File size: 9,569 Bytes
1b809e9
 
 
 
 
 
 
 
 
 
 
 
 
f8485b0
1b809e9
 
f8485b0
 
 
 
8f66669
f8485b0
1b809e9
 
 
 
 
 
 
 
 
f8485b0
1b809e9
 
 
 
f8485b0
1b809e9
f8485b0
 
1b809e9
f8485b0
 
1b809e9
f8485b0
 
1b809e9
 
f8485b0
 
 
 
 
 
 
 
 
 
 
 
b15a2e9
f8485b0
 
 
1b809e9
 
 
2d38b70
1b809e9
 
 
f8485b0
 
1b809e9
 
 
f8485b0
 
 
 
 
1b809e9
 
 
f8485b0
1b809e9
 
 
 
f8485b0
 
 
 
c370504
dbb0e77
 
 
1b809e9
 
f8485b0
1b809e9
 
 
 
 
 
 
f8485b0
 
 
 
 
 
 
 
1b809e9
 
b15a2e9
 
f8485b0
 
 
 
1b809e9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5f08d99
f8485b0
1b809e9
 
f8485b0
 
 
 
 
 
 
 
 
 
 
 
1b809e9
 
 
 
5f08d99
f8485b0
1b809e9
 
f8485b0
 
1b809e9
f8485b0
 
 
1b809e9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f8485b0
1b809e9
f8485b0
1b809e9
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
---
license:
  - cc0-1.0
language:
- en
tags:
  - sentinel-2
  - super-resolution
  - harmonization
  - synthetic
  - cross-sensor
  - temporal
pretty_name: sen2naipv2
viewer: false
---

<div style="text-align: center; border: 1px solid #ddd; border-radius: 10px; padding: 15px; max-width: 250px; margin: auto; background-color: #f9f9f9;">

  ![Dataset Image](taco.png)
  
<b><p>This dataset follows the TACO specification.</p></b>
</div>


# sen2naipv2

****A large-scale dataset for Sentinel-2 Image Super-Resolution****


The SEN2NAIPv2 dataset is an extension of [SEN2NAIP](https://huggingface.co/datasets/isp-uv-es/SEN2NAIP), 
containing 62,242 LR and HR image pairs, about 76% more images than the first version. The dataset files
are named **`sen2naipv2-unet-000{1..3}.part.taco`**. This dataset comprises synthetic RGBN NAIP bands at 2.5 and 10 meters,
degraded to corresponding Sentinel-2 images and a potential x4 factor. The degradation model to generate 
the LR pair comprises three sequential steps: (1) Gaussian blurring and bilinear downsampling, (2) reflectance
harmonization, and (3) adding noise. Reflectance harmonization is the most critical of these steps. In version
1, the harmonization model used a U-Net architecture to convert Gaussian-blurred NAIP images into 
reflectance-correct Sentinel-2-like imagery. This initial U-Net model was trained on just 2,851 same-day 
Sentinel-2 and NAIP imagery. In version 2, the U-Net model was retrained. The temporal threshold was expanded 
from one day to a 2-day range, and the search included the full Sentinel-2 archive available for the 
USA, increasing the cross-sensor dataset size to 34,640 images. The kernel degradation and noise model 
components remain consistent between the two versions.

In addition to the synthetic dataset (`sen2naipv2-unet`), three new variants are introduced in 
SEN2NAIPv2:

1. **`sen2naipv2-histmatch:`** (61282 samples) - Identical to `sen2naipv2-unet` but uses histogram matching instead of 
style transfer for reflectance harmonization using the closest Sentinel-2 image. We report the
time difference between the NAIP and Sentinel-2 images used for harmonization.

2. **`sen2naipv2-crosssensor:`** (8000 samples) – This variant of the SEN2NAIPv2 dataset is smaller than
its synthetic counterparts and includes only **real Sentinel-2**. The dataset is restricted to those captured within
**a one-day interval** between Sentinel-2 and NAIP sensors. To ensure cloud-free Sentinel-2 images, any with
cloud cover exceeding 0 \%, as determined by the [UnetMob-V2 cloud detector](https://cloudsen12.github.io/),
were excluded. The dataset reports the 2nd percentile of Pearson correlations calculated within 16x16 kernels
(see `correlation` field) between Sentinel-2 images and a Sentinel-2-like version derived from
degraded NAIP imagery. This degradation followed a process similar to the **`sen2naipv2-histmatch`**. This
metric provides insight into the quality of the match between Sentinel-2 and the low-frequency components
of NAIP. Additionally, a strict constraint was applied to the high-resolution images, using real Sentinel-2 data as
a reference to further enhance harmonization.

3. **`sen2naipv2-temporal`:** A temporal variant of the SEN2NAIPv2 dataset, where the LR are real Sentinel-2 
ages and the HR image has been normalized with the closest Sentinel-2 images using only histogram matching.
The temporal LR sequences **always** consist of 16 images, with the nearest image captured **always** within
0–10 days.


<center>
<img src='map.png' alt='drawing' width='75%'/>
<sup>
  The spatial coverage of the datasets `sen2naipv2-histmatch` and `sen2naipv2-unet` is illustrated. The low-resolution (LR) patches 
  measure 130 × 130 pixels, while the high-resolution (HR) patches measure 520 × 520 pixels. Blue stars indicate the spatial locations 
  of the cross-sensor subset.   
</sup>
</center>


## 🔄 Reproducible Example

<a target="_blank" href="https://colab.research.google.com/drive/1HpirWWZvcZlS2LU9uGc1yIzG04Cu1L33">
  <img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"/>
</a>


Load this dataset using the `tacoreader` library.

```python
import tacoreader
import rasterio as rio

print(tacoreader.__version__) # 0.4.5

# Remotely load the Cloud-Optimized Dataset 
dataset = tacoreader.load("tacofoundation:sen2naipv2-unet")
#dataset = tacoreader.load("tacofoundation:sen2naipv2-crosssensor")
#dataset = tacoreader.load("tacofoundation:sen2naipv2-histmatch")
#dataset = tacoreader.load("tacofoundation:sen2naipv2-temporal")


# Read a sample
sample_idx = 4000
lr = dataset.read(sample_idx).read(0)
hr = dataset.read(sample_idx).read(1)

# Retrieve the data
with rio.open(lr) as src, rio.open(hr) as dst:
    lr_data = src.read(window=rio.windows.Window(0, 0, 256//4, 256//4))
    hr_data = dst.read(window=rio.windows.Window(0, 0, 256, 256))

# Display
fig, ax = plt.subplots(1, 2, figsize=(10, 5))
ax[0].imshow(lr_data.transpose(1, 2, 0) / 3000)
ax[0].set_title("Low Resolution - Sentinel 2")
ax[1].imshow(hr_data.transpose(1, 2, 0) / 3000)
ax[1].set_title("High Resolution - NAIP")
plt.show()
```

**MORE EXAMPLES IN THE PREVIOUS COLAB**

<center>
<img src='https://cdn-uploads.huggingface.co/production/uploads/6402474cfa1acad600659e92/0QDq0EttQxwF6f-VCLrIo.png' alt='drawing' width='70%'/>
</center>


## 🛰️ Sensor Information


The sensor related to the dataset: **sentinel2msi**
## 🎯 Task


The task associated with this dataset: **super-resolution**
## 📂 Original Data Repository


Source location of the raw data:**[https://huggingface.co/datasets/isp-uv-es/SEN2NAIP](https://huggingface.co/datasets/isp-uv-es/SEN2NAIP)**
## 💬 Discussion


Insights or clarifications about the dataset: **[https://huggingface.co/datasets/tacofoundation/sen2naipv2/discussions](https://huggingface.co/datasets/tacofoundation/sen2naipv2/discussions)**
## 🔀 Split Strategy


How the dataset is divided for training, validation, and testing: **stratified**
## 📚 Scientific Publications


Publications that reference or describe the dataset.

### Publication 01
- **DOI**: [10.1038/s41597-024-04214-y](https://doi.org/10.1038/s41597-024-04214-y)
- **Summary**: Version 1 of the SEN2NAIPv2 dataset.
- **BibTeX Citation**:
```bibtex
@article{aybar2025sen2naipv2,
  author    = {Aybar, Cesar and Montero, David and Contreras, Julio and Donike, Simon and Kalaitzis, Freddie and Gómez-Chova, Luis},
  title     = {SEN2NAIP: A large-scale dataset for Sentinel-2 Image Super-Resolution},
  journal   = {Scientific Data},
  year      = {2024},
  volume    = {11},
  number    = {1},
  pages     = {1389},
  doi       = {10.1038/s41597-024-04214-y},
  url       = {https://doi.org/10.1038/s41597-024-04214-y},
  abstract  = {The increasing demand for high spatial resolution in remote sensing has underscored the need for super-resolution (SR) algorithms that can upscale low-resolution (LR) images to high-resolution (HR) ones. To address this, we present SEN2NAIP, a novel and extensive dataset explicitly developed to support SR model training. SEN2NAIP comprises two main components. The first is a set of 2,851 LR-HR image pairs, each covering 1.46 square kilometers. These pairs are produced using LR images from Sentinel-2 (S2) and corresponding HR images from the National Agriculture Imagery Program (NAIP). Using this cross-sensor dataset, we developed a degradation model capable of converting NAIP images to match the characteristics of S2 imagery ($S_{2-like}$). This led to the creation of a second subset, consisting of 35,314 NAIP images and their corresponding $S_{2-like}$ counterparts, generated using the degradation model. With the SEN2NAIP dataset, we aim to provide a valuable resource that facilitates the exploration of new techniques for enhancing the spatial resolution of Sentinel-2 imagery.},
  issn      = {2052-4463}
}
```

### Publication 02
- **DOI**: [10.1109/LGRS.2024.3401394](https://doi.org/10.1109/LGRS.2024.3401394)
- **Summary**: Set of tools to evaluate super-resolution models in the context of Sentinel-2 imagery.
- **BibTeX Citation**:
```bibtex
@article{aybar2024comprehensive,
  title={A Comprehensive Benchmark for Optical Remote Sensing Image Super-Resolution},
  author={Aybar, Cesar and Montero, David and Donike, Simon and Kalaitzis, Freddie and G{'o}mez-Chova, Luis},
  journal={IEEE Geoscience and Remote Sensing Letters},
  year={2024},
  publisher={IEEE}
}
```

## 🤝 Data Providers

Organizations or individuals responsible for the dataset.
|**Name**|**Role**|**URL**|
| :--- | :--- | :--- |
|Image & Signal Processing|host|[https://isp.uv.es/](https://isp.uv.es/)|
|USDA Farm Production and Conservation - Business Center, Geospatial Enterprise Operations|producer|[https://www.fpacbc.usda.gov/](https://www.fpacbc.usda.gov/)|
|European Space Agency|producer|[https://www.esa.int/](https://www.esa.int/)|

## 🧑‍🔬 Curators

Responsible for structuring the dataset in the TACO format.
|**Name**|**Organization**|**URL**|
| :--- | :--- | :--- |
|Cesar Aybar|Image & Signal Processing|[https://csaybar.github.io/](https://csaybar.github.io/)|

## 🌈 Optical Bands


Spectral bands related to the sensor.
|**Name**|**Common Name**|**Description**|**Center Wavelength**|**Full Width Half Max**|**Index**|
| :--- | :--- | :--- | :--- | :--- | :--- |
|B04|red|Band 4 - Red - 10m|664.5|29.0|0|
|B03|green|Band 3 - Green - 10m|560.0|34.0|1|
|B02|blue|Band 2 - Blue - 10m|496.5|53.0|2|
|B08|NIR|Band 8 - Near infrared - 10m|840.0|114.0|3|