|
--- |
|
license: mit |
|
configs: |
|
- config_name: default |
|
data_files: |
|
- split: train |
|
path: data/train-* |
|
- split: val |
|
path: data/val-* |
|
- split: val_dense |
|
path: data/val_dense-* |
|
- split: val_sparse |
|
path: data/val_sparse-* |
|
dataset_info: |
|
features: |
|
- name: text |
|
dtype: string |
|
splits: |
|
- name: train |
|
num_bytes: 825600000 |
|
num_examples: 1600000 |
|
- name: val |
|
num_bytes: 8256000 |
|
num_examples: 16000 |
|
- name: val_dense |
|
num_bytes: 2064000 |
|
num_examples: 4000 |
|
- name: val_sparse |
|
num_bytes: 82560000 |
|
num_examples: 160000 |
|
download_size: 354675733 |
|
dataset_size: 918480000 |
|
--- |
|
|
|
Data for [**Flip-Flop Language Modeling**](https://arxiv.org/abs/2306.00946). The task is to correctly execute the sequential operations of a 1-bit register. The Transformer architecture, despite being apparently built for this operation, makes sporadic extrapolation errors (*attention glitches*). An open challenge is to fix these without recourse to long-tailed data or a recurrent architecture. Splits reflect the FFLM setup from the paper: |
|
- `train`: 1.6M sequences from FFL(0.8) *(256 instructions, 80% ignore, 10% read, 10% write)*. |
|
- `val`: 16K sequences from FFL(0.8). |
|
- `val_dense`: 4K sequences from FFL(0.1). |
|
- `val_sparse`: 160K sequences from FFL(0.98). |
|
|
|
Usage |
|
--- |
|
```python |
|
import torch |
|
import datasets |
|
|
|
dataset = datasets.load_dataset('synthseq/flipflop') |
|
dataset['train'][0] # {'text': 'w1i1w0i0 ... |
|
|
|
def tokenize_batch(batch): |
|
mapping = {'w': 0, 'r': 1, 'i': 2, '0': 3, '1': 4} |
|
tokenized_batch = [[mapping[char] for char in s] for s in batch['text']] |
|
return {'tokens': torch.tensor(tokenized_batch, dtype=torch.int64)} |
|
|
|
dataset.set_transform(tokenize_batch) |
|
dataset['train'][0] # {'tokens': tensor([0, 4, 2, 4, 0, 3, 2, 3, 2 ... |
|
``` |
|
|
|
Citation |
|
--- |
|
|
|
``` |
|
@article{liu2023exposing, |
|
title={Exposing Attention Glitches with Flip-Flop Language Modeling}, |
|
author={Liu, Bingbin and Ash, Jordan T and Goel, Surbhi and Krishnamurthy, Akshay and Zhang, Cyril}, |
|
journal={arXiv preprint arXiv:2306.00946}, |
|
year={2023} |
|
} |
|
``` |