channel dimension format of the image. If not provided, it will be the same as the input image. """ size = get_size_dict(size) if "height" not in size or "width" not in size: raise ValueError(f"The `size` dictionary must contain the keys `height` and `width`. Got {size.keys()}") return resize( image, size=(size["height"], size["width"]), resample=resample, data_format=data_format, **kwargs ) def reduce_label(self, label: ImageInput) -> np.ndarray: label = to_numpy_array(label) # Avoid using underflow conversion label[label == 0] = 255 label = label - 1 label[label == 254] = 255 return label def _preprocess( self, image: ImageInput, do_reduce_labels: bool, do_resize: bool, do_rescale: bool, do_normalize: bool, size: Optional[Dict[str, int]] = None, resample: PILImageResampling = None, rescale_factor: Optional[float] = None, image_mean: Optional[Union[float, List[float]]] = None, image_std: Optional[Union[float, List[float]]] = None, ): if do_reduce_labels: image = self.reduce_label(image) if do_resize: image = self.resize(image=image, size=size, resample=resample) if do_rescale: image = self.rescale(image=image, scale=rescale_factor) if do_normalize: image = self.normalize(image=image, mean=image_mean, std=image_std) return image def _preprocess_image( self, image: ImageInput, do_resize: bool = None, size: Dict[str, int] = None, resample: PILImageResampling = None, do_rescale: bool = None, rescale_factor: float = None, do_normalize: bool = None, image_mean: Optional[Union[float, List[float]]] = None, image_std: Optional[Union[float, List[float]]] = None, data_format: Optional[Union[str, ChannelDimension]] = None, ) -> np.ndarray: """Preprocesses a single image.""" # All transformations expect numpy arrays. image = to_numpy_array(image) image = self._preprocess( image=image, do_reduce_labels=False, do_resize=do_resize, size=size, resample=resample, do_rescale=do_rescale, rescale_factor=rescale_factor, do_normalize=do_normalize, image_mean=image_mean, image_std=image_std, ) if data_format is not None: image = to_channel_dimension_format(image, data_format) return image def _preprocess_mask( self, segmentation_map: ImageInput, do_reduce_labels: bool = None, do_resize: bool = None, size: Dict[str, int] = None, ) -> np.ndarray: """Preprocesses a single mask.""" segmentation_map = to_numpy_array(segmentation_map) # Add channel dimension if missing - needed for certain transformations added_channel_dim = False if segmentation_map.ndim == 2: added_channel_dim = True segmentation_map = segmentation_map[None, ...] # reduce zero label if needed segmentation_map = self._preprocess( image=segmentation_map, do_reduce_labels=do_reduce_labels, do_resize=do_resize, resample=PILImageResampling.NEAREST, size=size, do_rescale=False, do_normalize=False, ) # Remove extra channel dimension if added for processing if added_channel_dim: segmentation_map = segmentation_map.squeeze(0) segmentation_map = segmentation_map.astype(np.int64) return segmentation_map def __call__(self, images, segmentation_maps=None, **kwargs): """ Preprocesses a batch of images and optionally segmentation maps. Overrides the `__call__` method of the `Preprocessor` class so that both images and segmentation maps can be passed in as positional arguments. """ return super().__call__(images, segmentation_maps=segmentation_maps, **kwargs) def preprocess( self, images: ImageInput, segmentation_maps: Optional[ImageInput] = None, do_resize: Optional[bool] = None, size: Optional[Dict[str, int]] = None, resample: PILImageResampling = None, do_rescale: Optional[bool] = None, rescale_factor: Optional[float] = None, do_normalize: Optional[bool] = None, image_mean: Optional[Union[float, List[float]]] = None, image_std: Optional[Union[float, List[float]]] = None, do_reduce_labels: Optional[bool] = None, return_tensors: Optional[Union[str, TensorType]] = None, data_format: ChannelDimension = ChannelDimension.FIRST, **kwargs, ) -> PIL.Image.Image: """ Preprocess an image or batch of images. Args: images (`ImageInput`): Image to preprocess. segmentation_maps (`ImageInput`, *optional*): Segmentation map to preprocess. do_resize (`bool`, *optional*, defaults to `self.do_resize`): Whether to resize the image. size (`Dict[str, int]`, *optional*, defaults to `self.size`): Size of the image after `resize` is applied. resample (`int`, *optional*, defaults to `self.resample`): Resampling filter to use if resizing the image. This can be one of the enum `PILImageResampling`, Only has an effect if `do_resize` is set to `True`. do_rescale (`bool`, *optional*, defaults to `self.do_rescale`): Whether to rescale the image values between [0 - 1]. rescale_factor (`float`, *optional*, defaults to `self.rescale_factor`): Rescale factor to rescale the image by if `do_rescale` is set to `True`. do_normalize (`bool`, *optional*, defaults to `self.do_normalize`): Whether to normalize the image. image_mean (`float` or `List[float]`, *optional*, defaults to `self.image_mean`): Image mean. image_std (`float` or `List[float]`, *optional*, defaults to `self.image_std`): Image standard deviation. do_reduce_labels (`bool`, *optional*, defaults to `self.do_reduce_labels`): Whether or not to reduce all label values of segmentation maps by 1. Usually used for datasets where 0 is used for background, and background itself is not included in all classes of a dataset (e.g. ADE20k). The background label will be replaced by 255. return_tensors (`str` or `TensorType`, *optional*): The type of tensors to return. Can be one of: - Unset: Return a list of `np.ndarray`. - `TensorType.TENSORFLOW` or `'tf'`: Return a batch of type `tf.Tensor`. - `TensorType.PYTORCH` or `'pt'`: Return a batch of type `torch.Tensor`. - `TensorType.NUMPY` or `'np'`: Return a batch of type `np.ndarray`. - `TensorType.JAX` or `'jax'`: Return a batch of type `jax.numpy.ndarray`. data_format (`ChannelDimension` or `str`, *optional*, defaults to `ChannelDimension.FIRST`): The channel dimension format for the output image. Can be one of: - `ChannelDimension.FIRST`: image in (num_channels, height, width) format. - `ChannelDimension.LAST`: image in (height, width, num_channels) format. """ do_resize = do_resize if do_resize is not None else self.do_resize do_rescale = do_rescale if do_rescale is not None else self.do_rescale do_normalize = do_normalize if do_normalize is not None else self.do_normalize do_reduce_labels = do_reduce_labels if do_reduce_labels is not None else self.do_reduce_labels resample = resample if resample is not None else self.resample size = size if size is not None else self.size rescale_factor = rescale_factor if rescale_factor is not None else self.rescale_factor image_mean = image_mean if image_mean is not None else self.image_mean image_std = image_std if image_std is not None else self.image_std images = make_list_of_images(images) if segmentation_maps is not None: segmentation_maps = make_list_of_images(segmentation_maps, expected_ndims=2) if not valid_images(images): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if segmentation_maps is not None and not valid_images(segmentation_maps): raise ValueError( "Invalid segmentation map type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None or resample is None: raise ValueError("Size and resample must be specified if do_resize is True.") if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True.") if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True.") images = [ self._preprocess_image( image=img, do_resize=do_resize, resample=resample, size=size, do_rescale=do_rescale, rescale_factor=rescale_factor, do_normalize=do_normalize, image_mean=image_mean, image_std=image_std, data_format=data_format, ) for img in images ] data = {"pixel_values": images} if segmentation_maps is not None: segmentation_maps = [ self._preprocess_mask( segmentation_map=segmentation_map, do_reduce_labels=do_reduce_labels, do_resize=do_resize, size=size, ) for segmentation_map in segmentation_maps ] data["labels"] = segmentation_maps return BatchFeature(data=data, tensor_type=return_tensors) def post_process_semantic_segmentation(self, outputs, target_sizes: List[Tuple] = None): """ Converts the output of [`SegformerForSemanticSegmentation`] into semantic segmentation maps. Only supports PyTorch. Args: outputs ([`SegformerForSemanticSegmentation`]): Raw outputs of the model. target_sizes (`List[Tuple]` of length `batch_size`, *optional*): List of tuples corresponding to the requested final size (height, width) of each prediction. If left to None, predictions will not be resized. Returns: semantic_segmentation: `List[torch.Tensor]` of length `batch_size`, where each item is a semantic segmentation map of shape (height, width) corresponding to the target_sizes entry (if `target_sizes` is specified). Each entry of each `torch.Tensor` correspond to a semantic class id. """ # TODO: add support for other frameworks logits = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(logits) != len(target_sizes): raise ValueError( "Make sure that you pass in as many target sizes as the batch dimension of the logits" ) if is_torch_tensor(target_sizes): target_sizes = target_sizes.numpy() semantic_segmentation = [] for idx in range(len(logits)): resized_logits = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0), size=target_sizes[idx], mode="bilinear", align_corners=False ) semantic_map = resized_logits[0].argmax(dim=0) semantic_segmentation.append(semantic_map) else: semantic_segmentation = logits.argmax(dim=1) semantic_segmentation = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0])] return semantic_segmentation
0
hf_public_repos/transformers/src/transformers/models
hf_public_repos/transformers/src/transformers/models/segformer/convert_segformer_original_to_pytorch.py
# coding=utf-8 # Copyright 2021 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Convert SegFormer checkpoints.""" import argparse import json from collections import OrderedDict from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( SegformerConfig, SegformerForImageClassification, SegformerForSemanticSegmentation, SegformerImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() logger = logging.get_logger(__name__) def rename_keys(state_dict, encoder_only=False): new_state_dict = OrderedDict() for key, value in state_dict.items(): if encoder_only and not key.startswith("head"): key = "segformer.encoder." + key if key.startswith("backbone"): key = key.replace("backbone", "segformer.encoder") if "patch_embed" in key: # replace for example patch_embed1 by patch_embeddings.0 idx = key[key.find("patch_embed") + len("patch_embed")] key = key.replace(f"patch_embed{idx}", f"patch_embeddings.{int(idx)-1}") if "norm" in key: key = key.replace("norm", "layer_norm") if "segformer.encoder.layer_norm" in key: # replace for example layer_norm1 by layer_norm.0 idx = key[key.find("segformer.encoder.layer_norm") + len("segformer.encoder.layer_norm")] key = key.replace(f"layer_norm{idx}", f"layer_norm.{int(idx)-1}") if "layer_norm1" in key: key = key.replace("layer_norm1", "layer_norm_1") if "layer_norm2" in key: key = key.replace("layer_norm2", "layer_norm_2") if "block" in key: # replace for example block1 by block.0 idx = key[key.find("block") + len("block")] key = key.replace(f"block{idx}", f"block.{int(idx)-1}") if "attn.q" in key: key = key.replace("attn.q", "attention.self.query") if "attn.proj" in key: key = key.replace("attn.proj", "attention.output.dense") if "attn" in key: key = key.replace("attn", "attention.self") if "fc1" in key: key = key.replace("fc1", "dense1") if "fc2" in key: key = key.replace("fc2", "dense2") if "linear_pred" in key: key = key.replace("linear_pred", "classifier") if "linear_fuse" in key: key = key.replace("linear_fuse.conv", "linear_fuse") key = key.replace("linear_fuse.bn", "batch_norm") if "linear_c" in key: # replace for example linear_c4 by linear_c.3 idx = key[key.find("linear_c") + len("linear_c")] key = key.replace(f"linear_c{idx}", f"linear_c.{int(idx)-1}") if key.startswith("head"): key = key.replace("head", "classifier") new_state_dict[key] = value return new_state_dict def read_in_k_v(state_dict, config): # for each of the encoder blocks: for i in range(config.num_encoder_blocks): for j in range(config.depths[i]): # read in weights + bias of keys and values (which is a single matrix in the original implementation) kv_weight = state_dict.pop(f"segformer.encoder.block.{i}.{j}.attention.self.kv.weight") kv_bias = state_dict.pop(f"segformer.encoder.block.{i}.{j}.attention.self.kv.bias") # next, add keys and values (in that order) to the state dict state_dict[f"segformer.encoder.block.{i}.{j}.attention.self.key.weight"] = kv_weight[ : config.hidden_sizes[i], : ] state_dict[f"segformer.encoder.block.{i}.{j}.attention.self.key.bias"] = kv_bias[: config.hidden_sizes[i]] state_dict[f"segformer.encoder.block.{i}.{j}.attention.self.value.weight"] = kv_weight[ config.hidden_sizes[i] :, : ] state_dict[f"segformer.encoder.block.{i}.{j}.attention.self.value.bias"] = kv_bias[ config.hidden_sizes[i] : ] # We will verify our results on a COCO image def prepare_img(): url = "http://images.cocodataset.org/val2017/000000039769.jpg" image = Image.open(requests.get(url, stream=True).raw) return image @torch.no_grad() def convert_segformer_checkpoint(model_name, checkpoint_path, pytorch_dump_folder_path): """ Copy/paste/tweak model's weights to our SegFormer structure. """ # load default SegFormer configuration config = SegformerConfig() encoder_only = False # set attributes based on model_name repo_id = "huggingface/label-files" if "segformer" in model_name: size = model_name[len("segformer.") : len("segformer.") + 2] if "ade" in model_name: config.num_labels = 150 filename = "ade20k-id2label.json" expected_shape = (1, 150, 128, 128) elif "city" in model_name: config.num_labels = 19 filename = "cityscapes-id2label.json" expected_shape = (1, 19, 128, 128) else: raise ValueError(f"Model {model_name} not supported") elif "mit" in model_name: encoder_only = True size = model_name[4:6] config.num_labels = 1000 filename = "imagenet-1k-id2label.json" expected_shape = (1, 1000) else: raise ValueError(f"Model {model_name} not supported") # set config attributes id2label = json.load(open(hf_hub_download(repo_id, filename, repo_type="dataset"), "r")) id2label = {int(k): v for k, v in id2label.items()} config.id2label = id2label config.label2id = {v: k for k, v in id2label.items()} if size == "b0": pass elif size == "b1": config.hidden_sizes = [64, 128, 320, 512] config.decoder_hidden_size = 256 elif size == "b2": config.hidden_sizes = [64, 128, 320, 512] config.decoder_hidden_size = 768 config.depths = [3, 4, 6, 3] elif size == "b3": config.hidden_sizes = [64, 128, 320, 512] config.decoder_hidden_size = 768 config.depths = [3, 4, 18, 3] elif size == "b4": config.hidden_sizes = [64, 128, 320, 512] config.decoder_hidden_size = 768 config.depths = [3, 8, 27, 3] elif size == "b5": config.hidden_sizes = [64, 128, 320, 512] config.decoder_hidden_size = 768 config.depths = [3, 6, 40, 3] else: raise ValueError(f"Size {size} not supported") # load image processor (only resize + normalize) image_processor = SegformerImageProcessor( image_scale=(512, 512), keep_ratio=False, align=False, do_random_crop=False ) # prepare image image = prepare_img() pixel_values = image_processor(images=image, return_tensors="pt").pixel_values logger.info(f"Converting model {model_name}...") # load original state dict if encoder_only: state_dict = torch.load(checkpoint_path, map_location=torch.device("cpu")) else: state_dict = torch.load(checkpoint_path, map_location=torch.device("cpu"))["state_dict"] # rename keys state_dict = rename_keys(state_dict, encoder_only=encoder_only) if not encoder_only: del state_dict["decode_head.conv_seg.weight"] del state_dict["decode_head.conv_seg.bias"] # key and value matrices need special treatment read_in_k_v(state_dict, config) # create HuggingFace model and load state dict if encoder_only: config.reshape_last_stage = False model = SegformerForImageClassification(config) else: model = SegformerForSemanticSegmentation(config) model.load_state_dict(state_dict) model.eval() # forward pass outputs = model(pixel_values) logits = outputs.logits # set expected_slice based on model name # ADE20k checkpoints if model_name == "segformer.b0.512x512.ade.160k": expected_slice = torch.tensor( [ [[-4.6310, -5.5232, -6.2356], [-5.1921, -6.1444, -6.5996], [-5.4424, -6.2790, -6.7574]], [[-12.1391, -13.3122, -13.9554], [-12.8732, -13.9352, -14.3563], [-12.9438, -13.8226, -14.2513]], [[-12.5134, -13.4686, -14.4915], [-12.8669, -14.4343, -14.7758], [-13.2523, -14.5819, -15.0694]], ] ) elif model_name == "segformer.b1.512x512.ade.160k": expected_slice = torch.tensor( [ [[-7.5820, -8.7231, -8.3215], [-8.0600, -10.3529, -10.0304], [-7.5208, -9.4103, -9.6239]], [[-12.6918, -13.8994, -13.7137], [-13.3196, -15.7523, -15.4789], [-12.9343, -14.8757, -14.9689]], [[-11.1911, -11.9421, -11.3243], [-11.3342, -13.6839, -13.3581], [-10.3909, -12.1832, -12.4858]], ] ) elif model_name == "segformer.b2.512x512.ade.160k": expected_slice = torch.tensor( [ [[-11.8173, -14.3850, -16.3128], [-14.5648, -16.5804, -18.6568], [-14.7223, -15.7387, -18.4218]], [[-15.7290, -17.9171, -19.4423], [-18.3105, -19.9448, -21.4661], [-17.9296, -18.6497, -20.7910]], [[-15.0783, -17.0336, -18.2789], [-16.8771, -18.6870, -20.1612], [-16.2454, -17.1426, -19.5055]], ] ) elif model_name == "segformer.b3.512x512.ade.160k": expected_slice = torch.tensor( [ [[-9.0878, -10.2081, -10.1891], [-9.3144, -10.7941, -10.9843], [-9.2294, -10.3855, -10.5704]], [[-12.2316, -13.9068, -13.6102], [-12.9161, -14.3702, -14.3235], [-12.5233, -13.7174, -13.7932]], [[-14.6275, -15.2490, -14.9727], [-14.3400, -15.9687, -16.2827], [-14.1484, -15.4033, -15.8937]], ] ) elif model_name == "segformer.b4.512x512.ade.160k": expected_slice = torch.tensor( [ [[-12.3144, -13.2447, -14.0802], [-13.3614, -14.5816, -15.6117], [-13.3340, -14.4433, -16.2219]], [[-19.2781, -20.4128, -20.7506], [-20.6153, -21.6566, -22.0998], [-19.9800, -21.0430, -22.1494]], [[-18.8739, -19.7804, -21.1834], [-20.1233, -21.6765, -23.2944], [-20.0315, -21.2641, -23.6944]], ] ) elif model_name == "segformer.b5.640x640.ade.160k": expected_slice = torch.tensor( [ [[-9.5524, -12.0835, -11.7348], [-10.5229, -13.6446, -14.5662], [-9.5842, -12.8851, -13.9414]], [[-15.3432, -17.5323, -17.0818], [-16.3330, -18.9255, -19.2101], [-15.1340, -17.7848, -18.3971]], [[-12.6072, -14.9486, -14.6631], [-13.7629, -17.0907, -17.7745], [-12.7899, -16.1695, -17.1671]], ] ) # Cityscapes checkpoints elif model_name == "segformer.b0.1024x1024.city.160k": expected_slice = torch.tensor( [ [[-11.9295, -13.4057, -14.8106], [-13.3431, -14.8179, -15.3781], [-14.2836, -15.5942, -16.1588]], [[-11.4906, -12.8067, -13.6564], [-13.1189, -14.0500, -14.1543], [-13.8748, -14.5136, -14.8789]], [[0.5374, 0.1067, -0.4742], [0.1141, -0.2255, -0.7099], [-0.3000, -0.5924, -1.3105]], ] ) elif model_name == "segformer.b0.512x1024.city.160k": expected_slice = torch.tensor( [ [[-7.8217, -9.8767, -10.1717], [-9.4438, -10.9058, -11.4047], [-9.7939, -12.3495, -12.1079]], [[-7.1514, -9.5336, -10.0860], [-9.7776, -11.6822, -11.8439], [-10.1411, -12.7655, -12.8972]], [[0.3021, 0.0805, -0.2310], [-0.0328, -0.1605, -0.2714], [-0.1408, -0.5477, -0.6976]], ] ) elif model_name == "segformer.b0.640x1280.city.160k": expected_slice = torch.tensor( [ [ [-1.1372e01, -1.2787e01, -1.3477e01], [-1.2536e01, -1.4194e01, -1.4409e01], [-1.3217e01, -1.4888e01, -1.5327e01], ], [ [-1.4791e01, -1.7122e01, -1.8277e01], [-1.7163e01, -1.9192e01, -1.9533e01], [-1.7897e01, -1.9991e01, -2.0315e01], ], [ [7.6723e-01, 4.1921e-01, -7.7878e-02], [4.7772e-01, 9.5557e-03, -2.8082e-01], [3.6032e-01, -2.4826e-01, -5.1168e-01], ], ] ) elif model_name == "segformer.b0.768x768.city.160k": expected_slice = torch.tensor( [ [[-9.4959, -11.3087, -11.7479], [-11.0025, -12.6540, -12.3319], [-11.4064, -13.0487, -12.9905]], [[-9.8905, -11.3084, -12.0854], [-11.1726, -12.7698, -12.9583], [-11.5985, -13.3278, -14.1774]], [[0.2213, 0.0192, -0.2466], [-0.1731, -0.4213, -0.4874], [-0.3126, -0.6541, -1.1389]], ] ) elif model_name == "segformer.b1.1024x1024.city.160k": expected_slice = torch.tensor( [ [[-13.5748, -13.9111, -12.6500], [-14.3500, -15.3683, -14.2328], [-14.7532, -16.0424, -15.6087]], [[-17.1651, -15.8725, -12.9653], [-17.2580, -17.3718, -14.8223], [-16.6058, -16.8783, -16.7452]], [[-3.6456, -3.0209, -1.4203], [-3.0797, -3.1959, -2.0000], [-1.8757, -1.9217, -1.6997]], ] ) elif model_name == "segformer.b2.1024x1024.city.160k": expected_slice = torch.tensor( [ [[-16.0976, -16.4856, -17.3962], [-16.6234, -19.0342, -19.7685], [-16.0900, -18.0661, -19.1180]], [[-18.4750, -18.8488, -19.5074], [-19.4030, -22.1570, -22.5977], [-19.1191, -20.8486, -22.3783]], [[-4.5178, -5.5037, -6.5109], [-5.0884, -7.2174, -8.0334], [-4.4156, -5.8117, -7.2970]], ] ) elif model_name == "segformer.b3.1024x1024.city.160k": expected_slice = torch.tensor( [ [[-14.2081, -14.4732, -14.1977], [-14.5867, -16.4423, -16.6356], [-13.4441, -14.9685, -16.8696]], [[-14.4576, -14.7073, -15.0451], [-15.0816, -17.6237, -17.9873], [-14.4213, -16.0199, -18.5992]], [[-4.7349, -4.9588, -5.0966], [-4.3210, -6.9325, -7.2591], [-3.4312, -4.7484, -7.1917]], ] ) elif model_name == "segformer.b4.1024x1024.city.160k": expected_slice = torch.tensor( [ [[-11.7737, -11.9526, -11.3273], [-13.6692, -14.4574, -13.8878], [-13.8937, -14.6924, -15.9345]], [[-14.6706, -14.5330, -14.1306], [-16.1502, -16.8180, -16.4269], [-16.8338, -17.8939, -20.1746]], [[1.0491, 0.8289, 1.0310], [1.1044, 0.5219, 0.8055], [1.0899, 0.6926, 0.5590]], ] ) elif model_name == "segformer.b5.1024x1024.city.160k": expected_slice = torch.tensor( [ [[-12.5641, -13.4777, -13.0684], [-13.9587, -15.8983, -16.6557], [-13.3109, -15.7350, -16.3141]], [[-14.7074, -15.4352, -14.5944], [-16.6353, -18.1663, -18.6120], [-15.1702, -18.0329, -18.1547]], [[-1.7990, -2.0951, -1.7784], [-2.6397, -3.8245, -3.9686], [-1.5264, -2.8126, -2.9316]], ] ) else: predicted_class_idx = logits.argmax(-1).item() print("Predicted class:", model.config.id2label[predicted_class_idx]) # verify logits if not encoder_only: assert logits.shape == expected_shape assert torch.allclose(logits[0, :3, :3, :3], expected_slice, atol=1e-2) # finally, save model and image processor logger.info(f"Saving PyTorch model and image processor to {pytorch_dump_folder_path}...") Path(pytorch_dump_folder_path).mkdir(exist_ok=True) model.save_pretrained(pytorch_dump_folder_path) image_processor.save_pretrained(pytorch_dump_folder_path) if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument( "--model_name", default="segformer.b0.512x512.ade.160k", type=str, help="Name of the model you'd like to convert.", ) parser.add_argument( "--checkpoint_path", default=None, type=str, help="Path to the original PyTorch checkpoint (.pth file)." ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the folder to output PyTorch model." ) args = parser.parse_args() convert_segformer_checkpoint(args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path)
0
hf_public_repos/transformers/src/transformers/models
hf_public_repos/transformers/src/transformers/models/segformer/configuration_segformer.py
# coding=utf-8 # Copyright 2021 NVIDIA and The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ SegFormer model configuration""" import warnings from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging logger = logging.get_logger(__name__) SEGFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP = { "nvidia/segformer-b0-finetuned-ade-512-512": ( "https://huggingface.co/nvidia/segformer-b0-finetuned-ade-512-512/resolve/main/config.json" ), # See all SegFormer models at https://huggingface.co/models?filter=segformer } class SegformerConfig(PretrainedConfig): r""" This is the configuration class to store the configuration of a [`SegformerModel`]. It is used to instantiate an SegFormer model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the SegFormer [nvidia/segformer-b0-finetuned-ade-512-512](https://huggingface.co/nvidia/segformer-b0-finetuned-ade-512-512) architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: num_channels (`int`, *optional*, defaults to 3): The number of input channels. num_encoder_blocks (`int`, *optional*, defaults to 4): The number of encoder blocks (i.e. stages in the Mix Transformer encoder). depths (`List[int]`, *optional*, defaults to [2, 2, 2, 2]): The number of layers in each encoder block. sr_ratios (`List[int]`, *optional*, defaults to [8, 4, 2, 1]): Sequence reduction ratios in each encoder block. hidden_sizes (`List[int]`, *optional*, defaults to [32, 64, 160, 256]): Dimension of each of the encoder blocks. patch_sizes (`List[int]`, *optional*, defaults to [7, 3, 3, 3]): Patch size before each encoder block. strides (`List[int]`, *optional*, defaults to [4, 2, 2, 2]): Stride before each encoder block. num_attention_heads (`List[int]`, *optional*, defaults to [1, 2, 5, 8]): Number of attention heads for each attention layer in each block of the Transformer encoder. mlp_ratios (`List[int]`, *optional*, defaults to [4, 4, 4, 4]): Ratio of the size of the hidden layer compared to the size of the input layer of the Mix FFNs in the encoder blocks. hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`): The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, `"relu"`, `"selu"` and `"gelu_new"` are supported. hidden_dropout_prob (`float`, *optional*, defaults to 0.0): The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. attention_probs_dropout_prob (`float`, *optional*, defaults to 0.0): The dropout ratio for the attention probabilities. classifier_dropout_prob (`float`, *optional*, defaults to 0.1): The dropout probability before the classification head. initializer_range (`float`, *optional*, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. drop_path_rate (`float`, *optional*, defaults to 0.1): The dropout probability for stochastic depth, used in the blocks of the Transformer encoder. layer_norm_eps (`float`, *optional*, defaults to 1e-6): The epsilon used by the layer normalization layers. decoder_hidden_size (`int`, *optional*, defaults to 256): The dimension of the all-MLP decode head. semantic_loss_ignore_index (`int`, *optional*, defaults to 255): The index that is ignored by the loss function of the semantic segmentation model. Example: ```python >>> from transformers import SegformerModel, SegformerConfig >>> # Initializing a SegFormer nvidia/segformer-b0-finetuned-ade-512-512 style configuration >>> configuration = SegformerConfig() >>> # Initializing a model from the nvidia/segformer-b0-finetuned-ade-512-512 style configuration >>> model = SegformerModel(configuration) >>> # Accessing the model configuration >>> configuration = model.config ```""" model_type = "segformer" def __init__( self, num_channels=3, num_encoder_blocks=4, depths=[2, 2, 2, 2], sr_ratios=[8, 4, 2, 1], hidden_sizes=[32, 64, 160, 256], patch_sizes=[7, 3, 3, 3], strides=[4, 2, 2, 2], num_attention_heads=[1, 2, 5, 8], mlp_ratios=[4, 4, 4, 4], hidden_act="gelu", hidden_dropout_prob=0.0, attention_probs_dropout_prob=0.0, classifier_dropout_prob=0.1, initializer_range=0.02, drop_path_rate=0.1, layer_norm_eps=1e-6, decoder_hidden_size=256, semantic_loss_ignore_index=255, **kwargs, ): super().__init__(**kwargs) if "reshape_last_stage" in kwargs and kwargs["reshape_last_stage"] is False: warnings.warn( "Reshape_last_stage is set to False in this config. This argument is deprecated and will soon be" " removed, as the behaviour will default to that of reshape_last_stage = True.", FutureWarning, ) self.num_channels = num_channels self.num_encoder_blocks = num_encoder_blocks self.depths = depths self.sr_ratios = sr_ratios self.hidden_sizes = hidden_sizes self.patch_sizes = patch_sizes self.strides = strides self.mlp_ratios = mlp_ratios self.num_attention_heads = num_attention_heads self.hidden_act = hidden_act self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.classifier_dropout_prob = classifier_dropout_prob self.initializer_range = initializer_range self.drop_path_rate = drop_path_rate self.layer_norm_eps = layer_norm_eps self.decoder_hidden_size = decoder_hidden_size self.reshape_last_stage = kwargs.get("reshape_last_stage", True) self.semantic_loss_ignore_index = semantic_loss_ignore_index class SegformerOnnxConfig(OnnxConfig): torch_onnx_minimum_version = version.parse("1.11") @property def inputs(self) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ] ) @property def atol_for_validation(self) -> float: return 1e-4 @property def default_onnx_opset(self) -> int: return 12
0
hf_public_repos/transformers/src/transformers/models
hf_public_repos/transformers/src/transformers/models/segformer/modeling_segformer.py
# coding=utf-8 # Copyright 2021 NVIDIA The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ PyTorch SegFormer model.""" import math from typing import Optional, Tuple, Union import torch import torch.utils.checkpoint from torch import nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACT2FN from ...modeling_outputs import BaseModelOutput, ImageClassifierOutput, SemanticSegmenterOutput from ...modeling_utils import PreTrainedModel from ...pytorch_utils import find_pruneable_heads_and_indices, prune_linear_layer from ...utils import ( add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings, ) from .configuration_segformer import SegformerConfig logger = logging.get_logger(__name__) # General docstring _CONFIG_FOR_DOC = "SegformerConfig" # Base docstring _CHECKPOINT_FOR_DOC = "nvidia/mit-b0" _EXPECTED_OUTPUT_SHAPE = [1, 256, 16, 16] # Image classification docstring _IMAGE_CLASS_CHECKPOINT = "nvidia/mit-b0" _IMAGE_CLASS_EXPECTED_OUTPUT = "tabby, tabby cat" SEGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST = [ "nvidia/segformer-b0-finetuned-ade-512-512", # See all SegFormer models at https://huggingface.co/models?filter=segformer ] class SegFormerImageClassifierOutput(ImageClassifierOutput): """ Base class for outputs of image classification models. Args: loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided): Classification (or regression if config.num_labels==1) loss. logits (`torch.FloatTensor` of shape `(batch_size, config.num_labels)`): Classification (or regression if config.num_labels==1) scores (before SoftMax). hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, + one for the output of each stage) of shape `(batch_size, num_channels, height, width)`. Hidden-states (also called feature maps) of the model at the output of each stage. attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, patch_size, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. """ loss: Optional[torch.FloatTensor] = None logits: torch.FloatTensor = None hidden_states: Optional[Tuple[torch.FloatTensor]] = None attentions: Optional[Tuple[torch.FloatTensor]] = None # Copied from transformers.models.convnext.modeling_convnext.drop_path def drop_path(input, drop_prob: float = 0.0, training: bool = False, scale_by_keep=True): """ Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks). Comment by Ross Wightman: This is the same as the DropConnect impl I created for EfficientNet, etc networks, however, the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper... See discussion: https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ... I've opted for changing the layer and argument names to 'drop path' rather than mix DropConnect as a layer name and use 'survival rate' as the argument. """ if drop_prob == 0.0 or not training: return input keep_prob = 1 - drop_prob shape = (input.shape[0],) + (1,) * (input.ndim - 1) # work with diff dim tensors, not just 2D ConvNets random_tensor = keep_prob + torch.rand(shape, dtype=input.dtype, device=input.device) random_tensor.floor_() # binarize output = input.div(keep_prob) * random_tensor return output # Copied from transformers.models.convnext.modeling_convnext.ConvNextDropPath with ConvNext->Segformer class SegformerDropPath(nn.Module): """Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).""" def __init__(self, drop_prob: Optional[float] = None) -> None: super().__init__() self.drop_prob = drop_prob def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: return drop_path(hidden_states, self.drop_prob, self.training) def extra_repr(self) -> str: return "p={}".format(self.drop_prob) class SegformerOverlapPatchEmbeddings(nn.Module): """Construct the overlapping patch embeddings.""" def __init__(self, patch_size, stride, num_channels, hidden_size): super().__init__() self.proj = nn.Conv2d( num_channels, hidden_size, kernel_size=patch_size, stride=stride, padding=patch_size // 2, ) self.layer_norm = nn.LayerNorm(hidden_size) def forward(self, pixel_values): embeddings = self.proj(pixel_values) _, _, height, width = embeddings.shape # (batch_size, num_channels, height, width) -> (batch_size, num_channels, height*width) -> (batch_size, height*width, num_channels) # this can be fed to a Transformer layer embeddings = embeddings.flatten(2).transpose(1, 2) embeddings = self.layer_norm(embeddings) return embeddings, height, width class SegformerEfficientSelfAttention(nn.Module): """SegFormer's efficient self-attention mechanism. Employs the sequence reduction process introduced in the [PvT paper](https://arxiv.org/abs/2102.12122).""" def __init__(self, config, hidden_size, num_attention_heads, sequence_reduction_ratio): super().__init__() self.hidden_size = hidden_size self.num_attention_heads = num_attention_heads if self.hidden_size % self.num_attention_heads != 0: raise ValueError( f"The hidden size ({self.hidden_size}) is not a multiple of the number of attention " f"heads ({self.num_attention_heads})" ) self.attention_head_size = int(self.hidden_size / self.num_attention_heads) self.all_head_size = self.num_attention_heads * self.attention_head_size self.query = nn.Linear(self.hidden_size, self.all_head_size) self.key = nn.Linear(self.hidden_size, self.all_head_size) self.value = nn.Linear(self.hidden_size, self.all_head_size) self.dropout = nn.Dropout(config.attention_probs_dropout_prob) self.sr_ratio = sequence_reduction_ratio if sequence_reduction_ratio > 1: self.sr = nn.Conv2d( hidden_size, hidden_size, kernel_size=sequence_reduction_ratio, stride=sequence_reduction_ratio ) self.layer_norm = nn.LayerNorm(hidden_size) def transpose_for_scores(self, hidden_states): new_shape = hidden_states.size()[:-1] + (self.num_attention_heads, self.attention_head_size) hidden_states = hidden_states.view(new_shape) return hidden_states.permute(0, 2, 1, 3) def forward( self, hidden_states, height, width, output_attentions=False, ): query_layer = self.transpose_for_scores(self.query(hidden_states)) if self.sr_ratio > 1: batch_size, seq_len, num_channels = hidden_states.shape # Reshape to (batch_size, num_channels, height, width) hidden_states = hidden_states.permute(0, 2, 1).reshape(batch_size, num_channels, height, width) # Apply sequence reduction hidden_states = self.sr(hidden_states) # Reshape back to (batch_size, seq_len, num_channels) hidden_states = hidden_states.reshape(batch_size, num_channels, -1).permute(0, 2, 1) hidden_states = self.layer_norm(hidden_states) key_layer = self.transpose_for_scores(self.key(hidden_states)) value_layer = self.transpose_for_scores(self.value(hidden_states)) # Take the dot product between "query" and "key" to get the raw attention scores. attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2)) attention_scores = attention_scores / math.sqrt(self.attention_head_size) # Normalize the attention scores to probabilities. attention_probs = nn.functional.softmax(attention_scores, dim=-1) # This is actually dropping out entire tokens to attend to, which might # seem a bit unusual, but is taken from the original Transformer paper. attention_probs = self.dropout(attention_probs) context_layer = torch.matmul(attention_probs, value_layer) context_layer = context_layer.permute(0, 2, 1, 3).contiguous() new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,) context_layer = context_layer.view(new_context_layer_shape) outputs = (context_layer, attention_probs) if output_attentions else (context_layer,) return outputs class SegformerSelfOutput(nn.Module): def __init__(self, config, hidden_size): super().__init__() self.dense = nn.Linear(hidden_size, hidden_size) self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward(self, hidden_states, input_tensor): hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states) return hidden_states class SegformerAttention(nn.Module): def __init__(self, config, hidden_size, num_attention_heads, sequence_reduction_ratio): super().__init__() self.self = SegformerEfficientSelfAttention( config=config, hidden_size=hidden_size, num_attention_heads=num_attention_heads, sequence_reduction_ratio=sequence_reduction_ratio, ) self.output = SegformerSelfOutput(config, hidden_size=hidden_size) self.pruned_heads = set() def prune_heads(self, heads): if len(heads) == 0: return heads, index = find_pruneable_heads_and_indices( heads, self.self.num_attention_heads, self.self.attention_head_size, self.pruned_heads ) # Prune linear layers self.self.query = prune_linear_layer(self.self.query, index) self.self.key = prune_linear_layer(self.self.key, index) self.self.value = prune_linear_layer(self.self.value, index) self.output.dense = prune_linear_layer(self.output.dense, index, dim=1) # Update hyper params and store pruned heads self.self.num_attention_heads = self.self.num_attention_heads - len(heads) self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads self.pruned_heads = self.pruned_heads.union(heads) def forward(self, hidden_states, height, width, output_attentions=False): self_outputs = self.self(hidden_states, height, width, output_attentions) attention_output = self.output(self_outputs[0], hidden_states) outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them return outputs class SegformerDWConv(nn.Module): def __init__(self, dim=768): super().__init__() self.dwconv = nn.Conv2d(dim, dim, 3, 1, 1, bias=True, groups=dim) def forward(self, hidden_states, height, width): batch_size, seq_len, num_channels = hidden_states.shape hidden_states = hidden_states.transpose(1, 2).view(batch_size, num_channels, height, width) hidden_states = self.dwconv(hidden_states) hidden_states = hidden_states.flatten(2).transpose(1, 2) return hidden_states class SegformerMixFFN(nn.Module): def __init__(self, config, in_features, hidden_features=None, out_features=None): super().__init__() out_features = out_features or in_features self.dense1 = nn.Linear(in_features, hidden_features) self.dwconv = SegformerDWConv(hidden_features) if isinstance(config.hidden_act, str): self.intermediate_act_fn = ACT2FN[config.hidden_act] else: self.intermediate_act_fn = config.hidden_act self.dense2 = nn.Linear(hidden_features, out_features) self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward(self, hidden_states, height, width): hidden_states = self.dense1(hidden_states) hidden_states = self.dwconv(hidden_states, height, width) hidden_states = self.intermediate_act_fn(hidden_states) hidden_states = self.dropout(hidden_states) hidden_states = self.dense2(hidden_states) hidden_states = self.dropout(hidden_states) return hidden_states class SegformerLayer(nn.Module): """This corresponds to the Block class in the original implementation.""" def __init__(self, config, hidden_size, num_attention_heads, drop_path, sequence_reduction_ratio, mlp_ratio): super().__init__() self.layer_norm_1 = nn.LayerNorm(hidden_size) self.attention = SegformerAttention( config, hidden_size=hidden_size, num_attention_heads=num_attention_heads, sequence_reduction_ratio=sequence_reduction_ratio, ) self.drop_path = SegformerDropPath(drop_path) if drop_path > 0.0 else nn.Identity() self.layer_norm_2 = nn.LayerNorm(hidden_size) mlp_hidden_size = int(hidden_size * mlp_ratio) self.mlp = SegformerMixFFN(config, in_features=hidden_size, hidden_features=mlp_hidden_size) def forward(self, hidden_states, height, width, output_attentions=False): self_attention_outputs = self.attention( self.layer_norm_1(hidden_states), # in Segformer, layernorm is applied before self-attention height, width, output_attentions=output_attentions, ) attention_output = self_attention_outputs[0] outputs = self_attention_outputs[1:] # add self attentions if we output attention weights # first residual connection (with stochastic depth) attention_output = self.drop_path(attention_output) hidden_states = attention_output + hidden_states mlp_output = self.mlp(self.layer_norm_2(hidden_states), height, width) # second residual connection (with stochastic depth) mlp_output = self.drop_path(mlp_output) layer_output = mlp_output + hidden_states outputs = (layer_output,) + outputs return outputs class SegformerEncoder(nn.Module): def __init__(self, config): super().__init__() self.config = config # stochastic depth decay rule drop_path_decays = [x.item() for x in torch.linspace(0, config.drop_path_rate, sum(config.depths))] # patch embeddings embeddings = [] for i in range(config.num_encoder_blocks): embeddings.append( SegformerOverlapPatchEmbeddings( patch_size=config.patch_sizes[i], stride=config.strides[i], num_channels=config.num_channels if i == 0 else config.hidden_sizes[i - 1], hidden_size=config.hidden_sizes[i], ) ) self.patch_embeddings = nn.ModuleList(embeddings) # Transformer blocks blocks = [] cur = 0 for i in range(config.num_encoder_blocks): # each block consists of layers layers = [] if i != 0: cur += config.depths[i - 1] for j in range(config.depths[i]): layers.append( SegformerLayer( config, hidden_size=config.hidden_sizes[i], num_attention_heads=config.num_attention_heads[i], drop_path=drop_path_decays[cur + j], sequence_reduction_ratio=config.sr_ratios[i], mlp_ratio=config.mlp_ratios[i], ) ) blocks.append(nn.ModuleList(layers)) self.block = nn.ModuleList(blocks) # Layer norms self.layer_norm = nn.ModuleList( [nn.LayerNorm(config.hidden_sizes[i]) for i in range(config.num_encoder_blocks)] ) def forward( self, pixel_values: torch.FloatTensor, output_attentions: Optional[bool] = False, output_hidden_states: Optional[bool] = False, return_dict: Optional[bool] = True, ) -> Union[Tuple, BaseModelOutput]: all_hidden_states = () if output_hidden_states else None all_self_attentions = () if output_attentions else None batch_size = pixel_values.shape[0] hidden_states = pixel_values for idx, x in enumerate(zip(self.patch_embeddings, self.block, self.layer_norm)): embedding_layer, block_layer, norm_layer = x # first, obtain patch embeddings hidden_states, height, width = embedding_layer(hidden_states) # second, send embeddings through blocks for i, blk in enumerate(block_layer): layer_outputs = blk(hidden_states, height, width, output_attentions) hidden_states = layer_outputs[0] if output_attentions: all_self_attentions = all_self_attentions + (layer_outputs[1],) # third, apply layer norm hidden_states = norm_layer(hidden_states) # fourth, optionally reshape back to (batch_size, num_channels, height, width) if idx != len(self.patch_embeddings) - 1 or ( idx == len(self.patch_embeddings) - 1 and self.config.reshape_last_stage ): hidden_states = hidden_states.reshape(batch_size, height, width, -1).permute(0, 3, 1, 2).contiguous() if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) if not return_dict: return tuple(v for v in [hidden_states, all_hidden_states, all_self_attentions] if v is not None) return BaseModelOutput( last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_self_attentions, ) class SegformerPreTrainedModel(PreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = SegformerConfig base_model_prefix = "segformer" main_input_name = "pixel_values" def _init_weights(self, module): """Initialize the weights""" if isinstance(module, (nn.Linear, nn.Conv2d)): # Slightly different from the TF version which uses truncated_normal for initialization # cf https://github.com/pytorch/pytorch/pull/5617 module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.Embedding): module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if module.padding_idx is not None: module.weight.data[module.padding_idx].zero_() elif isinstance(module, nn.LayerNorm): module.bias.data.zero_() module.weight.data.fill_(1.0) SEGFORMER_START_DOCSTRING = r""" This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`SegformerConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ SEGFORMER_INPUTS_DOCSTRING = r""" Args: pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Padding will be ignored by default should you provide it. Pixel values can be obtained using [`AutoImageProcessor`]. See [`SegformerImageProcessor.__call__`] for details. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ @add_start_docstrings( "The bare SegFormer encoder (Mix-Transformer) outputting raw hidden-states without any specific head on top.", SEGFORMER_START_DOCSTRING, ) class SegformerModel(SegformerPreTrainedModel): def __init__(self, config): super().__init__(config) self.config = config # hierarchical Transformer encoder self.encoder = SegformerEncoder(config) # Initialize weights and apply final processing self.post_init() def _prune_heads(self, heads_to_prune): """ Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base class PreTrainedModel """ for layer, heads in heads_to_prune.items(): self.encoder.layer[layer].attention.prune_heads(heads) @add_start_docstrings_to_model_forward(SEGFORMER_INPUTS_DOCSTRING.format("(batch_size, sequence_length)")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=BaseModelOutput, config_class=_CONFIG_FOR_DOC, modality="vision", expected_output=_EXPECTED_OUTPUT_SHAPE, ) def forward( self, pixel_values: torch.FloatTensor, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, BaseModelOutput]: output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict encoder_outputs = self.encoder( pixel_values, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = encoder_outputs[0] if not return_dict: return (sequence_output,) + encoder_outputs[1:] return BaseModelOutput( last_hidden_state=sequence_output, hidden_states=encoder_outputs.hidden_states, attentions=encoder_outputs.attentions, ) @add_start_docstrings( """ SegFormer Model transformer with an image classification head on top (a linear layer on top of the final hidden states) e.g. for ImageNet. """, SEGFORMER_START_DOCSTRING, ) class SegformerForImageClassification(SegformerPreTrainedModel): def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.segformer = SegformerModel(config) # Classifier head self.classifier = nn.Linear(config.hidden_sizes[-1], config.num_labels) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(SEGFORMER_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT, output_type=SegFormerImageClassifierOutput, config_class=_CONFIG_FOR_DOC, expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT, ) def forward( self, pixel_values: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, SegFormerImageClassifierOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the image classification/regression loss. Indices should be in `[0, ..., config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If `config.num_labels > 1` a classification loss is computed (Cross-Entropy). """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.segformer( pixel_values, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = outputs[0] # convert last hidden states to (batch_size, height*width, hidden_size) batch_size = sequence_output.shape[0] if self.config.reshape_last_stage: # (batch_size, num_channels, height, width) -> (batch_size, height, width, num_channels) sequence_output = sequence_output.permute(0, 2, 3, 1) sequence_output = sequence_output.reshape(batch_size, -1, self.config.hidden_sizes[-1]) # global average pooling sequence_output = sequence_output.mean(dim=1) logits = self.classifier(sequence_output) loss = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: self.config.problem_type = "regression" elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): self.config.problem_type = "single_label_classification" else: self.config.problem_type = "multi_label_classification" if self.config.problem_type == "regression": loss_fct = MSELoss() if self.num_labels == 1: loss = loss_fct(logits.squeeze(), labels.squeeze()) else: loss = loss_fct(logits, labels) elif self.config.problem_type == "single_label_classification": loss_fct = CrossEntropyLoss() loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) elif self.config.problem_type == "multi_label_classification": loss_fct = BCEWithLogitsLoss() loss = loss_fct(logits, labels) if not return_dict: output = (logits,) + outputs[1:] return ((loss,) + output) if loss is not None else output return SegFormerImageClassifierOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) class SegformerMLP(nn.Module): """ Linear Embedding. """ def __init__(self, config: SegformerConfig, input_dim): super().__init__() self.proj = nn.Linear(input_dim, config.decoder_hidden_size) def forward(self, hidden_states: torch.Tensor): hidden_states = hidden_states.flatten(2).transpose(1, 2) hidden_states = self.proj(hidden_states) return hidden_states class SegformerDecodeHead(SegformerPreTrainedModel): def __init__(self, config): super().__init__(config) # linear layers which will unify the channel dimension of each of the encoder blocks to the same config.decoder_hidden_size mlps = [] for i in range(config.num_encoder_blocks): mlp = SegformerMLP(config, input_dim=config.hidden_sizes[i]) mlps.append(mlp) self.linear_c = nn.ModuleList(mlps) # the following 3 layers implement the ConvModule of the original implementation self.linear_fuse = nn.Conv2d( in_channels=config.decoder_hidden_size * config.num_encoder_blocks, out_channels=config.decoder_hidden_size, kernel_size=1, bias=False, ) self.batch_norm = nn.BatchNorm2d(config.decoder_hidden_size) self.activation = nn.ReLU() self.dropout = nn.Dropout(config.classifier_dropout_prob) self.classifier = nn.Conv2d(config.decoder_hidden_size, config.num_labels, kernel_size=1) self.config = config def forward(self, encoder_hidden_states: torch.FloatTensor) -> torch.Tensor: batch_size = encoder_hidden_states[-1].shape[0] all_hidden_states = () for encoder_hidden_state, mlp in zip(encoder_hidden_states, self.linear_c): if self.config.reshape_last_stage is False and encoder_hidden_state.ndim == 3: height = width = int(math.sqrt(encoder_hidden_state.shape[-1])) encoder_hidden_state = ( encoder_hidden_state.reshape(batch_size, height, width, -1).permute(0, 3, 1, 2).contiguous() ) # unify channel dimension height, width = encoder_hidden_state.shape[2], encoder_hidden_state.shape[3] encoder_hidden_state = mlp(encoder_hidden_state) encoder_hidden_state = encoder_hidden_state.permute(0, 2, 1) encoder_hidden_state = encoder_hidden_state.reshape(batch_size, -1, height, width) # upsample encoder_hidden_state = nn.functional.interpolate( encoder_hidden_state, size=encoder_hidden_states[0].size()[2:], mode="bilinear", align_corners=False ) all_hidden_states += (encoder_hidden_state,) hidden_states = self.linear_fuse(torch.cat(all_hidden_states[::-1], dim=1)) hidden_states = self.batch_norm(hidden_states) hidden_states = self.activation(hidden_states) hidden_states = self.dropout(hidden_states) # logits are of shape (batch_size, num_labels, height/4, width/4) logits = self.classifier(hidden_states) return logits @add_start_docstrings( """SegFormer Model transformer with an all-MLP decode head on top e.g. for ADE20k, CityScapes.""", SEGFORMER_START_DOCSTRING, ) class SegformerForSemanticSegmentation(SegformerPreTrainedModel): def __init__(self, config): super().__init__(config) self.segformer = SegformerModel(config) self.decode_head = SegformerDecodeHead(config) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(SEGFORMER_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @replace_return_docstrings(output_type=SemanticSegmenterOutput, config_class=_CONFIG_FOR_DOC) def forward( self, pixel_values: torch.FloatTensor, labels: Optional[torch.LongTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, SemanticSegmenterOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size, height, width)`, *optional*): Ground truth semantic segmentation maps for computing the loss. Indices should be in `[0, ..., config.num_labels - 1]`. If `config.num_labels > 1`, a classification loss is computed (Cross-Entropy). Returns: Examples: ```python >>> from transformers import AutoImageProcessor, SegformerForSemanticSegmentation >>> from PIL import Image >>> import requests >>> image_processor = AutoImageProcessor.from_pretrained("nvidia/segformer-b0-finetuned-ade-512-512") >>> model = SegformerForSemanticSegmentation.from_pretrained("nvidia/segformer-b0-finetuned-ade-512-512") >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" >>> image = Image.open(requests.get(url, stream=True).raw) >>> inputs = image_processor(images=image, return_tensors="pt") >>> outputs = model(**inputs) >>> logits = outputs.logits # shape (batch_size, num_labels, height/4, width/4) >>> list(logits.shape) [1, 150, 128, 128] ```""" return_dict = return_dict if return_dict is not None else self.config.use_return_dict output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) outputs = self.segformer( pixel_values, output_attentions=output_attentions, output_hidden_states=True, # we need the intermediate hidden states return_dict=return_dict, ) encoder_hidden_states = outputs.hidden_states if return_dict else outputs[1] logits = self.decode_head(encoder_hidden_states) loss = None if labels is not None: # upsample logits to the images' original size upsampled_logits = nn.functional.interpolate( logits, size=labels.shape[-2:], mode="bilinear", align_corners=False ) if self.config.num_labels > 1: loss_fct = CrossEntropyLoss(ignore_index=self.config.semantic_loss_ignore_index) loss = loss_fct(upsampled_logits, labels) elif self.config.num_labels == 1: valid_mask = ((labels >= 0) & (labels != self.config.semantic_loss_ignore_index)).float() loss_fct = BCEWithLogitsLoss(reduction="none") loss = loss_fct(upsampled_logits.squeeze(1), labels.float()) loss = (loss * valid_mask).mean() else: raise ValueError(f"Number of labels should be >=0: {self.config.num_labels}") if not return_dict: if output_hidden_states: output = (logits,) + outputs[1:] else: output = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return SemanticSegmenterOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states if output_hidden_states else None, attentions=outputs.attentions, )
0
hf_public_repos/transformers/src/transformers/models
hf_public_repos/transformers/src/transformers/models/segformer/feature_extraction_segformer.py
# coding=utf-8 # Copyright 2021 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Feature extractor class for SegFormer.""" import warnings from ...utils import logging from .image_processing_segformer import SegformerImageProcessor logger = logging.get_logger(__name__) class SegformerFeatureExtractor(SegformerImageProcessor): def __init__(self, *args, **kwargs) -> None: warnings.warn( "The class SegformerFeatureExtractor is deprecated and will be removed in version 5 of Transformers." " Please use SegformerImageProcessor instead.", FutureWarning, ) super().__init__(*args, **kwargs)
0
hf_public_repos/transformers/src/transformers/models
hf_public_repos/transformers/src/transformers/models/timesformer/__init__.py
# Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _import_structure = { "configuration_timesformer": ["TIMESFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "TimesformerConfig"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["modeling_timesformer"] = [ "TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "TimesformerModel", "TimesformerForVideoClassification", "TimesformerPreTrainedModel", ] if TYPE_CHECKING: from .configuration_timesformer import TIMESFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TimesformerConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_timesformer import ( TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TimesformerForVideoClassification, TimesformerModel, TimesformerPreTrainedModel, ) else: import sys sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
0
hf_public_repos/transformers/src/transformers/models
hf_public_repos/transformers/src/transformers/models/timesformer/convert_timesformer_to_pytorch.py
# coding=utf-8 # Copyright 2022 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Convert TimeSformer checkpoints from the original repository: https://github.com/MCG-NJU/TimeSformer""" import argparse import json import gdown import numpy as np import torch from huggingface_hub import hf_hub_download from transformers import TimesformerConfig, TimesformerForVideoClassification, VideoMAEImageProcessor def get_timesformer_config(model_name): config = TimesformerConfig() if "large" in model_name: config.num_frames = 96 if "hr" in model_name: config.num_frames = 16 config.image_size = 448 repo_id = "huggingface/label-files" if "k400" in model_name: config.num_labels = 400 filename = "kinetics400-id2label.json" elif "k600" in model_name: config.num_labels = 600 filename = "kinetics600-id2label.json" elif "ssv2" in model_name: config.num_labels = 174 filename = "something-something-v2-id2label.json" else: raise ValueError("Model name should either contain 'k400', 'k600' or 'ssv2'.") id2label = json.load(open(hf_hub_download(repo_id, filename, repo_type="dataset"), "r")) id2label = {int(k): v for k, v in id2label.items()} config.id2label = id2label config.label2id = {v: k for k, v in id2label.items()} return config def rename_key(name): if "encoder." in name: name = name.replace("encoder.", "") if "cls_token" in name: name = name.replace("cls_token", "timesformer.embeddings.cls_token") if "pos_embed" in name: name = name.replace("pos_embed", "timesformer.embeddings.position_embeddings") if "time_embed" in name: name = name.replace("time_embed", "timesformer.embeddings.time_embeddings") if "patch_embed.proj" in name: name = name.replace("patch_embed.proj", "timesformer.embeddings.patch_embeddings.projection") if "patch_embed.norm" in name: name = name.replace("patch_embed.norm", "timesformer.embeddings.norm") if "blocks" in name: name = name.replace("blocks", "timesformer.encoder.layer") if "attn.proj" in name: name = name.replace("attn.proj", "attention.output.dense") if "attn" in name and "bias" not in name and "temporal" not in name: name = name.replace("attn", "attention.self") if "attn" in name and "temporal" not in name: name = name.replace("attn", "attention.attention") if "temporal_norm1" in name: name = name.replace("temporal_norm1", "temporal_layernorm") if "temporal_attn.proj" in name: name = name.replace("temporal_attn", "temporal_attention.output.dense") if "temporal_fc" in name: name = name.replace("temporal_fc", "temporal_dense") if "norm1" in name and "temporal" not in name: name = name.replace("norm1", "layernorm_before") if "norm2" in name: name = name.replace("norm2", "layernorm_after") if "mlp.fc1" in name: name = name.replace("mlp.fc1", "intermediate.dense") if "mlp.fc2" in name: name = name.replace("mlp.fc2", "output.dense") if "norm.weight" in name and "fc" not in name and "temporal" not in name: name = name.replace("norm.weight", "timesformer.layernorm.weight") if "norm.bias" in name and "fc" not in name and "temporal" not in name: name = name.replace("norm.bias", "timesformer.layernorm.bias") if "head" in name: name = name.replace("head", "classifier") return name def convert_state_dict(orig_state_dict, config): for key in orig_state_dict.copy().keys(): val = orig_state_dict.pop(key) if key.startswith("model."): key = key.replace("model.", "") if "qkv" in key: key_split = key.split(".") layer_num = int(key_split[1]) prefix = "timesformer.encoder.layer." if "temporal" in key: postfix = ".temporal_attention.attention.qkv." else: postfix = ".attention.attention.qkv." if "weight" in key: orig_state_dict[f"{prefix}{layer_num}{postfix}weight"] = val else: orig_state_dict[f"{prefix}{layer_num}{postfix}bias"] = val else: orig_state_dict[rename_key(key)] = val return orig_state_dict # We will verify our results on a video of eating spaghetti # Frame indices used: [164 168 172 176 181 185 189 193 198 202 206 210 215 219 223 227] def prepare_video(): file = hf_hub_download( repo_id="hf-internal-testing/spaghetti-video", filename="eating_spaghetti.npy", repo_type="dataset" ) video = np.load(file) return list(video) def convert_timesformer_checkpoint(checkpoint_url, pytorch_dump_folder_path, model_name, push_to_hub): config = get_timesformer_config(model_name) model = TimesformerForVideoClassification(config) # download original checkpoint, hosted on Google Drive output = "pytorch_model.bin" gdown.cached_download(checkpoint_url, output, quiet=False) files = torch.load(output, map_location="cpu") if "model" in files: state_dict = files["model"] elif "module" in files: state_dict = files["module"] else: state_dict = files["model_state"] new_state_dict = convert_state_dict(state_dict, config) model.load_state_dict(new_state_dict) model.eval() # verify model on basic input image_processor = VideoMAEImageProcessor(image_mean=[0.5, 0.5, 0.5], image_std=[0.5, 0.5, 0.5]) video = prepare_video() inputs = image_processor(video[:8], return_tensors="pt") outputs = model(**inputs) logits = outputs.logits model_names = [ # Kinetics-400 checkpoints (hr = high resolution input of 448px instead of 224px) "timesformer-base-finetuned-k400", "timesformer-large-finetuned-k400", "timesformer-hr-finetuned-k400", # Kinetics-600 checkpoints (hr = high resolution input of 448px instead of 224px) "timesformer-base-finetuned-k600", "timesformer-large-finetuned-k600", "timesformer-hr-finetuned-k600", # Something-Something-v2 checkpoints (hr = high resolution input of 448px instead of 224px) "timesformer-base-finetuned-ssv2", "timesformer-large-finetuned-ssv2", "timesformer-hr-finetuned-ssv2", ] # NOTE: logits were tested with image_mean and image_std equal to [0.5, 0.5, 0.5] and [0.5, 0.5, 0.5] if model_name == "timesformer-base-finetuned-k400": expected_shape = torch.Size([1, 400]) expected_slice = torch.tensor([-0.3016, -0.7713, -0.4205]) elif model_name == "timesformer-base-finetuned-k600": expected_shape = torch.Size([1, 600]) expected_slice = torch.tensor([-0.7267, -0.7466, 3.2404]) elif model_name == "timesformer-base-finetuned-ssv2": expected_shape = torch.Size([1, 174]) expected_slice = torch.tensor([-0.9059, 0.6433, -3.1457]) elif model_name == "timesformer-large-finetuned-k400": expected_shape = torch.Size([1, 400]) expected_slice = torch.tensor([0, 0, 0]) elif model_name == "timesformer-large-finetuned-k600": expected_shape = torch.Size([1, 600]) expected_slice = torch.tensor([0, 0, 0]) elif model_name == "timesformer-large-finetuned-ssv2": expected_shape = torch.Size([1, 174]) expected_slice = torch.tensor([0, 0, 0]) elif model_name == "timesformer-hr-finetuned-k400": expected_shape = torch.Size([1, 400]) expected_slice = torch.tensor([-0.9617, -3.7311, -3.7708]) elif model_name == "timesformer-hr-finetuned-k600": expected_shape = torch.Size([1, 600]) expected_slice = torch.tensor([2.5273, 0.7127, 1.8848]) elif model_name == "timesformer-hr-finetuned-ssv2": expected_shape = torch.Size([1, 174]) expected_slice = torch.tensor([-3.6756, -0.7513, 0.7180]) else: raise ValueError(f"Model name not supported. Should be one of {model_names}") # verify logits assert logits.shape == expected_shape assert torch.allclose(logits[0, :3], expected_slice, atol=1e-4) print("Logits ok!") if pytorch_dump_folder_path is not None: print(f"Saving model and image processor to {pytorch_dump_folder_path}") image_processor.save_pretrained(pytorch_dump_folder_path) model.save_pretrained(pytorch_dump_folder_path) if push_to_hub: print("Pushing to the hub...") model.push_to_hub(f"fcakyon/{model_name}") if __name__ == "__main__": parser = argparse.ArgumentParser() # Required parameters parser.add_argument( "--checkpoint_url", default="https://drive.google.com/u/1/uc?id=17yvuYp9L4mn-HpIcK5Zo6K3UoOy1kA5l&export=download", type=str, help=( "URL of the original PyTorch checkpoint (on Google Drive) you'd like to convert. Should be a direct" " download link." ), ) parser.add_argument( "--pytorch_dump_folder_path", default="", type=str, help="Path to the output PyTorch model directory.", ) parser.add_argument("--model_name", default="timesformer-base-finetuned-k400", type=str, help="Name of the model.") parser.add_argument( "--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub." ) args = parser.parse_args() convert_timesformer_checkpoint( args.checkpoint_url, args.pytorch_dump_folder_path, args.model_name, args.push_to_hub )
0
hf_public_repos/transformers/src/transformers/models
hf_public_repos/transformers/src/transformers/models/timesformer/configuration_timesformer.py
# coding=utf-8 # Copyright 2022 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ TimeSformer model configuration""" from ...configuration_utils import PretrainedConfig from ...utils import logging logger = logging.get_logger(__name__) TIMESFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP = { "facebook/timesformer": "https://huggingface.co/facebook/timesformer/resolve/main/config.json", } class TimesformerConfig(PretrainedConfig): r""" This is the configuration class to store the configuration of a [`TimesformerModel`]. It is used to instantiate a TimeSformer model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the TimeSformer [facebook/timesformer-base-finetuned-k600](https://huggingface.co/facebook/timesformer-base-finetuned-k600) architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: image_size (`int`, *optional*, defaults to 224): The size (resolution) of each image. patch_size (`int`, *optional*, defaults to 16): The size (resolution) of each patch. num_channels (`int`, *optional*, defaults to 3): The number of input channels. num_frames (`int`, *optional*, defaults to 8): The number of frames in each video. hidden_size (`int`, *optional*, defaults to 768): Dimensionality of the encoder layers and the pooler layer. num_hidden_layers (`int`, *optional*, defaults to 12): Number of hidden layers in the Transformer encoder. num_attention_heads (`int`, *optional*, defaults to 12): Number of attention heads for each attention layer in the Transformer encoder. intermediate_size (`int`, *optional*, defaults to 3072): Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder. hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`): The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, `"relu"`, `"selu"` and `"gelu_new"` are supported. hidden_dropout_prob (`float`, *optional*, defaults to 0.0): The dropout probabilitiy for all fully connected layers in the embeddings, encoder, and pooler. attention_probs_dropout_prob (`float`, *optional*, defaults to 0.0): The dropout ratio for the attention probabilities. initializer_range (`float`, *optional*, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. layer_norm_eps (`float`, *optional*, defaults to 1e-6): The epsilon used by the layer normalization layers. qkv_bias (`bool`, *optional*, defaults to `True`): Whether to add a bias to the queries, keys and values. attention_type (`str`, *optional*, defaults to `"divided_space_time"`): The attention type to use. Must be one of `"divided_space_time"`, `"space_only"`, `"joint_space_time"`. drop_path_rate (`float`, *optional*, defaults to 0): The dropout ratio for stochastic depth. Example: ```python >>> from transformers import TimesformerConfig, TimesformerModel >>> # Initializing a TimeSformer timesformer-base style configuration >>> configuration = TimesformerConfig() >>> # Initializing a model from the configuration >>> model = TimesformerModel(configuration) >>> # Accessing the model configuration >>> configuration = model.config ```""" model_type = "timesformer" def __init__( self, image_size=224, patch_size=16, num_channels=3, num_frames=8, hidden_size=768, num_hidden_layers=12, num_attention_heads=12, intermediate_size=3072, hidden_act="gelu", hidden_dropout_prob=0.0, attention_probs_dropout_prob=0.0, initializer_range=0.02, layer_norm_eps=1e-6, qkv_bias=True, attention_type="divided_space_time", drop_path_rate=0, **kwargs, ): super().__init__(**kwargs) self.image_size = image_size self.patch_size = patch_size self.num_channels = num_channels self.num_frames = num_frames self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.intermediate_size = intermediate_size self.hidden_act = hidden_act self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.initializer_range = initializer_range self.layer_norm_eps = layer_norm_eps self.qkv_bias = qkv_bias self.attention_type = attention_type self.drop_path_rate = drop_path_rate
0
hf_public_repos/transformers/src/transformers/models
hf_public_repos/transformers/src/transformers/models/timesformer/modeling_timesformer.py
# coding=utf-8 # Copyright 2022 Meta and The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ PyTorch TimeSformer model.""" import collections from typing import Optional, Tuple, Union import torch import torch.nn.functional import torch.utils.checkpoint from torch import nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACT2FN from ...modeling_outputs import BaseModelOutput, ImageClassifierOutput from ...modeling_utils import PreTrainedModel from ...utils import add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings from .configuration_timesformer import TimesformerConfig logger = logging.get_logger(__name__) _CONFIG_FOR_DOC = "TimesformerConfig" _CHECKPOINT_FOR_DOC = "facebook/timesformer" TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST = [ "facebook/timesformer-base-finetuned-k400", # See all TimeSformer models at https://huggingface.co/models?filter=timesformer ] # Adapted from https://github.com/facebookresearch/TimeSformer/blob/a5ef29a7b7264baff199a30b3306ac27de901133/timesformer/models/vit.py#L155 class TimesformerPatchEmbeddings(nn.Module): """Image to Patch Embedding""" def __init__(self, config): super().__init__() image_size = config.image_size patch_size = config.patch_size image_size = image_size if isinstance(image_size, collections.abc.Iterable) else (image_size, image_size) patch_size = patch_size if isinstance(patch_size, collections.abc.Iterable) else (patch_size, patch_size) num_patches = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.image_size = image_size self.patch_size = patch_size self.num_patches = num_patches self.projection = nn.Conv2d(config.num_channels, config.hidden_size, kernel_size=patch_size, stride=patch_size) def forward(self, pixel_values): batch_size, num_frames, num_channels, height, width = pixel_values.shape pixel_values = pixel_values.reshape(batch_size * num_frames, num_channels, height, width) embeddings = self.projection(pixel_values) patch_width = embeddings.size(-1) embeddings = embeddings.flatten(2).transpose(1, 2) return embeddings, num_frames, patch_width class TimesformerEmbeddings(nn.Module): """ Construct the patch and position embeddings. """ def __init__(self, config): super().__init__() embed_dim = config.hidden_size num_frames = config.num_frames drop_rate = config.hidden_dropout_prob attention_type = config.attention_type self.attention_type = attention_type self.patch_embeddings = TimesformerPatchEmbeddings(config) self.num_patches = self.patch_embeddings.num_patches # Positional Embeddings self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim)) self.position_embeddings = nn.Parameter(torch.zeros(1, self.num_patches + 1, embed_dim)) self.pos_drop = nn.Dropout(p=drop_rate) if attention_type != "space_only": self.time_embeddings = nn.Parameter(torch.zeros(1, num_frames, embed_dim)) self.time_drop = nn.Dropout(p=drop_rate) def forward(self, pixel_values): batch_size = pixel_values.shape[0] # create patch embeddings embeddings, num_frames, patch_width = self.patch_embeddings(pixel_values) cls_tokens = self.cls_token.expand(embeddings.size(0), -1, -1) embeddings = torch.cat((cls_tokens, embeddings), dim=1) # resizing the positional embeddings in case they don't match the input at inference if embeddings.size(1) != self.position_embeddings.size(1): position_embeddings = self.position_embeddings cls_pos_embed = position_embeddings[0, 0, :].unsqueeze(0).unsqueeze(1) other_pos_embed = position_embeddings[0, 1:, :].unsqueeze(0).transpose(1, 2) patch_num = int(other_pos_embed.size(2) ** 0.5) patch_height = embeddings.size(1) // patch_width other_pos_embed = other_pos_embed.reshape(1, embeddings.size(2), patch_num, patch_num) new_pos_embed = nn.functional.interpolate( other_pos_embed, size=(patch_height, patch_width), mode="nearest" ) new_pos_embed = new_pos_embed.flatten(2) new_pos_embed = new_pos_embed.transpose(1, 2) new_pos_embed = torch.cat((cls_pos_embed, new_pos_embed), 1) embeddings = embeddings + new_pos_embed else: embeddings = embeddings + self.position_embeddings embeddings = self.pos_drop(embeddings) # Time Embeddings if self.attention_type != "space_only": cls_tokens = embeddings[:batch_size, 0, :].unsqueeze(1) embeddings = embeddings[:, 1:] _, patch_height, patch_width = embeddings.shape embeddings = ( embeddings.reshape(batch_size, num_frames, patch_height, patch_width) .permute(0, 2, 1, 3) .reshape(batch_size * patch_height, num_frames, patch_width) ) # Resizing time embeddings in case they don't match if num_frames != self.time_embeddings.size(1): time_embeddings = self.time_embeddings.transpose(1, 2) new_time_embeddings = nn.functional.interpolate(time_embeddings, size=(num_frames), mode="nearest") new_time_embeddings = new_time_embeddings.transpose(1, 2) embeddings = embeddings + new_time_embeddings else: embeddings = embeddings + self.time_embeddings embeddings = self.time_drop(embeddings) embeddings = embeddings.view(batch_size, patch_height, num_frames, patch_width).reshape( batch_size, patch_height * num_frames, patch_width ) embeddings = torch.cat((cls_tokens, embeddings), dim=1) return embeddings # Copied from transformers.models.beit.modeling_beit.drop_path def drop_path(input: torch.Tensor, drop_prob: float = 0.0, training: bool = False) -> torch.Tensor: """ Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks). Comment by Ross Wightman: This is the same as the DropConnect impl I created for EfficientNet, etc networks, however, the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper... See discussion: https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ... I've opted for changing the layer and argument names to 'drop path' rather than mix DropConnect as a layer name and use 'survival rate' as the argument. """ if drop_prob == 0.0 or not training: return input keep_prob = 1 - drop_prob shape = (input.shape[0],) + (1,) * (input.ndim - 1) # work with diff dim tensors, not just 2D ConvNets random_tensor = keep_prob + torch.rand(shape, dtype=input.dtype, device=input.device) random_tensor.floor_() # binarize output = input.div(keep_prob) * random_tensor return output # Copied from transformers.models.beit.modeling_beit.BeitDropPath with Beit->TimeSformer class TimeSformerDropPath(nn.Module): """Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).""" def __init__(self, drop_prob: Optional[float] = None) -> None: super().__init__() self.drop_prob = drop_prob def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: return drop_path(hidden_states, self.drop_prob, self.training) def extra_repr(self) -> str: return "p={}".format(self.drop_prob) # Adapted from https://github.com/facebookresearch/TimeSformer/blob/a5ef29a7b7264baff199a30b3306ac27de901133/timesformer/models/vit.py#L57 class TimesformerSelfAttention(nn.Module): def __init__(self, config: TimesformerConfig): super().__init__() num_heads = config.num_attention_heads qkv_bias = config.qkv_bias attention_dropout_prob = config.attention_probs_dropout_prob self.num_heads = num_heads head_dim = config.hidden_size // num_heads self.scale = head_dim**-0.5 self.qkv = nn.Linear(config.hidden_size, config.hidden_size * 3, bias=qkv_bias) self.attn_drop = nn.Dropout(attention_dropout_prob) def forward(self, hidden_states, output_attentions: bool = False): batch_size, hidden_size, num_channels = hidden_states.shape qkv = ( self.qkv(hidden_states) .reshape(batch_size, hidden_size, 3, self.num_heads, num_channels // self.num_heads) .permute(2, 0, 3, 1, 4) ) query, key, value = qkv[0], qkv[1], qkv[2] attention_probs = (query @ key.transpose(-2, -1)) * self.scale attention_probs = attention_probs.softmax(dim=-1) attention_probs = self.attn_drop(attention_probs) context_layer = (attention_probs @ value).transpose(1, 2).reshape(batch_size, hidden_size, num_channels) outputs = (context_layer, attention_probs) if output_attentions else (context_layer,) return outputs class TimesformerSelfOutput(nn.Module): """ The residual connection is defined in TimesformerLayer instead of here (as is the case with other models), due to the layernorm applied before each block. """ def __init__(self, config: TimesformerConfig) -> None: super().__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states) return hidden_states class TimeSformerAttention(nn.Module): def __init__(self, config: TimesformerConfig) -> None: super().__init__() self.attention = TimesformerSelfAttention(config) self.output = TimesformerSelfOutput(config) def forward( self, hidden_states: torch.Tensor, output_attentions: bool = False, ) -> Union[Tuple[torch.Tensor, torch.Tensor], Tuple[torch.Tensor]]: self_outputs = self.attention(hidden_states, output_attentions) attention_output = self.output(self_outputs[0]) outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them return outputs # Adapted from https://github.com/facebookresearch/TimeSformer/blob/a5ef29a7b7264baff199a30b3306ac27de901133/timesformer/models/vit.py#L39 class TimesformerIntermediate(nn.Module): def __init__(self, config: TimesformerConfig) -> None: super().__init__() self.dense = nn.Linear(config.hidden_size, config.intermediate_size) self.dropout = nn.Dropout(config.hidden_dropout_prob) if isinstance(config.hidden_act, str): self.intermediate_act_fn = ACT2FN[config.hidden_act] else: self.intermediate_act_fn = config.hidden_act def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.intermediate_act_fn(hidden_states) hidden_states = self.dropout(hidden_states) return hidden_states class TimesformerOutput(nn.Module): def __init__(self, config: TimesformerConfig) -> None: super().__init__() self.dense = nn.Linear(config.intermediate_size, config.hidden_size) self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states) return hidden_states # Adapted from https://github.com/facebookresearch/TimeSformer/blob/a5ef29a7b7264baff199a30b3306ac27de901133/timesformer/models/vit.py#L89 class TimesformerLayer(nn.Module): def __init__(self, config: TimesformerConfig, layer_index: int) -> None: super().__init__() attention_type = config.attention_type drop_path_rates = [ x.item() for x in torch.linspace(0, config.drop_path_rate, config.num_hidden_layers) ] # stochastic depth decay rule drop_path_rate = drop_path_rates[layer_index] self.drop_path = TimeSformerDropPath(config.drop_path_rate) if drop_path_rate > 0.0 else nn.Identity() self.attention = TimeSformerAttention(config) self.intermediate = TimesformerIntermediate(config) self.output = TimesformerOutput(config) self.layernorm_before = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.layernorm_after = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.config = config self.attention_type = attention_type if attention_type not in ["divided_space_time", "space_only", "joint_space_time"]: raise ValueError("Unknown attention type: {}".format(attention_type)) # Temporal Attention Parameters if self.attention_type == "divided_space_time": self.temporal_layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.temporal_attention = TimeSformerAttention(config) self.temporal_dense = nn.Linear(config.hidden_size, config.hidden_size) def forward(self, hidden_states: torch.Tensor, output_attentions: bool = False): num_frames = self.config.num_frames num_patch_width = self.config.image_size // self.config.patch_size batch_size = hidden_states.shape[0] num_spatial_tokens = (hidden_states.size(1) - 1) // num_frames num_patch_height = num_spatial_tokens // num_patch_width if self.attention_type in ["space_only", "joint_space_time"]: self_attention_outputs = self.attention( self.layernorm_before(hidden_states), output_attentions=output_attentions ) attention_output = self_attention_outputs[0] outputs = self_attention_outputs[1:] # add self attentions if we output attention weights hidden_states = hidden_states + self.drop_path(attention_output) layer_output = self.layernorm_after(hidden_states) layer_output = self.intermediate(layer_output) layer_output = self.output(layer_output) layer_output = hidden_states + self.drop_path(layer_output) outputs = (layer_output,) + outputs return outputs elif self.attention_type == "divided_space_time": # Temporal temporal_embedding = hidden_states[:, 1:, :] temporal_embedding = temporal_embedding.reshape( batch_size, num_patch_height, num_patch_width, num_frames, temporal_embedding.shape[2] ).reshape(batch_size * num_patch_height * num_patch_width, num_frames, temporal_embedding.shape[2]) temporal_attention_outputs = self.temporal_attention( self.temporal_layernorm(temporal_embedding), ) attention_output = temporal_attention_outputs[0] residual_temporal = self.drop_path(attention_output) residual_temporal = residual_temporal.reshape( batch_size, num_patch_height, num_patch_width, num_frames, residual_temporal.shape[2] ).reshape(batch_size, num_patch_height * num_patch_width * num_frames, residual_temporal.shape[2]) residual_temporal = self.temporal_dense(residual_temporal) temporal_embedding = hidden_states[:, 1:, :] + residual_temporal # Spatial init_cls_token = hidden_states[:, 0, :].unsqueeze(1) cls_token = init_cls_token.repeat(1, num_frames, 1) cls_token = cls_token.reshape(batch_size * num_frames, 1, cls_token.shape[2]) spatial_embedding = temporal_embedding spatial_embedding = ( spatial_embedding.reshape( batch_size, num_patch_height, num_patch_width, num_frames, spatial_embedding.shape[2] ) .permute(0, 3, 1, 2, 4) .reshape(batch_size * num_frames, num_patch_height * num_patch_width, spatial_embedding.shape[2]) ) spatial_embedding = torch.cat((cls_token, spatial_embedding), 1) spatial_attention_outputs = self.attention( self.layernorm_before(spatial_embedding), output_attentions=output_attentions ) attention_output = spatial_attention_outputs[0] outputs = spatial_attention_outputs[1:] # add self attentions if we output attention weights residual_spatial = self.drop_path(attention_output) # Taking care of CLS token cls_token = residual_spatial[:, 0, :] cls_token = cls_token.reshape(batch_size, num_frames, cls_token.shape[1]) cls_token = torch.mean(cls_token, 1, True) # averaging for every frame residual_spatial = residual_spatial[:, 1:, :] residual_spatial = ( residual_spatial.reshape( batch_size, num_frames, num_patch_height, num_patch_width, residual_spatial.shape[2] ) .permute(0, 2, 3, 1, 4) .reshape(batch_size, num_patch_height * num_patch_width * num_frames, residual_spatial.shape[2]) ) residual = residual_spatial hidden_states = temporal_embedding # Mlp hidden_states = torch.cat((init_cls_token, hidden_states), 1) + torch.cat((cls_token, residual), 1) layer_output = self.layernorm_after(hidden_states) layer_output = self.intermediate(layer_output) layer_output = self.output(layer_output) layer_output = hidden_states + self.drop_path(layer_output) outputs = (layer_output,) + outputs return outputs class TimesformerEncoder(nn.Module): def __init__(self, config: TimesformerConfig) -> None: super().__init__() self.config = config self.layer = nn.ModuleList([TimesformerLayer(config, ind) for ind in range(config.num_hidden_layers)]) self.gradient_checkpointing = False def forward( self, hidden_states: torch.Tensor, output_attentions: bool = False, output_hidden_states: bool = False, return_dict: bool = True, ) -> Union[tuple, BaseModelOutput]: all_hidden_states = () if output_hidden_states else None all_self_attentions = () if output_attentions else None for i, layer_module in enumerate(self.layer): if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) if self.gradient_checkpointing and self.training: def create_custom_forward(module): def custom_forward(*inputs): return module(*inputs, output_attentions) return custom_forward layer_outputs = torch.utils.checkpoint.checkpoint( create_custom_forward(layer_module), hidden_states, ) else: layer_outputs = layer_module(hidden_states, output_attentions) hidden_states = layer_outputs[0] if output_attentions: all_self_attentions = all_self_attentions + (layer_outputs[1],) if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) if not return_dict: return tuple(v for v in [hidden_states, all_hidden_states, all_self_attentions] if v is not None) return BaseModelOutput( last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_self_attentions, ) class TimesformerPreTrainedModel(PreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = TimesformerConfig base_model_prefix = "timesformer" main_input_name = "pixel_values" supports_gradient_checkpointing = True def _init_weights(self, module): if isinstance(module, (nn.Linear, nn.Conv2d)): nn.init.trunc_normal_(module.weight, std=self.config.initializer_range) if module.bias is not None: nn.init.constant_(module.bias, 0) elif isinstance(module, nn.LayerNorm): nn.init.constant_(module.bias, 0) nn.init.constant_(module.weight, 1.0) elif isinstance(module, TimesformerEmbeddings): nn.init.trunc_normal_(module.cls_token, std=self.config.initializer_range) nn.init.trunc_normal_(module.position_embeddings, std=self.config.initializer_range) module.patch_embeddings.apply(self._init_weights) def _set_gradient_checkpointing(self, module, value=False): if isinstance(module, TimesformerEncoder): module.gradient_checkpointing = value TIMESFORMER_START_DOCSTRING = r""" This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`TimesformerConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ TIMESFORMER_INPUTS_DOCSTRING = r""" Args: pixel_values (`torch.FloatTensor` of shape `(batch_size, num_frames, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`VideoMAEImageProcessor.preprocess`] for details. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ @add_start_docstrings( "The bare TimeSformer Model transformer outputting raw hidden-states without any specific head on top.", TIMESFORMER_START_DOCSTRING, ) class TimesformerModel(TimesformerPreTrainedModel): def __init__(self, config): super().__init__(config) self.config = config self.embeddings = TimesformerEmbeddings(config) self.encoder = TimesformerEncoder(config) self.layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.embeddings.patch_embeddings def _prune_heads(self, heads_to_prune): """ Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base class PreTrainedModel """ for layer, heads in heads_to_prune.items(): self.encoder.layer[layer].attention.prune_heads(heads) @add_start_docstrings_to_model_forward(TIMESFORMER_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=BaseModelOutput, config_class=_CONFIG_FOR_DOC) def forward( self, pixel_values, output_attentions=None, output_hidden_states=None, return_dict=None, ): r""" Returns: Examples: ```python >>> import av >>> import numpy as np >>> from transformers import AutoImageProcessor, TimesformerModel >>> from huggingface_hub import hf_hub_download >>> np.random.seed(0) >>> def read_video_pyav(container, indices): ... ''' ... Decode the video with PyAV decoder. ... Args: ... container (`av.container.input.InputContainer`): PyAV container. ... indices (`List[int]`): List of frame indices to decode. ... Returns: ... result (np.ndarray): np array of decoded frames of shape (num_frames, height, width, 3). ... ''' ... frames = [] ... container.seek(0) ... start_index = indices[0] ... end_index = indices[-1] ... for i, frame in enumerate(container.decode(video=0)): ... if i > end_index: ... break ... if i >= start_index and i in indices: ... frames.append(frame) ... return np.stack([x.to_ndarray(format="rgb24") for x in frames]) >>> def sample_frame_indices(clip_len, frame_sample_rate, seg_len): ... converted_len = int(clip_len * frame_sample_rate) ... end_idx = np.random.randint(converted_len, seg_len) ... start_idx = end_idx - converted_len ... indices = np.linspace(start_idx, end_idx, num=clip_len) ... indices = np.clip(indices, start_idx, end_idx - 1).astype(np.int64) ... return indices >>> # video clip consists of 300 frames (10 seconds at 30 FPS) >>> file_path = hf_hub_download( ... repo_id="nielsr/video-demo", filename="eating_spaghetti.mp4", repo_type="dataset" ... ) >>> container = av.open(file_path) >>> # sample 8 frames >>> indices = sample_frame_indices(clip_len=8, frame_sample_rate=4, seg_len=container.streams.video[0].frames) >>> video = read_video_pyav(container, indices) >>> image_processor = AutoImageProcessor.from_pretrained("MCG-NJU/videomae-base") >>> model = TimesformerModel.from_pretrained("facebook/timesformer-base-finetuned-k400") >>> # prepare video for the model >>> inputs = image_processor(list(video), return_tensors="pt") >>> # forward pass >>> outputs = model(**inputs) >>> last_hidden_states = outputs.last_hidden_state >>> list(last_hidden_states.shape) [1, 1569, 768] ```""" output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict embedding_output = self.embeddings(pixel_values) encoder_outputs = self.encoder( embedding_output, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = encoder_outputs[0] if self.layernorm is not None: sequence_output = self.layernorm(sequence_output) if not return_dict: return (sequence_output,) + encoder_outputs[1:] return BaseModelOutput( last_hidden_state=sequence_output, hidden_states=encoder_outputs.hidden_states, attentions=encoder_outputs.attentions, ) @add_start_docstrings( """TimeSformer Model transformer with a video classification head on top (a linear layer on top of the final hidden state of the [CLS] token) e.g. for ImageNet.""", TIMESFORMER_START_DOCSTRING, ) class TimesformerForVideoClassification(TimesformerPreTrainedModel): def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.timesformer = TimesformerModel(config) # Classifier head self.classifier = nn.Linear(config.hidden_size, config.num_labels) if config.num_labels > 0 else nn.Identity() # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(TIMESFORMER_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=ImageClassifierOutput, config_class=_CONFIG_FOR_DOC) def forward( self, pixel_values: Optional[torch.Tensor] = None, labels: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, ImageClassifierOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the image classification/regression loss. Indices should be in `[0, ..., config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If `config.num_labels > 1` a classification loss is computed (Cross-Entropy). Returns: Examples: ```python >>> import av >>> import torch >>> import numpy as np >>> from transformers import AutoImageProcessor, TimesformerForVideoClassification >>> from huggingface_hub import hf_hub_download >>> np.random.seed(0) >>> def read_video_pyav(container, indices): ... ''' ... Decode the video with PyAV decoder. ... Args: ... container (`av.container.input.InputContainer`): PyAV container. ... indices (`List[int]`): List of frame indices to decode. ... Returns: ... result (np.ndarray): np array of decoded frames of shape (num_frames, height, width, 3). ... ''' ... frames = [] ... container.seek(0) ... start_index = indices[0] ... end_index = indices[-1] ... for i, frame in enumerate(container.decode(video=0)): ... if i > end_index: ... break ... if i >= start_index and i in indices: ... frames.append(frame) ... return np.stack([x.to_ndarray(format="rgb24") for x in frames]) >>> def sample_frame_indices(clip_len, frame_sample_rate, seg_len): ... converted_len = int(clip_len * frame_sample_rate) ... end_idx = np.random.randint(converted_len, seg_len) ... start_idx = end_idx - converted_len ... indices = np.linspace(start_idx, end_idx, num=clip_len) ... indices = np.clip(indices, start_idx, end_idx - 1).astype(np.int64) ... return indices >>> # video clip consists of 300 frames (10 seconds at 30 FPS) >>> file_path = hf_hub_download( ... repo_id="nielsr/video-demo", filename="eating_spaghetti.mp4", repo_type="dataset" ... ) >>> container = av.open(file_path) >>> # sample 8 frames >>> indices = sample_frame_indices(clip_len=8, frame_sample_rate=1, seg_len=container.streams.video[0].frames) >>> video = read_video_pyav(container, indices) >>> image_processor = AutoImageProcessor.from_pretrained("MCG-NJU/videomae-base-finetuned-kinetics") >>> model = TimesformerForVideoClassification.from_pretrained("facebook/timesformer-base-finetuned-k400") >>> inputs = image_processor(list(video), return_tensors="pt") >>> with torch.no_grad(): ... outputs = model(**inputs) ... logits = outputs.logits >>> # model predicts one of the 400 Kinetics-400 classes >>> predicted_label = logits.argmax(-1).item() >>> print(model.config.id2label[predicted_label]) eating spaghetti ```""" return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.timesformer( pixel_values, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = outputs[0][:, 0] logits = self.classifier(sequence_output) loss = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: self.config.problem_type = "regression" elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): self.config.problem_type = "single_label_classification" else: self.config.problem_type = "multi_label_classification" if self.config.problem_type == "regression": loss_fct = MSELoss() if self.num_labels == 1: loss = loss_fct(logits.squeeze(), labels.squeeze()) else: loss = loss_fct(logits, labels) elif self.config.problem_type == "single_label_classification": loss_fct = CrossEntropyLoss() loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) elif self.config.problem_type == "multi_label_classification": loss_fct = BCEWithLogitsLoss() loss = loss_fct(logits, labels) if not return_dict: output = (logits,) + outputs[1:] return ((loss,) + output) if loss is not None else output return ImageClassifierOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, )
0
hf_public_repos/transformers/src/transformers/models
hf_public_repos/transformers/src/transformers/models/maskformer/__init__.py
# Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available _import_structure = { "configuration_maskformer": ["MASKFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "MaskFormerConfig"], "configuration_maskformer_swin": ["MaskFormerSwinConfig"], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["feature_extraction_maskformer"] = ["MaskFormerFeatureExtractor"] _import_structure["image_processing_maskformer"] = ["MaskFormerImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["modeling_maskformer"] = [ "MASKFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "MaskFormerForInstanceSegmentation", "MaskFormerModel", "MaskFormerPreTrainedModel", ] _import_structure["modeling_maskformer_swin"] = [ "MaskFormerSwinBackbone", "MaskFormerSwinModel", "MaskFormerSwinPreTrainedModel", ] if TYPE_CHECKING: from .configuration_maskformer import MASKFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, MaskFormerConfig from .configuration_maskformer_swin import MaskFormerSwinConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_maskformer import MaskFormerFeatureExtractor from .image_processing_maskformer import MaskFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_maskformer import ( MASKFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, MaskFormerForInstanceSegmentation, MaskFormerModel, MaskFormerPreTrainedModel, ) from .modeling_maskformer_swin import ( MaskFormerSwinBackbone, MaskFormerSwinModel, MaskFormerSwinPreTrainedModel, ) else: import sys sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure)
0
hf_public_repos/transformers/src/transformers/models
hf_public_repos/transformers/src/transformers/models/maskformer/convert_maskformer_original_pytorch_checkpoint_to_pytorch.py
# coding=utf-8 # Copyright 2022 Meta Platforms, Inc. and The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import sys from argparse import ArgumentParser from dataclasses import dataclass from pathlib import Path from pprint import pformat from typing import Any, Dict, Iterator, List, Set, Tuple import requests import torch import torchvision.transforms as T from detectron2.checkpoint import DetectionCheckpointer from detectron2.config import get_cfg from detectron2.data import MetadataCatalog from detectron2.projects.deeplab import add_deeplab_config from PIL import Image from torch import Tensor, nn from transformers.models.maskformer.feature_extraction_maskformer import MaskFormerImageProcessor from transformers.models.maskformer.modeling_maskformer import ( MaskFormerConfig, MaskFormerForInstanceSegmentation, MaskFormerForInstanceSegmentationOutput, MaskFormerModel, MaskFormerModelOutput, ) from transformers.utils import logging StateDict = Dict[str, Tensor] logging.set_verbosity_info() logger = logging.get_logger() torch.manual_seed(0) class TrackedStateDict: def __init__(self, to_track: Dict): """This class "tracks" a python dictionary by keeping track of which item is accessed. Args: to_track (Dict): The dictionary we wish to track """ self.to_track = to_track self._seen: Set[str] = set() def __getitem__(self, key: str) -> Any: return self.to_track[key] def __setitem__(self, key: str, item: Any): self._seen.add(key) self.to_track[key] = item def diff(self) -> List[str]: """This method returns a set difference between the keys in the tracked state dict and the one we have access so far. This is an effective method to check if we have update all the keys Returns: List[str]: List of keys not yet updated """ return set(self.to_track.keys()) - self._seen def copy(self) -> Dict: # proxy the call to the internal dictionary return self.to_track.copy() # We will verify our results on an image of cute cats def prepare_img(): url = "http://images.cocodataset.org/val2017/000000039769.jpg" img_data = requests.get(url, stream=True).raw im = Image.open(img_data) return im @dataclass class Args: """Fake command line arguments needed by maskformer/detectron implementation""" config_file: str def setup_cfg(args: Args): # load config from file and command-line arguments cfg = get_cfg() add_deeplab_config(cfg) add_mask_former_config(cfg) cfg.merge_from_file(args.config_file) cfg.freeze() return cfg class OriginalMaskFormerConfigToOursConverter: def __call__(self, original_config: object) -> MaskFormerConfig: model = original_config.MODEL mask_former = model.MASK_FORMER swin = model.SWIN dataset_catalog = MetadataCatalog.get(original_config.DATASETS.TEST[0]) id2label = dict(enumerate(dataset_catalog.stuff_classes)) label2id = {label: idx for idx, label in id2label.items()} config: MaskFormerConfig = MaskFormerConfig( fpn_feature_size=model.SEM_SEG_HEAD.CONVS_DIM, mask_feature_size=model.SEM_SEG_HEAD.MASK_DIM, num_labels=model.SEM_SEG_HEAD.NUM_CLASSES, no_object_weight=mask_former.NO_OBJECT_WEIGHT, num_queries=mask_former.NUM_OBJECT_QUERIES, backbone_config={ "pretrain_img_size": swin.PRETRAIN_IMG_SIZE, "image_size": swin.PRETRAIN_IMG_SIZE, "in_channels": 3, "patch_size": swin.PATCH_SIZE, "embed_dim": swin.EMBED_DIM, "depths": swin.DEPTHS, "num_heads": swin.NUM_HEADS, "window_size": swin.WINDOW_SIZE, "drop_path_rate": swin.DROP_PATH_RATE, "model_type": "swin", }, dice_weight=mask_former.DICE_WEIGHT, ce_weight=1.0, mask_weight=mask_former.MASK_WEIGHT, decoder_config={ "model_type": "detr", "max_position_embeddings": 1024, "encoder_layers": 6, "encoder_ffn_dim": 2048, "encoder_attention_heads": 8, "decoder_layers": mask_former.DEC_LAYERS, "decoder_ffn_dim": mask_former.DIM_FEEDFORWARD, "decoder_attention_heads": mask_former.NHEADS, "encoder_layerdrop": 0.0, "decoder_layerdrop": 0.0, "d_model": mask_former.HIDDEN_DIM, "dropout": mask_former.DROPOUT, "attention_dropout": 0.0, "activation_dropout": 0.0, "init_std": 0.02, "init_xavier_std": 1.0, "scale_embedding": False, "auxiliary_loss": False, "dilation": False, # default pretrained config values }, id2label=id2label, label2id=label2id, ) return config class OriginalMaskFormerConfigToImageProcessorConverter: def __call__(self, original_config: object) -> MaskFormerImageProcessor: model = original_config.MODEL model_input = original_config.INPUT dataset_catalog = MetadataCatalog.get(original_config.DATASETS.TEST[0]) return MaskFormerImageProcessor( image_mean=(torch.tensor(model.PIXEL_MEAN) / 255).tolist(), image_std=(torch.tensor(model.PIXEL_STD) / 255).tolist(), size=model_input.MIN_SIZE_TEST, max_size=model_input.MAX_SIZE_TEST, num_labels=model.SEM_SEG_HEAD.NUM_CLASSES, ignore_index=dataset_catalog.ignore_label, size_divisibility=32, # 32 is required by swin ) class OriginalMaskFormerCheckpointToOursConverter: def __init__(self, original_model: nn.Module, config: MaskFormerConfig): self.original_model = original_model self.config = config def pop_all(self, renamed_keys: List[Tuple[str, str]], dst_state_dict: StateDict, src_state_dict: StateDict): for src_key, dst_key in renamed_keys: dst_state_dict[dst_key] = src_state_dict.pop(src_key) def replace_backbone(self, dst_state_dict: StateDict, src_state_dict: StateDict, config: MaskFormerConfig): dst_prefix: str = "pixel_level_module.encoder" src_prefix: str = "backbone" renamed_keys = [ ( f"{src_prefix}.patch_embed.proj.weight", f"{dst_prefix}.model.embeddings.patch_embeddings.projection.weight", ), (f"{src_prefix}.patch_embed.proj.bias", f"{dst_prefix}.model.embeddings.patch_embeddings.projection.bias"), (f"{src_prefix}.patch_embed.norm.weight", f"{dst_prefix}.model.embeddings.norm.weight"), (f"{src_prefix}.patch_embed.norm.bias", f"{dst_prefix}.model.embeddings.norm.bias"), ] num_layers = len(config.backbone_config.depths) for layer_idx in range(num_layers): for block_idx in range(config.backbone_config.depths[layer_idx]): renamed_keys.extend( [ # src, dst ( f"{src_prefix}.layers.{layer_idx}.blocks.{block_idx}.norm1.weight", f"{dst_prefix}.model.encoder.layers.{layer_idx}.blocks.{block_idx}.layernorm_before.weight", ), ( f"{src_prefix}.layers.{layer_idx}.blocks.{block_idx}.norm1.bias", f"{dst_prefix}.model.encoder.layers.{layer_idx}.blocks.{block_idx}.layernorm_before.bias", ), ( f"{src_prefix}.layers.{layer_idx}.blocks.{block_idx}.attn.relative_position_bias_table", f"{dst_prefix}.model.encoder.layers.{layer_idx}.blocks.{block_idx}.attention.self.relative_position_bias_table", ), ] ) # now we need to handle the attentions # read in weights + bias of input projection layer of cross-attention src_att_weight = src_state_dict[f"{src_prefix}.layers.{layer_idx}.blocks.{block_idx}.attn.qkv.weight"] src_att_bias = src_state_dict[f"{src_prefix}.layers.{layer_idx}.blocks.{block_idx}.attn.qkv.bias"] size = src_att_weight.shape[0] offset = size // 3 dst_state_dict[ f"{dst_prefix}.model.encoder.layers.{layer_idx}.blocks.{block_idx}.attention.self.query.weight" ] = src_att_weight[:offset, :] dst_state_dict[ f"{dst_prefix}.model.encoder.layers.{layer_idx}.blocks.{block_idx}.attention.self.query.bias" ] = src_att_bias[:offset] dst_state_dict[ f"{dst_prefix}.model.encoder.layers.{layer_idx}.blocks.{block_idx}.attention.self.key.weight" ] = src_att_weight[offset : offset * 2, :] dst_state_dict[ f"{dst_prefix}.model.encoder.layers.{layer_idx}.blocks.{block_idx}.attention.self.key.bias" ] = src_att_bias[offset : offset * 2] dst_state_dict[ f"{dst_prefix}.model.encoder.layers.{layer_idx}.blocks.{block_idx}.attention.self.value.weight" ] = src_att_weight[-offset:, :] dst_state_dict[ f"{dst_prefix}.model.encoder.layers.{layer_idx}.blocks.{block_idx}.attention.self.value.bias" ] = src_att_bias[-offset:] # let's pop them src_state_dict.pop(f"{src_prefix}.layers.{layer_idx}.blocks.{block_idx}.attn.qkv.weight") src_state_dict.pop(f"{src_prefix}.layers.{layer_idx}.blocks.{block_idx}.attn.qkv.bias") # proj renamed_keys.extend( [ ( f"{src_prefix}.layers.{layer_idx}.blocks.{block_idx}.attn.proj.weight", f"{dst_prefix}.model.encoder.layers.{layer_idx}.blocks.{block_idx}.attention.output.dense.weight", ), ( f"{src_prefix}.layers.{layer_idx}.blocks.{block_idx}.attn.proj.bias", f"{dst_prefix}.model.encoder.layers.{layer_idx}.blocks.{block_idx}.attention.output.dense.bias", ), ] ) # second norm renamed_keys.extend( [ ( f"{src_prefix}.layers.{layer_idx}.blocks.{block_idx}.norm2.weight", f"{dst_prefix}.model.encoder.layers.{layer_idx}.blocks.{block_idx}.layernorm_after.weight", ), ( f"{src_prefix}.layers.{layer_idx}.blocks.{block_idx}.norm2.bias", f"{dst_prefix}.model.encoder.layers.{layer_idx}.blocks.{block_idx}.layernorm_after.bias", ), ] ) # mlp renamed_keys.extend( [ ( f"{src_prefix}.layers.{layer_idx}.blocks.{block_idx}.mlp.fc1.weight", f"{dst_prefix}.model.encoder.layers.{layer_idx}.blocks.{block_idx}.intermediate.dense.weight", ), ( f"{src_prefix}.layers.{layer_idx}.blocks.{block_idx}.mlp.fc1.bias", f"{dst_prefix}.model.encoder.layers.{layer_idx}.blocks.{block_idx}.intermediate.dense.bias", ), ( f"{src_prefix}.layers.{layer_idx}.blocks.{block_idx}.mlp.fc2.weight", f"{dst_prefix}.model.encoder.layers.{layer_idx}.blocks.{block_idx}.output.dense.weight", ), ( f"{src_prefix}.layers.{layer_idx}.blocks.{block_idx}.mlp.fc2.bias", f"{dst_prefix}.model.encoder.layers.{layer_idx}.blocks.{block_idx}.output.dense.bias", ), ] ) renamed_keys.extend( [ ( f"{src_prefix}.layers.{layer_idx}.blocks.{block_idx}.attn.relative_position_index", f"{dst_prefix}.model.encoder.layers.{layer_idx}.blocks.{block_idx}.attention.self.relative_position_index", ) ] ) if layer_idx < num_layers - 1: # patch merging renamed_keys.extend( [ ( f"{src_prefix}.layers.{layer_idx}.downsample.reduction.weight", f"{dst_prefix}.model.encoder.layers.{layer_idx}.downsample.reduction.weight", ), ( f"{src_prefix}.layers.{layer_idx}.downsample.norm.weight", f"{dst_prefix}.model.encoder.layers.{layer_idx}.downsample.norm.weight", ), ( f"{src_prefix}.layers.{layer_idx}.downsample.norm.bias", f"{dst_prefix}.model.encoder.layers.{layer_idx}.downsample.norm.bias", ), ] ) # hidden states norms renamed_keys.extend( [ ( f"{src_prefix}.norm{layer_idx}.weight", f"{dst_prefix}.hidden_states_norms.{layer_idx}.weight", ), ( f"{src_prefix}.norm{layer_idx}.bias", f"{dst_prefix}.hidden_states_norms.{layer_idx}.bias", ), ] ) self.pop_all(renamed_keys, dst_state_dict, src_state_dict) def replace_pixel_module(self, dst_state_dict: StateDict, src_state_dict: StateDict): dst_prefix: str = "pixel_level_module.decoder" src_prefix: str = "sem_seg_head.pixel_decoder" self.replace_backbone(dst_state_dict, src_state_dict, self.config) def rename_keys_for_conv(detectron_conv: str, mine_conv: str): return [ (f"{detectron_conv}.weight", f"{mine_conv}.0.weight"), # 2 cuz the have act in the middle -> rename it (f"{detectron_conv}.norm.weight", f"{mine_conv}.1.weight"), (f"{detectron_conv}.norm.bias", f"{mine_conv}.1.bias"), ] renamed_keys = [ (f"{src_prefix}.mask_features.weight", f"{dst_prefix}.mask_projection.weight"), (f"{src_prefix}.mask_features.bias", f"{dst_prefix}.mask_projection.bias"), # the layers in the original one are in reverse order, stem is the last one! ] renamed_keys.extend(rename_keys_for_conv(f"{src_prefix}.layer_4", f"{dst_prefix}.fpn.stem")) # add all the fpn layers (here we need some config parameters to know the size in advance) for src_i, dst_i in zip(range(3, 0, -1), range(0, 3)): renamed_keys.extend( rename_keys_for_conv(f"{src_prefix}.adapter_{src_i}", f"{dst_prefix}.fpn.layers.{dst_i}.proj") ) renamed_keys.extend( rename_keys_for_conv(f"{src_prefix}.layer_{src_i}", f"{dst_prefix}.fpn.layers.{dst_i}.block") ) self.pop_all(renamed_keys, dst_state_dict, src_state_dict) def rename_keys_in_detr_decoder(self, dst_state_dict: StateDict, src_state_dict: StateDict): dst_prefix: str = "transformer_module.decoder" src_prefix: str = "sem_seg_head.predictor.transformer.decoder" # not sure why we are not popping direcetly here! # here we list all keys to be renamed (original name on the left, our name on the right) rename_keys = [] for i in range(self.config.decoder_config.decoder_layers): # decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms rename_keys.append( ( f"{src_prefix}.layers.{i}.self_attn.out_proj.weight", f"{dst_prefix}.layers.{i}.self_attn.out_proj.weight", ) ) rename_keys.append( ( f"{src_prefix}.layers.{i}.self_attn.out_proj.bias", f"{dst_prefix}.layers.{i}.self_attn.out_proj.bias", ) ) rename_keys.append( ( f"{src_prefix}.layers.{i}.multihead_attn.out_proj.weight", f"{dst_prefix}.layers.{i}.encoder_attn.out_proj.weight", ) ) rename_keys.append( ( f"{src_prefix}.layers.{i}.multihead_attn.out_proj.bias", f"{dst_prefix}.layers.{i}.encoder_attn.out_proj.bias", ) ) rename_keys.append((f"{src_prefix}.layers.{i}.linear1.weight", f"{dst_prefix}.layers.{i}.fc1.weight")) rename_keys.append((f"{src_prefix}.layers.{i}.linear1.bias", f"{dst_prefix}.layers.{i}.fc1.bias")) rename_keys.append((f"{src_prefix}.layers.{i}.linear2.weight", f"{dst_prefix}.layers.{i}.fc2.weight")) rename_keys.append((f"{src_prefix}.layers.{i}.linear2.bias", f"{dst_prefix}.layers.{i}.fc2.bias")) rename_keys.append( (f"{src_prefix}.layers.{i}.norm1.weight", f"{dst_prefix}.layers.{i}.self_attn_layer_norm.weight") ) rename_keys.append( (f"{src_prefix}.layers.{i}.norm1.bias", f"{dst_prefix}.layers.{i}.self_attn_layer_norm.bias") ) rename_keys.append( (f"{src_prefix}.layers.{i}.norm2.weight", f"{dst_prefix}.layers.{i}.encoder_attn_layer_norm.weight") ) rename_keys.append( (f"{src_prefix}.layers.{i}.norm2.bias", f"{dst_prefix}.layers.{i}.encoder_attn_layer_norm.bias") ) rename_keys.append( (f"{src_prefix}.layers.{i}.norm3.weight", f"{dst_prefix}.layers.{i}.final_layer_norm.weight") ) rename_keys.append( (f"{src_prefix}.layers.{i}.norm3.bias", f"{dst_prefix}.layers.{i}.final_layer_norm.bias") ) return rename_keys def replace_q_k_v_in_detr_decoder(self, dst_state_dict: StateDict, src_state_dict: StateDict): dst_prefix: str = "transformer_module.decoder" src_prefix: str = "sem_seg_head.predictor.transformer.decoder" for i in range(self.config.decoder_config.decoder_layers): # read in weights + bias of input projection layer of self-attention in_proj_weight = src_state_dict.pop(f"{src_prefix}.layers.{i}.self_attn.in_proj_weight") in_proj_bias = src_state_dict.pop(f"{src_prefix}.layers.{i}.self_attn.in_proj_bias") # next, add query, keys and values (in that order) to the state dict dst_state_dict[f"{dst_prefix}.layers.{i}.self_attn.q_proj.weight"] = in_proj_weight[:256, :] dst_state_dict[f"{dst_prefix}.layers.{i}.self_attn.q_proj.bias"] = in_proj_bias[:256] dst_state_dict[f"{dst_prefix}.layers.{i}.self_attn.k_proj.weight"] = in_proj_weight[256:512, :] dst_state_dict[f"{dst_prefix}.layers.{i}.self_attn.k_proj.bias"] = in_proj_bias[256:512] dst_state_dict[f"{dst_prefix}.layers.{i}.self_attn.v_proj.weight"] = in_proj_weight[-256:, :] dst_state_dict[f"{dst_prefix}.layers.{i}.self_attn.v_proj.bias"] = in_proj_bias[-256:] # read in weights + bias of input projection layer of cross-attention in_proj_weight_cross_attn = src_state_dict.pop(f"{src_prefix}.layers.{i}.multihead_attn.in_proj_weight") in_proj_bias_cross_attn = src_state_dict.pop(f"{src_prefix}.layers.{i}.multihead_attn.in_proj_bias") # next, add query, keys and values (in that order) of cross-attention to the state dict dst_state_dict[f"{dst_prefix}.layers.{i}.encoder_attn.q_proj.weight"] = in_proj_weight_cross_attn[:256, :] dst_state_dict[f"{dst_prefix}.layers.{i}.encoder_attn.q_proj.bias"] = in_proj_bias_cross_attn[:256] dst_state_dict[f"{dst_prefix}.layers.{i}.encoder_attn.k_proj.weight"] = in_proj_weight_cross_attn[ 256:512, : ] dst_state_dict[f"{dst_prefix}.layers.{i}.encoder_attn.k_proj.bias"] = in_proj_bias_cross_attn[256:512] dst_state_dict[f"{dst_prefix}.layers.{i}.encoder_attn.v_proj.weight"] = in_proj_weight_cross_attn[-256:, :] dst_state_dict[f"{dst_prefix}.layers.{i}.encoder_attn.v_proj.bias"] = in_proj_bias_cross_attn[-256:] def replace_detr_decoder(self, dst_state_dict: StateDict, src_state_dict: StateDict): dst_prefix: str = "transformer_module.decoder" src_prefix: str = "sem_seg_head.predictor.transformer.decoder" renamed_keys = self.rename_keys_in_detr_decoder(dst_state_dict, src_state_dict) # add more renamed_keys.extend( [ (f"{src_prefix}.norm.weight", f"{dst_prefix}.layernorm.weight"), (f"{src_prefix}.norm.bias", f"{dst_prefix}.layernorm.bias"), ] ) self.pop_all(renamed_keys, dst_state_dict, src_state_dict) self.replace_q_k_v_in_detr_decoder(dst_state_dict, src_state_dict) def replace_transformer_module(self, dst_state_dict: StateDict, src_state_dict: StateDict): dst_prefix: str = "transformer_module" src_prefix: str = "sem_seg_head.predictor" self.replace_detr_decoder(dst_state_dict, src_state_dict) renamed_keys = [ (f"{src_prefix}.query_embed.weight", f"{dst_prefix}.queries_embedder.weight"), (f"{src_prefix}.input_proj.weight", f"{dst_prefix}.input_projection.weight"), (f"{src_prefix}.input_proj.bias", f"{dst_prefix}.input_projection.bias"), ] self.pop_all(renamed_keys, dst_state_dict, src_state_dict) def replace_instance_segmentation_module(self, dst_state_dict: StateDict, src_state_dict: StateDict): # NOTE in our case we don't have a prefix, thus we removed the "." from the keys later on! dst_prefix: str = "" src_prefix: str = "sem_seg_head.predictor" renamed_keys = [ (f"{src_prefix}.class_embed.weight", f"{dst_prefix}class_predictor.weight"), (f"{src_prefix}.class_embed.bias", f"{dst_prefix}class_predictor.bias"), ] mlp_len = 3 for i in range(mlp_len): renamed_keys.extend( [ (f"{src_prefix}.mask_embed.layers.{i}.weight", f"{dst_prefix}mask_embedder.{i}.0.weight"), (f"{src_prefix}.mask_embed.layers.{i}.bias", f"{dst_prefix}mask_embedder.{i}.0.bias"), ] ) logger.info(f"Replacing keys {pformat(renamed_keys)}") self.pop_all(renamed_keys, dst_state_dict, src_state_dict) def convert(self, mask_former: MaskFormerModel) -> MaskFormerModel: dst_state_dict = TrackedStateDict(mask_former.state_dict()) src_state_dict = self.original_model.state_dict() self.replace_pixel_module(dst_state_dict, src_state_dict) self.replace_transformer_module(dst_state_dict, src_state_dict) logger.info(f"Missed keys are {pformat(dst_state_dict.diff())}") logger.info(f"Not copied keys are {pformat(src_state_dict.keys())}") logger.info("🙌 Done") mask_former.load_state_dict(dst_state_dict) return mask_former def convert_instance_segmentation( self, mask_former: MaskFormerForInstanceSegmentation ) -> MaskFormerForInstanceSegmentation: dst_state_dict = TrackedStateDict(mask_former.state_dict()) src_state_dict = self.original_model.state_dict() self.replace_instance_segmentation_module(dst_state_dict, src_state_dict) mask_former.load_state_dict(dst_state_dict) return mask_former @staticmethod def using_dirs(checkpoints_dir: Path, config_dir: Path) -> Iterator[Tuple[object, Path, Path]]: checkpoints: List[Path] = checkpoints_dir.glob("**/*.pkl") for checkpoint in checkpoints: logger.info(f"💪 Converting {checkpoint.stem}") # find associated config file config: Path = config_dir / checkpoint.parents[0].stem / "swin" / f"{checkpoint.stem}.yaml" yield config, checkpoint def test(original_model, our_model: MaskFormerForInstanceSegmentation, image_processor: MaskFormerImageProcessor): with torch.no_grad(): original_model = original_model.eval() our_model = our_model.eval() im = prepare_img() tr = T.Compose( [ T.Resize((384, 384)), T.ToTensor(), T.Normalize( mean=torch.tensor([123.675, 116.280, 103.530]) / 255.0, std=torch.tensor([58.395, 57.120, 57.375]) / 255.0, ), ], ) x = tr(im).unsqueeze(0) original_model_backbone_features = original_model.backbone(x.clone()) our_model_output: MaskFormerModelOutput = our_model.model(x.clone(), output_hidden_states=True) for original_model_feature, our_model_feature in zip( original_model_backbone_features.values(), our_model_output.encoder_hidden_states ): assert torch.allclose( original_model_feature, our_model_feature, atol=1e-3 ), "The backbone features are not the same." original_model_pixel_out = original_model.sem_seg_head.pixel_decoder.forward_features( original_model_backbone_features ) assert torch.allclose( original_model_pixel_out[0], our_model_output.pixel_decoder_last_hidden_state, atol=1e-4 ), "The pixel decoder feature are not the same" # let's test the full model original_model_out = original_model([{"image": x.squeeze(0)}]) original_segmentation = original_model_out[0]["sem_seg"] our_model_out: MaskFormerForInstanceSegmentationOutput = our_model(x) our_segmentation = image_processor.post_process_segmentation(our_model_out, target_size=(384, 384)) assert torch.allclose( original_segmentation, our_segmentation, atol=1e-3 ), "The segmentation image is not the same." logger.info("✅ Test passed!") def get_name(checkpoint_file: Path): model_name_raw: str = checkpoint_file.stem # model_name_raw is something like maskformer_panoptic_swin_base_IN21k_384_bs64_554k parent_name: str = checkpoint_file.parents[0].stem backbone = "swin" dataset = "" if "coco" in parent_name: dataset = "coco" elif "ade" in parent_name: dataset = "ade" else: raise ValueError(f"{parent_name} must be wrong since we didn't find 'coco' or 'ade' in it ") backbone_types = ["tiny", "small", "base", "large"] backbone_type = list(filter(lambda x: x in model_name_raw, backbone_types))[0] model_name = f"maskformer-{backbone}-{backbone_type}-{dataset}" return model_name if __name__ == "__main__": parser = ArgumentParser( description="Command line to convert the original maskformers (with swin backbone) to our implementations." ) parser.add_argument( "--checkpoints_dir", type=Path, help=( "A directory containing the model's checkpoints. The directory has to have the following structure:" " <DIR_NAME>/<DATASET_NAME>/<CONFIG_NAME>.pkl" ), ) parser.add_argument( "--configs_dir", type=Path, help=( "A directory containing the model's configs, see detectron2 doc. The directory has to have the following" " structure: <DIR_NAME>/<DATASET_NAME>/<CONFIG_NAME>.yaml" ), ) parser.add_argument( "--pytorch_dump_folder_path", required=True, type=Path, help="Path to the folder to output PyTorch models.", ) parser.add_argument( "--maskformer_dir", required=True, type=Path, help=( "A path to MaskFormer's original implementation directory. You can download from here:" " https://github.com/facebookresearch/MaskFormer" ), ) args = parser.parse_args() checkpoints_dir: Path = args.checkpoints_dir config_dir: Path = args.configs_dir save_directory: Path = args.pytorch_dump_folder_path maskformer_dir: Path = args.maskformer_dir # append the path to the parents to maskformer dir sys.path.append(str(maskformer_dir.parent)) # and import what's needed from MaskFormer.mask_former import add_mask_former_config from MaskFormer.mask_former.mask_former_model import MaskFormer as OriginalMaskFormer if not save_directory.exists(): save_directory.mkdir(parents=True) for config_file, checkpoint_file in OriginalMaskFormerCheckpointToOursConverter.using_dirs( checkpoints_dir, config_dir ): image_processor = OriginalMaskFormerConfigToImageProcessorConverter()(setup_cfg(Args(config_file=config_file))) original_config = setup_cfg(Args(config_file=config_file)) mask_former_kwargs = OriginalMaskFormer.from_config(original_config) original_model = OriginalMaskFormer(**mask_former_kwargs).eval() DetectionCheckpointer(original_model).load(str(checkpoint_file)) config: MaskFormerConfig = OriginalMaskFormerConfigToOursConverter()(original_config) mask_former = MaskFormerModel(config=config).eval() converter = OriginalMaskFormerCheckpointToOursConverter(original_model, config) maskformer = converter.convert(mask_former) mask_former_for_instance_segmentation = MaskFormerForInstanceSegmentation(config=config).eval() mask_former_for_instance_segmentation.model = mask_former mask_former_for_instance_segmentation = converter.convert_instance_segmentation( mask_former_for_instance_segmentation ) test(original_model, mask_former_for_instance_segmentation, image_processor) model_name = get_name(checkpoint_file) logger.info(f"🪄 Saving {model_name}") image_processor.save_pretrained(save_directory / model_name) mask_former_for_instance_segmentation.save_pretrained(save_directory / model_name) image_processor.push_to_hub( repo_path_or_name=save_directory / model_name, commit_message="Add model", use_temp_dir=True, ) mask_former_for_instance_segmentation.push_to_hub( repo_path_or_name=save_directory / model_name, commit_message="Add model", use_temp_dir=True, )
0
hf_public_repos/transformers/src/transformers/models
hf_public_repos/transformers/src/transformers/models/maskformer/configuration_maskformer.py
# coding=utf-8 # Copyright 2022 Meta Platforms, Inc.and The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ MaskFormer model configuration""" import copy from typing import Dict, Optional from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING from ..detr import DetrConfig from ..swin import SwinConfig MASKFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP = { "facebook/maskformer-swin-base-ade": ( "https://huggingface.co/facebook/maskformer-swin-base-ade/blob/main/config.json" ) # See all MaskFormer models at https://huggingface.co/models?filter=maskformer } logger = logging.get_logger(__name__) class MaskFormerConfig(PretrainedConfig): r""" This is the configuration class to store the configuration of a [`MaskFormerModel`]. It is used to instantiate a MaskFormer model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the MaskFormer [facebook/maskformer-swin-base-ade](https://huggingface.co/facebook/maskformer-swin-base-ade) architecture trained on [ADE20k-150](https://huggingface.co/datasets/scene_parse_150). Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Currently, MaskFormer only supports the [Swin Transformer](swin) as backbone. Args: mask_feature_size (`int`, *optional*, defaults to 256): The masks' features size, this value will also be used to specify the Feature Pyramid Network features' size. no_object_weight (`float`, *optional*, defaults to 0.1): Weight to apply to the null (no object) class. use_auxiliary_loss(`bool`, *optional*, defaults to `False`): If `True` [`MaskFormerForInstanceSegmentationOutput`] will contain the auxiliary losses computed using the logits from each decoder's stage. backbone_config (`Dict`, *optional*): The configuration passed to the backbone, if unset, the configuration corresponding to `swin-base-patch4-window12-384` will be used. decoder_config (`Dict`, *optional*): The configuration passed to the transformer decoder model, if unset the base config for `detr-resnet-50` will be used. init_std (`float`, *optional*, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. init_xavier_std (`float`, *optional*, defaults to 1): The scaling factor used for the Xavier initialization gain in the HM Attention map module. dice_weight (`float`, *optional*, defaults to 1.0): The weight for the dice loss. cross_entropy_weight (`float`, *optional*, defaults to 1.0): The weight for the cross entropy loss. mask_weight (`float`, *optional*, defaults to 20.0): The weight for the mask loss. output_auxiliary_logits (`bool`, *optional*): Should the model output its `auxiliary_logits` or not. Raises: `ValueError`: Raised if the backbone model type selected is not in `["swin"]` or the decoder model type selected is not in `["detr"]` Examples: ```python >>> from transformers import MaskFormerConfig, MaskFormerModel >>> # Initializing a MaskFormer facebook/maskformer-swin-base-ade configuration >>> configuration = MaskFormerConfig() >>> # Initializing a model (with random weights) from the facebook/maskformer-swin-base-ade style configuration >>> model = MaskFormerModel(configuration) >>> # Accessing the model configuration >>> configuration = model.config ``` """ model_type = "maskformer" attribute_map = {"hidden_size": "mask_feature_size"} backbones_supported = ["resnet", "swin"] decoders_supported = ["detr"] def __init__( self, fpn_feature_size: int = 256, mask_feature_size: int = 256, no_object_weight: float = 0.1, use_auxiliary_loss: bool = False, backbone_config: Optional[Dict] = None, decoder_config: Optional[Dict] = None, init_std: float = 0.02, init_xavier_std: float = 1.0, dice_weight: float = 1.0, cross_entropy_weight: float = 1.0, mask_weight: float = 20.0, output_auxiliary_logits: Optional[bool] = None, **kwargs, ): if backbone_config is None: # fall back to https://huggingface.co/microsoft/swin-base-patch4-window12-384-in22k backbone_config = SwinConfig( image_size=384, in_channels=3, patch_size=4, embed_dim=128, depths=[2, 2, 18, 2], num_heads=[4, 8, 16, 32], window_size=12, drop_path_rate=0.3, out_features=["stage1", "stage2", "stage3", "stage4"], ) if isinstance(backbone_config, dict): backbone_model_type = backbone_config.pop("model_type") config_class = CONFIG_MAPPING[backbone_model_type] backbone_config = config_class.from_dict(backbone_config) # verify that the backbone is supported if backbone_config.model_type not in self.backbones_supported: logger.warning_once( f"Backbone {backbone_config.model_type} is not a supported model and may not be compatible with MaskFormer. " f"Supported model types: {','.join(self.backbones_supported)}" ) if decoder_config is None: # fall back to https://huggingface.co/facebook/detr-resnet-50 decoder_config = DetrConfig() else: # verify that the decoder is supported decoder_type = ( decoder_config.pop("model_type") if isinstance(decoder_config, dict) else decoder_config.model_type ) if decoder_type not in self.decoders_supported: raise ValueError( f"Transformer Decoder {decoder_type} not supported, please use one of" f" {','.join(self.decoders_supported)}" ) if isinstance(decoder_config, dict): config_class = CONFIG_MAPPING[decoder_type] decoder_config = config_class.from_dict(decoder_config) self.backbone_config = backbone_config self.decoder_config = decoder_config # main feature dimension for the model self.fpn_feature_size = fpn_feature_size self.mask_feature_size = mask_feature_size # initializer self.init_std = init_std self.init_xavier_std = init_xavier_std # Hungarian matcher && loss self.cross_entropy_weight = cross_entropy_weight self.dice_weight = dice_weight self.mask_weight = mask_weight self.use_auxiliary_loss = use_auxiliary_loss self.no_object_weight = no_object_weight self.output_auxiliary_logits = output_auxiliary_logits self.num_attention_heads = self.decoder_config.encoder_attention_heads self.num_hidden_layers = self.decoder_config.num_hidden_layers super().__init__(**kwargs) @classmethod def from_backbone_and_decoder_configs( cls, backbone_config: PretrainedConfig, decoder_config: PretrainedConfig, **kwargs ): """Instantiate a [`MaskFormerConfig`] (or a derived class) from a pre-trained backbone model configuration and DETR model configuration. Args: backbone_config ([`PretrainedConfig`]): The backbone configuration. decoder_config ([`PretrainedConfig`]): The transformer decoder configuration to use. Returns: [`MaskFormerConfig`]: An instance of a configuration object """ return cls( backbone_config=backbone_config, decoder_config=decoder_config, **kwargs, ) def to_dict(self) -> Dict[str, any]: """ Serializes this instance to a Python dictionary. Override the default [`~PretrainedConfig.to_dict`]. Returns: `Dict[str, any]`: Dictionary of all the attributes that make up this configuration instance, """ output = copy.deepcopy(self.__dict__) output["backbone_config"] = self.backbone_config.to_dict() output["decoder_config"] = self.decoder_config.to_dict() output["model_type"] = self.__class__.model_type return output
0
hf_public_repos/transformers/src/transformers/models
hf_public_repos/transformers/src/transformers/models/maskformer/feature_extraction_maskformer.py
# coding=utf-8 # Copyright 2022 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Feature extractor class for MaskFormer.""" import warnings from ...utils import logging from .image_processing_maskformer import MaskFormerImageProcessor logger = logging.get_logger(__name__) class MaskFormerFeatureExtractor(MaskFormerImageProcessor): def __init__(self, *args, **kwargs) -> None: warnings.warn( "The class MaskFormerFeatureExtractor is deprecated and will be removed in version 5 of Transformers." " Please use MaskFormerImageProcessor instead.", FutureWarning, ) super().__init__(*args, **kwargs)
0
hf_public_repos/transformers/src/transformers/models
hf_public_repos/transformers/src/transformers/models/maskformer/modeling_maskformer.py
# coding=utf-8 # Copyright 2022 Meta Platforms, Inc.s and The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ PyTorch MaskFormer model.""" import math from dataclasses import dataclass from numbers import Number from typing import Dict, List, Optional, Tuple import numpy as np import torch from torch import Tensor, nn from ... import AutoBackbone from ...activations import ACT2FN from ...modeling_outputs import BaseModelOutputWithCrossAttentions from ...modeling_utils import PreTrainedModel from ...utils import ( ModelOutput, add_start_docstrings, add_start_docstrings_to_model_forward, is_scipy_available, logging, replace_return_docstrings, requires_backends, ) from ..detr import DetrConfig from .configuration_maskformer import MaskFormerConfig from .configuration_maskformer_swin import MaskFormerSwinConfig if is_scipy_available(): from scipy.optimize import linear_sum_assignment logger = logging.get_logger(__name__) _CONFIG_FOR_DOC = "MaskFormerConfig" _CHECKPOINT_FOR_DOC = "facebook/maskformer-swin-base-ade" MASKFORMER_PRETRAINED_MODEL_ARCHIVE_LIST = [ "facebook/maskformer-swin-base-ade", # See all MaskFormer models at https://huggingface.co/models?filter=maskformer ] @dataclass # Copied from transformers.models.detr.modeling_detr.DetrDecoderOutput class DetrDecoderOutput(BaseModelOutputWithCrossAttentions): """ Base class for outputs of the DETR decoder. This class adds one attribute to BaseModelOutputWithCrossAttentions, namely an optional stack of intermediate decoder activations, i.e. the output of each decoder layer, each of them gone through a layernorm. This is useful when training the model with auxiliary decoding losses. Args: last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`): Sequence of hidden-states at the output of the last layer of the model. hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the initial embedding outputs. attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. cross_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` and `config.add_cross_attention=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights of the decoder's cross-attention layer, after the attention softmax, used to compute the weighted average in the cross-attention heads. intermediate_hidden_states (`torch.FloatTensor` of shape `(config.decoder_layers, batch_size, num_queries, hidden_size)`, *optional*, returned when `config.auxiliary_loss=True`): Intermediate decoder activations, i.e. the output of each decoder layer, each of them gone through a layernorm. """ intermediate_hidden_states: Optional[torch.FloatTensor] = None @dataclass class MaskFormerPixelLevelModuleOutput(ModelOutput): """ MaskFormer's pixel level module output. It returns both the last and (optionally) the hidden states from the `encoder` and `decoder`. By default, the `encoder` is a MaskFormerSwin Transformer and the `decoder` is a Feature Pyramid Network (FPN). The `encoder_last_hidden_state` are referred on the paper as **images features**, while `decoder_last_hidden_state` as **pixel embeddings** Args: encoder_last_hidden_state (`torch.FloatTensor` of shape`(batch_size, num_channels, height, width)`): Last hidden states (final feature map) of the last stage of the encoder. encoder_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each stage) of shape `(batch_size, num_channels, height, width)`. Hidden-states (also called feature maps) of the model at the output of each stage. decoder_last_hidden_state (`torch.FloatTensor` of shape`(batch_size, num_channels, height, width)`): Last hidden states (final feature map) of the last stage of the decoder. decoder_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each stage) of shape `(batch_size, num_channels, height, width)`. Hidden-states (also called feature maps) of the model at the output of each stage. """ encoder_last_hidden_state: Optional[torch.FloatTensor] = None decoder_last_hidden_state: Optional[torch.FloatTensor] = None encoder_hidden_states: Optional[Tuple[torch.FloatTensor]] = None decoder_hidden_states: Optional[Tuple[torch.FloatTensor]] = None class MaskFormerPixelDecoderOutput(ModelOutput): """ MaskFormer's pixel decoder module output, practically a Feature Pyramid Network. It returns the last hidden state and (optionally) the hidden states. Args: last_hidden_state (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Last hidden states (final feature map) of the last stage of the model. hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of shape `(batch_size, num_channels, height, width)`. Hidden-states of the model at the output of each layer plus the initial embedding outputs. attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights from Detr's decoder after the attention softmax, used to compute the weighted average in the self-attention heads. """ last_hidden_state: torch.FloatTensor = None hidden_states: Optional[Tuple[torch.FloatTensor]] = None attentions: Optional[Tuple[torch.FloatTensor]] = None @dataclass class MaskFormerModelOutput(ModelOutput): """ Class for outputs of [`MaskFormerModel`]. This class returns all the needed hidden states to compute the logits. Args: encoder_last_hidden_state (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Last hidden states (final feature map) of the last stage of the encoder model (backbone). pixel_decoder_last_hidden_state (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Last hidden states (final feature map) of the last stage of the pixel decoder model (FPN). transformer_decoder_last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`): Last hidden states (final feature map) of the last stage of the transformer decoder model. encoder_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each stage) of shape `(batch_size, num_channels, height, width)`. Hidden-states (also called feature maps) of the encoder model at the output of each stage. pixel_decoder_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each stage) of shape `(batch_size, num_channels, height, width)`. Hidden-states (also called feature maps) of the pixel decoder model at the output of each stage. transformer_decoder_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each stage) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states (also called feature maps) of the transformer decoder at the output of each stage. hidden_states `tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` containing `encoder_hidden_states`, `pixel_decoder_hidden_states` and `decoder_hidden_states` attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights from Detr's decoder after the attention softmax, used to compute the weighted average in the self-attention heads. """ encoder_last_hidden_state: Optional[torch.FloatTensor] = None pixel_decoder_last_hidden_state: Optional[torch.FloatTensor] = None transformer_decoder_last_hidden_state: Optional[torch.FloatTensor] = None encoder_hidden_states: Optional[Tuple[torch.FloatTensor]] = None pixel_decoder_hidden_states: Optional[Tuple[torch.FloatTensor]] = None transformer_decoder_hidden_states: Optional[Tuple[torch.FloatTensor]] = None hidden_states: Optional[Tuple[torch.FloatTensor]] = None attentions: Optional[Tuple[torch.FloatTensor]] = None @dataclass class MaskFormerForInstanceSegmentationOutput(ModelOutput): """ Class for outputs of [`MaskFormerForInstanceSegmentation`]. This output can be directly passed to [`~MaskFormerImageProcessor.post_process_semantic_segmentation`] or or [`~MaskFormerImageProcessor.post_process_instance_segmentation`] or [`~MaskFormerImageProcessor.post_process_panoptic_segmentation`] depending on the task. Please, see [`~MaskFormerImageProcessor] for details regarding usage. Args: loss (`torch.Tensor`, *optional*): The computed loss, returned when labels are present. class_queries_logits (`torch.FloatTensor`): A tensor of shape `(batch_size, num_queries, num_labels + 1)` representing the proposed classes for each query. Note the `+ 1` is needed because we incorporate the null class. masks_queries_logits (`torch.FloatTensor`): A tensor of shape `(batch_size, num_queries, height, width)` representing the proposed masks for each query. encoder_last_hidden_state (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Last hidden states (final feature map) of the last stage of the encoder model (backbone). pixel_decoder_last_hidden_state (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Last hidden states (final feature map) of the last stage of the pixel decoder model (FPN). transformer_decoder_last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`): Last hidden states (final feature map) of the last stage of the transformer decoder model. encoder_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each stage) of shape `(batch_size, num_channels, height, width)`. Hidden-states (also called feature maps) of the encoder model at the output of each stage. pixel_decoder_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each stage) of shape `(batch_size, num_channels, height, width)`. Hidden-states (also called feature maps) of the pixel decoder model at the output of each stage. transformer_decoder_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each stage) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the transformer decoder at the output of each stage. hidden_states `tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` containing `encoder_hidden_states`, `pixel_decoder_hidden_states` and `decoder_hidden_states`. attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights from Detr's decoder after the attention softmax, used to compute the weighted average in the self-attention heads. """ loss: Optional[torch.FloatTensor] = None class_queries_logits: torch.FloatTensor = None masks_queries_logits: torch.FloatTensor = None auxiliary_logits: torch.FloatTensor = None encoder_last_hidden_state: Optional[torch.FloatTensor] = None pixel_decoder_last_hidden_state: Optional[torch.FloatTensor] = None transformer_decoder_last_hidden_state: Optional[torch.FloatTensor] = None encoder_hidden_states: Optional[Tuple[torch.FloatTensor]] = None pixel_decoder_hidden_states: Optional[Tuple[torch.FloatTensor]] = None transformer_decoder_hidden_states: Optional[Tuple[torch.FloatTensor]] = None hidden_states: Optional[Tuple[torch.FloatTensor]] = None attentions: Optional[Tuple[torch.FloatTensor]] = None def upsample_like(pixel_values: Tensor, like: Tensor, mode: str = "bilinear") -> Tensor: """ An utility function that upsamples `pixel_values` to match the dimension of `like`. Args: pixel_values (`torch.Tensor`): The tensor we wish to upsample. like (`torch.Tensor`): The tensor we wish to use as size target. mode (str, *optional*, defaults to `"bilinear"`): The interpolation mode. Returns: `torch.Tensor`: The upsampled tensor """ _, _, height, width = like.shape upsampled = nn.functional.interpolate(pixel_values, size=(height, width), mode=mode, align_corners=False) return upsampled # refactored from original implementation def dice_loss(inputs: Tensor, labels: Tensor, num_masks: int) -> Tensor: r""" Compute the DICE loss, similar to generalized IOU for masks as follows: $$ \mathcal{L}_{\text{dice}(x, y) = 1 - \frac{2 * x \cap y }{x \cup y + 1}} $$ In practice, since `labels` is a binary mask, (only 0s and 1s), dice can be computed as follow $$ \mathcal{L}_{\text{dice}(x, y) = 1 - \frac{2 * x * y }{x + y + 1}} $$ Args: inputs (`torch.Tensor`): A tensor representing a mask. labels (`torch.Tensor`): A tensor with the same shape as inputs. Stores the binary classification labels for each element in inputs (0 for the negative class and 1 for the positive class). num_masks (`int`): The number of masks present in the current batch, used for normalization. Returns: `torch.Tensor`: The computed loss. """ probs = inputs.sigmoid().flatten(1) numerator = 2 * (probs * labels).sum(-1) denominator = probs.sum(-1) + labels.sum(-1) loss = 1 - (numerator + 1) / (denominator + 1) loss = loss.sum() / num_masks return loss # refactored from original implementation def sigmoid_focal_loss( inputs: Tensor, labels: Tensor, num_masks: int, alpha: float = 0.25, gamma: float = 2 ) -> Tensor: r""" Focal loss proposed in [Focal Loss for Dense Object Detection](https://arxiv.org/abs/1708.02002) originally used in RetinaNet. The loss is computed as follows: $$ \mathcal{L}_{\text{focal loss} = -(1 - p_t)^{\gamma}\log{(p_t)} $$ where \\(CE(p_t) = -\log{(p_t)}}\\), CE is the standard Cross Entropy Loss Please refer to equation (1,2,3) of the paper for a better understanding. Args: inputs (`torch.Tensor`): A float tensor of arbitrary shape. labels (`torch.Tensor`): A tensor with the same shape as inputs. Stores the binary classification labels for each element in inputs (0 for the negative class and 1 for the positive class). num_masks (`int`): The number of masks present in the current batch, used for normalization. alpha (float, *optional*, defaults to 0.25): Weighting factor in range (0,1) to balance positive vs negative examples. gamma (float, *optional*, defaults to 2.0): Exponent of the modulating factor \\(1 - p_t\\) to balance easy vs hard examples. Returns: `torch.Tensor`: The computed loss. """ criterion = nn.BCEWithLogitsLoss(reduction="none") probs = inputs.sigmoid() cross_entropy_loss = criterion(inputs, labels) p_t = probs * labels + (1 - probs) * (1 - labels) loss = cross_entropy_loss * ((1 - p_t) ** gamma) if alpha >= 0: alpha_t = alpha * labels + (1 - alpha) * (1 - labels) loss = alpha_t * loss loss = loss.mean(1).sum() / num_masks return loss # refactored from original implementation def pair_wise_dice_loss(inputs: Tensor, labels: Tensor) -> Tensor: """ A pair wise version of the dice loss, see `dice_loss` for usage. Args: inputs (`torch.Tensor`): A tensor representing a mask labels (`torch.Tensor`): A tensor with the same shape as inputs. Stores the binary classification labels for each element in inputs (0 for the negative class and 1 for the positive class). Returns: `torch.Tensor`: The computed loss between each pairs. """ inputs = inputs.sigmoid().flatten(1) numerator = 2 * torch.einsum("nc,mc->nm", inputs, labels) # using broadcasting to get a [num_queries, NUM_CLASSES] matrix denominator = inputs.sum(-1)[:, None] + labels.sum(-1)[None, :] loss = 1 - (numerator + 1) / (denominator + 1) return loss # refactored from original implementation def pair_wise_sigmoid_focal_loss(inputs: Tensor, labels: Tensor, alpha: float = 0.25, gamma: float = 2.0) -> Tensor: r""" A pair wise version of the focal loss, see `sigmoid_focal_loss` for usage. Args: inputs (`torch.Tensor`): A tensor representing a mask. labels (`torch.Tensor`): A tensor with the same shape as inputs. Stores the binary classification labels for each element in inputs (0 for the negative class and 1 for the positive class). alpha (float, *optional*, defaults to 0.25): Weighting factor in range (0,1) to balance positive vs negative examples. gamma (float, *optional*, defaults to 2.0): Exponent of the modulating factor \\(1 - p_t\\) to balance easy vs hard examples. Returns: `torch.Tensor`: The computed loss between each pairs. """ if alpha < 0: raise ValueError("alpha must be positive") height_and_width = inputs.shape[1] criterion = nn.BCEWithLogitsLoss(reduction="none") prob = inputs.sigmoid() cross_entropy_loss_pos = criterion(inputs, torch.ones_like(inputs)) focal_pos = ((1 - prob) ** gamma) * cross_entropy_loss_pos focal_pos *= alpha cross_entropy_loss_neg = criterion(inputs, torch.zeros_like(inputs)) focal_neg = (prob**gamma) * cross_entropy_loss_neg focal_neg *= 1 - alpha loss = torch.einsum("nc,mc->nm", focal_pos, labels) + torch.einsum("nc,mc->nm", focal_neg, (1 - labels)) return loss / height_and_width # Copied from transformers.models.detr.modeling_detr.DetrAttention class DetrAttention(nn.Module): """ Multi-headed attention from 'Attention Is All You Need' paper. Here, we add position embeddings to the queries and keys (as explained in the DETR paper). """ def __init__( self, embed_dim: int, num_heads: int, dropout: float = 0.0, bias: bool = True, ): super().__init__() self.embed_dim = embed_dim self.num_heads = num_heads self.dropout = dropout self.head_dim = embed_dim // num_heads if self.head_dim * num_heads != self.embed_dim: raise ValueError( f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:" f" {num_heads})." ) self.scaling = self.head_dim**-0.5 self.k_proj = nn.Linear(embed_dim, embed_dim, bias=bias) self.v_proj = nn.Linear(embed_dim, embed_dim, bias=bias) self.q_proj = nn.Linear(embed_dim, embed_dim, bias=bias) self.out_proj = nn.Linear(embed_dim, embed_dim, bias=bias) def _shape(self, tensor: torch.Tensor, seq_len: int, batch_size: int): return tensor.view(batch_size, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous() def with_pos_embed(self, tensor: torch.Tensor, position_embeddings: Optional[Tensor]): return tensor if position_embeddings is None else tensor + position_embeddings def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, position_embeddings: Optional[torch.Tensor] = None, key_value_states: Optional[torch.Tensor] = None, key_value_position_embeddings: Optional[torch.Tensor] = None, output_attentions: bool = False, ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: """Input shape: Batch x Time x Channel""" # if key_value_states are provided this layer is used as a cross-attention layer # for the decoder is_cross_attention = key_value_states is not None batch_size, target_len, embed_dim = hidden_states.size() # add position embeddings to the hidden states before projecting to queries and keys if position_embeddings is not None: hidden_states_original = hidden_states hidden_states = self.with_pos_embed(hidden_states, position_embeddings) # add key-value position embeddings to the key value states if key_value_position_embeddings is not None: key_value_states_original = key_value_states key_value_states = self.with_pos_embed(key_value_states, key_value_position_embeddings) # get query proj query_states = self.q_proj(hidden_states) * self.scaling # get key, value proj if is_cross_attention: # cross_attentions key_states = self._shape(self.k_proj(key_value_states), -1, batch_size) value_states = self._shape(self.v_proj(key_value_states_original), -1, batch_size) else: # self_attention key_states = self._shape(self.k_proj(hidden_states), -1, batch_size) value_states = self._shape(self.v_proj(hidden_states_original), -1, batch_size) proj_shape = (batch_size * self.num_heads, -1, self.head_dim) query_states = self._shape(query_states, target_len, batch_size).view(*proj_shape) key_states = key_states.view(*proj_shape) value_states = value_states.view(*proj_shape) source_len = key_states.size(1) attn_weights = torch.bmm(query_states, key_states.transpose(1, 2)) if attn_weights.size() != (batch_size * self.num_heads, target_len, source_len): raise ValueError( f"Attention weights should be of size {(batch_size * self.num_heads, target_len, source_len)}, but is" f" {attn_weights.size()}" ) if attention_mask is not None: if attention_mask.size() != (batch_size, 1, target_len, source_len): raise ValueError( f"Attention mask should be of size {(batch_size, 1, target_len, source_len)}, but is" f" {attention_mask.size()}" ) attn_weights = attn_weights.view(batch_size, self.num_heads, target_len, source_len) + attention_mask attn_weights = attn_weights.view(batch_size * self.num_heads, target_len, source_len) attn_weights = nn.functional.softmax(attn_weights, dim=-1) if output_attentions: # this operation is a bit awkward, but it's required to # make sure that attn_weights keeps its gradient. # In order to do so, attn_weights have to reshaped # twice and have to be reused in the following attn_weights_reshaped = attn_weights.view(batch_size, self.num_heads, target_len, source_len) attn_weights = attn_weights_reshaped.view(batch_size * self.num_heads, target_len, source_len) else: attn_weights_reshaped = None attn_probs = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training) attn_output = torch.bmm(attn_probs, value_states) if attn_output.size() != (batch_size * self.num_heads, target_len, self.head_dim): raise ValueError( f"`attn_output` should be of size {(batch_size, self.num_heads, target_len, self.head_dim)}, but is" f" {attn_output.size()}" ) attn_output = attn_output.view(batch_size, self.num_heads, target_len, self.head_dim) attn_output = attn_output.transpose(1, 2) attn_output = attn_output.reshape(batch_size, target_len, embed_dim) attn_output = self.out_proj(attn_output) return attn_output, attn_weights_reshaped # Copied from transformers.models.detr.modeling_detr.DetrDecoderLayer class DetrDecoderLayer(nn.Module): def __init__(self, config: DetrConfig): super().__init__() self.embed_dim = config.d_model self.self_attn = DetrAttention( embed_dim=self.embed_dim, num_heads=config.decoder_attention_heads, dropout=config.attention_dropout, ) self.dropout = config.dropout self.activation_fn = ACT2FN[config.activation_function] self.activation_dropout = config.activation_dropout self.self_attn_layer_norm = nn.LayerNorm(self.embed_dim) self.encoder_attn = DetrAttention( self.embed_dim, config.decoder_attention_heads, dropout=config.attention_dropout, ) self.encoder_attn_layer_norm = nn.LayerNorm(self.embed_dim) self.fc1 = nn.Linear(self.embed_dim, config.decoder_ffn_dim) self.fc2 = nn.Linear(config.decoder_ffn_dim, self.embed_dim) self.final_layer_norm = nn.LayerNorm(self.embed_dim) def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, position_embeddings: Optional[torch.Tensor] = None, query_position_embeddings: Optional[torch.Tensor] = None, encoder_hidden_states: Optional[torch.Tensor] = None, encoder_attention_mask: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = False, ): """ Args: hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)` attention_mask (`torch.FloatTensor`): attention mask of size `(batch, 1, target_len, source_len)` where padding elements are indicated by very large negative values. position_embeddings (`torch.FloatTensor`, *optional*): position embeddings that are added to the queries and keys in the cross-attention layer. query_position_embeddings (`torch.FloatTensor`, *optional*): position embeddings that are added to the queries and keys in the self-attention layer. encoder_hidden_states (`torch.FloatTensor`): cross attention input to the layer of shape `(batch, seq_len, embed_dim)` encoder_attention_mask (`torch.FloatTensor`): encoder attention mask of size `(batch, 1, target_len, source_len)` where padding elements are indicated by very large negative values. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. """ residual = hidden_states # Self Attention hidden_states, self_attn_weights = self.self_attn( hidden_states=hidden_states, position_embeddings=query_position_embeddings, attention_mask=attention_mask, output_attentions=output_attentions, ) hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) hidden_states = residual + hidden_states hidden_states = self.self_attn_layer_norm(hidden_states) # Cross-Attention Block cross_attn_weights = None if encoder_hidden_states is not None: residual = hidden_states hidden_states, cross_attn_weights = self.encoder_attn( hidden_states=hidden_states, position_embeddings=query_position_embeddings, key_value_states=encoder_hidden_states, attention_mask=encoder_attention_mask, key_value_position_embeddings=position_embeddings, output_attentions=output_attentions, ) hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) hidden_states = residual + hidden_states hidden_states = self.encoder_attn_layer_norm(hidden_states) # Fully Connected residual = hidden_states hidden_states = self.activation_fn(self.fc1(hidden_states)) hidden_states = nn.functional.dropout(hidden_states, p=self.activation_dropout, training=self.training) hidden_states = self.fc2(hidden_states) hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) hidden_states = residual + hidden_states hidden_states = self.final_layer_norm(hidden_states) outputs = (hidden_states,) if output_attentions: outputs += (self_attn_weights, cross_attn_weights) return outputs # Copied from transformers.models.detr.modeling_detr._expand_mask def _expand_mask(mask: torch.Tensor, dtype: torch.dtype, target_len: Optional[int] = None): """ Expands attention_mask from `[batch_size, seq_len]` to `[batch_size, 1, target_seq_len, source_seq_len]`. """ batch_size, source_len = mask.size() target_len = target_len if target_len is not None else source_len expanded_mask = mask[:, None, None, :].expand(batch_size, 1, target_len, source_len).to(dtype) inverted_mask = 1.0 - expanded_mask return inverted_mask.masked_fill(inverted_mask.bool(), torch.finfo(dtype).min) class DetrDecoder(nn.Module): """ Transformer decoder consisting of *config.decoder_layers* layers. Each layer is a [`DetrDecoderLayer`]. The decoder updates the query embeddings through multiple self-attention and cross-attention layers. Some small tweaks for DETR: - position_embeddings and query_position_embeddings are added to the forward pass. - if self.config.auxiliary_loss is set to True, also returns a stack of activations from all decoding layers. Args: config: DetrConfig """ def __init__(self, config: DetrConfig): super().__init__() self.config = config self.dropout = config.dropout self.layerdrop = config.decoder_layerdrop self.layers = nn.ModuleList([DetrDecoderLayer(config) for _ in range(config.decoder_layers)]) # in DETR, the decoder uses layernorm after the last decoder layer output self.layernorm = nn.LayerNorm(config.d_model) self.gradient_checkpointing = False def forward( self, inputs_embeds=None, attention_mask=None, encoder_hidden_states=None, encoder_attention_mask=None, position_embeddings=None, query_position_embeddings=None, output_attentions=None, output_hidden_states=None, return_dict=None, ): r""" Args: inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`): The query embeddings that are passed into the decoder. attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on certain queries. Mask values selected in `[0, 1]`: - 1 for queries that are **not masked**, - 0 for queries that are **masked**. [What are attention masks?](../glossary#attention-mask) encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, encoder_sequence_length, hidden_size)`, *optional*): Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention of the decoder. encoder_attention_mask (`torch.LongTensor` of shape `(batch_size, encoder_sequence_length)`, *optional*): Mask to avoid performing cross-attention on padding pixel_values of the encoder. Mask values selected in `[0, 1]`: - 1 for pixels that are real (i.e. **not masked**), - 0 for pixels that are padding (i.e. **masked**). position_embeddings (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Position embeddings that are added to the queries and keys in each cross-attention layer. query_position_embeddings (`torch.FloatTensor` of shape `(batch_size, num_queries, hidden_size)`): , *optional*): Position embeddings that are added to the queries and keys in each self-attention layer. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict if inputs_embeds is not None: hidden_states = inputs_embeds input_shape = inputs_embeds.size()[:-1] combined_attention_mask = None if attention_mask is not None and combined_attention_mask is not None: # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len] combined_attention_mask = combined_attention_mask + _expand_mask( attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1] ) # expand encoder attention mask if encoder_hidden_states is not None and encoder_attention_mask is not None: # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len] encoder_attention_mask = _expand_mask(encoder_attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1]) # optional intermediate hidden states intermediate = () if self.config.auxiliary_loss else None # decoder layers all_hidden_states = () if output_hidden_states else None all_self_attns = () if output_attentions else None all_cross_attentions = () if (output_attentions and encoder_hidden_states is not None) else None for idx, decoder_layer in enumerate(self.layers): # add LayerDrop (see https://arxiv.org/abs/1909.11556 for description) if output_hidden_states: all_hidden_states += (hidden_states,) if self.training: dropout_probability = torch.rand([]) if dropout_probability < self.layerdrop: continue if self.gradient_checkpointing and self.training: def create_custom_forward(module): def custom_forward(*inputs): return module(*inputs, output_attentions) return custom_forward layer_outputs = torch.utils.checkpoint.checkpoint( create_custom_forward(decoder_layer), hidden_states, combined_attention_mask, encoder_hidden_states, encoder_attention_mask, None, ) else: layer_outputs = decoder_layer( hidden_states, attention_mask=combined_attention_mask, position_embeddings=position_embeddings, query_position_embeddings=query_position_embeddings, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, output_attentions=output_attentions, ) hidden_states = layer_outputs[0] if self.config.auxiliary_loss: hidden_states = self.layernorm(hidden_states) intermediate += (hidden_states,) if output_attentions: all_self_attns += (layer_outputs[1],) if encoder_hidden_states is not None: all_cross_attentions += (layer_outputs[2],) # finally, apply layernorm hidden_states = self.layernorm(hidden_states) # add hidden states from the last decoder layer if output_hidden_states: all_hidden_states += (hidden_states,) # stack intermediate decoder activations if self.config.auxiliary_loss: intermediate = torch.stack(intermediate) if not return_dict: return tuple( v for v in [hidden_states, all_hidden_states, all_self_attns, all_cross_attentions, intermediate] if v is not None ) return DetrDecoderOutput( last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_self_attns, cross_attentions=all_cross_attentions, intermediate_hidden_states=intermediate, ) # refactored from original implementation class MaskFormerHungarianMatcher(nn.Module): """This class computes an assignment between the labels and the predictions of the network. For efficiency reasons, the labels don't include the no_object. Because of this, in general, there are more predictions than labels. In this case, we do a 1-to-1 matching of the best predictions, while the others are un-matched (and thus treated as non-objects). """ def __init__(self, cost_class: float = 1.0, cost_mask: float = 1.0, cost_dice: float = 1.0): """Creates the matcher Params: cost_class (float, *optional*, defaults to 1.0): This is the relative weight of the classification error in the matching cost. cost_mask (float, *optional*, defaults to 1.0): This is the relative weight of the focal loss of the binary mask in the matching cost. cost_dice (float, *optional*, defaults to 1.0): This is the relative weight of the dice loss of the binary mask in the matching cost """ super().__init__() if cost_class == 0 and cost_mask == 0 and cost_dice == 0: raise ValueError("All costs cant be 0") self.cost_class = cost_class self.cost_mask = cost_mask self.cost_dice = cost_dice @torch.no_grad() def forward(self, masks_queries_logits, class_queries_logits, mask_labels, class_labels) -> List[Tuple[Tensor]]: """Performs the matching Params: masks_queries_logits (`torch.Tensor`): A tensor` of dim `batch_size, num_queries, num_labels` with the classification logits. class_queries_logits (`torch.Tensor`): A tensor` of dim `batch_size, num_queries, height, width` with the predicted masks. class_labels (`torch.Tensor`): A tensor` of dim `num_target_boxes` (where num_target_boxes is the number of ground-truth objects in the target) containing the class labels. mask_labels (`torch.Tensor`): A tensor` of dim `num_target_boxes, height, width` containing the target masks. Returns: `List[Tuple[Tensor]]`: A list of size batch_size, containing tuples of (index_i, index_j) where: - index_i is the indices of the selected predictions (in order) - index_j is the indices of the corresponding selected labels (in order) For each batch element, it holds: len(index_i) = len(index_j) = min(num_queries, num_target_boxes). """ indices: List[Tuple[np.array]] = [] preds_masks = masks_queries_logits preds_probs = class_queries_logits # iterate through batch size for pred_probs, pred_mask, target_mask, labels in zip(preds_probs, preds_masks, mask_labels, class_labels): # downsample the target mask, save memory target_mask = nn.functional.interpolate(target_mask[:, None], size=pred_mask.shape[-2:], mode="nearest") pred_probs = pred_probs.softmax(-1) # Compute the classification cost. Contrary to the loss, we don't use the NLL, # but approximate it in 1 - proba[target class]. # The 1 is a constant that doesn't change the matching, it can be ommitted. cost_class = -pred_probs[:, labels] # flatten spatial dimension "q h w -> q (h w)" pred_mask_flat = pred_mask.flatten(1) # [num_queries, height*width] # same for target_mask "c h w -> c (h w)" target_mask_flat = target_mask[:, 0].flatten(1) # [num_total_labels, height*width] # compute the focal loss between each mask pairs -> shape (num_queries, num_labels) cost_mask = pair_wise_sigmoid_focal_loss(pred_mask_flat, target_mask_flat) # Compute the dice loss betwen each mask pairs -> shape (num_queries, num_labels) cost_dice = pair_wise_dice_loss(pred_mask_flat, target_mask_flat) # final cost matrix cost_matrix = self.cost_mask * cost_mask + self.cost_class * cost_class + self.cost_dice * cost_dice # do the assigmented using the hungarian algorithm in scipy assigned_indices: Tuple[np.array] = linear_sum_assignment(cost_matrix.cpu()) indices.append(assigned_indices) # It could be stacked in one tensor matched_indices = [ (torch.as_tensor(i, dtype=torch.int64), torch.as_tensor(j, dtype=torch.int64)) for i, j in indices ] return matched_indices def __repr__(self): head = "Matcher " + self.__class__.__name__ body = [ f"cost_class: {self.cost_class}", f"cost_mask: {self.cost_mask}", f"cost_dice: {self.cost_dice}", ] _repr_indent = 4 lines = [head] + [" " * _repr_indent + line for line in body] return "\n".join(lines) # copied and adapted from original implementation class MaskFormerLoss(nn.Module): def __init__( self, num_labels: int, matcher: MaskFormerHungarianMatcher, weight_dict: Dict[str, float], eos_coef: float, ): """ The MaskFormer Loss. The loss is computed very similar to DETR. The process happens in two steps: 1) we compute hungarian assignment between ground truth masks and the outputs of the model 2) we supervise each pair of matched ground-truth / prediction (supervise class and mask) Args: num_labels (`int`): The number of classes. matcher (`MaskFormerHungarianMatcher`): A torch module that computes the assigments between the predictions and labels. weight_dict (`Dict[str, float]`): A dictionary of weights to be applied to the different losses. eos_coef (`float`): Weight to apply to the null class. """ super().__init__() requires_backends(self, ["scipy"]) self.num_labels = num_labels self.matcher = matcher self.weight_dict = weight_dict self.eos_coef = eos_coef empty_weight = torch.ones(self.num_labels + 1) empty_weight[-1] = self.eos_coef self.register_buffer("empty_weight", empty_weight) def _max_by_axis(self, the_list: List[List[int]]) -> List[int]: maxes = the_list[0] for sublist in the_list[1:]: for index, item in enumerate(sublist): maxes[index] = max(maxes[index], item) return maxes def _pad_images_to_max_in_batch(self, tensors: List[Tensor]) -> Tuple[Tensor, Tensor]: # get the maximum size in the batch max_size = self._max_by_axis([list(tensor.shape) for tensor in tensors]) batch_size = len(tensors) # compute finel size batch_shape = [batch_size] + max_size b, _, h, w = batch_shape # get metadata dtype = tensors[0].dtype device = tensors[0].device padded_tensors = torch.zeros(batch_shape, dtype=dtype, device=device) padding_masks = torch.ones((b, h, w), dtype=torch.bool, device=device) # pad the tensors to the size of the biggest one for tensor, padded_tensor, padding_mask in zip(tensors, padded_tensors, padding_masks): padded_tensor[: tensor.shape[0], : tensor.shape[1], : tensor.shape[2]].copy_(tensor) padding_mask[: tensor.shape[1], : tensor.shape[2]] = False return padded_tensors, padding_masks def loss_labels( self, class_queries_logits: Tensor, class_labels: List[Tensor], indices: Tuple[np.array] ) -> Dict[str, Tensor]: """Compute the losses related to the labels using cross entropy. Args: class_queries_logits (`torch.Tensor`): A tensor of shape `batch_size, num_queries, num_labels` class_labels (`List[torch.Tensor]`): List of class labels of shape `(labels)`. indices (`Tuple[np.array])`: The indices computed by the Hungarian matcher. Returns: `Dict[str, Tensor]`: A dict of `torch.Tensor` containing the following key: - **loss_cross_entropy** -- The loss computed using cross entropy on the predicted and ground truth labels. """ pred_logits = class_queries_logits batch_size, num_queries, _ = pred_logits.shape criterion = nn.CrossEntropyLoss(weight=self.empty_weight) idx = self._get_predictions_permutation_indices(indices) # shape = (batch_size, num_queries) target_classes_o = torch.cat([target[j] for target, (_, j) in zip(class_labels, indices)]) # shape = (batch_size, num_queries) target_classes = torch.full( (batch_size, num_queries), fill_value=self.num_labels, dtype=torch.int64, device=pred_logits.device ) target_classes[idx] = target_classes_o # target_classes is a (batch_size, num_labels, num_queries), we need to permute pred_logits "b q c -> b c q" pred_logits_transposed = pred_logits.transpose(1, 2) loss_ce = criterion(pred_logits_transposed, target_classes) losses = {"loss_cross_entropy": loss_ce} return losses def loss_masks( self, masks_queries_logits: Tensor, mask_labels: List[Tensor], indices: Tuple[np.array], num_masks: int ) -> Dict[str, Tensor]: """Compute the losses related to the masks using focal and dice loss. Args: masks_queries_logits (`torch.Tensor`): A tensor of shape `batch_size, num_queries, height, width` mask_labels (`torch.Tensor`): List of mask labels of shape `(labels, height, width)`. indices (`Tuple[np.array])`: The indices computed by the Hungarian matcher. num_masks (`int)`: The number of masks, used for normalization. Returns: `Dict[str, Tensor]`: A dict of `torch.Tensor` containing two keys: - **loss_mask** -- The loss computed using sigmoid focal loss on the predicted and ground truth masks. - **loss_dice** -- The loss computed using dice loss on the predicted on the predicted and ground truth masks. """ src_idx = self._get_predictions_permutation_indices(indices) tgt_idx = self._get_targets_permutation_indices(indices) # shape (batch_size * num_queries, height, width) pred_masks = masks_queries_logits[src_idx] # shape (batch_size, num_queries, height, width) # pad all and stack the targets to the num_labels dimension target_masks, _ = self._pad_images_to_max_in_batch(mask_labels) target_masks = target_masks[tgt_idx] # upsample predictions to the target size, we have to add one dim to use interpolate pred_masks = nn.functional.interpolate( pred_masks[:, None], size=target_masks.shape[-2:], mode="bilinear", align_corners=False ) pred_masks = pred_masks[:, 0].flatten(1) target_masks = target_masks.flatten(1) losses = { "loss_mask": sigmoid_focal_loss(pred_masks, target_masks, num_masks), "loss_dice": dice_loss(pred_masks, target_masks, num_masks), } return losses def _get_predictions_permutation_indices(self, indices): # permute predictions following indices batch_indices = torch.cat([torch.full_like(src, i) for i, (src, _) in enumerate(indices)]) predictions_indices = torch.cat([src for (src, _) in indices]) return batch_indices, predictions_indices def _get_targets_permutation_indices(self, indices): # permute labels following indices batch_indices = torch.cat([torch.full_like(tgt, i) for i, (_, tgt) in enumerate(indices)]) target_indices = torch.cat([tgt for (_, tgt) in indices]) return batch_indices, target_indices def forward( self, masks_queries_logits: Tensor, class_queries_logits: Tensor, mask_labels: List[Tensor], class_labels: List[Tensor], auxiliary_predictions: Optional[Dict[str, Tensor]] = None, ) -> Dict[str, Tensor]: """ This performs the loss computation. Args: masks_queries_logits (`torch.Tensor`): A tensor of shape `batch_size, num_queries, height, width` class_queries_logits (`torch.Tensor`): A tensor of shape `batch_size, num_queries, num_labels` mask_labels (`torch.Tensor`): List of mask labels of shape `(labels, height, width)`. class_labels (`List[torch.Tensor]`): List of class labels of shape `(labels)`. auxiliary_predictions (`Dict[str, torch.Tensor]`, *optional*): if `use_auxiliary_loss` was set to `true` in [`MaskFormerConfig`], then it contains the logits from the inner layers of the Detr's Decoder. Returns: `Dict[str, Tensor]`: A dict of `torch.Tensor` containing two keys: - **loss_cross_entropy** -- The loss computed using cross entropy on the predicted and ground truth labels. - **loss_mask** -- The loss computed using sigmoid focal loss on the predicted and ground truth masks. - **loss_dice** -- The loss computed using dice loss on the predicted on the predicted and ground truth masks. if `use_auxiliary_loss` was set to `true` in [`MaskFormerConfig`], the dictionary contains addional losses for each auxiliary predictions. """ # retrieve the matching between the outputs of the last layer and the labels indices = self.matcher(masks_queries_logits, class_queries_logits, mask_labels, class_labels) # compute the average number of target masks for normalization purposes num_masks: Number = self.get_num_masks(class_labels, device=class_labels[0].device) # get all the losses losses: Dict[str, Tensor] = { **self.loss_masks(masks_queries_logits, mask_labels, indices, num_masks), **self.loss_labels(class_queries_logits, class_labels, indices), } # in case of auxiliary losses, we repeat this process with the output of each intermediate layer. if auxiliary_predictions is not None: for idx, aux_outputs in enumerate(auxiliary_predictions): masks_queries_logits = aux_outputs["masks_queries_logits"] class_queries_logits = aux_outputs["class_queries_logits"] loss_dict = self.forward(masks_queries_logits, class_queries_logits, mask_labels, class_labels) loss_dict = {f"{key}_{idx}": value for key, value in loss_dict.items()} losses.update(loss_dict) return losses def get_num_masks(self, class_labels: torch.Tensor, device: torch.device) -> torch.Tensor: """ Computes the average number of target masks across the batch, for normalization purposes. """ num_masks = sum([len(classes) for classes in class_labels]) num_masks_pt = torch.as_tensor([num_masks], dtype=torch.float, device=device) return num_masks_pt class MaskFormerFPNConvLayer(nn.Module): def __init__(self, in_features: int, out_features: int, kernel_size: int = 3, padding: int = 1): """ A basic module that executes conv - norm - in sequence used in MaskFormer. Args: in_features (`int`): The number of input features (channels). out_features (`int`): The number of outputs features (channels). """ super().__init__() self.layers = [ nn.Conv2d(in_features, out_features, kernel_size=kernel_size, padding=padding, bias=False), nn.GroupNorm(32, out_features), nn.ReLU(inplace=True), ] for i, layer in enumerate(self.layers): # Provide backwards compatibility from when the class inherited from nn.Sequential # In nn.Sequential subclasses, the name given to the layer is its index in the sequence. # In nn.Module subclasses they derived from the instance attribute they are assigned to e.g. # self.my_layer_name = Layer() # We can't give instance attributes integer names i.e. self.0 is not permitted and so need to register # explicitly self.add_module(str(i), layer) def forward(self, input: Tensor) -> Tensor: hidden_state = input for layer in self.layers: hidden_state = layer(hidden_state) return hidden_state class MaskFormerFPNLayer(nn.Module): def __init__(self, in_features: int, lateral_features: int): """ A Feature Pyramid Network Layer (FPN) layer. It creates a feature map by aggregating features from the previous and backbone layer. Due to the spatial mismatch, the tensor coming from the previous layer is upsampled. Args: in_features (`int`): The number of input features (channels). lateral_features (`int`): The number of lateral features (channels). """ super().__init__() self.proj = nn.Sequential( nn.Conv2d(lateral_features, in_features, kernel_size=1, padding=0, bias=False), nn.GroupNorm(32, in_features), ) self.block = MaskFormerFPNConvLayer(in_features, in_features) def forward(self, down: Tensor, left: Tensor) -> Tensor: left = self.proj(left) down = nn.functional.interpolate(down, size=left.shape[-2:], mode="nearest") down += left down = self.block(down) return down class MaskFormerFPNModel(nn.Module): def __init__(self, in_features: int, lateral_widths: List[int], feature_size: int = 256): """ Feature Pyramid Network, given an input tensor and a set of feature map of different feature/spatial size, it creates a list of feature maps with the same feature size. Args: in_features (`int`): The number of input features (channels). lateral_widths (`List[int]`): A list with the features (channels) size of each lateral connection. feature_size (int, *optional*, defaults to 256): The features (channels) of the resulting feature maps. """ super().__init__() self.stem = MaskFormerFPNConvLayer(in_features, feature_size) self.layers = nn.Sequential( *[MaskFormerFPNLayer(feature_size, lateral_width) for lateral_width in lateral_widths[::-1]] ) def forward(self, features: List[Tensor]) -> List[Tensor]: fpn_features = [] last_feature = features[-1] other_features = features[:-1] output = self.stem(last_feature) for layer, left in zip(self.layers, other_features[::-1]): output = layer(output, left) fpn_features.append(output) return fpn_features class MaskFormerPixelDecoder(nn.Module): def __init__(self, *args, feature_size: int = 256, mask_feature_size: int = 256, **kwargs): r""" Pixel Decoder Module proposed in [Per-Pixel Classification is Not All You Need for Semantic Segmentation](https://arxiv.org/abs/2107.06278). It first runs the backbone's features into a Feature Pyramid Network creating a list of feature maps. Then, it projects the last one to the correct `mask_size`. Args: feature_size (`int`, *optional*, defaults to 256): The feature size (channel dimension) of the FPN feature maps. mask_feature_size (`int`, *optional*, defaults to 256): The features (channels) of the target masks size \\(C_{\epsilon}\\) in the paper. """ super().__init__() self.fpn = MaskFormerFPNModel(*args, feature_size=feature_size, **kwargs) self.mask_projection = nn.Conv2d(feature_size, mask_feature_size, kernel_size=3, padding=1) def forward( self, features: List[Tensor], output_hidden_states: bool = False, return_dict: bool = True ) -> MaskFormerPixelDecoderOutput: fpn_features = self.fpn(features) # we use the last feature map last_feature_projected = self.mask_projection(fpn_features[-1]) if not return_dict: return (last_feature_projected, tuple(fpn_features)) if output_hidden_states else (last_feature_projected,) return MaskFormerPixelDecoderOutput( last_hidden_state=last_feature_projected, hidden_states=tuple(fpn_features) if output_hidden_states else () ) # copied and adapted from original implementation, also practically equal to DetrSinePositionEmbedding class MaskFormerSinePositionEmbedding(nn.Module): """ This is a more standard version of the position embedding, very similar to the one used by the Attention is all you need paper, generalized to work on images. """ def __init__( self, num_pos_feats: int = 64, temperature: int = 10000, normalize: bool = False, scale: Optional[float] = None ): super().__init__() if scale is not None and normalize is False: raise ValueError("normalize should be True if scale is passed") self.num_pos_feats = num_pos_feats self.temperature = temperature self.normalize = normalize self.scale = 2 * math.pi if scale is None else scale def forward(self, x: Tensor, mask: Optional[Tensor] = None) -> Tensor: if mask is None: mask = torch.zeros((x.size(0), x.size(2), x.size(3)), device=x.device, dtype=torch.bool) not_mask = ~mask y_embed = not_mask.cumsum(1, dtype=torch.float32) x_embed = not_mask.cumsum(2, dtype=torch.float32) if self.normalize: eps = 1e-6 y_embed = y_embed / (y_embed[:, -1:, :] + eps) * self.scale x_embed = x_embed / (x_embed[:, :, -1:] + eps) * self.scale dim_t = torch.arange(self.num_pos_feats, dtype=torch.float32, device=x.device) dim_t = self.temperature ** (2 * torch.div(dim_t, 2, rounding_mode="floor") / self.num_pos_feats) pos_x = x_embed[:, :, :, None] / dim_t pos_y = y_embed[:, :, :, None] / dim_t pos_x = torch.stack((pos_x[:, :, :, 0::2].sin(), pos_x[:, :, :, 1::2].cos()), dim=4).flatten(3) pos_y = torch.stack((pos_y[:, :, :, 0::2].sin(), pos_y[:, :, :, 1::2].cos()), dim=4).flatten(3) pos = torch.cat((pos_y, pos_x), dim=3).permute(0, 3, 1, 2) return pos class PredictionBlock(nn.Module): def __init__(self, in_dim: int, out_dim: int, activation: nn.Module) -> None: super().__init__() self.layers = [nn.Linear(in_dim, out_dim), activation] # Maintain submodule indexing as if part of a Sequential block for i, layer in enumerate(self.layers): self.add_module(str(i), layer) def forward(self, input: Tensor) -> Tensor: hidden_state = input for layer in self.layers: hidden_state = layer(hidden_state) return hidden_state class MaskformerMLPPredictionHead(nn.Module): def __init__(self, input_dim: int, hidden_dim: int, output_dim: int, num_layers: int = 3): """ A classic Multi Layer Perceptron (MLP). Args: input_dim (`int`): The input dimensions. hidden_dim (`int`): The hidden dimensions. output_dim (`int`): The output dimensions. num_layers (int, *optional*, defaults to 3): The number of layers. """ super().__init__() in_dims = [input_dim] + [hidden_dim] * (num_layers - 1) out_dims = [hidden_dim] * (num_layers - 1) + [output_dim] self.layers = [] for i, (in_dim, out_dim) in enumerate(zip(in_dims, out_dims)): activation = nn.ReLU() if i < num_layers - 1 else nn.Identity() layer = PredictionBlock(in_dim, out_dim, activation=activation) self.layers.append(layer) # Provide backwards compatibility from when the class inherited from nn.Sequential # In nn.Sequential subclasses, the name given to the layer is its index in the sequence. # In nn.Module subclasses they derived from the instance attribute they are assigned to e.g. # self.my_layer_name = Layer() # We can't give instance attributes integer names i.e. self.0 is not permitted and so need to register # explicitly self.add_module(str(i), layer) def forward(self, input: Tensor) -> Tensor: hidden_state = input for layer in self.layers: hidden_state = layer(hidden_state) return hidden_state class MaskFormerPixelLevelModule(nn.Module): def __init__(self, config: MaskFormerConfig): """ Pixel Level Module proposed in [Per-Pixel Classification is Not All You Need for Semantic Segmentation](https://arxiv.org/abs/2107.06278). It runs the input image through a backbone and a pixel decoder, generating an image feature map and pixel embeddings. Args: config ([`MaskFormerConfig`]): The configuration used to instantiate this model. """ super().__init__() # TODD: add method to load pretrained weights of backbone backbone_config = config.backbone_config if backbone_config.model_type == "swin": # for backwards compatibility backbone_config = MaskFormerSwinConfig.from_dict(backbone_config.to_dict()) backbone_config.out_features = ["stage1", "stage2", "stage3", "stage4"] self.encoder = AutoBackbone.from_config(backbone_config) feature_channels = self.encoder.channels self.decoder = MaskFormerPixelDecoder( in_features=feature_channels[-1], feature_size=config.fpn_feature_size, mask_feature_size=config.mask_feature_size, lateral_widths=feature_channels[:-1], ) def forward( self, pixel_values: Tensor, output_hidden_states: bool = False, return_dict: bool = True ) -> MaskFormerPixelLevelModuleOutput: features = self.encoder(pixel_values).feature_maps decoder_output = self.decoder(features, output_hidden_states, return_dict=return_dict) if not return_dict: last_hidden_state = decoder_output[0] outputs = (features[-1], last_hidden_state) if output_hidden_states: hidden_states = decoder_output[1] outputs = outputs + (tuple(features),) + (hidden_states,) return outputs return MaskFormerPixelLevelModuleOutput( # the last feature is actually the output from the last layer encoder_last_hidden_state=features[-1], decoder_last_hidden_state=decoder_output.last_hidden_state, encoder_hidden_states=tuple(features) if output_hidden_states else (), decoder_hidden_states=decoder_output.hidden_states if output_hidden_states else (), ) class MaskFormerTransformerModule(nn.Module): """ The MaskFormer's transformer module. """ def __init__(self, in_features: int, config: MaskFormerConfig): super().__init__() hidden_size = config.decoder_config.hidden_size should_project = in_features != hidden_size self.position_embedder = MaskFormerSinePositionEmbedding(num_pos_feats=hidden_size // 2, normalize=True) self.queries_embedder = nn.Embedding(config.decoder_config.num_queries, hidden_size) self.input_projection = nn.Conv2d(in_features, hidden_size, kernel_size=1) if should_project else None self.decoder = DetrDecoder(config=config.decoder_config) def forward( self, image_features: Tensor, output_hidden_states: bool = False, output_attentions: bool = False, return_dict: Optional[bool] = None, ) -> DetrDecoderOutput: if self.input_projection is not None: image_features = self.input_projection(image_features) position_embeddings = self.position_embedder(image_features) # repeat the queries "q c -> b q c" batch_size = image_features.shape[0] queries_embeddings = self.queries_embedder.weight.unsqueeze(0).repeat(batch_size, 1, 1) inputs_embeds = torch.zeros_like(queries_embeddings, requires_grad=True) batch_size, num_channels, height, width = image_features.shape # rearrange both image_features and position_embeddings "b c h w -> b (h w) c" image_features = image_features.view(batch_size, num_channels, height * width).permute(0, 2, 1) position_embeddings = position_embeddings.view(batch_size, num_channels, height * width).permute(0, 2, 1) decoder_output: DetrDecoderOutput = self.decoder( inputs_embeds=inputs_embeds, attention_mask=None, encoder_hidden_states=image_features, encoder_attention_mask=None, position_embeddings=position_embeddings, query_position_embeddings=queries_embeddings, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) return decoder_output MASKFORMER_START_DOCSTRING = r""" This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`MaskFormerConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ MASKFORMER_INPUTS_DOCSTRING = r""" Args: pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`MaskFormerImageProcessor.__call__`] for details. pixel_mask (`torch.LongTensor` of shape `(batch_size, height, width)`, *optional*): Mask to avoid performing attention on padding pixel values. Mask values selected in `[0, 1]`: - 1 for pixels that are real (i.e. **not masked**), - 0 for pixels that are padding (i.e. **masked**). [What are attention masks?](../glossary#attention-mask) output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of Detr's decoder attention layers. return_dict (`bool`, *optional*): Whether or not to return a [`~MaskFormerModelOutput`] instead of a plain tuple. """ class MaskFormerPreTrainedModel(PreTrainedModel): config_class = MaskFormerConfig base_model_prefix = "model" main_input_name = "pixel_values" def _init_weights(self, module: nn.Module): xavier_std = self.config.init_xavier_std std = self.config.init_std if isinstance(module, MaskFormerTransformerModule): if module.input_projection is not None: nn.init.xavier_uniform_(module.input_projection.weight, gain=xavier_std) nn.init.constant_(module.input_projection.bias, 0) # FPN elif isinstance(module, MaskFormerFPNModel): nn.init.xavier_uniform_(module.stem.get_submodule("0").weight, gain=xavier_std) elif isinstance(module, MaskFormerFPNLayer): nn.init.xavier_uniform_(module.proj[0].weight, gain=xavier_std) elif isinstance(module, MaskFormerFPNConvLayer): nn.init.xavier_uniform_(module.get_submodule("0").weight, gain=xavier_std) # The MLP head elif isinstance(module, MaskformerMLPPredictionHead): # I was not able to find the correct initializer in the original implementation # we'll use xavier for submodule in module.modules(): if isinstance(submodule, nn.Linear): nn.init.xavier_uniform_(submodule.weight, gain=xavier_std) nn.init.constant_(submodule.bias, 0) elif isinstance(module, nn.LayerNorm): module.bias.data.zero_() module.weight.data.fill_(1.0) # copied from DETR if isinstance(module, (nn.Linear, nn.Conv2d, nn.BatchNorm2d)): # Slightly different from the TF version which uses truncated_normal for initialization # cf https://github.com/pytorch/pytorch/pull/5617 module.weight.data.normal_(mean=0.0, std=std) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.Embedding): module.weight.data.normal_(mean=0.0, std=std) if module.padding_idx is not None: module.weight.data[module.padding_idx].zero_() def _set_gradient_checkpointing(self, module, value=False): if isinstance(module, MaskFormerPixelLevelModule): module.encoder.gradient_checkpointing = value if isinstance(module, DetrDecoder): module.gradient_checkpointing = value @add_start_docstrings( "The bare MaskFormer Model outputting raw hidden-states without any specific head on top.", MASKFORMER_START_DOCSTRING, ) class MaskFormerModel(MaskFormerPreTrainedModel): def __init__(self, config: MaskFormerConfig): super().__init__(config) self.pixel_level_module = MaskFormerPixelLevelModule(config) self.transformer_module = MaskFormerTransformerModule( in_features=self.pixel_level_module.encoder.channels[-1], config=config ) self.post_init() @add_start_docstrings_to_model_forward(MASKFORMER_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=MaskFormerModelOutput, config_class=_CONFIG_FOR_DOC) def forward( self, pixel_values: Tensor, pixel_mask: Optional[Tensor] = None, output_hidden_states: Optional[bool] = None, output_attentions: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> MaskFormerModelOutput: r""" Returns: Examples: ```python >>> from transformers import AutoImageProcessor, MaskFormerModel >>> from PIL import Image >>> import requests >>> # load MaskFormer fine-tuned on ADE20k semantic segmentation >>> image_processor = AutoImageProcessor.from_pretrained("facebook/maskformer-swin-base-ade") >>> model = MaskFormerModel.from_pretrained("facebook/maskformer-swin-base-ade") >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" >>> image = Image.open(requests.get(url, stream=True).raw) >>> inputs = image_processor(image, return_tensors="pt") >>> # forward pass >>> outputs = model(**inputs) >>> # the decoder of MaskFormer outputs hidden states of shape (batch_size, num_queries, hidden_size) >>> transformer_decoder_last_hidden_state = outputs.transformer_decoder_last_hidden_state >>> list(transformer_decoder_last_hidden_state.shape) [1, 100, 256] ```""" if pixel_values is None: raise ValueError("You have to specify pixel_values") output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict batch_size, _, height, width = pixel_values.shape if pixel_mask is None: pixel_mask = torch.ones((batch_size, height, width), device=pixel_values.device) pixel_level_module_output = self.pixel_level_module( pixel_values, output_hidden_states, return_dict=return_dict ) image_features = pixel_level_module_output[0] pixel_embeddings = pixel_level_module_output[1] transformer_module_output = self.transformer_module(image_features, output_hidden_states, output_attentions) queries = transformer_module_output.last_hidden_state encoder_hidden_states = None pixel_decoder_hidden_states = None transformer_decoder_hidden_states = None hidden_states = None if output_hidden_states: encoder_hidden_states = pixel_level_module_output[2] pixel_decoder_hidden_states = pixel_level_module_output[3] transformer_decoder_hidden_states = transformer_module_output[1] hidden_states = encoder_hidden_states + pixel_decoder_hidden_states + transformer_decoder_hidden_states output = MaskFormerModelOutput( encoder_last_hidden_state=image_features, pixel_decoder_last_hidden_state=pixel_embeddings, transformer_decoder_last_hidden_state=queries, encoder_hidden_states=encoder_hidden_states, pixel_decoder_hidden_states=pixel_decoder_hidden_states, transformer_decoder_hidden_states=transformer_decoder_hidden_states, hidden_states=hidden_states, attentions=transformer_module_output.attentions, ) if not return_dict: output = tuple(v for v in output.values()) return output class MaskFormerForInstanceSegmentation(MaskFormerPreTrainedModel): def __init__(self, config: MaskFormerConfig): super().__init__(config) self.model = MaskFormerModel(config) hidden_size = config.decoder_config.hidden_size # + 1 because we add the "null" class self.class_predictor = nn.Linear(hidden_size, config.num_labels + 1) self.mask_embedder = MaskformerMLPPredictionHead(hidden_size, hidden_size, config.mask_feature_size) self.matcher = MaskFormerHungarianMatcher( cost_class=1.0, cost_dice=config.dice_weight, cost_mask=config.mask_weight ) self.weight_dict: Dict[str, float] = { "loss_cross_entropy": config.cross_entropy_weight, "loss_mask": config.mask_weight, "loss_dice": config.dice_weight, } self.criterion = MaskFormerLoss( config.num_labels, matcher=self.matcher, weight_dict=self.weight_dict, eos_coef=config.no_object_weight, ) self.post_init() def get_loss_dict( self, masks_queries_logits: Tensor, class_queries_logits: Tensor, mask_labels: Tensor, class_labels: Tensor, auxiliary_logits: Dict[str, Tensor], ) -> Dict[str, Tensor]: loss_dict: Dict[str, Tensor] = self.criterion( masks_queries_logits, class_queries_logits, mask_labels, class_labels, auxiliary_logits ) # weight each loss by `self.weight_dict[<LOSS_NAME>]` including auxiliary losses for key, weight in self.weight_dict.items(): for loss_key, loss in loss_dict.items(): if key in loss_key: loss *= weight return loss_dict def get_loss(self, loss_dict: Dict[str, Tensor]) -> Tensor: return sum(loss_dict.values()) def get_logits(self, outputs: MaskFormerModelOutput) -> Tuple[Tensor, Tensor, Dict[str, Tensor]]: pixel_embeddings = outputs.pixel_decoder_last_hidden_state # get the auxiliary predictions (one for each decoder's layer) auxiliary_logits: List[str, Tensor] = [] # This code is a little bit cumbersome, an improvement can be to return a list of predictions. If we have auxiliary loss then we are going to return more than one element in the list if self.config.use_auxiliary_loss: stacked_transformer_decoder_outputs = torch.stack(outputs.transformer_decoder_hidden_states) classes = self.class_predictor(stacked_transformer_decoder_outputs) class_queries_logits = classes[-1] # get the masks mask_embeddings = self.mask_embedder(stacked_transformer_decoder_outputs) # sum up over the channels for each embedding binaries_masks = torch.einsum("lbqc, bchw -> lbqhw", mask_embeddings, pixel_embeddings) masks_queries_logits = binaries_masks[-1] # go til [:-1] because the last one is always used for aux_binary_masks, aux_classes in zip(binaries_masks[:-1], classes[:-1]): auxiliary_logits.append( {"masks_queries_logits": aux_binary_masks, "class_queries_logits": aux_classes} ) else: transformer_decoder_hidden_states = outputs.transformer_decoder_last_hidden_state classes = self.class_predictor(transformer_decoder_hidden_states) class_queries_logits = classes # get the masks mask_embeddings = self.mask_embedder(transformer_decoder_hidden_states) # sum up over the channels masks_queries_logits = torch.einsum("bqc, bchw -> bqhw", mask_embeddings, pixel_embeddings) return class_queries_logits, masks_queries_logits, auxiliary_logits @add_start_docstrings_to_model_forward(MASKFORMER_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=MaskFormerForInstanceSegmentationOutput, config_class=_CONFIG_FOR_DOC) def forward( self, pixel_values: Tensor, mask_labels: Optional[List[Tensor]] = None, class_labels: Optional[List[Tensor]] = None, pixel_mask: Optional[Tensor] = None, output_auxiliary_logits: Optional[bool] = None, output_hidden_states: Optional[bool] = None, output_attentions: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> MaskFormerForInstanceSegmentationOutput: r""" mask_labels (`List[torch.Tensor]`, *optional*): List of mask labels of shape `(num_labels, height, width)` to be fed to a model class_labels (`List[torch.LongTensor]`, *optional*): list of target class labels of shape `(num_labels, height, width)` to be fed to a model. They identify the labels of `mask_labels`, e.g. the label of `mask_labels[i][j]` if `class_labels[i][j]`. Returns: Examples: Semantic segmentation example: ```python >>> from transformers import AutoImageProcessor, MaskFormerForInstanceSegmentation >>> from PIL import Image >>> import requests >>> # load MaskFormer fine-tuned on ADE20k semantic segmentation >>> image_processor = AutoImageProcessor.from_pretrained("facebook/maskformer-swin-base-ade") >>> model = MaskFormerForInstanceSegmentation.from_pretrained("facebook/maskformer-swin-base-ade") >>> url = ( ... "https://huggingface.co/datasets/hf-internal-testing/fixtures_ade20k/resolve/main/ADE_val_00000001.jpg" ... ) >>> image = Image.open(requests.get(url, stream=True).raw) >>> inputs = image_processor(images=image, return_tensors="pt") >>> outputs = model(**inputs) >>> # model predicts class_queries_logits of shape `(batch_size, num_queries)` >>> # and masks_queries_logits of shape `(batch_size, num_queries, height, width)` >>> class_queries_logits = outputs.class_queries_logits >>> masks_queries_logits = outputs.masks_queries_logits >>> # you can pass them to image_processor for postprocessing >>> predicted_semantic_map = image_processor.post_process_semantic_segmentation( ... outputs, target_sizes=[image.size[::-1]] ... )[0] >>> # we refer to the demo notebooks for visualization (see "Resources" section in the MaskFormer docs) >>> list(predicted_semantic_map.shape) [512, 683] ``` Panoptic segmentation example: ```python >>> from transformers import AutoImageProcessor, MaskFormerForInstanceSegmentation >>> from PIL import Image >>> import requests >>> # load MaskFormer fine-tuned on COCO panoptic segmentation >>> image_processor = AutoImageProcessor.from_pretrained("facebook/maskformer-swin-base-coco") >>> model = MaskFormerForInstanceSegmentation.from_pretrained("facebook/maskformer-swin-base-coco") >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" >>> image = Image.open(requests.get(url, stream=True).raw) >>> inputs = image_processor(images=image, return_tensors="pt") >>> outputs = model(**inputs) >>> # model predicts class_queries_logits of shape `(batch_size, num_queries)` >>> # and masks_queries_logits of shape `(batch_size, num_queries, height, width)` >>> class_queries_logits = outputs.class_queries_logits >>> masks_queries_logits = outputs.masks_queries_logits >>> # you can pass them to image_processor for postprocessing >>> result = image_processor.post_process_panoptic_segmentation(outputs, target_sizes=[image.size[::-1]])[0] >>> # we refer to the demo notebooks for visualization (see "Resources" section in the MaskFormer docs) >>> predicted_panoptic_map = result["segmentation"] >>> list(predicted_panoptic_map.shape) [480, 640] ``` """ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict raw_outputs = self.model( pixel_values, pixel_mask, output_hidden_states=output_hidden_states or self.config.use_auxiliary_loss, return_dict=return_dict, output_attentions=output_attentions, ) # We need to have raw_outputs optionally be returned as a dict to use torch.compile. For backwards # compatibility we convert to a dataclass for the rest of the model logic outputs = MaskFormerModelOutput( encoder_last_hidden_state=raw_outputs[0], pixel_decoder_last_hidden_state=raw_outputs[1], transformer_decoder_last_hidden_state=raw_outputs[2], encoder_hidden_states=raw_outputs[3] if output_hidden_states else None, pixel_decoder_hidden_states=raw_outputs[4] if output_hidden_states else None, transformer_decoder_hidden_states=raw_outputs[5] if output_hidden_states else None, hidden_states=raw_outputs[6] if output_hidden_states else None, attentions=raw_outputs[-1] if output_attentions else None, ) loss, loss_dict, auxiliary_logits = None, None, None class_queries_logits, masks_queries_logits, auxiliary_logits = self.get_logits(outputs) if mask_labels is not None and class_labels is not None: loss_dict: Dict[str, Tensor] = self.get_loss_dict( masks_queries_logits, class_queries_logits, mask_labels, class_labels, auxiliary_logits ) loss = self.get_loss(loss_dict) output_auxiliary_logits = ( self.config.output_auxiliary_logits if output_auxiliary_logits is None else output_auxiliary_logits ) if not output_auxiliary_logits: auxiliary_logits = None if not return_dict: output = tuple( v for v in (loss, class_queries_logits, masks_queries_logits, auxiliary_logits, *outputs.values()) if v is not None ) return output return MaskFormerForInstanceSegmentationOutput( loss=loss, **outputs, class_queries_logits=class_queries_logits, masks_queries_logits=masks_queries_logits, auxiliary_logits=auxiliary_logits, )
0
hf_public_repos/transformers/src/transformers/models
hf_public_repos/transformers/src/transformers/models/maskformer/convert_maskformer_resnet_to_pytorch.py
# coding=utf-8 # Copyright 2022 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Convert MaskFormer checkpoints with ResNet backbone from the original repository. URL: https://github.com/facebookresearch/MaskFormer""" import argparse import json import pickle from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import MaskFormerConfig, MaskFormerForInstanceSegmentation, MaskFormerImageProcessor, ResNetConfig from transformers.utils import logging logging.set_verbosity_info() logger = logging.get_logger(__name__) def get_maskformer_config(model_name: str): if "resnet101c" in model_name: # TODO add support for ResNet-C backbone, which uses a "deeplab" stem raise NotImplementedError("To do") elif "resnet101" in model_name: backbone_config = ResNetConfig.from_pretrained( "microsoft/resnet-101", out_features=["stage1", "stage2", "stage3", "stage4"] ) else: backbone_config = ResNetConfig.from_pretrained( "microsoft/resnet-50", out_features=["stage1", "stage2", "stage3", "stage4"] ) config = MaskFormerConfig(backbone_config=backbone_config) repo_id = "huggingface/label-files" if "ade20k-full" in model_name: config.num_labels = 847 filename = "maskformer-ade20k-full-id2label.json" elif "ade" in model_name: config.num_labels = 150 filename = "ade20k-id2label.json" elif "coco-stuff" in model_name: config.num_labels = 171 filename = "maskformer-coco-stuff-id2label.json" elif "coco" in model_name: # TODO config.num_labels = 133 filename = "coco-panoptic-id2label.json" elif "cityscapes" in model_name: config.num_labels = 19 filename = "cityscapes-id2label.json" elif "vistas" in model_name: config.num_labels = 65 filename = "mapillary-vistas-id2label.json" id2label = json.load(open(hf_hub_download(repo_id, filename, repo_type="dataset"), "r")) id2label = {int(k): v for k, v in id2label.items()} config.id2label = id2label config.label2id = {v: k for k, v in id2label.items()} return config def create_rename_keys(config): rename_keys = [] # stem # fmt: off rename_keys.append(("backbone.stem.conv1.weight", "model.pixel_level_module.encoder.embedder.embedder.convolution.weight")) rename_keys.append(("backbone.stem.conv1.norm.weight", "model.pixel_level_module.encoder.embedder.embedder.normalization.weight")) rename_keys.append(("backbone.stem.conv1.norm.bias", "model.pixel_level_module.encoder.embedder.embedder.normalization.bias")) rename_keys.append(("backbone.stem.conv1.norm.running_mean", "model.pixel_level_module.encoder.embedder.embedder.normalization.running_mean")) rename_keys.append(("backbone.stem.conv1.norm.running_var", "model.pixel_level_module.encoder.embedder.embedder.normalization.running_var")) # fmt: on # stages for stage_idx in range(len(config.backbone_config.depths)): for layer_idx in range(config.backbone_config.depths[stage_idx]): # shortcut if layer_idx == 0: rename_keys.append( ( f"backbone.res{stage_idx + 2}.{layer_idx}.shortcut.weight", f"model.pixel_level_module.encoder.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.convolution.weight", ) ) rename_keys.append( ( f"backbone.res{stage_idx + 2}.{layer_idx}.shortcut.norm.weight", f"model.pixel_level_module.encoder.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.weight", ) ) rename_keys.append( ( f"backbone.res{stage_idx + 2}.{layer_idx}.shortcut.norm.bias", f"model.pixel_level_module.encoder.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.bias", ) ) rename_keys.append( ( f"backbone.res{stage_idx + 2}.{layer_idx}.shortcut.norm.running_mean", f"model.pixel_level_module.encoder.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.running_mean", ) ) rename_keys.append( ( f"backbone.res{stage_idx + 2}.{layer_idx}.shortcut.norm.running_var", f"model.pixel_level_module.encoder.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.running_var", ) ) # 3 convs for i in range(3): rename_keys.append( ( f"backbone.res{stage_idx + 2}.{layer_idx}.conv{i+1}.weight", f"model.pixel_level_module.encoder.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.convolution.weight", ) ) rename_keys.append( ( f"backbone.res{stage_idx + 2}.{layer_idx}.conv{i+1}.norm.weight", f"model.pixel_level_module.encoder.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.weight", ) ) rename_keys.append( ( f"backbone.res{stage_idx + 2}.{layer_idx}.conv{i+1}.norm.bias", f"model.pixel_level_module.encoder.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.bias", ) ) rename_keys.append( ( f"backbone.res{stage_idx + 2}.{layer_idx}.conv{i+1}.norm.running_mean", f"model.pixel_level_module.encoder.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.running_mean", ) ) rename_keys.append( ( f"backbone.res{stage_idx + 2}.{layer_idx}.conv{i+1}.norm.running_var", f"model.pixel_level_module.encoder.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.running_var", ) ) # FPN # fmt: off rename_keys.append(("sem_seg_head.layer_4.weight", "model.pixel_level_module.decoder.fpn.stem.0.weight")) rename_keys.append(("sem_seg_head.layer_4.norm.weight", "model.pixel_level_module.decoder.fpn.stem.1.weight")) rename_keys.append(("sem_seg_head.layer_4.norm.bias", "model.pixel_level_module.decoder.fpn.stem.1.bias")) for source_index, target_index in zip(range(3, 0, -1), range(0, 3)): rename_keys.append((f"sem_seg_head.adapter_{source_index}.weight", f"model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.0.weight")) rename_keys.append((f"sem_seg_head.adapter_{source_index}.norm.weight", f"model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.weight")) rename_keys.append((f"sem_seg_head.adapter_{source_index}.norm.bias", f"model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.bias")) rename_keys.append((f"sem_seg_head.layer_{source_index}.weight", f"model.pixel_level_module.decoder.fpn.layers.{target_index}.block.0.weight")) rename_keys.append((f"sem_seg_head.layer_{source_index}.norm.weight", f"model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.weight")) rename_keys.append((f"sem_seg_head.layer_{source_index}.norm.bias", f"model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.bias")) rename_keys.append(("sem_seg_head.mask_features.weight", "model.pixel_level_module.decoder.mask_projection.weight")) rename_keys.append(("sem_seg_head.mask_features.bias", "model.pixel_level_module.decoder.mask_projection.bias")) # fmt: on # Transformer decoder # fmt: off for idx in range(config.decoder_config.decoder_layers): # self-attention out projection rename_keys.append((f"sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.weight", f"model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.weight")) rename_keys.append((f"sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.bias", f"model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.bias")) # cross-attention out projection rename_keys.append((f"sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.weight", f"model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.weight")) rename_keys.append((f"sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.bias", f"model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.bias")) # MLP 1 rename_keys.append((f"sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.weight", f"model.transformer_module.decoder.layers.{idx}.fc1.weight")) rename_keys.append((f"sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.bias", f"model.transformer_module.decoder.layers.{idx}.fc1.bias")) # MLP 2 rename_keys.append((f"sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.weight", f"model.transformer_module.decoder.layers.{idx}.fc2.weight")) rename_keys.append((f"sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.bias", f"model.transformer_module.decoder.layers.{idx}.fc2.bias")) # layernorm 1 (self-attention layernorm) rename_keys.append((f"sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.weight", f"model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.weight")) rename_keys.append((f"sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.bias", f"model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.bias")) # layernorm 2 (cross-attention layernorm) rename_keys.append((f"sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.weight", f"model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.weight")) rename_keys.append((f"sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.bias", f"model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.bias")) # layernorm 3 (final layernorm) rename_keys.append((f"sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.weight", f"model.transformer_module.decoder.layers.{idx}.final_layer_norm.weight")) rename_keys.append((f"sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.bias", f"model.transformer_module.decoder.layers.{idx}.final_layer_norm.bias")) rename_keys.append(("sem_seg_head.predictor.transformer.decoder.norm.weight", "model.transformer_module.decoder.layernorm.weight")) rename_keys.append(("sem_seg_head.predictor.transformer.decoder.norm.bias", "model.transformer_module.decoder.layernorm.bias")) # fmt: on # heads on top # fmt: off rename_keys.append(("sem_seg_head.predictor.query_embed.weight", "model.transformer_module.queries_embedder.weight")) rename_keys.append(("sem_seg_head.predictor.input_proj.weight", "model.transformer_module.input_projection.weight")) rename_keys.append(("sem_seg_head.predictor.input_proj.bias", "model.transformer_module.input_projection.bias")) rename_keys.append(("sem_seg_head.predictor.class_embed.weight", "class_predictor.weight")) rename_keys.append(("sem_seg_head.predictor.class_embed.bias", "class_predictor.bias")) for i in range(3): rename_keys.append((f"sem_seg_head.predictor.mask_embed.layers.{i}.weight", f"mask_embedder.{i}.0.weight")) rename_keys.append((f"sem_seg_head.predictor.mask_embed.layers.{i}.bias", f"mask_embedder.{i}.0.bias")) # fmt: on return rename_keys def rename_key(dct, old, new): val = dct.pop(old) dct[new] = val # we split up the matrix of each encoder layer into queries, keys and values def read_in_decoder_q_k_v(state_dict, config): # fmt: off hidden_size = config.decoder_config.hidden_size for idx in range(config.decoder_config.decoder_layers): # read in weights + bias of self-attention input projection layer (in the original implementation, this is a single matrix + bias) in_proj_weight = state_dict.pop(f"sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_weight") in_proj_bias = state_dict.pop(f"sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_bias") # next, add query, keys and values (in that order) to the state dict state_dict[f"model.transformer_module.decoder.layers.{idx}.self_attn.q_proj.weight"] = in_proj_weight[: hidden_size, :] state_dict[f"model.transformer_module.decoder.layers.{idx}.self_attn.q_proj.bias"] = in_proj_bias[:config.hidden_size] state_dict[f"model.transformer_module.decoder.layers.{idx}.self_attn.k_proj.weight"] = in_proj_weight[hidden_size : hidden_size * 2, :] state_dict[f"model.transformer_module.decoder.layers.{idx}.self_attn.k_proj.bias"] = in_proj_bias[hidden_size : hidden_size * 2] state_dict[f"model.transformer_module.decoder.layers.{idx}.self_attn.v_proj.weight"] = in_proj_weight[-hidden_size :, :] state_dict[f"model.transformer_module.decoder.layers.{idx}.self_attn.v_proj.bias"] = in_proj_bias[-hidden_size :] # read in weights + bias of cross-attention input projection layer (in the original implementation, this is a single matrix + bias) in_proj_weight = state_dict.pop(f"sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_weight") in_proj_bias = state_dict.pop(f"sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_bias") # next, add query, keys and values (in that order) to the state dict state_dict[f"model.transformer_module.decoder.layers.{idx}.encoder_attn.q_proj.weight"] = in_proj_weight[: hidden_size, :] state_dict[f"model.transformer_module.decoder.layers.{idx}.encoder_attn.q_proj.bias"] = in_proj_bias[:config.hidden_size] state_dict[f"model.transformer_module.decoder.layers.{idx}.encoder_attn.k_proj.weight"] = in_proj_weight[hidden_size : hidden_size * 2, :] state_dict[f"model.transformer_module.decoder.layers.{idx}.encoder_attn.k_proj.bias"] = in_proj_bias[hidden_size : hidden_size * 2] state_dict[f"model.transformer_module.decoder.layers.{idx}.encoder_attn.v_proj.weight"] = in_proj_weight[-hidden_size :, :] state_dict[f"model.transformer_module.decoder.layers.{idx}.encoder_attn.v_proj.bias"] = in_proj_bias[-hidden_size :] # fmt: on # We will verify our results on an image of cute cats def prepare_img() -> torch.Tensor: url = "http://images.cocodataset.org/val2017/000000039769.jpg" im = Image.open(requests.get(url, stream=True).raw) return im @torch.no_grad() def convert_maskformer_checkpoint( model_name: str, checkpoint_path: str, pytorch_dump_folder_path: str, push_to_hub: bool = False ): """ Copy/paste/tweak model's weights to our MaskFormer structure. """ config = get_maskformer_config(model_name) # load original state_dict with open(checkpoint_path, "rb") as f: data = pickle.load(f) state_dict = data["model"] # rename keys rename_keys = create_rename_keys(config) for src, dest in rename_keys: rename_key(state_dict, src, dest) read_in_decoder_q_k_v(state_dict, config) # update to torch tensors for key, value in state_dict.items(): state_dict[key] = torch.from_numpy(value) # load 🤗 model model = MaskFormerForInstanceSegmentation(config) model.eval() model.load_state_dict(state_dict) # verify results image = prepare_img() if "vistas" in model_name: ignore_index = 65 elif "cityscapes" in model_name: ignore_index = 65535 else: ignore_index = 255 reduce_labels = True if "ade" in model_name else False image_processor = MaskFormerImageProcessor(ignore_index=ignore_index, reduce_labels=reduce_labels) inputs = image_processor(image, return_tensors="pt") outputs = model(**inputs) if model_name == "maskformer-resnet50-ade": expected_logits = torch.tensor( [[6.7710, -0.1452, -3.5687], [1.9165, -1.0010, -1.8614], [3.6209, -0.2950, -1.3813]] ) elif model_name == "maskformer-resnet101-ade": expected_logits = torch.tensor( [[4.0381, -1.1483, -1.9688], [2.7083, -1.9147, -2.2555], [3.4367, -1.3711, -2.1609]] ) elif model_name == "maskformer-resnet50-coco-stuff": expected_logits = torch.tensor( [[3.2309, -3.0481, -2.8695], [5.4986, -5.4242, -2.4211], [6.2100, -5.2279, -2.7786]] ) elif model_name == "maskformer-resnet101-coco-stuff": expected_logits = torch.tensor( [[4.7188, -3.2585, -2.8857], [6.6871, -2.9181, -1.2487], [7.2449, -2.2764, -2.1874]] ) elif model_name == "maskformer-resnet101-cityscapes": expected_logits = torch.tensor( [[-1.8861, -1.5465, 0.6749], [-2.3677, -1.6707, -0.0867], [-2.2314, -1.9530, -0.9132]] ) elif model_name == "maskformer-resnet50-vistas": expected_logits = torch.tensor( [[-6.3917, -1.5216, -1.1392], [-5.5335, -4.5318, -1.8339], [-4.3576, -4.0301, 0.2162]] ) elif model_name == "maskformer-resnet50-ade20k-full": expected_logits = torch.tensor( [[3.6146, -1.9367, -3.2534], [4.0099, 0.2027, -2.7576], [3.3913, -2.3644, -3.9519]] ) elif model_name == "maskformer-resnet101-ade20k-full": expected_logits = torch.tensor( [[3.2211, -1.6550, -2.7605], [2.8559, -2.4512, -2.9574], [2.6331, -2.6775, -2.1844]] ) assert torch.allclose(outputs.class_queries_logits[0, :3, :3], expected_logits, atol=1e-4) print("Looks ok!") if pytorch_dump_folder_path is not None: print(f"Saving model and image processor of {model_name} to {pytorch_dump_folder_path}") Path(pytorch_dump_folder_path).mkdir(exist_ok=True) model.save_pretrained(pytorch_dump_folder_path) image_processor.save_pretrained(pytorch_dump_folder_path) if push_to_hub: print(f"Pushing model and image processor of {model_name} to the hub...") model.push_to_hub(f"facebook/{model_name}") image_processor.push_to_hub(f"facebook/{model_name}") if __name__ == "__main__": parser = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="maskformer-resnet50-ade", type=str, required=True, choices=[ "maskformer-resnet50-ade", "maskformer-resnet101-ade", "maskformer-resnet50-coco-stuff", "maskformer-resnet101-coco-stuff", "maskformer-resnet101-cityscapes", "maskformer-resnet50-vistas", "maskformer-resnet50-ade20k-full", "maskformer-resnet101-ade20k-full", ], help=("Name of the MaskFormer model you'd like to convert",), ) parser.add_argument( "--checkpoint_path", type=str, required=True, help=("Path to the original pickle file (.pkl) of the original checkpoint.",), ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub." ) args = parser.parse_args() convert_maskformer_checkpoint( args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
0
hf_public_repos/transformers/src/transformers/models
hf_public_repos/transformers/src/transformers/models/maskformer/configuration_maskformer_swin.py
# coding=utf-8 # Copyright 2022 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ MaskFormer Swin Transformer model configuration""" from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices logger = logging.get_logger(__name__) class MaskFormerSwinConfig(BackboneConfigMixin, PretrainedConfig): r""" This is the configuration class to store the configuration of a [`MaskFormerSwinModel`]. It is used to instantiate a Donut model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the Swin [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: image_size (`int`, *optional*, defaults to 224): The size (resolution) of each image. patch_size (`int`, *optional*, defaults to 4): The size (resolution) of each patch. num_channels (`int`, *optional*, defaults to 3): The number of input channels. embed_dim (`int`, *optional*, defaults to 96): Dimensionality of patch embedding. depths (`List[int]`, *optional*, defaults to `[2, 2, 6, 2]`): Depth of each layer in the Transformer encoder. num_heads (`List[int]`, *optional*, defaults to `[3, 6, 12, 24]`): Number of attention heads in each layer of the Transformer encoder. window_size (`int`, *optional*, defaults to 7): Size of windows. mlp_ratio (`float`, *optional*, defaults to 4.0): Ratio of MLP hidden dimensionality to embedding dimensionality. qkv_bias (`bool`, *optional*, defaults to True): Whether or not a learnable bias should be added to the queries, keys and values. hidden_dropout_prob (`float`, *optional*, defaults to 0.0): The dropout probability for all fully connected layers in the embeddings and encoder. attention_probs_dropout_prob (`float`, *optional*, defaults to 0.0): The dropout ratio for the attention probabilities. drop_path_rate (`float`, *optional*, defaults to 0.1): Stochastic depth rate. hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`): The non-linear activation function (function or string) in the encoder. If string, `"gelu"`, `"relu"`, `"selu"` and `"gelu_new"` are supported. use_absolute_embeddings (`bool`, *optional*, defaults to False): Whether or not to add absolute position embeddings to the patch embeddings. initializer_range (`float`, *optional*, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. layer_norm_eps (`float`, *optional*, defaults to 1e-12): The epsilon used by the layer normalization layers. out_features (`List[str]`, *optional*): If used as backbone, list of features to output. Can be any of `"stem"`, `"stage1"`, `"stage2"`, etc. (depending on how many stages the model has). If unset and `out_indices` is set, will default to the corresponding stages. If unset and `out_indices` is unset, will default to the last stage. out_indices (`List[int]`, *optional*): If used as backbone, list of indices of features to output. Can be any of 0, 1, 2, etc. (depending on how many stages the model has). If unset and `out_features` is set, will default to the corresponding stages. If unset and `out_features` is unset, will default to the last stage. Example: ```python >>> from transformers import MaskFormerSwinConfig, MaskFormerSwinModel >>> # Initializing a microsoft/swin-tiny-patch4-window7-224 style configuration >>> configuration = MaskFormerSwinConfig() >>> # Initializing a model (with random weights) from the microsoft/swin-tiny-patch4-window7-224 style configuration >>> model = MaskFormerSwinModel(configuration) >>> # Accessing the model configuration >>> configuration = model.config ```""" model_type = "maskformer-swin" attribute_map = { "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers", } def __init__( self, image_size=224, patch_size=4, num_channels=3, embed_dim=96, depths=[2, 2, 6, 2], num_heads=[3, 6, 12, 24], window_size=7, mlp_ratio=4.0, qkv_bias=True, hidden_dropout_prob=0.0, attention_probs_dropout_prob=0.0, drop_path_rate=0.1, hidden_act="gelu", use_absolute_embeddings=False, initializer_range=0.02, layer_norm_eps=1e-5, out_features=None, out_indices=None, **kwargs, ): super().__init__(**kwargs) self.image_size = image_size self.patch_size = patch_size self.num_channels = num_channels self.embed_dim = embed_dim self.depths = depths self.num_layers = len(depths) self.num_heads = num_heads self.window_size = window_size self.mlp_ratio = mlp_ratio self.qkv_bias = qkv_bias self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.drop_path_rate = drop_path_rate self.hidden_act = hidden_act self.use_absolute_embeddings = use_absolute_embeddings self.layer_norm_eps = layer_norm_eps self.initializer_range = initializer_range # we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model self.hidden_size = int(embed_dim * 2 ** (len(depths) - 1)) self.stage_names = ["stem"] + [f"stage{idx}" for idx in range(1, len(depths) + 1)] self._out_features, self._out_indices = get_aligned_output_features_output_indices( out_features=out_features, out_indices=out_indices, stage_names=self.stage_names )
0
hf_public_repos/transformers/src/transformers/models
hf_public_repos/transformers/src/transformers/models/maskformer/convert_maskformer_swin_to_pytorch.py
# coding=utf-8 # Copyright 2022 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Convert MaskFormer checkpoints with Swin backbone from the original repository. URL: https://github.com/facebookresearch/MaskFormer""" import argparse import json import pickle from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import MaskFormerConfig, MaskFormerForInstanceSegmentation, MaskFormerImageProcessor, SwinConfig from transformers.utils import logging logging.set_verbosity_info() logger = logging.get_logger(__name__) def get_maskformer_config(model_name: str): backbone_config = SwinConfig.from_pretrained( "microsoft/swin-tiny-patch4-window7-224", out_features=["stage1", "stage2", "stage3", "stage4"] ) config = MaskFormerConfig(backbone_config=backbone_config) repo_id = "huggingface/label-files" if "ade20k-full" in model_name: # this should be ok config.num_labels = 847 filename = "maskformer-ade20k-full-id2label.json" elif "ade" in model_name: # this should be ok config.num_labels = 150 filename = "ade20k-id2label.json" elif "coco-stuff" in model_name: # this should be ok config.num_labels = 171 filename = "maskformer-coco-stuff-id2label.json" elif "coco" in model_name: # TODO config.num_labels = 133 filename = "coco-panoptic-id2label.json" elif "cityscapes" in model_name: # this should be ok config.num_labels = 19 filename = "cityscapes-id2label.json" elif "vistas" in model_name: # this should be ok config.num_labels = 65 filename = "mapillary-vistas-id2label.json" id2label = json.load(open(hf_hub_download(repo_id, filename, repo_type="dataset"), "r")) id2label = {int(k): v for k, v in id2label.items()} return config def create_rename_keys(config): rename_keys = [] # stem # fmt: off rename_keys.append(("backbone.patch_embed.proj.weight", "model.pixel_level_module.encoder.model.embeddings.patch_embeddings.projection.weight")) rename_keys.append(("backbone.patch_embed.proj.bias", "model.pixel_level_module.encoder.model.embeddings.patch_embeddings.projection.bias")) rename_keys.append(("backbone.patch_embed.norm.weight", "model.pixel_level_module.encoder.model.embeddings.norm.weight")) rename_keys.append(("backbone.patch_embed.norm.bias", "model.pixel_level_module.encoder.model.embeddings.norm.bias")) # stages for i in range(len(config.backbone_config.depths)): for j in range(config.backbone_config.depths[i]): rename_keys.append((f"backbone.layers.{i}.blocks.{j}.norm1.weight", f"model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_before.weight")) rename_keys.append((f"backbone.layers.{i}.blocks.{j}.norm1.bias", f"model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_before.bias")) rename_keys.append((f"backbone.layers.{i}.blocks.{j}.attn.relative_position_bias_table", f"model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table")) rename_keys.append((f"backbone.layers.{i}.blocks.{j}.attn.relative_position_index", f"model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index")) rename_keys.append((f"backbone.layers.{i}.blocks.{j}.attn.proj.weight", f"model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight")) rename_keys.append((f"backbone.layers.{i}.blocks.{j}.attn.proj.bias", f"model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias")) rename_keys.append((f"backbone.layers.{i}.blocks.{j}.norm2.weight", f"model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_after.weight")) rename_keys.append((f"backbone.layers.{i}.blocks.{j}.norm2.bias", f"model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_after.bias")) rename_keys.append((f"backbone.layers.{i}.blocks.{j}.mlp.fc1.weight", f"model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight")) rename_keys.append((f"backbone.layers.{i}.blocks.{j}.mlp.fc1.bias", f"model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias")) rename_keys.append((f"backbone.layers.{i}.blocks.{j}.mlp.fc2.weight", f"model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.output.dense.weight")) rename_keys.append((f"backbone.layers.{i}.blocks.{j}.mlp.fc2.bias", f"model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.output.dense.bias")) if i < 3: rename_keys.append((f"backbone.layers.{i}.downsample.reduction.weight", f"model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.reduction.weight")) rename_keys.append((f"backbone.layers.{i}.downsample.norm.weight", f"model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.norm.weight")) rename_keys.append((f"backbone.layers.{i}.downsample.norm.bias", f"model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.norm.bias")) rename_keys.append((f"backbone.norm{i}.weight", f"model.pixel_level_module.encoder.hidden_states_norms.{i}.weight")) rename_keys.append((f"backbone.norm{i}.bias", f"model.pixel_level_module.encoder.hidden_states_norms.{i}.bias")) # FPN rename_keys.append(("sem_seg_head.layer_4.weight", "model.pixel_level_module.decoder.fpn.stem.0.weight")) rename_keys.append(("sem_seg_head.layer_4.norm.weight", "model.pixel_level_module.decoder.fpn.stem.1.weight")) rename_keys.append(("sem_seg_head.layer_4.norm.bias", "model.pixel_level_module.decoder.fpn.stem.1.bias")) for source_index, target_index in zip(range(3, 0, -1), range(0, 3)): rename_keys.append((f"sem_seg_head.adapter_{source_index}.weight", f"model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.0.weight")) rename_keys.append((f"sem_seg_head.adapter_{source_index}.norm.weight", f"model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.weight")) rename_keys.append((f"sem_seg_head.adapter_{source_index}.norm.bias", f"model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.bias")) rename_keys.append((f"sem_seg_head.layer_{source_index}.weight", f"model.pixel_level_module.decoder.fpn.layers.{target_index}.block.0.weight")) rename_keys.append((f"sem_seg_head.layer_{source_index}.norm.weight", f"model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.weight")) rename_keys.append((f"sem_seg_head.layer_{source_index}.norm.bias", f"model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.bias")) rename_keys.append(("sem_seg_head.mask_features.weight", "model.pixel_level_module.decoder.mask_projection.weight")) rename_keys.append(("sem_seg_head.mask_features.bias", "model.pixel_level_module.decoder.mask_projection.bias")) # Transformer decoder for idx in range(config.decoder_config.decoder_layers): # self-attention out projection rename_keys.append((f"sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.weight", f"model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.weight")) rename_keys.append((f"sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.bias", f"model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.bias")) # cross-attention out projection rename_keys.append((f"sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.weight", f"model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.weight")) rename_keys.append((f"sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.bias", f"model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.bias")) # MLP 1 rename_keys.append((f"sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.weight", f"model.transformer_module.decoder.layers.{idx}.fc1.weight")) rename_keys.append((f"sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.bias", f"model.transformer_module.decoder.layers.{idx}.fc1.bias")) # MLP 2 rename_keys.append((f"sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.weight", f"model.transformer_module.decoder.layers.{idx}.fc2.weight")) rename_keys.append((f"sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.bias", f"model.transformer_module.decoder.layers.{idx}.fc2.bias")) # layernorm 1 (self-attention layernorm) rename_keys.append((f"sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.weight", f"model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.weight")) rename_keys.append((f"sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.bias", f"model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.bias")) # layernorm 2 (cross-attention layernorm) rename_keys.append((f"sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.weight", f"model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.weight")) rename_keys.append((f"sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.bias", f"model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.bias")) # layernorm 3 (final layernorm) rename_keys.append((f"sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.weight", f"model.transformer_module.decoder.layers.{idx}.final_layer_norm.weight")) rename_keys.append((f"sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.bias", f"model.transformer_module.decoder.layers.{idx}.final_layer_norm.bias")) rename_keys.append(("sem_seg_head.predictor.transformer.decoder.norm.weight", "model.transformer_module.decoder.layernorm.weight")) rename_keys.append(("sem_seg_head.predictor.transformer.decoder.norm.bias", "model.transformer_module.decoder.layernorm.bias")) # heads on top rename_keys.append(("sem_seg_head.predictor.query_embed.weight", "model.transformer_module.queries_embedder.weight")) rename_keys.append(("sem_seg_head.predictor.input_proj.weight", "model.transformer_module.input_projection.weight")) rename_keys.append(("sem_seg_head.predictor.input_proj.bias", "model.transformer_module.input_projection.bias")) rename_keys.append(("sem_seg_head.predictor.class_embed.weight", "class_predictor.weight")) rename_keys.append(("sem_seg_head.predictor.class_embed.bias", "class_predictor.bias")) for i in range(3): rename_keys.append((f"sem_seg_head.predictor.mask_embed.layers.{i}.weight", f"mask_embedder.{i}.0.weight")) rename_keys.append((f"sem_seg_head.predictor.mask_embed.layers.{i}.bias", f"mask_embedder.{i}.0.bias")) # fmt: on return rename_keys def rename_key(dct, old, new): val = dct.pop(old) dct[new] = val # we split up the matrix of each encoder layer into queries, keys and values def read_in_swin_q_k_v(state_dict, backbone_config): num_features = [int(backbone_config.embed_dim * 2**i) for i in range(len(backbone_config.depths))] for i in range(len(backbone_config.depths)): dim = num_features[i] for j in range(backbone_config.depths[i]): # fmt: off # read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias) in_proj_weight = state_dict.pop(f"backbone.layers.{i}.blocks.{j}.attn.qkv.weight") in_proj_bias = state_dict.pop(f"backbone.layers.{i}.blocks.{j}.attn.qkv.bias") # next, add query, keys and values (in that order) to the state dict state_dict[f"model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.query.weight"] = in_proj_weight[:dim, :] state_dict[f"model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.query.bias"] = in_proj_bias[: dim] state_dict[f"model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.key.weight"] = in_proj_weight[ dim : dim * 2, : ] state_dict[f"model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.key.bias"] = in_proj_bias[ dim : dim * 2 ] state_dict[f"model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.value.weight"] = in_proj_weight[ -dim :, : ] state_dict[f"model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.value.bias"] = in_proj_bias[-dim :] # fmt: on # we split up the matrix of each encoder layer into queries, keys and values def read_in_decoder_q_k_v(state_dict, config): # fmt: off hidden_size = config.decoder_config.hidden_size for idx in range(config.decoder_config.decoder_layers): # read in weights + bias of self-attention input projection layer (in the original implementation, this is a single matrix + bias) in_proj_weight = state_dict.pop(f"sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_weight") in_proj_bias = state_dict.pop(f"sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_bias") # next, add query, keys and values (in that order) to the state dict state_dict[f"model.transformer_module.decoder.layers.{idx}.self_attn.q_proj.weight"] = in_proj_weight[: hidden_size, :] state_dict[f"model.transformer_module.decoder.layers.{idx}.self_attn.q_proj.bias"] = in_proj_bias[:config.hidden_size] state_dict[f"model.transformer_module.decoder.layers.{idx}.self_attn.k_proj.weight"] = in_proj_weight[hidden_size : hidden_size * 2, :] state_dict[f"model.transformer_module.decoder.layers.{idx}.self_attn.k_proj.bias"] = in_proj_bias[hidden_size : hidden_size * 2] state_dict[f"model.transformer_module.decoder.layers.{idx}.self_attn.v_proj.weight"] = in_proj_weight[-hidden_size :, :] state_dict[f"model.transformer_module.decoder.layers.{idx}.self_attn.v_proj.bias"] = in_proj_bias[-hidden_size :] # read in weights + bias of cross-attention input projection layer (in the original implementation, this is a single matrix + bias) in_proj_weight = state_dict.pop(f"sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_weight") in_proj_bias = state_dict.pop(f"sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_bias") # next, add query, keys and values (in that order) to the state dict state_dict[f"model.transformer_module.decoder.layers.{idx}.encoder_attn.q_proj.weight"] = in_proj_weight[: hidden_size, :] state_dict[f"model.transformer_module.decoder.layers.{idx}.encoder_attn.q_proj.bias"] = in_proj_bias[:config.hidden_size] state_dict[f"model.transformer_module.decoder.layers.{idx}.encoder_attn.k_proj.weight"] = in_proj_weight[hidden_size : hidden_size * 2, :] state_dict[f"model.transformer_module.decoder.layers.{idx}.encoder_attn.k_proj.bias"] = in_proj_bias[hidden_size : hidden_size * 2] state_dict[f"model.transformer_module.decoder.layers.{idx}.encoder_attn.v_proj.weight"] = in_proj_weight[-hidden_size :, :] state_dict[f"model.transformer_module.decoder.layers.{idx}.encoder_attn.v_proj.bias"] = in_proj_bias[-hidden_size :] # fmt: on # We will verify our results on an image of cute cats def prepare_img() -> torch.Tensor: url = "http://images.cocodataset.org/val2017/000000039769.jpg" im = Image.open(requests.get(url, stream=True).raw) return im @torch.no_grad() def convert_maskformer_checkpoint( model_name: str, checkpoint_path: str, pytorch_dump_folder_path: str, push_to_hub: bool = False ): """ Copy/paste/tweak model's weights to our MaskFormer structure. """ config = get_maskformer_config(model_name) # load original state_dict with open(checkpoint_path, "rb") as f: data = pickle.load(f) state_dict = data["model"] # for name, param in state_dict.items(): # print(name, param.shape) # rename keys rename_keys = create_rename_keys(config) for src, dest in rename_keys: rename_key(state_dict, src, dest) read_in_swin_q_k_v(state_dict, config.backbone_config) read_in_decoder_q_k_v(state_dict, config) # update to torch tensors for key, value in state_dict.items(): state_dict[key] = torch.from_numpy(value) # load 🤗 model model = MaskFormerForInstanceSegmentation(config) model.eval() for name, param in model.named_parameters(): print(name, param.shape) missing_keys, unexpected_keys = model.load_state_dict(state_dict, strict=False) assert missing_keys == [ "model.pixel_level_module.encoder.model.layernorm.weight", "model.pixel_level_module.encoder.model.layernorm.bias", ] assert len(unexpected_keys) == 0, f"Unexpected keys: {unexpected_keys}" # verify results image = prepare_img() if "vistas" in model_name: ignore_index = 65 elif "cityscapes" in model_name: ignore_index = 65535 else: ignore_index = 255 reduce_labels = True if "ade" in model_name else False image_processor = MaskFormerImageProcessor(ignore_index=ignore_index, reduce_labels=reduce_labels) inputs = image_processor(image, return_tensors="pt") outputs = model(**inputs) print("Logits:", outputs.class_queries_logits[0, :3, :3]) if model_name == "maskformer-swin-tiny-ade": expected_logits = torch.tensor( [[3.6353, -4.4770, -2.6065], [0.5081, -4.2394, -3.5343], [2.1909, -5.0353, -1.9323]] ) assert torch.allclose(outputs.class_queries_logits[0, :3, :3], expected_logits, atol=1e-4) print("Looks ok!") if pytorch_dump_folder_path is not None: print(f"Saving model and image processor to {pytorch_dump_folder_path}") Path(pytorch_dump_folder_path).mkdir(exist_ok=True) model.save_pretrained(pytorch_dump_folder_path) image_processor.save_pretrained(pytorch_dump_folder_path) if push_to_hub: print("Pushing model and image processor to the hub...") model.push_to_hub(f"nielsr/{model_name}") image_processor.push_to_hub(f"nielsr/{model_name}") if __name__ == "__main__": parser = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="maskformer-swin-tiny-ade", type=str, help=("Name of the MaskFormer model you'd like to convert",), ) parser.add_argument( "--checkpoint_path", default="/Users/nielsrogge/Documents/MaskFormer_checkpoints/MaskFormer-Swin-tiny-ADE20k/model.pkl", type=str, help="Path to the original state dict (.pth file).", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub." ) args = parser.parse_args() convert_maskformer_checkpoint( args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
0
hf_public_repos/transformers/src/transformers/models
hf_public_repos/transformers/src/transformers/models/maskformer/image_processing_maskformer.py
# coding=utf-8 # Copyright 2022 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Image processor class for MaskFormer.""" import math import warnings from typing import TYPE_CHECKING, Any, Dict, Iterable, List, Optional, Set, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( PaddingMode, get_resize_output_image_size, pad, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( ChannelDimension, ImageInput, PILImageResampling, get_image_size, infer_channel_dimension_format, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import ( IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, TensorType, is_torch_available, is_torch_tensor, logging, ) logger = logging.get_logger(__name__) if TYPE_CHECKING: from transformers import MaskFormerForInstanceSegmentationOutput if is_torch_available(): import torch from torch import nn # Copied from transformers.models.detr.image_processing_detr.max_across_indices def max_across_indices(values: Iterable[Any]) -> List[Any]: """ Return the maximum value across all indices of an iterable of values. """ return [max(values_i) for values_i in zip(*values)] # Copied from transformers.models.detr.image_processing_detr.get_max_height_width def get_max_height_width(images: List[np.ndarray]) -> List[int]: """ Get the maximum height and width across all images in a batch. """ input_channel_dimension = infer_channel_dimension_format(images[0]) if input_channel_dimension == ChannelDimension.FIRST: _, max_height, max_width = max_across_indices([img.shape for img in images]) elif input_channel_dimension == ChannelDimension.LAST: max_height, max_width, _ = max_across_indices([img.shape for img in images]) else: raise ValueError(f"Invalid channel dimension format: {input_channel_dimension}") return (max_height, max_width) # Copied from transformers.models.detr.image_processing_detr.make_pixel_mask def make_pixel_mask(image: np.ndarray, output_size: Tuple[int, int]) -> np.ndarray: """ Make a pixel mask for the image, where 1 indicates a valid pixel and 0 indicates padding. Args: image (`np.ndarray`): Image to make the pixel mask for. output_size (`Tuple[int, int]`): Output size of the mask. """ input_height, input_width = get_image_size(image) mask = np.zeros(output_size, dtype=np.int64) mask[:input_height, :input_width] = 1 return mask # Copied from transformers.models.detr.image_processing_detr.binary_mask_to_rle def binary_mask_to_rle(mask): """ Converts given binary mask of shape `(height, width)` to the run-length encoding (RLE) format. Args: mask (`torch.Tensor` or `numpy.array`): A binary mask tensor of shape `(height, width)` where 0 denotes background and 1 denotes the target segment_id or class_id. Returns: `List`: Run-length encoded list of the binary mask. Refer to COCO API for more information about the RLE format. """ if is_torch_tensor(mask): mask = mask.numpy() pixels = mask.flatten() pixels = np.concatenate([[0], pixels, [0]]) runs = np.where(pixels[1:] != pixels[:-1])[0] + 1 runs[1::2] -= runs[::2] return list(runs) # Copied from transformers.models.detr.image_processing_detr.convert_segmentation_to_rle def convert_segmentation_to_rle(segmentation): """ Converts given segmentation map of shape `(height, width)` to the run-length encoding (RLE) format. Args: segmentation (`torch.Tensor` or `numpy.array`): A segmentation map of shape `(height, width)` where each value denotes a segment or class id. Returns: `List[List]`: A list of lists, where each list is the run-length encoding of a segment / class id. """ segment_ids = torch.unique(segmentation) run_length_encodings = [] for idx in segment_ids: mask = torch.where(segmentation == idx, 1, 0) rle = binary_mask_to_rle(mask) run_length_encodings.append(rle) return run_length_encodings # Copied from transformers.models.detr.image_processing_detr.remove_low_and_no_objects def remove_low_and_no_objects(masks, scores, labels, object_mask_threshold, num_labels): """ Binarize the given masks using `object_mask_threshold`, it returns the associated values of `masks`, `scores` and `labels`. Args: masks (`torch.Tensor`): A tensor of shape `(num_queries, height, width)`. scores (`torch.Tensor`): A tensor of shape `(num_queries)`. labels (`torch.Tensor`): A tensor of shape `(num_queries)`. object_mask_threshold (`float`): A number between 0 and 1 used to binarize the masks. Raises: `ValueError`: Raised when the first dimension doesn't match in all input tensors. Returns: `Tuple[`torch.Tensor`, `torch.Tensor`, `torch.Tensor`]`: The `masks`, `scores` and `labels` without the region < `object_mask_threshold`. """ if not (masks.shape[0] == scores.shape[0] == labels.shape[0]): raise ValueError("mask, scores and labels must have the same shape!") to_keep = labels.ne(num_labels) & (scores > object_mask_threshold) return masks[to_keep], scores[to_keep], labels[to_keep] # Copied from transformers.models.detr.image_processing_detr.check_segment_validity def check_segment_validity(mask_labels, mask_probs, k, mask_threshold=0.5, overlap_mask_area_threshold=0.8): # Get the mask associated with the k class mask_k = mask_labels == k mask_k_area = mask_k.sum() # Compute the area of all the stuff in query k original_area = (mask_probs[k] >= mask_threshold).sum() mask_exists = mask_k_area > 0 and original_area > 0 # Eliminate disconnected tiny segments if mask_exists: area_ratio = mask_k_area / original_area if not area_ratio.item() > overlap_mask_area_threshold: mask_exists = False return mask_exists, mask_k # Copied from transformers.models.detr.image_processing_detr.compute_segments def compute_segments( mask_probs, pred_scores, pred_labels, mask_threshold: float = 0.5, overlap_mask_area_threshold: float = 0.8, label_ids_to_fuse: Optional[Set[int]] = None, target_size: Tuple[int, int] = None, ): height = mask_probs.shape[1] if target_size is None else target_size[0] width = mask_probs.shape[2] if target_size is None else target_size[1] segmentation = torch.zeros((height, width), dtype=torch.int32, device=mask_probs.device) segments: List[Dict] = [] if target_size is not None: mask_probs = nn.functional.interpolate( mask_probs.unsqueeze(0), size=target_size, mode="bilinear", align_corners=False )[0] current_segment_id = 0 # Weigh each mask by its prediction score mask_probs *= pred_scores.view(-1, 1, 1) mask_labels = mask_probs.argmax(0) # [height, width] # Keep track of instances of each class stuff_memory_list: Dict[str, int] = {} for k in range(pred_labels.shape[0]): pred_class = pred_labels[k].item() should_fuse = pred_class in label_ids_to_fuse # Check if mask exists and large enough to be a segment mask_exists, mask_k = check_segment_validity( mask_labels, mask_probs, k, mask_threshold, overlap_mask_area_threshold ) if mask_exists: if pred_class in stuff_memory_list: current_segment_id = stuff_memory_list[pred_class] else: current_segment_id += 1 # Add current object segment to final segmentation map segmentation[mask_k] = current_segment_id segment_score = round(pred_scores[k].item(), 6) segments.append( { "id": current_segment_id, "label_id": pred_class, "was_fused": should_fuse, "score": segment_score, } ) if should_fuse: stuff_memory_list[pred_class] = current_segment_id return segmentation, segments # TODO: (Amy) Move to image_transforms def convert_segmentation_map_to_binary_masks( segmentation_map: "np.ndarray", instance_id_to_semantic_id: Optional[Dict[int, int]] = None, ignore_index: Optional[int] = None, reduce_labels: bool = False, ): if reduce_labels and ignore_index is None: raise ValueError("If `reduce_labels` is True, `ignore_index` must be provided.") if reduce_labels: segmentation_map = np.where(segmentation_map == 0, ignore_index, segmentation_map - 1) # Get unique ids (class or instance ids based on input) all_labels = np.unique(segmentation_map) # Drop background label if applicable if ignore_index is not None: all_labels = all_labels[all_labels != ignore_index] # Generate a binary mask for each object instance binary_masks = [(segmentation_map == i) for i in all_labels] binary_masks = np.stack(binary_masks, axis=0) # (num_labels, height, width) # Convert instance ids to class ids if instance_id_to_semantic_id is not None: labels = np.zeros(all_labels.shape[0]) for label in all_labels: class_id = instance_id_to_semantic_id[label + 1 if reduce_labels else label] labels[all_labels == label] = class_id - 1 if reduce_labels else class_id else: labels = all_labels return binary_masks.astype(np.float32), labels.astype(np.int64) def get_maskformer_resize_output_image_size( image: np.ndarray, size: Union[int, Tuple[int, int], List[int], Tuple[int]], max_size: Optional[int] = None, size_divisor: int = 0, default_to_square: bool = True, ) -> tuple: """ Computes the output size given the desired size. Args: input_image (`np.ndarray`): The input image. size (`int`, `Tuple[int, int]`, `List[int]`, `Tuple[int]`): The size of the output image. default_to_square (`bool`, *optional*, defaults to `True`): Whether to default to square if no size is provided. max_size (`int`, *optional*): The maximum size of the output image. size_divisible (`int`, *optional*, defaults to `0`): If size_divisible is given, the output image size will be divisible by the number. Returns: `Tuple[int, int]`: The output size. """ output_size = get_resize_output_image_size( input_image=image, size=size, default_to_square=default_to_square, max_size=max_size ) if size_divisor > 0: height, width = output_size height = int(math.ceil(height / size_divisor) * size_divisor) width = int(math.ceil(width / size_divisor) * size_divisor) output_size = (height, width) return output_size class MaskFormerImageProcessor(BaseImageProcessor): r""" Constructs a MaskFormer image processor. The image processor can be used to prepare image(s) and optional targets for the model. This image processor inherits from [`BaseImageProcessor`] which contains most of the main methods. Users should refer to this superclass for more information regarding those methods. Args: do_resize (`bool`, *optional*, defaults to `True`): Whether to resize the input to a certain `size`. size (`int`, *optional*, defaults to 800): Resize the input to the given size. Only has an effect if `do_resize` is set to `True`. If size is a sequence like `(width, height)`, output size will be matched to this. If size is an int, smaller edge of the image will be matched to this number. i.e, if `height > width`, then image will be rescaled to `(size * height / width, size)`. max_size (`int`, *optional*, defaults to 1333): The largest size an image dimension can have (otherwise it's capped). Only has an effect if `do_resize` is set to `True`. resample (`int`, *optional*, defaults to `PIL.Image.Resampling.BILINEAR`): An optional resampling filter. This can be one of `PIL.Image.Resampling.NEAREST`, `PIL.Image.Resampling.BOX`, `PIL.Image.Resampling.BILINEAR`, `PIL.Image.Resampling.HAMMING`, `PIL.Image.Resampling.BICUBIC` or `PIL.Image.Resampling.LANCZOS`. Only has an effect if `do_resize` is set to `True`. size_divisor (`int`, *optional*, defaults to 32): Some backbones need images divisible by a certain number. If not passed, it defaults to the value used in Swin Transformer. do_rescale (`bool`, *optional*, defaults to `True`): Whether to rescale the input to a certain `scale`. rescale_factor (`float`, *optional*, defaults to 1/ 255): Rescale the input by the given factor. Only has an effect if `do_rescale` is set to `True`. do_normalize (`bool`, *optional*, defaults to `True`): Whether or not to normalize the input with mean and standard deviation. image_mean (`int`, *optional*, defaults to `[0.485, 0.456, 0.406]`): The sequence of means for each channel, to be used when normalizing images. Defaults to the ImageNet mean. image_std (`int`, *optional*, defaults to `[0.229, 0.224, 0.225]`): The sequence of standard deviations for each channel, to be used when normalizing images. Defaults to the ImageNet std. ignore_index (`int`, *optional*): Label to be assigned to background pixels in segmentation maps. If provided, segmentation map pixels denoted with 0 (background) will be replaced with `ignore_index`. do_reduce_labels (`bool`, *optional*, defaults to `False`): Whether or not to decrement all label values of segmentation maps by 1. Usually used for datasets where 0 is used for background, and background itself is not included in all classes of a dataset (e.g. ADE20k). The background label will be replaced by `ignore_index`. """ model_input_names = ["pixel_values", "pixel_mask"] def __init__( self, do_resize: bool = True, size: Dict[str, int] = None, size_divisor: int = 32, resample: PILImageResampling = PILImageResampling.BILINEAR, do_rescale: bool = True, rescale_factor: float = 1 / 255, do_normalize: bool = True, image_mean: Union[float, List[float]] = None, image_std: Union[float, List[float]] = None, ignore_index: Optional[int] = None, do_reduce_labels: bool = False, **kwargs, ): if "size_divisibility" in kwargs: warnings.warn( "The `size_divisibility` argument is deprecated and will be removed in v4.27. Please use " "`size_divisor` instead.", FutureWarning, ) size_divisor = kwargs.pop("size_divisibility") if "max_size" in kwargs: warnings.warn( "The `max_size` argument is deprecated and will be removed in v4.27. Please use size['longest_edge']" " instead.", FutureWarning, ) # We make max_size a private attribute so we can pass it as a default value in the preprocess method whilst # `size` can still be pass in as an int self._max_size = kwargs.pop("max_size") else: self._max_size = 1333 if "reduce_labels" in kwargs: warnings.warn( "The `reduce_labels` argument is deprecated and will be removed in v4.27. Please use " "`do_reduce_labels` instead.", FutureWarning, ) do_reduce_labels = kwargs.pop("reduce_labels") size = size if size is not None else {"shortest_edge": 800, "longest_edge": self._max_size} size = get_size_dict(size, max_size=self._max_size, default_to_square=False) super().__init__(**kwargs) self.do_resize = do_resize self.size = size self.resample = resample self.size_divisor = size_divisor self.do_rescale = do_rescale self.rescale_factor = rescale_factor self.do_normalize = do_normalize self.image_mean = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN self.image_std = image_std if image_std is not None else IMAGENET_DEFAULT_STD self.ignore_index = ignore_index self.do_reduce_labels = do_reduce_labels @classmethod def from_dict(cls, image_processor_dict: Dict[str, Any], **kwargs): """ Overrides the `from_dict` method from the base class to make sure parameters are updated if image processor is created using from_dict and kwargs e.g. `MaskFormerImageProcessor.from_pretrained(checkpoint, max_size=800)` """ image_processor_dict = image_processor_dict.copy() if "max_size" in kwargs: image_processor_dict["max_size"] = kwargs.pop("max_size") if "size_divisibility" in kwargs: image_processor_dict["size_divisibility"] = kwargs.pop("size_divisibility") return super().from_dict(image_processor_dict, **kwargs) def resize( self, image: np.ndarray, size: Dict[str, int], size_divisor: int = 0, resample: PILImageResampling = PILImageResampling.BILINEAR, data_format=None, **kwargs, ) -> np.ndarray: """ Resize the image to the given size. Size can be min_size (scalar) or `(height, width)` tuple. If size is an int, smaller edge of the image will be matched to this number. """ if "max_size" in kwargs: warnings.warn( "The `max_size` parameter is deprecated and will be removed in v4.27. " "Please specify in `size['longest_edge'] instead`.", FutureWarning, ) max_size = kwargs.pop("max_size") else: max_size = None size = get_size_dict(size, max_size=max_size, default_to_square=False) if "shortest_edge" in size and "longest_edge" in size: size, max_size = size["shortest_edge"], size["longest_edge"] elif "height" in size and "width" in size: size = (size["height"], size["width"]) max_size = None else: raise ValueError( "Size must contain 'height' and 'width' keys or 'shortest_edge' and 'longest_edge' keys. Got" f" {size.keys()}." ) size = get_maskformer_resize_output_image_size( image=image, size=size, max_size=max_size, size_divisor=size_divisor, default_to_square=False, ) image = resize(image, size=size, resample=resample, data_format=data_format) return image def rescale( self, image: np.ndarray, rescale_factor: float, data_format: Optional[ChannelDimension] = None ) -> np.ndarray: """ Rescale the image by the given factor. """ return rescale(image, rescale_factor, data_format=data_format) def convert_segmentation_map_to_binary_masks( self, segmentation_map: "np.ndarray", instance_id_to_semantic_id: Optional[Dict[int, int]] = None, ignore_index: Optional[int] = None, reduce_labels: bool = False, **kwargs, ): reduce_labels = reduce_labels if reduce_labels is not None else self.reduce_labels ignore_index = ignore_index if ignore_index is not None else self.ignore_index return convert_segmentation_map_to_binary_masks( segmentation_map=segmentation_map, instance_id_to_semantic_id=instance_id_to_semantic_id, ignore_index=ignore_index, reduce_labels=reduce_labels, ) def __call__(self, images, segmentation_maps=None, **kwargs) -> BatchFeature: return self.preprocess(images, segmentation_maps=segmentation_maps, **kwargs) def _preprocess( self, image: ImageInput, do_resize: bool = None, size: Dict[str, int] = None, size_divisor: int = None, resample: PILImageResampling = None, do_rescale: bool = None, rescale_factor: float = None, do_normalize: bool = None, image_mean: Optional[Union[float, List[float]]] = None, image_std: Optional[Union[float, List[float]]] = None, ): if do_resize: image = self.resize(image, size=size, size_divisor=size_divisor, resample=resample) if do_rescale: image = self.rescale(image, rescale_factor=rescale_factor) if do_normalize: image = self.normalize(image, mean=image_mean, std=image_std) return image def _preprocess_image( self, image: ImageInput, do_resize: bool = None, size: Dict[str, int] = None, size_divisor: int = None, resample: PILImageResampling = None, do_rescale: bool = None, rescale_factor: float = None, do_normalize: bool = None, image_mean: Optional[Union[float, List[float]]] = None, image_std: Optional[Union[float, List[float]]] = None, data_format: Optional[Union[str, ChannelDimension]] = None, ) -> np.ndarray: """Preprocesses a single image.""" # All transformations expect numpy arrays. image = to_numpy_array(image) image = self._preprocess( image=image, do_resize=do_resize, size=size, size_divisor=size_divisor, resample=resample, do_rescale=do_rescale, rescale_factor=rescale_factor, do_normalize=do_normalize, image_mean=image_mean, image_std=image_std, ) if data_format is not None: image = to_channel_dimension_format(image, data_format) return image def _preprocess_mask( self, segmentation_map: ImageInput, do_resize: bool = None, size: Dict[str, int] = None, size_divisor: int = 0, ) -> np.ndarray: """Preprocesses a single mask.""" segmentation_map = to_numpy_array(segmentation_map) # Add channel dimension if missing - needed for certain transformations added_channel_dim = False if segmentation_map.ndim == 2: added_channel_dim = True segmentation_map = segmentation_map[None, ...] # TODO: (Amy) # Remork segmentation map processing to include reducing labels and resizing which doesn't # drop segment IDs > 255. segmentation_map = self._preprocess( image=segmentation_map, do_resize=do_resize, resample=PILImageResampling.NEAREST, size=size, size_divisor=size_divisor, do_rescale=False, do_normalize=False, ) # Remove extra channel dimension if added for processing if added_channel_dim: segmentation_map = segmentation_map.squeeze(0) return segmentation_map def preprocess( self, images: ImageInput, segmentation_maps: Optional[ImageInput] = None, instance_id_to_semantic_id: Optional[Dict[int, int]] = None, do_resize: Optional[bool] = None, size: Optional[Dict[str, int]] = None, size_divisor: Optional[int] = None, resample: PILImageResampling = None, do_rescale: Optional[bool] = None, rescale_factor: Optional[float] = None, do_normalize: Optional[bool] = None, image_mean: Optional[Union[float, List[float]]] = None, image_std: Optional[Union[float, List[float]]] = None, ignore_index: Optional[int] = None, do_reduce_labels: Optional[bool] = None, return_tensors: Optional[Union[str, TensorType]] = None, data_format: Union[str, ChannelDimension] = ChannelDimension.FIRST, **kwargs, ) -> BatchFeature: if "pad_and_return_pixel_mask" in kwargs: warnings.warn( "The `pad_and_return_pixel_mask` argument is deprecated and will be removed in v4.27", FutureWarning, ) if "reduce_labels" in kwargs: warnings.warn( "The `reduce_labels` argument is deprecated and will be removed in v4.27. Please use" " `do_reduce_labels` instead.", FutureWarning, ) if do_reduce_labels is not None: raise ValueError( "Cannot use both `reduce_labels` and `do_reduce_labels`. Please use `do_reduce_labels` instead." ) do_resize = do_resize if do_resize is not None else self.do_resize size = size if size is not None else self.size size = get_size_dict(size, default_to_square=False, max_size=self._max_size) size_divisor = size_divisor if size_divisor is not None else self.size_divisor resample = resample if resample is not None else self.resample do_rescale = do_rescale if do_rescale is not None else self.do_rescale rescale_factor = rescale_factor if rescale_factor is not None else self.rescale_factor do_normalize = do_normalize if do_normalize is not None else self.do_normalize image_mean = image_mean if image_mean is not None else self.image_mean image_std = image_std if image_std is not None else self.image_std ignore_index = ignore_index if ignore_index is not None else self.ignore_index do_reduce_labels = do_reduce_labels if do_reduce_labels is not None else self.do_reduce_labels if do_resize is not None and size is None or size_divisor is None: raise ValueError("If `do_resize` is True, `size` and `size_divisor` must be provided.") if do_rescale is not None and rescale_factor is None: raise ValueError("If `do_rescale` is True, `rescale_factor` must be provided.") if do_normalize is not None and (image_mean is None or image_std is None): raise ValueError("If `do_normalize` is True, `image_mean` and `image_std` must be provided.") if not valid_images(images): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if segmentation_maps is not None and not valid_images(segmentation_maps): raise ValueError( "Invalid segmentation map type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) images = make_list_of_images(images) if segmentation_maps is not None: segmentation_maps = make_list_of_images(segmentation_maps, expected_ndims=2) if segmentation_maps is not None and len(images) != len(segmentation_maps): raise ValueError("Images and segmentation maps must have the same length.") images = [ self._preprocess_image( image, do_resize=do_resize, size=size, size_divisor=size_divisor, resample=resample, do_rescale=do_rescale, rescale_factor=rescale_factor, do_normalize=do_normalize, image_mean=image_mean, image_std=image_std, data_format=data_format, ) for image in images ] if segmentation_maps is not None: segmentation_maps = [ self._preprocess_mask(segmentation_map, do_resize, size, size_divisor) for segmentation_map in segmentation_maps ] encoded_inputs = self.encode_inputs( images, segmentation_maps, instance_id_to_semantic_id, ignore_index, do_reduce_labels, return_tensors ) return encoded_inputs # Copied from transformers.models.detr.image_processing_detr.DetrImageProcessor._pad_image def _pad_image( self, image: np.ndarray, output_size: Tuple[int, int], constant_values: Union[float, Iterable[float]] = 0, data_format: Optional[ChannelDimension] = None, ) -> np.ndarray: """ Pad an image with zeros to the given size. """ input_height, input_width = get_image_size(image) output_height, output_width = output_size pad_bottom = output_height - input_height pad_right = output_width - input_width padding = ((0, pad_bottom), (0, pad_right)) padded_image = pad( image, padding, mode=PaddingMode.CONSTANT, constant_values=constant_values, data_format=data_format ) return padded_image # Copied from transformers.models.detr.image_processing_detr.DetrImageProcessor.pad def pad( self, images: List[np.ndarray], constant_values: Union[float, Iterable[float]] = 0, return_pixel_mask: bool = True, return_tensors: Optional[Union[str, TensorType]] = None, data_format: Optional[ChannelDimension] = None, ) -> np.ndarray: """ Pads a batch of images to the bottom and right of the image with zeros to the size of largest height and width in the batch and optionally returns their corresponding pixel mask. Args: image (`np.ndarray`): Image to pad. constant_values (`float` or `Iterable[float]`, *optional*): The value to use for the padding if `mode` is `"constant"`. return_pixel_mask (`bool`, *optional*, defaults to `True`): Whether to return a pixel mask. input_channel_dimension (`ChannelDimension`, *optional*): The channel dimension format of the image. If not provided, it will be inferred from the input image. data_format (`str` or `ChannelDimension`, *optional*): The channel dimension format of the image. If not provided, it will be the same as the input image. """ pad_size = get_max_height_width(images) padded_images = [ self._pad_image(image, pad_size, constant_values=constant_values, data_format=data_format) for image in images ] data = {"pixel_values": padded_images} if return_pixel_mask: masks = [make_pixel_mask(image=image, output_size=pad_size) for image in images] data["pixel_mask"] = masks return BatchFeature(data=data, tensor_type=return_tensors) def encode_inputs( self, pixel_values_list: List[ImageInput], segmentation_maps: ImageInput = None, instance_id_to_semantic_id: Optional[Union[List[Dict[int, int]], Dict[int, int]]] = None, ignore_index: Optional[int] = None, reduce_labels: bool = False, return_tensors: Optional[Union[str, TensorType]] = None, ): """ Pad images up to the largest image in a batch and create a corresponding `pixel_mask`. MaskFormer addresses semantic segmentation with a mask classification paradigm, thus input segmentation maps will be converted to lists of binary masks and their respective labels. Let's see an example, assuming `segmentation_maps = [[2,6,7,9]]`, the output will contain `mask_labels = [[1,0,0,0],[0,1,0,0],[0,0,1,0],[0,0,0,1]]` (four binary masks) and `class_labels = [2,6,7,9]`, the labels for each mask. Args: pixel_values_list (`List[ImageInput]`): List of images (pixel values) to be padded. Each image should be a tensor of shape `(channels, height, width)`. segmentation_maps (`ImageInput`, *optional*): The corresponding semantic segmentation maps with the pixel-wise annotations. (`bool`, *optional*, defaults to `True`): Whether or not to pad images up to the largest image in a batch and create a pixel mask. If left to the default, will return a pixel mask that is: - 1 for pixels that are real (i.e. **not masked**), - 0 for pixels that are padding (i.e. **masked**). instance_id_to_semantic_id (`List[Dict[int, int]]` or `Dict[int, int]`, *optional*): A mapping between object instance ids and class ids. If passed, `segmentation_maps` is treated as an instance segmentation map where each pixel represents an instance id. Can be provided as a single dictionary with a global/dataset-level mapping or as a list of dictionaries (one per image), to map instance ids in each image separately. return_tensors (`str` or [`~file_utils.TensorType`], *optional*): If set, will return tensors instead of NumPy arrays. If set to `'pt'`, return PyTorch `torch.Tensor` objects. Returns: [`BatchFeature`]: A [`BatchFeature`] with the following fields: - **pixel_values** -- Pixel values to be fed to a model. - **pixel_mask** -- Pixel mask to be fed to a model (when `=True` or if `pixel_mask` is in `self.model_input_names`). - **mask_labels** -- Optional list of mask labels of shape `(labels, height, width)` to be fed to a model (when `annotations` are provided). - **class_labels** -- Optional list of class labels of shape `(labels)` to be fed to a model (when `annotations` are provided). They identify the labels of `mask_labels`, e.g. the label of `mask_labels[i][j]` if `class_labels[i][j]`. """ ignore_index = self.ignore_index if ignore_index is None else ignore_index reduce_labels = self.do_reduce_labels if reduce_labels is None else reduce_labels pixel_values_list = [to_numpy_array(pixel_values) for pixel_values in pixel_values_list] encoded_inputs = self.pad(pixel_values_list, return_tensors=return_tensors) if segmentation_maps is not None: mask_labels = [] class_labels = [] pad_size = get_max_height_width(pixel_values_list) # Convert to list of binary masks and labels for idx, segmentation_map in enumerate(segmentation_maps): segmentation_map = to_numpy_array(segmentation_map) if isinstance(instance_id_to_semantic_id, list): instance_id = instance_id_to_semantic_id[idx] else: instance_id = instance_id_to_semantic_id # Use instance2class_id mapping per image masks, classes = self.convert_segmentation_map_to_binary_masks( segmentation_map, instance_id, ignore_index=ignore_index, reduce_labels=reduce_labels ) # We add an axis to make them compatible with the transformations library # this will be removed in the future masks = [mask[None, ...] for mask in masks] masks = [ self._pad_image(image=mask, output_size=pad_size, constant_values=ignore_index) for mask in masks ] masks = np.concatenate(masks, axis=0) mask_labels.append(torch.from_numpy(masks)) class_labels.append(torch.from_numpy(classes)) # we cannot batch them since they don't share a common class size encoded_inputs["mask_labels"] = mask_labels encoded_inputs["class_labels"] = class_labels return encoded_inputs def post_process_segmentation( self, outputs: "MaskFormerForInstanceSegmentationOutput", target_size: Tuple[int, int] = None ) -> "torch.Tensor": """ Converts the output of [`MaskFormerForInstanceSegmentationOutput`] into image segmentation predictions. Only supports PyTorch. Args: outputs ([`MaskFormerForInstanceSegmentationOutput`]): The outputs from [`MaskFormerForInstanceSegmentation`]. target_size (`Tuple[int, int]`, *optional*): If set, the `masks_queries_logits` will be resized to `target_size`. Returns: `torch.Tensor`: A tensor of shape (`batch_size, num_class_labels, height, width`). """ logger.warning( "`post_process_segmentation` is deprecated and will be removed in v5 of Transformers, please use" " `post_process_instance_segmentation`", FutureWarning, ) # class_queries_logits has shape [BATCH, QUERIES, CLASSES + 1] class_queries_logits = outputs.class_queries_logits # masks_queries_logits has shape [BATCH, QUERIES, HEIGHT, WIDTH] masks_queries_logits = outputs.masks_queries_logits if target_size is not None: masks_queries_logits = torch.nn.functional.interpolate( masks_queries_logits, size=target_size, mode="bilinear", align_corners=False, ) # remove the null class `[..., :-1]` masks_classes = class_queries_logits.softmax(dim=-1)[..., :-1] # mask probs has shape [BATCH, QUERIES, HEIGHT, WIDTH] masks_probs = masks_queries_logits.sigmoid() # now we want to sum over the queries, # $ out_{c,h,w} = \sum_q p_{q,c} * m_{q,h,w} $ # where $ softmax(p) \in R^{q, c} $ is the mask classes # and $ sigmoid(m) \in R^{q, h, w}$ is the mask probabilities # b(atch)q(uery)c(lasses), b(atch)q(uery)h(eight)w(idth) segmentation = torch.einsum("bqc, bqhw -> bchw", masks_classes, masks_probs) return segmentation def post_process_semantic_segmentation( self, outputs, target_sizes: Optional[List[Tuple[int, int]]] = None ) -> "torch.Tensor": """ Converts the output of [`MaskFormerForInstanceSegmentation`] into semantic segmentation maps. Only supports PyTorch. Args: outputs ([`MaskFormerForInstanceSegmentation`]): Raw outputs of the model. target_sizes (`List[Tuple[int, int]]`, *optional*): List of length (batch_size), where each list item (`Tuple[int, int]]`) corresponds to the requested final size (height, width) of each prediction. If left to None, predictions will not be resized. Returns: `List[torch.Tensor]`: A list of length `batch_size`, where each item is a semantic segmentation map of shape (height, width) corresponding to the target_sizes entry (if `target_sizes` is specified). Each entry of each `torch.Tensor` correspond to a semantic class id. """ class_queries_logits = outputs.class_queries_logits # [batch_size, num_queries, num_classes+1] masks_queries_logits = outputs.masks_queries_logits # [batch_size, num_queries, height, width] # Remove the null class `[..., :-1]` masks_classes = class_queries_logits.softmax(dim=-1)[..., :-1] masks_probs = masks_queries_logits.sigmoid() # [batch_size, num_queries, height, width] # Semantic segmentation logits of shape (batch_size, num_classes, height, width) segmentation = torch.einsum("bqc, bqhw -> bchw", masks_classes, masks_probs) batch_size = class_queries_logits.shape[0] # Resize logits and compute semantic segmentation maps if target_sizes is not None: if batch_size != len(target_sizes): raise ValueError( "Make sure that you pass in as many target sizes as the batch dimension of the logits" ) semantic_segmentation = [] for idx in range(batch_size): resized_logits = torch.nn.functional.interpolate( segmentation[idx].unsqueeze(dim=0), size=target_sizes[idx], mode="bilinear", align_corners=False ) semantic_map = resized_logits[0].argmax(dim=0) semantic_segmentation.append(semantic_map) else: semantic_segmentation = segmentation.argmax(dim=1) semantic_segmentation = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0])] return semantic_segmentation def post_process_instance_segmentation( self, outputs, threshold: float = 0.5, mask_threshold: float = 0.5, overlap_mask_area_threshold: float = 0.8, target_sizes: Optional[List[Tuple[int, int]]] = None, return_coco_annotation: Optional[bool] = False, return_binary_maps: Optional[bool] = False, ) -> List[Dict]: """ Converts the output of [`MaskFormerForInstanceSegmentationOutput`] into instance segmentation predictions. Only supports PyTorch. Args: outputs ([`MaskFormerForInstanceSegmentation`]): Raw outputs of the model. threshold (`float`, *optional*, defaults to 0.5): The probability score threshold to keep predicted instance masks. mask_threshold (`float`, *optional*, defaults to 0.5): Threshold to use when turning the predicted masks into binary values. overlap_mask_area_threshold (`float`, *optional*, defaults to 0.8): The overlap mask area threshold to merge or discard small disconnected parts within each binary instance mask. target_sizes (`List[Tuple]`, *optional*): List of length (batch_size), where each list item (`Tuple[int, int]]`) corresponds to the requested final size (height, width) of each prediction. If left to None, predictions will not be resized. return_coco_annotation (`bool`, *optional*, defaults to `False`): If set to `True`, segmentation maps are returned in COCO run-length encoding (RLE) format. return_binary_maps (`bool`, *optional*, defaults to `False`): If set to `True`, segmentation maps are returned as a concatenated tensor of binary segmentation maps (one per detected instance). Returns: `List[Dict]`: A list of dictionaries, one per image, each dictionary containing two keys: - **segmentation** -- A tensor of shape `(height, width)` where each pixel represents a `segment_id` or `List[List]` run-length encoding (RLE) of the segmentation map if return_coco_annotation is set to `True`. Set to `None` if no mask if found above `threshold`. - **segments_info** -- A dictionary that contains additional information on each segment. - **id** -- An integer representing the `segment_id`. - **label_id** -- An integer representing the label / semantic class id corresponding to `segment_id`. - **score** -- Prediction score of segment with `segment_id`. """ if return_coco_annotation and return_binary_maps: raise ValueError("return_coco_annotation and return_binary_maps can not be both set to True.") # [batch_size, num_queries, num_classes+1] class_queries_logits = outputs.class_queries_logits # [batch_size, num_queries, height, width] masks_queries_logits = outputs.masks_queries_logits device = masks_queries_logits.device num_classes = class_queries_logits.shape[-1] - 1 num_queries = class_queries_logits.shape[-2] # Loop over items in batch size results: List[Dict[str, TensorType]] = [] for i in range(class_queries_logits.shape[0]): mask_pred = masks_queries_logits[i] mask_cls = class_queries_logits[i] scores = torch.nn.functional.softmax(mask_cls, dim=-1)[:, :-1] labels = torch.arange(num_classes, device=device).unsqueeze(0).repeat(num_queries, 1).flatten(0, 1) scores_per_image, topk_indices = scores.flatten(0, 1).topk(num_queries, sorted=False) labels_per_image = labels[topk_indices] topk_indices = torch.div(topk_indices, num_classes, rounding_mode="floor") mask_pred = mask_pred[topk_indices] pred_masks = (mask_pred > 0).float() # Calculate average mask prob mask_scores_per_image = (mask_pred.sigmoid().flatten(1) * pred_masks.flatten(1)).sum(1) / ( pred_masks.flatten(1).sum(1) + 1e-6 ) pred_scores = scores_per_image * mask_scores_per_image pred_classes = labels_per_image segmentation = torch.zeros(masks_queries_logits.shape[2:]) - 1 if target_sizes is not None: segmentation = torch.zeros(target_sizes[i]) - 1 pred_masks = torch.nn.functional.interpolate( pred_masks.unsqueeze(0), size=target_sizes[i], mode="nearest" )[0] instance_maps, segments = [], [] current_segment_id = 0 for j in range(num_queries): score = pred_scores[j].item() if not torch.all(pred_masks[j] == 0) and score >= threshold: segmentation[pred_masks[j] == 1] = current_segment_id segments.append( { "id": current_segment_id, "label_id": pred_classes[j].item(), "was_fused": False, "score": round(score, 6), } ) current_segment_id += 1 instance_maps.append(pred_masks[j]) # Return segmentation map in run-length encoding (RLE) format if return_coco_annotation: segmentation = convert_segmentation_to_rle(segmentation) # Return a concatenated tensor of binary instance maps if return_binary_maps and len(instance_maps) != 0: segmentation = torch.stack(instance_maps, dim=0) results.append({"segmentation": segmentation, "segments_info": segments}) return results def post_process_panoptic_segmentation( self, outputs, threshold: float = 0.5, mask_threshold: float = 0.5, overlap_mask_area_threshold: float = 0.8, label_ids_to_fuse: Optional[Set[int]] = None, target_sizes: Optional[List[Tuple[int, int]]] = None, ) -> List[Dict]: """ Converts the output of [`MaskFormerForInstanceSegmentationOutput`] into image panoptic segmentation predictions. Only supports PyTorch. Args: outputs ([`MaskFormerForInstanceSegmentationOutput`]): The outputs from [`MaskFormerForInstanceSegmentation`]. threshold (`float`, *optional*, defaults to 0.5): The probability score threshold to keep predicted instance masks. mask_threshold (`float`, *optional*, defaults to 0.5): Threshold to use when turning the predicted masks into binary values. overlap_mask_area_threshold (`float`, *optional*, defaults to 0.8): The overlap mask area threshold to merge or discard small disconnected parts within each binary instance mask. label_ids_to_fuse (`Set[int]`, *optional*): The labels in this state will have all their instances be fused together. For instance we could say there can only be one sky in an image, but several persons, so the label ID for sky would be in that set, but not the one for person. target_sizes (`List[Tuple]`, *optional*): List of length (batch_size), where each list item (`Tuple[int, int]]`) corresponds to the requested final size (height, width) of each prediction in batch. If left to None, predictions will not be resized. Returns: `List[Dict]`: A list of dictionaries, one per image, each dictionary containing two keys: - **segmentation** -- a tensor of shape `(height, width)` where each pixel represents a `segment_id`, set to `None` if no mask if found above `threshold`. If `target_sizes` is specified, segmentation is resized to the corresponding `target_sizes` entry. - **segments_info** -- A dictionary that contains additional information on each segment. - **id** -- an integer representing the `segment_id`. - **label_id** -- An integer representing the label / semantic class id corresponding to `segment_id`. - **was_fused** -- a boolean, `True` if `label_id` was in `label_ids_to_fuse`, `False` otherwise. Multiple instances of the same class / label were fused and assigned a single `segment_id`. - **score** -- Prediction score of segment with `segment_id`. """ if label_ids_to_fuse is None: logger.warning("`label_ids_to_fuse` unset. No instance will be fused.") label_ids_to_fuse = set() class_queries_logits = outputs.class_queries_logits # [batch_size, num_queries, num_classes+1] masks_queries_logits = outputs.masks_queries_logits # [batch_size, num_queries, height, width] batch_size = class_queries_logits.shape[0] num_labels = class_queries_logits.shape[-1] - 1 mask_probs = masks_queries_logits.sigmoid() # [batch_size, num_queries, height, width] # Predicted label and score of each query (batch_size, num_queries) pred_scores, pred_labels = nn.functional.softmax(class_queries_logits, dim=-1).max(-1) # Loop over items in batch size results: List[Dict[str, TensorType]] = [] for i in range(batch_size): mask_probs_item, pred_scores_item, pred_labels_item = remove_low_and_no_objects( mask_probs[i], pred_scores[i], pred_labels[i], threshold, num_labels ) # No mask found if mask_probs_item.shape[0] <= 0: height, width = target_sizes[i] if target_sizes is not None else mask_probs_item.shape[1:] segmentation = torch.zeros((height, width)) - 1 results.append({"segmentation": segmentation, "segments_info": []}) continue # Get segmentation map and segment information of batch item target_size = target_sizes[i] if target_sizes is not None else None segmentation, segments = compute_segments( mask_probs=mask_probs_item, pred_scores=pred_scores_item, pred_labels=pred_labels_item, mask_threshold=mask_threshold, overlap_mask_area_threshold=overlap_mask_area_threshold, label_ids_to_fuse=label_ids_to_fuse, target_size=target_size, ) results.append({"segmentation": segmentation, "segments_info": segments}) return results
0
hf_public_repos/transformers/src/transformers/models
hf_public_repos/transformers/src/transformers/models/maskformer/modeling_maskformer_swin.py
# coding=utf-8 # Copyright 2022 Meta Platforms, Inc. and The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """MaskFormer Swin Transformer. The reason Swin Transformer is implemented here is because MaskFormer uses the hidden states before downsampling, which is different from the default Swin Transformer.""" import collections.abc import math from dataclasses import dataclass from typing import Optional, Tuple import torch from torch import Tensor, nn from ...activations import ACT2FN from ...file_utils import ModelOutput from ...modeling_outputs import BackboneOutput from ...modeling_utils import PreTrainedModel from ...pytorch_utils import find_pruneable_heads_and_indices, meshgrid, prune_linear_layer from ...utils.backbone_utils import BackboneMixin from .configuration_maskformer_swin import MaskFormerSwinConfig @dataclass class MaskFormerSwinModelOutputWithPooling(ModelOutput): """ Class for MaskFormerSwinModel's outputs that also contains the spatial dimensions of the hidden states. Args: last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`): Sequence of hidden-states at the output of the last layer of the model. pooler_output (`torch.FloatTensor` of shape `(batch_size, hidden_size)`): Last layer hidden-state after a mean pooling operation. hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the initial embedding outputs. hidden_states_spatial_dimensions (`tuple(tuple(int, int))`, *optional*): A tuple containing the spatial dimension of each `hidden_state` needed to reshape the `hidden_states` to `batch, channels, height, width`. Due to padding, their spatial size cannot be inferred before the `forward` method. attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. """ last_hidden_state: torch.FloatTensor = None pooler_output: torch.FloatTensor = None hidden_states: Optional[Tuple[torch.FloatTensor]] = None hidden_states_spatial_dimensions: Tuple[Tuple[int, int]] = None attentions: Optional[Tuple[torch.FloatTensor]] = None @dataclass class MaskFormerSwinBaseModelOutput(ModelOutput): """ Class for SwinEncoder's outputs. Args: last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`): Sequence of hidden-states at the output of the last layer of the model. hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the initial embedding outputs. hidden_states_spatial_dimensions (`tuple(tuple(int, int))`, *optional*): A tuple containing the spatial dimension of each `hidden_state` needed to reshape the `hidden_states` to `batch, channels, height, width`. Due to padding, their spatial size cannot inferred before the `forward` method. attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. """ last_hidden_state: torch.FloatTensor = None hidden_states: Optional[Tuple[torch.FloatTensor]] = None hidden_states_spatial_dimensions: Tuple[Tuple[int, int]] = None attentions: Optional[Tuple[torch.FloatTensor]] = None # Copied from transformers.models.swin.modeling_swin.window_partition def window_partition(input_feature, window_size): """ Partitions the given input into windows. """ batch_size, height, width, num_channels = input_feature.shape input_feature = input_feature.view( batch_size, height // window_size, window_size, width // window_size, window_size, num_channels ) windows = input_feature.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size, window_size, num_channels) return windows # Copied from transformers.models.swin.modeling_swin.window_reverse def window_reverse(windows, window_size, height, width): """ Merges windows to produce higher resolution features. """ num_channels = windows.shape[-1] windows = windows.view(-1, height // window_size, width // window_size, window_size, window_size, num_channels) windows = windows.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, height, width, num_channels) return windows # Copied from transformers.models.swin.modeling_swin.drop_path def drop_path(input, drop_prob=0.0, training=False, scale_by_keep=True): """ Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks). Comment by Ross Wightman: This is the same as the DropConnect impl I created for EfficientNet, etc networks, however, the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper... See discussion: https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ... I've opted for changing the layer and argument names to 'drop path' rather than mix DropConnect as a layer name and use 'survival rate' as the argument. """ if drop_prob == 0.0 or not training: return input keep_prob = 1 - drop_prob shape = (input.shape[0],) + (1,) * (input.ndim - 1) # work with diff dim tensors, not just 2D ConvNets random_tensor = keep_prob + torch.rand(shape, dtype=input.dtype, device=input.device) random_tensor.floor_() # binarize output = input.div(keep_prob) * random_tensor return output class MaskFormerSwinEmbeddings(nn.Module): """ Construct the patch and position embeddings. """ def __init__(self, config): super().__init__() self.patch_embeddings = MaskFormerSwinPatchEmbeddings(config) num_patches = self.patch_embeddings.num_patches self.patch_grid = self.patch_embeddings.grid_size if config.use_absolute_embeddings: self.position_embeddings = nn.Parameter(torch.zeros(1, num_patches + 1, config.embed_dim)) else: self.position_embeddings = None self.norm = nn.LayerNorm(config.embed_dim) self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward(self, pixel_values): embeddings, output_dimensions = self.patch_embeddings(pixel_values) embeddings = self.norm(embeddings) if self.position_embeddings is not None: embeddings = embeddings + self.position_embeddings embeddings = self.dropout(embeddings) return embeddings, output_dimensions # Copied from transformers.models.swin.modeling_swin.SwinPatchEmbeddings class MaskFormerSwinPatchEmbeddings(nn.Module): """ This class turns `pixel_values` of shape `(batch_size, num_channels, height, width)` into the initial `hidden_states` (patch embeddings) of shape `(batch_size, seq_length, hidden_size)` to be consumed by a Transformer. """ def __init__(self, config): super().__init__() image_size, patch_size = config.image_size, config.patch_size num_channels, hidden_size = config.num_channels, config.embed_dim image_size = image_size if isinstance(image_size, collections.abc.Iterable) else (image_size, image_size) patch_size = patch_size if isinstance(patch_size, collections.abc.Iterable) else (patch_size, patch_size) num_patches = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.image_size = image_size self.patch_size = patch_size self.num_channels = num_channels self.num_patches = num_patches self.grid_size = (image_size[0] // patch_size[0], image_size[1] // patch_size[1]) self.projection = nn.Conv2d(num_channels, hidden_size, kernel_size=patch_size, stride=patch_size) def maybe_pad(self, pixel_values, height, width): if width % self.patch_size[1] != 0: pad_values = (0, self.patch_size[1] - width % self.patch_size[1]) pixel_values = nn.functional.pad(pixel_values, pad_values) if height % self.patch_size[0] != 0: pad_values = (0, 0, 0, self.patch_size[0] - height % self.patch_size[0]) pixel_values = nn.functional.pad(pixel_values, pad_values) return pixel_values def forward(self, pixel_values: Optional[torch.FloatTensor]) -> Tuple[torch.Tensor, Tuple[int]]: _, num_channels, height, width = pixel_values.shape if num_channels != self.num_channels: raise ValueError( "Make sure that the channel dimension of the pixel values match with the one set in the configuration." ) # pad the input to be divisible by self.patch_size, if needed pixel_values = self.maybe_pad(pixel_values, height, width) embeddings = self.projection(pixel_values) _, _, height, width = embeddings.shape output_dimensions = (height, width) embeddings = embeddings.flatten(2).transpose(1, 2) return embeddings, output_dimensions # Copied from transformers.models.swin.modeling_swin.SwinPatchMerging class MaskFormerSwinPatchMerging(nn.Module): """ Patch Merging Layer. Args: input_resolution (`Tuple[int]`): Resolution of input feature. dim (`int`): Number of input channels. norm_layer (`nn.Module`, *optional*, defaults to `nn.LayerNorm`): Normalization layer class. """ def __init__(self, input_resolution: Tuple[int], dim: int, norm_layer: nn.Module = nn.LayerNorm) -> None: super().__init__() self.input_resolution = input_resolution self.dim = dim self.reduction = nn.Linear(4 * dim, 2 * dim, bias=False) self.norm = norm_layer(4 * dim) def maybe_pad(self, input_feature, height, width): should_pad = (height % 2 == 1) or (width % 2 == 1) if should_pad: pad_values = (0, 0, 0, width % 2, 0, height % 2) input_feature = nn.functional.pad(input_feature, pad_values) return input_feature def forward(self, input_feature: torch.Tensor, input_dimensions: Tuple[int, int]) -> torch.Tensor: height, width = input_dimensions # `dim` is height * width batch_size, dim, num_channels = input_feature.shape input_feature = input_feature.view(batch_size, height, width, num_channels) # pad input to be disible by width and height, if needed input_feature = self.maybe_pad(input_feature, height, width) # [batch_size, height/2, width/2, num_channels] input_feature_0 = input_feature[:, 0::2, 0::2, :] # [batch_size, height/2, width/2, num_channels] input_feature_1 = input_feature[:, 1::2, 0::2, :] # [batch_size, height/2, width/2, num_channels] input_feature_2 = input_feature[:, 0::2, 1::2, :] # [batch_size, height/2, width/2, num_channels] input_feature_3 = input_feature[:, 1::2, 1::2, :] # batch_size height/2 width/2 4*num_channels input_feature = torch.cat([input_feature_0, input_feature_1, input_feature_2, input_feature_3], -1) input_feature = input_feature.view(batch_size, -1, 4 * num_channels) # batch_size height/2*width/2 4*C input_feature = self.norm(input_feature) input_feature = self.reduction(input_feature) return input_feature # Copied from transformers.models.swin.modeling_swin.SwinDropPath with Swin->MaskFormerSwin class MaskFormerSwinDropPath(nn.Module): """Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).""" def __init__(self, drop_prob: Optional[float] = None) -> None: super().__init__() self.drop_prob = drop_prob def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: return drop_path(hidden_states, self.drop_prob, self.training) def extra_repr(self) -> str: return "p={}".format(self.drop_prob) # Copied from transformers.models.swin.modeling_swin.SwinSelfAttention with Swin->MaskFormerSwin class MaskFormerSwinSelfAttention(nn.Module): def __init__(self, config, dim, num_heads, window_size): super().__init__() if dim % num_heads != 0: raise ValueError( f"The hidden size ({dim}) is not a multiple of the number of attention heads ({num_heads})" ) self.num_attention_heads = num_heads self.attention_head_size = int(dim / num_heads) self.all_head_size = self.num_attention_heads * self.attention_head_size self.window_size = ( window_size if isinstance(window_size, collections.abc.Iterable) else (window_size, window_size) ) self.relative_position_bias_table = nn.Parameter( torch.zeros((2 * self.window_size[0] - 1) * (2 * self.window_size[1] - 1), num_heads) ) # get pair-wise relative position index for each token inside the window coords_h = torch.arange(self.window_size[0]) coords_w = torch.arange(self.window_size[1]) coords = torch.stack(meshgrid([coords_h, coords_w], indexing="ij")) coords_flatten = torch.flatten(coords, 1) relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :] relative_coords = relative_coords.permute(1, 2, 0).contiguous() relative_coords[:, :, 0] += self.window_size[0] - 1 relative_coords[:, :, 1] += self.window_size[1] - 1 relative_coords[:, :, 0] *= 2 * self.window_size[1] - 1 relative_position_index = relative_coords.sum(-1) self.register_buffer("relative_position_index", relative_position_index) self.query = nn.Linear(self.all_head_size, self.all_head_size, bias=config.qkv_bias) self.key = nn.Linear(self.all_head_size, self.all_head_size, bias=config.qkv_bias) self.value = nn.Linear(self.all_head_size, self.all_head_size, bias=config.qkv_bias) self.dropout = nn.Dropout(config.attention_probs_dropout_prob) def transpose_for_scores(self, x): new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size) x = x.view(new_x_shape) return x.permute(0, 2, 1, 3) def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.FloatTensor] = None, head_mask: Optional[torch.FloatTensor] = None, output_attentions: Optional[bool] = False, ) -> Tuple[torch.Tensor]: batch_size, dim, num_channels = hidden_states.shape mixed_query_layer = self.query(hidden_states) key_layer = self.transpose_for_scores(self.key(hidden_states)) value_layer = self.transpose_for_scores(self.value(hidden_states)) query_layer = self.transpose_for_scores(mixed_query_layer) # Take the dot product between "query" and "key" to get the raw attention scores. attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2)) attention_scores = attention_scores / math.sqrt(self.attention_head_size) relative_position_bias = self.relative_position_bias_table[self.relative_position_index.view(-1)] relative_position_bias = relative_position_bias.view( self.window_size[0] * self.window_size[1], self.window_size[0] * self.window_size[1], -1 ) relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous() attention_scores = attention_scores + relative_position_bias.unsqueeze(0) if attention_mask is not None: # Apply the attention mask is (precomputed for all layers in MaskFormerSwinModel forward() function) mask_shape = attention_mask.shape[0] attention_scores = attention_scores.view( batch_size // mask_shape, mask_shape, self.num_attention_heads, dim, dim ) attention_scores = attention_scores + attention_mask.unsqueeze(1).unsqueeze(0) attention_scores = attention_scores.view(-1, self.num_attention_heads, dim, dim) # Normalize the attention scores to probabilities. attention_probs = nn.functional.softmax(attention_scores, dim=-1) # This is actually dropping out entire tokens to attend to, which might # seem a bit unusual, but is taken from the original Transformer paper. attention_probs = self.dropout(attention_probs) # Mask heads if we want to if head_mask is not None: attention_probs = attention_probs * head_mask context_layer = torch.matmul(attention_probs, value_layer) context_layer = context_layer.permute(0, 2, 1, 3).contiguous() new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,) context_layer = context_layer.view(new_context_layer_shape) outputs = (context_layer, attention_probs) if output_attentions else (context_layer,) return outputs # Copied from transformers.models.swin.modeling_swin.SwinSelfOutput with Swin->MaskFormerSwin class MaskFormerSwinSelfOutput(nn.Module): def __init__(self, config, dim): super().__init__() self.dense = nn.Linear(dim, dim) self.dropout = nn.Dropout(config.attention_probs_dropout_prob) def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states) return hidden_states # Copied from transformers.models.swin.modeling_swin.SwinAttention with Swin->MaskFormerSwin class MaskFormerSwinAttention(nn.Module): def __init__(self, config, dim, num_heads, window_size): super().__init__() self.self = MaskFormerSwinSelfAttention(config, dim, num_heads, window_size) self.output = MaskFormerSwinSelfOutput(config, dim) self.pruned_heads = set() def prune_heads(self, heads): if len(heads) == 0: return heads, index = find_pruneable_heads_and_indices( heads, self.self.num_attention_heads, self.self.attention_head_size, self.pruned_heads ) # Prune linear layers self.self.query = prune_linear_layer(self.self.query, index) self.self.key = prune_linear_layer(self.self.key, index) self.self.value = prune_linear_layer(self.self.value, index) self.output.dense = prune_linear_layer(self.output.dense, index, dim=1) # Update hyper params and store pruned heads self.self.num_attention_heads = self.self.num_attention_heads - len(heads) self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads self.pruned_heads = self.pruned_heads.union(heads) def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.FloatTensor] = None, head_mask: Optional[torch.FloatTensor] = None, output_attentions: Optional[bool] = False, ) -> Tuple[torch.Tensor]: self_outputs = self.self(hidden_states, attention_mask, head_mask, output_attentions) attention_output = self.output(self_outputs[0], hidden_states) outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them return outputs # Copied from transformers.models.swin.modeling_swin.SwinIntermediate with Swin->MaskFormerSwin class MaskFormerSwinIntermediate(nn.Module): def __init__(self, config, dim): super().__init__() self.dense = nn.Linear(dim, int(config.mlp_ratio * dim)) if isinstance(config.hidden_act, str): self.intermediate_act_fn = ACT2FN[config.hidden_act] else: self.intermediate_act_fn = config.hidden_act def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.intermediate_act_fn(hidden_states) return hidden_states # Copied from transformers.models.swin.modeling_swin.SwinOutput with Swin->MaskFormerSwin class MaskFormerSwinOutput(nn.Module): def __init__(self, config, dim): super().__init__() self.dense = nn.Linear(int(config.mlp_ratio * dim), dim) self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states) return hidden_states class MaskFormerSwinLayer(nn.Module): def __init__(self, config, dim, input_resolution, num_heads, shift_size=0): super().__init__() self.shift_size = shift_size self.window_size = config.window_size self.input_resolution = input_resolution self.layernorm_before = nn.LayerNorm(dim, eps=config.layer_norm_eps) self.attention = MaskFormerSwinAttention(config, dim, num_heads, self.window_size) self.drop_path = ( MaskFormerSwinDropPath(config.drop_path_rate) if config.drop_path_rate > 0.0 else nn.Identity() ) self.layernorm_after = nn.LayerNorm(dim, eps=config.layer_norm_eps) self.intermediate = MaskFormerSwinIntermediate(config, dim) self.output = MaskFormerSwinOutput(config, dim) def get_attn_mask(self, input_resolution): if self.shift_size > 0: # calculate attention mask for SW-MSA height, width = input_resolution img_mask = torch.zeros((1, height, width, 1)) height_slices = ( slice(0, -self.window_size), slice(-self.window_size, -self.shift_size), slice(-self.shift_size, None), ) width_slices = ( slice(0, -self.window_size), slice(-self.window_size, -self.shift_size), slice(-self.shift_size, None), ) count = 0 for height_slice in height_slices: for width_slice in width_slices: img_mask[:, height_slice, width_slice, :] = count count += 1 mask_windows = window_partition(img_mask, self.window_size) mask_windows = mask_windows.view(-1, self.window_size * self.window_size) attn_mask = mask_windows.unsqueeze(1) - mask_windows.unsqueeze(2) attn_mask = attn_mask.masked_fill(attn_mask != 0, float(-100.0)).masked_fill(attn_mask == 0, float(0.0)) else: attn_mask = None return attn_mask def maybe_pad(self, hidden_states, height, width): pad_left = pad_top = 0 pad_rigth = (self.window_size - width % self.window_size) % self.window_size pad_bottom = (self.window_size - height % self.window_size) % self.window_size pad_values = (0, 0, pad_left, pad_rigth, pad_top, pad_bottom) hidden_states = nn.functional.pad(hidden_states, pad_values) return hidden_states, pad_values def forward(self, hidden_states, input_dimensions, head_mask=None, output_attentions=False): height, width = input_dimensions batch_size, dim, channels = hidden_states.size() shortcut = hidden_states hidden_states = self.layernorm_before(hidden_states) hidden_states = hidden_states.view(batch_size, height, width, channels) # pad hidden_states to multiples of window size hidden_states, pad_values = self.maybe_pad(hidden_states, height, width) _, height_pad, width_pad, _ = hidden_states.shape # cyclic shift if self.shift_size > 0: shifted_hidden_states = torch.roll(hidden_states, shifts=(-self.shift_size, -self.shift_size), dims=(1, 2)) else: shifted_hidden_states = hidden_states # partition windows hidden_states_windows = window_partition(shifted_hidden_states, self.window_size) hidden_states_windows = hidden_states_windows.view(-1, self.window_size * self.window_size, channels) attn_mask = self.get_attn_mask((height_pad, width_pad)) if attn_mask is not None: attn_mask = attn_mask.to(hidden_states_windows.device) self_attention_outputs = self.attention( hidden_states_windows, attn_mask, head_mask, output_attentions=output_attentions ) attention_output = self_attention_outputs[0] outputs = self_attention_outputs[1:] # add self attentions if we output attention weights attention_windows = attention_output.view(-1, self.window_size, self.window_size, channels) shifted_windows = window_reverse( attention_windows, self.window_size, height_pad, width_pad ) # B height' width' C # reverse cyclic shift if self.shift_size > 0: attention_windows = torch.roll(shifted_windows, shifts=(self.shift_size, self.shift_size), dims=(1, 2)) else: attention_windows = shifted_windows was_padded = pad_values[3] > 0 or pad_values[5] > 0 if was_padded: attention_windows = attention_windows[:, :height, :width, :].contiguous() attention_windows = attention_windows.view(batch_size, height * width, channels) hidden_states = shortcut + self.drop_path(attention_windows) layer_output = self.layernorm_after(hidden_states) layer_output = self.intermediate(layer_output) layer_output = hidden_states + self.output(layer_output) outputs = (layer_output,) + outputs return outputs class MaskFormerSwinStage(nn.Module): # Copied from transformers.models.swin.modeling_swin.SwinStage.__init__ with Swin->MaskFormerSwin def __init__(self, config, dim, input_resolution, depth, num_heads, drop_path, downsample): super().__init__() self.config = config self.dim = dim self.blocks = nn.ModuleList( [ MaskFormerSwinLayer( config=config, dim=dim, input_resolution=input_resolution, num_heads=num_heads, shift_size=0 if (i % 2 == 0) else config.window_size // 2, ) for i in range(depth) ] ) # patch merging layer if downsample is not None: self.downsample = downsample(input_resolution, dim=dim, norm_layer=nn.LayerNorm) else: self.downsample = None self.pointing = False def forward( self, hidden_states, input_dimensions, head_mask=None, output_attentions=False, output_hidden_states=False ): all_hidden_states = () if output_hidden_states else None height, width = input_dimensions for i, block_module in enumerate(self.blocks): if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) layer_head_mask = head_mask[i] if head_mask is not None else None block_hidden_states = block_module(hidden_states, input_dimensions, layer_head_mask, output_attentions) hidden_states = block_hidden_states[0] if output_hidden_states: all_hidden_states += (hidden_states,) if self.downsample is not None: height_downsampled, width_downsampled = (height + 1) // 2, (width + 1) // 2 output_dimensions = (height, width, height_downsampled, width_downsampled) hidden_states = self.downsample(hidden_states, input_dimensions) else: output_dimensions = (height, width, height, width) return hidden_states, output_dimensions, all_hidden_states class MaskFormerSwinEncoder(nn.Module): # Copied from transformers.models.swin.modeling_swin.SwinEncoder.__init__ with Swin->MaskFormerSwin def __init__(self, config, grid_size): super().__init__() self.num_layers = len(config.depths) self.config = config dpr = [x.item() for x in torch.linspace(0, config.drop_path_rate, sum(config.depths))] self.layers = nn.ModuleList( [ MaskFormerSwinStage( config=config, dim=int(config.embed_dim * 2**i_layer), input_resolution=(grid_size[0] // (2**i_layer), grid_size[1] // (2**i_layer)), depth=config.depths[i_layer], num_heads=config.num_heads[i_layer], drop_path=dpr[sum(config.depths[:i_layer]) : sum(config.depths[: i_layer + 1])], downsample=MaskFormerSwinPatchMerging if (i_layer < self.num_layers - 1) else None, ) for i_layer in range(self.num_layers) ] ) self.gradient_checkpointing = False def forward( self, hidden_states, input_dimensions, head_mask=None, output_attentions=False, output_hidden_states=False, return_dict=True, ): all_hidden_states = () if output_hidden_states else None all_input_dimensions = () all_self_attentions = () if output_attentions else None if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) for i, layer_module in enumerate(self.layers): layer_head_mask = head_mask[i] if head_mask is not None else None if self.gradient_checkpointing and self.training: def create_custom_forward(module): def custom_forward(*inputs): return module(*inputs, output_attentions) return custom_forward layer_hidden_states, output_dimensions, layer_all_hidden_states = torch.utils.checkpoint.checkpoint( create_custom_forward(layer_module), hidden_states, layer_head_mask ) else: layer_hidden_states, output_dimensions, layer_all_hidden_states = layer_module( hidden_states, input_dimensions, layer_head_mask, output_attentions, output_hidden_states, ) input_dimensions = (output_dimensions[-2], output_dimensions[-1]) all_input_dimensions += (input_dimensions,) if output_hidden_states: all_hidden_states += (layer_all_hidden_states,) hidden_states = layer_hidden_states if output_attentions: all_self_attentions = all_self_attentions + (layer_all_hidden_states[1],) if not return_dict: return tuple(v for v in [hidden_states, all_hidden_states, all_self_attentions] if v is not None) return MaskFormerSwinBaseModelOutput( last_hidden_state=hidden_states, hidden_states=all_hidden_states, hidden_states_spatial_dimensions=all_input_dimensions, attentions=all_self_attentions, ) # Copied from transformers.models.swin.modeling_swin.SwinPreTrainedModel with Swin->MaskFormerSwin, swin->model class MaskFormerSwinPreTrainedModel(PreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = MaskFormerSwinConfig base_model_prefix = "model" main_input_name = "pixel_values" supports_gradient_checkpointing = True def _init_weights(self, module): """Initialize the weights""" if isinstance(module, (nn.Linear, nn.Conv2d)): # Slightly different from the TF version which uses truncated_normal for initialization # cf https://github.com/pytorch/pytorch/pull/5617 module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.LayerNorm): module.bias.data.zero_() module.weight.data.fill_(1.0) def _set_gradient_checkpointing(self, module, value=False): if isinstance(module, MaskFormerSwinEncoder): module.gradient_checkpointing = value class MaskFormerSwinModel(MaskFormerSwinPreTrainedModel): def __init__(self, config, add_pooling_layer=True): super().__init__(config) self.config = config self.num_layers = len(config.depths) self.num_features = int(config.embed_dim * 2 ** (self.num_layers - 1)) self.embeddings = MaskFormerSwinEmbeddings(config) self.encoder = MaskFormerSwinEncoder(config, self.embeddings.patch_grid) self.layernorm = nn.LayerNorm(self.num_features, eps=config.layer_norm_eps) self.pooler = nn.AdaptiveAvgPool1d(1) if add_pooling_layer else None def get_input_embeddings(self): return self.embeddings.patch_embeddings def _prune_heads(self, heads_to_prune): """ Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base class PreTrainedModel """ for layer, heads in heads_to_prune.items(): self.encoder.layer[layer].attention.prune_heads(heads) def forward( self, pixel_values=None, head_mask=None, output_attentions=None, output_hidden_states=None, return_dict=None, ): output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict if pixel_values is None: raise ValueError("You have to specify pixel_values") # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] head_mask = self.get_head_mask(head_mask, len(self.config.depths)) embedding_output, input_dimensions = self.embeddings(pixel_values) encoder_outputs = self.encoder( embedding_output, input_dimensions, head_mask=head_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = encoder_outputs.last_hidden_state if return_dict else encoder_outputs[0] sequence_output = self.layernorm(sequence_output) pooled_output = None if self.pooler is not None: pooled_output = self.pooler(sequence_output.transpose(1, 2)) pooled_output = torch.flatten(pooled_output, 1) if not return_dict: return (sequence_output, pooled_output) + encoder_outputs[1:] hidden_states_spatial_dimensions = (input_dimensions,) + encoder_outputs.hidden_states_spatial_dimensions return MaskFormerSwinModelOutputWithPooling( last_hidden_state=sequence_output, pooler_output=pooled_output, hidden_states=encoder_outputs.hidden_states, hidden_states_spatial_dimensions=hidden_states_spatial_dimensions, attentions=encoder_outputs.attentions, ) class MaskFormerSwinBackbone(MaskFormerSwinPreTrainedModel, BackboneMixin): """ MaskFormerSwin backbone, designed especially for the MaskFormer framework. This classes reshapes `hidden_states` from (`batch_size, sequence_length, hidden_size)` to (`batch_size, num_channels, height, width)`). It also adds additional layernorms after each stage. Args: config (`MaskFormerSwinConfig`): The configuration used by [`MaskFormerSwinModel`]. """ def __init__(self, config: MaskFormerSwinConfig): super().__init__(config) super()._init_backbone(config) self.model = MaskFormerSwinModel(config) if "stem" in self.out_features: raise ValueError("This backbone does not support 'stem' in the `out_features`.") self.num_features = [config.embed_dim] + [int(config.embed_dim * 2**i) for i in range(len(config.depths))] self.hidden_states_norms = nn.ModuleList( [nn.LayerNorm(num_channels) for num_channels in self.num_features[1:]] ) # Initialize weights and apply final processing self.post_init() def forward( self, pixel_values: Tensor, output_hidden_states: Optional[bool] = None, output_attentions: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> BackboneOutput: return_dict = return_dict if return_dict is not None else self.config.use_return_dict output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions outputs = self.model( pixel_values, output_hidden_states=True, output_attentions=output_attentions, return_dict=True ) # we skip the stem hidden_states = outputs.hidden_states[1:] # we need to reshape the hidden states to their original spatial dimensions # spatial dimensions contains all the heights and widths of each stage, including after the embeddings spatial_dimensions: Tuple[Tuple[int, int]] = outputs.hidden_states_spatial_dimensions feature_maps = () for i, (hidden_state, stage, (height, width)) in enumerate( zip(hidden_states, self.stage_names[1:], spatial_dimensions) ): norm = self.hidden_states_norms[i] # the last element corespond to the layer's last block output but before patch merging hidden_state_unpolled = hidden_state[-1] hidden_state_norm = norm(hidden_state_unpolled) # the pixel decoder (FPN) expects 3D tensors (features) batch_size, _, hidden_size = hidden_state_norm.shape # reshape "b (h w) d -> b d h w" hidden_state_permuted = ( hidden_state_norm.permute(0, 2, 1).view((batch_size, hidden_size, height, width)).contiguous() ) if stage in self.out_features: feature_maps += (hidden_state_permuted,) if not return_dict: output = (feature_maps,) if output_hidden_states: output += (outputs.hidden_states,) if output_attentions: output += (outputs.attentions,) return output return BackboneOutput( feature_maps=feature_maps, hidden_states=outputs.hidden_states if output_hidden_states else None, attentions=outputs.attentions, )
0
hf_public_repos/transformers/src/transformers/models
hf_public_repos/transformers/src/transformers/models/mbart50/tokenization_mbart50_fast.py
# coding=utf-8 # Copyright 2021 The Facebook AI Research Team Authors and The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os from shutil import copyfile from typing import List, Optional, Tuple from tokenizers import processors from ...tokenization_utils import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_mbart50 import MBart50Tokenizer else: MBart50Tokenizer = None logger = logging.get_logger(__name__) VOCAB_FILES_NAMES = {"vocab_file": "sentencepiece.bpe.model", "tokenizer_file": "tokenizer.json"} PRETRAINED_VOCAB_FILES_MAP = { "vocab_file": { "facebook/mbart-large-50-one-to-many-mmt": ( "https://huggingface.co/facebook/mbart-large-50-one-to-many-mmt/resolve/main/sentencepiece.bpe.model" ), }, "tokenizer_file": { "facebook/mbart-large-50-one-to-many-mmt": ( "https://huggingface.co/facebook/mbart-large-50-one-to-many-mmt/resolve/main/tokenizer.json" ), }, } PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = { "facebook/mbart-large-50-one-to-many-mmt": 1024, } # fmt: off FAIRSEQ_LANGUAGE_CODES = ["ar_AR", "cs_CZ", "de_DE", "en_XX", "es_XX", "et_EE", "fi_FI", "fr_XX", "gu_IN", "hi_IN", "it_IT", "ja_XX", "kk_KZ", "ko_KR", "lt_LT", "lv_LV", "my_MM", "ne_NP", "nl_XX", "ro_RO", "ru_RU", "si_LK", "tr_TR", "vi_VN", "zh_CN", "af_ZA", "az_AZ", "bn_IN", "fa_IR", "he_IL", "hr_HR", "id_ID", "ka_GE", "km_KH", "mk_MK", "ml_IN", "mn_MN", "mr_IN", "pl_PL", "ps_AF", "pt_XX", "sv_SE", "sw_KE", "ta_IN", "te_IN", "th_TH", "tl_XX", "uk_UA", "ur_PK", "xh_ZA", "gl_ES", "sl_SI"] # fmt: on class MBart50TokenizerFast(PreTrainedTokenizerFast): """ Construct a "fast" MBART tokenizer for mBART-50 (backed by HuggingFace's *tokenizers* library). Based on [BPE](https://huggingface.co/docs/tokenizers/python/latest/components.html?highlight=BPE#models). This tokenizer inherits from [`PreTrainedTokenizerFast`] which contains most of the main methods. Users should refer to this superclass for more information regarding those methods. Args: vocab_file (`str`): Path to the vocabulary file. src_lang (`str`, *optional*): A string representing the source language. tgt_lang (`str`, *optional*): A string representing the target language. eos_token (`str`, *optional*, defaults to `"</s>"`): The end of sequence token. sep_token (`str`, *optional*, defaults to `"</s>"`): The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for sequence classification or for a text and a question for question answering. It is also used as the last token of a sequence built with special tokens. cls_token (`str`, *optional*, defaults to `"<s>"`): The classifier token which is used when doing sequence classification (classification of the whole sequence instead of per-token classification). It is the first token of the sequence when built with special tokens. unk_token (`str`, *optional*, defaults to `"<unk>"`): The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this token instead. pad_token (`str`, *optional*, defaults to `"<pad>"`): The token used for padding, for example when batching sequences of different lengths. mask_token (`str`, *optional*, defaults to `"<mask>"`): The token used for masking values. This is the token used when training this model with masked language modeling. This is the token which the model will try to predict. Examples: ```python >>> from transformers import MBart50TokenizerFast >>> tokenizer = MBart50TokenizerFast.from_pretrained("facebook/mbart-large-50", src_lang="en_XX", tgt_lang="ro_RO") >>> src_text = " UN Chief Says There Is No Military Solution in Syria" >>> tgt_text = "Şeful ONU declară că nu există o soluţie militară în Siria" >>> model_inputs = tokenizer(src_text, text_target=tgt_text, return_tensors="pt") >>> # model(**model_inputs) should work ```""" vocab_files_names = VOCAB_FILES_NAMES max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP model_input_names = ["input_ids", "attention_mask"] slow_tokenizer_class = MBart50Tokenizer prefix_tokens: List[int] = [] suffix_tokens: List[int] = [] def __init__( self, vocab_file=None, src_lang=None, tgt_lang=None, tokenizer_file=None, eos_token="</s>", sep_token="</s>", cls_token="<s>", unk_token="<unk>", pad_token="<pad>", mask_token="<mask>", **kwargs, ): # Mask token behave like a normal word, i.e. include the space before it mask_token = AddedToken(mask_token, lstrip=True, rstrip=False) if isinstance(mask_token, str) else mask_token kwargs["additional_special_tokens"] = kwargs.get("additional_special_tokens", []) kwargs["additional_special_tokens"] += [ code for code in FAIRSEQ_LANGUAGE_CODES if code not in kwargs["additional_special_tokens"] ] super().__init__( vocab_file, src_lang=src_lang, tgt_lang=tgt_lang, tokenizer_file=tokenizer_file, eos_token=eos_token, sep_token=sep_token, cls_token=cls_token, unk_token=unk_token, pad_token=pad_token, mask_token=mask_token, **kwargs, ) self.vocab_file = vocab_file self.can_save_slow_tokenizer = False if not self.vocab_file else True self.lang_code_to_id = { lang_code: self.convert_tokens_to_ids(lang_code) for lang_code in FAIRSEQ_LANGUAGE_CODES } self._src_lang = src_lang if src_lang is not None else "en_XX" self.tgt_lang = tgt_lang self.cur_lang_code_id = self.lang_code_to_id[self._src_lang] self.set_src_lang_special_tokens(self._src_lang) @property def src_lang(self) -> str: return self._src_lang @src_lang.setter def src_lang(self, new_src_lang: str) -> None: self._src_lang = new_src_lang self.set_src_lang_special_tokens(self._src_lang) def build_inputs_with_special_tokens( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None ) -> List[int]: """ Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and adding special tokens. The special tokens depend on calling set_lang. An MBART-50 sequence has the following format, where `X` represents the sequence: - `input_ids` (for encoder) `[src_lang_code] X [eos]` - `labels`: (for decoder) `[tgt_lang_code] X [eos]` BOS is never used. Pairs of sequences are not the expected use case, but they will be handled without a separator. Args: token_ids_0 (`List[int]`): List of IDs to which the special tokens will be added. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. Returns: `List[int]`: list of [input IDs](../glossary#input-ids) with the appropriate special tokens. """ if token_ids_1 is None: return self.prefix_tokens + token_ids_0 + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_0 + token_ids_1 + self.suffix_tokens def prepare_seq2seq_batch( self, src_texts: List[str], src_lang: str = "en_XX", tgt_texts: Optional[List[str]] = None, tgt_lang: str = "ro_RO", **kwargs, ) -> BatchEncoding: self.src_lang = src_lang self.tgt_lang = tgt_lang return super().prepare_seq2seq_batch(src_texts, tgt_texts, **kwargs) def _switch_to_input_mode(self): return self.set_src_lang_special_tokens(self.src_lang) def _switch_to_target_mode(self): return self.set_tgt_lang_special_tokens(self.tgt_lang) def set_src_lang_special_tokens(self, src_lang: str) -> None: """Reset the special tokens to the source lang setting. prefix=[src_lang_code] and suffix=[eos].""" self.cur_lang_code_id = self.convert_tokens_to_ids(src_lang) self.prefix_tokens = [self.cur_lang_code_id] self.suffix_tokens = [self.eos_token_id] prefix_tokens_str = self.convert_ids_to_tokens(self.prefix_tokens) suffix_tokens_str = self.convert_ids_to_tokens(self.suffix_tokens) self._tokenizer.post_processor = processors.TemplateProcessing( single=prefix_tokens_str + ["$A"] + suffix_tokens_str, pair=prefix_tokens_str + ["$A", "$B"] + suffix_tokens_str, special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str, self.prefix_tokens + self.suffix_tokens)), ) def set_tgt_lang_special_tokens(self, tgt_lang: str) -> None: """Reset the special tokens to the target language setting. prefix=[src_lang_code] and suffix=[eos].""" self.cur_lang_code_id = self.convert_tokens_to_ids(tgt_lang) self.prefix_tokens = [self.cur_lang_code_id] self.suffix_tokens = [self.eos_token_id] prefix_tokens_str = self.convert_ids_to_tokens(self.prefix_tokens) suffix_tokens_str = self.convert_ids_to_tokens(self.suffix_tokens) self._tokenizer.post_processor = processors.TemplateProcessing( single=prefix_tokens_str + ["$A"] + suffix_tokens_str, pair=prefix_tokens_str + ["$A", "$B"] + suffix_tokens_str, special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str, self.prefix_tokens + self.suffix_tokens)), ) def _build_translation_inputs( self, raw_inputs, return_tensors: str, src_lang: Optional[str], tgt_lang: Optional[str], **extra_kwargs ): """Used by translation pipeline, to prepare inputs for the generate function""" if src_lang is None or tgt_lang is None: raise ValueError("Translation requires a `src_lang` and a `tgt_lang` for this model") self.src_lang = src_lang inputs = self(raw_inputs, add_special_tokens=True, return_tensors=return_tensors, **extra_kwargs) tgt_lang_id = self.convert_tokens_to_ids(tgt_lang) inputs["forced_bos_token_id"] = tgt_lang_id return inputs def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]: if not self.can_save_slow_tokenizer: raise ValueError( "Your fast tokenizer does not have the necessary information to save the vocabulary for a slow " "tokenizer." ) if not os.path.isdir(save_directory): logger.error(f"Vocabulary path ({save_directory}) should be a directory") return out_vocab_file = os.path.join( save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file): copyfile(self.vocab_file, out_vocab_file) return (out_vocab_file,)
0
hf_public_repos/transformers/src/transformers/models
hf_public_repos/transformers/src/transformers/models/mbart50/__init__.py
# Copyright 2020 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available _import_structure = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["tokenization_mbart50"] = ["MBart50Tokenizer"] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["tokenization_mbart50_fast"] = ["MBart50TokenizerFast"] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mbart50 import MBart50Tokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mbart50_fast import MBart50TokenizerFast else: import sys sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
0
hf_public_repos/transformers/src/transformers/models
hf_public_repos/transformers/src/transformers/models/mbart50/tokenization_mbart50.py
# coding=utf-8 # Copyright 2021 The Facebook AI Research Team Authors and The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, BatchEncoding, PreTrainedTokenizer from ...utils import logging logger = logging.get_logger(__name__) SPIECE_UNDERLINE = "▁" VOCAB_FILES_NAMES = {"vocab_file": "sentencepiece.bpe.model"} PRETRAINED_VOCAB_FILES_MAP = { "vocab_file": { "facebook/mbart-large-50-one-to-many-mmt": ( "https://huggingface.co/facebook/mbart-large-50-one-to-many-mmt/resolve/main/sentencepiece.bpe.model" ), } } PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = { "facebook/mbart-large-50-one-to-many-mmt": 1024, } # fmt: off FAIRSEQ_LANGUAGE_CODES = ["ar_AR", "cs_CZ", "de_DE", "en_XX", "es_XX", "et_EE", "fi_FI", "fr_XX", "gu_IN", "hi_IN", "it_IT", "ja_XX", "kk_KZ", "ko_KR", "lt_LT", "lv_LV", "my_MM", "ne_NP", "nl_XX", "ro_RO", "ru_RU", "si_LK", "tr_TR", "vi_VN", "zh_CN", "af_ZA", "az_AZ", "bn_IN", "fa_IR", "he_IL", "hr_HR", "id_ID", "ka_GE", "km_KH", "mk_MK", "ml_IN", "mn_MN", "mr_IN", "pl_PL", "ps_AF", "pt_XX", "sv_SE", "sw_KE", "ta_IN", "te_IN", "th_TH", "tl_XX", "uk_UA", "ur_PK", "xh_ZA", "gl_ES", "sl_SI"] # fmt: on class MBart50Tokenizer(PreTrainedTokenizer): """ Construct a MBart50 tokenizer. Based on [SentencePiece](https://github.com/google/sentencepiece). This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to this superclass for more information regarding those methods. Args: vocab_file (`str`): Path to the vocabulary file. src_lang (`str`, *optional*): A string representing the source language. tgt_lang (`str`, *optional*): A string representing the target language. eos_token (`str`, *optional*, defaults to `"</s>"`): The end of sequence token. sep_token (`str`, *optional*, defaults to `"</s>"`): The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for sequence classification or for a text and a question for question answering. It is also used as the last token of a sequence built with special tokens. cls_token (`str`, *optional*, defaults to `"<s>"`): The classifier token which is used when doing sequence classification (classification of the whole sequence instead of per-token classification). It is the first token of the sequence when built with special tokens. unk_token (`str`, *optional*, defaults to `"<unk>"`): The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this token instead. pad_token (`str`, *optional*, defaults to `"<pad>"`): The token used for padding, for example when batching sequences of different lengths. mask_token (`str`, *optional*, defaults to `"<mask>"`): The token used for masking values. This is the token used when training this model with masked language modeling. This is the token which the model will try to predict. sp_model_kwargs (`dict`, *optional*): Will be passed to the `SentencePieceProcessor.__init__()` method. The [Python wrapper for SentencePiece](https://github.com/google/sentencepiece/tree/master/python) can be used, among other things, to set: - `enable_sampling`: Enable subword regularization. - `nbest_size`: Sampling parameters for unigram. Invalid for BPE-Dropout. - `nbest_size = {0,1}`: No sampling is performed. - `nbest_size > 1`: samples from the nbest_size results. - `nbest_size < 0`: assuming that nbest_size is infinite and samples from the all hypothesis (lattice) using forward-filtering-and-backward-sampling algorithm. - `alpha`: Smoothing parameter for unigram sampling, and dropout probability of merge operations for BPE-dropout. Examples: ```python >>> from transformers import MBart50Tokenizer >>> tokenizer = MBart50Tokenizer.from_pretrained("facebook/mbart-large-50", src_lang="en_XX", tgt_lang="ro_RO") >>> src_text = " UN Chief Says There Is No Military Solution in Syria" >>> tgt_text = "Şeful ONU declară că nu există o soluţie militară în Siria" >>> model_inputs = tokenizer(src_text, text_target=tgt_text, return_tensors="pt") >>> # model(**model_inputs) should work ```""" vocab_files_names = VOCAB_FILES_NAMES max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP model_input_names = ["input_ids", "attention_mask"] prefix_tokens: List[int] = [] suffix_tokens: List[int] = [] def __init__( self, vocab_file, src_lang=None, tgt_lang=None, eos_token="</s>", sep_token="</s>", cls_token="<s>", unk_token="<unk>", pad_token="<pad>", mask_token="<mask>", sp_model_kwargs: Optional[Dict[str, Any]] = None, **kwargs, ) -> None: # Mask token behave like a normal word, i.e. include the space before it mask_token = AddedToken(mask_token, lstrip=True, rstrip=False) if isinstance(mask_token, str) else mask_token self.sp_model_kwargs = {} if sp_model_kwargs is None else sp_model_kwargs kwargs["additional_special_tokens"] = kwargs.get("additional_special_tokens", []) kwargs["additional_special_tokens"] += [ code for code in FAIRSEQ_LANGUAGE_CODES if code not in kwargs["additional_special_tokens"] ] super().__init__( src_lang=src_lang, tgt_lang=tgt_lang, eos_token=eos_token, unk_token=unk_token, sep_token=sep_token, cls_token=cls_token, pad_token=pad_token, mask_token=mask_token, sp_model_kwargs=self.sp_model_kwargs, **kwargs, ) self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(str(vocab_file)) self.vocab_file = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # Mimic fairseq token-to-id alignment for the first 4 token self.fairseq_tokens_to_ids = {"<s>": 0, "<pad>": 1, "</s>": 2, "<unk>": 3} # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab self.fairseq_offset = 1 self.sp_model_size = len(self.sp_model) self.lang_code_to_id = { code: self.sp_model_size + i + self.fairseq_offset for i, code in enumerate(FAIRSEQ_LANGUAGE_CODES) } self.id_to_lang_code = {v: k for k, v in self.lang_code_to_id.items()} self.fairseq_tokens_to_ids["<mask>"] = len(self.sp_model) + len(self.lang_code_to_id) + self.fairseq_offset self.fairseq_tokens_to_ids.update(self.lang_code_to_id) self.fairseq_ids_to_tokens = {v: k for k, v in self.fairseq_tokens_to_ids.items()} self._src_lang = src_lang if src_lang is not None else "en_XX" self.cur_lang_code_id = self.lang_code_to_id[self._src_lang] self.tgt_lang = tgt_lang self.set_src_lang_special_tokens(self._src_lang) @property def vocab_size(self) -> int: return len(self.sp_model) + len(self.lang_code_to_id) + self.fairseq_offset + 1 # Plus 1 for the mask token @property def src_lang(self) -> str: return self._src_lang @src_lang.setter def src_lang(self, new_src_lang: str) -> None: self._src_lang = new_src_lang self.set_src_lang_special_tokens(self._src_lang) def __getstate__(self) -> Dict: state = self.__dict__.copy() state["sp_model"] = None return state def __setstate__(self, d: Dict) -> None: self.__dict__ = d # for backward compatibility if not hasattr(self, "sp_model_kwargs"): self.sp_model_kwargs = {} self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(self.vocab_file) def get_vocab(self) -> Dict: vocab = {self.convert_ids_to_tokens(i): i for i in range(self.vocab_size)} vocab.update(self.added_tokens_encoder) return vocab def _tokenize(self, text: str) -> List[str]: return self.sp_model.encode(text, out_type=str) def _convert_token_to_id(self, token: str) -> int: """Converts a token (str) in an id using the vocab.""" if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] spm_id = self.sp_model.PieceToId(token) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def _convert_id_to_token(self, index: int) -> str: """Converts an index (integer) in a token (str) using the vocab.""" if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset) def convert_tokens_to_string(self, tokens): """Converts a sequence of tokens (string) in a single string.""" current_sub_tokens = [] out_string = "" prev_is_special = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(current_sub_tokens) + token prev_is_special = True current_sub_tokens = [] else: current_sub_tokens.append(token) prev_is_special = False out_string += self.sp_model.decode(current_sub_tokens) return out_string.strip() def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]: if not os.path.isdir(save_directory): logger.error(f"Vocabulary path ({save_directory}) should be a directory") return out_vocab_file = os.path.join( save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file) and os.path.isfile(self.vocab_file): copyfile(self.vocab_file, out_vocab_file) elif not os.path.isfile(self.vocab_file): with open(out_vocab_file, "wb") as fi: content_spiece_model = self.sp_model.serialized_model_proto() fi.write(content_spiece_model) return (out_vocab_file,) def get_special_tokens_mask( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False ) -> List[int]: """ Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding special tokens using the tokenizer `prepare_for_model` method. Args: token_ids_0 (`List[int]`): List of IDs. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. already_has_special_tokens (`bool`, *optional*, defaults to `False`): Whether or not the token list is already formatted with special tokens for the model. Returns: `List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token. """ if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True ) prefix_ones = [1] * len(self.prefix_tokens) suffix_ones = [1] * len(self.suffix_tokens) if token_ids_1 is None: return prefix_ones + ([0] * len(token_ids_0)) + suffix_ones return prefix_ones + ([0] * len(token_ids_0)) + ([0] * len(token_ids_1)) + suffix_ones def build_inputs_with_special_tokens( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None ) -> List[int]: """ Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and adding special tokens. An MBART-50 sequence has the following format, where `X` represents the sequence: - `input_ids` (for encoder) `[src_lang_code] X [eos]` - `labels`: (for decoder) `[tgt_lang_code] X [eos]` BOS is never used. Pairs of sequences are not the expected use case, but they will be handled without a separator. Args: token_ids_0 (`List[int]`): List of IDs to which the special tokens will be added. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. Returns: `List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens. """ if token_ids_1 is None: return self.prefix_tokens + token_ids_0 + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_0 + token_ids_1 + self.suffix_tokens def _build_translation_inputs( self, raw_inputs, return_tensors: str, src_lang: Optional[str], tgt_lang: Optional[str], **extra_kwargs ): """Used by translation pipeline, to prepare inputs for the generate function""" if src_lang is None or tgt_lang is None: raise ValueError("Translation requires a `src_lang` and a `tgt_lang` for this model") self.src_lang = src_lang inputs = self(raw_inputs, add_special_tokens=True, return_tensors=return_tensors, **extra_kwargs) tgt_lang_id = self.convert_tokens_to_ids(tgt_lang) inputs["forced_bos_token_id"] = tgt_lang_id return inputs def prepare_seq2seq_batch( self, src_texts: List[str], src_lang: str = "en_XX", tgt_texts: Optional[List[str]] = None, tgt_lang: str = "ro_RO", **kwargs, ) -> BatchEncoding: self.src_lang = src_lang self.tgt_lang = tgt_lang return super().prepare_seq2seq_batch(src_texts, tgt_texts, **kwargs) def _switch_to_input_mode(self): return self.set_src_lang_special_tokens(self.src_lang) def _switch_to_target_mode(self): return self.set_tgt_lang_special_tokens(self.tgt_lang) def set_src_lang_special_tokens(self, src_lang: str) -> None: """Reset the special tokens to the source lang setting. prefix=[src_lang_code] and suffix=[eos].""" self.cur_lang_code_id = self.lang_code_to_id[src_lang] self.prefix_tokens = [self.cur_lang_code_id] self.suffix_tokens = [self.eos_token_id] def set_tgt_lang_special_tokens(self, tgt_lang: str) -> None: """Reset the special tokens to the target language setting. prefix=[tgt_lang_code] and suffix=[eos].""" self.cur_lang_code_id = self.lang_code_to_id[tgt_lang] self.prefix_tokens = [self.cur_lang_code_id] self.suffix_tokens = [self.eos_token_id]
0
hf_public_repos/transformers/src/transformers/models
hf_public_repos/transformers/src/transformers/models/qdqbert/__init__.py
# Copyright 2021 NVIDIA Corporation and The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _import_structure = {"configuration_qdqbert": ["QDQBERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "QDQBertConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["modeling_qdqbert"] = [ "QDQBERT_PRETRAINED_MODEL_ARCHIVE_LIST", "QDQBertForMaskedLM", "QDQBertForMultipleChoice", "QDQBertForNextSentencePrediction", "QDQBertForQuestionAnswering", "QDQBertForSequenceClassification", "QDQBertForTokenClassification", "QDQBertLayer", "QDQBertLMHeadModel", "QDQBertModel", "QDQBertPreTrainedModel", "load_tf_weights_in_qdqbert", ] if TYPE_CHECKING: from .configuration_qdqbert import QDQBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, QDQBertConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_qdqbert import ( QDQBERT_PRETRAINED_MODEL_ARCHIVE_LIST, QDQBertForMaskedLM, QDQBertForMultipleChoice, QDQBertForNextSentencePrediction, QDQBertForQuestionAnswering, QDQBertForSequenceClassification, QDQBertForTokenClassification, QDQBertLayer, QDQBertLMHeadModel, QDQBertModel, QDQBertPreTrainedModel, load_tf_weights_in_qdqbert, ) else: import sys sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
0
hf_public_repos/transformers/src/transformers/models
hf_public_repos/transformers/src/transformers/models/qdqbert/configuration_qdqbert.py
# coding=utf-8 # Copyright 2021 NVIDIA Corporation and The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ QDQBERT model configuration""" from ...configuration_utils import PretrainedConfig from ...utils import logging logger = logging.get_logger(__name__) QDQBERT_PRETRAINED_CONFIG_ARCHIVE_MAP = { "bert-base-uncased": "https://huggingface.co/bert-base-uncased/resolve/main/config.json", # QDQBERT models can be loaded from any BERT checkpoint, available at https://huggingface.co/models?filter=bert } class QDQBertConfig(PretrainedConfig): r""" This is the configuration class to store the configuration of a [`QDQBertModel`]. It is used to instantiate an QDQBERT model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the BERT [bert-base-uncased](https://huggingface.co/bert-base-uncased) architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: vocab_size (`int`, *optional*, defaults to 30522): Vocabulary size of the QDQBERT model. Defines the number of different tokens that can be represented by the `inputs_ids` passed when calling [`QDQBertModel`]. hidden_size (`int`, *optional*, defaults to 768): Dimension of the encoder layers and the pooler layer. num_hidden_layers (`int`, *optional*, defaults to 12): Number of hidden layers in the Transformer encoder. num_attention_heads (`int`, *optional*, defaults to 12): Number of attention heads for each attention layer in the Transformer encoder. intermediate_size (`int`, *optional*, defaults to 3072): Dimension of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder. hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`): The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, `"relu"`, `"selu"` and `"gelu_new"` are supported. hidden_dropout_prob (`float`, *optional*, defaults to 0.1): The dropout probabilitiy for all fully connected layers in the embeddings, encoder, and pooler. attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1): The dropout ratio for the attention probabilities. max_position_embeddings (`int`, *optional*, defaults to 512): The maximum sequence length that this model might ever be used with. Typically set this to something large just in case (e.g., 512 or 1024 or 2048). type_vocab_size (`int`, *optional*, defaults to 2): The vocabulary size of the `token_type_ids` passed when calling [`QDQBertModel`]. initializer_range (`float`, *optional*, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. layer_norm_eps (`float`, *optional*, defaults to 1e-12): The epsilon used by the layer normalization layers. is_decoder (`bool`, *optional*, defaults to `False`): Whether the model is used as a decoder or not. If `False`, the model is used as an encoder. use_cache (`bool`, *optional*, defaults to `True`): Whether or not the model should return the last key/values attentions (not used by all models). Only relevant if `config.is_decoder=True`. Examples: ```python >>> from transformers import QDQBertModel, QDQBertConfig >>> # Initializing a QDQBERT bert-base-uncased style configuration >>> configuration = QDQBertConfig() >>> # Initializing a model from the bert-base-uncased style configuration >>> model = QDQBertModel(configuration) >>> # Accessing the model configuration >>> configuration = model.config ```""" model_type = "qdqbert" def __init__( self, vocab_size=30522, hidden_size=768, num_hidden_layers=12, num_attention_heads=12, intermediate_size=3072, hidden_act="gelu", hidden_dropout_prob=0.1, attention_probs_dropout_prob=0.1, max_position_embeddings=512, type_vocab_size=2, initializer_range=0.02, layer_norm_eps=1e-12, use_cache=True, pad_token_id=1, bos_token_id=0, eos_token_id=2, **kwargs, ): super().__init__(pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs) self.vocab_size = vocab_size self.max_position_embeddings = max_position_embeddings self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.intermediate_size = intermediate_size self.hidden_act = hidden_act self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.initializer_range = initializer_range self.type_vocab_size = type_vocab_size self.layer_norm_eps = layer_norm_eps self.use_cache = use_cache
0
hf_public_repos/transformers/src/transformers/models
hf_public_repos/transformers/src/transformers/models/qdqbert/modeling_qdqbert.py
# coding=utf-8 # Copyright 2021 NVIDIA Corporation and The HuggingFace Team. # Copyright (c) 2018-2021, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ PyTorch QDQBERT model.""" import math import os import warnings from typing import Dict, List, Optional, Tuple, Union import torch import torch.utils.checkpoint from torch import nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACT2FN from ...modeling_outputs import ( BaseModelOutputWithPastAndCrossAttentions, BaseModelOutputWithPoolingAndCrossAttentions, CausalLMOutputWithCrossAttentions, MaskedLMOutput, MultipleChoiceModelOutput, NextSentencePredictorOutput, QuestionAnsweringModelOutput, SequenceClassifierOutput, TokenClassifierOutput, ) from ...modeling_utils import PreTrainedModel from ...pytorch_utils import find_pruneable_heads_and_indices, prune_linear_layer from ...utils import ( add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, is_pytorch_quantization_available, logging, replace_return_docstrings, requires_backends, ) from .configuration_qdqbert import QDQBertConfig logger = logging.get_logger(__name__) # soft dependency if is_pytorch_quantization_available(): try: from pytorch_quantization import nn as quant_nn from pytorch_quantization.nn.modules.tensor_quantizer import TensorQuantizer except OSError: logger.error( "QDQBERT model are not usable since `pytorch_quantization` can't be loaded. Please try to reinstall it" " following the instructions here:" " https://github.com/NVIDIA/TensorRT/tree/master/tools/pytorch-quantization." ) _CHECKPOINT_FOR_DOC = "bert-base-uncased" _CONFIG_FOR_DOC = "QDQBertConfig" QDQBERT_PRETRAINED_MODEL_ARCHIVE_LIST = [ "bert-base-uncased", # See all BERT models at https://huggingface.co/models?filter=bert ] def load_tf_weights_in_qdqbert(model, tf_checkpoint_path): """Load tf checkpoints in a pytorch model.""" try: import re import numpy as np import tensorflow as tf except ImportError: logger.error( "Loading a TensorFlow model in PyTorch, requires TensorFlow to be installed. Please see " "https://www.tensorflow.org/install/ for installation instructions." ) raise tf_path = os.path.abspath(tf_checkpoint_path) logger.info(f"Converting TensorFlow checkpoint from {tf_path}") # Load weights from TF model init_vars = tf.train.list_variables(tf_path) names = [] arrays = [] for name, shape in init_vars: logger.info(f"Loading TF weight {name} with shape {shape}") array = tf.train.load_variable(tf_path, name) names.append(name) arrays.append(array) for name, array in zip(names, arrays): name = name.split("/") # adam_v and adam_m are variables used in AdamWeightDecayOptimizer to calculated m and v # which are not required for using pretrained model if any( n in ["adam_v", "adam_m", "AdamWeightDecayOptimizer", "AdamWeightDecayOptimizer_1", "global_step"] for n in name ): logger.info(f"Skipping {'/'.join(name)}") continue pointer = model for m_name in name: if re.fullmatch(r"[A-Za-z]+_\d+", m_name): scope_names = re.split(r"_(\d+)", m_name) else: scope_names = [m_name] if scope_names[0] == "kernel" or scope_names[0] == "gamma": pointer = getattr(pointer, "weight") elif scope_names[0] == "output_bias" or scope_names[0] == "beta": pointer = getattr(pointer, "bias") elif scope_names[0] == "output_weights": pointer = getattr(pointer, "weight") elif scope_names[0] == "squad": pointer = getattr(pointer, "classifier") else: try: pointer = getattr(pointer, scope_names[0]) except AttributeError: logger.info(f"Skipping {'/'.join(name)}") continue if len(scope_names) >= 2: num = int(scope_names[1]) pointer = pointer[num] if m_name[-11:] == "_embeddings": pointer = getattr(pointer, "weight") elif m_name == "kernel": array = np.transpose(array) try: if pointer.shape != array.shape: raise ValueError(f"Pointer shape {pointer.shape} and array shape {array.shape} mismatched") except AssertionError as e: e.args += (pointer.shape, array.shape) raise logger.info(f"Initialize PyTorch weight {name}") pointer.data = torch.from_numpy(array) return model # Copied from transformers.models.bert.modeling_bert.BertEmbeddings with Bert -> QDQBert class QDQBertEmbeddings(nn.Module): """Construct the embeddings from word, position and token_type embeddings.""" def __init__(self, config): super().__init__() self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id) self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size) self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size) # self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load # any TensorFlow checkpoint file self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.dropout = nn.Dropout(config.hidden_dropout_prob) # position_ids (1, len position emb) is contiguous in memory and exported when serialized self.position_embedding_type = getattr(config, "position_embedding_type", "absolute") self.register_buffer( "position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)), persistent=False ) self.register_buffer( "token_type_ids", torch.zeros(self.position_ids.size(), dtype=torch.long), persistent=False ) def forward( self, input_ids: Optional[torch.LongTensor] = None, token_type_ids: Optional[torch.LongTensor] = None, position_ids: Optional[torch.LongTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, past_key_values_length: int = 0, ) -> torch.Tensor: if input_ids is not None: input_shape = input_ids.size() else: input_shape = inputs_embeds.size()[:-1] seq_length = input_shape[1] if position_ids is None: position_ids = self.position_ids[:, past_key_values_length : seq_length + past_key_values_length] # Setting the token_type_ids to the registered buffer in constructor where it is all zeros, which usually occurs # when its auto-generated, registered buffer helps users when tracing the model without passing token_type_ids, solves # issue #5664 if token_type_ids is None: if hasattr(self, "token_type_ids"): buffered_token_type_ids = self.token_type_ids[:, :seq_length] buffered_token_type_ids_expanded = buffered_token_type_ids.expand(input_shape[0], seq_length) token_type_ids = buffered_token_type_ids_expanded else: token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=self.position_ids.device) if inputs_embeds is None: inputs_embeds = self.word_embeddings(input_ids) token_type_embeddings = self.token_type_embeddings(token_type_ids) embeddings = inputs_embeds + token_type_embeddings if self.position_embedding_type == "absolute": position_embeddings = self.position_embeddings(position_ids) embeddings += position_embeddings embeddings = self.LayerNorm(embeddings) embeddings = self.dropout(embeddings) return embeddings class QDQBertSelfAttention(nn.Module): def __init__(self, config): super().__init__() if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"): raise ValueError( f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention " f"heads ({config.num_attention_heads})" ) self.num_attention_heads = config.num_attention_heads self.attention_head_size = int(config.hidden_size / config.num_attention_heads) self.all_head_size = self.num_attention_heads * self.attention_head_size self.query = quant_nn.QuantLinear(config.hidden_size, self.all_head_size) self.key = quant_nn.QuantLinear(config.hidden_size, self.all_head_size) self.value = quant_nn.QuantLinear(config.hidden_size, self.all_head_size) self.dropout = nn.Dropout(config.attention_probs_dropout_prob) self.position_embedding_type = getattr(config, "position_embedding_type", "absolute") if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query": self.max_position_embeddings = config.max_position_embeddings self.distance_embedding = nn.Embedding(2 * config.max_position_embeddings - 1, self.attention_head_size) self.is_decoder = config.is_decoder self.matmul_q_input_quantizer = TensorQuantizer(quant_nn.QuantLinear.default_quant_desc_input) self.matmul_k_input_quantizer = TensorQuantizer(quant_nn.QuantLinear.default_quant_desc_input) self.matmul_v_input_quantizer = TensorQuantizer(quant_nn.QuantLinear.default_quant_desc_input) self.matmul_a_input_quantizer = TensorQuantizer(quant_nn.QuantLinear.default_quant_desc_input) def transpose_for_scores(self, x): new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size) x = x.view(*new_x_shape) return x.permute(0, 2, 1, 3) def forward( self, hidden_states, attention_mask=None, head_mask=None, encoder_hidden_states=None, encoder_attention_mask=None, past_key_value=None, output_attentions=False, ): mixed_query_layer = self.query(hidden_states) # If this is instantiated as a cross-attention module, the keys # and values come from an encoder; the attention mask needs to be # such that the encoder's padding tokens are not attended to. is_cross_attention = encoder_hidden_states is not None if is_cross_attention and past_key_value is not None: # reuse k,v, cross_attentions key_layer = past_key_value[0] value_layer = past_key_value[1] attention_mask = encoder_attention_mask elif is_cross_attention: key_layer = self.transpose_for_scores(self.key(encoder_hidden_states)) value_layer = self.transpose_for_scores(self.value(encoder_hidden_states)) attention_mask = encoder_attention_mask elif past_key_value is not None: key_layer = self.transpose_for_scores(self.key(hidden_states)) value_layer = self.transpose_for_scores(self.value(hidden_states)) key_layer = torch.cat([past_key_value[0], key_layer], dim=2) value_layer = torch.cat([past_key_value[1], value_layer], dim=2) else: key_layer = self.transpose_for_scores(self.key(hidden_states)) value_layer = self.transpose_for_scores(self.value(hidden_states)) query_layer = self.transpose_for_scores(mixed_query_layer) if self.is_decoder: # if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states. # Further calls to cross_attention layer can then reuse all cross-attention # key/value_states (first "if" case) # if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of # all previous decoder key/value_states. Further calls to uni-directional self-attention # can concat previous decoder key/value_states to current projected key/value_states (third "elif" case) # if encoder bi-directional self-attention `past_key_value` is always `None` past_key_value = (key_layer, value_layer) # Take the dot product between "query" and "key" to get the raw attention scores. attention_scores = torch.matmul( self.matmul_q_input_quantizer(query_layer), self.matmul_k_input_quantizer(key_layer.transpose(-1, -2)) ) if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query": seq_length = hidden_states.size()[1] position_ids_l = torch.arange(seq_length, dtype=torch.long, device=hidden_states.device).view(-1, 1) position_ids_r = torch.arange(seq_length, dtype=torch.long, device=hidden_states.device).view(1, -1) distance = position_ids_l - position_ids_r positional_embedding = self.distance_embedding(distance + self.max_position_embeddings - 1) positional_embedding = positional_embedding.to(dtype=query_layer.dtype) # fp16 compatibility if self.position_embedding_type == "relative_key": relative_position_scores = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding) attention_scores = attention_scores + relative_position_scores elif self.position_embedding_type == "relative_key_query": relative_position_scores_query = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding) relative_position_scores_key = torch.einsum("bhrd,lrd->bhlr", key_layer, positional_embedding) attention_scores = attention_scores + relative_position_scores_query + relative_position_scores_key attention_scores = attention_scores / math.sqrt(self.attention_head_size) if attention_mask is not None: # Apply the attention mask is (precomputed for all layers in QDQBertModel forward() function) attention_scores = attention_scores + attention_mask # Normalize the attention scores to probabilities. attention_probs = nn.Softmax(dim=-1)(attention_scores) # This is actually dropping out entire tokens to attend to, which might # seem a bit unusual, but is taken from the original Transformer paper. attention_probs = self.dropout(attention_probs) # Mask heads if we want to if head_mask is not None: attention_probs = attention_probs * head_mask context_layer = torch.matmul( self.matmul_a_input_quantizer(attention_probs), self.matmul_v_input_quantizer(value_layer) ) context_layer = context_layer.permute(0, 2, 1, 3).contiguous() new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,) context_layer = context_layer.view(*new_context_layer_shape) outputs = (context_layer, attention_probs) if output_attentions else (context_layer,) if self.is_decoder: outputs = outputs + (past_key_value,) return outputs class QDQBertSelfOutput(nn.Module): def __init__(self, config): super().__init__() # Quantize Linear layer self.dense = quant_nn.QuantLinear(config.hidden_size, config.hidden_size) self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.dropout = nn.Dropout(config.hidden_dropout_prob) # Quantize the inputs to the residual add self.add_local_input_quantizer = TensorQuantizer(quant_nn.QuantLinear.default_quant_desc_input) self.add_residual_input_quantizer = TensorQuantizer(quant_nn.QuantLinear.default_quant_desc_input) def forward(self, hidden_states, input_tensor): hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states) # Quantize the inputs to the residual add add_local = self.add_local_input_quantizer(hidden_states) add_residual = self.add_residual_input_quantizer(input_tensor) hidden_states = self.LayerNorm(add_local + add_residual) return hidden_states # Based on transformers.models.bert.modeling_bert.BertAttention with Bert -> QDQBert class QDQBertAttention(nn.Module): def __init__(self, config): super().__init__() self.self = QDQBertSelfAttention(config) self.output = QDQBertSelfOutput(config) self.pruned_heads = set() def prune_heads(self, heads): if len(heads) == 0: return heads, index = find_pruneable_heads_and_indices( heads, self.self.num_attention_heads, self.self.attention_head_size, self.pruned_heads ) # Prune linear layers self.self.query = prune_linear_layer(self.self.query, index) self.self.key = prune_linear_layer(self.self.key, index) self.self.value = prune_linear_layer(self.self.value, index) self.output.dense = prune_linear_layer(self.output.dense, index, dim=1) # Update hyper params and store pruned heads self.self.num_attention_heads = self.self.num_attention_heads - len(heads) self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads self.pruned_heads = self.pruned_heads.union(heads) def forward( self, hidden_states, attention_mask=None, head_mask=None, encoder_hidden_states=None, encoder_attention_mask=None, past_key_value=None, output_attentions=False, ): self_outputs = self.self( hidden_states, attention_mask, head_mask, encoder_hidden_states, encoder_attention_mask, past_key_value, output_attentions, ) attention_output = self.output(self_outputs[0], hidden_states) outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them return outputs class QDQBertIntermediate(nn.Module): def __init__(self, config): super().__init__() # Quantize Linear layer self.dense = quant_nn.QuantLinear(config.hidden_size, config.intermediate_size) if isinstance(config.hidden_act, str): self.intermediate_act_fn = ACT2FN[config.hidden_act] else: self.intermediate_act_fn = config.hidden_act def forward(self, hidden_states): hidden_states = self.dense(hidden_states) hidden_states = self.intermediate_act_fn(hidden_states) return hidden_states class QDQBertOutput(nn.Module): def __init__(self, config): super().__init__() # Quantize Linear layer self.dense = quant_nn.QuantLinear(config.intermediate_size, config.hidden_size) self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.dropout = nn.Dropout(config.hidden_dropout_prob) # Quantize the inputs to the residual add self.add_local_input_quantizer = TensorQuantizer(quant_nn.QuantLinear.default_quant_desc_input) self.add_residual_input_quantizer = TensorQuantizer(quant_nn.QuantLinear.default_quant_desc_input) def forward(self, hidden_states, input_tensor): hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states) # Quantize the inputs to the residual add add_local = self.add_local_input_quantizer(hidden_states) add_residual = self.add_residual_input_quantizer(input_tensor) hidden_states = self.LayerNorm(add_local + add_residual) return hidden_states # Based on transformers.models.bert.modeling_bert.BertLayer with Bert -> QDQBert class QDQBertLayer(nn.Module): def __init__(self, config): super().__init__() self.seq_len_dim = 1 self.attention = QDQBertAttention(config) self.is_decoder = config.is_decoder self.add_cross_attention = config.add_cross_attention if self.add_cross_attention: if not self.is_decoder: raise ValueError(f"{self} should be used as a decoder model if cross attention is added") self.crossattention = QDQBertAttention(config) self.intermediate = QDQBertIntermediate(config) self.output = QDQBertOutput(config) def forward( self, hidden_states, attention_mask=None, head_mask=None, encoder_hidden_states=None, encoder_attention_mask=None, past_key_value=None, output_attentions=False, ): # decoder uni-directional self-attention cached key/values tuple is at positions 1,2 self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None self_attention_outputs = self.attention( hidden_states, attention_mask, head_mask, output_attentions=output_attentions, past_key_value=self_attn_past_key_value, ) attention_output = self_attention_outputs[0] # if decoder, the last output is tuple of self-attn cache if self.is_decoder: outputs = self_attention_outputs[1:-1] present_key_value = self_attention_outputs[-1] else: outputs = self_attention_outputs[1:] # add self attentions if we output attention weights cross_attn_present_key_value = None if self.is_decoder and encoder_hidden_states is not None: if not hasattr(self, "crossattention"): raise ValueError( f"If `encoder_hidden_states` are passed, {self} has to be instantiated with cross-attention layers" " by setting `config.add_cross_attention=True`" ) # cross_attn cached key/values tuple is at positions 3,4 of past_key_value tuple cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None cross_attention_outputs = self.crossattention( attention_output, attention_mask, head_mask, encoder_hidden_states, encoder_attention_mask, cross_attn_past_key_value, output_attentions, ) attention_output = cross_attention_outputs[0] outputs = outputs + cross_attention_outputs[1:-1] # add cross attentions if we output attention weights # add cross-attn cache to positions 3,4 of present_key_value tuple cross_attn_present_key_value = cross_attention_outputs[-1] present_key_value = present_key_value + cross_attn_present_key_value layer_output = self.feed_forward_chunk(attention_output) outputs = (layer_output,) + outputs # if decoder, return the attn key/values as the last output if self.is_decoder: outputs = outputs + (present_key_value,) return outputs def feed_forward_chunk(self, attention_output): intermediate_output = self.intermediate(attention_output) layer_output = self.output(intermediate_output, attention_output) return layer_output # Based on transformers.models.bert.modeling_bert.BertEncoder with Bert -> QDQBert class QDQBertEncoder(nn.Module): def __init__(self, config): super().__init__() self.config = config self.layer = nn.ModuleList([QDQBertLayer(config) for _ in range(config.num_hidden_layers)]) self.gradient_checkpointing = False def forward( self, hidden_states, attention_mask=None, head_mask=None, encoder_hidden_states=None, encoder_attention_mask=None, past_key_values=None, use_cache=None, output_attentions=False, output_hidden_states=False, return_dict=True, ): all_hidden_states = () if output_hidden_states else None all_self_attentions = () if output_attentions else None all_cross_attentions = () if output_attentions and self.config.add_cross_attention else None next_decoder_cache = () if use_cache else None for i, layer_module in enumerate(self.layer): if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) layer_head_mask = head_mask[i] if head_mask is not None else None past_key_value = past_key_values[i] if past_key_values is not None else None if self.gradient_checkpointing and self.training: if use_cache: logger.warning_once( "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..." ) use_cache = False def create_custom_forward(module): def custom_forward(*inputs): return module(*inputs, past_key_value, output_attentions) return custom_forward layer_outputs = torch.utils.checkpoint.checkpoint( create_custom_forward(layer_module), hidden_states, attention_mask, layer_head_mask, encoder_hidden_states, encoder_attention_mask, ) else: layer_outputs = layer_module( hidden_states, attention_mask, layer_head_mask, encoder_hidden_states, encoder_attention_mask, past_key_value, output_attentions, ) hidden_states = layer_outputs[0] if use_cache: next_decoder_cache += (layer_outputs[-1],) if output_attentions: all_self_attentions = all_self_attentions + (layer_outputs[1],) if self.config.add_cross_attention: all_cross_attentions = all_cross_attentions + (layer_outputs[2],) if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) if not return_dict: return tuple( v for v in [ hidden_states, next_decoder_cache, all_hidden_states, all_self_attentions, all_cross_attentions, ] if v is not None ) return BaseModelOutputWithPastAndCrossAttentions( last_hidden_state=hidden_states, past_key_values=next_decoder_cache, hidden_states=all_hidden_states, attentions=all_self_attentions, cross_attentions=all_cross_attentions, ) # Copied from transformers.models.bert.modeling_bert.BertPooler with Bert -> QDQBert class QDQBertPooler(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) self.activation = nn.Tanh() def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: # We "pool" the model by simply taking the hidden state corresponding # to the first token. first_token_tensor = hidden_states[:, 0] pooled_output = self.dense(first_token_tensor) pooled_output = self.activation(pooled_output) return pooled_output # Copied from transformers.models.bert.modeling_bert.BertPredictionHeadTransform with Bert -> QDQBert class QDQBertPredictionHeadTransform(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) if isinstance(config.hidden_act, str): self.transform_act_fn = ACT2FN[config.hidden_act] else: self.transform_act_fn = config.hidden_act self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.transform_act_fn(hidden_states) hidden_states = self.LayerNorm(hidden_states) return hidden_states # Based on transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert -> QDQBert class QDQBertLMPredictionHead(nn.Module): def __init__(self, config): super().__init__() self.transform = QDQBertPredictionHeadTransform(config) # The output weights are the same as the input embeddings, but there is # an output-only bias for each token. self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False) self.bias = nn.Parameter(torch.zeros(config.vocab_size)) # Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings` self.decoder.bias = self.bias def forward(self, hidden_states): hidden_states = self.transform(hidden_states) hidden_states = self.decoder(hidden_states) return hidden_states # Based on transformers.models.bert.modeling_bert.BertOnlyMLMHead with Bert -> QDQBert class QDQBertOnlyMLMHead(nn.Module): def __init__(self, config): super().__init__() self.predictions = QDQBertLMPredictionHead(config) def forward(self, sequence_output): prediction_scores = self.predictions(sequence_output) return prediction_scores # Copied from transformers.models.bert.modeling_bert.BertOnlyNSPHead with Bert -> QDQBert class QDQBertOnlyNSPHead(nn.Module): def __init__(self, config): super().__init__() self.seq_relationship = nn.Linear(config.hidden_size, 2) def forward(self, pooled_output): seq_relationship_score = self.seq_relationship(pooled_output) return seq_relationship_score # Based on transformers.models.bert.modeling_bert.BertPreTrainingHeads with Bert -> QDQBert class QDQBertPreTrainingHeads(nn.Module): def __init__(self, config): super().__init__() self.predictions = QDQBertLMPredictionHead(config) self.seq_relationship = nn.Linear(config.hidden_size, 2) def forward(self, sequence_output, pooled_output): prediction_scores = self.predictions(sequence_output) seq_relationship_score = self.seq_relationship(pooled_output) return prediction_scores, seq_relationship_score # Based on transformers.models.bert.modeling_bert.BertPreTrainedModel with Bert -> QDQBert class QDQBertPreTrainedModel(PreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = QDQBertConfig load_tf_weights = load_tf_weights_in_qdqbert base_model_prefix = "bert" supports_gradient_checkpointing = True def _init_weights(self, module): """Initialize the weights""" if isinstance(module, nn.Linear): # Slightly different from the TF version which uses truncated_normal for initialization # cf https://github.com/pytorch/pytorch/pull/5617 module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.Embedding): module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if module.padding_idx is not None: module.weight.data[module.padding_idx].zero_() elif isinstance(module, nn.LayerNorm): module.bias.data.zero_() module.weight.data.fill_(1.0) def _set_gradient_checkpointing(self, module, value=False): if isinstance(module, QDQBertEncoder): module.gradient_checkpointing = value QDQBERT_START_DOCSTRING = r""" This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.) This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`QDQBertConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ QDQBERT_INPUTS_DOCSTRING = r""" Args: input_ids (`torch.LongTensor` of shape `({0})`): Indices of input sequence tokens in the vocabulary. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) token_type_ids (`torch.LongTensor` of shape `({0})`, *optional*): Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0, 1]`: - 0 corresponds to a *sentence A* token, - 1 corresponds to a *sentence B* token. [What are token type IDs?](../glossary#token-type-ids) position_ids (`torch.LongTensor` of shape `({0})`, *optional*): Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, config.max_position_embeddings - 1]`. [What are position IDs?](../glossary#position-ids) head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. inputs_embeds (`torch.FloatTensor` of shape `({0}, hidden_size)`, *optional*): Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert `input_ids` indices into associated vectors than the model's internal embedding lookup matrix. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ @add_start_docstrings( "The bare QDQBERT Model transformer outputting raw hidden-states without any specific head on top.", QDQBERT_START_DOCSTRING, ) class QDQBertModel(QDQBertPreTrainedModel): """ The model can behave as an encoder (with only self-attention) as well as a decoder, in which case a layer of cross-attention is added between the self-attention layers, following the architecture described in [Attention is all you need](https://arxiv.org/abs/1706.03762) by Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser and Illia Polosukhin. To behave as an decoder the model needs to be initialized with the `is_decoder` argument of the configuration set to `True`. To be used in a Seq2Seq model, the model needs to initialized with both `is_decoder` argument and `add_cross_attention` set to `True`; an `encoder_hidden_states` is then expected as an input to the forward pass. """ def __init__(self, config, add_pooling_layer: bool = True): requires_backends(self, "pytorch_quantization") super().__init__(config) self.config = config self.embeddings = QDQBertEmbeddings(config) self.encoder = QDQBertEncoder(config) self.pooler = QDQBertPooler(config) if add_pooling_layer else None # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.embeddings.word_embeddings def set_input_embeddings(self, value): self.embeddings.word_embeddings = value def _prune_heads(self, heads_to_prune: Dict[int, List[int]]): """ Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base class PreTrainedModel """ for layer, heads in heads_to_prune.items(): self.encoder.layer[layer].attention.prune_heads(heads) @add_start_docstrings_to_model_forward(QDQBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=BaseModelOutputWithPoolingAndCrossAttentions, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.FloatTensor] = None, token_type_ids: Optional[torch.LongTensor] = None, position_ids: Optional[torch.LongTensor] = None, head_mask: Optional[torch.FloatTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, encoder_hidden_states: Optional[torch.FloatTensor] = None, encoder_attention_mask: Optional[torch.FloatTensor] = None, past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, BaseModelOutputWithPoolingAndCrossAttentions]: r""" encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if the model is configured as a decoder. encoder_attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`): Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding. If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `decoder_input_ids` of shape `(batch_size, sequence_length)`. use_cache (`bool`, *optional*): If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see `past_key_values`). """ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict if self.config.is_decoder: use_cache = use_cache if use_cache is not None else self.config.use_cache else: use_cache = False if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") elif input_ids is not None: input_shape = input_ids.size() batch_size, seq_length = input_shape elif inputs_embeds is not None: input_shape = inputs_embeds.size()[:-1] batch_size, seq_length = input_shape else: raise ValueError("You have to specify either input_ids or inputs_embeds") device = input_ids.device if input_ids is not None else inputs_embeds.device # past_key_values_length past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0 if attention_mask is None: attention_mask = torch.ones(((batch_size, seq_length + past_key_values_length)), device=device) if token_type_ids is None: if hasattr(self.embeddings, "token_type_ids"): buffered_token_type_ids = self.embeddings.token_type_ids[:, :seq_length] buffered_token_type_ids_expanded = buffered_token_type_ids.expand(batch_size, seq_length) token_type_ids = buffered_token_type_ids_expanded else: token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device) # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] # ourselves in which case we just need to make it broadcastable to all heads. extended_attention_mask: torch.Tensor = self.get_extended_attention_mask(attention_mask, input_shape) # If a 2D or 3D attention mask is provided for the cross-attention # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length] if self.config.is_decoder and encoder_hidden_states is not None: encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size() encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length) if encoder_attention_mask is None: encoder_attention_mask = torch.ones(encoder_hidden_shape, device=device) encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask) else: encoder_extended_attention_mask = None # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers) embedding_output = self.embeddings( input_ids=input_ids, position_ids=position_ids, token_type_ids=token_type_ids, inputs_embeds=inputs_embeds, past_key_values_length=past_key_values_length, ) encoder_outputs = self.encoder( embedding_output, attention_mask=extended_attention_mask, head_mask=head_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_extended_attention_mask, past_key_values=past_key_values, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = encoder_outputs[0] pooled_output = self.pooler(sequence_output) if self.pooler is not None else None if not return_dict: return (sequence_output, pooled_output) + encoder_outputs[1:] return BaseModelOutputWithPoolingAndCrossAttentions( last_hidden_state=sequence_output, pooler_output=pooled_output, past_key_values=encoder_outputs.past_key_values, hidden_states=encoder_outputs.hidden_states, attentions=encoder_outputs.attentions, cross_attentions=encoder_outputs.cross_attentions, ) @add_start_docstrings( """QDQBERT Model with a `language modeling` head on top for CLM fine-tuning.""", QDQBERT_START_DOCSTRING ) class QDQBertLMHeadModel(QDQBertPreTrainedModel): _tied_weights_keys = ["predictions.decoder.weight", "predictions.decoder.bias"] def __init__(self, config): super().__init__(config) if not config.is_decoder: logger.warning("If you want to use `QDQBertLMHeadModel` as a standalone, add `is_decoder=True.`") self.bert = QDQBertModel(config, add_pooling_layer=False) self.cls = QDQBertOnlyMLMHead(config) # Initialize weights and apply final processing self.post_init() def get_output_embeddings(self): return self.cls.predictions.decoder def set_output_embeddings(self, new_embeddings): self.cls.predictions.decoder = new_embeddings @add_start_docstrings_to_model_forward(QDQBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @replace_return_docstrings(output_type=CausalLMOutputWithCrossAttentions, config_class=_CONFIG_FOR_DOC) def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.Tensor] = None, token_type_ids: Optional[torch.LongTensor] = None, position_ids: Optional[torch.LongTensor] = None, head_mask: Optional[torch.Tensor] = None, inputs_embeds: Optional[torch.Tensor] = None, encoder_hidden_states: Optional[torch.FloatTensor] = None, encoder_attention_mask: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, past_key_values: Optional[Tuple[Tuple[torch.LongTensor]]] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, CausalLMOutputWithCrossAttentions]: r""" encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if the model is configured as a decoder. encoder_attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the left-to-right language modeling loss (next word prediction). Indices should be in `[-100, 0, ..., config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the loss is only computed for the tokens with labels n `[0, ..., config.vocab_size]` past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`): Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding. If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `decoder_input_ids` of shape `(batch_size, sequence_length)`. use_cache (`bool`, *optional*): If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see `past_key_values`). Returns: Example: ```python >>> from transformers import AutoTokenizer, QDQBertLMHeadModel, QDQBertConfig >>> import torch >>> tokenizer = AutoTokenizer.from_pretrained("bert-base-cased") >>> config = QDQBertConfig.from_pretrained("bert-base-cased") >>> config.is_decoder = True >>> model = QDQBertLMHeadModel.from_pretrained("bert-base-cased", config=config) >>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt") >>> outputs = model(**inputs) >>> prediction_logits = outputs.logits ```""" return_dict = return_dict if return_dict is not None else self.config.use_return_dict if labels is not None: use_cache = False outputs = self.bert( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, past_key_values=past_key_values, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = outputs[0] prediction_scores = self.cls(sequence_output) lm_loss = None if labels is not None: # we are doing next-token prediction; shift prediction scores and input ids by one shifted_prediction_scores = prediction_scores[:, :-1, :].contiguous() labels = labels[:, 1:].contiguous() loss_fct = CrossEntropyLoss() lm_loss = loss_fct(shifted_prediction_scores.view(-1, self.config.vocab_size), labels.view(-1)) if not return_dict: output = (prediction_scores,) + outputs[2:] return ((lm_loss,) + output) if lm_loss is not None else output return CausalLMOutputWithCrossAttentions( loss=lm_loss, logits=prediction_scores, past_key_values=outputs.past_key_values, hidden_states=outputs.hidden_states, attentions=outputs.attentions, cross_attentions=outputs.cross_attentions, ) def prepare_inputs_for_generation( self, input_ids: Optional[torch.LongTensor], past_key_values=None, attention_mask: Optional[torch.Tensor] = None, **model_kwargs, ): input_shape = input_ids.shape # if model is used as a decoder in encoder-decoder model, the decoder attention mask is created on the fly if attention_mask is None: attention_mask = input_ids.new_ones(input_shape) # cut decoder_input_ids if past is used if past_key_values is not None: input_ids = input_ids[:, -1:] return {"input_ids": input_ids, "attention_mask": attention_mask, "past_key_values": past_key_values} def _reorder_cache(self, past_key_values, beam_idx): reordered_past = () for layer_past in past_key_values: reordered_past += (tuple(past_state.index_select(0, beam_idx) for past_state in layer_past),) return reordered_past @add_start_docstrings("""QDQBERT Model with a `language modeling` head on top.""", QDQBERT_START_DOCSTRING) class QDQBertForMaskedLM(QDQBertPreTrainedModel): _tied_weights_keys = ["predictions.decoder.weight", "predictions.decoder.bias"] def __init__(self, config): super().__init__(config) if config.is_decoder: logger.warning( "If you want to use `QDQBertForMaskedLM` make sure `config.is_decoder=False` for " "bi-directional self-attention." ) self.bert = QDQBertModel(config, add_pooling_layer=False) self.cls = QDQBertOnlyMLMHead(config) # Initialize weights and apply final processing self.post_init() def get_output_embeddings(self): return self.cls.predictions.decoder def set_output_embeddings(self, new_embeddings): self.cls.predictions.decoder = new_embeddings @add_start_docstrings_to_model_forward(QDQBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=MaskedLMOutput, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.FloatTensor] = None, token_type_ids: Optional[torch.LongTensor] = None, position_ids: Optional[torch.LongTensor] = None, head_mask: Optional[torch.FloatTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, encoder_hidden_states: Optional[torch.FloatTensor] = None, encoder_attention_mask: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, MaskedLMOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ..., config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]` """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.bert( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = outputs[0] prediction_scores = self.cls(sequence_output) masked_lm_loss = None if labels is not None: loss_fct = CrossEntropyLoss() # -100 index = padding token masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), labels.view(-1)) if not return_dict: output = (prediction_scores,) + outputs[2:] return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output return MaskedLMOutput( loss=masked_lm_loss, logits=prediction_scores, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) def prepare_inputs_for_generation( self, input_ids: torch.LongTensor, attention_mask: Optional[torch.FloatTensor] = None, **model_kwargs ): input_shape = input_ids.shape effective_batch_size = input_shape[0] # add a dummy token if self.config.pad_token_id is None: raise ValueError("The PAD token should be defined for generation") attention_mask = torch.cat([attention_mask, attention_mask.new_zeros((attention_mask.shape[0], 1))], dim=-1) dummy_token = torch.full( (effective_batch_size, 1), self.config.pad_token_id, dtype=torch.long, device=input_ids.device ) input_ids = torch.cat([input_ids, dummy_token], dim=1) return {"input_ids": input_ids, "attention_mask": attention_mask} @add_start_docstrings( """Bert Model with a `next sentence prediction (classification)` head on top.""", QDQBERT_START_DOCSTRING, ) class QDQBertForNextSentencePrediction(QDQBertPreTrainedModel): def __init__(self, config): super().__init__(config) self.bert = QDQBertModel(config) self.cls = QDQBertOnlyNSPHead(config) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(QDQBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @replace_return_docstrings(output_type=NextSentencePredictorOutput, config_class=_CONFIG_FOR_DOC) def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.FloatTensor] = None, token_type_ids: Optional[torch.LongTensor] = None, position_ids: Optional[torch.LongTensor] = None, head_mask: Optional[torch.FloatTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, **kwargs, ) -> Union[Tuple, NextSentencePredictorOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the next sequence prediction (classification) loss. Input should be a sequence pair (see `input_ids` docstring). Indices should be in `[0, 1]`: - 0 indicates sequence B is a continuation of sequence A, - 1 indicates sequence B is a random sequence. Returns: Example: ```python >>> from transformers import AutoTokenizer, QDQBertForNextSentencePrediction >>> import torch >>> tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased") >>> model = QDQBertForNextSentencePrediction.from_pretrained("bert-base-uncased") >>> prompt = "In Italy, pizza served in formal settings, such as at a restaurant, is presented unsliced." >>> next_sentence = "The sky is blue due to the shorter wavelength of blue light." >>> encoding = tokenizer(prompt, next_sentence, return_tensors="pt") >>> outputs = model(**encoding, labels=torch.LongTensor([1])) >>> logits = outputs.logits >>> assert logits[0, 0] < logits[0, 1] # next sentence was random ```""" if "next_sentence_label" in kwargs: warnings.warn( "The `next_sentence_label` argument is deprecated and will be removed in a future version, use" " `labels` instead.", FutureWarning, ) labels = kwargs.pop("next_sentence_label") return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.bert( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) pooled_output = outputs[1] seq_relationship_scores = self.cls(pooled_output) next_sentence_loss = None if labels is not None: loss_fct = CrossEntropyLoss() next_sentence_loss = loss_fct(seq_relationship_scores.view(-1, 2), labels.view(-1)) if not return_dict: output = (seq_relationship_scores,) + outputs[2:] return ((next_sentence_loss,) + output) if next_sentence_loss is not None else output return NextSentencePredictorOutput( loss=next_sentence_loss, logits=seq_relationship_scores, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) @add_start_docstrings( """ Bert Model transformer with a sequence classification/regression head on top (a linear layer on top of the pooled output) e.g. for GLUE tasks. """, QDQBERT_START_DOCSTRING, ) class QDQBertForSequenceClassification(QDQBertPreTrainedModel): def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.config = config self.bert = QDQBertModel(config) self.dropout = nn.Dropout(config.hidden_dropout_prob) self.classifier = nn.Linear(config.hidden_size, config.num_labels) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(QDQBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=SequenceClassifierOutput, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.FloatTensor] = None, token_type_ids: Optional[torch.LongTensor] = None, position_ids: Optional[torch.LongTensor] = None, head_mask: Optional[torch.FloatTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, SequenceClassifierOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If `config.num_labels > 1` a classification loss is computed (Cross-Entropy). """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.bert( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) pooled_output = outputs[1] pooled_output = self.dropout(pooled_output) logits = self.classifier(pooled_output) loss = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: self.config.problem_type = "regression" elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): self.config.problem_type = "single_label_classification" else: self.config.problem_type = "multi_label_classification" if self.config.problem_type == "regression": loss_fct = MSELoss() if self.num_labels == 1: loss = loss_fct(logits.squeeze(), labels.squeeze()) else: loss = loss_fct(logits, labels) elif self.config.problem_type == "single_label_classification": loss_fct = CrossEntropyLoss() loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) elif self.config.problem_type == "multi_label_classification": loss_fct = BCEWithLogitsLoss() loss = loss_fct(logits, labels) if not return_dict: output = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return SequenceClassifierOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) @add_start_docstrings( """ Bert Model with a multiple choice classification head on top (a linear layer on top of the pooled output and a softmax) e.g. for RocStories/SWAG tasks. """, QDQBERT_START_DOCSTRING, ) class QDQBertForMultipleChoice(QDQBertPreTrainedModel): def __init__(self, config): super().__init__(config) self.bert = QDQBertModel(config) self.dropout = nn.Dropout(config.hidden_dropout_prob) self.classifier = nn.Linear(config.hidden_size, 1) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(QDQBERT_INPUTS_DOCSTRING.format("batch_size, num_choices, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=MultipleChoiceModelOutput, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.FloatTensor] = None, token_type_ids: Optional[torch.LongTensor] = None, position_ids: Optional[torch.LongTensor] = None, head_mask: Optional[torch.FloatTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, MultipleChoiceModelOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the multiple choice classification loss. Indices should be in `[0, ..., num_choices-1]` where `num_choices` is the size of the second dimension of the input tensors. (See `input_ids` above) """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict num_choices = input_ids.shape[1] if input_ids is not None else inputs_embeds.shape[1] input_ids = input_ids.view(-1, input_ids.size(-1)) if input_ids is not None else None attention_mask = attention_mask.view(-1, attention_mask.size(-1)) if attention_mask is not None else None token_type_ids = token_type_ids.view(-1, token_type_ids.size(-1)) if token_type_ids is not None else None position_ids = position_ids.view(-1, position_ids.size(-1)) if position_ids is not None else None inputs_embeds = ( inputs_embeds.view(-1, inputs_embeds.size(-2), inputs_embeds.size(-1)) if inputs_embeds is not None else None ) outputs = self.bert( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) pooled_output = outputs[1] pooled_output = self.dropout(pooled_output) logits = self.classifier(pooled_output) reshaped_logits = logits.view(-1, num_choices) loss = None if labels is not None: loss_fct = CrossEntropyLoss() loss = loss_fct(reshaped_logits, labels) if not return_dict: output = (reshaped_logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return MultipleChoiceModelOutput( loss=loss, logits=reshaped_logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) @add_start_docstrings( """ QDQBERT Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for Named-Entity-Recognition (NER) tasks. """, QDQBERT_START_DOCSTRING, ) class QDQBertForTokenClassification(QDQBertPreTrainedModel): def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.bert = QDQBertModel(config, add_pooling_layer=False) self.dropout = nn.Dropout(config.hidden_dropout_prob) self.classifier = nn.Linear(config.hidden_size, config.num_labels) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(QDQBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=TokenClassifierOutput, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.FloatTensor] = None, token_type_ids: Optional[torch.LongTensor] = None, position_ids: Optional[torch.LongTensor] = None, head_mask: Optional[torch.FloatTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, TokenClassifierOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`. """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.bert( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = outputs[0] sequence_output = self.dropout(sequence_output) logits = self.classifier(sequence_output) loss = None if labels is not None: loss_fct = CrossEntropyLoss() loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) if not return_dict: output = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return TokenClassifierOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) @add_start_docstrings( """ QDQBERT Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear layers on top of the hidden-states output to compute `span start logits` and `span end logits`). """, QDQBERT_START_DOCSTRING, ) class QDQBertForQuestionAnswering(QDQBertPreTrainedModel): def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.bert = QDQBertModel(config, add_pooling_layer=False) self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(QDQBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=QuestionAnsweringModelOutput, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.FloatTensor] = None, token_type_ids: Optional[torch.LongTensor] = None, position_ids: Optional[torch.LongTensor] = None, head_mask: Optional[torch.FloatTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, start_positions: Optional[torch.LongTensor] = None, end_positions: Optional[torch.LongTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, QuestionAnsweringModelOutput]: r""" start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for position (index) of the start of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence are not taken into account for computing the loss. end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for position (index) of the end of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence are not taken into account for computing the loss. """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.bert( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = outputs[0] logits = self.qa_outputs(sequence_output) start_logits, end_logits = logits.split(1, dim=-1) start_logits = start_logits.squeeze(-1).contiguous() end_logits = end_logits.squeeze(-1).contiguous() total_loss = None if start_positions is not None and end_positions is not None: # If we are on multi-GPU, split add a dimension if len(start_positions.size()) > 1: start_positions = start_positions.squeeze(-1) if len(end_positions.size()) > 1: end_positions = end_positions.squeeze(-1) # sometimes the start/end positions are outside our model inputs, we ignore these terms ignored_index = start_logits.size(1) start_positions = start_positions.clamp(0, ignored_index) end_positions = end_positions.clamp(0, ignored_index) loss_fct = CrossEntropyLoss(ignore_index=ignored_index) start_loss = loss_fct(start_logits, start_positions) end_loss = loss_fct(end_logits, end_positions) total_loss = (start_loss + end_loss) / 2 if not return_dict: output = (start_logits, end_logits) + outputs[2:] return ((total_loss,) + output) if total_loss is not None else output return QuestionAnsweringModelOutput( loss=total_loss, start_logits=start_logits, end_logits=end_logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, )
0
hf_public_repos/transformers/src/transformers/models
hf_public_repos/transformers/src/transformers/models/roberta_prelayernorm/__init__.py
# Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) _import_structure = { "configuration_roberta_prelayernorm": [ "ROBERTA_PRELAYERNORM_PRETRAINED_CONFIG_ARCHIVE_MAP", "RobertaPreLayerNormConfig", "RobertaPreLayerNormOnnxConfig", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["modeling_roberta_prelayernorm"] = [ "ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST", "RobertaPreLayerNormForCausalLM", "RobertaPreLayerNormForMaskedLM", "RobertaPreLayerNormForMultipleChoice", "RobertaPreLayerNormForQuestionAnswering", "RobertaPreLayerNormForSequenceClassification", "RobertaPreLayerNormForTokenClassification", "RobertaPreLayerNormModel", "RobertaPreLayerNormPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["modeling_tf_roberta_prelayernorm"] = [ "TF_ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST", "TFRobertaPreLayerNormForCausalLM", "TFRobertaPreLayerNormForMaskedLM", "TFRobertaPreLayerNormForMultipleChoice", "TFRobertaPreLayerNormForQuestionAnswering", "TFRobertaPreLayerNormForSequenceClassification", "TFRobertaPreLayerNormForTokenClassification", "TFRobertaPreLayerNormMainLayer", "TFRobertaPreLayerNormModel", "TFRobertaPreLayerNormPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["modeling_flax_roberta_prelayernorm"] = [ "FlaxRobertaPreLayerNormForCausalLM", "FlaxRobertaPreLayerNormForMaskedLM", "FlaxRobertaPreLayerNormForMultipleChoice", "FlaxRobertaPreLayerNormForQuestionAnswering", "FlaxRobertaPreLayerNormForSequenceClassification", "FlaxRobertaPreLayerNormForTokenClassification", "FlaxRobertaPreLayerNormModel", "FlaxRobertaPreLayerNormPreTrainedModel", ] if TYPE_CHECKING: from .configuration_roberta_prelayernorm import ( ROBERTA_PRELAYERNORM_PRETRAINED_CONFIG_ARCHIVE_MAP, RobertaPreLayerNormConfig, RobertaPreLayerNormOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roberta_prelayernorm import ( ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST, RobertaPreLayerNormForCausalLM, RobertaPreLayerNormForMaskedLM, RobertaPreLayerNormForMultipleChoice, RobertaPreLayerNormForQuestionAnswering, RobertaPreLayerNormForSequenceClassification, RobertaPreLayerNormForTokenClassification, RobertaPreLayerNormModel, RobertaPreLayerNormPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roberta_prelayernorm import ( TF_ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST, TFRobertaPreLayerNormForCausalLM, TFRobertaPreLayerNormForMaskedLM, TFRobertaPreLayerNormForMultipleChoice, TFRobertaPreLayerNormForQuestionAnswering, TFRobertaPreLayerNormForSequenceClassification, TFRobertaPreLayerNormForTokenClassification, TFRobertaPreLayerNormMainLayer, TFRobertaPreLayerNormModel, TFRobertaPreLayerNormPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roberta_prelayernorm import ( FlaxRobertaPreLayerNormForCausalLM, FlaxRobertaPreLayerNormForMaskedLM, FlaxRobertaPreLayerNormForMultipleChoice, FlaxRobertaPreLayerNormForQuestionAnswering, FlaxRobertaPreLayerNormForSequenceClassification, FlaxRobertaPreLayerNormForTokenClassification, FlaxRobertaPreLayerNormModel, FlaxRobertaPreLayerNormPreTrainedModel, ) else: import sys sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
0
hf_public_repos/transformers/src/transformers/models
hf_public_repos/transformers/src/transformers/models/roberta_prelayernorm/convert_roberta_prelayernorm_original_pytorch_checkpoint_to_pytorch.py
# coding=utf-8 # Copyright 2022 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Convert RoBERTa-PreLayerNorm checkpoint.""" import argparse import torch from huggingface_hub import hf_hub_download from transformers import AutoTokenizer, RobertaPreLayerNormConfig, RobertaPreLayerNormForMaskedLM from transformers.utils import logging logging.set_verbosity_info() logger = logging.get_logger(__name__) def convert_roberta_prelayernorm_checkpoint_to_pytorch(checkpoint_repo: str, pytorch_dump_folder_path: str): """ Copy/paste/tweak roberta_prelayernorm's weights to our BERT structure. """ # convert configuration config = RobertaPreLayerNormConfig.from_pretrained( checkpoint_repo, architectures=["RobertaPreLayerNormForMaskedLM"] ) # convert state_dict original_state_dict = torch.load(hf_hub_download(repo_id=checkpoint_repo, filename="pytorch_model.bin")) state_dict = {} for tensor_key, tensor_value in original_state_dict.items(): # The transformer implementation gives the model a unique name, rather than overwiriting 'roberta' if tensor_key.startswith("roberta."): tensor_key = "roberta_prelayernorm." + tensor_key[len("roberta.") :] # The original implementation contains weights which are not used, remove them from the state_dict if tensor_key.endswith(".self.LayerNorm.weight") or tensor_key.endswith(".self.LayerNorm.bias"): continue state_dict[tensor_key] = tensor_value model = RobertaPreLayerNormForMaskedLM.from_pretrained( pretrained_model_name_or_path=None, config=config, state_dict=state_dict ) model.save_pretrained(pytorch_dump_folder_path) # convert tokenizer tokenizer = AutoTokenizer.from_pretrained(checkpoint_repo) tokenizer.save_pretrained(pytorch_dump_folder_path) if __name__ == "__main__": parser = argparse.ArgumentParser() # Required parameters parser.add_argument( "--checkpoint-repo", default=None, type=str, required=True, help="Path the official PyTorch dump, e.g. 'andreasmadsen/efficient_mlm_m0.40'.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) args = parser.parse_args() convert_roberta_prelayernorm_checkpoint_to_pytorch(args.checkpoint_repo, args.pytorch_dump_folder_path)
0
hf_public_repos/transformers/src/transformers/models
hf_public_repos/transformers/src/transformers/models/roberta_prelayernorm/configuration_roberta_prelayernorm.py
# coding=utf-8 # Copyright 2022 The Google AI Language Team Authors and The HuggingFace Inc. team. # All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ RoBERTa-PreLayerNorm configuration""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging logger = logging.get_logger(__name__) ROBERTA_PRELAYERNORM_PRETRAINED_CONFIG_ARCHIVE_MAP = { "andreasmadsen/efficient_mlm_m0.40": ( "https://huggingface.co/andreasmadsen/efficient_mlm_m0.40/resolve/main/config.json" ), } # Copied from transformers.models.roberta.configuration_roberta.RobertaConfig with roberta-base->andreasmadsen/efficient_mlm_m0.40,RoBERTa->RoBERTa-PreLayerNorm,Roberta->RobertaPreLayerNorm,roberta->roberta-prelayernorm class RobertaPreLayerNormConfig(PretrainedConfig): r""" This is the configuration class to store the configuration of a [`RobertaPreLayerNormModel`] or a [`TFRobertaPreLayerNormModel`]. It is used to instantiate a RoBERTa-PreLayerNorm model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the RoBERTa-PreLayerNorm [andreasmadsen/efficient_mlm_m0.40](https://huggingface.co/andreasmadsen/efficient_mlm_m0.40) architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: vocab_size (`int`, *optional*, defaults to 50265): Vocabulary size of the RoBERTa-PreLayerNorm model. Defines the number of different tokens that can be represented by the `inputs_ids` passed when calling [`RobertaPreLayerNormModel`] or [`TFRobertaPreLayerNormModel`]. hidden_size (`int`, *optional*, defaults to 768): Dimensionality of the encoder layers and the pooler layer. num_hidden_layers (`int`, *optional*, defaults to 12): Number of hidden layers in the Transformer encoder. num_attention_heads (`int`, *optional*, defaults to 12): Number of attention heads for each attention layer in the Transformer encoder. intermediate_size (`int`, *optional*, defaults to 3072): Dimensionality of the "intermediate" (often named feed-forward) layer in the Transformer encoder. hidden_act (`str` or `Callable`, *optional*, defaults to `"gelu"`): The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, `"relu"`, `"silu"` and `"gelu_new"` are supported. hidden_dropout_prob (`float`, *optional*, defaults to 0.1): The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1): The dropout ratio for the attention probabilities. max_position_embeddings (`int`, *optional*, defaults to 512): The maximum sequence length that this model might ever be used with. Typically set this to something large just in case (e.g., 512 or 1024 or 2048). type_vocab_size (`int`, *optional*, defaults to 2): The vocabulary size of the `token_type_ids` passed when calling [`RobertaPreLayerNormModel`] or [`TFRobertaPreLayerNormModel`]. initializer_range (`float`, *optional*, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. layer_norm_eps (`float`, *optional*, defaults to 1e-12): The epsilon used by the layer normalization layers. position_embedding_type (`str`, *optional*, defaults to `"absolute"`): Type of position embedding. Choose one of `"absolute"`, `"relative_key"`, `"relative_key_query"`. For positional embeddings use `"absolute"`. For more information on `"relative_key"`, please refer to [Self-Attention with Relative Position Representations (Shaw et al.)](https://arxiv.org/abs/1803.02155). For more information on `"relative_key_query"`, please refer to *Method 4* in [Improve Transformer Models with Better Relative Position Embeddings (Huang et al.)](https://arxiv.org/abs/2009.13658). is_decoder (`bool`, *optional*, defaults to `False`): Whether the model is used as a decoder or not. If `False`, the model is used as an encoder. use_cache (`bool`, *optional*, defaults to `True`): Whether or not the model should return the last key/values attentions (not used by all models). Only relevant if `config.is_decoder=True`. classifier_dropout (`float`, *optional*): The dropout ratio for the classification head. Examples: ```python >>> from transformers import RobertaPreLayerNormConfig, RobertaPreLayerNormModel >>> # Initializing a RoBERTa-PreLayerNorm configuration >>> configuration = RobertaPreLayerNormConfig() >>> # Initializing a model (with random weights) from the configuration >>> model = RobertaPreLayerNormModel(configuration) >>> # Accessing the model configuration >>> configuration = model.config ```""" model_type = "roberta-prelayernorm" def __init__( self, vocab_size=50265, hidden_size=768, num_hidden_layers=12, num_attention_heads=12, intermediate_size=3072, hidden_act="gelu", hidden_dropout_prob=0.1, attention_probs_dropout_prob=0.1, max_position_embeddings=512, type_vocab_size=2, initializer_range=0.02, layer_norm_eps=1e-12, pad_token_id=1, bos_token_id=0, eos_token_id=2, position_embedding_type="absolute", use_cache=True, classifier_dropout=None, **kwargs, ): super().__init__(pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs) self.vocab_size = vocab_size self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.hidden_act = hidden_act self.intermediate_size = intermediate_size self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.max_position_embeddings = max_position_embeddings self.type_vocab_size = type_vocab_size self.initializer_range = initializer_range self.layer_norm_eps = layer_norm_eps self.position_embedding_type = position_embedding_type self.use_cache = use_cache self.classifier_dropout = classifier_dropout # Copied from transformers.models.roberta.configuration_roberta.RobertaOnnxConfig with Roberta->RobertaPreLayerNorm class RobertaPreLayerNormOnnxConfig(OnnxConfig): @property def inputs(self) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": dynamic_axis = {0: "batch", 1: "choice", 2: "sequence"} else: dynamic_axis = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ] )
0
hf_public_repos/transformers/src/transformers/models
hf_public_repos/transformers/src/transformers/models/roberta_prelayernorm/modeling_tf_roberta_prelayernorm.py
# coding=utf-8 # Copyright 2022 The Google AI Language Team Authors and The HuggingFace Inc. team. # Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ TF 2.0 RoBERTa-PreLayerNorm model.""" from __future__ import annotations import math import warnings from typing import Optional, Tuple, Union import numpy as np import tensorflow as tf from ...activations_tf import get_tf_activation from ...modeling_tf_outputs import ( TFBaseModelOutputWithPastAndCrossAttentions, TFBaseModelOutputWithPoolingAndCrossAttentions, TFCausalLMOutputWithCrossAttentions, TFMaskedLMOutput, TFMultipleChoiceModelOutput, TFQuestionAnsweringModelOutput, TFSequenceClassifierOutput, TFTokenClassifierOutput, ) from ...modeling_tf_utils import ( TFCausalLanguageModelingLoss, TFMaskedLanguageModelingLoss, TFModelInputType, TFMultipleChoiceLoss, TFPreTrainedModel, TFQuestionAnsweringLoss, TFSequenceClassificationLoss, TFTokenClassificationLoss, get_initializer, keras_serializable, unpack_inputs, ) from ...tf_utils import check_embeddings_within_bounds, shape_list, stable_softmax from ...utils import ( add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging, ) from .configuration_roberta_prelayernorm import RobertaPreLayerNormConfig logger = logging.get_logger(__name__) _CHECKPOINT_FOR_DOC = "andreasmadsen/efficient_mlm_m0.40" _CONFIG_FOR_DOC = "RobertaPreLayerNormConfig" TF_ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST = [ "andreasmadsen/efficient_mlm_m0.15", "andreasmadsen/efficient_mlm_m0.20", "andreasmadsen/efficient_mlm_m0.30", "andreasmadsen/efficient_mlm_m0.40", "andreasmadsen/efficient_mlm_m0.50", "andreasmadsen/efficient_mlm_m0.60", "andreasmadsen/efficient_mlm_m0.70", "andreasmadsen/efficient_mlm_m0.80", # See all RoBERTaWithPreLayerNorm models at https://huggingface.co/models?filter=roberta_with_prelayernorm ] # Copied from transformers.models.roberta.modeling_tf_roberta.TFRobertaEmbeddings with Roberta->RobertaPreLayerNorm class TFRobertaPreLayerNormEmbeddings(tf.keras.layers.Layer): """ Same as BertEmbeddings with a tiny tweak for positional embeddings indexing. """ def __init__(self, config, **kwargs): super().__init__(**kwargs) self.padding_idx = 1 self.config = config self.hidden_size = config.hidden_size self.max_position_embeddings = config.max_position_embeddings self.initializer_range = config.initializer_range self.LayerNorm = tf.keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="LayerNorm") self.dropout = tf.keras.layers.Dropout(rate=config.hidden_dropout_prob) def build(self, input_shape: tf.TensorShape): with tf.name_scope("word_embeddings"): self.weight = self.add_weight( name="weight", shape=[self.config.vocab_size, self.hidden_size], initializer=get_initializer(self.initializer_range), ) with tf.name_scope("token_type_embeddings"): self.token_type_embeddings = self.add_weight( name="embeddings", shape=[self.config.type_vocab_size, self.hidden_size], initializer=get_initializer(self.initializer_range), ) with tf.name_scope("position_embeddings"): self.position_embeddings = self.add_weight( name="embeddings", shape=[self.max_position_embeddings, self.hidden_size], initializer=get_initializer(self.initializer_range), ) super().build(input_shape) def create_position_ids_from_input_ids(self, input_ids, past_key_values_length=0): """ Replace non-padding symbols with their position numbers. Position numbers begin at padding_idx+1. Padding symbols are ignored. This is modified from fairseq's `utils.make_positions`. Args: input_ids: tf.Tensor Returns: tf.Tensor """ mask = tf.cast(tf.math.not_equal(input_ids, self.padding_idx), dtype=input_ids.dtype) incremental_indices = (tf.math.cumsum(mask, axis=1) + past_key_values_length) * mask return incremental_indices + self.padding_idx def call( self, input_ids=None, position_ids=None, token_type_ids=None, inputs_embeds=None, past_key_values_length=0, training=False, ): """ Applies embedding based on inputs tensor. Returns: final_embeddings (`tf.Tensor`): output embedding tensor. """ assert not (input_ids is None and inputs_embeds is None) if input_ids is not None: check_embeddings_within_bounds(input_ids, self.config.vocab_size) inputs_embeds = tf.gather(params=self.weight, indices=input_ids) input_shape = shape_list(inputs_embeds)[:-1] if token_type_ids is None: token_type_ids = tf.fill(dims=input_shape, value=0) if position_ids is None: if input_ids is not None: # Create the position ids from the input token ids. Any padded tokens remain padded. position_ids = self.create_position_ids_from_input_ids( input_ids=input_ids, past_key_values_length=past_key_values_length ) else: position_ids = tf.expand_dims( tf.range(start=self.padding_idx + 1, limit=input_shape[-1] + self.padding_idx + 1), axis=0 ) position_embeds = tf.gather(params=self.position_embeddings, indices=position_ids) token_type_embeds = tf.gather(params=self.token_type_embeddings, indices=token_type_ids) final_embeddings = inputs_embeds + position_embeds + token_type_embeds final_embeddings = self.LayerNorm(inputs=final_embeddings) final_embeddings = self.dropout(inputs=final_embeddings, training=training) return final_embeddings # Copied from transformers.models.bert.modeling_tf_bert.TFBertPooler with Bert->RobertaPreLayerNorm class TFRobertaPreLayerNormPooler(tf.keras.layers.Layer): def __init__(self, config: RobertaPreLayerNormConfig, **kwargs): super().__init__(**kwargs) self.dense = tf.keras.layers.Dense( units=config.hidden_size, kernel_initializer=get_initializer(config.initializer_range), activation="tanh", name="dense", ) def call(self, hidden_states: tf.Tensor) -> tf.Tensor: # We "pool" the model by simply taking the hidden state corresponding # to the first token. first_token_tensor = hidden_states[:, 0] pooled_output = self.dense(inputs=first_token_tensor) return pooled_output # Copied from transformers.models.bert.modeling_tf_bert.TFBertSelfAttention with Bert->RobertaPreLayerNorm class TFRobertaPreLayerNormSelfAttention(tf.keras.layers.Layer): def __init__(self, config: RobertaPreLayerNormConfig, **kwargs): super().__init__(**kwargs) if config.hidden_size % config.num_attention_heads != 0: raise ValueError( f"The hidden size ({config.hidden_size}) is not a multiple of the number " f"of attention heads ({config.num_attention_heads})" ) self.num_attention_heads = config.num_attention_heads self.attention_head_size = int(config.hidden_size / config.num_attention_heads) self.all_head_size = self.num_attention_heads * self.attention_head_size self.sqrt_att_head_size = math.sqrt(self.attention_head_size) self.query = tf.keras.layers.Dense( units=self.all_head_size, kernel_initializer=get_initializer(config.initializer_range), name="query" ) self.key = tf.keras.layers.Dense( units=self.all_head_size, kernel_initializer=get_initializer(config.initializer_range), name="key" ) self.value = tf.keras.layers.Dense( units=self.all_head_size, kernel_initializer=get_initializer(config.initializer_range), name="value" ) self.dropout = tf.keras.layers.Dropout(rate=config.attention_probs_dropout_prob) self.is_decoder = config.is_decoder def transpose_for_scores(self, tensor: tf.Tensor, batch_size: int) -> tf.Tensor: # Reshape from [batch_size, seq_length, all_head_size] to [batch_size, seq_length, num_attention_heads, attention_head_size] tensor = tf.reshape(tensor=tensor, shape=(batch_size, -1, self.num_attention_heads, self.attention_head_size)) # Transpose the tensor from [batch_size, seq_length, num_attention_heads, attention_head_size] to [batch_size, num_attention_heads, seq_length, attention_head_size] return tf.transpose(tensor, perm=[0, 2, 1, 3]) def call( self, hidden_states: tf.Tensor, attention_mask: tf.Tensor, head_mask: tf.Tensor, encoder_hidden_states: tf.Tensor, encoder_attention_mask: tf.Tensor, past_key_value: Tuple[tf.Tensor], output_attentions: bool, training: bool = False, ) -> Tuple[tf.Tensor]: batch_size = shape_list(hidden_states)[0] mixed_query_layer = self.query(inputs=hidden_states) # If this is instantiated as a cross-attention module, the keys # and values come from an encoder; the attention mask needs to be # such that the encoder's padding tokens are not attended to. is_cross_attention = encoder_hidden_states is not None if is_cross_attention and past_key_value is not None: # reuse k,v, cross_attentions key_layer = past_key_value[0] value_layer = past_key_value[1] attention_mask = encoder_attention_mask elif is_cross_attention: key_layer = self.transpose_for_scores(self.key(inputs=encoder_hidden_states), batch_size) value_layer = self.transpose_for_scores(self.value(inputs=encoder_hidden_states), batch_size) attention_mask = encoder_attention_mask elif past_key_value is not None: key_layer = self.transpose_for_scores(self.key(inputs=hidden_states), batch_size) value_layer = self.transpose_for_scores(self.value(inputs=hidden_states), batch_size) key_layer = tf.concat([past_key_value[0], key_layer], axis=2) value_layer = tf.concat([past_key_value[1], value_layer], axis=2) else: key_layer = self.transpose_for_scores(self.key(inputs=hidden_states), batch_size) value_layer = self.transpose_for_scores(self.value(inputs=hidden_states), batch_size) query_layer = self.transpose_for_scores(mixed_query_layer, batch_size) if self.is_decoder: # if cross_attention save Tuple(tf.Tensor, tf.Tensor) of all cross attention key/value_states. # Further calls to cross_attention layer can then reuse all cross-attention # key/value_states (first "if" case) # if uni-directional self-attention (decoder) save Tuple(tf.Tensor, tf.Tensor) of # all previous decoder key/value_states. Further calls to uni-directional self-attention # can concat previous decoder key/value_states to current projected key/value_states (third "elif" case) # if encoder bi-directional self-attention `past_key_value` is always `None` past_key_value = (key_layer, value_layer) # Take the dot product between "query" and "key" to get the raw attention scores. # (batch size, num_heads, seq_len_q, seq_len_k) attention_scores = tf.matmul(query_layer, key_layer, transpose_b=True) dk = tf.cast(self.sqrt_att_head_size, dtype=attention_scores.dtype) attention_scores = tf.divide(attention_scores, dk) if attention_mask is not None: # Apply the attention mask is (precomputed for all layers in TFRobertaPreLayerNormModel call() function) attention_scores = tf.add(attention_scores, attention_mask) # Normalize the attention scores to probabilities. attention_probs = stable_softmax(logits=attention_scores, axis=-1) # This is actually dropping out entire tokens to attend to, which might # seem a bit unusual, but is taken from the original Transformer paper. attention_probs = self.dropout(inputs=attention_probs, training=training) # Mask heads if we want to if head_mask is not None: attention_probs = tf.multiply(attention_probs, head_mask) attention_output = tf.matmul(attention_probs, value_layer) attention_output = tf.transpose(attention_output, perm=[0, 2, 1, 3]) # (batch_size, seq_len_q, all_head_size) attention_output = tf.reshape(tensor=attention_output, shape=(batch_size, -1, self.all_head_size)) outputs = (attention_output, attention_probs) if output_attentions else (attention_output,) if self.is_decoder: outputs = outputs + (past_key_value,) return outputs class TFRobertaPreLayerNormSelfOutput(tf.keras.layers.Layer): def __init__(self, config: RobertaPreLayerNormConfig, **kwargs): super().__init__(**kwargs) self.dense = tf.keras.layers.Dense( units=config.hidden_size, kernel_initializer=get_initializer(config.initializer_range), name="dense" ) self.dropout = tf.keras.layers.Dropout(rate=config.hidden_dropout_prob) def call(self, hidden_states: tf.Tensor, input_tensor: tf.Tensor, training: bool = False) -> tf.Tensor: hidden_states = self.dense(inputs=hidden_states) hidden_states = self.dropout(inputs=hidden_states, training=training) hidden_states = hidden_states + input_tensor return hidden_states class TFRobertaPreLayerNormAttention(tf.keras.layers.Layer): def __init__(self, config: RobertaPreLayerNormConfig, **kwargs): super().__init__(**kwargs) self.self_attention = TFRobertaPreLayerNormSelfAttention(config, name="self") self.dense_output = TFRobertaPreLayerNormSelfOutput(config, name="output") self.LayerNorm = tf.keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="LayerNorm") # Copied from transformers.models.bert.modeling_tf_bert.TFBertAttention.prune_heads def prune_heads(self, heads): raise NotImplementedError def call( self, input_tensor: tf.Tensor, attention_mask: tf.Tensor, head_mask: tf.Tensor, encoder_hidden_states: tf.Tensor, encoder_attention_mask: tf.Tensor, past_key_value: Tuple[tf.Tensor], output_attentions: bool, training: bool = False, ) -> Tuple[tf.Tensor]: hidden_states_pre_layer_norm = self.LayerNorm(inputs=input_tensor) self_outputs = self.self_attention( hidden_states=hidden_states_pre_layer_norm, attention_mask=attention_mask, head_mask=head_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, past_key_value=past_key_value, output_attentions=output_attentions, training=training, ) attention_output = self.dense_output( hidden_states=self_outputs[0], input_tensor=input_tensor, training=training ) # add attentions (possibly with past_key_value) if we output them outputs = (attention_output,) + self_outputs[1:] return outputs class TFRobertaPreLayerNormIntermediate(tf.keras.layers.Layer): def __init__(self, config: RobertaPreLayerNormConfig, **kwargs): super().__init__(**kwargs) self.LayerNorm = tf.keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="LayerNorm") self.dense = tf.keras.layers.Dense( units=config.intermediate_size, kernel_initializer=get_initializer(config.initializer_range), name="dense" ) if isinstance(config.hidden_act, str): self.intermediate_act_fn = get_tf_activation(config.hidden_act) else: self.intermediate_act_fn = config.hidden_act def call(self, hidden_states: tf.Tensor) -> tf.Tensor: hidden_states = self.LayerNorm(inputs=hidden_states) hidden_states = self.dense(inputs=hidden_states) hidden_states = self.intermediate_act_fn(hidden_states) return hidden_states class TFRobertaPreLayerNormOutput(tf.keras.layers.Layer): def __init__(self, config: RobertaPreLayerNormConfig, **kwargs): super().__init__(**kwargs) self.dense = tf.keras.layers.Dense( units=config.hidden_size, kernel_initializer=get_initializer(config.initializer_range), name="dense" ) self.dropout = tf.keras.layers.Dropout(rate=config.hidden_dropout_prob) def call(self, hidden_states: tf.Tensor, input_tensor: tf.Tensor, training: bool = False) -> tf.Tensor: hidden_states = self.dense(inputs=hidden_states) hidden_states = self.dropout(inputs=hidden_states, training=training) hidden_states = hidden_states + input_tensor return hidden_states # Copied from transformers.models.bert.modeling_tf_bert.TFBertLayer with Bert->RobertaPreLayerNorm class TFRobertaPreLayerNormLayer(tf.keras.layers.Layer): def __init__(self, config: RobertaPreLayerNormConfig, **kwargs): super().__init__(**kwargs) self.attention = TFRobertaPreLayerNormAttention(config, name="attention") self.is_decoder = config.is_decoder self.add_cross_attention = config.add_cross_attention if self.add_cross_attention: if not self.is_decoder: raise ValueError(f"{self} should be used as a decoder model if cross attention is added") self.crossattention = TFRobertaPreLayerNormAttention(config, name="crossattention") self.intermediate = TFRobertaPreLayerNormIntermediate(config, name="intermediate") self.bert_output = TFRobertaPreLayerNormOutput(config, name="output") def call( self, hidden_states: tf.Tensor, attention_mask: tf.Tensor, head_mask: tf.Tensor, encoder_hidden_states: tf.Tensor | None, encoder_attention_mask: tf.Tensor | None, past_key_value: Tuple[tf.Tensor] | None, output_attentions: bool, training: bool = False, ) -> Tuple[tf.Tensor]: # decoder uni-directional self-attention cached key/values tuple is at positions 1,2 self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None self_attention_outputs = self.attention( input_tensor=hidden_states, attention_mask=attention_mask, head_mask=head_mask, encoder_hidden_states=None, encoder_attention_mask=None, past_key_value=self_attn_past_key_value, output_attentions=output_attentions, training=training, ) attention_output = self_attention_outputs[0] # if decoder, the last output is tuple of self-attn cache if self.is_decoder: outputs = self_attention_outputs[1:-1] present_key_value = self_attention_outputs[-1] else: outputs = self_attention_outputs[1:] # add self attentions if we output attention weights cross_attn_present_key_value = None if self.is_decoder and encoder_hidden_states is not None: if not hasattr(self, "crossattention"): raise ValueError( f"If `encoder_hidden_states` are passed, {self} has to be instantiated with cross-attention layers" " by setting `config.add_cross_attention=True`" ) # cross_attn cached key/values tuple is at positions 3,4 of past_key_value tuple cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None cross_attention_outputs = self.crossattention( input_tensor=attention_output, attention_mask=attention_mask, head_mask=head_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, past_key_value=cross_attn_past_key_value, output_attentions=output_attentions, training=training, ) attention_output = cross_attention_outputs[0] outputs = outputs + cross_attention_outputs[1:-1] # add cross attentions if we output attention weights # add cross-attn cache to positions 3,4 of present_key_value tuple cross_attn_present_key_value = cross_attention_outputs[-1] present_key_value = present_key_value + cross_attn_present_key_value intermediate_output = self.intermediate(hidden_states=attention_output) layer_output = self.bert_output( hidden_states=intermediate_output, input_tensor=attention_output, training=training ) outputs = (layer_output,) + outputs # add attentions if we output them # if decoder, return the attn key/values as the last output if self.is_decoder: outputs = outputs + (present_key_value,) return outputs # Copied from transformers.models.bert.modeling_tf_bert.TFBertEncoder with Bert->RobertaPreLayerNorm class TFRobertaPreLayerNormEncoder(tf.keras.layers.Layer): def __init__(self, config: RobertaPreLayerNormConfig, **kwargs): super().__init__(**kwargs) self.config = config self.layer = [TFRobertaPreLayerNormLayer(config, name=f"layer_._{i}") for i in range(config.num_hidden_layers)] def call( self, hidden_states: tf.Tensor, attention_mask: tf.Tensor, head_mask: tf.Tensor, encoder_hidden_states: tf.Tensor | None, encoder_attention_mask: tf.Tensor | None, past_key_values: Tuple[Tuple[tf.Tensor]] | None, use_cache: Optional[bool], output_attentions: bool, output_hidden_states: bool, return_dict: bool, training: bool = False, ) -> Union[TFBaseModelOutputWithPastAndCrossAttentions, Tuple[tf.Tensor]]: all_hidden_states = () if output_hidden_states else None all_attentions = () if output_attentions else None all_cross_attentions = () if output_attentions and self.config.add_cross_attention else None next_decoder_cache = () if use_cache else None for i, layer_module in enumerate(self.layer): if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) past_key_value = past_key_values[i] if past_key_values is not None else None layer_outputs = layer_module( hidden_states=hidden_states, attention_mask=attention_mask, head_mask=head_mask[i], encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, past_key_value=past_key_value, output_attentions=output_attentions, training=training, ) hidden_states = layer_outputs[0] if use_cache: next_decoder_cache += (layer_outputs[-1],) if output_attentions: all_attentions = all_attentions + (layer_outputs[1],) if self.config.add_cross_attention and encoder_hidden_states is not None: all_cross_attentions = all_cross_attentions + (layer_outputs[2],) # Add last layer if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) if not return_dict: return tuple( v for v in [hidden_states, all_hidden_states, all_attentions, all_cross_attentions] if v is not None ) return TFBaseModelOutputWithPastAndCrossAttentions( last_hidden_state=hidden_states, past_key_values=next_decoder_cache, hidden_states=all_hidden_states, attentions=all_attentions, cross_attentions=all_cross_attentions, ) @keras_serializable class TFRobertaPreLayerNormMainLayer(tf.keras.layers.Layer): config_class = RobertaPreLayerNormConfig def __init__(self, config, add_pooling_layer=True, **kwargs): super().__init__(**kwargs) self.config = config self.is_decoder = config.is_decoder self.num_hidden_layers = config.num_hidden_layers self.initializer_range = config.initializer_range self.output_attentions = config.output_attentions self.output_hidden_states = config.output_hidden_states self.return_dict = config.use_return_dict self.encoder = TFRobertaPreLayerNormEncoder(config, name="encoder") self.LayerNorm = tf.keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="LayerNorm") self.pooler = TFRobertaPreLayerNormPooler(config, name="pooler") if add_pooling_layer else None # The embeddings must be the last declaration in order to follow the weights order self.embeddings = TFRobertaPreLayerNormEmbeddings(config, name="embeddings") def get_input_embeddings(self) -> tf.keras.layers.Layer: return self.embeddings def set_input_embeddings(self, value: tf.Variable): self.embeddings.weight = value self.embeddings.vocab_size = shape_list(value)[0] def _prune_heads(self, heads_to_prune): """ Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base class PreTrainedModel """ raise NotImplementedError @unpack_inputs def call( self, input_ids: TFModelInputType | None = None, attention_mask: np.ndarray | tf.Tensor | None = None, token_type_ids: np.ndarray | tf.Tensor | None = None, position_ids: np.ndarray | tf.Tensor | None = None, head_mask: np.ndarray | tf.Tensor | None = None, inputs_embeds: np.ndarray | tf.Tensor | None = None, encoder_hidden_states: np.ndarray | tf.Tensor | None = None, encoder_attention_mask: np.ndarray | tf.Tensor | None = None, past_key_values: Optional[Tuple[Tuple[Union[np.ndarray, tf.Tensor]]]] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, training: bool = False, ) -> Union[TFBaseModelOutputWithPoolingAndCrossAttentions, Tuple[tf.Tensor]]: if not self.config.is_decoder: use_cache = False if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") elif input_ids is not None: input_shape = shape_list(input_ids) elif inputs_embeds is not None: input_shape = shape_list(inputs_embeds)[:-1] else: raise ValueError("You have to specify either input_ids or inputs_embeds") batch_size, seq_length = input_shape if past_key_values is None: past_key_values_length = 0 past_key_values = [None] * len(self.encoder.layer) else: past_key_values_length = shape_list(past_key_values[0][0])[-2] if attention_mask is None: attention_mask = tf.fill(dims=(batch_size, seq_length + past_key_values_length), value=1) if token_type_ids is None: token_type_ids = tf.fill(dims=input_shape, value=0) embedding_output = self.embeddings( input_ids=input_ids, position_ids=position_ids, token_type_ids=token_type_ids, inputs_embeds=inputs_embeds, past_key_values_length=past_key_values_length, training=training, ) # We create a 3D attention mask from a 2D tensor mask. # Sizes are [batch_size, 1, 1, to_seq_length] # So we can broadcast to [batch_size, num_heads, from_seq_length, to_seq_length] # this attention mask is more simple than the triangular masking of causal attention # used in OpenAI GPT, we just need to prepare the broadcast dimension here. attention_mask_shape = shape_list(attention_mask) mask_seq_length = seq_length + past_key_values_length # Provided a padding mask of dimensions [batch_size, mask_seq_length] # - if the model is a decoder, apply a causal mask in addition to the padding mask # - if the model is an encoder, make the mask broadcastable to [batch_size, num_heads, mask_seq_length, mask_seq_length] if self.is_decoder: seq_ids = tf.range(mask_seq_length) causal_mask = tf.less_equal( tf.tile(seq_ids[None, None, :], (batch_size, mask_seq_length, 1)), seq_ids[None, :, None], ) causal_mask = tf.cast(causal_mask, dtype=attention_mask.dtype) extended_attention_mask = causal_mask * attention_mask[:, None, :] attention_mask_shape = shape_list(extended_attention_mask) extended_attention_mask = tf.reshape( extended_attention_mask, (attention_mask_shape[0], 1, attention_mask_shape[1], attention_mask_shape[2]) ) if past_key_values[0] is not None: # attention_mask needs to be sliced to the shape `[batch_size, 1, from_seq_length - cached_seq_length, to_seq_length] extended_attention_mask = extended_attention_mask[:, :, -seq_length:, :] else: extended_attention_mask = tf.reshape( attention_mask, (attention_mask_shape[0], 1, 1, attention_mask_shape[1]) ) # Since attention_mask is 1.0 for positions we want to attend and 0.0 for # masked positions, this operation will create a tensor which is 0.0 for # positions we want to attend and -10000.0 for masked positions. # Since we are adding it to the raw scores before the softmax, this is # effectively the same as removing these entirely. extended_attention_mask = tf.cast(extended_attention_mask, dtype=embedding_output.dtype) one_cst = tf.constant(1.0, dtype=embedding_output.dtype) ten_thousand_cst = tf.constant(-10000.0, dtype=embedding_output.dtype) extended_attention_mask = tf.multiply(tf.subtract(one_cst, extended_attention_mask), ten_thousand_cst) if self.is_decoder and encoder_attention_mask is not None: # If a 2D ou 3D attention mask is provided for the cross-attention # we need to make broadcastable to [batch_size, num_heads, mask_seq_length, mask_seq_length] # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length] encoder_attention_mask = tf.cast(encoder_attention_mask, dtype=extended_attention_mask.dtype) num_dims_encoder_attention_mask = len(shape_list(encoder_attention_mask)) if num_dims_encoder_attention_mask == 3: encoder_extended_attention_mask = encoder_attention_mask[:, None, :, :] if num_dims_encoder_attention_mask == 2: encoder_extended_attention_mask = encoder_attention_mask[:, None, None, :] # T5 has a mask that can compare sequence ids, we can simulate this here with this transposition # Cf. https://github.com/tensorflow/mesh/blob/8d2465e9bc93129b913b5ccc6a59aa97abd96ec6/mesh_tensorflow/transformer/transformer_layers.py#L270 # encoder_extended_attention_mask = tf.math.equal(encoder_extended_attention_mask, # tf.transpose(encoder_extended_attention_mask, perm=(-1, -2))) encoder_extended_attention_mask = (1.0 - encoder_extended_attention_mask) * -10000.0 else: encoder_extended_attention_mask = None # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] if head_mask is not None: raise NotImplementedError else: head_mask = [None] * self.config.num_hidden_layers encoder_outputs = self.encoder( hidden_states=embedding_output, attention_mask=extended_attention_mask, head_mask=head_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_extended_attention_mask, past_key_values=past_key_values, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) sequence_output = encoder_outputs[0] sequence_output = self.LayerNorm(inputs=sequence_output) pooled_output = self.pooler(hidden_states=sequence_output) if self.pooler is not None else None if not return_dict: return ( sequence_output, pooled_output, ) + encoder_outputs[1:] return TFBaseModelOutputWithPoolingAndCrossAttentions( last_hidden_state=sequence_output, pooler_output=pooled_output, past_key_values=encoder_outputs.past_key_values, hidden_states=encoder_outputs.hidden_states, attentions=encoder_outputs.attentions, cross_attentions=encoder_outputs.cross_attentions, ) # Copied from transformers.models.roberta.modeling_tf_roberta.TFRobertaPreTrainedModel with Roberta->RobertaPreLayerNorm,roberta->roberta_prelayernorm class TFRobertaPreLayerNormPreTrainedModel(TFPreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = RobertaPreLayerNormConfig base_model_prefix = "roberta_prelayernorm" ROBERTA_PRELAYERNORM_START_DOCSTRING = r""" This model inherits from [`TFPreTrainedModel`]. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.) This model is also a [tf.keras.Model](https://www.tensorflow.org/api_docs/python/tf/keras/Model) subclass. Use it as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to general usage and behavior. <Tip> TensorFlow models and layers in `transformers` accept two formats as input: - having all inputs as keyword arguments (like PyTorch models), or - having all inputs as a list, tuple or dict in the first positional argument. The reason the second format is supported is that Keras methods prefer this format when passing inputs to models and layers. Because of this support, when using methods like `model.fit()` things should "just work" for you - just pass your inputs and labels in any format that `model.fit()` supports! If, however, you want to use the second format outside of Keras methods like `fit()` and `predict()`, such as when creating your own layers or models with the Keras `Functional` API, there are three possibilities you can use to gather all the input Tensors in the first positional argument: - a single Tensor with `input_ids` only and nothing else: `model(input_ids)` - a list of varying length with one or several input Tensors IN THE ORDER given in the docstring: `model([input_ids, attention_mask])` or `model([input_ids, attention_mask, token_type_ids])` - a dictionary with one or several input Tensors associated to the input names given in the docstring: `model({"input_ids": input_ids, "token_type_ids": token_type_ids})` Note that when creating models and layers with [subclassing](https://keras.io/guides/making_new_layers_and_models_via_subclassing/) then you don't need to worry about any of this, as you can just pass inputs like you would to any other Python function! </Tip> Parameters: config ([`RobertaPreLayerNormConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ ROBERTA_PRELAYERNORM_INPUTS_DOCSTRING = r""" Args: input_ids (`Numpy array` or `tf.Tensor` of shape `({0})`): Indices of input sequence tokens in the vocabulary. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.__call__`] and [`PreTrainedTokenizer.encode`] for details. [What are input IDs?](../glossary#input-ids) attention_mask (`Numpy array` or `tf.Tensor` of shape `({0})`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) token_type_ids (`Numpy array` or `tf.Tensor` of shape `({0})`, *optional*): Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0, 1]`: - 0 corresponds to a *sentence A* token, - 1 corresponds to a *sentence B* token. [What are token type IDs?](../glossary#token-type-ids) position_ids (`Numpy array` or `tf.Tensor` of shape `({0})`, *optional*): Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, config.max_position_embeddings - 1]`. [What are position IDs?](../glossary#position-ids) head_mask (`Numpy array` or `tf.Tensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. inputs_embeds (`tf.Tensor` of shape `({0}, hidden_size)`, *optional*): Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert `input_ids` indices into associated vectors than the model's internal embedding lookup matrix. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the config will be used instead. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the config will be used instead. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. This argument can be used in eager mode, in graph mode the value will always be set to True. training (`bool`, *optional*, defaults to `False`): Whether or not to use the model in training mode (some modules like dropout modules have different behaviors between training and evaluation). """ @add_start_docstrings( "The bare RoBERTa-PreLayerNorm Model transformer outputting raw hidden-states without any specific head on top.", ROBERTA_PRELAYERNORM_START_DOCSTRING, ) # Copied from transformers.models.roberta.modeling_tf_roberta.TFRobertaModel with ROBERTA->ROBERTA_PRELAYERNORM,Roberta->RobertaPreLayerNorm,roberta->roberta_prelayernorm class TFRobertaPreLayerNormModel(TFRobertaPreLayerNormPreTrainedModel): def __init__(self, config, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) self.roberta_prelayernorm = TFRobertaPreLayerNormMainLayer(config, name="roberta_prelayernorm") @unpack_inputs @add_start_docstrings_to_model_forward(ROBERTA_PRELAYERNORM_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=TFBaseModelOutputWithPoolingAndCrossAttentions, config_class=_CONFIG_FOR_DOC, ) def call( self, input_ids: TFModelInputType | None = None, attention_mask: np.ndarray | tf.Tensor | None = None, token_type_ids: np.ndarray | tf.Tensor | None = None, position_ids: np.ndarray | tf.Tensor | None = None, head_mask: np.ndarray | tf.Tensor | None = None, inputs_embeds: np.ndarray | tf.Tensor | None = None, encoder_hidden_states: np.ndarray | tf.Tensor | None = None, encoder_attention_mask: np.ndarray | tf.Tensor | None = None, past_key_values: Optional[Tuple[Tuple[Union[np.ndarray, tf.Tensor]]]] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, training: Optional[bool] = False, ) -> Union[Tuple, TFBaseModelOutputWithPoolingAndCrossAttentions]: r""" encoder_hidden_states (`tf.Tensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if the model is configured as a decoder. encoder_attention_mask (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. past_key_values (`Tuple[Tuple[tf.Tensor]]` of length `config.n_layers`) contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding. If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `decoder_input_ids` of shape `(batch_size, sequence_length)`. use_cache (`bool`, *optional*, defaults to `True`): If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see `past_key_values`). Set to `False` during training, `True` during generation """ outputs = self.roberta_prelayernorm( input_ids=input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, past_key_values=past_key_values, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) return outputs # Copied from transformers.models.roberta.modeling_tf_roberta.TFRobertaLMHead with Roberta->RobertaPreLayerNorm class TFRobertaPreLayerNormLMHead(tf.keras.layers.Layer): """RobertaPreLayerNorm Head for masked language modeling.""" def __init__(self, config, input_embeddings, **kwargs): super().__init__(**kwargs) self.config = config self.hidden_size = config.hidden_size self.dense = tf.keras.layers.Dense( config.hidden_size, kernel_initializer=get_initializer(config.initializer_range), name="dense" ) self.layer_norm = tf.keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="layer_norm") self.act = get_tf_activation("gelu") # The output weights are the same as the input embeddings, but there is # an output-only bias for each token. self.decoder = input_embeddings def build(self, input_shape): self.bias = self.add_weight(shape=(self.config.vocab_size,), initializer="zeros", trainable=True, name="bias") super().build(input_shape) def get_output_embeddings(self): return self.decoder def set_output_embeddings(self, value): self.decoder.weight = value self.decoder.vocab_size = shape_list(value)[0] def get_bias(self): return {"bias": self.bias} def set_bias(self, value): self.bias = value["bias"] self.config.vocab_size = shape_list(value["bias"])[0] def call(self, hidden_states): hidden_states = self.dense(hidden_states) hidden_states = self.act(hidden_states) hidden_states = self.layer_norm(hidden_states) # project back to size of vocabulary with bias seq_length = shape_list(tensor=hidden_states)[1] hidden_states = tf.reshape(tensor=hidden_states, shape=[-1, self.hidden_size]) hidden_states = tf.matmul(a=hidden_states, b=self.decoder.weight, transpose_b=True) hidden_states = tf.reshape(tensor=hidden_states, shape=[-1, seq_length, self.config.vocab_size]) hidden_states = tf.nn.bias_add(value=hidden_states, bias=self.bias) return hidden_states @add_start_docstrings( """RoBERTa-PreLayerNorm Model with a `language modeling` head on top.""", ROBERTA_PRELAYERNORM_START_DOCSTRING ) class TFRobertaPreLayerNormForMaskedLM(TFRobertaPreLayerNormPreTrainedModel, TFMaskedLanguageModelingLoss): # names with a '.' represents the authorized unexpected/missing layers when a TF model is loaded from a PT model _keys_to_ignore_on_load_unexpected = [r"pooler", r"lm_head.decoder.weight"] # Copied from transformers.models.roberta.modeling_tf_roberta.TFRobertaForMaskedLM.__init__ with ROBERTA->ROBERTA_PRELAYERNORM,Roberta->RobertaPreLayerNorm,roberta->roberta_prelayernorm def __init__(self, config, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) self.roberta_prelayernorm = TFRobertaPreLayerNormMainLayer( config, add_pooling_layer=False, name="roberta_prelayernorm" ) self.lm_head = TFRobertaPreLayerNormLMHead(config, self.roberta_prelayernorm.embeddings, name="lm_head") def get_lm_head(self): return self.lm_head def get_prefix_bias_name(self): warnings.warn("The method get_prefix_bias_name is deprecated. Please use `get_bias` instead.", FutureWarning) return self.name + "/" + self.lm_head.name @unpack_inputs @add_start_docstrings_to_model_forward(ROBERTA_PRELAYERNORM_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=TFMaskedLMOutput, config_class=_CONFIG_FOR_DOC, mask="<mask>", expected_output="' Paris'", expected_loss=0.69, ) # Copied from transformers.models.roberta.modeling_tf_roberta.TFRobertaForMaskedLM.call with ROBERTA->ROBERTA_PRELAYERNORM,Roberta->RobertaPreLayerNorm,roberta->roberta_prelayernorm def call( self, input_ids: TFModelInputType | None = None, attention_mask: np.ndarray | tf.Tensor | None = None, token_type_ids: np.ndarray | tf.Tensor | None = None, position_ids: np.ndarray | tf.Tensor | None = None, head_mask: np.ndarray | tf.Tensor | None = None, inputs_embeds: np.ndarray | tf.Tensor | None = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, labels: np.ndarray | tf.Tensor | None = None, training: Optional[bool] = False, ) -> Union[TFMaskedLMOutput, Tuple[tf.Tensor]]: r""" labels (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ..., config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]` """ outputs = self.roberta_prelayernorm( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) sequence_output = outputs[0] prediction_scores = self.lm_head(sequence_output) loss = None if labels is None else self.hf_compute_loss(labels, prediction_scores) if not return_dict: output = (prediction_scores,) + outputs[2:] return ((loss,) + output) if loss is not None else output return TFMaskedLMOutput( loss=loss, logits=prediction_scores, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) # Copied from transformers.models.roberta.modeling_tf_roberta.TFRobertaForCausalLM with ROBERTA->ROBERTA_PRELAYERNORM,Roberta->RobertaPreLayerNorm,roberta->roberta_prelayernorm class TFRobertaPreLayerNormForCausalLM(TFRobertaPreLayerNormPreTrainedModel, TFCausalLanguageModelingLoss): # names with a '.' represents the authorized unexpected/missing layers when a TF model is loaded from a PT model _keys_to_ignore_on_load_unexpected = [r"pooler", r"lm_head.decoder.weight"] def __init__(self, config: RobertaPreLayerNormConfig, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) if not config.is_decoder: logger.warning( "If you want to use `TFRobertaPreLayerNormLMHeadModel` as a standalone, add `is_decoder=True.`" ) self.roberta_prelayernorm = TFRobertaPreLayerNormMainLayer( config, add_pooling_layer=False, name="roberta_prelayernorm" ) self.lm_head = TFRobertaPreLayerNormLMHead( config, input_embeddings=self.roberta_prelayernorm.embeddings, name="lm_head" ) def get_lm_head(self): return self.lm_head def get_prefix_bias_name(self): warnings.warn("The method get_prefix_bias_name is deprecated. Please use `get_bias` instead.", FutureWarning) return self.name + "/" + self.lm_head.name # Copied from transformers.models.bert.modeling_tf_bert.TFBertLMHeadModel.prepare_inputs_for_generation def prepare_inputs_for_generation(self, input_ids, past_key_values=None, attention_mask=None, **model_kwargs): input_shape = input_ids.shape # if model is used as a decoder in encoder-decoder model, the decoder attention mask is created on the fly if attention_mask is None: attention_mask = tf.ones(input_shape) # cut decoder_input_ids if past is used if past_key_values is not None: input_ids = input_ids[:, -1:] return {"input_ids": input_ids, "attention_mask": attention_mask, "past_key_values": past_key_values} @unpack_inputs @add_start_docstrings_to_model_forward(ROBERTA_PRELAYERNORM_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=TFCausalLMOutputWithCrossAttentions, config_class=_CONFIG_FOR_DOC, ) def call( self, input_ids: TFModelInputType | None = None, attention_mask: np.ndarray | tf.Tensor | None = None, token_type_ids: np.ndarray | tf.Tensor | None = None, position_ids: np.ndarray | tf.Tensor | None = None, head_mask: np.ndarray | tf.Tensor | None = None, inputs_embeds: np.ndarray | tf.Tensor | None = None, encoder_hidden_states: np.ndarray | tf.Tensor | None = None, encoder_attention_mask: np.ndarray | tf.Tensor | None = None, past_key_values: Optional[Tuple[Tuple[Union[np.ndarray, tf.Tensor]]]] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, labels: np.ndarray | tf.Tensor | None = None, training: Optional[bool] = False, ) -> Union[TFCausalLMOutputWithCrossAttentions, Tuple[tf.Tensor]]: r""" encoder_hidden_states (`tf.Tensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if the model is configured as a decoder. encoder_attention_mask (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. past_key_values (`Tuple[Tuple[tf.Tensor]]` of length `config.n_layers`) contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding. If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `decoder_input_ids` of shape `(batch_size, sequence_length)`. use_cache (`bool`, *optional*, defaults to `True`): If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see `past_key_values`). Set to `False` during training, `True` during generation labels (`tf.Tensor` or `np.ndarray` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the cross entropy classification loss. Indices should be in `[0, ..., config.vocab_size - 1]`. """ outputs = self.roberta_prelayernorm( input_ids=input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, past_key_values=past_key_values, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) sequence_output = outputs[0] logits = self.lm_head(hidden_states=sequence_output, training=training) loss = None if labels is not None: # shift labels to the left and cut last logit token shifted_logits = logits[:, :-1] labels = labels[:, 1:] loss = self.hf_compute_loss(labels=labels, logits=shifted_logits) if not return_dict: output = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return TFCausalLMOutputWithCrossAttentions( loss=loss, logits=logits, past_key_values=outputs.past_key_values, hidden_states=outputs.hidden_states, attentions=outputs.attentions, cross_attentions=outputs.cross_attentions, ) # Copied from transformers.models.roberta.modeling_tf_roberta.TFRobertaClassificationHead with Roberta->RobertaPreLayerNorm class TFRobertaPreLayerNormClassificationHead(tf.keras.layers.Layer): """Head for sentence-level classification tasks.""" def __init__(self, config, **kwargs): super().__init__(**kwargs) self.dense = tf.keras.layers.Dense( config.hidden_size, kernel_initializer=get_initializer(config.initializer_range), activation="tanh", name="dense", ) classifier_dropout = ( config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob ) self.dropout = tf.keras.layers.Dropout(classifier_dropout) self.out_proj = tf.keras.layers.Dense( config.num_labels, kernel_initializer=get_initializer(config.initializer_range), name="out_proj" ) def call(self, features, training=False): x = features[:, 0, :] # take <s> token (equiv. to [CLS]) x = self.dropout(x, training=training) x = self.dense(x) x = self.dropout(x, training=training) x = self.out_proj(x) return x @add_start_docstrings( """ RoBERTa-PreLayerNorm Model transformer with a sequence classification/regression head on top (a linear layer on top of the pooled output) e.g. for GLUE tasks. """, ROBERTA_PRELAYERNORM_START_DOCSTRING, ) class TFRobertaPreLayerNormForSequenceClassification( TFRobertaPreLayerNormPreTrainedModel, TFSequenceClassificationLoss ): # names with a '.' represents the authorized unexpected/missing layers when a TF model is loaded from a PT model _keys_to_ignore_on_load_unexpected = [r"pooler", r"lm_head"] def __init__(self, config, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) self.num_labels = config.num_labels self.roberta_prelayernorm = TFRobertaPreLayerNormMainLayer( config, add_pooling_layer=False, name="roberta_prelayernorm" ) self.classifier = TFRobertaPreLayerNormClassificationHead(config, name="classifier") @unpack_inputs @add_start_docstrings_to_model_forward(ROBERTA_PRELAYERNORM_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=TFSequenceClassifierOutput, config_class=_CONFIG_FOR_DOC, ) # Copied from transformers.models.roberta.modeling_tf_roberta.TFRobertaForSequenceClassification.call with roberta->roberta_prelayernorm def call( self, input_ids: TFModelInputType | None = None, attention_mask: np.ndarray | tf.Tensor | None = None, token_type_ids: np.ndarray | tf.Tensor | None = None, position_ids: np.ndarray | tf.Tensor | None = None, head_mask: np.ndarray | tf.Tensor | None = None, inputs_embeds: np.ndarray | tf.Tensor | None = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, labels: np.ndarray | tf.Tensor | None = None, training: Optional[bool] = False, ) -> Union[TFSequenceClassifierOutput, Tuple[tf.Tensor]]: r""" labels (`tf.Tensor` of shape `(batch_size,)`, *optional*): Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If `config.num_labels > 1` a classification loss is computed (Cross-Entropy). """ outputs = self.roberta_prelayernorm( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) sequence_output = outputs[0] logits = self.classifier(sequence_output, training=training) loss = None if labels is None else self.hf_compute_loss(labels, logits) if not return_dict: output = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return TFSequenceClassifierOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) @add_start_docstrings( """ RobertaPreLayerNorm Model with a multiple choice classification head on top (a linear layer on top of the pooled output and a softmax) e.g. for RocStories/SWAG tasks. """, ROBERTA_PRELAYERNORM_START_DOCSTRING, ) # Copied from transformers.models.roberta.modeling_tf_roberta.TFRobertaForMultipleChoice with ROBERTA->ROBERTA_PRELAYERNORM,Roberta->RobertaPreLayerNorm,roberta->roberta_prelayernorm class TFRobertaPreLayerNormForMultipleChoice(TFRobertaPreLayerNormPreTrainedModel, TFMultipleChoiceLoss): # names with a '.' represents the authorized unexpected/missing layers when a TF model is loaded from a PT model _keys_to_ignore_on_load_unexpected = [r"lm_head"] _keys_to_ignore_on_load_missing = [r"dropout"] def __init__(self, config, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) self.roberta_prelayernorm = TFRobertaPreLayerNormMainLayer(config, name="roberta_prelayernorm") self.dropout = tf.keras.layers.Dropout(config.hidden_dropout_prob) self.classifier = tf.keras.layers.Dense( 1, kernel_initializer=get_initializer(config.initializer_range), name="classifier" ) @unpack_inputs @add_start_docstrings_to_model_forward( ROBERTA_PRELAYERNORM_INPUTS_DOCSTRING.format("batch_size, num_choices, sequence_length") ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=TFMultipleChoiceModelOutput, config_class=_CONFIG_FOR_DOC, ) def call( self, input_ids: TFModelInputType | None = None, attention_mask: np.ndarray | tf.Tensor | None = None, token_type_ids: np.ndarray | tf.Tensor | None = None, position_ids: np.ndarray | tf.Tensor | None = None, head_mask: np.ndarray | tf.Tensor | None = None, inputs_embeds: np.ndarray | tf.Tensor | None = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, labels: np.ndarray | tf.Tensor | None = None, training: Optional[bool] = False, ) -> Union[TFMultipleChoiceModelOutput, Tuple[tf.Tensor]]: r""" labels (`tf.Tensor` of shape `(batch_size,)`, *optional*): Labels for computing the multiple choice classification loss. Indices should be in `[0, ..., num_choices]` where `num_choices` is the size of the second dimension of the input tensors. (See `input_ids` above) """ if input_ids is not None: num_choices = shape_list(input_ids)[1] seq_length = shape_list(input_ids)[2] else: num_choices = shape_list(inputs_embeds)[1] seq_length = shape_list(inputs_embeds)[2] flat_input_ids = tf.reshape(input_ids, (-1, seq_length)) if input_ids is not None else None flat_attention_mask = tf.reshape(attention_mask, (-1, seq_length)) if attention_mask is not None else None flat_token_type_ids = tf.reshape(token_type_ids, (-1, seq_length)) if token_type_ids is not None else None flat_position_ids = tf.reshape(position_ids, (-1, seq_length)) if position_ids is not None else None outputs = self.roberta_prelayernorm( flat_input_ids, flat_attention_mask, flat_token_type_ids, flat_position_ids, head_mask, inputs_embeds, output_attentions, output_hidden_states, return_dict=return_dict, training=training, ) pooled_output = outputs[1] pooled_output = self.dropout(pooled_output, training=training) logits = self.classifier(pooled_output) reshaped_logits = tf.reshape(logits, (-1, num_choices)) loss = None if labels is None else self.hf_compute_loss(labels, reshaped_logits) if not return_dict: output = (reshaped_logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return TFMultipleChoiceModelOutput( loss=loss, logits=reshaped_logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) @add_start_docstrings( """ RoBERTa-PreLayerNorm Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for Named-Entity-Recognition (NER) tasks. """, ROBERTA_PRELAYERNORM_START_DOCSTRING, ) class TFRobertaPreLayerNormForTokenClassification(TFRobertaPreLayerNormPreTrainedModel, TFTokenClassificationLoss): # names with a '.' represents the authorized unexpected/missing layers when a TF model is loaded from a PT model _keys_to_ignore_on_load_unexpected = [r"pooler", r"lm_head"] _keys_to_ignore_on_load_missing = [r"dropout"] def __init__(self, config, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) self.num_labels = config.num_labels self.roberta_prelayernorm = TFRobertaPreLayerNormMainLayer( config, add_pooling_layer=False, name="roberta_prelayernorm" ) classifier_dropout = ( config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob ) self.dropout = tf.keras.layers.Dropout(classifier_dropout) self.classifier = tf.keras.layers.Dense( config.num_labels, kernel_initializer=get_initializer(config.initializer_range), name="classifier" ) @unpack_inputs @add_start_docstrings_to_model_forward(ROBERTA_PRELAYERNORM_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=TFTokenClassifierOutput, config_class=_CONFIG_FOR_DOC, ) # Copied from transformers.models.roberta.modeling_tf_roberta.TFRobertaForTokenClassification.call with roberta->roberta_prelayernorm def call( self, input_ids: TFModelInputType | None = None, attention_mask: np.ndarray | tf.Tensor | None = None, token_type_ids: np.ndarray | tf.Tensor | None = None, position_ids: np.ndarray | tf.Tensor | None = None, head_mask: np.ndarray | tf.Tensor | None = None, inputs_embeds: np.ndarray | tf.Tensor | None = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, labels: np.ndarray | tf.Tensor | None = None, training: Optional[bool] = False, ) -> Union[TFTokenClassifierOutput, Tuple[tf.Tensor]]: r""" labels (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`. """ outputs = self.roberta_prelayernorm( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) sequence_output = outputs[0] sequence_output = self.dropout(sequence_output, training=training) logits = self.classifier(sequence_output) loss = None if labels is None else self.hf_compute_loss(labels, logits) if not return_dict: output = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return TFTokenClassifierOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) @add_start_docstrings( """ RoBERTa-PreLayerNorm Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear layers on top of the hidden-states output to compute `span start logits` and `span end logits`). """, ROBERTA_PRELAYERNORM_START_DOCSTRING, ) class TFRobertaPreLayerNormForQuestionAnswering(TFRobertaPreLayerNormPreTrainedModel, TFQuestionAnsweringLoss): # names with a '.' represents the authorized unexpected/missing layers when a TF model is loaded from a PT model _keys_to_ignore_on_load_unexpected = [r"pooler", r"lm_head"] def __init__(self, config, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) self.num_labels = config.num_labels self.roberta_prelayernorm = TFRobertaPreLayerNormMainLayer( config, add_pooling_layer=False, name="roberta_prelayernorm" ) self.qa_outputs = tf.keras.layers.Dense( config.num_labels, kernel_initializer=get_initializer(config.initializer_range), name="qa_outputs" ) @unpack_inputs @add_start_docstrings_to_model_forward(ROBERTA_PRELAYERNORM_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=TFQuestionAnsweringModelOutput, config_class=_CONFIG_FOR_DOC, ) # Copied from transformers.models.roberta.modeling_tf_roberta.TFRobertaForQuestionAnswering.call with roberta->roberta_prelayernorm def call( self, input_ids: TFModelInputType | None = None, attention_mask: np.ndarray | tf.Tensor | None = None, token_type_ids: np.ndarray | tf.Tensor | None = None, position_ids: np.ndarray | tf.Tensor | None = None, head_mask: np.ndarray | tf.Tensor | None = None, inputs_embeds: np.ndarray | tf.Tensor | None = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, start_positions: np.ndarray | tf.Tensor | None = None, end_positions: np.ndarray | tf.Tensor | None = None, training: Optional[bool] = False, ) -> Union[TFQuestionAnsweringModelOutput, Tuple[tf.Tensor]]: r""" start_positions (`tf.Tensor` of shape `(batch_size,)`, *optional*): Labels for position (index) of the start of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence are not taken into account for computing the loss. end_positions (`tf.Tensor` of shape `(batch_size,)`, *optional*): Labels for position (index) of the end of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence are not taken into account for computing the loss. """ outputs = self.roberta_prelayernorm( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) sequence_output = outputs[0] logits = self.qa_outputs(sequence_output) start_logits, end_logits = tf.split(logits, 2, axis=-1) start_logits = tf.squeeze(start_logits, axis=-1) end_logits = tf.squeeze(end_logits, axis=-1) loss = None if start_positions is not None and end_positions is not None: labels = {"start_position": start_positions} labels["end_position"] = end_positions loss = self.hf_compute_loss(labels, (start_logits, end_logits)) if not return_dict: output = (start_logits, end_logits) + outputs[2:] return ((loss,) + output) if loss is not None else output return TFQuestionAnsweringModelOutput( loss=loss, start_logits=start_logits, end_logits=end_logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, )
0
hf_public_repos/transformers/src/transformers/models
hf_public_repos/transformers/src/transformers/models/roberta_prelayernorm/modeling_roberta_prelayernorm.py
# coding=utf-8 # Copyright 2022 The Google AI Language Team Authors and The HuggingFace Inc. team. # Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """PyTorch RoBERTa-PreLayerNorm model.""" import math from typing import List, Optional, Tuple, Union import torch import torch.utils.checkpoint from torch import nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACT2FN, gelu from ...modeling_outputs import ( BaseModelOutputWithPastAndCrossAttentions, BaseModelOutputWithPoolingAndCrossAttentions, CausalLMOutputWithCrossAttentions, MaskedLMOutput, MultipleChoiceModelOutput, QuestionAnsweringModelOutput, SequenceClassifierOutput, TokenClassifierOutput, ) from ...modeling_utils import PreTrainedModel from ...pytorch_utils import apply_chunking_to_forward, find_pruneable_heads_and_indices, prune_linear_layer from ...utils import ( add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings, ) from .configuration_roberta_prelayernorm import RobertaPreLayerNormConfig logger = logging.get_logger(__name__) _CHECKPOINT_FOR_DOC = "andreasmadsen/efficient_mlm_m0.40" _CONFIG_FOR_DOC = "RobertaPreLayerNormConfig" ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST = [ "andreasmadsen/efficient_mlm_m0.15", "andreasmadsen/efficient_mlm_m0.20", "andreasmadsen/efficient_mlm_m0.30", "andreasmadsen/efficient_mlm_m0.40", "andreasmadsen/efficient_mlm_m0.50", "andreasmadsen/efficient_mlm_m0.60", "andreasmadsen/efficient_mlm_m0.70", "andreasmadsen/efficient_mlm_m0.80", # See all RoBERTaWithPreLayerNorm models at https://huggingface.co/models?filter=roberta_with_prelayernorm ] # Copied from transformers.models.roberta.modeling_roberta.RobertaEmbeddings with Roberta->RobertaPreLayerNorm class RobertaPreLayerNormEmbeddings(nn.Module): """ Same as BertEmbeddings with a tiny tweak for positional embeddings indexing. """ # Copied from transformers.models.bert.modeling_bert.BertEmbeddings.__init__ def __init__(self, config): super().__init__() self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id) self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size) self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size) # self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load # any TensorFlow checkpoint file self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.dropout = nn.Dropout(config.hidden_dropout_prob) # position_ids (1, len position emb) is contiguous in memory and exported when serialized self.position_embedding_type = getattr(config, "position_embedding_type", "absolute") self.register_buffer( "position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)), persistent=False ) self.register_buffer( "token_type_ids", torch.zeros(self.position_ids.size(), dtype=torch.long), persistent=False ) # End copy self.padding_idx = config.pad_token_id self.position_embeddings = nn.Embedding( config.max_position_embeddings, config.hidden_size, padding_idx=self.padding_idx ) def forward( self, input_ids=None, token_type_ids=None, position_ids=None, inputs_embeds=None, past_key_values_length=0 ): if position_ids is None: if input_ids is not None: # Create the position ids from the input token ids. Any padded tokens remain padded. position_ids = create_position_ids_from_input_ids(input_ids, self.padding_idx, past_key_values_length) else: position_ids = self.create_position_ids_from_inputs_embeds(inputs_embeds) if input_ids is not None: input_shape = input_ids.size() else: input_shape = inputs_embeds.size()[:-1] seq_length = input_shape[1] # Setting the token_type_ids to the registered buffer in constructor where it is all zeros, which usually occurs # when its auto-generated, registered buffer helps users when tracing the model without passing token_type_ids, solves # issue #5664 if token_type_ids is None: if hasattr(self, "token_type_ids"): buffered_token_type_ids = self.token_type_ids[:, :seq_length] buffered_token_type_ids_expanded = buffered_token_type_ids.expand(input_shape[0], seq_length) token_type_ids = buffered_token_type_ids_expanded else: token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=self.position_ids.device) if inputs_embeds is None: inputs_embeds = self.word_embeddings(input_ids) token_type_embeddings = self.token_type_embeddings(token_type_ids) embeddings = inputs_embeds + token_type_embeddings if self.position_embedding_type == "absolute": position_embeddings = self.position_embeddings(position_ids) embeddings += position_embeddings embeddings = self.LayerNorm(embeddings) embeddings = self.dropout(embeddings) return embeddings def create_position_ids_from_inputs_embeds(self, inputs_embeds): """ We are provided embeddings directly. We cannot infer which are padded so just generate sequential position ids. Args: inputs_embeds: torch.Tensor Returns: torch.Tensor """ input_shape = inputs_embeds.size()[:-1] sequence_length = input_shape[1] position_ids = torch.arange( self.padding_idx + 1, sequence_length + self.padding_idx + 1, dtype=torch.long, device=inputs_embeds.device ) return position_ids.unsqueeze(0).expand(input_shape) # Copied from transformers.models.bert.modeling_bert.BertSelfAttention with Bert->RobertaPreLayerNorm class RobertaPreLayerNormSelfAttention(nn.Module): def __init__(self, config, position_embedding_type=None): super().__init__() if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"): raise ValueError( f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention " f"heads ({config.num_attention_heads})" ) self.num_attention_heads = config.num_attention_heads self.attention_head_size = int(config.hidden_size / config.num_attention_heads) self.all_head_size = self.num_attention_heads * self.attention_head_size self.query = nn.Linear(config.hidden_size, self.all_head_size) self.key = nn.Linear(config.hidden_size, self.all_head_size) self.value = nn.Linear(config.hidden_size, self.all_head_size) self.dropout = nn.Dropout(config.attention_probs_dropout_prob) self.position_embedding_type = position_embedding_type or getattr( config, "position_embedding_type", "absolute" ) if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query": self.max_position_embeddings = config.max_position_embeddings self.distance_embedding = nn.Embedding(2 * config.max_position_embeddings - 1, self.attention_head_size) self.is_decoder = config.is_decoder def transpose_for_scores(self, x: torch.Tensor) -> torch.Tensor: new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size) x = x.view(new_x_shape) return x.permute(0, 2, 1, 3) def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.FloatTensor] = None, head_mask: Optional[torch.FloatTensor] = None, encoder_hidden_states: Optional[torch.FloatTensor] = None, encoder_attention_mask: Optional[torch.FloatTensor] = None, past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, output_attentions: Optional[bool] = False, ) -> Tuple[torch.Tensor]: mixed_query_layer = self.query(hidden_states) # If this is instantiated as a cross-attention module, the keys # and values come from an encoder; the attention mask needs to be # such that the encoder's padding tokens are not attended to. is_cross_attention = encoder_hidden_states is not None if is_cross_attention and past_key_value is not None: # reuse k,v, cross_attentions key_layer = past_key_value[0] value_layer = past_key_value[1] attention_mask = encoder_attention_mask elif is_cross_attention: key_layer = self.transpose_for_scores(self.key(encoder_hidden_states)) value_layer = self.transpose_for_scores(self.value(encoder_hidden_states)) attention_mask = encoder_attention_mask elif past_key_value is not None: key_layer = self.transpose_for_scores(self.key(hidden_states)) value_layer = self.transpose_for_scores(self.value(hidden_states)) key_layer = torch.cat([past_key_value[0], key_layer], dim=2) value_layer = torch.cat([past_key_value[1], value_layer], dim=2) else: key_layer = self.transpose_for_scores(self.key(hidden_states)) value_layer = self.transpose_for_scores(self.value(hidden_states)) query_layer = self.transpose_for_scores(mixed_query_layer) use_cache = past_key_value is not None if self.is_decoder: # if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states. # Further calls to cross_attention layer can then reuse all cross-attention # key/value_states (first "if" case) # if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of # all previous decoder key/value_states. Further calls to uni-directional self-attention # can concat previous decoder key/value_states to current projected key/value_states (third "elif" case) # if encoder bi-directional self-attention `past_key_value` is always `None` past_key_value = (key_layer, value_layer) # Take the dot product between "query" and "key" to get the raw attention scores. attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2)) if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query": query_length, key_length = query_layer.shape[2], key_layer.shape[2] if use_cache: position_ids_l = torch.tensor(key_length - 1, dtype=torch.long, device=hidden_states.device).view( -1, 1 ) else: position_ids_l = torch.arange(query_length, dtype=torch.long, device=hidden_states.device).view(-1, 1) position_ids_r = torch.arange(key_length, dtype=torch.long, device=hidden_states.device).view(1, -1) distance = position_ids_l - position_ids_r positional_embedding = self.distance_embedding(distance + self.max_position_embeddings - 1) positional_embedding = positional_embedding.to(dtype=query_layer.dtype) # fp16 compatibility if self.position_embedding_type == "relative_key": relative_position_scores = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding) attention_scores = attention_scores + relative_position_scores elif self.position_embedding_type == "relative_key_query": relative_position_scores_query = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding) relative_position_scores_key = torch.einsum("bhrd,lrd->bhlr", key_layer, positional_embedding) attention_scores = attention_scores + relative_position_scores_query + relative_position_scores_key attention_scores = attention_scores / math.sqrt(self.attention_head_size) if attention_mask is not None: # Apply the attention mask is (precomputed for all layers in RobertaPreLayerNormModel forward() function) attention_scores = attention_scores + attention_mask # Normalize the attention scores to probabilities. attention_probs = nn.functional.softmax(attention_scores, dim=-1) # This is actually dropping out entire tokens to attend to, which might # seem a bit unusual, but is taken from the original Transformer paper. attention_probs = self.dropout(attention_probs) # Mask heads if we want to if head_mask is not None: attention_probs = attention_probs * head_mask context_layer = torch.matmul(attention_probs, value_layer) context_layer = context_layer.permute(0, 2, 1, 3).contiguous() new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,) context_layer = context_layer.view(new_context_layer_shape) outputs = (context_layer, attention_probs) if output_attentions else (context_layer,) if self.is_decoder: outputs = outputs + (past_key_value,) return outputs class RobertaPreLayerNormSelfOutput(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states) hidden_states = hidden_states + input_tensor return hidden_states class RobertaPreLayerNormAttention(nn.Module): def __init__(self, config, position_embedding_type=None): super().__init__() self.self = RobertaPreLayerNormSelfAttention(config, position_embedding_type=position_embedding_type) self.output = RobertaPreLayerNormSelfOutput(config) self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.pruned_heads = set() # Copied from transformers.models.bert.modeling_bert.BertAttention.prune_heads def prune_heads(self, heads): if len(heads) == 0: return heads, index = find_pruneable_heads_and_indices( heads, self.self.num_attention_heads, self.self.attention_head_size, self.pruned_heads ) # Prune linear layers self.self.query = prune_linear_layer(self.self.query, index) self.self.key = prune_linear_layer(self.self.key, index) self.self.value = prune_linear_layer(self.self.value, index) self.output.dense = prune_linear_layer(self.output.dense, index, dim=1) # Update hyper params and store pruned heads self.self.num_attention_heads = self.self.num_attention_heads - len(heads) self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads self.pruned_heads = self.pruned_heads.union(heads) def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.FloatTensor] = None, head_mask: Optional[torch.FloatTensor] = None, encoder_hidden_states: Optional[torch.FloatTensor] = None, encoder_attention_mask: Optional[torch.FloatTensor] = None, past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, output_attentions: Optional[bool] = False, ) -> Tuple[torch.Tensor]: hidden_states_pre_layer_norm = self.LayerNorm(hidden_states) self_outputs = self.self( hidden_states_pre_layer_norm, attention_mask, head_mask, encoder_hidden_states, encoder_attention_mask, past_key_value, output_attentions, ) attention_output = self.output(self_outputs[0], hidden_states) outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them return outputs class RobertaPreLayerNormIntermediate(nn.Module): def __init__(self, config): super().__init__() self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.dense = nn.Linear(config.hidden_size, config.intermediate_size) if isinstance(config.hidden_act, str): self.intermediate_act_fn = ACT2FN[config.hidden_act] else: self.intermediate_act_fn = config.hidden_act def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: hidden_states = self.LayerNorm(hidden_states) hidden_states = self.dense(hidden_states) hidden_states = self.intermediate_act_fn(hidden_states) return hidden_states class RobertaPreLayerNormOutput(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.intermediate_size, config.hidden_size) self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states) hidden_states = hidden_states + input_tensor return hidden_states # Copied from transformers.models.bert.modeling_bert.BertLayer with Bert->RobertaPreLayerNorm class RobertaPreLayerNormLayer(nn.Module): def __init__(self, config): super().__init__() self.chunk_size_feed_forward = config.chunk_size_feed_forward self.seq_len_dim = 1 self.attention = RobertaPreLayerNormAttention(config) self.is_decoder = config.is_decoder self.add_cross_attention = config.add_cross_attention if self.add_cross_attention: if not self.is_decoder: raise ValueError(f"{self} should be used as a decoder model if cross attention is added") self.crossattention = RobertaPreLayerNormAttention(config, position_embedding_type="absolute") self.intermediate = RobertaPreLayerNormIntermediate(config) self.output = RobertaPreLayerNormOutput(config) def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.FloatTensor] = None, head_mask: Optional[torch.FloatTensor] = None, encoder_hidden_states: Optional[torch.FloatTensor] = None, encoder_attention_mask: Optional[torch.FloatTensor] = None, past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, output_attentions: Optional[bool] = False, ) -> Tuple[torch.Tensor]: # decoder uni-directional self-attention cached key/values tuple is at positions 1,2 self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None self_attention_outputs = self.attention( hidden_states, attention_mask, head_mask, output_attentions=output_attentions, past_key_value=self_attn_past_key_value, ) attention_output = self_attention_outputs[0] # if decoder, the last output is tuple of self-attn cache if self.is_decoder: outputs = self_attention_outputs[1:-1] present_key_value = self_attention_outputs[-1] else: outputs = self_attention_outputs[1:] # add self attentions if we output attention weights cross_attn_present_key_value = None if self.is_decoder and encoder_hidden_states is not None: if not hasattr(self, "crossattention"): raise ValueError( f"If `encoder_hidden_states` are passed, {self} has to be instantiated with cross-attention layers" " by setting `config.add_cross_attention=True`" ) # cross_attn cached key/values tuple is at positions 3,4 of past_key_value tuple cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None cross_attention_outputs = self.crossattention( attention_output, attention_mask, head_mask, encoder_hidden_states, encoder_attention_mask, cross_attn_past_key_value, output_attentions, ) attention_output = cross_attention_outputs[0] outputs = outputs + cross_attention_outputs[1:-1] # add cross attentions if we output attention weights # add cross-attn cache to positions 3,4 of present_key_value tuple cross_attn_present_key_value = cross_attention_outputs[-1] present_key_value = present_key_value + cross_attn_present_key_value layer_output = apply_chunking_to_forward( self.feed_forward_chunk, self.chunk_size_feed_forward, self.seq_len_dim, attention_output ) outputs = (layer_output,) + outputs # if decoder, return the attn key/values as the last output if self.is_decoder: outputs = outputs + (present_key_value,) return outputs def feed_forward_chunk(self, attention_output): intermediate_output = self.intermediate(attention_output) layer_output = self.output(intermediate_output, attention_output) return layer_output # Copied from transformers.models.bert.modeling_bert.BertEncoder with Bert->RobertaPreLayerNorm class RobertaPreLayerNormEncoder(nn.Module): def __init__(self, config): super().__init__() self.config = config self.layer = nn.ModuleList([RobertaPreLayerNormLayer(config) for _ in range(config.num_hidden_layers)]) self.gradient_checkpointing = False def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.FloatTensor] = None, head_mask: Optional[torch.FloatTensor] = None, encoder_hidden_states: Optional[torch.FloatTensor] = None, encoder_attention_mask: Optional[torch.FloatTensor] = None, past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = False, output_hidden_states: Optional[bool] = False, return_dict: Optional[bool] = True, ) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPastAndCrossAttentions]: all_hidden_states = () if output_hidden_states else None all_self_attentions = () if output_attentions else None all_cross_attentions = () if output_attentions and self.config.add_cross_attention else None if self.gradient_checkpointing and self.training: if use_cache: logger.warning_once( "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..." ) use_cache = False next_decoder_cache = () if use_cache else None for i, layer_module in enumerate(self.layer): if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) layer_head_mask = head_mask[i] if head_mask is not None else None past_key_value = past_key_values[i] if past_key_values is not None else None if self.gradient_checkpointing and self.training: def create_custom_forward(module): def custom_forward(*inputs): return module(*inputs, past_key_value, output_attentions) return custom_forward layer_outputs = torch.utils.checkpoint.checkpoint( create_custom_forward(layer_module), hidden_states, attention_mask, layer_head_mask, encoder_hidden_states, encoder_attention_mask, ) else: layer_outputs = layer_module( hidden_states, attention_mask, layer_head_mask, encoder_hidden_states, encoder_attention_mask, past_key_value, output_attentions, ) hidden_states = layer_outputs[0] if use_cache: next_decoder_cache += (layer_outputs[-1],) if output_attentions: all_self_attentions = all_self_attentions + (layer_outputs[1],) if self.config.add_cross_attention: all_cross_attentions = all_cross_attentions + (layer_outputs[2],) if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) if not return_dict: return tuple( v for v in [ hidden_states, next_decoder_cache, all_hidden_states, all_self_attentions, all_cross_attentions, ] if v is not None ) return BaseModelOutputWithPastAndCrossAttentions( last_hidden_state=hidden_states, past_key_values=next_decoder_cache, hidden_states=all_hidden_states, attentions=all_self_attentions, cross_attentions=all_cross_attentions, ) # Copied from transformers.models.bert.modeling_bert.BertPooler class RobertaPreLayerNormPooler(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) self.activation = nn.Tanh() def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: # We "pool" the model by simply taking the hidden state corresponding # to the first token. first_token_tensor = hidden_states[:, 0] pooled_output = self.dense(first_token_tensor) pooled_output = self.activation(pooled_output) return pooled_output # Copied from transformers.models.roberta.modeling_roberta.RobertaPreTrainedModel with Roberta->RobertaPreLayerNorm,roberta->roberta_prelayernorm class RobertaPreLayerNormPreTrainedModel(PreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = RobertaPreLayerNormConfig base_model_prefix = "roberta_prelayernorm" supports_gradient_checkpointing = True _no_split_modules = [] # Copied from transformers.models.bert.modeling_bert.BertPreTrainedModel._init_weights def _init_weights(self, module): """Initialize the weights""" if isinstance(module, nn.Linear): # Slightly different from the TF version which uses truncated_normal for initialization # cf https://github.com/pytorch/pytorch/pull/5617 module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.Embedding): module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if module.padding_idx is not None: module.weight.data[module.padding_idx].zero_() elif isinstance(module, nn.LayerNorm): module.bias.data.zero_() module.weight.data.fill_(1.0) def _set_gradient_checkpointing(self, module, value=False): if isinstance(module, RobertaPreLayerNormEncoder): module.gradient_checkpointing = value ROBERTA_PRELAYERNORM_START_DOCSTRING = r""" This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.) This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`RobertaPreLayerNormConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ ROBERTA_PRELAYERNORM_INPUTS_DOCSTRING = r""" Args: input_ids (`torch.LongTensor` of shape `({0})`): Indices of input sequence tokens in the vocabulary. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) token_type_ids (`torch.LongTensor` of shape `({0})`, *optional*): Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0,1]`: - 0 corresponds to a *sentence A* token, - 1 corresponds to a *sentence B* token. This parameter can only be used when the model is initialized with `type_vocab_size` parameter with value >= 2. All the value in this tensor should be always < type_vocab_size. [What are token type IDs?](../glossary#token-type-ids) position_ids (`torch.LongTensor` of shape `({0})`, *optional*): Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, config.max_position_embeddings - 1]`. [What are position IDs?](../glossary#position-ids) head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. inputs_embeds (`torch.FloatTensor` of shape `({0}, hidden_size)`, *optional*): Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert `input_ids` indices into associated vectors than the model's internal embedding lookup matrix. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ @add_start_docstrings( "The bare RoBERTa-PreLayerNorm Model transformer outputting raw hidden-states without any specific head on top.", ROBERTA_PRELAYERNORM_START_DOCSTRING, ) class RobertaPreLayerNormModel(RobertaPreLayerNormPreTrainedModel): """ The model can behave as an encoder (with only self-attention) as well as a decoder, in which case a layer of cross-attention is added between the self-attention layers, following the architecture described in *Attention is all you need*_ by Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser and Illia Polosukhin. To behave as an decoder the model needs to be initialized with the `is_decoder` argument of the configuration set to `True`. To be used in a Seq2Seq model, the model needs to initialized with both `is_decoder` argument and `add_cross_attention` set to `True`; an `encoder_hidden_states` is then expected as an input to the forward pass. .. _*Attention is all you need*: https://arxiv.org/abs/1706.03762 """ def __init__(self, config, add_pooling_layer=True): super().__init__(config) self.config = config self.embeddings = RobertaPreLayerNormEmbeddings(config) self.encoder = RobertaPreLayerNormEncoder(config) self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.pooler = RobertaPreLayerNormPooler(config) if add_pooling_layer else None # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.embeddings.word_embeddings def set_input_embeddings(self, value): self.embeddings.word_embeddings = value def _prune_heads(self, heads_to_prune): """ Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base class PreTrainedModel """ for layer, heads in heads_to_prune.items(): self.encoder.layer[layer].attention.prune_heads(heads) @add_start_docstrings_to_model_forward(ROBERTA_PRELAYERNORM_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=BaseModelOutputWithPoolingAndCrossAttentions, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, token_type_ids: Optional[torch.Tensor] = None, position_ids: Optional[torch.Tensor] = None, head_mask: Optional[torch.Tensor] = None, inputs_embeds: Optional[torch.Tensor] = None, encoder_hidden_states: Optional[torch.Tensor] = None, encoder_attention_mask: Optional[torch.Tensor] = None, past_key_values: Optional[List[torch.FloatTensor]] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPoolingAndCrossAttentions]: r""" encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if the model is configured as a decoder. encoder_attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`): Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding. If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `decoder_input_ids` of shape `(batch_size, sequence_length)`. use_cache (`bool`, *optional*): If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see `past_key_values`). """ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict if self.config.is_decoder: use_cache = use_cache if use_cache is not None else self.config.use_cache else: use_cache = False if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") elif input_ids is not None: input_shape = input_ids.size() elif inputs_embeds is not None: input_shape = inputs_embeds.size()[:-1] else: raise ValueError("You have to specify either input_ids or inputs_embeds") batch_size, seq_length = input_shape device = input_ids.device if input_ids is not None else inputs_embeds.device # past_key_values_length past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0 if attention_mask is None: attention_mask = torch.ones(((batch_size, seq_length + past_key_values_length)), device=device) if token_type_ids is None: if hasattr(self.embeddings, "token_type_ids"): buffered_token_type_ids = self.embeddings.token_type_ids[:, :seq_length] buffered_token_type_ids_expanded = buffered_token_type_ids.expand(batch_size, seq_length) token_type_ids = buffered_token_type_ids_expanded else: token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device) # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] # ourselves in which case we just need to make it broadcastable to all heads. extended_attention_mask: torch.Tensor = self.get_extended_attention_mask(attention_mask, input_shape) # If a 2D or 3D attention mask is provided for the cross-attention # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length] if self.config.is_decoder and encoder_hidden_states is not None: encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size() encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length) if encoder_attention_mask is None: encoder_attention_mask = torch.ones(encoder_hidden_shape, device=device) encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask) else: encoder_extended_attention_mask = None # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers) embedding_output = self.embeddings( input_ids=input_ids, position_ids=position_ids, token_type_ids=token_type_ids, inputs_embeds=inputs_embeds, past_key_values_length=past_key_values_length, ) encoder_outputs = self.encoder( embedding_output, attention_mask=extended_attention_mask, head_mask=head_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_extended_attention_mask, past_key_values=past_key_values, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = encoder_outputs[0] sequence_output = self.LayerNorm(sequence_output) pooled_output = self.pooler(sequence_output) if self.pooler is not None else None if not return_dict: return (sequence_output, pooled_output) + encoder_outputs[1:] return BaseModelOutputWithPoolingAndCrossAttentions( last_hidden_state=sequence_output, pooler_output=pooled_output, past_key_values=encoder_outputs.past_key_values, hidden_states=encoder_outputs.hidden_states, attentions=encoder_outputs.attentions, cross_attentions=encoder_outputs.cross_attentions, ) @add_start_docstrings( """RoBERTa-PreLayerNorm Model with a `language modeling` head on top for CLM fine-tuning.""", ROBERTA_PRELAYERNORM_START_DOCSTRING, ) # Copied from transformers.models.roberta.modeling_roberta.RobertaForCausalLM with roberta-base->andreasmadsen/efficient_mlm_m0.40,ROBERTA->ROBERTA_PRELAYERNORM,Roberta->RobertaPreLayerNorm,roberta->roberta_prelayernorm, RobertaPreLayerNormTokenizer->RobertaTokenizer class RobertaPreLayerNormForCausalLM(RobertaPreLayerNormPreTrainedModel): _tied_weights_keys = ["lm_head.decoder.weight", "lm_head.decoder.bias"] def __init__(self, config): super().__init__(config) if not config.is_decoder: logger.warning( "If you want to use `RobertaPreLayerNormLMHeadModel` as a standalone, add `is_decoder=True.`" ) self.roberta_prelayernorm = RobertaPreLayerNormModel(config, add_pooling_layer=False) self.lm_head = RobertaPreLayerNormLMHead(config) # Initialize weights and apply final processing self.post_init() def get_output_embeddings(self): return self.lm_head.decoder def set_output_embeddings(self, new_embeddings): self.lm_head.decoder = new_embeddings @add_start_docstrings_to_model_forward(ROBERTA_PRELAYERNORM_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @replace_return_docstrings(output_type=CausalLMOutputWithCrossAttentions, config_class=_CONFIG_FOR_DOC) def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.FloatTensor] = None, token_type_ids: Optional[torch.LongTensor] = None, position_ids: Optional[torch.LongTensor] = None, head_mask: Optional[torch.FloatTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, encoder_hidden_states: Optional[torch.FloatTensor] = None, encoder_attention_mask: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, past_key_values: Tuple[Tuple[torch.FloatTensor]] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple[torch.Tensor], CausalLMOutputWithCrossAttentions]: r""" encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if the model is configured as a decoder. encoder_attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the left-to-right language modeling loss (next word prediction). Indices should be in `[-100, 0, ..., config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]` past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`): Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding. If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `decoder_input_ids` of shape `(batch_size, sequence_length)`. use_cache (`bool`, *optional*): If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see `past_key_values`). Returns: Example: ```python >>> from transformers import AutoTokenizer, RobertaPreLayerNormForCausalLM, AutoConfig >>> import torch >>> tokenizer = AutoTokenizer.from_pretrained("andreasmadsen/efficient_mlm_m0.40") >>> config = AutoConfig.from_pretrained("andreasmadsen/efficient_mlm_m0.40") >>> config.is_decoder = True >>> model = RobertaPreLayerNormForCausalLM.from_pretrained("andreasmadsen/efficient_mlm_m0.40", config=config) >>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt") >>> outputs = model(**inputs) >>> prediction_logits = outputs.logits ```""" return_dict = return_dict if return_dict is not None else self.config.use_return_dict if labels is not None: use_cache = False outputs = self.roberta_prelayernorm( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, past_key_values=past_key_values, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = outputs[0] prediction_scores = self.lm_head(sequence_output) lm_loss = None if labels is not None: # move labels to correct device to enable model parallelism labels = labels.to(prediction_scores.device) # we are doing next-token prediction; shift prediction scores and input ids by one shifted_prediction_scores = prediction_scores[:, :-1, :].contiguous() labels = labels[:, 1:].contiguous() loss_fct = CrossEntropyLoss() lm_loss = loss_fct(shifted_prediction_scores.view(-1, self.config.vocab_size), labels.view(-1)) if not return_dict: output = (prediction_scores,) + outputs[2:] return ((lm_loss,) + output) if lm_loss is not None else output return CausalLMOutputWithCrossAttentions( loss=lm_loss, logits=prediction_scores, past_key_values=outputs.past_key_values, hidden_states=outputs.hidden_states, attentions=outputs.attentions, cross_attentions=outputs.cross_attentions, ) def prepare_inputs_for_generation(self, input_ids, past_key_values=None, attention_mask=None, **model_kwargs): input_shape = input_ids.shape # if model is used as a decoder in encoder-decoder model, the decoder attention mask is created on the fly if attention_mask is None: attention_mask = input_ids.new_ones(input_shape) # cut decoder_input_ids if past is used if past_key_values is not None: input_ids = input_ids[:, -1:] return {"input_ids": input_ids, "attention_mask": attention_mask, "past_key_values": past_key_values} def _reorder_cache(self, past_key_values, beam_idx): reordered_past = () for layer_past in past_key_values: reordered_past += (tuple(past_state.index_select(0, beam_idx) for past_state in layer_past),) return reordered_past @add_start_docstrings( """RoBERTa-PreLayerNorm Model with a `language modeling` head on top.""", ROBERTA_PRELAYERNORM_START_DOCSTRING ) class RobertaPreLayerNormForMaskedLM(RobertaPreLayerNormPreTrainedModel): _tied_weights_keys = ["lm_head.decoder.weight", "lm_head.decoder.bias"] # Copied from transformers.models.roberta.modeling_roberta.RobertaForMaskedLM.__init__ with ROBERTA->ROBERTA_PRELAYERNORM,Roberta->RobertaPreLayerNorm,roberta->roberta_prelayernorm def __init__(self, config): super().__init__(config) if config.is_decoder: logger.warning( "If you want to use `RobertaPreLayerNormForMaskedLM` make sure `config.is_decoder=False` for " "bi-directional self-attention." ) self.roberta_prelayernorm = RobertaPreLayerNormModel(config, add_pooling_layer=False) self.lm_head = RobertaPreLayerNormLMHead(config) # Initialize weights and apply final processing self.post_init() def get_output_embeddings(self): return self.lm_head.decoder def set_output_embeddings(self, new_embeddings): self.lm_head.decoder = new_embeddings @add_start_docstrings_to_model_forward(ROBERTA_PRELAYERNORM_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=MaskedLMOutput, config_class=_CONFIG_FOR_DOC, mask="<mask>", expected_output="' Paris'", expected_loss=0.69, ) # Copied from transformers.models.roberta.modeling_roberta.RobertaForMaskedLM.forward with ROBERTA->ROBERTA_PRELAYERNORM,Roberta->RobertaPreLayerNorm,roberta->roberta_prelayernorm def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.FloatTensor] = None, token_type_ids: Optional[torch.LongTensor] = None, position_ids: Optional[torch.LongTensor] = None, head_mask: Optional[torch.FloatTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, encoder_hidden_states: Optional[torch.FloatTensor] = None, encoder_attention_mask: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple[torch.Tensor], MaskedLMOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ..., config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]` kwargs (`Dict[str, any]`, optional, defaults to *{}*): Used to hide legacy arguments that have been deprecated. """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.roberta_prelayernorm( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = outputs[0] prediction_scores = self.lm_head(sequence_output) masked_lm_loss = None if labels is not None: # move labels to correct device to enable model parallelism labels = labels.to(prediction_scores.device) loss_fct = CrossEntropyLoss() masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), labels.view(-1)) if not return_dict: output = (prediction_scores,) + outputs[2:] return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output return MaskedLMOutput( loss=masked_lm_loss, logits=prediction_scores, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) # Copied from transformers.models.roberta.modeling_roberta.RobertaLMHead with Roberta->RobertaPreLayerNorm class RobertaPreLayerNormLMHead(nn.Module): """RobertaPreLayerNorm Head for masked language modeling.""" def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) self.layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.decoder = nn.Linear(config.hidden_size, config.vocab_size) self.bias = nn.Parameter(torch.zeros(config.vocab_size)) self.decoder.bias = self.bias def forward(self, features, **kwargs): x = self.dense(features) x = gelu(x) x = self.layer_norm(x) # project back to size of vocabulary with bias x = self.decoder(x) return x def _tie_weights(self): # To tie those two weights if they get disconnected (on TPU or when the bias is resized) # For accelerate compatibility and to not break backward compatibility if self.decoder.bias.device.type == "meta": self.decoder.bias = self.bias else: self.bias = self.decoder.bias @add_start_docstrings( """ RoBERTa-PreLayerNorm Model transformer with a sequence classification/regression head on top (a linear layer on top of the pooled output) e.g. for GLUE tasks. """, ROBERTA_PRELAYERNORM_START_DOCSTRING, ) class RobertaPreLayerNormForSequenceClassification(RobertaPreLayerNormPreTrainedModel): def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.config = config self.roberta_prelayernorm = RobertaPreLayerNormModel(config, add_pooling_layer=False) self.classifier = RobertaPreLayerNormClassificationHead(config) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(ROBERTA_PRELAYERNORM_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=SequenceClassifierOutput, config_class=_CONFIG_FOR_DOC, ) # Copied from transformers.models.roberta.modeling_roberta.RobertaForSequenceClassification.forward with roberta->roberta_prelayernorm def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.FloatTensor] = None, token_type_ids: Optional[torch.LongTensor] = None, position_ids: Optional[torch.LongTensor] = None, head_mask: Optional[torch.FloatTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple[torch.Tensor], SequenceClassifierOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If `config.num_labels > 1` a classification loss is computed (Cross-Entropy). """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.roberta_prelayernorm( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = outputs[0] logits = self.classifier(sequence_output) loss = None if labels is not None: # move labels to correct device to enable model parallelism labels = labels.to(logits.device) if self.config.problem_type is None: if self.num_labels == 1: self.config.problem_type = "regression" elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): self.config.problem_type = "single_label_classification" else: self.config.problem_type = "multi_label_classification" if self.config.problem_type == "regression": loss_fct = MSELoss() if self.num_labels == 1: loss = loss_fct(logits.squeeze(), labels.squeeze()) else: loss = loss_fct(logits, labels) elif self.config.problem_type == "single_label_classification": loss_fct = CrossEntropyLoss() loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) elif self.config.problem_type == "multi_label_classification": loss_fct = BCEWithLogitsLoss() loss = loss_fct(logits, labels) if not return_dict: output = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return SequenceClassifierOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) @add_start_docstrings( """ RobertaPreLayerNorm Model with a multiple choice classification head on top (a linear layer on top of the pooled output and a softmax) e.g. for RocStories/SWAG tasks. """, ROBERTA_PRELAYERNORM_START_DOCSTRING, ) # Copied from transformers.models.roberta.modeling_roberta.RobertaForMultipleChoice with ROBERTA->ROBERTA_PRELAYERNORM,Roberta->RobertaPreLayerNorm,roberta->roberta_prelayernorm class RobertaPreLayerNormForMultipleChoice(RobertaPreLayerNormPreTrainedModel): def __init__(self, config): super().__init__(config) self.roberta_prelayernorm = RobertaPreLayerNormModel(config) self.dropout = nn.Dropout(config.hidden_dropout_prob) self.classifier = nn.Linear(config.hidden_size, 1) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward( ROBERTA_PRELAYERNORM_INPUTS_DOCSTRING.format("batch_size, num_choices, sequence_length") ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=MultipleChoiceModelOutput, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids: Optional[torch.LongTensor] = None, token_type_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, position_ids: Optional[torch.LongTensor] = None, head_mask: Optional[torch.FloatTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple[torch.Tensor], MultipleChoiceModelOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the multiple choice classification loss. Indices should be in `[0, ..., num_choices-1]` where `num_choices` is the size of the second dimension of the input tensors. (See `input_ids` above) """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict num_choices = input_ids.shape[1] if input_ids is not None else inputs_embeds.shape[1] flat_input_ids = input_ids.view(-1, input_ids.size(-1)) if input_ids is not None else None flat_position_ids = position_ids.view(-1, position_ids.size(-1)) if position_ids is not None else None flat_token_type_ids = token_type_ids.view(-1, token_type_ids.size(-1)) if token_type_ids is not None else None flat_attention_mask = attention_mask.view(-1, attention_mask.size(-1)) if attention_mask is not None else None flat_inputs_embeds = ( inputs_embeds.view(-1, inputs_embeds.size(-2), inputs_embeds.size(-1)) if inputs_embeds is not None else None ) outputs = self.roberta_prelayernorm( flat_input_ids, position_ids=flat_position_ids, token_type_ids=flat_token_type_ids, attention_mask=flat_attention_mask, head_mask=head_mask, inputs_embeds=flat_inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) pooled_output = outputs[1] pooled_output = self.dropout(pooled_output) logits = self.classifier(pooled_output) reshaped_logits = logits.view(-1, num_choices) loss = None if labels is not None: # move labels to correct device to enable model parallelism labels = labels.to(reshaped_logits.device) loss_fct = CrossEntropyLoss() loss = loss_fct(reshaped_logits, labels) if not return_dict: output = (reshaped_logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return MultipleChoiceModelOutput( loss=loss, logits=reshaped_logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) @add_start_docstrings( """ RobertaPreLayerNorm Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for Named-Entity-Recognition (NER) tasks. """, ROBERTA_PRELAYERNORM_START_DOCSTRING, ) class RobertaPreLayerNormForTokenClassification(RobertaPreLayerNormPreTrainedModel): def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.roberta_prelayernorm = RobertaPreLayerNormModel(config, add_pooling_layer=False) classifier_dropout = ( config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob ) self.dropout = nn.Dropout(classifier_dropout) self.classifier = nn.Linear(config.hidden_size, config.num_labels) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(ROBERTA_PRELAYERNORM_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=TokenClassifierOutput, config_class=_CONFIG_FOR_DOC, ) # Copied from transformers.models.roberta.modeling_roberta.RobertaForTokenClassification.forward with roberta->roberta_prelayernorm def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.FloatTensor] = None, token_type_ids: Optional[torch.LongTensor] = None, position_ids: Optional[torch.LongTensor] = None, head_mask: Optional[torch.FloatTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple[torch.Tensor], TokenClassifierOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`. """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.roberta_prelayernorm( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = outputs[0] sequence_output = self.dropout(sequence_output) logits = self.classifier(sequence_output) loss = None if labels is not None: # move labels to correct device to enable model parallelism labels = labels.to(logits.device) loss_fct = CrossEntropyLoss() loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) if not return_dict: output = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return TokenClassifierOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) # Copied from transformers.models.roberta.modeling_roberta.RobertaClassificationHead with Roberta->RobertaPreLayerNorm class RobertaPreLayerNormClassificationHead(nn.Module): """Head for sentence-level classification tasks.""" def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) classifier_dropout = ( config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob ) self.dropout = nn.Dropout(classifier_dropout) self.out_proj = nn.Linear(config.hidden_size, config.num_labels) def forward(self, features, **kwargs): x = features[:, 0, :] # take <s> token (equiv. to [CLS]) x = self.dropout(x) x = self.dense(x) x = torch.tanh(x) x = self.dropout(x) x = self.out_proj(x) return x @add_start_docstrings( """ RobertaPreLayerNorm Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear layers on top of the hidden-states output to compute `span start logits` and `span end logits`). """, ROBERTA_PRELAYERNORM_START_DOCSTRING, ) class RobertaPreLayerNormForQuestionAnswering(RobertaPreLayerNormPreTrainedModel): def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.roberta_prelayernorm = RobertaPreLayerNormModel(config, add_pooling_layer=False) self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(ROBERTA_PRELAYERNORM_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=QuestionAnsweringModelOutput, config_class=_CONFIG_FOR_DOC, ) # Copied from transformers.models.roberta.modeling_roberta.RobertaForQuestionAnswering.forward with roberta->roberta_prelayernorm def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.FloatTensor] = None, token_type_ids: Optional[torch.LongTensor] = None, position_ids: Optional[torch.LongTensor] = None, head_mask: Optional[torch.FloatTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, start_positions: Optional[torch.LongTensor] = None, end_positions: Optional[torch.LongTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple[torch.Tensor], QuestionAnsweringModelOutput]: r""" start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for position (index) of the start of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence are not taken into account for computing the loss. end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for position (index) of the end of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence are not taken into account for computing the loss. """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.roberta_prelayernorm( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = outputs[0] logits = self.qa_outputs(sequence_output) start_logits, end_logits = logits.split(1, dim=-1) start_logits = start_logits.squeeze(-1).contiguous() end_logits = end_logits.squeeze(-1).contiguous() total_loss = None if start_positions is not None and end_positions is not None: # If we are on multi-GPU, split add a dimension if len(start_positions.size()) > 1: start_positions = start_positions.squeeze(-1) if len(end_positions.size()) > 1: end_positions = end_positions.squeeze(-1) # sometimes the start/end positions are outside our model inputs, we ignore these terms ignored_index = start_logits.size(1) start_positions = start_positions.clamp(0, ignored_index) end_positions = end_positions.clamp(0, ignored_index) loss_fct = CrossEntropyLoss(ignore_index=ignored_index) start_loss = loss_fct(start_logits, start_positions) end_loss = loss_fct(end_logits, end_positions) total_loss = (start_loss + end_loss) / 2 if not return_dict: output = (start_logits, end_logits) + outputs[2:] return ((total_loss,) + output) if total_loss is not None else output return QuestionAnsweringModelOutput( loss=total_loss, start_logits=start_logits, end_logits=end_logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) def create_position_ids_from_input_ids(input_ids, padding_idx, past_key_values_length=0): """ Replace non-padding symbols with their position numbers. Position numbers begin at padding_idx+1. Padding symbols are ignored. This is modified from fairseq's `utils.make_positions`. Args: x: torch.Tensor x: Returns: torch.Tensor """ # The series of casts and type-conversions here are carefully balanced to both work with ONNX export and XLA. mask = input_ids.ne(padding_idx).int() incremental_indices = (torch.cumsum(mask, dim=1).type_as(mask) + past_key_values_length) * mask return incremental_indices.long() + padding_idx
0