Datasets:
File size: 9,569 Bytes
1b809e9 f8485b0 1b809e9 f8485b0 8f66669 f8485b0 1b809e9 f8485b0 1b809e9 f8485b0 1b809e9 f8485b0 1b809e9 f8485b0 1b809e9 f8485b0 1b809e9 f8485b0 b15a2e9 f8485b0 1b809e9 2d38b70 1b809e9 f8485b0 1b809e9 f8485b0 1b809e9 f8485b0 1b809e9 f8485b0 c370504 dbb0e77 1b809e9 f8485b0 1b809e9 f8485b0 1b809e9 b15a2e9 f8485b0 1b809e9 5f08d99 f8485b0 1b809e9 f8485b0 1b809e9 5f08d99 f8485b0 1b809e9 f8485b0 1b809e9 f8485b0 1b809e9 f8485b0 1b809e9 f8485b0 1b809e9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 |
---
license:
- cc0-1.0
language:
- en
tags:
- sentinel-2
- super-resolution
- harmonization
- synthetic
- cross-sensor
- temporal
pretty_name: sen2naipv2
viewer: false
---
<div style="text-align: center; border: 1px solid #ddd; border-radius: 10px; padding: 15px; max-width: 250px; margin: auto; background-color: #f9f9f9;">

<b><p>This dataset follows the TACO specification.</p></b>
</div>
# sen2naipv2
****A large-scale dataset for Sentinel-2 Image Super-Resolution****
The SEN2NAIPv2 dataset is an extension of [SEN2NAIP](https://huggingface.co/datasets/isp-uv-es/SEN2NAIP),
containing 62,242 LR and HR image pairs, about 76% more images than the first version. The dataset files
are named **`sen2naipv2-unet-000{1..3}.part.taco`**. This dataset comprises synthetic RGBN NAIP bands at 2.5 and 10 meters,
degraded to corresponding Sentinel-2 images and a potential x4 factor. The degradation model to generate
the LR pair comprises three sequential steps: (1) Gaussian blurring and bilinear downsampling, (2) reflectance
harmonization, and (3) adding noise. Reflectance harmonization is the most critical of these steps. In version
1, the harmonization model used a U-Net architecture to convert Gaussian-blurred NAIP images into
reflectance-correct Sentinel-2-like imagery. This initial U-Net model was trained on just 2,851 same-day
Sentinel-2 and NAIP imagery. In version 2, the U-Net model was retrained. The temporal threshold was expanded
from one day to a 2-day range, and the search included the full Sentinel-2 archive available for the
USA, increasing the cross-sensor dataset size to 34,640 images. The kernel degradation and noise model
components remain consistent between the two versions.
In addition to the synthetic dataset (`sen2naipv2-unet`), three new variants are introduced in
SEN2NAIPv2:
1. **`sen2naipv2-histmatch:`** (61282 samples) - Identical to `sen2naipv2-unet` but uses histogram matching instead of
style transfer for reflectance harmonization using the closest Sentinel-2 image. We report the
time difference between the NAIP and Sentinel-2 images used for harmonization.
2. **`sen2naipv2-crosssensor:`** (8000 samples) – This variant of the SEN2NAIPv2 dataset is smaller than
its synthetic counterparts and includes only **real Sentinel-2**. The dataset is restricted to those captured within
**a one-day interval** between Sentinel-2 and NAIP sensors. To ensure cloud-free Sentinel-2 images, any with
cloud cover exceeding 0 \%, as determined by the [UnetMob-V2 cloud detector](https://cloudsen12.github.io/),
were excluded. The dataset reports the 2nd percentile of Pearson correlations calculated within 16x16 kernels
(see `correlation` field) between Sentinel-2 images and a Sentinel-2-like version derived from
degraded NAIP imagery. This degradation followed a process similar to the **`sen2naipv2-histmatch`**. This
metric provides insight into the quality of the match between Sentinel-2 and the low-frequency components
of NAIP. Additionally, a strict constraint was applied to the high-resolution images, using real Sentinel-2 data as
a reference to further enhance harmonization.
3. **`sen2naipv2-temporal`:** A temporal variant of the SEN2NAIPv2 dataset, where the LR are real Sentinel-2
ages and the HR image has been normalized with the closest Sentinel-2 images using only histogram matching.
The temporal LR sequences **always** consist of 16 images, with the nearest image captured **always** within
0–10 days.
<center>
<img src='map.png' alt='drawing' width='75%'/>
<sup>
The spatial coverage of the datasets `sen2naipv2-histmatch` and `sen2naipv2-unet` is illustrated. The low-resolution (LR) patches
measure 130 × 130 pixels, while the high-resolution (HR) patches measure 520 × 520 pixels. Blue stars indicate the spatial locations
of the cross-sensor subset.
</sup>
</center>
## 🔄 Reproducible Example
<a target="_blank" href="https://colab.research.google.com/drive/1HpirWWZvcZlS2LU9uGc1yIzG04Cu1L33">
<img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"/>
</a>
Load this dataset using the `tacoreader` library.
```python
import tacoreader
import rasterio as rio
print(tacoreader.__version__) # 0.4.5
# Remotely load the Cloud-Optimized Dataset
dataset = tacoreader.load("tacofoundation:sen2naipv2-unet")
#dataset = tacoreader.load("tacofoundation:sen2naipv2-crosssensor")
#dataset = tacoreader.load("tacofoundation:sen2naipv2-histmatch")
#dataset = tacoreader.load("tacofoundation:sen2naipv2-temporal")
# Read a sample
sample_idx = 4000
lr = dataset.read(sample_idx).read(0)
hr = dataset.read(sample_idx).read(1)
# Retrieve the data
with rio.open(lr) as src, rio.open(hr) as dst:
lr_data = src.read(window=rio.windows.Window(0, 0, 256//4, 256//4))
hr_data = dst.read(window=rio.windows.Window(0, 0, 256, 256))
# Display
fig, ax = plt.subplots(1, 2, figsize=(10, 5))
ax[0].imshow(lr_data.transpose(1, 2, 0) / 3000)
ax[0].set_title("Low Resolution - Sentinel 2")
ax[1].imshow(hr_data.transpose(1, 2, 0) / 3000)
ax[1].set_title("High Resolution - NAIP")
plt.show()
```
**MORE EXAMPLES IN THE PREVIOUS COLAB**
<center>
<img src='https://cdn-uploads.huggingface.co/production/uploads/6402474cfa1acad600659e92/0QDq0EttQxwF6f-VCLrIo.png' alt='drawing' width='70%'/>
</center>
## 🛰️ Sensor Information
The sensor related to the dataset: **sentinel2msi**
## 🎯 Task
The task associated with this dataset: **super-resolution**
## 📂 Original Data Repository
Source location of the raw data:**[https://huggingface.co/datasets/isp-uv-es/SEN2NAIP](https://huggingface.co/datasets/isp-uv-es/SEN2NAIP)**
## 💬 Discussion
Insights or clarifications about the dataset: **[https://huggingface.co/datasets/tacofoundation/sen2naipv2/discussions](https://huggingface.co/datasets/tacofoundation/sen2naipv2/discussions)**
## 🔀 Split Strategy
How the dataset is divided for training, validation, and testing: **stratified**
## 📚 Scientific Publications
Publications that reference or describe the dataset.
### Publication 01
- **DOI**: [10.1038/s41597-024-04214-y](https://doi.org/10.1038/s41597-024-04214-y)
- **Summary**: Version 1 of the SEN2NAIPv2 dataset.
- **BibTeX Citation**:
```bibtex
@article{aybar2025sen2naipv2,
author = {Aybar, Cesar and Montero, David and Contreras, Julio and Donike, Simon and Kalaitzis, Freddie and Gómez-Chova, Luis},
title = {SEN2NAIP: A large-scale dataset for Sentinel-2 Image Super-Resolution},
journal = {Scientific Data},
year = {2024},
volume = {11},
number = {1},
pages = {1389},
doi = {10.1038/s41597-024-04214-y},
url = {https://doi.org/10.1038/s41597-024-04214-y},
abstract = {The increasing demand for high spatial resolution in remote sensing has underscored the need for super-resolution (SR) algorithms that can upscale low-resolution (LR) images to high-resolution (HR) ones. To address this, we present SEN2NAIP, a novel and extensive dataset explicitly developed to support SR model training. SEN2NAIP comprises two main components. The first is a set of 2,851 LR-HR image pairs, each covering 1.46 square kilometers. These pairs are produced using LR images from Sentinel-2 (S2) and corresponding HR images from the National Agriculture Imagery Program (NAIP). Using this cross-sensor dataset, we developed a degradation model capable of converting NAIP images to match the characteristics of S2 imagery ($S_{2-like}$). This led to the creation of a second subset, consisting of 35,314 NAIP images and their corresponding $S_{2-like}$ counterparts, generated using the degradation model. With the SEN2NAIP dataset, we aim to provide a valuable resource that facilitates the exploration of new techniques for enhancing the spatial resolution of Sentinel-2 imagery.},
issn = {2052-4463}
}
```
### Publication 02
- **DOI**: [10.1109/LGRS.2024.3401394](https://doi.org/10.1109/LGRS.2024.3401394)
- **Summary**: Set of tools to evaluate super-resolution models in the context of Sentinel-2 imagery.
- **BibTeX Citation**:
```bibtex
@article{aybar2024comprehensive,
title={A Comprehensive Benchmark for Optical Remote Sensing Image Super-Resolution},
author={Aybar, Cesar and Montero, David and Donike, Simon and Kalaitzis, Freddie and G{'o}mez-Chova, Luis},
journal={IEEE Geoscience and Remote Sensing Letters},
year={2024},
publisher={IEEE}
}
```
## 🤝 Data Providers
Organizations or individuals responsible for the dataset.
|**Name**|**Role**|**URL**|
| :--- | :--- | :--- |
|Image & Signal Processing|host|[https://isp.uv.es/](https://isp.uv.es/)|
|USDA Farm Production and Conservation - Business Center, Geospatial Enterprise Operations|producer|[https://www.fpacbc.usda.gov/](https://www.fpacbc.usda.gov/)|
|European Space Agency|producer|[https://www.esa.int/](https://www.esa.int/)|
## 🧑🔬 Curators
Responsible for structuring the dataset in the TACO format.
|**Name**|**Organization**|**URL**|
| :--- | :--- | :--- |
|Cesar Aybar|Image & Signal Processing|[https://csaybar.github.io/](https://csaybar.github.io/)|
## 🌈 Optical Bands
Spectral bands related to the sensor.
|**Name**|**Common Name**|**Description**|**Center Wavelength**|**Full Width Half Max**|**Index**|
| :--- | :--- | :--- | :--- | :--- | :--- |
|B04|red|Band 4 - Red - 10m|664.5|29.0|0|
|B03|green|Band 3 - Green - 10m|560.0|34.0|1|
|B02|blue|Band 2 - Blue - 10m|496.5|53.0|2|
|B08|NIR|Band 8 - Near infrared - 10m|840.0|114.0|3|
|