|
--- |
|
dataset_info: |
|
features: |
|
- name: type_ |
|
dtype: string |
|
- name: block |
|
struct: |
|
- name: html_tag |
|
dtype: string |
|
- name: id |
|
dtype: string |
|
- name: order |
|
dtype: int64 |
|
- name: origin_type |
|
dtype: string |
|
- name: text |
|
struct: |
|
- name: embedding |
|
sequence: float64 |
|
- name: text |
|
dtype: string |
|
splits: |
|
- name: train |
|
num_bytes: 2266682282 |
|
num_examples: 260843 |
|
download_size: 2272790159 |
|
dataset_size: 2266682282 |
|
configs: |
|
- config_name: default |
|
data_files: |
|
- split: train |
|
path: data/train-* |
|
--- |
|
# Dataset Card for "es_indexing_benchmark" |
|
|
|
Here is a code on how to pull and index this dataset to elasticsearch: |
|
|
|
```python |
|
import datasets |
|
from tqdm import tqdm |
|
|
|
from src.store.es.search import ESBaseClient |
|
from src.store.es.model import ESNode |
|
|
|
ds = datasets.load_dataset('stellia/es_indexing_benchmark', split='train', ignore_verifications=True) |
|
client = ESBaseClient() |
|
|
|
|
|
index_name = "tmp_es_index" |
|
nodes = [] |
|
for row in tqdm(ds): |
|
esnode = ESNode(**row) |
|
esnode.meta.id = esnode.block.id |
|
nodes.append(esnode) |
|
|
|
|
|
client.delete_index(index_name) |
|
client.init_index(index_name) |
|
|
|
batch_size = 5000 |
|
for i in tqdm(range(0, len(nodes), batch_size)): |
|
client.save(index_name, nodes[i:i+batch_size], refresh=False) |
|
``` |
|
|
|
|
|
Consider empty `~/.cache/huggingface/datasets` with `rm -rf ~/.cache/huggingface/datasets` if you have problem loading the dataset. |
|
|
|
## Dataset for "Inference Benchmark" |
|
The dataset can also be used to test our api endpoints for inference models (retrieval, reranker, disambiguation model). |
|
|
|
To note that reranker and disambiguation model are finetuned on the same base model, meaning that it has slightly difference on inference time. |
|
However, the input length distributions differs for the two models. |
|
|
|
Here is the code to test on (in asyncio mode to be closer the real case): |
|
|
|
```python |
|
import asyncio |
|
|
|
import datasets |
|
from tqdm import tqdm |
|
|
|
from src.utils.stage.stage_utils import AppConfig |
|
from src.api_client.embed_ import async_encode |
|
from src.api_client.disambig import async_disambig |
|
|
|
|
|
ds = datasets.load_dataset('stellia/es_indexing_benchmark', split='train', ignore_verifications=True) |
|
|
|
texts = [] |
|
|
|
for row in tqdm(ds): |
|
texts.append(row['block']['text']['text']) # extract pure text |
|
|
|
# Encoding with embed model: |
|
|
|
config = AppConfig(stage='dev') |
|
tasks = [] |
|
|
|
batch_size = 10 |
|
for i in range(0, len(texts), batch_size): |
|
tasks.append(asyncio.create_task(async_encode(texts[i: i+ batch_size]))) |
|
|
|
res = await asyncio.gather(*tasks) |
|
|
|
|
|
# Test on reranker/disambiguation |
|
tasks = [] |
|
num_rerank = 10 |
|
|
|
for i in range(0, len(texts), num_rerank+1): |
|
if len(texts[i+1: i+1+num_rerank]) == 0: |
|
break |
|
tasks.append( |
|
asyncio.create_task( |
|
async_disambig( |
|
texts[i], |
|
texts[i+1: i+1+num_rerank] |
|
) |
|
) |
|
) |
|
|
|
res = await asyncio.gather(*tasks) |
|
|
|
|