text
stringlengths
5
45.8k
id
stringlengths
18
93
metadata
dict
__index_level_0__
int64
0
33
# Copyright 2023 The KerasCV Authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import time import matplotlib.pyplot as plt import numpy as np import tensorflow as tf from tensorflow import keras from keras_cv.layers import ChannelShuffle from keras_cv.layers.preprocessing.base_image_augmentation_layer import ( BaseImageAugmentationLayer, ) class OldChannelShuffle(BaseImageAugmentationLayer): """Shuffle channels of an input image. Input shape: The expected images should be [0-255] pixel ranges. 3D (unbatched) or 4D (batched) tensor with shape: `(..., height, width, channels)`, in `"channels_last"` format Output shape: 3D (unbatched) or 4D (batched) tensor with shape: `(..., height, width, channels)`, in `"channels_last"` format Args: groups: Number of groups to divide the input channels, defaults to 3. seed: Integer. Used to create a random seed. Call arguments: inputs: Tensor representing images of shape `(batch_size, width, height, channels)`, with dtype tf.float32 / tf.uint8, ` or (width, height, channels)`, with dtype tf.float32 / tf.uint8 training: A boolean argument that determines whether the call should be run in inference mode or training mode, defaults to True. Usage: ```python (images, labels), _ = keras.datasets.cifar10.load_data() channel_shuffle = keras_cv.layers.ChannelShuffle() augmented_images = channel_shuffle(images) ``` """ def __init__(self, groups=3, seed=None, **kwargs): super().__init__(seed=seed, **kwargs) self.groups = groups self.seed = seed def augment_image(self, image, transformation=None, **kwargs): shape = tf.shape(image) height, width = shape[0], shape[1] num_channels = image.shape[2] if not num_channels % self.groups == 0: raise ValueError( "The number of input channels should be " "divisible by the number of groups." f"Received: channels={num_channels}, groups={self.groups}" ) channels_per_group = num_channels // self.groups image = tf.reshape( image, [height, width, self.groups, channels_per_group] ) image = tf.transpose(image, perm=[2, 0, 1, 3]) image = tf.random.shuffle(image, seed=self.seed) image = tf.transpose(image, perm=[1, 2, 3, 0]) image = tf.reshape(image, [height, width, num_channels]) return image def augment_bounding_boxes(self, bounding_boxes, **kwargs): return bounding_boxes def augment_label(self, label, transformation=None, **kwargs): return label def augment_segmentation_mask( self, segmentation_mask, transformation, **kwargs ): return segmentation_mask def get_config(self): config = super().get_config() config.update({"groups": self.groups, "seed": self.seed}) return config def compute_output_shape(self, input_shape): return input_shape class ChannelShuffleTest(tf.test.TestCase): def test_consistency_with_old_impl(self): image_shape = (1, 32, 32, 3) groups = 3 fixed_seed = 2023 # magic number image = tf.random.uniform(shape=image_shape) layer = ChannelShuffle(groups=groups, seed=fixed_seed) old_layer = OldChannelShuffle(groups=groups, seed=fixed_seed) output = layer(image) old_output = old_layer(image) self.assertNotAllClose(image, output) self.assertAllClose(old_output, output) if __name__ == "__main__": # Run benchmark (x_train, _), _ = keras.datasets.cifar10.load_data() x_train = x_train.astype(np.float32) num_images = [1000, 2000, 3000, 4000, 5000, 10000] results = {} aug_candidates = [ChannelShuffle, OldChannelShuffle] aug_args = {"groups": 3} for aug in aug_candidates: # Eager Mode c = aug.__name__ layer = aug(**aug_args) runtimes = [] print(f"Timing {c}") for n_images in num_images: # warmup layer(x_train[:n_images]) t0 = time.time() r1 = layer(x_train[:n_images]) t1 = time.time() runtimes.append(t1 - t0) print(f"Runtime for {c}, n_images={n_images}: {t1-t0}") results[c] = runtimes # Graph Mode c = aug.__name__ + " Graph Mode" layer = aug(**aug_args) @tf.function() def apply_aug(inputs): return layer(inputs) runtimes = [] print(f"Timing {c}") for n_images in num_images: # warmup apply_aug(x_train[:n_images]) t0 = time.time() r1 = apply_aug(x_train[:n_images]) t1 = time.time() runtimes.append(t1 - t0) print(f"Runtime for {c}, n_images={n_images}: {t1-t0}") results[c] = runtimes # XLA Mode c = aug.__name__ + " XLA Mode" layer = aug(**aug_args) @tf.function(jit_compile=True) def apply_aug(inputs): return layer(inputs) runtimes = [] print(f"Timing {c}") for n_images in num_images: # warmup apply_aug(x_train[:n_images]) t0 = time.time() r1 = apply_aug(x_train[:n_images]) t1 = time.time() runtimes.append(t1 - t0) print(f"Runtime for {c}, n_images={n_images}: {t1-t0}") results[c] = runtimes plt.figure() for key in results: plt.plot(num_images, results[key], label=key) plt.xlabel("Number images") plt.ylabel("Runtime (seconds)") plt.legend() plt.savefig("comparison.png") # So we can actually see more relevant margins del results[aug_candidates[1].__name__] plt.figure() for key in results: plt.plot(num_images, results[key], label=key) plt.xlabel("Number images") plt.ylabel("Runtime (seconds)") plt.legend() plt.savefig("comparison_no_old_eager.png") # Run unit tests tf.test.main()
keras-cv/benchmarks/vectorized_channel_shuffle.py/0
{ "file_path": "keras-cv/benchmarks/vectorized_channel_shuffle.py", "repo_id": "keras-cv", "token_count": 2952 }
0
# Copyright 2023 The KerasCV Authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import time import matplotlib.pyplot as plt import numpy as np import tensorflow as tf from tensorflow import keras from keras_cv import core from keras_cv.layers import RandomlyZoomedCrop from keras_cv.layers.preprocessing.base_image_augmentation_layer import ( BaseImageAugmentationLayer, ) from keras_cv.utils import preprocessing as preprocessing_utils class OldRandomlyZoomedCrop(BaseImageAugmentationLayer): """Randomly crops a part of an image and zooms it by a provided amount size. This implementation takes a distortion-oriented approach, which means the amount of distortion in the image is proportional to the `zoom_factor` argument. To do this, we first sample a random value for `zoom_factor` and `aspect_ratio_factor`. Further we deduce a `crop_size` which abides by the calculated aspect ratio. Finally we do the actual cropping operation and resize the image to `(height, width)`. Args: height: The height of the output shape. width: The width of the output shape. zoom_factor: A tuple of two floats, ConstantFactorSampler or UniformFactorSampler. Represents the area relative to the original image of the cropped image before resizing it to `(height, width)`. aspect_ratio_factor: A tuple of two floats, ConstantFactorSampler or UniformFactorSampler. Aspect ratio means the ratio of width to height of the cropped image. In the context of this layer, the aspect ratio sampled represents a value to distort the aspect ratio by. Represents the lower and upper bound for the aspect ratio of the cropped image before resizing it to `(height, width)`. For most tasks, this should be `(3/4, 4/3)`. To perform a no-op provide the value `(1.0, 1.0)`. interpolation: (Optional) A string specifying the sampling method for resizing, defaults to "bilinear". seed: (Optional) Used to create a random seed, defaults to None. """ def __init__( self, height, width, zoom_factor, aspect_ratio_factor, interpolation="bilinear", seed=None, **kwargs, ): super().__init__(seed=seed, **kwargs) self.height = height self.width = width self.aspect_ratio_factor = preprocessing_utils.parse_factor( aspect_ratio_factor, min_value=0.0, max_value=None, param_name="aspect_ratio_factor", seed=seed, ) self.zoom_factor = preprocessing_utils.parse_factor( zoom_factor, min_value=0.0, max_value=None, param_name="zoom_factor", seed=seed, ) self._check_class_arguments( height, width, zoom_factor, aspect_ratio_factor ) self.force_output_dense_images = True self.interpolation = interpolation self.seed = seed def get_random_transformation( self, image=None, label=None, bounding_box=None, **kwargs ): zoom_factor = self.zoom_factor() aspect_ratio = self.aspect_ratio_factor() original_height = tf.cast(tf.shape(image)[-3], tf.float32) original_width = tf.cast(tf.shape(image)[-2], tf.float32) crop_size = ( tf.round(self.height / zoom_factor), tf.round(self.width / zoom_factor), ) new_height = crop_size[0] / tf.sqrt(aspect_ratio) new_width = crop_size[1] * tf.sqrt(aspect_ratio) height_offset = self._random_generator.uniform( (), minval=tf.minimum(0.0, original_height - new_height), maxval=tf.maximum(0.0, original_height - new_height), dtype=tf.float32, ) width_offset = self._random_generator.uniform( (), minval=tf.minimum(0.0, original_width - new_width), maxval=tf.maximum(0.0, original_width - new_width), dtype=tf.float32, ) new_height = new_height / original_height new_width = new_width / original_width height_offset = height_offset / original_height width_offset = width_offset / original_width return (new_height, new_width, height_offset, width_offset) def call(self, inputs, training=True): if training: return super().call(inputs, training) else: inputs = self._ensure_inputs_are_compute_dtype(inputs) inputs, meta_data = self._format_inputs(inputs) output = inputs # self._resize() returns valid results for both batched and # unbatched output["images"] = self._resize(inputs["images"]) return self._format_output(output, meta_data) def augment_image(self, image, transformation, **kwargs): image_shape = tf.shape(image) height = tf.cast(image_shape[-3], tf.float32) width = tf.cast(image_shape[-2], tf.float32) image = tf.expand_dims(image, axis=0) new_height, new_width, height_offset, width_offset = transformation transform = OldRandomlyZoomedCrop._format_transform( [ new_width, 0.0, width_offset * width, 0.0, new_height, height_offset * height, 0.0, 0.0, ] ) image = preprocessing_utils.transform( images=image, transforms=transform, output_shape=(self.height, self.width), interpolation=self.interpolation, fill_mode="reflect", ) return tf.squeeze(image, axis=0) @staticmethod def _format_transform(transform): transform = tf.convert_to_tensor(transform, dtype=tf.float32) return transform[tf.newaxis] def _resize(self, image): outputs = keras.preprocessing.image.smart_resize( image, (self.height, self.width) ) # smart_resize will always output float32, so we need to re-cast. return tf.cast(outputs, self.compute_dtype) def _check_class_arguments( self, height, width, zoom_factor, aspect_ratio_factor ): if not isinstance(height, int): raise ValueError( "`height` must be an integer. Received height={height}" ) if not isinstance(width, int): raise ValueError( "`width` must be an integer. Received width={width}" ) if ( not isinstance(zoom_factor, (tuple, list, core.FactorSampler)) or isinstance(zoom_factor, float) or isinstance(zoom_factor, int) ): raise ValueError( "`zoom_factor` must be tuple of two positive floats" " or keras_cv.core.FactorSampler instance. Received " f"zoom_factor={zoom_factor}" ) if ( not isinstance( aspect_ratio_factor, (tuple, list, core.FactorSampler) ) or isinstance(aspect_ratio_factor, float) or isinstance(aspect_ratio_factor, int) ): raise ValueError( "`aspect_ratio_factor` must be tuple of two positive floats or " "keras_cv.core.FactorSampler instance. Received " f"aspect_ratio_factor={aspect_ratio_factor}" ) def augment_target(self, augment_target, **kwargs): return augment_target def get_config(self): config = super().get_config() config.update( { "height": self.height, "width": self.width, "zoom_factor": self.zoom_factor, "aspect_ratio_factor": self.aspect_ratio_factor, "interpolation": self.interpolation, "seed": self.seed, } ) return config @classmethod def from_config(cls, config): if isinstance(config["zoom_factor"], dict): config["zoom_factor"] = keras.utils.deserialize_keras_object( config["zoom_factor"] ) if isinstance(config["aspect_ratio_factor"], dict): config["aspect_ratio_factor"] = ( keras.utils.deserialize_keras_object( config["aspect_ratio_factor"] ) ) return cls(**config) def _crop_and_resize(self, image, transformation, method=None): image = tf.expand_dims(image, axis=0) boxes = transformation # See bit.ly/tf_crop_resize for more details augmented_image = tf.image.crop_and_resize( image, # image shape: [B, H, W, C] boxes, # boxes: (1, 4) in this case; represents area # to be cropped from the original image [0], # box_indices: maps boxes to images along batch axis # [0] since there is only one image (self.height, self.width), # output size method=method or self.interpolation, ) return tf.squeeze(augmented_image, axis=0) class RandomlyZoomedCropTest(tf.test.TestCase): def test_consistency_with_old_impl(self): image_shape = (1, 64, 64, 3) height, width = 32, 32 fixed_zoom_factor = (0.8, 0.8) fixed_aspect_ratio_factor = (3.0 / 4.0, 3.0 / 4.0) fixed_seed = 2023 image = tf.random.uniform(shape=image_shape) * 255.0 layer = RandomlyZoomedCrop( height, width, fixed_zoom_factor, fixed_aspect_ratio_factor, seed=fixed_seed, ) old_layer = OldRandomlyZoomedCrop( height, width, fixed_zoom_factor, fixed_aspect_ratio_factor, seed=fixed_seed, ) output = layer(image) old_output = old_layer(image) self.assertAllClose(old_output, output) if __name__ == "__main__": # Run benchmark (x_train, _), _ = keras.datasets.cifar10.load_data() x_train = x_train.astype(np.float32) num_images = [1000, 2000, 5000, 10000] results = {} aug_candidates = [RandomlyZoomedCrop, OldRandomlyZoomedCrop] aug_args = { "height": 16, "width": 16, "zoom_factor": (0.8, 1.2), "aspect_ratio_factor": (3.0 / 4.0, 4.0 / 3.0), } for aug in aug_candidates: # Eager Mode c = aug.__name__ layer = aug(**aug_args) runtimes = [] print(f"Timing {c}") for n_images in num_images: # warmup layer(x_train[:n_images]) t0 = time.time() r1 = layer(x_train[:n_images]) t1 = time.time() runtimes.append(t1 - t0) print(f"Runtime for {c}, n_images={n_images}: {t1-t0}") results[c] = runtimes # Graph Mode c = aug.__name__ + " Graph Mode" layer = aug(**aug_args) @tf.function() def apply_aug(inputs): return layer(inputs) runtimes = [] print(f"Timing {c}") for n_images in num_images: # warmup apply_aug(x_train[:n_images]) t0 = time.time() r1 = apply_aug(x_train[:n_images]) t1 = time.time() runtimes.append(t1 - t0) print(f"Runtime for {c}, n_images={n_images}: {t1-t0}") results[c] = runtimes # XLA Mode # cannot run tf.raw_ops.ImageProjectiveTransformV3 on XLA # for more information please refer: # https://github.com/tensorflow/tensorflow/issues/55194 plt.figure() for key in results: plt.plot(num_images, results[key], label=key) plt.xlabel("Number images") plt.ylabel("Runtime (seconds)") plt.legend() plt.savefig("comparison.png") # So we can actually see more relevant margins del results[aug_candidates[1].__name__] plt.figure() for key in results: plt.plot(num_images, results[key], label=key) plt.xlabel("Number images") plt.ylabel("Runtime (seconds)") plt.legend() plt.savefig("comparison_no_old_eager.png") # Run unit tests tf.test.main()
keras-cv/benchmarks/vectorized_randomly_zoomed_crop.py/0
{ "file_path": "keras-cv/benchmarks/vectorized_randomly_zoomed_crop.py", "repo_id": "keras-cv", "token_count": 6050 }
1
# Copyright 2022 The KerasCV Authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ random_crop_and_resize_demo.py shows how to use the RandomCropAndResize preprocessing layer for object detection. """ import demo_utils import tensorflow as tf from keras_cv.layers import preprocessing IMG_SIZE = (256, 256) def main(): dataset = demo_utils.load_voc_dataset(bounding_box_format="rel_xyxy") random_rotation = preprocessing.RandomCropAndResize( target_size=IMG_SIZE, crop_area_factor=(0.5, 0.5), aspect_ratio_factor=(0.5, 0.5), bounding_box_format="rel_xyxy", ) result = dataset.map(random_rotation, num_parallel_calls=tf.data.AUTOTUNE) demo_utils.visualize_data(result, bounding_box_format="rel_xyxy") if __name__ == "__main__": main()
keras-cv/examples/layers/preprocessing/bounding_box/random_crop_and_resize_demo.py/0
{ "file_path": "keras-cv/examples/layers/preprocessing/bounding_box/random_crop_and_resize_demo.py", "repo_id": "keras-cv", "token_count": 442 }
2
# Copyright 2022 The KerasCV Authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import sys import tensorflow as tf from absl import flags from tensorflow import keras from tensorflow.keras import callbacks from tensorflow.keras import layers from tensorflow.keras import metrics from tensorflow.keras import optimizers from keras_cv import losses from keras_cv import models from keras_cv import training from keras_cv.datasets import imagenet flags.DEFINE_string( "model_name", None, "The name of the model in KerasCV.models to use." ) flags.DEFINE_string( "imagenet_path", None, "Directory from which to load Imagenet." ) flags.DEFINE_string( "backup_path", None, "Directory which will be used for training backups." ) flags.DEFINE_string( "weights_path", None, "Directory which will be used to store weight checkpoints.", ) flags.DEFINE_string( "tensorboard_path", None, "Directory which will be used to store tensorboard logs.", ) flags.DEFINE_integer( "batch_size", 256, "Batch size for training and evaluation." ) flags.DEFINE_boolean( "use_xla", True, "whether to use XLA (jit_compile) for training." ) flags.DEFINE_float( "initial_learning_rate", 0.1, "Initial learning rate which will reduce on plateau.", ) flags.DEFINE_boolean( "include_probe", True, "Whether to include probing during training.", ) FLAGS = flags.FLAGS FLAGS(sys.argv) if FLAGS.model_name not in models.__dict__: raise ValueError(f"Invalid model name: {FLAGS.model_name}") NUM_CLASSES = 1000 IMAGE_SIZE = (224, 224) EPOCHS = 250 train_ds = imagenet.load( split="train", tfrecord_path=FLAGS.imagenet_path, batch_size=FLAGS.batch_size, img_size=IMAGE_SIZE, shuffle=True, shuffle_buffer=2000, reshuffle_each_iteration=True, ) # For TPU training, use tf.distribute.TPUStrategy() # MirroredStrategy is best for a single machine with multiple GPUs strategy = tf.distribute.MirroredStrategy() with strategy.scope(): model = models.__dict__[FLAGS.model_name] model = model( include_rescaling=True, include_top=False, input_shape=IMAGE_SIZE + (3,), pooling="avg", ) trainer = training.SimCLRTrainer( encoder=model, augmenter=training.SimCLRAugmenter( value_range=(0, 255), target_size=IMAGE_SIZE ), probe=layers.Dense(NUM_CLASSES, name="linear_probe"), ) optimizer = optimizers.SGD( learning_rate=FLAGS.initial_learning_rate, momentum=0.9, global_clipnorm=10, ) loss_fn = losses.SimCLRLoss(temperature=0.5, reduction="none") probe_loss = keras.losses.CategoricalCrossentropy( reduction="none", from_logits=True ) with strategy.scope(): training_metrics = [ metrics.CategoricalAccuracy(name="probe_accuracy"), metrics.TopKCategoricalAccuracy(name="probe_top5_accuracy", k=5), ] training_callbacks = [ callbacks.EarlyStopping(monitor="probe_accuracy", patience=20), callbacks.BackupAndRestore(FLAGS.backup_path), callbacks.ModelCheckpoint(FLAGS.weights_path, save_weights_only=True), callbacks.TensorBoard(log_dir=FLAGS.tensorboard_path), ] if FLAGS.include_probe: training_callbacks += [ callbacks.ReduceLROnPlateau( monitor="probe_accuracy", factor=0.1, patience=5, min_lr=0.0001, min_delta=0.005, ) ] trainer.compile( encoder_optimizer=optimizer, encoder_loss=loss_fn, probe_optimizer=optimizers.Adam(global_clipnorm=10), probe_metrics=training_metrics, probe_loss=probe_loss, jit_compile=FLAGS.use_xla, ) trainer.fit( train_ds, epochs=EPOCHS, callbacks=training_callbacks, )
keras-cv/examples/training/contrastive/imagenet/simclr_training.py/0
{ "file_path": "keras-cv/examples/training/contrastive/imagenet/simclr_training.py", "repo_id": "keras-cv", "token_count": 1661 }
3
# Copyright 2023 The KerasCV Authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import random as python_random from keras_cv.backend import keras from keras_cv.backend.config import keras_3 if keras_3(): from keras.random import * # noqa: F403, F401 else: from keras_core.random import * # noqa: F403, F401 def _make_default_seed(): return python_random.randint(1, int(1e9)) class SeedGenerator: def __new__(cls, seed=None, **kwargs): if keras_3(): return keras.random.SeedGenerator(seed=seed, **kwargs) return super().__new__(cls) def __init__(self, seed=None): if seed is None: seed = _make_default_seed() self._initial_seed = seed self._current_seed = [0, seed] def next(self, ordered=True): self._current_seed[0] += 1 return self._current_seed[:] def get_config(self): return {"seed": self._initial_seed} @classmethod def from_config(cls, config): return cls(**config) def _draw_seed(seed): if keras_3(): # Keras 3 seed can be directly passed to random functions return seed if isinstance(seed, SeedGenerator): init_seed = seed.next() else: if seed is None: seed = _make_default_seed() init_seed = [0, seed] return init_seed def normal(shape, mean=0.0, stddev=1.0, dtype=None, seed=None): seed = _draw_seed(seed) kwargs = {} if dtype: kwargs["dtype"] = dtype if keras_3(): return keras.random.normal( shape, mean=mean, stddev=stddev, seed=seed, **kwargs, ) else: import tensorflow as tf return tf.random.stateless_normal( shape, mean=mean, stddev=stddev, seed=seed, **kwargs, ) def uniform(shape, minval=0.0, maxval=1.0, dtype=None, seed=None): init_seed = _draw_seed(seed) kwargs = {} if dtype: kwargs["dtype"] = dtype if keras_3(): return keras.random.uniform( shape, minval=minval, maxval=maxval, seed=init_seed, **kwargs, ) else: import tensorflow as tf return tf.random.stateless_uniform( shape, minval=minval, maxval=maxval, seed=init_seed, **kwargs, ) def shuffle(x, axis=0, seed=None): init_seed = _draw_seed(seed) if keras_3(): return keras.random.shuffle(x=x, axis=axis, seed=init_seed) else: import tensorflow as tf return tf.random.stateless_shuffle(x=x, axis=axis, seed=init_seed) def categorical(logits, num_samples, dtype=None, seed=None): init_seed = _draw_seed(seed) kwargs = {} if dtype: kwargs["dtype"] = dtype if keras_3(): return keras.random.categorical( logits=logits, num_samples=num_samples, seed=init_seed, **kwargs, ) else: import tensorflow as tf return tf.random.stateless_categorical( logits=logits, num_samples=num_samples, seed=init_seed, **kwargs, )
keras-cv/keras_cv/backend/random.py/0
{ "file_path": "keras-cv/keras_cv/backend/random.py", "repo_id": "keras-cv", "token_count": 1790 }
4
# Copyright 2022 The KerasCV Authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import tensorflow as tf import keras_cv.bounding_box.validate_format as validate_format from keras_cv import backend from keras_cv.api_export import keras_cv_export from keras_cv.backend import keras @keras_cv_export("keras_cv.bounding_box.to_ragged") def to_ragged(bounding_boxes, sentinel=-1, dtype=tf.float32): """converts a Dense padded bounding box `tf.Tensor` to a `tf.RaggedTensor`. Bounding boxes are ragged tensors in most use cases. Converting them to a dense tensor makes it easier to work with Tensorflow ecosystem. This function can be used to filter out the masked out bounding boxes by checking for padded sentinel value of the class_id axis of the bounding_boxes. Usage: ```python bounding_boxes = { "boxes": tf.constant([[2, 3, 4, 5], [0, 1, 2, 3]]), "classes": tf.constant([[-1, 1]]), } bounding_boxes = bounding_box.to_ragged(bounding_boxes) print(bounding_boxes) # { # "boxes": [[0, 1, 2, 3]], # "classes": [[1]] # } ``` Args: bounding_boxes: a Tensor of bounding boxes. May be batched, or unbatched. sentinel: The value indicating that a bounding box does not exist at the current index, and the corresponding box is padding, defaults to -1. dtype: the data type to use for the underlying Tensors. Returns: dictionary of `tf.RaggedTensor` or 'tf.Tensor' containing the filtered bounding boxes. """ if backend.supports_ragged() is False: raise NotImplementedError( "`bounding_box.to_ragged` was called using a backend which does " "not support ragged tensors. " f"Current backend: {keras.backend.backend()}." ) info = validate_format.validate_format(bounding_boxes) if info["ragged"]: return bounding_boxes boxes = bounding_boxes.get("boxes") classes = bounding_boxes.get("classes") confidence = bounding_boxes.get("confidence", None) mask = classes != sentinel boxes = tf.ragged.boolean_mask(boxes, mask) classes = tf.ragged.boolean_mask(classes, mask) if confidence is not None: confidence = tf.ragged.boolean_mask(confidence, mask) if isinstance(boxes, tf.Tensor): boxes = tf.RaggedTensor.from_tensor(boxes) if isinstance(classes, tf.Tensor) and len(classes.shape) > 1: classes = tf.RaggedTensor.from_tensor(classes) if confidence is not None: if isinstance(confidence, tf.Tensor) and len(confidence.shape) > 1: confidence = tf.RaggedTensor.from_tensor(confidence) result = bounding_boxes.copy() result["boxes"] = tf.cast(boxes, dtype) result["classes"] = tf.cast(classes, dtype) if confidence is not None: result["confidence"] = tf.cast(confidence, dtype) return result
keras-cv/keras_cv/bounding_box/to_ragged.py/0
{ "file_path": "keras-cv/keras_cv/bounding_box/to_ragged.py", "repo_id": "keras-cv", "token_count": 1271 }
5
# Copyright 2022 The KerasCV Authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Transformer to convert Waymo Open Dataset proto to model inputs.""" from typing import Any from typing import Dict from typing import List from typing import Sequence from typing import Tuple import numpy as np import tensorflow as tf from keras_cv.api_export import keras_cv_export from keras_cv.utils import assert_waymo_open_dataset_installed try: from waymo_open_dataset import dataset_pb2 from waymo_open_dataset.utils import box_utils from waymo_open_dataset.utils import frame_utils from waymo_open_dataset.utils import range_image_utils from waymo_open_dataset.utils import transform_utils except ImportError: waymo_open_dataset = None from keras_cv.datasets.waymo import struct from keras_cv.layers.object_detection_3d import voxel_utils WOD_FRAME_OUTPUT_SIGNATURE = { "frame_id": tf.TensorSpec((), tf.int64), "timestamp_offset": tf.TensorSpec((), tf.float32), "timestamp_micros": tf.TensorSpec((), tf.int64), "pose": tf.TensorSpec([4, 4], tf.float32), "point_xyz": tf.TensorSpec([None, 3], tf.float32), "point_feature": tf.TensorSpec([None, 4], tf.float32), "point_mask": tf.TensorSpec([None], tf.bool), "point_range_image_row_col_sensor_id": tf.TensorSpec([None, 3], tf.float32), # Please refer to Waymo Open Dataset label proto for definitions. "label_box": tf.TensorSpec([None, 7], tf.float32), "label_box_id": tf.TensorSpec([None], tf.int64), "label_box_meta": tf.TensorSpec([None, 4], tf.float32), "label_box_class": tf.TensorSpec([None], tf.int32), "label_box_density": tf.TensorSpec([None], tf.int32), "label_box_detection_difficulty": tf.TensorSpec([None], tf.int32), "label_box_mask": tf.TensorSpec([None], tf.bool), "label_point_class": tf.TensorSpec([None], tf.int32), "label_point_nlz": tf.TensorSpec([None], tf.int32), } # Maximum number of points from all lidars excluding the top lidar. Please refer # to https://arxiv.org/pdf/1912.04838.pdf Figure 1 for sensor layouts. _MAX_NUM_NON_TOP_LIDAR_POINTS = 30000 def _decode_range_images(frame) -> Dict[int, List[tf.Tensor]]: """Decodes range images from a Waymo Open Dataset frame. Please refer to https://arxiv.org/pdf/1912.04838.pdf for more details. Args: frame: a Waymo Open Dataset frame. Returns: A dictionary mapping from sensor ID to list of range images ordered by return indices. """ range_images = {} for lidar in frame.lasers: range_image_str_tensor = tf.io.decode_compressed( lidar.ri_return1.range_image_compressed, "ZLIB" ) ri = dataset_pb2.MatrixFloat() ri.ParseFromString(bytearray(range_image_str_tensor.numpy())) ri_tensor = tf.reshape( tf.convert_to_tensor(value=ri.data, dtype=tf.float32), ri.shape.dims ) range_images[lidar.name] = [ri_tensor] if lidar.name == dataset_pb2.LaserName.TOP: range_image_str_tensor = tf.io.decode_compressed( lidar.ri_return2.range_image_compressed, "ZLIB" ) ri = dataset_pb2.MatrixFloat() ri.ParseFromString(bytearray(range_image_str_tensor.numpy())) ri_tensor = tf.reshape( tf.convert_to_tensor(value=ri.data, dtype=tf.float32), ri.shape.dims, ) range_images[lidar.name].append(ri_tensor) return range_images def _get_range_image_top_pose(frame) -> tf.Tensor: """Extracts range image pose tensor. Args: frame: a Waymo Open Dataset frame. Returns: Pose tensors for the range image. """ _, _, _, ri_pose = frame_utils.parse_range_image_and_camera_projection( frame ) assert ri_pose ri_pose_tensor = tf.reshape( tf.convert_to_tensor(value=ri_pose.data), ri_pose.shape.dims ) # [H, W, 3, 3] ri_pose_tensor_rotation = transform_utils.get_rotation_matrix( ri_pose_tensor[..., 0], ri_pose_tensor[..., 1], ri_pose_tensor[..., 2] ) ri_pose_tensor_translation = ri_pose_tensor[..., 3:] ri_pose_tensor = transform_utils.get_transform( ri_pose_tensor_rotation, ri_pose_tensor_translation ) return ri_pose_tensor def _get_point_top_lidar( range_image: Sequence[tf.Tensor], frame ) -> struct.PointTensors: """Gets point related tensors for the top lidar. Please refer to https://arxiv.org/pdf/1912.04838.pdf Table 2 for lidar specifications. Args: range_image: range image tensors. The range image is: [range, intensity, elongation, is_in_nlz]. frame: a Waymo Open Dataset frame. Returns: Point tensors. """ assert len(range_image) == 2 xyz_list = [] feature_list = [] row_col_list = [] nlz_list = [] has_second_return_list = [] is_second_return_list = [] # Extracts frame pose tensor. frame_pose_tensor = tf.convert_to_tensor( value=np.reshape(np.array(frame.pose.transform), [4, 4]) ) # Extracts range image pose tensor. ri_pose_tensor = _get_range_image_top_pose(frame) # Extracts calibration data. calibration = _get_lidar_calibration(frame, dataset_pb2.LaserName.TOP) extrinsic = tf.reshape(np.array(calibration.extrinsic.transform), [4, 4]) beam_inclinations = tf.constant(calibration.beam_inclinations) beam_inclinations = tf.reverse(beam_inclinations, axis=[-1]) for i in range(2): ri_tensor = range_image[i] mask = ri_tensor[:, :, 0] > 0 mask_idx = tf.cast(tf.where(mask), dtype=tf.int32) xyz = range_image_utils.extract_point_cloud_from_range_image( tf.expand_dims(ri_tensor[..., 0], axis=0), tf.expand_dims(extrinsic, axis=0), tf.expand_dims(beam_inclinations, axis=0), pixel_pose=tf.expand_dims(ri_pose_tensor, axis=0), frame_pose=tf.expand_dims(frame_pose_tensor, axis=0), ) xyz = tf.gather_nd(tf.squeeze(xyz, axis=0), mask_idx) feature = tf.gather_nd(ri_tensor[:, :, 1:3], mask_idx) nlz = tf.gather_nd(ri_tensor[:, :, -1] > 0, mask_idx) xyz_list.append(xyz) feature_list.append(feature) nlz_list.append(nlz) row_col_list.append(mask_idx) if i == 0: has_second_return = range_image[1][:, :, 0] > 0 has_second_return_list.append( tf.gather_nd(has_second_return, mask_idx) ) is_second_return_list.append( tf.zeros([mask_idx.shape[0]], dtype=tf.bool) ) else: has_second_return_list.append( tf.zeros([mask_idx.shape[0]], dtype=tf.bool) ) is_second_return_list.append( tf.ones([mask_idx.shape[0]], dtype=tf.bool) ) xyz = tf.concat(xyz_list, axis=0) feature = tf.concat(feature_list, axis=0) row_col = tf.concat(row_col_list, axis=0) nlz = tf.concat(nlz_list, axis=0) has_second_return = tf.cast( tf.concat(has_second_return_list, axis=0), dtype=tf.float32 ) is_second_return = tf.cast( tf.concat(is_second_return_list, axis=0), dtype=tf.float32 ) # Complete feature: intensity, elongation, has_second, is_second. feature = tf.concat( [ feature, has_second_return[:, tf.newaxis], is_second_return[:, tf.newaxis], ], axis=-1, ) sensor_id = ( tf.ones([xyz.shape[0], 1], dtype=tf.int32) * dataset_pb2.LaserName.TOP ) ri_row_col_sensor_id = tf.concat([row_col, sensor_id], axis=-1) return struct.PointTensors( point_xyz=xyz, point_feature=feature, point_range_image_row_col_sensor_id=ri_row_col_sensor_id, label_point_nlz=nlz, ) def _get_lidar_calibration(frame, name: int): """Gets lidar calibration for a given lidar.""" calibration = None for c in frame.context.laser_calibrations: if c.name == name: calibration = c assert calibration is not None return calibration def _downsample(point: struct.PointTensors, n: int) -> struct.PointTensors: """Randomly samples up to n points from the given point_tensor.""" num_points = point.point_xyz.shape[0] if num_points <= n: return point mask = tf.range(start=0, limit=num_points, dtype=tf.int32) mask = tf.random.shuffle(mask) mask_index = mask[:n] def _gather(t: tf.Tensor) -> tf.Tensor: return tf.gather(t, mask_index) tensors = {key: _gather(value) for key, value in vars(point).items()} return struct.PointTensors(**tensors) def _get_point_lidar( ris: Dict[int, List[tf.Tensor]], frame, max_num_points: int, ) -> struct.PointTensors: """Gets point related tensors for non-top lidar. The main differences from top lidar extraction are related to second return and point down sampling. Args: ris: Mapping from lidar ID to range image tensor. The ri format is [range, intensity, elongation, is_in_nlz]. frame: a Waymo Open Dataset frame. max_num_points: maximum number of points from non-top lidar. Returns: Point related tensors. """ xyz_list = [] feature_list = [] nlz_list = [] ri_row_col_sensor_id_list = [] for sensor_id in ris.keys(): ri_tensor = ris[sensor_id] assert len(ri_tensor) == 1, f"{sensor_id}" ri_tensor = ri_tensor[0] calibration = _get_lidar_calibration(frame, sensor_id) extrinsic = tf.reshape( np.array(calibration.extrinsic.transform), [4, 4] ) beam_inclinations = range_image_utils.compute_inclination( tf.constant( [ calibration.beam_inclination_min, calibration.beam_inclination_max, ] ), height=ri_tensor.shape[0], ) beam_inclinations = tf.reverse(beam_inclinations, axis=[-1]) xyz = range_image_utils.extract_point_cloud_from_range_image( tf.expand_dims(ri_tensor[..., 0], axis=0), tf.expand_dims(extrinsic, axis=0), tf.expand_dims(beam_inclinations, axis=0), ) mask = ri_tensor[:, :, 0] > 0 mask_idx = tf.cast(tf.where(mask), dtype=tf.int32) xyz = tf.gather_nd(tf.squeeze(xyz, axis=0), mask_idx) feature = tf.gather_nd(ri_tensor[:, :, 1:3], mask_idx) feature = tf.concat( [feature, tf.zeros([feature.shape[0], 2], dtype=tf.float32)], axis=-1, ) nlz = tf.gather_nd(ri_tensor[:, :, -1] > 0, mask_idx) xyz_list.append(xyz) feature_list.append(feature) nlz_list.append(nlz) ri_row_col_sensor_id_list.append( tf.concat( [ mask_idx, sensor_id * tf.ones([nlz.shape[0], 1], dtype=tf.int32), ], axis=-1, ) ) xyz = tf.concat(xyz_list, axis=0) feature = tf.concat(feature_list, axis=0) nlz = tf.concat(nlz_list, axis=0) ri_row_col_sensor_id = tf.concat(ri_row_col_sensor_id_list, axis=0) point_tensors = struct.PointTensors( point_xyz=xyz, point_feature=feature, point_range_image_row_col_sensor_id=ri_row_col_sensor_id, label_point_nlz=nlz, ) point_tensors = _downsample(point_tensors, max_num_points) return point_tensors def _get_point(frame, max_num_lidar_points: int) -> struct.PointTensors: """Gets point related tensors from a Waymo Open Dataset frame. Args: frame: a Waymo Open Dataset frame. max_num_lidar_points: maximum number of points from non-top lidars. Returns: Point related tensors. """ range_images = _decode_range_images(frame) point_top_lidar = _get_point_top_lidar( range_images[dataset_pb2.LaserName.TOP], frame ) range_images.pop(dataset_pb2.LaserName.TOP) point_tensors_lidar = _get_point_lidar( range_images, frame, max_num_lidar_points ) merged = {} for key in vars(point_tensors_lidar).keys(): merged[key] = tf.concat( [getattr(point_tensors_lidar, key), getattr(point_top_lidar, key)], axis=0, ) return struct.PointTensors(**merged) def _get_point_label_box( frame, ) -> Tuple[tf.Tensor, tf.Tensor, tf.Tensor, tf.Tensor, tf.Tensor, tf.Tensor]: """Extracts 3D box labels from a Waymo Open Dataset frame. Args: frame: a Waymo Open Dataset frame. Returns: box_3d: [M, 7] 3d boxes. box_meta: [M, 4] speed and accel for each box. box_class: [M] object class of each box. box_id: [M] unique ID of each box. box_density: [M] number of points in each box. box_detection_difficulty: [M] difficulty level for detection. """ box_3d_list = [] box_meta_list = [] box_class_list = [] box_id_list = [] box_density_list = [] box_detection_difficulty_list = [] for label in frame.laser_labels: model_object_type = label.type density = label.num_lidar_points_in_box detection_difficulty = label.detection_difficulty_level if model_object_type == 0: continue b = label.box box_3d_list.extend( [ b.center_x, b.center_y, b.center_z, b.length, b.width, b.height, b.heading, ] ) meta = label.metadata box_meta_list.extend( [ meta.speed_x, meta.speed_y, meta.accel_x, meta.accel_y, ] ) box_class_list.append(model_object_type) box_id = tf.bitcast( tf.fingerprint( tf.expand_dims(label.id.encode(encoding="ascii"), 0) )[0], tf.int64, ) box_id_list.append(box_id) box_density_list.append(density) box_detection_difficulty_list.append(detection_difficulty) box_3d = tf.reshape(tf.constant(box_3d_list, dtype=tf.float32), [-1, 7]) box_meta = tf.reshape(tf.constant(box_meta_list, dtype=tf.float32), [-1, 4]) box_class = tf.constant(box_class_list, dtype=tf.int32) box_id = tf.stack(box_id_list) box_density = tf.constant(box_density_list, dtype=tf.int32) box_detection_difficulty = tf.constant( box_detection_difficulty_list, dtype=tf.int32 ) return ( box_3d, box_meta, box_class, box_id, box_density, box_detection_difficulty, ) def _get_box_class_per_point( box: tf.Tensor, box_class: tf.Tensor, point_xyz: tf.Tensor ) -> tf.Tensor: """Extracts point labels. Args: box: [M, 7] box tensor. box_class: [M] class of each box. point_xyz: [N, 3] points. Returns: point_box_class: [N] box class of each point. """ n = point_xyz.shape[0] m = box.shape[0] if m == 0: return tf.zeros([n], dtype=tf.int32) # [N, M] point_in_box = box_utils.is_within_box_3d(point_xyz, box) # [N] point_in_any_box = tf.math.reduce_any(point_in_box, axis=-1) # [N] point_box_idx = tf.math.argmax(point_in_box, axis=-1, output_type=tf.int32) # [N] point_box_class = tf.where( point_in_any_box, tf.gather(box_class, point_box_idx), 0 ) return point_box_class def _get_point_label(frame, point_xyz: tf.Tensor) -> struct.LabelTensors: """Extracts labels. Args: frame: an open dataset frame. point_xyz: [N, 3] tensor representing point xyz. Returns: Label tensors. """ ( box_3d, box_meta, box_class, box_id, box_density, box_detection_difficulty, ) = _get_point_label_box(frame) point_box_class = _get_box_class_per_point(box_3d, box_class, point_xyz) box_mask = tf.math.greater(box_class, 0) return struct.LabelTensors( label_box=box_3d, label_box_id=box_id, label_box_meta=box_meta, label_box_class=box_class, label_box_density=box_density, label_box_detection_difficulty=box_detection_difficulty, label_box_mask=box_mask, label_point_class=point_box_class, ) def _point_vehicle_to_global( point_vehicle_xyz: tf.Tensor, sdc_pose: tf.Tensor ) -> tf.Tensor: """Transforms points from vehicle to global frame. Args: point_vehicle_xyz: [..., N, 3] vehicle xyz. sdc_pose: [..., 4, 4] the SDC pose. Returns: The points in global frame. """ rot = sdc_pose[..., 0:3, 0:3] loc = sdc_pose[..., 0:3, 3] return ( tf.linalg.matmul(point_vehicle_xyz, rot, transpose_b=True) + loc[..., tf.newaxis, :] ) def _point_global_to_vehicle( point_xyz: tf.Tensor, sdc_pose: tf.Tensor ) -> tf.Tensor: """Transforms points from global to vehicle frame. Args: point_xyz: [..., N, 3] global xyz. sdc_pose: [..., 4, 4] the SDC pose. Returns: The points in vehicle frame. """ rot = sdc_pose[..., 0:3, 0:3] loc = sdc_pose[..., 0:3, 3] return ( tf.linalg.matmul(point_xyz, rot) + voxel_utils.inv_loc(rot, loc)[..., tf.newaxis, :] ) def _box_3d_vehicle_to_global( box_3d: tf.Tensor, sdc_pose: tf.Tensor ) -> tf.Tensor: """Transforms 3D boxes from vehicle to global frame. Args: box_3d: [..., N, 7] 3d boxes in vehicle frame. sdc_pose: [..., 4, 4] the SDC pose. Returns: The boxes in global frame. """ center = box_3d[..., 0:3] dim = box_3d[..., 3:6] heading = box_3d[..., 6] new_center = _point_vehicle_to_global(center, sdc_pose) new_heading = ( heading + tf.atan2(sdc_pose[..., 1, 0], sdc_pose[..., 0, 0])[..., tf.newaxis] ) return tf.concat([new_center, dim, new_heading[..., tf.newaxis]], axis=-1) def _box_3d_global_to_vehicle( box_3d: tf.Tensor, sdc_pose: tf.Tensor ) -> tf.Tensor: """Transforms 3D boxes from global to vehicle frame. Args: box_3d: [..., N, 7] 3d boxes in global frame. sdc_pose: [..., 4, 4] the SDC pose. Returns: The boxes in vehicle frame. """ center = box_3d[..., 0:3] dim = box_3d[..., 3:6] heading = box_3d[..., 6] new_center = _point_global_to_vehicle(center, sdc_pose) new_heading = ( heading + tf.atan2(sdc_pose[..., 0, 1], sdc_pose[..., 0, 0])[..., tf.newaxis] ) return tf.concat([new_center, dim, new_heading[..., tf.newaxis]], axis=-1) @keras_cv_export("keras_cv.datasets.waymo.build_tensors_from_wod_frame") def build_tensors_from_wod_frame(frame) -> Dict[str, tf.Tensor]: """Builds tensors from a Waymo Open Dataset frame. This function is to convert range image to point cloud. User can also work with range image directly with frame_utils functions from waymo_open_dataset. Args: frame: a Waymo Open Dataset frame. Returns: Flat dictionary of tensors. """ assert_waymo_open_dataset_installed( "keras_cv.datasets.waymo.build_tensors_from_wod_frame()" ) frame_id_bytes = "{}_{}".format( frame.context.name, frame.timestamp_micros ).encode(encoding="ascii") frame_id = tf.bitcast( tf.fingerprint(tf.expand_dims(frame_id_bytes, 0))[0], tf.int64 ) timestamp_micros = tf.constant(frame.timestamp_micros, dtype=tf.int64) pose = tf.convert_to_tensor( value=np.reshape(np.array(frame.pose.transform), [4, 4]), dtype_hint=tf.float32, ) point_tensors = _get_point(frame, _MAX_NUM_NON_TOP_LIDAR_POINTS) point_label_tensors = _get_point_label(frame, point_tensors.point_xyz) # Transforms lidar frames to global coordinates. point_tensors.point_xyz = _point_vehicle_to_global( point_tensors.point_xyz, pose ) point_label_tensors.label_box = _box_3d_vehicle_to_global( point_label_tensors.label_box, pose ) # Constructs final results. num_points = point_tensors.point_xyz.shape[0] return { "frame_id": frame_id, "timestamp_offset": tf.constant(0.0, dtype=tf.float32), "timestamp_micros": timestamp_micros, "pose": pose, "point_xyz": point_tensors.point_xyz, "point_feature": point_tensors.point_feature, "point_mask": tf.ones([num_points], dtype=tf.bool), "point_range_image_row_col_sensor_id": point_tensors.point_range_image_row_col_sensor_id, # noqa: E501 "label_box": point_label_tensors.label_box, "label_box_id": point_label_tensors.label_box_id, "label_box_meta": point_label_tensors.label_box_meta, "label_box_class": point_label_tensors.label_box_class, "label_box_density": point_label_tensors.label_box_density, "label_box_detection_difficulty": point_label_tensors.label_box_detection_difficulty, # noqa: E501 "label_box_mask": point_label_tensors.label_box_mask, "label_point_class": point_label_tensors.label_point_class, "label_point_nlz": point_tensors.label_point_nlz, } @keras_cv_export("keras_cv.datasets.waymo.pad_or_trim_tensors") def pad_or_trim_tensors( frame: Dict[str, tf.Tensor], max_num_point=199600, max_num_label_box=1000 ) -> Dict[str, tf.Tensor]: """Pad or trim tensors from a frame to have uniform shapes. Args: frame: a dictionary of feature tensors from a Waymo Open Dataset frame. max_num_point: maximum number of lidar points to process. max_num_label_box: maximum number of label boxes to process. Returns: A dictionary of feature tensors with uniform shapes. """ def _pad_fn(t: tf.Tensor, max_counts: int) -> tf.Tensor: shape = [max_counts] + t.shape.as_list()[1:] return voxel_utils._pad_or_trim_to(t, shape) point_tensor_keys = { "point_xyz", "point_feature", "point_range_image_row_col_sensor_id", "point_mask", "label_point_class", "label_point_nlz", } box_tensor_keys = { "label_box", "label_box_id", "label_box_meta", "label_box_class", "label_box_density", "label_box_detection_difficulty", "label_box_mask", } for key in point_tensor_keys: t = frame[key] if t is not None: frame[key] = _pad_fn(t, max_num_point) for key in box_tensor_keys: t = frame[key] if t is not None: frame[key] = _pad_fn(t, max_num_label_box) return frame @keras_cv_export("keras_cv.datasets.waymo.transform_to_vehicle_frame") def transform_to_vehicle_frame( frame: Dict[str, tf.Tensor] ) -> Dict[str, tf.Tensor]: """Transform tensors in a frame from global coordinates to vehicle coordinates. Args: frame: a dictionary of feature tensors from a Waymo Open Dataset frame in global frame. Returns: A dictionary of feature tensors in vehicle frame. """ assert_waymo_open_dataset_installed( "keras_cv.datasets.waymo.transform_to_vehicle_frame()" ) def _transform_to_vehicle_frame( point_global_xyz: tf.Tensor, point_mask: tf.Tensor, box_global: tf.Tensor, box_mask: tf.Tensor, sdc_pose: tf.Tensor, ) -> Tuple[tf.Tensor, tf.Tensor]: point_vehicle_xyz = _point_global_to_vehicle(point_global_xyz, sdc_pose) point_vehicle_xyz = tf.where( point_mask[..., tf.newaxis], point_vehicle_xyz, 0.0 ) box_vehicle = _box_3d_global_to_vehicle(box_global, sdc_pose) box_vehicle = tf.where(box_mask[..., tf.newaxis], box_vehicle, 0.0) return point_vehicle_xyz, box_vehicle point_vehicle_xyz, box_vehicle = _transform_to_vehicle_frame( frame["point_xyz"], frame["point_mask"], frame["label_box"], frame["label_box_mask"], frame["pose"], ) frame["point_xyz"] = point_vehicle_xyz frame["label_box"] = box_vehicle # Override pose as the points and boxes are in the vehicle frame. frame["pose"] = tf.eye(4) if frame["label_point_nlz"] is not None: frame["point_mask"] = tf.logical_and( frame["point_mask"], tf.logical_not(tf.cast(frame["label_point_nlz"], tf.bool)), ) return frame @keras_cv_export("keras_cv.datasets.waymo.convert_to_center_pillar_inputs") def convert_to_center_pillar_inputs( frame: Dict[str, tf.Tensor] ) -> Dict[str, Any]: """Converts an input frame into CenterPillar input format. Args: frame: a dictionary of feature tensors from a Waymo Open Dataset frame Returns: A dictionary of two tensor dictionaries with keys "point_clouds" and "3d_boxes". """ point_clouds = { "point_xyz": frame["point_xyz"], "point_feature": frame["point_feature"], "point_mask": frame["point_mask"], } boxes = { "boxes": frame["label_box"], "classes": frame["label_box_class"], "difficulty": frame["label_box_detection_difficulty"], "mask": frame["label_box_mask"], } y = { "point_clouds": point_clouds, "3d_boxes": boxes, } return y @keras_cv_export("keras_cv.datasets.waymo.build_tensors_for_augmentation") def build_tensors_for_augmentation( frame: Dict[str, tf.Tensor] ) -> Tuple[tf.Tensor, tf.Tensor]: """Builds tensors for data augmentation from an input frame. Args: frame: a dictionary of feature tensors from a Waymo Open Dataset frame Returns: A dictionary of two tensors with keys "point_clouds" and "bounding_boxes" and values which are tensors of shapes [num points, num features] and [num boxes, num features]). """ assert_waymo_open_dataset_installed( "keras_cv.datasets.waymo.build_tensors_for_augmentation()" ) point_cloud = tf.concat( [ frame["point_xyz"][tf.newaxis, ...], frame["point_feature"][tf.newaxis, ...], tf.cast(frame["point_mask"], tf.float32)[tf.newaxis, :, tf.newaxis], ], axis=-1, ) boxes = tf.concat( [ frame["label_box"][tf.newaxis, :], tf.cast(frame["label_box_class"], tf.float32)[ tf.newaxis, :, tf.newaxis ], tf.cast(frame["label_box_mask"], tf.float32)[ tf.newaxis, :, tf.newaxis ], tf.cast(frame["label_box_density"], tf.float32)[ tf.newaxis, :, tf.newaxis ], tf.cast(frame["label_box_detection_difficulty"], tf.float32)[ tf.newaxis, :, tf.newaxis ], ], axis=-1, ) return { "point_clouds": tf.squeeze(point_cloud, axis=0), "bounding_boxes": tf.squeeze(boxes, axis=0), }
keras-cv/keras_cv/datasets/waymo/transformer.py/0
{ "file_path": "keras-cv/keras_cv/datasets/waymo/transformer.py", "repo_id": "keras-cv", "token_count": 13086 }
6
# Copyright 2022 The KerasCV Authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from keras_cv.api_export import keras_cv_export from keras_cv.backend import keras BN_AXIS = 3 CONV_KERNEL_INITIALIZER = { "class_name": "VarianceScaling", "config": { "scale": 2.0, "mode": "fan_out", "distribution": "truncated_normal", }, } @keras_cv_export("keras_cv.layers.MBConvBlock") class MBConvBlock(keras.layers.Layer): def __init__( self, input_filters: int, output_filters: int, expand_ratio=1, kernel_size=3, strides=1, se_ratio=0.0, bn_momentum=0.9, activation="swish", survival_probability: float = 0.8, **kwargs ): """ Implementation of the MBConv block (Mobile Inverted Residual Bottleneck) from: [MobileNetV2: Inverted Residuals and Linear Bottlenecks](https://arxiv.org/abs/1801.04381v4). MBConv blocks are common blocks used in mobile-oriented and efficient architectures, present in architectures such as MobileNet, EfficientNet, MaxViT, etc. MBConv blocks follow a narrow-wide-narrow structure - expanding a 1x1 convolution, applying depthwise convolution, and narrowing back to a 1x1 convolution, which is a more efficient operation than conventional wide-narrow-wide structures. As they're frequently used for models to be deployed to edge devices, they're implemented as a layer for ease of use and re-use. Args: input_filters: int, the number of input filters output_filters: int, the optional number of output filters after Squeeze-Excitation expand_ratio: default 1, the ratio by which input_filters are multiplied to expand the structure in the middle expansion phase kernel_size: default 3, the kernel_size to apply to the expansion phase convolutions strides: default 1, the strides to apply to the expansion phase convolutions se_ratio: default 0.0, Squeeze-Excitation happens before depthwise convolution and before output convolution only if the se_ratio is above 0. The filters used in this phase are chosen as the maximum between 1 and input_filters*se_ratio bn_momentum: default 0.9, the BatchNormalization momentum activation: default "swish", the activation function used between convolution operations survival_probability: float, the optional dropout rate to apply before the output convolution, defaults to 0.8 Returns: A `tf.Tensor` representing a feature map, passed through the MBConv block Example usage: ``` inputs = tf.random.normal(shape=(1, 64, 64, 32), dtype=tf.float32) layer = keras_cv.layers.MBConvBlock(input_filters=32, output_filters=32) output = layer(inputs) output.shape # TensorShape([1, 64, 64, 32]) ``` """ # noqa: E501 super().__init__(**kwargs) self.input_filters = input_filters self.output_filters = output_filters self.expand_ratio = expand_ratio self.kernel_size = kernel_size self.strides = strides self.se_ratio = se_ratio self.bn_momentum = bn_momentum self.activation = activation self.survival_probability = survival_probability self.filters = self.input_filters * self.expand_ratio self.filters_se = max(1, int(input_filters * se_ratio)) self.conv1 = keras.layers.Conv2D( filters=self.filters, kernel_size=1, strides=1, kernel_initializer=CONV_KERNEL_INITIALIZER, padding="same", data_format="channels_last", use_bias=False, name=self.name + "expand_conv", ) self.bn1 = keras.layers.BatchNormalization( axis=BN_AXIS, momentum=self.bn_momentum, name=self.name + "expand_bn", ) self.act = keras.layers.Activation( self.activation, name=self.name + "activation" ) self.depthwise = keras.layers.DepthwiseConv2D( kernel_size=self.kernel_size, strides=self.strides, depthwise_initializer=CONV_KERNEL_INITIALIZER, padding="same", data_format="channels_last", use_bias=False, name=self.name + "dwconv2", ) self.bn2 = keras.layers.BatchNormalization( axis=BN_AXIS, momentum=self.bn_momentum, name=self.name + "bn" ) self.se_conv1 = keras.layers.Conv2D( self.filters_se, 1, padding="same", activation=self.activation, kernel_initializer=CONV_KERNEL_INITIALIZER, name=self.name + "se_reduce", ) self.se_conv2 = keras.layers.Conv2D( self.filters, 1, padding="same", activation="sigmoid", kernel_initializer=CONV_KERNEL_INITIALIZER, name=self.name + "se_expand", ) self.output_conv = keras.layers.Conv2D( filters=self.output_filters, kernel_size=1 if expand_ratio != 1 else kernel_size, strides=1, kernel_initializer=CONV_KERNEL_INITIALIZER, padding="same", data_format="channels_last", use_bias=False, name=self.name + "project_conv", ) self.bn3 = keras.layers.BatchNormalization( axis=BN_AXIS, momentum=self.bn_momentum, name=self.name + "project_bn", ) if self.survival_probability: self.dropout = keras.layers.Dropout( self.survival_probability, noise_shape=(None, 1, 1, 1), name=self.name + "drop", ) def build(self, input_shape): if self.name is None: self.name = keras.backend.get_uid("block0") def call(self, inputs): # Expansion phase if self.expand_ratio != 1: x = self.conv1(inputs) x = self.bn1(x) x = self.act(x) else: x = inputs # Depthwise conv x = self.depthwise(x) x = self.bn2(x) x = self.act(x) # Squeeze and excite if 0 < self.se_ratio <= 1: se = keras.layers.GlobalAveragePooling2D( name=self.name + "se_squeeze" )(x) if BN_AXIS == 1: se_shape = (self.filters, 1, 1) else: se_shape = (1, 1, self.filters) se = keras.layers.Reshape(se_shape, name=self.name + "se_reshape")( se ) se = self.se_conv1(se) se = self.se_conv2(se) x = keras.layers.multiply([x, se], name=self.name + "se_excite") # Output phase x = self.output_conv(x) x = self.bn3(x) if self.strides == 1 and self.input_filters == self.output_filters: if self.survival_probability: x = self.dropout(x) x = keras.layers.Add(name=self.name + "add")([x, inputs]) return x def get_config(self): config = { "input_filters": self.input_filters, "output_filters": self.output_filters, "expand_ratio": self.expand_ratio, "kernel_size": self.kernel_size, "strides": self.strides, "se_ratio": self.se_ratio, "bn_momentum": self.bn_momentum, "activation": self.activation, "survival_probability": self.survival_probability, } base_config = super().get_config() return dict(list(base_config.items()) + list(config.items()))
keras-cv/keras_cv/layers/mbconv.py/0
{ "file_path": "keras-cv/keras_cv/layers/mbconv.py", "repo_id": "keras-cv", "token_count": 4147 }
7
# Copyright 2022 The KerasCV Authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import tensorflow as tf from tensorflow import keras from keras_cv import bounding_box from keras_cv.backend import assert_tf_keras from keras_cv.bounding_box import iou from keras_cv.layers.object_detection import box_matcher from keras_cv.layers.object_detection import sampling from keras_cv.utils import target_gather @keras.utils.register_keras_serializable(package="keras_cv") class _ROISampler(keras.layers.Layer): """ Sample ROIs for loss related calculation. With proposals (ROIs) and ground truth, it performs the following: 1) compute IOU similarity matrix 2) match each proposal to ground truth box based on IOU 3) samples positive matches and negative matches and return `append_gt_boxes` augments proposals with ground truth boxes. This is useful in 2 stage detection networks during initialization where the 1st stage often cannot produce good proposals for 2nd stage. Setting it to True will allow it to generate more reasonable proposals at the beginning. `background_class` allow users to set the labels for background proposals. Default is 0, where users need to manually shift the incoming `gt_classes` if its range is [0, num_classes). Args: bounding_box_format: The format of bounding boxes to generate. Refer [to the keras.io docs](https://keras.io/api/keras_cv/bounding_box/formats/) for more details on supported bounding box formats. roi_matcher: a `BoxMatcher` object that matches proposals with ground truth boxes. The positive match must be 1 and negative match must be -1. Such assumption is not being validated here. positive_fraction: the positive ratio w.r.t `num_sampled_rois`, defaults to 0.25. background_class: the background class which is used to map returned the sampled ground truth which is classified as background. num_sampled_rois: the number of sampled proposals per image for further (loss) calculation, defaults to 256. append_gt_boxes: boolean, whether gt_boxes will be appended to rois before sample the rois, defaults to True. """ # noqa: E501 def __init__( self, bounding_box_format: str, roi_matcher: box_matcher.BoxMatcher, positive_fraction: float = 0.25, background_class: int = 0, num_sampled_rois: int = 256, append_gt_boxes: bool = True, **kwargs, ): assert_tf_keras("keras_cv.layers._ROISampler") super().__init__(**kwargs) self.bounding_box_format = bounding_box_format self.roi_matcher = roi_matcher self.positive_fraction = positive_fraction self.background_class = background_class self.num_sampled_rois = num_sampled_rois self.append_gt_boxes = append_gt_boxes self.built = True # for debugging. self._positives = keras.metrics.Mean() self._negatives = keras.metrics.Mean() def call( self, rois: tf.Tensor, gt_boxes: tf.Tensor, gt_classes: tf.Tensor, ): """ Args: rois: [batch_size, num_rois, 4] gt_boxes: [batch_size, num_gt, 4] gt_classes: [batch_size, num_gt, 1] Returns: sampled_rois: [batch_size, num_sampled_rois, 4] sampled_gt_boxes: [batch_size, num_sampled_rois, 4] sampled_box_weights: [batch_size, num_sampled_rois, 1] sampled_gt_classes: [batch_size, num_sampled_rois, 1] sampled_class_weights: [batch_size, num_sampled_rois, 1] """ if self.append_gt_boxes: # num_rois += num_gt rois = tf.concat([rois, gt_boxes], axis=1) num_rois = rois.get_shape().as_list()[1] if num_rois is None: raise ValueError( f"`rois` must have static shape, got {rois.get_shape()}" ) if num_rois < self.num_sampled_rois: raise ValueError( "num_rois must be less than `num_sampled_rois` " f"({self.num_sampled_rois}), got {num_rois}" ) rois = bounding_box.convert_format( rois, source=self.bounding_box_format, target="yxyx" ) gt_boxes = bounding_box.convert_format( gt_boxes, source=self.bounding_box_format, target="yxyx" ) # [batch_size, num_rois, num_gt] similarity_mat = iou.compute_iou( rois, gt_boxes, bounding_box_format="yxyx", use_masking=True ) # [batch_size, num_rois] | [batch_size, num_rois] matched_gt_cols, matched_vals = self.roi_matcher(similarity_mat) # [batch_size, num_rois] positive_matches = tf.math.equal(matched_vals, 1) negative_matches = tf.math.equal(matched_vals, -1) self._positives.update_state( tf.reduce_sum(tf.cast(positive_matches, tf.float32), axis=-1) ) self._negatives.update_state( tf.reduce_sum(tf.cast(negative_matches, tf.float32), axis=-1) ) # [batch_size, num_rois, 1] background_mask = tf.expand_dims( tf.logical_not(positive_matches), axis=-1 ) # [batch_size, num_rois, 1] matched_gt_classes = target_gather._target_gather( gt_classes, matched_gt_cols ) # also set all background matches to `background_class` matched_gt_classes = tf.where( background_mask, tf.cast( self.background_class * tf.ones_like(matched_gt_classes), gt_classes.dtype, ), matched_gt_classes, ) # [batch_size, num_rois, 4] matched_gt_boxes = target_gather._target_gather( gt_boxes, matched_gt_cols ) encoded_matched_gt_boxes = bounding_box._encode_box_to_deltas( anchors=rois, boxes=matched_gt_boxes, anchor_format="yxyx", box_format="yxyx", variance=[0.1, 0.1, 0.2, 0.2], ) # also set all background matches to 0 coordinates encoded_matched_gt_boxes = tf.where( background_mask, tf.zeros_like(matched_gt_boxes), encoded_matched_gt_boxes, ) # [batch_size, num_rois] sampled_indicators = sampling.balanced_sample( positive_matches, negative_matches, self.num_sampled_rois, self.positive_fraction, ) # [batch_size, num_sampled_rois] in the range of [0, num_rois) sampled_indicators, sampled_indices = tf.math.top_k( sampled_indicators, k=self.num_sampled_rois, sorted=True ) # [batch_size, num_sampled_rois, 4] sampled_rois = target_gather._target_gather(rois, sampled_indices) # [batch_size, num_sampled_rois, 4] sampled_gt_boxes = target_gather._target_gather( encoded_matched_gt_boxes, sampled_indices ) # [batch_size, num_sampled_rois, 1] sampled_gt_classes = target_gather._target_gather( matched_gt_classes, sampled_indices ) # [batch_size, num_sampled_rois, 1] # all negative samples will be ignored in regression sampled_box_weights = target_gather._target_gather( tf.cast(positive_matches[..., tf.newaxis], gt_boxes.dtype), sampled_indices, ) # [batch_size, num_sampled_rois, 1] sampled_indicators = sampled_indicators[..., tf.newaxis] sampled_class_weights = tf.cast(sampled_indicators, gt_classes.dtype) return ( sampled_rois, sampled_gt_boxes, sampled_box_weights, sampled_gt_classes, sampled_class_weights, ) def get_config(self): config = { "bounding_box_format": self.bounding_box_format, "positive_fraction": self.positive_fraction, "background_class": self.background_class, "num_sampled_rois": self.num_sampled_rois, "append_gt_boxes": self.append_gt_boxes, "roi_matcher": self.roi_matcher.get_config(), } base_config = super().get_config() return dict(list(base_config.items()) + list(config.items())) @classmethod def from_config(cls, config, custom_objects=None): roi_matcher_config = config.pop("roi_matcher") roi_matcher = box_matcher.BoxMatcher(**roi_matcher_config) return cls(roi_matcher=roi_matcher, **config)
keras-cv/keras_cv/layers/object_detection/roi_sampler.py/0
{ "file_path": "keras-cv/keras_cv/layers/object_detection/roi_sampler.py", "repo_id": "keras-cv", "token_count": 4104 }
8
# Copyright 2023 The KerasCV Authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Also export the image KPLs from core keras, so that user can import all the # image KPLs from one place. from tensorflow.keras.layers import CenterCrop from tensorflow.keras.layers import RandomHeight from tensorflow.keras.layers import RandomWidth from keras_cv.layers.preprocessing.aug_mix import AugMix from keras_cv.layers.preprocessing.auto_contrast import AutoContrast from keras_cv.layers.preprocessing.base_image_augmentation_layer import ( BaseImageAugmentationLayer, ) from keras_cv.layers.preprocessing.channel_shuffle import ChannelShuffle from keras_cv.layers.preprocessing.cut_mix import CutMix from keras_cv.layers.preprocessing.equalization import Equalization from keras_cv.layers.preprocessing.fourier_mix import FourierMix from keras_cv.layers.preprocessing.grayscale import Grayscale from keras_cv.layers.preprocessing.grid_mask import GridMask from keras_cv.layers.preprocessing.jittered_resize import JitteredResize from keras_cv.layers.preprocessing.mix_up import MixUp from keras_cv.layers.preprocessing.mosaic import Mosaic from keras_cv.layers.preprocessing.posterization import Posterization from keras_cv.layers.preprocessing.rand_augment import RandAugment from keras_cv.layers.preprocessing.random_apply import RandomApply from keras_cv.layers.preprocessing.random_aspect_ratio import RandomAspectRatio from keras_cv.layers.preprocessing.random_augmentation_pipeline import ( RandomAugmentationPipeline, ) from keras_cv.layers.preprocessing.random_brightness import RandomBrightness from keras_cv.layers.preprocessing.random_channel_shift import ( RandomChannelShift, ) from keras_cv.layers.preprocessing.random_choice import RandomChoice from keras_cv.layers.preprocessing.random_color_degeneration import ( RandomColorDegeneration, ) from keras_cv.layers.preprocessing.random_color_jitter import RandomColorJitter from keras_cv.layers.preprocessing.random_contrast import RandomContrast from keras_cv.layers.preprocessing.random_crop import RandomCrop from keras_cv.layers.preprocessing.random_crop_and_resize import ( RandomCropAndResize, ) from keras_cv.layers.preprocessing.random_cutout import RandomCutout from keras_cv.layers.preprocessing.random_flip import RandomFlip from keras_cv.layers.preprocessing.random_gaussian_blur import ( RandomGaussianBlur, ) from keras_cv.layers.preprocessing.random_hue import RandomHue from keras_cv.layers.preprocessing.random_jpeg_quality import RandomJpegQuality from keras_cv.layers.preprocessing.random_rotation import RandomRotation from keras_cv.layers.preprocessing.random_saturation import RandomSaturation from keras_cv.layers.preprocessing.random_sharpness import RandomSharpness from keras_cv.layers.preprocessing.random_shear import RandomShear from keras_cv.layers.preprocessing.random_translation import RandomTranslation from keras_cv.layers.preprocessing.random_zoom import RandomZoom from keras_cv.layers.preprocessing.repeated_augmentation import ( RepeatedAugmentation, ) from keras_cv.layers.preprocessing.rescaling import Rescaling from keras_cv.layers.preprocessing.resizing import Resizing from keras_cv.layers.preprocessing.solarization import Solarization from keras_cv.layers.preprocessing.vectorized_base_image_augmentation_layer import ( # noqa: E501 VectorizedBaseImageAugmentationLayer, )
keras-cv/keras_cv/layers/preprocessing/__init__.py/0
{ "file_path": "keras-cv/keras_cv/layers/preprocessing/__init__.py", "repo_id": "keras-cv", "token_count": 1195 }
9
# Copyright 2022 The KerasCV Authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import pytest import tensorflow as tf from keras_cv.layers import preprocessing from keras_cv.tests.test_case import TestCase class GrayscaleTest(TestCase): def test_return_shapes(self): xs = tf.ones((2, 52, 24, 3)) layer = preprocessing.Grayscale( output_channels=1, ) xs1 = layer(xs, training=True) layer = preprocessing.Grayscale( output_channels=3, ) xs2 = layer(xs, training=True) self.assertEqual(xs1.shape, (2, 52, 24, 1)) self.assertEqual(xs2.shape, (2, 52, 24, 3)) @pytest.mark.tf_only def test_in_tf_function(self): xs = tf.cast( tf.stack([2 * tf.ones((10, 10, 3)), tf.ones((10, 10, 3))], axis=0), tf.float32, ) # test 1 layer = preprocessing.Grayscale( output_channels=1, ) @tf.function def augment(x): return layer(x, training=True) xs1 = augment(xs) # test 2 layer = preprocessing.Grayscale( output_channels=3, ) @tf.function def augment(x): return layer(x, training=True) xs2 = augment(xs) self.assertEqual(xs1.shape, (2, 10, 10, 1)) self.assertEqual(xs2.shape, (2, 10, 10, 3)) def test_non_square_image(self): xs = tf.cast( tf.stack([2 * tf.ones((52, 24, 3)), tf.ones((52, 24, 3))], axis=0), tf.float32, ) layer = preprocessing.Grayscale( output_channels=1, ) xs1 = layer(xs, training=True) layer = preprocessing.Grayscale( output_channels=3, ) xs2 = layer(xs, training=True) self.assertEqual(xs1.shape, (2, 52, 24, 1)) self.assertEqual(xs2.shape, (2, 52, 24, 3)) def test_in_single_image(self): xs = tf.cast( tf.ones((52, 24, 3)), dtype=tf.float32, ) layer = preprocessing.Grayscale( output_channels=1, ) xs1 = layer(xs, training=True) layer = preprocessing.Grayscale( output_channels=3, ) xs2 = layer(xs, training=True) self.assertEqual(xs1.shape, (52, 24, 1)) self.assertEqual(xs2.shape, (52, 24, 3))
keras-cv/keras_cv/layers/preprocessing/grayscale_test.py/0
{ "file_path": "keras-cv/keras_cv/layers/preprocessing/grayscale_test.py", "repo_id": "keras-cv", "token_count": 1376 }
10
# Copyright 2022 The KerasCV Authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import tensorflow as tf from keras_cv import bounding_box from keras_cv.api_export import keras_cv_export from keras_cv.layers.preprocessing.base_image_augmentation_layer import ( BaseImageAugmentationLayer, ) from keras_cv.utils import get_interpolation from keras_cv.utils import parse_factor @keras_cv_export("keras_cv.layers.RandomAspectRatio") class RandomAspectRatio(BaseImageAugmentationLayer): """RandomAspectRatio randomly distorts the aspect ratio of the provided image. This is done on an element-wise basis, and as a consequence this layer always returns a tf.RaggedTensor. Args: factor: a range of values in the range `(0, infinity)` that determines the percentage to distort the aspect ratio of each image by. interpolation: interpolation method used in the `Resize` op. Supported values are `"nearest"` and `"bilinear"`. Defaults to `"bilinear"`. """ def __init__( self, factor, interpolation="bilinear", bounding_box_format=None, seed=None, **kwargs ): super().__init__(**kwargs) self.interpolation = get_interpolation(interpolation) self.factor = parse_factor( factor, min_value=0.0, max_value=None, seed=seed, param_name="factor", ) self.bounding_box_format = bounding_box_format self.seed = seed self.auto_vectorize = False self.force_output_ragged_images = True def get_random_transformation(self, **kwargs): return self.factor(dtype=self.compute_dtype) def compute_image_signature(self, images): return tf.RaggedTensorSpec( shape=(None, None, images.shape[-1]), ragged_rank=1, dtype=self.compute_dtype, ) def augment_bounding_boxes( self, bounding_boxes, transformation, image, **kwargs ): if self.bounding_box_format is None: raise ValueError( "Please provide a `bounding_box_format` when augmenting " "bounding boxes with `RandomAspectRatio()`." ) bounding_boxes = bounding_boxes.copy() img_shape = tf.shape(image) img_shape = tf.cast(img_shape, self.compute_dtype) height, width = img_shape[0], img_shape[1] height = height / transformation width = width * transformation bounding_boxes = bounding_box.convert_format( bounding_boxes, source=self.bounding_box_format, target="xyxy", image_shape=img_shape, ) x, y, x2, y2 = tf.split(bounding_boxes["boxes"], [1, 1, 1, 1], axis=-1) x = x * transformation x2 = x2 * transformation y = y / transformation y2 = y2 / transformation boxes = tf.concat([x, y, x2, y2], axis=-1) boxes = bounding_box.convert_format( boxes, source="xyxy", target=self.bounding_box_format, image_shape=tf.stack([height, width, 3], axis=0), ) bounding_boxes["boxes"] = boxes return bounding_boxes def augment_image(self, image, transformation, **kwargs): # images....transformation img_shape = tf.cast(tf.shape(image), self.compute_dtype) height, width = img_shape[0], img_shape[1] height = height / transformation width = width * transformation target_size = tf.cast(tf.stack([height, width]), tf.int32) result = tf.image.resize( image, size=target_size, method=self.interpolation ) return tf.cast(result, self.compute_dtype) def augment_label(self, label, transformation, **kwargs): return label def get_config(self): config = { "factor": self.factor, "interpolation": self.interpolation, "bounding_box_format": self.bounding_box_format, "seed": self.seed, } base_config = super().get_config() return dict(list(base_config.items()) + list(config.items()))
keras-cv/keras_cv/layers/preprocessing/random_aspect_ratio.py/0
{ "file_path": "keras-cv/keras_cv/layers/preprocessing/random_aspect_ratio.py", "repo_id": "keras-cv", "token_count": 2007 }
11
# Copyright 2023 The KerasCV Authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import tensorflow as tf from keras_cv import bounding_box from keras_cv import layers as cv_layers from keras_cv.api_export import keras_cv_export from keras_cv.layers.preprocessing.vectorized_base_image_augmentation_layer import ( # noqa: E501 VectorizedBaseImageAugmentationLayer, ) # In order to support both unbatched and batched inputs, the horizontal # and vertical axis is reverse indexed H_AXIS = -3 W_AXIS = -2 @keras_cv_export("keras_cv.layers.RandomCrop") class RandomCrop(VectorizedBaseImageAugmentationLayer): """A preprocessing layer which randomly crops images. This layer will randomly choose a location to crop images down to a target size. If an input image is smaller than the target size, the input will be resized and cropped to return the largest possible window in the image that matches the target aspect ratio. Input pixel values can be of any range (e.g. `[0., 1.)` or `[0, 255]`) and of integer or floating point dtype. Input shape: 3D (unbatched) or 4D (batched) tensor with shape: `(..., height, width, channels)`, in `"channels_last"` format. Output shape: 3D (unbatched) or 4D (batched) tensor with shape: `(..., target_height, target_width, channels)`. Args: height: Integer, the height of the output shape. width: Integer, the width of the output shape. seed: Integer. Used to create a random seed. """ def __init__( self, height, width, seed=None, bounding_box_format=None, **kwargs ): super().__init__( **kwargs, autocast=False, seed=seed, ) self.height = height self.width = width self.bounding_box_format = bounding_box_format self.seed = seed self.force_output_dense_images = True def compute_ragged_image_signature(self, images): ragged_spec = tf.RaggedTensorSpec( shape=(self.height, self.width, images.shape[-1]), ragged_rank=1, dtype=self.compute_dtype, ) return ragged_spec def get_random_transformation_batch(self, batch_size, **kwargs): tops = tf.cast( self._random_generator.uniform( shape=(batch_size, 1), minval=0, maxval=1 ), self.compute_dtype, ) lefts = tf.cast( self._random_generator.uniform( shape=(batch_size, 1), minval=0, maxval=1 ), self.compute_dtype, ) return {"tops": tops, "lefts": lefts} def augment_ragged_image(self, image, transformation, **kwargs): image = tf.expand_dims(image, axis=0) tops = transformation["tops"] lefts = transformation["lefts"] transformation = { "tops": tf.expand_dims(tops, axis=0), "lefts": tf.expand_dims(lefts, axis=0), } image = self.augment_images( images=image, transformations=transformation, **kwargs ) return tf.squeeze(image, axis=0) def augment_images(self, images, transformations, **kwargs): batch_size = tf.shape(images)[0] channel = tf.shape(images)[-1] heights, widths = self._get_image_shape(images) h_diffs = heights - self.height w_diffs = widths - self.width # broadcast h_diffs = ( tf.ones( shape=(batch_size, self.height, self.width, channel), dtype=tf.int32, ) * h_diffs[:, tf.newaxis, tf.newaxis, :] ) w_diffs = ( tf.ones( shape=(batch_size, self.height, self.width, channel), dtype=tf.int32, ) * w_diffs[:, tf.newaxis, tf.newaxis, :] ) return tf.where( tf.math.logical_and(h_diffs >= 0, w_diffs >= 0), self._crop_images(images, transformations), self._resize_images(images), ) def augment_labels(self, labels, transformations, **kwargs): return labels def augment_bounding_boxes( self, bounding_boxes, transformations, raw_images=None, **kwargs ): if self.bounding_box_format is None: raise ValueError( "`RandomCrop()` was called with bounding boxes," "but no `bounding_box_format` was specified in the constructor." "Please specify a bounding box format in the constructor. i.e." "`RandomCrop(bounding_box_format='xyxy')`" ) if isinstance(bounding_boxes["boxes"], tf.RaggedTensor): bounding_boxes = bounding_box.to_dense( bounding_boxes, default_value=-1 ) batch_size = tf.shape(raw_images)[0] heights, widths = self._get_image_shape(raw_images) bounding_boxes = bounding_box.convert_format( bounding_boxes, source=self.bounding_box_format, target="xyxy", images=raw_images, ) h_diffs = heights - self.height w_diffs = widths - self.width # broadcast num_bounding_boxes = tf.shape(bounding_boxes["boxes"])[-2] h_diffs = ( tf.ones( shape=(batch_size, num_bounding_boxes, 4), dtype=tf.int32, ) * h_diffs[:, tf.newaxis, :] ) w_diffs = ( tf.ones( shape=(batch_size, num_bounding_boxes, 4), dtype=tf.int32, ) * w_diffs[:, tf.newaxis, :] ) boxes = tf.where( tf.math.logical_and(h_diffs >= 0, w_diffs >= 0), self._crop_bounding_boxes( raw_images, bounding_boxes["boxes"], transformations ), self._resize_bounding_boxes( raw_images, bounding_boxes["boxes"], ), ) bounding_boxes["boxes"] = boxes bounding_boxes = bounding_box.clip_to_image( bounding_boxes, bounding_box_format="xyxy", image_shape=(self.height, self.width, None), ) bounding_boxes = bounding_box.convert_format( bounding_boxes, source="xyxy", target=self.bounding_box_format, dtype=self.compute_dtype, image_shape=(self.height, self.width, None), ) return bounding_boxes def _get_image_shape(self, images): if isinstance(images, tf.RaggedTensor): heights = tf.reshape(images.row_lengths(), (-1, 1)) widths = tf.reshape( tf.reduce_max(images.row_lengths(axis=2), 1), (-1, 1) ) else: batch_size = tf.shape(images)[0] heights = tf.repeat(tf.shape(images)[H_AXIS], repeats=[batch_size]) heights = tf.reshape(heights, shape=(-1, 1)) widths = tf.repeat(tf.shape(images)[W_AXIS], repeats=[batch_size]) widths = tf.reshape(widths, shape=(-1, 1)) return tf.cast(heights, dtype=tf.int32), tf.cast(widths, dtype=tf.int32) def _crop_images(self, images, transformations): batch_size = tf.shape(images)[0] heights, widths = self._get_image_shape(images) heights = tf.cast(heights, dtype=self.compute_dtype) widths = tf.cast(widths, dtype=self.compute_dtype) tops = transformations["tops"] lefts = transformations["lefts"] x1s = lefts * (widths - self.width) y1s = tops * (heights - self.height) x2s = x1s + self.width y2s = y1s + self.height # normalize x1s /= widths y1s /= heights x2s /= widths y2s /= heights boxes = tf.concat([y1s, x1s, y2s, x2s], axis=-1) images = tf.image.crop_and_resize( tf.cast(images, tf.float32), tf.cast(boxes, tf.float32), tf.range(batch_size), [self.height, self.width], method="nearest", ) return tf.cast(images, dtype=self.compute_dtype) def _resize_images(self, images): resizing_layer = cv_layers.Resizing(self.height, self.width) outputs = resizing_layer(images) return tf.cast(outputs, dtype=self.compute_dtype) def _crop_bounding_boxes(self, images, boxes, transformation): tops = transformation["tops"] lefts = transformation["lefts"] heights, widths = self._get_image_shape(images) heights = tf.cast(heights, dtype=self.compute_dtype) widths = tf.cast(widths, dtype=self.compute_dtype) # compute offsets for xyxy bounding_boxes top_offsets = tf.cast( tf.math.round(tops * (heights - self.height)), dtype=self.compute_dtype, ) left_offsets = tf.cast( tf.math.round(lefts * (widths - self.width)), dtype=self.compute_dtype, ) x1s, y1s, x2s, y2s = tf.split( tf.cast(boxes, self.compute_dtype), 4, axis=-1 ) x1s -= tf.expand_dims(left_offsets, axis=1) y1s -= tf.expand_dims(top_offsets, axis=1) x2s -= tf.expand_dims(left_offsets, axis=1) y2s -= tf.expand_dims(top_offsets, axis=1) outputs = tf.concat([x1s, y1s, x2s, y2s], axis=-1) return outputs def _resize_bounding_boxes(self, images, boxes): heights, widths = self._get_image_shape(images) heights = tf.cast(heights, dtype=self.compute_dtype) widths = tf.cast(widths, dtype=self.compute_dtype) x_scale = tf.cast(self.width / widths, dtype=self.compute_dtype) y_scale = tf.cast(self.height / heights, dtype=self.compute_dtype) x1s, y1s, x2s, y2s = tf.split( tf.cast(boxes, self.compute_dtype), 4, axis=-1 ) outputs = tf.concat( [ x1s * x_scale[:, tf.newaxis, :], y1s * y_scale[:, tf.newaxis, :], x2s * x_scale[:, tf.newaxis, :], y2s * y_scale[:, tf.newaxis, :], ], axis=-1, ) return outputs def get_config(self): config = { "height": self.height, "width": self.width, "seed": self.seed, "bounding_box_format": self.bounding_box_format, } base_config = super().get_config() return dict(list(base_config.items()) + list(config.items())) @classmethod def from_config(cls, config): return cls(**config)
keras-cv/keras_cv/layers/preprocessing/random_crop.py/0
{ "file_path": "keras-cv/keras_cv/layers/preprocessing/random_crop.py", "repo_id": "keras-cv", "token_count": 5385 }
12
# Copyright 2023 The KerasCV Authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import tensorflow as tf from keras_cv.api_export import keras_cv_export from keras_cv.backend import keras from keras_cv.layers.preprocessing.vectorized_base_image_augmentation_layer import ( # noqa: E501 VectorizedBaseImageAugmentationLayer, ) from keras_cv.utils import preprocessing as preprocessing_utils @keras_cv_export("keras_cv.layers.RandomSaturation") class RandomSaturation(VectorizedBaseImageAugmentationLayer): """Randomly adjusts the saturation on given images. This layer will randomly increase/reduce the saturation for the input RGB images. Args: factor: A tuple of two floats, a single float or `keras_cv.FactorSampler`. `factor` controls the extent to which the image saturation is impacted. `factor=0.5` makes this layer perform a no-op operation. `factor=0.0` makes the image to be fully grayscale. `factor=1.0` makes the image to be fully saturated. Values should be between `0.0` and `1.0`. If a tuple is used, a `factor` is sampled between the two values for every image augmented. If a single float is used, a value between `0.0` and the passed float is sampled. In order to ensure the value is always the same, please pass a tuple with two identical floats: `(0.5, 0.5)`. seed: Integer. Used to create a random seed. Usage: ```python (images, labels), _ = keras.datasets.cifar10.load_data() random_saturation = keras_cv.layers.preprocessing.RandomSaturation() augmented_images = random_saturation(images) ``` """ def __init__(self, factor, seed=None, **kwargs): super().__init__(seed=seed, **kwargs) self.factor = preprocessing_utils.parse_factor( factor, min_value=0.0, max_value=1.0, ) self.seed = seed def get_random_transformation_batch(self, batch_size, **kwargs): return self.factor(shape=(batch_size,)) def augment_ragged_image(self, image, transformation, **kwargs): return self.augment_images( images=image, transformations=transformation, **kwargs ) def augment_images(self, images, transformations, **kwargs): # Convert the factor range from [0, 1] to [0, +inf]. Note that the # tf.image.adjust_saturation is trying to apply the following math # formula `output_saturation = input_saturation * factor`. We use the # following method to the do the mapping. # `y = x / (1 - x)`. # This will ensure: # y = +inf when x = 1 (full saturation) # y = 1 when x = 0.5 (no augmentation) # y = 0 when x = 0 (full gray scale) # Convert the transformation to tensor in case it is a float. When # transformation is 1.0, then it will result in to divide by zero error, # but it will be handled correctly when it is a one tensor. transformations = tf.convert_to_tensor(transformations) adjust_factors = transformations / (1 - transformations) adjust_factors = tf.cast(adjust_factors, dtype=images.dtype) images = tf.image.rgb_to_hsv(images) s_channel = tf.multiply( images[..., 1], adjust_factors[..., tf.newaxis, tf.newaxis] ) s_channel = tf.clip_by_value( s_channel, clip_value_min=0.0, clip_value_max=1.0 ) images = tf.stack([images[..., 0], s_channel, images[..., 2]], axis=-1) images = tf.image.hsv_to_rgb(images) return images def augment_bounding_boxes( self, bounding_boxes, transformation=None, **kwargs ): return bounding_boxes def augment_labels(self, labels, transformations=None, **kwargs): return labels def augment_segmentation_masks( self, segmentation_masks, transformations, **kwargs ): return segmentation_masks def get_config(self): config = { "factor": self.factor, "seed": self.seed, } base_config = super().get_config() return dict(list(base_config.items()) + list(config.items())) @classmethod def from_config(cls, config): if isinstance(config["factor"], dict): config["factor"] = keras.utils.deserialize_keras_object( config["factor"] ) return cls(**config)
keras-cv/keras_cv/layers/preprocessing/random_saturation.py/0
{ "file_path": "keras-cv/keras_cv/layers/preprocessing/random_saturation.py", "repo_id": "keras-cv", "token_count": 1942 }
13
# Copyright 2022 The KerasCV Authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import tensorflow as tf from keras_cv.api_export import keras_cv_export from keras_cv.backend import keras from keras_cv.layers.preprocessing.vectorized_base_image_augmentation_layer import ( # noqa: E501 VectorizedBaseImageAugmentationLayer, ) from keras_cv.utils import preprocessing @keras_cv_export("keras_cv.layers.Solarization") class Solarization(VectorizedBaseImageAugmentationLayer): """Applies (max_value - pixel + min_value) for each pixel in the image. When created without `threshold` parameter, the layer performs solarization to all values. When created with specified `threshold` the layer only augments pixels that are above the `threshold` value Reference: - [AutoAugment: Learning Augmentation Policies from Data]( https://arxiv.org/abs/1805.09501 ) - [RandAugment](https://arxiv.org/pdf/1909.13719.pdf) Args: value_range: a tuple or a list of two elements. The first value represents the lower bound for values in passed images, the second represents the upper bound. Images passed to the layer should have values within `value_range`. addition_factor: (Optional) A tuple of two floats, a single float or a `keras_cv.FactorSampler`. For each augmented image a value is sampled from the provided range. If a float is passed, the range is interpreted as `(0, addition_factor)`. If specified, this value is added to each pixel before solarization and thresholding. The addition value should be scaled according to the value range (0, 255), defaults to 0.0. threshold_factor: (Optional) A tuple of two floats, a single float or a `keras_cv.FactorSampler`. For each augmented image a value is sampled from the provided range. If a float is passed, the range is interpreted as `(0, threshold_factor)`. If specified, only pixel values above this threshold will be solarized. seed: Integer. Used to create a random seed. Usage: ```python (images, labels), _ = keras.datasets.cifar10.load_data() print(images[0, 0, 0]) # [59 62 63] # Note that images are Tensor with values in the range [0, 255] solarization = Solarization(value_range=(0, 255)) images = solarization(images) print(images[0, 0, 0]) # [196, 193, 192] ``` Call arguments: images: Tensor of type int or float, with pixels in range [0, 255] and shape [batch, height, width, channels] or [height, width, channels]. """ def __init__( self, value_range, addition_factor=0.0, threshold_factor=0.0, seed=None, **kwargs ): super().__init__(seed=seed, **kwargs) self.seed = seed self.addition_factor = preprocessing.parse_factor( addition_factor, max_value=255, seed=seed, param_name="addition_factor", ) self.threshold_factor = preprocessing.parse_factor( threshold_factor, max_value=255, seed=seed, param_name="threshold_factor", ) self.value_range = value_range def get_random_transformation_batch(self, batch_size, **kwargs): return { "additions": self.addition_factor( shape=(batch_size, 1, 1, 1), dtype=self.compute_dtype ), "thresholds": self.threshold_factor( shape=(batch_size, 1, 1, 1), dtype=self.compute_dtype ), } def augment_ragged_image(self, image, transformation, **kwargs): return self.augment_images(image, transformation) def augment_images(self, images, transformations, **kwargs): thresholds = transformations["thresholds"] additions = transformations["additions"] images = preprocessing.transform_value_range( images, original_range=self.value_range, target_range=(0, 255), dtype=self.compute_dtype, ) results = images + additions results = tf.clip_by_value(results, 0, 255) results = tf.where(results < thresholds, results, 255 - results) results = preprocessing.transform_value_range( results, original_range=(0, 255), target_range=self.value_range, dtype=self.compute_dtype, ) return results def augment_bounding_boxes(self, bounding_boxes, transformations, **kwargs): return bounding_boxes def augment_labels(self, labels, transformations, **kwargs): return labels def augment_keypoints(self, keypoints, transformations, **kwargs): return keypoints def augment_segmentation_masks( self, segmentation_masks, transformations, **kwargs ): return segmentation_masks def get_config(self): config = { "threshold_factor": self.threshold_factor, "addition_factor": self.addition_factor, "value_range": self.value_range, "seed": self.seed, } base_config = super().get_config() return dict(list(base_config.items()) + list(config.items())) @classmethod def from_config(cls, config): if isinstance(config["threshold_factor"], dict): config["threshold_factor"] = keras.utils.deserialize_keras_object( config["threshold_factor"] ) if isinstance(config["addition_factor"], dict): config["addition_factor"] = keras.utils.deserialize_keras_object( config["addition_factor"] ) return cls(**config)
keras-cv/keras_cv/layers/preprocessing/solarization.py/0
{ "file_path": "keras-cv/keras_cv/layers/preprocessing/solarization.py", "repo_id": "keras-cv", "token_count": 2553 }
14
# Copyright 2022 Waymo LLC. # # Licensed under the terms in https://github.com/keras-team/keras-cv/blob/master/keras_cv/layers/preprocessing_3d/waymo/LICENSE # noqa: E501 import numpy as np from tensorflow import keras from keras_cv.layers.preprocessing_3d import base_augmentation_layer_3d from keras_cv.layers.preprocessing_3d.waymo.frustum_random_point_feature_noise import ( # noqa: E501 FrustumRandomPointFeatureNoise, ) from keras_cv.tests.test_case import TestCase POINT_CLOUDS = base_augmentation_layer_3d.POINT_CLOUDS BOUNDING_BOXES = base_augmentation_layer_3d.BOUNDING_BOXES POINTCLOUD_LABEL_INDEX = base_augmentation_layer_3d.POINTCLOUD_LABEL_INDEX class FrustumRandomPointFeatureNoiseTest(TestCase): def test_augment_point_clouds_and_bounding_boxes(self): add_layer = FrustumRandomPointFeatureNoise( r_distance=0, theta_width=1, phi_width=1, max_noise_level=0.5 ) point_clouds = np.random.random(size=(2, 50, 10)).astype("float32") bounding_boxes = np.random.random(size=(2, 10, 7)).astype("float32") inputs = {POINT_CLOUDS: point_clouds, BOUNDING_BOXES: bounding_boxes} outputs = add_layer(inputs) self.assertNotAllClose(inputs, outputs) # bounding boxes and point clouds (x, y, z, class) are not modified. self.assertAllClose(inputs[BOUNDING_BOXES], outputs[BOUNDING_BOXES]) self.assertAllClose( inputs[POINT_CLOUDS][:, :, :POINTCLOUD_LABEL_INDEX], outputs[POINT_CLOUDS][:, :, :POINTCLOUD_LABEL_INDEX], ) def test_augment_specific_point_clouds_and_bounding_boxes(self): keras.utils.set_random_seed(2) add_layer = FrustumRandomPointFeatureNoise( r_distance=10, theta_width=np.pi, phi_width=1.5 * np.pi, max_noise_level=0.5, ) point_clouds = np.array( [ [ [0, 1, 2, 3, 4, 5], [10, 1, 2, 3, 4, 2], [100, 100, 2, 3, 4, 1], [-20, -20, 21, 1, 0, 2], ] ] * 2 ).astype("float32") bounding_boxes = np.random.random(size=(2, 10, 7)).astype("float32") inputs = {POINT_CLOUDS: point_clouds, BOUNDING_BOXES: bounding_boxes} outputs = add_layer(inputs) # bounding boxes and point clouds (x, y, z, class) are not modified. augmented_point_clouds = np.array( [ [ [0, 1, 2, 3, 4, 5], [10, 1, 2, 3, 4, 2], [100, 100, 2, 3, 4, 1], [-20, -20, 21, 1, 0, 1.3747642], ], [ [0, 1, 2, 3, 4, 5], [10, 1, 2, 3, 4, 2], [100, 100, 2, 3, 4, 1], [-20, -20, 21, 1, 0, 1.6563809], ], ] ).astype("float32") self.assertAllClose(inputs[BOUNDING_BOXES], outputs[BOUNDING_BOXES]) # [-20, -20, 21, 1, 0, 2] is randomly selected as the frustum center. # [0, 1, 2, 3, 4, 5] and [10, 1, 2, 3, 4, 2] are not changed due to less # than r_distance. [100, 100, 2, 3, 4, 1] is not changed due to outside # phi_width. self.assertAllClose(outputs[POINT_CLOUDS], augmented_point_clouds) def test_augment_only_one_valid_point_point_clouds_and_bounding_boxes(self): keras.utils.set_random_seed(2) add_layer = FrustumRandomPointFeatureNoise( r_distance=10, theta_width=np.pi, phi_width=1.5 * np.pi, max_noise_level=0.5, ) point_clouds = np.array( [ [ [0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0], [100, 100, 2, 3, 4, 1], [0, 0, 0, 0, 0, 0], ] ] * 2 ).astype("float32") bounding_boxes = np.random.random(size=(2, 10, 7)).astype("float32") inputs = {POINT_CLOUDS: point_clouds, BOUNDING_BOXES: bounding_boxes} outputs = add_layer(inputs) # bounding boxes and point clouds (x, y, z, class) are not modified. augmented_point_clouds = np.array( [ [ [0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0], [100, 100, 2, 3, 4.119616, 0.619783], [0, 0, 0, 0, 0, 0], ], [ [0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0], [100, 100, 2, 3, 3.192014, 0.618371], [0, 0, 0, 0, 0, 0], ], ] ).astype("float32") self.assertAllClose(inputs[BOUNDING_BOXES], outputs[BOUNDING_BOXES]) # [100, 100, 2, 3, 4, 1] is selected as the frustum center because it is # the only valid point. self.assertAllClose(outputs[POINT_CLOUDS], augmented_point_clouds) def test_not_augment_max_noise_level0_point_clouds_and_bounding_boxes(self): add_layer = FrustumRandomPointFeatureNoise( r_distance=0, theta_width=1, phi_width=1, max_noise_level=0.0 ) point_clouds = np.random.random(size=(2, 50, 10)).astype("float32") bounding_boxes = np.random.random(size=(2, 10, 7)).astype("float32") inputs = {POINT_CLOUDS: point_clouds, BOUNDING_BOXES: bounding_boxes} outputs = add_layer(inputs) self.assertAllClose(inputs, outputs) def test_not_augment_max_noise_level1_frustum_empty_point_clouds_and_bounding_boxes( # noqa: E501 self, ): add_layer = FrustumRandomPointFeatureNoise( r_distance=10, theta_width=0, phi_width=0, max_noise_level=1.0 ) point_clouds = np.random.random(size=(2, 50, 10)).astype("float32") bounding_boxes = np.random.random(size=(2, 10, 7)).astype("float32") inputs = {POINT_CLOUDS: point_clouds, BOUNDING_BOXES: bounding_boxes} outputs = add_layer(inputs) self.assertAllClose(inputs, outputs) def test_exclude_all_points(self): add_layer = FrustumRandomPointFeatureNoise( r_distance=0, theta_width=1, phi_width=1, max_noise_level=1.0, exclude_classes=1, ) point_clouds = np.random.random(size=(2, 50, 10)).astype("float32") exclude_classes = np.ones(shape=(2, 50, 1)).astype("float32") point_clouds = np.concatenate([point_clouds, exclude_classes], axis=-1) bounding_boxes = np.random.random(size=(2, 10, 7)).astype("float32") inputs = {POINT_CLOUDS: point_clouds, BOUNDING_BOXES: bounding_boxes} outputs = add_layer(inputs) self.assertAllClose(inputs, outputs) def test_exclude_the_first_half_points(self): add_layer = FrustumRandomPointFeatureNoise( r_distance=0, theta_width=10, phi_width=10, max_noise_level=1.0, exclude_classes=[1, 2], ) point_clouds = np.random.random(size=(2, 10, 10)).astype("float32") class_1 = np.ones(shape=(2, 2, 1)).astype("float32") class_2 = np.ones(shape=(2, 3, 1)).astype("float32") * 2 classes = np.concatenate( [class_1, class_2, np.zeros(shape=(2, 5, 1)).astype("float32")], axis=1, ) point_clouds = np.concatenate([point_clouds, classes], axis=-1) bounding_boxes = np.random.random(size=(2, 10, 7)).astype("float32") inputs = {POINT_CLOUDS: point_clouds, BOUNDING_BOXES: bounding_boxes} outputs = add_layer(inputs) self.assertAllClose( inputs[POINT_CLOUDS][:, :5, :], outputs[POINT_CLOUDS][:, :5, :] ) self.assertNotAllClose( inputs[POINT_CLOUDS][:, 5:, :], outputs[POINT_CLOUDS][:, 5:, :] ) def test_augment_batch_point_clouds_and_bounding_boxes(self): add_layer = FrustumRandomPointFeatureNoise( r_distance=0, theta_width=1, phi_width=1, max_noise_level=0.5 ) point_clouds = np.random.random(size=(3, 2, 50, 10)).astype("float32") bounding_boxes = np.random.random(size=(3, 2, 10, 7)).astype("float32") inputs = {POINT_CLOUDS: point_clouds, BOUNDING_BOXES: bounding_boxes} outputs = add_layer(inputs) self.assertNotAllClose(inputs, outputs)
keras-cv/keras_cv/layers/preprocessing_3d/waymo/frustum_random_point_feature_noise_test.py/0
{ "file_path": "keras-cv/keras_cv/layers/preprocessing_3d/waymo/frustum_random_point_feature_noise_test.py", "repo_id": "keras-cv", "token_count": 4481 }
15
# Copyright 2022 Waymo LLC. # # Licensed under the terms in https://github.com/keras-team/keras-cv/blob/master/keras_cv/layers/preprocessing_3d/waymo/LICENSE # noqa: E501 import numpy as np from tensorflow import keras from keras_cv.layers.preprocessing_3d import base_augmentation_layer_3d from keras_cv.layers.preprocessing_3d.waymo.random_drop_box import RandomDropBox from keras_cv.tests.test_case import TestCase POINT_CLOUDS = base_augmentation_layer_3d.POINT_CLOUDS BOUNDING_BOXES = base_augmentation_layer_3d.BOUNDING_BOXES ADDITIONAL_POINT_CLOUDS = base_augmentation_layer_3d.ADDITIONAL_POINT_CLOUDS ADDITIONAL_BOUNDING_BOXES = base_augmentation_layer_3d.ADDITIONAL_BOUNDING_BOXES class RandomDropBoxTest(TestCase): def test_drop_class1_box_point_clouds_and_bounding_boxes(self): keras.utils.set_random_seed(2) add_layer = RandomDropBox(label_index=1, max_drop_bounding_boxes=4) # point_clouds: 3D (multi frames) float32 Tensor with shape # [num of frames, num of points, num of point features]. # The first 5 features are [x, y, z, class, range]. point_clouds = np.array( [ [ [0, 1, 2, 3, 4], [0, 0, 2, 3, 4], [10, 1, 2, 3, 4], [0, -1, 2, 3, 4], [100, 100, 2, 3, 4], [20, 20, 21, 1, 0], ] ] * 2 ).astype("float32") # bounding_boxes: 3D (multi frames) float32 Tensor with shape # [num of frames, num of boxes, num of box features]. # The first 8 features are [x, y, z, dx, dy, dz, phi, box class]. bounding_boxes = np.array( [ [ [0, 0, 0, 4, 4, 4, 0, 1], [20, 20, 20, 1, 1, 1, 0, 2], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], ] ] * 2 ).astype("float32") inputs = { POINT_CLOUDS: point_clouds, BOUNDING_BOXES: bounding_boxes, } outputs = add_layer(inputs) # Drop the first object bounding box [0, 0, 0, 4, 4, 4, 0, 1] and # points. augmented_point_clouds = np.array( [ [ [0, 0, 0, 0, 0], [0, 0, 0, 0, 0], [10, 1, 2, 3, 4], [0, 0, 0, 0, 0], [100, 100, 2, 3, 4], [20, 20, 21, 1, 0], ] ] * 2 ).astype("float32") augmented_bounding_boxes = np.array( [ [ [0, 0, 0, 0, 0, 0, 0, 0], [20, 20, 20, 1, 1, 1, 0, 2], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], ] ] * 2 ).astype("float32") self.assertAllClose(outputs[POINT_CLOUDS], augmented_point_clouds) self.assertAllClose(outputs[BOUNDING_BOXES], augmented_bounding_boxes) def test_drop_both_boxes_point_clouds_and_bounding_boxes(self): keras.utils.set_random_seed(2) add_layer = RandomDropBox(max_drop_bounding_boxes=4) # point_clouds: 3D (multi frames) float32 Tensor with shape # [num of frames, num of points, num of point features]. # The first 5 features are [x, y, z, class, range]. point_clouds = np.array( [ [ [0, 1, 2, 3, 4], [0, 0, 2, 3, 4], [10, 1, 2, 3, 4], [0, -1, 2, 3, 4], [100, 100, 2, 3, 4], [20, 20, 21, 1, 0], ] ] * 2 ).astype("float32") # bounding_boxes: 3D (multi frames) float32 Tensor with shape # [num of frames, num of boxes, num of box features]. # The first 8 features are [x, y, z, dx, dy, dz, phi, box class]. bounding_boxes = np.array( [ [ [0, 0, 0, 4, 4, 4, 0, 1], [20, 20, 20, 3, 3, 3, 0, 2], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], ] ] * 2 ).astype("float32") inputs = { POINT_CLOUDS: point_clouds, BOUNDING_BOXES: bounding_boxes, } outputs = add_layer(inputs) # Drop both object bounding boxes and points. augmented_point_clouds = np.array( [ [ [0, 0, 0, 0, 0], [0, 0, 0, 0, 0], [10, 1, 2, 3, 4], [0, 0, 0, 0, 0], [100, 100, 2, 3, 4], [0, 0, 0, 0, 0], ] ] * 2 ).astype("float32") augmented_bounding_boxes = np.array( [ [ [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], ] ] * 2 ).astype("float32") self.assertAllClose(outputs[POINT_CLOUDS], augmented_point_clouds) self.assertAllClose(outputs[BOUNDING_BOXES], augmented_bounding_boxes) def test_not_drop_any_box_point_clouds_and_bounding_boxes(self): keras.utils.set_random_seed(2) add_layer = RandomDropBox(max_drop_bounding_boxes=0) # point_clouds: 3D (multi frames) float32 Tensor with shape # [num of frames, num of points, num of point features]. # The first 5 features are [x, y, z, class, range]. point_clouds = np.array( [ [ [0, 1, 2, 3, 4], [0, 0, 2, 3, 4], [10, 1, 2, 3, 4], [0, -1, 2, 3, 4], [100, 100, 2, 3, 4], [20, 20, 21, 1, 0], ] ] * 2 ).astype("float32") # bounding_boxes: 3D (multi frames) float32 Tensor with shape # [num of frames, num of boxes, num of box features]. # The first 8 features are [x, y, z, dx, dy, dz, phi, box class]. bounding_boxes = np.array( [ [ [0, 0, 0, 4, 4, 4, 0, 1], [20, 20, 20, 3, 3, 3, 0, 2], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], ] ] * 2 ).astype("float32") inputs = { POINT_CLOUDS: point_clouds, BOUNDING_BOXES: bounding_boxes, } outputs = add_layer(inputs) # Do not drop any bounding box or point. augmented_point_clouds = np.array( [ [ [0, 1, 2, 3, 4], [0, 0, 2, 3, 4], [10, 1, 2, 3, 4], [0, -1, 2, 3, 4], [100, 100, 2, 3, 4], [20, 20, 21, 1, 0], ] ] * 2 ).astype("float32") augmented_bounding_boxes = np.array( [ [ [0, 0, 0, 4, 4, 4, 0, 1], [20, 20, 20, 3, 3, 3, 0, 2], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], ] ] * 2 ).astype("float32") self.assertAllClose(outputs[POINT_CLOUDS], augmented_point_clouds) self.assertAllClose(outputs[BOUNDING_BOXES], augmented_bounding_boxes) def test_batch_drop_one_of_the_box_point_clouds_and_bounding_boxes(self): keras.utils.set_random_seed(4) add_layer = RandomDropBox(max_drop_bounding_boxes=2) # point_clouds: 3D (multi frames) float32 Tensor with shape # [num of frames, num of points, num of point features]. # The first 5 features are [x, y, z, class, range]. point_clouds = np.array( [ [ [ [0, 1, 2, 3, 4], [0, 0, 2, 3, 4], [10, 1, 2, 3, 4], [0, -1, 2, 3, 4], [100, 100, 2, 3, 4], [20, 20, 21, 1, 0], ] ] * 2 ] * 3 ).astype("float32") # bounding_boxes: 3D (multi frames) float32 Tensor with shape # [num of frames, num of boxes, num of box features]. # The first 8 features are [x, y, z, dx, dy, dz, phi, box class]. bounding_boxes = np.array( [ [ [ [0, 0, 0, 4, 4, 4, 0, 1], [20, 20, 20, 3, 3, 3, 0, 2], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], ] ] * 2 ] * 3 ).astype("float32") inputs = { POINT_CLOUDS: point_clouds, BOUNDING_BOXES: bounding_boxes, } outputs = add_layer(inputs) # Batch 0: drop the first bounding box [0, 0, 0, 4, 4, 4, 0, 1] and # points, # Batch 1,2: drop the second bounding box [20, 20, 20, 3, 3, 3, 0, 2] # and points, augmented_point_clouds = np.array( [ [ [ [0, 0, 0, 0, 0], [0, 0, 0, 0, 0], [10, 1, 2, 3, 4], [0, 0, 0, 0, 0], [100, 100, 2, 3, 4], [20, 20, 21, 1, 0], ] ] * 2, [ [ [0, 1, 2, 3, 4], [0, 0, 2, 3, 4], [10, 1, 2, 3, 4], [0, -1, 2, 3, 4], [100, 100, 2, 3, 4], [0, 0, 0, 0, 0], ] ] * 2, [ [ [0, 1, 2, 3, 4], [0, 0, 2, 3, 4], [10, 1, 2, 3, 4], [0, -1, 2, 3, 4], [100, 100, 2, 3, 4], [0, 0, 0, 0, 0], ] ] * 2, ] ).astype("float32") augmented_bounding_boxes = np.array( [ [ [ [0, 0, 0, 0, 0, 0, 0, 0], [20, 20, 20, 3, 3, 3, 0, 2], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], ] ] * 2, [ [ [0, 0, 0, 4, 4, 4, 0, 1], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], ] ] * 2, [ [ [0, 0, 0, 4, 4, 4, 0, 1], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], ] ] * 2, ] ).astype("float32") self.assertAllClose(outputs[POINT_CLOUDS], augmented_point_clouds) self.assertAllClose(outputs[BOUNDING_BOXES], augmented_bounding_boxes)
keras-cv/keras_cv/layers/preprocessing_3d/waymo/random_drop_box_test.py/0
{ "file_path": "keras-cv/keras_cv/layers/preprocessing_3d/waymo/random_drop_box_test.py", "repo_id": "keras-cv", "token_count": 7814 }
16
# Copyright 2022 The KerasCV Authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from tensorflow import keras from tensorflow.keras import layers from keras_cv.api_export import keras_cv_export @keras_cv_export("keras_cv.layers.TransformerEncoder") class TransformerEncoder(layers.Layer): """ Transformer encoder block implementation as a Keras Layer. Args: project_dim: the dimensionality of the projection of the encoder, and output of the `MultiHeadAttention` mlp_dim: the intermediate dimensionality of the MLP head before projecting to `project_dim` num_heads: the number of heads for the `MultiHeadAttention` layer mlp_dropout: default 0.1, the dropout rate to apply between the layers of the MLP head of the encoder attention_dropout: default 0.1, the dropout rate to apply in the MultiHeadAttention layer activation: default 'tf.activations.gelu', the activation function to apply in the MLP head - should be a function layer_norm_epsilon: default 1e-06, the epsilon for `LayerNormalization` layers Basic usage: ``` project_dim = 1024 mlp_dim = 3072 num_heads = 4 encoded_patches = keras_cv.layers.PatchingAndEmbedding( project_dim=project_dim, patch_size=16)(img_batch) trans_encoded = keras_cv.layers.TransformerEncoder(project_dim=project_dim, mlp_dim = mlp_dim, num_heads=num_heads)(encoded_patches) print(trans_encoded.shape) # (1, 197, 1024) ``` """ def __init__( self, project_dim, num_heads, mlp_dim, mlp_dropout=0.1, attention_dropout=0.1, activation=keras.activations.gelu, layer_norm_epsilon=1e-06, **kwargs, ): super().__init__(**kwargs) self.project_dim = project_dim self.mlp_dim = mlp_dim self.num_heads = num_heads self.mlp_dropout = mlp_dropout self.attention_dropout = attention_dropout self.activation = activation self.layer_norm_epsilon = layer_norm_epsilon self.mlp_units = [mlp_dim, project_dim] self.layer_norm1 = layers.LayerNormalization( epsilon=self.layer_norm_epsilon ) self.layer_norm2 = layers.LayerNormalization( epsilon=self.layer_norm_epsilon ) self.attn = layers.MultiHeadAttention( num_heads=self.num_heads, key_dim=self.project_dim // self.num_heads, dropout=self.attention_dropout, ) self.dense1 = layers.Dense(self.mlp_units[0]) self.dense2 = layers.Dense(self.mlp_units[1]) def call(self, inputs): """Calls the Transformer Encoder on an input sequence. Args: inputs: A `tf.Tensor` of shape [batch, height, width, channels] Returns: `A tf.Tensor` of shape [batch, patch_num+1, embedding_dim] """ if inputs.shape[-1] != self.project_dim: raise ValueError( "The input and output dimensionality must be the same, but the " f"TransformerEncoder was provided with {inputs.shape[-1]} and " f"{self.project_dim}" ) x = self.layer_norm1(inputs) x = self.attn(x, x) x = layers.Dropout(self.mlp_dropout)(x) x = layers.Add()([x, inputs]) y = self.layer_norm2(x) y = self.dense1(y) if self.activation == keras.activations.gelu: y = self.activation(y, approximate=True) else: y = self.activation(y) y = layers.Dropout(self.mlp_dropout)(y) y = self.dense2(y) y = layers.Dropout(self.mlp_dropout)(y) output = layers.Add()([x, y]) return output def get_config(self): config = super().get_config() activation = self.activation if not isinstance(activation, (str, dict)): activation = keras.activations.serialize(activation) config.update( { "project_dim": self.project_dim, "mlp_dim": self.mlp_dim, "num_heads": self.num_heads, "attention_dropout": self.attention_dropout, "mlp_dropout": self.mlp_dropout, "activation": activation, "layer_norm_epsilon": self.layer_norm_epsilon, } ) return config @classmethod def from_config(cls, config, custom_objects=None): activation = config.pop("activation") if isinstance(activation, (str, dict)): activation = keras.activations.deserialize(activation) return cls(activation=activation, **config)
keras-cv/keras_cv/layers/transformer_encoder.py/0
{ "file_path": "keras-cv/keras_cv/layers/transformer_encoder.py", "repo_id": "keras-cv", "token_count": 2358 }
17
# Copyright 2022 The KerasCV Authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np from keras_cv.losses.iou_loss import IoULoss from keras_cv.tests.test_case import TestCase class IoUTest(TestCase): def test_output_shape(self): y_true = np.random.uniform(size=(2, 2, 4), low=0, high=10) y_pred = np.random.uniform(size=(2, 2, 4), low=0, high=20) iou_loss = IoULoss(bounding_box_format="xywh") self.assertAllEqual(iou_loss(y_true, y_pred).shape, ()) def test_output_shape_reduction_none(self): y_true = np.random.uniform(size=(2, 2, 4), low=0, high=10) y_pred = np.random.uniform(size=(2, 2, 4), low=0, high=20) iou_loss = IoULoss(bounding_box_format="xywh", reduction="none") self.assertAllEqual( iou_loss(y_true, y_pred).shape, [ 2, ], ) def test_output_shape_relative(self): y_true = [ [0.0, 0.0, 0.1, 0.1], [0.0, 0.0, 0.2, 0.3], [0.4, 0.5, 0.5, 0.6], [0.2, 0.2, 0.3, 0.3], ] y_pred = [ [0.0, 0.0, 0.5, 0.6], [0.0, 0.0, 0.7, 0.3], [0.4, 0.5, 0.5, 0.6], [0.2, 0.1, 0.3, 0.3], ] iou_loss = IoULoss(bounding_box_format="rel_xyxy") self.assertAllEqual(iou_loss(y_true, y_pred).shape, ()) def test_output_value(self): y_true = [ [0, 0, 1, 1], [0, 0, 2, 3], [4, 5, 3, 6], [2, 2, 3, 3], ] y_pred = [ [0, 0, 5, 6], [0, 0, 7, 3], [4, 5, 5, 6], [2, 1, 3, 3], ] iou_loss = IoULoss(bounding_box_format="xywh") # -log(compute_iou(y_true, y_pred)) = 1.0363084 self.assertAllClose(iou_loss(y_true, y_pred), 1.0363084)
keras-cv/keras_cv/losses/iou_loss_test.py/0
{ "file_path": "keras-cv/keras_cv/losses/iou_loss_test.py", "repo_id": "keras-cv", "token_count": 1225 }
18
# Copyright 2023 The KerasCV Authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from keras_cv.models import legacy from keras_cv.models.backbones.csp_darknet.csp_darknet_aliases import ( CSPDarkNetLBackbone, ) from keras_cv.models.backbones.csp_darknet.csp_darknet_aliases import ( CSPDarkNetMBackbone, ) from keras_cv.models.backbones.csp_darknet.csp_darknet_aliases import ( CSPDarkNetSBackbone, ) from keras_cv.models.backbones.csp_darknet.csp_darknet_aliases import ( CSPDarkNetTinyBackbone, ) from keras_cv.models.backbones.csp_darknet.csp_darknet_aliases import ( CSPDarkNetXLBackbone, ) from keras_cv.models.backbones.csp_darknet.csp_darknet_backbone import ( CSPDarkNetBackbone, ) from keras_cv.models.backbones.densenet.densenet_aliases import ( DenseNet121Backbone, ) from keras_cv.models.backbones.densenet.densenet_aliases import ( DenseNet169Backbone, ) from keras_cv.models.backbones.densenet.densenet_aliases import ( DenseNet201Backbone, ) from keras_cv.models.backbones.densenet.densenet_backbone import ( DenseNetBackbone, ) from keras_cv.models.backbones.efficientnet_lite.efficientnet_lite_aliases import ( # noqa: E501 EfficientNetLiteB0Backbone, ) from keras_cv.models.backbones.efficientnet_lite.efficientnet_lite_aliases import ( # noqa: E501 EfficientNetLiteB1Backbone, ) from keras_cv.models.backbones.efficientnet_lite.efficientnet_lite_aliases import ( # noqa: E501 EfficientNetLiteB2Backbone, ) from keras_cv.models.backbones.efficientnet_lite.efficientnet_lite_aliases import ( # noqa: E501 EfficientNetLiteB3Backbone, ) from keras_cv.models.backbones.efficientnet_lite.efficientnet_lite_aliases import ( # noqa: E501 EfficientNetLiteB4Backbone, ) from keras_cv.models.backbones.efficientnet_lite.efficientnet_lite_backbone import ( # noqa: E501 EfficientNetLiteBackbone, ) from keras_cv.models.backbones.efficientnet_v1.efficientnet_v1_aliases import ( EfficientNetV1B0Backbone, ) from keras_cv.models.backbones.efficientnet_v1.efficientnet_v1_aliases import ( EfficientNetV1B1Backbone, ) from keras_cv.models.backbones.efficientnet_v1.efficientnet_v1_aliases import ( EfficientNetV1B2Backbone, ) from keras_cv.models.backbones.efficientnet_v1.efficientnet_v1_aliases import ( EfficientNetV1B3Backbone, ) from keras_cv.models.backbones.efficientnet_v1.efficientnet_v1_aliases import ( EfficientNetV1B4Backbone, ) from keras_cv.models.backbones.efficientnet_v1.efficientnet_v1_aliases import ( EfficientNetV1B5Backbone, ) from keras_cv.models.backbones.efficientnet_v1.efficientnet_v1_aliases import ( EfficientNetV1B6Backbone, ) from keras_cv.models.backbones.efficientnet_v1.efficientnet_v1_aliases import ( EfficientNetV1B7Backbone, ) from keras_cv.models.backbones.efficientnet_v1.efficientnet_v1_aliases import ( EfficientNetV1Backbone, ) from keras_cv.models.backbones.efficientnet_v2.efficientnet_v2_aliases import ( EfficientNetV2B0Backbone, ) from keras_cv.models.backbones.efficientnet_v2.efficientnet_v2_aliases import ( EfficientNetV2B1Backbone, ) from keras_cv.models.backbones.efficientnet_v2.efficientnet_v2_aliases import ( EfficientNetV2B2Backbone, ) from keras_cv.models.backbones.efficientnet_v2.efficientnet_v2_aliases import ( EfficientNetV2B3Backbone, ) from keras_cv.models.backbones.efficientnet_v2.efficientnet_v2_aliases import ( EfficientNetV2Backbone, ) from keras_cv.models.backbones.efficientnet_v2.efficientnet_v2_aliases import ( EfficientNetV2LBackbone, ) from keras_cv.models.backbones.efficientnet_v2.efficientnet_v2_aliases import ( EfficientNetV2MBackbone, ) from keras_cv.models.backbones.efficientnet_v2.efficientnet_v2_aliases import ( EfficientNetV2SBackbone, ) from keras_cv.models.backbones.mix_transformer.mix_transformer_aliases import ( MiTB0Backbone, ) from keras_cv.models.backbones.mix_transformer.mix_transformer_aliases import ( MiTB1Backbone, ) from keras_cv.models.backbones.mix_transformer.mix_transformer_aliases import ( MiTB2Backbone, ) from keras_cv.models.backbones.mix_transformer.mix_transformer_aliases import ( MiTB3Backbone, ) from keras_cv.models.backbones.mix_transformer.mix_transformer_aliases import ( MiTB4Backbone, ) from keras_cv.models.backbones.mix_transformer.mix_transformer_aliases import ( MiTB5Backbone, ) from keras_cv.models.backbones.mix_transformer.mix_transformer_aliases import ( MiTBackbone, ) from keras_cv.models.backbones.mobilenet_v3.mobilenet_v3_aliases import ( MobileNetV3LargeBackbone, ) from keras_cv.models.backbones.mobilenet_v3.mobilenet_v3_aliases import ( MobileNetV3SmallBackbone, ) from keras_cv.models.backbones.mobilenet_v3.mobilenet_v3_backbone import ( MobileNetV3Backbone, ) from keras_cv.models.backbones.resnet_v1.resnet_v1_aliases import ( ResNet18Backbone, ) from keras_cv.models.backbones.resnet_v1.resnet_v1_aliases import ( ResNet34Backbone, ) from keras_cv.models.backbones.resnet_v1.resnet_v1_aliases import ( ResNet50Backbone, ) from keras_cv.models.backbones.resnet_v1.resnet_v1_aliases import ( ResNet101Backbone, ) from keras_cv.models.backbones.resnet_v1.resnet_v1_aliases import ( ResNet152Backbone, ) from keras_cv.models.backbones.resnet_v1.resnet_v1_backbone import ( ResNetBackbone, ) from keras_cv.models.backbones.resnet_v2.resnet_v2_aliases import ( ResNet18V2Backbone, ) from keras_cv.models.backbones.resnet_v2.resnet_v2_aliases import ( ResNet34V2Backbone, ) from keras_cv.models.backbones.resnet_v2.resnet_v2_aliases import ( ResNet50V2Backbone, ) from keras_cv.models.backbones.resnet_v2.resnet_v2_aliases import ( ResNet101V2Backbone, ) from keras_cv.models.backbones.resnet_v2.resnet_v2_aliases import ( ResNet152V2Backbone, ) from keras_cv.models.backbones.resnet_v2.resnet_v2_backbone import ( ResNetV2Backbone, ) from keras_cv.models.backbones.vgg16.vgg16_backbone import VGG16Backbone from keras_cv.models.backbones.vit_det.vit_det_aliases import ViTDetBBackbone from keras_cv.models.backbones.vit_det.vit_det_aliases import ViTDetHBackbone from keras_cv.models.backbones.vit_det.vit_det_aliases import ViTDetLBackbone from keras_cv.models.backbones.vit_det.vit_det_backbone import ViTDetBackbone from keras_cv.models.classification.image_classifier import ImageClassifier from keras_cv.models.feature_extractor.clip import CLIP from keras_cv.models.object_detection.retinanet.retinanet import RetinaNet from keras_cv.models.object_detection.yolo_v8.yolo_v8_backbone import ( YOLOV8Backbone, ) from keras_cv.models.object_detection.yolo_v8.yolo_v8_detector import ( YOLOV8Detector, ) from keras_cv.models.segmentation import BASNet from keras_cv.models.segmentation import DeepLabV3Plus from keras_cv.models.segmentation import SAMMaskDecoder from keras_cv.models.segmentation import SAMPromptEncoder from keras_cv.models.segmentation import SegmentAnythingModel from keras_cv.models.segmentation import TwoWayTransformer from keras_cv.models.segmentation.segformer.segformer_aliases import SegFormer from keras_cv.models.segmentation.segformer.segformer_aliases import SegFormerB0 from keras_cv.models.segmentation.segformer.segformer_aliases import SegFormerB1 from keras_cv.models.segmentation.segformer.segformer_aliases import SegFormerB2 from keras_cv.models.segmentation.segformer.segformer_aliases import SegFormerB3 from keras_cv.models.segmentation.segformer.segformer_aliases import SegFormerB4 from keras_cv.models.segmentation.segformer.segformer_aliases import SegFormerB5 from keras_cv.models.stable_diffusion import StableDiffusion from keras_cv.models.stable_diffusion import StableDiffusionV2
keras-cv/keras_cv/models/__init__.py/0
{ "file_path": "keras-cv/keras_cv/models/__init__.py", "repo_id": "keras-cv", "token_count": 3123 }
19
# Copyright 2023 The KerasCV Authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import numpy as np import pytest from absl.testing import parameterized from keras_cv.backend import keras from keras_cv.backend import ops from keras_cv.models.backbones.densenet.densenet_aliases import ( DenseNet121Backbone, ) from keras_cv.models.backbones.densenet.densenet_backbone import ( DenseNetBackbone, ) from keras_cv.tests.test_case import TestCase from keras_cv.utils.train import get_feature_extractor class DenseNetBackboneTest(TestCase): def setUp(self): self.input_batch = np.ones(shape=(2, 224, 224, 3)) def test_valid_call(self): model = DenseNetBackbone( stackwise_num_repeats=[6, 12, 24, 16], include_rescaling=False, ) model(self.input_batch) def test_valid_call_applications_model(self): model = DenseNet121Backbone() model(self.input_batch) def test_valid_call_with_rescaling(self): model = DenseNetBackbone( stackwise_num_repeats=[6, 12, 24, 16], include_rescaling=True, ) model(self.input_batch) @pytest.mark.large # Saving is slow, so mark these large. def test_saved_model(self): model = DenseNetBackbone( stackwise_num_repeats=[6, 12, 24, 16], include_rescaling=False, ) model_output = model(self.input_batch) save_path = os.path.join(self.get_temp_dir(), "densenet_backbone.keras") model.save(save_path) restored_model = keras.models.load_model(save_path) # Check we got the real object back. self.assertIsInstance(restored_model, DenseNetBackbone) # Check that output matches. restored_output = restored_model(self.input_batch) self.assertAllClose( ops.convert_to_numpy(model_output), ops.convert_to_numpy(restored_output), ) @pytest.mark.large # Saving is slow, so mark these large. def test_saved_alias_model(self): model = DenseNet121Backbone() model_output = model(self.input_batch) save_path = os.path.join( self.get_temp_dir(), "densenet_alias_backbone.keras" ) model.save(save_path) restored_model = keras.models.load_model(save_path) # Check we got the real object back. # Note that these aliases serialized as the base class self.assertIsInstance(restored_model, DenseNetBackbone) # Check that output matches. restored_output = restored_model(self.input_batch) self.assertAllClose( ops.convert_to_numpy(model_output), ops.convert_to_numpy(restored_output), ) def test_feature_pyramid_inputs(self): model = DenseNet121Backbone() backbone_model = get_feature_extractor( model, model.pyramid_level_inputs.values(), model.pyramid_level_inputs.keys(), ) input_size = 256 inputs = keras.Input(shape=[input_size, input_size, 3]) outputs = backbone_model(inputs) levels = ["P2", "P3", "P4", "P5"] self.assertEquals(list(outputs.keys()), levels) self.assertEquals( outputs["P2"].shape, (None, input_size // 2**2, input_size // 2**2, 256), ) self.assertEquals( outputs["P3"].shape, (None, input_size // 2**3, input_size // 2**3, 512), ) self.assertEquals( outputs["P4"].shape, (None, input_size // 2**4, input_size // 2**4, 1024), ) self.assertEquals( outputs["P5"].shape, (None, input_size // 2**5, input_size // 2**5, 1024), ) @parameterized.named_parameters( ("one_channel", 1), ("four_channels", 4), ) def test_application_variable_input_channels(self, num_channels): model = DenseNetBackbone( stackwise_num_repeats=[6, 12, 24, 16], input_shape=(None, None, num_channels), include_rescaling=False, ) self.assertEqual(model.output_shape, (None, None, None, 1024))
keras-cv/keras_cv/models/backbones/densenet/densenet_backbone_test.py/0
{ "file_path": "keras-cv/keras_cv/models/backbones/densenet/densenet_backbone_test.py", "repo_id": "keras-cv", "token_count": 2063 }
20
# Copyright 2023 The KerasCV Authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """EfficientNetV2 model preset configurations.""" backbone_presets_no_weights = { "efficientnetv2_s": { "metadata": { "description": ( "EfficientNet architecture with 6 convolutional blocks." ), "params": 20331360, "official_name": "EfficientNetV2", "path": "efficientnetv2", }, "kaggle_handle": "kaggle://keras/efficientnetv2/keras/efficientnetv2_s/2", # noqa: E501 }, "efficientnetv2_m": { "metadata": { "description": ( "EfficientNet architecture with 7 convolutional blocks." ), "params": 53150388, "official_name": "EfficientNetV2", "path": "efficientnetv2", }, "kaggle_handle": "kaggle://keras/efficientnetv2/keras/efficientnetv2_m/2", # noqa: E501 }, "efficientnetv2_l": { "metadata": { "description": ( "EfficientNet architecture with 7 convolutional " "blocks, but more filters the in `efficientnetv2_m`." ), "params": 117746848, "official_name": "EfficientNetV2", "path": "efficientnetv2", }, "kaggle_handle": "kaggle://keras/efficientnetv2/keras/efficientnetv2_l/2", # noqa: E501 }, "efficientnetv2_b0": { "metadata": { "description": ( "EfficientNet B-style architecture with 6 " "convolutional blocks. This B-style model has " "`width_coefficient=1.0` and `depth_coefficient=1.0`." ), "params": 5919312, "official_name": "EfficientNetV2", "path": "efficientnetv2", }, "kaggle_handle": "kaggle://keras/efficientnetv2/keras/efficientnetv2_b0/2", # noqa: E501 }, "efficientnetv2_b1": { "metadata": { "description": ( "EfficientNet B-style architecture with 6 " "convolutional blocks. This B-style model has " "`width_coefficient=1.0` and `depth_coefficient=1.1`." ), "params": 6931124, "official_name": "EfficientNetV2", "path": "efficientnetv2", }, "kaggle_handle": "kaggle://keras/efficientnetv2/keras/efficientnetv2_b1/2", # noqa: E501 }, "efficientnetv2_b2": { "metadata": { "description": ( "EfficientNet B-style architecture with 6 " "convolutional blocks. This B-style model has " "`width_coefficient=1.1` and `depth_coefficient=1.2`." ), "params": 8769374, "official_name": "EfficientNetV2", "path": "efficientnetv2", }, "kaggle_handle": "kaggle://keras/efficientnetv2/keras/efficientnetv2_b2/2", # noqa: E501 }, "efficientnetv2_b3": { "metadata": { "description": ( "EfficientNet B-style architecture with 7 " "convolutional blocks. This B-style model has " "`width_coefficient=1.2` and `depth_coefficient=1.4`." ), "params": 12930622, "official_name": "EfficientNetV2", "path": "efficientnetv2", }, "kaggle_handle": "kaggle://keras/efficientnetv2/keras/efficientnetv2_b3/2", # noqa: E501 }, } backbone_presets_with_weights = { "efficientnetv2_s_imagenet": { "metadata": { "description": ( "EfficientNet architecture with 6 convolutional " "blocks. Weights are initialized to pretrained imagenet " "classification weights.Published weights are capable of " "scoring 83.9%top 1 accuracy " "and 96.7% top 5 accuracy on imagenet." ), "params": 20331360, "official_name": "EfficientNetV2", "path": "efficientnetv2", }, "kaggle_handle": "kaggle://keras/efficientnetv2/keras/efficientnetv2_s_imagenet/2", # noqa: E501 }, "efficientnetv2_b0_imagenet": { "metadata": { "description": ( "EfficientNet B-style architecture with 6 " "convolutional blocks. This B-style model has " "`width_coefficient=1.0` and `depth_coefficient=1.0`. " "Weights are " "initialized to pretrained imagenet classification weights. " "Published weights are capable of scoring 77.1% top 1 accuracy " "and 93.3% top 5 accuracy on imagenet." ), "params": 5919312, "official_name": "EfficientNetV2", "path": "efficientnetv2", }, "kaggle_handle": "kaggle://keras/efficientnetv2/keras/efficientnetv2_b0_imagenet/2", # noqa: E501 }, "efficientnetv2_b1_imagenet": { "metadata": { "description": ( "EfficientNet B-style architecture with 6 " "convolutional blocks. This B-style model has " "`width_coefficient=1.0` and `depth_coefficient=1.1`. " "Weights are " "initialized to pretrained imagenet classification weights." "Published weights are capable of scoring 79.1% top 1 accuracy " "and 94.4% top 5 accuracy on imagenet." ), "params": 6931124, "official_name": "EfficientNetV2", "path": "efficientnetv2", }, "kaggle_handle": "kaggle://keras/efficientnetv2/keras/efficientnetv2_b1_imagenet/2", # noqa: E501 }, "efficientnetv2_b2_imagenet": { "metadata": { "description": ( "EfficientNet B-style architecture with 6 " "convolutional blocks. This B-style model has " "`width_coefficient=1.1` and `depth_coefficient=1.2`. " "Weights are initialized to pretrained " "imagenet classification weights." "Published weights are capable of scoring 80.1% top 1 accuracy " "and 94.9% top 5 accuracy on imagenet." ), "params": 8769374, "official_name": "EfficientNetV2", "path": "efficientnetv2", }, "kaggle_handle": "kaggle://keras/efficientnetv2/keras/efficientnetv2_b2_imagenet/2", # noqa: E501 }, } backbone_presets = { **backbone_presets_no_weights, **backbone_presets_with_weights, }
keras-cv/keras_cv/models/backbones/efficientnet_v2/efficientnet_v2_backbone_presets.py/0
{ "file_path": "keras-cv/keras_cv/models/backbones/efficientnet_v2/efficientnet_v2_backbone_presets.py", "repo_id": "keras-cv", "token_count": 3507 }
21
# Copyright 2023 The KerasCV Authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import copy from keras_cv.api_export import keras_cv_export from keras_cv.models.backbones.resnet_v1.resnet_v1_backbone import ( ResNetBackbone, ) from keras_cv.models.backbones.resnet_v1.resnet_v1_backbone_presets import ( backbone_presets, ) from keras_cv.utils.python_utils import classproperty ALIAS_DOCSTRING = """ResNetBackbone (V1) model with {num_layers} layers. Reference: - [Deep Residual Learning for Image Recognition](https://arxiv.org/abs/1512.03385) The difference in ResNetV1 and ResNetV2 rests in the structure of their individual building blocks. In ResNetV2, the batch normalization and ReLU activation precede the convolution layers, as opposed to ResNetV1 where the batch normalization and ReLU activation are applied after the convolution layers. For transfer learning use cases, make sure to read the [guide to transfer learning & fine-tuning](https://keras.io/guides/transfer_learning/). Args: include_rescaling: bool, whether to rescale the inputs. If set to `True`, inputs will be passed through a `Rescaling(1/255.0)` layer. input_shape: optional shape tuple, defaults to (None, None, 3). input_tensor: optional Keras tensor (i.e. output of `layers.Input()`) to use as image input for the model. Examples: ```python input_data = tf.ones(shape=(8, 224, 224, 3)) # Randomly initialized backbone model = ResNet{num_layers}Backbone() output = model(input_data) ``` """ # noqa: E501 @keras_cv_export("keras_cv.models.ResNet18Backbone") class ResNet18Backbone(ResNetBackbone): def __new__( cls, include_rescaling=True, input_shape=(None, None, 3), input_tensor=None, **kwargs, ): # Pack args in kwargs kwargs.update( { "include_rescaling": include_rescaling, "input_shape": input_shape, "input_tensor": input_tensor, } ) return ResNetBackbone.from_preset("resnet18", **kwargs) @classproperty def presets(cls): """Dictionary of preset names and configurations.""" return {} @classproperty def presets_with_weights(cls): """Dictionary of preset names and configurations that include weights.""" return {} @keras_cv_export("keras_cv.models.ResNet34Backbone") class ResNet34Backbone(ResNetBackbone): def __new__( cls, include_rescaling=True, input_shape=(None, None, 3), input_tensor=None, **kwargs, ): # Pack args in kwargs kwargs.update( { "include_rescaling": include_rescaling, "input_shape": input_shape, "input_tensor": input_tensor, } ) return ResNetBackbone.from_preset("resnet34", **kwargs) @classproperty def presets(cls): """Dictionary of preset names and configurations.""" return {} @classproperty def presets_with_weights(cls): """Dictionary of preset names and configurations that include weights.""" return {} @keras_cv_export("keras_cv.models.ResNet50Backbone") class ResNet50Backbone(ResNetBackbone): def __new__( cls, include_rescaling=True, input_shape=(None, None, 3), input_tensor=None, **kwargs, ): # Pack args in kwargs kwargs.update( { "include_rescaling": include_rescaling, "input_shape": input_shape, "input_tensor": input_tensor, } ) return ResNetBackbone.from_preset("resnet50", **kwargs) @classproperty def presets(cls): """Dictionary of preset names and configurations.""" return { "resnet50_imagenet": copy.deepcopy( backbone_presets["resnet50_imagenet"] ), } @classproperty def presets_with_weights(cls): """Dictionary of preset names and configurations that include weights.""" return cls.presets @keras_cv_export("keras_cv.models.ResNet101Backbone") class ResNet101Backbone(ResNetBackbone): def __new__( cls, include_rescaling=True, input_shape=(None, None, 3), input_tensor=None, **kwargs, ): # Pack args in kwargs kwargs.update( { "include_rescaling": include_rescaling, "input_shape": input_shape, "input_tensor": input_tensor, } ) return ResNetBackbone.from_preset("resnet101", **kwargs) @classproperty def presets(cls): """Dictionary of preset names and configurations.""" return {} @classproperty def presets_with_weights(cls): """Dictionary of preset names and configurations that include weights.""" return {} @keras_cv_export("keras_cv.models.ResNet152Backbone") class ResNet152Backbone(ResNetBackbone): def __new__( cls, include_rescaling=True, input_shape=(None, None, 3), input_tensor=None, **kwargs, ): # Pack args in kwargs kwargs.update( { "include_rescaling": include_rescaling, "input_shape": input_shape, "input_tensor": input_tensor, } ) return ResNetBackbone.from_preset("resnet152", **kwargs) @classproperty def presets(cls): """Dictionary of preset names and configurations.""" return {} @classproperty def presets_with_weights(cls): """Dictionary of preset names and configurations that include weights.""" return {} setattr(ResNet18Backbone, "__doc__", ALIAS_DOCSTRING.format(num_layers=18)) setattr(ResNet34Backbone, "__doc__", ALIAS_DOCSTRING.format(num_layers=34)) setattr(ResNet50Backbone, "__doc__", ALIAS_DOCSTRING.format(num_layers=50)) setattr(ResNet101Backbone, "__doc__", ALIAS_DOCSTRING.format(num_layers=101)) setattr(ResNet152Backbone, "__doc__", ALIAS_DOCSTRING.format(num_layers=152))
keras-cv/keras_cv/models/backbones/resnet_v1/resnet_v1_aliases.py/0
{ "file_path": "keras-cv/keras_cv/models/backbones/resnet_v1/resnet_v1_aliases.py", "repo_id": "keras-cv", "token_count": 2951 }
22
# Copyright 2023 The KerasCV Authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """CLIP presets.""" clip_presets = { "clip-vit-base-patch16": { "metadata": { "description": ( "The model uses a ViT-B/16 Transformer architecture as an " "image encoder and uses a masked self-attention Transformer as " "a text encoder. These encoders are trained to maximize the " "similarity of (image, text) pairs via a contrastive loss. The " "model uses a patch size of 16 and input images of size (224, " "224)" ), "params": 149620737, "official_name": "CLIP", "path": "clip", }, "kaggle_handle": "kaggle://keras/clip/keras/clip-vit-base-patch16/2", }, "clip-vit-base-patch32": { "metadata": { "description": ( "The model uses a ViT-B/32 Transformer architecture as an " "image encoder and uses a masked self-attention Transformer as " "a text encoder. These encoders are trained to maximize the " "similarity of (image, text) pairs via a contrastive loss.The " "model uses a patch size of 32 and input images of size (224, " "224)" ), "params": 151277313, "official_name": "CLIP", "path": "clip", }, "kaggle_handle": "kaggle://keras/clip/keras/clip-vit-base-patch32/2", }, "clip-vit-large-patch14": { "metadata": { "description": ( "The model uses a ViT-L/14 Transformer architecture as an " "image encoder and uses a masked self-attention Transformer as " "a text encoder. These encoders are trained to maximize the " "similarity of (image, text) pairs via a contrastive loss.The " "model uses a patch size of 14 and input images of size (224, " "224)" ), "params": 427616513, "official_name": "CLIP", "path": "clip", }, "kaggle_handle": "kaggle://keras/clip/keras/clip-vit-large-patch14/2", }, "clip-vit-large-patch14-336": { "metadata": { "description": ( "The model uses a ViT-L/14 Transformer architecture as an " "image encoder and uses a masked self-attention Transformer as " "a text encoder. These encoders are trained to maximize the " "similarity of (image, text) pairs via a contrastive loss.The " "model uses a patch size of 14 and input images of size (336, " "336)" ), "params": 427944193, "official_name": "CLIP", "path": "clip", }, "kaggle_handle": "kaggle://keras/clip/keras/clip-vit-large-patch14-336/2", # noqa: E501 }, }
keras-cv/keras_cv/models/feature_extractor/clip/clip_presets.py/0
{ "file_path": "keras-cv/keras_cv/models/feature_extractor/clip/clip_presets.py", "repo_id": "keras-cv", "token_count": 1592 }
23
# Copyright 2022 The KerasCV Authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import functools import math import numpy as np import tensorflow as tf try: import pandas as pd except ImportError: pd = None def unpack_input(data): if type(data) is dict: return data["images"], data["bounding_boxes"] else: return data def _get_tensor_types(): if pd is None: return (tf.Tensor, np.ndarray) else: return (tf.Tensor, np.ndarray, pd.Series, pd.DataFrame) def convert_inputs_to_tf_dataset( x=None, y=None, sample_weight=None, batch_size=None ): if sample_weight is not None: raise ValueError("RetinaNet does not yet support `sample_weight`.") if isinstance(x, tf.data.Dataset): if y is not None or batch_size is not None: raise ValueError( "When `x` is a `tf.data.Dataset`, please do not provide a " f"value for `y` or `batch_size`. Got `y={y}`, " f"`batch_size={batch_size}`." ) return x # batch_size defaults to 32, as it does in fit(). batch_size = batch_size or 32 # Parse inputs inputs = x if y is not None: inputs = (x, y) # Construct tf.data.Dataset dataset = tf.data.Dataset.from_tensor_slices(inputs) if batch_size == "full": dataset = dataset.batch(x.shape[0]) elif batch_size is not None: dataset = dataset.batch(batch_size) return dataset # TODO(lukewood): remove once exported from Keras core. def train_validation_split(arrays, validation_split): """Split arrays into train and validation subsets in deterministic order. The last part of data will become validation data. Args: arrays: Tensors to split. Allowed inputs are arbitrarily nested structures of Tensors and NumPy arrays. validation_split: Float between 0 and 1. The proportion of the dataset to include in the validation split. The rest of the dataset will be included in the training split. Returns: `(train_arrays, validation_arrays)` """ def _can_split(t): tensor_types = _get_tensor_types() return isinstance(t, tensor_types) or t is None flat_arrays = tf.nest.flatten(arrays) unsplitable = [type(t) for t in flat_arrays if not _can_split(t)] if unsplitable: raise ValueError( "`validation_split` is only supported for Tensors or NumPy " "arrays, found following types in the input: {}".format(unsplitable) ) if all(t is None for t in flat_arrays): return arrays, arrays first_non_none = None for t in flat_arrays: if t is not None: first_non_none = t break # Assumes all arrays have the same batch shape or are `None`. batch_dim = int(first_non_none.shape[0]) split_at = int(math.floor(batch_dim * (1.0 - validation_split))) if split_at == 0 or split_at == batch_dim: raise ValueError( "Training data contains {batch_dim} samples, which is not " "sufficient to split it into a validation and training set as " "specified by `validation_split={validation_split}`. Either " "provide more data, or a different value for the " "`validation_split` argument.".format( batch_dim=batch_dim, validation_split=validation_split ) ) def _split(t, start, end): if t is None: return t return t[start:end] train_arrays = tf.nest.map_structure( functools.partial(_split, start=0, end=split_at), arrays ) val_arrays = tf.nest.map_structure( functools.partial(_split, start=split_at, end=batch_dim), arrays ) return train_arrays, val_arrays
keras-cv/keras_cv/models/object_detection/__internal__.py/0
{ "file_path": "keras-cv/keras_cv/models/object_detection/__internal__.py", "repo_id": "keras-cv", "token_count": 1721 }
24
# Copyright 2023 The KerasCV Authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import numpy as np import pytest from absl.testing import parameterized import keras_cv from keras_cv import bounding_box from keras_cv.backend import keras from keras_cv.backend import ops from keras_cv.models.backbones.test_backbone_presets import ( test_backbone_presets, ) from keras_cv.models.object_detection.__test_utils__ import ( _create_bounding_box_dataset, ) from keras_cv.models.object_detection.yolo_v8.yolo_v8_detector_presets import ( yolo_v8_detector_presets, ) from keras_cv.tests.test_case import TestCase class YOLOV8DetectorTest(TestCase): @pytest.mark.large # Fit is slow, so mark these large. def test_fit(self): bounding_box_format = "xywh" yolo = keras_cv.models.YOLOV8Detector( num_classes=2, fpn_depth=1, bounding_box_format=bounding_box_format, backbone=keras_cv.models.YOLOV8Backbone.from_preset( "yolo_v8_xs_backbone" ), ) yolo.compile( optimizer="adam", classification_loss="binary_crossentropy", box_loss="ciou", ) xs, ys = _create_bounding_box_dataset(bounding_box_format) yolo.fit(x=xs, y=ys, epochs=1) @pytest.mark.tf_keras_only @pytest.mark.large # Fit is slow, so mark these large. def test_fit_with_ragged_tensors(self): bounding_box_format = "xywh" yolo = keras_cv.models.YOLOV8Detector( num_classes=2, fpn_depth=1, bounding_box_format=bounding_box_format, backbone=keras_cv.models.YOLOV8Backbone.from_preset( "yolo_v8_xs_backbone" ), ) yolo.compile( optimizer="adam", classification_loss="binary_crossentropy", box_loss="ciou", ) xs, ys = _create_bounding_box_dataset(bounding_box_format) ys = bounding_box.to_ragged(ys) yolo.fit(x=xs, y=ys, epochs=1) @pytest.mark.large # Fit is slow, so mark these large. def test_fit_with_no_valid_gt_bbox(self): bounding_box_format = "xywh" yolo = keras_cv.models.YOLOV8Detector( num_classes=1, fpn_depth=1, bounding_box_format=bounding_box_format, backbone=keras_cv.models.YOLOV8Backbone.from_preset( "yolo_v8_xs_backbone" ), ) yolo.compile( optimizer="adam", classification_loss="binary_crossentropy", box_loss="ciou", ) xs, ys = _create_bounding_box_dataset(bounding_box_format) # Make all bounding_boxes invalid and filter out them ys["classes"] = -np.ones_like(ys["classes"]) yolo.fit(x=xs, y=ys, epochs=1) def test_trainable_weight_count(self): yolo = keras_cv.models.YOLOV8Detector( num_classes=2, fpn_depth=1, bounding_box_format="xywh", backbone=keras_cv.models.YOLOV8Backbone.from_preset( "yolo_v8_s_backbone" ), ) self.assertEqual(len(yolo.trainable_weights), 195) def test_bad_loss(self): yolo = keras_cv.models.YOLOV8Detector( num_classes=2, fpn_depth=1, bounding_box_format="xywh", backbone=keras_cv.models.YOLOV8Backbone.from_preset( "yolo_v8_xs_backbone" ), ) with self.assertRaisesRegex( ValueError, "Invalid box loss", ): yolo.compile( box_loss="bad_loss", classification_loss="binary_crossentropy" ) with self.assertRaisesRegex( ValueError, "Invalid classification loss", ): yolo.compile(box_loss="ciou", classification_loss="bad_loss") @pytest.mark.large # Saving is slow, so mark these large. def test_saved_model(self): model = keras_cv.models.YOLOV8Detector( num_classes=20, bounding_box_format="xywh", fpn_depth=1, backbone=keras_cv.models.YOLOV8Backbone.from_preset( "yolo_v8_xs_backbone" ), ) xs, _ = _create_bounding_box_dataset("xywh") model_output = model(xs) save_path = os.path.join( self.get_temp_dir(), "yolo_v8_xs_detector.keras" ) model.save(save_path) # TODO: Remove the need to pass the `custom_objects` parameter. restored_model = keras.saving.load_model( save_path, custom_objects={"YOLOV8Detector": keras_cv.models.YOLOV8Detector}, ) # Check we got the real object back. self.assertIsInstance(restored_model, keras_cv.models.YOLOV8Detector) # Check that output matches. restored_output = restored_model(xs) self.assertAllClose( ops.convert_to_numpy(model_output["boxes"]), ops.convert_to_numpy(restored_output["boxes"]), ) self.assertAllClose( ops.convert_to_numpy(model_output["classes"]), ops.convert_to_numpy(restored_output["classes"]), ) # TODO(tirthasheshpatel): Support updating prediction decoder in Keras Core. @pytest.mark.tf_keras_only def test_update_prediction_decoder(self): yolo = keras_cv.models.YOLOV8Detector( num_classes=2, fpn_depth=1, bounding_box_format="xywh", backbone=keras_cv.models.YOLOV8Backbone.from_preset( "yolo_v8_s_backbone" ), prediction_decoder=keras_cv.layers.NonMaxSuppression( bounding_box_format="xywh", from_logits=False, confidence_threshold=0.0, iou_threshold=1.0, ), ) image = np.ones((1, 512, 512, 3)) outputs = yolo.predict(image) # We predicted at least 1 box with confidence_threshold 0 self.assertGreater(outputs["boxes"].shape[0], 0) yolo.prediction_decoder = keras_cv.layers.NonMaxSuppression( bounding_box_format="xywh", from_logits=False, confidence_threshold=1.0, iou_threshold=1.0, ) outputs = yolo.predict(image) # We predicted no boxes with confidence threshold 1 self.assertAllEqual(outputs["boxes"], -np.ones_like(outputs["boxes"])) self.assertAllEqual( outputs["confidence"], -np.ones_like(outputs["confidence"]) ) self.assertAllEqual( outputs["classes"], -np.ones_like(outputs["classes"]) ) @pytest.mark.large class YOLOV8DetectorSmokeTest(TestCase): @parameterized.named_parameters( *[(preset, preset) for preset in test_backbone_presets] ) @pytest.mark.extra_large def test_backbone_preset(self, preset): model = keras_cv.models.YOLOV8Detector.from_preset( preset, num_classes=20, bounding_box_format="xywh", ) xs, _ = _create_bounding_box_dataset(bounding_box_format="xywh") output = model(xs) # 64 represents number of parameters in a box # 5376 is the number of anchors for a 512x512 image self.assertEqual(output["boxes"].shape, (xs.shape[0], 5376, 64)) def test_preset_with_forward_pass(self): model = keras_cv.models.YOLOV8Detector.from_preset( "yolo_v8_m_pascalvoc", bounding_box_format="xywh", ) image = np.ones((1, 512, 512, 3)) encoded_predictions = model(image) self.assertAllClose( ops.convert_to_numpy(encoded_predictions["boxes"][0, 0:5, 0]), [-0.8303556, 0.75213313, 1.809204, 1.6576759, 1.4134747], ) self.assertAllClose( ops.convert_to_numpy(encoded_predictions["classes"][0, 0:5, 0]), [ 7.6146556e-08, 8.0103280e-07, 9.7873999e-07, 2.2314548e-06, 2.5051115e-06, ], ) @pytest.mark.extra_large class YOLOV8DetectorPresetFullTest(TestCase): """ Test the full enumeration of our presets. This every presets for YOLOV8Detector and is only run manually. Run with: `pytest keras_cv/models/object_detection/yolo_v8/yolo_v8_detector_test.py --run_extra_large` """ # noqa: E501 def test_load_yolo_v8_detector(self): input_data = np.ones(shape=(2, 224, 224, 3)) for preset in yolo_v8_detector_presets: model = keras_cv.models.YOLOV8Detector.from_preset( preset, bounding_box_format="xywh" ) model(input_data)
keras-cv/keras_cv/models/object_detection/yolo_v8/yolo_v8_detector_test.py/0
{ "file_path": "keras-cv/keras_cv/models/object_detection/yolo_v8/yolo_v8_detector_test.py", "repo_id": "keras-cv", "token_count": 4662 }
25

Dataset Card for "unifyai-ivy.git-code-dataset"

More Information needed

Downloads last month
41