Datasets:
Tasks:
Token Classification
Sub-tasks:
named-entity-recognition
Languages:
English
Size:
1K<n<10K
License:
File size: 5,802 Bytes
1b63dab 6dbaa7e 1b63dab 6dbaa7e 1b63dab 792f9f6 1b63dab 76f3f6b 5255528 c422155 5255528 d4c206d 5255528 1b63dab 1a2d359 1b63dab 7ec89c5 1b63dab 7ec89c5 1b63dab 7ec89c5 1b63dab 7ec89c5 1b63dab 7ec89c5 1b63dab 7ec89c5 1b63dab 7ec89c5 6121293 5255528 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 |
---
annotations_creators:
- expert-generated
language_creators:
- expert-generated
language:
- en
license:
- unknown
multilinguality:
- monolingual
size_categories:
- 1K<n<10K
source_datasets:
- original
task_categories:
- token-classification
task_ids:
- named-entity-recognition
pretty_name: species800
dataset_info:
features:
- name: id
dtype: string
- name: tokens
sequence: string
- name: ner_tags
sequence:
class_label:
names:
'0': O
'1': B
'2': I
config_name: species_800
splits:
- name: train
num_bytes: 2579096
num_examples: 5734
- name: validation
num_bytes: 385756
num_examples: 831
- name: test
num_bytes: 737760
num_examples: 1631
download_size: 18204624
dataset_size: 3702612
---
# Dataset Card for [Dataset Name]
## Table of Contents
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-fields)
- [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Annotations](#annotations)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
- [Contributions](#contributions)
## Dataset Description
- **Homepage:** [SPECIES](https://species.jensenlab.org/)
- **Repository:**
- **Paper:** https://doi.org/10.1371/journal.pone.0065390
- **Leaderboard:**
- **Point of Contact:** [Lars Juhl Jensen](mailto:[email protected])
### Dataset Summary
S800 Corpus: a novel abstract-based manually annotated corpus. S800 comprises 800 PubMed abstracts in which organism mentions were identified and mapped to the corresponding NCBI Taxonomy identifiers.
To increase the corpus taxonomic mention diversity the S800 abstracts were collected by selecting 100 abstracts from the following 8 categories: bacteriology, botany, entomology, medicine, mycology, protistology, virology and zoology. S800 has been annotated with a focus at the species level; however, higher taxa mentions (such as genera, families and orders) have also been considered.
The Species-800 dataset was pre-processed and split based on the dataset of Pyysalo (https://github.com/spyysalo/s800).
### Supported Tasks and Leaderboards
[More Information Needed]
### Languages
English (`en`).
## Dataset Structure
### Data Instances
```
{'id': '0',
'tokens': ['Methanoregula',
'formicica',
'sp',
'.',
'nov',
'.',
',',
'a',
'methane',
'-',
'producing',
'archaeon',
'isolated',
'from',
'methanogenic',
'sludge',
'.'],
'ner_tags': [1, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]}
```
### Data Fields
- `id`: Sentence identifier.
- `tokens`: Array of tokens composing a sentence.
- `ner_tags`: Array of tags, where `0` indicates no species mentioned, `1` signals the first token of a species and `2` the subsequent tokens of the species.
### Data Splits
[More Information Needed]
## Dataset Creation
### Curation Rationale
[More Information Needed]
### Source Data
#### Initial Data Collection and Normalization
[More Information Needed]
#### Who are the source language producers?
[More Information Needed]
### Annotations
#### Annotation process
[More Information Needed]
#### Who are the annotators?
[More Information Needed]
### Personal and Sensitive Information
[More Information Needed]
## Considerations for Using the Data
### Social Impact of Dataset
[More Information Needed]
### Discussion of Biases
[More Information Needed]
### Other Known Limitations
[More Information Needed]
## Additional Information
### Dataset Curators
[More Information Needed]
### Licensing Information
The species-level S800 corpus is subject to Medline restrictions.
### Citation Information
Original data:
```
@article{pafilis2013species,
title={The SPECIES and ORGANISMS resources for fast and accurate identification of taxonomic names in text},
author={Pafilis, Evangelos and Frankild, Sune P and Fanini, Lucia and Faulwetter, Sarah and Pavloudi, Christina and Vasileiadou, Aikaterini and Arvanitidis, Christos and Jensen, Lars Juhl},
journal={PloS one},
volume={8},
number={6},
pages={e65390},
year={2013},
publisher={Public Library of Science}
}
```
Source data of this dataset:
```
@article{10.1093/bioinformatics/btz682,
author = {Lee, Jinhyuk and Yoon, Wonjin and Kim, Sungdong and Kim, Donghyeon and Kim, Sunkyu and So, Chan Ho and Kang, Jaewoo},
title = "{BioBERT: a pre-trained biomedical language representation model for biomedical text mining}",
journal = {Bioinformatics},
volume = {36},
number = {4},
pages = {1234-1240},
year = {2019},
month = {09},
issn = {1367-4803},
doi = {10.1093/bioinformatics/btz682},
url = {https://doi.org/10.1093/bioinformatics/btz682},
eprint = {https://academic.oup.com/bioinformatics/article-pdf/36/4/1234/48983216/bioinformatics\_36\_4\_1234.pdf},
}
```
and
```
https://github.com/spyysalo/s800
```
### Contributions
Thanks to [@edugp](https://github.com/edugp) for adding this dataset. |