text
stringlengths
29
320k
id
stringlengths
22
166
metadata
dict
__index_level_0__
int64
0
195
# coding=utf-8 # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Feature extractor class for SpeechT5.""" import warnings from typing import Any, Dict, List, Optional, Union import numpy as np from ...audio_utils import mel_filter_bank, optimal_fft_length, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import PaddingStrategy, TensorType, logging logger = logging.get_logger(__name__) class SpeechT5FeatureExtractor(SequenceFeatureExtractor): r""" Constructs a SpeechT5 feature extractor. This class can pre-process a raw speech signal by (optionally) normalizing to zero-mean unit-variance, for use by the SpeechT5 speech encoder prenet. This class can also extract log-mel filter bank features from raw speech, for use by the SpeechT5 speech decoder prenet. This feature extractor inherits from [`~feature_extraction_sequence_utils.SequenceFeatureExtractor`] which contains most of the main methods. Users should refer to this superclass for more information regarding those methods. Args: feature_size (`int`, *optional*, defaults to 1): The feature dimension of the extracted features. sampling_rate (`int`, *optional*, defaults to 16000): The sampling rate at which the audio files should be digitalized expressed in hertz (Hz). padding_value (`float`, *optional*, defaults to 0.0): The value that is used to fill the padding values. do_normalize (`bool`, *optional*, defaults to `False`): Whether or not to zero-mean unit-variance normalize the input. Normalizing can help to significantly improve the performance for some models. num_mel_bins (`int`, *optional*, defaults to 80): The number of mel-frequency bins in the extracted spectrogram features. hop_length (`int`, *optional*, defaults to 16): Number of ms between windows. Otherwise referred to as "shift" in many papers. win_length (`int`, *optional*, defaults to 64): Number of ms per window. win_function (`str`, *optional*, defaults to `"hann_window"`): Name for the window function used for windowing, must be accessible via `torch.{win_function}` frame_signal_scale (`float`, *optional*, defaults to 1.0): Constant multiplied in creating the frames before applying DFT. This argument is deprecated. fmin (`float`, *optional*, defaults to 80): Minimum mel frequency in Hz. fmax (`float`, *optional*, defaults to 7600): Maximum mel frequency in Hz. mel_floor (`float`, *optional*, defaults to 1e-10): Minimum value of mel frequency banks. reduction_factor (`int`, *optional*, defaults to 2): Spectrogram length reduction factor. This argument is deprecated. return_attention_mask (`bool`, *optional*, defaults to `True`): Whether or not [`~SpeechT5FeatureExtractor.__call__`] should return `attention_mask`. """ model_input_names = ["input_values", "attention_mask"] def __init__( self, feature_size: int = 1, sampling_rate: int = 16000, padding_value: float = 0.0, do_normalize: bool = False, num_mel_bins: int = 80, hop_length: int = 16, win_length: int = 64, win_function: str = "hann_window", frame_signal_scale: float = 1.0, fmin: float = 80, fmax: float = 7600, mel_floor: float = 1e-10, reduction_factor: int = 2, return_attention_mask: bool = True, **kwargs, ): super().__init__(feature_size=feature_size, sampling_rate=sampling_rate, padding_value=padding_value, **kwargs) self.do_normalize = do_normalize self.return_attention_mask = return_attention_mask self.num_mel_bins = num_mel_bins self.hop_length = hop_length self.win_length = win_length self.win_function = win_function self.frame_signal_scale = frame_signal_scale self.fmin = fmin self.fmax = fmax self.mel_floor = mel_floor self.reduction_factor = reduction_factor self.sample_size = win_length * sampling_rate // 1000 self.sample_stride = hop_length * sampling_rate // 1000 self.n_fft = optimal_fft_length(self.sample_size) self.n_freqs = (self.n_fft // 2) + 1 self.window = window_function(window_length=self.sample_size, name=self.win_function, periodic=True) self.mel_filters = mel_filter_bank( num_frequency_bins=self.n_freqs, num_mel_filters=self.num_mel_bins, min_frequency=self.fmin, max_frequency=self.fmax, sampling_rate=self.sampling_rate, norm="slaney", mel_scale="slaney", ) if frame_signal_scale != 1.0: warnings.warn( "The argument `frame_signal_scale` is deprecated and will be removed in version 4.30.0 of Transformers", FutureWarning, ) if reduction_factor != 2.0: warnings.warn( "The argument `reduction_factor` is deprecated and will be removed in version 4.30.0 of Transformers", FutureWarning, ) @staticmethod # Copied from transformers.models.wav2vec2.feature_extraction_wav2vec2.Wav2Vec2FeatureExtractor.zero_mean_unit_var_norm def zero_mean_unit_var_norm( input_values: List[np.ndarray], attention_mask: List[np.ndarray], padding_value: float = 0.0 ) -> List[np.ndarray]: """ Every array in the list is normalized to have zero mean and unit variance """ if attention_mask is not None: attention_mask = np.array(attention_mask, np.int32) normed_input_values = [] for vector, length in zip(input_values, attention_mask.sum(-1)): normed_slice = (vector - vector[:length].mean()) / np.sqrt(vector[:length].var() + 1e-7) if length < normed_slice.shape[0]: normed_slice[length:] = padding_value normed_input_values.append(normed_slice) else: normed_input_values = [(x - x.mean()) / np.sqrt(x.var() + 1e-7) for x in input_values] return normed_input_values def _extract_mel_features( self, one_waveform: np.ndarray, ) -> np.ndarray: """ Extracts log-mel filterbank features for one waveform array (unbatched). """ log_mel_spec = spectrogram( one_waveform, window=self.window, frame_length=self.sample_size, hop_length=self.sample_stride, fft_length=self.n_fft, mel_filters=self.mel_filters, mel_floor=self.mel_floor, log_mel="log10", ) return log_mel_spec.T def __call__( self, audio: Optional[Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]]] = None, audio_target: Optional[Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]]] = None, padding: Union[bool, str, PaddingStrategy] = False, max_length: Optional[int] = None, truncation: bool = False, pad_to_multiple_of: Optional[int] = None, return_attention_mask: Optional[bool] = None, return_tensors: Optional[Union[str, TensorType]] = None, sampling_rate: Optional[int] = None, **kwargs, ) -> BatchFeature: """ Main method to featurize and prepare for the model one or several sequence(s). Pass in a value for `audio` to extract waveform features. Pass in a value for `audio_target` to extract log-mel spectrogram features. Args: audio (`np.ndarray`, `List[float]`, `List[np.ndarray]`, `List[List[float]]`, *optional*): The sequence or batch of sequences to be processed. Each sequence can be a numpy array, a list of float values, a list of numpy arrays or a list of list of float values. This outputs waveform features. Must be mono channel audio, not stereo, i.e. single float per timestep. audio_target (`np.ndarray`, `List[float]`, `List[np.ndarray]`, `List[List[float]]`, *optional*): The sequence or batch of sequences to be processed as targets. Each sequence can be a numpy array, a list of float values, a list of numpy arrays or a list of list of float values. This outputs log-mel spectrogram features. padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`): Select a strategy to pad the returned sequences (according to the model's padding side and padding index) among: - `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single sequence if provided). - `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. - `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different lengths). max_length (`int`, *optional*): Maximum length of the returned list and optionally padding length (see above). truncation (`bool`): Activates truncation to cut input sequences longer than *max_length* to *max_length*. pad_to_multiple_of (`int`, *optional*): If set will pad the sequence to a multiple of the provided value. This is especially useful to enable the use of Tensor Cores on NVIDIA hardware with compute capability `>= 7.5` (Volta), or on TPUs which benefit from having sequence lengths be a multiple of 128. return_attention_mask (`bool`, *optional*): Whether to return the attention mask. If left to the default, will return the attention mask according to the specific feature_extractor's default. [What are attention masks?](../glossary#attention-mask) return_tensors (`str` or [`~utils.TensorType`], *optional*): If set, will return tensors instead of list of python integers. Acceptable values are: - `'tf'`: Return TensorFlow `tf.constant` objects. - `'pt'`: Return PyTorch `torch.Tensor` objects. - `'np'`: Return Numpy `np.ndarray` objects. sampling_rate (`int`, *optional*): The sampling rate at which the `audio` or `audio_target` input was sampled. It is strongly recommended to pass `sampling_rate` at the forward call to prevent silent errors. """ if audio is None and audio_target is None: raise ValueError("You must provide either `audio` or `audio_target` values.") if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( f"The model corresponding to this feature extractor: {self} was trained using a sampling rate of" f" {self.sampling_rate}. Please make sure that the provided audio input was sampled with" f" {self.sampling_rate} and not {sampling_rate}." ) else: logger.warning( "It is strongly recommended to pass the ``sampling_rate`` argument to this function. " "Failing to do so can result in silent errors that might be hard to debug." ) if audio is not None: inputs = self._process_audio( audio, False, padding, max_length, truncation, pad_to_multiple_of, return_attention_mask, return_tensors, **kwargs, ) else: inputs = None if audio_target is not None: inputs_target = self._process_audio( audio_target, True, padding, max_length, truncation, pad_to_multiple_of, return_attention_mask, return_tensors, **kwargs, ) if inputs is None: return inputs_target else: inputs["labels"] = inputs_target["input_values"] decoder_attention_mask = inputs_target.get("attention_mask") if decoder_attention_mask is not None: inputs["decoder_attention_mask"] = decoder_attention_mask return inputs def _process_audio( self, speech: Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]], is_target: bool = False, padding: Union[bool, str, PaddingStrategy] = False, max_length: Optional[int] = None, truncation: bool = False, pad_to_multiple_of: Optional[int] = None, return_attention_mask: Optional[bool] = None, return_tensors: Optional[Union[str, TensorType]] = None, **kwargs, ) -> BatchFeature: is_batched_numpy = isinstance(speech, np.ndarray) and len(speech.shape) > 1 if is_batched_numpy and len(speech.shape) > 2: raise ValueError(f"Only mono-channel audio is supported for input to {self}") is_batched = is_batched_numpy or ( isinstance(speech, (list, tuple)) and (isinstance(speech[0], (np.ndarray, tuple, list))) ) if is_batched: speech = [np.asarray(speech, dtype=np.float32) for speech in speech] elif not is_batched and not isinstance(speech, np.ndarray): speech = np.asarray(speech, dtype=np.float32) elif isinstance(speech, np.ndarray) and speech.dtype is np.dtype(np.float64): speech = speech.astype(np.float32) # always return batch if not is_batched: speech = [speech] # needed to make pad() work on spectrogram inputs feature_size_hack = self.feature_size # convert into correct format for padding if is_target: features = [self._extract_mel_features(waveform) for waveform in speech] encoded_inputs = BatchFeature({"input_values": features}) self.feature_size = self.num_mel_bins else: encoded_inputs = BatchFeature({"input_values": speech}) padded_inputs = self.pad( encoded_inputs, padding=padding, max_length=max_length, truncation=truncation, pad_to_multiple_of=pad_to_multiple_of, return_attention_mask=return_attention_mask, **kwargs, ) self.feature_size = feature_size_hack # convert input values to correct format input_values = padded_inputs["input_values"] if not isinstance(input_values[0], np.ndarray): padded_inputs["input_values"] = [np.asarray(array, dtype=np.float32) for array in input_values] elif ( not isinstance(input_values, np.ndarray) and isinstance(input_values[0], np.ndarray) and input_values[0].dtype is np.dtype(np.float64) ): padded_inputs["input_values"] = [array.astype(np.float32) for array in input_values] elif isinstance(input_values, np.ndarray) and input_values.dtype is np.dtype(np.float64): padded_inputs["input_values"] = input_values.astype(np.float32) # convert attention_mask to correct format attention_mask = padded_inputs.get("attention_mask") if attention_mask is not None: padded_inputs["attention_mask"] = [np.asarray(array, dtype=np.int32) for array in attention_mask] # zero-mean and unit-variance normalization if not is_target and self.do_normalize: attention_mask = ( attention_mask if self._get_padding_strategies(padding, max_length=max_length) is not PaddingStrategy.DO_NOT_PAD else None ) padded_inputs["input_values"] = self.zero_mean_unit_var_norm( padded_inputs["input_values"], attention_mask=attention_mask, padding_value=self.padding_value ) if return_tensors is not None: padded_inputs = padded_inputs.convert_to_tensors(return_tensors) return padded_inputs def to_dict(self) -> Dict[str, Any]: output = super().to_dict() # Don't serialize these as they are derived from the other properties. names = ["window", "mel_filters", "sample_size", "sample_stride", "n_fft", "n_freqs"] for name in names: if name in output: del output[name] return output
transformers/src/transformers/models/speecht5/feature_extraction_speecht5.py/0
{ "file_path": "transformers/src/transformers/models/speecht5/feature_extraction_speecht5.py", "repo_id": "transformers", "token_count": 7605 }
123
# coding=utf-8 # Copyright 2024 Stability AI and The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ StableLM model configuration """ from ...configuration_utils import PretrainedConfig from ...utils import logging logger = logging.get_logger(__name__) STABLELM_PRETRAINED_CONFIG_ARCHIVE_MAP = { "stabilityai/stablelm-3b-4e1t": "https://huggingface.co/stabilityai/stablelm-3b-4e1t/resolve/main/config.json", # See all StableLM models at https://huggingface.co/models?filter=stablelm } class StableLmConfig(PretrainedConfig): r""" This is the configuration class to store the configuration of a [`~StableLmModel`]. It is used to instantiate an StableLM model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the StableLM [stabilityai/stablelm-3b-4e1t](https://huggingface.co/stabilityai/stablelm-3b-4e1t) architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: vocab_size (`int`, *optional*, defaults to 50304): Vocabulary size of the StableLM model. Defines the number of different tokens that can be represented by the `inputs_ids` passed when calling [`StableLmModel`]. intermediate_size (`int`, *optional*, defaults to 6912): Dimension of the MLP representations. hidden_size (`int`, *optional*, defaults to 2560): Number of hidden layers in the Transformer decoder. num_hidden_layers (`int`, *optional*, defaults to 32): Number of hidden layers in the Transformer decoder. num_attention_heads (`int`, *optional*, defaults to 32): Number of attention heads for each attention layer in the Transformer encoder. num_key_value_heads (`int`, *optional*, defaults to 32): This is the number of key_value heads that should be used to implement Grouped Query Attention. If `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if `num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed by meanpooling all the original heads within that group. For more details checkout [this paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to `num_attention_heads`. hidden_act (`str` or `function`, *optional*, defaults to `"silu"`): The non-linear activation function (function or string). max_position_embeddings (`int`, *optional*, defaults to 4096): The maximum sequence length that this model might ever be used with. Typically set this to something large just in case (e.g., 512 or 1024 or 2048). initializer_range (`float`, *optional*, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. layer_norm_eps (`float`, *optional*, defaults to 1e-05): The epsilon used by the normalization layers. use_cache (`bool`, *optional*, defaults to `True`): Whether or not the model should return the last key/values attentions (not used by all models). Only relevant if `config.is_decoder=True`. tie_word_embeddings (`bool`, *optional*, defaults to `False`): Whether the model's input and output word embeddings should be tied. rope_theta (`float`, *optional*, defaults to `10000.0`): The base period of the RoPE embeddings. rope_scaling (`Dict`, *optional*): Dictionary containing the scaling configuration for the RoPE embeddings. Currently supports two scaling strategies: linear and dynamic. Their scaling factor must be a float greater than 1. The expected format is `{"type": strategy name, "factor": scaling factor}`. When using this flag, don't update `max_position_embeddings` to the expected new maximum. See the following thread for more information on how these scaling strategies behave: https://www.reddit.com/r/LocalLLaMA/comments/14mrgpr/dynamically_scaled_rope_further_increases/. This is an experimental feature, subject to breaking API changes in future versions. use_qkv_bias (`bool`, *optional*, defaults to `False`): Whether or not the model should use bias for qkv layers. hidden_dropout (`float`, *optional*, defaults to 0.0): The dropout ratio after applying the MLP to the hidden states. attention_dropout (`float`, *optional*, defaults to 0.0): The dropout ratio for the attention probabilities. partial_rotary_factor (`float`, *optional*, defaults to 0.25): Percentage of the query and keys which will have rotary embedding. bos_token_id (int, *optional*, defaults to 0): The id of the `BOS` token in the vocabulary. eos_token_id (int, *optional*, defaults to 0): The id of the `EOS` token in the vocabulary. Example: ```python >>> from transformers import StableLmModel, StableLmConfig >>> # Initializing a StableLM stablelm-3b style configuration >>> configuration = StableLmConfig() ```""" model_type = "stablelm" keys_to_ignore_at_inference = ["past_key_values"] def __init__( self, vocab_size=50304, intermediate_size=6912, hidden_size=2560, num_hidden_layers=32, num_attention_heads=32, num_key_value_heads=32, hidden_act="silu", max_position_embeddings=4096, initializer_range=0.02, layer_norm_eps=1.0e-5, use_cache=True, tie_word_embeddings=False, rope_theta=10_000, rope_scaling=None, use_qkv_bias=False, hidden_dropout=0.0, attention_dropout=0.0, partial_rotary_factor=0.25, bos_token_id=0, eos_token_id=0, **kwargs, ): self.vocab_size = vocab_size self.max_position_embeddings = max_position_embeddings self.hidden_size = hidden_size self.intermediate_size = intermediate_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.num_key_value_heads = num_key_value_heads self.hidden_act = hidden_act self.initializer_range = initializer_range self.layer_norm_eps = layer_norm_eps self.use_cache = use_cache self.rope_theta = rope_theta self.rope_scaling = rope_scaling self.use_qkv_bias = use_qkv_bias self.hidden_dropout = hidden_dropout self.attention_dropout = attention_dropout self.partial_rotary_factor = partial_rotary_factor self._rope_scaling_validation() super().__init__( bos_token_id=bos_token_id, eos_token_id=eos_token_id, tie_word_embeddings=tie_word_embeddings, **kwargs, ) # Copied from transformers.models.llama.configuration_llama.LlamaConfig._rope_scaling_validation def _rope_scaling_validation(self): """ Validate the `rope_scaling` configuration. """ if self.rope_scaling is None: return if not isinstance(self.rope_scaling, dict) or len(self.rope_scaling) != 2: raise ValueError( "`rope_scaling` must be a dictionary with with two fields, `type` and `factor`, " f"got {self.rope_scaling}" ) rope_scaling_type = self.rope_scaling.get("type", None) rope_scaling_factor = self.rope_scaling.get("factor", None) if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: raise ValueError( f"`rope_scaling`'s type field must be one of ['linear', 'dynamic'], got {rope_scaling_type}" ) if rope_scaling_factor is None or not isinstance(rope_scaling_factor, float) or rope_scaling_factor <= 1.0: raise ValueError(f"`rope_scaling`'s factor field must be a float > 1, got {rope_scaling_factor}")
transformers/src/transformers/models/stablelm/configuration_stablelm.py/0
{ "file_path": "transformers/src/transformers/models/stablelm/configuration_stablelm.py", "repo_id": "transformers", "token_count": 3547 }
124
# coding=utf-8 # Copyright 2022 Microsoft Research and The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ PyTorch Swin2SR Transformer model.""" import collections.abc import math from dataclasses import dataclass from typing import Optional, Tuple, Union import torch import torch.utils.checkpoint from torch import nn from ...activations import ACT2FN from ...modeling_outputs import BaseModelOutput, ImageSuperResolutionOutput from ...modeling_utils import PreTrainedModel from ...pytorch_utils import find_pruneable_heads_and_indices, meshgrid, prune_linear_layer from ...utils import ( ModelOutput, add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings, ) from .configuration_swin2sr import Swin2SRConfig logger = logging.get_logger(__name__) # General docstring _CONFIG_FOR_DOC = "Swin2SRConfig" # Base docstring _CHECKPOINT_FOR_DOC = "caidas/swin2SR-classical-sr-x2-64" _EXPECTED_OUTPUT_SHAPE = [1, 180, 488, 648] SWIN2SR_PRETRAINED_MODEL_ARCHIVE_LIST = [ "caidas/swin2SR-classical-sr-x2-64", # See all Swin2SR models at https://huggingface.co/models?filter=swin2sr ] @dataclass class Swin2SREncoderOutput(ModelOutput): """ Swin2SR encoder's outputs, with potential hidden states and attentions. Args: last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`): Sequence of hidden-states at the output of the last layer of the model. hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each stage) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the initial embedding outputs. attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each stage) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. """ last_hidden_state: torch.FloatTensor = None hidden_states: Optional[Tuple[torch.FloatTensor]] = None attentions: Optional[Tuple[torch.FloatTensor]] = None # Copied from transformers.models.swin.modeling_swin.window_partition def window_partition(input_feature, window_size): """ Partitions the given input into windows. """ batch_size, height, width, num_channels = input_feature.shape input_feature = input_feature.view( batch_size, height // window_size, window_size, width // window_size, window_size, num_channels ) windows = input_feature.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size, window_size, num_channels) return windows # Copied from transformers.models.swin.modeling_swin.window_reverse def window_reverse(windows, window_size, height, width): """ Merges windows to produce higher resolution features. """ num_channels = windows.shape[-1] windows = windows.view(-1, height // window_size, width // window_size, window_size, window_size, num_channels) windows = windows.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, height, width, num_channels) return windows # Copied from transformers.models.beit.modeling_beit.drop_path def drop_path(input: torch.Tensor, drop_prob: float = 0.0, training: bool = False) -> torch.Tensor: """ Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks). Comment by Ross Wightman: This is the same as the DropConnect impl I created for EfficientNet, etc networks, however, the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper... See discussion: https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ... I've opted for changing the layer and argument names to 'drop path' rather than mix DropConnect as a layer name and use 'survival rate' as the argument. """ if drop_prob == 0.0 or not training: return input keep_prob = 1 - drop_prob shape = (input.shape[0],) + (1,) * (input.ndim - 1) # work with diff dim tensors, not just 2D ConvNets random_tensor = keep_prob + torch.rand(shape, dtype=input.dtype, device=input.device) random_tensor.floor_() # binarize output = input.div(keep_prob) * random_tensor return output # Copied from transformers.models.swin.modeling_swin.SwinDropPath with Swin->Swin2SR class Swin2SRDropPath(nn.Module): """Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).""" def __init__(self, drop_prob: Optional[float] = None) -> None: super().__init__() self.drop_prob = drop_prob def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: return drop_path(hidden_states, self.drop_prob, self.training) def extra_repr(self) -> str: return "p={}".format(self.drop_prob) class Swin2SREmbeddings(nn.Module): """ Construct the patch and optional position embeddings. """ def __init__(self, config): super().__init__() self.patch_embeddings = Swin2SRPatchEmbeddings(config) num_patches = self.patch_embeddings.num_patches if config.use_absolute_embeddings: self.position_embeddings = nn.Parameter(torch.zeros(1, num_patches + 1, config.embed_dim)) else: self.position_embeddings = None self.dropout = nn.Dropout(config.hidden_dropout_prob) self.window_size = config.window_size def forward(self, pixel_values: Optional[torch.FloatTensor]) -> Tuple[torch.Tensor]: embeddings, output_dimensions = self.patch_embeddings(pixel_values) if self.position_embeddings is not None: embeddings = embeddings + self.position_embeddings embeddings = self.dropout(embeddings) return embeddings, output_dimensions class Swin2SRPatchEmbeddings(nn.Module): def __init__(self, config, normalize_patches=True): super().__init__() num_channels = config.embed_dim image_size, patch_size = config.image_size, config.patch_size image_size = image_size if isinstance(image_size, collections.abc.Iterable) else (image_size, image_size) patch_size = patch_size if isinstance(patch_size, collections.abc.Iterable) else (patch_size, patch_size) patches_resolution = [image_size[0] // patch_size[0], image_size[1] // patch_size[1]] self.patches_resolution = patches_resolution self.num_patches = patches_resolution[0] * patches_resolution[1] self.projection = nn.Conv2d(num_channels, config.embed_dim, kernel_size=patch_size, stride=patch_size) self.layernorm = nn.LayerNorm(config.embed_dim) if normalize_patches else None def forward(self, embeddings: Optional[torch.FloatTensor]) -> Tuple[torch.Tensor, Tuple[int]]: embeddings = self.projection(embeddings) _, _, height, width = embeddings.shape output_dimensions = (height, width) embeddings = embeddings.flatten(2).transpose(1, 2) if self.layernorm is not None: embeddings = self.layernorm(embeddings) return embeddings, output_dimensions class Swin2SRPatchUnEmbeddings(nn.Module): r"""Image to Patch Unembedding""" def __init__(self, config): super().__init__() self.embed_dim = config.embed_dim def forward(self, embeddings, x_size): batch_size, height_width, num_channels = embeddings.shape embeddings = embeddings.transpose(1, 2).view(batch_size, self.embed_dim, x_size[0], x_size[1]) # B Ph*Pw C return embeddings # Copied from transformers.models.swinv2.modeling_swinv2.Swinv2PatchMerging with Swinv2->Swin2SR class Swin2SRPatchMerging(nn.Module): """ Patch Merging Layer. Args: input_resolution (`Tuple[int]`): Resolution of input feature. dim (`int`): Number of input channels. norm_layer (`nn.Module`, *optional*, defaults to `nn.LayerNorm`): Normalization layer class. """ def __init__(self, input_resolution: Tuple[int], dim: int, norm_layer: nn.Module = nn.LayerNorm) -> None: super().__init__() self.input_resolution = input_resolution self.dim = dim self.reduction = nn.Linear(4 * dim, 2 * dim, bias=False) self.norm = norm_layer(2 * dim) def maybe_pad(self, input_feature, height, width): should_pad = (height % 2 == 1) or (width % 2 == 1) if should_pad: pad_values = (0, 0, 0, width % 2, 0, height % 2) input_feature = nn.functional.pad(input_feature, pad_values) return input_feature def forward(self, input_feature: torch.Tensor, input_dimensions: Tuple[int, int]) -> torch.Tensor: height, width = input_dimensions # `dim` is height * width batch_size, dim, num_channels = input_feature.shape input_feature = input_feature.view(batch_size, height, width, num_channels) # pad input to be disible by width and height, if needed input_feature = self.maybe_pad(input_feature, height, width) # [batch_size, height/2, width/2, num_channels] input_feature_0 = input_feature[:, 0::2, 0::2, :] # [batch_size, height/2, width/2, num_channels] input_feature_1 = input_feature[:, 1::2, 0::2, :] # [batch_size, height/2, width/2, num_channels] input_feature_2 = input_feature[:, 0::2, 1::2, :] # [batch_size, height/2, width/2, num_channels] input_feature_3 = input_feature[:, 1::2, 1::2, :] # [batch_size, height/2 * width/2, 4*num_channels] input_feature = torch.cat([input_feature_0, input_feature_1, input_feature_2, input_feature_3], -1) input_feature = input_feature.view(batch_size, -1, 4 * num_channels) # [batch_size, height/2 * width/2, 4*C] input_feature = self.reduction(input_feature) input_feature = self.norm(input_feature) return input_feature # Copied from transformers.models.swinv2.modeling_swinv2.Swinv2SelfAttention with Swinv2->Swin2SR class Swin2SRSelfAttention(nn.Module): def __init__(self, config, dim, num_heads, window_size, pretrained_window_size=[0, 0]): super().__init__() if dim % num_heads != 0: raise ValueError( f"The hidden size ({dim}) is not a multiple of the number of attention heads ({num_heads})" ) self.num_attention_heads = num_heads self.attention_head_size = int(dim / num_heads) self.all_head_size = self.num_attention_heads * self.attention_head_size self.window_size = ( window_size if isinstance(window_size, collections.abc.Iterable) else (window_size, window_size) ) self.pretrained_window_size = pretrained_window_size self.logit_scale = nn.Parameter(torch.log(10 * torch.ones((num_heads, 1, 1)))) # mlp to generate continuous relative position bias self.continuous_position_bias_mlp = nn.Sequential( nn.Linear(2, 512, bias=True), nn.ReLU(inplace=True), nn.Linear(512, num_heads, bias=False) ) # get relative_coords_table relative_coords_h = torch.arange(-(self.window_size[0] - 1), self.window_size[0], dtype=torch.int64).float() relative_coords_w = torch.arange(-(self.window_size[1] - 1), self.window_size[1], dtype=torch.int64).float() relative_coords_table = ( torch.stack(meshgrid([relative_coords_h, relative_coords_w], indexing="ij")) .permute(1, 2, 0) .contiguous() .unsqueeze(0) ) # [1, 2*window_height - 1, 2*window_width - 1, 2] if pretrained_window_size[0] > 0: relative_coords_table[:, :, :, 0] /= pretrained_window_size[0] - 1 relative_coords_table[:, :, :, 1] /= pretrained_window_size[1] - 1 else: relative_coords_table[:, :, :, 0] /= self.window_size[0] - 1 relative_coords_table[:, :, :, 1] /= self.window_size[1] - 1 relative_coords_table *= 8 # normalize to -8, 8 relative_coords_table = ( torch.sign(relative_coords_table) * torch.log2(torch.abs(relative_coords_table) + 1.0) / math.log2(8) ) self.register_buffer("relative_coords_table", relative_coords_table, persistent=False) # get pair-wise relative position index for each token inside the window coords_h = torch.arange(self.window_size[0]) coords_w = torch.arange(self.window_size[1]) coords = torch.stack(meshgrid([coords_h, coords_w], indexing="ij")) coords_flatten = torch.flatten(coords, 1) relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :] relative_coords = relative_coords.permute(1, 2, 0).contiguous() relative_coords[:, :, 0] += self.window_size[0] - 1 relative_coords[:, :, 1] += self.window_size[1] - 1 relative_coords[:, :, 0] *= 2 * self.window_size[1] - 1 relative_position_index = relative_coords.sum(-1) self.register_buffer("relative_position_index", relative_position_index, persistent=False) self.query = nn.Linear(self.all_head_size, self.all_head_size, bias=config.qkv_bias) self.key = nn.Linear(self.all_head_size, self.all_head_size, bias=False) self.value = nn.Linear(self.all_head_size, self.all_head_size, bias=config.qkv_bias) self.dropout = nn.Dropout(config.attention_probs_dropout_prob) def transpose_for_scores(self, x): new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size) x = x.view(new_x_shape) return x.permute(0, 2, 1, 3) def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.FloatTensor] = None, head_mask: Optional[torch.FloatTensor] = None, output_attentions: Optional[bool] = False, ) -> Tuple[torch.Tensor]: batch_size, dim, num_channels = hidden_states.shape mixed_query_layer = self.query(hidden_states) key_layer = self.transpose_for_scores(self.key(hidden_states)) value_layer = self.transpose_for_scores(self.value(hidden_states)) query_layer = self.transpose_for_scores(mixed_query_layer) # cosine attention attention_scores = nn.functional.normalize(query_layer, dim=-1) @ nn.functional.normalize( key_layer, dim=-1 ).transpose(-2, -1) logit_scale = torch.clamp(self.logit_scale, max=math.log(1.0 / 0.01)).exp() attention_scores = attention_scores * logit_scale relative_position_bias_table = self.continuous_position_bias_mlp(self.relative_coords_table).view( -1, self.num_attention_heads ) # [window_height*window_width,window_height*window_width,num_attention_heads] relative_position_bias = relative_position_bias_table[self.relative_position_index.view(-1)].view( self.window_size[0] * self.window_size[1], self.window_size[0] * self.window_size[1], -1 ) # [num_attention_heads,window_height*window_width,window_height*window_width] relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous() # nH, Wh*Ww, Wh*Ww relative_position_bias = 16 * torch.sigmoid(relative_position_bias) attention_scores = attention_scores + relative_position_bias.unsqueeze(0) if attention_mask is not None: # Apply the attention mask is (precomputed for all layers in Swin2SRModel forward() function) mask_shape = attention_mask.shape[0] attention_scores = attention_scores.view( batch_size // mask_shape, mask_shape, self.num_attention_heads, dim, dim ) + attention_mask.unsqueeze(1).unsqueeze(0) attention_scores = attention_scores + attention_mask.unsqueeze(1).unsqueeze(0) attention_scores = attention_scores.view(-1, self.num_attention_heads, dim, dim) # Normalize the attention scores to probabilities. attention_probs = nn.functional.softmax(attention_scores, dim=-1) # This is actually dropping out entire tokens to attend to, which might # seem a bit unusual, but is taken from the original Transformer paper. attention_probs = self.dropout(attention_probs) # Mask heads if we want to if head_mask is not None: attention_probs = attention_probs * head_mask context_layer = torch.matmul(attention_probs, value_layer) context_layer = context_layer.permute(0, 2, 1, 3).contiguous() new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,) context_layer = context_layer.view(new_context_layer_shape) outputs = (context_layer, attention_probs) if output_attentions else (context_layer,) return outputs # Copied from transformers.models.swin.modeling_swin.SwinSelfOutput with Swin->Swin2SR class Swin2SRSelfOutput(nn.Module): def __init__(self, config, dim): super().__init__() self.dense = nn.Linear(dim, dim) self.dropout = nn.Dropout(config.attention_probs_dropout_prob) def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states) return hidden_states # Copied from transformers.models.swinv2.modeling_swinv2.Swinv2Attention with Swinv2->Swin2SR class Swin2SRAttention(nn.Module): def __init__(self, config, dim, num_heads, window_size, pretrained_window_size=0): super().__init__() self.self = Swin2SRSelfAttention( config=config, dim=dim, num_heads=num_heads, window_size=window_size, pretrained_window_size=pretrained_window_size if isinstance(pretrained_window_size, collections.abc.Iterable) else (pretrained_window_size, pretrained_window_size), ) self.output = Swin2SRSelfOutput(config, dim) self.pruned_heads = set() def prune_heads(self, heads): if len(heads) == 0: return heads, index = find_pruneable_heads_and_indices( heads, self.self.num_attention_heads, self.self.attention_head_size, self.pruned_heads ) # Prune linear layers self.self.query = prune_linear_layer(self.self.query, index) self.self.key = prune_linear_layer(self.self.key, index) self.self.value = prune_linear_layer(self.self.value, index) self.output.dense = prune_linear_layer(self.output.dense, index, dim=1) # Update hyper params and store pruned heads self.self.num_attention_heads = self.self.num_attention_heads - len(heads) self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads self.pruned_heads = self.pruned_heads.union(heads) def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.FloatTensor] = None, head_mask: Optional[torch.FloatTensor] = None, output_attentions: Optional[bool] = False, ) -> Tuple[torch.Tensor]: self_outputs = self.self(hidden_states, attention_mask, head_mask, output_attentions) attention_output = self.output(self_outputs[0], hidden_states) outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them return outputs # Copied from transformers.models.swin.modeling_swin.SwinIntermediate with Swin->Swin2SR class Swin2SRIntermediate(nn.Module): def __init__(self, config, dim): super().__init__() self.dense = nn.Linear(dim, int(config.mlp_ratio * dim)) if isinstance(config.hidden_act, str): self.intermediate_act_fn = ACT2FN[config.hidden_act] else: self.intermediate_act_fn = config.hidden_act def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.intermediate_act_fn(hidden_states) return hidden_states # Copied from transformers.models.swin.modeling_swin.SwinOutput with Swin->Swin2SR class Swin2SROutput(nn.Module): def __init__(self, config, dim): super().__init__() self.dense = nn.Linear(int(config.mlp_ratio * dim), dim) self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states) return hidden_states # Copied from transformers.models.swinv2.modeling_swinv2.Swinv2Layer with Swinv2->Swin2SR class Swin2SRLayer(nn.Module): def __init__(self, config, dim, input_resolution, num_heads, shift_size=0, pretrained_window_size=0): super().__init__() self.input_resolution = input_resolution window_size, shift_size = self._compute_window_shift( (config.window_size, config.window_size), (shift_size, shift_size) ) self.window_size = window_size[0] self.shift_size = shift_size[0] self.attention = Swin2SRAttention( config=config, dim=dim, num_heads=num_heads, window_size=self.window_size, pretrained_window_size=pretrained_window_size if isinstance(pretrained_window_size, collections.abc.Iterable) else (pretrained_window_size, pretrained_window_size), ) self.layernorm_before = nn.LayerNorm(dim, eps=config.layer_norm_eps) self.drop_path = Swin2SRDropPath(config.drop_path_rate) if config.drop_path_rate > 0.0 else nn.Identity() self.intermediate = Swin2SRIntermediate(config, dim) self.output = Swin2SROutput(config, dim) self.layernorm_after = nn.LayerNorm(dim, eps=config.layer_norm_eps) def _compute_window_shift(self, target_window_size, target_shift_size) -> Tuple[Tuple[int, int], Tuple[int, int]]: window_size = [r if r <= w else w for r, w in zip(self.input_resolution, target_window_size)] shift_size = [0 if r <= w else s for r, w, s in zip(self.input_resolution, window_size, target_shift_size)] return window_size, shift_size def get_attn_mask(self, height, width, dtype): if self.shift_size > 0: # calculate attention mask for shifted window multihead self attention img_mask = torch.zeros((1, height, width, 1), dtype=dtype) height_slices = ( slice(0, -self.window_size), slice(-self.window_size, -self.shift_size), slice(-self.shift_size, None), ) width_slices = ( slice(0, -self.window_size), slice(-self.window_size, -self.shift_size), slice(-self.shift_size, None), ) count = 0 for height_slice in height_slices: for width_slice in width_slices: img_mask[:, height_slice, width_slice, :] = count count += 1 mask_windows = window_partition(img_mask, self.window_size) mask_windows = mask_windows.view(-1, self.window_size * self.window_size) attn_mask = mask_windows.unsqueeze(1) - mask_windows.unsqueeze(2) attn_mask = attn_mask.masked_fill(attn_mask != 0, float(-100.0)).masked_fill(attn_mask == 0, float(0.0)) else: attn_mask = None return attn_mask def maybe_pad(self, hidden_states, height, width): pad_right = (self.window_size - width % self.window_size) % self.window_size pad_bottom = (self.window_size - height % self.window_size) % self.window_size pad_values = (0, 0, 0, pad_right, 0, pad_bottom) hidden_states = nn.functional.pad(hidden_states, pad_values) return hidden_states, pad_values def forward( self, hidden_states: torch.Tensor, input_dimensions: Tuple[int, int], head_mask: Optional[torch.FloatTensor] = None, output_attentions: Optional[bool] = False, ) -> Tuple[torch.Tensor, torch.Tensor]: height, width = input_dimensions batch_size, _, channels = hidden_states.size() shortcut = hidden_states # pad hidden_states to multiples of window size hidden_states = hidden_states.view(batch_size, height, width, channels) hidden_states, pad_values = self.maybe_pad(hidden_states, height, width) _, height_pad, width_pad, _ = hidden_states.shape # cyclic shift if self.shift_size > 0: shifted_hidden_states = torch.roll(hidden_states, shifts=(-self.shift_size, -self.shift_size), dims=(1, 2)) else: shifted_hidden_states = hidden_states # partition windows hidden_states_windows = window_partition(shifted_hidden_states, self.window_size) hidden_states_windows = hidden_states_windows.view(-1, self.window_size * self.window_size, channels) attn_mask = self.get_attn_mask(height_pad, width_pad, dtype=hidden_states.dtype) if attn_mask is not None: attn_mask = attn_mask.to(hidden_states_windows.device) attention_outputs = self.attention( hidden_states_windows, attn_mask, head_mask, output_attentions=output_attentions ) attention_output = attention_outputs[0] attention_windows = attention_output.view(-1, self.window_size, self.window_size, channels) shifted_windows = window_reverse(attention_windows, self.window_size, height_pad, width_pad) # reverse cyclic shift if self.shift_size > 0: attention_windows = torch.roll(shifted_windows, shifts=(self.shift_size, self.shift_size), dims=(1, 2)) else: attention_windows = shifted_windows was_padded = pad_values[3] > 0 or pad_values[5] > 0 if was_padded: attention_windows = attention_windows[:, :height, :width, :].contiguous() attention_windows = attention_windows.view(batch_size, height * width, channels) hidden_states = self.layernorm_before(attention_windows) hidden_states = shortcut + self.drop_path(hidden_states) layer_output = self.intermediate(hidden_states) layer_output = self.output(layer_output) layer_output = hidden_states + self.drop_path(self.layernorm_after(layer_output)) layer_outputs = (layer_output, attention_outputs[1]) if output_attentions else (layer_output,) return layer_outputs class Swin2SRStage(nn.Module): """ This corresponds to the Residual Swin Transformer Block (RSTB) in the original implementation. """ def __init__(self, config, dim, input_resolution, depth, num_heads, drop_path, pretrained_window_size=0): super().__init__() self.config = config self.dim = dim self.layers = nn.ModuleList( [ Swin2SRLayer( config=config, dim=dim, input_resolution=input_resolution, num_heads=num_heads, shift_size=0 if (i % 2 == 0) else config.window_size // 2, pretrained_window_size=pretrained_window_size, ) for i in range(depth) ] ) if config.resi_connection == "1conv": self.conv = nn.Conv2d(dim, dim, 3, 1, 1) elif config.resi_connection == "3conv": # to save parameters and memory self.conv = nn.Sequential( nn.Conv2d(dim, dim // 4, 3, 1, 1), nn.LeakyReLU(negative_slope=0.2, inplace=True), nn.Conv2d(dim // 4, dim // 4, 1, 1, 0), nn.LeakyReLU(negative_slope=0.2, inplace=True), nn.Conv2d(dim // 4, dim, 3, 1, 1), ) self.patch_embed = Swin2SRPatchEmbeddings(config, normalize_patches=False) self.patch_unembed = Swin2SRPatchUnEmbeddings(config) def forward( self, hidden_states: torch.Tensor, input_dimensions: Tuple[int, int], head_mask: Optional[torch.FloatTensor] = None, output_attentions: Optional[bool] = False, ) -> Tuple[torch.Tensor]: residual = hidden_states height, width = input_dimensions for i, layer_module in enumerate(self.layers): layer_head_mask = head_mask[i] if head_mask is not None else None layer_outputs = layer_module(hidden_states, input_dimensions, layer_head_mask, output_attentions) hidden_states = layer_outputs[0] output_dimensions = (height, width, height, width) hidden_states = self.patch_unembed(hidden_states, input_dimensions) hidden_states = self.conv(hidden_states) hidden_states, _ = self.patch_embed(hidden_states) hidden_states = hidden_states + residual stage_outputs = (hidden_states, output_dimensions) if output_attentions: stage_outputs += layer_outputs[1:] return stage_outputs class Swin2SREncoder(nn.Module): def __init__(self, config, grid_size): super().__init__() self.num_stages = len(config.depths) self.config = config dpr = [x.item() for x in torch.linspace(0, config.drop_path_rate, sum(config.depths))] self.stages = nn.ModuleList( [ Swin2SRStage( config=config, dim=config.embed_dim, input_resolution=(grid_size[0], grid_size[1]), depth=config.depths[stage_idx], num_heads=config.num_heads[stage_idx], drop_path=dpr[sum(config.depths[:stage_idx]) : sum(config.depths[: stage_idx + 1])], pretrained_window_size=0, ) for stage_idx in range(self.num_stages) ] ) self.gradient_checkpointing = False def forward( self, hidden_states: torch.Tensor, input_dimensions: Tuple[int, int], head_mask: Optional[torch.FloatTensor] = None, output_attentions: Optional[bool] = False, output_hidden_states: Optional[bool] = False, return_dict: Optional[bool] = True, ) -> Union[Tuple, Swin2SREncoderOutput]: all_input_dimensions = () all_hidden_states = () if output_hidden_states else None all_self_attentions = () if output_attentions else None if output_hidden_states: all_hidden_states += (hidden_states,) for i, stage_module in enumerate(self.stages): layer_head_mask = head_mask[i] if head_mask is not None else None if self.gradient_checkpointing and self.training: layer_outputs = self._gradient_checkpointing_func( stage_module.__call__, hidden_states, input_dimensions, layer_head_mask, output_attentions ) else: layer_outputs = stage_module(hidden_states, input_dimensions, layer_head_mask, output_attentions) hidden_states = layer_outputs[0] output_dimensions = layer_outputs[1] input_dimensions = (output_dimensions[-2], output_dimensions[-1]) all_input_dimensions += (input_dimensions,) if output_hidden_states: all_hidden_states += (hidden_states,) if output_attentions: all_self_attentions += layer_outputs[2:] if not return_dict: return tuple(v for v in [hidden_states, all_hidden_states, all_self_attentions] if v is not None) return Swin2SREncoderOutput( last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_self_attentions, ) class Swin2SRPreTrainedModel(PreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = Swin2SRConfig base_model_prefix = "swin2sr" main_input_name = "pixel_values" supports_gradient_checkpointing = True def _init_weights(self, module): """Initialize the weights""" if isinstance(module, (nn.Linear, nn.Conv2d)): torch.nn.init.trunc_normal_(module.weight.data, std=self.config.initializer_range) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.LayerNorm): module.bias.data.zero_() module.weight.data.fill_(1.0) SWIN2SR_START_DOCSTRING = r""" This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`Swin2SRConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ SWIN2SR_INPUTS_DOCSTRING = r""" Args: pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`Swin2SRImageProcessor.__call__`] for details. head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ @add_start_docstrings( "The bare Swin2SR Model transformer outputting raw hidden-states without any specific head on top.", SWIN2SR_START_DOCSTRING, ) class Swin2SRModel(Swin2SRPreTrainedModel): def __init__(self, config): super().__init__(config) self.config = config if config.num_channels == 3 and config.num_channels_out == 3: rgb_mean = (0.4488, 0.4371, 0.4040) self.mean = torch.Tensor(rgb_mean).view(1, 3, 1, 1) else: self.mean = torch.zeros(1, 1, 1, 1) self.img_range = config.img_range self.first_convolution = nn.Conv2d(config.num_channels, config.embed_dim, 3, 1, 1) self.embeddings = Swin2SREmbeddings(config) self.encoder = Swin2SREncoder(config, grid_size=self.embeddings.patch_embeddings.patches_resolution) self.layernorm = nn.LayerNorm(config.embed_dim, eps=config.layer_norm_eps) self.patch_unembed = Swin2SRPatchUnEmbeddings(config) self.conv_after_body = nn.Conv2d(config.embed_dim, config.embed_dim, 3, 1, 1) # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.embeddings.patch_embeddings def _prune_heads(self, heads_to_prune): """ Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base class PreTrainedModel """ for layer, heads in heads_to_prune.items(): self.encoder.layer[layer].attention.prune_heads(heads) def pad_and_normalize(self, pixel_values): _, _, height, width = pixel_values.size() # 1. pad window_size = self.config.window_size modulo_pad_height = (window_size - height % window_size) % window_size modulo_pad_width = (window_size - width % window_size) % window_size pixel_values = nn.functional.pad(pixel_values, (0, modulo_pad_width, 0, modulo_pad_height), "reflect") # 2. normalize self.mean = self.mean.type_as(pixel_values) pixel_values = (pixel_values - self.mean) * self.img_range return pixel_values @add_start_docstrings_to_model_forward(SWIN2SR_INPUTS_DOCSTRING) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=BaseModelOutput, config_class=_CONFIG_FOR_DOC, modality="vision", expected_output=_EXPECTED_OUTPUT_SHAPE, ) def forward( self, pixel_values: torch.FloatTensor, head_mask: Optional[torch.FloatTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, BaseModelOutput]: output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] head_mask = self.get_head_mask(head_mask, len(self.config.depths)) _, _, height, width = pixel_values.shape # some preprocessing: padding + normalization pixel_values = self.pad_and_normalize(pixel_values) embeddings = self.first_convolution(pixel_values) embedding_output, input_dimensions = self.embeddings(embeddings) encoder_outputs = self.encoder( embedding_output, input_dimensions, head_mask=head_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = encoder_outputs[0] sequence_output = self.layernorm(sequence_output) sequence_output = self.patch_unembed(sequence_output, (height, width)) sequence_output = self.conv_after_body(sequence_output) + embeddings if not return_dict: output = (sequence_output,) + encoder_outputs[1:] return output return BaseModelOutput( last_hidden_state=sequence_output, hidden_states=encoder_outputs.hidden_states, attentions=encoder_outputs.attentions, ) class Upsample(nn.Module): """Upsample module. Args: scale (`int`): Scale factor. Supported scales: 2^n and 3. num_features (`int`): Channel number of intermediate features. """ def __init__(self, scale, num_features): super().__init__() self.scale = scale if (scale & (scale - 1)) == 0: # scale = 2^n for i in range(int(math.log(scale, 2))): self.add_module(f"convolution_{i}", nn.Conv2d(num_features, 4 * num_features, 3, 1, 1)) self.add_module(f"pixelshuffle_{i}", nn.PixelShuffle(2)) elif scale == 3: self.convolution = nn.Conv2d(num_features, 9 * num_features, 3, 1, 1) self.pixelshuffle = nn.PixelShuffle(3) else: raise ValueError(f"Scale {scale} is not supported. Supported scales: 2^n and 3.") def forward(self, hidden_state): if (self.scale & (self.scale - 1)) == 0: for i in range(int(math.log(self.scale, 2))): hidden_state = self.__getattr__(f"convolution_{i}")(hidden_state) hidden_state = self.__getattr__(f"pixelshuffle_{i}")(hidden_state) elif self.scale == 3: hidden_state = self.convolution(hidden_state) hidden_state = self.pixelshuffle(hidden_state) return hidden_state class UpsampleOneStep(nn.Module): """UpsampleOneStep module (the difference with Upsample is that it always only has 1conv + 1pixelshuffle) Used in lightweight SR to save parameters. Args: scale (int): Scale factor. Supported scales: 2^n and 3. in_channels (int): Channel number of intermediate features. out_channels (int): Channel number of output features. """ def __init__(self, scale, in_channels, out_channels): super().__init__() self.conv = nn.Conv2d(in_channels, (scale**2) * out_channels, 3, 1, 1) self.pixel_shuffle = nn.PixelShuffle(scale) def forward(self, x): x = self.conv(x) x = self.pixel_shuffle(x) return x class PixelShuffleUpsampler(nn.Module): def __init__(self, config, num_features): super().__init__() self.conv_before_upsample = nn.Conv2d(config.embed_dim, num_features, 3, 1, 1) self.activation = nn.LeakyReLU(inplace=True) self.upsample = Upsample(config.upscale, num_features) self.final_convolution = nn.Conv2d(num_features, config.num_channels_out, 3, 1, 1) def forward(self, sequence_output): x = self.conv_before_upsample(sequence_output) x = self.activation(x) x = self.upsample(x) x = self.final_convolution(x) return x class NearestConvUpsampler(nn.Module): def __init__(self, config, num_features): super().__init__() if config.upscale != 4: raise ValueError("The nearest+conv upsampler only supports an upscale factor of 4 at the moment.") self.conv_before_upsample = nn.Conv2d(config.embed_dim, num_features, 3, 1, 1) self.activation = nn.LeakyReLU(inplace=True) self.conv_up1 = nn.Conv2d(num_features, num_features, 3, 1, 1) self.conv_up2 = nn.Conv2d(num_features, num_features, 3, 1, 1) self.conv_hr = nn.Conv2d(num_features, num_features, 3, 1, 1) self.final_convolution = nn.Conv2d(num_features, config.num_channels_out, 3, 1, 1) self.lrelu = nn.LeakyReLU(negative_slope=0.2, inplace=True) def forward(self, sequence_output): sequence_output = self.conv_before_upsample(sequence_output) sequence_output = self.activation(sequence_output) sequence_output = self.lrelu( self.conv_up1(torch.nn.functional.interpolate(sequence_output, scale_factor=2, mode="nearest")) ) sequence_output = self.lrelu( self.conv_up2(torch.nn.functional.interpolate(sequence_output, scale_factor=2, mode="nearest")) ) reconstruction = self.final_convolution(self.lrelu(self.conv_hr(sequence_output))) return reconstruction class PixelShuffleAuxUpsampler(nn.Module): def __init__(self, config, num_features): super().__init__() self.upscale = config.upscale self.conv_bicubic = nn.Conv2d(config.num_channels, num_features, 3, 1, 1) self.conv_before_upsample = nn.Conv2d(config.embed_dim, num_features, 3, 1, 1) self.activation = nn.LeakyReLU(inplace=True) self.conv_aux = nn.Conv2d(num_features, config.num_channels, 3, 1, 1) self.conv_after_aux = nn.Sequential(nn.Conv2d(3, num_features, 3, 1, 1), nn.LeakyReLU(inplace=True)) self.upsample = Upsample(config.upscale, num_features) self.final_convolution = nn.Conv2d(num_features, config.num_channels_out, 3, 1, 1) def forward(self, sequence_output, bicubic, height, width): bicubic = self.conv_bicubic(bicubic) sequence_output = self.conv_before_upsample(sequence_output) sequence_output = self.activation(sequence_output) aux = self.conv_aux(sequence_output) sequence_output = self.conv_after_aux(aux) sequence_output = ( self.upsample(sequence_output)[:, :, : height * self.upscale, : width * self.upscale] + bicubic[:, :, : height * self.upscale, : width * self.upscale] ) reconstruction = self.final_convolution(sequence_output) return reconstruction, aux @add_start_docstrings( """ Swin2SR Model transformer with an upsampler head on top for image super resolution and restoration. """, SWIN2SR_START_DOCSTRING, ) class Swin2SRForImageSuperResolution(Swin2SRPreTrainedModel): def __init__(self, config): super().__init__(config) self.swin2sr = Swin2SRModel(config) self.upsampler = config.upsampler self.upscale = config.upscale # Upsampler num_features = 64 if self.upsampler == "pixelshuffle": self.upsample = PixelShuffleUpsampler(config, num_features) elif self.upsampler == "pixelshuffle_aux": self.upsample = PixelShuffleAuxUpsampler(config, num_features) elif self.upsampler == "pixelshuffledirect": # for lightweight SR (to save parameters) self.upsample = UpsampleOneStep(config.upscale, config.embed_dim, config.num_channels_out) elif self.upsampler == "nearest+conv": # for real-world SR (less artifacts) self.upsample = NearestConvUpsampler(config, num_features) else: # for image denoising and JPEG compression artifact reduction self.final_convolution = nn.Conv2d(config.embed_dim, config.num_channels_out, 3, 1, 1) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(SWIN2SR_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=ImageSuperResolutionOutput, config_class=_CONFIG_FOR_DOC) def forward( self, pixel_values: Optional[torch.FloatTensor] = None, head_mask: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, ImageSuperResolutionOutput]: r""" Returns: Example: ```python >>> import torch >>> import numpy as np >>> from PIL import Image >>> import requests >>> from transformers import AutoImageProcessor, Swin2SRForImageSuperResolution >>> processor = AutoImageProcessor.from_pretrained("caidas/swin2SR-classical-sr-x2-64") >>> model = Swin2SRForImageSuperResolution.from_pretrained("caidas/swin2SR-classical-sr-x2-64") >>> url = "https://huggingface.co/spaces/jjourney1125/swin2sr/resolve/main/samples/butterfly.jpg" >>> image = Image.open(requests.get(url, stream=True).raw) >>> # prepare image for the model >>> inputs = processor(image, return_tensors="pt") >>> # forward pass >>> with torch.no_grad(): ... outputs = model(**inputs) >>> output = outputs.reconstruction.data.squeeze().float().cpu().clamp_(0, 1).numpy() >>> output = np.moveaxis(output, source=0, destination=-1) >>> output = (output * 255.0).round().astype(np.uint8) # float32 to uint8 >>> # you can visualize `output` with `Image.fromarray` ```""" return_dict = return_dict if return_dict is not None else self.config.use_return_dict height, width = pixel_values.shape[2:] if self.config.upsampler == "pixelshuffle_aux": bicubic = nn.functional.interpolate( pixel_values, size=(height * self.upscale, width * self.upscale), mode="bicubic", align_corners=False, ) outputs = self.swin2sr( pixel_values, head_mask=head_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = outputs[0] if self.upsampler in ["pixelshuffle", "pixelshuffledirect", "nearest+conv"]: reconstruction = self.upsample(sequence_output) elif self.upsampler == "pixelshuffle_aux": reconstruction, aux = self.upsample(sequence_output, bicubic, height, width) aux = aux / self.swin2sr.img_range + self.swin2sr.mean else: reconstruction = pixel_values + self.final_convolution(sequence_output) reconstruction = reconstruction / self.swin2sr.img_range + self.swin2sr.mean reconstruction = reconstruction[:, :, : height * self.upscale, : width * self.upscale] loss = None if labels is not None: raise NotImplementedError("Training is not supported at the moment") if not return_dict: output = (reconstruction,) + outputs[1:] return ((loss,) + output) if loss is not None else output return ImageSuperResolutionOutput( loss=loss, reconstruction=reconstruction, hidden_states=outputs.hidden_states, attentions=outputs.attentions, )
transformers/src/transformers/models/swin2sr/modeling_swin2sr.py/0
{ "file_path": "transformers/src/transformers/models/swin2sr/modeling_swin2sr.py", "repo_id": "transformers", "token_count": 21694 }
125
# coding=utf-8 # Copyright 2021 T5 Authors and HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Flax T5 model.""" import copy from typing import Callable, Optional, Tuple import flax.linen as nn import jax import jax.numpy as jnp import numpy as np from flax.core.frozen_dict import FrozenDict, freeze, unfreeze from flax.linen import combine_masks, make_causal_mask from flax.linen import partitioning as nn_partitioning from flax.linen.attention import dot_product_attention_weights from flax.traverse_util import flatten_dict, unflatten_dict from jax.random import PRNGKey from ...modeling_flax_outputs import ( FlaxBaseModelOutput, FlaxBaseModelOutputWithPastAndCrossAttentions, FlaxCausalLMOutputWithCrossAttentions, FlaxSeq2SeqLMOutput, FlaxSeq2SeqModelOutput, ) from ...modeling_flax_utils import ( ACT2FN, FlaxPreTrainedModel, append_call_sample_docstring, append_replace_return_docstrings, overwrite_call_docstring, ) from ...utils import add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings from .configuration_t5 import T5Config logger = logging.get_logger(__name__) _CHECKPOINT_FOR_DOC = "google-t5/t5-small" _CONFIG_FOR_DOC = "T5Config" remat = nn_partitioning.remat # Copied from transformers.models.bart.modeling_flax_bart.shift_tokens_right def shift_tokens_right(input_ids: jnp.ndarray, pad_token_id: int, decoder_start_token_id: int) -> jnp.ndarray: """ Shift input ids one token to the right. """ shifted_input_ids = jnp.zeros_like(input_ids) shifted_input_ids = shifted_input_ids.at[:, 1:].set(input_ids[:, :-1]) shifted_input_ids = shifted_input_ids.at[:, 0].set(decoder_start_token_id) shifted_input_ids = jnp.where(shifted_input_ids == -100, pad_token_id, shifted_input_ids) return shifted_input_ids class FlaxT5LayerNorm(nn.Module): hidden_size: int dtype: jnp.dtype = jnp.float32 eps: float = 1e-6 weight_init: Callable[..., np.ndarray] = jax.nn.initializers.ones def setup(self): self.weight = self.param("weight", self.weight_init, (self.hidden_size,)) def __call__(self, hidden_states): """ Construct a layernorm module in the T5 style; No bias and no subtraction of mean. """ # layer norm should always be calculated in float32 variance = jnp.power(hidden_states.astype("f4"), 2).mean(axis=-1, keepdims=True) hidden_states = hidden_states / jnp.sqrt(variance + self.eps) return self.weight * hidden_states class FlaxT5DenseActDense(nn.Module): config: T5Config dtype: jnp.dtype = jnp.float32 def setup(self): wi_init_std = self.config.initializer_factor * (self.config.d_model**-0.5) wo_init_std = self.config.initializer_factor * (self.config.d_ff**-0.5) self.wi = nn.Dense( self.config.d_ff, use_bias=False, kernel_init=jax.nn.initializers.normal(wi_init_std), dtype=self.dtype, ) self.wo = nn.Dense( self.config.d_model, use_bias=False, kernel_init=jax.nn.initializers.normal(wo_init_std), dtype=self.dtype, ) self.dropout = nn.Dropout(self.config.dropout_rate) self.act = ACT2FN[self.config.dense_act_fn] def __call__(self, hidden_states, deterministic=True): hidden_states = self.wi(hidden_states) hidden_states = self.act(hidden_states) hidden_states = self.dropout(hidden_states, deterministic=deterministic) hidden_states = self.wo(hidden_states) return hidden_states class FlaxT5DenseGatedActDense(nn.Module): config: T5Config dtype: jnp.dtype = jnp.float32 # the dtype of the computation def setup(self): wi_init_std = self.config.initializer_factor * (self.config.d_model**-0.5) wo_init_std = self.config.initializer_factor * (self.config.d_ff**-0.5) self.wi_0 = nn.Dense( self.config.d_ff, use_bias=False, kernel_init=jax.nn.initializers.normal(wi_init_std), dtype=self.dtype, ) self.wi_1 = nn.Dense( self.config.d_ff, use_bias=False, kernel_init=jax.nn.initializers.normal(wi_init_std), dtype=self.dtype, ) self.wo = nn.Dense( self.config.d_model, use_bias=False, kernel_init=jax.nn.initializers.normal(wo_init_std), dtype=self.dtype, ) self.dropout = nn.Dropout(self.config.dropout_rate) self.act = ACT2FN[self.config.dense_act_fn] def __call__(self, hidden_states, deterministic): hidden_gelu = self.act(self.wi_0(hidden_states)) hidden_linear = self.wi_1(hidden_states) hidden_states = hidden_gelu * hidden_linear hidden_states = self.dropout(hidden_states, deterministic=deterministic) hidden_states = self.wo(hidden_states) return hidden_states class FlaxT5LayerFF(nn.Module): config: T5Config dtype: jnp.dtype = jnp.float32 # the dtype of the computation def setup(self): if self.config.is_gated_act: self.DenseReluDense = FlaxT5DenseGatedActDense(self.config, dtype=self.dtype) else: self.DenseReluDense = FlaxT5DenseActDense(self.config, dtype=self.dtype) self.layer_norm = FlaxT5LayerNorm(self.config.d_model, eps=self.config.layer_norm_epsilon, dtype=self.dtype) self.dropout = nn.Dropout(self.config.dropout_rate) def __call__(self, hidden_states, deterministic=True): forwarded_states = self.layer_norm(hidden_states) forwarded_states = self.DenseReluDense(forwarded_states, deterministic=deterministic) hidden_states = hidden_states + self.dropout(forwarded_states, deterministic=deterministic) return hidden_states class FlaxT5Attention(nn.Module): config: T5Config has_relative_attention_bias: bool = False causal: bool = False dtype: jnp.dtype = jnp.float32 # the dtype of the computation def setup(self): self.relative_attention_num_buckets = self.config.relative_attention_num_buckets self.relative_attention_max_distance = self.config.relative_attention_max_distance self.d_model = self.config.d_model self.key_value_proj_dim = self.config.d_kv self.n_heads = self.config.num_heads self.dropout = self.config.dropout_rate self.inner_dim = self.n_heads * self.key_value_proj_dim q_init_std = self.config.initializer_factor * ((self.inner_dim * self.key_value_proj_dim) ** -0.5) kv_init_std = self.config.initializer_factor * (self.inner_dim**-0.5) o_init_std = self.config.initializer_factor * (self.inner_dim**-0.5) self.q = nn.Dense( self.inner_dim, use_bias=False, kernel_init=jax.nn.initializers.normal(q_init_std), dtype=self.dtype, ) self.k = nn.Dense( self.inner_dim, use_bias=False, kernel_init=jax.nn.initializers.normal(kv_init_std), dtype=self.dtype, ) self.v = nn.Dense( self.inner_dim, use_bias=False, kernel_init=jax.nn.initializers.normal(kv_init_std), dtype=self.dtype, ) self.o = nn.Dense( self.d_model, use_bias=False, kernel_init=jax.nn.initializers.normal(o_init_std), dtype=self.dtype, ) if self.has_relative_attention_bias: self.relative_attention_bias = nn.Embed( self.relative_attention_num_buckets, self.n_heads, embedding_init=jax.nn.initializers.normal(kv_init_std), dtype=self.dtype, ) @staticmethod def _relative_position_bucket(relative_position, bidirectional=True, num_buckets=32, max_distance=128): """ Adapted from Mesh Tensorflow: https://github.com/tensorflow/mesh/blob/0cb87fe07da627bf0b7e60475d59f95ed6b5be3d/mesh_tensorflow/transformer/transformer_layers.py#L593 Translate relative position to a bucket number for relative attention. The relative position is defined as memory_position - query_position, i.e. the distance in tokens from the attending position to the attended-to position. If bidirectional=False, then positive relative positions are invalid. We use smaller buckets for small absolute relative_position and larger buckets for larger absolute relative_positions. All relative positions >=max_distance map to the same bucket. All relative positions <=-max_distance map to the same bucket. This should allow for more graceful generalization to longer sequences than the model has been trained on """ relative_buckets = 0 if bidirectional: num_buckets //= 2 relative_buckets += (relative_position > 0) * num_buckets relative_position = jnp.abs(relative_position) else: relative_position = -jnp.clip(relative_position, a_max=0) # now relative_position is in the range [0, inf) # half of the buckets are for exact increments in positions max_exact = num_buckets // 2 is_small = relative_position < max_exact # The other half of the buckets are for logarithmically bigger bins in positions up to max_distance relative_position_if_large = max_exact + ( jnp.log(relative_position / max_exact) / jnp.log(max_distance / max_exact) * (num_buckets - max_exact) ) relative_position_if_large = jnp.clip(relative_position_if_large, a_max=num_buckets - 1) relative_buckets += jnp.where(is_small, relative_position, relative_position_if_large) return relative_buckets.astype("i4") def compute_bias(self, query_length, key_length): """Compute binned relative position bias""" context_position = jnp.arange(query_length, dtype="i4")[:, None] memory_position = jnp.arange(key_length, dtype="i4")[None, :] relative_position = memory_position - context_position relative_position_bucket = self._relative_position_bucket( relative_position, bidirectional=(not self.causal), num_buckets=self.relative_attention_num_buckets, max_distance=self.relative_attention_max_distance, ) values = self.relative_attention_bias(relative_position_bucket) values = values.transpose((2, 0, 1))[None, :, :, :] return values def _split_heads(self, hidden_states): return hidden_states.reshape(hidden_states.shape[:2] + (self.n_heads, self.key_value_proj_dim)) def _merge_heads(self, hidden_states): return hidden_states.reshape(hidden_states.shape[:2] + (self.inner_dim,)) @nn.compact def _concatenate_to_cache(self, key, value, query, attention_mask): """ This function takes projected key, value states from a single input token and concatenates the states to cached states from previous steps. This function is slighly adapted from the official Flax repository: https://github.com/google/flax/blob/491ce18759622506588784b4fca0e4bf05f8c8cd/flax/linen/attention.py#L252 """ # detect if we're initializing by absence of existing cache data. is_initialized = self.has_variable("cache", "cached_key") cached_key = self.variable("cache", "cached_key", jnp.zeros, key.shape, key.dtype) cached_value = self.variable("cache", "cached_value", jnp.zeros, value.shape, value.dtype) cache_index = self.variable("cache", "cache_index", lambda: jnp.array(0, dtype=jnp.int32)) if is_initialized: *batch_dims, max_length, num_heads, depth_per_head = cached_key.value.shape # update key, value caches with our new 1d spatial slices cur_index = cache_index.value indices = (0,) * len(batch_dims) + (cur_index, 0, 0) key = jax.lax.dynamic_update_slice(cached_key.value, key, indices) value = jax.lax.dynamic_update_slice(cached_value.value, value, indices) cached_key.value = key cached_value.value = value num_updated_cache_vectors = query.shape[1] cache_index.value = cache_index.value + num_updated_cache_vectors # causal mask for cached decoder self-attention: our single query position should only attend to those key positions # that have already been generated and cached, not the remaining zero elements. pad_mask = jnp.broadcast_to( jnp.arange(max_length) < cur_index + num_updated_cache_vectors, tuple(batch_dims) + (1, num_updated_cache_vectors, max_length), ) attention_mask = combine_masks(pad_mask, attention_mask) return key, value, attention_mask def _create_position_bias( self, key_states, query_states, attention_mask, init_cache, seq_length, causal_attention_mask_shift ): cache_is_filled = self.causal and self.has_variable("cache", "cached_key") and (not init_cache) key_length = key_states.shape[1] query_length = key_length if cache_is_filled else query_states.shape[1] if self.has_relative_attention_bias: position_bias = self.compute_bias(query_length, key_length) elif attention_mask is not None: position_bias = jnp.zeros_like(attention_mask) else: position_bias = jnp.zeros((1, self.n_heads, query_length, key_length), dtype=self.dtype) # if key and values are already calculated, only the last query position bias should be taken if cache_is_filled: max_decoder_length = self.variables["cache"]["cached_key"].shape[1] position_bias = jax.lax.dynamic_slice( position_bias, (0, 0, causal_attention_mask_shift, 0), (1, self.n_heads, seq_length, max_decoder_length), ) return position_bias def __call__( self, hidden_states, attention_mask=None, key_value_states=None, position_bias=None, use_cache=False, output_attentions=False, deterministic=True, init_cache=False, ): """ Self-attention (if key_value_states is None) or attention over source sentence (provided by key_value_states). """ batch_size, seq_length = hidden_states.shape[:2] # q, k, v projections query_states = self.q(hidden_states) # (batch_size, n_heads, seq_length, dim_per_head) key_states = self.k(hidden_states) if key_value_states is None else self.k(key_value_states) value_states = self.v(hidden_states) if key_value_states is None else self.v(key_value_states) # reshape to (batch_size, seq_length, n_heads, head_dim) query_states = self._split_heads(query_states) key_states = self._split_heads(key_states) value_states = self._split_heads(value_states) # counter-act scaling in dot_product_attention_weights function query_states *= jnp.sqrt(query_states.shape[-1]) # for fast decoding causal attention mask should be shifted causal_attention_mask_shift = ( self.variables["cache"]["cache_index"] if (self.has_variable("cache", "cached_key") and self.causal) else 0 ) # create causal attention_mask; attention_mask has to be defined when model is causal if self.causal: causal_attention_mask = make_causal_mask(attention_mask, dtype="bool") # fast decoding for generate requires special attention_mask if self.has_variable("cache", "cached_key"): max_decoder_length = self.variables["cache"]["cached_key"].shape[1] causal_attention_mask = jax.lax.dynamic_slice( causal_attention_mask, (0, 0, causal_attention_mask_shift, 0), (1, 1, seq_length, max_decoder_length), ) # broadcast causal attention mask & attention mask to fit for merge causal_attention_mask = jnp.broadcast_to( causal_attention_mask, (batch_size,) + causal_attention_mask.shape[1:] ) attention_mask = jnp.broadcast_to( jnp.expand_dims(attention_mask, axis=(-3, -2)), causal_attention_mask.shape ) attention_mask = combine_masks(attention_mask, causal_attention_mask) elif attention_mask is not None: attention_mask = jnp.expand_dims(attention_mask, axis=(-3, -2)) # During fast autoregressive decoding, we feed one position at a time, # and cache the keys and values step by step. if self.causal and (self.has_variable("cache", "cached_key") or init_cache): key_states, value_states, attention_mask = self._concatenate_to_cache( key_states, value_states, query_states, attention_mask ) # replace masked positions with -10_000 if attention_mask is not None: mask_value = jnp.finfo(self.dtype).min attention_mask = jax.lax.select( attention_mask > 0, jnp.full(attention_mask.shape, 0.0).astype(self.dtype), jnp.full(attention_mask.shape, mask_value).astype(self.dtype), ) if position_bias is None: # compute position bias (only for first layer) position_bias = self._create_position_bias( key_states, query_states, attention_mask, init_cache, seq_length, causal_attention_mask_shift ) if attention_mask is not None: position_bias = position_bias + attention_mask # create dropout rng dropout_rng = None if not deterministic and self.dropout > 0.0: dropout_rng = self.make_rng("dropout") # Softmax(QK^T) attn_weights = dot_product_attention_weights( query_states, key_states, bias=position_bias, dropout_rng=dropout_rng, dropout_rate=self.dropout, broadcast_dropout=True, deterministic=deterministic, dtype=self.dtype, ) # multiply with value states attn_output = jnp.einsum("...hqk,...khd->...qhd", attn_weights, value_states) # bring back to (batch_size, seq_length, d_model) attn_output = self._merge_heads(attn_output) # apply output matrix attn_output = self.o(attn_output) outputs = (attn_output, position_bias) if output_attentions: outputs = outputs + (attn_weights,) return outputs class FlaxT5LayerSelfAttention(nn.Module): config: T5Config has_relative_attention_bias: bool = False dtype: jnp.dtype = jnp.float32 # the dtype of the computation def setup(self): self.SelfAttention = FlaxT5Attention( self.config, has_relative_attention_bias=self.has_relative_attention_bias, causal=self.config.causal, dtype=self.dtype, ) self.layer_norm = FlaxT5LayerNorm(self.config.d_model, eps=self.config.layer_norm_epsilon, dtype=self.dtype) self.dropout = nn.Dropout(self.config.dropout_rate) def __call__( self, hidden_states, attention_mask=None, position_bias=None, output_attentions=False, deterministic=True, init_cache=False, ): normed_hidden_states = self.layer_norm(hidden_states) attention_output = self.SelfAttention( normed_hidden_states, attention_mask=attention_mask, position_bias=position_bias, output_attentions=output_attentions, deterministic=deterministic, init_cache=init_cache, ) hidden_states = hidden_states + self.dropout(attention_output[0], deterministic=deterministic) outputs = (hidden_states,) + attention_output[1:] # add attentions if we output them return outputs class FlaxT5LayerCrossAttention(nn.Module): config: T5Config dtype: jnp.dtype = jnp.float32 # the dtype of the computation def setup(self): self.EncDecAttention = FlaxT5Attention( self.config, has_relative_attention_bias=False, causal=False, dtype=self.dtype ) self.layer_norm = FlaxT5LayerNorm(self.config.d_model, eps=self.config.layer_norm_epsilon, dtype=self.dtype) self.dropout = nn.Dropout(self.config.dropout_rate) def __call__( self, hidden_states, key_value_states, attention_mask=None, position_bias=None, output_attentions=False, deterministic=True, ): normed_hidden_states = self.layer_norm(hidden_states) attention_output = self.EncDecAttention( normed_hidden_states, attention_mask=attention_mask, key_value_states=key_value_states, position_bias=position_bias, output_attentions=output_attentions, ) hidden_states = hidden_states + self.dropout(attention_output[0], deterministic=deterministic) outputs = (hidden_states,) + attention_output[1:] # add attentions if we output them return outputs class FlaxT5Block(nn.Module): config: T5Config has_relative_attention_bias: bool = False dtype: jnp.dtype = jnp.float32 # the dtype of the computation def setup(self): self.causal = self.config.causal self.layer = ( FlaxT5LayerSelfAttention( self.config, has_relative_attention_bias=self.has_relative_attention_bias, name=str(0), dtype=self.dtype, ), ) feed_forward_index = 1 if self.causal: self.layer += (FlaxT5LayerCrossAttention(self.config, name=str(1), dtype=self.dtype),) feed_forward_index += 1 self.layer += (FlaxT5LayerFF(self.config, name=str(feed_forward_index), dtype=self.dtype),) def __call__( self, hidden_states, attention_mask=None, position_bias=None, encoder_hidden_states=None, encoder_attention_mask=None, encoder_decoder_position_bias=None, output_attentions=False, return_dict=True, deterministic=True, init_cache=False, ): self_attention_outputs = self.layer[0]( hidden_states, attention_mask=attention_mask, position_bias=position_bias, output_attentions=output_attentions, deterministic=deterministic, init_cache=init_cache, ) hidden_states = self_attention_outputs[0] attention_outputs = self_attention_outputs[1:] # Keep self-attention outputs and relative position weights do_cross_attention = self.causal and encoder_hidden_states is not None if do_cross_attention: cross_attention_outputs = self.layer[1]( hidden_states, key_value_states=encoder_hidden_states, attention_mask=encoder_attention_mask, position_bias=encoder_decoder_position_bias, output_attentions=output_attentions, deterministic=deterministic, ) hidden_states = cross_attention_outputs[0] # Keep cross-attention outputs and relative position weights attention_outputs = attention_outputs + cross_attention_outputs[1:] # Apply Feed Forward layer hidden_states = self.layer[-1](hidden_states, deterministic=deterministic) outputs = (hidden_states,) outputs = outputs + attention_outputs # returns hidden-states, present_key_value_states, (self-attention position bias), (self-attention weights), # (cross-attention position bias), (cross-attention weights) return outputs class FlaxT5LayerCollection(nn.Module): config: T5Config has_relative_attention_bias: bool dtype: jnp.dtype = jnp.float32 # the dtype of the computation def setup(self): self.layer = FlaxT5Block( self.config, has_relative_attention_bias=self.has_relative_attention_bias, dtype=self.dtype ) def __call__( self, hidden_states, attention_mask=None, position_bias=None, encoder_hidden_states=None, encoder_attention_mask=None, encoder_decoder_position_bias=None, output_attentions=False, deterministic=True, init_cache=False, ): return self.layer( hidden_states, attention_mask=attention_mask, position_bias=position_bias, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, encoder_decoder_position_bias=encoder_decoder_position_bias, output_attentions=output_attentions, deterministic=deterministic, init_cache=init_cache, ) class FlaxT5BlockCollection(nn.Module): config: T5Config dtype: jnp.dtype = jnp.float32 # the dtype of the computation gradient_checkpointing: bool = False def setup(self): self.causal = self.config.causal if self.gradient_checkpointing: FlaxT5CheckpointLayer = remat(FlaxT5LayerCollection, static_argnums=(6, 7, 8)) self.blocks = [ FlaxT5CheckpointLayer( self.config, has_relative_attention_bias=(i == 0), dtype=self.dtype, name=str(i), ) for i in range(self.config.num_layers) ] else: self.blocks = [ FlaxT5LayerCollection( self.config, has_relative_attention_bias=(i == 0), dtype=self.dtype, name=str(i), ) for i in range(self.config.num_layers) ] def __call__( self, hidden_states=None, attention_mask=None, encoder_hidden_states=None, encoder_attention_mask=None, output_attentions: bool = False, output_hidden_states: bool = False, deterministic: bool = True, init_cache: bool = False, ): # Prepare head mask if needed all_hidden_states = () if output_hidden_states else None all_attentions = () if output_attentions else None all_cross_attentions = () if (output_attentions and self.causal) else None position_bias = None encoder_decoder_position_bias = None for i, layer_module in enumerate(self.blocks): if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) layer_outputs = layer_module( hidden_states, attention_mask, position_bias, encoder_hidden_states, encoder_attention_mask, encoder_decoder_position_bias, output_attentions, deterministic, init_cache, ) hidden_states = layer_outputs[0] # We share the position biases between the layers - the first layer store them # layer_outputs = hidden-states, key-value-states (self-attention position bias), (self-attention weights), # (cross-attention position bias), (cross-attention weights) position_bias = layer_outputs[1] if self.causal and encoder_hidden_states is not None: encoder_decoder_position_bias = layer_outputs[3 if output_attentions else 2] if output_attentions: all_attentions = all_attentions + (layer_outputs[2],) if self.causal: all_cross_attentions = all_cross_attentions + (layer_outputs[4],) return FlaxBaseModelOutputWithPastAndCrossAttentions( last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_attentions, cross_attentions=all_cross_attentions, ) class FlaxT5Stack(nn.Module): config: T5Config embed_tokens: nn.Embed dtype: jnp.dtype = jnp.float32 # the dtype of the computation gradient_checkpointing: bool = False def setup(self): self.causal = self.config.causal self.block = FlaxT5BlockCollection( self.config, dtype=self.dtype, gradient_checkpointing=self.gradient_checkpointing ) self.final_layer_norm = FlaxT5LayerNorm( self.config.d_model, eps=self.config.layer_norm_epsilon, dtype=self.dtype ) self.dropout = nn.Dropout(self.config.dropout_rate) def __call__( self, input_ids=None, attention_mask=None, encoder_hidden_states=None, encoder_attention_mask=None, output_attentions: bool = False, output_hidden_states: bool = False, return_dict: bool = True, deterministic: bool = True, init_cache: bool = False, ): hidden_states = self.embed_tokens(input_ids) hidden_states = self.dropout(hidden_states, deterministic=deterministic) outputs = self.block( hidden_states, attention_mask=attention_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, deterministic=deterministic, init_cache=init_cache, ) hidden_states = outputs[0] hidden_states = self.final_layer_norm(hidden_states) hidden_states = self.dropout(hidden_states, deterministic=deterministic) # Add last layer all_hidden_states = None if output_hidden_states: all_hidden_states = outputs.hidden_states all_hidden_states = all_hidden_states + (hidden_states,) if not return_dict: if output_hidden_states: return ( hidden_states, all_hidden_states, ) + outputs[2:] return (hidden_states,) + outputs[1:] return FlaxBaseModelOutputWithPastAndCrossAttentions( last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=outputs.attentions, cross_attentions=outputs.cross_attentions, ) T5_ENCODE_INPUTS_DOCSTRING = r""" Args: input_ids (`jnp.ndarray` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. T5 is a model with relative position embeddings so you should be able to pad the inputs on both the right and the left. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for detail. To know more on how to prepare `input_ids` for pretraining take a look a [T5 Training](./t5#training). attention_mask (`jnp.ndarray` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ T5_DECODE_INPUTS_DOCSTRING = r""" Args: decoder_input_ids (`jnp.ndarray` of shape `(batch_size, target_sequence_length)`): Indices of decoder input sequence tokens in the vocabulary. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are decoder input IDs?](../glossary#decoder-input-ids) For training, `decoder_input_ids` should be provided. encoder_outputs (`tuple(tuple(jnp.ndarray)`): Tuple consists of (`last_hidden_state`, *optional*: `hidden_states`, *optional*: `attentions`) `last_hidden_state` of shape `(batch_size, sequence_length, hidden_size)`, *optional*) is a sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention of the decoder. encoder_attention_mask (`jnp.ndarray` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) decoder_attention_mask (`jnp.ndarray` of shape `(batch_size, target_sequence_length)`, *optional*): Default behavior: generate a tensor that ignores pad tokens in `decoder_input_ids`. Causal mask will also be used by default. If you want to change padding behavior, you should modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more information on the default strategy. past_key_values (`Dict[str, np.ndarray]`, *optional*, returned by `init_cache` or when passing previous `past_key_values`): Dictionary of pre-computed hidden-states (key and values in the attention blocks) that can be used for fast auto-regressive decoding. Pre-computed key and value hidden-states are of shape *[batch_size, max_length]*. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ T5_INPUTS_DOCSTRING = r""" Args: input_ids (`jnp.ndarray` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. T5 is a model with relative position embeddings so you should be able to pad the inputs on both the right and the left. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for detail. [What are input IDs?](../glossary#input-ids) To know more on how to prepare `input_ids` for pretraining take a look a [T5 Training](./t5#training). attention_mask (`jnp.ndarray` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) decoder_input_ids (`jnp.ndarray` of shape `(batch_size, target_sequence_length)`, *optional*): Indices of decoder input sequence tokens in the vocabulary. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are decoder input IDs?](../glossary#decoder-input-ids) T5 uses the `pad_token_id` as the starting token for `decoder_input_ids` generation. If `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see `past_key_values`). To know more on how to prepare `decoder_input_ids` for pretraining take a look at [T5 Training](./t5#training). decoder_attention_mask (`jnp.ndarray` of shape `(batch_size, target_sequence_length)`, *optional*): Default behavior: generate a tensor that ignores pad tokens in `decoder_input_ids`. Causal mask will also be used by default. encoder_outputs (`tuple(tuple(jnp.ndarray)`, *optional*): Tuple consists of (`last_hidden_state`, `optional`: *hidden_states*, `optional`: *attentions*) `last_hidden_state` of shape `(batch_size, sequence_length, hidden_size)` is a sequence of hidden states at the output of the last layer of the encoder. Used in the cross-attention of the decoder. past_key_values (`tuple(tuple(jnp.ndarray))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`): Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding. If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `decoder_input_ids` of shape `(batch_size, sequence_length)`. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ class FlaxT5PreTrainedModel(FlaxPreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = T5Config base_model_prefix = "transformer" module_class: nn.Module = None def __init__( self, config: T5Config, input_shape: Tuple[int] = (1, 1), seed: int = 0, dtype: jnp.dtype = jnp.float32, _do_init: bool = True, gradient_checkpointing: bool = False, **kwargs, ): module = self.module_class(config=config, dtype=dtype, gradient_checkpointing=gradient_checkpointing, **kwargs) super().__init__(config, module, input_shape=input_shape, seed=seed, dtype=dtype, _do_init=_do_init) def enable_gradient_checkpointing(self): self._module = self.module_class( config=self.config, dtype=self.dtype, gradient_checkpointing=True, ) def init_weights(self, rng: jax.random.PRNGKey, input_shape: Tuple, params: FrozenDict = None) -> FrozenDict: # init input tensors input_ids = jnp.zeros(input_shape, dtype="i4") attention_mask = jnp.ones_like(input_ids) args = [input_ids, attention_mask] if self.module_class not in [FlaxT5EncoderModule]: decoder_input_ids = jnp.ones_like(input_ids) decoder_attention_mask = jnp.ones_like(input_ids) args.extend([decoder_input_ids, decoder_attention_mask]) params_rng, dropout_rng = jax.random.split(rng) rngs = {"params": params_rng, "dropout": dropout_rng} random_params = self.module.init( rngs, *args, )["params"] if params is not None: random_params = flatten_dict(unfreeze(random_params)) params = flatten_dict(unfreeze(params)) for missing_key in self._missing_keys: params[missing_key] = random_params[missing_key] self._missing_keys = set() return freeze(unflatten_dict(params)) else: return random_params @add_start_docstrings_to_model_forward(T5_INPUTS_DOCSTRING) def __call__( self, input_ids: jnp.ndarray, attention_mask: Optional[jnp.ndarray] = None, decoder_input_ids: jnp.ndarray = None, decoder_attention_mask: Optional[jnp.ndarray] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, train: bool = False, params: dict = None, dropout_rng: PRNGKey = None, ): output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.return_dict if decoder_input_ids is None: raise ValueError( "Make sure to provide both `input_ids` and `decoder_input_ids`. `decoder_input_ids` is not passed" " here." ) # prepare encoder inputs if attention_mask is None: attention_mask = jnp.ones_like(input_ids) # prepare decoder inputs if decoder_attention_mask is None: decoder_attention_mask = jnp.ones_like(decoder_input_ids) # Handle any PRNG if needed rngs = {"dropout": dropout_rng} if dropout_rng is not None else {} return self.module.apply( {"params": params or self.params}, input_ids=jnp.array(input_ids, dtype="i4"), attention_mask=jnp.array(attention_mask, dtype="i4"), decoder_input_ids=jnp.array(decoder_input_ids, dtype="i4"), decoder_attention_mask=jnp.array(decoder_attention_mask, dtype="i4"), output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, deterministic=not train, rngs=rngs, ) def init_cache(self, batch_size, max_length, encoder_outputs): r""" Args: batch_size (`int`): batch_size used for fast auto-regressive decoding. Defines the batch size of the initialized cache. max_length (`int`): maximum possible length for auto-regressive decoding. Defines the sequence length of the initialized cache. encoder_outputs (`Union[FlaxBaseModelOutput, tuple(tuple(jnp.ndarray)]`): `encoder_outputs` consists of (`last_hidden_state`, *optional*: `hidden_states`, *optional*: `attentions`). `last_hidden_state` of shape `(batch_size, sequence_length, hidden_size)`, *optional*) is a sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention of the decoder. """ # init input variables to retrieve cache decoder_input_ids = jnp.ones((batch_size, max_length), dtype="i4") decoder_attention_mask = jnp.ones_like(decoder_input_ids) def _decoder_forward(module, decoder_input_ids, decoder_attention_mask, **kwargs): decoder_module = module._get_decoder_module() return decoder_module( decoder_input_ids, decoder_attention_mask, **kwargs, ) init_variables = self.module.init( jax.random.PRNGKey(0), decoder_input_ids=decoder_input_ids, decoder_attention_mask=decoder_attention_mask, encoder_hidden_states=encoder_outputs[0], init_cache=True, method=_decoder_forward, # we only need to call the decoder to init the cache ) return unfreeze(init_variables["cache"]) @add_start_docstrings(T5_ENCODE_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=FlaxBaseModelOutput, config_class=T5Config) def encode( self, input_ids: jnp.ndarray, attention_mask: Optional[jnp.ndarray] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, train: bool = False, params: dict = None, dropout_rng: PRNGKey = None, ): r""" Returns: Example: ```python >>> from transformers import AutoTokenizer, FlaxT5ForConditionalGeneration >>> tokenizer = AutoTokenizer.from_pretrained("google-t5/t5-small") >>> model = FlaxT5ForConditionalGeneration.from_pretrained("google-t5/t5-small") >>> text = "My friends are cool but they eat too many carbs." >>> inputs = tokenizer(text, return_tensors="np") >>> encoder_outputs = model.encode(**inputs) ```""" output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.return_dict if attention_mask is None: attention_mask = jnp.ones_like(input_ids) # Handle any PRNG if needed rngs = {} if dropout_rng is not None: rngs["dropout"] = dropout_rng def _encoder_forward(module, input_ids, attention_mask, **kwargs): encode_module = module._get_encoder_module() return encode_module(input_ids, attention_mask, **kwargs) return self.module.apply( {"params": params or self.params}, input_ids=jnp.array(input_ids, dtype="i4"), attention_mask=jnp.array(attention_mask, dtype="i4"), output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, deterministic=not train, rngs=rngs, method=_encoder_forward, ) @add_start_docstrings(T5_DECODE_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=FlaxBaseModelOutputWithPastAndCrossAttentions, config_class=T5Config) def decode( self, decoder_input_ids, encoder_outputs, encoder_attention_mask: Optional[jnp.ndarray] = None, decoder_attention_mask: Optional[jnp.ndarray] = None, past_key_values: dict = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, train: bool = False, params: dict = None, dropout_rng: PRNGKey = None, ): r""" Returns: Example: ```python >>> from transformers import AutoTokenizer, FlaxT5ForConditionalGeneration >>> import jax.numpy as jnp >>> tokenizer = AutoTokenizer.from_pretrained("google-t5/t5-small") >>> model = FlaxT5ForConditionalGeneration.from_pretrained("google-t5/t5-small") >>> text = "My friends are cool but they eat too many carbs." >>> inputs = tokenizer(text, return_tensors="np") >>> encoder_outputs = model.encode(**inputs) >>> decoder_start_token_id = model.config.decoder_start_token_id >>> decoder_input_ids = jnp.ones((inputs.input_ids.shape[0], 1), dtype="i4") * decoder_start_token_id >>> outputs = model.decode(decoder_input_ids, encoder_outputs) >>> logits = outputs.logits ```""" output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.return_dict encoder_hidden_states = encoder_outputs[0] if encoder_attention_mask is None: batch_size, sequence_length = encoder_hidden_states.shape[:2] encoder_attention_mask = jnp.ones((batch_size, sequence_length)) batch_size, sequence_length = decoder_input_ids.shape if decoder_attention_mask is None: decoder_attention_mask = jnp.ones((batch_size, sequence_length)) # Handle any PRNG if needed rngs = {} if dropout_rng is not None: rngs["dropout"] = dropout_rng inputs = {"params": params or self.params} # if past_key_values are passed then cache is already initialized a private flag init_cache has to be # passed down to ensure cache is used. It has to be made sure that cache is marked as mutable so that # it can be changed by FlaxT5Attention module if past_key_values: inputs["cache"] = past_key_values mutable = ["cache"] else: mutable = False def _decoder_forward(module, decoder_input_ids, decoder_attention_mask, **kwargs): decoder_module = module._get_decoder_module() return decoder_module( decoder_input_ids, decoder_attention_mask, **kwargs, ) outputs = self.module.apply( inputs, decoder_input_ids=jnp.array(decoder_input_ids, dtype="i4"), decoder_attention_mask=jnp.array(decoder_attention_mask, dtype="i4"), encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=jnp.array(encoder_attention_mask, dtype="i4"), output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, deterministic=not train, rngs=rngs, mutable=mutable, method=_decoder_forward, ) # add updated cache to model output if past_key_values is not None and return_dict: outputs, past = outputs outputs["past_key_values"] = unfreeze(past["cache"]) return outputs elif past_key_values is not None and not return_dict: outputs, past = outputs outputs = outputs[:1] + (unfreeze(past["cache"]),) + outputs[1:] return outputs T5_START_DOCSTRING = r""" The T5 model was proposed in [Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer](https://arxiv.org/abs/1910.10683) by Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi Zhou, Wei Li, Peter J. Liu. It's an encoder decoder transformer pre-trained in a text-to-text denoising generative setting. This model inherits from [`FlaxPreTrainedModel`]. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.) This model is also a Flax Linen [flax.nn.Module](https://flax.readthedocs.io/en/latest/_autosummary/flax.nn.module.html) subclass. Use it as a regular Flax Module and refer to the Flax documentation for all matter related to general usage and behavior. Finally, this model supports inherent JAX features such as: - [Just-In-Time (JIT) compilation](https://jax.readthedocs.io/en/latest/jax.html#just-in-time-compilation-jit) - [Automatic Differentiation](https://jax.readthedocs.io/en/latest/jax.html#automatic-differentiation) - [Vectorization](https://jax.readthedocs.io/en/latest/jax.html#vectorization-vmap) - [Parallelization](https://jax.readthedocs.io/en/latest/jax.html#parallelization-pmap) Parameters: config ([`T5Config`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~FlaxPreTrainedModel.from_pretrained`] method to load the model weights. dtype (`jax.numpy.dtype`, *optional*, defaults to `jax.numpy.float32`): The data type of the computation. Can be one of `jax.numpy.float32`, `jax.numpy.float16` (on GPUs) and `jax.numpy.bfloat16` (on TPUs). This can be used to enable mixed-precision training or half-precision inference on GPUs or TPUs. If specified all the computation will be performed with the given `dtype`. **Note that this only specifies the dtype of the computation and does not influence the dtype of model parameters.** If you wish to change the dtype of the model parameters, see [`~FlaxPreTrainedModel.to_fp16`] and [`~FlaxPreTrainedModel.to_bf16`]. """ @add_start_docstrings( "The bare T5 Model transformer outputting raw hidden-stateswithout any specific head on top.", T5_START_DOCSTRING, ) class FlaxT5Module(nn.Module): config: T5Config dtype: jnp.dtype = jnp.float32 # the dtype of the computation gradient_checkpointing: bool = False def _get_encoder_module(self): return self.encoder def _get_decoder_module(self): return self.decoder def setup(self): self.shared = nn.Embed( self.config.vocab_size, self.config.d_model, embedding_init=jax.nn.initializers.normal(self.config.initializer_factor * 1.0), dtype=self.dtype, ) encoder_config = copy.deepcopy(self.config) encoder_config.causal = False self.encoder = FlaxT5Stack( encoder_config, embed_tokens=self.shared, dtype=self.dtype, gradient_checkpointing=self.gradient_checkpointing, ) decoder_config = copy.deepcopy(self.config) decoder_config.causal = True decoder_config.num_layers = self.config.num_decoder_layers self.decoder = FlaxT5Stack( decoder_config, embed_tokens=self.shared, dtype=self.dtype, gradient_checkpointing=self.gradient_checkpointing, ) def __call__( self, input_ids=None, attention_mask=None, decoder_input_ids=None, decoder_attention_mask=None, encoder_outputs=None, output_attentions=None, output_hidden_states=None, return_dict=None, deterministic: bool = True, ): return_dict = return_dict if return_dict is not None else self.config.use_return_dict # Encode if needed (training, first prediction pass) encoder_outputs = self.encoder( input_ids=input_ids, attention_mask=attention_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, deterministic=deterministic, ) # Decode decoder_outputs = self.decoder( input_ids=decoder_input_ids, attention_mask=decoder_attention_mask, encoder_hidden_states=encoder_outputs[0], encoder_attention_mask=attention_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, deterministic=deterministic, ) if not return_dict: return decoder_outputs + encoder_outputs return FlaxSeq2SeqModelOutput( last_hidden_state=decoder_outputs.last_hidden_state, past_key_values=decoder_outputs.past_key_values, decoder_hidden_states=decoder_outputs.hidden_states, decoder_attentions=decoder_outputs.attentions, cross_attentions=decoder_outputs.cross_attentions, encoder_last_hidden_state=encoder_outputs.last_hidden_state, encoder_hidden_states=encoder_outputs.hidden_states, encoder_attentions=encoder_outputs.attentions, ) class FlaxT5Model(FlaxT5PreTrainedModel): module_class = FlaxT5Module append_call_sample_docstring(FlaxT5Model, _CHECKPOINT_FOR_DOC, FlaxSeq2SeqModelOutput, _CONFIG_FOR_DOC) FLAX_T5_MODEL_DOCSTRING = """ Returns: Example: ```python >>> from transformers import AutoTokenizer, FlaxT5Model >>> tokenizer = AutoTokenizer.from_pretrained("google-t5/t5-small") >>> model = FlaxT5Model.from_pretrained("google-t5/t5-small") >>> input_ids = tokenizer( ... "Studies have been shown that owning a dog is good for you", return_tensors="np" ... ).input_ids >>> decoder_input_ids = tokenizer("Studies show that", return_tensors="np").input_ids >>> # preprocess: Prepend decoder_input_ids with start token which is pad token for T5Model. >>> # This is not needed for torch's T5ForConditionalGeneration as it does this internally using labels arg. >>> decoder_input_ids = model._shift_right(decoder_input_ids) >>> # forward pass >>> outputs = model(input_ids=input_ids, decoder_input_ids=decoder_input_ids) >>> last_hidden_states = outputs.last_hidden_state ``` """ overwrite_call_docstring(FlaxT5Model, T5_INPUTS_DOCSTRING + FLAX_T5_MODEL_DOCSTRING) append_replace_return_docstrings(FlaxT5Model, output_type=FlaxSeq2SeqLMOutput, config_class=_CONFIG_FOR_DOC) @add_start_docstrings( "The bare T5 Model transformer outputting encoder's raw hidden-states without any specific head on top.", T5_START_DOCSTRING, ) class FlaxT5EncoderModule(nn.Module): config: T5Config dtype: jnp.dtype = jnp.float32 # the dtype of the computation gradient_checkpointing: bool = False def setup(self): self.shared = nn.Embed( self.config.vocab_size, self.config.d_model, embedding_init=jax.nn.initializers.normal(self.config.initializer_factor * 1.0), dtype=self.dtype, ) encoder_config = copy.deepcopy(self.config) encoder_config.is_decoder = False encoder_config.is_encoder_decoder = False encoder_config.causal = False self.encoder = FlaxT5Stack( encoder_config, embed_tokens=self.shared, dtype=self.dtype, gradient_checkpointing=self.gradient_checkpointing, ) def __call__( self, input_ids=None, attention_mask=None, output_attentions=False, output_hidden_states=False, return_dict: bool = True, deterministic: bool = True, ): # Encode if needed (training, first prediction pass) encoder_outputs = self.encoder( input_ids=input_ids, attention_mask=attention_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, deterministic=deterministic, ) return encoder_outputs class FlaxT5EncoderModel(FlaxT5PreTrainedModel): module_class = FlaxT5EncoderModule @add_start_docstrings_to_model_forward(T5_ENCODE_INPUTS_DOCSTRING) def __call__( self, input_ids: jnp.ndarray, attention_mask: Optional[jnp.ndarray] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, train: bool = False, params: dict = None, dropout_rng: PRNGKey = None, ): output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.return_dict # prepare encoder inputs if attention_mask is None: attention_mask = jnp.ones_like(input_ids) # Handle any PRNG if needed rngs = {"dropout": dropout_rng} if dropout_rng is not None else {} return self.module.apply( {"params": params or self.params}, input_ids=jnp.array(input_ids, dtype="i4"), attention_mask=jnp.array(attention_mask, dtype="i4"), output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, deterministic=not train, rngs=rngs, ) @add_start_docstrings("""T5 Model with a `language modeling` head on top.""", T5_START_DOCSTRING) class FlaxT5ForConditionalGenerationModule(nn.Module): config: T5Config dtype: jnp.dtype = jnp.float32 # the dtype of the computation gradient_checkpointing: bool = False def _get_encoder_module(self): return self.encoder def _get_decoder_module(self): return self.decoder def setup(self): self.model_dim = self.config.d_model self.shared = nn.Embed( self.config.vocab_size, self.config.d_model, embedding_init=jax.nn.initializers.normal(self.config.initializer_factor), dtype=self.dtype, ) encoder_config = copy.deepcopy(self.config) encoder_config.causal = False encoder_config.use_cache = False encoder_config.is_encoder_decoder = False self.encoder = FlaxT5Stack( encoder_config, self.shared, dtype=self.dtype, gradient_checkpointing=self.gradient_checkpointing ) decoder_config = copy.deepcopy(self.config) decoder_config.causal = True decoder_config.is_encoder_decoder = False decoder_config.num_layers = self.config.num_decoder_layers self.decoder = FlaxT5Stack( decoder_config, self.shared, dtype=self.dtype, gradient_checkpointing=self.gradient_checkpointing ) self.lm_head = nn.Dense( self.config.vocab_size, use_bias=False, kernel_init=jax.nn.initializers.normal(self.config.initializer_factor), dtype=self.dtype, ) def __call__( self, input_ids=None, attention_mask=None, decoder_input_ids=None, decoder_attention_mask=None, encoder_outputs=None, output_attentions=None, output_hidden_states=None, return_dict=None, deterministic: bool = True, ): return_dict = return_dict if return_dict is not None else self.config.use_return_dict # Encode encoder_outputs = self.encoder( input_ids=input_ids, attention_mask=attention_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, deterministic=deterministic, ) hidden_states = encoder_outputs[0] # Decode decoder_outputs = self.decoder( input_ids=decoder_input_ids, attention_mask=decoder_attention_mask, encoder_hidden_states=hidden_states, encoder_attention_mask=attention_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, deterministic=deterministic, ) sequence_output = decoder_outputs[0] if self.config.tie_word_embeddings: # Rescale output before projecting on vocab # See https://github.com/tensorflow/mesh/blob/fa19d69eafc9a482aff0b59ddd96b025c0cb207d/mesh_tensorflow/transformer/transformer.py#L586 sequence_output = sequence_output * (self.model_dim**-0.5) if self.config.tie_word_embeddings: shared_embedding = self.shared.variables["params"]["embedding"] lm_logits = self.lm_head.apply({"params": {"kernel": shared_embedding.T}}, sequence_output) else: lm_logits = self.lm_head(sequence_output) if not return_dict: return (lm_logits,) + decoder_outputs[1:] + encoder_outputs return FlaxSeq2SeqLMOutput( logits=lm_logits, past_key_values=decoder_outputs.past_key_values, decoder_hidden_states=decoder_outputs.hidden_states, decoder_attentions=decoder_outputs.attentions, cross_attentions=decoder_outputs.cross_attentions, encoder_last_hidden_state=encoder_outputs.last_hidden_state, encoder_hidden_states=encoder_outputs.hidden_states, encoder_attentions=encoder_outputs.attentions, ) class FlaxT5ForConditionalGeneration(FlaxT5PreTrainedModel): module_class = FlaxT5ForConditionalGenerationModule @add_start_docstrings(T5_DECODE_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=FlaxCausalLMOutputWithCrossAttentions, config_class=T5Config) def decode( self, decoder_input_ids, encoder_outputs, encoder_attention_mask: Optional[jnp.ndarray] = None, decoder_attention_mask: Optional[jnp.ndarray] = None, past_key_values: dict = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, train: bool = False, params: dict = None, dropout_rng: PRNGKey = None, ): r""" Returns: Example: ```python >>> from transformers import AutoTokenizer, FlaxT5ForConditionalGeneration >>> import jax.numpy as jnp >>> tokenizer = AutoTokenizer.from_pretrained("google-t5/t5-small") >>> model = FlaxT5ForConditionalGeneration.from_pretrained("google-t5/t5-small") >>> text = "summarize: My friends are cool but they eat too many carbs." >>> inputs = tokenizer(text, return_tensors="np") >>> encoder_outputs = model.encode(**inputs) >>> decoder_start_token_id = model.config.decoder_start_token_id >>> decoder_input_ids = jnp.ones((inputs.input_ids.shape[0], 1), dtype="i4") * decoder_start_token_id >>> outputs = model.decode(decoder_input_ids, encoder_outputs) >>> logits = outputs.logits ```""" output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.return_dict encoder_hidden_states = encoder_outputs[0] if encoder_attention_mask is None: batch_size, sequence_length = encoder_hidden_states.shape[:2] encoder_attention_mask = jnp.ones((batch_size, sequence_length)) batch_size, sequence_length = decoder_input_ids.shape if decoder_attention_mask is None: decoder_attention_mask = jnp.ones((batch_size, sequence_length)) # Handle any PRNG if needed rngs = {} if dropout_rng is not None: rngs["dropout"] = dropout_rng inputs = {"params": params or self.params} # if past_key_values are passed then cache is already initialized a private flag init_cache has to be # passed down to ensure cache is used. It has to be made sure that cache is marked as mutable so that # it can be changed by FlaxT5Attention module if past_key_values: inputs["cache"] = past_key_values mutable = ["cache"] else: mutable = False def _decoder_forward(module, decoder_input_ids, decoder_attention_mask, **kwargs): decoder_module = module._get_decoder_module() decoder_outputs = decoder_module( decoder_input_ids, decoder_attention_mask, **kwargs, ) sequence_output = decoder_outputs[0] if self.config.tie_word_embeddings: # Rescale output before projecting on vocab # See https://github.com/tensorflow/mesh/blob/fa19d69eafc9a482aff0b59ddd96b025c0cb207d/mesh_tensorflow/transformer/transformer.py#L586 sequence_output = sequence_output * (self.config.d_model**-0.5) if self.config.tie_word_embeddings: shared_embedding = module.shared.variables["params"]["embedding"] lm_logits = module.lm_head.apply({"params": {"kernel": shared_embedding.T}}, sequence_output) else: lm_logits = module.lm_head(sequence_output) return lm_logits, decoder_outputs outputs = self.module.apply( inputs, decoder_input_ids=jnp.array(decoder_input_ids, dtype="i4"), decoder_attention_mask=jnp.array(decoder_attention_mask, dtype="i4"), encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=jnp.array(encoder_attention_mask, dtype="i4"), output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, deterministic=not train, rngs=rngs, mutable=mutable, method=_decoder_forward, ) if past_key_values is None: lm_logits, decoder_outputs = outputs else: (lm_logits, decoder_outputs), past = outputs if return_dict: outputs = FlaxCausalLMOutputWithCrossAttentions( logits=lm_logits, hidden_states=decoder_outputs.hidden_states, attentions=decoder_outputs.attentions, cross_attentions=decoder_outputs.cross_attentions, ) else: outputs = (lm_logits,) + decoder_outputs[1:] # add updated cache to model output if past_key_values is not None and return_dict: outputs["past_key_values"] = unfreeze(past["cache"]) return outputs elif past_key_values is not None and not return_dict: outputs = outputs[:1] + (unfreeze(past["cache"]),) + outputs[1:] return outputs def prepare_inputs_for_generation( self, decoder_input_ids, max_length, attention_mask: Optional[jax.Array] = None, decoder_attention_mask: Optional[jax.Array] = None, encoder_outputs=None, **kwargs, ): # initializing the cache batch_size, seq_length = decoder_input_ids.shape past_key_values = self.init_cache(batch_size, max_length, encoder_outputs) # Note that usually one would have to put 0's in the attention_mask for x > input_ids.shape[-1] and x < cache_length. # But since the decoder uses a causal mask, those positions are masked anyways. # Thus we can create a single static attention_mask here, which is more efficient for compilation extended_attention_mask = jnp.ones((batch_size, max_length), dtype="i4") if decoder_attention_mask is not None: extended_attention_mask = jax.lax.dynamic_update_slice( extended_attention_mask, decoder_attention_mask, (0, 0) ) return { "past_key_values": past_key_values, "encoder_outputs": encoder_outputs, "encoder_attention_mask": attention_mask, "decoder_attention_mask": extended_attention_mask, } def update_inputs_for_generation(self, model_outputs, model_kwargs): model_kwargs["past_key_values"] = model_outputs.past_key_values return model_kwargs FLAX_T5_CONDITIONAL_GENERATION_DOCSTRING = """ Returns: Example: ```python >>> from transformers import AutoTokenizer, FlaxT5ForConditionalGeneration >>> tokenizer = AutoTokenizer.from_pretrained("google-t5/t5-small") >>> model = FlaxT5ForConditionalGeneration.from_pretrained("google-t5/t5-small") >>> ARTICLE_TO_SUMMARIZE = "summarize: My friends are cool but they eat too many carbs." >>> inputs = tokenizer([ARTICLE_TO_SUMMARIZE], return_tensors="np") >>> # Generate Summary >>> summary_ids = model.generate(inputs["input_ids"]).sequences >>> print(tokenizer.decode(summary_ids[0], skip_special_tokens=True, clean_up_tokenization_spaces=False)) ``` """ overwrite_call_docstring( FlaxT5ForConditionalGeneration, T5_INPUTS_DOCSTRING + FLAX_T5_CONDITIONAL_GENERATION_DOCSTRING ) append_replace_return_docstrings( FlaxT5ForConditionalGeneration, output_type=FlaxSeq2SeqLMOutput, config_class=_CONFIG_FOR_DOC )
transformers/src/transformers/models/t5/modeling_flax_t5.py/0
{ "file_path": "transformers/src/transformers/models/t5/modeling_flax_t5.py", "repo_id": "transformers", "token_count": 32708 }
126
# coding=utf-8 # Copyright 2023 MURGe-Lab and The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ TVLT model configuration""" from ...configuration_utils import PretrainedConfig from ...utils import logging logger = logging.get_logger(__name__) TVLT_PRETRAINED_CONFIG_ARCHIVE_MAP = { "ZinengTang/tvlt-base": "https://huggingface.co/ZinengTang/tvlt-base/blob/main/config.json", } class TvltConfig(PretrainedConfig): r""" This is the configuration class to store the configuration of a [`TvltModel`]. It is used to instantiate a TVLT model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the TVLT [ZinengTang/tvlt-base](https://huggingface.co/ZinengTang/tvlt-base) architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: image_size (`int`, *optional*, defaults to 224): The size (resolution) of each image. spectrogram_length (`int`, *optional*, defaults to 2048): The time length of each audio spectrogram. frequency_length (`int`, *optional*, defaults to 128): The frequency length of audio spectrogram. image_patch_size (`List[int]`, *optional*, defaults to `[16, 16]`): The size (resolution) of each image patch. audio_patch_size (`List[int]`, *optional*, defaults to `[16, 16]`): The size (resolution) of each audio patch. num_image_channels (`int`, *optional*, defaults to 3): The number of input image channels. num_audio_channels (`int`, *optional*, defaults to 1): The number of input audio channels. num_frames (`int`, *optional*, defaults to 8): The maximum number of frames for an input video. hidden_size (`int`, *optional*, defaults to 768): Dimensionality of the encoder layers and the pooler layer. num_hidden_layers (`int`, *optional*, defaults to 12): Number of hidden layers in the Transformer encoder. num_attention_heads (`int`, *optional*, defaults to 12): Number of attention heads for each attention layer in the Transformer encoder. intermediate_size (`int`, *optional*, defaults to 3072): Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder. hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`): The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, `"relu"`, `"selu"` and `"gelu_new"` are supported. hidden_dropout_prob (`float`, *optional*, defaults to 0.0): The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. attention_probs_dropout_prob (`float`, *optional*, defaults to 0.0): The dropout ratio for the attention probabilities. initializer_range (`float`, *optional*, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. layer_norm_eps (`float`, *optional*, defaults to 1e-06): The epsilon used by the layer normalization layers. qkv_bias (`bool`, *optional*, defaults to `True`): Whether to add a bias to the queries, keys and values. use_mean_pooling (`bool`, *optional*, defaults to `False`): Whether to mean pool the final hidden states instead of using the final hidden state of the [CLS] token. decoder_num_attention_heads (`int`, *optional*, defaults to 16): Number of attention heads for each attention layer in the decoder. decoder_hidden_size (`int`, *optional*, defaults to 512): Dimensionality of the decoder. decoder_num_hidden_layers (`int`, *optional*, defaults to 8): Number of hidden layers in the decoder. decoder_intermediate_size (`int`, *optional*, defaults to 2048): Dimensionality of the "intermediate" (i.e., feed-forward) layer in the decoder. pixel_mask_ratio (`float`, *optional*, defaults to 0.75): Image patch masking ratio. audio_mask_ratio (`float`, *optional*, defaults to 0.15): Audio patch masking ratio. audio_mask_type (`str`, *optional*, defaults to `"frame-level"`): Audio patch masking type, choose between "frame-level" and "patch-level". task_matching (`bool`, *optional*, defaults to `True`): Whether to use vision audio matching task in pretraining. task_mae (`bool`, *optional*, defaults to `True`): Whether to use the masked auto-encoder (MAE) in pretraining. loss_type (`str`, *optional*, defaults to `"classification"`): Loss types including regression and classification. Example: ```python >>> from transformers import TvltConfig, TvltModel >>> # # Initializing a TVLT ZinengTang/tvlt-base style configuration >>> configuration = TvltConfig() >>> # # Initializing a model (with random weights) from the ZinengTang/tvlt-base style configuration >>> model = TvltModel(configuration) >>> # Accessing the model configuration >>> configuration = model.config ```""" model_type = "tvlt" def __init__( self, image_size=224, spectrogram_length=2048, frequency_length=128, image_patch_size=[16, 16], audio_patch_size=[16, 16], num_image_channels=3, num_audio_channels=1, num_frames=8, hidden_size=768, num_hidden_layers=12, num_attention_heads=12, intermediate_size=3072, hidden_act="gelu", hidden_dropout_prob=0.0, attention_probs_dropout_prob=0.0, initializer_range=0.02, layer_norm_eps=1e-6, qkv_bias=True, use_mean_pooling=False, decoder_num_attention_heads=16, decoder_hidden_size=512, decoder_num_hidden_layers=8, decoder_intermediate_size=2048, pixel_mask_ratio=0.75, audio_mask_ratio=0.15, audio_mask_type="frame-level", task_matching=True, task_mae=True, loss_type="classification", **kwargs, ): super().__init__(**kwargs) if audio_mask_type not in ("frame-level", "patch_level"): raise ValueError( "audio_mask_type must be one of two acceptable strategies - {'frame_level', 'patch-level') " f"got {audio_mask_type}" ) self.image_size = image_size self.spectrogram_length = spectrogram_length self.frequency_length = frequency_length self.image_patch_size = image_patch_size self.audio_patch_size = audio_patch_size self.num_image_channels = num_image_channels self.num_audio_channels = num_audio_channels self.num_frames = num_frames self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.intermediate_size = intermediate_size self.hidden_act = hidden_act self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.initializer_range = initializer_range self.layer_norm_eps = layer_norm_eps self.qkv_bias = qkv_bias self.use_mean_pooling = use_mean_pooling self.decoder_num_attention_heads = decoder_num_attention_heads self.decoder_hidden_size = decoder_hidden_size self.decoder_num_hidden_layers = decoder_num_hidden_layers self.decoder_intermediate_size = decoder_intermediate_size self.pixel_mask_ratio = pixel_mask_ratio self.audio_mask_ratio = audio_mask_ratio self.audio_mask_type = audio_mask_type self.task_matching = task_matching self.task_mae = task_mae self.loss_type = loss_type
transformers/src/transformers/models/tvlt/configuration_tvlt.py/0
{ "file_path": "transformers/src/transformers/models/tvlt/configuration_tvlt.py", "repo_id": "transformers", "token_count": 3434 }
127
# coding=utf-8 # Copyright 2022 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ PyTorch UperNet model. Based on OpenMMLab's implementation, found in https://github.com/open-mmlab/mmsegmentation.""" from typing import List, Optional, Tuple, Union import torch from torch import nn from torch.nn import CrossEntropyLoss from ...modeling_outputs import SemanticSegmenterOutput from ...modeling_utils import PreTrainedModel from ...utils import add_start_docstrings, add_start_docstrings_to_model_forward, replace_return_docstrings from ...utils.backbone_utils import load_backbone from .configuration_upernet import UperNetConfig UPERNET_PRETRAINED_MODEL_ARCHIVE_LIST = [ "openmmlab/upernet-convnext-tiny", # See all UperNet models at https://huggingface.co/models?filter=upernet ] # General docstring _CONFIG_FOR_DOC = "UperNetConfig" class UperNetConvModule(nn.Module): """ A convolutional block that bundles conv/norm/activation layers. This block simplifies the usage of convolution layers, which are commonly used with a norm layer (e.g., BatchNorm) and activation layer (e.g., ReLU). """ def __init__( self, in_channels: int, out_channels: int, kernel_size: Union[int, Tuple[int, int]], padding: Union[int, Tuple[int, int], str] = 0, bias: bool = False, dilation: Union[int, Tuple[int, int]] = 1, ) -> None: super().__init__() self.conv = nn.Conv2d( in_channels=in_channels, out_channels=out_channels, kernel_size=kernel_size, padding=padding, bias=bias, dilation=dilation, ) self.batch_norm = nn.BatchNorm2d(out_channels) self.activation = nn.ReLU() def forward(self, input: torch.Tensor) -> torch.Tensor: output = self.conv(input) output = self.batch_norm(output) output = self.activation(output) return output class UperNetPyramidPoolingBlock(nn.Module): def __init__(self, pool_scale: int, in_channels: int, channels: int) -> None: super().__init__() self.layers = [ nn.AdaptiveAvgPool2d(pool_scale), UperNetConvModule(in_channels, channels, kernel_size=1), ] for i, layer in enumerate(self.layers): self.add_module(str(i), layer) def forward(self, input: torch.Tensor) -> torch.Tensor: hidden_state = input for layer in self.layers: hidden_state = layer(hidden_state) return hidden_state class UperNetPyramidPoolingModule(nn.Module): """ Pyramid Pooling Module (PPM) used in PSPNet. Args: pool_scales (`Tuple[int]`): Pooling scales used in Pooling Pyramid Module. in_channels (`int`): Input channels. channels (`int`): Channels after modules, before conv_seg. align_corners (`bool`): align_corners argument of F.interpolate. """ def __init__(self, pool_scales: Tuple[int, ...], in_channels: int, channels: int, align_corners: bool) -> None: super().__init__() self.pool_scales = pool_scales self.align_corners = align_corners self.in_channels = in_channels self.channels = channels self.blocks = [] for i, pool_scale in enumerate(pool_scales): block = UperNetPyramidPoolingBlock(pool_scale=pool_scale, in_channels=in_channels, channels=channels) self.blocks.append(block) self.add_module(str(i), block) def forward(self, x: torch.Tensor) -> List[torch.Tensor]: ppm_outs = [] for ppm in self.blocks: ppm_out = ppm(x) upsampled_ppm_out = nn.functional.interpolate( ppm_out, size=x.size()[2:], mode="bilinear", align_corners=self.align_corners ) ppm_outs.append(upsampled_ppm_out) return ppm_outs class UperNetHead(nn.Module): """ Unified Perceptual Parsing for Scene Understanding. This head is the implementation of [UPerNet](https://arxiv.org/abs/1807.10221). """ def __init__(self, config, in_channels): super().__init__() self.config = config self.pool_scales = config.pool_scales # e.g. (1, 2, 3, 6) self.in_channels = in_channels self.channels = config.hidden_size self.align_corners = False self.classifier = nn.Conv2d(self.channels, config.num_labels, kernel_size=1) # PSP Module self.psp_modules = UperNetPyramidPoolingModule( self.pool_scales, self.in_channels[-1], self.channels, align_corners=self.align_corners, ) self.bottleneck = UperNetConvModule( self.in_channels[-1] + len(self.pool_scales) * self.channels, self.channels, kernel_size=3, padding=1, ) # FPN Module self.lateral_convs = nn.ModuleList() self.fpn_convs = nn.ModuleList() for in_channels in self.in_channels[:-1]: # skip the top layer l_conv = UperNetConvModule(in_channels, self.channels, kernel_size=1) fpn_conv = UperNetConvModule(self.channels, self.channels, kernel_size=3, padding=1) self.lateral_convs.append(l_conv) self.fpn_convs.append(fpn_conv) self.fpn_bottleneck = UperNetConvModule( len(self.in_channels) * self.channels, self.channels, kernel_size=3, padding=1, ) def init_weights(self): self.apply(self._init_weights) def _init_weights(self, module): if isinstance(module, nn.Conv2d): module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if module.bias is not None: module.bias.data.zero_() def psp_forward(self, inputs): x = inputs[-1] psp_outs = [x] psp_outs.extend(self.psp_modules(x)) psp_outs = torch.cat(psp_outs, dim=1) output = self.bottleneck(psp_outs) return output def forward(self, encoder_hidden_states: torch.Tensor) -> torch.Tensor: # build laterals laterals = [lateral_conv(encoder_hidden_states[i]) for i, lateral_conv in enumerate(self.lateral_convs)] laterals.append(self.psp_forward(encoder_hidden_states)) # build top-down path used_backbone_levels = len(laterals) for i in range(used_backbone_levels - 1, 0, -1): prev_shape = laterals[i - 1].shape[2:] laterals[i - 1] = laterals[i - 1] + nn.functional.interpolate( laterals[i], size=prev_shape, mode="bilinear", align_corners=self.align_corners ) # build outputs fpn_outs = [self.fpn_convs[i](laterals[i]) for i in range(used_backbone_levels - 1)] # append psp feature fpn_outs.append(laterals[-1]) for i in range(used_backbone_levels - 1, 0, -1): fpn_outs[i] = nn.functional.interpolate( fpn_outs[i], size=fpn_outs[0].shape[2:], mode="bilinear", align_corners=self.align_corners ) fpn_outs = torch.cat(fpn_outs, dim=1) output = self.fpn_bottleneck(fpn_outs) output = self.classifier(output) return output class UperNetFCNHead(nn.Module): """ Fully Convolution Networks for Semantic Segmentation. This head is the implementation of [FCNNet](https://arxiv.org/abs/1411.4038>). Args: config: Configuration. in_channels (int): Number of input channels. kernel_size (int): The kernel size for convs in the head. Default: 3. dilation (int): The dilation rate for convs in the head. Default: 1. """ def __init__( self, config, in_index: int = 2, kernel_size: int = 3, dilation: Union[int, Tuple[int, int]] = 1 ) -> None: super().__init__() self.config = config self.in_channels = config.auxiliary_in_channels self.channels = config.auxiliary_channels self.num_convs = config.auxiliary_num_convs self.concat_input = config.auxiliary_concat_input self.in_index = in_index conv_padding = (kernel_size // 2) * dilation convs = [] convs.append( UperNetConvModule( self.in_channels, self.channels, kernel_size=kernel_size, padding=conv_padding, dilation=dilation ) ) for i in range(self.num_convs - 1): convs.append( UperNetConvModule( self.channels, self.channels, kernel_size=kernel_size, padding=conv_padding, dilation=dilation ) ) if self.num_convs == 0: self.convs = nn.Identity() else: self.convs = nn.Sequential(*convs) if self.concat_input: self.conv_cat = UperNetConvModule( self.in_channels + self.channels, self.channels, kernel_size=kernel_size, padding=kernel_size // 2 ) self.classifier = nn.Conv2d(self.channels, config.num_labels, kernel_size=1) def init_weights(self): self.apply(self._init_weights) def _init_weights(self, module): if isinstance(module, nn.Conv2d): module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if module.bias is not None: module.bias.data.zero_() def forward(self, encoder_hidden_states: torch.Tensor) -> torch.Tensor: # just take the relevant feature maps hidden_states = encoder_hidden_states[self.in_index] output = self.convs(hidden_states) if self.concat_input: output = self.conv_cat(torch.cat([hidden_states, output], dim=1)) output = self.classifier(output) return output class UperNetPreTrainedModel(PreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = UperNetConfig main_input_name = "pixel_values" def _init_weights(self, module): if isinstance(module, UperNetPreTrainedModel): module.backbone.init_weights() module.decode_head.init_weights() if module.auxiliary_head is not None: module.auxiliary_head.init_weights() def init_weights(self): """Initialize the weights""" self.backbone.init_weights() self.decode_head.init_weights() if self.auxiliary_head is not None: self.auxiliary_head.init_weights() UPERNET_START_DOCSTRING = r""" Parameters: This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. config ([`UperNetConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ UPERNET_INPUTS_DOCSTRING = r""" Args: pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Padding will be ignored by default should you provide it. Pixel values can be obtained using [`AutoImageProcessor`]. See [`SegformerImageProcessor.__call__`] for details. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers in case the backbone has them. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers of the backbone. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ @add_start_docstrings( """UperNet framework leveraging any vision backbone e.g. for ADE20k, CityScapes.""", UPERNET_START_DOCSTRING, ) class UperNetForSemanticSegmentation(UperNetPreTrainedModel): def __init__(self, config): super().__init__(config) self.backbone = load_backbone(config) # Semantic segmentation head(s) self.decode_head = UperNetHead(config, in_channels=self.backbone.channels) self.auxiliary_head = UperNetFCNHead(config) if config.use_auxiliary_head else None # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(UPERNET_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @replace_return_docstrings(output_type=SemanticSegmenterOutput, config_class=_CONFIG_FOR_DOC) def forward( self, pixel_values: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, labels: Optional[torch.Tensor] = None, return_dict: Optional[bool] = None, ) -> Union[tuple, SemanticSegmenterOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size, height, width)`, *optional*): Ground truth semantic segmentation maps for computing the loss. Indices should be in `[0, ..., config.num_labels - 1]`. If `config.num_labels > 1`, a classification loss is computed (Cross-Entropy). Returns: Examples: ```python >>> from transformers import AutoImageProcessor, UperNetForSemanticSegmentation >>> from PIL import Image >>> from huggingface_hub import hf_hub_download >>> image_processor = AutoImageProcessor.from_pretrained("openmmlab/upernet-convnext-tiny") >>> model = UperNetForSemanticSegmentation.from_pretrained("openmmlab/upernet-convnext-tiny") >>> filepath = hf_hub_download( ... repo_id="hf-internal-testing/fixtures_ade20k", filename="ADE_val_00000001.jpg", repo_type="dataset" ... ) >>> image = Image.open(filepath).convert("RGB") >>> inputs = image_processor(images=image, return_tensors="pt") >>> outputs = model(**inputs) >>> logits = outputs.logits # shape (batch_size, num_labels, height, width) >>> list(logits.shape) [1, 150, 512, 512] ```""" return_dict = return_dict if return_dict is not None else self.config.use_return_dict output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions outputs = self.backbone.forward_with_filtered_kwargs( pixel_values, output_hidden_states=output_hidden_states, output_attentions=output_attentions ) features = outputs.feature_maps logits = self.decode_head(features) logits = nn.functional.interpolate(logits, size=pixel_values.shape[2:], mode="bilinear", align_corners=False) auxiliary_logits = None if self.auxiliary_head is not None: auxiliary_logits = self.auxiliary_head(features) auxiliary_logits = nn.functional.interpolate( auxiliary_logits, size=pixel_values.shape[2:], mode="bilinear", align_corners=False ) loss = None if labels is not None: if self.config.num_labels == 1: raise ValueError("The number of labels should be greater than one") else: # compute weighted loss loss_fct = CrossEntropyLoss(ignore_index=self.config.loss_ignore_index) loss = loss_fct(logits, labels) if auxiliary_logits is not None: auxiliary_loss = loss_fct(auxiliary_logits, labels) loss += self.config.auxiliary_loss_weight * auxiliary_loss if not return_dict: if output_hidden_states: output = (logits,) + outputs[1:] else: output = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return SemanticSegmenterOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, )
transformers/src/transformers/models/upernet/modeling_upernet.py/0
{ "file_path": "transformers/src/transformers/models/upernet/modeling_upernet.py", "repo_id": "transformers", "token_count": 7505 }
128
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import torch from huggingface_hub import hf_hub_download from transformers import ( AddedToken, AutoConfig, AutoTokenizer, CLIPImageProcessor, LlavaProcessor, VipLlavaConfig, VipLlavaForConditionalGeneration, ) KEYS_TO_MODIFY_MAPPING = { "model.vision_tower.": "", "model.mm_projector": "multi_modal_projector", "model": "model.model", "vision_model.model": "vision_model", "lm_head": "language_model.lm_head", "model.model": "language_model.model", "multi_modal_projector.0": "multi_modal_projector.linear_1", "multi_modal_projector.2": "multi_modal_projector.linear_2", "final_linear.0": "linear_1", "final_linear.2": "linear_2", "multi_modal_projector.clip_layernorm": "multi_modal_projector.projector_layernorm", } # Copied from transformers.models.llava.convert_llava_weights_to_hf.convert_state_dict_to_hf def convert_state_dict_to_hf(state_dict): new_state_dict = {} for key, value in state_dict.items(): if key.endswith(".inv_freq"): continue for key_to_modify, new_key in KEYS_TO_MODIFY_MAPPING.items(): if key_to_modify in key: key = key.replace(key_to_modify, new_key) new_state_dict[key] = value return new_state_dict def convert_vipllava_llama_to_hf(text_model_id, vision_model_id, output_hub_path, old_state_dict_id): torch.set_default_dtype(torch.float16) text_config = AutoConfig.from_pretrained(text_model_id) tokenizer = AutoTokenizer.from_pretrained(text_model_id) tokenizer.add_tokens(AddedToken("<image>", special=True, normalized=False), special_tokens=True) tokenizer.add_special_tokens({"pad_token": "<pad>"}) image_processor = CLIPImageProcessor.from_pretrained(vision_model_id) processor = LlavaProcessor(tokenizer=tokenizer, image_processor=image_processor) config = VipLlavaConfig(text_config=text_config) config.pad_token_id = 32001 with torch.device("meta"): model = VipLlavaForConditionalGeneration(config) # Pad to 64 for performance reasons pad_shape = 64 state_dict_path = hf_hub_download(old_state_dict_id, "model_state_dict_7b.bin") state_dict = torch.load(state_dict_path, map_location="cpu") state_dict = convert_state_dict_to_hf(state_dict) model.load_state_dict(state_dict, strict=True, assign=True) pre_expansion_embeddings = model.language_model.model.embed_tokens.weight.data mu = torch.mean(pre_expansion_embeddings, dim=0).float() n = pre_expansion_embeddings.size()[0] sigma = ((pre_expansion_embeddings - mu).T @ (pre_expansion_embeddings - mu)) / n dist = torch.distributions.multivariate_normal.MultivariateNormal(mu, covariance_matrix=1e-5 * sigma) # We add an image token so we resize the model model.resize_token_embeddings(config.text_config.vocab_size + 2, pad_shape) model.language_model.model.embed_tokens.weight.data[32000:] = torch.stack( tuple((dist.sample() for _ in range(model.language_model.model.embed_tokens.weight.data[32000:].shape[0]))), dim=0, ) model.language_model.lm_head.weight.data[32000:] = torch.stack( tuple((dist.sample() for _ in range(model.language_model.lm_head.weight.data[32000:].shape[0]))), dim=0, ) model.push_to_hub(output_hub_path) processor.push_to_hub(output_hub_path) def main(): parser = argparse.ArgumentParser() parser.add_argument( "--text_model_id", help="Hub location of the text model", ) parser.add_argument( "--vision_model_id", help="Hub location of the vision model", ) parser.add_argument( "--output_hub_path", help="Location on the hub of the converted model", ) parser.add_argument( "--old_state_dict_id", help="Location on the hub of the raw state dict of the original model. The filename needs to be `model_state_dict.bin`", ) args = parser.parse_args() convert_vipllava_llama_to_hf( args.text_model_id, args.vision_model_id, args.output_hub_path, args.old_state_dict_id ) if __name__ == "__main__": main()
transformers/src/transformers/models/vipllava/convert_vipllava_weights_to_hf.py/0
{ "file_path": "transformers/src/transformers/models/vipllava/convert_vipllava_weights_to_hf.py", "repo_id": "transformers", "token_count": 1889 }
129
# coding=utf-8 # Copyright 2021 The UCLA NLP Authors and The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ PyTorch VisualBERT model.""" import math from dataclasses import dataclass from typing import Optional, Tuple, Union import torch import torch.utils.checkpoint from torch import nn from torch.nn import CrossEntropyLoss, KLDivLoss, LogSoftmax from ...activations import ACT2FN from ...modeling_outputs import ( BaseModelOutput, BaseModelOutputWithPooling, MultipleChoiceModelOutput, SequenceClassifierOutput, ) from ...modeling_utils import PreTrainedModel from ...pytorch_utils import apply_chunking_to_forward, find_pruneable_heads_and_indices, prune_linear_layer from ...utils import ( ModelOutput, add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings, ) from .configuration_visual_bert import VisualBertConfig logger = logging.get_logger(__name__) _CONFIG_FOR_DOC = "VisualBertConfig" _CHECKPOINT_FOR_DOC = "uclanlp/visualbert-vqa-coco-pre" VISUAL_BERT_PRETRAINED_MODEL_ARCHIVE_LIST = [ "uclanlp/visualbert-vqa", "uclanlp/visualbert-vqa-pre", "uclanlp/visualbert-vqa-coco-pre", "uclanlp/visualbert-vcr", "uclanlp/visualbert-vcr-pre", "uclanlp/visualbert-vcr-coco-pre", "uclanlp/visualbert-nlvr2", "uclanlp/visualbert-nlvr2-pre", "uclanlp/visualbert-nlvr2-coco-pre", # See all VisualBERT models at https://huggingface.co/models?filter=visual_bert ] class VisualBertEmbeddings(nn.Module): """Construct the embeddings from word, position and token_type embeddings and visual embeddings.""" def __init__(self, config): super().__init__() self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id) self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size) self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size) # self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load # any TensorFlow checkpoint file self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.dropout = nn.Dropout(config.hidden_dropout_prob) # position_ids (1, len position emb) is contiguous in memory and exported when serialized self.register_buffer( "position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)), persistent=False ) # For Visual Features # Token type and position embedding for image features self.visual_token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size) self.visual_position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size) if config.special_visual_initialize: self.visual_token_type_embeddings.weight.data = nn.Parameter( self.token_type_embeddings.weight.data.clone(), requires_grad=True ) self.visual_position_embeddings.weight.data = nn.Parameter( self.position_embeddings.weight.data.clone(), requires_grad=True ) self.visual_projection = nn.Linear(config.visual_embedding_dim, config.hidden_size) def forward( self, input_ids=None, token_type_ids=None, position_ids=None, inputs_embeds=None, visual_embeds=None, visual_token_type_ids=None, image_text_alignment=None, ): if input_ids is not None: input_shape = input_ids.size() else: input_shape = inputs_embeds.size()[:-1] seq_length = input_shape[1] if position_ids is None: position_ids = self.position_ids[:, :seq_length] if inputs_embeds is None: inputs_embeds = self.word_embeddings(input_ids) if token_type_ids is None: token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=self.position_ids.device) token_type_embeddings = self.token_type_embeddings(token_type_ids) embeddings = inputs_embeds + token_type_embeddings # Absolute Position Embeddings position_embeddings = self.position_embeddings(position_ids) embeddings += position_embeddings if visual_embeds is not None: if visual_token_type_ids is None: visual_token_type_ids = torch.ones( visual_embeds.size()[:-1], dtype=torch.long, device=self.position_ids.device ) visual_embeds = self.visual_projection(visual_embeds) visual_token_type_embeddings = self.visual_token_type_embeddings(visual_token_type_ids) if image_text_alignment is not None: # image_text_alignment = Batch x image_length x alignment_number. # Each element denotes the position of the word corresponding to the image feature. -1 is the padding value. dtype = token_type_embeddings.dtype image_text_alignment_mask = (image_text_alignment != -1).long() # Get rid of the -1. image_text_alignment = image_text_alignment_mask * image_text_alignment # Batch x image_length x alignment length x dim visual_position_embeddings = self.position_embeddings(image_text_alignment) visual_position_embeddings *= image_text_alignment_mask.to(dtype=dtype).unsqueeze(-1) visual_position_embeddings = visual_position_embeddings.sum(2) # We want to averge along the alignment_number dimension. image_text_alignment_mask = image_text_alignment_mask.to(dtype=dtype).sum(2) if (image_text_alignment_mask == 0).sum() != 0: image_text_alignment_mask[image_text_alignment_mask == 0] = 1 # Avoid divide by zero error logger.warning( "Found 0 values in `image_text_alignment_mask`. Setting them to 1 to avoid divide-by-zero" " error." ) visual_position_embeddings = visual_position_embeddings / image_text_alignment_mask.unsqueeze(-1) visual_position_ids = torch.zeros( *visual_embeds.size()[:-1], dtype=torch.long, device=visual_embeds.device ) # When fine-tuning the detector , the image_text_alignment is sometimes padded too long. if visual_position_embeddings.size(1) != visual_embeds.size(1): if visual_position_embeddings.size(1) < visual_embeds.size(1): raise ValueError( f"Visual position embeddings length: {visual_position_embeddings.size(1)} " f"should be the same as `visual_embeds` length: {visual_embeds.size(1)}" ) visual_position_embeddings = visual_position_embeddings[:, : visual_embeds.size(1), :] visual_position_embeddings = visual_position_embeddings + self.visual_position_embeddings( visual_position_ids ) else: visual_position_ids = torch.zeros( *visual_embeds.size()[:-1], dtype=torch.long, device=visual_embeds.device ) visual_position_embeddings = self.visual_position_embeddings(visual_position_ids) visual_embeddings = visual_embeds + visual_position_embeddings + visual_token_type_embeddings embeddings = torch.cat((embeddings, visual_embeddings), dim=1) embeddings = self.LayerNorm(embeddings) embeddings = self.dropout(embeddings) return embeddings class VisualBertSelfAttention(nn.Module): def __init__(self, config): super().__init__() if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"): raise ValueError( f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention " f"heads ({config.num_attention_heads})" ) self.num_attention_heads = config.num_attention_heads self.attention_head_size = int(config.hidden_size / config.num_attention_heads) self.all_head_size = self.num_attention_heads * self.attention_head_size self.query = nn.Linear(config.hidden_size, self.all_head_size) self.key = nn.Linear(config.hidden_size, self.all_head_size) self.value = nn.Linear(config.hidden_size, self.all_head_size) self.dropout = nn.Dropout(config.attention_probs_dropout_prob) def transpose_for_scores(self, x): new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size) x = x.view(*new_x_shape) return x.permute(0, 2, 1, 3) def forward( self, hidden_states, attention_mask=None, head_mask=None, output_attentions=False, ): mixed_query_layer = self.query(hidden_states) key_layer = self.transpose_for_scores(self.key(hidden_states)) value_layer = self.transpose_for_scores(self.value(hidden_states)) query_layer = self.transpose_for_scores(mixed_query_layer) # Take the dot product between "query" and "key" to get the raw attention scores. attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2)) attention_scores = attention_scores / math.sqrt(self.attention_head_size) if attention_mask is not None: # Apply the attention mask is (precomputed for all layers in VisualBertSelfAttentionModel forward() function) attention_scores = attention_scores + attention_mask # Normalize the attention scores to probabilities. attention_probs = nn.functional.softmax(attention_scores, dim=-1) # This is actually dropping out entire tokens to attend to, which might # seem a bit unusual, but is taken from the original Transformer paper. attention_probs = self.dropout(attention_probs) # Mask heads if we want to if head_mask is not None: attention_probs = attention_probs * head_mask context_layer = torch.matmul(attention_probs, value_layer) context_layer = context_layer.permute(0, 2, 1, 3).contiguous() new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,) context_layer = context_layer.view(*new_context_layer_shape) outputs = (context_layer, attention_probs) if output_attentions else (context_layer,) return outputs # Copied from transformers.models.bert.modeling_bert.BertSelfOutput with Bert->VisualBert class VisualBertSelfOutput(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states) hidden_states = self.LayerNorm(hidden_states + input_tensor) return hidden_states class VisualBertAttention(nn.Module): def __init__(self, config): super().__init__() self.self = VisualBertSelfAttention(config) self.output = VisualBertSelfOutput(config) self.pruned_heads = set() def prune_heads(self, heads): if len(heads) == 0: return heads, index = find_pruneable_heads_and_indices( heads, self.self.num_attention_heads, self.self.attention_head_size, self.pruned_heads ) # Prune linear layers self.self.query = prune_linear_layer(self.self.query, index) self.self.key = prune_linear_layer(self.self.key, index) self.self.value = prune_linear_layer(self.self.value, index) self.output.dense = prune_linear_layer(self.output.dense, index, dim=1) # Update hyper params and store pruned heads self.self.num_attention_heads = self.self.num_attention_heads - len(heads) self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads self.pruned_heads = self.pruned_heads.union(heads) def forward( self, hidden_states, attention_mask=None, head_mask=None, output_attentions=False, ): self_outputs = self.self( hidden_states, attention_mask, head_mask, output_attentions, ) attention_output = self.output(self_outputs[0], hidden_states) outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them return outputs # Copied from transformers.models.bert.modeling_bert.BertIntermediate with Bert->VisualBert class VisualBertIntermediate(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.intermediate_size) if isinstance(config.hidden_act, str): self.intermediate_act_fn = ACT2FN[config.hidden_act] else: self.intermediate_act_fn = config.hidden_act def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.intermediate_act_fn(hidden_states) return hidden_states # Copied from transformers.models.bert.modeling_bert.BertOutput with Bert->VisualBert class VisualBertOutput(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.intermediate_size, config.hidden_size) self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states) hidden_states = self.LayerNorm(hidden_states + input_tensor) return hidden_states class VisualBertLayer(nn.Module): def __init__(self, config): super().__init__() self.chunk_size_feed_forward = config.chunk_size_feed_forward self.seq_len_dim = 1 self.attention = VisualBertAttention(config) self.intermediate = VisualBertIntermediate(config) self.output = VisualBertOutput(config) def forward( self, hidden_states, attention_mask=None, head_mask=None, output_attentions=False, ): self_attention_outputs = self.attention( hidden_states, attention_mask, head_mask, output_attentions=output_attentions, ) attention_output = self_attention_outputs[0] outputs = self_attention_outputs[1:] # add self attentions if we output attention weights layer_output = apply_chunking_to_forward( self.feed_forward_chunk, self.chunk_size_feed_forward, self.seq_len_dim, attention_output ) outputs = (layer_output,) + outputs return outputs def feed_forward_chunk(self, attention_output): intermediate_output = self.intermediate(attention_output) layer_output = self.output(intermediate_output, attention_output) return layer_output class VisualBertEncoder(nn.Module): def __init__(self, config): super().__init__() self.config = config self.layer = nn.ModuleList([VisualBertLayer(config) for _ in range(config.num_hidden_layers)]) self.gradient_checkpointing = False def forward( self, hidden_states, attention_mask=None, head_mask=None, output_attentions=False, output_hidden_states=False, return_dict=True, ): all_hidden_states = () if output_hidden_states else None all_self_attentions = () if output_attentions else None for i, layer_module in enumerate(self.layer): if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) layer_head_mask = head_mask[i] if head_mask is not None else None if self.gradient_checkpointing and self.training: layer_outputs = self._gradient_checkpointing_func( layer_module.__call__, hidden_states, attention_mask, layer_head_mask, output_attentions, ) else: layer_outputs = layer_module(hidden_states, attention_mask, layer_head_mask, output_attentions) hidden_states = layer_outputs[0] if output_attentions: all_self_attentions = all_self_attentions + (layer_outputs[1],) if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) if not return_dict: return tuple( v for v in [ hidden_states, all_hidden_states, all_self_attentions, ] if v is not None ) return BaseModelOutput( last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_self_attentions ) # Copied from transformers.models.bert.modeling_bert.BertPooler with Bert->VisualBert class VisualBertPooler(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) self.activation = nn.Tanh() def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: # We "pool" the model by simply taking the hidden state corresponding # to the first token. first_token_tensor = hidden_states[:, 0] pooled_output = self.dense(first_token_tensor) pooled_output = self.activation(pooled_output) return pooled_output # Copied from transformers.models.bert.modeling_bert.BertPredictionHeadTransform with Bert->VisualBert class VisualBertPredictionHeadTransform(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) if isinstance(config.hidden_act, str): self.transform_act_fn = ACT2FN[config.hidden_act] else: self.transform_act_fn = config.hidden_act self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.transform_act_fn(hidden_states) hidden_states = self.LayerNorm(hidden_states) return hidden_states # Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->VisualBert class VisualBertLMPredictionHead(nn.Module): def __init__(self, config): super().__init__() self.transform = VisualBertPredictionHeadTransform(config) # The output weights are the same as the input embeddings, but there is # an output-only bias for each token. self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False) self.bias = nn.Parameter(torch.zeros(config.vocab_size)) # Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings` self.decoder.bias = self.bias def forward(self, hidden_states): hidden_states = self.transform(hidden_states) hidden_states = self.decoder(hidden_states) return hidden_states # Copied from transformers.models.bert.modeling_bert.BertPreTrainingHeads with Bert->VisualBert class VisualBertPreTrainingHeads(nn.Module): def __init__(self, config): super().__init__() self.predictions = VisualBertLMPredictionHead(config) self.seq_relationship = nn.Linear(config.hidden_size, 2) def forward(self, sequence_output, pooled_output): prediction_scores = self.predictions(sequence_output) seq_relationship_score = self.seq_relationship(pooled_output) return prediction_scores, seq_relationship_score class VisualBertPreTrainedModel(PreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = VisualBertConfig base_model_prefix = "visual_bert" supports_gradient_checkpointing = True def _init_weights(self, module): """Initialize the weights""" if isinstance(module, (nn.Linear, nn.Embedding)): # Slightly different from the TF version which uses truncated_normal for initialization # cf https://github.com/pytorch/pytorch/pull/5617 module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) elif isinstance(module, nn.LayerNorm): module.bias.data.zero_() module.weight.data.fill_(1.0) if isinstance(module, nn.Linear) and module.bias is not None: module.bias.data.zero_() @dataclass class VisualBertForPreTrainingOutput(ModelOutput): """ Output type of [`VisualBertForPreTraining`]. Args: loss (*optional*, returned when `labels` is provided, `torch.FloatTensor` of shape `(1,)`): Total loss as the sum of the masked language modeling loss and the sentence-image prediction (classification) loss. prediction_logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`): Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax). seq_relationship_logits (`torch.FloatTensor` of shape `(batch_size, 2)`): Prediction scores of the sentence-image prediction (classification) head (scores of True/False continuation before SoftMax). hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the initial embedding outputs. attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. """ loss: Optional[torch.FloatTensor] = None prediction_logits: torch.FloatTensor = None seq_relationship_logits: torch.FloatTensor = None hidden_states: Optional[Tuple[torch.FloatTensor]] = None attentions: Optional[Tuple[torch.FloatTensor]] = None VISUAL_BERT_START_DOCSTRING = r""" This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.) This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`VisualBertConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ VISUAL_BERT_INPUTS_DOCSTRING = r""" Args: input_ids (`torch.LongTensor` of shape `({0})`): Indices of input sequence tokens in the vocabulary. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) token_type_ids (`torch.LongTensor` of shape `({0})`, *optional*): Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0, 1]`: - 0 corresponds to a *sentence A* token, - 1 corresponds to a *sentence B* token. [What are token type IDs?](../glossary#token-type-ids) position_ids (`torch.LongTensor` of shape `({0})`, *optional*): Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, config.max_position_embeddings - 1]`. [What are position IDs?](../glossary#position-ids) head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. inputs_embeds (`torch.FloatTensor` of shape `({0}, hidden_size)`, *optional*): Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert `input_ids` indices into associated vectors than the model's internal embedding lookup matrix. visual_embeds (`torch.FloatTensor` of shape `(batch_size, visual_seq_length, visual_embedding_dim)`, *optional*): The embedded representation of the visual inputs, generally derived using using an object detector. visual_attention_mask (`torch.FloatTensor` of shape `(batch_size, visual_seq_length)`, *optional*): Mask to avoid performing attention on visual embeddings. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) visual_token_type_ids (`torch.LongTensor` of shape `(batch_size, visual_seq_length)`, *optional*): Segment token indices to indicate different portions of the visual embeds. [What are token type IDs?](../glossary#token-type-ids) The authors of VisualBERT set the *visual_token_type_ids* to *1* for all tokens. image_text_alignment (`torch.LongTensor` of shape `(batch_size, visual_seq_length, alignment_number)`, *optional*): Image-Text alignment uses to decide the position IDs of the visual embeddings. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ @add_start_docstrings( "The bare VisualBert Model transformer outputting raw hidden-states without any specific head on top.", VISUAL_BERT_START_DOCSTRING, ) class VisualBertModel(VisualBertPreTrainedModel): """ The model can behave as an encoder (with only self-attention) following the architecture described in [Attention is all you need](https://arxiv.org/abs/1706.03762) by Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser and Illia Polosukhin. """ def __init__(self, config, add_pooling_layer=True): super().__init__(config) self.config = config self.embeddings = VisualBertEmbeddings(config) self.encoder = VisualBertEncoder(config) self.pooler = VisualBertPooler(config) if add_pooling_layer else None self.bypass_transformer = config.bypass_transformer if self.bypass_transformer: self.additional_layer = VisualBertLayer(config) # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.embeddings.word_embeddings def set_input_embeddings(self, value): self.embeddings.word_embeddings = value def _prune_heads(self, heads_to_prune): """ Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base class PreTrainedModel """ for layer, heads in heads_to_prune.items(): self.encoder.layer[layer].attention.prune_heads(heads) @add_start_docstrings_to_model_forward(VISUAL_BERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @replace_return_docstrings(output_type=BaseModelOutputWithPooling, config_class=_CONFIG_FOR_DOC) def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.LongTensor] = None, token_type_ids: Optional[torch.LongTensor] = None, position_ids: Optional[torch.LongTensor] = None, head_mask: Optional[torch.LongTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, visual_embeds: Optional[torch.FloatTensor] = None, visual_attention_mask: Optional[torch.LongTensor] = None, visual_token_type_ids: Optional[torch.LongTensor] = None, image_text_alignment: Optional[torch.LongTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPooling]: r""" Returns: Example: ```python # Assumption: *get_visual_embeddings(image)* gets the visual embeddings of the image. from transformers import AutoTokenizer, VisualBertModel import torch tokenizer = AutoTokenizer.from_pretrained("google-bert/bert-base-uncased") model = VisualBertModel.from_pretrained("uclanlp/visualbert-vqa-coco-pre") inputs = tokenizer("The capital of France is Paris.", return_tensors="pt") visual_embeds = get_visual_embeddings(image).unsqueeze(0) visual_token_type_ids = torch.ones(visual_embeds.shape[:-1], dtype=torch.long) visual_attention_mask = torch.ones(visual_embeds.shape[:-1], dtype=torch.float) inputs.update( { "visual_embeds": visual_embeds, "visual_token_type_ids": visual_token_type_ids, "visual_attention_mask": visual_attention_mask, } ) outputs = model(**inputs) last_hidden_states = outputs.last_hidden_state ```""" output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") elif input_ids is not None: self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask) input_shape = input_ids.size() elif inputs_embeds is not None: input_shape = inputs_embeds.size()[:-1] else: raise ValueError("You have to specify either input_ids or inputs_embeds") batch_size, seq_length = input_shape device = input_ids.device if input_ids is not None else inputs_embeds.device if visual_embeds is not None: visual_input_shape = visual_embeds.size()[:-1] if attention_mask is None: attention_mask = torch.ones(input_shape, device=device) if visual_embeds is not None and visual_attention_mask is None: visual_attention_mask = torch.ones(visual_input_shape, device=device) # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] # ourselves in which case we just need to make it broadcastable to all heads. if visual_embeds is not None: combined_attention_mask = torch.cat((attention_mask, visual_attention_mask), dim=-1) extended_attention_mask: torch.Tensor = self.get_extended_attention_mask( combined_attention_mask, (batch_size, input_shape + visual_input_shape) ) else: extended_attention_mask: torch.Tensor = self.get_extended_attention_mask( attention_mask, (batch_size, input_shape) ) # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers) embedding_output = self.embeddings( input_ids=input_ids, position_ids=position_ids, token_type_ids=token_type_ids, inputs_embeds=inputs_embeds, visual_embeds=visual_embeds, visual_token_type_ids=visual_token_type_ids, image_text_alignment=image_text_alignment, ) if self.bypass_transformer and visual_embeds is not None: text_length = input_ids.size(1) text_embedding_output = embedding_output[:, :text_length, :] visual_embedding_output = embedding_output[:, text_length:, :] text_extended_attention_mask = extended_attention_mask[:, :, text_length, :text_length] encoded_outputs = self.encoder( text_embedding_output, attention_mask=text_extended_attention_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = encoded_outputs[0] concatenated_input = torch.cat((sequence_output, visual_embedding_output), dim=1) sequence_output = self.additional_layer(concatenated_input, extended_attention_mask) pooled_output = self.pooler(sequence_output) if self.pooler is not None else None else: encoder_outputs = self.encoder( embedding_output, attention_mask=extended_attention_mask, head_mask=head_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = encoder_outputs[0] pooled_output = self.pooler(sequence_output) if self.pooler is not None else None if not return_dict: return (sequence_output, pooled_output) + encoder_outputs[1:] return BaseModelOutputWithPooling( last_hidden_state=sequence_output, pooler_output=pooled_output, hidden_states=encoder_outputs.hidden_states, attentions=encoder_outputs.attentions, ) @add_start_docstrings( """ VisualBert Model with two heads on top as done during the pretraining: a `masked language modeling` head and a `sentence-image prediction (classification)` head. """, VISUAL_BERT_START_DOCSTRING, ) class VisualBertForPreTraining(VisualBertPreTrainedModel): _tied_weights_keys = ["cls.predictions.decoder.weight", "cls.predictions.decoder.bias"] def __init__(self, config): super().__init__(config) self.visual_bert = VisualBertModel(config) self.cls = VisualBertPreTrainingHeads(config) # Initialize weights and apply final processing self.post_init() def get_output_embeddings(self): return self.cls.predictions.decoder def set_output_embeddings(self, new_embeddings): self.cls.predictions.decoder = new_embeddings @add_start_docstrings_to_model_forward(VISUAL_BERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @replace_return_docstrings(output_type=VisualBertForPreTrainingOutput, config_class=_CONFIG_FOR_DOC) def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.LongTensor] = None, token_type_ids: Optional[torch.LongTensor] = None, position_ids: Optional[torch.LongTensor] = None, head_mask: Optional[torch.LongTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, visual_embeds: Optional[torch.FloatTensor] = None, visual_attention_mask: Optional[torch.LongTensor] = None, visual_token_type_ids: Optional[torch.LongTensor] = None, image_text_alignment: Optional[torch.LongTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, labels: Optional[torch.LongTensor] = None, sentence_image_labels: Optional[torch.LongTensor] = None, ) -> Union[Tuple[torch.Tensor], VisualBertForPreTrainingOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size, total_sequence_length)`, *optional*): Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ..., config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]` sentence_image_labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the sentence-image prediction (classification) loss. Input should be a sequence pair (see `input_ids` docstring) Indices should be in `[0, 1]`: - 0 indicates sequence B is a matching pair of sequence A for the given image, - 1 indicates sequence B is a random sequence w.r.t A for the given image. Returns: Example: ```python # Assumption: *get_visual_embeddings(image)* gets the visual embeddings of the image in the batch. from transformers import AutoTokenizer, VisualBertForPreTraining tokenizer = AutoTokenizer.from_pretrained("google-bert/bert-base-uncased") model = VisualBertForPreTraining.from_pretrained("uclanlp/visualbert-vqa-coco-pre") inputs = tokenizer("The capital of France is [MASK].", return_tensors="pt") visual_embeds = get_visual_embeddings(image).unsqueeze(0) visual_token_type_ids = torch.ones(visual_embeds.shape[:-1], dtype=torch.long) visual_attention_mask = torch.ones(visual_embeds.shape[:-1], dtype=torch.float) inputs.update( { "visual_embeds": visual_embeds, "visual_token_type_ids": visual_token_type_ids, "visual_attention_mask": visual_attention_mask, } ) max_length = inputs["input_ids"].shape[-1] + visual_embeds.shape[-2] labels = tokenizer( "The capital of France is Paris.", return_tensors="pt", padding="max_length", max_length=max_length )["input_ids"] sentence_image_labels = torch.tensor(1).unsqueeze(0) # Batch_size outputs = model(**inputs, labels=labels, sentence_image_labels=sentence_image_labels) loss = outputs.loss prediction_logits = outputs.prediction_logits seq_relationship_logits = outputs.seq_relationship_logits ```""" return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.visual_bert( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, visual_embeds=visual_embeds, visual_attention_mask=visual_attention_mask, visual_token_type_ids=visual_token_type_ids, image_text_alignment=image_text_alignment, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output, pooled_output = outputs[:2] prediction_scores, seq_relationship_score = self.cls(sequence_output, pooled_output) total_loss = None if labels is not None and sentence_image_labels is not None: total_size = attention_mask.size(-1) + visual_attention_mask.size(-1) if labels.size(-1) != total_size: raise ValueError( "The labels provided should have same sequence length as total attention mask. " f"Found labels with sequence length {labels.size(-1)}, expected {total_size}." ) loss_fct = CrossEntropyLoss() masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), labels.view(-1)) sentence_image_loss = loss_fct(seq_relationship_score.view(-1, 2), sentence_image_labels.view(-1)) total_loss = masked_lm_loss + sentence_image_loss if labels is not None and sentence_image_labels is None: total_size = attention_mask.size(-1) + visual_attention_mask.size(-1) if labels.size(-1) != total_size: raise ValueError( "The labels provided should have same sequence length as total attention mask. " f"Found labels with sequence length {labels.size(-1)}, expected {total_size}." ) loss_fct = CrossEntropyLoss() total_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), labels.view(-1)) if not return_dict: output = (prediction_scores, seq_relationship_score) + outputs[2:] return ((total_loss,) + output) if total_loss is not None else output return VisualBertForPreTrainingOutput( loss=total_loss, prediction_logits=prediction_scores, seq_relationship_logits=seq_relationship_score, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) @add_start_docstrings( """ VisualBert Model with a multiple choice classification head on top (a linear layer on top of the pooled output and a softmax) e.g. for VCR tasks. """, VISUAL_BERT_START_DOCSTRING, ) class VisualBertForMultipleChoice(VisualBertPreTrainedModel): def __init__(self, config): super().__init__(config) self.visual_bert = VisualBertModel(config) self.dropout = nn.Dropout(config.hidden_dropout_prob) self.cls = nn.Linear(config.hidden_size, 1) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward( VISUAL_BERT_INPUTS_DOCSTRING.format("batch_size, num_choices, sequence_length") ) @replace_return_docstrings(output_type=MultipleChoiceModelOutput, config_class=_CONFIG_FOR_DOC) def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.LongTensor] = None, token_type_ids: Optional[torch.LongTensor] = None, position_ids: Optional[torch.LongTensor] = None, head_mask: Optional[torch.LongTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, visual_embeds: Optional[torch.FloatTensor] = None, visual_attention_mask: Optional[torch.LongTensor] = None, visual_token_type_ids: Optional[torch.LongTensor] = None, image_text_alignment: Optional[torch.LongTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, labels: Optional[torch.LongTensor] = None, ) -> Union[Tuple[torch.Tensor], MultipleChoiceModelOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the multiple choice classification loss. Indices should be in `[0, ..., num_choices-1]` where `num_choices` is the size of the second dimension of the input tensors. (See `input_ids` above) Returns: Example: ```python # Assumption: *get_visual_embeddings(image)* gets the visual embeddings of the image in the batch. from transformers import AutoTokenizer, VisualBertForMultipleChoice import torch tokenizer = AutoTokenizer.from_pretrained("google-bert/bert-base-uncased") model = VisualBertForMultipleChoice.from_pretrained("uclanlp/visualbert-vcr") prompt = "In Italy, pizza served in formal settings, such as at a restaurant, is presented unsliced." choice0 = "It is eaten with a fork and a knife." choice1 = "It is eaten while held in the hand." visual_embeds = get_visual_embeddings(image) # (batch_size, num_choices, visual_seq_length, visual_embedding_dim) visual_embeds = visual_embeds.expand(1, 2, *visual_embeds.shape) visual_token_type_ids = torch.ones(visual_embeds.shape[:-1], dtype=torch.long) visual_attention_mask = torch.ones(visual_embeds.shape[:-1], dtype=torch.float) labels = torch.tensor(0).unsqueeze(0) # choice0 is correct (according to Wikipedia ;)), batch size 1 encoding = tokenizer([[prompt, prompt], [choice0, choice1]], return_tensors="pt", padding=True) # batch size is 1 inputs_dict = {k: v.unsqueeze(0) for k, v in encoding.items()} inputs_dict.update( { "visual_embeds": visual_embeds, "visual_attention_mask": visual_attention_mask, "visual_token_type_ids": visual_token_type_ids, "labels": labels, } ) outputs = model(**inputs_dict) loss = outputs.loss logits = outputs.logits ```""" return_dict = return_dict if return_dict is not None else self.config.use_return_dict num_choices = input_ids.shape[1] if input_ids is not None else inputs_embeds.shape[1] input_ids = input_ids.view(-1, input_ids.size(-1)) if input_ids is not None else None attention_mask = attention_mask.view(-1, attention_mask.size(-1)) if attention_mask is not None else None token_type_ids = token_type_ids.view(-1, token_type_ids.size(-1)) if token_type_ids is not None else None position_ids = position_ids.view(-1, position_ids.size(-1)) if position_ids is not None else None inputs_embeds = ( inputs_embeds.view(-1, inputs_embeds.size(-2), inputs_embeds.size(-1)) if inputs_embeds is not None else None ) visual_embeds = ( visual_embeds.view(-1, visual_embeds.size(-2), visual_embeds.size(-1)) if visual_embeds is not None else None ) visual_attention_mask = ( visual_attention_mask.view(-1, visual_attention_mask.size(-1)) if visual_attention_mask is not None else None ) visual_token_type_ids = ( visual_token_type_ids.view(-1, visual_token_type_ids.size(-1)) if visual_token_type_ids is not None else None ) outputs = self.visual_bert( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, visual_embeds=visual_embeds, visual_attention_mask=visual_attention_mask, visual_token_type_ids=visual_token_type_ids, image_text_alignment=image_text_alignment, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) _, pooled_output = outputs[0], outputs[1] pooled_output = self.dropout(pooled_output) logits = self.cls(pooled_output) reshaped_logits = logits.view(-1, num_choices) loss = None if labels is not None: loss_fct = CrossEntropyLoss() loss = loss_fct(reshaped_logits, labels) if not return_dict: output = (reshaped_logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return MultipleChoiceModelOutput( loss=loss, logits=reshaped_logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) @add_start_docstrings( """ VisualBert Model with a classification/regression head on top (a dropout and a linear layer on top of the pooled output) for VQA. """, VISUAL_BERT_START_DOCSTRING, ) class VisualBertForQuestionAnswering(VisualBertPreTrainedModel): def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.visual_bert = VisualBertModel(config) self.dropout = nn.Dropout(config.hidden_dropout_prob) self.cls = nn.Linear(config.hidden_size, config.num_labels) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(VISUAL_BERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @replace_return_docstrings(output_type=SequenceClassifierOutput, config_class=_CONFIG_FOR_DOC) def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.LongTensor] = None, token_type_ids: Optional[torch.LongTensor] = None, position_ids: Optional[torch.LongTensor] = None, head_mask: Optional[torch.LongTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, visual_embeds: Optional[torch.FloatTensor] = None, visual_attention_mask: Optional[torch.LongTensor] = None, visual_token_type_ids: Optional[torch.LongTensor] = None, image_text_alignment: Optional[torch.LongTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, labels: Optional[torch.LongTensor] = None, ) -> Union[Tuple[torch.Tensor], SequenceClassifierOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size, total_sequence_length)`, *optional*): Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., config.num_labels - 1]`. A KLDivLoss is computed between the labels and the returned logits. Returns: Example: ```python # Assumption: *get_visual_embeddings(image)* gets the visual embeddings of the image in the batch. from transformers import AutoTokenizer, VisualBertForQuestionAnswering import torch tokenizer = AutoTokenizer.from_pretrained("google-bert/bert-base-uncased") model = VisualBertForQuestionAnswering.from_pretrained("uclanlp/visualbert-vqa") text = "Who is eating the apple?" inputs = tokenizer(text, return_tensors="pt") visual_embeds = get_visual_embeddings(image).unsqueeze(0) visual_token_type_ids = torch.ones(visual_embeds.shape[:-1], dtype=torch.long) visual_attention_mask = torch.ones(visual_embeds.shape[:-1], dtype=torch.float) inputs.update( { "visual_embeds": visual_embeds, "visual_token_type_ids": visual_token_type_ids, "visual_attention_mask": visual_attention_mask, } ) labels = torch.tensor([[0.0, 1.0]]).unsqueeze(0) # Batch size 1, Num labels 2 outputs = model(**inputs, labels=labels) loss = outputs.loss scores = outputs.logits ```""" return_dict = return_dict if return_dict is not None else self.config.use_return_dict # Get the index of the last text token index_to_gather = attention_mask.sum(1) - 2 # as in original code outputs = self.visual_bert( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, visual_embeds=visual_embeds, visual_attention_mask=visual_attention_mask, visual_token_type_ids=visual_token_type_ids, image_text_alignment=image_text_alignment, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = outputs[0] # TO-CHECK: From the original code index_to_gather = ( index_to_gather.unsqueeze(-1).unsqueeze(-1).expand(index_to_gather.size(0), 1, sequence_output.size(-1)) ) pooled_output = torch.gather(sequence_output, 1, index_to_gather) pooled_output = self.dropout(pooled_output) logits = self.cls(pooled_output) reshaped_logits = logits.view(-1, self.num_labels) loss = None if labels is not None: loss_fct = nn.KLDivLoss(reduction="batchmean") log_softmax = nn.LogSoftmax(dim=-1) reshaped_logits = log_softmax(reshaped_logits) loss = loss_fct(reshaped_logits, labels.contiguous()) if not return_dict: output = (reshaped_logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return SequenceClassifierOutput( loss=loss, logits=reshaped_logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) @add_start_docstrings( """ VisualBert Model with a sequence classification head on top (a dropout and a linear layer on top of the pooled output) for Visual Reasoning e.g. for NLVR task. """, VISUAL_BERT_START_DOCSTRING, ) class VisualBertForVisualReasoning(VisualBertPreTrainedModel): def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.visual_bert = VisualBertModel(config) self.dropout = nn.Dropout(config.hidden_dropout_prob) self.cls = nn.Linear(config.hidden_size, config.num_labels) # 2 # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(VISUAL_BERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @replace_return_docstrings(output_type=SequenceClassifierOutput, config_class=_CONFIG_FOR_DOC) def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.LongTensor] = None, token_type_ids: Optional[torch.LongTensor] = None, position_ids: Optional[torch.LongTensor] = None, head_mask: Optional[torch.LongTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, visual_embeds: Optional[torch.FloatTensor] = None, visual_attention_mask: Optional[torch.LongTensor] = None, visual_token_type_ids: Optional[torch.LongTensor] = None, image_text_alignment: Optional[torch.LongTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, labels: Optional[torch.LongTensor] = None, ) -> Union[Tuple[torch.Tensor], SequenceClassifierOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., config.num_labels - 1]`. A classification loss is computed (Cross-Entropy) against these labels. Returns: Example: ```python # Assumption: *get_visual_embeddings(image)* gets the visual embeddings of the image in the batch. from transformers import AutoTokenizer, VisualBertForVisualReasoning import torch tokenizer = AutoTokenizer.from_pretrained("google-bert/bert-base-uncased") model = VisualBertForVisualReasoning.from_pretrained("uclanlp/visualbert-nlvr2") text = "Who is eating the apple?" inputs = tokenizer(text, return_tensors="pt") visual_embeds = get_visual_embeddings(image).unsqueeze(0) visual_token_type_ids = torch.ones(visual_embeds.shape[:-1], dtype=torch.long) visual_attention_mask = torch.ones(visual_embeds.shape[:-1], dtype=torch.float) inputs.update( { "visual_embeds": visual_embeds, "visual_token_type_ids": visual_token_type_ids, "visual_attention_mask": visual_attention_mask, } ) labels = torch.tensor(1).unsqueeze(0) # Batch size 1, Num choices 2 outputs = model(**inputs, labels=labels) loss = outputs.loss scores = outputs.logits ```""" return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.visual_bert( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, visual_embeds=visual_embeds, visual_attention_mask=visual_attention_mask, visual_token_type_ids=visual_token_type_ids, image_text_alignment=image_text_alignment, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) # sequence_output = outputs[0] pooled_output = outputs[1] pooled_output = self.dropout(pooled_output) logits = self.cls(pooled_output) reshaped_logits = logits.contiguous() loss = None if labels is not None: loss_fct = CrossEntropyLoss() loss = loss_fct(reshaped_logits, labels.view(-1)) if not return_dict: output = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return SequenceClassifierOutput( loss=loss, logits=reshaped_logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) class VisualBertRegionToPhraseAttention(nn.Module): def __init__(self, config): super().__init__() if config.hidden_size % config.num_attention_heads != 0: raise ValueError( f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention " f"heads ({config.num_attention_heads})" ) self.num_attention_heads = 1 # config.num_attention_heads self.attention_head_size = int(config.hidden_size / config.num_attention_heads) self.all_head_size = self.num_attention_heads * self.attention_head_size self.query = nn.Linear(config.hidden_size, self.all_head_size) self.key = nn.Linear(config.hidden_size, self.all_head_size) self.value = nn.Linear(config.hidden_size, self.all_head_size) self.dropout = nn.Dropout(config.attention_probs_dropout_prob) def transpose_for_scores(self, x): new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size) x = x.view(*new_x_shape) return x.permute(0, 2, 1, 3) def forward(self, query, key, attention_mask): attention_mask = attention_mask.to(query.dtype) attention_mask = attention_mask.unsqueeze(1).unsqueeze(2) attention_mask = (1.0 - attention_mask) * torch.finfo(query.dtype).min mixed_query_layer = self.query(query) mixed_key_layer = self.key(key) query_layer = self.transpose_for_scores(mixed_query_layer) key_layer = self.transpose_for_scores(mixed_key_layer) attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2)) attention_scores = attention_scores / math.sqrt(self.attention_head_size) attention_scores = attention_scores + attention_mask attention_scores = attention_scores.squeeze(1) return attention_scores @add_start_docstrings( """ VisualBert Model with a Masked Language Modeling head and an attention layer on top for Region-to-Phrase Alignment e.g. for Flickr30 Entities task. """, VISUAL_BERT_START_DOCSTRING, ) class VisualBertForRegionToPhraseAlignment(VisualBertPreTrainedModel): _tied_weights_keys = ["cls.predictions.decoder.bias"] def __init__(self, config): super().__init__(config) self.visual_bert = VisualBertModel(config) self.dropout = nn.Dropout(config.hidden_dropout_prob) self.cls = VisualBertPreTrainingHeads(config) self.attention = VisualBertRegionToPhraseAttention(config) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(VISUAL_BERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @replace_return_docstrings(output_type=SequenceClassifierOutput, config_class=_CONFIG_FOR_DOC) def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.LongTensor] = None, token_type_ids: Optional[torch.LongTensor] = None, position_ids: Optional[torch.LongTensor] = None, head_mask: Optional[torch.LongTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, visual_embeds: Optional[torch.FloatTensor] = None, visual_attention_mask: Optional[torch.LongTensor] = None, visual_token_type_ids: Optional[torch.LongTensor] = None, image_text_alignment: Optional[torch.LongTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, region_to_phrase_position: Optional[torch.LongTensor] = None, labels: Optional[torch.LongTensor] = None, ) -> Union[Tuple[torch.Tensor], SequenceClassifierOutput]: r""" region_to_phrase_position (`torch.LongTensor` of shape `(batch_size, total_sequence_length)`, *optional*): The positions depicting the position of the image embedding corresponding to the textual tokens. labels (`torch.LongTensor` of shape `(batch_size, total_sequence_length, visual_sequence_length)`, *optional*): Labels for computing the masked language modeling loss. KLDivLoss is computed against these labels and the outputs from the attention layer. Returns: Example: ```python # Assumption: *get_visual_embeddings(image)* gets the visual embeddings of the image in the batch. from transformers import AutoTokenizer, VisualBertForRegionToPhraseAlignment import torch tokenizer = AutoTokenizer.from_pretrained("google-bert/bert-base-uncased") model = VisualBertForRegionToPhraseAlignment.from_pretrained("uclanlp/visualbert-vqa-coco-pre") text = "Who is eating the apple?" inputs = tokenizer(text, return_tensors="pt") visual_embeds = get_visual_embeddings(image).unsqueeze(0) visual_token_type_ids = torch.ones(visual_embeds.shape[:-1], dtype=torch.long) visual_attention_mask = torch.ones(visual_embeds.shape[:-1], dtype=torch.float) region_to_phrase_position = torch.ones((1, inputs["input_ids"].shape[-1] + visual_embeds.shape[-2])) inputs.update( { "region_to_phrase_position": region_to_phrase_position, "visual_embeds": visual_embeds, "visual_token_type_ids": visual_token_type_ids, "visual_attention_mask": visual_attention_mask, } ) labels = torch.ones( (1, inputs["input_ids"].shape[-1] + visual_embeds.shape[-2], visual_embeds.shape[-2]) ) # Batch size 1 outputs = model(**inputs, labels=labels) loss = outputs.loss scores = outputs.logits ```""" if region_to_phrase_position is None: raise ValueError("`region_to_phrase_position` should not be None when using Flickr Model.") return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.visual_bert( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, visual_embeds=visual_embeds, visual_attention_mask=visual_attention_mask, visual_token_type_ids=visual_token_type_ids, image_text_alignment=image_text_alignment, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = outputs[0] region_to_phrase_position_mask = (region_to_phrase_position != -1).long() # Make the -1 become 0 region_to_phrase_position = region_to_phrase_position * region_to_phrase_position_mask # Selected_positions = batch x selected position x dim expanded_region_to_phrase_positions = region_to_phrase_position.unsqueeze(2).expand( region_to_phrase_position.size(0), region_to_phrase_position.size(1), sequence_output.size(2) ) selected_positions = sequence_output.gather(1, expanded_region_to_phrase_positions) # Visual Features = batch x visual_feature_length x dim # This will need separate image and visual masks. visual_features = sequence_output[:, attention_mask.size(1) :] if visual_features.size(1) != visual_attention_mask.size(1): raise ValueError( f"Visual features length :{visual_features.size(1)} should be the same" f" as visual attention mask length: {visual_attention_mask.size(1)}." ) logits = self.attention(selected_positions, visual_features, visual_attention_mask) loss = None if labels is not None: # scores = batch x selected position x visual_feature # scores = selected_positions.bmm(visual_features.transpose(1,2)) # label = batch x selected_postion x needed position loss_fct = KLDivLoss(reduction="batchmean") log_softmax = LogSoftmax(dim=-1) scores = log_softmax(logits) labels = labels.contiguous() loss = loss_fct(scores, labels) if not return_dict: output = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return SequenceClassifierOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, )
transformers/src/transformers/models/visual_bert/modeling_visual_bert.py/0
{ "file_path": "transformers/src/transformers/models/visual_bert/modeling_visual_bert.py", "repo_id": "transformers", "token_count": 29458 }
130
# coding=utf-8 # Copyright 2022 Facebook AI and The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ ViT MAE model configuration""" from ...configuration_utils import PretrainedConfig from ...utils import logging logger = logging.get_logger(__name__) VIT_MAE_PRETRAINED_CONFIG_ARCHIVE_MAP = { "facebook/vit-mae-base": "https://huggingface.co/facebook/vit-mae-base/resolve/main/config.json", # See all ViT MAE models at https://huggingface.co/models?filter=vit-mae } class ViTMAEConfig(PretrainedConfig): r""" This is the configuration class to store the configuration of a [`ViTMAEModel`]. It is used to instantiate an ViT MAE model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the ViT [facebook/vit-mae-base](https://huggingface.co/facebook/vit-mae-base) architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: hidden_size (`int`, *optional*, defaults to 768): Dimensionality of the encoder layers and the pooler layer. num_hidden_layers (`int`, *optional*, defaults to 12): Number of hidden layers in the Transformer encoder. num_attention_heads (`int`, *optional*, defaults to 12): Number of attention heads for each attention layer in the Transformer encoder. intermediate_size (`int`, *optional*, defaults to 3072): Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder. hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`): The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, `"relu"`, `"selu"` and `"gelu_new"` are supported. hidden_dropout_prob (`float`, *optional*, defaults to 0.0): The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. attention_probs_dropout_prob (`float`, *optional*, defaults to 0.0): The dropout ratio for the attention probabilities. initializer_range (`float`, *optional*, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. layer_norm_eps (`float`, *optional*, defaults to 1e-12): The epsilon used by the layer normalization layers. image_size (`int`, *optional*, defaults to 224): The size (resolution) of each image. patch_size (`int`, *optional*, defaults to 16): The size (resolution) of each patch. num_channels (`int`, *optional*, defaults to 3): The number of input channels. qkv_bias (`bool`, *optional*, defaults to `True`): Whether to add a bias to the queries, keys and values. decoder_num_attention_heads (`int`, *optional*, defaults to 16): Number of attention heads for each attention layer in the decoder. decoder_hidden_size (`int`, *optional*, defaults to 512): Dimensionality of the decoder. decoder_num_hidden_layers (`int`, *optional*, defaults to 8): Number of hidden layers in the decoder. decoder_intermediate_size (`int`, *optional*, defaults to 2048): Dimensionality of the "intermediate" (i.e., feed-forward) layer in the decoder. mask_ratio (`float`, *optional*, defaults to 0.75): The ratio of the number of masked tokens in the input sequence. norm_pix_loss (`bool`, *optional*, defaults to `False`): Whether or not to train with normalized pixels (see Table 3 in the paper). Using normalized pixels improved representation quality in the experiments of the authors. Example: ```python >>> from transformers import ViTMAEConfig, ViTMAEModel >>> # Initializing a ViT MAE vit-mae-base style configuration >>> configuration = ViTMAEConfig() >>> # Initializing a model (with random weights) from the vit-mae-base style configuration >>> model = ViTMAEModel(configuration) >>> # Accessing the model configuration >>> configuration = model.config ```""" model_type = "vit_mae" def __init__( self, hidden_size=768, num_hidden_layers=12, num_attention_heads=12, intermediate_size=3072, hidden_act="gelu", hidden_dropout_prob=0.0, attention_probs_dropout_prob=0.0, initializer_range=0.02, layer_norm_eps=1e-12, image_size=224, patch_size=16, num_channels=3, qkv_bias=True, decoder_num_attention_heads=16, decoder_hidden_size=512, decoder_num_hidden_layers=8, decoder_intermediate_size=2048, mask_ratio=0.75, norm_pix_loss=False, **kwargs, ): super().__init__(**kwargs) self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.intermediate_size = intermediate_size self.hidden_act = hidden_act self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.initializer_range = initializer_range self.layer_norm_eps = layer_norm_eps self.image_size = image_size self.patch_size = patch_size self.num_channels = num_channels self.qkv_bias = qkv_bias self.decoder_num_attention_heads = decoder_num_attention_heads self.decoder_hidden_size = decoder_hidden_size self.decoder_num_hidden_layers = decoder_num_hidden_layers self.decoder_intermediate_size = decoder_intermediate_size self.mask_ratio = mask_ratio self.norm_pix_loss = norm_pix_loss
transformers/src/transformers/models/vit_mae/configuration_vit_mae.py/0
{ "file_path": "transformers/src/transformers/models/vit_mae/configuration_vit_mae.py", "repo_id": "transformers", "token_count": 2504 }
131
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_speech_available, is_torch_available, ) _import_structure = { "configuration_vits": [ "VITS_PRETRAINED_CONFIG_ARCHIVE_MAP", "VitsConfig", ], "tokenization_vits": ["VitsTokenizer"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["modeling_vits"] = [ "VITS_PRETRAINED_MODEL_ARCHIVE_LIST", "VitsModel", "VitsPreTrainedModel", ] if TYPE_CHECKING: from .configuration_vits import ( VITS_PRETRAINED_CONFIG_ARCHIVE_MAP, VitsConfig, ) from .tokenization_vits import VitsTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vits import ( VITS_PRETRAINED_MODEL_ARCHIVE_LIST, VitsModel, VitsPreTrainedModel, ) else: import sys sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
transformers/src/transformers/models/vits/__init__.py/0
{ "file_path": "transformers/src/transformers/models/vits/__init__.py", "repo_id": "transformers", "token_count": 732 }
132
# coding=utf-8 # Copyright 2021 The Fairseq Authors and the HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ TensorFlow Wav2Vec2 model.""" from __future__ import annotations import warnings from dataclasses import dataclass from typing import Any, Optional, Tuple, Union import numpy as np import tensorflow as tf from ...activations_tf import get_tf_activation from ...modeling_tf_outputs import TFBaseModelOutput, TFCausalLMOutput, TFSequenceClassifierOutput from ...modeling_tf_utils import ( TFPreTrainedModel, get_initializer, keras, keras_serializable, unpack_inputs, ) from ...tf_utils import shape_list, stable_softmax from ...utils import ( ModelOutput, add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings, ) from .configuration_wav2vec2 import Wav2Vec2Config logger = logging.get_logger(__name__) _HIDDEN_STATES_START_POSITION = 2 _CHECKPOINT_FOR_DOC = "facebook/wav2vec2-base-960h" _CONFIG_FOR_DOC = "Wav2Vec2Config" TF_WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST = [ "facebook/wav2vec2-base-960h", "facebook/wav2vec2-large-960h", "facebook/wav2vec2-large-960h-lv60", "facebook/wav2vec2-large-960h-lv60-self", # See all Wav2Vec2 models at https://huggingface.co/models?filter=wav2vec2 ] LARGE_NEGATIVE = -1e8 @dataclass class TFWav2Vec2BaseModelOutput(ModelOutput): """ Output type of [`TFWav2Vec2BaseModelOutput`], with potential hidden states and attentions. Args: last_hidden_state (`tf.Tensor` of shape `(batch_size, sequence_length, hidden_size)`): Sequence of hidden-states at the output of the last layer of the model. extract_features (`tf.Tensor` of shape `(batch_size, sequence_length, conv_dim[-1])`): Sequence of extracted feature vectors of the last convolutional layer of the model. hidden_states (`tuple(tf.Tensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `tf.Tensor` (one for the output of the embeddings + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the initial embedding outputs. attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `tf.Tensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. """ last_hidden_state: tf.Tensor = None extract_features: tf.Tensor = None hidden_states: Tuple[tf.Tensor] | None = None attentions: Tuple[tf.Tensor] | None = None def _sample_without_replacement(distribution, num_samples): """ Categorical sampling without replacement is currently not implemented. The gumbel-max trick will do for now - see https://github.com/tensorflow/tensorflow/issues/9260 for more info """ z = -tf.math.log(tf.random.uniform(shape_list(distribution), 0, 1)) _, indices = tf.nn.top_k(distribution + z, num_samples) return indices def _scatter_values_on_batch_indices(values, batch_indices, output_shape): """ Scatter function as in PyTorch with indices in format (batch_dim, indixes) """ indices_shape = shape_list(batch_indices) # broadcast batch dim to indices_shape broad_casted_batch_dims = tf.reshape( tf.broadcast_to(tf.expand_dims(tf.range(indices_shape[0]), axis=-1), indices_shape), [1, -1] ) # transform batch_indices to pair_indices pair_indices = tf.transpose(tf.concat([broad_casted_batch_dims, tf.reshape(batch_indices, [1, -1])], 0)) # scatter values to pair indices return tf.scatter_nd(pair_indices, tf.reshape(values, [-1]), output_shape) def _compute_mask_indices( shape: Tuple[int, int], mask_prob: float, mask_length: int, min_masks: int = 0, ) -> tf.Tensor: """ Computes random mask spans for a given shape Args: shape: the shape for which to compute masks. should be of size 2 where first element is batch size and 2nd is timesteps attention_mask: optional padding mask of the same size as shape, which will prevent masking padded elements mask_prob: probability for each token to be chosen as start of the span to be masked. this will be multiplied by number of timesteps divided by length of mask span to mask approximately this percentage of all elements. however due to overlaps, the actual number will be smaller (unless no_overlap is True) mask_length: size of the mask min_masks: minimum number of masked spans Adapted from [fairseq's data_utils.py](https://github.com/pytorch/fairseq/blob/e0788f7007a8473a76db573985031f3c94201e79/fairseq/data/data_utils.py#L376). """ batch_size, sequence_length = shape if mask_length < 1: raise ValueError("`mask_length` has to be bigger than 0.") tf.debugging.assert_less( mask_length, sequence_length, message=( f"`mask_length` has to be smaller than `sequence_length`, but got `mask_length`: {mask_length} and" f" `sequence_length`: {sequence_length}`" ), ) # compute number of masked spans in batch num_masked_spans = mask_prob * tf.cast(sequence_length, tf.float32) / mask_length + tf.random.uniform((1,)) num_masked_spans = tf.maximum(num_masked_spans, min_masks) num_masked_spans = tf.cast(num_masked_spans, tf.int32) # make sure num masked indices <= sequence_length num_masked_spans = tf.math.minimum(sequence_length // mask_length, num_masked_spans) num_masked_spans = tf.squeeze(num_masked_spans) # SpecAugment mask to fill spec_aug_mask = tf.zeros((batch_size, sequence_length), dtype=tf.int32) # uniform distribution to sample from, make sure that offset samples are < sequence_length uniform_dist = tf.ones((batch_size, sequence_length - (mask_length - 1))) # get random indices to mask spec_aug_mask_idxs = _sample_without_replacement(uniform_dist, num_masked_spans) # expand masked indices to masked spans spec_aug_mask_idxs = tf.expand_dims(spec_aug_mask_idxs, -1) spec_aug_mask_idxs = tf.tile(spec_aug_mask_idxs, (1, 1, mask_length)) spec_aug_mask_idxs = tf.reshape(spec_aug_mask_idxs, (batch_size, num_masked_spans * mask_length)) offsets = tf.range(mask_length)[tf.newaxis, tf.newaxis, :] offsets = tf.tile(offsets, (batch_size, num_masked_spans, 1)) offsets = tf.reshape(offsets, (batch_size, num_masked_spans * mask_length)) spec_aug_mask_idxs = spec_aug_mask_idxs + offsets # scatter indices to mask spec_aug_mask = _scatter_values_on_batch_indices( tf.ones_like(spec_aug_mask_idxs), spec_aug_mask_idxs, tf.shape(spec_aug_mask) ) return spec_aug_mask # Copied from transformers.models.bart.modeling_tf_bart._expand_mask def _expand_mask(mask: tf.Tensor, tgt_len: Optional[int] = None): """ Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`. """ src_len = shape_list(mask)[1] tgt_len = tgt_len if tgt_len is not None else src_len one_cst = tf.constant(1.0) mask = tf.cast(mask, dtype=one_cst.dtype) expanded_mask = tf.tile(mask[:, None, None, :], (1, 1, tgt_len, 1)) return (one_cst - expanded_mask) * LARGE_NEGATIVE class TFWav2Vec2GroupNorm(keras.layers.Layer): """ From tensorflow-addons https://www.tensorflow.org/addons/api_docs/python/tfa/layers/GroupNormalization """ def __init__( self, groups: int = 32, axis: int = -1, epsilon: float = 1e-3, center: bool = True, scale: bool = True, beta_initializer: keras.initializers.Initializer = "zeros", gamma_initializer: keras.initializers.Initializer = "ones", beta_regularizer: keras.regularizers.Regularizer = None, gamma_regularizer: keras.regularizers.Regularizer = None, beta_constraint: keras.constraints.Constraint = None, gamma_constraint: keras.constraints.Constraint = None, **kwargs, ): super().__init__(**kwargs) self.supports_masking = True self.groups = groups self.axis = axis self.epsilon = epsilon self.center = center self.scale = scale self.beta_initializer = keras.initializers.get(beta_initializer) self.gamma_initializer = keras.initializers.get(gamma_initializer) self.beta_regularizer = keras.regularizers.get(beta_regularizer) self.gamma_regularizer = keras.regularizers.get(gamma_regularizer) self.beta_constraint = keras.constraints.get(beta_constraint) self.gamma_constraint = keras.constraints.get(gamma_constraint) self._check_axis() def build(self, input_shape): self._check_if_input_shape_is_none(input_shape) self._set_number_of_groups_for_instance_norm(input_shape) self._check_size_of_dimensions(input_shape) self._create_input_spec(input_shape) self._add_gamma_weight(input_shape) self._add_beta_weight(input_shape) self.built = True super().build(input_shape) def call(self, inputs): input_shape = keras.backend.int_shape(inputs) tensor_input_shape = tf.shape(inputs) reshaped_inputs, group_shape = self._reshape_into_groups(inputs, input_shape, tensor_input_shape) normalized_inputs = self._apply_normalization(reshaped_inputs, input_shape) is_instance_norm = (input_shape[self.axis] // self.groups) == 1 if not is_instance_norm: outputs = tf.reshape(normalized_inputs, tensor_input_shape) else: outputs = normalized_inputs return outputs def get_config(self): config = { "groups": self.groups, "axis": self.axis, "epsilon": self.epsilon, "center": self.center, "scale": self.scale, "beta_initializer": keras.initializers.serialize(self.beta_initializer), "gamma_initializer": keras.initializers.serialize(self.gamma_initializer), "beta_regularizer": keras.regularizers.serialize(self.beta_regularizer), "gamma_regularizer": keras.regularizers.serialize(self.gamma_regularizer), "beta_constraint": keras.constraints.serialize(self.beta_constraint), "gamma_constraint": keras.constraints.serialize(self.gamma_constraint), } base_config = super().get_config() return {**base_config, **config} def compute_output_shape(self, input_shape): return input_shape def _reshape_into_groups(self, inputs, input_shape, tensor_input_shape): group_shape = [tensor_input_shape[i] for i in range(len(input_shape))] is_instance_norm = (input_shape[self.axis] // self.groups) == 1 if not is_instance_norm: group_shape[self.axis] = input_shape[self.axis] // self.groups group_shape.insert(self.axis, self.groups) group_shape = tf.stack(group_shape) reshaped_inputs = tf.reshape(inputs, group_shape) return reshaped_inputs, group_shape else: return inputs, group_shape def _apply_normalization(self, reshaped_inputs, input_shape): group_shape = keras.backend.int_shape(reshaped_inputs) group_reduction_axes = list(range(1, len(group_shape))) is_instance_norm = (input_shape[self.axis] // self.groups) == 1 if not is_instance_norm: axis = -2 if self.axis == -1 else self.axis - 1 else: axis = -1 if self.axis == -1 else self.axis - 1 group_reduction_axes.pop(axis) mean, variance = tf.nn.moments(reshaped_inputs, group_reduction_axes, keepdims=True) gamma, beta = self._get_reshaped_weights(input_shape) normalized_inputs = tf.nn.batch_normalization( reshaped_inputs, mean=mean, variance=variance, scale=gamma, offset=beta, variance_epsilon=self.epsilon, ) return normalized_inputs def _get_reshaped_weights(self, input_shape): broadcast_shape = self._create_broadcast_shape(input_shape) gamma = None beta = None if self.scale: gamma = tf.reshape(self.gamma, broadcast_shape) if self.center: beta = tf.reshape(self.beta, broadcast_shape) return gamma, beta def _check_if_input_shape_is_none(self, input_shape): dim = input_shape[self.axis] if dim is None: raise ValueError( "Axis " + str(self.axis) + " of input tensor should have a defined dimension but the layer received an input with shape " + str(input_shape) + "." ) def _set_number_of_groups_for_instance_norm(self, input_shape): dim = input_shape[self.axis] if self.groups == -1: self.groups = dim def _check_size_of_dimensions(self, input_shape): dim = input_shape[self.axis] if dim < self.groups: raise ValueError( "Number of groups (" + str(self.groups) + ") cannot be more than the number of channels (" + str(dim) + ")." ) if dim % self.groups != 0: raise ValueError( "Number of groups (" + str(self.groups) + ") must be a multiple of the number of channels (" + str(dim) + ")." ) def _check_axis(self): if self.axis == 0: raise ValueError( "You are trying to normalize your batch axis. Do you want to use tf.layer.batch_normalization instead" ) def _create_input_spec(self, input_shape): dim = input_shape[self.axis] self.input_spec = keras.layers.InputSpec(ndim=len(input_shape), axes={self.axis: dim}) def _add_gamma_weight(self, input_shape): dim = input_shape[self.axis] shape = (dim,) if self.scale: self.gamma = self.add_weight( shape=shape, name="gamma", initializer=self.gamma_initializer, regularizer=self.gamma_regularizer, constraint=self.gamma_constraint, ) else: self.gamma = None def _add_beta_weight(self, input_shape): dim = input_shape[self.axis] shape = (dim,) if self.center: self.beta = self.add_weight( shape=shape, name="beta", initializer=self.beta_initializer, regularizer=self.beta_regularizer, constraint=self.beta_constraint, ) else: self.beta = None def _create_broadcast_shape(self, input_shape): broadcast_shape = [1] * len(input_shape) is_instance_norm = (input_shape[self.axis] // self.groups) == 1 if not is_instance_norm: broadcast_shape[self.axis] = input_shape[self.axis] // self.groups broadcast_shape.insert(self.axis, self.groups) else: broadcast_shape[self.axis] = self.groups return broadcast_shape class TFWav2Vec2WeightNormConv1D(keras.layers.Conv1D): """Adapted from https://www.tensorflow.org/probability/api_docs/python/tfp/layers/weight_norm/WeightNorm""" def __init__(self, filters, kernel_size, groups, explicit_padding, **kwargs): super().__init__( filters=filters, kernel_size=kernel_size, groups=groups, padding="valid", use_bias=True, bias_initializer="he_normal", **kwargs, ) self.explicit_padding = explicit_padding self.filter_axis = 2 self.kernel_norm_axes = tf.constant([0, 1]) def _init_norm(self): """Set the norm of the weight vector.""" kernel_norm = tf.sqrt(tf.reduce_sum(tf.square(self.weight_v), axis=self.kernel_norm_axes)) self.weight_g.assign(kernel_norm[:, tf.newaxis, tf.newaxis]) def _normalize_kernel(self): """Generate normalized weights.""" kernel = tf.nn.l2_normalize(self.weight_v, axis=self.kernel_norm_axes) * tf.transpose(self.weight_g) self.kernel = tf.transpose(kernel) def build(self, input_shape): if not self.built: super().build(input_shape) self.kernel = tf.Variable(tf.transpose(self.kernel), name="weight_v", trainable=True) self.weight_v = self.kernel self.weight_g = self.add_weight( name="weight_g", shape=(int(self.weight_v.shape[self.filter_axis]), 1, 1), initializer="ones", dtype=self.weight_v.dtype, trainable=True, ) self._init_norm() self.bias = self.add_weight(name="bias", shape=(self.filters,), initializer="zeros", trainable=True) def call(self, inputs): # TODO Matt: Assigning to attributes in call() is deeply sinful in TensorFlow, as it should be idempotent. # This whole layer should be replaced by a layer that doesn't inherit from Conv1D, but instead calls # a functional 1d convolution with normalized weights that it generates (but does not store!) self._normalize_kernel() padded_inputs = tf.pad(inputs, ((0, 0), (self.explicit_padding, self.explicit_padding), (0, 0))) output = super().call(padded_inputs) return output class TFWav2Vec2NoLayerNormConvLayer(keras.layers.Layer): def __init__(self, config: Wav2Vec2Config, layer_id: int = 0, **kwargs: Any) -> None: super().__init__(**kwargs) self.in_conv_dim = config.conv_dim[layer_id] if layer_id > 0 else 1 self.out_conv_dim = config.conv_dim[layer_id] self.conv = keras.layers.Conv1D( filters=self.out_conv_dim, kernel_size=config.conv_kernel[layer_id], strides=config.conv_stride[layer_id], use_bias=config.conv_bias, name="conv", ) self.activation = get_tf_activation(config.feat_extract_activation) def call(self, hidden_states: tf.Tensor) -> tf.Tensor: hidden_states = self.conv(hidden_states) hidden_states = self.activation(hidden_states) return hidden_states def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "conv", None) is not None: with tf.name_scope(self.conv.name): self.conv.build([None, None, self.in_conv_dim]) class TFWav2Vec2LayerNormConvLayer(keras.layers.Layer): def __init__(self, config: Wav2Vec2Config, layer_id: int = 0, **kwargs: Any) -> None: super().__init__(**kwargs) self.in_conv_dim = config.conv_dim[layer_id] if layer_id > 0 else 1 self.out_conv_dim = config.conv_dim[layer_id] self.conv = keras.layers.Conv1D( filters=self.out_conv_dim, kernel_size=config.conv_kernel[layer_id], strides=config.conv_stride[layer_id], use_bias=config.conv_bias, name="conv", ) self.layer_norm = keras.layers.LayerNormalization(name="layer_norm", epsilon=config.layer_norm_eps) self.activation = get_tf_activation(config.feat_extract_activation) def call(self, hidden_states: tf.Tensor) -> tf.Tensor: hidden_states = self.conv(hidden_states) hidden_states = self.layer_norm(hidden_states) hidden_states = self.activation(hidden_states) return hidden_states def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "conv", None) is not None: with tf.name_scope(self.conv.name): self.conv.build([None, None, self.in_conv_dim]) if getattr(self, "layer_norm", None) is not None: with tf.name_scope(self.layer_norm.name): self.layer_norm.build([None, None, self.out_conv_dim]) class TFWav2Vec2GroupNormConvLayer(keras.layers.Layer): def __init__(self, config: Wav2Vec2Config, layer_id: int = 0, **kwargs: Any) -> None: super().__init__(**kwargs) self.in_conv_dim = config.conv_dim[layer_id] if layer_id > 0 else 1 self.out_conv_dim = config.conv_dim[layer_id] self.conv = keras.layers.Conv1D( filters=self.out_conv_dim, kernel_size=config.conv_kernel[layer_id], strides=config.conv_stride[layer_id], use_bias=config.conv_bias, name="conv", ) self.activation = get_tf_activation(config.feat_extract_activation) self.layer_norm = TFWav2Vec2GroupNorm( groups=self.out_conv_dim, epsilon=config.layer_norm_eps, name="layer_norm" ) def call(self, hidden_states: tf.Tensor) -> tf.Tensor: hidden_states = self.conv(hidden_states) hidden_states = self.layer_norm(hidden_states) hidden_states = self.activation(hidden_states) return hidden_states def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "conv", None) is not None: with tf.name_scope(self.conv.name): self.conv.build([None, None, self.in_conv_dim]) if getattr(self, "layer_norm", None) is not None: with tf.name_scope(self.layer_norm.name): self.layer_norm.build([None, None, self.out_conv_dim]) class TFWav2Vec2PositionalConvEmbedding(keras.layers.Layer): def __init__(self, config: Wav2Vec2Config, **kwargs: Any) -> None: super().__init__(**kwargs) self.conv = TFWav2Vec2WeightNormConv1D( filters=config.hidden_size, kernel_size=config.num_conv_pos_embeddings, groups=config.num_conv_pos_embedding_groups, explicit_padding=config.num_conv_pos_embeddings // 2, name="conv", ) self.padding = TFWav2Vec2SamePadLayer(config.num_conv_pos_embeddings) self.activation = get_tf_activation(config.feat_extract_activation) self.config = config def call(self, hidden_states: tf.Tensor) -> tf.Tensor: hidden_states = self.conv(hidden_states) hidden_states = self.padding(hidden_states) hidden_states = self.activation(hidden_states) return hidden_states def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "conv", None) is not None: with tf.name_scope(self.conv.name): self.conv.build([None, None, self.config.hidden_size]) class TFWav2Vec2SamePadLayer(keras.layers.Layer): def __init__(self, num_conv_pos_embeddings, **kwargs): super().__init__(**kwargs) self.num_pad_remove = 1 if num_conv_pos_embeddings % 2 == 0 else 0 def call(self, hidden_states): if self.num_pad_remove > 0: hidden_states = hidden_states[:, : -self.num_pad_remove, :] return hidden_states class TFWav2Vec2FeatureEncoder(keras.layers.Layer): def __init__(self, config: Wav2Vec2Config, **kwargs: Any) -> None: super().__init__(**kwargs) if config.feat_extract_norm == "group": conv_layers = [TFWav2Vec2GroupNormConvLayer(config, layer_id=0, name=f"conv_layers.{0}")] + [ TFWav2Vec2NoLayerNormConvLayer(config, layer_id=i + 1, name=f"conv_layers.{i+1}") for i in range(config.num_feat_extract_layers - 1) ] elif config.feat_extract_norm == "layer": conv_layers = [ TFWav2Vec2LayerNormConvLayer(config, layer_id=i, name=f"conv_layers.{i}") for i in range(config.num_feat_extract_layers) ] else: raise ValueError( f"`config.feat_extract_norm` is {config.feat_extract_norm}, but has to be one of ['group', 'layer']" ) self.conv_layers = conv_layers def call(self, input_values): hidden_states = tf.expand_dims(input_values, -1) for conv_layer in self.conv_layers: hidden_states = conv_layer(hidden_states) return hidden_states def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "conv_layers", None) is not None: for conv_layer in self.conv_layers: with tf.name_scope(conv_layer.name): conv_layer.build(None) class TFWav2Vec2FeatureExtractor(TFWav2Vec2FeatureEncoder): def __init__(self, config, **kwargs): super().__init__(config, **kwargs) warnings.warn( f"The class `{self.__class__.__name__}` has been depreciated " "and will be removed in Transformers v5. " f"Use `{self.__class__.__bases__[0].__name__}` instead.", FutureWarning, ) class TFWav2Vec2FeatureProjection(keras.layers.Layer): def __init__(self, config: Wav2Vec2Config, **kwargs): super().__init__(**kwargs) self.layer_norm = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="layer_norm") self.projection = keras.layers.Dense( units=config.hidden_size, kernel_initializer=get_initializer(config.initializer_range), bias_initializer="zeros", name="projection", ) self.dropout = keras.layers.Dropout(rate=config.feat_proj_dropout) self.config = config def call(self, hidden_states: tf.Tensor, training: bool = False) -> tf.Tensor: norm_hidden_states = self.layer_norm(hidden_states) hidden_states = self.projection(norm_hidden_states) hidden_states = self.dropout(hidden_states, training=training) return hidden_states, norm_hidden_states def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "layer_norm", None) is not None: with tf.name_scope(self.layer_norm.name): self.layer_norm.build([None, None, self.config.conv_dim[-1]]) if getattr(self, "projection", None) is not None: with tf.name_scope(self.projection.name): self.projection.build([None, None, self.config.conv_dim[-1]]) # Copied from transformers.models.bart.modeling_tf_bart.TFBartAttention with TFBart->TFWav2Vec2 class TFWav2Vec2Attention(keras.layers.Layer): """Multi-headed attention from "Attention Is All You Need""" def __init__( self, embed_dim: int, num_heads: int, dropout: float = 0.0, is_decoder: bool = False, bias: bool = True, **kwargs, ): super().__init__(**kwargs) self.embed_dim = embed_dim self.num_heads = num_heads self.dropout = keras.layers.Dropout(dropout) self.head_dim = embed_dim // num_heads if (self.head_dim * num_heads) != self.embed_dim: raise ValueError( f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim}" f" and `num_heads`: {num_heads})." ) self.scaling = self.head_dim**-0.5 self.is_decoder = is_decoder self.k_proj = keras.layers.Dense(embed_dim, use_bias=bias, name="k_proj") self.q_proj = keras.layers.Dense(embed_dim, use_bias=bias, name="q_proj") self.v_proj = keras.layers.Dense(embed_dim, use_bias=bias, name="v_proj") self.out_proj = keras.layers.Dense(embed_dim, use_bias=bias, name="out_proj") def _shape(self, tensor: tf.Tensor, seq_len: int, bsz: int): return tf.transpose(tf.reshape(tensor, (bsz, seq_len, self.num_heads, self.head_dim)), (0, 2, 1, 3)) def call( self, hidden_states: tf.Tensor, key_value_states: tf.Tensor | None = None, past_key_value: Tuple[Tuple[tf.Tensor]] | None = None, attention_mask: tf.Tensor | None = None, layer_head_mask: tf.Tensor | None = None, training: Optional[bool] = False, ) -> Tuple[tf.Tensor, tf.Tensor | None]: """Input shape: Batch x Time x Channel""" # if key_value_states are provided this layer is used as a cross-attention layer # for the decoder is_cross_attention = key_value_states is not None bsz, tgt_len, embed_dim = shape_list(hidden_states) # get query proj query_states = self.q_proj(hidden_states) * self.scaling # get key, value proj if is_cross_attention and past_key_value is not None: # reuse k,v, cross_attentions key_states = past_key_value[0] value_states = past_key_value[1] elif is_cross_attention: # cross_attentions key_states = self._shape(self.k_proj(key_value_states), -1, bsz) value_states = self._shape(self.v_proj(key_value_states), -1, bsz) elif past_key_value is not None: # reuse k, v, self_attention key_states = self._shape(self.k_proj(hidden_states), -1, bsz) value_states = self._shape(self.v_proj(hidden_states), -1, bsz) key_states = tf.concat([past_key_value[0], key_states], axis=2) value_states = tf.concat([past_key_value[1], value_states], axis=2) else: # self_attention key_states = self._shape(self.k_proj(hidden_states), -1, bsz) value_states = self._shape(self.v_proj(hidden_states), -1, bsz) if self.is_decoder: # if cross_attention save Tuple(tf.Tensor, tf.Tensor) of all cross attention key/value_states. # Further calls to cross_attention layer can then reuse all cross-attention # key/value_states (first "if" case) # if uni-directional self-attention (decoder) save Tuple(tf.Tensor, tf.Tensor) of # all previous decoder key/value_states. Further calls to uni-directional self-attention # can concat previous decoder key/value_states to current projected key/value_states (third "elif" case) # if encoder bi-directional self-attention `past_key_value` is always `None` past_key_value = (key_states, value_states) proj_shape = (bsz * self.num_heads, -1, self.head_dim) query_states = tf.reshape(self._shape(query_states, tgt_len, bsz), proj_shape) key_states = tf.reshape(key_states, proj_shape) value_states = tf.reshape(value_states, proj_shape) src_len = shape_list(key_states)[1] attn_weights = tf.matmul(query_states, key_states, transpose_b=True) tf.debugging.assert_equal( shape_list(attn_weights), [bsz * self.num_heads, tgt_len, src_len], message=( f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is" f" {shape_list(attn_weights)}" ), ) if attention_mask is not None: tf.debugging.assert_equal( shape_list(attention_mask), [bsz, 1, tgt_len, src_len], message=( f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is" f" {shape_list(attention_mask)}" ), ) attention_mask = tf.cast(attention_mask, dtype=attn_weights.dtype) attn_weights = tf.reshape(attn_weights, (bsz, self.num_heads, tgt_len, src_len)) + attention_mask attn_weights = tf.reshape(attn_weights, (bsz * self.num_heads, tgt_len, src_len)) attn_weights = stable_softmax(attn_weights, axis=-1) if layer_head_mask is not None: tf.debugging.assert_equal( shape_list(layer_head_mask), [self.num_heads], message=( f"Head mask for a single layer should be of size {(self.num_heads)}, but is" f" {shape_list(layer_head_mask)}" ), ) attn_weights = tf.reshape(layer_head_mask, (1, -1, 1, 1)) * tf.reshape( attn_weights, (bsz, self.num_heads, tgt_len, src_len) ) attn_weights = tf.reshape(attn_weights, (bsz * self.num_heads, tgt_len, src_len)) attn_probs = self.dropout(attn_weights, training=training) attn_output = tf.matmul(attn_probs, value_states) tf.debugging.assert_equal( shape_list(attn_output), [bsz * self.num_heads, tgt_len, self.head_dim], message=( f"`attn_output` should be of size {(bsz, self.num_heads, tgt_len, self.head_dim)}, but is" f" {shape_list(attn_output)}" ), ) attn_output = tf.transpose( tf.reshape(attn_output, (bsz, self.num_heads, tgt_len, self.head_dim)), (0, 2, 1, 3) ) attn_output = tf.reshape(attn_output, (bsz, tgt_len, embed_dim)) attn_output = self.out_proj(attn_output) attn_weights: tf.Tensor = tf.reshape(attn_weights, (bsz, self.num_heads, tgt_len, src_len)) return attn_output, attn_weights, past_key_value def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "k_proj", None) is not None: with tf.name_scope(self.k_proj.name): self.k_proj.build([None, None, self.embed_dim]) if getattr(self, "q_proj", None) is not None: with tf.name_scope(self.q_proj.name): self.q_proj.build([None, None, self.embed_dim]) if getattr(self, "v_proj", None) is not None: with tf.name_scope(self.v_proj.name): self.v_proj.build([None, None, self.embed_dim]) if getattr(self, "out_proj", None) is not None: with tf.name_scope(self.out_proj.name): self.out_proj.build([None, None, self.embed_dim]) class TFWav2Vec2FeedForward(keras.layers.Layer): def __init__(self, config: Wav2Vec2Config, **kwargs): super().__init__(**kwargs) self.intermediate_dropout = keras.layers.Dropout(config.activation_dropout) self.intermediate_dense = keras.layers.Dense( units=config.intermediate_size, kernel_initializer=get_initializer(config.initializer_range), bias_initializer="zeros", name="intermediate_dense", ) self.intermediate_act_fn = get_tf_activation(config.hidden_act) self.output_dense = keras.layers.Dense( units=config.hidden_size, kernel_initializer=get_initializer(config.initializer_range), bias_initializer="zeros", name="output_dense", ) self.output_dropout = keras.layers.Dropout(config.hidden_dropout) self.config = config def call(self, hidden_states: tf.Tensor, training: bool = False) -> tf.Tensor: hidden_states = self.intermediate_dense(hidden_states) hidden_states = self.intermediate_act_fn(hidden_states) hidden_states = self.intermediate_dropout(hidden_states, training=training) hidden_states = self.output_dense(hidden_states) hidden_states = self.output_dropout(hidden_states, training=training) return hidden_states def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "intermediate_dense", None) is not None: with tf.name_scope(self.intermediate_dense.name): self.intermediate_dense.build([None, None, self.config.hidden_size]) if getattr(self, "output_dense", None) is not None: with tf.name_scope(self.output_dense.name): self.output_dense.build([None, None, self.config.intermediate_size]) class TFWav2Vec2EncoderLayer(keras.layers.Layer): def __init__(self, config: Wav2Vec2Config, **kwargs): super().__init__(**kwargs) self.attention = TFWav2Vec2Attention( embed_dim=config.hidden_size, num_heads=config.num_attention_heads, dropout=config.attention_dropout, is_decoder=False, name="attention", ) self.dropout = keras.layers.Dropout(config.hidden_dropout) self.layer_norm = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="layer_norm") self.feed_forward = TFWav2Vec2FeedForward(config, name="feed_forward") self.final_layer_norm = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="final_layer_norm") self.config = config def call( self, hidden_states: tf.Tensor, attention_mask: tf.Tensor | None = None, output_attentions: Optional[bool] = False, training: bool = False, ) -> Tuple[tf.Tensor]: attn_residual = hidden_states hidden_states, attn_weights, _ = self.attention( hidden_states, attention_mask=attention_mask, training=training ) hidden_states = self.dropout(hidden_states, training=training) hidden_states = attn_residual + hidden_states hidden_states = self.layer_norm(hidden_states) hidden_states = hidden_states + self.feed_forward(hidden_states) hidden_states = self.final_layer_norm(hidden_states) outputs = (hidden_states,) if output_attentions: outputs += (attn_weights,) return outputs def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "attention", None) is not None: with tf.name_scope(self.attention.name): self.attention.build(None) if getattr(self, "layer_norm", None) is not None: with tf.name_scope(self.layer_norm.name): self.layer_norm.build([None, None, self.config.hidden_size]) if getattr(self, "feed_forward", None) is not None: with tf.name_scope(self.feed_forward.name): self.feed_forward.build(None) if getattr(self, "final_layer_norm", None) is not None: with tf.name_scope(self.final_layer_norm.name): self.final_layer_norm.build([None, None, self.config.hidden_size]) class TFWav2Vec2EncoderLayerStableLayerNorm(keras.layers.Layer): def __init__(self, config: Wav2Vec2Config, **kwargs): super().__init__(**kwargs) self.attention = TFWav2Vec2Attention( embed_dim=config.hidden_size, num_heads=config.num_attention_heads, dropout=config.attention_dropout, is_decoder=False, name="attention", ) self.dropout = keras.layers.Dropout(config.hidden_dropout) self.layer_norm = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="layer_norm") self.feed_forward = TFWav2Vec2FeedForward(config, name="feed_forward") self.final_layer_norm = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="final_layer_norm") self.config = config def call( self, hidden_states: tf.Tensor, attention_mask: tf.Tensor | None = None, output_attentions: Optional[bool] = False, training: bool = False, ) -> Tuple[tf.Tensor]: attn_residual = hidden_states hidden_states = self.layer_norm(hidden_states) hidden_states, attn_weights, _ = self.attention( hidden_states, attention_mask=attention_mask, training=training ) hidden_states = self.dropout(hidden_states, training=training) hidden_states = attn_residual + hidden_states hidden_states = hidden_states + self.feed_forward(self.final_layer_norm(hidden_states)) outputs = (hidden_states,) if output_attentions: outputs += (attn_weights,) return outputs def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "attention", None) is not None: with tf.name_scope(self.attention.name): self.attention.build(None) if getattr(self, "layer_norm", None) is not None: with tf.name_scope(self.layer_norm.name): self.layer_norm.build([None, None, self.config.hidden_size]) if getattr(self, "feed_forward", None) is not None: with tf.name_scope(self.feed_forward.name): self.feed_forward.build(None) if getattr(self, "final_layer_norm", None) is not None: with tf.name_scope(self.final_layer_norm.name): self.final_layer_norm.build([None, None, self.config.hidden_size]) class TFWav2Vec2Encoder(keras.layers.Layer): def __init__(self, config: Wav2Vec2Config, **kwargs): super().__init__(**kwargs) self.config = config self.pos_conv_embed = TFWav2Vec2PositionalConvEmbedding(config, name="pos_conv_embed") self.layer_norm = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="layer_norm") self.dropout = keras.layers.Dropout(config.hidden_dropout) self.layer = [TFWav2Vec2EncoderLayer(config, name=f"layers.{i}") for i in range(config.num_hidden_layers)] def call( self, hidden_states: tf.Tensor, attention_mask: tf.Tensor | None = None, output_attentions: Optional[bool] = False, output_hidden_states: Optional[bool] = False, return_dict: Optional[bool] = True, training: Optional[bool] = False, ) -> Union[TFBaseModelOutput, Tuple[tf.Tensor]]: all_hidden_states = () if output_hidden_states else None all_self_attentions = () if output_attentions else None if attention_mask is not None: hidden_states = hidden_states * tf.expand_dims(attention_mask, -1) attention_mask = _expand_mask(attention_mask) else: attention_mask = None position_embeddings = self.pos_conv_embed(hidden_states) hidden_states = hidden_states + position_embeddings hidden_states = self.layer_norm(hidden_states) hidden_states = self.dropout(hidden_states, training=training) for i, layer_module in enumerate(self.layer): if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) # add LayerDrop (see https://arxiv.org/abs/1909.11556 for description) dropout_probability = np.random.uniform(0, 1) if training and (dropout_probability < self.config.layerdrop): # skip the layer continue layer_outputs = layer_module( hidden_states=hidden_states, attention_mask=attention_mask, output_attentions=output_attentions, training=training, ) hidden_states = layer_outputs[0] if output_attentions: all_self_attentions = all_self_attentions + (layer_outputs[1],) # Add last layer if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) if not return_dict: return tuple(v for v in [hidden_states, all_hidden_states, all_self_attentions] if v is not None) return TFBaseModelOutput( last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_self_attentions, ) def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "pos_conv_embed", None) is not None: with tf.name_scope(self.pos_conv_embed.name): self.pos_conv_embed.build(None) if getattr(self, "layer_norm", None) is not None: with tf.name_scope(self.layer_norm.name): self.layer_norm.build([None, None, self.config.hidden_size]) if getattr(self, "layer", None) is not None: for layer in self.layer: with tf.name_scope(layer.name): layer.build(None) class TFWav2Vec2EncoderStableLayerNorm(keras.layers.Layer): def __init__(self, config: Wav2Vec2Config, **kwargs): super().__init__(**kwargs) self.config = config self.pos_conv_embed = TFWav2Vec2PositionalConvEmbedding(config, name="pos_conv_embed") self.layer_norm = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="layer_norm") self.dropout = keras.layers.Dropout(config.hidden_dropout) self.layer = [ TFWav2Vec2EncoderLayerStableLayerNorm(config, name=f"layers.{i}") for i in range(config.num_hidden_layers) ] def call( self, hidden_states: tf.Tensor, attention_mask: tf.Tensor | None = None, output_attentions: Optional[bool] = False, output_hidden_states: Optional[bool] = False, return_dict: Optional[bool] = True, training: Optional[bool] = False, ) -> Union[TFBaseModelOutput, Tuple[tf.Tensor]]: all_hidden_states = () if output_hidden_states else None all_self_attentions = () if output_attentions else None if attention_mask is not None: hidden_states = hidden_states * tf.expand_dims(attention_mask, -1) attention_mask = _expand_mask(attention_mask) else: attention_mask = None position_embeddings = self.pos_conv_embed(hidden_states) hidden_states = hidden_states + position_embeddings hidden_states = self.dropout(hidden_states, training=training) for i, layer_module in enumerate(self.layer): if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) # add LayerDrop (see https://arxiv.org/abs/1909.11556 for description) dropout_probability = np.random.uniform(0, 1) if training and (dropout_probability < self.config.layerdrop): # skip the layer continue layer_outputs = layer_module( hidden_states=hidden_states, attention_mask=attention_mask, output_attentions=output_attentions, training=training, ) hidden_states = layer_outputs[0] if output_attentions: all_self_attentions = all_self_attentions + (layer_outputs[1],) hidden_states = self.layer_norm(hidden_states) if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) if not return_dict: return tuple(v for v in [hidden_states, all_hidden_states, all_self_attentions] if v is not None) return TFBaseModelOutput( last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_self_attentions, ) def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "pos_conv_embed", None) is not None: with tf.name_scope(self.pos_conv_embed.name): self.pos_conv_embed.build(None) if getattr(self, "layer_norm", None) is not None: with tf.name_scope(self.layer_norm.name): self.layer_norm.build([None, None, self.config.hidden_size]) if getattr(self, "layer", None) is not None: for layer in self.layer: with tf.name_scope(layer.name): layer.build(None) @keras_serializable class TFWav2Vec2MainLayer(keras.layers.Layer): config_class = Wav2Vec2Config def __init__(self, config: Wav2Vec2Config, **kwargs): super().__init__(**kwargs) self.config = config self.feature_extractor = TFWav2Vec2FeatureEncoder(config, name="feature_extractor") self.feature_projection = TFWav2Vec2FeatureProjection(config, name="feature_projection") if config.do_stable_layer_norm: self.encoder = TFWav2Vec2EncoderStableLayerNorm(config, name="encoder") else: self.encoder = TFWav2Vec2Encoder(config, name="encoder") def build(self, input_shape=None): if self.built: return self.built = True if self.config.mask_time_prob > 0.0 or self.config.mask_feature_prob > 0.0: self.masked_spec_embed = self.add_weight( shape=(self.config.hidden_size,), initializer="uniform", trainable=True, name="masked_spec_embed" ) if getattr(self, "feature_extractor", None) is not None: with tf.name_scope(self.feature_extractor.name): self.feature_extractor.build(None) if getattr(self, "feature_projection", None) is not None: with tf.name_scope(self.feature_projection.name): self.feature_projection.build(None) if getattr(self, "encoder", None) is not None: with tf.name_scope(self.encoder.name): self.encoder.build(None) def _get_feat_extract_output_lengths(self, input_lengths: tf.Tensor): """ Computes the output length of the convolutional layers """ def _conv_out_length(input_length, kernel_size, stride): # 1D convolutional layer output length formula taken # from https://pytorch.org/docs/stable/generated/torch.nn.Conv1d.html return (input_length - kernel_size) // stride + 1 for kernel_size, stride in zip(self.config.conv_kernel, self.config.conv_stride): input_lengths = _conv_out_length(input_lengths, kernel_size, stride) return input_lengths def _mask_hidden_states(self, hidden_states: tf.Tensor, mask_time_indices: tf.Tensor | None = None): """ Masks extracted features along time axis and/or along feature axis according to [SpecAugment](https://arxiv.org/abs/1904.08779). """ batch_size, sequence_length, hidden_size = shape_list(hidden_states) # `config.apply_spec_augment` can set masking to False if not getattr(self.config, "apply_spec_augment", True): return hidden_states if mask_time_indices is not None: # apply SpecAugment along time axis with given mask_time_indices hidden_states = tf.where( tf.cast(mask_time_indices[:, :, tf.newaxis], tf.bool), self.masked_spec_embed[tf.newaxis, tf.newaxis, :], hidden_states, ) elif self.config.mask_time_prob > 0: # generate indices & apply SpecAugment along time axis mask_time_indices = _compute_mask_indices( (batch_size, sequence_length), mask_prob=self.config.mask_time_prob, mask_length=self.config.mask_time_length, min_masks=2, ) hidden_states = tf.where( tf.cast(mask_time_indices[:, :, tf.newaxis], tf.bool), self.masked_spec_embed[tf.newaxis, tf.newaxis, :], hidden_states, ) # apply SpecAugment along feature axis if self.config.mask_feature_prob > 0: mask_feature_indices = _compute_mask_indices( (batch_size, hidden_size), mask_prob=self.config.mask_feature_prob, mask_length=self.config.mask_feature_length, ) hidden_states = tf.where(mask_feature_indices[:, tf.newaxis, :], hidden_states, 0) return hidden_states @unpack_inputs def call( self, input_values: tf.Tensor, attention_mask: tf.Tensor | None = None, token_type_ids: tf.Tensor | None = None, position_ids: tf.Tensor | None = None, head_mask: tf.Tensor | None = None, inputs_embeds: tf.Tensor | None = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, training: bool = False, **kwargs: Any, ): extract_features = self.feature_extractor(tf.cast(input_values, tf.float32), training=training) # extract_features = tf.transpose(extract_features, perm=(0, 2, 1)) if attention_mask is not None: # compute real output lengths according to convolution formula output_lengths = self._get_feat_extract_output_lengths(tf.reduce_sum(attention_mask, -1)) attention_mask = tf.sequence_mask( output_lengths, maxlen=shape_list(extract_features)[1], dtype=extract_features.dtype ) hidden_states, extract_features = self.feature_projection(extract_features, training=training) mask_time_indices = kwargs.get("mask_time_indices", None) if training: hidden_states = self._mask_hidden_states(hidden_states, mask_time_indices=mask_time_indices) encoder_outputs = self.encoder( hidden_states, attention_mask=attention_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) hidden_states = encoder_outputs[0] if not return_dict: return (hidden_states, extract_features) + encoder_outputs[1:] return TFWav2Vec2BaseModelOutput( last_hidden_state=hidden_states, extract_features=extract_features, hidden_states=encoder_outputs.hidden_states, attentions=encoder_outputs.attentions, ) class TFWav2Vec2PreTrainedModel(TFPreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = Wav2Vec2Config base_model_prefix = "wav2vec2" main_input_name = "input_values" @property def input_signature(self): return { "input_values": tf.TensorSpec((None, None), tf.float32, name="input_values"), "attention_mask": tf.TensorSpec((None, None), tf.float32, name="attention_mask"), } @property def dummy_inputs(self): return { "input_values": tf.random.uniform(shape=(1, 500), dtype=tf.float32), "attention_mask": tf.ones(shape=(1, 500), dtype=tf.float32), } def __init__(self, config, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) logger.warning( f"\n{self.__class__.__name__} has backpropagation operations that are NOT supported on CPU. If you wish " "to train/fine-tune this model, you need a GPU or a TPU" ) def _get_feat_extract_output_lengths(self, input_lengths, add_adapter=None): """ Computes the output length of the convolutional layers """ add_adapter = self.config.add_adapter if add_adapter is None else add_adapter def _conv_out_length(input_length, kernel_size, stride): return tf.math.floordiv(input_length - kernel_size, stride) + 1 for kernel_size, stride in zip(self.config.conv_kernel, self.config.conv_stride): input_lengths = _conv_out_length(input_lengths, kernel_size, stride) if add_adapter: for _ in range(self.config.num_adapter_layers): input_lengths = _conv_out_length(input_lengths, 1, self.config.adapter_stride) return input_lengths def _get_feature_vector_attention_mask( self, feature_vector_length: int, attention_mask: tf.Tensor, add_adapter=None ): non_padded_lengths = tf.math.cumsum(attention_mask, axis=-1)[:, -1] output_lengths = self._get_feat_extract_output_lengths(non_padded_lengths, add_adapter=add_adapter) output_lengths = tf.cast(output_lengths, tf.int32) batch_size = tf.shape(attention_mask)[0] # check device here attention_mask = tf.zeros( (batch_size, feature_vector_length), dtype=attention_mask.dtype, name="attention_mask" ) # these two operations makes sure that all values before the output lengths idxs are attended to ## check device attention_mask = tf.tensor_scatter_nd_update( attention_mask, indices=tf.stack([tf.range(batch_size), output_lengths - 1], axis=1), updates=tf.ones([batch_size], dtype=attention_mask.dtype), ) attention_mask = tf.reverse(attention_mask, axis=[-1]) attention_mask = tf.cumsum(attention_mask, axis=-1) attention_mask = tf.reverse(attention_mask, axis=[-1]) attention_mask = tf.cast(attention_mask, tf.bool) return attention_mask WAV_2_VEC_2_START_DOCSTRING = r""" This model inherits from [`TFPreTrainedModel`]. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.) This model is also a [keras.Model](https://www.tensorflow.org/api_docs/python/tf/keras/Model) subclass. Use it as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to general usage and behavior. <Tip> TensorFlow models and layers in `transformers` accept two formats as input: - having all inputs as keyword arguments (like PyTorch models), or - having all inputs as a list, tuple or dict in the first positional argument. The reason the second format is supported is that Keras methods prefer this format when passing inputs to models and layers. Because of this support, when using methods like `model.fit()` things should "just work" for you - just pass your inputs and labels in any format that `model.fit()` supports! If, however, you want to use the second format outside of Keras methods like `fit()` and `predict()`, such as when creating your own layers or models with the Keras `Functional` API, there are three possibilities you can use to gather all the input Tensors in the first positional argument: - a single Tensor with `input_values` only and nothing else: `model(input_values)` - a list of varying length with one or several input Tensors IN THE ORDER given in the docstring: `model([input_values, attention_mask])` or `model([input_values, attention_mask, token_type_ids])` - a dictionary with one or several input Tensors associated to the input names given in the docstring: `model({"input_values": input_values, "token_type_ids": token_type_ids})` Note that when creating models and layers with [subclassing](https://keras.io/guides/making_new_layers_and_models_via_subclassing/) then you don't need to worry about any of this, as you can just pass inputs like you would to any other Python function! </Tip> Args: config ([`Wav2Vec2Config`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ WAV_2_VEC_2_INPUTS_DOCSTRING = r""" Args: input_values (`np.ndarray`, `tf.Tensor`, `List[tf.Tensor]` `Dict[str, tf.Tensor]` or `Dict[str, np.ndarray]` and each example must have the shape `({0})`): Indices of input sequence tokens in the vocabulary. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.__call__`] and [`PreTrainedTokenizer.encode`] for details. [What are input IDs?](../glossary#input-ids) attention_mask (`np.ndarray` or `tf.Tensor` of shape `({0})`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) token_type_ids (`np.ndarray` or `tf.Tensor` of shape `({0})`, *optional*): Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0, 1]`: - 0 corresponds to a *sentence A* token, - 1 corresponds to a *sentence B* token. [What are token type IDs?](../glossary#token-type-ids) position_ids (`np.ndarray` or `tf.Tensor` of shape `({0})`, *optional*): Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, config.max_position_embeddings - 1]`. [What are position IDs?](../glossary#position-ids) head_mask (`np.ndarray` or `tf.Tensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. inputs_embeds (`np.ndarray` or `tf.Tensor` of shape `({0}, hidden_size)`, *optional*): Optionally, instead of passing `input_values` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert `input_values` indices into associated vectors than the model's internal embedding lookup matrix. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the config will be used instead. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the config will be used instead. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. This argument can be used in eager mode, in graph mode the value will always be set to True. training (`bool`, *optional*, defaults to `False``): Whether or not to use the model in training mode (some modules like dropout modules have different behaviors between training and evaluation). """ @add_start_docstrings( "The bare TFWav2Vec2 Model transformer outputing raw hidden-states without any specific head on top.", WAV_2_VEC_2_START_DOCSTRING, ) class TFWav2Vec2Model(TFWav2Vec2PreTrainedModel): def __init__(self, config: Wav2Vec2Config, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) self.config = config self.wav2vec2 = TFWav2Vec2MainLayer(config, name="wav2vec2") @add_start_docstrings_to_model_forward(WAV_2_VEC_2_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=TFBaseModelOutput, config_class=_CONFIG_FOR_DOC) @unpack_inputs def call( self, input_values: tf.Tensor, attention_mask: tf.Tensor | None = None, token_type_ids: tf.Tensor | None = None, position_ids: tf.Tensor | None = None, head_mask: tf.Tensor | None = None, inputs_embeds: tf.Tensor | None = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, training: bool = False, ) -> Union[TFBaseModelOutput, Tuple[tf.Tensor]]: """ Returns: Example: ```python >>> from transformers import AutoProcessor, TFWav2Vec2Model >>> from datasets import load_dataset >>> import soundfile as sf >>> processor = AutoProcessor.from_pretrained("facebook/wav2vec2-base-960h") >>> model = TFWav2Vec2Model.from_pretrained("facebook/wav2vec2-base-960h") >>> def map_to_array(batch): ... speech, _ = sf.read(batch["file"]) ... batch["speech"] = speech ... return batch >>> ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation") >>> ds = ds.map(map_to_array) >>> input_values = processor(ds["speech"][0], return_tensors="tf").input_values # Batch size 1 >>> hidden_states = model(input_values).last_hidden_state ```""" output_hidden_states = output_hidden_states if output_hidden_states else self.config.output_hidden_states output_attentions = output_attentions if output_attentions else self.config.output_attentions return_dict = return_dict if return_dict else self.config.return_dict outputs = self.wav2vec2( input_values=input_values, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) return outputs def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "wav2vec2", None) is not None: with tf.name_scope(self.wav2vec2.name): self.wav2vec2.build(None) @add_start_docstrings( """TFWav2Vec2 Model with a `language modeling` head on top for Connectionist Temporal Classification (CTC).""", WAV_2_VEC_2_START_DOCSTRING, ) class TFWav2Vec2ForCTC(TFWav2Vec2PreTrainedModel): def __init__(self, config: Wav2Vec2Config, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) self.wav2vec2 = TFWav2Vec2MainLayer(config, name="wav2vec2") self.dropout = keras.layers.Dropout(config.final_dropout) self.lm_head = keras.layers.Dense(config.vocab_size, name="lm_head") self.output_hidden_size = ( config.output_hidden_size if hasattr(config, "add_adapter") and config.add_adapter else config.hidden_size ) def freeze_feature_extractor(self): """ Calling this function will disable the gradient computation for the feature encoder so that its parameters will not be updated during training. """ warnings.warn( "The method `freeze_feature_extractor` is deprecated and will be removed in Transformers v5. " "Please use the equivalent `freeze_feature_encoder` method instead.", FutureWarning, ) self.freeze_feature_encoder() def freeze_feature_encoder(self): """ Calling this function will disable the gradient computation for the feature encoder so that its parameter will not be updated during training. """ self.wav2vec2.feature_extractor.trainable = False @unpack_inputs @add_start_docstrings_to_model_forward(WAV_2_VEC_2_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=TFCausalLMOutput, config_class=_CONFIG_FOR_DOC) def call( self, input_values: tf.Tensor, attention_mask: tf.Tensor | None = None, token_type_ids: tf.Tensor | None = None, position_ids: tf.Tensor | None = None, head_mask: tf.Tensor | None = None, inputs_embeds: tf.Tensor | None = None, output_attentions: Optional[bool] = None, labels: tf.Tensor | None = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, training: Optional[bool] = False, ) -> Union[TFCausalLMOutput, Tuple[tf.Tensor]]: r""" labels (`tf.Tensor` or `np.ndarray` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ..., config.vocab_size]` (see `input_values` docstring) Tokens with indices set to `-100` are ignored (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]` Returns: Example: ```python >>> import tensorflow as tf >>> from transformers import AutoProcessor, TFWav2Vec2ForCTC >>> from datasets import load_dataset >>> import soundfile as sf >>> processor = AutoProcessor.from_pretrained("facebook/wav2vec2-base-960h") >>> model = TFWav2Vec2ForCTC.from_pretrained("facebook/wav2vec2-base-960h") >>> def map_to_array(batch): ... speech, _ = sf.read(batch["file"]) ... batch["speech"] = speech ... return batch >>> ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation") >>> ds = ds.map(map_to_array) >>> input_values = processor(ds["speech"][0], return_tensors="tf").input_values # Batch size 1 >>> logits = model(input_values).logits >>> predicted_ids = tf.argmax(logits, axis=-1) >>> transcription = processor.decode(predicted_ids[0]) >>> # compute loss >>> target_transcription = "A MAN SAID TO THE UNIVERSE SIR I EXIST" >>> # Pass transcription as `text` to encode labels >>> labels = processor(text=transcription, return_tensors="tf").input_ids >>> loss = model(input_values, labels=labels).loss ```""" outputs = self.wav2vec2( input_values=input_values, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) hidden_states = outputs[0] hidden_states = self.dropout(hidden_states, training=training) logits = self.lm_head(hidden_states) if labels is not None: if tf.reduce_max(labels) >= self.config.vocab_size: raise ValueError(f"Label values must be <= vocab_size: {self.config.vocab_size}") attention_mask = ( attention_mask if attention_mask is not None else tf.ones_like(input_values, dtype=tf.float32) ) input_lengths = self.wav2vec2._get_feat_extract_output_lengths(tf.reduce_sum(attention_mask, axis=-1)) # assuming that padded tokens are filled with -100 # when not being attended to labels_mask = tf.cast(labels >= 0, tf.int32) target_lengths = tf.reduce_sum(labels_mask, axis=-1) loss = tf.nn.ctc_loss( logits=logits, labels=labels, logit_length=input_lengths, label_length=target_lengths, blank_index=self.config.pad_token_id, logits_time_major=False, ) if self.config.ctc_loss_reduction == "sum": loss = tf.reduce_sum(loss) if self.config.ctc_loss_reduction == "mean": loss = tf.reduce_mean(loss) loss = tf.reshape(loss, (1,)) else: loss = None if not return_dict: output = (logits,) + outputs[_HIDDEN_STATES_START_POSITION:] return ((loss,) + output) if loss is not None else output return TFCausalLMOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "wav2vec2", None) is not None: with tf.name_scope(self.wav2vec2.name): self.wav2vec2.build(None) if getattr(self, "lm_head", None) is not None: with tf.name_scope(self.lm_head.name): self.lm_head.build([None, None, self.output_hidden_size]) class TFWav2Vec2ForSequenceClassification(TFWav2Vec2PreTrainedModel): def __init__(self, config): super().__init__(config) self.wav2vec2 = TFWav2Vec2MainLayer(config, name="wav2vec2") self.num_layers = config.num_hidden_layers + 1 with tf.name_scope(self._name_scope()): if config.use_weighted_layer_sum: self.layer_weights = self.add_weight( shape=(self.num_layers,), initializer="ones", trainable=True, name="layer_weights" ) self.config = config self.projector = keras.layers.Dense(units=config.classifier_proj_size, name="projector") self.classifier = keras.layers.Dense(units=config.num_labels, activation=None, name="classifier") def freeze_feature_extractor(self): """ Calling this function will disable the gradient computation for the feature encoder so that its parameters will not be updated during training. """ warnings.warn( "The method `freeze_feature_extractor` is deprecated and will be removed in Transformers v5. " "Please use the equivalent `freeze_feature_encoder` method instead.", FutureWarning, ) self.freeze_feature_encoder() def freeze_feature_encoder(self): """ Calling this function will disable the gradient computation for the feature encoder so that its parameter will not be updated during training. """ self.wav2vec2.feature_extractor.trainable = False def freeze_base_model(self): """ Calling this function will disable the gradient computation for the base model so that its parameters will not be updated during training. Only the classification head will be updated. """ for layer in self.wav2vec2.layers: layer.trainable = False @unpack_inputs def call( self, input_values: tf.Tensor, attention_mask: tf.Tensor | None = None, output_attentions: bool | None = None, output_hidden_states: bool | None = None, return_dict: bool | None = None, labels: tf.Tensor | None = None, training: bool = False, ) -> TFSequenceClassifierOutput | Tuple[tf.Tensor]: return_dict = return_dict if return_dict is not None else self.config.use_return_dict output_hidden_states = True if self.config.use_weighted_layer_sum else output_hidden_states outputs = self.wav2vec2( input_values, attention_mask=attention_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) if self.config.use_weighted_layer_sum: hidden_states = outputs[_HIDDEN_STATES_START_POSITION] hidden_states = tf.stack(hidden_states, axis=1) norm_weights = tf.nn.softmax(self.layer_weights, axis=-1) hidden_states = tf.reduce_sum(hidden_states * tf.reshape(norm_weights, [-1, 1, 1]), axis=1) else: hidden_states = outputs[0] hidden_states = self.projector(hidden_states) if attention_mask is None: pooled_output = tf.reduce_mean(hidden_states, axis=1) else: padding_mask = self._get_feature_vector_attention_mask(shape_list(hidden_states)[1], attention_mask) padding_mask_float = tf.cast(padding_mask, hidden_states.dtype) hidden_states = tf.multiply(hidden_states, tf.expand_dims(padding_mask_float, axis=-1)) pooled_output = tf.divide( tf.reduce_sum(hidden_states, axis=1), tf.expand_dims(tf.reduce_sum(padding_mask_float, axis=1), axis=1) ) logits = self.classifier(pooled_output) loss = None if labels is not None: loss_fn = keras.losses.SparseCategoricalCrossentropy(from_logits=True) loss = loss_fn(tf.reshape(labels, [-1]), tf.reshape(logits, [-1, self.config.num_labels])) if not return_dict: output = (logits,) + outputs[_HIDDEN_STATES_START_POSITION:] return ((loss,) + output) if loss is not None else output return TFSequenceClassifierOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "wav2vec2", None) is not None: with tf.name_scope(self.wav2vec2.name): self.wav2vec2.build(None) if getattr(self, "projector", None) is not None: with tf.name_scope(self.projector.name): self.projector.build([None, None, self.config.hidden_size]) if getattr(self, "classifier", None) is not None: with tf.name_scope(self.classifier.name): self.classifier.build([None, None, self.config.classifier_proj_size])
transformers/src/transformers/models/wav2vec2/modeling_tf_wav2vec2.py/0
{ "file_path": "transformers/src/transformers/models/wav2vec2/modeling_tf_wav2vec2.py", "repo_id": "transformers", "token_count": 35009 }
133
# coding=utf-8 # Copyright 2021 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Speech processor class for Wav2Vec2 """ import os import warnings from contextlib import contextmanager, nullcontext from dataclasses import dataclass from multiprocessing import Pool, get_context, get_start_method from typing import TYPE_CHECKING, Dict, Iterable, List, Optional, Union import numpy as np from ...processing_utils import ProcessorMixin from ...utils import ModelOutput, logging, requires_backends logger = logging.get_logger(__name__) if TYPE_CHECKING: from pyctcdecode import BeamSearchDecoderCTC from ...feature_extraction_utils import FeatureExtractionMixin from ...tokenization_utils import PreTrainedTokenizerBase ListOfDict = List[Dict[str, Union[int, str]]] @dataclass class Wav2Vec2DecoderWithLMOutput(ModelOutput): """ Output type of [`Wav2Vec2DecoderWithLM`], with transcription. Args: text (list of `str` or `str`): Decoded logits in text from. Usually the speech transcription. logit_score (list of `float` or `float`): Total logit score of the beams associated with produced text. lm_score (list of `float`): Fused lm_score of the beams associated with produced text. word_offsets (list of `List[Dict[str, Union[int, str]]]` or `List[Dict[str, Union[int, str]]]`): Offsets of the decoded words. In combination with sampling rate and model downsampling rate word offsets can be used to compute time stamps for each word. """ text: Union[List[List[str]], List[str], str] logit_score: Union[List[List[float]], List[float], float] = None lm_score: Union[List[List[float]], List[float], float] = None word_offsets: Union[List[List[ListOfDict]], List[ListOfDict], ListOfDict] = None class Wav2Vec2ProcessorWithLM(ProcessorMixin): r""" Constructs a Wav2Vec2 processor which wraps a Wav2Vec2 feature extractor, a Wav2Vec2 CTC tokenizer and a decoder with language model support into a single processor for language model boosted speech recognition decoding. Args: feature_extractor ([`Wav2Vec2FeatureExtractor`]): An instance of [`Wav2Vec2FeatureExtractor`]. The feature extractor is a required input. tokenizer ([`Wav2Vec2CTCTokenizer`]): An instance of [`Wav2Vec2CTCTokenizer`]. The tokenizer is a required input. decoder (`pyctcdecode.BeamSearchDecoderCTC`): An instance of [`pyctcdecode.BeamSearchDecoderCTC`]. The decoder is a required input. """ feature_extractor_class = "Wav2Vec2FeatureExtractor" tokenizer_class = "Wav2Vec2CTCTokenizer" def __init__( self, feature_extractor: "FeatureExtractionMixin", tokenizer: "PreTrainedTokenizerBase", decoder: "BeamSearchDecoderCTC", ): from pyctcdecode import BeamSearchDecoderCTC super().__init__(feature_extractor, tokenizer) if not isinstance(decoder, BeamSearchDecoderCTC): raise ValueError(f"`decoder` has to be of type {BeamSearchDecoderCTC.__class__}, but is {type(decoder)}") # make sure that decoder's alphabet and tokenizer's vocab match in content missing_decoder_tokens = self.get_missing_alphabet_tokens(decoder, tokenizer) if len(missing_decoder_tokens) > 0: raise ValueError( f"The tokens {missing_decoder_tokens} are defined in the tokenizer's " "vocabulary, but not in the decoder's alphabet. " f"Make sure to include {missing_decoder_tokens} in the decoder's alphabet." ) self.decoder = decoder self.current_processor = self.feature_extractor self._in_target_context_manager = False def save_pretrained(self, save_directory): super().save_pretrained(save_directory) self.decoder.save_to_dir(save_directory) @classmethod def from_pretrained(cls, pretrained_model_name_or_path, **kwargs): r""" Instantiate a [`Wav2Vec2ProcessorWithLM`] from a pretrained Wav2Vec2 processor. <Tip> This class method is simply calling Wav2Vec2FeatureExtractor's [`~feature_extraction_utils.FeatureExtractionMixin.from_pretrained`], Wav2Vec2CTCTokenizer's [`~tokenization_utils_base.PreTrainedTokenizerBase.from_pretrained`], and [`pyctcdecode.BeamSearchDecoderCTC.load_from_hf_hub`]. Please refer to the docstrings of the methods above for more information. </Tip> Args: pretrained_model_name_or_path (`str` or `os.PathLike`): This can be either: - a string, the *model id* of a pretrained feature_extractor hosted inside a model repo on huggingface.co. - a path to a *directory* containing a feature extractor file saved using the [`~SequenceFeatureExtractor.save_pretrained`] method, e.g., `./my_model_directory/`. - a path or url to a saved feature extractor JSON *file*, e.g., `./my_model_directory/preprocessor_config.json`. **kwargs Additional keyword arguments passed along to both [`SequenceFeatureExtractor`] and [`PreTrainedTokenizer`] """ requires_backends(cls, "pyctcdecode") from pyctcdecode import BeamSearchDecoderCTC feature_extractor, tokenizer = super()._get_arguments_from_pretrained(pretrained_model_name_or_path, **kwargs) if os.path.isdir(pretrained_model_name_or_path) or os.path.isfile(pretrained_model_name_or_path): decoder = BeamSearchDecoderCTC.load_from_dir(pretrained_model_name_or_path) else: # BeamSearchDecoderCTC has no auto class kwargs.pop("_from_auto", None) # snapshot_download has no `trust_remote_code` flag kwargs.pop("trust_remote_code", None) # make sure that only relevant filenames are downloaded language_model_filenames = os.path.join(BeamSearchDecoderCTC._LANGUAGE_MODEL_SERIALIZED_DIRECTORY, "*") alphabet_filename = BeamSearchDecoderCTC._ALPHABET_SERIALIZED_FILENAME allow_patterns = [language_model_filenames, alphabet_filename] decoder = BeamSearchDecoderCTC.load_from_hf_hub( pretrained_model_name_or_path, allow_patterns=allow_patterns, **kwargs ) # set language model attributes for attribute in ["alpha", "beta", "unk_score_offset", "score_boundary"]: value = kwargs.pop(attribute, None) if value is not None: cls._set_language_model_attribute(decoder, attribute, value) # make sure that decoder's alphabet and tokenizer's vocab match in content missing_decoder_tokens = cls.get_missing_alphabet_tokens(decoder, tokenizer) if len(missing_decoder_tokens) > 0: raise ValueError( f"The tokens {missing_decoder_tokens} are defined in the tokenizer's " "vocabulary, but not in the decoder's alphabet. " f"Make sure to include {missing_decoder_tokens} in the decoder's alphabet." ) return cls(feature_extractor=feature_extractor, tokenizer=tokenizer, decoder=decoder) @staticmethod def _set_language_model_attribute(decoder: "BeamSearchDecoderCTC", attribute: str, value: float): setattr(decoder.model_container[decoder._model_key], attribute, value) @property def language_model(self): return self.decoder.model_container[self.decoder._model_key] @staticmethod def get_missing_alphabet_tokens(decoder, tokenizer): from pyctcdecode.alphabet import BLANK_TOKEN_PTN, UNK_TOKEN, UNK_TOKEN_PTN # we need to make sure that all of the tokenizer's except the special tokens # are present in the decoder's alphabet. Retrieve missing alphabet token # from decoder tokenizer_vocab_list = list(tokenizer.get_vocab().keys()) # replace special tokens for i, token in enumerate(tokenizer_vocab_list): if BLANK_TOKEN_PTN.match(token): tokenizer_vocab_list[i] = "" if token == tokenizer.word_delimiter_token: tokenizer_vocab_list[i] = " " if UNK_TOKEN_PTN.match(token): tokenizer_vocab_list[i] = UNK_TOKEN # are any of the extra tokens no special tokenizer tokens? missing_tokens = set(tokenizer_vocab_list) - set(decoder._alphabet.labels) return missing_tokens def __call__(self, *args, **kwargs): """ When used in normal mode, this method forwards all its arguments to Wav2Vec2FeatureExtractor's [`~Wav2Vec2FeatureExtractor.__call__`] and returns its output. If used in the context [`~Wav2Vec2ProcessorWithLM.as_target_processor`] this method forwards all its arguments to Wav2Vec2CTCTokenizer's [`~Wav2Vec2CTCTokenizer.__call__`]. Please refer to the docstring of the above two methods for more information. """ # For backward compatibility if self._in_target_context_manager: return self.current_processor(*args, **kwargs) if "raw_speech" in kwargs: warnings.warn("Using `raw_speech` as a keyword argument is deprecated. Use `audio` instead.") audio = kwargs.pop("raw_speech") else: audio = kwargs.pop("audio", None) sampling_rate = kwargs.pop("sampling_rate", None) text = kwargs.pop("text", None) if len(args) > 0: audio = args[0] args = args[1:] if audio is None and text is None: raise ValueError("You need to specify either an `audio` or `text` input to process.") if audio is not None: inputs = self.feature_extractor(audio, *args, sampling_rate=sampling_rate, **kwargs) if text is not None: encodings = self.tokenizer(text, **kwargs) if text is None: return inputs elif audio is None: return encodings else: inputs["labels"] = encodings["input_ids"] return inputs def pad(self, *args, **kwargs): """ When used in normal mode, this method forwards all its arguments to Wav2Vec2FeatureExtractor's [`~Wav2Vec2FeatureExtractor.pad`] and returns its output. If used in the context [`~Wav2Vec2ProcessorWithLM.as_target_processor`] this method forwards all its arguments to Wav2Vec2CTCTokenizer's [`~Wav2Vec2CTCTokenizer.pad`]. Please refer to the docstring of the above two methods for more information. """ # For backward compatibility if self._in_target_context_manager: return self.current_processor.pad(*args, **kwargs) input_features = kwargs.pop("input_features", None) labels = kwargs.pop("labels", None) if len(args) > 0: input_features = args[0] args = args[1:] if input_features is not None: input_features = self.feature_extractor.pad(input_features, *args, **kwargs) if labels is not None: labels = self.tokenizer.pad(labels, **kwargs) if labels is None: return input_features elif input_features is None: return labels else: input_features["labels"] = labels["input_ids"] return input_features def batch_decode( self, logits: np.ndarray, pool: Optional[Pool] = None, num_processes: Optional[int] = None, beam_width: Optional[int] = None, beam_prune_logp: Optional[float] = None, token_min_logp: Optional[float] = None, hotwords: Optional[Iterable[str]] = None, hotword_weight: Optional[float] = None, alpha: Optional[float] = None, beta: Optional[float] = None, unk_score_offset: Optional[float] = None, lm_score_boundary: Optional[bool] = None, output_word_offsets: bool = False, n_best: int = 1, ): """ Batch decode output logits to audio transcription with language model support. <Tip> This function makes use of Python's multiprocessing. Currently, multiprocessing is available only on Unix systems (see this [issue](https://github.com/kensho-technologies/pyctcdecode/issues/65)). If you are decoding multiple batches, consider creating a `Pool` and passing it to `batch_decode`. Otherwise, `batch_decode` will be very slow since it will create a fresh `Pool` for each call. See usage example below. </Tip> Args: logits (`np.ndarray`): The logits output vector of the model representing the log probabilities for each token. pool (`multiprocessing.Pool`, *optional*): An optional user-managed pool. If not set, one will be automatically created and closed. The pool should be instantiated *after* `Wav2Vec2ProcessorWithLM`. Otherwise, the LM won't be available to the pool's sub-processes. <Tip> Currently, only pools created with a 'fork' context can be used. If a 'spawn' pool is passed, it will be ignored and sequential decoding will be used instead. </Tip> num_processes (`int`, *optional*): If `pool` is not set, number of processes on which the function should be parallelized over. Defaults to the number of available CPUs. beam_width (`int`, *optional*): Maximum number of beams at each step in decoding. Defaults to pyctcdecode's DEFAULT_BEAM_WIDTH. beam_prune_logp (`int`, *optional*): Beams that are much worse than best beam will be pruned Defaults to pyctcdecode's DEFAULT_PRUNE_LOGP. token_min_logp (`int`, *optional*): Tokens below this logp are skipped unless they are argmax of frame Defaults to pyctcdecode's DEFAULT_MIN_TOKEN_LOGP. hotwords (`List[str]`, *optional*): List of words with extra importance, can be OOV for LM hotword_weight (`int`, *optional*): Weight factor for hotword importance Defaults to pyctcdecode's DEFAULT_HOTWORD_WEIGHT. alpha (`float`, *optional*): Weight for language model during shallow fusion beta (`float`, *optional*): Weight for length score adjustment of during scoring unk_score_offset (`float`, *optional*): Amount of log score offset for unknown tokens lm_score_boundary (`bool`, *optional*): Whether to have kenlm respect boundaries when scoring output_word_offsets (`bool`, *optional*, defaults to `False`): Whether or not to output word offsets. Word offsets can be used in combination with the sampling rate and model downsampling rate to compute the time-stamps of transcribed words. n_best (`int`, *optional*, defaults to `1`): Number of best hypotheses to return. If `n_best` is greater than 1, the returned `text` will be a list of lists of strings, `logit_score` will be a list of lists of floats, and `lm_score` will be a list of lists of floats, where the length of the outer list will correspond to the batch size and the length of the inner list will correspond to the number of returned hypotheses . The value should be >= 1. <Tip> Please take a look at the Example of [`~Wav2Vec2ProcessorWithLM.decode`] to better understand how to make use of `output_word_offsets`. [`~Wav2Vec2ProcessorWithLM.batch_decode`] works the same way with batched output. </Tip> Returns: [`~models.wav2vec2.Wav2Vec2DecoderWithLMOutput`]. Example: See [Decoding multiple audios](#decoding-multiple-audios). """ from pyctcdecode.constants import ( DEFAULT_BEAM_WIDTH, DEFAULT_HOTWORD_WEIGHT, DEFAULT_MIN_TOKEN_LOGP, DEFAULT_PRUNE_LOGP, ) # set defaults beam_width = beam_width if beam_width is not None else DEFAULT_BEAM_WIDTH beam_prune_logp = beam_prune_logp if beam_prune_logp is not None else DEFAULT_PRUNE_LOGP token_min_logp = token_min_logp if token_min_logp is not None else DEFAULT_MIN_TOKEN_LOGP hotword_weight = hotword_weight if hotword_weight is not None else DEFAULT_HOTWORD_WEIGHT # reset params at every forward call. It's just a `set` method in pyctcdecode self.decoder.reset_params( alpha=alpha, beta=beta, unk_score_offset=unk_score_offset, lm_score_boundary=lm_score_boundary ) # create multiprocessing pool and list numpy arrays # filter out logits padding logits_list = [array[(array != -100.0).all(axis=-1)] for array in logits] # create a pool if necessary while also using it as a context manager to close itself if pool is None: # fork is safe to use only on Unix, see "Contexts and start methods" section on # multiprocessing's docs (https://docs.python.org/3/library/multiprocessing.html#contexts-and-start-methods) default_context = get_start_method() if default_context == "fork": cm = pool = get_context().Pool(num_processes) else: logger.warning( "Parallel batch decoding is not currently supported in this platform. " "Falling back to sequential decoding." ) cm = nullcontext() else: # pool is managed by the user, so we don't need to close it cm = nullcontext() if num_processes is not None: logger.warning( "Parameter `num_process` was passed, but it will be ignored since `pool` was also specified." ) # pyctcdecode with cm: decoded_beams = self.decoder.decode_beams_batch( pool=pool, logits_list=logits_list, beam_width=beam_width, beam_prune_logp=beam_prune_logp, token_min_logp=token_min_logp, hotwords=hotwords, hotword_weight=hotword_weight, ) # extract text and scores batch_texts, logit_scores, lm_scores, word_offsets = [], [], [], [] for d in decoded_beams: batch_texts.append([beam[0] for beam in d]) logit_scores.append([beam[-2] for beam in d]) lm_scores.append([beam[-1] for beam in d]) # word_offsets.append([{"word": t[0], "start_offset": t[1][0], "end_offset": t[1][1]} for t in d[0][1]]) word_offsets.append( [ [ {"word": word, "start_offset": start_offset, "end_offset": end_offset} for word, (start_offset, end_offset) in beam[1] ] for beam in d ] ) word_offsets = word_offsets if output_word_offsets else None if n_best == 1: return Wav2Vec2DecoderWithLMOutput( text=[hyps[0] for hyps in batch_texts], logit_score=[hyps[0] for hyps in logit_scores], lm_score=[hyps[0] for hyps in lm_scores], word_offsets=[hyps[0] for hyps in word_offsets] if word_offsets is not None else None, ) else: return Wav2Vec2DecoderWithLMOutput( text=[hyps[:n_best] for hyps in batch_texts], logit_score=[hyps[:n_best] for hyps in logit_scores], lm_score=[hyps[:n_best] for hyps in lm_scores], word_offsets=[hyps[:n_best] for hyps in word_offsets] if word_offsets is not None else None, ) def decode( self, logits: np.ndarray, beam_width: Optional[int] = None, beam_prune_logp: Optional[float] = None, token_min_logp: Optional[float] = None, hotwords: Optional[Iterable[str]] = None, hotword_weight: Optional[float] = None, alpha: Optional[float] = None, beta: Optional[float] = None, unk_score_offset: Optional[float] = None, lm_score_boundary: Optional[bool] = None, output_word_offsets: bool = False, n_best: int = 1, ): """ Decode output logits to audio transcription with language model support. Args: logits (`np.ndarray`): The logits output vector of the model representing the log probabilities for each token. beam_width (`int`, *optional*): Maximum number of beams at each step in decoding. Defaults to pyctcdecode's DEFAULT_BEAM_WIDTH. beam_prune_logp (`int`, *optional*): A threshold to prune beams with log-probs less than best_beam_logp + beam_prune_logp. The value should be <= 0. Defaults to pyctcdecode's DEFAULT_PRUNE_LOGP. token_min_logp (`int`, *optional*): Tokens with log-probs below token_min_logp are skipped unless they are have the maximum log-prob for an utterance. Defaults to pyctcdecode's DEFAULT_MIN_TOKEN_LOGP. hotwords (`List[str]`, *optional*): List of words with extra importance which can be missing from the LM's vocabulary, e.g. ["huggingface"] hotword_weight (`int`, *optional*): Weight multiplier that boosts hotword scores. Defaults to pyctcdecode's DEFAULT_HOTWORD_WEIGHT. alpha (`float`, *optional*): Weight for language model during shallow fusion beta (`float`, *optional*): Weight for length score adjustment of during scoring unk_score_offset (`float`, *optional*): Amount of log score offset for unknown tokens lm_score_boundary (`bool`, *optional*): Whether to have kenlm respect boundaries when scoring output_word_offsets (`bool`, *optional*, defaults to `False`): Whether or not to output word offsets. Word offsets can be used in combination with the sampling rate and model downsampling rate to compute the time-stamps of transcribed words. n_best (`int`, *optional*, defaults to `1`): Number of best hypotheses to return. If `n_best` is greater than 1, the returned `text` will be a list of strings, `logit_score` will be a list of floats, and `lm_score` will be a list of floats, where the length of these lists will correspond to the number of returned hypotheses. The value should be >= 1. <Tip> Please take a look at the example below to better understand how to make use of `output_word_offsets`. </Tip> Returns: [`~models.wav2vec2.Wav2Vec2DecoderWithLMOutput`]. Example: ```python >>> # Let's see how to retrieve time steps for a model >>> from transformers import AutoTokenizer, AutoProcessor, AutoModelForCTC >>> from datasets import load_dataset >>> import datasets >>> import torch >>> # import model, feature extractor, tokenizer >>> model = AutoModelForCTC.from_pretrained("patrickvonplaten/wav2vec2-base-100h-with-lm") >>> processor = AutoProcessor.from_pretrained("patrickvonplaten/wav2vec2-base-100h-with-lm") >>> # load first sample of English common_voice >>> dataset = load_dataset("mozilla-foundation/common_voice_11_0", "en", split="train", streaming=True) >>> dataset = dataset.cast_column("audio", datasets.Audio(sampling_rate=16_000)) >>> dataset_iter = iter(dataset) >>> sample = next(dataset_iter) >>> # forward sample through model to get greedily predicted transcription ids >>> input_values = processor(sample["audio"]["array"], return_tensors="pt").input_values >>> with torch.no_grad(): ... logits = model(input_values).logits[0].cpu().numpy() >>> # retrieve word stamps (analogous commands for `output_char_offsets`) >>> outputs = processor.decode(logits, output_word_offsets=True) >>> # compute `time_offset` in seconds as product of downsampling ratio and sampling_rate >>> time_offset = model.config.inputs_to_logits_ratio / processor.feature_extractor.sampling_rate >>> word_offsets = [ ... { ... "word": d["word"], ... "start_time": round(d["start_offset"] * time_offset, 2), ... "end_time": round(d["end_offset"] * time_offset, 2), ... } ... for d in outputs.word_offsets ... ] >>> # compare word offsets with audio `en_train_0/common_voice_en_19121553.mp3` online on the dataset viewer: >>> # https://huggingface.co/datasets/mozilla-foundation/common_voice_11_0/viewer/en >>> word_offsets[:4] [{'word': 'THE', 'start_time': 0.68, 'end_time': 0.78}, {'word': 'TRACK', 'start_time': 0.88, 'end_time': 1.1}, {'word': 'APPEARS', 'start_time': 1.18, 'end_time': 1.66}, {'word': 'ON', 'start_time': 1.86, 'end_time': 1.92}] ```""" from pyctcdecode.constants import ( DEFAULT_BEAM_WIDTH, DEFAULT_HOTWORD_WEIGHT, DEFAULT_MIN_TOKEN_LOGP, DEFAULT_PRUNE_LOGP, ) # set defaults beam_width = beam_width if beam_width is not None else DEFAULT_BEAM_WIDTH beam_prune_logp = beam_prune_logp if beam_prune_logp is not None else DEFAULT_PRUNE_LOGP token_min_logp = token_min_logp if token_min_logp is not None else DEFAULT_MIN_TOKEN_LOGP hotword_weight = hotword_weight if hotword_weight is not None else DEFAULT_HOTWORD_WEIGHT # reset params at every forward call. It's just a `set` method in pyctcdecode self.decoder.reset_params( alpha=alpha, beta=beta, unk_score_offset=unk_score_offset, lm_score_boundary=lm_score_boundary ) # pyctcdecode decoded_beams = self.decoder.decode_beams( logits, beam_width=beam_width, beam_prune_logp=beam_prune_logp, token_min_logp=token_min_logp, hotwords=hotwords, hotword_weight=hotword_weight, ) word_offsets = None if output_word_offsets: word_offsets = [ [ {"word": word, "start_offset": start_offset, "end_offset": end_offset} for word, (start_offset, end_offset) in beam[2] ] for beam in decoded_beams ] logit_scores = [beam[-2] for beam in decoded_beams] lm_scores = [beam[-1] for beam in decoded_beams] hypotheses = [beam[0] for beam in decoded_beams] if n_best > len(decoded_beams): logger.info( "N-best size is larger than the number of generated hypotheses, all hypotheses will be returned." ) if n_best == 1: return Wav2Vec2DecoderWithLMOutput( text=hypotheses[0], logit_score=logit_scores[0], lm_score=lm_scores[0], word_offsets=word_offsets[0] if word_offsets is not None else None, ) else: return Wav2Vec2DecoderWithLMOutput( text=hypotheses[:n_best], logit_score=logit_scores[:n_best], lm_score=lm_scores[:n_best], word_offsets=word_offsets[:n_best] if word_offsets is not None else None, ) @contextmanager def as_target_processor(self): """ Temporarily sets the processor for processing the target. Useful for encoding the labels when fine-tuning Wav2Vec2. """ warnings.warn( "`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your " "labels by using the argument `text` of the regular `__call__` method (either in the same call as " "your audio inputs, or in a separate call." ) self._in_target_context_manager = True self.current_processor = self.tokenizer yield self.current_processor = self.feature_extractor self._in_target_context_manager = False
transformers/src/transformers/models/wav2vec2_with_lm/processing_wav2vec2_with_lm.py/0
{ "file_path": "transformers/src/transformers/models/wav2vec2_with_lm/processing_wav2vec2_with_lm.py", "repo_id": "transformers", "token_count": 12868 }
134
# coding=utf-8 # Copyright 2022 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tokenization classes for Whisper.""" import json import os import warnings from functools import lru_cache from typing import List, Optional, Tuple, Union import numpy as np import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging from .english_normalizer import BasicTextNormalizer, EnglishTextNormalizer VOCAB_FILES_NAMES = { "vocab_file": "vocab.json", "tokenizer_file": "tokenizer.json", "merges_file": "merges.txt", "normalizer_file": "normalizer.json", } PRETRAINED_VOCAB_FILES_MAP = { "vocab_file": { "openai/whisper-base": "https://huggingface.co/openai/whisper-base/resolve/main/vocab.json", }, "merges_file": {"openai/whisper-base": "https://huggingface.co/openai/whisper-base/resolve/main/merges_file.txt"}, "normalizer_file": { "openai/whisper-base": "https://huggingface.co/openai/whisper-base/resolve/main/normalizer.json" }, } MAX_MODEL_INPUT_SIZES = { "openai/whisper-base": 448, } # Copied from transformers.models.gpt2.tokenization_gpt2.bytes_to_unicode def bytes_to_unicode(): """ Returns list of utf-8 byte and a mapping to unicode strings. We specifically avoids mapping to whitespace/control characters the bpe code barfs on. The reversible bpe codes work on unicode strings. This means you need a large # of unicode characters in your vocab if you want to avoid UNKs. When you're at something like a 10B token dataset you end up needing around 5K for decent coverage. This is a significant percentage of your normal, say, 32K bpe vocab. To avoid that, we want lookup tables between utf-8 bytes and unicode strings. """ bs = ( list(range(ord("!"), ord("~") + 1)) + list(range(ord("¡"), ord("¬") + 1)) + list(range(ord("®"), ord("ÿ") + 1)) ) cs = bs[:] n = 0 for b in range(2**8): if b not in bs: bs.append(b) cs.append(2**8 + n) n += 1 cs = [chr(n) for n in cs] return dict(zip(bs, cs)) logger = logging.get_logger(__name__) # Copied from transformers.models.gpt2.tokenization_gpt2.get_pairs def get_pairs(word): """ Return set of symbol pairs in a word. Word is represented as tuple of symbols (symbols being variable-length strings). """ pairs = set() prev_char = word[0] for char in word[1:]: pairs.add((prev_char, char)) prev_char = char return pairs LANGUAGES = { "en": "english", "zh": "chinese", "de": "german", "es": "spanish", "ru": "russian", "ko": "korean", "fr": "french", "ja": "japanese", "pt": "portuguese", "tr": "turkish", "pl": "polish", "ca": "catalan", "nl": "dutch", "ar": "arabic", "sv": "swedish", "it": "italian", "id": "indonesian", "hi": "hindi", "fi": "finnish", "vi": "vietnamese", "he": "hebrew", "uk": "ukrainian", "el": "greek", "ms": "malay", "cs": "czech", "ro": "romanian", "da": "danish", "hu": "hungarian", "ta": "tamil", "no": "norwegian", "th": "thai", "ur": "urdu", "hr": "croatian", "bg": "bulgarian", "lt": "lithuanian", "la": "latin", "mi": "maori", "ml": "malayalam", "cy": "welsh", "sk": "slovak", "te": "telugu", "fa": "persian", "lv": "latvian", "bn": "bengali", "sr": "serbian", "az": "azerbaijani", "sl": "slovenian", "kn": "kannada", "et": "estonian", "mk": "macedonian", "br": "breton", "eu": "basque", "is": "icelandic", "hy": "armenian", "ne": "nepali", "mn": "mongolian", "bs": "bosnian", "kk": "kazakh", "sq": "albanian", "sw": "swahili", "gl": "galician", "mr": "marathi", "pa": "punjabi", "si": "sinhala", "km": "khmer", "sn": "shona", "yo": "yoruba", "so": "somali", "af": "afrikaans", "oc": "occitan", "ka": "georgian", "be": "belarusian", "tg": "tajik", "sd": "sindhi", "gu": "gujarati", "am": "amharic", "yi": "yiddish", "lo": "lao", "uz": "uzbek", "fo": "faroese", "ht": "haitian creole", "ps": "pashto", "tk": "turkmen", "nn": "nynorsk", "mt": "maltese", "sa": "sanskrit", "lb": "luxembourgish", "my": "myanmar", "bo": "tibetan", "tl": "tagalog", "mg": "malagasy", "as": "assamese", "tt": "tatar", "haw": "hawaiian", "ln": "lingala", "ha": "hausa", "ba": "bashkir", "jw": "javanese", "su": "sundanese", "yue": "cantonese", } # language code lookup by name, with a few language aliases TO_LANGUAGE_CODE = { **{language: code for code, language in LANGUAGES.items()}, "burmese": "my", "valencian": "ca", "flemish": "nl", "haitian": "ht", "letzeburgesch": "lb", "pushto": "ps", "panjabi": "pa", "moldavian": "ro", "moldovan": "ro", "sinhalese": "si", "castilian": "es", "mandarin": "zh", } TASK_IDS = ["translate", "transcribe"] class WhisperTokenizer(PreTrainedTokenizer): """ Construct a Whisper tokenizer. This tokenizer inherits from [`PreTrainedTokenizer`] which contains some of the main methods. Users should refer to the superclass for more information regarding such methods. Args: vocab_file (`str`): Path to the vocabulary file. merges_file (`str`): Path to the merges file. normalizer_file (`str`, *optional*): Path to the normalizer_file file. errors (`str`, *optional*, defaults to `"replace"`): Paradigm to follow when decoding bytes to UTF-8. See [bytes.decode](https://docs.python.org/3/library/stdtypes.html#bytes.decode) for more information. unk_token (`str`, *optional*, defaults to `"<|endoftext|>"`): The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this token instead. bos_token (`str`, *optional*, defaults to `"<|endoftext|>"`): The beginning of sequence token. The `decoder_start_token_id` is used to set the first token as `"<|startoftranscript|>"` when generating. eos_token (`str`, *optional*, defaults to `"<|endoftext|>"`): The end of sequence token. pad_token (`str`, *optional*): The token used for padding, for example when batching sequences of different lengths. add_prefix_space (`bool`, *optional*, defaults to `False`): Whether or not to add an initial space to the input. This allows to treat the leading word just as any other word. language (`str`, *optional*): The language of the transcription text. The corresponding language id token is appended to the start of the sequence for multilingual speech recognition and speech translation tasks, e.g. for Spanish the token `"<|es|>"` is appended to the start of sequence. This should be used for multilingual fine-tuning only. task (`str`, *optional*): Task identifier to append at the start of sequence (if any). This should be used for mulitlingual fine-tuning, with `"transcribe"` for speech recognition and `"translate"` for speech translation. predict_timestamps (`bool`, *optional*, defaults to `False`): Whether to omit the `<|notimestamps|>` token at the start of the sequence. """ vocab_files_names = VOCAB_FILES_NAMES pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP max_model_input_sizes = MAX_MODEL_INPUT_SIZES model_input_names = ["input_ids", "attention_mask"] def __init__( self, vocab_file, merges_file, normalizer_file=None, errors="replace", unk_token="<|endoftext|>", bos_token="<|endoftext|>", eos_token="<|endoftext|>", pad_token=None, add_prefix_space=False, language=None, task=None, predict_timestamps=False, **kwargs, ): bos_token = ( AddedToken(bos_token, lstrip=False, rstrip=False, normalized=False, special=True) if isinstance(bos_token, str) else bos_token ) eos_token = ( AddedToken(eos_token, lstrip=False, rstrip=False, normalized=False, special=True) if isinstance(eos_token, str) else eos_token ) unk_token = ( AddedToken(unk_token, lstrip=False, rstrip=False, normalized=False, special=True) if isinstance(unk_token, str) else unk_token ) pad_token = ( AddedToken(pad_token, lstrip=False, rstrip=False, normalized=False, special=True) if isinstance(pad_token, str) else pad_token ) with open(vocab_file, encoding="utf-8") as vocab_handle: self.encoder = json.load(vocab_handle) self.decoder = {v: k for k, v in self.encoder.items()} self.errors = errors # how to handle errors in decoding self.byte_encoder = bytes_to_unicode() self.byte_decoder = {v: k for k, v in self.byte_encoder.items()} with open(merges_file, encoding="utf-8") as merges_handle: bpe_merges = merges_handle.read().split("\n")[1:-1] bpe_merges = [tuple(merge.split()) for merge in bpe_merges] self.bpe_ranks = dict(zip(bpe_merges, range(len(bpe_merges)))) self.cache = {} self.add_prefix_space = add_prefix_space if normalizer_file is not None: with open(normalizer_file, encoding="utf-8") as vocab_handle: self.english_spelling_normalizer = json.load(vocab_handle) else: self.english_spelling_normalizer = None # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions self.pat = re.compile(r"""'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+""") self.timestamp_pat = re.compile(r"<\|(\d+\.\d+)\|>") self.language = language super().__init__( errors=errors, unk_token=unk_token, bos_token=bos_token, eos_token=eos_token, pad_token=pad_token, add_prefix_space=add_prefix_space, **kwargs, ) self.task = task self.predict_timestamps = predict_timestamps @property def vocab_size(self) -> int: return len(self.encoder) def get_vocab(self): vocab = {self.convert_ids_to_tokens(i): i for i in range(self.vocab_size)} vocab.update(self.added_tokens_encoder) return vocab # Copied from transformers.models.gpt2.tokenization_gpt2.GPT2Tokenizer.bpe with GPT2 -> Whisper def bpe(self, token): if token in self.cache: return self.cache[token] word = tuple(token) pairs = get_pairs(word) if not pairs: return token while True: bigram = min(pairs, key=lambda pair: self.bpe_ranks.get(pair, float("inf"))) if bigram not in self.bpe_ranks: break first, second = bigram new_word = [] i = 0 while i < len(word): try: j = word.index(first, i) except ValueError: new_word.extend(word[i:]) break else: new_word.extend(word[i:j]) i = j if word[i] == first and i < len(word) - 1 and word[i + 1] == second: new_word.append(first + second) i += 2 else: new_word.append(word[i]) i += 1 new_word = tuple(new_word) word = new_word if len(word) == 1: break else: pairs = get_pairs(word) word = " ".join(word) self.cache[token] = word return word def set_prefix_tokens(self, language: str = None, task: str = None, predict_timestamps: bool = None): """ Override the prefix tokens appended to the start of the label sequence. This method can be used standalone to update the prefix tokens as required when fine-tuning. Example: ```python >>> # instantiate the tokenizer and set the prefix token to Spanish >>> tokenizer = WhisperTokenizer.from_pretrained("openai/whisper-tiny", language="spanish") >>> # now switch the prefix token from Spanish to French >>> tokenizer.set_prefix_tokens(language="french") ``` Args: language (`str`, *optional*, defaults to `None`): The language of the transcription text. task (`str`, *optional*, defaults to `None`): Task identifier to append at the start of sequence (if any). predict_timestamps (`bool`, *optional*, defaults to `None`): Whether to omit the `<|notimestamps|>` token at the start of the sequence. """ self.language = language if language is not None else self.language self.task = task if task is not None else self.task self.predict_timestamps = predict_timestamps if predict_timestamps is not None else self.predict_timestamps @property def prefix_tokens(self) -> List[int]: bos_token_id = self.convert_tokens_to_ids("<|startoftranscript|>") translate_token_id = self.convert_tokens_to_ids("<|translate|>") transcribe_token_id = self.convert_tokens_to_ids("<|transcribe|>") notimestamps_token_id = self.convert_tokens_to_ids("<|notimestamps|>") langs = tuple(LANGUAGES.keys()) if self.language is not None: self.language = self.language.lower() if self.language in TO_LANGUAGE_CODE: language_id = TO_LANGUAGE_CODE[self.language] elif self.language in TO_LANGUAGE_CODE.values(): language_id = self.language else: is_language_code = len(self.language) == 2 raise ValueError( f"Unsupported language: {self.language}. Language should be one of:" f" {list(TO_LANGUAGE_CODE.values()) if is_language_code else list(TO_LANGUAGE_CODE.keys())}." ) if self.task is not None: if self.task not in TASK_IDS: raise ValueError(f"Unsupported task: {self.task}. Task should be in: {TASK_IDS}") bos_sequence = [bos_token_id] if self.language is not None: bos_sequence.append(bos_token_id + 1 + langs.index(language_id)) if self.task is not None: bos_sequence.append(transcribe_token_id if self.task == "transcribe" else translate_token_id) if not self.predict_timestamps: bos_sequence.append(notimestamps_token_id) return bos_sequence # Copied from transformers.models.speech_to_text.tokenization_speech_to_text.Speech2TextTokenizer.build_inputs_with_special_tokens def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None) -> List[int]: """Build model inputs from a sequence by appending eos_token_id.""" if token_ids_1 is None: return self.prefix_tokens + token_ids_0 + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_0 + token_ids_1 + [self.eos_token_id] # Copied from transformers.models.speech_to_text.tokenization_speech_to_text.Speech2TextTokenizer.get_special_tokens_mask def get_special_tokens_mask( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False ) -> List[int]: """ Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding special tokens using the tokenizer `prepare_for_model` method. Args: token_ids_0 (`List[int]`): List of IDs. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. already_has_special_tokens (`bool`, *optional*, defaults to `False`): Whether or not the token list is already formatted with special tokens for the model. Returns: `List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token. """ if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True ) prefix_ones = [1] * len(self.prefix_tokens) suffix_ones = [1] if token_ids_1 is None: return prefix_ones + ([0] * len(token_ids_0)) + suffix_ones return prefix_ones + ([0] * len(token_ids_0)) + ([0] * len(token_ids_1)) + suffix_ones # Copied from transformers.models.gpt2.tokenization_gpt2.GPT2Tokenizer._tokenize with GPT2 -> Whisper def _tokenize(self, text): """Tokenize a string.""" bpe_tokens = [] for token in re.findall(self.pat, text): token = "".join( self.byte_encoder[b] for b in token.encode("utf-8") ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(token).split(" ")) return bpe_tokens # Copied from transformers.models.gpt2.tokenization_gpt2.GPT2Tokenizer._convert_token_to_id with GPT2 -> Whisper def _convert_token_to_id(self, token): """Converts a token (str) in an id using the vocab.""" return self.encoder.get(token, self.encoder.get(self.unk_token)) def _convert_id_to_token(self, index): """ Converts an index (integer) in a token (str) using the vocab. Whisper's base tokenizer always decodes OOV tokens as "", thus we do not use the `unk_token` here. """ return self.decoder.get(index, "") def _normalize(self, text): warnings.warn( "The private method `_normalize` is deprecated and will be removed in v5 of Transformers." "You can normalize an input string using the Whisper English normalizer using the `normalize` method." ) return self.normalize(text) def _basic_normalize(self, text, remove_diacritics=False): warnings.warn( "The private method `_basic_normalize` is deprecated and will be removed in v5 of Transformers." "You can normalize an input string using the Whisper basic normalizer using the `basic_normalize` method." ) return self.basic_normalize(text, remove_diacritics=remove_diacritics) def normalize(self, text): """ Normalize a given string using the `EnglishTextNormalizer` class, which preforms commons transformation on english text. """ normalizer = EnglishTextNormalizer(self.english_spelling_normalizer) return normalizer(text) @staticmethod def basic_normalize(text, remove_diacritics=False): """ Normalize a given string using the `BasicTextNormalizer` class, which preforms commons transformation on multilingual text. """ normalizer = BasicTextNormalizer(remove_diacritics=remove_diacritics) return normalizer(text) def _decode_with_timestamps(self, token_ids, skip_special_tokens=False, time_precision=0.02) -> str: """ Timestamp tokens are above the special tokens' id range and are ignored by `decode()`. This method decodes given tokens with timestamps tokens annotated, e.g. "<|1.08|>". """ timestamp_begin = self.all_special_ids[-1] + 1 outputs = [[]] cur_max_timestamp = 0.0 prev_segments_len = 0.0 for token in token_ids: if token >= timestamp_begin: timestamp = float((token - timestamp_begin) * time_precision) if timestamp < cur_max_timestamp: # next segment has started prev_segments_len += cur_max_timestamp cur_max_timestamp = timestamp outputs.append(f"<|{(timestamp + prev_segments_len):.2f}|>") outputs.append([]) else: outputs[-1].append(token) outputs = [ s if isinstance(s, str) else self.decode(s, skip_special_tokens=skip_special_tokens) for s in outputs ] return "".join(outputs) def _compute_offsets(self, token_ids, time_precision=0.02): """ Compute offsets for a given tokenized input Args: token_ids (`Union[int, List[int], np.ndarray, torch.Tensor, tf.Tensor]`): List of tokenized input ids. Can be obtained using the `__call__` method. time_precision (`float`, `optional`, defaults to 0.02): The time ratio to convert from token to time. """ offsets = [] # ensure torch tensor of token ids is placed on cpu if "torch" in str(type(token_ids)) and (hasattr(token_ids, "cpu") and callable(token_ids.cpu)): token_ids = token_ids.cpu() token_ids = np.array(token_ids) if token_ids.shape[0] > 1 and len(token_ids.shape) > 1: raise ValueError("Can only process a single input at a time") timestamp_begin = self.all_special_ids[-1] + 1 timestamp_tokens = token_ids >= timestamp_begin consecutive = np.where(timestamp_tokens[:-1] & timestamp_tokens[1:])[0] + 1 if consecutive.shape[0] == 0 and timestamp_tokens.sum() <= 1: # either there are no timestamps or there are no consecutive ones return [] elif np.where(timestamp_tokens)[0][-1] + 1 not in consecutive: # we add the final timestamp if it is not already in the list consecutive = np.append(consecutive, np.where(timestamp_tokens)[0][-1] + 1) last_slice = np.where(timestamp_tokens)[0][0] for current_slice in consecutive: sliced_tokens = token_ids[last_slice:current_slice] if len(sliced_tokens) > 1: start_timestamp_position = sliced_tokens[0].item() - timestamp_begin end_timestamp_position = sliced_tokens[-1].item() - timestamp_begin # strip timestamp tokens from the text output sliced_tokens = self._preprocess_token_ids(sliced_tokens) text = self._decode(sliced_tokens) text = self._filter_timestamp_ids(text) offsets.append( { "text": text, "timestamp": ( start_timestamp_position * time_precision, end_timestamp_position * time_precision, ), } ) last_slice = current_slice return offsets @lru_cache def timestamp_ids(self, time_precision=0.02): """ Compute the timestamp token ids for a given precision and save to least-recently used (LRU) cache. Args: time_precision (`float`, `optional`, defaults to 0.02): The time ratio to convert from token to time. """ return self.convert_tokens_to_ids([("<|%.2f|>" % (i * time_precision)) for i in range(1500 + 1)]) def _preprocess_token_ids(self, token_ids, skip_special_tokens: bool = False): """ Pre-process the token ids for decoding by removing the prompt tokens ids and timestamp token ids. Args: token_ids (`Union[int, List[int], np.ndarray, torch.Tensor, tf.Tensor]`): List of tokenized input ids. Typically, obtained using the `__call__` method of the tokenizer. skip_special_tokens (`bool`, *optional*, defaults to `False`): Whether or not to remove special tokens from the token ids. If `True`, the prompt token ids will be removed. """ if skip_special_tokens: prompt_token_id = self.convert_tokens_to_ids("<|startofprev|>") decoder_start_token_id = self.convert_tokens_to_ids("<|startoftranscript|>") token_ids = self._strip_prompt(token_ids, prompt_token_id, decoder_start_token_id) return token_ids def _filter_timestamp_ids(self, token_ids): return re.sub(self.timestamp_pat, "", token_ids) def decode( self, token_ids, skip_special_tokens: bool = False, clean_up_tokenization_spaces: bool = None, output_offsets: bool = False, time_precision: float = 0.02, decode_with_timestamps: bool = False, normalize: bool = False, basic_normalize: bool = False, remove_diacritics: bool = False, **kwargs, ) -> str: """ Converts a sequence of ids in a string, using the tokenizer and vocabulary with options to remove special tokens and clean up tokenization spaces. Similar to doing `self.convert_tokens_to_string(self.convert_ids_to_tokens(token_ids))`. Args: token_ids (`Union[int, List[int], np.ndarray, torch.Tensor, tf.Tensor]`): List of tokenized input ids. Can be obtained using the `__call__` method. skip_special_tokens (`bool`, *optional*, defaults to `False`): Whether or not to remove special tokens in the decoding. clean_up_tokenization_spaces (`bool`, *optional*): Whether or not to clean up the tokenization spaces. If `None`, will default to `self.clean_up_tokenization_spaces` (available in the `tokenizer_config`). output_offsets (`bool`, *optional*, defaults to `False`): Whether or not to output the offsets of the tokens. This should only be set if the model predicted timestamps. time_precision (`float`, `optional`, defaults to 0.02): The time ratio to convert from token to time. decode_with_timestamps (`bool`, *optional*, defaults to `False`): Whether or not to decode with timestamps included in the raw text. normalize (`bool`, *optional*, defaults to `False`): Whether or not to apply the English text normalizer to the decoded text. Only applicable when the target text is in English. Otherwise, the basic text normalizer should be applied. basic_normalize (`bool`, *optional*, defaults to `False`): Whether or not to apply the Basic text normalizer to the decoded text. Applicable to multilingual target text. remove_diacritics (`bool`, *optional*, defaults to `False`): Whether or not to remove diacritics when applying the Basic text normalizer. Removing diacritics may destroy information in the decoded text, hence it should be used with caution. kwargs (additional keyword arguments, *optional*): Will be passed to the underlying model specific decode method. Returns: `str`: The decoded sentence. """ filtered_ids = self._preprocess_token_ids( token_ids, skip_special_tokens=skip_special_tokens, ) text = super().decode( filtered_ids, skip_special_tokens=skip_special_tokens, clean_up_tokenization_spaces=clean_up_tokenization_spaces, normalize=normalize, basic_normalize=basic_normalize, remove_diacritics=remove_diacritics, **kwargs, ) if decode_with_timestamps: # legacy method to decode timestamps when not included in the tokenizer vocabulary text = self._decode_with_timestamps( filtered_ids, time_precision=time_precision, skip_special_tokens=skip_special_tokens ) else: text = self._filter_timestamp_ids(text) # retrieve offsets if output_offsets: offsets = self._compute_offsets(token_ids, time_precision=time_precision) return {"text": text, "offsets": offsets} return text def _decode( self, token_ids: Union[int, List[int]], skip_special_tokens: bool = False, normalize: bool = False, basic_normalize: bool = False, remove_diacritics: bool = False, **kwargs, ) -> str: self._decode_use_source_tokenizer = kwargs.pop("use_source_tokenizer", False) filtered_tokens = self.convert_ids_to_tokens(token_ids, skip_special_tokens=skip_special_tokens) # To avoid mixing byte-level and unicode for byte-level BPT # we need to build string separately for added tokens and byte-level tokens # cf. https://github.com/huggingface/transformers/issues/1133 sub_texts = [] current_sub_text = [] for token in filtered_tokens: if skip_special_tokens and token in self.all_special_ids: continue if token in self.added_tokens_encoder: if current_sub_text: sub_texts.append(self.convert_tokens_to_string(current_sub_text)) current_sub_text = [] sub_texts.append(token) else: current_sub_text.append(token) if current_sub_text: sub_texts.append(self.convert_tokens_to_string(current_sub_text)) text = "".join(sub_texts) if normalize: clean_text = self.normalize(text) return clean_text elif basic_normalize: clean_text = self.basic_normalize(text, remove_diacritics=remove_diacritics) return clean_text else: return text # Copied from transformers.models.gpt2.tokenization_gpt2.GPT2Tokenizer.convert_tokens_to_string with GPT2 -> Whisper def convert_tokens_to_string(self, tokens): """Converts a sequence of tokens (string) in a single string.""" text = "".join(tokens) text = bytearray([self.byte_decoder[c] for c in text]).decode("utf-8", errors=self.errors) return text def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]: if not os.path.isdir(save_directory): logger.error(f"Vocabulary path ({save_directory}) should be a directory") return vocab_file = os.path.join( save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) merge_file = os.path.join( save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] ) normalizer_file = os.path.join( save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["normalizer_file"] ) with open(vocab_file, "w", encoding="utf-8") as f: f.write(json.dumps(self.encoder, indent=2, sort_keys=True, ensure_ascii=False) + "\n") index = 0 with open(merge_file, "w", encoding="utf-8") as writer: writer.write("#version: 0.2\n") for bpe_tokens, token_index in sorted(self.bpe_ranks.items(), key=lambda kv: kv[1]): if index != token_index: logger.warning( f"Saving vocabulary to {merge_file}: BPE merge indices are not consecutive." " Please check that the tokenizer is not corrupted!" ) index = token_index writer.write(" ".join(bpe_tokens) + "\n") index += 1 if self.english_spelling_normalizer is not None: with open(normalizer_file, "w", encoding="utf-8") as f: f.write( json.dumps(self.english_spelling_normalizer, indent=2, sort_keys=True, ensure_ascii=False) + "\n" ) return vocab_file, merge_file, normalizer_file # Copied from transformers.models.gpt2.tokenization_gpt2.GPT2Tokenizer.prepare_for_tokenization with GPT2 -> Whisper def prepare_for_tokenization(self, text, is_split_into_words=False, **kwargs): add_prefix_space = kwargs.pop("add_prefix_space", self.add_prefix_space) if is_split_into_words or add_prefix_space: text = " " + text return (text, kwargs) @property # Copied from transformers.models.gpt2.tokenization_gpt2.GPT2Tokenizer.default_chat_template def default_chat_template(self): """ A simple chat template that ignores role information and just concatenates messages with EOS tokens. """ logger.warning_once( "\nNo chat template is defined for this tokenizer - using the default template " f"for the {self.__class__.__name__} class. If the default is not appropriate for " "your model, please set `tokenizer.chat_template` to an appropriate template. " "See https://huggingface.co/docs/transformers/main/chat_templating for more information.\n" ) return "{% for message in messages %}" "{{ message.content }}{{ eos_token }}" "{% endfor %}" def get_decoder_prompt_ids(self, task=None, language=None, no_timestamps=True): self.set_prefix_tokens(task=task, language=language, predict_timestamps=not no_timestamps) # prefix tokens are of the form: <|startoftranscript|> <|lang_id|> <|task|> <|notimestamps|> # we don't want to force the bos token at position 1, as this is the starting token # when we generate, so we slice the prefix tokens to: <|lang_id|> <|task|> <|notimestamps|> # to get the forced tokens forced_tokens = self.prefix_tokens[1:] forced_decoder_ids = [(rank + 1, token) for rank, token in enumerate(forced_tokens)] return forced_decoder_ids def _decode_asr(self, model_outputs, *, return_timestamps, return_language, time_precision): return _decode_asr( self, model_outputs, return_timestamps=return_timestamps, return_language=return_language, time_precision=time_precision, ) def get_prompt_ids(self, text: str, return_tensors="np"): """Converts prompt text to IDs that can be passed to [`~WhisperForConditionalGeneration.generate`].""" batch_encoding = self("<|startofprev|>", " " + text.strip(), add_special_tokens=False) # Check for special tokens prompt_text_ids = batch_encoding["input_ids"][1:] special_token_id = next((x for x in prompt_text_ids if x >= self.all_special_ids[0]), None) if special_token_id is not None: token = self.convert_ids_to_tokens(special_token_id) raise ValueError(f"Encountered text in the prompt corresponding to disallowed special token: {token}.") batch_encoding.convert_to_tensors(tensor_type=return_tensors) return batch_encoding["input_ids"] @staticmethod def _strip_prompt(token_ids: List[int], prompt_token_id: int, decoder_start_token_id: int): has_prompt = isinstance(token_ids, list) and token_ids and token_ids[0] == prompt_token_id if has_prompt: if decoder_start_token_id in token_ids: return token_ids[token_ids.index(decoder_start_token_id) :] else: return [] return token_ids def _decode_asr(tokenizer, model_outputs, *, return_timestamps, return_language, time_precision): """ Internal method meant to only be used by asr pipeline. Handles all the little quirks specific to whisper to handle the various options not allowed in other seq2seq models """ # =========== Overview ============ # - iterate over all outputs # - all tokens within output # - Each token can be # - language token # - special token # - timestamp token # - text token # - We accumulate the text tokens. # - We split on end timestamps # - Lots of complexity comes from stride and timestamps last_language = None def new_chunk(): return {"language": last_language, "timestamp": [None, None], "text": ""} # Welcome to the state machine ! chunks = [] chunk = new_chunk() time_offset = 0.0 timestamp_begin = tokenizer.convert_tokens_to_ids("<|notimestamps|>") + 1 previous_tokens = [] previous_token_timestamps = [] skip = False right_stride_start = None all_special_ids = set(tokenizer.all_special_ids) # - iterate over all outputs for chunk_id, output in enumerate(model_outputs): # We can drop everything to Python list, it's going to make # our lives easier token_ids = output["tokens"][0].tolist() if return_timestamps == "word": token_timestamps = output["token_timestamps"][0].tolist() # Those keep track of timestamps within strides # Which need to be skipped and resolve all tokens in a single # chunk. last_timestamp = None first_timestamp = timestamp_begin if "stride" in output: chunk_len, stride_left, stride_right = output["stride"] # Offset the timings to account for the other `model_outputs`. time_offset -= stride_left right_stride_start = chunk_len - stride_right # Keeping track of timestamps within strides # We're going to NOT split on those, and delay until we're # out of BOTH stride. Otherwise lots of issues occur and # corner cases if stride_left: first_timestamp = stride_left / time_precision + timestamp_begin if stride_right: for token in reversed(token_ids): if token >= timestamp_begin: # There can be several token in the right stride # But the last one is ALWAYS going to be skipped if ( last_timestamp is not None and (token - timestamp_begin) * time_precision < right_stride_start ): break last_timestamp = token current_tokens = [] current_token_timestamps = [] # - all tokens within output for i, token in enumerate(token_ids): # 4 possible states for each token # - 1/ Language code # - 2/ all other special tokens (which we ignore) # - 3/ Timestamp # - 4/ Regular text if token in all_special_ids: # Either language code or other text = tokenizer.decode([token]) # Removing outer shell <|XX|> text = text[2:-2] language = LANGUAGES.get(text, None) if language is not None: # 1/ Indeed some language # TODO Handle when language is different from the previous # one, and we cannot use timestamped tokens to create chunks if last_language and language != last_language and not return_timestamps: previous_tokens.append(current_tokens) resolved_tokens = _find_longest_common_sequence(previous_tokens) resolved_text = tokenizer.decode(resolved_tokens) chunk["text"] = resolved_text chunks.append(chunk) # Flush all our temporary context previous_tokens = [] current_tokens = [] chunk = new_chunk() chunk["language"] = language last_language = language else: # 2/ This is a regular special token, ignoring it pass elif token >= timestamp_begin: # 3/ Timestamp token time = (token - timestamp_begin) * time_precision + time_offset time = round(time, 2) if last_timestamp and token >= last_timestamp: # Whisper outputted a timestamp token, but it falls within # our stride, so we're going to skip it for the time being # and resolve this later # Skip is necessary because timestamp tokens always come # by pair, so we need to skip the next one too (which would mark the start of another chunk). skip = True elif skip or (previous_tokens and token < first_timestamp): skip = False elif chunk["timestamp"][0] is None: chunk["timestamp"][0] = time else: # This is the end of the timestamp chunk if time == chunk["timestamp"][0]: # This is a bug in timestamp token output # where we're taking the duplicate token # as a stop where it should be a start. # This is an issue in the underlying model output # Let's just skip it so it becomes de-factor # a start agin pass else: chunk["timestamp"][1] = time # Handling merges. previous_tokens.append(current_tokens) if return_timestamps == "word": previous_token_timestamps.append(current_token_timestamps) resolved_tokens, resolved_token_timestamps = _find_longest_common_sequence( previous_tokens, previous_token_timestamps ) resolved_text = tokenizer.decode(resolved_tokens) chunk["text"] = resolved_text if return_timestamps == "word": chunk["words"] = _collate_word_timestamps( tokenizer, resolved_tokens, resolved_token_timestamps, last_language ) chunks.append(chunk) # Flush all our temporary context previous_tokens = [] current_tokens = [] previous_token_timestamps = [] current_token_timestamps = [] chunk = new_chunk() else: # 4/ Regular token # We just append to the list of all tokens so we can handle # merges later and decode into text. current_tokens.append(token) if return_timestamps == "word": start_time = round(token_timestamps[i] + time_offset, 2) if i + 1 < len(token_timestamps): end_time = round(token_timestamps[i + 1] + time_offset, 2) else: end_time = None # should never happen current_token_timestamps.append((start_time, end_time)) if "stride" in output: time_offset += chunk_len - stride_right # Leftover tokens if current_tokens: previous_tokens.append(current_tokens) if return_timestamps == "word": previous_token_timestamps.append(current_token_timestamps) elif not (any(p for p in previous_tokens)): chunk = new_chunk() previous_tokens = [] current_tokens = [] previous_token_timestamps = [] current_token_timestamps = [] if previous_tokens: if return_timestamps: logger.warning( "Whisper did not predict an ending timestamp, which can happen if audio is cut off in the middle of a word. " "Also make sure WhisperTimeStampLogitsProcessor was used during generation." ) # Happens when we don't use timestamps resolved_tokens, resolved_token_timestamps = _find_longest_common_sequence( previous_tokens, previous_token_timestamps ) resolved_text = tokenizer.decode(resolved_tokens) chunk["text"] = resolved_text if return_timestamps == "word": chunk["words"] = _collate_word_timestamps( tokenizer, resolved_tokens, resolved_token_timestamps, last_language ) chunks.append(chunk) # Preparing and cleaning up the pipeline output full_text = "".join(chunk["text"] for chunk in chunks) if return_timestamps or return_language: for chunk in chunks: if not return_timestamps: chunk.pop("timestamp") else: chunk["timestamp"] = tuple(chunk["timestamp"]) if not return_language: chunk.pop("language") if return_timestamps == "word": new_chunks = [] for chunk in chunks: new_chunks.extend(chunk["words"]) optional = {"chunks": new_chunks} else: optional = {"chunks": chunks} else: optional = {} return full_text, optional def _find_longest_common_sequence(sequences, token_timestamp_sequences=None): # It would be much harder to do O(n) because of fault tolerance. # We actually have a really good property which is that the total sequence # MUST be those subsequences in order. # If token_timestamp_sequences is provided, will split those sequences in # exactly the same way. left_sequence = sequences[0] left_length = len(left_sequence) total_sequence = [] if token_timestamp_sequences: left_token_timestamp_sequence = token_timestamp_sequences[0] total_token_timestamp_sequence = [] for seq_idx, right_sequence in enumerate(sequences[1:]): # index = 0 max_ = 0.0 max_indices = (left_length, left_length, 0, 0) # Here we're sliding matches # [a, b, c, d] # [c, d, f] # = [c] == [d] # # [a, b, c, d] # [c, d, f] # = [c, d] == [c, d] # # # [a, b, c, d] # [c, d, f] # # = [b, c, d] == [c, d, f] # # [a, b, c, d] # [c, d, f] # # [a, b, c] == [c, d, f] # # [a, b, c, d] # [d, f] # # [a, b] == [d, f] # # [a, b, c, d] # [f] # # [a] == [f] right_length = len(right_sequence) for i in range(1, left_length + right_length): # epsilon to favor long perfect matches eps = i / 10000.0 # Slightly convoluted because we don't want out of bound indices # This will be necessary for a small conflict resolution optimization # later left_start = max(0, left_length - i) left_stop = min(left_length, left_length + right_length - i) left = np.array(left_sequence[left_start:left_stop]) right_start = max(0, i - left_length) right_stop = min(right_length, i) right = np.array(right_sequence[right_start:right_stop]) # We can only match subsequences of the same size. if len(left) != len(right): raise RuntimeError( "There is a bug within whisper `decode_asr` function, please report it. Dropping to prevent bad inference." ) matches = np.sum(left == right) matching = matches / i + eps if matches > 1 and matching > max_: max_ = matching max_indices = (left_start, left_stop, right_start, right_stop) (left_start, left_stop, right_start, right_stop) = max_indices # This is a small conflict optimization since those sequences overlap # in audio. # We're going to give more confidence to the left sequence # for the left of the overlap, # and to the right of the sequence, for the right of the overlap left_mid = (left_stop + left_start) // 2 right_mid = (right_stop + right_start) // 2 total_sequence.extend(left_sequence[:left_mid]) left_sequence = right_sequence[right_mid:] left_length = len(left_sequence) if token_timestamp_sequences: total_token_timestamp_sequence.extend(left_token_timestamp_sequence[:left_mid]) left_token_timestamp_sequence = token_timestamp_sequences[seq_idx + 1][right_mid:] total_sequence.extend(left_sequence) if token_timestamp_sequences is None: return total_sequence if len(token_timestamp_sequences) > 0: total_token_timestamp_sequence.extend(left_token_timestamp_sequence) return total_sequence, total_token_timestamp_sequence else: return total_sequence, [] def _collate_word_timestamps(tokenizer, tokens, token_timestamps, language): words, _, token_indices = _combine_tokens_into_words(tokenizer, tokens, language) timings = [ { "text": word, "timestamp": (token_timestamps[indices[0]][0], token_timestamps[indices[-1]][1]), } for word, indices in zip(words, token_indices) ] return timings def _combine_tokens_into_words( tokenizer, tokens: List[int], language: str = None, prepend_punctuations: str = "\"'“¡¿([{-", append_punctuations: str = "\"'.。,,!!??::”)]}、", ): """ Groups tokens by word. Returns a tuple containing a list of strings with the words, and a list of `token_id` sequences with the tokens making up each word. """ if language is None: language = tokenizer.language if language is None: language = "english" if language in {"chinese", "japanese", "thai", "lao", "myanmar", "cantonese"}: # These languages don't typically use spaces. words, word_tokens, token_indices = _split_tokens_on_unicode(tokenizer, tokens) else: words, word_tokens, token_indices = _split_tokens_on_spaces(tokenizer, tokens) _merge_punctuations(words, word_tokens, token_indices, prepend_punctuations, append_punctuations) return words, word_tokens, token_indices def _split_tokens_on_unicode(tokenizer, tokens: List[int]): """Combine tokens into words by splitting at any position where the tokens are decoded as valid unicode points.""" decoded_full = tokenizer.decode(tokens, decode_with_timestamps=True) replacement_char = "\ufffd" words = [] word_tokens = [] token_indices = [] current_tokens = [] current_indices = [] unicode_offset = 0 for token_idx, token in enumerate(tokens): current_tokens.append(token) current_indices.append(token_idx) decoded = tokenizer.decode(current_tokens, decode_with_timestamps=True) if ( replacement_char not in decoded or decoded_full[unicode_offset + decoded.index(replacement_char)] == replacement_char ): words.append(decoded) word_tokens.append(current_tokens) token_indices.append(current_indices) current_tokens = [] current_indices = [] unicode_offset += len(decoded) return words, word_tokens, token_indices def _split_tokens_on_spaces(tokenizer, tokens: List[int]): """Combine tokens into words by splitting at whitespace and punctuation tokens.""" subwords, subword_tokens_list, subword_indices_list = _split_tokens_on_unicode(tokenizer, tokens) words = [] word_tokens = [] token_indices = [] for subword, subword_tokens, subword_indices in zip(subwords, subword_tokens_list, subword_indices_list): special = subword_tokens[0] >= tokenizer.eos_token_id with_space = subword.startswith(" ") punctuation = subword.strip() in "!\"#$%&'()*+,-./:;<=>?@[\\]^_`{|}~" if special or with_space or punctuation or len(words) == 0: words.append(subword) word_tokens.append(subword_tokens) token_indices.append(subword_indices) else: words[-1] = words[-1] + subword word_tokens[-1].extend(subword_tokens) token_indices[-1].extend(subword_indices) return words, word_tokens, token_indices def _merge_punctuations(words, tokens, indices, prepended, appended): """Merges punctuation tokens with neighboring words.""" # prepend punctuations i = len(words) - 2 j = len(words) - 1 while i >= 0: if words[i].startswith(" ") and words[i].strip() in prepended: words[j] = words[i] + words[j] tokens[j] = tokens[i] + tokens[j] indices[j] = indices[i] + indices[j] words[i] = "" tokens[i] = [] indices[i] = [] else: j = i i -= 1 # append punctuations i = 0 j = 1 while j < len(words): if not words[i].endswith(" ") and words[j] in appended: words[i] += words[j] tokens[i] += tokens[j] indices[i] += indices[j] words[j] = "" tokens[j] = [] indices[j] = [] else: i = j j += 1 # remove elements that are now empty words[:] = [word for word in words if word] tokens[:] = [token for token in tokens if token] indices[:] = [idx for idx in indices if idx]
transformers/src/transformers/models/whisper/tokenization_whisper.py/0
{ "file_path": "transformers/src/transformers/models/whisper/tokenization_whisper.py", "repo_id": "transformers", "token_count": 25136 }
135
# coding=utf-8 # Copyright 2022 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ YOLOS model configuration""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging logger = logging.get_logger(__name__) YOLOS_PRETRAINED_CONFIG_ARCHIVE_MAP = { "hustvl/yolos-small": "https://huggingface.co/hustvl/yolos-small/resolve/main/config.json", # See all YOLOS models at https://huggingface.co/models?filter=yolos } class YolosConfig(PretrainedConfig): r""" This is the configuration class to store the configuration of a [`YolosModel`]. It is used to instantiate a YOLOS model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the YOLOS [hustvl/yolos-base](https://huggingface.co/hustvl/yolos-base) architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: hidden_size (`int`, *optional*, defaults to 768): Dimensionality of the encoder layers and the pooler layer. num_hidden_layers (`int`, *optional*, defaults to 12): Number of hidden layers in the Transformer encoder. num_attention_heads (`int`, *optional*, defaults to 12): Number of attention heads for each attention layer in the Transformer encoder. intermediate_size (`int`, *optional*, defaults to 3072): Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder. hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`): The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, `"relu"`, `"selu"` and `"gelu_new"` are supported. hidden_dropout_prob (`float`, *optional*, defaults to 0.0): The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. attention_probs_dropout_prob (`float`, *optional*, defaults to 0.0): The dropout ratio for the attention probabilities. initializer_range (`float`, *optional*, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. layer_norm_eps (`float`, *optional*, defaults to 1e-12): The epsilon used by the layer normalization layers. image_size (`List[int]`, *optional*, defaults to `[512, 864]`): The size (resolution) of each image. patch_size (`int`, *optional*, defaults to 16): The size (resolution) of each patch. num_channels (`int`, *optional*, defaults to 3): The number of input channels. qkv_bias (`bool`, *optional*, defaults to `True`): Whether to add a bias to the queries, keys and values. num_detection_tokens (`int`, *optional*, defaults to 100): The number of detection tokens. use_mid_position_embeddings (`bool`, *optional*, defaults to `True`): Whether to use the mid-layer position encodings. auxiliary_loss (`bool`, *optional*, defaults to `False`): Whether auxiliary decoding losses (loss at each decoder layer) are to be used. class_cost (`float`, *optional*, defaults to 1): Relative weight of the classification error in the Hungarian matching cost. bbox_cost (`float`, *optional*, defaults to 5): Relative weight of the L1 error of the bounding box coordinates in the Hungarian matching cost. giou_cost (`float`, *optional*, defaults to 2): Relative weight of the generalized IoU loss of the bounding box in the Hungarian matching cost. bbox_loss_coefficient (`float`, *optional*, defaults to 5): Relative weight of the L1 bounding box loss in the object detection loss. giou_loss_coefficient (`float`, *optional*, defaults to 2): Relative weight of the generalized IoU loss in the object detection loss. eos_coefficient (`float`, *optional*, defaults to 0.1): Relative classification weight of the 'no-object' class in the object detection loss. Example: ```python >>> from transformers import YolosConfig, YolosModel >>> # Initializing a YOLOS hustvl/yolos-base style configuration >>> configuration = YolosConfig() >>> # Initializing a model (with random weights) from the hustvl/yolos-base style configuration >>> model = YolosModel(configuration) >>> # Accessing the model configuration >>> configuration = model.config ```""" model_type = "yolos" def __init__( self, hidden_size=768, num_hidden_layers=12, num_attention_heads=12, intermediate_size=3072, hidden_act="gelu", hidden_dropout_prob=0.0, attention_probs_dropout_prob=0.0, initializer_range=0.02, layer_norm_eps=1e-12, image_size=[512, 864], patch_size=16, num_channels=3, qkv_bias=True, num_detection_tokens=100, use_mid_position_embeddings=True, auxiliary_loss=False, class_cost=1, bbox_cost=5, giou_cost=2, bbox_loss_coefficient=5, giou_loss_coefficient=2, eos_coefficient=0.1, **kwargs, ): super().__init__(**kwargs) self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.intermediate_size = intermediate_size self.hidden_act = hidden_act self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.initializer_range = initializer_range self.layer_norm_eps = layer_norm_eps self.image_size = image_size self.patch_size = patch_size self.num_channels = num_channels self.qkv_bias = qkv_bias self.num_detection_tokens = num_detection_tokens self.use_mid_position_embeddings = use_mid_position_embeddings self.auxiliary_loss = auxiliary_loss # Hungarian matcher self.class_cost = class_cost self.bbox_cost = bbox_cost self.giou_cost = giou_cost # Loss coefficients self.bbox_loss_coefficient = bbox_loss_coefficient self.giou_loss_coefficient = giou_loss_coefficient self.eos_coefficient = eos_coefficient class YolosOnnxConfig(OnnxConfig): torch_onnx_minimum_version = version.parse("1.11") @property def inputs(self) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ] ) @property def atol_for_validation(self) -> float: return 1e-4 @property def default_onnx_opset(self) -> int: return 12
transformers/src/transformers/models/yolos/configuration_yolos.py/0
{ "file_path": "transformers/src/transformers/models/yolos/configuration_yolos.py", "repo_id": "transformers", "token_count": 3014 }
136
# Copyright 2019 The TensorFlow Authors, The Hugging Face Team. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Functions and classes related to optimization (weight updates).""" import re from typing import Callable, List, Optional, Union import tensorflow as tf try: from tf_keras.optimizers.legacy import Adam except (ImportError, ModuleNotFoundError): from tensorflow.keras.optimizers.legacy import Adam from .modeling_tf_utils import keras # This block because Keras loves randomly moving things to different places - this changed somewhere between 2.10 - 2.15 if hasattr(keras.optimizers.schedules, "learning_rate_schedule"): schedules = keras.optimizers.schedules.learning_rate_schedule else: schedules = keras.optimizers.schedules class WarmUp(schedules.LearningRateSchedule): """ Applies a warmup schedule on a given learning rate decay schedule. Args: initial_learning_rate (`float`): The initial learning rate for the schedule after the warmup (so this will be the learning rate at the end of the warmup). decay_schedule_fn (`Callable`): The schedule function to apply after the warmup for the rest of training. warmup_steps (`int`): The number of steps for the warmup part of training. power (`float`, *optional*, defaults to 1.0): The power to use for the polynomial warmup (defaults is a linear warmup). name (`str`, *optional*): Optional name prefix for the returned tensors during the schedule. """ def __init__( self, initial_learning_rate: float, decay_schedule_fn: Callable, warmup_steps: int, power: float = 1.0, name: str = None, ): super().__init__() self.initial_learning_rate = initial_learning_rate self.warmup_steps = warmup_steps self.power = power self.decay_schedule_fn = decay_schedule_fn self.name = name def __call__(self, step): with tf.name_scope(self.name or "WarmUp") as name: # Implements polynomial warmup. i.e., if global_step < warmup_steps, the # learning rate will be `global_step/num_warmup_steps * init_lr`. global_step_float = tf.cast(step, tf.float32) warmup_steps_float = tf.cast(self.warmup_steps, tf.float32) warmup_percent_done = global_step_float / warmup_steps_float warmup_learning_rate = self.initial_learning_rate * tf.math.pow(warmup_percent_done, self.power) return tf.cond( global_step_float < warmup_steps_float, lambda: warmup_learning_rate, lambda: self.decay_schedule_fn(step - self.warmup_steps), name=name, ) def get_config(self): return { "initial_learning_rate": self.initial_learning_rate, "decay_schedule_fn": self.decay_schedule_fn, "warmup_steps": self.warmup_steps, "power": self.power, "name": self.name, } def create_optimizer( init_lr: float, num_train_steps: int, num_warmup_steps: int, min_lr_ratio: float = 0.0, adam_beta1: float = 0.9, adam_beta2: float = 0.999, adam_epsilon: float = 1e-8, adam_clipnorm: Optional[float] = None, adam_global_clipnorm: Optional[float] = None, weight_decay_rate: float = 0.0, power: float = 1.0, include_in_weight_decay: Optional[List[str]] = None, ): """ Creates an optimizer with a learning rate schedule using a warmup phase followed by a linear decay. Args: init_lr (`float`): The desired learning rate at the end of the warmup phase. num_train_steps (`int`): The total number of training steps. num_warmup_steps (`int`): The number of warmup steps. min_lr_ratio (`float`, *optional*, defaults to 0): The final learning rate at the end of the linear decay will be `init_lr * min_lr_ratio`. adam_beta1 (`float`, *optional*, defaults to 0.9): The beta1 to use in Adam. adam_beta2 (`float`, *optional*, defaults to 0.999): The beta2 to use in Adam. adam_epsilon (`float`, *optional*, defaults to 1e-8): The epsilon to use in Adam. adam_clipnorm (`float`, *optional*, defaults to `None`): If not `None`, clip the gradient norm for each weight tensor to this value. adam_global_clipnorm (`float`, *optional*, defaults to `None`) If not `None`, clip gradient norm to this value. When using this argument, the norm is computed over all weight tensors, as if they were concatenated into a single vector. weight_decay_rate (`float`, *optional*, defaults to 0): The weight decay to use. power (`float`, *optional*, defaults to 1.0): The power to use for PolynomialDecay. include_in_weight_decay (`List[str]`, *optional*): List of the parameter names (or re patterns) to apply weight decay to. If none is passed, weight decay is applied to all parameters except bias and layer norm parameters. """ # Implements linear decay of the learning rate. lr_schedule = schedules.PolynomialDecay( initial_learning_rate=init_lr, decay_steps=num_train_steps - num_warmup_steps, end_learning_rate=init_lr * min_lr_ratio, power=power, ) if num_warmup_steps: lr_schedule = WarmUp( initial_learning_rate=init_lr, decay_schedule_fn=lr_schedule, warmup_steps=num_warmup_steps, ) if weight_decay_rate > 0.0: optimizer = AdamWeightDecay( learning_rate=lr_schedule, weight_decay_rate=weight_decay_rate, beta_1=adam_beta1, beta_2=adam_beta2, epsilon=adam_epsilon, clipnorm=adam_clipnorm, global_clipnorm=adam_global_clipnorm, exclude_from_weight_decay=["LayerNorm", "layer_norm", "bias"], include_in_weight_decay=include_in_weight_decay, ) else: optimizer = keras.optimizers.Adam( learning_rate=lr_schedule, beta_1=adam_beta1, beta_2=adam_beta2, epsilon=adam_epsilon, clipnorm=adam_clipnorm, global_clipnorm=adam_global_clipnorm, ) # We return the optimizer and the LR scheduler in order to better track the # evolution of the LR independently of the optimizer. return optimizer, lr_schedule class AdamWeightDecay(Adam): """ Adam enables L2 weight decay and clip_by_global_norm on gradients. Just adding the square of the weights to the loss function is *not* the correct way of using L2 regularization/weight decay with Adam, since that will interact with the m and v parameters in strange ways as shown in [Decoupled Weight Decay Regularization](https://arxiv.org/abs/1711.05101). Instead we want to decay the weights in a manner that doesn't interact with the m/v parameters. This is equivalent to adding the square of the weights to the loss with plain (non-momentum) SGD. Args: learning_rate (`Union[float, LearningRateSchedule]`, *optional*, defaults to 0.001): The learning rate to use or a schedule. beta_1 (`float`, *optional*, defaults to 0.9): The beta1 parameter in Adam, which is the exponential decay rate for the 1st momentum estimates. beta_2 (`float`, *optional*, defaults to 0.999): The beta2 parameter in Adam, which is the exponential decay rate for the 2nd momentum estimates. epsilon (`float`, *optional*, defaults to 1e-07): The epsilon parameter in Adam, which is a small constant for numerical stability. amsgrad (`bool`, *optional*, defaults to `False`): Whether to apply AMSGrad variant of this algorithm or not, see [On the Convergence of Adam and Beyond](https://arxiv.org/abs/1904.09237). weight_decay_rate (`float`, *optional*, defaults to 0.0): The weight decay to apply. include_in_weight_decay (`List[str]`, *optional*): List of the parameter names (or re patterns) to apply weight decay to. If none is passed, weight decay is applied to all parameters by default (unless they are in `exclude_from_weight_decay`). exclude_from_weight_decay (`List[str]`, *optional*): List of the parameter names (or re patterns) to exclude from applying weight decay to. If a `include_in_weight_decay` is passed, the names in it will supersede this list. name (`str`, *optional*, defaults to `"AdamWeightDecay"`): Optional name for the operations created when applying gradients. kwargs (`Dict[str, Any]`, *optional*): Keyword arguments. Allowed to be {`clipnorm`, `clipvalue`, `lr`, `decay`}. `clipnorm` is clip gradients by norm; `clipvalue` is clip gradients by value, `decay` is included for backward compatibility to allow time inverse decay of learning rate. `lr` is included for backward compatibility, recommended to use `learning_rate` instead. """ def __init__( self, learning_rate: Union[float, schedules.LearningRateSchedule] = 0.001, beta_1: float = 0.9, beta_2: float = 0.999, epsilon: float = 1e-7, amsgrad: bool = False, weight_decay_rate: float = 0.0, include_in_weight_decay: Optional[List[str]] = None, exclude_from_weight_decay: Optional[List[str]] = None, name: str = "AdamWeightDecay", **kwargs, ): super().__init__(learning_rate, beta_1, beta_2, epsilon, amsgrad, name, **kwargs) self.weight_decay_rate = weight_decay_rate self._include_in_weight_decay = include_in_weight_decay self._exclude_from_weight_decay = exclude_from_weight_decay @classmethod def from_config(cls, config): """Creates an optimizer from its config with WarmUp custom object.""" custom_objects = {"WarmUp": WarmUp} return super(AdamWeightDecay, cls).from_config(config, custom_objects=custom_objects) def _prepare_local(self, var_device, var_dtype, apply_state): super(AdamWeightDecay, self)._prepare_local(var_device, var_dtype, apply_state) apply_state[(var_device, var_dtype)]["weight_decay_rate"] = tf.constant( self.weight_decay_rate, name="adam_weight_decay_rate" ) def _decay_weights_op(self, var, learning_rate, apply_state): do_decay = self._do_use_weight_decay(var.name) if do_decay: return var.assign_sub( learning_rate * var * apply_state[(var.device, var.dtype.base_dtype)]["weight_decay_rate"], use_locking=self._use_locking, ) return tf.no_op() def apply_gradients(self, grads_and_vars, name=None, **kwargs): grads, tvars = list(zip(*grads_and_vars)) return super(AdamWeightDecay, self).apply_gradients(zip(grads, tvars), name=name, **kwargs) def _get_lr(self, var_device, var_dtype, apply_state): """Retrieves the learning rate with the given state.""" if apply_state is None: return self._decayed_lr_t[var_dtype], {} apply_state = apply_state or {} coefficients = apply_state.get((var_device, var_dtype)) if coefficients is None: coefficients = self._fallback_apply_state(var_device, var_dtype) apply_state[(var_device, var_dtype)] = coefficients return coefficients["lr_t"], {"apply_state": apply_state} def _resource_apply_dense(self, grad, var, apply_state=None): lr_t, kwargs = self._get_lr(var.device, var.dtype.base_dtype, apply_state) decay = self._decay_weights_op(var, lr_t, apply_state) with tf.control_dependencies([decay]): return super(AdamWeightDecay, self)._resource_apply_dense(grad, var, **kwargs) def _resource_apply_sparse(self, grad, var, indices, apply_state=None): lr_t, kwargs = self._get_lr(var.device, var.dtype.base_dtype, apply_state) decay = self._decay_weights_op(var, lr_t, apply_state) with tf.control_dependencies([decay]): return super(AdamWeightDecay, self)._resource_apply_sparse(grad, var, indices, **kwargs) def get_config(self): config = super().get_config() config.update({"weight_decay_rate": self.weight_decay_rate}) return config def _do_use_weight_decay(self, param_name): """Whether to use L2 weight decay for `param_name`.""" if self.weight_decay_rate == 0: return False if self._include_in_weight_decay: for r in self._include_in_weight_decay: if re.search(r, param_name) is not None: return True if self._exclude_from_weight_decay: for r in self._exclude_from_weight_decay: if re.search(r, param_name) is not None: return False return True # Extracted from https://github.com/OpenNMT/OpenNMT-tf/blob/master/opennmt/optimizers/utils.py class GradientAccumulator: """ Gradient accumulation utility. When used with a distribution strategy, the accumulator should be called in a replica context. Gradients will be accumulated locally on each replica and without synchronization. Users should then call `.gradients`, scale the gradients if required, and pass the result to `apply_gradients`. """ # We use the ON_READ synchronization policy so that no synchronization is # performed on assignment. To get the value, we call .value() which returns the # value on the current replica without synchronization. def __init__(self): """Initializes the accumulator.""" self._gradients = [] self._accum_steps = None @property def step(self): """Number of accumulated steps.""" if self._accum_steps is None: self._accum_steps = tf.Variable( tf.constant(0, dtype=tf.int64), trainable=False, synchronization=tf.VariableSynchronization.ON_READ, aggregation=tf.VariableAggregation.ONLY_FIRST_REPLICA, ) return self._accum_steps.value() @property def gradients(self): """The accumulated gradients on the current replica.""" if not self._gradients: raise ValueError("The accumulator should be called first to initialize the gradients") return [gradient.value() if gradient is not None else gradient for gradient in self._gradients] def __call__(self, gradients): """Accumulates `gradients` on the current replica.""" if not self._gradients: _ = self.step # Create the step variable. self._gradients.extend( [ tf.Variable( tf.zeros_like(gradient), trainable=False, synchronization=tf.VariableSynchronization.ON_READ, aggregation=tf.VariableAggregation.ONLY_FIRST_REPLICA, ) if gradient is not None else gradient for gradient in gradients ] ) if len(gradients) != len(self._gradients): raise ValueError(f"Expected {len(self._gradients)} gradients, but got {len(gradients)}") for accum_gradient, gradient in zip(self._gradients, gradients): if accum_gradient is not None and gradient is not None: accum_gradient.assign_add(gradient) self._accum_steps.assign_add(1) def reset(self): """Resets the accumulated gradients on the current replica.""" if not self._gradients: return self._accum_steps.assign(0) for gradient in self._gradients: if gradient is not None: gradient.assign(tf.zeros_like(gradient))
transformers/src/transformers/optimization_tf.py/0
{ "file_path": "transformers/src/transformers/optimization_tf.py", "repo_id": "transformers", "token_count": 6957 }
137
from collections import defaultdict from typing import Optional from ..image_utils import load_image from ..utils import ( add_end_docstrings, is_torch_available, logging, requires_backends, ) from .base import ChunkPipeline, build_pipeline_init_args if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_MASK_GENERATION_MAPPING_NAMES logger = logging.get_logger(__name__) @add_end_docstrings( build_pipeline_init_args(has_image_processor=True), r""" points_per_batch (*optional*, int, default to 64): Sets the number of points run simultaneously by the model. Higher numbers may be faster but use more GPU memory. output_bboxes_mask (`bool`, *optional*, default to `False`): Whether or not to output the bounding box predictions. output_rle_masks (`bool`, *optional*, default to `False`): Whether or not to output the masks in `RLE` format""", ) class MaskGenerationPipeline(ChunkPipeline): """ Automatic mask generation for images using `SamForMaskGeneration`. This pipeline predicts binary masks for an image, given an image. It is a `ChunkPipeline` because you can seperate the points in a mini-batch in order to avoid OOM issues. Use the `points_per_batch` argument to control the number of points that will be processed at the same time. Default is `64`. The pipeline works in 3 steps: 1. `preprocess`: A grid of 1024 points evenly separated is generated along with bounding boxes and point labels. For more details on how the points and bounding boxes are created, check the `_generate_crop_boxes` function. The image is also preprocessed using the `image_processor`. This function `yields` a minibatch of `points_per_batch`. 2. `forward`: feeds the outputs of `preprocess` to the model. The image embedding is computed only once. Calls both `self.model.get_image_embeddings` and makes sure that the gradients are not computed, and the tensors and models are on the same device. 3. `postprocess`: The most important part of the automatic mask generation happens here. Three steps are induced: - image_processor.postprocess_masks (run on each minibatch loop): takes in the raw output masks, resizes them according to the image size, and transforms there to binary masks. - image_processor.filter_masks (on each minibatch loop): uses both `pred_iou_thresh` and `stability_scores`. Also applies a variety of filters based on non maximum suppression to remove bad masks. - image_processor.postprocess_masks_for_amg applies the NSM on the mask to only keep relevant ones. Example: ```python >>> from transformers import pipeline >>> generator = pipeline(model="facebook/sam-vit-base", task="mask-generation") >>> outputs = generator( ... "http://images.cocodataset.org/val2017/000000039769.jpg", ... ) >>> outputs = generator( ... "https://huggingface.co/datasets/Narsil/image_dummy/raw/main/parrots.png", points_per_batch=128 ... ) ``` Learn more about the basics of using a pipeline in the [pipeline tutorial](../pipeline_tutorial) This segmentation pipeline can currently be loaded from [`pipeline`] using the following task identifier: `"mask-generation"`. See the list of available models on [huggingface.co/models](https://huggingface.co/models?filter=mask-generation). """ def __init__(self, **kwargs): super().__init__(**kwargs) requires_backends(self, "vision") requires_backends(self, "torch") if self.framework != "pt": raise ValueError(f"The {self.__class__} is only available in PyTorch.") self.check_model_type(MODEL_FOR_MASK_GENERATION_MAPPING_NAMES) def _sanitize_parameters(self, **kwargs): preprocess_kwargs = {} postprocess_kwargs = {} forward_params = {} # preprocess args if "points_per_batch" in kwargs: preprocess_kwargs["points_per_batch"] = kwargs["points_per_batch"] if "points_per_crop" in kwargs: preprocess_kwargs["points_per_crop"] = kwargs["points_per_crop"] if "crops_n_layers" in kwargs: preprocess_kwargs["crops_n_layers"] = kwargs["crops_n_layers"] if "crop_overlap_ratio" in kwargs: preprocess_kwargs["crop_overlap_ratio"] = kwargs["crop_overlap_ratio"] if "crop_n_points_downscale_factor" in kwargs: preprocess_kwargs["crop_n_points_downscale_factor"] = kwargs["crop_n_points_downscale_factor"] if "timeout" in kwargs: preprocess_kwargs["timeout"] = kwargs["timeout"] # postprocess args if "pred_iou_thresh" in kwargs: forward_params["pred_iou_thresh"] = kwargs["pred_iou_thresh"] if "stability_score_offset" in kwargs: forward_params["stability_score_offset"] = kwargs["stability_score_offset"] if "mask_threshold" in kwargs: forward_params["mask_threshold"] = kwargs["mask_threshold"] if "stability_score_thresh" in kwargs: forward_params["stability_score_thresh"] = kwargs["stability_score_thresh"] if "crops_nms_thresh" in kwargs: postprocess_kwargs["crops_nms_thresh"] = kwargs["crops_nms_thresh"] if "output_rle_mask" in kwargs: postprocess_kwargs["output_rle_mask"] = kwargs["output_rle_mask"] if "output_bboxes_mask" in kwargs: postprocess_kwargs["output_bboxes_mask"] = kwargs["output_bboxes_mask"] return preprocess_kwargs, forward_params, postprocess_kwargs def __call__(self, image, *args, num_workers=None, batch_size=None, **kwargs): """ Generates binary segmentation masks Args: inputs (`np.ndarray` or `bytes` or `str` or `dict`): Image or list of images. mask_threshold (`float`, *optional*, defaults to 0.0): Threshold to use when turning the predicted masks into binary values. pred_iou_thresh (`float`, *optional*, defaults to 0.88): A filtering threshold in `[0,1]` applied on the model's predicted mask quality. stability_score_thresh (`float`, *optional*, defaults to 0.95): A filtering threshold in `[0,1]`, using the stability of the mask under changes to the cutoff used to binarize the model's mask predictions. stability_score_offset (`int`, *optional*, defaults to 1): The amount to shift the cutoff when calculated the stability score. crops_nms_thresh (`float`, *optional*, defaults to 0.7): The box IoU cutoff used by non-maximal suppression to filter duplicate masks. crops_n_layers (`int`, *optional*, defaults to 0): If `crops_n_layers>0`, mask prediction will be run again on crops of the image. Sets the number of layers to run, where each layer has 2**i_layer number of image crops. crop_overlap_ratio (`float`, *optional*, defaults to `512 / 1500`): Sets the degree to which crops overlap. In the first crop layer, crops will overlap by this fraction of the image length. Later layers with more crops scale down this overlap. crop_n_points_downscale_factor (`int`, *optional*, defaults to `1`): The number of points-per-side sampled in layer n is scaled down by crop_n_points_downscale_factor**n. timeout (`float`, *optional*, defaults to None): The maximum time in seconds to wait for fetching images from the web. If None, no timeout is set and the call may block forever. Return: `Dict`: A dictionary with the following keys: - **mask** (`PIL.Image`) -- A binary mask of the detected object as a PIL Image of shape `(width, height)` of the original image. Returns a mask filled with zeros if no object is found. - **score** (*optional* `float`) -- Optionally, when the model is capable of estimating a confidence of the "object" described by the label and the mask. """ return super().__call__(image, *args, num_workers=num_workers, batch_size=batch_size, **kwargs) def preprocess( self, image, points_per_batch=64, crops_n_layers: int = 0, crop_overlap_ratio: float = 512 / 1500, points_per_crop: Optional[int] = 32, crop_n_points_downscale_factor: Optional[int] = 1, timeout: Optional[float] = None, ): image = load_image(image, timeout=timeout) target_size = self.image_processor.size["longest_edge"] crop_boxes, grid_points, cropped_images, input_labels = self.image_processor.generate_crop_boxes( image, target_size, crops_n_layers, crop_overlap_ratio, points_per_crop, crop_n_points_downscale_factor ) model_inputs = self.image_processor(images=cropped_images, return_tensors="pt") with self.device_placement(): if self.framework == "pt": inference_context = self.get_inference_context() with inference_context(): model_inputs = self._ensure_tensor_on_device(model_inputs, device=self.device) image_embeddings = self.model.get_image_embeddings(model_inputs.pop("pixel_values")) model_inputs["image_embeddings"] = image_embeddings n_points = grid_points.shape[1] points_per_batch = points_per_batch if points_per_batch is not None else n_points if points_per_batch <= 0: raise ValueError( "Cannot have points_per_batch<=0. Must be >=1 to returned batched outputs. " "To return all points at once, set points_per_batch to None" ) for i in range(0, n_points, points_per_batch): batched_points = grid_points[:, i : i + points_per_batch, :, :] labels = input_labels[:, i : i + points_per_batch] is_last = i == n_points - points_per_batch yield { "input_points": batched_points, "input_labels": labels, "input_boxes": crop_boxes, "is_last": is_last, **model_inputs, } def _forward( self, model_inputs, pred_iou_thresh=0.88, stability_score_thresh=0.95, mask_threshold=0, stability_score_offset=1, ): input_boxes = model_inputs.pop("input_boxes") is_last = model_inputs.pop("is_last") original_sizes = model_inputs.pop("original_sizes").tolist() reshaped_input_sizes = model_inputs.pop("reshaped_input_sizes").tolist() model_outputs = self.model(**model_inputs) # post processing happens here in order to avoid CPU GPU copies of ALL the masks low_resolution_masks = model_outputs["pred_masks"] masks = self.image_processor.post_process_masks( low_resolution_masks, original_sizes, reshaped_input_sizes, mask_threshold, binarize=False ) iou_scores = model_outputs["iou_scores"] masks, iou_scores, boxes = self.image_processor.filter_masks( masks[0], iou_scores[0], original_sizes[0], input_boxes[0], pred_iou_thresh, stability_score_thresh, mask_threshold, stability_score_offset, ) return { "masks": masks, "is_last": is_last, "boxes": boxes, "iou_scores": iou_scores, } def postprocess( self, model_outputs, output_rle_mask=False, output_bboxes_mask=False, crops_nms_thresh=0.7, ): all_scores = [] all_masks = [] all_boxes = [] for model_output in model_outputs: all_scores.append(model_output.pop("iou_scores")) all_masks.extend(model_output.pop("masks")) all_boxes.append(model_output.pop("boxes")) all_scores = torch.cat(all_scores) all_boxes = torch.cat(all_boxes) output_masks, iou_scores, rle_mask, bounding_boxes = self.image_processor.post_process_for_mask_generation( all_masks, all_scores, all_boxes, crops_nms_thresh ) extra = defaultdict(list) for output in model_outputs: for k, v in output.items(): extra[k].append(v) optional = {} if output_rle_mask: optional["rle_mask"] = rle_mask if output_bboxes_mask: optional["bounding_boxes"] = bounding_boxes return {"masks": output_masks, "scores": iou_scores, **optional, **extra}
transformers/src/transformers/pipelines/mask_generation.py/0
{ "file_path": "transformers/src/transformers/pipelines/mask_generation.py", "repo_id": "transformers", "token_count": 5619 }
138
# coding=utf-8 # Copyright 2022 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Processing saving/loading class for common processors. """ import copy import inspect import json import os import warnings from pathlib import Path from typing import Any, Dict, Optional, Tuple, Union from .dynamic_module_utils import custom_object_save from .tokenization_utils_base import PreTrainedTokenizerBase from .utils import ( PROCESSOR_NAME, PushToHubMixin, add_model_info_to_auto_map, cached_file, copy_func, direct_transformers_import, download_url, is_offline_mode, is_remote_url, logging, ) logger = logging.get_logger(__name__) # Dynamically import the Transformers module to grab the attribute classes of the processor form their names. transformers_module = direct_transformers_import(Path(__file__).parent) AUTO_TO_BASE_CLASS_MAPPING = { "AutoTokenizer": "PreTrainedTokenizerBase", "AutoFeatureExtractor": "FeatureExtractionMixin", "AutoImageProcessor": "ImageProcessingMixin", } class ProcessorMixin(PushToHubMixin): """ This is a mixin used to provide saving/loading functionality for all processor classes. """ attributes = ["feature_extractor", "tokenizer"] # Names need to be attr_class for attr in attributes feature_extractor_class = None tokenizer_class = None _auto_class = None # args have to match the attributes class attribute def __init__(self, *args, **kwargs): # Sanitize args and kwargs for key in kwargs: if key not in self.attributes: raise TypeError(f"Unexpected keyword argument {key}.") for arg, attribute_name in zip(args, self.attributes): if attribute_name in kwargs: raise TypeError(f"Got multiple values for argument {attribute_name}.") else: kwargs[attribute_name] = arg if len(kwargs) != len(self.attributes): raise ValueError( f"This processor requires {len(self.attributes)} arguments: {', '.join(self.attributes)}. Got " f"{len(args)} arguments instead." ) # Check each arg is of the proper class (this will also catch a user initializing in the wrong order) for attribute_name, arg in kwargs.items(): class_name = getattr(self, f"{attribute_name}_class") # Nothing is ever going to be an instance of "AutoXxx", in that case we check the base class. class_name = AUTO_TO_BASE_CLASS_MAPPING.get(class_name, class_name) if isinstance(class_name, tuple): proper_class = tuple(getattr(transformers_module, n) for n in class_name if n is not None) else: proper_class = getattr(transformers_module, class_name) if not isinstance(arg, proper_class): raise ValueError( f"Received a {type(arg).__name__} for argument {attribute_name}, but a {class_name} was expected." ) setattr(self, attribute_name, arg) def to_dict(self) -> Dict[str, Any]: """ Serializes this instance to a Python dictionary. Returns: `Dict[str, Any]`: Dictionary of all the attributes that make up this processor instance. """ output = copy.deepcopy(self.__dict__) # Get the kwargs in `__init__`. sig = inspect.signature(self.__init__) # Only save the attributes that are presented in the kwargs of `__init__`. attrs_to_save = sig.parameters # Don't save attributes like `tokenizer`, `image processor` etc. attrs_to_save = [x for x in attrs_to_save if x not in self.__class__.attributes] # extra attributes to be kept attrs_to_save += ["auto_map"] output = {k: v for k, v in output.items() if k in attrs_to_save} output["processor_class"] = self.__class__.__name__ if "tokenizer" in output: del output["tokenizer"] if "image_processor" in output: del output["image_processor"] if "feature_extractor" in output: del output["feature_extractor"] # Some attributes have different names but containing objects that are not simple strings output = { k: v for k, v in output.items() if not (isinstance(v, PushToHubMixin) or v.__class__.__name__ == "BeamSearchDecoderCTC") } return output def to_json_string(self) -> str: """ Serializes this instance to a JSON string. Returns: `str`: String containing all the attributes that make up this feature_extractor instance in JSON format. """ dictionary = self.to_dict() return json.dumps(dictionary, indent=2, sort_keys=True) + "\n" def to_json_file(self, json_file_path: Union[str, os.PathLike]): """ Save this instance to a JSON file. Args: json_file_path (`str` or `os.PathLike`): Path to the JSON file in which this processor instance's parameters will be saved. """ with open(json_file_path, "w", encoding="utf-8") as writer: writer.write(self.to_json_string()) def __repr__(self): attributes_repr = [f"- {name}: {repr(getattr(self, name))}" for name in self.attributes] attributes_repr = "\n".join(attributes_repr) return f"{self.__class__.__name__}:\n{attributes_repr}\n\n{self.to_json_string()}" def save_pretrained(self, save_directory, push_to_hub: bool = False, **kwargs): """ Saves the attributes of this processor (feature extractor, tokenizer...) in the specified directory so that it can be reloaded using the [`~ProcessorMixin.from_pretrained`] method. <Tip> This class method is simply calling [`~feature_extraction_utils.FeatureExtractionMixin.save_pretrained`] and [`~tokenization_utils_base.PreTrainedTokenizerBase.save_pretrained`]. Please refer to the docstrings of the methods above for more information. </Tip> Args: save_directory (`str` or `os.PathLike`): Directory where the feature extractor JSON file and the tokenizer files will be saved (directory will be created if it does not exist). push_to_hub (`bool`, *optional*, defaults to `False`): Whether or not to push your model to the Hugging Face model hub after saving it. You can specify the repository you want to push to with `repo_id` (will default to the name of `save_directory` in your namespace). kwargs (`Dict[str, Any]`, *optional*): Additional key word arguments passed along to the [`~utils.PushToHubMixin.push_to_hub`] method. """ use_auth_token = kwargs.pop("use_auth_token", None) if use_auth_token is not None: warnings.warn( "The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers. Please use `token` instead.", FutureWarning, ) if kwargs.get("token", None) is not None: raise ValueError( "`token` and `use_auth_token` are both specified. Please set only the argument `token`." ) kwargs["token"] = use_auth_token os.makedirs(save_directory, exist_ok=True) if push_to_hub: commit_message = kwargs.pop("commit_message", None) repo_id = kwargs.pop("repo_id", save_directory.split(os.path.sep)[-1]) repo_id = self._create_repo(repo_id, **kwargs) files_timestamps = self._get_files_timestamps(save_directory) # If we have a custom config, we copy the file defining it in the folder and set the attributes so it can be # loaded from the Hub. if self._auto_class is not None: attrs = [getattr(self, attribute_name) for attribute_name in self.attributes] configs = [(a.init_kwargs if isinstance(a, PreTrainedTokenizerBase) else a) for a in attrs] configs.append(self) custom_object_save(self, save_directory, config=configs) for attribute_name in self.attributes: attribute = getattr(self, attribute_name) # Include the processor class in the attribute config so this processor can then be reloaded with the # `AutoProcessor` API. if hasattr(attribute, "_set_processor_class"): attribute._set_processor_class(self.__class__.__name__) attribute.save_pretrained(save_directory) if self._auto_class is not None: # We added an attribute to the init_kwargs of the tokenizers, which needs to be cleaned up. for attribute_name in self.attributes: attribute = getattr(self, attribute_name) if isinstance(attribute, PreTrainedTokenizerBase): del attribute.init_kwargs["auto_map"] # If we save using the predefined names, we can load using `from_pretrained` output_processor_file = os.path.join(save_directory, PROCESSOR_NAME) # For now, let's not save to `processor_config.json` if the processor doesn't have extra attributes and # `auto_map` is not specified. if set(self.to_dict().keys()) != {"processor_class"}: self.to_json_file(output_processor_file) logger.info(f"processor saved in {output_processor_file}") if push_to_hub: self._upload_modified_files( save_directory, repo_id, files_timestamps, commit_message=commit_message, token=kwargs.get("token"), ) if set(self.to_dict().keys()) == {"processor_class"}: return [] return [output_processor_file] @classmethod def get_processor_dict( cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs ) -> Tuple[Dict[str, Any], Dict[str, Any]]: """ From a `pretrained_model_name_or_path`, resolve to a dictionary of parameters, to be used for instantiating a processor of type [`~processing_utils.ProcessingMixin`] using `from_args_and_dict`. Parameters: pretrained_model_name_or_path (`str` or `os.PathLike`): The identifier of the pre-trained checkpoint from which we want the dictionary of parameters. subfolder (`str`, *optional*, defaults to `""`): In case the relevant files are located inside a subfolder of the model repo on huggingface.co, you can specify the folder name here. Returns: `Tuple[Dict, Dict]`: The dictionary(ies) that will be used to instantiate the processor object. """ cache_dir = kwargs.pop("cache_dir", None) force_download = kwargs.pop("force_download", False) resume_download = kwargs.pop("resume_download", False) proxies = kwargs.pop("proxies", None) token = kwargs.pop("token", None) local_files_only = kwargs.pop("local_files_only", False) revision = kwargs.pop("revision", None) subfolder = kwargs.pop("subfolder", "") from_pipeline = kwargs.pop("_from_pipeline", None) from_auto_class = kwargs.pop("_from_auto", False) user_agent = {"file_type": "processor", "from_auto_class": from_auto_class} if from_pipeline is not None: user_agent["using_pipeline"] = from_pipeline if is_offline_mode() and not local_files_only: logger.info("Offline mode: forcing local_files_only=True") local_files_only = True pretrained_model_name_or_path = str(pretrained_model_name_or_path) is_local = os.path.isdir(pretrained_model_name_or_path) if os.path.isdir(pretrained_model_name_or_path): processor_file = os.path.join(pretrained_model_name_or_path, PROCESSOR_NAME) if os.path.isfile(pretrained_model_name_or_path): resolved_processor_file = pretrained_model_name_or_path is_local = True elif is_remote_url(pretrained_model_name_or_path): processor_file = pretrained_model_name_or_path resolved_processor_file = download_url(pretrained_model_name_or_path) else: processor_file = PROCESSOR_NAME try: # Load from local folder or from cache or download from model Hub and cache resolved_processor_file = cached_file( pretrained_model_name_or_path, processor_file, cache_dir=cache_dir, force_download=force_download, proxies=proxies, resume_download=resume_download, local_files_only=local_files_only, token=token, user_agent=user_agent, revision=revision, subfolder=subfolder, _raise_exceptions_for_missing_entries=False, ) except EnvironmentError: # Raise any environment error raise by `cached_file`. It will have a helpful error message adapted to # the original exception. raise except Exception: # For any other exception, we throw a generic error. raise EnvironmentError( f"Can't load processor for '{pretrained_model_name_or_path}'. If you were trying to load" " it from 'https://huggingface.co/models', make sure you don't have a local directory with the" f" same name. Otherwise, make sure '{pretrained_model_name_or_path}' is the correct path to a" f" directory containing a {PROCESSOR_NAME} file" ) # Existing processors on the Hub created before #27761 being merged don't have `processor_config.json` (if not # updated afterward), and we need to keep `from_pretrained` work. So here it fallbacks to the empty dict. # (`cached_file` called using `_raise_exceptions_for_missing_entries=False` to avoid exception) # However, for models added in the future, we won't get the expected error if this file is missing. if resolved_processor_file is None: return {}, kwargs try: # Load processor dict with open(resolved_processor_file, "r", encoding="utf-8") as reader: text = reader.read() processor_dict = json.loads(text) except json.JSONDecodeError: raise EnvironmentError( f"It looks like the config file at '{resolved_processor_file}' is not a valid JSON file." ) if is_local: logger.info(f"loading configuration file {resolved_processor_file}") else: logger.info(f"loading configuration file {processor_file} from cache at {resolved_processor_file}") if "auto_map" in processor_dict and not is_local: processor_dict["auto_map"] = add_model_info_to_auto_map( processor_dict["auto_map"], pretrained_model_name_or_path ) return processor_dict, kwargs @classmethod def from_args_and_dict(cls, args, processor_dict: Dict[str, Any], **kwargs): """ Instantiates a type of [`~processing_utils.ProcessingMixin`] from a Python dictionary of parameters. Args: processor_dict (`Dict[str, Any]`): Dictionary that will be used to instantiate the processor object. Such a dictionary can be retrieved from a pretrained checkpoint by leveraging the [`~processing_utils.ProcessingMixin.to_dict`] method. kwargs (`Dict[str, Any]`): Additional parameters from which to initialize the processor object. Returns: [`~processing_utils.ProcessingMixin`]: The processor object instantiated from those parameters. """ processor_dict = processor_dict.copy() return_unused_kwargs = kwargs.pop("return_unused_kwargs", False) # Unlike image processors or feature extractors whose `__init__` accept `kwargs`, processor don't have `kwargs`. # We have to pop up some unused (but specific) arguments to make it work. if "processor_class" in processor_dict: del processor_dict["processor_class"] if "auto_map" in processor_dict: del processor_dict["auto_map"] processor = cls(*args, **processor_dict) # Update processor with kwargs if needed for key in set(kwargs.keys()): if hasattr(processor, key): setattr(processor, key, kwargs.pop(key)) logger.info(f"Processor {processor}") if return_unused_kwargs: return processor, kwargs else: return processor @classmethod def from_pretrained( cls, pretrained_model_name_or_path: Union[str, os.PathLike], cache_dir: Optional[Union[str, os.PathLike]] = None, force_download: bool = False, local_files_only: bool = False, token: Optional[Union[str, bool]] = None, revision: str = "main", **kwargs, ): r""" Instantiate a processor associated with a pretrained model. <Tip> This class method is simply calling the feature extractor [`~feature_extraction_utils.FeatureExtractionMixin.from_pretrained`], image processor [`~image_processing_utils.ImageProcessingMixin`] and the tokenizer [`~tokenization_utils_base.PreTrainedTokenizer.from_pretrained`] methods. Please refer to the docstrings of the methods above for more information. </Tip> Args: pretrained_model_name_or_path (`str` or `os.PathLike`): This can be either: - a string, the *model id* of a pretrained feature_extractor hosted inside a model repo on huggingface.co. - a path to a *directory* containing a feature extractor file saved using the [`~SequenceFeatureExtractor.save_pretrained`] method, e.g., `./my_model_directory/`. - a path or url to a saved feature extractor JSON *file*, e.g., `./my_model_directory/preprocessor_config.json`. **kwargs Additional keyword arguments passed along to both [`~feature_extraction_utils.FeatureExtractionMixin.from_pretrained`] and [`~tokenization_utils_base.PreTrainedTokenizer.from_pretrained`]. """ kwargs["cache_dir"] = cache_dir kwargs["force_download"] = force_download kwargs["local_files_only"] = local_files_only kwargs["revision"] = revision use_auth_token = kwargs.pop("use_auth_token", None) if use_auth_token is not None: warnings.warn( "The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers. Please use `token` instead.", FutureWarning, ) if token is not None: raise ValueError( "`token` and `use_auth_token` are both specified. Please set only the argument `token`." ) token = use_auth_token if token is not None: kwargs["token"] = token args = cls._get_arguments_from_pretrained(pretrained_model_name_or_path, **kwargs) processor_dict, kwargs = cls.get_processor_dict(pretrained_model_name_or_path, **kwargs) return cls.from_args_and_dict(args, processor_dict, **kwargs) @classmethod def register_for_auto_class(cls, auto_class="AutoProcessor"): """ Register this class with a given auto class. This should only be used for custom feature extractors as the ones in the library are already mapped with `AutoProcessor`. <Tip warning={true}> This API is experimental and may have some slight breaking changes in the next releases. </Tip> Args: auto_class (`str` or `type`, *optional*, defaults to `"AutoProcessor"`): The auto class to register this new feature extractor with. """ if not isinstance(auto_class, str): auto_class = auto_class.__name__ import transformers.models.auto as auto_module if not hasattr(auto_module, auto_class): raise ValueError(f"{auto_class} is not a valid auto class.") cls._auto_class = auto_class @classmethod def _get_arguments_from_pretrained(cls, pretrained_model_name_or_path, **kwargs): args = [] for attribute_name in cls.attributes: class_name = getattr(cls, f"{attribute_name}_class") if isinstance(class_name, tuple): classes = tuple(getattr(transformers_module, n) if n is not None else None for n in class_name) use_fast = kwargs.get("use_fast", True) if use_fast and classes[1] is not None: attribute_class = classes[1] else: attribute_class = classes[0] else: attribute_class = getattr(transformers_module, class_name) args.append(attribute_class.from_pretrained(pretrained_model_name_or_path, **kwargs)) return args @property def model_input_names(self): first_attribute = getattr(self, self.attributes[0]) return getattr(first_attribute, "model_input_names", None) ProcessorMixin.push_to_hub = copy_func(ProcessorMixin.push_to_hub) if ProcessorMixin.push_to_hub.__doc__ is not None: ProcessorMixin.push_to_hub.__doc__ = ProcessorMixin.push_to_hub.__doc__.format( object="processor", object_class="AutoProcessor", object_files="processor files" )
transformers/src/transformers/processing_utils.py/0
{ "file_path": "transformers/src/transformers/processing_utils.py", "repo_id": "transformers", "token_count": 9615 }
139
# Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import List, Optional, Union import numpy as np import tensorflow as tf from .feature_extraction_utils import BatchFeature from .tokenization_utils_base import BatchEncoding from .utils import logging logger = logging.get_logger(__name__) def shape_list(tensor: Union[tf.Tensor, np.ndarray]) -> List[int]: """ Deal with dynamic shape in tensorflow cleanly. Args: tensor (`tf.Tensor` or `np.ndarray`): The tensor we want the shape of. Returns: `List[int]`: The shape of the tensor as a list. """ if isinstance(tensor, np.ndarray): return list(tensor.shape) dynamic = tf.shape(tensor) if tensor.shape == tf.TensorShape(None): return dynamic static = tensor.shape.as_list() return [dynamic[i] if s is None else s for i, s in enumerate(static)] def stable_softmax(logits: tf.Tensor, axis: Optional[int] = None, name: Optional[str] = None) -> tf.Tensor: """ Stable wrapper that returns the same output as `tf.nn.softmax`, but that works reliably with XLA on CPU. It is meant as a workaround for the [following issue](https://github.com/tensorflow/tensorflow/issues/55682), and will be removed after it gets fixed. The arguments and outputs are the same as `tf.nn.softmax`, and relies on the fact that `softmax(x) = softmax(x + c)` (see https://ogunlao.github.io/2020/04/26/you_dont_really_know_softmax.html). Args: logits (`tf.Tensor`): Must be one of the following types: half, float32, float64. axis (`int`, *optional*): The dimension softmax would be performed on. The default is -1 which indicates the last dimension. name (`str`, *optional*): A name for the operation. Returns: `tf.Tensor`: A Tensor. Has the same type and shape as logits. """ # TODO: When the issue linked above gets sorted, add a check on TF version here and use the original function if # it has the fix. After we drop the support for unfixed versions, remove this function. return tf.nn.softmax(logits=logits + 1e-9, axis=axis, name=name) def functional_layernorm(inputs, weight, bias, epsilon=1e-5, axis=-1): # This is a very simplified functional layernorm, designed to duplicate # the functionality of PyTorch nn.functional.layer_norm when this is needed to port # models in Transformers. if weight.shape.rank != 1 or bias.shape.rank != 1 or not isinstance(axis, int): raise NotImplementedError("Only 1D weight and bias tensors are supported for now, with only a single axis.") # Get mean and variance on the axis to be normalized mean, variance = tf.nn.moments(inputs, axes=[axis], keepdims=True) if axis != -1: # Reshape scale and weight to have the same rank as inputs, but with 1 dimensions # on every dimension except axis shape = [1] * inputs.shape.rank shape[axis] = shape_list(inputs)[axis] weight = tf.reshape(weight, shape) bias = tf.reshape(bias, shape) # Compute layer normalization using the batch_normalization # function. outputs = tf.nn.batch_normalization( inputs, mean, variance, offset=bias, scale=weight, variance_epsilon=epsilon, ) return outputs def flatten(input, start_dim=0, end_dim=-1): # Replicates the behavior of torch.flatten in TF # If end_dim or start_dim is negative, count them from the end if end_dim < 0: end_dim += input.shape.rank if start_dim < 0: start_dim += input.shape.rank if start_dim == end_dim: return input in_shape = tf.shape(input) flattened_dim = tf.math.reduce_prod(in_shape[start_dim : end_dim + 1]) out_shape = tf.concat([in_shape[:start_dim], [flattened_dim], in_shape[end_dim + 1 :]], axis=0) return tf.reshape(input, out_shape) def invert_attention_mask(encoder_attention_mask: tf.Tensor) -> tf.Tensor: """ Invert an attention mask (e.g., switches 0. and 1.). Args: encoder_attention_mask (`torch.Tensor`): An attention mask. Returns: `tf.Tensor`: The inverted attention mask. """ if not isinstance(encoder_attention_mask, tf.Tensor): encoder_attention_mask = tf.convert_to_tensor(encoder_attention_mask) # Catches stray NumPy inputs if encoder_attention_mask.shape.rank == 3: encoder_extended_attention_mask = encoder_attention_mask[:, None, :, :] if encoder_attention_mask.shape.rank == 2: encoder_extended_attention_mask = encoder_attention_mask[:, None, None, :] # T5 has a mask that can compare sequence ids, we can simulate this here with this transposition # Cf. https://github.com/tensorflow/mesh/blob/8d2465e9bc93129b913b5ccc6a59aa97abd96ec6/mesh_tensorflow # /transformer/transformer_layers.py#L270 # encoder_extended_attention_mask = (encoder_extended_attention_mask == # encoder_extended_attention_mask.transpose(-1, -2)) encoder_extended_attention_mask = ( tf.cast(1, encoder_attention_mask.dtype) - encoder_extended_attention_mask ) * encoder_extended_attention_mask.dtype.min return encoder_extended_attention_mask def check_embeddings_within_bounds(tensor: tf.Tensor, embed_dim: int, tensor_name: str = "input_ids") -> None: """ `tf.gather`, on which TF embedding layers are based, won't check positive out of bound indices on GPU, returning zeros instead. This function adds a check against that dangerous silent behavior. Args: tensor (`tf.Tensor`): The tensor of indices to check. embed_dim (`int`): The embedding dimension. tensor_name (`str`, *optional*): The name of the tensor to use in the error message. """ tf.debugging.assert_less( tensor, tf.cast(embed_dim, dtype=tensor.dtype), message=( f"The maximum value of {tensor_name} ({tf.math.reduce_max(tensor)}) must be smaller than the embedding " f"layer's input dimension ({embed_dim}). The likely cause is some problem at tokenization time." ), ) def save_attributes_to_hdf5_group(group, name, data): """Saves attributes (data) of the specified name into the HDF5 group. This method deals with an inherent problem of HDF5 file which is not able to store data larger than HDF5_OBJECT_HEADER_LIMIT bytes. Args: group: A pointer to a HDF5 group. name: A name of the attributes to save. data: Attributes data to store. Raises: RuntimeError: If any single attribute is too large to be saved. Copied from Keras to Transformers to avoid versioning issues. """ HDF5_OBJECT_HEADER_LIMIT = 64512 # Check that no item in `data` is larger than `HDF5_OBJECT_HEADER_LIMIT` # because in that case even chunking the array would not make the saving # possible. bad_attributes = [x for x in data if len(x) > HDF5_OBJECT_HEADER_LIMIT] # Expecting this to never be true. if bad_attributes: raise RuntimeError( "The following attributes cannot be saved to HDF5 file because " f"they are larger than {HDF5_OBJECT_HEADER_LIMIT} " f"bytes: {bad_attributes}" ) data_npy = np.asarray(data) num_chunks = 1 chunked_data = np.array_split(data_npy, num_chunks) # This will never loop forever thanks to the test above. while any(x.nbytes > HDF5_OBJECT_HEADER_LIMIT for x in chunked_data): num_chunks += 1 chunked_data = np.array_split(data_npy, num_chunks) if num_chunks > 1: for chunk_id, chunk_data in enumerate(chunked_data): group.attrs["%s%d" % (name, chunk_id)] = chunk_data else: group.attrs[name] = data def load_attributes_from_hdf5_group(group, name): """Loads attributes of the specified name from the HDF5 group. This method deals with an inherent problem of HDF5 file which is not able to store data larger than HDF5_OBJECT_HEADER_LIMIT bytes. Args: group: A pointer to a HDF5 group. name: A name of the attributes to load. Returns: data: Attributes data. Copied from Keras to Transformers to avoid versioning issues. """ if name in group.attrs: data = [n.decode("utf8") if hasattr(n, "decode") else n for n in group.attrs[name]] else: data = [] chunk_id = 0 while "%s%d" % (name, chunk_id) in group.attrs: data.extend( [n.decode("utf8") if hasattr(n, "decode") else n for n in group.attrs["%s%d" % (name, chunk_id)]] ) chunk_id += 1 return data def expand_1d(data): """Expands 1-dimensional `Tensor`s into 2-dimensional `Tensor`s. Copied from Keras to here to avoid versioning issues.""" def _expand_single_1d_tensor(t): if isinstance(t, tf.Tensor) and t.shape.rank == 1: return tf.expand_dims(t, axis=-1) return t return tf.nest.map_structure(_expand_single_1d_tensor, data) def convert_batch_encoding(*args, **kwargs): # Convert HF BatchEncoding/BatchFeature objects in the inputs to dicts that Keras understands if args and isinstance(args[0], (BatchEncoding, BatchFeature)): args = list(args) args[0] = dict(args[0]) elif "x" in kwargs and isinstance(kwargs["x"], (BatchEncoding, BatchFeature)): kwargs["x"] = dict(kwargs["x"]) return args, kwargs
transformers/src/transformers/tf_utils.py/0
{ "file_path": "transformers/src/transformers/tf_utils.py", "repo_id": "transformers", "token_count": 3894 }
140
#!/usr/bin/env python # coding=utf-8 # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.whisper import WhisperForConditionalGeneration, WhisperProcessor from .base import PipelineTool class SpeechToTextTool(PipelineTool): default_checkpoint = "openai/whisper-base" description = ( "This is a tool that transcribes an audio into text. It takes an input named `audio` and returns the " "transcribed text." ) name = "transcriber" pre_processor_class = WhisperProcessor model_class = WhisperForConditionalGeneration inputs = ["audio"] outputs = ["text"] def encode(self, audio): return self.pre_processor(audio, return_tensors="pt").input_features def forward(self, inputs): return self.model.generate(inputs=inputs) def decode(self, outputs): return self.pre_processor.batch_decode(outputs, skip_special_tokens=True)[0]
transformers/src/transformers/tools/speech_to_text.py/0
{ "file_path": "transformers/src/transformers/tools/speech_to_text.py", "repo_id": "transformers", "token_count": 470 }
141
# coding=utf-8 # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import builtins import collections import functools import inspect import math import operator import os import random import warnings from typing import Any, Callable, Dict, List, Optional, Type, Union import torch from torch import nn from torch.fx import Graph, GraphModule, Proxy, Tracer from torch.fx._compatibility import compatibility from torch.fx.proxy import ParameterProxy from .. import PretrainedConfig, PreTrainedModel, logging from ..models.auto import get_values from ..models.auto.modeling_auto import ( MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES, MODEL_FOR_BACKBONE_MAPPING_NAMES, MODEL_FOR_CAUSAL_LM_MAPPING_NAMES, MODEL_FOR_CTC_MAPPING_NAMES, MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING_NAMES, MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES, MODEL_FOR_MASKED_IMAGE_MODELING_MAPPING_NAMES, MODEL_FOR_MASKED_LM_MAPPING_NAMES, MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES, MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES, MODEL_FOR_PRETRAINING_MAPPING_NAMES, MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES, MODEL_FOR_SEMANTIC_SEGMENTATION_MAPPING_NAMES, MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES, MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES, MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING_NAMES, MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES, MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING_NAMES, MODEL_MAPPING_NAMES, ) from ..pytorch_utils import is_torch_greater_or_equal_than_2_0 from ..utils import ( ENV_VARS_TRUE_VALUES, TORCH_FX_REQUIRED_VERSION, get_torch_version, is_peft_available, is_torch_fx_available, ) if is_peft_available(): from peft import PeftModel logger = logging.get_logger(__name__) _IS_IN_DEBUG_MODE = os.environ.get("FX_DEBUG_MODE", "").upper() in ENV_VARS_TRUE_VALUES def _generate_supported_model_class_names( model_name: Type[PretrainedConfig], supported_tasks: Optional[Union[str, List[str]]] = None, ) -> List[str]: task_mapping = { "default": MODEL_MAPPING_NAMES, "pretraining": MODEL_FOR_PRETRAINING_MAPPING_NAMES, "next-sentence-prediction": MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES, "masked-lm": MODEL_FOR_MASKED_LM_MAPPING_NAMES, "causal-lm": MODEL_FOR_CAUSAL_LM_MAPPING_NAMES, "seq2seq-lm": MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES, "speech-seq2seq": MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING_NAMES, "multiple-choice": MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES, "document-question-answering": MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING_NAMES, "question-answering": MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES, "sequence-classification": MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES, "token-classification": MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES, "masked-image-modeling": MODEL_FOR_MASKED_IMAGE_MODELING_MAPPING_NAMES, "image-classification": MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES, "zero-shot-image-classification": MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING_NAMES, "ctc": MODEL_FOR_CTC_MAPPING_NAMES, "audio-classification": MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES, "semantic-segmentation": MODEL_FOR_SEMANTIC_SEGMENTATION_MAPPING_NAMES, "backbone": MODEL_FOR_BACKBONE_MAPPING_NAMES, } if supported_tasks is None: supported_tasks = task_mapping.keys() if isinstance(supported_tasks, str): supported_tasks = [supported_tasks] model_class_names = [] for task in supported_tasks: class_name = task_mapping[task].get(model_name, None) if class_name: model_class_names.append(class_name) return model_class_names _REGULAR_SUPPORTED_MODEL_NAMES_AND_TASKS = [ "altclip", "albert", "bart", "bert", "blenderbot", "blenderbot-small", "bloom", "clip", "convnext", "deberta", "deberta-v2", "dinov2", "distilbert", "donut-swin", "electra", "gpt2", "gpt_neo", "gptj", "hubert", "layoutlm", "llama", "lxmert", "m2m_100", "marian", "mbart", "megatron-bert", "mobilebert", "mt5", "nezha", "opt", "pegasus", "plbart", "resnet", "roberta", "segformer", "speech_to_text", "speech_to_text_2", "swin", "t5", "trocr", "vit", "xglm", "wav2vec2", # "xlnet", ] _FX_SUPPORTED_MODELS_WITH_KV_CACHE = ["llama", "opt"] _REGULAR_SUPPORTED_MODELS = [] for item in _REGULAR_SUPPORTED_MODEL_NAMES_AND_TASKS: if isinstance(item, dict): _REGULAR_SUPPORTED_MODELS.extend(_generate_supported_model_class_names(**item)) else: _REGULAR_SUPPORTED_MODELS.extend(_generate_supported_model_class_names(item)) _SPECIAL_SUPPORTED_MODELS = [ "CLIPTextModel", "CLIPTextModelWithProjection", "CLIPVisionModel", "CLIPVisionModelWithProjection", "AltCLIPTextModel", "AltCLIPVisionModel", "GitVisionModel", "GPT2DoubleHeadsModel", "Speech2Text2Decoder", "TrOCRDecoder", "PeftModelForCausalLM", "PeftModelForSeq2SeqLM", # TODO: add support for them as it should be quite easy to do so (small blocking issues). # XLNetForQuestionAnswering, ] _SUPPORTED_MODELS = tuple(sorted(set(_REGULAR_SUPPORTED_MODELS + _SPECIAL_SUPPORTED_MODELS))) def torch_nn_embedding(self, input): return torch.empty(*input.shape, self.weight.shape[-1], device="meta", dtype=self.weight.dtype) def torch_nn_functional_embedding( input, weight, padding_idx=None, max_norm=None, norm_type=2.0, scale_grad_by_freq=False, sparse=False ): return torch.empty(*input.shape, weight.shape[-1], device="meta", dtype=weight.dtype) def torch_nn_layernorm(self, input): return input def torch_nn_groupnorm(self, input): return input def torch_nn_linear(self, input): return torch.empty(input.shape[:-1] + (self.out_features,), device="meta") def torch_relu(x): return x def torch_nn_relu(self, x): return x def torch_nn_functional_relu(x, inplace=False): if not inplace: raise ValueError("Don't support in-place functional.relu for MetaTensor analysis") return x def torch_where(condition, x, y): # torch.where returns the broadcasted tensor of condition, x, and y, # so hack it by using addition return condition.to(device="meta") + x.to(device="meta") + y.to(device="meta") def torch_abs(input, *, out=None): if out is not None: raise ValueError("Don't support in-place abs for MetaTensor analysis") return input def torch_arange(*args, **kwargs): n = len(args) step = 1 if n == 1: start = 0 end = args[0] elif n == 2: start, end = args else: start, end, step = args if isinstance(start, float): start = int(start) if isinstance(end, float): start = int(end) if isinstance(step, float): step = int(step) step = kwargs.get("step", step) dtype = kwargs.get("dtype") return torch.empty((end - start) // step, dtype=dtype, device="meta") def torch_full(*args, **kwargs): args = list(args) if isinstance(args[1], torch.Tensor) and args[1].device == torch.device("meta"): args[1] = 1 # Any value. kwargs_without_device = dict(kwargs) kwargs_without_device.pop("device", None) return torch.full(*args, **kwargs_without_device) def torch_cat(tensors, dim=None, axis=None, *, out=None): if dim is None and axis is None: dim = 0 if dim is None and axis is not None: dim = axis if dim < 0: dim = tensors[0].dim() + dim shapes = [t.shape for t in tensors] shape = list(shapes[0]) concatenated_dim = sum(shape[dim] for shape in shapes) final_shape = shape[:dim] + [concatenated_dim] + shape[dim + 1 :] return torch.empty(final_shape, device="meta") def torch_stack(tensors, dim=None, axis=None, *, out=None): if dim is None and axis is None: dim = 0 if dim is None and axis is not None: dim = axis if dim < 0: dim = tensors[0].dim() + 1 + dim shape = list(tensors[0].shape) shape.insert(dim, len(tensors)) return torch.empty(shape, device="meta") def torch_add(input, other, *, alpha=1, out=None): if not isinstance(input, torch.Tensor): return torch.empty_like(other, device="meta") if not isinstance(other, torch.Tensor): return torch.empty_like(input, device="meta") max_length = max(input.dim(), other.dim()) input_shape = list(input.shape) + [1] * (max_length - input.dim()) other_shape = list(other.shape) + [1] * (max_length - other.dim()) shape = [] for i in range(max_length): shape.append(max(input_shape[i], other_shape[i])) return torch.empty(shape, device="meta") def torch_mul(input, other, *, out=None): return torch_add(input, other, out=out) def torch_tensor_mul(self, other): return torch_mul(self, other) def torch_matmul(input, other, *, out=None): d1 = input.dim() d2 = other.dim() shape = None if d1 == 1 and d2 == 1: shape = None elif d1 == 2 and d2 == 2: shape = (input.size(0), other.size(1)) elif d1 == 1 and d2 == 2: shape = (other.size(1),) elif d1 == 2 and d1 == 1: shape = (input.size(0),) else: max_length = max(input.dim(), other.dim()) shape1 = list(input.shape) shape2 = list(other.shape) if d1 == 1: shape1 = [1] + shape1 if d2 == 1: shape2.append(1) shape1 = [-1] * (max_length - d1) + list(input.shape) shape2 = [-1] * (max_length - d2) + list(other.shape) shape = [] for i in range(max_length): shape.append(max(shape1[i], shape2[i])) shape[-2] = shape1[-2] shape[-1] = shape2[-1] if d1 == 1: shape.pop(-2) if d2 == 1: shape.pop(-1) if shape is None: return torch.tensor(0.0, device="meta") return torch.empty(*shape, device="meta") def torch_bmm(input, mat2, *, out=None): if out is not None: raise ValueError("Don't support in-place bmm for MetaTensor analysis") batch_size, n, m = input.shape _, _, p = mat2.shape return torch.empty(batch_size, n, p, device="meta") def torch_baddbmm(input, batch1, batch2, *, beta=1, alpha=1, out=None): if out is not None: raise ValueError("Don't support in-place baddbmm for MetaTensor analysis") return torch_bmm(batch1, batch2) def torch_tensor_baddbmm(self, batch1, batch2, *, beta=1, alpha=1, out=None): return torch_baddbmm(self, batch1, batch2, beta=beta, alpha=alpha, out=out) def torch_einsum(equation, *operands): # TODO: infer shape without performing the computation, this might be quite hard. concrete_operands = (torch.empty_like(operand, device="cpu") for operand in operands) return torch.einsum(equation, *concrete_operands).to("meta") def torch_tensor_repeat(self, *sizes): shape = list(self.shape) for i, x in enumerate(sizes): shape[i] *= x return torch.empty(shape, device="meta") def torch_repeat_interleave(*args, dim=None, output_size=None): num_args = len(args) if num_args == 1: shape = [output_size if output_size is not None else args[0].sum()] else: shape = list(args[0].shape) if dim is None: if num_args > 2: dim = args[2] else: shape = [sum(shape)] dim = 0 repeats = args[1] if isinstance(repeats, int) or torch.numel(repeats) == 1: shape[dim] *= int(repeats) else: shape[dim] = output_size if output_size is not None else repeats.sum() return torch.empty(*shape, device="meta") def torch_index_select(input, dim, index, *, out=None): shape = list(input.shape) shape[dim] = len(index) return torch.empty(*shape, device="meta") def torch_tensor_index_select(self, dim, index): return torch_index_select(self, dim, index) def torch_gather(input, dim, index, *, sparse_grad=False, out=None): shape = list(input.shape) shape[dim] = index.shape[dim] return torch.empty(*shape, device="meta") def torch_tensor_gather(self, dim, index): return torch_gather(self, dim, index) def torch_roll(input, shifts, dims=None): return input def torch_flip(input, dims): return input def torch_tensor_flip(self, dims): return self def torch_nn_conv1d(self, input): l_in = input.shape[-1] shape = None padding = self.padding if padding == "valid": padding = (0, 0) if padding == "same": shape = list(input.shape) if shape is None: shape = list(input.shape) l_out = math.floor( (l_in + 2 * padding[0] - self.dilation[0] * (self.kernel_size[0] - 1) - 1) / self.stride[0] + 1 ) shape[-1] = l_out shape[-2] = self.out_channels return torch.empty(shape, device="meta") def torch_nn_conv2d(self, input): h_in, w_in = input.shape[-2:] shape = None padding = self.padding if padding == "valid": padding = (0, 0) if padding == "same": shape = list(input.shape) if shape is None: shape = list(input.shape) h_out = math.floor( (h_in + 2 * padding[0] - self.dilation[0] * (self.kernel_size[0] - 1) - 1) / self.stride[0] + 1 ) w_out = math.floor( (w_in + 2 * padding[1] - self.dilation[1] * (self.kernel_size[1] - 1) - 1) / self.stride[1] + 1 ) shape[-2:] = [h_out, w_out] shape[-3] = self.out_channels return torch.empty(shape, device="meta") def torch_squeeze(input, dim=None): shape = list(input.shape) if dim is not None: if dim < 0: dim = input.dim() + dim if shape[dim] == 1: shape.pop(dim) else: new_shape = [] for dim_value in shape: if dim_value == 1: continue new_shape.append(dim_value) shape = new_shape return torch.empty(shape, device="meta") def torch_tensor_squeeze(self, dim=None): return torch_squeeze(self, dim) def torch_unsqueeze(input, dim): shape = list(input.shape) if dim < 0: dim = input.dim() + 1 + dim shape.insert(dim, 1) return torch.empty(shape, device="meta") def torch_tensor_unsqueeze(self, dim): return torch_unsqueeze(self, dim) def torch_unique_consecutive(input, **kwargs): output = torch.unique_consecutive(torch.zeros_like(input, device="cpu"), **kwargs) if isinstance(output, torch.Tensor): return output.to("meta") else: return tuple(map(output, lambda x: x.to("meta"))) def torch_nn_functional_one_hot(tensor, num_classes=-1): if num_classes < 0: raise ValueError("Don't support automatic num_classes inference for MetaTensor analysis") shape = list(tensor.shape) + [num_classes] return torch.empty(shape, device="meta") def torch_nn_functional_scaled_dot_product_attention( query, key, value, attn_mask=None, dropout_p=0.0, is_causal=False, scale=None ): target_length = query.shape[-2] head_dim = value.shape[-1] return torch.empty((*query.shape[:-2], target_length, head_dim), device="meta") def torch_nn_mseloss(self, input, target): if self.reduction == "none": shape = target.shape else: shape = (1,) return torch.empty(shape, device="meta") def torch_nn_crossentropyloss(self, input, target): if self.reduction == "none": shape = target.shape else: shape = (1,) return torch.empty(shape, device="meta") def torch_nn_bcewithlogitsloss(self, input, target): if self.reduction == "none": shape = target.shape else: shape = (1,) return torch.empty(shape, device="meta") def operator_getitem(a, b): def to_concrete(t): if isinstance(t, torch.Tensor): concrete = torch.ones_like(t, device="cpu") if concrete.dtype in [torch.float16, torch.float32, torch.float64, torch.int32]: concrete = concrete.to(torch.int64) return concrete return t if isinstance(a, torch.Tensor): # TODO: infer shape without performing the computation. if isinstance(b, tuple): b = tuple(map(to_concrete, b)) else: b = to_concrete(b) return operator.getitem(torch.empty_like(a, device="cpu"), b).to("meta") return operator.getitem(a, b) _MANUAL_META_OVERRIDES: Dict[Callable, Callable] = { torch.nn.Embedding: torch_nn_embedding, torch.nn.functional.embedding: torch_nn_functional_embedding, torch.nn.LayerNorm: torch_nn_layernorm, torch.nn.GroupNorm: torch_nn_groupnorm, torch.nn.Linear: torch_nn_linear, torch.relu: torch_relu, torch.nn.functional.relu: torch_nn_functional_relu, torch.nn.ReLU: torch_nn_relu, torch.where: torch_where, torch.abs: torch_abs, torch.arange: torch_arange, torch.full: torch_full, torch.cat: torch_cat, torch.stack: torch_stack, torch.add: torch_add, torch.mul: torch_mul, torch.Tensor.mul: torch_tensor_mul, torch.matmul: torch_matmul, torch.bmm: torch_bmm, torch.baddbmm: torch_baddbmm, torch.Tensor.baddbmm: torch_tensor_baddbmm, torch.einsum: torch_einsum, torch.Tensor.repeat: torch_tensor_repeat, torch.repeat_interleave: torch_repeat_interleave, torch.roll: torch_roll, torch.flip: torch_flip, torch.Tensor.flip: torch_tensor_flip, torch.index_select: torch_index_select, torch.Tensor.index_select: torch_tensor_index_select, torch.gather: torch_gather, torch.Tensor.gather: torch_tensor_gather, torch.nn.Conv1d: torch_nn_conv1d, torch.nn.Conv2d: torch_nn_conv2d, torch.squeeze: torch_squeeze, torch.Tensor.squeeze: torch_tensor_squeeze, torch.unsqueeze: torch_unsqueeze, torch.Tensor.unsqueeze: torch_tensor_unsqueeze, torch.unique_consecutive: torch_unique_consecutive, torch.nn.functional.one_hot: torch_nn_functional_one_hot, torch.nn.MSELoss: torch_nn_mseloss, torch.nn.CrossEntropyLoss: torch_nn_crossentropyloss, torch.nn.BCEWithLogitsLoss: torch_nn_bcewithlogitsloss, operator.getitem: operator_getitem, } if is_torch_greater_or_equal_than_2_0: _MANUAL_META_OVERRIDES[ torch.nn.functional.scaled_dot_product_attention ] = torch_nn_functional_scaled_dot_product_attention class HFProxy(Proxy): """ Proxy that uses metadata to handle data-dependent control-flow. """ def install_metadata(self, metadata): self._metadata = metadata @property def shape(self): return self.tracer.create_proxy("call_method", "size", (self,), {}) @property def device(self): # Hack so we can track when devices are used. During meta-tensor propagation, # replace these values with a constant 'meta' return MetaDeviceAttribute(self, "device") def __len__(self): if hasattr(self, "_metadata") and self._metadata is not None: return len(self._metadata) return super().__len__() def __bool__(self): if hasattr(self, "_metadata") and self._metadata is not None: return self._metadata return super().__bool__() def __getattr__(self, k): if k == "_metadata": return self.__getattribute__(k) # note: not added to the graph yet, if this is a method call # we peephole optimize to the method invocation return HFAttribute(self, k) def __setitem__(self, indices, values): return self.tracer.create_proxy("call_function", operator.setitem, (self, indices, values), {}) def __contains__(self, key): if hasattr(self, "_metadata") and self._metadata is not None: return key in self._metadata return super().__contains__(key) class HFAttribute(HFProxy): def __init__(self, root, attr: str): self.root = root self.attr = attr self.tracer = root.tracer self._node = None if hasattr(self.root, "_metadata"): self.install_metadata(getattr(self.root._metadata, attr)) @property def node(self): # the node for attributes is added lazily, since most will just be method calls # which do not rely on the getitem call if self._node is None: self._node = self.tracer.create_proxy("call_function", builtins.getattr, (self.root, self.attr), {}).node return self._node def __call__(self, *args, **kwargs): return self.tracer.create_proxy("call_method", self.attr, (self.root,) + args, kwargs) class MetaDeviceAttribute(HFAttribute): pass def _proxies_to_metas(v): """Returns the underlying metadata for HFProxies, and behaves like the identity for the others.""" if isinstance(v, MetaDeviceAttribute): return "meta" if isinstance(v, torch.fx.Proxy): if not (isinstance(v, HFProxy) and hasattr(v, "_metadata")): raise RuntimeError(f"No metadata was found for {v}") return v._metadata return v def _gen_constructor_wrapper(target): @functools.wraps(target) def wrapper(*args, **kwargs): proxy = None def check_has_proxy(v): if isinstance(v, Proxy): nonlocal proxy proxy = v torch.fx.node.map_aggregate(args, check_has_proxy) torch.fx.node.map_aggregate(kwargs, check_has_proxy) if proxy is not None: return proxy.tracer.create_proxy("call_function", target, args, kwargs) else: return target(*args, **kwargs) return wrapper, target def _generate_random_int(low: int = 10, high: int = 20, forbidden_values: Optional[List[int]] = None): if forbidden_values is None: forbidden_values = [] value = random.randint(low, high) while value in forbidden_values: value = random.randint(low, high) return value class HFTracer(Tracer): """ Tracer that is able to symbolically trace models from the library. To do that, it uses the HFProxy instead of the regular PyTorch torch.fx.Proxy. """ # Feature flag for proxying accesses to buffer values proxy_buffer_attributes: bool = True allow_insert_stateless_mods: bool = True _TORCH_METHODS_TO_PATCH = [ "arange", "zeros", "ones", "full", "full_like", "eye", "empty", "tensor", "clamp", "finfo", ] supported_archs = (PreTrainedModel,) if not is_peft_available() else (PreTrainedModel, PeftModel) def __init__(self, autowrap_modules=(math,), autowrap_functions=()): super().__init__(autowrap_modules=autowrap_modules, autowrap_functions=autowrap_functions) if not is_torch_fx_available(): raise ImportError( f"Found an incompatible version of torch. Found version {get_torch_version()}, but only version " f"{TORCH_FX_REQUIRED_VERSION} is supported." ) def _generate_dummy_input( self, model: PreTrainedModel, input_name: str, shape: List[int], input_names: List[str] ) -> Dict[str, torch.Tensor]: """Generates dummy input for model inference recording.""" # Retrieving the model class, either from the "class_for_deserialization" attribute if the model was restored # from pickle, or from the "__class__" attribute in the general case. model_class_name = getattr(model, "class_for_deserialization", model.__class__).__name__ device = model.device inputs_dict = {} # when tracing a model with KV cache, we simply need to unsure that the KV cache length is larger than one to # rightfully pass certain controlflows (Example: https://github.com/huggingface/transformers/blob/5c8d941d66734811d2ef6f57f15b44f7fb7a98c4/src/transformers/modeling_attn_mask_utils.py#L162). # After tracing, the model can then still be used with arbitrary lengths different than the one used during tracing. kv_cache_length = 5 if input_name in ["labels", "start_positions", "end_positions"]: batch_size = shape[0] if model_class_name in [ *get_values(MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES), *get_values(MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES), *get_values(MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES), *get_values(MODEL_FOR_BACKBONE_MAPPING_NAMES), *get_values(MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES), ]: inputs_dict["labels"] = torch.zeros(batch_size, dtype=torch.long, device=device) elif model_class_name in [ *get_values(MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES), *get_values(MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING_NAMES), "XLNetForQuestionAnswering", ]: inputs_dict["start_positions"] = torch.zeros(batch_size, dtype=torch.long, device=device) inputs_dict["end_positions"] = torch.zeros(batch_size, dtype=torch.long, device=device) elif model_class_name in get_values(MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES): if not hasattr(model.config, "problem_type") or model.config.problem_type is None: raise ValueError( "Could not retrieve the problem type for the sequence classification task, please set " 'model.config.problem_type to one of the following values: "regression", ' '"single_label_classification", or "multi_label_classification".' ) if model.config.problem_type == "regression": labels_shape = (batch_size, model.config.num_labels) labels_dtype = torch.float32 elif model.config.problem_type == "single_label_classification": labels_shape = (batch_size,) labels_dtype = torch.long elif model.config.problem_type == "multi_label_classification": labels_shape = (batch_size, model.config.num_labels) labels_dtype = torch.float32 else: raise ValueError( 'Expected model.config.problem_type to be either: "regression", "single_label_classification"' f', or "multi_label_classification", but "{model.config.problem_type}" was provided.' ) inputs_dict["labels"] = torch.zeros(*labels_shape, dtype=labels_dtype, device=device) elif model_class_name in [ *get_values(MODEL_FOR_PRETRAINING_MAPPING_NAMES), *get_values(MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES), *get_values(MODEL_FOR_CAUSAL_LM_MAPPING_NAMES), *get_values(MODEL_FOR_MASKED_LM_MAPPING_NAMES), *get_values(MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES), *get_values(MODEL_FOR_SEMANTIC_SEGMENTATION_MAPPING_NAMES), "GPT2DoubleHeadsModel", "PeftModelForCausalLM", "PeftModelForSeq2SeqLM", ]: inputs_dict["labels"] = torch.zeros(shape, dtype=torch.long, device=device) elif model_class_name in [*get_values(MODEL_FOR_CTC_MAPPING_NAMES)]: inputs_dict["labels"] = torch.zeros(shape, dtype=torch.float32, device=device) else: raise NotImplementedError( f"Generating the dummy input named {input_name} for {model_class_name} is not supported yet." ) elif "pixel_values" in input_name: batch_size = shape[0] image_size = getattr(model.config, "image_size", None) if image_size is None: if hasattr(model.config, "vision_config"): image_size = model.config.vision_config.image_size elif hasattr(model.config, "encoder"): image_size = model.config.encoder.image_size else: image_size = (_generate_random_int(), _generate_random_int()) # If no num_channels is in the config, use some arbitrary value. num_channels = getattr(model.config, "num_channels", 3) if not isinstance(image_size, collections.abc.Iterable): image_size = (image_size, image_size) height, width = image_size inputs_dict[input_name] = torch.zeros( batch_size, num_channels, height, width, dtype=torch.float32, device=device ) elif "bbox" in input_name: inputs_dict[input_name] = torch.zeros(*shape, 4, dtype=torch.float, device=device) elif "input_features" in input_name: inputs_dict[input_name] = torch.zeros( *shape, model.config.input_feat_per_channel, dtype=torch.float, device=device ) elif "visual_feats" in input_name: inputs_dict[input_name] = torch.zeros( shape + [ model.config.visual_feat_dim, ], dtype=torch.float, device=device, ) elif "visual_pos" in input_name: inputs_dict[input_name] = torch.zeros( shape + [ model.config.visual_pos_dim, ], dtype=torch.float, device=device, ) elif "inputs" in input_name: inputs_dict[input_name] = torch.zeros(*shape, dtype=torch.float, device=device) elif "input_values" in input_name: batch_size, _ = shape # Generating big sequence length for audio inputs. seq_length = _generate_random_int(low=10000, high=20000) inputs_dict[input_name] = torch.zeros(batch_size, seq_length, dtype=torch.float, device=device) elif "mask" in input_name: if "past_key_values" in input_names: mask_shape = [shape[0], shape[1] + kv_cache_length] else: mask_shape = shape inputs_dict[input_name] = torch.zeros(mask_shape, dtype=torch.long, device=device) elif "ids" in input_name: inputs_dict[input_name] = torch.zeros(shape, dtype=torch.long, device=device) elif "past_key_values" in input_name: if model.config.model_type not in _FX_SUPPORTED_MODELS_WITH_KV_CACHE: raise NotImplementedError( f"Symbolic trace with past_key_values input is not supported yet for the model {model.config.model_type}. Please open an issue or a PR in Transformers repository if you would like to see the support added." ) num_heads = model.config.num_attention_heads head_dim = model.config.hidden_size // model.config.num_attention_heads cache_shape = (shape[0], num_heads, kv_cache_length, head_dim) pkv = tuple( ( torch.rand(cache_shape, dtype=torch.float, device=device), torch.rand(cache_shape, dtype=torch.float, device=device), ) for i in range(model.config.num_hidden_layers) ) inputs_dict[input_name] = pkv else: shape_with_hidden_size = shape + [model.config.hidden_size] inputs_dict[input_name] = torch.zeros(shape_with_hidden_size, dtype=torch.float, device=device) return inputs_dict def create_proxy(self, kind, target, args, kwargs, name=None, type_expr=None, proxy_factory_fn=None): rv = super().create_proxy(kind, target, args, kwargs, name, type_expr, proxy_factory_fn) if kind == "placeholder" and target in self.meta_args: rv.install_metadata(self.meta_args[target]) return rv if target in self.orig_fns: # NOTE: tensor constructors in PyTorch define the `device` argument as # *kwargs-only*. That is why this works. If you add methods to # _TORCH_METHODS_TO_PATCH that do not define `device` as kwarg-only, # this will break and you will likely see issues where we cannot infer # the size of the output. if "device" in kwargs: kwargs["device"] = "meta" try: args_metas = torch.fx.node.map_aggregate(args, _proxies_to_metas) kwargs_metas = torch.fx.node.map_aggregate(kwargs, _proxies_to_metas) if kind == "call_function": meta_target = _MANUAL_META_OVERRIDES.get(target, target) meta_out = meta_target(*args_metas, **kwargs_metas) if isinstance(meta_out, torch.Tensor): meta_out = meta_out.to(device="meta") elif kind == "call_method": method = getattr(args_metas[0].__class__, target) meta_target = _MANUAL_META_OVERRIDES.get(method, method) meta_out = meta_target(*args_metas, **kwargs_metas) elif kind == "call_module": if not hasattr(self, "orig_forward"): raise AttributeError(f"{self} does not have an attribute called orig_forward") self._disable_module_getattr = True try: mod = self.root.get_submodule(target) mod_type = type(mod) if mod_type in _MANUAL_META_OVERRIDES: meta_out = _MANUAL_META_OVERRIDES[mod_type](mod, *args_metas, **kwargs_metas) else: meta_out = self.orig_forward(*args_metas, **kwargs_metas) finally: self._disable_module_getattr = False elif kind == "get_attr": self._disable_module_getattr = True try: attr_itr = self.root atoms = target.split(".") for atom in atoms: attr_itr = getattr(attr_itr, atom) if isinstance(attr_itr, torch.Tensor): meta_out = attr_itr.to(device="meta") else: meta_out = attr_itr finally: self._disable_module_getattr = False else: return rv if not isinstance(rv, Proxy): raise ValueError("Don't support composite output yet") rv.install_metadata(meta_out) except Exception as e: if _IS_IN_DEBUG_MODE: warnings.warn(f"Could not compute metadata for {kind} target {target}: {e}") return rv # Replaced by .getattr from PyTorch 1.13 def _module_getattr(self, attr, attr_val, parameter_proxy_cache): if getattr(self, "_disable_module_getattr", False): return attr_val else: def maybe_get_proxy_for_attr(attr_val, collection_to_search, parameter_proxy_cache): for n, p in collection_to_search: if attr_val is p: if n not in parameter_proxy_cache: kwargs = {} if "proxy_factory_fn" in inspect.signature(self.create_proxy).parameters: kwargs["proxy_factory_fn"] = ( None if not self.param_shapes_constant else lambda node: ParameterProxy(self, node, n, attr_val) ) val_proxy = self.create_proxy("get_attr", n, (), {}, **kwargs) # type: ignore[arg-type] parameter_proxy_cache[n] = val_proxy return parameter_proxy_cache[n] return None if isinstance(attr_val, torch.nn.Parameter): maybe_parameter_proxy = maybe_get_proxy_for_attr( attr_val, self.root.named_parameters(), parameter_proxy_cache ) if maybe_parameter_proxy is not None: return maybe_parameter_proxy if self.proxy_buffer_attributes and isinstance(attr_val, torch.Tensor): maybe_buffer_proxy = maybe_get_proxy_for_attr( attr_val, self.root.named_buffers(), parameter_proxy_cache ) if maybe_buffer_proxy is not None: return maybe_buffer_proxy return attr_val # Needed for PyTorch 1.13+ def getattr(self, attr: str, attr_val: Any, parameter_proxy_cache: Dict[str, Any]): return self._module_getattr(attr, attr_val, parameter_proxy_cache) def call_module(self, m, forward, args, kwargs): self.orig_forward = forward return super().call_module(m, forward, args, kwargs) def proxy(self, node): return HFProxy(node, self) def trace( self, root: Union[torch.nn.Module, Callable[..., Any]], concrete_args: Optional[Dict[str, Any]] = None, dummy_inputs: Optional[Dict[str, Any]] = None, complete_concrete_args_with_inputs_not_in_dummy_inputs: bool = True, ) -> Graph: """ Traces `root` and returns the corresponding FX `torch.fx.Graph` representation. `root` can either be a `torch.nn.Module` instance or a Python callable. Note that after this call, `self.root` may be different from the `root` passed in here. For example, when a free function is passed to `trace()`, we will create a `torch.nn.Module` instance to use as the root and add embedded constants to. Args: root (`torch.nn.Module` or `Callable`): Either a `torch.nn.Module`` or a function to be traced through. If root is not a [`~transformers.PreTrainedModel`], then `dummy_inputs` must be passed, otherwise tracing will fail. concrete_args (`Dict[str, Any], *optional*): Concrete arguments that should not be treated as Proxies dummy_inputs (`Dict[str, Any]`, *optional*): The dummy inputs needed to handle data-dependent control-flow if `root` is not a [`~transformers.PreTrainedModel`]. It can also be used when `root` is a [`~transformers.PreTrainedModel`] to specify custom dummy inputs for a subset or all the model inputs. complete_concrete_args_with_inputs_not_in_dummy_inputs (`bool`, *optional*, defaults to `True`): If `True`, and `dummy_inputs` is specified, every argument that `root` can take that is not in `dummy_inputs` and not in `concrete_args` will be added to `concrete_args`, otherwise does nothing. Returns: `torch.fx.Graph`: A FX `torch.fx.Graph` representing the semantics of the passed-in `root`. """ sig = inspect.signature(root.forward if isinstance(root, torch.nn.Module) else root) if concrete_args is None: concrete_args = {} if dummy_inputs is not None and complete_concrete_args_with_inputs_not_in_dummy_inputs: for param in sig.parameters.values(): if param.name in dummy_inputs: continue if param.default is inspect.Parameter.empty: raise ValueError(f"You need to specify a default value for the parameter {param.name}.") concrete_args.update( { p.name: p.default for p in sig.parameters.values() if (p.name not in dummy_inputs and p.name not in concrete_args) } ) input_names = sig.parameters.keys() - concrete_args.keys() # Creating a random input shape to generate dummy inputs. batch_size = _generate_random_int() sequence_length = _generate_random_int() shape = [batch_size, sequence_length] if root.__class__.__name__ in get_values(MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES): num_choices = _generate_random_int(low=2, high=5) shape.insert(1, num_choices) inputs = dict(dummy_inputs) if dummy_inputs is not None else {} for input_name in input_names: if input_name in inputs: continue # We enforce that root must either be a PreTrainedModel or deserialized from a serialized traced model to # be able to use HFTracer._generate_dummy_input. if isinstance(root, self.supported_archs) or type(root).__qualname__.startswith( ("_deserialize_graph_module", "_CodeOnlyModule") ): inputs.update(self._generate_dummy_input(root, input_name, shape, input_names=input_names)) else: raise RuntimeError( f"Could not generate input named {input_name} for because root is not a" " transformers.PreTrainedModel." ) concrete_metas = { input_name: input_.to("meta") if isinstance(input_, torch.Tensor) else input_ for input_name, input_ in inputs.items() } for param in sig.parameters.values(): if param.kind == inspect.Parameter.VAR_KEYWORD and param.name not in input_names: concrete_metas[f"**{param.name}"] = {} self.meta_args = concrete_metas self.patched_torch_methods = { target: _gen_constructor_wrapper(getattr(torch, target)) for target in self._TORCH_METHODS_TO_PATCH } self.orig_fns = set() for name, (wrapper, orig) in self.patched_torch_methods.items(): setattr(torch, name, wrapper) self.orig_fns.add(orig) try: self.graph = super().trace(root, concrete_args=concrete_args) finally: for name, (_, orig) in self.patched_torch_methods.items(): setattr(torch, name, orig) # This is necessary because concrete args are added as input to the traced module since # https://github.com/pytorch/pytorch/pull/55888. for node in self.graph.nodes: if node.op == "placeholder": # Removing default values for inputs as the forward pass will fail with them. if node.target in input_names: node.args = () # Without this, torch.jit.script fails because the inputs type is Optional[torch.Tensor]. # It cannot infer on the attributes and methods the input should have, and fails. node.type = torch.Tensor # It is a concrete arg so it is not used and should be removed. else: to_visit = [node] to_delete = collections.OrderedDict() while to_visit: n = to_visit.pop(0) to_delete[n] = None to_visit += list(n.users.keys()) for user in reversed(to_delete.keys()): self.graph.erase_node(user) # TODO: solves GraphModule creation. # Without this, return type annotation "Tuple" is causing code execution failure. if node.op == "output": node.type = None return self.graph def _stateless_mod_instanciation_depends_on_proxies(self, mod: nn.Module) -> bool: """ Whether the module was instantiated with Proxies. If that is the case, such module cannot be a leaf module because its attributes are input-dependent. """ return any(isinstance(attr, Proxy) for attr in mod.__dict__.values()) def _insert_module_as_submodule(self, mod: nn.Module) -> str: """ Helper method which tries to insert a module that was not declared as submodule. """ # If one of the module attributes is a Proxy, it means that its instantiation is input-dependent. # It is not possible to insert such modules, those should be traced through. if self._stateless_mod_instanciation_depends_on_proxies(mod): return "" idx = 0 mod_name = mod.__class__.__name__.lower() path = f"{mod_name}_{idx}" already_inserted = False while hasattr(self.root, path): if getattr(self.root, path) is mod: already_inserted = True break path = f"{mod_name}_{idx}" idx += 1 # No need to add multiple instances of the same module. if not already_inserted: self.root.add_module(path, mod) return path def path_of_module(self, mod: nn.Module) -> str: """ Helper method to find the qualified name of `mod` in the Module hierarchy of `root`. For example, if `root` has a submodule named `foo`, which has a submodule named `bar`, passing `bar` into this function will return the string "foo.bar". Args: mod (str): The `Module` to retrieve the qualified name for. """ try: return super().path_of_module(mod) except NameError as e: if self.allow_insert_stateless_mods and len(list(mod.parameters())) == 0 and len(list(mod.buffers())) == 0: path = self._insert_module_as_submodule(mod) return path raise e def is_leaf_module(self, m: torch.nn.Module, module_qualified_name: str) -> bool: return (not self._stateless_mod_instanciation_depends_on_proxies(m)) and super().is_leaf_module( m, module_qualified_name ) @compatibility(is_backward_compatible=True) def keys(self, obj: "Proxy") -> Any: """Called when a proxy object is has the keys() method called. This is what happens when ** is called on a proxy. This should return an iterator if ** is supposed to work in your custom tracer. """ attribute = HFAttribute(obj, "keys")() if obj.node.target == "**kwargs": return attribute._metadata return attribute def get_concrete_args(model: nn.Module, input_names: List[str]): sig = inspect.signature(model.forward) if not (set(input_names) <= set(sig.parameters.keys())): formatted_input_names = input_names[0] if len(input_names) == 1 else ", ".join(input_names) formatted_allowed_input_names = ", ".join(sig.parameters.keys()) raise ValueError( f"The model does not have input(s) named: {formatted_input_names}, expected a subset of the following:" f" {formatted_allowed_input_names}" ) return {p.name: p.default for p in sig.parameters.values() if p.name not in input_names} def is_model_supported(model: PreTrainedModel): return model.__class__.__name__ in _SUPPORTED_MODELS def check_if_model_is_supported(model: PreTrainedModel): if not is_model_supported(model): supported_model_names = ", ".join(_SUPPORTED_MODELS) raise NotImplementedError( f"Model {model.__class__.__name__} is not supported yet, supported models: {supported_model_names}" ) def symbolic_trace( model: PreTrainedModel, input_names: Optional[List[str]] = None, disable_check: bool = False, tracer_cls: Type[HFTracer] = HFTracer, ) -> GraphModule: """ Performs symbolic tracing on the model. Args: model ([`PretrainedModel`]): The model to trace. input_names (`List[str]`, *optional*): The names of the inputs of the traced model. If unset, model.dummy_inputs.keys() are used instead. disable_check (`bool`, *optional*, defaults to `False`): If `True`, no check is done before trying to trace the model, this is mostly usesul for debugging purposes. tracer_cls (`Type[HFTracer]`, *optional*, defaults to `HFTracer`): The tracer class to use for instantiating the tracer. If unset, `HFTracer` is used instead. Returns: `torch.fx.GraphModule`: A GraphModule constructed by recording operations seen while tracing the model. Example: ```python from transformers.utils.fx import symbolic_trace traced_model = symbolic_trace(model, input_names=["input_ids", "attention_mask", "token_type_ids"]) ``` """ if input_names is None: input_names = model.dummy_inputs.keys() input_names = list(input_names) concrete_args = get_concrete_args(model, input_names) if not disable_check: check_if_model_is_supported(model) # Tracing. tracer = tracer_cls() traced_graph = tracer.trace(model, concrete_args=concrete_args) traced = torch.fx.GraphModule(model, traced_graph) traced.config = model.config # The model class must be stored as an attribute to allow model deserialization, which uses trace, and thus # _generate_dummy_input, where the model class is needed. traced.class_for_deserialization = model.__class__ traced.device = model.device return traced
transformers/src/transformers/utils/fx.py/0
{ "file_path": "transformers/src/transformers/utils/fx.py", "repo_id": "transformers", "token_count": 22754 }
142
<!--- Copyright 2020 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. --> # How to add a new example script in 🤗 Transformers This folder provide a template for adding a new example script implementing a training or inference task with the models in the 🤗 Transformers library. To use it, you will need to install cookiecutter: ```bash pip install cookiecutter ``` or refer to the installation page of the [cookiecutter documentation](https://cookiecutter.readthedocs.io/). You can then run the following command inside the `examples` folder of the transformers repo: ```bash cookiecutter ../templates/adding_a_new_example_script/ ``` and answer the questions asked, which will generate a new folder where you will find a pre-filled template for your example following the best practices we recommend for them. Adjust the way the data is preprocessed, the model is loaded or the Trainer is instantiated then when you're happy, add a `README.md` in the folder (or complete the existing one if you added a script to an existing folder) telling a user how to run your script. Make a PR to the 🤗 Transformers repo. Don't forget to tweet about your new example with a carbon screenshot of how to run it and tag @huggingface!
transformers/templates/adding_a_new_example_script/README.md/0
{ "file_path": "transformers/templates/adding_a_new_example_script/README.md", "repo_id": "transformers", "token_count": 444 }
143
# coding=utf-8 # Copyright 2022 {{cookiecutter.authors}} and The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tokenization classes for {{cookiecutter.modelname}}.""" {%- if cookiecutter.tokenizer_type == "Based on BERT" %} from ...utils import logging from ..bert.tokenization_bert import BertTokenizer logger = logging.get_logger(__name__) VOCAB_FILES_NAMES = {"vocab_file": "vocab.txt"} PRETRAINED_VOCAB_FILES_MAP = { "vocab_file": { "{{cookiecutter.checkpoint_identifier}}": "https://huggingface.co/{{cookiecutter.checkpoint_identifier}}/resolve/main/vocab.txt", } } PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = { "{{cookiecutter.checkpoint_identifier}}": 512, } PRETRAINED_INIT_CONFIGURATION = { "{{cookiecutter.checkpoint_identifier}}": {"do_lower_case": False}, } class {{cookiecutter.camelcase_modelname}}Tokenizer(BertTokenizer): r""" Construct a {{cookiecutter.modelname}} tokenizer. [`~{{cookiecutter.camelcase_modelname}}Tokenizer`] is identical to [`BertTokenizer`] and runs end-to-end tokenization: punctuation splitting and wordpiece. Refer to superclass [`BertTokenizer`] for usage examples and documentation concerning parameters. """ vocab_files_names = VOCAB_FILES_NAMES pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES pretrained_init_configuration = PRETRAINED_INIT_CONFIGURATION {%- elif cookiecutter.tokenizer_type == "Based on BART" %} from ...utils import logging from ..bart.tokenization_bart import BartTokenizer logger = logging.get_logger(__name__) VOCAB_FILES_NAMES = {"vocab_file": "vocab.json", "merges_file": "merges.txt"} PRETRAINED_VOCAB_FILES_MAP = { "vocab_file": { "{{cookiecutter.checkpoint_identifier}}": "https://huggingface.co/{{cookiecutter.checkpoint_identifier}}/resolve/main/vocab.json", }, "merges_file": { "{{cookiecutter.checkpoint_identifier}}": "https://huggingface.co/{{cookiecutter.checkpoint_identifier}}/resolve/main/merges.txt", }, } PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = { "{{cookiecutter.checkpoint_identifier}}": 1024, } class {{cookiecutter.camelcase_modelname}}Tokenizer(BartTokenizer): """ Construct a {{cookiecutter.modelname}} tokenizer. [`~{{cookiecutter.camelcase_modelname}}Tokenizer`] is identical to [`BartTokenizer`] and runs end-to-end tokenization: punctuation splitting and wordpiece. Refer to superclass [`BartTokenizer`] for usage examples and documentation concerning parameters. """ vocab_files_names = VOCAB_FILES_NAMES pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES {%- elif cookiecutter.tokenizer_type == "Standalone" %} from typing import List, Optional from tokenizers import ByteLevelBPETokenizer from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging logger = logging.get_logger(__name__) VOCAB_FILES_NAMES = {"vocab_file": "vocab.txt"} PRETRAINED_VOCAB_FILES_MAP = { "vocab_file": { "{{cookiecutter.checkpoint_identifier}}": "https://huggingface.co/{{cookiecutter.checkpoint_identifier}}/resolve/main/vocab.txt", }, } PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = { "{{cookiecutter.checkpoint_identifier}}": 1024, } class {{cookiecutter.camelcase_modelname}}Tokenizer(PreTrainedTokenizer): """ Construct a {{cookiecutter.modelname}} tokenizer. Based on byte-level Byte-Pair-Encoding. Args: vocab_file (`str`): Path to the vocabulary file. """ vocab_files_names = VOCAB_FILES_NAMES pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES model_input_names = ["input_ids", "attention_mask"] def __init__( self, vocab_file, unk_token="<|endoftext|>", bos_token="<|endoftext|>", eos_token="<|endoftext|>", **kwargs ): bos_token = AddedToken(bos_token, lstrip=False, rstrip=False) if isinstance(bos_token, str) else bos_token eos_token = AddedToken(eos_token, lstrip=False, rstrip=False) if isinstance(eos_token, str) else eos_token unk_token = AddedToken(unk_token, lstrip=False, rstrip=False) if isinstance(unk_token, str) else unk_token super().__init__(bos_token=bos_token, eos_token=eos_token, unk_token=unk_token, **kwargs) """ Initialisation """ @property def vocab_size(self): """ Returns vocab size """ def get_vocab(self): """ Returns vocab as a dict """ def _tokenize(self, text): """ Returns a tokenized string. """ def _convert_token_to_id(self, token): """ Converts a token (str) in an id using the vocab. """ def _convert_id_to_token(self, index): """Converts an index (integer) in a token (str) using the vocab.""" def convert_tokens_to_string(self, tokens): """ Converts a sequence of tokens (string) in a single string. """ def save_vocabulary(self, save_directory): """ Save the vocabulary and special tokens file to a directory. Args: save_directory (`str`): The directory in which to save the vocabulary. Returns: `Tuple(str)`: Paths to the files saved. """ def build_inputs_with_special_tokens( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None ) -> List[int]: """ Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and adding special tokens. A {{cookiecutter.modelname}} sequence has the following format: - single sequence: `<s> X </s>` - pair of sequences: `<s> A </s></s> B </s>` Args: token_ids_0 (`List[int]`): List of IDs to which the special tokens will be added. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. Returns: `List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens. """ if token_ids_1 is None: return [self.cls_token_id] + token_ids_0 + [self.sep_token_id] cls = [self.cls_token_id] sep = [self.sep_token_id] return cls + token_ids_0 + sep + sep + token_ids_1 + sep def get_special_tokens_mask( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False ) -> List[int]: """ Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding special tokens using the tokenizer `prepare_for_model` method. Args: token_ids_0 (`List[int]`): List of IDs. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. already_has_special_tokens (`bool`, *optional*, defaults to `False`): Whether or not the token list is already formatted with special tokens for the model. Returns: `List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token. """ if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True ) if token_ids_1 is None: return [1] + ([0] * len(token_ids_0)) + [1] return [1] + ([0] * len(token_ids_0)) + [1, 1] + ([0] * len(token_ids_1)) + [1] def create_token_type_ids_from_sequences( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None ) -> List[int]: """ Create a mask from the two sequences passed to be used in a sequence-pair classification task. {{cookiecutter.modelname}} does not make use of token type ids, therefore a list of zeros is returned. Args: token_ids_0 (`List[int]`): List of IDs. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. Returns: `List[int]`: List of zeros. """ sep = [self.sep_token_id] cls = [self.cls_token_id] if token_ids_1 is None: return len(cls + token_ids_0 + sep) * [0] return len(cls + token_ids_0 + sep + sep + token_ids_1 + sep) * [0] def prepare_for_tokenization(self, text, is_split_into_words=False, **kwargs): add_prefix_space = kwargs.pop("add_prefix_space", self.add_prefix_space) if (is_split_into_words or add_prefix_space) and (len(text) > 0 and not text[0].isspace()): text = " " + text return (text, kwargs) class {{cookiecutter.camelcase_modelname}}TokenizerFast(PreTrainedTokenizerFast): """ Construct a "fast" {{cookiecutter.modelname}} tokenizer (backed by HuggingFace's *tokenizers* library). Args: vocab_file (`str`): Path to the vocabulary file. """ vocab_files_names = VOCAB_FILES_NAMES pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES model_input_names = ["input_ids", "attention_mask"] def __init__( self, vocab_file, merges_file, unk_token="<|endoftext|>", bos_token="<|endoftext|>", eos_token="<|endoftext|>", add_prefix_space=False, trim_offsets=True, **kwargs ): super().__init__( ByteLevelBPETokenizer( vocab_file=vocab_file, merges_file=merges_file, add_prefix_space=add_prefix_space, trim_offsets=trim_offsets, ), bos_token=bos_token, eos_token=eos_token, unk_token=unk_token, **kwargs, ) self.add_prefix_space = add_prefix_space def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None): output = [self.bos_token_id] + token_ids_0 + [self.eos_token_id] if token_ids_1 is None: return output return output + [self.eos_token_id] + token_ids_1 + [self.eos_token_id] def create_token_type_ids_from_sequences( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None ) -> List[int]: """ Create a mask from the two sequences passed to be used in a sequence-pair classification task. {{cookiecutter.modelname}} does not make use of token type ids, therefore a list of zeros is returned. Args: token_ids_0 (`List[int]`): List of IDs. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. Returns: `List[int]`: List of zeros. """ sep = [self.sep_token_id] cls = [self.cls_token_id] if token_ids_1 is None: return len(cls + token_ids_0 + sep) * [0] return len(cls + token_ids_0 + sep + sep + token_ids_1 + sep) * [0] {% endif %}
transformers/templates/adding_a_new_model/cookiecutter-template-{{cookiecutter.modelname}}/tokenization_{{cookiecutter.lowercase_modelname}}.py/0
{ "file_path": "transformers/templates/adding_a_new_model/cookiecutter-template-{{cookiecutter.modelname}}/tokenization_{{cookiecutter.lowercase_modelname}}.py", "repo_id": "transformers", "token_count": 5165 }
144
# Copyright 2020 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import tempfile import unittest from pathlib import Path from transformers import AutoConfig, is_tf_available from transformers.testing_utils import require_tf if is_tf_available(): import tensorflow as tf from transformers import TensorFlowBenchmark, TensorFlowBenchmarkArguments @require_tf class TFBenchmarkTest(unittest.TestCase): def check_results_dict_not_empty(self, results): for model_result in results.values(): for batch_size, sequence_length in zip(model_result["bs"], model_result["ss"]): result = model_result["result"][batch_size][sequence_length] self.assertIsNotNone(result) def test_inference_no_configs_eager(self): MODEL_ID = "sshleifer/tiny-gpt2" benchmark_args = TensorFlowBenchmarkArguments( models=[MODEL_ID], training=False, inference=True, sequence_lengths=[8], batch_sizes=[1], eager_mode=True, multi_process=False, ) benchmark = TensorFlowBenchmark(benchmark_args) results = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result) self.check_results_dict_not_empty(results.memory_inference_result) def test_inference_no_configs_only_pretrain(self): MODEL_ID = "sgugger/tiny-distilbert-classification" benchmark_args = TensorFlowBenchmarkArguments( models=[MODEL_ID], training=False, inference=True, sequence_lengths=[8], batch_sizes=[1], multi_process=False, only_pretrain_model=True, ) benchmark = TensorFlowBenchmark(benchmark_args) results = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result) self.check_results_dict_not_empty(results.memory_inference_result) def test_inference_no_configs_graph(self): MODEL_ID = "sshleifer/tiny-gpt2" benchmark_args = TensorFlowBenchmarkArguments( models=[MODEL_ID], training=False, inference=True, sequence_lengths=[8], batch_sizes=[1], multi_process=False, ) benchmark = TensorFlowBenchmark(benchmark_args) results = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result) self.check_results_dict_not_empty(results.memory_inference_result) def test_inference_with_configs_eager(self): MODEL_ID = "sshleifer/tiny-gpt2" config = AutoConfig.from_pretrained(MODEL_ID) benchmark_args = TensorFlowBenchmarkArguments( models=[MODEL_ID], training=False, inference=True, sequence_lengths=[8], batch_sizes=[1], eager_mode=True, multi_process=False, ) benchmark = TensorFlowBenchmark(benchmark_args, [config]) results = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result) self.check_results_dict_not_empty(results.memory_inference_result) def test_inference_with_configs_graph(self): MODEL_ID = "sshleifer/tiny-gpt2" config = AutoConfig.from_pretrained(MODEL_ID) benchmark_args = TensorFlowBenchmarkArguments( models=[MODEL_ID], training=False, inference=True, sequence_lengths=[8], batch_sizes=[1], multi_process=False, ) benchmark = TensorFlowBenchmark(benchmark_args, [config]) results = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result) self.check_results_dict_not_empty(results.memory_inference_result) def test_train_no_configs(self): MODEL_ID = "sshleifer/tiny-gpt2" benchmark_args = TensorFlowBenchmarkArguments( models=[MODEL_ID], training=True, inference=False, sequence_lengths=[8], batch_sizes=[1], multi_process=False, ) benchmark = TensorFlowBenchmark(benchmark_args) results = benchmark.run() self.check_results_dict_not_empty(results.time_train_result) self.check_results_dict_not_empty(results.memory_train_result) def test_train_with_configs(self): MODEL_ID = "sshleifer/tiny-gpt2" config = AutoConfig.from_pretrained(MODEL_ID) benchmark_args = TensorFlowBenchmarkArguments( models=[MODEL_ID], training=True, inference=False, sequence_lengths=[8], batch_sizes=[1], multi_process=False, ) benchmark = TensorFlowBenchmark(benchmark_args, [config]) results = benchmark.run() self.check_results_dict_not_empty(results.time_train_result) self.check_results_dict_not_empty(results.memory_train_result) def test_inference_encoder_decoder_with_configs(self): MODEL_ID = "patrickvonplaten/t5-tiny-random" config = AutoConfig.from_pretrained(MODEL_ID) benchmark_args = TensorFlowBenchmarkArguments( models=[MODEL_ID], training=False, inference=True, sequence_lengths=[8], batch_sizes=[1], multi_process=False, ) benchmark = TensorFlowBenchmark(benchmark_args, configs=[config]) results = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result) self.check_results_dict_not_empty(results.memory_inference_result) @unittest.skipIf(is_tf_available() and len(tf.config.list_physical_devices("GPU")) == 0, "Cannot do xla on CPU.") def test_inference_no_configs_xla(self): MODEL_ID = "sshleifer/tiny-gpt2" benchmark_args = TensorFlowBenchmarkArguments( models=[MODEL_ID], training=False, inference=True, sequence_lengths=[8], batch_sizes=[1], use_xla=True, multi_process=False, ) benchmark = TensorFlowBenchmark(benchmark_args) results = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result) self.check_results_dict_not_empty(results.memory_inference_result) def test_save_csv_files(self): MODEL_ID = "sshleifer/tiny-gpt2" with tempfile.TemporaryDirectory() as tmp_dir: benchmark_args = TensorFlowBenchmarkArguments( models=[MODEL_ID], inference=True, save_to_csv=True, sequence_lengths=[8], batch_sizes=[1], inference_time_csv_file=os.path.join(tmp_dir, "inf_time.csv"), inference_memory_csv_file=os.path.join(tmp_dir, "inf_mem.csv"), env_info_csv_file=os.path.join(tmp_dir, "env.csv"), multi_process=False, ) benchmark = TensorFlowBenchmark(benchmark_args) benchmark.run() self.assertTrue(Path(os.path.join(tmp_dir, "inf_time.csv")).exists()) self.assertTrue(Path(os.path.join(tmp_dir, "inf_mem.csv")).exists()) self.assertTrue(Path(os.path.join(tmp_dir, "env.csv")).exists()) def test_trace_memory(self): MODEL_ID = "sshleifer/tiny-gpt2" def _check_summary_is_not_empty(summary): self.assertTrue(hasattr(summary, "sequential")) self.assertTrue(hasattr(summary, "cumulative")) self.assertTrue(hasattr(summary, "current")) self.assertTrue(hasattr(summary, "total")) with tempfile.TemporaryDirectory() as tmp_dir: benchmark_args = TensorFlowBenchmarkArguments( models=[MODEL_ID], inference=True, sequence_lengths=[8], batch_sizes=[1], log_filename=os.path.join(tmp_dir, "log.txt"), log_print=True, trace_memory_line_by_line=True, eager_mode=True, multi_process=False, ) benchmark = TensorFlowBenchmark(benchmark_args) result = benchmark.run() _check_summary_is_not_empty(result.inference_summary) self.assertTrue(Path(os.path.join(tmp_dir, "log.txt")).exists())
transformers/tests/benchmark/test_benchmark_tf.py/0
{ "file_path": "transformers/tests/benchmark/test_benchmark_tf.py", "repo_id": "transformers", "token_count": 4131 }
145
# coding=utf-8 # Copyright 2021 the HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import json import sys import tempfile import unittest from pathlib import Path import transformers from transformers import ( CONFIG_MAPPING, FEATURE_EXTRACTOR_MAPPING, AutoConfig, AutoFeatureExtractor, Wav2Vec2Config, Wav2Vec2FeatureExtractor, ) from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, get_tests_dir sys.path.append(str(Path(__file__).parent.parent.parent.parent / "utils")) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402 SAMPLE_FEATURE_EXTRACTION_CONFIG_DIR = get_tests_dir("fixtures") SAMPLE_FEATURE_EXTRACTION_CONFIG = get_tests_dir("fixtures/dummy_feature_extractor_config.json") SAMPLE_CONFIG = get_tests_dir("fixtures/dummy-config.json") class AutoFeatureExtractorTest(unittest.TestCase): def setUp(self): transformers.dynamic_module_utils.TIME_OUT_REMOTE_CODE = 0 def test_feature_extractor_from_model_shortcut(self): config = AutoFeatureExtractor.from_pretrained("facebook/wav2vec2-base-960h") self.assertIsInstance(config, Wav2Vec2FeatureExtractor) def test_feature_extractor_from_local_directory_from_key(self): config = AutoFeatureExtractor.from_pretrained(SAMPLE_FEATURE_EXTRACTION_CONFIG_DIR) self.assertIsInstance(config, Wav2Vec2FeatureExtractor) def test_feature_extractor_from_local_directory_from_config(self): with tempfile.TemporaryDirectory() as tmpdirname: model_config = Wav2Vec2Config() # remove feature_extractor_type to make sure config.json alone is enough to load feature processor locally config_dict = AutoFeatureExtractor.from_pretrained(SAMPLE_FEATURE_EXTRACTION_CONFIG_DIR).to_dict() config_dict.pop("feature_extractor_type") config = Wav2Vec2FeatureExtractor(**config_dict) # save in new folder model_config.save_pretrained(tmpdirname) config.save_pretrained(tmpdirname) config = AutoFeatureExtractor.from_pretrained(tmpdirname) # make sure private variable is not incorrectly saved dict_as_saved = json.loads(config.to_json_string()) self.assertTrue("_processor_class" not in dict_as_saved) self.assertIsInstance(config, Wav2Vec2FeatureExtractor) def test_feature_extractor_from_local_file(self): config = AutoFeatureExtractor.from_pretrained(SAMPLE_FEATURE_EXTRACTION_CONFIG) self.assertIsInstance(config, Wav2Vec2FeatureExtractor) def test_repo_not_found(self): with self.assertRaisesRegex( EnvironmentError, "bert-base is not a local folder and is not a valid model identifier" ): _ = AutoFeatureExtractor.from_pretrained("bert-base") def test_revision_not_found(self): with self.assertRaisesRegex( EnvironmentError, r"aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)" ): _ = AutoFeatureExtractor.from_pretrained(DUMMY_UNKNOWN_IDENTIFIER, revision="aaaaaa") def test_feature_extractor_not_found(self): with self.assertRaisesRegex( EnvironmentError, "hf-internal-testing/config-no-model does not appear to have a file named preprocessor_config.json.", ): _ = AutoFeatureExtractor.from_pretrained("hf-internal-testing/config-no-model") def test_from_pretrained_dynamic_feature_extractor(self): # If remote code is not set, we will time out when asking whether to load the model. with self.assertRaises(ValueError): feature_extractor = AutoFeatureExtractor.from_pretrained( "hf-internal-testing/test_dynamic_feature_extractor" ) # If remote code is disabled, we can't load this config. with self.assertRaises(ValueError): feature_extractor = AutoFeatureExtractor.from_pretrained( "hf-internal-testing/test_dynamic_feature_extractor", trust_remote_code=False ) feature_extractor = AutoFeatureExtractor.from_pretrained( "hf-internal-testing/test_dynamic_feature_extractor", trust_remote_code=True ) self.assertEqual(feature_extractor.__class__.__name__, "NewFeatureExtractor") # Test feature extractor can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained(tmp_dir) reloaded_feature_extractor = AutoFeatureExtractor.from_pretrained(tmp_dir, trust_remote_code=True) self.assertEqual(reloaded_feature_extractor.__class__.__name__, "NewFeatureExtractor") def test_new_feature_extractor_registration(self): try: AutoConfig.register("custom", CustomConfig) AutoFeatureExtractor.register(CustomConfig, CustomFeatureExtractor) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(ValueError): AutoFeatureExtractor.register(Wav2Vec2Config, Wav2Vec2FeatureExtractor) # Now that the config is registered, it can be used as any other config with the auto-API feature_extractor = CustomFeatureExtractor.from_pretrained(SAMPLE_FEATURE_EXTRACTION_CONFIG_DIR) with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained(tmp_dir) new_feature_extractor = AutoFeatureExtractor.from_pretrained(tmp_dir) self.assertIsInstance(new_feature_extractor, CustomFeatureExtractor) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig] def test_from_pretrained_dynamic_feature_extractor_conflict(self): class NewFeatureExtractor(Wav2Vec2FeatureExtractor): is_local = True try: AutoConfig.register("custom", CustomConfig) AutoFeatureExtractor.register(CustomConfig, NewFeatureExtractor) # If remote code is not set, the default is to use local feature_extractor = AutoFeatureExtractor.from_pretrained( "hf-internal-testing/test_dynamic_feature_extractor" ) self.assertEqual(feature_extractor.__class__.__name__, "NewFeatureExtractor") self.assertTrue(feature_extractor.is_local) # If remote code is disabled, we load the local one. feature_extractor = AutoFeatureExtractor.from_pretrained( "hf-internal-testing/test_dynamic_feature_extractor", trust_remote_code=False ) self.assertEqual(feature_extractor.__class__.__name__, "NewFeatureExtractor") self.assertTrue(feature_extractor.is_local) # If remote is enabled, we load from the Hub feature_extractor = AutoFeatureExtractor.from_pretrained( "hf-internal-testing/test_dynamic_feature_extractor", trust_remote_code=True ) self.assertEqual(feature_extractor.__class__.__name__, "NewFeatureExtractor") self.assertTrue(not hasattr(feature_extractor, "is_local")) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig]
transformers/tests/models/auto/test_feature_extraction_auto.py/0
{ "file_path": "transformers/tests/models/auto/test_feature_extraction_auto.py", "repo_id": "transformers", "token_count": 3275 }
146
# coding=utf-8 # Copyright 2021 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import annotations import copy import tempfile import unittest import numpy as np from transformers import BartConfig, BartTokenizer, is_tf_available from transformers.testing_utils import require_tf, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin from ...utils.test_modeling_tf_core import TFCoreModelTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFBartForConditionalGeneration, TFBartForSequenceClassification, TFBartModel @require_tf class TFBartModelTester: config_cls = BartConfig config_updates = {} hidden_act = "gelu" def __init__( self, parent, batch_size=13, seq_length=7, is_training=True, use_labels=False, vocab_size=99, hidden_size=32, num_hidden_layers=2, num_attention_heads=4, intermediate_size=37, hidden_dropout_prob=0.1, attention_probs_dropout_prob=0.1, max_position_embeddings=20, eos_token_id=2, pad_token_id=1, bos_token_id=0, ): self.parent = parent self.batch_size = batch_size self.seq_length = seq_length self.is_training = is_training self.use_labels = use_labels self.vocab_size = vocab_size self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.intermediate_size = intermediate_size self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.max_position_embeddings = max_position_embeddings self.eos_token_id = eos_token_id self.pad_token_id = pad_token_id self.bos_token_id = bos_token_id def prepare_config_and_inputs_for_common(self): # Ids are clipped to avoid "beginng of sequence", "end of sequence", and "pad" tokens input_ids = tf.clip_by_value( ids_tensor([self.batch_size, self.seq_length - 1], self.vocab_size), clip_value_min=self.eos_token_id + 1, clip_value_max=self.vocab_size + 1, ) # Explicity add "end of sequence" to the inputs eos_tensor = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size), 1) input_ids = tf.concat([input_ids, eos_tensor], axis=1) decoder_input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) config = self.config_cls( vocab_size=self.vocab_size, d_model=self.hidden_size, encoder_layers=self.num_hidden_layers, decoder_layers=self.num_hidden_layers, encoder_attention_heads=self.num_attention_heads, decoder_attention_heads=self.num_attention_heads, encoder_ffn_dim=self.intermediate_size, decoder_ffn_dim=self.intermediate_size, dropout=self.hidden_dropout_prob, attention_dropout=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, eos_token_ids=[2], bos_token_id=self.bos_token_id, pad_token_id=self.pad_token_id, decoder_start_token_id=self.pad_token_id, **self.config_updates, ) inputs_dict = prepare_bart_inputs_dict(config, input_ids, decoder_input_ids) return config, inputs_dict def check_decoder_model_past_large_inputs(self, config, inputs_dict): model = TFBartModel(config=config).get_decoder() input_ids = inputs_dict["input_ids"] input_ids = input_ids[:1, :] attention_mask = inputs_dict["attention_mask"][:1, :] head_mask = inputs_dict["head_mask"] self.batch_size = 1 # first forward pass outputs = model(input_ids, attention_mask=attention_mask, head_mask=head_mask, use_cache=True) output, past_key_values = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids next_tokens = ids_tensor((self.batch_size, 3), config.vocab_size) next_attn_mask = tf.cast(ids_tensor((self.batch_size, 3), 2), tf.int8) # append to next input_ids and next_input_ids = tf.concat([input_ids, next_tokens], axis=-1) next_attention_mask = tf.concat([attention_mask, next_attn_mask], axis=-1) output_from_no_past = model(next_input_ids, attention_mask=next_attention_mask) output_from_no_past = output_from_no_past[0] output_from_past = model(next_tokens, attention_mask=next_attention_mask, past_key_values=past_key_values) output_from_past = output_from_past[0] self.parent.assertEqual(next_tokens.shape[1], output_from_past.shape[1]) # select random slice random_slice_idx = int(ids_tensor((1,), output_from_past.shape[-1])) output_from_no_past_slice = output_from_no_past[:, -3:, random_slice_idx] output_from_past_slice = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(output_from_past_slice, output_from_no_past_slice, rtol=1e-3) def prepare_bart_inputs_dict( config, input_ids, decoder_input_ids, attention_mask=None, decoder_attention_mask=None, head_mask=None, decoder_head_mask=None, cross_attn_head_mask=None, ): if attention_mask is None: attention_mask = tf.cast(tf.math.not_equal(input_ids, config.pad_token_id), tf.int8) if decoder_attention_mask is None: decoder_attention_mask = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape, dtype=tf.int8), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:], config.pad_token_id), tf.int8), ], axis=-1, ) if head_mask is None: head_mask = tf.ones((config.encoder_layers, config.encoder_attention_heads)) if decoder_head_mask is None: decoder_head_mask = tf.ones((config.decoder_layers, config.decoder_attention_heads)) if cross_attn_head_mask is None: cross_attn_head_mask = tf.ones((config.decoder_layers, config.decoder_attention_heads)) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class TFBartModelTest(TFModelTesterMixin, TFCoreModelTesterMixin, PipelineTesterMixin, unittest.TestCase): all_model_classes = ( (TFBartForConditionalGeneration, TFBartForSequenceClassification, TFBartModel) if is_tf_available() else () ) all_generative_model_classes = (TFBartForConditionalGeneration,) if is_tf_available() else () pipeline_model_mapping = ( { "conversational": TFBartForConditionalGeneration, "feature-extraction": TFBartModel, "summarization": TFBartForConditionalGeneration, "text-classification": TFBartForSequenceClassification, "text2text-generation": TFBartForConditionalGeneration, "translation": TFBartForConditionalGeneration, "zero-shot": TFBartForSequenceClassification, } if is_tf_available() else {} ) is_encoder_decoder = True test_pruning = False test_onnx = True onnx_min_opset = 10 def setUp(self): self.model_tester = TFBartModelTester(self) self.config_tester = ConfigTester(self, config_class=BartConfig) def test_config(self): self.config_tester.run_common_tests() def test_decoder_model_past_large_inputs(self): config_and_inputs = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*config_and_inputs) # TODO (Joao): fix me @unittest.skip("Onnx compliancy broke with TF 2.10") def test_onnx_compliancy(self): pass # TFBartForSequenceClassification does not support inputs_embeds def test_inputs_embeds(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in (TFBartForConditionalGeneration, TFBartModel): model = model_class(config) inputs = copy.deepcopy(inputs_dict) if not self.is_encoder_decoder: input_ids = inputs["input_ids"] del inputs["input_ids"] else: encoder_input_ids = inputs["input_ids"] decoder_input_ids = inputs.get("decoder_input_ids", encoder_input_ids) del inputs["input_ids"] inputs.pop("decoder_input_ids", None) if not self.is_encoder_decoder: inputs["inputs_embeds"] = model.get_input_embeddings()(input_ids) else: inputs["inputs_embeds"] = model.get_input_embeddings()(encoder_input_ids) inputs["decoder_inputs_embeds"] = model.get_input_embeddings()(decoder_input_ids) inputs = self._prepare_for_class(inputs, model_class) model(inputs) # TFBartForSequenceClassification does not support inputs_embeds @slow def test_graph_mode_with_inputs_embeds(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in (TFBartForConditionalGeneration, TFBartModel): model = model_class(config) inputs = copy.deepcopy(inputs_dict) if not self.is_encoder_decoder: input_ids = inputs["input_ids"] del inputs["input_ids"] else: encoder_input_ids = inputs["input_ids"] decoder_input_ids = inputs.get("decoder_input_ids", encoder_input_ids) del inputs["input_ids"] inputs.pop("decoder_input_ids", None) if not self.is_encoder_decoder: inputs["inputs_embeds"] = model.get_input_embeddings()(input_ids) else: inputs["inputs_embeds"] = model.get_input_embeddings()(encoder_input_ids) inputs["decoder_inputs_embeds"] = model.get_input_embeddings()(decoder_input_ids) inputs = self._prepare_for_class(inputs, model_class) @tf.function def run_in_graph_mode(): return model(inputs) outputs = run_in_graph_mode() self.assertIsNotNone(outputs) @slow def test_save_load_after_resize_token_embeddings(self): # Custom version of this test to ensure "end of sequence" tokens are present throughout if not self.test_resize_embeddings: return config, original_inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # create a model with resized (expended) embeddings new_tokens_size = 10 old_total_size = config.vocab_size new_total_size = old_total_size + new_tokens_size model = model_class(config=copy.deepcopy(config)) # `resize_token_embeddings` mutates `config` model.build_in_name_scope() model.resize_token_embeddings(new_total_size) # fetch the output for an input exclusively made of new members of the vocabulary inputs_dict = copy.deepcopy(original_inputs_dict) ids_feat_name = None if "input_ids" in inputs_dict: ids_feat_name = "input_ids" elif "decoder_input_ids" in inputs_dict: ids_feat_name = "decoder_input_ids" else: assert False, "No input ids feature found in the inputs dict" new_vocab_input_ids = ids_tensor(inputs_dict[ids_feat_name].shape, new_tokens_size) new_vocab_input_ids += old_total_size # Replace last id with EOS token new_vocab_input_ids = new_vocab_input_ids[:, :-1] new_vocab_input_ids = tf.concat( [new_vocab_input_ids, tf.ones((tf.shape(new_vocab_input_ids)[0], 1), dtype=tf.int32) * 2], axis=1 ) inputs_dict[ids_feat_name] = new_vocab_input_ids if "input_ids" in inputs_dict: inputs_dict["input_ids"] = new_vocab_input_ids if "decoder_input_ids" in inputs_dict: inputs_dict["decoder_input_ids"] = new_vocab_input_ids prepared_inputs = self._prepare_for_class(inputs_dict, model_class) outputs = model(**prepared_inputs) # save and load the model with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(tmpdirname, saved_model=False) model = model_class.from_pretrained(tmpdirname) restored_model_outputs = model(**prepared_inputs) # check that the output for the restored model is the same self.assert_outputs_same(restored_model_outputs, outputs) @unittest.skip("Does not support conversations.") def test_pipeline_conversational(self): pass def _long_tensor(tok_lst): return tf.constant(tok_lst, dtype=tf.int32) @require_tf class TFBartHeadTests(unittest.TestCase): vocab_size = 99 def _get_config_and_data(self): eos_column_vector = tf.ones((4, 1), dtype=tf.int32) * 2 input_ids = tf.concat([ids_tensor((4, 6), self.vocab_size - 3) + 3, eos_column_vector], axis=1) batch_size = input_ids.shape[0] config = BartConfig( vocab_size=self.vocab_size, d_model=24, encoder_layers=2, decoder_layers=2, encoder_attention_heads=2, decoder_attention_heads=2, encoder_ffn_dim=32, decoder_ffn_dim=32, max_position_embeddings=48, eos_token_id=2, pad_token_id=1, bos_token_id=0, decoder_start_token_id=2, ) return config, input_ids, batch_size def test_lm_forward(self): config, input_ids, batch_size = self._get_config_and_data() decoder_lm_labels = ids_tensor([batch_size, input_ids.shape[1]], self.vocab_size) lm_model = TFBartForConditionalGeneration(config) outputs = lm_model(input_ids=input_ids, labels=decoder_lm_labels, decoder_input_ids=input_ids, use_cache=False) expected_shape = (batch_size, input_ids.shape[1], config.vocab_size) self.assertEqual(outputs.logits.shape, expected_shape) def test_lm_uneven_forward(self): config = BartConfig( vocab_size=10, d_model=24, encoder_layers=2, decoder_layers=2, encoder_attention_heads=2, decoder_attention_heads=2, encoder_ffn_dim=32, decoder_ffn_dim=32, max_position_embeddings=48, ) lm_model = TFBartForConditionalGeneration(config) context = tf.fill((7, 2), 4) summary = tf.fill((7, 7), 6) outputs = lm_model(input_ids=context, decoder_input_ids=summary, use_cache=False) expected_shape = (*summary.shape, config.vocab_size) self.assertEqual(outputs.logits.shape, expected_shape) @require_tf class TFBartForSequenceClassificationTest(unittest.TestCase): def test_model_fails_for_uneven_eos_tokens(self): config = BartConfig(eos_token_id=2) model = TFBartForSequenceClassification(config) inputs = { "input_ids": tf.constant([[1, 2, 2, 2], [1, 3, 2, 2], [2, 2, 3, 3]]), "attention_mask": tf.constant([[1, 1, 1, 1], [1, 1, 1, 1], [1, 1, 1, 1]]), } with self.assertRaises(tf.errors.InvalidArgumentError): model(inputs) @slow @require_tf class TFBartModelIntegrationTest(unittest.TestCase): def test_inference_no_head(self): model = TFBartForConditionalGeneration.from_pretrained("facebook/bart-large").model input_ids = _long_tensor([[0, 31414, 232, 328, 740, 1140, 12695, 69, 46078, 1588, 2]]) attention_mask = tf.cast(tf.math.not_equal(input_ids, model.config.pad_token_id), tf.int8) output = model(input_ids=input_ids, attention_mask=attention_mask)[0] expected_shape = (1, 11, 1024) self.assertEqual(output.shape, expected_shape) expected_slice = tf.convert_to_tensor( [[0.7144, 0.8143, -1.2813], [0.7144, 0.8143, -1.2813], [-0.0467, 2.5911, -2.1845]], ) tf.debugging.assert_near(output[:, :3, :3], expected_slice, atol=1e-3) def test_cnn_summarization_same_as_fairseq_hard(self): hf = TFBartForConditionalGeneration.from_pretrained("facebook/bart-large-cnn") tok = self.tok FRANCE_ARTICLE = ( # @noqa " Marseille, France (CNN)The French prosecutor leading an investigation into the crash of Germanwings" " Flight 9525 insisted Wednesday that he was not aware of any video footage from on board the plane." ' Marseille prosecutor Brice Robin told CNN that "so far no videos were used in the crash investigation."' ' He added, "A person who has such a video needs to immediately give it to the investigators." Robin\'s' " comments follow claims by two magazines, German daily Bild and French Paris Match, of a cell phone video" " showing the harrowing final seconds from on board Germanwings Flight 9525 as it crashed into the French" " Alps. All 150 on board were killed. Paris Match and Bild reported that the video was recovered from a" " phone at the wreckage site. The two publications described the supposed video, but did not post it on" " their websites. The publications said that they watched the video, which was found by a source close to" " the investigation. \"One can hear cries of 'My God' in several languages,\" Paris Match reported." ' "Metallic banging can also be heard more than three times, perhaps of the pilot trying to open the' " cockpit door with a heavy object. Towards the end, after a heavy shake, stronger than the others, the" ' screaming intensifies. Then nothing." "It is a very disturbing scene," said Julian Reichelt,' " editor-in-chief of Bild online. An official with France's accident investigation agency, the BEA, said" " the agency is not aware of any such video. Lt. Col. Jean-Marc Menichini, a French Gendarmerie spokesman" " in charge of communications on rescue efforts around the Germanwings crash site, told CNN that the" ' reports were "completely wrong" and "unwarranted." Cell phones have been collected at the site, he said,' ' but that they "hadn\'t been exploited yet." Menichini said he believed the cell phones would need to be' " sent to the Criminal Research Institute in Rosny sous-Bois, near Paris, in order to be analyzed by" " specialized technicians working hand-in-hand with investigators. But none of the cell phones found so" " far have been sent to the institute, Menichini said. Asked whether staff involved in the search could" ' have leaked a memory card to the media, Menichini answered with a categorical "no." Reichelt told "Erin' ' Burnett: Outfront" that he had watched the video and stood by the report, saying Bild and Paris Match' ' are "very confident" that the clip is real. He noted that investigators only revealed they\'d recovered' ' cell phones from the crash site after Bild and Paris Match published their reports. "That is something' " we did not know before. ... Overall we can say many things of the investigation weren't revealed by the" ' investigation at the beginning," he said. What was mental state of Germanwings co-pilot? German airline' " Lufthansa confirmed Tuesday that co-pilot Andreas Lubitz had battled depression years before he took the" " controls of Germanwings Flight 9525, which he's accused of deliberately crashing last week in the" ' French Alps. Lubitz told his Lufthansa flight training school in 2009 that he had a "previous episode of' ' severe depression," the airline said Tuesday. Email correspondence between Lubitz and the school' " discovered in an internal investigation, Lufthansa said, included medical documents he submitted in" " connection with resuming his flight training. The announcement indicates that Lufthansa, the parent" " company of Germanwings, knew of Lubitz's battle with depression, allowed him to continue training and" " ultimately put him in the cockpit. Lufthansa, whose CEO Carsten Spohr previously said Lubitz was 100%" ' fit to fly, described its statement Tuesday as a "swift and seamless clarification" and said it was' " sharing the information and documents -- including training and medical records -- with public" " prosecutors. Spohr traveled to the crash site Wednesday, where recovery teams have been working for the" " past week to recover human remains and plane debris scattered across a steep mountainside. He saw the" " crisis center set up in Seyne-les-Alpes, laid a wreath in the village of Le Vernet, closer to the crash" " site, where grieving families have left flowers at a simple stone memorial. Menichini told CNN late" " Tuesday that no visible human remains were left at the site but recovery teams would keep searching." " French President Francois Hollande, speaking Tuesday, said that it should be possible to identify all" " the victims using DNA analysis by the end of the week, sooner than authorities had previously suggested." " In the meantime, the recovery of the victims' personal belongings will start Wednesday, Menichini said." " Among those personal belongings could be more cell phones belonging to the 144 passengers and six crew" " on board. Check out the latest from our correspondents . The details about Lubitz's correspondence with" " the flight school during his training were among several developments as investigators continued to" " delve into what caused the crash and Lubitz's possible motive for downing the jet. A Lufthansa" " spokesperson told CNN on Tuesday that Lubitz had a valid medical certificate, had passed all his" ' examinations and "held all the licenses required." Earlier, a spokesman for the prosecutor\'s office in' " Dusseldorf, Christoph Kumpa, said medical records reveal Lubitz suffered from suicidal tendencies at" " some point before his aviation career and underwent psychotherapy before he got his pilot's license." " Kumpa emphasized there's no evidence suggesting Lubitz was suicidal or acting aggressively before the" " crash. Investigators are looking into whether Lubitz feared his medical condition would cause him to" " lose his pilot's license, a European government official briefed on the investigation told CNN on" ' Tuesday. While flying was "a big part of his life," the source said, it\'s only one theory being' " considered. Another source, a law enforcement official briefed on the investigation, also told CNN that" " authorities believe the primary motive for Lubitz to bring down the plane was that he feared he would" " not be allowed to fly because of his medical problems. Lubitz's girlfriend told investigators he had" " seen an eye doctor and a neuropsychologist, both of whom deemed him unfit to work recently and concluded" " he had psychological issues, the European government official said. But no matter what details emerge" " about his previous mental health struggles, there's more to the story, said Brian Russell, a forensic" ' psychologist. "Psychology can explain why somebody would turn rage inward on themselves about the fact' " that maybe they weren't going to keep doing their job and they're upset about that and so they're" ' suicidal," he said. "But there is no mental illness that explains why somebody then feels entitled to' " also take that rage and turn it outward on 149 other people who had nothing to do with the person's" ' problems." Germanwings crash compensation: What we know . Who was the captain of Germanwings Flight' " 9525? CNN's Margot Haddad reported from Marseille and Pamela Brown from Dusseldorf, while Laura" " Smith-Spark wrote from London. CNN's Frederik Pleitgen, Pamela Boykoff, Antonia Mortensen, Sandrine" " Amiel and Anna-Maja Rappard contributed to this report." ) EXPECTED_SUMMARY_FRANCE = ( "French prosecutor says he's not aware of any video footage from on board the plane. German daily Bild" " and French Paris Match claim to have found a cell phone video of the crash. A French Gendarmerie" ' spokesman calls the reports "completely wrong" and "unwarranted" German airline Lufthansa confirms' " co-pilot Andreas Lubitz had battled depression." ) SHORTER_ARTICLE = ( " (CNN)The Palestinian Authority officially became the 123rd member of the International Criminal Court on" " Wednesday, a step that gives the court jurisdiction over alleged crimes in Palestinian territories. The" " formal accession was marked with a ceremony at The Hague, in the Netherlands, where the court is based." " The Palestinians signed the ICC's founding Rome Statute in January, when they also accepted its" ' jurisdiction over alleged crimes committed "in the occupied Palestinian territory, including East' ' Jerusalem, since June 13, 2014." Later that month, the ICC opened a preliminary examination into the' " situation in Palestinian territories, paving the way for possible war crimes investigations against" " Israelis. As members of the court, Palestinians may be subject to counter-charges as well. Israel and" " the United States, neither of which is an ICC member, opposed the Palestinians' efforts to join the" " body. But Palestinian Foreign Minister Riad al-Malki, speaking at Wednesday's ceremony, said it was a" ' move toward greater justice. "As Palestine formally becomes a State Party to the Rome Statute today, the' ' world is also a step closer to ending a long era of impunity and injustice," he said, according to an' ' ICC news release. "Indeed, today brings us closer to our shared goals of justice and peace." Judge' " Kuniko Ozaki, a vice president of the ICC, said acceding to the treaty was just the first step for the" ' Palestinians. "As the Rome Statute today enters into force for the State of Palestine, Palestine' " acquires all the rights as well as responsibilities that come with being a State Party to the Statute." ' These are substantive commitments, which cannot be taken lightly," she said. Rights group Human Rights' ' Watch welcomed the development. "Governments seeking to penalize Palestine for joining the ICC should' " immediately end their pressure, and countries that support universal acceptance of the court's treaty" ' should speak out to welcome its membership," said Balkees Jarrah, international justice counsel for the' " group. \"What's objectionable is the attempts to undermine international justice, not Palestine's" ' decision to join a treaty to which over 100 countries around the world are members." In January, when' " the preliminary ICC examination was opened, Israeli Prime Minister Benjamin Netanyahu described it as an" ' outrage, saying the court was overstepping its boundaries. The United States also said it "strongly"' " disagreed with the court's decision. \"As we have said repeatedly, we do not believe that Palestine is a" ' state and therefore we do not believe that it is eligible to join the ICC," the State Department said in' ' a statement. It urged the warring sides to resolve their differences through direct negotiations. "We' ' will continue to oppose actions against Israel at the ICC as counterproductive to the cause of peace,"' " it said. But the ICC begs to differ with the definition of a state for its purposes and refers to the" ' territories as "Palestine." While a preliminary examination is not a formal investigation, it allows the' " court to review evidence and determine whether to investigate suspects on both sides. Prosecutor Fatou" ' Bensouda said her office would "conduct its analysis in full independence and impartiality." The war' " between Israel and Hamas militants in Gaza last summer left more than 2,000 people dead. The inquiry" " will include alleged war crimes committed since June. The International Criminal Court was set up in" " 2002 to prosecute genocide, crimes against humanity and war crimes. CNN's Vasco Cotovio, Kareem Khadder" " and Faith Karimi contributed to this report." ) EXPECTED_SUMMARY_SHORTER = ( "The Palestinian Authority becomes the 123rd member of the International Criminal Court. The move gives" " the court jurisdiction over alleged crimes in Palestinian territories. Israel and the United States" " opposed the Palestinians' efforts to join the body. But Palestinian Foreign Minister Riad al-Malki said" " it was a move toward greater justice." ) # The below article tests that we don't add any hypotheses outside of the top n_beams IRAN_ARTICLE = ( " (CNN)The United States and its negotiating partners reached a very strong framework agreement with Iran" " in Lausanne, Switzerland, on Thursday that limits Iran's nuclear program in such a way as to effectively" " block it from building a nuclear weapon. Expect pushback anyway, if the recent past is any harbinger." " Just last month, in an attempt to head off such an agreement, House Speaker John Boehner invited Israeli" " Prime Minister Benjamin Netanyahu to preemptively blast it before Congress, and 47 senators sent a" " letter to the Iranian leadership warning them away from a deal. The debate that has already begun since" " the announcement of the new framework will likely result in more heat than light. It will not be helped" " by the gathering swirl of dubious assumptions and doubtful assertions. Let us address some of these: ." " The most misleading assertion, despite universal rejection by experts, is that the negotiations'" " objective at the outset was the total elimination of any nuclear program in Iran. That is the position" " of Netanyahu and his acolytes in the U.S. Congress. But that is not and never was the objective. If it" " had been, there would have been no Iranian team at the negotiating table. Rather, the objective has" " always been to structure an agreement or series of agreements so that Iran could not covertly develop a" " nuclear arsenal before the United States and its allies could respond. The new framework has exceeded" " expectations in achieving that goal. It would reduce Iran's low-enriched uranium stockpile, cut by" " two-thirds its number of installed centrifuges and implement a rigorous inspection regime. Another" " dubious assumption of opponents is that the Iranian nuclear program is a covert weapons program. Despite" " sharp accusations by some in the United States and its allies, Iran denies having such a program, and" " U.S. intelligence contends that Iran has not yet made the decision to build a nuclear weapon. Iran's" " continued cooperation with International Atomic Energy Agency inspections is further evidence on this" " point, and we'll know even more about Iran's program in the coming months and years because of the deal." " In fact, the inspections provisions that are part of this agreement are designed to protect against any" " covert action by the Iranians. What's more, the rhetoric of some members of Congress has implied that" " the negotiations have been between only the United States and Iran (i.e., the 47 senators' letter" " warning that a deal might be killed by Congress or a future president). This of course is not the case." " The talks were between Iran and the five permanent members of the U.N. Security Council (United States," " United Kingdom, France, China and Russia) plus Germany, dubbed the P5+1. While the United States has" " played a leading role in the effort, it negotiated the terms alongside its partners. If the agreement" " reached by the P5+1 is rejected by Congress, it could result in an unraveling of the sanctions on Iran" " and threaten NATO cohesion in other areas. Another questionable assertion is that this agreement" " contains a sunset clause, after which Iran will be free to do as it pleases. Again, this is not the" " case. Some of the restrictions on Iran's nuclear activities, such as uranium enrichment, will be eased" " or eliminated over time, as long as 15 years. But most importantly, the framework agreement includes" " Iran's ratification of the Additional Protocol, which allows IAEA inspectors expanded access to nuclear" " sites both declared and nondeclared. This provision will be permanent. It does not sunset. Thus, going" " forward, if Iran decides to enrich uranium to weapons-grade levels, monitors will be able to detect such" " a move in a matter of days and alert the U.N. Security Council. Many in Congress have said that the" ' agreement should be a formal treaty requiring the Senate to "advise and consent." But the issue is not' " suited for a treaty. Treaties impose equivalent obligations on all signatories. For example, the New" " START treaty limits Russia and the United States to 1,550 deployed strategic warheads. But any agreement" " with Iran will not be so balanced. The restrictions and obligations in the final framework agreement" " will be imposed almost exclusively on Iran. The P5+1 are obligated only to ease and eventually remove" " most but not all economic sanctions, which were imposed as leverage to gain this final deal. Finally" " some insist that any agreement must address Iranian missile programs, human rights violations or support" " for Hamas or Hezbollah. As important as these issues are, and they must indeed be addressed, they are" " unrelated to the most important aim of a nuclear deal: preventing a nuclear Iran. To include them in" " the negotiations would be a poison pill. This agreement should be judged on its merits and on how it" " affects the security of our negotiating partners and allies, including Israel. Those judgments should be" " fact-based, not based on questionable assertions or dubious assumptions." ) EXPECTED_SUMMARY_IRAN = ( "The U.S. and its negotiating partners reached a very strong framework agreement with Iran. Peter Bergen:" " The debate that has already begun will likely result in more heat than light. He says the agreement" " limits Iran's nuclear program in such a way as to effectively block it from building a nuclear weapon." " Bergen says the most important aim of a nuclear deal is preventing a nuclear Iran." ) ARTICLE_SUBWAY = ( " New York (CNN)When Liana Barrientos was 23 years old, she got married in Westchester County, New York. A" " year later, she got married again in Westchester County, but to a different man and without divorcing" " her first husband. Only 18 days after that marriage, she got hitched yet again. Then, Barrientos" ' declared "I do" five more times, sometimes only within two weeks of each other. In 2010, she married' " once more, this time in the Bronx. In an application for a marriage license, she stated it was her" ' "first and only" marriage. Barrientos, now 39, is facing two criminal counts of "offering a false' ' instrument for filing in the first degree," referring to her false statements on the 2010 marriage' " license application, according to court documents. Prosecutors said the marriages were part of an" " immigration scam. On Friday, she pleaded not guilty at State Supreme Court in the Bronx, according to" " her attorney, Christopher Wright, who declined to comment further. After leaving court, Barrientos was" " arrested and charged with theft of service and criminal trespass for allegedly sneaking into the New" " York subway through an emergency exit, said Detective Annette Markowski, a police spokeswoman. In total," " Barrientos has been married 10 times, with nine of her marriages occurring between 1999 and 2002. All" " occurred either in Westchester County, Long Island, New Jersey or the Bronx. She is believed to still be" " married to four men, and at one time, she was married to eight men at once, prosecutors say. Prosecutors" " said the immigration scam involved some of her husbands, who filed for permanent residence status" " shortly after the marriages. Any divorces happened only after such filings were approved. It was" " unclear whether any of the men will be prosecuted. The case was referred to the Bronx District" " Attorney's Office by Immigration and Customs Enforcement and the Department of Homeland Security's" ' Investigation Division. Seven of the men are from so-called "red-flagged" countries, including Egypt,' " Turkey, Georgia, Pakistan and Mali. Her eighth husband, Rashid Rajput, was deported in 2006 to his" " native Pakistan after an investigation by the Joint Terrorism Task Force. If convicted, Barrientos faces" " up to four years in prison. Her next court appearance is scheduled for May 18." ) EXPECTED_SUMMARY_SUBWAY = ( "Liana Barrientos has been married 10 times, sometimes within two weeks of each other. Prosecutors say the" " marriages were part of an immigration scam. On Friday, she pleaded not guilty at State Supreme Court in" " the Bronx. She was arrested and charged with theft of service and criminal trespass for allegedly" " sneaking into the subway." ) dct = tok( [FRANCE_ARTICLE, SHORTER_ARTICLE, IRAN_ARTICLE, ARTICLE_SUBWAY], max_length=1024, truncation_strategy="only_first", padding="longest", truncation=True, return_tensors="tf", ) self.assertEqual(1024, dct["input_ids"].shape[1]) hypotheses_batch = hf.generate( input_ids=dct["input_ids"], attention_mask=dct["attention_mask"], ) assert hypotheses_batch[:, 1].numpy().tolist() == [0, 0, 0, 0] # test force_bos_token_to_be_generated decoded = tok.batch_decode(hypotheses_batch, skip_special_tokens=True, clean_up_tokenization_spaces=False) expected_batch = [ EXPECTED_SUMMARY_FRANCE, EXPECTED_SUMMARY_SHORTER, EXPECTED_SUMMARY_IRAN, EXPECTED_SUMMARY_SUBWAY, ] assert decoded == expected_batch @cached_property def tok(self): return BartTokenizer.from_pretrained("facebook/bart-large") @slow def test_contrastive_search_bart(self): article = ( " New York (CNN)When Liana Barrientos was 23 years old, she got married in Westchester County, New York. A" " year later, she got married again in Westchester County, but to a different man and without divorcing" " her first husband. Only 18 days after that marriage, she got hitched yet again. Then, Barrientos" ' declared "I do" five more times, sometimes only within two weeks of each other. In 2010, she married' " once more, this time in the Bronx. In an application for a marriage license, she stated it was her" ' "first and only" marriage. Barrientos, now 39, is facing two criminal counts of "offering a false' ' instrument for filing in the first degree," referring to her false statements on the 2010 marriage' " license application, according to court documents. Prosecutors said the marriages were part of an" " immigration scam. On Friday, she pleaded not guilty at State Supreme Court in the Bronx, according to" " her attorney, Christopher Wright, who declined to comment further. After leaving court, Barrientos was" " arrested and charged with theft of service and criminal trespass for allegedly sneaking into the New" " York subway through an emergency exit, said Detective Annette Markowski, a police spokeswoman. In total," " Barrientos has been married 10 times, with nine of her marriages occurring between 1999 and 2002. All" " occurred either in Westchester County, Long Island, New Jersey or the Bronx. She is believed to still be" " married to four men, and at one time, she was married to eight men at once, prosecutors say. Prosecutors" " said the immigration scam involved some of her husbands, who filed for permanent residence status" " shortly after the marriages. Any divorces happened only after such filings were approved. It was" " unclear whether any of the men will be prosecuted. The case was referred to the Bronx District" " Attorney's Office by Immigration and Customs Enforcement and the Department of Homeland Security's" ' Investigation Division. Seven of the men are from so-called "red-flagged" countries, including Egypt,' " Turkey, Georgia, Pakistan and Mali. Her eighth husband, Rashid Rajput, was deported in 2006 to his" " native Pakistan after an investigation by the Joint Terrorism Task Force. If convicted, Barrientos faces" " up to four years in prison. Her next court appearance is scheduled for May 18." ) bart_tokenizer = BartTokenizer.from_pretrained("facebook/bart-large-cnn") bart_model = TFBartForConditionalGeneration.from_pretrained("facebook/bart-large-cnn") input_ids = bart_tokenizer( article, add_special_tokens=False, truncation=True, max_length=512, return_tensors="tf" ).input_ids outputs = bart_model.generate(input_ids, penalty_alpha=0.5, top_k=5, max_length=64) generated_text = bart_tokenizer.batch_decode(outputs, skip_special_tokens=True) self.assertListEqual( generated_text, [ "Liana Barrientos, 39, pleaded not guilty to charges related to false marriage statements. " "Prosecutors say she married at least 10 times, sometimes within two weeks of each other. She is " "accused of being part of an immigration scam to get permanent residency. If convicted, she faces up " "to four years in" ], ) @slow def test_contrastive_search_bart_xla(self): article = ( " New York (CNN)When Liana Barrientos was 23 years old, she got married in Westchester County, New York. A" " year later, she got married again in Westchester County, but to a different man and without divorcing" " her first husband. Only 18 days after that marriage, she got hitched yet again. Then, Barrientos" ' declared "I do" five more times, sometimes only within two weeks of each other. In 2010, she married' " once more, this time in the Bronx. In an application for a marriage license, she stated it was her" ' "first and only" marriage. Barrientos, now 39, is facing two criminal counts of "offering a false' ' instrument for filing in the first degree," referring to her false statements on the 2010 marriage' " license application, according to court documents. Prosecutors said the marriages were part of an" " immigration scam. On Friday, she pleaded not guilty at State Supreme Court in the Bronx, according to" " her attorney, Christopher Wright, who declined to comment further. After leaving court, Barrientos was" " arrested and charged with theft of service and criminal trespass for allegedly sneaking into the New" " York subway through an emergency exit, said Detective Annette Markowski, a police spokeswoman. In total," " Barrientos has been married 10 times, with nine of her marriages occurring between 1999 and 2002. All" " occurred either in Westchester County, Long Island, New Jersey or the Bronx. She is believed to still be" " married to four men, and at one time, she was married to eight men at once, prosecutors say. Prosecutors" " said the immigration scam involved some of her husbands, who filed for permanent residence status" " shortly after the marriages. Any divorces happened only after such filings were approved. It was" " unclear whether any of the men will be prosecuted. The case was referred to the Bronx District" " Attorney's Office by Immigration and Customs Enforcement and the Department of Homeland Security's" ' Investigation Division. Seven of the men are from so-called "red-flagged" countries, including Egypt,' " Turkey, Georgia, Pakistan and Mali. Her eighth husband, Rashid Rajput, was deported in 2006 to his" " native Pakistan after an investigation by the Joint Terrorism Task Force. If convicted, Barrientos faces" " up to four years in prison. Her next court appearance is scheduled for May 18." ) bart_tokenizer = BartTokenizer.from_pretrained("facebook/bart-large-cnn") bart_model = TFBartForConditionalGeneration.from_pretrained("facebook/bart-large-cnn") input_ids = bart_tokenizer( article, add_special_tokens=False, truncation=True, max_length=512, return_tensors="tf" ).input_ids xla_generate = tf.function(bart_model.generate, jit_compile=True) # no_repeat_ngram_size set to 0 because it isn't compatible with XLA, but doesn't change the original output outputs = xla_generate(input_ids, penalty_alpha=0.5, top_k=5, max_length=64, no_repeat_ngram_size=0) generated_text = bart_tokenizer.batch_decode(outputs, skip_special_tokens=True) self.assertListEqual( generated_text, [ "Liana Barrientos, 39, pleaded not guilty to charges related to false marriage statements. " "Prosecutors say she married at least 10 times, sometimes within two weeks of each other. She is " "accused of being part of an immigration scam to get permanent residency. If convicted, she faces up " "to four years in" ], ) @slow @require_tf class FasterTFBartModelIntegrationTests(unittest.TestCase): """These tests are useful for debugging since they operate on a model with 1 encoder layer and 1 decoder layer.""" @cached_property def tok(self): return BartTokenizer.from_pretrained("facebook/bart-large") @cached_property def xsum_1_1_model(self): return TFBartForConditionalGeneration.from_pretrained("sshleifer/distilbart-xsum-1-1") def test_xsum_1_1_generation(self): model = self.xsum_1_1_model assert model.model.decoder.embed_tokens == model.model.shared ARTICLE = ( "The Palestinian Authority officially became the 123rd member of the International Criminal Court on" " Wednesday, a step that gives the court jurisdiction over alleged crimes in Palestinian territories. The" " formal accession was marked with a ceremony at The Hague, in the Netherlands, where the court is based." " The Palestinians signed the ICC's founding Rome Statute in January, when they also accepted its" ' jurisdiction over alleged crimes committed "in the occupied Palestinian territory, including East' ' Jerusalem, since June 13, 2014." Later that month, the ICC opened a preliminary examination into the' " situation in Palestinian territories, paving the way for possible war crimes investigations against" " Israelis. As members of the court, Palestinians may be subject to counter-charges as well. Israel and" " the United States, neither of which is an ICC member, opposed the Palestinians' efforts to join the" " body. But Palestinian Foreign Minister Riad al-Malki, speaking at Wednesday's ceremony, said it was a" ' move toward greater justice. "As Palestine formally becomes a State Party to the Rome Statute today, the' ' world is also a step closer to ending a long era of impunity and injustice," he said, according to an' ' ICC news release. "Indeed, today brings us closer to our shared goals of justice and peace." Judge' " Kuniko Ozaki, a vice president of the ICC, said acceding to the treaty was just the first step for the" ' Palestinians. "As the Rome Statute today enters into force for the State of Palestine, Palestine' " acquires all the rights as well as responsibilities that come with being a State Party to the Statute." ' These are substantive commitments, which cannot be taken lightly," she said. Rights group Human Rights' ' Watch welcomed the development. "Governments seeking to penalize Palestine for joining the ICC should' " immediately end their pressure, and countries that support universal acceptance of the court's treaty" ' should speak out to welcome its membership," said Balkees Jarrah, international justice counsel for the' " group. \"What's objectionable is the attempts to undermine international justice, not Palestine's" ' decision to join a treaty to which over 100 countries around the world are members." In January, when' " the preliminary ICC examination was opened, Israeli Prime Minister Benjamin Netanyahu described it as an" ' outrage, saying the court was overstepping its boundaries. The United States also said it "strongly"' " disagreed with the court's decision. \"As we have said repeatedly, we do not believe that Palestine is a" ' state and therefore we do not believe that it is eligible to join the ICC," the State Department said in' ' a statement. It urged the warring sides to resolve their differences through direct negotiations. "We' ' will continue to oppose actions against Israel at the ICC as counterproductive to the cause of peace,"' " it said. But the ICC begs to differ with the definition of a state for its purposes and refers to the" ' territories as "Palestine." While a preliminary examination is not a formal investigation, it allows the' " court to review evidence and determine whether to investigate suspects on both sides. Prosecutor Fatou" ' Bensouda said her office would "conduct its analysis in full independence and impartiality." The war' " between Israel and Hamas militants in Gaza last summer left more than 2,000 people dead. The inquiry" " will include alleged war crimes committed since June. The International Criminal Court was set up in" " 2002 to prosecute genocide, crimes against humanity and war crimes." ) EXPECTED = ( " The International Criminal Court (ICC) has announced that it has been announced by the International" " Criminal court." ) dct = self.tok(ARTICLE, return_tensors="tf") generated_ids = model.generate(**dct, num_beams=4) result = self.tok.batch_decode(generated_ids, skip_special_tokens=True)[0] assert result == EXPECTED def test_xsum_1_1_xla_generation(self): # same test as above, but with `no_repeat_ngram_size=0` (not compatible with XLA) and XLA comparison enabled model = self.xsum_1_1_model assert model.model.decoder.embed_tokens == model.model.shared ARTICLE = ( "The Palestinian Authority officially became the 123rd member of the International Criminal Court on" " Wednesday, a step that gives the court jurisdiction over alleged crimes in Palestinian territories. The" " formal accession was marked with a ceremony at The Hague, in the Netherlands, where the court is based." " The Palestinians signed the ICC's founding Rome Statute in January, when they also accepted its" ' jurisdiction over alleged crimes committed "in the occupied Palestinian territory, including East' ' Jerusalem, since June 13, 2014." Later that month, the ICC opened a preliminary examination into the' " situation in Palestinian territories, paving the way for possible war crimes investigations against" " Israelis. As members of the court, Palestinians may be subject to counter-charges as well. Israel and" " the United States, neither of which is an ICC member, opposed the Palestinians' efforts to join the" " body. But Palestinian Foreign Minister Riad al-Malki, speaking at Wednesday's ceremony, said it was a" ' move toward greater justice. "As Palestine formally becomes a State Party to the Rome Statute today, the' ' world is also a step closer to ending a long era of impunity and injustice," he said, according to an' ' ICC news release. "Indeed, today brings us closer to our shared goals of justice and peace." Judge' " Kuniko Ozaki, a vice president of the ICC, said acceding to the treaty was just the first step for the" ' Palestinians. "As the Rome Statute today enters into force for the State of Palestine, Palestine' " acquires all the rights as well as responsibilities that come with being a State Party to the Statute." ' These are substantive commitments, which cannot be taken lightly," she said. Rights group Human Rights' ' Watch welcomed the development. "Governments seeking to penalize Palestine for joining the ICC should' " immediately end their pressure, and countries that support universal acceptance of the court's treaty" ' should speak out to welcome its membership," said Balkees Jarrah, international justice counsel for the' " group. \"What's objectionable is the attempts to undermine international justice, not Palestine's" ' decision to join a treaty to which over 100 countries around the world are members." In January, when' " the preliminary ICC examination was opened, Israeli Prime Minister Benjamin Netanyahu described it as an" ' outrage, saying the court was overstepping its boundaries. The United States also said it "strongly"' " disagreed with the court's decision. \"As we have said repeatedly, we do not believe that Palestine is a" ' state and therefore we do not believe that it is eligible to join the ICC," the State Department said in' ' a statement. It urged the warring sides to resolve their differences through direct negotiations. "We' ' will continue to oppose actions against Israel at the ICC as counterproductive to the cause of peace,"' " it said. But the ICC begs to differ with the definition of a state for its purposes and refers to the" ' territories as "Palestine." While a preliminary examination is not a formal investigation, it allows the' " court to review evidence and determine whether to investigate suspects on both sides. Prosecutor Fatou" ' Bensouda said her office would "conduct its analysis in full independence and impartiality." The war' " between Israel and Hamas militants in Gaza last summer left more than 2,000 people dead. The inquiry" " will include alleged war crimes committed since June. The International Criminal Court was set up in" " 2002 to prosecute genocide, crimes against humanity and war crimes." ) EXPECTED = ( " The International Criminal Court (ICC) has announced that it is to be investigated by the International" " Criminal Court (ICC) over allegations of war crimes." ) dct = self.tok(ARTICLE, return_tensors="tf") generated_ids = model.generate(**dct, num_beams=4, no_repeat_ngram_size=0) result = self.tok.batch_decode(generated_ids, skip_special_tokens=True)[0] assert result == EXPECTED xla_generate = tf.function(model.generate, jit_compile=True) generated_ids = xla_generate(**dct, num_beams=4, no_repeat_ngram_size=0) result = self.tok.batch_decode(generated_ids, skip_special_tokens=True)[0] assert result == EXPECTED def test_xsum_1_1_batch_generation(self): batch = self.tok( [ "The Palestinian Authority officially became the 123rd member of the International Criminal Court on" " Wednesday, a step that gives the court jurisdiction over alleged crimes in Palestinian territories." " The formal accession was marked with a ceremony at The Hague, in the Netherlands, where the court is" " based. The Palestinians signed the ICC's founding Rome Statute in January, when they also accepted" ' its jurisdiction over alleged crimes committed "in the occupied Palestinian territory, including' ' East Jerusalem, since June 13, 2014." Later that month, the ICC opened a preliminary examination' " into the situation in Palestinian territories, paving the way for possible war crimes investigations" " against Israelis. As members of the court, Palestinians may be subject to counter-charges as well." " Israel and the United States, neither of which is an ICC member, opposed the Palestinians' efforts" " to join the body. But Palestinian Foreign Minister Riad al-Malki, speaking at Wednesday's ceremony," ' said it was a move toward greater justice. "As Palestine formally becomes a State Party to the Rome' ' Statute today, the world is also a step closer to ending a long era of impunity and injustice," he' ' said, according to an ICC news release. "Indeed, today brings us closer to our shared goals of' ' justice and peace." Judge Kuniko Ozaki, a vice president of the ICC, said acceding to the treaty was' ' just the first step for the Palestinians. "As the Rome Statute today enters into force for the State' " of Palestine, Palestine acquires all the rights as well as responsibilities that come with being a" ' State Party to the Statute. These are substantive commitments, which cannot be taken lightly," she' ' said. Rights group Human Rights Watch welcomed the development. "Governments seeking to penalize' " Palestine for joining the ICC should immediately end their pressure, and countries that support" " universal acceptance of the court's treaty should speak out to welcome its membership,\" said" " Balkees Jarrah, international justice counsel for the group. \"What's objectionable is the attempts" " to undermine international justice, not Palestine's decision to join a treaty to which over 100" ' countries around the world are members." In January, when the preliminary ICC examination was' " opened, Israeli Prime Minister Benjamin Netanyahu described it as an outrage, saying the court was" ' overstepping its boundaries. The United States also said it "strongly" disagreed with the court\'s' ' decision. "As we have said repeatedly, we do not believe that Palestine is a state and therefore we' ' do not believe that it is eligible to join the ICC," the State Department said in a statement. It' ' urged the warring sides to resolve their differences through direct negotiations. "We will continue' ' to oppose actions against Israel at the ICC as counterproductive to the cause of peace," it said.' " But the ICC begs to differ with the definition of a state for its purposes and refers to the" ' territories as "Palestine." While a preliminary examination is not a formal investigation, it allows' " the court to review evidence and determine whether to investigate suspects on both sides. Prosecutor" ' Fatou Bensouda said her office would "conduct its analysis in full independence and impartiality."' " The war between Israel and Hamas militants in Gaza last summer left more than 2,000 people dead. The" " inquiry will include alleged war crimes committed since June. The International Criminal Court was" " set up in 2002 to prosecute genocide, crimes against humanity and war crimes.", "The French prosecutor leading an investigation into the crash of Germanwings Flight 9525 insisted" " Wednesday that he was not aware of any video footage from on board the plane. Marseille prosecutor" ' Brice Robin told CNN that "so far no videos were used in the crash investigation." He added, "A' " person who has such a video needs to immediately give it to the investigators.\" Robin's comments" " follow claims by two magazines, German daily Bild and French Paris Match, of a cell phone video" " showing the harrowing final seconds from on board Germanwings Flight 9525 as it crashed into the" " French Alps. All 150 on board were killed. Paris Match and Bild reported that the video was" " recovered from a phone at the wreckage site. The two publications described the supposed video, but" " did not post it on their websites. The publications said that they watched the video, which was" " found by a source close to the investigation. \"One can hear cries of 'My God' in several" ' languages," Paris Match reported. "Metallic banging can also be heard more than three times, perhaps' " of the pilot trying to open the cockpit door with a heavy object. Towards the end, after a heavy" ' shake, stronger than the others, the screaming intensifies. Then nothing." "It is a very disturbing' " scene,\" said Julian Reichelt, editor-in-chief of Bild online. An official with France's accident" " investigation agency, the BEA, said the agency is not aware of any such video. Lt. Col. Jean-Marc" " Menichini, a French Gendarmerie spokesman in charge of communications on rescue efforts around the" ' Germanwings crash site, told CNN that the reports were "completely wrong" and "unwarranted." Cell' ' phones have been collected at the site, he said, but that they "hadn\'t been exploited yet."' " Menichini said he believed the cell phones would need to be sent to the Criminal Research Institute" " in Rosny sous-Bois, near Paris, in order to be analyzed by specialized technicians working" " hand-in-hand with investigators. But none of the cell phones found so far have been sent to the" " institute, Menichini said. Asked whether staff involved in the search could have leaked a memory" ' card to the media, Menichini answered with a categorical "no." Reichelt told "Erin Burnett:' ' Outfront" that he had watched the video and stood by the report, saying Bild and Paris Match are' ' "very confident" that the clip is real. He noted that investigators only revealed they\'d recovered' ' cell phones from the crash site after Bild and Paris Match published their reports. "That is' " something we did not know before. ... Overall we can say many things of the investigation weren't" ' revealed by the investigation at the beginning," he said. What was mental state of Germanwings' " co-pilot? German airline Lufthansa confirmed Tuesday that co-pilot Andreas Lubitz had battled" " depression years before he took the controls of Germanwings Flight 9525, which he's accused of" " deliberately crashing last week in the French Alps. Lubitz told his Lufthansa flight training school" ' in 2009 that he had a "previous episode of severe depression," the airline said Tuesday. Email' " correspondence between Lubitz and the school discovered in an internal investigation, Lufthansa" " said, included medical documents he submitted in connection with resuming his flight training. The" " announcement indicates that Lufthansa, the parent company of Germanwings, knew of Lubitz's battle" " with depression, allowed him to continue training and ultimately put him in the cockpit. Lufthansa," " whose CEO Carsten Spohr previously said Lubitz was 100% fit to fly, described its statement Tuesday" ' as a "swift and seamless clarification" and said it was sharing the information and documents --' " including training and medical records -- with public prosecutors. Spohr traveled to the crash site" " Wednesday, where recovery teams have been working for the past week to recover human remains and" " plane debris scattered across a steep mountainside. He saw the crisis center set up in" " Seyne-les-Alpes, laid a wreath in the village of Le Vernet, closer to the crash site, where grieving" " families have left flowers at a simple stone memorial. Menichini told CNN late Tuesday that no" " visible human remains were left at the site but recovery teams would keep searching. French" " President Francois Hollande, speaking Tuesday, said that it should be possible to identify all the" " victims using DNA analysis by the end of the week, sooner than authorities had previously suggested." " In the meantime, the recovery of the victims' personal belongings will start Wednesday, Menichini" " said. Among those personal belongings could be more cell phones belonging to the 144 passengers and" " six crew on board. Check out the latest from our correspondents . The details about Lubitz's" " correspondence with the flight school during his training were among several developments as" " investigators continued to delve into what caused the crash and Lubitz's possible motive for" " downing the jet. A Lufthansa spokesperson told CNN on Tuesday that Lubitz had a valid medical" ' certificate, had passed all his examinations and "held all the licenses required." Earlier, a' " spokesman for the prosecutor's office in Dusseldorf, Christoph Kumpa, said medical records reveal" " Lubitz suffered from suicidal tendencies at some point before his aviation career and underwent" " psychotherapy before he got his pilot's license. Kumpa emphasized there's no evidence suggesting" " Lubitz was suicidal or acting aggressively before the crash. Investigators are looking into whether" " Lubitz feared his medical condition would cause him to lose his pilot's license, a European" ' government official briefed on the investigation told CNN on Tuesday. While flying was "a big part' " of his life,\" the source said, it's only one theory being considered. Another source, a law" " enforcement official briefed on the investigation, also told CNN that authorities believe the" " primary motive for Lubitz to bring down the plane was that he feared he would not be allowed to fly" " because of his medical problems. Lubitz's girlfriend told investigators he had seen an eye doctor" " and a neuropsychologist, both of whom deemed him unfit to work recently and concluded he had" " psychological issues, the European government official said. But no matter what details emerge about" " his previous mental health struggles, there's more to the story, said Brian Russell, a forensic" ' psychologist. "Psychology can explain why somebody would turn rage inward on themselves about the' " fact that maybe they weren't going to keep doing their job and they're upset about that and so" ' they\'re suicidal," he said. "But there is no mental illness that explains why somebody then feels' " entitled to also take that rage and turn it outward on 149 other people who had nothing to do with" " the person's problems.\" Germanwings crash compensation: What we know . Who was the captain of" " Germanwings Flight 9525? CNN's Margot Haddad reported from Marseille and Pamela Brown from" " Dusseldorf, while Laura Smith-Spark wrote from London. CNN's Frederik Pleitgen, Pamela Boykoff," " Antonia Mortensen, Sandrine Amiel and Anna-Maja Rappard contributed to this report.", ], return_tensors="tf", padding="longest", truncation=True, ) generated_ids = self.xsum_1_1_model.generate(**batch, num_beams=4) result = self.tok.batch_decode(generated_ids, skip_special_tokens=True) assert ( result[0] == " The International Criminal Court (ICC) has announced that it has been announced by the International" " Criminal court." ) assert ( result[1] == " An investigation into the crash that killed at least 10 people in the French capital has been" " released by the French police investigating the crash." ) def test_encoder_equiv(self): batch = self.tok( [ "The Palestinian Authority officially became the 123rd member of the International Criminal Court on" " Wednesday, a step that gives the court jurisdiction over alleged crimes in Palestinian territories." " The formal accession was marked with a ceremony at The Hague, in the Netherlands, where the court is" " based. The Palestinians signed the ICC's founding Rome Statute in January, when they also accepted" ' its jurisdiction over alleged crimes committed "in the occupied Palestinian territory, including' ' East Jerusalem, since June 13, 2014." Later that month, the ICC opened a preliminary examination' " into the situation in Palestinian territories, paving the way for possible war crimes investigations" " against Israelis. As members of the court, Palestinians may be subject to counter-charges as well." " Israel and the United States, neither of which is an ICC member, opposed the Palestinians' efforts" " to join the body. But Palestinian Foreign Minister Riad al-Malki, speaking at Wednesday's ceremony," ' said it was a move toward greater justice. "As Palestine formally becomes a State Party to the Rome' ' Statute today, the world is also a step closer to ending a long era of impunity and injustice," he' ' said, according to an ICC news release. "Indeed, today brings us closer to our shared goals of' ' justice and peace." Judge Kuniko Ozaki, a vice president of the ICC, said acceding to the treaty was' ' just the first step for the Palestinians. "As the Rome Statute today enters into force for the State' " of Palestine, Palestine acquires all the rights as well as responsibilities that come with being a" ' State Party to the Statute. These are substantive commitments, which cannot be taken lightly," she' ' said. Rights group Human Rights Watch welcomed the development. "Governments seeking to penalize' " Palestine for joining the ICC should immediately end their pressure, and countries that support" " universal acceptance of the court's treaty should speak out to welcome its membership,\" said" " Balkees Jarrah, international justice counsel for the group. \"What's objectionable is the attempts" " to undermine international justice, not Palestine's decision to join a treaty to which over 100" ' countries around the world are members." In January, when the preliminary ICC examination was' " opened, Israeli Prime Minister Benjamin Netanyahu described it as an outrage, saying the court was" ' overstepping its boundaries. The United States also said it "strongly" disagreed with the court\'s' ' decision. "As we have said repeatedly, we do not believe that Palestine is a state and therefore we' ' do not believe that it is eligible to join the ICC," the State Department said in a statement. It' ' urged the warring sides to resolve their differences through direct negotiations. "We will continue' ' to oppose actions against Israel at the ICC as counterproductive to the cause of peace," it said.' " But the ICC begs to differ with the definition of a state for its purposes and refers to the" ' territories as "Palestine." While a preliminary examination is not a formal investigation, it allows' " the court to review evidence and determine whether to investigate suspects on both sides. Prosecutor" ' Fatou Bensouda said her office would "conduct its analysis in full independence and impartiality."' " The war between Israel and Hamas militants in Gaza last summer left more than 2,000 people dead. The" " inquiry will include alleged war crimes committed since June. The International Criminal Court was" " set up in 2002 to prosecute genocide, crimes against humanity and war crimes.", "The French prosecutor leading an investigation into the crash of Germanwings Flight 9525 insisted" " Wednesday that he was not aware of any video footage from on board the plane. Marseille prosecutor" ' Brice Robin told CNN that "so far no videos were used in the crash investigation." He added, "A' " person who has such a video needs to immediately give it to the investigators.\" Robin's comments" " follow claims by two magazines, German daily Bild and French Paris Match, of a cell phone video" " showing the harrowing final seconds from on board Germanwings Flight 9525 as it crashed into the" " French Alps. All 150 on board were killed. Paris Match and Bild reported that the video was" " recovered from a phone at the wreckage site. The two publications described the supposed video, but" " did not post it on their websites. The publications said that they watched the video, which was" " found by a source close to the investigation. \"One can hear cries of 'My God' in several" ' languages," Paris Match reported. "Metallic banging can also be heard more than three times, perhaps' " of the pilot trying to open the cockpit door with a heavy object. Towards the end, after a heavy" ' shake, stronger than the others, the screaming intensifies. Then nothing." "It is a very disturbing' " scene,\" said Julian Reichelt, editor-in-chief of Bild online. An official with France's accident" " investigation agency, the BEA, said the agency is not aware of any such video. Lt. Col. Jean-Marc" " Menichini, a French Gendarmerie spokesman in charge of communications on rescue efforts around the" ' Germanwings crash site, told CNN that the reports were "completely wrong" and "unwarranted." Cell' ' phones have been collected at the site, he said, but that they "hadn\'t been exploited yet."' " Menichini said he believed the cell phones would need to be sent to the Criminal Research Institute" " in Rosny sous-Bois, near Paris, in order to be analyzed by specialized technicians working" " hand-in-hand with investigators. But none of the cell phones found so far have been sent to the" " institute, Menichini said. Asked whether staff involved in the search could have leaked a memory" ' card to the media, Menichini answered with a categorical "no." Reichelt told "Erin Burnett:' ' Outfront" that he had watched the video and stood by the report, saying Bild and Paris Match are' ' "very confident" that the clip is real. He noted that investigators only revealed they\'d recovered' ' cell phones from the crash site after Bild and Paris Match published their reports. "That is' " something we did not know before. ... Overall we can say many things of the investigation weren't" ' revealed by the investigation at the beginning," he said. What was mental state of Germanwings' " co-pilot? German airline Lufthansa confirmed Tuesday that co-pilot Andreas Lubitz had battled" " depression years before he took the controls of Germanwings Flight 9525, which he's accused of" " deliberately crashing last week in the French Alps. Lubitz told his Lufthansa flight training school" ' in 2009 that he had a "previous episode of severe depression," the airline said Tuesday. Email' " correspondence between Lubitz and the school discovered in an internal investigation, Lufthansa" " said, included medical documents he submitted in connection with resuming his flight training. The" " announcement indicates that Lufthansa, the parent company of Germanwings, knew of Lubitz's battle" " with depression, allowed him to continue training and ultimately put him in the cockpit. Lufthansa," " whose CEO Carsten Spohr previously said Lubitz was 100% fit to fly, described its statement Tuesday" ' as a "swift and seamless clarification" and said it was sharing the information and documents --' " including training and medical records -- with public prosecutors. Spohr traveled to the crash site" " Wednesday, where recovery teams have been working for the past week to recover human remains and" " plane debris scattered across a steep mountainside. He saw the crisis center set up in" " Seyne-les-Alpes, laid a wreath in the village of Le Vernet, closer to the crash site, where grieving" " families have left flowers at a simple stone memorial. Menichini told CNN late Tuesday that no" " visible human remains were left at the site but recovery teams would keep searching. French" " President Francois Hollande, speaking Tuesday, said that it should be possible to identify all the" " victims using DNA analysis by the end of the week, sooner than authorities had previously suggested." " In the meantime, the recovery of the victims' personal belongings will start Wednesday, Menichini" " said. Among those personal belongings could be more cell phones belonging to the 144 passengers and" " six crew on board. Check out the latest from our correspondents . The details about Lubitz's" " correspondence with the flight school during his training were among several developments as" " investigators continued to delve into what caused the crash and Lubitz's possible motive for" " downing the jet. A Lufthansa spokesperson told CNN on Tuesday that Lubitz had a valid medical" ' certificate, had passed all his examinations and "held all the licenses required." Earlier, a' " spokesman for the prosecutor's office in Dusseldorf, Christoph Kumpa, said medical records reveal" " Lubitz suffered from suicidal tendencies at some point before his aviation career and underwent" " psychotherapy before he got his pilot's license. Kumpa emphasized there's no evidence suggesting" " Lubitz was suicidal or acting aggressively before the crash. Investigators are looking into whether" " Lubitz feared his medical condition would cause him to lose his pilot's license, a European" ' government official briefed on the investigation told CNN on Tuesday. While flying was "a big part' " of his life,\" the source said, it's only one theory being considered. Another source, a law" " enforcement official briefed on the investigation, also told CNN that authorities believe the" " primary motive for Lubitz to bring down the plane was that he feared he would not be allowed to fly" " because of his medical problems. Lubitz's girlfriend told investigators he had seen an eye doctor" " and a neuropsychologist, both of whom deemed him unfit to work recently and concluded he had" " psychological issues, the European government official said. But no matter what details emerge about" " his previous mental health struggles, there's more to the story, said Brian Russell, a forensic" ' psychologist. "Psychology can explain why somebody would turn rage inward on themselves about the' " fact that maybe they weren't going to keep doing their job and they're upset about that and so" ' they\'re suicidal," he said. "But there is no mental illness that explains why somebody then feels' " entitled to also take that rage and turn it outward on 149 other people who had nothing to do with" " the person's problems.\" Germanwings crash compensation: What we know . Who was the captain of" " Germanwings Flight 9525? CNN's Margot Haddad reported from Marseille and Pamela Brown from" " Dusseldorf, while Laura Smith-Spark wrote from London. CNN's Frederik Pleitgen, Pamela Boykoff," " Antonia Mortensen, Sandrine Amiel and Anna-Maja Rappard contributed to this report.", ], return_tensors="tf", padding="longest", truncation=True, ) features = self.xsum_1_1_model.get_encoder()(**batch).last_hidden_state expected = np.array([[-0.0828, -0.0251, -0.0674], [0.1277, 0.3311, -0.0255], [0.2613, -0.0840, -0.2763]]) assert np.allclose(features[0, :3, :3].numpy(), expected, atol=1e-3)
transformers/tests/models/bart/test_modeling_tf_bart.py/0
{ "file_path": "transformers/tests/models/bart/test_modeling_tf_bart.py", "repo_id": "transformers", "token_count": 30096 }
147
# coding=utf-8 # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Testing suite for the TensorFlow Blip model. """ from __future__ import annotations import inspect import tempfile import unittest import numpy as np import requests from transformers import BlipConfig, BlipTextConfig, BlipVisionConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFBlipForConditionalGeneration, TFBlipForImageTextRetrieval, TFBlipForQuestionAnswering, TFBlipModel, TFBlipTextModel, TFBlipVisionModel, ) from transformers.modeling_tf_utils import keras from transformers.models.blip.modeling_tf_blip import TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import BlipProcessor class TFBlipVisionModelTester: def __init__( self, parent, batch_size=12, image_size=30, patch_size=2, num_channels=3, is_training=True, hidden_size=32, projection_dim=32, num_hidden_layers=2, num_attention_heads=4, intermediate_size=37, dropout=0.1, attention_dropout=0.1, initializer_range=1e-10, scope=None, ): self.parent = parent self.batch_size = batch_size self.image_size = image_size self.patch_size = patch_size self.num_channels = num_channels self.is_training = is_training self.hidden_size = hidden_size self.projection_dim = projection_dim self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.intermediate_size = intermediate_size self.dropout = dropout self.attention_dropout = attention_dropout self.initializer_range = initializer_range self.scope = scope # in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) num_patches = (image_size // patch_size) ** 2 self.seq_length = num_patches + 1 def prepare_config_and_inputs(self): pixel_values = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) config = self.get_config() return config, pixel_values def get_config(self): return BlipVisionConfig( image_size=self.image_size, patch_size=self.patch_size, num_channels=self.num_channels, hidden_size=self.hidden_size, projection_dim=self.projection_dim, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, dropout=self.dropout, attention_dropout=self.attention_dropout, initializer_range=self.initializer_range, ) def create_and_check_model(self, config, pixel_values): model = TFBlipVisionModel(config=config) result = model(pixel_values) # expected sequence length = num_patches + 1 (we add 1 for the [CLS] token) image_size = (self.image_size, self.image_size) patch_size = (self.patch_size, self.patch_size) num_patches = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, num_patches + 1, self.hidden_size)) self.parent.assertEqual(result.pooler_output.shape, (self.batch_size, self.hidden_size)) def prepare_config_and_inputs_for_common(self): config_and_inputs = self.prepare_config_and_inputs() config, pixel_values = config_and_inputs inputs_dict = {"pixel_values": pixel_values} return config, inputs_dict @require_tf class TFBlipVisionModelTest(TFModelTesterMixin, unittest.TestCase): """ Here we also overwrite some of the tests of test_modeling_common.py, as Blip does not use input_ids, inputs_embeds, attention_mask and seq_length. """ all_model_classes = (TFBlipVisionModel,) if is_tf_available() else () fx_compatible = False test_pruning = False test_resize_embeddings = False test_head_masking = False test_onnx = False def setUp(self): self.model_tester = TFBlipVisionModelTester(self) self.config_tester = ConfigTester(self, config_class=BlipVisionConfig, has_text_modality=False, hidden_size=37) def test_config(self): self.config_tester.run_common_tests() @unittest.skip(reason="Blip does not use inputs_embeds") def test_inputs_embeds(self): pass def test_forward_signature(self): config, _ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: model = model_class(config) signature = inspect.signature(model.call) # signature.parameters is an OrderedDict => so arg_names order is deterministic arg_names = [*signature.parameters.keys()] expected_arg_names = ["pixel_values"] self.assertListEqual(arg_names[:1], expected_arg_names) def test_model_common_attributes(self): config, _ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: model = model_class(config) self.assertIsInstance(model.get_input_embeddings(), (keras.layers.Layer)) x = model.get_output_embeddings() self.assertTrue(x is None or isinstance(x, keras.layers.Layer)) def test_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*config_and_inputs) @unittest.skip(reason="BlipVisionModel has no base class and is not available in MODEL_MAPPING") def test_save_load_fast_init_from_base(self): pass @unittest.skip(reason="BlipVisionModel has no base class and is not available in MODEL_MAPPING") def test_save_load_fast_init_to_base(self): pass @slow def test_model_from_pretrained(self): for model_name in TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: model = TFBlipVisionModel.from_pretrained(model_name) self.assertIsNotNone(model) class TFBlipTextModelTester: def __init__( self, parent, batch_size=12, seq_length=7, is_training=True, use_input_mask=True, use_labels=True, vocab_size=99, hidden_size=32, projection_dim=32, num_hidden_layers=2, num_attention_heads=4, intermediate_size=37, dropout=0.1, attention_dropout=0.1, max_position_embeddings=512, initializer_range=0.02, bos_token_id=0, scope=None, ): self.parent = parent self.batch_size = batch_size self.seq_length = seq_length self.is_training = is_training self.use_input_mask = use_input_mask self.use_labels = use_labels self.vocab_size = vocab_size self.hidden_size = hidden_size self.projection_dim = projection_dim self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.intermediate_size = intermediate_size self.dropout = dropout self.attention_dropout = attention_dropout self.max_position_embeddings = max_position_embeddings self.initializer_range = initializer_range self.scope = scope self.bos_token_id = bos_token_id def prepare_config_and_inputs(self): input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) input_mask = None if self.use_input_mask: input_mask = random_attention_mask([self.batch_size, self.seq_length]) if input_mask is not None: input_mask = input_mask.numpy() batch_size, seq_length = input_mask.shape rnd_start_indices = np.random.randint(1, seq_length - 1, size=(batch_size,)) for batch_idx, start_index in enumerate(rnd_start_indices): input_mask[batch_idx, :start_index] = 1 input_mask[batch_idx, start_index:] = 0 input_mask = tf.convert_to_tensor(input_mask) config = self.get_config() return config, input_ids, input_mask def get_config(self): return BlipTextConfig( vocab_size=self.vocab_size, hidden_size=self.hidden_size, projection_dim=self.projection_dim, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, dropout=self.dropout, attention_dropout=self.attention_dropout, max_position_embeddings=self.max_position_embeddings, initializer_range=self.initializer_range, bos_token_id=self.bos_token_id, ) def create_and_check_model(self, config, input_ids, input_mask): model = TFBlipTextModel(config=config) result = model(input_ids, attention_mask=input_mask, training=False) result = model(input_ids, training=False) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) self.parent.assertEqual(result.pooler_output.shape, (self.batch_size, self.hidden_size)) def prepare_config_and_inputs_for_common(self): config_and_inputs = self.prepare_config_and_inputs() config, input_ids, input_mask = config_and_inputs inputs_dict = {"input_ids": input_ids, "attention_mask": input_mask} return config, inputs_dict @require_tf class TFBlipTextModelTest(TFModelTesterMixin, unittest.TestCase): all_model_classes = (TFBlipTextModel,) if is_tf_available() else () fx_compatible = False test_pruning = False test_head_masking = False test_onnx = False def setUp(self): self.model_tester = TFBlipTextModelTester(self) self.config_tester = ConfigTester(self, config_class=BlipTextConfig, hidden_size=37) def test_config(self): self.config_tester.run_common_tests() def test_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*config_and_inputs) @unittest.skip(reason="Blip does not use inputs_embeds") def test_inputs_embeds(self): pass @unittest.skip(reason="BlipTextModel has no base class and is not available in MODEL_MAPPING") def test_save_load_fast_init_from_base(self): pass @unittest.skip(reason="BlipTextModel has no base class and is not available in MODEL_MAPPING") def test_save_load_fast_init_to_base(self): pass @slow def test_model_from_pretrained(self): for model_name in TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: model = TFBlipTextModel.from_pretrained(model_name) self.assertIsNotNone(model) def test_pt_tf_model_equivalence(self, allow_missing_keys=True): super().test_pt_tf_model_equivalence(allow_missing_keys=allow_missing_keys) class TFBlipModelTester: def __init__(self, parent, text_kwargs=None, vision_kwargs=None, is_training=True): if text_kwargs is None: text_kwargs = {} if vision_kwargs is None: vision_kwargs = {} self.parent = parent self.text_model_tester = TFBlipTextModelTester(parent, **text_kwargs) self.vision_model_tester = TFBlipVisionModelTester(parent, **vision_kwargs) self.is_training = is_training def prepare_config_and_inputs(self): text_config, input_ids, attention_mask = self.text_model_tester.prepare_config_and_inputs() vision_config, pixel_values = self.vision_model_tester.prepare_config_and_inputs() config = self.get_config() return config, input_ids, attention_mask, pixel_values def get_config(self): return BlipConfig.from_text_vision_configs( self.text_model_tester.get_config(), self.vision_model_tester.get_config(), projection_dim=64 ) def create_and_check_model(self, config, input_ids, attention_mask, pixel_values): model = TFBlipModel(config) result = model(input_ids, pixel_values, attention_mask, training=False) self.parent.assertEqual( result.logits_per_image.shape, (self.vision_model_tester.batch_size, self.text_model_tester.batch_size) ) self.parent.assertEqual( result.logits_per_text.shape, (self.text_model_tester.batch_size, self.vision_model_tester.batch_size) ) def prepare_config_and_inputs_for_common(self): config_and_inputs = self.prepare_config_and_inputs() config, input_ids, attention_mask, pixel_values = config_and_inputs inputs_dict = { "input_ids": input_ids, "attention_mask": attention_mask, "pixel_values": pixel_values, "return_loss": True, } return config, inputs_dict @require_tf class TFBlipModelTest(TFModelTesterMixin, PipelineTesterMixin, unittest.TestCase): all_model_classes = (TFBlipModel,) if is_tf_available() else () pipeline_model_mapping = ( {"feature-extraction": TFBlipModel, "image-to-text": TFBlipForConditionalGeneration} if is_tf_available() else {} ) test_head_masking = False test_pruning = False test_resize_embeddings = False test_attention_outputs = False test_onnx = False def setUp(self): self.model_tester = TFBlipModelTester(self) def test_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*config_and_inputs) @unittest.skip(reason="Hidden_states is tested in individual model tests") def test_hidden_states_output(self): pass @unittest.skip(reason="Inputs_embeds is tested in individual model tests") def test_inputs_embeds(self): pass @unittest.skip(reason="Retain_grad is tested in individual model tests") def test_retain_grad_hidden_states_attentions(self): pass @unittest.skip(reason="BlipModel does not have input/output embeddings") def test_model_common_attributes(self): pass def test_load_vision_text_config(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() # Save BlipConfig and check if we can load BlipVisionConfig from it with tempfile.TemporaryDirectory() as tmp_dir_name: config.save_pretrained(tmp_dir_name) vision_config = BlipVisionConfig.from_pretrained(tmp_dir_name) self.assertDictEqual(config.vision_config.to_dict(), vision_config.to_dict()) # Save BlipConfig and check if we can load BlipTextConfig from it with tempfile.TemporaryDirectory() as tmp_dir_name: config.save_pretrained(tmp_dir_name) text_config = BlipTextConfig.from_pretrained(tmp_dir_name) self.assertDictEqual(config.text_config.to_dict(), text_config.to_dict()) @slow def test_model_from_pretrained(self): for model_name in TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: model = TFBlipModel.from_pretrained(model_name) self.assertIsNotNone(model) def test_pt_tf_model_equivalence(self, allow_missing_keys=True): super().test_pt_tf_model_equivalence(allow_missing_keys=allow_missing_keys) @unittest.skip("Matt: Re-enable this test when we have a proper export function for TF models.") def test_saved_model_creation(self): # This fails because the if return_loss: conditional can return None or a Tensor and TF hates that. # We could fix that by setting the bool to a constant when exporting, but that requires a dedicated export # function that we don't have yet. pass class BlipTextRetrievalModelTester: def __init__(self, parent, text_kwargs=None, vision_kwargs=None, is_training=True): if text_kwargs is None: text_kwargs = {} if vision_kwargs is None: vision_kwargs = {} self.parent = parent self.text_model_tester = TFBlipTextModelTester(parent, **text_kwargs) self.vision_model_tester = TFBlipVisionModelTester(parent, **vision_kwargs) self.is_training = is_training def prepare_config_and_inputs(self): text_config, input_ids, attention_mask = self.text_model_tester.prepare_config_and_inputs() vision_config, pixel_values = self.vision_model_tester.prepare_config_and_inputs() config = self.get_config() return config, input_ids, attention_mask, pixel_values def get_config(self): return BlipConfig.from_text_vision_configs( self.text_model_tester.get_config(), self.vision_model_tester.get_config(), projection_dim=64 ) def create_and_check_model(self, config, input_ids, attention_mask, pixel_values): model = TFBlipModel(config) result = model(input_ids, pixel_values, attention_mask, training=False) self.parent.assertEqual( result.logits_per_image.shape, (self.vision_model_tester.batch_size, self.text_model_tester.batch_size) ) self.parent.assertEqual( result.logits_per_text.shape, (self.text_model_tester.batch_size, self.vision_model_tester.batch_size) ) def prepare_config_and_inputs_for_common(self): config_and_inputs = self.prepare_config_and_inputs() config, input_ids, attention_mask, pixel_values = config_and_inputs inputs_dict = { "input_ids": input_ids, "attention_mask": attention_mask, "pixel_values": pixel_values, } return config, inputs_dict class BlipTextImageModelsModelTester: def __init__(self, parent, text_kwargs=None, vision_kwargs=None, is_training=True): if text_kwargs is None: text_kwargs = {} if vision_kwargs is None: vision_kwargs = {} self.parent = parent self.text_model_tester = TFBlipTextModelTester(parent, **text_kwargs) self.vision_model_tester = TFBlipVisionModelTester(parent, **vision_kwargs) self.is_training = is_training def prepare_config_and_inputs(self): text_config, input_ids, attention_mask = self.text_model_tester.prepare_config_and_inputs() vision_config, pixel_values = self.vision_model_tester.prepare_config_and_inputs() config = self.get_config() return config, input_ids, attention_mask, pixel_values def get_config(self): return BlipConfig.from_text_vision_configs( self.text_model_tester.get_config(), self.vision_model_tester.get_config(), projection_dim=64 ) def create_and_check_model(self, config, input_ids, attention_mask, pixel_values): model = TFBlipModel(config) result = model(input_ids, pixel_values, attention_mask, training=False) self.parent.assertEqual( result.logits_per_image.shape, (self.vision_model_tester.batch_size, self.text_model_tester.batch_size) ) self.parent.assertEqual( result.logits_per_text.shape, (self.text_model_tester.batch_size, self.vision_model_tester.batch_size) ) def prepare_config_and_inputs_for_common(self): config_and_inputs = self.prepare_config_and_inputs() config, input_ids, attention_mask, pixel_values = config_and_inputs inputs_dict = { "input_ids": input_ids, "labels": input_ids, "attention_mask": attention_mask, "pixel_values": pixel_values, } return config, inputs_dict class BlipVQAModelsModelTester: def __init__(self, parent, text_kwargs=None, vision_kwargs=None, is_training=True): if text_kwargs is None: text_kwargs = {} if vision_kwargs is None: vision_kwargs = {} self.parent = parent self.text_model_tester = TFBlipTextModelTester(parent, **text_kwargs) self.vision_model_tester = TFBlipVisionModelTester(parent, **vision_kwargs) self.is_training = is_training def prepare_config_and_inputs(self): text_config, input_ids, attention_mask = self.text_model_tester.prepare_config_and_inputs() vision_config, pixel_values = self.vision_model_tester.prepare_config_and_inputs() config = self.get_config() return config, input_ids, attention_mask, pixel_values def get_config(self): return BlipConfig.from_text_vision_configs( self.text_model_tester.get_config(), self.vision_model_tester.get_config(), projection_dim=64 ) def create_and_check_model(self, config, input_ids, attention_mask, pixel_values): model = TFBlipModel(config) result = model(input_ids, pixel_values, attention_mask, training=False) self.parent.assertEqual( result.logits_per_image.shape, (self.vision_model_tester.batch_size, self.text_model_tester.batch_size) ) self.parent.assertEqual( result.logits_per_text.shape, (self.text_model_tester.batch_size, self.vision_model_tester.batch_size) ) def prepare_config_and_inputs_for_common(self): config_and_inputs = self.prepare_config_and_inputs() config, input_ids, attention_mask, pixel_values = config_and_inputs inputs_dict = { "input_ids": input_ids, "decoder_input_ids": input_ids, "labels": input_ids, "attention_mask": attention_mask, "pixel_values": pixel_values, } return config, inputs_dict @require_tf @require_vision class TFBlipVQAModelTest(TFModelTesterMixin, unittest.TestCase): all_model_classes = (TFBlipForQuestionAnswering,) if is_tf_available() else () test_head_masking = False test_pruning = False test_resize_embeddings = False test_attention_outputs = False test_onnx = False def setUp(self): self.model_tester = BlipVQAModelsModelTester(self) def _prepare_inputs_for_vqa(self): _, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() inputs_dict["labels"] = inputs_dict["input_ids"] inputs_dict["decoder_input_ids"] = inputs_dict["input_ids"] inputs_dict.pop("return_loss") return inputs_dict def test_class_name_consistency(self): """ Tests that all VQA models have a class name that ends with "ForQuestionAnswering" """ for model_class in self.all_model_classes: model = model_class(self.model_tester.get_config()) self.assertTrue( model.__class__.__name__.endswith("ForQuestionAnswering"), f"Class name should end with 'ForVisualQuestionAnswering' got {model.__class__.__name__}", ) def test_training(self): """ Tests that all VQA models can be trained on a single batch """ for model_class in self.all_model_classes: model = model_class(self.model_tester.get_config()) loss = model(**self.model_tester.prepare_config_and_inputs_for_common()[1], training=True).loss self.assertIsNotNone(loss, "Loss should not be None") @unittest.skip(reason="Hidden_states is tested in individual model tests") def test_hidden_states_output(self): pass @unittest.skip(reason="Inputs_embeds is tested in individual model tests") def test_inputs_embeds(self): pass @unittest.skip(reason="Retain_grad is tested in individual model tests") def test_retain_grad_hidden_states_attentions(self): pass @unittest.skip(reason="BlipModel does not have input/output embeddings") def test_model_common_attributes(self): pass @unittest.skip(reason="Tested in individual model tests") def test_compile_tf_model(self): pass @unittest.skip("Model doesn't have a clean loss output.") def test_keras_fit(self): pass @require_tf class TFBlipTextRetrievalModelTest(TFModelTesterMixin, unittest.TestCase): all_model_classes = (TFBlipForImageTextRetrieval,) if is_tf_available() else () test_head_masking = False test_pruning = False test_resize_embeddings = False test_attention_outputs = False test_onnx = False def setUp(self): self.model_tester = BlipTextRetrievalModelTester(self) def test_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*config_and_inputs) @unittest.skip(reason="Hidden_states is tested in individual model tests") def test_hidden_states_output(self): pass @unittest.skip(reason="Inputs_embeds is tested in individual model tests") def test_inputs_embeds(self): pass @unittest.skip(reason="Retain_grad is tested in individual model tests") def test_retain_grad_hidden_states_attentions(self): pass @unittest.skip(reason="BlipModel does not have input/output embeddings") def test_model_common_attributes(self): pass def test_training(self): if not self.model_tester.is_training: return for model_class in self.all_model_classes[:-1]: config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() config.return_dict = True model = model_class(config) inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True) # hardcode labels to be the same as input_ids inputs["labels"] = inputs["input_ids"] loss = model(**inputs, training=True).loss self.assertTrue(loss is not None) def test_load_vision_text_config(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() # Save BlipConfig and check if we can load BlipVisionConfig from it with tempfile.TemporaryDirectory() as tmp_dir_name: config.save_pretrained(tmp_dir_name) vision_config = BlipVisionConfig.from_pretrained(tmp_dir_name) self.assertDictEqual(config.vision_config.to_dict(), vision_config.to_dict()) # Save BlipConfig and check if we can load BlipTextConfig from it with tempfile.TemporaryDirectory() as tmp_dir_name: config.save_pretrained(tmp_dir_name) text_config = BlipTextConfig.from_pretrained(tmp_dir_name) self.assertDictEqual(config.text_config.to_dict(), text_config.to_dict()) @slow def test_model_from_pretrained(self): for model_name in TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: model = TFBlipModel.from_pretrained(model_name) self.assertIsNotNone(model) @unittest.skip(reason="Tested in individual model tests") def test_compile_tf_model(self): pass @unittest.skip("Model doesn't have a clean loss output.") def test_keras_fit(self): pass @require_tf class TFBlipTextImageModelTest(TFModelTesterMixin, unittest.TestCase): all_model_classes = (TFBlipForConditionalGeneration,) if is_tf_available() else () test_head_masking = False test_pruning = False test_resize_embeddings = False test_attention_outputs = False test_onnx = False def setUp(self): self.model_tester = BlipTextImageModelsModelTester(self) def test_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*config_and_inputs) @unittest.skip(reason="Hidden_states is tested in individual model tests") def test_hidden_states_output(self): pass @unittest.skip(reason="Inputs_embeds is tested in individual model tests") def test_inputs_embeds(self): pass def test_forward_signature(self): config, _ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: model = model_class(config) signature = inspect.signature(model.call) # signature.parameters is an OrderedDict => so arg_names order is deterministic arg_names = [*signature.parameters.keys()] if model.config.is_encoder_decoder: expected_arg_names = [ "input_ids", "attention_mask", "decoder_input_ids", "decoder_attention_mask", ] expected_arg_names.extend( ["head_mask", "decoder_head_mask", "cross_attn_head_mask", "encoder_outputs"] if "head_mask" and "decoder_head_mask" and "cross_attn_head_mask" in arg_names else ["encoder_outputs"] ) self.assertListEqual(arg_names[: len(expected_arg_names)], expected_arg_names) else: expected_arg_names = ( ["input_ids"] if model_class != TFBlipForConditionalGeneration else ["pixel_values"] ) self.assertListEqual(arg_names[:1], expected_arg_names) @unittest.skip(reason="Tested in individual model tests") def test_compile_tf_model(self): pass @unittest.skip("Has some odd input names!") def test_keras_fit(self): pass @unittest.skip(reason="Retain_grad is tested in individual model tests") def test_retain_grad_hidden_states_attentions(self): pass @unittest.skip(reason="BlipModel does not have input/output embeddings") def test_model_common_attributes(self): pass def test_training(self): if not self.model_tester.is_training: return for model_class in self.all_model_classes[:-1]: config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() config.return_dict = True model = model_class(config) inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True) # hardcode labels to be the same as input_ids inputs["labels"] = inputs["input_ids"] loss = model(**inputs, training=True).loss self.assertIsNotNone(loss) def test_load_vision_text_config(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() # Save BlipConfig and check if we can load BlipVisionConfig from it with tempfile.TemporaryDirectory() as tmp_dir_name: config.save_pretrained(tmp_dir_name) vision_config = BlipVisionConfig.from_pretrained(tmp_dir_name) self.assertDictEqual(config.vision_config.to_dict(), vision_config.to_dict()) # Save BlipConfig and check if we can load BlipTextConfig from it with tempfile.TemporaryDirectory() as tmp_dir_name: config.save_pretrained(tmp_dir_name) text_config = BlipTextConfig.from_pretrained(tmp_dir_name) self.assertDictEqual(config.text_config.to_dict(), text_config.to_dict()) @slow def test_model_from_pretrained(self): for model_name in TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: model = TFBlipModel.from_pretrained(model_name) self.assertIsNotNone(model) # We will verify our results on an image of cute cats def prepare_img(): url = "https://huggingface.co/hf-internal-testing/blip-test-image/resolve/main/demo.jpg" im = Image.open(requests.get(url, stream=True).raw) return im @require_vision @require_tf @slow class TFBlipModelIntegrationTest(unittest.TestCase): def test_inference_image_captioning(self): model = TFBlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-base") processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-base") image = prepare_img() # image only inputs = processor(images=image, return_tensors="tf") predictions = model.generate(**inputs) # Test output self.assertEqual( predictions[0].numpy().tolist(), [30522, 1037, 2450, 3564, 2006, 1996, 3509, 2007, 2014, 3899, 102] ) # image and context context = ["a picture of"] inputs = processor(images=image, text=context, return_tensors="tf") predictions = model.generate(**inputs) # Test output self.assertEqual( predictions[0].numpy().tolist(), [30522, 1037, 3861, 1997, 1037, 2450, 1998, 2014, 3899, 2006, 1996, 3509, 102], ) def test_inference_vqa(self): model = TFBlipForQuestionAnswering.from_pretrained("Salesforce/blip-vqa-base") processor = BlipProcessor.from_pretrained("Salesforce/blip-vqa-base") image = prepare_img() text = "how many dogs are in the picture?" inputs = processor(image, text=text, return_tensors="tf") out = model.generate(**inputs) # Test output self.assertEqual(out[0].numpy().tolist(), [30522, 1015, 102]) def test_inference_itm(self): model = TFBlipForImageTextRetrieval.from_pretrained("Salesforce/blip-itm-base-coco") processor = BlipProcessor.from_pretrained("Salesforce/blip-itm-base-coco") image = prepare_img() text = "A woman and her dog sitting in a beach" inputs = processor(image, text, return_tensors="tf") out_itm = model(**inputs) out = model(**inputs, use_itm_head=False, training=False) expected_scores = tf.convert_to_tensor([[0.0029, 0.9971]]) self.assertTrue(np.allclose(tf.nn.softmax(out_itm[0]).numpy(), expected_scores, rtol=1e-3, atol=1e-3)) self.assertTrue(np.allclose(out[0], tf.convert_to_tensor([[0.5162]]), rtol=1e-3, atol=1e-3))
transformers/tests/models/blip/test_modeling_tf_blip.py/0
{ "file_path": "transformers/tests/models/blip/test_modeling_tf_blip.py", "repo_id": "transformers", "token_count": 14940 }
148
# coding=utf-8 # Copyright 2020 Google T5 Authors and HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import json import os import re import shutil import tempfile import unittest from typing import Tuple from transformers import AddedToken, BatchEncoding, ByT5Tokenizer from transformers.utils import cached_property, is_tf_available, is_torch_available from ...test_tokenization_common import TokenizerTesterMixin if is_torch_available(): FRAMEWORK = "pt" elif is_tf_available(): FRAMEWORK = "tf" else: FRAMEWORK = "jax" class ByT5TokenizationTest(TokenizerTesterMixin, unittest.TestCase): tokenizer_class = ByT5Tokenizer test_rust_tokenizer = False def setUp(self): super().setUp() tokenizer = ByT5Tokenizer() tokenizer.save_pretrained(self.tmpdirname) @cached_property def t5_base_tokenizer(self): return ByT5Tokenizer.from_pretrained("google/byt5-small") def get_tokenizer(self, **kwargs) -> ByT5Tokenizer: return self.tokenizer_class.from_pretrained(self.tmpdirname, **kwargs) def get_clean_sequence(self, tokenizer, with_prefix_space=False, max_length=20, min_length=5) -> Tuple[str, list]: # XXX The default common tokenizer tests assume that every ID is decodable on its own. # This assumption is invalid for ByT5 because single bytes might not be # valid utf-8 (byte 128 for instance). # Here we're overriding the smallest possible method to provide # a clean sequence without making the same assumption. toks = [] for i in range(len(tokenizer)): try: tok = tokenizer.decode([i], clean_up_tokenization_spaces=False) except UnicodeDecodeError: pass toks.append((i, tok)) toks = list(filter(lambda t: re.match(r"^[ a-zA-Z]+$", t[1]), toks)) toks = list(filter(lambda t: [t[0]] == tokenizer.encode(t[1], add_special_tokens=False), toks)) if max_length is not None and len(toks) > max_length: toks = toks[:max_length] if min_length is not None and len(toks) < min_length and len(toks) > 0: while len(toks) < min_length: toks = toks + toks # toks_str = [t[1] for t in toks] toks_ids = [t[0] for t in toks] # Ensure consistency output_txt = tokenizer.decode(toks_ids, clean_up_tokenization_spaces=False) if " " not in output_txt and len(toks_ids) > 1: output_txt = ( tokenizer.decode([toks_ids[0]], clean_up_tokenization_spaces=False) + " " + tokenizer.decode(toks_ids[1:], clean_up_tokenization_spaces=False) ) if with_prefix_space: output_txt = " " + output_txt output_ids = tokenizer.encode(output_txt, add_special_tokens=False) return output_txt, output_ids def test_eos_treatment(self): tokenizer = self.t5_base_tokenizer batch_with_eos_added = tokenizer(["hi</s>", "I went to the gym</s>", "</s>"]) batch_without_eos_added = tokenizer(["hi", "I went to the gym", ""]) self.assertListEqual(batch_with_eos_added["input_ids"], batch_without_eos_added["input_ids"]) def test_multibytes_char(self): tokenizer = self.t5_base_tokenizer src_text = "Unicode €." encoded = tokenizer(src_text) encoded_ids = [88, 113, 108, 102, 114, 103, 104, 35, 229, 133, 175, 49, 1] self.assertEqual(encoded["input_ids"], encoded_ids) # decoding decoded = tokenizer.decode(encoded_ids) self.assertEqual(decoded, "Unicode €.</s>") encoded = tokenizer("e è é ê ë") encoded_ids = [104, 35, 198, 171, 35, 198, 172, 35, 198, 173, 35, 198, 174, 1] self.assertEqual(encoded["input_ids"], encoded_ids) # decoding decoded = tokenizer.decode(encoded_ids) self.assertEqual(decoded, "e è é ê ë</s>") # encode/decode, but with `encode` instead of `__call__` self.assertEqual(tokenizer.decode(tokenizer.encode("e è é ê ë")), "e è é ê ë</s>") def test_prepare_batch_integration(self): tokenizer = self.t5_base_tokenizer src_text = ["A long paragraph for summarization.", "Another paragraph for summarization."] expected_src_tokens = [68, 35, 111, 114, 113, 106, 35, 115, 100, 117, 100, 106, 117, 100, 115, 107, 35, 105, 114, 117, 35, 118, 120, 112, 112, 100, 117, 108, 125, 100, 119, 108, 114, 113, 49, 1, 0] # fmt: skip batch = tokenizer(src_text, padding=True, return_tensors=FRAMEWORK) self.assertIsInstance(batch, BatchEncoding) if FRAMEWORK != "jax": result = list(batch.input_ids.numpy()[0]) else: result = list(batch.input_ids.tolist()[0]) self.assertListEqual(expected_src_tokens, result) self.assertEqual((2, 37), batch.input_ids.shape) self.assertEqual((2, 37), batch.attention_mask.shape) def test_empty_target_text(self): tokenizer = self.t5_base_tokenizer src_text = ["A long paragraph for summarization.", "Another paragraph for summarization."] batch = tokenizer(src_text, padding=True, return_tensors=FRAMEWORK) # check if input_ids are returned and no decoder_input_ids self.assertIn("input_ids", batch) self.assertIn("attention_mask", batch) self.assertNotIn("decoder_input_ids", batch) self.assertNotIn("decoder_attention_mask", batch) def test_max_length_integration(self): tokenizer = self.t5_base_tokenizer tgt_text = [ "Summary of the text.", "Another summary.", ] targets = tokenizer( text_target=tgt_text, max_length=32, padding="max_length", truncation=True, return_tensors=FRAMEWORK ) self.assertEqual(32, targets["input_ids"].shape[1]) def test_eos_in_input(self): tokenizer = self.t5_base_tokenizer src_text = ["A long paragraph for summarization. </s>"] tgt_text = ["Summary of the text. </s>"] expected_src_tokens = [68, 35, 111, 114, 113, 106, 35, 115, 100, 117, 100, 106, 117, 100, 115, 107, 35, 105, 114, 117, 35, 118, 120, 112, 112, 100, 117, 108, 125, 100, 119, 108, 114, 113, 49, 35, 1] # fmt: skip expected_tgt_tokens = [86, 120, 112, 112, 100, 117, 124, 35, 114, 105, 35, 119, 107, 104, 35, 119, 104, 123, 119, 49, 35, 1] # fmt: skip batch = tokenizer(src_text, text_target=tgt_text) self.assertEqual(expected_src_tokens, batch["input_ids"][0]) self.assertEqual(expected_tgt_tokens, batch["labels"][0]) # cannot use default save_and_load_tokenizer test method because tokenizer has no vocab def test_save_and_load_tokenizer(self): # safety check on max_len default value so we are sure the test works tokenizers = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}"): self.assertNotEqual(tokenizer.model_max_length, 42) # Now let's start the test tokenizers = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}"): # Isolate this from the other tests because we save additional tokens/etc tmpdirname = tempfile.mkdtemp() sample_text = " He is very happy, UNwant\u00E9d,running" before_tokens = tokenizer.encode(sample_text, add_special_tokens=False) tokenizer.save_pretrained(tmpdirname) after_tokenizer = tokenizer.__class__.from_pretrained(tmpdirname) after_tokens = after_tokenizer.encode(sample_text, add_special_tokens=False) self.assertListEqual(before_tokens, after_tokens) shutil.rmtree(tmpdirname) tokenizers = self.get_tokenizers(model_max_length=42) for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}"): # Isolate this from the other tests because we save additional tokens/etc tmpdirname = tempfile.mkdtemp() sample_text = " He is very happy, UNwant\u00E9d,running" tokenizer.add_tokens(["bim", "bambam"]) additional_special_tokens = tokenizer.additional_special_tokens additional_special_tokens.append("new_additional_special_token") tokenizer.add_special_tokens( {"additional_special_tokens": additional_special_tokens}, replace_additional_special_tokens=False ) before_tokens = tokenizer.encode(sample_text, add_special_tokens=False) tokenizer.save_pretrained(tmpdirname) after_tokenizer = tokenizer.__class__.from_pretrained(tmpdirname) after_tokens = after_tokenizer.encode(sample_text, add_special_tokens=False) self.assertListEqual(before_tokens, after_tokens) self.assertIn("new_additional_special_token", after_tokenizer.additional_special_tokens) self.assertEqual(after_tokenizer.model_max_length, 42) tokenizer = tokenizer.__class__.from_pretrained(tmpdirname, model_max_length=43) self.assertEqual(tokenizer.model_max_length, 43) shutil.rmtree(tmpdirname) # There is a conflict between the default value of extra_ids and adding a new special token through additional_special_tokens # We need to add the extra_ids in the list of the arg additional_special_tokens def test_special_tokens_initialization_with_non_empty_additional_special_tokens(self): tokenizer_list = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer())) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer())) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(tmp_dir) with open(os.path.join(tmp_dir, "special_tokens_map.json"), encoding="utf-8") as json_file: special_tokens_map = json.load(json_file) with open(os.path.join(tmp_dir, "tokenizer_config.json"), encoding="utf-8") as json_file: tokenizer_config = json.load(json_file) added_tokens_extra_ids = [f"<extra_id_{i}>" for i in range(125)] special_tokens_map["additional_special_tokens"] = added_tokens_extra_ids + [ "an_additional_special_token" ] tokenizer_config["additional_special_tokens"] = added_tokens_extra_ids + [ "an_additional_special_token" ] with open(os.path.join(tmp_dir, "special_tokens_map.json"), "w", encoding="utf-8") as outfile: json.dump(special_tokens_map, outfile) with open(os.path.join(tmp_dir, "tokenizer_config.json"), "w", encoding="utf-8") as outfile: json.dump(tokenizer_config, outfile) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files tokenizer_without_change_in_init = tokenizer_class.from_pretrained( tmp_dir, ) self.assertIn( "an_additional_special_token", tokenizer_without_change_in_init.additional_special_tokens ) # self.assertIn("an_additional_special_token",tokenizer_without_change_in_init.get_vocab()) # ByT5Tokenization no vocab self.assertEqual( ["an_additional_special_token"], tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids(["an_additional_special_token"]) ), ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained new_added_tokens = added_tokens_extra_ids + [AddedToken("a_new_additional_special_token", lstrip=True)] tokenizer = tokenizer_class.from_pretrained( tmp_dir, additional_special_tokens=new_added_tokens, ) self.assertIn("a_new_additional_special_token", tokenizer.additional_special_tokens) self.assertEqual( ["a_new_additional_special_token"], tokenizer.convert_ids_to_tokens( tokenizer.convert_tokens_to_ids(["a_new_additional_special_token"]) ), ) def test_decode_single_bytes(self): tokenizer_list = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer())) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer())) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(tmp_dir) tokenizer = tokenizer_class.from_pretrained(tmp_dir) self.assertTrue(tokenizer.decode([255]) == "") # tokenizer can be instantiated without any pretrained files, so no need for pretrained tokenizer list def test_pretrained_model_lists(self): pass # tokenizer does not have vocabulary def test_get_vocab(self): pass # inputs cannot be pretokenized since ids depend on whole input string and not just on single characters def test_pretokenized_inputs(self): pass # tests all ids in vocab => vocab doesn't exist so unnecessary to test def test_conversion_reversible(self): pass def test_convert_tokens_to_string_format(self): # The default common tokenizer tests uses invalid tokens for ByT5 that can only accept one-character strings # and special added tokens as tokens tokenizers = self.get_tokenizers(fast=True, do_lower_case=True) for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}"): tokens = ["t", "h", "i", "s", " ", "i", "s", " ", "a", " ", "t", "e", "x", "t", "</s>"] string = tokenizer.convert_tokens_to_string(tokens) self.assertIsInstance(string, str) # We need a different implementation of the test of the same name defined in TokenizerTesterMixin because this tokenizer # doesn't have a vocab def test_tokenizers_common_ids_setters(self): tokenizers = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}"): attributes_list = [ "bos_token", "eos_token", "unk_token", "sep_token", "pad_token", "cls_token", "mask_token", ] token_id_to_test_setters = 0 token_to_test_setters = tokenizer.convert_ids_to_tokens( token_id_to_test_setters, skip_special_tokens=False ) for attr in attributes_list: setattr(tokenizer, attr + "_id", None) self.assertEqual(getattr(tokenizer, attr), None) self.assertEqual(getattr(tokenizer, attr + "_id"), None) setattr(tokenizer, attr + "_id", token_id_to_test_setters) self.assertEqual(getattr(tokenizer, attr), token_to_test_setters) self.assertEqual(getattr(tokenizer, attr + "_id"), token_id_to_test_setters) setattr(tokenizer, "additional_special_tokens_ids", []) self.assertListEqual(getattr(tokenizer, "additional_special_tokens"), []) self.assertListEqual(getattr(tokenizer, "additional_special_tokens_ids"), []) setattr(tokenizer, "additional_special_tokens_ids", [token_id_to_test_setters]) self.assertListEqual(getattr(tokenizer, "additional_special_tokens"), [token_to_test_setters]) self.assertListEqual(getattr(tokenizer, "additional_special_tokens_ids"), [token_id_to_test_setters])
transformers/tests/models/byt5/test_tokenization_byt5.py/0
{ "file_path": "transformers/tests/models/byt5/test_tokenization_byt5.py", "repo_id": "transformers", "token_count": 7883 }
149
# coding=utf-8 # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Testing suite for the TensorFlow ConvNext model. """ from __future__ import annotations import inspect import unittest from typing import List, Tuple import numpy as np from transformers import ConvNextV2Config from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFConvNextV2ForImageClassification, TFConvNextV2Model if is_vision_available(): from PIL import Image from transformers import ConvNextImageProcessor class TFConvNextV2ModelTester: def __init__( self, parent, batch_size=13, image_size=32, num_channels=3, num_stages=4, hidden_sizes=[10, 20, 30, 40], depths=[2, 2, 3, 2], is_training=True, use_labels=True, intermediate_size=37, hidden_act="gelu", type_sequence_label_size=10, initializer_range=0.02, num_labels=3, scope=None, ): self.parent = parent self.batch_size = batch_size self.image_size = image_size self.num_channels = num_channels self.num_stages = num_stages self.hidden_sizes = hidden_sizes self.depths = depths self.is_training = is_training self.use_labels = use_labels self.intermediate_size = intermediate_size self.hidden_act = hidden_act self.type_sequence_label_size = type_sequence_label_size self.initializer_range = initializer_range self.scope = scope def prepare_config_and_inputs(self): pixel_values = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) labels = None if self.use_labels: labels = ids_tensor([self.batch_size], self.type_sequence_label_size) config = self.get_config() return config, pixel_values, labels def get_config(self): return ConvNextV2Config( num_channels=self.num_channels, hidden_sizes=self.hidden_sizes, depths=self.depths, num_stages=self.num_stages, hidden_act=self.hidden_act, is_decoder=False, initializer_range=self.initializer_range, ) def create_and_check_model(self, config, pixel_values, labels): model = TFConvNextV2Model(config=config) result = model(pixel_values, training=False) # expected last hidden states: batch_size, channels, height // 32, width // 32 self.parent.assertEqual( result.last_hidden_state.shape, (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32), ) def create_and_check_for_image_classification(self, config, pixel_values, labels): config.num_labels = self.type_sequence_label_size model = TFConvNextV2ForImageClassification(config) result = model(pixel_values, labels=labels, training=False) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.type_sequence_label_size)) def prepare_config_and_inputs_for_common(self): config_and_inputs = self.prepare_config_and_inputs() config, pixel_values, labels = config_and_inputs inputs_dict = {"pixel_values": pixel_values} return config, inputs_dict @require_tf class TFConvNextV2ModelTest(TFModelTesterMixin, PipelineTesterMixin, unittest.TestCase): """ Here we also overwrite some of the tests of test_modeling_common.py, as ConvNext does not use input_ids, inputs_embeds, attention_mask and seq_length. """ all_model_classes = (TFConvNextV2Model, TFConvNextV2ForImageClassification) if is_tf_available() else () pipeline_model_mapping = ( {"feature-extraction": TFConvNextV2Model, "image-classification": TFConvNextV2ForImageClassification} if is_tf_available() else {} ) test_pruning = False test_onnx = False test_resize_embeddings = False test_head_masking = False has_attentions = False def setUp(self): self.model_tester = TFConvNextV2ModelTester(self) self.config_tester = ConfigTester( self, config_class=ConvNextV2Config, has_text_modality=False, hidden_size=37, ) @unittest.skip(reason="ConvNext does not use inputs_embeds") def test_inputs_embeds(self): pass @unittest.skipIf( not is_tf_available() or len(tf.config.list_physical_devices("GPU")) == 0, reason="TF does not support backprop for grouped convolutions on CPU.", ) @slow def test_keras_fit(self): super().test_keras_fit() @unittest.skip(reason="ConvNext does not support input and output embeddings") def test_model_common_attributes(self): pass def test_forward_signature(self): config, _ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: model = model_class(config) signature = inspect.signature(model.call) # signature.parameters is an OrderedDict => so arg_names order is deterministic arg_names = [*signature.parameters.keys()] expected_arg_names = ["pixel_values"] self.assertListEqual(arg_names[:1], expected_arg_names) def test_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*config_and_inputs) @unittest.skipIf( not is_tf_available() or len(tf.config.list_physical_devices("GPU")) == 0, reason="TF does not support backprop for grouped convolutions on CPU.", ) def test_dataset_conversion(self): super().test_dataset_conversion() def test_hidden_states_output(self): def check_hidden_states_output(inputs_dict, config, model_class): model = model_class(config) outputs = model(**self._prepare_for_class(inputs_dict, model_class)) hidden_states = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states expected_num_stages = self.model_tester.num_stages self.assertEqual(len(hidden_states), expected_num_stages + 1) # ConvNext's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:]), [self.model_tester.image_size // 4, self.model_tester.image_size // 4], ) config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: inputs_dict["output_hidden_states"] = True check_hidden_states_output(inputs_dict, config, model_class) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] config.output_hidden_states = True check_hidden_states_output(inputs_dict, config, model_class) # Since ConvNext does not have any attention we need to rewrite this test. def test_model_outputs_equivalence(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() def check_equivalence(model, tuple_inputs, dict_inputs, additional_kwargs={}): tuple_output = model(tuple_inputs, return_dict=False, **additional_kwargs) dict_output = model(dict_inputs, return_dict=True, **additional_kwargs).to_tuple() def recursive_check(tuple_object, dict_object): if isinstance(tuple_object, (List, Tuple)): for tuple_iterable_value, dict_iterable_value in zip(tuple_object, dict_object): recursive_check(tuple_iterable_value, dict_iterable_value) elif tuple_object is None: return else: self.assertTrue( all(tf.equal(tuple_object, dict_object)), msg=( "Tuple and dict output are not equal. Difference:" f" {tf.math.reduce_max(tf.abs(tuple_object - dict_object))}" ), ) recursive_check(tuple_output, dict_output) for model_class in self.all_model_classes: model = model_class(config) tuple_inputs = self._prepare_for_class(inputs_dict, model_class) dict_inputs = self._prepare_for_class(inputs_dict, model_class) check_equivalence(model, tuple_inputs, dict_inputs) tuple_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True) dict_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True) check_equivalence(model, tuple_inputs, dict_inputs) tuple_inputs = self._prepare_for_class(inputs_dict, model_class) dict_inputs = self._prepare_for_class(inputs_dict, model_class) check_equivalence(model, tuple_inputs, dict_inputs, {"output_hidden_states": True}) tuple_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True) dict_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True) check_equivalence(model, tuple_inputs, dict_inputs, {"output_hidden_states": True}) def test_for_image_classification(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*config_and_inputs) @slow def test_model_from_pretrained(self): model = TFConvNextV2Model.from_pretrained("facebook/convnextv2-tiny-1k-224") self.assertIsNotNone(model) # We will verify our results on an image of cute cats def prepare_img(): image = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png") return image @require_tf @require_vision class TFConvNextV2ModelIntegrationTest(unittest.TestCase): @cached_property def default_image_processor(self): return ( ConvNextImageProcessor.from_pretrained("facebook/convnextv2-tiny-1k-224") if is_vision_available() else None ) @slow def test_inference_image_classification_head(self): model = TFConvNextV2ForImageClassification.from_pretrained("facebook/convnextv2-tiny-1k-224") image_processor = self.default_image_processor image = prepare_img() inputs = image_processor(images=image, return_tensors="tf") # forward pass outputs = model(**inputs) # verify the logits expected_shape = tf.TensorShape((1, 1000)) self.assertEqual(outputs.logits.shape, expected_shape) expected_slice = np.array([0.9996, 0.1966, -0.4386]) self.assertTrue(np.allclose(outputs.logits[0, :3].numpy(), expected_slice, atol=1e-4))
transformers/tests/models/convnextv2/test_modeling_tf_convnextv2.py/0
{ "file_path": "transformers/tests/models/convnextv2/test_modeling_tf_convnextv2.py", "repo_id": "transformers", "token_count": 5048 }
150
# coding=utf-8 # Copyright 2022 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Testing suite for the PyTorch Data2VecVision model. """ import unittest from transformers import Data2VecVisionConfig from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_MAPPING, Data2VecVisionForImageClassification, Data2VecVisionForSemanticSegmentation, Data2VecVisionModel, ) from transformers.models.data2vec.modeling_data2vec_vision import DATA2VEC_VISION_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import BeitImageProcessor class Data2VecVisionModelTester: def __init__( self, parent, vocab_size=100, batch_size=13, image_size=30, patch_size=2, num_channels=3, is_training=True, use_labels=True, hidden_size=32, num_hidden_layers=2, num_attention_heads=4, intermediate_size=37, hidden_act="gelu", hidden_dropout_prob=0.1, attention_probs_dropout_prob=0.1, type_sequence_label_size=10, initializer_range=0.02, num_labels=3, scope=None, out_indices=[0, 1, 2, 3], ): self.parent = parent self.vocab_size = 100 self.batch_size = batch_size self.image_size = image_size self.patch_size = patch_size self.num_channels = num_channels self.is_training = is_training self.use_labels = use_labels self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.intermediate_size = intermediate_size self.hidden_act = hidden_act self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.type_sequence_label_size = type_sequence_label_size self.initializer_range = initializer_range self.scope = scope self.out_indices = out_indices self.num_labels = num_labels # in BeiT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) num_patches = (image_size // patch_size) ** 2 self.seq_length = num_patches + 1 def prepare_config_and_inputs(self): pixel_values = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) labels = None pixel_labels = None if self.use_labels: labels = ids_tensor([self.batch_size], self.type_sequence_label_size) pixel_labels = ids_tensor([self.batch_size, self.image_size, self.image_size], self.num_labels) config = self.get_config() return config, pixel_values, labels, pixel_labels def get_config(self): return Data2VecVisionConfig( vocab_size=self.vocab_size, image_size=self.image_size, patch_size=self.patch_size, num_channels=self.num_channels, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, is_decoder=False, initializer_range=self.initializer_range, out_indices=self.out_indices, ) def create_and_check_model(self, config, pixel_values, labels, pixel_labels): model = Data2VecVisionModel(config=config) model.to(torch_device) model.eval() result = model(pixel_values) # expected sequence length = num_patches + 1 (we add 1 for the [CLS] token) num_patches = (self.image_size // self.patch_size) ** 2 self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, num_patches + 1, self.hidden_size)) def create_and_check_for_image_classification(self, config, pixel_values, labels, pixel_labels): config.num_labels = self.type_sequence_label_size model = Data2VecVisionForImageClassification(config) model.to(torch_device) model.eval() result = model(pixel_values, labels=labels) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.type_sequence_label_size)) def create_and_check_for_image_segmentation(self, config, pixel_values, labels, pixel_labels): config.num_labels = self.num_labels model = Data2VecVisionForSemanticSegmentation(config) model.to(torch_device) model.eval() result = model(pixel_values) self.parent.assertEqual( result.logits.shape, (self.batch_size, self.num_labels, self.image_size * 2, self.image_size * 2) ) result = model(pixel_values, labels=pixel_labels) self.parent.assertEqual( result.logits.shape, (self.batch_size, self.num_labels, self.image_size * 2, self.image_size * 2) ) def prepare_config_and_inputs_for_common(self): config_and_inputs = self.prepare_config_and_inputs() config, pixel_values, labels, pixel_labels = config_and_inputs inputs_dict = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class Data2VecVisionModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase): """ Here we also overwrite some of the tests of test_modeling_common.py, as Data2VecVision does not use input_ids, inputs_embeds, attention_mask and seq_length. """ all_model_classes = ( (Data2VecVisionModel, Data2VecVisionForImageClassification, Data2VecVisionForSemanticSegmentation) if is_torch_available() else () ) pipeline_model_mapping = ( { "image-feature-extraction": Data2VecVisionModel, "image-classification": Data2VecVisionForImageClassification, "image-segmentation": Data2VecVisionForSemanticSegmentation, } if is_torch_available() else {} ) test_pruning = False test_resize_embeddings = False test_head_masking = False def setUp(self): self.model_tester = Data2VecVisionModelTester(self) self.config_tester = ConfigTester( self, config_class=Data2VecVisionConfig, has_text_modality=False, hidden_size=37 ) def test_config(self): self.config_tester.run_common_tests() def test_inputs_embeds(self): # Data2VecVision does not use inputs_embeds pass @require_torch_multi_gpu @unittest.skip( reason="Data2VecVision has some layers using `add_module` which doesn't work well with `nn.DataParallel`" ) def test_multi_gpu_data_parallel_forward(self): pass def test_model_common_attributes(self): config, _ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: model = model_class(config) self.assertIsInstance(model.get_input_embeddings(), (nn.Module)) x = model.get_output_embeddings() self.assertTrue(x is None or isinstance(x, nn.Linear)) def test_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*config_and_inputs) def test_for_image_segmentation(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_segmentation(*config_and_inputs) def test_training(self): if not self.model_tester.is_training: return config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() config.return_dict = True for model_class in self.all_model_classes: if model_class in [*get_values(MODEL_MAPPING)]: continue model = model_class(config) model.to(torch_device) model.train() inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True) loss = model(**inputs).loss loss.backward() def test_training_gradient_checkpointing(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() if not self.model_tester.is_training: return config.use_cache = False config.return_dict = True for model_class in self.all_model_classes: if model_class in [*get_values(MODEL_MAPPING)] or not model_class.supports_gradient_checkpointing: continue # TODO: remove the following 3 lines once we have a MODEL_FOR_SEMANTIC_SEGMENTATION_MAPPING # this can then be incorporated into _prepare_for_class in test_modeling_common.py elif model_class.__name__ == "Data2VecVisionForSemanticSegmentation": batch_size, num_channels, height, width = inputs_dict["pixel_values"].shape inputs_dict["labels"] = torch.zeros( [self.model_tester.batch_size, height, width], device=torch_device ).long() model = model_class(config) model.gradient_checkpointing_enable() model.to(torch_device) model.train() inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True) loss = model(**inputs).loss loss.backward() def test_initialization(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() configs_no_init = _config_zero_init(config) for model_class in self.all_model_classes: model = model_class(config=configs_no_init) for name, param in model.named_parameters(): # we skip lambda parameters as these require special initial values # determined by config.layer_scale_init_value if "lambda" in name: continue if param.requires_grad: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item(), [0.0, 1.0], msg=f"Parameter {name} of model {model_class} seems not properly initialized", ) def check_pt_tf_outputs(self, tf_outputs, pt_outputs, model_class, tol=2e-4, name="outputs", attributes=None): # We override with a slightly higher tol value, as semseg models tend to diverge a bit more super().check_pt_tf_outputs(tf_outputs, pt_outputs, model_class, tol, name, attributes) def test_for_image_classification(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*config_and_inputs) @slow def test_model_from_pretrained(self): for model_name in DATA2VEC_VISION_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: model = Data2VecVisionModel.from_pretrained(model_name) self.assertIsNotNone(model) # We will verify our results on an image of cute cats def prepare_img(): image = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png") return image @require_torch @require_vision class Data2VecVisionModelIntegrationTest(unittest.TestCase): @cached_property def default_image_processor(self): return ( BeitImageProcessor.from_pretrained("facebook/data2vec-vision-base-ft1k") if is_vision_available() else None ) @slow def test_inference_image_classification_head_imagenet_1k(self): model = Data2VecVisionForImageClassification.from_pretrained("facebook/data2vec-vision-base-ft1k").to( torch_device ) image_processor = self.default_image_processor image = prepare_img() inputs = image_processor(images=image, return_tensors="pt").to(torch_device) # forward pass with torch.no_grad(): outputs = model(**inputs) logits = outputs.logits # verify the logits expected_shape = torch.Size((1, 1000)) self.assertEqual(logits.shape, expected_shape) expected_slice = torch.tensor([0.3277, -0.1395, 0.0911]).to(torch_device) self.assertTrue(torch.allclose(logits[0, :3], expected_slice, atol=1e-4)) expected_top2 = [model.config.label2id[i] for i in ["remote control, remote", "tabby, tabby cat"]] self.assertEqual(logits[0].topk(2).indices.cpu().tolist(), expected_top2)
transformers/tests/models/data2vec/test_modeling_data2vec_vision.py/0
{ "file_path": "transformers/tests/models/data2vec/test_modeling_data2vec_vision.py", "repo_id": "transformers", "token_count": 5926 }
151
# coding=utf-8 # Copyright 2020 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import tempfile import unittest import pytest from transformers import DistilBertConfig, is_torch_available from transformers.testing_utils import require_flash_attn, require_torch, require_torch_accelerator, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, DistilBertModel, ) class DistilBertModelTester(object): def __init__( self, parent, batch_size=13, seq_length=7, is_training=True, use_input_mask=True, use_token_type_ids=False, use_labels=True, vocab_size=99, hidden_size=32, num_hidden_layers=2, num_attention_heads=4, intermediate_size=37, hidden_act="gelu", hidden_dropout_prob=0.1, attention_probs_dropout_prob=0.1, max_position_embeddings=512, type_vocab_size=16, type_sequence_label_size=2, initializer_range=0.02, num_labels=3, num_choices=4, scope=None, ): self.parent = parent self.batch_size = batch_size self.seq_length = seq_length self.is_training = is_training self.use_input_mask = use_input_mask self.use_token_type_ids = use_token_type_ids self.use_labels = use_labels self.vocab_size = vocab_size self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.intermediate_size = intermediate_size self.hidden_act = hidden_act self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.max_position_embeddings = max_position_embeddings self.type_vocab_size = type_vocab_size self.type_sequence_label_size = type_sequence_label_size self.initializer_range = initializer_range self.num_labels = num_labels self.num_choices = num_choices self.scope = scope def prepare_config_and_inputs(self): input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) input_mask = None if self.use_input_mask: input_mask = random_attention_mask([self.batch_size, self.seq_length]) sequence_labels = None token_labels = None choice_labels = None if self.use_labels: sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size) token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels) choice_labels = ids_tensor([self.batch_size], self.num_choices) config = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def get_config(self): return DistilBertConfig( vocab_size=self.vocab_size, dim=self.hidden_size, n_layers=self.num_hidden_layers, n_heads=self.num_attention_heads, hidden_dim=self.intermediate_size, hidden_act=self.hidden_act, dropout=self.hidden_dropout_prob, attention_dropout=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, initializer_range=self.initializer_range, ) def create_and_check_distilbert_model( self, config, input_ids, input_mask, sequence_labels, token_labels, choice_labels ): model = DistilBertModel(config=config) model.to(torch_device) model.eval() result = model(input_ids, input_mask) result = model(input_ids) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) def create_and_check_distilbert_for_masked_lm( self, config, input_ids, input_mask, sequence_labels, token_labels, choice_labels ): model = DistilBertForMaskedLM(config=config) model.to(torch_device) model.eval() result = model(input_ids, attention_mask=input_mask, labels=token_labels) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size)) def create_and_check_distilbert_for_question_answering( self, config, input_ids, input_mask, sequence_labels, token_labels, choice_labels ): model = DistilBertForQuestionAnswering(config=config) model.to(torch_device) model.eval() result = model( input_ids, attention_mask=input_mask, start_positions=sequence_labels, end_positions=sequence_labels ) self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length)) def create_and_check_distilbert_for_sequence_classification( self, config, input_ids, input_mask, sequence_labels, token_labels, choice_labels ): config.num_labels = self.num_labels model = DistilBertForSequenceClassification(config) model.to(torch_device) model.eval() result = model(input_ids, attention_mask=input_mask, labels=sequence_labels) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels)) def create_and_check_distilbert_for_token_classification( self, config, input_ids, input_mask, sequence_labels, token_labels, choice_labels ): config.num_labels = self.num_labels model = DistilBertForTokenClassification(config=config) model.to(torch_device) model.eval() result = model(input_ids, attention_mask=input_mask, labels=token_labels) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels)) def create_and_check_distilbert_for_multiple_choice( self, config, input_ids, input_mask, sequence_labels, token_labels, choice_labels ): config.num_choices = self.num_choices model = DistilBertForMultipleChoice(config=config) model.to(torch_device) model.eval() multiple_choice_inputs_ids = input_ids.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous() multiple_choice_input_mask = input_mask.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous() result = model( multiple_choice_inputs_ids, attention_mask=multiple_choice_input_mask, labels=choice_labels, ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_choices)) def prepare_config_and_inputs_for_common(self): config_and_inputs = self.prepare_config_and_inputs() (config, input_ids, input_mask, sequence_labels, token_labels, choice_labels) = config_and_inputs inputs_dict = {"input_ids": input_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class DistilBertModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase): all_model_classes = ( ( DistilBertModel, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, ) if is_torch_available() else None ) pipeline_model_mapping = ( { "feature-extraction": DistilBertModel, "fill-mask": DistilBertForMaskedLM, "question-answering": DistilBertForQuestionAnswering, "text-classification": DistilBertForSequenceClassification, "token-classification": DistilBertForTokenClassification, "zero-shot": DistilBertForSequenceClassification, } if is_torch_available() else {} ) fx_compatible = True test_pruning = True test_resize_embeddings = True test_resize_position_embeddings = True def setUp(self): self.model_tester = DistilBertModelTester(self) self.config_tester = ConfigTester(self, config_class=DistilBertConfig, dim=37) def test_config(self): self.config_tester.run_common_tests() def test_distilbert_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_model(*config_and_inputs) def test_for_masked_lm(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_masked_lm(*config_and_inputs) def test_for_question_answering(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_question_answering(*config_and_inputs) def test_for_sequence_classification(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_sequence_classification(*config_and_inputs) def test_for_token_classification(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_token_classification(*config_and_inputs) def test_for_multiple_choice(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_multiple_choice(*config_and_inputs) @slow def test_model_from_pretrained(self): for model_name in DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: model = DistilBertModel.from_pretrained(model_name) self.assertIsNotNone(model) @slow @require_torch_accelerator def test_torchscript_device_change(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # BertForMultipleChoice behaves incorrectly in JIT environments. if model_class == DistilBertForMultipleChoice: return config.torchscript = True model = model_class(config=config) inputs_dict = self._prepare_for_class(inputs_dict, model_class) traced_model = torch.jit.trace( model, (inputs_dict["input_ids"].to("cpu"), inputs_dict["attention_mask"].to("cpu")) ) with tempfile.TemporaryDirectory() as tmp: torch.jit.save(traced_model, os.path.join(tmp, "traced_model.pt")) loaded = torch.jit.load(os.path.join(tmp, "traced_model.pt"), map_location=torch_device) loaded(inputs_dict["input_ids"].to(torch_device), inputs_dict["attention_mask"].to(torch_device)) # Because DistilBertForMultipleChoice requires inputs with different shapes we need to override this test. @require_flash_attn @require_torch_accelerator @pytest.mark.flash_attn_test @slow def test_flash_attn_2_inference(self): import torch for model_class in self.all_model_classes: dummy_input = torch.LongTensor( [ [1, 2, 3, 4], [1, 2, 8, 9], [1, 2, 11, 12], [1, 2, 13, 14], ] ).to(torch_device) dummy_attention_mask = torch.LongTensor( [ [0, 1, 1, 1], [0, 1, 1, 1], [0, 1, 1, 1], [0, 1, 1, 1], ] ).to(torch_device) config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() model = model_class(config) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(tmpdirname) model_fa = model_class.from_pretrained( tmpdirname, torch_dtype=torch.bfloat16, attn_implementation="flash_attention_2" ) model_fa.to(torch_device) model = model_class.from_pretrained(tmpdirname, torch_dtype=torch.bfloat16) model.to(torch_device) logits = model(dummy_input, output_hidden_states=True).hidden_states[-1] logits_fa = model_fa(dummy_input, output_hidden_states=True).hidden_states[-1] self.assertTrue(torch.allclose(logits_fa, logits, atol=4e-2, rtol=4e-2)) output_fa = model_fa(dummy_input, attention_mask=dummy_attention_mask, output_hidden_states=True) logits_fa = output_fa.hidden_states[-1] output = model(dummy_input, attention_mask=dummy_attention_mask, output_hidden_states=True) logits = output.hidden_states[-1] self.assertTrue(torch.allclose(logits_fa[1:], logits[1:], atol=4e-2, rtol=4e-2)) # Because DistilBertForMultipleChoice requires inputs with different shapes we need to override this test. @require_flash_attn @require_torch_accelerator @pytest.mark.flash_attn_test @slow def test_flash_attn_2_inference_padding_right(self): import torch for model_class in self.all_model_classes: dummy_input = torch.LongTensor( [ [1, 2, 3, 4], [1, 2, 8, 9], [1, 2, 11, 12], [1, 2, 13, 14], ] ).to(torch_device) dummy_attention_mask = torch.LongTensor( [ [0, 1, 1, 1], [0, 1, 1, 1], [0, 1, 1, 1], [0, 1, 1, 1], ] ).to(torch_device) config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() model = model_class(config) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(tmpdirname) model_fa = model_class.from_pretrained( tmpdirname, torch_dtype=torch.bfloat16, attn_implementation="flash_attention_2" ) model_fa.to(torch_device) model = model_class.from_pretrained( tmpdirname, torch_dtype=torch.bfloat16, ) model.to(torch_device) logits = model(dummy_input, output_hidden_states=True).hidden_states[-1] logits_fa = model_fa(dummy_input, output_hidden_states=True).hidden_states[-1] self.assertTrue(torch.allclose(logits_fa, logits, atol=4e-2, rtol=4e-2)) output_fa = model_fa(dummy_input, attention_mask=dummy_attention_mask, output_hidden_states=True) logits_fa = output_fa.hidden_states[-1] output = model(dummy_input, attention_mask=dummy_attention_mask, output_hidden_states=True) logits = output.hidden_states[-1] self.assertTrue(torch.allclose(logits_fa[:-1], logits[:-1], atol=4e-2, rtol=4e-2)) @require_torch class DistilBertModelIntergrationTest(unittest.TestCase): @slow def test_inference_no_head_absolute_embedding(self): model = DistilBertModel.from_pretrained("distilbert-base-uncased") input_ids = torch.tensor([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]]) attention_mask = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]) with torch.no_grad(): output = model(input_ids, attention_mask=attention_mask)[0] expected_shape = torch.Size((1, 11, 768)) self.assertEqual(output.shape, expected_shape) expected_slice = torch.tensor( [[[-0.1639, 0.3299, 0.1648], [-0.1746, 0.3289, 0.1710], [-0.1884, 0.3357, 0.1810]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4], expected_slice, atol=1e-4))
transformers/tests/models/distilbert/test_modeling_distilbert.py/0
{ "file_path": "transformers/tests/models/distilbert/test_modeling_distilbert.py", "repo_id": "transformers", "token_count": 7895 }
152
# coding=utf-8 # Copyright 2022 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Testing suite for the PyTorch DPT model. """ import unittest from transformers import DPTConfig from transformers.file_utils import is_torch_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import MODEL_MAPPING, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTModel from transformers.models.dpt.modeling_dpt import DPT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import DPTImageProcessor class DPTModelTester: def __init__( self, parent, batch_size=2, image_size=32, patch_size=16, num_channels=3, is_training=True, use_labels=True, hidden_size=32, num_hidden_layers=2, backbone_out_indices=[0, 1, 2, 3], num_attention_heads=4, intermediate_size=37, hidden_act="gelu", hidden_dropout_prob=0.1, attention_probs_dropout_prob=0.1, initializer_range=0.02, num_labels=3, neck_hidden_sizes=[16, 32], is_hybrid=False, scope=None, ): self.parent = parent self.batch_size = batch_size self.image_size = image_size self.patch_size = patch_size self.num_channels = num_channels self.is_training = is_training self.use_labels = use_labels self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.backbone_out_indices = backbone_out_indices self.num_attention_heads = num_attention_heads self.intermediate_size = intermediate_size self.hidden_act = hidden_act self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.initializer_range = initializer_range self.num_labels = num_labels self.scope = scope self.is_hybrid = is_hybrid self.neck_hidden_sizes = neck_hidden_sizes # sequence length of DPT = num_patches + 1 (we add 1 for the [CLS] token) num_patches = (image_size // patch_size) ** 2 self.seq_length = num_patches + 1 def prepare_config_and_inputs(self): pixel_values = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) labels = None if self.use_labels: labels = ids_tensor([self.batch_size, self.image_size, self.image_size], self.num_labels) config = self.get_config() return config, pixel_values, labels def get_config(self): return DPTConfig( image_size=self.image_size, patch_size=self.patch_size, num_channels=self.num_channels, hidden_size=self.hidden_size, fusion_hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, backbone_out_indices=self.backbone_out_indices, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, is_decoder=False, initializer_range=self.initializer_range, is_hybrid=self.is_hybrid, neck_hidden_sizes=self.neck_hidden_sizes, ) def create_and_check_model(self, config, pixel_values, labels): model = DPTModel(config=config) model.to(torch_device) model.eval() result = model(pixel_values) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) def create_and_check_for_depth_estimation(self, config, pixel_values, labels): config.num_labels = self.num_labels model = DPTForDepthEstimation(config) model.to(torch_device) model.eval() result = model(pixel_values) self.parent.assertEqual(result.predicted_depth.shape, (self.batch_size, self.image_size, self.image_size)) def create_and_check_for_semantic_segmentation(self, config, pixel_values, labels): config.num_labels = self.num_labels model = DPTForSemanticSegmentation(config) model.to(torch_device) model.eval() result = model(pixel_values, labels=labels) self.parent.assertEqual( result.logits.shape, (self.batch_size, self.num_labels, self.image_size, self.image_size) ) def prepare_config_and_inputs_for_common(self): config_and_inputs = self.prepare_config_and_inputs() config, pixel_values, labels = config_and_inputs inputs_dict = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class DPTModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase): """ Here we also overwrite some of the tests of test_modeling_common.py, as DPT does not use input_ids, inputs_embeds, attention_mask and seq_length. """ all_model_classes = (DPTModel, DPTForDepthEstimation, DPTForSemanticSegmentation) if is_torch_available() else () pipeline_model_mapping = ( { "depth-estimation": DPTForDepthEstimation, "image-feature-extraction": DPTModel, "image-segmentation": DPTForSemanticSegmentation, } if is_torch_available() else {} ) test_pruning = False test_resize_embeddings = False test_head_masking = False def setUp(self): self.model_tester = DPTModelTester(self) self.config_tester = ConfigTester(self, config_class=DPTConfig, has_text_modality=False, hidden_size=37) def test_config(self): self.config_tester.run_common_tests() @unittest.skip(reason="DPT does not use inputs_embeds") def test_inputs_embeds(self): pass def test_model_common_attributes(self): config, _ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: model = model_class(config) self.assertIsInstance(model.get_input_embeddings(), (nn.Module)) x = model.get_output_embeddings() self.assertTrue(x is None or isinstance(x, nn.Linear)) def test_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*config_and_inputs) def test_for_depth_estimation(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_depth_estimation(*config_and_inputs) def test_for_semantic_segmentation(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*config_and_inputs) def test_training(self): for model_class in self.all_model_classes: if model_class.__name__ == "DPTForDepthEstimation": continue config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() config.return_dict = True if model_class in get_values(MODEL_MAPPING): continue model = model_class(config) model.to(torch_device) model.train() inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True) loss = model(**inputs).loss loss.backward() def test_training_gradient_checkpointing(self): for model_class in self.all_model_classes: if model_class.__name__ == "DPTForDepthEstimation": continue config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() config.use_cache = False config.return_dict = True if model_class in get_values(MODEL_MAPPING) or not model_class.supports_gradient_checkpointing: continue model = model_class(config) model.to(torch_device) model.gradient_checkpointing_enable() model.train() inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True) loss = model(**inputs).loss loss.backward() @unittest.skip( reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124" ) def test_training_gradient_checkpointing_use_reentrant(self): pass @unittest.skip( reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124" ) def test_training_gradient_checkpointing_use_reentrant_false(self): pass def test_initialization(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() configs_no_init = _config_zero_init(config) for model_class in self.all_model_classes: model = model_class(config=configs_no_init) # Skip the check for the backbone backbone_params = [] for name, module in model.named_modules(): if module.__class__.__name__ == "DPTViTHybridEmbeddings": backbone_params = [f"{name}.{key}" for key in module.state_dict().keys()] break for name, param in model.named_parameters(): if param.requires_grad: if name in backbone_params: continue self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item(), [0.0, 1.0], msg=f"Parameter {name} of model {model_class} seems not properly initialized", ) @slow def test_model_from_pretrained(self): for model_name in DPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: model = DPTModel.from_pretrained(model_name) self.assertIsNotNone(model) # We will verify our results on an image of cute cats def prepare_img(): image = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png") return image @require_torch @require_vision @slow class DPTModelIntegrationTest(unittest.TestCase): def test_inference_depth_estimation(self): image_processor = DPTImageProcessor.from_pretrained("Intel/dpt-large") model = DPTForDepthEstimation.from_pretrained("Intel/dpt-large").to(torch_device) image = prepare_img() inputs = image_processor(images=image, return_tensors="pt").to(torch_device) # forward pass with torch.no_grad(): outputs = model(**inputs) predicted_depth = outputs.predicted_depth # verify the predicted depth expected_shape = torch.Size((1, 384, 384)) self.assertEqual(predicted_depth.shape, expected_shape) expected_slice = torch.tensor( [[6.3199, 6.3629, 6.4148], [6.3850, 6.3615, 6.4166], [6.3519, 6.3176, 6.3575]] ).to(torch_device) self.assertTrue(torch.allclose(outputs.predicted_depth[0, :3, :3], expected_slice, atol=1e-4)) def test_inference_semantic_segmentation(self): image_processor = DPTImageProcessor.from_pretrained("Intel/dpt-large-ade") model = DPTForSemanticSegmentation.from_pretrained("Intel/dpt-large-ade").to(torch_device) image = prepare_img() inputs = image_processor(images=image, return_tensors="pt").to(torch_device) # forward pass with torch.no_grad(): outputs = model(**inputs) # verify the logits expected_shape = torch.Size((1, 150, 480, 480)) self.assertEqual(outputs.logits.shape, expected_shape) expected_slice = torch.tensor( [[4.0480, 4.2420, 4.4360], [4.3124, 4.5693, 4.8261], [4.5768, 4.8965, 5.2163]] ).to(torch_device) self.assertTrue(torch.allclose(outputs.logits[0, 0, :3, :3], expected_slice, atol=1e-4)) def test_post_processing_semantic_segmentation(self): image_processor = DPTImageProcessor.from_pretrained("Intel/dpt-large-ade") model = DPTForSemanticSegmentation.from_pretrained("Intel/dpt-large-ade").to(torch_device) image = prepare_img() inputs = image_processor(images=image, return_tensors="pt").to(torch_device) # forward pass with torch.no_grad(): outputs = model(**inputs) outputs.logits = outputs.logits.detach().cpu() segmentation = image_processor.post_process_semantic_segmentation(outputs=outputs, target_sizes=[(500, 300)]) expected_shape = torch.Size((500, 300)) self.assertEqual(segmentation[0].shape, expected_shape) segmentation = image_processor.post_process_semantic_segmentation(outputs=outputs) expected_shape = torch.Size((480, 480)) self.assertEqual(segmentation[0].shape, expected_shape)
transformers/tests/models/dpt/test_modeling_dpt.py/0
{ "file_path": "transformers/tests/models/dpt/test_modeling_dpt.py", "repo_id": "transformers", "token_count": 6106 }
153
# coding=utf-8 # Copyright 2021-2023 HuggingFace Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for the EnCodec feature extractor.""" import itertools import random import unittest import numpy as np from transformers import EncodecFeatureExtractor from transformers.testing_utils import require_torch from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_torch_available(): import torch global_rng = random.Random() # Copied from tests.models.whisper.test_feature_extraction_whisper.floats_list def floats_list(shape, scale=1.0, rng=None, name=None): """Creates a random float32 tensor""" if rng is None: rng = global_rng values = [] for batch_idx in range(shape[0]): values.append([]) for _ in range(shape[1]): values[-1].append(rng.random() * scale) return values @require_torch class EnCodecFeatureExtractionTester(unittest.TestCase): def __init__( self, parent, batch_size=7, min_seq_length=400, max_seq_length=2000, feature_size=1, padding_value=0.0, sampling_rate=24000, return_attention_mask=True, ): self.parent = parent self.batch_size = batch_size self.min_seq_length = min_seq_length self.max_seq_length = max_seq_length self.seq_length_diff = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) self.feature_size = feature_size self.padding_value = padding_value self.sampling_rate = sampling_rate self.return_attention_mask = return_attention_mask def prepare_feat_extract_dict(self): return { "feature_size": self.feature_size, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, } def prepare_inputs_for_common(self, equal_length=False, numpify=False): def _flatten(list_of_lists): return list(itertools.chain(*list_of_lists)) if equal_length: audio_inputs = floats_list((self.batch_size, self.max_seq_length)) else: # make sure that inputs increase in size audio_inputs = [ _flatten(floats_list((x, self.feature_size))) for x in range(self.min_seq_length, self.max_seq_length, self.seq_length_diff) ] if numpify: audio_inputs = [np.asarray(x) for x in audio_inputs] return audio_inputs @require_torch class EnCodecFeatureExtractionTest(SequenceFeatureExtractionTestMixin, unittest.TestCase): feature_extraction_class = EncodecFeatureExtractor def setUp(self): self.feat_extract_tester = EnCodecFeatureExtractionTester(self) def test_call(self): # Tests that all call wrap to encode_plus and batch_encode_plus feat_extract = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict()) # create three inputs of length 800, 1000, and 1200 audio_inputs = [floats_list((1, x))[0] for x in range(800, 1400, 200)] np_audio_inputs = [np.asarray(audio_input) for audio_input in audio_inputs] # Test not batched input encoded_sequences_1 = feat_extract(audio_inputs[0], return_tensors="np").input_values encoded_sequences_2 = feat_extract(np_audio_inputs[0], return_tensors="np").input_values self.assertTrue(np.allclose(encoded_sequences_1, encoded_sequences_2, atol=1e-3)) # Test batched encoded_sequences_1 = feat_extract(audio_inputs, padding=True, return_tensors="np").input_values encoded_sequences_2 = feat_extract(np_audio_inputs, padding=True, return_tensors="np").input_values for enc_seq_1, enc_seq_2 in zip(encoded_sequences_1, encoded_sequences_2): self.assertTrue(np.allclose(enc_seq_1, enc_seq_2, atol=1e-3)) def test_double_precision_pad(self): feature_extractor = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict()) np_audio_inputs = np.random.rand(100).astype(np.float64) py_audio_inputs = np_audio_inputs.tolist() for inputs in [py_audio_inputs, np_audio_inputs]: np_processed = feature_extractor.pad([{"input_values": inputs}], return_tensors="np") self.assertTrue(np_processed.input_values.dtype == np.float32) pt_processed = feature_extractor.pad([{"input_values": inputs}], return_tensors="pt") self.assertTrue(pt_processed.input_values.dtype == torch.float32) def _load_datasamples(self, num_samples): from datasets import load_dataset ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation") # automatic decoding with librispeech audio_samples = ds.sort("id").select(range(num_samples))[:num_samples]["audio"] return [x["array"] for x in audio_samples] def test_integration(self): # fmt: off EXPECTED_INPUT_VALUES = torch.tensor( [2.3804e-03, 2.0752e-03, 1.9836e-03, 2.1057e-03, 1.6174e-03, 3.0518e-04, 9.1553e-05, 3.3569e-04, 9.7656e-04, 1.8311e-03, 2.0142e-03, 2.1057e-03, 1.7395e-03, 4.5776e-04, -3.9673e-04, 4.5776e-04, 1.0071e-03, 9.1553e-05, 4.8828e-04, 1.1597e-03, 7.3242e-04, 9.4604e-04, 1.8005e-03, 1.8311e-03, 8.8501e-04, 4.2725e-04, 4.8828e-04, 7.3242e-04, 1.0986e-03, 2.1057e-03] ) # fmt: on input_audio = self._load_datasamples(1) feature_extractor = EncodecFeatureExtractor() input_values = feature_extractor(input_audio, return_tensors="pt").input_values self.assertEquals(input_values.shape, (1, 1, 93680)) self.assertTrue(torch.allclose(input_values[0, 0, :30], EXPECTED_INPUT_VALUES, atol=1e-6)) def test_integration_stereo(self): # fmt: off EXPECTED_INPUT_VALUES = torch.tensor( [2.3804e-03, 2.0752e-03, 1.9836e-03, 2.1057e-03, 1.6174e-03, 3.0518e-04, 9.1553e-05, 3.3569e-04, 9.7656e-04, 1.8311e-03, 2.0142e-03, 2.1057e-03, 1.7395e-03, 4.5776e-04, -3.9673e-04, 4.5776e-04, 1.0071e-03, 9.1553e-05, 4.8828e-04, 1.1597e-03, 7.3242e-04, 9.4604e-04, 1.8005e-03, 1.8311e-03, 8.8501e-04, 4.2725e-04, 4.8828e-04, 7.3242e-04, 1.0986e-03, 2.1057e-03] ) # fmt: on input_audio = self._load_datasamples(1) input_audio = [np.tile(input_audio[0][None], reps=(2, 1))] input_audio[0][1] *= 0.5 feature_extractor = EncodecFeatureExtractor(feature_size=2) input_values = feature_extractor(input_audio, return_tensors="pt").input_values self.assertEquals(input_values.shape, (1, 2, 93680)) self.assertTrue(torch.allclose(input_values[0, 0, :30], EXPECTED_INPUT_VALUES, atol=1e-6)) self.assertTrue(torch.allclose(input_values[0, 1, :30], EXPECTED_INPUT_VALUES * 0.5, atol=1e-6)) def test_truncation_and_padding(self): input_audio = self._load_datasamples(2) # would be easier if the stride was like feature_extractor = EncodecFeatureExtractor(feature_size=1, chunk_length_s=1, overlap=0.01) # pad and trunc raise an error ? with self.assertRaisesRegex( ValueError, "^Both padding and truncation were set. Make sure you only set one.$", ): truncated_outputs = feature_extractor( input_audio, padding="max_length", truncation=True, return_tensors="pt" ).input_values # truncate to chunk truncated_outputs = feature_extractor(input_audio, truncation=True, return_tensors="pt").input_values self.assertEquals(truncated_outputs.shape, (2, 1, 71520)) # 2 chunks # force truncate to max_length truncated_outputs = feature_extractor( input_audio, truncation=True, max_length=48000, return_tensors="pt" ).input_values self.assertEquals(truncated_outputs.shape, (2, 1, 48000)) # pad to chunk padded_outputs = feature_extractor(input_audio, padding=True, return_tensors="pt").input_values self.assertEquals(padded_outputs.shape, (2, 1, 95280)) # pad to chunk truncated_outputs = feature_extractor(input_audio, return_tensors="pt").input_values self.assertEquals(truncated_outputs.shape, (2, 1, 95280)) # force pad to max length truncated_outputs = feature_extractor( input_audio, padding="max_length", max_length=100000, return_tensors="pt" ).input_values self.assertEquals(truncated_outputs.shape, (2, 1, 100000)) # force no pad with self.assertRaisesRegex( ValueError, "^Unable to create tensor, you should probably activate padding with 'padding=True' to have batched tensors with the same length.$", ): truncated_outputs = feature_extractor(input_audio, padding=False, return_tensors="pt").input_values truncated_outputs = feature_extractor(input_audio[0], padding=False, return_tensors="pt").input_values self.assertEquals(truncated_outputs.shape, (1, 1, 93680)) # no pad if no chunk_length_s feature_extractor.chunk_length_s = None with self.assertRaisesRegex( ValueError, "^Unable to create tensor, you should probably activate padding with 'padding=True' to have batched tensors with the same length.$", ): truncated_outputs = feature_extractor(input_audio, padding=False, return_tensors="pt").input_values truncated_outputs = feature_extractor(input_audio[0], padding=False, return_tensors="pt").input_values self.assertEquals(truncated_outputs.shape, (1, 1, 93680)) # no pad if no overlap feature_extractor.chunk_length_s = 2 feature_extractor.overlap = None with self.assertRaisesRegex( ValueError, "^Unable to create tensor, you should probably activate padding with 'padding=True' to have batched tensors with the same length.$", ): truncated_outputs = feature_extractor(input_audio, padding=False, return_tensors="pt").input_values truncated_outputs = feature_extractor(input_audio[0], padding=False, return_tensors="pt").input_values self.assertEquals(truncated_outputs.shape, (1, 1, 93680))
transformers/tests/models/encodec/test_feature_extraction_encodec.py/0
{ "file_path": "transformers/tests/models/encodec/test_feature_extraction_encodec.py", "repo_id": "transformers", "token_count": 4914 }
154
# coding=utf-8 # Copyright 2022 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Testing suite for the PyTorch FocalNet model. """ import collections import unittest from transformers import FocalNetConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( FocalNetBackbone, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetModel, ) from transformers.models.focalnet.modeling_focalnet import FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class FocalNetModelTester: def __init__( self, parent, batch_size=13, image_size=32, patch_size=2, num_channels=3, embed_dim=16, hidden_sizes=[32, 64, 128], depths=[1, 2, 1], num_heads=[2, 2, 4], window_size=2, mlp_ratio=2.0, qkv_bias=True, hidden_dropout_prob=0.0, attention_probs_dropout_prob=0.0, drop_path_rate=0.1, hidden_act="gelu", use_absolute_embeddings=False, patch_norm=True, initializer_range=0.02, layer_norm_eps=1e-5, is_training=True, scope=None, use_labels=True, type_sequence_label_size=10, encoder_stride=8, out_features=["stage1", "stage2"], out_indices=[1, 2], ): self.parent = parent self.batch_size = batch_size self.image_size = image_size self.patch_size = patch_size self.num_channels = num_channels self.embed_dim = embed_dim self.hidden_sizes = hidden_sizes self.depths = depths self.num_heads = num_heads self.window_size = window_size self.mlp_ratio = mlp_ratio self.qkv_bias = qkv_bias self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.drop_path_rate = drop_path_rate self.hidden_act = hidden_act self.use_absolute_embeddings = use_absolute_embeddings self.patch_norm = patch_norm self.layer_norm_eps = layer_norm_eps self.initializer_range = initializer_range self.is_training = is_training self.scope = scope self.use_labels = use_labels self.type_sequence_label_size = type_sequence_label_size self.encoder_stride = encoder_stride self.out_features = out_features self.out_indices = out_indices def prepare_config_and_inputs(self): pixel_values = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) labels = None if self.use_labels: labels = ids_tensor([self.batch_size], self.type_sequence_label_size) config = self.get_config() return config, pixel_values, labels def get_config(self): return FocalNetConfig( image_size=self.image_size, patch_size=self.patch_size, num_channels=self.num_channels, embed_dim=self.embed_dim, hidden_sizes=self.hidden_sizes, depths=self.depths, num_heads=self.num_heads, window_size=self.window_size, mlp_ratio=self.mlp_ratio, qkv_bias=self.qkv_bias, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, drop_path_rate=self.drop_path_rate, hidden_act=self.hidden_act, use_absolute_embeddings=self.use_absolute_embeddings, path_norm=self.patch_norm, layer_norm_eps=self.layer_norm_eps, initializer_range=self.initializer_range, encoder_stride=self.encoder_stride, out_features=self.out_features, out_indices=self.out_indices, ) def create_and_check_model(self, config, pixel_values, labels): model = FocalNetModel(config=config) model.to(torch_device) model.eval() result = model(pixel_values) expected_seq_len = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths) - 1)) expected_dim = int(config.embed_dim * 2 ** (len(config.depths) - 1)) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, expected_seq_len, expected_dim)) def create_and_check_backbone(self, config, pixel_values, labels): model = FocalNetBackbone(config=config) model.to(torch_device) model.eval() result = model(pixel_values) # verify feature maps self.parent.assertEqual(len(result.feature_maps), len(config.out_features)) self.parent.assertListEqual(list(result.feature_maps[0].shape), [self.batch_size, self.image_size, 8, 8]) # verify channels self.parent.assertEqual(len(model.channels), len(config.out_features)) self.parent.assertListEqual(model.channels, config.hidden_sizes[:-1]) # verify backbone works with out_features=None config.out_features = None model = FocalNetBackbone(config=config) model.to(torch_device) model.eval() result = model(pixel_values) # verify feature maps self.parent.assertEqual(len(result.feature_maps), 1) self.parent.assertListEqual(list(result.feature_maps[0].shape), [self.batch_size, self.image_size * 2, 4, 4]) # verify channels self.parent.assertEqual(len(model.channels), 1) self.parent.assertListEqual(model.channels, [config.hidden_sizes[-1]]) def create_and_check_for_masked_image_modeling(self, config, pixel_values, labels): model = FocalNetForMaskedImageModeling(config=config) model.to(torch_device) model.eval() result = model(pixel_values) self.parent.assertEqual( result.reconstruction.shape, (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images config.num_channels = 1 model = FocalNetForMaskedImageModeling(config) model.to(torch_device) model.eval() pixel_values = floats_tensor([self.batch_size, 1, self.image_size, self.image_size]) result = model(pixel_values) self.parent.assertEqual(result.reconstruction.shape, (self.batch_size, 1, self.image_size, self.image_size)) def create_and_check_for_image_classification(self, config, pixel_values, labels): config.num_labels = self.type_sequence_label_size model = FocalNetForImageClassification(config) model.to(torch_device) model.eval() result = model(pixel_values, labels=labels) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.type_sequence_label_size)) # test greyscale images config.num_channels = 1 model = FocalNetForImageClassification(config) model.to(torch_device) model.eval() pixel_values = floats_tensor([self.batch_size, 1, self.image_size, self.image_size]) result = model(pixel_values) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.type_sequence_label_size)) def prepare_config_and_inputs_for_common(self): config_and_inputs = self.prepare_config_and_inputs() config, pixel_values, labels = config_and_inputs inputs_dict = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class FocalNetModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase): all_model_classes = ( ( FocalNetModel, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetBackbone, ) if is_torch_available() else () ) pipeline_model_mapping = ( {"image-feature-extraction": FocalNetModel, "image-classification": FocalNetForImageClassification} if is_torch_available() else {} ) fx_compatible = False test_pruning = False test_resize_embeddings = False test_head_masking = False has_attentions = False def setUp(self): self.model_tester = FocalNetModelTester(self) self.config_tester = ConfigTester(self, config_class=FocalNetConfig, embed_dim=37, has_text_modality=False) def test_config(self): self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def create_and_test_config_common_properties(self): return def test_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*config_and_inputs) def test_backbone(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*config_and_inputs) def test_for_masked_image_modeling(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*config_and_inputs) def test_for_image_classification(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*config_and_inputs) @unittest.skip(reason="FocalNet does not use inputs_embeds") def test_inputs_embeds(self): pass @unittest.skip(reason="FocalNet does not use feedforward chunking") def test_feed_forward_chunking(self): pass def test_model_common_attributes(self): config, _ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes[:-1]: model = model_class(config) self.assertIsInstance(model.get_input_embeddings(), (nn.Module)) x = model.get_output_embeddings() self.assertTrue(x is None or isinstance(x, nn.Linear)) def check_hidden_states_output(self, inputs_dict, config, model_class, image_size): model = model_class(config) model.to(torch_device) model.eval() with torch.no_grad(): outputs = model(**self._prepare_for_class(inputs_dict, model_class)) hidden_states = outputs.hidden_states expected_num_layers = getattr( self.model_tester, "expected_num_hidden_layers", len(self.model_tester.depths) + 1 ) self.assertEqual(len(hidden_states), expected_num_layers) # FocalNet has a different seq_length patch_size = ( config.patch_size if isinstance(config.patch_size, collections.abc.Iterable) else (config.patch_size, config.patch_size) ) num_patches = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:]), [num_patches, self.model_tester.embed_dim], ) reshaped_hidden_states = outputs.reshaped_hidden_states self.assertEqual(len(reshaped_hidden_states), expected_num_layers) batch_size, num_channels, height, width = reshaped_hidden_states[0].shape reshaped_hidden_states = ( reshaped_hidden_states[0].view(batch_size, num_channels, height * width).permute(0, 2, 1) ) self.assertListEqual( list(reshaped_hidden_states.shape[-2:]), [num_patches, self.model_tester.embed_dim], ) def test_hidden_states_output(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() image_size = ( self.model_tester.image_size if isinstance(self.model_tester.image_size, collections.abc.Iterable) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes[:-1]: inputs_dict["output_hidden_states"] = True self.check_hidden_states_output(inputs_dict, config, model_class, image_size) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] config.output_hidden_states = True self.check_hidden_states_output(inputs_dict, config, model_class, image_size) def test_hidden_states_output_with_padding(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() config.patch_size = 3 image_size = ( self.model_tester.image_size if isinstance(self.model_tester.image_size, collections.abc.Iterable) else (self.model_tester.image_size, self.model_tester.image_size) ) patch_size = ( config.patch_size if isinstance(config.patch_size, collections.abc.Iterable) else (config.patch_size, config.patch_size) ) padded_height = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) padded_width = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes[:-1]: inputs_dict["output_hidden_states"] = True self.check_hidden_states_output(inputs_dict, config, model_class, (padded_height, padded_width)) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] config.output_hidden_states = True self.check_hidden_states_output(inputs_dict, config, model_class, (padded_height, padded_width)) @slow def test_model_from_pretrained(self): for model_name in FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: model = FocalNetModel.from_pretrained(model_name) self.assertIsNotNone(model) def test_initialization(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() configs_no_init = _config_zero_init(config) for model_class in self.all_model_classes: model = model_class(config=configs_no_init) for name, param in model.named_parameters(): if "embeddings" not in name and param.requires_grad: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item(), [0.0, 1.0], msg=f"Parameter {name} of model {model_class} seems not properly initialized", ) @require_vision @require_torch class FocalNetModelIntegrationTest(unittest.TestCase): @cached_property def default_image_processor(self): # TODO update organization return AutoImageProcessor.from_pretrained("microsoft/focalnet-tiny") if is_vision_available() else None @slow def test_inference_image_classification_head(self): model = FocalNetForImageClassification.from_pretrained("microsoft/focalnet-tiny").to(torch_device) image_processor = self.default_image_processor image = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png") inputs = image_processor(images=image, return_tensors="pt").to(torch_device) # forward pass with torch.no_grad(): outputs = model(**inputs) # verify the logits expected_shape = torch.Size((1, 1000)) self.assertEqual(outputs.logits.shape, expected_shape) expected_slice = torch.tensor([0.2166, -0.4368, 0.2191]).to(torch_device) self.assertTrue(torch.allclose(outputs.logits[0, :3], expected_slice, atol=1e-4)) self.assertTrue(outputs.logits.argmax(dim=-1).item(), 281) @require_torch class FocalNetBackboneTest(BackboneTesterMixin, unittest.TestCase): all_model_classes = (FocalNetBackbone,) if is_torch_available() else () config_class = FocalNetConfig has_attentions = False def setUp(self): self.model_tester = FocalNetModelTester(self)
transformers/tests/models/focalnet/test_modeling_focalnet.py/0
{ "file_path": "transformers/tests/models/focalnet/test_modeling_focalnet.py", "repo_id": "transformers", "token_count": 7564 }
155
# coding=utf-8 # Copyright 2021 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Testing suite for the PyTorch GPT Neo model. """ import unittest from transformers import GPTNeoConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from transformers.utils import cached_property from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( GPT_NEO_PRETRAINED_MODEL_ARCHIVE_LIST, GPT2Tokenizer, GPTNeoForCausalLM, GPTNeoForQuestionAnswering, GPTNeoForSequenceClassification, GPTNeoForTokenClassification, GPTNeoModel, ) class GPTNeoModelTester: def __init__( self, parent, batch_size=14, seq_length=7, is_training=True, use_token_type_ids=True, use_input_mask=True, use_labels=True, use_mc_token_ids=True, vocab_size=99, hidden_size=32, num_hidden_layers=2, attention_types=[[["global", "local"], 1]], num_attention_heads=4, intermediate_size=37, hidden_act="gelu", hidden_dropout_prob=0.1, attention_probs_dropout_prob=0.1, max_position_embeddings=512, window_size=7, type_vocab_size=16, type_sequence_label_size=2, initializer_range=0.02, num_labels=3, num_choices=4, ): self.parent = parent self.batch_size = batch_size self.seq_length = seq_length self.is_training = is_training self.use_token_type_ids = use_token_type_ids self.use_input_mask = use_input_mask self.use_labels = use_labels self.use_mc_token_ids = use_mc_token_ids self.vocab_size = vocab_size self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.intermediate_size = intermediate_size self.hidden_act = hidden_act self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.max_position_embeddings = max_position_embeddings self.window_size = window_size self.type_vocab_size = type_vocab_size self.type_sequence_label_size = type_sequence_label_size self.initializer_range = initializer_range self.num_labels = num_labels self.num_choices = num_choices self.bos_token_id = vocab_size - 1 self.eos_token_id = vocab_size - 1 self.pad_token_id = vocab_size - 1 self.attention_types = attention_types def get_large_model_config(self): return GPTNeoConfig.from_pretrained("gpt-neo-125M") def prepare_config_and_inputs(self): input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) input_mask = None if self.use_input_mask: input_mask = random_attention_mask([self.batch_size, self.seq_length]) token_type_ids = None if self.use_token_type_ids: token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size) mc_token_ids = None if self.use_mc_token_ids: mc_token_ids = ids_tensor([self.batch_size, self.num_choices], self.seq_length) sequence_labels = None token_labels = None choice_labels = None if self.use_labels: sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size) token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels) choice_labels = ids_tensor([self.batch_size], self.num_choices) config = self.get_config() head_mask = ids_tensor([self.num_hidden_layers, self.num_attention_heads], 2) return ( config, input_ids, input_mask, head_mask, token_type_ids, mc_token_ids, sequence_labels, token_labels, choice_labels, ) def get_config(self): return GPTNeoConfig( vocab_size=self.vocab_size, hidden_size=self.hidden_size, num_layers=self.num_hidden_layers, num_heads=self.num_attention_heads, max_position_embeddings=self.max_position_embeddings, use_cache=True, bos_token_id=self.bos_token_id, eos_token_id=self.eos_token_id, pad_token_id=self.pad_token_id, window_size=self.window_size, attention_types=self.attention_types, ) def get_pipeline_config(self): config = self.get_config() config.vocab_size = 300 return config def prepare_config_and_inputs_for_decoder(self): ( config, input_ids, input_mask, head_mask, token_type_ids, mc_token_ids, sequence_labels, token_labels, choice_labels, ) = self.prepare_config_and_inputs() encoder_hidden_states = floats_tensor([self.batch_size, self.seq_length, self.hidden_size]) encoder_attention_mask = ids_tensor([self.batch_size, self.seq_length], vocab_size=2) return ( config, input_ids, input_mask, head_mask, token_type_ids, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def create_and_check_gpt_neo_model(self, config, input_ids, input_mask, head_mask, token_type_ids, *args): model = GPTNeoModel(config=config) model.to(torch_device) model.eval() result = model(input_ids, token_type_ids=token_type_ids, head_mask=head_mask) result = model(input_ids, token_type_ids=token_type_ids) result = model(input_ids) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) # past_key_values is not implemented # self.parent.assertEqual(len(result.past_key_values), config.n_layer) def create_and_check_gpt_neo_model_past(self, config, input_ids, input_mask, head_mask, token_type_ids, *args): model = GPTNeoModel(config=config) model.to(torch_device) model.eval() # first forward pass outputs = model(input_ids, token_type_ids=token_type_ids, use_cache=True) outputs_use_cache_conf = model(input_ids, token_type_ids=token_type_ids) outputs_no_past = model(input_ids, token_type_ids=token_type_ids, use_cache=False) self.parent.assertTrue(len(outputs) == len(outputs_use_cache_conf)) self.parent.assertTrue(len(outputs) == len(outputs_no_past) + 1) output, past = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids next_tokens = ids_tensor((self.batch_size, 1), config.vocab_size) next_token_types = ids_tensor([self.batch_size, 1], self.type_vocab_size) # append to next input_ids and token_type_ids next_input_ids = torch.cat([input_ids, next_tokens], dim=-1) next_token_type_ids = torch.cat([token_type_ids, next_token_types], dim=-1) output_from_no_past = model(next_input_ids, token_type_ids=next_token_type_ids)["last_hidden_state"] output_from_past = model(next_tokens, token_type_ids=next_token_types, past_key_values=past)[ "last_hidden_state" ] # select random slice random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item() output_from_no_past_slice = output_from_no_past[:, -1, random_slice_idx].detach() output_from_past_slice = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3)) def create_and_check_gpt_neo_model_attention_mask_past( self, config, input_ids, input_mask, head_mask, token_type_ids, *args ): model = GPTNeoModel(config=config) model.to(torch_device) model.eval() # create attention mask attn_mask = torch.ones(input_ids.shape, dtype=torch.long, device=torch_device) half_seq_length = self.seq_length // 2 attn_mask[:, half_seq_length:] = 0 # first forward pass output, past = model(input_ids, attention_mask=attn_mask).to_tuple() # create hypothetical next token and extent to next_input_ids next_tokens = ids_tensor((self.batch_size, 1), config.vocab_size) # change a random masked slice from input_ids random_seq_idx_to_change = ids_tensor((1,), half_seq_length).item() + 1 random_other_next_tokens = ids_tensor((self.batch_size, 1), config.vocab_size).squeeze(-1) input_ids[:, -random_seq_idx_to_change] = random_other_next_tokens # append to next input_ids and attn_mask next_input_ids = torch.cat([input_ids, next_tokens], dim=-1) attn_mask = torch.cat( [attn_mask, torch.ones((attn_mask.shape[0], 1), dtype=torch.long, device=torch_device)], dim=1, ) # get two different outputs output_from_no_past = model(next_input_ids, attention_mask=attn_mask)["last_hidden_state"] output_from_past = model(next_tokens, past_key_values=past, attention_mask=attn_mask)["last_hidden_state"] # select random slice random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item() output_from_no_past_slice = output_from_no_past[:, -1, random_slice_idx].detach() output_from_past_slice = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3)) def create_and_check_gpt_neo_model_past_large_inputs( self, config, input_ids, input_mask, head_mask, token_type_ids, *args ): model = GPTNeoModel(config=config) model.to(torch_device) model.eval() # first forward pass outputs = model(input_ids, token_type_ids=token_type_ids, attention_mask=input_mask, use_cache=True) output, past = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids next_tokens = ids_tensor((self.batch_size, 3), config.vocab_size) next_token_types = ids_tensor([self.batch_size, 3], self.type_vocab_size) next_mask = ids_tensor((self.batch_size, 3), vocab_size=2) # append to next input_ids and token_type_ids next_input_ids = torch.cat([input_ids, next_tokens], dim=-1) next_token_type_ids = torch.cat([token_type_ids, next_token_types], dim=-1) next_attention_mask = torch.cat([input_mask, next_mask], dim=-1) output_from_no_past = model( next_input_ids, token_type_ids=next_token_type_ids, attention_mask=next_attention_mask )["last_hidden_state"] output_from_past = model( next_tokens, token_type_ids=next_token_types, attention_mask=next_attention_mask, past_key_values=past )["last_hidden_state"] self.parent.assertTrue(output_from_past.shape[1] == next_tokens.shape[1]) # select random slice random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item() output_from_no_past_slice = output_from_no_past[:, -3:, random_slice_idx].detach() output_from_past_slice = output_from_past[:, :, random_slice_idx].detach() # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3)) def create_and_check_lm_head_model(self, config, input_ids, input_mask, head_mask, token_type_ids, *args): model = GPTNeoForCausalLM(config) model.to(torch_device) model.eval() result = model(input_ids, token_type_ids=token_type_ids, labels=input_ids) self.parent.assertEqual(result.loss.shape, ()) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size)) def create_and_check_gpt_neo_for_question_answering( self, config, input_ids, input_mask, head_mask, token_type_ids, mc_token_ids, sequence_labels, *args ): config.num_labels = self.num_labels model = GPTNeoForQuestionAnswering(config) model.to(torch_device) model.eval() result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids) self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length)) def create_and_check_gpt_neo_for_sequence_classification( self, config, input_ids, input_mask, head_mask, token_type_ids, mc_token_ids, sequence_labels, *args ): config.num_labels = self.num_labels model = GPTNeoForSequenceClassification(config) model.to(torch_device) model.eval() result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=sequence_labels) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels)) def create_and_check_gpt_neo_for_token_classification( self, config, input_ids, input_mask, head_mask, token_type_ids, mc_token_ids, sequence_labels, *args ): config.num_labels = self.num_labels model = GPTNeoForTokenClassification(config) model.to(torch_device) model.eval() result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels)) def create_and_check_forward_and_backwards( self, config, input_ids, input_mask, head_mask, token_type_ids, *args, gradient_checkpointing=False ): model = GPTNeoForCausalLM(config) if gradient_checkpointing: model.gradient_checkpointing_enable() model.to(torch_device) result = model(input_ids, token_type_ids=token_type_ids, labels=input_ids) self.parent.assertEqual(result.loss.shape, ()) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size)) result.loss.backward() def prepare_config_and_inputs_for_common(self): config_and_inputs = self.prepare_config_and_inputs() ( config, input_ids, input_mask, head_mask, token_type_ids, mc_token_ids, sequence_labels, token_labels, choice_labels, ) = config_and_inputs inputs_dict = { "input_ids": input_ids, "token_type_ids": token_type_ids, "head_mask": head_mask, } return config, inputs_dict @require_torch class GPTNeoModelTest(ModelTesterMixin, GenerationTesterMixin, PipelineTesterMixin, unittest.TestCase): all_model_classes = ( ( GPTNeoModel, GPTNeoForCausalLM, GPTNeoForQuestionAnswering, GPTNeoForSequenceClassification, GPTNeoForTokenClassification, ) if is_torch_available() else () ) all_generative_model_classes = (GPTNeoForCausalLM,) if is_torch_available() else () pipeline_model_mapping = ( { "feature-extraction": GPTNeoModel, "question-answering": GPTNeoForQuestionAnswering, "text-classification": GPTNeoForSequenceClassification, "text-generation": GPTNeoForCausalLM, "token-classification": GPTNeoForTokenClassification, "zero-shot": GPTNeoForSequenceClassification, } if is_torch_available() else {} ) fx_compatible = True test_missing_keys = False test_pruning = False test_model_parallel = False # special case for DoubleHeads model def _prepare_for_class(self, inputs_dict, model_class, return_labels=False): inputs_dict = super()._prepare_for_class(inputs_dict, model_class, return_labels=return_labels) return inputs_dict def setUp(self): self.model_tester = GPTNeoModelTester(self) self.config_tester = ConfigTester(self, config_class=GPTNeoConfig, n_embd=37) def test_config(self): self.config_tester.run_common_tests() def test_gpt_neo_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_gpt_neo_model(*config_and_inputs) def test_gpt_neo_model_past(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_gpt_neo_model_past(*config_and_inputs) def test_gpt_neo_model_att_mask_past(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_gpt_neo_model_attention_mask_past(*config_and_inputs) def test_gpt_neo_model_past_large_inputs(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_gpt_neo_model_past_large_inputs(*config_and_inputs) def test_gpt_neo_lm_head_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head_model(*config_and_inputs) def test_gpt_neo_question_answering_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_gpt_neo_for_question_answering(*config_and_inputs) def test_gpt_neo_sequence_classification_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_gpt_neo_for_sequence_classification(*config_and_inputs) def test_gpt_neo_token_classification_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_gpt_neo_for_token_classification(*config_and_inputs) def test_gpt_neo_gradient_checkpointing(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_forward_and_backwards(*config_and_inputs, gradient_checkpointing=True) def _get_hidden_states(self): return torch.tensor( [ [ [0.4983, -0.7584, -1.6944, 0.5440], [2.6918, 0.4206, 0.4176, 0.2055], [-0.0071, -0.0405, -1.4920, -0.3630], [1.0492, 0.1599, -1.7648, 0.2419], [-1.8348, 2.0514, -0.1946, 0.3203], [0.7672, -1.1600, -1.7118, -0.9056], [0.2986, 0.5372, 0.7729, -0.1927], [0.0285, 0.2629, -1.1156, -1.1992], ] ], dtype=torch.float32, device=torch_device, ) def test_local_attn_probs(self): model = GPTNeoModel.from_pretrained("valhalla/gpt-neo-random-tiny").eval() layer = model.h[1].attn.attention.to(torch_device) hidden_states = self._get_hidden_states() hidden_states = torch.cat([hidden_states, hidden_states - 0.5], dim=2) batch_size, seq_length, _ = hidden_states.shape mask_tokens = 2 attention_mask = torch.ones(batch_size, seq_length, device=torch_device, dtype=torch.long) attention_mask[:, -mask_tokens:] = 0 # dont attend last mask_tokens attention_mask = attention_mask.view(batch_size, -1) attention_mask = attention_mask[:, None, None, :] attention_mask = (1.0 - attention_mask) * -10000.0 attn_probs = layer(hidden_states, attention_mask=attention_mask, output_attentions=True)[-1] # the last 2 tokens are masked, and should have 0 attn_probs self.assertTrue(torch.all(attn_probs[:, :, -mask_tokens:, -mask_tokens:] == 0)) # in loacal attention each token can only attend to the previous window_size tokens (inlcuding itself) # here window_size is 4, so a token at index 5 can only attend to indcies [2, 3, 4, 5] # and the attn_probs should be 0 for token [0, 1] self.assertTrue(torch.all(attn_probs[:, :, 5, 2:6] != 0)) self.assertTrue(torch.all(attn_probs[:, :, 5, :2] == 0)) @require_torch class GPTNeoModelLanguageGenerationTest(unittest.TestCase): @cached_property def model(self): return GPTNeoForCausalLM.from_pretrained("EleutherAI/gpt-neo-1.3B").to(torch_device) @cached_property def tokenizer(self): return GPT2Tokenizer.from_pretrained("EleutherAI/gpt-neo-1.3B") @slow def test_lm_generate_gpt_neo(self): for checkpointing in [True, False]: model = self.model if checkpointing: model.gradient_checkpointing_enable() else: model.gradient_checkpointing_disable() input_ids = torch.tensor([[464, 3290]], dtype=torch.long, device=torch_device) # The dog # The dog-eared copy of the book, which is a collection of essays by the late author, expected_output_ids = [464, 3290, 12, 3380, 4866, 286, 262, 1492, 11, 543, 318, 257, 4947, 286, 27126, 416, 262, 2739, 1772, 11] # fmt: skip output_ids = model.generate(input_ids, do_sample=False) self.assertListEqual(output_ids[0].tolist(), expected_output_ids) @slow def test_gpt_neo_sample(self): model = self.model tokenizer = self.tokenizer torch.manual_seed(0) tokenized = tokenizer("Today is a nice day and", return_tensors="pt", return_token_type_ids=True) input_ids = tokenized.input_ids.to(torch_device) output_ids = model.generate(input_ids, do_sample=True) output_str = tokenizer.decode(output_ids[0], skip_special_tokens=True) EXPECTED_OUTPUT_STR = "Today is a nice day and if you don’t get the memo here is what you can" self.assertEqual(output_str, EXPECTED_OUTPUT_STR) @slow def test_batch_generation(self): model = self.model tokenizer = self.tokenizer tokenizer.padding_side = "left" # Define PAD Token = EOS Token = 50256 tokenizer.pad_token = tokenizer.eos_token model.config.pad_token_id = model.config.eos_token_id # use different length sentences to test batching sentences = [ "Hello, my dog is a little", "Today, I am", ] inputs = tokenizer(sentences, return_tensors="pt", padding=True) input_ids = inputs["input_ids"].to(torch_device) outputs = model.generate( input_ids=input_ids, attention_mask=inputs["attention_mask"].to(torch_device), ) inputs_non_padded = tokenizer(sentences[0], return_tensors="pt").input_ids.to(torch_device) output_non_padded = model.generate(input_ids=inputs_non_padded) num_paddings = inputs_non_padded.shape[-1] - inputs["attention_mask"][-1].long().sum().cpu().item() inputs_padded = tokenizer(sentences[1], return_tensors="pt").input_ids.to(torch_device) output_padded = model.generate(input_ids=inputs_padded, max_length=model.config.max_length - num_paddings) batch_out_sentence = tokenizer.batch_decode(outputs, skip_special_tokens=True) non_padded_sentence = tokenizer.decode(output_non_padded[0], skip_special_tokens=True) padded_sentence = tokenizer.decode(output_padded[0], skip_special_tokens=True) expected_output_sentence = [ "Hello, my dog is a little bit of a kitty. She is a very sweet and loving", "Today, I am going to talk about the best way to get a job in the", ] self.assertListEqual(expected_output_sentence, batch_out_sentence) self.assertListEqual(expected_output_sentence, [non_padded_sentence, padded_sentence]) @slow def test_model_from_pretrained(self): for model_name in GPT_NEO_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: model = GPTNeoModel.from_pretrained(model_name) self.assertIsNotNone(model)
transformers/tests/models/gpt_neo/test_modeling_gpt_neo.py/0
{ "file_path": "transformers/tests/models/gpt_neo/test_modeling_gpt_neo.py", "repo_id": "transformers", "token_count": 11505 }
156
# coding=utf-8 # Copyright 2022 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Testing suite for the PyTorch Graphormer model. """ import copy import inspect import os import tempfile import unittest from transformers import GraphormerConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import tensor from transformers import GraphormerForGraphClassification, GraphormerModel from transformers.models.graphormer.modeling_graphormer import GRAPHORMER_PRETRAINED_MODEL_ARCHIVE_LIST class GraphormerModelTester: def __init__( self, parent, num_classes=1, num_atoms=32 * 9, num_edges=32 * 3, num_in_degree=32, num_out_degree=32, num_spatial=32, num_edge_dis=16, multi_hop_max_dist=5, # sometimes is 20 spatial_pos_max=32, edge_type="multi_hop", init_fn=None, max_nodes=32, share_input_output_embed=False, num_hidden_layers=2, embedding_dim=32, ffn_embedding_dim=32, num_attention_heads=4, dropout=0.1, attention_dropout=0.1, activation_dropout=0.1, layerdrop=0.0, encoder_normalize_before=False, pre_layernorm=False, apply_graphormer_init=False, activation_fn="gelu", embed_scale=None, freeze_embeddings=False, num_trans_layers_to_freeze=0, traceable=False, q_noise=0.0, qn_block_size=8, kdim=None, vdim=None, bias=True, self_attention=True, batch_size=10, graph_size=20, is_training=True, ): self.parent = parent self.num_classes = num_classes self.num_labels = num_classes self.num_atoms = num_atoms self.num_in_degree = num_in_degree self.num_out_degree = num_out_degree self.num_edges = num_edges self.num_spatial = num_spatial self.num_edge_dis = num_edge_dis self.edge_type = edge_type self.multi_hop_max_dist = multi_hop_max_dist self.spatial_pos_max = spatial_pos_max self.max_nodes = max_nodes self.num_hidden_layers = num_hidden_layers self.embedding_dim = embedding_dim self.hidden_size = embedding_dim self.ffn_embedding_dim = ffn_embedding_dim self.num_attention_heads = num_attention_heads self.dropout = dropout self.attention_dropout = attention_dropout self.activation_dropout = activation_dropout self.layerdrop = layerdrop self.encoder_normalize_before = encoder_normalize_before self.pre_layernorm = pre_layernorm self.apply_graphormer_init = apply_graphormer_init self.activation_fn = activation_fn self.embed_scale = embed_scale self.freeze_embeddings = freeze_embeddings self.num_trans_layers_to_freeze = num_trans_layers_to_freeze self.share_input_output_embed = share_input_output_embed self.traceable = traceable self.q_noise = q_noise self.qn_block_size = qn_block_size self.init_fn = init_fn self.kdim = kdim self.vdim = vdim self.self_attention = self_attention self.bias = bias self.batch_size = batch_size self.graph_size = graph_size self.is_training = is_training def prepare_config_and_inputs(self): attn_bias = ids_tensor( [self.batch_size, self.graph_size + 1, self.graph_size + 1], self.num_atoms ) # Def not sure here attn_edge_type = ids_tensor([self.batch_size, self.graph_size, self.graph_size, 1], self.num_edges) spatial_pos = ids_tensor([self.batch_size, self.graph_size, self.graph_size], self.num_spatial) in_degree = ids_tensor([self.batch_size, self.graph_size], self.num_in_degree) out_degree = ids_tensor([self.batch_size, self.graph_size], self.num_out_degree) input_nodes = ids_tensor([self.batch_size, self.graph_size, 1], self.num_atoms) input_edges = ids_tensor( [self.batch_size, self.graph_size, self.graph_size, self.multi_hop_max_dist, 1], self.num_edges ) labels = ids_tensor([self.batch_size], self.num_classes) config = self.get_config() return config, attn_bias, attn_edge_type, spatial_pos, in_degree, out_degree, input_nodes, input_edges, labels def get_config(self): return GraphormerConfig( num_atoms=self.num_atoms, num_in_degree=self.num_in_degree, num_out_degree=self.num_out_degree, num_edges=self.num_edges, num_spatial=self.num_spatial, num_edge_dis=self.num_edge_dis, edge_type=self.edge_type, multi_hop_max_dist=self.multi_hop_max_dist, spatial_pos_max=self.spatial_pos_max, max_nodes=self.max_nodes, num_hidden_layers=self.num_hidden_layers, embedding_dim=self.embedding_dim, hidden_size=self.embedding_dim, ffn_embedding_dim=self.ffn_embedding_dim, num_attention_heads=self.num_attention_heads, dropout=self.dropout, attention_dropout=self.attention_dropout, activation_dropout=self.activation_dropout, layerdrop=self.layerdrop, encoder_normalize_before=self.encoder_normalize_before, pre_layernorm=self.pre_layernorm, apply_graphormer_init=self.apply_graphormer_init, activation_fn=self.activation_fn, embed_scale=self.embed_scale, freeze_embeddings=self.freeze_embeddings, num_trans_layers_to_freeze=self.num_trans_layers_to_freeze, share_input_output_embed=self.share_input_output_embed, traceable=self.traceable, q_noise=self.q_noise, qn_block_size=self.qn_block_size, init_fn=self.init_fn, kdim=self.kdim, vdim=self.vdim, self_attention=self.self_attention, bias=self.bias, ) def create_and_check_model( self, config, attn_bias, attn_edge_type, spatial_pos, in_degree, out_degree, input_nodes, input_edges, labels ): model = GraphormerModel(config=config) model.to(torch_device) model.eval() result = model( input_nodes=input_nodes, attn_bias=attn_bias, in_degree=in_degree, out_degree=out_degree, spatial_pos=spatial_pos, input_edges=input_edges, attn_edge_type=attn_edge_type, labels=labels, ) self.parent.assertEqual( result.last_hidden_state.shape, (self.batch_size, self.graph_size + 1, self.hidden_size) ) def create_and_check_for_graph_classification( self, config, attn_bias, attn_edge_type, spatial_pos, in_degree, out_degree, input_nodes, input_edges, labels ): model = GraphormerForGraphClassification(config) model.to(torch_device) model.eval() result = model( input_nodes=input_nodes, attn_bias=attn_bias, in_degree=in_degree, out_degree=out_degree, spatial_pos=spatial_pos, input_edges=input_edges, attn_edge_type=attn_edge_type, labels=labels, ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels)) def prepare_config_and_inputs_for_common(self): config_and_inputs = self.prepare_config_and_inputs() ( config, attn_bias, attn_edge_type, spatial_pos, in_degree, out_degree, input_nodes, input_edges, labels, ) = config_and_inputs inputs_dict = { "attn_bias": attn_bias, "attn_edge_type": attn_edge_type, "spatial_pos": spatial_pos, "in_degree": in_degree, "out_degree": out_degree, "input_nodes": input_nodes, "input_edges": input_edges, "labels": labels, } return config, inputs_dict @require_torch class GraphormerModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase): all_model_classes = (GraphormerForGraphClassification, GraphormerModel) if is_torch_available() else () all_generative_model_classes = () pipeline_model_mapping = {"feature-extraction": GraphormerModel} if is_torch_available() else {} test_pruning = False test_head_masking = False test_resize_embeddings = False main_input_name_nodes = "input_nodes" main_input_name_edges = "input_edges" has_attentions = False # does not output attention def setUp(self): self.model_tester = GraphormerModelTester(self) self.config_tester = ConfigTester(self, config_class=GraphormerConfig, has_text_modality=False) # overwrite from common as `Graphormer` requires more input arguments def _create_and_check_torchscript(self, config, inputs_dict): if not self.test_torchscript: return configs_no_init = _config_zero_init(config) # To be sure we have no Nan configs_no_init.torchscript = True for model_class in self.all_model_classes: model = model_class(config=configs_no_init) model.to(torch_device) model.eval() inputs = self._prepare_for_class(inputs_dict, model_class) try: required_keys = ( "input_nodes", "input_edges", "attn_bias", "in_degree", "out_degree", "spatial_pos", "attn_edge_type", ) required_inputs = tuple(inputs[k] for k in required_keys) model(*required_inputs) traced_model = torch.jit.trace(model, required_inputs) except RuntimeError: self.fail("Couldn't trace module.") with tempfile.TemporaryDirectory() as tmp_dir_name: pt_file_name = os.path.join(tmp_dir_name, "traced_model.pt") try: torch.jit.save(traced_model, pt_file_name) except Exception: self.fail("Couldn't save module.") try: loaded_model = torch.jit.load(pt_file_name) except Exception: self.fail("Couldn't load module.") model.to(torch_device) model.eval() loaded_model.to(torch_device) loaded_model.eval() model_state_dict = model.state_dict() loaded_model_state_dict = loaded_model.state_dict() non_persistent_buffers = {} for key in loaded_model_state_dict.keys(): if key not in model_state_dict.keys(): non_persistent_buffers[key] = loaded_model_state_dict[key] loaded_model_state_dict = { key: value for key, value in loaded_model_state_dict.items() if key not in non_persistent_buffers } self.assertEqual(set(model_state_dict.keys()), set(loaded_model_state_dict.keys())) model_buffers = list(model.buffers()) for non_persistent_buffer in non_persistent_buffers.values(): found_buffer = False for i, model_buffer in enumerate(model_buffers): if torch.equal(non_persistent_buffer, model_buffer): found_buffer = True break self.assertTrue(found_buffer) model_buffers.pop(i) model_buffers = list(model.buffers()) for non_persistent_buffer in non_persistent_buffers.values(): found_buffer = False for i, model_buffer in enumerate(model_buffers): if torch.equal(non_persistent_buffer, model_buffer): found_buffer = True break self.assertTrue(found_buffer) model_buffers.pop(i) models_equal = True for layer_name, p1 in model_state_dict.items(): if layer_name in loaded_model_state_dict: p2 = loaded_model_state_dict[layer_name] if p1.data.ne(p2.data).sum() > 0: models_equal = False self.assertTrue(models_equal) # Avoid memory leak. Without this, each call increase RAM usage by ~20MB. # (Even with this call, there are still memory leak by ~0.04MB) self.clear_torch_jit_class_registry() def test_config(self): self.config_tester.run_common_tests() @unittest.skip(reason="Graphormer does not use one single inputs_embedding but three") def test_inputs_embeds(self): pass @unittest.skip(reason="Graphormer does not implement feed forward chunking") def test_feed_forward_chunking(self): pass @unittest.skip(reason="Graphormer does not share input and output embeddings") def test_model_common_attributes(self): pass def test_initialization(self): def _config_zero_init(config): configs_no_init = copy.deepcopy(config) for key in configs_no_init.__dict__.keys(): if "_range" in key or "_std" in key or "initializer_factor" in key or "layer_scale" in key: setattr(configs_no_init, key, 1e-10) return configs_no_init config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() configs_no_init = _config_zero_init(config) for model_class in self.all_model_classes: model = model_class(config=configs_no_init) for name, param in model.named_parameters(): if param.requires_grad: self.assertTrue( -1.0 <= ((param.data.mean() * 1e9).round() / 1e9).item() <= 1.0, msg=f"Parameter {name} of model {model_class} seems not properly initialized", ) def test_hidden_states_output(self): def check_hidden_states_output(inputs_dict, config, model_class): model = model_class(config) model.to(torch_device) model.eval() with torch.no_grad(): outputs = model(**self._prepare_for_class(inputs_dict, model_class)) hidden_states = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states expected_num_layers = getattr( self.model_tester, "expected_num_hidden_layers", self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(hidden_states), expected_num_layers) batch_size = self.model_tester.batch_size self.assertListEqual( list(hidden_states[0].shape[-2:]), [batch_size, self.model_tester.hidden_size], ) config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # Always returns hidden_states check_hidden_states_output(inputs_dict, config, model_class) def test_retain_grad_hidden_states_attentions(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() config.output_hidden_states = True config.output_attentions = False # no need to test all models as different heads yield the same functionality model_class = self.all_model_classes[0] model = model_class(config) model.to(torch_device) outputs = model(**inputs_dict) output = outputs[0] hidden_states = outputs.hidden_states[0] hidden_states.retain_grad() output.flatten()[0].backward(retain_graph=True) self.assertIsNotNone(hidden_states.grad) # Inputs are 'input_nodes' and 'input_edges' not 'input_ids' def test_model_main_input_name(self): for model_class in self.all_model_classes: model_signature = inspect.signature(getattr(model_class, "forward")) # The main input is the name of the argument after `self` observed_main_input_name_nodes = list(model_signature.parameters.keys())[1] observed_main_input_name_edges = list(model_signature.parameters.keys())[2] self.assertEqual(model_class.main_input_name_nodes, observed_main_input_name_nodes) self.assertEqual(model_class.main_input_name_edges, observed_main_input_name_edges) def test_forward_signature(self): config, _ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: model = model_class(config) signature = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic arg_names = [*signature.parameters.keys()] expected_arg_names = ["input_nodes", "input_edges"] self.assertListEqual(arg_names[:2], expected_arg_names) def test_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*config_and_inputs) def test_for_graph_classification(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_graph_classification(*config_and_inputs) @slow def test_model_from_pretrained(self): for model_name in GRAPHORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: model = GraphormerForGraphClassification.from_pretrained(model_name) self.assertIsNotNone(model) @require_torch class GraphormerModelIntegrationTest(unittest.TestCase): @slow def test_inference_graph_classification(self): model = GraphormerForGraphClassification.from_pretrained("clefourrier/graphormer-base-pcqm4mv2") # Actual real graph data from the MUTAG dataset # fmt: off model_input = { "attn_bias": tensor( [ [ [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], ], [ [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, float("-inf"), float("-inf"), float("-inf"), float("-inf")], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, float("-inf"), float("-inf"), float("-inf"), float("-inf")], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, float("-inf"), float("-inf"), float("-inf"), float("-inf")], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, float("-inf"), float("-inf"), float("-inf"), float("-inf")], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, float("-inf"), float("-inf"), float("-inf"), float("-inf")], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, float("-inf"), float("-inf"), float("-inf"), float("-inf")], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, float("-inf"), float("-inf"), float("-inf"), float("-inf")], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, float("-inf"), float("-inf"), float("-inf"), float("-inf")], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, float("-inf"), float("-inf"), float("-inf"), float("-inf")], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, float("-inf"), float("-inf"), float("-inf"), float("-inf")], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, float("-inf"), float("-inf"), float("-inf"), float("-inf")], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, float("-inf"), float("-inf"), float("-inf"), float("-inf")], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, float("-inf"), float("-inf"), float("-inf"), float("-inf")], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, float("-inf"), float("-inf"), float("-inf"), float("-inf")], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, float("-inf"), float("-inf"), float("-inf"), float("-inf")], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, float("-inf"), float("-inf"), float("-inf"), float("-inf")], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, float("-inf"), float("-inf"), float("-inf"), float("-inf")], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, float("-inf"), float("-inf"), float("-inf"), float("-inf")], ], ] ), "attn_edge_type": tensor( [ [ [[0], [3], [0], [0], [0], [3], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0]], [[3], [0], [3], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0]], [[0], [3], [0], [3], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0]], [[0], [0], [3], [0], [3], [0], [0], [0], [0], [3], [0], [0], [0], [0], [0], [0], [0]], [[0], [0], [0], [3], [0], [3], [3], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0]], [[3], [0], [0], [0], [3], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0]], [[0], [0], [0], [0], [3], [0], [0], [3], [0], [0], [0], [0], [0], [0], [0], [0], [0]], [[0], [0], [0], [0], [0], [0], [3], [0], [3], [0], [0], [0], [0], [0], [0], [0], [0]], [[0], [0], [0], [0], [0], [0], [0], [3], [0], [3], [0], [0], [0], [3], [0], [0], [0]], [[0], [0], [0], [3], [0], [0], [0], [0], [3], [0], [3], [0], [0], [0], [0], [0], [0]], [[0], [0], [0], [0], [0], [0], [0], [0], [0], [3], [0], [3], [0], [0], [0], [0], [0]], [[0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [3], [0], [3], [0], [0], [0], [0]], [[0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [3], [0], [3], [3], [0], [0]], [[0], [0], [0], [0], [0], [0], [0], [0], [3], [0], [0], [0], [3], [0], [0], [0], [0]], [[0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [3], [0], [0], [3], [3]], [[0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [3], [0], [0]], [[0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [3], [0], [0]], ], [ [[0], [3], [0], [0], [0], [0], [0], [0], [0], [3], [0], [0], [0], [0], [0], [0], [0]], [[3], [0], [3], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0]], [[0], [3], [0], [3], [0], [0], [0], [3], [0], [0], [0], [0], [0], [0], [0], [0], [0]], [[0], [0], [3], [0], [3], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0]], [[0], [0], [0], [3], [0], [3], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0]], [[0], [0], [0], [0], [3], [0], [3], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0]], [[0], [0], [0], [0], [0], [3], [0], [3], [0], [0], [0], [0], [0], [0], [0], [0], [0]], [[0], [0], [3], [0], [0], [0], [3], [0], [3], [0], [0], [0], [0], [0], [0], [0], [0]], [[0], [0], [0], [0], [0], [0], [0], [3], [0], [3], [3], [0], [0], [0], [0], [0], [0]], [[3], [0], [0], [0], [0], [0], [0], [0], [3], [0], [0], [0], [0], [0], [0], [0], [0]], [[0], [0], [0], [0], [0], [0], [0], [0], [3], [0], [0], [3], [3], [0], [0], [0], [0]], [[0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [3], [0], [0], [0], [0], [0], [0]], [[0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [3], [0], [0], [0], [0], [0], [0]], [[0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0]], [[0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0]], [[0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0]], [[0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0]], ], ] ), # fmt: on "spatial_pos": tensor( [ [ [1, 2, 3, 4, 3, 2, 4, 5, 6, 5, 6, 7, 8, 7, 9, 10, 10], [2, 1, 2, 3, 4, 3, 5, 6, 5, 4, 5, 6, 7, 6, 8, 9, 9], [3, 2, 1, 2, 3, 4, 4, 5, 4, 3, 4, 5, 6, 5, 7, 8, 8], [4, 3, 2, 1, 2, 3, 3, 4, 3, 2, 3, 4, 5, 4, 6, 7, 7], [3, 4, 3, 2, 1, 2, 2, 3, 4, 3, 4, 5, 6, 5, 7, 8, 8], [2, 3, 4, 3, 2, 1, 3, 4, 5, 4, 5, 6, 7, 6, 8, 9, 9], [4, 5, 4, 3, 2, 3, 1, 2, 3, 4, 5, 6, 5, 4, 6, 7, 7], [5, 6, 5, 4, 3, 4, 2, 1, 2, 3, 4, 5, 4, 3, 5, 6, 6], [6, 5, 4, 3, 4, 5, 3, 2, 1, 2, 3, 4, 3, 2, 4, 5, 5], [5, 4, 3, 2, 3, 4, 4, 3, 2, 1, 2, 3, 4, 3, 5, 6, 6], [6, 5, 4, 3, 4, 5, 5, 4, 3, 2, 1, 2, 3, 4, 4, 5, 5], [7, 6, 5, 4, 5, 6, 6, 5, 4, 3, 2, 1, 2, 3, 3, 4, 4], [8, 7, 6, 5, 6, 7, 5, 4, 3, 4, 3, 2, 1, 2, 2, 3, 3], [7, 6, 5, 4, 5, 6, 4, 3, 2, 3, 4, 3, 2, 1, 3, 4, 4], [9, 8, 7, 6, 7, 8, 6, 5, 4, 5, 4, 3, 2, 3, 1, 2, 2], [10, 9, 8, 7, 8, 9, 7, 6, 5, 6, 5, 4, 3, 4, 2, 1, 3], [10, 9, 8, 7, 8, 9, 7, 6, 5, 6, 5, 4, 3, 4, 2, 3, 1], ], [ [1, 2, 3, 4, 5, 6, 5, 4, 3, 2, 4, 5, 5, 0, 0, 0, 0], [2, 1, 2, 3, 4, 5, 4, 3, 4, 3, 5, 6, 6, 0, 0, 0, 0], [3, 2, 1, 2, 3, 4, 3, 2, 3, 4, 4, 5, 5, 0, 0, 0, 0], [4, 3, 2, 1, 2, 3, 4, 3, 4, 5, 5, 6, 6, 0, 0, 0, 0], [5, 4, 3, 2, 1, 2, 3, 4, 5, 6, 6, 7, 7, 0, 0, 0, 0], [6, 5, 4, 3, 2, 1, 2, 3, 4, 5, 5, 6, 6, 0, 0, 0, 0], [5, 4, 3, 4, 3, 2, 1, 2, 3, 4, 4, 5, 5, 0, 0, 0, 0], [4, 3, 2, 3, 4, 3, 2, 1, 2, 3, 3, 4, 4, 0, 0, 0, 0], [3, 4, 3, 4, 5, 4, 3, 2, 1, 2, 2, 3, 3, 0, 0, 0, 0], [2, 3, 4, 5, 6, 5, 4, 3, 2, 1, 3, 4, 4, 0, 0, 0, 0], [4, 5, 4, 5, 6, 5, 4, 3, 2, 3, 1, 2, 2, 0, 0, 0, 0], [5, 6, 5, 6, 7, 6, 5, 4, 3, 4, 2, 1, 3, 0, 0, 0, 0], [5, 6, 5, 6, 7, 6, 5, 4, 3, 4, 2, 3, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], ], ] ), "in_degree": tensor( [ [3, 3, 3, 4, 4, 3, 3, 3, 4, 4, 3, 3, 4, 3, 4, 2, 2], [3, 3, 4, 3, 3, 3, 3, 4, 4, 3, 4, 2, 2, 0, 0, 0, 0], ] ), "out_degree": tensor( [ [3, 3, 3, 4, 4, 3, 3, 3, 4, 4, 3, 3, 4, 3, 4, 2, 2], [3, 3, 4, 3, 3, 3, 3, 4, 4, 3, 4, 2, 2, 0, 0, 0, 0], ] ), "input_nodes": tensor( [ [[3], [3], [3], [3], [3], [3], [3], [3], [3], [3], [3], [3], [3], [3], [3], [3], [3]], [[3], [3], [3], [3], [3], [3], [3], [3], [3], [3], [3], [3], [3], [0], [0], [0], [0]], ] ), "input_edges": tensor( [ [ [ [[0], [0], [0], [0], [0]], [[4], [0], [0], [0], [0]], [[4], [4], [0], [0], [0]], [[4], [4], [4], [0], [0]], [[4], [4], [0], [0], [0]], [[4], [0], [0], [0], [0]], [[4], [4], [4], [0], [0]], [[4], [4], [4], [4], [0]], [[4], [4], [4], [4], [4]], [[4], [4], [4], [4], [0]], [[4], [4], [4], [4], [4]], [[4], [4], [4], [4], [4]], [[4], [4], [4], [4], [4]], [[4], [4], [4], [4], [4]], [[4], [4], [4], [4], [4]], [[4], [4], [4], [4], [4]], [[4], [4], [4], [4], [4]], ], [ [[4], [0], [0], [0], [0]], [[0], [0], [0], [0], [0]], [[4], [0], [0], [0], [0]], [[4], [4], [0], [0], [0]], [[4], [4], [4], [0], [0]], [[4], [4], [0], [0], [0]], [[4], [4], [4], [4], [0]], [[4], [4], [4], [4], [4]], [[4], [4], [4], [4], [0]], [[4], [4], [4], [0], [0]], [[4], [4], [4], [4], [0]], [[4], [4], [4], [4], [4]], [[4], [4], [4], [4], [4]], [[4], [4], [4], [4], [4]], [[4], [4], [4], [4], [4]], [[4], [4], [4], [4], [4]], [[4], [4], [4], [4], [4]], ], [ [[4], [4], [0], [0], [0]], [[4], [0], [0], [0], [0]], [[0], [0], [0], [0], [0]], [[4], [0], [0], [0], [0]], [[4], [4], [0], [0], [0]], [[4], [4], [4], [0], [0]], [[4], [4], [4], [0], [0]], [[4], [4], [4], [4], [0]], [[4], [4], [4], [0], [0]], [[4], [4], [0], [0], [0]], [[4], [4], [4], [0], [0]], [[4], [4], [4], [4], [0]], [[4], [4], [4], [4], [4]], [[4], [4], [4], [4], [0]], [[4], [4], [4], [4], [4]], [[4], [4], [4], [4], [4]], [[4], [4], [4], [4], [4]], ], [ [[4], [4], [4], [0], [0]], [[4], [4], [0], [0], [0]], [[4], [0], [0], [0], [0]], [[0], [0], [0], [0], [0]], [[4], [0], [0], [0], [0]], [[4], [4], [0], [0], [0]], [[4], [4], [0], [0], [0]], [[4], [4], [4], [0], [0]], [[4], [4], [0], [0], [0]], [[4], [0], [0], [0], [0]], [[4], [4], [0], [0], [0]], [[4], [4], [4], [0], [0]], [[4], [4], [4], [4], [0]], [[4], [4], [4], [0], [0]], [[4], [4], [4], [4], [4]], [[4], [4], [4], [4], [4]], [[4], [4], [4], [4], [4]], ], [ [[4], [4], [0], [0], [0]], [[4], [4], [4], [0], [0]], [[4], [4], [0], [0], [0]], [[4], [0], [0], [0], [0]], [[0], [0], [0], [0], [0]], [[4], [0], [0], [0], [0]], [[4], [0], [0], [0], [0]], [[4], [4], [0], [0], [0]], [[4], [4], [4], [0], [0]], [[4], [4], [0], [0], [0]], [[4], [4], [4], [0], [0]], [[4], [4], [4], [4], [0]], [[4], [4], [4], [4], [4]], [[4], [4], [4], [4], [0]], [[4], [4], [4], [4], [4]], [[4], [4], [4], [4], [4]], [[4], [4], [4], [4], [4]], ], [ [[4], [0], [0], [0], [0]], [[4], [4], [0], [0], [0]], [[4], [4], [4], [0], [0]], [[4], [4], [0], [0], [0]], [[4], [0], [0], [0], [0]], [[0], [0], [0], [0], [0]], [[4], [4], [0], [0], [0]], [[4], [4], [4], [0], [0]], [[4], [4], [4], [4], [0]], [[4], [4], [4], [0], [0]], [[4], [4], [4], [4], [0]], [[4], [4], [4], [4], [4]], [[4], [4], [4], [4], [4]], [[4], [4], [4], [4], [4]], [[4], [4], [4], [4], [4]], [[4], [4], [4], [4], [4]], [[4], [4], [4], [4], [4]], ], [ [[4], [4], [4], [0], [0]], [[4], [4], [4], [4], [0]], [[4], [4], [4], [0], [0]], [[4], [4], [0], [0], [0]], [[4], [0], [0], [0], [0]], [[4], [4], [0], [0], [0]], [[0], [0], [0], [0], [0]], [[4], [0], [0], [0], [0]], [[4], [4], [0], [0], [0]], [[4], [4], [4], [0], [0]], [[4], [4], [4], [4], [0]], [[4], [4], [4], [4], [4]], [[4], [4], [4], [4], [0]], [[4], [4], [4], [0], [0]], [[4], [4], [4], [4], [4]], [[4], [4], [4], [4], [4]], [[4], [4], [4], [4], [4]], ], [ [[4], [4], [4], [4], [0]], [[4], [4], [4], [4], [4]], [[4], [4], [4], [4], [0]], [[4], [4], [4], [0], [0]], [[4], [4], [0], [0], [0]], [[4], [4], [4], [0], [0]], [[4], [0], [0], [0], [0]], [[0], [0], [0], [0], [0]], [[4], [0], [0], [0], [0]], [[4], [4], [0], [0], [0]], [[4], [4], [4], [0], [0]], [[4], [4], [4], [4], [0]], [[4], [4], [4], [0], [0]], [[4], [4], [0], [0], [0]], [[4], [4], [4], [4], [0]], [[4], [4], [4], [4], [4]], [[4], [4], [4], [4], [4]], ], [ [[4], [4], [4], [4], [4]], [[4], [4], [4], [4], [0]], [[4], [4], [4], [0], [0]], [[4], [4], [0], [0], [0]], [[4], [4], [4], [0], [0]], [[4], [4], [4], [4], [0]], [[4], [4], [0], [0], [0]], [[4], [0], [0], [0], [0]], [[0], [0], [0], [0], [0]], [[4], [0], [0], [0], [0]], [[4], [4], [0], [0], [0]], [[4], [4], [4], [0], [0]], [[4], [4], [0], [0], [0]], [[4], [0], [0], [0], [0]], [[4], [4], [4], [0], [0]], [[4], [4], [4], [4], [0]], [[4], [4], [4], [4], [0]], ], [ [[4], [4], [4], [4], [0]], [[4], [4], [4], [0], [0]], [[4], [4], [0], [0], [0]], [[4], [0], [0], [0], [0]], [[4], [4], [0], [0], [0]], [[4], [4], [4], [0], [0]], [[4], [4], [4], [0], [0]], [[4], [4], [0], [0], [0]], [[4], [0], [0], [0], [0]], [[0], [0], [0], [0], [0]], [[4], [0], [0], [0], [0]], [[4], [4], [0], [0], [0]], [[4], [4], [4], [0], [0]], [[4], [4], [0], [0], [0]], [[4], [4], [4], [4], [0]], [[4], [4], [4], [4], [4]], [[4], [4], [4], [4], [4]], ], [ [[4], [4], [4], [4], [4]], [[4], [4], [4], [4], [0]], [[4], [4], [4], [0], [0]], [[4], [4], [0], [0], [0]], [[4], [4], [4], [0], [0]], [[4], [4], [4], [4], [0]], [[4], [4], [4], [4], [0]], [[4], [4], [4], [0], [0]], [[4], [4], [0], [0], [0]], [[4], [0], [0], [0], [0]], [[0], [0], [0], [0], [0]], [[4], [0], [0], [0], [0]], [[4], [4], [0], [0], [0]], [[4], [4], [4], [0], [0]], [[4], [4], [4], [0], [0]], [[4], [4], [4], [4], [0]], [[4], [4], [4], [4], [0]], ], [ [[4], [4], [4], [4], [4]], [[4], [4], [4], [4], [4]], [[4], [4], [4], [4], [0]], [[4], [4], [4], [0], [0]], [[4], [4], [4], [4], [0]], [[4], [4], [4], [4], [4]], [[4], [4], [4], [4], [4]], [[4], [4], [4], [4], [0]], [[4], [4], [4], [0], [0]], [[4], [4], [0], [0], [0]], [[4], [0], [0], [0], [0]], [[0], [0], [0], [0], [0]], [[4], [0], [0], [0], [0]], [[4], [4], [0], [0], [0]], [[4], [4], [0], [0], [0]], [[4], [4], [4], [0], [0]], [[4], [4], [4], [0], [0]], ], [ [[4], [4], [4], [4], [4]], [[4], [4], [4], [4], [4]], [[4], [4], [4], [4], [4]], [[4], [4], [4], [4], [0]], [[4], [4], [4], [4], [4]], [[4], [4], [4], [4], [4]], [[4], [4], [4], [4], [0]], [[4], [4], [4], [0], [0]], [[4], [4], [0], [0], [0]], [[4], [4], [4], [0], [0]], [[4], [4], [0], [0], [0]], [[4], [0], [0], [0], [0]], [[0], [0], [0], [0], [0]], [[4], [0], [0], [0], [0]], [[4], [0], [0], [0], [0]], [[4], [4], [0], [0], [0]], [[4], [4], [0], [0], [0]], ], [ [[4], [4], [4], [4], [4]], [[4], [4], [4], [4], [4]], [[4], [4], [4], [4], [0]], [[4], [4], [4], [0], [0]], [[4], [4], [4], [4], [0]], [[4], [4], [4], [4], [4]], [[4], [4], [4], [0], [0]], [[4], [4], [0], [0], [0]], [[4], [0], [0], [0], [0]], [[4], [4], [0], [0], [0]], [[4], [4], [4], [0], [0]], [[4], [4], [0], [0], [0]], [[4], [0], [0], [0], [0]], [[0], [0], [0], [0], [0]], [[4], [4], [0], [0], [0]], [[4], [4], [4], [0], [0]], [[4], [4], [4], [0], [0]], ], [ [[4], [4], [4], [4], [4]], [[4], [4], [4], [4], [4]], [[4], [4], [4], [4], [4]], [[4], [4], [4], [4], [4]], [[4], [4], [4], [4], [4]], [[4], [4], [4], [4], [4]], [[4], [4], [4], [4], [4]], [[4], [4], [4], [4], [0]], [[4], [4], [4], [0], [0]], [[4], [4], [4], [4], [0]], [[4], [4], [4], [0], [0]], [[4], [4], [0], [0], [0]], [[4], [0], [0], [0], [0]], [[4], [4], [0], [0], [0]], [[0], [0], [0], [0], [0]], [[4], [0], [0], [0], [0]], [[4], [0], [0], [0], [0]], ], [ [[4], [4], [4], [4], [4]], [[4], [4], [4], [4], [4]], [[4], [4], [4], [4], [4]], [[4], [4], [4], [4], [4]], [[4], [4], [4], [4], [4]], [[4], [4], [4], [4], [4]], [[4], [4], [4], [4], [4]], [[4], [4], [4], [4], [4]], [[4], [4], [4], [4], [0]], [[4], [4], [4], [4], [4]], [[4], [4], [4], [4], [0]], [[4], [4], [4], [0], [0]], [[4], [4], [0], [0], [0]], [[4], [4], [4], [0], [0]], [[4], [0], [0], [0], [0]], [[0], [0], [0], [0], [0]], [[4], [4], [0], [0], [0]], ], [ [[4], [4], [4], [4], [4]], [[4], [4], [4], [4], [4]], [[4], [4], [4], [4], [4]], [[4], [4], [4], [4], [4]], [[4], [4], [4], [4], [4]], [[4], [4], [4], [4], [4]], [[4], [4], [4], [4], [4]], [[4], [4], [4], [4], [4]], [[4], [4], [4], [4], [0]], [[4], [4], [4], [4], [4]], [[4], [4], [4], [4], [0]], [[4], [4], [4], [0], [0]], [[4], [4], [0], [0], [0]], [[4], [4], [4], [0], [0]], [[4], [0], [0], [0], [0]], [[4], [4], [0], [0], [0]], [[0], [0], [0], [0], [0]], ], ], [ [ [[0], [0], [0], [0], [0]], [[4], [0], [0], [0], [0]], [[4], [4], [0], [0], [0]], [[4], [4], [4], [0], [0]], [[4], [4], [4], [4], [0]], [[4], [4], [4], [4], [4]], [[4], [4], [4], [4], [0]], [[4], [4], [4], [0], [0]], [[4], [4], [0], [0], [0]], [[4], [0], [0], [0], [0]], [[4], [4], [4], [0], [0]], [[4], [4], [4], [4], [0]], [[4], [4], [4], [4], [0]], [[0], [0], [0], [0], [0]], [[0], [0], [0], [0], [0]], [[0], [0], [0], [0], [0]], [[0], [0], [0], [0], [0]], ], [ [[4], [0], [0], [0], [0]], [[0], [0], [0], [0], [0]], [[4], [0], [0], [0], [0]], [[4], [4], [0], [0], [0]], [[4], [4], [4], [0], [0]], [[4], [4], [4], [4], [0]], [[4], [4], [4], [0], [0]], [[4], [4], [0], [0], [0]], [[4], [4], [4], [0], [0]], [[4], [4], [0], [0], [0]], [[4], [4], [4], [4], [0]], [[4], [4], [4], [4], [4]], [[4], [4], [4], [4], [4]], [[0], [0], [0], [0], [0]], [[0], [0], [0], [0], [0]], [[0], [0], [0], [0], [0]], [[0], [0], [0], [0], [0]], ], [ [[4], [4], [0], [0], [0]], [[4], [0], [0], [0], [0]], [[0], [0], [0], [0], [0]], [[4], [0], [0], [0], [0]], [[4], [4], [0], [0], [0]], [[4], [4], [4], [0], [0]], [[4], [4], [0], [0], [0]], [[4], [0], [0], [0], [0]], [[4], [4], [0], [0], [0]], [[4], [4], [4], [0], [0]], [[4], [4], [4], [0], [0]], [[4], [4], [4], [4], [0]], [[4], [4], [4], [4], [0]], [[0], [0], [0], [0], [0]], [[0], [0], [0], [0], [0]], [[0], [0], [0], [0], [0]], [[0], [0], [0], [0], [0]], ], [ [[4], [4], [4], [0], [0]], [[4], [4], [0], [0], [0]], [[4], [0], [0], [0], [0]], [[0], [0], [0], [0], [0]], [[4], [0], [0], [0], [0]], [[4], [4], [0], [0], [0]], [[4], [4], [4], [0], [0]], [[4], [4], [0], [0], [0]], [[4], [4], [4], [0], [0]], [[4], [4], [4], [4], [0]], [[4], [4], [4], [4], [0]], [[4], [4], [4], [4], [4]], [[4], [4], [4], [4], [4]], [[0], [0], [0], [0], [0]], [[0], [0], [0], [0], [0]], [[0], [0], [0], [0], [0]], [[0], [0], [0], [0], [0]], ], [ [[4], [4], [4], [4], [0]], [[4], [4], [4], [0], [0]], [[4], [4], [0], [0], [0]], [[4], [0], [0], [0], [0]], [[0], [0], [0], [0], [0]], [[4], [0], [0], [0], [0]], [[4], [4], [0], [0], [0]], [[4], [4], [4], [0], [0]], [[4], [4], [4], [4], [0]], [[4], [4], [4], [4], [4]], [[4], [4], [4], [4], [4]], [[4], [4], [4], [4], [4]], [[4], [4], [4], [4], [4]], [[0], [0], [0], [0], [0]], [[0], [0], [0], [0], [0]], [[0], [0], [0], [0], [0]], [[0], [0], [0], [0], [0]], ], [ [[4], [4], [4], [4], [4]], [[4], [4], [4], [4], [0]], [[4], [4], [4], [0], [0]], [[4], [4], [0], [0], [0]], [[4], [0], [0], [0], [0]], [[0], [0], [0], [0], [0]], [[4], [0], [0], [0], [0]], [[4], [4], [0], [0], [0]], [[4], [4], [4], [0], [0]], [[4], [4], [4], [4], [0]], [[4], [4], [4], [4], [0]], [[4], [4], [4], [4], [4]], [[4], [4], [4], [4], [4]], [[0], [0], [0], [0], [0]], [[0], [0], [0], [0], [0]], [[0], [0], [0], [0], [0]], [[0], [0], [0], [0], [0]], ], [ [[4], [4], [4], [4], [0]], [[4], [4], [4], [0], [0]], [[4], [4], [0], [0], [0]], [[4], [4], [4], [0], [0]], [[4], [4], [0], [0], [0]], [[4], [0], [0], [0], [0]], [[0], [0], [0], [0], [0]], [[4], [0], [0], [0], [0]], [[4], [4], [0], [0], [0]], [[4], [4], [4], [0], [0]], [[4], [4], [4], [0], [0]], [[4], [4], [4], [4], [0]], [[4], [4], [4], [4], [0]], [[0], [0], [0], [0], [0]], [[0], [0], [0], [0], [0]], [[0], [0], [0], [0], [0]], [[0], [0], [0], [0], [0]], ], [ [[4], [4], [4], [0], [0]], [[4], [4], [0], [0], [0]], [[4], [0], [0], [0], [0]], [[4], [4], [0], [0], [0]], [[4], [4], [4], [0], [0]], [[4], [4], [0], [0], [0]], [[4], [0], [0], [0], [0]], [[0], [0], [0], [0], [0]], [[4], [0], [0], [0], [0]], [[4], [4], [0], [0], [0]], [[4], [4], [0], [0], [0]], [[4], [4], [4], [0], [0]], [[4], [4], [4], [0], [0]], [[0], [0], [0], [0], [0]], [[0], [0], [0], [0], [0]], [[0], [0], [0], [0], [0]], [[0], [0], [0], [0], [0]], ], [ [[4], [4], [0], [0], [0]], [[4], [4], [4], [0], [0]], [[4], [4], [0], [0], [0]], [[4], [4], [4], [0], [0]], [[4], [4], [4], [4], [0]], [[4], [4], [4], [0], [0]], [[4], [4], [0], [0], [0]], [[4], [0], [0], [0], [0]], [[0], [0], [0], [0], [0]], [[4], [0], [0], [0], [0]], [[4], [0], [0], [0], [0]], [[4], [4], [0], [0], [0]], [[4], [4], [0], [0], [0]], [[0], [0], [0], [0], [0]], [[0], [0], [0], [0], [0]], [[0], [0], [0], [0], [0]], [[0], [0], [0], [0], [0]], ], [ [[4], [0], [0], [0], [0]], [[4], [4], [0], [0], [0]], [[4], [4], [4], [0], [0]], [[4], [4], [4], [4], [0]], [[4], [4], [4], [4], [4]], [[4], [4], [4], [4], [0]], [[4], [4], [4], [0], [0]], [[4], [4], [0], [0], [0]], [[4], [0], [0], [0], [0]], [[0], [0], [0], [0], [0]], [[4], [4], [0], [0], [0]], [[4], [4], [4], [0], [0]], [[4], [4], [4], [0], [0]], [[0], [0], [0], [0], [0]], [[0], [0], [0], [0], [0]], [[0], [0], [0], [0], [0]], [[0], [0], [0], [0], [0]], ], [ [[4], [4], [4], [0], [0]], [[4], [4], [4], [4], [0]], [[4], [4], [4], [0], [0]], [[4], [4], [4], [4], [0]], [[4], [4], [4], [4], [4]], [[4], [4], [4], [4], [0]], [[4], [4], [4], [0], [0]], [[4], [4], [0], [0], [0]], [[4], [0], [0], [0], [0]], [[4], [4], [0], [0], [0]], [[0], [0], [0], [0], [0]], [[4], [0], [0], [0], [0]], [[4], [0], [0], [0], [0]], [[0], [0], [0], [0], [0]], [[0], [0], [0], [0], [0]], [[0], [0], [0], [0], [0]], [[0], [0], [0], [0], [0]], ], [ [[4], [4], [4], [4], [0]], [[4], [4], [4], [4], [4]], [[4], [4], [4], [4], [0]], [[4], [4], [4], [4], [4]], [[4], [4], [4], [4], [4]], [[4], [4], [4], [4], [4]], [[4], [4], [4], [4], [0]], [[4], [4], [4], [0], [0]], [[4], [4], [0], [0], [0]], [[4], [4], [4], [0], [0]], [[4], [0], [0], [0], [0]], [[0], [0], [0], [0], [0]], [[4], [4], [0], [0], [0]], [[0], [0], [0], [0], [0]], [[0], [0], [0], [0], [0]], [[0], [0], [0], [0], [0]], [[0], [0], [0], [0], [0]], ], [ [[4], [4], [4], [4], [0]], [[4], [4], [4], [4], [4]], [[4], [4], [4], [4], [0]], [[4], [4], [4], [4], [4]], [[4], [4], [4], [4], [4]], [[4], [4], [4], [4], [4]], [[4], [4], [4], [4], [0]], [[4], [4], [4], [0], [0]], [[4], [4], [0], [0], [0]], [[4], [4], [4], [0], [0]], [[4], [0], [0], [0], [0]], [[4], [4], [0], [0], [0]], [[0], [0], [0], [0], [0]], [[0], [0], [0], [0], [0]], [[0], [0], [0], [0], [0]], [[0], [0], [0], [0], [0]], [[0], [0], [0], [0], [0]], ], [ [[0], [0], [0], [0], [0]], [[0], [0], [0], [0], [0]], [[0], [0], [0], [0], [0]], [[0], [0], [0], [0], [0]], [[0], [0], [0], [0], [0]], [[0], [0], [0], [0], [0]], [[0], [0], [0], [0], [0]], [[0], [0], [0], [0], [0]], [[0], [0], [0], [0], [0]], [[0], [0], [0], [0], [0]], [[0], [0], [0], [0], [0]], [[0], [0], [0], [0], [0]], [[0], [0], [0], [0], [0]], [[0], [0], [0], [0], [0]], [[0], [0], [0], [0], [0]], [[0], [0], [0], [0], [0]], [[0], [0], [0], [0], [0]], ], [ [[0], [0], [0], [0], [0]], [[0], [0], [0], [0], [0]], [[0], [0], [0], [0], [0]], [[0], [0], [0], [0], [0]], [[0], [0], [0], [0], [0]], [[0], [0], [0], [0], [0]], [[0], [0], [0], [0], [0]], [[0], [0], [0], [0], [0]], [[0], [0], [0], [0], [0]], [[0], [0], [0], [0], [0]], [[0], [0], [0], [0], [0]], [[0], [0], [0], [0], [0]], [[0], [0], [0], [0], [0]], [[0], [0], [0], [0], [0]], [[0], [0], [0], [0], [0]], [[0], [0], [0], [0], [0]], [[0], [0], [0], [0], [0]], ], [ [[0], [0], [0], [0], [0]], [[0], [0], [0], [0], [0]], [[0], [0], [0], [0], [0]], [[0], [0], [0], [0], [0]], [[0], [0], [0], [0], [0]], [[0], [0], [0], [0], [0]], [[0], [0], [0], [0], [0]], [[0], [0], [0], [0], [0]], [[0], [0], [0], [0], [0]], [[0], [0], [0], [0], [0]], [[0], [0], [0], [0], [0]], [[0], [0], [0], [0], [0]], [[0], [0], [0], [0], [0]], [[0], [0], [0], [0], [0]], [[0], [0], [0], [0], [0]], [[0], [0], [0], [0], [0]], [[0], [0], [0], [0], [0]], ], [ [[0], [0], [0], [0], [0]], [[0], [0], [0], [0], [0]], [[0], [0], [0], [0], [0]], [[0], [0], [0], [0], [0]], [[0], [0], [0], [0], [0]], [[0], [0], [0], [0], [0]], [[0], [0], [0], [0], [0]], [[0], [0], [0], [0], [0]], [[0], [0], [0], [0], [0]], [[0], [0], [0], [0], [0]], [[0], [0], [0], [0], [0]], [[0], [0], [0], [0], [0]], [[0], [0], [0], [0], [0]], [[0], [0], [0], [0], [0]], [[0], [0], [0], [0], [0]], [[0], [0], [0], [0], [0]], [[0], [0], [0], [0], [0]], ], ], ] ), "labels": tensor([1, 0]), } output = model(**model_input)["logits"] expected_shape = torch.Size((2, 1)) self.assertEqual(output.shape, expected_shape) expected_logs = torch.tensor( [[7.6060], [7.4126]] ) self.assertTrue(torch.allclose(output, expected_logs, atol=1e-4))
transformers/tests/models/graphormer/test_modeling_graphormer.py/0
{ "file_path": "transformers/tests/models/graphormer/test_modeling_graphormer.py", "repo_id": "transformers", "token_count": 45752 }
157
# coding=utf-8 # Copyright 2021 HuggingFace Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import json import os import tempfile import unittest import numpy as np from datasets import load_dataset from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ImageGPTImageProcessor class ImageGPTImageProcessingTester(unittest.TestCase): def __init__( self, parent, batch_size=7, num_channels=3, image_size=18, min_resolution=30, max_resolution=400, do_resize=True, size=None, do_normalize=True, ): size = size if size is not None else {"height": 18, "width": 18} self.parent = parent self.batch_size = batch_size self.num_channels = num_channels self.image_size = image_size self.min_resolution = min_resolution self.max_resolution = max_resolution self.do_resize = do_resize self.size = size self.do_normalize = do_normalize def prepare_image_processor_dict(self): return { # here we create 2 clusters for the sake of simplicity "clusters": np.asarray( [ [0.8866443634033203, 0.6618829369544983, 0.3891746401786804], [-0.6042559146881104, -0.02295008860528469, 0.5423797369003296], ] ), "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, } def expected_output_image_shape(self, images): return (self.size["height"] * self.size["width"],) def prepare_image_inputs(self, equal_resolution=False, numpify=False, torchify=False): return prepare_image_inputs( batch_size=self.batch_size, num_channels=self.num_channels, min_resolution=self.min_resolution, max_resolution=self.max_resolution, equal_resolution=equal_resolution, numpify=numpify, torchify=torchify, ) @require_torch @require_vision class ImageGPTImageProcessingTest(ImageProcessingTestMixin, unittest.TestCase): image_processing_class = ImageGPTImageProcessor if is_vision_available() else None def setUp(self): self.image_processor_tester = ImageGPTImageProcessingTester(self) @property def image_processor_dict(self): return self.image_processor_tester.prepare_image_processor_dict() def test_image_processor_properties(self): image_processing = self.image_processing_class(**self.image_processor_dict) self.assertTrue(hasattr(image_processing, "clusters")) self.assertTrue(hasattr(image_processing, "do_resize")) self.assertTrue(hasattr(image_processing, "size")) self.assertTrue(hasattr(image_processing, "do_normalize")) def test_image_processor_from_dict_with_kwargs(self): image_processor = self.image_processing_class.from_dict(self.image_processor_dict) self.assertEqual(image_processor.size, {"height": 18, "width": 18}) image_processor = self.image_processing_class.from_dict(self.image_processor_dict, size=42) self.assertEqual(image_processor.size, {"height": 42, "width": 42}) def test_image_processor_to_json_string(self): image_processor = self.image_processing_class(**self.image_processor_dict) obj = json.loads(image_processor.to_json_string()) for key, value in self.image_processor_dict.items(): if key == "clusters": self.assertTrue(np.array_equal(value, obj[key])) else: self.assertEqual(obj[key], value) def test_image_processor_to_json_file(self): image_processor_first = self.image_processing_class(**self.image_processor_dict) with tempfile.TemporaryDirectory() as tmpdirname: json_file_path = os.path.join(tmpdirname, "image_processor.json") image_processor_first.to_json_file(json_file_path) image_processor_second = self.image_processing_class.from_json_file(json_file_path).to_dict() image_processor_first = image_processor_first.to_dict() for key, value in image_processor_first.items(): if key == "clusters": self.assertTrue(np.array_equal(value, image_processor_second[key])) else: self.assertEqual(image_processor_first[key], value) def test_image_processor_from_and_save_pretrained(self): image_processor_first = self.image_processing_class(**self.image_processor_dict) with tempfile.TemporaryDirectory() as tmpdirname: image_processor_first.save_pretrained(tmpdirname) image_processor_second = self.image_processing_class.from_pretrained(tmpdirname).to_dict() image_processor_first = image_processor_first.to_dict() for key, value in image_processor_first.items(): if key == "clusters": self.assertTrue(np.array_equal(value, image_processor_second[key])) else: self.assertEqual(image_processor_first[key], value) @unittest.skip("ImageGPT requires clusters at initialization") def test_init_without_params(self): pass # Override the test from ImageProcessingTestMixin as ImageGPT model takes input_ids as input def test_call_pil(self): # Initialize image_processing image_processing = self.image_processing_class(**self.image_processor_dict) # create random PIL images image_inputs = self.image_processor_tester.prepare_image_inputs(equal_resolution=False) for image in image_inputs: self.assertIsInstance(image, Image.Image) # Test not batched input encoded_images = image_processing(image_inputs[0], return_tensors="pt").input_ids expected_output_image_shape = self.image_processor_tester.expected_output_image_shape(encoded_images) self.assertEqual(tuple(encoded_images.shape), (1, *expected_output_image_shape)) # Test batched encoded_images = image_processing(image_inputs, return_tensors="pt").input_ids self.assertEqual( tuple(encoded_images.shape), (self.image_processor_tester.batch_size, *expected_output_image_shape) ) # Override the test from ImageProcessingTestMixin as ImageGPT model takes input_ids as input def test_call_numpy(self): # Initialize image_processing image_processing = self.image_processing_class(**self.image_processor_dict) # create random numpy tensors image_inputs = self.image_processor_tester.prepare_image_inputs(equal_resolution=False, numpify=True) for image in image_inputs: self.assertIsInstance(image, np.ndarray) # Test not batched input encoded_images = image_processing(image_inputs[0], return_tensors="pt").input_ids expected_output_image_shape = self.image_processor_tester.expected_output_image_shape(encoded_images) self.assertEqual(tuple(encoded_images.shape), (1, *expected_output_image_shape)) # Test batched encoded_images = image_processing(image_inputs, return_tensors="pt").input_ids self.assertEqual( tuple(encoded_images.shape), (self.image_processor_tester.batch_size, *expected_output_image_shape) ) @unittest.skip("ImageGPT assumes clusters for 3 channels") def test_call_numpy_4_channels(self): pass # Override the test from ImageProcessingTestMixin as ImageGPT model takes input_ids as input def test_call_pytorch(self): # Initialize image_processing image_processing = self.image_processing_class(**self.image_processor_dict) # create random PyTorch tensors image_inputs = self.image_processor_tester.prepare_image_inputs(equal_resolution=False, torchify=True) expected_output_image_shape = self.image_processor_tester.expected_output_image_shape(image_inputs) for image in image_inputs: self.assertIsInstance(image, torch.Tensor) # Test not batched input encoded_images = image_processing(image_inputs[0], return_tensors="pt").input_ids self.assertEqual(tuple(encoded_images.shape), (1, *expected_output_image_shape)) # Test batched encoded_images = image_processing(image_inputs, return_tensors="pt").input_ids self.assertEqual( tuple(encoded_images.shape), (self.image_processor_tester.batch_size, *expected_output_image_shape), ) def prepare_images(): # we use revision="refs/pr/1" until the PR is merged # https://hf.co/datasets/hf-internal-testing/fixtures_image_utils/discussions/1 dataset = load_dataset("hf-internal-testing/fixtures_image_utils", split="test", revision="refs/pr/1") image1 = dataset[4]["image"] image2 = dataset[5]["image"] images = [image1, image2] return images @require_vision @require_torch class ImageGPTImageProcessorIntegrationTest(unittest.TestCase): @slow def test_image(self): image_processing = ImageGPTImageProcessor.from_pretrained("openai/imagegpt-small") images = prepare_images() # test non-batched encoding = image_processing(images[0], return_tensors="pt") self.assertIsInstance(encoding.input_ids, torch.LongTensor) self.assertEqual(encoding.input_ids.shape, (1, 1024)) expected_slice = [306, 191, 191] self.assertEqual(encoding.input_ids[0, :3].tolist(), expected_slice) # test batched encoding = image_processing(images, return_tensors="pt") self.assertIsInstance(encoding.input_ids, torch.LongTensor) self.assertEqual(encoding.input_ids.shape, (2, 1024)) expected_slice = [303, 13, 13] self.assertEqual(encoding.input_ids[1, -3:].tolist(), expected_slice)
transformers/tests/models/imagegpt/test_image_processing_imagegpt.py/0
{ "file_path": "transformers/tests/models/imagegpt/test_image_processing_imagegpt.py", "repo_id": "transformers", "token_count": 4306 }
158
# coding=utf-8 # Copyright 2018 The Microsoft Research Asia LayoutLM Team Authors, The Hugging Face Team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import unittest from transformers import LayoutLMTokenizer, LayoutLMTokenizerFast from transformers.models.layoutlm.tokenization_layoutlm import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class LayoutLMTokenizationTest(TokenizerTesterMixin, unittest.TestCase): tokenizer_class = LayoutLMTokenizer rust_tokenizer_class = LayoutLMTokenizerFast test_rust_tokenizer = True space_between_special_tokens = True def setUp(self): super().setUp() vocab_tokens = [ "[UNK]", "[CLS]", "[SEP]", "want", "##want", "##ed", "wa", "un", "runn", "##ing", ",", "low", "lowest", ] self.vocab_file = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["vocab_file"]) with open(self.vocab_file, "w", encoding="utf-8") as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens])) def get_tokenizer(self, **kwargs): return LayoutLMTokenizer.from_pretrained(self.tmpdirname, **kwargs) def get_input_output_texts(self, tokenizer): input_text = "UNwant\u00E9d,running" output_text = "unwanted, running" return input_text, output_text def test_full_tokenizer(self): tokenizer = self.tokenizer_class(self.vocab_file) tokens = tokenizer.tokenize("UNwant\u00E9d,running") self.assertListEqual(tokens, ["un", "##want", "##ed", ",", "runn", "##ing"]) self.assertListEqual(tokenizer.convert_tokens_to_ids(tokens), [7, 4, 5, 10, 8, 9]) def test_special_tokens_as_you_expect(self): """If you are training a seq2seq model that expects a decoder_prefix token make sure it is prepended to decoder_input_ids""" pass
transformers/tests/models/layoutlm/test_tokenization_layoutlm.py/0
{ "file_path": "transformers/tests/models/layoutlm/test_tokenization_layoutlm.py", "repo_id": "transformers", "token_count": 1057 }
159
# coding=utf-8 # Copyright 2020 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( LongformerConfig, TFLongformerForMaskedLM, TFLongformerForMultipleChoice, TFLongformerForQuestionAnswering, TFLongformerForSequenceClassification, TFLongformerForTokenClassification, TFLongformerModel, TFLongformerSelfAttention, ) from transformers.tf_utils import shape_list class TFLongformerModelTester: def __init__( self, parent, ): self.parent = parent self.batch_size = 13 self.seq_length = 7 self.is_training = True self.use_input_mask = True self.use_token_type_ids = True self.use_labels = True self.vocab_size = 99 self.hidden_size = 32 self.num_hidden_layers = 2 self.num_attention_heads = 4 self.intermediate_size = 37 self.hidden_act = "gelu" self.hidden_dropout_prob = 0.1 self.attention_probs_dropout_prob = 0.1 self.max_position_embeddings = 512 self.type_vocab_size = 16 self.type_sequence_label_size = 2 self.initializer_range = 0.02 self.num_labels = 3 self.num_choices = 4 self.scope = None self.attention_window = 4 # `ModelTesterMixin.test_attention_outputs` is expecting attention tensors to be of size # [num_attention_heads, encoder_seq_length, encoder_key_length], but TFLongformerSelfAttention # returns attention of shape [num_attention_heads, encoder_seq_length, self.attention_window + 1] # because its local attention only attends to `self.attention_window` and one before and one after self.key_length = self.attention_window + 2 def prepare_config_and_inputs(self): input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) input_mask = None if self.use_input_mask: input_mask = random_attention_mask([self.batch_size, self.seq_length]) token_type_ids = None if self.use_token_type_ids: token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size) sequence_labels = None token_labels = None choice_labels = None if self.use_labels: sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size) token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels) choice_labels = ids_tensor([self.batch_size], self.num_choices) config = LongformerConfig( vocab_size=self.vocab_size, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, type_vocab_size=self.type_vocab_size, initializer_range=self.initializer_range, attention_window=self.attention_window, ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def create_and_check_attention_mask_determinism( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels ): model = TFLongformerModel(config=config) attention_mask = tf.ones(input_ids.shape, dtype=tf.int64) output_with_mask = model(input_ids, attention_mask=attention_mask)[0] output_without_mask = model(input_ids)[0] tf.debugging.assert_near(output_with_mask[0, 0, :5], output_without_mask[0, 0, :5], rtol=1e-4) def create_and_check_model( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels ): config.return_dict = True model = TFLongformerModel(config=config) result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids) result = model(input_ids, token_type_ids=token_type_ids) result = model(input_ids) self.parent.assertListEqual( shape_list(result.last_hidden_state), [self.batch_size, self.seq_length, self.hidden_size] ) self.parent.assertListEqual(shape_list(result.pooler_output), [self.batch_size, self.hidden_size]) def create_and_check_model_with_global_attention_mask( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels ): config.return_dict = True model = TFLongformerModel(config=config) half_input_mask_length = shape_list(input_mask)[-1] // 2 global_attention_mask = tf.concat( [ tf.zeros_like(input_mask)[:, :half_input_mask_length], tf.ones_like(input_mask)[:, half_input_mask_length:], ], axis=-1, ) result = model( input_ids, attention_mask=input_mask, global_attention_mask=global_attention_mask, token_type_ids=token_type_ids, ) result = model(input_ids, token_type_ids=token_type_ids, global_attention_mask=global_attention_mask) result = model(input_ids, global_attention_mask=global_attention_mask) self.parent.assertListEqual( shape_list(result.last_hidden_state), [self.batch_size, self.seq_length, self.hidden_size] ) self.parent.assertListEqual(shape_list(result.pooler_output), [self.batch_size, self.hidden_size]) def create_and_check_for_masked_lm( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels ): config.return_dict = True model = TFLongformerForMaskedLM(config=config) result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=token_labels) self.parent.assertListEqual(shape_list(result.logits), [self.batch_size, self.seq_length, self.vocab_size]) def create_and_check_for_question_answering( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels ): config.return_dict = True model = TFLongformerForQuestionAnswering(config=config) result = model( input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, start_positions=sequence_labels, end_positions=sequence_labels, ) self.parent.assertListEqual(shape_list(result.start_logits), [self.batch_size, self.seq_length]) self.parent.assertListEqual(shape_list(result.end_logits), [self.batch_size, self.seq_length]) def create_and_check_for_sequence_classification( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels ): config.num_labels = self.num_labels model = TFLongformerForSequenceClassification(config=config) output = model( input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=sequence_labels ).logits self.parent.assertListEqual(shape_list(output), [self.batch_size, self.num_labels]) def create_and_check_for_token_classification( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels ): config.num_labels = self.num_labels model = TFLongformerForTokenClassification(config=config) output = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=token_labels).logits self.parent.assertListEqual(shape_list(output), [self.batch_size, self.seq_length, self.num_labels]) def create_and_check_for_multiple_choice( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels ): config.num_choices = self.num_choices model = TFLongformerForMultipleChoice(config=config) multiple_choice_inputs_ids = tf.tile(tf.expand_dims(input_ids, 1), (1, self.num_choices, 1)) multiple_choice_token_type_ids = tf.tile(tf.expand_dims(token_type_ids, 1), (1, self.num_choices, 1)) multiple_choice_input_mask = tf.tile(tf.expand_dims(input_mask, 1), (1, self.num_choices, 1)) output = model( multiple_choice_inputs_ids, attention_mask=multiple_choice_input_mask, global_attention_mask=multiple_choice_input_mask, token_type_ids=multiple_choice_token_type_ids, labels=choice_labels, ).logits self.parent.assertListEqual(list(output.shape), [self.batch_size, self.num_choices]) def prepare_config_and_inputs_for_common(self): config_and_inputs = self.prepare_config_and_inputs() ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, ) = config_and_inputs # global attention mask has to be partly defined # to trace all weights global_attention_mask = tf.concat( [tf.zeros_like(input_ids)[:, :-1], tf.ones_like(input_ids)[:, -1:]], axis=-1, ) inputs_dict = { "input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask, "global_attention_mask": global_attention_mask, } return config, inputs_dict def prepare_config_and_inputs_for_question_answering(self): config_and_inputs = self.prepare_config_and_inputs() ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, ) = config_and_inputs # Replace sep_token_id by some random id input_ids = tf.where(input_ids == config.sep_token_id, 0, input_ids) # Make sure there are exactly three sep_token_id input_ids = tf.concat([input_ids[:, :-3], tf.ones_like(input_ids)[:, -3:] * config.sep_token_id], axis=-1) input_mask = tf.ones_like(input_ids) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels @require_tf class TFLongformerModelTest(TFModelTesterMixin, PipelineTesterMixin, unittest.TestCase): all_model_classes = ( ( TFLongformerModel, TFLongformerForMaskedLM, TFLongformerForQuestionAnswering, TFLongformerForSequenceClassification, TFLongformerForMultipleChoice, TFLongformerForTokenClassification, ) if is_tf_available() else () ) pipeline_model_mapping = ( { "feature-extraction": TFLongformerModel, "fill-mask": TFLongformerForMaskedLM, "question-answering": TFLongformerForQuestionAnswering, "text-classification": TFLongformerForSequenceClassification, "token-classification": TFLongformerForTokenClassification, "zero-shot": TFLongformerForSequenceClassification, } if is_tf_available() else {} ) test_head_masking = False test_onnx = False # TODO: Fix the failed tests def is_pipeline_test_to_skip( self, pipeline_test_casse_name, config_class, model_architecture, tokenizer_name, processor_name ): if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith("Fast") ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def setUp(self): self.model_tester = TFLongformerModelTester(self) self.config_tester = ConfigTester(self, config_class=LongformerConfig, hidden_size=37) def test_config(self): self.config_tester.run_common_tests() def test_model_attention_mask_determinism(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_attention_mask_determinism(*config_and_inputs) def test_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*config_and_inputs) def test_model_global_attention_mask(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model_with_global_attention_mask(*config_and_inputs) def test_for_masked_lm(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*config_and_inputs) def test_for_question_answering(self): config_and_inputs = self.model_tester.prepare_config_and_inputs_for_question_answering() self.model_tester.create_and_check_for_question_answering(*config_and_inputs) def test_for_sequence_classification(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*config_and_inputs) def test_for_token_classification(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*config_and_inputs) def test_for_multiple_choice(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*config_and_inputs) @unittest.skip("Longformer keeps using potentially symbolic tensors in conditionals and breaks tracing.") def test_saved_model_creation(self): pass @unittest.skip("Longformer keeps using potentially symbolic tensors in conditionals and breaks tracing.") def test_compile_tf_model(self): pass @require_tf @require_sentencepiece @require_tokenizers class TFLongformerModelIntegrationTest(unittest.TestCase): def _get_hidden_states(self): return tf.convert_to_tensor( [ [ [ 4.98332758e-01, 2.69175139e00, -7.08081422e-03, 1.04915401e00, -1.83476661e00, 7.67220476e-01, 2.98580543e-01, 2.84803992e-02, ], [ -7.58357372e-01, 4.20635998e-01, -4.04739919e-02, 1.59924145e-01, 2.05135748e00, -1.15997978e00, 5.37166397e-01, 2.62873606e-01, ], [ -1.69438001e00, 4.17574660e-01, -1.49196962e00, -1.76483717e00, -1.94566312e-01, -1.71183858e00, 7.72903565e-01, -1.11557056e00, ], [ 5.44028163e-01, 2.05466114e-01, -3.63045868e-01, 2.41865062e-01, 3.20348382e-01, -9.05611176e-01, -1.92690727e-01, -1.19917547e00, ], ] ], dtype=tf.float32, ) def test_diagonalize(self): hidden_states = self._get_hidden_states() hidden_states = tf.reshape(hidden_states, (1, 8, 4)) # set seq length = 8, hidden dim = 4 chunked_hidden_states = TFLongformerSelfAttention._chunk(hidden_states, window_overlap=2) window_overlap_size = shape_list(chunked_hidden_states)[2] self.assertTrue(window_overlap_size == 4) padded_hidden_states = TFLongformerSelfAttention._pad_and_diagonalize(chunked_hidden_states) self.assertTrue( shape_list(padded_hidden_states)[-1] == shape_list(chunked_hidden_states)[-1] + window_overlap_size - 1 ) # first row => [0.4983, 2.6918, -0.0071, 1.0492, 0.0000, 0.0000, 0.0000] tf.debugging.assert_near(padded_hidden_states[0, 0, 0, :4], chunked_hidden_states[0, 0, 0], rtol=1e-3) tf.debugging.assert_near(padded_hidden_states[0, 0, 0, 4:], tf.zeros((3,), dtype=tf.float32), rtol=1e-3) # last row => [0.0000, 0.0000, 0.0000, 2.0514, -1.1600, 0.5372, 0.2629] tf.debugging.assert_near(padded_hidden_states[0, 0, -1, 3:], chunked_hidden_states[0, 0, -1], rtol=1e-3) tf.debugging.assert_near(padded_hidden_states[0, 0, -1, :3], tf.zeros((3,), dtype=tf.float32), rtol=1e-3) def test_pad_and_transpose_last_two_dims(self): hidden_states = self._get_hidden_states() self.assertEqual(shape_list(hidden_states), [1, 4, 8]) # pad along seq length dim paddings = tf.constant([[0, 0], [0, 0], [0, 1], [0, 0]], dtype=tf.int64) hidden_states = TFLongformerSelfAttention._chunk(hidden_states, window_overlap=2) padded_hidden_states = TFLongformerSelfAttention._pad_and_transpose_last_two_dims(hidden_states, paddings) self.assertTrue(shape_list(padded_hidden_states) == [1, 1, 8, 5]) expected_added_dim = tf.zeros((5,), dtype=tf.float32) tf.debugging.assert_near(expected_added_dim, padded_hidden_states[0, 0, -1, :], rtol=1e-6) tf.debugging.assert_near( hidden_states[0, 0, -1, :], tf.reshape(padded_hidden_states, (1, -1))[0, 24:32], rtol=1e-6 ) def test_mask_invalid_locations(self): hidden_states = self._get_hidden_states() batch_size = 1 seq_length = 8 hidden_size = 4 hidden_states = tf.reshape(hidden_states, (batch_size, seq_length, hidden_size)) hidden_states = TFLongformerSelfAttention._chunk(hidden_states, window_overlap=2) hid_states_1 = TFLongformerSelfAttention._mask_invalid_locations(hidden_states, 1) hid_states_2 = TFLongformerSelfAttention._mask_invalid_locations(hidden_states, 2) hid_states_3 = TFLongformerSelfAttention._mask_invalid_locations(hidden_states[:, :, :, :3], 2) hid_states_4 = TFLongformerSelfAttention._mask_invalid_locations(hidden_states[:, :, 2:, :], 2) self.assertTrue(tf.math.reduce_sum(tf.cast(tf.math.is_inf(hid_states_1), tf.int64)) == 8) self.assertTrue(tf.math.reduce_sum(tf.cast(tf.math.is_inf(hid_states_2), tf.int64)) == 24) self.assertTrue(tf.math.reduce_sum(tf.cast(tf.math.is_inf(hid_states_3), tf.int64)) == 24) self.assertTrue(tf.math.reduce_sum(tf.cast(tf.math.is_inf(hid_states_4), tf.int64)) == 12) def test_chunk(self): hidden_states = self._get_hidden_states() batch_size = 1 seq_length = 8 hidden_size = 4 hidden_states = tf.reshape(hidden_states, (batch_size, seq_length, hidden_size)) chunked_hidden_states = TFLongformerSelfAttention._chunk(hidden_states, window_overlap=2) # expected slices across chunk and seq length dim expected_slice_along_seq_length = tf.convert_to_tensor([0.4983, -0.7584, -1.6944], dtype=tf.float32) expected_slice_along_chunk = tf.convert_to_tensor([0.4983, -1.8348, -0.7584, 2.0514], dtype=tf.float32) self.assertTrue(shape_list(chunked_hidden_states) == [1, 3, 4, 4]) tf.debugging.assert_near( chunked_hidden_states[0, :, 0, 0], expected_slice_along_seq_length, rtol=1e-3, atol=1e-4 ) tf.debugging.assert_near(chunked_hidden_states[0, 0, :, 0], expected_slice_along_chunk, rtol=1e-3, atol=1e-4) def test_layer_local_attn(self): model = TFLongformerModel.from_pretrained("patrickvonplaten/longformer-random-tiny") layer = model.longformer.encoder.layer[0].attention.self_attention hidden_states = self._get_hidden_states() batch_size, seq_length, hidden_size = hidden_states.shape attention_mask = tf.zeros((batch_size, seq_length), dtype=tf.float32) is_index_global_attn = tf.math.greater(attention_mask, 1) is_global_attn = tf.math.reduce_any(is_index_global_attn) attention_mask = tf.where(tf.range(4)[None, :, None, None] > 1, -10000.0, attention_mask[:, :, None, None]) is_index_masked = tf.math.less(attention_mask[:, :, 0, 0], 0) layer_head_mask = None output_hidden_states = layer( [hidden_states, attention_mask, layer_head_mask, is_index_masked, is_index_global_attn, is_global_attn] )[0] expected_slice = tf.convert_to_tensor( [0.00188, 0.012196, -0.017051, -0.025571, -0.02996, 0.017297, -0.011521, 0.004848], dtype=tf.float32 ) self.assertEqual(output_hidden_states.shape, (1, 4, 8)) tf.debugging.assert_near(output_hidden_states[0, 1], expected_slice, rtol=1e-3, atol=1e-4) def test_layer_global_attn(self): model = TFLongformerModel.from_pretrained("patrickvonplaten/longformer-random-tiny") layer = model.longformer.encoder.layer[0].attention.self_attention hidden_states = self._get_hidden_states() hidden_states = tf.concat([self._get_hidden_states(), self._get_hidden_states() - 0.5], axis=0) batch_size, seq_length, hidden_size = hidden_states.shape # create attn mask attention_mask_1 = tf.zeros((1, 1, 1, seq_length), dtype=tf.float32) attention_mask_2 = tf.zeros((1, 1, 1, seq_length), dtype=tf.float32) attention_mask_1 = tf.where(tf.range(4)[None, :, None, None] > 1, 10000.0, attention_mask_1) attention_mask_1 = tf.where(tf.range(4)[None, :, None, None] > 2, -10000.0, attention_mask_1) attention_mask_2 = tf.where(tf.range(4)[None, :, None, None] > 0, 10000.0, attention_mask_2) attention_mask = tf.concat([attention_mask_1, attention_mask_2], axis=0) is_index_masked = tf.math.less(attention_mask[:, :, 0, 0], 0) is_index_global_attn = tf.math.greater(attention_mask[:, :, 0, 0], 0) is_global_attn = tf.math.reduce_any(is_index_global_attn) layer_head_mask = None output_hidden_states = layer( [ hidden_states, -tf.math.abs(attention_mask), layer_head_mask, is_index_masked, is_index_global_attn, is_global_attn, ] )[0] self.assertEqual(output_hidden_states.shape, (2, 4, 8)) expected_slice_0 = tf.convert_to_tensor( [-0.06508, -0.039306, 0.030934, -0.03417, -0.00656, -0.01553, -0.02088, -0.04938], dtype=tf.float32 ) expected_slice_1 = tf.convert_to_tensor( [-0.04055, -0.038399, 0.0396, -0.03735, -0.03415, 0.01357, 0.00145, -0.05709], dtype=tf.float32 ) tf.debugging.assert_near(output_hidden_states[0, 2], expected_slice_0, rtol=1e-3, atol=1e-4) tf.debugging.assert_near(output_hidden_states[1, -2], expected_slice_1, rtol=1e-3, atol=1e-4) def test_layer_attn_probs(self): model = TFLongformerModel.from_pretrained("patrickvonplaten/longformer-random-tiny") layer = model.longformer.encoder.layer[0].attention.self_attention hidden_states = tf.concat([self._get_hidden_states(), self._get_hidden_states() - 0.5], axis=0) batch_size, seq_length, hidden_size = hidden_states.shape # create attn mask attention_mask_1 = tf.zeros((1, 1, 1, seq_length), dtype=tf.float32) attention_mask_2 = tf.zeros((1, 1, 1, seq_length), dtype=tf.float32) attention_mask_1 = tf.where(tf.range(4)[None, :, None, None] > 1, 10000.0, attention_mask_1) attention_mask_1 = tf.where(tf.range(4)[None, :, None, None] > 2, -10000.0, attention_mask_1) attention_mask_2 = tf.where(tf.range(4)[None, :, None, None] > 0, 10000.0, attention_mask_2) attention_mask = tf.concat([attention_mask_1, attention_mask_2], axis=0) is_index_masked = tf.math.less(attention_mask[:, :, 0, 0], 0) is_index_global_attn = tf.math.greater(attention_mask[:, :, 0, 0], 0) is_global_attn = tf.math.reduce_any(is_index_global_attn) layer_head_mask = None output_hidden_states, local_attentions, global_attentions = layer( [ hidden_states, -tf.math.abs(attention_mask), layer_head_mask, is_index_masked, is_index_global_attn, is_global_attn, ] ) self.assertEqual(local_attentions.shape, (2, 4, 2, 8)) self.assertEqual(global_attentions.shape, (2, 2, 3, 4)) self.assertTrue((local_attentions[0, 2:4, :, :] == 0).numpy().tolist()) self.assertTrue((local_attentions[1, 1:4, :, :] == 0).numpy().tolist()) # # The weight of all tokens with local attention must sum to 1. self.assertTrue( (tf.math.abs(tf.math.reduce_sum(global_attentions[0, :, :2, :], axis=-1) - 1) < 1e-6).numpy().tolist() ) self.assertTrue( (tf.math.abs(tf.math.reduce_sum(global_attentions[1, :, :1, :], axis=-1) - 1) < 1e-6).numpy().tolist() ) tf.debugging.assert_near( local_attentions[0, 0, 0, :], tf.convert_to_tensor([0.3328, 0.0000, 0.0000, 0.0000, 0.0000, 0.3355, 0.3318, 0.0000], dtype=tf.float32), rtol=1e-3, atol=1e-4, ) tf.debugging.assert_near( local_attentions[1, 0, 0, :], tf.convert_to_tensor([0.2492, 0.2502, 0.2502, 0.0000, 0.0000, 0.2505, 0.0000, 0.0000], dtype=tf.float32), rtol=1e-3, atol=1e-4, ) # All the global attention weights must sum to 1. self.assertTrue((tf.math.abs(tf.math.reduce_sum(global_attentions, axis=-1) - 1) < 1e-6).numpy().tolist()) tf.debugging.assert_near( global_attentions[0, 0, 1, :], tf.convert_to_tensor([0.2500, 0.2500, 0.2500, 0.2500], dtype=tf.float32), rtol=1e-3, atol=1e-4, ) tf.debugging.assert_near( global_attentions[1, 0, 0, :], tf.convert_to_tensor([0.2497, 0.2500, 0.2499, 0.2504], dtype=tf.float32), rtol=1e-3, atol=1e-4, ) @slow def test_inference_no_head(self): model = TFLongformerModel.from_pretrained("allenai/longformer-base-4096") # 'Hello world!' input_ids = tf.convert_to_tensor([[0, 20920, 232, 328, 1437, 2]], dtype=tf.int64) attention_mask = tf.ones(shape_list(input_ids), dtype=tf.int64) output = model(input_ids, attention_mask=attention_mask)[0] output_without_mask = model(input_ids)[0] expected_output_slice = tf.convert_to_tensor([0.0549, 0.1087, -0.1119, -0.0368, 0.0250], dtype=tf.float32) tf.debugging.assert_near(output[0, 0, -5:], expected_output_slice, rtol=1e-3, atol=1e-4) tf.debugging.assert_near(output_without_mask[0, 0, -5:], expected_output_slice, rtol=1e-3, atol=1e-4) @slow def test_inference_no_head_long(self): model = TFLongformerModel.from_pretrained("allenai/longformer-base-4096") # 'Hello world! ' repeated 1000 times input_ids = tf.convert_to_tensor([[0] + [20920, 232, 328, 1437] * 1000 + [2]], dtype=tf.int64) attention_mask = tf.ones(shape_list(input_ids), dtype=tf.int64) global_attention_mask = tf.zeros(shape_list(input_ids), dtype=tf.int64) # Set global attention on a few random positions global_attention_mask = tf.tensor_scatter_nd_update( global_attention_mask, tf.constant([[0, 1], [0, 4], [0, 21]], dtype=tf.int64), tf.constant([1, 1, 1], dtype=tf.int64), ) output = model(input_ids, attention_mask=attention_mask, global_attention_mask=global_attention_mask)[0] expected_output_sum = tf.constant(74585.875) expected_output_mean = tf.constant(0.024267) # assert close tf.debugging.assert_near(tf.reduce_sum(output), expected_output_sum, rtol=1e-4, atol=1e-4) tf.debugging.assert_near(tf.reduce_mean(output), expected_output_mean, rtol=1e-4, atol=1e-4) @slow def test_inference_masked_lm_long(self): model = TFLongformerForMaskedLM.from_pretrained("allenai/longformer-base-4096") # 'Hello world! ' repeated 1000 times input_ids = tf.convert_to_tensor([[0] + [20920, 232, 328, 1437] * 1000 + [2]], dtype=tf.int64) output = model(input_ids, labels=input_ids) loss = output.loss prediction_scores = output.logits expected_loss = tf.constant(0.0073798) expected_prediction_scores_sum = tf.constant(-610476600.0) expected_prediction_scores_mean = tf.constant(-3.03477) # assert close tf.debugging.assert_near(tf.reduce_mean(loss), expected_loss, rtol=1e-4, atol=1e-4) tf.debugging.assert_near( tf.reduce_sum(prediction_scores), expected_prediction_scores_sum, rtol=1e-4, atol=1e-4 ) tf.debugging.assert_near( tf.reduce_mean(prediction_scores), expected_prediction_scores_mean, rtol=1e-4, atol=1e-4 ) @slow def test_inference_masked_lm(self): model = TFLongformerForMaskedLM.from_pretrained("lysandre/tiny-longformer-random") input_ids = tf.constant([[0, 1, 2, 3, 4, 5]]) output = model(input_ids)[0] expected_shape = [1, 6, 10] self.assertEqual(output.shape, expected_shape) print(output[:, :3, :3]) expected_slice = tf.constant( [ [ [-0.04926379, 0.0367098, 0.02099686], [0.03940692, 0.01547744, -0.01448723], [0.03495252, -0.05900355, -0.01675752], ] ] ) tf.debugging.assert_near(output[:, :3, :3], expected_slice, atol=1e-4)
transformers/tests/models/longformer/test_modeling_tf_longformer.py/0
{ "file_path": "transformers/tests/models/longformer/test_modeling_tf_longformer.py", "repo_id": "transformers", "token_count": 15156 }
160
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import numpy as np import timeout_decorator # noqa from transformers import MarianConfig, is_flax_available from transformers.testing_utils import require_flax, require_sentencepiece, require_tokenizers, slow from transformers.utils import cached_property from ...generation.test_flax_utils import FlaxGenerationTesterMixin from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor if is_flax_available(): import os # The slow tests are often failing with OOM error on GPU # This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed # but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html os.environ["XLA_PYTHON_CLIENT_ALLOCATOR"] = "platform" import jax import jax.numpy as jnp from transformers import MarianTokenizer from transformers.models.marian.modeling_flax_marian import FlaxMarianModel, FlaxMarianMTModel, shift_tokens_right def prepare_marian_inputs_dict( config, input_ids, decoder_input_ids=None, attention_mask=None, decoder_attention_mask=None, head_mask=None, decoder_head_mask=None, cross_attn_head_mask=None, ): if attention_mask is None: attention_mask = np.where(input_ids != config.pad_token_id, 1, 0) if decoder_attention_mask is None: decoder_attention_mask = np.where(decoder_input_ids != config.pad_token_id, 1, 0) if head_mask is None: head_mask = np.ones((config.encoder_layers, config.encoder_attention_heads)) if decoder_head_mask is None: decoder_head_mask = np.ones((config.decoder_layers, config.decoder_attention_heads)) if cross_attn_head_mask is None: cross_attn_head_mask = np.ones((config.decoder_layers, config.decoder_attention_heads)) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": attention_mask, } class FlaxMarianModelTester: def __init__( self, parent, batch_size=13, seq_length=7, is_training=True, use_labels=False, vocab_size=99, hidden_size=16, num_hidden_layers=2, num_attention_heads=4, intermediate_size=4, hidden_act="gelu", hidden_dropout_prob=0.1, attention_probs_dropout_prob=0.1, max_position_embeddings=32, eos_token_id=2, pad_token_id=1, bos_token_id=0, initializer_range=0.02, ): self.parent = parent self.batch_size = batch_size self.seq_length = seq_length self.is_training = is_training self.use_labels = use_labels self.vocab_size = vocab_size self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.intermediate_size = intermediate_size self.hidden_act = hidden_act self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.max_position_embeddings = max_position_embeddings self.eos_token_id = eos_token_id self.pad_token_id = pad_token_id self.bos_token_id = bos_token_id self.initializer_range = initializer_range def prepare_config_and_inputs(self): input_ids = np.clip(ids_tensor([self.batch_size, self.seq_length - 1], self.vocab_size), 3, self.vocab_size) input_ids = np.concatenate((input_ids, 2 * np.ones((self.batch_size, 1), dtype=np.int64)), -1) decoder_input_ids = shift_tokens_right(input_ids, 1, 2) config = MarianConfig( vocab_size=self.vocab_size, d_model=self.hidden_size, encoder_layers=self.num_hidden_layers, decoder_layers=self.num_hidden_layers, encoder_attention_heads=self.num_attention_heads, decoder_attention_heads=self.num_attention_heads, encoder_ffn_dim=self.intermediate_size, decoder_ffn_dim=self.intermediate_size, dropout=self.hidden_dropout_prob, attention_dropout=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, eos_token_id=self.eos_token_id, bos_token_id=self.bos_token_id, pad_token_id=self.pad_token_id, initializer_range=self.initializer_range, use_cache=False, ) inputs_dict = prepare_marian_inputs_dict(config, input_ids, decoder_input_ids) return config, inputs_dict def prepare_config_and_inputs_for_common(self): config, inputs_dict = self.prepare_config_and_inputs() return config, inputs_dict def check_use_cache_forward(self, model_class_name, config, inputs_dict): max_decoder_length = 20 model = model_class_name(config) encoder_outputs = model.encode(inputs_dict["input_ids"]) decoder_input_ids, decoder_attention_mask = ( inputs_dict["decoder_input_ids"], inputs_dict["decoder_attention_mask"], ) past_key_values = model.init_cache(decoder_input_ids.shape[0], max_decoder_length, encoder_outputs) decoder_attention_mask = jnp.ones((decoder_input_ids.shape[0], max_decoder_length), dtype="i4") decoder_position_ids = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1)[None, :], (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1), ) outputs_cache = model.decode( decoder_input_ids[:, :-1], encoder_outputs, decoder_attention_mask=decoder_attention_mask, past_key_values=past_key_values, decoder_position_ids=decoder_position_ids, ) decoder_position_ids = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]], dtype="i4") outputs_cache_next = model.decode( decoder_input_ids[:, -1:], encoder_outputs, decoder_attention_mask=decoder_attention_mask, past_key_values=outputs_cache.past_key_values, decoder_position_ids=decoder_position_ids, ) outputs = model.decode(decoder_input_ids, encoder_outputs) diff = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]))) self.parent.assertTrue(diff < 1e-3, msg=f"Max diff is {diff}") def check_use_cache_forward_with_attn_mask(self, model_class_name, config, inputs_dict): max_decoder_length = 20 model = model_class_name(config) encoder_outputs = model.encode(inputs_dict["input_ids"]) decoder_input_ids, decoder_attention_mask = ( inputs_dict["decoder_input_ids"], inputs_dict["decoder_attention_mask"], ) decoder_attention_mask_cache = jnp.concatenate( [ decoder_attention_mask, jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1])), ], axis=-1, ) past_key_values = model.init_cache(decoder_input_ids.shape[0], max_decoder_length, encoder_outputs) decoder_position_ids = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1)[None, :], (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1), ) outputs_cache = model.decode( decoder_input_ids[:, :-1], encoder_outputs, decoder_attention_mask=decoder_attention_mask_cache, past_key_values=past_key_values, decoder_position_ids=decoder_position_ids, ) decoder_position_ids = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]], dtype="i4") outputs_cache_next = model.decode( decoder_input_ids[:, -1:], encoder_outputs, past_key_values=outputs_cache.past_key_values, decoder_attention_mask=decoder_attention_mask_cache, decoder_position_ids=decoder_position_ids, ) outputs = model.decode(decoder_input_ids, encoder_outputs, decoder_attention_mask=decoder_attention_mask) diff = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]))) self.parent.assertTrue(diff < 1e-3, msg=f"Max diff is {diff}") @require_flax class FlaxMarianModelTest(FlaxModelTesterMixin, unittest.TestCase, FlaxGenerationTesterMixin): is_encoder_decoder = True all_model_classes = (FlaxMarianModel, FlaxMarianMTModel) if is_flax_available() else () all_generative_model_classes = (FlaxMarianMTModel,) if is_flax_available() else () def setUp(self): self.model_tester = FlaxMarianModelTester(self) def test_use_cache_forward(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward(model_class, config, inputs_dict) def test_use_cache_forward_with_attn_mask(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward_with_attn_mask(model_class, config, inputs_dict) def test_encode(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__): prepared_inputs_dict = self._prepare_for_class(inputs_dict, model_class) model = model_class(config) @jax.jit def encode_jitted(input_ids, attention_mask=None, **kwargs): return model.encode(input_ids=input_ids, attention_mask=attention_mask) with self.subTest("JIT Enabled"): jitted_outputs = encode_jitted(**prepared_inputs_dict).to_tuple() with self.subTest("JIT Disabled"): with jax.disable_jit(): outputs = encode_jitted(**prepared_inputs_dict).to_tuple() self.assertEqual(len(outputs), len(jitted_outputs)) for jitted_output, output in zip(jitted_outputs, outputs): self.assertEqual(jitted_output.shape, output.shape) def test_decode(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__): model = model_class(config) encoder_outputs = model.encode(inputs_dict["input_ids"], inputs_dict["attention_mask"]) prepared_inputs_dict = { "decoder_input_ids": inputs_dict["decoder_input_ids"], "decoder_attention_mask": inputs_dict["decoder_attention_mask"], "encoder_outputs": encoder_outputs, } @jax.jit def decode_jitted(decoder_input_ids, decoder_attention_mask, encoder_outputs): return model.decode( decoder_input_ids=decoder_input_ids, decoder_attention_mask=decoder_attention_mask, encoder_outputs=encoder_outputs, ) with self.subTest("JIT Enabled"): jitted_outputs = decode_jitted(**prepared_inputs_dict).to_tuple() with self.subTest("JIT Disabled"): with jax.disable_jit(): outputs = decode_jitted(**prepared_inputs_dict).to_tuple() self.assertEqual(len(outputs), len(jitted_outputs)) for jitted_output, output in zip(jitted_outputs, outputs): self.assertEqual(jitted_output.shape, output.shape) @slow def test_model_from_pretrained(self): for model_class_name in self.all_model_classes: model = model_class_name.from_pretrained("Helsinki-NLP/opus-mt-en-de") # FlaxMarianForSequenceClassification expects eos token in input_ids input_ids = np.ones((1, 1)) * model.config.eos_token_id outputs = model(input_ids) self.assertIsNotNone(outputs) @unittest.skip("Skipping for now, to fix @ArthurZ or @ydshieh") def test_pipeline_conversational(self): pass @require_flax @require_sentencepiece @require_tokenizers class MarianIntegrationTest(unittest.TestCase): src = None tgt = None @classmethod def setUpClass(cls) -> None: cls.model_name = f"Helsinki-NLP/opus-mt-{cls.src}-{cls.tgt}" return cls @cached_property def tokenizer(self): return MarianTokenizer.from_pretrained(self.model_name) @property def eos_token_id(self) -> int: return self.tokenizer.eos_token_id @cached_property def model(self): model: FlaxMarianMTModel = FlaxMarianMTModel.from_pretrained(self.model_name) self.assertEqual(model.config.decoder_start_token_id, model.config.pad_token_id) return model def _assert_generated_batch_equal_expected(self, **tokenizer_kwargs): generated_words = self.translate_src_text(**tokenizer_kwargs) self.assertListEqual(self.expected_text, generated_words) def translate_src_text(self, **tokenizer_kwargs): model_inputs = self.tokenizer(self.src_text, padding=True, return_tensors="np", **tokenizer_kwargs) generated_ids = self.model.generate( model_inputs.input_ids, attention_mask=model_inputs.attention_mask, num_beams=2, max_length=128, ).sequences generated_words = self.tokenizer.batch_decode(generated_ids, skip_special_tokens=True) return generated_words @require_flax @require_sentencepiece @require_tokenizers class TestMarian_EN_FR(MarianIntegrationTest): src = "en" tgt = "fr" src_text = [ "I am a small frog.", "Now I can forget the 100 words of german that I know.", ] expected_text = [ "Je suis une petite grenouille.", "Maintenant, je peux oublier les 100 mots d'allemand que je connais.", ] @slow def test_batch_generation_en_fr(self): self._assert_generated_batch_equal_expected() @require_flax @require_sentencepiece @require_tokenizers class TestMarian_FR_EN(MarianIntegrationTest): src = "fr" tgt = "en" src_text = [ "Donnez moi le micro.", "Tom et Mary étaient assis à une table.", # Accents ] expected_text = [ "Give me the microphone.", "Tom and Mary were sitting at a table.", ] @slow def test_batch_generation_fr_en(self): self._assert_generated_batch_equal_expected() @require_flax @require_sentencepiece @require_tokenizers class TestMarian_MT_EN(MarianIntegrationTest): """Cover low resource/high perplexity setting. This breaks without adjust_logits_generation overwritten""" src = "mt" tgt = "en" src_text = ["Billi messu b'mod ġentili, Ġesù fejjaq raġel li kien milqut bil - marda kerha tal - ġdiem."] expected_text = ["Touching gently, Jesus healed a man who was affected by the sad disease of leprosy."] @slow def test_batch_generation_mt_en(self): self._assert_generated_batch_equal_expected() @require_flax @require_sentencepiece @require_tokenizers class TestMarian_EN_DE(MarianIntegrationTest): src = "en" tgt = "de" src_text = [ "I am a small frog.", "Now I can forget the 100 words of german that I know.", "Tom asked his teacher for advice.", "That's how I would do it.", "Tom really admired Mary's courage.", "Turn around and close your eyes.", ] expected_text = [ "Ich bin ein kleiner Frosch.", "Jetzt kann ich die 100 Wörter des Deutschen vergessen, die ich kenne.", "Tom bat seinen Lehrer um Rat.", "So würde ich das machen.", "Tom bewunderte Marias Mut wirklich.", "Drehen Sie sich um und schließen Sie die Augen.", ] @slow def test_batch_generation_en_de(self): self._assert_generated_batch_equal_expected() @require_flax @require_sentencepiece @require_tokenizers class TestMarian_en_zh(MarianIntegrationTest): src = "en" tgt = "zh" src_text = ["My name is Wolfgang and I live in Berlin"] expected_text = ["我叫沃尔夫冈 我住在柏林"] @slow def test_batch_generation_eng_zho(self): self._assert_generated_batch_equal_expected() @require_flax @require_sentencepiece @require_tokenizers class TestMarian_RU_FR(MarianIntegrationTest): src = "ru" tgt = "fr" src_text = ["Он показал мне рукопись своей новой пьесы."] expected_text = ["Il m'a montré le manuscrit de sa nouvelle pièce."] @slow def test_batch_generation_ru_fr(self): self._assert_generated_batch_equal_expected() @require_flax @require_sentencepiece @require_tokenizers class TestMarian_en_ROMANCE(MarianIntegrationTest): """Multilingual on target side.""" src = "en" tgt = "ROMANCE" src_text = [ ">>fr<< Don't spend so much time watching TV.", ">>pt<< Your message has been sent.", ">>es<< He's two years older than me.", ] expected_text = [ "Ne passez pas autant de temps à regarder la télé.", "A sua mensagem foi enviada.", "Es dos años más viejo que yo.", ] @slow def test_batch_generation_en_ROMANCE_multi(self): self._assert_generated_batch_equal_expected()
transformers/tests/models/marian/test_modeling_flax_marian.py/0
{ "file_path": "transformers/tests/models/marian/test_modeling_flax_marian.py", "repo_id": "transformers", "token_count": 8297 }
161
# coding=utf-8 # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import json import os import unittest from transformers import MgpstrTokenizer from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class MgpstrTokenizationTest(TokenizerTesterMixin, unittest.TestCase): tokenizer_class = MgpstrTokenizer test_rust_tokenizer = False from_pretrained_kwargs = {} test_seq2seq = False def setUp(self): super().setUp() vocab = ['[GO]', '[s]', '0', '1', '2', '3', '4', '5', '6', '7', '8', '9', 'a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n', 'o', 'p', 'q', 'r', 's', 't', 'u', 'v', 'w', 'x', 'y', 'z'] # fmt: skip vocab_tokens = dict(zip(vocab, range(len(vocab)))) self.vocab_file = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["vocab_file"]) with open(self.vocab_file, "w", encoding="utf-8") as fp: fp.write(json.dumps(vocab_tokens) + "\n") def get_tokenizer(self, **kwargs): return MgpstrTokenizer.from_pretrained(self.tmpdirname, **kwargs) def get_input_output_texts(self, tokenizer): input_text = "tester" output_text = "tester" return input_text, output_text @unittest.skip("MGP-STR always lower cases letters.") def test_added_tokens_do_lower_case(self): pass def test_add_special_tokens(self): tokenizers = self.get_tokenizers(do_lower_case=False) for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}"): special_token = "[SPECIAL_TOKEN]" tokenizer.add_special_tokens({"cls_token": special_token}) encoded_special_token = tokenizer.encode([special_token], add_special_tokens=False) self.assertEqual(len(encoded_special_token), 1) decoded = tokenizer.decode(encoded_special_token, skip_special_tokens=True) self.assertTrue(special_token not in decoded) def test_internal_consistency(self): tokenizers = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}"): input_text, output_text = self.get_input_output_texts(tokenizer) tokens = tokenizer.tokenize(input_text) ids = tokenizer.convert_tokens_to_ids(tokens) ids_2 = tokenizer.encode(input_text, add_special_tokens=False) self.assertListEqual(ids, ids_2) tokens_2 = tokenizer.convert_ids_to_tokens(ids) self.assertNotEqual(len(tokens_2), 0) text_2 = tokenizer.decode(ids) self.assertIsInstance(text_2, str) self.assertEqual(text_2.replace(" ", ""), output_text) @unittest.skip("MGP-STR tokenizer only handles one sequence.") def test_maximum_encoding_length_pair_input(self): pass @unittest.skip("inputs cannot be pretokenized in MgpstrTokenizer") def test_pretokenized_inputs(self): pass
transformers/tests/models/mgp_str/test_tokenization_mgp_str.py/0
{ "file_path": "transformers/tests/models/mgp_str/test_tokenization_mgp_str.py", "repo_id": "transformers", "token_count": 1600 }
162
# coding=utf-8 # Copyright 2022 HuggingFace Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_vision_available from ...test_image_processing_common import ImageProcessingTestMixin, prepare_image_inputs if is_vision_available(): from transformers import MobileNetV2ImageProcessor class MobileNetV2ImageProcessingTester(unittest.TestCase): def __init__( self, parent, batch_size=7, num_channels=3, image_size=18, min_resolution=30, max_resolution=400, do_resize=True, size=None, do_center_crop=True, crop_size=None, ): size = size if size is not None else {"shortest_edge": 20} crop_size = crop_size if crop_size is not None else {"height": 18, "width": 18} self.parent = parent self.batch_size = batch_size self.num_channels = num_channels self.image_size = image_size self.min_resolution = min_resolution self.max_resolution = max_resolution self.do_resize = do_resize self.size = size self.do_center_crop = do_center_crop self.crop_size = crop_size def prepare_image_processor_dict(self): return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, } def expected_output_image_shape(self, images): return self.num_channels, self.crop_size["height"], self.crop_size["width"] def prepare_image_inputs(self, equal_resolution=False, numpify=False, torchify=False): return prepare_image_inputs( batch_size=self.batch_size, num_channels=self.num_channels, min_resolution=self.min_resolution, max_resolution=self.max_resolution, equal_resolution=equal_resolution, numpify=numpify, torchify=torchify, ) @require_torch @require_vision class MobileNetV2ImageProcessingTest(ImageProcessingTestMixin, unittest.TestCase): image_processing_class = MobileNetV2ImageProcessor if is_vision_available() else None def setUp(self): self.image_processor_tester = MobileNetV2ImageProcessingTester(self) @property def image_processor_dict(self): return self.image_processor_tester.prepare_image_processor_dict() def test_image_processor_properties(self): image_processor = self.image_processing_class(**self.image_processor_dict) self.assertTrue(hasattr(image_processor, "do_resize")) self.assertTrue(hasattr(image_processor, "size")) self.assertTrue(hasattr(image_processor, "do_center_crop")) self.assertTrue(hasattr(image_processor, "crop_size")) def test_image_processor_from_dict_with_kwargs(self): image_processor = self.image_processing_class.from_dict(self.image_processor_dict) self.assertEqual(image_processor.size, {"shortest_edge": 20}) self.assertEqual(image_processor.crop_size, {"height": 18, "width": 18}) image_processor = self.image_processing_class.from_dict(self.image_processor_dict, size=42, crop_size=84) self.assertEqual(image_processor.size, {"shortest_edge": 42}) self.assertEqual(image_processor.crop_size, {"height": 84, "width": 84})
transformers/tests/models/mobilenet_v2/test_image_processing_mobilenet_v2.py/0
{ "file_path": "transformers/tests/models/mobilenet_v2/test_image_processing_mobilenet_v2.py", "repo_id": "transformers", "token_count": 1544 }
163
# Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import numpy as np import timeout_decorator # noqa from transformers import OPTConfig, is_flax_available from transformers.testing_utils import require_flax, require_sentencepiece, slow from ...generation.test_flax_utils import FlaxGenerationTesterMixin from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor if is_flax_available(): import os # The slow tests are often failing with OOM error on GPU # This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed # but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html os.environ["XLA_PYTHON_CLIENT_ALLOCATOR"] = "platform" import jax import jax.numpy as jnp from transformers import FlaxOPTForCausalLM, FlaxOPTModel, GPT2Tokenizer def prepare_opt_inputs_dict(config, input_ids, attention_mask=None, head_mask=None): if attention_mask is None: attention_mask = np.where(input_ids != config.pad_token_id, 1, 0) return { "input_ids": input_ids, "attention_mask": attention_mask, } @require_flax class FlaxOPTModelTester: def __init__( self, parent, batch_size=13, seq_length=7, is_training=True, use_labels=False, vocab_size=99, hidden_size=16, num_hidden_layers=2, num_attention_heads=4, intermediate_size=4, hidden_act="gelu", hidden_dropout_prob=0.1, attention_probs_dropout_prob=0.1, max_position_embeddings=20, eos_token_id=2, pad_token_id=1, bos_token_id=0, embed_dim=16, word_embed_proj_dim=16, initializer_range=0.02, ): self.parent = parent self.batch_size = batch_size self.seq_length = seq_length self.is_training = is_training self.use_labels = use_labels self.vocab_size = vocab_size self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.intermediate_size = intermediate_size self.hidden_act = hidden_act self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.max_position_embeddings = max_position_embeddings self.eos_token_id = eos_token_id self.pad_token_id = pad_token_id self.bos_token_id = bos_token_id self.embed_dim = embed_dim self.word_embed_proj_dim = word_embed_proj_dim self.initializer_range = initializer_range self.is_encoder_decoder = False def prepare_config_and_inputs(self): input_ids = np.clip(ids_tensor([self.batch_size, self.seq_length - 1], self.vocab_size), 3, self.vocab_size) input_ids = np.concatenate((input_ids, 2 * np.ones((self.batch_size, 1), dtype=np.int64)), -1) config = OPTConfig( vocab_size=self.vocab_size, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, ffn_dim=self.intermediate_size, dropout=self.hidden_dropout_prob, attention_dropout=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, eos_token_id=self.eos_token_id, bos_token_id=self.bos_token_id, pad_token_id=self.pad_token_id, embed_dim=self.embed_dim, is_encoder_decoder=False, word_embed_proj_dim=self.word_embed_proj_dim, initializer_range=self.initializer_range, use_cache=False, ) inputs_dict = prepare_opt_inputs_dict(config, input_ids) return config, inputs_dict def prepare_config_and_inputs_for_common(self): config, inputs_dict = self.prepare_config_and_inputs() return config, inputs_dict def check_use_cache_forward(self, model_class_name, config, inputs_dict): max_length = 20 model = model_class_name(config) input_ids = inputs_dict["input_ids"] attention_mask = inputs_dict["attention_mask"] past_key_values = model.init_cache(input_ids.shape[0], max_length) attention_mask = jnp.ones((input_ids.shape[0], max_length), dtype="i4") position_ids = jnp.broadcast_to( jnp.arange(input_ids.shape[-1] - 1)[None, :], (input_ids.shape[0], input_ids.shape[-1] - 1), ) outputs_cache = model( input_ids[:, :-1], attention_mask=attention_mask, past_key_values=past_key_values, position_ids=position_ids, ) position_ids = jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]], dtype="i4") outputs_cache_next = model( input_ids[:, -1:], attention_mask=attention_mask, past_key_values=outputs_cache.past_key_values, position_ids=position_ids, ) outputs = model(input_ids) diff = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]))) self.parent.assertTrue(diff < 1e-3, msg=f"Max diff is {diff}") def check_use_cache_forward_with_attn_mask(self, model_class_name, config, inputs_dict): max_length = 20 model = model_class_name(config) input_ids, attention_mask = ( inputs_dict["input_ids"], inputs_dict["attention_mask"], ) attention_mask_cache = jnp.concatenate( [ attention_mask, jnp.zeros((attention_mask.shape[0], max_length - attention_mask.shape[1])), ], axis=-1, ) past_key_values = model.init_cache(input_ids.shape[0], max_length) position_ids = jnp.broadcast_to( jnp.arange(input_ids.shape[-1] - 1)[None, :], (input_ids.shape[0], input_ids.shape[-1] - 1), ) outputs_cache = model( input_ids[:, :-1], attention_mask=attention_mask_cache, past_key_values=past_key_values, position_ids=position_ids, ) position_ids = jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]], dtype="i4") outputs_cache_next = model( input_ids[:, -1:], past_key_values=outputs_cache.past_key_values, attention_mask=attention_mask_cache, position_ids=position_ids, ) outputs = model(input_ids, attention_mask=attention_mask) diff = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]))) self.parent.assertTrue(diff < 1e-3, msg=f"Max diff is {diff}") @require_flax class FlaxOPTModelTest(FlaxModelTesterMixin, unittest.TestCase, FlaxGenerationTesterMixin): all_model_classes = (FlaxOPTModel, FlaxOPTForCausalLM) if is_flax_available() else () all_generative_model_classes = () if is_flax_available() else () def setUp(self): self.model_tester = FlaxOPTModelTester(self) def test_use_cache_forward(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward(model_class, config, inputs_dict) def test_use_cache_forward_with_attn_mask(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward_with_attn_mask(model_class, config, inputs_dict) @slow def test_model_from_pretrained(self): for model_class_name in self.all_model_classes: model = model_class_name.from_pretrained("facebook/opt-125m") input_ids = np.ones((1, 1)) * model.config.eos_token_id outputs = model(input_ids) self.assertIsNotNone(outputs) @require_sentencepiece @require_flax class FlaxOPTModelIntegrationTests(unittest.TestCase): @slow def test_inference_no_head(self): model = FlaxOPTModel.from_pretrained("facebook/opt-350m") input_ids = jnp.array([[0, 31414, 232, 328, 740, 1140, 12695, 69, 46078, 1588, 2]]) output = model(input_ids=input_ids).last_hidden_state expected_shape = (1, 11, 512) self.assertEqual(output.shape, expected_shape) expected_slice = jnp.array( [[-0.2867, -1.9256, -0.3062], [-1.2711, -0.1337, -0.1897], [0.4109, 0.1187, -1.3142]] ) self.assertTrue(jnp.allclose(output[:, :3, :3], expected_slice, atol=4e-2)) @require_flax @slow class FlaxOPTEmbeddingsTest(unittest.TestCase): def setUp(self): super().setUp() self.path_model = "facebook/opt-350m" def test_logits(self): model = FlaxOPTForCausalLM.from_pretrained(self.path_model) tokenizer = GPT2Tokenizer.from_pretrained(self.path_model) prompts = [ "Today is a beautiful day and I want to", "In the city of", "Paris is the capital of France and", "Computers and mobile phones have taken", ] # verify that prompt without BOS token is identical to Metaseq -> add_special_tokens=False inputs = tokenizer(prompts, return_tensors="jax", padding=True, add_special_tokens=False) logits = model(inputs.input_ids, attention_mask=inputs.attention_mask)[0].mean(axis=-1) logits_meta = jnp.array( [ [1.3851, -13.8923, -10.5229, -10.7533, -0.2309, -10.2384, -0.5365, -9.0947, -5.1670], [-4.7073, -10.6276, -3.9415, -21.5242, -0.2822, -0.2822, -0.2822, -0.2822, -0.2822], [0.6247, -3.4229, -8.9179, -1.4297, -14.1650, 1.4146, -9.0218, -0.2703, -0.2703], [6.4783, -1.9913, -10.7926, -2.3336, 1.5092, -0.9974, -6.8213, 1.3477, 1.3477], ] ) self.assertTrue(jnp.allclose(logits, logits_meta, atol=4e-2)) model = jax.jit(model) logits = model(inputs.input_ids, attention_mask=inputs.attention_mask)[0].mean(axis=-1) self.assertTrue(jnp.allclose(logits, logits_meta, atol=4e-2)) @require_flax @slow class FlaxOPTGenerationTest(unittest.TestCase): @property def prompts(self): return [ "Today is a beautiful day and I want", "In the city of", "Paris is the capital of France and", "Computers and mobile phones have taken", ] def test_generation_pre_attn_layer_norm(self): model_id = "facebook/opt-125m" EXPECTED_OUTPUTS = [ "Today is a beautiful day and I want to", "In the city of New York, the city", "Paris is the capital of France and the capital", "Computers and mobile phones have taken over the", ] predicted_outputs = [] model = FlaxOPTForCausalLM.from_pretrained(model_id) tokenizer = GPT2Tokenizer.from_pretrained(model_id) for prompt in self.prompts: input_ids = tokenizer(prompt, return_tensors="jax").input_ids generated_ids = model.generate(input_ids, max_length=10) generated_ids = generated_ids[0] generated_string = tokenizer.batch_decode(generated_ids, skip_special_tokens=True) predicted_outputs += generated_string self.assertListEqual(predicted_outputs, EXPECTED_OUTPUTS) def test_generation_post_attn_layer_norm(self): model_id = "facebook/opt-350m" EXPECTED_OUTPUTS = [ "Today is a beautiful day and I want to", "In the city of San Francisco, the city", "Paris is the capital of France and the capital", "Computers and mobile phones have taken over the", ] predicted_outputs = [] model = FlaxOPTForCausalLM.from_pretrained(model_id) tokenizer = GPT2Tokenizer.from_pretrained(model_id) for prompt in self.prompts: input_ids = tokenizer(prompt, return_tensors="jax").input_ids generated_ids = model.generate(input_ids, max_length=10) generated_ids = generated_ids[0] generated_string = tokenizer.batch_decode(generated_ids, skip_special_tokens=True) predicted_outputs += generated_string self.assertListEqual(predicted_outputs, EXPECTED_OUTPUTS) def test_jitted_batch_generation(self): model_id = "facebook/opt-125m" EXPECTED_OUTPUTS = [ "Today is a beautiful day and I want to thank", "In the city of Rome Canaver Canaver Canaver Canaver", ] model = FlaxOPTForCausalLM.from_pretrained(model_id) tokenizer = GPT2Tokenizer.from_pretrained(model_id) inputs = tokenizer( [ "Today is a beautiful day and I want to", "In the city of", ], return_tensors="jax", padding=True, ) jit_generate = jax.jit(model.generate) output_sequences = jit_generate(inputs["input_ids"], attention_mask=inputs["attention_mask"]).sequences output_string = tokenizer.batch_decode(output_sequences, skip_special_tokens=True) self.assertIsNotNone(output_string, EXPECTED_OUTPUTS) def test_batch_generation(self): model_id = "facebook/opt-350m" tokenizer = GPT2Tokenizer.from_pretrained(model_id) model = FlaxOPTForCausalLM.from_pretrained(model_id) tokenizer.padding_side = "left" # use different length sentences to test batching sentences = [ "Hello, my dog is a little", "Today, I", ] inputs = tokenizer(sentences, return_tensors="jax", padding=True) input_ids = inputs["input_ids"] outputs = model.generate(input_ids=input_ids, attention_mask=inputs["attention_mask"], trace=False) inputs_non_padded = tokenizer(sentences[0], return_tensors="jax").input_ids output_non_padded = model.generate(input_ids=inputs_non_padded) num_paddings = inputs_non_padded.shape[-1] - inputs["attention_mask"][-1].sum() inputs_padded = tokenizer(sentences[1], return_tensors="jax").input_ids output_padded = model.generate(input_ids=inputs_padded, max_length=model.config.max_length - num_paddings) batch_out_sentence = tokenizer.batch_decode(outputs[0], skip_special_tokens=True) non_padded_sentence = tokenizer.decode(output_non_padded[0][0], skip_special_tokens=True) padded_sentence = tokenizer.decode(output_padded[0][0], skip_special_tokens=True) expected_output_sentence = [ "Hello, my dog is a little bit of a dork.\nI'm a little bit", "Today, I was in the middle of a conversation with a friend about the", ] self.assertListEqual(expected_output_sentence, batch_out_sentence) self.assertListEqual(batch_out_sentence, [non_padded_sentence, padded_sentence])
transformers/tests/models/opt/test_modeling_flax_opt.py/0
{ "file_path": "transformers/tests/models/opt/test_modeling_flax_opt.py", "repo_id": "transformers", "token_count": 7181 }
164
# coding=utf-8 # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Testing suite for the PyTorch Pix2Struct model. """ import copy import inspect import os import tempfile import unittest import numpy as np import requests from transformers import Pix2StructConfig, Pix2StructTextConfig, Pix2StructVisionConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ( ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor, random_attention_mask, ) from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( Pix2StructForConditionalGeneration, Pix2StructProcessor, Pix2StructTextModel, Pix2StructVisionModel, ) from transformers.models.pix2struct.modeling_pix2struct import PIX2STRUCT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image class Pix2StructVisionModelTester: def __init__( self, parent, batch_size=12, image_size=30, patch_size=2, num_channels=3, is_training=True, hidden_size=12, patch_embed_hidden_size=12, projection_dim=32, max_patches=64, num_hidden_layers=2, num_attention_heads=4, intermediate_size=37, dropout=0.1, attention_dropout=0.1, initializer_range=1e-10, scope=None, ): self.parent = parent self.batch_size = batch_size self.image_size = image_size self.patch_embed_hidden_size = patch_embed_hidden_size self.patch_size = patch_size self.num_channels = num_channels self.is_training = is_training self.hidden_size = hidden_size self.max_patches = max_patches self.seq_length = self.max_patches self.patch_proj_dim = ((patch_size**2) * num_channels) + 2 self.projection_dim = projection_dim self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.intermediate_size = intermediate_size self.dropout = dropout self.attention_dropout = attention_dropout self.initializer_range = initializer_range self.scope = scope def prepare_config_and_inputs(self): flattened_patches = floats_tensor([self.batch_size, self.max_patches, self.patch_proj_dim]) config = self.get_config() return config, flattened_patches def get_config(self): return Pix2StructVisionConfig( image_size=self.image_size, patch_size=self.patch_size, num_channels=self.num_channels, hidden_size=self.hidden_size, projection_dim=self.projection_dim, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, dropout=self.dropout, attention_dropout=self.attention_dropout, initializer_range=self.initializer_range, patch_embed_hidden_size=self.patch_embed_hidden_size, ) def create_and_check_model(self, config, flattened_patches): model = Pix2StructVisionModel(config=config) model.to(torch_device) model.eval() with torch.no_grad(): result = model(flattened_patches) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) def prepare_config_and_inputs_for_common(self): config_and_inputs = self.prepare_config_and_inputs() config, flattened_patches = config_and_inputs inputs_dict = { "flattened_patches": flattened_patches, "attention_mask": torch.randint(0, 2, (self.batch_size, self.max_patches)), } return config, inputs_dict @require_torch class Pix2StructVisionModelTest(ModelTesterMixin, unittest.TestCase): """ Here we also overwrite some of the tests of test_modeling_common.py, as Pix2Struct does not use input_ids, inputs_embeds, attention_mask and seq_length. """ all_model_classes = (Pix2StructVisionModel,) if is_torch_available() else () fx_compatible = False test_pruning = False test_resize_embeddings = False test_head_masking = False def setUp(self): self.model_tester = Pix2StructVisionModelTester(self) self.config_tester = ConfigTester( self, config_class=Pix2StructVisionConfig, has_text_modality=False, hidden_size=37 ) def test_config(self): self.config_tester.run_common_tests() @unittest.skip(reason="Pix2StructVision does not use inputs_embeds") def test_inputs_embeds(self): pass def test_model_common_attributes(self): config, _ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: model = model_class(config) self.assertIsInstance(model.get_input_embeddings(), (nn.Module)) x = model.get_output_embeddings() self.assertTrue(x is None or isinstance(x, nn.Linear)) def test_forward_signature(self): config, _ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: model = model_class(config) signature = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic arg_names = [*signature.parameters.keys()] expected_arg_names = ["flattened_patches"] self.assertListEqual(arg_names[:1], expected_arg_names) def test_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*config_and_inputs) @unittest.skip(reason="Training is tested directly on `Pix2StructTextImageModelTest`") def test_training(self): pass @unittest.skip(reason="Training is tested directly on `Pix2StructTextImageModelTest`") def test_training_gradient_checkpointing(self): pass @unittest.skip( reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124" ) def test_training_gradient_checkpointing_use_reentrant(self): pass @unittest.skip( reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124" ) def test_training_gradient_checkpointing_use_reentrant_false(self): pass @unittest.skip(reason="Training is tested directly on `Pix2StructTextImageModelTest`") def test_retain_grad_hidden_states_attentions(self): pass @unittest.skip(reason="Pix2StructVisionModel has no base class and is not available in MODEL_MAPPING") def test_save_load_fast_init_from_base(self): pass @unittest.skip(reason="Pix2StructVisionModel has no base class and is not available in MODEL_MAPPING") def test_save_load_fast_init_to_base(self): pass @slow def test_model_from_pretrained(self): for model_name in PIX2STRUCT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: model = Pix2StructVisionModel.from_pretrained(model_name) self.assertIsNotNone(model) class Pix2StructTextModelTester: def __init__( self, parent, batch_size=12, seq_length=7, is_training=True, use_input_mask=True, use_labels=True, vocab_size=99, hidden_size=12, projection_dim=32, num_hidden_layers=2, num_attention_heads=4, intermediate_size=37, dropout=0.1, attention_dropout=0.1, max_position_embeddings=512, initializer_range=0.02, bos_token_id=0, scope=None, ): self.parent = parent self.batch_size = batch_size self.seq_length = seq_length self.is_training = is_training self.use_input_mask = use_input_mask self.use_labels = use_labels self.d_kv = hidden_size // num_attention_heads self.vocab_size = vocab_size self.hidden_size = hidden_size self.projection_dim = projection_dim self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.intermediate_size = intermediate_size self.dropout = dropout self.attention_dropout = attention_dropout self.max_position_embeddings = max_position_embeddings self.initializer_range = initializer_range self.scope = scope self.bos_token_id = bos_token_id def prepare_config_and_inputs(self): input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) input_mask = None if self.use_input_mask: input_mask = random_attention_mask([self.batch_size, self.seq_length]) if input_mask is not None: batch_size, seq_length = input_mask.shape rnd_start_indices = np.random.randint(1, seq_length - 1, size=(batch_size,)) for batch_idx, start_index in enumerate(rnd_start_indices): input_mask[batch_idx, :start_index] = 1 input_mask[batch_idx, start_index:] = 0 config = self.get_config() return config, input_ids, input_mask def get_config(self): return Pix2StructTextConfig( vocab_size=self.vocab_size, hidden_size=self.hidden_size, projection_dim=self.projection_dim, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, dropout=self.dropout, attention_dropout=self.attention_dropout, max_position_embeddings=self.max_position_embeddings, initializer_range=self.initializer_range, bos_token_id=self.bos_token_id, d_kv=self.d_kv, ) def create_and_check_model(self, config, input_ids, input_mask): model = Pix2StructTextModel(config=config) model.to(torch_device) model.eval() with torch.no_grad(): result = model(input_ids, attention_mask=input_mask) result = model(input_ids) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size)) def prepare_config_and_inputs_for_common(self): config_and_inputs = self.prepare_config_and_inputs() config, input_ids, input_mask = config_and_inputs inputs_dict = {"input_ids": input_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class Pix2StructTextModelTest(ModelTesterMixin, unittest.TestCase): all_model_classes = (Pix2StructTextModel,) if is_torch_available() else () fx_compatible = False test_pruning = False test_head_masking = False def setUp(self): self.model_tester = Pix2StructTextModelTester(self) self.config_tester = ConfigTester(self, config_class=Pix2StructTextConfig, hidden_size=37) def test_config(self): self.config_tester.run_common_tests() def test_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*config_and_inputs) @unittest.skip(reason="Training is tested directly on `Pix2StructTextImageModelTest`") def test_training(self): pass @unittest.skip(reason="Training is tested directly on `Pix2StructTextImageModelTest`") def test_training_gradient_checkpointing(self): pass @unittest.skip( reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124" ) def test_training_gradient_checkpointing_use_reentrant(self): pass @unittest.skip( reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124" ) def test_training_gradient_checkpointing_use_reentrant_false(self): pass @unittest.skip(reason="Pix2Struct does not use inputs_embeds") def test_inputs_embeds(self): pass @unittest.skip(reason="Pix2StructTextModel has no base class and is not available in MODEL_MAPPING") def test_save_load_fast_init_from_base(self): pass @unittest.skip(reason="Pix2StructTextModel has no base class and is not available in MODEL_MAPPING") def test_save_load_fast_init_to_base(self): pass @slow def test_model_from_pretrained(self): for model_name in PIX2STRUCT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: model = Pix2StructTextModel.from_pretrained(model_name) self.assertIsNotNone(model) class Pix2StructModelTester: def __init__(self, parent, text_kwargs=None, vision_kwargs=None, is_training=True): if text_kwargs is None: text_kwargs = {} if vision_kwargs is None: vision_kwargs = {} self.parent = parent self.text_model_tester = Pix2StructTextModelTester(parent, **text_kwargs) self.vision_model_tester = Pix2StructVisionModelTester(parent, **vision_kwargs) self.is_training = is_training def prepare_config_and_inputs(self): text_config, input_ids, attention_mask = self.text_model_tester.prepare_config_and_inputs() vision_config, flattened_patches = self.vision_model_tester.prepare_config_and_inputs() config = self.get_config(text_config, vision_config) return config, input_ids, attention_mask, flattened_patches def get_config(self, text_config, vision_config): return Pix2StructConfig.from_text_vision_configs(text_config, vision_config, projection_dim=64) def prepare_config_and_inputs_for_common(self): config_and_inputs = self.prepare_config_and_inputs() config, input_ids, decoder_attention_mask, flattened_patches = config_and_inputs attention_mask = (flattened_patches.sum(dim=-1) != 0).float() inputs_dict = { "decoder_input_ids": input_ids, "labels": input_ids, "decoder_attention_mask": decoder_attention_mask, "flattened_patches": flattened_patches, "attention_mask": attention_mask, } return config, inputs_dict @require_torch class Pix2StructModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase): all_model_classes = (Pix2StructForConditionalGeneration,) if is_torch_available() else () pipeline_model_mapping = {"image-to-text": Pix2StructForConditionalGeneration} if is_torch_available() else {} fx_compatible = False test_head_masking = False test_pruning = False test_resize_embeddings = True test_attention_outputs = False test_torchscript = False def setUp(self): self.model_tester = Pix2StructModelTester(self) def test_model(self): config, input_dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: model = model_class(config).to(torch_device) output = model(**input_dict) self.assertEqual( output[1].shape, ( self.model_tester.vision_model_tester.batch_size, self.model_tester.text_model_tester.seq_length, self.model_tester.text_model_tester.vocab_size, ), ) @unittest.skip(reason="Hidden_states is tested in individual model tests") def test_hidden_states_output(self): pass @unittest.skip(reason="Inputs_embeds is tested in individual model tests") def test_inputs_embeds(self): pass @unittest.skip(reason="Retain_grad is tested in individual model tests") def test_retain_grad_hidden_states_attentions(self): pass @unittest.skip(reason="Pix2StructModel does not have input/output embeddings") def test_model_common_attributes(self): pass def test_forward_signature(self): config, _ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: model = model_class(config) signature = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic arg_names = [*signature.parameters.keys()] expected_arg_names = [ "flattened_patches", "attention_mask", "decoder_input_ids", "decoder_attention_mask", "head_mask", "decoder_head_mask", "cross_attn_head_mask", "encoder_outputs", "past_key_values", "labels", "decoder_inputs_embeds", "use_cache", ] self.assertListEqual(arg_names[: len(expected_arg_names)], expected_arg_names) def test_training(self): if not self.model_tester.is_training: return for model_class in self.all_model_classes[:-1]: config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() config.return_dict = True model = model_class(config) model.to(torch_device) model.train() inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True) # hardcode labels to be the same as input_ids inputs["labels"] = inputs["input_ids"] loss = model(**inputs).loss loss.backward() def test_training_gradient_checkpointing(self): if not self.model_tester.is_training: return for model_class in self.all_model_classes[:-1]: config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() config.use_cache = False config.return_dict = True model = model_class(config) model.to(torch_device) model.gradient_checkpointing_enable() model.train() inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True) # hardcode labels to be the same as input_ids inputs["labels"] = inputs["input_ids"] loss = model(**inputs).loss loss.backward() # override as the `logit_scale` parameter initilization is different for Pix2Struct def test_initialization(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() configs_no_init = _config_zero_init(config) for model_class in self.all_model_classes: model = model_class(config=configs_no_init) for name, param in model.named_parameters(): if param.requires_grad: # check if `logit_scale` is initilized as per the original implementation if name == "logit_scale": self.assertAlmostEqual( param.data.item(), np.log(1 / 0.07), delta=1e-3, msg=f"Parameter {name} of model {model_class} seems not properly initialized", ) else: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item(), [0.0, 1.0], msg=f"Parameter {name} of model {model_class} seems not properly initialized", ) # overwrite because `vocab_size` is not an attribute of `Pix2StructConfig` but rather `Pix2StructTextConfig` def test_resize_tokens_embeddings(self): original_config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() if not self.test_resize_embeddings: return for model_class in self.all_model_classes: config = copy.deepcopy(original_config) model = model_class(config) model.to(torch_device) if self.model_tester.is_training is False: model.eval() model_vocab_size = config.text_config.vocab_size # Retrieve the embeddings and clone theme model_embed = model.resize_token_embeddings(model_vocab_size) cloned_embeddings = model_embed.weight.clone() # Check that resizing the token embeddings with a larger vocab size increases the model's vocab size model_embed = model.resize_token_embeddings(model_vocab_size + 10) self.assertEqual(model.config.text_config.vocab_size, model_vocab_size + 10) # Check that it actually resizes the embeddings matrix self.assertEqual(model_embed.weight.shape[0], cloned_embeddings.shape[0] + 10) # Check that the model can still do a forward pass successfully (every parameter should be resized) model(**self._prepare_for_class(inputs_dict, model_class)) # Check that resizing the token embeddings with a smaller vocab size decreases the model's vocab size model_embed = model.resize_token_embeddings(model_vocab_size - 15) self.assertEqual(model.config.text_config.vocab_size, model_vocab_size - 15) # Check that it actually resizes the embeddings matrix self.assertEqual(model_embed.weight.shape[0], cloned_embeddings.shape[0] - 15) # Check that the model can still do a forward pass successfully (every parameter should be resized) # Decoder input ids should be clamped to the maximum size of the vocabulary if "decoder_input_ids" in inputs_dict: inputs_dict["decoder_input_ids"].clamp_(max=model_vocab_size - 15 - 1) model(**self._prepare_for_class(inputs_dict, model_class)) # Check that adding and removing tokens has not modified the first part of the embedding matrix. models_equal = True for p1, p2 in zip(cloned_embeddings, model_embed.weight): if p1.data.ne(p2.data).sum() > 0: models_equal = False self.assertTrue(models_equal) # overwrite because `vocab_size` is not an attribute of `Pix2StructConfig` but rather `Pix2StructTextConfig` def test_resize_embeddings_untied(self): original_config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() if not self.test_resize_embeddings: return original_config.tie_word_embeddings = False # if model cannot untied embeddings -> leave test if original_config.tie_word_embeddings: return for model_class in self.all_model_classes: config = copy.deepcopy(original_config) model = model_class(config).to(torch_device) # if no output embeddings -> leave test if model.get_output_embeddings() is None: continue # Check that resizing the token embeddings with a larger vocab size increases the model's vocab size model_vocab_size = config.text_config.vocab_size model.resize_token_embeddings(model_vocab_size + 10) self.assertEqual(model.config.text_config.vocab_size, model_vocab_size + 10) output_embeds = model.get_output_embeddings() self.assertEqual(output_embeds.weight.shape[0], model_vocab_size + 10) # Check bias if present if output_embeds.bias is not None: self.assertEqual(output_embeds.bias.shape[0], model_vocab_size + 10) # Check that the model can still do a forward pass successfully (every parameter should be resized) model(**self._prepare_for_class(inputs_dict, model_class)) # Check that resizing the token embeddings with a smaller vocab size decreases the model's vocab size model.resize_token_embeddings(model_vocab_size - 15) self.assertEqual(model.config.text_config.vocab_size, model_vocab_size - 15) # Check that it actually resizes the embeddings matrix output_embeds = model.get_output_embeddings() self.assertEqual(output_embeds.weight.shape[0], model_vocab_size - 15) # Check bias if present if output_embeds.bias is not None: self.assertEqual(output_embeds.bias.shape[0], model_vocab_size - 15) # Check that the model can still do a forward pass successfully (every parameter should be resized) # Decoder input ids should be clamped to the maximum size of the vocabulary if "decoder_input_ids" in inputs_dict: inputs_dict["decoder_input_ids"].clamp_(max=model_vocab_size - 15 - 1) # Check that the model can still do a forward pass successfully (every parameter should be resized) model(**self._prepare_for_class(inputs_dict, model_class)) @unittest.skip(reason="Pix2Struct doesn't use tied weights") def test_tied_model_weights_key_ignore(self): pass def _create_and_check_torchscript(self, config, inputs_dict): if not self.test_torchscript: return configs_no_init = _config_zero_init(config) # To be sure we have no Nan configs_no_init.torchscript = True configs_no_init.return_dict = False for model_class in self.all_model_classes: model = model_class(config=configs_no_init) model.to(torch_device) model.eval() try: input_ids = inputs_dict["input_ids"] flattened_patches = inputs_dict["flattened_patches"] # Pix2Struct needs flattened_patches traced_model = torch.jit.trace(model, (input_ids, flattened_patches)) except RuntimeError: self.fail("Couldn't trace module.") with tempfile.TemporaryDirectory() as tmp_dir_name: pt_file_name = os.path.join(tmp_dir_name, "traced_model.pt") try: torch.jit.save(traced_model, pt_file_name) except Exception: self.fail("Couldn't save module.") try: loaded_model = torch.jit.load(pt_file_name) except Exception: self.fail("Couldn't load module.") model.to(torch_device) model.eval() loaded_model.to(torch_device) loaded_model.eval() model_state_dict = model.state_dict() loaded_model_state_dict = loaded_model.state_dict() non_persistent_buffers = {} for key in loaded_model_state_dict.keys(): if key not in model_state_dict.keys(): non_persistent_buffers[key] = loaded_model_state_dict[key] loaded_model_state_dict = { key: value for key, value in loaded_model_state_dict.items() if key not in non_persistent_buffers } self.assertEqual(set(model_state_dict.keys()), set(loaded_model_state_dict.keys())) model_buffers = list(model.buffers()) for non_persistent_buffer in non_persistent_buffers.values(): found_buffer = False for i, model_buffer in enumerate(model_buffers): if torch.equal(non_persistent_buffer, model_buffer): found_buffer = True break self.assertTrue(found_buffer) model_buffers.pop(i) models_equal = True for layer_name, p1 in model_state_dict.items(): p2 = loaded_model_state_dict[layer_name] if p1.data.ne(p2.data).sum() > 0: models_equal = False self.assertTrue(models_equal) def test_load_vision_text_config(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() # Save Pix2StructConfig and check if we can load Pix2StructVisionConfig from it with tempfile.TemporaryDirectory() as tmp_dir_name: config.save_pretrained(tmp_dir_name) vision_config = Pix2StructVisionConfig.from_pretrained(tmp_dir_name) self.assertDictEqual(config.vision_config.to_dict(), vision_config.to_dict()) # Save Pix2StructConfig and check if we can load Pix2StructTextConfig from it with tempfile.TemporaryDirectory() as tmp_dir_name: config.save_pretrained(tmp_dir_name) text_config = Pix2StructTextConfig.from_pretrained(tmp_dir_name) self.assertDictEqual(config.text_config.to_dict(), text_config.to_dict()) # We will verify our results on an image of a stop sign def prepare_img(): url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/australia.jpg" im = Image.open(requests.get(url, stream=True).raw) return im @require_vision @require_torch @slow class Pix2StructIntegrationTest(unittest.TestCase): def test_inference_image_captioning(self): model = Pix2StructForConditionalGeneration.from_pretrained("google/pix2struct-textcaps-base").to(torch_device) processor = Pix2StructProcessor.from_pretrained("google/pix2struct-textcaps-base") image = prepare_img() # image only inputs = processor(images=image, return_tensors="pt").to(torch_device) predictions = model.generate(**inputs) self.assertEqual( processor.decode(predictions[0], skip_special_tokens=True), "A stop sign is on a street corner." ) def test_batched_inference_image_captioning(self): model = Pix2StructForConditionalGeneration.from_pretrained("google/pix2struct-textcaps-base").to(torch_device) processor = Pix2StructProcessor.from_pretrained("google/pix2struct-textcaps-base") image_1 = prepare_img() second_url = ( "https://www.connollycove.com/wp-content/uploads/2019/06/temple-bar-dublin-world-famous-irish-pub.jpg" ) image_2 = Image.open(requests.get(second_url, stream=True).raw) # image only inputs = processor(images=[image_1, image_2], return_tensors="pt").to(torch_device) predictions = model.generate(**inputs) self.assertEqual( processor.decode(predictions[0], skip_special_tokens=True), "A stop sign is on a street corner." ) self.assertEqual( processor.decode(predictions[1], skip_special_tokens=True), "A row of books including The Temple Bar and Guiness.", ) def test_batched_inference_image_captioning_conditioned(self): model = Pix2StructForConditionalGeneration.from_pretrained("google/pix2struct-textcaps-base").to(torch_device) processor = Pix2StructProcessor.from_pretrained("google/pix2struct-textcaps-base") image_1 = prepare_img() second_url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/temple-bar-dublin-world-famous-irish-pub.jpg" image_2 = Image.open(requests.get(second_url, stream=True).raw) texts = ["A picture of", "An photography of"] # image only inputs = processor(images=[image_1, image_2], text=texts, return_tensors="pt", add_special_tokens=False).to( torch_device ) predictions = model.generate(**inputs) self.assertEqual( processor.decode(predictions[0], skip_special_tokens=True), "A picture of a stop sign with a red stop sign", ) self.assertEqual( processor.decode(predictions[1], skip_special_tokens=True), "An photography of the Temple Bar and other places in the city.", ) def test_vqa_model(self): model_id = "google/pix2struct-ai2d-base" image_url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/ai2d-demo.jpg" image = Image.open(requests.get(image_url, stream=True).raw) model = Pix2StructForConditionalGeneration.from_pretrained(model_id, torch_dtype=torch.bfloat16).to( torch_device ) processor = Pix2StructProcessor.from_pretrained(model_id) # image only text = "What does the label 15 represent? (1) lava (2) core (3) tunnel (4) ash cloud" inputs = processor(images=image, return_tensors="pt", text=text).to(torch_device, torch.bfloat16) predictions = model.generate(**inputs) self.assertEqual(processor.decode(predictions[0], skip_special_tokens=True), "ash cloud") def test_vqa_model_batched(self): model_id = "google/pix2struct-ai2d-base" image_urls = [ "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/ai2d-demo.jpg", "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/ai2d-demo-2.png", ] images = [Image.open(requests.get(image_url, stream=True).raw) for image_url in image_urls] texts = [ "What does the label 15 represent? (1) lava (2) core (3) tunnel (4) ash cloud", "What is the producer in the diagram? (1) Phytoplankton (2) Zooplankton (3) Large fish (4) Small fish", ] model = Pix2StructForConditionalGeneration.from_pretrained(model_id, torch_dtype=torch.bfloat16).to( torch_device ) processor = Pix2StructProcessor.from_pretrained(model_id) inputs = processor(images=images, return_tensors="pt", text=texts).to(torch_device, torch.bfloat16) predictions = model.generate(**inputs) self.assertEqual(processor.decode(predictions[0], skip_special_tokens=True), "ash cloud") self.assertEqual(processor.decode(predictions[1], skip_special_tokens=True), "Phytoplankton")
transformers/tests/models/pix2struct/test_modeling_pix2struct.py/0
{ "file_path": "transformers/tests/models/pix2struct/test_modeling_pix2struct.py", "repo_id": "transformers", "token_count": 15362 }
165
# coding=utf-8 # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import tempfile import unittest from transformers import RoFormerTokenizer, RoFormerTokenizerFast from transformers.testing_utils import require_rjieba, require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_rjieba @require_tokenizers class RoFormerTokenizationTest(TokenizerTesterMixin, unittest.TestCase): tokenizer_class = RoFormerTokenizer rust_tokenizer_class = RoFormerTokenizerFast space_between_special_tokens = True test_rust_tokenizer = True def setUp(self): super().setUp() def get_tokenizer(self, **kwargs): return self.tokenizer_class.from_pretrained("junnyu/roformer_chinese_base", **kwargs) def get_rust_tokenizer(self, **kwargs): return self.rust_tokenizer_class.from_pretrained("junnyu/roformer_chinese_base", **kwargs) def get_chinese_input_output_texts(self): input_text = "永和服装饰品有限公司,今天天气非常好" output_text = "永和 服装 饰品 有限公司 , 今 天 天 气 非常 好" return input_text, output_text def test_tokenizer(self): tokenizer = self.get_tokenizer() input_text, output_text = self.get_chinese_input_output_texts() tokens = tokenizer.tokenize(input_text) self.assertListEqual(tokens, output_text.split()) input_tokens = tokens + [tokenizer.unk_token] exp_tokens = [22943, 21332, 34431, 45904, 117, 306, 1231, 1231, 2653, 33994, 1266, 100] self.assertListEqual(tokenizer.convert_tokens_to_ids(input_tokens), exp_tokens) def test_rust_tokenizer(self): tokenizer = self.get_rust_tokenizer() input_text, output_text = self.get_chinese_input_output_texts() tokens = tokenizer.tokenize(input_text) self.assertListEqual(tokens, output_text.split()) input_tokens = tokens + [tokenizer.unk_token] exp_tokens = [22943, 21332, 34431, 45904, 117, 306, 1231, 1231, 2653, 33994, 1266, 100] self.assertListEqual(tokenizer.convert_tokens_to_ids(input_tokens), exp_tokens) # can't train new_tokenizer via Tokenizers lib def test_training_new_tokenizer(self): pass # can't train new_tokenizer via Tokenizers lib def test_training_new_tokenizer_with_special_tokens_change(self): pass def test_save_slow_from_fast_and_reload_fast(self): for cls in [RoFormerTokenizer, RoFormerTokenizerFast]: original = cls.from_pretrained("alchemab/antiberta2") self.assertEqual(original.encode("生活的真谛是"), [1, 4, 4, 4, 4, 4, 4, 2]) with tempfile.TemporaryDirectory() as tmp_dir: original.save_pretrained(tmp_dir) new = cls.from_pretrained(tmp_dir) self.assertEqual(new.encode("生活的真谛是"), [1, 4, 4, 4, 4, 4, 4, 2])
transformers/tests/models/roformer/test_tokenization_roformer.py/0
{ "file_path": "transformers/tests/models/roformer/test_tokenization_roformer.py", "repo_id": "transformers", "token_count": 1393 }
166
# coding=utf-8 # Copyright 2021 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Testing suite for the PyTorch SegFormer model. """ import unittest from transformers import SegformerConfig, is_torch_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_MAPPING, SegformerForImageClassification, SegformerForSemanticSegmentation, SegformerModel, ) from transformers.models.segformer.modeling_segformer import SEGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import SegformerImageProcessor class SegformerConfigTester(ConfigTester): def create_and_test_config_common_properties(self): config = self.config_class(**self.inputs_dict) self.parent.assertTrue(hasattr(config, "hidden_sizes")) self.parent.assertTrue(hasattr(config, "num_attention_heads")) self.parent.assertTrue(hasattr(config, "num_encoder_blocks")) class SegformerModelTester: def __init__( self, parent, batch_size=13, image_size=64, num_channels=3, num_encoder_blocks=4, depths=[1, 1, 1, 1], sr_ratios=[8, 4, 2, 1], hidden_sizes=[8, 8, 16, 16], downsampling_rates=[1, 4, 8, 16], num_attention_heads=[1, 1, 2, 2], is_training=True, use_labels=True, hidden_act="gelu", hidden_dropout_prob=0.1, attention_probs_dropout_prob=0.1, initializer_range=0.02, num_labels=3, scope=None, ): self.parent = parent self.batch_size = batch_size self.image_size = image_size self.num_channels = num_channels self.num_encoder_blocks = num_encoder_blocks self.sr_ratios = sr_ratios self.depths = depths self.hidden_sizes = hidden_sizes self.downsampling_rates = downsampling_rates self.num_attention_heads = num_attention_heads self.is_training = is_training self.use_labels = use_labels self.hidden_act = hidden_act self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.initializer_range = initializer_range self.num_labels = num_labels self.scope = scope def prepare_config_and_inputs(self): pixel_values = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) labels = None if self.use_labels: labels = ids_tensor([self.batch_size, self.image_size, self.image_size], self.num_labels) config = self.get_config() return config, pixel_values, labels def get_config(self): return SegformerConfig( image_size=self.image_size, num_channels=self.num_channels, num_encoder_blocks=self.num_encoder_blocks, depths=self.depths, hidden_sizes=self.hidden_sizes, num_attention_heads=self.num_attention_heads, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, initializer_range=self.initializer_range, ) def create_and_check_model(self, config, pixel_values, labels): model = SegformerModel(config=config) model.to(torch_device) model.eval() result = model(pixel_values) expected_height = expected_width = self.image_size // (self.downsampling_rates[-1] * 2) self.parent.assertEqual( result.last_hidden_state.shape, (self.batch_size, self.hidden_sizes[-1], expected_height, expected_width) ) def create_and_check_for_image_segmentation(self, config, pixel_values, labels): config.num_labels = self.num_labels model = SegformerForSemanticSegmentation(config) model.to(torch_device) model.eval() result = model(pixel_values) self.parent.assertEqual( result.logits.shape, (self.batch_size, self.num_labels, self.image_size // 4, self.image_size // 4) ) result = model(pixel_values, labels=labels) self.parent.assertEqual( result.logits.shape, (self.batch_size, self.num_labels, self.image_size // 4, self.image_size // 4) ) self.parent.assertGreater(result.loss, 0.0) def create_and_check_for_binary_image_segmentation(self, config, pixel_values, labels): config.num_labels = 1 model = SegformerForSemanticSegmentation(config=config) model.to(torch_device) model.eval() labels = torch.randint(0, 1, (self.batch_size, self.image_size, self.image_size)).to(torch_device) result = model(pixel_values, labels=labels) self.parent.assertGreater(result.loss, 0.0) def prepare_config_and_inputs_for_common(self): config_and_inputs = self.prepare_config_and_inputs() config, pixel_values, labels = config_and_inputs inputs_dict = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class SegformerModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase): all_model_classes = ( ( SegformerModel, SegformerForSemanticSegmentation, SegformerForImageClassification, ) if is_torch_available() else () ) pipeline_model_mapping = ( { "image-feature-extraction": SegformerModel, "image-classification": SegformerForImageClassification, "image-segmentation": SegformerForSemanticSegmentation, } if is_torch_available() else {} ) fx_compatible = True test_head_masking = False test_pruning = False test_resize_embeddings = False def setUp(self): self.model_tester = SegformerModelTester(self) self.config_tester = SegformerConfigTester(self, config_class=SegformerConfig) def test_config(self): self.config_tester.run_common_tests() def test_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*config_and_inputs) def test_for_binary_image_segmentation(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_binary_image_segmentation(*config_and_inputs) def test_for_image_segmentation(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_segmentation(*config_and_inputs) @unittest.skip("SegFormer does not use inputs_embeds") def test_inputs_embeds(self): pass @unittest.skip("SegFormer does not have get_input_embeddings method and get_output_embeddings methods") def test_model_common_attributes(self): pass def test_attention_outputs(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() config.return_dict = True for model_class in self.all_model_classes: inputs_dict["output_attentions"] = True inputs_dict["output_hidden_states"] = False config.return_dict = True model = model_class(config) model.to(torch_device) model.eval() with torch.no_grad(): outputs = model(**self._prepare_for_class(inputs_dict, model_class)) attentions = outputs.attentions expected_num_attentions = sum(self.model_tester.depths) self.assertEqual(len(attentions), expected_num_attentions) # check that output_attentions also work using config del inputs_dict["output_attentions"] config.output_attentions = True model = model_class(config) model.to(torch_device) model.eval() with torch.no_grad(): outputs = model(**self._prepare_for_class(inputs_dict, model_class)) attentions = outputs.attentions self.assertEqual(len(attentions), expected_num_attentions) # verify the first attentions (first block, first layer) expected_seq_len = (self.model_tester.image_size // 4) ** 2 expected_reduced_seq_len = (self.model_tester.image_size // (4 * self.model_tester.sr_ratios[0])) ** 2 self.assertListEqual( list(attentions[0].shape[-3:]), [self.model_tester.num_attention_heads[0], expected_seq_len, expected_reduced_seq_len], ) # verify the last attentions (last block, last layer) expected_seq_len = (self.model_tester.image_size // 32) ** 2 expected_reduced_seq_len = (self.model_tester.image_size // (32 * self.model_tester.sr_ratios[-1])) ** 2 self.assertListEqual( list(attentions[-1].shape[-3:]), [self.model_tester.num_attention_heads[-1], expected_seq_len, expected_reduced_seq_len], ) out_len = len(outputs) # Check attention is always last and order is fine inputs_dict["output_attentions"] = True inputs_dict["output_hidden_states"] = True model = model_class(config) model.to(torch_device) model.eval() with torch.no_grad(): outputs = model(**self._prepare_for_class(inputs_dict, model_class)) self.assertEqual(out_len + 1, len(outputs)) self_attentions = outputs.attentions self.assertEqual(len(self_attentions), expected_num_attentions) # verify the first attentions (first block, first layer) expected_seq_len = (self.model_tester.image_size // 4) ** 2 expected_reduced_seq_len = (self.model_tester.image_size // (4 * self.model_tester.sr_ratios[0])) ** 2 self.assertListEqual( list(self_attentions[0].shape[-3:]), [self.model_tester.num_attention_heads[0], expected_seq_len, expected_reduced_seq_len], ) def test_hidden_states_output(self): def check_hidden_states_output(inputs_dict, config, model_class): model = model_class(config) model.to(torch_device) model.eval() with torch.no_grad(): outputs = model(**self._prepare_for_class(inputs_dict, model_class)) hidden_states = outputs.hidden_states expected_num_layers = self.model_tester.num_encoder_blocks self.assertEqual(len(hidden_states), expected_num_layers) # verify the first hidden states (first block) self.assertListEqual( list(hidden_states[0].shape[-3:]), [ self.model_tester.hidden_sizes[0], self.model_tester.image_size // 4, self.model_tester.image_size // 4, ], ) config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: inputs_dict["output_hidden_states"] = True check_hidden_states_output(inputs_dict, config, model_class) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] config.output_hidden_states = True check_hidden_states_output(inputs_dict, config, model_class) def test_training(self): if not self.model_tester.is_training: return config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() config.return_dict = True for model_class in self.all_model_classes: if model_class in get_values(MODEL_MAPPING): continue model = model_class(config) model.to(torch_device) model.train() inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True) loss = model(**inputs).loss loss.backward() @slow def test_model_from_pretrained(self): for model_name in SEGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: model = SegformerModel.from_pretrained(model_name) self.assertIsNotNone(model) # We will verify our results on an image of cute cats def prepare_img(): image = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png") return image @require_torch class SegformerModelIntegrationTest(unittest.TestCase): @slow def test_inference_image_segmentation_ade(self): # only resize + normalize image_processor = SegformerImageProcessor( image_scale=(512, 512), keep_ratio=False, align=False, do_random_crop=False ) model = SegformerForSemanticSegmentation.from_pretrained("nvidia/segformer-b0-finetuned-ade-512-512").to( torch_device ) image = prepare_img() encoded_inputs = image_processor(images=image, return_tensors="pt") pixel_values = encoded_inputs.pixel_values.to(torch_device) with torch.no_grad(): outputs = model(pixel_values) expected_shape = torch.Size((1, model.config.num_labels, 128, 128)) self.assertEqual(outputs.logits.shape, expected_shape) expected_slice = torch.tensor( [ [[-4.6310, -5.5232, -6.2356], [-5.1921, -6.1444, -6.5996], [-5.4424, -6.2790, -6.7574]], [[-12.1391, -13.3122, -13.9554], [-12.8732, -13.9352, -14.3563], [-12.9438, -13.8226, -14.2513]], [[-12.5134, -13.4686, -14.4915], [-12.8669, -14.4343, -14.7758], [-13.2523, -14.5819, -15.0694]], ] ).to(torch_device) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3, :3], expected_slice, atol=1e-4)) @slow def test_inference_image_segmentation_city(self): # only resize + normalize image_processor = SegformerImageProcessor( image_scale=(512, 512), keep_ratio=False, align=False, do_random_crop=False ) model = SegformerForSemanticSegmentation.from_pretrained( "nvidia/segformer-b1-finetuned-cityscapes-1024-1024" ).to(torch_device) image = prepare_img() encoded_inputs = image_processor(images=image, return_tensors="pt") pixel_values = encoded_inputs.pixel_values.to(torch_device) with torch.no_grad(): outputs = model(pixel_values) expected_shape = torch.Size((1, model.config.num_labels, 128, 128)) self.assertEqual(outputs.logits.shape, expected_shape) expected_slice = torch.tensor( [ [[-13.5748, -13.9111, -12.6500], [-14.3500, -15.3683, -14.2328], [-14.7532, -16.0424, -15.6087]], [[-17.1651, -15.8725, -12.9653], [-17.2580, -17.3718, -14.8223], [-16.6058, -16.8783, -16.7452]], [[-3.6456, -3.0209, -1.4203], [-3.0797, -3.1959, -2.0000], [-1.8757, -1.9217, -1.6997]], ] ).to(torch_device) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3, :3], expected_slice, atol=1e-1)) @slow def test_post_processing_semantic_segmentation(self): # only resize + normalize image_processor = SegformerImageProcessor( image_scale=(512, 512), keep_ratio=False, align=False, do_random_crop=False ) model = SegformerForSemanticSegmentation.from_pretrained("nvidia/segformer-b0-finetuned-ade-512-512").to( torch_device ) image = prepare_img() encoded_inputs = image_processor(images=image, return_tensors="pt") pixel_values = encoded_inputs.pixel_values.to(torch_device) with torch.no_grad(): outputs = model(pixel_values) outputs.logits = outputs.logits.detach().cpu() segmentation = image_processor.post_process_semantic_segmentation(outputs=outputs, target_sizes=[(500, 300)]) expected_shape = torch.Size((500, 300)) self.assertEqual(segmentation[0].shape, expected_shape) segmentation = image_processor.post_process_semantic_segmentation(outputs=outputs) expected_shape = torch.Size((128, 128)) self.assertEqual(segmentation[0].shape, expected_shape)
transformers/tests/models/segformer/test_modeling_segformer.py/0
{ "file_path": "transformers/tests/models/segformer/test_modeling_segformer.py", "repo_id": "transformers", "token_count": 7796 }
167
# coding=utf-8 # Copyright 2021 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Testing suite for the TensorFlow Speech2Text model. """ from __future__ import annotations import inspect import unittest from transformers import Speech2TextConfig from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow from transformers.utils import cached_property, is_tf_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import Speech2TextProcessor, TFSpeech2TextForConditionalGeneration, TFSpeech2TextModel def prepare_speech_to_text_inputs_dict( config, input_features, decoder_input_ids, attention_mask=None, decoder_attention_mask=None, head_mask=None, decoder_head_mask=None, cross_attn_head_mask=None, ): if attention_mask is None: attention_mask = tf.math.not_equal(input_features, 0) if decoder_attention_mask is None: decoder_attention_mask = tf.math.not_equal(decoder_input_ids, config.pad_token_id) if head_mask is None: head_mask = tf.ones((config.encoder_layers, config.encoder_attention_heads)) if decoder_head_mask is None: decoder_head_mask = tf.ones((config.decoder_layers, config.decoder_attention_heads)) if cross_attn_head_mask is None: cross_attn_head_mask = tf.ones((config.decoder_layers, config.decoder_attention_heads)) return { "input_features": input_features, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class TFSpeech2TextModelTester: def __init__( self, parent, batch_size=13, seq_length=7, is_training=True, use_labels=False, vocab_size=99, hidden_size=16, num_hidden_layers=2, num_attention_heads=4, intermediate_size=4, num_conv_layers=2, conv_kernel_sizes=(5, 5), conv_channels=32, input_feat_per_channel=24, input_channels=1, hidden_act="relu", hidden_dropout_prob=0.1, attention_probs_dropout_prob=0.1, max_position_embeddings=20, max_source_positions=20, max_target_positions=20, eos_token_id=2, pad_token_id=1, bos_token_id=0, scale_embedding=False, ): self.parent = parent self.batch_size = batch_size self.seq_length = seq_length self.is_training = is_training self.use_labels = use_labels self.vocab_size = vocab_size self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.intermediate_size = intermediate_size self.num_conv_layers = num_conv_layers self.conv_kernel_sizes = conv_kernel_sizes self.conv_channels = conv_channels self.input_feat_per_channel = input_feat_per_channel self.input_channels = input_channels self.hidden_act = hidden_act self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.max_position_embeddings = max_position_embeddings self.max_source_positions = max_source_positions self.max_target_positions = max_target_positions self.eos_token_id = eos_token_id self.pad_token_id = pad_token_id self.bos_token_id = bos_token_id self.scale_embedding = scale_embedding def prepare_config_and_inputs(self): input_features = floats_tensor( [self.batch_size, self.seq_length, self.input_feat_per_channel], self.vocab_size ) attention_mask = tf.ones([self.batch_size, self.seq_length], dtype=tf.int64) decoder_input_ids = tf.math.maximum(ids_tensor([self.batch_size, self.seq_length], self.vocab_size), 2) config = self.get_config() inputs_dict = prepare_speech_to_text_inputs_dict( config, input_features=input_features, decoder_input_ids=decoder_input_ids, attention_mask=attention_mask, ) return config, inputs_dict def get_config(self): return Speech2TextConfig( vocab_size=self.vocab_size, d_model=self.hidden_size, encoder_layers=self.num_hidden_layers, decoder_layers=self.num_hidden_layers, encoder_attention_heads=self.num_attention_heads, decoder_attention_heads=self.num_attention_heads, encoder_ffn_dim=self.intermediate_size, decoder_ffn_dim=self.intermediate_size, num_conv_layers=self.num_conv_layers, conv_kernel_sizes=self.conv_kernel_sizes, conv_channels=self.conv_channels, input_feat_per_channel=self.input_feat_per_channel, input_channels=self.input_channels, dropout=self.hidden_dropout_prob, attention_dropout=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, max_source_positions=self.max_source_positions, max_target_positions=self.max_target_positions, eos_token_id=self.eos_token_id, bos_token_id=self.bos_token_id, pad_token_id=self.pad_token_id, scale_embedding=self.scale_embedding, ) def prepare_config_and_inputs_for_common(self): config, inputs_dict = self.prepare_config_and_inputs() return config, inputs_dict def get_subsampled_output_lengths(self, input_lengths): """ Computes the output length of the convolutional layers """ for _ in range(self.num_conv_layers): input_lengths = (input_lengths - 1) // 2 + 1 return input_lengths def create_and_check_decoder_model_past_large_inputs(self, config, inputs_dict): model = TFSpeech2TextModel(config=config).get_decoder() input_ids = inputs_dict["decoder_input_ids"] attention_mask = inputs_dict["decoder_attention_mask"] # first forward pass outputs = model(input_ids, attention_mask=attention_mask, use_cache=True) _, past_key_values = outputs.to_tuple() # create hypothetical multiple next token and extent to next_input_ids next_tokens = tf.math.maximum(ids_tensor((self.batch_size, 3), config.vocab_size), 2) next_attn_mask = ids_tensor((self.batch_size, 3), 2, dtype=tf.int64) # append to next input_ids and next_input_ids = tf.concat([input_ids, next_tokens], axis=-1) next_attention_mask = tf.concat([attention_mask, next_attn_mask], axis=-1) output_from_no_past = model(next_input_ids, attention_mask=next_attention_mask)["last_hidden_state"] output_from_past = model(next_tokens, attention_mask=next_attention_mask, past_key_values=past_key_values)[ "last_hidden_state" ] # select random slice random_slice_idx = int(ids_tensor((1,), output_from_past.shape[-1])) output_from_no_past_slice = output_from_no_past[:, -3:, random_slice_idx] output_from_past_slice = output_from_past[:, :, random_slice_idx] self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1]) # test that outputs are equal for slice tf.debugging.assert_near(output_from_past_slice, output_from_no_past_slice, atol=1e-2) @require_tf class TFSpeech2TextModelTest(TFModelTesterMixin, PipelineTesterMixin, unittest.TestCase): all_model_classes = (TFSpeech2TextModel, TFSpeech2TextForConditionalGeneration) if is_tf_available() else () all_generative_model_classes = (TFSpeech2TextForConditionalGeneration,) if is_tf_available() else () pipeline_model_mapping = {"feature-extraction": TFSpeech2TextModel} if is_tf_available() else {} is_encoder_decoder = True test_pruning = False test_missing_keys = False test_onnx = False input_name = "input_ids" def setUp(self): self.model_tester = TFSpeech2TextModelTester(self) self.config_tester = ConfigTester(self, config_class=Speech2TextConfig) self.maxDiff = 3000 def test_config(self): self.config_tester.run_common_tests() def test_decoder_model_past_with_large_inputs(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past_large_inputs(*config_and_inputs) # not implemented currently def test_inputs_embeds(self): pass # training is not supported yet def test_training(self): pass def test_training_gradient_checkpointing(self): pass @unittest.skip( reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124" ) def test_training_gradient_checkpointing_use_reentrant(self): pass @unittest.skip( reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124" ) def test_training_gradient_checkpointing_use_reentrant_false(self): pass def test_generate_fp16(self): pass def test_hidden_states_output(self): def check_hidden_states_output(inputs_dict, config, model_class): model = model_class(config) outputs = model(**self._prepare_for_class(inputs_dict, model_class)) hidden_states = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states expected_num_layers = getattr( self.model_tester, "expected_num_hidden_layers", self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(hidden_states), expected_num_layers) if hasattr(self.model_tester, "encoder_seq_length"): seq_length = self.model_tester.encoder_seq_length else: seq_length = self.model_tester.seq_length subsampled_seq_length = model._get_feat_extract_output_lengths(seq_length) self.assertListEqual( list(hidden_states[0].shape[-2:]), [subsampled_seq_length, self.model_tester.hidden_size], ) if config.is_encoder_decoder: hidden_states = outputs.decoder_hidden_states self.assertIsInstance(hidden_states, (list, tuple)) self.assertEqual(len(hidden_states), expected_num_layers) seq_len = getattr(self.model_tester, "seq_length", None) decoder_seq_length = getattr(self.model_tester, "decoder_seq_length", seq_len) self.assertListEqual( list(hidden_states[0].shape[-2:]), [decoder_seq_length, self.model_tester.hidden_size], ) config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: inputs_dict["output_hidden_states"] = True check_hidden_states_output(inputs_dict, config, model_class) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] config.output_hidden_states = True check_hidden_states_output(inputs_dict, config, model_class) def test_attention_outputs(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() config.return_dict = True seq_len = getattr(self.model_tester, "seq_length", None) decoder_seq_length = getattr(self.model_tester, "decoder_seq_length", seq_len) encoder_seq_length = getattr(self.model_tester, "encoder_seq_length", seq_len) decoder_key_length = getattr(self.model_tester, "decoder_key_length", decoder_seq_length) encoder_key_length = getattr(self.model_tester, "key_length", encoder_seq_length) for model_class in self.all_model_classes: inputs_dict["output_attentions"] = True inputs_dict["output_hidden_states"] = False config.return_dict = True model = model_class(config) subsampled_encoder_seq_length = model._get_feat_extract_output_lengths(encoder_seq_length) subsampled_encoder_key_length = model._get_feat_extract_output_lengths(encoder_key_length) outputs = model(**self._prepare_for_class(inputs_dict, model_class)) attentions = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(attentions), self.model_tester.num_hidden_layers) # check that output_attentions also work using config del inputs_dict["output_attentions"] config.output_attentions = True model = model_class(config) outputs = model(**self._prepare_for_class(inputs_dict, model_class)) attentions = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(attentions), self.model_tester.num_hidden_layers) self.assertListEqual( list(attentions[0].shape[-3:]), [self.model_tester.num_attention_heads, subsampled_encoder_seq_length, subsampled_encoder_key_length], ) out_len = len(outputs) correct_outlen = 5 # loss is at first position if "labels" in inputs_dict: correct_outlen += 1 # loss is added to beginning if "past_key_values" in outputs: correct_outlen += 1 # past_key_values have been returned self.assertEqual(out_len, correct_outlen) # decoder attentions decoder_attentions = outputs.decoder_attentions self.assertIsInstance(decoder_attentions, (list, tuple)) self.assertEqual(len(decoder_attentions), self.model_tester.num_hidden_layers) self.assertListEqual( list(decoder_attentions[0].shape[-3:]), [self.model_tester.num_attention_heads, decoder_seq_length, decoder_key_length], ) # cross attentions cross_attentions = outputs.cross_attentions self.assertIsInstance(cross_attentions, (list, tuple)) self.assertEqual(len(cross_attentions), self.model_tester.num_hidden_layers) self.assertListEqual( list(cross_attentions[0].shape[-3:]), [ self.model_tester.num_attention_heads, decoder_seq_length, subsampled_encoder_key_length, ], ) # Check attention is always last and order is fine inputs_dict["output_attentions"] = True inputs_dict["output_hidden_states"] = True model = model_class(config) outputs = model(**self._prepare_for_class(inputs_dict, model_class)) added_hidden_states = 2 self.assertEqual(out_len + added_hidden_states, len(outputs)) self_attentions = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(self_attentions), self.model_tester.num_hidden_layers) self.assertListEqual( list(self_attentions[0].shape[-3:]), [self.model_tester.num_attention_heads, subsampled_encoder_seq_length, subsampled_encoder_key_length], ) def test_resize_token_embeddings(self): # Overwritten method from parent; see `test_resize_embeddings_untied` pass def test_resize_tokens_embeddings(self): # see `test_resize_embeddings_untied` pass def test_resize_embeddings_untied(self): # TODO: copy test from PT. Not working at the moment because the test relies on `model.resize_token_embeddings`, # whose TF implementation assumes the use of `TFWrappedEmbeddings`. But with a `TFWrappedEmbeddings` we can't # load the weights from PT (also, it induces TF1 behavior, so we might want to rework how # `model.resize_token_embeddings` operates). pass def test_generate_without_input_ids(self): pass @staticmethod def _get_encoder_outputs( model, input_ids, attention_mask, output_attentions=None, output_hidden_states=None, num_interleave=1 ): encoder = model.get_encoder() encoder_outputs = encoder( input_ids, attention_mask=attention_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, ) encoder_outputs["last_hidden_state"] = tf.repeat(encoder_outputs.last_hidden_state, num_interleave, axis=0) input_ids = input_ids[:, :, 0] input_ids = tf.zeros_like(input_ids[:, :1], dtype=tf.int64) + model._get_decoder_start_token_id() attention_mask = None return encoder_outputs, input_ids, attention_mask def _check_outputs(self, output, input_ids, config, use_cache=False, num_return_sequences=1): batch_size, seq_length = input_ids.shape[:2] subsampled_seq_length = self.model_tester.get_subsampled_output_lengths(seq_length) num_sequences_in_output = batch_size * num_return_sequences gen_len = ( output.sequences.shape[-1] - 1 if config.is_encoder_decoder else output.sequences.shape[-1] - seq_length ) # scores self._check_scores(num_sequences_in_output, output.scores, length=gen_len, config=config) # Attentions # encoder self._check_encoder_attention_for_generate( output.encoder_attentions, batch_size, config, subsampled_seq_length ) # decoder self._check_attentions_for_generate( num_sequences_in_output, output.decoder_attentions, min_length=1, max_length=output.sequences.shape[-1], config=config, use_cache=use_cache, ) # Hidden States # encoder self._check_encoder_hidden_states_for_generate( output.encoder_hidden_states, batch_size, config, subsampled_seq_length ) # decoder self._check_hidden_states_for_generate( num_sequences_in_output, output.decoder_hidden_states, min_length=1, max_length=output.sequences.shape[-1], config=config, use_cache=use_cache, ) # overwritten from parent due to the inability to work when non-text inputs are not passed AND because the input is # `input_features` def test_lm_head_model_random_no_beam_search_generate(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() input_features = inputs_dict.get("input_features", None) # iterate over all generative models for model_class in self.all_generative_model_classes: model = model_class(config) if config.bos_token_id is None: # if bos token id is not defined model needs input_features with self.assertRaises(AssertionError): model.generate(do_sample=True, max_length=5) # num_return_sequences = 1 self._check_generated_ids(model.generate(input_features, do_sample=True)) with self.assertRaises(ValueError): # generating multiple sequences when no beam search generation # is not allowed as it would always generate the same sequences model.generate(input_features, do_sample=False, num_return_sequences=2) # num_return_sequences > 1, sample self._check_generated_ids(model.generate(input_features, do_sample=True, num_return_sequences=2)) # check bad words tokens language generation # create list of 1-seq bad token and list of 2-seq of bad tokens bad_words_ids = [self._generate_random_bad_tokens(1, model), self._generate_random_bad_tokens(2, model)] output_tokens = model.generate( input_features, do_sample=True, bad_words_ids=bad_words_ids, num_return_sequences=2 ) # only count generated tokens generated_ids = output_tokens[:, input_features.shape[-1] :] self.assertFalse(self._check_match_tokens(generated_ids.numpy().tolist(), bad_words_ids)) # overwritten from parent due to the inability to work when non-text inputs are not passed AND because the input is # `input_features` def test_lm_head_model_random_beam_search_generate(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() input_features = inputs_dict.get("input_features", None) for model_class in self.all_generative_model_classes: model = model_class(config) if config.bos_token_id is None: # if bos token id is not defined model needs input_ids, num_return_sequences = 1 self._check_generated_ids(model.generate(input_features, do_sample=True, num_beams=2)) with self.assertRaises(ValueError): # generating more sequences than having beams leads is not possible model.generate(input_features, do_sample=False, num_return_sequences=3, num_beams=2) # num_return_sequences > 1, sample self._check_generated_ids( model.generate( input_features, do_sample=True, num_beams=2, num_return_sequences=2, ) ) # num_return_sequences > 1, greedy self._check_generated_ids( model.generate(input_features, do_sample=False, num_beams=2, num_return_sequences=2) ) # check bad words tokens language generation # create list of 1-seq bad token and list of 2-seq of bad tokens bad_words_ids = [self._generate_random_bad_tokens(1, model), self._generate_random_bad_tokens(2, model)] output_tokens = model.generate( input_features, do_sample=False, bad_words_ids=bad_words_ids, num_beams=2, num_return_sequences=2 ) # only count generated tokens generated_ids = output_tokens[:, input_features.shape[-1] :] self.assertFalse(self._check_match_tokens(generated_ids.numpy().tolist(), bad_words_ids)) # overwritten from parent -- the input is `input_features`, not `input_ids` def test_forward_signature(self): config, _ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: model = model_class(config) signature = inspect.signature(model.call) # signature.parameters is an OrderedDict => so arg_names order is deterministic arg_names = [*signature.parameters.keys()] expected_arg_names = [ "input_features", "attention_mask", "decoder_input_ids", "decoder_attention_mask", ] self.assertListEqual(arg_names[: len(expected_arg_names)], expected_arg_names) def test_pt_tf_model_equivalence(self, allow_missing_keys=True): # Allow missing keys since TF doesn't cache the sinusoidal embeddings in an attribute super().test_pt_tf_model_equivalence(allow_missing_keys=allow_missing_keys) @require_tf @require_sentencepiece @require_tokenizers @slow class TFSpeech2TextModelIntegrationTests(unittest.TestCase): @cached_property def default_processor(self): return Speech2TextProcessor.from_pretrained("facebook/s2t-small-librispeech-asr") def _load_datasamples(self, num_samples): from datasets import load_dataset ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation") # automatic decoding with librispeech speech_samples = ds.sort("id").select(range(num_samples))[:num_samples]["audio"] return [x["array"] for x in speech_samples] def test_generation_librispeech(self): model = TFSpeech2TextForConditionalGeneration.from_pretrained("facebook/s2t-small-librispeech-asr") processor = self.default_processor input_speech = self._load_datasamples(1) input_features = processor(input_speech, return_tensors="tf").input_features generated_ids = model.generate(input_features) generated_transcript = processor.batch_decode(generated_ids, skip_special_tokens=True) EXPECTED_TRANSCRIPTIONS = [ "mister quilter is the apostle of the middle classes and we are glad to welcome his gospel" ] self.assertListEqual(generated_transcript, EXPECTED_TRANSCRIPTIONS) def test_generation_librispeech_batched(self): model = TFSpeech2TextForConditionalGeneration.from_pretrained("facebook/s2t-small-librispeech-asr") processor = self.default_processor input_speech = self._load_datasamples(4) inputs = processor(input_speech, return_tensors="tf", padding=True) generated_ids = model.generate(inputs.input_features, attention_mask=inputs.attention_mask) generated_transcripts = processor.batch_decode(generated_ids, skip_special_tokens=True) EXPECTED_TRANSCRIPTIONS = [ "mister quilter is the apostle of the middle classes and we are glad to welcome his gospel", "nor is mister cultar's manner less interesting than his matter", "he tells us that at this festive season of the year with christmas and roast beef looming before us" " similes drawn from eating and its results occur most readily to the mind", "he has grave doubts whether sir frederick leyton's work is really greek after all and can discover in it" " but little of rocky ithaca", ] self.assertListEqual(generated_transcripts, EXPECTED_TRANSCRIPTIONS)
transformers/tests/models/speech_to_text/test_modeling_tf_speech_to_text.py/0
{ "file_path": "transformers/tests/models/speech_to_text/test_modeling_tf_speech_to_text.py", "repo_id": "transformers", "token_count": 11904 }
168
# coding=utf-8 # Copyright 2018 Google T5 Authors and HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import copy import os import pickle import tempfile import unittest from transformers import T5Config, is_torch_available from transformers.models.auto.modeling_auto import MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES from transformers.testing_utils import ( require_accelerate, require_sentencepiece, require_tokenizers, require_torch, slow, torch_device, ) from transformers.utils import cached_property, is_torch_fx_available from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_fx_available(): from transformers.utils.fx import symbolic_trace if is_torch_available(): import torch from transformers import ( AutoTokenizer, ByT5Tokenizer, T5EncoderModel, T5ForConditionalGeneration, T5ForQuestionAnswering, T5ForSequenceClassification, T5ForTokenClassification, T5Model, T5Tokenizer, ) from transformers.models.t5.modeling_t5 import T5_PRETRAINED_MODEL_ARCHIVE_LIST class T5ModelTester: def __init__( self, parent, vocab_size=99, batch_size=13, encoder_seq_length=7, decoder_seq_length=7, # For common tests is_training=True, use_attention_mask=True, use_labels=True, hidden_size=32, num_hidden_layers=2, num_attention_heads=4, d_ff=37, relative_attention_num_buckets=8, dropout_rate=0.1, initializer_factor=0.002, eos_token_id=1, pad_token_id=0, decoder_start_token_id=0, scope=None, decoder_layers=None, ): self.parent = parent self.batch_size = batch_size self.encoder_seq_length = encoder_seq_length self.decoder_seq_length = decoder_seq_length # For common tests self.seq_length = self.decoder_seq_length self.is_training = is_training self.use_attention_mask = use_attention_mask self.use_labels = use_labels self.vocab_size = vocab_size self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.d_ff = d_ff self.relative_attention_num_buckets = relative_attention_num_buckets self.dropout_rate = dropout_rate self.initializer_factor = initializer_factor self.eos_token_id = eos_token_id self.pad_token_id = pad_token_id self.decoder_start_token_id = decoder_start_token_id self.scope = None self.decoder_layers = decoder_layers def get_large_model_config(self): return T5Config.from_pretrained("google-t5/t5-base") def prepare_config_and_inputs(self): input_ids = ids_tensor([self.batch_size, self.encoder_seq_length], self.vocab_size).clamp(2) input_ids[:, -1] = self.eos_token_id # Eos Token decoder_input_ids = ids_tensor([self.batch_size, self.decoder_seq_length], self.vocab_size) attention_mask = None decoder_attention_mask = None if self.use_attention_mask: attention_mask = ids_tensor([self.batch_size, self.encoder_seq_length], vocab_size=2) decoder_attention_mask = ids_tensor([self.batch_size, self.decoder_seq_length], vocab_size=2) lm_labels = None if self.use_labels: lm_labels = ids_tensor([self.batch_size, self.decoder_seq_length], self.vocab_size) config = self.get_config() return ( config, input_ids, decoder_input_ids, attention_mask, decoder_attention_mask, lm_labels, ) def get_pipeline_config(self): return T5Config( vocab_size=166, # t5 forces 100 extra tokens d_model=self.hidden_size, d_ff=self.d_ff, d_kv=self.hidden_size // self.num_attention_heads, num_layers=self.num_hidden_layers, num_decoder_layers=self.decoder_layers, num_heads=self.num_attention_heads, relative_attention_num_buckets=self.relative_attention_num_buckets, dropout_rate=self.dropout_rate, initializer_factor=self.initializer_factor, eos_token_id=self.eos_token_id, bos_token_id=self.pad_token_id, pad_token_id=self.pad_token_id, decoder_start_token_id=self.decoder_start_token_id, ) def get_config(self): return T5Config( vocab_size=self.vocab_size, d_model=self.hidden_size, d_ff=self.d_ff, d_kv=self.hidden_size // self.num_attention_heads, num_layers=self.num_hidden_layers, num_decoder_layers=self.decoder_layers, num_heads=self.num_attention_heads, relative_attention_num_buckets=self.relative_attention_num_buckets, dropout_rate=self.dropout_rate, initializer_factor=self.initializer_factor, eos_token_id=self.eos_token_id, bos_token_id=self.pad_token_id, pad_token_id=self.pad_token_id, decoder_start_token_id=self.decoder_start_token_id, ) def check_prepare_lm_labels_via_shift_left( self, config, input_ids, decoder_input_ids, attention_mask, decoder_attention_mask, lm_labels, ): model = T5Model(config=config) model.to(torch_device) model.eval() # make sure that lm_labels are correctly padded from the right lm_labels.masked_fill_((lm_labels == self.decoder_start_token_id), self.eos_token_id) # add casaul pad token mask triangular_mask = torch.tril(lm_labels.new_ones(lm_labels.shape)).logical_not() lm_labels.masked_fill_(triangular_mask, self.pad_token_id) decoder_input_ids = model._shift_right(lm_labels) for i, (decoder_input_ids_slice, lm_labels_slice) in enumerate(zip(decoder_input_ids, lm_labels)): # first item self.parent.assertEqual(decoder_input_ids_slice[0].item(), self.decoder_start_token_id) if i < decoder_input_ids_slice.shape[-1]: if i < decoder_input_ids.shape[-1] - 1: # items before diagonal self.parent.assertListEqual( decoder_input_ids_slice[1 : i + 1].tolist(), lm_labels_slice[:i].tolist() ) # pad items after diagonal if i < decoder_input_ids.shape[-1] - 2: self.parent.assertListEqual( decoder_input_ids_slice[i + 2 :].tolist(), lm_labels_slice[i + 1 : -1].tolist() ) else: # all items after square self.parent.assertListEqual(decoder_input_ids_slice[1:].tolist(), lm_labels_slice[:-1].tolist()) def create_and_check_model( self, config, input_ids, decoder_input_ids, attention_mask, decoder_attention_mask, lm_labels, ): model = T5Model(config=config) model.to(torch_device) model.eval() result = model( input_ids=input_ids, decoder_input_ids=decoder_input_ids, attention_mask=attention_mask, decoder_attention_mask=decoder_attention_mask, ) result = model(input_ids=input_ids, decoder_input_ids=decoder_input_ids) decoder_output = result.last_hidden_state decoder_past = result.past_key_values encoder_output = result.encoder_last_hidden_state self.parent.assertEqual(encoder_output.size(), (self.batch_size, self.encoder_seq_length, self.hidden_size)) self.parent.assertEqual(decoder_output.size(), (self.batch_size, self.decoder_seq_length, self.hidden_size)) # There should be `num_layers` key value embeddings stored in decoder_past self.parent.assertEqual(len(decoder_past), config.num_layers) # There should be a self attn key, a self attn value, a cross attn key and a cross attn value stored in each decoder_past tuple self.parent.assertEqual(len(decoder_past[0]), 4) def create_and_check_with_lm_head( self, config, input_ids, decoder_input_ids, attention_mask, decoder_attention_mask, lm_labels, ): model = T5ForConditionalGeneration(config=config).to(torch_device).eval() outputs = model( input_ids=input_ids, decoder_input_ids=decoder_input_ids, decoder_attention_mask=decoder_attention_mask, labels=lm_labels, ) self.parent.assertEqual(len(outputs), 4) self.parent.assertEqual(outputs["logits"].size(), (self.batch_size, self.decoder_seq_length, self.vocab_size)) self.parent.assertEqual(outputs["loss"].size(), ()) def create_and_check_with_sequence_classification_head( self, config, input_ids, decoder_input_ids, attention_mask, decoder_attention_mask, lm_labels, ): labels = torch.tensor([1] * self.batch_size, dtype=torch.long, device=torch_device) model = T5ForSequenceClassification(config=config).to(torch_device).eval() outputs = model( input_ids=input_ids, decoder_input_ids=input_ids, labels=labels, ) # self.parent.assertEqual(len(outputs), 4) self.parent.assertEqual(outputs["logits"].size(), (self.batch_size, config.num_labels)) self.parent.assertEqual(outputs["loss"].size(), ()) def create_and_check_decoder_model_past( self, config, input_ids, decoder_input_ids, attention_mask, decoder_attention_mask, lm_labels, ): model = T5Model(config=config).get_decoder().to(torch_device).eval() # first forward pass outputs = model(input_ids, use_cache=True) outputs_use_cache_conf = model(input_ids) outputs_no_past = model(input_ids, use_cache=False) self.parent.assertTrue(len(outputs) == len(outputs_use_cache_conf)) self.parent.assertTrue(len(outputs) == len(outputs_no_past) + 1) output, past_key_values = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids next_tokens = ids_tensor((self.batch_size, 1), config.vocab_size) # append to next input_ids and next_input_ids = torch.cat([input_ids, next_tokens], dim=-1) output_from_no_past = model(next_input_ids)["last_hidden_state"] output_from_past = model(next_tokens, past_key_values=past_key_values)["last_hidden_state"] # select random slice random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item() output_from_no_past_slice = output_from_no_past[:, -1, random_slice_idx].detach() output_from_past_slice = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3)) def create_and_check_decoder_model_attention_mask_past( self, config, input_ids, decoder_input_ids, attention_mask, decoder_attention_mask, lm_labels, ): model = T5Model(config=config).get_decoder() model.to(torch_device) model.eval() # create attention mask attn_mask = torch.ones(input_ids.shape, dtype=torch.long, device=torch_device) half_seq_length = input_ids.shape[-1] // 2 attn_mask[:, half_seq_length:] = 0 # first forward pass output, past_key_values = model(input_ids, attention_mask=attn_mask, use_cache=True).to_tuple() # create hypothetical next token and extent to next_input_ids next_tokens = ids_tensor((self.batch_size, 1), config.vocab_size) # change a random masked slice from input_ids random_seq_idx_to_change = ids_tensor((1,), half_seq_length).item() + 1 random_other_next_tokens = ids_tensor((self.batch_size, 1), config.vocab_size).squeeze(-1) input_ids[:, -random_seq_idx_to_change] = random_other_next_tokens # append to next input_ids and attn_mask next_input_ids = torch.cat([input_ids, next_tokens], dim=-1) attn_mask = torch.cat( [attn_mask, torch.ones((attn_mask.shape[0], 1), dtype=torch.long, device=torch_device)], dim=1, ) # get two different outputs output_from_no_past = model(next_input_ids, attention_mask=attn_mask)["last_hidden_state"] output_from_past = model(next_tokens, past_key_values=past_key_values, attention_mask=attn_mask)[ "last_hidden_state" ] # select random slice random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item() output_from_no_past_slice = output_from_no_past[:, -1, random_slice_idx].detach() output_from_past_slice = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3)) def create_and_check_decoder_model_past_large_inputs( self, config, input_ids, decoder_input_ids, attention_mask, decoder_attention_mask, lm_labels, ): model = T5Model(config=config).get_decoder().to(torch_device).eval() # first forward pass outputs = model(input_ids, attention_mask=attention_mask, use_cache=True) output, past_key_values = outputs.to_tuple() # create hypothetical multiple next token and extent to next_input_ids next_tokens = ids_tensor((self.batch_size, 3), config.vocab_size) next_mask = ids_tensor((self.batch_size, 3), vocab_size=2) # append to next input_ids and next_input_ids = torch.cat([input_ids, next_tokens], dim=-1) next_attention_mask = torch.cat([attention_mask, next_mask], dim=-1) output_from_no_past = model(next_input_ids, attention_mask=next_attention_mask)["last_hidden_state"] output_from_past = model(next_tokens, attention_mask=next_attention_mask, past_key_values=past_key_values)[ "last_hidden_state" ] # select random slice random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item() output_from_no_past_slice = output_from_no_past[:, -3:, random_slice_idx].detach() output_from_past_slice = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1]) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3)) def create_and_check_generate_with_past_key_values( self, config, input_ids, decoder_input_ids, attention_mask, decoder_attention_mask, lm_labels, ): model = T5ForConditionalGeneration(config=config).to(torch_device).eval() torch.manual_seed(0) output_without_past_cache = model.generate( input_ids[:1], num_beams=2, max_length=5, do_sample=True, use_cache=False ) torch.manual_seed(0) output_with_past_cache = model.generate(input_ids[:1], num_beams=2, max_length=5, do_sample=True) self.parent.assertTrue(torch.all(output_with_past_cache == output_without_past_cache)) def create_and_check_model_fp16_forward( self, config, input_ids, decoder_input_ids, attention_mask, decoder_attention_mask, lm_labels, ): model = T5Model(config=config).to(torch_device).half().eval() output = model(input_ids, decoder_input_ids=input_ids, attention_mask=attention_mask)["last_hidden_state"] self.parent.assertFalse(torch.isnan(output).any().item()) def create_and_check_encoder_decoder_shared_weights( self, config, input_ids, decoder_input_ids, attention_mask, decoder_attention_mask, lm_labels, ): for model_class in [T5Model, T5ForConditionalGeneration]: torch.manual_seed(0) model = model_class(config=config).to(torch_device).eval() # load state dict copies weights but does not tie them model.encoder.load_state_dict(model.decoder.state_dict(), strict=False) torch.manual_seed(0) tied_config = copy.deepcopy(config) tied_config.tie_encoder_decoder = True tied_model = model_class(config=tied_config).to(torch_device).eval() model_result = model( input_ids=input_ids, decoder_input_ids=decoder_input_ids, attention_mask=attention_mask, decoder_attention_mask=decoder_attention_mask, ) tied_model_result = tied_model( input_ids=input_ids, decoder_input_ids=decoder_input_ids, attention_mask=attention_mask, decoder_attention_mask=decoder_attention_mask, ) # check that models has less parameters self.parent.assertLess( sum(p.numel() for p in tied_model.parameters()), sum(p.numel() for p in model.parameters()) ) random_slice_idx = ids_tensor((1,), model_result[0].shape[-1]).item() # check that outputs are equal self.parent.assertTrue( torch.allclose( model_result[0][0, :, random_slice_idx], tied_model_result[0][0, :, random_slice_idx], atol=1e-4 ) ) # check that outputs after saving and loading are equal with tempfile.TemporaryDirectory() as tmpdirname: tied_model.save_pretrained(tmpdirname) tied_model = model_class.from_pretrained(tmpdirname) tied_model.to(torch_device) tied_model.eval() # check that models has less parameters self.parent.assertLess( sum(p.numel() for p in tied_model.parameters()), sum(p.numel() for p in model.parameters()) ) random_slice_idx = ids_tensor((1,), model_result[0].shape[-1]).item() tied_model_result = tied_model( input_ids=input_ids, decoder_input_ids=decoder_input_ids, attention_mask=attention_mask, decoder_attention_mask=decoder_attention_mask, ) # check that outputs are equal self.parent.assertTrue( torch.allclose( model_result[0][0, :, random_slice_idx], tied_model_result[0][0, :, random_slice_idx], atol=1e-4, ) ) def check_resize_embeddings_t5_v1_1( self, config, ): prev_vocab_size = config.vocab_size config.tie_word_embeddings = False model = T5ForConditionalGeneration(config=config).to(torch_device).eval() model.resize_token_embeddings(prev_vocab_size - 10) self.parent.assertEqual(model.get_input_embeddings().weight.shape[0], prev_vocab_size - 10) self.parent.assertEqual(model.get_output_embeddings().weight.shape[0], prev_vocab_size - 10) self.parent.assertEqual(model.config.vocab_size, prev_vocab_size - 10) def prepare_config_and_inputs_for_common(self): config_and_inputs = self.prepare_config_and_inputs() ( config, input_ids, decoder_input_ids, attention_mask, decoder_attention_mask, lm_labels, ) = config_and_inputs inputs_dict = { "input_ids": input_ids, "attention_mask": attention_mask, "decoder_input_ids": decoder_input_ids, "decoder_attention_mask": decoder_attention_mask, "use_cache": False, } return config, inputs_dict @require_torch class T5ModelTest(ModelTesterMixin, GenerationTesterMixin, PipelineTesterMixin, unittest.TestCase): all_model_classes = ( (T5Model, T5ForConditionalGeneration, T5ForSequenceClassification, T5ForQuestionAnswering) if is_torch_available() else () ) all_generative_model_classes = (T5ForConditionalGeneration,) if is_torch_available() else () pipeline_model_mapping = ( { "conversational": T5ForConditionalGeneration, "feature-extraction": T5Model, "question-answering": T5ForQuestionAnswering, "summarization": T5ForConditionalGeneration, "text-classification": T5ForSequenceClassification, "text2text-generation": T5ForConditionalGeneration, "translation": T5ForConditionalGeneration, "zero-shot": T5ForSequenceClassification, } if is_torch_available() else {} ) all_parallelizable_model_classes = (T5Model, T5ForConditionalGeneration) if is_torch_available() else () fx_compatible = True test_pruning = False test_resize_embeddings = True test_model_parallel = True is_encoder_decoder = True # The small T5 model needs higher percentages for CPU/MP tests model_split_percents = [0.8, 0.9] def setUp(self): self.model_tester = T5ModelTester(self) self.config_tester = ConfigTester(self, config_class=T5Config, d_model=37) # `QAPipelineTests` is not working well with slow tokenizers (for some models) and we don't want to touch the file # `src/transformers/data/processors/squad.py` (where this test fails for this model) def is_pipeline_test_to_skip( self, pipeline_test_case_name, config_class, model_architecture, tokenizer_name, processor_name ): if tokenizer_name is None: return True if pipeline_test_case_name == "QAPipelineTests" and not tokenizer_name.endswith("Fast"): return True return False def _create_and_check_torch_fx_tracing(self, config, inputs_dict, output_loss=False): if not is_torch_fx_available() or not self.fx_compatible: return configs_no_init = _config_zero_init(config) # To be sure we have no Nan configs_no_init.return_dict = False for model_class in self.all_model_classes: if model_class.__name__ == "T5ForSequenceClassification": continue model = model_class(config=configs_no_init) model.to(torch_device) model.eval() inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=output_loss) try: if model.config.is_encoder_decoder: model.config.use_cache = False # FSTM still requires this hack -> FSTM should probably be refactored similar to BART afterward labels = inputs.get("labels", None) input_names = [ "attention_mask", "decoder_attention_mask", "decoder_input_ids", "input_features", "input_ids", "input_values", ] if labels is not None: input_names.append("labels") filtered_inputs = {k: v for (k, v) in inputs.items() if k in input_names} input_names = list(filtered_inputs.keys()) model_output = model(**filtered_inputs) traced_model = symbolic_trace(model, input_names) traced_output = traced_model(**filtered_inputs) else: input_names = [ "attention_mask", "bbox", "input_features", "input_ids", "input_values", "pixel_values", "token_type_ids", "visual_feats", "visual_pos", ] labels = inputs.get("labels", None) start_positions = inputs.get("start_positions", None) end_positions = inputs.get("end_positions", None) if labels is not None: input_names.append("labels") if start_positions is not None: input_names.append("start_positions") if end_positions is not None: input_names.append("end_positions") filtered_inputs = {k: v for (k, v) in inputs.items() if k in input_names} input_names = list(filtered_inputs.keys()) if model.__class__.__name__ in set(MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES.values()) and ( not hasattr(model.config, "problem_type") or model.config.problem_type is None ): model.config.problem_type = "single_label_classification" traced_model = symbolic_trace(model, input_names) traced_output = traced_model(**filtered_inputs) model_output = model(**filtered_inputs) except Exception as e: self.fail(f"Couldn't trace module: {e}") def flatten_output(output): flatten = [] for x in output: if isinstance(x, (tuple, list)): flatten += flatten_output(x) elif not isinstance(x, torch.Tensor): continue else: flatten.append(x) return flatten model_output = flatten_output(model_output) traced_output = flatten_output(traced_output) num_outputs = len(model_output) for i in range(num_outputs): self.assertTrue( torch.allclose(model_output[i], traced_output[i]), f"traced {i}th output doesn't match model {i}th output for {model_class}", ) # Test that the model can be serialized and restored properly with tempfile.TemporaryDirectory() as tmp_dir_name: pkl_file_name = os.path.join(tmp_dir_name, "model.pkl") try: with open(pkl_file_name, "wb") as f: pickle.dump(traced_model, f) with open(pkl_file_name, "rb") as f: loaded = pickle.load(f) except Exception as e: self.fail(f"Couldn't serialize / deserialize the traced model: {e}") loaded_output = loaded(**filtered_inputs) loaded_output = flatten_output(loaded_output) for i in range(num_outputs): self.assertTrue( torch.allclose(model_output[i], loaded_output[i]), f"serialized model {i}th output doesn't match model {i}th output for {model_class}", ) # Avoid memory leak. Without this, each call increase RAM usage by ~20MB. # (Even with this call, there are still memory leak by ~0.04MB) self.clear_torch_jit_class_registry() def test_config(self): self.config_tester.run_common_tests() def test_shift_right(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.check_prepare_lm_labels_via_shift_left(*config_and_inputs) def test_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*config_and_inputs) def test_model_v1_1(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() # check that gated gelu feed forward and different word embeddings work config = config_and_inputs[0] config.tie_word_embeddings = False config.feed_forward_proj = "gated-gelu" self.model_tester.create_and_check_model(config, *config_and_inputs[1:]) # T5ForSequenceClassification does not support inputs_embeds def test_inputs_embeds(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in (T5Model, T5ForConditionalGeneration, T5ForQuestionAnswering): model = model_class(config) model.to(torch_device) model.eval() inputs = copy.deepcopy(self._prepare_for_class(inputs_dict, model_class)) if not self.is_encoder_decoder: input_ids = inputs["input_ids"] del inputs["input_ids"] else: encoder_input_ids = inputs["input_ids"] decoder_input_ids = inputs.get("decoder_input_ids", encoder_input_ids) del inputs["input_ids"] inputs.pop("decoder_input_ids", None) wte = model.get_input_embeddings() if not self.is_encoder_decoder: inputs["inputs_embeds"] = wte(input_ids) else: inputs["inputs_embeds"] = wte(encoder_input_ids) inputs["decoder_inputs_embeds"] = wte(decoder_input_ids) with torch.no_grad(): model(**inputs)[0] def test_config_and_model_silu_gated(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() config = config_and_inputs[0] config.feed_forward_proj = "gated-silu" self.model_tester.create_and_check_model(*config_and_inputs) def test_with_lm_head(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_with_lm_head(*config_and_inputs) def test_with_sequence_classification_head(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_with_sequence_classification_head(*config_and_inputs) def test_decoder_model_past(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past(*config_and_inputs) def test_decoder_model_past_with_attn_mask(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_attention_mask_past(*config_and_inputs) def test_decoder_model_past_with_3d_attn_mask(self): ( config, input_ids, decoder_input_ids, attention_mask, decoder_attention_mask, lm_labels, ) = self.model_tester.prepare_config_and_inputs() attention_mask = ids_tensor( [self.model_tester.batch_size, self.model_tester.encoder_seq_length, self.model_tester.encoder_seq_length], vocab_size=2, ) decoder_attention_mask = ids_tensor( [self.model_tester.batch_size, self.model_tester.decoder_seq_length, self.model_tester.decoder_seq_length], vocab_size=2, ) self.model_tester.create_and_check_decoder_model_attention_mask_past( config, input_ids, decoder_input_ids, attention_mask, decoder_attention_mask, lm_labels, ) def test_decoder_model_past_with_large_inputs(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past_large_inputs(*config_and_inputs) def test_generate_with_past_key_values(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_generate_with_past_key_values(*config_and_inputs) def test_encoder_decoder_shared_weights(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_encoder_decoder_shared_weights(*config_and_inputs) @unittest.skipIf(torch_device == "cpu", "Cant do half precision") def test_model_fp16_forward(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model_fp16_forward(*config_and_inputs) def test_v1_1_resize_embeddings(self): config = self.model_tester.prepare_config_and_inputs()[0] self.model_tester.check_resize_embeddings_t5_v1_1(config) @slow def test_model_from_pretrained(self): for model_name in T5_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: model = T5Model.from_pretrained(model_name) self.assertIsNotNone(model) @unittest.skip("Test has a segmentation fault on torch 1.8.0") def test_export_to_onnx(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() model = T5Model(config_and_inputs[0]).to(torch_device) with tempfile.TemporaryDirectory() as tmpdirname: torch.onnx.export( model, (config_and_inputs[1], config_and_inputs[3], config_and_inputs[2]), f"{tmpdirname}/t5_test.onnx", export_params=True, opset_version=9, input_names=["input_ids", "decoder_input_ids"], ) def test_generate_with_head_masking(self): attention_names = ["encoder_attentions", "decoder_attentions", "cross_attentions"] config_and_inputs = self.model_tester.prepare_config_and_inputs() config = config_and_inputs[0] max_length = config_and_inputs[1].shape[-1] + 3 model = T5ForConditionalGeneration(config).eval() model.to(torch_device) head_masking = { "head_mask": torch.zeros(config.num_layers, config.num_heads, device=torch_device), "decoder_head_mask": torch.zeros(config.num_decoder_layers, config.num_heads, device=torch_device), "cross_attn_head_mask": torch.zeros(config.num_decoder_layers, config.num_heads, device=torch_device), } for attn_name, (name, mask) in zip(attention_names, head_masking.items()): head_masks = {name: mask} # Explicitly pass decoder_head_mask as it is required from T5 model when head_mask specified if name == "head_mask": head_masks["decoder_head_mask"] = torch.ones( config.num_decoder_layers, config.num_heads, device=torch_device ) out = model.generate( config_and_inputs[1], num_beams=1, max_length=max_length, output_attentions=True, return_dict_in_generate=True, **head_masks, ) # We check the state of decoder_attentions and cross_attentions just from the last step attn_weights = out[attn_name] if attn_name == attention_names[0] else out[attn_name][-1] self.assertEqual(sum([w.sum().item() for w in attn_weights]), 0.0) @unittest.skip("Does not work on the tiny model as we keep hitting edge cases.") def test_disk_offload(self): pass @unittest.skip("Does not support conversations.") def test_pipeline_conversational(self): pass class T5EncoderOnlyModelTester: def __init__( self, parent, vocab_size=99, batch_size=13, encoder_seq_length=7, # For common tests use_attention_mask=True, hidden_size=32, num_hidden_layers=2, num_attention_heads=4, d_ff=37, relative_attention_num_buckets=8, is_training=False, dropout_rate=0.1, initializer_factor=0.002, is_encoder_decoder=False, eos_token_id=1, pad_token_id=0, scope=None, ): self.parent = parent self.batch_size = batch_size self.encoder_seq_length = encoder_seq_length # For common tests self.seq_length = self.encoder_seq_length self.use_attention_mask = use_attention_mask self.vocab_size = vocab_size self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.d_ff = d_ff self.relative_attention_num_buckets = relative_attention_num_buckets self.dropout_rate = dropout_rate self.initializer_factor = initializer_factor self.eos_token_id = eos_token_id self.pad_token_id = pad_token_id self.is_encoder_decoder = is_encoder_decoder self.scope = None self.is_training = is_training def get_large_model_config(self): return T5Config.from_pretrained("google-t5/t5-base") def prepare_config_and_inputs(self): input_ids = ids_tensor([self.batch_size, self.encoder_seq_length], self.vocab_size) attention_mask = None if self.use_attention_mask: attention_mask = ids_tensor([self.batch_size, self.encoder_seq_length], vocab_size=2) config = T5Config( vocab_size=self.vocab_size, d_model=self.hidden_size, d_ff=self.d_ff, d_kv=self.hidden_size // self.num_attention_heads, num_layers=self.num_hidden_layers, num_heads=self.num_attention_heads, relative_attention_num_buckets=self.relative_attention_num_buckets, dropout_rate=self.dropout_rate, initializer_factor=self.initializer_factor, eos_token_id=self.eos_token_id, bos_token_id=self.pad_token_id, pad_token_id=self.pad_token_id, is_encoder_decoder=self.is_encoder_decoder, ) return ( config, input_ids, attention_mask, ) def create_and_check_model( self, config, input_ids, attention_mask, ): model = T5EncoderModel(config=config) model.to(torch_device) model.eval() result = model( input_ids=input_ids, attention_mask=attention_mask, ) result = model(input_ids=input_ids) encoder_output = result.last_hidden_state self.parent.assertEqual(encoder_output.size(), (self.batch_size, self.encoder_seq_length, self.hidden_size)) def create_and_check_model_fp16_forward( self, config, input_ids, attention_mask, ): model = T5EncoderModel(config=config).to(torch_device).half().eval() output = model(input_ids, attention_mask=attention_mask)["last_hidden_state"] self.parent.assertFalse(torch.isnan(output).any().item()) def create_and_check_with_token_classification_head( self, config, input_ids, attention_mask, ): labels = torch.tensor([1] * self.seq_length * self.batch_size, dtype=torch.long, device=torch_device) model = T5ForTokenClassification(config=config).to(torch_device).eval() outputs = model( input_ids=input_ids, labels=labels, attention_mask=attention_mask, ) self.parent.assertEqual(outputs["logits"].size(), (self.batch_size, self.seq_length, config.num_labels)) self.parent.assertEqual(outputs["loss"].size(), ()) def prepare_config_and_inputs_for_common(self): config_and_inputs = self.prepare_config_and_inputs() ( config, input_ids, attention_mask, ) = config_and_inputs inputs_dict = { "input_ids": input_ids, "attention_mask": attention_mask, } return config, inputs_dict class T5EncoderOnlyModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase): all_model_classes = (T5EncoderModel, T5ForTokenClassification) if is_torch_available() else () test_pruning = False test_resize_embeddings = False test_model_parallel = True pipeline_model_mapping = ( { "token-classification": T5ForTokenClassification, } if is_torch_available() else {} ) all_parallelizable_model_classes = (T5EncoderModel,) if is_torch_available() else () def setUp(self): self.model_tester = T5EncoderOnlyModelTester(self) self.config_tester = ConfigTester(self, config_class=T5Config, d_model=37) def test_config(self): self.config_tester.run_common_tests() def test_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*config_and_inputs) @unittest.skipIf(torch_device == "cpu", "Cant do half precision") def test_model_fp16_forward(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model_fp16_forward(*config_and_inputs) def test_with_token_classification_head(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_with_token_classification_head(*config_and_inputs) def use_task_specific_params(model, task): model.config.update(model.config.task_specific_params[task]) @require_torch @require_accelerate @require_tokenizers @slow class T5ModelFp16Tests(unittest.TestCase): def test_fp16_fp32_conversion(self): r""" A test to check whether the argument `keep_in_fp32_modules` correctly does its job """ orig_import = __import__ accelerate_mock = unittest.mock.Mock() # mock import of accelerate def import_accelerate_mock(name, *args, **kwargs): if name == "accelerate": if accelerate_available: return accelerate_mock else: raise ImportError return orig_import(name, *args, **kwargs) # Load without using `accelerate` with unittest.mock.patch("builtins.__import__", side_effect=import_accelerate_mock): accelerate_available = False model = T5ForConditionalGeneration.from_pretrained("google-t5/t5-small", torch_dtype=torch.float16) self.assertTrue(model.decoder.block[0].layer[2].DenseReluDense.wo.weight.dtype == torch.float32) self.assertTrue(model.decoder.block[0].layer[2].DenseReluDense.wi.weight.dtype == torch.float16) # Load without in bf16 model = T5ForConditionalGeneration.from_pretrained("google-t5/t5-small", torch_dtype=torch.bfloat16) self.assertTrue(model.decoder.block[0].layer[2].DenseReluDense.wo.weight.dtype == torch.bfloat16) self.assertTrue(model.decoder.block[0].layer[2].DenseReluDense.wi.weight.dtype == torch.bfloat16) # Load using `accelerate` in bf16 model = T5ForConditionalGeneration.from_pretrained( "google-t5/t5-small", torch_dtype=torch.bfloat16, device_map="auto" ) self.assertTrue(model.decoder.block[0].layer[2].DenseReluDense.wo.weight.dtype == torch.bfloat16) self.assertTrue(model.decoder.block[0].layer[2].DenseReluDense.wi.weight.dtype == torch.bfloat16) # Load using `accelerate` in bf16 model = T5ForConditionalGeneration.from_pretrained( "google-t5/t5-small", torch_dtype=torch.bfloat16, low_cpu_mem_usage=True ) self.assertTrue(model.decoder.block[0].layer[2].DenseReluDense.wo.weight.dtype == torch.bfloat16) self.assertTrue(model.decoder.block[0].layer[2].DenseReluDense.wi.weight.dtype == torch.bfloat16) # Load without using `accelerate` model = T5ForConditionalGeneration.from_pretrained( "google-t5/t5-small", torch_dtype=torch.float16, low_cpu_mem_usage=True ) self.assertTrue(model.decoder.block[0].layer[2].DenseReluDense.wo.weight.dtype == torch.float32) self.assertTrue(model.decoder.block[0].layer[2].DenseReluDense.wi.weight.dtype == torch.float16) # Load using `accelerate` model = T5ForConditionalGeneration.from_pretrained( "google-t5/t5-small", torch_dtype=torch.float16, device_map="auto" ) self.assertTrue(model.decoder.block[0].layer[2].DenseReluDense.wo.weight.dtype == torch.float32) self.assertTrue(model.decoder.block[0].layer[2].DenseReluDense.wi.weight.dtype == torch.float16) @require_torch @require_sentencepiece @require_tokenizers class T5ModelIntegrationTests(unittest.TestCase): @cached_property def model(self): return T5ForConditionalGeneration.from_pretrained("google-t5/t5-base").to(torch_device) @cached_property def tokenizer(self): return T5Tokenizer.from_pretrained("google-t5/t5-base") @slow def test_torch_quant(self): r""" Test that a simple `torch.quantization.quantize_dynamic` call works on a T5 model. """ model_name = "google/flan-t5-small" tokenizer = T5Tokenizer.from_pretrained(model_name) model = T5ForConditionalGeneration.from_pretrained(model_name) model = torch.quantization.quantize_dynamic(model, {torch.nn.Linear}, dtype=torch.qint8) input_text = "Answer the following yes/no question by reasoning step-by-step. Can you write a whole Haiku in a single tweet?" input_ids = tokenizer(input_text, return_tensors="pt").input_ids _ = model.generate(input_ids) @slow def test_small_generation(self): model = T5ForConditionalGeneration.from_pretrained("google-t5/t5-small").to(torch_device) model.config.max_length = 8 model.config.num_beams = 1 model.config.do_sample = False tokenizer = T5Tokenizer.from_pretrained("google-t5/t5-small") input_ids = tokenizer("summarize: Hello there", return_tensors="pt").input_ids.to(torch_device) sequences = model.generate(input_ids) output_str = tokenizer.batch_decode(sequences, skip_special_tokens=True)[0] self.assertTrue(output_str == "Hello there!") @slow def test_small_integration_test(self): """ For comparision run: >>> import t5 # pip install t5==0.7.1 >>> from t5.data.sentencepiece_vocabulary import SentencePieceVocabulary >>> path_to_mtf_small_t5_checkpoint = '<fill_in>' >>> path_to_mtf_small_spm_model_path = '<fill_in>' >>> t5_model = t5.models.MtfModel(model_dir=path_to_mtf_small_t5_checkpoint, batch_size=1, tpu=None) >>> vocab = SentencePieceVocabulary(path_to_mtf_small_spm_model_path, extra_ids=100) >>> score = t5_model.score(inputs=["Hello there"], targets=["Hi I am"], vocabulary=vocab) """ model = T5ForConditionalGeneration.from_pretrained("google-t5/t5-small").to(torch_device) tokenizer = T5Tokenizer.from_pretrained("google-t5/t5-small") input_ids = tokenizer("Hello there", return_tensors="pt").input_ids labels = tokenizer("Hi I am", return_tensors="pt").input_ids loss = model(input_ids.to(torch_device), labels=labels.to(torch_device)).loss mtf_score = -(labels.shape[-1] * loss.item()) EXPECTED_SCORE = -19.0845 self.assertTrue(abs(mtf_score - EXPECTED_SCORE) < 1e-4) @slow def test_small_v1_1_integration_test(self): """ For comparision run: >>> import t5 # pip install t5==0.7.1 >>> from t5.data.sentencepiece_vocabulary import SentencePieceVocabulary >>> path_to_mtf_small_t5_v1_1_checkpoint = '<fill_in>' >>> path_to_mtf_small_spm_model_path = '<fill_in>' >>> t5_model = t5.models.MtfModel(model_dir=path_to_mtf_small_t5_v1_1_checkpoint, batch_size=1, tpu=None) >>> vocab = SentencePieceVocabulary(path_to_mtf_small_spm_model_path, extra_ids=100) >>> score = t5_model.score(inputs=["Hello there"], targets=["Hi I am"], vocabulary=vocab) """ model = T5ForConditionalGeneration.from_pretrained("google/t5-v1_1-small").to(torch_device) tokenizer = T5Tokenizer.from_pretrained("google/t5-v1_1-small") input_ids = tokenizer("Hello there", return_tensors="pt").input_ids labels = tokenizer("Hi I am", return_tensors="pt").input_ids loss = model(input_ids.to(torch_device), labels=labels.to(torch_device)).loss mtf_score = -(labels.shape[-1] * loss.item()) EXPECTED_SCORE = -59.0293 self.assertTrue(abs(mtf_score - EXPECTED_SCORE) < 1e-4) @slow def test_small_byt5_integration_test(self): """ For comparision run: >>> import t5 # pip install t5==0.9.1 >>> path_to_byt5_small_checkpoint = '<fill_in>' >>> t5_model = t5.models.MtfModel(model_dir=path_to_tf_checkpoint, batch_size=1, tpu=None) >>> vocab = t5.data.ByteVocabulary() >>> score = t5_model.score(inputs=["Hello there"], targets=["Hi I am"], vocabulary=vocab) """ model = T5ForConditionalGeneration.from_pretrained("google/byt5-small").to(torch_device) tokenizer = ByT5Tokenizer.from_pretrained("google/byt5-small") input_ids = tokenizer("Hello there", return_tensors="pt").input_ids labels = tokenizer("Hi I am", return_tensors="pt").input_ids loss = model(input_ids.to(torch_device), labels=labels.to(torch_device)).loss mtf_score = -(labels.shape[-1] * loss.item()) EXPECTED_SCORE = -60.7397 self.assertTrue(abs(mtf_score - EXPECTED_SCORE) < 1e-4) @slow def test_summarization(self): model = self.model tok = self.tokenizer FRANCE_ARTICLE = ( # @noqa "Marseille, France (CNN)The French prosecutor leading an investigation into the crash of Germanwings" " Flight 9525 insisted Wednesday that he was not aware of any video footage from on board the plane." ' Marseille prosecutor Brice Robin told CNN that "so far no videos were used in the crash investigation."' ' He added, "A person who has such a video needs to immediately give it to the investigators." Robin\'s' " comments follow claims by two magazines, German daily Bild and French Paris Match, of a cell phone video" " showing the harrowing final seconds from on board Germanwings Flight 9525 as it crashed into the French" " Alps. All 150 on board were killed. Paris Match and Bild reported that the video was recovered from a" " phone at the wreckage site. The two publications described the supposed video, but did not post it on" " their websites. The publications said that they watched the video, which was found by a source close to" " the investigation. \"One can hear cries of 'My God' in several languages,\" Paris Match reported." ' "Metallic banging can also be heard more than three times, perhaps of the pilot trying to open the' " cockpit door with a heavy object. Towards the end, after a heavy shake, stronger than the others, the" ' screaming intensifies. Then nothing." "It is a very disturbing scene," said Julian Reichelt,' " editor-in-chief of Bild online. An official with France's accident investigation agency, the BEA, said" " the agency is not aware of any such video. Lt. Col. Jean-Marc Menichini, a French Gendarmerie spokesman" " in charge of communications on rescue efforts around the Germanwings crash site, told CNN that the" ' reports were "completely wrong" and "unwarranted." Cell phones have been collected at the site, he said,' ' but that they "hadn\'t been exploited yet." Menichini said he believed the cell phones would need to be' " sent to the Criminal Research Institute in Rosny sous-Bois, near Paris, in order to be analyzed by" " specialized technicians working hand-in-hand with investigators. But none of the cell phones found so" " far have been sent to the institute, Menichini said. Asked whether staff involved in the search could" ' have leaked a memory card to the media, Menichini answered with a categorical "no." Reichelt told "Erin' ' Burnett: Outfront" that he had watched the video and stood by the report, saying Bild and Paris Match' ' are "very confident" that the clip is real. He noted that investigators only revealed they\'d recovered' ' cell phones from the crash site after Bild and Paris Match published their reports. "That is something' " we did not know before. ... Overall we can say many things of the investigation weren't revealed by the" ' investigation at the beginning," he said. What was mental state of Germanwings co-pilot? German airline' " Lufthansa confirmed Tuesday that co-pilot Andreas Lubitz had battled depression years before he took the" " controls of Germanwings Flight 9525, which he's accused of deliberately crashing last week in the" ' French Alps. Lubitz told his Lufthansa flight training school in 2009 that he had a "previous episode of' ' severe depression," the airline said Tuesday. Email correspondence between Lubitz and the school' " discovered in an internal investigation, Lufthansa said, included medical documents he submitted in" " connection with resuming his flight training. The announcement indicates that Lufthansa, the parent" " company of Germanwings, knew of Lubitz's battle with depression, allowed him to continue training and" " ultimately put him in the cockpit. Lufthansa, whose CEO Carsten Spohr previously said Lubitz was 100%" ' fit to fly, described its statement Tuesday as a "swift and seamless clarification" and said it was' " sharing the information and documents -- including training and medical records -- with public" " prosecutors. Spohr traveled to the crash site Wednesday, where recovery teams have been working for the" " past week to recover human remains and plane debris scattered across a steep mountainside. He saw the" " crisis center set up in Seyne-les-Alpes, laid a wreath in the village of Le Vernet, closer to the crash" " site, where grieving families have left flowers at a simple stone memorial. Menichini told CNN late" " Tuesday that no visible human remains were left at the site but recovery teams would keep searching." " French President Francois Hollande, speaking Tuesday, said that it should be possible to identify all" " the victims using DNA analysis by the end of the week, sooner than authorities had previously suggested." " In the meantime, the recovery of the victims' personal belongings will start Wednesday, Menichini said." " Among those personal belongings could be more cell phones belonging to the 144 passengers and six crew" " on board. Check out the latest from our correspondents . The details about Lubitz's correspondence with" " the flight school during his training were among several developments as investigators continued to" " delve into what caused the crash and Lubitz's possible motive for downing the jet. A Lufthansa" " spokesperson told CNN on Tuesday that Lubitz had a valid medical certificate, had passed all his" ' examinations and "held all the licenses required." Earlier, a spokesman for the prosecutor\'s office in' " Dusseldorf, Christoph Kumpa, said medical records reveal Lubitz suffered from suicidal tendencies at" " some point before his aviation career and underwent psychotherapy before he got his pilot's license." " Kumpa emphasized there's no evidence suggesting Lubitz was suicidal or acting aggressively before the" " crash. Investigators are looking into whether Lubitz feared his medical condition would cause him to" " lose his pilot's license, a European government official briefed on the investigation told CNN on" ' Tuesday. While flying was "a big part of his life," the source said, it\'s only one theory being' " considered. Another source, a law enforcement official briefed on the investigation, also told CNN that" " authorities believe the primary motive for Lubitz to bring down the plane was that he feared he would" " not be allowed to fly because of his medical problems. Lubitz's girlfriend told investigators he had" " seen an eye doctor and a neuropsychologist, both of whom deemed him unfit to work recently and concluded" " he had psychological issues, the European government official said. But no matter what details emerge" " about his previous mental health struggles, there's more to the story, said Brian Russell, a forensic" ' psychologist. "Psychology can explain why somebody would turn rage inward on themselves about the fact' " that maybe they weren't going to keep doing their job and they're upset about that and so they're" ' suicidal," he said. "But there is no mental illness that explains why somebody then feels entitled to' " also take that rage and turn it outward on 149 other people who had nothing to do with the person's" ' problems." Germanwings crash compensation: What we know . Who was the captain of Germanwings Flight' " 9525? CNN's Margot Haddad reported from Marseille and Pamela Brown from Dusseldorf, while Laura" " Smith-Spark wrote from London. CNN's Frederik Pleitgen, Pamela Boykoff, Antonia Mortensen, Sandrine" " Amiel and Anna-Maja Rappard contributed to this report." ) SHORTER_ARTICLE = ( "(CNN)The Palestinian Authority officially became the 123rd member of the International Criminal Court on" " Wednesday, a step that gives the court jurisdiction over alleged crimes in Palestinian territories. The" " formal accession was marked with a ceremony at The Hague, in the Netherlands, where the court is based." " The Palestinians signed the ICC's founding Rome Statute in January, when they also accepted its" ' jurisdiction over alleged crimes committed "in the occupied Palestinian territory, including East' ' Jerusalem, since June 13, 2014." Later that month, the ICC opened a preliminary examination into the' " situation in Palestinian territories, paving the way for possible war crimes investigations against" " Israelis. As members of the court, Palestinians may be subject to counter-charges as well. Israel and" " the United States, neither of which is an ICC member, opposed the Palestinians' efforts to join the" " body. But Palestinian Foreign Minister Riad al-Malki, speaking at Wednesday's ceremony, said it was a" ' move toward greater justice. "As Palestine formally becomes a State Party to the Rome Statute today, the' ' world is also a step closer to ending a long era of impunity and injustice," he said, according to an' ' ICC news release. "Indeed, today brings us closer to our shared goals of justice and peace." Judge' " Kuniko Ozaki, a vice president of the ICC, said acceding to the treaty was just the first step for the" ' Palestinians. "As the Rome Statute today enters into force for the State of Palestine, Palestine' " acquires all the rights as well as responsibilities that come with being a State Party to the Statute." ' These are substantive commitments, which cannot be taken lightly," she said. Rights group Human Rights' ' Watch welcomed the development. "Governments seeking to penalize Palestine for joining the ICC should' " immediately end their pressure, and countries that support universal acceptance of the court's treaty" ' should speak out to welcome its membership," said Balkees Jarrah, international justice counsel for the' " group. \"What's objectionable is the attempts to undermine international justice, not Palestine's" ' decision to join a treaty to which over 100 countries around the world are members." In January, when' " the preliminary ICC examination was opened, Israeli Prime Minister Benjamin Netanyahu described it as an" ' outrage, saying the court was overstepping its boundaries. The United States also said it "strongly"' " disagreed with the court's decision. \"As we have said repeatedly, we do not believe that Palestine is a" ' state and therefore we do not believe that it is eligible to join the ICC," the State Department said in' ' a statement. It urged the warring sides to resolve their differences through direct negotiations. "We' ' will continue to oppose actions against Israel at the ICC as counterproductive to the cause of peace,"' " it said. But the ICC begs to differ with the definition of a state for its purposes and refers to the" ' territories as "Palestine." While a preliminary examination is not a formal investigation, it allows the' " court to review evidence and determine whether to investigate suspects on both sides. Prosecutor Fatou" ' Bensouda said her office would "conduct its analysis in full independence and impartiality." The war' " between Israel and Hamas militants in Gaza last summer left more than 2,000 people dead. The inquiry" " will include alleged war crimes committed since June. The International Criminal Court was set up in" " 2002 to prosecute genocide, crimes against humanity and war crimes. CNN's Vasco Cotovio, Kareem Khadder" " and Faith Karimi contributed to this report." ) IRAN_ARTICLE = ( "(CNN)The United States and its negotiating partners reached a very strong framework agreement with Iran" " in Lausanne, Switzerland, on Thursday that limits Iran's nuclear program in such a way as to effectively" " block it from building a nuclear weapon. Expect pushback anyway, if the recent past is any harbinger." " Just last month, in an attempt to head off such an agreement, House Speaker John Boehner invited Israeli" " Prime Minister Benjamin Netanyahu to preemptively blast it before Congress, and 47 senators sent a" " letter to the Iranian leadership warning them away from a deal. The debate that has already begun since" " the announcement of the new framework will likely result in more heat than light. It will not be helped" " by the gathering swirl of dubious assumptions and doubtful assertions. Let us address some of these: ." " The most misleading assertion, despite universal rejection by experts, is that the negotiations'" " objective at the outset was the total elimination of any nuclear program in Iran. That is the position" " of Netanyahu and his acolytes in the U.S. Congress. But that is not and never was the objective. If it" " had been, there would have been no Iranian team at the negotiating table. Rather, the objective has" " always been to structure an agreement or series of agreements so that Iran could not covertly develop a" " nuclear arsenal before the United States and its allies could respond. The new framework has exceeded" " expectations in achieving that goal. It would reduce Iran's low-enriched uranium stockpile, cut by" " two-thirds its number of installed centrifuges and implement a rigorous inspection regime. Another" " dubious assumption of opponents is that the Iranian nuclear program is a covert weapons program. Despite" " sharp accusations by some in the United States and its allies, Iran denies having such a program, and" " U.S. intelligence contends that Iran has not yet made the decision to build a nuclear weapon. Iran's" " continued cooperation with International Atomic Energy Agency inspections is further evidence on this" " point, and we'll know even more about Iran's program in the coming months and years because of the deal." " In fact, the inspections provisions that are part of this agreement are designed to protect against any" " covert action by the Iranians. What's more, the rhetoric of some members of Congress has implied that" " the negotiations have been between only the United States and Iran (i.e., the 47 senators' letter" " warning that a deal might be killed by Congress or a future president). This of course is not the case." " The talks were between Iran and the five permanent members of the U.N. Security Council (United States," " United Kingdom, France, China and Russia) plus Germany, dubbed the P5+1. While the United States has" " played a leading role in the effort, it negotiated the terms alongside its partners. If the agreement" " reached by the P5+1 is rejected by Congress, it could result in an unraveling of the sanctions on Iran" " and threaten NATO cohesion in other areas. Another questionable assertion is that this agreement" " contains a sunset clause, after which Iran will be free to do as it pleases. Again, this is not the" " case. Some of the restrictions on Iran's nuclear activities, such as uranium enrichment, will be eased" " or eliminated over time, as long as 15 years. But most importantly, the framework agreement includes" " Iran's ratification of the Additional Protocol, which allows IAEA inspectors expanded access to nuclear" " sites both declared and nondeclared. This provision will be permanent. It does not sunset. Thus, going" " forward, if Iran decides to enrich uranium to weapons-grade levels, monitors will be able to detect such" " a move in a matter of days and alert the U.N. Security Council. Many in Congress have said that the" ' agreement should be a formal treaty requiring the Senate to "advise and consent." But the issue is not' " suited for a treaty. Treaties impose equivalent obligations on all signatories. For example, the New" " START treaty limits Russia and the United States to 1,550 deployed strategic warheads. But any agreement" " with Iran will not be so balanced. The restrictions and obligations in the final framework agreement" " will be imposed almost exclusively on Iran. The P5+1 are obligated only to ease and eventually remove" " most but not all economic sanctions, which were imposed as leverage to gain this final deal. Finally" " some insist that any agreement must address Iranian missile programs, human rights violations or support" " for Hamas or Hezbollah. As important as these issues are, and they must indeed be addressed, they are" " unrelated to the most important aim of a nuclear deal: preventing a nuclear Iran. To include them in" " the negotiations would be a poison pill. This agreement should be judged on its merits and on how it" " affects the security of our negotiating partners and allies, including Israel. Those judgments should be" " fact-based, not based on questionable assertions or dubious assumptions." ) ARTICLE_SUBWAY = ( "New York (CNN)When Liana Barrientos was 23 years old, she got married in Westchester County, New York. A" " year later, she got married again in Westchester County, but to a different man and without divorcing" " her first husband. Only 18 days after that marriage, she got hitched yet again. Then, Barrientos" ' declared "I do" five more times, sometimes only within two weeks of each other. In 2010, she married' " once more, this time in the Bronx. In an application for a marriage license, she stated it was her" ' "first and only" marriage. Barrientos, now 39, is facing two criminal counts of "offering a false' ' instrument for filing in the first degree," referring to her false statements on the 2010 marriage' " license application, according to court documents. Prosecutors said the marriages were part of an" " immigration scam. On Friday, she pleaded not guilty at State Supreme Court in the Bronx, according to" " her attorney, Christopher Wright, who declined to comment further. After leaving court, Barrientos was" " arrested and charged with theft of service and criminal trespass for allegedly sneaking into the New" " York subway through an emergency exit, said Detective Annette Markowski, a police spokeswoman. In total," " Barrientos has been married 10 times, with nine of her marriages occurring between 1999 and 2002. All" " occurred either in Westchester County, Long Island, New Jersey or the Bronx. She is believed to still be" " married to four men, and at one time, she was married to eight men at once, prosecutors say. Prosecutors" " said the immigration scam involved some of her husbands, who filed for permanent residence status" " shortly after the marriages. Any divorces happened only after such filings were approved. It was" " unclear whether any of the men will be prosecuted. The case was referred to the Bronx District" " Attorney's Office by Immigration and Customs Enforcement and the Department of Homeland Security's" ' Investigation Division. Seven of the men are from so-called "red-flagged" countries, including Egypt,' " Turkey, Georgia, Pakistan and Mali. Her eighth husband, Rashid Rajput, was deported in 2006 to his" " native Pakistan after an investigation by the Joint Terrorism Task Force. If convicted, Barrientos faces" " up to four years in prison. Her next court appearance is scheduled for May 18." ) expected_summaries = [ 'prosecutor: "so far no videos were used in the crash investigation" two magazines claim to have found a' " cell phone video of the final seconds . \"one can hear cries of 'My God' in several languages,\" one" " magazine says .", "the formal accession was marked by a ceremony at The Hague, in the Netherlands . the ICC opened a" " preliminary examination into the situation in the occupied Palestinian territory . as members of the" " court, Palestinians may be subject to counter-charges as well .", "the u.s. and its negotiating partners reached a very strong framework agreement with Iran . aaron miller:" " the debate that has already begun since the announcement of the new framework will likely result in more" " heat than light . the deal would reduce Iran's low-enriched uranium stockpile, cut centrifuges and" " implement a rigorous inspection regime .", "prosecutors say the marriages were part of an immigration scam . if convicted, barrientos faces two" ' criminal counts of "offering a false instrument for filing in the first degree" she has been married 10' " times, with nine of her marriages occurring between 1999 and 2002 .", ] use_task_specific_params(model, "summarization") dct = tok( [model.config.prefix + x for x in [FRANCE_ARTICLE, SHORTER_ARTICLE, IRAN_ARTICLE, ARTICLE_SUBWAY]], padding="max_length", truncation=True, return_tensors="pt", ).to(torch_device) self.assertEqual(512, dct["input_ids"].shape[1]) hypotheses_batch = model.generate( **dct, num_beams=4, length_penalty=2.0, max_length=142, min_length=56, no_repeat_ngram_size=3, do_sample=False, early_stopping=True, ) decoded = tok.batch_decode(hypotheses_batch, skip_special_tokens=True, clean_up_tokenization_spaces=False) self.assertListEqual( expected_summaries, decoded, ) @slow def test_translation_en_to_de(self): model = self.model tok = self.tokenizer use_task_specific_params(model, "translation_en_to_de") en_text = '"Luigi often said to me that he never wanted the brothers to end up in court", she wrote.' expected_translation = ( '"Luigi sagte mir oft, dass er nie wollte, dass die Brüder am Gericht sitzen", schrieb sie.' ) input_ids = tok.encode(model.config.prefix + en_text, return_tensors="pt") input_ids = input_ids.to(torch_device) output = model.generate(input_ids) translation = tok.decode(output[0], skip_special_tokens=True, clean_up_tokenization_spaces=False) self.assertEqual(translation, expected_translation) @slow def test_translation_en_to_fr(self): model = self.model # google-t5/t5-base tok = self.tokenizer use_task_specific_params(model, "translation_en_to_fr") en_text = ( ' This image section from an infrared recording by the Spitzer telescope shows a "family portrait" of' " countless generations of stars: the oldest stars are seen as blue dots. " ) input_ids = tok.encode(model.config.prefix + en_text, return_tensors="pt") input_ids = input_ids.to(torch_device) output = model.generate( input_ids=input_ids, num_beams=4, length_penalty=2.0, max_length=100, no_repeat_ngram_size=3, do_sample=False, early_stopping=True, ) translation = tok.decode(output[0], skip_special_tokens=True, clean_up_tokenization_spaces=False) new_truncated_translation = ( "Cette section d'images provenant de l'enregistrement infrarouge effectué par le télescope Spitzer montre " "un " "« portrait familial » de générations innombrables d’étoiles : les plus anciennes sont observées " "sous forme " "de points bleus." ) self.assertEqual(translation, new_truncated_translation) @slow def test_translation_en_to_ro(self): model = self.model tok = self.tokenizer use_task_specific_params(model, "translation_en_to_ro") en_text = "Taco Bell said it plans to add 2,000 locations in the US by 2022." expected_translation = "Taco Bell a declarat că intenţionează să adauge 2 000 de locaţii în SUA până în 2022." inputs = tok(model.config.prefix + en_text, return_tensors="pt").to(torch_device) output = model.generate(**inputs) translation = tok.decode(output[0], skip_special_tokens=True, clean_up_tokenization_spaces=False) self.assertEqual(translation, expected_translation) @slow def test_contrastive_search_t5(self): article = ( " New York (CNN)When Liana Barrientos was 23 years old, she got married in Westchester County, New York. A" " year later, she got married again in Westchester County, but to a different man and without divorcing" " her first husband. Only 18 days after that marriage, she got hitched yet again. Then, Barrientos" ' declared "I do" five more times, sometimes only within two weeks of each other. In 2010, she married' " once more, this time in the Bronx. In an application for a marriage license, she stated it was her" ' "first and only" marriage. Barrientos, now 39, is facing two criminal counts of "offering a false' ' instrument for filing in the first degree," referring to her false statements on the 2010 marriage' " license application, according to court documents. Prosecutors said the marriages were part of an" " immigration scam. On Friday, she pleaded not guilty at State Supreme Court in the Bronx, according to" " her attorney, Christopher Wright, who declined to comment further. After leaving court, Barrientos was" " arrested and charged with theft of service and criminal trespass for allegedly sneaking into the New" " York subway through an emergency exit, said Detective Annette Markowski, a police spokeswoman. In total," " Barrientos has been married 10 times, with nine of her marriages occurring between 1999 and 2002. All" " occurred either in Westchester County, Long Island, New Jersey or the Bronx. She is believed to still be" " married to four men, and at one time, she was married to eight men at once, prosecutors say. Prosecutors" " said the immigration scam involved some of her husbands, who filed for permanent residence status" " shortly after the marriages. Any divorces happened only after such filings were approved. It was" " unclear whether any of the men will be prosecuted. The case was referred to the Bronx District" " Attorney's Office by Immigration and Customs Enforcement and the Department of Homeland Security's" ' Investigation Division. Seven of the men are from so-called "red-flagged" countries, including Egypt,' " Turkey, Georgia, Pakistan and Mali. Her eighth husband, Rashid Rajput, was deported in 2006 to his" " native Pakistan after an investigation by the Joint Terrorism Task Force. If convicted, Barrientos faces" " up to four years in prison. Her next court appearance is scheduled for May 18." ) article = "summarize: " + article.strip() t5_tokenizer = AutoTokenizer.from_pretrained("flax-community/t5-base-cnn-dm") t5_model = T5ForConditionalGeneration.from_pretrained("flax-community/t5-base-cnn-dm").to(torch_device) input_ids = t5_tokenizer( article, add_special_tokens=False, truncation=True, max_length=512, return_tensors="pt" ).input_ids.to(torch_device) outputs = t5_model.generate(input_ids, penalty_alpha=0.5, top_k=5, max_length=64) generated_text = t5_tokenizer.batch_decode(outputs, skip_special_tokens=True) self.assertListEqual( generated_text, [ "Liana Barrientos has been married 10 times, nine of them in the Bronx. Her husbands filed for " "permanent residence after the marriages, prosecutors say." ], ) @require_torch class TestAsymmetricT5(unittest.TestCase): def build_model_and_check_forward_pass(self, **kwargs): tester = T5ModelTester(self, **kwargs) config, *inputs = tester.prepare_config_and_inputs() ( input_ids, decoder_input_ids, attention_mask, decoder_attention_mask, lm_labels, ) = inputs model = T5ForConditionalGeneration(config=config).to(torch_device).eval() outputs = model( input_ids=input_ids, decoder_input_ids=decoder_input_ids, decoder_attention_mask=decoder_attention_mask, labels=lm_labels, ) # outputs = model(*inputs) assert len(outputs) == 4 assert outputs["logits"].size() == (tester.batch_size, tester.decoder_seq_length, tester.vocab_size) assert outputs["loss"].size() == () return model def test_small_decoder(self): # num_hidden_layers is passed to T5Config as num_layers model = self.build_model_and_check_forward_pass(decoder_layers=1, num_hidden_layers=2) assert len(model.encoder.block) == 2 assert len(model.decoder.block) == 1 def test_defaulting_to_symmetry(self): # num_hidden_layers is passed to T5Config as num_layers model = self.build_model_and_check_forward_pass(num_hidden_layers=2) assert len(model.decoder.block) == len(model.encoder.block) == 2
transformers/tests/models/t5/test_modeling_t5.py/0
{ "file_path": "transformers/tests/models/t5/test_modeling_t5.py", "repo_id": "transformers", "token_count": 34531 }
169
# coding=utf-8 # Copyright 2021 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Testing suite for the PyTorch TrOCR model. """ import unittest from transformers import TrOCRConfig from transformers.testing_utils import is_torch_available, require_torch, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers.models.trocr.modeling_trocr import TrOCRDecoder, TrOCRForCausalLM @require_torch class TrOCRStandaloneDecoderModelTester: def __init__( self, parent, vocab_size=99, batch_size=13, d_model=16, decoder_seq_length=7, is_training=True, is_decoder=True, use_attention_mask=True, use_cache=False, use_labels=True, decoder_start_token_id=2, decoder_ffn_dim=32, decoder_layers=2, decoder_attention_heads=4, max_position_embeddings=30, pad_token_id=0, bos_token_id=1, eos_token_id=2, scope=None, ): self.parent = parent self.batch_size = batch_size self.decoder_seq_length = decoder_seq_length # For common tests self.seq_length = self.decoder_seq_length self.is_training = is_training self.use_attention_mask = use_attention_mask self.use_labels = use_labels self.vocab_size = vocab_size self.d_model = d_model self.hidden_size = d_model self.num_hidden_layers = decoder_layers self.decoder_layers = decoder_layers self.decoder_ffn_dim = decoder_ffn_dim self.decoder_attention_heads = decoder_attention_heads self.num_attention_heads = decoder_attention_heads self.eos_token_id = eos_token_id self.bos_token_id = bos_token_id self.pad_token_id = pad_token_id self.decoder_start_token_id = decoder_start_token_id self.use_cache = use_cache self.max_position_embeddings = max_position_embeddings self.scope = None self.decoder_key_length = decoder_seq_length self.base_model_out_len = 2 self.decoder_attention_idx = 1 def prepare_config_and_inputs(self): input_ids = ids_tensor([self.batch_size, self.decoder_seq_length], self.vocab_size) attention_mask = None if self.use_attention_mask: attention_mask = ids_tensor([self.batch_size, self.decoder_seq_length], vocab_size=2) lm_labels = None if self.use_labels: lm_labels = ids_tensor([self.batch_size, self.decoder_seq_length], self.vocab_size) config = TrOCRConfig( vocab_size=self.vocab_size, d_model=self.d_model, decoder_layers=self.decoder_layers, decoder_ffn_dim=self.decoder_ffn_dim, decoder_attention_heads=self.decoder_attention_heads, eos_token_id=self.eos_token_id, bos_token_id=self.bos_token_id, use_cache=self.use_cache, pad_token_id=self.pad_token_id, decoder_start_token_id=self.decoder_start_token_id, max_position_embeddings=self.max_position_embeddings, ) return (config, input_ids, attention_mask, lm_labels) def create_and_check_decoder_model_past( self, config, input_ids, attention_mask, lm_labels, ): config.use_cache = True model = TrOCRDecoder(config=config).to(torch_device).eval() input_ids = input_ids[:2] input_ids[input_ids == 0] += 1 # first forward pass outputs = model(input_ids, use_cache=True) outputs_use_cache_conf = model(input_ids) outputs_no_past = model(input_ids, use_cache=False) self.parent.assertTrue(len(outputs) == len(outputs_use_cache_conf)) self.parent.assertTrue(len(outputs) == len(outputs_no_past) + 1) past_key_values = outputs["past_key_values"] # create hypothetical next token and extent to next_input_ids next_tokens = ids_tensor((2, 1), config.vocab_size - 1) + 1 # append to next input_ids and next_input_ids = torch.cat([input_ids, next_tokens], dim=-1) output_from_no_past = model(next_input_ids)["last_hidden_state"] output_from_past = model(next_tokens, past_key_values=past_key_values)["last_hidden_state"] # select random slice random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item() output_from_no_past_slice = output_from_no_past[:, next_input_ids.shape[-1] - 1, random_slice_idx].detach() output_from_past_slice = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice assert torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3) def prepare_config_and_inputs_for_common(self): config_and_inputs = self.prepare_config_and_inputs() config, input_ids, attention_mask, lm_labels = config_and_inputs inputs_dict = {"input_ids": input_ids, "attention_mask": attention_mask} return config, inputs_dict @require_torch class TrOCRStandaloneDecoderModelTest(ModelTesterMixin, GenerationTesterMixin, PipelineTesterMixin, unittest.TestCase): all_model_classes = (TrOCRDecoder, TrOCRForCausalLM) if is_torch_available() else () all_generative_model_classes = (TrOCRForCausalLM,) if is_torch_available() else () pipeline_model_mapping = {"text-generation": TrOCRForCausalLM} if is_torch_available() else {} fx_compatible = True test_pruning = False def setUp(self): self.model_tester = TrOCRStandaloneDecoderModelTester(self, is_training=False) self.config_tester = ConfigTester(self, config_class=TrOCRConfig) # not implemented currently def test_inputs_embeds(self): pass # trocr has no base model def test_save_load_fast_init_from_base(self): pass # trocr has no base model def test_save_load_fast_init_to_base(self): pass def test_config(self): self.config_tester.run_common_tests() def test_decoder_model_past(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past(*config_and_inputs) # decoder cannot keep gradients def test_retain_grad_hidden_states_attentions(self): return @unittest.skip("The model doesn't support left padding") # and it's not used enough to be worth fixing :) def test_left_padding_compatibility(self): pass
transformers/tests/models/trocr/test_modeling_trocr.py/0
{ "file_path": "transformers/tests/models/trocr/test_modeling_trocr.py", "repo_id": "transformers", "token_count": 3144 }
170
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import itertools import os import random import tempfile import unittest import numpy as np from datasets import Audio, load_dataset from transformers import UnivNetFeatureExtractor from transformers.testing_utils import check_json_file_has_correct_format, require_torch, slow from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_torch_available(): import torch global_rng = random.Random() # Copied from tests.models.whisper.test_feature_extraction_whisper.floats_list def floats_list(shape, scale=1.0, rng=None, name=None): """Creates a random float32 tensor""" if rng is None: rng = global_rng values = [] for batch_idx in range(shape[0]): values.append([]) for _ in range(shape[1]): values[-1].append(rng.random() * scale) return values class UnivNetFeatureExtractionTester(unittest.TestCase): def __init__( self, parent, batch_size=7, min_seq_length=400, max_seq_length=2000, feature_size=1, sampling_rate=24000, padding_value=0.0, do_normalize=True, num_mel_bins=100, hop_length=256, win_length=1024, win_function="hann_window", filter_length=1024, max_length_s=10, fmin=0.0, fmax=12000, mel_floor=1e-9, center=False, compression_factor=1.0, compression_clip_val=1e-5, normalize_min=-11.512925148010254, normalize_max=2.3143386840820312, model_in_channels=64, pad_end_length=10, ): self.parent = parent self.batch_size = batch_size self.min_seq_length = min_seq_length self.max_seq_length = max_seq_length self.seq_length_diff = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) self.feature_size = feature_size self.sampling_rate = sampling_rate self.padding_value = padding_value self.do_normalize = do_normalize self.num_mel_bins = num_mel_bins self.hop_length = hop_length self.win_length = win_length self.win_function = win_function self.filter_length = filter_length self.max_length_s = max_length_s self.fmin = fmin self.fmax = fmax self.mel_floor = mel_floor self.center = center self.compression_factor = compression_factor self.compression_clip_val = compression_clip_val self.normalize_min = normalize_min self.normalize_max = normalize_max self.model_in_channels = model_in_channels self.pad_end_length = pad_end_length def prepare_feat_extract_dict(self): return { "feature_size": self.feature_size, "sampling_rate": self.sampling_rate, "padding_value": self.padding_value, "do_normalize": self.do_normalize, "num_mel_bins": self.num_mel_bins, "hop_length": self.hop_length, "win_length": self.win_length, "win_function": self.win_function, "filter_length": self.filter_length, "max_length_s": self.max_length_s, "fmin": self.fmin, "fmax": self.fmax, "mel_floor": self.mel_floor, "center": self.center, "compression_factor": self.compression_factor, "compression_clip_val": self.compression_clip_val, "normalize_min": self.normalize_min, "normalize_max": self.normalize_max, "model_in_channels": self.model_in_channels, "pad_end_length": self.pad_end_length, } def prepare_inputs_for_common(self, equal_length=False, numpify=False): def _flatten(list_of_lists): return list(itertools.chain(*list_of_lists)) if equal_length: speech_inputs = floats_list((self.batch_size, self.max_seq_length)) else: # make sure that inputs increase in size speech_inputs = [ _flatten(floats_list((x, self.feature_size))) for x in range(self.min_seq_length, self.max_seq_length, self.seq_length_diff) ] if numpify: speech_inputs = [np.asarray(x) for x in speech_inputs] return speech_inputs class UnivNetFeatureExtractionTest(SequenceFeatureExtractionTestMixin, unittest.TestCase): feature_extraction_class = UnivNetFeatureExtractor def setUp(self): self.feat_extract_tester = UnivNetFeatureExtractionTester(self) # Copied from tests.models.whisper.test_feature_extraction_whisper.WhisperFeatureExtractionTest.test_feat_extract_from_and_save_pretrained def test_feat_extract_from_and_save_pretrained(self): feat_extract_first = self.feature_extraction_class(**self.feat_extract_dict) with tempfile.TemporaryDirectory() as tmpdirname: saved_file = feat_extract_first.save_pretrained(tmpdirname)[0] check_json_file_has_correct_format(saved_file) feat_extract_second = self.feature_extraction_class.from_pretrained(tmpdirname) dict_first = feat_extract_first.to_dict() dict_second = feat_extract_second.to_dict() mel_1 = feat_extract_first.mel_filters mel_2 = feat_extract_second.mel_filters self.assertTrue(np.allclose(mel_1, mel_2)) self.assertEqual(dict_first, dict_second) # Copied from tests.models.whisper.test_feature_extraction_whisper.WhisperFeatureExtractionTest.test_feat_extract_to_json_file def test_feat_extract_to_json_file(self): feat_extract_first = self.feature_extraction_class(**self.feat_extract_dict) with tempfile.TemporaryDirectory() as tmpdirname: json_file_path = os.path.join(tmpdirname, "feat_extract.json") feat_extract_first.to_json_file(json_file_path) feat_extract_second = self.feature_extraction_class.from_json_file(json_file_path) dict_first = feat_extract_first.to_dict() dict_second = feat_extract_second.to_dict() mel_1 = feat_extract_first.mel_filters mel_2 = feat_extract_second.mel_filters self.assertTrue(np.allclose(mel_1, mel_2)) self.assertEqual(dict_first, dict_second) def test_call(self): # Tests that all call wrap to encode_plus and batch_encode_plus feature_extractor = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict()) # create three inputs of length 800, 1000, and 1200 speech_inputs = [floats_list((1, x))[0] for x in range(800, 1400, 200)] np_speech_inputs = [np.asarray(speech_input) for speech_input in speech_inputs] # Test feature size input_features = feature_extractor( np_speech_inputs, padding="max_length", max_length=1600, return_tensors="np" ).input_features self.assertTrue(input_features.ndim == 3) # Note: for some reason I get a weird padding error when feature_size > 1 # self.assertTrue(input_features.shape[-2] == feature_extractor.feature_size) # Note: we use the shape convention (batch_size, seq_len, num_mel_bins) self.assertTrue(input_features.shape[-1] == feature_extractor.num_mel_bins) # Test not batched input encoded_sequences_1 = feature_extractor(speech_inputs[0], return_tensors="np").input_features encoded_sequences_2 = feature_extractor(np_speech_inputs[0], return_tensors="np").input_features self.assertTrue(np.allclose(encoded_sequences_1, encoded_sequences_2, atol=1e-3)) # Test batched encoded_sequences_1 = feature_extractor(speech_inputs, return_tensors="np").input_features encoded_sequences_2 = feature_extractor(np_speech_inputs, return_tensors="np").input_features for enc_seq_1, enc_seq_2 in zip(encoded_sequences_1, encoded_sequences_2): self.assertTrue(np.allclose(enc_seq_1, enc_seq_2, atol=1e-3)) # Test 2-D numpy arrays are batched. speech_inputs = [floats_list((1, x))[0] for x in (800, 800, 800)] np_speech_inputs = np.asarray(speech_inputs) encoded_sequences_1 = feature_extractor(speech_inputs, return_tensors="np").input_features encoded_sequences_2 = feature_extractor(np_speech_inputs, return_tensors="np").input_features for enc_seq_1, enc_seq_2 in zip(encoded_sequences_1, encoded_sequences_2): self.assertTrue(np.allclose(enc_seq_1, enc_seq_2, atol=1e-3)) # Test truncation required speech_inputs = [ floats_list((1, x))[0] for x in range((feature_extractor.num_max_samples - 100), (feature_extractor.num_max_samples + 500), 200) ] np_speech_inputs = [np.asarray(speech_input) for speech_input in speech_inputs] speech_inputs_truncated = [x[: feature_extractor.num_max_samples] for x in speech_inputs] np_speech_inputs_truncated = [np.asarray(speech_input) for speech_input in speech_inputs_truncated] encoded_sequences_1 = feature_extractor(np_speech_inputs, return_tensors="np").input_features encoded_sequences_2 = feature_extractor(np_speech_inputs_truncated, return_tensors="np").input_features for enc_seq_1, enc_seq_2 in zip(encoded_sequences_1, encoded_sequences_2): self.assertTrue(np.allclose(enc_seq_1, enc_seq_2, atol=1e-3)) def test_batched_unbatched_consistency(self): feature_extractor = self.feature_extraction_class(**self.feat_extract_dict) speech_inputs = floats_list((1, 800))[0] np_speech_inputs = np.asarray(speech_inputs) # Test unbatched vs batched list encoded_sequences_1 = feature_extractor(speech_inputs, return_tensors="np").input_features encoded_sequences_2 = feature_extractor([speech_inputs], return_tensors="np").input_features for enc_seq_1, enc_seq_2 in zip(encoded_sequences_1, encoded_sequences_2): self.assertTrue(np.allclose(enc_seq_1, enc_seq_2, atol=1e-3)) # Test np.ndarray vs List[np.ndarray] encoded_sequences_1 = feature_extractor(np_speech_inputs, return_tensors="np").input_features encoded_sequences_2 = feature_extractor([np_speech_inputs], return_tensors="np").input_features for enc_seq_1, enc_seq_2 in zip(encoded_sequences_1, encoded_sequences_2): self.assertTrue(np.allclose(enc_seq_1, enc_seq_2, atol=1e-3)) # Test unbatched np.ndarray vs batched np.ndarray encoded_sequences_1 = feature_extractor(np_speech_inputs, return_tensors="np").input_features encoded_sequences_2 = feature_extractor( np.expand_dims(np_speech_inputs, axis=0), return_tensors="np" ).input_features for enc_seq_1, enc_seq_2 in zip(encoded_sequences_1, encoded_sequences_2): self.assertTrue(np.allclose(enc_seq_1, enc_seq_2, atol=1e-3)) def test_generate_noise(self): feature_extractor = self.feature_extraction_class(**self.feat_extract_dict) speech_inputs = [floats_list((1, x))[0] for x in range(800, 1400, 200)] features = feature_extractor(speech_inputs, return_noise=True) input_features = features.input_features noise_features = features.noise_sequence for spectrogram, noise in zip(input_features, noise_features): self.assertEqual(spectrogram.shape[0], noise.shape[0]) def test_pad_end(self): feature_extractor = self.feature_extraction_class(**self.feat_extract_dict) speech_inputs = [floats_list((1, x))[0] for x in range(800, 1400, 200)] input_features1 = feature_extractor(speech_inputs, padding=False, pad_end=False).input_features input_features2 = feature_extractor(speech_inputs, padding=False, pad_end=True).input_features for spectrogram1, spectrogram2 in zip(input_features1, input_features2): self.assertEqual(spectrogram1.shape[0] + self.feat_extract_tester.pad_end_length, spectrogram2.shape[0]) def test_generate_noise_and_pad_end(self): feature_extractor = self.feature_extraction_class(**self.feat_extract_dict) speech_inputs = [floats_list((1, x))[0] for x in range(800, 1400, 200)] features = feature_extractor(speech_inputs, padding=False, return_noise=True, pad_end=True) input_features = features.input_features noise_features = features.noise_sequence for spectrogram, noise in zip(input_features, noise_features): self.assertEqual(spectrogram.shape[0], noise.shape[0]) @require_torch def test_batch_decode(self): import torch feature_extractor = self.feature_extraction_class(**self.feat_extract_dict) input_lengths = list(range(800, 1400, 200)) pad_samples = feature_extractor.pad_end_length * feature_extractor.hop_length output_features = { "waveforms": torch.tensor(floats_list((3, max(input_lengths) + pad_samples))), "waveform_lengths": torch.tensor(input_lengths), } waveforms = feature_extractor.batch_decode(**output_features) for input_length, waveform in zip(input_lengths, waveforms): self.assertTrue(len(waveform.shape) == 1, msg="Individual output waveforms should be 1D") self.assertEqual(waveform.shape[0], input_length) @require_torch # Copied from tests.models.whisper.test_feature_extraction_whisper.WhisperFeatureExtractionTest.test_double_precision_pad def test_double_precision_pad(self): import torch feature_extractor = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict()) np_speech_inputs = np.random.rand(100, 32).astype(np.float64) py_speech_inputs = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: np_processed = feature_extractor.pad([{"input_features": inputs}], return_tensors="np") self.assertTrue(np_processed.input_features.dtype == np.float32) pt_processed = feature_extractor.pad([{"input_features": inputs}], return_tensors="pt") self.assertTrue(pt_processed.input_features.dtype == torch.float32) def _load_datasamples(self, num_samples): ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation") ds = ds.cast_column("audio", Audio(sampling_rate=self.feat_extract_tester.sampling_rate)) # automatic decoding with librispeech speech_samples = ds.sort("id").select(range(num_samples))[:num_samples]["audio"] return [x["array"] for x in speech_samples], [x["sampling_rate"] for x in speech_samples] @slow @require_torch def test_integration(self): # fmt: off EXPECTED_INPUT_FEATURES = torch.tensor( [ -5.0229, -6.1358, -5.8346, -5.4447, -5.6707, -5.8577, -5.0464, -5.0058, -5.6015, -5.6410, -5.4325, -5.6116, -5.3700, -5.7956, -5.3196, -5.3274, -5.9655, -5.6057, -5.8382, -5.9602, -5.9005, -5.9123, -5.7669, -6.1441, -5.5168, -5.1405, -5.3927, -6.0032, -5.5784, -5.3728 ], ) # fmt: on input_speech, sr = self._load_datasamples(1) feature_extractor = UnivNetFeatureExtractor() input_features = feature_extractor(input_speech, sampling_rate=sr[0], return_tensors="pt").input_features self.assertEqual(input_features.shape, (1, 548, 100)) input_features_mean = torch.mean(input_features) input_features_stddev = torch.std(input_features) EXPECTED_MEAN = torch.tensor(-6.18862009) EXPECTED_STDDEV = torch.tensor(2.80845642) torch.testing.assert_close(input_features_mean, EXPECTED_MEAN, atol=5e-5, rtol=5e-6) torch.testing.assert_close(input_features_stddev, EXPECTED_STDDEV) torch.testing.assert_close(input_features[0, :30, 0], EXPECTED_INPUT_FEATURES, atol=1e-4, rtol=1e-5)
transformers/tests/models/univnet/test_feature_extraction_univnet.py/0
{ "file_path": "transformers/tests/models/univnet/test_feature_extraction_univnet.py", "repo_id": "transformers", "token_count": 7246 }
171
# coding=utf-8 # Copyright 2022 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Testing suite for the PyTorch ViTMAE model. """ import math import tempfile import unittest import numpy as np from transformers import ViTMAEConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTMAEForPreTraining, ViTMAEModel from transformers.models.vit.modeling_vit import VIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class ViTMAEModelTester: def __init__( self, parent, batch_size=13, image_size=30, patch_size=2, num_channels=3, is_training=True, use_labels=True, hidden_size=32, num_hidden_layers=2, num_attention_heads=4, intermediate_size=37, hidden_act="gelu", hidden_dropout_prob=0.1, attention_probs_dropout_prob=0.1, type_sequence_label_size=10, initializer_range=0.02, num_labels=3, mask_ratio=0.6, scope=None, ): self.parent = parent self.batch_size = batch_size self.image_size = image_size self.patch_size = patch_size self.num_channels = num_channels self.is_training = is_training self.use_labels = use_labels self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.intermediate_size = intermediate_size self.hidden_act = hidden_act self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.type_sequence_label_size = type_sequence_label_size self.initializer_range = initializer_range self.mask_ratio = mask_ratio self.scope = scope # in ViTMAE, the expected sequence length = (num_patches + 1) * (1 - config.mask_ratio), rounded above # (we add 1 for the [CLS] token) num_patches = (image_size // patch_size) ** 2 self.seq_length = int(math.ceil((1 - mask_ratio) * (num_patches + 1))) def prepare_config_and_inputs(self): pixel_values = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) labels = None if self.use_labels: labels = ids_tensor([self.batch_size], self.type_sequence_label_size) config = self.get_config() return config, pixel_values, labels def get_config(self): return ViTMAEConfig( image_size=self.image_size, patch_size=self.patch_size, num_channels=self.num_channels, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, is_decoder=False, initializer_range=self.initializer_range, mask_ratio=self.mask_ratio, decoder_hidden_size=self.hidden_size, decoder_intermediate_size=self.intermediate_size, decoder_num_attention_heads=self.num_attention_heads, decoder_num_hidden_layers=self.num_hidden_layers, ) def create_and_check_model(self, config, pixel_values, labels): model = ViTMAEModel(config=config) model.to(torch_device) model.eval() result = model(pixel_values) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) def create_and_check_for_pretraining(self, config, pixel_values, labels): model = ViTMAEForPreTraining(config) model.to(torch_device) model.eval() result = model(pixel_values) num_patches = (self.image_size // self.patch_size) ** 2 expected_num_channels = self.patch_size**2 * self.num_channels self.parent.assertEqual(result.logits.shape, (self.batch_size, num_patches, expected_num_channels)) # test greyscale images config.num_channels = 1 model = ViTMAEForPreTraining(config) model.to(torch_device) model.eval() pixel_values = floats_tensor([self.batch_size, 1, self.image_size, self.image_size]) result = model(pixel_values) expected_num_channels = self.patch_size**2 self.parent.assertEqual(result.logits.shape, (self.batch_size, num_patches, expected_num_channels)) def prepare_config_and_inputs_for_common(self): config_and_inputs = self.prepare_config_and_inputs() config, pixel_values, labels = config_and_inputs inputs_dict = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class ViTMAEModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase): """ Here we also overwrite some of the tests of test_modeling_common.py, as ViTMAE does not use input_ids, inputs_embeds, attention_mask and seq_length. """ all_model_classes = (ViTMAEModel, ViTMAEForPreTraining) if is_torch_available() else () pipeline_model_mapping = {"image-feature-extraction": ViTMAEModel} if is_torch_available() else {} test_pruning = False test_torchscript = False test_resize_embeddings = False test_head_masking = False def setUp(self): self.model_tester = ViTMAEModelTester(self) self.config_tester = ConfigTester(self, config_class=ViTMAEConfig, has_text_modality=False, hidden_size=37) def test_config(self): self.config_tester.run_common_tests() @unittest.skip(reason="ViTMAE does not use inputs_embeds") def test_inputs_embeds(self): pass def test_model_common_attributes(self): config, _ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: model = model_class(config) self.assertIsInstance(model.get_input_embeddings(), (nn.Module)) x = model.get_output_embeddings() self.assertTrue(x is None or isinstance(x, nn.Linear)) def test_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*config_and_inputs) def test_for_pretraining(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*config_and_inputs) # overwrite from common since ViTMAEForPretraining has random masking, we need to fix the noise # to generate masks during test def check_pt_tf_models(self, tf_model, pt_model, pt_inputs_dict): # make masks reproducible np.random.seed(2) num_patches = int((pt_model.config.image_size // pt_model.config.patch_size) ** 2) noise = np.random.uniform(size=(self.model_tester.batch_size, num_patches)) pt_noise = torch.from_numpy(noise) # Add `noise` argument. # PT inputs will be prepared in `super().check_pt_tf_models()` with this added `noise` argument pt_inputs_dict["noise"] = pt_noise super().check_pt_tf_models(tf_model, pt_model, pt_inputs_dict) def test_save_load(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: model = model_class(config) model.to(torch_device) model.eval() # make random mask reproducible torch.manual_seed(2) with torch.no_grad(): outputs = model(**self._prepare_for_class(inputs_dict, model_class)) out_2 = outputs[0].cpu().numpy() out_2[np.isnan(out_2)] = 0 with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(tmpdirname) model = model_class.from_pretrained(tmpdirname) model.to(torch_device) # make random mask reproducible torch.manual_seed(2) with torch.no_grad(): after_outputs = model(**self._prepare_for_class(inputs_dict, model_class)) # Make sure we don't have nans out_1 = after_outputs[0].cpu().numpy() out_1[np.isnan(out_1)] = 0 max_diff = np.amax(np.abs(out_1 - out_2)) self.assertLessEqual(max_diff, 1e-5) @unittest.skip( reason="""ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load to get deterministic results.""" ) def test_determinism(self): pass @unittest.skip( reason="""ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load to get deterministic results.""" ) def test_save_load_fast_init_from_base(self): pass @unittest.skip( reason="""ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load to get deterministic results.""" ) def test_save_load_fast_init_to_base(self): pass @unittest.skip(reason="""ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load""") def test_model_outputs_equivalence(self): pass @slow def test_model_from_pretrained(self): for model_name in VIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: model = ViTMAEModel.from_pretrained(model_name) self.assertIsNotNone(model) # We will verify our results on an image of cute cats def prepare_img(): image = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png") return image @require_torch @require_vision class ViTMAEModelIntegrationTest(unittest.TestCase): @cached_property def default_image_processor(self): return ViTImageProcessor.from_pretrained("facebook/vit-mae-base") if is_vision_available() else None @slow def test_inference_for_pretraining(self): # make random mask reproducible across the PT and TF model np.random.seed(2) model = ViTMAEForPreTraining.from_pretrained("facebook/vit-mae-base").to(torch_device) image_processor = self.default_image_processor image = prepare_img() inputs = image_processor(images=image, return_tensors="pt").to(torch_device) # prepare a noise vector that will be also used for testing the TF model # (this way we can ensure that the PT and TF models operate on the same inputs) vit_mae_config = ViTMAEConfig() num_patches = int((vit_mae_config.image_size // vit_mae_config.patch_size) ** 2) noise = np.random.uniform(size=(1, num_patches)) # forward pass with torch.no_grad(): outputs = model(**inputs, noise=torch.from_numpy(noise).to(device=torch_device)) # verify the logits expected_shape = torch.Size((1, 196, 768)) self.assertEqual(outputs.logits.shape, expected_shape) expected_slice = torch.tensor( [[-0.0548, -1.7023, -0.9325], [0.3721, -0.5670, -0.2233], [0.8235, -1.3878, -0.3524]] ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3], expected_slice.to(torch_device), atol=1e-4))
transformers/tests/models/vit_mae/test_modeling_vit_mae.py/0
{ "file_path": "transformers/tests/models/vit_mae/test_modeling_vit_mae.py", "repo_id": "transformers", "token_count": 5325 }
172
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import inspect import math import multiprocessing import traceback import unittest import numpy as np from datasets import load_dataset from transformers import Wav2Vec2Config, is_flax_available from transformers.testing_utils import ( CaptureLogger, is_flaky, is_librosa_available, is_pt_flax_cross_test, is_pyctcdecode_available, require_flax, require_librosa, require_pyctcdecode, require_soundfile, run_test_in_subprocess, slow, ) from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, random_attention_mask if is_flax_available(): import jax import jax.numpy as jnp import optax from flax.traverse_util import flatten_dict from transformers import Wav2Vec2FeatureExtractor, Wav2Vec2Processor from transformers.models.wav2vec2.modeling_flax_wav2vec2 import ( FlaxWav2Vec2ForCTC, FlaxWav2Vec2ForPreTraining, FlaxWav2Vec2GumbelVectorQuantizer, FlaxWav2Vec2Model, _compute_mask_indices, _sample_negative_indices, ) if is_pyctcdecode_available(): import pyctcdecode.decoder from transformers import Wav2Vec2ProcessorWithLM from transformers.models.wav2vec2_with_lm import processing_wav2vec2_with_lm if is_librosa_available(): import librosa def _test_wav2vec2_with_lm_invalid_pool(in_queue, out_queue, timeout): error = None try: _ = in_queue.get(timeout=timeout) ds = load_dataset("common_voice", "es", split="test", streaming=True) sample = next(iter(ds)) resampled_audio = librosa.resample(sample["audio"]["array"], 48_000, 16_000) model = FlaxWav2Vec2ForCTC.from_pretrained("patrickvonplaten/wav2vec2-large-xlsr-53-spanish-with-lm") processor = Wav2Vec2ProcessorWithLM.from_pretrained("patrickvonplaten/wav2vec2-large-xlsr-53-spanish-with-lm") input_values = processor(resampled_audio, return_tensors="np").input_values logits = model(input_values).logits # use a spawn pool, which should trigger a warning if different than fork with CaptureLogger(pyctcdecode.decoder.logger) as cl, multiprocessing.get_context("spawn").Pool(1) as pool: transcription = processor.batch_decode(np.array(logits), pool).text unittest.TestCase().assertIn("Falling back to sequential decoding.", cl.out) unittest.TestCase().assertEqual(transcription[0], "bien y qué regalo vas a abrir primero") # force batch_decode to internally create a spawn pool, which should trigger a warning if different than fork multiprocessing.set_start_method("spawn", force=True) with CaptureLogger(processing_wav2vec2_with_lm.logger) as cl: transcription = processor.batch_decode(np.array(logits)).text unittest.TestCase().assertIn("Falling back to sequential decoding.", cl.out) unittest.TestCase().assertEqual(transcription[0], "bien y qué regalo vas a abrir primero") except Exception: error = f"{traceback.format_exc()}" results = {"error": error} out_queue.put(results, timeout=timeout) out_queue.join() class FlaxWav2Vec2ModelTester: def __init__( self, parent, batch_size=13, seq_length=1024, # speech is longer is_training=False, hidden_size=24, feat_extract_norm="layer", feat_extract_dropout=0.0, feat_extract_activation="gelu", conv_dim=(32, 32, 32), conv_stride=(4, 4, 4), conv_kernel=(8, 8, 8), conv_bias=False, num_conv_pos_embeddings=16, num_conv_pos_embedding_groups=2, num_hidden_layers=2, num_attention_heads=2, hidden_dropout_prob=0.1, # this is most likely not correctly set yet intermediate_size=20, layer_norm_eps=1e-5, hidden_act="gelu", initializer_range=0.02, vocab_size=32, do_stable_layer_norm=True, scope=None, ): self.parent = parent self.batch_size = batch_size self.seq_length = seq_length self.is_training = is_training self.hidden_size = hidden_size self.feat_extract_norm = feat_extract_norm self.feat_extract_dropout = feat_extract_dropout self.feat_extract_activation = feat_extract_activation self.conv_dim = conv_dim self.conv_stride = conv_stride self.conv_kernel = conv_kernel self.conv_bias = conv_bias self.num_conv_pos_embeddings = num_conv_pos_embeddings self.num_conv_pos_embedding_groups = num_conv_pos_embedding_groups self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.hidden_dropout_prob = hidden_dropout_prob self.intermediate_size = intermediate_size self.layer_norm_eps = layer_norm_eps self.hidden_act = hidden_act self.initializer_range = initializer_range self.vocab_size = vocab_size self.do_stable_layer_norm = do_stable_layer_norm self.scope = scope output_seq_length = self.seq_length for kernel, stride in zip(self.conv_kernel, self.conv_stride): output_seq_length = (output_seq_length - (kernel - 1)) / stride self.output_seq_length = int(math.ceil(output_seq_length)) self.encoder_seq_length = self.output_seq_length def prepare_config_and_inputs(self): input_values = floats_tensor([self.batch_size, self.seq_length], scale=1.0) attention_mask = random_attention_mask([self.batch_size, self.seq_length]) config = Wav2Vec2Config( do_stable_layer_norm=self.do_stable_layer_norm, hidden_size=self.hidden_size, feat_extract_norm=self.feat_extract_norm, feat_extract_dropout=self.feat_extract_dropout, feat_extract_activation=self.feat_extract_activation, conv_dim=self.conv_dim, conv_stride=self.conv_stride, conv_kernel=self.conv_kernel, conv_bias=self.conv_bias, num_conv_pos_embeddings=self.num_conv_pos_embeddings, num_conv_pos_embedding_groups=self.num_conv_pos_embedding_groups, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, hidden_dropout_prob=self.hidden_dropout_prob, intermediate_size=self.intermediate_size, layer_norm_eps=self.layer_norm_eps, hidden_act=self.hidden_act, initializer_range=self.initializer_range, vocab_size=self.vocab_size, ) return config, input_values, attention_mask def prepare_config_and_inputs_for_common(self): config_and_inputs = self.prepare_config_and_inputs() config, input_values, attention_mask = config_and_inputs inputs_dict = {"input_values": input_values, "attention_mask": attention_mask} return config, inputs_dict @require_flax class FlaxWav2Vec2ModelTest(FlaxModelTesterMixin, unittest.TestCase): all_model_classes = ( (FlaxWav2Vec2Model, FlaxWav2Vec2ForCTC, FlaxWav2Vec2ForPreTraining) if is_flax_available() else () ) def setUp(self): self.model_tester = FlaxWav2Vec2ModelTester(self) def test_train(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() input_values = inputs_dict["input_values"] attention_mask = inputs_dict["attention_mask"] model = FlaxWav2Vec2ForPreTraining(config) features_shape = ( input_values.shape[0], model._get_feat_extract_output_lengths(np.array(input_values.shape[1])), ) batch_size, sequence_length = features_shape[:2] mask_prob = 0.5 mask_length = 4 mask_time_indices = _compute_mask_indices((batch_size, sequence_length), mask_prob, mask_length) dropout_rng, gumbel_rng = jax.random.split(jax.random.PRNGKey(0)) output = model( input_values, attention_mask=attention_mask, mask_time_indices=mask_time_indices, train=True, dropout_rng=dropout_rng, gumbel_rng=gumbel_rng, )[0] self.assertTrue(output.shape == (batch_size, sequence_length, model.config.proj_codevector_dim)) # overwrite because of `input_values` def test_forward_signature(self): config, _ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: model = model_class(config) signature = inspect.signature(model.__call__) # signature.parameters is an OrderedDict => so arg_names order is deterministic arg_names = [*signature.parameters.keys()] expected_arg_names = ["input_values", "attention_mask"] self.assertListEqual(arg_names[:2], expected_arg_names) # overwrite because of `input_values` def test_jit_compilation(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__): prepared_inputs_dict = self._prepare_for_class(inputs_dict, model_class) model = model_class(config) @jax.jit def model_jitted(input_values, attention_mask=None, **kwargs): return model(input_values=input_values, attention_mask=attention_mask, **kwargs) with self.subTest("JIT Enabled"): jitted_outputs = model_jitted(**prepared_inputs_dict).to_tuple() with self.subTest("JIT Disabled"): with jax.disable_jit(): outputs = model_jitted(**prepared_inputs_dict).to_tuple() self.assertEqual(len(outputs), len(jitted_outputs)) for jitted_output, output in zip(jitted_outputs, outputs): self.assertEqual(jitted_output.shape, output.shape) def test_freeze_feature_encoder(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() input_values = inputs_dict["input_values"] attention_mask = inputs_dict["attention_mask"] model = FlaxWav2Vec2ForPreTraining(config) params = model.params # dummy loss function def compute_loss( params, input_values, attention_mask, freeze_feature_encoder: bool = False, epsilon: float = 1e-8 ): outputs = model( input_values, attention_mask=attention_mask, freeze_feature_encoder=freeze_feature_encoder, params=params, ) # compute cosine similarity of projected and projected_quantized states cosine_sim = optax.cosine_similarity( outputs.projected_states, outputs.projected_quantized_states, epsilon=epsilon ) loss = cosine_sim.sum() return loss, outputs.to_tuple() # transform the loss function to get the gradients grad_fn = jax.value_and_grad(compute_loss, has_aux=True) # compute loss, outputs and gradients for unfrozen model (loss, outputs), grads = grad_fn(params, input_values, attention_mask, freeze_feature_encoder=False) # compare to loss, outputs and gradients for frozen model (loss_frozen, outputs_frozen), grads_frozen = grad_fn( params, input_values, attention_mask, freeze_feature_encoder=True ) # ensure that the outputs and losses remain precisely equal for output, output_frozen in zip(outputs, outputs_frozen): self.assertTrue((output == output_frozen).all()) self.assertEqual(loss, loss_frozen) grads = flatten_dict(grads) grads_frozen = flatten_dict(grads_frozen) # ensure that the dicts of gradients contain the same keys self.assertEqual(grads.keys(), grads_frozen.keys()) # ensure that the gradients of the feature extractor layers are precisely zero when frozen and contain non-zero entries when unfrozen feature_extractor_grads = tuple(grads[k] for k in grads if "feature_extractor" in k) feature_extractor_grads_frozen = tuple(grads_frozen[k] for k in grads_frozen if "feature_extractor" in k) for feature_extractor_grad, feature_extractor_grad_frozen in zip( feature_extractor_grads, feature_extractor_grads_frozen ): self.assertTrue((feature_extractor_grad_frozen == 0.0).all()) self.assertTrue((feature_extractor_grad > 0.0).any()) # ensure that the gradients of all unfrozen layers remain equal, i.e. all layers excluding the frozen 'feature_extractor' grads = tuple(grads[k] for k in grads if "feature_extractor" not in k) grads_frozen = tuple(grads_frozen[k] for k in grads_frozen if "feature_extractor" not in k) for grad, grad_frozen in zip(grads, grads_frozen): self.assertTrue((grad == grad_frozen).all()) @slow def test_model_from_pretrained(self): for model_class_name in self.all_model_classes: model = model_class_name.from_pretrained("facebook/wav2vec2-large-960h-lv60-self", from_pt=True) outputs = model(np.ones((1, 1024), dtype="f4")) self.assertIsNotNone(outputs) @is_pt_flax_cross_test @is_flaky() def test_equivalence_pt_to_flax(self): super().test_equivalence_pt_to_flax() @require_flax class FlaxWav2Vec2UtilsTest(unittest.TestCase): def test_compute_mask_indices(self): batch_size = 4 sequence_length = 60 mask_prob = 0.5 mask_length = 1 mask = _compute_mask_indices((batch_size, sequence_length), mask_prob, mask_length) self.assertListEqual(mask.sum(axis=-1).tolist(), [mask_prob * sequence_length for _ in range(batch_size)]) def test_compute_mask_indices_overlap(self): batch_size = 4 sequence_length = 80 mask_prob = 0.5 mask_length = 4 mask = _compute_mask_indices((batch_size, sequence_length), mask_prob, mask_length) # because of overlap mask don't have to add up exactly to `mask_prob * sequence_length`, but have to be smaller or equal for batch_sum in mask.sum(axis=-1): self.assertTrue(int(batch_sum) <= mask_prob * sequence_length) def test_compute_mask_indices_attn_mask_overlap(self): batch_size = 4 sequence_length = 80 mask_prob = 0.5 mask_length = 4 attention_mask = np.ones((batch_size, sequence_length), dtype=np.int32) attention_mask[:2, sequence_length // 2 :] = 0 mask = _compute_mask_indices( (batch_size, sequence_length), mask_prob, mask_length, attention_mask=attention_mask ) for batch_sum in mask.sum(axis=-1): self.assertTrue(int(batch_sum) <= mask_prob * sequence_length) self.assertTrue(mask[:2, sequence_length // 2 :].sum() == 0) def test_compute_perplexity(self): probs = np.arange(100).reshape(2, 5, 10) / 100 ppl = FlaxWav2Vec2GumbelVectorQuantizer._compute_perplexity(probs) self.assertTrue(abs(ppl.item() - 141.4291) < 1e-3) # mask half of the input mask = np.ones((2,), dtype=bool) mask[0] = 0 ppl = FlaxWav2Vec2GumbelVectorQuantizer._compute_perplexity(probs, mask) self.assertTrue(abs(ppl.item() - 58.6757) < 1e-3) def test_sample_negatives(self): batch_size = 2 sequence_length = 10 hidden_size = 4 num_negatives = 3 features = (np.arange(sequence_length * hidden_size) // hidden_size).reshape( sequence_length, hidden_size ) # each value in vector consits of same value features = np.broadcast_to(features[None, :], (batch_size, sequence_length, hidden_size)) negative_indices = _sample_negative_indices(features.shape, num_negatives) features = features.reshape(-1, hidden_size) # BTC => (BxT)C # take negative vectors from sampled indices sampled_negatives = features[negative_indices.reshape(-1)] negatives = sampled_negatives.reshape(batch_size, sequence_length, num_negatives, hidden_size).transpose( 2, 0, 1, 3 ) self.assertTrue(negatives.shape == (num_negatives, batch_size, sequence_length, hidden_size)) # make sure no negatively sampled vector is actually a positive one for negative in negatives: self.assertTrue(((negative - features.reshape(negative.shape)) == 0).sum() == 0.0) # make sure that full vectors are sampled and not values of vectors # => this means that `unique()` yields a single value for `hidden_size` dim self.assertEqual(np.unique(negatives, axis=-1).shape, (num_negatives, batch_size, sequence_length, 1)) def test_sample_negatives_with_attn_mask(self): batch_size = 2 sequence_length = 10 hidden_size = 4 num_negatives = 3 features = (np.arange(sequence_length * hidden_size) // hidden_size).reshape( sequence_length, hidden_size ) # each value in vector consits of same value # second half of last input tensor is padded attention_mask = np.ones((batch_size, sequence_length), dtype=np.int8) attention_mask[-1, sequence_length // 2 :] = 0 forbidden_indices = ( np.arange(sequence_length // 2, sequence_length, dtype=np.int32) + (batch_size - 1) * sequence_length ).tolist() features = np.broadcast_to(features[None, :], (batch_size, sequence_length, hidden_size)) negative_indices = _sample_negative_indices(features.shape, num_negatives, attention_mask=attention_mask) # make sure that no padding tokens are sampled self.assertTrue(all(idx not in negative_indices for idx in forbidden_indices)) features = features.reshape(-1, hidden_size) # BTC => (BxT)C # take negative vectors from sampled indices sampled_negatives = features[negative_indices.reshape(-1)] negatives = sampled_negatives.reshape(batch_size, sequence_length, num_negatives, hidden_size).transpose( 2, 0, 1, 3 ) self.assertTrue(negatives.shape == (num_negatives, batch_size, sequence_length, hidden_size)) # make sure no negatively sampled vector is actually a positive one for negative in negatives: self.assertTrue(((negative - features.reshape(negative.shape)) == 0).sum() == 0.0) # make sure that full vectors are sampled and not just slices of vectors # => this means that `unique()` yields a single value for `hidden_size` dim self.assertEqual(np.unique(negatives, axis=-1).shape, (num_negatives, batch_size, sequence_length, 1)) @require_flax @require_soundfile @slow class FlaxWav2Vec2ModelIntegrationTest(unittest.TestCase): def _load_datasamples(self, num_samples): ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation") # automatic decoding with librispeech speech_samples = ds.sort("id").filter( lambda x: x["id"] in [f"1272-141231-000{i}" for i in range(num_samples)] )[:num_samples]["audio"] return [x["array"] for x in speech_samples] def test_inference_ctc_robust_batched(self): model = FlaxWav2Vec2ForCTC.from_pretrained("facebook/wav2vec2-large-960h-lv60-self", from_pt=True) processor = Wav2Vec2Processor.from_pretrained("facebook/wav2vec2-large-960h-lv60-self", do_lower_case=True) input_speech = self._load_datasamples(4) inputs = processor(input_speech, return_tensors="np", padding=True) input_values = inputs.input_values attention_mask = inputs.attention_mask logits = model(input_values, attention_mask=attention_mask).logits predicted_ids = jnp.argmax(logits, axis=-1) predicted_trans = processor.batch_decode(predicted_ids) EXPECTED_TRANSCRIPTIONS = [ "a man said to the universe sir i exist", "sweat covered brion's body trickling into the tight loin cloth that was the only garment he wore", "the cut on his chest still dripping blood the ache of his overstrained eyes even the soaring arena around" " him with the thousands of spectators were trivialities not worth thinking about", "his instant panic was followed by a small sharp blow high on his chest", ] self.assertListEqual(predicted_trans, EXPECTED_TRANSCRIPTIONS) def test_inference_pretrained(self): model = FlaxWav2Vec2ForPreTraining.from_pretrained("facebook/wav2vec2-large-lv60", from_pt=True) feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained( "facebook/wav2vec2-large-lv60", return_attention_mask=True ) input_speech = self._load_datasamples(2) inputs_dict = feature_extractor(input_speech, return_tensors="np", padding=True) features_shape = ( inputs_dict["input_values"].shape[0], model._get_feat_extract_output_lengths(np.array(inputs_dict["input_values"].shape[1])), ) mask_time_indices = _compute_mask_indices( features_shape, model.config.mask_time_prob, model.config.mask_time_length, min_masks=2, ) outputs = model( inputs_dict.input_values, attention_mask=inputs_dict.attention_mask, mask_time_indices=mask_time_indices, ) # compute cosine similarity cosine_sim = optax.cosine_similarity( outputs.projected_states, outputs.projected_quantized_states, epsilon=1e-8 ) # retrieve cosine sim of masked features cosine_sim_masked = cosine_sim[mask_time_indices] # ... now compare to randomly initialized model config = Wav2Vec2Config.from_pretrained("facebook/wav2vec2-large-lv60") model_rand = FlaxWav2Vec2ForPreTraining(config) outputs_rand = model_rand( inputs_dict.input_values, attention_mask=inputs_dict.attention_mask, mask_time_indices=mask_time_indices, ) # compute cosine similarity cosine_sim_rand = optax.cosine_similarity( outputs_rand.projected_states, outputs_rand.projected_quantized_states ) # retrieve cosine sim of masked features cosine_sim_masked_rand = cosine_sim_rand[mask_time_indices] # a pretrained wav2vec2 model has learned to predict the quantized latent states # => the cosine similarity between quantized states and predicted states > 0.5 # a random wav2vec2 model has not learned to predict the quantized latent states # => the cosine similarity between quantized states and predicted states is very likely < 0.1 self.assertTrue(cosine_sim_masked.mean().item() - 5 * cosine_sim_masked_rand.mean().item() > 0) @require_pyctcdecode @require_librosa def test_wav2vec2_with_lm(self): ds = load_dataset("common_voice", "es", split="test", streaming=True) sample = next(iter(ds)) resampled_audio = librosa.resample(sample["audio"]["array"], 48_000, 16_000) model = FlaxWav2Vec2ForCTC.from_pretrained("patrickvonplaten/wav2vec2-large-xlsr-53-spanish-with-lm") processor = Wav2Vec2ProcessorWithLM.from_pretrained("patrickvonplaten/wav2vec2-large-xlsr-53-spanish-with-lm") input_values = processor(resampled_audio, return_tensors="np").input_values logits = model(input_values).logits transcription = processor.batch_decode(np.array(logits)).text self.assertEqual(transcription[0], "bien y qué regalo vas a abrir primero") @require_pyctcdecode @require_librosa def test_wav2vec2_with_lm_pool(self): ds = load_dataset("common_voice", "es", split="test", streaming=True) sample = next(iter(ds)) resampled_audio = librosa.resample(sample["audio"]["array"], 48_000, 16_000) model = FlaxWav2Vec2ForCTC.from_pretrained("patrickvonplaten/wav2vec2-large-xlsr-53-spanish-with-lm") processor = Wav2Vec2ProcessorWithLM.from_pretrained("patrickvonplaten/wav2vec2-large-xlsr-53-spanish-with-lm") input_values = processor(resampled_audio, return_tensors="np").input_values logits = model(input_values).logits # test user-managed pool with multiprocessing.get_context("fork").Pool(2) as pool: transcription = processor.batch_decode(np.array(logits), pool).text self.assertEqual(transcription[0], "bien y qué regalo vas a abrir primero") # user-managed pool + num_processes should trigger a warning with CaptureLogger(processing_wav2vec2_with_lm.logger) as cl, multiprocessing.get_context("fork").Pool( 2 ) as pool: transcription = processor.batch_decode(np.array(logits), pool, num_processes=2).text self.assertIn("num_process", cl.out) self.assertIn("it will be ignored", cl.out) self.assertEqual(transcription[0], "bien y qué regalo vas a abrir primero") @require_pyctcdecode @require_librosa def test_wav2vec2_with_lm_invalid_pool(self): run_test_in_subprocess(test_case=self, target_func=_test_wav2vec2_with_lm_invalid_pool, inputs=None)
transformers/tests/models/wav2vec2/test_modeling_flax_wav2vec2.py/0
{ "file_path": "transformers/tests/models/wav2vec2/test_modeling_flax_wav2vec2.py", "repo_id": "transformers", "token_count": 11180 }
173
# coding=utf-8 # Copyright 2020 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest from transformers import XLMConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( XLMForMultipleChoice, XLMForQuestionAnswering, XLMForQuestionAnsweringSimple, XLMForSequenceClassification, XLMForTokenClassification, XLMModel, XLMWithLMHeadModel, ) from transformers.models.xlm.modeling_xlm import XLM_PRETRAINED_MODEL_ARCHIVE_LIST class XLMModelTester: def __init__( self, parent, batch_size=13, seq_length=7, is_training=True, use_input_lengths=True, use_token_type_ids=True, use_labels=True, gelu_activation=True, sinusoidal_embeddings=False, causal=False, asm=False, n_langs=2, vocab_size=99, n_special=0, hidden_size=32, num_hidden_layers=2, num_attention_heads=4, hidden_dropout_prob=0.1, attention_probs_dropout_prob=0.1, max_position_embeddings=512, type_sequence_label_size=2, initializer_range=0.02, num_labels=2, num_choices=4, summary_type="last", use_proj=True, scope=None, bos_token_id=0, ): self.parent = parent self.batch_size = batch_size self.seq_length = seq_length self.is_training = is_training self.use_input_lengths = use_input_lengths self.use_token_type_ids = use_token_type_ids self.use_labels = use_labels self.gelu_activation = gelu_activation self.sinusoidal_embeddings = sinusoidal_embeddings self.causal = causal self.asm = asm self.n_langs = n_langs self.vocab_size = vocab_size self.n_special = n_special self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.max_position_embeddings = max_position_embeddings self.type_sequence_label_size = type_sequence_label_size self.initializer_range = initializer_range self.num_labels = num_labels self.num_choices = num_choices self.summary_type = summary_type self.use_proj = use_proj self.scope = scope self.bos_token_id = bos_token_id def prepare_config_and_inputs(self): input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) input_mask = random_attention_mask([self.batch_size, self.seq_length]) input_lengths = None if self.use_input_lengths: input_lengths = ( ids_tensor([self.batch_size], vocab_size=2) + self.seq_length - 2 ) # small variation of seq_length token_type_ids = None if self.use_token_type_ids: token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.n_langs) sequence_labels = None token_labels = None is_impossible_labels = None if self.use_labels: sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size) token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels) is_impossible_labels = ids_tensor([self.batch_size], 2).float() choice_labels = ids_tensor([self.batch_size], self.num_choices) config = self.get_config() return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def get_config(self): return XLMConfig( vocab_size=self.vocab_size, n_special=self.n_special, emb_dim=self.hidden_size, n_layers=self.num_hidden_layers, n_heads=self.num_attention_heads, dropout=self.hidden_dropout_prob, attention_dropout=self.attention_probs_dropout_prob, gelu_activation=self.gelu_activation, sinusoidal_embeddings=self.sinusoidal_embeddings, asm=self.asm, causal=self.causal, n_langs=self.n_langs, max_position_embeddings=self.max_position_embeddings, initializer_range=self.initializer_range, summary_type=self.summary_type, use_proj=self.use_proj, num_labels=self.num_labels, bos_token_id=self.bos_token_id, ) def create_and_check_xlm_model( self, config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ): model = XLMModel(config=config) model.to(torch_device) model.eval() result = model(input_ids, lengths=input_lengths, langs=token_type_ids) result = model(input_ids, langs=token_type_ids) result = model(input_ids) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) def create_and_check_xlm_lm_head( self, config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ): model = XLMWithLMHeadModel(config) model.to(torch_device) model.eval() result = model(input_ids, token_type_ids=token_type_ids, labels=token_labels) self.parent.assertEqual(result.loss.shape, ()) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size)) def create_and_check_xlm_simple_qa( self, config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ): model = XLMForQuestionAnsweringSimple(config) model.to(torch_device) model.eval() outputs = model(input_ids) outputs = model(input_ids, start_positions=sequence_labels, end_positions=sequence_labels) result = outputs self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length)) def create_and_check_xlm_qa( self, config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ): model = XLMForQuestionAnswering(config) model.to(torch_device) model.eval() result = model(input_ids) result_with_labels = model( input_ids, start_positions=sequence_labels, end_positions=sequence_labels, cls_index=sequence_labels, is_impossible=is_impossible_labels, p_mask=input_mask, ) result_with_labels = model( input_ids, start_positions=sequence_labels, end_positions=sequence_labels, cls_index=sequence_labels, is_impossible=is_impossible_labels, ) (total_loss,) = result_with_labels.to_tuple() result_with_labels = model(input_ids, start_positions=sequence_labels, end_positions=sequence_labels) (total_loss,) = result_with_labels.to_tuple() self.parent.assertEqual(result_with_labels.loss.shape, ()) self.parent.assertEqual(result.start_top_log_probs.shape, (self.batch_size, model.config.start_n_top)) self.parent.assertEqual(result.start_top_index.shape, (self.batch_size, model.config.start_n_top)) self.parent.assertEqual( result.end_top_log_probs.shape, (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual( result.end_top_index.shape, (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual(result.cls_logits.shape, (self.batch_size,)) def create_and_check_xlm_sequence_classif( self, config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ): model = XLMForSequenceClassification(config) model.to(torch_device) model.eval() result = model(input_ids) result = model(input_ids, labels=sequence_labels) self.parent.assertEqual(result.loss.shape, ()) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.type_sequence_label_size)) def create_and_check_xlm_token_classif( self, config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ): config.num_labels = self.num_labels model = XLMForTokenClassification(config) model.to(torch_device) model.eval() result = model(input_ids, attention_mask=input_mask, labels=token_labels) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels)) def create_and_check_xlm_for_multiple_choice( self, config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ): config.num_choices = self.num_choices model = XLMForMultipleChoice(config=config) model.to(torch_device) model.eval() multiple_choice_inputs_ids = input_ids.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous() multiple_choice_token_type_ids = token_type_ids.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous() multiple_choice_input_mask = input_mask.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous() result = model( multiple_choice_inputs_ids, attention_mask=multiple_choice_input_mask, token_type_ids=multiple_choice_token_type_ids, labels=choice_labels, ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_choices)) def prepare_config_and_inputs_for_common(self): config_and_inputs = self.prepare_config_and_inputs() ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) = config_and_inputs inputs_dict = {"input_ids": input_ids, "token_type_ids": token_type_ids, "lengths": input_lengths} return config, inputs_dict @require_torch class XLMModelTest(ModelTesterMixin, GenerationTesterMixin, PipelineTesterMixin, unittest.TestCase): all_model_classes = ( ( XLMModel, XLMWithLMHeadModel, XLMForQuestionAnswering, XLMForSequenceClassification, XLMForQuestionAnsweringSimple, XLMForTokenClassification, XLMForMultipleChoice, ) if is_torch_available() else () ) all_generative_model_classes = ( (XLMWithLMHeadModel,) if is_torch_available() else () ) # TODO (PVP): Check other models whether language generation is also applicable pipeline_model_mapping = ( { "feature-extraction": XLMModel, "fill-mask": XLMWithLMHeadModel, "question-answering": XLMForQuestionAnsweringSimple, "text-classification": XLMForSequenceClassification, "text-generation": XLMWithLMHeadModel, "token-classification": XLMForTokenClassification, "zero-shot": XLMForSequenceClassification, } if is_torch_available() else {} ) # TODO: Fix the failed tests def is_pipeline_test_to_skip( self, pipeline_test_casse_name, config_class, model_architecture, tokenizer_name, processor_name ): if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith("Fast") ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False # XLM has 2 QA models -> need to manually set the correct labels for one of them here def _prepare_for_class(self, inputs_dict, model_class, return_labels=False): inputs_dict = super()._prepare_for_class(inputs_dict, model_class, return_labels=return_labels) if return_labels: if model_class.__name__ == "XLMForQuestionAnswering": inputs_dict["start_positions"] = torch.zeros( self.model_tester.batch_size, dtype=torch.long, device=torch_device ) inputs_dict["end_positions"] = torch.zeros( self.model_tester.batch_size, dtype=torch.long, device=torch_device ) return inputs_dict def setUp(self): self.model_tester = XLMModelTester(self) self.config_tester = ConfigTester(self, config_class=XLMConfig, emb_dim=37) def test_config(self): self.config_tester.run_common_tests() def test_xlm_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_model(*config_and_inputs) def test_xlm_lm_head(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_lm_head(*config_and_inputs) def test_xlm_simple_qa(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_simple_qa(*config_and_inputs) def test_xlm_qa(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_qa(*config_and_inputs) def test_xlm_sequence_classif(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_sequence_classif(*config_and_inputs) def test_xlm_token_classif(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_token_classif(*config_and_inputs) def test_xlm_for_multiple_choice(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_for_multiple_choice(*config_and_inputs) def _check_attentions_for_generate( self, batch_size, attentions, min_length, max_length, config, use_cache=False, num_beam_groups=1 ): self.assertIsInstance(attentions, tuple) self.assertListEqual( [isinstance(iter_attentions, tuple) for iter_attentions in attentions], [True] * len(attentions) ) self.assertEqual(len(attentions), (max_length - min_length) * num_beam_groups) for idx, iter_attentions in enumerate(attentions): # adds PAD dummy token tgt_len = min_length + idx + 1 src_len = min_length + idx + 1 expected_shape = ( batch_size * num_beam_groups, config.num_attention_heads, tgt_len, src_len, ) # check attn size self.assertListEqual( [layer_attention.shape for layer_attention in iter_attentions], [expected_shape] * len(iter_attentions) ) def _check_hidden_states_for_generate( self, batch_size, hidden_states, min_length, max_length, config, use_cache=False, num_beam_groups=1 ): self.assertIsInstance(hidden_states, tuple) self.assertListEqual( [isinstance(iter_hidden_states, tuple) for iter_hidden_states in hidden_states], [True] * len(hidden_states), ) self.assertEqual(len(hidden_states), (max_length - min_length) * num_beam_groups) for idx, iter_hidden_states in enumerate(hidden_states): # adds PAD dummy token seq_len = min_length + idx + 1 expected_shape = (batch_size * num_beam_groups, seq_len, config.hidden_size) # check hidden size self.assertListEqual( [layer_hidden_states.shape for layer_hidden_states in iter_hidden_states], [expected_shape] * len(iter_hidden_states), ) pass @slow def test_model_from_pretrained(self): for model_name in XLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: model = XLMModel.from_pretrained(model_name) self.assertIsNotNone(model) @require_torch class XLMModelLanguageGenerationTest(unittest.TestCase): @slow def test_lm_generate_xlm_mlm_en_2048(self): model = XLMWithLMHeadModel.from_pretrained("FacebookAI/xlm-mlm-en-2048") model.to(torch_device) input_ids = torch.tensor([[14, 447]], dtype=torch.long, device=torch_device) # the president expected_output_ids = [ 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, ] # the president the president the president the president the president the president the president the president the president the president # TODO(PVP): this and other input_ids I tried for generation give pretty bad results. Not sure why. Model might just not be made for auto-regressive inference output_ids = model.generate(input_ids, do_sample=False) self.assertListEqual(output_ids[0].cpu().numpy().tolist(), expected_output_ids)
transformers/tests/models/xlm/test_modeling_xlm.py/0
{ "file_path": "transformers/tests/models/xlm/test_modeling_xlm.py", "repo_id": "transformers", "token_count": 9337 }
174
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest from huggingface_hub.utils import insecure_hashlib from transformers import MODEL_FOR_DEPTH_ESTIMATION_MAPPING, is_torch_available, is_vision_available from transformers.pipelines import DepthEstimationPipeline, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_timm, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_torch_available(): import torch if is_vision_available(): from PIL import Image else: class Image: @staticmethod def open(*args, **kwargs): pass def hashimage(image: Image) -> str: m = insecure_hashlib.md5(image.tobytes()) return m.hexdigest() @is_pipeline_test @require_vision @require_timm @require_torch class DepthEstimationPipelineTests(unittest.TestCase): model_mapping = MODEL_FOR_DEPTH_ESTIMATION_MAPPING def get_test_pipeline(self, model, tokenizer, processor): depth_estimator = DepthEstimationPipeline(model=model, image_processor=processor) return depth_estimator, [ "./tests/fixtures/tests_samples/COCO/000000039769.png", "./tests/fixtures/tests_samples/COCO/000000039769.png", ] def run_pipeline_test(self, depth_estimator, examples): outputs = depth_estimator("./tests/fixtures/tests_samples/COCO/000000039769.png") self.assertEqual({"predicted_depth": ANY(torch.Tensor), "depth": ANY(Image.Image)}, outputs) import datasets # we use revision="refs/pr/1" until the PR is merged # https://hf.co/datasets/hf-internal-testing/fixtures_image_utils/discussions/1 dataset = datasets.load_dataset("hf-internal-testing/fixtures_image_utils", split="test", revision="refs/pr/1") outputs = depth_estimator( [ Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png"), "http://images.cocodataset.org/val2017/000000039769.jpg", # RGBA dataset[0]["image"], # LA dataset[1]["image"], # L dataset[2]["image"], ] ) self.assertEqual( [ {"predicted_depth": ANY(torch.Tensor), "depth": ANY(Image.Image)}, {"predicted_depth": ANY(torch.Tensor), "depth": ANY(Image.Image)}, {"predicted_depth": ANY(torch.Tensor), "depth": ANY(Image.Image)}, {"predicted_depth": ANY(torch.Tensor), "depth": ANY(Image.Image)}, {"predicted_depth": ANY(torch.Tensor), "depth": ANY(Image.Image)}, ], outputs, ) @require_tf @unittest.skip("Depth estimation is not implemented in TF") def test_small_model_tf(self): pass @slow @require_torch def test_large_model_pt(self): model_id = "Intel/dpt-large" depth_estimator = pipeline("depth-estimation", model=model_id) outputs = depth_estimator("http://images.cocodataset.org/val2017/000000039769.jpg") outputs["depth"] = hashimage(outputs["depth"]) # This seems flaky. # self.assertEqual(outputs["depth"], "1a39394e282e9f3b0741a90b9f108977") self.assertEqual(nested_simplify(outputs["predicted_depth"].max().item()), 29.304) self.assertEqual(nested_simplify(outputs["predicted_depth"].min().item()), 2.662) @require_torch def test_small_model_pt(self): # This is highly irregular to have no small tests. self.skipTest("There is not hf-internal-testing tiny model for either GLPN nor DPT")
transformers/tests/pipelines/test_pipelines_depth_estimation.py/0
{ "file_path": "transformers/tests/pipelines/test_pipelines_depth_estimation.py", "repo_id": "transformers", "token_count": 1794 }
175
# Copyright 2020 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest from transformers import ( MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_CAUSAL_LM_MAPPING, TextGenerationPipeline, logging, pipeline, ) from transformers.testing_utils import ( CaptureLogger, is_pipeline_test, require_accelerate, require_tf, require_torch, require_torch_accelerator, require_torch_gpu, require_torch_or_tf, torch_device, ) from .test_pipelines_common import ANY @is_pipeline_test @require_torch_or_tf class TextGenerationPipelineTests(unittest.TestCase): model_mapping = MODEL_FOR_CAUSAL_LM_MAPPING tf_model_mapping = TF_MODEL_FOR_CAUSAL_LM_MAPPING @require_torch def test_small_model_pt(self): text_generator = pipeline(task="text-generation", model="sshleifer/tiny-ctrl", framework="pt") # Using `do_sample=False` to force deterministic output outputs = text_generator("This is a test", do_sample=False) self.assertEqual( outputs, [ { "generated_text": ( "This is a test ☃ ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy oscope." " oscope. FiliFili@@" ) } ], ) outputs = text_generator(["This is a test", "This is a second test"]) self.assertEqual( outputs, [ [ { "generated_text": ( "This is a test ☃ ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy oscope." " oscope. FiliFili@@" ) } ], [ { "generated_text": ( "This is a second test ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy" " oscope. oscope. FiliFili@@" ) } ], ], ) outputs = text_generator("This is a test", do_sample=True, num_return_sequences=2, return_tensors=True) self.assertEqual( outputs, [ {"generated_token_ids": ANY(list)}, {"generated_token_ids": ANY(list)}, ], ) ## -- test tokenizer_kwargs test_str = "testing tokenizer kwargs. using truncation must result in a different generation." input_len = len(text_generator.tokenizer(test_str)["input_ids"]) output_str, output_str_with_truncation = ( text_generator(test_str, do_sample=False, return_full_text=False, min_new_tokens=1)[0]["generated_text"], text_generator( test_str, do_sample=False, return_full_text=False, min_new_tokens=1, truncation=True, max_length=input_len + 1, )[0]["generated_text"], ) assert output_str != output_str_with_truncation # results must be different because one had truncation # -- what is the point of this test? padding is hardcoded False in the pipeline anyway text_generator.tokenizer.pad_token_id = text_generator.model.config.eos_token_id text_generator.tokenizer.pad_token = "<pad>" outputs = text_generator( ["This is a test", "This is a second test"], do_sample=True, num_return_sequences=2, batch_size=2, return_tensors=True, ) self.assertEqual( outputs, [ [ {"generated_token_ids": ANY(list)}, {"generated_token_ids": ANY(list)}, ], [ {"generated_token_ids": ANY(list)}, {"generated_token_ids": ANY(list)}, ], ], ) @require_torch def test_small_chat_model_pt(self): text_generator = pipeline( task="text-generation", model="rocketknight1/tiny-gpt2-with-chatml-template", framework="pt" ) # Using `do_sample=False` to force deterministic output chat1 = [ {"role": "system", "content": "This is a system message."}, {"role": "user", "content": "This is a test"}, {"role": "assistant", "content": "This is a reply"}, ] chat2 = [ {"role": "system", "content": "This is a system message."}, {"role": "user", "content": "This is a second test"}, {"role": "assistant", "content": "This is a reply"}, ] outputs = text_generator(chat1, do_sample=False, max_new_tokens=10) expected_chat1 = chat1 + [ { "role": "assistant", "content": " factors factors factors factors factors factors factors factors factors factors", } ] self.assertEqual( outputs, [ {"generated_text": expected_chat1}, ], ) outputs = text_generator([chat1, chat2], do_sample=False, max_new_tokens=10) expected_chat2 = chat2 + [ { "role": "assistant", "content": " factors factors factors factors factors factors factors factors factors factors", } ] self.assertEqual( outputs, [ [{"generated_text": expected_chat1}], [{"generated_text": expected_chat2}], ], ) @require_tf def test_small_model_tf(self): text_generator = pipeline(task="text-generation", model="sshleifer/tiny-ctrl", framework="tf") # Using `do_sample=False` to force deterministic output outputs = text_generator("This is a test", do_sample=False) self.assertEqual( outputs, [ { "generated_text": ( "This is a test FeyFeyFey(Croatis.), s.), Cannes Cannes Cannes 閲閲Cannes Cannes Cannes 攵" " please," ) } ], ) outputs = text_generator(["This is a test", "This is a second test"], do_sample=False) self.assertEqual( outputs, [ [ { "generated_text": ( "This is a test FeyFeyFey(Croatis.), s.), Cannes Cannes Cannes 閲閲Cannes Cannes Cannes 攵" " please," ) } ], [ { "generated_text": ( "This is a second test Chieftain Chieftain prefecture prefecture prefecture Cannes Cannes" " Cannes 閲閲Cannes Cannes Cannes 攵 please," ) } ], ], ) @require_tf def test_small_chat_model_tf(self): text_generator = pipeline( task="text-generation", model="rocketknight1/tiny-gpt2-with-chatml-template", framework="tf" ) # Using `do_sample=False` to force deterministic output chat1 = [ {"role": "system", "content": "This is a system message."}, {"role": "user", "content": "This is a test"}, {"role": "assistant", "content": "This is a reply"}, ] chat2 = [ {"role": "system", "content": "This is a system message."}, {"role": "user", "content": "This is a second test"}, {"role": "assistant", "content": "This is a reply"}, ] outputs = text_generator(chat1, do_sample=False, max_new_tokens=10) expected_chat1 = chat1 + [ { "role": "assistant", "content": " factors factors factors factors factors factors factors factors factors factors", } ] self.assertEqual( outputs, [ {"generated_text": expected_chat1}, ], ) outputs = text_generator([chat1, chat2], do_sample=False, max_new_tokens=10) expected_chat2 = chat2 + [ { "role": "assistant", "content": " factors factors factors factors factors factors factors factors factors factors", } ] self.assertEqual( outputs, [ [{"generated_text": expected_chat1}], [{"generated_text": expected_chat2}], ], ) def get_test_pipeline(self, model, tokenizer, processor): text_generator = TextGenerationPipeline(model=model, tokenizer=tokenizer) return text_generator, ["This is a test", "Another test"] def test_stop_sequence_stopping_criteria(self): prompt = """Hello I believe in""" text_generator = pipeline("text-generation", model="hf-internal-testing/tiny-random-gpt2") output = text_generator(prompt) self.assertEqual( output, [{"generated_text": "Hello I believe in fe fe fe fe fe fe fe fe fe fe fe fe"}], ) output = text_generator(prompt, stop_sequence=" fe") self.assertEqual(output, [{"generated_text": "Hello I believe in fe"}]) def run_pipeline_test(self, text_generator, _): model = text_generator.model tokenizer = text_generator.tokenizer outputs = text_generator("This is a test") self.assertEqual(outputs, [{"generated_text": ANY(str)}]) self.assertTrue(outputs[0]["generated_text"].startswith("This is a test")) outputs = text_generator("This is a test", return_full_text=False) self.assertEqual(outputs, [{"generated_text": ANY(str)}]) self.assertNotIn("This is a test", outputs[0]["generated_text"]) text_generator = pipeline(task="text-generation", model=model, tokenizer=tokenizer, return_full_text=False) outputs = text_generator("This is a test") self.assertEqual(outputs, [{"generated_text": ANY(str)}]) self.assertNotIn("This is a test", outputs[0]["generated_text"]) outputs = text_generator("This is a test", return_full_text=True) self.assertEqual(outputs, [{"generated_text": ANY(str)}]) self.assertTrue(outputs[0]["generated_text"].startswith("This is a test")) outputs = text_generator(["This is great !", "Something else"], num_return_sequences=2, do_sample=True) self.assertEqual( outputs, [ [{"generated_text": ANY(str)}, {"generated_text": ANY(str)}], [{"generated_text": ANY(str)}, {"generated_text": ANY(str)}], ], ) if text_generator.tokenizer.pad_token is not None: outputs = text_generator( ["This is great !", "Something else"], num_return_sequences=2, batch_size=2, do_sample=True ) self.assertEqual( outputs, [ [{"generated_text": ANY(str)}, {"generated_text": ANY(str)}], [{"generated_text": ANY(str)}, {"generated_text": ANY(str)}], ], ) with self.assertRaises(ValueError): outputs = text_generator("test", return_full_text=True, return_text=True) with self.assertRaises(ValueError): outputs = text_generator("test", return_full_text=True, return_tensors=True) with self.assertRaises(ValueError): outputs = text_generator("test", return_text=True, return_tensors=True) # Empty prompt is slighly special # it requires BOS token to exist. # Special case for Pegasus which will always append EOS so will # work even without BOS. if ( text_generator.tokenizer.bos_token_id is not None or "Pegasus" in tokenizer.__class__.__name__ or "Git" in model.__class__.__name__ ): outputs = text_generator("") self.assertEqual(outputs, [{"generated_text": ANY(str)}]) else: with self.assertRaises((ValueError, AssertionError)): outputs = text_generator("") if text_generator.framework == "tf": # TF generation does not support max_new_tokens, and it's impossible # to control long generation with only max_length without # fancy calculation, dismissing tests for now. return # We don't care about infinite range models. # They already work. # Skip this test for XGLM, since it uses sinusoidal positional embeddings which are resized on-the-fly. EXTRA_MODELS_CAN_HANDLE_LONG_INPUTS = [ "RwkvForCausalLM", "XGLMForCausalLM", "GPTNeoXForCausalLM", "FuyuForCausalLM", ] if ( tokenizer.model_max_length < 10000 and text_generator.model.__class__.__name__ not in EXTRA_MODELS_CAN_HANDLE_LONG_INPUTS ): # Handling of large generations with self.assertRaises((RuntimeError, IndexError, ValueError, AssertionError)): text_generator("This is a test" * 500, max_new_tokens=20) outputs = text_generator("This is a test" * 500, handle_long_generation="hole", max_new_tokens=20) # Hole strategy cannot work with self.assertRaises(ValueError): text_generator( "This is a test" * 500, handle_long_generation="hole", max_new_tokens=tokenizer.model_max_length + 10, ) @require_torch @require_accelerate @require_torch_gpu def test_small_model_pt_bloom_accelerate(self): import torch # Classic `model_kwargs` pipe = pipeline( model="hf-internal-testing/tiny-random-bloom", model_kwargs={"device_map": "auto", "torch_dtype": torch.bfloat16}, ) self.assertEqual(pipe.model.lm_head.weight.dtype, torch.bfloat16) out = pipe("This is a test") self.assertEqual( out, [ { "generated_text": ( "This is a test test test test test test test test test test test test test test test test" " test" ) } ], ) # Upgraded those two to real pipeline arguments (they just get sent for the model as they're unlikely to mean anything else.) pipe = pipeline(model="hf-internal-testing/tiny-random-bloom", device_map="auto", torch_dtype=torch.bfloat16) self.assertEqual(pipe.model.lm_head.weight.dtype, torch.bfloat16) out = pipe("This is a test") self.assertEqual( out, [ { "generated_text": ( "This is a test test test test test test test test test test test test test test test test" " test" ) } ], ) # torch_dtype will be automatically set to float32 if not provided - check: https://github.com/huggingface/transformers/pull/20602 pipe = pipeline(model="hf-internal-testing/tiny-random-bloom", device_map="auto") self.assertEqual(pipe.model.lm_head.weight.dtype, torch.float32) out = pipe("This is a test") self.assertEqual( out, [ { "generated_text": ( "This is a test test test test test test test test test test test test test test test test" " test" ) } ], ) @require_torch @require_torch_accelerator def test_small_model_fp16(self): import torch pipe = pipeline( model="hf-internal-testing/tiny-random-bloom", device=torch_device, torch_dtype=torch.float16, ) pipe("This is a test") @require_torch @require_accelerate @require_torch_accelerator def test_pipeline_accelerate_top_p(self): import torch pipe = pipeline(model="hf-internal-testing/tiny-random-bloom", device_map="auto", torch_dtype=torch.float16) pipe("This is a test", do_sample=True, top_p=0.5) def test_pipeline_length_setting_warning(self): prompt = """Hello world""" text_generator = pipeline("text-generation", model="hf-internal-testing/tiny-random-gpt2") if text_generator.model.framework == "tf": logger = logging.get_logger("transformers.generation.tf_utils") else: logger = logging.get_logger("transformers.generation.utils") logger_msg = "Both `max_new_tokens`" # The beggining of the message to be checked in this test # Both are set by the user -> log warning with CaptureLogger(logger) as cl: _ = text_generator(prompt, max_length=10, max_new_tokens=1) self.assertIn(logger_msg, cl.out) # The user only sets one -> no warning with CaptureLogger(logger) as cl: _ = text_generator(prompt, max_new_tokens=1) self.assertNotIn(logger_msg, cl.out) with CaptureLogger(logger) as cl: _ = text_generator(prompt, max_length=10) self.assertNotIn(logger_msg, cl.out)
transformers/tests/pipelines/test_pipelines_text_generation.py/0
{ "file_path": "transformers/tests/pipelines/test_pipelines_text_generation.py", "repo_id": "transformers", "token_count": 9024 }
176
# coding=utf-8 # Copyright 2022 The HuggingFace Team Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a clone of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import gc import importlib.metadata import tempfile import unittest from packaging import version from transformers import ( AutoConfig, AutoModel, AutoModelForCausalLM, AutoModelForSeq2SeqLM, AutoModelForSequenceClassification, AutoTokenizer, BitsAndBytesConfig, pipeline, ) from transformers.testing_utils import ( is_bitsandbytes_available, is_torch_available, require_accelerate, require_bitsandbytes, require_torch, require_torch_gpu, require_torch_multi_gpu, slow, torch_device, ) def get_some_linear_layer(model): if model.config.model_type == "gpt2": return model.transformer.h[0].mlp.c_fc elif model.config.model_type == "opt": try: return model.decoder.layers[0].fc1 except AttributeError: # for AutoModelforCausalLM return model.model.decoder.layers[0].fc1 else: return model.transformer.h[0].mlp.dense_4h_to_h if is_torch_available(): import torch import torch.nn as nn class LoRALayer(nn.Module): """Wraps a linear layer with LoRA-like adapter - Used for testing purposes only""" def __init__(self, module: nn.Module, rank: int): super().__init__() self.module = module self.adapter = nn.Sequential( nn.Linear(module.in_features, rank, bias=False), nn.Linear(rank, module.out_features, bias=False), ) small_std = (2.0 / (5 * min(module.in_features, module.out_features))) ** 0.5 nn.init.normal_(self.adapter[0].weight, std=small_std) nn.init.zeros_(self.adapter[1].weight) self.adapter.to(module.weight.device) def forward(self, input, *args, **kwargs): return self.module(input, *args, **kwargs) + self.adapter(input) if is_bitsandbytes_available(): import bitsandbytes as bnb @require_bitsandbytes @require_accelerate @require_torch @require_torch_gpu @slow class Base4bitTest(unittest.TestCase): # We keep the constants inside the init function and model loading inside setUp function # We need to test on relatively large models (aka >1b parameters otherwise the quantiztion may not work as expected) # Therefore here we use only bloom-1b3 to test our module model_name = "bigscience/bloom-1b7" # Constant values EXPECTED_RELATIVE_DIFFERENCE = ( 2.109659552692574 # This was obtained on a RTX Titan so the number might slightly change ) input_text = "Hello my name is" EXPECTED_OUTPUTS = set() EXPECTED_OUTPUTS.add("Hello my name is John and I am a professional photographer. I") EXPECTED_OUTPUTS.add("Hello my name is John.\nI am a friend of your father.\n") EXPECTED_OUTPUTS.add("Hello my name is John Doe, I am a student at the University") MAX_NEW_TOKENS = 10 def setUp(self): # Models and tokenizer self.tokenizer = AutoTokenizer.from_pretrained(self.model_name) class Bnb4BitTest(Base4bitTest): def setUp(self): super().setUp() # Models and tokenizer self.model_fp16 = AutoModelForCausalLM.from_pretrained( self.model_name, torch_dtype=torch.float16, device_map="auto" ) self.model_4bit = AutoModelForCausalLM.from_pretrained(self.model_name, load_in_4bit=True, device_map="auto") def tearDown(self): r""" TearDown function needs to be called at the end of each test to free the GPU memory and cache, also to avoid unexpected behaviors. Please see: https://discuss.pytorch.org/t/how-can-we-release-gpu-memory-cache/14530/27 """ del self.model_fp16 del self.model_4bit gc.collect() torch.cuda.empty_cache() def test_quantization_num_parameters(self): r""" Test if the number of returned parameters is correct See: https://github.com/huggingface/transformers/issues/25978 """ num_params_4bit = self.model_4bit.num_parameters() num_params_fp16 = self.model_fp16.num_parameters() self.assertEqual(num_params_4bit, num_params_fp16) def test_quantization_config_json_serialization(self): r""" A simple test to check if the quantization config is correctly serialized and deserialized """ config = self.model_4bit.config self.assertTrue(hasattr(config, "quantization_config")) _ = config.to_dict() _ = config.to_diff_dict() _ = config.to_json_string() def test_memory_footprint(self): r""" A simple test to check if the model conversion has been done correctly by checking on the memory footprint of the converted model and the class type of the linear layers of the converted models """ from bitsandbytes.nn import Params4bit mem_fp16 = self.model_fp16.get_memory_footprint() mem_4bit = self.model_4bit.get_memory_footprint() self.assertAlmostEqual(mem_fp16 / mem_4bit, self.EXPECTED_RELATIVE_DIFFERENCE) linear = get_some_linear_layer(self.model_4bit) self.assertTrue(linear.weight.__class__ == Params4bit) def test_original_dtype(self): r""" A simple test to check if the model succesfully stores the original dtype """ self.assertTrue(hasattr(self.model_4bit.config, "_pre_quantization_dtype")) self.assertFalse(hasattr(self.model_fp16.config, "_pre_quantization_dtype")) self.assertTrue(self.model_4bit.config._pre_quantization_dtype == torch.float16) def test_linear_are_4bit(self): r""" A simple test to check if the model conversion has been done correctly by checking on the memory footprint of the converted model and the class type of the linear layers of the converted models """ from transformers import T5PreTrainedModel self.model_fp16.get_memory_footprint() self.model_4bit.get_memory_footprint() for name, module in self.model_4bit.named_modules(): if isinstance(module, torch.nn.Linear): if name not in ["lm_head"] + T5PreTrainedModel._keep_in_fp32_modules: # 4-bit parameters are packed in uint8 variables self.assertTrue(module.weight.dtype == torch.uint8) def test_rwkv_4bit(self): r""" A simple test to check if 4-bit RWKV inference works as expected. """ model_id = "RWKV/rwkv-4-169m-pile" quantization_config = BitsAndBytesConfig(load_in_4bit=True, bnb_4bit_use_double_quant=True) model = AutoModelForCausalLM.from_pretrained(model_id, quantization_config=quantization_config) tok = AutoTokenizer.from_pretrained(model_id) text = "Hello my name is" input_ids = tok.encode(text, return_tensors="pt").to(0) _ = model.generate(input_ids, max_new_tokens=30) def test_generate_quality(self): r""" Test the generation quality of the quantized model and see that we are matching the expected output. Given that we are operating on small numbers + the testing model is relatively small, we might not get the same output across GPUs. So we'll generate few tokens (5-10) and check their output. """ encoded_input = self.tokenizer(self.input_text, return_tensors="pt") output_sequences = self.model_4bit.generate(input_ids=encoded_input["input_ids"].to(0), max_new_tokens=10) self.assertIn(self.tokenizer.decode(output_sequences[0], skip_special_tokens=True), self.EXPECTED_OUTPUTS) def test_generate_quality_config(self): r""" Test that loading the model with the config is equivalent """ bnb_config = BitsAndBytesConfig() bnb_config.load_in_4bit = True model_4bit_from_config = AutoModelForCausalLM.from_pretrained( self.model_name, quantization_config=bnb_config, device_map="auto" ) encoded_input = self.tokenizer(self.input_text, return_tensors="pt") output_sequences = model_4bit_from_config.generate( input_ids=encoded_input["input_ids"].to(0), max_new_tokens=10 ) self.assertIn(self.tokenizer.decode(output_sequences[0], skip_special_tokens=True), self.EXPECTED_OUTPUTS) def test_device_and_dtype_assignment(self): r""" Test whether trying to cast (or assigning a device to) a model after converting it in 8-bit will throw an error. Checks also if other models are casted correctly. """ with self.assertRaises(ValueError): # Tries with `str` self.model_4bit.to("cpu") with self.assertRaises(ValueError): # Tries with a `dtype`` self.model_4bit.to(torch.float16) with self.assertRaises(ValueError): # Tries with a `device` self.model_4bit.to(torch.device("cuda:0")) with self.assertRaises(ValueError): # Tries with a `device` self.model_4bit.float() with self.assertRaises(ValueError): # Tries with a `device` self.model_4bit.half() # Test if we did not break anything encoded_input = self.tokenizer(self.input_text, return_tensors="pt") self.model_fp16 = self.model_fp16.to(torch.float32) _ = self.model_fp16.generate(input_ids=encoded_input["input_ids"].to(0), max_new_tokens=10) # Check this does not throw an error _ = self.model_fp16.to("cpu") # Check this does not throw an error _ = self.model_fp16.half() # Check this does not throw an error _ = self.model_fp16.float() def test_fp32_4bit_conversion(self): r""" Test whether it is possible to mix both `4bit` and `fp32` weights when using `keep_in_fp32_modules` correctly. """ model = AutoModelForSeq2SeqLM.from_pretrained("google-t5/t5-small", load_in_4bit=True, device_map="auto") self.assertTrue(model.decoder.block[0].layer[2].DenseReluDense.wo.weight.dtype == torch.float32) @require_bitsandbytes @require_accelerate @require_torch @require_torch_gpu @slow class Bnb4BitT5Test(unittest.TestCase): @classmethod def setUpClass(cls): cls.model_name = "google-t5/t5-small" cls.dense_act_model_name = "google/flan-t5-small" # flan-t5 uses dense-act instead of dense-relu-dense cls.tokenizer = AutoTokenizer.from_pretrained(cls.model_name) cls.input_text = "Translate in German: Hello, my dog is cute" def tearDown(self): r""" TearDown function needs to be called at the end of each test to free the GPU memory and cache, also to avoid unexpected behaviors. Please see: https://discuss.pytorch.org/t/how-can-we-release-gpu-memory-cache/14530/27 """ gc.collect() torch.cuda.empty_cache() def test_inference_without_keep_in_fp32(self): r""" Test whether it is possible to mix both `4bit` and `fp32` weights when using `keep_in_fp32_modules` correctly. `flan-t5-small` uses `T5DenseGatedActDense` whereas `google-t5/t5-small` uses `T5DenseReluDense`. We need to test both cases. """ from transformers import T5ForConditionalGeneration modules = T5ForConditionalGeneration._keep_in_fp32_modules T5ForConditionalGeneration._keep_in_fp32_modules = None # test with `google-t5/t5-small` model = T5ForConditionalGeneration.from_pretrained(self.model_name, load_in_4bit=True, device_map="auto") encoded_input = self.tokenizer(self.input_text, return_tensors="pt").to(0) _ = model.generate(**encoded_input) # test with `flan-t5-small` model = T5ForConditionalGeneration.from_pretrained( self.dense_act_model_name, load_in_4bit=True, device_map="auto" ) encoded_input = self.tokenizer(self.input_text, return_tensors="pt").to(0) _ = model.generate(**encoded_input) T5ForConditionalGeneration._keep_in_fp32_modules = modules def test_inference_with_keep_in_fp32(self): r""" Test whether it is possible to mix both `4bit` and `fp32` weights when using `keep_in_fp32_modules` correctly. `flan-t5-small` uses `T5DenseGatedActDense` whereas `google-t5/t5-small` uses `T5DenseReluDense`. We need to test both cases. """ from transformers import T5ForConditionalGeneration # test with `google-t5/t5-small` model = T5ForConditionalGeneration.from_pretrained(self.model_name, load_in_4bit=True, device_map="auto") # there was a bug with decoders - this test checks that it is fixed self.assertTrue(isinstance(model.decoder.block[0].layer[0].SelfAttention.q, bnb.nn.Linear4bit)) encoded_input = self.tokenizer(self.input_text, return_tensors="pt").to(0) _ = model.generate(**encoded_input) # test with `flan-t5-small` model = T5ForConditionalGeneration.from_pretrained( self.dense_act_model_name, load_in_4bit=True, device_map="auto" ) encoded_input = self.tokenizer(self.input_text, return_tensors="pt").to(0) _ = model.generate(**encoded_input) class Classes4BitModelTest(Base4bitTest): def setUp(self): super().setUp() # model_name self.model_name = "bigscience/bloom-560m" self.seq_to_seq_name = "google-t5/t5-small" # Different types of model self.base_model = AutoModel.from_pretrained(self.model_name, load_in_4bit=True, device_map="auto") # Sequence classification model self.sequence_model = AutoModelForSequenceClassification.from_pretrained( self.model_name, load_in_4bit=True, device_map="auto" ) # CausalLM model self.model_4bit = AutoModelForCausalLM.from_pretrained(self.model_name, load_in_4bit=True, device_map="auto") # Seq2seq model self.seq_to_seq_model = AutoModelForSeq2SeqLM.from_pretrained( self.seq_to_seq_name, load_in_4bit=True, device_map="auto" ) def tearDown(self): r""" TearDown function needs to be called at the end of each test to free the GPU memory and cache, also to avoid unexpected behaviors. Please see: https://discuss.pytorch.org/t/how-can-we-release-gpu-memory-cache/14530/27 """ del self.base_model del self.sequence_model del self.model_4bit del self.seq_to_seq_model gc.collect() torch.cuda.empty_cache() def test_correct_head_class(self): r""" A simple test to check if the last modules for some classes (AutoModelForCausalLM or SequenceClassification) are kept in their native class. """ from bitsandbytes.nn import Params4bit self.assertTrue(self.base_model.h[-1].mlp.dense_4h_to_h.weight.__class__ == Params4bit) # Other heads should be nn.Parameter self.assertTrue(self.model_4bit.lm_head.weight.__class__ == torch.nn.Parameter) self.assertTrue(self.sequence_model.score.weight.__class__ == torch.nn.Parameter) self.assertTrue(self.seq_to_seq_model.lm_head.weight.__class__ == torch.nn.Parameter) class Pipeline4BitTest(Base4bitTest): def setUp(self): super().setUp() def tearDown(self): r""" TearDown function needs to be called at the end of each test to free the GPU memory and cache, also to avoid unexpected behaviors. Please see: https://discuss.pytorch.org/t/how-can-we-release-gpu-memory-cache/14530/27 """ del self.pipe gc.collect() torch.cuda.empty_cache() def test_pipeline(self): r""" The aim of this test is to verify that the mixed 4bit is compatible with `pipeline` from transformers. Since we used pipline for inference speed benchmarking we want to make sure that this feature does not break anything on pipline. """ # self._clear_cuda_cache() self.pipe = pipeline( "text-generation", model=self.model_name, model_kwargs={"device_map": "auto", "load_in_4bit": True, "torch_dtype": torch.float16}, max_new_tokens=self.MAX_NEW_TOKENS, ) # Real second forward pass pipeline_output = self.pipe(self.input_text) self.assertIn(pipeline_output[0]["generated_text"], self.EXPECTED_OUTPUTS) @require_torch_multi_gpu class Bnb4bitTestMultiGpu(Base4bitTest): def setUp(self): super().setUp() def test_multi_gpu_loading(self): r""" This tests that the model has been loaded and can be used correctly on a multi-GPU setup. Let's just try to load a model on 2 GPUs and see if it works. The model we test has ~2GB of total, 3GB should suffice """ model_parallel = AutoModelForCausalLM.from_pretrained( self.model_name, load_in_4bit=True, device_map="balanced" ) # Check correct device map self.assertEqual(set(model_parallel.hf_device_map.values()), {0, 1}) # Check that inference pass works on the model encoded_input = self.tokenizer(self.input_text, return_tensors="pt") # Second real batch output_parallel = model_parallel.generate(input_ids=encoded_input["input_ids"].to(0), max_new_tokens=10) self.assertIn(self.tokenizer.decode(output_parallel[0], skip_special_tokens=True), self.EXPECTED_OUTPUTS) class Bnb4BitTestTraining(Base4bitTest): def setUp(self): self.model_name = "facebook/opt-350m" super().setUp() def test_training(self): if version.parse(importlib.metadata.version("bitsandbytes")) < version.parse("0.37.0"): return # Step 1: freeze all parameters model = AutoModelForCausalLM.from_pretrained(self.model_name, load_in_4bit=True) self.assertEqual(set(model.hf_device_map.values()), {torch.cuda.current_device()}) for param in model.parameters(): param.requires_grad = False # freeze the model - train adapters later if param.ndim == 1: # cast the small parameters (e.g. layernorm) to fp32 for stability param.data = param.data.to(torch.float32) # Step 2: add adapters for _, module in model.named_modules(): if "OPTAttention" in repr(type(module)): module.q_proj = LoRALayer(module.q_proj, rank=16) module.k_proj = LoRALayer(module.k_proj, rank=16) module.v_proj = LoRALayer(module.v_proj, rank=16) # Step 3: dummy batch batch = self.tokenizer("Test batch ", return_tensors="pt").to(0) # Step 4: Check if the gradient is not None with torch.cuda.amp.autocast(): out = model.forward(**batch) out.logits.norm().backward() for module in model.modules(): if isinstance(module, LoRALayer): self.assertTrue(module.adapter[1].weight.grad is not None) self.assertTrue(module.adapter[1].weight.grad.norm().item() > 0) elif isinstance(module, nn.Embedding): self.assertTrue(module.weight.grad is None) class Bnb4BitGPT2Test(Bnb4BitTest): model_name = "openai-community/gpt2-xl" EXPECTED_RELATIVE_DIFFERENCE = 3.3191854854152187 @require_bitsandbytes @require_accelerate @require_torch @require_torch_gpu @slow class BaseSerializationTest(unittest.TestCase): model_name = "facebook/opt-125m" input_text = "Mars colonists' favorite meals are" def tearDown(self): gc.collect() torch.cuda.empty_cache() def test_serialization(self, quant_type="nf4", double_quant=True, safe_serialization=True): r""" Test whether it is possible to serialize a model in 4-bit. Uses most typical params as default. See ExtendedSerializationTest class for more params combinations. """ tokenizer = AutoTokenizer.from_pretrained(self.model_name) self.quantization_config = BitsAndBytesConfig( load_in_4bit=True, bnb_4bit_quant_type=quant_type, bnb_4bit_use_double_quant=double_quant, bnb_4bit_compute_dtype=torch.bfloat16, ) model_0 = AutoModelForCausalLM.from_pretrained( self.model_name, quantization_config=self.quantization_config, device_map=torch_device, ) with tempfile.TemporaryDirectory() as tmpdirname: model_0.save_pretrained(tmpdirname, safe_serialization=safe_serialization) config = AutoConfig.from_pretrained(tmpdirname) self.assertTrue(hasattr(config, "quantization_config")) model_1 = AutoModelForCausalLM.from_pretrained(tmpdirname, device_map=torch_device) # checking quantized linear module weight linear = get_some_linear_layer(model_1) self.assertTrue(linear.weight.__class__ == bnb.nn.Params4bit) self.assertTrue(hasattr(linear.weight, "quant_state")) self.assertTrue(linear.weight.quant_state.__class__ == bnb.functional.QuantState) # checking memory footpring self.assertAlmostEqual(model_0.get_memory_footprint() / model_1.get_memory_footprint(), 1, places=2) # Matching all parameters and their quant_state items: d0 = dict(model_0.named_parameters()) d1 = dict(model_1.named_parameters()) self.assertTrue(d0.keys() == d1.keys()) for k in d0.keys(): self.assertTrue(d0[k].shape == d1[k].shape) self.assertTrue(d0[k].device.type == d1[k].device.type) self.assertTrue(d0[k].device == d1[k].device) self.assertTrue(d0[k].dtype == d1[k].dtype) self.assertTrue(torch.equal(d0[k], d1[k].to(d0[k].device))) if isinstance(d0[k], bnb.nn.modules.Params4bit): for v0, v1 in zip( d0[k].quant_state.as_dict().values(), d1[k].quant_state.as_dict().values(), ): if isinstance(v0, torch.Tensor): self.assertTrue(torch.equal(v0, v1.to(v0.device))) else: self.assertTrue(v0 == v1) # comparing forward() outputs encoded_input = tokenizer(self.input_text, return_tensors="pt").to(torch_device) out_0 = model_0(**encoded_input) out_1 = model_1(**encoded_input) self.assertTrue(torch.equal(out_0["logits"], out_1["logits"])) # comparing generate() outputs encoded_input = tokenizer(self.input_text, return_tensors="pt").to(torch_device) output_sequences_0 = model_0.generate(**encoded_input, max_new_tokens=10) output_sequences_1 = model_1.generate(**encoded_input, max_new_tokens=10) def _decode(token): return tokenizer.decode(token, skip_special_tokens=True) self.assertEqual( [_decode(x) for x in output_sequences_0], [_decode(x) for x in output_sequences_1], ) class ExtendedSerializationTest(BaseSerializationTest): """ tests more combinations of parameters """ def test_nf4_single_unsafe(self): self.test_serialization(quant_type="nf4", double_quant=False, safe_serialization=False) def test_nf4_single_safe(self): self.test_serialization(quant_type="nf4", double_quant=False, safe_serialization=True) def test_nf4_double_unsafe(self): self.test_serialization(quant_type="nf4", double_quant=True, safe_serialization=False) # nf4 double safetensors quantization is tested in test_serialization() method from the parent class def test_fp4_single_unsafe(self): self.test_serialization(quant_type="fp4", double_quant=False, safe_serialization=False) def test_fp4_single_safe(self): self.test_serialization(quant_type="fp4", double_quant=False, safe_serialization=True) def test_fp4_double_unsafe(self): self.test_serialization(quant_type="fp4", double_quant=True, safe_serialization=False) def test_fp4_double_safe(self): self.test_serialization(quant_type="fp4", double_quant=True, safe_serialization=True) class BloomSerializationTest(BaseSerializationTest): """ default BaseSerializationTest config tested with Bloom family model """ model_name = "bigscience/bloom-560m" class GPTSerializationTest(BaseSerializationTest): """ default BaseSerializationTest config tested with GPT family model """ model_name = "openai-community/gpt2-xl" @require_bitsandbytes @require_accelerate @require_torch_gpu @slow class Bnb4BitTestBasicConfigTest(unittest.TestCase): def test_load_in_4_and_8_bit_fails(self): with self.assertRaisesRegex(ValueError, "load_in_4bit and load_in_8bit are both True"): AutoModelForCausalLM.from_pretrained("facebook/opt-125m", load_in_4bit=True, load_in_8bit=True) def test_set_load_in_8_bit(self): quantization_config = BitsAndBytesConfig(load_in_4bit=True) with self.assertRaisesRegex(ValueError, "load_in_4bit and load_in_8bit are both True"): quantization_config.load_in_8bit = True
transformers/tests/quantization/bnb/test_4bit.py/0
{ "file_path": "transformers/tests/quantization/bnb/test_4bit.py", "repo_id": "transformers", "token_count": 11003 }
177
import argparse import logging import sys import time import tensorflow as tf from datasets import load_dataset from packaging.version import parse from transformers import AutoTokenizer, TFAutoModelForSequenceClassification try: import tf_keras as keras except (ModuleNotFoundError, ImportError): import keras if parse(keras.__version__).major > 2: raise ValueError( "Your currently installed version of Keras is Keras 3, but this is not yet supported in " "Transformers. Please install the backwards-compatible tf-keras package with " "`pip install tf-keras`." ) if __name__ == "__main__": parser = argparse.ArgumentParser() # Hyperparameters sent by the client are passed as command-line arguments to the script. parser.add_argument("--epochs", type=int, default=1) parser.add_argument("--per_device_train_batch_size", type=int, default=16) parser.add_argument("--per_device_eval_batch_size", type=int, default=8) parser.add_argument("--model_name_or_path", type=str) parser.add_argument("--learning_rate", type=str, default=5e-5) parser.add_argument("--do_train", type=bool, default=True) parser.add_argument("--do_eval", type=bool, default=True) parser.add_argument("--output_dir", type=str) args, _ = parser.parse_known_args() # overwrite batch size until we have tf_glue.py args.per_device_train_batch_size = 16 args.per_device_eval_batch_size = 16 # Set up logging logger = logging.getLogger(__name__) logging.basicConfig( level=logging.getLevelName("INFO"), handlers=[logging.StreamHandler(sys.stdout)], format="%(asctime)s - %(name)s - %(levelname)s - %(message)s", ) # Load model and tokenizer model = TFAutoModelForSequenceClassification.from_pretrained(args.model_name_or_path) tokenizer = AutoTokenizer.from_pretrained(args.model_name_or_path) # Load dataset train_dataset, test_dataset = load_dataset("imdb", split=["train", "test"]) train_dataset = train_dataset.shuffle().select(range(5000)) # smaller the size for train dataset to 5k test_dataset = test_dataset.shuffle().select(range(500)) # smaller the size for test dataset to 500 # Preprocess train dataset train_dataset = train_dataset.map( lambda e: tokenizer(e["text"], truncation=True, padding="max_length"), batched=True ) train_dataset.set_format(type="tensorflow", columns=["input_ids", "attention_mask", "label"]) train_features = { x: train_dataset[x].to_tensor(default_value=0, shape=[None, tokenizer.model_max_length]) for x in ["input_ids", "attention_mask"] } tf_train_dataset = tf.data.Dataset.from_tensor_slices((train_features, train_dataset["label"])).batch( args.per_device_train_batch_size ) # Preprocess test dataset test_dataset = test_dataset.map( lambda e: tokenizer(e["text"], truncation=True, padding="max_length"), batched=True ) test_dataset.set_format(type="tensorflow", columns=["input_ids", "attention_mask", "label"]) test_features = { x: test_dataset[x].to_tensor(default_value=0, shape=[None, tokenizer.model_max_length]) for x in ["input_ids", "attention_mask"] } tf_test_dataset = tf.data.Dataset.from_tensor_slices((test_features, test_dataset["label"])).batch( args.per_device_eval_batch_size ) # fine optimizer and loss optimizer = keras.optimizers.Adam(learning_rate=args.learning_rate) loss = keras.losses.SparseCategoricalCrossentropy(from_logits=True) metrics = [keras.metrics.SparseCategoricalAccuracy()] model.compile(optimizer=optimizer, loss=loss, metrics=metrics) start_train_time = time.time() train_results = model.fit(tf_train_dataset, epochs=args.epochs, batch_size=args.per_device_train_batch_size) end_train_time = time.time() - start_train_time logger.info("*** Train ***") logger.info(f"train_runtime = {end_train_time}") for key, value in train_results.history.items(): logger.info(f" {key} = {value}")
transformers/tests/sagemaker/scripts/tensorflow/run_tf.py/0
{ "file_path": "transformers/tests/sagemaker/scripts/tensorflow/run_tf.py", "repo_id": "transformers", "token_count": 1577 }
178
# Copyright 2020 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import tempfile import unittest import numpy as np from huggingface_hub import HfFolder, delete_repo, snapshot_download from requests.exceptions import HTTPError from transformers import BertConfig, BertModel, is_flax_available, is_torch_available from transformers.testing_utils import ( TOKEN, USER, CaptureLogger, is_pt_flax_cross_test, is_staging_test, require_flax, require_safetensors, require_torch, ) from transformers.utils import FLAX_WEIGHTS_NAME, SAFE_WEIGHTS_NAME, logging if is_flax_available(): import os from flax.core.frozen_dict import unfreeze from flax.traverse_util import flatten_dict from transformers import FlaxBertModel os.environ["XLA_PYTHON_CLIENT_MEM_FRACTION"] = "0.12" # assumed parallelism: 8 if is_torch_available(): import torch @require_flax @is_staging_test class FlaxModelPushToHubTester(unittest.TestCase): @classmethod def setUpClass(cls): cls._token = TOKEN HfFolder.save_token(TOKEN) @classmethod def tearDownClass(cls): try: delete_repo(token=cls._token, repo_id="test-model-flax") except HTTPError: pass try: delete_repo(token=cls._token, repo_id="valid_org/test-model-flax-org") except HTTPError: pass def test_push_to_hub(self): config = BertConfig( vocab_size=99, hidden_size=32, num_hidden_layers=5, num_attention_heads=4, intermediate_size=37 ) model = FlaxBertModel(config) model.push_to_hub("test-model-flax", token=self._token) new_model = FlaxBertModel.from_pretrained(f"{USER}/test-model-flax") base_params = flatten_dict(unfreeze(model.params)) new_params = flatten_dict(unfreeze(new_model.params)) for key in base_params.keys(): max_diff = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(max_diff, 1e-3, msg=f"{key} not identical") # Reset repo delete_repo(token=self._token, repo_id="test-model-flax") # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(tmp_dir, repo_id="test-model-flax", push_to_hub=True, token=self._token) new_model = FlaxBertModel.from_pretrained(f"{USER}/test-model-flax") base_params = flatten_dict(unfreeze(model.params)) new_params = flatten_dict(unfreeze(new_model.params)) for key in base_params.keys(): max_diff = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(max_diff, 1e-3, msg=f"{key} not identical") def test_push_to_hub_in_organization(self): config = BertConfig( vocab_size=99, hidden_size=32, num_hidden_layers=5, num_attention_heads=4, intermediate_size=37 ) model = FlaxBertModel(config) model.push_to_hub("valid_org/test-model-flax-org", token=self._token) new_model = FlaxBertModel.from_pretrained("valid_org/test-model-flax-org") base_params = flatten_dict(unfreeze(model.params)) new_params = flatten_dict(unfreeze(new_model.params)) for key in base_params.keys(): max_diff = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(max_diff, 1e-3, msg=f"{key} not identical") # Reset repo delete_repo(token=self._token, repo_id="valid_org/test-model-flax-org") # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained( tmp_dir, repo_id="valid_org/test-model-flax-org", push_to_hub=True, token=self._token ) new_model = FlaxBertModel.from_pretrained("valid_org/test-model-flax-org") base_params = flatten_dict(unfreeze(model.params)) new_params = flatten_dict(unfreeze(new_model.params)) for key in base_params.keys(): max_diff = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(max_diff, 1e-3, msg=f"{key} not identical") def check_models_equal(model1, model2): models_are_equal = True flat_params_1 = flatten_dict(model1.params) flat_params_2 = flatten_dict(model2.params) for key in flat_params_1.keys(): if np.sum(np.abs(flat_params_1[key] - flat_params_2[key])) > 1e-4: models_are_equal = False return models_are_equal @require_flax class FlaxModelUtilsTest(unittest.TestCase): def test_model_from_pretrained_subfolder(self): config = BertConfig.from_pretrained("hf-internal-testing/tiny-bert-flax-only") model = FlaxBertModel(config) subfolder = "bert" with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(os.path.join(tmp_dir, subfolder)) with self.assertRaises(OSError): _ = FlaxBertModel.from_pretrained(tmp_dir) model_loaded = FlaxBertModel.from_pretrained(tmp_dir, subfolder=subfolder) self.assertTrue(check_models_equal(model, model_loaded)) def test_model_from_pretrained_subfolder_sharded(self): config = BertConfig.from_pretrained("hf-internal-testing/tiny-bert-flax-only") model = FlaxBertModel(config) subfolder = "bert" with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(os.path.join(tmp_dir, subfolder), max_shard_size="10KB") with self.assertRaises(OSError): _ = FlaxBertModel.from_pretrained(tmp_dir) model_loaded = FlaxBertModel.from_pretrained(tmp_dir, subfolder=subfolder) self.assertTrue(check_models_equal(model, model_loaded)) def test_model_from_pretrained_hub_subfolder(self): subfolder = "bert" model_id = "hf-internal-testing/tiny-random-bert-subfolder" with self.assertRaises(OSError): _ = FlaxBertModel.from_pretrained(model_id) model = FlaxBertModel.from_pretrained(model_id, subfolder=subfolder) self.assertIsNotNone(model) def test_model_from_pretrained_hub_subfolder_sharded(self): subfolder = "bert" model_id = "hf-internal-testing/tiny-random-bert-sharded-subfolder" with self.assertRaises(OSError): _ = FlaxBertModel.from_pretrained(model_id) model = FlaxBertModel.from_pretrained(model_id, subfolder=subfolder) self.assertIsNotNone(model) @require_safetensors def test_safetensors_save_and_load(self): model = FlaxBertModel.from_pretrained("hf-internal-testing/tiny-bert-flax-only") with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(tmp_dir, safe_serialization=True) # No msgpack file, only a model.safetensors self.assertTrue(os.path.isfile(os.path.join(tmp_dir, SAFE_WEIGHTS_NAME))) self.assertFalse(os.path.isfile(os.path.join(tmp_dir, FLAX_WEIGHTS_NAME))) new_model = FlaxBertModel.from_pretrained(tmp_dir) self.assertTrue(check_models_equal(model, new_model)) @require_flax @require_torch @is_pt_flax_cross_test def test_safetensors_save_and_load_pt_to_flax(self): model = FlaxBertModel.from_pretrained("hf-internal-testing/tiny-random-bert", from_pt=True) pt_model = BertModel.from_pretrained("hf-internal-testing/tiny-random-bert") with tempfile.TemporaryDirectory() as tmp_dir: pt_model.save_pretrained(tmp_dir) # Check we have a model.safetensors file self.assertTrue(os.path.isfile(os.path.join(tmp_dir, SAFE_WEIGHTS_NAME))) new_model = FlaxBertModel.from_pretrained(tmp_dir) # Check models are equal self.assertTrue(check_models_equal(model, new_model)) @require_safetensors def test_safetensors_load_from_hub(self): """ This test checks that we can load safetensors from a checkpoint that only has those on the Hub """ flax_model = FlaxBertModel.from_pretrained("hf-internal-testing/tiny-bert-flax-only") # Can load from the Flax-formatted checkpoint safetensors_model = FlaxBertModel.from_pretrained("hf-internal-testing/tiny-bert-flax-safetensors-only") self.assertTrue(check_models_equal(flax_model, safetensors_model)) @require_safetensors def test_safetensors_load_from_local(self): """ This test checks that we can load safetensors from a checkpoint that only has those on the Hub """ with tempfile.TemporaryDirectory() as tmp: location = snapshot_download("hf-internal-testing/tiny-bert-flax-only", cache_dir=tmp) flax_model = FlaxBertModel.from_pretrained(location) with tempfile.TemporaryDirectory() as tmp: location = snapshot_download("hf-internal-testing/tiny-bert-flax-safetensors-only", cache_dir=tmp) safetensors_model = FlaxBertModel.from_pretrained(location) self.assertTrue(check_models_equal(flax_model, safetensors_model)) @require_safetensors @is_pt_flax_cross_test def test_safetensors_load_from_hub_from_safetensors_pt(self): """ This test checks that we can load safetensors from a checkpoint that only has those on the Hub. saved in the "pt" format. """ flax_model = FlaxBertModel.from_pretrained("hf-internal-testing/tiny-bert-msgpack") # Can load from the PyTorch-formatted checkpoint safetensors_model = FlaxBertModel.from_pretrained("hf-internal-testing/tiny-bert-pt-safetensors") self.assertTrue(check_models_equal(flax_model, safetensors_model)) @require_safetensors @require_torch @is_pt_flax_cross_test def test_safetensors_load_from_hub_from_safetensors_pt_bf16(self): """ This test checks that we can load safetensors from a checkpoint that only has those on the Hub. saved in the "pt" format. """ import torch model = BertModel.from_pretrained("hf-internal-testing/tiny-bert-pt-safetensors") model.to(torch.bfloat16) with tempfile.TemporaryDirectory() as tmp: model.save_pretrained(tmp) flax_model = FlaxBertModel.from_pretrained(tmp) # Can load from the PyTorch-formatted checkpoint safetensors_model = FlaxBertModel.from_pretrained("hf-internal-testing/tiny-bert-pt-safetensors-bf16") self.assertTrue(check_models_equal(flax_model, safetensors_model)) @require_safetensors @is_pt_flax_cross_test def test_safetensors_load_from_local_from_safetensors_pt(self): """ This test checks that we can load safetensors from a checkpoint that only has those on the Hub. saved in the "pt" format. """ with tempfile.TemporaryDirectory() as tmp: location = snapshot_download("hf-internal-testing/tiny-bert-msgpack", cache_dir=tmp) flax_model = FlaxBertModel.from_pretrained(location) # Can load from the PyTorch-formatted checkpoint with tempfile.TemporaryDirectory() as tmp: location = snapshot_download("hf-internal-testing/tiny-bert-pt-safetensors", cache_dir=tmp) safetensors_model = FlaxBertModel.from_pretrained(location) self.assertTrue(check_models_equal(flax_model, safetensors_model)) @require_safetensors def test_safetensors_load_from_hub_msgpack_before_safetensors(self): """ This test checks that we'll first download msgpack weights before safetensors The safetensors file on that repo is a pt safetensors and therefore cannot be loaded without PyTorch """ FlaxBertModel.from_pretrained("hf-internal-testing/tiny-bert-pt-safetensors-msgpack") @require_safetensors def test_safetensors_load_from_local_msgpack_before_safetensors(self): """ This test checks that we'll first download msgpack weights before safetensors The safetensors file on that repo is a pt safetensors and therefore cannot be loaded without PyTorch """ with tempfile.TemporaryDirectory() as tmp: location = snapshot_download("hf-internal-testing/tiny-bert-pt-safetensors-msgpack", cache_dir=tmp) FlaxBertModel.from_pretrained(location) @require_safetensors def test_safetensors_flax_from_flax(self): model = FlaxBertModel.from_pretrained("hf-internal-testing/tiny-bert-flax-only") with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(tmp_dir, safe_serialization=True) new_model = FlaxBertModel.from_pretrained(tmp_dir) self.assertTrue(check_models_equal(model, new_model)) @require_safetensors @require_torch @is_pt_flax_cross_test def test_safetensors_flax_from_torch(self): hub_model = FlaxBertModel.from_pretrained("hf-internal-testing/tiny-bert-flax-only") model = BertModel.from_pretrained("hf-internal-testing/tiny-bert-pt-only") with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(tmp_dir, safe_serialization=True) new_model = FlaxBertModel.from_pretrained(tmp_dir) self.assertTrue(check_models_equal(hub_model, new_model)) @require_safetensors def test_safetensors_flax_from_sharded_msgpack_with_sharded_safetensors_local(self): with tempfile.TemporaryDirectory() as tmp_dir: path = snapshot_download( "hf-internal-testing/tiny-bert-flax-safetensors-msgpack-sharded", cache_dir=tmp_dir ) # This should not raise even if there are two types of sharded weights FlaxBertModel.from_pretrained(path) @require_safetensors def test_safetensors_flax_from_sharded_msgpack_with_sharded_safetensors_hub(self): # This should not raise even if there are two types of sharded weights # This should discard the safetensors weights in favor of the msgpack sharded weights FlaxBertModel.from_pretrained("hf-internal-testing/tiny-bert-flax-safetensors-msgpack-sharded") @require_safetensors def test_safetensors_from_pt_bf16(self): # This should not raise; should be able to load bf16-serialized torch safetensors without issue # and without torch. logger = logging.get_logger("transformers.modeling_flax_utils") with CaptureLogger(logger) as cl: FlaxBertModel.from_pretrained("hf-internal-testing/tiny-bert-pt-safetensors-bf16") self.assertTrue( "Some of the weights of FlaxBertModel were initialized in bfloat16 precision from the model checkpoint" in cl.out ) @require_torch @require_safetensors @is_pt_flax_cross_test def test_from_pt_bf16(self): model = BertModel.from_pretrained("hf-internal-testing/tiny-bert-pt-only") model.to(torch.bfloat16) with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(tmp_dir, safe_serialization=False) logger = logging.get_logger("transformers.modeling_flax_utils") with CaptureLogger(logger) as cl: new_model = FlaxBertModel.from_pretrained("hf-internal-testing/tiny-bert-pt-safetensors-bf16") self.assertTrue( "Some of the weights of FlaxBertModel were initialized in bfloat16 precision from the model checkpoint" in cl.out ) flat_params_1 = flatten_dict(new_model.params) for value in flat_params_1.values(): self.assertEqual(value.dtype, "bfloat16")
transformers/tests/test_modeling_flax_utils.py/0
{ "file_path": "transformers/tests/test_modeling_flax_utils.py", "repo_id": "transformers", "token_count": 6875 }
179
# coding=utf-8 # Copyright 2023 HuggingFace Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest from pathlib import Path from transformers import is_vision_available, load_tool from transformers.testing_utils import get_tests_dir from .test_tools_common import ToolTesterMixin if is_vision_available(): from PIL import Image class ImageQuestionAnsweringToolTester(unittest.TestCase, ToolTesterMixin): def setUp(self): self.tool = load_tool("image-question-answering") self.tool.setup() self.remote_tool = load_tool("image-question-answering", remote=True) def test_exact_match_arg(self): image = Image.open(Path(get_tests_dir("fixtures/tests_samples/COCO")) / "000000039769.png") result = self.tool(image, "How many cats are sleeping on the couch?") self.assertEqual(result, "2") def test_exact_match_arg_remote(self): image = Image.open(Path(get_tests_dir("fixtures/tests_samples/COCO")) / "000000039769.png") result = self.remote_tool(image, "How many cats are sleeping on the couch?") self.assertEqual(result, "2") def test_exact_match_kwarg(self): image = Image.open(Path(get_tests_dir("fixtures/tests_samples/COCO")) / "000000039769.png") result = self.tool(image=image, question="How many cats are sleeping on the couch?") self.assertEqual(result, "2") def test_exact_match_kwarg_remote(self): image = Image.open(Path(get_tests_dir("fixtures/tests_samples/COCO")) / "000000039769.png") result = self.remote_tool(image=image, question="How many cats are sleeping on the couch?") self.assertEqual(result, "2")
transformers/tests/tools/test_image_question_answering.py/0
{ "file_path": "transformers/tests/tools/test_image_question_answering.py", "repo_id": "transformers", "token_count": 768 }
180
# Copyright 2020 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # This test is meant to be run in on an instance with TPUs like this: # # python examples/pytorch/xla_spawn.py --num_cores=8 tests/test_trainer_tpu.py # # Replace 8 with the number of TPU cores you have. # import sys from typing import Dict from transformers import EvalPrediction, HfArgumentParser, TrainingArguments, is_torch_available from transformers.utils import logging logger = logging.get_logger(__name__) if is_torch_available(): import torch from torch import nn from torch.utils.data import Dataset from transformers import Trainer class DummyDataset(Dataset): def __init__(self, length: int = 101): self.length = length def __len__(self): return self.length def __getitem__(self, i) -> int: return i class DummyDataCollator: def __call__(self, features): return {"input_ids": torch.tensor(features), "labels": torch.tensor(features)} class DummyModel(nn.Module): def __init__(self): super().__init__() # Add some (unused) params otherwise DDP will complain. self.fc = nn.Linear(120, 80) def forward(self, input_ids, labels=None): if labels is not None: return torch.tensor(0.0, device=input_ids.device), input_ids else: return input_ids def main(): parser = HfArgumentParser((TrainingArguments,)) sys.argv += ["--output_dir", "./examples"] training_args = parser.parse_args_into_dataclasses()[0] logger.warning( f"Process rank: {training_args.local_rank}, device: {training_args.device}, " f"tpu_num_cores: {training_args.tpu_num_cores}", ) # Essentially, what we want to verify in the distributed case is # that we get all samples back, in the right order. # (this is crucial for prediction for instance) for dataset_length in [1001, 256, 15]: dataset = DummyDataset(dataset_length) def compute_metrics(p: EvalPrediction) -> Dict: sequential = list(range(len(dataset))) success = p.predictions.tolist() == sequential and p.label_ids.tolist() == sequential return {"success": success} trainer = Trainer( model=DummyModel(), args=training_args, data_collator=DummyDataCollator(), eval_dataset=dataset, compute_metrics=compute_metrics, ) metrics = trainer.evaluate() logger.info(metrics) if metrics["eval_success"] is not True: logger.error(metrics) exit(1) p = trainer.predict(dataset) logger.info(p.metrics) if p.metrics["test_success"] is not True: logger.error(p.metrics) exit(1) trainer.args.eval_accumulation_steps = 2 metrics = trainer.evaluate() logger.info(metrics) if metrics["eval_success"] is not True: logger.error(metrics) exit(1) p = trainer.predict(dataset) logger.info(p.metrics) if p.metrics["test_success"] is not True: logger.error(p.metrics) exit(1) trainer.args.eval_accumulation_steps = None logger.info("🔥 All distributed tests successful") def _mp_fn(index): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
transformers/tests/trainer/test_trainer_tpu.py/0
{ "file_path": "transformers/tests/trainer/test_trainer_tpu.py", "repo_id": "transformers", "token_count": 1651 }
181
# coding=utf-8 # Copyright 2022 HuggingFace Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest from transformers.image_processing_utils import get_size_dict class ImageProcessingUtilsTester(unittest.TestCase): def test_get_size_dict(self): # Test a dict with the wrong keys raises an error inputs = {"wrong_key": 224} with self.assertRaises(ValueError): get_size_dict(inputs) inputs = {"height": 224} with self.assertRaises(ValueError): get_size_dict(inputs) inputs = {"width": 224, "shortest_edge": 224} with self.assertRaises(ValueError): get_size_dict(inputs) # Test a dict with the correct keys is returned as is inputs = {"height": 224, "width": 224} outputs = get_size_dict(inputs) self.assertEqual(outputs, inputs) inputs = {"shortest_edge": 224} outputs = get_size_dict(inputs) self.assertEqual(outputs, {"shortest_edge": 224}) inputs = {"longest_edge": 224, "shortest_edge": 224} outputs = get_size_dict(inputs) self.assertEqual(outputs, {"longest_edge": 224, "shortest_edge": 224}) # Test a single int value which represents (size, size) outputs = get_size_dict(224) self.assertEqual(outputs, {"height": 224, "width": 224}) # Test a single int value which represents the shortest edge outputs = get_size_dict(224, default_to_square=False) self.assertEqual(outputs, {"shortest_edge": 224}) # Test a tuple of ints which represents (height, width) outputs = get_size_dict((150, 200)) self.assertEqual(outputs, {"height": 150, "width": 200}) # Test a tuple of ints which represents (width, height) outputs = get_size_dict((150, 200), height_width_order=False) self.assertEqual(outputs, {"height": 200, "width": 150}) # Test an int representing the shortest edge and max_size which represents the longest edge outputs = get_size_dict(224, max_size=256, default_to_square=False) self.assertEqual(outputs, {"shortest_edge": 224, "longest_edge": 256}) # Test int with default_to_square=True and max_size fails with self.assertRaises(ValueError): get_size_dict(224, max_size=256, default_to_square=True)
transformers/tests/utils/test_image_processing_utils.py/0
{ "file_path": "transformers/tests/utils/test_image_processing_utils.py", "repo_id": "transformers", "token_count": 1072 }
182
# coding=utf-8 # Copyright 2023 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Utility that checks all docstrings of public objects have an argument section matching their signature. Use from the root of the repo with: ```bash python utils/check_docstrings.py ``` for a check that will error in case of inconsistencies (used by `make repo-consistency`). To auto-fix issues run: ```bash python utils/check_docstrings.py --fix_and_overwrite ``` which is used by `make fix-copies` (note that this fills what it cans, you might have to manually fill information like argument descriptions). """ import argparse import ast import enum import inspect import operator as op import re from pathlib import Path from typing import Any, Optional, Tuple, Union from check_repo import ignore_undocumented from transformers.utils import direct_transformers_import PATH_TO_TRANSFORMERS = Path("src").resolve() / "transformers" # This is to make sure the transformers module imported is the one in the repo. transformers = direct_transformers_import(PATH_TO_TRANSFORMERS) OPTIONAL_KEYWORD = "*optional*" # Re pattern that catches args blocks in docstrings (with all variation around the name supported). _re_args = re.compile(r"^\s*(Args?|Arguments?|Attributes?|Params?|Parameters?):\s*$") # Re pattern that parses the start of an arg block: catches <name> (<description>) in those lines. _re_parse_arg = re.compile(r"^(\s*)(\S+)\s+\((.+)\)(?:\:|$)") # Re pattern that parses the end of a description of an arg (catches the default in *optional*, defaults to xxx). _re_parse_description = re.compile(r"\*optional\*, defaults to (.*)$") # This is a temporary list of objects to ignore while we progressively fix them. Do not add anything here, fix the # docstrings instead. If formatting should be ignored for the docstring, you can put a comment # no-format on the # line before the docstring. OBJECTS_TO_IGNORE = [ # Deprecated "InputExample", "InputFeatures", # Signature is *args/**kwargs # "PretrainedConfig", #ignored but could be fixed # "GenerationConfig", #ignored but could be fixed "TFSequenceSummary", "TFBertTokenizer", "TFGPT2Tokenizer", # Missing arguments in the docstring "ASTFeatureExtractor", "AlbertModel", "AlbertTokenizerFast", "AlignTextModel", "AlignVisionConfig", "AudioClassificationPipeline", "AutoformerConfig", "AutomaticSpeechRecognitionPipeline", "AzureOpenAiAgent", "BarkCoarseConfig", "BarkConfig", "BarkFineConfig", "BarkSemanticConfig", "BartConfig", "BartTokenizerFast", "BarthezTokenizerFast", "BeitModel", "BertConfig", "BertJapaneseTokenizer", "BertModel", "BertTokenizerFast", "BigBirdConfig", "BigBirdForQuestionAnswering", "BigBirdModel", "BigBirdPegasusConfig", "BigBirdTokenizerFast", "BitImageProcessor", "BlenderbotConfig", "BlenderbotSmallConfig", "BlenderbotSmallTokenizerFast", "BlenderbotTokenizerFast", "Blip2QFormerConfig", "Blip2VisionConfig", "BlipTextConfig", "BlipVisionConfig", "BloomConfig", "BloomTokenizerFast", "BridgeTowerTextConfig", "BridgeTowerVisionConfig", "BrosModel", "CamembertConfig", "CamembertModel", "CamembertTokenizerFast", "CanineModel", "CanineTokenizer", "ChineseCLIPTextModel", "ClapTextConfig", "ConditionalDetrConfig", "ConditionalDetrImageProcessor", "ConvBertConfig", "ConvBertTokenizerFast", "ConvNextConfig", "ConvNextV2Config", "ConversationalPipeline", "CpmAntTokenizer", "CvtConfig", "CvtModel", "DeiTImageProcessor", "DPRReaderTokenizer", "DPRReaderTokenizerFast", "DPTModel", "Data2VecAudioConfig", "Data2VecTextConfig", "Data2VecTextModel", "Data2VecVisionModel", "DataCollatorForLanguageModeling", "DebertaConfig", "DebertaV2Config", "DebertaV2Tokenizer", "DebertaV2TokenizerFast", "DecisionTransformerConfig", "DeformableDetrConfig", "DeformableDetrImageProcessor", "DeiTModel", "DepthEstimationPipeline", "DetaConfig", "DetaImageProcessor", "DetrConfig", "DetrImageProcessor", "DinatModel", "DistilBertConfig", "DistilBertTokenizerFast", "DocumentQuestionAnsweringPipeline", "DonutSwinModel", "EarlyStoppingCallback", "EfficientFormerConfig", "EfficientFormerImageProcessor", "EfficientNetConfig", "ElectraConfig", "ElectraTokenizerFast", "EncoderDecoderModel", "EncoderRepetitionPenaltyLogitsProcessor", "ErnieMModel", "ErnieModel", "ErnieMTokenizer", "EsmConfig", "EsmModel", "FlaxAlbertForMaskedLM", "FlaxAlbertForMultipleChoice", "FlaxAlbertForPreTraining", "FlaxAlbertForQuestionAnswering", "FlaxAlbertForSequenceClassification", "FlaxAlbertForTokenClassification", "FlaxAlbertModel", "FlaxBartForCausalLM", "FlaxBartForConditionalGeneration", "FlaxBartForQuestionAnswering", "FlaxBartForSequenceClassification", "FlaxBartModel", "FlaxBeitForImageClassification", "FlaxBeitForMaskedImageModeling", "FlaxBeitModel", "FlaxBertForCausalLM", "FlaxBertForMaskedLM", "FlaxBertForMultipleChoice", "FlaxBertForNextSentencePrediction", "FlaxBertForPreTraining", "FlaxBertForQuestionAnswering", "FlaxBertForSequenceClassification", "FlaxBertForTokenClassification", "FlaxBertModel", "FlaxBigBirdForCausalLM", "FlaxBigBirdForMaskedLM", "FlaxBigBirdForMultipleChoice", "FlaxBigBirdForPreTraining", "FlaxBigBirdForQuestionAnswering", "FlaxBigBirdForSequenceClassification", "FlaxBigBirdForTokenClassification", "FlaxBigBirdModel", "FlaxBlenderbotForConditionalGeneration", "FlaxBlenderbotModel", "FlaxBlenderbotSmallForConditionalGeneration", "FlaxBlenderbotSmallModel", "FlaxBloomForCausalLM", "FlaxBloomModel", "FlaxCLIPModel", "FlaxDistilBertForMaskedLM", "FlaxDistilBertForMultipleChoice", "FlaxDistilBertForQuestionAnswering", "FlaxDistilBertForSequenceClassification", "FlaxDistilBertForTokenClassification", "FlaxDistilBertModel", "FlaxElectraForCausalLM", "FlaxElectraForMaskedLM", "FlaxElectraForMultipleChoice", "FlaxElectraForPreTraining", "FlaxElectraForQuestionAnswering", "FlaxElectraForSequenceClassification", "FlaxElectraForTokenClassification", "FlaxElectraModel", "FlaxEncoderDecoderModel", "FlaxGPT2LMHeadModel", "FlaxGPT2Model", "FlaxGPTJForCausalLM", "FlaxGPTJModel", "FlaxGPTNeoForCausalLM", "FlaxGPTNeoModel", "FlaxLlamaForCausalLM", "FlaxLlamaModel", "FlaxGemmaForCausalLM", "FlaxGemmaModel", "FlaxMBartForConditionalGeneration", "FlaxMBartForQuestionAnswering", "FlaxMBartForSequenceClassification", "FlaxMBartModel", "FlaxMarianMTModel", "FlaxMarianModel", "FlaxMistralForCausalLM", "FlaxMistralModel", "FlaxOPTForCausalLM", "FlaxPegasusForConditionalGeneration", "FlaxPegasusModel", "FlaxRegNetForImageClassification", "FlaxRegNetModel", "FlaxResNetForImageClassification", "FlaxResNetModel", "FlaxRoFormerForMaskedLM", "FlaxRoFormerForMultipleChoice", "FlaxRoFormerForQuestionAnswering", "FlaxRoFormerForSequenceClassification", "FlaxRoFormerForTokenClassification", "FlaxRoFormerModel", "FlaxRobertaForCausalLM", "FlaxRobertaForMaskedLM", "FlaxRobertaForMultipleChoice", "FlaxRobertaForQuestionAnswering", "FlaxRobertaForSequenceClassification", "FlaxRobertaForTokenClassification", "FlaxRobertaModel", "FlaxRobertaPreLayerNormForCausalLM", "FlaxRobertaPreLayerNormForMaskedLM", "FlaxRobertaPreLayerNormForMultipleChoice", "FlaxRobertaPreLayerNormForQuestionAnswering", "FlaxRobertaPreLayerNormForSequenceClassification", "FlaxRobertaPreLayerNormForTokenClassification", "FlaxRobertaPreLayerNormModel", "FlaxSpeechEncoderDecoderModel", "FlaxViTForImageClassification", "FlaxViTModel", "FlaxVisionEncoderDecoderModel", "FlaxVisionTextDualEncoderModel", "FlaxWav2Vec2ForCTC", "FlaxWav2Vec2ForPreTraining", "FlaxWav2Vec2Model", "FlaxWhisperForAudioClassification", "FlaxWhisperForConditionalGeneration", "FlaxWhisperModel", "FlaxWhisperTimeStampLogitsProcessor", "FlaxXGLMForCausalLM", "FlaxXGLMModel", "FlaxXLMRobertaForCausalLM", "FlaxXLMRobertaForMaskedLM", "FlaxXLMRobertaForMultipleChoice", "FlaxXLMRobertaForQuestionAnswering", "FlaxXLMRobertaForSequenceClassification", "FlaxXLMRobertaForTokenClassification", "FlaxXLMRobertaModel", "FNetConfig", "FNetModel", "FNetTokenizerFast", "FSMTConfig", "FeatureExtractionPipeline", "FillMaskPipeline", "FlaubertConfig", "FlavaConfig", "FlavaForPreTraining", "FlavaImageModel", "FlavaImageProcessor", "FlavaMultimodalModel", "FlavaTextConfig", "FlavaTextModel", "FocalNetModel", "FunnelTokenizerFast", "GPTBigCodeConfig", "GPTJConfig", "GPTNeoXConfig", "GPTNeoXJapaneseConfig", "GPTNeoXTokenizerFast", "GPTSanJapaneseConfig", "GitConfig", "GitVisionConfig", "GraphormerConfig", "GroupViTTextConfig", "GroupViTVisionConfig", "HerbertTokenizerFast", "HubertConfig", "HubertForCTC", "IBertConfig", "IBertModel", "IdeficsConfig", "IdeficsProcessor", "ImageClassificationPipeline", "ImageFeatureExtractionPipeline", "ImageGPTConfig", "ImageSegmentationPipeline", "ImageToImagePipeline", "ImageToTextPipeline", "InformerConfig", "InstructBlipQFormerConfig", "JukeboxPriorConfig", "JukeboxTokenizer", "LEDConfig", "LEDTokenizerFast", "LayoutLMForQuestionAnswering", "LayoutLMTokenizerFast", "LayoutLMv2Config", "LayoutLMv2ForQuestionAnswering", "LayoutLMv2TokenizerFast", "LayoutLMv3Config", "LayoutLMv3ImageProcessor", "LayoutLMv3TokenizerFast", "LayoutXLMTokenizerFast", "LevitConfig", "LiltConfig", "LiltModel", "LongT5Config", "LongformerConfig", "LongformerModel", "LongformerTokenizerFast", "LukeModel", "LukeTokenizer", "LxmertTokenizerFast", "M2M100Config", "M2M100Tokenizer", "MarkupLMProcessor", "MaskGenerationPipeline", "MBart50TokenizerFast", "MBartConfig", "MCTCTFeatureExtractor", "MPNetConfig", "MPNetModel", "MPNetTokenizerFast", "MT5Config", "MT5TokenizerFast", "MarianConfig", "MarianTokenizer", "MarkupLMConfig", "MarkupLMModel", "MarkupLMTokenizer", "MarkupLMTokenizerFast", "Mask2FormerConfig", "MaskFormerConfig", "MaxTimeCriteria", "MegaConfig", "MegaModel", "MegatronBertConfig", "MegatronBertForPreTraining", "MegatronBertModel", "MobileBertConfig", "MobileBertModel", "MobileBertTokenizerFast", "MobileNetV1ImageProcessor", "MobileNetV1Model", "MobileNetV2ImageProcessor", "MobileNetV2Model", "MobileViTModel", "MobileViTV2Model", "MLukeTokenizer", "MraConfig", "MusicgenDecoderConfig", "MusicgenForConditionalGeneration", "MvpConfig", "MvpTokenizerFast", "MT5Tokenizer", "NatModel", "NerPipeline", "NezhaConfig", "NezhaModel", "NllbMoeConfig", "NllbTokenizer", "NllbTokenizerFast", "NystromformerConfig", "OPTConfig", "ObjectDetectionPipeline", "OneFormerProcessor", "OpenAIGPTTokenizerFast", "OpenLlamaConfig", "PLBartConfig", "PegasusConfig", "PegasusTokenizer", "PegasusTokenizerFast", "PegasusXConfig", "PerceiverImageProcessor", "PerceiverModel", "PerceiverTokenizer", "PersimmonConfig", "Pipeline", "Pix2StructConfig", "Pix2StructTextConfig", "PLBartTokenizer", "Pop2PianoConfig", "PreTrainedTokenizer", "PreTrainedTokenizerBase", "PreTrainedTokenizerFast", "PrefixConstrainedLogitsProcessor", "ProphetNetConfig", "QDQBertConfig", "QDQBertModel", "QuestionAnsweringPipeline", "RagConfig", "RagModel", "RagRetriever", "RagSequenceForGeneration", "RagTokenForGeneration", "RealmConfig", "RealmForOpenQA", "RealmScorer", "RealmTokenizerFast", "ReformerConfig", "ReformerTokenizerFast", "RegNetConfig", "RemBertConfig", "RemBertModel", "RemBertTokenizer", "RemBertTokenizerFast", "RepetitionPenaltyLogitsProcessor", "RetriBertConfig", "RetriBertTokenizerFast", "RoCBertConfig", "RoCBertModel", "RoCBertTokenizer", "RoFormerConfig", "RobertaConfig", "RobertaModel", "RobertaPreLayerNormConfig", "RobertaPreLayerNormModel", "RobertaTokenizerFast", "SEWConfig", "SEWDConfig", "SEWDForCTC", "SEWForCTC", "SamConfig", "SamPromptEncoderConfig", "SeamlessM4TConfig", # use of unconventional markdown "SeamlessM4Tv2Config", # use of unconventional markdown "Seq2SeqTrainingArguments", "SpecialTokensMixin", "Speech2Text2Config", "Speech2Text2Tokenizer", "Speech2TextTokenizer", "SpeechEncoderDecoderModel", "SpeechT5Config", "SpeechT5Model", "SplinterConfig", "SplinterTokenizerFast", "SqueezeBertTokenizerFast", "SummarizationPipeline", "Swin2SRImageProcessor", "Swinv2Model", "SwitchTransformersConfig", "T5Config", "T5Tokenizer", "T5TokenizerFast", "TableQuestionAnsweringPipeline", "TableTransformerConfig", "TapasConfig", "TapasModel", "TapasTokenizer", "Text2TextGenerationPipeline", "TextClassificationPipeline", "TextGenerationPipeline", "TFAlbertForMaskedLM", "TFAlbertForMultipleChoice", "TFAlbertForPreTraining", "TFAlbertForQuestionAnswering", "TFAlbertForSequenceClassification", "TFAlbertForTokenClassification", "TFAlbertModel", "TFBartForConditionalGeneration", "TFBartForSequenceClassification", "TFBartModel", "TFBertForMaskedLM", "TFBertForMultipleChoice", "TFBertForNextSentencePrediction", "TFBertForPreTraining", "TFBertForQuestionAnswering", "TFBertForSequenceClassification", "TFBertForTokenClassification", "TFBertModel", "TFBlenderbotForConditionalGeneration", "TFBlenderbotModel", "TFBlenderbotSmallForConditionalGeneration", "TFBlenderbotSmallModel", "TFBlipForConditionalGeneration", "TFBlipForImageTextRetrieval", "TFBlipForQuestionAnswering", "TFCLIPModel", "TFCTRLForSequenceClassification", "TFCTRLLMHeadModel", "TFCTRLModel", "TFCamembertForCausalLM", "TFCamembertForMaskedLM", "TFCamembertForMultipleChoice", "TFCamembertForQuestionAnswering", "TFCamembertForSequenceClassification", "TFCamembertForTokenClassification", "TFCamembertModel", "TFConvBertForMaskedLM", "TFConvBertForMultipleChoice", "TFConvBertForQuestionAnswering", "TFConvBertForSequenceClassification", "TFConvBertForTokenClassification", "TFConvBertModel", "TFConvNextForImageClassification", "TFConvNextModel", "TFConvNextV2Model", # Parsing issue. Equivalent to PT ConvNextV2Model, see PR #25558 "TFConvNextV2ForImageClassification", "TFCvtForImageClassification", "TFCvtModel", "TFDPRReader", "TFData2VecVisionForImageClassification", "TFData2VecVisionForSemanticSegmentation", "TFData2VecVisionModel", "TFDebertaForMaskedLM", "TFDebertaForQuestionAnswering", "TFDebertaForSequenceClassification", "TFDebertaForTokenClassification", "TFDebertaModel", "TFDebertaV2ForMaskedLM", "TFDebertaV2ForMultipleChoice", "TFDebertaV2ForQuestionAnswering", "TFDebertaV2ForSequenceClassification", "TFDebertaV2ForTokenClassification", "TFDebertaV2Model", "TFDeiTForImageClassification", "TFDeiTForImageClassificationWithTeacher", "TFDeiTForMaskedImageModeling", "TFDeiTModel", "TFDistilBertForMaskedLM", "TFDistilBertForMultipleChoice", "TFDistilBertForQuestionAnswering", "TFDistilBertForSequenceClassification", "TFDistilBertForTokenClassification", "TFDistilBertModel", "TFEfficientFormerForImageClassification", "TFEfficientFormerForImageClassificationWithTeacher", "TFEfficientFormerModel", "TFElectraForMaskedLM", "TFElectraForMultipleChoice", "TFElectraForPreTraining", "TFElectraForQuestionAnswering", "TFElectraForSequenceClassification", "TFElectraForTokenClassification", "TFElectraModel", "TFEncoderDecoderModel", "TFEsmForMaskedLM", "TFEsmForSequenceClassification", "TFEsmForTokenClassification", "TFEsmModel", "TFFlaubertForMultipleChoice", "TFFlaubertForQuestionAnsweringSimple", "TFFlaubertForSequenceClassification", "TFFlaubertForTokenClassification", "TFFlaubertModel", "TFFlaubertWithLMHeadModel", "TFFunnelBaseModel", "TFFunnelForMaskedLM", "TFFunnelForMultipleChoice", "TFFunnelForPreTraining", "TFFunnelForQuestionAnswering", "TFFunnelForSequenceClassification", "TFFunnelForTokenClassification", "TFFunnelModel", "TFGPT2DoubleHeadsModel", "TFGPT2ForSequenceClassification", "TFGPT2LMHeadModel", "TFGPT2Model", "TFGPTJForCausalLM", "TFGPTJForQuestionAnswering", "TFGPTJForSequenceClassification", "TFGPTJModel", "TFGroupViTModel", "TFHubertForCTC", "TFHubertModel", "TFLEDForConditionalGeneration", "TFLEDModel", "TFLayoutLMForMaskedLM", "TFLayoutLMForQuestionAnswering", "TFLayoutLMForSequenceClassification", "TFLayoutLMForTokenClassification", "TFLayoutLMModel", "TFLayoutLMv3ForQuestionAnswering", "TFLayoutLMv3ForSequenceClassification", "TFLayoutLMv3ForTokenClassification", "TFLayoutLMv3Model", "TFLongformerForMaskedLM", "TFLongformerForMultipleChoice", "TFLongformerForQuestionAnswering", "TFLongformerForSequenceClassification", "TFLongformerForTokenClassification", "TFLongformerModel", "TFLxmertForPreTraining", "TFLxmertModel", "TFMBartForConditionalGeneration", "TFMBartModel", "TFMPNetForMaskedLM", "TFMPNetForMultipleChoice", "TFMPNetForQuestionAnswering", "TFMPNetForSequenceClassification", "TFMPNetForTokenClassification", "TFMPNetModel", "TFMarianMTModel", "TFMarianModel", "TFMobileBertForMaskedLM", "TFMobileBertForMultipleChoice", "TFMobileBertForNextSentencePrediction", "TFMobileBertForPreTraining", "TFMobileBertForQuestionAnswering", "TFMobileBertForSequenceClassification", "TFMobileBertForTokenClassification", "TFMobileBertModel", "TFMobileViTForImageClassification", "TFMobileViTForSemanticSegmentation", "TFMobileViTModel", "TFOPTForCausalLM", "TFOPTModel", "TFOpenAIGPTDoubleHeadsModel", "TFOpenAIGPTForSequenceClassification", "TFOpenAIGPTLMHeadModel", "TFOpenAIGPTModel", "TFPegasusForConditionalGeneration", "TFPegasusModel", "TFRagModel", "TFRagSequenceForGeneration", "TFRagTokenForGeneration", "TFRegNetForImageClassification", "TFRegNetModel", "TFRemBertForCausalLM", "TFRemBertForMaskedLM", "TFRemBertForMultipleChoice", "TFRemBertForQuestionAnswering", "TFRemBertForSequenceClassification", "TFRemBertForTokenClassification", "TFRemBertModel", "TFRepetitionPenaltyLogitsProcessor", "TFResNetForImageClassification", "TFResNetModel", "TFRoFormerForCausalLM", "TFRoFormerForMaskedLM", "TFRoFormerForMultipleChoice", "TFRoFormerForQuestionAnswering", "TFRoFormerForSequenceClassification", "TFRoFormerForTokenClassification", "TFRoFormerModel", "TFRobertaForMaskedLM", "TFRobertaForMultipleChoice", "TFRobertaForQuestionAnswering", "TFRobertaForSequenceClassification", "TFRobertaForTokenClassification", "TFRobertaModel", "TFRobertaPreLayerNormForMaskedLM", "TFRobertaPreLayerNormForMultipleChoice", "TFRobertaPreLayerNormForQuestionAnswering", "TFRobertaPreLayerNormForSequenceClassification", "TFRobertaPreLayerNormForTokenClassification", "TFRobertaPreLayerNormModel", "TFSamModel", "TFSegformerForImageClassification", "TFSegformerForSemanticSegmentation", "TFSegformerModel", "TFSpeech2TextForConditionalGeneration", "TFSpeech2TextModel", "TFSwinForImageClassification", "TFSwinForMaskedImageModeling", "TFSwinModel", "TFT5EncoderModel", "TFT5ForConditionalGeneration", "TFT5Model", "TFTapasForMaskedLM", "TFTapasForQuestionAnswering", "TFTapasForSequenceClassification", "TFTapasModel", "TFTransfoXLForSequenceClassification", "TFTransfoXLLMHeadModel", "TFTransfoXLModel", "TFViTForImageClassification", "TFViTMAEForPreTraining", "TFViTMAEModel", "TFViTModel", "TFVisionEncoderDecoderModel", "TFVisionTextDualEncoderModel", "TFWav2Vec2ForCTC", "TFWav2Vec2Model", "TFWhisperForConditionalGeneration", "TFWhisperModel", "TFXGLMForCausalLM", "TFXGLMModel", "TFXLMForMultipleChoice", "TFXLMForQuestionAnsweringSimple", "TFXLMForSequenceClassification", "TFXLMForTokenClassification", "TFXLMModel", "TFXLMRobertaForCausalLM", "TFXLMRobertaForMaskedLM", "TFXLMRobertaForMultipleChoice", "TFXLMRobertaForQuestionAnswering", "TFXLMRobertaForSequenceClassification", "TFXLMRobertaForTokenClassification", "TFXLMRobertaModel", "TFXLMWithLMHeadModel", "TFXLNetForMultipleChoice", "TFXLNetForQuestionAnsweringSimple", "TFXLNetForSequenceClassification", "TFXLNetForTokenClassification", "TFXLNetLMHeadModel", "TFXLNetModel", "TimeSeriesTransformerConfig", "TokenClassificationPipeline", "TrOCRConfig", "TrainerState", "TrainingArguments", "TrajectoryTransformerConfig", "TranslationPipeline", "TvltImageProcessor", "UMT5Config", "UperNetConfig", "UperNetForSemanticSegmentation", "ViTHybridImageProcessor", "ViTHybridModel", "ViTMSNModel", "ViTModel", "VideoClassificationPipeline", "ViltConfig", "ViltForImagesAndTextClassification", "ViltModel", "VisionEncoderDecoderModel", "VisionTextDualEncoderModel", "VisualBertConfig", "VisualBertModel", "VisualQuestionAnsweringPipeline", "VitMatteForImageMatting", "VitsTokenizer", "VivitModel", "Wav2Vec2BertForCTC", "Wav2Vec2CTCTokenizer", "Wav2Vec2Config", "Wav2Vec2ConformerConfig", "Wav2Vec2ConformerForCTC", "Wav2Vec2FeatureExtractor", "Wav2Vec2PhonemeCTCTokenizer", "WavLMConfig", "WavLMForCTC", "WhisperConfig", "WhisperFeatureExtractor", "WhisperForAudioClassification", "XCLIPTextConfig", "XCLIPVisionConfig", "XGLMConfig", "XGLMModel", "XGLMTokenizerFast", "XLMConfig", "XLMProphetNetConfig", "XLMRobertaConfig", "XLMRobertaModel", "XLMRobertaTokenizerFast", "XLMRobertaXLConfig", "XLMRobertaXLModel", "XLNetConfig", "XLNetTokenizerFast", "XmodConfig", "XmodModel", "YolosImageProcessor", "YolosModel", "YosoConfig", "ZeroShotAudioClassificationPipeline", "ZeroShotClassificationPipeline", "ZeroShotImageClassificationPipeline", "ZeroShotObjectDetectionPipeline", ] # Supported math operations when interpreting the value of defaults. MATH_OPERATORS = { ast.Add: op.add, ast.Sub: op.sub, ast.Mult: op.mul, ast.Div: op.truediv, ast.Pow: op.pow, ast.BitXor: op.xor, ast.USub: op.neg, } def find_indent(line: str) -> int: """ Returns the number of spaces that start a line indent. """ search = re.search(r"^(\s*)(?:\S|$)", line) if search is None: return 0 return len(search.groups()[0]) def stringify_default(default: Any) -> str: """ Returns the string representation of a default value, as used in docstring: numbers are left as is, all other objects are in backtiks. Args: default (`Any`): The default value to process Returns: `str`: The string representation of that default. """ if isinstance(default, bool): # We need to test for bool first as a bool passes isinstance(xxx, (int, float)) return f"`{default}`" elif isinstance(default, enum.Enum): # We need to test for enum first as an enum with int values will pass isinstance(xxx, (int, float)) return f"`{str(default)}`" elif isinstance(default, int): return str(default) elif isinstance(default, float): result = str(default) return str(round(default, 2)) if len(result) > 6 else result elif isinstance(default, str): return str(default) if default.isnumeric() else f'`"{default}"`' elif isinstance(default, type): return f"`{default.__name__}`" else: return f"`{default}`" def eval_math_expression(expression: str) -> Optional[Union[float, int]]: # Mainly taken from the excellent https://stackoverflow.com/a/9558001 """ Evaluate (safely) a mathematial expression and returns its value. Args: expression (`str`): The expression to evaluate. Returns: `Optional[Union[float, int]]`: Returns `None` if the evaluation fails in any way and the value computed otherwise. Example: ```py >>> eval_expr('2^6') 4 >>> eval_expr('2**6') 64 >>> eval_expr('1 + 2*3**(4^5) / (6 + -7)') -5.0 ``` """ try: return eval_node(ast.parse(expression, mode="eval").body) except TypeError: return def eval_node(node): if isinstance(node, ast.Num): # <number> return node.n elif isinstance(node, ast.BinOp): # <left> <operator> <right> return MATH_OPERATORS[type(node.op)](eval_node(node.left), eval_node(node.right)) elif isinstance(node, ast.UnaryOp): # <operator> <operand> e.g., -1 return MATH_OPERATORS[type(node.op)](eval_node(node.operand)) else: raise TypeError(node) def replace_default_in_arg_description(description: str, default: Any) -> str: """ Catches the default value in the description of an argument inside a docstring and replaces it by the value passed. Args: description (`str`): The description of an argument in a docstring to process. default (`Any`): The default value that whould be in the docstring of that argument. Returns: `str`: The description updated with the new default value. """ # Lots of docstrings have `optional` or **opational** instead of *optional* so we do this fix here. description = description.replace("`optional`", OPTIONAL_KEYWORD) description = description.replace("**optional**", OPTIONAL_KEYWORD) if default is inspect._empty: # No default, make sure the description doesn't have any either idx = description.find(OPTIONAL_KEYWORD) if idx != -1: description = description[:idx].rstrip() if description.endswith(","): description = description[:-1].rstrip() elif default is None: # Default None are not written, we just set `*optional*`. If there is default that is not None specified in the # description, we do not erase it (as sometimes we set the default to `None` because the default is a mutable # object). idx = description.find(OPTIONAL_KEYWORD) if idx == -1: description = f"{description}, {OPTIONAL_KEYWORD}" elif re.search(r"defaults to `?None`?", description) is not None: len_optional = len(OPTIONAL_KEYWORD) description = description[: idx + len_optional] else: str_default = None # For numbers we may have a default that is given by a math operation (1/255 is really popular). We don't # want to replace those by their actual values. if isinstance(default, (int, float)) and re.search("defaults to `?(.*?)(?:`|$)", description) is not None: # Grab the default and evaluate it. current_default = re.search("defaults to `?(.*?)(?:`|$)", description).groups()[0] if default == eval_math_expression(current_default): try: # If it can be directly converted to the type of the default, it's a simple value str_default = str(type(default)(current_default)) except Exception: # Otherwise there is a math operator so we add a code block. str_default = f"`{current_default}`" elif isinstance(default, enum.Enum) and default.name == current_default.split(".")[-1]: # When the default is an Enum (this is often the case for PIL.Image.Resampling), and the docstring # matches the enum name, keep the existing docstring rather than clobbering it with the enum value. str_default = f"`{current_default}`" if str_default is None: str_default = stringify_default(default) # Make sure default match if OPTIONAL_KEYWORD not in description: description = f"{description}, {OPTIONAL_KEYWORD}, defaults to {str_default}" elif _re_parse_description.search(description) is None: idx = description.find(OPTIONAL_KEYWORD) len_optional = len(OPTIONAL_KEYWORD) description = f"{description[:idx + len_optional]}, defaults to {str_default}" else: description = _re_parse_description.sub(rf"*optional*, defaults to {str_default}", description) return description def get_default_description(arg: inspect.Parameter) -> str: """ Builds a default description for a parameter that was not documented. Args: arg (`inspect.Parameter`): The argument in the signature to generate a description for. Returns: `str`: The description. """ if arg.annotation is inspect._empty: arg_type = "<fill_type>" elif hasattr(arg.annotation, "__name__"): arg_type = arg.annotation.__name__ else: arg_type = str(arg.annotation) if arg.default is inspect._empty: return f"`{arg_type}`" elif arg.default is None: return f"`{arg_type}`, {OPTIONAL_KEYWORD}" else: str_default = stringify_default(arg.default) return f"`{arg_type}`, {OPTIONAL_KEYWORD}, defaults to {str_default}" def find_source_file(obj: Any) -> Path: """ Finds the source file of an object. Args: obj (`Any`): The object whose source file we are looking for. Returns: `Path`: The source file. """ module = obj.__module__ obj_file = PATH_TO_TRANSFORMERS for part in module.split(".")[1:]: obj_file = obj_file / part return obj_file.with_suffix(".py") def match_docstring_with_signature(obj: Any) -> Optional[Tuple[str, str]]: """ Matches the docstring of an object with its signature. Args: obj (`Any`): The object to process. Returns: `Optional[Tuple[str, str]]`: Returns `None` if there is no docstring or no parameters documented in the docstring, otherwise returns a tuple of two strings: the current documentation of the arguments in the docstring and the one matched with the signature. """ if len(getattr(obj, "__doc__", "")) == 0: # Nothing to do, there is no docstring. return # Read the docstring in the source code to see if there is a special command to ignore this object. try: source, _ = inspect.getsourcelines(obj) except OSError: source = [] idx = 0 while idx < len(source) and '"""' not in source[idx]: idx += 1 ignore_order = False if idx < len(source): line_before_docstring = source[idx - 1] if re.search(r"^\s*#\s*no-format\s*$", line_before_docstring): # This object is ignored return elif re.search(r"^\s*#\s*ignore-order\s*$", line_before_docstring): ignore_order = True # Read the signature signature = inspect.signature(obj).parameters obj_doc_lines = obj.__doc__.split("\n") # Get to the line where we start documenting arguments idx = 0 while idx < len(obj_doc_lines) and _re_args.search(obj_doc_lines[idx]) is None: idx += 1 if idx == len(obj_doc_lines): # Nothing to do, no parameters are documented. return indent = find_indent(obj_doc_lines[idx]) arguments = {} current_arg = None idx += 1 start_idx = idx # Keep going until the arg section is finished (nonempty line at the same indent level) or the end of the docstring. while idx < len(obj_doc_lines) and ( len(obj_doc_lines[idx].strip()) == 0 or find_indent(obj_doc_lines[idx]) > indent ): if find_indent(obj_doc_lines[idx]) == indent + 4: # New argument -> let's generate the proper doc for it re_search_arg = _re_parse_arg.search(obj_doc_lines[idx]) if re_search_arg is not None: _, name, description = re_search_arg.groups() current_arg = name if name in signature: default = signature[name].default if signature[name].kind is inspect._ParameterKind.VAR_KEYWORD: default = None new_description = replace_default_in_arg_description(description, default) else: new_description = description init_doc = _re_parse_arg.sub(rf"\1\2 ({new_description}):", obj_doc_lines[idx]) arguments[current_arg] = [init_doc] elif current_arg is not None: arguments[current_arg].append(obj_doc_lines[idx]) idx += 1 # We went too far by one (perhaps more if there are a lot of new lines) idx -= 1 while len(obj_doc_lines[idx].strip()) == 0: arguments[current_arg] = arguments[current_arg][:-1] idx -= 1 # And we went too far by one again. idx += 1 old_doc_arg = "\n".join(obj_doc_lines[start_idx:idx]) old_arguments = list(arguments.keys()) arguments = {name: "\n".join(doc) for name, doc in arguments.items()} # Add missing arguments with a template for name in set(signature.keys()) - set(arguments.keys()): arg = signature[name] # We ignore private arguments or *args/**kwargs (unless they are documented by the user) if name.startswith("_") or arg.kind in [ inspect._ParameterKind.VAR_KEYWORD, inspect._ParameterKind.VAR_POSITIONAL, ]: arguments[name] = "" else: arg_desc = get_default_description(arg) arguments[name] = " " * (indent + 4) + f"{name} ({arg_desc}): <fill_docstring>" # Arguments are sorted by the order in the signature unless a special comment is put. if ignore_order: new_param_docs = [arguments[name] for name in old_arguments if name in signature] missing = set(signature.keys()) - set(old_arguments) new_param_docs.extend([arguments[name] for name in missing if len(arguments[name]) > 0]) else: new_param_docs = [arguments[name] for name in signature.keys() if len(arguments[name]) > 0] new_doc_arg = "\n".join(new_param_docs) return old_doc_arg, new_doc_arg def fix_docstring(obj: Any, old_doc_args: str, new_doc_args: str): """ Fixes the docstring of an object by replacing its arguments documentaiton by the one matched with the signature. Args: obj (`Any`): The object whose dostring we are fixing. old_doc_args (`str`): The current documentation of the parameters of `obj` in the docstring (as returned by `match_docstring_with_signature`). new_doc_args (`str`): The documentation of the parameters of `obj` matched with its signature (as returned by `match_docstring_with_signature`). """ # Read the docstring in the source code and make sure we have the right part of the docstring source, line_number = inspect.getsourcelines(obj) # Get to the line where we start documenting arguments idx = 0 while idx < len(source) and _re_args.search(source[idx]) is None: idx += 1 if idx == len(source): # Args are not defined in the docstring of this object return # Get to the line where we stop documenting arguments indent = find_indent(source[idx]) idx += 1 start_idx = idx while idx < len(source) and (len(source[idx].strip()) == 0 or find_indent(source[idx]) > indent): idx += 1 idx -= 1 while len(source[idx].strip()) == 0: idx -= 1 idx += 1 if "".join(source[start_idx:idx])[:-1] != old_doc_args: # Args are not fully defined in the docstring of this object return obj_file = find_source_file(obj) with open(obj_file, "r", encoding="utf-8") as f: content = f.read() # Replace content lines = content.split("\n") lines = lines[: line_number + start_idx - 1] + [new_doc_args] + lines[line_number + idx - 1 :] print(f"Fixing the docstring of {obj.__name__} in {obj_file}.") with open(obj_file, "w", encoding="utf-8") as f: f.write("\n".join(lines)) def check_docstrings(overwrite: bool = False): """ Check docstrings of all public objects that are callables and are documented. Args: overwrite (`bool`, *optional*, defaults to `False`): Whether to fix inconsistencies or not. """ failures = [] hard_failures = [] to_clean = [] for name in dir(transformers): # Skip objects that are private or not documented. if name.startswith("_") or ignore_undocumented(name) or name in OBJECTS_TO_IGNORE: continue obj = getattr(transformers, name) if not callable(obj) or not isinstance(obj, type) or getattr(obj, "__doc__", None) is None: continue # Check docstring try: result = match_docstring_with_signature(obj) if result is not None: old_doc, new_doc = result else: old_doc, new_doc = None, None except Exception as e: print(e) hard_failures.append(name) continue if old_doc != new_doc: if overwrite: fix_docstring(obj, old_doc, new_doc) else: failures.append(name) elif not overwrite and new_doc is not None and ("<fill_type>" in new_doc or "<fill_docstring>" in new_doc): to_clean.append(name) # Deal with errors error_message = "" if len(hard_failures) > 0: error_message += ( "The argument part of the docstrings of the following objects could not be processed, check they are " "properly formatted." ) error_message += "\n" + "\n".join([f"- {name}" for name in hard_failures]) if len(failures) > 0: error_message += ( "The following objects docstrings do not match their signature. Run `make fix-copies` to fix this. " "In some cases, this error may be raised incorrectly by the docstring checker. If you think this is the " "case, you can manually check the docstrings and then add the object name to `OBJECTS_TO_IGNORE` in " "`utils/check_docstrings.py`." ) error_message += "\n" + "\n".join([f"- {name}" for name in failures]) if len(to_clean) > 0: error_message += ( "The following objects docstrings contain templates you need to fix: search for `<fill_type>` or " "`<fill_docstring>`." ) error_message += "\n" + "\n".join([f"- {name}" for name in to_clean]) if len(error_message) > 0: error_message = "There was at least one problem when checking docstrings of public objects.\n" + error_message raise ValueError(error_message) if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("--fix_and_overwrite", action="store_true", help="Whether to fix inconsistencies.") args = parser.parse_args() check_docstrings(overwrite=args.fix_and_overwrite)
transformers/utils/check_docstrings.py/0
{ "file_path": "transformers/utils/check_docstrings.py", "repo_id": "transformers", "token_count": 16819 }
183
import argparse import math import traceback import dateutil.parser as date_parser import requests def extract_time_from_single_job(job): """Extract time info from a single job in a GitHub Actions workflow run""" job_info = {} start = job["started_at"] end = job["completed_at"] start_datetime = date_parser.parse(start) end_datetime = date_parser.parse(end) duration_in_min = round((end_datetime - start_datetime).total_seconds() / 60.0) job_info["started_at"] = start job_info["completed_at"] = end job_info["duration"] = duration_in_min return job_info def get_job_time(workflow_run_id, token=None): """Extract time info for all jobs in a GitHub Actions workflow run""" headers = None if token is not None: headers = {"Accept": "application/vnd.github+json", "Authorization": f"Bearer {token}"} url = f"https://api.github.com/repos/huggingface/transformers/actions/runs/{workflow_run_id}/jobs?per_page=100" result = requests.get(url, headers=headers).json() job_time = {} try: job_time.update({job["name"]: extract_time_from_single_job(job) for job in result["jobs"]}) pages_to_iterate_over = math.ceil((result["total_count"] - 100) / 100) for i in range(pages_to_iterate_over): result = requests.get(url + f"&page={i + 2}", headers=headers).json() job_time.update({job["name"]: extract_time_from_single_job(job) for job in result["jobs"]}) return job_time except Exception: print(f"Unknown error, could not fetch links:\n{traceback.format_exc()}") return {} if __name__ == "__main__": r""" Example: python get_github_job_time.py --workflow_run_id 2945609517 """ parser = argparse.ArgumentParser() # Required parameters parser.add_argument("--workflow_run_id", type=str, required=True, help="A GitHub Actions workflow run id.") args = parser.parse_args() job_time = get_job_time(args.workflow_run_id) job_time = dict(sorted(job_time.items(), key=lambda item: item[1]["duration"], reverse=True)) for k, v in job_time.items(): print(f'{k}: {v["duration"]}')
transformers/utils/get_github_job_time.py/0
{ "file_path": "transformers/utils/get_github_job_time.py", "repo_id": "transformers", "token_count": 835 }
184
from transformers import CLIPImageProcessor class CustomImageProcessor(CLIPImageProcessor): pass
transformers/utils/test_module/custom_image_processing.py/0
{ "file_path": "transformers/utils/test_module/custom_image_processing.py", "repo_id": "transformers", "token_count": 29 }
185