path
stringlengths
7
265
concatenated_notebook
stringlengths
46
17M
ParticleModel.ipynb
###Markdown Simplified one-dimensional oil spill modelThis notebook implements the model used in the paper "On the use of random walk schemes in oil spill modelling". Executing all the cells in the notebook in order will reproduce the figures from the paper, although with fewer particles and longer timestep. Adjust the numerical parameters as desired.All citations in the notebook refer to entries in the list of references in the paper.This model uses an implementation with variable size arrays to hold the depth and droplet diameter of the submerged particles. The maximum number of particles is $N_p$, so this is the maximum length of the arrays. Surfaced particles are removed, making the arrays shorter. Re-submerged particles are added, making the arrays longer. FunctionsThe cell below contains the functions needed to build a simple random walk model for vertical diffusion, with consistent implementation of the random walk steplength. The functions are all written so they can be called on an entire array of particle positions (depths) at once. ###Code ############################ #### Physical constants #### ############################ PhysicalConstants = namedtuple('PhysicalConstants', ('g', 'rho_w', 'nu')) CONST = PhysicalConstants(g=9.81, # Acceleration due to gravity (m/s**2) rho_w=1025, # Density of sea water (kg/m**3) nu=1.358e-6, # Kinematic viscosity of sea water (m**2/s) ) ############################### #### Numerical derivatives #### ############################### def ddz(K, z, t): ''' Numerical derivative of K(z, t). This function calculates a numerical partial derivative of K(z, t), with respect to z using forward finite difference. K: diffusivity as a function of depth (m**2/s) z: current particle depth (m) t: current time (s) ''' dz = 1e-6 return (K(z+dz, t) - K(z, t)) / dz ############################# #### Random walk schemes #### ############################# def naivestep(K, z, t, dt): ''' Solving the naïve equation with the Euler-Maruyama scheme: dz = sqrt(2K(z,t))*dW See Visser (1997) and Gräwe (2011) for details. K: diffusivity as a function of depth (m**2/s) z: current particle depth (m) t: current time (s) dt: timestep (s) ''' dW = np.random.normal(loc = 0, scale = np.sqrt(dt), size = z.size) return z + np.sqrt(2*K(z, t))*dW def correctstep(K, z, t, dt): ''' Solving the corrected equation with the Euler-Maruyama scheme: dz = K'(z, t)*dt + sqrt(2K(z,t))*dW See Visser (1997) and Gräwe (2011) for details. K: diffusivity as a function of depth (m**2/s) z: current particle depth (m) t: current time (s) dt: timestep (s) ''' dW = np.random.normal(loc = 0, scale = np.sqrt(dt), size = z.size) dKdz = ddz(K, z, t) return z + dKdz*dt + np.sqrt(2*K(z, t))*dW #################### #### Rise speed #### #################### def rise_speed(d, rho): ''' Calculate the rise speed (m/s) of a droplet due to buoyancy. This scheme uses Stokes' law at small Reynolds numbers, with a harmonic transition to a constant drag coefficient at high Reynolds numbers. See Johansen (2000), Eq. (14) for details. d: droplet diameter (m) rho: droplet density (kg/m**3) ''' # Physical constants pref = 1.054 # Numerical prefactor nu = CONST.nu # Kinematic viscosity of seawater (m**2/s) rho_w = CONST.rho_w # Density of seawater (kg/m**3) g = CONST.g # Acceleration of gravity (m/s**2) g_ = g*(rho_w - rho) / rho_w if g_ == 0.0: return 0.0*d else: w1 = d**2 * g_ / (18*nu) w2 = np.sqrt(d*abs(g_)) * pref * (g_/np.abs(g_)) # Last bracket sets sign return w1*w2/(w1+w2) ########################### #### Utility functions #### ########################### def advect(z, dt, d, rho): ''' Return the rise in meters due to buoyancy, assuming constant speed (at least within a timestep). z: current droplet depth (m) dt: timestep (s) d: droplet diameter (m) rho: droplet density (kg/m**3) ''' return z - dt*rise_speed(d, rho) def reflect(z): ''' Reflect from surface. Depth is positive downwards. z: current droplet depth (m) ''' # Reflect from surface z = np.abs(z) return z def surface(z, d): ''' Remove surfaced elements. This method shortens the array by removing surfaced particles. z: current droplet depth (m) d: droplet diameter (m) ''' mask = z >= 0.0 return z[mask], d[mask] ################################ #### Wave-related functions #### ################################ def waveperiod(windspeed, fetch): ''' Calculate the peak wave period (s) Based on the JONSWAP model and associated empirical relations. See Carter (1982) for details windspeed: windspeed (m/s) fetch: fetch (m) ''' # Avoid division by zero if windspeed > 0: # Constants for the JONSWAP model: g = CONST.g # Acceleration of gravity t_const = 0.286 # Nondimensional period constant. t_max = 8.134 # Nondimensional period maximum. # Calculate wave period t_nodim = t_const * (g * fetch / windspeed**2)**(1./3.) waveperiod = np.minimum(t_max, t_nodim) * windspeed / g else: waveperiod = 1.0 return waveperiod def waveheight(windspeed, fetch): ''' Calculate the significant wave height (m) Based on the JONSWAP model and associated empirical relations. See Carter (1982) for details windspeed: windspeed (m/s) fetch: fetch (m) ''' # Avoid division by zero if windspeed > 0: # Constants for the JONSWAP model: g = CONST.g # Acceleration of gravity h_max = 0.243 # Nondimensional height maximum. h_const = 0.0016 # Nondimensional height constant. # Calculate wave height h_nodim = h_const * np.sqrt(g * fetch / windspeed**2) waveheight = np.minimum(h_max, h_nodim) * windspeed**2 / g else: waveheight = 0.0 return waveheight def jonswap(windspeed, fetch = 170000): ''' Calculate wave height and wave period, from wind speed and fetch length. A large default fetch means assuming fully developed sea (i.e., not fetch-limited). See Carter (1982) for details. windspeed: windspeed (m/s) fetch: fetch length (m) ''' Hs = waveheight(windspeed, fetch) Tp = waveperiod(windspeed, fetch) return Hs, Tp def Fbw(windspeed, Tp): ''' Fraction of breaking waves per second. See Holthuijsen and Herbers (1986) and Delvigne and Sweeney (1988) for details. windspeed: windspeed (m/s) Tp: wave period (s) ''' if windspeed > 5: return 0.032 * (windspeed - 5)/Tp else: return 0 ####################################### #### Entrainment related functions #### ####################################### def entrainmentrate(windspeed, Tp, Hs, rho, ift): ''' Entrainment rate (s**-1). See Li et al. (2017) for details. windspeed: windspeed (m/s) Tp: wave period (s) Hs: wave height (m) rho: density of oil (kg/m**3) ift: oil-water interfacial tension (N/m) ''' # Physical constants g = CONST.g # Acceleration of gravity (m/s**2) rho_w = CONST.rho_w # Density of seawater (kg/m**3) # Model parameters (empirical constants from Li et al. (2017)) a = 4.604 * 1e-10 b = 1.805 c = -1.023 # Rayleigh-Taylor instability maximum diameter: d0 = 4 * np.sqrt(ift / ((rho_w - rho)*g)) # Ohnesorge number Oh = mu / np.sqrt(rho * ift * d0) # Weber number We = d0 * rho_w * g * Hs / ift return a * (We**b) * (Oh**c) * Fbw(windspeed, Tp) def weber_natural_dispersion(rho, mu, ift, Hs, h): ''' Weber natural dispersion model. Predicts median droplet size D50 (m). Johansen, 2015. rho: oil density (kg/m**3) mu: dynamic viscosity of oil (kg/m/s) ift: oil-water interfacial tension (N/m, kg/s**2) Hs: free-fall height or wave amplitude (m) h: oil film thickness (m) ''' # Physical parameters g = 9.81 # Acceleration of gravity (m/s**2) # Model parameters from Johansen 2015 (fitted to experiment) A = 2.251 Bm = 0.027 a = 0.6 # Velocity scale U = np.sqrt(2*g*Hs) # Calculate relevant dimensionless numbers for given parameters We = rho * U**2 * h / ift # Note that Vi = We/Re Vi = mu * U / ift # Calculate D, characteristic (median) droplet size predicted by WMD model WeMod = We / (1 + Bm * Vi**a)**(1/a) D50n = h * A / WeMod**a return D50n def entrain(z, d, dt, windspeed, h, mu, rho, ift): ''' Entrainment of droplets. This function calculates the number of particles to submerged, finds new depths and droplet sizes for those particles, and appends these to the input arrays of depth and droplet size for the currently submerged particles. Number of particles to entrain is found from the entrainment rate due to Li et al. (2017), intrusion depth is calculated according to Delvigne and Sveeney (1988) and the droplet size distribution from the weber natural dispersion model (Johansen 2015). z: current array of particle depths (m) d: current array of droplet diameters (m) dt: timestep (s) windspeed: windspeed (m/s) h: oil film thickness (m) mu: dynamic viscosity of oil (kg/m/s) rho: oil density (kg/m**3) ift: oil-water interfacial tension (N/m) returns: z: array of particle depths with newly entrained particles appended d: array of droplet diameters with newly entrained particles appended ''' # Significant wave height and peak wave period Hs, Tp = jonswap(windspeed) # Calculate lifetime from entrainment rate tau = 1/entrainmentrate(windspeed, Tp, Hs, rho, ift) # Probability for a droplet to be entrained p = 1 - np.exp(-dt/tau) R = np.random.random(Np - len(z)) # Number of entrained droplets N = np.sum(R < p) # According to Delvigne & Sweeney (1988), droplets are distributed # in the interval (1.5 - 0.35)*Hs to (1.5 + 0.35)*Hs znew = np.random.uniform(low = Hs*(1.5-0.35), high = Hs*(1.5+0.35), size = N) # Assign new sizes from Johansen distribution sigma = 0.4 * np.log(10) D50n = weber_natural_dispersion(rho, mu, ift, Hs, h) D50v = np.exp(np.log(D50n) + 3*sigma**2) dnew = np.random.lognormal(mean = np.log(D50v), sigma = sigma, size = N) # Append newly entrained droplets to existing arrays z = np.concatenate((z, znew)) d = np.concatenate((d, dnew)) return z, d ########################################### #### Main function to run a simulation #### ########################################### def experiment(Z0, D0, Np, Tmax, dt, bins, K, windspeed, h0, mu, ift, rho, randomstep): ''' Run the model. Returns the number of submerged particles, the histograms (concentration profile), the depth and diameters of the particles. Z0: initial depth of particles (m) D0: initial diameter of particles (m) Np: Maximum number of particles Tmax: total duration of the simulation (s) dt: timestep (s) bins: bins for histograms (concentration profiles) K: diffusivity-function on form K(z, t) windspeed: windspeed (m/s) h0: initial oil film thickness (m) mu: dynamic viscosity of oil (kg/m/s) ift: interfacial tension (N/m) rho: oil density (kg/m**3) randomstep: random walk scheme ''' # Number of timesteps Nt = int(Tmax / dt) # Arrays for z-position (depth) and droplet size Z = Z0.copy() D = D0.copy() # Array to store submerged particle counts C = np.zeros(Nt) # Array to store histograms (concentration profiles) H = np.zeros((Nt, len(bins)-1)) # Time loop t = 0 for i in range(Nt): # Count remaining submerged particles C[i] = len(Z) # Store histogram H[i,:] = np.histogram(Z, bins)[0] # Random displacement Z = randomstep(K, Z, t, dt) # Reflect from surface Z = reflect(Z) # Rise due to buoyancy Z = advect(Z, dt, D, rho) # Remove surfaced (applies to both depth and size arrays) Z, D = surface(Z, D) # Calculate oil film thickness h = h0 * (Np - len(Z)) / Np # Entrain Z, D = entrain(Z, D, dt, windspeed, h, mu, rho, ift) # Increment time t = dt*i return C, H, Z, D ###Output _____no_output_____ ###Markdown Common parametersThe number of particles and the timestep can be adjusted by the user, but these modifications will modify the time required for the simulation. ###Code ############################## #### Numerical parameters #### ############################## # Number of particles Np = 10000 # Total duration of the simulation in seconds Tmax = 6*3600 # timestep in seconds dt = 10 # Bins for histograms (concentration profiles) bins = np.linspace(0, 50, 101) ############################# #### Scenario parameters #### ############################# # Oil parameters ## Dynamic viscosity of oil (kg/m/s) mu = 1.51 ## Interfacial tension (N/m) ift = 0.013 ## Oil density (kg/m**3) rho = 992 ## Intial oil film thickness (m) h0 = 3e-3 # Environmental parameter ## Windspeed (m/s) windspeed = 9 # Initial array of particle positions and droplet sizes # Empty arrays means all particles start at surface Z0 = np.array([]) D0 = np.array([]) ############################## #### Diffusivity profiles #### ############################## # Wave parameters (used to construct profile A) Hs, Tp = jonswap(windspeed) def K_A(z, t): '''Create diffusivity-function on form K(z, t). Commonly used parameterization of diffusivity which is due to Ichiye (1967). ''' g = 9.81 gamma = 2 * 4 * np.pi**2 / (g * Tp**2) eta0 = 0.028 * Hs**2/Tp return eta0 * np.exp(-gamma * z) # Analytical function which has been fitted to # simulation results from the GOTM turbulence model # with a wind stress corresponding to wind speed of about 9 m/s. # (see GOTM input files in separate folder, and PlotProfileB.ipynb) a, b, c, z0 = (0.00636, 0.088, 1.54, 1.3) K_B = lambda z, t: a*(z+z0)*np.exp(-(b*(z+z0))**c) ###Output _____no_output_____ ###Markdown Plot the two diffusivity profiles used ###Code zc = np.linspace(0, 50, 1000) fig = plt.figure(figsize = (9, 6)) # Plot diffusivity profiles plt.plot(K_A(zc, 0), zc, label = 'Profile A', c='k') plt.plot(K_B(zc, 0), zc, label = 'Profile B', c='k', ls='--') # Plot entrainment depth plt.plot([-1, 1], [(1.5-0.35)*Hs, (1.5-0.35)*Hs], c='k', ls=':', label='Entrainment depth') plt.plot([-1, 1], [(1.5+0.35)*Hs, (1.5+0.35)*Hs], c='k', ls=':') plt.ylabel('Depth [m]') plt.xlabel('Diffusivity [$m^2$/s]') # Limit the horizontal axis plt.xlim(-0.001, 0.031) # Flip the vertical axis plt.ylim(50, 0) plt.legend(fontsize = 12) plt.tight_layout() ###Output _____no_output_____ ###Markdown Model surfacing and entrainment ###Code # Profile A, naïve scheme CnA, HnA, ZnA, DnA = experiment(Z0, D0, Np, Tmax, dt, bins, K_A, windspeed, h0, mu, ift, rho, naivestep) # Profile A, corrected scheme CeA, HeA, ZeA, DeA = experiment(Z0, D0, Np, Tmax, dt, bins, K_A, windspeed, h0, mu, ift, rho, correctstep) # Profile B, naïve scheme CnB, HnB, ZnB, DnB = experiment(Z0, D0, Np, Tmax, dt, bins, K_B, windspeed, h0, mu, ift, rho, naivestep) # Profile B, corrected scheme CeB, HeB, ZeB, DeB = experiment(Z0, D0, Np, Tmax, dt, bins, K_B, windspeed, h0, mu, ift, rho, correctstep) ###Output _____no_output_____ ###Markdown Plot surfaced fraction as function of time ###Code fig = plt.figure(figsize = (9,6)) times = np.arange(0, Tmax, dt) # Plot surfaced as function of time in hours plt.plot(times/3600, 1-CnA/Np, c = '#348ABD', label = 'Profile A, Naïve') plt.plot(times/3600, 1-CeA/Np, c = '#A60628', label = 'Profile A, Corrected') plt.plot(times/3600, 1-CnB/Np, '--', c = '#348ABD', label = 'Profile B, Naïve') plt.plot(times/3600, 1-CeB/Np, '--', c = '#A60628', label = 'Profile B, Corrected') plt.xlim(0, Tmax/3600) plt.ylim(0, 1) plt.ylabel('Surfaced fraction') plt.xlabel('Time [h]') plt.legend(fontsize = 12) plt.tight_layout() #plt.savefig('surfaced_timeseries.pdf') ###Output _____no_output_____ ###Markdown Plot (time-averaged) concentration profiles ###Code fig = plt.figure(figsize = (9,6)) # Calculate average over last 3600 seconds # Change to Navg = 1 to get snapshot at last timestep Navg = int(3600 / dt) # Find midpoints of bins for plotting dz = bins[1]-bins[0] midpoints = bins[:-1] + dz/2 # Plot concentration profiles, normalised such that # the integral of the profile is 1 if everything is submerged plt.plot(np.mean(HnA[-Navg:,:], axis = 0)/(dz*Np), midpoints, c = '#348ABD', label = 'Profile A, Naïve') plt.plot(np.mean(HeA[-Navg:,:], axis = 0)/(dz*Np), midpoints, c = '#A60628', label = 'Profile A, Corrected') plt.plot(np.mean(HnB[-Navg:,:], axis = 0)/(dz*Np), midpoints, '--', c = '#348ABD', label = 'Profile B, Naïve') plt.plot(np.mean(HeB[-Navg:,:], axis = 0)/(dz*Np), midpoints, '--', c = '#A60628', label = 'Profile B, Corrected') # Flip the vertical axis plt.ylim(50, 0) plt.ylabel('Depth [m]') plt.xlabel('Concentration [m$^{-1}$]') plt.legend(fontsize = 12) plt.tight_layout() #plt.savefig('concentration_profiles.pdf') ###Output _____no_output_____
Deep Learning Specialization/Trigger_word_detection_v1a.ipynb
###Markdown Trigger Word DetectionWelcome to the final programming assignment of this specialization! In this week's videos, you learned about applying deep learning to speech recognition. In this assignment, you will construct a speech dataset and implement an algorithm for trigger word detection (sometimes also called keyword detection, or wake word detection). * Trigger word detection is the technology that allows devices like Amazon Alexa, Google Home, Apple Siri, and Baidu DuerOS to wake up upon hearing a certain word. * For this exercise, our trigger word will be "Activate." Every time it hears you say "activate," it will make a "chiming" sound. * By the end of this assignment, you will be able to record a clip of yourself talking, and have the algorithm trigger a chime when it detects you saying "activate." * After completing this assignment, perhaps you can also extend it to run on your laptop so that every time you say "activate" it starts up your favorite app, or turns on a network connected lamp in your house, or triggers some other event? In this assignment you will learn to: - Structure a speech recognition project- Synthesize and process audio recordings to create train/dev datasets- Train a trigger word detection model and make predictions Updates If you were working on the notebook before this update...* The current notebook is version "1a".* You can find your original work saved in the notebook with the previous version name ("v1") * To view the file directory, go to the menu "File->Open", and this will open a new tab that shows the file directory. List of updates* 2.1: build the model * Added sample code to show how to use the Keras layers. * Lets student to implement the `TimeDistributed` code.* Spelling, grammar and wording corrections. Let's get started! Run the following cell to load the package you are going to use. ###Code import numpy as np from pydub import AudioSegment import random import sys import io import os import glob import IPython from td_utils import * %matplotlib inline ###Output _____no_output_____ ###Markdown 1 - Data synthesis: Creating a speech dataset Let's start by building a dataset for your trigger word detection algorithm. * A speech dataset should ideally be as close as possible to the application you will want to run it on. * In this case, you'd like to detect the word "activate" in working environments (library, home, offices, open-spaces ...). * Therefore, you need to create recordings with a mix of positive words ("activate") and negative words (random words other than activate) on different background sounds. Let's see how you can create such a dataset. 1.1 - Listening to the data * One of your friends is helping you out on this project, and they've gone to libraries, cafes, restaurants, homes and offices all around the region to record background noises, as well as snippets of audio of people saying positive/negative words. This dataset includes people speaking in a variety of accents. * In the raw_data directory, you can find a subset of the raw audio files of the positive words, negative words, and background noise. You will use these audio files to synthesize a dataset to train the model. * The "activate" directory contains positive examples of people saying the word "activate". * The "negatives" directory contains negative examples of people saying random words other than "activate". * There is one word per audio recording. * The "backgrounds" directory contains 10 second clips of background noise in different environments.Run the cells below to listen to some examples. ###Code IPython.display.Audio("./raw_data/activates/1.wav") IPython.display.Audio("./raw_data/negatives/4.wav") IPython.display.Audio("./raw_data/backgrounds/1.wav") ###Output _____no_output_____ ###Markdown You will use these three types of recordings (positives/negatives/backgrounds) to create a labeled dataset. 1.2 - From audio recordings to spectrogramsWhat really is an audio recording? * A microphone records little variations in air pressure over time, and it is these little variations in air pressure that your ear also perceives as sound. * You can think of an audio recording is a long list of numbers measuring the little air pressure changes detected by the microphone. * We will use audio sampled at 44100 Hz (or 44100 Hertz). * This means the microphone gives us 44,100 numbers per second. * Thus, a 10 second audio clip is represented by 441,000 numbers (= $10 \times 44,100$). Spectrogram* It is quite difficult to figure out from this "raw" representation of audio whether the word "activate" was said. * In order to help your sequence model more easily learn to detect trigger words, we will compute a *spectrogram* of the audio. * The spectrogram tells us how much different frequencies are present in an audio clip at any moment in time. * If you've ever taken an advanced class on signal processing or on Fourier transforms: * A spectrogram is computed by sliding a window over the raw audio signal, and calculating the most active frequencies in each window using a Fourier transform. * If you don't understand the previous sentence, don't worry about it.Let's look at an example. ###Code IPython.display.Audio("audio_examples/example_train.wav") x = graph_spectrogram("audio_examples/example_train.wav") ###Output _____no_output_____ ###Markdown The graph above represents how active each frequency is (y axis) over a number of time-steps (x axis). **Figure 1**: Spectrogram of an audio recording * The color in the spectrogram shows the degree to which different frequencies are present (loud) in the audio at different points in time. * Green means a certain frequency is more active or more present in the audio clip (louder).* Blue squares denote less active frequencies.* The dimension of the output spectrogram depends upon the hyperparameters of the spectrogram software and the length of the input. * In this notebook, we will be working with 10 second audio clips as the "standard length" for our training examples. * The number of timesteps of the spectrogram will be 5511. * You'll see later that the spectrogram will be the input $x$ into the network, and so $T_x = 5511$. ###Code _, data = wavfile.read("audio_examples/example_train.wav") print("Time steps in audio recording before spectrogram", data[:,0].shape) print("Time steps in input after spectrogram", x.shape) ###Output _____no_output_____ ###Markdown Now, you can define: ###Code Tx = 5511 # The number of time steps input to the model from the spectrogram n_freq = 101 # Number of frequencies input to the model at each time step of the spectrogram ###Output _____no_output_____ ###Markdown Dividing into time-intervalsNote that we may divide a 10 second interval of time with different units (steps).* Raw audio divides 10 seconds into 441,000 units.* A spectrogram divides 10 seconds into 5,511 units. * $T_x = 5511$* You will use a Python module `pydub` to synthesize audio, and it divides 10 seconds into 10,000 units.* The output of our model will divide 10 seconds into 1,375 units. * $T_y = 1375$ * For each of the 1375 time steps, the model predicts whether someone recently finished saying the trigger word "activate." * All of these are hyperparameters and can be changed (except the 441000, which is a function of the microphone). * We have chosen values that are within the standard range used for speech systems. ###Code Ty = 1375 # The number of time steps in the output of our model ###Output _____no_output_____ ###Markdown 1.3 - Generating a single training example Benefits of synthesizing dataBecause speech data is hard to acquire and label, you will synthesize your training data using the audio clips of activates, negatives, and backgrounds. * It is quite slow to record lots of 10 second audio clips with random "activates" in it. * Instead, it is easier to record lots of positives and negative words, and record background noise separately (or download background noise from free online sources). Process for Synthesizing an audio clip* To synthesize a single training example, you will: - Pick a random 10 second background audio clip - Randomly insert 0-4 audio clips of "activate" into this 10sec clip - Randomly insert 0-2 audio clips of negative words into this 10sec clip* Because you had synthesized the word "activate" into the background clip, you know exactly when in the 10 second clip the "activate" makes its appearance. * You'll see later that this makes it easier to generate the labels $y^{\langle t \rangle}$ as well. Pydub* You will use the pydub package to manipulate audio. * Pydub converts raw audio files into lists of Pydub data structures. * Don't worry about the details of the data structures.* Pydub uses 1ms as the discretization interval (1ms is 1 millisecond = 1/1000 seconds). * This is why a 10 second clip is always represented using 10,000 steps. ###Code # Load audio segments using pydub activates, negatives, backgrounds = load_raw_audio() print("background len should be 10,000, since it is a 10 sec clip\n" + str(len(backgrounds[0])),"\n") print("activate[0] len may be around 1000, since an `activate` audio clip is usually around 1 second (but varies a lot) \n" + str(len(activates[0])),"\n") print("activate[1] len: different `activate` clips can have different lengths\n" + str(len(activates[1])),"\n") ###Output _____no_output_____ ###Markdown Overlaying positive/negative 'word' audio clips on top of the background audio* Given a 10 second background clip and a short audio clip containing a positive or negative word, you need to be able to "add" the word audio clip on top of the background audio.* You will be inserting multiple clips of positive/negative words into the background, and you don't want to insert an "activate" or a random word somewhere that overlaps with another clip you had previously added. * To ensure that the 'word' audio segments do not overlap when inserted, you will keep track of the times of previously inserted audio clips. * To be clear, when you insert a 1 second "activate" onto a 10 second clip of cafe noise, **you do not end up with an 11 sec clip.** * The resulting audio clip is still 10 seconds long. * You'll see later how pydub allows you to do this. Label the positive/negative words* Recall that the labels $y^{\langle t \rangle}$ represent whether or not someone has just finished saying "activate." * $y^{\langle t \rangle} = 1$ when that that clip has finished saying "activate". * Given a background clip, we can initialize $y^{\langle t \rangle}=0$ for all $t$, since the clip doesn't contain any "activates." * When you insert or overlay an "activate" clip, you will also update labels for $y^{\langle t \rangle}$. * Rather than updating the label of a single time step, we will update 50 steps of the output to have target label 1. * Recall from the lecture on trigger word detection that updating several consecutive time steps can make the training data more balanced.* You will train a GRU (Gated Recurrent Unit) to detect when someone has **finished** saying "activate". Example* Suppose the synthesized "activate" clip ends at the 5 second mark in the 10 second audio - exactly halfway into the clip. * Recall that $T_y = 1375$, so timestep $687 = $ `int(1375*0.5)` corresponds to the moment 5 seconds into the audio clip. * Set $y^{\langle 688 \rangle} = 1$. * We will allow the GRU to detect "activate" anywhere within a short time-internal **after** this moment, so we actually **set 50 consecutive values** of the label $y^{\langle t \rangle}$ to 1. * Specifically, we have $y^{\langle 688 \rangle} = y^{\langle 689 \rangle} = \cdots = y^{\langle 737 \rangle} = 1$. Synthesized data is easier to label* This is another reason for synthesizing the training data: It's relatively straightforward to generate these labels $y^{\langle t \rangle}$ as described above. * In contrast, if you have 10sec of audio recorded on a microphone, it's quite time consuming for a person to listen to it and mark manually exactly when "activate" finished. Visualizing the labels* Here's a figure illustrating the labels $y^{\langle t \rangle}$ in a clip. * We have inserted "activate", "innocent", activate", "baby." * Note that the positive labels "1" are associated only with the positive words. **Figure 2** Helper functionsTo implement the training set synthesis process, you will use the following helper functions. * All of these functions will use a 1ms discretization interval* The 10 seconds of audio is always discretized into 10,000 steps. 1. `get_random_time_segment(segment_ms)` * Retrieves a random time segment from the background audio.2. `is_overlapping(segment_time, existing_segments)` * Checks if a time segment overlaps with existing segments3. `insert_audio_clip(background, audio_clip, existing_times)` * Inserts an audio segment at a random time in the background audio * Uses the functions `get_random_time_segment` and `is_overlapping`4. `insert_ones(y, segment_end_ms)` * Inserts additional 1's into the label vector y after the word "activate" Get a random time segment* The function `get_random_time_segment(segment_ms)` returns a random time segment onto which we can insert an audio clip of duration `segment_ms`. * Please read through the code to make sure you understand what it is doing. ###Code def get_random_time_segment(segment_ms): """ Gets a random time segment of duration segment_ms in a 10,000 ms audio clip. Arguments: segment_ms -- the duration of the audio clip in ms ("ms" stands for "milliseconds") Returns: segment_time -- a tuple of (segment_start, segment_end) in ms """ segment_start = np.random.randint(low=0, high=10000-segment_ms) # Make sure segment doesn't run past the 10sec background segment_end = segment_start + segment_ms - 1 return (segment_start, segment_end) ###Output _____no_output_____ ###Markdown Check if audio clips are overlapping* Suppose you have inserted audio clips at segments (1000,1800) and (3400,4500). * The first segment starts at step 1000 and ends at step 1800. * The second segment starts at 3400 and ends at 4500.* If we are considering whether to insert a new audio clip at (3000,3600) does this overlap with one of the previously inserted segments? * In this case, (3000,3600) and (3400,4500) overlap, so we should decide against inserting a clip here.* For the purpose of this function, define (100,200) and (200,250) to be overlapping, since they overlap at timestep 200. * (100,199) and (200,250) are non-overlapping. **Exercise**: * Implement `is_overlapping(segment_time, existing_segments)` to check if a new time segment overlaps with any of the previous segments. * You will need to carry out 2 steps:1. Create a "False" flag, that you will later set to "True" if you find that there is an overlap.2. Loop over the previous_segments' start and end times. Compare these times to the segment's start and end times. If there is an overlap, set the flag defined in (1) as True. You can use:```pythonfor ....: if ... = ...: ...```Hint: There is overlap if:* The new segment starts before the previous segment ends **and*** The new segment ends after the previous segment starts. ###Code # GRADED FUNCTION: is_overlapping def is_overlapping(segment_time, previous_segments): """ Checks if the time of a segment overlaps with the times of existing segments. Arguments: segment_time -- a tuple of (segment_start, segment_end) for the new segment previous_segments -- a list of tuples of (segment_start, segment_end) for the existing segments Returns: True if the time segment overlaps with any of the existing segments, False otherwise """ segment_start, segment_end = segment_time ### START CODE HERE ### (≈ 4 lines) # Step 1: Initialize overlap as a "False" flag. (≈ 1 line) overlap = False # Step 2: loop over the previous_segments start and end times. # Compare start/end times and set the flag to True if there is an overlap (≈ 3 lines) for previous_start, previous_end in previous_segments: # print(previous_start, segment_start, previous_end) # print(previous_start, segment_end, previous_end) if ( (previous_start <= segment_start <= previous_end) or (previous_start <= segment_end <= previous_end) ): overlap = True break ### END CODE HERE ### return overlap overlap1 = is_overlapping((950, 1430), [(2000, 2550), (260, 949)]) overlap2 = is_overlapping((2305, 2950), [(824, 1532), (1900, 2305), (3424, 3656)]) print("Overlap 1 = ", overlap1) print("Overlap 2 = ", overlap2) ###Output _____no_output_____ ###Markdown **Expected Output**: **Overlap 1** False **Overlap 2** True Insert audio clip* Let's use the previous helper functions to insert a new audio clip onto the 10 second background at a random time.* We will ensure that any newly inserted segment doesn't overlap with previously inserted segments. **Exercise**:* Implement `insert_audio_clip()` to overlay an audio clip onto the background 10sec clip. * You implement 4 steps:1. Get the length of the audio clip that is to be inserted. * Get a random time segment whose duration equals the duration of the audio clip that is to be inserted.2. Make sure that the time segment does not overlap with any of the previous time segments. * If it is overlapping, then go back to step 1 and pick a new time segment.3. Append the new time segment to the list of existing time segments * This keeps track of all the segments you've inserted. 4. Overlay the audio clip over the background using pydub. We have implemented this for you. ###Code # GRADED FUNCTION: insert_audio_clip def insert_audio_clip(background, audio_clip, previous_segments): """ Insert a new audio segment over the background noise at a random time step, ensuring that the audio segment does not overlap with existing segments. Arguments: background -- a 10 second background audio recording. audio_clip -- the audio clip to be inserted/overlaid. previous_segments -- times where audio segments have already been placed Returns: new_background -- the updated background audio """ # Get the duration of the audio clip in ms segment_ms = len(audio_clip) ### START CODE HERE ### # Step 1: Use one of the helper functions to pick a random time segment onto which to insert # the new audio clip. (≈ 1 line) segment_time = get_random_time_segment(segment_ms) # Step 2: Check if the new segment_time overlaps with one of the previous_segments. If so, keep # picking new segment_time at random until it doesn't overlap. (≈ 2 lines) while is_overlapping(segment_time, previous_segments): segment_time = get_random_time_segment(segment_ms) # Step 3: Append the new segment_time to the list of previous_segments (≈ 1 line) previous_segments.append( segment_time ) ### END CODE HERE ### # Step 4: Superpose audio segment and background new_background = background.overlay(audio_clip, position = segment_time[0]) return new_background, segment_time np.random.seed(5) audio_clip, segment_time = insert_audio_clip(backgrounds[0], activates[0], [(3790, 4400)]) audio_clip.export("insert_test.wav", format="wav") print("Segment Time: ", segment_time) IPython.display.Audio("insert_test.wav") ###Output _____no_output_____ ###Markdown **Expected Output** **Segment Time** (2254, 3169) ###Code # Expected audio IPython.display.Audio("audio_examples/insert_reference.wav") ###Output _____no_output_____ ###Markdown Insert ones for the labels of the positive target* Implement code to update the labels $y^{\langle t \rangle}$, assuming you just inserted an "activate" audio clip.* In the code below, `y` is a `(1,1375)` dimensional vector, since $T_y = 1375$. * If the "activate" audio clip ends at time step $t$, then set $y^{\langle t+1 \rangle} = 1$ and also set the next 49 additional consecutive values to 1. * Notice that if the target word appears near the end of the entire audio clip, there may not be 50 additional time steps to set to 1. * Make sure you don't run off the end of the array and try to update `y[0][1375]`, since the valid indices are `y[0][0]` through `y[0][1374]` because $T_y = 1375$. * So if "activate" ends at step 1370, you would get only set `y[0][1371] = y[0][1372] = y[0][1373] = y[0][1374] = 1`**Exercise**: Implement `insert_ones()`. * You can use a for loop. * If you want to use Python's array slicing operations, you can do so as well.* If a segment ends at `segment_end_ms` (using a 10000 step discretization), * To convert it to the indexing for the outputs $y$ (using a $1375$ step discretization), we will use this formula: ``` segment_end_y = int(segment_end_ms * Ty / 10000.0)``` ###Code # GRADED FUNCTION: insert_ones def insert_ones(y, segment_end_ms): """ Update the label vector y. The labels of the 50 output steps strictly after the end of the segment should be set to 1. By strictly we mean that the label of segment_end_y should be 0 while, the 50 following labels should be ones. Arguments: y -- numpy array of shape (1, Ty), the labels of the training example segment_end_ms -- the end time of the segment in ms Returns: y -- updated labels """ # duration of the background (in terms of spectrogram time-steps) segment_end_y = int(segment_end_ms * Ty / 10000.0) # Add 1 to the correct index in the background label (y) ### START CODE HERE ### (≈ 3 lines) for i in range(segment_end_y+1, segment_end_y+51): if i < Ty: y[0, i] = 1 ### END CODE HERE ### return y arr1 = insert_ones(np.zeros((1, Ty)), 9700) plt.plot(insert_ones(arr1, 4251)[0,:]) print("sanity checks:", arr1[0][1333], arr1[0][634], arr1[0][635]) ###Output _____no_output_____ ###Markdown **Expected Output** **sanity checks**: 0.0 1.0 0.0 Creating a training exampleFinally, you can use `insert_audio_clip` and `insert_ones` to create a new training example.**Exercise**: Implement `create_training_example()`. You will need to carry out the following steps:1. Initialize the label vector $y$ as a numpy array of zeros and shape $(1, T_y)$.2. Initialize the set of existing segments to an empty list.3. Randomly select 0 to 4 "activate" audio clips, and insert them onto the 10 second clip. Also insert labels at the correct position in the label vector $y$.4. Randomly select 0 to 2 negative audio clips, and insert them into the 10 second clip. ###Code # GRADED FUNCTION: create_training_example def create_training_example(background, activates, negatives): """ Creates a training example with a given background, activates, and negatives. Arguments: background -- a 10 second background audio recording activates -- a list of audio segments of the word "activate" negatives -- a list of audio segments of random words that are not "activate" Returns: x -- the spectrogram of the training example y -- the label at each time step of the spectrogram """ # Set the random seed np.random.seed(18) # Make background quieter background = background - 20 ### START CODE HERE ### # Step 1: Initialize y (label vector) of zeros (≈ 1 line) y = np.zeros((1, Ty)) # Step 2: Initialize segment times as an empty list (≈ 1 line) previous_segments = [] ### END CODE HERE ### # Select 0-4 random "activate" audio clips from the entire list of "activates" recordings number_of_activates = np.random.randint(0, 5) random_indices = np.random.randint(len(activates), size=number_of_activates) random_activates = [activates[i] for i in random_indices] ### START CODE HERE ### (≈ 3 lines) # Step 3: Loop over randomly selected "activate" clips and insert in background for random_activate in random_activates: # Insert the audio clip on the background background, segment_time = insert_audio_clip(background, random_activate, previous_segments) # Retrieve segment_start and segment_end from segment_time segment_start, segment_end = segment_time # Insert labels in "y" y = insert_ones(y, segment_end_ms=segment_end) ### END CODE HERE ### # Select 0-2 random negatives audio recordings from the entire list of "negatives" recordings number_of_negatives = np.random.randint(0, 3) random_indices = np.random.randint(len(negatives), size=number_of_negatives) random_negatives = [negatives[i] for i in random_indices] ### START CODE HERE ### (≈ 2 lines) # Step 4: Loop over randomly selected negative clips and insert in background for random_negative in random_negatives: # Insert the audio clip on the background background, _ = insert_audio_clip(background, random_negative, previous_segments) ### END CODE HERE ### # Standardize the volume of the audio clip background = match_target_amplitude(background, -20.0) # Export new training example file_handle = background.export("train" + ".wav", format="wav") print("File (train.wav) was saved in your directory.") # Get and plot spectrogram of the new recording (background with superposition of positive and negatives) x = graph_spectrogram("train.wav") return x, y x, y = create_training_example(backgrounds[0], activates, negatives) ###Output _____no_output_____ ###Markdown **Expected Output** Now you can listen to the training example you created and compare it to the spectrogram generated above. ###Code IPython.display.Audio("train.wav") ###Output _____no_output_____ ###Markdown **Expected Output** ###Code IPython.display.Audio("audio_examples/train_reference.wav") ###Output _____no_output_____ ###Markdown Finally, you can plot the associated labels for the generated training example. ###Code plt.plot(y[0]) ###Output _____no_output_____ ###Markdown **Expected Output** 1.4 - Full training set* You've now implemented the code needed to generate a single training example. * We used this process to generate a large training set. * To save time, we've already generated a set of training examples. ###Code # Load preprocessed training examples X = np.load("./XY_train/X.npy") Y = np.load("./XY_train/Y.npy") ###Output _____no_output_____ ###Markdown 1.5 - Development set* To test our model, we recorded a development set of 25 examples. * While our training data is synthesized, we want to create a development set using the same distribution as the real inputs. * Thus, we recorded 25 10-second audio clips of people saying "activate" and other random words, and labeled them by hand. * This follows the principle described in Course 3 "Structuring Machine Learning Projects" that we should create the dev set to be as similar as possible to the test set distribution * This is why our **dev set uses real audio** rather than synthesized audio. ###Code # Load preprocessed dev set examples X_dev = np.load("./XY_dev/X_dev.npy") Y_dev = np.load("./XY_dev/Y_dev.npy") ###Output _____no_output_____ ###Markdown 2 - Model* Now that you've built a dataset, let's write and train a trigger word detection model! * The model will use 1-D convolutional layers, GRU layers, and dense layers. * Let's load the packages that will allow you to use these layers in Keras. This might take a minute to load. ###Code from keras.callbacks import ModelCheckpoint from keras.models import Model, load_model, Sequential from keras.layers import Dense, Activation, Dropout, Input, Masking, TimeDistributed, LSTM, Conv1D from keras.layers import GRU, Bidirectional, BatchNormalization, Reshape from keras.optimizers import Adam ###Output _____no_output_____ ###Markdown 2.1 - Build the modelOur goal is to build a network that will ingest a spectrogram and output a signal when it detects the trigger word. This network will use 4 layers: * A convolutional layer * Two GRU layers * A dense layer. Here is the architecture we will use. **Figure 3** 1D convolutional layerOne key layer of this model is the 1D convolutional step (near the bottom of Figure 3). * It inputs the 5511 step spectrogram. Each step is a vector of 101 units.* It outputs a 1375 step output* This output is further processed by multiple layers to get the final $T_y = 1375$ step output. * This 1D convolutional layer plays a role similar to the 2D convolutions you saw in Course 4, of extracting low-level features and then possibly generating an output of a smaller dimension. * Computationally, the 1-D conv layer also helps speed up the model because now the GRU can process only 1375 timesteps rather than 5511 timesteps. GRU, dense and sigmoid* The two GRU layers read the sequence of inputs from left to right.* A dense plus sigmoid layer makes a prediction for $y^{\langle t \rangle}$. * Because $y$ is a binary value (0 or 1), we use a sigmoid output at the last layer to estimate the chance of the output being 1, corresponding to the user having just said "activate." Unidirectional RNN* Note that we use a **unidirectional RNN** rather than a bidirectional RNN. * This is really important for trigger word detection, since we want to be able to detect the trigger word almost immediately after it is said. * If we used a bidirectional RNN, we would have to wait for the whole 10sec of audio to be recorded before we could tell if "activate" was said in the first second of the audio clip. Implement the modelImplementing the model can be done in four steps: **Step 1**: CONV layer. Use `Conv1D()` to implement this, with 196 filters, a filter size of 15 (`kernel_size=15`), and stride of 4. [conv1d](https://keras.io/layers/convolutional/conv1d)```Pythonoutput_x = Conv1D(filters=...,kernel_size=...,strides=...)(input_x)```* Follow this with a ReLu activation. Note that we can pass in the name of the desired activation as a string, all in lowercase letters.```Pythonoutput_x = Activation("...")(input_x)```* Follow this with dropout, using a keep rate of 0.8 ```Pythonoutput_x = Dropout(rate=...)(input_x)```**Step 2**: First GRU layer. To generate the GRU layer, use 128 units.```Pythonoutput_x = GRU(units=..., return_sequences = ...)(input_x)```* Return sequences instead of just the last time step's prediction to ensures that all the GRU's hidden states are fed to the next layer. * Follow this with dropout, using a keep rate of 0.8.* Follow this with batch normalization. No parameters need to be set.```Pythonoutput_x = BatchNormalization()(input_x)```**Step 3**: Second GRU layer. This has the same specifications as the first GRU layer.* Follow this with a dropout, batch normalization, and then another dropout.**Step 4**: Create a time-distributed dense layer as follows: ```PythonX = TimeDistributed(Dense(1, activation = "sigmoid"))(X)```This creates a dense layer followed by a sigmoid, so that the parameters used for the dense layer are the same for every time step. Documentation:* [Keras documentation on wrappers](https://keras.io/layers/wrappers/). * To learn more, you can read this blog post [How to Use the TimeDistributed Layer in Keras](https://machinelearningmastery.com/timedistributed-layer-for-long-short-term-memory-networks-in-python/).**Exercise**: Implement `model()`, the architecture is presented in Figure 3. ###Code # GRADED FUNCTION: model def model(input_shape): """ Function creating the model's graph in Keras. Argument: input_shape -- shape of the model's input data (using Keras conventions) Returns: model -- Keras model instance """ X_input = Input(shape = input_shape) ### START CODE HERE ### # Step 1: CONV layer (≈4 lines) X = Conv1D(filters=196, kernel_size=15, strides=4)(X_input) # CONV1D X = BatchNormalization()(X) # Batch normalization X = Activation("relu")(X) # ReLu activation X = Dropout(0.8)(X) # dropout (use 0.8) # Step 2: First GRU Layer (≈4 lines) X = GRU(units=128, return_sequences=True)(X) # GRU (use 128 units and return the sequences) X = Dropout(0.8)(X) # dropout (use 0.8) X = BatchNormalization()(X) # Batch normalization # Step 3: Second GRU Layer (≈4 lines) X = GRU(units=128, return_sequences=True)(X) # GRU (use 128 units and return the sequences) X = Dropout(0.8)(X) # dropout (use 0.8) X = BatchNormalization()(X) # Batch normalization X = Dropout(0.8)(X) # dropout (use 0.8) # Step 4: Time-distributed dense layer (see given code in instructions) (≈1 line) X = TimeDistributed(Dense(1, activation = "sigmoid"))(X) # time distributed (sigmoid) ### END CODE HERE ### model = Model(inputs = X_input, outputs = X) return model model = model(input_shape = (Tx, n_freq)) ###Output _____no_output_____ ###Markdown Let's print the model summary to keep track of the shapes. ###Code model.summary() ###Output _____no_output_____ ###Markdown **Expected Output**: **Total params** 522,561 **Trainable params** 521,657 **Non-trainable params** 904 The output of the network is of shape (None, 1375, 1) while the input is (None, 5511, 101). The Conv1D has reduced the number of steps from 5511 to 1375. 2.2 - Fit the model * Trigger word detection takes a long time to train. * To save time, we've already trained a model for about 3 hours on a GPU using the architecture you built above, and a large training set of about 4000 examples. * Let's load the model. ###Code model = load_model('./models/tr_model.h5') ###Output _____no_output_____ ###Markdown You can train the model further, using the Adam optimizer and binary cross entropy loss, as follows. This will run quickly because we are training just for one epoch and with a small training set of 26 examples. ###Code opt = Adam(lr=0.0001, beta_1=0.9, beta_2=0.999, decay=0.01) model.compile(loss='binary_crossentropy', optimizer=opt, metrics=["accuracy"]) model.fit(X, Y, batch_size = 5, epochs=1) ###Output _____no_output_____ ###Markdown 2.3 - Test the modelFinally, let's see how your model performs on the dev set. ###Code loss, acc = model.evaluate(X_dev, Y_dev) print("Dev set accuracy = ", acc) ###Output _____no_output_____ ###Markdown This looks pretty good! * However, accuracy isn't a great metric for this task * Since the labels are heavily skewed to 0's, a neural network that just outputs 0's would get slightly over 90% accuracy. * We could define more useful metrics such as F1 score or Precision/Recall. * Let's not bother with that here, and instead just empirically see how the model does with some predictions. 3 - Making PredictionsNow that you have built a working model for trigger word detection, let's use it to make predictions. This code snippet runs audio (saved in a wav file) through the network. <!--can use your model to make predictions on new audio clips.You will first need to compute the predictions for an input audio clip.**Exercise**: Implement predict_activates(). You will need to do the following:1. Compute the spectrogram for the audio file2. Use `np.swap` and `np.expand_dims` to reshape your input to size (1, Tx, n_freqs)5. Use forward propagation on your model to compute the prediction at each output step!--> ###Code def detect_triggerword(filename): plt.subplot(2, 1, 1) x = graph_spectrogram(filename) # the spectrogram outputs (freqs, Tx) and we want (Tx, freqs) to input into the model x = x.swapaxes(0,1) x = np.expand_dims(x, axis=0) predictions = model.predict(x) plt.subplot(2, 1, 2) plt.plot(predictions[0,:,0]) plt.ylabel('probability') plt.show() return predictions ###Output _____no_output_____ ###Markdown Insert a chime to acknowledge the "activate" trigger* Once you've estimated the probability of having detected the word "activate" at each output step, you can trigger a "chiming" sound to play when the probability is above a certain threshold. * $y^{\langle t \rangle}$ might be near 1 for many values in a row after "activate" is said, yet we want to chime only once. * So we will insert a chime sound at most once every 75 output steps. * This will help prevent us from inserting two chimes for a single instance of "activate". * This plays a role similar to non-max suppression from computer vision.<!-- **Exercise**: Implement chime_on_activate(). You will need to do the following:1. Loop over the predicted probabilities at each output step2. When the prediction is larger than the threshold and more than 75 consecutive time steps have passed, insert a "chime" sound onto the original audio clipUse this code to convert from the 1,375 step discretization to the 10,000 step discretization and insert a "chime" using pydub:` audio_clip = audio_clip.overlay(chime, position = ((i / Ty) * audio.duration_seconds)*1000)`!--> ###Code chime_file = "audio_examples/chime.wav" def chime_on_activate(filename, predictions, threshold): audio_clip = AudioSegment.from_wav(filename) chime = AudioSegment.from_wav(chime_file) Ty = predictions.shape[1] # Step 1: Initialize the number of consecutive output steps to 0 consecutive_timesteps = 0 # Step 2: Loop over the output steps in the y for i in range(Ty): # Step 3: Increment consecutive output steps consecutive_timesteps += 1 # Step 4: If prediction is higher than the threshold and more than 75 consecutive output steps have passed if predictions[0,i,0] > threshold and consecutive_timesteps > 75: # Step 5: Superpose audio and background using pydub audio_clip = audio_clip.overlay(chime, position = ((i / Ty) * audio_clip.duration_seconds)*1000) # Step 6: Reset consecutive output steps to 0 consecutive_timesteps = 0 audio_clip.export("chime_output.wav", format='wav') ###Output _____no_output_____ ###Markdown 3.3 - Test on dev examples Let's explore how our model performs on two unseen audio clips from the development set. Lets first listen to the two dev set clips. ###Code IPython.display.Audio("./raw_data/dev/1.wav") IPython.display.Audio("./raw_data/dev/2.wav") ###Output _____no_output_____ ###Markdown Now lets run the model on these audio clips and see if it adds a chime after "activate"! ###Code filename = "./raw_data/dev/1.wav" prediction = detect_triggerword(filename) chime_on_activate(filename, prediction, 0.5) IPython.display.Audio("./chime_output.wav") filename = "./raw_data/dev/2.wav" prediction = detect_triggerword(filename) chime_on_activate(filename, prediction, 0.5) IPython.display.Audio("./chime_output.wav") ###Output _____no_output_____ ###Markdown Congratulations You've come to the end of this assignment! Here's what you should remember:- Data synthesis is an effective way to create a large training set for speech problems, specifically trigger word detection. - Using a spectrogram and optionally a 1D conv layer is a common pre-processing step prior to passing audio data to an RNN, GRU or LSTM.- An end-to-end deep learning approach can be used to build a very effective trigger word detection system. *Congratulations* on finishing the final assignment! Thank you for sticking with us through the end and for all the hard work you've put into learning deep learning. We hope you have enjoyed the course! 4 - Try your own example! (OPTIONAL/UNGRADED)In this optional and ungraded portion of this notebook, you can try your model on your own audio clips! * Record a 10 second audio clip of you saying the word "activate" and other random words, and upload it to the Coursera hub as `myaudio.wav`. * Be sure to upload the audio as a wav file. * If your audio is recorded in a different format (such as mp3) there is free software that you can find online for converting it to wav. * If your audio recording is not 10 seconds, the code below will either trim or pad it as needed to make it 10 seconds. ###Code # Preprocess the audio to the correct format def preprocess_audio(filename): # Trim or pad audio segment to 10000ms padding = AudioSegment.silent(duration=10000) segment = AudioSegment.from_wav(filename)[:10000] segment = padding.overlay(segment) # Set frame rate to 44100 segment = segment.set_frame_rate(44100) # Export as wav segment.export(filename, format='wav') ###Output _____no_output_____ ###Markdown Once you've uploaded your audio file to Coursera, put the path to your file in the variable below. ###Code your_filename = "audio_examples/my_audio.wav" preprocess_audio(your_filename) IPython.display.Audio(your_filename) # listen to the audio you uploaded ###Output _____no_output_____ ###Markdown Finally, use the model to predict when you say activate in the 10 second audio clip, and trigger a chime. If beeps are not being added appropriately, try to adjust the chime_threshold. ###Code chime_threshold = 0.5 prediction = detect_triggerword(your_filename) chime_on_activate(your_filename, prediction, chime_threshold) IPython.display.Audio("./chime_output.wav") ###Output _____no_output_____
RecomendationSystem/2-Pyspark-Facto-MovieLens.ipynb
###Markdown AI-Frameworks LAB 5 Introduction to Recommendation System with Collaborative Filtering - Part 2bis : Latent Vector-Based Methods with `SParkMl` Spark Library.The objectives of this notebook are the following : * Use ALS algorithm to learn decomposition of rating's matrices.* Use results of algorithm to apply recommendation. 1. IntroductionCe calepin traite d'un problème classique de recommandation par filtrage collaboratif en utilisant les ressources de la librairie [MLlib de Spark]([http://spark.apache.org/docs/latest/api/python/pyspark.mllib.htmlpyspark.mllib.recommendation.ALS) avec l'API pyspark. Le problème général est décrit en [introduction](https://github.com/wikistat/Ateliers-Big-Data/tree/master/3-MovieLens) et dans une [vignette](http://wikistat.fr/pdf/st-m-datSc3-colFil.pdf) de [Wikistat](http://wikistat.fr/). Il est appliqué aux données publiques du site [GroupLens](http://grouplens.org/datasets/movielens/). L'objectif est de tester les méthodes et la procédure d'optimisation sur le plus petit jeu de données composé de 100k notes de 943 clients sur 1682 films où chaque client a au moins noté 20 films. Les jeux de données plus gros (1M, 10M, 20M notes) peuvent être utilisés pour "passer à l'échelle volume". Ce calepin s'inspire des exemples de la [documentation](http://spark.apache.org/docs/latest/api/python/pyspark.mllib.htmlpyspark.mllib.recommendation.ALS) et d'un [tutoriel](https://github.com/jadianes/spark-movie-lens/blob/master/notebooks/building-recommender.ipynb) de [Jose A. Dianes](https://www.codementor.io/jadianes). Le sujet a été traité lors d'un [Spark Summit](https://databricks-training.s3.amazonaws.com/movie-recommendation-with-mllib.html).L'objectif est d'utiliser ces seules données pour proposer des recommandations. Les données initiales sont sous la forme d'une matrice **très creuse** (*sparse*) contenant des notes ou évaluations. **Attention**, les "0" de la matrice ne sont pas des notes mais des *données manquantes*, le film n'a pas encore été vu ou évalué. Un algorithme satisfaisant à l'objectif de *complétion de grande matrice creuse*, et implémenté dans un logiciel libre d'accès est disponible dans la librairie [softImpute de R](https://cran.r-project.org/web/packages/softImpute/index.html). SOn utilisaiton est décrite dans un autre [calepin](https://github.com/wikistat/Ateliers-Big-Data/blob/master/3-MovieLens/Atelier-MovieLens-softImpute.ipynb). La version de [NMF](http://wikistat.fr/pdf/st-m-explo-nmf.pdf) de [MLlib de Spark](http://spark.apache.org/docs/latest/api/python/pyspark.mllib.htmlpyspark.mllib.recommendation.ALS) autorise permet également la complétion.En revanche,la version de NMF incluse dans la librairie [Scikit-learn](http://scikit-learn.org/stable/modules/generated/sklearn.decomposition.NMF.html) traite également des [matrices creuses](http://docs.scipy.org/doc/scipy/reference/sparse.html) mais le critère (moindres carrés) optimisé considère les "0" comme des notes nulles, pas comme des données manquantes. *Elle n'est pas adaptée au problème de complétion*, contrairement à celle de MLliB. Il faudrait sans doute utiliser la librairie [nonnegfac](https://github.com/kimjingu/nonnegfac-python) en Python de [Kim et al. (2014)](http://link.springer.com/content/pdf/10.1007%2Fs10898-013-0035-4.pdf); **à tester**!Dans la première partie, le plus petit fichier est partagé en trois échantillons: apprentissage, validation et test; l'optimisation du rang de la factorisation (nombre de facteurs latents) est réalisée par minimisation de l'erreur estimée sur l'échantillon de validation.Ensuite le plus gros fichier est utilisé pour évaluer l'impact de la taille de la base d'apprentissage. 2 Importation des données en HDFSLes données doivent être stockées à un emplacement accessibles de tous les noeuds du cluster pour permettre la construction de la base de données réparties (RDD). Dans une utilisation monoposte (*standalone*) de *Spark*, elles sont simplement chargées dans le répertoire courant. ###Code sc ###Output _____no_output_____ ###Markdown Les données sont lues comme une seule ligne de texte avant d'être restructurées au bon format d'une *matrice creuse* à savoir une liste de triplets contenant les indices de ligne, de colonne et la note pour les seules valeurs renseignées. ###Code # Importer les données au format texte dans un RDD small_ratings_raw_data = sc.textFile("movielens_small/ratings.csv") # Identifier et afficher la première ligne small_ratings_raw_data_header = small_ratings_raw_data.take(1)[0] print(small_ratings_raw_data_header) # Create RDD without header all_lines = small_ratings_raw_data.filter(lambda l : l!=small_ratings_raw_data_header) # Séparer les champs (user, item, note) dans un nouveau RDD from pyspark.sql import Row split_lines = all_lines.map(lambda l : l.split(",")) ratingsRDD = split_lines.map(lambda p: Row(user=int(p[0]), item=int(p[1]), rating=float(p[2]), timestamp=int(p[3]))) # .cache() : le RDD est conservé en mémoire une fois traité ratingsRDD.cache() # Display the two first rows ratingsRDD.take(2) # Convert RDD to DataFrame ratingsDF = spark.createDataFrame(ratingsRDD) ratingsDF.take(2) ###Output _____no_output_____ ###Markdown 3. Optimisation du rang sur l'échantillon 10kLe fichier comporte 10 000 évaluations croisant les avis de mille utilisateurs sur les films qu'ils ont vus parmi 1700. 3.1 Constitution des échantillons Séparation aléatoire en trois échantillons apprentissage, validation et test. Le paramètre de rang est optimisé en minimisant l'estimaiton de l'erreur sur l'échantillon test. Cette stratégie, plutôt qu'ue validation croisée est plus adaptée à des données massives. ###Code tauxTrain=0.6 tauxVal=0.2 tauxTes=0.2 # Si le total est inférieur à 1, les données sont sous-échantillonnées. (trainDF, validDF, testDF) = ratingsDF.randomSplit([tauxTrain, tauxVal, tauxTes]) # validation et test à prédire, sans les notes validDF_P = validDF.select("user", "item") testDF_P = testDF.select("user", "item") trainDF.take(2), validDF_P.take(2), testDF_P.take(2) ###Output _____no_output_____ ###Markdown 3.2 Optimisation du rang de la NMF L'erreur d'imputation des données, donc de recommandation, est estimée sur l'échantillon de validation pour différentes valeurs (grille) du rang de la factorisation matricielle. Il faudrait en principe aussi optimiser la valeur du paramètre de pénalisation pris à 0.1 par défaut.*Point important:* l'erreur d'ajustement de la factorisation ne prend en compte que les valeurs listées dans la matrice creuses, pas les "0" qui sont des données manquantes. ###Code from pyspark.ml.recommendation import ALS import math import collections # Initialisation du générateur seed = 5 # Nombre max d'itérations (ALS) maxIter = 10 # Régularisation L1; à optimiser également regularization_parameter = 0.1 # Choix d'une grille pour les valeurs du rang à optimiser ranks = [4, 8, 12] #Initialisation variable # création d'un dictionaire pour stocker l'erreur par rang testé errors = collections.defaultdict(float) tolerance = 0.02 min_error = float('inf') best_rank = -1 best_iteration = -1 from pyspark.ml.evaluation import RegressionEvaluator for rank in ranks: als = ALS( rank=rank, seed=seed, maxIter=maxIter, regParam=regularization_parameter) model = als.fit(trainDF) # Prévision de l'échantillon de validation predDF = model.transform(validDF).select("prediction","rating") #Remove unpredicter row due to no-presence of user in the train dataset pred_without_naDF = predDF.na.drop() # Calcul du RMSE evaluator = RegressionEvaluator(metricName="rmse", labelCol="rating", predictionCol="prediction") rmse = evaluator.evaluate(pred_without_naDF) print("Root-mean-square error for rank %d = "%rank + str(rmse)) errors[rank] = rmse if rmse < min_error: min_error = rmse best_rank = rank # Meilleure solution print('Rang optimal: %s' % best_rank) ###Output _____no_output_____ ###Markdown 3.3 Résultats et test ###Code # Quelques prévisions pred_without_naDF.take(3) ###Output _____no_output_____ ###Markdown Prévision finale de l'échantillon test. ###Code #On concatane la DataFrame Train et Validatin trainValidDF = trainDF.union(validDF) # On crée un model avec le nouveau Dataframe complété d'apprentissage et le rank fixé à la valeur optimal als = ALS( rank=best_rank, seed=seed, maxIter=maxIter, regParam=regularization_parameter) model = als.fit(trainValidDF) #Prediction sur la DataFrame Test testDF = model.transform(testDF).select("prediction","rating") #Remove unpredicter row due to no-presence of user in the trai dataset pred_without_naDF = predDF.na.drop() # Calcul du RMSE evaluator = RegressionEvaluator(metricName="rmse", labelCol="rating", predictionCol="prediction") rmse = evaluator.evaluate(pred_without_naDF) print("Root-mean-square error for rank %d = "%best_rank + str(rmse)) ###Output _____no_output_____ ###Markdown 3 Analyse du fichier complet MovieLens propose un plus gros fichier avec 20M de notes (138000 utilisateurs, 27000 films). Ce fichier est utilisé pour extraire un fichier test de deux millions de notes à reconstruire. Les paramètres précédemment optimisés, ils pourraient sans doute l'être mieux, sont appliqués pour une succesion d'estimation / prévision avec une taille croissante de l'échantillon d'apprentissage. Il aurait été plus élégant d'automatiser le travail dans une boucle mais lorsque les données sont les plus volumineuses des comportement mal contrôlés de Spark peuvent provoquer des plantages par défaut de mémoire. 3.1 Lecture des données Le fichier est prétraité de manière analogue. ###Code # Importer les données au format texte dans un RDD ratings_raw_data = sc.textFile(DATA_PATH+"ratings20M.csv") # Identifier et afficher la première ligne ratings_raw_data_header = ratings_raw_data.take(1)[0] ratings_raw_data_header # Create RDD without header all_lines = ratings_raw_data.filter(lambda l : l!=ratings_raw_data_header) # Séparer les champs (user, item, note) dans un nouveau RDD split_lines = all_lines.map(lambda l : l.split(",")) ratingsRDD = split_lines.map(lambda p: Row(user=int(p[0]), item=int(p[1]), rating=float(p[2]), timestamp=int(p[3]))) # Display the two first rows ratingsRDD.take(2) # Convert RDD to DataFrame ratingsDF = spark.createDataFrame(ratingsRDD) ratingsDF.take(2) ###Output _____no_output_____ ###Markdown 3.2 Echantillonnage Extraction de l'échantillon test et éventuellement sous-échantillonnage de l'échantillon d'apprentissage. ###Code tauxTest=0.1 # Si le total est inférieur à 1, les données sont sous-échantillonnées. (trainTotDF, testDF) = ratingsDF.randomSplit([1-tauxTest, tauxTest]) # Sous-échantillonnage de l'apprentissage permettant de # tester pour des tailles croissantes de cet échantillon tauxEch=0.2 (trainDF, DropData) = trainTotDF.randomSplit([tauxEch, 1-tauxEch]) testDF.take(2), trainDF.take(2) ###Output _____no_output_____ ###Markdown 3.3 Estimation du modèle Le modèle est estimé en utilisant les valeurs des paramètres obtenues dans l'étape précédente. ###Code import time time_start=time.time() # Initialisation du générateur seed = 5 # Nombre max d'itérations (ALS) maxIter = 10 # Régularisation L1 (valeur par défaut) regularization_parameter = 0.1 best_rank = 8 # Estimation pour chaque valeur de rang als = ALS(rank=rank, seed=seed, maxIter=maxIter, regParam=regularization_parameter) model = als.fit(trainDF) time_end=time.time() time_als=(time_end - time_start) print("ALS prend %d s" %(time_als)) ###Output _____no_output_____ ###Markdown 3.4 Prévision de l'échantillon test et erreur ###Code # Prévision de l'échantillon de validation predDF = model.transform(testDF).select("prediction","rating") #Remove unpredicter row due to no-presence of user in the train dataset pred_without_naDF = predDF.na.drop() # Calcul du RMSE evaluator = RegressionEvaluator(metricName="rmse", labelCol="rating", predictionCol="prediction") rmse = evaluator.evaluate(pred_without_naDF) print("Root-mean-square error for rank %d = "%best_rank + str(rmse)) trainDF.count() ###Output _____no_output_____
_notebooks/2020-08-28-02-Correlation-and-Experimental-Design.ipynb
###Markdown Correlation and Experimental Design> In this chapter, you'll learn how to quantify the strength of a linear relationship between two variables, and explore how confounding variables can affect the relationship between two other variables. You'll also see how a study’s design can influence its results, change how the data should be analyzed, and potentially affect the reliability of your conclusions. This is the Summary of lecture "Introduction to Statistics in Python", via datacamp.- toc: true - badges: true- comments: true- author: Chanseok Kang- categories: [Python, Datacamp, Statistics]- image: images/lmplot_wh.png ###Code import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns ###Output _____no_output_____ ###Markdown Correlation- Correlation coefficient - Quantifies the linear relationship between two variables - Number between -1 and 1 - Magnitude corresponds to strength of relationship - Sign (+ or -) corresponds to direction of relationship- Pearson product-moment correlation($r$) - Most Common - $\bar{x}$ = mean of $x$ - $\sigma_x$ = standard deviation of $x$ $$ r = \sum_{i=1}^{n} \frac{(x_i - \bar{x})(y_i - \bar{y})}{\sigma_x \times \sigma_y} $$ - Variation - Kendall's Tau - Spearman's rho Relationships between variablesIn this chapter, you'll be working with a dataset `world_happiness` containing results from the [2019 World Happiness Report](https://worldhappiness.report/ed/2019/). The report scores various countries based on how happy people in that country are. It also ranks each country on various societal aspects such as social support, freedom, corruption, and others. The dataset also includes the GDP per capita and life expectancy for each country.In this exercise, you'll examine the relationship between a country's life expectancy (`life_exp`) and happiness score (`happiness_score`) both visually and quantitatively. ###Code world_happiness = pd.read_csv('./dataset/world_happiness.csv', index_col=0) world_happiness.head() # Create a scatterplot of happiness_score vs. life_exp and show sns.scatterplot(x='life_exp', y='happiness_score', data=world_happiness); # Create scatterplot of happiness_score vs. life_exp with trendline sns.lmplot(x='life_exp', y='happiness_score', data=world_happiness, ci=None); # Correlation between life_exp and happiness_score cor = world_happiness['life_exp'].corr(world_happiness['happiness_score']) print(cor) ###Output 0.7802249053272061 ###Markdown Correlation caveats- Correlation only accounts for linear relationships- Transformation - Certain statistical methods rely on variables having a linear relationship - Correlation coefficient - Linear regression- Correlation does not imply causation - $x$ is correlated with $y$ **does not mean** $x$ causes $y$ What can't correlation measure?While the correlation coefficient is a convenient way to quantify the strength of a relationship between two variables, it's far from perfect. In this exercise, you'll explore one of the caveats of the correlation coefficient by examining the relationship between a country's GDP per capita (`gdp_per_cap`) and happiness score. ###Code # Scatterplot of gdp_per_cap and life_exp sns.scatterplot(x='gdp_per_cap', y='life_exp', data=world_happiness); # Correlation between gdp_per_cap and life_exp cor = world_happiness['gdp_per_cap'].corr(world_happiness['life_exp']) print(cor) ###Output 0.7019547642148014 ###Markdown Transforming variablesWhen variables have skewed distributions, they often require a transformation in order to form a linear relationship with another variable so that correlation can be computed. In this exercise, you'll perform a transformation yourself. ###Code # Scatterplot of happiness_score vs. gdp_per_cap sns.scatterplot(x='gdp_per_cap', y='happiness_score', data=world_happiness); # Calculate correlation cor = world_happiness['gdp_per_cap'].corr(world_happiness['happiness_score']) print(cor) # Create log_gdp_per_cap column world_happiness['log_gdp_per_cap'] = np.log(world_happiness['gdp_per_cap']) # Scatterplot of log_gdp_per_cap and happiness_score sns.scatterplot(x='log_gdp_per_cap', y='happiness_score', data=world_happiness); # Calculate correlation cor = world_happiness['log_gdp_per_cap'].corr(world_happiness['happiness_score']) print(cor) ###Output 0.8043146004918288 ###Markdown Does sugar improve happiness?A new column has been added to `world_happiness` called `grams_sugar_per_day`, which contains the average amount of sugar eaten per person per day in each country. In this exercise, you'll examine the effect of a country's average sugar consumption on its happiness score. ###Code world_happiness = pd.read_csv('./dataset/world_happiness_add_sugar.csv', index_col=0) world_happiness # Scatterplot of grams_sugar_per_day and happiness_score sns.scatterplot(x='grams_sugar_per_day', y='happiness_score', data=world_happiness); # Correlation between grams_sugar_per_day and happiness_score cor = world_happiness['grams_sugar_per_day'].corr(world_happiness['happiness_score']) print(cor) ###Output 0.6939100021829635
105_opencv_cropping.ipynb
###Markdown Crop Image with OpenCV Welcome to **[PyImageSearch Plus](http://pyimg.co/plus)** Jupyter Notebooks!This notebook is associated with the [Crop Image with OpenCV](https://www.pyimagesearch.com/2021/01/19/crop-image-with-opencv/) blog post published on 01-19-2021.Only the code for the blog post is here. Most codeblocks have a 1:1 relationship with what you find in the blog post with two exceptions: (1) Python classes are not separate files as they are typically organized with PyImageSearch projects, and (2) Command Line Argument parsing is replaced with an `args` dictionary that you can manipulate as needed.We recommend that you execute (press ▶️) the code block-by-block, as-is, before adjusting parameters and `args` inputs. Once you've verified that the code is working, you are welcome to hack with it and learn from manipulating inputs, settings, and parameters. For more information on using Jupyter and Colab, please refer to these resources:* [Jupyter Notebook User Interface](https://jupyter-notebook.readthedocs.io/en/stable/notebook.htmlnotebook-user-interface)* [Overview of Google Colaboratory Features](https://colab.research.google.com/notebooks/basic_features_overview.ipynb)Happy hacking! Download the code zip file ###Code !wget https://pyimagesearch-code-downloads.s3-us-west-2.amazonaws.com/opencv-cropping/opencv-cropping.zip !unzip -qq opencv-cropping.zip %cd opencv-cropping ###Output _____no_output_____ ###Markdown Blog Post Code Import Packages ###Code # import the necessary packages from matplotlib import pyplot as plt import numpy as np import argparse import cv2 ###Output _____no_output_____ ###Markdown Function to display images in Jupyter Notebooks and Google Colab ###Code def plt_imshow(title, image): # convert the image frame BGR to RGB color space and display it image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) plt.imshow(image) plt.title(title) plt.grid(False) plt.show() ###Output _____no_output_____ ###Markdown Understanding image cropping with OpenCV and NumPy array slicing ###Code I = np.arange(0, 25) I I = I.reshape((5, 5)) I I[0:3, 0:2] I[3:5, 1:5] ###Output _____no_output_____ ###Markdown Implementing image cropping with OpenCV ###Code # # construct the argument parser and parse the arguments # ap = argparse.ArgumentParser() # ap.add_argument("-i", "--image", type=str, default="adrian.png", # help="path to the input image") # args = vars(ap.parse_args()) # since we are using Jupyter Notebooks we can replace our argument # parsing code with *hard coded* arguments and values args = { "image": "adrian.png" } # load the input image and display it to our screen image = cv2.imread(args["image"]) plt_imshow("Original", image) # cropping an image with OpenCV is accomplished via simple NumPy # array slices in startY:endY, startX:endX order -- here we are # cropping the face from the image (these coordinates were # determined using photo editing software such as Photoshop, # GIMP, Paint, etc.) face = image[85:250, 85:220] plt_imshow("Face", face) # apply another image crop, this time extracting the body body = image[90:450, 0:290] plt_imshow("Body", body) ###Output _____no_output_____
examples/reference/elements/plotly/Scatter3D.ipynb
###Markdown Title Scatter3D Element Dependencies Matplotlib Backends Matplotlib Plotly ###Code import numpy as np import holoviews as hv hv.notebook_extension('plotly') ###Output _____no_output_____ ###Markdown ``Scatter3D`` represents three-dimensional coordinates which may be colormapped or scaled in size according to a value. They are therefore very similar to [``Points``](Points.ipynb) and [``Scatter``](Scatter.ipynb) types but have one additional coordinate dimension. Like other 3D elements the camera angle can be controlled using ``azimuth``, ``elevation`` and ``distance`` plot options: ###Code %%opts Scatter3D [width=500 height=500 camera_zoom=20 color_index=2] (size=5 cmap='fire') y,x = np.mgrid[-5:5, -5:5] * 0.1 heights = np.sin(x**2+y**2) hv.Scatter3D(zip(x.flat,y.flat,heights.flat)) ###Output _____no_output_____ ###Markdown Just like all regular 2D elements, ``Scatter3D`` types can be overlaid and will follow the default color cycle: ###Code %%opts Scatter3D [width=500 height=500] (symbol='x' size=2) hv.Scatter3D(np.random.randn(100,4), vdims=['Size']) * hv.Scatter3D(np.random.randn(100,4)+2, vdims=['Size']) ###Output _____no_output_____ ###Markdown Title Scatter3D Element Dependencies Matplotlib Backends Matplotlib Plotly ###Code import numpy as np import holoviews as hv from holoviews import dim, opts hv.extension('plotly') ###Output _____no_output_____ ###Markdown ``Scatter3D`` represents three-dimensional coordinates which may be colormapped or scaled in size according to a value. They are therefore very similar to [``Points``](Points.ipynb) and [``Scatter``](Scatter.ipynb) types but have one additional coordinate dimension. Like other 3D elements the camera angle can be controlled using ``azimuth``, ``elevation`` and ``distance`` plot options: ###Code y,x = np.mgrid[-5:5, -5:5] * 0.1 heights = np.sin(x**2+y**2) hv.Scatter3D((x.flat, y.flat, heights.flat)).opts( cmap='fire', color='z', size=5) ###Output _____no_output_____ ###Markdown Just like all regular 2D elements, ``Scatter3D`` types can be overlaid and will follow the default color cycle: ###Code (hv.Scatter3D(np.random.randn(100,4), vdims='Size') * hv.Scatter3D(np.random.randn(100,4)+2, vdims='Size')).opts( opts.Scatter3D(size=(5+dim('Size'))*2, marker='diamond') ) ###Output _____no_output_____ ###Markdown Title Scatter3D Element Dependencies Matplotlib Backends Matplotlib Plotly ###Code import numpy as np import holoviews as hv hv.notebook_extension('plotly') ###Output _____no_output_____ ###Markdown ``Scatter3D`` represents three-dimensional coordinates which may be colormapped or scaled in size according to a value. They are therefore very similar to [``Points``](Points.ipynb) and [``Scatter``](Scatter.ipynb) types but have one additional coordinate dimension. Like other 3D elements the camera angle can be controlled using ``azimuth``, ``elevation`` and ``distance`` plot options: ###Code %%opts Scatter3D [width=500 height=500 camera_zoom=20 color_index=2] (size=5 cmap='fire') y,x = np.mgrid[-5:5, -5:5] * 0.1 heights = np.sin(x**2+y**2) hv.Scatter3D(zip(x.flat,y.flat,heights.flat)) ###Output _____no_output_____ ###Markdown Just like all regular 2D elements, ``Scatter3D`` types can be overlaid and will follow the default color cycle: ###Code %%opts Scatter3D [width=500 height=500] (symbol='x' size=2) hv.Scatter3D(np.random.randn(100,4), vdims='Size') * hv.Scatter3D(np.random.randn(100,4)+2, vdims='Size') ###Output _____no_output_____ ###Markdown Title Scatter3D Element Dependencies Matplotlib Backends Matplotlib Plotly ###Code import numpy as np import holoviews as hv hv.notebook_extension('plotly') ###Output _____no_output_____ ###Markdown ``Scatter3D`` represents three-dimensional coordinates which may be colormapped or scaled in size according to a value. They are therefore very similar to [``Points``](Points.ipynb) and [``Scatter``](Scatter.ipynb) types but have one additional coordinate dimension. Like other 3D elements the camera angle can be controlled using ``azimuth``, ``elevation`` and ``distance`` plot options: ###Code %%opts Scatter3D [width=500 height=500 camera_zoom=20 color_index=2] (size=5 cmap='fire') y,x = np.mgrid[-5:5, -5:5] * 0.1 heights = np.sin(x**2+y**2) hv.Scatter3D(zip(x.flat,y.flat,heights.flat)) ###Output _____no_output_____ ###Markdown Just like all regular 2D elements, ``Scatter3D`` types can be overlaid and will follow the default color cycle: ###Code %%opts Scatter3D [width=500 height=500] (symbol='x' size=2) hv.Scatter3D(np.random.randn(100,4), vdims='Size') * hv.Scatter3D(np.random.randn(100,4)+2, vdims='Size') ###Output _____no_output_____
Mission_to_Mars-Starter.ipynb
###Markdown Visit the NASA mars news site ###Code # Visit the Mars news site url = 'https://redplanetscience.com/' browser.visit(url) # Optional delay for loading the page browser.is_element_present_by_css('div.list_text', wait_time=1) # Convert the browser html to a soup object html = browser.html news_soup = soup(html, 'html.parser') slide_elem = news_soup.select_one('div.list_text') #display the current title content slide_elem.find('div', class_='content_title') # Use the parent element to find the first a tag and save it as `news_title` news_title = slide_elem.find('div', class_='content_title').get_text() news_title # Use the parent element to find the paragraph text news_p= slide_elem.find('div', class_='article_teaser_body').get_text() news_p ###Output _____no_output_____ ###Markdown JPL Space Images Featured Image ###Code # Visit URL url = 'https://spaceimages-mars.com' browser.visit(url) # Find and click the full image button full_image_link = browser.find_by_tag('button')[1] full_image_link.click() # Parse the resulting html with soup html = browser.html img_soup = soup(html, 'html.parser') #print(img_soup.prettify()) img_url_rel = img_soup.find('img', class_='fancybox-image').get('src') # find the relative image url img_url_rel # Use the base url to create an absolute url img_url=f'https://spaceimages-mars.com/{img_url_rel}' img_url ###Output _____no_output_____ ###Markdown Mars Facts ###Code # Use `pd.read_html` to pull the data from the Mars-Earth Comparison section # hint use index 0 to find the table df = pd.read_html('https://galaxyfacts-mars.com/')[0] df.head() df.columns=['Description', 'Mars', 'Earth'] df df.set_index('Description', inplace=True) df df.to_html() ###Output _____no_output_____ ###Markdown Hemispheres ###Code url = 'https://marshemispheres.com/' browser.visit(url) # Create a list to hold the images and titles. hemisphere_image_urls = [] # Get a list of all of the hemispheres links = browser.find_by_css('a.product-item img') # Next, loop through those links, click the link, find the sample anchor, return the href for i in range(len(links)): hemisphereInfo = {} # We have to find the elements on each loop to avoid a stale element exception browser.find_by_css('a.product-item img')[i].click() # Next, we find the Sample image anchor tag and extract the href sample = browser.links.find_by_text('Sample').first hemisphereInfo['img_url']= sample['href'] # Get Hemisphere title hemisphereInfo['title'] = browser.find_by_css('h2.title').text # Append hemisphere object to list hemisphere_image_urls.append(hemisphereInfo) # Finally, we navigate backwards browser.back() hemisphere_image_urls browser.quit() ###Output _____no_output_____ ###Markdown Visit the NASA mars news site ###Code # Visit the Mars news site url = 'https://redplanetscience.com/' browser.visit(url) # Optional delay for loading the page browser.is_element_present_by_css('div.list_text', wait_time=1) # Convert the browser html to a soup object html = browser.html news_soup = soup(html, 'html.parser') slide_elem = news_soup.select_one('div.list_text') #print(news_soup.prettify()) #display the current title content slide_elem.find('div', class_='content_title') # Use the parent element to find the first a tag and save it as `news_title` news_title = slide_elem.find('div', class_='content_title').get_text() news_title # Use the parent element to find the paragraph text news_p = slide_elem.find('div', class_='article_teaser_body').get_text() news_p ###Output _____no_output_____ ###Markdown JPL Space Images Featured Image ###Code # Visit URL url = 'https://spaceimages-mars.com' browser.visit(url) # Find and click the full image button full_image_link = browser.find_by_tag('button')[1] full_image_link.click() # Parse the resulting html with soup html = browser.html img_soup = soup(html, 'html.parser') #print(news_soup.prettify()) img_url_rel = img_soup.find('img', class_='fancybox-image').get('src') # find the relative image url img_url_rel # Use the base url to create an absolute url img_url = f'https://spaceimages-mars.com/{img_url_rel}' img_url ###Output _____no_output_____ ###Markdown Mars Facts ###Code # Use `pd.read_html` to pull the data from the Mars-Earth Comparison section # hint use index 0 to find the table df = pd.read_html("https://galaxyfacts-mars.com/")[0] df.head() df.columns = ['Description', 'Mars', 'Earth'] df df.set_index('Description', inplace=True) df.to_html() ###Output _____no_output_____ ###Markdown Hemispheres ###Code url = 'https://marshemispheres.com/' browser.visit(url) # Create a list to hold the images and titles. hemisphere_image_urls = [] # Get a list of all of the hemispheres links = browser.find_by_css('a.product-item img') # Next, loop through those links, click the link, find the sample anchor, return the href for i in range(len(links)): #hemisphere info dictionary hemisphereInfo = {} # We have to find the elements on each loop to avoid a stale element exception browser.find_by_css('a.product-item img')[i].click() # Next, we find the Sample image anchor tag and extract the href sample = browser.links.find_by_text('Sample').first hemisphereInfo["img_url"] = sample['href'] # Get Hemisphere title hemisphereInfo['title'] = browser.find_by_css('h2.title').text # Append hemisphere object to list hemisphere_image_urls.append(hemisphereInfo) # Finally, we navigate backwards browser.back() hemisphere_image_urls browser.quit() # refence code used from Dr.A's Videos ###Output _____no_output_____ ###Markdown Visit the NASA mars news site ###Code #print(news_soup.prettify()) # Visit the Mars news site url = 'https://redplanetscience.com/' browser.visit(url) html = browser.html news_soup = soup(html, 'html.parser') print(news_soup.prettify()) # Visit the Mars news site url = 'https://redplanetscience.com/' browser.visit(url) # Optional delay for loading the page browser.is_element_present_by_css('div.list_text', wait_time=1) # Convert the browser html to a soup object html = browser.html news_soup = soup(html, 'html.parser') #print(news_soup.prettify()) slide_elem = news_soup.select_one('div.list_text') #display the current title content slide_elem.find('div', class_='content_title') # Use the parent element to find the first a tag and save it as `news_title` news_title = slide_elem.find('div', class_='content_title').get_text() news_title # Use the parent element to find the paragraph text news_p = slide_elem.find('div', class_='article_teaser_body').get_text() news_p ###Output _____no_output_____ ###Markdown JPL Space Images Featured Image ###Code # Visit URL url = 'https://spaceimages-mars.com' browser.visit(url) # Find and click the full image button full_image_link = browser.find_by_tag('button')[1] full_image_link.click() # Parse the resulting html with soup html = browser.html image_soup = soup(html, 'html.parser') #print(image_soup.prettify()) img_url_rel = image_soup.find('img', class_='fancybox-image').get('src') # find the relative image url img_url_rel # Use the base url to create an absolute url img_url = f'https://spaceimages-mars.com/{img_url_rel}' img_url ###Output _____no_output_____ ###Markdown Mars Facts ###Code # Use `pd.read_html` to pull the data from the Mars-Earth Comparison section # hint use index 0 to find the table df = pd.read_html('https://galaxyfacts-mars.com/')[0] df.head() df.columns = ['Description', 'Mars', 'Earth'] df df.set_index('Description', inplace=True) df df.to_html() ###Output _____no_output_____ ###Markdown Hemispheres ###Code url = 'https://marshemispheres.com/' browser.visit(url) # Create a list to hold the images and titles. hemisphere_image_urls = [] # Get a list of all of the hemispheres links = browser.find_by_css('a.product-item img') # Next, loop through those links, click the link, find the sample anchor, return the href for i in range(len(links)): #hemisphere info dictionary hemisphereInfo = {} # We have to find the elements on each loop to avoid a stale element exception browser.find_by_css('a.product-item img')[i].click() # Next, we find the Sample image anchor tag and extract the href sample = browser.links.find_by_text('Sample').first hemisphereInfo["img_url"] = sample['href'] # Get Hemisphere title hemisphereInfo['title'] = browser.find_by_css('h2.title').text # Append hemisphere object to list hemisphere_image_urls.append(hemisphereInfo) # Finally, we navigate backwards browser.back() hemisphere_image_urls browser.quit() ###Output _____no_output_____
examples/Marks/Pyplot/Candles.ipynb
###Markdown OHLC with Ordinal Scale ###Code from bqplot import OrdinalScale fig = plt.figure() plt.scales(scales={'x': OrdinalScale()}) axes_options = {'x': {'label': 'X', 'tick_format': '%d-%m-%Y'}, 'y': {'label': 'Y', 'tick_format': '.2f'}} ohlc3 = plt.ohlc(dates2, np.array(prices2) / 60, marker='candle', colors=['dodgerblue','orange'], axes_options=axes_options) fig ohlc3.opacities = [0.1, 0.2] ###Output _____no_output_____ ###Markdown OHLC with Ordinal Scale ###Code from bqplot import OrdinalScale fig = plt.figure() plt.scales(scales={"x": OrdinalScale()}) axes_options = { "x": {"label": "X", "tick_format": "%d-%m-%Y"}, "y": {"label": "Y", "tick_format": ".2f"}, } ohlc3 = plt.ohlc( dates2, np.array(prices2) / 60, marker="candle", colors=["dodgerblue", "orange"], axes_options=axes_options, ) fig ohlc3.opacities = [0.1, 0.2] ###Output _____no_output_____
notebooks/5. Scenario trees with optimized scenarios and structure (method #2).ipynb
###Markdown We illustrate on a Geometric Brownian Motion (GBM) the second of the two methods to build scenario trees with **optimized scenarios and structure**. This method does not explore the space of tree structures, it builds the structure 'forward' stage-by-stage by meeting a `width_vector` requirement (either given explicity or calculated optimally). It has the advantage to be practical even when the number of stages and scenarios is large. However, it does not offer the diversity of structures that the other method does. Define a `ScenarioProcess` instance for the GBM ###Code S_0 = 2 # initial value (at stage 0) delta_t = 1 # time lag between 2 stages mu = 0 # drift sigma = 1 # volatility ###Output _____no_output_____ ###Markdown The `gbm_recurrence` function below implements the dynamic relation of a GBM: * $S_{t} = S_{t-1} \exp[(\mu - \sigma^2/2) \Delta t + \sigma \epsilon_t\sqrt{\Delta t}], \quad t=1,2,\dots$ where $\epsilon_t$ is a standard normal random variable $N(0,1)$.The discretization of $\epsilon_t$ is done by quasi-Monte Carlo (QMC) and is implemented by the `epsilon_sample_qmc` method. ###Code def gbm_recurrence(stage, epsilon, scenario_path): if stage == 0: return {'S': np.array([S_0])} else: return {'S': scenario_path[stage-1]['S'] \ * np.exp((mu - sigma**2 / 2) * delta_t + sigma * np.sqrt(delta_t) * epsilon)} def epsilon_sample_qmc(n_samples, stage, u=0.5): return norm.ppf(np.linspace(0, 1-1/n_samples, n_samples) + u / n_samples).reshape(-1, 1) scenario_process = ScenarioProcess(gbm_recurrence, epsilon_sample_qmc) ###Output _____no_output_____ ###Markdown Define a `VariabilityProcess` instance ###Code def lookback_fct(stage, scenario_path): return scenario_path[stage]['S'][0] + 1 my_variability = VariabilityProcess(lookback_fct) ###Output _____no_output_____ ###Markdown Forward generation of structure From a given `width_vector` ###Code scen_tree = ScenarioTree.forward_generation_from_given_width(width_vector=[5,20,50,80,100], scenario_process=scenario_process, variability_process=my_variability, alpha=1) scen_tree.plot(var_name='S', figsize=(15,15)) ###Output _____no_output_____ ###Markdown Without a `width_vector` ###Code def lookback_fct(stage, scenario_path): return scenario_path[stage]['S'][0] + 1 def looknow_fct(stage, epsilon): return np.exp(epsilon[0]) def average_fct(stage): return 1 my_variability = VariabilityProcess(lookback_fct, looknow_fct, average_fct) scen_tree = ScenarioTree.forward_generation(n_stages=5, n_scenarios=100, scenario_process=scenario_process, variability_process=my_variability, alpha=1) scen_tree.plot(var_name='S', figsize=(15,15)) ###Output _____no_output_____
mmdetection_training/to_coco_dataset.ipynb
###Markdown Loading the train dataframe ###Code data_dir = '/data/kaggle_data/' df = pd.read_csv(data_dir + 'train.csv') df.head() def rle2mask(rle, img_w, img_h): ## transforming the string into an array of shape (2, N) array = np.fromiter(rle.split(), dtype = np.uint) array = array.reshape((-1,2)).T array[0] = array[0] - 1 ## decompressing the rle encoding (ie, turning [3, 1, 10, 2] into [3, 4, 10, 11, 12]) # for faster mask construction starts, lenghts = array mask_decompressed = np.concatenate([np.arange(s, s + l, dtype = np.uint) for s, l in zip(starts, lenghts)]) ## Building the binary mask msk_img = np.zeros(img_w * img_h, dtype = np.uint8) msk_img[mask_decompressed] = 1 msk_img = msk_img.reshape((img_h, img_w)) msk_img = np.asfortranarray(msk_img) ## This is important so pycocotools can handle this object return msk_img ###Output _____no_output_____ ###Markdown Minor Sanity Check ###Code rle = df.loc[0, 'annotation'] print(rle) plt.imshow(rle2mask(rle, 704, 520)); ###Output 118145 6 118849 7 119553 8 120257 8 120961 9 121665 10 122369 12 123074 13 123778 14 124482 15 125186 16 125890 17 126594 18 127298 19 128002 20 128706 21 129410 22 130114 23 130818 24 131523 24 132227 25 132931 25 133635 24 134339 24 135043 23 135748 21 136452 19 137157 16 137864 11 138573 4 ###Markdown Function that builds the .json file ###Code from tqdm.notebook import tqdm from pycocotools import mask as maskUtils from joblib import Parallel, delayed def annotate(idx, row, cat_ids): mask = rle2mask(row['annotation'], row['width'], row['height']) # Binary mask c_rle = maskUtils.encode(mask) # Encoding it back to rle (coco format) c_rle['counts'] = c_rle['counts'].decode('utf-8') # converting from binary to utf-8 area = maskUtils.area(c_rle).item() # calculating the area bbox = maskUtils.toBbox(c_rle).astype(int).tolist() # calculating the bboxes annotation = { 'segmentation': c_rle, 'bbox': bbox, 'area': area, 'image_id':row['id'], 'category_id':cat_ids[row['cell_type']], 'iscrowd':0, 'id':idx } return annotation def coco_structure(df, workers = 4): ## Building the header cat_ids = {'astro':1, 'shsy5y':2, 'cort':3} cats =[{'name':name, 'id':id} for name,id in cat_ids.items()] images = [{'id':id, 'width':row.width, 'height':row.height, 'file_name':f'train/{id}.png'} for id,row in df.groupby('id').agg('first').iterrows()] ## Building the annotations annotations = Parallel(n_jobs=workers)(delayed(annotate)(idx, row, cat_ids) for idx, row in tqdm(df.iterrows(), total = len(df))) return {'categories':cats, 'images':images, 'annotations':annotations} import json,itertools root = coco_structure(df) root['annotations'][19000] from sklearn.model_selection import train_test_split train_images, test_images = train_test_split(df.id.unique(), test_size=0.1, random_state=0) train_df = df.query("id in @train_images") test_df = df.query("id in @test_images") assert len(train_df) + len(test_df) == len(df) train_root = coco_structure(train_df) val_root = coco_structure(test_df) mmdet_dir = '/data/mmdet/' with open(mmdet_dir + 'annotations_full.json', 'w', encoding='utf-8') as f: json.dump(root, f, ensure_ascii=True, indent=4) with open(mmdet_dir + 'annotations_train.json', 'w', encoding='utf-8') as f: json.dump(train_root, f, ensure_ascii=True, indent=4) with open(mmdet_dir + 'annotations_val.json', 'w', encoding='utf-8') as f: json.dump(val_root, f, ensure_ascii=True, indent=4) ###Output _____no_output_____
Deep Learning/Course 4 - Convolutional Neural Networks/Art_Generation_with_Neural_Style_Transfer_v3a.ipynb
###Markdown Deep Learning & Art: Neural Style TransferIn this assignment, you will learn about Neural Style Transfer. This algorithm was created by [Gatys et al. (2015).](https://arxiv.org/abs/1508.06576)**In this assignment, you will:**- Implement the neural style transfer algorithm - Generate novel artistic images using your algorithm Most of the algorithms you've studied optimize a cost function to get a set of parameter values. In Neural Style Transfer, you'll optimize a cost function to get pixel values! Updates If you were working on the notebook before this update...* The current notebook is version "3a".* You can find your original work saved in the notebook with the previous version name ("v2") * To view the file directory, go to the menu "File->Open", and this will open a new tab that shows the file directory. List of updates* Use `pprint.PrettyPrinter` to format printing of the vgg model.* computing content cost: clarified and reformatted instructions, fixed broken links, added additional hints for unrolling.* style matrix: clarify two uses of variable "G" by using different notation for gram matrix.* style cost: use distinct notation for gram matrix, added additional hints.* Grammar and wording updates for clarity.* `model_nn`: added hints. ###Code import os import sys import scipy.io import scipy.misc import matplotlib.pyplot as plt from matplotlib.pyplot import imshow from PIL import Image from nst_utils import * import numpy as np import tensorflow as tf import pprint %matplotlib inline ###Output _____no_output_____ ###Markdown 1 - Problem StatementNeural Style Transfer (NST) is one of the most fun techniques in deep learning. As seen below, it merges two images, namely: a **"content" image (C) and a "style" image (S), to create a "generated" image (G**). The generated image G combines the "content" of the image C with the "style" of image S. In this example, you are going to generate an image of the Louvre museum in Paris (content image C), mixed with a painting by Claude Monet, a leader of the impressionist movement (style image S).Let's see how you can do this. 2 - Transfer LearningNeural Style Transfer (NST) uses a previously trained convolutional network, and builds on top of that. The idea of using a network trained on a different task and applying it to a new task is called transfer learning. Following the [original NST paper](https://arxiv.org/abs/1508.06576), we will use the VGG network. Specifically, we'll use VGG-19, a 19-layer version of the VGG network. This model has already been trained on the very large ImageNet database, and thus has learned to recognize a variety of low level features (at the shallower layers) and high level features (at the deeper layers). Run the following code to load parameters from the VGG model. This may take a few seconds. ###Code pp = pprint.PrettyPrinter(indent=4) model = load_vgg_model("pretrained-model/imagenet-vgg-verydeep-19.mat") pp.pprint(model) ###Output { 'avgpool1': <tf.Tensor 'AvgPool:0' shape=(1, 150, 200, 64) dtype=float32>, 'avgpool2': <tf.Tensor 'AvgPool_1:0' shape=(1, 75, 100, 128) dtype=float32>, 'avgpool3': <tf.Tensor 'AvgPool_2:0' shape=(1, 38, 50, 256) dtype=float32>, 'avgpool4': <tf.Tensor 'AvgPool_3:0' shape=(1, 19, 25, 512) dtype=float32>, 'avgpool5': <tf.Tensor 'AvgPool_4:0' shape=(1, 10, 13, 512) dtype=float32>, 'conv1_1': <tf.Tensor 'Relu:0' shape=(1, 300, 400, 64) dtype=float32>, 'conv1_2': <tf.Tensor 'Relu_1:0' shape=(1, 300, 400, 64) dtype=float32>, 'conv2_1': <tf.Tensor 'Relu_2:0' shape=(1, 150, 200, 128) dtype=float32>, 'conv2_2': <tf.Tensor 'Relu_3:0' shape=(1, 150, 200, 128) dtype=float32>, 'conv3_1': <tf.Tensor 'Relu_4:0' shape=(1, 75, 100, 256) dtype=float32>, 'conv3_2': <tf.Tensor 'Relu_5:0' shape=(1, 75, 100, 256) dtype=float32>, 'conv3_3': <tf.Tensor 'Relu_6:0' shape=(1, 75, 100, 256) dtype=float32>, 'conv3_4': <tf.Tensor 'Relu_7:0' shape=(1, 75, 100, 256) dtype=float32>, 'conv4_1': <tf.Tensor 'Relu_8:0' shape=(1, 38, 50, 512) dtype=float32>, 'conv4_2': <tf.Tensor 'Relu_9:0' shape=(1, 38, 50, 512) dtype=float32>, 'conv4_3': <tf.Tensor 'Relu_10:0' shape=(1, 38, 50, 512) dtype=float32>, 'conv4_4': <tf.Tensor 'Relu_11:0' shape=(1, 38, 50, 512) dtype=float32>, 'conv5_1': <tf.Tensor 'Relu_12:0' shape=(1, 19, 25, 512) dtype=float32>, 'conv5_2': <tf.Tensor 'Relu_13:0' shape=(1, 19, 25, 512) dtype=float32>, 'conv5_3': <tf.Tensor 'Relu_14:0' shape=(1, 19, 25, 512) dtype=float32>, 'conv5_4': <tf.Tensor 'Relu_15:0' shape=(1, 19, 25, 512) dtype=float32>, 'input': <tf.Variable 'Variable:0' shape=(1, 300, 400, 3) dtype=float32_ref>} ###Markdown * The model is stored in a python dictionary. * The python dictionary contains key-value pairs for each layer. * The 'key' is the variable name and the 'value' is a tensor for that layer. Assign input image to the model's input layerTo run an image through this network, you just have to feed the image to the model. In TensorFlow, you can do so using the [tf.assign](https://www.tensorflow.org/api_docs/python/tf/assign) function. In particular, you will use the assign function like this: ```pythonmodel["input"].assign(image)```This assigns the image as an input to the model. Activate a layerAfter this, if you want to access the activations of a particular layer, say layer `4_2` when the network is run on this image, you would run a TensorFlow session on the correct tensor `conv4_2`, as follows: ```pythonsess.run(model["conv4_2"])``` 3 - Neural Style Transfer (NST)We will build the Neural Style Transfer (NST) algorithm in three steps:- Build the content cost function $J_{content}(C,G)$- Build the style cost function $J_{style}(S,G)$- Put it together to get $J(G) = \alpha J_{content}(C,G) + \beta J_{style}(S,G)$. 3.1 - Computing the content costIn our running example, the content image C will be the picture of the Louvre Museum in Paris. Run the code below to see a picture of the Louvre. ###Code content_image = scipy.misc.imread("images/louvre.jpg") imshow(content_image); ###Output _____no_output_____ ###Markdown The content image (C) shows the Louvre museum's pyramid surrounded by old Paris buildings, against a sunny sky with a few clouds.** 3.1.1 - Make generated image G match the content of image C** Shallower versus deeper layers* The shallower layers of a ConvNet tend to detect lower-level features such as edges and simple textures.* The deeper layers tend to detect higher-level features such as more complex textures as well as object classes. Choose a "middle" activation layer $a^{[l]}$We would like the "generated" image G to have similar content as the input image C. Suppose you have chosen some layer's activations to represent the content of an image. * In practice, you'll get the most visually pleasing results if you choose a layer in the **middle** of the network--neither too shallow nor too deep. * (After you have finished this exercise, feel free to come back and experiment with using different layers, to see how the results vary.) Forward propagate image "C"* Set the image C as the input to the pretrained VGG network, and run forward propagation. * Let $a^{(C)}$ be the hidden layer activations in the layer you had chosen. (In lecture, we had written this as $a^{[l](C)}$, but here we'll drop the superscript $[l]$ to simplify the notation.) This will be an $n_H \times n_W \times n_C$ tensor. Forward propagate image "G"* Repeat this process with the image G: Set G as the input, and run forward progation. * Let $a^{(G)}$ be the corresponding hidden layer activation. Content Cost Function $J_{content}(C,G)$We will define the content cost function as:$$J_{content}(C,G) = \frac{1}{4 \times n_H \times n_W \times n_C}\sum _{ \text{all entries}} (a^{(C)} - a^{(G)})^2\tag{1} $$* Here, $n_H, n_W$ and $n_C$ are the height, width and number of channels of the hidden layer you have chosen, and appear in a normalization term in the cost. * For clarity, note that $a^{(C)}$ and $a^{(G)}$ are the 3D volumes corresponding to a hidden layer's activations. * In order to compute the cost $J_{content}(C,G)$, it might also be convenient to unroll these 3D volumes into a 2D matrix, as shown below.* Technically this unrolling step isn't needed to compute $J_{content}$, but it will be good practice for when you do need to carry out a similar operation later for computing the style cost $J_{style}$. **Exercise:** Compute the "content cost" using TensorFlow. **Instructions**: The 3 steps to implement this function are:1. Retrieve dimensions from `a_G`: - To retrieve dimensions from a tensor `X`, use: `X.get_shape().as_list()`2. Unroll `a_C` and `a_G` as explained in the picture above - You'll likey want to use these functions: [tf.transpose](https://www.tensorflow.org/versions/r1.15/api_docs/python/tf/transpose) and [tf.reshape](https://www.tensorflow.org/versions/r1.15/api_docs/python/tf/reshape).3. Compute the content cost: - You'll likely want to use these functions: [tf.reduce_sum](https://www.tensorflow.org/api_docs/python/tf/reduce_sum), [tf.square](https://www.tensorflow.org/api_docs/python/tf/square) and [tf.subtract](https://www.tensorflow.org/api_docs/python/tf/subtract). Additional Hints for "Unrolling"* To unroll the tensor, we want the shape to change from $(m,n_H,n_W,n_C)$ to $(m, n_H \times n_W, n_C)$.* `tf.reshape(tensor, shape)` takes a list of integers that represent the desired output shape.* For the `shape` parameter, a `-1` tells the function to choose the correct dimension size so that the output tensor still contains all the values of the original tensor.* So tf.reshape(a_C, shape=[m, n_H * n_W, n_C]) gives the same result as tf.reshape(a_C, shape=[m, -1, n_C]).* If you prefer to re-order the dimensions, you can use `tf.transpose(tensor, perm)`, where `perm` is a list of integers containing the original index of the dimensions. * For example, `tf.transpose(a_C, perm=[0,3,1,2])` changes the dimensions from $(m, n_H, n_W, n_C)$ to $(m, n_C, n_H, n_W)$.* There is more than one way to unroll the tensors.* Notice that it's not necessary to use tf.transpose to 'unroll' the tensors in this case but this is a useful function to practice and understand for other situations that you'll encounter. ###Code # GRADED FUNCTION: compute_content_cost def compute_content_cost(a_C, a_G): """ Computes the content cost Arguments: a_C -- tensor of dimension (1, n_H, n_W, n_C), hidden layer activations representing content of the image C a_G -- tensor of dimension (1, n_H, n_W, n_C), hidden layer activations representing content of the image G Returns: J_content -- scalar that you compute using equation 1 above. """ ### START CODE HERE ### # Retrieve dimensions from a_G (≈1 line) m, n_H, n_W, n_C = a_G.get_shape().as_list() # Reshape a_C and a_G (≈2 lines) a_C_unrolled = tf.reshape(a_C, shape=[m, n_H * n_W, n_C]) a_G_unrolled = tf.reshape(a_G, shape=[m, n_H * n_W, n_C]) # compute the cost with tensorflow (≈1 line) J_content = 1/(4*n_H*n_W*n_C) * tf.reduce_sum(tf.square(tf.subtract(a_C_unrolled, a_G_unrolled))) ### END CODE HERE ### return J_content tf.reset_default_graph() with tf.Session() as test: tf.set_random_seed(1) a_C = tf.random_normal([1, 4, 4, 3], mean=1, stddev=4) a_G = tf.random_normal([1, 4, 4, 3], mean=1, stddev=4) J_content = compute_content_cost(a_C, a_G) print("J_content = " + str(J_content.eval())) ###Output J_content = 6.76559 ###Markdown **Expected Output**: **J_content** 6.76559 What you should remember- The content cost takes a hidden layer activation of the neural network, and measures how different $a^{(C)}$ and $a^{(G)}$ are. - When we minimize the content cost later, this will help make sure $G$ has similar content as $C$. 3.2 - Computing the style costFor our running example, we will use the following style image: ###Code style_image = scipy.misc.imread("images/monet_800600.jpg") imshow(style_image); ###Output _____no_output_____ ###Markdown This was painted in the style of *[impressionism](https://en.wikipedia.org/wiki/Impressionism)*.Lets see how you can now define a "style" cost function $J_{style}(S,G)$. 3.2.1 - Style matrix Gram matrix* The style matrix is also called a "Gram matrix." * In linear algebra, the Gram matrix G of a set of vectors $(v_{1},\dots ,v_{n})$ is the matrix of dot products, whose entries are ${\displaystyle G_{ij} = v_{i}^T v_{j} = np.dot(v_{i}, v_{j}) }$. * In other words, $G_{ij}$ compares how similar $v_i$ is to $v_j$: If they are highly similar, you would expect them to have a large dot product, and thus for $G_{ij}$ to be large. Two meanings of the variable $G$* Note that there is an unfortunate collision in the variable names used here. We are following common terminology used in the literature. * $G$ is used to denote the Style matrix (or Gram matrix) * $G$ also denotes the generated image. * For this assignment, we will use $G_{gram}$ to refer to the Gram matrix, and $G$ to denote the generated image. Compute $G_{gram}$In Neural Style Transfer (NST), you can compute the Style matrix by multiplying the "unrolled" filter matrix with its transpose:$$\mathbf{G}_{gram} = \mathbf{A}_{unrolled} \mathbf{A}_{unrolled}^T$$ $G_{(gram)i,j}$: correlationThe result is a matrix of dimension $(n_C,n_C)$ where $n_C$ is the number of filters (channels). The value $G_{(gram)i,j}$ measures how similar the activations of filter $i$ are to the activations of filter $j$. $G_{(gram),i,i}$: prevalence of patterns or textures* The diagonal elements $G_{(gram)ii}$ measure how "active" a filter $i$ is. * For example, suppose filter $i$ is detecting vertical textures in the image. Then $G_{(gram)ii}$ measures how common vertical textures are in the image as a whole.* If $G_{(gram)ii}$ is large, this means that the image has a lot of vertical texture. By capturing the prevalence of different types of features ($G_{(gram)ii}$), as well as how much different features occur together ($G_{(gram)ij}$), the Style matrix $G_{gram}$ measures the style of an image. **Exercise**:* Using TensorFlow, implement a function that computes the Gram matrix of a matrix A. * The formula is: The gram matrix of A is $G_A = AA^T$. * You may use these functions: [matmul](https://www.tensorflow.org/api_docs/python/tf/matmul) and [transpose](https://www.tensorflow.org/api_docs/python/tf/transpose). ###Code # GRADED FUNCTION: gram_matrix def gram_matrix(A): """ Argument: A -- matrix of shape (n_C, n_H*n_W) Returns: GA -- Gram matrix of A, of shape (n_C, n_C) """ ### START CODE HERE ### (≈1 line) GA = tf.matmul(A, A, transpose_b=True) ### END CODE HERE ### return GA tf.reset_default_graph() with tf.Session() as test: tf.set_random_seed(1) A = tf.random_normal([3, 2*1], mean=1, stddev=4) GA = gram_matrix(A) print("GA = \n" + str(GA.eval())) ###Output GA = [[ 6.42230511 -4.42912197 -2.09668207] [ -4.42912197 19.46583748 19.56387138] [ -2.09668207 19.56387138 20.6864624 ]] ###Markdown **Expected Output**: **GA** [[ 6.42230511 -4.42912197 -2.09668207] [ -4.42912197 19.46583748 19.56387138] [ -2.09668207 19.56387138 20.6864624 ]] 3.2.2 - Style cost Your goal will be to minimize the distance between the Gram matrix of the "style" image S and the gram matrix of the "generated" image G. * For now, we are using only a single hidden layer $a^{[l]}$. * The corresponding style cost for this layer is defined as: $$J_{style}^{[l]}(S,G) = \frac{1}{4 \times {n_C}^2 \times (n_H \times n_W)^2} \sum _{i=1}^{n_C}\sum_{j=1}^{n_C}(G^{(S)}_{(gram)i,j} - G^{(G)}_{(gram)i,j})^2\tag{2} $$* $G_{gram}^{(S)}$ Gram matrix of the "style" image.* $G_{gram}^{(G)}$ Gram matrix of the "generated" image.* Remember, this cost is computed using the hidden layer activations for a particular hidden layer in the network $a^{[l]}$ **Exercise**: Compute the style cost for a single layer. **Instructions**: The 3 steps to implement this function are:1. Retrieve dimensions from the hidden layer activations a_G: - To retrieve dimensions from a tensor X, use: `X.get_shape().as_list()`2. Unroll the hidden layer activations a_S and a_G into 2D matrices, as explained in the picture above (see the images in the sections "computing the content cost" and "style matrix"). - You may use [tf.transpose](https://www.tensorflow.org/versions/r1.15/api_docs/python/tf/transpose) and [tf.reshape](https://www.tensorflow.org/versions/r1.15/api_docs/python/tf/reshape).3. Compute the Style matrix of the images S and G. (Use the function you had previously written.) 4. Compute the Style cost: - You may find [tf.reduce_sum](https://www.tensorflow.org/api_docs/python/tf/reduce_sum), [tf.square](https://www.tensorflow.org/api_docs/python/tf/square) and [tf.subtract](https://www.tensorflow.org/api_docs/python/tf/subtract) useful. Additional Hints* Since the activation dimensions are $(m, n_H, n_W, n_C)$ whereas the desired unrolled matrix shape is $(n_C, n_H*n_W)$, the order of the filter dimension $n_C$ is changed. So `tf.transpose` can be used to change the order of the filter dimension.* for the product $\mathbf{G}_{gram} = \mathbf{A}_{} \mathbf{A}_{}^T$, you will also need to specify the `perm` parameter for the `tf.transpose` function. ###Code # GRADED FUNCTION: compute_layer_style_cost def compute_layer_style_cost(a_S, a_G): """ Arguments: a_S -- tensor of dimension (1, n_H, n_W, n_C), hidden layer activations representing style of the image S a_G -- tensor of dimension (1, n_H, n_W, n_C), hidden layer activations representing style of the image G Returns: J_style_layer -- tensor representing a scalar value, style cost defined above by equation (2) """ ### START CODE HERE ### # Retrieve dimensions from a_G (≈1 line) m, n_H, n_W, n_C = a_G.get_shape().as_list() # Reshape the images to have them of shape (n_C, n_H*n_W) (≈2 lines) a_S = tf.transpose(tf.reshape(a_S, shape=[-1, n_C])) a_G = tf.transpose(tf.reshape(a_G, shape=[-1, n_C])) # Computing gram_matrices for both images S and G (≈2 lines) GS = gram_matrix(a_S) GG = gram_matrix(a_G) # Computing the loss (≈1 line) J_style_layer = 1 / (2*n_C*n_H*n_W)**2 * tf.reduce_sum((GS-GG)**2) ### END CODE HERE ### return J_style_layer tf.reset_default_graph() with tf.Session() as test: tf.set_random_seed(1) a_S = tf.random_normal([1, 4, 4, 3], mean=1, stddev=4) a_G = tf.random_normal([1, 4, 4, 3], mean=1, stddev=4) J_style_layer = compute_layer_style_cost(a_S, a_G) print("J_style_layer = " + str(J_style_layer.eval())) ###Output J_style_layer = 9.19028 ###Markdown **Expected Output**: **J_style_layer** 9.19028 3.2.3 Style Weights* So far you have captured the style from only one layer. * We'll get better results if we "merge" style costs from several different layers. * Each layer will be given weights ($\lambda^{[l]}$) that reflect how much each layer will contribute to the style.* After completing this exercise, feel free to come back and experiment with different weights to see how it changes the generated image $G$.* By default, we'll give each layer equal weight, and the weights add up to 1. ($\sum_{l}^L\lambda^{[l]} = 1$) ###Code STYLE_LAYERS = [ ('conv1_1', 0.2), ('conv2_1', 0.2), ('conv3_1', 0.2), ('conv4_1', 0.2), ('conv5_1', 0.2)] ###Output _____no_output_____ ###Markdown You can combine the style costs for different layers as follows:$$J_{style}(S,G) = \sum_{l} \lambda^{[l]} J^{[l]}_{style}(S,G)$$where the values for $\lambda^{[l]}$ are given in `STYLE_LAYERS`. Exercise: compute style cost* We've implemented a compute_style_cost(...) function. * It calls your `compute_layer_style_cost(...)` several times, and weights their results using the values in `STYLE_LAYERS`. * Please read over it to make sure you understand what it's doing. Description of `compute_style_cost`For each layer:* Select the activation (the output tensor) of the current layer.* Get the style of the style image "S" from the current layer.* Get the style of the generated image "G" from the current layer.* Compute the "style cost" for the current layer* Add the weighted style cost to the overall style cost (J_style)Once you're done with the loop: * Return the overall style cost. ###Code def compute_style_cost(model, STYLE_LAYERS): """ Computes the overall style cost from several chosen layers Arguments: model -- our tensorflow model STYLE_LAYERS -- A python list containing: - the names of the layers we would like to extract style from - a coefficient for each of them Returns: J_style -- tensor representing a scalar value, style cost defined above by equation (2) """ # initialize the overall style cost J_style = 0 for layer_name, coeff in STYLE_LAYERS: # Select the output tensor of the currently selected layer out = model[layer_name] # Set a_S to be the hidden layer activation from the layer we have selected, by running the session on out a_S = sess.run(out) # Set a_G to be the hidden layer activation from same layer. Here, a_G references model[layer_name] # and isn't evaluated yet. Later in the code, we'll assign the image G as the model input, so that # when we run the session, this will be the activations drawn from the appropriate layer, with G as input. a_G = out # Compute style_cost for the current layer J_style_layer = compute_layer_style_cost(a_S, a_G) # Add coeff * J_style_layer of this layer to overall style cost J_style += coeff * J_style_layer return J_style ###Output _____no_output_____ ###Markdown **Note**: In the inner-loop of the for-loop above, `a_G` is a tensor and hasn't been evaluated yet. It will be evaluated and updated at each iteration when we run the TensorFlow graph in model_nn() below.<!-- How do you choose the coefficients for each layer? The deeper layers capture higher-level concepts, and the features in the deeper layers are less localized in the image relative to each other. So if you want the generated image to softly follow the style image, try choosing larger weights for deeper layers and smaller weights for the first layers. In contrast, if you want the generated image to strongly follow the style image, try choosing smaller weights for deeper layers and larger weights for the first layers!--> What you should remember- The style of an image can be represented using the Gram matrix of a hidden layer's activations. - We get even better results by combining this representation from multiple different layers. - This is in contrast to the content representation, where usually using just a single hidden layer is sufficient.- Minimizing the style cost will cause the image $G$ to follow the style of the image $S$. 3.3 - Defining the total cost to optimize Finally, let's create a cost function that minimizes both the style and the content cost. The formula is: $$J(G) = \alpha J_{content}(C,G) + \beta J_{style}(S,G)$$**Exercise**: Implement the total cost function which includes both the content cost and the style cost. ###Code # GRADED FUNCTION: total_cost def total_cost(J_content, J_style, alpha = 10, beta = 40): """ Computes the total cost function Arguments: J_content -- content cost coded above J_style -- style cost coded above alpha -- hyperparameter weighting the importance of the content cost beta -- hyperparameter weighting the importance of the style cost Returns: J -- total cost as defined by the formula above. """ ### START CODE HERE ### (≈1 line) J = alpha*J_content + beta*J_style ### END CODE HERE ### return J tf.reset_default_graph() with tf.Session() as test: np.random.seed(3) J_content = np.random.randn() J_style = np.random.randn() J = total_cost(J_content, J_style) print("J = " + str(J)) ###Output J = 35.34667875478276 ###Markdown **Expected Output**: **J** 35.34667875478276 What you should remember- The total cost is a linear combination of the content cost $J_{content}(C,G)$ and the style cost $J_{style}(S,G)$.- $\alpha$ and $\beta$ are hyperparameters that control the relative weighting between content and style. 4 - Solving the optimization problem Finally, let's put everything together to implement Neural Style Transfer!Here's what the program will have to do:1. Create an Interactive Session2. Load the content image 3. Load the style image4. Randomly initialize the image to be generated 5. Load the VGG19 model7. Build the TensorFlow graph: - Run the content image through the VGG19 model and compute the content cost - Run the style image through the VGG19 model and compute the style cost - Compute the total cost - Define the optimizer and the learning rate8. Initialize the TensorFlow graph and run it for a large number of iterations, updating the generated image at every step.Lets go through the individual steps in detail. Interactive SessionsYou've previously implemented the overall cost $J(G)$. We'll now set up TensorFlow to optimize this with respect to $G$. * To do so, your program has to reset the graph and use an "[Interactive Session](https://www.tensorflow.org/api_docs/python/tf/InteractiveSession)". * Unlike a regular session, the "Interactive Session" installs itself as the default session to build a graph. * This allows you to run variables without constantly needing to refer to the session object (calling "sess.run()"), which simplifies the code. Start the interactive session. ###Code # Reset the graph tf.reset_default_graph() # Start interactive session sess = tf.InteractiveSession() ###Output _____no_output_____ ###Markdown Content imageLet's load, reshape, and normalize our "content" image (the Louvre museum picture): ###Code content_image = scipy.misc.imread("images/louvre_small.jpg") content_image = reshape_and_normalize_image(content_image) ###Output _____no_output_____ ###Markdown Style imageLet's load, reshape and normalize our "style" image (Claude Monet's painting): ###Code style_image = scipy.misc.imread("images/monet.jpg") style_image = reshape_and_normalize_image(style_image) ###Output _____no_output_____ ###Markdown Generated image correlated with content imageNow, we initialize the "generated" image as a noisy image created from the content_image.* The generated image is slightly correlated with the content image.* By initializing the pixels of the generated image to be mostly noise but slightly correlated with the content image, this will help the content of the "generated" image more rapidly match the content of the "content" image. * Feel free to look in `nst_utils.py` to see the details of `generate_noise_image(...)`; to do so, click "File-->Open..." at the upper-left corner of this Jupyter notebook. ###Code generated_image = generate_noise_image(content_image) imshow(generated_image[0]); ###Output _____no_output_____ ###Markdown Load pre-trained VGG19 modelNext, as explained in part (2), let's load the VGG19 model. ###Code model = load_vgg_model("pretrained-model/imagenet-vgg-verydeep-19.mat") ###Output _____no_output_____ ###Markdown Content CostTo get the program to compute the content cost, we will now assign `a_C` and `a_G` to be the appropriate hidden layer activations. We will use layer `conv4_2` to compute the content cost. The code below does the following:1. Assign the content image to be the input to the VGG model.2. Set a_C to be the tensor giving the hidden layer activation for layer "conv4_2".3. Set a_G to be the tensor giving the hidden layer activation for the same layer. 4. Compute the content cost using a_C and a_G.**Note**: At this point, a_G is a tensor and hasn't been evaluated. It will be evaluated and updated at each iteration when we run the Tensorflow graph in model_nn() below. ###Code # Assign the content image to be the input of the VGG model. sess.run(model['input'].assign(content_image)) # Select the output tensor of layer conv4_2 out = model['conv4_2'] # Set a_C to be the hidden layer activation from the layer we have selected a_C = sess.run(out) # Set a_G to be the hidden layer activation from same layer. Here, a_G references model['conv4_2'] # and isn't evaluated yet. Later in the code, we'll assign the image G as the model input, so that # when we run the session, this will be the activations drawn from the appropriate layer, with G as input. a_G = out # Compute the content cost J_content = compute_content_cost(a_C, a_G) ###Output _____no_output_____ ###Markdown Style cost ###Code # Assign the input of the model to be the "style" image sess.run(model['input'].assign(style_image)) # Compute the style cost J_style = compute_style_cost(model, STYLE_LAYERS) ###Output _____no_output_____ ###Markdown Exercise: total cost* Now that you have J_content and J_style, compute the total cost J by calling `total_cost()`. * Use `alpha = 10` and `beta = 40`. ###Code ### START CODE HERE ### (1 line) J = total_cost(J_content, J_style, alpha=10, beta=40) ### END CODE HERE ### ###Output _____no_output_____ ###Markdown Optimizer* Use the Adam optimizer to minimize the total cost `J`.* Use a learning rate of 2.0. * [Adam Optimizer documentation](https://www.tensorflow.org/api_docs/python/tf/train/AdamOptimizer) ###Code # define optimizer (1 line) optimizer = tf.train.AdamOptimizer(2.0) # define train_step (1 line) train_step = optimizer.minimize(J) ###Output _____no_output_____ ###Markdown Exercise: implement the model* Implement the model_nn() function. * The function **initializes** the variables of the tensorflow graph, * **assigns** the input image (initial generated image) as the input of the VGG19 model * and **runs** the `train_step` tensor (it was created in the code above this function) for a large number of steps. Hints* To initialize global variables, use this: ```Pythonsess.run(tf.global_variables_initializer())```* Run `sess.run()` to evaluate a variable.* [assign](https://www.tensorflow.org/versions/r1.14/api_docs/python/tf/assign) can be used like this:```pythonmodel["input"].assign(image)``` ###Code def model_nn(sess, input_image, num_iterations = 200): # Initialize global variables (you need to run the session on the initializer) ### START CODE HERE ### (1 line) sess.run(tf.global_variables_initializer()) ### END CODE HERE ### # Run the noisy input image (initial generated image) through the model. Use assign(). ### START CODE HERE ### (1 line) sess.run(model['input'].assign(input_image)) ### END CODE HERE ### for i in range(num_iterations): # Run the session on the train_step to minimize the total cost ### START CODE HERE ### (1 line) sess.run(train_step) ### END CODE HERE ### # Compute the generated image by running the session on the current model['input'] ### START CODE HERE ### (1 line) generated_image = sess.run(model['input']) ### END CODE HERE ### # Print every 20 iteration. if i%20 == 0: Jt, Jc, Js = sess.run([J, J_content, J_style]) print("Iteration " + str(i) + " :") print("total cost = " + str(Jt)) print("content cost = " + str(Jc)) print("style cost = " + str(Js)) # save current generated image in the "/output" directory save_image("output/" + str(i) + ".png", generated_image) # save last generated image save_image('output/generated_image.jpg', generated_image) return generated_image ###Output _____no_output_____ ###Markdown Run the following cell to generate an artistic image. It should take about 3min on CPU for every 20 iterations but you start observing attractive results after ≈140 iterations. Neural Style Transfer is generally trained using GPUs. ###Code model_nn(sess, generated_image) ###Output Iteration 0 : total cost = 5.05035e+09 content cost = 7877.67 style cost = 1.26257e+08 Iteration 20 : total cost = 9.43258e+08 content cost = 15187.1 style cost = 2.35777e+07 Iteration 40 : total cost = 4.84866e+08 content cost = 16786.0 style cost = 1.21175e+07 Iteration 60 : total cost = 3.12535e+08 content cost = 17466.7 style cost = 7.80901e+06 Iteration 80 : total cost = 2.28121e+08 content cost = 17716.5 style cost = 5.6986e+06 Iteration 100 : total cost = 1.80686e+08 content cost = 17896.0 style cost = 4.51267e+06 Iteration 120 : total cost = 1.49982e+08 content cost = 18027.8 style cost = 3.74505e+06 Iteration 140 : total cost = 1.27758e+08 content cost = 18180.9 style cost = 3.18942e+06 Iteration 160 : total cost = 1.10779e+08 content cost = 18341.4 style cost = 2.76489e+06 Iteration 180 : total cost = 9.74276e+07 content cost = 18488.1 style cost = 2.43107e+06
Classification_on_Gas_Array_Dataset.ipynb
###Markdown EDA on Gas Array dataset, this is taken fron UCI Machine learning repository ###Code import os,sys from scipy import stats import numpy as np import pandas as pd import matplotlib.pyplot as plt import matplotlib.animation as animation import glob files= glob.glob("batch*.dat") for f in files: df= pd.read_csv(f, sep="\s+",index_col=0, header=None) for col in df.columns.values: df[col]= df[col].apply(lambda x: float(str(x).split(":")[1])) df= df.rename_axis("Gas").reset_index() df df.groupby(["Gas"]) gas_1= df[df["Gas"]==1] gas_1 #When I did PCA, I found that I need to sort the gas since the length did not match for gas 1 df= df.sort_values(by=["Gas"]) ###Output _____no_output_____ ###Markdown PCA for Dimensionality Reduction ###Code from sklearn.preprocessing import StandardScaler scaler = StandardScaler() X_scaled = scaler.fit_transform(df) X_scaled.shape #Principle Component Analysis from sklearn.decomposition import PCA pca = PCA(n_components=3) xtrain= pca.fit_transform(X_scaled) #Finding out the length of each gas for i in range(1,7): print("length for gas "+str(i)) print(df[df["Gas"]==i].shape[0]) %matplotlib inline fig = plt.figure(figsize=(8,8)) ax = fig.add_subplot(111, projection='3d') plt.rcParams['legend.fontsize'] = 11 ax.plot(xtrain[0:164,0], xtrain[0:164,1], xtrain[0:164,2], 'o', markersize=3, label='Ethanol') ax.plot(xtrain[165:(164+334),0], xtrain[165:(164+334),1], xtrain[165:(164+334),2], 'o', markersize=3, label='Ethylene') ax.plot(xtrain[498:597,0], xtrain[498:597,1], xtrain[498:597,2], 'o', markersize=3, label='Ammonia') ax.plot(xtrain[598:707,0], xtrain[598:707,1], xtrain[598:707,2], 'o', markersize=2.5, label='Acetaldehyde') ax.plot(xtrain[708:1239,0], xtrain[708:1239,1], xtrain[708:1239,2], 'o', markersize=2.5, label='Acetone') ax.plot(xtrain[1230:1235,0], xtrain[1230:1235,1], xtrain[1230:1235,2], 'o', markersize=2.5, label='Toluene') ax.set_xlabel('PC1') ax.set_xlim3d(-15, 80) ax.set_ylabel('PC2') ax.set_ylim3d(-300, 50) ax.set_zlabel('PC3') ax.set_zlim3d(0, 5) ax.legend(loc='upper right') plt.show() fig = plt.figure(figsize=(8,8)) ax = fig.add_subplot(111, projection='3d') plt.rcParams['legend.fontsize'] = 11 ax.plot(xtrain[0:164,2],xtrain[0:164,0], xtrain[0:164,1], 'o', markersize=3, label='Ethanol') ax.plot(xtrain[165:(164+334),2],xtrain[165:(164+334),0], xtrain[165:(164+334),1], 'o', markersize=3, label='Ethylene') ax.plot(xtrain[498:597,2], xtrain[498:597,0], xtrain[498:597,1], 'o', markersize=3, label='Ammonia') ax.plot(xtrain[598:707,2], xtrain[598:707,0], xtrain[598:707,1], 'o', markersize=2.5, label='Acetaldehyde') ax.plot(xtrain[708:1239,2], xtrain[708:1239,0], xtrain[708:1239,1], 'o', markersize=2.5, label='Acetone') ax.plot(xtrain[1230:1235,2], xtrain[1230:1235,0], xtrain[1230:1235,1], 'o', markersize=2.5, label='Toluene') ax.set_xlabel('PC3') ax.set_ylabel('PC2') ax.set_zlabel('PC1') ax.set_zlim3d(0, 20) ax.legend(loc='upper right') plt.show() ###Output _____no_output_____ ###Markdown Using LDA for Classification ###Code from sklearn.discriminant_analysis import LinearDiscriminantAnalysis as LDA from sklearn.model_selection import train_test_split y= np.array(df.iloc[:,0]) scaler = StandardScaler() X_scaled = scaler.fit_transform(df) x_train, x_test, y_train, y_test = train_test_split(X_scaled, y, test_size=.1,random_state=42) lda = LDA(n_components=3) np.unique(y_train) #Make sure all of our labels are in the training set lda_object= lda.fit(x_train, y_train) print(lda_object.score(x_test, y_test)) #All correct classification for test set! #Creating confusion matrix from sklearn.metrics import classification_report, confusion_matrix import seaborn as sns y_pred= lda_object.predict(x_test) cm= confusion_matrix(y_test, y_pred) ax=plt.subplot() sns.heatmap(cm, annot=True) targets= list(range(1,7)) ax.set_xlabel("Predicted Labels") ax.set_ylabel("True Labels") ax.set_title("Confusion Matrix from LDA") ax.xaxis.set_ticklabels(targets) ax.yaxis.set_ticklabels(targets) ###Output _____no_output_____
examples/raster/extract_load_sample_subset_dask.ipynb
###Markdown Load Sample Subset from Extracted Data with dask ###Code import fnmatch import geopandas as gpd import os import pandas as pd from pathlib import Path from eobox.raster import extraction from eobox import sampledata %matplotlib inline dataset = sampledata.get_dataset("s2l1c") src_vector = dataset["vector_file"] burn_attribute = "pid" # should be unique for the polygons and not contain zero src_raster = fnmatch.filter(dataset["raster_files"], "*B0[2,3,4,8]*") # 10 m bands dst_names = ["_".join(Path(src).stem.split("_")[1::]) for src in src_raster] extraction_dir = Path("./xxx_uncontrolled/s2l1c_ref__s2l1c/s2_l1c/10m") extraction.extract(src_vector=src_vector, burn_attribute=burn_attribute, src_raster=src_raster, dst_names=dst_names, dst_dir=extraction_dir) df_extracted = extraction.load_extracted(extraction_dir, "*pid.npy") print(df_extracted.shape) display(df_extracted.head()) index_29 = (df_extracted["aux_vector_pid"] == 29) index_29.sum() print(df_extracted[index_29].shape) display(df_extracted[index_29].head(2)) display(df_extracted[index_29].tail(2)) df_extracted_29 = extraction.load_extracted(extraction_dir, index=index_29) print(df_extracted_29.shape) df_extracted_29.head() ###Output (109, 7) ###Markdown Load with dask - WIP ###Code npy_path_list = extraction.get_paths_of_extracted(extraction_dir) %load_ext autoreload %autoreload 2 ddf = extraction.load_extracted_dask(npy_path_list, index=None) ddf ddf_29 = extraction.load_extracted_dask(npy_path_list, index=index_29) ddf_29 df_extracted_29.columns ddf_29_df = ddf_29.compute() ddf_29_df.head() assert ddf_29_df.shape == df_extracted_29.shape assert (ddf_29_df.columns == df_extracted_29.columns).all() ###Output _____no_output_____ ###Markdown Note that the index does not match! ###Code ddf_29_df.index == df_extracted_29.index ###Output _____no_output_____ ###Markdown And therefore we cannot compare the dataframes. ###Code ddf_29_df == df_extracted_29 ###Output _____no_output_____
Presentations/Intro-to-Jupyter-Notebooks/6.How-Can-I-Convert-SQL-to-Notebooks/How-Can-I-Convert-SQL-to-Notebooks.ipynb
###Markdown ➕ ➕ = ❤ PowerShell to convert .SQL files into Notebooks First up, install the `PowerShellNotebook` module from the PowerShell Gallery... ###Code Install-Module PowerShellNotebook -Force ###Output _____no_output_____ ###Markdown (optional step, for demo purposes) Make a directory to store some .SQL files ###Code mkdir c:\temp\SQLFiles ###Output _____no_output_____ ###Markdown Switch to a folder where you have a lot of `.SQL` files. ###Code cd c:\temp\SQLFiles ###Output _____no_output_____ ###Markdown If you don't have any .SQL files handy, download some from GitHub (use the step below.) ###Code irm https://gist.githubusercontent.com/MsSQLGirl/799d3613c6b3aba58cb4decbb30da139/raw/433ffdcefcbc4db0e5f5c9b53e1e9bde139f885d/SQLSample_01_ServerProperties.sql > '.\SQLSample_01_ServerProperties.sql' irm https://gist.githubusercontent.com/MsSQLGirl/799d3613c6b3aba58cb4decbb30da139/raw/433ffdcefcbc4db0e5f5c9b53e1e9bde139f885d/SQLSample_02_WWI.sql > '.\SQLSample_02_WWI.sql' irm https://gist.githubusercontent.com/MsSQLGirl/799d3613c6b3aba58cb4decbb30da139/raw/433ffdcefcbc4db0e5f5c9b53e1e9bde139f885d/SQLSample_03_StringDynamics.sql > '.\SQLSample_03_StringDynamics.sql' irm https://gist.githubusercontent.com/MsSQLGirl/799d3613c6b3aba58cb4decbb30da139/raw/433ffdcefcbc4db0e5f5c9b53e1e9bde139f885d/SQLSample_04_VariableBatchConundrum.sql > '.\SQLSample_04_VariableBatchConundrum.sql' irm https://gist.githubusercontent.com/vickyharp/d188b5ab2ceec12896b4a514ea52e5b6/raw/f2e4b1bc4d6a2fb293aebb9989129bd722d6a25e/AdventureWorksAddress.sql > '.\AdventureWorksAddress.sql' irm https://gist.githubusercontent.com/vickyharp/6c254d63d3de9850b20b5861b061b5f5/raw/0ff7d7c5da9f216fb7534994c8be60fe0e7efaf3/AdventureWorksMultiStatementSBatch.sql > '.\AdventureWorksMultiStatementSBatch.sql' irm https://raw.githubusercontent.com/microsoft/tigertoolbox/master/BPCheck/Check_BP_Servers.sql > '.\Check_BP_Servers.sql' ###Output _____no_output_____ ###Markdown Here's the part where it gets good! Now use `dir` to loop over all the .SQL files in the directory, and use the `ConvertTo-SQLNoteBook` function to turn them into SQL Notebooks. ###Code dir -Filter *.SQL | foreach { ConvertTo-SQLNoteBook -InputFileName $_.FullName -OutputNotebookName (Join-Path -Path (Split-Path -Path $_.FullName -Parent) -ChildPath ($_.Name -replace '.sql', '.ipynb')) } ###Output _____no_output_____ ###Markdown Check inside that same directory, and you should now see a bunch of .IPYNB files. ###Code dir -Filter *.ipynb ###Output
Python/Traditional algrothims/Trees/Lightgbm/lightgbm_cheatsheet.ipynb
###Markdown LightGBM用法速查表 by 寒小阳 1.读取csv数据并指定参数建模**by 寒小阳** ###Code # coding: utf-8 import json import lightgbm as lgb import pandas as pd from sklearn.metrics import mean_squared_error # 加载数据集合 print('Load data...') df_train = pd.read_csv('./data/regression.train.txt', header=None, sep='\t') df_test = pd.read_csv('./data/regression.test.txt', header=None, sep='\t') # 设定训练集和测试集 y_train = df_train[0].values y_test = df_test[0].values X_train = df_train.drop(0, axis=1).values X_test = df_test.drop(0, axis=1).values # 构建lgb中的Dataset格式 lgb_train = lgb.Dataset(X_train, y_train) lgb_eval = lgb.Dataset(X_test, y_test, reference=lgb_train) # 敲定好一组参数 params = { 'task': 'train', 'boosting_type': 'gbdt', 'objective': 'regression', 'metric': {'l2', 'auc'}, 'num_leaves': 31, 'learning_rate': 0.05, 'feature_fraction': 0.9, 'bagging_fraction': 0.8, 'bagging_freq': 5, 'verbose': 0 } print('开始训练...') # 训练 gbm = lgb.train(params, lgb_train, num_boost_round=20, valid_sets=lgb_eval, early_stopping_rounds=5) # 保存模型 print('保存模型...') # 保存模型到文件中 gbm.save_model('model.txt') print('开始预测...') # 预测 y_pred = gbm.predict(X_test, num_iteration=gbm.best_iteration) # 评估 print('预估结果的rmse为:') print(mean_squared_error(y_test, y_pred) ** 0.5) ###Output Load data... 开始训练... [1] valid_0's l2: 0.24288 valid_0's auc: 0.764496 Training until validation scores don't improve for 5 rounds. [2] valid_0's l2: 0.239307 valid_0's auc: 0.766173 [3] valid_0's l2: 0.235559 valid_0's auc: 0.785547 [4] valid_0's l2: 0.230771 valid_0's auc: 0.797786 [5] valid_0's l2: 0.226297 valid_0's auc: 0.805155 [6] valid_0's l2: 0.223692 valid_0's auc: 0.800979 [7] valid_0's l2: 0.220941 valid_0's auc: 0.806566 [8] valid_0's l2: 0.217982 valid_0's auc: 0.808566 [9] valid_0's l2: 0.215351 valid_0's auc: 0.809041 [10] valid_0's l2: 0.213064 valid_0's auc: 0.805953 [11] valid_0's l2: 0.211053 valid_0's auc: 0.804631 [12] valid_0's l2: 0.209336 valid_0's auc: 0.802922 [13] valid_0's l2: 0.207492 valid_0's auc: 0.802011 [14] valid_0's l2: 0.206016 valid_0's auc: 0.80193 Early stopping, best iteration is: [9] valid_0's l2: 0.215351 valid_0's auc: 0.809041 保存模型... 开始预测... 预估结果的rmse为: 0.4640593794679212 ###Markdown 2.添加样本权重训练**by 寒小阳** ###Code # coding: utf-8 import json import lightgbm as lgb import pandas as pd import numpy as np from sklearn.metrics import mean_squared_error import warnings warnings.filterwarnings("ignore") # 加载数据集 print('加载数据...') df_train = pd.read_csv('./data/binary.train', header=None, sep='\t') df_test = pd.read_csv('./data/binary.test', header=None, sep='\t') W_train = pd.read_csv('./data/binary.train.weight', header=None)[0] W_test = pd.read_csv('./data/binary.test.weight', header=None)[0] y_train = df_train[0].values y_test = df_test[0].values X_train = df_train.drop(0, axis=1).values X_test = df_test.drop(0, axis=1).values num_train, num_feature = X_train.shape # 加载数据的同时加载权重 lgb_train = lgb.Dataset(X_train, y_train, weight=W_train, free_raw_data=False) lgb_eval = lgb.Dataset(X_test, y_test, reference=lgb_train, weight=W_test, free_raw_data=False) # 设定参数 params = { 'boosting_type': 'gbdt', 'objective': 'binary', 'metric': 'binary_logloss', 'num_leaves': 31, 'learning_rate': 0.05, 'feature_fraction': 0.9, 'bagging_fraction': 0.8, 'bagging_freq': 5, 'verbose': 0 } # 产出特征名称 feature_name = ['feature_' + str(col) for col in range(num_feature)] print('开始训练...') gbm = lgb.train(params, lgb_train, num_boost_round=10, valid_sets=lgb_train, # 评估训练集 feature_name=feature_name, categorical_feature=[21]) ###Output 加载数据... 开始训练... [1] training's binary_logloss: 0.68205 [2] training's binary_logloss: 0.673618 [3] training's binary_logloss: 0.665891 [4] training's binary_logloss: 0.656874 [5] training's binary_logloss: 0.648523 [6] training's binary_logloss: 0.641874 [7] training's binary_logloss: 0.636029 [8] training's binary_logloss: 0.629427 [9] training's binary_logloss: 0.623354 [10] training's binary_logloss: 0.617593 ###Markdown 3.模型的载入与预测**by 寒小阳** ###Code # 查看特征名称 print('完成10轮训练...') print('第7个特征为:') print(repr(lgb_train.feature_name[6])) # 存储模型 gbm.save_model('./model/lgb_model.txt') # 特征名称 print('特征名称:') print(gbm.feature_name()) # 特征重要度 print('特征重要度:') print(list(gbm.feature_importance())) # 加载模型 print('加载模型用于预测') bst = lgb.Booster(model_file='./model/lgb_model.txt') # 预测 y_pred = bst.predict(X_test) # 在测试集评估效果 print('在测试集上的rmse为:') print(mean_squared_error(y_test, y_pred) ** 0.5) ###Output 完成10轮训练... 第7个特征为: 'feature_6' 特征名称: [u'feature_0', u'feature_1', u'feature_2', u'feature_3', u'feature_4', u'feature_5', u'feature_6', u'feature_7', u'feature_8', u'feature_9', u'feature_10', u'feature_11', u'feature_12', u'feature_13', u'feature_14', u'feature_15', u'feature_16', u'feature_17', u'feature_18', u'feature_19', u'feature_20', u'feature_21', u'feature_22', u'feature_23', u'feature_24', u'feature_25', u'feature_26', u'feature_27'] 特征重要度: [8, 5, 1, 19, 7, 33, 2, 0, 2, 10, 5, 2, 0, 9, 3, 3, 0, 2, 2, 5, 1, 0, 36, 3, 33, 45, 29, 35] 加载模型用于预测 在测试集上的rmse为: 0.4629245607636925 ###Markdown 4.接着之前的模型继续训练**by 寒小阳** ###Code # 继续训练 # 从./model/model.txt中加载模型初始化 gbm = lgb.train(params, lgb_train, num_boost_round=10, init_model='./model/lgb_model.txt', valid_sets=lgb_eval) print('以旧模型为初始化,完成第 10-20 轮训练...') # 在训练的过程中调整超参数 # 比如这里调整的是学习率 gbm = lgb.train(params, lgb_train, num_boost_round=10, init_model=gbm, learning_rates=lambda iter: 0.05 * (0.99 ** iter), valid_sets=lgb_eval) print('逐步调整学习率完成第 20-30 轮训练...') # 调整其他超参数 gbm = lgb.train(params, lgb_train, num_boost_round=10, init_model=gbm, valid_sets=lgb_eval, callbacks=[lgb.reset_parameter(bagging_fraction=[0.7] * 5 + [0.6] * 5)]) print('逐步调整bagging比率完成第 30-40 轮训练...') ###Output [11] valid_0's binary_logloss: 0.616177 [12] valid_0's binary_logloss: 0.611792 [13] valid_0's binary_logloss: 0.607043 [14] valid_0's binary_logloss: 0.602314 [15] valid_0's binary_logloss: 0.598433 [16] valid_0's binary_logloss: 0.595238 [17] valid_0's binary_logloss: 0.592047 [18] valid_0's binary_logloss: 0.588673 [19] valid_0's binary_logloss: 0.586084 [20] valid_0's binary_logloss: 0.584033 以旧模型为初始化,完成第 10-20 轮训练... [21] valid_0's binary_logloss: 0.616177 [22] valid_0's binary_logloss: 0.611834 [23] valid_0's binary_logloss: 0.607177 [24] valid_0's binary_logloss: 0.602577 [25] valid_0's binary_logloss: 0.59831 [26] valid_0's binary_logloss: 0.595259 [27] valid_0's binary_logloss: 0.592201 [28] valid_0's binary_logloss: 0.589017 [29] valid_0's binary_logloss: 0.586597 [30] valid_0's binary_logloss: 0.584454 逐步调整学习率完成第 20-30 轮训练... [31] valid_0's binary_logloss: 0.616053 [32] valid_0's binary_logloss: 0.612291 [33] valid_0's binary_logloss: 0.60856 [34] valid_0's binary_logloss: 0.605387 [35] valid_0's binary_logloss: 0.601744 [36] valid_0's binary_logloss: 0.598556 [37] valid_0's binary_logloss: 0.595585 [38] valid_0's binary_logloss: 0.593228 [39] valid_0's binary_logloss: 0.59018 [40] valid_0's binary_logloss: 0.588391 逐步调整bagging比率完成第 30-40 轮训练... ###Markdown 5.自定义损失函数**by 寒小阳** ###Code # 类似在xgboost中的形式 # 自定义损失函数需要 def loglikelood(preds, train_data): labels = train_data.get_label() preds = 1. / (1. + np.exp(-preds)) grad = preds - labels hess = preds * (1. - preds) return grad, hess # 自定义评估函数 def binary_error(preds, train_data): labels = train_data.get_label() return 'error', np.mean(labels != (preds > 0.5)), False gbm = lgb.train(params, lgb_train, num_boost_round=10, init_model=gbm, fobj=loglikelood, feval=binary_error, valid_sets=lgb_eval) print('用自定义的损失函数与评估标准完成第40-50轮...') ###Output [41] valid_0's binary_logloss: 0.614429 valid_0's error: 0.268 [42] valid_0's binary_logloss: 0.610689 valid_0's error: 0.26 [43] valid_0's binary_logloss: 0.606267 valid_0's error: 0.264 [44] valid_0's binary_logloss: 0.601949 valid_0's error: 0.258 [45] valid_0's binary_logloss: 0.597271 valid_0's error: 0.266 [46] valid_0's binary_logloss: 0.593971 valid_0's error: 0.276 [47] valid_0's binary_logloss: 0.591427 valid_0's error: 0.278 [48] valid_0's binary_logloss: 0.588301 valid_0's error: 0.284 [49] valid_0's binary_logloss: 0.586562 valid_0's error: 0.288 [50] valid_0's binary_logloss: 0.584056 valid_0's error: 0.288 用自定义的损失函数与评估标准完成第40-50轮... ###Markdown sklearn与LightGBM配合使用 1.LightGBM建模,sklearn评估**by 寒小阳** ###Code # coding: utf-8 import lightgbm as lgb import pandas as pd from sklearn.metrics import mean_squared_error from sklearn.model_selection import GridSearchCV # 加载数据 print('加载数据...') df_train = pd.read_csv('./data/regression.train.txt', header=None, sep='\t') df_test = pd.read_csv('./data/regression.test.txt', header=None, sep='\t') # 取出特征和标签 y_train = df_train[0].values y_test = df_test[0].values X_train = df_train.drop(0, axis=1).values X_test = df_test.drop(0, axis=1).values print('开始训练...') # 直接初始化LGBMRegressor # 这个LightGBM的Regressor和sklearn中其他Regressor基本是一致的 gbm = lgb.LGBMRegressor(objective='regression', num_leaves=31, learning_rate=0.05, n_estimators=20) # 使用fit函数拟合 gbm.fit(X_train, y_train, eval_set=[(X_test, y_test)], eval_metric='l1', early_stopping_rounds=5) # 预测 print('开始预测...') y_pred = gbm.predict(X_test, num_iteration=gbm.best_iteration_) # 评估预测结果 print('预测结果的rmse是:') print(mean_squared_error(y_test, y_pred) ** 0.5) ###Output 加载数据... 开始训练... [1] valid_0's l1: 0.491735 Training until validation scores don't improve for 5 rounds. [2] valid_0's l1: 0.486563 [3] valid_0's l1: 0.481489 [4] valid_0's l1: 0.476848 [5] valid_0's l1: 0.47305 [6] valid_0's l1: 0.469049 [7] valid_0's l1: 0.465556 [8] valid_0's l1: 0.462208 [9] valid_0's l1: 0.458676 [10] valid_0's l1: 0.454998 [11] valid_0's l1: 0.452047 [12] valid_0's l1: 0.449158 [13] valid_0's l1: 0.44608 [14] valid_0's l1: 0.443554 [15] valid_0's l1: 0.440643 [16] valid_0's l1: 0.437687 [17] valid_0's l1: 0.435454 [18] valid_0's l1: 0.433288 [19] valid_0's l1: 0.431297 [20] valid_0's l1: 0.428946 Did not meet early stopping. Best iteration is: [20] valid_0's l1: 0.428946 开始预测... 预测结果的rmse是: 0.4441153344254208 ###Markdown 2.网格搜索查找最优超参数**by 寒小阳** ###Code # 配合scikit-learn的网格搜索交叉验证选择最优超参数 estimator = lgb.LGBMRegressor(num_leaves=31) param_grid = { 'learning_rate': [0.01, 0.1, 1], 'n_estimators': [20, 40] } gbm = GridSearchCV(estimator, param_grid) gbm.fit(X_train, y_train) print('用网格搜索找到的最优超参数为:') print(gbm.best_params_) ###Output 用网格搜索找到的最优超参数为: {'n_estimators': 40, 'learning_rate': 0.1} ###Markdown 3.绘图解释**by 寒小阳** ###Code # coding: utf-8 import lightgbm as lgb import pandas as pd try: import matplotlib.pyplot as plt except ImportError: raise ImportError('You need to install matplotlib for plotting.') # 加载数据集 print('加载数据...') df_train = pd.read_csv('./data/regression.train.txt', header=None, sep='\t') df_test = pd.read_csv('./data/regression.test.txt', header=None, sep='\t') # 取出特征和标签 y_train = df_train[0].values y_test = df_test[0].values X_train = df_train.drop(0, axis=1).values X_test = df_test.drop(0, axis=1).values # 构建lgb中的Dataset数据格式 lgb_train = lgb.Dataset(X_train, y_train) lgb_test = lgb.Dataset(X_test, y_test, reference=lgb_train) # 设定参数 params = { 'num_leaves': 5, 'metric': ('l1', 'l2'), 'verbose': 0 } evals_result = {} # to record eval results for plotting print('开始训练...') # 训练 gbm = lgb.train(params, lgb_train, num_boost_round=100, valid_sets=[lgb_train, lgb_test], feature_name=['f' + str(i + 1) for i in range(28)], categorical_feature=[21], evals_result=evals_result, verbose_eval=10) print('在训练过程中绘图...') ax = lgb.plot_metric(evals_result, metric='l1') plt.show() print('画出特征重要度...') ax = lgb.plot_importance(gbm, max_num_features=10) plt.show() print('画出第84颗树...') ax = lgb.plot_tree(gbm, tree_index=83, figsize=(20, 8), show_info=['split_gain']) plt.show() #print('用graphviz画出第84颗树...') #graph = lgb.create_tree_digraph(gbm, tree_index=83, name='Tree84') #graph.render(view=True) ###Output 加载数据... 开始训练... [10] training's l2: 0.217995 training's l1: 0.457448 valid_1's l2: 0.21641 valid_1's l1: 0.456464 [20] training's l2: 0.205099 training's l1: 0.436869 valid_1's l2: 0.201616 valid_1's l1: 0.434057 [30] training's l2: 0.197421 training's l1: 0.421302 valid_1's l2: 0.192514 valid_1's l1: 0.417019 [40] training's l2: 0.192856 training's l1: 0.411107 valid_1's l2: 0.187258 valid_1's l1: 0.406303 [50] training's l2: 0.189593 training's l1: 0.403695 valid_1's l2: 0.183688 valid_1's l1: 0.398997 [60] training's l2: 0.187043 training's l1: 0.398704 valid_1's l2: 0.181009 valid_1's l1: 0.393977 [70] training's l2: 0.184982 training's l1: 0.394876 valid_1's l2: 0.178803 valid_1's l1: 0.389805 [80] training's l2: 0.1828 training's l1: 0.391147 valid_1's l2: 0.176799 valid_1's l1: 0.386476 [90] training's l2: 0.180817 training's l1: 0.388101 valid_1's l2: 0.175775 valid_1's l1: 0.384404 [100] training's l2: 0.179171 training's l1: 0.385174 valid_1's l2: 0.175321 valid_1's l1: 0.382929 在训练过程中绘图...
demo_notebooks/TEM_VerticalConductor_2D_forward.ipynb
###Markdown Forward SimulationIn this notebook, we compute a single line of AEM data over a conductive plate in a resistive background. We plot the currents and magnetic fields in the subsurface. This notebook generates Figures 1-4 in: Heagy, L., Kang, S., Cockett, R., and Oldenburg, D., 2018, _Open source software for simulations and inversions of airborne electromagnetic data_, AEM 2018 International Workshop on Airborne Electromagnetics ###Code from SimPEG import EM, Mesh, Maps, Utils import numpy as np from scipy.constants import mu_0 from scipy.interpolate import griddata import matplotlib.pyplot as plt from matplotlib.colors import LogNorm from matplotlib import animation, collections from pymatsolver import Pardiso import ipywidgets from IPython.display import HTML %matplotlib inline from matplotlib import rcParams rcParams['font.size'] = 16 ###Output _____no_output_____ ###Markdown Create a Tensor MeshHere, we build a 3D Tensor mesh to run the forward simulation on. ###Code cs, ncx, ncy, ncz, npad = 50., 20, 1, 20, 10 pad_rate = 1.3 hx = [(cs,npad,-pad_rate), (cs,ncx), (cs,npad,pad_rate)] hy = [(cs,npad,-pad_rate), (cs,ncy), (cs,npad,pad_rate)] hz = [(cs,npad,-pad_rate), (cs,ncz), (cs,npad,pad_rate)] mesh = Mesh.TensorMesh([hx,hy,hz], 'CCC') print(mesh) # print diffusion distance and make sure mesh padding goes beyond that print("diffusion distance: {:1.2e} m".format(1207*np.sqrt(1e3*2.5*1e-3))) print("mesh extent : {:1.2e} m".format(mesh.hx[-10:].sum())) ###Output diffusion distance: 1.91e+03 m mesh extent : 2.77e+03 m ###Markdown Build a model ###Code # model parameters sig_air = 1e-8 sig_half = 1e-3 sig_plate = 1e-1 # put the omdel on the mesh blk1 = Utils.ModelBuilder.getIndicesBlock( np.r_[-49.5, 500, -50], np.r_[50, -500, -450], mesh.gridCC ) sigma = np.ones(mesh.nC)*sig_air sigma[mesh.gridCC[:,2]<0.] = sig_half sigma_half = sigma.copy() sigma[blk1] = sig_plate xref = 0 zref = -100. yref = 0. xlim = [-700., 700.] ylim = [-700., 700.] zlim = [-700., 0.] indx = int(np.argmin(abs(mesh.vectorCCx-xref))) indy = int(np.argmin(abs(mesh.vectorCCy-yref))) indz = int(np.argmin(abs(mesh.vectorCCz-zref))) fig, ax = plt.subplots(1,2, figsize = (12,6)) clim = [1e-3, 1e-1] dat1 = mesh.plotSlice(sigma, grid=True, ax=ax[0], ind=indz, pcolorOpts={'norm':LogNorm()}, clim=clim) dat2 = mesh.plotSlice(sigma, grid=True, ax=ax[1], ind=indx, normal='X', pcolorOpts={'norm':LogNorm()}, clim=clim) cb = plt.colorbar(dat2[0], orientation="horizontal", ax = ax[1]) ax[0].set_xlim(xlim) ax[0].set_ylim(ylim) ax[1].set_xlim(xlim) ax[1].set_ylim(ylim[0], 0.) plt.tight_layout() ax[0].set_aspect(1) ax[1].set_aspect(1) ax[0].set_title("Conductivity at Z={:1.0f}m".format(mesh.vectorCCz[indz])) ax[1].set_title("X={:1.0f}m".format(mesh.vectorCCx[indx])) cb.set_label("$\sigma$ (S/m)") fig, ax = plt.subplots(1,2, figsize = (12, 6)) clim = [1e-3, 1e-1] dat1 = mesh.plotSlice(sigma, grid=True, ax=ax[0], ind=indz, pcolorOpts={'norm':LogNorm()}, clim=clim) dat2 = mesh.plotSlice(sigma, grid=True, ax=ax[1], ind=indy, normal='Y', pcolorOpts={'norm':LogNorm()}, clim=clim) cb = plt.colorbar(dat2[0], orientation="horizontal", ax = ax[1]) ax[0].set_xlim(xlim) ax[0].set_ylim(ylim) ax[1].set_xlim(xlim) ax[1].set_ylim(zlim) plt.tight_layout() ax[0].set_aspect(1) ax[1].set_aspect(1) ax[0].set_title("Conductivity at Z={:1.0f} m".format(mesh.vectorCCz[indz])) ax[1].set_title("X= {:1.0f}m".format(mesh.vectorCCx[indx])) cb.set_label("$\sigma$ (S/m)") ###Output _____no_output_____ ###Markdown Assemble the survey ###Code x = mesh.vectorCCx[np.logical_and(mesh.vectorCCx>-450, mesh.vectorCCx<450)] # np.save("x", x) %%time # assemble the sources and receivers time = np.logspace(np.log10(5e-5), np.log10(2.5e-3), 21) srcList = [] for xloc in x: location = np.array([[xloc, 0., 30.]]) rx_z = EM.TDEM.Rx.Point_dbdt(location, time, 'z') rx_x = EM.TDEM.Rx.Point_dbdt(location, time, 'x') src = EM.TDEM.Src.CircularLoop([rx_z, rx_x], orientation='z', loc=location) srcList.append(src) ###Output CPU times: user 17.7 ms, sys: 672 µs, total: 18.4 ms Wall time: 57.9 ms ###Markdown Set up the forward simulation ###Code timesteps = [(1e-05, 15), (5e-5, 10), (2e-4, 10)] prb = EM.TDEM.Problem3D_b(mesh, Solver=Pardiso, verbose=True, timeSteps=timesteps, sigmaMap=Maps.IdentityMap(mesh)) survey = EM.TDEM.Survey(srcList) survey.pair(prb) ###Output _____no_output_____ ###Markdown Solve the forward simulation ###Code %%time fields = prb.fields(sigma) ###Output Calculating Initial fields ************************************************** Calculating fields(m) ************************************************** Factoring... (dt = 1.000000e-05) Done Solving... (tInd = 1) Done... Solving... (tInd = 2) Done... Solving... (tInd = 3) Done... Solving... (tInd = 4) Done... Solving... (tInd = 5) Done... Solving... (tInd = 6) Done... Solving... (tInd = 7) Done... Solving... (tInd = 8) Done... Solving... (tInd = 9) Done... Solving... (tInd = 10) Done... Solving... (tInd = 11) Done... Solving... (tInd = 12) Done... Solving... (tInd = 13) Done... Solving... (tInd = 14) Done... Solving... (tInd = 15) Done... Factoring... (dt = 5.000000e-05) Done Solving... (tInd = 16) Done... Solving... (tInd = 17) Done... Solving... (tInd = 18) Done... Solving... (tInd = 19) Done... Solving... (tInd = 20) Done... Solving... (tInd = 21) Done... Solving... (tInd = 22) Done... Solving... (tInd = 23) Done... Solving... (tInd = 24) Done... Solving... (tInd = 25) Done... Factoring... (dt = 2.000000e-04) Done Solving... (tInd = 26) Done... Solving... (tInd = 27) Done... Solving... (tInd = 28) Done... Solving... (tInd = 29) Done... Solving... (tInd = 30) Done... Solving... (tInd = 31) Done... Solving... (tInd = 32) Done... Solving... (tInd = 33) Done... Solving... (tInd = 34) Done... Solving... (tInd = 35) Done... ************************************************** Done calculating fields(m) ************************************************** CPU times: user 2min 23s, sys: 6.04 s, total: 2min 29s Wall time: 3min 4s ###Markdown Compute predicted data ###Code dpred = survey.dpred(sigma, f=fields) DPRED = dpred.reshape((survey.nSrc, 2, rx_z.times.size)) # uncomment to add noise # noise = abs(dpred)*0.05 * np.random.randn(dpred.size) + 1e-14 # dobs = dpred + noise # DOBS = dobs.reshape((survey.nSrc, 2, rx_z.times.size)) # # uncomment to save # np.save("dobs", dobs) # np.save("dpred", dpred) # 0, 1e-4, 4e-4 rx_z.times[[0, 4, 12]] fig = plt.figure(figsize=(9, 3.5), dpi=350) for itime in range(rx_z.times.size): plt.semilogy(x, -DPRED[:,0,itime], 'k.-', lw=1) # plt.plot(srcList[5].loc[0][0]*np.ones(3), -DPRED[5,0,[0, 4, 12]] , 's', color="C3") plt.xlabel("x (m)") plt.ylabel("Voltage (V/Am$^2$)") plt.grid(which="both", alpha=0.2) ###Output _____no_output_____ ###Markdown Plot the fields ###Code def plot_currents(itime, iSrc, clim=None, ax=None, showcb=True, showit=True): if ax is None: fig, ax = plt.subplots(1,2, figsize = (16,8)) location = srcList[iSrc].loc S = np.kron(np.ones(3), sigma) j = Utils.sdiag(S) * mesh.aveE2CCV * fields[srcList[iSrc], 'e', itime] dat1 = mesh.plotSlice( j, normal='Z', ind=int(indz), vType='CCv', view='vec', ax=ax[0], range_x=xlim, range_y=ylim, sample_grid = [cs, cs], pcolorOpts={'norm':LogNorm(), 'cmap':'magma'}, streamOpts={'arrowsize':2, 'color':'k'}, clim=clim, stream_threshold = 1e-12 if clim is not None else None ) dat2 = mesh.plotSlice( j, normal='X', ind=int(indx), vType='CCv', view='vec', ax=ax[1], range_x=xlim, range_y=zlim, pcolorOpts={'norm':LogNorm(), 'cmap':'magma'}, streamOpts={'arrowsize':2, 'color':'k'}, clim=clim, stream_threshold = 1e-12 if clim is not None else None ) ax[0].plot(location[0], location[1], 'go', ms=20) ax[0].text(-600, 500, "Time: {:1.2f} ms".format(prb.times[itime]*1e3), color='w', fontsize=20) if showcb is True: cb = plt.colorbar(dat1[0], orientation="horizontal", ax = ax[1]) cb.set_label("Current density (A/m$^2$)") ax[0].set_aspect(1) ax[1].set_aspect(1) ax[0].set_title("Current density at Z={:1.0f}m".format(mesh.vectorCCz[indz])) ax[1].set_title("X={:1.0f}m".format(mesh.vectorCCx[indx])) if showit: plt.show() return [d for d in dat1 + dat2] ###Output _____no_output_____ ###Markdown View the current density through time ###Code ipywidgets.interact( plot_currents, itime = ipywidgets.IntSlider(min=1, max=len(prb.times), value=1), iSrc = ipywidgets.IntSlider(min=0, max=len(srcList), value=5), clim = ipywidgets.fixed([3e-13, 2e-9]), ax=ipywidgets.fixed(None), showit=ipywidgets.fixed(True), showcb=ipywidgets.fixed(True) ) def plot_magnetic_flux(itime, iSrc, clim=None, ax=None, showcb=True, showit=True): if ax is None: fig, ax = plt.subplots(1,1, figsize = (8,8)) location = srcList[iSrc].loc b = mesh.aveF2CCV * fields[survey.srcList[iSrc], 'b', itime] dat1 = mesh.plotSlice( b, normal='Y', ind=int(indy), vType='CCv', view='vec', range_x=xlim, range_y=xlim, ax=ax, pcolorOpts={'norm':LogNorm(), 'cmap':'magma'}, streamOpts={'arrowsize':2, 'color':'k'}, clim=clim, stream_threshold = clim[0] if clim is not None else None ) ax.plot(location[0], location[2], 'go', ms=15) ax.text(-600, 500, "Time: {:1.2f} ms".format(prb.times[itime]*1e3), color='w', fontsize=20) if showcb: cb = plt.colorbar(dat1[0], ax = ax) cb.set_label("Magnetic Flux Density (T)") ax.set_aspect(1) ax.set_title("Magnetic Flux Density at Y={:1.0f}m".format(mesh.vectorCCy[indy])) if showit: plt.show() return [d for d in dat1 + dat2] ipywidgets.interact( plot_magnetic_flux, itime = ipywidgets.IntSlider(min=1, max=len(prb.times), value=1), iSrc = ipywidgets.IntSlider(min=0, max=len(srcList), value=5), clim = ipywidgets.fixed([1e-17, 3e-14]), ax=ipywidgets.fixed(None), showit=ipywidgets.fixed(True), showcb=ipywidgets.fixed(True) ) ###Output _____no_output_____ ###Markdown Print Figures ###Code fig, axes = plt.subplots(3,2, figsize = (12,6*3)) iSrc = 5 clim = [3e-13, 2e-9] for i, itime in enumerate([1, 10, 22]): ax = axes[i, :] location = srcList[iSrc].loc S = np.kron(np.ones(3), sigma) j = Utils.sdiag(S) * mesh.aveE2CCV * fields[srcList[iSrc], 'e', itime] dat1 = mesh.plotSlice( j, normal='Z', ind=int(indz), vType='CCv', view='vec', ax=ax[0], range_x=xlim, range_y=ylim, pcolorOpts={'norm':LogNorm(), 'cmap':'magma'}, streamOpts={'arrowsize':2, 'color':'k'}, clim=clim, stream_threshold = 1e-12 if clim is not None else None ) dat2 = mesh.plotSlice( j, normal='X', ind=int(indx), vType='CCv', view='vec', ax=ax[1], range_x=xlim, range_y=zlim, pcolorOpts={'norm':LogNorm(), 'cmap':'magma'}, streamOpts={'arrowsize':2, 'color':'k'}, clim=clim, stream_threshold = 1e-12 if clim is not None else None ) ax[0].plot(location[0,0], location[0,1], 'go', ms=20) ax[0].text(-600, 500, "Time: {:1.2f} ms".format(prb.times[itime]*1e3), color='w', fontsize=20) cb = plt.colorbar(dat1[0], orientation="horizontal", ax = ax[1]) cb.set_label("Current density (A/m$^2$)") ax[0].set_aspect(1) ax[1].set_aspect(1) if itime == 1: ax[0].set_title("Current density at Z={:1.0f}m".format(mesh.vectorCCz[indz])) ax[1].set_title("X={:1.0f}m".format(mesh.vectorCCx[indx])) else: ax[0].set_title("") ax[1].set_title("") plt.tight_layout() plt.show() fig, ax = plt.subplots(1,3, figsize = (15, 5)) fig.subplots_adjust(bottom=0.7) iSrc = 5 clim = [1e-17, 3e-14] for a, itime, title in zip(ax, [1, 10, 22], ["a", "b", "c"]): location = srcList[iSrc].loc b = mesh.aveF2CCV * fields[survey.srcList[iSrc], 'b', itime] dat1 = mesh.plotSlice( b, normal='Y', ind=int(indy), vType='CCv', view='vec', range_x=xlim, range_y=xlim, ax=a, pcolorOpts={'norm':LogNorm(), 'cmap':'magma'}, streamOpts={'arrowsize':2, 'color':'k'}, clim=clim, stream_threshold = clim[0] if clim is not None else None ) if itime > 1: a.get_yaxis().set_visible(False) a.plot(location[0], location[2], 'go', ms=15) a.text(-600, 500, "Time: {:1.2f} ms".format(prb.times[itime]*1e3), color='w', fontsize=20) a.set_aspect(1) a.set_title("({})".format(title)) # a.set_title(("Magnetic Flux Density at Y=%.0fm")%(mesh_core.vectorCCy[indy])) plt.tight_layout() cbar_ax = fig.add_axes([0.2, -0.05, 0.6, 0.05]) cb = fig.colorbar(dat1[0], cbar_ax, orientation='horizontal') cb.set_label('Magnetic Flux Density (T)') ###Output _____no_output_____ ###Markdown Movie of the currents and the magnetic fluxMovies shown in the presentation. It is slow to build these, so by default we won't. Change `make_movie` to `True` to build the movies ###Code make_movie = True save_mp4 = True iSrc = 5 if make_movie: fig, ax = plt.subplots(1, 2, figsize = (16,8), dpi=290) out = plot_currents(itime=1, iSrc=iSrc, clim=[3e-13, 2e-9], ax=ax, showcb=True, showit=False) def init(): [o.set_array(None) for o in out if isinstance(o, collections.QuadMesh)] return out def update(t): for a in ax: a.patches = [] a.lines = [] a.clear() return plot_currents(itime=t, iSrc=iSrc, clim=[3e-13, 2e-9], ax=ax, showcb=False, showit=False) ani = animation.FuncAnimation(fig, update, np.arange(1, len(prb.times)), init_func=init, blit=False) if save_mp4: ani.save( "currents1.mp4", writer="ffmpeg", fps=3, dpi=250, bitrate=0, metadata={"title":"TDEM currents in a plate", "artist":"Lindsey Heagy"} ) anihtml = ani.to_jshtml(fps=3) HTML(anihtml) iSrc = 5 clim=[1e-17, 3e-14] if make_movie: fig, ax = plt.subplots(1, 1, figsize = (8, 8), dpi=290) out = plot_magnetic_flux(itime=1, iSrc=iSrc, clim=clim, ax=ax, showcb=True, showit=False) def init(): [o.set_array(None) for o in out if isinstance(o, collections.QuadMesh)] return out def update(t): ax.patches = [] ax.lines = [] ax.clear() return plot_magnetic_flux(itime=t, iSrc=iSrc, clim=clim, ax=ax, showcb=False, showit=False) ani = animation.FuncAnimation(fig, update, np.arange(1, len(prb.times)), init_func=init, blit=False) if save_mp4: ani.save( "magnetic_flux.mp4", writer="ffmpeg", fps=3, dpi=250, bitrate=0, metadata={"title":"TDEM magnetic flux in a plate", "artist":"Lindsey Heagy"} ) anihtml = ani.to_jshtml(fps=3) HTML(anihtml) ###Output _____no_output_____ ###Markdown Presentation figures ###Code fig, axes = plt.subplots(3, 3, figsize = (22,6*3)) iSrc = 5 clim_j = [3e-13, 2e-9] clim_b = [1e-17, 3e-14] for i, itime in enumerate([1, 10, 22]): ax = axes[i, :] location = srcList[iSrc].loc S = np.kron(np.ones(3), sigma) j = Utils.sdiag(S) * mesh.aveE2CCV * fields[srcList[iSrc], 'e', itime] b = mesh.aveF2CCV * fields[survey.srcList[iSrc], 'b', itime] dat1 = mesh.plotSlice( j, normal='Z', ind=int(indz), vType='CCv', view='vec', ax=ax[0], range_x=xlim, range_y=ylim, pcolorOpts={'norm':LogNorm(), 'cmap':'magma'}, streamOpts={'arrowsize':2, 'color':'k'}, clim=clim_j, stream_threshold = 1e-12 if clim is not None else None ) dat2 = mesh.plotSlice( j, normal='X', ind=int(indx), vType='CCv', view='vec', ax=ax[1], range_x=xlim, range_y=zlim, pcolorOpts={'norm':LogNorm(), 'cmap':'magma'}, streamOpts={'arrowsize':2, 'color':'k'}, clim=clim_j, stream_threshold = 1e-12 if clim is not None else None ) dat3 = mesh.plotSlice( b, normal='Y', ind=int(indy), vType='CCv', view='vec', ax=ax[2], range_x=xlim, range_y=xlim, pcolorOpts={'norm':LogNorm(), 'cmap':'magma'}, streamOpts={'arrowsize':2, 'color':'k'}, clim=clim_b, stream_threshold = clim_b[0] if clim is not None else None ) ax[0].plot(location[0], location[1], 'go', ms=20) ax[0].text(-600, 550, "Time: {:1.2f} ms".format(prb.times[itime]*1e3), color='w', fontsize=20) cb = plt.colorbar(dat1[0], orientation="horizontal", ax = ax[1]) cb.set_label("Current density (A/m$^2$)") cb2 = plt.colorbar(dat3[0], ax=ax[2]) cb2.set_label("Magnetic flux density (T)") ax[0].set_aspect(1) ax[1].set_aspect(1) ax[2].set_aspect(1) if itime == 1: ax[0].set_title("Current density, Z={:1.0f}m".format(mesh.vectorCCz[indz])) ax[1].set_title("Current density, X={:1.0f}m".format(mesh.vectorCCx[indx])) ax[2].set_title("Magnetic flux, Y=0m") else: ax[0].set_title("") ax[1].set_title("") ax[2].set_title("") plt.tight_layout() plt.show() ###Output _____no_output_____
Ejercicios/02-Clasificador por particiones/clasificador_particiones.ipynb
###Markdown Clasificación por Particiones - Metodo del histograma Julian Ferres - Nro.Padrón 101483 Enunciado Sean las regiones $R_0$ y $R_1$ y la cantidad de puntos $n$, donde:- $R_0$ es el triangulo con vertices $(1,0)$, $(1,1)$ y $(\frac{1}{2},0)$- $R_1$ es el triangulo con vertices $(0,0)$, $(\frac{1}{2},1)$ y $(0,1)$- $n = 10, 100, 1000, 10000, \ldots$ Se simulan $n$ puntos en $\mathbb{R}^2$ siguiendo los pasos: >- Cada punto pertenece a una de las dos clases: **_Clase 0_** o **_Clase 1_** con probabilidad $\frac{1}{2}$>- Los puntos de la clase $i$ tienen distribución uniforme con soporte en $R_i$ , con $i=0,1$ **Se pide, con la muestra, construir una regla del histograma que permita clasificar un punto que no pertenezca a la misma** Solución ###Code #Import libraries import numpy as np #Plots import matplotlib.pyplot as plt import seaborn as sns %matplotlib inline n = 100000 #Tamaño de muestra muestra = np.zeros((n,3)) ###Output _____no_output_____ ###Markdown Toma de muestra ###Code i = 0 #Puntos incluidos hasta el momento. while(i < n): x = np.random.uniform(0,1) y = np.random.uniform(0,1) clase = np.random.randint( 0 , 1 + 1 ) #Uniforme discreta en {0,1} if (( clase == 0 and abs(2*x-1) < y) or ( clase == 1 and y < 2*x < 2-y )): muestra[i][0] = x muestra[i][1] = y muestra[i][2] = clase i+=1 clase0 , clase1 = muestra[(muestra[:,2] == 0.)] , muestra[(muestra[:,2] == 1.)] g = plt.scatter( clase0[:,0] , clase0[:,1] , alpha='0.5', color='darkgreen' , label = 'Clase 0'); g = plt.scatter( clase1[:,0] , clase1[:,1] ,alpha='0.5', color='darkorange' , label = 'Clase 1'); plt.legend() plt.title("Distribuciones", fontsize=20) plt.show() ###Output _____no_output_____ ###Markdown Para generar la particion tengo que saber la longitud del lado de las cajas. Segun lo visto en clase, si $h_n$ es la longitud del lado de las cajas, entonces:$$h_n = \frac {1}{\sqrt[2d]{n}} = n^{-\frac{1}{2d}}$$cumple las condiciones para que la regla del histograma sea universalmente consistente. En este caso, con dos dimensiones, $d=2$: ###Code d = 2 h_n = n **(-(1/(d*2))) d_n = int(1/h_n) #Podria 1/h_n no ser entero particion = np.ndarray((d_n , d_n), dtype = int ) particion.fill(0) for i in range(n): x_p , y_p = int(muestra[i,0]/h_n) , int(muestra[i,1]/h_n) x_p = d_n - 1 if x_p >=d_n else x_p y_p = d_n - 1 if y_p >=d_n else y_p particion[y_p , x_p] += 1 if muestra[i,2] else -1 f = lambda x : 0 if (x>= 0) else 1 f_vec = np.vectorize(f) for_heatmap = f_vec(particion) #Mapeo todos los numeros a 0 o 1 particion for_heatmap ###Output _____no_output_____ ###Markdown Clasificación mediante método del histograma ###Code dims = (8, 8) fig, axs = plt.subplots(figsize=dims) annotable = (n<1000000) g = sns.heatmap(for_heatmap, annot = annotable , linewidths=.5,cmap=['darkgreen','darkorange'],\ cbar = False, annot_kws={"size": 15},\ xticklabels = [round(x/d_n,2) for x in range(d_n)],\ yticklabels = [(round(1-x/d_n,2)) for x in range(1,d_n+1)]) g.set_title('Particiones Clasificadas' , size = 30) plt.show() ###Output _____no_output_____
Courses/Algorithms, Data Structures and Real-Life Python Problems/Section 3 - Algorithms and Code Complexity/Algorithms and Code Complexity.ipynb
###Markdown Algorithms and Code ComplexityThis notebook is created by Eda AYDIN through by DATAI Team, Udemy. Table of Content* [Algorithms](1)* [Algorithms and Code Complexity](2)* [Big-0 Notation](3)* [Big-O | Omega | Theta](4)* [Big-0 Examples](5) * [O(1) Constant](5_1) * [O(n) Linear](5_2) * [O($n^3$) Cubic](5_3)* [Calculating Scale of Big-O](6)* [Interview Questions](7) Algorithms- It is a formula written to solve a problem. ###Code def calculation(book_number, average_price): return book_number * average_price print("You have to pay {}TL".format(calculation(5,50))) ###Output You have to pay 250TL ###Markdown Algorithms and Code ComplexityProblem: Arranging numbers from smallest to largestAlgorithms: SortingWe can solve this problem by using Bubble Sort or Selection Sort algorithms. But, the main question is in here which algorithm works effectively. Here we come across the concept of code complexity.Example: Square the numbers from 1 to n and add them all up.$$\sum_{k=1}^{n} k^{2} = 1^{2} + 2^{2} + 3^{2} + 4^{2} + ... n^{2} = \frac{n(n+1)(2n+1))}{6}$$ ###Code def square_sum1(n): # Take an input of n and return the sum of the squares of numbers from 0 to n. total = 0 for i in range(n+1): total += i**2 return total square_sum1(6) def square_sum2(n): # Take an input of n and return the sum of the squares of numbers from 0 to n with formula return int((n * ( n + 1 )*( 2 * n + 1))/6) square_sum2(6) ###Output _____no_output_____ ###Markdown **%timeit :** Python timeit() is a method in Python library to measure the execution time taken by the given code snippet. ###Code %timeit square_sum1(6) %timeit square_sum2(6) # More fastly ###Output 335 ns ± 8.75 ns per loop (mean ± std. dev. of 7 runs, 1000000 loops each) ###Markdown The results give different results on each computer. The reason is that computers hardware and CPU are different. Also, because runtime is hardware dependent, **Big O notation** is used to compare these two methods, not the concept of time. Big O Notation* Don't compare by runtime when comparing two algorithms.* The concept of Big-O Notation refers to the growth of a function.* Big-O notation analysis is also called asymptotic analysis.* n refers to size of an input. \begin{matrix}\mathbf{Big-O }& \mathbf{Name} \\1 & Constant\\log(n) & Logarithmic\\n & Linear\\nlog(n) & Log Linear\\n^2 & Quadratic\\n^3 & Cubic\\2^n & Exponential\end{matrix} Big O | Omega | Theta* **Big-O:** To test how the code we wrote works in the **worst** case* **Omega:** To test how the code we wrote works in the **best** case* **Theta:** To test how the code we wrote works in the **mid** case scenario. ###Code a = [2,3,4] b = [3,2,4] c = [4,3,2] %timeit next((i for i in a if i == 2), None) # Omega %timeit next((i for i in b if i == 2), None) # Theta %timeit next((i for i in c if i == 2), None) # Big - O ###Output 585 ns ± 5.16 ns per loop (mean ± std. dev. of 7 runs, 1000000 loops each) ###Markdown Big-O Examples O(1) Constant- It doesn't depend on input size.- If the input size is large, the time complexity doesn't change. ###Code def constant_big_O(list): print(list[0]) lst = [-5,0,1,2,3,4,5,6] constant_big_O(lst) ###Output -5 ###Markdown O(n) Linear- This functions works in linear time. In other words, the number of operations in the algorithm is directly proportional to the input size. ###Code def linear_big_O(list): for i in list: print(i) linear_big_O(lst) ###Output -5 0 1 2 3 4 5 6 ###Markdown O(n^3) Cubic* It includes nested loops. ###Code import numpy as np lst2 = [1,2,3] def cubic_big_O(list): a = [] for i in range(0,len(list)): for j in range(0,len(list)): for k in range(0,len(list)): a.append([list[i], list[j],list[k]]) a = np.array(a) print(a) cubic_big_O(lst2) ###Output [[1 1 1] [1 1 2] [1 1 3] [1 2 1] [1 2 2] [1 2 3] [1 3 1] [1 3 2] [1 3 3] [2 1 1] [2 1 2] [2 1 3] [2 2 1] [2 2 2] [2 2 3] [2 3 1] [2 3 2] [2 3 3] [3 1 1] [3 1 2] [3 1 3] [3 2 1] [3 2 2] [3 2 3] [3 3 1] [3 3 2] [3 3 3]] ###Markdown Calculating Scale of Big-O* Insignificant constant* Linear Big-O directly proportional with input size.* First example Big-O: O(n)* Second Example Big-O: O(2n)* number( 1,2,3,, etc.) is insignificant constant ###Code def linear_big_O(list): for i in list: print(i) linear_big_O([1,3]) # O(n) def linear_big_O_2(list): for i in list: print(i) for i in list: print(i) linear_big_O_2([1,3]) # O(2n) # O(1+n) def example(list): print(list[0]) # O(1) constant for i in list: # O(n) linear print(i) example([1,2,3,4]) ###Output 1 1 2 3 4
carbon_capture_storage_to_meet_target.ipynb
###Markdown Could We Possibly Reach the Target to Increase Number of CCUS Facilities a Hundredfold by 2040?![Scottish CCS World Map](https://user-images.githubusercontent.com/51282928/72803316-5bb09100-3c80-11ea-9c67-13fab745d4a6.jpg)In 2019, **International Energy Agency** (IEA) released a scenario in its World Energy Outlook, called the Sustainable Development Scenario (SDS), to highlight that CCUS contribute to 9% reduction of global CO2 emission by 2050. This reduction is meant to reach 2015 Paris Agreement. IEA stated that to reach the 9% contribution, by 2050, **the mass of CO2 captured and permanently stored (captured CO2 capacity) must reach 2.8 billion tonnes per annum**. In other words, a world institute for CCS, the **Global CCS Institute** further stated that to achieve the level outlined in the SDS, **number of CCUS facilities needs to increase a hundredfold by 2040**. To grasp the idea what a "hundredfold" means, take a look at this illustration. Website [Scottish CCS](https://www.sccs.org.uk/expertise/global-ccs-map) has a **worldmap of CCS projects** distribution. There are 3 categories: **operational** (operating large-scale facilities), **in planning** (facilities soon to be operational), and **pilot project**. Each of these categories has been counted: ###Code # current number of CCS projects: 20 operational, 55 in planning, 70 pilot op = 20 inplan = 55 pilot = 70 ###Output _____no_output_____ ###Markdown It is stated that CCS must increase a hundredfold. That means, by 2040, number of operational CCS facilities must be 100 times the number this year (2020), which means **20 facilities in 2020 grow to 2000 facilities in 2040**. There are **20 years** before 2040. We could draw a graph representing the growth of number of CCS facilities per year, assuming **the growth is linear**. ###Code import numpy as np import matplotlib.pyplot as plt year = np.arange(2020, 2041, 1) ccs_facilities_numbers = np.arange(20, 2020, 99) plt.figure(figsize=(10, 7)) plt.title('Number of CCS Facilities from 2020 to 2040 (IEA 2019 Scenario)', size=17, pad=20) plt.plot(year, ccs_facilities_numbers, '.-') plt.xlabel('Year', size=12), plt.ylabel('Number of CCS Facilities', size=12) plt.xlim(2020, 2040); plt.ylim(0, 2100) ###Output _____no_output_____ ###Markdown It means **each year we have to add 99 new CCS facilities**. Well, is it possible and feasible? I think it's impossible. ###Code import seaborn as sns import numpy as np import matplotlib.pyplot as plt ccs = np.array([0.09, 3, 0.25, 1, 2.5, 7, 1.5, 0.4, 0.1, 0.85, 0.1, 0.7, 0.1, 0.5, 0.5, 0.6, 1, 0.4, 0.3, 3, 0.35, 1, 0.6, 0.8, 0.8, 0.7, 1, 2, 0.16, 0.1, 4, 0.02, 0.6]) plt.figure(figsize=(10, 7)) plt.title('Distribution Plot of Large-scale CCS Facilities by 2020', size=17, pad=20) plt.xlabel('Captured CO\u2082 capacity (million tons per annum, Mtpa)', size=12), plt.ylabel('Probability Density', size=12) sns.distplot(ccs, bins=30, color ='blue', hist_kws=dict(edgecolor="black", linewidth=1)) sum(ccs) import scipy.stats as stats stats.describe(ccs) min = 0.02 max = 7 mode = stats.mode(ccs) inplan = np.random.triangular(0.02, 0.1, 7, 55) sns.distplot(inplan, bins=20) pilot = np.random.triangular(0.02, 0.1, 7, 70) sns.distplot(pilot, bins=20) popul_inplan_sum = 55 n = 55 popul_inplan = np.random.multinomial(popul_inplan_sum, np.ones(n)/n, size=1)[0] sns.distplot(popul_inplan, bins=11) popul_pilot_sum = 70 n = 70 popul_pilot = np.random.multinomial(popul_pilot_sum, np.ones(n)/n, size=1)[0] sns.distplot(popul_pilot, bins=14) inplan_cap = popul_inplan * inplan pilot_cap = popul_pilot * pilot sum_inplan_cap = sum(inplan_cap) sum_inplan_cap ###Output _____no_output_____ ###Markdown *** ###Code pilot = np.random.triangular(0.02, 0.1, 7, 125) sns.distplot(pilot, bins=25) popul_inplan_sum = 125 n = 125 popul_inplan = np.random.multinomial(popul_inplan_sum, np.ones(n)/n, size=1)[0] sns.distplot(popul_inplan, bins=11) a = sum(pilot * popul_inplan_sum) a ###Output _____no_output_____ ###Markdown Monte Carlo Simulation ###Code popul_inplan_sum = 75 n = 75 cap = [] for i in range(0, 100): pilot = np.random.triangular(0.02, 0.1, 5, 125) popul_inplan = np.random.multinomial(popul_inplan_sum, np.ones(n)/n, size=1)[0] summ = sum(pilot * popul_inplan_sum) cap.append(float(summ)) plt.figure(figsize=(10, 7)) plt.title('Monte Carlo Simulation of Total Capacity of 125 Additional CCS Fields', size=17, pad=20) plt.xlabel('Captured CO\u2082 capacity (million tons per annum, Mtpa)', size=12), plt.ylabel('Probability Density', size=12) sns.distplot(cap, bins=25, color ='green', hist_kws=dict(edgecolor="black", linewidth=1)) sum(cap) ###Output _____no_output_____ ###Markdown Rolling Dice ###Code # generate random integer values from random import seed from random import randint # generate the first 100 random numbers ranging from 1 to 6 record1 = [] for _ in range(100): value1 = randint(1, 6) record1.append(float(value1)) # generate the second 100 random numbers ranging from 1 to 6 record2 = [] for _ in range(100): value2 = randint(1, 6) record2.append(float(value2)) # multiply the two numbers result = [record1*record2 for record1,record2 in zip(record1,record2)] sns.distplot(result, bins=25) for i in range(0, 100): record1 = []; record2 = [] for _ in range(100): value1 = randint(1, 6) record1.append(float(value1)) value2 = randint(1, 6) record2.append(float(value2)) multiply = record1 * record2 import pandas as pd df = pd.DataFrame(cap) df.describe(percentiles=[.10, .40, .60, .90]).T ###Output _____no_output_____ ###Markdown *** ###Code target = 2800 #Mtpa xyz = np.random.triangular(3, 4, 10, 100) numbers = np.random.triangular(10, 25, 100, 100) cap = xyz * numbers sumcap = sum(cap) sumcap pilot = 70 inplan = 55 pil = np.random.triangular(3, 4, 55) import numpy as np import matplotlib.pyplot as plt #import data #conists of one column of datapoints as 2.231, -0.1516, 1.564, etc data=np.array([0.09, 3, 0.25, 1, 2.5, 7, 1.5, 0.4, 0.1, 0.85, 0.1, 0.7, 0.1, 0.5, 0.5, 0.6, 1, 0.4, 0.3, 3, 0.35, 1, 0.6, 0.8, 0.8, 0.7, 1, 2, 0.16, 0.1, 4, 0.02, 0.6]) # data=uniform #normalized histogram of loaded datase hist, bins = np.histogram(data,bins=100,range=(np.min(data),np.max(data)) ,density=True) width = 0.7 * (bins[1] - bins[0]) center = (bins[:-1] + bins[1:]) / 2 #generate data with double random() generatedData=np.zeros(33) maxData=np.max(data) minData=np.min(data) i=0 while i<33: randNo=np.random.rand(1)*(maxData-minData)-np.absolute(minData) if np.random.rand(1)<=hist[np.argmax(randNo<(center+(bins[1] - bins[0])/2))-1]: generatedData[i]=randNo i+=1 #normalized histogram of generatedData hist2, bins2 = np.histogram(generatedData,bins=100,range=(np.min(data),np.max(data)), density=True) width2 = 0.7 * (bins2[1] - bins2[0]) center2 = (bins2[:-1] + bins2[1:]) / 2 #plot both histograms plt.figure(figsize=(20,8)) plt.subplot(1,2,1) plt.title("Original Data") sns.distplot(data, bins=50, color ='blue', hist_kws=dict(edgecolor="black", linewidth=1)) plt.subplot(1,2,2) plt.title("Generated Data") sns.distplot(generatedData, bins=50, color ='red', hist_kws=dict(edgecolor="black", linewidth=1)) print(generatedData) import scipy n = 100; p = 1 k = np.arange(0, 33) binomial = scipy.stats.binom.pmf(k, n, p) # plt.plot(k, binomial) sns.distplot(binomial) lognormal = np.random.lognormal(0.3, 1, 100) sns.distplot(lognormal) ###Output _____no_output_____
Tree_Methods_Consulting_Project_SOLUTION.ipynb
###Markdown Tree Methods Consulting Project - SOLUTION You've been hired by a dog food company to try to predict why some batches of their dog food are spoiling much quicker than intended! Unfortunately this Dog Food company hasn't upgraded to the latest machinery, meaning that the amounts of the five preservative chemicals they are using can vary a lot, but which is the chemical that has the strongest effect? The dog food company first mixes up a batch of preservative that contains 4 different preservative chemicals (A,B,C,D) and then is completed with a "filler" chemical. The food scientists beelive one of the A,B,C, or D preservatives is causing the problem, but need your help to figure out which one!Use Machine Learning with RF to find out which parameter had the most predicitive power, thus finding out which chemical causes the early spoiling! So create a model and then find out how you can decide which chemical is the problem!* Pres_A : Percentage of preservative A in the mix* Pres_B : Percentage of preservative B in the mix* Pres_C : Percentage of preservative C in the mix* Pres_D : Percentage of preservative D in the mix* Spoiled: Label indicating whether or not the dog food batch was spoiled.___**Think carefully about what this problem is really asking you to solve. While we will use Machine Learning to solve this, it won't be with your typical train/test split workflow. If this confuses you, skip ahead to the solution code along walk-through!**____ ###Code #Tree methods Example from pyspark.sql import SparkSession spark = SparkSession.builder.appName('dogfood').getOrCreate() # Load training data data = spark.read.csv('dog_food.csv',inferSchema=True,header=True) data.printSchema() data.head() data.describe().show() # Import VectorAssembler and Vectors from pyspark.ml.linalg import Vectors from pyspark.ml.feature import VectorAssembler data.columns assembler = VectorAssembler(inputCols=['A', 'B', 'C', 'D'],outputCol="features") output = assembler.transform(data) from pyspark.ml.classification import RandomForestClassifier,DecisionTreeClassifier rfc = DecisionTreeClassifier(labelCol='Spoiled',featuresCol='features') output.printSchema() final_data = output.select('features','Spoiled') final_data.head() rfc_model = rfc.fit(final_data) rfc_model.featureImportances ###Output _____no_output_____
examples/8. Three phase equilibria (VLLE).ipynb
###Markdown Vapor Liquid Liquid Equilibrium (VLLE)This notebook exemplifies the three phase equilibria calculation. The VLLE calculation is separated into two cases:- Binary mixtures: due to degrees of freedom restrictions the VLLE is computed at given temperature or pressure. This is solved using the ``vlleb`` function.- Mixtures with three or more components: the VLLE is computed at given global composition, temperature and pressure. This is solved using the ``vlle`` function.To start, the required functions are imported. ###Code import numpy as np from phasepy import component, mixture, virialgamma from phasepy.equilibrium import vlleb, vlle ###Output _____no_output_____ ###Markdown Binary (two component) mixture VLLEThe VLLE computation for binary mixtures is solution is based on the following objective function:$$ K_{ik} x_{ir} - x_{ik} = 0 \qquad i = 1,...,c \quad k = 2,3 $$$$ \sum_{i=1}^c x_{ik} = 1 \qquad k = 1, 2, 3$$Where, $x_{ik}$ is the molar fraction of the component $i$ on the phase $k$ and $ K_{ik} = x_{ik}/x_{ir} = \hat{\phi}_{ir}/\hat{\phi}_{ik} $ is the constant equilibrium respect to a reference phase $r$. **note:** this calculation does not check for the stability of the phases.In the following code block, the VLLE calculation for the binary mixture of water and mtbe is exemplified. For binary mixtures, the VLLE is computed at either given pressure (``P``) or temperature (``T``). The function ``vlleb`` requires either of those and initial guesses unknown variables (phase compositions and unknown specification).First, the mixture and its interaction parameters are set up. ###Code water = component(name='water', Tc=647.13, Pc=220.55, Zc=0.229, Vc=55.948, w=0.344861, Ant=[11.64785144, 3797.41566067, -46.77830444], GC={'H2O':1}) mtbe = component(name='mtbe', Tc=497.1, Pc=34.3, Zc=0.273, Vc=329.0, w=0.266059, Ant=[9.16238246, 2541.97883529, -50.40534341], GC={'CH3':3, 'CH3O':1, 'C':1}) mix = mixture(water, mtbe) mix.unifac() eos = virialgamma(mix, actmodel='unifac') ###Output _____no_output_____ ###Markdown The binary VLLE at constant pressure is computed as follows: ###Code P = 1.01 # bar T0 = 320.0 # K x0 = np.array([0.01, 0.99]) w0 = np.array([0.99, 0.01]) y0 = (x0 + w0)/2 vlleb(x0, w0, y0, T0, P, 'P', eos) ###Output _____no_output_____ ###Markdown Similarly, the binary VLLE at constant temperature is computed below: ###Code P0 = 1.01 # bar T = 320.0 # K x0 = np.array([0.01, 0.99]) w0 = np.array([0.99, 0.01]) y0 = (x0 + w0)/2 vlleb(x0, w0, y0, P0, T, 'T', eos) ###Output _____no_output_____ ###Markdown Multicomponent mixture VLLEPhase stability plays a key role during equilibrium computation when dealing with more than two liquid phases. For this purpose the following modified multiphase Rachford-Rice mass balance has been proposed [Gupta et al.](https://www.sciencedirect.com/science/article/pii/037838129180021M):$$ \sum_{i=1}^c \frac{z_i (K_{ik} \exp{\theta_k}-1)}{1+ \sum\limits^{\pi}_{\substack{j=1 \\ j \neq r}}{\psi_j (K_{ij}} \exp{\theta_j} -1)} = 0 \qquad k = 1,..., \pi, k \neq r $$Subject to:$$ \psi_k \theta_k = 0 $$In this system of equations, $z_i$ represents the global composition of the component $i$, $ K_{ij} = x_{ij}/x_{ir} = \hat{\phi}_{ir}/\hat{\phi}_{ij} $ is the constant equilibrium of component $i$ in phase $j$ respect to the reference phase $r$, and $\psi_j$ and $\theta_j$ are the phase fraction and stability variable of the phase $j$. The solution strategy is similar to the classic isothermal isobaric two-phase flash. First, a reference phase must be selected, this phase is considered stable during the procedure. In an inner loop, the system of equations is solved using multidimensional Newton's method for phase fractions and stability variables and then compositions are updated in an outer loop using accelerated successive substitution (ASS). Once the algorithm has converged, the stability variable gives information about the phase. If it takes a value of zero the phase is stable and if it is positive the phase is not. The proposed successive substitution method can be slow, if that is the case the algorithm attempts to minimize Gibbs Free energy of the system. This procedure also ensures stable solutions and is solved using SciPy's functions.$$ min \, {G} = \sum_{k=1}^\pi \sum_{i=1}^c F_{ik} \ln \hat{f}_{ik} $$The next code block exemplifies the VLLE calculation for the mixture of water, ethanol and MTBE. This is done with the ``vlle`` function, which incorporates the algorithm described above. This functions requires the global composition (``z``), temperature (``T``) and pressure (``P``). Additionally, the ``vlle`` function requires initial guesses for the composition of the phases. ###Code ethanol = component(name='ethanol', Tc=514.0, Pc=61.37, Zc=0.241, Vc=168.0, w=0.643558, Ant=[11.61809279, 3423.0259436, -56.48094263], GC={'CH3':1, 'CH2':1, 'OH(P)':1}) mix = mixture(water, mtbe) mix.add_component(ethanol) mix.unifac() eos = virialgamma(mix, actmodel='unifac') ###Output _____no_output_____ ###Markdown Once the ternary mixture has been set up, the VLLE computation is performed as follows: ###Code P = 1.01 # bar T = 326. # K Z = np.array([0.4, 0.5, 0.1]) x0 = np.array([0.95, 0.025, 0.025]) w0 = np.array([0.1, 0.7, 0.2]) y0 = np.array([0.15, 0.8, 0.05]) vlle(x0, w0, y0, Z, T, P, eos, K_tol=1e-11, full_output=True) ###Output _____no_output_____ ###Markdown Vapor Liquid Liquid Equilibrium (VLLE)This notebook exemplifies the three phase equilibria calculation. The VLLE calculation is separated into two cases:- Binary mixtures: due to degrees of freedom restrictions the VLLE is computed at given temperature or pressure. This is solved using the ``vlleb`` function.- Mixtures with three or more components: the VLLE is computed at given global composition, temperature and pressure. This is solved using the ``vlle`` function.To start, the required functions are imported. ###Code import numpy as np from sgtpy import component, mixture, saftvrmie from sgtpy.equilibrium import vlle, vlleb ###Output _____no_output_____ ###Markdown --- Binary (two-component) mixture VLLEThe VLLE computation for binary mixtures is solution is based on the following objective function:$$ K_{ik} x_{ir} - x_{ik} = 0 \qquad i = 1,...,c \quad k = 2,3 $$$$ \sum_{i=1}^c x_{ik} = 1 \qquad k = 1, 2, 3$$Where, $x_{ik}$ is the molar fraction of the component $i$ on the phase $k$ and $ K_{ik} = x_{ik}/x_{ir} = \hat{\phi}_{ir}/\hat{\phi}_{ik} $ is the constant equilibrium respect to a reference phase $r$. **note:** this calculation does not check for the stability of the phases.In the following code block, the VLLE calculation for the binary mixture of water and butanol is exemplified. For binary mixtures, the VLLE is computed at either given pressure (``P``) or temperature (``T``). The function ``vlleb`` requires either of those and initial guesses unknown variables (phase compositions and unknown specification).First, the mixture and its interaction parameters are set up. ###Code # creating pure components water = component('water', ms = 1.7311, sigma = 2.4539 , eps = 110.85, lambda_r = 8.308, lambda_a = 6., eAB = 1991.07, rcAB = 0.5624, rdAB = 0.4, sites = [0,2,2], cii = 1.5371939421515458e-20) butanol = component('butanol2C', ms = 1.9651, sigma = 4.1077 , eps = 277.892, lambda_r = 10.6689, lambda_a = 6., eAB = 3300.0, rcAB = 0.2615, rdAB = 0.4, sites = [1,0,1], npol = 1.45, mupol = 1.6609, cii = 1.5018715324070352e-19) mix = mixture(water, butanol) # or mix = water + butanol # optimized from experimental LLE kij, lij = np.array([-0.00736075, -0.00737153]) Kij = np.array([[0, kij], [kij, 0]]) Lij = np.array([[0., lij], [lij, 0]]) # setting interactions corrections mix.kij_saft(Kij) mix.lij_saft(Lij) # or setting interaction between component i=0 (water) and j=1 (butanol) mix.set_kijsaft(i=0, j=1, kij0=kij) mix.set_lijsaft(i=0, j=1, lij0=lij) # creating eos model eosb = saftvrmie(mix) ###Output _____no_output_____ ###Markdown The binary VLLE at constant pressure is computed as follows: ###Code #computed P = 1.01325e5 # Pa # initial guesses x0 = np.array([0.96, 0.06]) w0 = np.array([0.53, 0.47]) y0 = np.array([0.8, 0.2]) T0 = 350. # K vlleb(x0, w0, y0, T0, P, 'P', eosb, full_output=True) ###Output _____no_output_____ ###Markdown Similarly, the binary VLLE at constant temperature is computed below: ###Code T = 350. # K # initial guesses x0 = np.array([0.96, 0.06]) w0 = np.array([0.53, 0.47]) y0 = np.array([0.8, 0.2]) P0 = 4e4 # Pa sol_vlleb = vlleb(x0, w0, y0, P0, T, 'T', eosb, full_output=True) sol_vlleb ###Output _____no_output_____ ###Markdown You can also supply initial guesses for the phase volumes (``v0``) or non-bonded association site fractions (``Xass0``), which can come from a previous calculation using the ``full_output=True`` option. ###Code T = 350. # K # initial guesses x0 = np.array([0.96, 0.06]) w0 = np.array([0.53, 0.47]) y0 = np.array([0.8, 0.2]) P0 = 4e4 # Pa v0 = [sol_vlleb.vx, sol_vlleb.vw, sol_vlleb.vy] Xass0 = [sol_vlleb.Xassx, sol_vlleb.Xassx, sol_vlleb.Xassx] # VLLE supplying initial guess for volumes and non-bonded association sites fractions vlleb(x0, w0, y0, P0, T, 'T', eosb, v0=v0, Xass0=Xass0, full_output=True) ###Output _____no_output_____ ###Markdown --- Multicomponent mixture VLLEPhase stability plays a key role during equilibrium computation when dealing with more than two liquid phases. For this purpose the following modified multiphase Rachford-Rice mass balance has been proposed [Gupta et al.](https://www.sciencedirect.com/science/article/pii/037838129180021M):$$ \sum_{i=1}^c \frac{z_i (K_{ik} \exp{\theta_k}-1)}{1+ \sum\limits^{\pi}_{\substack{j=1 \\ j \neq r}}{\psi_j (K_{ij}} \exp{\theta_j} -1)} = 0 \qquad k = 1,..., \pi, k \neq r $$Subject to:$$ \psi_k \theta_k = 0 $$In this system of equations, $z_i$ represents the global composition of the component $i$, $ K_{ij} = x_{ij}/x_{ir} = \hat{\phi}_{ir}/\hat{\phi}_{ij} $ is the constant equilibrium of component $i$ in phase $j$ respect to the reference phase $r$, and $\psi_j$ and $\theta_j$ are the phase fraction and stability variable of the phase $j$. The solution strategy is similar to the classic isothermal isobaric two-phase flash. First, a reference phase must be selected, this phase is considered stable during the procedure. In an inner loop, the system of equations is solved using multidimensional Newton's method for phase fractions and stability variables and then compositions are updated in an outer loop using accelerated successive substitution (ASS). Once the algorithm has converged, the stability variable gives information about the phase. If it takes a value of zero the phase is stable and if it is positive the phase is not. The proposed successive substitution method can be slow, if that is the case the algorithm attempts to minimize Gibbs Free energy of the system. This procedure also ensures stable solutions and is solved using SciPy's functions.$$ min \, {G} = \sum_{k=1}^\pi \sum_{i=1}^c F_{ik} \ln \hat{f}_{ik} $$The next code block exemplifies the VLLE calculation for the mixture of water, ethanol and MTBE. This is done with the ``vlle`` function, which incorporates the algorithm described above. This functions requires the global composition (``z``), temperature (``T``) and pressure (``P``). Additionally, the ``vlle`` function requires initial guesses for the composition of the phases. ###Code water = component('water', ms = 1.7311, sigma = 2.4539 , eps = 110.85, lambda_r = 8.308, lambda_a = 6., eAB = 1991.07, rcAB = 0.5624, rdAB = 0.4, sites = [0,2,2], cii = 1.5371939421515455e-20) butanol = component('butanol2C', ms = 1.9651, sigma = 4.1077 , eps = 277.892, lambda_r = 10.6689, lambda_a = 6., eAB = 3300.0, rcAB = 0.2615, rdAB = 0.4, sites = [1,0,1], npol = 1.45, mupol = 1.6609, cii = 1.5018715324070352e-19) mtbe = component('mtbe', ms =2.17847383, sigma= 4.19140014, eps = 306.52083841, lambda_r = 14.74135198, lambda_a = 6.0, npol = 2.95094686, mupol = 1.3611, sites = [0,0,1], cii =3.5779968517655445e-19 ) mix = mixture(water, butanol) mix.add_component(mtbe) # or mix = water + butanol + mtbe #butanol water k12, l12 = np.array([-0.00736075, -0.00737153]) #mtbe butanol k23 = -0.0029995 l23 = 0. rc23 = 1.90982649 #mtbe water k13 = -0.07331438 l13 = 0. rc13 = 2.84367922 # setting up interaction corrections Kij = np.array([[0., k12, k13], [k12, 0., k23], [k13, k23, 0.]]) Lij = np.array([[0., l12, l13], [l12, 0., l23], [l13, l23, 0.]]) mix.kij_saft(Kij) mix.lij_saft(Lij) # or setting interactions by pairs (water = 0, butanol = 1, mtbe = 2) mix.set_kijsaft(i=0, j=1, kij0=k12) mix.set_kijsaft(i=0, j=2, kij0=k13) mix.set_kijsaft(i=1, j=2, kij0=k23) mix.set_lijsaft(i=0, j=1, lij0=l12) mix.set_lijsaft(i=0, j=2, lij0=l13) mix.set_lijsaft(i=1, j=2, lij0=l23) eos = saftvrmie(mix) # setting up induced association manually #mtbe water eos.eABij[0,2] = water.eAB / 2 eos.eABij[2,0] = water.eAB / 2 eos.rcij[0,2] = rc13 * 1e-10 eos.rcij[2,0] = rc13 * 1e-10 #mtbe butanol eos.eABij[2,1] = butanol.eAB / 2 eos.eABij[1,2] = butanol.eAB / 2 eos.rcij[2,1] = rc23 * 1e-10 eos.rcij[1,2] = rc23 * 1e-10 # or by using the eos._set_induced_asso method # selfasso=0 (water), inducedasso=2 (mtbe) eos.set_induced_asso(selfasso=0, inducedasso=2, rcij=rc13) # selfasso=1 (butanol), inducedasso=2 (mtbe) eos.set_induced_asso(selfasso=1, inducedasso=2, rcij=rc23) ###Output _____no_output_____ ###Markdown Once the ternary mixture has been set up, the VLLE computation is performed as follows: ###Code T = 345. #K P = 1.01325e5 # Pa # global composition z = np.array([0.5, 0.3, 0.2]) # initial guesses x0 = np.array([0.9, 0.05, 0.05]) w0 = np.array([0.45, 0.45, 0.1]) y0 = np.array([0.3, 0.1, 0.6]) sol_vlle = vlle(x0, w0, y0, z, T, P, eos, full_output = True) sol_vlle ###Output _____no_output_____ ###Markdown As for the other phase equilibria functions included, you can supply initial guesses for the phase volumes (``v0``) or non-bonded association site fractions (``Xass0``), which can come from a previous calculation using the ``full_output=True`` option. ###Code T = 345. #K P = 1.01325e5 # Pa # global composition z = np.array([0.5, 0.3, 0.2]) # initial guesses x0 = np.array([0.9, 0.05, 0.05]) w0 = np.array([0.45, 0.45, 0.1]) y0 = np.array([0.3, 0.1, 0.6]) v0 = sol_vlle.v Xass0 = sol_vlle.Xass # VLLE supplying initial guess for volumes and non-bonded association sites fractions vlle(x0, w0, y0, z, T, P, eos, v0=v0, Xass0=Xass0, full_output = True) ###Output _____no_output_____
others/solutions/pandas/titanic/Titanic-exercise-with-solutions.ipynb
###Markdown Titanic Exercise Practise Pandas ![titanic](https://userscontent2.emaze.com/images/a5f68f37-6349-4065-a1fc-921cbe7401b2/958230111417e36d6b3c67ffd7bc3494.jpeg) First of all, import the needed libraries. ###Code import numpy as np import pandas as pd import matplotlib.pyplot as plt # you will have to import at least two other libraries along the exercise import random import seaborn as sns ###Output _____no_output_____ ###Markdown 1. Read in filename and call the variable `titanic` - Explore the `titanic` dataset using `info`, `dtypes` & `describe` ###Code filename = "titanic.csv" #your code titanic = pd.read_csv("utils/titanic.csv") titanic.head() titanic.info() titanic.dtypes titanic.shape ###Output _____no_output_____ ###Markdown 2. Create a separate dataframe with the columns `['name', 'sex', 'age']`, call it `people`It can be done two ways, do it both! ###Code diccionario = {"name": titanic["name"], "sex": titanic["sex"], "age": titanic["age"]} df = pd.DataFrame(diccionario) df #your code people = titanic[["name","sex","age"]] people titanic2 = titanic.copy() ###Output _____no_output_____ ###Markdown 3. Print the output of `people` showing the first three rows and the last four rows, using `append`,`tail` and `head` ###Code t = people.tail(4) h = people.head(3) lo_que_retorna_append = h.append(t) lo_que_retorna_append #your code people.head(3).append(people.tail(4)) ###Output _____no_output_____ ###Markdown 4. Slice the row from 3 to 9, call it `s_titanic` ###Code s_titanic = titanic.iloc[3:10, :] s_titanic #your code s_titanic = titanic[3:10] s_titanic ###Output _____no_output_____ ###Markdown 5. Slice the row from 40 to 63 in reverse order, call it `s_titanic_rev` ###Code s_titanic_rev = titanic.iloc[40:64][::-1] s_titanic_rev #your code s_titanic_rev = titanic.iloc[63:39:-1] s_titanic_rev #your code s_titanic_rev = titanic[40:64].sort_index(ascending=False) s_titanic_rev #your code s_titanic_rev = titanic[40:64][::-1] s_titanic_rev ###Output _____no_output_____ ###Markdown 6. Slice the columns from the starting column to `'parch'`, call it `left_columns` ###Code list(titanic.columns).index("parch") #your code posicion_parch = list(titanic.columns).index("parch") titanic.iloc[:, :posicion_parch+1] #your code titanic.loc[:, :"parch"] ###Output _____no_output_____ ###Markdown 7. Slice the columns from `'name'` to `'age'`, call it `middle_columns` ###Code #your code middle_columns = titanic.loc[:, "name":"age"] middle_columns ###Output _____no_output_____ ###Markdown 8. Slice the columns from `'ticket'` to the end, call it `right_columns` ###Code #your code right_columns = titanic.loc[:, "ticket":] right_columns ###Output _____no_output_____ ###Markdown 9. What is the name of the oldest person who died in the Titanic? Was he or she travelling alone or had any family travelling with them? ###Code non_survived = titanic[titanic["survived"]==0] non_survived.loc[non_survived["age"] == non_survived["age"].max()] #your code titanic[titanic.age == titanic[titanic.survived == 0].age.max()] titanic.groupby("survived").max() ###Output _____no_output_____ ###Markdown In order to give an answer to the second question you should find out which columns give you that info. Usually part of your job as a Data Scientist will be get to know the dataset which you are working with. In this case the columns which give you that info are the following: - 'sibsp' Number of Siblings/Spouses Aboard - 'parch' Number of Parents/Children Aboard 10. Create the list of 5 random numbers of rows from 0 to the lenght of the dataframe, call it `rows`ex. `rows = [3,7,99,52,48]` use `random` library ###Code range(0, titanic.shape[0]) random.choices([2, 5, 7, 9, 99, 1, 0], k=5) #your code rows = random.choices(range(0, titanic.shape[0]), k=5) rows ###Output _____no_output_____ ###Markdown This list of numbers are random, could be different. 11. Create the list of three column labels, call it `cols` ###Code list(titanic.columns) random.sample(list(titanic.columns),3) #your code cols = ["embarked", "body", "home.dest"] cols ###Output _____no_output_____ ###Markdown 12. Use both lists `rows` and `cols` to create a new dataframe ###Code pd.DataFrame(data=titanic, index=rows, columns=cols) #your code titanic.loc[rows,cols] ###Output _____no_output_____ ###Markdown 13. Create a boolean array with the condition of being a woman or a man, using the `sex` column, where **female** is True. Call it `array_fe` Bonus: Rename the column `"sex"` to `"gender"` ###Code #your code titanic = titanic.rename({'sex': 'gender'}, axis=1) array_fe = titanic.gender == "female" df_2 = pd.DataFrame(array_fe) df_2 ###Output _____no_output_____ ###Markdown 14. Filter the `titanic` dataframe with the boolean array, call it `woman_titanic` ###Code #your code woman_titanic = titanic[array_fe] woman_titanic ###Output _____no_output_____ ###Markdown 15. How many woman were younger than 18? Call the variable `minor_wo` ###Code #your code minor_wo = woman_titanic[woman_titanic.age < 18] len(minor_wo) ###Output _____no_output_____ ###Markdown 16. How many woman that were less than 18 actually died? Call the variable `dead_wo` ###Code #your code dead_wo = minor_wo[minor_wo.survived == 0] len(dead_wo) ###Output _____no_output_____ ###Markdown 17. Drop rows with *Nan* in `titanic` with `how='any'` and print the shape ###Code #your code titanic.dropna(how="any").shape ###Output _____no_output_____ ###Markdown 18. Drop rows with *Nan* in `titanic` with `how='all'` and print the shape ###Code titanic.shape #your code titanic.dropna(how="all").shape ###Output _____no_output_____ ###Markdown Check in [here](https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.dropna.html) why the shapes are different. 19. Drop columns in `titanic` with more than 1000 missing values and print the columns remaining ###Code titanic.dropna(axis=1, thresh=len(titanic)-1000).shape titanic.columns[titanic.isnull().sum() > 1000] titanic.drop(['cabin', 'body'], axis = 1, inplace = True) #your code titanic.columns ###Output _____no_output_____ ###Markdown 20. Calculate the ratio of missing values at the `boat` column. ###Code titanic.boat.isnull().sum() titanic.shape[0] round((823/1309)*100, 2) #your code print(stround(((titanic.boat.isnull().sum()/titanic.shape[0])*100),2)),"% of the data in the column 'boat' are null") ###Output 62.87 % of the data in the column 'boat' are null ###Markdown 21. Group `titanic` by `'pclass'` and aggregate by the columns `age` & `fare`, by `max` and `median` --> `by_class` ###Code #your code by_class = titanic.groupby("pclass").agg({"age":["max","median"], "fare":["max", "median"]}) by_class ###Output _____no_output_____ ###Markdown 22. Print the maximum age in each class from `by_class` ###Code #your code by_class.age["max"] ###Output _____no_output_____ ###Markdown 23. Print the median fare in each class from `by_class` ###Code #your code by_class.fare["median"] ###Output _____no_output_____ ###Markdown 24. Using [`.pivot_table()`](https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.pivot_table.html) to count how many women or men survived by class, call it `counted`.Don't panic and read the documentation! ###Code #your code counted["Percent_f"] = counted["female"]/(counted.sum(axis=1)) counted #your code counted = pd.pivot_table(titanic, values="survived" , columns="gender" , index="pclass", aggfunc=np.sum) counted ###Output _____no_output_____ ###Markdown 25. Add a new column with the sum of survived men and women, call it `counted['total']` ###Code #your code counted['total'] = counted['female']+counted['male'] counted['total'] ###Output _____no_output_____ ###Markdown 26. Sort `counted` by the `'total'` column. In which class the people survived the more? ###Code #your code counted.sort_values('total', ascending = False).head(1) ###Output _____no_output_____ ###Markdown 27. Please, show only the rows using a mask with the following conditions: - They are woman - From third class - Younger than 30 - They survived ¿How many rows fulfill the condition? ###Code #your code len(titanic[(titanic.gender == "female") & (titanic.pclass == 3) & (titanic.age<30) & (titanic.survived==1) ]) ###Output _____no_output_____ ###Markdown 28. Now, show only the rows using `.loc` with the following conditions: - They are man - From first class - Older than 50 - They died ¿How many rows fulfill the condition? ###Code #your code len(titanic.loc[(titanic.gender == "male")& (titanic.pclass == 1)& (titanic.age>50)& (titanic.survived==0)]) ###Output _____no_output_____ ###Markdown 29. Print the uniques values at the column `'name'` ###Code #your code titanic["name"].unique() #your code titanic["name"].nunique() ###Output _____no_output_____ ###Markdown 30. Find if was there any `name` repeated at the Titanic?Hint: There were two people with the same name, who? ###Code titanic.name.value_counts() #your code list(titanic.name.value_counts()[titanic.name.value_counts()>1].index) titanic[titanic.name.duplicated()].name titanic[titanic.name.duplicated(keep=False)] def difference(): if len(titanic["name"]) != len(titanic.groupby(["name"]).sum()): print("Aqui tenemos gente repetida!") else: print("No te asustes, NO") return titanic[titanic.duplicated(["name"])] difference() ###Output Aqui tenemos gente repetida! ###Markdown 31. Using `matplotlib` find the appropriate visualization to show the distribution of the column `'age'` ###Code #your code hist = titanic.age.hist(bins=25) print(hist) # plotly x = plt.hist(titanic.age, bins=30) print(x[1]) x[0] ###Output [ 0.17 2.831 5.492 8.153 10.814 13.475 16.136 18.797 21.458 24.119 26.78 29.441 32.102 34.763 37.424 40.085 42.746 45.407 48.068 50.729 53.39 56.051 58.712 61.373 64.034 66.695 69.356 72.017 74.678 77.339 80. ] ###Markdown 32. Using `matplotlib` find the appropriate plot to visualize the column `'gender'` ###Code #your code titanic.gender.value_counts().plot(kind='bar') titanic.gender.value_counts().values titanic.gender.value_counts().index titanic.gender.value_counts().values plt.bar(x=titanic.gender.value_counts().index.values, height=titanic.gender.value_counts().values) plt.hist(titanic.gender.sort_values(ascending=False)) ###Output _____no_output_____ ###Markdown 32b. What if you also plot the column `'gender'` using the function [`countplot`](https://seaborn.pydata.org/generated/seaborn.countplot.html) from the library [`seaborn`](https://seaborn.pydata.org/)?Remember you have never used `seaborn` before, therefore you should install it before importing it. ###Code #your code sns.countplot(x="gender",data=titanic) ###Output _____no_output_____ ###Markdown 33. Using the function [`catplot`](https://seaborn.pydata.org/generated/seaborn.catplot.html) from the library `seaborn`, find out if the hypothesis _"Women are more likely to survive shipwrecks"_ is true or not.You should get something like this: ![catplot](catplotgen.png) ###Code #your code sns.catplot(x="gender", y="survived", kind="bar", data=titanic) ###Output _____no_output_____ ###Markdown 34. Using [`kdeplot`]("https://seaborn.pydata.org/generated/seaborn.kdeplot.html") from `seaborn` represent those who not survived distributed by age.Hint: First you should "filter" the `titanic` dataset where the column "survived" is 0, indexing the column `"age"` only.Arguments you should pass to the function: - color = "red" - label = "Not Survived" - shade = True You should get something like this: ![kdeplot](kdeplotsur.png) ###Code #your code sns.kdeplot(titanic.age[titanic.survived == 0], color = "red", label = "Not Survived", shade = True) sns.kdeplot(titanic.age[titanic.survived == 1], color="green", label="Survived", shade=True) ###Output _____no_output_____
feature_engineering/notebooks/feature_test_bench.ipynb
###Markdown Import libraries ###Code import sys import glob, os import pandas as pd import numpy as np import plotly.plotly as py import plotly.graph_objs as go import plotly.offline as offline from plotly import tools import time from scipy.spatial import distance from scipy import linalg from scipy import signal import matplotlib.pyplot as plt %matplotlib inline offline.init_notebook_mode() pd.options.display.float_format = '{:.6f}'.format pd.options.display.max_rows = 999 pd.options.display.max_columns = 999 sys.path.insert(0, '../../scripts/asset_processor/') # load the autoreload extension %load_ext autoreload # Set extension to reload modules every time before executing code %autoreload 2 from video_asset_processor import VideoAssetProcessor from video_metrics import VideoMetrics ###Output _____no_output_____ ###Markdown Computes a list of metrics for some assets ###Code path = '../../stream/' resolutions = [ 144, 240, 360, 480, 720, 1080 ] attacks = [ 'watermark', 'watermark-345x114', 'watermark-856x856', 'vignette', 'low_bitrate_4', 'low_bitrate_8', 'black_and_white', # 'flip_vertical', 'rotate_90_clockwise' ] max_samples = 2 total_videos = 1 assets = np.random.choice(os.listdir(path + '1080p'), total_videos, replace=False) metrics_list = ['temporal_texture', 'temporal_gaussian', # 'temporal_threshold_gaussian_difference', # 'temporal_dct' ] metrics_df = pd.DataFrame() init = time.time() for asset in assets: original_asset = {'path': path + '1080p/' + asset} renditions_list = [{'path': path + str(res) + 'p/' + asset} for res in resolutions] attack_list = [{'path': path + str(res) + 'p_' + attk + '/' + asset} for res in resolutions for attk in attacks] renditions_list += attack_list asset_processor = VideoAssetProcessor(original_asset, renditions_list, metrics_list, max_samples=max_samples) metrics = asset_processor.process() metrics_df = metrics_df.append(metrics) print('That took {0:.2f} seconds to compute'.format(time.time() - init)) metrics_df = metrics_df.reset_index() metrics_df = metrics_df.drop('index', axis=1) features = [metric + '-mean' for metric in metrics_list] columns = ['dimension', 'size', 'title', 'attack'] + features metrics_df = metrics_df.filter(columns) attacks = metrics_df['attack'].unique() metrics_df.head() legit_df = metrics_df[~metrics_df['attack'].str.contains('_')] attacks_df = metrics_df[metrics_df['attack'].str.contains('_')] display(legit_df.head()) display(attacks_df.head()) ###Output _____no_output_____ ###Markdown Feature analysis ###Code print('Legit assets description:') display(legit_df[features].astype(float).describe()) print('Attack assets description:') display(attacks_df[features].astype(float).describe()) for feat in features: data = [] data.append(go.Box(y=attacks_df[feat], name='Attacks', boxpoints='all', text=attacks_df['title'] + '-' + attacks_df['attack'])) data.append(go.Box(y=legit_df[feat], name='Legit', boxpoints='all', text=attacks_df['title'] + '-' + attacks_df['attack'])) layout = go.Layout( title=feat, yaxis = go.layout.YAxis(title = feat), xaxis = go.layout.XAxis( title = 'Type of asset', ) ) fig = go.Figure(data=data, layout=layout) offline.iplot(fig) for feat in features: data = [] for res in resolutions: data.append(go.Box(y=attacks_df[feat], name=str(res) + '-' + attacks_df['attack'], boxpoints='all', text=attacks_df['title'] + '-' + attacks_df['attack'])) data.append(go.Box(y=legit_df[feat], name=res, boxpoints='all', text=legit_df['title'] + '-' + legit_df['attack'])) layout = go.Layout( title=feat, yaxis = go.layout.YAxis(title = feat), xaxis = go.layout.XAxis( title = 'Type of asset', ) ) fig = go.Figure(data=data, layout=layout) offline.iplot(fig) df_corr = attacks_df[features].astype(float).corr() plt.figure(figsize=(10,10)) corr = df_corr.corr('pearson') corr.style.background_gradient().set_precision(2) df_corr = legit_df[features].astype(float).corr() plt.figure(figsize=(10,10)) corr = df_corr.corr('pearson') corr.style.background_gradient().set_precision(2) ###Output _____no_output_____
assignments/PythonAdvanceProgramming/Python_Advance_Programming_21.ipynb
###Markdown 1. Given a sentence, return the number of words which have the same first and last letter.Examplescount_same_ends("Pop! goes the balloon") ➞ 1count_same_ends("And the crowd goes wild!") ➞ 0count_same_ends("No I am not in a gang.") ➞ 1 ###Code def count_same_ends(string): # remove special chars except space string = ''.join(e for e in string if e.isalnum() or e == " ") # using list comprehension with if conditions to reduce code size return len([x for x in string.lower().split(' ') if x[0] == x[-1] and len(x) > 1]) print(count_same_ends("Pop! goes the balloon")) print(count_same_ends("And the crowd goes wild!")) print(count_same_ends("No I am not in a gang.")) ###Output 1 0 1 ###Markdown 2. The Atbash cipher is an encryption method in which each letter of a word is replaced with its "mirror" letter in the alphabet: A Z; B Y; C X; etc. Create a function that takes a string and applies the Atbash cipher to it.Examplesatbash("apple") ➞ "zkkov"atbash("Hello world!") ➞ "Svool dliow!"atbash("Christmas is the 25th of December") ➞ "Xsirhgnzh rh gsv 25gs lu Wvxvnyvi" ###Code def atbash(word:str): decrypted = "" chars = "abcdefghijklmnopqrstuvwxyz" for c in word: if not c.isalpha(): # if not a character don't chage it decrypted += c elif c.isupper(): decrypted += chars[(-1 * chars.index(c.lower())) -1].upper() else: decrypted += chars[(-1 * chars.index(c)) -1] # if index is '0' we need to get -1 as new index return decrypted print(atbash("apple")) print(atbash("Hello world!")) print(atbash("Christmas is the 25th of December")) ###Output zkkov Svool dliow! Xsirhgnzh rh gsv 25gs lu Wvxvnyvi ###Markdown 3. Create a class Employee that will take a full name as argument, as well as a set of none, one or more keywords. Each instance should have a name and a lastname attributes plus one more attribute for each of the keywords, if any.Examples* john = Employee("John Doe") * mary = Employee("Mary Major", salary=120000) * richard = Employee("Richard Roe", salary=110000, height=178) * giancarlo = Employee("Giancarlo Rossi", salary=115000, height=182, nationality="Italian")john.name ➞ "John" mary.lastname ➞ "Major" richard.height ➞ 178 giancarlo.nationality ➞ "Italian" ###Code class Employee: def __init__(self, full_name, **kwargs): self.name = full_name.split(' ')[0] self.lastname = full_name.split(' ')[-1] for arg in kwargs: if isinstance(kwargs[arg], str): exec("self.{0} = '{1}'".format(arg,kwargs[arg])) else: exec("self.{0} = {1}".format(arg,kwargs[arg])) john = Employee("John Doe") mary = Employee("Mary Major", salary=120000) richard = Employee("Richard Roe", salary=110000, height=178) giancarlo = Employee("Giancarlo Rossi", salary=115000, height=182, nationality="Italian") print(john.name, mary.lastname, richard.height, giancarlo.nationality) ###Output John Major 178 Italian ###Markdown 4. Create a function that determines whether each seat can "see" the front-stage. A number can "see" the front-stage if it is strictly greater than the number before it.Everyone can see the front-stage in the example below:FRONT STAGE [[1, 2, 3, 2, 1, 1], [2, 4, 4, 3, 2, 2], [5, 5, 5, 5, 4, 4], [6, 6, 7, 6, 5, 5]]Starting from the left, the 6 > 5 > 2 > 1, so all numbers can see. 6 > 5 > 4 > 2 - so all numbers can see, etc.Not everyone can see the front-stage in the example below:FRONT STAGE [[1, 2, 3, 2, 1, 1], [2, 4, 4, 3, 2, 2], [5, 5, 5, 10, 4, 4], [6, 6, 7, 6, 5, 5]]The 10 is directly in front of the 6 and blocking its view.The function should return True if every number can see the front-stage, and False if even a single number cannot.Examplescan_see_stage([ [1, 2, 3], [4, 5, 6], [7, 8, 9] ]) ➞ Truecan_see_stage([ [0, 0, 0], [1, 1, 1], [2, 2, 2] ]) ➞ Truecan_see_stage([ [2, 0, 0], [1, 1, 1], [2, 2, 2] ]) ➞ Falsecan_see_stage([ [1, 0, 0], [1, 1, 1], [2, 2, 2] ]) ➞ FalseNumber must be strictly smaller than the number directly behind it. ###Code def can_see_stage(seats): for i in range(len(seats)): for j in range(len(seats[i]) -1): if not (seats[j][i] < seats[j+1][i]): # checking if first row number is smaller than next row number return False return True print(can_see_stage([ [1, 2, 3], [4, 5, 6], [7, 8, 9] ])) print(can_see_stage([ [0, 0, 0], [1, 1, 1], [2, 2, 2] ])) print(can_see_stage([ [2, 0, 0], [1, 1, 1], [2, 2, 2] ])) print(can_see_stage([ [1, 0, 0], [1, 1, 1], [2, 2, 2] ])) ###Output True True False False ###Markdown 5. Create a Pizza class with the attributes order_number and ingredients (which is given as a list). Only the ingredients will be given as input.You should also make it so that its possible to choose a ready made pizza flavour rather than typing out the ingredients manually! As well as creating this Pizza class, hard-code the following pizza flavours.Name Ingredients hawaiian ham, pineapple meat_festival beef, meatball, bacon garden_feast spinach, olives, mushroomExamplesp1 = Pizza(["bacon", "parmesan", "ham"]) order 1 p2 = Pizza.garden_feast() order 2p1.ingredients ➞ ["bacon", "parmesan", "ham"]p2.ingredients ➞ ["spinach", "olives", "mushroom"]p1.order_number ➞ 1p2.order_number ➞ 2 ###Code class Pizza(): order_number = 0 def __init__(self, ingredients): self.ingredients = ingredients Pizza.order_number += 1 @classmethod def garden_feast(self): return Pizza(["spinach", "olives", "mushroom"]) @classmethod def hawaiian(self): return Pizza(['ham', 'pineapple']) @classmethod def meat_festival(self): return Pizza(['beef', 'meatball', 'bacon']) p1 = Pizza(["bacon", "parmesan", "ham"]) print(p1.order_number, p1.ingredients) p2 = Pizza.garden_feast() print(p2.order_number, p2.ingredients) p3 = Pizza.meat_festival() print(p3.order_number, p3.ingredients) p4 = Pizza.meat_festival() print(p4.order_number, p4.ingredients) p5 = Pizza(["momos", "pasta", "chicken"]) print(p5.order_number, p5.ingredients) ###Output 1 ['bacon', 'parmesan', 'ham'] 2 ['spinach', 'olives', 'mushroom'] 3 ['beef', 'meatball', 'bacon'] 4 ['beef', 'meatball', 'bacon'] 5 ['momos', 'pasta', 'chicken']
doc/AdminBackground/PHY321/CM_Jupyter_Notebooks/Student_Work/CM_Notebook8.ipynb
###Markdown Classical Mechanics - Week 8 Last Week:- Introduced the SymPy package- Visualized Potential Energy surfaces- Explored packages in Python This Week:We will (mostly) take a break from learning new concepts in scientific computing, and instead just apply some of our current knowledge to complete Problem Set 8. ###Code # As usual, we will need packages %matplotlib inline import numpy as np import matplotlib.pyplot as plt ###Output _____no_output_____ ###Markdown 3. Taylor problem 4.29.(a) Here we plot the potential energy $U(x)=kx^4$, with $k>0$. Note that the constant $k$ is not given. But it is just an overall scale factor for the potential, so the plot will basically look the same no matter what value you choose for $k$. For the purposes of scaling and keeping things simple, we recommend you set $k=1$.For 2D plots, we learned two different methods:- 1) Our original plotting method, using `pyplot`. (Refer back to ***Notebook 1*** for this method.) **Note:** use `plt.plot()` rather than `plt.scatter()` in order to make connected curves in the plot.- 2) Using `SymPy`. (Refer back to ***Notebook 7*** for this method.) You will have to import the sympy package if you use this method.It is up to you to decide which method you prefer for making the plot. Use the cell below to define the potential energy function and to make the plot. Q1.) Qualitatively describe the motion if the mass in this potential is initially stationary at $x=0$ and is given a sharp kick to the right at $t=0$? &9989; Double click this cell, erase its content, and put your answer to the above question here. (d) After performing the change of variable in part (c) of the problem, you should find that the period of oscillation for the mass is given by$$\tau=\dfrac{1}{A}\sqrt{\dfrac{m}{k}}I\,,$$where $$I=\dfrac{4}{\sqrt{2}}\int_0^1\dfrac{dy}{\sqrt{1-y^4}}$$ is the integral to be evaluated. (Where did the factor of 4 come from?) Note that the integral $I$ is dimensionless. Changing variables to obtain a dimensionless integral is almost always useful, especially when you need to evaluate it numerically. Also, even if we don't know what the value of $I$ is, from this expression we can see explicitly how $\tau$ depends on the parameters$A$, $m$, and $k$. Now how to do the integral?(Review back to ***Notebook 5*** for ***numerical integration***.)If we tried to use our Trapezoidal Rule routine, we would immediately run into problems.What happens to the integrand in the limit as $y$ goes to 1?Although there are ways to change variables again, so that the Trapezoidal Rule routine would work, it is here where more general integration packages are useful, since they can often handle these integrable singularities without any extra effort. So instead, let's use the `integrate.quad()` function from `SciPy` to do it.In the cell below, define the function to be integrated and then integrate it using `integrate.quad()`. Don't forget to import the numerical integration routines from `SciPy` first. (Again, refer back to Notebook 5 if you need guidance.) Q2.) What is the period of oscillation of the mass, as a function of the parameters, and including the calculated numerical factor? &9989; Double click this cell, erase its content, and put your answer to the above question here. 5. Taylor problem 4.37.(c) It should be possible to write the potential energy function in this problem as$$U(\phi)=MgR\,f(\phi,m/M)\,,$$so that the factor $MgR$ is just an overall scale factor. Might as well just set $M=g=R=1$. But the shape of the potential energy does depend on the value of $m/M$.In the cell below, plot two different $\phi$ vs $U(\phi)$ potential energy lines onto the same graph, one line where $m/M=0.7$ and a second line where $m/M=0.8$. Use your preferred method to make the plot of $\phi$ vs $U(\phi)$. In this problem, you are asked to consider the motion of the system starting from rest at $\phi=0$.What is the total energy in this case, and why is it important for determining the motion of the system?Try varying the ratio $m/M$ in your plot in order to determine the critical value $r_\mathrm{crit}$. This is defined so that if $m/Mr_\mathrm{crit}$ the wheel keeps spinning and the mass $m$ keeps falling (if released from rest at $\phi=0$).Use the cell below. Q3.) What feature of the plot did you use to determine the critical value of $m/M$? What value did you obtain? &9989; Double click this cell, erase its content, and put your answer to the above question here. 6. Taylor problem 4.38.(b) After doing the substitution in part (a), you obtained the EXACT period for the pendulum as$$\tau=\tau_0\dfrac{2}{\pi}K(A^2)\,,$$where $$K(A^2)=\int_0^1\dfrac{du}{\sqrt{1-u^2}\sqrt{1-A^2u^2}}\,.$$ The integral is dimensionless, so that the period is proportional to $\tau_0$ (the period for small oscillations),but now the proportionality factor depends on the amplitude $\Phi$ of the oscillations, through the dependence on $A=\sin(\Phi/2)$.As in problem 3, the Trapezoidal Rule method will struggle with this integral, due to the singularity in the integrand as $u$ goes to 1. However, `integrate.quad()` from the `SciPy` package should have no problem with it.In the cell below, define the function to be integrated and then integrate it using `integrate.quad()` to obtain $K(A^2)$ for the values of $\Phi=\pi/4$, $\Phi=\pi/2$, and $\Phi=3\pi/4$. Special FunctionsThe function $K(A^2)$ cannot be written in terms of elementary functions, such as cosine, sine, logarithm, exponential, etc. However, it does pop up enough in mathematics and physics problems, that it is given its own name: the ***complete elliptic integral of the first kind***.This is one of many so-called "special functions" that arise frequently in physics problems. Others are Bessel functions, Legendre functions, etc., etc. They aren't really more complicated than the elementary functions; it's just that we are not as familiar with them. It turns out that `SciPy` has many of these "special functions" already coded up. Try running the following cell. (Use the same values of $\Phi$ as before.) ###Code # The following line imports the special functions from SciPy: from scipy import special A= # Evaluate for the same values of Phi that you used previously special.ellipk(A**2) ###Output _____no_output_____ ###Markdown You should have gotten the same answers as before.Now, use the special function to make a plot of $\tau/\tau_0$ as a function of $\Phi$ for $0\le\Phi\le3$ (in radians) in the following cell.As a check, what should $\tau/\tau_0$ be in the limit as $\Phi\rightarrow0$? Q4.) How well does the small angle approximation work for the period of a pendulum with amplitude $\Phi=\pi/4$? What happens to $\tau$ as $\Phi$ approaches $\pi$? Explain. &9989; Double click this cell, erase its content, and put your answer to the above question here. 7. The last problem.As we have seen, it is often useful to write things in terms of dimensionless combinations of parameters.Your result for the potential in this problem can be written$$U(x)=k\alpha^2\,f(y)\,,$$where $y=x/\alpha$ is dimensionless. Verify this. Thus, the natural distance scale is $\alpha$ and the natural energy scale is$k\alpha^2$. In the cell below, make a plot of $U(x)/(k\alpha^2)$ as a function of $x/\alpha$. (Note that this is equivalent tosetting $k=\alpha=1$ in U(x). Why?) Q5.) From your plot, what is special about the energy $E=k\alpha^2/4$? &9989; Double click this cell, erase its content, and put your answer to the above question here. Notebook Wrap-up. Run the cell below and copy-paste your answers into their corresponding cells. ###Code from IPython.display import HTML HTML( """ <iframe src="https://forms.gle/o2JbpvJeUFYvWQni7" width="100%" height="1200px" frameborder="0" marginheight="0" marginwidth="0"> Loading... </iframe> """ ) ###Output _____no_output_____
notebooks/gaps.ipynb
###Markdown Violation: Gaps ###Code p1 = box(0,0,10,10) p2 = Polygon([(10,10), (12,8), (10,6), (12,4), (10,2), (20,5)]) gdf = geopandas.GeoDataFrame(geometry=[p1,p2]) gdf.plot(edgecolor='k') geoplanar.gaps(gdf) g = geoplanar.gaps(gdf) g.area.values gdf1 = geoplanar.fill_gaps(gdf) gdf1.plot(edgecolor='k') gdf1.area gdf.area geoplanar.gaps(gdf1) ###Output /home/serge/Documents/g/geoplanar/geoplanar/geoplanar/gap.py:48: FutureWarning: Currently, index_parts defaults to True, but in the future, it will default to False to be consistent with Pandas. Use `index_parts=True` to keep the current behavior and True/False to silence the warning. _gaps = dbu.explode() ###Markdown The default is to merge the gap with the largest neighboring feature. To merge the gap with the smallest neighboring feature set `Largest=False': ###Code geoplanar.fill_gaps(gdf, largest=False).plot(edgecolor='k') geoplanar.fill_gaps(gdf, largest=False).area ###Output /home/serge/Documents/g/geoplanar/geoplanar/geoplanar/gap.py:48: FutureWarning: Currently, index_parts defaults to True, but in the future, it will default to False to be consistent with Pandas. Use `index_parts=True` to keep the current behavior and True/False to silence the warning. _gaps = dbu.explode() ###Markdown Checking edge case ###Code p1 = box(0,0,10,10) p2 = Polygon([(10,10), (12,8), (10,6), (12,4), (10,2), (20,5)]) p3 = box(17,0,20,2) gdf = geopandas.GeoDataFrame(geometry=[p1,p2,p3]) gdf.plot(edgecolor='k') g = geoplanar.gaps(gdf) g.plot() geoplanar.fill_gaps(gdf, largest=False).plot(edgecolor='k') geoplanar.fill_gaps(gdf, largest=True).plot(edgecolor='k') gdf.plot() ###Output _____no_output_____ ###Markdown Gap with an inlet (non-gap) ###Code p1 = box(0,0,10,10) p2 = Polygon([(10,10), (12,8), (10,6), (12,4), (11,2), (20,5)]) # a true gap with a inlet gdf = geopandas.GeoDataFrame(geometry=[p1,p2]) gdf.plot(edgecolor='k') geoplanar.gaps(gdf) geoplanar.fill_gaps(gdf, largest=False).plot(edgecolor='k') ###Output /home/serge/Documents/g/geoplanar/geoplanar/geoplanar/gap.py:48: FutureWarning: Currently, index_parts defaults to True, but in the future, it will default to False to be consistent with Pandas. Use `index_parts=True` to keep the current behavior and True/False to silence the warning. _gaps = dbu.explode() ###Markdown Selective Correction ###Code p1 = box(0,0,10,10) p2 = Polygon([(10,10), (12,8), (10,6), (12,4), (10,2), (20,5)]) p3 = box(17,0,20,2) gdf = geopandas.GeoDataFrame(geometry=[p1,p2,p3]) gdf.plot(edgecolor='k') gaps = geoplanar.gaps(gdf) base = gdf.plot() gaps.plot(color='red', ax=base) gaps g2 = gaps.loc[[2]] g2 filled = geoplanar.fill_gaps(gdf,g2) base = filled.plot() g2.plot(color='red', ax=base) filled.area filled.shape (filled.area==[104, 32,6]).all() ###Output _____no_output_____ ###Markdown Violation: Gaps ###Code p1 = box(0,0,10,10) p2 = Polygon([(10,10), (12,8), (10,6), (12,4), (10,2), (20,5)]) gdf = geopandas.GeoDataFrame(geometry=[p1,p2]) gdf.plot(edgecolor='k') geoplanar.gaps(gdf) g = geoplanar.gaps(gdf) g.area.values gdf1 = geoplanar.fill_gaps(gdf) gdf1.plot(edgecolor='k') gdf1.area gdf.area geoplanar.gaps(gdf1) ###Output /home/serge/Documents/g/geoplanar/geoplanar/geoplanar/gap.py:48: FutureWarning: Currently, index_parts defaults to True, but in the future, it will default to False to be consistent with Pandas. Use `index_parts=True` to keep the current behavior and True/False to silence the warning. _gaps = dbu.explode() ###Markdown The default is to merge the gap with the largest neighboring feature. To merge the gap with the smallest neighboring feature set `Largest=False': ###Code geoplanar.fill_gaps(gdf, largest=False).plot(edgecolor='k') geoplanar.fill_gaps(gdf, largest=False).area ###Output /home/serge/Documents/g/geoplanar/geoplanar/geoplanar/gap.py:48: FutureWarning: Currently, index_parts defaults to True, but in the future, it will default to False to be consistent with Pandas. Use `index_parts=True` to keep the current behavior and True/False to silence the warning. _gaps = dbu.explode() ###Markdown Checking edge case ###Code p1 = box(0,0,10,10) p2 = Polygon([(10,10), (12,8), (10,6), (12,4), (10,2), (20,5)]) p3 = box(17,0,20,2) gdf = geopandas.GeoDataFrame(geometry=[p1,p2,p3]) gdf.plot(edgecolor='k') g = geoplanar.gaps(gdf) g.plot() geoplanar.fill_gaps(gdf, largest=False).plot(edgecolor='k') geoplanar.fill_gaps(gdf, largest=True).plot(edgecolor='k') gdf.plot() ###Output _____no_output_____ ###Markdown Gap with an inlet (non-gap) ###Code p1 = box(0,0,10,10) p2 = Polygon([(10,10), (12,8), (10,6), (12,4), (11,2), (20,5)]) # a true gap with a inlet gdf = geopandas.GeoDataFrame(geometry=[p1,p2]) gdf.plot(edgecolor='k') geoplanar.gaps(gdf) geoplanar.fill_gaps(gdf, largest=False).plot(edgecolor='k') ###Output /home/serge/Documents/g/geoplanar/geoplanar/geoplanar/gap.py:48: FutureWarning: Currently, index_parts defaults to True, but in the future, it will default to False to be consistent with Pandas. Use `index_parts=True` to keep the current behavior and True/False to silence the warning. _gaps = dbu.explode() ###Markdown Selective Correction ###Code p1 = box(0,0,10,10) p2 = Polygon([(10,10), (12,8), (10,6), (12,4), (10,2), (20,5)]) p3 = box(17,0,20,2) gdf = geopandas.GeoDataFrame(geometry=[p1,p2,p3]) gdf.plot(edgecolor='k') gaps = geoplanar.gaps(gdf) base = gdf.plot() gaps.plot(color='red', ax=base) gaps g2 = gaps.loc[[2]] g2 filled = geoplanar.fill_gaps(gdf,g2) base = filled.plot() g2.plot(color='red', ax=base) filled.area filled.shape (filled.area==[104, 32,6]).all() ###Output _____no_output_____
4. Numpy.ipynb
###Markdown NumPy is a general-purpose array-processing package. It provides a high-performance multidimensional array object, and tools for working with these arrays. It is the fundamental package for scientific computing with Python. ArrayAn array is a data structure that stores values of same data type. In Python, list can contain values corresponding to different data types but array can only contain values corresponding to same data type ###Code # pip install numpy or conda install numpy - for manually install #Import Mumpy import numpy as np ###Output _____no_output_____ ###Markdown Single Dimension array ###Code my_lst=[1,2,3,4,5,6] arr1 = np.array(my_lst) print(arr1) print(type(arr1)) print(arr1.shape) #know only no of columns for 1D array arr1 arr2 = arr1.reshape(3,2) #convert shape with same no of elements, otherwise error arr2 ###Output _____no_output_____ ###Markdown Multinested / Multi Dimension array ###Code my_lst1=[1,2,3,4,5] my_lst2=[2,3,4,5,6] my_lst3=[9,7,6,8,9] arr3 = np.array([my_lst1,my_lst2,my_lst3]) print(arr3) print(type(arr3)) print(arr3.shape) #know no of row & column arr3 arr4 = arr3.reshape(5,3) #Convert shape with same no of elements, otherwise error arr4 ###Output _____no_output_____ ###Markdown 1D array Indexing ###Code arr1 arr1[:] #All elements arr1[4] #Single element arr1[3:] #As 1d arry so, from 3rd column to last column ###Output _____no_output_____ ###Markdown 2D array Indexing ###Code arr3 arr3[:] #All elements arr3[1:,3:] #From 1st row to last row and from 3rd column to last column arr3[:,3:] #For all rows, from 3rd column to last column arr3[1:,:] #From 1st row to last row, for all columns arr3[0:2,3:5] #Specific part ###Output _____no_output_____ ###Markdown Build in functions ###Code #Initialize arr = np.linspace(1,10,6) #With n no of equally spaced values in the range print("1D Linspace: ",arr) arr1 = np.linspace(1,10,6).reshape(2,3) #With n no of equally spaced values in the range with shape print("nD Linspace:\n",arr1) print("\n") arr = np.arange(1,10,1) #With start, end before, step values print("1D Initialize: ",arr) arr1 = np.arange(1,10,1).reshape(3,3) #With start, end before, step values with shape print("nD Initialize:\n",arr1) print("\n") arr[4:]=0 #Replaced values and updated print("1D Updated:\n",arr) arr1[1:,1:]=0 #Replaced values and updated with shape print("nD Updated:\n",arr1) #copy() function and broadcasting for 1D, nD also possible arr = np.array([1,2,3,4,5,6,7,8,9]) print("Actual arr: ",arr) print("After direct copy - (reference is also copying)") arr1= arr arr1[4:] = 0 print("arr: ",arr) print("arr1: ",arr1) print("\n") arr = np.array([1,2,3,4,5,6,7,8,9]) print("Actual arr: ",arr) print("After copy by copy() - (copying in new reference)") arr1= arr.copy() arr1[4:] = 0 print("arr: ",arr) print("arr1: ",arr1) arr = np.ones(5) #Initialize will all 1 with default float type print(arr) arr = np.ones((2,3),dtype=int) print(arr) arr = np.random.randint(1,100,8) #default 1D array print("Definite no of Random Integers within a range:\n",arr) print("\n") arr = np.random.randint(1,100,8).reshape(2,4) print("Definite no of Random Integers within a Range with Shape:\n",arr) print("\n") arr = np.random.random_sample((2,5)) #default interval [0,1) and shape optional print("Random Floats with Shape:\n",arr) print("\n") arr = np.random.rand(3,4) #default interval [0,1) print("Random Sample from Uniform Distribution with Shape:\n",arr) print("\n") arr = np.random.randn(3,4) print("Random Sample from Standard Normal Distribution with Shape:\n",arr) ###Output Definite no of Random Integers within a range: [72 35 82 33 64 52 94 88] Definite no of Random Integers within a Range with Shape: [[88 35 76 25] [ 3 88 2 75]] Random Floats with Shape: [[0.30646409 0.90274554 0.22210068 0.46209245 0.99929203] [0.12063093 0.34473951 0.27391851 0.50428395 0.1341161 ]] Random Sample from Uniform Distribution with Shape: [[0.03861068 0.49404621 0.02740142 0.35754029] [0.58093402 0.44863046 0.32756581 0.68461918] [0.15438759 0.65030393 0.60325935 0.17807852]] Random Sample from Standard Normal Distribution with Shape: [[ 0.62770403 -1.24629493 0.29413905 0.59553562] [ 0.49028797 0.81990155 2.90390159 0.98166222] [-2.01682907 0.48131821 0.85393762 0.2309463 ]] ###Markdown Basic Conditions and Operations ###Code val = 3 arr = np.array([1,2,3,4,5,6,7,8,9]) print("Actual arr: ",arr) print("\n") print("Summation with all elements: ",arr+val) print("Substrtaction with all elements: ",arr-val) print("Multiplication with all elements: ",arr*val) print("Division with all elements: ",arr/val) print("Reminder of all elements: ",arr%val) print("\n") print("Checking condition with all elements: ",arr<val) #Extract elements with condition print("Elements less than {} are {} ".format(val,arr[arr<val])) ###Output Actual arr: [1 2 3 4 5 6 7 8 9] Summation with all elements: [ 4 5 6 7 8 9 10 11 12] Substrtaction with all elements: [-2 -1 0 1 2 3 4 5 6] Multiplication with all elements: [ 3 6 9 12 15 18 21 24 27] Division with all elements: [0.33333333 0.66666667 1. 1.33333333 1.66666667 2. 2.33333333 2.66666667 3. ] Reminder of all elements: [1 2 0 1 2 0 1 2 0] Checking condition with all elements: [ True True False False False False False False False] Elements less than 3 are [1 2]
0.16/_downloads/plot_read_evoked.ipynb
###Markdown Reading and writing an evoked fileThis script shows how to read and write evoked datasets. ###Code # Author: Alexandre Gramfort <[email protected]> # # License: BSD (3-clause) from mne import read_evokeds from mne.datasets import sample print(__doc__) data_path = sample.data_path() fname = data_path + '/MEG/sample/sample_audvis-ave.fif' # Reading condition = 'Left Auditory' evoked = read_evokeds(fname, condition=condition, baseline=(None, 0), proj=True) ###Output _____no_output_____ ###Markdown Show result as a butterfly plot:By using exclude=[] bad channels are not excluded and are shown in red ###Code evoked.plot(exclude=[], time_unit='s') # Show result as a 2D image (x: time, y: channels, color: amplitude) evoked.plot_image(exclude=[], time_unit='s') ###Output _____no_output_____
01_array_gallery.ipynb
###Markdown 2D Arrays ###Code %%capture_png imgs/example.png #Checkboard pixX= 15 pixY= 15 array = [[(i+j)%2 for i in range(pixX)] for j in range(pixY)] disp(array) %%capture_png imgs/example.png array=np.full((10,10),10) disp(array) %%capture_png imgs/example.png #Linear diagonal array = [[i+j for i in range(pixX)] for j in range(pixY)] disp(array) %%capture_png imgs/example.png # alternative with numpy array=np.fromfunction(lambda i, j: i + j, shape=(15, 15)) disp(array) %%capture_png imgs/example.png #Linear in axis1 direction array= [[i for i in range(pixX)] for j in range(pixY)] disp(array) %%capture_png imgs/example.png #Linear counter hori array= [[i*pixY+j for i in range(pixX)] for j in range(pixY)] disp(array) %%capture_png imgs/example.png #Random array = np.random.randint(0, 10, size=(15, 15)) disp(array) %%capture_png imgs/example.png # sinudial fromfunction array=np.fromfunction(lambda i, j: np.sin(j), (15, 15)) disp(array, sep= ".1f") %%capture_png imgs/example.png x = np.linspace(0, 15, 15) y = np.linspace(0, 15, 15) xx, yy = np.meshgrid(x, y, sparse=False) disp(xx) %%capture_png imgs/example.png x = np.linspace(0, 15, 15) y = np.linspace(0, 15, 15) xx, yy = np.meshgrid(x, y, sparse=False) disp(yy) %%capture_png imgs/example.png x = np.linspace(0, 15, 15) y = np.linspace(0, 15, 15) xx, yy = np.meshgrid(x,y, sparse= False) array = xx+yy disp(array) %%capture_png imgs/example.png x= np.arange(-pixX//2,pixX//2) y= np.arange(-pixY//2,pixY//2) xx, yy = np.meshgrid(x,y, sparse= False) array = xx+yy array[ array <= 0 ] = 0 disp(array) %%capture_png imgs/example.png #Linear increase from center in all directions pixX,pixY=(15,15) x, y = np.meshgrid(np.linspace(-1,1,pixX), np.linspace(-1,1,pixY),sparse=False) array = np.sqrt(x**2+y**2) disp(array, sep='.1f' ) %%capture_png imgs/example.png #Gaussian pixX,pixY=(15,15) x, y = np.meshgrid(np.linspace(-1,1,pixX), np.linspace(-1,1,pixY)) d = np.sqrt(x**2+y**2) sigma, mu = 1.0, 0.0 array = np.exp(-( (d-mu)**2 / ( 2.0 * sigma**2 ) ) ) disp(array, sep='.1f' ) %%capture_png imgs/example.png # One Minus Gaussian and smaller sigma pixX,pixY=(15,15) x, y = np.meshgrid(np.linspace(-1,1,pixX), np.linspace(-1,1,pixY)) d = np.sqrt(x**2+y**2) sigma, mu = 0.4, 0.0 array = 1-np.exp(-( (d-mu)**2 / ( 2.0 * sigma**2 ) ) ) disp(array, sep='.1f' ) %%capture_png imgs/example.png x, y = np.indices((31, 31)) dx=15 dy=15 radius=13.5 circ = (x-dx)**2 + (y-dy)**2 <= radius**2 array = np.zeros(x.shape) array[circ]=1 disp(array) %%capture_png imgs/example.png # spiral # code inspired from : https://stackoverflow.com/questions/36834505/creating-a-spiral-array-in-python pixX,pixY=(15,15) def spiral(width, height): NORTH, S, W, E = (0, -1), (0, 1), (-1, 0), (1, 0) # directions turn_right = {NORTH: E, E: S, S: W, W: NORTH} # old -> new direction if width < 1 or height < 1: raise ValueError x, y = width // 2, height // 2 # start near the center dx, dy = NORTH # initial direction matrix = [[None] * width for _ in range(height)] count = 0 while True: count += 1 matrix[y][x] = count # visit # try to turn right new_dx, new_dy = turn_right[dx,dy] new_x, new_y = x + new_dx, y + new_dy if (0 <= new_x <= width and 0 <= new_y <= height and matrix[new_y][new_x] is None): # can turn right x, y = new_x, new_y dx, dy = new_dx, new_dy else: # try to move straight x, y = x + dx, y + dy if not (0 <= x < width and 0 <= y < height): return matrix # nowhere to go num_pixels=19 array=spiral(pixX, pixY) disp(array) %%capture_png imgs/example.png # linear_step fromfunction with transition def linear_step_func(x,x0,x1): y= np.piecewise(x, [ x < x0, (x >= x0) & (x <= x1), x > x1], [0., lambda x: x/(x1-x0)+x0/(x0-x1), 1.] ) return y array=np.fromfunction(lambda i, j: linear_step_func(j,3,12), (15, 15)) disp(array,sep='.1f') %%capture_png imgs/example.png #from 4 regions region0 = np.zeros( (10,8) ) region1 = np.ones( (10,7) ) region_top= np.concatenate( [region0,region1] , axis=1) region2 = np.full( (5,5) , 2) region3 = np.full( (5,10) ,3) region_bottom = np.concatenate( [region2,region3] , axis=1) array= np.concatenate( [region_top,region_bottom] ,axis=0) disp(array) %%capture_png imgs/example.png # prepare some coordinates x, y = np.indices((8, 8)) cube1 = (x < 3) & (y < 3) cube2 = (x >= 5) & (y >= 5) link = np.sqrt(abs(x - y)) <= 1 array = np.zeros(x.shape) array[link]=14 array[cube1]=10 array[cube2]=30 disp(array) from pathlib import Path base_directory = Path.cwd() /"temp_images" include_text = "example" suffix = ".png" file_names = [] for subp in base_directory.rglob("*"): # using python assignment operator: x &= 3 equals x = x & 3 cond = True cond &= include_text in subp.name cond &= (suffix == subp.suffix) if cond is True: file_names.append(subp) file_names.sort() len(file_names) # save here file_name = "array_gallery" base_directory = temp_path target_directory = Path.cwd() / "imgs" target_directory.mkdir(parents=True, exist_ok=True) prefix = file_name # delete files that where created in the past for file in target_directory.rglob("*"): if (prefix in file.name): file.unlink() paths = sorted(Path(base_directory).iterdir(), key=os.path.getmtime) dest_names = list(name_snippet_pairs.keys()) new_keys = [] for num, (p,des) in enumerate(zip(paths,dest_names)): to_path = target_directory / f"{file_name}_{num:03}_{des}" shutil.copy(p, to_path) new_keys.append(to_path.name) new_name_snippet_pairs ={} new_values = list(name_snippet_pairs.values()) for key, value in zip(new_keys,new_values): if value.startswith("\n"): value = value[1:] if value.endswith("\n"): value = value[:-1] value += "\n" new_name_snippet_pairs[key]=value with open(f'imgs/{file_name}.json', 'w') as fp: json.dump(new_name_snippet_pairs, fp,indent=2) display(new_name_snippet_pairs) !rm -r $base_directory !git add . # %%capture_png final_output.png # import matplotlib.pyplot as plt # from mpl_toolkits.axes_grid1 import ImageGrid # import numpy as np # plt.rcParams['figure.dpi'] = 150 # fig = plt.figure(figsize=(15., 12.), facecolor= "#89CBEC") # grid = ImageGrid(fig, 111, # nrows_ncols=(4, 5), # axes_pad=0.1, # ) # for ax, im in zip(grid, file_names): # im = plt.imread(im) # ax.axis("off") # ax.imshow(im) # plt.show() #shutil.rmtree(temp_path) # remove images folder ###Output _____no_output_____
noise-contrastive-priors/ncp.ipynb
###Markdown Reliable uncertainty estimates for neural network predictionsI previously wrote about [Bayesian neural networks](https://nbviewer.jupyter.org/github/krasserm/bayesian-machine-learning/blob/dev/bayesian-neural-networks/bayesian_neural_networks.ipynb) and explained how uncertainty estimates can be obtained for network predictions. Uncertainty in predictions that comes from uncertainty in network weights is called *epistemic uncertainty* or model uncertainty. A simple regression example demonstrated how epistemic uncertainty increases in regions outside the training data distribution:![Epistemic uncertainty](images/epistemic-uncertainty.png)A reader later [experimented](https://github.com/krasserm/bayesian-machine-learning/issues/8) with discontinuous ranges of training data and found that uncertainty estimates are lower than expected in training data "gaps", as shown in the following figure near the center of the $x$ axis. In these out-of-distribution (OOD) regions the network is over-confident in its predictions. One reason for this over-confidence is that weight priors usually impose only weak constraints over network outputs in OOD regions.![Epistemic uncertainty gap](images/epistemic-uncertainty-gap.png)If we could instead define a prior in data space directly we could better control uncertainty estimates for OOD data. A prior in data space better captures assumptions about input-output relationships than priors in weight space. Including such a prior through a loss in data space would allow a network to learn distributions over weights that better generalize to OOD regions i.e. enables a network to output more reliable uncertainty estimates.This is exactly what the paper [Noise Contrastive Priors for Functional Uncertainty](http://proceedings.mlr.press/v115/hafner20a.html) does. In this article I'll give an introduction to their approach and demonstrate how it fixes over-confidence in OOD regions. I will again use non-linear regression with one-dimensional inputs as an example and plan to cover higher-demensional inputs in a later article. Application of noise contrastive priors (NCPs) is not limited to Bayesian neural networks, they can also be applied to deterministic neural networks. Here, I'll use a Bayesian neural network and implement it with Tensorflow 2 and [Tensorflow Probability](https://www.tensorflow.org/probability). ###Code import logging import numpy as np import tensorflow as tf import matplotlib.pyplot as plt import seaborn as sns from tensorflow.keras.layers import Input, Dense, Lambda, LeakyReLU from tensorflow.keras.models import Model from tensorflow.keras.regularizers import L2 from tensorflow_probability import distributions as tfd from tensorflow_probability import layers as tfpl from scipy.stats import norm from utils import (train, backprop, select_bands, select_subset, style, plot_data, plot_prediction, plot_uncertainty) %matplotlib inline logging.getLogger('tensorflow').setLevel(logging.ERROR) ###Output _____no_output_____ ###Markdown Training dataset ###Code rng = np.random.RandomState(123) ###Output _____no_output_____ ###Markdown The training dataset are 40 noisy samples from a sinusoidal function `f` taken from two distinct regions of the input space (red dots). The gray dots illustrate how the noise level increases with $x$ (heteroskedastic noise). ###Code def f(x): """Sinusoidal function.""" return 0.5 * np.sin(25 * x) + 0.5 * x def noise(x, slope, rng=np.random): """Create heteroskedastic noise.""" noise_std = np.maximum(0.0, x + 1.0) * slope return rng.normal(0, noise_std).astype(np.float32) x = np.linspace(-1.0, 1.0, 1000, dtype=np.float32).reshape(-1, 1) x_test = np.linspace(-1.5, 1.5, 200, dtype=np.float32).reshape(-1, 1) # Noisy samples from f (with heteroskedastic noise) y = f(x) + noise(x, slope=0.2, rng=rng) # Select data from 2 of 5 bands (regions) x_bands, y_bands = select_bands(x, y, mask=[False, True, False, True, False]) # Select 40 random samples from these regions x_train, y_train = select_subset(x_bands, y_bands, num=40, rng=rng) plot_data(x_train, y_train, x, f(x)) plt.scatter(x, y, **style['bg_data'], label='Noisy data') plt.legend(); ###Output _____no_output_____ ###Markdown Goal is to have a model that outputs lower epistemic uncertainty in training data regions and higher epistemic uncertainty in all other regions, including training data "gaps". In addition to estimating epistemic uncertainty the model should also estimate *aleatoric uncertainty* i.e. the heteroskedastic noise in the training data. Noise contrastive estimationThe algorithm developed by the authors of the NCP paper is inspired by [noise contrastive estimation](http://proceedings.mlr.press/v9/gutmann10a.html) (NCE). With noise contrastive estimation a model learns to recognize patterns in training data by contrasting them to random noise. Instead of training a model on training data alone it is trained in context of a binary classification task with the goal of discriminating training data from noise data sampled from an artificial noise distribution. Hence, in addition to a trained model, NCE also obtains a binary classifier that can estimate the probability of input data to come from the training distribution or from the noise distribution. This can be used to obtain more reliable uncertainty estimates. For example, a higher probability that an input comes from the noise distribution should result in higher model uncertainty.Samples from a noise distribution are often obtained by adding random noise to training data. These samples represent OOD data. In practice it is often sufficient to have OOD samples *near* the boundary of the training data distribution to also get reliable uncertainty estimates in other regions of the OOD space. Noise contrastive priors are based on this hypothesis. Noise contrastive priorsA noise contrastive prior for regression is a joint *data prior* $p(x, y)$ over input $x$ and output $y$. Using the product rule of probability, $p(x, y) = p(x)p(y \mid x)$, it can be defined as the product of an *input prior* $p(x)$ and an *output prior* $p(y \mid x)$. The input prior describes the distribution of OOD data $\tilde{x}$ that are generated from the training data $x$ by adding random noise epsilon i.e. $\tilde{x} = x + \epsilon$ where $\epsilon \sim \mathcal{N}(0, \sigma_x^2)$. The input prior can therefore be defined as the convolved distribution:$$p_{nc}(\tilde{x}) = {1 \over N} \sum_{i=1}^N \mathcal{N}(\tilde{x} - x_i \mid 0, \sigma_x^2)\tag{1}$$where $x_i$ are the inputs from the training dataset and $\sigma_x$ is a hyper-parameter. As described in the paper, models trained with NCPs are quite robust to the size of input noise $\sigma_x$. The following figure visualizes the distribution of training inputs and OOD inputs as histograms, the orange line is the input prior density. ###Code def perturbe_x(x, y, sigma_x, n=100): """Perturbe input x with noise sigma_x (n samples).""" ood_x = x + np.random.normal(scale=sigma_x, size=(x.shape[0], n)) ood_y = np.tile(y, n) return ood_x.reshape(-1, 1), ood_y.reshape(-1, 1) def input_prior_density(x, x_train, sigma_x): """Compute input prior density of x.""" return np.mean(norm(0, sigma_x).pdf(x - x_train.reshape(1, -1)), axis=1, keepdims=True) sigma_x = 0.2 sigma_y = 1.0 ood_x, ood_y = perturbe_x(x_train, y_train, sigma_x, n=25) ood_density = input_prior_density(ood_x, x_train, sigma_x) sns.lineplot(x=ood_x.ravel(), y=ood_density.ravel(), color='tab:orange'); sns.histplot(data={'Train inputs': x_train.ravel(), 'OOD inputs': ood_x.ravel()}, element='bars', stat='density', alpha=0.1, common_norm=False) plt.title('Input prior density') plt.xlabel('x'); ###Output _____no_output_____ ###Markdown The definition of the output prior is motivated by *data augmentation*. A model should be encouraged to not only predict target $y$ at training input $x$ but also predict the same target at perturbed input $\tilde{x}$ that has been generated from $x$ by adding noise. The output prior is therefore defined as:$$p_{nc}(\tilde{y} \mid \tilde{x}) = \mathcal{N}(\tilde{y} \mid y, \sigma_y^2)\tag{2}$$$\sigma_y$ is a hyper-parameter that should cover relatively high prior uncertainty in model output given OOD input. The joint prior $p(x, y)$ is best visualized by sampling values from it and doing a kernel-density estimation from these samples (a density plot from an analytical evaluation is rather "noisy" because of the data augmentation setting). ###Code def output_prior_dist(y, sigma_y): """Create output prior distribution (data augmentation setting).""" return tfd.Independent(tfd.Normal(y.ravel(), sigma_y)) def sample_joint_prior(ood_x, output_prior, n): """Draw n samples from joint prior at ood_x.""" x_sample = np.tile(ood_x.ravel(), n) y_sample = output_prior.sample(n).numpy().ravel() return x_sample, y_sample output_prior = output_prior_dist(ood_y, sigma_y) x_samples, y_samples = sample_joint_prior(ood_x, output_prior, n=10) sns.kdeplot(x=x_samples, y=y_samples, levels=10, thresh=0, fill=True, cmap='viridis', cbar=True, cbar_kws={'format': '%.2f'}, gridsize=100, clip=((-1, 1), (-2, 2))) plot_data(x_train, y_train, x, f(x)) plt.title('Joint prior density') plt.legend(); ###Output _____no_output_____ ###Markdown Regression modelsThe regression models used in the following subsections are probabilistic models $p(y \mid x)$ parameterized by the outputs of a neural network given input $x$. All networks have two hidden layers with leaky ReLU activations and 200 units each. The details of the output layers are described along with the individual models. I will first demonstrate how two models without NCPs fail to produce reliable uncertainty estimates in OOD regions and then show how NCPs can fix that. Deterministic neural network without NCPsA regression model that uses a deterministic neural network for parameterization can be defined as $p(y \mid x, \boldsymbol{\theta}) = \mathcal{N}(y \mid \mu(x, \boldsymbol{\theta}), \sigma^2(x, \boldsymbol{\theta}))$. Mean $\mu$ and standard deviation $\sigma$ are functions of input $x$ and network weights $\boldsymbol{\theta}$. In a deterministic neural network, $\boldsymbol{\theta}$ are point estimates. Outputs at input $x$ can be generated by sampling from $p(y \mid x, \boldsymbol{\theta})$ where $\mu(x,\boldsymbol{\theta})$ is the expected value of the sampled outputs and $\sigma^2(x, \boldsymbol{\theta})$ their variance. The variance represents aleatoric uncertainty. Given a training dataset $\mathbf{x}, \mathbf{y} = \left\{ x_i, y_i \right\}$ and using $\log p(\mathbf{y} \mid \mathbf{x}, \boldsymbol{\theta}) = \sum_i \log p(y_i \mid x_i, \boldsymbol{\theta})$, a maximum likelihood (ML) estimate of $\boldsymbol{\theta}$ can be obtained by minimizing the negative log likelihood.$$L(\boldsymbol{\theta}) = - \log p(\mathbf{y} \mid \mathbf{x},\boldsymbol{\theta})\tag{3}$$A maximum-a-posteriori (MAP) estimate can be obtained by minimizing the following loss function:$$L(\boldsymbol{\theta}) = - \log p(\mathbf{y} \mid \mathbf{x}, \boldsymbol{\theta}) - \lambda \log p(\boldsymbol{\theta})\tag{4}$$where $p(\boldsymbol{\theta})$ is an isotropic normal prior over network weights with zero mean. This is also known as L2 regularization with regularization strength $\lambda$.The following implementation uses the `DistributionLambda` layer of Tensorflow Probability to produce $p(y \mid x, \boldsymbol{\theta})$ as model output. The `loc` and `scale` parameters of that distribution are set from the output of layers `mu` and `sigma`, respectively. Layer `sigma` uses a [softplus](https://en.wikipedia.org/wiki/Rectifier_(neural_networks)Softplus) activation function to ensure non-negative output. ###Code def create_model(n_hidden=200, regularization_strength=0.01): l2_regularizer = L2(regularization_strength) leaky_relu = LeakyReLU(alpha=0.2) x_in = Input(shape=(1,)) x = Dense(n_hidden, activation=leaky_relu, kernel_regularizer=l2_regularizer)(x_in) x = Dense(n_hidden, activation=leaky_relu, kernel_regularizer=l2_regularizer)(x) m = Dense(1, name='mu')(x) s = Dense(1, activation='softplus', name='sigma')(x) d = Lambda(lambda p: tfd.Normal(loc=p[0], scale=p[1] + 1e-5))((m, s)) return Model(x_in, d) model = create_model() ###Output _____no_output_____ ###Markdown To reduce overfitting of the model to the relatively small training set an L2 regularizer is added to the kernel of the hidden layers. The value of the corresponding regularization term in the loss function can be obtained via `model.losses` during training. The negative log likelihood is computed with the `log_prob` method of the distribution returned from a `model` call. ###Code @tf.function def train_step(model, optimizer, x, y): with tf.GradientTape() as tape: out_dist = model(x, training=True) nll = -out_dist.log_prob(y) reg = model.losses loss = tf.reduce_sum(nll) + tf.reduce_sum(reg) optimizer.apply_gradients(backprop(model, loss, tape)) return loss, out_dist.mean() ###Output _____no_output_____ ###Markdown With this specific regression model, we can only predict aleatoric uncertainty via $\sigma(x, \boldsymbol{\theta})$ but not epistemic uncertainty. After training the model, we can plot the expected output $\mu$ together with aleatoric uncertainty. Aleatoric uncertainty increases in training data regions as $x$ increases but is not reliable in OOD regions. ###Code train(model, x_train, y_train, batch_size=10, epochs=4000, step_fn=train_step) out_dist = model(x_test) aleatoric_uncertainty=out_dist.stddev() expected_output = out_dist.mean() plt.figure(figsize=(15, 5)) plt.subplot(1, 2, 1) plot_data(x_train, y_train, x, f(x)) plot_prediction(x_test, expected_output, aleatoric_uncertainty=aleatoric_uncertainty) plt.ylim(-2, 2) plt.legend() plt.subplot(1, 2, 2) plot_uncertainty(x_test, aleatoric_uncertainty=aleatoric_uncertainty) plt.ylim(0, 1) plt.legend(); ###Output _____no_output_____ ###Markdown Bayesian neural network without NCPsIn a Bayesian neural network, we infer a posterior distribution $p(\mathbf{w} \mid \mathbf{x}, \mathbf{y})$ over weights $\mathbf{w}$ given training data $\mathbf{x}$, $\mathbf{y}$ instead of making point estimates with ML or MAP. In general, the true posterior $p(\mathbf{w} \mid \mathbf{x}, \mathbf{y})$ is untractable for a neural network and is often approximated with a variational distribution $q(\mathbf{w} \mid \boldsymbol{\theta}, \mathbf{x}, \mathbf{y})$ or $q(\mathbf{w} \mid \boldsymbol{\theta})$ for short. You can find an introduction to Bayesian neural networks and variational inference in [this article](https://nbviewer.jupyter.org/github/krasserm/bayesian-machine-learning/blob/dev/bayesian-neural-networks/bayesian_neural_networks.ipynb).Following the conventions in the linked article, I'm using the variable $\mathbf{w}$ for neural network weights that are random variables and $\boldsymbol{\theta}$ for the parameters of the variational distribution and for neural network weights that are deterministic variables. This distinction is useful for models that use both, variational and deterministic layers. Here, we will implement a variational approximation only for the `mu` layer i.e. for the layer that produces the expected output $\mu(x, \mathbf{w}, \boldsymbol{\theta})$. This time it additionally depends on weights $\mathbf{w}$ sampled from the variational distribution $q(\mathbf{w} \mid \boldsymbol{\theta})$. The variational distribution $q(\mathbf{w} \mid \boldsymbol{\theta})$ therefore induces a distribution over the expected output $q(\mu \mid x, \boldsymbol{\theta}) = \int \mu(x, \mathbf{w}, \boldsymbol{\theta}) q(\mathbf{w} \mid \boldsymbol{\theta}) d\mathbf{w}$. To generate an output at input $x$ we first sample from the variational distribution $q(\mathbf{w} \mid \boldsymbol{\theta})$ and then use that sample as input for $p(y \mid x, \mathbf{w}, \boldsymbol{\theta}) = \mathcal{N}(y \mid \mu(x, \mathbf{w}, \boldsymbol{\theta}), \sigma^2(x, \boldsymbol{\theta}))$ from which we finally sample an output value $y$. The variance of output values covers both epistemic and aleatoric uncertainty where aleatoric uncertainty is contributed by $\sigma^2(x, \boldsymbol{\theta})$. The mean of $\mu$ is the expected value of output $y$ and the variance of $\mu$ represents epistemic uncertainty i.e. model uncertainty.Since the true posterior $p(\mathbf{w} \mid \mathbf{x}, \mathbf{y})$ is untractable in the general case the predictive distribution $p(y \mid x, \boldsymbol{\theta}) = \int p(y \mid x, \mathbf{w}, \boldsymbol{\theta}) q(\mathbf{w} \mid \boldsymbol{\theta}) d\mathbf{w}$ is untractable too and cannot be used directly for optimizing $\boldsymbol{\theta}$. In the special case of Bayesian inference for layer `mu` only, there should be a tractable solution (I think) but we will assume the general case here and use variational inference. The loss function is therefore the negative variational lower bound.$$L(\boldsymbol{\theta}) = - \mathbb{E}_{q(\mathbf{w} \mid \boldsymbol{\theta})} \log p(\mathbf{y} \mid \mathbf{x}, \mathbf{w}, \boldsymbol{\theta}) + \mathrm{KL}(q(\mathbf{w} \mid \boldsymbol{\theta}) \mid\mid p(\mathbf{w}))\tag{5}$$The expectation w.r.t. $q(\mathbf{w} \mid \boldsymbol{\theta})$ is approximated via sampling in a forward pass. In a [previous article](https://nbviewer.jupyter.org/github/krasserm/bayesian-machine-learning/blob/dev/bayesian-neural-networks/bayesian_neural_networks.ipynb) I implemented that with a custom `DenseVariational` layer, here I'm using `DenseReparameterization` from Tensorflow Probability. Both model the variational distribution over weights as factorized normal distribution $q(\mathbf{w} \mid \boldsymbol{\theta})$ and produce a stochastic weight output by sampling from that distribution. They only differ in some implementation details. ###Code def create_model(n_hidden=200): leaky_relu = LeakyReLU(alpha=0.2) x_in = Input(shape=(1,)) x = Dense(n_hidden, activation=leaky_relu)(x_in) x = Dense(n_hidden, activation=leaky_relu)(x) m = tfpl.DenseReparameterization(1, name='mu')(x) s = Dense(1, activation='softplus', name='sigma')(x) d = Lambda(lambda p: tfd.Normal(loc=p[0], scale=p[1] + 1e-5))((m, s)) return Model(x_in, d) model = create_model() ###Output _____no_output_____ ###Markdown The implementation of the loss function follows directly from Equation $(5)$. The KL divergence is added by the variational layer to the `model` object and can be obtained via `model.losses`. When using mini-batches the KL divergence must be divided by the number of batches per epoch. Because of the small training dataset, the KL divergence is further multiplied by `0.1` to lessen the influence of the prior. The likelihood term of the loss function i.e. the first term in Equation $(5)$ is computed via the distribution returned by the model. ###Code train_size = x_train.shape[0] batch_size = 10 batches_per_epoch = train_size / batch_size kl_weight = 1.0 / batches_per_epoch # Further reduce regularization effect of KL term # in variational lower bound since we only have a # small training set (to prevent that posterior # over weights collapses to prior). kl_weight = kl_weight * 0.1 @tf.function def train_step(model, optimizer, x, y, kl_weight=kl_weight): with tf.GradientTape() as tape: out_dist = model(x, training=True) nll = -out_dist.log_prob(y) kl_div = model.losses[0] loss = tf.reduce_sum(nll) + kl_weight * kl_div optimizer.apply_gradients(backprop(model, loss, tape)) return loss, out_dist.mean() ###Output _____no_output_____ ###Markdown After training, we run the test input `x_test` several times through the network to obtain samples of the stochastic output of layer `mu`. From these samples we compute the mean and variance of $\mu$ i.e. we numerically approximate $q(\mu \mid x, \boldsymbol{\theta})$. The variance of $\mu$ is a measure of epistemic uncertainty. In the next section we'll use an analytical expression for $q(\mu \mid x, \boldsymbol{\theta})$. ###Code train(model, x_train, y_train, batch_size=batch_size, epochs=8000, step_fn=train_step) out_dist = model(x_test) out_dist_means = [] for i in range(100): out_dist = model(x_test) out_dist_means.append(out_dist.mean()) aleatoric_uncertainty = model(x_test).stddev() epistemic_uncertainty = tf.math.reduce_std(out_dist_means, axis=0) expected_output = tf.reduce_mean(out_dist_means, axis=0) plt.figure(figsize=(15, 5)) plt.subplot(1, 2, 1) plot_data(x_train, y_train, x, f(x)) plot_prediction(x_test, expected_output, aleatoric_uncertainty=aleatoric_uncertainty, epistemic_uncertainty=epistemic_uncertainty) plt.ylim(-2, 2) plt.legend() plt.subplot(1, 2, 2) plot_uncertainty(x_test, aleatoric_uncertainty=aleatoric_uncertainty, epistemic_uncertainty=epistemic_uncertainty) plt.ylim(0, 1) plt.legend(); ###Output _____no_output_____ ###Markdown As mentioned in the beginning, a Bayesian neural network with a prior over weights is over-confident in the training data "gap" i.e. in the OOD region between the two training data regions. Our intuition tells us that epistemic uncertainty should be higher here. Also the model is over-confident of a linear relationship for input values less than `-0.5`. Bayesian neural network with NCPsRegularizing the variational posterior $q(\mathbf{w} \mid \boldsymbol{\theta})$ to be closer to a prior over weights $p(\mathbf{w})$ by minimizing the KL divergence in Equation $(5)$ doesn't seem to generalize well to all OOD regions. But, as mentioned in the previous section, the variational distribution $q(\mathbf{w} \mid \boldsymbol{\theta})$ induces a distribution $q(\mu \mid x, \boldsymbol{\theta})$ in data space which allows comparison to a noise contrastive prior that is also defined in data space.In particular, for OOD input $\tilde{x}$, sampled from a noise contrastive input prior $p_{nc}(\tilde{x})$, we want the mean distribution $q(\mu \mid \tilde{x}, \boldsymbol{\theta})$ to be close to a *mean prior* $p_{nc}(\tilde{y} \mid \tilde{x})$ which is the output prior defined in Equation $(2)$. In other words, the expected output and epistemic uncertainty should be close to the mean prior for OOD data. This can be achieved by reparameterizing the KL divergence in weight space as KL divergence in output space by replacing $q(\mathbf{w} \mid \boldsymbol{\theta})$ with $q(\mu \mid \tilde{x}, \boldsymbol{\theta})$ and $p(\mathbf{w})$ with $p_{nc}(\tilde{y} \mid \tilde{x})$. Using an OOD dataset $\mathbf{\tilde{x}}, \mathbf{\tilde{y}}$ derived from a training dataset $\mathbf{x}, \mathbf{y}$ the loss function is$$L(\boldsymbol{\theta}) \approx - \mathbb{E}_{q(\mathbf{w} \mid \boldsymbol{\theta})} \log p(\mathbf{y} \mid \mathbf{x}, \mathbf{w}, \boldsymbol{\theta}) + \mathrm{KL}(q(\boldsymbol{\mu} \mid \mathbf{\tilde{x}}, \boldsymbol{\theta}) \mid\mid p_{nc}(\mathbf{\tilde{y}} \mid \mathbf{\tilde{x}}))\tag{6}$$This is an approximation of Equation $(5)$ for reasons explained in Appendix B of the paper. For their experiments, the authors use the opposite direction of the KL divergence without having found a significant difference i.e. they used the loss function$$L(\boldsymbol{\theta}) = - \mathbb{E}_{q(\mathbf{w} \mid \boldsymbol{\theta})} \log p(\mathbf{y} \mid \mathbf{x}, \mathbf{w}, \boldsymbol{\theta}) + \mathrm{KL}(p_{nc}(\mathbf{\tilde{y}} \mid \mathbf{\tilde{x}}) \mid\mid q(\boldsymbol{\mu} \mid \mathbf{\tilde{x}}, \boldsymbol{\theta}))\tag{7}$$This allows an interpretation of the KL divergence as fitting the mean distribution to an empirical OOD distribution (derived from the training dataset) via maximum likelihood using data augmentation. Recall how the definition of $p_{nc}(\tilde{y} \mid \tilde{x})$ in Equation $(2)$ was motivated by data augmentation. The following implementation uses the loss function defined in Equation $(7)$.Since we have a variational approximation only in the linear `mu` layer we can derive an anlytical expression for $q(\mu \mid \tilde{x}, \boldsymbol{\theta})$ using the parameters $\boldsymbol{\theta}$ of the variational distribution $q(\mathbf{w} \mid \boldsymbol{\theta})$ and the output of the second hidden layer (`inputs` in code below). The corresponding implementation is in the (inner) function `mean_dist`. The model is extended to additionally return the mean distribution. ###Code def mean_dist_fn(variational_layer): def mean_dist(inputs): # Assumes that a deterministic bias variable # is used in variational_layer bias_mean = variational_layer.bias_posterior.mean() # Assumes that a random kernel variable # is used in variational_layer kernel_mean = variational_layer.kernel_posterior.mean() kernel_std = variational_layer.kernel_posterior.stddev() # A Gaussian over kernel k in variational_layer induces # a Gaussian over output 'mu' (where mu = inputs * k + b): # # - q(k) = N(k|k_mean, k_std^2) # # - E[inputs * k + b] = inputs * E[k] + b # = inputs * k_mean + b # = mu_mean # # - Var[inputs * k + b] = inputs^2 * Var[k] # = inputs^2 * k_std^2 # = mu_var # = mu_std^2 # # -q(mu) = N(mu|mu_mean, mu_std^2) mu_mean = tf.matmul(inputs, kernel_mean) + bias_mean mu_var = tf.matmul(inputs ** 2, kernel_std ** 2) mu_std = tf.sqrt(mu_var) return tfd.Normal(mu_mean, mu_std) return mean_dist def create_model(n_hidden=200): leaky_relu = LeakyReLU(alpha=0.2) variational_layer = tfpl.DenseReparameterization(1, name='mu') x_in = Input(shape=(1,)) x = Dense(n_hidden, activation=leaky_relu)(x_in) x = Dense(n_hidden, activation=leaky_relu)(x) m = variational_layer(x) s = Dense(1, activation='softplus', name='sigma')(x) mean_dist = Lambda(mean_dist_fn(variational_layer))(x) out_dist = Lambda(lambda p: tfd.Normal(loc=p[0], scale=p[1] + 1e-5))((m, s)) return Model(x_in, [out_dist, mean_dist]) model = create_model() ###Output _____no_output_____ ###Markdown With the mean distribution returned by the model, the KL divergence can be computed analytically. For models with more variational layers we cannot derive an anayltical expression for $q(\mu \mid \tilde{x}, \boldsymbol{\theta})$ and have to estimate the KL divergence using samples from the mean distribution i.e. using the stochastic output of layer `mu` directly. The following implementation computes the KL divergence analytically. ###Code @tf.function def train_step(model, optimizer, x, y, sigma_x=0.5, sigma_y=1.0, ood_std_noise=0.1, ncp_weight=0.1): # Generate random OOD data from training data ood_x = x + tf.random.normal(tf.shape(x), stddev=sigma_x) # NCP output prior (data augmentation setting) ood_mean_prior = tfd.Normal(y, sigma_y) with tf.GradientTape() as tape: # output and mean distribution for training data out_dist, mean_dist = model(x, training=True) # output and mean distribution for OOD data ood_out_dist, ood_mean_dist = model(ood_x, training=True) # Negative log likelihood of training data nll = -out_dist.log_prob(y) # KL divergence between output prior and OOD mean distribution kl_ood_mean = tfd.kl_divergence(ood_mean_prior, ood_mean_dist) if ood_std_noise is None: kl_ood_std = 0.0 else: # Encourage aleatoric uncertainty to be close to a # pre-defined noise for OOD data (ood_std_noise) ood_std_prior = tfd.Normal(0, ood_std_noise) ood_std_dist = tfd.Normal(0, ood_out_dist.stddev()) kl_ood_std = tfd.kl_divergence(ood_std_prior, ood_std_dist) loss = tf.reduce_sum(nll + ncp_weight * kl_ood_mean + ncp_weight * kl_ood_std) optimizer.apply_gradients(backprop(model, loss, tape)) return loss, mean_dist.mean() ###Output _____no_output_____ ###Markdown The implementation of the loss function uses an additional term that is not present in Equation $(7)$. This term is added if `ood_std_noise` is defined. It encourages the aleatoric uncertainty for OOD data to be close to a predefined `ood_std_noise`, a hyper-parameter that we set to a rather low value so that low aleatoric uncertainty is predicted in OOD regions. This makes sense as we can only reasonably estimate aleatoric noise in regions of existing training data.After training the model we can get the expected output, epistemic uncertainty and aleatoric uncertainty with a single pass of test inputs through the model. The expected output can be obtained from the mean of the mean distribution, epistemic uncertainty from the variance of the mean distribution and aleatoric uncertainty from the variance of the output distribution (= output of the `sigma` layer). ###Code train(model, x_train, y_train, batch_size=10, epochs=15000, step_fn=train_step) out_dist, mean_dist = model(x_test) aleatoric_uncertainty = out_dist.stddev() epistemic_uncertainty = mean_dist.stddev() expected_output = mean_dist.mean() plt.figure(figsize=(15, 5)) plt.subplot(1, 2, 1) plot_data(x_train, y_train, x, f(x)) plot_prediction(x_test, expected_output, aleatoric_uncertainty=aleatoric_uncertainty, epistemic_uncertainty=epistemic_uncertainty) plt.ylim(-2, 2) plt.legend() plt.subplot(1, 2, 2) plot_uncertainty(x_test, aleatoric_uncertainty=aleatoric_uncertainty, epistemic_uncertainty=epistemic_uncertainty) plt.ylim(0, 1) plt.legend(); ###Output _____no_output_____
docs/tutorials/how-to-create-stac-catalogs.ipynb
###Markdown How to create STAC Catalogs STAC Community Sprint, Arlington, November 7th 2019 This notebook runs through some of the basics of using PySTAC to create a static STAC. It was part of a 30 minute presentation at the [community STAC sprint](https://github.com/radiantearth/community-sprints/tree/master/11052019-arlignton-va) in Arlington, VA in November 2019. This tutorial will require the `boto3`, `rasterio`, and `shapely` libraries: ###Code !pip install boto3 !pip install rasterio !pip install shapely ###Output Requirement already satisfied: boto3 in /Users/rob/proj/stac/pystac/venv/lib/python3.6/site-packages (1.10.8) Requirement already satisfied: botocore<1.14.0,>=1.13.8 in /Users/rob/proj/stac/pystac/venv/lib/python3.6/site-packages (from boto3) (1.13.8) Requirement already satisfied: s3transfer<0.3.0,>=0.2.0 in /Users/rob/proj/stac/pystac/venv/lib/python3.6/site-packages (from boto3) (0.2.1) Requirement already satisfied: jmespath<1.0.0,>=0.7.1 in /Users/rob/proj/stac/pystac/venv/lib/python3.6/site-packages (from boto3) (0.9.4) Requirement already satisfied: urllib3<1.26,>=1.20; python_version >= "3.4" in /Users/rob/proj/stac/pystac/venv/lib/python3.6/site-packages (from botocore<1.14.0,>=1.13.8->boto3) (1.25.6) Requirement already satisfied: docutils<0.16,>=0.10 in /Users/rob/proj/stac/pystac/venv/lib/python3.6/site-packages (from botocore<1.14.0,>=1.13.8->boto3) (0.15.2) Requirement already satisfied: python-dateutil<3.0.0,>=2.1; python_version >= "2.7" in /Users/rob/proj/stac/pystac/venv/lib/python3.6/site-packages (from botocore<1.14.0,>=1.13.8->boto3) (2.8.1) Requirement already satisfied: six>=1.5 in /Users/rob/proj/stac/pystac/venv/lib/python3.6/site-packages (from python-dateutil<3.0.0,>=2.1; python_version >= "2.7"->botocore<1.14.0,>=1.13.8->boto3) (1.12.0) WARNING: You are using pip version 20.1.1; however, version 20.2 is available. You should consider upgrading via the '/Users/rob/proj/stac/pystac/venv/bin/python -m pip install --upgrade pip' command. Requirement already satisfied: rasterio in /Users/rob/proj/stac/pystac/venv/lib/python3.6/site-packages (1.1.0) Requirement already satisfied: numpy in /Users/rob/proj/stac/pystac/venv/lib/python3.6/site-packages (from rasterio) (1.17.3) Requirement already satisfied: snuggs>=1.4.1 in /Users/rob/proj/stac/pystac/venv/lib/python3.6/site-packages (from rasterio) (1.4.7) Requirement already satisfied: click<8,>=4.0 in /Users/rob/proj/stac/pystac/venv/lib/python3.6/site-packages (from rasterio) (7.0) Requirement already satisfied: click-plugins in /Users/rob/proj/stac/pystac/venv/lib/python3.6/site-packages (from rasterio) (1.1.1) Requirement already satisfied: attrs in /Users/rob/proj/stac/pystac/venv/lib/python3.6/site-packages (from rasterio) (19.3.0) Requirement already satisfied: cligj>=0.5 in /Users/rob/proj/stac/pystac/venv/lib/python3.6/site-packages (from rasterio) (0.5.0) Requirement already satisfied: affine in /Users/rob/proj/stac/pystac/venv/lib/python3.6/site-packages (from rasterio) (2.3.0) Requirement already satisfied: pyparsing>=2.1.6 in /Users/rob/proj/stac/pystac/venv/lib/python3.6/site-packages (from snuggs>=1.4.1->rasterio) (2.4.2) WARNING: You are using pip version 20.1.1; however, version 20.2 is available. You should consider upgrading via the '/Users/rob/proj/stac/pystac/venv/bin/python -m pip install --upgrade pip' command. Requirement already satisfied: shapely in /Users/rob/proj/stac/pystac/venv/lib/python3.6/site-packages (1.6.4.post2) WARNING: You are using pip version 20.1.1; however, version 20.2 is available. You should consider upgrading via the '/Users/rob/proj/stac/pystac/venv/bin/python -m pip install --upgrade pip' command. ###Markdown We can import pystac and access most of the functionality we need with the single import: ###Code import pystac ###Output _____no_output_____ ###Markdown Creating a catalog from a local file To give us some material to work with, lets download a single image from the [Spacenet 5 challenge](https://www.topcoder.com/challenges/30099956). We'll use a temporary directory to save off our single-item STAC. ###Code import os import urllib.request from tempfile import TemporaryDirectory tmp_dir = TemporaryDirectory() img_path = os.path.join(tmp_dir.name, 'image.tif') url = ('http://spacenet-dataset.s3.amazonaws.com/' 'spacenet/SN5_roads/train/AOI_7_Moscow/MS/' 'SN5_roads_train_AOI_7_Moscow_MS_chip996.tif') urllib.request.urlretrieve(url, img_path) ###Output _____no_output_____ ###Markdown We want to create a Catalog. Let's check the pydocs for `Catalog` to see what information we'll need. (We use `__doc__` instead of `help()` here to avoid printing out all the docs for the class.) ###Code print(pystac.Catalog.__doc__) ###Output A PySTAC Catalog represents a STAC catalog in memory. A Catalog is a :class:`~pystac.STACObject` that may contain children, which are instances of :class:`~pystac.Catalog` or :class:`~pystac.Collection`, as well as :class:`~pystac.Item` s. Args: id (str): Identifier for the catalog. Must be unique within the STAC. description (str): Detailed multi-line description to fully explain the catalog. `CommonMark 0.28 syntax <http://commonmark.org/>`_ MAY be used for rich text representation. title (str or None): Optional short descriptive one-line title for the catalog. stac_extensions (List[str]): Optional list of extensions the Catalog implements. href (str or None): Optional HREF for this catalog, which be set as the catalog's self link's HREF. Attributes: id (str): Identifier for the catalog. description (str): Detailed multi-line description to fully explain the catalog. title (str or None): Optional short descriptive one-line title for the catalog. stac_extensions (List[str] or None): Optional list of extensions the Catalog implements. extra_fields (dict or None): Extra fields that are part of the top-level JSON properties of the Catalog. links (List[Link]): A list of :class:`~pystac.Link` objects representing all links associated with this Catalog. ###Markdown Let's just give an ID and a description. We don't have to worry about the HREF right now; that will be set later. ###Code catalog = pystac.Catalog(id='test-catalog', description='Tutorial catalog.') ###Output _____no_output_____ ###Markdown There are no children or items in the catalog, since we haven't added anything yet. ###Code print(list(catalog.get_children())) print(list(catalog.get_items())) ###Output [] [] ###Markdown We'll now create an Item to represent the image. Check the pydocs to see what you need to supply: ###Code print(pystac.Item.__doc__) ###Output An Item is the core granular entity in a STAC, containing the core metadata that enables any client to search or crawl online catalogs of spatial 'assets' - satellite imagery, derived data, DEM's, etc. Args: id (str): Provider identifier. Must be unique within the STAC. geometry (dict): Defines the full footprint of the asset represented by this item, formatted according to `RFC 7946, section 3.1 (GeoJSON) <https://tools.ietf.org/html/rfc7946>`_. bbox (List[float] or None): Bounding Box of the asset represented by this item using either 2D or 3D geometries. The length of the array must be 2*n where n is the number of dimensions. Could also be None in the case of a null geometry. datetime (datetime or None): Datetime associated with this item. If None, a start_datetime and end_datetime must be supplied in the properties. properties (dict): A dictionary of additional metadata for the item. stac_extensions (List[str]): Optional list of extensions the Item implements. href (str or None): Optional HREF for this item, which be set as the item's self link's HREF. collection (Collection or str): The Collection or Collection ID that this item belongs to. extra_fields (dict or None): Extra fields that are part of the top-level JSON properties of the Item. Attributes: id (str): Provider identifier. Unique within the STAC. geometry (dict): Defines the full footprint of the asset represented by this item, formatted according to `RFC 7946, section 3.1 (GeoJSON) <https://tools.ietf.org/html/rfc7946>`_. bbox (List[float] or None): Bounding Box of the asset represented by this item using either 2D or 3D geometries. The length of the array is 2*n where n is the number of dimensions. Could also be None in the case of a null geometry. datetime (datetime or None): Datetime associated with this item. If None, the start_datetime and end_datetime in the common_metadata will supply the datetime range of the Item. properties (dict): A dictionary of additional metadata for the item. stac_extensions (List[str] or None): Optional list of extensions the Item implements. collection (Collection or None): Collection that this item is a part of. links (List[Link]): A list of :class:`~pystac.Link` objects representing all links associated with this STACObject. assets (Dict[str, Asset]): Dictionary of asset objects that can be downloaded, each with a unique key. collection_id (str or None): The Collection ID that this item belongs to, if any. extra_fields (dict or None): Extra fields that are part of the top-level JSON properties of the Item. ###Markdown Using [rasterio](https://rasterio.readthedocs.io/en/stable/), we can pull out the bounding box of the image to use for the image metadata. If the image contained a NoData border, we would ideally pull out the footprint and save it as the geometry; in this case, we're working with a small chip the most likely has no NoData values. ###Code import rasterio from shapely.geometry import Polygon, mapping def get_bbox_and_footprint(raster_uri): with rasterio.open(raster_uri) as ds: bounds = ds.bounds bbox = [bounds.left, bounds.bottom, bounds.right, bounds.top] footprint = Polygon([ [bounds.left, bounds.bottom], [bounds.left, bounds.top], [bounds.right, bounds.top], [bounds.right, bounds.bottom] ]) return (bbox, mapping(footprint)) bbox, footprint = get_bbox_and_footprint(img_path) print(bbox) print(footprint) ###Output [37.6616853489879, 55.73478197572927, 37.66573047610874, 55.73882710285011] {'type': 'Polygon', 'coordinates': (((37.6616853489879, 55.73478197572927), (37.6616853489879, 55.73882710285011), (37.66573047610874, 55.73882710285011), (37.66573047610874, 55.73478197572927), (37.6616853489879, 55.73478197572927)),)} ###Markdown We're also using `datetime.utcnow()` to supply the required datetime property for our Item. Since this is a required property, you might often find yourself making up a time to fill in if you don't know the exact capture time. ###Code from datetime import datetime item = pystac.Item(id='local-image', geometry=footprint, bbox=bbox, datetime=datetime.utcnow(), properties={}) ###Output _____no_output_____ ###Markdown We haven't added it to a catalog yet, so it's parent isn't set. Once we add it to the catalog, we can see it correctly links to it's parent. ###Code item.get_parent() is None catalog.add_item(item) item.get_parent() ###Output _____no_output_____ ###Markdown `describe()` is a useful method on `Catalog` - but be careful when using it on large catalogs, as it will walk the entire tree of the STAC. ###Code catalog.describe() ###Output * <Catalog id=test-catalog> * <Item id=local-image> ###Markdown Adding AssetsWe've created an Item, but there aren't any assets associated with it. Let's create one: ###Code print(pystac.Asset.__doc__) item.add_asset( key='image', asset=pystac.Asset( href=img_path, media_type=pystac.MediaType.GEOTIFF ) ) ###Output _____no_output_____ ###Markdown At any time we can call `to_dict()` on STAC objects to see how the STAC JSON is shaping up. Notice the asset is now set: ###Code import json print(json.dumps(item.to_dict(), indent=4)) ###Output { "type": "Feature", "stac_version": "1.0.0-beta.2", "id": "local-image", "properties": { "datetime": "2020-08-03T03:47:48.786929Z" }, "geometry": { "type": "Polygon", "coordinates": [ [ [ 37.6616853489879, 55.73478197572927 ], [ 37.6616853489879, 55.73882710285011 ], [ 37.66573047610874, 55.73882710285011 ], [ 37.66573047610874, 55.73478197572927 ], [ 37.6616853489879, 55.73478197572927 ] ] ] }, "links": [ { "rel": "root", "href": null, "type": "application/json" }, { "rel": "parent", "href": null, "type": "application/json" } ], "assets": { "image": { "href": "/var/folders/sv/zr8j0t4j1f726nhlt3vb8c300000gn/T/tmpt1wuelid/image.tif", "type": "image/tiff; application=geotiff" } }, "bbox": [ 37.6616853489879, 55.73478197572927, 37.66573047610874, 55.73882710285011 ] } ###Markdown Note that the link `href` properties are `null`. This is OK, as we're working with the STAC in memory. Next, we'll talk about writing the catalog out, and how to set those HREFs. Saving the catalog As the JSON above indicates, there's no HREFs set on these in-memory items. PySTAC uses the `self` link on STAC objects to track where the file lives. Because we haven't set them, they evaluate to `None`: ###Code print(catalog.get_self_href() is None) print(item.get_self_href() is None) ###Output True True ###Markdown In order to set them, we can use `normalize_hrefs`. This method will create a normalized set of HREFs for each STAC object in the catalog, according to the [best practices document](https://github.com/radiantearth/stac-spec/blob/v0.8.1/best-practices.mdcatalog-layout)'s recommendations on how to lay out a catalog. ###Code catalog.normalize_hrefs(os.path.join(tmp_dir.name, 'stac')) ###Output _____no_output_____ ###Markdown Now that we've normalized to a root directory (the temporary directory), we see that the `self` links are set: ###Code print(catalog.get_self_href()) print(item.get_self_href()) ###Output /var/folders/sv/zr8j0t4j1f726nhlt3vb8c300000gn/T/tmpt1wuelid/stac/catalog.json /var/folders/sv/zr8j0t4j1f726nhlt3vb8c300000gn/T/tmpt1wuelid/stac/local-image/local-image.json ###Markdown We can now call `save` on the catalog, which will recursively save all the STAC objects to their respective self HREFs.Save requires a `CatalogType` to be set. You can review the [API docs](https://pystac.readthedocs.io/en/stable/api.htmlcatalogtype) on `CatalogType` to see what each type means (unfortunately `help` doesn't show docstrings for attributes). ###Code catalog.save(catalog_type=pystac.CatalogType.SELF_CONTAINED) !ls {tmp_dir.name}/stac/* with open(catalog.get_self_href()) as f: print(f.read()) with open(item.get_self_href()) as f: print(f.read()) ###Output { "type": "Feature", "stac_version": "1.0.0-beta.2", "id": "local-image", "properties": { "datetime": "2020-08-03T03:47:48.786929Z" }, "geometry": { "type": "Polygon", "coordinates": [ [ [ 37.6616853489879, 55.73478197572927 ], [ 37.6616853489879, 55.73882710285011 ], [ 37.66573047610874, 55.73882710285011 ], [ 37.66573047610874, 55.73478197572927 ], [ 37.6616853489879, 55.73478197572927 ] ] ] }, "links": [ { "rel": "root", "href": "../catalog.json", "type": "application/json" }, { "rel": "parent", "href": "../catalog.json", "type": "application/json" } ], "assets": { "image": { "href": "/var/folders/sv/zr8j0t4j1f726nhlt3vb8c300000gn/T/tmpt1wuelid/image.tif", "type": "image/tiff; application=geotiff" } }, "bbox": [ 37.6616853489879, 55.73478197572927, 37.66573047610874, 55.73882710285011 ] } ###Markdown As you can see, all links are saved with relative paths. That's because we used `catalog_type=CatalogType.SELF_CONTAINED`. If we save an Absolute Published catalog, we'll see absolute paths: ###Code catalog.save(catalog_type=pystac.CatalogType.ABSOLUTE_PUBLISHED) ###Output _____no_output_____ ###Markdown Now the links included in the STAC item are all absolute: ###Code with open(item.get_self_href()) as f: print(f.read()) ###Output { "type": "Feature", "stac_version": "1.0.0-beta.2", "id": "local-image", "properties": { "datetime": "2020-08-03T03:47:48.786929Z" }, "geometry": { "type": "Polygon", "coordinates": [ [ [ 37.6616853489879, 55.73478197572927 ], [ 37.6616853489879, 55.73882710285011 ], [ 37.66573047610874, 55.73882710285011 ], [ 37.66573047610874, 55.73478197572927 ], [ 37.6616853489879, 55.73478197572927 ] ] ] }, "links": [ { "rel": "self", "href": "/var/folders/sv/zr8j0t4j1f726nhlt3vb8c300000gn/T/tmpt1wuelid/stac/local-image/local-image.json", "type": "application/json" }, { "rel": "root", "href": "/var/folders/sv/zr8j0t4j1f726nhlt3vb8c300000gn/T/tmpt1wuelid/stac/catalog.json", "type": "application/json" }, { "rel": "parent", "href": "/var/folders/sv/zr8j0t4j1f726nhlt3vb8c300000gn/T/tmpt1wuelid/stac/catalog.json", "type": "application/json" } ], "assets": { "image": { "href": "/var/folders/sv/zr8j0t4j1f726nhlt3vb8c300000gn/T/tmpt1wuelid/image.tif", "type": "image/tiff; application=geotiff" } }, "bbox": [ 37.6616853489879, 55.73478197572927, 37.66573047610874, 55.73882710285011 ] } ###Markdown Notice that the Asset HREF is absolute in both cases. We can make the Asset HREF relative to the STAC Item by using `.make_all_asset_hrefs_relative()`: ###Code catalog.make_all_asset_hrefs_relative() catalog.save(catalog_type=pystac.CatalogType.SELF_CONTAINED) with open(item.get_self_href()) as f: print(f.read()) ###Output { "type": "Feature", "stac_version": "1.0.0-beta.2", "id": "local-image", "properties": { "datetime": "2020-08-03T03:47:48.786929Z" }, "geometry": { "type": "Polygon", "coordinates": [ [ [ 37.6616853489879, 55.73478197572927 ], [ 37.6616853489879, 55.73882710285011 ], [ 37.66573047610874, 55.73882710285011 ], [ 37.66573047610874, 55.73478197572927 ], [ 37.6616853489879, 55.73478197572927 ] ] ] }, "links": [ { "rel": "root", "href": "../catalog.json", "type": "application/json" }, { "rel": "parent", "href": "../catalog.json", "type": "application/json" } ], "assets": { "image": { "href": "../../image.tif", "type": "image/tiff; application=geotiff" } }, "bbox": [ 37.6616853489879, 55.73478197572927, 37.66573047610874, 55.73882710285011 ] } ###Markdown Creating an Item that implements the EO extensionIn the code above our item only implemented the core STAC Item specification. With [extensions](https://github.com/radiantearth/stac-spec/tree/v0.9.0/extensions) we can record more information and add additional functionality to the Item. Given that we know this is a World View 3 image that has earth observation data, we can enable the [eo extension](https://github.com/radiantearth/stac-spec/tree/v0.8.1/extensions/eo) to add band information. To add eo information to an item we'll need to specify some more data. First, let's define the bands of World View 3: ###Code from pystac.extensions.eo import Band # From: https://www.spaceimagingme.com/downloads/sensors/datasheets/DG_WorldView3_DS_2014.pdf wv3_bands = [Band.create(name='Coastal', description='Coastal: 400 - 450 nm', common_name='coastal'), Band.create(name='Blue', description='Blue: 450 - 510 nm', common_name='blue'), Band.create(name='Green', description='Green: 510 - 580 nm', common_name='green'), Band.create(name='Yellow', description='Yellow: 585 - 625 nm', common_name='yellow'), Band.create(name='Red', description='Red: 630 - 690 nm', common_name='red'), Band.create(name='Red Edge', description='Red Edge: 705 - 745 nm', common_name='rededge'), Band.create(name='Near-IR1', description='Near-IR1: 770 - 895 nm', common_name='nir08'), Band.create(name='Near-IR2', description='Near-IR2: 860 - 1040 nm', common_name='nir09')] ###Output _____no_output_____ ###Markdown Notice that we used the `.create` method create new band information. We can now create an Item, enable the eo extension, add the band information and add it to our catalog: ###Code eo_item = pystac.Item(id='local-image-eo', geometry=footprint, bbox=bbox, datetime=datetime.utcnow(), properties={}) eo_item.ext.enable(pystac.Extensions.EO) eo_item.ext.eo.apply(bands=wv3_bands) ###Output _____no_output_____ ###Markdown There are also [common metadata](https://github.com/radiantearth/stac-spec/blob/v0.9.0/item-spec/common-metadata.md) fields that we can use to capture additional information about the WorldView 3 imagery: ###Code eo_item.common_metadata.platform = "Maxar" eo_item.common_metadata.instrument="WorldView3" eo_item.common_metadata.gsd = 0.3 eo_item ###Output _____no_output_____ ###Markdown We can use the eo extension to add bands to the assets we add to the item: ###Code eo_ext = eo_item.ext.eo help(eo_ext.set_bands) #eo_item.add_asset(key='image', asset=) asset = pystac.Asset(href=img_path, media_type=pystac.MediaType.GEOTIFF) eo_ext.set_bands(wv3_bands, asset) eo_item.add_asset("image", asset) ###Output _____no_output_____ ###Markdown If we look at the asset's JSON representation, we can see the appropriate band indexes are set: ###Code asset.to_dict() ###Output _____no_output_____ ###Markdown Let's clear the in-memory catalog, add the EO item, and save to a new STAC: ###Code catalog.clear_items() list(catalog.get_items()) catalog.add_item(eo_item) list(catalog.get_items()) catalog.normalize_and_save(root_href=os.path.join(tmp_dir.name, 'stac-eo'), catalog_type=pystac.CatalogType.SELF_CONTAINED) ###Output _____no_output_____ ###Markdown Now, if we read the catalog from the filesystem, PySTAC recognizes that the item implements eo and so use it's functionality, e.g. getting the bands off the asset: ###Code catalog2 = pystac.read_file(os.path.join(tmp_dir.name, 'stac-eo', 'catalog.json')) list(catalog2.get_items()) item = next(catalog2.get_all_items()) item.ext.implements('eo') item.ext.eo.get_bands(item.assets['image']) ###Output _____no_output_____ ###Markdown CollectionsCollections are a subtype of Catalog that have some additional properties to make them more searchable. They also can define common properties so that items in the collection don't have to duplicate common data for each item. Let's create a collection to hold common properties between two images from the Spacenet 5 challenge.First we'll get another image, and it's bbox and footprint: ###Code url2 = ('http://spacenet-dataset.s3.amazonaws.com/' 'spacenet/SN5_roads/train/AOI_7_Moscow/MS/' 'SN5_roads_train_AOI_7_Moscow_MS_chip997.tif') img_path2 = os.path.join(tmp_dir.name, 'image.tif') urllib.request.urlretrieve(url2, img_path2) bbox2, footprint2 = get_bbox_and_footprint(img_path2) ###Output _____no_output_____ ###Markdown We can take a look at the pydocs for Collection to see what information we need to supply in order to satisfy the spec. ###Code print(pystac.Collection.__doc__) ###Output A Collection extends the Catalog spec with additional metadata that helps enable discovery. Args: id (str): Identifier for the collection. Must be unique within the STAC. description (str): Detailed multi-line description to fully explain the collection. `CommonMark 0.28 syntax <http://commonmark.org/>`_ MAY be used for rich text representation. extent (Extent): Spatial and temporal extents that describe the bounds of all items contained within this Collection. title (str or None): Optional short descriptive one-line title for the collection. stac_extensions (List[str]): Optional list of extensions the Collection implements. href (str or None): Optional HREF for this collection, which be set as the collection's self link's HREF. license (str): Collection's license(s) as a `SPDX License identifier <https://spdx.org/licenses/>`_, `various`, or `proprietary`. If collection includes data with multiple different licenses, use `various` and add a link for each. Defaults to 'proprietary'. keywords (List[str]): Optional list of keywords describing the collection. providers (List[Provider]): Optional list of providers of this Collection. properties (dict): Optional dict of common fields across referenced items. summaries (dict): An optional map of property summaries, either a set of values or statistics such as a range. extra_fields (dict or None): Extra fields that are part of the top-level JSON properties of the Collection. Attributes: id (str): Identifier for the collection. description (str): Detailed multi-line description to fully explain the collection. extent (Extent): Spatial and temporal extents that describe the bounds of all items contained within this Collection. title (str or None): Optional short descriptive one-line title for the collection. stac_extensions (List[str]): Optional list of extensions the Collection implements. keywords (List[str] or None): Optional list of keywords describing the collection. providers (List[Provider] or None): Optional list of providers of this Collection. properties (dict or None): Optional dict of common fields across referenced items. summaries (dict or None): An optional map of property summaries, either a set of values or statistics such as a range. links (List[Link]): A list of :class:`~pystac.Link` objects representing all links associated with this Collection. extra_fields (dict or None): Extra fields that are part of the top-level JSON properties of the Catalog. ###Markdown Beyond what a Catalog reqiures, a Collection requires a license, and an `Extent` that describes the range of space and time that the items it hold occupy. ###Code print(pystac.Extent.__doc__) ###Output Describes the spatio-temporal extents of a Collection. Args: spatial (SpatialExtent): Potential spatial extent covered by the collection. temporal (TemporalExtent): Potential temporal extent covered by the collection. Attributes: spatial (SpatialExtent): Potential spatial extent covered by the collection. temporal (TemporalExtent): Potential temporal extent covered by the collection. ###Markdown An Extent is comprised of a SpatialExtent and a TemporalExtent. These hold one or more bounding boxes and time intervals, respectively, that completely cover the items contained in the collections.Let's start with creating two new items - these will be core Items. We can set these items to implement the `eo` extension by specifying them in the `stac_extensions`. ###Code collection_item = pystac.Item(id='local-image-col-1', geometry=footprint, bbox=bbox, datetime=datetime.utcnow(), properties={}, stac_extensions=[pystac.Extensions.EO]) collection_item.common_metadata.gsd = 0.3 collection_item.common_metadata.platform = 'Maxar' collection_item.common_metadata.instruments = ['WorldView3'] asset = pystac.Asset(href=img_path, media_type=pystac.MediaType.GEOTIFF) collection_item.ext.eo.set_bands(wv3_bands, asset) collection_item.add_asset('image', asset) collection_item2 = pystac.Item(id='local-image-col-2', geometry=footprint2, bbox=bbox2, datetime=datetime.utcnow(), properties={}, stac_extensions=[pystac.Extensions.EO]) collection_item2.common_metadata.gsd = 0.3 collection_item2.common_metadata.platform = 'Maxar' collection_item2.common_metadata.instruments = ['WorldView3'] asset2 = pystac.Asset(href=img_path, media_type=pystac.MediaType.GEOTIFF) collection_item2.ext.eo.set_bands([ band for band in wv3_bands if band.name in ["Red", "Green", "Blue"] ], asset2) collection_item2.add_asset('image', asset2) ###Output _____no_output_____ ###Markdown We can use our two items' metadata to find out what the proper bounds are: ###Code from shapely.geometry import shape unioned_footprint = shape(footprint).union(shape(footprint2)) collection_bbox = list(unioned_footprint.bounds) spatial_extent = pystac.SpatialExtent(bboxes=[collection_bbox]) collection_interval = sorted([collection_item.datetime, collection_item2.datetime]) temporal_extent = pystac.TemporalExtent(intervals=[collection_interval]) collection_extent = pystac.Extent(spatial=spatial_extent, temporal=temporal_extent) collection = pystac.Collection(id='wv3-images', description='Spacenet 5 images over Moscow', extent=collection_extent, license='CC-BY-SA-4.0') ###Output _____no_output_____ ###Markdown Now if we add our items to our Collection, and our Collection to our Catalog, we get the following STAC that can be saved: ###Code collection.add_items([collection_item, collection_item2]) catalog.clear_items() catalog.clear_children() catalog.add_child(collection) catalog.describe() catalog.normalize_and_save(root_href=os.path.join(tmp_dir.name, 'stac-collection'), catalog_type=pystac.CatalogType.SELF_CONTAINED) ###Output _____no_output_____ ###Markdown CleanupDon't forget to clean up the temporary directory! ###Code tmp_dir.cleanup() ###Output _____no_output_____ ###Markdown Creating a STAC of imagery from Spacenet 5 data Now, let's take what we've learned and create a Catalog with more data in it. Allowing PySTAC to read from AWS S3PySTAC aims to be virtually zero-dependency (notwithstanding the why-isn't-this-in-stdlib datetime-util), so it doesn't have the ability to read from or write to anything but the local file system. However, we can hook into PySTAC's IO in the following way. Learn more about how to use STAC_IO in the [documentation on the topic](https://pystac.readthedocs.io/en/latest/concepts.htmlusing-stac-io): ###Code from urllib.parse import urlparse import boto3 from pystac import STAC_IO def my_read_method(uri): parsed = urlparse(uri) if parsed.scheme == 's3': bucket = parsed.netloc key = parsed.path[1:] s3 = boto3.resource('s3') obj = s3.Object(bucket, key) return obj.get()['Body'].read().decode('utf-8') else: return STAC_IO.default_read_text_method(uri) def my_write_method(uri, txt): parsed = urlparse(uri) if parsed.scheme == 's3': bucket = parsed.netloc key = parsed.path[1:] s3 = boto3.resource("s3") s3.Object(bucket, key).put(Body=txt) else: STAC_IO.default_write_text_method(uri, txt) STAC_IO.read_text_method = my_read_method STAC_IO.write_text_method = my_write_method ###Output _____no_output_____ ###Markdown We'll need a utility to list keys for reading the lists of files from S3: ###Code # From https://alexwlchan.net/2017/07/listing-s3-keys/ def get_s3_keys(bucket, prefix): """Generate all the keys in an S3 bucket.""" s3 = boto3.client('s3') kwargs = {'Bucket': bucket, 'Prefix': prefix} while True: resp = s3.list_objects_v2(**kwargs) for obj in resp['Contents']: yield obj['Key'] try: kwargs['ContinuationToken'] = resp['NextContinuationToken'] except KeyError: break ###Output _____no_output_____ ###Markdown Let's make a STAC of imagery over Moscow as part of the Spacenet 5 challenge. As a first step, we can list out the imagery and extract IDs from each of the chips. ###Code moscow_training_chip_uris = list(get_s3_keys(bucket='spacenet-dataset', prefix='spacenet/SN5_roads/train/AOI_7_Moscow/PS-MS')) import re chip_id_to_data = {} def get_chip_id(uri): return re.search(r'.*\_chip(\d+)\.', uri).group(1) for uri in moscow_training_chip_uris: chip_id = get_chip_id(uri) chip_id_to_data[chip_id] = { 'img': 's3://spacenet-dataset/{}'.format(uri) } ###Output _____no_output_____ ###Markdown For this tutorial, we'll only take a subset of the data. ###Code chip_id_to_data = dict(list(chip_id_to_data.items())[:10]) chip_id_to_data ###Output _____no_output_____ ###Markdown Let's turn each of those chips into a STAC Item that represents the image. ###Code chip_id_to_items = {} ###Output _____no_output_____ ###Markdown We'll create core `Item`s for our imagery, but mark them with the `eo` extension as we did above, and store the `eo` data in a `Collection`.Note that the image CRS is in WGS:84 (Lat/Lng). If it wasn't, we'd have to reproject the footprint to WGS:84 in order to be compliant with the spec (which can easily be done with [pyproj](https://github.com/pyproj4/pyproj)).Here we're taking advantage of `rasterio`'s ability to read S3 URIs, which only grabs the GeoTIFF metadata and does not pull the whole file down. ###Code for chip_id in chip_id_to_data: img_uri = chip_id_to_data[chip_id]['img'] print('Processing {}'.format(img_uri)) bbox, footprint = get_bbox_and_footprint(img_uri) item = pystac.Item(id='img_{}'.format(chip_id), geometry=footprint, bbox=bbox, datetime=datetime.utcnow(), properties={}, stac_extensions=[pystac.Extensions.EO]) item.common_metadata.gsd = 0.3 item.common_metadata.platform = 'Maxar' item.common_metadata.instruments = ['WorldView3'] item.ext.eo.bands = wv3_bands asset = pystac.Asset(href=img_uri, media_type=pystac.MediaType.COG) item.ext.eo.set_bands(wv3_bands, asset) item.add_asset(key='ps-ms', asset=asset) chip_id_to_items[chip_id] = item ###Output Processing s3://spacenet-dataset/spacenet/SN5_roads/train/AOI_7_Moscow/PS-MS/SN5_roads_train_AOI_7_Moscow_PS-MS_chip0.tif Processing s3://spacenet-dataset/spacenet/SN5_roads/train/AOI_7_Moscow/PS-MS/SN5_roads_train_AOI_7_Moscow_PS-MS_chip1.tif Processing s3://spacenet-dataset/spacenet/SN5_roads/train/AOI_7_Moscow/PS-MS/SN5_roads_train_AOI_7_Moscow_PS-MS_chip10.tif Processing s3://spacenet-dataset/spacenet/SN5_roads/train/AOI_7_Moscow/PS-MS/SN5_roads_train_AOI_7_Moscow_PS-MS_chip100.tif Processing s3://spacenet-dataset/spacenet/SN5_roads/train/AOI_7_Moscow/PS-MS/SN5_roads_train_AOI_7_Moscow_PS-MS_chip1000.tif Processing s3://spacenet-dataset/spacenet/SN5_roads/train/AOI_7_Moscow/PS-MS/SN5_roads_train_AOI_7_Moscow_PS-MS_chip1001.tif Processing s3://spacenet-dataset/spacenet/SN5_roads/train/AOI_7_Moscow/PS-MS/SN5_roads_train_AOI_7_Moscow_PS-MS_chip1002.tif Processing s3://spacenet-dataset/spacenet/SN5_roads/train/AOI_7_Moscow/PS-MS/SN5_roads_train_AOI_7_Moscow_PS-MS_chip1003.tif Processing s3://spacenet-dataset/spacenet/SN5_roads/train/AOI_7_Moscow/PS-MS/SN5_roads_train_AOI_7_Moscow_PS-MS_chip1004.tif Processing s3://spacenet-dataset/spacenet/SN5_roads/train/AOI_7_Moscow/PS-MS/SN5_roads_train_AOI_7_Moscow_PS-MS_chip1005.tif ###Markdown Creating the CollectionAll of these images are over Moscow. In Spacenet 5, we have a couple cities that have imagery; a good way to separate these collections of imagery. We can store all of the common `eo` metadata in the collection. ###Code from shapely.geometry import (shape, MultiPolygon) footprints = list(map(lambda i: shape(i.geometry).envelope, chip_id_to_items.values())) collection_bbox = MultiPolygon(footprints).bounds spatial_extent = pystac.SpatialExtent(bboxes=[collection_bbox]) datetimes = sorted(list(map(lambda i: i.datetime, chip_id_to_items.values()))) temporal_extent = pystac.TemporalExtent(intervals=[[datetimes[0], datetimes[-1]]]) collection_extent = pystac.Extent(spatial=spatial_extent, temporal=temporal_extent) collection = pystac.Collection(id='wv3-images', description='Spacenet 5 images over Moscow', extent=collection_extent, license='CC-BY-SA-4.0') collection.add_items(chip_id_to_items.values()) collection.describe() ###Output * <Collection id=wv3-images> * <Item id=img_0> * <Item id=img_1> * <Item id=img_10> * <Item id=img_100> * <Item id=img_1000> * <Item id=img_1001> * <Item id=img_1002> * <Item id=img_1003> * <Item id=img_1004> * <Item id=img_1005> ###Markdown Now, we can create a Catalog and add the collection. ###Code catalog = pystac.Catalog(id='spacenet5', description='Spacenet 5 Data (Test)') catalog.add_child(collection) catalog.describe() ###Output * <Catalog id=spacenet5> * <Collection id=wv3-images> * <Item id=img_0> * <Item id=img_1> * <Item id=img_10> * <Item id=img_100> * <Item id=img_1000> * <Item id=img_1001> * <Item id=img_1002> * <Item id=img_1003> * <Item id=img_1004> * <Item id=img_1005> ###Markdown Adding items with the label extension to the Spacenet 5 catalogWe can use the [label extension](https://github.com/radiantearth/stac-spec/tree/v0.8.1/extensions/label) of the STAC spec to represent the training data in our STAC. For this, we need to grab the URIs of the GeoJSON of roads: ###Code moscow_training_geojson_uris = list(get_s3_keys(bucket='spacenet-dataset', prefix='spacenet/SN5_roads/train/AOI_7_Moscow/geojson_roads_speed/')) for uri in moscow_training_geojson_uris: chip_id = get_chip_id(uri) if chip_id in chip_id_to_data: chip_id_to_data[chip_id]['label'] = 's3://spacenet-dataset/{}'.format(uri) ###Output _____no_output_____ ###Markdown We'll add the items to their own subcatalog; since they don't inherit the Collection's `eo` properties, they shouldn't go in the Collection. ###Code label_catalog = pystac.Catalog(id='spacenet-data-labels', description='Labels for Spacenet 5') catalog.add_child(label_catalog) ###Output _____no_output_____ ###Markdown To see the required fields for the label extension we can check the pydocs on the `apply` method of the extension: ###Code from pystac.extensions import label print(label.LabelItemExt.apply.__doc__) ###Output Applies label extension properties to the extended Item. Args: label_description (str): A description of the label, how it was created, and what it is recommended for label_type (str): An ENUM of either vector label type or raster label type. Use one of :class:`~pystac.LabelType`. label_properties (list or None): These are the names of the property field(s) in each Feature of the label asset's FeatureCollection that contains the classes (keywords from label:classes if the property defines classes). If labels are rasters, this should be None. label_classes (List[LabelClass]): Optional, but reqiured if ussing categorical data. A list of LabelClasses defining the list of possible class names for each label:properties. (e.g., tree, building, car, hippo) label_tasks (List[str]): Recommended to be a subset of 'regression', 'classification', 'detection', or 'segmentation', but may be an arbitrary value. label_methods: Recommended to be a subset of 'automated' or 'manual', but may be an arbitrary value. label_overviews (List[LabelOverview]): Optional list of LabelOverview classes that store counts (for classification-type data) or summary statistics (for continuous numerical/regression data). ###Markdown This loop creates our label items and associates each to the appropriate source image Item. ###Code for chip_id in chip_id_to_data: img_item = collection.get_item('img_{}'.format(chip_id)) label_uri = chip_id_to_data[chip_id]['label'] label_item = pystac.Item(id='label_{}'.format(chip_id), geometry=img_item.geometry, bbox=img_item.bbox, datetime=datetime.utcnow(), properties={}, stac_extensions=[pystac.Extensions.LABEL]) label_item.ext.label.apply(label_description="SpaceNet 5 Road labels", label_type=label.LabelType.VECTOR, label_tasks=['segmentation', 'regression']) label_item.ext.label.add_source(img_item) label_item.ext.label.add_geojson_labels(label_uri) label_catalog.add_item(label_item) ###Output _____no_output_____ ###Markdown Now we have a STAC of training data! ###Code catalog.describe() label_item = catalog.get_child('spacenet-data-labels').get_item('label_1') label_item.to_dict() ###Output _____no_output_____ ###Markdown How to create STAC Catalogs STAC Community Sprint, Arlington, November 7th 2019 This notebook runs through some of the basics of using PySTAC to create a static STAC. It was part of a 30 minute presentation at the [community STAC sprint](https://github.com/radiantearth/community-sprints/tree/master/11052019-arlignton-va) in Arlington, VA in November 2019. This tutorial will require the `boto3`, `rasterio`, and `shapely` libraries: ###Code !pip install boto3 !pip install rasterio !pip install shapely ###Output Requirement already satisfied: boto3 in /Users/rob/proj/stac/pystac/venv/lib/python3.6/site-packages Requirement already satisfied: s3transfer<0.3.0,>=0.2.0 in /Users/rob/proj/stac/pystac/venv/lib/python3.6/site-packages (from boto3) Requirement already satisfied: botocore<1.14.0,>=1.13.8 in /Users/rob/proj/stac/pystac/venv/lib/python3.6/site-packages (from boto3) Requirement already satisfied: jmespath<1.0.0,>=0.7.1 in /Users/rob/proj/stac/pystac/venv/lib/python3.6/site-packages (from boto3) Requirement already satisfied: urllib3<1.26,>=1.20; python_version >= "3.4" in /Users/rob/proj/stac/pystac/venv/lib/python3.6/site-packages (from botocore<1.14.0,>=1.13.8->boto3) Requirement already satisfied: python-dateutil<3.0.0,>=2.1; python_version >= "2.7" in /Users/rob/proj/stac/pystac/venv/lib/python3.6/site-packages (from botocore<1.14.0,>=1.13.8->boto3) Requirement already satisfied: docutils<0.16,>=0.10 in /Users/rob/proj/stac/pystac/venv/lib/python3.6/site-packages (from botocore<1.14.0,>=1.13.8->boto3) Requirement already satisfied: six>=1.5 in /Users/rob/proj/stac/pystac/venv/lib/python3.6/site-packages (from python-dateutil<3.0.0,>=2.1; python_version >= "2.7"->botocore<1.14.0,>=1.13.8->boto3) You are using pip version 9.0.3, however version 19.3.1 is available. You should consider upgrading via the 'pip install --upgrade pip' command. Requirement already satisfied: rasterio in /Users/rob/proj/stac/pystac/venv/lib/python3.6/site-packages Requirement already satisfied: numpy in /Users/rob/proj/stac/pystac/venv/lib/python3.6/site-packages (from rasterio) Requirement already satisfied: attrs in /Users/rob/proj/stac/pystac/venv/lib/python3.6/site-packages (from rasterio) Requirement already satisfied: snuggs>=1.4.1 in /Users/rob/proj/stac/pystac/venv/lib/python3.6/site-packages (from rasterio) Requirement already satisfied: click-plugins in /Users/rob/proj/stac/pystac/venv/lib/python3.6/site-packages (from rasterio) Requirement already satisfied: click<8,>=4.0 in /Users/rob/proj/stac/pystac/venv/lib/python3.6/site-packages (from rasterio) Requirement already satisfied: cligj>=0.5 in /Users/rob/proj/stac/pystac/venv/lib/python3.6/site-packages (from rasterio) Requirement already satisfied: affine in /Users/rob/proj/stac/pystac/venv/lib/python3.6/site-packages (from rasterio) Requirement already satisfied: pyparsing>=2.1.6 in /Users/rob/proj/stac/pystac/venv/lib/python3.6/site-packages (from snuggs>=1.4.1->rasterio) You are using pip version 9.0.3, however version 19.3.1 is available. You should consider upgrading via the 'pip install --upgrade pip' command. Requirement already satisfied: shapely in /Users/rob/proj/stac/pystac/venv/lib/python3.6/site-packages You are using pip version 9.0.3, however version 19.3.1 is available. You should consider upgrading via the 'pip install --upgrade pip' command. ###Markdown We can import pystac with the alias `stac` to access all of the API we need (saving a glorious 2 characters): ###Code import pystac as stac ###Output _____no_output_____ ###Markdown Creating a catalog from a local file To give us some material to work with, lets download a single image from the [Spacenet 5 challenge](https://www.topcoder.com/challenges/30099956). We'll use a temporary directory to save off our single-item STAC. ###Code import os import urllib.request from tempfile import TemporaryDirectory tmp_dir = TemporaryDirectory() img_path = os.path.join(tmp_dir.name, 'image.tif') url = ('http://spacenet-dataset.s3.amazonaws.com/' 'spacenet/SN5_roads/train/AOI_7_Moscow/MS/' 'SN5_roads_train_AOI_7_Moscow_MS_chip996.tif') urllib.request.urlretrieve(url, img_path) ###Output _____no_output_____ ###Markdown We want to create a Catalog. Let's check the pydocs for `Catalog` to see what information we'll need. (We use `__doc__` instead of `help()` here to avoid printing out all the docs for the class.) ###Code print(stac.Catalog.__doc__) ###Output A PySTAC Catalog represents a STAC catalog in memory. A Catalog is a :class:`~pystac.STACObject` that may contain children, which are instances of :class:`~pystac.Catalog` or :class:`~pystac.Collection`, as well as :class:`~pystac.Item` s. Args: id (str): Identifier for the catalog. Must be unique within the STAC. description (str): Detailed multi-line description to fully explain the catalog. `CommonMark 0.28 syntax <http://commonmark.org/>`_ MAY be used for rich text representation. title (str or None): Optional short descriptive one-line title for the catalog. stac_extensions (List[str]): Optional list of extensions the Catalog implements. href (str or None): Optional HREF for this catalog, which be set as the catalog's self link's HREF. Attributes: id (str): Identifier for the catalog. description (str): Detailed multi-line description to fully explain the catalog. title (str or None): Optional short descriptive one-line title for the catalog. stac_extensions (List[str] or None): Optional list of extensions the Catalog implements. links (List[Link]): A list of :class:`~pystac.Link` objects representing all links associated with this Catalog. ###Markdown Let's just give an ID and a description. We don't have to worry about the HREF right now; that will be set later. ###Code catalog = stac.Catalog(id='test-catalog', description='Tutorial catalog.') ###Output _____no_output_____ ###Markdown There are no children or items in the catalog, since we haven't added anything yet. ###Code print(list(catalog.get_children())) print(list(catalog.get_items())) ###Output [] [] ###Markdown We'll now create an Item to represent the image. Check the pydocs to see what you need to supply: ###Code print(stac.Item.__doc__) ###Output An Item is the core granular entity in a STAC, containing the core metadata that enables any client to search or crawl online catalogs of spatial 'assets' - satellite imagery, derived data, DEM's, etc. Args: id (str): Provider identifier. Must be unique within the STAC. geometry (dict): Defines the full footprint of the asset represented by this item, formatted according to `RFC 7946, section 3.1 (GeoJSON) <https://tools.ietf.org/html/rfc7946>`_. bbox (List[float]): Bounding Box of the asset represented by this item using either 2D or 3D geometries. The length of the array must be 2*n where n is the number of dimensions. datetime (Datetime): Datetime associated with this item. properties (dict): A dictionary of additional metadata for the item. stac_extensions (List[str]): Optional list of extensions the Item implements. href (str or None): Optional HREF for this item, which be set as the item's self link's HREF. collection (Collection or str): The Collection or Collection ID that this item belongs to. Attributes: id (str): Provider identifier. Unique within the STAC. geometry (dict): Defines the full footprint of the asset represented by this item, formatted according to `RFC 7946, section 3.1 (GeoJSON) <https://tools.ietf.org/html/rfc7946>`_. bbox (List[float]): Bounding Box of the asset represented by this item using either 2D or 3D geometries. The length of the array is 2*n where n is the number of dimensions. datetime (Datetime): Datetime associated with this item. properties (dict): A dictionary of additional metadata for the item. stac_extensions (List[str] or None): Optional list of extensions the Item implements. collection (Collection or None): Collection that this item is a part of. links (List[Link]): A list of :class:`~pystac.Link` objects representing all links associated with this STACObject. assets (Dict[str, Asset]): Dictionary of asset objects that can be downloaded, each with a unique key. collection_id (str or None): The Collection ID that this item belongs to, if any. ###Markdown Using [rasterio](https://rasterio.readthedocs.io/en/stable/), we can pull out the bounding box of the image to use for the image metadata. If the image contained a NoData border, we would ideally pull out the footprint and save it as the geometry; in this case, we're working with a small chip the most likely has no NoData values. ###Code import rasterio from shapely.geometry import Polygon, mapping def get_bbox_and_footprint(raster_uri): with rasterio.open(raster_uri) as ds: bounds = ds.bounds bbox = [bounds.left, bounds.bottom, bounds.right, bounds.top] footprint = Polygon([ [bounds.left, bounds.bottom], [bounds.left, bounds.top], [bounds.right, bounds.top], [bounds.right, bounds.bottom] ]) return (bbox, mapping(footprint)) bbox, footprint = get_bbox_and_footprint(img_path) print(bbox) print(footprint) ###Output [37.6616853489879, 55.73478197572927, 37.66573047610874, 55.73882710285011] {'type': 'Polygon', 'coordinates': (((37.6616853489879, 55.73478197572927), (37.6616853489879, 55.73882710285011), (37.66573047610874, 55.73882710285011), (37.66573047610874, 55.73478197572927), (37.6616853489879, 55.73478197572927)),)} ###Markdown We're also using `datetime.utcnow()` to supply the required datetime property for our Item. Since this is a required property, you might often find yourself making up a time to fill in if you don't know the exact capture time. ###Code from datetime import datetime item = stac.Item(id='local-image', geometry=footprint, bbox=bbox, datetime=datetime.utcnow(), properties={}) ###Output _____no_output_____ ###Markdown We haven't added it to a catalog yet, so it's parent isn't set. Once we add it to the catalog, we can see it correctly links to it's parent. ###Code item.get_parent() is None catalog.add_item(item) item.get_parent() ###Output _____no_output_____ ###Markdown `describe()` is a useful method on `Catalog` - but be careful when using it on large catalogs, as it will walk the entire tree of the STAC. ###Code catalog.describe() ###Output * <Catalog id=test-catalog> * <Item id=local-image> ###Markdown Adding AssetsWe've created an Item, but there aren't any assets associated with it. Let's create one: ###Code print(stac.Asset.__doc__) item.add_asset(key='image', asset=stac.Asset(href=img_path, media_type=stac.MediaType.GEOTIFF)) ###Output _____no_output_____ ###Markdown At any time we can call `to_dict()` on STAC objects to see how the STAC JSON is shaping up. Notice the asset is now set: ###Code import json print(json.dumps(item.to_dict(), indent=4)) ###Output { "type": "Feature", "stac_version": "0.8.1", "id": "local-image", "properties": { "datetime": "2019-11-05 16:43:22Z" }, "geometry": { "type": "Polygon", "coordinates": [ [ [ 37.6616853489879, 55.73478197572927 ], [ 37.6616853489879, 55.73882710285011 ], [ 37.66573047610874, 55.73882710285011 ], [ 37.66573047610874, 55.73478197572927 ], [ 37.6616853489879, 55.73478197572927 ] ] ] }, "bbox": [ 37.6616853489879, 55.73478197572927, 37.66573047610874, 55.73882710285011 ], "links": [ { "rel": "root", "href": null, "type": "application/json" }, { "rel": "parent", "href": null, "type": "application/json" } ], "assets": { "image": { "href": "/var/folders/sv/zr8j0t4j1f726nhlt3vb8c300000gn/T/tmpytmf1tsx/image.tif", "type": "image/vnd.stac.geotiff" } } } ###Markdown Note that the link `href` properties are `null`. This is OK, as we're working with the STAC in memory. Next, we'll talk about writing the catalog out, and how to set those HREFs. Saving the catalog As the JSON above indicates, there's no HREFs set on these in-memory items. PySTAC uses the `self` link on STAC objects to track where the file lives. Because we haven't set them, they evaluate to `None`: ###Code print(catalog.get_self_href() is None) print(item.get_self_href() is None) ###Output True True ###Markdown In order to set them, we can use `normalize_hrefs`. This method will create a normalized set of HREFs for each STAC object in the catalog, according to the [best practices document](https://github.com/radiantearth/stac-spec/blob/v0.8.1/best-practices.mdcatalog-layout)'s recommendations on how to lay out a catalog. ###Code catalog.normalize_hrefs(os.path.join(tmp_dir.name, 'stac')) ###Output _____no_output_____ ###Markdown Now that we've normalized to a root directory (the temporary directory), we see that the `self` links are set: ###Code print(catalog.get_self_href()) print(item.get_self_href()) ###Output /var/folders/sv/zr8j0t4j1f726nhlt3vb8c300000gn/T/tmpytmf1tsx/stac/catalog.json /var/folders/sv/zr8j0t4j1f726nhlt3vb8c300000gn/T/tmpytmf1tsx/stac/local-image/local-image.json ###Markdown We can now call `save` on the catalog, which will recursively save all the STAC objects to their respective self HREFs.Save requires a `CatalogType` to be set. You can review the [API docs](https://pystac.readthedocs.io/en/stable/api.htmlcatalogtype) on `CatalogType` to see what each type means (unfortunately `help` doesn't show docstrings for attributes). ###Code catalog.save(catalog_type=stac.CatalogType.SELF_CONTAINED) !ls {tmp_dir.name}/stac/* with open(catalog.get_self_href()) as f: print(f.read()) with open(item.get_self_href()) as f: print(f.read()) ###Output { "type": "Feature", "stac_version": "0.8.1", "id": "local-image", "properties": { "datetime": "2019-11-05 16:43:22Z" }, "geometry": { "type": "Polygon", "coordinates": [ [ [ 37.6616853489879, 55.73478197572927 ], [ 37.6616853489879, 55.73882710285011 ], [ 37.66573047610874, 55.73882710285011 ], [ 37.66573047610874, 55.73478197572927 ], [ 37.6616853489879, 55.73478197572927 ] ] ] }, "bbox": [ 37.6616853489879, 55.73478197572927, 37.66573047610874, 55.73882710285011 ], "links": [ { "rel": "root", "href": "../catalog.json", "type": "application/json" }, { "rel": "parent", "href": "../catalog.json", "type": "application/json" } ], "assets": { "image": { "href": "/var/folders/sv/zr8j0t4j1f726nhlt3vb8c300000gn/T/tmpytmf1tsx/image.tif", "type": "image/vnd.stac.geotiff" } } } ###Markdown As you can see, all links are saved with relative paths. That's because we used `catalog_type=CatalogType.SELF_CONTAINED`. If we save an Absolute Published catalog, we'll see absolute paths: ###Code catalog.save(catalog_type=stac.CatalogType.ABSOLUTE_PUBLISHED) ###Output _____no_output_____ ###Markdown Now the links included in the STAC item are all absolute: ###Code with open(item.get_self_href()) as f: print(f.read()) ###Output { "type": "Feature", "stac_version": "0.8.1", "id": "local-image", "properties": { "datetime": "2019-11-05 16:43:22Z" }, "geometry": { "type": "Polygon", "coordinates": [ [ [ 37.6616853489879, 55.73478197572927 ], [ 37.6616853489879, 55.73882710285011 ], [ 37.66573047610874, 55.73882710285011 ], [ 37.66573047610874, 55.73478197572927 ], [ 37.6616853489879, 55.73478197572927 ] ] ] }, "bbox": [ 37.6616853489879, 55.73478197572927, 37.66573047610874, 55.73882710285011 ], "links": [ { "rel": "self", "href": "/var/folders/sv/zr8j0t4j1f726nhlt3vb8c300000gn/T/tmpytmf1tsx/stac/local-image/local-image.json", "type": "application/json" }, { "rel": "root", "href": "/var/folders/sv/zr8j0t4j1f726nhlt3vb8c300000gn/T/tmpytmf1tsx/stac/catalog.json", "type": "application/json" }, { "rel": "parent", "href": "/var/folders/sv/zr8j0t4j1f726nhlt3vb8c300000gn/T/tmpytmf1tsx/stac/catalog.json", "type": "application/json" } ], "assets": { "image": { "href": "/var/folders/sv/zr8j0t4j1f726nhlt3vb8c300000gn/T/tmpytmf1tsx/image.tif", "type": "image/vnd.stac.geotiff" } } } ###Markdown Notice that the Asset HREF is absolute in both cases. We can make the Asset HREF relative to the STAC Item by using `.make_all_asset_hrefs_relative()`: ###Code catalog.make_all_asset_hrefs_relative() catalog.save(catalog_type=stac.CatalogType.SELF_CONTAINED) with open(item.get_self_href()) as f: print(f.read()) ###Output { "type": "Feature", "stac_version": "0.8.1", "id": "local-image", "properties": { "datetime": "2019-11-05 16:43:22Z" }, "geometry": { "type": "Polygon", "coordinates": [ [ [ 37.6616853489879, 55.73478197572927 ], [ 37.6616853489879, 55.73882710285011 ], [ 37.66573047610874, 55.73882710285011 ], [ 37.66573047610874, 55.73478197572927 ], [ 37.6616853489879, 55.73478197572927 ] ] ] }, "bbox": [ 37.6616853489879, 55.73478197572927, 37.66573047610874, 55.73882710285011 ], "links": [ { "rel": "root", "href": "../catalog.json", "type": "application/json" }, { "rel": "parent", "href": "../catalog.json", "type": "application/json" } ], "assets": { "image": { "href": "../../image.tif", "type": "image/vnd.stac.geotiff" } } } ###Markdown Creating an EO ItemIn the code above, we encapsulated our imagery as a core STAC item. However, there's more information that we can encapsulate, given that we know this is a World View 3 image. We can do this by creating an `EOItem`, which is an Item that is extended via the [eo extension](https://github.com/radiantearth/stac-spec/tree/v0.8.1/extensions/eo): ###Code print(stac.EOItem.__doc__) ###Output EOItem represents a snapshot of the earth for a single date and time. Args: id (str): Provider identifier. Must be unique within the STAC. geometry (dict): Defines the full footprint of the asset represented by this item, formatted according to `RFC 7946, section 3.1 (GeoJSON) <https://tools.ietf.org/html/rfc7946>`_. bbox (List[float]): Bounding Box of the asset represented by this item using either 2D or 3D geometries. The length of the array must be 2*n where n is the number of dimensions. datetime (Datetime): Datetime associated with this item. properties (dict): A dictionary of additional metadata for the item. gsd (float): Ground Sample Distance at the sensor. platform (str): Unique name of the specific platform to which the instrument is attached. instrument (str): Name of instrument or sensor used (e.g., MODIS, ASTER, OLI, Canon F-1). bands (List[Band]): This is a list of :class:`~pystac.Band` objects that represent the available bands. constellation (str): Optional name of the constellation to which the platform belongs. epsg (int): Optional `EPSG code <http://www.epsg-registry.org/>`_. cloud_cover (float): Optional estimate of cloud cover as a percentage (0-100) of the entire scene. If not available the field should not be provided. off_nadir (float): Optional viewing angle. The angle from the sensor between nadir (straight down) and the scene center. Measured in degrees (0-90). azimuth (float): Optional viewing azimuth angle. The angle measured from the sub-satellite point (point on the ground below the platform) between the scene center and true north. Measured clockwise from north in degrees (0-360). sun_azimuth (float): Optional sun azimuth angle. From the scene center point on the ground, this is the angle between truth north and the sun. Measured clockwise in degrees (0-360). sun_elevation (float): Optional sun elevation angle. The angle from the tangent of the scene center point to the sun. Measured from the horizon in degrees (0-90). stac_extensions (List[str]): Optional list of extensions the Item implements. href (str or None): Optional HREF for this item, which be set as the item's self link's HREF. collection (Collection or str): The Collection or Collection ID that this item belongs to. Attributes: id (str): Provider identifier. Unique within the STAC. geometry (dict): Defines the full footprint of the asset represented by this item, formatted according to `RFC 7946, section 3.1 (GeoJSON) <https://tools.ietf.org/html/rfc7946>`_. bbox (List[float]): Bounding Box of the asset represented by this item using either 2D or 3D geometries. The length of the array is 2*n where n is the number of dimensions. datetime (Datetime): Datetime associated with this item. properties (dict): A dictionary of additional metadata for the item. stac_extensions (List[str] or None): Optional list of extensions the Item implements. collection (Collection or None): Collection that this item is a part of. gsd (float): Ground Sample Distance at the sensor. platform (str): Unique name of the specific platform to which the instrument is attached. instrument (str): Name of instrument or sensor used (e.g., MODIS, ASTER, OLI, Canon F-1). bands (List[Band]): This is a list of :class:`~pystac.Band` objects that represent the available bands. constellation (str or None): Name of the constellation to which the platform belongs. epsg (int or None): `EPSG code <http://www.epsg-registry.org/>`_. cloud_cover (float or None): Estimate of cloud cover as a percentage (0-100) of the entire scene. If not available the field should not be provided. off_nadir (float or None): Viewing angle. The angle from the sensor between nadir (straight down) and the scene center. Measured in degrees (0-90). azimuth (float or None): Viewing azimuth angle. The angle measured from the sub-satellite point (point on the ground below the platform) between the scene center and true north. Measured clockwise from north in degrees (0-360). sun_azimuth (float or None): Sun azimuth angle. From the scene center point on the ground, this is the angle between truth north and the sun. Measured clockwise in degrees (0-360). sun_elevation (float or None): Sun elevation angle. The angle from the tangent of the scene center point to the sun. Measured from the horizon in degrees (0-90). links (List[Link]): A list of :class:`~pystac.Link` objects representing all links associated with this STACObject. assets (Dict[str, Asset]): Dictionary of asset objects that can be downloaded, each with a unique key. collection_id (str or None): The Collection ID that this item belongs to, if any. ###Markdown To create the EOItem, we'll need to encode some more information. First, let's define the bands of World View 3: ###Code # From: https://www.spaceimagingme.com/downloads/sensors/datasheets/DG_WorldView3_DS_2014.pdf wv3_bands = [stac.Band(name='Coastal', description='Coastal: 400 - 450 nm', common_name='coastal'), stac.Band(name='Blue', description='Blue: 450 - 510 nm', common_name='blue'), stac.Band(name='Green', description='Green: 510 - 580 nm', common_name='green'), stac.Band(name='Yellow', description='Yellow: 585 - 625 nm', common_name='yellow'), stac.Band(name='Red', description='Red: 630 - 690 nm', common_name='red'), stac.Band(name='Red Edge', description='Red Edge: 705 - 745 nm', common_name='rededge'), stac.Band(name='Near-IR1', description='Near-IR1: 770 - 895 nm', common_name='nir08'), stac.Band(name='Near-IR2', description='Near-IR2: 860 - 1040 nm', common_name='nir09')] ###Output _____no_output_____ ###Markdown We can now create an EO Item, and add it to our catalog: ###Code eo_item = stac.EOItem(id='local-image-eo', geometry=footprint, bbox=bbox, datetime=datetime.utcnow(), properties={}, gsd=0.3, platform="Maxar", instrument="WorldView3", bands=wv3_bands) eo_item eo_item.add_asset(key='image', asset=stac.EOAsset(href=img_path, media_type=stac.MediaType.GEOTIFF, bands=list(range(0,8)))) ###Output _____no_output_____ ###Markdown Let's clear the in-memory catalog, add the EO item, and save to a new STAC: ###Code catalog.clear_items() list(catalog.get_items()) catalog.add_item(eo_item) list(catalog.get_items()) catalog.normalize_and_save(root_href=os.path.join(tmp_dir.name, 'stac-eo'), catalog_type=stac.CatalogType.SELF_CONTAINED) ###Output _____no_output_____ ###Markdown Now, if we read the catalog from the filesystem, PySTAC recognizes the EOItem and loads it in with the correct type: ###Code catalog2 = stac.Catalog.from_file(os.path.join(tmp_dir.name, 'stac-eo', 'catalog.json')) list(catalog2.get_items()) next(catalog2.get_all_items()).assets import json print(json.dumps(eo_item.to_dict(), indent=4)) ###Output { "type": "Feature", "stac_version": "0.8.1", "id": "local-image-eo", "properties": { "datetime": "2019-11-05 16:43:28Z", "eo:gsd": 0.3, "eo:platform": "Maxar", "eo:instrument": "WorldView3", "eo:bands": [ { "name": "Coastal", "common_name": "coastal", "description": "Coastal: 400 - 450 nm" }, { "name": "Blue", "common_name": "blue", "description": "Blue: 450 - 510 nm" }, { "name": "Green", "common_name": "green", "description": "Green: 510 - 580 nm" }, { "name": "Yellow", "common_name": "yellow", "description": "Yellow: 585 - 625 nm" }, { "name": "Red", "common_name": "red", "description": "Red: 630 - 690 nm" }, { "name": "Red Edge", "common_name": "rededge", "description": "Red Edge: 705 - 745 nm" }, { "name": "Near-IR1", "common_name": "nir08", "description": "Near-IR1: 770 - 895 nm" }, { "name": "Near-IR2", "common_name": "nir09", "description": "Near-IR2: 860 - 1040 nm" } ] }, "geometry": { "type": "Polygon", "coordinates": [ [ [ 37.6616853489879, 55.73478197572927 ], [ 37.6616853489879, 55.73882710285011 ], [ 37.66573047610874, 55.73882710285011 ], [ 37.66573047610874, 55.73478197572927 ], [ 37.6616853489879, 55.73478197572927 ] ] ] }, "bbox": [ 37.6616853489879, 55.73478197572927, 37.66573047610874, 55.73882710285011 ], "links": [ { "rel": "self", "href": "/var/folders/sv/zr8j0t4j1f726nhlt3vb8c300000gn/T/tmpytmf1tsx/stac-eo/local-image-eo/local-image-eo.json", "type": "application/json" }, { "rel": "root", "href": "../catalog.json", "type": "application/json" }, { "rel": "parent", "href": "../catalog.json", "type": "application/json" } ], "assets": { "image": { "href": "/var/folders/sv/zr8j0t4j1f726nhlt3vb8c300000gn/T/tmpytmf1tsx/image.tif", "type": "image/vnd.stac.geotiff", "eo:bands": [ 0, 1, 2, 3, 4, 5, 6, 7 ] } }, "stac_extensions": [ "eo" ] } ###Markdown CollectionsCollections are a subtype of Catalog that have some additional properties to make them more searchable. They also can define common properties so that items in the collection don't have to duplicate common data for each item. Let's create a collection to hold common properties between two images from the Spacenet 5 challenge.First we'll get another image, and it's bbox and footprint: ###Code url2 = ('http://spacenet-dataset.s3.amazonaws.com/' 'spacenet/SN5_roads/train/AOI_7_Moscow/MS/' 'SN5_roads_train_AOI_7_Moscow_MS_chip997.tif') img_path2 = os.path.join(tmp_dir.name, 'image.tif') urllib.request.urlretrieve(url2, img_path2) bbox2, footprint2 = get_bbox_and_footprint(img_path2) ###Output _____no_output_____ ###Markdown We can take a look at the pydocs for Collection to see what information we need to supply in order to satisfy the spec. ###Code print(stac.Collection.__doc__) ###Output A Collection extends the Catalog spec with additional metadata that helps enable discovery. Args: id (str): Identifier for the collection. Must be unique within the STAC. description (str): Detailed multi-line description to fully explain the collection. `CommonMark 0.28 syntax <http://commonmark.org/>`_ MAY be used for rich text representation. extent (Extent): Spatial and temporal extents that describe the bounds of all items contained within this Collection. title (str or None): Optional short descriptive one-line title for the collection. stac_extensions (List[str]): Optional list of extensions the Collection implements. href (str or None): Optional HREF for this collection, which be set as the collection's self link's HREF. license (str): Collection's license(s) as a `SPDX License identifier <https://spdx.org/licenses/>`_ or `expression <https://spdx.org/spdx-specification-21-web-version#h.jxpfx0ykyb60>`_. Defaults to 'proprietary'. keywords (List[str]): Optional list of keywords describing the collection. version (str): Optional version of the Collection. providers (List[Provider]): Optional list of providers of this Collection. properties (dict): Optional dict of common fields across referenced items. summaries (dict): An optional map of property summaries, either a set of values or statistics such as a range. Attributes: id (str): Identifier for the collection. description (str): Detailed multi-line description to fully explain the collection. extent (Extent): Spatial and temporal extents that describe the bounds of all items contained within this Collection. title (str or None): Optional short descriptive one-line title for the collection. stac_extensions (List[str]): Optional list of extensions the Collection implements. keywords (List[str] or None): Optional list of keywords describing the collection. version (str or None): Optional version of the Collection. providers (List[Provider] or None): Optional list of providers of this Collection. properties (dict or None): Optional dict of common fields across referenced items. summaries (dict or None): An optional map of property summaries, either a set of values or statistics such as a range. links (List[Link]): A list of :class:`~pystac.Link` objects representing all links associated with this Collection. ###Markdown Beyond what a Catalog reqiures, a Collection requires a license, and an `Extent` that describes the range of space and time that the items it hold occupy. ###Code print(stac.Extent.__doc__) ###Output Describes the spatio-temporal extents of a Collection. Args: spatial (SpatialExtent): Potential spatial extent covered by the collection. temporal (TemporalExtent): Potential temporal extent covered by the collection. Attributes: spatial (SpatialExtent): Potential spatial extent covered by the collection. temporal (TemporalExtent): Potential temporal extent covered by the collection. ###Markdown An Extent is comprised of a SpatialExtent and a TemporalExtent. These hold one or more bounding boxes and time intervals, respectively, that completely cover the items contained in the collections.Let's start with creating two new items - these will be core Items, not `EOItems`, although they will be imparted with `eo` information by the collection. This is why we add `eo` to the `stac_extensions`. We are also adding `EOAssets` to the Items, so that the assets have the proper `eo:bands` metadata associated with them: ###Code collection_item1 = stac.Item(id='local-image-col-1', geometry=footprint, bbox=bbox, datetime=datetime.utcnow(), properties={}, stac_extensions=['eo']) collection_item1.add_asset('image', stac.EOAsset(href=img_path, media_type=stac.MediaType.GEOTIFF, bands=list(range(0,8)))) collection_item2 = stac.Item(id='local-image-col-2', geometry=footprint2, bbox=bbox2, datetime=datetime.utcnow(), properties={}, stac_extensions=['eo']) collection_item2.add_asset('image', stac.EOAsset(href=img_path, media_type=stac.MediaType.GEOTIFF, bands=list(range(0,8)))) ###Output _____no_output_____ ###Markdown We can use our two items' metadata to find out what the proper bounds are: ###Code from shapely.geometry import shape unioned_footprint = shape(footprint).union(shape(footprint2)) collection_bbox = list(unioned_footprint.bounds) spatial_extent = stac.SpatialExtent(bboxes=[collection_bbox]) collection_interval = sorted([collection_item1.datetime, collection_item2.datetime]) temporal_extent = stac.TemporalExtent(intervals=[collection_interval]) collection_extent = stac.Extent(spatial=spatial_extent, temporal=temporal_extent) ###Output _____no_output_____ ###Markdown We can list the common properties for the items, with their proper extension names, and use it in the Collection properties: ###Code common_properties = { 'eo:bands': [b.to_dict() for b in wv3_bands], 'eo:gsd': 0.3, 'eo:platform': 'Maxar', 'eo:instrument': 'WorldView3' } collection = stac.Collection(id='wv3-images', description='Spacenet 5 images over Moscow', extent=collection_extent, properties=common_properties, license='CC-BY-SA-4.0') ###Output _____no_output_____ ###Markdown Now if we add our items to our Collection, and our Collection to our Catalog, we get the following STAC that can be saved: ###Code collection.add_items([collection_item1, collection_item2]) catalog.clear_items() catalog.clear_children() catalog.add_child(collection) catalog.describe() catalog.normalize_and_save(root_href=os.path.join(tmp_dir.name, 'stac-collection'), catalog_type=stac.CatalogType.SELF_CONTAINED) ###Output _____no_output_____ ###Markdown Notice our collection item does not have any of the `eo` metadata in it's properties: ###Code collection_item1.to_dict() ###Output _____no_output_____ ###Markdown However, when we read the catalog in, the collection information is merged with the item metadata, and we get `EOItem`s in our STAC: ###Code catalog3 = stac.Catalog.from_file(os.path.join(tmp_dir.name, 'stac-collection', 'catalog.json')) catalog3.describe() col_items = list(catalog3.get_all_items()) col_items[0].bands ###Output _____no_output_____ ###Markdown CleanupDon't forget to clean up the temporary directory! ###Code tmp_dir.cleanup() ###Output _____no_output_____ ###Markdown Creating a STAC of imagery from Spacenet 5 data Now, let's take what we've learned and create a Catalog with more data in it. Allowing PySTAC to read from AWS S3PySTAC aims to be virtually zero-dependency (notwithstanding the why-isn't-this-in-stdlib datetime-util), so it doesn't have the ability to read from or write to anything but the local file system. However, we can hook into PySTAC's IO in the following way. Learn more about how to use STAC_IO in the [documentation on the topic](https://pystac.readthedocs.io/en/latest/concepts.htmlusing-stac-io): ###Code from urllib.parse import urlparse import boto3 from pystac import STAC_IO def my_read_method(uri): parsed = urlparse(uri) if parsed.scheme == 's3': bucket = parsed.netloc key = parsed.path[1:] s3 = boto3.resource('s3') obj = s3.Object(bucket, key) return obj.get()['Body'].read().decode('utf-8') else: return STAC_IO.default_read_text_method(uri) def my_write_method(uri, txt): parsed = urlparse(uri) if parsed.scheme == 's3': bucket = parsed.netloc key = parsed.path[1:] s3 = boto3.resource("s3") s3.Object(bucket, key).put(Body=txt) else: STAC_IO.default_write_text_method(uri, txt) STAC_IO.read_text_method = my_read_method STAC_IO.write_text_method = my_write_method ###Output _____no_output_____ ###Markdown We'll need a utility to list keys for reading the lists of files from S3: ###Code # From https://alexwlchan.net/2017/07/listing-s3-keys/ def get_s3_keys(bucket, prefix): """Generate all the keys in an S3 bucket.""" s3 = boto3.client('s3') kwargs = {'Bucket': bucket, 'Prefix': prefix} while True: resp = s3.list_objects_v2(**kwargs) for obj in resp['Contents']: yield obj['Key'] try: kwargs['ContinuationToken'] = resp['NextContinuationToken'] except KeyError: break ###Output _____no_output_____ ###Markdown Let's make a STAC of imagery over Moscow as part of the Spacenet 5 challenge. As a first step, we can list out the imagery and extract IDs from each of the chips. ###Code moscow_training_chip_uris = list(get_s3_keys(bucket='spacenet-dataset', prefix='spacenet/SN5_roads/train/AOI_7_Moscow/PS-MS')) import re chip_id_to_data = {} def get_chip_id(uri): return re.search(r'.*\_chip(\d+)\.', uri).group(1) for uri in moscow_training_chip_uris: chip_id = get_chip_id(uri) chip_id_to_data[chip_id] = { 'img': 's3://spacenet-dataset/{}'.format(uri) } ###Output _____no_output_____ ###Markdown For this tutorial, we'll only take a subset of the data. ###Code chip_id_to_data = dict(list(chip_id_to_data.items())[:10]) chip_id_to_data ###Output _____no_output_____ ###Markdown Let's turn each of those chips into a STAC Item that represents the image. ###Code chip_id_to_items = {} ###Output _____no_output_____ ###Markdown We'll create core `Item`s for our imagery, but mark them with the `eo` extension as we did above, and store the `eo` data in a `Collection`.Note that the image CRS is in WGS:84 (Lat/Lng). If it wasn't, we'd have to reproject the footprint to WGS:84 in order to be compliant with the spec (which can easily be done with [pyproj](https://github.com/pyproj4/pyproj)).Here we're taking advantage of `rasterio`'s ability to read S3 URIs, which only grabs the GeoTIFF metadata and does not pull the whole file down. ###Code for chip_id in chip_id_to_data: img_uri = chip_id_to_data[chip_id]['img'] print('Processing {}'.format(img_uri)) bbox, footprint = get_bbox_and_footprint(img_uri) item = stac.Item(id='img_{}'.format(chip_id), geometry=footprint, bbox=bbox, datetime=datetime.utcnow(), properties={}, stac_extensions=['eo']) item.add_asset(key='ps-ms', asset=stac.EOAsset(href=img_uri, media_type=stac.MediaType.COG, bands=list(range(0, 8)))) chip_id_to_items[chip_id] = item ###Output Processing s3://spacenet-dataset/spacenet/SN5_roads/train/AOI_7_Moscow/PS-MS/SN5_roads_train_AOI_7_Moscow_PS-MS_chip0.tif Processing s3://spacenet-dataset/spacenet/SN5_roads/train/AOI_7_Moscow/PS-MS/SN5_roads_train_AOI_7_Moscow_PS-MS_chip1.tif Processing s3://spacenet-dataset/spacenet/SN5_roads/train/AOI_7_Moscow/PS-MS/SN5_roads_train_AOI_7_Moscow_PS-MS_chip10.tif Processing s3://spacenet-dataset/spacenet/SN5_roads/train/AOI_7_Moscow/PS-MS/SN5_roads_train_AOI_7_Moscow_PS-MS_chip100.tif Processing s3://spacenet-dataset/spacenet/SN5_roads/train/AOI_7_Moscow/PS-MS/SN5_roads_train_AOI_7_Moscow_PS-MS_chip1000.tif Processing s3://spacenet-dataset/spacenet/SN5_roads/train/AOI_7_Moscow/PS-MS/SN5_roads_train_AOI_7_Moscow_PS-MS_chip1001.tif Processing s3://spacenet-dataset/spacenet/SN5_roads/train/AOI_7_Moscow/PS-MS/SN5_roads_train_AOI_7_Moscow_PS-MS_chip1002.tif Processing s3://spacenet-dataset/spacenet/SN5_roads/train/AOI_7_Moscow/PS-MS/SN5_roads_train_AOI_7_Moscow_PS-MS_chip1003.tif Processing s3://spacenet-dataset/spacenet/SN5_roads/train/AOI_7_Moscow/PS-MS/SN5_roads_train_AOI_7_Moscow_PS-MS_chip1004.tif Processing s3://spacenet-dataset/spacenet/SN5_roads/train/AOI_7_Moscow/PS-MS/SN5_roads_train_AOI_7_Moscow_PS-MS_chip1005.tif ###Markdown Creating the CollectionAll of these images are over Moscow. In Spacenet 5, we have a couple cities that have imagery; a good way to separate these collections of imagery. We can store all of the common `eo` metadata in the collection. ###Code from shapely.geometry import (shape, MultiPolygon) footprints = list(map(lambda i: shape(i.geometry).envelope, chip_id_to_items.values())) collection_bbox = MultiPolygon(footprints).bounds spatial_extent = stac.SpatialExtent(bboxes=[collection_bbox]) datetimes = sorted(list(map(lambda i: i.datetime, chip_id_to_items.values()))) temporal_extent = stac.TemporalExtent(intervals=[[datetimes[0], datetimes[-1]]]) collection_extent = stac.Extent(spatial=spatial_extent, temporal=temporal_extent) common_properties = { 'eo:bands': [b.to_dict() for b in wv3_bands], 'eo:gsd': 0.3, 'eo:platform': 'Maxar', 'eo:instrument': 'WorldView3' } collection = stac.Collection(id='wv3-images', description='Spacenet 5 images over Moscow', extent=collection_extent, properties=common_properties, license='CC-BY-SA-4.0') collection.add_items(chip_id_to_items.values()) collection.describe() ###Output * <Collection id=wv3-images> * <Item id=img_0> * <Item id=img_1> * <Item id=img_10> * <Item id=img_100> * <Item id=img_1000> * <Item id=img_1001> * <Item id=img_1002> * <Item id=img_1003> * <Item id=img_1004> * <Item id=img_1005> ###Markdown Now, we can create a Catalog and add the collection. ###Code catalog = stac.Catalog(id='spacenet5', description='Spacenet 5 Data (Test)') catalog.add_child(collection) catalog.describe() ###Output * <Catalog id=spacenet5> * <Collection id=wv3-images> * <Item id=img_0> * <Item id=img_1> * <Item id=img_10> * <Item id=img_100> * <Item id=img_1000> * <Item id=img_1001> * <Item id=img_1002> * <Item id=img_1003> * <Item id=img_1004> * <Item id=img_1005> ###Markdown Adding label items to the Spacenet 5 catalogWe can use the [label extension](https://github.com/radiantearth/stac-spec/tree/v0.8.1/extensions/label) of the STAC spec to represent the training data in our STAC. For this, we need to grab the URIs of the GeoJSON of roads: ###Code moscow_training_geojson_uris = list(get_s3_keys(bucket='spacenet-dataset', prefix='spacenet/SN5_roads/train/AOI_7_Moscow/geojson_roads_speed/')) for uri in moscow_training_geojson_uris: chip_id = get_chip_id(uri) if chip_id in chip_id_to_data: chip_id_to_data[chip_id]['label'] = 's3://spacenet-dataset/{}'.format(uri) ###Output _____no_output_____ ###Markdown We'll add the LabelItems to their own subcatalog; since they don't inherit the Collection's `eo` properties, they shouldn't go in the Collection. ###Code label_catalog = stac.Catalog(id='spacenet-data-labels', description='Labels for Spacenet 5') catalog.add_child(label_catalog) ###Output _____no_output_____ ###Markdown We can check the pydocs to see what a LabelItem needs in order to fit the spec: ###Code print(stac.LabelItem.__doc__) ###Output A Label Item represents a polygon, set of polygons, or raster data defining labels and label metadata and should be part of a Collection. Args: id (str): Provider identifier. Must be unique within the STAC. geometry (dict): Defines the full footprint of the asset represented by this item, formatted according to `RFC 7946, section 3.1 (GeoJSON) <https://tools.ietf.org/html/rfc7946>`_. bbox (List[float]): Bounding Box of the asset represented by this item using either 2D or 3D geometries. The length of the array must be 2*n where n is the number of dimensions. datetime (Datetime): Datetime associated with this item. properties (dict): A dictionary of additional metadata for the item. label_desecription (str): A description of the label, how it was created, and what it is recommended for label_type (str): An ENUM of either vector label type or raster label type. Use one of :class:`~pystac.LabelType`. label_properties (dict or None): These are the names of the property field(s) in each Feature of the label asset's FeatureCollection that contains the classes (keywords from label:classes if the property defines classes). If labels are rasters, this should be None. label_classes (List[LabelClass]): Optional, but reqiured if ussing categorical data. A list of LabelClasses defining the list of possible class names for each label:properties. (e.g., tree, building, car, hippo) label_tasks (str): Recommended to be a subset of 'regression', 'classification', 'detection', or 'segmentation', but may be an arbitrary value. label_methods: Recommended to be a subset of 'automated' or 'manual', but may be an arbitrary value. label_overviews (List[LabelOverview]): Optional list of LabelOverview classes that store counts (for classification-type data) or summary statistics (for continuous numerical/regression data). stac_extensions (List[str]): Optional list of extensions the Item implements. href (str or None): Optional HREF for this item, which be set as the item's self link's HREF. collection (Collection): Optional Collection that this item is a part of. Attributes: id (str): Provider identifier. Unique within the STAC. geometry (dict): Defines the full footprint of the asset represented by this item, formatted according to `RFC 7946, section 3.1 (GeoJSON) <https://tools.ietf.org/html/rfc7946>`_. bbox (List[float]): Bounding Box of the asset represented by this item using either 2D or 3D geometries. The length of the array is 2*n where n is the number of dimensions. datetime (Datetime): Datetime associated with this item. properties (dict): A dictionary of additional metadata for the item. label_desecription (str): A description of the label, how it was created, and what it is recommended for label_type (str): An ENUM of either vector label type or raster label type (one of :class:`~pystac.LabelType`). label_properties (dict or None): These are the names of the property field(s) in each Feature of the label asset's FeatureCollection that contains the classes (keywords from label:classes if the property defines classes). If labels are rasters, this should be None. label_classes (List[LabelClass]): Optional, but reqiured if ussing categorical data. A list of LabelClasses defining the list of possible class names for each label:properties. (e.g., tree, building, car, hippo) label_tasks (str): Tasks these labels apply to. Usually a subset of 'regression', 'classification', 'detection', or 'segmentation', but may be an arbitrary value. label_methods: Methods used for labeling. Usually a subset of 'automated' or 'manual', but may be an arbitrary value. label_overviews (List[LabelOverview]): Optional list of LabelOverview classes that store counts (for classification-type data) or summary statistics (for continuous numerical/regression data). stac_extensions (List[str] or None): Optional list of extensions the Item implements. collection_id (str or None): The Collection ID that this item belongs to, if any. See: `Item fields in the label extension spec <https://github.com/radiantearth/stac-spec/tree/v0.8.1/extensions/label#item-fields>`_ ###Markdown This loop creates our LabelItems and associates each to the appropriate source image Item. ###Code for chip_id in chip_id_to_data: img_item = collection.get_item('img_{}'.format(chip_id)) label_uri = chip_id_to_data[chip_id]['label'] label_item = stac.LabelItem(id='label_{}'.format(chip_id), geometry=img_item.geometry, bbox=img_item.bbox, datetime=datetime.utcnow(), properties={}, label_description="SpaceNet 5 Road labels", label_type=stac.LabelType.VECTOR, label_tasks=['segmentation', 'regression']) label_item.add_source(img_item) label_item.add_geojson_labels(label_uri) label_catalog.add_item(label_item) ###Output _____no_output_____ ###Markdown Now we have a STAC of training data! ###Code catalog.describe() label_item = catalog.get_child('spacenet-data-labels').get_item('label_1') label_item.to_dict() ###Output _____no_output_____ ###Markdown How to create STAC Catalogs STAC Community Sprint, Arlington, November 7th 2019 This notebook runs through some of the basics of using PySTAC to create a static STAC. It was part of a 30 minute presentation at the [community STAC sprint](https://github.com/radiantearth/community-sprints/tree/master/11052019-arlignton-va) in Arlington, VA in November 2019. This tutorial will require the `boto3`, `rasterio`, and `shapely` libraries: ###Code !pip install boto3 !pip install rasterio !pip install shapely ###Output Requirement already satisfied: boto3 in /Users/rob/proj/stac/pystac/venv/lib/python3.6/site-packages Requirement already satisfied: s3transfer<0.3.0,>=0.2.0 in /Users/rob/proj/stac/pystac/venv/lib/python3.6/site-packages (from boto3) Requirement already satisfied: botocore<1.14.0,>=1.13.8 in /Users/rob/proj/stac/pystac/venv/lib/python3.6/site-packages (from boto3) Requirement already satisfied: jmespath<1.0.0,>=0.7.1 in /Users/rob/proj/stac/pystac/venv/lib/python3.6/site-packages (from boto3) Requirement already satisfied: urllib3<1.26,>=1.20; python_version >= "3.4" in /Users/rob/proj/stac/pystac/venv/lib/python3.6/site-packages (from botocore<1.14.0,>=1.13.8->boto3) Requirement already satisfied: python-dateutil<3.0.0,>=2.1; python_version >= "2.7" in /Users/rob/proj/stac/pystac/venv/lib/python3.6/site-packages (from botocore<1.14.0,>=1.13.8->boto3) Requirement already satisfied: docutils<0.16,>=0.10 in /Users/rob/proj/stac/pystac/venv/lib/python3.6/site-packages (from botocore<1.14.0,>=1.13.8->boto3) Requirement already satisfied: six>=1.5 in /Users/rob/proj/stac/pystac/venv/lib/python3.6/site-packages (from python-dateutil<3.0.0,>=2.1; python_version >= "2.7"->botocore<1.14.0,>=1.13.8->boto3) You are using pip version 9.0.3, however version 19.3.1 is available. You should consider upgrading via the 'pip install --upgrade pip' command. Requirement already satisfied: rasterio in /Users/rob/proj/stac/pystac/venv/lib/python3.6/site-packages Requirement already satisfied: numpy in /Users/rob/proj/stac/pystac/venv/lib/python3.6/site-packages (from rasterio) Requirement already satisfied: attrs in /Users/rob/proj/stac/pystac/venv/lib/python3.6/site-packages (from rasterio) Requirement already satisfied: snuggs>=1.4.1 in /Users/rob/proj/stac/pystac/venv/lib/python3.6/site-packages (from rasterio) Requirement already satisfied: click-plugins in /Users/rob/proj/stac/pystac/venv/lib/python3.6/site-packages (from rasterio) Requirement already satisfied: click<8,>=4.0 in /Users/rob/proj/stac/pystac/venv/lib/python3.6/site-packages (from rasterio) Requirement already satisfied: cligj>=0.5 in /Users/rob/proj/stac/pystac/venv/lib/python3.6/site-packages (from rasterio) Requirement already satisfied: affine in /Users/rob/proj/stac/pystac/venv/lib/python3.6/site-packages (from rasterio) Requirement already satisfied: pyparsing>=2.1.6 in /Users/rob/proj/stac/pystac/venv/lib/python3.6/site-packages (from snuggs>=1.4.1->rasterio) You are using pip version 9.0.3, however version 19.3.1 is available. You should consider upgrading via the 'pip install --upgrade pip' command. Requirement already satisfied: shapely in /Users/rob/proj/stac/pystac/venv/lib/python3.6/site-packages You are using pip version 9.0.3, however version 19.3.1 is available. You should consider upgrading via the 'pip install --upgrade pip' command. ###Markdown We can import pystac with the alias `stac` to access all of the API we need (saving a glorious 2 characters): ###Code import pystac as stac ###Output _____no_output_____ ###Markdown Creating a catalog from a local file To give us some material to work with, lets download a single image from the [Spacenet 5 challenge](https://www.topcoder.com/challenges/30099956). We'll use a temporary directory to save off our single-item STAC. ###Code import os import urllib.request from tempfile import TemporaryDirectory tmp_dir = TemporaryDirectory() img_path = os.path.join(tmp_dir.name, 'image.tif') url = ('http://spacenet-dataset.s3.amazonaws.com/' 'spacenet/SN5_roads/train/AOI_7_Moscow/MS/' 'SN5_roads_train_AOI_7_Moscow_MS_chip996.tif') urllib.request.urlretrieve(url, img_path) ###Output _____no_output_____ ###Markdown We want to create a Catalog. Let's check the pydocs for `Catalog` to see what information we'll need. (We use `__doc__` instead of `help()` here to avoid printing out all the docs for the class.) ###Code print(stac.Catalog.__doc__) ###Output A PySTAC Catalog represents a STAC catalog in memory. A Catalog is a :class:`~pystac.STACObject` that may contain children, which are instances of :class:`~pystac.Catalog` or :class:`~pystac.Collection`, as well as :class:`~pystac.Item` s. Args: id (str): Identifier for the catalog. Must be unique within the STAC. description (str): Detailed multi-line description to fully explain the catalog. `CommonMark 0.28 syntax <http://commonmark.org/>`_ MAY be used for rich text representation. title (str or None): Optional short descriptive one-line title for the catalog. stac_extensions (List[str]): Optional list of extensions the Catalog implements. href (str or None): Optional HREF for this catalog, which be set as the catalog's self link's HREF. Attributes: id (str): Identifier for the catalog. description (str): Detailed multi-line description to fully explain the catalog. title (str or None): Optional short descriptive one-line title for the catalog. stac_extensions (List[str] or None): Optional list of extensions the Catalog implements. links (List[Link]): A list of :class:`~pystac.Link` objects representing all links associated with this Catalog. ###Markdown Let's just give an ID and a description. We don't have to worry about the HREF right now; that will be set later. ###Code catalog = stac.Catalog(id='test-catalog', description='Tutorial catalog.') ###Output _____no_output_____ ###Markdown There are no children or items in the catalog, since we haven't added anything yet. ###Code print(list(catalog.get_children())) print(list(catalog.get_items())) ###Output [] [] ###Markdown We'll now create an Item to represent the image. Check the pydocs to see what you need to supply: ###Code print(stac.Item.__doc__) ###Output An Item is the core granular entity in a STAC, containing the core metadata that enables any client to search or crawl online catalogs of spatial 'assets' - satellite imagery, derived data, DEM's, etc. Args: id (str): Provider identifier. Must be unique within the STAC. geometry (dict): Defines the full footprint of the asset represented by this item, formatted according to `RFC 7946, section 3.1 (GeoJSON) <https://tools.ietf.org/html/rfc7946>`_. bbox (List[float]): Bounding Box of the asset represented by this item using either 2D or 3D geometries. The length of the array must be 2*n where n is the number of dimensions. datetime (Datetime): Datetime associated with this item. properties (dict): A dictionary of additional metadata for the item. stac_extensions (List[str]): Optional list of extensions the Item implements. href (str or None): Optional HREF for this item, which be set as the item's self link's HREF. collection (Collection or str): The Collection or Collection ID that this item belongs to. Attributes: id (str): Provider identifier. Unique within the STAC. geometry (dict): Defines the full footprint of the asset represented by this item, formatted according to `RFC 7946, section 3.1 (GeoJSON) <https://tools.ietf.org/html/rfc7946>`_. bbox (List[float]): Bounding Box of the asset represented by this item using either 2D or 3D geometries. The length of the array is 2*n where n is the number of dimensions. datetime (Datetime): Datetime associated with this item. properties (dict): A dictionary of additional metadata for the item. stac_extensions (List[str] or None): Optional list of extensions the Item implements. collection (Collection or None): Collection that this item is a part of. links (List[Link]): A list of :class:`~pystac.Link` objects representing all links associated with this STACObject. assets (Dict[str, Asset]): Dictionary of asset objects that can be downloaded, each with a unique key. collection_id (str or None): The Collection ID that this item belongs to, if any. ###Markdown Using [rasterio](https://rasterio.readthedocs.io/en/stable/), we can pull out the bounding box of the image to use for the image metadata. If the image contained a NoData border, we would ideally pull out the footprint and save it as the geometry; in this case, we're working with a small chip the most likely has no NoData values. ###Code import rasterio from shapely.geometry import Polygon, mapping def get_bbox_and_footprint(raster_uri): with rasterio.open(raster_uri) as ds: bounds = ds.bounds bbox = [bounds.left, bounds.bottom, bounds.right, bounds.top] footprint = Polygon([ [bounds.left, bounds.bottom], [bounds.left, bounds.top], [bounds.right, bounds.top], [bounds.right, bounds.bottom] ]) return (bbox, mapping(footprint)) bbox, footprint = get_bbox_and_footprint(img_path) print(bbox) print(footprint) ###Output [37.6616853489879, 55.73478197572927, 37.66573047610874, 55.73882710285011] {'type': 'Polygon', 'coordinates': (((37.6616853489879, 55.73478197572927), (37.6616853489879, 55.73882710285011), (37.66573047610874, 55.73882710285011), (37.66573047610874, 55.73478197572927), (37.6616853489879, 55.73478197572927)),)} ###Markdown We're also using `datetime.utcnow()` to supply the required datetime property for our Item. Since this is a required property, you might often find yourself making up a time to fill in if you don't know the exact capture time. ###Code from datetime import datetime item = stac.Item(id='local-image', geometry=footprint, bbox=bbox, datetime=datetime.utcnow(), properties={}) ###Output _____no_output_____ ###Markdown We haven't added it to a catalog yet, so it's parent isn't set. Once we add it to the catalog, we can see it correctly links to it's parent. ###Code item.get_parent() is None catalog.add_item(item) item.get_parent() ###Output _____no_output_____ ###Markdown `describe()` is a useful method on `Catalog` - but be careful when using it on large catalogs, as it will walk the entire tree of the STAC. ###Code catalog.describe() ###Output * <Catalog id=test-catalog> * <Item id=local-image> ###Markdown Adding AssetsWe've created an Item, but there aren't any assets associated with it. Let's create one: ###Code print(stac.Asset.__doc__) item.add_asset(key='image', asset=stac.Asset(href=img_path, media_type=stac.MediaType.GEOTIFF)) ###Output _____no_output_____ ###Markdown At any time we can call `to_dict()` on STAC objects to see how the STAC JSON is shaping up. Notice the asset is now set: ###Code import json print(json.dumps(item.to_dict(), indent=4)) ###Output { "type": "Feature", "stac_version": "0.8.1", "id": "local-image", "properties": { "datetime": "2019-11-05 16:43:22Z" }, "geometry": { "type": "Polygon", "coordinates": [ [ [ 37.6616853489879, 55.73478197572927 ], [ 37.6616853489879, 55.73882710285011 ], [ 37.66573047610874, 55.73882710285011 ], [ 37.66573047610874, 55.73478197572927 ], [ 37.6616853489879, 55.73478197572927 ] ] ] }, "bbox": [ 37.6616853489879, 55.73478197572927, 37.66573047610874, 55.73882710285011 ], "links": [ { "rel": "root", "href": null, "type": "application/json" }, { "rel": "parent", "href": null, "type": "application/json" } ], "assets": { "image": { "href": "/var/folders/sv/zr8j0t4j1f726nhlt3vb8c300000gn/T/tmpytmf1tsx/image.tif", "type": "image/vnd.stac.geotiff" } } } ###Markdown Note that the link `href` properties are `null`. This is OK, as we're working with the STAC in memory. Next, we'll talk about writing the catalog out, and how to set those HREFs. Saving the catalog As the JSON above indicates, there's no HREFs set on these in-memory items. PySTAC uses the `self` link on STAC objects to track where the file lives. Because we haven't set them, they evaluate to `None`: ###Code print(catalog.get_self_href() is None) print(item.get_self_href() is None) ###Output True True ###Markdown In order to set them, we can use `normalize_hrefs`. This method will create a normalized set of HREFs for each STAC object in the catalog, according to the [best practices document](https://github.com/radiantearth/stac-spec/blob/v0.8.1/best-practices.mdcatalog-layout)'s recommendations on how to lay out a catalog. ###Code catalog.normalize_hrefs(os.path.join(tmp_dir.name, 'stac')) ###Output _____no_output_____ ###Markdown Now that we've normalized to a root directory (the temporary directory), we see that the `self` links are set: ###Code print(catalog.get_self_href()) print(item.get_self_href()) ###Output /var/folders/sv/zr8j0t4j1f726nhlt3vb8c300000gn/T/tmpytmf1tsx/stac/catalog.json /var/folders/sv/zr8j0t4j1f726nhlt3vb8c300000gn/T/tmpytmf1tsx/stac/local-image/local-image.json ###Markdown We can now call `save` on the catalog, which will recursively save all the STAC objects to their respective self HREFs.Save requires a `CatalogType` to be set. You can review the [API docs](https://pystac.readthedocs.io/en/stable/api.htmlcatalogtype) on `CatalogType` to see what each type means (unfortunately `help` doesn't show docstrings for attributes). ###Code catalog.save(catalog_type=stac.CatalogType.SELF_CONTAINED) !ls {tmp_dir.name}/stac/* with open(catalog.get_self_href()) as f: print(f.read()) with open(item.get_self_href()) as f: print(f.read()) ###Output { "type": "Feature", "stac_version": "0.8.1", "id": "local-image", "properties": { "datetime": "2019-11-05 16:43:22Z" }, "geometry": { "type": "Polygon", "coordinates": [ [ [ 37.6616853489879, 55.73478197572927 ], [ 37.6616853489879, 55.73882710285011 ], [ 37.66573047610874, 55.73882710285011 ], [ 37.66573047610874, 55.73478197572927 ], [ 37.6616853489879, 55.73478197572927 ] ] ] }, "bbox": [ 37.6616853489879, 55.73478197572927, 37.66573047610874, 55.73882710285011 ], "links": [ { "rel": "root", "href": "../catalog.json", "type": "application/json" }, { "rel": "parent", "href": "../catalog.json", "type": "application/json" } ], "assets": { "image": { "href": "/var/folders/sv/zr8j0t4j1f726nhlt3vb8c300000gn/T/tmpytmf1tsx/image.tif", "type": "image/vnd.stac.geotiff" } } } ###Markdown As you can see, all links are saved with relative paths. That's because we used `catalog_type=CatalogType.SELF_CONTAINED`. If we save an Absolute Published catalog, we'll see absolute paths: ###Code catalog.save(catalog_type=stac.CatalogType.ABSOLUTE_PUBLISHED) ###Output _____no_output_____ ###Markdown Now the links included in the STAC item are all absolute: ###Code with open(item.get_self_href()) as f: print(f.read()) ###Output { "type": "Feature", "stac_version": "0.8.1", "id": "local-image", "properties": { "datetime": "2019-11-05 16:43:22Z" }, "geometry": { "type": "Polygon", "coordinates": [ [ [ 37.6616853489879, 55.73478197572927 ], [ 37.6616853489879, 55.73882710285011 ], [ 37.66573047610874, 55.73882710285011 ], [ 37.66573047610874, 55.73478197572927 ], [ 37.6616853489879, 55.73478197572927 ] ] ] }, "bbox": [ 37.6616853489879, 55.73478197572927, 37.66573047610874, 55.73882710285011 ], "links": [ { "rel": "self", "href": "/var/folders/sv/zr8j0t4j1f726nhlt3vb8c300000gn/T/tmpytmf1tsx/stac/local-image/local-image.json", "type": "application/json" }, { "rel": "root", "href": "/var/folders/sv/zr8j0t4j1f726nhlt3vb8c300000gn/T/tmpytmf1tsx/stac/catalog.json", "type": "application/json" }, { "rel": "parent", "href": "/var/folders/sv/zr8j0t4j1f726nhlt3vb8c300000gn/T/tmpytmf1tsx/stac/catalog.json", "type": "application/json" } ], "assets": { "image": { "href": "/var/folders/sv/zr8j0t4j1f726nhlt3vb8c300000gn/T/tmpytmf1tsx/image.tif", "type": "image/vnd.stac.geotiff" } } } ###Markdown Notice that the Asset HREF is absolute in both cases. We can make the Asset HREF relative to the STAC Item by using `.make_all_asset_hrefs_relative()`: ###Code catalog.make_all_asset_hrefs_relative() catalog.save(catalog_type=stac.CatalogType.SELF_CONTAINED) with open(item.get_self_href()) as f: print(f.read()) ###Output { "type": "Feature", "stac_version": "0.8.1", "id": "local-image", "properties": { "datetime": "2019-11-05 16:43:22Z" }, "geometry": { "type": "Polygon", "coordinates": [ [ [ 37.6616853489879, 55.73478197572927 ], [ 37.6616853489879, 55.73882710285011 ], [ 37.66573047610874, 55.73882710285011 ], [ 37.66573047610874, 55.73478197572927 ], [ 37.6616853489879, 55.73478197572927 ] ] ] }, "bbox": [ 37.6616853489879, 55.73478197572927, 37.66573047610874, 55.73882710285011 ], "links": [ { "rel": "root", "href": "../catalog.json", "type": "application/json" }, { "rel": "parent", "href": "../catalog.json", "type": "application/json" } ], "assets": { "image": { "href": "../../image.tif", "type": "image/vnd.stac.geotiff" } } } ###Markdown Creating an EO ItemIn the code above, we encapsulated our imagery as a core STAC item. However, there's more information that we can encapsulate, given that we know this is a World View 3 image. We can do this by creating an `EOItem`, which is an Item that is extended via the [eo extension](https://github.com/radiantearth/stac-spec/tree/v0.8.1/extensions/eohttps://github.com/radiantearth/stac-spec/tree/v0.8.1/extensions/eo): ###Code print(stac.EOItem.__doc__) ###Output EOItem represents a snapshot of the earth for a single date and time. Args: id (str): Provider identifier. Must be unique within the STAC. geometry (dict): Defines the full footprint of the asset represented by this item, formatted according to `RFC 7946, section 3.1 (GeoJSON) <https://tools.ietf.org/html/rfc7946>`_. bbox (List[float]): Bounding Box of the asset represented by this item using either 2D or 3D geometries. The length of the array must be 2*n where n is the number of dimensions. datetime (Datetime): Datetime associated with this item. properties (dict): A dictionary of additional metadata for the item. gsd (float): Ground Sample Distance at the sensor. platform (str): Unique name of the specific platform to which the instrument is attached. instrument (str): Name of instrument or sensor used (e.g., MODIS, ASTER, OLI, Canon F-1). bands (List[Band]): This is a list of :class:`~pystac.Band` objects that represent the available bands. constellation (str): Optional name of the constellation to which the platform belongs. epsg (int): Optional `EPSG code <http://www.epsg-registry.org/>`_. cloud_cover (float): Optional estimate of cloud cover as a percentage (0-100) of the entire scene. If not available the field should not be provided. off_nadir (float): Optional viewing angle. The angle from the sensor between nadir (straight down) and the scene center. Measured in degrees (0-90). azimuth (float): Optional viewing azimuth angle. The angle measured from the sub-satellite point (point on the ground below the platform) between the scene center and true north. Measured clockwise from north in degrees (0-360). sun_azimuth (float): Optional sun azimuth angle. From the scene center point on the ground, this is the angle between truth north and the sun. Measured clockwise in degrees (0-360). sun_elevation (float): Optional sun elevation angle. The angle from the tangent of the scene center point to the sun. Measured from the horizon in degrees (0-90). stac_extensions (List[str]): Optional list of extensions the Item implements. href (str or None): Optional HREF for this item, which be set as the item's self link's HREF. collection (Collection or str): The Collection or Collection ID that this item belongs to. Attributes: id (str): Provider identifier. Unique within the STAC. geometry (dict): Defines the full footprint of the asset represented by this item, formatted according to `RFC 7946, section 3.1 (GeoJSON) <https://tools.ietf.org/html/rfc7946>`_. bbox (List[float]): Bounding Box of the asset represented by this item using either 2D or 3D geometries. The length of the array is 2*n where n is the number of dimensions. datetime (Datetime): Datetime associated with this item. properties (dict): A dictionary of additional metadata for the item. stac_extensions (List[str] or None): Optional list of extensions the Item implements. collection (Collection or None): Collection that this item is a part of. gsd (float): Ground Sample Distance at the sensor. platform (str): Unique name of the specific platform to which the instrument is attached. instrument (str): Name of instrument or sensor used (e.g., MODIS, ASTER, OLI, Canon F-1). bands (List[Band]): This is a list of :class:`~pystac.Band` objects that represent the available bands. constellation (str or None): Name of the constellation to which the platform belongs. epsg (int or None): `EPSG code <http://www.epsg-registry.org/>`_. cloud_cover (float or None): Estimate of cloud cover as a percentage (0-100) of the entire scene. If not available the field should not be provided. off_nadir (float or None): Viewing angle. The angle from the sensor between nadir (straight down) and the scene center. Measured in degrees (0-90). azimuth (float or None): Viewing azimuth angle. The angle measured from the sub-satellite point (point on the ground below the platform) between the scene center and true north. Measured clockwise from north in degrees (0-360). sun_azimuth (float or None): Sun azimuth angle. From the scene center point on the ground, this is the angle between truth north and the sun. Measured clockwise in degrees (0-360). sun_elevation (float or None): Sun elevation angle. The angle from the tangent of the scene center point to the sun. Measured from the horizon in degrees (0-90). links (List[Link]): A list of :class:`~pystac.Link` objects representing all links associated with this STACObject. assets (Dict[str, Asset]): Dictionary of asset objects that can be downloaded, each with a unique key. collection_id (str or None): The Collection ID that this item belongs to, if any. ###Markdown To create the EOItem, we'll need to encode some more information. First, let's define the bands of World View 3: ###Code # From: https://www.spaceimagingme.com/downloads/sensors/datasheets/DG_WorldView3_DS_2014.pdf wv3_bands = [stac.Band(name='Coastal', description='Coastal: 400 - 450 nm', common_name='coastal'), stac.Band(name='Blue', description='Blue: 450 - 510 nm', common_name='blue'), stac.Band(name='Green', description='Green: 510 - 580 nm', common_name='green'), stac.Band(name='Yellow', description='Yellow: 585 - 625 nm', common_name='yellow'), stac.Band(name='Red', description='Red: 630 - 690 nm', common_name='red'), stac.Band(name='Red Edge', description='Red Edge: 705 - 745 nm', common_name='rededge'), stac.Band(name='Near-IR1', description='Near-IR1: 770 - 895 nm', common_name='nir08'), stac.Band(name='Near-IR2', description='Near-IR2: 860 - 1040 nm', common_name='nir09')] ###Output _____no_output_____ ###Markdown We can now create an EO Item, and add it to our catalog: ###Code eo_item = stac.EOItem(id='local-image-eo', geometry=footprint, bbox=bbox, datetime=datetime.utcnow(), properties={}, gsd=0.3, platform="Maxar", instrument="WorldView3", bands=wv3_bands) eo_item eo_item.add_asset(key='image', asset=stac.EOAsset(href=img_path, media_type=stac.MediaType.GEOTIFF, bands=list(range(0,8)))) ###Output _____no_output_____ ###Markdown Let's clear the in-memory catalog, add the EO item, and save to a new STAC: ###Code catalog.clear_items() list(catalog.get_items()) catalog.add_item(eo_item) list(catalog.get_items()) catalog.normalize_and_save(root_href=os.path.join(tmp_dir.name, 'stac-eo'), catalog_type=stac.CatalogType.SELF_CONTAINED) ###Output _____no_output_____ ###Markdown Now, if we read the catalog from the filesystem, PySTAC recognizes the EOItem and loads it in with the correct type: ###Code catalog2 = stac.Catalog.from_file(os.path.join(tmp_dir.name, 'stac-eo', 'catalog.json')) list(catalog2.get_items()) next(catalog2.get_all_items()).assets import json print(json.dumps(eo_item.to_dict(), indent=4)) ###Output { "type": "Feature", "stac_version": "0.8.1", "id": "local-image-eo", "properties": { "datetime": "2019-11-05 16:43:28Z", "eo:gsd": 0.3, "eo:platform": "Maxar", "eo:instrument": "WorldView3", "eo:bands": [ { "name": "Coastal", "common_name": "coastal", "description": "Coastal: 400 - 450 nm" }, { "name": "Blue", "common_name": "blue", "description": "Blue: 450 - 510 nm" }, { "name": "Green", "common_name": "green", "description": "Green: 510 - 580 nm" }, { "name": "Yellow", "common_name": "yellow", "description": "Yellow: 585 - 625 nm" }, { "name": "Red", "common_name": "red", "description": "Red: 630 - 690 nm" }, { "name": "Red Edge", "common_name": "rededge", "description": "Red Edge: 705 - 745 nm" }, { "name": "Near-IR1", "common_name": "nir08", "description": "Near-IR1: 770 - 895 nm" }, { "name": "Near-IR2", "common_name": "nir09", "description": "Near-IR2: 860 - 1040 nm" } ] }, "geometry": { "type": "Polygon", "coordinates": [ [ [ 37.6616853489879, 55.73478197572927 ], [ 37.6616853489879, 55.73882710285011 ], [ 37.66573047610874, 55.73882710285011 ], [ 37.66573047610874, 55.73478197572927 ], [ 37.6616853489879, 55.73478197572927 ] ] ] }, "bbox": [ 37.6616853489879, 55.73478197572927, 37.66573047610874, 55.73882710285011 ], "links": [ { "rel": "self", "href": "/var/folders/sv/zr8j0t4j1f726nhlt3vb8c300000gn/T/tmpytmf1tsx/stac-eo/local-image-eo/local-image-eo.json", "type": "application/json" }, { "rel": "root", "href": "../catalog.json", "type": "application/json" }, { "rel": "parent", "href": "../catalog.json", "type": "application/json" } ], "assets": { "image": { "href": "/var/folders/sv/zr8j0t4j1f726nhlt3vb8c300000gn/T/tmpytmf1tsx/image.tif", "type": "image/vnd.stac.geotiff", "eo:bands": [ 0, 1, 2, 3, 4, 5, 6, 7 ] } }, "stac_extensions": [ "eo" ] } ###Markdown CollectionsCollections are a subtype of Catalog that have some additional properties to make them more searchable. They also can define common properties so that items in the collection don't have to duplicate common data for each item. Let's create a collection to hold common properties between two images from the Spacenet 5 challenge.First we'll get another image, and it's bbox and footprint: ###Code url2 = ('http://spacenet-dataset.s3.amazonaws.com/' 'spacenet/SN5_roads/train/AOI_7_Moscow/MS/' 'SN5_roads_train_AOI_7_Moscow_MS_chip997.tif') img_path2 = os.path.join(tmp_dir.name, 'image.tif') urllib.request.urlretrieve(url2, img_path2) bbox2, footprint2 = get_bbox_and_footprint(img_path2) ###Output _____no_output_____ ###Markdown We can take a look at the pydocs for Collection to see what information we need to supply in order to satisfy the spec. ###Code print(stac.Collection.__doc__) ###Output A Collection extends the Catalog spec with additional metadata that helps enable discovery. Args: id (str): Identifier for the collection. Must be unique within the STAC. description (str): Detailed multi-line description to fully explain the collection. `CommonMark 0.28 syntax <http://commonmark.org/>`_ MAY be used for rich text representation. extent (Extent): Spatial and temporal extents that describe the bounds of all items contained within this Collection. title (str or None): Optional short descriptive one-line title for the collection. stac_extensions (List[str]): Optional list of extensions the Collection implements. href (str or None): Optional HREF for this collection, which be set as the collection's self link's HREF. license (str): Collection's license(s) as a `SPDX License identifier <https://spdx.org/licenses/>`_ or `expression <https://spdx.org/spdx-specification-21-web-version#h.jxpfx0ykyb60>`_. Defaults to 'proprietary'. keywords (List[str]): Optional list of keywords describing the collection. version (str): Optional version of the Collection. providers (List[Provider]): Optional list of providers of this Collection. properties (dict): Optional dict of common fields across referenced items. summaries (dict): An optional map of property summaries, either a set of values or statistics such as a range. Attributes: id (str): Identifier for the collection. description (str): Detailed multi-line description to fully explain the collection. extent (Extent): Spatial and temporal extents that describe the bounds of all items contained within this Collection. title (str or None): Optional short descriptive one-line title for the collection. stac_extensions (List[str]): Optional list of extensions the Collection implements. keywords (List[str] or None): Optional list of keywords describing the collection. version (str or None): Optional version of the Collection. providers (List[Provider] or None): Optional list of providers of this Collection. properties (dict or None): Optional dict of common fields across referenced items. summaries (dict or None): An optional map of property summaries, either a set of values or statistics such as a range. links (List[Link]): A list of :class:`~pystac.Link` objects representing all links associated with this Collection. ###Markdown Beyond what a Catalog reqiures, a Collection requires a license, and an `Extent` that describes the range of space and time that the items it hold occupy. ###Code print(stac.Extent.__doc__) ###Output Describes the spatio-temporal extents of a Collection. Args: spatial (SpatialExtent): Potential spatial extent covered by the collection. temporal (TemporalExtent): Potential temporal extent covered by the collection. Attributes: spatial (SpatialExtent): Potential spatial extent covered by the collection. temporal (TemporalExtent): Potential temporal extent covered by the collection. ###Markdown An Extent is comprised of a SpatialExtent and a TemporalExtent. These hold one or more bounding boxes and time intervals, respectively, that completely cover the items contained in the collections.Let's start with creating two new items - these will be core Items, not `EOItems`, although they will be imparted with `eo` information by the collection. This is why we add `eo` to the `stac_extensions`. We are also adding `EOAssets` to the Items, so that the assets have the proper `eo:bands` metadata associated with them: ###Code collection_item1 = stac.Item(id='local-image-col-1', geometry=footprint, bbox=bbox, datetime=datetime.utcnow(), properties={}, stac_extensions=['eo']) collection_item1.add_asset('image', stac.EOAsset(href=img_path, media_type=stac.MediaType.GEOTIFF, bands=list(range(0,8)))) collection_item2 = stac.Item(id='local-image-col-2', geometry=footprint2, bbox=bbox2, datetime=datetime.utcnow(), properties={}, stac_extensions=['eo']) collection_item2.add_asset('image', stac.EOAsset(href=img_path, media_type=stac.MediaType.GEOTIFF, bands=list(range(0,8)))) ###Output _____no_output_____ ###Markdown We can use our two items' metadata to find out what the proper bounds are: ###Code from shapely.geometry import shape unioned_footprint = shape(footprint).union(shape(footprint2)) collection_bbox = list(unioned_footprint.bounds) spatial_extent = stac.SpatialExtent(bboxes=[collection_bbox]) collection_interval = sorted([collection_item1.datetime, collection_item2.datetime]) temporal_extent = stac.TemporalExtent(intervals=[collection_interval]) collection_extent = stac.Extent(spatial=spatial_extent, temporal=temporal_extent) ###Output _____no_output_____ ###Markdown We can list the common properties for the items, with their proper extension names, and use it in the Collection properties: ###Code common_properties = { 'eo:bands': [b.to_dict() for b in wv3_bands], 'eo:gsd': 0.3, 'eo:platform': 'Maxar', 'eo:instrument': 'WorldView3' } collection = stac.Collection(id='wv3-images', description='Spacenet 5 images over Moscow', extent=collection_extent, properties=common_properties, license='CC-BY-SA-4.0') ###Output _____no_output_____ ###Markdown Now if we add our items to our Collection, and our Collection to our Catalog, we get the following STAC that can be saved: ###Code collection.add_items([collection_item1, collection_item2]) catalog.clear_items() catalog.clear_children() catalog.add_child(collection) catalog.describe() catalog.normalize_and_save(root_href=os.path.join(tmp_dir.name, 'stac-collection'), catalog_type=stac.CatalogType.SELF_CONTAINED) ###Output _____no_output_____ ###Markdown Notice our collection item does not have any of the `eo` metadata in it's properties: ###Code collection_item1.to_dict() ###Output _____no_output_____ ###Markdown However, when we read the catalog in, the collection information is merged with the item metadata, and we get `EOItem`s in our STAC: ###Code catalog3 = stac.Catalog.from_file(os.path.join(tmp_dir.name, 'stac-collection', 'catalog.json')) catalog3.describe() col_items = list(catalog3.get_all_items()) col_items[0].bands ###Output _____no_output_____ ###Markdown CleanupDon't forget to clean up the temporary directory! ###Code tmp_dir.cleanup() ###Output _____no_output_____ ###Markdown Creating a STAC of imagery from Spacenet 5 data Now, let's take what we've learned and create a Catalog with more data in it. Allowing PySTAC to read from AWS S3PySTAC aims to be virtually zero-dependency (notwithstanding the why-isn't-this-in-stdlib datetime-util), so it doesn't have the ability to read from or write to anything but the local file system. However, we can hook into PySTAC's IO in the following way. Learn more about how to use STAC_IO in the [documentation on the topic](https://pystac.readthedocs.io/en/latest/concepts.htmlusing-stac-io): ###Code from urllib.parse import urlparse import boto3 from pystac import STAC_IO def my_read_method(uri): parsed = urlparse(uri) if parsed.scheme == 's3': bucket = parsed.netloc key = parsed.path[1:] s3 = boto3.resource('s3') obj = s3.Object(bucket, key) return obj.get()['Body'].read().decode('utf-8') else: return STAC_IO.default_read_text_method(uri) def my_write_method(uri, txt): parsed = urlparse(uri) if parsed.scheme == 's3': bucket = parsed.netloc key = parsed.path[1:] s3 = boto3.resource("s3") s3.Object(bucket, key).put(Body=txt) else: STAC_IO.default_write_text_method(uri, txt) STAC_IO.read_text_method = my_read_method STAC_IO.write_text_method = my_write_method ###Output _____no_output_____ ###Markdown We'll need a utility to list keys for reading the lists of files from S3: ###Code # From https://alexwlchan.net/2017/07/listing-s3-keys/ def get_s3_keys(bucket, prefix): """Generate all the keys in an S3 bucket.""" s3 = boto3.client('s3') kwargs = {'Bucket': bucket, 'Prefix': prefix} while True: resp = s3.list_objects_v2(**kwargs) for obj in resp['Contents']: yield obj['Key'] try: kwargs['ContinuationToken'] = resp['NextContinuationToken'] except KeyError: break ###Output _____no_output_____ ###Markdown Let's make a STAC of imagery over Moscow as part of the Spacenet 5 challenge. As a first step, we can list out the imagery and extract IDs from each of the chips. ###Code moscow_training_chip_uris = list(get_s3_keys(bucket='spacenet-dataset', prefix='spacenet/SN5_roads/train/AOI_7_Moscow/PS-MS')) import re chip_id_to_data = {} def get_chip_id(uri): return re.search(r'.*\_chip(\d+)\.', uri).group(1) for uri in moscow_training_chip_uris: chip_id = get_chip_id(uri) chip_id_to_data[chip_id] = { 'img': 's3://spacenet-dataset/{}'.format(uri) } ###Output _____no_output_____ ###Markdown For this tutorial, we'll only take a subset of the data. ###Code chip_id_to_data = dict(list(chip_id_to_data.items())[:10]) chip_id_to_data ###Output _____no_output_____ ###Markdown Let's turn each of those chips into a STAC Item that represents the image. ###Code chip_id_to_items = {} ###Output _____no_output_____ ###Markdown We'll create core `Item`s for our imagery, but mark them with the `eo` extension as we did above, and store the `eo` data in a `Collection`.Note that the image CRS is in WGS:84 (Lat/Lng). If it wasn't, we'd have to reproject the footprint to WGS:84 in order to be compliant with the spec (which can easily be done with [pyproj](https://github.com/pyproj4/pyproj)).Here we're taking advantage of `rasterio`'s ability to read S3 URIs, which only grabs the GeoTIFF metadata and does not pull the whole file down. ###Code for chip_id in chip_id_to_data: img_uri = chip_id_to_data[chip_id]['img'] print('Processing {}'.format(img_uri)) bbox, footprint = get_bbox_and_footprint(img_uri) item = stac.Item(id='img_{}'.format(chip_id), geometry=footprint, bbox=bbox, datetime=datetime.utcnow(), properties={}, stac_extensions=['eo']) item.add_asset(key='ps-ms', asset=stac.EOAsset(href=img_uri, media_type=stac.MediaType.COG, bands=list(range(0, 8)))) chip_id_to_items[chip_id] = item ###Output Processing s3://spacenet-dataset/spacenet/SN5_roads/train/AOI_7_Moscow/PS-MS/SN5_roads_train_AOI_7_Moscow_PS-MS_chip0.tif Processing s3://spacenet-dataset/spacenet/SN5_roads/train/AOI_7_Moscow/PS-MS/SN5_roads_train_AOI_7_Moscow_PS-MS_chip1.tif Processing s3://spacenet-dataset/spacenet/SN5_roads/train/AOI_7_Moscow/PS-MS/SN5_roads_train_AOI_7_Moscow_PS-MS_chip10.tif Processing s3://spacenet-dataset/spacenet/SN5_roads/train/AOI_7_Moscow/PS-MS/SN5_roads_train_AOI_7_Moscow_PS-MS_chip100.tif Processing s3://spacenet-dataset/spacenet/SN5_roads/train/AOI_7_Moscow/PS-MS/SN5_roads_train_AOI_7_Moscow_PS-MS_chip1000.tif Processing s3://spacenet-dataset/spacenet/SN5_roads/train/AOI_7_Moscow/PS-MS/SN5_roads_train_AOI_7_Moscow_PS-MS_chip1001.tif Processing s3://spacenet-dataset/spacenet/SN5_roads/train/AOI_7_Moscow/PS-MS/SN5_roads_train_AOI_7_Moscow_PS-MS_chip1002.tif Processing s3://spacenet-dataset/spacenet/SN5_roads/train/AOI_7_Moscow/PS-MS/SN5_roads_train_AOI_7_Moscow_PS-MS_chip1003.tif Processing s3://spacenet-dataset/spacenet/SN5_roads/train/AOI_7_Moscow/PS-MS/SN5_roads_train_AOI_7_Moscow_PS-MS_chip1004.tif Processing s3://spacenet-dataset/spacenet/SN5_roads/train/AOI_7_Moscow/PS-MS/SN5_roads_train_AOI_7_Moscow_PS-MS_chip1005.tif ###Markdown Creating the CollectionAll of these images are over Moscow. In Spacenet 5, we have a couple cities that have imagery; a good way to separate these collections of imagery. We can store all of the common `eo` metadata in the collection. ###Code from shapely.geometry import (shape, MultiPolygon) footprints = list(map(lambda i: shape(i.geometry).envelope, chip_id_to_items.values())) collection_bbox = MultiPolygon(footprints).bounds spatial_extent = stac.SpatialExtent(bboxes=[collection_bbox]) datetimes = sorted(list(map(lambda i: i.datetime, chip_id_to_items.values()))) temporal_extent = stac.TemporalExtent(intervals=[[datetimes[0], datetimes[-1]]]) collection_extent = stac.Extent(spatial=spatial_extent, temporal=temporal_extent) common_properties = { 'eo:bands': [b.to_dict() for b in wv3_bands], 'eo:gsd': 0.3, 'eo:platform': 'Maxar', 'eo:instrument': 'WorldView3' } collection = stac.Collection(id='wv3-images', description='Spacenet 5 images over Moscow', extent=collection_extent, properties=common_properties, license='CC-BY-SA-4.0') collection.add_items(chip_id_to_items.values()) collection.describe() ###Output * <Collection id=wv3-images> * <Item id=img_0> * <Item id=img_1> * <Item id=img_10> * <Item id=img_100> * <Item id=img_1000> * <Item id=img_1001> * <Item id=img_1002> * <Item id=img_1003> * <Item id=img_1004> * <Item id=img_1005> ###Markdown Now, we can create a Catalog and add the collection. ###Code catalog = stac.Catalog(id='spacenet5', description='Spacenet 5 Data (Test)') catalog.add_child(collection) catalog.describe() ###Output * <Catalog id=spacenet5> * <Collection id=wv3-images> * <Item id=img_0> * <Item id=img_1> * <Item id=img_10> * <Item id=img_100> * <Item id=img_1000> * <Item id=img_1001> * <Item id=img_1002> * <Item id=img_1003> * <Item id=img_1004> * <Item id=img_1005> ###Markdown Adding label items to the Spacenet 5 catalogWe can use the [label extension](https://github.com/radiantearth/stac-spec/tree/v0.8.1/extensions/label) of the STAC spec to represent the training data in our STAC. For this, we need to grab the URIs of the GeoJSON of roads: ###Code moscow_training_geojson_uris = list(get_s3_keys(bucket='spacenet-dataset', prefix='spacenet/SN5_roads/train/AOI_7_Moscow/geojson_roads_speed/')) for uri in moscow_training_geojson_uris: chip_id = get_chip_id(uri) if chip_id in chip_id_to_data: chip_id_to_data[chip_id]['label'] = 's3://spacenet-dataset/{}'.format(uri) ###Output _____no_output_____ ###Markdown We'll add the LabelItems to their own subcatalog; since they don't inherit the Collection's `eo` properties, they shouldn't go in the Collection. ###Code label_catalog = stac.Catalog(id='spacenet-data-labels', description='Labels for Spacenet 5') catalog.add_child(label_catalog) ###Output _____no_output_____ ###Markdown We can check the pydocs to see what a LabelItem needs in order to fit the spec: ###Code print(stac.LabelItem.__doc__) ###Output A Label Item represents a polygon, set of polygons, or raster data defining labels and label metadata and should be part of a Collection. Args: id (str): Provider identifier. Must be unique within the STAC. geometry (dict): Defines the full footprint of the asset represented by this item, formatted according to `RFC 7946, section 3.1 (GeoJSON) <https://tools.ietf.org/html/rfc7946>`_. bbox (List[float]): Bounding Box of the asset represented by this item using either 2D or 3D geometries. The length of the array must be 2*n where n is the number of dimensions. datetime (Datetime): Datetime associated with this item. properties (dict): A dictionary of additional metadata for the item. label_desecription (str): A description of the label, how it was created, and what it is recommended for label_type (str): An ENUM of either vector label type or raster label type. Use one of :class:`~pystac.LabelType`. label_properties (dict or None): These are the names of the property field(s) in each Feature of the label asset's FeatureCollection that contains the classes (keywords from label:classes if the property defines classes). If labels are rasters, this should be None. label_classes (List[LabelClass]): Optional, but reqiured if ussing categorical data. A list of LabelClasses defining the list of possible class names for each label:properties. (e.g., tree, building, car, hippo) label_tasks (str): Recommended to be a subset of 'regression', 'classification', 'detection', or 'segmentation', but may be an arbitrary value. label_methods: Recommended to be a subset of 'automated' or 'manual', but may be an arbitrary value. label_overviews (List[LabelOverview]): Optional list of LabelOverview classes that store counts (for classification-type data) or summary statistics (for continuous numerical/regression data). stac_extensions (List[str]): Optional list of extensions the Item implements. href (str or None): Optional HREF for this item, which be set as the item's self link's HREF. collection (Collection): Optional Collection that this item is a part of. Attributes: id (str): Provider identifier. Unique within the STAC. geometry (dict): Defines the full footprint of the asset represented by this item, formatted according to `RFC 7946, section 3.1 (GeoJSON) <https://tools.ietf.org/html/rfc7946>`_. bbox (List[float]): Bounding Box of the asset represented by this item using either 2D or 3D geometries. The length of the array is 2*n where n is the number of dimensions. datetime (Datetime): Datetime associated with this item. properties (dict): A dictionary of additional metadata for the item. label_desecription (str): A description of the label, how it was created, and what it is recommended for label_type (str): An ENUM of either vector label type or raster label type (one of :class:`~pystac.LabelType`). label_properties (dict or None): These are the names of the property field(s) in each Feature of the label asset's FeatureCollection that contains the classes (keywords from label:classes if the property defines classes). If labels are rasters, this should be None. label_classes (List[LabelClass]): Optional, but reqiured if ussing categorical data. A list of LabelClasses defining the list of possible class names for each label:properties. (e.g., tree, building, car, hippo) label_tasks (str): Tasks these labels apply to. Usually a subset of 'regression', 'classification', 'detection', or 'segmentation', but may be an arbitrary value. label_methods: Methods used for labeling. Usually a subset of 'automated' or 'manual', but may be an arbitrary value. label_overviews (List[LabelOverview]): Optional list of LabelOverview classes that store counts (for classification-type data) or summary statistics (for continuous numerical/regression data). stac_extensions (List[str] or None): Optional list of extensions the Item implements. collection_id (str or None): The Collection ID that this item belongs to, if any. See: `Item fields in the label extension spec <https://github.com/radiantearth/stac-spec/tree/v0.8.1/extensions/label#item-fields>`_ ###Markdown This loop creates our LabelItems and associates each to the appropriate source image Item. ###Code for chip_id in chip_id_to_data: img_item = collection.get_item('img_{}'.format(chip_id)) label_uri = chip_id_to_data[chip_id]['label'] label_item = stac.LabelItem(id='label_{}'.format(chip_id), geometry=img_item.geometry, bbox=img_item.bbox, datetime=datetime.utcnow(), properties={}, label_description="SpaceNet 5 Road labels", label_type=stac.LabelType.VECTOR, label_tasks=['segmentation', 'regression']) label_item.add_source(img_item) label_item.add_geojson_labels(label_uri) label_catalog.add_item(label_item) ###Output _____no_output_____ ###Markdown Now we have a STAC of training data! ###Code catalog.describe() label_item = catalog.get_child('spacenet-data-labels').get_item('label_1') label_item.to_dict() ###Output _____no_output_____ ###Markdown How to create STAC Catalogs STAC Community Sprint, Arlington, November 7th 2019 This notebook runs through some of the basics of using PySTAC to create a static STAC. It was part of a 30 minute presentation at the [community STAC sprint](https://github.com/radiantearth/community-sprints/tree/master/11052019-arlignton-va) in Arlington, VA in November 2019. This tutorial will require the `boto3`, `rasterio`, and `shapely` libraries: ###Code !pip install boto3 !pip install rasterio !pip install shapely ###Output Requirement already satisfied: boto3 in /Users/rob/proj/stac/pystac/venv/lib/python3.6/site-packages (1.10.8) Requirement already satisfied: botocore<1.14.0,>=1.13.8 in /Users/rob/proj/stac/pystac/venv/lib/python3.6/site-packages (from boto3) (1.13.8) Requirement already satisfied: s3transfer<0.3.0,>=0.2.0 in /Users/rob/proj/stac/pystac/venv/lib/python3.6/site-packages (from boto3) (0.2.1) Requirement already satisfied: jmespath<1.0.0,>=0.7.1 in /Users/rob/proj/stac/pystac/venv/lib/python3.6/site-packages (from boto3) (0.9.4) Requirement already satisfied: urllib3<1.26,>=1.20; python_version >= "3.4" in /Users/rob/proj/stac/pystac/venv/lib/python3.6/site-packages (from botocore<1.14.0,>=1.13.8->boto3) (1.25.6) Requirement already satisfied: docutils<0.16,>=0.10 in /Users/rob/proj/stac/pystac/venv/lib/python3.6/site-packages (from botocore<1.14.0,>=1.13.8->boto3) (0.15.2) Requirement already satisfied: python-dateutil<3.0.0,>=2.1; python_version >= "2.7" in /Users/rob/proj/stac/pystac/venv/lib/python3.6/site-packages (from botocore<1.14.0,>=1.13.8->boto3) (2.8.1) Requirement already satisfied: six>=1.5 in /Users/rob/proj/stac/pystac/venv/lib/python3.6/site-packages (from python-dateutil<3.0.0,>=2.1; python_version >= "2.7"->botocore<1.14.0,>=1.13.8->boto3) (1.12.0) WARNING: You are using pip version 20.1.1; however, version 20.2 is available. You should consider upgrading via the '/Users/rob/proj/stac/pystac/venv/bin/python -m pip install --upgrade pip' command. Requirement already satisfied: rasterio in /Users/rob/proj/stac/pystac/venv/lib/python3.6/site-packages (1.1.0) Requirement already satisfied: numpy in /Users/rob/proj/stac/pystac/venv/lib/python3.6/site-packages (from rasterio) (1.17.3) Requirement already satisfied: snuggs>=1.4.1 in /Users/rob/proj/stac/pystac/venv/lib/python3.6/site-packages (from rasterio) (1.4.7) Requirement already satisfied: click<8,>=4.0 in /Users/rob/proj/stac/pystac/venv/lib/python3.6/site-packages (from rasterio) (7.0) Requirement already satisfied: click-plugins in /Users/rob/proj/stac/pystac/venv/lib/python3.6/site-packages (from rasterio) (1.1.1) Requirement already satisfied: attrs in /Users/rob/proj/stac/pystac/venv/lib/python3.6/site-packages (from rasterio) (19.3.0) Requirement already satisfied: cligj>=0.5 in /Users/rob/proj/stac/pystac/venv/lib/python3.6/site-packages (from rasterio) (0.5.0) Requirement already satisfied: affine in /Users/rob/proj/stac/pystac/venv/lib/python3.6/site-packages (from rasterio) (2.3.0) Requirement already satisfied: pyparsing>=2.1.6 in /Users/rob/proj/stac/pystac/venv/lib/python3.6/site-packages (from snuggs>=1.4.1->rasterio) (2.4.2) WARNING: You are using pip version 20.1.1; however, version 20.2 is available. You should consider upgrading via the '/Users/rob/proj/stac/pystac/venv/bin/python -m pip install --upgrade pip' command. Requirement already satisfied: shapely in /Users/rob/proj/stac/pystac/venv/lib/python3.6/site-packages (1.6.4.post2) WARNING: You are using pip version 20.1.1; however, version 20.2 is available. You should consider upgrading via the '/Users/rob/proj/stac/pystac/venv/bin/python -m pip install --upgrade pip' command. ###Markdown We can import pystac and access most of the functionality we need with the single import: ###Code import pystac ###Output _____no_output_____ ###Markdown Creating a catalog from a local file To give us some material to work with, lets download a single image from the [Spacenet 5 challenge](https://www.topcoder.com/challenges/30099956). We'll use a temporary directory to save off our single-item STAC. ###Code import os import urllib.request from tempfile import TemporaryDirectory tmp_dir = TemporaryDirectory() img_path = os.path.join(tmp_dir.name, 'image.tif') url = ('http://spacenet-dataset.s3.amazonaws.com/' 'spacenet/SN5_roads/train/AOI_7_Moscow/MS/' 'SN5_roads_train_AOI_7_Moscow_MS_chip996.tif') urllib.request.urlretrieve(url, img_path) ###Output _____no_output_____ ###Markdown We want to create a Catalog. Let's check the pydocs for `Catalog` to see what information we'll need. (We use `__doc__` instead of `help()` here to avoid printing out all the docs for the class.) ###Code print(pystac.Catalog.__doc__) ###Output A PySTAC Catalog represents a STAC catalog in memory. A Catalog is a :class:`~pystac.STACObject` that may contain children, which are instances of :class:`~pystac.Catalog` or :class:`~pystac.Collection`, as well as :class:`~pystac.Item` s. Args: id (str): Identifier for the catalog. Must be unique within the STAC. description (str): Detailed multi-line description to fully explain the catalog. `CommonMark 0.28 syntax <http://commonmark.org/>`_ MAY be used for rich text representation. title (str or None): Optional short descriptive one-line title for the catalog. stac_extensions (List[str]): Optional list of extensions the Catalog implements. href (str or None): Optional HREF for this catalog, which be set as the catalog's self link's HREF. Attributes: id (str): Identifier for the catalog. description (str): Detailed multi-line description to fully explain the catalog. title (str or None): Optional short descriptive one-line title for the catalog. stac_extensions (List[str] or None): Optional list of extensions the Catalog implements. extra_fields (dict or None): Extra fields that are part of the top-level JSON properties of the Catalog. links (List[Link]): A list of :class:`~pystac.Link` objects representing all links associated with this Catalog. ###Markdown Let's just give an ID and a description. We don't have to worry about the HREF right now; that will be set later. ###Code catalog = pystac.Catalog(id='test-catalog', description='Tutorial catalog.') ###Output _____no_output_____ ###Markdown There are no children or items in the catalog, since we haven't added anything yet. ###Code print(list(catalog.get_children())) print(list(catalog.get_items())) ###Output [] [] ###Markdown We'll now create an Item to represent the image. Check the pydocs to see what you need to supply: ###Code print(pystac.Item.__doc__) ###Output An Item is the core granular entity in a STAC, containing the core metadata that enables any client to search or crawl online catalogs of spatial 'assets' - satellite imagery, derived data, DEM's, etc. Args: id (str): Provider identifier. Must be unique within the STAC. geometry (dict): Defines the full footprint of the asset represented by this item, formatted according to `RFC 7946, section 3.1 (GeoJSON) <https://tools.ietf.org/html/rfc7946>`_. bbox (List[float] or None): Bounding Box of the asset represented by this item using either 2D or 3D geometries. The length of the array must be 2*n where n is the number of dimensions. Could also be None in the case of a null geometry. datetime (datetime or None): Datetime associated with this item. If None, a start_datetime and end_datetime must be supplied in the properties. properties (dict): A dictionary of additional metadata for the item. stac_extensions (List[str]): Optional list of extensions the Item implements. href (str or None): Optional HREF for this item, which be set as the item's self link's HREF. collection (Collection or str): The Collection or Collection ID that this item belongs to. extra_fields (dict or None): Extra fields that are part of the top-level JSON properties of the Item. Attributes: id (str): Provider identifier. Unique within the STAC. geometry (dict): Defines the full footprint of the asset represented by this item, formatted according to `RFC 7946, section 3.1 (GeoJSON) <https://tools.ietf.org/html/rfc7946>`_. bbox (List[float] or None): Bounding Box of the asset represented by this item using either 2D or 3D geometries. The length of the array is 2*n where n is the number of dimensions. Could also be None in the case of a null geometry. datetime (datetime or None): Datetime associated with this item. If None, the start_datetime and end_datetime in the common_metadata will supply the datetime range of the Item. properties (dict): A dictionary of additional metadata for the item. stac_extensions (List[str] or None): Optional list of extensions the Item implements. collection (Collection or None): Collection that this item is a part of. links (List[Link]): A list of :class:`~pystac.Link` objects representing all links associated with this STACObject. assets (Dict[str, Asset]): Dictionary of asset objects that can be downloaded, each with a unique key. collection_id (str or None): The Collection ID that this item belongs to, if any. extra_fields (dict or None): Extra fields that are part of the top-level JSON properties of the Item. ###Markdown Using [rasterio](https://rasterio.readthedocs.io/en/stable/), we can pull out the bounding box of the image to use for the image metadata. If the image contained a NoData border, we would ideally pull out the footprint and save it as the geometry; in this case, we're working with a small chip that most likely has no NoData values. ###Code import rasterio from shapely.geometry import Polygon, mapping def get_bbox_and_footprint(raster_uri): with rasterio.open(raster_uri) as ds: bounds = ds.bounds bbox = [bounds.left, bounds.bottom, bounds.right, bounds.top] footprint = Polygon([ [bounds.left, bounds.bottom], [bounds.left, bounds.top], [bounds.right, bounds.top], [bounds.right, bounds.bottom] ]) return (bbox, mapping(footprint)) bbox, footprint = get_bbox_and_footprint(img_path) print(bbox) print(footprint) ###Output [37.6616853489879, 55.73478197572927, 37.66573047610874, 55.73882710285011] {'type': 'Polygon', 'coordinates': (((37.6616853489879, 55.73478197572927), (37.6616853489879, 55.73882710285011), (37.66573047610874, 55.73882710285011), (37.66573047610874, 55.73478197572927), (37.6616853489879, 55.73478197572927)),)} ###Markdown We're also using `datetime.utcnow()` to supply the required datetime property for our Item. Since this is a required property, you might often find yourself making up a time to fill in if you don't know the exact capture time. ###Code from datetime import datetime item = pystac.Item(id='local-image', geometry=footprint, bbox=bbox, datetime=datetime.utcnow(), properties={}) ###Output _____no_output_____ ###Markdown We haven't added it to a catalog yet, so it's parent isn't set. Once we add it to the catalog, we can see it correctly links to it's parent. ###Code item.get_parent() is None catalog.add_item(item) item.get_parent() ###Output _____no_output_____ ###Markdown `describe()` is a useful method on `Catalog` - but be careful when using it on large catalogs, as it will walk the entire tree of the STAC. ###Code catalog.describe() ###Output * <Catalog id=test-catalog> * <Item id=local-image> ###Markdown Adding AssetsWe've created an Item, but there aren't any assets associated with it. Let's create one: ###Code print(pystac.Asset.__doc__) item.add_asset( key='image', asset=pystac.Asset( href=img_path, media_type=pystac.MediaType.GEOTIFF ) ) ###Output _____no_output_____ ###Markdown At any time we can call `to_dict()` on STAC objects to see how the STAC JSON is shaping up. Notice the asset is now set: ###Code import json print(json.dumps(item.to_dict(), indent=4)) ###Output { "type": "Feature", "stac_version": "1.0.0-beta.2", "id": "local-image", "properties": { "datetime": "2020-08-03T03:47:48.786929Z" }, "geometry": { "type": "Polygon", "coordinates": [ [ [ 37.6616853489879, 55.73478197572927 ], [ 37.6616853489879, 55.73882710285011 ], [ 37.66573047610874, 55.73882710285011 ], [ 37.66573047610874, 55.73478197572927 ], [ 37.6616853489879, 55.73478197572927 ] ] ] }, "links": [ { "rel": "root", "href": null, "type": "application/json" }, { "rel": "parent", "href": null, "type": "application/json" } ], "assets": { "image": { "href": "/var/folders/sv/zr8j0t4j1f726nhlt3vb8c300000gn/T/tmpt1wuelid/image.tif", "type": "image/tiff; application=geotiff" } }, "bbox": [ 37.6616853489879, 55.73478197572927, 37.66573047610874, 55.73882710285011 ] } ###Markdown Note that the link `href` properties are `null`. This is OK, as we're working with the STAC in memory. Next, we'll talk about writing the catalog out, and how to set those HREFs. Saving the catalog As the JSON above indicates, there's no HREFs set on these in-memory items. PySTAC uses the `self` link on STAC objects to track where the file lives. Because we haven't set them, they evaluate to `None`: ###Code print(catalog.get_self_href() is None) print(item.get_self_href() is None) ###Output True True ###Markdown In order to set them, we can use `normalize_hrefs`. This method will create a normalized set of HREFs for each STAC object in the catalog, according to the [best practices document](https://github.com/radiantearth/stac-spec/blob/v0.8.1/best-practices.mdcatalog-layout)'s recommendations on how to lay out a catalog. ###Code catalog.normalize_hrefs(os.path.join(tmp_dir.name, 'stac')) ###Output _____no_output_____ ###Markdown Now that we've normalized to a root directory (the temporary directory), we see that the `self` links are set: ###Code print(catalog.get_self_href()) print(item.get_self_href()) ###Output /var/folders/sv/zr8j0t4j1f726nhlt3vb8c300000gn/T/tmpt1wuelid/stac/catalog.json /var/folders/sv/zr8j0t4j1f726nhlt3vb8c300000gn/T/tmpt1wuelid/stac/local-image/local-image.json ###Markdown We can now call `save` on the catalog, which will recursively save all the STAC objects to their respective self HREFs.Save requires a `CatalogType` to be set. You can review the [API docs](https://pystac.readthedocs.io/en/stable/api.htmlcatalogtype) on `CatalogType` to see what each type means (unfortunately `help` doesn't show docstrings for attributes). ###Code catalog.save(catalog_type=pystac.CatalogType.SELF_CONTAINED) !ls {tmp_dir.name}/stac/* with open(catalog.get_self_href()) as f: print(f.read()) with open(item.get_self_href()) as f: print(f.read()) ###Output { "type": "Feature", "stac_version": "1.0.0-beta.2", "id": "local-image", "properties": { "datetime": "2020-08-03T03:47:48.786929Z" }, "geometry": { "type": "Polygon", "coordinates": [ [ [ 37.6616853489879, 55.73478197572927 ], [ 37.6616853489879, 55.73882710285011 ], [ 37.66573047610874, 55.73882710285011 ], [ 37.66573047610874, 55.73478197572927 ], [ 37.6616853489879, 55.73478197572927 ] ] ] }, "links": [ { "rel": "root", "href": "../catalog.json", "type": "application/json" }, { "rel": "parent", "href": "../catalog.json", "type": "application/json" } ], "assets": { "image": { "href": "/var/folders/sv/zr8j0t4j1f726nhlt3vb8c300000gn/T/tmpt1wuelid/image.tif", "type": "image/tiff; application=geotiff" } }, "bbox": [ 37.6616853489879, 55.73478197572927, 37.66573047610874, 55.73882710285011 ] } ###Markdown As you can see, all links are saved with relative paths. That's because we used `catalog_type=CatalogType.SELF_CONTAINED`. If we save an Absolute Published catalog, we'll see absolute paths: ###Code catalog.save(catalog_type=pystac.CatalogType.ABSOLUTE_PUBLISHED) ###Output _____no_output_____ ###Markdown Now the links included in the STAC item are all absolute: ###Code with open(item.get_self_href()) as f: print(f.read()) ###Output { "type": "Feature", "stac_version": "1.0.0-beta.2", "id": "local-image", "properties": { "datetime": "2020-08-03T03:47:48.786929Z" }, "geometry": { "type": "Polygon", "coordinates": [ [ [ 37.6616853489879, 55.73478197572927 ], [ 37.6616853489879, 55.73882710285011 ], [ 37.66573047610874, 55.73882710285011 ], [ 37.66573047610874, 55.73478197572927 ], [ 37.6616853489879, 55.73478197572927 ] ] ] }, "links": [ { "rel": "self", "href": "/var/folders/sv/zr8j0t4j1f726nhlt3vb8c300000gn/T/tmpt1wuelid/stac/local-image/local-image.json", "type": "application/json" }, { "rel": "root", "href": "/var/folders/sv/zr8j0t4j1f726nhlt3vb8c300000gn/T/tmpt1wuelid/stac/catalog.json", "type": "application/json" }, { "rel": "parent", "href": "/var/folders/sv/zr8j0t4j1f726nhlt3vb8c300000gn/T/tmpt1wuelid/stac/catalog.json", "type": "application/json" } ], "assets": { "image": { "href": "/var/folders/sv/zr8j0t4j1f726nhlt3vb8c300000gn/T/tmpt1wuelid/image.tif", "type": "image/tiff; application=geotiff" } }, "bbox": [ 37.6616853489879, 55.73478197572927, 37.66573047610874, 55.73882710285011 ] } ###Markdown Notice that the Asset HREF is absolute in both cases. We can make the Asset HREF relative to the STAC Item by using `.make_all_asset_hrefs_relative()`: ###Code catalog.make_all_asset_hrefs_relative() catalog.save(catalog_type=pystac.CatalogType.SELF_CONTAINED) with open(item.get_self_href()) as f: print(f.read()) ###Output { "type": "Feature", "stac_version": "1.0.0-beta.2", "id": "local-image", "properties": { "datetime": "2020-08-03T03:47:48.786929Z" }, "geometry": { "type": "Polygon", "coordinates": [ [ [ 37.6616853489879, 55.73478197572927 ], [ 37.6616853489879, 55.73882710285011 ], [ 37.66573047610874, 55.73882710285011 ], [ 37.66573047610874, 55.73478197572927 ], [ 37.6616853489879, 55.73478197572927 ] ] ] }, "links": [ { "rel": "root", "href": "../catalog.json", "type": "application/json" }, { "rel": "parent", "href": "../catalog.json", "type": "application/json" } ], "assets": { "image": { "href": "../../image.tif", "type": "image/tiff; application=geotiff" } }, "bbox": [ 37.6616853489879, 55.73478197572927, 37.66573047610874, 55.73882710285011 ] } ###Markdown Creating an Item that implements the EO extensionIn the code above our item only implemented the core STAC Item specification. With [extensions](https://github.com/radiantearth/stac-spec/tree/v0.9.0/extensions) we can record more information and add additional functionality to the Item. Given that we know this is a World View 3 image that has earth observation data, we can enable the [eo extension](https://github.com/radiantearth/stac-spec/tree/v0.8.1/extensions/eo) to add band information. To add eo information to an item we'll need to specify some more data. First, let's define the bands of World View 3: ###Code from pystac.extensions.eo import Band # From: https://www.spaceimagingme.com/downloads/sensors/datasheets/DG_WorldView3_DS_2014.pdf wv3_bands = [Band.create(name='Coastal', description='Coastal: 400 - 450 nm', common_name='coastal'), Band.create(name='Blue', description='Blue: 450 - 510 nm', common_name='blue'), Band.create(name='Green', description='Green: 510 - 580 nm', common_name='green'), Band.create(name='Yellow', description='Yellow: 585 - 625 nm', common_name='yellow'), Band.create(name='Red', description='Red: 630 - 690 nm', common_name='red'), Band.create(name='Red Edge', description='Red Edge: 705 - 745 nm', common_name='rededge'), Band.create(name='Near-IR1', description='Near-IR1: 770 - 895 nm', common_name='nir08'), Band.create(name='Near-IR2', description='Near-IR2: 860 - 1040 nm', common_name='nir09')] ###Output _____no_output_____ ###Markdown Notice that we used the `.create` method create new band information. We can now create an Item, enable the eo extension, add the band information and add it to our catalog: ###Code eo_item = pystac.Item(id='local-image-eo', geometry=footprint, bbox=bbox, datetime=datetime.utcnow(), properties={}) eo_item.ext.enable(pystac.Extensions.EO) eo_item.ext.eo.apply(bands=wv3_bands) ###Output _____no_output_____ ###Markdown There are also [common metadata](https://github.com/radiantearth/stac-spec/blob/v0.9.0/item-spec/common-metadata.md) fields that we can use to capture additional information about the WorldView 3 imagery: ###Code eo_item.common_metadata.platform = "Maxar" eo_item.common_metadata.instrument="WorldView3" eo_item.common_metadata.gsd = 0.3 eo_item ###Output _____no_output_____ ###Markdown We can use the eo extension to add bands to the assets we add to the item: ###Code eo_ext = eo_item.ext.eo help(eo_ext.set_bands) #eo_item.add_asset(key='image', asset=) asset = pystac.Asset(href=img_path, media_type=pystac.MediaType.GEOTIFF) eo_ext.set_bands(wv3_bands, asset) eo_item.add_asset("image", asset) ###Output _____no_output_____ ###Markdown If we look at the asset's JSON representation, we can see the appropriate band indexes are set: ###Code asset.to_dict() ###Output _____no_output_____ ###Markdown Let's clear the in-memory catalog, add the EO item, and save to a new STAC: ###Code catalog.clear_items() list(catalog.get_items()) catalog.add_item(eo_item) list(catalog.get_items()) catalog.normalize_and_save(root_href=os.path.join(tmp_dir.name, 'stac-eo'), catalog_type=pystac.CatalogType.SELF_CONTAINED) ###Output _____no_output_____ ###Markdown Now, if we read the catalog from the filesystem, PySTAC recognizes that the item implements eo and so use it's functionality, e.g. getting the bands off the asset: ###Code catalog2 = pystac.read_file(os.path.join(tmp_dir.name, 'stac-eo', 'catalog.json')) list(catalog2.get_items()) item = next(catalog2.get_all_items()) item.ext.implements('eo') item.ext.eo.get_bands(item.assets['image']) ###Output _____no_output_____ ###Markdown CollectionsCollections are a subtype of Catalog that have some additional properties to make them more searchable. They also can define common properties so that items in the collection don't have to duplicate common data for each item. Let's create a collection to hold common properties between two images from the Spacenet 5 challenge.First we'll get another image, and it's bbox and footprint: ###Code url2 = ('http://spacenet-dataset.s3.amazonaws.com/' 'spacenet/SN5_roads/train/AOI_7_Moscow/MS/' 'SN5_roads_train_AOI_7_Moscow_MS_chip997.tif') img_path2 = os.path.join(tmp_dir.name, 'image.tif') urllib.request.urlretrieve(url2, img_path2) bbox2, footprint2 = get_bbox_and_footprint(img_path2) ###Output _____no_output_____ ###Markdown We can take a look at the pydocs for Collection to see what information we need to supply in order to satisfy the spec. ###Code print(pystac.Collection.__doc__) ###Output A Collection extends the Catalog spec with additional metadata that helps enable discovery. Args: id (str): Identifier for the collection. Must be unique within the STAC. description (str): Detailed multi-line description to fully explain the collection. `CommonMark 0.28 syntax <http://commonmark.org/>`_ MAY be used for rich text representation. extent (Extent): Spatial and temporal extents that describe the bounds of all items contained within this Collection. title (str or None): Optional short descriptive one-line title for the collection. stac_extensions (List[str]): Optional list of extensions the Collection implements. href (str or None): Optional HREF for this collection, which be set as the collection's self link's HREF. license (str): Collection's license(s) as a `SPDX License identifier <https://spdx.org/licenses/>`_, `various`, or `proprietary`. If collection includes data with multiple different licenses, use `various` and add a link for each. Defaults to 'proprietary'. keywords (List[str]): Optional list of keywords describing the collection. providers (List[Provider]): Optional list of providers of this Collection. properties (dict): Optional dict of common fields across referenced items. summaries (dict): An optional map of property summaries, either a set of values or statistics such as a range. extra_fields (dict or None): Extra fields that are part of the top-level JSON properties of the Collection. Attributes: id (str): Identifier for the collection. description (str): Detailed multi-line description to fully explain the collection. extent (Extent): Spatial and temporal extents that describe the bounds of all items contained within this Collection. title (str or None): Optional short descriptive one-line title for the collection. stac_extensions (List[str]): Optional list of extensions the Collection implements. keywords (List[str] or None): Optional list of keywords describing the collection. providers (List[Provider] or None): Optional list of providers of this Collection. properties (dict or None): Optional dict of common fields across referenced items. summaries (dict or None): An optional map of property summaries, either a set of values or statistics such as a range. links (List[Link]): A list of :class:`~pystac.Link` objects representing all links associated with this Collection. extra_fields (dict or None): Extra fields that are part of the top-level JSON properties of the Catalog. ###Markdown Beyond what a Catalog reqiures, a Collection requires a license, and an `Extent` that describes the range of space and time that the items it hold occupy. ###Code print(pystac.Extent.__doc__) ###Output Describes the spatio-temporal extents of a Collection. Args: spatial (SpatialExtent): Potential spatial extent covered by the collection. temporal (TemporalExtent): Potential temporal extent covered by the collection. Attributes: spatial (SpatialExtent): Potential spatial extent covered by the collection. temporal (TemporalExtent): Potential temporal extent covered by the collection. ###Markdown An Extent is comprised of a SpatialExtent and a TemporalExtent. These hold one or more bounding boxes and time intervals, respectively, that completely cover the items contained in the collections.Let's start with creating two new items - these will be core Items. We can set these items to implement the `eo` extension by specifying them in the `stac_extensions`. ###Code collection_item = pystac.Item(id='local-image-col-1', geometry=footprint, bbox=bbox, datetime=datetime.utcnow(), properties={}, stac_extensions=[pystac.Extensions.EO]) collection_item.common_metadata.gsd = 0.3 collection_item.common_metadata.platform = 'Maxar' collection_item.common_metadata.instruments = ['WorldView3'] asset = pystac.Asset(href=img_path, media_type=pystac.MediaType.GEOTIFF) collection_item.ext.eo.set_bands(wv3_bands, asset) collection_item.add_asset('image', asset) collection_item2 = pystac.Item(id='local-image-col-2', geometry=footprint2, bbox=bbox2, datetime=datetime.utcnow(), properties={}, stac_extensions=[pystac.Extensions.EO]) collection_item2.common_metadata.gsd = 0.3 collection_item2.common_metadata.platform = 'Maxar' collection_item2.common_metadata.instruments = ['WorldView3'] asset2 = pystac.Asset(href=img_path, media_type=pystac.MediaType.GEOTIFF) collection_item2.ext.eo.set_bands([ band for band in wv3_bands if band.name in ["Red", "Green", "Blue"] ], asset2) collection_item2.add_asset('image', asset2) ###Output _____no_output_____ ###Markdown We can use our two items' metadata to find out what the proper bounds are: ###Code from shapely.geometry import shape unioned_footprint = shape(footprint).union(shape(footprint2)) collection_bbox = list(unioned_footprint.bounds) spatial_extent = pystac.SpatialExtent(bboxes=[collection_bbox]) collection_interval = sorted([collection_item.datetime, collection_item2.datetime]) temporal_extent = pystac.TemporalExtent(intervals=[collection_interval]) collection_extent = pystac.Extent(spatial=spatial_extent, temporal=temporal_extent) collection = pystac.Collection(id='wv3-images', description='Spacenet 5 images over Moscow', extent=collection_extent, license='CC-BY-SA-4.0') ###Output _____no_output_____ ###Markdown Now if we add our items to our Collection, and our Collection to our Catalog, we get the following STAC that can be saved: ###Code collection.add_items([collection_item, collection_item2]) catalog.clear_items() catalog.clear_children() catalog.add_child(collection) catalog.describe() catalog.normalize_and_save(root_href=os.path.join(tmp_dir.name, 'stac-collection'), catalog_type=pystac.CatalogType.SELF_CONTAINED) ###Output _____no_output_____ ###Markdown CleanupDon't forget to clean up the temporary directory! ###Code tmp_dir.cleanup() ###Output _____no_output_____ ###Markdown Creating a STAC of imagery from Spacenet 5 data Now, let's take what we've learned and create a Catalog with more data in it. Allowing PySTAC to read from AWS S3PySTAC aims to be virtually zero-dependency (notwithstanding the why-isn't-this-in-stdlib datetime-util), so it doesn't have the ability to read from or write to anything but the local file system. However, we can hook into PySTAC's IO in the following way. Learn more about how to use STAC_IO in the [documentation on the topic](https://pystac.readthedocs.io/en/latest/concepts.htmlusing-stac-io): ###Code from urllib.parse import urlparse import boto3 from pystac import STAC_IO def my_read_method(uri): parsed = urlparse(uri) if parsed.scheme == 's3': bucket = parsed.netloc key = parsed.path[1:] s3 = boto3.resource('s3') obj = s3.Object(bucket, key) return obj.get()['Body'].read().decode('utf-8') else: return STAC_IO.default_read_text_method(uri) def my_write_method(uri, txt): parsed = urlparse(uri) if parsed.scheme == 's3': bucket = parsed.netloc key = parsed.path[1:] s3 = boto3.resource("s3") s3.Object(bucket, key).put(Body=txt) else: STAC_IO.default_write_text_method(uri, txt) STAC_IO.read_text_method = my_read_method STAC_IO.write_text_method = my_write_method ###Output _____no_output_____ ###Markdown We'll need a utility to list keys for reading the lists of files from S3: ###Code # From https://alexwlchan.net/2017/07/listing-s3-keys/ def get_s3_keys(bucket, prefix): """Generate all the keys in an S3 bucket.""" s3 = boto3.client('s3') kwargs = {'Bucket': bucket, 'Prefix': prefix} while True: resp = s3.list_objects_v2(**kwargs) for obj in resp['Contents']: yield obj['Key'] try: kwargs['ContinuationToken'] = resp['NextContinuationToken'] except KeyError: break ###Output _____no_output_____ ###Markdown Let's make a STAC of imagery over Moscow as part of the Spacenet 5 challenge. As a first step, we can list out the imagery and extract IDs from each of the chips. ###Code moscow_training_chip_uris = list(get_s3_keys(bucket='spacenet-dataset', prefix='spacenet/SN5_roads/train/AOI_7_Moscow/PS-MS')) import re chip_id_to_data = {} def get_chip_id(uri): return re.search(r'.*\_chip(\d+)\.', uri).group(1) for uri in moscow_training_chip_uris: chip_id = get_chip_id(uri) chip_id_to_data[chip_id] = { 'img': 's3://spacenet-dataset/{}'.format(uri) } ###Output _____no_output_____ ###Markdown For this tutorial, we'll only take a subset of the data. ###Code chip_id_to_data = dict(list(chip_id_to_data.items())[:10]) chip_id_to_data ###Output _____no_output_____ ###Markdown Let's turn each of those chips into a STAC Item that represents the image. ###Code chip_id_to_items = {} ###Output _____no_output_____ ###Markdown We'll create core `Item`s for our imagery, but mark them with the `eo` extension as we did above, and store the `eo` data in a `Collection`.Note that the image CRS is in WGS:84 (Lat/Lng). If it wasn't, we'd have to reproject the footprint to WGS:84 in order to be compliant with the spec (which can easily be done with [pyproj](https://github.com/pyproj4/pyproj)).Here we're taking advantage of `rasterio`'s ability to read S3 URIs, which only grabs the GeoTIFF metadata and does not pull the whole file down. ###Code for chip_id in chip_id_to_data: img_uri = chip_id_to_data[chip_id]['img'] print('Processing {}'.format(img_uri)) bbox, footprint = get_bbox_and_footprint(img_uri) item = pystac.Item(id='img_{}'.format(chip_id), geometry=footprint, bbox=bbox, datetime=datetime.utcnow(), properties={}, stac_extensions=[pystac.Extensions.EO]) item.common_metadata.gsd = 0.3 item.common_metadata.platform = 'Maxar' item.common_metadata.instruments = ['WorldView3'] item.ext.eo.bands = wv3_bands asset = pystac.Asset(href=img_uri, media_type=pystac.MediaType.COG) item.ext.eo.set_bands(wv3_bands, asset) item.add_asset(key='ps-ms', asset=asset) chip_id_to_items[chip_id] = item ###Output Processing s3://spacenet-dataset/spacenet/SN5_roads/train/AOI_7_Moscow/PS-MS/SN5_roads_train_AOI_7_Moscow_PS-MS_chip0.tif Processing s3://spacenet-dataset/spacenet/SN5_roads/train/AOI_7_Moscow/PS-MS/SN5_roads_train_AOI_7_Moscow_PS-MS_chip1.tif Processing s3://spacenet-dataset/spacenet/SN5_roads/train/AOI_7_Moscow/PS-MS/SN5_roads_train_AOI_7_Moscow_PS-MS_chip10.tif Processing s3://spacenet-dataset/spacenet/SN5_roads/train/AOI_7_Moscow/PS-MS/SN5_roads_train_AOI_7_Moscow_PS-MS_chip100.tif Processing s3://spacenet-dataset/spacenet/SN5_roads/train/AOI_7_Moscow/PS-MS/SN5_roads_train_AOI_7_Moscow_PS-MS_chip1000.tif Processing s3://spacenet-dataset/spacenet/SN5_roads/train/AOI_7_Moscow/PS-MS/SN5_roads_train_AOI_7_Moscow_PS-MS_chip1001.tif Processing s3://spacenet-dataset/spacenet/SN5_roads/train/AOI_7_Moscow/PS-MS/SN5_roads_train_AOI_7_Moscow_PS-MS_chip1002.tif Processing s3://spacenet-dataset/spacenet/SN5_roads/train/AOI_7_Moscow/PS-MS/SN5_roads_train_AOI_7_Moscow_PS-MS_chip1003.tif Processing s3://spacenet-dataset/spacenet/SN5_roads/train/AOI_7_Moscow/PS-MS/SN5_roads_train_AOI_7_Moscow_PS-MS_chip1004.tif Processing s3://spacenet-dataset/spacenet/SN5_roads/train/AOI_7_Moscow/PS-MS/SN5_roads_train_AOI_7_Moscow_PS-MS_chip1005.tif ###Markdown Creating the CollectionAll of these images are over Moscow. In Spacenet 5, we have a couple cities that have imagery; a good way to separate these collections of imagery. We can store all of the common `eo` metadata in the collection. ###Code from shapely.geometry import (shape, MultiPolygon) footprints = list(map(lambda i: shape(i.geometry).envelope, chip_id_to_items.values())) collection_bbox = MultiPolygon(footprints).bounds spatial_extent = pystac.SpatialExtent(bboxes=[collection_bbox]) datetimes = sorted(list(map(lambda i: i.datetime, chip_id_to_items.values()))) temporal_extent = pystac.TemporalExtent(intervals=[[datetimes[0], datetimes[-1]]]) collection_extent = pystac.Extent(spatial=spatial_extent, temporal=temporal_extent) collection = pystac.Collection(id='wv3-images', description='Spacenet 5 images over Moscow', extent=collection_extent, license='CC-BY-SA-4.0') collection.add_items(chip_id_to_items.values()) collection.describe() ###Output * <Collection id=wv3-images> * <Item id=img_0> * <Item id=img_1> * <Item id=img_10> * <Item id=img_100> * <Item id=img_1000> * <Item id=img_1001> * <Item id=img_1002> * <Item id=img_1003> * <Item id=img_1004> * <Item id=img_1005> ###Markdown Now, we can create a Catalog and add the collection. ###Code catalog = pystac.Catalog(id='spacenet5', description='Spacenet 5 Data (Test)') catalog.add_child(collection) catalog.describe() ###Output * <Catalog id=spacenet5> * <Collection id=wv3-images> * <Item id=img_0> * <Item id=img_1> * <Item id=img_10> * <Item id=img_100> * <Item id=img_1000> * <Item id=img_1001> * <Item id=img_1002> * <Item id=img_1003> * <Item id=img_1004> * <Item id=img_1005> ###Markdown Adding items with the label extension to the Spacenet 5 catalogWe can use the [label extension](https://github.com/radiantearth/stac-spec/tree/v0.8.1/extensions/label) of the STAC spec to represent the training data in our STAC. For this, we need to grab the URIs of the GeoJSON of roads: ###Code moscow_training_geojson_uris = list(get_s3_keys(bucket='spacenet-dataset', prefix='spacenet/SN5_roads/train/AOI_7_Moscow/geojson_roads_speed/')) for uri in moscow_training_geojson_uris: chip_id = get_chip_id(uri) if chip_id in chip_id_to_data: chip_id_to_data[chip_id]['label'] = 's3://spacenet-dataset/{}'.format(uri) ###Output _____no_output_____ ###Markdown We'll add the items to their own subcatalog; since they don't inherit the Collection's `eo` properties, they shouldn't go in the Collection. ###Code label_catalog = pystac.Catalog(id='spacenet-data-labels', description='Labels for Spacenet 5') catalog.add_child(label_catalog) ###Output _____no_output_____ ###Markdown To see the required fields for the label extension we can check the pydocs on the `apply` method of the extension: ###Code from pystac.extensions import label print(label.LabelItemExt.apply.__doc__) ###Output Applies label extension properties to the extended Item. Args: label_description (str): A description of the label, how it was created, and what it is recommended for label_type (str): An ENUM of either vector label type or raster label type. Use one of :class:`~pystac.LabelType`. label_properties (list or None): These are the names of the property field(s) in each Feature of the label asset's FeatureCollection that contains the classes (keywords from label:classes if the property defines classes). If labels are rasters, this should be None. label_classes (List[LabelClass]): Optional, but reqiured if ussing categorical data. A list of LabelClasses defining the list of possible class names for each label:properties. (e.g., tree, building, car, hippo) label_tasks (List[str]): Recommended to be a subset of 'regression', 'classification', 'detection', or 'segmentation', but may be an arbitrary value. label_methods: Recommended to be a subset of 'automated' or 'manual', but may be an arbitrary value. label_overviews (List[LabelOverview]): Optional list of LabelOverview classes that store counts (for classification-type data) or summary statistics (for continuous numerical/regression data). ###Markdown This loop creates our label items and associates each to the appropriate source image Item. ###Code for chip_id in chip_id_to_data: img_item = collection.get_item('img_{}'.format(chip_id)) label_uri = chip_id_to_data[chip_id]['label'] label_item = pystac.Item(id='label_{}'.format(chip_id), geometry=img_item.geometry, bbox=img_item.bbox, datetime=datetime.utcnow(), properties={}, stac_extensions=[pystac.Extensions.LABEL]) label_item.ext.label.apply(label_description="SpaceNet 5 Road labels", label_type=label.LabelType.VECTOR, label_tasks=['segmentation', 'regression']) label_item.ext.label.add_source(img_item) label_item.ext.label.add_geojson_labels(label_uri) label_catalog.add_item(label_item) ###Output _____no_output_____ ###Markdown Now we have a STAC of training data! ###Code catalog.describe() label_item = catalog.get_child('spacenet-data-labels').get_item('label_1') label_item.to_dict() ###Output _____no_output_____ ###Markdown How to create STAC Catalogs STAC Community Sprint, Arlington, November 7th 2019 This notebook runs through some of the basics of using PySTAC to create a static STAC. It was part of a 30 minute presentation at the [community STAC sprint](https://github.com/radiantearth/community-sprints/tree/master/11052019-arlignton-va) in Arlington, VA in November 2019, updated to work with current PySTAC. This tutorial will require the `boto3`, `rasterio`, and `shapely` libraries: ###Code %pip install boto3 rasterio shapely pystac ###Output Requirement already satisfied: boto3 in /Users/gadomski/.virtualenvs/pystac/lib/python3.9/site-packages (1.21.28) Requirement already satisfied: rasterio in /Users/gadomski/.virtualenvs/pystac/lib/python3.9/site-packages (1.2.10) Requirement already satisfied: shapely in /Users/gadomski/.virtualenvs/pystac/lib/python3.9/site-packages (1.8.1.post1) Requirement already satisfied: pystac in /Users/gadomski/Code/pystac (1.3.0) Requirement already satisfied: jmespath<2.0.0,>=0.7.1 in /Users/gadomski/.virtualenvs/pystac/lib/python3.9/site-packages (from boto3) (1.0.0) Requirement already satisfied: botocore<1.25.0,>=1.24.28 in /Users/gadomski/.virtualenvs/pystac/lib/python3.9/site-packages (from boto3) (1.24.28) Requirement already satisfied: s3transfer<0.6.0,>=0.5.0 in /Users/gadomski/.virtualenvs/pystac/lib/python3.9/site-packages (from boto3) (0.5.2) Requirement already satisfied: certifi in /Users/gadomski/.virtualenvs/pystac/lib/python3.9/site-packages (from rasterio) (2021.5.30) Requirement already satisfied: numpy in /Users/gadomski/.virtualenvs/pystac/lib/python3.9/site-packages (from rasterio) (1.22.3) Requirement already satisfied: click-plugins in /Users/gadomski/.virtualenvs/pystac/lib/python3.9/site-packages (from rasterio) (1.1.1) Requirement already satisfied: click>=4.0 in /Users/gadomski/.virtualenvs/pystac/lib/python3.9/site-packages (from rasterio) (8.0.1) Requirement already satisfied: snuggs>=1.4.1 in /Users/gadomski/.virtualenvs/pystac/lib/python3.9/site-packages (from rasterio) (1.4.7) Requirement already satisfied: cligj>=0.5 in /Users/gadomski/.virtualenvs/pystac/lib/python3.9/site-packages (from rasterio) (0.7.2) Requirement already satisfied: affine in /Users/gadomski/.virtualenvs/pystac/lib/python3.9/site-packages (from rasterio) (2.3.1) Requirement already satisfied: setuptools in /Users/gadomski/.virtualenvs/pystac/lib/python3.9/site-packages (from rasterio) (56.0.0) Requirement already satisfied: attrs in /Users/gadomski/.virtualenvs/pystac/lib/python3.9/site-packages (from rasterio) (21.2.0) Requirement already satisfied: python-dateutil>=2.7.0 in /Users/gadomski/.virtualenvs/pystac/lib/python3.9/site-packages (from pystac) (2.8.1) Requirement already satisfied: urllib3<1.27,>=1.25.4 in /Users/gadomski/.virtualenvs/pystac/lib/python3.9/site-packages (from botocore<1.25.0,>=1.24.28->boto3) (1.26.5) Requirement already satisfied: six>=1.5 in /Users/gadomski/.virtualenvs/pystac/lib/python3.9/site-packages (from python-dateutil>=2.7.0->pystac) (1.16.0) Requirement already satisfied: pyparsing>=2.1.6 in /Users/gadomski/.virtualenvs/pystac/lib/python3.9/site-packages (from snuggs>=1.4.1->rasterio) (2.4.7) ###Markdown We can import pystac and access most of the functionality we need with the single import: ###Code import pystac ###Output _____no_output_____ ###Markdown Creating a catalog from a local file To give us some material to work with, lets download a single image from the [Spacenet 5 challenge](https://www.topcoder.com/challenges/30099956). We'll use a temporary directory to save off our single-item STAC. ###Code import os import urllib.request from tempfile import TemporaryDirectory tmp_dir = TemporaryDirectory() img_path = os.path.join(tmp_dir.name, 'image.tif') url = ('https://spacenet-dataset.s3.amazonaws.com/' 'spacenet/SN5_roads/train/AOI_7_Moscow/MS/' 'SN5_roads_train_AOI_7_Moscow_MS_chip996.tif') urllib.request.urlretrieve(url, img_path) ###Output _____no_output_____ ###Markdown We want to create a Catalog. Let's check the pydocs for `Catalog` to see what information we'll need. (We use `__doc__` instead of `help()` here to avoid printing out all the docs for the class.) ###Code print(pystac.Catalog.__doc__) ###Output A PySTAC Catalog represents a STAC catalog in memory. A Catalog is a :class:`~pystac.STACObject` that may contain children, which are instances of :class:`~pystac.Catalog` or :class:`~pystac.Collection`, as well as :class:`~pystac.Item` s. Args: id : Identifier for the catalog. Must be unique within the STAC. description : Detailed multi-line description to fully explain the catalog. `CommonMark 0.28 syntax <https://commonmark.org/>`_ MAY be used for rich text representation. title : Optional short descriptive one-line title for the catalog. stac_extensions : Optional list of extensions the Catalog implements. href : Optional HREF for this catalog, which be set as the catalog's self link's HREF. catalog_type : Optional catalog type for this catalog. Must be one of the values in :class:`~pystac.CatalogType`. ###Markdown Let's just give an ID and a description. We don't have to worry about the HREF right now; that will be set later. ###Code catalog = pystac.Catalog(id='test-catalog', description='Tutorial catalog.') ###Output _____no_output_____ ###Markdown There are no children or items in the catalog, since we haven't added anything yet. ###Code print(list(catalog.get_children())) print(list(catalog.get_items())) ###Output [] [] ###Markdown We'll now create an Item to represent the image. Check the pydocs to see what you need to supply: ###Code print(pystac.Item.__doc__) ###Output An Item is the core granular entity in a STAC, containing the core metadata that enables any client to search or crawl online catalogs of spatial 'assets' - satellite imagery, derived data, DEM's, etc. Args: id : Provider identifier. Must be unique within the STAC. geometry : Defines the full footprint of the asset represented by this item, formatted according to `RFC 7946, section 3.1 (GeoJSON) <https://tools.ietf.org/html/rfc7946>`_. bbox : Bounding Box of the asset represented by this item using either 2D or 3D geometries. The length of the array must be 2*n where n is the number of dimensions. Could also be None in the case of a null geometry. datetime : Datetime associated with this item. If None, a start_datetime and end_datetime must be supplied in the properties. properties : A dictionary of additional metadata for the item. stac_extensions : Optional list of extensions the Item implements. href : Optional HREF for this item, which be set as the item's self link's HREF. collection : The Collection or Collection ID that this item belongs to. extra_fields : Extra fields that are part of the top-level JSON properties of the Item. ###Markdown Using [rasterio](https://rasterio.readthedocs.io/en/stable/), we can pull out the bounding box of the image to use for the image metadata. If the image contained a NoData border, we would ideally pull out the footprint and save it as the geometry; in this case, we're working with a small chip that most likely has no NoData values. ###Code import rasterio from shapely.geometry import Polygon, mapping def get_bbox_and_footprint(raster_uri): with rasterio.open(raster_uri) as ds: bounds = ds.bounds bbox = [bounds.left, bounds.bottom, bounds.right, bounds.top] footprint = Polygon([ [bounds.left, bounds.bottom], [bounds.left, bounds.top], [bounds.right, bounds.top], [bounds.right, bounds.bottom] ]) return (bbox, mapping(footprint)) bbox, footprint = get_bbox_and_footprint(img_path) print(bbox) print(footprint) ###Output [37.6616853489879, 55.73478197572927, 37.66573047610874, 55.73882710285011] {'type': 'Polygon', 'coordinates': (((37.6616853489879, 55.73478197572927), (37.6616853489879, 55.73882710285011), (37.66573047610874, 55.73882710285011), (37.66573047610874, 55.73478197572927), (37.6616853489879, 55.73478197572927)),)} ###Markdown We're also using `datetime.utcnow()` to supply the required datetime property for our Item. Since this is a required property, you might often find yourself making up a time to fill in if you don't know the exact capture time. ###Code from datetime import datetime item = pystac.Item(id='local-image', geometry=footprint, bbox=bbox, datetime=datetime.utcnow(), properties={}) ###Output _____no_output_____ ###Markdown We haven't added it to a catalog yet, so it's parent isn't set. Once we add it to the catalog, we can see it correctly links to it's parent. ###Code assert item.get_parent() is None catalog.add_item(item) item.get_parent() ###Output _____no_output_____ ###Markdown `describe()` is a useful method on `Catalog` - but be careful when using it on large catalogs, as it will walk the entire tree of the STAC. ###Code catalog.describe() ###Output * <Catalog id=test-catalog> * <Item id=local-image> ###Markdown Adding AssetsWe've created an Item, but there aren't any assets associated with it. Let's create one: ###Code print(pystac.Asset.__doc__) item.add_asset( key='image', asset=pystac.Asset( href=img_path, media_type=pystac.MediaType.GEOTIFF ) ) ###Output _____no_output_____ ###Markdown At any time we can call `to_dict()` on STAC objects to see how the STAC JSON is shaping up. Notice the asset is now set: ###Code import json print(json.dumps(item.to_dict(), indent=4)) ###Output { "type": "Feature", "stac_version": "1.0.0", "id": "local-image", "properties": { "datetime": "2022-03-29T12:47:45.754444Z" }, "geometry": { "type": "Polygon", "coordinates": [ [ [ 37.6616853489879, 55.73478197572927 ], [ 37.6616853489879, 55.73882710285011 ], [ 37.66573047610874, 55.73882710285011 ], [ 37.66573047610874, 55.73478197572927 ], [ 37.6616853489879, 55.73478197572927 ] ] ] }, "links": [ { "rel": "root", "href": null, "type": "application/json" }, { "rel": "parent", "href": null, "type": "application/json" } ], "assets": { "image": { "href": "/var/folders/9z/lnsvqfqj4gs2d1j1nw3vynrm0000gn/T/tmpzpx86d17/image.tif", "type": "image/tiff; application=geotiff" } }, "bbox": [ 37.6616853489879, 55.73478197572927, 37.66573047610874, 55.73882710285011 ], "stac_extensions": [] } ###Markdown Note that the link `href` properties are `null`. This is OK, as we're working with the STAC in memory. Next, we'll talk about writing the catalog out, and how to set those HREFs. Saving the catalog As the JSON above indicates, there's no HREFs set on these in-memory items. PySTAC uses the `self` link on STAC objects to track where the file lives. Because we haven't set them, they evaluate to `None`: ###Code print(catalog.get_self_href() is None) print(item.get_self_href() is None) ###Output True True ###Markdown In order to set them, we can use `normalize_hrefs`. This method will create a normalized set of HREFs for each STAC object in the catalog, according to the [best practices document](https://github.com/radiantearth/stac-spec/blob/v0.8.1/best-practices.mdcatalog-layout)'s recommendations on how to lay out a catalog. ###Code catalog.normalize_hrefs(os.path.join(tmp_dir.name, 'stac')) ###Output _____no_output_____ ###Markdown Now that we've normalized to a root directory (the temporary directory), we see that the `self` links are set: ###Code print(catalog.get_self_href()) print(item.get_self_href()) ###Output /var/folders/9z/lnsvqfqj4gs2d1j1nw3vynrm0000gn/T/tmpzpx86d17/stac/catalog.json /var/folders/9z/lnsvqfqj4gs2d1j1nw3vynrm0000gn/T/tmpzpx86d17/stac/local-image/local-image.json ###Markdown We can now call `save` on the catalog, which will recursively save all the STAC objects to their respective self HREFs.Save requires a `CatalogType` to be set. You can review the [API docs](https://pystac.readthedocs.io/en/stable/api.htmlcatalogtype) on `CatalogType` to see what each type means (unfortunately `help` doesn't show docstrings for attributes). ###Code catalog.save(catalog_type=pystac.CatalogType.SELF_CONTAINED) !ls {tmp_dir.name}/stac/* with open(item.self_href) as f: print(f.read()) with open(item.self_href) as f: print(f.read()) ###Output { "type": "Feature", "stac_version": "1.0.0", "id": "local-image", "properties": { "datetime": "2022-03-29T12:47:45.754444Z" }, "geometry": { "type": "Polygon", "coordinates": [ [ [ 37.6616853489879, 55.73478197572927 ], [ 37.6616853489879, 55.73882710285011 ], [ 37.66573047610874, 55.73882710285011 ], [ 37.66573047610874, 55.73478197572927 ], [ 37.6616853489879, 55.73478197572927 ] ] ] }, "links": [ { "rel": "root", "href": "../catalog.json", "type": "application/json" }, { "rel": "parent", "href": "../catalog.json", "type": "application/json" } ], "assets": { "image": { "href": "/var/folders/9z/lnsvqfqj4gs2d1j1nw3vynrm0000gn/T/tmpzpx86d17/image.tif", "type": "image/tiff; application=geotiff" } }, "bbox": [ 37.6616853489879, 55.73478197572927, 37.66573047610874, 55.73882710285011 ], "stac_extensions": [] } ###Markdown As you can see, all links are saved with relative paths. That's because we used `catalog_type=CatalogType.SELF_CONTAINED`. If we save an Absolute Published catalog, we'll see absolute paths: ###Code catalog.save(catalog_type=pystac.CatalogType.ABSOLUTE_PUBLISHED) ###Output _____no_output_____ ###Markdown Now the links included in the STAC item are all absolute: ###Code with open(item.get_self_href()) as f: print(f.read()) ###Output { "type": "Feature", "stac_version": "1.0.0", "id": "local-image", "properties": { "datetime": "2022-03-29T12:47:45.754444Z" }, "geometry": { "type": "Polygon", "coordinates": [ [ [ 37.6616853489879, 55.73478197572927 ], [ 37.6616853489879, 55.73882710285011 ], [ 37.66573047610874, 55.73882710285011 ], [ 37.66573047610874, 55.73478197572927 ], [ 37.6616853489879, 55.73478197572927 ] ] ] }, "links": [ { "rel": "root", "href": "/var/folders/9z/lnsvqfqj4gs2d1j1nw3vynrm0000gn/T/tmpzpx86d17/stac/catalog.json", "type": "application/json" }, { "rel": "parent", "href": "/var/folders/9z/lnsvqfqj4gs2d1j1nw3vynrm0000gn/T/tmpzpx86d17/stac/catalog.json", "type": "application/json" }, { "rel": "self", "href": "/var/folders/9z/lnsvqfqj4gs2d1j1nw3vynrm0000gn/T/tmpzpx86d17/stac/local-image/local-image.json", "type": "application/json" } ], "assets": { "image": { "href": "/var/folders/9z/lnsvqfqj4gs2d1j1nw3vynrm0000gn/T/tmpzpx86d17/image.tif", "type": "image/tiff; application=geotiff" } }, "bbox": [ 37.6616853489879, 55.73478197572927, 37.66573047610874, 55.73882710285011 ], "stac_extensions": [] } ###Markdown Notice that the Asset HREF is absolute in both cases. We can make the Asset HREF relative to the STAC Item by using `.make_all_asset_hrefs_relative()`: ###Code catalog.make_all_asset_hrefs_relative() catalog.save(catalog_type=pystac.CatalogType.SELF_CONTAINED) with open(item.get_self_href()) as f: print(f.read()) ###Output { "type": "Feature", "stac_version": "1.0.0", "id": "local-image", "properties": { "datetime": "2022-03-29T12:47:45.754444Z" }, "geometry": { "type": "Polygon", "coordinates": [ [ [ 37.6616853489879, 55.73478197572927 ], [ 37.6616853489879, 55.73882710285011 ], [ 37.66573047610874, 55.73882710285011 ], [ 37.66573047610874, 55.73478197572927 ], [ 37.6616853489879, 55.73478197572927 ] ] ] }, "links": [ { "rel": "root", "href": "../catalog.json", "type": "application/json" }, { "rel": "parent", "href": "../catalog.json", "type": "application/json" } ], "assets": { "image": { "href": "../../image.tif", "type": "image/tiff; application=geotiff" } }, "bbox": [ 37.6616853489879, 55.73478197572927, 37.66573047610874, 55.73882710285011 ], "stac_extensions": [] } ###Markdown Creating an Item that implements the EO extensionIn the code above our item only implemented the core STAC Item specification. With [extensions](https://github.com/radiantearth/stac-spec/tree/v0.9.0/extensions) we can record more information and add additional functionality to the Item. Given that we know this is a World View 3 image that has earth observation data, we can enable the [eo extension](https://github.com/radiantearth/stac-spec/tree/v0.8.1/extensions/eo) to add band information. To add eo information to an item we'll need to specify some more data. First, let's define the bands of World View 3: ###Code from pystac.extensions.eo import Band, EOExtension # From: https://www.spaceimagingme.com/downloads/sensors/datasheets/DG_WorldView3_DS_2014.pdf wv3_bands = [Band.create(name='Coastal', description='Coastal: 400 - 450 nm', common_name='coastal'), Band.create(name='Blue', description='Blue: 450 - 510 nm', common_name='blue'), Band.create(name='Green', description='Green: 510 - 580 nm', common_name='green'), Band.create(name='Yellow', description='Yellow: 585 - 625 nm', common_name='yellow'), Band.create(name='Red', description='Red: 630 - 690 nm', common_name='red'), Band.create(name='Red Edge', description='Red Edge: 705 - 745 nm', common_name='rededge'), Band.create(name='Near-IR1', description='Near-IR1: 770 - 895 nm', common_name='nir08'), Band.create(name='Near-IR2', description='Near-IR2: 860 - 1040 nm', common_name='nir09')] ###Output _____no_output_____ ###Markdown Notice that we used the `.create` method create new band information. We can now create an Item, enable the eo extension, add the band information and add it to our catalog: ###Code eo_item = pystac.Item(id='local-image-eo', geometry=footprint, bbox=bbox, datetime=datetime.utcnow(), properties={}) eo = EOExtension.ext(eo_item, add_if_missing=True) eo.apply(bands=wv3_bands) ###Output _____no_output_____ ###Markdown There are also [common metadata](https://github.com/radiantearth/stac-spec/blob/v0.9.0/item-spec/common-metadata.md) fields that we can use to capture additional information about the WorldView 3 imagery: ###Code eo_item.common_metadata.platform = "Maxar" eo_item.common_metadata.instruments = ["WorldView3"] eo_item.common_metadata.gsd = 0.3 print(eo_item) ###Output <Item id=local-image-eo> ###Markdown We can use the eo extension to add bands to the assets we add to the item: ###Code asset = pystac.Asset(href=img_path, media_type=pystac.MediaType.GEOTIFF) eo_item.add_asset("image", asset) eo_on_asset = EOExtension.ext(eo_item.assets["image"]) eo_on_asset.apply(wv3_bands) ###Output _____no_output_____ ###Markdown If we look at the asset's JSON representation, we can see the appropriate band indexes are set: ###Code asset.to_dict() ###Output _____no_output_____ ###Markdown Let's clear the in-memory catalog, add the EO item, and save to a new STAC: ###Code catalog.clear_items() list(catalog.get_items()) catalog.add_item(eo_item) list(catalog.get_items()) catalog.normalize_and_save(root_href=os.path.join(tmp_dir.name, 'stac-eo'), catalog_type=pystac.CatalogType.SELF_CONTAINED) ###Output _____no_output_____ ###Markdown Now, if we read the catalog from the filesystem, PySTAC recognizes that the item implements eo and so use it's functionality, e.g. getting the bands off the asset: ###Code catalog2 = pystac.read_file(os.path.join(tmp_dir.name, 'stac-eo', 'catalog.json')) assert isinstance(catalog2, pystac.Catalog) list(catalog2.get_items()) item: pystac.Item = next(catalog2.get_all_items()) assert EOExtension.has_extension(item) eo_on_asset = EOExtension.ext(item.assets["image"]) print(eo_on_asset.bands) ###Output [<Band name=Coastal>, <Band name=Blue>, <Band name=Green>, <Band name=Yellow>, <Band name=Red>, <Band name=Red Edge>, <Band name=Near-IR1>, <Band name=Near-IR2>] ###Markdown CollectionsCollections are a subtype of Catalog that have some additional properties to make them more searchable. They also can define common properties so that items in the collection don't have to duplicate common data for each item. Let's create a collection to hold common properties between two images from the Spacenet 5 challenge.First we'll get another image, and it's bbox and footprint: ###Code url2 = ('https://spacenet-dataset.s3.amazonaws.com/' 'spacenet/SN5_roads/train/AOI_7_Moscow/MS/' 'SN5_roads_train_AOI_7_Moscow_MS_chip997.tif') img_path2 = os.path.join(tmp_dir.name, 'image.tif') urllib.request.urlretrieve(url2, img_path2) bbox2, footprint2 = get_bbox_and_footprint(img_path2) ###Output _____no_output_____ ###Markdown We can take a look at the pydocs for Collection to see what information we need to supply in order to satisfy the spec. ###Code print(pystac.Collection.__doc__) ###Output A Collection extends the Catalog spec with additional metadata that helps enable discovery. Args: id : Identifier for the collection. Must be unique within the STAC. description : Detailed multi-line description to fully explain the collection. `CommonMark 0.28 syntax <https://commonmark.org/>`_ MAY be used for rich text representation. extent : Spatial and temporal extents that describe the bounds of all items contained within this Collection. title : Optional short descriptive one-line title for the collection. stac_extensions : Optional list of extensions the Collection implements. href : Optional HREF for this collection, which be set as the collection's self link's HREF. catalog_type : Optional catalog type for this catalog. Must be one of the values in :class`~pystac.CatalogType`. license : Collection's license(s) as a `SPDX License identifier <https://spdx.org/licenses/>`_, `various`, or `proprietary`. If collection includes data with multiple different licenses, use `various` and add a link for each. Defaults to 'proprietary'. keywords : Optional list of keywords describing the collection. providers : Optional list of providers of this Collection. summaries : An optional map of property summaries, either a set of values or statistics such as a range. extra_fields : Extra fields that are part of the top-level JSON properties of the Collection. ###Markdown Beyond what a Catalog reqiures, a Collection requires a license, and an `Extent` that describes the range of space and time that the items it hold occupy. ###Code print(pystac.Extent.__doc__) ###Output Describes the spatiotemporal extents of a Collection. Args: spatial : Potential spatial extent covered by the collection. temporal : Potential temporal extent covered by the collection. extra_fields : Dictionary containing additional top-level fields defined on the Extent object. ###Markdown An Extent is comprised of a SpatialExtent and a TemporalExtent. These hold one or more bounding boxes and time intervals, respectively, that completely cover the items contained in the collections.Let's start with creating two new items - these will be core Items. We can set these items to implement the `eo` extension by specifying them in the `stac_extensions`. ###Code collection_item = pystac.Item(id='local-image-col-1', geometry=footprint, bbox=bbox, datetime=datetime.utcnow(), properties={}) collection_item.common_metadata.gsd = 0.3 collection_item.common_metadata.platform = 'Maxar' collection_item.common_metadata.instruments = ['WorldView3'] asset = pystac.Asset(href=img_path, media_type=pystac.MediaType.GEOTIFF) collection_item.add_asset("image", asset) eo = EOExtension.ext(collection_item.assets["image"], add_if_missing=True) eo.apply(wv3_bands) collection_item2 = pystac.Item(id='local-image-col-2', geometry=footprint2, bbox=bbox2, datetime=datetime.utcnow(), properties={}) collection_item2.common_metadata.gsd = 0.3 collection_item2.common_metadata.platform = 'Maxar' collection_item2.common_metadata.instruments = ['WorldView3'] asset2 = pystac.Asset(href=img_path, media_type=pystac.MediaType.GEOTIFF) collection_item2.add_asset("image", asset2) eo = EOExtension.ext(collection_item2.assets["image"], add_if_missing=True) eo.apply([ band for band in wv3_bands if band.name in ["Red", "Green", "Blue"] ]) ###Output _____no_output_____ ###Markdown We can use our two items' metadata to find out what the proper bounds are: ###Code from shapely.geometry import shape unioned_footprint = shape(footprint).union(shape(footprint2)) collection_bbox = list(unioned_footprint.bounds) spatial_extent = pystac.SpatialExtent(bboxes=[collection_bbox]) collection_interval = sorted([collection_item.datetime, collection_item2.datetime]) temporal_extent = pystac.TemporalExtent(intervals=[collection_interval]) collection_extent = pystac.Extent(spatial=spatial_extent, temporal=temporal_extent) collection = pystac.Collection(id='wv3-images', description='Spacenet 5 images over Moscow', extent=collection_extent, license='CC-BY-SA-4.0') ###Output _____no_output_____ ###Markdown Now if we add our items to our Collection, and our Collection to our Catalog, we get the following STAC that can be saved: ###Code collection.add_items([collection_item, collection_item2]) catalog.clear_items() catalog.clear_children() catalog.add_child(collection) catalog.describe() catalog.normalize_and_save(root_href=os.path.join(tmp_dir.name, 'stac-collection'), catalog_type=pystac.CatalogType.SELF_CONTAINED) ###Output _____no_output_____ ###Markdown CleanupDon't forget to clean up the temporary directory! ###Code tmp_dir.cleanup() ###Output _____no_output_____ ###Markdown Creating a STAC of imagery from Spacenet 5 data Now, let's take what we've learned and create a Catalog with more data in it. Allowing PySTAC to read from AWS S3PySTAC aims to be virtually zero-dependency (notwithstanding the why-isn't-this-in-stdlib datetime-util), so it doesn't have the ability to read from or write to anything but the local file system. However, we can hook into PySTAC's IO in the following way. Learn more about how to customize I/O in STAC from the [documentation](https://pystac.readthedocs.io/en/stable/concepts.htmli-o-in-pystac): ###Code from typing import Union, Any from urllib.parse import urlparse import boto3 from pystac import Link from pystac.stac_io import DefaultStacIO class CustomStacIO(DefaultStacIO): def __init__(self): self.s3 = boto3.resource("s3") def read_text( self, source: Union[str, Link], *args: Any, **kwargs: Any ) -> str: parsed = urlparse(uri) if parsed.scheme == "s3": bucket = parsed.netloc key = parsed.path[1:] obj = self.s3.Object(bucket, key) return obj.get()["Body"].read().decode("utf-8") else: return super().read_text(source, *args, **kwargs) def write_text( self, dest: Union[str, Link], txt: str, *args: Any, **kwargs: Any ) -> None: parsed = urlparse(uri) if parsed.scheme == "s3": bucket = parsed.netloc key = parsed.path[1:] self.s3.Object(bucket, key).put(Body=txt, ContentEncoding="utf-8") else: super().write_text(dest, txt, *args, **kwargs) ###Output _____no_output_____ ###Markdown We'll need a utility to list keys for reading the lists of files from S3: ###Code # From https://alexwlchan.net/2017/07/listing-s3-keys/ from botocore import UNSIGNED from botocore.config import Config def get_s3_keys(bucket, prefix): """Generate all the keys in an S3 bucket.""" s3 = boto3.client('s3', config=Config(signature_version=UNSIGNED)) kwargs = {'Bucket': bucket, 'Prefix': prefix} while True: resp = s3.list_objects_v2(**kwargs) for obj in resp['Contents']: yield obj['Key'] try: kwargs['ContinuationToken'] = resp['NextContinuationToken'] except KeyError: break ###Output _____no_output_____ ###Markdown Let's make a STAC of imagery over Moscow as part of the Spacenet 5 challenge. As a first step, we can list out the imagery and extract IDs from each of the chips. ###Code moscow_training_chip_uris = list(get_s3_keys(bucket='spacenet-dataset', prefix='spacenet/SN5_roads/train/AOI_7_Moscow/PS-MS/')) import re chip_id_to_data = {} def get_chip_id(uri): return re.search(r'.*\_chip(\d+)\.', uri).group(1) for uri in moscow_training_chip_uris: chip_id = get_chip_id(uri) chip_id_to_data[chip_id] = { 'img': 's3://spacenet-dataset/{}'.format(uri) } ###Output _____no_output_____ ###Markdown For this tutorial, we'll only take a subset of the data. ###Code chip_id_to_data = dict(list(chip_id_to_data.items())[:10]) chip_id_to_data ###Output _____no_output_____ ###Markdown Let's turn each of those chips into a STAC Item that represents the image. ###Code chip_id_to_items = {} ###Output _____no_output_____ ###Markdown We'll create core `Item`s for our imagery, but mark them with the `eo` extension as we did above, and store the `eo` data in a `Collection`.Note that the image CRS is in WGS:84 (Lat/Lng). If it wasn't, we'd have to reproject the footprint to WGS:84 in order to be compliant with the spec (which can easily be done with [pyproj](https://github.com/pyproj4/pyproj)).Here we're taking advantage of `rasterio`'s ability to read S3 URIs, which only grabs the GeoTIFF metadata and does not pull the whole file down. ###Code import os os.environ["AWS_NO_SIGN_REQUEST"] = "true" for chip_id in chip_id_to_data: img_uri = chip_id_to_data[chip_id]['img'] print('Processing {}'.format(img_uri)) bbox, footprint = get_bbox_and_footprint(img_uri) item = pystac.Item(id='img_{}'.format(chip_id), geometry=footprint, bbox=bbox, datetime=datetime.utcnow(), properties={}) item.common_metadata.gsd = 0.3 item.common_metadata.platform = 'Maxar' item.common_metadata.instruments = ['WorldView3'] eo = EOExtension.ext(item, add_if_missing=True) eo.bands = wv3_bands asset = pystac.Asset(href=img_uri, media_type=pystac.MediaType.COG) item.add_asset(key='ps-ms', asset=asset) eo = EOExtension.ext(item.assets["ps-ms"]) eo.bands = wv3_bands chip_id_to_items[chip_id] = item ###Output Processing s3://spacenet-dataset/spacenet/SN5_roads/train/AOI_7_Moscow/PS-MS/SN5_roads_train_AOI_7_Moscow_PS-MS_chip0.tif Processing s3://spacenet-dataset/spacenet/SN5_roads/train/AOI_7_Moscow/PS-MS/SN5_roads_train_AOI_7_Moscow_PS-MS_chip1.tif Processing s3://spacenet-dataset/spacenet/SN5_roads/train/AOI_7_Moscow/PS-MS/SN5_roads_train_AOI_7_Moscow_PS-MS_chip10.tif Processing s3://spacenet-dataset/spacenet/SN5_roads/train/AOI_7_Moscow/PS-MS/SN5_roads_train_AOI_7_Moscow_PS-MS_chip100.tif Processing s3://spacenet-dataset/spacenet/SN5_roads/train/AOI_7_Moscow/PS-MS/SN5_roads_train_AOI_7_Moscow_PS-MS_chip1000.tif Processing s3://spacenet-dataset/spacenet/SN5_roads/train/AOI_7_Moscow/PS-MS/SN5_roads_train_AOI_7_Moscow_PS-MS_chip1001.tif Processing s3://spacenet-dataset/spacenet/SN5_roads/train/AOI_7_Moscow/PS-MS/SN5_roads_train_AOI_7_Moscow_PS-MS_chip1002.tif Processing s3://spacenet-dataset/spacenet/SN5_roads/train/AOI_7_Moscow/PS-MS/SN5_roads_train_AOI_7_Moscow_PS-MS_chip1003.tif Processing s3://spacenet-dataset/spacenet/SN5_roads/train/AOI_7_Moscow/PS-MS/SN5_roads_train_AOI_7_Moscow_PS-MS_chip1004.tif Processing s3://spacenet-dataset/spacenet/SN5_roads/train/AOI_7_Moscow/PS-MS/SN5_roads_train_AOI_7_Moscow_PS-MS_chip1005.tif ###Markdown Creating the CollectionAll of these images are over Moscow. In Spacenet 5, we have a couple cities that have imagery; a good way to separate these collections of imagery. We can store all of the common `eo` metadata in the collection. ###Code from shapely.geometry import (shape, MultiPolygon) footprints = list(map(lambda i: shape(i.geometry).envelope, chip_id_to_items.values())) collection_bbox = MultiPolygon(footprints).bounds spatial_extent = pystac.SpatialExtent(bboxes=[collection_bbox]) datetimes = sorted(list(map(lambda i: i.datetime, chip_id_to_items.values()))) temporal_extent = pystac.TemporalExtent(intervals=[[datetimes[0], datetimes[-1]]]) collection_extent = pystac.Extent(spatial=spatial_extent, temporal=temporal_extent) collection = pystac.Collection(id='wv3-images', description='Spacenet 5 images over Moscow', extent=collection_extent, license='CC-BY-SA-4.0') collection.add_items(chip_id_to_items.values()) collection.describe() ###Output * <Collection id=wv3-images> * <Item id=img_0> * <Item id=img_1> * <Item id=img_10> * <Item id=img_100> * <Item id=img_1000> * <Item id=img_1001> * <Item id=img_1002> * <Item id=img_1003> * <Item id=img_1004> * <Item id=img_1005> ###Markdown Now, we can create a Catalog and add the collection. ###Code catalog = pystac.Catalog(id='spacenet5', description='Spacenet 5 Data (Test)') catalog.add_child(collection) catalog.describe() ###Output * <Catalog id=spacenet5> * <Collection id=wv3-images> * <Item id=img_0> * <Item id=img_1> * <Item id=img_10> * <Item id=img_100> * <Item id=img_1000> * <Item id=img_1001> * <Item id=img_1002> * <Item id=img_1003> * <Item id=img_1004> * <Item id=img_1005> ###Markdown Adding items with the label extension to the Spacenet 5 catalogWe can use the [label extension](https://github.com/radiantearth/stac-spec/tree/v0.8.1/extensions/label) of the STAC spec to represent the training data in our STAC. For this, we need to grab the URIs of the GeoJSON of roads: ###Code moscow_training_geojson_uris = list(get_s3_keys(bucket='spacenet-dataset', prefix='spacenet/SN5_roads/train/AOI_7_Moscow/geojson_roads_speed/')) for uri in moscow_training_geojson_uris: chip_id = get_chip_id(uri) if chip_id in chip_id_to_data: chip_id_to_data[chip_id]['label'] = 's3://spacenet-dataset/{}'.format(uri) ###Output _____no_output_____ ###Markdown We'll add the items to their own subcatalog; since they don't inherit the Collection's `eo` properties, they shouldn't go in the Collection. ###Code label_catalog = pystac.Catalog(id='spacenet-data-labels', description='Labels for Spacenet 5') catalog.add_child(label_catalog) ###Output _____no_output_____ ###Markdown To see the required fields for the label extension we can check the pydocs on the `apply` method of the extension: ###Code from pystac.extensions.label import LabelExtension print(LabelExtension.apply.__doc__) ###Output Applies label extension properties to the extended Item. Args: label_description : A description of the label, how it was created, and what it is recommended for label_type : An Enum of either vector label type or raster label type. Use one of :class:`~pystac.LabelType`. label_properties : These are the names of the property field(s) in each Feature of the label asset's FeatureCollection that contains the classes (keywords from label:classes if the property defines classes). If labels are rasters, this should be None. label_classes : Optional, but required if using categorical data. A list of :class:`LabelClasses` instances defining the list of possible class names for each label:properties. (e.g., tree, building, car, hippo) label_tasks : Recommended to be a subset of 'regression', 'classification', 'detection', or 'segmentation', but may be an arbitrary value. label_methods: Recommended to be a subset of 'automated' or 'manual', but may be an arbitrary value. label_overviews : Optional list of :class:`LabelOverview` instances that store counts (for classification-type data) or summary statistics (for continuous numerical/regression data). ###Markdown This loop creates our label items and associates each to the appropriate source image Item. ###Code from pystac.extensions.label import LabelType for chip_id in chip_id_to_data: img_item = collection.get_item('img_{}'.format(chip_id)) assert img_item label_uri = chip_id_to_data[chip_id]['label'] label_item = pystac.Item(id='label_{}'.format(chip_id), geometry=img_item.geometry, bbox=img_item.bbox, datetime=datetime.utcnow(), properties={}) label = LabelExtension.ext(label_item, add_if_missing=True) label.apply(label_description="SpaceNet 5 Road labels", label_type=LabelType.VECTOR, label_tasks=['segmentation', 'regression']) label.add_source(img_item) label.add_geojson_labels(label_uri) label_catalog.add_item(label_item) ###Output _____no_output_____ ###Markdown Now we have a STAC of training data! ###Code catalog.describe() label_item = catalog.get_child('spacenet-data-labels').get_item('label_1') label_item.to_dict() ###Output _____no_output_____ ###Markdown How to create STAC Catalogs STAC Community Sprint, Arlington, November 7th 2019 This notebook runs through some of the basics of using PySTAC to create a static STAC. It was part of a 30 minute presentation at the [community STAC sprint](https://github.com/radiantearth/community-sprints/tree/master/11052019-arlignton-va) in Arlington, VA in November 2019. This tutorial will require the `boto3`, `rasterio`, and `shapely` libraries: ###Code !pip install boto3 !pip install rasterio !pip install shapely ###Output Requirement already satisfied: boto3 in /Users/rob/proj/stac/pystac/venv/lib/python3.6/site-packages (1.10.8) Requirement already satisfied: botocore<1.14.0,>=1.13.8 in /Users/rob/proj/stac/pystac/venv/lib/python3.6/site-packages (from boto3) (1.13.8) Requirement already satisfied: s3transfer<0.3.0,>=0.2.0 in /Users/rob/proj/stac/pystac/venv/lib/python3.6/site-packages (from boto3) (0.2.1) Requirement already satisfied: jmespath<1.0.0,>=0.7.1 in /Users/rob/proj/stac/pystac/venv/lib/python3.6/site-packages (from boto3) (0.9.4) Requirement already satisfied: urllib3<1.26,>=1.20; python_version >= "3.4" in /Users/rob/proj/stac/pystac/venv/lib/python3.6/site-packages (from botocore<1.14.0,>=1.13.8->boto3) (1.25.6) Requirement already satisfied: docutils<0.16,>=0.10 in /Users/rob/proj/stac/pystac/venv/lib/python3.6/site-packages (from botocore<1.14.0,>=1.13.8->boto3) (0.15.2) Requirement already satisfied: python-dateutil<3.0.0,>=2.1; python_version >= "2.7" in /Users/rob/proj/stac/pystac/venv/lib/python3.6/site-packages (from botocore<1.14.0,>=1.13.8->boto3) (2.8.1) Requirement already satisfied: six>=1.5 in /Users/rob/proj/stac/pystac/venv/lib/python3.6/site-packages (from python-dateutil<3.0.0,>=2.1; python_version >= "2.7"->botocore<1.14.0,>=1.13.8->boto3) (1.12.0) WARNING: You are using pip version 20.1.1; however, version 20.2 is available. You should consider upgrading via the '/Users/rob/proj/stac/pystac/venv/bin/python -m pip install --upgrade pip' command. Requirement already satisfied: rasterio in /Users/rob/proj/stac/pystac/venv/lib/python3.6/site-packages (1.1.0) Requirement already satisfied: numpy in /Users/rob/proj/stac/pystac/venv/lib/python3.6/site-packages (from rasterio) (1.17.3) Requirement already satisfied: snuggs>=1.4.1 in /Users/rob/proj/stac/pystac/venv/lib/python3.6/site-packages (from rasterio) (1.4.7) Requirement already satisfied: click<8,>=4.0 in /Users/rob/proj/stac/pystac/venv/lib/python3.6/site-packages (from rasterio) (7.0) Requirement already satisfied: click-plugins in /Users/rob/proj/stac/pystac/venv/lib/python3.6/site-packages (from rasterio) (1.1.1) Requirement already satisfied: attrs in /Users/rob/proj/stac/pystac/venv/lib/python3.6/site-packages (from rasterio) (19.3.0) Requirement already satisfied: cligj>=0.5 in /Users/rob/proj/stac/pystac/venv/lib/python3.6/site-packages (from rasterio) (0.5.0) Requirement already satisfied: affine in /Users/rob/proj/stac/pystac/venv/lib/python3.6/site-packages (from rasterio) (2.3.0) Requirement already satisfied: pyparsing>=2.1.6 in /Users/rob/proj/stac/pystac/venv/lib/python3.6/site-packages (from snuggs>=1.4.1->rasterio) (2.4.2) WARNING: You are using pip version 20.1.1; however, version 20.2 is available. You should consider upgrading via the '/Users/rob/proj/stac/pystac/venv/bin/python -m pip install --upgrade pip' command. Requirement already satisfied: shapely in /Users/rob/proj/stac/pystac/venv/lib/python3.6/site-packages (1.6.4.post2) WARNING: You are using pip version 20.1.1; however, version 20.2 is available. You should consider upgrading via the '/Users/rob/proj/stac/pystac/venv/bin/python -m pip install --upgrade pip' command. ###Markdown We can import pystac and access most of the functionality we need with the single import: ###Code import pystac ###Output _____no_output_____ ###Markdown Creating a catalog from a local file To give us some material to work with, lets download a single image from the [Spacenet 5 challenge](https://www.topcoder.com/challenges/30099956). We'll use a temporary directory to save off our single-item STAC. ###Code import os import urllib.request from tempfile import TemporaryDirectory tmp_dir = TemporaryDirectory() img_path = os.path.join(tmp_dir.name, 'image.tif') url = ('https://spacenet-dataset.s3.amazonaws.com/' 'spacenet/SN5_roads/train/AOI_7_Moscow/MS/' 'SN5_roads_train_AOI_7_Moscow_MS_chip996.tif') urllib.request.urlretrieve(url, img_path) ###Output _____no_output_____ ###Markdown We want to create a Catalog. Let's check the pydocs for `Catalog` to see what information we'll need. (We use `__doc__` instead of `help()` here to avoid printing out all the docs for the class.) ###Code print(pystac.Catalog.__doc__) ###Output A PySTAC Catalog represents a STAC catalog in memory. A Catalog is a :class:`~pystac.STACObject` that may contain children, which are instances of :class:`~pystac.Catalog` or :class:`~pystac.Collection`, as well as :class:`~pystac.Item` s. Args: id (str): Identifier for the catalog. Must be unique within the STAC. description (str): Detailed multi-line description to fully explain the catalog. `CommonMark 0.28 syntax <http://commonmark.org/>`_ MAY be used for rich text representation. title (str or None): Optional short descriptive one-line title for the catalog. stac_extensions (List[str]): Optional list of extensions the Catalog implements. href (str or None): Optional HREF for this catalog, which be set as the catalog's self link's HREF. Attributes: id (str): Identifier for the catalog. description (str): Detailed multi-line description to fully explain the catalog. title (str or None): Optional short descriptive one-line title for the catalog. stac_extensions (List[str] or None): Optional list of extensions the Catalog implements. extra_fields (dict or None): Extra fields that are part of the top-level JSON properties of the Catalog. links (List[Link]): A list of :class:`~pystac.Link` objects representing all links associated with this Catalog. ###Markdown Let's just give an ID and a description. We don't have to worry about the HREF right now; that will be set later. ###Code catalog = pystac.Catalog(id='test-catalog', description='Tutorial catalog.') ###Output _____no_output_____ ###Markdown There are no children or items in the catalog, since we haven't added anything yet. ###Code print(list(catalog.get_children())) print(list(catalog.get_items())) ###Output [] [] ###Markdown We'll now create an Item to represent the image. Check the pydocs to see what you need to supply: ###Code print(pystac.Item.__doc__) ###Output An Item is the core granular entity in a STAC, containing the core metadata that enables any client to search or crawl online catalogs of spatial 'assets' - satellite imagery, derived data, DEM's, etc. Args: id (str): Provider identifier. Must be unique within the STAC. geometry (dict): Defines the full footprint of the asset represented by this item, formatted according to `RFC 7946, section 3.1 (GeoJSON) <https://tools.ietf.org/html/rfc7946>`_. bbox (List[float] or None): Bounding Box of the asset represented by this item using either 2D or 3D geometries. The length of the array must be 2*n where n is the number of dimensions. Could also be None in the case of a null geometry. datetime (datetime or None): Datetime associated with this item. If None, a start_datetime and end_datetime must be supplied in the properties. properties (dict): A dictionary of additional metadata for the item. stac_extensions (List[str]): Optional list of extensions the Item implements. href (str or None): Optional HREF for this item, which be set as the item's self link's HREF. collection (Collection or str): The Collection or Collection ID that this item belongs to. extra_fields (dict or None): Extra fields that are part of the top-level JSON properties of the Item. Attributes: id (str): Provider identifier. Unique within the STAC. geometry (dict): Defines the full footprint of the asset represented by this item, formatted according to `RFC 7946, section 3.1 (GeoJSON) <https://tools.ietf.org/html/rfc7946>`_. bbox (List[float] or None): Bounding Box of the asset represented by this item using either 2D or 3D geometries. The length of the array is 2*n where n is the number of dimensions. Could also be None in the case of a null geometry. datetime (datetime or None): Datetime associated with this item. If None, the start_datetime and end_datetime in the common_metadata will supply the datetime range of the Item. properties (dict): A dictionary of additional metadata for the item. stac_extensions (List[str] or None): Optional list of extensions the Item implements. collection (Collection or None): Collection that this item is a part of. links (List[Link]): A list of :class:`~pystac.Link` objects representing all links associated with this STACObject. assets (Dict[str, Asset]): Dictionary of asset objects that can be downloaded, each with a unique key. collection_id (str or None): The Collection ID that this item belongs to, if any. extra_fields (dict or None): Extra fields that are part of the top-level JSON properties of the Item. ###Markdown Using [rasterio](https://rasterio.readthedocs.io/en/stable/), we can pull out the bounding box of the image to use for the image metadata. If the image contained a NoData border, we would ideally pull out the footprint and save it as the geometry; in this case, we're working with a small chip that most likely has no NoData values. ###Code import rasterio from shapely.geometry import Polygon, mapping def get_bbox_and_footprint(raster_uri): with rasterio.open(raster_uri) as ds: bounds = ds.bounds bbox = [bounds.left, bounds.bottom, bounds.right, bounds.top] footprint = Polygon([ [bounds.left, bounds.bottom], [bounds.left, bounds.top], [bounds.right, bounds.top], [bounds.right, bounds.bottom] ]) return (bbox, mapping(footprint)) bbox, footprint = get_bbox_and_footprint(img_path) print(bbox) print(footprint) ###Output [37.6616853489879, 55.73478197572927, 37.66573047610874, 55.73882710285011] {'type': 'Polygon', 'coordinates': (((37.6616853489879, 55.73478197572927), (37.6616853489879, 55.73882710285011), (37.66573047610874, 55.73882710285011), (37.66573047610874, 55.73478197572927), (37.6616853489879, 55.73478197572927)),)} ###Markdown We're also using `datetime.utcnow()` to supply the required datetime property for our Item. Since this is a required property, you might often find yourself making up a time to fill in if you don't know the exact capture time. ###Code from datetime import datetime item = pystac.Item(id='local-image', geometry=footprint, bbox=bbox, datetime=datetime.utcnow(), properties={}) ###Output _____no_output_____ ###Markdown We haven't added it to a catalog yet, so it's parent isn't set. Once we add it to the catalog, we can see it correctly links to it's parent. ###Code item.get_parent() is None catalog.add_item(item) item.get_parent() ###Output _____no_output_____ ###Markdown `describe()` is a useful method on `Catalog` - but be careful when using it on large catalogs, as it will walk the entire tree of the STAC. ###Code catalog.describe() ###Output * <Catalog id=test-catalog> * <Item id=local-image> ###Markdown Adding AssetsWe've created an Item, but there aren't any assets associated with it. Let's create one: ###Code print(pystac.Asset.__doc__) item.add_asset( key='image', asset=pystac.Asset( href=img_path, media_type=pystac.MediaType.GEOTIFF ) ) ###Output _____no_output_____ ###Markdown At any time we can call `to_dict()` on STAC objects to see how the STAC JSON is shaping up. Notice the asset is now set: ###Code import json print(json.dumps(item.to_dict(), indent=4)) ###Output { "type": "Feature", "stac_version": "1.0.0-beta.2", "id": "local-image", "properties": { "datetime": "2020-08-03T03:47:48.786929Z" }, "geometry": { "type": "Polygon", "coordinates": [ [ [ 37.6616853489879, 55.73478197572927 ], [ 37.6616853489879, 55.73882710285011 ], [ 37.66573047610874, 55.73882710285011 ], [ 37.66573047610874, 55.73478197572927 ], [ 37.6616853489879, 55.73478197572927 ] ] ] }, "links": [ { "rel": "root", "href": null, "type": "application/json" }, { "rel": "parent", "href": null, "type": "application/json" } ], "assets": { "image": { "href": "/var/folders/sv/zr8j0t4j1f726nhlt3vb8c300000gn/T/tmpt1wuelid/image.tif", "type": "image/tiff; application=geotiff" } }, "bbox": [ 37.6616853489879, 55.73478197572927, 37.66573047610874, 55.73882710285011 ] } ###Markdown Note that the link `href` properties are `null`. This is OK, as we're working with the STAC in memory. Next, we'll talk about writing the catalog out, and how to set those HREFs. Saving the catalog As the JSON above indicates, there's no HREFs set on these in-memory items. PySTAC uses the `self` link on STAC objects to track where the file lives. Because we haven't set them, they evaluate to `None`: ###Code print(catalog.get_self_href() is None) print(item.get_self_href() is None) ###Output True True ###Markdown In order to set them, we can use `normalize_hrefs`. This method will create a normalized set of HREFs for each STAC object in the catalog, according to the [best practices document](https://github.com/radiantearth/stac-spec/blob/v0.8.1/best-practices.mdcatalog-layout)'s recommendations on how to lay out a catalog. ###Code catalog.normalize_hrefs(os.path.join(tmp_dir.name, 'stac')) ###Output _____no_output_____ ###Markdown Now that we've normalized to a root directory (the temporary directory), we see that the `self` links are set: ###Code print(catalog.get_self_href()) print(item.get_self_href()) ###Output /var/folders/sv/zr8j0t4j1f726nhlt3vb8c300000gn/T/tmpt1wuelid/stac/catalog.json /var/folders/sv/zr8j0t4j1f726nhlt3vb8c300000gn/T/tmpt1wuelid/stac/local-image/local-image.json ###Markdown We can now call `save` on the catalog, which will recursively save all the STAC objects to their respective self HREFs.Save requires a `CatalogType` to be set. You can review the [API docs](https://pystac.readthedocs.io/en/stable/api.htmlcatalogtype) on `CatalogType` to see what each type means (unfortunately `help` doesn't show docstrings for attributes). ###Code catalog.save(catalog_type=pystac.CatalogType.SELF_CONTAINED) !ls {tmp_dir.name}/stac/* with open(catalog.get_self_href()) as f: print(f.read()) with open(item.get_self_href()) as f: print(f.read()) ###Output { "type": "Feature", "stac_version": "1.0.0-beta.2", "id": "local-image", "properties": { "datetime": "2020-08-03T03:47:48.786929Z" }, "geometry": { "type": "Polygon", "coordinates": [ [ [ 37.6616853489879, 55.73478197572927 ], [ 37.6616853489879, 55.73882710285011 ], [ 37.66573047610874, 55.73882710285011 ], [ 37.66573047610874, 55.73478197572927 ], [ 37.6616853489879, 55.73478197572927 ] ] ] }, "links": [ { "rel": "root", "href": "../catalog.json", "type": "application/json" }, { "rel": "parent", "href": "../catalog.json", "type": "application/json" } ], "assets": { "image": { "href": "/var/folders/sv/zr8j0t4j1f726nhlt3vb8c300000gn/T/tmpt1wuelid/image.tif", "type": "image/tiff; application=geotiff" } }, "bbox": [ 37.6616853489879, 55.73478197572927, 37.66573047610874, 55.73882710285011 ] } ###Markdown As you can see, all links are saved with relative paths. That's because we used `catalog_type=CatalogType.SELF_CONTAINED`. If we save an Absolute Published catalog, we'll see absolute paths: ###Code catalog.save(catalog_type=pystac.CatalogType.ABSOLUTE_PUBLISHED) ###Output _____no_output_____ ###Markdown Now the links included in the STAC item are all absolute: ###Code with open(item.get_self_href()) as f: print(f.read()) ###Output { "type": "Feature", "stac_version": "1.0.0-beta.2", "id": "local-image", "properties": { "datetime": "2020-08-03T03:47:48.786929Z" }, "geometry": { "type": "Polygon", "coordinates": [ [ [ 37.6616853489879, 55.73478197572927 ], [ 37.6616853489879, 55.73882710285011 ], [ 37.66573047610874, 55.73882710285011 ], [ 37.66573047610874, 55.73478197572927 ], [ 37.6616853489879, 55.73478197572927 ] ] ] }, "links": [ { "rel": "self", "href": "/var/folders/sv/zr8j0t4j1f726nhlt3vb8c300000gn/T/tmpt1wuelid/stac/local-image/local-image.json", "type": "application/json" }, { "rel": "root", "href": "/var/folders/sv/zr8j0t4j1f726nhlt3vb8c300000gn/T/tmpt1wuelid/stac/catalog.json", "type": "application/json" }, { "rel": "parent", "href": "/var/folders/sv/zr8j0t4j1f726nhlt3vb8c300000gn/T/tmpt1wuelid/stac/catalog.json", "type": "application/json" } ], "assets": { "image": { "href": "/var/folders/sv/zr8j0t4j1f726nhlt3vb8c300000gn/T/tmpt1wuelid/image.tif", "type": "image/tiff; application=geotiff" } }, "bbox": [ 37.6616853489879, 55.73478197572927, 37.66573047610874, 55.73882710285011 ] } ###Markdown Notice that the Asset HREF is absolute in both cases. We can make the Asset HREF relative to the STAC Item by using `.make_all_asset_hrefs_relative()`: ###Code catalog.make_all_asset_hrefs_relative() catalog.save(catalog_type=pystac.CatalogType.SELF_CONTAINED) with open(item.get_self_href()) as f: print(f.read()) ###Output { "type": "Feature", "stac_version": "1.0.0-beta.2", "id": "local-image", "properties": { "datetime": "2020-08-03T03:47:48.786929Z" }, "geometry": { "type": "Polygon", "coordinates": [ [ [ 37.6616853489879, 55.73478197572927 ], [ 37.6616853489879, 55.73882710285011 ], [ 37.66573047610874, 55.73882710285011 ], [ 37.66573047610874, 55.73478197572927 ], [ 37.6616853489879, 55.73478197572927 ] ] ] }, "links": [ { "rel": "root", "href": "../catalog.json", "type": "application/json" }, { "rel": "parent", "href": "../catalog.json", "type": "application/json" } ], "assets": { "image": { "href": "../../image.tif", "type": "image/tiff; application=geotiff" } }, "bbox": [ 37.6616853489879, 55.73478197572927, 37.66573047610874, 55.73882710285011 ] } ###Markdown Creating an Item that implements the EO extensionIn the code above our item only implemented the core STAC Item specification. With [extensions](https://github.com/radiantearth/stac-spec/tree/v0.9.0/extensions) we can record more information and add additional functionality to the Item. Given that we know this is a World View 3 image that has earth observation data, we can enable the [eo extension](https://github.com/radiantearth/stac-spec/tree/v0.8.1/extensions/eo) to add band information. To add eo information to an item we'll need to specify some more data. First, let's define the bands of World View 3: ###Code from pystac.extensions.eo import Band # From: https://www.spaceimagingme.com/downloads/sensors/datasheets/DG_WorldView3_DS_2014.pdf wv3_bands = [Band.create(name='Coastal', description='Coastal: 400 - 450 nm', common_name='coastal'), Band.create(name='Blue', description='Blue: 450 - 510 nm', common_name='blue'), Band.create(name='Green', description='Green: 510 - 580 nm', common_name='green'), Band.create(name='Yellow', description='Yellow: 585 - 625 nm', common_name='yellow'), Band.create(name='Red', description='Red: 630 - 690 nm', common_name='red'), Band.create(name='Red Edge', description='Red Edge: 705 - 745 nm', common_name='rededge'), Band.create(name='Near-IR1', description='Near-IR1: 770 - 895 nm', common_name='nir08'), Band.create(name='Near-IR2', description='Near-IR2: 860 - 1040 nm', common_name='nir09')] ###Output _____no_output_____ ###Markdown Notice that we used the `.create` method create new band information. We can now create an Item, enable the eo extension, add the band information and add it to our catalog: ###Code eo_item = pystac.Item(id='local-image-eo', geometry=footprint, bbox=bbox, datetime=datetime.utcnow(), properties={}) eo_item.ext.enable(pystac.Extensions.EO) eo_item.ext.eo.apply(bands=wv3_bands) ###Output _____no_output_____ ###Markdown There are also [common metadata](https://github.com/radiantearth/stac-spec/blob/v0.9.0/item-spec/common-metadata.md) fields that we can use to capture additional information about the WorldView 3 imagery: ###Code eo_item.common_metadata.platform = "Maxar" eo_item.common_metadata.instrument="WorldView3" eo_item.common_metadata.gsd = 0.3 eo_item ###Output _____no_output_____ ###Markdown We can use the eo extension to add bands to the assets we add to the item: ###Code eo_ext = eo_item.ext.eo help(eo_ext.set_bands) #eo_item.add_asset(key='image', asset=) asset = pystac.Asset(href=img_path, media_type=pystac.MediaType.GEOTIFF) eo_ext.set_bands(wv3_bands, asset) eo_item.add_asset("image", asset) ###Output _____no_output_____ ###Markdown If we look at the asset's JSON representation, we can see the appropriate band indexes are set: ###Code asset.to_dict() ###Output _____no_output_____ ###Markdown Let's clear the in-memory catalog, add the EO item, and save to a new STAC: ###Code catalog.clear_items() list(catalog.get_items()) catalog.add_item(eo_item) list(catalog.get_items()) catalog.normalize_and_save(root_href=os.path.join(tmp_dir.name, 'stac-eo'), catalog_type=pystac.CatalogType.SELF_CONTAINED) ###Output _____no_output_____ ###Markdown Now, if we read the catalog from the filesystem, PySTAC recognizes that the item implements eo and so use it's functionality, e.g. getting the bands off the asset: ###Code catalog2 = pystac.read_file(os.path.join(tmp_dir.name, 'stac-eo', 'catalog.json')) list(catalog2.get_items()) item = next(catalog2.get_all_items()) item.ext.implements('eo') item.ext.eo.get_bands(item.assets['image']) ###Output _____no_output_____ ###Markdown CollectionsCollections are a subtype of Catalog that have some additional properties to make them more searchable. They also can define common properties so that items in the collection don't have to duplicate common data for each item. Let's create a collection to hold common properties between two images from the Spacenet 5 challenge.First we'll get another image, and it's bbox and footprint: ###Code url2 = ('https://spacenet-dataset.s3.amazonaws.com/' 'spacenet/SN5_roads/train/AOI_7_Moscow/MS/' 'SN5_roads_train_AOI_7_Moscow_MS_chip997.tif') img_path2 = os.path.join(tmp_dir.name, 'image.tif') urllib.request.urlretrieve(url2, img_path2) bbox2, footprint2 = get_bbox_and_footprint(img_path2) ###Output _____no_output_____ ###Markdown We can take a look at the pydocs for Collection to see what information we need to supply in order to satisfy the spec. ###Code print(pystac.Collection.__doc__) ###Output A Collection extends the Catalog spec with additional metadata that helps enable discovery. Args: id (str): Identifier for the collection. Must be unique within the STAC. description (str): Detailed multi-line description to fully explain the collection. `CommonMark 0.28 syntax <http://commonmark.org/>`_ MAY be used for rich text representation. extent (Extent): Spatial and temporal extents that describe the bounds of all items contained within this Collection. title (str or None): Optional short descriptive one-line title for the collection. stac_extensions (List[str]): Optional list of extensions the Collection implements. href (str or None): Optional HREF for this collection, which be set as the collection's self link's HREF. license (str): Collection's license(s) as a `SPDX License identifier <https://spdx.org/licenses/>`_, `various`, or `proprietary`. If collection includes data with multiple different licenses, use `various` and add a link for each. Defaults to 'proprietary'. keywords (List[str]): Optional list of keywords describing the collection. providers (List[Provider]): Optional list of providers of this Collection. properties (dict): Optional dict of common fields across referenced items. summaries (dict): An optional map of property summaries, either a set of values or statistics such as a range. extra_fields (dict or None): Extra fields that are part of the top-level JSON properties of the Collection. Attributes: id (str): Identifier for the collection. description (str): Detailed multi-line description to fully explain the collection. extent (Extent): Spatial and temporal extents that describe the bounds of all items contained within this Collection. title (str or None): Optional short descriptive one-line title for the collection. stac_extensions (List[str]): Optional list of extensions the Collection implements. keywords (List[str] or None): Optional list of keywords describing the collection. providers (List[Provider] or None): Optional list of providers of this Collection. properties (dict or None): Optional dict of common fields across referenced items. summaries (dict or None): An optional map of property summaries, either a set of values or statistics such as a range. links (List[Link]): A list of :class:`~pystac.Link` objects representing all links associated with this Collection. extra_fields (dict or None): Extra fields that are part of the top-level JSON properties of the Catalog. ###Markdown Beyond what a Catalog reqiures, a Collection requires a license, and an `Extent` that describes the range of space and time that the items it hold occupy. ###Code print(pystac.Extent.__doc__) ###Output Describes the spatio-temporal extents of a Collection. Args: spatial (SpatialExtent): Potential spatial extent covered by the collection. temporal (TemporalExtent): Potential temporal extent covered by the collection. Attributes: spatial (SpatialExtent): Potential spatial extent covered by the collection. temporal (TemporalExtent): Potential temporal extent covered by the collection. ###Markdown An Extent is comprised of a SpatialExtent and a TemporalExtent. These hold one or more bounding boxes and time intervals, respectively, that completely cover the items contained in the collections.Let's start with creating two new items - these will be core Items. We can set these items to implement the `eo` extension by specifying them in the `stac_extensions`. ###Code collection_item = pystac.Item(id='local-image-col-1', geometry=footprint, bbox=bbox, datetime=datetime.utcnow(), properties={}, stac_extensions=[pystac.Extensions.EO]) collection_item.common_metadata.gsd = 0.3 collection_item.common_metadata.platform = 'Maxar' collection_item.common_metadata.instruments = ['WorldView3'] asset = pystac.Asset(href=img_path, media_type=pystac.MediaType.GEOTIFF) collection_item.ext.eo.set_bands(wv3_bands, asset) collection_item.add_asset('image', asset) collection_item2 = pystac.Item(id='local-image-col-2', geometry=footprint2, bbox=bbox2, datetime=datetime.utcnow(), properties={}, stac_extensions=[pystac.Extensions.EO]) collection_item2.common_metadata.gsd = 0.3 collection_item2.common_metadata.platform = 'Maxar' collection_item2.common_metadata.instruments = ['WorldView3'] asset2 = pystac.Asset(href=img_path, media_type=pystac.MediaType.GEOTIFF) collection_item2.ext.eo.set_bands([ band for band in wv3_bands if band.name in ["Red", "Green", "Blue"] ], asset2) collection_item2.add_asset('image', asset2) ###Output _____no_output_____ ###Markdown We can use our two items' metadata to find out what the proper bounds are: ###Code from shapely.geometry import shape unioned_footprint = shape(footprint).union(shape(footprint2)) collection_bbox = list(unioned_footprint.bounds) spatial_extent = pystac.SpatialExtent(bboxes=[collection_bbox]) collection_interval = sorted([collection_item.datetime, collection_item2.datetime]) temporal_extent = pystac.TemporalExtent(intervals=[collection_interval]) collection_extent = pystac.Extent(spatial=spatial_extent, temporal=temporal_extent) collection = pystac.Collection(id='wv3-images', description='Spacenet 5 images over Moscow', extent=collection_extent, license='CC-BY-SA-4.0') ###Output _____no_output_____ ###Markdown Now if we add our items to our Collection, and our Collection to our Catalog, we get the following STAC that can be saved: ###Code collection.add_items([collection_item, collection_item2]) catalog.clear_items() catalog.clear_children() catalog.add_child(collection) catalog.describe() catalog.normalize_and_save(root_href=os.path.join(tmp_dir.name, 'stac-collection'), catalog_type=pystac.CatalogType.SELF_CONTAINED) ###Output _____no_output_____ ###Markdown CleanupDon't forget to clean up the temporary directory! ###Code tmp_dir.cleanup() ###Output _____no_output_____ ###Markdown Creating a STAC of imagery from Spacenet 5 data Now, let's take what we've learned and create a Catalog with more data in it. Allowing PySTAC to read from AWS S3PySTAC aims to be virtually zero-dependency (notwithstanding the why-isn't-this-in-stdlib datetime-util), so it doesn't have the ability to read from or write to anything but the local file system. However, we can hook into PySTAC's IO in the following way. Learn more about how to use STAC_IO in the [documentation on the topic](https://pystac.readthedocs.io/en/latest/concepts.htmlusing-stac-io): ###Code from urllib.parse import urlparse import boto3 from pystac import STAC_IO def my_read_method(uri): parsed = urlparse(uri) if parsed.scheme == 's3': bucket = parsed.netloc key = parsed.path[1:] s3 = boto3.resource('s3') obj = s3.Object(bucket, key) return obj.get()['Body'].read().decode('utf-8') else: return STAC_IO.default_read_text_method(uri) def my_write_method(uri, txt): parsed = urlparse(uri) if parsed.scheme == 's3': bucket = parsed.netloc key = parsed.path[1:] s3 = boto3.resource("s3") s3.Object(bucket, key).put(Body=txt) else: STAC_IO.default_write_text_method(uri, txt) STAC_IO.read_text_method = my_read_method STAC_IO.write_text_method = my_write_method ###Output _____no_output_____ ###Markdown We'll need a utility to list keys for reading the lists of files from S3: ###Code # From https://alexwlchan.net/2017/07/listing-s3-keys/ def get_s3_keys(bucket, prefix): """Generate all the keys in an S3 bucket.""" s3 = boto3.client('s3') kwargs = {'Bucket': bucket, 'Prefix': prefix} while True: resp = s3.list_objects_v2(**kwargs) for obj in resp['Contents']: yield obj['Key'] try: kwargs['ContinuationToken'] = resp['NextContinuationToken'] except KeyError: break ###Output _____no_output_____ ###Markdown Let's make a STAC of imagery over Moscow as part of the Spacenet 5 challenge. As a first step, we can list out the imagery and extract IDs from each of the chips. ###Code moscow_training_chip_uris = list(get_s3_keys(bucket='spacenet-dataset', prefix='spacenet/SN5_roads/train/AOI_7_Moscow/PS-MS')) import re chip_id_to_data = {} def get_chip_id(uri): return re.search(r'.*\_chip(\d+)\.', uri).group(1) for uri in moscow_training_chip_uris: chip_id = get_chip_id(uri) chip_id_to_data[chip_id] = { 'img': 's3://spacenet-dataset/{}'.format(uri) } ###Output _____no_output_____ ###Markdown For this tutorial, we'll only take a subset of the data. ###Code chip_id_to_data = dict(list(chip_id_to_data.items())[:10]) chip_id_to_data ###Output _____no_output_____ ###Markdown Let's turn each of those chips into a STAC Item that represents the image. ###Code chip_id_to_items = {} ###Output _____no_output_____ ###Markdown We'll create core `Item`s for our imagery, but mark them with the `eo` extension as we did above, and store the `eo` data in a `Collection`.Note that the image CRS is in WGS:84 (Lat/Lng). If it wasn't, we'd have to reproject the footprint to WGS:84 in order to be compliant with the spec (which can easily be done with [pyproj](https://github.com/pyproj4/pyproj)).Here we're taking advantage of `rasterio`'s ability to read S3 URIs, which only grabs the GeoTIFF metadata and does not pull the whole file down. ###Code for chip_id in chip_id_to_data: img_uri = chip_id_to_data[chip_id]['img'] print('Processing {}'.format(img_uri)) bbox, footprint = get_bbox_and_footprint(img_uri) item = pystac.Item(id='img_{}'.format(chip_id), geometry=footprint, bbox=bbox, datetime=datetime.utcnow(), properties={}, stac_extensions=[pystac.Extensions.EO]) item.common_metadata.gsd = 0.3 item.common_metadata.platform = 'Maxar' item.common_metadata.instruments = ['WorldView3'] item.ext.eo.bands = wv3_bands asset = pystac.Asset(href=img_uri, media_type=pystac.MediaType.COG) item.ext.eo.set_bands(wv3_bands, asset) item.add_asset(key='ps-ms', asset=asset) chip_id_to_items[chip_id] = item ###Output Processing s3://spacenet-dataset/spacenet/SN5_roads/train/AOI_7_Moscow/PS-MS/SN5_roads_train_AOI_7_Moscow_PS-MS_chip0.tif Processing s3://spacenet-dataset/spacenet/SN5_roads/train/AOI_7_Moscow/PS-MS/SN5_roads_train_AOI_7_Moscow_PS-MS_chip1.tif Processing s3://spacenet-dataset/spacenet/SN5_roads/train/AOI_7_Moscow/PS-MS/SN5_roads_train_AOI_7_Moscow_PS-MS_chip10.tif Processing s3://spacenet-dataset/spacenet/SN5_roads/train/AOI_7_Moscow/PS-MS/SN5_roads_train_AOI_7_Moscow_PS-MS_chip100.tif Processing s3://spacenet-dataset/spacenet/SN5_roads/train/AOI_7_Moscow/PS-MS/SN5_roads_train_AOI_7_Moscow_PS-MS_chip1000.tif Processing s3://spacenet-dataset/spacenet/SN5_roads/train/AOI_7_Moscow/PS-MS/SN5_roads_train_AOI_7_Moscow_PS-MS_chip1001.tif Processing s3://spacenet-dataset/spacenet/SN5_roads/train/AOI_7_Moscow/PS-MS/SN5_roads_train_AOI_7_Moscow_PS-MS_chip1002.tif Processing s3://spacenet-dataset/spacenet/SN5_roads/train/AOI_7_Moscow/PS-MS/SN5_roads_train_AOI_7_Moscow_PS-MS_chip1003.tif Processing s3://spacenet-dataset/spacenet/SN5_roads/train/AOI_7_Moscow/PS-MS/SN5_roads_train_AOI_7_Moscow_PS-MS_chip1004.tif Processing s3://spacenet-dataset/spacenet/SN5_roads/train/AOI_7_Moscow/PS-MS/SN5_roads_train_AOI_7_Moscow_PS-MS_chip1005.tif ###Markdown Creating the CollectionAll of these images are over Moscow. In Spacenet 5, we have a couple cities that have imagery; a good way to separate these collections of imagery. We can store all of the common `eo` metadata in the collection. ###Code from shapely.geometry import (shape, MultiPolygon) footprints = list(map(lambda i: shape(i.geometry).envelope, chip_id_to_items.values())) collection_bbox = MultiPolygon(footprints).bounds spatial_extent = pystac.SpatialExtent(bboxes=[collection_bbox]) datetimes = sorted(list(map(lambda i: i.datetime, chip_id_to_items.values()))) temporal_extent = pystac.TemporalExtent(intervals=[[datetimes[0], datetimes[-1]]]) collection_extent = pystac.Extent(spatial=spatial_extent, temporal=temporal_extent) collection = pystac.Collection(id='wv3-images', description='Spacenet 5 images over Moscow', extent=collection_extent, license='CC-BY-SA-4.0') collection.add_items(chip_id_to_items.values()) collection.describe() ###Output * <Collection id=wv3-images> * <Item id=img_0> * <Item id=img_1> * <Item id=img_10> * <Item id=img_100> * <Item id=img_1000> * <Item id=img_1001> * <Item id=img_1002> * <Item id=img_1003> * <Item id=img_1004> * <Item id=img_1005> ###Markdown Now, we can create a Catalog and add the collection. ###Code catalog = pystac.Catalog(id='spacenet5', description='Spacenet 5 Data (Test)') catalog.add_child(collection) catalog.describe() ###Output * <Catalog id=spacenet5> * <Collection id=wv3-images> * <Item id=img_0> * <Item id=img_1> * <Item id=img_10> * <Item id=img_100> * <Item id=img_1000> * <Item id=img_1001> * <Item id=img_1002> * <Item id=img_1003> * <Item id=img_1004> * <Item id=img_1005> ###Markdown Adding items with the label extension to the Spacenet 5 catalogWe can use the [label extension](https://github.com/radiantearth/stac-spec/tree/v0.8.1/extensions/label) of the STAC spec to represent the training data in our STAC. For this, we need to grab the URIs of the GeoJSON of roads: ###Code moscow_training_geojson_uris = list(get_s3_keys(bucket='spacenet-dataset', prefix='spacenet/SN5_roads/train/AOI_7_Moscow/geojson_roads_speed/')) for uri in moscow_training_geojson_uris: chip_id = get_chip_id(uri) if chip_id in chip_id_to_data: chip_id_to_data[chip_id]['label'] = 's3://spacenet-dataset/{}'.format(uri) ###Output _____no_output_____ ###Markdown We'll add the items to their own subcatalog; since they don't inherit the Collection's `eo` properties, they shouldn't go in the Collection. ###Code label_catalog = pystac.Catalog(id='spacenet-data-labels', description='Labels for Spacenet 5') catalog.add_child(label_catalog) ###Output _____no_output_____ ###Markdown To see the required fields for the label extension we can check the pydocs on the `apply` method of the extension: ###Code from pystac.extensions import label print(label.LabelItemExt.apply.__doc__) ###Output Applies label extension properties to the extended Item. Args: label_description (str): A description of the label, how it was created, and what it is recommended for label_type (str): An ENUM of either vector label type or raster label type. Use one of :class:`~pystac.LabelType`. label_properties (list or None): These are the names of the property field(s) in each Feature of the label asset's FeatureCollection that contains the classes (keywords from label:classes if the property defines classes). If labels are rasters, this should be None. label_classes (List[LabelClass]): Optional, but reqiured if ussing categorical data. A list of LabelClasses defining the list of possible class names for each label:properties. (e.g., tree, building, car, hippo) label_tasks (List[str]): Recommended to be a subset of 'regression', 'classification', 'detection', or 'segmentation', but may be an arbitrary value. label_methods: Recommended to be a subset of 'automated' or 'manual', but may be an arbitrary value. label_overviews (List[LabelOverview]): Optional list of LabelOverview classes that store counts (for classification-type data) or summary statistics (for continuous numerical/regression data). ###Markdown This loop creates our label items and associates each to the appropriate source image Item. ###Code for chip_id in chip_id_to_data: img_item = collection.get_item('img_{}'.format(chip_id)) label_uri = chip_id_to_data[chip_id]['label'] label_item = pystac.Item(id='label_{}'.format(chip_id), geometry=img_item.geometry, bbox=img_item.bbox, datetime=datetime.utcnow(), properties={}, stac_extensions=[pystac.Extensions.LABEL]) label_item.ext.label.apply(label_description="SpaceNet 5 Road labels", label_type=label.LabelType.VECTOR, label_tasks=['segmentation', 'regression']) label_item.ext.label.add_source(img_item) label_item.ext.label.add_geojson_labels(label_uri) label_catalog.add_item(label_item) ###Output _____no_output_____ ###Markdown Now we have a STAC of training data! ###Code catalog.describe() label_item = catalog.get_child('spacenet-data-labels').get_item('label_1') label_item.to_dict() ###Output _____no_output_____ ###Markdown How to create STAC Catalogs STAC Community Sprint, Arlington, November 7th 2019 This notebook runs through some of the basics of using PySTAC to create a static STAC. It was part of a 30 minute presentation at the [community STAC sprint](https://github.com/radiantearth/community-sprints/tree/master/11052019-arlignton-va) in Arlington, VA in November 2019. This tutorial will require the `boto3`, `rasterio`, and `shapely` libraries: ###Code !pip install boto3 !pip install rasterio !pip install shapely ###Output Requirement already satisfied: boto3 in /Users/rob/proj/stac/pystac/venv/lib/python3.6/site-packages (1.10.8) Requirement already satisfied: botocore<1.14.0,>=1.13.8 in /Users/rob/proj/stac/pystac/venv/lib/python3.6/site-packages (from boto3) (1.13.8) Requirement already satisfied: s3transfer<0.3.0,>=0.2.0 in /Users/rob/proj/stac/pystac/venv/lib/python3.6/site-packages (from boto3) (0.2.1) Requirement already satisfied: jmespath<1.0.0,>=0.7.1 in /Users/rob/proj/stac/pystac/venv/lib/python3.6/site-packages (from boto3) (0.9.4) Requirement already satisfied: urllib3<1.26,>=1.20; python_version >= "3.4" in /Users/rob/proj/stac/pystac/venv/lib/python3.6/site-packages (from botocore<1.14.0,>=1.13.8->boto3) (1.25.6) Requirement already satisfied: docutils<0.16,>=0.10 in /Users/rob/proj/stac/pystac/venv/lib/python3.6/site-packages (from botocore<1.14.0,>=1.13.8->boto3) (0.15.2) Requirement already satisfied: python-dateutil<3.0.0,>=2.1; python_version >= "2.7" in /Users/rob/proj/stac/pystac/venv/lib/python3.6/site-packages (from botocore<1.14.0,>=1.13.8->boto3) (2.8.1) Requirement already satisfied: six>=1.5 in /Users/rob/proj/stac/pystac/venv/lib/python3.6/site-packages (from python-dateutil<3.0.0,>=2.1; python_version >= "2.7"->botocore<1.14.0,>=1.13.8->boto3) (1.12.0) WARNING: You are using pip version 20.1.1; however, version 20.2 is available. You should consider upgrading via the '/Users/rob/proj/stac/pystac/venv/bin/python -m pip install --upgrade pip' command. Requirement already satisfied: rasterio in /Users/rob/proj/stac/pystac/venv/lib/python3.6/site-packages (1.1.0) Requirement already satisfied: numpy in /Users/rob/proj/stac/pystac/venv/lib/python3.6/site-packages (from rasterio) (1.17.3) Requirement already satisfied: snuggs>=1.4.1 in /Users/rob/proj/stac/pystac/venv/lib/python3.6/site-packages (from rasterio) (1.4.7) Requirement already satisfied: click<8,>=4.0 in /Users/rob/proj/stac/pystac/venv/lib/python3.6/site-packages (from rasterio) (7.0) Requirement already satisfied: click-plugins in /Users/rob/proj/stac/pystac/venv/lib/python3.6/site-packages (from rasterio) (1.1.1) Requirement already satisfied: attrs in /Users/rob/proj/stac/pystac/venv/lib/python3.6/site-packages (from rasterio) (19.3.0) Requirement already satisfied: cligj>=0.5 in /Users/rob/proj/stac/pystac/venv/lib/python3.6/site-packages (from rasterio) (0.5.0) Requirement already satisfied: affine in /Users/rob/proj/stac/pystac/venv/lib/python3.6/site-packages (from rasterio) (2.3.0) Requirement already satisfied: pyparsing>=2.1.6 in /Users/rob/proj/stac/pystac/venv/lib/python3.6/site-packages (from snuggs>=1.4.1->rasterio) (2.4.2) WARNING: You are using pip version 20.1.1; however, version 20.2 is available. You should consider upgrading via the '/Users/rob/proj/stac/pystac/venv/bin/python -m pip install --upgrade pip' command. Requirement already satisfied: shapely in /Users/rob/proj/stac/pystac/venv/lib/python3.6/site-packages (1.6.4.post2) WARNING: You are using pip version 20.1.1; however, version 20.2 is available. You should consider upgrading via the '/Users/rob/proj/stac/pystac/venv/bin/python -m pip install --upgrade pip' command. ###Markdown We can import pystac and access most of the functionality we need with the single import: ###Code import pystac ###Output _____no_output_____ ###Markdown Creating a catalog from a local file To give us some material to work with, lets download a single image from the [Spacenet 5 challenge](https://www.topcoder.com/challenges/30099956). We'll use a temporary directory to save off our single-item STAC. ###Code import os import urllib.request from tempfile import TemporaryDirectory tmp_dir = TemporaryDirectory() img_path = os.path.join(tmp_dir.name, 'image.tif') url = ('http://spacenet-dataset.s3.amazonaws.com/' 'spacenet/SN5_roads/train/AOI_7_Moscow/MS/' 'SN5_roads_train_AOI_7_Moscow_MS_chip996.tif') urllib.request.urlretrieve(url, img_path) ###Output _____no_output_____ ###Markdown We want to create a Catalog. Let's check the pydocs for `Catalog` to see what information we'll need. (We use `__doc__` instead of `help()` here to avoid printing out all the docs for the class.) ###Code print(pystac.Catalog.__doc__) ###Output A PySTAC Catalog represents a STAC catalog in memory. A Catalog is a :class:`~pystac.STACObject` that may contain children, which are instances of :class:`~pystac.Catalog` or :class:`~pystac.Collection`, as well as :class:`~pystac.Item` s. Args: id (str): Identifier for the catalog. Must be unique within the STAC. description (str): Detailed multi-line description to fully explain the catalog. `CommonMark 0.28 syntax <http://commonmark.org/>`_ MAY be used for rich text representation. title (str or None): Optional short descriptive one-line title for the catalog. stac_extensions (List[str]): Optional list of extensions the Catalog implements. href (str or None): Optional HREF for this catalog, which be set as the catalog's self link's HREF. Attributes: id (str): Identifier for the catalog. description (str): Detailed multi-line description to fully explain the catalog. title (str or None): Optional short descriptive one-line title for the catalog. stac_extensions (List[str] or None): Optional list of extensions the Catalog implements. extra_fields (dict or None): Extra fields that are part of the top-level JSON properties of the Catalog. links (List[Link]): A list of :class:`~pystac.Link` objects representing all links associated with this Catalog. ###Markdown Let's just give an ID and a description. We don't have to worry about the HREF right now; that will be set later. ###Code catalog = pystac.Catalog(id='test-catalog', description='Tutorial catalog.') ###Output _____no_output_____ ###Markdown There are no children or items in the catalog, since we haven't added anything yet. ###Code print(list(catalog.get_children())) print(list(catalog.get_items())) ###Output [] [] ###Markdown We'll now create an Item to represent the image. Check the pydocs to see what you need to supply: ###Code print(pystac.Item.__doc__) ###Output An Item is the core granular entity in a STAC, containing the core metadata that enables any client to search or crawl online catalogs of spatial 'assets' - satellite imagery, derived data, DEM's, etc. Args: id (str): Provider identifier. Must be unique within the STAC. geometry (dict): Defines the full footprint of the asset represented by this item, formatted according to `RFC 7946, section 3.1 (GeoJSON) <https://tools.ietf.org/html/rfc7946>`_. bbox (List[float] or None): Bounding Box of the asset represented by this item using either 2D or 3D geometries. The length of the array must be 2*n where n is the number of dimensions. Could also be None in the case of a null geometry. datetime (datetime or None): Datetime associated with this item. If None, a start_datetime and end_datetime must be supplied in the properties. properties (dict): A dictionary of additional metadata for the item. stac_extensions (List[str]): Optional list of extensions the Item implements. href (str or None): Optional HREF for this item, which be set as the item's self link's HREF. collection (Collection or str): The Collection or Collection ID that this item belongs to. extra_fields (dict or None): Extra fields that are part of the top-level JSON properties of the Item. Attributes: id (str): Provider identifier. Unique within the STAC. geometry (dict): Defines the full footprint of the asset represented by this item, formatted according to `RFC 7946, section 3.1 (GeoJSON) <https://tools.ietf.org/html/rfc7946>`_. bbox (List[float] or None): Bounding Box of the asset represented by this item using either 2D or 3D geometries. The length of the array is 2*n where n is the number of dimensions. Could also be None in the case of a null geometry. datetime (datetime or None): Datetime associated with this item. If None, the start_datetime and end_datetime in the common_metadata will supply the datetime range of the Item. properties (dict): A dictionary of additional metadata for the item. stac_extensions (List[str] or None): Optional list of extensions the Item implements. collection (Collection or None): Collection that this item is a part of. links (List[Link]): A list of :class:`~pystac.Link` objects representing all links associated with this STACObject. assets (Dict[str, Asset]): Dictionary of asset objects that can be downloaded, each with a unique key. collection_id (str or None): The Collection ID that this item belongs to, if any. extra_fields (dict or None): Extra fields that are part of the top-level JSON properties of the Item. ###Markdown Using [rasterio](https://rasterio.readthedocs.io/en/stable/), we can pull out the bounding box of the image to use for the image metadata. If the image contained a NoData border, we would ideally pull out the footprint and save it as the geometry; in this case, we're working with a small chip the most likely has no NoData values. ###Code import rasterio from shapely.geometry import Polygon, mapping def get_bbox_and_footprint(raster_uri): with rasterio.open(raster_uri) as ds: bounds = ds.bounds bbox = [bounds.left, bounds.bottom, bounds.right, bounds.top] footprint = Polygon([ [bounds.left, bounds.bottom], [bounds.left, bounds.top], [bounds.right, bounds.top], [bounds.right, bounds.bottom] ]) return (bbox, mapping(footprint)) bbox, footprint = get_bbox_and_footprint(img_path) print(bbox) print(footprint) ###Output [37.6616853489879, 55.73478197572927, 37.66573047610874, 55.73882710285011] {'type': 'Polygon', 'coordinates': (((37.6616853489879, 55.73478197572927), (37.6616853489879, 55.73882710285011), (37.66573047610874, 55.73882710285011), (37.66573047610874, 55.73478197572927), (37.6616853489879, 55.73478197572927)),)} ###Markdown We're also using `datetime.utcnow()` to supply the required datetime property for our Item. Since this is a required property, you might often find yourself making up a time to fill in if you don't know the exact capture time. ###Code from datetime import datetime item = pystac.Item(id='local-image', geometry=footprint, bbox=bbox, datetime=datetime.utcnow(), properties={}) ###Output _____no_output_____ ###Markdown We haven't added it to a catalog yet, so it's parent isn't set. Once we add it to the catalog, we can see it correctly links to it's parent. ###Code item.get_parent() is None catalog.add_item(item) item.get_parent() ###Output _____no_output_____ ###Markdown `describe()` is a useful method on `Catalog` - but be careful when using it on large catalogs, as it will walk the entire tree of the STAC. ###Code catalog.describe() ###Output * <Catalog id=test-catalog> * <Item id=local-image> ###Markdown Adding AssetsWe've created an Item, but there aren't any assets associated with it. Let's create one: ###Code print(pystac.Asset.__doc__) item.add_asset( key='image', asset=pystac.Asset( href=img_path, media_type=pystac.MediaType.GEOTIFF ) ) ###Output _____no_output_____ ###Markdown At any time we can call `to_dict()` on STAC objects to see how the STAC JSON is shaping up. Notice the asset is now set: ###Code import json print(json.dumps(item.to_dict(), indent=4)) ###Output { "type": "Feature", "stac_version": "1.0.0-beta.2", "id": "local-image", "properties": { "datetime": "2020-08-03T03:47:48.786929Z" }, "geometry": { "type": "Polygon", "coordinates": [ [ [ 37.6616853489879, 55.73478197572927 ], [ 37.6616853489879, 55.73882710285011 ], [ 37.66573047610874, 55.73882710285011 ], [ 37.66573047610874, 55.73478197572927 ], [ 37.6616853489879, 55.73478197572927 ] ] ] }, "links": [ { "rel": "root", "href": null, "type": "application/json" }, { "rel": "parent", "href": null, "type": "application/json" } ], "assets": { "image": { "href": "/var/folders/sv/zr8j0t4j1f726nhlt3vb8c300000gn/T/tmpt1wuelid/image.tif", "type": "image/tiff; application=geotiff" } }, "bbox": [ 37.6616853489879, 55.73478197572927, 37.66573047610874, 55.73882710285011 ] } ###Markdown Note that the link `href` properties are `null`. This is OK, as we're working with the STAC in memory. Next, we'll talk about writing the catalog out, and how to set those HREFs. Saving the catalog As the JSON above indicates, there's no HREFs set on these in-memory items. PySTAC uses the `self` link on STAC objects to track where the file lives. Because we haven't set them, they evaluate to `None`: ###Code print(catalog.get_self_href() is None) print(item.get_self_href() is None) ###Output True True ###Markdown In order to set them, we can use `normalize_hrefs`. This method will create a normalized set of HREFs for each STAC object in the catalog, according to the [best practices document](https://github.com/radiantearth/stac-spec/blob/v0.8.1/best-practices.mdcatalog-layout)'s recommendations on how to lay out a catalog. ###Code catalog.normalize_hrefs(os.path.join(tmp_dir.name, 'stac')) ###Output _____no_output_____ ###Markdown Now that we've normalized to a root directory (the temporary directory), we see that the `self` links are set: ###Code print(catalog.get_self_href()) print(item.get_self_href()) ###Output /var/folders/sv/zr8j0t4j1f726nhlt3vb8c300000gn/T/tmpt1wuelid/stac/catalog.json /var/folders/sv/zr8j0t4j1f726nhlt3vb8c300000gn/T/tmpt1wuelid/stac/local-image/local-image.json ###Markdown We can now call `save` on the catalog, which will recursively save all the STAC objects to their respective self HREFs.Save requires a `CatalogType` to be set. You can review the [API docs](https://pystac.readthedocs.io/en/stable/api.htmlcatalogtype) on `CatalogType` to see what each type means (unfortunately `help` doesn't show docstrings for attributes). ###Code catalog.save(catalog_type=pystac.CatalogType.SELF_CONTAINED) !ls {tmp_dir.name}/stac/* with open(catalog.get_self_href()) as f: print(f.read()) with open(item.get_self_href()) as f: print(f.read()) ###Output { "type": "Feature", "stac_version": "1.0.0-beta.2", "id": "local-image", "properties": { "datetime": "2020-08-03T03:47:48.786929Z" }, "geometry": { "type": "Polygon", "coordinates": [ [ [ 37.6616853489879, 55.73478197572927 ], [ 37.6616853489879, 55.73882710285011 ], [ 37.66573047610874, 55.73882710285011 ], [ 37.66573047610874, 55.73478197572927 ], [ 37.6616853489879, 55.73478197572927 ] ] ] }, "links": [ { "rel": "root", "href": "../catalog.json", "type": "application/json" }, { "rel": "parent", "href": "../catalog.json", "type": "application/json" } ], "assets": { "image": { "href": "/var/folders/sv/zr8j0t4j1f726nhlt3vb8c300000gn/T/tmpt1wuelid/image.tif", "type": "image/tiff; application=geotiff" } }, "bbox": [ 37.6616853489879, 55.73478197572927, 37.66573047610874, 55.73882710285011 ] } ###Markdown As you can see, all links are saved with relative paths. That's because we used `catalog_type=CatalogType.SELF_CONTAINED`. If we save an Absolute Published catalog, we'll see absolute paths: ###Code catalog.save(catalog_type=pystac.CatalogType.ABSOLUTE_PUBLISHED) ###Output _____no_output_____ ###Markdown Now the links included in the STAC item are all absolute: ###Code with open(item.get_self_href()) as f: print(f.read()) ###Output { "type": "Feature", "stac_version": "1.0.0-beta.2", "id": "local-image", "properties": { "datetime": "2020-08-03T03:47:48.786929Z" }, "geometry": { "type": "Polygon", "coordinates": [ [ [ 37.6616853489879, 55.73478197572927 ], [ 37.6616853489879, 55.73882710285011 ], [ 37.66573047610874, 55.73882710285011 ], [ 37.66573047610874, 55.73478197572927 ], [ 37.6616853489879, 55.73478197572927 ] ] ] }, "links": [ { "rel": "self", "href": "/var/folders/sv/zr8j0t4j1f726nhlt3vb8c300000gn/T/tmpt1wuelid/stac/local-image/local-image.json", "type": "application/json" }, { "rel": "root", "href": "/var/folders/sv/zr8j0t4j1f726nhlt3vb8c300000gn/T/tmpt1wuelid/stac/catalog.json", "type": "application/json" }, { "rel": "parent", "href": "/var/folders/sv/zr8j0t4j1f726nhlt3vb8c300000gn/T/tmpt1wuelid/stac/catalog.json", "type": "application/json" } ], "assets": { "image": { "href": "/var/folders/sv/zr8j0t4j1f726nhlt3vb8c300000gn/T/tmpt1wuelid/image.tif", "type": "image/tiff; application=geotiff" } }, "bbox": [ 37.6616853489879, 55.73478197572927, 37.66573047610874, 55.73882710285011 ] } ###Markdown Notice that the Asset HREF is absolute in both cases. We can make the Asset HREF relative to the STAC Item by using `.make_all_asset_hrefs_relative()`: ###Code catalog.make_all_asset_hrefs_relative() catalog.save(catalog_type=pystac.CatalogType.SELF_CONTAINED) with open(item.get_self_href()) as f: print(f.read()) ###Output { "type": "Feature", "stac_version": "1.0.0-beta.2", "id": "local-image", "properties": { "datetime": "2020-08-03T03:47:48.786929Z" }, "geometry": { "type": "Polygon", "coordinates": [ [ [ 37.6616853489879, 55.73478197572927 ], [ 37.6616853489879, 55.73882710285011 ], [ 37.66573047610874, 55.73882710285011 ], [ 37.66573047610874, 55.73478197572927 ], [ 37.6616853489879, 55.73478197572927 ] ] ] }, "links": [ { "rel": "root", "href": "../catalog.json", "type": "application/json" }, { "rel": "parent", "href": "../catalog.json", "type": "application/json" } ], "assets": { "image": { "href": "../../image.tif", "type": "image/tiff; application=geotiff" } }, "bbox": [ 37.6616853489879, 55.73478197572927, 37.66573047610874, 55.73882710285011 ] } ###Markdown Creating an Item that implements the EO extensionIn the code above our item only implemented the core STAC Item specification. With [extensions](https://github.com/radiantearth/stac-spec/tree/v0.9.0/extensions) we can record more information and add additional functionality to the Item. Given that we know this is a World View 3 image that has earth observation data, we can enable the [eo extension](https://github.com/radiantearth/stac-spec/tree/v0.8.1/extensions/eo) to add band information. To add eo information to an item we'll need to specify some more data. First, let's define the bands of World View 3: ###Code from pystac.extensions.eo import Band # From: https://www.spaceimagingme.com/downloads/sensors/datasheets/DG_WorldView3_DS_2014.pdf wv3_bands = [Band.create(name='Coastal', description='Coastal: 400 - 450 nm', common_name='coastal'), Band.create(name='Blue', description='Blue: 450 - 510 nm', common_name='blue'), Band.create(name='Green', description='Green: 510 - 580 nm', common_name='green'), Band.create(name='Yellow', description='Yellow: 585 - 625 nm', common_name='yellow'), Band.create(name='Red', description='Red: 630 - 690 nm', common_name='red'), Band.create(name='Red Edge', description='Red Edge: 705 - 745 nm', common_name='rededge'), Band.create(name='Near-IR1', description='Near-IR1: 770 - 895 nm', common_name='nir08'), Band.create(name='Near-IR2', description='Near-IR2: 860 - 1040 nm', common_name='nir09')] ###Output _____no_output_____ ###Markdown Notice that we used the `.create` method create new band information. We can now create an Item, enable the eo extension, add the band information and add it to our catalog: ###Code eo_item = pystac.Item(id='local-image-eo', geometry=footprint, bbox=bbox, datetime=datetime.utcnow(), properties={}) eo_item.ext.enable(pystac.Extensions.EO) eo_item.ext.eo.apply(bands=wv3_bands) ###Output _____no_output_____ ###Markdown There are also [common metadata](https://github.com/radiantearth/stac-spec/blob/v0.9.0/item-spec/common-metadata.md) fields that we can use to capture additional information about the WorldView 3 imagery: ###Code eo_item.common_metadata.platform = "Maxar" eo_item.common_metadata.instrument="WorldView3" eo_item.common_metadata.gsd = 0.3 eo_item ###Output _____no_output_____ ###Markdown We can use the eo extension to add bands to the assets we add to the item: ###Code eo_ext = eo_item.ext.eo help(eo_ext.set_bands) #eo_item.add_asset(key='image', asset=) asset = pystac.Asset(href=img_path, media_type=pystac.MediaType.GEOTIFF) eo_ext.set_bands(wv3_bands, asset) eo_item.add_asset("image", asset) ###Output _____no_output_____ ###Markdown If we look at the asset's JSON representation, we can see the appropriate band indexes are set: ###Code asset.to_dict() ###Output _____no_output_____ ###Markdown Let's clear the in-memory catalog, add the EO item, and save to a new STAC: ###Code catalog.clear_items() list(catalog.get_items()) catalog.add_item(eo_item) list(catalog.get_items()) catalog.normalize_and_save(root_href=os.path.join(tmp_dir.name, 'stac-eo'), catalog_type=pystac.CatalogType.SELF_CONTAINED) ###Output _____no_output_____ ###Markdown Now, if we read the catalog from the filesystem, PySTAC recognizes that the item implements eo and so use it's functionality, e.g. getting the bands off the asset: ###Code catalog2 = pystac.read_file(os.path.join(tmp_dir.name, 'stac-eo', 'catalog.json')) list(catalog2.get_items()) item = next(catalog2.get_all_items()) item.ext.implements('eo') item.ext.eo.get_bands(item.assets['image']) ###Output _____no_output_____ ###Markdown CollectionsCollections are a subtype of Catalog that have some additional properties to make them more searchable. They also can define common properties so that items in the collection don't have to duplicate common data for each item. Let's create a collection to hold common properties between two images from the Spacenet 5 challenge.First we'll get another image, and it's bbox and footprint: ###Code url2 = ('http://spacenet-dataset.s3.amazonaws.com/' 'spacenet/SN5_roads/train/AOI_7_Moscow/MS/' 'SN5_roads_train_AOI_7_Moscow_MS_chip997.tif') img_path2 = os.path.join(tmp_dir.name, 'image.tif') urllib.request.urlretrieve(url2, img_path2) bbox2, footprint2 = get_bbox_and_footprint(img_path2) ###Output _____no_output_____ ###Markdown We can take a look at the pydocs for Collection to see what information we need to supply in order to satisfy the spec. ###Code print(pystac.Collection.__doc__) ###Output A Collection extends the Catalog spec with additional metadata that helps enable discovery. Args: id (str): Identifier for the collection. Must be unique within the STAC. description (str): Detailed multi-line description to fully explain the collection. `CommonMark 0.28 syntax <http://commonmark.org/>`_ MAY be used for rich text representation. extent (Extent): Spatial and temporal extents that describe the bounds of all items contained within this Collection. title (str or None): Optional short descriptive one-line title for the collection. stac_extensions (List[str]): Optional list of extensions the Collection implements. href (str or None): Optional HREF for this collection, which be set as the collection's self link's HREF. license (str): Collection's license(s) as a `SPDX License identifier <https://spdx.org/licenses/>`_, `various`, or `proprietary`. If collection includes data with multiple different licenses, use `various` and add a link for each. Defaults to 'proprietary'. keywords (List[str]): Optional list of keywords describing the collection. providers (List[Provider]): Optional list of providers of this Collection. properties (dict): Optional dict of common fields across referenced items. summaries (dict): An optional map of property summaries, either a set of values or statistics such as a range. extra_fields (dict or None): Extra fields that are part of the top-level JSON properties of the Collection. Attributes: id (str): Identifier for the collection. description (str): Detailed multi-line description to fully explain the collection. extent (Extent): Spatial and temporal extents that describe the bounds of all items contained within this Collection. title (str or None): Optional short descriptive one-line title for the collection. stac_extensions (List[str]): Optional list of extensions the Collection implements. keywords (List[str] or None): Optional list of keywords describing the collection. providers (List[Provider] or None): Optional list of providers of this Collection. properties (dict or None): Optional dict of common fields across referenced items. summaries (dict or None): An optional map of property summaries, either a set of values or statistics such as a range. links (List[Link]): A list of :class:`~pystac.Link` objects representing all links associated with this Collection. extra_fields (dict or None): Extra fields that are part of the top-level JSON properties of the Catalog. ###Markdown Beyond what a Catalog reqiures, a Collection requires a license, and an `Extent` that describes the range of space and time that the items it hold occupy. ###Code print(pystac.Extent.__doc__) ###Output Describes the spatio-temporal extents of a Collection. Args: spatial (SpatialExtent): Potential spatial extent covered by the collection. temporal (TemporalExtent): Potential temporal extent covered by the collection. Attributes: spatial (SpatialExtent): Potential spatial extent covered by the collection. temporal (TemporalExtent): Potential temporal extent covered by the collection. ###Markdown An Extent is comprised of a SpatialExtent and a TemporalExtent. These hold one or more bounding boxes and time intervals, respectively, that completely cover the items contained in the collections.Let's start with creating two new items - these will be core Items. We can set these items to implement the `eo` extension by specifing them in the `stac_extensions`. ###Code collection_item = pystac.Item(id='local-image-col-1', geometry=footprint, bbox=bbox, datetime=datetime.utcnow(), properties={}, stac_extensions=[pystac.Extensions.EO]) collection_item.common_metadata.gsd = 0.3 collection_item.common_metadata.platform = 'Maxar' collection_item.common_metadata.instruments = ['WorldView3'] asset = pystac.Asset(href=img_path, media_type=pystac.MediaType.GEOTIFF) collection_item.ext.eo.set_bands(wv3_bands, asset) collection_item.add_asset('image', asset) collection_item2 = pystac.Item(id='local-image-col-2', geometry=footprint2, bbox=bbox2, datetime=datetime.utcnow(), properties={}, stac_extensions=[pystac.Extensions.EO]) collection_item2.common_metadata.gsd = 0.3 collection_item2.common_metadata.platform = 'Maxar' collection_item2.common_metadata.instruments = ['WorldView3'] asset2 = pystac.Asset(href=img_path, media_type=pystac.MediaType.GEOTIFF) collection_item2.ext.eo.set_bands([ band for band in wv3_bands if band.name in ["Red", "Green", "Blue"] ], asset2) collection_item2.add_asset('image', asset2) ###Output _____no_output_____ ###Markdown We can use our two items' metadata to find out what the proper bounds are: ###Code from shapely.geometry import shape unioned_footprint = shape(footprint).union(shape(footprint2)) collection_bbox = list(unioned_footprint.bounds) spatial_extent = pystac.SpatialExtent(bboxes=[collection_bbox]) collection_interval = sorted([collection_item.datetime, collection_item2.datetime]) temporal_extent = pystac.TemporalExtent(intervals=[collection_interval]) collection_extent = pystac.Extent(spatial=spatial_extent, temporal=temporal_extent) collection = pystac.Collection(id='wv3-images', description='Spacenet 5 images over Moscow', extent=collection_extent, license='CC-BY-SA-4.0') ###Output _____no_output_____ ###Markdown Now if we add our items to our Collection, and our Collection to our Catalog, we get the following STAC that can be saved: ###Code collection.add_items([collection_item, collection_item2]) catalog.clear_items() catalog.clear_children() catalog.add_child(collection) catalog.describe() catalog.normalize_and_save(root_href=os.path.join(tmp_dir.name, 'stac-collection'), catalog_type=pystac.CatalogType.SELF_CONTAINED) ###Output _____no_output_____ ###Markdown CleanupDon't forget to clean up the temporary directory! ###Code tmp_dir.cleanup() ###Output _____no_output_____ ###Markdown Creating a STAC of imagery from Spacenet 5 data Now, let's take what we've learned and create a Catalog with more data in it. Allowing PySTAC to read from AWS S3PySTAC aims to be virtually zero-dependency (notwithstanding the why-isn't-this-in-stdlib datetime-util), so it doesn't have the ability to read from or write to anything but the local file system. However, we can hook into PySTAC's IO in the following way. Learn more about how to use STAC_IO in the [documentation on the topic](https://pystac.readthedocs.io/en/latest/concepts.htmlusing-stac-io): ###Code from urllib.parse import urlparse import boto3 from pystac import STAC_IO def my_read_method(uri): parsed = urlparse(uri) if parsed.scheme == 's3': bucket = parsed.netloc key = parsed.path[1:] s3 = boto3.resource('s3') obj = s3.Object(bucket, key) return obj.get()['Body'].read().decode('utf-8') else: return STAC_IO.default_read_text_method(uri) def my_write_method(uri, txt): parsed = urlparse(uri) if parsed.scheme == 's3': bucket = parsed.netloc key = parsed.path[1:] s3 = boto3.resource("s3") s3.Object(bucket, key).put(Body=txt) else: STAC_IO.default_write_text_method(uri, txt) STAC_IO.read_text_method = my_read_method STAC_IO.write_text_method = my_write_method ###Output _____no_output_____ ###Markdown We'll need a utility to list keys for reading the lists of files from S3: ###Code # From https://alexwlchan.net/2017/07/listing-s3-keys/ def get_s3_keys(bucket, prefix): """Generate all the keys in an S3 bucket.""" s3 = boto3.client('s3') kwargs = {'Bucket': bucket, 'Prefix': prefix} while True: resp = s3.list_objects_v2(**kwargs) for obj in resp['Contents']: yield obj['Key'] try: kwargs['ContinuationToken'] = resp['NextContinuationToken'] except KeyError: break ###Output _____no_output_____ ###Markdown Let's make a STAC of imagery over Moscow as part of the Spacenet 5 challenge. As a first step, we can list out the imagery and extract IDs from each of the chips. ###Code moscow_training_chip_uris = list(get_s3_keys(bucket='spacenet-dataset', prefix='spacenet/SN5_roads/train/AOI_7_Moscow/PS-MS')) import re chip_id_to_data = {} def get_chip_id(uri): return re.search(r'.*\_chip(\d+)\.', uri).group(1) for uri in moscow_training_chip_uris: chip_id = get_chip_id(uri) chip_id_to_data[chip_id] = { 'img': 's3://spacenet-dataset/{}'.format(uri) } ###Output _____no_output_____ ###Markdown For this tutorial, we'll only take a subset of the data. ###Code chip_id_to_data = dict(list(chip_id_to_data.items())[:10]) chip_id_to_data ###Output _____no_output_____ ###Markdown Let's turn each of those chips into a STAC Item that represents the image. ###Code chip_id_to_items = {} ###Output _____no_output_____ ###Markdown We'll create core `Item`s for our imagery, but mark them with the `eo` extension as we did above, and store the `eo` data in a `Collection`.Note that the image CRS is in WGS:84 (Lat/Lng). If it wasn't, we'd have to reproject the footprint to WGS:84 in order to be compliant with the spec (which can easily be done with [pyproj](https://github.com/pyproj4/pyproj)).Here we're taking advantage of `rasterio`'s ability to read S3 URIs, which only grabs the GeoTIFF metadata and does not pull the whole file down. ###Code for chip_id in chip_id_to_data: img_uri = chip_id_to_data[chip_id]['img'] print('Processing {}'.format(img_uri)) bbox, footprint = get_bbox_and_footprint(img_uri) item = pystac.Item(id='img_{}'.format(chip_id), geometry=footprint, bbox=bbox, datetime=datetime.utcnow(), properties={}, stac_extensions=[pystac.Extensions.EO]) item.common_metadata.gsd = 0.3 item.common_metadata.platform = 'Maxar' item.common_metadata.instruments = ['WorldView3'] item.ext.eo.bands = wv3_bands asset = pystac.Asset(href=img_uri, media_type=pystac.MediaType.COG) item.ext.eo.set_bands(wv3_bands, asset) item.add_asset(key='ps-ms', asset=asset) chip_id_to_items[chip_id] = item ###Output Processing s3://spacenet-dataset/spacenet/SN5_roads/train/AOI_7_Moscow/PS-MS/SN5_roads_train_AOI_7_Moscow_PS-MS_chip0.tif Processing s3://spacenet-dataset/spacenet/SN5_roads/train/AOI_7_Moscow/PS-MS/SN5_roads_train_AOI_7_Moscow_PS-MS_chip1.tif Processing s3://spacenet-dataset/spacenet/SN5_roads/train/AOI_7_Moscow/PS-MS/SN5_roads_train_AOI_7_Moscow_PS-MS_chip10.tif Processing s3://spacenet-dataset/spacenet/SN5_roads/train/AOI_7_Moscow/PS-MS/SN5_roads_train_AOI_7_Moscow_PS-MS_chip100.tif Processing s3://spacenet-dataset/spacenet/SN5_roads/train/AOI_7_Moscow/PS-MS/SN5_roads_train_AOI_7_Moscow_PS-MS_chip1000.tif Processing s3://spacenet-dataset/spacenet/SN5_roads/train/AOI_7_Moscow/PS-MS/SN5_roads_train_AOI_7_Moscow_PS-MS_chip1001.tif Processing s3://spacenet-dataset/spacenet/SN5_roads/train/AOI_7_Moscow/PS-MS/SN5_roads_train_AOI_7_Moscow_PS-MS_chip1002.tif Processing s3://spacenet-dataset/spacenet/SN5_roads/train/AOI_7_Moscow/PS-MS/SN5_roads_train_AOI_7_Moscow_PS-MS_chip1003.tif Processing s3://spacenet-dataset/spacenet/SN5_roads/train/AOI_7_Moscow/PS-MS/SN5_roads_train_AOI_7_Moscow_PS-MS_chip1004.tif Processing s3://spacenet-dataset/spacenet/SN5_roads/train/AOI_7_Moscow/PS-MS/SN5_roads_train_AOI_7_Moscow_PS-MS_chip1005.tif ###Markdown Creating the CollectionAll of these images are over Moscow. In Spacenet 5, we have a couple cities that have imagery; a good way to separate these collections of imagery. We can store all of the common `eo` metadata in the collection. ###Code from shapely.geometry import (shape, MultiPolygon) footprints = list(map(lambda i: shape(i.geometry).envelope, chip_id_to_items.values())) collection_bbox = MultiPolygon(footprints).bounds spatial_extent = pystac.SpatialExtent(bboxes=[collection_bbox]) datetimes = sorted(list(map(lambda i: i.datetime, chip_id_to_items.values()))) temporal_extent = pystac.TemporalExtent(intervals=[[datetimes[0], datetimes[-1]]]) collection_extent = pystac.Extent(spatial=spatial_extent, temporal=temporal_extent) collection = pystac.Collection(id='wv3-images', description='Spacenet 5 images over Moscow', extent=collection_extent, license='CC-BY-SA-4.0') collection.add_items(chip_id_to_items.values()) collection.describe() ###Output * <Collection id=wv3-images> * <Item id=img_0> * <Item id=img_1> * <Item id=img_10> * <Item id=img_100> * <Item id=img_1000> * <Item id=img_1001> * <Item id=img_1002> * <Item id=img_1003> * <Item id=img_1004> * <Item id=img_1005> ###Markdown Now, we can create a Catalog and add the collection. ###Code catalog = pystac.Catalog(id='spacenet5', description='Spacenet 5 Data (Test)') catalog.add_child(collection) catalog.describe() ###Output * <Catalog id=spacenet5> * <Collection id=wv3-images> * <Item id=img_0> * <Item id=img_1> * <Item id=img_10> * <Item id=img_100> * <Item id=img_1000> * <Item id=img_1001> * <Item id=img_1002> * <Item id=img_1003> * <Item id=img_1004> * <Item id=img_1005> ###Markdown Adding items with the label extension to the Spacenet 5 catalogWe can use the [label extension](https://github.com/radiantearth/stac-spec/tree/v0.8.1/extensions/label) of the STAC spec to represent the training data in our STAC. For this, we need to grab the URIs of the GeoJSON of roads: ###Code moscow_training_geojson_uris = list(get_s3_keys(bucket='spacenet-dataset', prefix='spacenet/SN5_roads/train/AOI_7_Moscow/geojson_roads_speed/')) for uri in moscow_training_geojson_uris: chip_id = get_chip_id(uri) if chip_id in chip_id_to_data: chip_id_to_data[chip_id]['label'] = 's3://spacenet-dataset/{}'.format(uri) ###Output _____no_output_____ ###Markdown We'll add the items to their own subcatalog; since they don't inherit the Collection's `eo` properties, they shouldn't go in the Collection. ###Code label_catalog = pystac.Catalog(id='spacenet-data-labels', description='Labels for Spacenet 5') catalog.add_child(label_catalog) ###Output _____no_output_____ ###Markdown To see the required fields for the label extension we can check the pydocs on the `apply` method of the extension: ###Code from pystac.extensions import label print(label.LabelItemExt.apply.__doc__) ###Output Applies label extension properties to the extended Item. Args: label_description (str): A description of the label, how it was created, and what it is recommended for label_type (str): An ENUM of either vector label type or raster label type. Use one of :class:`~pystac.LabelType`. label_properties (list or None): These are the names of the property field(s) in each Feature of the label asset's FeatureCollection that contains the classes (keywords from label:classes if the property defines classes). If labels are rasters, this should be None. label_classes (List[LabelClass]): Optional, but reqiured if ussing categorical data. A list of LabelClasses defining the list of possible class names for each label:properties. (e.g., tree, building, car, hippo) label_tasks (List[str]): Recommended to be a subset of 'regression', 'classification', 'detection', or 'segmentation', but may be an arbitrary value. label_methods: Recommended to be a subset of 'automated' or 'manual', but may be an arbitrary value. label_overviews (List[LabelOverview]): Optional list of LabelOverview classes that store counts (for classification-type data) or summary statistics (for continuous numerical/regression data). ###Markdown This loop creates our label items and associates each to the appropriate source image Item. ###Code for chip_id in chip_id_to_data: img_item = collection.get_item('img_{}'.format(chip_id)) label_uri = chip_id_to_data[chip_id]['label'] label_item = pystac.Item(id='label_{}'.format(chip_id), geometry=img_item.geometry, bbox=img_item.bbox, datetime=datetime.utcnow(), properties={}, stac_extensions=[pystac.Extensions.LABEL]) label_item.ext.label.apply(label_description="SpaceNet 5 Road labels", label_type=label.LabelType.VECTOR, label_tasks=['segmentation', 'regression']) label_item.ext.label.add_source(img_item) label_item.ext.label.add_geojson_labels(label_uri) label_catalog.add_item(label_item) ###Output _____no_output_____ ###Markdown Now we have a STAC of training data! ###Code catalog.describe() label_item = catalog.get_child('spacenet-data-labels').get_item('label_1') label_item.to_dict() ###Output _____no_output_____
week9/in_class_notebooks/week9-193.ipynb
###Markdown ![ ](https://www.pon-cat.com/application/files/7915/8400/2602/home-banner.jpg) **Data Visualization and Exploratory Data Analysis** Visualization is an important part of data analysis. By presenting information visually, you facilitate the process of its perception, which makes it possible to highlight additional patterns, evaluate the ratios of quantities, and quickly communicate key aspects in the data.Let's start with a little "memo" that should always be kept in mind when creating any graphs. How to visualize data and make everyone hate you 1. Chart **titles** are unnecessary. It is always clear from the graph what data it describes.2. Do not label under any circumstances both **axes** of the graph. Let the others check their intuition!3. **Units** are optional. What difference does it make if the quantity was measured, in people or in liters!4. The smaller the **text** on the graph, the sharper the viewer's eyesight.5. You should try to fit all the **information** that you have in the dataset in one chart. With full titles, transcripts, footnotes. The more text, the more informative!6. Whenever possible, use as many 3D and special effects as you have. There will be less visual distortion rather than 2D. As an example, consider the pandemic case. Let's use a dataset with promptly updated statistics on coronavirus (COVID-19), which is publicly available on Kaggle: https://www.kaggle.com/imdevskp/corona-virus-report?select=covid_19_clean_complete.csv The main libraries for visualization in Python that we need today are **matplotlib, seaborn, plotly**. ###Code # Download required binded packages !pip install plotly-express !pip install nbformat==4.2.0 !pip install plotly import matplotlib.pyplot as plt #the most popular library for making the plots %matplotlib inline import numpy as np import seaborn as sns # on the basis of matplotlib, but fancier import pandas as pd import pickle # for JSON serialization import plotly # dynamic plots import plotly_express as px import plotly.graph_objects as go from plotly.subplots import make_subplots from plotly.offline import init_notebook_mode init_notebook_mode(connected=True) %config InlineBackend.figure_format = 'svg' # graphs in svg look sharper # Change the default plot size from pylab import rcParams rcParams['figure.figsize'] = 7, 5 import warnings warnings.filterwarnings('ignore') ###Output _____no_output_____ ###Markdown We read the data and look at the number of countries in the dataset and what time period it covers. ###Code data = pd.read_csv('./data/covid_19_clean.csv') data.head(10) ###Output _____no_output_____ ###Markdown How many countries there are in this table? ###Code data['Country/Region'].nunique() data.shape data.describe() float(-1.400000e+01) data.shape data[data['Active'] >= 0] data['Active'].sort_values()[:20] data[data['Country/Region'] == 'Andorra'].iloc[-30:] data.describe(include=['object']) ###Output _____no_output_____ ###Markdown How many cases in average were confirmed per report? Metrics of centrality: ###Code data[data['Country/Region'] == 'India'] data['Confirmed'].mode() data['Confirmed'].median() data[data['Date'] == max(data['Date'])]['Confirmed'].median() data['Confirmed'].mean() ###Output _____no_output_____ ###Markdown What is the maximum number of confirmed cases in every country? ###Code data.groupby('Country/Region')['Confirmed'].agg('max').sort_values(ascending=False)[:10] data.groupby('Country/Region')['Confirmed'].max().sort_values(ascending=False)[:10] data.groupby('Country/Region')['Confirmed'].agg(['mean', 'std', 'sum']) ###Output _____no_output_____ ###Markdown More info on groupby: https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.groupby.html* **mean()**: Compute mean of groups* **sum()**: Compute sum of group values* **size()**: Compute group sizes* **count()**: Compute count of group* **std()**: Standard deviation of groups* **var()**: Compute variance of groups* **sem()**: Standard error of the mean of groups* **describe()**: Generates descriptive statistics* **first()**: Compute first of group values* **last()**: Compute last of group values* **nth()** : Take nth value, or a subset if n is a list* **min()**: Compute min of group values* **max()**: Compute max of group values You can see several characteristics at once (mean, median, prod, sum, std,var) - both in DataFrame and Series: ###Code data.groupby('Country/Region')['Confirmed'].agg(['mean', 'median', 'std']) data.pivot_table(columns='WHO Region', index='Date', values='Confirmed', aggfunc='sum') data[data['WHO Region'] == 'Western Pacific'] data[data['WHO Region'] == 'Western Pacific']['Country/Region'].unique() data.Confirmed.mean() true_mean = data[data.Date == max(data.Date)].Confirmed.mean() data[(data['WHO Region'] == 'Western Pacific') & (data['Confirmed'] > true_mean)] data[(data['WHO Region'] == 'Western Pacific') & (data['Confirmed'] > true_mean)]['Country/Region'].unique() some_countries = ['China', 'Singapore', 'Philippines', 'Japan'] data[data['Country/Region'].isin(some_countries)] ###Output _____no_output_____ ###Markdown Let's make a small report: ###Code data = pd.read_csv('./data/covid_19_clean.csv') print("Number of countries: ", data['Country/Region'].nunique()) print(f"Day from {min(data['Date'])} till {max(data['Date'])}, overall {data['Date'].nunique()} days.") display(data[data['Country/Region'] == 'Russia'].tail()) data['Date'] = pd.to_datetime(data['Date'], format='%Y-%m-%d') ###Output Number of countries: 187 Day from 2020-01-22 till 2020-07-27, overall 188 days. ###Markdown The coronavirus pandemic is a clear example of an exponential distribution. To demonstrate this, let's build a graph of the total number of infected and dead. We will use a linear chart type (** Line Chart **), which can reflect the dynamics of one or several indicators. It is convenient to use it to see how a value changes over time. ###Code data data['Confirmed'].plot() data[['Confirmed', 'Deaths', 'Date']].groupby('Date').sum().plot() # Line chart ax = data[['Confirmed', 'Deaths', 'Date']].groupby('Date').sum().plot(title='The trend of growing number of confirmed cases') ax.set_xlabel("Time") ax.set_ylabel("Number of confirmed cases, 10 mln of people"); # TODO # Change the title and axes names ###Output _____no_output_____ ###Markdown The graph above shows us general information around the world. Let's select the 10 most affected countries (based on the results of the last day from the dataset) and on one **Line Chart** show data for each of them according to the number of registered cases of the disease. This time, let's try using the **plotly** library. ###Code # Preparation steps fot the table # Extract the top 10 countries by the number of confirmed cases df_top = data[data['Date'] == max(data.Date)] df_top = df_top.groupby('Country/Region', as_index=False)['Confirmed'].sum() df_top = df_top.nlargest(10,'Confirmed') # Extract trend across time df_trend = data.groupby(['Date','Country/Region'], as_index=False)['Confirmed'].sum() df_trend = df_trend.merge(df_top, on='Country/Region') df_trend.rename(columns={'Country/Region' : 'Countries', 'Confirmed_x':'Cases', 'Date' : 'Dates'}, inplace=True) # Plot a graph # px stands for plotly_express px.line(df_trend, title='Increased number of cases of COVID-19', x='Dates', y='Cases', color='Countries') ###Output _____no_output_____ ###Markdown Let's put a logarithm on this column. ###Code # Add a column to visualize the logarithmic df_trend['ln(Cases)'] = np.log(df_trend['Cases'] + 1) # Add 1 for log (0) case px.line(df_trend, x='Dates', y='ln(Cases)', color='Countries', title='COVID19 Total Cases growth for top 10 worst affected countries(Logarithmic Scale)') ###Output _____no_output_____ ###Markdown What interesting conclusions can you draw from this graph? Try to do similar graphs for the deaths and active cases. ###Code # TODO ###Output _____no_output_____ ###Markdown Another popular chart is the **Pie chart**. Most often, this graph is used to visualize the relationship between parts (ratios). ###Code # Pie chart fig = make_subplots(rows=1, cols=2, specs=[[{'type':'domain'}, {'type':'domain'}]]) labels_donut = [country for country in df_top['Country/Region']] fig.add_trace(go.Pie(labels=labels_donut, hole=.4, hoverinfo="label+percent+name", values=[cases for cases in df_top.Confirmed], name="Ratio", ), 1, 1) labels_pie = [country for country in df_top['Country/Region']] fig.add_trace(go.Pie(labels=labels_pie, pull=[0, 0, 0.2, 0], values=[cases for cases in df_top.Confirmed], name="Ratio"), 1, 2) fig.update_layout( title_text="Donut & Pie Chart: Distribution of COVID-19 cases among the top-10 affected countries", # Add annotations in the center of the donut pies. annotations=[dict(text=' ', x=0.5, y=0.5, font_size=16, showarrow=False)], colorway=['rgb(69, 135, 24)', 'rgb(136, 204, 41)', 'rgb(204, 204, 41)', 'rgb(235, 210, 26)', 'rgb(209, 156, 42)', 'rgb(209, 86, 42)', 'rgb(209, 42, 42)', ]) fig.show() ###Output _____no_output_____ ###Markdown In the line graphs above, we have visualized aggregate country information by the number of cases detected. Now, let's try to plot a daily trend chart by calculating the difference between the current value and the previous day's value.For this purpose, we will use a histogram (**Histogram**). Also, let's add pointers to key events, for example, lockdown dates in Wuhan province in China, Italy and the UK. ###Code # Histogram def add_daily_diffs(df): # 0 because the previous value is unknown df.loc[0,'Cases_daily'] = 0 df.loc[0,'Deaths_daily'] = 0 for i in range(1, len(df)): df.loc[i,'Cases_daily'] = df.loc[i,'Confirmed'] - df.loc[i - 1,'Confirmed'] df.loc[i,'Deaths_daily'] = df.loc[i,'Deaths'] - df.loc[i - 1,'Deaths'] return df df_world = data.groupby('Date', as_index=False)['Deaths', 'Confirmed'].sum() df_world = add_daily_diffs(df_world) fig = go.Figure(data=[ go.Bar(name='The number of cases', marker={'color': 'rgb(0,100,153)'}, x=df_world.Date, y=df_world.Cases_daily), go.Bar(name='The number of cases', x=df_world.Date, y=df_world.Deaths_daily) ]) fig.update_layout(barmode='overlay', title='Statistics on the number of Confirmed and Deaths from COVID-19 across the world', annotations=[dict(x='2020-01-23', y=1797, text="Lockdown (Wuhan)", showarrow=True, arrowhead=1, ax=-100, ay=-200), dict(x='2020-03-09', y=1797, text="Lockdown (Italy)", showarrow=True, arrowhead=1, ax=-100, ay=-200), dict(x='2020-03-23', y=19000, text="Lockdown (UK)", showarrow=True, arrowhead=1, ax=-100, ay=-200)]) fig.show() # Save plotly.offline.plot(fig, filename='my_beautiful_histogram.html', show_link=False) ###Output _____no_output_____ ###Markdown A histogram is often mistaken for a bar chart due to its visual similarity, but these charts have different purposes. The bar graph shows how the data is distributed over a continuous interval or a specific period of time. Frequency is located along the vertical axis of the histogram, intervals or some time period along the horizontal axis.Let's build the **Bar Chart** now. It can be vertical and horizontal, let's choose the second option.Let's build a graph only for the top 20 countries in mortality. We will calculate this statistics as the ratio of the number of deaths to the number of confirmed cases for each country.For some countries in the dataset, statistics are presented for each region (for example, for all US states). For such countries, we will leave only one (maximum) value. Alternatively, one could calculate the average for the regions and leave it as an indicator for the country. ###Code # Bar chart df_mortality = data.query('(Date == "2020-07-17") & (Confirmed > 100)') df_mortality['mortality'] = df_mortality['Deaths'] / df_mortality['Confirmed'] df_mortality['mortality'] = df_mortality['mortality'].apply(lambda x: round(x, 3)) df_mortality.sort_values('mortality', ascending=False, inplace=True) # Keep the maximum mortality rate for countries for which statistics are provided for each region. df_mortality.drop_duplicates(subset=['Country/Region'], keep='first', inplace=True) fig = px.bar(df_mortality[:20].iloc[::-1], x='mortality', y='Country/Region', labels={'mortality': 'Death rate', 'Country\Region': 'Country'}, title=f'Death rate: top-20 affected countries on 2020-07-17', text='mortality', height=800, orientation='h') # горизонтальный fig.show() # TODO: раскрасить столбцы по тепловой карте (используя уровень смерности) # Для этого добавьте аргументы color = 'mortality' ###Output _____no_output_____ ###Markdown **Heat Maps** quite useful for additional visualization of correlation matrices between features. When there are a lot of features, with the help of such a graph you can more quickly assess which features are highly correlated or do not have a linear relationship. ###Code # Heat map sns.heatmap(data.corr(), annot=True, fmt='.2f', cmap='cividis'); # try another color, e.g.'RdBu' ###Output _____no_output_____ ###Markdown The scatter plot helps to find the relationship between the two indicators. To do this, you can use pairplot, which will immediately display a histogram for each variable and a scatter plot for two variables (along different plot axes). ###Code # Pairplot sns_plot = sns.pairplot(data[['Deaths', 'Confirmed']]) sns_plot.savefig('pairplot.png') # save ###Output _____no_output_____ ###Markdown **Pivot table** can automatically sort and aggregate your data. ###Code # Pivot table plt.figure(figsize=(12, 4)) df_new = df_mortality.iloc[:10] df_new['Confirmed'] = df_new['Confirmed'].astype(np.int) df_new['binned_fatalities'] = pd.cut(df_new['Deaths'], 3) platform_genre_sales = df_new.pivot_table( index='binned_fatalities', columns='Country/Region', values='Confirmed', aggfunc=sum).fillna(int(0)).applymap(np.int) sns.heatmap(platform_genre_sales, annot=True, fmt=".1f", linewidths=0.7, cmap="viridis"); # Geo # file with abbreviations with open('./data/countries_codes.pkl', 'rb') as file: countries_codes = pickle.load(file) df_map = data.copy() df_map['Date'] = data['Date'].astype(str) df_map = df_map.groupby(['Date','Country/Region'], as_index=False)['Confirmed','Deaths'].sum() df_map['iso_alpha'] = df_map['Country/Region'].map(countries_codes) df_map['ln(Confirmed)'] = np.log(df_map.Confirmed + 1) df_map['ln(Deaths)'] = np.log(df_map.Deaths + 1) px.choropleth(df_map, locations="iso_alpha", color="ln(Confirmed)", hover_name="Country/Region", hover_data=["Confirmed"], animation_frame="Date", color_continuous_scale=px.colors.sequential.OrRd, title = 'Total Confirmed Cases growth (Logarithmic Scale)') ###Output _____no_output_____
no_show_medical_appointment/no_show_medical.ipynb
###Markdown No Show Medical Appointment ** IMPORTANT OVERVIEW OF THE DATA SET:**This dataset collects information from 100k medical appointments in Brazil and is focused on the question of whether or not patients show up for their appointment. A number of characteristics about the patient are included in each row. ✓ ‘ScheduledDay’ tells us on what day the patient set up their appointment. ✓ ‘Neighbourhood’ indicates the location of the hospital. ✓ ‘Scholarship’ indicates whether or not the patient is enrolled in Brasilian welfare program Bolsa Família. Be careful about the encoding of the last column: it says ‘No’ if the patient showed up to their appointment, and ‘Yes’ if they did not show up.**WHAT THE PROJECT IS ABOUT. *** This uses a csv file, data from kaggle called No show appointment. ** BELOW ARE THE COLUMNS IN THE DATASET AND WHAT THEY MEAN : **+ PatientId = ID of the patient+ AppointmentID = ID of the appointment+ Gender = Gender of patient+ ScheduledDay = The day which appointment was scheduled+ AppointmentDay = The day which appintment planned to occur+ Age = Age of the patient+ Neighbourhood = The place where hospital located+ Scholarship = If the patient has scholarship or not, That is 1 for True and 0 for False+ Hipertension = If the patient has Hipertension or not, That is 1 for True and 0 for False+ Diabetes = If the patient has Diabetes or not, That is 1 for True and 0 for False+ Alcoholism = If the patient has Alcoholism or not, That is 1 for True and 0 for False+ Handcap = If the patient has Handcap or not. That is 1 for True and 0 for False+ SMS_received = If the patient received an SMS for the appointment+ No.show = no show information. “Yes” means patient did not come to the appointment, “No” means patient came to appointment.** QUESTIONS TO BE INVESTIGATED WITH THIS DATA SET: **+ what factors are important for us to know in order to predict if a patient will show up for their scheduled appointmment. + what gender missed the most appointments ? + what day of the week, do the patients mostly miss appointment. ###Code # import modules needed for the investigation %matplotlib inline import numpy as np import pandas as pd from datetime import datetime as dt import matplotlib.pyplot as plt # import the data from the csv and assigned it to a variable called df df = pd.read_csv('noshowappointments-kagglev2-may-2016.csv') df.head() # using the header shows us the first 5 roles from top of the data set. # this is drop the missing values df_no_missing = df.dropna(axis = 1, how='any') print df.describe() df.columns # this gives us the idea of the total columns we have in the data set. # Here i am renaming some columns to provide some clarity into the data # like removing spaces df.rename(columns = { "PatientId":'Patient_Id', 'Hipertension': 'Hypertension', \ "AppointmentID":'Appointment_ID',"ScheduledDay": "Scheduled_Day", \ 'AppointmentDay': 'Appointment_Day' }, inplace=True) df.columns = df.columns.str.replace('-', '_') df.columns # this is to present the total rows and the columns we have in the data set df.shape # reading from left to right, rows first and then column df.info() # this is showing more information about the data set like the type of data they are # Here we converted the date, time and seconds using pandas in built function to make the date and time more # comprehensive to understand # below is the link for the documentation # https://pandas.pydata.org/pandas-docs/stable/generated/pandas.to_datetime.html#pandas.to_datetime df['Scheduled_Day'] = pd.to_datetime(df['Scheduled_Day']) df['Appointment_Day'] = pd.to_datetime(df['Appointment_Day']) df.head() ###Output _____no_output_____ ###Markdown **According to Youth Policy.org**,Here is the source: *http://www.youthpolicy.org/factsheets/country/brazil/*- 18 Years is considered to be the minimum for criminal reponsibility, + In this analysis, i assuming that since 18 is the minimum age for responsibility, then the child is still a teenager and not yet responsible for this actions looking at from the economic perspective. Below i create a variable named Teens_start_age = 18, WHY ? * This is because i want to assume that since they are kids and not yet responsible for themselves yet, they cannot visit the doctor or go for any medical appointment unless in Life threatening situations ###Code teens_start_age = 18 teenagers = df[df.Age < teens_start_age] # no of people below the age of 18 len(teenagers) print "Here is the number of people below the age of 18 : " + str(len(teenagers)) ###Output Here is the number of people below the age of 18 : 27380 ###Markdown In the next cell, I am taking a range from 18 to 40, + people in this range are responsible and they can take care of themselves by law. + a variable was created 40, i am using this as a max for people to have settled down ###Code settled_down_age = 40 # to ask my mentor if i have to turn this into a function. settling_down = df[(df['Age'] >= teens_start_age) & (df['Age'] <= settled_down_age)] len(settling_down) print "This is the number of people from 18 to 40 of the data set : " + str(len(settling_down)) old_age = 60 # Here i looked at the age over 40 getting_old = df[(df['Age'] > settled_down_age) & (df['Age'] <= old_age)] len(getting_old) print "This is the number of people over 40 till 60 years : " + str(len(getting_old)) finally_old = df[df.Age > old_age] # Here i want to know the people above the age of 60 len(finally_old) print" Here is the nummber of people over 60 years : " + str(len(finally_old)) female_in_the_data = df[df.Gender == "F"] # no of females in the gender columns male_in_the_data = df[df.Gender == "M"] # no of males in the gender columns len(male_in_the_data) len(female_in_the_data) print " Here is the number of Males : " + str(len(male_in_the_data)) print " Here is the number of Females : "+ str(len(female_in_the_data)) ###Output Here is the number of Males : 38687 Here is the number of Females : 71840 ###Markdown Below is a simple for histogram of age of the people+ The yellow line passing through it is called the line of best fit+ Also we have the mean age of the people in the data set + The standard deviation is included ###Code age_mean = df['Age'].mean() # mean of the age distribution age_standard_deviation = df['Age'].std() # standard deviation of the age distribution print 'This is the mean : ',age_mean print 'This is the standard deviation : ',age_standard_deviation %matplotlib inline import numpy as np import matplotlib.mlab as mlab import matplotlib.pyplot as plt mu = age_mean # mean of distribution sigma = age_standard_deviation # standard deviation of distribution num_bins = 50 fig, ax = plt.subplots() # the histogram of the data n, bins, patches = ax.hist(df['Age'], num_bins, normed=1) # add a 'best fit' line y = mlab.normpdf(bins, mu, sigma) ax.plot(bins, y, '--') ax.set_xlabel('Age of the people') ax.set_ylabel('Probability density') ax.set_title(r'Histogram of People Age') #$\mu=, $\sigma=$ # Tweak spacing to prevent clipping of ylabel fig.tight_layout() plt.show() ###Output _____no_output_____ ###Markdown Question 1 + what gender missed the most appointment ?so here i am trying to consider both genders, I want to find out, which one missed the most appointment ###Code male_no_shows = df[(df['Gender'] == "M") & (df['No_show'] == 'Yes')] males_no_shows = int(len(male_no_shows)) print "Male that did not show up for appointment : ",males_no_shows # Here i am trying to get the female in the gender that did not show for the appointment female_no_shows = df[(df['Gender'] == 'F') & (df['No_show'] == 'Yes')] females_no_shows = int(len(female_no_shows)) print "Female that did not show up for appointment : ",females_no_shows # Here, we are looking at the number of males that showed up male_shows_up = df[(df['Gender'] == "M") & (df['No_show'] == 'No')] males_shows_up = int(len(male_shows_up)) print " Males that showed up for the appointment : ", males_shows_up #We are taking a look at the number of females that showed up for the appointment female_shows_up = df[(df['Gender'] == 'F') & (df['No_show'] == 'No')] females_shows_up = int(len(female_shows_up)) print " Females that showed up for the Medical appointment: ",females_shows_up ###Output Females that showed up for the Medical appointment: 57246 ###Markdown Below is a representation of Gender with No show + to the left we have a pie chart representing the percentage of gender that show+ To the right we have a pie chart also showing the percentage of gender that did not show ###Code grouping_gender_noshow = df.groupby(['Gender','No_show']) grouping_gender_noshow.size().unstack().plot(kind='pie', subplots = True, autopct='%1.1f%%', figsize=(15,15) ,title = 'Pie showing the relating of Gender with No Show') ###Output _____no_output_____ ###Markdown Below is the bar chart representation of No show with Gender+ the Blue bar shows the people that showed for the medical appointment + the Orange bar shows the people that did not show for the medical appointment ###Code grouping_gender_noshow.size().unstack().plot(kind='bar', figsize=(15,15), title = 'Bar chart of No show grouped by Gender') ###Output _____no_output_____ ###Markdown So my conclusion is that, + *the number of Male that did not show up is 7725*+ *Females that did not show up is 14594*+ *This means that No of females that do not show up is higher than the number of male that do not show.*+ *Looking at the analysis more, you will see that we have greater no of female that showed up too.* More analysis i will like to exlpore here :+ To know the age range of male and females that showed and did not show up for the medical appointment.+ I am suppecting that there could a hight numner of teens missing appointments because of thier guardian+ Also the old people, little or no guardian to take them for the appointment So i am not concluding here but needs to be investigated further ###Code from __future__ import division percentage = 100 total_number_shows = len(df) total_number_shows = int(total_number_shows) def calculating_percentage(input_show): the_percentage = ((input_show / total_number_shows)*percentage) print the_percentage,'%' male_not_showed = calculating_percentage(males_no_shows) female_not_showed = calculating_percentage(females_no_shows) male_that_showed = calculating_percentage(males_shows_up) female_that_showed = calculating_percentage(females_shows_up) ###Output 6.98924244755 % 13.204013499 % 28.013064681 % 51.7936793725 % ###Markdown QUESTION 2 : + what day of the week did people missed the most appointment + Below is the next cell, i formatted the Appointment_day to days in the week so that i can get the day of the week. ###Code df['Day_of_the_appointment'] = df['Appointment_Day'].dt.weekday_name # the day of the week was formatted here Monday_Appointment = df[(df['Day_of_the_appointment'] == 'Monday')] len(Monday_Appointment) def checking_for_days(appointment_day, day_of_week): appointment = df[(appointment_day == day_of_week)] print day_of_week+'s : ' + str(len(appointment)) return len(appointment) max_of_days = [ checking_for_days(df['Day_of_the_appointment'], 'Monday'), checking_for_days(df['Day_of_the_appointment'], 'Tuesday'), checking_for_days(df['Day_of_the_appointment'], 'Wednesday'), checking_for_days(df['Day_of_the_appointment'], 'Thursday'), checking_for_days(df['Day_of_the_appointment'], 'Friday'), checking_for_days(df['Day_of_the_appointment'], 'Saturday'), checking_for_days(df['Day_of_the_appointment'], 'Sunday') ] # returning the number of appointment missed based on the weekday print 'Here is the most days where appointment was missed : ', max(max_of_days) # People missed most appointment on a Wednesday df['Day_of_the_appointment'].mode() %matplotlib inline df['Day_of_the_appointment'].value_counts().plot(kind="pie", shadow = True, startangle=270, autopct='%1.1f%%', figsize=(10,10), title = ('Percentage of days of the week'), legend = True) ###Output _____no_output_____ ###Markdown The above pie chart shows the percentage of how the days of the week appears. What do i mean by this ? + each variables shows how many times each day occurred in the data set. However note that i wanted to see which of the days of the week that the people missed the most appointment, and given the looks of things on the pie chart we can see the percentages of how they occur.+ **Monday** with 20.6%+ **Tuesday** with 23.2%+ **Wednesday** with 23.4%+ **Thurday** with 15.6%+ **Friday** with 17.2%+ **Satuday** with 0%*From pie chart analysis what i can deduce is that, the people missed their appointment most on Wednesday, slightly a bit more than Tuesday. * The reason for checking this: + I wanted to know if the reason for missing the appointment could be work related or not, What i would like to explore more here is that : What is the percentage of the working class and the non working class in this analysisin order to better understand the result. ###Code ax = df['Day_of_the_appointment'].hist() ax.set_xlabel("(Day of the week)") ax.set_ylabel('Frequency') ###Output _____no_output_____
2020_week_2/Taylor_problem_5.32.ipynb
###Markdown Taylor problem 5.32last revised: 12-Jan-2019 by Dick Furnstahl [[email protected]] **Replace by appropriate expressions.** The equation for an underdamped oscillator, such as a mass on the end of a spring, takes the form $\begin{align} x(t) = e^{-\beta t} [B_1 \cos(\omega_1 t) + B_2 \sin(\omega_1 t)]\end{align}$where$\begin{align} \omega_1 = \sqrt{\omega_0^2 - \beta^2}\end{align}$and the mass is released from rest at position $x_0$ at $t=0$. **Goal: plot $x(t)$ for $0 \leq t \leq 20$, with $x_0 = 1$, $\omega_0=1$, and $\beta = 0.$, 0.02, 0.1, 0.3, and 1.** ###Code import numpy as np import matplotlib.pyplot as plt def underdamped(t, beta, omega_0=1, x_0=1): """Solution x(t) for an underdamped harmonic oscillator.""" omega_1 = np.sqrt(omega_0**2 - beta**2) B_1 = 2 B_2 = 5 return np.exp(-beta*t) \ * ( B_1 * np.cos(omega_1*t) + B_2 * np.sin(omega_1*t) ) t_pts = np.arange(0., 20., .01) betas = [0., 0.02, 0.1, 0.3, 0.9999] fig = plt.figure(figsize=(10,6)) # look up "python enumerate" to find out how this works! for i, beta in enumerate(betas): ax = fig.add_subplot(2, 3, i+1) ax.plot(t_pts, underdamped(t_pts, beta), color='blue') ax.set_title(rf'$\beta = {beta:.2f}$') ax.set_xlabel('t') ax.set_ylabel('x(t)') ax.set_ylim(-1.1,1.1) ax.axhline(0., color='black', alpha=0.3) # lightened black zero line fig.tight_layout() ### add code to print the figure ###Output _____no_output_____ ###Markdown Bonus: Widgetized! ###Code from ipywidgets import interact, fixed import ipywidgets as widgets omega_0 = 1. def plot_beta(beta): """Plot function for underdamped harmonic oscillator.""" t_pts = np.arange(0., 20., .01) fig = plt.figure() ax = fig.add_subplot(1,1,1) ax.plot(t_pts, underdamped(t_pts, beta), color='blue') ax.set_title(rf'$\beta = {beta:.2f}$') ax.set_xlabel('t') ax.set_ylabel('x(t)') ax.set_ylim(-1.1,1.1) ax.axhline(0., color='black', alpha=0.3) fig.tight_layout() max_value = omega_0 - 0.0001 interact(plot_beta, beta=widgets.FloatSlider(min=0., max=max_value, step=0.01, value=0., readout_format='.2f', continuous_update=False)); ###Output _____no_output_____ ###Markdown Now let's allow for complex numbers! This will enable us to take $\beta > \omega_0$. ###Code # numpy.lib.scimath version of sqrt handles complex numbers. # numpy exp, cos, and sin already can. import numpy.lib.scimath as smath def all_beta(t, beta, omega_0=1, x_0=1): """Solution x(t) for damped harmonic oscillator, allowing for overdamped as well as underdamped solution. """ omega_1 = smath.sqrt(omega_0**2 - beta**2) return np.real( x_0 * np.exp(-beta*t) \ * (np.cos(omega_1*t) + (beta/omega_1)*np.sin(omega_1*t)) ) from ipywidgets import interact, fixed import ipywidgets as widgets omega_0 = 1. def plot_all_beta(beta): """Plot of x(t) for damped harmonic oscillator, allowing for overdamped as well as underdamped cases.""" t_pts = np.arange(0., 20., .01) fig = plt.figure() ax = fig.add_subplot(1,1,1) ax.plot(t_pts, all_beta(t_pts, beta), color='blue') ax.set_title(rf'$\beta = {beta:.2f}$') ax.set_xlabel('t') ax.set_ylabel('x(t)') ax.set_ylim(-1.1,1.1) ax.axhline(0., color='black', alpha=0.3) fig.tight_layout() interact(plot_all_beta, beta=widgets.FloatSlider(min=0., max=2, step=0.01, value=0., readout_format='.2f', continuous_update=False)); ###Output _____no_output_____ ###Markdown Taylor problem 5.32last revised: 12-Jan-2019 by Dick Furnstahl [[email protected]] **Replace by appropriate expressions.** The equation for an underdamped oscillator, such as a mass on the end of a spring, takes the form $\begin{align} x(t) = e^{-\beta t} [B_1 \cos(\omega_1 t) + B_2 \sin(\omega_1 t)]\end{align}$where$\begin{align} \omega_1 = \sqrt{\omega_0^2 - \beta^2}\end{align}$and the mass is released from rest at position $x_0$ at $t=0$. **Goal: plot $x(t)$ for $0 \leq t \leq 20$, with $x_0 = 1$, $\omega_0=1$, and $\beta = 0.$, 0.02, 0.1, 0.3, and 1.** ###Code import numpy as np import matplotlib.pyplot as plt def underdamped(t, beta, omega_0=1, x_0=1): """Solution x(t) for an underdamped harmonic oscillator.""" omega_1 = np.sqrt(omega_0**2 - beta**2) B_1 = ### fill in the blank B_2 = ### fill in the blank return np.exp(-beta*t) \ * ( B_1 * np.cos(omega_1*t) + B_2 * np.sin(omega_1*t) ) t_pts = np.arange(0., 20., .01) betas = [0., 0.02, 0.1, 0.3, 0.9999] fig = plt.figure(figsize=(10,6)) # look up "python enumerate" to find out how this works! for i, beta in enumerate(betas): ax = fig.add_subplot(2, 3, i+1) ax.plot(t_pts, underdamped(t_pts, beta), color='blue') ax.set_title(rf'$\beta = {beta:.2f}$') ax.set_xlabel('t') ax.set_ylabel('x(t)') ax.set_ylim(-1.1,1.1) ax.axhline(0., color='black', alpha=0.3) # lightened black zero line fig.tight_layout() ### add code to print the figure ###Output _____no_output_____ ###Markdown Bonus: Widgetized! ###Code from ipywidgets import interact, fixed import ipywidgets as widgets omega_0 = 1. def plot_beta(beta): """Plot function for underdamped harmonic oscillator.""" t_pts = np.arange(0., 20., .01) fig = plt.figure() ax = fig.add_subplot(1,1,1) ax.plot(t_pts, underdamped(t_pts, beta), color='blue') ax.set_title(rf'$\beta = {beta:.2f}$') ax.set_xlabel('t') ax.set_ylabel('x(t)') ax.set_ylim(-1.1,1.1) ax.axhline(0., color='black', alpha=0.3) fig.tight_layout() max_value = omega_0 - 0.0001 interact(plot_beta, beta=widgets.FloatSlider(min=0., max=max_value, step=0.01, value=0., readout_format='.2f', continuous_update=False)); ###Output _____no_output_____ ###Markdown Now let's allow for complex numbers! This will enable us to take $\beta > \omega_0$. ###Code # numpy.lib.scimath version of sqrt handles complex numbers. # numpy exp, cos, and sin already can. import numpy.lib.scimath as smath def all_beta(t, beta, omega_0=1, x_0=1): """Solution x(t) for damped harmonic oscillator, allowing for overdamped as well as underdamped solution. """ omega_1 = smath.sqrt(omega_0**2 - beta**2) return np.real( x_0 * np.exp(-beta*t) \ * (np.cos(omega_1*t) + (beta/omega_1)*np.sin(omega_1*t)) ) from ipywidgets import interact, fixed import ipywidgets as widgets omega_0 = 1. def plot_all_beta(beta): """Plot of x(t) for damped harmonic oscillator, allowing for overdamped as well as underdamped cases.""" t_pts = np.arange(0., 20., .01) fig = plt.figure() ax = fig.add_subplot(1,1,1) ax.plot(t_pts, all_beta(t_pts, beta), color='blue') ax.set_title(rf'$\beta = {beta:.2f}$') ax.set_xlabel('t') ax.set_ylabel('x(t)') ax.set_ylim(-1.1,1.1) ax.axhline(0., color='black', alpha=0.3) fig.tight_layout() interact(plot_all_beta, beta=widgets.FloatSlider(min=0., max=2, step=0.01, value=0., readout_format='.2f', continuous_update=False)); ###Output _____no_output_____
benchmarks/notebooks/baseline-paper/baseline-throughput-latency-paper.ipynb
###Markdown Calculate and plot the number of exchanged messages over time ###Code import os import pandas as pd import numpy as np import matplotlib.pyplot as plt ###Output _____no_output_____ ###Markdown Global variables ###Code pd.set_option("display.precision", 5) pd.set_option('display.max_rows', 500) timeframe_upper_limit = 60 # Seconds after startup that you want to look at paths = { # set the topology size as key # "111": "../../logs/baseline/25-03-2021", "73": "../../logs/baseline/30-03-2021" } exclude_paths = [] num_nodes = 73 height = 2 degree = 8 num_runs = { 73: 9, 111: 5 } # naming: m_xxx = maintenance_xxx # naming: d_xxx = data_xxx d_stamps = [] d_topologies = [] d_node_ids = [] d_runs = [] d_latencies = [] startup_times = {} for path in paths : #print(path) for root, dirs, files in os.walk(paths[path]) : dirs[:] = [directory for directory in dirs if directory not in exclude_paths] # print(root) # print(dirs) # print(files) got_startup_time = False run = root.split('_')[-1] for file in files : with open( os.path.join(root, file) ) as log : node_id = file.split('_')[0][4:] for line in log : if "DATA RECEIVED" in line: # data messages elem = line.split( ) if not got_startup_time: # get timestamp of the first data tuple got_startup_time = True startup_times[int(run)] = int(elem[8]) d_node_ids.append(int(node_id)) d_stamps.append( int(elem[8]) ) # unix timestamp d_topologies.append( int(path) ) d_runs.append(int(run)) d_latencies.append(int(1000000*float(elem[-1]))) d_data = pd.DataFrame(np.column_stack([d_topologies, d_runs, d_node_ids, d_latencies, d_stamps]), columns=['topology', 'run', 'node_id', 'latency_micros','timestamp']) # print(startup_time) d_data.head() d_data['timestamp'] = d_data.apply(lambda row: row.timestamp - startup_times[row.run], axis=1) d_data['timestamp_sec'] = d_data['timestamp'].apply(lambda x: x // 1000000000) d_data ###Output _____no_output_____ ###Markdown Reduce timeframe ###Code d_data = d_data[d_data.timestamp_sec <= timeframe_upper_limit] d_data ###Output _____no_output_____ ###Markdown Try to find outliers ###Code d_outliers = d_data.groupby(['topology', 'run', 'node_id', 'timestamp_sec']).size().reset_index(name='number of messages').sort_values(by=['number of messages'], ascending=False, axis=0) # d_outliers.head() ###Output _____no_output_____ ###Markdown Compute results ###Code d_grouped = d_data.groupby(['topology', 'timestamp_sec']).size().reset_index(name='number of messages') d_grouped['number of messages'] = d_grouped.apply(lambda row: row['number of messages'] / num_runs[row['topology']], axis=1) d_grouped['number of messages per node'] = d_grouped.apply(lambda row: row['number of messages'] / row['topology'], axis=1) # d_grouped ###Output _____no_output_____ ###Markdown Throughput ###Code ax = plt.gca() d_grouped.plot(kind='line',x='timestamp_sec',y='number of messages',ax=ax) plt.xlabel("[s] since startup") plt.ylabel("Throughput at root per [s]") plt.legend([str(num_nodes) +' nodes, ' + str(num_runs[num_nodes]) + ' runs, h=' + str(height) + ', d=' + str(degree)], loc=1) stepsize=10 ax.xaxis.set_ticks(np.arange(0, timeframe_upper_limit + 1, stepsize)) plt.savefig('baseline-throughput-paper.pdf') first_30 = d_grouped[d_grouped['timestamp_sec'] <= 30]['number of messages'].sum() first_60 = d_grouped[d_grouped['timestamp_sec'] <= 50]['number of messages'].sum() f_30_60 = d_grouped[(d_grouped['timestamp_sec'] >=5) & (d_grouped['timestamp_sec'] < 50)]['number of messages'].sum() print('Overall exchanged data within first 30s: ' + str(first_30)) print('Overall exchanged data within first 60s: ' + str(first_60)) print('Overall exchanged data between 30s and 60s: ' + str(f_30_60)) print('Exchanged data between 30s and 60s per second per node: ' + str(f_30_60/(45*(num_nodes-1)))) print('\nOverall exchanged maintenance messages during first 30s per node: ' + str(first_30 / num_nodes)) print('\nOverall exchanged maintenance messages during first 50s per node: ' + str(first_60 / num_nodes)) print('\nOverall throughput at root: ' + str(first_60 / 50)) ###Output Overall exchanged data within first 30s: 4244.666666666667 Overall exchanged data within first 60s: 7124.333333333334 Overall exchanged data between 30s and 60s: 6479.0 Exchanged data between 30s and 60s per second per node: 1.9996913580246913 Overall exchanged maintenance messages during first 30s per node: 58.14611872146119 Overall exchanged maintenance messages during first 50s per node: 97.59360730593608 Overall throughput at root: 142.48666666666668 ###Markdown Latency ###Code d_latency = d_data.groupby(['topology', 'timestamp_sec'], as_index=False)['latency_micros'].mean() d_latency['latency_micros'] = d_latency['latency_micros'] / 1000 d_latency.rename(columns = {'latency_micros':'latency_millis'}, inplace=True) d_latency d_latency = d_latency[d_latency["timestamp_sec"] >= 0] ax = plt.gca() d_latency.plot(kind='line',x='timestamp_sec',y='latency_millis',ax=ax) plt.xlabel("[s] since startup") plt.ylabel("Mean source-to-sink latency in [ms]") plt.legend([str(num_nodes) +' nodes, ' + str(num_runs[num_nodes]) + ' runs, h=' + str(height) + ', d=' + str(degree)], loc=1) stepsize=10 ax.xaxis.set_ticks(np.arange(0, timeframe_upper_limit + 1, stepsize)) plt.savefig('baseline-latency-paper.pdf') avg_latency = d_latency['latency_millis'].mean() print("Average latency per packet from source to sink: " + str(avg_latency)) ###Output Average latency per packet from source to sink: 96.501147069178
content/lessons/02/Class-Coding-Lab/CCL-Intro-To-Python-Programming-Copy1.ipynb
###Markdown Class Coding Lab: Introduction to ProgrammingThe goals of this lab are to help you to understand:1. the Jupyter and IDLE programming environments1. basic Python Syntax2. variables and their use3. how to sequence instructions together into a cohesive program4. the input() function for input and print() function for output Let's start with an example: Hello, world!This program asks for your name as input, then says hello to you as output. Most often it's the first program you write when learning a new programming language. Click in the cell below and click the run cell button. ###Code your_name = input("What is your name? ") print('Hello there',your_name) ###Output _____no_output_____ ###Markdown Believe it or not there's a lot going on in this simple two-line program, so let's break it down. - The first line: - Asks you for input, prompting you `What is your Name?` - It then stores your input in the variable `your_name` - The second line: - prints out the following text: `Hello there` - then prints out the contents of the variable `your_name`At this point you might have a few questions. What is a variable? Why do I need it? Why is this two lines? Etc... All will be revealed in time. VariablesVariables are names in our code which store values. I think of variables as cardboard boxes. Boxes hold things. Variables hold things. The name of the variable is on the ouside of the box (that way you know which box it is), and value of the variable represents the contents of the box. Variable Assignment**Assignment** is an operation where we store data in our variable. It's like packing something up in the box.In this example we assign the value "USA" to the variable **country** ###Code # Here's an example of variable assignment. Wre country = 'USA' ###Output _____no_output_____ ###Markdown Variable Access What good is storing data if you cannot retrieve it? Lucky for us, retrieving the data in variable is as simple as calling its name: ###Code country # This should say 'USA' ###Output _____no_output_____ ###Markdown At this point you might be thinking: Can I overwrite a variable? The answer, of course, is yes! Just re-assign it a different value: ###Code country = 'Canada' ###Output _____no_output_____ ###Markdown You can also access a variable multiple times. Each time it simply gives you its value: ###Code country, country, country ###Output _____no_output_____ ###Markdown The Purpose Of VariablesVariables play an vital role in programming. Computer instructions have no memory of each other. That is one line of code has no idea what is happening in the other lines of code. The only way we can "connect" what happens from one line to the next is through variables. For example, if we re-write the Hello, World program at the top of the page without variables, we get the following: ###Code input("What is your name? ") print('Hello there') ###Output _____no_output_____ ###Markdown When you execute this program, notice there is no longer a connection between the input and the output. In fact, the input on line 1 doesn't matter because the output on line 2 doesn't know about it. It cannot because we never stored the results of the input into a variable! What's in a name? Um, EVERYTHINGComputer code serves two equally important purposes:1. To solve a problem (obviously)2. To communicate hwo you solved problem to another person (hmmm... I didn't think of that!)If our code does something useful, like land a rocket, predict the weather, or calculate month-end account balances then the chances are 100% certain that *someone else will need to read and understand our code.* Therefore it's just as important we develop code that is easilty understood by both the computer and our colleagues.This starts with the names we choose for our variables. Consider the following program: ###Code y = input("Enter your city: ") x = input("Enter your state: ") print(x,y,'is a nice place to live') ###Output _____no_output_____ ###Markdown What do `x` and `y` represent? Is there a semantic (design) error in this program?You might find it easy to figure out the answers to these questions, but consider this more human-friendly version: ###Code state = input("Enter your city: ") city = input("Enter your state: ") print(city,state,'is a nice place to live') ###Output _____no_output_____ ###Markdown Do the aptly-named variables make it easier to find the semantic errors in this second version? You Do It:Finally re-write this program so that it uses well-thought out variables AND in semantically correct: ###Code # TODO: Code it re-write the above program to work as it should: Stating City State is a nice place to live city = input("Enter your city") state = input("Enter your state") print(city,state, "is a nice place to live") ###Output Enter your cityRiver Vale Enter your stateNew Jersey River Vale New Jersey is a nice place to live ###Markdown Now Try This:Now try to write a program which asks for two separate inputs: your first name and your last name. The program should then output `Hello` with your first name and last name.For example if you enter `Mike` for the first name and `Fudge` for the last name the program should output `Hello Mike Fudge`**HINTS** - Use appropriate variable names. If you need to create a two word variable name use an underscore in place of the space between the words. eg. `two_words` - You will need a separate set of inputs for each name. ###Code # TODO: write your code here firstname = input("Enter your first name") lastname = input("Enter your last name") print("Hello", firstname,lastname) ###Output Enter your first nameJoe Enter your last nameRecca Hello Joe Recca ###Markdown Variable Concatenation: Your First OperatorThe `+` symbol is used to combine to variables containing text values together. Consider the following example: ###Code prefix = "re" suffix = "ment" root = input("Enter a root word, like 'ship': ") print( prefix + root + suffix) ###Output Enter a root word, like 'ship': ship reshipment ###Markdown Now Try ThisWrite a program to prompt for three colors as input, then outputs those three colors as a lis, informing me which one was the middle (2nd entered) color. For example if you were to enter `red` then `green` then `blue` the program would output: `Your colors were: red, green, and blue. The middle was is green.`**HINTS** - you'll need three variables one fore each input - you should try to make the program output like my example. This includes commas and the word `and`. ###Code color1 = input("Enter color1") color2 = input("Enter color2") color3 = input("Enter color3") print("Your colors were:", color1 + ",", color2 + ",", "and", color3 + "." "The middle color was", color2 + ".") ###Output Enter color1blue Enter color2red Enter color3green Your colors were: blue, red, and green.The middle color was red.
implementations/notebooks_df/code_changes_lines.ipynb
###Markdown Code_Changes_LinesThis is the reference implementation for [Code_Changes_Lines](https://github.com/chaoss/wg-evolution/blob/master/metrics/Code_Changes_Lines.md),a metric specified by the[Evolution Working Group](https://github.com/chaoss/wg-evolution) of the[CHAOSS project](https://chaoss.community).Have a look at [README.md](../README.md) to find out how to run this notebook (and others in this directory) as well as to get a better understanding of the purpose of the implementations.The implementation is described in two parts (see below):* Class for computing Code_Changes_Lines* An explanatory analysis of the class' functionalitySome more auxiliary information in this notebook:* Examples of the use of the implementation As discussed in the [README](../README.md) file, the scripts required to analyze the data fetched by Perceval are located in the `code_df` package. Due to python's import system, to import modules from a package which is not in the current directory, we have to either add the package to `PYTHONPATH` or simply append a `..` to `sys.path`, so that `code_df` can be successfully imported. ###Code from datetime import datetime import matplotlib.pyplot as plt import sys sys.path.append('..') from code_df import utils from code_df import conditions from code_df.commit import Commit %matplotlib inline class CodeChangesLines(Commit): """ Class for Code_Changes_Lines """ def _flatten(self, item): """ Flatten a raw commit fetched by Perceval into a flat dictionary. A list with a single flat directory will be returned. That dictionary will have the elements we need for computing metrics. The list may be empty, if for some reason the commit should not be considered. :param item: raw item fetched by Perceval (dictionary) :returns: list of a single flat dictionary """ creation_date = utils.str_to_date(item['data']['AuthorDate']) if self.since and (self.since > creation_date): return [] if self.until and (self.until < creation_date): return [] code_files = [file['file'] for file in item['data']['files'] if all(condition.check(file['file']) for condition in self.is_code)] if len(code_files) > 0: flat = { 'repo': item['origin'], 'hash': item['data']['commit'], 'author': item['data']['Author'], 'category': "commit", 'created_date': creation_date, 'committer': item['data']['Commit'], 'commit_date': utils.str_to_date(item['data']['CommitDate']), 'files_no': len(item['data']['files']), 'refs': item['data']['refs'], 'parents': item['data']['parents'], 'files': item['data']['files'] } # actions actions = 0 for file in item['data']['files']: if 'action' in file: actions += 1 flat['files_action'] = actions # Merge commit check if 'Merge' in item['data']: flat['merge'] = True else: flat['merge'] = False # modifications modified_lines = 0 for file in item['data']['files']: if 'added' and 'removed' in file: try: modified_lines += int(file['added']) + int(file['removed']) except ValueError: # in case of compressed files, # additions and deletions are "-" pass flat['modifications'] = modified_lines return [flat] else: return [] def compute(self): """ Compute the number of lines modified in the data fetched by Perceval. It computes the sum of the 'modifications' column in the DataFrame. :returns modifications_count: The total number of lines modified (int) """ df = self.df modifications_count = df['modifications'].sum() return modifications_count def _agg(self, df, period): """ Perform an aggregation operation on a DataFrame or Series to find the total number of lines modified in a every interval of the period specified in the time_series method, like 'M', 'W',etc. It adds the number of lines modified for every row in the series. :param df: a pandas DataFrame on which the aggregation will be applied. :param period: A string which can be any one of the pandas time series rules: 'W': week 'M': month 'D': day :returns df: The aggregated dataframe, where aggregations have been performed on the "modifications" """ df = df.resample(period)['modifications'].agg(['sum']) return df ###Output _____no_output_____ ###Markdown Performing the AnalysisUsing the above class, we can perform several kinds of analysis on the JSON data file, fetched by Perceval. For starters, we can perform a simple calculation of the number of modified lines (additions plus deletions) in the file. To make things simple, we will use the `Naive` implementation for deciding whether a given commit affects the source code or not. Again, the naive implementation assumes that all files are part of the source code, and hence, all commits are considered to affect it. The `Naive` implementation is the default option. Counting the total number of modified lines We first read the JSON file containing Perceval data using the `read_json_file` utility function. ###Code items = utils.read_json_file('../git-commits.json') ###Output _____no_output_____ ###Markdown Let's use the `compute` method to count the total number of lines modified after instantiating the above class.Notice that here, we are redefining the `_flatten` method of the `Commit` class, the parent of the `CodeChangesLines` class. The reason for doing this is to add a `modifications` column to the dataframe. This makes it easier to compute this metric.First, we will do the computation without passing any since and until dates. Next, we can pass in the start and end dates as a tuple. The format would be `%Y-%m-%d`. ###Code changes = CodeChangesLines(items) print("The total number of modified lines " "in the file is {}.".format(changes.compute())) date_since = datetime.strptime("2018-01-01", "%Y-%m-%d") date_until = datetime.strptime("2018-07-01", "%Y-%m-%d") changes_dated = CodeChangesLines(items, date_range=(date_since, date_until)) print("The total number of lines modified between " "2018-01-01 and 2018-07-01 is {}.".format(changes_dated.compute())) ###Output The total number of modified lines in the file is 563670. The total number of lines modified between 2018-01-01 and 2018-07-01 is 192972. ###Markdown Counting the total number of lines modified by commits excluding merge commitsMoving on, lets make use of the `EmptyExclude` and `MergeExclude` classes to filter out empty and merge commits respectively. These classes are sub-classes of the `Commit` class in the `conditions` module. They provide two methods: `check()` and `set_commits`.The `set_commits` method selects commits which satisfy a given condition (like excluding empty commits, for example) and stores the hashes of those commits in the set `included`, an instance variable of all `Commit` classes. The `check()` method checks each commit in the DataFrame created from Perceval data and drops those rows which correspond to commits not in `included`. ###Code changes_non_merge = CodeChangesLines(items, (date_since, date_until), conds=[conditions.MergeExclude()]) print("The total number of lines modified by non-merge commits between" " 2018-01-01 and 2018-07-01 is {}.".format(changes_non_merge.compute())) ###Output The total number of lines modified by non-merge commits between 2018-01-01 and 2018-07-01 is 94047. ###Markdown Counting the number of lines modified over regular time intervalsUsing the `time_series` method, it is possible to compute the number of lines modified every month, or every week. This kind of analysis is useful in finding trends over time, as we will see in the cell below.Let's perform a basic analysis: lets see the change in the number of lines modified between the same dates we used above on a weekly basis: 2018-01-01 and 2018-07-01. The Code_Changes_Lines object, `changes_dated`, will be the same as used above. ###Code weekly_df = changes_dated.time_series(period='W') ###Output _____no_output_____ ###Markdown Lets see what the dataframe returned by `time_series` looks like. As you will notice, the dataframe has rows corresponding to each and every week between the start and end dates. To do this, we simply set the `created_date` column of the DataFrame `changes_dated.df`, as its index and then `resample` it to whatever time period we need. In this case, we have used `W`. We will apply the 'sum' aggregation function on both the 'additions' and 'deletions' columns of the dataframe. ###Code weekly_df ###Output _____no_output_____ ###Markdown Lets plot the dataframe `weekly_df` using matplotlib.pyplot. We use the `seaborn` theme and plot a simple line plot --- lines modified vs time interval. Using the `plt.fill_between` method allows us to "fill up" the area between the line plots and the x axis. ###Code plt.figure(figsize=[15, 5]) plt.style.use('seaborn') plt.plot(weekly_df['sum']) plt.fill_between(y1=weekly_df['sum'], y2=0, x=weekly_df.index) plt.title("Lines modified"); plt.show() ###Output _____no_output_____ ###Markdown The same thing can be tried for months, instead of weeks. By passing `month` in place of week, we get a similar dataframe but with only a few rows, due to the larger timescale. Counting line modifications by commits only made on the master branchAnother option one has while using this class for analyzing git commit data is to include only those commits for analysis which are on the master branch. To do this, we pass in an object of the `MasterInclude` class as a list to the `conds` parameter while instantiating the `CodeChangesGit` class.We compute the number of commits created on the master branch after `2018-01-01`, which we stored in the `datetime` object, `date_since`. ###Code changes_only_master = CodeChangesLines(items, date_range=(date_since, None), conds=[conditions.MasterInclude()]) print("The total number of lines modified (additions, deletions) by commits made on the master branch " "after 2018-01-01 is {}.".format(changes_only_master.compute())) ###Output The total number of lines modified (additions, deletions) by commits made on the master branch after 2018-01-01 is 215191. ###Markdown Lets do one last thing: the same thing we did in the cell above, but without including empty commits. In this case, we would also need to pass a `conditions.ExcludeEmpty` object to `conds`. Also, lets exclude those commits which work solely on `markdown` files. We use the `PostfixExclude` class, a sub-class of `Code` for this. ###Code changes_non_empty_master = CodeChangesLines(items, is_code=[conditions.PostfixExclude(postfixes=['.md'])], conds=[conditions.MasterInclude(), conditions.EmptyExclude()]) print("The total number of lines modified by non-empty commits made on the master branch is: {}".format(changes_non_empty_master.compute())) ###Output The total number of lines modified by non-empty commits made on the master branch is: 9226
code/exploratory/fish_munging.ipynb
###Markdown MungingLoad data from Brewster, pre-tidied by Manuel, and drop the spurious column that was the index in csv. ###Code df_fish = pd.read_csv("../../data/jones_brewster_2014.csv") del df_fish['Unnamed: 0'] df_fish.head() ###Output _____no_output_____ ###Markdown Let's take a quick look at everything we've got. ###Code plot_kwargs = { "x_axis_label": "counts", "y_axis_label": "expt", "width": 500, "height": 1000, "horizontal": True, } p = bokeh_catplot.box(data=df_fish, cats="experiment", val="mRNA_cell", **plot_kwargs) bokeh.io.show(p) ###Output _____no_output_____ ###Markdown Wait, what are all the experiment labels in the dataset? ###Code raw_expt_labels = df_fish['experiment'].unique() raw_expt_labels.sort() raw_expt_labels ###Output _____no_output_____ ###Markdown Huh, is this the complete dataset, with constitutive promoters _and_ LacI regulated measurements? Then what is in the regulated file? ###Code df_reg = pd.read_csv("../../data/jones_brewster_regulated_2014.csv") reg_labels = df_reg['experiment'].unique() reg_labels ###Output _____no_output_____ ###Markdown uuuuuh, what? Is that duplicates of what's in the main dataset? ###Code print(len(df_reg[df_reg['experiment'] == 'O3_10ngmL'])) print(len(df_fish[df_fish['experiment'] == 'O3_10ngmL'])) print(len(df_reg[df_reg['experiment'] == 'Oid_0p5ngmL'])) print(len(df_fish[df_fish['experiment'] == 'Oid_0p5ngmL'])) ###Output _____no_output_____ ###Markdown I think the contents of the regulated file either duplicate or are a subset of the contents of the other file... Let's write a quick test function. ###Code def check_counts_subset(subset_series, total_series): subset_vals, subset_counts = np.unique(subset_series, return_counts=True) total_vals, total_counts = np.unique(total_series, return_counts=True) for i, val in enumerate(subset_vals): assert val in total_vals, "%r not found in total_series" % val assert ( subset_counts[i] <= total_counts[np.searchsorted(total_vals, val)] ), "More occurances of %r in subset_series than in total_series!" % val check_counts_subset([0,1], [0,1,1]) # passes # check_counts_subset([0,1,2], [0,1,1]) # fails # check_counts_subset([0,1,2,3], [0,1,2,4]) # fails check_counts_subset([0,0,1,2,3,3,3], [0,0,1,2,3,4,4,3,3]) # passes # check_counts_subset([0,0,1,2,3,3], [0,0,1,2,4,3]) # fails ###Output _____no_output_____ ###Markdown Seems to work. Now use it for reals. ###Code check_counts_subset(df_reg[df_reg["experiment"] == "Oid_0p5ngmL"]['mRNA_cell'], df_fish[df_fish["experiment"] == "Oid_0p5ngmL"]['mRNA_cell']) check_counts_subset(df_reg[df_reg["experiment"] == "O3_10ngmL"]['mRNA_cell'], df_fish[df_fish["experiment"] == "O3_10ngmL"]['mRNA_cell']) ###Output _____no_output_____ ###Markdown No assertions raised so the contents of the regulated file are in fact a subset of the full dataframe.So, I dunno what happened with the regulated file, but I think we can ignore it and work only with the main file. EnergiesNext, let's get the energies from the supplement of Brewster/Jones 2012 paper. ###Code df_energies = pd.read_csv("../../data/brewster_jones_2012.csv") df_energies.head() ###Output _____no_output_____ ###Markdown Are all the promoters in the 2012 dataset in the 2014 fish dataset? These are the only constitutive promoters I'm interested in. ###Code all(item in df_fish.experiment.unique() for item in df_energies.Name) ###Output _____no_output_____ ###Markdown Splitting into regulated & constitutive dataSome of these datasets are not of interest right now so let's split it into multiple dataframes for easier downstream handling. The regulated datasets start with O1, O2, or O3. Everything else doesn't. From that everything else, grab the ones that we have energies for, and set aside the rest. Use regex to parse. ###Code # put all strings that start w/ 'O' in one list regulated_labels = [label for label in raw_expt_labels if re.match('^O', label)] # and put all the others in another list other_labels = [label for label in raw_expt_labels if not re.match('^O', label)] # from that, split out those we have energies for... constitutive_labels = [label for label in other_labels if label in tuple(df_energies.Name)] # ...and those we don't leftover_labels = [label for label in other_labels if label not in tuple(df_energies.Name)] leftover_labels ###Output _____no_output_____ ###Markdown Without more metadata, I don't really know what to do with the leftover labels data, e.g., what good does the aTc concentration do me if I don't know what promoter it was for? Parameter estimation Chi-by-eye to sanity check UV5, 5DL10, and 5DL20 look like good candidates for a closer look; all have decent non-zero expression, and they look different from each other. ###Code df_slice = df_fish.query("experiment == 'UV5' \ or experiment == '5DL10' \ or experiment == '5DL20'") df_slice['experiment'].unique() ###Output _____no_output_____ ###Markdown Now that we've got a more manageable set, let's make ECDFs and chi-by-eye with negative binomial. `scipy.stats` convention is `cdf(k, n, p, loc=0)`, where $n$ is the number of successes we're waiting for and $p$ is probability of success. ###Code p = bokeh_catplot.ecdf(data=df_slice, cats='experiment', val='mRNA_cell', style='staircase') # compute upper bound for theoretical CDF plots u_bound = max(df_slice['mRNA_cell']) x = np.arange(u_bound+1) p.line(x, st.nbinom.cdf(x, 5, 0.2)) p.line(x, st.nbinom.cdf(x, 3, 0.4), color='orange') p.line(x, st.nbinom.cdf(x, .3, 0.26), color='green') bokeh.io.show(p) ###Output _____no_output_____
Module - Interactive User Input with ipywidgets.ipynb
###Markdown UNCLASSIFIED~~//FOR OFFICIAL USE ONLY~~Transcribed from FOIA Doc ID: 6689695https://archive.org/details/comp3321 **Note:** The overall classification of this lesson is marked as indicated above, however the material doesn't have portion markings after the second paragraph below. Also, looking through the material it's clear there isn't anything about it that warants an FOUO categorization so it appears this lesson was overprotected. (U) ipywidgets (U) ipywidgets is used for making interactive widgets inside your jupyter notebook (U) The most basic way to get user input is to use the python built in `input` function. For more complicated types of interaction, you can use ipywidgets ###Code # input example (not using ipywidgets) a = input("Give me your input: ") print("Your input was: " + a) import ipywidgets from ipywidgets import * ###Output _____no_output_____ ###Markdown `interact` is the easiest way to get started with ipywidgets by creating a user interface and automatically calling the specified function. ###Code def f(x): return x*2 interact(f,x=10) def g(check,y): print ("{} {}".format(check,y)) interact(g,check=True,y="Hi there! ") ###Output _____no_output_____ ###Markdown But, if you need more flexibility, you can start from scratch by picking a widget and then calling the functionality you want. Hint: you get more widget choices this way. ###Code IntSlider() w = IntSlider() w ###Output _____no_output_____ ###Markdown You can explicitly display using IPython's display module. Note what happens when you display the same widget more than once! ###Code from IPython.display import display display(w) w.value ###Output _____no_output_____ ###Markdown Now we have a value from our slider we can use in code. But what other attributes or "keys" does our slider widget have? ###Code w.max new_w = IntSlider(max=200) display(new_w) ###Output _____no_output_____ ###Markdown You can also close your widget ###Code w.close() new_w.close() ###Output _____no_output_____ ###Markdown Here are all the available widgets: ###Code list(Widget.widget_types.items()) ###Output _____no_output_____ ###Markdown Categories of widgets**Numeric:** IntSlider, FloatSlider, IntRangeSlider, FloatRangeSlider, IntProgress, FloatProgress, BoundedlntText, BoundedFloatText, IntText, FloatText **Boolean:** ToggleButton, Checkbox, Valid **Selection:** Dropdown, RadioButtons, Select, ToggleButtons, SelectMultiple **String Widgets:** Text, Textarea **Other common:** Button, ColorPicker, HTML, Image ###Code Dropdown(options=["1", "2", "3", "cat"]) bt = Button(description="Click me!") display(bt) ###Output _____no_output_____ ###Markdown Buttons don't do much on their own, so we have to use some event handling. We can define a function with the desired behavior and call it with the button's `on_click` method. ###Code def clicker(b): print("Hello World!!!!") bt.on_click(clicker) def f(change): print(change['new']) w = IntSlider() display(w) w.observe(f, names='value') ###Output _____no_output_____ ###Markdown Wrapping Multiple Widgets in Boxes When working with multiple input widgets, it's often nice to wrap it all in a nice little box. ipywidgets provides a few options for this -- we'll cover HBox (horizontal box) and VBox (vertical box). HBox This will display the widgets horizontally ###Code fruit_list = Dropdown( options = ['apple', 'cherry', 'orange', 'plum', 'pear'] ) fruit_label = HTML( value = 'Select a fruit from the list:&nbsp;&nbsp;' ) fruit_box = HBox(children=[fruit_label, fruit_list]) fruit_box ###Output _____no_output_____ ###Markdown VBox This will display the widgets (or boxes) vertically ###Code num_label = HTML( value = 'Choose the number of fruits:&nbsp;&nbsp;' ) num_options = IntSlider(min=1, max=20) num_box = HBox(children=(num_label, num_options)) type_label = HTML( value = 'Select the type of fruit:&nbsp;&nbsp;' ) type_options = RadioButtons( options=('Under-ripe', 'Ripe', 'Rotten') ) type_box = HBox(children=(type_label, type_options)) fruit_vbox = VBox(children=(fruit_box, num_box, type_box)) fruit_vbox ###Output _____no_output_____ ###Markdown Retrieving Values from a Box ###Code box_values = {} # the elements in a box can be accessed using the children attribute for index, box in enumerate(fruit_vbox.children): for child in box.children: if type(child) != ipywidgets.widgets.widget_string.HTML: if index == 0: print("The selected fruit is:", child.value) box_values['fruit'] = child.value elif index == 1: print("The select number of fruits is: ", str (child.value)) box_values['count'] = child.value elif index == 2: print("The selected type of fruit is: ", str(child.value)) box_values['type'] = child.value box_values ###Output _____no_output_____ ###Markdown Specify Layout of the Widgets/Boxes ###Code form_item_layout = Layout( display = 'flex', flex_flow = 'row', justify_content = 'space-between', width = '70%', align_items = 'initial', ) veggie_label = HTML( value='Select a vegetable from the list:&nbsp;&nbsp;', layout=Layout(width='20%', height='65px', border='solid 1px') ) veggie_options = Dropdown( options=['corn', 'lettuce', 'tomato', 'potato', 'spinach'], layout=Layout(width='30%', height='65px') ) veggie_box = HBox( children=(veggie_label, veggie_options), layout=Layout(width='100%', border='solid 2px', height='100px')) veggie_box ###Output _____no_output_____
Deep Learning/Convolutional Networks/Convolutional Neural Networks/transfer-learning/bottleneck_features.ipynb
###Markdown Convolutional Neural Networks --- In your upcoming project, you will download pre-computed bottleneck features. In this notebook, we'll show you how to calculate VGG-16 bottleneck features on a toy dataset. Note that unless you have a powerful GPU, computing the bottleneck features takes a significant amount of time. 1. Load and Preprocess Sample Images Before supplying an image to a pre-trained network in Keras, there are some required preprocessing steps. You will learn more about this in the project; for now, we have implemented this functionality for you in the first code cell of the notebook. We have imported a very small dataset of 8 images and stored the preprocessed image input as `img_input`. Note that the dimensionality of this array is `(8, 224, 224, 3)`. In this case, each of the 8 images is a 3D tensor, with shape `(224, 224, 3)`. ###Code %tensorflow_version 1.x from keras.applications.vgg16 import preprocess_input from keras.preprocessing import image import numpy as np import glob img_paths = glob.glob("images/*.jpg") def path_to_tensor(img_path): # loads RGB image as PIL.Image.Image type img = image.load_img(img_path, target_size=(224, 224)) # convert PIL.Image.Image type to 3D tensor with shape (224, 224, 3) x = image.img_to_array(img) # convert 3D tensor to 4D tensor with shape (1, 224, 224, 3) and return 4D tensor return np.expand_dims(x, axis=0) def paths_to_tensor(img_paths): list_of_tensors = [path_to_tensor(img_path) for img_path in img_paths] return np.vstack(list_of_tensors) # calculate the image input. you will learn more about how this works the project! img_input = preprocess_input(paths_to_tensor(img_paths)) print(img_input.shape) ###Output Using TensorFlow backend. ###Markdown 2. Recap How to Import VGG-16 Recall how we import the VGG-16 network (including the final classification layer) that has been pre-trained on ImageNet. ###Code from keras.applications.vgg16 import VGG16 model = VGG16() model.summary() ###Output WARNING:tensorflow:From /tensorflow-1.15.2/python3.6/tensorflow_core/python/ops/resource_variable_ops.py:1630: calling BaseResourceVariable.__init__ (from tensorflow.python.ops.resource_variable_ops) with constraint is deprecated and will be removed in a future version. Instructions for updating: If using Keras pass *_constraint arguments to layers. WARNING:tensorflow:From /tensorflow-1.15.2/python3.6/keras/backend/tensorflow_backend.py:4070: The name tf.nn.max_pool is deprecated. Please use tf.nn.max_pool2d instead. Model: "vgg16" _________________________________________________________________ Layer (type) Output Shape Param # ================================================================= input_1 (InputLayer) (None, 224, 224, 3) 0 _________________________________________________________________ block1_conv1 (Conv2D) (None, 224, 224, 64) 1792 _________________________________________________________________ block1_conv2 (Conv2D) (None, 224, 224, 64) 36928 _________________________________________________________________ block1_pool (MaxPooling2D) (None, 112, 112, 64) 0 _________________________________________________________________ block2_conv1 (Conv2D) (None, 112, 112, 128) 73856 _________________________________________________________________ block2_conv2 (Conv2D) (None, 112, 112, 128) 147584 _________________________________________________________________ block2_pool (MaxPooling2D) (None, 56, 56, 128) 0 _________________________________________________________________ block3_conv1 (Conv2D) (None, 56, 56, 256) 295168 _________________________________________________________________ block3_conv2 (Conv2D) (None, 56, 56, 256) 590080 _________________________________________________________________ block3_conv3 (Conv2D) (None, 56, 56, 256) 590080 _________________________________________________________________ block3_pool (MaxPooling2D) (None, 28, 28, 256) 0 _________________________________________________________________ block4_conv1 (Conv2D) (None, 28, 28, 512) 1180160 _________________________________________________________________ block4_conv2 (Conv2D) (None, 28, 28, 512) 2359808 _________________________________________________________________ block4_conv3 (Conv2D) (None, 28, 28, 512) 2359808 _________________________________________________________________ block4_pool (MaxPooling2D) (None, 14, 14, 512) 0 _________________________________________________________________ block5_conv1 (Conv2D) (None, 14, 14, 512) 2359808 _________________________________________________________________ block5_conv2 (Conv2D) (None, 14, 14, 512) 2359808 _________________________________________________________________ block5_conv3 (Conv2D) (None, 14, 14, 512) 2359808 _________________________________________________________________ block5_pool (MaxPooling2D) (None, 7, 7, 512) 0 _________________________________________________________________ flatten (Flatten) (None, 25088) 0 _________________________________________________________________ fc1 (Dense) (None, 4096) 102764544 _________________________________________________________________ fc2 (Dense) (None, 4096) 16781312 _________________________________________________________________ predictions (Dense) (None, 1000) 4097000 ================================================================= Total params: 138,357,544 Trainable params: 138,357,544 Non-trainable params: 0 _________________________________________________________________ ###Markdown For this network, `model.predict` returns a 1000-dimensional probability vector containing the predicted probability that an image returns each of the 1000 ImageNet categories. The dimensionality of the obtained output from passing `img_input` through the model is `(8, 1000)`. The first value of `8` merely denotes that 8 images were passed through the network. ###Code model.predict(img_input).shape ###Output WARNING:tensorflow:From /tensorflow-1.15.2/python3.6/keras/backend/tensorflow_backend.py:422: The name tf.global_variables is deprecated. Please use tf.compat.v1.global_variables instead. ###Markdown 3. Import the VGG-16 Model, with the Final Fully-Connected Layers Removed When performing transfer learning, we need to remove the final layers of the network, as they are too specific to the ImageNet database. ###Code from keras.applications.vgg16 import VGG16 model = VGG16(include_top=False) model.summary() ###Output Model: "vgg16" _________________________________________________________________ Layer (type) Output Shape Param # ================================================================= input_2 (InputLayer) (None, None, None, 3) 0 _________________________________________________________________ block1_conv1 (Conv2D) (None, None, None, 64) 1792 _________________________________________________________________ block1_conv2 (Conv2D) (None, None, None, 64) 36928 _________________________________________________________________ block1_pool (MaxPooling2D) (None, None, None, 64) 0 _________________________________________________________________ block2_conv1 (Conv2D) (None, None, None, 128) 73856 _________________________________________________________________ block2_conv2 (Conv2D) (None, None, None, 128) 147584 _________________________________________________________________ block2_pool (MaxPooling2D) (None, None, None, 128) 0 _________________________________________________________________ block3_conv1 (Conv2D) (None, None, None, 256) 295168 _________________________________________________________________ block3_conv2 (Conv2D) (None, None, None, 256) 590080 _________________________________________________________________ block3_conv3 (Conv2D) (None, None, None, 256) 590080 _________________________________________________________________ block3_pool (MaxPooling2D) (None, None, None, 256) 0 _________________________________________________________________ block4_conv1 (Conv2D) (None, None, None, 512) 1180160 _________________________________________________________________ block4_conv2 (Conv2D) (None, None, None, 512) 2359808 _________________________________________________________________ block4_conv3 (Conv2D) (None, None, None, 512) 2359808 _________________________________________________________________ block4_pool (MaxPooling2D) (None, None, None, 512) 0 _________________________________________________________________ block5_conv1 (Conv2D) (None, None, None, 512) 2359808 _________________________________________________________________ block5_conv2 (Conv2D) (None, None, None, 512) 2359808 _________________________________________________________________ block5_conv3 (Conv2D) (None, None, None, 512) 2359808 _________________________________________________________________ block5_pool (MaxPooling2D) (None, None, None, 512) 0 ================================================================= Total params: 14,714,688 Trainable params: 14,714,688 Non-trainable params: 0 _________________________________________________________________ ###Markdown 4. Extract Output of Final Max Pooling Layer Now, the network stored in `model` is a truncated version of the VGG-16 network, where the final three fully-connected layers have been removed. In this case, `model.predict` returns a 3D array (with dimensions $7\times 7\times 512$) corresponding to the final max pooling layer of VGG-16. The dimensionality of the obtained output from passing `img_input` through the model is `(8, 7, 7, 512)`. The first value of `8` merely denotes that 8 images were passed through the network. ###Code print(model.predict(img_input).shape) ###Output (8, 7, 7, 512)
doc/source/notebooks/models.ipynb
###Markdown Handling models in GPflow--*James Hensman November 2015, January 2016*One of the key ingredients in GPflow is the model class, which allows the user to carefully control parameters. This notebook shows how some of these parameter control features work, and how to build your own model with GPflow. First we'll look at - how to view models and parameters - how to set parameter values - how to constrain parameters (e.g. variance > 0) - how to fix model parameters - how to apply priors to parameters - how to optimize modelsThen we'll show how to build a simple logistic regression model, demonstrating the ease of the parameter framework. GPy users should feel right at home, but there are some small differences.First, let's deal with the usual notebook boilerplate and make a simple GP regression model. See the Regression notebook for specifics of the model: we just want some parameters to play with. ###Code import GPflow import numpy as np #build a very simple GPR model X = np.random.rand(20,1) Y = np.sin(12*X) + 0.66*np.cos(25*X) + np.random.randn(20,1)*0.01 m = GPflow.gpr.GPR(X, Y, kern=GPflow.kernels.Matern32(1) + GPflow.kernels.Linear(1)) ###Output _____no_output_____ ###Markdown Viewing, getting and setting parametersYou can display the state of the model in a terminal with `print m` (or `print(m)`), and by simply returning it in a notebook ###Code print(m) ###Output model.kern.matern32.variance transform:+ve prior:None [ 1.] model.kern.matern32.lengthscales transform:+ve prior:None [ 1.] model.kern.linear.variance transform:+ve prior:None [ 1.] model.likelihood.variance transform:+ve prior:None [ 1.] ###Markdown This model has four parameters. The kernel is made of the sum of two parts: the RBF kernel has a variance parameter and a lengthscale parameter, the linear kernel only has a variance parameter. There is also a parmaeter controlling the variance of the noise, as part of the likelihood. All of the model variables have been initialized at one. Individual parameters can be accessed in the same way as they are displayed in the table: to see all the parameters that are part of the likelihood, do ###Code m.likelihood ###Output _____no_output_____ ###Markdown This gets more useful with more complex models! To set the value of a parameter, just assign. ###Code m.kern.matern32.lengthscales = 0.5 m.likelihood.variance = 0.01 m ###Output _____no_output_____ ###Markdown Constraints and fixesGPflow helpfully creates a 'free' vector, containing an unconstrained representation of all the variables. Above, all the variables are constrained positive (see right hand table column), the unconstrained representation is given by $\alpha = \log(\exp(\theta)-1)$. You can get at this vector with `m.get_free_state()`. ###Code print(m.get_free_state()) ###Output [ 0.54132327 -0.43275467 0.54132327 -4.60026653] ###Markdown Constraints are handled by the `Transform` classes. You might prefer the constrain $\alpha = \log(\theta)$: this is easily done by changing setting the transform attribute on a parameter: ###Code m.kern.matern32.lengthscales.transform = GPflow.transforms.Exp() print(m.get_free_state()) ###Output [ 0.54132327 -0.69314918 0.54132327 -4.60026653] ###Markdown The second free parameter, representing unconstrained lengthscale has changed (though the lengthscale itself remains the same). Another helpful feature is the ability to fix parameters. This is done by simply setting the fixed boolean to True: a 'fixed' notice appears in the representation and the corresponding variable is removed from the free state. ###Code m.kern.linear.variance.fixed = True m print(m.get_free_state()) ###Output [ 0.54132327 -0.69314918 -4.60026653] ###Markdown To unfix a parameter, just flip the boolean back. The transformation (+ve) reappears. ###Code m.kern.linear.variance.fixed = False m ###Output _____no_output_____ ###Markdown PriorsPriors are set just like transforms and fixes, using members of the `GPflow.priors.` module. Let's set a Gamma prior on the RBF-variance. ###Code m.kern.matern32.variance.prior = GPflow.priors.Gamma(2,3) m ###Output _____no_output_____ ###Markdown OptimizationOptimization is done by calling `m.optimize()` which has optional arguments that are passed through to `scipy.optimize.minimize` (we minimize the negative log-likelihood). Variables that have priors are MAP-estimated, others are ML, i.e. we add the log prior to the log likelihood. ###Code m.optimize() m ###Output compiling tensorflow function... done optimization terminated, setting model state ###Markdown Building new modelsTo build new models, you'll need to inherrit from `GPflow.model.Model`. Parameters are instantiated with `GPflow.param.Param`. You may also be interested in `GPflow.param.Parameterized` which acts as a 'container' of `Param`s (e.g. kernels are Parameterized). In this very simple demo, we'll implement linear multiclass classification. There will be two parameters: a weight matrix and a 'bias' (offset). The key thing to implement is the `build_likelihood` method, which should return a tensorflow scalar representing the (log) likelihood. Param objects can be used inside `build_likelihood`: they will appear as appropriate (unconstrained) tensors. ###Code import tensorflow as tf class LinearMulticlass(GPflow.model.Model): def __init__(self, X, Y): GPflow.model.Model.__init__(self) # always call the parent constructor self.X = X.copy() # X is a numpy array of inputs self.Y = Y.copy() # Y is a 1-of-k representation of the labels self.num_data, self.input_dim = X.shape _, self.num_classes = Y.shape #make some parameters self.W = GPflow.param.Param(np.random.randn(self.input_dim, self.num_classes)) self.b = GPflow.param.Param(np.random.randn(self.num_classes)) # ^^ You must make the parameters attributes of the class for # them to be picked up by the model. i.e. this won't work: # # W = GPflow.param.Param(... <-- must be self.W def build_likelihood(self): # takes no arguments p = tf.nn.softmax(tf.matmul(self.X, self.W) + self.b) # Param variables are used as tensorflow arrays. return tf.reduce_sum(tf.log(p) * self.Y) # be sure to return a scalar ###Output _____no_output_____ ###Markdown ...and that's it. Let's build a really simple demo to show that it works. ###Code X = np.vstack([np.random.randn(10,2) + [2,2], np.random.randn(10,2) + [-2,2], np.random.randn(10,2) + [2,-2]]) Y = np.repeat(np.eye(3), 10, 0) from matplotlib import pyplot as plt plt.style.use('ggplot') %matplotlib inline import matplotlib matplotlib.rcParams['figure.figsize'] = (12,6) plt.scatter(X[:,0], X[:,1], 100, np.argmax(Y, 1), lw=2, cmap=plt.cm.viridis) m = LinearMulticlass(X, Y) m m.optimize() m xx, yy = np.mgrid[-4:4:200j, -4:4:200j] X_test = np.vstack([xx.flatten(), yy.flatten()]).T f_test = np.dot(X_test, m.W.value) + m.b._array p_test = np.exp(f_test) p_test /= p_test.sum(1)[:,None] for i in range(3): plt.contour(xx, yy, p_test[:,i].reshape(200,200), [0.5], colors='k', linewidths=1) plt.scatter(X[:,0], X[:,1], 100, np.argmax(Y, 1), lw=2, cmap=plt.cm.viridis) ###Output _____no_output_____ ###Markdown Handling models in GPflow--*James Hensman November 2015, January 2016*,*Artem Artemev December 2017*One of the key ingredients in GPflow is the model class, which allows the user to carefully control parameters. This notebook shows how some of these parameter control features work, and how to build your own model with GPflow. First we'll look at - How to view models and parameters - How to set parameter values - How to constrain parameters (e.g. variance > 0) - How to fix model parameters - How to apply priors to parameters - How to optimize modelsThen we'll show how to build a simple logistic regression model, demonstrating the ease of the parameter framework. GPy users should feel right at home, but there are some small differences.First, let's deal with the usual notebook boilerplate and make a simple GP regression model. See the Regression notebook for specifics of the model: we just want some parameters to play with. ###Code import gpflow import numpy as np ###Output _____no_output_____ ###Markdown Create a very simple GPR model without building it in TensorFlow graph. ###Code np.random.seed(1) X = np.random.rand(20, 1) Y = np.sin(12 * X) + 0.66 * np.cos(25 * X) + np.random.randn(20,1) * 0.01 with gpflow.defer_build(): m = gpflow.models.GPR(X, Y, kern=gpflow.kernels.Matern32(1) + gpflow.kernels.Linear(1)) ###Output _____no_output_____ ###Markdown Viewing, getting and setting parametersYou can display the state of the model in a terminal with `print(m)`, and by simply returning it in a notebook: ###Code m ###Output _____no_output_____ ###Markdown This model has four parameters. The kernel is made of the sum of two parts: the first (counting from zero) is an RBF kernel that has a variance parameter and a lengthscale parameter; the second is a linear kernel that only has a variance parameter. There is also a parameter controlling the variance of the noise, as part of the likelihood. All of the model variables have been initialized at one. Individual parameters can be accessed in the same way as they are displayed in the table: to see all the parameters that are part of the likelihood, do ###Code m.likelihood ###Output _____no_output_____ ###Markdown This gets more useful with more complex models! To set the value of a parameter, just assign. ###Code m.kern.kernels[0].lengthscales = 0.5 m.likelihood.variance = 0.01 m ###Output _____no_output_____ ###Markdown Constraints and trainable variablesGPflow helpfully creates an unconstrained representation of all the variables. Above, all the variables are constrained positive (see right hand table column), the unconstrained representation is given by $\alpha = \log(\exp(\theta)-1)$. `read_trainables()` returns the constrained values: ###Code m.read_trainables() ###Output _____no_output_____ ###Markdown Each parameter has an `unconstrained_tensor` attribute that allows accessing the unconstrained value as a tensorflow Tensor (though only after the model has been compiled). We can also check the unconstrained value as follows: ###Code p = m.kern.kernels[0].lengthscales p.transform.backward(p.value) ###Output _____no_output_____ ###Markdown Constraints are handled by the `Transform` classes. You might prefer the constraint $\alpha = \log(\theta)$: this is easily done by changing the transform attribute on a parameter, with one simple condition - the model has not been compiled yet: ###Code m.kern.kernels[0].lengthscales.transform = gpflow.transforms.Exp() ###Output _____no_output_____ ###Markdown Though the lengthscale itself remains the same, the unconstrained lengthscale has changed: ###Code p.transform.backward(p.value) ###Output _____no_output_____ ###Markdown Another helpful feature is the ability to fix parameters. This is done by simply setting the `trainable` attribute to False: this is shown in the 'trainable' column of the representation, and the corresponding variable is removed from the free state. ###Code m.kern.kernels[1].variance.trainable = False m m.read_trainables() ###Output _____no_output_____ ###Markdown To unfix a parameter, just flip the boolean back and set the parameter to be trainable again. ###Code m.kern.kernels[1].variance.trainable = True m ###Output _____no_output_____ ###Markdown PriorsPriors are set just like transforms and trainability, using members of the `gpflow.priors` module. Let's set a Gamma prior on the RBF-variance. ###Code m.kern.kernels[0].variance.prior = gpflow.priors.Gamma(2, 3) m ###Output _____no_output_____ ###Markdown OptimizationOptimization is done by creating an instance of optimizer, in our case it is `gpflow.train.ScipyOptimizer`, which has optional arguments that are passed through to `scipy.optimize.minimize` (we minimize the negative log-likelihood) and calling `minimize` method of that optimizer with model as optimization target. Variables that have priors are MAP-estimated, i.e. we add the log prior to the log likelihood, otherwise using Maximum Likelihood. ###Code m.compile() opt = gpflow.train.ScipyOptimizer() opt.minimize(m) ###Output WARNING:gpflow.logdensities:Shape of x must be 2D at computation. ###Markdown Building new modelsTo build new models, you'll need to inherit from `gpflow.models.Model`. Parameters are instantiated with `gpflow.Param`. You may also be interested in `gpflow.params.Parameterized` which acts as a 'container' of `Param`s (e.g. kernels are Parameterized). In this very simple demo, we'll implement linear multiclass classification. There will be two parameters: a weight matrix and a 'bias' (offset). The key thing to implement is the private `_build_likelihood` method, which should return a tensorflow scalar representing the (log) likelihood. By decorating the function with `@gpflow.params_as_tensors`, Param objects can be used inside `_build_likelihood`: they will appear as appropriate (constrained) tensors. ###Code import tensorflow as tf class LinearMulticlass(gpflow.models.Model): def __init__(self, X, Y, name=None): super().__init__(name=name) # always call the parent constructor self.X = X.copy() # X is a numpy array of inputs self.Y = Y.copy() # Y is a 1-of-k (one-hot) representation of the labels self.num_data, self.input_dim = X.shape _, self.num_classes = Y.shape #make some parameters self.W = gpflow.Param(np.random.randn(self.input_dim, self.num_classes)) self.b = gpflow.Param(np.random.randn(self.num_classes)) # ^^ You must make the parameters attributes of the class for # them to be picked up by the model. i.e. this won't work: # # W = gpflow.Param(... <-- must be self.W @gpflow.params_as_tensors def _build_likelihood(self): # takes no arguments p = tf.nn.softmax(tf.matmul(self.X, self.W) + self.b) # Param variables are used as tensorflow arrays. return tf.reduce_sum(tf.log(p) * self.Y) # be sure to return a scalar ###Output _____no_output_____ ###Markdown ...and that's it. Let's build a really simple demo to show that it works. ###Code np.random.seed(123) X = np.vstack([np.random.randn(10,2) + [2,2], np.random.randn(10,2) + [-2,2], np.random.randn(10,2) + [2,-2]]) Y = np.repeat(np.eye(3), 10, 0) from matplotlib import pyplot as plt plt.style.use('ggplot') %matplotlib inline import matplotlib matplotlib.rcParams['figure.figsize'] = (12,6) plt.scatter(X[:,0], X[:,1], 100, np.argmax(Y, 1), lw=2, cmap=plt.cm.viridis); m = LinearMulticlass(X, Y) m opt = gpflow.train.ScipyOptimizer() opt.minimize(m) m xx, yy = np.mgrid[-4:4:200j, -4:4:200j] X_test = np.vstack([xx.flatten(), yy.flatten()]).T f_test = np.dot(X_test, m.W.read_value()) + m.b.read_value() p_test = np.exp(f_test) p_test /= p_test.sum(1)[:,None] plt.figure(figsize=(12, 6)) for i in range(3): plt.contour(xx, yy, p_test[:,i].reshape(200,200), [0.5], colors='k', linewidths=1) plt.scatter(X[:,0], X[:,1], 100, np.argmax(Y, 1), lw=2, cmap=plt.cm.viridis); ###Output _____no_output_____ ###Markdown Handling models in GPflow--*James Hensman November 2015, January 2016*,*Artem Artemev December 2017*One of the key ingredients in GPflow is the model class, which allows the user to carefully control parameters. This notebook shows how some of these parameter control features work, and how to build your own model with GPflow. First we'll look at - How to view models and parameters - How to set parameter values - How to constrain parameters (e.g. variance > 0) - How to fix model parameters - How to apply priors to parameters - How to optimize modelsThen we'll show how to build a simple logistic regression model, demonstrating the ease of the parameter framework. GPy users should feel right at home, but there are some small differences.First, let's deal with the usual notebook boilerplate and make a simple GP regression model. See the Regression notebook for specifics of the model: we just want some parameters to play with. ###Code import gpflow import numpy as np ###Output _____no_output_____ ###Markdown Create a very simple GPR model without building it in TensorFlow graph. ###Code with gpflow.defer_build(): X = np.random.rand(20, 1) Y = np.sin(12 * X) + 0.66 * np.cos(25 * X) + np.random.randn(20,1) * 0.01 m = gpflow.models.GPR(X, Y, kern=gpflow.kernels.Matern32(1) + gpflow.kernels.Linear(1)) ###Output _____no_output_____ ###Markdown Viewing, getting and setting parametersYou can display the state of the model in a terminal with `print m` (or `print(m)`), and by simply returning it in a notebook ###Code m.as_pandas_table() ###Output _____no_output_____ ###Markdown This model has four parameters. The kernel is made of the sum of two parts: the RBF kernel has a variance parameter and a lengthscale parameter, the linear kernel only has a variance parameter. There is also a parameter controlling the variance of the noise, as part of the likelihood. All of the model variables have been initialized at one. Individual parameters can be accessed in the same way as they are displayed in the table: to see all the parameters that are part of the likelihood, do ###Code m.likelihood.as_pandas_table() ###Output _____no_output_____ ###Markdown This gets more useful with more complex models! To set the value of a parameter, just assign. ###Code m.kern.kernels[0].lengthscales = 0.5 m.likelihood.variance = 0.01 m.as_pandas_table() ###Output _____no_output_____ ###Markdown Constraints and trainable variablesGPflow helpfully creates an unconstrained representation of all the variables. Above, all the variables are constrained positive (see right hand table column), the unconstrained representation is given by $\alpha = \log(\exp(\theta)-1)$. ###Code m.read_trainables() ###Output _____no_output_____ ###Markdown Constraints are handled by the `Transform` classes. You might prefer the constrain $\alpha = \log(\theta)$: this is easily done by changing setting the transform attribute on a parameter, with one simple condition - the model has not been compiled yet: ###Code m.kern.kernels[0].lengthscales.transform = gpflow.transforms.Exp() m.read_trainables() ###Output _____no_output_____ ###Markdown The second free parameter, representing unconstrained lengthscale has changed (though the lengthscale itself remains the same). Another helpful feature is the ability to fix parameters. This is done by simply setting the fixed boolean to True: a 'fixed' notice appears in the representation and the corresponding variable is removed from the free state. ###Code m.kern.kernels[1].variance.trainable = False m.as_pandas_table() m.read_trainables() ###Output _____no_output_____ ###Markdown To unfix a parameter, just flip the boolean back. The transformation (+ve) reappears. ###Code m.kern.kernels[1].variance.trainable = True m.as_pandas_table() ###Output _____no_output_____ ###Markdown PriorsPriors are set just like transforms and fixes, using members of the `gpflow.priors.` module. Let's set a Gamma prior on the RBF-variance. ###Code m.kern.kernels[0].variance.prior = gpflow.priors.Gamma(2,3) m.as_pandas_table() ###Output _____no_output_____ ###Markdown OptimizationOptimization is done by creating an instance of optimizer, in our case it is `gpflow.train.ScipyOptimizer`, which has optional arguments that are passed through to `scipy.optimize.minimize` (we minimize the negative log-likelihood) and calling `minimize` method of that optimizer with model as optimization target. Variables that have priors are MAP-estimated, others are ML, i.e. we add the log prior to the log likelihood. ###Code m.compile() opt = gpflow.train.ScipyOptimizer() opt.minimize(m) ###Output INFO:tensorflow:Optimization terminated with: Message: b'CONVERGENCE: NORM_OF_PROJECTED_GRADIENT_<=_PGTOL' Objective function value: 2.634113 Number of iterations: 34 Number of functions evaluations: 39 ###Markdown Building new modelsTo build new models, you'll need to inherrit from `gpflow.models.Model`. Parameters are instantiated with `gpflow.Param`. You may also be interested in `gpflow.params.Parameterized` which acts as a 'container' of `Param`s (e.g. kernels are Parameterized). In this very simple demo, we'll implement linear multiclass classification. There will be two parameters: a weight matrix and a 'bias' (offset). The key thing to implement is the private `_build_likelihood` method, which should return a tensorflow scalar representing the (log) likelihood. Param objects can be used inside `_build_likelihood`: they will appear as appropriate (unconstrained) tensors. ###Code import tensorflow as tf class LinearMulticlass(gpflow.models.Model): def __init__(self, X, Y, name=None): super().__init__(name=name) # always call the parent constructor self.X = X.copy() # X is a numpy array of inputs self.Y = Y.copy() # Y is a 1-of-k representation of the labels self.num_data, self.input_dim = X.shape _, self.num_classes = Y.shape #make some parameters self.W = gpflow.Param(np.random.randn(self.input_dim, self.num_classes)) self.b = gpflow.Param(np.random.randn(self.num_classes)) # ^^ You must make the parameters attributes of the class for # them to be picked up by the model. i.e. this won't work: # # W = gpflow.Param(... <-- must be self.W @gpflow.params_as_tensors def _build_likelihood(self): # takes no arguments p = tf.nn.softmax(tf.matmul(self.X, self.W) + self.b) # Param variables are used as tensorflow arrays. return tf.reduce_sum(tf.log(p) * self.Y) # be sure to return a scalar ###Output _____no_output_____ ###Markdown ...and that's it. Let's build a really simple demo to show that it works. ###Code X = np.vstack([np.random.randn(10,2) + [2,2], np.random.randn(10,2) + [-2,2], np.random.randn(10,2) + [2,-2]]) Y = np.repeat(np.eye(3), 10, 0) from matplotlib import pyplot as plt plt.style.use('ggplot') %matplotlib inline import matplotlib matplotlib.rcParams['figure.figsize'] = (12,6) plt.scatter(X[:,0], X[:,1], 100, np.argmax(Y, 1), lw=2, cmap=plt.cm.viridis) m = LinearMulticlass(X, Y) m.as_pandas_table() opt = gpflow.train.ScipyOptimizer() opt.minimize(m) m.as_pandas_table() xx, yy = np.mgrid[-4:4:200j, -4:4:200j] X_test = np.vstack([xx.flatten(), yy.flatten()]).T f_test = np.dot(X_test, m.W.read_value()) + m.b.read_value() p_test = np.exp(f_test) p_test /= p_test.sum(1)[:,None] for i in range(3): plt.contour(xx, yy, p_test[:,i].reshape(200,200), [0.5], colors='k', linewidths=1) plt.scatter(X[:,0], X[:,1], 100, np.argmax(Y, 1), lw=2, cmap=plt.cm.viridis) ###Output _____no_output_____ ###Markdown Handling models in GPflow--*James Hensman November 2015, January 2016*,*Artem Artemev December 2017*One of the key ingredients in GPflow is the model class, which allows the user to carefully control parameters. This notebook shows how some of these parameter control features work, and how to build your own model with GPflow. First we'll look at - How to view models and parameters - How to set parameter values - How to constrain parameters (e.g. variance > 0) - How to fix model parameters - How to apply priors to parameters - How to optimize modelsThen we'll show how to build a simple logistic regression model, demonstrating the ease of the parameter framework. GPy users should feel right at home, but there are some small differences.First, let's deal with the usual notebook boilerplate and make a simple GP regression model. See the Regression notebook for specifics of the model: we just want some parameters to play with. ###Code import gpflow import numpy as np ###Output _____no_output_____ ###Markdown Create a very simple GPR model without building it in TensorFlow graph. ###Code with gpflow.defer_build(): X = np.random.rand(20, 1) Y = np.sin(12 * X) + 0.66 * np.cos(25 * X) + np.random.randn(20,1) * 0.01 m = gpflow.models.GPR(X, Y, kern=gpflow.kernels.Matern32(1) + gpflow.kernels.Linear(1)) ###Output _____no_output_____ ###Markdown Viewing, getting and setting parametersYou can display the state of the model in a terminal with `print m` (or `print(m)`), and by simply returning it in a notebook ###Code m.as_pandas_table() ###Output _____no_output_____ ###Markdown This model has four parameters. The kernel is made of the sum of two parts: the RBF kernel has a variance parameter and a lengthscale parameter, the linear kernel only has a variance parameter. There is also a parameter controlling the variance of the noise, as part of the likelihood. All of the model variables have been initialized at one. Individual parameters can be accessed in the same way as they are displayed in the table: to see all the parameters that are part of the likelihood, do ###Code m.likelihood.as_pandas_table() ###Output _____no_output_____ ###Markdown This gets more useful with more complex models! To set the value of a parameter, just assign. ###Code m.kern.kernels[0].lengthscales = 0.5 m.likelihood.variance = 0.01 m.as_pandas_table() ###Output _____no_output_____ ###Markdown Constraints and trainable variablesGPflow helpfully creates an unconstrained representation of all the variables. Above, all the variables are constrained positive (see right hand table column), the unconstrained representation is given by $\alpha = \log(\exp(\theta)-1)$. ###Code m.read_trainables() ###Output _____no_output_____ ###Markdown Constraints are handled by the `Transform` classes. You might prefer the constrain $\alpha = \log(\theta)$: this is easily done by changing setting the transform attribute on a parameter, with one simple condition - the model has not been compiled yet: ###Code m.kern.kernels[0].lengthscales.transform = gpflow.transforms.Exp() m.read_trainables() ###Output _____no_output_____ ###Markdown The second free parameter, representing unconstrained lengthscale has changed (though the lengthscale itself remains the same). Another helpful feature is the ability to fix parameters. This is done by simply setting the fixed boolean to True: a 'fixed' notice appears in the representation and the corresponding variable is removed from the free state. ###Code m.kern.kernels[1].variance.trainable = False m.as_pandas_table() m.read_trainables() ###Output _____no_output_____ ###Markdown To unfix a parameter, just flip the boolean back. The transformation (+ve) reappears. ###Code m.kern.kernels[1].variance.trainable = True m.as_pandas_table() ###Output _____no_output_____ ###Markdown PriorsPriors are set just like transforms and fixes, using members of the `gpflow.priors.` module. Let's set a Gamma prior on the RBF-variance. ###Code m.kern.kernels[0].variance.prior = gpflow.priors.Gamma(2,3) m.as_pandas_table() ###Output _____no_output_____ ###Markdown OptimizationOptimization is done by creating an instance of optimizer, in our case it is `gpflow.train.ScipyOptimizer`, which has optional arguments that are passed through to `scipy.optimize.minimize` (we minimize the negative log-likelihood) and calling `minimize` method of that optimizer with model as optimization target. Variables that have priors are MAP-estimated, others are ML, i.e. we add the log prior to the log likelihood. ###Code m.compile() opt = gpflow.train.ScipyOptimizer() opt.minimize(m) ###Output INFO:tensorflow:Optimization terminated with: Message: b'CONVERGENCE: NORM_OF_PROJECTED_GRADIENT_<=_PGTOL' Objective function value: 2.634113 Number of iterations: 34 Number of functions evaluations: 39 ###Markdown Building new modelsTo build new models, you'll need to inherrit from `gpflow.models.Model`. Parameters are instantiated with `gpflow.Param`. You may also be interested in `gpflow.params.Parameterized` which acts as a 'container' of `Param`s (e.g. kernels are Parameterized). In this very simple demo, we'll implement linear multiclass classification. There will be two parameters: a weight matrix and a 'bias' (offset). The key thing to implement is the private `_build_likelihood` method, which should return a tensorflow scalar representing the (log) likelihood. Param objects can be used inside `_build_likelihood`: they will appear as appropriate (unconstrained) tensors. ###Code import tensorflow as tf class LinearMulticlass(gpflow.models.Model): def __init__(self, X, Y, name=None): super().__init__(name=name) # always call the parent constructor self.X = X.copy() # X is a numpy array of inputs self.Y = Y.copy() # Y is a 1-of-k representation of the labels self.num_data, self.input_dim = X.shape _, self.num_classes = Y.shape #make some parameters self.W = gpflow.Param(np.random.randn(self.input_dim, self.num_classes)) self.b = gpflow.Param(np.random.randn(self.num_classes)) # ^^ You must make the parameters attributes of the class for # them to be picked up by the model. i.e. this won't work: # # W = gpflow.Param(... <-- must be self.W @gpflow.params_as_tensors def _build_likelihood(self): # takes no arguments p = tf.nn.softmax(tf.matmul(self.X, self.W) + self.b) # Param variables are used as tensorflow arrays. return tf.reduce_sum(tf.log(p) * self.Y) # be sure to return a scalar ###Output _____no_output_____ ###Markdown ...and that's it. Let's build a really simple demo to show that it works. ###Code X = np.vstack([np.random.randn(10,2) + [2,2], np.random.randn(10,2) + [-2,2], np.random.randn(10,2) + [2,-2]]) Y = np.repeat(np.eye(3), 10, 0) from matplotlib import pyplot as plt plt.style.use('ggplot') %matplotlib inline import matplotlib matplotlib.rcParams['figure.figsize'] = (12,6) plt.scatter(X[:,0], X[:,1], 100, np.argmax(Y, 1), lw=2, cmap=plt.cm.viridis) m = LinearMulticlass(X, Y) m.as_pandas_table() opt = gpflow.train.ScipyOptimizer() opt.minimize(m) m.as_pandas_table() xx, yy = np.mgrid[-4:4:200j, -4:4:200j] X_test = np.vstack([xx.flatten(), yy.flatten()]).T f_test = np.dot(X_test, m.W.read_value()) + m.b.read_value() p_test = np.exp(f_test) p_test /= p_test.sum(1)[:,None] for i in range(3): plt.contour(xx, yy, p_test[:,i].reshape(200,200), [0.5], colors='k', linewidths=1) plt.scatter(X[:,0], X[:,1], 100, np.argmax(Y, 1), lw=2, cmap=plt.cm.viridis) ###Output _____no_output_____ ###Markdown Handling models in GPflow--*James Hensman November 2015, January 2016*,*Artem Artemev December 2017*One of the key ingredients in GPflow is the model class, which allows the user to carefully control parameters. This notebook shows how some of these parameter control features work, and how to build your own model with GPflow. First we'll look at - How to view models and parameters - How to set parameter values - How to constrain parameters (e.g. variance > 0) - How to fix model parameters - How to apply priors to parameters - How to optimize modelsThen we'll show how to build a simple logistic regression model, demonstrating the ease of the parameter framework. GPy users should feel right at home, but there are some small differences.First, let's deal with the usual notebook boilerplate and make a simple GP regression model. See the Regression notebook for specifics of the model: we just want some parameters to play with. ###Code import gpflow import numpy as np ###Output _____no_output_____ ###Markdown Create a very simple GPR model without building it in TensorFlow graph. ###Code np.random.seed(1) X = np.random.rand(20, 1) Y = np.sin(12 * X) + 0.66 * np.cos(25 * X) + np.random.randn(20,1) * 0.01 with gpflow.defer_build(): m = gpflow.models.GPR(X, Y, kern=gpflow.kernels.Matern32(1) + gpflow.kernels.Linear(1)) ###Output _____no_output_____ ###Markdown Viewing, getting and setting parametersYou can display the state of the model in a terminal with `print(m)`, and by simply returning it in a notebook: ###Code m ###Output _____no_output_____ ###Markdown This model has four parameters. The kernel is made of the sum of two parts: the first (counting from zero) is an RBF kernel that has a variance parameter and a lengthscale parameter; the second is a linear kernel that only has a variance parameter. There is also a parameter controlling the variance of the noise, as part of the likelihood. All of the model variables have been initialized at one. Individual parameters can be accessed in the same way as they are displayed in the table: to see all the parameters that are part of the likelihood, do ###Code m.likelihood ###Output _____no_output_____ ###Markdown This gets more useful with more complex models! To set the value of a parameter, just assign. ###Code m.kern.kernels[0].lengthscales = 0.5 m.likelihood.variance = 0.01 m ###Output _____no_output_____ ###Markdown Constraints and trainable variablesGPflow helpfully creates an unconstrained representation of all the variables. Above, all the variables are constrained positive (see right hand table column), the unconstrained representation is given by $\alpha = \log(\exp(\theta)-1)$. `read_trainables()` returns the constrained values: ###Code m.read_trainables() ###Output _____no_output_____ ###Markdown Each parameter has an `unconstrained_tensor` attribute that allows accessing the unconstrained value as a tensorflow Tensor (though only after the model has been compiled). We can also check the unconstrained value as follows: ###Code p = m.kern.kernels[0].lengthscales p.transform.backward(p.value) ###Output _____no_output_____ ###Markdown Constraints are handled by the `Transform` classes. You might prefer the constraint $\alpha = \log(\theta)$: this is easily done by changing the transform attribute on a parameter, with one simple condition - the model has not been compiled yet: ###Code m.kern.kernels[0].lengthscales.transform = gpflow.transforms.Exp() ###Output _____no_output_____ ###Markdown Though the lengthscale itself remains the same, the unconstrained lengthscale has changed: ###Code p.transform.backward(p.value) ###Output _____no_output_____ ###Markdown Another helpful feature is the ability to fix parameters. This is done by simply setting the `trainable` attribute to False: this is shown in the 'trainable' column of the representation, and the corresponding variable is removed from the free state. ###Code m.kern.kernels[1].variance.trainable = False m m.read_trainables() ###Output _____no_output_____ ###Markdown To unfix a parameter, just flip the boolean back and set the parameter to be trainable again. ###Code m.kern.kernels[1].variance.trainable = True m ###Output _____no_output_____ ###Markdown PriorsPriors are set just like transforms and trainability, using members of the `gpflow.priors` module. Let's set a Gamma prior on the RBF-variance. ###Code m.kern.kernels[0].variance.prior = gpflow.priors.Gamma(2, 3) m ###Output _____no_output_____ ###Markdown OptimizationOptimization is done by creating an instance of optimizer, in our case it is `gpflow.train.ScipyOptimizer`, which has optional arguments that are passed through to `scipy.optimize.minimize` (we minimize the negative log-likelihood) and calling `minimize` method of that optimizer with model as optimization target. Variables that have priors are MAP-estimated, i.e. we add the log prior to the log likelihood, otherwise using Maximum Likelihood. ###Code m.compile() opt = gpflow.train.ScipyOptimizer() opt.minimize(m) ###Output WARNING:gpflow.logdensities:Shape of x must be 2D at computation. ###Markdown Building new modelsTo build new models, you'll need to inherit from `gpflow.models.Model`. Parameters are instantiated with `gpflow.Param`. You may also be interested in `gpflow.params.Parameterized` which acts as a 'container' of `Param`s (e.g. kernels are Parameterized). In this very simple demo, we'll implement linear multiclass classification. There will be two parameters: a weight matrix and a 'bias' (offset). The key thing to implement is the private `_build_likelihood` method, which should return a tensorflow scalar representing the (log) likelihood. By decorating the function with `@gpflow.params_as_tensors`, Param objects can be used inside `_build_likelihood`: they will appear as appropriate (constrained) tensors. ###Code import tensorflow as tf class LinearMulticlass(gpflow.models.Model): def __init__(self, X, Y, name=None): super().__init__(name=name) # always call the parent constructor self.X = X.copy() # X is a numpy array of inputs self.Y = Y.copy() # Y is a 1-of-k (one-hot) representation of the labels self.num_data, self.input_dim = X.shape _, self.num_classes = Y.shape #make some parameters self.W = gpflow.Param(np.random.randn(self.input_dim, self.num_classes)) self.b = gpflow.Param(np.random.randn(self.num_classes)) # ^^ You must make the parameters attributes of the class for # them to be picked up by the model. i.e. this won't work: # # W = gpflow.Param(... <-- must be self.W @gpflow.params_as_tensors def _build_likelihood(self): # takes no arguments p = tf.nn.softmax(tf.matmul(self.X, self.W) + self.b) # Param variables are used as tensorflow arrays. return tf.reduce_sum(tf.log(p) * self.Y) # be sure to return a scalar ###Output _____no_output_____ ###Markdown ...and that's it. Let's build a really simple demo to show that it works. ###Code np.random.seed(123) X = np.vstack([np.random.randn(10,2) + [2,2], np.random.randn(10,2) + [-2,2], np.random.randn(10,2) + [2,-2]]) Y = np.repeat(np.eye(3), 10, 0) from matplotlib import pyplot as plt plt.style.use('ggplot') %matplotlib inline import matplotlib matplotlib.rcParams['figure.figsize'] = (12,6) plt.scatter(X[:,0], X[:,1], 100, np.argmax(Y, 1), lw=2, cmap=plt.cm.viridis); m = LinearMulticlass(X, Y) m opt = gpflow.train.ScipyOptimizer() opt.minimize(m) m xx, yy = np.mgrid[-4:4:200j, -4:4:200j] X_test = np.vstack([xx.flatten(), yy.flatten()]).T f_test = np.dot(X_test, m.W.read_value()) + m.b.read_value() p_test = np.exp(f_test) p_test /= p_test.sum(1)[:,None] plt.figure(figsize=(12, 6)) for i in range(3): plt.contour(xx, yy, p_test[:,i].reshape(200,200), [0.5], colors='k', linewidths=1) plt.scatter(X[:,0], X[:,1], 100, np.argmax(Y, 1), lw=2, cmap=plt.cm.viridis); ###Output _____no_output_____ ###Markdown Handling models in GPflow--*James Hensman November 2015, January 2016*,*Artem Artemev December 2017*One of the key ingredients in GPflow is the model class, which allows the user to carefully control parameters. This notebook shows how some of these parameter control features work, and how to build your own model with GPflow. First we'll look at - How to view models and parameters - How to set parameter values - How to constrain parameters (e.g. variance > 0) - How to fix model parameters - How to apply priors to parameters - How to optimize modelsThen we'll show how to build a simple logistic regression model, demonstrating the ease of the parameter framework. GPy users should feel right at home, but there are some small differences.First, let's deal with the usual notebook boilerplate and make a simple GP regression model. See the Regression notebook for specifics of the model: we just want some parameters to play with. ###Code import gpflow import numpy as np ###Output _____no_output_____ ###Markdown Create a very simple GPR model without building it in TensorFlow graph. ###Code with gpflow.defer_build(): X = np.random.rand(20, 1) Y = np.sin(12 * X) + 0.66 * np.cos(25 * X) + np.random.randn(20,1) * 0.01 m = gpflow.models.GPR(X, Y, kern=gpflow.kernels.Matern32(1) + gpflow.kernels.Linear(1)) ###Output _____no_output_____ ###Markdown Viewing, getting and setting parametersYou can display the state of the model in a terminal with `print m` (or `print(m)`), and by simply returning it in a notebook ###Code m.as_pandas_table() ###Output _____no_output_____ ###Markdown This model has four parameters. The kernel is made of the sum of two parts: the RBF kernel has a variance parameter and a lengthscale parameter, the linear kernel only has a variance parameter. There is also a parameter controlling the variance of the noise, as part of the likelihood. All of the model variables have been initialized at one. Individual parameters can be accessed in the same way as they are displayed in the table: to see all the parameters that are part of the likelihood, do ###Code m.likelihood.as_pandas_table() ###Output _____no_output_____ ###Markdown This gets more useful with more complex models! To set the value of a parameter, just assign. ###Code m.kern.matern32.lengthscales = 0.5 m.likelihood.variance = 0.01 m.as_pandas_table() ###Output _____no_output_____ ###Markdown Constraints and trainable variablesGPflow helpfully creates an unconstrained representation of all the variables. Above, all the variables are constrained positive (see right hand table column), the unconstrained representation is given by $\alpha = \log(\exp(\theta)-1)$. ###Code m.read_trainables() ###Output _____no_output_____ ###Markdown Constraints are handled by the `Transform` classes. You might prefer the constrain $\alpha = \log(\theta)$: this is easily done by changing setting the transform attribute on a parameter, with one simple condition - the model has not been compiled yet: ###Code m.kern.matern32.lengthscales.transform = gpflow.transforms.Exp() m.read_trainables() ###Output _____no_output_____ ###Markdown The second free parameter, representing unconstrained lengthscale has changed (though the lengthscale itself remains the same). Another helpful feature is the ability to fix parameters. This is done by simply setting the fixed boolean to True: a 'fixed' notice appears in the representation and the corresponding variable is removed from the free state. ###Code m.kern.linear.variance.trainable = False m.as_pandas_table() m.read_trainables() ###Output _____no_output_____ ###Markdown To unfix a parameter, just flip the boolean back. The transformation (+ve) reappears. ###Code m.kern.linear.variance.trainable = True m.as_pandas_table() ###Output _____no_output_____ ###Markdown PriorsPriors are set just like transforms and fixes, using members of the `gpflow.priors.` module. Let's set a Gamma prior on the RBF-variance. ###Code m.kern.matern32.variance.prior = gpflow.priors.Gamma(2,3) m.as_pandas_table() ###Output _____no_output_____ ###Markdown OptimizationOptimization is done by creating an instance of optimizer, in our case it is `gpflow.train.ScipyOptimizer`, which has optional arguments that are passed through to `scipy.optimize.minimize` (we minimize the negative log-likelihood) and calling `minimize` method of that optimizer with model as optimization target. Variables that have priors are MAP-estimated, others are ML, i.e. we add the log prior to the log likelihood. ###Code m.compile() opt = gpflow.train.ScipyOptimizer() opt.minimize(m) ###Output INFO:tensorflow:Optimization terminated with: Message: b'CONVERGENCE: NORM_OF_PROJECTED_GRADIENT_<=_PGTOL' Objective function value: 2.634113 Number of iterations: 34 Number of functions evaluations: 39 ###Markdown Building new modelsTo build new models, you'll need to inherrit from `gpflow.models.Model`. Parameters are instantiated with `gpflow.Param`. You may also be interested in `gpflow.params.Parameterized` which acts as a 'container' of `Param`s (e.g. kernels are Parameterized). In this very simple demo, we'll implement linear multiclass classification. There will be two parameters: a weight matrix and a 'bias' (offset). The key thing to implement is the private `_build_likelihood` method, which should return a tensorflow scalar representing the (log) likelihood. Param objects can be used inside `_build_likelihood`: they will appear as appropriate (unconstrained) tensors. ###Code import tensorflow as tf class LinearMulticlass(gpflow.models.Model): def __init__(self, X, Y, name=None): super().__init__(name=name) # always call the parent constructor self.X = X.copy() # X is a numpy array of inputs self.Y = Y.copy() # Y is a 1-of-k representation of the labels self.num_data, self.input_dim = X.shape _, self.num_classes = Y.shape #make some parameters self.W = gpflow.Param(np.random.randn(self.input_dim, self.num_classes)) self.b = gpflow.Param(np.random.randn(self.num_classes)) # ^^ You must make the parameters attributes of the class for # them to be picked up by the model. i.e. this won't work: # # W = gpflow.Param(... <-- must be self.W @gpflow.params_as_tensors def _build_likelihood(self): # takes no arguments p = tf.nn.softmax(tf.matmul(self.X, self.W) + self.b) # Param variables are used as tensorflow arrays. return tf.reduce_sum(tf.log(p) * self.Y) # be sure to return a scalar ###Output _____no_output_____ ###Markdown ...and that's it. Let's build a really simple demo to show that it works. ###Code X = np.vstack([np.random.randn(10,2) + [2,2], np.random.randn(10,2) + [-2,2], np.random.randn(10,2) + [2,-2]]) Y = np.repeat(np.eye(3), 10, 0) from matplotlib import pyplot as plt plt.style.use('ggplot') %matplotlib inline import matplotlib matplotlib.rcParams['figure.figsize'] = (12,6) plt.scatter(X[:,0], X[:,1], 100, np.argmax(Y, 1), lw=2, cmap=plt.cm.viridis) m = LinearMulticlass(X, Y) m.as_pandas_table() opt = gpflow.train.ScipyOptimizer() opt.minimize(m) m.as_pandas_table() xx, yy = np.mgrid[-4:4:200j, -4:4:200j] X_test = np.vstack([xx.flatten(), yy.flatten()]).T f_test = np.dot(X_test, m.W.read_value()) + m.b.read_value() p_test = np.exp(f_test) p_test /= p_test.sum(1)[:,None] for i in range(3): plt.contour(xx, yy, p_test[:,i].reshape(200,200), [0.5], colors='k', linewidths=1) plt.scatter(X[:,0], X[:,1], 100, np.argmax(Y, 1), lw=2, cmap=plt.cm.viridis) ###Output _____no_output_____
day_01_notebooks/SPARK_Day1_Victoria.ipynb
###Markdown ![SPARK Banner](https://i.imgur.com/3vCmTns.png) SPARK | Day 1 | July 12th, 2021The agenda for today:1. About the Tools2. Introduction to Pandas (What is it?, Reading Excel and CSV Files, Viewing DataFrames)3. Indexing DataFrames4. Cleaning DataFrames5. Version Control - Introduction to Git6. How to Give Feedback About the tools Google Colab**Google Colab** is an online version of Jupyter Notebooks. It has cells where you can write notes and execute lines of code. We will be running the programming language called **Python** within these notebooks.To use Google Colab, you will need to have [Google Chrome](https://www.google.com/chrome/) intalled on your computer. You will also need a Google Account to be able to access [Google Drive](https://drive.google.com), where the Colab notebooks can be accessed. Pandas What is Pandas?Pandas are adorable little animals. But, they are also an open-source **data analysis and manilpulation tool**. It's built on top Python. Programmers like animals — can you tell?**You can think of Pandas as cuter, better and more powerful version EXCEL** Importing the Pandas Library**Pandas** is a library that is built on top of the **Numpy** library.**Libraries:** are a collection of functions on methods that allow us to form specific actions ---Before we can use Pandas and Numpy, we need to **import** their libraries in Python. This is the standard way of importanting the Pandas and Numpy LibraryWhen we import pandas as **pd**, every time we want to access the pandas library we can just write "pd" instead of "pandas". Likewise, importing **numpy** as np, allows us to access the numpy library with the shorter **np** ###Code import pandas as pd import numpy as np ###Output _____no_output_____ ###Markdown Reading a Excel (.xlsx) and CSV (.csv) FilesWe can use Pandas to read and import data in different file formats.Two common data file formats are **(1) Excel** and **(2) CSV**. ExcelExcel (.xlsx) files are workbook files that are specifically created for Microsoft Excel, but they work in Google Sheets as well. --- Reading Excel Files To import excel files in Pandas we use the [pd.read_excel](https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.read_excel.html) function> df = pd.read_excel ("path-of-file.xlsx")In this case:* **df** is the variable that we are saving the data frame to* **=** is how we assign data to a variable* **pd** is the name of the *library** **read_excel** is the name of the *function** **path-of-file.xlsx** is the *parameter* (i.e. the name of the file) Exercise 1: Reading your first excel fileTry importing your first excel file. The name of the file is **https://github.com/AutismResearchCentre/Spark_2020_Day_01/blob/master/US_School_Census_2019.xlsx?raw=true** (*note* The name of the file is in quotations because it string. We put all strings in single quotes ('string') or double quotes ("string"). Save the string to a variable called **census_2019**. ###Code # TO-DO: Read in the US School Census Data file from 2019 path = "https://github.com/AutismResearchCentre/Spark_Datasets/blob/master/US_School_Census_2019.xlsx?raw=true" # [VARIABLE_NAME] = pd.read_excel([PATH_NAME]) census_2019 = pd.read_excel(path) ###Output _____no_output_____ ###Markdown To view the data frame just call the name of the variable that you saved the data frame to. ###Code # Type the name of the variable of the data frame and run the cell census_2019 ###Output _____no_output_____ ###Markdown CSVCSV stands for Comma Separated Values. It is a plain text file where the values are separated by commas. CSV files can be opened by any spreadsheet program (e.g., Excel, Open Office, Google Sheets). You can also open and edit CSV files in simple text editors as well (e.g., NotePad) Reading Excel Files To import excel files in Pandas we use the [pd.read_csv](https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.read_csv.html) function`df = pd.read_csv ("path-of-file.csv")`In this case:* **df** is the variable that we are saving the data frame to* **=** is how we assign data to a variable* **pd** is the name of the *library** **read_csv** is the name of the *function** **path-of-file.csv** is the *parameter* (i.e. the name of the file) Exercise 2: Reading your first csv fileTry importing your first csv file. It's very similar to reading an excel file. The path of the file is **https://raw.githubusercontent.com/AutismResearchCentre/Spark_Datasets/master/US_School_Census_2020.csv** Save the string to a variable called **census_2020**.BONUS: What do you think would happen if we tried to use pd.read_csv to read an excel file? ###Code # TO-DO: Read your first CSV file below census_2020 = pd.read_csv("https://raw.githubusercontent.com/AutismResearchCentre/Spark_Datasets/master/US_School_Census_2020.csv") ###Output _____no_output_____ ###Markdown Viewing Data FramesThe DataFrame is a powerful tool in Pandas. To be able to use it properly, we need to know how to view the data in our DataFrames.As seen above, simply calling the name of our DataFrame we can see our rows and columns. If our DataFrame is super large, Jupyter NoteBook will just display the first and last rows and columns. ###Code census_2020 = pd.read_csv("https://raw.githubusercontent.com/AutismResearchCentre/Spark_Datasets/master/US_School_Census_2020.csv") # Simply call the name of the DataFrame to display table census_2020 ###Output _____no_output_____ ###Markdown Shape of the Data FrameHow do we know how many data points (rows) we have? How do we know how many features (columns) we have?To determine how much data we have, we can use [df.shape](https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.shape.html), which will give us information of how ```df.shape```* **df** is the name of the Pandas DataFrame* **.shape** is the attribute of the data framedf.shape will return a tuple in the form of (x, y)* **x** represents the number of rows* **y** represents the number of columns ###Code census_2020.shape ###Output _____no_output_____ ###Markdown Therefore, our data frame has **250 rows** and **60 columns** HeadTo view the first rows of a DataFrame, we can use [pd.head()](https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.head.html)---```df.head()```By deafult` pd.head()` will display thie** first 5 rows** of the DataFrame```df.head(n)```Where **n is an integer** value that represents the number of rows. For example, `pd.head(15)` will display the first 15 rows. ###Code census_2020.head() ###Output _____no_output_____ ###Markdown TailTo view the last rows of a DataFrame, we can use [pd.tail()](https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.tail.html)```df.tail()```By deafult` df.tail()` will display by default **last 5 rows** of the DataFrame```df.tail(n)```Where **n is an integer** value that represents the number of rows. For example, `df.tail(15)` will display the last 15 rows. Exercise 3: Males vs FemalesDisplay the last 6 rows of the DataFrame? How many of the students are female? How many are male? ###Code # TO-DO: Display the last 6 rows of the Census_2020 DataFrame census_2020.tail(6) # TO-DO: How many students are female print ('X students are female, and Y students are male') # Print statments let us see string in the console ###Output X students are female, and Y students are male ###Markdown Indexing DataFrames DataFrame IndexThe **DataFrame index** is the row labels of the table. * DataFrame Indexes could be **numbers, words, or phrases*** DataFrame Indexes have to be **unique** (you can think of it as an ID number). We can't have two people with the same ID or name because that would be confusing. Integer DataFrame IndexFor the Census 2020. Data we can see that that the DataFrame index is the bolded values **(0, 1, 2, 3 ...)**. This helps us identify each row. ###Code census_2020.head() ###Output _____no_output_____ ###Markdown String DataFrame Index**String** is just another word another way to say a series of characters. Examples of strings include:* "Hello"* "Password123"* "12345"* 'Bob the Builder!'* "$%&$^$^!* *&%*salkdfjlksf"Notice how strings are wrapped in double ("") or single quotations (''). Strings can also be DataFrame indexes. Take the example below of the cities DataFrame. The index of is the name of Finish cities (e.g., Helsink, Espoo, Tampere) ###Code # Getting the cities DataFrame cities = pd.DataFrame(['Helsinki', 'Espoo', 'Tampere', 'Vantaa', 'Oulu']) cities['Population'] = [643272, 279044, 231853, 223027, 201810] cities['Total area'] = [715.48, 528.03, 689.59, 240.35, 3817.52] cities.set_index([0], inplace=True) # Viewing the cities DataFrame cities ###Output _____no_output_____ ###Markdown Setting a DataFrame IndexWe can actually change the index of DataFrames. [df.set_index](https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.set_index.html) allows us to set the DataFrame index (row labels) with existing columns```df.set_index('[COLUMN_NAME]', inplace=True)```* **df** is the name of the DataFrame* **.set_index** is the function that we are apply to the dataframe* **'[COLUMN_NAME]'** is the name of the pre-existing column that we would * **inplace** gives us the option to save over our pre-exisiting DataBase. If we set *inplace=True*, our edited DataFrame overwrites the original. If we set *inplace=False*, then we keep our original DataFrame. By deafult, inplace is set to False. ###Code # Changing the index from city name to population cities.set_index('Population') # The original cities still exists cities # Now lets use set_index with the inplace attribute cities.set_index('Population', inplace=True) # When we call cities we can see that we have saved our changes cities ###Output _____no_output_____ ###Markdown Exercise 3: Mountains! Below is a table about some mountains. What column be an appropriate index for the data? Why? Create a new index of the mtns DataFrame. (Do not forget to use the `inplace=True` attribute). ###Code # TO-DO: Run this cell to get assign the mtns DataFrame mtns = pd.DataFrame([ {'name': 'Mount Everest', 'height (m)': 8848, 'summited': 1953, 'mountain range': 'Mahalangur Himalaya'}, {'name': 'K2', 'height (m)': 8611, 'summited': 1954, 'mountain range': 'Baltoro Karakoram'}, {'name': 'Kangchenjunga', 'height (m)': 8586, 'summited': 1955, 'mountain range': 'Kangchenjunga Himalaya'}, {'name': 'Lhotse', 'height (m)': 8516, 'summited': 1956, 'mountain range': 'Mahalangur Himalaya'}, ]) mtns # TO-DO: Set an new index for the table mtns = pd.DataFrame([ {'name': 'Mount Everest', 'height (m)': 8848, 'summited': 1953, 'mountain range': 'Mahalangur Himalaya'}, {'name': 'K2', 'height (m)': 8611, 'summited': 1954, 'mountain range': 'Baltoro Karakoram'}, {'name': 'Kangchenjunga', 'height (m)': 8586, 'summited': 1955, 'mountain range': 'Kangchenjunga Himalaya'}, {'name': 'Lhotse', 'height (m)': 8516, 'summited': 1956, 'mountain range': 'Mahalangur Himalaya'}, ]) mtns.set_index('name', inplace=True) mtns ###Output _____no_output_____ ###Markdown Loc and Label-based Indexing[df.loc[]](https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.loc.html) is used to slice and index a DataFrame based on the labels of the columns and the rows.The inputs of .loc can be:--- Using Loc for a Single Row```df.loc['ROW_LABEL']```Returns a single row of the DataFrame ###Code # Read the csv file hospitals = pd.read_csv("https://raw.githubusercontent.com/AutismResearchCentre/Spark_Datasets/master/Toronto_Hospitals.csv") # Set the index to Hospital "Name" hospitals.set_index('Name', inplace=True) # View hospital DataFrame hospitals # Get the row for Holland Bloorview hospitals.loc['Holland Bloorview'] # Case Sensitve # Get the row for Centric Health Surgical Centre hospitals.loc['Centric Health Surgical Centre'] ###Output _____no_output_____ ###Markdown Using Loc for a Single Cell```df.loc[ROW_NAME, COLUMN_NAME]```Returns a specific cell of the DataFrame ###Code # Get the year Etobicoke General was founded hospitals.loc["Etobicoke General", "Founded"] # Get the district of Casey House hospitals.loc["Casey House", "District"] # Get the former name of Bellwood hospitals.loc["Bellwood", "Former name(s)"] # Return nan, which indicates missing data ###Output _____no_output_____ ###Markdown Using Loc to Subset the DataFrameSometimes we only want a subset of our DataFrame. The slice operator (:)```[START_INDEX : STOP_INDEX]```The slice operator cuts a sequence that starts at the `START_INDEX` and ends with `END_INDEX` ###Code # Slicing Rows: Get rows Bellwood to Etobicoke General hospitals.loc['Bellwood': 'Etobicoke General'] # Slicing Rows and Columns: # Get Rows from Casey House to Holland Bloorview, and columns from District to Network hospitals.loc['Casey House': 'Holland Bloorview', 'District' : 'Network'] ###Output _____no_output_____ ###Markdown ```[:]```A single colon (with nothing before or after it), means get everything ###Code # Get the whole hospital DataFrame hospitals.loc[:] # This is the same as just calling hospitals # Get all the rows, but only the 'Network' and 'Former name(s)' Columns hospitals.loc[:, 'Network': 'Former name(s)'] ###Output _____no_output_____ ###Markdown ```[: END_INDEX]```Assumes the Start Index is the first entry of the DataFrame```[START_INDEX : ]```Assumes the End Index is the last entry of the DataFrame ###Code # Get all rows from "Sunnybrook" to the end of the list hospitals.loc['Sunnybrook':] # Get all rows up to "Bridgepoint" (Inclusive) hospitals.loc[ :"Bridgepoint"] ###Output _____no_output_____ ###Markdown Arrays for IndexingArrays can help us select the specifc items (columns or rows) that we need. ```[ INDEX1, INDEX2, INDEX3 ... INDEX8 ]```This helps us select the specific indexes that we want. ```[ INDEX13, INDEX2, INDEX34 ... INDEX2 ]```Indexes do not need to be in order ###Code # Get the Years that Sunnybrook, Humber River, Mount Sinai were founded hospitals.loc[['Sunnybrook', 'Humber River', 'Mount Sinai'], 'Founded'] # Notice how he names of the hospitals are in an array # We can also save the array of of indexes to variables row_indexes = ['Birchmount', 'Baycrest', 'Toronto General'] column_indexes = ['District', 'Founded'] hospitals.loc[row_indexes, column_indexes] ###Output _____no_output_____ ###Markdown Exercise 4: Pokedex (Indexing with Pokemon)Below is a table of Generation 1 Pokemon. Answer the question below. ###Code pokemon = pd.read_csv("https://raw.githubusercontent.com/AutismResearchCentre/Spark_2020_Day_01/master/Gen1_Pokemon.csv") pokemon ###Output _____no_output_____ ###Markdown **Set the index of Pokemon DataFrame to `"Name"`** ###Code # TO-DO: Set the `"Name"` as the DataFrame Index (Row Labels) pokemon.set_index('Name', inplace=True) pokemon ###Output _____no_output_____ ###Markdown **What is the type of Pokemon is the `"Abra"`?** ###Code # TO-DO: Find the type of Abra? pokemon.loc['Abra', 'Type'] ###Output _____no_output_____ ###Markdown **What are the evolutions and numbers of `"Charmander"`, `"Pikachu"` and `"Squirtle"`?** ###Code # TO-DO: Get the evolutions of these three pokemon pokemon.loc[['Charmander', 'Pikachu', 'Squirtle'], 'Evolves_Into'] pokemon.loc['Eevee', 'Evolves_Into'] ###Output _____no_output_____ ###Markdown **Cut the Table from `"Eevee"` to `"Mewtwo"`. What is the range of numbers in the Pokedex**to ###Code # TO-DO: Cut the table from Evee to Dragonite pokemon.loc['Eevee':'Mewtwo'] ###Output _____no_output_____ ###Markdown Cleaning DataBefore we can start analyzing data, we need to clean it. IBM Data Analytics estimates that data scientists can spend up to 80% of time cleaning data. Missing ValuesOne of the biggest data cleaning tasks is the problem of **missing values**. Sources of Missing ValuesData can be missing for a variety of different reasons. For example,* The participant forget to fill in a field in a survey* Data was lost while transferring files* There was a programming error* Data was not collected for a specific participant We are going to load a csv file with some property data. As you can see there is some issue with this Data.![Imgur](https://i.imgur.com/cpDUkBk.png) ###Code # Import libraries import pandas as pd import numpy as np # Read csv file into a pandas DataFrame df_property = pd.read_csv("https://raw.githubusercontent.com/nguyenjenny/spark_shared_repo/main/datasets/Property_Data.csv") # Print out the Data df_property ###Output _____no_output_____ ###Markdown Features and Data TypesBefore we begin cleaning our data we need to understand what features we have (i.e. what do the columns of the data represent) and what are the expected data types. What are the features?- `PID`: Property ID number- `ST_NUM`: Street number- `ST_NAME`: Street name- `OWN_OCCUPIED`: Is the residence owner occupied- `NUM_BEDROOMS`: Number of bedrooms- `NUM_BATH`: Number of bathrooms- `SQ_FT`: Square footage of the property- `Extra`: Extra column with no data in it What are the expected types?- `PID`: float (decimal number) or int (whole number), something numeric- `ST_NUM`: float (decimal number) or int (whole number), something numeric- `ST_NAME`: string (a mix of letters or numbers)- `OWN_OCCUPIED`: string (where Y = "yes" and N "no")- `NUM_BEDROOMS`: float (decimal number) or int (whole number), something numeric- `NUM_BATH`: float (decimal number) or int (whole number), something numeric- `SQ_FT`: float (decimal number) or int (whole number), something numeric- `Extra`: NaN (missing data) How Pandas Deals with Missing Values (`NaN`)Missing data in pandas is often called `NaN` which stands for **Not a Number**.Here we can see that row `4`, column `"PID"` is nan. ###Code # Index row 4, column "PID" df_property.loc[4, "PID"] ## How to check if data is considered missing ###Output _____no_output_____ ###Markdown How to check if Data is Considered Missing (`isnull`)There is a method called `isnull` that we can use to determine if data is missing.- Missing or null data will return `True`- Non-missing or non-null data will return `False` ###Code # Check is the data is null or not df_property.isnull() ###Output _____no_output_____ ###Markdown We can also check if nulls on a single column ###Code # We can check a single column print(df_property['ST_NUM']) df_property['ST_NUM'].isnull() # We can also count how many missing/null values we have using the `sum()` method df_property['ST_NUM'].isnull().sum() # We can use the sum method on the entire DataFrame too df_property.isnull().sum() ###Output _____no_output_____ ###Markdown Standard Missing ValuesPandas will recognize the following automatically as standard missing values- empty cells- "n/a"- "NA"- "na"As we can see all the items in blue, have been importated as `NaN`![Imgur](https://i.imgur.com/cpDUkBk.png) ###Code # Return the table df_property # Non standard missing val ###Output _____no_output_____ ###Markdown Non-standard Missing ValuesThere are also some missing values that are not automatically recognized as missing. For example `"--"` is being recognized as a string instead of a missing value. In this case, we tell pandas what our missing values are by using the parameter `na_values`, when we use `pd.read_csv`. ###Code # Create a list of missing values and save as a variable missing_values = ['n/a', 'na', 'NaN', 'NA', '--'] # Read csv as as pandas data frame, but use the paramter na_values df_property = pd.read_csv("https://raw.githubusercontent.com/nguyenjenny/spark_shared_repo/main/datasets/Property_Data.csv", na_values=missing_values) # Return df_property, now "--" has been replaced with NaN df_property ###Output _____no_output_____ ###Markdown Dealing with Errors in the DataThere are also a few errors in the data (yellow cells). ![Imgur](https://i.imgur.com/cpDUkBk.png)We can use `replace` to mass replace incorrect cells. Or, we can use fix errors on a case-by-case basis by overwriting them using indexing (`loc`). Replacing Errors (`replace`)This method works well, when there's a value in a data set that makes no sense. In the data set we have, "HURLEY" is incorrect, so we can replace with nan (`np.nan`)We use the `replace` method.```df.replace("[OLD_VALUE]", "[NEW_VALUE]")``` ###Code # Replace "Hurley" with np.nan df_property = df_property.replace("HURLEY", np.nan) # Show data frame df_property ###Output _____no_output_____ ###Markdown Overwriting Errors with Indexing (`loc`)To overwrite a data point or error. We simply index it using `loc` and the make it equal to our new value.```df.loc[ "ROW_NAME" , "COLUMN_NAME"] = [NEW_VALUE]```We want to overwrite errors using indexing when we have to deal with data on a case by case basis. For example, it doesn't make sense to have a value of `12` for the column `"OWN_OCCUPIED"`. But we don't want to just replace all values of `12` with `np.nan`. For example, we could have a house with a street number of 12 and that's not an error. This is where indexing comes in handy. The row name is `3` and the row_columns is `"OWN_OCCUPIED"` and we want to replace this with `np.nan` ###Code # Overwrite row 3, column "OWN_OCCUPIED" with np.nan df_property.loc[3, "OWN_OCCUPIED"] = np.nan # Show the updated dataframe df_property ###Output _____no_output_____ ###Markdown Example 5: Replacing missing data using overwriting with indexingOverwriting with indexing can also be used to replacing missing values with actual values. Lets replace this missing value in column "PID" with 100005000 Lets replace this missing value in column `"PID"` with `100005000` ###Code ### TO-DO: Repalce this missing ID in the "PID" column with 100005000 df_property.loc[4, 'PID'] = 100005000 df_property ###Output _____no_output_____ ###Markdown Replacing Missing Data (`fillna`)The `fillna` method is used to replace missing data. ```df = df.fillna(VALUE_TO_FILL)df["COLUMN_NAME"] = df["COLUMN_NAME"].fillna(VALUE_TO_FILL)``` Let's say we want to assume if we don't have information about the number of bathrooms (`"NUM_BATH"`), we can assume there is only 1 bathroom. In this case, we want to fill value to be 1. We can apply `fillna` ###Code # Fill all nan values df_property["NUM_BATH"] = df_property["NUM_BATH"].fillna(1) # Show the new dataframe df_property ###Output _____no_output_____ ###Markdown For number of bedrooms (`"NUM_BEDROOMS"`), we can fill missing data with the mean number of bedrooms ###Code # Calculate the mean number of bedrooms first and save as variable mean_beds = df_property["NUM_BEDROOMS"].mean() # You will learn more about this later print(mean_beds) # Fill all nan values for NUM_BEDRROMS with the mean # Fill all nan values df_property["NUM_BEDROOMS"] = df_property["NUM_BEDROOMS"].fillna(mean_beds) # Show the new dataframe df_property ###Output _____no_output_____ ###Markdown Example 6: Filling missing data for the `"OWN_OCCUPIED"` columnIf data on whether a place is `"OWN_OCCUPIED"` is missing, fill it with `"N"`, meaning that it is not occupied. ###Code ### TO-DO: Fill missing "OWN_OCCUPIED" data with "N" ###Output _____no_output_____ ###Markdown Dropping rows/indexes and columns with missing data (`dropna`)Sometimes we may not want to use rows/indexes or columns if data is missing. This is where the `dropna` function comes in handy.Documentation for this function is found here: https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.dropna.html?highlight=dropnaParameters: - `axis`: the axis that you want to drop data on - can be "index" or "columns" - `axis="index"` drops rows with missing data - `axis="columns"` drops columns with missing data- `how`: how you want to drop the data - can be "any" or "all" - `how="any"` If any NA values are present, drop that row or column - `how="all"` If all values are NA, drop that row or column. Examples Drop columns where all the values are missing```df.dropna(axis="columns", how="all") ```Drop columns where there are any missing values```df.dropna(axis="columns", how="any") ```Drop rows/index where all the values are missing```df.dropna(axis="index", how="all") ```Drop rows/index where there are any missing values```df.dropna(axis="index", how="any") ``` ###Code # Drop columns where all values are missing df_property.dropna(axis="columns", how="all") # Drop columns where any values are missing df_property.dropna(axis="columns", how="any") ###Output _____no_output_____ ###Markdown Exercise 7: Drop rows/indexes where all and any of the data is missing. ###Code ### TO-DO: drop rows/indexes where all values are missing ### TO-DO: drop rows/indexes where any values are missing ###Output _____no_output_____ ###Markdown GitHub**Git** is a version control programming language. Installing Git and GitHub * **Installing Git on Windows** Download and install git from [Git for Windows](https://gitforwindows.org/) * **Installing Git on Mac** Install [Git OSX Installer](https://sourceforge.net/projects/git-osx-installer/files/ ) 2. Create a [GitHub Account](https://github.com/join) 3. Configure Git to your GitHub account * Open git bash * Set a Git username * `$ git config --global user.name "Mona Lisa"` * Confirm that you have set the Git username correctly * `$ git config --global user.name` * `> Mona Lisa` * Setting your commit email address in Git * `$ git config --global user.email "[email protected]"` * Confirm that you have set the Git email correctly * `$ git config --global user.email` * `> [email protected]` 4. Install **Git for Desktop*** Install [git for desktop here](https://desktop.github.com/)4. Share your git username with us in the Zoom chat and we will add you to repository Git WorkflowBelow is an image of the git work flow and the common commands we use.![](https://i.imgur.com/0T7u7bK.png) Remote RepositoryA repo/repository is a place where all your files for a project are stored.The remote repository is the repository shared with everyone and hosted on github.com. Because it's the shared version, we don't want to make changes to it directly. Local RepopositoryThe local repository is our version of the repository that we have saved on our personal comptuers. We can try things out and change things without affecting the remote version of the code that everyone else uses. Once Working DirectoryWhen we make changes to any of the the file in the repository. It goes into the the working directory. We can choose to keep (commit) or discard these changes Staging AreaThe staging area is where you want you add files that you have changed to get ready to commit `git clone` To get a local repository we first need to clone it using the command git clone `git add`To add files to the staging area we use git add. This moves files from the working directory into the staging area. `git commit`Once we have collected all the files that we would like to move you our local repository. We can use the command `git commit`. When we commit something, we must included a commit message that explains what the changes were. This helps us keep track of the changes incase we need to revert to an old version or solve a bug. `git push`Once we are comfortable with all our chages and commit and we are ready to share it with our team, we need `git push` our commits from the local repository to the remote repository `git pull`Other people will make changes to remote repository. To get those changes and to make sure our local repository is up-to-date, we need to `git pull` all the changes `git checkout`Git checkout is used in more complicated situations when we have to worry about branching `git checkout`Git checkout is used in more complicated situations when we have to worry about branching. It is used to change branches `git merge`Git merge is used when we want to combine separate branches into a single branch Cloning your first repository1. Open **GitHub for Desktop**2. Find the repository called **Shared Spark Repo** and select `Clone [your_username]/spark_shared_repo`* ![image](https://i.imgur.com/7J9vRCl.png)3. Clone the repository* ![](https://i.imgur.com/2S3uPRy.png)4. Select `View the files of repository in Explorer` to see the files.* You should be able to see all the cloned files saved locally* ![](https://i.imgur.com/UlY2f8l.png)We have just created our own local repository on our computer! Making your first commit1. Open the README.md file located in the local repository in notebook or any text editor2. Add your name under contributors and save the file * README files are in markdown. So `*` and a space represents a bullet point * ![](https://i.imgur.com/KtxIKam.png)3. When you return to GitHub Desktop, you'll notice that the change will have been detected * Make sure the files you want to commit are ticked off. This move files from our working directory into the staging area. * Add a **commit message** at the bottom * Commit messages usually start with a **captialized word** * And start with a **verb in simple tense** (e.g., Add, Change, Remove, Fix) *![](https://i.imgur.com/zqx25UD.png)We have just commit our changes to our local directory! Pushing the changes to remote repositoryThe changes we made are in our local repo are ready to be "pushed" to the main branch of your remote repo.To push our changes to remote repository we can click any of the two circled push buttons.![](https://i.imgur.com/RdX6Swn.png) ###Code ###Output _____no_output_____ ###Markdown Fetching and pulling up-to-date changes from the main remote repositoryBefore we make changes to our local repository, we want to get into the habit of fetching and pulling changes from the remote repository to make sure we are working with the most up-to-date version.1. Fetch the from origin (i.e. the remote repository) * Fetch gets and list the commits that have been made on the remote branch * ![](https://i.imgur.com/BMckPsE.png)2. To get those changes on our local machine, we need to pull them. * ![](https://i.imgur.com/4I9TQNk.png) Exercise 8: Adding your name to the contributor listGo through all the steps listed above to add your name to contributor list. Since we are all editing the same README.md file, we want to make these changes one at a time.**NB: Remember to `git pull` before you add your name, to get the most up-to-date version that your peers have added to** Exercise 9: Add your notebook from day 1 to GitHub RepositoryThere is a folder in the repository called `day01_notebooks`: https://github.com/nguyenjenny/spark_shared_repo/tree/main/day_01_notebooks1. Download the notebook from Google Collab onto your computer as an .ipynb * ![](https://i.imgur.com/CHJDwJc.png) * Rename it `SPARK-Day1-[FirstName].ipynb`2. Copy it to the correct `day01_notebooks` folder in your local repository3. Stage and commit to your local repository * Be sure to add an informative message4. Push the change to remote repository Accessing data files through GitHubGitHub can be used to host and access datafiles through Google Collab.Hotel booking demand data is hosted here: https://www.kaggle.com/jessemostipak/hotel-booking-demand?select=hotel_bookings.csvWe can download it to our local machine and copy it to our local repository, then commit and push the datasets to GitHub.In the `datasets` folder of our shared repository (https://github.com/nguyenjenny/spark_shared_repo/tree/main/datasets), we have saved the hotel booking information in the file called Hotel_Booking.csv* ![](https://i.imgur.com/5BmOZF7.png)If we click `view raw`, it will lead us to the raw CSV file* ![](https://i.imgur.com/vVEPQHK.png)This leads us to the raw CSV file. We can use the URL as the file path when importing our data from pandas* ![](https://i.imgur.com/VZfxDgv.png)We can use `pd.read_csv("https://raw.githubusercontent.com/nguyenjenny/spark_shared_repo/main/datasets/Hotel_Bookings.csv")` to load our data Peer Programming: Loading and cleaning the hotel data Part 1: Load the hotel booking data using `pd.read_csv` and save it under the varialbe `df_hotels`The na_values are "non-standard". Look at the data to figure out what it is: https://raw.githubusercontent.com/nguyenjenny/spark_shared_repo/main/datasets/Hotel_Bookings.csv*Hint there are multiple "non-standard" notations for missing data. It might help to look at the data in excel. * ###Code ### TO-DO: Load the hotel booking data import pandas as pd import numpy as np ### TO_DO: What are the missing values called in this data set missing_values = [""] # replace with what the missing values are called (hint there are multiple nam) ### ### TO_DO: Import the data; use pd.read_csv to import the missing data, be sure to set `na_values = missing_values` df_hotels = "" # replace with read statement missing_values = ["NULL", "missing_data"] df_hotels = pd.read_csv("https://raw.githubusercontent.com/nguyenjenny/spark_shared_repo/main/datasets/Hotel_Bookings.csv", na_values = missing_values) ###Output _____no_output_____ ###Markdown Part 2: How many features (columns) and datapoints (rows/indexes) are three? ###Code # TO-DO: Get the number of features and datapoints df_hotels.shape ###Output _____no_output_____ ###Markdown Part 3: How much missing data do you have for each column? Which column has the most missing data? Which column has the least missing data? ###Code ### TO-DO: Figure out how much missing data there is in each column df_hotels.isnull().sum() ###Output _____no_output_____ ###Markdown Part 4: Use `loc` to get the `"hotel"`, `"adults"`, `"children"`, `"babies"` for the rows of `40600`, `40667`, `40679` and `41160`. What do you notice about this data? ###Code ### TO-DO: Use loc to get a subset of the dataset df_hotels.loc[[40600, 40667, 40679, 41160], ['hotel', 'adults', 'children', 'babies']] ###Output _____no_output_____ ###Markdown Part 5: Fill missing data for `"children"` with the value `0`. Confirm that there is no missing data using `isnull` ###Code ### TO-DO: Fill missing data for the "children" column with the value 0 ### TO-DO: Confirm that there is now no missing data in that column ###Output _____no_output_____ ###Markdown Part 6: Drop all indexes/rows with any missing data save it as `df_hotels_processed`? How many data points do you have now?--- ###Code ### TO-DO: Drop all indexes/rows with missing data df_hotels_processed = "" # replace with drop statement ###Output _____no_output_____
docker/work/preprocess_knock_R.ipynb
###Markdown データサイエンス100本ノック(構造化データ加工編) - R はじめに- 初めに以下のセルを実行してください- 必要なライブラリのインポートとデータベース(PostgreSQL)からのデータ読み込みを行います- 利用が想定されるライブラリは以下セルでインポートしています- その他利用したいライブラリがあれば適宜インストールしてください(!マークに続けてOSコマンドを入力することで、任意のubuntu Linuxコマンドが入力可能)- 名前、住所等はダミーデータであり、実在するものではありません ###Code require('RPostgreSQL') require('tidyr') require('dplyr') require('stringr') require('caret') require('lubridate') require('rsample') require('recipes') host <- 'db' port <- Sys.getenv()["PG_PORT"] dbname <- Sys.getenv()["PG_DATABASE"] user <- Sys.getenv()["PG_USER"] password <- Sys.getenv()["PG_PASSWORD"] con <- dbConnect(PostgreSQL(), host=host, port=port, dbname=dbname, user=user, password=password) df_customer <- dbGetQuery(con,"SELECT * FROM customer") df_category <- dbGetQuery(con,"SELECT * FROM category") df_product <- dbGetQuery(con,"SELECT * FROM product") df_receipt <- dbGetQuery(con,"SELECT * FROM receipt") df_store <- dbGetQuery(con,"SELECT * FROM store") df_geocode <- dbGetQuery(con,"SELECT * FROM geocode") ###Output _____no_output_____ ###Markdown データサイエンス100本ノック(構造化データ加工編) - R はじめに- 初めに以下のセルを実行してください- 必要なライブラリのインポートとデータベース(PostgreSQL)からのデータ読み込みを行います- 利用が想定されるライブラリは以下セルでインポートしています- その他利用したいライブラリがあればinstall.packages()で適宜インストールしてください- 名前、住所等はダミーデータであり、実在するものではありません ###Code require("RPostgreSQL") require("tidyr") require("dplyr") require("stringr") require("caret") require("lubridate") require("rsample") require("recipes") require("themis") host <- "db" port <- Sys.getenv()["PG_PORT"] dbname <- Sys.getenv()["PG_DATABASE"] user <- Sys.getenv()["PG_USER"] password <- Sys.getenv()["PG_PASSWORD"] con <- dbConnect(PostgreSQL(), host=host, port=port, dbname=dbname, user=user, password=password) df_customer <- dbGetQuery(con,"SELECT * FROM customer") df_category <- dbGetQuery(con,"SELECT * FROM category") df_product <- dbGetQuery(con,"SELECT * FROM product") df_receipt <- dbGetQuery(con,"SELECT * FROM receipt") df_store <- dbGetQuery(con,"SELECT * FROM store") df_geocode <- dbGetQuery(con,"SELECT * FROM geocode") ###Output _____no_output_____ ###Markdown データサイエンス100本ノック(構造化データ加工編) - R はじめに- 初めに以下のセルを実行してください- 必要なライブラリのインポートとデータベース(PostgreSQL)からのデータ読み込みを行います- 利用が想定されるライブラリは以下セルでインポートしています- その他利用したいライブラリがあればinstall.packages()で適宜インストールしてください- 名前、住所等はダミーデータであり、実在するものではありません ###Code require('RPostgreSQL') require('tidyr') require('dplyr') require('stringr') require('caret') require('lubridate') require('rsample') require('recipes') require('themis') host <- 'db' port <- Sys.getenv()["PG_PORT"] dbname <- Sys.getenv()["PG_DATABASE"] user <- Sys.getenv()["PG_USER"] password <- Sys.getenv()["PG_PASSWORD"] con <- dbConnect(PostgreSQL(), host=host, port=port, dbname=dbname, user=user, password=password) df_customer <- dbGetQuery(con,"SELECT * FROM customer") df_category <- dbGetQuery(con,"SELECT * FROM category") df_product <- dbGetQuery(con,"SELECT * FROM product") df_receipt <- dbGetQuery(con,"SELECT * FROM receipt") df_store <- dbGetQuery(con,"SELECT * FROM store") df_geocode <- dbGetQuery(con,"SELECT * FROM geocode") ###Output _____no_output_____ ###Markdown データサイエンス100本ノック(構造化データ加工編) - R はじめに- 初めに以下のセルを実行してください- 必要なライブラリのインポートとデータベース(PostgreSQL)からのデータ読み込みを行います- 利用が想定されるライブラリは以下セルでインポートしています- その他利用したいライブラリがあれば適宜インストールしてください(!マークに続けてOSコマンドを入力することで、任意のubuntu Linuxコマンドが入力可能)- 名前、住所等はダミーデータであり、実在するものではありません ###Code require('RPostgreSQL') require('tidyr') require('dplyr') require('stringr') require('caret') require('lubridate') require('rsample') require('recipes') host <- 'db' port <- Sys.getenv()["PG_PORT"] dbname <- Sys.getenv()["PG_DATABASE"] user <- Sys.getenv()["PG_USER"] password <- Sys.getenv()["PG_PASSWORD"] con <- dbConnect(PostgreSQL(), host=host, port=port, dbname=dbname, user=user, password=password) df_customer <- dbGetQuery(con,"SELECT * FROM customer") df_category <- dbGetQuery(con,"SELECT * FROM category") df_product <- dbGetQuery(con,"SELECT * FROM product") df_receipt <- dbGetQuery(con,"SELECT * FROM receipt") df_store <- dbGetQuery(con,"SELECT * FROM store") df_geocode <- dbGetQuery(con,"SELECT * FROM geocode") ###Output _____no_output_____ ###Markdown データサイエンス100本ノック(構造化データ加工編) - R はじめに- 初めに以下のセルを実行してください- 必要なライブラリのインポートとデータベース(PostgreSQL)からのデータ読み込みを行います- 利用が想定されるライブラリは以下セルでインポートしています- その他利用したいライブラリがあれば適宜インストールしてください(!マークに続けてOSコマンドを入力することで、任意のubuntu Linuxコマンドが入力可能)- 名前、住所等はダミーデータであり、実在するものではありません ###Code require('RPostgreSQL') require('tidyr') require('dplyr') require('stringr') require('caret') require('lubridate') require('rsample') require('recipes') host <- 'db' port <- Sys.getenv()["PG_PORT"] dbname <- Sys.getenv()["PG_DATABASE"] user <- Sys.getenv()["PG_USER"] password <- Sys.getenv()["PG_PASSWORD"] con <- dbConnect(PostgreSQL(), host=host, port=port, dbname=dbname, user=user, password=password) df_customer <- dbGetQuery(con,"SELECT * FROM customer") df_category <- dbGetQuery(con,"SELECT * FROM category") df_product <- dbGetQuery(con,"SELECT * FROM product") df_receipt <- dbGetQuery(con,"SELECT * FROM receipt") df_store <- dbGetQuery(con,"SELECT * FROM store") df_geocode <- dbGetQuery(con,"SELECT * FROM geocode") ###Output _____no_output_____ ###Markdown データサイエンス100本ノック(構造化データ加工編) - R はじめに- 初めに以下のセルを実行してください- 必要なライブラリのインポートとデータベース(PostgreSQL)からのデータ読み込みを行います- 利用が想定されるライブラリは以下セルでインポートしています- その他利用したいライブラリがあればinstall.packages()で適宜インストールしてください- 名前、住所等はダミーデータであり、実在するものではありません ###Code require('RPostgreSQL') require('tidyr') require('dplyr') require('stringr') require('caret') require('lubridate') require('rsample') require('recipes') require('themis') host <- 'db' port <- Sys.getenv()["PG_PORT"] dbname <- Sys.getenv()["PG_DATABASE"] user <- Sys.getenv()["PG_USER"] password <- Sys.getenv()["PG_PASSWORD"] con <- dbConnect(PostgreSQL(), host=host, port=port, dbname=dbname, user=user, password=password) df_customer <- dbGetQuery(con,"SELECT * FROM customer") df_category <- dbGetQuery(con,"SELECT * FROM category") df_product <- dbGetQuery(con,"SELECT * FROM product") df_receipt <- dbGetQuery(con,"SELECT * FROM receipt") df_store <- dbGetQuery(con,"SELECT * FROM store") df_geocode <- dbGetQuery(con,"SELECT * FROM geocode") ###Output _____no_output_____ ###Markdown データサイエンス100本ノック(構造化データ加工編) - R はじめに- 初めに以下のセルを実行してください- 必要なライブラリのインポートとデータベース(PostgreSQL)からのデータ読み込みを行います- 利用が想定されるライブラリは以下セルでインポートしています- その他利用したいライブラリがあれば適宜インストールしてください(!マークに続けてOSコマンドを入力することで、任意のubuntu Linuxコマンドが入力可能)- 名前、住所等はダミーデータであり、実在するものではありません ###Code require('RPostgreSQL') require('tidyr') require('dplyr') require('stringr') require('caret') require('lubridate') require('rsample') require('unbalanced') host <- 'db' port <- Sys.getenv()["PG_PORT"] dbname <- Sys.getenv()["PG_DATABASE"] user <- Sys.getenv()["PG_USER"] password <- Sys.getenv()["PG_PASSWORD"] con <- dbConnect(PostgreSQL(), host=host, port=port, dbname=dbname, user=user, password=password) df_customer <- dbGetQuery(con,"SELECT * FROM customer") df_category <- dbGetQuery(con,"SELECT * FROM category") df_product <- dbGetQuery(con,"SELECT * FROM product") df_receipt <- dbGetQuery(con,"SELECT * FROM receipt") df_store <- dbGetQuery(con,"SELECT * FROM store") df_geocode <- dbGetQuery(con,"SELECT * FROM geocode") ###Output Loading required package: RPostgreSQL Loading required package: DBI Loading required package: tidyr Loading required package: dplyr Attaching package: ‘dplyr’ The following objects are masked from ‘package:stats’: filter, lag The following objects are masked from ‘package:base’: intersect, setdiff, setequal, union Loading required package: stringr Loading required package: caret Loading required package: lattice Loading required package: ggplot2 Loading required package: lubridate Attaching package: ‘lubridate’ The following objects are masked from ‘package:base’: date, intersect, setdiff, union Loading required package: rsample Loading required package: unbalanced Warning message in library(package, lib.loc = lib.loc, character.only = TRUE, logical.return = TRUE, : “there is no package called ‘unbalanced’” ###Markdown 演習問題 ---> R-001: レシート明細データフレーム(df_receipt)から全項目の先頭10件を表示し、どのようなデータを保有しているか目視で確認せよ。 ###Code head(df_receipt) ###Output _____no_output_____ ###Markdown ---> R-002: レシート明細データフレーム(df_receipt)から売上日(sales_ymd)、顧客ID(customer_id)、商品コード(product_cd)、売上金額(amount)の順に列を指定し、10件表示させよ。 ###Code df_receipt %>% select(sales_ymd, customer_id, product_cd, amount)%>% head() ###Output _____no_output_____ ###Markdown ---> R-003: レシート明細データフレーム(df_receipt)から売上日(sales_ymd)、顧客ID(customer_id)、商品コード(product_cd)、売上金額(amount)の順に列を指定し、10件表示させよ。ただし、sales_ymdはsales_dateに項目名を変更しながら抽出すること。 ###Code df_receipt %>% select(sales_ymd, customer_id, product_cd, amount)%>% rename(sales_date = sales_ymd)%>% head() ###Output _____no_output_____ ###Markdown ---> R-004: レシート明細データフレーム(df_receipt)から売上日(sales_ymd)、顧客ID(customer_id)、商品コード(product_cd)、売上金額(amount)の順に列を指定し、以下の条件を満たすデータを抽出せよ。> - 顧客ID(customer_id)が"CS018205000001" ###Code df_receipt %>% select(sales_ymd, customer_id, product_cd, amount)%>% filter(customer_id == "CS018205000001") ###Output _____no_output_____ ###Markdown ---> R-005: レシート明細データフレーム(df_receipt)から売上日(sales_ymd)、顧客ID(customer_id)、商品コード(product_cd)、売上金額(amount)の順に列を指定し、以下の条件を満たすデータを抽出せよ。> - 顧客ID(customer_id)が"CS018205000001"> - 売上金額(amount)が1,000以上 ###Code df_receipt %>% select(sales_ymd, customer_id, product_cd, amount)%>% filter(customer_id == "CS018205000001" & amount >= 1000) ###Output _____no_output_____ ###Markdown ---> R-006: レシート明細データフレーム(receipt)から売上日(sales_ymd)、顧客ID(customer_id)、商品コード(product_cd)、売上数量(quantity)、売上金額(amount)の順に列を指定し、以下の条件を満たすデータを抽出せよ。> - 顧客ID(customer_id)が"CS018205000001"> - 売上金額(amount)が1,000以上または売上数量(quantity)が5以上 ###Code df_receipt %>% select(sales_ymd, customer_id,quantity ,product_cd, amount)%>% filter(customer_id == "CS018205000001" & (amount >= 1000 | quantity >= 5)) ###Output _____no_output_____ ###Markdown ---> R-007: レシート明細のデータフレーム(df_receipt)から売上日(sales_ymd)、顧客ID(customer_id)、商品コード(product_cd)、売上金額(amount)の順に列を指定し、以下の条件を満たすデータを抽出せよ。> - 顧客ID(customer_id)が"CS018205000001"> - 売上金額(amount)が1,000以上2,000以下 ###Code df_receipt %>% select(sales_ymd, customer_id,quantity ,product_cd, amount)%>% filter(customer_id == "CS018205000001" & between(amount,1000 , 2000)) ###Output _____no_output_____ ###Markdown ---> R-008: レシート明細データフレーム(df_receipt)から売上日(sales_ymd)、顧客ID(customer_id)、商品コード(product_cd)、売上金額(amount)の順に列を指定し、以下の条件を満たすデータを抽出せよ。> - 顧客ID(customer_id)が"CS018205000001"> - 商品コード(product_cd)が"P071401019"以外 ###Code df_receipt %>% select(sales_ymd, customer_id,quantity ,product_cd, amount)%>% filter(customer_id == "CS018205000001" & product_cd != 'P071401019') ###Output _____no_output_____ ###Markdown ---> R-009: 以下の処理において、出力結果を変えずにORをANDに書き換えよ。`df_store %>% filter(!(prefecture_cd == "13" | floor_area > 900))` ###Code df_store %>% filter(prefecture_cd != "13" & floor_area <= 900) ###Output _____no_output_____ ###Markdown ---> R-010: 店舗データフレーム(df_store)から、店舗コード(store_cd)が"S14"で始まるものだけ全項目抽出し、10件だけ表示せよ。 ###Code df_store%>% filter(grepl("^S14", store_cd))%>% head(10) ###Output _____no_output_____ ###Markdown ---> R-011: 顧客データフレーム(df_customer)から顧客ID(customer_id)の末尾が1のものだけ全項目抽出し、10件だけ表示せよ。 ###Code df_customer%>% filter(grepl("1$", customer_id))%>% head(3) ###Output _____no_output_____ ###Markdown ---> R-012: 店舗データフレーム(df_store)から横浜市の店舗だけ全項目表示せよ。 ###Code df_store%>% filter(grepl("横浜市",address))%>% head(3) ###Output _____no_output_____ ###Markdown ---> R-013: 顧客データフレーム(df_customer)から、ステータスコード(status_cd)の先頭がアルファベットのA〜Fで始まるデータを全項目抽出し、10件だけ表示せよ。 ###Code df_customer %>% filter(grepl("^[A-F]", status_cd))%>%head(3) ###Output _____no_output_____ ###Markdown ---> R-014: 顧客データフレーム(df_customer)から、ステータスコード(status_cd)の末尾が数字の1〜9で終わるデータを全項目抽出し、10件だけ表示せよ。 ###Code df_customer%>% filter(grepl("[1-9]$", status_cd))%>% head(3) ###Output _____no_output_____ ###Markdown ---> R-015: 顧客データフレーム(df_customer)から、ステータスコード(status_cd)の先頭がアルファベットのA〜Fで始まり、末尾が数字の1〜9で終わるデータを全項目抽出し、10件だけ表示せよ。 ###Code df_customer%>% filter(grepl("^[A-F].*[1-9]$", status_cd))%>% head(3) ###Output _____no_output_____ ###Markdown ---> R-016: 店舗データフレーム(df_store)から、電話番号(tel_no)が3桁-3桁-4桁のデータを全項目表示せよ。 ###Code df_store%>% filter(grepl("^[0-9]{3}-[0-9]{3}-[0-9]{4}$", tel_no))%>% head(3) ###Output _____no_output_____ ###Markdown ---> R-017: 顧客データフレーム(df_customer)を生年月日(birth_day)で高齢順にソートし、先頭10件を全項目表示せよ。 ###Code df_customer%>% arrange(birth_day)%>% head(3) ###Output _____no_output_____ ###Markdown ---> R-018: 顧客データフレーム(df_customer)を生年月日(birth_day)で若い順にソートし、先頭10件を全項目表示せよ。 ###Code df_customer%>% arrange(desc(birth_day))%>% head(3) ###Output _____no_output_____ ###Markdown ---> R-019: レシート明細データフレーム(df_receipt)に対し、1件あたりの売上金額(amount)が高い順にランクを付与し、先頭10件を抽出せよ。項目は顧客ID(customer_id)、売上金額(amount)、付与したランクを表示させること。なお、売上金額(amount)が等しい場合は同一順位を付与するものとする。 ###Code df_receipt%>% mutate(ranking = min_rank(desc(amount)))%>% arrange(ranking)%>% slice(1:10) ###Output _____no_output_____ ###Markdown ---> R-020: レシート明細データフレーム(df_receipt)に対し、1件あたりの売上金額(amount)が高い順にランクを付与し、先頭10件を抽出せよ。項目は顧客ID(customer_id)、売上金額(amount)、付与したランクを表示させること。なお、売上金額(amount)が等しい場合でも別順位を付与すること。 ###Code df_receipt%>% mutate(ranking = row_number(desc(amount)))%>% arrange(ranking)%>% slice(1:10) ###Output _____no_output_____ ###Markdown ---> R-021: レシート明細データフレーム(df_receipt)に対し、件数をカウントせよ。 ###Code nrow(df_receipt) ###Output _____no_output_____ ###Markdown ---> R-022: レシート明細データフレーム(df_receipt)の顧客ID(customer_id)に対し、ユニーク件数をカウントせよ。 ###Code unique(df_receipt$customer_id)%>% length() ###Output _____no_output_____ ###Markdown ---> R-023: レシート明細データフレーム(df_receipt)に対し、店舗コード(store_cd)ごとに売上金額(amount)と売上数量(quantity)を合計せよ。 ###Code df_receipt%>% group_by(store_cd)%>% summarise(amount = sum(amount), quantity = sum(quantity), .groups = 'drop')%>% head() # .groups = 'drop'でグループ化を解除する ###Output _____no_output_____ ###Markdown ---> R-024: レシート明細データフレーム(df_receipt)に対し、顧客ID(customer_id)ごとに最も新しい売上日(sales_ymd)を求め、10件表示せよ。 ###Code df_receipt%>% group_by(customer_id)%>% summarise(sales_ymd = max(sales_ymd), .groups = 'drop')%>% head(10) # ###Output _____no_output_____ ###Markdown ---> R-025: レシート明細データフレーム(df_receipt)に対し、顧客ID(customer_id)ごとに最も古い売上日(sales_ymd)を求め、10件表示せよ。 ###Code df_receipt%>% group_by(customer_id)%>% summarise(sales_ymd = min(sales_ymd))%>% head(10) ###Output _____no_output_____ ###Markdown データサイエンス100本ノック(構造化データ加工編) - R はじめに- 初めに以下のセルを実行してください- 必要なライブラリのインポートとデータベース(PostgreSQL)からのデータ読み込みを行います- 利用が想定されるライブラリは以下セルでインポートしています- その他利用したいライブラリがあればinstall.packages()で適宜インストールしてください- 名前、住所等はダミーデータであり、実在するものではありません ###Code require('RPostgreSQL') require('tidyr') require('dplyr') require('stringr') require('caret') require('lubridate') require('rsample') require('recipes') require('themis') host <- 'db' port <- Sys.getenv()["PG_PORT"] dbname <- Sys.getenv()["PG_DATABASE"] user <- Sys.getenv()["PG_USER"] password <- Sys.getenv()["PG_PASSWORD"] con <- dbConnect(PostgreSQL(), host=host, port=port, dbname=dbname, user=user, password=password) df_customer <- dbGetQuery(con,"SELECT * FROM customer") df_category <- dbGetQuery(con,"SELECT * FROM category") df_product <- dbGetQuery(con,"SELECT * FROM product") df_receipt <- dbGetQuery(con,"SELECT * FROM receipt") df_store <- dbGetQuery(con,"SELECT * FROM store") df_geocode <- dbGetQuery(con,"SELECT * FROM geocode") ###Output _____no_output_____ ###Markdown データサイエンス100本ノック(構造化データ加工編) - R はじめに- 初めに以下のセルを実行してください- 必要なライブラリのインポートとデータベース(PostgreSQL)からのデータ読み込みを行います- 利用が想定されるライブラリは以下セルでインポートしています- その他利用したいライブラリがあれば適宜インストールしてください(!マークに続けてOSコマンドを入力することで、任意のubuntu Linuxコマンドが入力可能)- 名前、住所等はダミーデータであり、実在するものではありません ###Code require('RPostgreSQL') require('tidyr') require('dplyr') require('stringr') require('caret') require('lubridate') require('rsample') require('unbalanced') host <- 'db' port <- Sys.getenv()["PG_PORT"] dbname <- Sys.getenv()["PG_DATABASE"] user <- Sys.getenv()["PG_USER"] password <- Sys.getenv()["PG_PASSWORD"] con <- dbConnect(PostgreSQL(), host=host, port=port, dbname=dbname, user=user, password=password) df_customer <- dbGetQuery(con,"SELECT * FROM customer") df_category <- dbGetQuery(con,"SELECT * FROM category") df_product <- dbGetQuery(con,"SELECT * FROM product") df_receipt <- dbGetQuery(con,"SELECT * FROM receipt") df_store <- dbGetQuery(con,"SELECT * FROM store") df_geocode <- dbGetQuery(con,"SELECT * FROM geocode") ###Output _____no_output_____
Algorithms Implementations/Monte Carlo/MC_Prediction.ipynb
###Markdown Monte-Carlo Prediction for BlackjackHere is the implementation of on-policy every-visit Monte-Carlo algorithm to evaluate state value function $v_\pi$ for a given policy $\pi$. The algorithm is implemented using incremental update. ###Code import numpy as np from collections import defaultdict import matplotlib import matplotlib.pyplot as plt import sys import gym from gym import logger as gymlogger matplotlib.style.use('ggplot') gymlogger.set_level(40) #error only %matplotlib inline ###Output _____no_output_____ ###Markdown Blackjack environmentA state in Blackjask is defined by three things:1. Player current sum (1-31)2. Dealer's one showing card (1-10)3. Does player holds a usable ace (0 or 1) ###Code env = gym.make("Blackjack-v0") print(env.observation_space) print(env.action_space) ###Output Tuple(Discrete(32), Discrete(11), Discrete(2)) Discrete(2) ###Markdown On-Policy Every-visit Monte Carlo Prediction ###Code def policy1(state): """ A sample policy to be evaluated - This policy is same as the one used in Sutton and Barto Example 5.1. - This allows to check the results against that mentioned in book """ player_sum, dealer_card, usable_ace = state if player_sum >= 20: return 0 return 1 def sample_episode(env, policy): """ Sample an episode using given policy """ state = env.reset() episode = [] while True: action = policy(state) next_state, reward, done, info = env.step(action) episode.append((state,action,reward)) if done: break state = next_state return episode def MC_predict(env, policy, num_episodes=10000, gamma=1.0): """ Performs MC on-policy evaluation Args: env: Learning enviroment, e.g. Blackjack policy: Policy to be evaluated num_episodes: Number of episodes to sample gamma: Discount factor Returns: state_values: dictionary mapping states (tuple) to their values """ state_counts = defaultdict(int) state_values = defaultdict(float) for episode_num in range(num_episodes): if (episode_num+1) % 1000 == 0: print("\rFinished {}/{} episodes".format(episode_num+1,num_episodes), end="") sys.stdout.flush() episode = sample_episode(env, policy) current_return = 0 T = len(episode) for t in reversed(range(T)): state, action, reward = episode[t] current_return = gamma*current_return + reward state_counts[state] += 1 state_values[state] += (current_return - (gamma*state_values[state])) / float(state_counts[state]) return state_values ###Output _____no_output_____ ###Markdown Helper Functions to Plot State Values ###Code # Following function to plot the Blackjack value function is based on the # implementation here: https://github.com/dennybritz/reinforcement-learning/ def plot_value_function(V, title="Value Function"): """ Plots the value function as a surface plot. """ min_x, max_x = 11, 22 min_y, max_y = min(k[1] for k in V.keys()), max(k[1] for k in V.keys()) x_range = np.arange(min_x, max_x + 1) y_range = np.arange(min_y, max_y + 1) X, Y = np.meshgrid(x_range, y_range) # Find value for all (x, y) coordinates Z_noace = np.apply_along_axis(lambda _: V[(_[0], _[1], False)], 2, np.dstack([X, Y])) Z_ace = np.apply_along_axis(lambda _: V[(_[0], _[1], True)], 2, np.dstack([X, Y])) def plot_surface(X, Y, Z, ax, title): surf = ax.plot_surface(X, Y, Z, rstride=1, cstride=1, cmap=matplotlib.cm.coolwarm, vmin=-1.0, vmax=1.0) ax.set_xlabel('Player Sum') ax.set_ylabel('Dealer Showing') ax.set_zlabel('Value') ax.set_title(title) ax.view_init(ax.elev, -120) fig.colorbar(surf) fig = plt.figure(figsize=(20, 7)) ax1 = fig.add_subplot(121, projection='3d') plot_surface(X, Y, Z_noace, ax1, "{} (No Usable Ace)".format(title)) ax2 = fig.add_subplot(122, projection='3d') plot_surface(X, Y, Z_ace, ax2, "{} (Usable Ace)".format(title)) ###Output _____no_output_____ ###Markdown Run Model and Plot Results ###Code mc_values_20k = MC_predict(env, policy1, num_episodes=20000) plot_value_function(mc_values_20k, title="20,000 Steps") mc_values_500k = MC_predict(env, policy1, num_episodes=500000) plot_value_function(mc_values_500k, title="500,000 Steps") ###Output Finished 500000/500000 episodes
notebooks/example_cusp_hopf.ipynb
###Markdown Tutorial on how to use the PyCascades Python framework for simulating tipping cascades on complex networks.The core of PyCascades consists of the basic classes for tipping elements, couplings between them and a tipping_network class that contains information aboutthe network structure between these basic elements as well asan evolve class, which is able to simulate the dynamics of atipping network. ###Code import numpy as np import matplotlib.pyplot as plt import pycascades as pc import seaborn as sns sns.set(font_scale=1.5) sns.set_style("whitegrid") ###Output _____no_output_____ ###Markdown Create two cusp tipping elements ###Code cusp_element_0 = pc.cusp( a = -4, b = 1, c = 0.2, x_0 = 0.5 ) cusp_element_1 = pc.cusp( a = -4, b = 1, c = 0.0, x_0 = 0.5 ) ###Output _____no_output_____ ###Markdown Create a hopf tipping element. ###Code hopf_element_1 = pc.hopf( a = 1, c = -1.0) ###Output _____no_output_____ ###Markdown Create a linear coupling with strength 0.5 ###Code coupling_0 = pc.linear_coupling(strength = 0.5) ###Output _____no_output_____ ###Markdown We first create a tipping network with two cusp elements. ###Code net = pc.tipping_network() net.add_element( cusp_element_0 ) net.add_element( cusp_element_1 ) net.add_coupling( 0, 1, coupling_0 ) ###Output _____no_output_____ ###Markdown Integrate the system. ###Code initial_state = [0.0, 0.0] ev = pc.evolve( net, initial_state ) timestep = 0.01 t_end = 30 ev.integrate( timestep , t_end ) time = ev.get_timeseries()[0] cusp0 = ev.get_timeseries()[1][:,:].T[0] cusp1 = ev.get_timeseries()[1][:,:].T[1] ###Output _____no_output_____ ###Markdown We repeat the process, but with one cusp and one hopf element. ###Code net2 = pc.tipping_network() net2.add_element( cusp_element_0 ) net2.add_element( hopf_element_1 ) net2.add_coupling( 0, 1, coupling_0 ) initial_state = [0.0, 0.0] ev = pc.evolve( net2, initial_state ) timestep = 0.01 t_end = 30 ev.integrate( timestep , t_end ) time2 = ev.get_timeseries()[0] cusp2 = ev.get_timeseries()[1][:,:].T[0] hopf = np.multiply(ev.get_timeseries()[1][:,:].T[1], np.cos(ev.get_timeseries()[0])) ###Output _____no_output_____ ###Markdown We plot the results. ###Code fig, (ax0, ax1) = plt.subplots(1, 2, figsize=(10, 4)) #(default: 8, 6) ax0.plot(time, cusp0, color="c", linewidth=2.0, label="Cusp-1") ax0.plot(time, cusp1, color="r", linewidth=2.0, label="Cusp-2") ax0.set_xlabel("Time [a.u.]") ax0.set_ylabel("State [a.u.]") ax0.set_ylim([-1.0, 1.25]) ax0.set_xticks(np.arange(0, 35, 5)) ax0.set_yticks(np.arange(-1.0, 1.5, 0.5)) ax0.legend(loc="lower left") #ax0.text(x_text, y_text, "$\\mathbf{c}$", fontsize=size) ax1.plot(time2, cusp2, color="c", linewidth=2.0, label="Cusp") ax1.plot(time2, hopf, color="r", linewidth=2.0, label="Hopf") ax1.set_xlabel("Time [a.u.]") ax1.set_ylabel("State [a.u.]") ax1.set_ylim([-1.0, 1.25]) ax1.set_xticks(np.arange(0, 35, 5)) ax1.legend(loc="lower left") #ax1.text(x_text, y_text, "$\\mathbf{d}$", fontsize=size) fig.tight_layout() plt.show() ###Output _____no_output_____
Assignment_01_A.ipynb
###Markdown ###Code import pandas as pd # import data analysis module import io # import input/output module df = pd.read_csv('content/Car_Price.csv') #reads csv file into a new data frame df # displays full data frame df.head() df.columns # displays labels for all attributes # list the data types for each column print(df.dtypes) df.corr() ###Output _____no_output_____ ###Markdown In order to start understanding the (linear) relationship between an individual variable and the price. We can do this by using "regplot", which plots the scatterplot plus the fitted regression line for the data. ###Code import matplotlib.pyplot as plt import seaborn as sns %matplotlib inline # Engine size as potential predictor variable of price sns.regplot(x="enginesize", y="car_price", data=df) plt.ylim(0,) ###Output _____no_output_____ ###Markdown As the engine-size goes up, the price goes up: this indicates a positive direct correlation between these two variables. Engine size seems like a pretty good predictor of price since the regression line is almost a perfect diagonal line. ###Code df[["enginesize", "car_price"]].corr() ###Output _____no_output_____ ###Markdown horsepower could be potential predictor variable of price ###Code df[['horsepower', 'car_price']].corr() ###Output _____no_output_____ ###Markdown **Weak Linear Relationship** ###Code #Let's see if "carheight" as a predictor variable of "price". sns.regplot(x="carheight", y="car_price", data=df) ###Output _____no_output_____ ###Markdown Car height does not seem like a good predictor of the price at all since the regression line is close to horizontal. Also, the data points are very scattered and far from the fitted line, showing lots of variability. Therefore it's it is not a reliable variable. ###Code #We can examine the correlation between 'carheight' and 'car_price' and see it's approximately 0.1193 df[['carheight', 'car_price']].corr() #Let's calculate the Pearson Correlation Coefficient and P-value of 'wheel-base' and 'price'. from scipy import stats pearson_coef, p_value = stats.pearsonr(df['enginesize'], df['car_price']) print("The Pearson Correlation Coefficient is", pearson_coef, " with a P-value of P =", p_value) ###Output The Pearson Correlation Coefficient is 0.8741448025245117 with a P-value of P = 1.3547637598648421e-65 ###Markdown Conclusion: **Since the p-value is < 0.001, the correlation between enginesize and price is statistically significant, and the linear relationship is quite strong (~0.874).** **Horsepower vs Price** **Let's calculate the Pearson Correlation Coefficient and P-value of 'horsepower' and 'price'.** ###Code pearson_coef, p_value = stats.pearsonr(df['horsepower'], df['car_price']) print("The Pearson Correlation Coefficient is", pearson_coef, " with a P-value of P =", p_value) import numpy as np # import numerical module X=df[['car_ID', 'wheelbase', 'carheight', 'enginesize', 'stroke', 'compressionratio', 'horsepower' ]] # data frame of independent variables y=df['car_price'] # dependent variable from scipy import stats # import statistical analysis module x=df.iloc[:,7] # accesses each cell in final column print('car_price') print('mean:',np.mean(x)) print('median:',np.median(x)) print('standard deviation:',x.std()) print('variance:',x.var()) ###Output car_price mean: 13276.710570731706 median: 10295.0 standard deviation: 7988.85233174315 variance: 63821761.57839796 ###Markdown we can calculate the correlation between variables **Lets load the modules for linear regression** ###Code from sklearn.linear_model import LinearRegression lm = LinearRegression() lm ###Output _____no_output_____ ###Markdown **How could enginesize help us predict car price?** ** Using simple linear regression, we will create a linear function with "enginesize" as the predictor variable and the "price" as the response variable.** ###Code X = df[['enginesize']] Y = df['car_price'] #Fit the linear model using enginesize. lm.fit(X,Y) #We can output a prediction Yhat=lm.predict(X) Yhat[0:7] #What is the value of the intercept (a)? lm.intercept_ #What is the value of the Slope (b)? lm.coef_ ###Output _____no_output_____ ###Markdown **What is the final estimated linear model we get?**As we saw above, we should get a final linear model with the structure:Plugging in the actual values we get: price = -8005.4455 - 167.69 x enginesize **When evaluating our models, not only do we want to visualize the results, but we also want a quantitative measure to determine how accurate the model is.** R-squaredR squared, also known as the coefficient of determination, is a measure to indicate how close the data is to the fitted regression line. The value of the R-squared is the percentage of variation of the response variable (y) that is explained by a linear model. Model 1: Simple Linear RegressionLet's calculate the R^2 ###Code #enginesize_fit lm.fit(X, Y) # Find the R^2 print('The R-square is: ', lm.score(X, Y)) ###Output The R-square is: 0.7641291357806176
manuscript_analyses/variants_in_published_libraries/src/Brunello Library Analysis.ipynb
###Markdown Brunello Library Analysis The Brunello sgRNA library was downloaded from the publication by [Doench et al. Nature Biotechnology 2016](https://www.nature.com/articles/nbt.3437), in supplementary table 21. The start and end positions for the BED file from the provided "position of base after cut" because it is known for SpCas9 that the cut occurs 3 bp upstream of the PAM. ###Code import pandas as pd import seaborn as sns import matplotlib.pyplot as plt sns.set_context('paper') %matplotlib inline ###Output _____no_output_____ ###Markdown Load file. ###Code brunello = pd.read_excel('../dat/brunello/STable 21 Brunello.xlsx') brunello.head() ###Output _____no_output_____ ###Markdown Convert to BED, including PAM. ###Code brunello_bed = pd.DataFrame() brunello_bed['chrom'] = brunello['Genomic Sequence'].str.split('_').str[1].str.split('.').str[0].str.replace('0','') starts = [] stops = [] # use this later to filter variants that occur in "N" position n_positions = [] for ix, row in brunello.iterrows(): # sense and antisense appear to be mixed up in spreadsheet if row['Strand'] == 'antisense': starts.append(row['Position of Base After Cut (1-based)'] - 17) stops.append(row['Position of Base After Cut (1-based)'] + 5) # to incorporate PAM n_positions.append(row['Position of Base After Cut (1-based)'] + 3) else: starts.append(row['Position of Base After Cut (1-based)'] - 6) stops.append(row['Position of Base After Cut (1-based)'] + 16) n_positions.append(row['Position of Base After Cut (1-based)'] - 4) brunello_bed['start'] = starts brunello_bed['stop'] = stops brunello_bed['name'] = brunello.index.astype(str) + '_' + brunello['Target Gene Symbol'] brunello_bed.head() ###Output _____no_output_____ ###Markdown Save BED file of sgRNA protospacer and PAM coordinates. ###Code brunello_bed_chr = brunello_bed.copy() brunello_bed_chr['chrom'] = 'chr' + brunello_bed['chrom'].astype(str) brunello_bed.to_csv('../dat/brunello/brunello.bed', sep='\t', index=False, header=False) brunello_bed_chr.to_csv('../dat/brunello/brunello_chr.bed', sep='\t', index=False, header=False) brunello_bed = pd.read_csv('../dat/brunello/brunello.bed', sep='\t', header=None, names=['chrom','start','stop','name']) ###Output _____no_output_____ ###Markdown BCFtools command to determine which common variants from the 1000 Genomes Project occur in the sgRNAs.`bcftools view -R ../dat/brunello.bed --min-af 0.05 -G ~/path_to_1kg_dat/1kg_all_autosomal_variants.bcf -O v > ../dat/variants_in_guides_init.vcf` Filter these to make sure none of the variants we identified are from the "N" position of the "NGG" PAM. `n_positions` defined above stored the positions where the "N" in the "NGG" PAM is. ###Code unfilt_vars = pd.read_csv('../dat/brunello/variants_in_guides_init.vcf', sep='\t', header=None, names=['chrom','position','rsid','ref','alt','score','passing','info'], comment='#') ###Output _____no_output_____ ###Markdown Determine the number of variants present before filtering out variants in the "N" position: ###Code len(unfilt_vars) ###Output _____no_output_____ ###Markdown Determine the number of variants that occur in the "N" position. ###Code len(unfilt_vars[unfilt_vars['position'].isin(n_positions)]) ###Output _____no_output_____ ###Markdown Generate a filtered set of non-N position variants. ###Code filt_vars = unfilt_vars[~unfilt_vars['position'].isin(n_positions)].copy() ###Output _____no_output_____ ###Markdown Determine how many sgRNAs are impacted by the non-N variants. ###Code brunello_guides = brunello_bed.copy().sort_values(by='chrom') brun_n_vars = [] for ix, row in brunello_guides.iterrows(): chrom = row['chrom'] start = row['start'] stop = row['stop'] guide_positions = list(range(start, stop)) vars_in_guide = filt_vars.query('(chrom == @chrom) and (position >= @start) and (position <= @stop)') brun_n_vars.append(len(vars_in_guide)) brunello_guides['n_vars'] = brun_n_vars ###Output _____no_output_____ ###Markdown Identify the percentage of guides that have a common variant in the non-N position. ###Code 100.0 * len(brunello_guides.query('n_vars > 0')) / len(brunello_guides) ###Output _____no_output_____ ###Markdown Save the results to a file. ###Code brunello_guides.to_csv('../dat/brunello/brunello_guides_results_1kgp.tsv', sep='\t') ###Output _____no_output_____ ###Markdown Visualize the number of variants per sgRNA. ###Code p = sns.countplot(x=brunello_guides['n_vars'], color='dodgerblue') p.set_yscale('log') plt.ylabel('Number of gRNAs') plt.xlabel('Number of Common Variants (MAF >= 5%)') plt.title('Common Variants from the\n 1000 Genomes Project\n in the Brunello gRNA library') ###Output _____no_output_____ ###Markdown WTC analysis of Brunello sgRNA libraryBCFtools command to figure out which variants in WTC are in Brunello gRNAs.`bcftools view -R ../dat/brunello_chr.bed ~/path_to_wtc_dat/wtc.bcf -O v > ../dat/wtc_variants_in_guides_init.vcf` ###Code unfilt_vars_wtc = pd.read_csv('../dat/brunello/wtc_variants_in_guides_init.vcf', sep='\t', header=None, names=['chrom','position','random','ref','alt','rsid','score','passing','info','genotype'], comment='#') ###Output _____no_output_____ ###Markdown Determine the number of variants present before filtering out variants in the "N" position: ###Code len(unfilt_vars_wtc) ###Output _____no_output_____ ###Markdown Determine the number of variants that occur in the "N" position. ###Code len(unfilt_vars_wtc[unfilt_vars_wtc['position'].isin(n_positions)]) ###Output _____no_output_____ ###Markdown Generate a filtered file with only non-N variants. ###Code filt_vars_wtc = unfilt_vars_wtc[~unfilt_vars_wtc['position'].isin(n_positions)].copy() ###Output _____no_output_____ ###Markdown Determine how many sgRNAs are impacted by the non-N variants. ###Code brunello_guides_wtc = brunello_bed_chr.copy().sort_values(by='chrom') brun_n_vars_wtc = [] for ix, row in brunello_guides_wtc.iterrows(): chrom = row['chrom'] start = row['start'] stop = row['stop'] guide_positions = list(range(start, stop)) vars_in_guide = filt_vars_wtc.query('(chrom == @chrom) and (position >= @start) and (position <= @stop)') brun_n_vars_wtc.append(len(vars_in_guide)) brunello_guides_wtc['n_vars'] = brun_n_vars_wtc ###Output _____no_output_____ ###Markdown Identify the percentage of guides that have a common variant in the non-N position. ###Code 100.0 * len(brunello_guides_wtc.query('n_vars > 0')) / len(brunello_guides_wtc) ###Output _____no_output_____ ###Markdown Save the results to a file. ###Code brunello_guides_wtc.to_csv('../dat/brunello/brunello_guides_results_wtc.tsv', sep='\t') p = sns.countplot(x=brunello_guides_wtc['n_vars'], color='dodgerblue') p.set_yscale('log') plt.ylabel('Number of gRNAs') plt.xlabel('Number of Variants') plt.title('Variants from WTC\n in the Brunello gRNA library') ###Output _____no_output_____ ###Markdown Put the plots together for 1000 Genomes and WTC and save to a file. ###Code brunello_guides['Dataset'] = 'Common variants\n (MAF >= 5%)\n 1000 Genomes' brunello_guides_wtc['Dataset'] = 'WTC variants' df_overall = pd.concat([brunello_guides, brunello_guides_wtc]) df_overall.to_csv('../dat/brunello/1kg_wtc_brunello_results.tsv', sep='\t', index=False) p = sns.countplot(x=df_overall['n_vars'], hue=df_overall['Dataset']) p.set_yscale('log') plt.ylabel('Number of gRNAs') plt.xlabel('Number of Variants') plt.title('Variants from WTC and \nthe 1000 Genomes Project\n in the Brunello gRNA library') p = sns.catplot('n_vars', kind='count', row='Dataset', hue='Dataset', data=df_overall, height=3, aspect=2, sharex=False) (p.set_axis_labels('Number of Variants', 'Number of gRNAs (log scale)') .set_titles('{row_name} {row_var}', verticalalignment='top')) p.fig.get_axes()[0].set_yscale('log') p.fig.suptitle('Variants in the Brunello gRNA library') p.savefig('../figs/brunello_wtc_1kgp_countplots.pdf', dpi=300, bbox_inches='tight') ###Output _____no_output_____
notebooks/live_training/tensor-fied_intro_to_tensorflow_LT.ipynb
###Markdown Introduction to TensorFlow, now leveraging tensors! In this notebook, we modify our [intro to TensorFlow notebook](https://github.com/the-deep-learners/TensorFlow-LiveLessons/blob/master/notebooks/point_by_point_intro_to_tensorflow.ipynb) to use tensors in place of our *for* loop. This is a derivation of Jared Ostmeyer's [Naked Tensor](https://github.com/jostmey/NakedTensor/) code. The initial steps are identical to the earlier notebook ###Code import numpy as np np.random.seed(42) import pandas as pd import matplotlib.pyplot as plt %matplotlib inline import tensorflow as tf tf.set_random_seed(42) xs = [0., 1., 2., 3., 4., 5., 6., 7.] ys = [-.82, -.94, -.12, .26, .39, .64, 1.02, 1.] fig, ax = plt.subplots() _ = ax.scatter(xs, ys) m = tf.Variable(-0.5) b = tf.Variable(1.0) ###Output _____no_output_____ ###Markdown Define the cost as a tensor -- more elegant than a *for* loop and enables distributed computing in TensorFlow ###Code ys_model = m*xs+b total_error = # DEFINE ###Output _____no_output_____ ###Markdown The remaining steps are also identical to the earlier notebook! ###Code optimizer_operation = tf.train.GradientDescentOptimizer(learning_rate=0.001).minimize(total_error) initializer_operation = tf.global_variables_initializer() with tf.Session() as session: session.run(initializer_operation) n_epochs = 1000 for iteration in range(n_epochs): session.run(optimizer_operation) slope, intercept = session.run([m, b]) slope intercept y_hat = intercept + slope*np.array(xs) pd.DataFrame(list(zip(ys, y_hat)), columns=['y', 'y_hat']) fig, ax = plt.subplots() ax.scatter(xs, ys) x_min, x_max = ax.get_xlim() y_min, y_max = intercept, intercept + slope*(x_max-x_min) ax.plot([x_min, x_max], [y_min, y_max]) _ = ax.set_xlim([x_min, x_max]) ###Output _____no_output_____
nbs/models.common.ipynb
###Markdown Table of Contents0.0.1&nbsp;&nbsp;Conv1d0.0.2&nbsp;&nbsp;Attentions0.0.3&nbsp;&nbsp;STFT0.0.4&nbsp;&nbsp;Global style tokens1&nbsp;&nbsp;VITS common1.0.1&nbsp;&nbsp;LayerNorm1.0.2&nbsp;&nbsp;Flip1.0.3&nbsp;&nbsp;Log1.0.4&nbsp;&nbsp;ElementWiseAffine1.0.5&nbsp;&nbsp;DDSConv1.0.6&nbsp;&nbsp;ConvFLow1.0.7&nbsp;&nbsp;WN1.0.8&nbsp;&nbsp;ResidualCouplingLayer1.0.9&nbsp;&nbsp;ResBlock ###Code # default_exp models.common # export import numpy as np from scipy.signal import get_window import torch from torch.autograd import Variable from torch import nn from torch.nn import functional as F from torch.nn.utils import remove_weight_norm, weight_norm from librosa.filters import mel as librosa_mel from librosa.util import pad_center, tiny from uberduck_ml_dev.utils.utils import * from uberduck_ml_dev.vendor.tfcompat.hparam import HParams ###Output _____no_output_____ ###Markdown Conv1d ###Code # export class Conv1d(nn.Module): def __init__( self, in_channels, out_channels, kernel_size=1, stride=1, padding=None, dilation=1, bias=True, w_init_gain="linear", ): super().__init__() if padding is None: assert kernel_size % 2 == 1 padding = int(dilation * (kernel_size - 1) / 2) self.conv = nn.Conv1d( in_channels, out_channels, kernel_size=kernel_size, stride=stride, padding=padding, dilation=dilation, bias=bias, ) nn.init.xavier_uniform_( self.conv.weight, gain=nn.init.calculate_gain(w_init_gain) ) def forward(self, signal): return self.conv(signal) # export class LinearNorm(torch.nn.Module): def __init__(self, in_dim, out_dim, bias=True, w_init_gain="linear"): super().__init__() self.linear_layer = torch.nn.Linear(in_dim, out_dim, bias=bias) torch.nn.init.xavier_uniform_( self.linear_layer.weight, gain=torch.nn.init.calculate_gain(w_init_gain) ) def forward(self, x): return self.linear_layer(x) ###Output _____no_output_____ ###Markdown Attentions ###Code # export from numpy import finfo class LocationLayer(nn.Module): def __init__(self, attention_n_filters, attention_kernel_size, attention_dim): super(LocationLayer, self).__init__() padding = int((attention_kernel_size - 1) / 2) self.location_conv = Conv1d( 2, attention_n_filters, kernel_size=attention_kernel_size, padding=padding, bias=False, stride=1, dilation=1, ) self.location_dense = LinearNorm( attention_n_filters, attention_dim, bias=False, w_init_gain="tanh" ) def forward(self, attention_weights_cat): processed_attention = self.location_conv(attention_weights_cat) processed_attention = processed_attention.transpose(1, 2) processed_attention = self.location_dense(processed_attention) return processed_attention class Attention(nn.Module): def __init__( self, attention_rnn_dim, embedding_dim, attention_dim, attention_location_n_filters, attention_location_kernel_size, fp16_run, ): super(Attention, self).__init__() self.query_layer = LinearNorm( attention_rnn_dim, attention_dim, bias=False, w_init_gain="tanh" ) self.memory_layer = LinearNorm( embedding_dim, attention_dim, bias=False, w_init_gain="tanh" ) self.v = LinearNorm(attention_dim, 1, bias=False) self.location_layer = LocationLayer( attention_location_n_filters, attention_location_kernel_size, attention_dim ) if fp16_run: self.score_mask_value = finfo("float16").min else: self.score_mask_value = -float("inf") def get_alignment_energies(self, query, processed_memory, attention_weights_cat): """ PARAMS ------ query: decoder output (batch, n_mel_channels * n_frames_per_step) processed_memory: processed encoder outputs (B, T_in, attention_dim) attention_weights_cat: cumulative and prev. att weights (B, 2, max_time) RETURNS ------- alignment (batch, max_time) """ processed_query = self.query_layer(query.unsqueeze(1)) processed_attention_weights = self.location_layer(attention_weights_cat) energies = self.v( torch.tanh(processed_query + processed_attention_weights + processed_memory) ) energies = energies.squeeze(-1) return energies def forward( self, attention_hidden_state, memory, processed_memory, attention_weights_cat, mask, attention_weights=None, ): """ PARAMS ------ attention_hidden_state: attention rnn last output memory: encoder outputs processed_memory: processed encoder outputs attention_weights_cat: previous and cummulative attention weights mask: binary mask for padded data """ if attention_weights is None: alignment = self.get_alignment_energies( attention_hidden_state, processed_memory, attention_weights_cat ) if mask is not None: alignment.data.masked_fill_(mask, self.score_mask_value) attention_weights = F.softmax(alignment, dim=1) attention_context = torch.bmm(attention_weights.unsqueeze(1), memory) attention_context = attention_context.squeeze(1) return attention_context, attention_weights from numpy import finfo finfo("float16").min F.pad(torch.rand(1, 3, 3), (2, 2), mode="reflect") ###Output _____no_output_____ ###Markdown STFT ###Code # export class STFT: """adapted from Prem Seetharaman's https://github.com/pseeth/pytorch-stft""" def __init__( self, filter_length=1024, hop_length=256, win_length=1024, window="hann", padding=None, device="cpu", rank=None, ): self.filter_length = filter_length self.hop_length = hop_length self.win_length = win_length self.window = window self.forward_transform = None scale = self.filter_length / self.hop_length fourier_basis = np.fft.fft(np.eye(self.filter_length)) self.padding = padding or (filter_length // 2) cutoff = int((self.filter_length / 2 + 1)) fourier_basis = np.vstack( [np.real(fourier_basis[:cutoff, :]), np.imag(fourier_basis[:cutoff, :])] ) if device == "cuda": dev = torch.device(f"cuda:{rank}") forward_basis = torch.cuda.FloatTensor( fourier_basis[:, None, :], device=dev ) inverse_basis = torch.cuda.FloatTensor( np.linalg.pinv(scale * fourier_basis).T[:, None, :].astype(np.float32), device=dev, ) else: forward_basis = torch.FloatTensor(fourier_basis[:, None, :]) inverse_basis = torch.FloatTensor( np.linalg.pinv(scale * fourier_basis).T[:, None, :].astype(np.float32) ) if window is not None: assert filter_length >= win_length # get window and zero center pad it to filter_length fft_window = get_window(window, win_length, fftbins=True) fft_window = pad_center(fft_window, filter_length) fft_window = torch.from_numpy(fft_window).float() if device == "cuda": fft_window = fft_window.cuda(rank) # window the bases forward_basis *= fft_window inverse_basis *= fft_window self.fft_window = fft_window self.forward_basis = forward_basis.float() self.inverse_basis = inverse_basis.float() def transform(self, input_data): num_batches = input_data.size(0) num_samples = input_data.size(1) self.num_samples = num_samples # similar to librosa, reflect-pad the input input_data = input_data.view(num_batches, 1, num_samples) input_data = F.pad( input_data.unsqueeze(1), (self.padding, self.padding, 0, 0,), mode="reflect", ) input_data = input_data.squeeze(1) forward_transform = F.conv1d( input_data, Variable(self.forward_basis, requires_grad=False), stride=self.hop_length, padding=0, ) cutoff = self.filter_length // 2 + 1 real_part = forward_transform[:, :cutoff, :] imag_part = forward_transform[:, cutoff:, :] magnitude = torch.sqrt(real_part ** 2 + imag_part ** 2) phase = torch.autograd.Variable(torch.atan2(imag_part.data, real_part.data)) return magnitude, phase def inverse(self, magnitude, phase): recombine_magnitude_phase = torch.cat( [magnitude * torch.cos(phase), magnitude * torch.sin(phase)], dim=1, ) inverse_transform = F.conv_transpose1d( recombine_magnitude_phase, Variable(self.inverse_basis, requires_grad=False), stride=self.hop_length, padding=0, ) if self.window is not None: window_sum = window_sumsquare( self.window, magnitude.size(-1), hop_length=self.hop_length, win_length=self.win_length, n_fft=self.filter_length, dtype=np.float32, ) # remove modulation effects approx_nonzero_indices = torch.from_numpy( np.where(window_sum > tiny(window_sum))[0] ) window_sum = torch.autograd.Variable( torch.from_numpy(window_sum), requires_grad=False ) window_sum = window_sum.cuda() if magnitude.is_cuda else window_sum inverse_transform[:, :, approx_nonzero_indices] /= window_sum[ approx_nonzero_indices ] # scale by hop ratio inverse_transform *= float(self.filter_length) / self.hop_length inverse_transform = inverse_transform[:, :, int(self.filter_length / 2) :] inverse_transform = inverse_transform[:, :, : -int(self.filter_length / 2) :] return inverse_transform def forward(self, input_data): self.magnitude, self.phase = self.transform(input_data) reconstruction = self.inverse(self.magnitude, self.phase) return reconstruction # export class MelSTFT: def __init__( self, filter_length=1024, hop_length=256, win_length=1024, n_mel_channels=80, sampling_rate=22050, mel_fmin=0.0, mel_fmax=8000.0, device="cpu", padding=None, rank=None, ): self.n_mel_channels = n_mel_channels self.sampling_rate = sampling_rate if padding is None: padding = filter_length // 2 self.stft_fn = STFT( filter_length, hop_length, win_length, device=device, rank=rank, padding=padding, ) mel_basis = librosa_mel( sampling_rate, filter_length, n_mel_channels, mel_fmin, mel_fmax ) mel_basis = torch.from_numpy(mel_basis).float() if device == "cuda": mel_basis = mel_basis.cuda() self.mel_basis = mel_basis def spectral_normalize(self, magnitudes): output = dynamic_range_compression(magnitudes) return output def spectral_de_normalize(self, magnitudes): output = dynamic_range_decompression(magnitudes) return output def spec_to_mel(self, spec): mel_output = torch.matmul(self.mel_basis, spec) mel_output = self.spectral_normalize(mel_output) return mel_output def spectrogram(self, y): assert y.min() >= -1 assert y.max() <= 1 magnitudes, phases = self.stft_fn.transform(y) return magnitudes.data def mel_spectrogram(self, y, ref_level_db=20, magnitude_power=1.5): """Computes mel-spectrograms from a batch of waves PARAMS ------ y: Variable(torch.FloatTensor) with shape (B, T) in range [-1, 1] RETURNS ------- mel_output: torch.FloatTensor of shape (B, n_mel_channels, T) """ assert y.min() >= -1 assert y.max() <= 1 magnitudes, phases = self.stft_fn.transform(y) magnitudes = magnitudes.data return self.spec_to_mel(magnitudes) def griffin_lim(self, mel_spectrogram, n_iters=30): mel_dec = self.spectral_de_normalize(mel_spectrogram) # Float cast required for fp16 training. mel_dec = mel_dec.transpose(0, 1).cpu().data.float() spec_from_mel = torch.mm(mel_dec, self.mel_basis).transpose(0, 1) spec_from_mel *= 1000 out = griffin_lim(spec_from_mel.unsqueeze(0), self.stft_fn, n_iters=n_iters) return out from IPython.display import Audio stft = STFT() mel_stft = MelSTFT() mel = mel_stft.mel_spectrogram(torch.clip(torch.randn(1, 1000), -1, 1)) assert mel.shape[0] == 1 assert mel.shape[1] == 80 mel = torch.load("./test/fixtures/stevejobs-1.pt") aud = mel_stft.griffin_lim(mel) # hide Audio(aud, rate=22050) ###Output _____no_output_____ ###Markdown Global style tokens ###Code # export from torch.nn import init class ReferenceEncoder(nn.Module): """ inputs --- [N, Ty/r, n_mels*r] mels outputs --- [N, ref_enc_gru_size] """ def __init__(self, hp): super().__init__() K = len(hp.ref_enc_filters) filters = [1] + hp.ref_enc_filters convs = [ nn.Conv2d( in_channels=filters[i], out_channels=filters[i + 1], kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), ) for i in range(K) ] self.convs = nn.ModuleList(convs) self.bns = nn.ModuleList( [nn.BatchNorm2d(num_features=hp.ref_enc_filters[i]) for i in range(K)] ) out_channels = self.calculate_channels(hp.n_mel_channels, 3, 2, 1, K) self.gru = nn.GRU( input_size=hp.ref_enc_filters[-1] * out_channels, hidden_size=hp.ref_enc_gru_size, batch_first=True, ) self.n_mel_channels = hp.n_mel_channels self.ref_enc_gru_size = hp.ref_enc_gru_size def forward(self, inputs, input_lengths=None): out = inputs.view(inputs.size(0), 1, -1, self.n_mel_channels) for conv, bn in zip(self.convs, self.bns): out = conv(out) out = bn(out) out = F.relu(out) out = out.transpose(1, 2) # [N, Ty//2^K, 128, n_mels//2^K] N, T = out.size(0), out.size(1) out = out.contiguous().view(N, T, -1) # [N, Ty//2^K, 128*n_mels//2^K] if input_lengths is not None: input_lengths = torch.ceil(input_lengths.float() / 2 ** len(self.convs)) input_lengths = input_lengths.cpu().numpy().astype(int) out = nn.utils.rnn.pack_padded_sequence( out, input_lengths, batch_first=True, enforce_sorted=False ) self.gru.flatten_parameters() _, out = self.gru(out) return out.squeeze(0) def calculate_channels(self, L, kernel_size, stride, pad, n_convs): for _ in range(n_convs): L = (L - kernel_size + 2 * pad) // stride + 1 return L class MultiHeadAttention(nn.Module): """ input: query --- [N, T_q, query_dim] key --- [N, T_k, key_dim] output: out --- [N, T_q, num_units] """ def __init__(self, query_dim, key_dim, num_units, num_heads): super().__init__() self.num_units = num_units self.num_heads = num_heads self.key_dim = key_dim self.W_query = nn.Linear( in_features=query_dim, out_features=num_units, bias=False ) self.W_key = nn.Linear(in_features=key_dim, out_features=num_units, bias=False) self.W_value = nn.Linear( in_features=key_dim, out_features=num_units, bias=False ) def forward(self, query, key): querys = self.W_query(query) # [N, T_q, num_units] keys = self.W_key(key) # [N, T_k, num_units] values = self.W_value(key) split_size = self.num_units // self.num_heads querys = torch.stack( torch.split(querys, split_size, dim=2), dim=0 ) # [h, N, T_q, num_units/h] keys = torch.stack( torch.split(keys, split_size, dim=2), dim=0 ) # [h, N, T_k, num_units/h] values = torch.stack( torch.split(values, split_size, dim=2), dim=0 ) # [h, N, T_k, num_units/h] # score = softmax(QK^T / (d_k ** 0.5)) scores = torch.matmul(querys, keys.transpose(2, 3)) # [h, N, T_q, T_k] scores = scores / (self.key_dim ** 0.5) scores = F.softmax(scores, dim=3) # out = score * V out = torch.matmul(scores, values) # [h, N, T_q, num_units/h] out = torch.cat(torch.split(out, 1, dim=0), dim=3).squeeze( 0 ) # [N, T_q, num_units] return out class STL(nn.Module): """ inputs --- [N, token_embedding_size//2] """ def __init__(self, hp): super().__init__() self.embed = nn.Parameter( torch.FloatTensor(hp.token_num, hp.token_embedding_size // hp.num_heads) ) d_q = hp.ref_enc_gru_size d_k = hp.token_embedding_size // hp.num_heads self.attention = MultiHeadAttention( query_dim=d_q, key_dim=d_k, num_units=hp.token_embedding_size, num_heads=hp.num_heads, ) init.normal_(self.embed, mean=0, std=0.5) def forward(self, inputs): N = inputs.size(0) query = inputs.unsqueeze(1) keys = ( torch.tanh(self.embed).unsqueeze(0).expand(N, -1, -1) ) # [N, token_num, token_embedding_size // num_heads] style_embed = self.attention(query, keys) return style_embed class GST(nn.Module): def __init__(self, hp): super().__init__() self.encoder = ReferenceEncoder(hp) self.stl = STL(hp) def forward(self, inputs, input_lengths=None): enc_out = self.encoder(inputs, input_lengths=input_lengths) style_embed = self.stl(enc_out) return style_embed DEFAULTS = HParams( n_symbols=100, symbols_embedding_dim=512, mask_padding=True, fp16_run=False, n_mel_channels=80, # encoder parameters encoder_kernel_size=5, encoder_n_convolutions=3, encoder_embedding_dim=512, # decoder parameters n_frames_per_step=1, # currently only 1 is supported decoder_rnn_dim=1024, prenet_dim=256, prenet_f0_n_layers=1, prenet_f0_dim=1, prenet_f0_kernel_size=1, prenet_rms_dim=0, prenet_fms_kernel_size=1, max_decoder_steps=1000, gate_threshold=0.5, p_attention_dropout=0.1, p_decoder_dropout=0.1, p_teacher_forcing=1.0, # attention parameters attention_rnn_dim=1024, attention_dim=128, # location layer parameters attention_location_n_filters=32, attention_location_kernel_size=31, # mel post-processing network parameters postnet_embedding_dim=512, postnet_kernel_size=5, postnet_n_convolutions=5, # speaker_embedding n_speakers=123, # original nvidia libritts training speaker_embedding_dim=128, # reference encoder with_gst=True, ref_enc_filters=[32, 32, 64, 64, 128, 128], ref_enc_size=[3, 3], ref_enc_strides=[2, 2], ref_enc_pad=[1, 1], ref_enc_gru_size=128, # style token layer token_embedding_size=256, token_num=10, num_heads=8, ) GST(DEFAULTS) ###Output _____no_output_____ ###Markdown VITS common LayerNorm ###Code # export class LayerNorm(nn.Module): def __init__(self, channels, eps=1e-5): super().__init__() self.channels = channels self.eps = eps self.gamma = nn.Parameter(torch.ones(channels)) self.beta = nn.Parameter(torch.zeros(channels)) def forward(self, x): x = x.transpose(1, -1) x = F.layer_norm(x, (self.channels,), self.gamma, self.beta, self.eps) return x.transpose(1, -1) LayerNorm(3) ###Output _____no_output_____ ###Markdown Flip ###Code # export class Flip(nn.Module): def forward(self, x, *args, reverse=False, **kwargs): x = torch.flip(x, [1]) if not reverse: logdet = torch.zeros(x.size(0)).to(dtype=x.dtype, device=x.device) return x, logdet else: return x ###Output _____no_output_____ ###Markdown Log ###Code # export class Log(nn.Module): def forward(self, x, x_mask, reverse=False, **kwargs): if not reverse: y = torch.log(torch.clamp_min(x, 1e-5)) * x_mask logdet = torch.sum(-y, [1, 2]) return y, logdet else: x = torch.exp(x) * x_mask return x ###Output _____no_output_____ ###Markdown ElementWiseAffine ###Code # export class ElementwiseAffine(nn.Module): def __init__(self, channels): super().__init__() self.channels = channels self.m = nn.Parameter(torch.zeros(channels, 1)) self.logs = nn.Parameter(torch.zeros(channels, 1)) def forward(self, x, x_mask, reverse=False, **kwargs): if not reverse: y = self.m + torch.exp(self.logs) * x y = y * x_mask logdet = torch.sum(self.logs * x_mask, [1, 2]) return y, logdet else: x = (x - self.m) * torch.exp(-self.logs) * x_mask return x ###Output _____no_output_____ ###Markdown DDSConv ###Code # export class DDSConv(nn.Module): """ Dialted and Depth-Separable Convolution """ def __init__(self, channels, kernel_size, n_layers, p_dropout=0.0): super().__init__() self.channels = channels self.kernel_size = kernel_size self.n_layers = n_layers self.p_dropout = p_dropout self.drop = nn.Dropout(p_dropout) self.convs_sep = nn.ModuleList() self.convs_1x1 = nn.ModuleList() self.norms_1 = nn.ModuleList() self.norms_2 = nn.ModuleList() for i in range(n_layers): dilation = kernel_size ** i padding = (kernel_size * dilation - dilation) // 2 self.convs_sep.append( nn.Conv1d( channels, channels, kernel_size, groups=channels, dilation=dilation, padding=padding, ) ) self.convs_1x1.append(nn.Conv1d(channels, channels, 1)) self.norms_1.append(LayerNorm(channels)) self.norms_2.append(LayerNorm(channels)) def forward(self, x, x_mask, g=None): if g is not None: x = x + g for i in range(self.n_layers): y = self.convs_sep[i](x * x_mask) y = self.norms_1[i](y) y = F.gelu(y) y = self.convs_1x1[i](y) y = self.norms_2[i](y) y = F.gelu(y) y = self.drop(y) x = x + y return x * x_mask ###Output _____no_output_____ ###Markdown ConvFLow ###Code # export import math from uberduck_ml_dev.models.transforms import piecewise_rational_quadratic_transform class ConvFlow(nn.Module): def __init__( self, in_channels, filter_channels, kernel_size, n_layers, num_bins=10, # tail_bound=5.0, tail_bound=10.0, ): super().__init__() self.in_channels = in_channels self.filter_channels = filter_channels self.kernel_size = kernel_size self.n_layers = n_layers self.num_bins = num_bins self.tail_bound = tail_bound self.half_channels = in_channels // 2 self.pre = nn.Conv1d(self.half_channels, filter_channels, 1) self.convs = DDSConv(filter_channels, kernel_size, n_layers, p_dropout=0.0) self.proj = nn.Conv1d( filter_channels, self.half_channels * (num_bins * 3 - 1), 1 ) self.proj.weight.data.zero_() self.proj.bias.data.zero_() def forward(self, x, x_mask, g=None, reverse=False): x0, x1 = torch.split(x, [self.half_channels] * 2, 1) h = self.pre(x0) h = self.convs(h, x_mask, g=g) h = self.proj(h) * x_mask b, c, t = x0.shape h = h.reshape(b, c, -1, t).permute(0, 1, 3, 2) # [b, cx?, t] -> [b, c, t, ?] unnormalized_widths = h[..., : self.num_bins] / math.sqrt(self.filter_channels) unnormalized_heights = h[..., self.num_bins : 2 * self.num_bins] / math.sqrt( self.filter_channels ) unnormalized_derivatives = h[..., 2 * self.num_bins :] x1, logabsdet = piecewise_rational_quadratic_transform( x1, unnormalized_widths, unnormalized_heights, unnormalized_derivatives, inverse=reverse, tails="linear", tail_bound=self.tail_bound, ) x = torch.cat([x0, x1], 1) * x_mask logdet = torch.sum(logabsdet * x_mask, [1, 2]) if not reverse: return x, logdet else: return x cf = ConvFlow(192, 2, 3, 3) # NOTE(zach): figure out the shape of the forward stuff. # cf(torch.rand(2, 2, 1), torch.ones(2, 2, 1)) ###Output _____no_output_____ ###Markdown WN ###Code # export from uberduck_ml_dev.utils.utils import fused_add_tanh_sigmoid_multiply class WN(torch.nn.Module): def __init__( self, hidden_channels, kernel_size, dilation_rate, n_layers, gin_channels=0, p_dropout=0, ): super(WN, self).__init__() assert kernel_size % 2 == 1 self.hidden_channels = hidden_channels self.kernel_size = (kernel_size,) self.dilation_rate = dilation_rate self.n_layers = n_layers self.gin_channels = gin_channels self.p_dropout = p_dropout self.in_layers = torch.nn.ModuleList() self.res_skip_layers = torch.nn.ModuleList() self.drop = nn.Dropout(p_dropout) if gin_channels != 0: cond_layer = nn.Conv1d(gin_channels, 2 * hidden_channels * n_layers, 1) self.cond_layer = weight_norm(cond_layer, name="weight") for i in range(n_layers): dilation = dilation_rate ** i padding = int((kernel_size * dilation - dilation) / 2) in_layer = nn.Conv1d( hidden_channels, 2 * hidden_channels, kernel_size, dilation=dilation, padding=padding, ) in_layer = weight_norm(in_layer, name="weight") self.in_layers.append(in_layer) # last one is not necessary if i < n_layers - 1: res_skip_channels = 2 * hidden_channels else: res_skip_channels = hidden_channels res_skip_layer = nn.Conv1d(hidden_channels, res_skip_channels, 1) res_skip_layer = weight_norm(res_skip_layer, name="weight") self.res_skip_layers.append(res_skip_layer) def forward(self, x, x_mask, g=None, **kwargs): output = torch.zeros_like(x) n_channels_tensor = torch.IntTensor([self.hidden_channels]) if g is not None: g = self.cond_layer(g) for i in range(self.n_layers): x_in = self.in_layers[i](x) if g is not None: cond_offset = i * 2 * self.hidden_channels g_l = g[:, cond_offset : cond_offset + 2 * self.hidden_channels, :] else: g_l = torch.zeros_like(x_in) acts = fused_add_tanh_sigmoid_multiply(x_in, g_l, n_channels_tensor) acts = self.drop(acts) res_skip_acts = self.res_skip_layers[i](acts) if i < self.n_layers - 1: res_acts = res_skip_acts[:, : self.hidden_channels, :] x = (x + res_acts) * x_mask output = output + res_skip_acts[:, self.hidden_channels :, :] else: output = output + res_skip_acts return output * x_mask def remove_weight_norm(self): if self.gin_channels != 0: remove_weight_norm(self.cond_layer) for l in self.in_layers: remove_weight_norm(l) for l in self.res_skip_layers: remove_weight_norm(l) ###Output _____no_output_____ ###Markdown ResidualCouplingLayer ###Code # export class ResidualCouplingLayer(nn.Module): def __init__( self, channels, hidden_channels, kernel_size, dilation_rate, n_layers, p_dropout=0, gin_channels=0, mean_only=False, ): assert channels % 2 == 0, "channels should be divisible by 2" super().__init__() self.channels = channels self.hidden_channels = hidden_channels self.kernel_size = kernel_size self.dilation_rate = dilation_rate self.n_layers = n_layers self.half_channels = channels // 2 self.mean_only = mean_only self.pre = nn.Conv1d(self.half_channels, hidden_channels, 1) self.enc = WN( hidden_channels, kernel_size, dilation_rate, n_layers, p_dropout=p_dropout, gin_channels=gin_channels, ) self.post = nn.Conv1d(hidden_channels, self.half_channels * (2 - mean_only), 1) self.post.weight.data.zero_() self.post.bias.data.zero_() def forward(self, x, x_mask, g=None, reverse=False): x0, x1 = torch.split(x, [self.half_channels] * 2, 1) h = self.pre(x0) * x_mask h = self.enc(h, x_mask, g=g) stats = self.post(h) * x_mask if not self.mean_only: m, logs = torch.split(stats, [self.half_channels] * 2, 1) else: m = stats logs = torch.zeros_like(m) if not reverse: x1 = m + x1 * torch.exp(logs) * x_mask x = torch.cat([x0, x1], 1) logdet = torch.sum(logs, [1, 2]) return x, logdet else: x1 = (x1 - m) * torch.exp(-logs) * x_mask x = torch.cat([x0, x1], 1) return x ###Output _____no_output_____ ###Markdown ResBlock ###Code # export class ResBlock1(torch.nn.Module): def __init__(self, channels, kernel_size=3, dilation=(1, 3, 5)): super(ResBlock1, self).__init__() self.convs1 = nn.ModuleList( [ weight_norm( nn.Conv1d( channels, channels, kernel_size, 1, dilation=dilation[0], padding=get_padding(kernel_size, dilation[0]), ) ), weight_norm( nn.Conv1d( channels, channels, kernel_size, 1, dilation=dilation[1], padding=get_padding(kernel_size, dilation[1]), ) ), weight_norm( nn.Conv1d( channels, channels, kernel_size, 1, dilation=dilation[2], padding=get_padding(kernel_size, dilation[2]), ) ), ] ) self.convs1.apply(init_weights) self.convs2 = nn.ModuleList( [ weight_norm( nn.Conv1d( channels, channels, kernel_size, 1, dilation=1, padding=get_padding(kernel_size, 1), ) ), weight_norm( nn.Conv1d( channels, channels, kernel_size, 1, dilation=1, padding=get_padding(kernel_size, 1), ) ), weight_norm( nn.Conv1d( channels, channels, kernel_size, 1, dilation=1, padding=get_padding(kernel_size, 1), ) ), ] ) self.convs2.apply(init_weights) def forward(self, x, x_mask=None): for c1, c2 in zip(self.convs1, self.convs2): xt = F.leaky_relu(x, LRELU_SLOPE) if x_mask is not None: xt = xt * x_mask xt = c1(xt) xt = F.leaky_relu(xt, LRELU_SLOPE) if x_mask is not None: xt = xt * x_mask xt = c2(xt) x = xt + x if x_mask is not None: x = x * x_mask return x def remove_weight_norm(self): for l in self.convs1: remove_weight_norm(l) for l in self.convs2: remove_weight_norm(l) class ResBlock2(torch.nn.Module): def __init__(self, channels, kernel_size=3, dilation=(1, 3)): super(ResBlock2, self).__init__() self.convs = nn.ModuleList( [ weight_norm( nn.Conv1d( channels, channels, kernel_size, 1, dilation=dilation[0], padding=get_padding(kernel_size, dilation[0]), ) ), weight_norm( nn.Conv1d( channels, channels, kernel_size, 1, dilation=dilation[1], padding=get_padding(kernel_size, dilation[1]), ) ), ] ) self.convs.apply(init_weights) def forward(self, x, x_mask=None): for c in self.convs: xt = F.leaky_relu(x, LRELU_SLOPE) if x_mask is not None: xt = xt * x_mask xt = c(xt) x = xt + x if x_mask is not None: x = x * x_mask return x def remove_weight_norm(self): for l in self.convs: remove_weight_norm(l) # export LRELU_SLOPE = 0.1 ###Output _____no_output_____ ###Markdown Table of Contents0.0.1&nbsp;&nbsp;Conv1d0.0.2&nbsp;&nbsp;Attentions0.0.3&nbsp;&nbsp;STFT0.0.4&nbsp;&nbsp;Global style tokens1&nbsp;&nbsp;VITS common1.0.1&nbsp;&nbsp;LayerNorm1.0.2&nbsp;&nbsp;Flip1.0.3&nbsp;&nbsp;Log1.0.4&nbsp;&nbsp;ElementWiseAffine1.0.5&nbsp;&nbsp;DDSConv1.0.6&nbsp;&nbsp;ConvFLow1.0.7&nbsp;&nbsp;WN1.0.8&nbsp;&nbsp;ResidualCouplingLayer1.0.9&nbsp;&nbsp;ResBlock ###Code # default_exp models.common # export import numpy as np from scipy.signal import get_window import torch from torch.autograd import Variable from torch import nn from torch.nn import functional as F from torch.nn.utils import remove_weight_norm, weight_norm from librosa.filters import mel as librosa_mel from librosa.util import pad_center, tiny from uberduck_ml_dev.utils.utils import * from uberduck_ml_dev.vendor.tfcompat.hparam import HParams ###Output _____no_output_____ ###Markdown Conv1d ###Code # export class Conv1d(nn.Module): def __init__( self, in_channels, out_channels, kernel_size=1, stride=1, padding=None, dilation=1, bias=True, w_init_gain="linear", ): super().__init__() if padding is None: assert kernel_size % 2 == 1 padding = int(dilation * (kernel_size - 1) / 2) self.conv = nn.Conv1d( in_channels, out_channels, kernel_size=kernel_size, stride=stride, padding=padding, dilation=dilation, bias=bias, ) nn.init.xavier_uniform_( self.conv.weight, gain=nn.init.calculate_gain(w_init_gain) ) def forward(self, signal): return self.conv(signal) # export class LinearNorm(torch.nn.Module): def __init__(self, in_dim, out_dim, bias=True, w_init_gain="linear"): super().__init__() self.linear_layer = torch.nn.Linear(in_dim, out_dim, bias=bias) torch.nn.init.xavier_uniform_( self.linear_layer.weight, gain=torch.nn.init.calculate_gain(w_init_gain) ) def forward(self, x): return self.linear_layer(x) ###Output _____no_output_____ ###Markdown Attentions ###Code # export from numpy import finfo class LocationLayer(nn.Module): def __init__(self, attention_n_filters, attention_kernel_size, attention_dim): super(LocationLayer, self).__init__() padding = int((attention_kernel_size - 1) / 2) self.location_conv = Conv1d( 2, attention_n_filters, kernel_size=attention_kernel_size, padding=padding, bias=False, stride=1, dilation=1, ) self.location_dense = LinearNorm( attention_n_filters, attention_dim, bias=False, w_init_gain="tanh" ) def forward(self, attention_weights_cat): processed_attention = self.location_conv(attention_weights_cat) processed_attention = processed_attention.transpose(1, 2) processed_attention = self.location_dense(processed_attention) return processed_attention class Attention(nn.Module): def __init__( self, attention_rnn_dim, embedding_dim, attention_dim, attention_location_n_filters, attention_location_kernel_size, fp16_run, ): super(Attention, self).__init__() self.query_layer = LinearNorm( attention_rnn_dim, attention_dim, bias=False, w_init_gain="tanh" ) self.memory_layer = LinearNorm( embedding_dim, attention_dim, bias=False, w_init_gain="tanh" ) self.v = LinearNorm(attention_dim, 1, bias=False) self.location_layer = LocationLayer( attention_location_n_filters, attention_location_kernel_size, attention_dim ) if fp16_run: self.score_mask_value = finfo("float16").min else: self.score_mask_value = -float("inf") def get_alignment_energies(self, query, processed_memory, attention_weights_cat): """ PARAMS ------ query: decoder output (batch, n_mel_channels * n_frames_per_step) processed_memory: processed encoder outputs (B, T_in, attention_dim) attention_weights_cat: cumulative and prev. att weights (B, 2, max_time) RETURNS ------- alignment (batch, max_time) """ processed_query = self.query_layer(query.unsqueeze(1)) processed_attention_weights = self.location_layer(attention_weights_cat) energies = self.v( torch.tanh(processed_query + processed_attention_weights + processed_memory) ) energies = energies.squeeze(-1) return energies def forward( self, attention_hidden_state, memory, processed_memory, attention_weights_cat, mask, attention_weights=None, ): """ PARAMS ------ attention_hidden_state: attention rnn last output memory: encoder outputs processed_memory: processed encoder outputs attention_weights_cat: previous and cummulative attention weights mask: binary mask for padded data """ if attention_weights is None: alignment = self.get_alignment_energies( attention_hidden_state, processed_memory, attention_weights_cat ) if mask is not None: alignment.data.masked_fill_(mask, self.score_mask_value) attention_weights = F.softmax(alignment, dim=1) attention_context = torch.bmm(attention_weights.unsqueeze(1), memory) attention_context = attention_context.squeeze(1) return attention_context, attention_weights from numpy import finfo finfo("float16").min F.pad(torch.rand(1, 3, 3), (2, 2), mode="reflect") ###Output _____no_output_____ ###Markdown STFT ###Code # export class STFT: """adapted from Prem Seetharaman's https://github.com/pseeth/pytorch-stft""" def __init__( self, filter_length=1024, hop_length=256, win_length=1024, window="hann", padding=None, device="cpu", rank=None, ): self.filter_length = filter_length self.hop_length = hop_length self.win_length = win_length self.window = window self.forward_transform = None scale = self.filter_length / self.hop_length fourier_basis = np.fft.fft(np.eye(self.filter_length)) self.padding = padding or (filter_length // 2) cutoff = int((self.filter_length / 2 + 1)) fourier_basis = np.vstack( [np.real(fourier_basis[:cutoff, :]), np.imag(fourier_basis[:cutoff, :])] ) if device == "cuda": dev = torch.device(f"cuda:{rank}") forward_basis = torch.cuda.FloatTensor( fourier_basis[:, None, :], device=dev ) inverse_basis = torch.cuda.FloatTensor( np.linalg.pinv(scale * fourier_basis).T[:, None, :].astype(np.float32), device=dev, ) else: forward_basis = torch.FloatTensor(fourier_basis[:, None, :]) inverse_basis = torch.FloatTensor( np.linalg.pinv(scale * fourier_basis).T[:, None, :].astype(np.float32) ) if window is not None: assert filter_length >= win_length # get window and zero center pad it to filter_length fft_window = get_window(window, win_length, fftbins=True) fft_window = pad_center(fft_window, filter_length) fft_window = torch.from_numpy(fft_window).float() if device == "cuda": fft_window = fft_window.cuda(rank) # window the bases forward_basis *= fft_window inverse_basis *= fft_window self.fft_window = fft_window self.forward_basis = forward_basis.float() self.inverse_basis = inverse_basis.float() def transform(self, input_data): num_batches = input_data.size(0) num_samples = input_data.size(1) self.num_samples = num_samples # similar to librosa, reflect-pad the input input_data = input_data.view(num_batches, 1, num_samples) input_data = F.pad( input_data.unsqueeze(1), ( self.padding, self.padding, 0, 0, ), mode="reflect", ) input_data = input_data.squeeze(1) forward_transform = F.conv1d( input_data, Variable(self.forward_basis, requires_grad=False), stride=self.hop_length, padding=0, ) cutoff = self.filter_length // 2 + 1 real_part = forward_transform[:, :cutoff, :] imag_part = forward_transform[:, cutoff:, :] magnitude = torch.sqrt(real_part ** 2 + imag_part ** 2) phase = torch.autograd.Variable(torch.atan2(imag_part.data, real_part.data)) return magnitude, phase def inverse(self, magnitude, phase): recombine_magnitude_phase = torch.cat( [magnitude * torch.cos(phase), magnitude * torch.sin(phase)], dim=1, ) inverse_transform = F.conv_transpose1d( recombine_magnitude_phase, Variable(self.inverse_basis, requires_grad=False), stride=self.hop_length, padding=0, ) if self.window is not None: window_sum = window_sumsquare( self.window, magnitude.size(-1), hop_length=self.hop_length, win_length=self.win_length, n_fft=self.filter_length, dtype=np.float32, ) # remove modulation effects approx_nonzero_indices = torch.from_numpy( np.where(window_sum > tiny(window_sum))[0] ) window_sum = torch.autograd.Variable( torch.from_numpy(window_sum), requires_grad=False ) window_sum = window_sum.cuda() if magnitude.is_cuda else window_sum inverse_transform[:, :, approx_nonzero_indices] /= window_sum[ approx_nonzero_indices ] # scale by hop ratio inverse_transform *= float(self.filter_length) / self.hop_length inverse_transform = inverse_transform[:, :, int(self.filter_length / 2) :] inverse_transform = inverse_transform[:, :, : -int(self.filter_length / 2) :] return inverse_transform def forward(self, input_data): self.magnitude, self.phase = self.transform(input_data) reconstruction = self.inverse(self.magnitude, self.phase) return reconstruction # export class MelSTFT: def __init__( self, filter_length=1024, hop_length=256, win_length=1024, n_mel_channels=80, sampling_rate=22050, mel_fmin=0.0, mel_fmax=8000.0, device="cpu", padding=None, rank=None, ): self.n_mel_channels = n_mel_channels self.sampling_rate = sampling_rate if padding is None: padding = filter_length // 2 self.stft_fn = STFT( filter_length, hop_length, win_length, device=device, rank=rank, padding=padding, ) mel_basis = librosa_mel( sampling_rate, filter_length, n_mel_channels, mel_fmin, mel_fmax ) mel_basis = torch.from_numpy(mel_basis).float() if device == "cuda": mel_basis = mel_basis.cuda() self.mel_basis = mel_basis def spectral_normalize(self, magnitudes): output = dynamic_range_compression(magnitudes) return output def spectral_de_normalize(self, magnitudes): output = dynamic_range_decompression(magnitudes) return output def spec_to_mel(self, spec): mel_output = torch.matmul(self.mel_basis, spec) mel_output = self.spectral_normalize(mel_output) return mel_output def spectrogram(self, y): assert y.min() >= -1 assert y.max() <= 1 magnitudes, phases = self.stft_fn.transform(y) return magnitudes.data def mel_spectrogram(self, y, ref_level_db=20, magnitude_power=1.5): """Computes mel-spectrograms from a batch of waves PARAMS ------ y: Variable(torch.FloatTensor) with shape (B, T) in range [-1, 1] RETURNS ------- mel_output: torch.FloatTensor of shape (B, n_mel_channels, T) """ assert y.min() >= -1 assert y.max() <= 1 magnitudes, phases = self.stft_fn.transform(y) magnitudes = magnitudes.data return self.spec_to_mel(magnitudes) def griffin_lim(self, mel_spectrogram, n_iters=30): mel_dec = self.spectral_de_normalize(mel_spectrogram) # Float cast required for fp16 training. mel_dec = mel_dec.transpose(0, 1).cpu().data.float() spec_from_mel = torch.mm(mel_dec, self.mel_basis).transpose(0, 1) spec_from_mel *= 1000 out = griffin_lim(spec_from_mel.unsqueeze(0), self.stft_fn, n_iters=n_iters) return out from IPython.display import Audio stft = STFT() mel_stft = MelSTFT() mel = mel_stft.mel_spectrogram(torch.clip(torch.randn(1, 1000), -1, 1)) assert mel.shape[0] == 1 assert mel.shape[1] == 80 mel = torch.load("./test/fixtures/stevejobs-1.pt") aud = mel_stft.griffin_lim(mel) # hide Audio(aud, rate=22050) ###Output _____no_output_____ ###Markdown Global style tokens ###Code # export from torch.nn import init class ReferenceEncoder(nn.Module): """ inputs --- [N, Ty/r, n_mels*r] mels outputs --- [N, ref_enc_gru_size] """ def __init__(self, hp): super().__init__() K = len(hp.ref_enc_filters) filters = [1] + hp.ref_enc_filters convs = [ nn.Conv2d( in_channels=filters[i], out_channels=filters[i + 1], kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), ) for i in range(K) ] self.convs = nn.ModuleList(convs) self.bns = nn.ModuleList( [nn.BatchNorm2d(num_features=hp.ref_enc_filters[i]) for i in range(K)] ) out_channels = self.calculate_channels(hp.n_mel_channels, 3, 2, 1, K) self.gru = nn.GRU( input_size=hp.ref_enc_filters[-1] * out_channels, hidden_size=hp.ref_enc_gru_size, batch_first=True, ) self.n_mel_channels = hp.n_mel_channels self.ref_enc_gru_size = hp.ref_enc_gru_size def forward(self, inputs, input_lengths=None): out = inputs.view(inputs.size(0), 1, -1, self.n_mel_channels) for conv, bn in zip(self.convs, self.bns): out = conv(out) out = bn(out) out = F.relu(out) out = out.transpose(1, 2) # [N, Ty//2^K, 128, n_mels//2^K] N, T = out.size(0), out.size(1) out = out.contiguous().view(N, T, -1) # [N, Ty//2^K, 128*n_mels//2^K] if input_lengths is not None: input_lengths = torch.ceil(input_lengths.float() / 2 ** len(self.convs)) input_lengths = input_lengths.cpu().numpy().astype(int) out = nn.utils.rnn.pack_padded_sequence( out, input_lengths, batch_first=True, enforce_sorted=False ) self.gru.flatten_parameters() _, out = self.gru(out) return out.squeeze(0) def calculate_channels(self, L, kernel_size, stride, pad, n_convs): for _ in range(n_convs): L = (L - kernel_size + 2 * pad) // stride + 1 return L class MultiHeadAttention(nn.Module): """ input: query --- [N, T_q, query_dim] key --- [N, T_k, key_dim] output: out --- [N, T_q, num_units] """ def __init__(self, query_dim, key_dim, num_units, num_heads): super().__init__() self.num_units = num_units self.num_heads = num_heads self.key_dim = key_dim self.W_query = nn.Linear( in_features=query_dim, out_features=num_units, bias=False ) self.W_key = nn.Linear(in_features=key_dim, out_features=num_units, bias=False) self.W_value = nn.Linear( in_features=key_dim, out_features=num_units, bias=False ) def forward(self, query, key): querys = self.W_query(query) # [N, T_q, num_units] keys = self.W_key(key) # [N, T_k, num_units] values = self.W_value(key) split_size = self.num_units // self.num_heads querys = torch.stack( torch.split(querys, split_size, dim=2), dim=0 ) # [h, N, T_q, num_units/h] keys = torch.stack( torch.split(keys, split_size, dim=2), dim=0 ) # [h, N, T_k, num_units/h] values = torch.stack( torch.split(values, split_size, dim=2), dim=0 ) # [h, N, T_k, num_units/h] # score = softmax(QK^T / (d_k ** 0.5)) scores = torch.matmul(querys, keys.transpose(2, 3)) # [h, N, T_q, T_k] scores = scores / (self.key_dim ** 0.5) scores = F.softmax(scores, dim=3) # out = score * V out = torch.matmul(scores, values) # [h, N, T_q, num_units/h] out = torch.cat(torch.split(out, 1, dim=0), dim=3).squeeze( 0 ) # [N, T_q, num_units] return out class STL(nn.Module): """ inputs --- [N, token_embedding_size//2] """ def __init__(self, hp): super().__init__() self.embed = nn.Parameter( torch.FloatTensor(hp.token_num, hp.token_embedding_size // hp.num_heads) ) d_q = hp.ref_enc_gru_size d_k = hp.token_embedding_size // hp.num_heads self.attention = MultiHeadAttention( query_dim=d_q, key_dim=d_k, num_units=hp.token_embedding_size, num_heads=hp.num_heads, ) init.normal_(self.embed, mean=0, std=0.5) def forward(self, inputs): N = inputs.size(0) query = inputs.unsqueeze(1) keys = ( torch.tanh(self.embed).unsqueeze(0).expand(N, -1, -1) ) # [N, token_num, token_embedding_size // num_heads] style_embed = self.attention(query, keys) return style_embed class GST(nn.Module): def __init__(self, hp): super().__init__() self.encoder = ReferenceEncoder(hp) self.stl = STL(hp) def forward(self, inputs, input_lengths=None): enc_out = self.encoder(inputs, input_lengths=input_lengths) style_embed = self.stl(enc_out) return style_embed DEFAULTS = HParams( n_symbols=100, symbols_embedding_dim=512, mask_padding=True, fp16_run=False, n_mel_channels=80, # encoder parameters encoder_kernel_size=5, encoder_n_convolutions=3, encoder_embedding_dim=512, # decoder parameters n_frames_per_step=1, # currently only 1 is supported decoder_rnn_dim=1024, prenet_dim=256, prenet_f0_n_layers=1, prenet_f0_dim=1, prenet_f0_kernel_size=1, prenet_rms_dim=0, prenet_fms_kernel_size=1, max_decoder_steps=1000, gate_threshold=0.5, p_attention_dropout=0.1, p_decoder_dropout=0.1, p_teacher_forcing=1.0, # attention parameters attention_rnn_dim=1024, attention_dim=128, # location layer parameters attention_location_n_filters=32, attention_location_kernel_size=31, # mel post-processing network parameters postnet_embedding_dim=512, postnet_kernel_size=5, postnet_n_convolutions=5, # speaker_embedding n_speakers=123, # original nvidia libritts training speaker_embedding_dim=128, # reference encoder with_gst=True, ref_enc_filters=[32, 32, 64, 64, 128, 128], ref_enc_size=[3, 3], ref_enc_strides=[2, 2], ref_enc_pad=[1, 1], ref_enc_gru_size=128, # style token layer token_embedding_size=256, token_num=10, num_heads=8, ) GST(DEFAULTS) ###Output _____no_output_____ ###Markdown VITS common LayerNorm ###Code # export class LayerNorm(nn.Module): def __init__(self, channels, eps=1e-5): super().__init__() self.channels = channels self.eps = eps self.gamma = nn.Parameter(torch.ones(channels)) self.beta = nn.Parameter(torch.zeros(channels)) def forward(self, x): x = x.transpose(1, -1) x = F.layer_norm(x, (self.channels,), self.gamma, self.beta, self.eps) return x.transpose(1, -1) LayerNorm(3) ###Output _____no_output_____ ###Markdown Flip ###Code # export class Flip(nn.Module): def forward(self, x, *args, reverse=False, **kwargs): x = torch.flip(x, [1]) if not reverse: logdet = torch.zeros(x.size(0)).to(dtype=x.dtype, device=x.device) return x, logdet else: return x ###Output _____no_output_____ ###Markdown Log ###Code # export class Log(nn.Module): def forward(self, x, x_mask, reverse=False, **kwargs): if not reverse: y = torch.log(torch.clamp_min(x, 1e-5)) * x_mask logdet = torch.sum(-y, [1, 2]) return y, logdet else: x = torch.exp(x) * x_mask return x ###Output _____no_output_____ ###Markdown ElementWiseAffine ###Code # export class ElementwiseAffine(nn.Module): def __init__(self, channels): super().__init__() self.channels = channels self.m = nn.Parameter(torch.zeros(channels, 1)) self.logs = nn.Parameter(torch.zeros(channels, 1)) def forward(self, x, x_mask, reverse=False, **kwargs): if not reverse: y = self.m + torch.exp(self.logs) * x y = y * x_mask logdet = torch.sum(self.logs * x_mask, [1, 2]) return y, logdet else: x = (x - self.m) * torch.exp(-self.logs) * x_mask return x ###Output _____no_output_____ ###Markdown DDSConv ###Code # export class DDSConv(nn.Module): """ Dialted and Depth-Separable Convolution """ def __init__(self, channels, kernel_size, n_layers, p_dropout=0.0): super().__init__() self.channels = channels self.kernel_size = kernel_size self.n_layers = n_layers self.p_dropout = p_dropout self.drop = nn.Dropout(p_dropout) self.convs_sep = nn.ModuleList() self.convs_1x1 = nn.ModuleList() self.norms_1 = nn.ModuleList() self.norms_2 = nn.ModuleList() for i in range(n_layers): dilation = kernel_size ** i padding = (kernel_size * dilation - dilation) // 2 self.convs_sep.append( nn.Conv1d( channels, channels, kernel_size, groups=channels, dilation=dilation, padding=padding, ) ) self.convs_1x1.append(nn.Conv1d(channels, channels, 1)) self.norms_1.append(LayerNorm(channels)) self.norms_2.append(LayerNorm(channels)) def forward(self, x, x_mask, g=None): if g is not None: x = x + g for i in range(self.n_layers): y = self.convs_sep[i](x * x_mask) y = self.norms_1[i](y) y = F.gelu(y) y = self.convs_1x1[i](y) y = self.norms_2[i](y) y = F.gelu(y) y = self.drop(y) x = x + y return x * x_mask ###Output _____no_output_____ ###Markdown ConvFLow ###Code # export import math from uberduck_ml_dev.models.transforms import piecewise_rational_quadratic_transform class ConvFlow(nn.Module): def __init__( self, in_channels, filter_channels, kernel_size, n_layers, num_bins=10, # tail_bound=5.0, tail_bound=10.0, ): super().__init__() self.in_channels = in_channels self.filter_channels = filter_channels self.kernel_size = kernel_size self.n_layers = n_layers self.num_bins = num_bins self.tail_bound = tail_bound self.half_channels = in_channels // 2 self.pre = nn.Conv1d(self.half_channels, filter_channels, 1) self.convs = DDSConv(filter_channels, kernel_size, n_layers, p_dropout=0.0) self.proj = nn.Conv1d( filter_channels, self.half_channels * (num_bins * 3 - 1), 1 ) self.proj.weight.data.zero_() self.proj.bias.data.zero_() def forward(self, x, x_mask, g=None, reverse=False): x0, x1 = torch.split(x, [self.half_channels] * 2, 1) h = self.pre(x0) h = self.convs(h, x_mask, g=g) h = self.proj(h) * x_mask b, c, t = x0.shape h = h.reshape(b, c, -1, t).permute(0, 1, 3, 2) # [b, cx?, t] -> [b, c, t, ?] unnormalized_widths = h[..., : self.num_bins] / math.sqrt(self.filter_channels) unnormalized_heights = h[..., self.num_bins : 2 * self.num_bins] / math.sqrt( self.filter_channels ) unnormalized_derivatives = h[..., 2 * self.num_bins :] x1, logabsdet = piecewise_rational_quadratic_transform( x1, unnormalized_widths, unnormalized_heights, unnormalized_derivatives, inverse=reverse, tails="linear", tail_bound=self.tail_bound, ) x = torch.cat([x0, x1], 1) * x_mask logdet = torch.sum(logabsdet * x_mask, [1, 2]) if not reverse: return x, logdet else: return x cf = ConvFlow(192, 2, 3, 3) # NOTE(zach): figure out the shape of the forward stuff. # cf(torch.rand(2, 2, 1), torch.ones(2, 2, 1)) ###Output _____no_output_____ ###Markdown WN ###Code # export from uberduck_ml_dev.utils.utils import fused_add_tanh_sigmoid_multiply class WN(torch.nn.Module): def __init__( self, hidden_channels, kernel_size, dilation_rate, n_layers, gin_channels=0, p_dropout=0, ): super(WN, self).__init__() assert kernel_size % 2 == 1 self.hidden_channels = hidden_channels self.kernel_size = (kernel_size,) self.dilation_rate = dilation_rate self.n_layers = n_layers self.gin_channels = gin_channels self.p_dropout = p_dropout self.in_layers = torch.nn.ModuleList() self.res_skip_layers = torch.nn.ModuleList() self.drop = nn.Dropout(p_dropout) if gin_channels != 0: cond_layer = nn.Conv1d(gin_channels, 2 * hidden_channels * n_layers, 1) self.cond_layer = weight_norm(cond_layer, name="weight") for i in range(n_layers): dilation = dilation_rate ** i padding = int((kernel_size * dilation - dilation) / 2) in_layer = nn.Conv1d( hidden_channels, 2 * hidden_channels, kernel_size, dilation=dilation, padding=padding, ) in_layer = weight_norm(in_layer, name="weight") self.in_layers.append(in_layer) # last one is not necessary if i < n_layers - 1: res_skip_channels = 2 * hidden_channels else: res_skip_channels = hidden_channels res_skip_layer = nn.Conv1d(hidden_channels, res_skip_channels, 1) res_skip_layer = weight_norm(res_skip_layer, name="weight") self.res_skip_layers.append(res_skip_layer) def forward(self, x, x_mask, g=None, **kwargs): output = torch.zeros_like(x) n_channels_tensor = torch.IntTensor([self.hidden_channels]) if g is not None: g = self.cond_layer(g) for i in range(self.n_layers): x_in = self.in_layers[i](x) if g is not None: cond_offset = i * 2 * self.hidden_channels g_l = g[:, cond_offset : cond_offset + 2 * self.hidden_channels, :] else: g_l = torch.zeros_like(x_in) acts = fused_add_tanh_sigmoid_multiply(x_in, g_l, n_channels_tensor) acts = self.drop(acts) res_skip_acts = self.res_skip_layers[i](acts) if i < self.n_layers - 1: res_acts = res_skip_acts[:, : self.hidden_channels, :] x = (x + res_acts) * x_mask output = output + res_skip_acts[:, self.hidden_channels :, :] else: output = output + res_skip_acts return output * x_mask def remove_weight_norm(self): if self.gin_channels != 0: remove_weight_norm(self.cond_layer) for l in self.in_layers: remove_weight_norm(l) for l in self.res_skip_layers: remove_weight_norm(l) ###Output _____no_output_____ ###Markdown ResidualCouplingLayer ###Code # export class ResidualCouplingLayer(nn.Module): def __init__( self, channels, hidden_channels, kernel_size, dilation_rate, n_layers, p_dropout=0, gin_channels=0, mean_only=False, ): assert channels % 2 == 0, "channels should be divisible by 2" super().__init__() self.channels = channels self.hidden_channels = hidden_channels self.kernel_size = kernel_size self.dilation_rate = dilation_rate self.n_layers = n_layers self.half_channels = channels // 2 self.mean_only = mean_only self.pre = nn.Conv1d(self.half_channels, hidden_channels, 1) self.enc = WN( hidden_channels, kernel_size, dilation_rate, n_layers, p_dropout=p_dropout, gin_channels=gin_channels, ) self.post = nn.Conv1d(hidden_channels, self.half_channels * (2 - mean_only), 1) self.post.weight.data.zero_() self.post.bias.data.zero_() def forward(self, x, x_mask, g=None, reverse=False): x0, x1 = torch.split(x, [self.half_channels] * 2, 1) h = self.pre(x0) * x_mask h = self.enc(h, x_mask, g=g) stats = self.post(h) * x_mask if not self.mean_only: m, logs = torch.split(stats, [self.half_channels] * 2, 1) else: m = stats logs = torch.zeros_like(m) if not reverse: x1 = m + x1 * torch.exp(logs) * x_mask x = torch.cat([x0, x1], 1) logdet = torch.sum(logs, [1, 2]) return x, logdet else: x1 = (x1 - m) * torch.exp(-logs) * x_mask x = torch.cat([x0, x1], 1) return x ###Output _____no_output_____ ###Markdown ResBlock ###Code # export class ResBlock1(torch.nn.Module): def __init__(self, channels, kernel_size=3, dilation=(1, 3, 5)): super(ResBlock1, self).__init__() self.convs1 = nn.ModuleList( [ weight_norm( nn.Conv1d( channels, channels, kernel_size, 1, dilation=dilation[0], padding=get_padding(kernel_size, dilation[0]), ) ), weight_norm( nn.Conv1d( channels, channels, kernel_size, 1, dilation=dilation[1], padding=get_padding(kernel_size, dilation[1]), ) ), weight_norm( nn.Conv1d( channels, channels, kernel_size, 1, dilation=dilation[2], padding=get_padding(kernel_size, dilation[2]), ) ), ] ) self.convs1.apply(init_weights) self.convs2 = nn.ModuleList( [ weight_norm( nn.Conv1d( channels, channels, kernel_size, 1, dilation=1, padding=get_padding(kernel_size, 1), ) ), weight_norm( nn.Conv1d( channels, channels, kernel_size, 1, dilation=1, padding=get_padding(kernel_size, 1), ) ), weight_norm( nn.Conv1d( channels, channels, kernel_size, 1, dilation=1, padding=get_padding(kernel_size, 1), ) ), ] ) self.convs2.apply(init_weights) def forward(self, x, x_mask=None): for c1, c2 in zip(self.convs1, self.convs2): xt = F.leaky_relu(x, LRELU_SLOPE) if x_mask is not None: xt = xt * x_mask xt = c1(xt) xt = F.leaky_relu(xt, LRELU_SLOPE) if x_mask is not None: xt = xt * x_mask xt = c2(xt) x = xt + x if x_mask is not None: x = x * x_mask return x def remove_weight_norm(self): for l in self.convs1: remove_weight_norm(l) for l in self.convs2: remove_weight_norm(l) class ResBlock2(torch.nn.Module): def __init__(self, channels, kernel_size=3, dilation=(1, 3)): super(ResBlock2, self).__init__() self.convs = nn.ModuleList( [ weight_norm( nn.Conv1d( channels, channels, kernel_size, 1, dilation=dilation[0], padding=get_padding(kernel_size, dilation[0]), ) ), weight_norm( nn.Conv1d( channels, channels, kernel_size, 1, dilation=dilation[1], padding=get_padding(kernel_size, dilation[1]), ) ), ] ) self.convs.apply(init_weights) def forward(self, x, x_mask=None): for c in self.convs: xt = F.leaky_relu(x, LRELU_SLOPE) if x_mask is not None: xt = xt * x_mask xt = c(xt) x = xt + x if x_mask is not None: x = x * x_mask return x def remove_weight_norm(self): for l in self.convs: remove_weight_norm(l) # export LRELU_SLOPE = 0.1 ###Output _____no_output_____ ###Markdown Table of Contents0.0.1&nbsp;&nbsp;Conv1d0.0.2&nbsp;&nbsp;Attentions0.0.3&nbsp;&nbsp;STFT0.0.4&nbsp;&nbsp;Global style tokens1&nbsp;&nbsp;VITS common1.0.1&nbsp;&nbsp;LayerNorm1.0.2&nbsp;&nbsp;Flip1.0.3&nbsp;&nbsp;Log1.0.4&nbsp;&nbsp;ElementWiseAffine1.0.5&nbsp;&nbsp;DDSConv1.0.6&nbsp;&nbsp;ConvFLow1.0.7&nbsp;&nbsp;WN1.0.8&nbsp;&nbsp;ResidualCouplingLayer1.0.9&nbsp;&nbsp;ResBlock ###Code # default_exp models.common # export import numpy as np from scipy.signal import get_window import torch from torch.autograd import Variable from torch import nn from torch.nn import functional as F from torch.nn.utils import remove_weight_norm, weight_norm from librosa.filters import mel as librosa_mel from librosa.util import pad_center, tiny from uberduck_ml_dev.utils.utils import * from uberduck_ml_dev.vendor.tfcompat.hparam import HParams ###Output _____no_output_____ ###Markdown Conv1d ###Code # export class Conv1d(nn.Module): def __init__( self, in_channels, out_channels, kernel_size=1, stride=1, padding=None, dilation=1, bias=True, w_init_gain="linear", ): super().__init__() if padding is None: assert kernel_size % 2 == 1 padding = int(dilation * (kernel_size - 1) / 2) self.conv = nn.Conv1d( in_channels, out_channels, kernel_size=kernel_size, stride=stride, padding=padding, dilation=dilation, bias=bias, ) nn.init.xavier_uniform_( self.conv.weight, gain=nn.init.calculate_gain(w_init_gain) ) def forward(self, signal): return self.conv(signal) # export class LinearNorm(torch.nn.Module): def __init__(self, in_dim, out_dim, bias=True, w_init_gain="linear"): super().__init__() self.linear_layer = torch.nn.Linear(in_dim, out_dim, bias=bias) torch.nn.init.xavier_uniform_( self.linear_layer.weight, gain=torch.nn.init.calculate_gain(w_init_gain) ) def forward(self, x): return self.linear_layer(x) ###Output _____no_output_____ ###Markdown Attentions ###Code # export from numpy import finfo class LocationLayer(nn.Module): def __init__(self, attention_n_filters, attention_kernel_size, attention_dim): super(LocationLayer, self).__init__() padding = int((attention_kernel_size - 1) / 2) self.location_conv = Conv1d( 2, attention_n_filters, kernel_size=attention_kernel_size, padding=padding, bias=False, stride=1, dilation=1, ) self.location_dense = LinearNorm( attention_n_filters, attention_dim, bias=False, w_init_gain="tanh" ) def forward(self, attention_weights_cat): processed_attention = self.location_conv(attention_weights_cat) processed_attention = processed_attention.transpose(1, 2) processed_attention = self.location_dense(processed_attention) return processed_attention class Attention(nn.Module): def __init__( self, attention_rnn_dim, embedding_dim, attention_dim, attention_location_n_filters, attention_location_kernel_size, fp16_run, ): super(Attention, self).__init__() self.query_layer = LinearNorm( attention_rnn_dim, attention_dim, bias=False, w_init_gain="tanh" ) self.memory_layer = LinearNorm( embedding_dim, attention_dim, bias=False, w_init_gain="tanh" ) self.v = LinearNorm(attention_dim, 1, bias=False) self.location_layer = LocationLayer( attention_location_n_filters, attention_location_kernel_size, attention_dim ) if fp16_run: self.score_mask_value = finfo("float16").min else: self.score_mask_value = -float("inf") def get_alignment_energies(self, query, processed_memory, attention_weights_cat): """ PARAMS ------ query: decoder output (batch, n_mel_channels * n_frames_per_step) processed_memory: processed encoder outputs (B, T_in, attention_dim) attention_weights_cat: cumulative and prev. att weights (B, 2, max_time) RETURNS ------- alignment (batch, max_time) """ processed_query = self.query_layer(query.unsqueeze(1)) processed_attention_weights = self.location_layer(attention_weights_cat) energies = self.v( torch.tanh(processed_query + processed_attention_weights + processed_memory) ) energies = energies.squeeze(-1) return energies def forward( self, attention_hidden_state, memory, processed_memory, attention_weights_cat, mask, attention_weights=None, ): """ PARAMS ------ attention_hidden_state: attention rnn last output memory: encoder outputs processed_memory: processed encoder outputs attention_weights_cat: previous and cummulative attention weights mask: binary mask for padded data """ if attention_weights is None: alignment = self.get_alignment_energies( attention_hidden_state, processed_memory, attention_weights_cat ) if mask is not None: alignment.data.masked_fill_(mask, self.score_mask_value) attention_weights = F.softmax(alignment, dim=1) attention_context = torch.bmm(attention_weights.unsqueeze(1), memory) attention_context = attention_context.squeeze(1) return attention_context, attention_weights from numpy import finfo finfo("float16").min F.pad(torch.rand(1, 3, 3), (2, 2), mode="reflect") ###Output _____no_output_____ ###Markdown STFT ###Code # export class STFT: """adapted from Prem Seetharaman's https://github.com/pseeth/pytorch-stft""" def __init__( self, filter_length=1024, hop_length=256, win_length=1024, window="hann", padding=None, device="cpu", rank=None, ): self.filter_length = filter_length self.hop_length = hop_length self.win_length = win_length self.window = window self.forward_transform = None scale = self.filter_length / self.hop_length fourier_basis = np.fft.fft(np.eye(self.filter_length)) self.padding = padding or (filter_length // 2) cutoff = int((self.filter_length / 2 + 1)) fourier_basis = np.vstack( [np.real(fourier_basis[:cutoff, :]), np.imag(fourier_basis[:cutoff, :])] ) if device == "cuda": dev = torch.device(f"cuda:{rank}") forward_basis = torch.cuda.FloatTensor( fourier_basis[:, None, :], device=dev ) inverse_basis = torch.cuda.FloatTensor( np.linalg.pinv(scale * fourier_basis).T[:, None, :].astype(np.float32), device=dev, ) else: forward_basis = torch.FloatTensor(fourier_basis[:, None, :]) inverse_basis = torch.FloatTensor( np.linalg.pinv(scale * fourier_basis).T[:, None, :].astype(np.float32) ) if window is not None: assert filter_length >= win_length # get window and zero center pad it to filter_length fft_window = get_window(window, win_length, fftbins=True) fft_window = pad_center(fft_window, filter_length) fft_window = torch.from_numpy(fft_window).float() if device == "cuda": fft_window = fft_window.cuda(rank) # window the bases forward_basis *= fft_window inverse_basis *= fft_window self.fft_window = fft_window self.forward_basis = forward_basis.float() self.inverse_basis = inverse_basis.float() def transform(self, input_data): num_batches = input_data.size(0) num_samples = input_data.size(1) self.num_samples = num_samples # similar to librosa, reflect-pad the input input_data = input_data.view(num_batches, 1, num_samples) input_data = F.pad( input_data.unsqueeze(1), ( self.padding, self.padding, 0, 0, ), mode="reflect", ) input_data = input_data.squeeze(1) forward_transform = F.conv1d( input_data, Variable(self.forward_basis, requires_grad=False), stride=self.hop_length, padding=0, ) cutoff = self.filter_length // 2 + 1 real_part = forward_transform[:, :cutoff, :] imag_part = forward_transform[:, cutoff:, :] magnitude = torch.sqrt(real_part**2 + imag_part**2) phase = torch.autograd.Variable(torch.atan2(imag_part.data, real_part.data)) return magnitude, phase def inverse(self, magnitude, phase): recombine_magnitude_phase = torch.cat( [magnitude * torch.cos(phase), magnitude * torch.sin(phase)], dim=1, ) inverse_transform = F.conv_transpose1d( recombine_magnitude_phase, Variable(self.inverse_basis, requires_grad=False), stride=self.hop_length, padding=0, ) if self.window is not None: window_sum = window_sumsquare( self.window, magnitude.size(-1), hop_length=self.hop_length, win_length=self.win_length, n_fft=self.filter_length, dtype=np.float32, ) # remove modulation effects approx_nonzero_indices = torch.from_numpy( np.where(window_sum > tiny(window_sum))[0] ) window_sum = torch.autograd.Variable( torch.from_numpy(window_sum), requires_grad=False ) window_sum = window_sum.cuda() if magnitude.is_cuda else window_sum inverse_transform[:, :, approx_nonzero_indices] /= window_sum[ approx_nonzero_indices ] # scale by hop ratio inverse_transform *= float(self.filter_length) / self.hop_length inverse_transform = inverse_transform[:, :, int(self.filter_length / 2) :] inverse_transform = inverse_transform[:, :, : -int(self.filter_length / 2) :] return inverse_transform def forward(self, input_data): self.magnitude, self.phase = self.transform(input_data) reconstruction = self.inverse(self.magnitude, self.phase) return reconstruction # export class MelSTFT: def __init__( self, filter_length=1024, hop_length=256, win_length=1024, n_mel_channels=80, sampling_rate=22050, mel_fmin=0.0, mel_fmax=8000.0, device="cpu", padding=None, rank=None, ): self.n_mel_channels = n_mel_channels self.sampling_rate = sampling_rate if padding is None: padding = filter_length // 2 self.stft_fn = STFT( filter_length, hop_length, win_length, device=device, rank=rank, padding=padding, ) mel_basis = librosa_mel( sampling_rate, filter_length, n_mel_channels, mel_fmin, mel_fmax ) mel_basis = torch.from_numpy(mel_basis).float() if device == "cuda": mel_basis = mel_basis.cuda() self.mel_basis = mel_basis def spectral_normalize(self, magnitudes): output = dynamic_range_compression(magnitudes) return output def spectral_de_normalize(self, magnitudes): output = dynamic_range_decompression(magnitudes) return output def spec_to_mel(self, spec): mel_output = torch.matmul(self.mel_basis, spec) mel_output = self.spectral_normalize(mel_output) return mel_output def spectrogram(self, y): assert y.min() >= -1 assert y.max() <= 1 magnitudes, phases = self.stft_fn.transform(y) return magnitudes.data def mel_spectrogram(self, y, ref_level_db=20, magnitude_power=1.5): """Computes mel-spectrograms from a batch of waves PARAMS ------ y: Variable(torch.FloatTensor) with shape (B, T) in range [-1, 1] RETURNS ------- mel_output: torch.FloatTensor of shape (B, n_mel_channels, T) """ assert y.min() >= -1 assert y.max() <= 1 magnitudes, phases = self.stft_fn.transform(y) magnitudes = magnitudes.data return self.spec_to_mel(magnitudes) def griffin_lim(self, mel_spectrogram, n_iters=30): mel_dec = self.spectral_de_normalize(mel_spectrogram) # Float cast required for fp16 training. mel_dec = mel_dec.transpose(0, 1).cpu().data.float() spec_from_mel = torch.mm(mel_dec, self.mel_basis).transpose(0, 1) spec_from_mel *= 1000 out = griffin_lim(spec_from_mel.unsqueeze(0), self.stft_fn, n_iters=n_iters) return out from IPython.display import Audio stft = STFT() mel_stft = MelSTFT() mel = mel_stft.mel_spectrogram(torch.clip(torch.randn(1, 1000), -1, 1)) assert mel.shape[0] == 1 assert mel.shape[1] == 80 mel = torch.load("./test/fixtures/stevejobs-1.pt") aud = mel_stft.griffin_lim(mel) # hide Audio(aud, rate=22050) ###Output _____no_output_____ ###Markdown Global style tokens ###Code # export from torch.nn import init class ReferenceEncoder(nn.Module): """ inputs --- [N, Ty/r, n_mels*r] mels outputs --- [N, ref_enc_gru_size] """ def __init__(self, hp): super().__init__() K = len(hp.ref_enc_filters) filters = [1] + hp.ref_enc_filters convs = [ nn.Conv2d( in_channels=filters[i], out_channels=filters[i + 1], kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), ) for i in range(K) ] self.convs = nn.ModuleList(convs) self.bns = nn.ModuleList( [nn.BatchNorm2d(num_features=hp.ref_enc_filters[i]) for i in range(K)] ) out_channels = self.calculate_channels(hp.n_mel_channels, 3, 2, 1, K) self.gru = nn.GRU( input_size=hp.ref_enc_filters[-1] * out_channels, hidden_size=hp.ref_enc_gru_size, batch_first=True, ) self.n_mel_channels = hp.n_mel_channels self.ref_enc_gru_size = hp.ref_enc_gru_size def forward(self, inputs, input_lengths=None): out = inputs.view(inputs.size(0), 1, -1, self.n_mel_channels) for conv, bn in zip(self.convs, self.bns): out = conv(out) out = bn(out) out = F.relu(out) out = out.transpose(1, 2) # [N, Ty//2^K, 128, n_mels//2^K] N, T = out.size(0), out.size(1) out = out.contiguous().view(N, T, -1) # [N, Ty//2^K, 128*n_mels//2^K] if input_lengths is not None: input_lengths = torch.ceil(input_lengths.float() / 2 ** len(self.convs)) input_lengths = input_lengths.cpu().numpy().astype(int) out = nn.utils.rnn.pack_padded_sequence( out, input_lengths, batch_first=True, enforce_sorted=False ) self.gru.flatten_parameters() _, out = self.gru(out) return out.squeeze(0) def calculate_channels(self, L, kernel_size, stride, pad, n_convs): for _ in range(n_convs): L = (L - kernel_size + 2 * pad) // stride + 1 return L class MultiHeadAttention(nn.Module): """ input: query --- [N, T_q, query_dim] key --- [N, T_k, key_dim] output: out --- [N, T_q, num_units] """ def __init__(self, query_dim, key_dim, num_units, num_heads): super().__init__() self.num_units = num_units self.num_heads = num_heads self.key_dim = key_dim self.W_query = nn.Linear( in_features=query_dim, out_features=num_units, bias=False ) self.W_key = nn.Linear(in_features=key_dim, out_features=num_units, bias=False) self.W_value = nn.Linear( in_features=key_dim, out_features=num_units, bias=False ) def forward(self, query, key): querys = self.W_query(query) # [N, T_q, num_units] keys = self.W_key(key) # [N, T_k, num_units] values = self.W_value(key) split_size = self.num_units // self.num_heads querys = torch.stack( torch.split(querys, split_size, dim=2), dim=0 ) # [h, N, T_q, num_units/h] keys = torch.stack( torch.split(keys, split_size, dim=2), dim=0 ) # [h, N, T_k, num_units/h] values = torch.stack( torch.split(values, split_size, dim=2), dim=0 ) # [h, N, T_k, num_units/h] # score = softmax(QK^T / (d_k ** 0.5)) scores = torch.matmul(querys, keys.transpose(2, 3)) # [h, N, T_q, T_k] scores = scores / (self.key_dim**0.5) scores = F.softmax(scores, dim=3) # out = score * V out = torch.matmul(scores, values) # [h, N, T_q, num_units/h] out = torch.cat(torch.split(out, 1, dim=0), dim=3).squeeze( 0 ) # [N, T_q, num_units] return out class STL(nn.Module): """ inputs --- [N, token_embedding_size//2] """ def __init__(self, hp): super().__init__() self.embed = nn.Parameter( torch.FloatTensor(hp.token_num, hp.token_embedding_size // hp.num_heads) ) d_q = hp.ref_enc_gru_size d_k = hp.token_embedding_size // hp.num_heads self.attention = MultiHeadAttention( query_dim=d_q, key_dim=d_k, num_units=hp.token_embedding_size, num_heads=hp.num_heads, ) init.normal_(self.embed, mean=0, std=0.5) def forward(self, inputs): N = inputs.size(0) query = inputs.unsqueeze(1) keys = ( torch.tanh(self.embed).unsqueeze(0).expand(N, -1, -1) ) # [N, token_num, token_embedding_size // num_heads] style_embed = self.attention(query, keys) return style_embed class GST(nn.Module): def __init__(self, hp): super().__init__() self.encoder = ReferenceEncoder(hp) self.stl = STL(hp) def forward(self, inputs, input_lengths=None): enc_out = self.encoder(inputs, input_lengths=input_lengths) style_embed = self.stl(enc_out) return style_embed DEFAULTS = HParams( n_symbols=100, symbols_embedding_dim=512, mask_padding=True, fp16_run=False, n_mel_channels=80, # encoder parameters encoder_kernel_size=5, encoder_n_convolutions=3, encoder_embedding_dim=512, # decoder parameters n_frames_per_step=1, # currently only 1 is supported decoder_rnn_dim=1024, prenet_dim=256, prenet_f0_n_layers=1, prenet_f0_dim=1, prenet_f0_kernel_size=1, prenet_rms_dim=0, prenet_fms_kernel_size=1, max_decoder_steps=1000, gate_threshold=0.5, p_attention_dropout=0.1, p_decoder_dropout=0.1, p_teacher_forcing=1.0, # attention parameters attention_rnn_dim=1024, attention_dim=128, # location layer parameters attention_location_n_filters=32, attention_location_kernel_size=31, # mel post-processing network parameters postnet_embedding_dim=512, postnet_kernel_size=5, postnet_n_convolutions=5, # speaker_embedding n_speakers=123, # original nvidia libritts training speaker_embedding_dim=128, # reference encoder with_gst=True, ref_enc_filters=[32, 32, 64, 64, 128, 128], ref_enc_size=[3, 3], ref_enc_strides=[2, 2], ref_enc_pad=[1, 1], ref_enc_gru_size=128, # style token layer token_embedding_size=256, token_num=10, num_heads=8, ) GST(DEFAULTS) ###Output _____no_output_____ ###Markdown VITS common LayerNorm ###Code # export class LayerNorm(nn.Module): def __init__(self, channels, eps=1e-5): super().__init__() self.channels = channels self.eps = eps self.gamma = nn.Parameter(torch.ones(channels)) self.beta = nn.Parameter(torch.zeros(channels)) def forward(self, x): x = x.transpose(1, -1) x = F.layer_norm(x, (self.channels,), self.gamma, self.beta, self.eps) return x.transpose(1, -1) LayerNorm(3) ###Output _____no_output_____ ###Markdown Flip ###Code # export class Flip(nn.Module): def forward(self, x, *args, reverse=False, **kwargs): x = torch.flip(x, [1]) if not reverse: logdet = torch.zeros(x.size(0)).to(dtype=x.dtype, device=x.device) return x, logdet else: return x ###Output _____no_output_____ ###Markdown Log ###Code # export class Log(nn.Module): def forward(self, x, x_mask, reverse=False, **kwargs): if not reverse: y = torch.log(torch.clamp_min(x, 1e-5)) * x_mask logdet = torch.sum(-y, [1, 2]) return y, logdet else: x = torch.exp(x) * x_mask return x ###Output _____no_output_____ ###Markdown ElementWiseAffine ###Code # export class ElementwiseAffine(nn.Module): def __init__(self, channels): super().__init__() self.channels = channels self.m = nn.Parameter(torch.zeros(channels, 1)) self.logs = nn.Parameter(torch.zeros(channels, 1)) def forward(self, x, x_mask, reverse=False, **kwargs): if not reverse: y = self.m + torch.exp(self.logs) * x y = y * x_mask logdet = torch.sum(self.logs * x_mask, [1, 2]) return y, logdet else: x = (x - self.m) * torch.exp(-self.logs) * x_mask return x ###Output _____no_output_____ ###Markdown DDSConv ###Code # export class DDSConv(nn.Module): """ Dialted and Depth-Separable Convolution """ def __init__(self, channels, kernel_size, n_layers, p_dropout=0.0): super().__init__() self.channels = channels self.kernel_size = kernel_size self.n_layers = n_layers self.p_dropout = p_dropout self.drop = nn.Dropout(p_dropout) self.convs_sep = nn.ModuleList() self.convs_1x1 = nn.ModuleList() self.norms_1 = nn.ModuleList() self.norms_2 = nn.ModuleList() for i in range(n_layers): dilation = kernel_size**i padding = (kernel_size * dilation - dilation) // 2 self.convs_sep.append( nn.Conv1d( channels, channels, kernel_size, groups=channels, dilation=dilation, padding=padding, ) ) self.convs_1x1.append(nn.Conv1d(channels, channels, 1)) self.norms_1.append(LayerNorm(channels)) self.norms_2.append(LayerNorm(channels)) def forward(self, x, x_mask, g=None): if g is not None: x = x + g for i in range(self.n_layers): y = self.convs_sep[i](x * x_mask) y = self.norms_1[i](y) y = F.gelu(y) y = self.convs_1x1[i](y) y = self.norms_2[i](y) y = F.gelu(y) y = self.drop(y) x = x + y return x * x_mask ###Output _____no_output_____ ###Markdown ConvFLow ###Code # export import math from uberduck_ml_dev.models.transforms import piecewise_rational_quadratic_transform class ConvFlow(nn.Module): def __init__( self, in_channels, filter_channels, kernel_size, n_layers, num_bins=10, # tail_bound=5.0, tail_bound=10.0, ): super().__init__() self.in_channels = in_channels self.filter_channels = filter_channels self.kernel_size = kernel_size self.n_layers = n_layers self.num_bins = num_bins self.tail_bound = tail_bound self.half_channels = in_channels // 2 self.pre = nn.Conv1d(self.half_channels, filter_channels, 1) self.convs = DDSConv(filter_channels, kernel_size, n_layers, p_dropout=0.0) self.proj = nn.Conv1d( filter_channels, self.half_channels * (num_bins * 3 - 1), 1 ) self.proj.weight.data.zero_() self.proj.bias.data.zero_() def forward(self, x, x_mask, g=None, reverse=False): x0, x1 = torch.split(x, [self.half_channels] * 2, 1) h = self.pre(x0) h = self.convs(h, x_mask, g=g) h = self.proj(h) * x_mask b, c, t = x0.shape h = h.reshape(b, c, -1, t).permute(0, 1, 3, 2) # [b, cx?, t] -> [b, c, t, ?] unnormalized_widths = h[..., : self.num_bins] / math.sqrt(self.filter_channels) unnormalized_heights = h[..., self.num_bins : 2 * self.num_bins] / math.sqrt( self.filter_channels ) unnormalized_derivatives = h[..., 2 * self.num_bins :] x1, logabsdet = piecewise_rational_quadratic_transform( x1, unnormalized_widths, unnormalized_heights, unnormalized_derivatives, inverse=reverse, tails="linear", tail_bound=self.tail_bound, ) x = torch.cat([x0, x1], 1) * x_mask logdet = torch.sum(logabsdet * x_mask, [1, 2]) if not reverse: return x, logdet else: return x cf = ConvFlow(192, 2, 3, 3) # NOTE(zach): figure out the shape of the forward stuff. # cf(torch.rand(2, 2, 1), torch.ones(2, 2, 1)) ###Output _____no_output_____ ###Markdown WN ###Code # export from uberduck_ml_dev.utils.utils import fused_add_tanh_sigmoid_multiply class WN(torch.nn.Module): def __init__( self, hidden_channels, kernel_size, dilation_rate, n_layers, gin_channels=0, p_dropout=0, ): super(WN, self).__init__() assert kernel_size % 2 == 1 self.hidden_channels = hidden_channels self.kernel_size = (kernel_size,) self.dilation_rate = dilation_rate self.n_layers = n_layers self.gin_channels = gin_channels self.p_dropout = p_dropout self.in_layers = torch.nn.ModuleList() self.res_skip_layers = torch.nn.ModuleList() self.drop = nn.Dropout(p_dropout) if gin_channels != 0: cond_layer = nn.Conv1d(gin_channels, 2 * hidden_channels * n_layers, 1) self.cond_layer = weight_norm(cond_layer, name="weight") for i in range(n_layers): dilation = dilation_rate**i padding = int((kernel_size * dilation - dilation) / 2) in_layer = nn.Conv1d( hidden_channels, 2 * hidden_channels, kernel_size, dilation=dilation, padding=padding, ) in_layer = weight_norm(in_layer, name="weight") self.in_layers.append(in_layer) # last one is not necessary if i < n_layers - 1: res_skip_channels = 2 * hidden_channels else: res_skip_channels = hidden_channels res_skip_layer = nn.Conv1d(hidden_channels, res_skip_channels, 1) res_skip_layer = weight_norm(res_skip_layer, name="weight") self.res_skip_layers.append(res_skip_layer) def forward(self, x, x_mask, g=None, **kwargs): output = torch.zeros_like(x) n_channels_tensor = torch.IntTensor([self.hidden_channels]) if g is not None: g = self.cond_layer(g) for i in range(self.n_layers): x_in = self.in_layers[i](x) if g is not None: cond_offset = i * 2 * self.hidden_channels g_l = g[:, cond_offset : cond_offset + 2 * self.hidden_channels, :] else: g_l = torch.zeros_like(x_in) acts = fused_add_tanh_sigmoid_multiply(x_in, g_l, n_channels_tensor) acts = self.drop(acts) res_skip_acts = self.res_skip_layers[i](acts) if i < self.n_layers - 1: res_acts = res_skip_acts[:, : self.hidden_channels, :] x = (x + res_acts) * x_mask output = output + res_skip_acts[:, self.hidden_channels :, :] else: output = output + res_skip_acts return output * x_mask def remove_weight_norm(self): if self.gin_channels != 0: remove_weight_norm(self.cond_layer) for l in self.in_layers: remove_weight_norm(l) for l in self.res_skip_layers: remove_weight_norm(l) ###Output _____no_output_____ ###Markdown ResidualCouplingLayer ###Code # export class ResidualCouplingLayer(nn.Module): def __init__( self, channels, hidden_channels, kernel_size, dilation_rate, n_layers, p_dropout=0, gin_channels=0, mean_only=False, ): assert channels % 2 == 0, "channels should be divisible by 2" super().__init__() self.channels = channels self.hidden_channels = hidden_channels self.kernel_size = kernel_size self.dilation_rate = dilation_rate self.n_layers = n_layers self.half_channels = channels // 2 self.mean_only = mean_only self.pre = nn.Conv1d(self.half_channels, hidden_channels, 1) self.enc = WN( hidden_channels, kernel_size, dilation_rate, n_layers, p_dropout=p_dropout, gin_channels=gin_channels, ) self.post = nn.Conv1d(hidden_channels, self.half_channels * (2 - mean_only), 1) self.post.weight.data.zero_() self.post.bias.data.zero_() def forward(self, x, x_mask, g=None, reverse=False): x0, x1 = torch.split(x, [self.half_channels] * 2, 1) h = self.pre(x0) * x_mask h = self.enc(h, x_mask, g=g) stats = self.post(h) * x_mask if not self.mean_only: m, logs = torch.split(stats, [self.half_channels] * 2, 1) else: m = stats logs = torch.zeros_like(m) if not reverse: x1 = m + x1 * torch.exp(logs) * x_mask x = torch.cat([x0, x1], 1) logdet = torch.sum(logs, [1, 2]) return x, logdet else: x1 = (x1 - m) * torch.exp(-logs) * x_mask x = torch.cat([x0, x1], 1) return x ###Output _____no_output_____ ###Markdown ResBlock ###Code # export class ResBlock1(torch.nn.Module): def __init__(self, channels, kernel_size=3, dilation=(1, 3, 5)): super(ResBlock1, self).__init__() self.convs1 = nn.ModuleList( [ weight_norm( nn.Conv1d( channels, channels, kernel_size, 1, dilation=dilation[0], padding=get_padding(kernel_size, dilation[0]), ) ), weight_norm( nn.Conv1d( channels, channels, kernel_size, 1, dilation=dilation[1], padding=get_padding(kernel_size, dilation[1]), ) ), weight_norm( nn.Conv1d( channels, channels, kernel_size, 1, dilation=dilation[2], padding=get_padding(kernel_size, dilation[2]), ) ), ] ) self.convs1.apply(init_weights) self.convs2 = nn.ModuleList( [ weight_norm( nn.Conv1d( channels, channels, kernel_size, 1, dilation=1, padding=get_padding(kernel_size, 1), ) ), weight_norm( nn.Conv1d( channels, channels, kernel_size, 1, dilation=1, padding=get_padding(kernel_size, 1), ) ), weight_norm( nn.Conv1d( channels, channels, kernel_size, 1, dilation=1, padding=get_padding(kernel_size, 1), ) ), ] ) self.convs2.apply(init_weights) def forward(self, x, x_mask=None): for c1, c2 in zip(self.convs1, self.convs2): xt = F.leaky_relu(x, LRELU_SLOPE) if x_mask is not None: xt = xt * x_mask xt = c1(xt) xt = F.leaky_relu(xt, LRELU_SLOPE) if x_mask is not None: xt = xt * x_mask xt = c2(xt) x = xt + x if x_mask is not None: x = x * x_mask return x def remove_weight_norm(self): for l in self.convs1: remove_weight_norm(l) for l in self.convs2: remove_weight_norm(l) class ResBlock2(torch.nn.Module): def __init__(self, channels, kernel_size=3, dilation=(1, 3)): super(ResBlock2, self).__init__() self.convs = nn.ModuleList( [ weight_norm( nn.Conv1d( channels, channels, kernel_size, 1, dilation=dilation[0], padding=get_padding(kernel_size, dilation[0]), ) ), weight_norm( nn.Conv1d( channels, channels, kernel_size, 1, dilation=dilation[1], padding=get_padding(kernel_size, dilation[1]), ) ), ] ) self.convs.apply(init_weights) def forward(self, x, x_mask=None): for c in self.convs: xt = F.leaky_relu(x, LRELU_SLOPE) if x_mask is not None: xt = xt * x_mask xt = c(xt) x = xt + x if x_mask is not None: x = x * x_mask return x def remove_weight_norm(self): for l in self.convs: remove_weight_norm(l) # export LRELU_SLOPE = 0.1 ###Output _____no_output_____ ###Markdown Table of Contents0.0.1&nbsp;&nbsp;Conv1d0.0.2&nbsp;&nbsp;Attentions0.0.3&nbsp;&nbsp;STFT0.0.4&nbsp;&nbsp;Global style tokens1&nbsp;&nbsp;VITS common1.0.1&nbsp;&nbsp;LayerNorm1.0.2&nbsp;&nbsp;Flip1.0.3&nbsp;&nbsp;Log1.0.4&nbsp;&nbsp;ElementWiseAffine1.0.5&nbsp;&nbsp;DDSConv1.0.6&nbsp;&nbsp;ConvFLow1.0.7&nbsp;&nbsp;WN1.0.8&nbsp;&nbsp;ResidualCouplingLayer1.0.9&nbsp;&nbsp;ResBlock ###Code # default_exp models.common # export from librosa.filters import mel as librosa_mel from librosa.util import pad_center, tiny import numpy as np from scipy.signal import get_window import torch from torch.autograd import Variable from torch import nn from torch.nn import functional as F from torch.nn.utils import remove_weight_norm, weight_norm from uberduck_ml_dev.utils.utils import * from uberduck_ml_dev.vendor.tfcompat.hparam import HParams ###Output _____no_output_____ ###Markdown Conv1d ###Code # export class Conv1d(nn.Module): def __init__( self, in_channels, out_channels, kernel_size=1, stride=1, padding=None, dilation=1, bias=True, w_init_gain="linear", ): super().__init__() if padding is None: assert kernel_size % 2 == 1 padding = int(dilation * (kernel_size - 1) / 2) self.conv = nn.Conv1d( in_channels, out_channels, kernel_size=kernel_size, stride=stride, padding=padding, dilation=dilation, bias=bias, ) nn.init.xavier_uniform_( self.conv.weight, gain=nn.init.calculate_gain(w_init_gain) ) def forward(self, signal): return self.conv(signal) # export class LinearNorm(torch.nn.Module): def __init__(self, in_dim, out_dim, bias=True, w_init_gain="linear"): super().__init__() self.linear_layer = torch.nn.Linear(in_dim, out_dim, bias=bias) torch.nn.init.xavier_uniform_( self.linear_layer.weight, gain=torch.nn.init.calculate_gain(w_init_gain) ) def forward(self, x): return self.linear_layer(x) ###Output _____no_output_____ ###Markdown Attentions ###Code # export from numpy import finfo class LocationLayer(nn.Module): def __init__(self, attention_n_filters, attention_kernel_size, attention_dim): super(LocationLayer, self).__init__() padding = int((attention_kernel_size - 1) / 2) self.location_conv = Conv1d( 2, attention_n_filters, kernel_size=attention_kernel_size, padding=padding, bias=False, stride=1, dilation=1, ) self.location_dense = LinearNorm( attention_n_filters, attention_dim, bias=False, w_init_gain="tanh" ) def forward(self, attention_weights_cat): processed_attention = self.location_conv(attention_weights_cat) processed_attention = processed_attention.transpose(1, 2) processed_attention = self.location_dense(processed_attention) return processed_attention class Attention(nn.Module): def __init__( self, attention_rnn_dim, embedding_dim, attention_dim, attention_location_n_filters, attention_location_kernel_size, fp16_run, ): super(Attention, self).__init__() self.query_layer = LinearNorm( attention_rnn_dim, attention_dim, bias=False, w_init_gain="tanh" ) self.memory_layer = LinearNorm( embedding_dim, attention_dim, bias=False, w_init_gain="tanh" ) self.v = LinearNorm(attention_dim, 1, bias=False) self.location_layer = LocationLayer( attention_location_n_filters, attention_location_kernel_size, attention_dim ) if fp16_run: self.score_mask_value = finfo("float16").min else: self.score_mask_value = -float("inf") def get_alignment_energies(self, query, processed_memory, attention_weights_cat): """ PARAMS ------ query: decoder output (batch, n_mel_channels * n_frames_per_step) processed_memory: processed encoder outputs (B, T_in, attention_dim) attention_weights_cat: cumulative and prev. att weights (B, 2, max_time) RETURNS ------- alignment (batch, max_time) """ processed_query = self.query_layer(query.unsqueeze(1)) processed_attention_weights = self.location_layer(attention_weights_cat) energies = self.v( torch.tanh(processed_query + processed_attention_weights + processed_memory) ) energies = energies.squeeze(-1) return energies def forward( self, attention_hidden_state, memory, processed_memory, attention_weights_cat, mask, attention_weights=None, ): """ PARAMS ------ attention_hidden_state: attention rnn last output memory: encoder outputs processed_memory: processed encoder outputs attention_weights_cat: previous and cummulative attention weights mask: binary mask for padded data """ if attention_weights is None: alignment = self.get_alignment_energies( attention_hidden_state, processed_memory, attention_weights_cat ) if mask is not None: alignment.data.masked_fill_(mask, self.score_mask_value) attention_weights = F.softmax(alignment, dim=1) attention_context = torch.bmm(attention_weights.unsqueeze(1), memory) attention_context = attention_context.squeeze(1) return attention_context, attention_weights from numpy import finfo finfo("float16").min F.pad(torch.rand(1, 3, 3), (2, 2), mode="reflect") ###Output _____no_output_____ ###Markdown STFT ###Code # export class STFT: """adapted from Prem Seetharaman's https://github.com/pseeth/pytorch-stft""" def __init__( self, filter_length=1024, hop_length=256, win_length=1024, window="hann", padding=None, device="cpu", rank=None, ): self.filter_length = filter_length self.hop_length = hop_length self.win_length = win_length self.window = window self.forward_transform = None scale = self.filter_length / self.hop_length fourier_basis = np.fft.fft(np.eye(self.filter_length)) self.padding = padding or (filter_length // 2) cutoff = int((self.filter_length / 2 + 1)) fourier_basis = np.vstack( [np.real(fourier_basis[:cutoff, :]), np.imag(fourier_basis[:cutoff, :])] ) if device == "cuda": dev = torch.device(f"cuda:{rank}") forward_basis = torch.cuda.FloatTensor( fourier_basis[:, None, :], device=dev ) inverse_basis = torch.cuda.FloatTensor( np.linalg.pinv(scale * fourier_basis).T[:, None, :].astype(np.float32), device=dev, ) else: forward_basis = torch.FloatTensor(fourier_basis[:, None, :]) inverse_basis = torch.FloatTensor( np.linalg.pinv(scale * fourier_basis).T[:, None, :].astype(np.float32) ) if window is not None: assert filter_length >= win_length # get window and zero center pad it to filter_length fft_window = get_window(window, win_length, fftbins=True) fft_window = pad_center(fft_window, filter_length) fft_window = torch.from_numpy(fft_window).float() if device == "cuda": fft_window = fft_window.cuda(rank) # window the bases forward_basis *= fft_window inverse_basis *= fft_window self.fft_window = fft_window self.forward_basis = forward_basis.float() self.inverse_basis = inverse_basis.float() def transform(self, input_data): num_batches = input_data.size(0) num_samples = input_data.size(1) self.num_samples = num_samples # similar to librosa, reflect-pad the input input_data = input_data.view(num_batches, 1, num_samples) input_data = F.pad( input_data.unsqueeze(1), ( self.padding, self.padding, 0, 0, ), mode="reflect", ) input_data = input_data.squeeze(1) forward_transform = F.conv1d( input_data, Variable(self.forward_basis, requires_grad=False), stride=self.hop_length, padding=0, ) cutoff = self.filter_length // 2 + 1 real_part = forward_transform[:, :cutoff, :] imag_part = forward_transform[:, cutoff:, :] magnitude = torch.sqrt(real_part ** 2 + imag_part ** 2) phase = torch.autograd.Variable(torch.atan2(imag_part.data, real_part.data)) return magnitude, phase def inverse(self, magnitude, phase): recombine_magnitude_phase = torch.cat( [magnitude * torch.cos(phase), magnitude * torch.sin(phase)], dim=1, ) inverse_transform = F.conv_transpose1d( recombine_magnitude_phase, Variable(self.inverse_basis, requires_grad=False), stride=self.hop_length, padding=0, ) if self.window is not None: window_sum = window_sumsquare( self.window, magnitude.size(-1), hop_length=self.hop_length, win_length=self.win_length, n_fft=self.filter_length, dtype=np.float32, ) # remove modulation effects approx_nonzero_indices = torch.from_numpy( np.where(window_sum > tiny(window_sum))[0] ) window_sum = torch.autograd.Variable( torch.from_numpy(window_sum), requires_grad=False ) window_sum = window_sum.cuda() if magnitude.is_cuda else window_sum inverse_transform[:, :, approx_nonzero_indices] /= window_sum[ approx_nonzero_indices ] # scale by hop ratio inverse_transform *= float(self.filter_length) / self.hop_length inverse_transform = inverse_transform[:, :, int(self.filter_length / 2) :] inverse_transform = inverse_transform[:, :, : -int(self.filter_length / 2) :] return inverse_transform def forward(self, input_data): self.magnitude, self.phase = self.transform(input_data) reconstruction = self.inverse(self.magnitude, self.phase) return reconstruction # export class MelSTFT: def __init__( self, filter_length=1024, hop_length=256, win_length=1024, n_mel_channels=80, sampling_rate=22050, mel_fmin=0.0, mel_fmax=8000.0, device="cpu", padding=None, rank=None, ): self.n_mel_channels = n_mel_channels self.sampling_rate = sampling_rate if padding is None: padding = filter_length // 2 self.stft_fn = STFT( filter_length, hop_length, win_length, device=device, rank=rank, padding=padding, ) mel_basis = librosa_mel( sampling_rate, filter_length, n_mel_channels, mel_fmin, mel_fmax ) mel_basis = torch.from_numpy(mel_basis).float() if device == "cuda": mel_basis = mel_basis.cuda() self.mel_basis = mel_basis def spectral_normalize(self, magnitudes): output = dynamic_range_compression(magnitudes) return output def spectral_de_normalize(self, magnitudes): output = dynamic_range_decompression(magnitudes) return output def spec_to_mel(self, spec): mel_output = torch.matmul(self.mel_basis, spec) mel_output = self.spectral_normalize(mel_output) return mel_output def spectrogram(self, y): assert y.min() >= -1 assert y.max() <= 1 magnitudes, phases = self.stft_fn.transform(y) return magnitudes.data def mel_spectrogram(self, y, ref_level_db=20, magnitude_power=1.5): """Computes mel-spectrograms from a batch of waves PARAMS ------ y: Variable(torch.FloatTensor) with shape (B, T) in range [-1, 1] RETURNS ------- mel_output: torch.FloatTensor of shape (B, n_mel_channels, T) """ assert y.min() >= -1 assert y.max() <= 1 magnitudes, phases = self.stft_fn.transform(y) magnitudes = magnitudes.data return self.spec_to_mel(magnitudes) def griffin_lim(self, mel_spectrogram, n_iters=30): mel_dec = self.spectral_de_normalize(mel_spectrogram) # Float cast required for fp16 training. mel_dec = mel_dec.transpose(0, 1).cpu().data.float() spec_from_mel = torch.mm(mel_dec, self.mel_basis).transpose(0, 1) spec_from_mel *= 1000 out = griffin_lim(spec_from_mel.unsqueeze(0), self.stft_fn, n_iters=n_iters) return out from IPython.display import Audio stft = STFT() mel_stft = MelSTFT() mel = mel_stft.mel_spectrogram(torch.clip(torch.randn(1, 1000), -1, 1)) assert mel.shape[0] == 1 assert mel.shape[1] == 80 mel = torch.load("./test/fixtures/stevejobs-1.pt") aud = mel_stft.griffin_lim(mel) # hide Audio(aud, rate=22050) ###Output _____no_output_____ ###Markdown Global style tokens ###Code # export from torch.nn import init class ReferenceEncoder(nn.Module): """ inputs --- [N, Ty/r, n_mels*r] mels outputs --- [N, ref_enc_gru_size] """ def __init__(self, hp): super().__init__() K = len(hp.ref_enc_filters) filters = [1] + hp.ref_enc_filters convs = [ nn.Conv2d( in_channels=filters[i], out_channels=filters[i + 1], kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), ) for i in range(K) ] self.convs = nn.ModuleList(convs) self.bns = nn.ModuleList( [nn.BatchNorm2d(num_features=hp.ref_enc_filters[i]) for i in range(K)] ) out_channels = self.calculate_channels(hp.n_mel_channels, 3, 2, 1, K) self.gru = nn.GRU( input_size=hp.ref_enc_filters[-1] * out_channels, hidden_size=hp.ref_enc_gru_size, batch_first=True, ) self.n_mel_channels = hp.n_mel_channels self.ref_enc_gru_size = hp.ref_enc_gru_size def forward(self, inputs, input_lengths=None): out = inputs.view(inputs.size(0), 1, -1, self.n_mel_channels) for conv, bn in zip(self.convs, self.bns): out = conv(out) out = bn(out) out = F.relu(out) out = out.transpose(1, 2) # [N, Ty//2^K, 128, n_mels//2^K] N, T = out.size(0), out.size(1) out = out.contiguous().view(N, T, -1) # [N, Ty//2^K, 128*n_mels//2^K] if input_lengths is not None: input_lengths = torch.ceil(input_lengths.float() / 2 ** len(self.convs)) input_lengths = input_lengths.cpu().numpy().astype(int) out = nn.utils.rnn.pack_padded_sequence( out, input_lengths, batch_first=True, enforce_sorted=False ) self.gru.flatten_parameters() _, out = self.gru(out) return out.squeeze(0) def calculate_channels(self, L, kernel_size, stride, pad, n_convs): for _ in range(n_convs): L = (L - kernel_size + 2 * pad) // stride + 1 return L class MultiHeadAttention(nn.Module): """ input: query --- [N, T_q, query_dim] key --- [N, T_k, key_dim] output: out --- [N, T_q, num_units] """ def __init__(self, query_dim, key_dim, num_units, num_heads): super().__init__() self.num_units = num_units self.num_heads = num_heads self.key_dim = key_dim self.W_query = nn.Linear( in_features=query_dim, out_features=num_units, bias=False ) self.W_key = nn.Linear(in_features=key_dim, out_features=num_units, bias=False) self.W_value = nn.Linear( in_features=key_dim, out_features=num_units, bias=False ) def forward(self, query, key): querys = self.W_query(query) # [N, T_q, num_units] keys = self.W_key(key) # [N, T_k, num_units] values = self.W_value(key) split_size = self.num_units // self.num_heads querys = torch.stack( torch.split(querys, split_size, dim=2), dim=0 ) # [h, N, T_q, num_units/h] keys = torch.stack( torch.split(keys, split_size, dim=2), dim=0 ) # [h, N, T_k, num_units/h] values = torch.stack( torch.split(values, split_size, dim=2), dim=0 ) # [h, N, T_k, num_units/h] # score = softmax(QK^T / (d_k ** 0.5)) scores = torch.matmul(querys, keys.transpose(2, 3)) # [h, N, T_q, T_k] scores = scores / (self.key_dim ** 0.5) scores = F.softmax(scores, dim=3) # out = score * V out = torch.matmul(scores, values) # [h, N, T_q, num_units/h] out = torch.cat(torch.split(out, 1, dim=0), dim=3).squeeze( 0 ) # [N, T_q, num_units] return out class STL(nn.Module): """ inputs --- [N, token_embedding_size//2] """ def __init__(self, hp): super().__init__() self.embed = nn.Parameter( torch.FloatTensor(hp.token_num, hp.token_embedding_size // hp.num_heads) ) d_q = hp.ref_enc_gru_size d_k = hp.token_embedding_size // hp.num_heads self.attention = MultiHeadAttention( query_dim=d_q, key_dim=d_k, num_units=hp.token_embedding_size, num_heads=hp.num_heads, ) init.normal_(self.embed, mean=0, std=0.5) def forward(self, inputs): N = inputs.size(0) query = inputs.unsqueeze(1) keys = ( torch.tanh(self.embed).unsqueeze(0).expand(N, -1, -1) ) # [N, token_num, token_embedding_size // num_heads] style_embed = self.attention(query, keys) return style_embed class GST(nn.Module): def __init__(self, hp): super().__init__() self.encoder = ReferenceEncoder(hp) self.stl = STL(hp) def forward(self, inputs, input_lengths=None): enc_out = self.encoder(inputs, input_lengths=input_lengths) style_embed = self.stl(enc_out) return style_embed DEFAULTS = HParams( n_symbols=100, symbols_embedding_dim=512, mask_padding=True, fp16_run=False, n_mel_channels=80, # encoder parameters encoder_kernel_size=5, encoder_n_convolutions=3, encoder_embedding_dim=512, # decoder parameters n_frames_per_step=1, # currently only 1 is supported decoder_rnn_dim=1024, prenet_dim=256, prenet_f0_n_layers=1, prenet_f0_dim=1, prenet_f0_kernel_size=1, prenet_rms_dim=0, prenet_fms_kernel_size=1, max_decoder_steps=1000, gate_threshold=0.5, p_attention_dropout=0.1, p_decoder_dropout=0.1, p_teacher_forcing=1.0, # attention parameters attention_rnn_dim=1024, attention_dim=128, # location layer parameters attention_location_n_filters=32, attention_location_kernel_size=31, # mel post-processing network parameters postnet_embedding_dim=512, postnet_kernel_size=5, postnet_n_convolutions=5, # speaker_embedding n_speakers=123, # original nvidia libritts training speaker_embedding_dim=128, # reference encoder with_gst=True, ref_enc_filters=[32, 32, 64, 64, 128, 128], ref_enc_size=[3, 3], ref_enc_strides=[2, 2], ref_enc_pad=[1, 1], ref_enc_gru_size=128, # style token layer token_embedding_size=256, token_num=10, num_heads=8, ) GST(DEFAULTS) ###Output _____no_output_____ ###Markdown VITS common LayerNorm ###Code # export class LayerNorm(nn.Module): def __init__(self, channels, eps=1e-5): super().__init__() self.channels = channels self.eps = eps self.gamma = nn.Parameter(torch.ones(channels)) self.beta = nn.Parameter(torch.zeros(channels)) def forward(self, x): x = x.transpose(1, -1) x = F.layer_norm(x, (self.channels,), self.gamma, self.beta, self.eps) return x.transpose(1, -1) LayerNorm(3) ###Output _____no_output_____ ###Markdown Flip ###Code # export class Flip(nn.Module): def forward(self, x, *args, reverse=False, **kwargs): x = torch.flip(x, [1]) if not reverse: logdet = torch.zeros(x.size(0)).to(dtype=x.dtype, device=x.device) return x, logdet else: return x ###Output _____no_output_____ ###Markdown Log ###Code # export class Log(nn.Module): def forward(self, x, x_mask, reverse=False, **kwargs): if not reverse: y = torch.log(torch.clamp_min(x, 1e-5)) * x_mask logdet = torch.sum(-y, [1, 2]) return y, logdet else: x = torch.exp(x) * x_mask return x ###Output _____no_output_____ ###Markdown ElementWiseAffine ###Code # export class ElementwiseAffine(nn.Module): def __init__(self, channels): super().__init__() self.channels = channels self.m = nn.Parameter(torch.zeros(channels, 1)) self.logs = nn.Parameter(torch.zeros(channels, 1)) def forward(self, x, x_mask, reverse=False, **kwargs): if not reverse: y = self.m + torch.exp(self.logs) * x y = y * x_mask logdet = torch.sum(self.logs * x_mask, [1, 2]) return y, logdet else: x = (x - self.m) * torch.exp(-self.logs) * x_mask return x ###Output _____no_output_____ ###Markdown DDSConv ###Code # export class DDSConv(nn.Module): """ Dialted and Depth-Separable Convolution """ def __init__(self, channels, kernel_size, n_layers, p_dropout=0.0): super().__init__() self.channels = channels self.kernel_size = kernel_size self.n_layers = n_layers self.p_dropout = p_dropout self.drop = nn.Dropout(p_dropout) self.convs_sep = nn.ModuleList() self.convs_1x1 = nn.ModuleList() self.norms_1 = nn.ModuleList() self.norms_2 = nn.ModuleList() for i in range(n_layers): dilation = kernel_size ** i padding = (kernel_size * dilation - dilation) // 2 self.convs_sep.append( nn.Conv1d( channels, channels, kernel_size, groups=channels, dilation=dilation, padding=padding, ) ) self.convs_1x1.append(nn.Conv1d(channels, channels, 1)) self.norms_1.append(LayerNorm(channels)) self.norms_2.append(LayerNorm(channels)) def forward(self, x, x_mask, g=None): if g is not None: x = x + g for i in range(self.n_layers): y = self.convs_sep[i](x * x_mask) y = self.norms_1[i](y) y = F.gelu(y) y = self.convs_1x1[i](y) y = self.norms_2[i](y) y = F.gelu(y) y = self.drop(y) x = x + y return x * x_mask ###Output _____no_output_____ ###Markdown ConvFLow ###Code # export import math from uberduck_ml_dev.models.transforms import piecewise_rational_quadratic_transform class ConvFlow(nn.Module): def __init__( self, in_channels, filter_channels, kernel_size, n_layers, num_bins=10, # tail_bound=5.0, tail_bound=10.0, ): super().__init__() self.in_channels = in_channels self.filter_channels = filter_channels self.kernel_size = kernel_size self.n_layers = n_layers self.num_bins = num_bins self.tail_bound = tail_bound self.half_channels = in_channels // 2 self.pre = nn.Conv1d(self.half_channels, filter_channels, 1) self.convs = DDSConv(filter_channels, kernel_size, n_layers, p_dropout=0.0) self.proj = nn.Conv1d( filter_channels, self.half_channels * (num_bins * 3 - 1), 1 ) self.proj.weight.data.zero_() self.proj.bias.data.zero_() def forward(self, x, x_mask, g=None, reverse=False): x0, x1 = torch.split(x, [self.half_channels] * 2, 1) h = self.pre(x0) h = self.convs(h, x_mask, g=g) h = self.proj(h) * x_mask b, c, t = x0.shape h = h.reshape(b, c, -1, t).permute(0, 1, 3, 2) # [b, cx?, t] -> [b, c, t, ?] unnormalized_widths = h[..., : self.num_bins] / math.sqrt(self.filter_channels) unnormalized_heights = h[..., self.num_bins : 2 * self.num_bins] / math.sqrt( self.filter_channels ) unnormalized_derivatives = h[..., 2 * self.num_bins :] x1, logabsdet = piecewise_rational_quadratic_transform( x1, unnormalized_widths, unnormalized_heights, unnormalized_derivatives, inverse=reverse, tails="linear", tail_bound=self.tail_bound, ) x = torch.cat([x0, x1], 1) * x_mask logdet = torch.sum(logabsdet * x_mask, [1, 2]) if not reverse: return x, logdet else: return x cf = ConvFlow(192, 2, 3, 3) # NOTE(zach): figure out the shape of the forward stuff. # cf(torch.rand(2, 2, 1), torch.ones(2, 2, 1)) ###Output _____no_output_____ ###Markdown WN ###Code # export from uberduck_ml_dev.utils.utils import fused_add_tanh_sigmoid_multiply class WN(torch.nn.Module): def __init__( self, hidden_channels, kernel_size, dilation_rate, n_layers, gin_channels=0, p_dropout=0, ): super(WN, self).__init__() assert kernel_size % 2 == 1 self.hidden_channels = hidden_channels self.kernel_size = (kernel_size,) self.dilation_rate = dilation_rate self.n_layers = n_layers self.gin_channels = gin_channels self.p_dropout = p_dropout self.in_layers = torch.nn.ModuleList() self.res_skip_layers = torch.nn.ModuleList() self.drop = nn.Dropout(p_dropout) if gin_channels != 0: cond_layer = nn.Conv1d(gin_channels, 2 * hidden_channels * n_layers, 1) self.cond_layer = weight_norm(cond_layer, name="weight") for i in range(n_layers): dilation = dilation_rate ** i padding = int((kernel_size * dilation - dilation) / 2) in_layer = nn.Conv1d( hidden_channels, 2 * hidden_channels, kernel_size, dilation=dilation, padding=padding, ) in_layer = weight_norm(in_layer, name="weight") self.in_layers.append(in_layer) # last one is not necessary if i < n_layers - 1: res_skip_channels = 2 * hidden_channels else: res_skip_channels = hidden_channels res_skip_layer = nn.Conv1d(hidden_channels, res_skip_channels, 1) res_skip_layer = weight_norm(res_skip_layer, name="weight") self.res_skip_layers.append(res_skip_layer) def forward(self, x, x_mask, g=None, **kwargs): output = torch.zeros_like(x) n_channels_tensor = torch.IntTensor([self.hidden_channels]) if g is not None: g = self.cond_layer(g) for i in range(self.n_layers): x_in = self.in_layers[i](x) if g is not None: cond_offset = i * 2 * self.hidden_channels g_l = g[:, cond_offset : cond_offset + 2 * self.hidden_channels, :] else: g_l = torch.zeros_like(x_in) acts = fused_add_tanh_sigmoid_multiply(x_in, g_l, n_channels_tensor) acts = self.drop(acts) res_skip_acts = self.res_skip_layers[i](acts) if i < self.n_layers - 1: res_acts = res_skip_acts[:, : self.hidden_channels, :] x = (x + res_acts) * x_mask output = output + res_skip_acts[:, self.hidden_channels :, :] else: output = output + res_skip_acts return output * x_mask def remove_weight_norm(self): if self.gin_channels != 0: remove_weight_norm(self.cond_layer) for l in self.in_layers: remove_weight_norm(l) for l in self.res_skip_layers: remove_weight_norm(l) ###Output _____no_output_____ ###Markdown ResidualCouplingLayer ###Code # export class ResidualCouplingLayer(nn.Module): def __init__( self, channels, hidden_channels, kernel_size, dilation_rate, n_layers, p_dropout=0, gin_channels=0, mean_only=False, ): assert channels % 2 == 0, "channels should be divisible by 2" super().__init__() self.channels = channels self.hidden_channels = hidden_channels self.kernel_size = kernel_size self.dilation_rate = dilation_rate self.n_layers = n_layers self.half_channels = channels // 2 self.mean_only = mean_only self.pre = nn.Conv1d(self.half_channels, hidden_channels, 1) self.enc = WN( hidden_channels, kernel_size, dilation_rate, n_layers, p_dropout=p_dropout, gin_channels=gin_channels, ) self.post = nn.Conv1d(hidden_channels, self.half_channels * (2 - mean_only), 1) self.post.weight.data.zero_() self.post.bias.data.zero_() def forward(self, x, x_mask, g=None, reverse=False): x0, x1 = torch.split(x, [self.half_channels] * 2, 1) h = self.pre(x0) * x_mask h = self.enc(h, x_mask, g=g) stats = self.post(h) * x_mask if not self.mean_only: m, logs = torch.split(stats, [self.half_channels] * 2, 1) else: m = stats logs = torch.zeros_like(m) if not reverse: x1 = m + x1 * torch.exp(logs) * x_mask x = torch.cat([x0, x1], 1) logdet = torch.sum(logs, [1, 2]) return x, logdet else: x1 = (x1 - m) * torch.exp(-logs) * x_mask x = torch.cat([x0, x1], 1) return x ###Output _____no_output_____ ###Markdown ResBlock ###Code # export class ResBlock1(torch.nn.Module): def __init__(self, channels, kernel_size=3, dilation=(1, 3, 5)): super(ResBlock1, self).__init__() self.convs1 = nn.ModuleList( [ weight_norm( nn.Conv1d( channels, channels, kernel_size, 1, dilation=dilation[0], padding=get_padding(kernel_size, dilation[0]), ) ), weight_norm( nn.Conv1d( channels, channels, kernel_size, 1, dilation=dilation[1], padding=get_padding(kernel_size, dilation[1]), ) ), weight_norm( nn.Conv1d( channels, channels, kernel_size, 1, dilation=dilation[2], padding=get_padding(kernel_size, dilation[2]), ) ), ] ) self.convs1.apply(init_weights) self.convs2 = nn.ModuleList( [ weight_norm( nn.Conv1d( channels, channels, kernel_size, 1, dilation=1, padding=get_padding(kernel_size, 1), ) ), weight_norm( nn.Conv1d( channels, channels, kernel_size, 1, dilation=1, padding=get_padding(kernel_size, 1), ) ), weight_norm( nn.Conv1d( channels, channels, kernel_size, 1, dilation=1, padding=get_padding(kernel_size, 1), ) ), ] ) self.convs2.apply(init_weights) def forward(self, x, x_mask=None): for c1, c2 in zip(self.convs1, self.convs2): xt = F.leaky_relu(x, LRELU_SLOPE) if x_mask is not None: xt = xt * x_mask xt = c1(xt) xt = F.leaky_relu(xt, LRELU_SLOPE) if x_mask is not None: xt = xt * x_mask xt = c2(xt) x = xt + x if x_mask is not None: x = x * x_mask return x def remove_weight_norm(self): for l in self.convs1: remove_weight_norm(l) for l in self.convs2: remove_weight_norm(l) class ResBlock2(torch.nn.Module): def __init__(self, channels, kernel_size=3, dilation=(1, 3)): super(ResBlock2, self).__init__() self.convs = nn.ModuleList( [ weight_norm( nn.Conv1d( channels, channels, kernel_size, 1, dilation=dilation[0], padding=get_padding(kernel_size, dilation[0]), ) ), weight_norm( nn.Conv1d( channels, channels, kernel_size, 1, dilation=dilation[1], padding=get_padding(kernel_size, dilation[1]), ) ), ] ) self.convs.apply(init_weights) def forward(self, x, x_mask=None): for c in self.convs: xt = F.leaky_relu(x, LRELU_SLOPE) if x_mask is not None: xt = xt * x_mask xt = c(xt) x = xt + x if x_mask is not None: x = x * x_mask return x def remove_weight_norm(self): for l in self.convs: remove_weight_norm(l) # export LRELU_SLOPE = 0.1 ###Output _____no_output_____
silver/.ipynb_checkpoints/C02_Quantum_States_With_Complex_Numbers-checkpoint.ipynb
###Markdown prepared by Maksim Dimitrijev (QLatvia) This cell contains some macros. If there is a problem with displaying mathematical formulas, please run this cell to load these macros. $ \newcommand{\bra}[1]{\langle 1|} $$ \newcommand{\ket}[1]{|1\rangle} $$ \newcommand{\braket}[2]{\langle 1|2\rangle} $$ \newcommand{\dot}[2]{ 1 \cdot 2} $$ \newcommand{\biginner}[2]{\left\langle 1,2\right\rangle} $$ \newcommand{\mymatrix}[2]{\left( \begin{array}{1} 2\end{array} \right)} $$ \newcommand{\myvector}[1]{\mymatrix{c}{1}} $$ \newcommand{\myrvector}[1]{\mymatrix{r}{1}} $$ \newcommand{\mypar}[1]{\left( 1 \right)} $$ \newcommand{\mybigpar}[1]{ \Big( 1 \Big)} $$ \newcommand{\sqrttwo}{\frac{1}{\sqrt{2}}} $$ \newcommand{\dsqrttwo}{\dfrac{1}{\sqrt{2}}} $$ \newcommand{\onehalf}{\frac{1}{2}} $$ \newcommand{\donehalf}{\dfrac{1}{2}} $$ \newcommand{\hadamard}{ \mymatrix{rr}{ \sqrttwo & \sqrttwo \\ \sqrttwo & -\sqrttwo }} $$ \newcommand{\vzero}{\myvector{1\\0}} $$ \newcommand{\vone}{\myvector{0\\1}} $$ \newcommand{\stateplus}{\myvector{ \sqrttwo \\ \sqrttwo } } $$ \newcommand{\stateminus}{ \myrvector{ \sqrttwo \\ -\sqrttwo } } $$ \newcommand{\myarray}[2]{ \begin{array}{1}2\end{array}} $$ \newcommand{\X}{ \mymatrix{cc}{0 & 1 \\ 1 & 0} } $$ \newcommand{\Z}{ \mymatrix{rr}{1 & 0 \\ 0 & -1} } $$ \newcommand{\Htwo}{ \mymatrix{rrrr}{ \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & -\frac{1}{2} & \frac{1}{2} & -\frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & -\frac{1}{2} & -\frac{1}{2} \\ \frac{1}{2} & -\frac{1}{2} & -\frac{1}{2} & \frac{1}{2} } } $$ \newcommand{\CNOT}{ \mymatrix{cccc}{1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0} } $$ \newcommand{\norm}[1]{ \left\lVert 1 \right\rVert } $$ \newcommand{\pstate}[1]{ \lceil \mspace{-1mu} 1 \mspace{-1.5mu} \rfloor } $ Quantum states with complex numbers The main properties of quantum states do not change whether we are using complex numbers or not. Let's recall the definition we had in Bronze:**Recall: Quantum states with real numbers**When a quantum system is measured, the probability of observing one state is the square of its value.The summation of amplitude squares must be 1 for a valid quantum state.The second property also means that the overall probability must be 1 when we observe a quantum system. If we consider a quantum system as a vector, then the length of such vector should be 1. How complex numbers affect probabilitiesSuppose that we have a quantum state with the amplitude $a+bi$. What is the probability to observe such state when the quantum system is measured? We need a small update to our statement about the probability of the measurement - it is equal to the square of the absolute value of the amplitude. If amplitudes are restricted to real numbers, then this update makes no difference. With complex numbers we obtain the following:$\mathopen|a+bi\mathclose| = \sqrt{a^2+b^2} \implies \mathopen|a+bi\mathclose|^2 = a^2+b^2$.It is easy to see that this calculation works fine if we do not have imaginary part - we just obtain the real part $a^2$. Notice that for the probability $a^2 + b^2$ both real and imaginary part contribute in a similar way - with the square of its value.<!--Let's check the square of the complex number:$(a+bi)^2 = (a+bi)(a+bi) = a^2 + 2abi + b^2i^2 = (a^2-b^2) + 2abi$.In such case we still obtain a complex number, but for a probability we need a real number. -->Suppose that we have the following vector, representing a quantum system:$$ \myvector{ \frac{1+i}{\sqrt{3}} \\ -\frac{1}{\sqrt{3}} }.$$This vector represents the state $\frac{1+i}{\sqrt{3}}\ket{0} - \frac{1}{\sqrt{3}}\ket{1}$. After doing measurement, we observe state $\ket{1}$ with probability $\mypar{-\frac{1}{\sqrt{3}}}^2 = \frac{1}{3}$. Let's decompose the amplitude of state $\ket{0}$ into form $a+bi$. Then we obtain $\frac{1}{\sqrt{3}} + \frac{1}{\sqrt{3}}i$, and so our probability is $\mypar{\frac{1}{\sqrt{3}}}^2 + \mypar{\frac{1}{\sqrt{3}}}^2 = \frac{2}{3}$. Task 1 Calculate on the paper the probabilities to observe state $\ket{0}$ and $\ket{1}$ for each quantum system:$$ \myvector{ \frac{1-i\sqrt{2}}{2} \\ \frac{i}{2} } \mbox{ , } \myvector{ \frac{2i}{\sqrt{6}} \\ \frac{1-i}{\sqrt{6}} } \mbox{ and } \myvector{ \frac{1+i\sqrt{3}}{\sqrt{5}} \\ \frac{-i}{\sqrt{5}} }.$$. click for our solution Task 2 If the following vectors are valid quantum states, then what can be the values of $a$ and $b$?$$ \ket{v} = \myrvector{0.1 - ai \\ -0.7 \\ 0.4 + 0.3i } ~~~~~ \mbox{and} ~~~~~ \ket{u} = \myrvector{ \frac{1-i}{\sqrt{6}} \\ \frac{1+2i}{\sqrt{b}} \\ -\frac{1}{\sqrt{4}} }.$$ ###Code # # your code is here # (you may find the values by hand (in mind) as well) # ###Output _____no_output_____ ###Markdown click for our solution Task 3Randomly create a 2-dimensional quantum state, where both amplitudes are complex numbers.Write a function that returns a randomly created 2-dimensional quantum state.Hint: Pick four random values between -100 and 100 for the real and imaginary parts of the amplitudes of state 0 and state 1 Find an appropriate normalization factor to divide each amplitude such that the length of quantum state should be 1 Repeat several times: Randomly pick a quantum state Check whether the picked quantum state is valid _Note:_ You can store your function to use it later by commenting out the first line. ###Code #%%writefile random_complex_quantum_state.py from random import randrange def random_complex_quantum_state(): # quantum state quantum_state=[0,0] # # # return quantum_state %%writefile is_quantum_state.py # testing whether a given quantum state is valid def is_quantum_state(quantum_state): # # your code is here # #Use the functions you have written to randomly generate and check quantum states # # your code is here # ###Output _____no_output_____
tensorflow/TF_Keras_ResNet101_Filter_Shape_Weights_and_MaxPooling_Strided_Convolution_on_Odd_Input.ipynb
###Markdown Setup ResNet101 model ###Code !wget "https://upload.wikimedia.org/wikipedia/commons/thumb/3/37/African_Bush_Elephant.jpg/1200px-African_Bush_Elephant.jpg" -O "elephant.jpg" from tensorflow.keras.applications import ResNet101 from tensorflow.keras.preprocessing import image from tensorflow.keras.applications.resnet import preprocess_input, decode_predictions import numpy as np model = ResNet101(weights='imagenet') img_path = 'elephant.jpg' img = image.load_img(img_path, target_size=(224, 224)) x = image.img_to_array(img) x = np.expand_dims(x, axis=0) x = preprocess_input(x) preds = model.predict(x) # decode the results into a list of tuples (class, description, probability) # (one such list for each sample in the batch) print('Predicted:', decode_predictions(preds, top=3)[0]) model.summary() print(len(model.layers[2].weights)) print(model.layers[2].name) print(model.layers[2].weights[0].shape) print(model.layers[2].weights[1].shape) print(model.layers[2].name) print(model.layers[2].weights) print(model.layers[7].name) print(model.layers[7].weights) ###Output conv2_block1_1_conv [<tf.Variable 'conv2_block1_1_conv/kernel:0' shape=(1, 1, 64, 64) dtype=float32, numpy= array([[[[ 0.00160399, -0.00254265, -0.01731922, ..., -0.01651942, 0.01513864, -0.0354646 ], [ 0.01515921, -0.00627845, 0.00166968, ..., 0.01461547, 0.03117803, 0.11374122], [ 0.00282309, 0.00229593, 0.03237155, ..., 0.0035359 , -0.03562421, -0.00834576], ..., [-0.02377483, -0.0010978 , -0.02749332, ..., -0.08129182, -0.00911469, -0.04912051], [ 0.02666844, 0.00969497, 0.07066278, ..., -0.02592005, -0.01759226, -0.02110136], [-0.0223264 , 0.00080224, -0.08305199, ..., 0.006657 , 0.0217971 , -0.03367427]]]], dtype=float32)>, <tf.Variable 'conv2_block1_1_conv/bias:0' shape=(64,) dtype=float32, numpy= array([0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.], dtype=float32)>] ###Markdown Enumerrate layers, get filter shape and counts ###Code for i, layer in enumerate(model.layers): print(layer.name) if layer.weights: print(layer.weights[0].shape) print(layer.weights[1].shape) print('-' * 30) ###Output input_3 ------------------------------ conv1_pad ------------------------------ conv1_conv (7, 7, 3, 64) (64,) ------------------------------ conv1_bn (64,) (64,) ------------------------------ conv1_relu ------------------------------ pool1_pad ------------------------------ pool1_pool ------------------------------ conv2_block1_1_conv (1, 1, 64, 64) (64,) ------------------------------ conv2_block1_1_bn (64,) (64,) ------------------------------ conv2_block1_1_relu ------------------------------ conv2_block1_2_conv (3, 3, 64, 64) (64,) ------------------------------ conv2_block1_2_bn (64,) (64,) ------------------------------ conv2_block1_2_relu ------------------------------ conv2_block1_0_conv (1, 1, 64, 256) (256,) ------------------------------ conv2_block1_3_conv (1, 1, 64, 256) (256,) ------------------------------ conv2_block1_0_bn (256,) (256,) ------------------------------ conv2_block1_3_bn (256,) (256,) ------------------------------ conv2_block1_add ------------------------------ conv2_block1_out ------------------------------ conv2_block2_1_conv (1, 1, 256, 64) (64,) ------------------------------ conv2_block2_1_bn (64,) (64,) ------------------------------ conv2_block2_1_relu ------------------------------ conv2_block2_2_conv (3, 3, 64, 64) (64,) ------------------------------ conv2_block2_2_bn (64,) (64,) ------------------------------ conv2_block2_2_relu ------------------------------ conv2_block2_3_conv (1, 1, 64, 256) (256,) ------------------------------ conv2_block2_3_bn (256,) (256,) ------------------------------ conv2_block2_add ------------------------------ conv2_block2_out ------------------------------ conv2_block3_1_conv (1, 1, 256, 64) (64,) ------------------------------ conv2_block3_1_bn (64,) (64,) ------------------------------ conv2_block3_1_relu ------------------------------ conv2_block3_2_conv (3, 3, 64, 64) (64,) ------------------------------ conv2_block3_2_bn (64,) (64,) ------------------------------ conv2_block3_2_relu ------------------------------ conv2_block3_3_conv (1, 1, 64, 256) (256,) ------------------------------ conv2_block3_3_bn (256,) (256,) ------------------------------ conv2_block3_add ------------------------------ conv2_block3_out ------------------------------ conv3_block1_1_conv (1, 1, 256, 128) (128,) ------------------------------ conv3_block1_1_bn (128,) (128,) ------------------------------ conv3_block1_1_relu ------------------------------ conv3_block1_2_conv (3, 3, 128, 128) (128,) ------------------------------ conv3_block1_2_bn (128,) (128,) ------------------------------ conv3_block1_2_relu ------------------------------ conv3_block1_0_conv (1, 1, 256, 512) (512,) ------------------------------ conv3_block1_3_conv (1, 1, 128, 512) (512,) ------------------------------ conv3_block1_0_bn (512,) (512,) ------------------------------ conv3_block1_3_bn (512,) (512,) ------------------------------ conv3_block1_add ------------------------------ conv3_block1_out ------------------------------ conv3_block2_1_conv (1, 1, 512, 128) (128,) ------------------------------ conv3_block2_1_bn (128,) (128,) ------------------------------ conv3_block2_1_relu ------------------------------ conv3_block2_2_conv (3, 3, 128, 128) (128,) ------------------------------ conv3_block2_2_bn (128,) (128,) ------------------------------ conv3_block2_2_relu ------------------------------ conv3_block2_3_conv (1, 1, 128, 512) (512,) ------------------------------ conv3_block2_3_bn (512,) (512,) ------------------------------ conv3_block2_add ------------------------------ conv3_block2_out ------------------------------ conv3_block3_1_conv (1, 1, 512, 128) (128,) ------------------------------ conv3_block3_1_bn (128,) (128,) ------------------------------ conv3_block3_1_relu ------------------------------ conv3_block3_2_conv (3, 3, 128, 128) (128,) ------------------------------ conv3_block3_2_bn (128,) (128,) ------------------------------ conv3_block3_2_relu ------------------------------ conv3_block3_3_conv (1, 1, 128, 512) (512,) ------------------------------ conv3_block3_3_bn (512,) (512,) ------------------------------ conv3_block3_add ------------------------------ conv3_block3_out ------------------------------ conv3_block4_1_conv (1, 1, 512, 128) (128,) ------------------------------ conv3_block4_1_bn (128,) (128,) ------------------------------ conv3_block4_1_relu ------------------------------ conv3_block4_2_conv (3, 3, 128, 128) (128,) ------------------------------ conv3_block4_2_bn (128,) (128,) ------------------------------ conv3_block4_2_relu ------------------------------ conv3_block4_3_conv (1, 1, 128, 512) (512,) ------------------------------ conv3_block4_3_bn (512,) (512,) ------------------------------ conv3_block4_add ------------------------------ conv3_block4_out ------------------------------ conv4_block1_1_conv (1, 1, 512, 256) (256,) ------------------------------ conv4_block1_1_bn (256,) (256,) ------------------------------ conv4_block1_1_relu ------------------------------ conv4_block1_2_conv (3, 3, 256, 256) (256,) ------------------------------ conv4_block1_2_bn (256,) (256,) ------------------------------ conv4_block1_2_relu ------------------------------ conv4_block1_0_conv (1, 1, 512, 1024) (1024,) ------------------------------ conv4_block1_3_conv (1, 1, 256, 1024) (1024,) ------------------------------ conv4_block1_0_bn (1024,) (1024,) ------------------------------ conv4_block1_3_bn (1024,) (1024,) ------------------------------ conv4_block1_add ------------------------------ conv4_block1_out ------------------------------ conv4_block2_1_conv (1, 1, 1024, 256) (256,) ------------------------------ conv4_block2_1_bn (256,) (256,) ------------------------------ conv4_block2_1_relu ------------------------------ conv4_block2_2_conv (3, 3, 256, 256) (256,) ------------------------------ conv4_block2_2_bn (256,) (256,) ------------------------------ conv4_block2_2_relu ------------------------------ conv4_block2_3_conv (1, 1, 256, 1024) (1024,) ------------------------------ conv4_block2_3_bn (1024,) (1024,) ------------------------------ conv4_block2_add ------------------------------ conv4_block2_out ------------------------------ conv4_block3_1_conv (1, 1, 1024, 256) (256,) ------------------------------ conv4_block3_1_bn (256,) (256,) ------------------------------ conv4_block3_1_relu ------------------------------ conv4_block3_2_conv (3, 3, 256, 256) (256,) ------------------------------ conv4_block3_2_bn (256,) (256,) ------------------------------ conv4_block3_2_relu ------------------------------ conv4_block3_3_conv (1, 1, 256, 1024) (1024,) ------------------------------ conv4_block3_3_bn (1024,) (1024,) ------------------------------ conv4_block3_add ------------------------------ conv4_block3_out ------------------------------ conv4_block4_1_conv (1, 1, 1024, 256) (256,) ------------------------------ conv4_block4_1_bn (256,) (256,) ------------------------------ conv4_block4_1_relu ------------------------------ conv4_block4_2_conv (3, 3, 256, 256) (256,) ------------------------------ conv4_block4_2_bn (256,) (256,) ------------------------------ conv4_block4_2_relu ------------------------------ conv4_block4_3_conv (1, 1, 256, 1024) (1024,) ------------------------------ conv4_block4_3_bn (1024,) (1024,) ------------------------------ conv4_block4_add ------------------------------ conv4_block4_out ------------------------------ conv4_block5_1_conv (1, 1, 1024, 256) (256,) ------------------------------ conv4_block5_1_bn (256,) (256,) ------------------------------ conv4_block5_1_relu ------------------------------ conv4_block5_2_conv (3, 3, 256, 256) (256,) ------------------------------ conv4_block5_2_bn (256,) (256,) ------------------------------ conv4_block5_2_relu ------------------------------ conv4_block5_3_conv (1, 1, 256, 1024) (1024,) ------------------------------ conv4_block5_3_bn (1024,) (1024,) ------------------------------ conv4_block5_add ------------------------------ conv4_block5_out ------------------------------ conv4_block6_1_conv (1, 1, 1024, 256) (256,) ------------------------------ conv4_block6_1_bn (256,) (256,) ------------------------------ conv4_block6_1_relu ------------------------------ conv4_block6_2_conv (3, 3, 256, 256) (256,) ------------------------------ conv4_block6_2_bn (256,) (256,) ------------------------------ conv4_block6_2_relu ------------------------------ conv4_block6_3_conv (1, 1, 256, 1024) (1024,) ------------------------------ conv4_block6_3_bn (1024,) (1024,) ------------------------------ conv4_block6_add ------------------------------ conv4_block6_out ------------------------------ conv4_block7_1_conv (1, 1, 1024, 256) (256,) ------------------------------ conv4_block7_1_bn (256,) (256,) ------------------------------ conv4_block7_1_relu ------------------------------ conv4_block7_2_conv (3, 3, 256, 256) (256,) ------------------------------ conv4_block7_2_bn (256,) (256,) ------------------------------ conv4_block7_2_relu ------------------------------ conv4_block7_3_conv (1, 1, 256, 1024) (1024,) ------------------------------ conv4_block7_3_bn (1024,) (1024,) ------------------------------ conv4_block7_add ------------------------------ conv4_block7_out ------------------------------ conv4_block8_1_conv (1, 1, 1024, 256) (256,) ------------------------------ conv4_block8_1_bn (256,) (256,) ------------------------------ conv4_block8_1_relu ------------------------------ conv4_block8_2_conv (3, 3, 256, 256) (256,) ------------------------------ conv4_block8_2_bn (256,) (256,) ------------------------------ conv4_block8_2_relu ------------------------------ conv4_block8_3_conv (1, 1, 256, 1024) (1024,) ------------------------------ conv4_block8_3_bn (1024,) (1024,) ------------------------------ conv4_block8_add ------------------------------ conv4_block8_out ------------------------------ conv4_block9_1_conv (1, 1, 1024, 256) (256,) ------------------------------ conv4_block9_1_bn (256,) (256,) ------------------------------ conv4_block9_1_relu ------------------------------ conv4_block9_2_conv (3, 3, 256, 256) (256,) ------------------------------ conv4_block9_2_bn (256,) (256,) ------------------------------ conv4_block9_2_relu ------------------------------ conv4_block9_3_conv (1, 1, 256, 1024) (1024,) ------------------------------ conv4_block9_3_bn (1024,) (1024,) ------------------------------ conv4_block9_add ------------------------------ conv4_block9_out ------------------------------ conv4_block10_1_conv (1, 1, 1024, 256) (256,) ------------------------------ conv4_block10_1_bn (256,) (256,) ------------------------------ conv4_block10_1_relu ------------------------------ conv4_block10_2_conv (3, 3, 256, 256) (256,) ------------------------------ conv4_block10_2_bn (256,) (256,) ------------------------------ conv4_block10_2_relu ------------------------------ conv4_block10_3_conv (1, 1, 256, 1024) (1024,) ------------------------------ conv4_block10_3_bn (1024,) (1024,) ------------------------------ conv4_block10_add ------------------------------ conv4_block10_out ------------------------------ conv4_block11_1_conv (1, 1, 1024, 256) (256,) ------------------------------ conv4_block11_1_bn (256,) (256,) ------------------------------ conv4_block11_1_relu ------------------------------ conv4_block11_2_conv (3, 3, 256, 256) (256,) ------------------------------ conv4_block11_2_bn (256,) (256,) ------------------------------ conv4_block11_2_relu ------------------------------ conv4_block11_3_conv (1, 1, 256, 1024) (1024,) ------------------------------ conv4_block11_3_bn (1024,) (1024,) ------------------------------ conv4_block11_add ------------------------------ conv4_block11_out ------------------------------ conv4_block12_1_conv (1, 1, 1024, 256) (256,) ------------------------------ conv4_block12_1_bn (256,) (256,) ------------------------------ conv4_block12_1_relu ------------------------------ conv4_block12_2_conv (3, 3, 256, 256) (256,) ------------------------------ conv4_block12_2_bn (256,) (256,) ------------------------------ conv4_block12_2_relu ------------------------------ conv4_block12_3_conv (1, 1, 256, 1024) (1024,) ------------------------------ conv4_block12_3_bn (1024,) (1024,) ------------------------------ conv4_block12_add ------------------------------ conv4_block12_out ------------------------------ conv4_block13_1_conv (1, 1, 1024, 256) (256,) ------------------------------ conv4_block13_1_bn (256,) (256,) ------------------------------ conv4_block13_1_relu ------------------------------ conv4_block13_2_conv (3, 3, 256, 256) (256,) ------------------------------ conv4_block13_2_bn (256,) (256,) ------------------------------ conv4_block13_2_relu ------------------------------ conv4_block13_3_conv (1, 1, 256, 1024) (1024,) ------------------------------ conv4_block13_3_bn (1024,) (1024,) ------------------------------ conv4_block13_add ------------------------------ conv4_block13_out ------------------------------ conv4_block14_1_conv (1, 1, 1024, 256) (256,) ------------------------------ conv4_block14_1_bn (256,) (256,) ------------------------------ conv4_block14_1_relu ------------------------------ conv4_block14_2_conv (3, 3, 256, 256) (256,) ------------------------------ conv4_block14_2_bn (256,) (256,) ------------------------------ conv4_block14_2_relu ------------------------------ conv4_block14_3_conv (1, 1, 256, 1024) (1024,) ------------------------------ conv4_block14_3_bn (1024,) (1024,) ------------------------------ conv4_block14_add ------------------------------ conv4_block14_out ------------------------------ conv4_block15_1_conv (1, 1, 1024, 256) (256,) ------------------------------ conv4_block15_1_bn (256,) (256,) ------------------------------ conv4_block15_1_relu ------------------------------ conv4_block15_2_conv (3, 3, 256, 256) (256,) ------------------------------ conv4_block15_2_bn (256,) (256,) ------------------------------ conv4_block15_2_relu ------------------------------ conv4_block15_3_conv (1, 1, 256, 1024) (1024,) ------------------------------ conv4_block15_3_bn (1024,) (1024,) ------------------------------ conv4_block15_add ------------------------------ conv4_block15_out ------------------------------ conv4_block16_1_conv (1, 1, 1024, 256) (256,) ------------------------------ conv4_block16_1_bn (256,) (256,) ------------------------------ conv4_block16_1_relu ------------------------------ conv4_block16_2_conv (3, 3, 256, 256) (256,) ------------------------------ conv4_block16_2_bn (256,) (256,) ------------------------------ conv4_block16_2_relu ------------------------------ conv4_block16_3_conv (1, 1, 256, 1024) (1024,) ------------------------------ conv4_block16_3_bn (1024,) (1024,) ------------------------------ conv4_block16_add ------------------------------ conv4_block16_out ------------------------------ conv4_block17_1_conv (1, 1, 1024, 256) (256,) ------------------------------ conv4_block17_1_bn (256,) (256,) ------------------------------ conv4_block17_1_relu ------------------------------ conv4_block17_2_conv (3, 3, 256, 256) (256,) ------------------------------ conv4_block17_2_bn (256,) (256,) ------------------------------ conv4_block17_2_relu ------------------------------ conv4_block17_3_conv (1, 1, 256, 1024) (1024,) ------------------------------ conv4_block17_3_bn (1024,) (1024,) ------------------------------ conv4_block17_add ------------------------------ conv4_block17_out ------------------------------ conv4_block18_1_conv (1, 1, 1024, 256) (256,) ------------------------------ conv4_block18_1_bn (256,) (256,) ------------------------------ conv4_block18_1_relu ------------------------------ conv4_block18_2_conv (3, 3, 256, 256) (256,) ------------------------------ conv4_block18_2_bn (256,) (256,) ------------------------------ conv4_block18_2_relu ------------------------------ conv4_block18_3_conv (1, 1, 256, 1024) (1024,) ------------------------------ conv4_block18_3_bn (1024,) (1024,) ------------------------------ conv4_block18_add ------------------------------ conv4_block18_out ------------------------------ conv4_block19_1_conv (1, 1, 1024, 256) (256,) ------------------------------ conv4_block19_1_bn (256,) (256,) ------------------------------ conv4_block19_1_relu ------------------------------ conv4_block19_2_conv (3, 3, 256, 256) (256,) ------------------------------ conv4_block19_2_bn (256,) (256,) ------------------------------ conv4_block19_2_relu ------------------------------ conv4_block19_3_conv (1, 1, 256, 1024) (1024,) ------------------------------ conv4_block19_3_bn (1024,) (1024,) ------------------------------ conv4_block19_add ------------------------------ conv4_block19_out ------------------------------ conv4_block20_1_conv (1, 1, 1024, 256) (256,) ------------------------------ conv4_block20_1_bn (256,) (256,) ------------------------------ conv4_block20_1_relu ------------------------------ conv4_block20_2_conv (3, 3, 256, 256) (256,) ------------------------------ conv4_block20_2_bn (256,) (256,) ------------------------------ conv4_block20_2_relu ------------------------------ conv4_block20_3_conv (1, 1, 256, 1024) (1024,) ------------------------------ conv4_block20_3_bn (1024,) (1024,) ------------------------------ conv4_block20_add ------------------------------ conv4_block20_out ------------------------------ conv4_block21_1_conv (1, 1, 1024, 256) (256,) ------------------------------ conv4_block21_1_bn (256,) (256,) ------------------------------ conv4_block21_1_relu ------------------------------ conv4_block21_2_conv (3, 3, 256, 256) (256,) ------------------------------ conv4_block21_2_bn (256,) (256,) ------------------------------ conv4_block21_2_relu ------------------------------ conv4_block21_3_conv (1, 1, 256, 1024) (1024,) ------------------------------ conv4_block21_3_bn (1024,) (1024,) ------------------------------ conv4_block21_add ------------------------------ conv4_block21_out ------------------------------ conv4_block22_1_conv (1, 1, 1024, 256) (256,) ------------------------------ conv4_block22_1_bn (256,) (256,) ------------------------------ conv4_block22_1_relu ------------------------------ conv4_block22_2_conv (3, 3, 256, 256) (256,) ------------------------------ conv4_block22_2_bn (256,) (256,) ------------------------------ conv4_block22_2_relu ------------------------------ conv4_block22_3_conv (1, 1, 256, 1024) (1024,) ------------------------------ conv4_block22_3_bn (1024,) (1024,) ------------------------------ conv4_block22_add ------------------------------ conv4_block22_out ------------------------------ conv4_block23_1_conv (1, 1, 1024, 256) (256,) ------------------------------ conv4_block23_1_bn (256,) (256,) ------------------------------ conv4_block23_1_relu ------------------------------ conv4_block23_2_conv (3, 3, 256, 256) (256,) ------------------------------ conv4_block23_2_bn (256,) (256,) ------------------------------ conv4_block23_2_relu ------------------------------ conv4_block23_3_conv (1, 1, 256, 1024) (1024,) ------------------------------ conv4_block23_3_bn (1024,) (1024,) ------------------------------ conv4_block23_add ------------------------------ conv4_block23_out ------------------------------ conv5_block1_1_conv (1, 1, 1024, 512) (512,) ------------------------------ conv5_block1_1_bn (512,) (512,) ------------------------------ conv5_block1_1_relu ------------------------------ conv5_block1_2_conv (3, 3, 512, 512) (512,) ------------------------------ conv5_block1_2_bn (512,) (512,) ------------------------------ conv5_block1_2_relu ------------------------------ conv5_block1_0_conv (1, 1, 1024, 2048) (2048,) ------------------------------ conv5_block1_3_conv (1, 1, 512, 2048) (2048,) ------------------------------ conv5_block1_0_bn (2048,) (2048,) ------------------------------ conv5_block1_3_bn (2048,) (2048,) ------------------------------ conv5_block1_add ------------------------------ conv5_block1_out ------------------------------ conv5_block2_1_conv (1, 1, 2048, 512) (512,) ------------------------------ conv5_block2_1_bn (512,) (512,) ------------------------------ conv5_block2_1_relu ------------------------------ conv5_block2_2_conv (3, 3, 512, 512) (512,) ------------------------------ conv5_block2_2_bn (512,) (512,) ------------------------------ conv5_block2_2_relu ------------------------------ conv5_block2_3_conv (1, 1, 512, 2048) (2048,) ------------------------------ conv5_block2_3_bn (2048,) (2048,) ------------------------------ conv5_block2_add ------------------------------ conv5_block2_out ------------------------------ conv5_block3_1_conv (1, 1, 2048, 512) (512,) ------------------------------ conv5_block3_1_bn (512,) (512,) ------------------------------ conv5_block3_1_relu ------------------------------ conv5_block3_2_conv (3, 3, 512, 512) (512,) ------------------------------ conv5_block3_2_bn (512,) (512,) ------------------------------ conv5_block3_2_relu ------------------------------ conv5_block3_3_conv (1, 1, 512, 2048) (2048,) ------------------------------ conv5_block3_3_bn (2048,) (2048,) ------------------------------ conv5_block3_add ------------------------------ conv5_block3_out ------------------------------ avg_pool ------------------------------ predictions (2048, 1000) (1000,) ------------------------------ ###Markdown Tensorflow odd size max pooling ###Code import tensorflow as tf x = tf.constant(123, shape=(255, 255, 64)) x = tf.reshape(x, [1, 255, 255, 64]) max_pool_2d = tf.keras.layers.MaxPooling2D(pool_size=(2, 2), strides=(2, 2), padding='valid') max_pool_2d(x) import tensorflow as tf x = tf.constant(1.2, shape=(255, 255, 3)) x = tf.reshape(x, [1, 255, 255, 3]) filters = tf.constant(1, shape=(7, 7, 3, 64)) print(filters.shape) c_2d = tf.keras.layers.Conv2D(64, (7, 7), strides=(2, 2), padding='same') c_2d(x) ###Output _____no_output_____
nbs/05-constraints.ipynb
###Markdown Battery ConstraintsThe solution must meet constraints of the battery:- Must only charge between 00:00-15:30- Must only discharge between 15:30--21:00- Must not charge or discharge between 21:00--00:00- Battery must be empty at 00:00 each day Imports ###Code #exports import numpy as np import pandas as pd ###Output _____no_output_____ ###Markdown Loading an Example Charging Rate Profile ###Code df_charge_rate = pd.read_csv('../data/output/latest_submission.csv') s_charge_rate = df_charge_rate.set_index('datetime')['charge_MW'] s_charge_rate.index = pd.to_datetime(s_charge_rate.index) s_charge_rate.head() ###Output _____no_output_____ ###Markdown Checking for NullsBefore we start doing anything clever we'll do a simple check for null values ###Code #exports def check_for_nulls(s_charge_rate): assert s_charge_rate.isnull().sum()==0, 'There are null values in the charge rate time-series' check_for_nulls(s_charge_rate) ###Output _____no_output_____ ###Markdown Converting a charging schedule to capacityThe solution is given in terms of the battery charge/discharge schedule, but it is also necessary to satisfy constraints on the capacity of the battery (see below). The charge is determined by $C_{t+1} = C_{t} + 0.5B_{t}$We'll start by generating the charge state time-series ###Code #exports def construct_charge_state_s(s_charge_rate: pd.Series, time_unit: float=0.5) -> pd.Series: s_charge_state = (s_charge_rate .cumsum() .divide(1/time_unit) ) return s_charge_state s_charge_state = construct_charge_state_s(s_charge_rate) s_charge_state.plot() ###Output _____no_output_____ ###Markdown Checking Capacity Constraints$0 \leq C \leq C_{max}$We'll confirm that the bounds of the values in the charging time-series do not fall outside of the 0-6 MWh capacity of the battery ###Code #exports doesnt_exceed_charge_state_min = lambda s_charge_state, min_charge=0: (s_charge_state.round(10)<min_charge).sum()==0 doesnt_exceed_charge_state_max = lambda s_charge_state, max_charge=6: (s_charge_state.round(10)>max_charge).sum()==0 def check_capacity_constraints(s_charge_state, min_charge=0, max_charge=6): assert doesnt_exceed_charge_state_min(s_charge_state, min_charge), 'The state of charge falls below 0 MWh which is beyond the bounds of possibility' assert doesnt_exceed_charge_state_max(s_charge_state, max_charge), 'The state of charge exceeds the 6 MWh capacity' return check_capacity_constraints(s_charge_state) ###Output _____no_output_____ ###Markdown Checking Full UtilisationWe'll also check that the battery falls to 0 MWh and rises to 6 MWh each day ###Code #exports check_all_values_equal = lambda s, value=0: (s==0).mean()==1 charge_state_always_drops_to_0MWh = lambda s_charge_state, min_charge=0: s_charge_state.groupby(s_charge_state.index.date).min().round(10).pipe(check_all_values_equal, min_charge) charge_state_always_gets_to_6MWh = lambda s_charge_state, max_charge=6: s_charge_state.groupby(s_charge_state.index.date).min().round(10).pipe(check_all_values_equal, max_charge) def check_full_utilisation(s_charge_state, min_charge=0, max_charge=6): assert charge_state_always_drops_to_0MWh(s_charge_state, min_charge), 'The state of charge does not always drop to 0 MWh each day' assert charge_state_always_gets_to_6MWh(s_charge_state, max_charge), 'The state of charge does not always rise to 6 MWh each day' return check_full_utilisation(s_charge_state) ###Output _____no_output_____ ###Markdown Checking Charge Rates$B_{min} \leq B \leq B_{max}$ We'll then check that the minimum and maximum rates fall inside the -2.5 - 2.5 MW allowed by the battery ###Code #exports doesnt_exceed_charge_rate_min = lambda s_charge_rate, min_rate=-2.5: (s_charge_rate.round(10)<min_rate).sum()==0 doesnt_exceed_charge_rate_max = lambda s_charge_rate, max_rate=2.5: (s_charge_rate.round(10)>max_rate).sum()==0 def check_rate_constraints(s_charge_rate, min_rate=-2.5, max_rate=2.5): assert doesnt_exceed_charge_rate_min(s_charge_rate, min_rate), 'The rate of charge falls below -2.5 MW limit' assert doesnt_exceed_charge_rate_max(s_charge_rate, max_rate), 'The rate of charge exceeds the 2.5 MW limit' return check_rate_constraints(s_charge_rate) ###Output _____no_output_____ ###Markdown Checking Charge/Discharge/Inactive PeriodsWe can only charge the battery between periods 1 (00:00) and 31 (15:00) inclusive, and discharge between periods 32 (15:30) and 42 (20:30) inclusive. For periods 43 to 48, there should be no activity, and the day must start with $C=0$. ###Code #exports charge_is_0_at_midnight = lambda s_charge_state: (s_charge_state.between_time('23:30', '23:59').round(10)==0).mean()==1 all_charge_periods_charge = lambda s_charge_rate, charge_times=('00:00', '15:00'): (s_charge_rate.between_time(charge_times[0], charge_times[1]).round(10) >= 0).mean() == 1 all_discharge_periods_discharge = lambda s_charge_rate, discharge_times=('15:30', '20:30'): (s_charge_rate.between_time(discharge_times[0], discharge_times[1]).round(10) <= 0).mean() == 1 all_inactive_periods_do_nothing = lambda s_charge_rate, inactive_times=('21:00', '23:30'): (s_charge_rate.between_time(inactive_times[0], inactive_times[1]).round(10) == 0).mean() == 1 def check_charging_patterns(s_charge_rate, s_charge_state, charge_times=('00:00', '15:00'), discharge_times=('15:30', '20:30'), inactive_times=('21:00', '23:30')): assert charge_is_0_at_midnight(s_charge_state), 'The battery is not always at 0 MWh at midnight' assert all_charge_periods_charge(s_charge_rate, charge_times), 'Some of the periods which should only be charging are instead discharging' assert all_discharge_periods_discharge(s_charge_rate, discharge_times), 'Some of the periods which should only be discharging are instead charging' assert all_inactive_periods_do_nothing(s_charge_rate, inactive_times), 'Some of the periods which should be doing nothing are instead charging/discharging' return check_charging_patterns(s_charge_rate, s_charge_state) #exports def schedule_is_legal(s_charge_rate, time_unit=0.5, min_rate=-2.5, max_rate=2.5, min_charge=0, max_charge=6, charge_times=('00:00', '15:00'), discharge_times=('15:30', '20:30'), inactive_times=('21:00', '23:30')): """ Determine if a battery schedule meets the specified constraints """ check_for_nulls(s_charge_rate) s_charge_state = construct_charge_state_s(s_charge_rate, time_unit) check_capacity_constraints(s_charge_state, min_charge, max_charge) check_full_utilisation(s_charge_state, min_charge, max_charge) check_rate_constraints(s_charge_rate, min_rate, max_rate) check_charging_patterns(s_charge_rate, s_charge_state, charge_times, discharge_times, inactive_times) return True schedule_is_legal(s_charge_rate) ###Output _____no_output_____ ###Markdown Finally we'll export the relevant code to our `batopt` module ###Code #hide from nbdev.export import notebook2script notebook2script() ###Output Converted 00-utilities.ipynb. Converted 01-cleaning.ipynb. Converted 02-discharging.ipynb. Converted 03-charging.ipynb. Converted 04-constraints.ipynb. Converted 05-pipeline.ipynb.
code/Depression_Model_Part_1.ipynb
###Markdown Depression Sentiment Prediction (Part - 1) 1. Helper Libraries and Data Imports For this Task, I will be using NumPy, Pandas, Matplotlib, NLTK and Wordcloud ###Code import os try: import re import numpy as np import pandas as pd import nltk from matplotlib import pyplot as plt from nltk.corpus import stopwords from nltk.stem import PorterStemmer from nltk.tokenize import word_tokenize from wordcloud import WordCloud nltk.download('punkt') nltk.download('stopwords') except: print("Installing Required Dependencies, Please restart the Program thereafter") os.system('pip install numpy pandas matplotlib wordcloud nltk') nltk.download('punkt') nltk.download('stopwords') # Get the Data raw_data = pd.read_csv("training.1600000.processed.noemoticon.csv", encoding='latin-1') raw_data.head() ###Output _____no_output_____ ###Markdown 2. Data Cleaning As clearly visible, Column names are not proper and our data Consists of a lot of Unneeded Columns (such as Id (That Big Number), Date of Tweet, Query Flag, User handle id). We also need to Change the Target Variables (currently, (0, 4) to (0, 1)). We shall remove this Data Dirt so that we can proceed to the next step which is Mild data exploration ###Code # Let's First give all the columns proper name new_columns = ['target', 'tweet_id', 'date', 'query_flag', 'user_id', 'text'] raw_data.columns = new_columns raw_data.sample(5) # Now that the data is a bit more comprehensible, We will drop all the unwanted columns unwanted_cols = ['tweet_id', 'date', 'query_flag', 'user_id'] raw_data = raw_data.drop(unwanted_cols, axis=1) raw_data.head() # Now, the Data looks a lot more cleaner and better to work on, let's change the target variables # from 0 (Negative - Depressive) and 4 (Positive) --> 0 (Positive) and 1 (Negative - Depressive) def change_target(x): if int(x) == 0: return 1 else: return 0 # Let's apply this helper function to the Dataset raw_data['target'] = raw_data['target'].apply(change_target) raw_data.head() ###Output _____no_output_____ ###Markdown 3. Data Exploration using WordCloud As we can see, the first many tweets (which seem negative & depressive from the text too) have been labeled 1 (Negative) and similarly the positive ones are now labeled 0 (Positive). This has made our data very easy to work on! Now let's use Wordcloud to see the different positive and negative words in form of a WordCloud. I will do this in following steps:1. Get a list of all Depressive (Negative) and Positive Words2. Generate a Wordcloud3. Show the Wordcloud using ```plt.show()``` ###Code # This is some good old masking technique I prefer to get required data! depressive_words = " ".join(list(raw_data[raw_data['target'] == 1]['text'])) # Now let's generate our wordcloud dep_words_cloud = WordCloud(width=256, height=256, collocations=False).generate(depressive_words) plt.figure(figsize = (7,7)) plt.imshow(dep_words_cloud) plt.axis('off') plt.tight_layout(pad = 0) plt.show() # Now, let's do the same for Positive Words positive_words = " ".join(list(raw_data[raw_data['target'] == 0]['text'])) # Generate Wordcloud positive_words_cloud = WordCloud(width=256, height=256, collocations=False).generate(positive_words) plt.figure(figsize = (7,7)) plt.imshow(positive_words_cloud) plt.axis('off') plt.tight_layout(pad = 0) plt.show() ###Output _____no_output_____ ###Markdown 4. Feature Extraction We can clearly see the difference between both the WordClouds. The Former WordCloud (Negative one) shows the presence of depressive and negative words. This further reinforces the idea of detecting Depression %-chances from Negative Sentiment Tweets. Now is the time to extract important features from the text as it containes a lot of unnecessary words such as "@-references", Hypertext links, general stopwords, etc. We will do this in 2 steps:1. First, we will apply Regex, remove Stopwords, apply PorterStemmer Algorithm and some other basic Processing on the data.2. Since the Data is just utterly huge, I will export this cleaned and extracted data into a new `.csv` file. This will act as a checkpoint and save us some time in the future.Extra: In the next and final notebook, we will load this new extracted data (which we are going to export in form of `.csv`) and will Proper Feature Extraction using Tf-Idf Vectorizer. ###Code # Now is the time to use all the NLTK imports we have done before! # I will create a helper function to save ourself from redundant work def process_text(text): """ @param: text (Raw Text sentence) @return: final_str (Final processed string) Function -> It takes raw string as an Input and processed data to get important features extracted First it converts to lower, then applies regex code, then tokenizes the words, then removes stopwords, then stems the words, then puts the output list back into a string. """ # Convert text to lower and remove all special characters from it using regex text = text.lower() text = re.sub(r'[^(a-zA-Z)\s]','', text) # Tokenize the words using the word_tokenize() from nltk lib words = word_tokenize(text) # Only take the words whose length is greater than 2 words = [w for w in words if len(w) > 2] # Get the stopwords for english language sw = stopwords.words('english') # Get only those words which are not in stopwords (those which are not stopwords) words = [word for word in words if word not in sw] # Get the PorterStemmer algorithm module stemmer = PorterStemmer() # Take the words with commoner morphological and inflexional endings from words removed words = [stemmer.stem(word) for word in words] # Till this point, we have a list of strings (words), we want them to be converted to a string of text final_str = "" for w in words: final_str += w final_str += " " # Return the final string return final_str %%time # Let's apply this to our data and export it into a '.csv' file raw_data['text'] = raw_data['text'].apply(process_text) raw_data.to_csv('feature_extracted.csv', index=False) raw_data.head() ###Output _____no_output_____
NLTK_Basics.ipynb
###Markdown NLTK includes certain steps to be followed,1. Tokenization2. Stopword removal3. Stemming & Lemmatizing4. POS Tagging5. Named entity recognition, Same has been explained in the following codes ###Code # Importing relevant packages import nltk # Reading a text file file = open('brown_corpus_ca10.txt','r') # Cleaning the file for further processing file = file.read().replace('\n','') data = file.replace('/',"") data ###Output _____no_output_____ ###Markdown Step 1 : Tokenizationa) Sentence tokenization is the process of splitting up strings into “sentences”b) Word tokenization is the process of splitting up “sentences” into individual “words” ###Code Enumerate function in python Enumerate() method adds a counter to an iterable and returns it in a form of enumerate object. This enumerate object can then be used directly in for loops or be converted into a list of tuples using list() method. ###Output _____no_output_____ ###Markdown Each line represeents one advertisementfor i, line in enumerate(data.split('\n')): if i > 10: Lets take a look at the first 10 ads. breakprint(str(i)+':\t'+line) ###Code ### a) Sentence Tokenization ###Output _____no_output_____ ###Markdown Importing relevant packagesfrom nltk import sent_tokenize, word_tokenize sentences = str(sent_tokenize(data)) ###Code ### b) Word tokenize ###Output _____no_output_____ ###Markdown for words in sent_tokenize(sentences): word_tokenize(sentences) ###Code # Step 2 : Eliminating stop words ###Output _____no_output_____ ###Markdown importing relevant librariesfrom nltk.corpus import stopwords Initializationeng_Stopwords = set(stopwords.words('english')) set checking is faster in python Transforming all the letter in the data to a lower casewords_lowered = list(map(str.lower,word_tokenize(sentences))) forming list comprehensions to eliminate stop wordsprint([word for word in words_lowered if word not in eng_Stopwords]) it is necessary to remove the punctuation to simplifyfrom string import punctuationeng_StopwordsPunc = eng_Stopwords.union(set(punctuation)) Removing punctuationsprint([words for words in words_lowered if words not in eng_StopwordsPunc]) ###Code # Step 3 : Stemming & Lemmatization a) Stemming: Trying to shorten a word to their base dictionary word b) Lemmatization: Trying to find the root word with linguistics rules (with the use of regexes) ###Output _____no_output_____ ###Markdown There are two appraches for stemming, i.e PorterStemmer & LancasterStemmerfollowing link will give the comparison,Link - https://www.datacamp.com/community/tutorials/stemming-lemmatization-python ###Code # Stemming from nltk.stem import PorterStemmer # Initializing porter = PorterStemmer() for words in words_lowered: print(porter.stem(words)) # Package for lemmatization from nltk.stem import WordNetLemmatizer wnl = WordNetLemmatizer() for words in words_lowered: print(wnl.lemmatize(words)) ###Output [ `` \tvincentnp g.np ierullinp hashvz beenben appointedvbn temporaryjj assistantnn districtnn attorneynn , , itpps wasbedz announcedvbn mondaynr byin charlesnp e.np raymondnp , , districtnn-tl attorneynn-tl ..\tierullinp willmd replacevb desmondnp d.np connallnp whowps hashvz beenben calledvbn toin activejj militaryjj servicenn butcc isbez expectedvbn backrb onin theat jobnn byin marchnp 31cd ..\tierullinp , , 29cd , , hashvz beenben practicingvbg inin portlandnp sincein novembernp , , 1959cd ..hepps isbez aat graduatenn ofin portlandnp-tl universitynn-tl andcc theat northwesternjj-tl collegenn-tl ofin-tl lawnn-tl ..hepps isbez marriedvbn andcc theat fathernn ofin threecd childrennns ..\thelpingvbg foreignjj countriesnns toto buildvb aat soundjj politicaljj structurenn isbez moreql importantjj thancs aidingvbg themppo economicallyrb , , e.np m.np martinnp , , assistantnn secretarynn ofin statenn forin economicjj affairsnns toldvbd membersnns ofin theat worldnn-tl affairsnns-tl councilnn-tl mondaynr nightnn ..\tmartinnp , , whowps hashvz beenben inin officenn inin washingtonnp , , d.np c.np , , forin 13cd monthsnns spokevbd atin theat council'snn $ annualjj meetingnn atin theat multnomahnp-tl hotelnn-tl ..hepps toldvbd somedti 350cd personsnns thatcs theat unitedvbn-tl states'nns $ -tl challengenn wasbedz toto helpvb countriesnns buildvb theirpp $ ownjj societiesnns theirpp $ ownjj waysnns , , followingvbg theirpp $ ownjj pathsnns ..\t `` `` weppss mustmd persuadevb themppo toto enjoyvb aat waynn ofin lifenn whichwdt , , ifc not* identicaljj , , isbez congenialjj within ourspp $ $ `` '' , , hepps saidvbd butcc addingvbg thatcs ifc theyppss dodo not* developvb theat kindnn ofin societynn theyppss themselvesppls wantvb itpps willmd lackvb ritiualitynn andcc loyaltynn ..patiencenn-hl neededvbn-hl insuringvbg thatcs theat countriesnns havehv aat freedomnn ofin choicenn , , hepps saidvbd , , wasbedz theat biggestjjt detrimentnn toin theat sovietnn-tl unionnn-tl ..\thepps citedvbd eastjj-tl germanynp-tl wherewrb afterin 15cd yearsnns ofin sovietnp rulenn itpps hashvz becomevbn necessaryjj toto buildvb aat wallnn toto keepvb theat peoplenns inrp , , andcc addedvbd , , `` `` soql longrb ascs peoplenns rebelvb , , weppss mustmd not* givevb uprp `` '' ..\tmartinnp calledvbd forin patiencenn onin theat partnn ofin americansnps ..\t `` `` theat countriesnns areber tryingvbg toto buildvb inin aat decadenn theat kindnn ofin societynn weppss tookvbd aat centurynn toto buildvb `` '' , , hepps saidvbd ..\tbyin leavingvbg ourpp $ doorsnns openrb theat unitedvbn-tl statesnns-tl givesvbz otherap peoplesnns theat opportunitynn toto seevb usppo andcc toto comparevb , , hepps saidvbd ..individualjj-hl helpnn-hl bestjjt-hl `` `` weppss havehv noat reasonnn toto fearvb failurenn , , butcc weppss mustmd bebe extraordinarilyrb patientjj `` '' , , theat assistantnn secretarynn saidvbd ..\teconomicallyrb , , martinnp saidvbd , , theat unitedvbn-tl statesnns-tl couldmd bestvb helpvb foreignjj countriesnns byin helpingvbg themppo helpvb themselvesppls ..privatejj businessnn isbez moreql effectivejj thancs governmentnn aidnn , , hepps explainedvbd , , becausecs individualsnns areber ablejj toto workvb within theat peoplenns themselvesppls ..\ttheat unitedvbn-tl statesnns-tl mustmd planvb toto absorbvb theat exportedvbn goodsnns ofin theat countrynn , , atin whatwdt hepps termedvbd aat `` `` socialjj costnn `` '' ..\tmartinnp saidvbd theat governmentnn hashvz beenben workingvbg toto establishvb firmerjjr pricesnns onin primaryjj productsnns whichwdt maymd involvevb theat totalnn incomenn ofin onecd countrynn ..\ttheat portlandnp schoolnn boardnn wasbedz askedvbn mondaynr toto takevb aat positivejj standvb towardsin developingvbg andcc coordinatingvbg within portland'snp $ civiljj defensenn moreap plansnns forin theat city'snn $ schoolsnns inin eventnn ofin attacknn ..\tbutcc thereex seemedvbd toto bebe somedti differencenn ofin opinionnn asin toin howql farrb theat boardnn shouldmd govb , , andcc whosewp $ advicenn itpps shouldmd followvb ..\ttheat boardnn membersnns , , afterin hearingvbg theat coordinationnn pleann fromin mrs.np ralphnp h.np molvarnp , , 1409cd swnn maplecrestnp dr.nn-tl , , saidvbd theyppss thoughtvbd theyppss hadhvd alreadyrb beenben cooperatingvbg ..\tchairmannn-tl c.np richardnp mearsnp pointedvbd outrp thatcs perhapsrb thisdt wasbedz not* strictlyrb aat schoolnn boardnn problemnn , , inin casenn ofin atomicjj attacknn , , butcc thatcs theat boardnn wouldmd cooperatevb soql farrb ascs possiblejj toto getvb theat childrennns toto wherewrb theat parentsnns wantedvbd themppo toto govb ..\tdr.nn-tl melvinnp w.np barnesnp , , superintendentnn , , saidvbd hepps thoughtvbd theat schoolsnns werebed waitingvbg forin somedti leadershipnn , , perhapsrb onin theat nationaljj levelnn , , toto makevb surejj thatcs whateverwdt stepsnns ofin planningvbg theyppss tookvbd wouldmd `` `` bebe moreql fruitfuljj `` '' , , andcc thatcs hepps hadhvd foundvbn thatcs otherap schoolnn districtsnns werebed not* asql farrb alongrb inin theirpp $ planningnn ascs thisdt districtnn ..\t `` `` losnp angelesnp hashvz saidvbn theyppss wouldmd sendvb theat childrennns toin theirpp $ homesnns inin casenn ofin disasternn `` '' , , hepps saidvbd .. `` `` nobodypn reallyrb expectsvbz toto evacuatevb ..ippss thinkvb everybodypn isbez agreedvbn thatcs weppss needvb toto hearvb somedti voicenn onin theat nationaljj levelnn thatdt wouldmd makevb somedti sensenn andcc inin whichwdt weppss wouldmd havehv somedti confidencenn inin followingnn ..\tmrs.np molvarnp , , whowps keptvbd reiteratingvbg herpp $ requestnn thatcs theyppss `` `` pleasevb takevb aat standnn `` '' , , saidvbd , , `` `` weppss mustmd havehv faithnn inin somebodypn -- -- onin theat localjj levelnn , , andcc itpps wouldn'tmd* bebe possiblejj forcs everyonepn toto rushvb toin aat schoolnn toto getvb theirpp $ childrennns `` '' ..\tdr.nn-tl barnesnp saidvbd thatcs thereex seemedvbd toto bebe feelingnn thatcs evacuationnn plansnns , , evenrb forin aat highjj schoolnn wherewrb thereex werebed lotsnns ofin carsnns `` `` mightmd not* bebe realisticjj andcc wouldmd not* workvb `` '' ..\tmrs.np molvarnp askedvbd againrb thatcs theat boardnn joinvb inin takingvbg aat standnn inin keepingvbg within jacknp lowe'snp $ programnn ..theat boardnn saidvbd itpps thoughtvbd itpps hadhvd gonevbn asql farrb ascs instructedvbn soql farrb andcc askedvbd forin moreap informationnn toto bebe broughtvbn atin theat nextap meetingnn ..\titpps wasbedz generallyrb agreedvbn thatcs theat subjectnn wasbedz importantjj andcc theat boardnn shouldmd bebe informedvbn onin whatwdt wasbedz donevbn , , isbez goingvbg toto bebe donevbn andcc whatwdt itpps thoughtvbd shouldmd bebe donevbn ..salemnp-hl ( ( -hl apnp-hl ) ) -hl -- -- theat statewidejj meetingnn ofin warnn mothersnns tuesdaynr inin salemnp willmd hearvb aat greetingnn fromin gov.nn-tl marknp hatfieldnp ..\thatfieldnp alsorb isbez scheduledvbn toto holdvb aat publicjj unitedvbn-tl nationsnns-tl daynn-tl receptionnn inin theat statenn capitolnn onin tuesdaynr ..\thispp $ schedulenn callsvbz forin aat noonnn speechnn mondaynr inin eugenenp atin theat emeraldnn-tl empirenn-tl kiwanisnp-tl clubnn-tl ..\thepps willmd speakvb toin willamettenp-tl universitynn-tl youngjj-tl republicansnps thursdaynr nightnn inin salemnp ..\tonin fridaynr hepps willmd govb toin portlandnp forin theat swearingnn inin ofin deannp brysonnp ascs multnomahnp-tl countynn-tl circuitnn-tl judgenn-tl ..\thepps willmd attendvb aat meetingnn ofin theat republicannp statenn-tl centraljj-tl committeenn-tl saturdaynr inin portlandnp andcc seevb theat washington-oregonnp footballnn gamenn ..\tbeavertonnp-tl schoolnn-tl districtnn-tl no.nn-tl 48cd-tl boardnn membersnns examinedvbd blueprintsnns andcc specificationsnns forin twocd proposedvbn juniorjj highjj schoolsnns atin aat mondaynr nightnn workshopnn sessionnn ..\taat bondnn issuenn whichwdt wouldmd havehv providedvbn somedti $ 3.5nns millioncd forin constructionnn ofin theat twocd 900-studentjj schoolsnns wasbedz defeatedvbn byin districtnn votersnns inin januarynp ..\tlastap weeknn theat boardnn , , byin aat 4cd toin 3cd votenn , , decidedvbd toto askvb votersnns whethercs theyppss prefervb theat 6-3-3cd ( ( juniorjj highjj schoolnn ) ) systemnn orcc theat 8-4cd systemnn ..boardnn membersnns indicatedvbd mondaynr nightnn thisdt wouldmd bebe donevbn byin anat advisorynn pollnn toto bebe takenvbn onin nov.np 15cd , , theat sameap datenn ascs aat $ 581,000nns bondnn electionnn forin theat constructionnn ofin threecd newjj elementaryjj schoolsnns ..\tsecretarynn-tl ofin-tl labornn-tl arthurnp goldbergnp willmd speakvb sundaynr nightnn atin theat masonicjj-tl templenn-tl atin aat $ 25-a-platenn dinnernn honoringvbg sen.nn-tl waynenp l.np morsenp , , ajnn ..\ttheat dinnernn isbez sponsoredvbn byin organizedvbn labornn andcc isbez scheduledvbn forin 7cd p.m.rb ..\tsecretarynn-tl goldbergnp andcc sen.nn-tl morsenp willmd holdvb aat jointnn pressnn conferencenn atin theat rooseveltnp hotelnn-tl atin 4:30cd p.m.rb sundaynr , , blainenp whipplenp , , executivenn secretarynn ofin theat democraticjj-tl partynn-tl ofin oregonnp , , reportedvbd tuesdaynr ..\totherap speakersnns forin theat fund-raisingnn dinnernn includevb reps.nns-tl edithnp greennp andcc alnp ullmannp , , labornn-tl commissionernn-tl normannp nilsennp andcc mayornn-tl terrynp schrunknp , , allabn democratsnps ..oaknn-tl-hl grovenn-tl-hl ( ( -hl specialjj-hl ) ) -hl -- -- threecd positionsnns onin theat oaknn-tl lodgenn-tl waternn-tl districtnn boardnn ofin directorsnns havehv attractedvbn 11cd candidatesnns ..theat electionnn willmd bebe dec.np 4cd fromin 8cd a.m.rb toin 8cd p.m.rb ..pollsnns willmd bebe inin theat waternn officenn ..\tincumbentjj richardnp salternp seeksvbz re-electionnn andcc isbez opposedvbn byin donaldnp huffmannp forin theat five-yearjj termnn ..incumbentjj williamnp brodnp isbez opposedvbn inin hispp $ re-electionnn bidnn byin barbaranp njustnp , , milesnp c.np bubeniknp andcc franknp leenp ..\tfivecd candidatesnns seekvb theat placenn vacatedvbn byin secretarynn-tl hughnp g.np stoutnp ..seekingvbg thisdt two-yearjj termnn areber jamesnp culbertsonnp , , dwightnp m.np steevesnp , , jamesnp c.np pierseenp , , w.m.np sextonnp andcc theodorenp w.np heitschmidtnp ..\taat strongerjjr standnn onin theirpp $ beliefsnns andcc aat firmerjjr graspnn onin theirpp $ futurenn werebed takenvbn fridaynr byin delegatesnns toin theat 29thod generaljj councilnn ofin theat assembliesnns-tl ofin-tl godnp-tl , , inin sessionnn atin theat memorialjj-tl coliseumnp-tl ..\ttheat councilnn revisedvbd , , inin anat effortnn toto strengthenvb , , theat denomination'snn $ 16cd basicjj beliefsnns adoptedvbn inin 1966cd ..\ttheat changesnns , , unanimouslyrb adoptedvbn , , werebed feltvbn necessaryjj inin theat facenn ofin modernjj trendsnns awayrb fromin theat biblenp ..theat councilnn agreedvbd itpps shouldmd moreql firmlyrb statevb itspp $ beliefnn inin andcc dependencenn onin theat biblenp ..\tatin theat adoptionnn , , theat rev.np t.np f.np zimmermannp , , generaljj superintendentnn , , commentedvbd , , `` `` theat-tl assembliesnns-tl ofin-tl godnp hashvz beenben aat bulwarknn forin fundamentalismnn inin thesedts modernjj daysnns andcc hashvz , , withoutin compromisenn , , stoodvbd forin theat greatjj truthsnns ofin theat biblenp forin whichwdt mennns inin theat pastnn havehv beenben willingjj toto givevb theirpp $ livesnns `` '' ..newjj-hl pointnn-hl addedvbn-hl manyap changesnns involvedvbd minorjj editingnn andcc clarificationnn ; . `` , `` ; .howeverwrb , , theat firstod beliefnn stoodvbd forin entirejj revisionnn within aat newjj thirdod pointnn addedvbn toin theat listnn ..\ttheat firstod ofin 16cd beliefsnns ofin theat denominationnn , , nowrb readsvbz : : \t `` `` theat scripturesnns , , bothabx oldjj-tl andcc newjj-tl testamentnn-tl , , areber verballyrb inspiredvbn ofin godnp andcc areber theat revelationnn ofin godnp toin mannn , , theat infalliblejj , , authoritativejj rulenn ofin faithnn andcc conductnn `` '' ..\ttheat thirdod beliefnn , , inin sixcd pointsnns , , emphasizesvbz theat dietynn-tl ofin theat lordnn-tl jesusnp christnp , , andcc : : \t -- -- emphasizesvbz theat virginnn-tl birthnn \t -- -- theat sinlessjj lifenn ofin christnp \t -- -- hispp $ miraclesnns \t -- -- hispp $ substitutionaryjj worknn onin theat crossnn \t -- -- hispp $ bodilyjj resurrectionnn fromin theat deadjj \t -- -- andcc hispp $ exaltationnn toin theat rightjj handnn ofin godnp ..supernn-hl againrb-hl electedvbn-hl fridaynr afternoonnn theat rev.np t.np f.np zimmermannp wasbedz reelectedvbn forin hispp $ secondod consecutivejj two-yearjj termnn ascs generaljj superintendentnn ofin assembliesnns-tl ofin-tl godnp-tl ..hispp $ officesnns areber inin springfieldnp , , mo.np ..electionnn camevbd onin theat nominatingvbg ballotnn ..\tfridaynr nightnn theat delegatesnns heardvbd theat neednn forin theirpp $ forthcomingjj programnn , , `` `` breakthroughnn-tl `` '' scheduledvbn toto fillvb theat churchesnns forin theat nextap twocd yearsnns ..inin hispp $ openingvbg addressnn wednesdaynr theat rev.np mr.np zimmermannp , , urgedvbd theat delegatesnns toto considervb aat 10-yearjj expansionnn programnn , , within `` `` breakthroughnn-tl `` '' theat themenn forin theat firstod twocd yearsnns ..\ttheat rev.np r.np l.np brandtnp , , nationaljj secretarynn ofin theat homenr missionsnns departmentnn , , stressedvbd theat neednn forin theat firstod twocd years'nns $ worknn ..\t `` `` surveysnns showvb thatcs onecd outin ofin threecd americansnps hashvz vitaljj contactnn within theat churchnn ..thisdt meansvbz thatcs moreap thanin 100cd millioncd havehv noat vitaljj touchnn within theat churchnn orcc religiousjj lifenn `` '' , , hepps toldvbd delegatesnns fridaynr ..churchnn-hl losesvbz-hl pacenn-hl talkingvbg ofin theat rapidjj populationnn growthnn ( ( upwardsrb ofin 12,000cd babiesnns bornvbn dailyrb ) ) within anat immigrantnn enteringvbg theat unitedvbn-tl statesnns-tl everyat 1-12cd minutesnns , , hepps saidvbd `` `` ourpp $ organizationnn hashvz not* beenben keepingvbg pacenn within thisdt challengenn `` '' ..\t `` `` inin 35cd yearsnns weppss havehv openedvbn 7,000cd churchesnns `` '' , , theat rev.np mr.np brandtnp saidvbd , , addingvbg thatcs theat denominationnn hadhvd aat nationaljj goalnn ofin onecd churchnn forin everyat 10,000cd personsnns ..\t `` `` inin thisdt lightnn weppss needvb 1,000cd churchesnns inin illinoisnp , , wherewrb weppss havehv 200cd ; . `` , ' ; .800cd inin southernjj-tl newjj-tl englandnp , , weppss havehv 60cd ; . ' , `` ; .weppss needvb 100cd inin rhodenp-tl islandnn-tl , , weppss havehv nonepn `` '' , , hepps saidvbd ..\ttoto stepvb uprp theat denomination'snn $ programnn , , theat rev.np mr.np brandtnp suggestedvbd theat visionnn ofin 8,000cd newjj assembliesnns-tl ofin-tl godnp-tl churchesnns inin theat nextap 10cd yearsnns ..\ttoto accomplishvb thisdt wouldmd necessitatevb somedti changesnns inin methodsnns , , hepps saidvbd .. '' churchnn-hl meetsvbz-hl changenn-hl `` `` `` theat church'snn $ abilitynn toto changevb herpp $ methodsnns isbez goingvbg toto determinevb herpp $ abilitynn toto meetvb theat challengenn ofin thisdt hournn `` '' ..\taat capsulenn viewnn ofin proposedvbn plansnns includesvbz : : \t -- -- encouragingvbg byin everyat meansnns , , allabn existingvbg assembliesnns-tl ofin-tl godnp-tl churchesnns toto startvb newjj churchesnns ..\t -- -- engagingvbg maturejj , , experiencedvbn mennns toto pioneervb orcc openvb newjj churchesnns inin strategicjj populationnn centersnns ..\t -- -- surroundingvbg pioneernn pastorsnns within vocationaljj volunteersnns ( ( laymennns , , whowps willmd bebe urgedvbn toto movevb intoin theat areann ofin newjj churchesnns inin theat interestnn ofin lendingvbg theirpp $ supportnn toin theat newjj projectnn ) ) ..\t -- -- arrangingvbg forin ministerialjj graduatesnns toto spendvb fromin 6-12cd monthsnns ascs apprenticesnns inin well-establishedjj churchesnns ..\tu.s.np-tl dist.nn-tl judgenn-tl charlesnp l.np powellnp deniedvbd allabn motionsnns madevbn byin defensenn attorneysnns mondaynr inin portland'snp $ insurancenn fraudnn trialnn ..\tdenialsnns werebed ofin motionsnns ofin dismissalnn , , continuancenn , , mistrialnn , , separatejj trialnn , , acquittalnn , , strikingnn ofin testimonynn andcc directedvbn verdictnn ..\tinin denyingvbg motionsnns forin dismissalnn , , judgenn-tl powellnp statedvbd thatcs massnn trialsnns havehv beenben upheldvbn ascs properjj inin otherap courtsnns andcc thatcs `` `` aat personnn maymd joinvb aat conspiracynn withoutin knowingvbg whowps allabn ofin theat conspiratorsnns areber `` '' ..\tattorneynn dwightnp l.np schwabnp , , inin behalfnn ofin defendantnn philipnp weinsteinnp , , arguedvbd thereex isbez noat evidencenn linkingvbg weinsteinnp toin theat conspiracynn , , butcc judgenn-tl powellnp declaredvbd thisdt isbez aat matternn forcs theat jurynn toto decidevb ..proofnn-hl lacknn-hl chargedvbn-hl schwabnp alsorb declaredvbd thereex isbez noat proofnn ofin weinstein'snp $ enteringvbg aat conspiracynn toto usevb theat u.s.np mailsnns toto defraudvb , , toin whichwdt federaljj prosecutornn a.np lawrencenp burbanknp repliedvbd : : \t `` `` itpps isbez not* necessaryjj thatcs aat defendantnn actuallyrb havehv conpiredvbn toto usevb theat u.s.np mailsnns toto defraudvb asql longrb ascs thereex isbez evidencenn ofin aat conspiracynn , , andcc theat mailsnns werebed thenrb usedvbn toto carryvb itppo outrp `` '' ..\tinin theat afternoonnn , , defensenn attorneysnns beganvbd theat presentationnn ofin theirpp $ casesnns within openingvbg statementsnns , , somedti ofin whichwdt hadhvd beenben deferredvbn untilin afterin theat governmentnn hadhvd calledvbn witnessesnns andcc presentedvbn itspp $ casenn .. '' ] ###Markdown Step 4 : TaggingTags the word to be part of speech ( such as verb / noun ) based on definition and context ###Code stop_words = set(stopwords.words('english')) tokenized = sent_tokenize(data) for i in tokenized: wordsList = nltk.word_tokenize(i) wordsList = [w for w in wordsList if not w in stop_words] tagged = nltk.pos_tag(wordsList) print(tagged) ###Output [('Vincentnp', 'NNP'), ('G.np', 'NNP'), ('Ierullinp', 'NNP'), ('hashvz', 'NN'), ('beenben', 'NN'), ('appointedvbn', 'NN'), ('temporaryjj', 'NN'), ('assistantnn', 'NN'), ('districtnn', 'NN'), ('attorneynn', 'NN'), (',', ','), (',', ','), ('itpps', 'JJ'), ('wasbedz', 'NN'), ('announcedvbn', 'NN'), ('Mondaynr', 'NNP'), ('byin', 'NN'), ('Charlesnp', 'NNP'), ('E.np', 'NNP'), ('Raymondnp', 'NNP'), (',', ','), (',', ','), ('Districtnn-tl', 'NNP'), ('Attorneynn-tl', 'NNP'), ('..', 'NNP'), ('Ierullinp', 'NNP'), ('willmd', 'VBD'), ('replacevb', 'JJ'), ('Desmondnp', 'NNP'), ('D.np', 'NNP'), ('Connallnp', 'NNP'), ('whowps', 'VBD'), ('hashvz', 'JJ'), ('beenben', 'NN'), ('calledvbn', 'NN'), ('toin', 'NN'), ('activejj', 'NN'), ('militaryjj', 'NN'), ('servicenn', 'NN'), ('butcc', 'NN'), ('isbez', 'NN'), ('expectedvbn', 'NN'), ('backrb', 'NN'), ('onin', 'NN'), ('theat', 'NN'), ('jobnn', 'NN'), ('byin', 'NN'), ('Marchnp', 'NNP'), ('31cd', 'CD'), ('..', 'NNP'), ('Ierullinp', 'NNP'), (',', ','), (',', ','), ('29cd', 'CD'), (',', ','), (',', ','), ('hashvz', 'JJ'), ('beenben', 'NN'), ('practicingvbg', 'NN'), ('inin', 'NN'), ('Portlandnp', 'NNP'), ('sincein', 'NN'), ('Novembernp', 'NNP'), (',', ','), (',', ','), ('1959cd', 'CD'), ('..Hepps', 'NN'), ('isbez', 'NN'), ('aat', 'NN'), ('graduatenn', 'NN'), ('ofin', 'IN'), ('Portlandnp-tl', 'NNP'), ('Universitynn-tl', 'NNP'), ('andcc', 'JJ'), ('theat', 'NN'), ('Northwesternjj-tl', 'JJ'), ('Collegenn-tl', 'JJ'), ('ofin-tl', 'JJ'), ('Lawnn-tl', 'NNP'), ('..Hepps', 'NNP'), ('isbez', 'NN'), ('marriedvbn', 'NN'), ('andcc', 'NN'), ('theat', 'NN'), ('fathernn', 'JJ'), ('ofin', 'NN'), ('threecd', 'NN'), ('childrennns', 'NN'), ('..', 'NNP'), ('Helpingvbg', 'NNP'), ('foreignjj', 'NN'), ('countriesnns', 'NN'), ('toto', 'NN'), ('buildvb', 'NN'), ('aat', 'NN'), ('soundjj', 'NN'), ('politicaljj', 'NN'), ('structurenn', 'NN'), ('isbez', 'NN'), ('moreql', 'NN'), ('importantjj', 'JJ'), ('thancs', 'NN'), ('aidingvbg', 'NN'), ('themppo', 'NN'), ('economicallyrb', 'NN'), (',', ','), (',', ','), ('E.np', 'NNP'), ('M.np', 'NNP'), ('Martinnp', 'NNP'), (',', ','), (',', ','), ('assistantnn', 'JJ'), ('secretarynn', 'NN'), ('ofin', 'NN'), ('statenn', 'NN'), ('forin', 'NN'), ('economicjj', 'NN'), ('affairsnns', 'NN'), ('toldvbd', 'NN'), ('membersnns', 'NN'), ('ofin', 'JJ'), ('theat', 'JJ'), ('Worldnn-tl', 'JJ'), ('Affairsnns-tl', 'JJ'), ('Councilnn-tl', 'NNP'), ('Mondaynr', 'NNP'), ('nightnn', 'MD'), ('..', 'VB'), ('Martinnp', 'NNP'), (',', ','), (',', ','), ('whowps', 'VBP'), ('hashvz', 'JJ'), ('beenben', 'NN'), ('inin', 'NN'), ('officenn', 'NN'), ('inin', 'NN'), ('Washingtonnp', 'NNP'), (',', ','), (',', ','), ('D.np', 'NNP'), ('C.np', 'NNP'), (',', ','), (',', ','), ('forin', 'VBD'), ('13cd', 'CD'), ('monthsnns', 'NN'), ('spokevbd', 'NN'), ('atin', 'NN'), ('theat', 'NN'), ("council'snn", 'JJ'), ('$', '$'), ('annualjj', 'JJ'), ('meetingnn', 'NN'), ('atin', 'NN'), ('theat', 'JJ'), ('Multnomahnp-tl', 'JJ'), ('Hotelnn-tl', 'NNP'), ('..Hepps', 'NNP'), ('toldvbd', 'NN'), ('somedti', 'VBD'), ('350cd', 'CD'), ('personsnns', 'NN'), ('thatcs', 'NN'), ('theat', 'NN'), ('Unitedvbn-tl', 'NNP'), ("States'nns", 'NNP'), ('$', '$'), ('-tl', 'NNP'), ('challengenn', 'NN'), ('wasbedz', 'NN'), ('toto', 'NN'), ('helpvb', 'NN'), ('countriesnns', 'NN'), ('buildvb', 'NN'), ('theirpp', 'VBD'), ('$', '$'), ('ownjj', 'JJ'), ('societiesnns', 'NN'), ('theirpp', 'VBD'), ('$', '$'), ('ownjj', 'JJ'), ('waysnns', 'NN'), (',', ','), (',', ','), ('followingvbg', 'VBD'), ('theirpp', 'JJ'), ('$', '$'), ('ownjj', 'JJ'), ('pathsnns', 'NN'), ('..', 'VBZ'), ('``', '``'), ('``', '``'), ('Weppss', 'NNP'), ('mustmd', 'NN'), ('persuadevb', 'NN'), ('themppo', 'NN'), ('toto', 'NN'), ('enjoyvb', 'NN'), ('aat', 'NN'), ('waynn', 'NN'), ('ofin', 'NN'), ('lifenn', 'NN'), ('whichwdt', 'NN'), (',', ','), (',', ','), ('ifcs', 'JJ'), ('not*', 'NN'), ('identicaljj', 'NN'), (',', ','), (',', ','), ('isbez', 'JJ'), ('congenialjj', 'NN'), ('within', 'IN'), ('ourspp', 'JJ'), ('$', '$'), ('$', '$'), ('``', '``'), ("''", "''"), (',', ','), (',', ','), ('hepps', 'JJ'), ('saidvbd', 'NN'), ('butcc', 'NN'), ('addingvbg', 'NN'), ('thatcs', 'NN'), ('ifcs', 'NN'), ('theyppss', 'NN'), ('dodo', 'NN'), ('not*', 'JJ'), ('developvb', 'NN'), ('theat', 'NN'), ('kindnn', 'NN'), ('ofin', 'NN'), ('societynn', 'NN'), ('theyppss', 'NN'), ('themselvesppls', 'NN'), ('wantvb', 'NN'), ('itpps', 'NN'), ('willmd', 'NN'), ('lackvb', 'NN'), ('ritiualitynn', 'NN'), ('andcc', 'JJ'), ('loyaltynn', 'JJ'), ('..Patiencenn-hl', 'JJ'), ('neededvbn-hl', 'JJ'), ('Insuringvbg', 'NNP'), ('thatcs', 'NN'), ('theat', 'NN'), ('countriesnns', 'NN'), ('havehv', 'NN'), ('aat', 'NN'), ('freedomnn', 'NN'), ('ofin', 'NN'), ('choicenn', 'NN'), (',', ','), (',', ','), ('hepps', 'NN'), ('saidvbd', 'NN'), (',', ','), (',', ','), ('wasbedz', 'JJ'), ('theat', 'NN'), ('biggestjjt', 'NN'), ('detrimentnn', 'NN'), ('toin', 'JJ'), ('theat', 'JJ'), ('Sovietnn-tl', 'JJ'), ('Unionnn-tl', 'JJ'), ('..', 'NN'), ('Hepps', 'NNP'), ('citedvbd', 'VBZ'), ('Eastjj-tl', 'NNP'), ('Germanynp-tl', 'NNP'), ('wherewrb', 'NN'), ('afterin', 'NN'), ('15cd', 'CD'), ('yearsnns', 'NN'), ('ofin', 'NN'), ('Sovietnp', 'NNP'), ('rulenn', 'NN'), ('itpps', 'NN'), ('hashvz', 'NN'), ('becomevbn', 'NN'), ('necessaryjj', 'JJ'), ('toto', 'NN'), ('buildvb', 'NN'), ('aat', 'NN'), ('wallnn', 'NN'), ('toto', 'NN'), ('keepvb', 'VBZ'), ('theat', 'NN'), ('peoplenns', 'NN'), ('inrp', 'NN'), (',', ','), (',', ','), ('andcc', 'JJ'), ('addedvbd', 'NN'), (',', ','), (',', ','), ('``', '``'), ('``', '``'), ('soql', 'JJ'), ('longrb', 'NN'), ('ascs', 'NN'), ('peoplenns', 'NN'), ('rebelvb', 'NN'), (',', ','), (',', ','), ('weppss', 'VBP'), ('mustmd', 'JJ'), ('not*', 'JJ'), ('givevb', 'NN'), ('uprp', 'JJ'), ('``', '``'), ("''", "''"), ('..', 'NN'), ('Martinnp', 'NNP'), ('calledvbd', 'NN'), ('forin', 'NN'), ('patiencenn', 'NN'), ('onin', 'NN'), ('theat', 'NN'), ('partnn', 'NN'), ('ofin', 'NN'), ('Americansnps', 'NNP'), ('..', 'NNP'), ('``', '``'), ('``', '``'), ('Theat', 'NNP'), ('countriesnns', 'JJ'), ('areber', 'NN'), ('tryingvbg', 'NN'), ('toto', 'NN'), ('buildvb', 'NN'), ('inin', 'NN'), ('aat', 'NN'), ('decadenn', 'NN'), ('theat', 'NN'), ('kindnn', 'NN'), ('ofin', 'NN'), ('societynn', 'NN'), ('weppss', 'NN'), ('tookvbd', 'NN'), ('aat', 'NN'), ('centurynn', 'NN'), ('toto', 'NN'), ('buildvb', 'NN'), ('``', '``'), ("''", "''"), (',', ','), (',', ','), ('hepps', 'JJ'), ('saidvbd', 'NN'), ('..', 'NNP'), ('Byin', 'NNP'), ('leavingvbg', 'VBD'), ('ourpp', 'RP'), ('$', '$'), ('doorsnns', 'JJ'), ('openrb', 'JJ'), ('theat', 'NN'), ('Unitedvbn-tl', 'JJ'), ('Statesnns-tl', 'NNP'), ('givesvbz', 'NN'), ('otherap', 'NN'), ('peoplesnns', 'NN'), ('theat', 'NN'), ('opportunitynn', 'JJ'), ('toto', 'NN'), ('seevb', 'NN'), ('usppo', 'JJ'), ('andcc', 'NN'), ('toto', 'NN'), ('comparevb', 'NN'), (',', ','), (',', ','), ('hepps', 'JJ'), ('saidvbd', 'JJ'), ('..Individualjj-hl', 'JJ'), ('helpnn-hl', 'JJ'), ('bestjjt-hl', 'NN'), ('``', '``'), ('``', '``'), ('Weppss', 'NNP'), ('havehv', 'NN'), ('noat', 'NN'), ('reasonnn', 'NN'), ('toto', 'NN'), ('fearvb', 'NN'), ('failurenn', 'NN'), (',', ','), (',', ','), ('butcc', 'FW'), ('weppss', 'NN'), ('mustmd', 'NN'), ('bebe', 'NN'), ('extraordinarilyrb', 'NN'), ('patientjj', 'NN'), ('``', '``'), ("''", "''"), (',', ','), (',', ','), ('theat', 'NN'), ('assistantnn', 'JJ'), ('secretarynn', 'NN'), ('saidvbd', 'NN'), ('..', 'NNP'), ('Economicallyrb', 'NNP'), (',', ','), (',', ','), ('Martinnp', 'NNP'), ('saidvbd', 'NN'), (',', ','), (',', ','), ('theat', 'JJ'), ('Unitedvbn-tl', 'JJ'), ('Statesnns-tl', 'NNP'), ('couldmd', 'NN'), ('bestvb', 'NN'), ('helpvb', 'NN'), ('foreignjj', 'NN'), ('countriesnns', 'NN'), ('byin', 'NN'), ('helpingvbg', 'NN'), ('themppo', 'NN'), ('helpvb', 'NN'), ('themselvesppls', 'NN'), ('..Privatejj', 'NNP'), ('businessnn', 'NN'), ('isbez', 'NN'), ('moreql', 'NN'), ('effectivejj', 'JJ'), ('thancs', 'NN'), ('governmentnn', 'NN'), ('aidnn', 'NN'), (',', ','), (',', ','), ('hepps', 'NN'), ('explainedvbd', 'NN'), (',', ','), (',', ','), ('becausecs', 'FW'), ('individualsnns', 'JJ'), ('areber', 'NN'), ('ablejj', 'NN'), ('toto', 'NN'), ('workvb', 'NN'), ('within', 'IN'), ('theat', 'NN'), ('peoplenns', 'NN'), ('themselvesppls', 'NN'), ('..', 'NNP'), ('Theat', 'NNP'), ('Unitedvbn-tl', 'JJ'), ('Statesnns-tl', 'NNP'), ('mustmd', 'NN'), ('planvb', 'NN'), ('toto', 'NN'), ('absorbvb', 'VBZ'), ('theat', 'NN'), ('exportedvbn', 'JJ'), ('goodsnns', 'NN'), ('ofin', 'NN'), ('theat', 'NN'), ('countrynn', 'NN'), (',', ','), (',', ','), ('atin', 'JJ'), ('whatwdt', 'NN'), ('hepps', 'NN'), ('termedvbd', 'NN'), ('aat', 'IN'), ('``', '``'), ('``', '``'), ('socialjj', 'JJ'), ('costnn', 'NN'), ('``', '``'), ("''", "''"), ('..', 'NN'), ('Martinnp', 'NNP'), ('saidvbd', 'VBZ'), ('theat', 'NN'), ('governmentnn', 'NN'), ('hashvz', 'NN'), ('beenben', 'NN'), ('workingvbg', 'NN'), ('toto', 'NN'), ('establishvb', 'NN'), ('firmerjjr', 'NN'), ('pricesnns', 'NN'), ('onin', 'NN'), ('primaryjj', 'NN'), ('productsnns', 'NN'), ('whichwdt', 'NN'), ('maymd', 'NN'), ('involvevb', 'NN'), ('theat', 'NN'), ('totalnn', 'NN'), ('incomenn', 'NN'), ('ofin', 'NN'), ('onecd', 'IN'), ('countrynn', 'NN'), ('..', 'NNP'), ('Theat', 'NNP'), ('Portlandnp', 'NNP'), ('schoolnn', 'VBD'), ('boardnn', 'JJ'), ('wasbedz', 'NN'), ('askedvbn', 'NN'), ('Mondaynr', 'NNP'), ('toto', 'NN'), ('takevb', 'NN'), ('aat', 'NN'), ('positivejj', 'NN'), ('standvb', 'NN'), ('towardsin', 'NN'), ('developingvbg', 'NN'), ('andcc', 'NN'), ('coordinatingvbg', 'NN'), ('within', 'IN'), ("Portland'snp", 'NNP'), ('$', '$'), ('civiljj', 'NN'), ('defensenn', 'NN'), ('moreap', 'NN'), ('plansnns', 'NN'), ('forin', 'NN'), ('theat', 'NN'), ("city'snn", 'JJ'), ('$', '$'), ('schoolsnns', 'JJ'), ('inin', 'NN'), ('eventnn', 'NN'), ('ofin', 'NN'), ('attacknn', 'NN'), ('..', 'NNP'), ('Butcc', 'NNP'), ('thereex', 'NN'), ('seemedvbd', 'NN'), ('toto', 'NN'), ('bebe', 'NN'), ('somedti', 'NN'), ('differencenn', 'NN'), ('ofin', 'NN'), ('opinionnn', 'NN'), ('asin', 'NN'), ('toin', 'NN'), ('howql', 'NN'), ('farrb', 'NN'), ('theat', 'NN'), ('boardnn', 'NN'), ('shouldmd', 'NN'), ('govb', 'NN'), (',', ','), (',', ','), ('andcc', 'VBD'), ('whosewp', 'JJ'), ('$', '$'), ('advicenn', 'JJ'), ('itpps', 'NN'), ('shouldmd', 'NN'), ('followvb', 'NN'), ('..', 'NNP'), ('Theat', 'NNP'), ('boardnn', 'NN'), ('membersnns', 'NN'), (',', ','), (',', ','), ('afterin', 'JJ'), ('hearingvbg', 'NN'), ('theat', 'NN'), ('coordinationnn', 'NN'), ('pleann', 'NN'), ('fromin', 'NN'), ('Mrs.np', 'NNP'), ('Ralphnp', 'NNP'), ('H.np', 'NNP'), ('Molvarnp', 'NNP'), (',', ','), (',', ','), ('1409cd', 'CD'), ('SWnn', 'NNP'), ('Maplecrestnp', 'NNP'), ('Dr.nn-tl', 'NNP'), (',', ','), (',', ','), ('saidvbd', 'JJ'), ('theyppss', 'NN'), ('thoughtvbd', 'NN'), ('theyppss', 'NN'), ('hadhvd', 'NN'), ('alreadyrb', 'NN'), ('beenben', 'NN'), ('cooperatingvbg', 'NN'), ('..', 'NNP'), ('Chairmannn-tl', 'NNP'), ('C.np', 'NNP'), ('Richardnp', 'NNP'), ('Mearsnp', 'NNP'), ('pointedvbd', 'NN'), ('outrp', 'NN'), ('thatcs', 'NN'), ('perhapsrb', 'NN'), ('thisdt', 'NN'), ('wasbedz', 'NN'), ('not*', 'JJ'), ('strictlyrb', 'NN'), ('aat', 'NN'), ('schoolnn', 'NN'), ('boardnn', 'NN'), ('problemnn', 'NN'), (',', ','), (',', ','), ('inin', 'JJ'), ('casenn', 'NN'), ('ofin', 'NN'), ('atomicjj', 'NN'), ('attacknn', 'NN'), (',', ','), (',', ','), ('butcc', 'FW'), ('thatcs', 'JJ'), ('theat', 'NN'), ('boardnn', 'NN'), ('wouldmd', 'NN'), ('cooperatevb', 'NN'), ('soql', 'NN'), ('farrb', 'NN'), ('ascs', 'NN'), ('possiblejj', 'NN'), ('toto', 'NN'), ('getvb', 'NN'), ('theat', 'NN'), ('childrennns', 'NN'), ('toto', 'NN'), ('wherewrb', 'NN'), ('theat', 'NN'), ('parentsnns', 'NN'), ('wantedvbd', 'NN'), ('themppo', 'NN'), ('toto', 'NN'), ('govb', 'NN'), ('..', 'NNP'), ('Dr.nn-tl', 'NNP'), ('Melvinnp', 'NNP'), ('W.np', 'NNP'), ('Barnesnp', 'NNP'), (',', ','), (',', ','), ('superintendentnn', 'NN'), (',', ','), (',', ','), ('saidvbd', 'JJ'), ('hepps', 'NN'), ('thoughtvbd', 'NN'), ('theat', 'NN'), ('schoolsnns', 'NN'), ('werebed', 'VBD'), ('waitingvbg', 'JJ'), ('forin', 'NN'), ('somedti', 'NN'), ('leadershipnn', 'NN'), (',', ','), (',', ','), ('perhapsrb', 'FW'), ('onin', 'FW'), ('theat', 'NN'), ('nationaljj', 'JJ'), ('levelnn', 'NN'), (',', ','), (',', ','), ('toto', 'NN'), ('makevb', 'NN'), ('surejj', 'NN'), ('thatcs', 'NN'), ('whateverwdt', 'NN'), ('stepsnns', 'NN'), ('ofin', 'NN'), ('planningvbg', 'NN'), ('theyppss', 'NN'), ('tookvbd', 'NN'), ('wouldmd', 'VBP'), ('``', '``'), ('``', '``'), ('bebe', 'JJ'), ('moreql', 'NN'), ('fruitfuljj', 'NN'), ('``', '``'), ("''", "''"), (',', ','), (',', ','), ('andcc', 'JJ'), ('thatcs', 'NN'), ('hepps', 'NN'), ('hadhvd', 'NN'), ('foundvbn', 'NN'), ('thatcs', 'NN'), ('otherap', 'NN'), ('schoolnn', 'NN'), ('districtsnns', 'NN'), ('werebed', 'VBD'), ('not*', 'JJ'), ('asql', 'NN'), ('farrb', 'NN'), ('alongrb', 'NN'), ('inin', 'NN'), ('theirpp', 'VBD'), ('$', '$'), ('planningnn', 'JJ'), ('ascs', 'NN'), ('thisdt', 'NN'), ('districtnn', 'NN'), ('..', 'VBZ'), ('``', '``'), ('``', '``'), ('Losnp', 'NNP'), ('Angelesnp', 'NNP'), ('hashvz', 'NN'), ('saidvbn', 'NN'), ('theyppss', 'NN'), ('wouldmd', 'NN'), ('sendvb', 'NN'), ('theat', 'NN'), ('childrennns', 'NN'), ('toin', 'NN'), ('theirpp', 'VBD'), ('$', '$'), ('homesnns', 'JJ'), ('inin', 'NN'), ('casenn', 'NN'), ('ofin', 'NN'), ('disasternn', 'NN'), ('``', '``'), ("''", "''"), (',', ','), (',', ','), ('hepps', 'JJ'), ('saidvbd', 'NN'), ('..', 'VBZ'), ('``', '``'), ('``', '``'), ('Nobodypn', 'NNP'), ('reallyrb', 'NN'), ('expectsvbz', 'NN'), ('toto', 'NN'), ('evacuatevb', 'NN'), ('..Ippss', 'NNP'), ('thinkvb', 'NN'), ('everybodypn', 'NN'), ('isbez', 'NN'), ('agreedvbn', 'NN'), ('thatcs', 'NN'), ('weppss', 'NN'), ('needvb', 'JJ'), ('toto', 'NN'), ('hearvb', 'NN'), ('somedti', 'NN'), ('voicenn', 'NN'), ('onin', 'NN'), ('theat', 'NN'), ('nationaljj', 'JJ'), ('levelnn', 'NN'), ('thatdt', 'NN'), ('wouldmd', 'NN'), ('makevb', 'NN'), ('somedti', 'NN'), ('sensenn', 'NN'), ('andcc', 'NN'), ('inin', 'NN'), ('whichwdt', 'NN'), ('weppss', 'NN'), ('wouldmd', 'NN'), ('havehv', 'NN'), ('somedti', 'NN'), ('confidencenn', 'NN'), ('inin', 'NN'), ('followingnn', 'NN'), ('..', 'NNP'), ('Mrs.np', 'NNP'), ('Molvarnp', 'NNP'), (',', ','), (',', ','), ('whowps', 'VBP'), ('keptvbd', 'JJ'), ('reiteratingvbg', 'NN'), ('herpp', 'VBD'), ('$', '$'), ('requestnn', 'JJ'), ('thatcs', 'NN'), ('theyppss', 'NN'), ('``', '``'), ('``', '``'), ('pleasevb', 'JJ'), ('takevb', 'NN'), ('aat', 'NN'), ('standnn', 'NN'), ('``', '``'), ("''", "''"), (',', ','), (',', ','), ('saidvbd', 'NN'), (',', ','), (',', ','), ('``', '``'), ('``', '``'), ('Weppss', 'NNP'), ('mustmd', 'NN'), ('havehv', 'NN'), ('faithnn', 'NN'), ('inin', 'NN'), ('somebodypn', 'NN'), ('--', ':'), ('--', ':'), ('onin', 'JJ'), ('theat', 'NN'), ('localjj', 'NN'), ('levelnn', 'NN'), (',', ','), (',', ','), ('andcc', 'JJ'), ('itpps', 'NN'), ("wouldn'tmd*", 'NN'), ('bebe', 'NN'), ('possiblejj', 'NN'), ('forcs', 'NN'), ('everyonepn', 'NN'), ('toto', 'NN'), ('rushvb', 'NN'), ('toin', 'NN'), ('aat', 'NN'), ('schoolnn', 'NN'), ('toto', 'NN'), ('getvb', 'NN'), ('theirpp', 'VBD'), ('$', '$'), ('childrennns', 'NN'), ('``', '``'), ("''", "''"), ('..', 'VBZ'), ('Dr.nn-tl', 'NNP'), ('Barnesnp', 'NNP'), ('saidvbd', 'NN'), ('thatcs', 'NN'), ('thereex', 'NN'), ('seemedvbd', 'NN'), ('toto', 'NN'), ('bebe', 'NN'), ('feelingnn', 'NN'), ('thatcs', 'NN'), ('evacuationnn', 'NN'), ('plansnns', 'NN'), (',', ','), (',', ','), ('evenrb', 'FW'), ('forin', 'JJ'), ('aat', 'NN'), ('highjj', 'NN'), ('schoolnn', 'NN'), ('wherewrb', 'NN'), ('thereex', 'NN'), ('werebed', 'VBD'), ('lotsnns', 'JJ'), ('ofin', 'NN'), ('carsnns', 'NN'), ('``', '``'), ('``', '``'), ('mightmd', 'JJ'), ('not*', 'NN'), ('bebe', 'NN'), ('realisticjj', 'NN'), ('andcc', 'NN'), ('wouldmd', 'NN'), ('not*', 'NN'), ('workvb', 'NN'), ('``', '``'), ("''", "''"), ('..', 'NN'), ('Mrs.np', 'NNP'), ('Molvarnp', 'NNP'), ('askedvbd', 'VBZ'), ('againrb', 'JJ'), ('thatcs', 'NN'), ('theat', 'NN'), ('boardnn', 'NN'), ('joinvb', 'NN'), ('inin', 'NN'), ('takingvbg', 'NN'), ('aat', 'NN'), ('standnn', 'NN'), ('inin', 'NN'), ('keepingvbg', 'NN'), ('within', 'IN'), ('Jacknp', 'NNP'), ("Lowe'snp", 'NNP'), ('$', '$'), ('programnn', 'JJ'), ('..Theat', 'NNP'), ('boardnn', 'NN'), ('saidvbd', 'NN'), ('itpps', 'NN'), ('thoughtvbd', 'NN'), ('itpps', 'NN'), ('hadhvd', 'NN'), ('gonevbn', 'NN'), ('asql', 'NN'), ('farrb', 'NN'), ('ascs', 'NN'), ('instructedvbn', 'NN'), ('soql', 'NN'), ('farrb', 'NN'), ('andcc', 'NN'), ('askedvbd', 'NN'), ('forin', 'NN'), ('moreap', 'NN'), ('informationnn', 'NN'), ('toto', 'NN'), ('bebe', 'NN'), ('broughtvbn', 'NN'), ('atin', 'NN'), ('theat', 'NN'), ('nextap', 'JJ'), ('meetingnn', 'NN'), ('..', 'NNP'), ('Itpps', 'NNP'), ('wasbedz', 'VBD'), ('generallyrb', 'JJ'), ('agreedvbn', 'NN'), ('thatcs', 'NN'), ('theat', 'NN'), ('subjectnn', 'NN'), ('wasbedz', 'NN'), ('importantjj', 'NN'), ('andcc', 'NN'), ('theat', 'NN'), ('boardnn', 'NN'), ('shouldmd', 'NN'), ('bebe', 'NN'), ('informedvbn', 'NN'), ('onin', 'NN'), ('whatwdt', 'NN'), ('wasbedz', 'NN'), ('donevbn', 'NN'), (',', ','), (',', ','), ('isbez', 'JJ'), ('goingvbg', 'NN'), ('toto', 'NN'), ('bebe', 'NN'), ('donevbn', 'NN'), ('andcc', 'NN'), ('whatwdt', 'NN'), ('itpps', 'NN'), ('thoughtvbd', 'NN'), ('shouldmd', 'NN'), ('bebe', 'NN'), ('donevbn', 'VBZ'), ('..Salemnp-hl', 'JJ'), ('(', '('), ('(', '('), ('-hl', 'VB'), ('APnp-hl', 'NNP'), (')', ')'), (')', ')'), ('-hl', 'FW'), ('--', ':'), ('--', ':'), ('Theat', 'NNP'), ('statewidejj', 'JJ'), ('meetingnn', 'NN'), ('ofin', 'NN'), ('warnn', 'NN'), ('mothersnns', 'NN'), ('Tuesdaynr', 'NNP'), ('inin', 'NN'), ('Salemnp', 'NNP'), ('willmd', 'NN'), ('hearvb', 'NN'), ('aat', 'NN'), ('greetingnn', 'NN'), ('fromin', 'VBD'), ('Gov.nn-tl', 'NNP'), ('Marknp', 'NNP'), ('Hatfieldnp', 'NNP'), ('..', 'NNP'), ('Hatfieldnp', 'NNP'), ('alsorb', 'VBZ'), ('isbez', 'JJ'), ('scheduledvbn', 'NN'), ('toto', 'NN'), ('holdvb', 'NN'), ('aat', 'JJ'), ('publicjj', 'JJ'), ('Unitedvbn-tl', 'JJ'), ('Nationsnns-tl', 'JJ'), ('Daynn-tl', 'NNP'), ('receptionnn', 'NN'), ('inin', 'NN'), ('theat', 'NN'), ('statenn', 'JJ'), ('capitolnn', 'NN'), ('onin', 'NN'), ('Tuesdaynr', 'NNP'), ('..', 'NNP'), ('Hispp', 'NNP'), ('$', '$'), ('schedulenn', 'JJ'), ('callsvbz', 'NN'), ('forin', 'NN'), ('aat', 'NN'), ('noonnn', 'JJ'), ('speechnn', 'NN'), ('Mondaynr', 'NNP'), ('inin', 'NN'), ('Eugenenp', 'NNP'), ('atin', 'VBZ'), ('theat', 'JJ'), ('Emeraldnn-tl', 'JJ'), ('Empirenn-tl', 'JJ'), ('Kiwanisnp-tl', 'NNP'), ('Clubnn-tl', 'NNP'), ('..', 'NNP'), ('Hepps', 'NNP'), ('willmd', 'VBD'), ('speakvb', 'JJ'), ('toin', 'JJ'), ('Willamettenp-tl', 'JJ'), ('Universitynn-tl', 'JJ'), ('Youngjj-tl', 'JJ'), ('Republicansnps', 'NNP'), ('Thursdaynr', 'NNP'), ('nightnn', 'MD'), ('inin', 'VB'), ('Salemnp', 'NNP'), ('..', 'NNP'), ('Onin', 'NNP'), ('Fridaynr', 'NNP'), ('hepps', 'NN'), ('willmd', 'NN'), ('govb', 'NN'), ('toin', 'NN'), ('Portlandnp', 'NNP'), ('forin', 'VBZ'), ('theat', 'NN'), ('swearingnn', 'JJ'), ('inin', 'NN'), ('ofin', 'NN'), ('Deannp', 'NNP'), ('Brysonnp', 'NNP'), ('ascs', 'VBD'), ('Multnomahnp-tl', 'NNP'), ('Countynn-tl', 'NNP'), ('Circuitnn-tl', 'NNP'), ('Judgenn-tl', 'NNP'), ('..', 'NNP'), ('Hepps', 'NNP'), ('willmd', 'VBD'), ('attendvb', 'JJ'), ('aat', 'NN'), ('meetingnn', 'NN'), ('ofin', 'NN'), ('theat', 'NN'), ('Republicannp', 'NNP'), ('Statenn-tl', 'NNP'), ('Centraljj-tl', 'NNP'), ('Committeenn-tl', 'NNP'), ('Saturdaynr', 'NNP'), ('inin', 'NN'), ('Portlandnp', 'NNP'), ('andcc', 'NN'), ('seevb', 'NN'), ('theat', 'NN'), ('Washington-Oregonnp', 'NNP'), ('footballnn', 'NN'), ('gamenn', 'NN'), ('..', 'JJ'), ('Beavertonnp-tl', 'JJ'), ('Schoolnn-tl', 'JJ'), ('Districtnn-tl', 'JJ'), ('No.nn-tl', 'JJ'), ('48cd-tl', 'JJ'), ('boardnn', 'NN'), ('membersnns', 'NN'), ('examinedvbd', 'NN'), ('blueprintsnns', 'NN'), ('andcc', 'NN'), ('specificationsnns', 'NN'), ('forin', 'NN'), ('twocd', 'NN'), ('proposedvbn', 'NN'), ('juniorjj', 'NN'), ('highjj', 'NN'), ('schoolsnns', 'NN'), ('atin', 'NN'), ('aat', 'NN'), ('Mondaynr', 'NNP'), ('nightnn', 'CC'), ('workshopnn', 'JJ'), ('sessionnn', 'NN'), ('..', 'NNP'), ('Aat', 'NNP'), ('bondnn', 'NN'), ('issuenn', 'NN'), ('whichwdt', 'NN'), ('wouldmd', 'NN'), ('havehv', 'NN'), ('providedvbn', 'NN'), ('somedti', 'VBD'), ('$', '$'), ('3.5nns', 'CD'), ('millioncd', 'NN'), ('forin', 'NN'), ('constructionnn', 'NN'), ('ofin', 'NN'), ('theat', 'NN'), ('twocd', 'JJ'), ('900-studentjj', 'CD'), ('schoolsnns', 'NN'), ('wasbedz', 'NN'), ('defeatedvbn', 'NN'), ('byin', 'NN'), ('districtnn', 'NN'), ('votersnns', 'NN'), ('inin', 'NN'), ('Januarynp', 'NNP'), ('..', 'NNP'), ('Lastap', 'NNP'), ('weeknn', 'VBD'), ('theat', 'NN'), ('boardnn', 'NN'), (',', ','), (',', ','), ('byin', 'VBD'), ('aat', 'RB'), ('4cd', 'CD'), ('toin', 'NNS'), ('3cd', 'CD'), ('votenn', 'NN'), (',', ','), (',', ','), ('decidedvbd', 'JJ'), ('toto', 'NN'), ('askvb', 'NN'), ('votersnns', 'NN'), ('whethercs', 'NN'), ('theyppss', 'NN'), ('prefervb', 'JJ'), ('theat', 'NN'), ('6-3-3cd', 'JJ'), ('(', '('), ('(', '('), ('juniorjj', 'NN'), ('highjj', 'NN'), ('schoolnn', 'NN'), (')', ')'), (')', ')'), ('systemnn', 'VBP'), ('orcc', 'JJ'), ('theat', 'NN'), ('8-4cd', 'JJ'), ('systemnn', 'NN'), ('..Boardnn', 'NNP'), ('membersnns', 'NN'), ('indicatedvbd', 'NN'), ('Mondaynr', 'NNP'), ('nightnn', 'CC'), ('thisdt', 'JJ'), ('wouldmd', 'NN'), ('bebe', 'NN'), ('donevbn', 'NN'), ('byin', 'NN'), ('anat', 'NN'), ('advisorynn', 'NN'), ('pollnn', 'NN'), ('toto', 'NN'), ('bebe', 'NN'), ('takenvbn', 'NN'), ('onin', 'NN'), ('Nov.np', 'NNP'), ('15cd', 'CD'), (',', ','), (',', ','), ('theat', 'NN'), ('sameap', 'JJ'), ('datenn', 'NN'), ('ascs', 'NN'), ('aat', 'VBD'), ('$', '$'), ('581,000nns', 'CD'), ('bondnn', 'NN'), ('electionnn', 'NN'), ('forin', 'NN'), ('theat', 'NN'), ('constructionnn', 'NN'), ('ofin', 'NN'), ('threecd', 'NN'), ('newjj', 'JJ'), ('elementaryjj', 'NN'), ('schoolsnns', 'NN'), ('..', 'JJ'), ('Secretarynn-tl', 'JJ'), ('ofin-tl', 'JJ'), ('Labornn-tl', 'NNP'), ('Arthurnp', 'NNP'), ('Goldbergnp', 'NNP'), ('willmd', 'VBD'), ('speakvb', 'JJ'), ('Sundaynr', 'NNP'), ('nightnn', 'NN'), ('atin', 'NN'), ('theat', 'JJ'), ('Masonicjj-tl', 'JJ'), ('Templenn-tl', 'NNP'), ('atin', 'NN'), ('aat', 'JJ'), ('$', '$'), ('25-a-platenn', 'JJ'), ('dinnernn', 'NN'), ('honoringvbg', 'NN'), ('Sen.nn-tl', 'NNP'), ('Waynenp', 'NNP'), ('L.np', 'NNP'), ('Morsenp', 'NNP'), (',', ','), (',', ','), ('Ajnn', 'NNP'), ('..', 'NNP'), ('Theat', 'NNP'), ('dinnernn', 'NN'), ('isbez', 'NN'), ('sponsoredvbn', 'NN'), ('byin', 'NN'), ('organizedvbn', 'NN'), ('labornn', 'NN'), ('andcc', 'NN'), ('isbez', 'NN'), ('scheduledvbn', 'VBD'), ('forin', 'JJ'), ('7cd', 'CD'), ('p.m.rb', 'JJ'), ('..', 'JJ'), ('Secretarynn-tl', 'NNP'), ('Goldbergnp', 'NNP'), ('andcc', 'IN'), ('Sen.nn-tl', 'NNP'), ('Morsenp', 'NNP'), ('willmd', 'NN'), ('holdvb', 'NN'), ('aat', 'NN'), ('jointnn', 'NN'), ('pressnn', 'NN'), ('conferencenn', 'NN'), ('atin', 'NN'), ('theat', 'NN'), ('Rooseveltnp', 'NNP'), ('Hotelnn-tl', 'NNP'), ('atin', 'NN'), ('4:30cd', 'CD'), ('p.m.rb', 'NN'), ('Sundaynr', 'NNP'), (',', ','), (',', ','), ('Blainenp', 'NNP'), ('Whipplenp', 'NNP'), (',', ','), (',', ','), ('executivenn', 'FW'), ('secretarynn', 'FW'), ('ofin', 'FW'), ('theat', 'JJ'), ('Democraticjj-tl', 'JJ'), ('Partynn-tl', 'NNP'), ('ofin', 'NN'), ('Oregonnp', 'NNP'), (',', ','), (',', ','), ('reportedvbd', 'VBP'), ('Tuesdaynr', 'NNP'), ('..', 'NNP'), ('Otherap', 'NNP'), ('speakersnns', 'VBD'), ('forin', 'JJ'), ('theat', 'NN'), ('fund-raisingnn', 'JJ'), ('dinnernn', 'NN'), ('includevb', 'JJ'), ('Reps.nns-tl', 'NNP'), ('Edithnp', 'NNP'), ('Greennp', 'NNP'), ('andcc', 'VBZ'), ('Alnp', 'NNP'), ('Ullmannp', 'NNP'), (',', ','), (',', ','), ('Labornn-tl', 'JJ'), ('Commissionernn-tl', 'NNP'), ('Normannp', 'NNP'), ('Nilsennp', 'NNP'), ('andcc', 'VBD'), ('Mayornn-tl', 'NNP'), ('Terrynp', 'NNP'), ('Schrunknp', 'NNP'), (',', ','), (',', ','), ('allabn', 'JJ'), ('Democratsnps', 'NNP'), ('..Oaknn-tl-hl', 'JJ'), ('Grovenn-tl-hl', 'NNP'), ('(', '('), ('(', '('), ('-hl', 'VB'), ('specialjj-hl', 'NN'), (')', ')'), (')', ')'), ('-hl', 'FW'), ('--', ':'), ('--', ':'), ('Threecd', 'NNP'), ('positionsnns', 'VBP'), ('onin', 'JJ'), ('theat', 'NN'), ('Oaknn-tl', 'JJ'), ('Lodgenn-tl', 'JJ'), ('Waternn-tl', 'NNP'), ('districtnn', 'NN'), ('boardnn', 'NN'), ('ofin', 'NN'), ('directorsnns', 'NN'), ('havehv', 'NN'), ('attractedvbn', 'VBD'), ('11cd', 'CD'), ('candidatesnns', 'NN'), ('..Theat', 'NN'), ('electionnn', 'JJ'), ('willmd', 'NN'), ('bebe', 'NN'), ('Dec.np', 'NNP'), ('4cd', 'CD'), ('fromin', 'NN'), ('8cd', 'CD'), ('a.m.rb', 'NN'), ('toin', 'NN'), ('8cd', 'CD'), ('p.m.rb', 'NN'), ('..Pollsnns', 'NNP'), ('willmd', 'NN'), ('bebe', 'NN'), ('inin', 'NN'), ('theat', 'NN'), ('waternn', 'NN'), ('officenn', 'IN'), ('..', 'NNP'), ('Incumbentjj', 'NNP'), ('Richardnp', 'NNP'), ('Salternp', 'NNP'), ('seeksvbz', 'VBD'), ('re-electionnn', 'JJ'), ('andcc', 'NN'), ('isbez', 'NN'), ('opposedvbn', 'NN'), ('byin', 'NN'), ('Donaldnp', 'NNP'), ('Huffmannp', 'NNP'), ('forin', 'JJ'), ('theat', 'NN'), ('five-yearjj', 'JJ'), ('termnn', 'NN'), ('..Incumbentjj', 'NNP'), ('Williamnp', 'NNP'), ('Brodnp', 'NNP'), ('isbez', 'NN'), ('opposedvbn', 'NN'), ('inin', 'NN'), ('hispp', 'VBD'), ('$', '$'), ('re-electionnn', 'JJ'), ('bidnn', 'NN'), ('byin', 'NN'), ('Barbaranp', 'NNP'), ('Njustnp', 'NNP'), (',', ','), (',', ','), ('Milesnp', 'NNP'), ('C.np', 'NNP'), ('Bubeniknp', 'NNP'), ('andcc', 'VBZ'), ('Franknp', 'NNP'), ('Leenp', 'NNP'), ('..', 'NNP'), ('Fivecd', 'NNP'), ('candidatesnns', 'NN'), ('seekvb', 'NN'), ('theat', 'NN'), ('placenn', 'NN'), ('vacatedvbn', 'NN'), ('byin', 'IN'), ('Secretarynn-tl', 'NNP'), ('Hughnp', 'NNP'), ('G.np', 'NNP'), ('Stoutnp', 'NNP'), ('..Seekingvbg', 'NNP'), ('thisdt', 'VBD'), ('two-yearjj', 'JJ'), ('termnn', 'JJ'), ('areber', 'NN'), ('Jamesnp', 'NNP'), ('Culbertsonnp', 'NNP'), (',', ','), (',', ','), ('Dwightnp', 'NNP'), ('M.np', 'NNP'), ('Steevesnp', 'NNP'), (',', ','), (',', ','), ('Jamesnp', 'NNP'), ('C.np', 'NNP'), ('Pierseenp', 'NNP'), (',', ','), (',', ','), ('W.M.np', 'NNP'), ('Sextonnp', 'NNP'), ('andcc', 'VBZ'), ('Theodorenp', 'NNP'), ('W.np', 'NNP'), ('Heitschmidtnp', 'NNP'), ('..', 'NNP'), ('Aat', 'NNP'), ('strongerjjr', 'VBD'), ('standnn', 'JJ'), ('onin', 'NN'), ('theirpp', 'VBD'), ('$', '$'), ('beliefsnns', 'JJ'), ('andcc', 'NN'), ('aat', 'NN'), ('firmerjjr', 'NN'), ('graspnn', 'NN'), ('onin', 'NN'), ('theirpp', 'VBD'), ('$', '$'), ('futurenn', 'JJ'), ('werebed', 'VBN'), ('takenvbn', 'JJ'), ('Fridaynr', 'NNP'), ('byin', 'NN'), ('delegatesnns', 'NN'), ('toin', 'NN'), ('theat', 'NN'), ('29thod', 'CD'), ('generaljj', 'NN'), ('councilnn', 'NN'), ('ofin', 'JJ'), ('theat', 'JJ'), ('Assembliesnns-tl', 'JJ'), ('ofin-tl', 'JJ'), ('Godnp-tl', 'NNP'), (',', ','), (',', ','), ('inin', 'JJ'), ('sessionnn', 'NN'), ('atin', 'NN'), ('theat', 'JJ'), ('Memorialjj-tl', 'JJ'), ('Coliseumnp-tl', 'NNP'), ('..', 'NNP'), ('Theat', 'NNP'), ('councilnn', 'NN'), ('revisedvbd', 'NN'), (',', ','), (',', ','), ('inin', 'JJ'), ('anat', 'NN'), ('effortnn', 'NN'), ('toto', 'NN'), ('strengthenvb', 'NN'), (',', ','), (',', ','), ('theat', 'NN'), ("denomination'snn", 'VBD'), ('$', '$'), ('16cd', 'CD'), ('basicjj', 'NN'), ('beliefsnns', 'NN'), ('adoptedvbn', 'NN'), ('inin', 'NN'), ('1966cd', 'CD'), ('..', 'JJ'), ('Theat', 'NNP'), ('changesnns', 'NN'), (',', ','), (',', ','), ('unanimouslyrb', 'JJ'), ('adoptedvbn', 'NN'), (',', ','), (',', ','), ('werebed', 'VBD'), ('feltvbn', 'JJ'), ('necessaryjj', 'JJ'), ('inin', 'NN'), ('theat', 'NN'), ('facenn', 'JJ'), ('ofin', 'NN'), ('modernjj', 'NN'), ('trendsnns', 'NN'), ('awayrb', 'IN'), ('fromin', 'JJ'), ('theat', 'NN'), ('Biblenp', 'NNP'), ('..Theat', 'NNP'), ('councilnn', 'NN'), ('agreedvbd', 'NN'), ('itpps', 'NN'), ('shouldmd', 'NN'), ('moreql', 'NN'), ('firmlyrb', 'NN'), ('statevb', 'VBD'), ('itspp', 'JJ'), ('$', '$'), ('beliefnn', 'JJ'), ('inin', 'NN'), ('andcc', 'NN'), ('dependencenn', 'NN'), ('onin', 'NN'), ('theat', 'NN'), ('Biblenp', 'NNP'), ('..', 'NNP'), ('Atin', 'NNP'), ('theat', 'NN'), ('adoptionnn', 'NN'), (',', ','), (',', ','), ('theat', 'NN'), ('Rev.np', 'NNP'), ('T.np', 'NNP'), ('F.np', 'NNP'), ('Zimmermannp', 'NNP'), (',', ','), (',', ','), ('generaljj', 'NN'), ('superintendentnn', 'NN'), (',', ','), (',', ','), ('commentedvbd', 'NN'), (',', ','), (',', ','), ('``', '``'), ('``', '``'), ('Theat-tl', 'JJ'), ('Assembliesnns-tl', 'JJ'), ('ofin-tl', 'JJ'), ('Godnp', 'NNP'), ('hashvz', 'NN'), ('beenben', 'NN'), ('aat', 'NN'), ('bulwarknn', 'NN'), ('forin', 'NN'), ('fundamentalismnn', 'NN'), ('inin', 'NN'), ('thesedts', 'NN'), ('modernjj', 'NN'), ('daysnns', 'NN'), ('andcc', 'NN'), ('hashvz', 'NN'), (',', ','), (',', ','), ('withoutin', 'NN'), ('compromisenn', 'NN'), (',', ','), (',', ','), ('stoodvbd', 'JJ'), ('forin', 'NN'), ('theat', 'NN'), ('greatjj', 'NN'), ('truthsnns', 'NN'), ('ofin', 'NN'), ('theat', 'NN'), ('Biblenp', 'NNP'), ('forin', 'NN'), ('whichwdt', 'NN'), ('mennns', 'NN'), ('inin', 'NN'), ('theat', 'NN'), ('pastnn', 'NN'), ('havehv', 'NN'), ('beenben', 'NN'), ('willingjj', 'NN'), ('toto', 'NN'), ('givevb', 'NN'), ('theirpp', 'VBD'), ('$', '$'), ('livesnns', 'FW'), ('``', '``'), ("''", "''"), ('..Newjj-hl', 'JJ'), ('pointnn-hl', 'JJ'), ('addedvbn-hl', 'JJ'), ('Manyap', 'NNP'), ('changesnns', 'NN'), ('involvedvbd', 'NN'), ('minorjj', 'NN'), ('editingnn', 'NN'), ('andcc', 'NN'), ('clarificationnn', 'NN'), (';', ':'), ('.', '.')] [(';', ':'), ('.howeverwrb', 'NN'), (',', ','), (',', ','), ('theat', 'NN'), ('firstod', 'NN'), ('beliefnn', 'NN'), ('stoodvbd', 'NN'), ('forin', 'NN'), ('entirejj', 'NN'), ('revisionnn', 'NN'), ('within', 'IN'), ('aat', 'JJ'), ('newjj', 'JJ'), ('thirdod', 'NN'), ('pointnn', 'NN'), ('addedvbn', 'NN'), ('toin', 'NN'), ('theat', 'NN'), ('listnn', 'JJ'), ('..', 'NNP'), ('Theat', 'NNP'), ('firstod', 'VBD'), ('ofin', 'RB'), ('16cd', 'CD'), ('beliefsnns', 'NN'), ('ofin', 'NN'), ('theat', 'NN'), ('denominationnn', 'NN'), (',', ','), (',', ','), ('nowrb', 'JJ'), ('readsvbz', 'NN'), (':', ':'), (':', ':'), ('``', '``'), ('``', '``'), ('Theat', 'NNP'), ('scripturesnns', 'NN'), (',', ','), (',', ','), ('bothabx', 'VBD'), ('Oldjj-tl', 'NNP'), ('andcc', 'JJ'), ('Newjj-tl', 'NNP'), ('Testamentnn-tl', 'NNP'), (',', ','), (',', ','), ('areber', 'VBP'), ('verballyrb', 'JJ'), ('inspiredvbn', 'NN'), ('ofin', 'NN'), ('Godnp', 'NNP'), ('andcc', 'VBZ'), ('areber', 'RB'), ('theat', 'JJ'), ('revelationnn', 'NN'), ('ofin', 'NN'), ('Godnp', 'NNP'), ('toin', 'NN'), ('mannn', 'NN'), (',', ','), (',', ','), ('theat', 'NN'), ('infalliblejj', 'NN'), (',', ','), (',', ','), ('authoritativejj', 'JJ'), ('rulenn', 'NN'), ('ofin', 'NN'), ('faithnn', 'NN'), ('andcc', 'NN'), ('conductnn', 'NN'), ('``', '``'), ("''", "''"), ('..', 'VBZ'), ('Theat', 'NNP'), ('thirdod', 'NN'), ('beliefnn', 'NN'), (',', ','), (',', ','), ('inin', 'JJ'), ('sixcd', 'NN'), ('pointsnns', 'NN'), (',', ','), (',', ','), ('emphasizesvbz', 'JJ'), ('theat', 'NN'), ('Dietynn-tl', 'NNP'), ('ofin', 'NN'), ('theat', 'NN'), ('Lordnn-tl', 'NNP'), ('Jesusnp', 'NNP'), ('Christnp', 'NNP'), (',', ','), (',', ','), ('andcc', 'NN'), (':', ':'), (':', ':'), ('--', ':'), ('--', ':'), ('emphasizesvbz', 'JJ'), ('theat', 'NN'), ('Virginnn-tl', 'NNP'), ('birthnn', 'NN'), ('--', ':'), ('--', ':'), ('theat', 'NN'), ('sinlessjj', 'JJ'), ('lifenn', 'NN'), ('ofin', 'NN'), ('Christnp', 'NNP'), ('--', ':'), ('--', ':'), ('Hispp', 'NNP'), ('$', '$'), ('miraclesnns', 'CD'), ('--', ':'), ('--', ':'), ('Hispp', 'NNP'), ('$', '$'), ('substitutionaryjj', 'JJ'), ('worknn', 'NN'), ('onin', 'NN'), ('theat', 'NN'), ('crossnn', 'NN'), ('--', ':'), ('--', ':'), ('Hispp', 'NNP'), ('$', '$'), ('bodilyjj', 'NN'), ('resurrectionnn', 'NN'), ('fromin', 'NN'), ('theat', 'NN'), ('deadjj', 'NN'), ('--', ':'), ('--', ':'), ('andcc', 'JJ'), ('Hispp', 'NNP'), ('$', '$'), ('exaltationnn', 'JJ'), ('toin', 'NN'), ('theat', 'NN'), ('rightjj', 'NN'), ('handnn', 'NN'), ('ofin', 'JJ'), ('Godnp', 'NNP'), ('..Supernn-hl', 'JJ'), ('againrb-hl', 'JJ'), ('electedvbn-hl', 'JJ'), ('Fridaynr', 'NNP'), ('afternoonnn', 'NN'), ('theat', 'NN'), ('Rev.np', 'NNP'), ('T.np', 'NNP'), ('F.np', 'NNP'), ('Zimmermannp', 'NNP'), ('wasbedz', 'VBD'), ('reelectedvbn', 'JJ'), ('forin', 'NN'), ('hispp', 'VBD'), ('$', '$'), ('secondod', 'JJ'), ('consecutivejj', 'NN'), ('two-yearjj', 'JJ'), ('termnn', 'NN'), ('ascs', 'NN'), ('generaljj', 'NN'), ('superintendentnn', 'JJ'), ('ofin', 'JJ'), ('Assembliesnns-tl', 'JJ'), ('ofin-tl', 'JJ'), ('Godnp-tl', 'NNP'), ('..Hispp', 'NNP'), ('$', '$'), ('officesnns', 'JJ'), ('areber', 'NN'), ('inin', 'NN'), ('Springfieldnp', 'NNP'), (',', ','), (',', ','), ('Mo.np', 'NNP'), ('..Electionnn', 'NNP'), ('camevbd', 'NN'), ('onin', 'NN'), ('theat', 'NN'), ('nominatingvbg', 'JJ'), ('ballotnn', 'NN'), ('..', 'NNP'), ('Fridaynr', 'NNP'), ('nightnn', 'RB'), ('theat', 'VBD'), ('delegatesnns', 'JJ'), ('heardvbd', 'NN'), ('theat', 'NN'), ('neednn', 'JJ'), ('forin', 'NN'), ('theirpp', 'VBD'), ('$', '$'), ('forthcomingjj', 'JJ'), ('programnn', 'NN'), (',', ','), (',', ','), ('``', '``'), ('``', '``'), ('Breakthroughnn-tl', 'JJ'), ('``', '``'), ("''", "''"), ('scheduledvbn', 'NN'), ('toto', 'NN'), ('fillvb', 'NN'), ('theat', 'NN'), ('churchesnns', 'NN'), ('forin', 'NN'), ('theat', 'NN'), ('nextap', 'JJ'), ('twocd', 'NN'), ('yearsnns', 'NN'), ('..Inin', 'NNP'), ('hispp', 'VBD'), ('$', '$'), ('openingvbg', 'JJ'), ('addressnn', 'NN'), ('Wednesdaynr', 'NNP'), ('theat', 'NN'), ('Rev.np', 'NNP'), ('Mr.np', 'NNP'), ('Zimmermannp', 'NNP'), (',', ','), (',', ','), ('urgedvbd', 'JJ'), ('theat', 'NN'), ('delegatesnns', 'NN'), ('toto', 'NN'), ('considervb', 'NN'), ('aat', 'IN'), ('10-yearjj', 'JJ'), ('expansionnn', 'NN'), ('programnn', 'NN'), (',', ','), (',', ','), ('within', 'IN'), ('``', '``'), ('``', '``'), ('Breakthroughnn-tl', 'JJ'), ('``', '``'), ("''", "''"), ('theat', 'NN'), ('themenn', 'VBD'), ('forin', 'JJ'), ('theat', 'NN'), ('firstod', 'NN'), ('twocd', 'NN'), ('yearsnns', 'NN'), ('..', 'NNP'), ('Theat', 'NNP'), ('Rev.np', 'NNP'), ('R.np', 'NNP'), ('L.np', 'NNP'), ('Brandtnp', 'NNP'), (',', ','), (',', ','), ('nationaljj', 'JJ'), ('secretarynn', 'NN'), ('ofin', 'NN'), ('theat', 'NN'), ('homenr', 'NN'), ('missionsnns', 'NN'), ('departmentnn', 'NN'), (',', ','), (',', ','), ('stressedvbd', 'JJ'), ('theat', 'NN'), ('neednn', 'JJ'), ('forin', 'NN'), ('theat', 'NN'), ('firstod', 'JJ'), ('twocd', 'NN'), ("years'nns", 'RB'), ('$', '$'), ('worknn', 'JJ'), ('..', 'NNP'), ('``', '``'), ('``', '``'), ('Surveysnns', 'NNP'), ('showvb', 'NN'), ('thatcs', 'NN'), ('onecd', 'NN'), ('outin', 'NN'), ('ofin', 'NN'), ('threecd', 'NN'), ('Americansnps', 'NNP'), ('hashvz', 'NN'), ('vitaljj', 'NN'), ('contactnn', 'NN'), ('within', 'IN'), ('theat', 'NN'), ('churchnn', 'NN'), ('..Thisdt', 'NNP'), ('meansvbz', 'NN'), ('thatcs', 'NN'), ('moreap', 'VBD'), ('thanin', 'JJ'), ('100cd', 'CD'), ('millioncd', 'NN'), ('havehv', 'NN'), ('noat', 'NN'), ('vitaljj', 'NN'), ('touchnn', 'NN'), ('within', 'IN'), ('theat', 'NN'), ('churchnn', 'NN'), ('orcc', 'NN'), ('religiousjj', 'NN'), ('lifenn', 'VBZ'), ('``', '``'), ("''", "''"), (',', ','), (',', ','), ('hepps', 'JJ'), ('toldvbd', 'NN'), ('delegatesnns', 'NN'), ('Fridaynr', 'NNP'), ('..Churchnn-hl', 'JJ'), ('losesvbz-hl', 'JJ'), ('pacenn-hl', 'JJ'), ('Talkingvbg', 'NNP'), ('ofin', 'NN'), ('theat', 'NN'), ('rapidjj', 'NN'), ('populationnn', 'NN'), ('growthnn', 'NN'), ('(', '('), ('(', '('), ('upwardsrb', 'JJ'), ('ofin', 'NN'), ('12,000cd', 'CD'), ('babiesnns', 'NN'), ('bornvbn', 'NN'), ('dailyrb', 'NN'), (')', ')'), (')', ')'), ('within', 'IN'), ('anat', 'NN'), ('immigrantnn', 'NN'), ('enteringvbg', 'JJ'), ('theat', 'JJ'), ('Unitedvbn-tl', 'JJ'), ('Statesnns-tl', 'JJ'), ('everyat', 'NN'), ('1-12cd', 'JJ'), ('minutesnns', 'NN'), (',', ','), (',', ','), ('hepps', 'VBD'), ('saidvbd', 'JJ'), ('``', '``'), ('``', '``'), ('ourpp', 'JJ'), ('$', '$'), ('organizationnn', 'JJ'), ('hashvz', 'NN'), ('not*', 'NN'), ('beenben', 'NN'), ('keepingvbg', 'NN'), ('pacenn', 'NN'), ('within', 'IN'), ('thisdt', 'JJ'), ('challengenn', 'NN'), ('``', '``'), ("''", "''"), ('..', 'VBZ'), ('``', '``'), ('``', '``'), ('Inin', 'NNP'), ('35cd', 'CD'), ('yearsnns', 'NN'), ('weppss', 'NN'), ('havehv', 'NN'), ('openedvbn', 'VBD'), ('7,000cd', 'CD'), ('churchesnns', 'NN'), ('``', '``'), ("''", "''"), (',', ','), (',', ','), ('theat', 'NN'), ('Rev.np', 'NNP'), ('Mr.np', 'NNP'), ('Brandtnp', 'NNP'), ('saidvbd', 'NN'), (',', ','), (',', ','), ('addingvbg', 'JJ'), ('thatcs', 'NN'), ('theat', 'NN'), ('denominationnn', 'NN'), ('hadhvd', 'NN'), ('aat', 'NN'), ('nationaljj', 'JJ'), ('goalnn', 'NN'), ('ofin', 'NN'), ('onecd', 'NN'), ('churchnn', 'NN'), ('forin', 'NN'), ('everyat', 'VBD'), ('10,000cd', 'CD'), ('personsnns', 'NN'), ('..', 'NN'), ('``', '``'), ('``', '``'), ('Inin', 'NNP'), ('thisdt', 'NN'), ('lightnn', 'NN'), ('weppss', 'VBD'), ('needvb', 'RB'), ('1,000cd', 'CD'), ('churchesnns', 'NNS'), ('inin', 'JJ'), ('Illinoisnp', 'NNP'), (',', ','), (',', ','), ('wherewrb', 'VBP'), ('weppss', 'JJ'), ('havehv', 'NN'), ('200cd', 'CD'), (';', ':'), ('.', '.')] [(';', ':'), ('.800cd', 'CD'), ('inin', 'JJ'), ('Southernjj-tl', 'JJ'), ('Newjj-tl', 'NNP'), ('Englandnp', 'NNP'), (',', ','), (',', ','), ('weppss', 'VBD'), ('havehv', 'JJ'), ('60cd', 'CD'), (';', ':'), ('.', '.')] [(';', ':'), ('.weppss', 'CC'), ('needvb', '$'), ('100cd', 'CD'), ('inin', 'JJ'), ('Rhodenp-tl', 'JJ'), ('Islandnn-tl', 'NNP'), (',', ','), (',', ','), ('weppss', 'VBP'), ('havehv', 'JJ'), ('nonepn', 'FW'), ('``', '``'), ("''", "''"), (',', ','), (',', ','), ('hepps', 'JJ'), ('saidvbd', 'NN'), ('..', 'NNP'), ('Toto', 'NNP'), ('stepvb', 'VBD'), ('uprp', 'JJ'), ('theat', 'NN'), ("denomination'snn", 'JJ'), ('$', '$'), ('programnn', 'NN'), (',', ','), (',', ','), ('theat', 'NN'), ('Rev.np', 'NNP'), ('Mr.np', 'NNP'), ('Brandtnp', 'NNP'), ('suggestedvbd', 'VBD'), ('theat', 'NN'), ('visionnn', 'NN'), ('ofin', 'VBD'), ('8,000cd', 'CD'), ('newjj', 'JJ'), ('Assembliesnns-tl', 'JJ'), ('ofin-tl', 'JJ'), ('Godnp-tl', 'NNP'), ('churchesnns', 'NN'), ('inin', 'NN'), ('theat', 'NN'), ('nextap', 'JJ'), ('10cd', 'CD'), ('yearsnns', 'NN'), ('..', 'NNP'), ('Toto', 'NNP'), ('accomplishvb', 'VBZ'), ('thisdt', 'JJ'), ('wouldmd', 'NN'), ('necessitatevb', 'NN'), ('somedti', 'NN'), ('changesnns', 'NN'), ('inin', 'NN'), ('methodsnns', 'NN'), (',', ','), (',', ','), ('hepps', 'JJ'), ('saidvbd', 'NN'), ('..', 'NN'), ("''", "''"), ('churchnn-hl', 'JJ'), ('meetsvbz-hl', 'JJ'), ('changenn-hl', 'NN'), ('``', '``'), ('``', '``'), ('``', '``'), ('Theat', 'NNP'), ("church'snn", 'JJ'), ('$', '$'), ('abilitynn', 'JJ'), ('toto', 'NN'), ('changevb', 'NN'), ('herpp', 'VBD'), ('$', '$'), ('methodsnns', 'CD'), ('isbez', 'NN'), ('goingvbg', 'NN'), ('toto', 'NN'), ('determinevb', 'NN'), ('herpp', 'VBD'), ('$', '$'), ('abilitynn', 'JJ'), ('toto', 'NN'), ('meetvb', 'NN'), ('theat', 'NN'), ('challengenn', 'NN'), ('ofin', 'NN'), ('thisdt', 'NN'), ('hournn', 'NN'), ('``', '``'), ("''", "''"), ('..', 'NN'), ('Aat', 'NNP'), ('capsulenn', 'NN'), ('viewnn', 'NN'), ('ofin', 'NN'), ('proposedvbn', 'NN'), ('plansnns', 'NN'), ('includesvbz', 'NN'), (':', ':'), (':', ':'), ('--', ':'), ('--', ':'), ('Encouragingvbg', 'NNP'), ('byin', 'NN'), ('everyat', 'NN'), ('meansnns', 'NN'), (',', ','), (',', ','), ('allabn', 'JJ'), ('existingvbg', 'JJ'), ('Assembliesnns-tl', 'JJ'), ('ofin-tl', 'JJ'), ('Godnp-tl', 'NNP'), ('churchesnns', 'NN'), ('toto', 'NN'), ('startvb', 'NN'), ('newjj', 'JJ'), ('churchesnns', 'NN'), ('..', 'NNP'), ('--', ':'), ('--', ':'), ('Engagingvbg', 'NNP'), ('maturejj', 'NN'), (',', ','), (',', ','), ('experiencedvbn', 'FW'), ('mennns', 'FW'), ('toto', 'NN'), ('pioneervb', 'NN'), ('orcc', 'NN'), ('openvb', 'NN'), ('newjj', 'JJ'), ('churchesnns', 'NN'), ('inin', 'NN'), ('strategicjj', 'NN'), ('populationnn', 'NN'), ('centersnns', 'NN'), ('..', 'NNP'), ('--', ':'), ('--', ':'), ('Surroundingvbg', 'NNP'), ('pioneernn', 'NN'), ('pastorsnns', 'NN'), ('within', 'IN'), ('vocationaljj', 'JJ'), ('volunteersnns', 'NN'), ('(', '('), ('(', '('), ('laymennns', 'NN'), (',', ','), (',', ','), ('whowps', 'VBP'), ('willmd', 'JJ'), ('bebe', 'NN'), ('urgedvbn', 'JJ'), ('toto', 'NN'), ('movevb', 'NN'), ('intoin', 'NN'), ('theat', 'NN'), ('areann', 'JJ'), ('ofin', 'NN'), ('newjj', 'NN'), ('churchesnns', 'NN'), ('inin', 'NN'), ('theat', 'NN'), ('interestnn', 'JJ'), ('ofin', 'NN'), ('lendingvbg', 'NN'), ('theirpp', 'VBD'), ('$', '$'), ('supportnn', 'JJ'), ('toin', 'NN'), ('theat', 'NN'), ('newjj', 'JJ'), ('projectnn', 'NN'), (')', ')'), (')', ')'), ('..', 'FW'), ('--', ':'), ('--', ':'), ('Arrangingvbg', 'NNP'), ('forin', 'VBP'), ('ministerialjj', 'NN'), ('graduatesnns', 'NN'), ('toto', 'NN'), ('spendvb', 'JJ'), ('fromin', 'JJ'), ('6-12cd', 'JJ'), ('monthsnns', 'NN'), ('ascs', 'NN'), ('apprenticesnns', 'JJ'), ('inin', 'JJ'), ('well-establishedjj', 'JJ'), ('churchesnns', 'NN'), ('..', 'JJ'), ('U.S.np-tl', 'JJ'), ('Dist.nn-tl', 'NNP'), ('Judgenn-tl', 'NNP'), ('Charlesnp', 'NNP'), ('L.np', 'NNP'), ('Powellnp', 'NNP'), ('deniedvbd', 'NN'), ('allabn', 'NN'), ('motionsnns', 'NN'), ('madevbn', 'NN'), ('byin', 'NN'), ('defensenn', 'NN'), ('attorneysnns', 'NN'), ('Mondaynr', 'NNP'), ('inin', 'NN'), ("Portland'snp", 'NNP'), ('$', '$'), ('insurancenn', 'JJ'), ('fraudnn', 'NN'), ('trialnn', 'NN'), ('..', 'NNP'), ('Denialsnns', 'NNP'), ('werebed', 'VBD'), ('ofin', 'JJ'), ('motionsnns', 'NN'), ('ofin', 'NN'), ('dismissalnn', 'NN'), (',', ','), (',', ','), ('continuancenn', 'NN'), (',', ','), (',', ','), ('mistrialnn', 'NN'), (',', ','), (',', ','), ('separatejj', 'JJ'), ('trialnn', 'NN'), (',', ','), (',', ','), ('acquittalnn', 'NN'), (',', ','), (',', ','), ('strikingnn', 'JJ'), ('ofin', 'NN'), ('testimonynn', 'NN'), ('andcc', 'NN'), ('directedvbn', 'NN'), ('verdictnn', 'NN'), ('..', 'NNP'), ('Inin', 'NNP'), ('denyingvbg', 'NN'), ('motionsnns', 'NN'), ('forin', 'NN'), ('dismissalnn', 'NN'), (',', ','), (',', ','), ('Judgenn-tl', 'NNP'), ('Powellnp', 'NNP'), ('statedvbd', 'NN'), ('thatcs', 'NN'), ('massnn', 'NN'), ('trialsnns', 'NN'), ('havehv', 'NN'), ('beenben', 'NN'), ('upheldvbn', 'JJ'), ('ascs', 'NN'), ('properjj', 'NN'), ('inin', 'NN'), ('otherap', 'NN'), ('courtsnns', 'NN'), ('andcc', 'NN'), ('thatcs', 'IN'), ('``', '``'), ('``', '``'), ('aat', 'JJ'), ('personnn', 'NN'), ('maymd', 'NN'), ('joinvb', 'NN'), ('aat', 'NN'), ('conspiracynn', 'NN'), ('withoutin', 'NN'), ('knowingvbg', 'NN'), ('whowps', 'NN'), ('allabn', 'NN'), ('ofin', 'NN'), ('theat', 'NN'), ('conspiratorsnns', 'JJ'), ('areber', 'NN'), ('``', '``'), ("''", "''"), ('..', 'VBZ'), ('Attorneynn', 'NNP'), ('Dwightnp', 'NNP'), ('L.np', 'NNP'), ('Schwabnp', 'NNP'), (',', ','), (',', ','), ('inin', 'JJ'), ('behalfnn', 'NN'), ('ofin', 'NN'), ('defendantnn', 'NN'), ('Philipnp', 'NNP'), ('Weinsteinnp', 'NNP'), (',', ','), (',', ','), ('arguedvbd', 'JJ'), ('thereex', 'NN'), ('isbez', 'NN'), ('noat', 'NN'), ('evidencenn', 'NN'), ('linkingvbg', 'NN'), ('Weinsteinnp', 'NNP'), ('toin', 'NN'), ('theat', 'NN'), ('conspiracynn', 'NN'), (',', ','), (',', ','), ('butcc', 'VBD'), ('Judgenn-tl', 'NNP'), ('Powellnp', 'NNP'), ('declaredvbd', 'NN'), ('thisdt', 'NN'), ('isbez', 'NN'), ('aat', 'NN'), ('matternn', 'NN'), ('forcs', 'NN'), ('theat', 'NN'), ('jurynn', 'NN'), ('toto', 'NN'), ('decidevb', 'JJ'), ('..Proofnn-hl', 'JJ'), ('lacknn-hl', 'JJ'), ('chargedvbn-hl', 'JJ'), ('Schwabnp', 'NNP'), ('alsorb', 'NN'), ('declaredvbd', 'NN'), ('thereex', 'NN'), ('isbez', 'NN'), ('noat', 'NN'), ('proofnn', 'NN'), ('ofin', 'NN'), ("Weinstein'snp", 'NNP'), ('$', '$'), ('enteringvbg', 'JJ'), ('aat', 'NN'), ('conspiracynn', 'NN'), ('toto', 'NN'), ('usevb', 'JJ'), ('theat', 'NN'), ('U.S.np', 'NNP'), ('mailsnns', 'NN'), ('toto', 'NN'), ('defraudvb', 'NN'), (',', ','), (',', ','), ('toin', 'VB'), ('whichwdt', 'JJ'), ('federaljj', 'NN'), ('prosecutornn', 'NN'), ('A.np', 'NNP'), ('Lawrencenp', 'NNP'), ('Burbanknp', 'NNP'), ('repliedvbd', 'NN'), (':', ':'), (':', ':'), ('``', '``'), ('``', '``'), ('Itpps', 'NNP'), ('isbez', 'NN'), ('not*', 'NN'), ('necessaryjj', 'JJ'), ('thatcs', 'NN'), ('aat', 'NN'), ('defendantnn', 'NN'), ('actuallyrb', 'NN'), ('havehv', 'NN'), ('conpiredvbn', 'NN'), ('toto', 'NN'), ('usevb', 'JJ'), ('theat', 'NN'), ('U.S.np', 'NNP'), ('mailsnns', 'NN'), ('toto', 'NN'), ('defraudvb', 'NN'), ('asql', 'NN'), ('longrb', 'NN'), ('ascs', 'NN'), ('thereex', 'NN'), ('isbez', 'NN'), ('evidencenn', 'NN'), ('ofin', 'NN'), ('aat', 'NN'), ('conspiracynn', 'NN'), (',', ','), (',', ','), ('andcc', 'JJ'), ('theat', 'NN'), ('mailsnns', 'NN'), ('werebed', 'VBD'), ('thenrb', 'JJ'), ('usedvbn', 'JJ'), ('toto', 'NN'), ('carryvb', 'NN'), ('itppo', 'NN'), ('outrp', 'IN'), ('``', '``'), ("''", "''"), ('..', 'NN'), ('Inin', 'NNP'), ('theat', 'NN'), ('afternoonnn', 'NN'), (',', ','), (',', ','), ('defensenn', 'JJ'), ('attorneysnns', 'NN'), ('beganvbd', 'NN'), ('theat', 'NN'), ('presentationnn', 'NN'), ('ofin', 'NN'), ('theirpp', 'VBD'), ('$', '$'), ('casesnns', 'NN'), ('within', 'IN'), ('openingvbg', 'JJ'), ('statementsnns', 'NN'), (',', ','), (',', ','), ('somedti', 'JJ'), ('ofin', 'NN'), ('whichwdt', 'NN'), ('hadhvd', 'NN'), ('beenben', 'NN'), ('deferredvbn', 'NN'), ('untilin', 'JJ'), ('afterin', 'JJ'), ('theat', 'NN'), ('governmentnn', 'NN'), ('hadhvd', 'NN'), ('calledvbn', 'NN'), ('witnessesnns', 'NN'), ('andcc', 'NN'), ('presentedvbn', 'NN'), ('itspp', 'JJ'), ('$', '$'), ('casenn', 'NNS'), ('..', 'VBP')] ###Markdown Step 5 : Named entity recognitionNamed Entity Recognition, also known as entity extraction classifies named entities that are present in a text into pre-defined categories like “individuals”, “companies”, “places”, “organization”, “cities”, “dates”, “product terminologies” etc ###Code sentences = nltk.sent_tokenize(data) tokenized_sentences = [nltk.word_tokenize(sentence) for sentence in sentences] tagged_sentences = [nltk.pos_tag(sentence) for sentence in tokenized_sentences] chunked_sentences = nltk.ne_chunk_sents(tagged_sentences, binary=True) def extract_entity_names(x): entity_names = [] if hasattr(x, 'label') and x.label: #hasattr - Its main task is to check if an object has the given named attribute and return true if present, else false. if x.label() == 'NE': entity_names.append(' '.join([word[0] for word in x])) else: for word in x: entity_names.extend(extract_entity_names(word)) return entity_names entity_names = [] for tree in chunked_sentences: entity_names.extend(extract_entity_names(tree)) # Print unique entity names print (set(entity_names)) ###Output {'Tuesdaynr', 'Dwightnp', 'Jamesnp Culbertsonnp', 'Eugenenp', 'Donaldnp Huffmannp', 'Salemnp', 'Biblenp', 'Milesnp', 'Portlandnp', 'Franknp Leenp', 'Americansnps', 'Barbaranp Njustnp', 'Martinnp', 'Alnp Ullmannp', 'Blainenp Whipplenp', 'SWnn Maplecrestnp', 'Oregonnp', 'Jamesnp', 'Attorneynn Dwightnp', 'Sovietnp', 'Philipnp Weinsteinnp', 'Jacknp', 'Ajnn', 'Hepps', 'Deannp Brysonnp', 'Losnp Angelesnp', 'Vincentnp'} ###Markdown Module 2 (Python 3) Basic NLP Tasks with NLTK ###Code import nltk from nltk.book import * ###Output _____no_output_____ ###Markdown Counting vocabulary of words ###Code text7 sent7 len(sent7) len(text7) len(set(text7)) list(set(text7))[:10] ###Output _____no_output_____ ###Markdown Frequency of words ###Code dist = FreqDist(text7) len(dist) vocab1 = dist.keys() #vocab1[:10] # In Python 3 dict.keys() returns an iterable view instead of a list list(vocab1)[:10] dist['four'] freqwords = [w for w in vocab1 if len(w) > 5 and dist[w] > 100] freqwords ###Output _____no_output_____ ###Markdown Normalization and stemming ###Code input1 = "List listed lists listing listings" words1 = input1.lower().split(' ') words1 porter = nltk.PorterStemmer() [porter.stem(t) for t in words1] ###Output _____no_output_____ ###Markdown Lemmatization ###Code udhr = nltk.corpus.udhr.words('English-Latin1') udhr[:20] [porter.stem(t) for t in udhr[:20]] # Still Lemmatization WNlemma = nltk.WordNetLemmatizer() [WNlemma.lemmatize(t) for t in udhr[:20]] ###Output _____no_output_____ ###Markdown Tokenization ###Code text11 = "Children shouldn't drink a sugary drink before bed." text11.split(' ') nltk.word_tokenize(text11) text12 = "This is the first sentence. A gallon of milk in the U.S. costs $2.99. Is this the third sentence? Yes, it is!" sentences = nltk.sent_tokenize(text12) len(sentences) sentences ###Output _____no_output_____ ###Markdown Advanced NLP Tasks with NLTK POS tagging ###Code nltk.help.upenn_tagset('MD') text13 = nltk.word_tokenize(text11) nltk.pos_tag(text13) text14 = nltk.word_tokenize("Visiting aunts can be a nuisance") nltk.pos_tag(text14) # Parsing sentence structure text15 = nltk.word_tokenize("Alice loves Bob") grammar = nltk.CFG.fromstring(""" S -> NP VP VP -> V NP NP -> 'Alice' | 'Bob' V -> 'loves' """) parser = nltk.ChartParser(grammar) trees = parser.parse_all(text15) for tree in trees: print(tree) text16 = nltk.word_tokenize("I saw the man with a telescope") grammar1 = nltk.data.load('mygrammar.cfg') grammar1 parser = nltk.ChartParser(grammar1) trees = parser.parse_all(text16) for tree in trees: print(tree) from nltk.corpus import treebank text17 = treebank.parsed_sents('wsj_0001.mrg')[0] print(text17) ###Output (S (NP-SBJ (NP (NNP Pierre) (NNP Vinken)) (, ,) (ADJP (NP (CD 61) (NNS years)) (JJ old)) (, ,)) (VP (MD will) (VP (VB join) (NP (DT the) (NN board)) (PP-CLR (IN as) (NP (DT a) (JJ nonexecutive) (NN director))) (NP-TMP (NNP Nov.) (CD 29)))) (. .)) ###Markdown POS tagging and parsing ambiguity ###Code text18 = nltk.word_tokenize("The old man the boat") nltk.pos_tag(text18) text19 = nltk.word_tokenize("Colorless green ideas sleep furiously") nltk.pos_tag(text19) ###Output _____no_output_____
nbs/09-pipeline.ipynb
###Markdown Pipeline Imports ###Code #exports import numpy as np import pandas as pd import os from sklearn.ensemble import RandomForestRegressor from dagster import execute_pipeline, pipeline, solid, Field from batopt import clean, discharge, charge, constraints, pv import FEAutils as hlp import matplotlib.pyplot as plt ###Output _____no_output_____ ###Markdown End-to-EndWe're now going to combine these steps into a pipeline using dagster, first we'll create the individual components. ###Code @solid() def load_data(_, raw_data_dir: str): loaded_data = dict() loaded_data['pv'] = clean.load_training_dataset(raw_data_dir, 'pv') loaded_data['demand'] = clean.load_training_dataset(raw_data_dir, 'demand') loaded_data['weather'] = clean.load_training_dataset(raw_data_dir, 'weather', dt_idx_freq='H') return loaded_data @solid() def clean_data(_, loaded_data, raw_data_dir: str, intermediate_data_dir: str): # Cleaning cleaned_data = dict() cleaned_data['pv'] = (loaded_data['pv'] .pipe(clean.pv_anomalies_to_nan) .pipe(clean.interpolate_missing_panel_temps, loaded_data['weather']) .pipe(clean.interpolate_missing_site_irradiance, loaded_data['weather']) .pipe(clean.interpolate_missing_site_power) ) cleaned_data['weather'] = clean.interpolate_missing_weather_solar(loaded_data['pv'], loaded_data['weather']) cleaned_data['weather'] = clean.interpolate_missing_temps(cleaned_data['weather'], 'temp_location4') cleaned_data['demand'] = loaded_data['demand'] # Saving if os.path.exists(intermediate_data_dir) == False: os.mkdir(intermediate_data_dir) set_num = clean.identify_latest_set_num(raw_data_dir) cleaned_data['pv'].to_csv(f'{intermediate_data_dir}/pv_set{set_num}.csv') cleaned_data['demand'].to_csv(f'{intermediate_data_dir}/demand_set{set_num}.csv') cleaned_data['weather'].to_csv(f'{intermediate_data_dir}/weather_set{set_num}.csv') return intermediate_data_dir @solid() def fit_and_save_pv_model(_, intermediate_data_dir: str, pv_model_fp: str, model_params: dict): X, y = pv.prepare_training_input_data(intermediate_data_dir) pv.fit_and_save_pv_model(X, y, pv_model_fp, model_class=RandomForestRegressor, **model_params) return True @solid() def fit_and_save_discharge_model(_, intermediate_data_dir: str, discharge_opt_model_fp: str, model_params: dict): X, y = discharge.prepare_training_input_data(intermediate_data_dir) discharge.fit_and_save_model(X, y, discharge_opt_model_fp, **model_params) return True @solid() def construct_battery_profile(_, charge_model_success: bool, discharge_model_success: bool, intermediate_data_dir: str, raw_data_dir: str, discharge_opt_model_fp: str, pv_model_fp: str, start_time: str): assert charge_model_success and discharge_model_success, 'Model training was unsuccessful' s_discharge_profile = discharge.optimise_test_discharge_profile(raw_data_dir, intermediate_data_dir, discharge_opt_model_fp) s_charge_profile = pv.optimise_test_charge_profile(raw_data_dir, intermediate_data_dir, pv_model_fp, start_time=start_time) s_battery_profile = (s_charge_profile + s_discharge_profile).fillna(0) s_battery_profile.name = 'charge_MW' return s_battery_profile @solid() def check_and_save_battery_profile(_, s_battery_profile, output_data_dir: str): # Check that solution meets battery constraints assert constraints.schedule_is_legal(s_battery_profile), 'Solution violates constraints' # Saving if os.path.exists(output_data_dir) == False: os.mkdir(output_data_dir) s_battery_profile.index = s_battery_profile.index.tz_convert('UTC').tz_convert(None) s_battery_profile.to_csv(f'{output_data_dir}/latest_submission.csv') return ###Output _____no_output_____ ###Markdown Then we'll combine them in a pipeline ###Code @pipeline def end_to_end_pipeline(): # loading and cleaning loaded_data = load_data() intermediate_data_dir = clean_data(loaded_data) # charging charge_model_success = fit_and_save_pv_model(intermediate_data_dir) # discharing discharge_model_success = fit_and_save_discharge_model(intermediate_data_dir) # combining and saving s_battery_profile = construct_battery_profile(charge_model_success, discharge_model_success, intermediate_data_dir) check_and_save_battery_profile(s_battery_profile) ###Output _____no_output_____ ###Markdown Which we'll now run a test ###Code run_config = { 'solids': { 'load_data': { 'inputs': { 'raw_data_dir': '../data/raw', }, }, 'clean_data': { 'inputs': { 'raw_data_dir': '../data/raw', 'intermediate_data_dir': '../data/intermediate', }, }, 'fit_and_save_discharge_model': { 'inputs': { 'discharge_opt_model_fp': '../models/discharge_opt.sav', 'model_params': { 'criterion': 'mse', 'bootstrap': True, 'max_depth': 32, 'max_features': 'auto', 'min_samples_leaf': 1, 'min_samples_split': 4, 'n_estimators': 74 } }, }, 'fit_and_save_pv_model': { 'inputs': { 'pv_model_fp': '../models/pv_model.sav', 'model_params': { 'bootstrap': True, 'criterion': 'mse', 'max_depth': 5, 'max_features': 'sqrt', 'min_samples_leaf': 1, 'min_samples_split': 2, 'n_estimators': 150 } }, }, 'construct_battery_profile': { 'inputs': { 'raw_data_dir': '../data/raw', 'discharge_opt_model_fp': '../models/discharge_opt.sav', 'pv_model_fp': '../models/pv_model.sav', 'start_time': '08:00', }, }, 'check_and_save_battery_profile': { 'inputs': { 'output_data_dir': '../data/output' }, }, } } execute_pipeline(end_to_end_pipeline, run_config=run_config) ###Output 2021-03-19 01:22:42 - dagster - DEBUG - end_to_end_pipeline - 01f88437-2b8c-4581-9982-3f76523c2874 - 17436 - ENGINE_EVENT - Starting initialization of resources [asset_store]. 2021-03-19 01:22:42 - dagster - DEBUG - end_to_end_pipeline - 01f88437-2b8c-4581-9982-3f76523c2874 - 17436 - ENGINE_EVENT - Finished initialization of resources [asset_store]. 2021-03-19 01:22:42 - dagster - DEBUG - end_to_end_pipeline - 01f88437-2b8c-4581-9982-3f76523c2874 - 17436 - PIPELINE_START - Started execution of pipeline "end_to_end_pipeline". 2021-03-19 01:22:42 - dagster - DEBUG - end_to_end_pipeline - 01f88437-2b8c-4581-9982-3f76523c2874 - 17436 - ENGINE_EVENT - Executing steps in process (pid: 17436) 2021-03-19 01:22:42 - dagster - DEBUG - end_to_end_pipeline - 01f88437-2b8c-4581-9982-3f76523c2874 - 17436 - load_data.compute - STEP_START - Started execution of step "load_data.compute". 2021-03-19 01:22:42 - dagster - DEBUG - end_to_end_pipeline - 01f88437-2b8c-4581-9982-3f76523c2874 - 17436 - load_data.compute - STEP_INPUT - Got input "raw_data_dir" of type "String". (Type check passed). 2021-03-19 01:22:42 - dagster - DEBUG - end_to_end_pipeline - 01f88437-2b8c-4581-9982-3f76523c2874 - 17436 - load_data.compute - STEP_OUTPUT - Yielded output "result" of type "Any". (Type check passed). 2021-03-19 01:22:42 - dagster - DEBUG - end_to_end_pipeline - 01f88437-2b8c-4581-9982-3f76523c2874 - 17436 - load_data.compute - OBJECT_STORE_OPERATION - Stored intermediate object for output result in memory object store using pickle. 2021-03-19 01:22:42 - dagster - DEBUG - end_to_end_pipeline - 01f88437-2b8c-4581-9982-3f76523c2874 - 17436 - load_data.compute - STEP_SUCCESS - Finished execution of step "load_data.compute" in 253ms. 2021-03-19 01:22:42 - dagster - DEBUG - end_to_end_pipeline - 01f88437-2b8c-4581-9982-3f76523c2874 - 17436 - clean_data.compute - STEP_START - Started execution of step "clean_data.compute". 2021-03-19 01:22:42 - dagster - DEBUG - end_to_end_pipeline - 01f88437-2b8c-4581-9982-3f76523c2874 - 17436 - clean_data.compute - OBJECT_STORE_OPERATION - Retrieved intermediate object for input loaded_data in memory object store using pickle. 2021-03-19 01:22:42 - dagster - DEBUG - end_to_end_pipeline - 01f88437-2b8c-4581-9982-3f76523c2874 - 17436 - clean_data.compute - STEP_INPUT - Got input "loaded_data" of type "Any". (Type check passed). 2021-03-19 01:22:42 - dagster - DEBUG - end_to_end_pipeline - 01f88437-2b8c-4581-9982-3f76523c2874 - 17436 - clean_data.compute - STEP_INPUT - Got input "raw_data_dir" of type "String". (Type check passed). 2021-03-19 01:22:42 - dagster - DEBUG - end_to_end_pipeline - 01f88437-2b8c-4581-9982-3f76523c2874 - 17436 - clean_data.compute - STEP_INPUT - Got input "intermediate_data_dir" of type "String". (Type check passed). 2021-03-19 01:24:43 - dagster - DEBUG - end_to_end_pipeline - 01f88437-2b8c-4581-9982-3f76523c2874 - 17436 - clean_data.compute - STEP_OUTPUT - Yielded output "result" of type "Any". (Type check passed). 2021-03-19 01:24:43 - dagster - DEBUG - end_to_end_pipeline - 01f88437-2b8c-4581-9982-3f76523c2874 - 17436 - clean_data.compute - OBJECT_STORE_OPERATION - Stored intermediate object for output result in memory object store using pickle. 2021-03-19 01:24:43 - dagster - DEBUG - end_to_end_pipeline - 01f88437-2b8c-4581-9982-3f76523c2874 - 17436 - clean_data.compute - STEP_SUCCESS - Finished execution of step "clean_data.compute" in 2m1s. 2021-03-19 01:24:43 - dagster - DEBUG - end_to_end_pipeline - 01f88437-2b8c-4581-9982-3f76523c2874 - 17436 - fit_and_save_discharge_model.compute - STEP_START - Started execution of step "fit_and_save_discharge_model.compute". 2021-03-19 01:24:43 - dagster - DEBUG - end_to_end_pipeline - 01f88437-2b8c-4581-9982-3f76523c2874 - 17436 - fit_and_save_discharge_model.compute - OBJECT_STORE_OPERATION - Retrieved intermediate object for input intermediate_data_dir in memory object store using pickle. 2021-03-19 01:24:43 - dagster - DEBUG - end_to_end_pipeline - 01f88437-2b8c-4581-9982-3f76523c2874 - 17436 - fit_and_save_discharge_model.compute - STEP_INPUT - Got input "intermediate_data_dir" of type "String". (Type check passed). 2021-03-19 01:24:43 - dagster - DEBUG - end_to_end_pipeline - 01f88437-2b8c-4581-9982-3f76523c2874 - 17436 - fit_and_save_discharge_model.compute - STEP_INPUT - Got input "discharge_opt_model_fp" of type "String". (Type check passed). 2021-03-19 01:24:43 - dagster - DEBUG - end_to_end_pipeline - 01f88437-2b8c-4581-9982-3f76523c2874 - 17436 - fit_and_save_discharge_model.compute - STEP_INPUT - Got input "model_params" of type "dict". (Type check passed). 2021-03-19 01:24:43 - dagster - DEBUG - end_to_end_pipeline - 01f88437-2b8c-4581-9982-3f76523c2874 - 17436 - fit_and_save_discharge_model.compute - STEP_OUTPUT - Yielded output "result" of type "Any". (Type check passed). 2021-03-19 01:24:43 - dagster - DEBUG - end_to_end_pipeline - 01f88437-2b8c-4581-9982-3f76523c2874 - 17436 - fit_and_save_discharge_model.compute - OBJECT_STORE_OPERATION - Stored intermediate object for output result in memory object store using pickle. 2021-03-19 01:24:43 - dagster - DEBUG - end_to_end_pipeline - 01f88437-2b8c-4581-9982-3f76523c2874 - 17436 - fit_and_save_discharge_model.compute - STEP_SUCCESS - Finished execution of step "fit_and_save_discharge_model.compute" in 5.44ms. 2021-03-19 01:24:43 - dagster - DEBUG - end_to_end_pipeline - 01f88437-2b8c-4581-9982-3f76523c2874 - 17436 - fit_and_save_pv_model.compute - STEP_START - Started execution of step "fit_and_save_pv_model.compute". 2021-03-19 01:24:43 - dagster - DEBUG - end_to_end_pipeline - 01f88437-2b8c-4581-9982-3f76523c2874 - 17436 - fit_and_save_pv_model.compute - OBJECT_STORE_OPERATION - Retrieved intermediate object for input intermediate_data_dir in memory object store using pickle. 2021-03-19 01:24:43 - dagster - DEBUG - end_to_end_pipeline - 01f88437-2b8c-4581-9982-3f76523c2874 - 17436 - fit_and_save_pv_model.compute - STEP_INPUT - Got input "intermediate_data_dir" of type "String". (Type check passed). 2021-03-19 01:24:43 - dagster - DEBUG - end_to_end_pipeline - 01f88437-2b8c-4581-9982-3f76523c2874 - 17436 - fit_and_save_pv_model.compute - STEP_INPUT - Got input "pv_model_fp" of type "String". (Type check passed). 2021-03-19 01:24:43 - dagster - DEBUG - end_to_end_pipeline - 01f88437-2b8c-4581-9982-3f76523c2874 - 17436 - fit_and_save_pv_model.compute - STEP_INPUT - Got input "model_params" of type "dict". (Type check passed). 2021-03-19 01:24:43 - dagster - DEBUG - end_to_end_pipeline - 01f88437-2b8c-4581-9982-3f76523c2874 - 17436 - fit_and_save_pv_model.compute - STEP_OUTPUT - Yielded output "result" of type "Any". (Type check passed). 2021-03-19 01:24:43 - dagster - DEBUG - end_to_end_pipeline - 01f88437-2b8c-4581-9982-3f76523c2874 - 17436 - fit_and_save_pv_model.compute - OBJECT_STORE_OPERATION - Stored intermediate object for output result in memory object store using pickle. 2021-03-19 01:24:43 - dagster - DEBUG - end_to_end_pipeline - 01f88437-2b8c-4581-9982-3f76523c2874 - 17436 - fit_and_save_pv_model.compute - STEP_SUCCESS - Finished execution of step "fit_and_save_pv_model.compute" in 6.29ms. 2021-03-19 01:24:43 - dagster - DEBUG - end_to_end_pipeline - 01f88437-2b8c-4581-9982-3f76523c2874 - 17436 - construct_battery_profile.compute - STEP_START - Started execution of step "construct_battery_profile.compute". 2021-03-19 01:24:43 - dagster - DEBUG - end_to_end_pipeline - 01f88437-2b8c-4581-9982-3f76523c2874 - 17436 - construct_battery_profile.compute - OBJECT_STORE_OPERATION - Retrieved intermediate object for input charge_model_success in memory object store using pickle. 2021-03-19 01:24:43 - dagster - DEBUG - end_to_end_pipeline - 01f88437-2b8c-4581-9982-3f76523c2874 - 17436 - construct_battery_profile.compute - OBJECT_STORE_OPERATION - Retrieved intermediate object for input discharge_model_success in memory object store using pickle. 2021-03-19 01:24:43 - dagster - DEBUG - end_to_end_pipeline - 01f88437-2b8c-4581-9982-3f76523c2874 - 17436 - construct_battery_profile.compute - OBJECT_STORE_OPERATION - Retrieved intermediate object for input intermediate_data_dir in memory object store using pickle. 2021-03-19 01:24:43 - dagster - DEBUG - end_to_end_pipeline - 01f88437-2b8c-4581-9982-3f76523c2874 - 17436 - construct_battery_profile.compute - STEP_INPUT - Got input "charge_model_success" of type "Bool". (Type check passed). 2021-03-19 01:24:43 - dagster - DEBUG - end_to_end_pipeline - 01f88437-2b8c-4581-9982-3f76523c2874 - 17436 - construct_battery_profile.compute - STEP_INPUT - Got input "discharge_model_success" of type "Bool". (Type check passed). 2021-03-19 01:24:43 - dagster - DEBUG - end_to_end_pipeline - 01f88437-2b8c-4581-9982-3f76523c2874 - 17436 - construct_battery_profile.compute - STEP_INPUT - Got input "intermediate_data_dir" of type "String". (Type check passed). 2021-03-19 01:24:43 - dagster - DEBUG - end_to_end_pipeline - 01f88437-2b8c-4581-9982-3f76523c2874 - 17436 - construct_battery_profile.compute - STEP_INPUT - Got input "raw_data_dir" of type "String". (Type check passed). 2021-03-19 01:24:43 - dagster - DEBUG - end_to_end_pipeline - 01f88437-2b8c-4581-9982-3f76523c2874 - 17436 - construct_battery_profile.compute - STEP_INPUT - Got input "discharge_opt_model_fp" of type "String". (Type check passed). 2021-03-19 01:24:43 - dagster - DEBUG - end_to_end_pipeline - 01f88437-2b8c-4581-9982-3f76523c2874 - 17436 - construct_battery_profile.compute - STEP_INPUT - Got input "pv_model_fp" of type "String". (Type check passed). 2021-03-19 01:24:43 - dagster - DEBUG - end_to_end_pipeline - 01f88437-2b8c-4581-9982-3f76523c2874 - 17436 - construct_battery_profile.compute - STEP_INPUT - Got input "start_time" of type "String". (Type check passed). 2021-03-19 01:24:46 - dagster - DEBUG - end_to_end_pipeline - 01f88437-2b8c-4581-9982-3f76523c2874 - 17436 - construct_battery_profile.compute - STEP_OUTPUT - Yielded output "result" of type "Any". (Type check passed). 2021-03-19 01:24:46 - dagster - DEBUG - end_to_end_pipeline - 01f88437-2b8c-4581-9982-3f76523c2874 - 17436 - construct_battery_profile.compute - OBJECT_STORE_OPERATION - Stored intermediate object for output result in memory object store using pickle. 2021-03-19 01:24:46 - dagster - DEBUG - end_to_end_pipeline - 01f88437-2b8c-4581-9982-3f76523c2874 - 17436 - construct_battery_profile.compute - STEP_SUCCESS - Finished execution of step "construct_battery_profile.compute" in 2.58s. 2021-03-19 01:24:46 - dagster - DEBUG - end_to_end_pipeline - 01f88437-2b8c-4581-9982-3f76523c2874 - 17436 - check_and_save_battery_profile.compute - STEP_START - Started execution of step "check_and_save_battery_profile.compute". 2021-03-19 01:24:46 - dagster - DEBUG - end_to_end_pipeline - 01f88437-2b8c-4581-9982-3f76523c2874 - 17436 - check_and_save_battery_profile.compute - OBJECT_STORE_OPERATION - Retrieved intermediate object for input s_battery_profile in memory object store using pickle. 2021-03-19 01:24:46 - dagster - DEBUG - end_to_end_pipeline - 01f88437-2b8c-4581-9982-3f76523c2874 - 17436 - check_and_save_battery_profile.compute - STEP_INPUT - Got input "s_battery_profile" of type "Any". (Type check passed). 2021-03-19 01:24:46 - dagster - DEBUG - end_to_end_pipeline - 01f88437-2b8c-4581-9982-3f76523c2874 - 17436 - check_and_save_battery_profile.compute - STEP_INPUT - Got input "output_data_dir" of type "String". (Type check passed). 2021-03-19 01:24:46 - dagster - DEBUG - end_to_end_pipeline - 01f88437-2b8c-4581-9982-3f76523c2874 - 17436 - check_and_save_battery_profile.compute - STEP_OUTPUT - Yielded output "result" of type "Any". (Type check passed). 2021-03-19 01:24:46 - dagster - DEBUG - end_to_end_pipeline - 01f88437-2b8c-4581-9982-3f76523c2874 - 17436 - check_and_save_battery_profile.compute - OBJECT_STORE_OPERATION - Stored intermediate object for output result in memory object store using pickle. 2021-03-19 01:24:46 - dagster - DEBUG - end_to_end_pipeline - 01f88437-2b8c-4581-9982-3f76523c2874 - 17436 - check_and_save_battery_profile.compute - STEP_SUCCESS - Finished execution of step "check_and_save_battery_profile.compute" in 15ms. 2021-03-19 01:24:46 - dagster - DEBUG - end_to_end_pipeline - 01f88437-2b8c-4581-9982-3f76523c2874 - 17436 - ENGINE_EVENT - Finished steps in process (pid: 17436) in 2m4s 2021-03-19 01:24:46 - dagster - DEBUG - end_to_end_pipeline - 01f88437-2b8c-4581-9982-3f76523c2874 - 17436 - PIPELINE_SUCCESS - Finished execution of pipeline "end_to_end_pipeline". ###Markdown We'll then visualise the latest charging profile ###Code df_latest_submission = pd.read_csv('../data/output/latest_submission.csv') s_latest_submission = df_latest_submission.set_index('datetime')['charge_MW'] s_latest_submission.index = pd.to_datetime(s_latest_submission.index) # Plotting fig, ax = plt.subplots(dpi=250) s_latest_submission.plot(ax=ax) ax.set_xlabel('') ax.set_ylabel('Charge (MW)') hlp.hide_spines(ax) fig.tight_layout() fig.savefig('../img/latest_submission.png', dpi=250) ###Output _____no_output_____ ###Markdown Finally we'll export the relevant code to our `batopt` module ###Code #hide from nbdev.export import notebook2script notebook2script() ###Output Converted 00-utilities.ipynb. Converted 01-retrieval.ipynb. Converted 02-cleaning.ipynb. Converted 03-charging.ipynb. Converted 04-discharging.ipynb. Converted 05-constraints.ipynb. Converted 06-tuning.ipynb. Converted 07-pv-forecast.ipynb. Converted 08-christmas.ipynb. Converted 09-pipeline.ipynb.
notebooks/02z1__Template-Basic.ipynb
###Markdown Notebook Title Author: Author's Name Affiliation: Institute/University License: Applicable License > Abstract: Outline the contents of the notebook. ###Code # Import all modules/packages used in the notebook # Initial import to allow requesting data from viresclient import SwarmRequest import datetime as dt import matplotlib.pyplot as plt ###Output _____no_output_____ ###Markdown 1. Fetching data ###Code request = SwarmRequest() # Listing of data accessible (help for selection, does not need to be run) request.available_collections(details=False) # Helper tool to show available parameters for collection (e.g. MAG) request.available_measurements("MAG") # Listing of available models request.available_models(details=False) # Application of filters request.set_range_filter(parameter="Latitude", minimum=0, maximum=90) request.set_range_filter("Longitude", 0, 90); # Set collection identifier (see available_collections for options) request.set_collection("SW_OPER_MAGA_LR_1B") # Set measurements (see available_measurements) request.set_products( measurements=["F", "B_NEC"], #models=["CHAOS-Core", "MCO_SHA_2D"], sampling_step="PT10S" ); # Data request data = request.get_between( # 2014-01-01 00:00:00 start_time = dt.datetime(2019,1,1, 0), # 2014-01-01 01:00:00 end_time = dt.datetime(2019,1,1, 1) ) # Convert to pandas dataframe df = data.as_dataframe() df.head() # or as xarray dataset ds = data.as_xarray() ds ###Output _____no_output_____ ###Markdown 2. Plotting data ###Code # Create plot ax = df.plot( y=["F"], figsize=(15,5), grid=True ) ax.set_xlabel("Timestamp") ax.set_ylabel("[nT]"); ###Output _____no_output_____ ###Markdown Notebook Title Author: Author's Name Affiliation: Institute/University License: Applicable License > Abstract: Outline the contents of the notebook. ###Code # Display important package versions used # Edit this according to what you use # - this will help others to reproduce your results # - it may also help to trace issues if package changes break your code %load_ext watermark %watermark -i -v -p viresclient,pandas,xarray,matplotlib # Import all modules/packages used in the notebook # Initial import to allow requesting data from viresclient import SwarmRequest import datetime as dt import matplotlib.pyplot as plt ###Output _____no_output_____ ###Markdown 1. Fetching data ###Code request = SwarmRequest() # Listing of data accessible (help for selection, does not need to be run) request.available_collections(details=False) # Helper tool to show available parameters for collection (e.g. MAG) request.available_measurements("MAG") # Listing of available models request.available_models(details=False) # Application of filters request.set_range_filter(parameter="Latitude", minimum=0, maximum=90) request.set_range_filter("Longitude", 0, 90); # Set collection identifier (see available_collections for options) request.set_collection("SW_OPER_MAGA_LR_1B") # Set measurements (see available_measurements) request.set_products( measurements=["F", "B_NEC"], #models=["CHAOS-Core", "MCO_SHA_2D"], sampling_step="PT10S" ); # Data request data = request.get_between( # 2014-01-01 00:00:00 start_time = dt.datetime(2019,1,1, 0), # 2014-01-01 01:00:00 end_time = dt.datetime(2019,1,1, 1) ) # Convert to pandas dataframe df = data.as_dataframe() df.head() # or as xarray dataset ds = data.as_xarray() ds ###Output _____no_output_____ ###Markdown 2. Plotting data ###Code # Create plot ax = df.plot( y=["F"], figsize=(15,5), grid=True ) ax.set_xlabel("Timestamp") ax.set_ylabel("[nT]"); ###Output _____no_output_____
docs/tutorials/gradients.ipynb
###Markdown Copyright 2020 The TensorFlow Authors. ###Code #@title Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ###Output _____no_output_____ ###Markdown Calculate gradients View on TensorFlow.org Run in Google Colab View source on GitHub Download notebook This tutorial explores gradient calculation algorithms for the expectation values of quantum circuits.Calculating the gradient of the expectation value of a certain observable in a quantum circuit is an involved process. Expectation values of observables do not have the luxury of having analytic gradient formulas that are always easy to write down—unlike traditional machine learning transformations such as matrix multiplication or vector addition that have analytic gradient formulas which are easy to write down. As a result, there are different quantum gradient calculation methods that come in handy for different scenarios. This tutorial compares and contrasts two different differentiation schemes. Setup ###Code !pip install tensorflow==2.3.1 ###Output _____no_output_____ ###Markdown Install TensorFlow Quantum: ###Code !pip install tensorflow-quantum ###Output _____no_output_____ ###Markdown Now import TensorFlow and the module dependencies: ###Code import tensorflow as tf import tensorflow_quantum as tfq import cirq import sympy import numpy as np # visualization tools %matplotlib inline import matplotlib.pyplot as plt from cirq.contrib.svg import SVGCircuit ###Output _____no_output_____ ###Markdown 1. PreliminaryLet's make the notion of gradient calculation for quantum circuits a little more concrete. Suppose you have a parameterized circuit like this one: ###Code qubit = cirq.GridQubit(0, 0) my_circuit = cirq.Circuit(cirq.Y(qubit)**sympy.Symbol('alpha')) SVGCircuit(my_circuit) ###Output _____no_output_____ ###Markdown Along with an observable: ###Code pauli_x = cirq.X(qubit) pauli_x ###Output _____no_output_____ ###Markdown Looking at this operator you know that $⟨Y(\alpha)| X | Y(\alpha)⟩ = \sin(\pi \alpha)$ ###Code def my_expectation(op, alpha): """Compute ⟨Y(alpha)| `op` | Y(alpha)⟩""" params = {'alpha': alpha} sim = cirq.Simulator() final_state_vector = sim.simulate(my_circuit, params).final_state_vector return op.expectation_from_state_vector(final_state_vector, {qubit: 0}).real my_alpha = 0.3 print("Expectation=", my_expectation(pauli_x, my_alpha)) print("Sin Formula=", np.sin(np.pi * my_alpha)) ###Output _____no_output_____ ###Markdown and if you define $f_{1}(\alpha) = ⟨Y(\alpha)| X | Y(\alpha)⟩$ then $f_{1}^{'}(\alpha) = \pi \cos(\pi \alpha)$. Let's check this: ###Code def my_grad(obs, alpha, eps=0.01): grad = 0 f_x = my_expectation(obs, alpha) f_x_prime = my_expectation(obs, alpha + eps) return ((f_x_prime - f_x) / eps).real print('Finite difference:', my_grad(pauli_x, my_alpha)) print('Cosine formula: ', np.pi * np.cos(np.pi * my_alpha)) ###Output _____no_output_____ ###Markdown 2. The need for a differentiatorWith larger circuits, you won't always be so lucky to have a formula that precisely calculates the gradients of a given quantum circuit. In the event that a simple formula isn't enough to calculate the gradient, the `tfq.differentiators.Differentiator` class allows you to define algorithms for computing the gradients of your circuits. For instance you can recreate the above example in TensorFlow Quantum (TFQ) with: ###Code expectation_calculation = tfq.layers.Expectation( differentiator=tfq.differentiators.ForwardDifference(grid_spacing=0.01)) expectation_calculation(my_circuit, operators=pauli_x, symbol_names=['alpha'], symbol_values=[[my_alpha]]) ###Output _____no_output_____ ###Markdown However, if you switch to estimating expectation based on sampling (what would happen on a true device) the values can change a little bit. This means you now have an imperfect estimate: ###Code sampled_expectation_calculation = tfq.layers.SampledExpectation( differentiator=tfq.differentiators.ForwardDifference(grid_spacing=0.01)) sampled_expectation_calculation(my_circuit, operators=pauli_x, repetitions=500, symbol_names=['alpha'], symbol_values=[[my_alpha]]) ###Output _____no_output_____ ###Markdown This can quickly compound into a serious accuracy problem when it comes to gradients: ###Code # Make input_points = [batch_size, 1] array. input_points = np.linspace(0, 5, 200)[:, np.newaxis].astype(np.float32) exact_outputs = expectation_calculation(my_circuit, operators=pauli_x, symbol_names=['alpha'], symbol_values=input_points) imperfect_outputs = sampled_expectation_calculation(my_circuit, operators=pauli_x, repetitions=500, symbol_names=['alpha'], symbol_values=input_points) plt.title('Forward Pass Values') plt.xlabel('$x$') plt.ylabel('$f(x)$') plt.plot(input_points, exact_outputs, label='Analytic') plt.plot(input_points, imperfect_outputs, label='Sampled') plt.legend() # Gradients are a much different story. values_tensor = tf.convert_to_tensor(input_points) with tf.GradientTape() as g: g.watch(values_tensor) exact_outputs = expectation_calculation(my_circuit, operators=pauli_x, symbol_names=['alpha'], symbol_values=values_tensor) analytic_finite_diff_gradients = g.gradient(exact_outputs, values_tensor) with tf.GradientTape() as g: g.watch(values_tensor) imperfect_outputs = sampled_expectation_calculation( my_circuit, operators=pauli_x, repetitions=500, symbol_names=['alpha'], symbol_values=values_tensor) sampled_finite_diff_gradients = g.gradient(imperfect_outputs, values_tensor) plt.title('Gradient Values') plt.xlabel('$x$') plt.ylabel('$f^{\'}(x)$') plt.plot(input_points, analytic_finite_diff_gradients, label='Analytic') plt.plot(input_points, sampled_finite_diff_gradients, label='Sampled') plt.legend() ###Output _____no_output_____ ###Markdown Here you can see that although the finite difference formula is fast to compute the gradients themselves in the analytical case, when it came to the sampling based methods it was far too noisy. More careful techniques must be used to ensure a good gradient can be calculated. Next you will look at a much slower technique that wouldn't be as well suited for analytical expectation gradient calculations, but does perform much better in the real-world sample based case: ###Code # A smarter differentiation scheme. gradient_safe_sampled_expectation = tfq.layers.SampledExpectation( differentiator=tfq.differentiators.ParameterShift()) with tf.GradientTape() as g: g.watch(values_tensor) imperfect_outputs = gradient_safe_sampled_expectation( my_circuit, operators=pauli_x, repetitions=500, symbol_names=['alpha'], symbol_values=values_tensor) sampled_param_shift_gradients = g.gradient(imperfect_outputs, values_tensor) plt.title('Gradient Values') plt.xlabel('$x$') plt.ylabel('$f^{\'}(x)$') plt.plot(input_points, analytic_finite_diff_gradients, label='Analytic') plt.plot(input_points, sampled_param_shift_gradients, label='Sampled') plt.legend() ###Output _____no_output_____ ###Markdown From the above you can see that certain differentiators are best used for particular research scenarios. In general, the slower sample-based methods that are robust to device noise, etc., are great differentiators when testing or implementing algorithms in a more "real world" setting. Faster methods like finite difference are great for analytical calculations and you want higher throughput, but aren't yet concerned with the device viability of your algorithm. 3. Multiple observablesLet's introduce a second observable and see how TensorFlow Quantum supports multiple observables for a single circuit. ###Code pauli_z = cirq.Z(qubit) pauli_z ###Output _____no_output_____ ###Markdown If this observable is used with the same circuit as before, then you have $f_{2}(\alpha) = ⟨Y(\alpha)| Z | Y(\alpha)⟩ = \cos(\pi \alpha)$ and $f_{2}^{'}(\alpha) = -\pi \sin(\pi \alpha)$. Perform a quick check: ###Code test_value = 0. print('Finite difference:', my_grad(pauli_z, test_value)) print('Sin formula: ', -np.pi * np.sin(np.pi * test_value)) ###Output _____no_output_____ ###Markdown It's a match (close enough).Now if you define $g(\alpha) = f_{1}(\alpha) + f_{2}(\alpha)$ then $g'(\alpha) = f_{1}^{'}(\alpha) + f^{'}_{2}(\alpha)$. Defining more than one observable in TensorFlow Quantum to use along with a circuit is equivalent to adding on more terms to $g$.This means that the gradient of a particular symbol in a circuit is equal to the sum of the gradients with regards to each observable for that symbol applied to that circuit. This is compatible with TensorFlow gradient taking and backpropagation (where you give the sum of the gradients over all observables as the gradient for a particular symbol). ###Code sum_of_outputs = tfq.layers.Expectation( differentiator=tfq.differentiators.ForwardDifference(grid_spacing=0.01)) sum_of_outputs(my_circuit, operators=[pauli_x, pauli_z], symbol_names=['alpha'], symbol_values=[[test_value]]) ###Output _____no_output_____ ###Markdown Here you see the first entry is the expectation w.r.t Pauli X, and the second is the expectation w.r.t Pauli Z. Now when you take the gradient: ###Code test_value_tensor = tf.convert_to_tensor([[test_value]]) with tf.GradientTape() as g: g.watch(test_value_tensor) outputs = sum_of_outputs(my_circuit, operators=[pauli_x, pauli_z], symbol_names=['alpha'], symbol_values=test_value_tensor) sum_of_gradients = g.gradient(outputs, test_value_tensor) print(my_grad(pauli_x, test_value) + my_grad(pauli_z, test_value)) print(sum_of_gradients.numpy()) ###Output _____no_output_____ ###Markdown Here you have verified that the sum of the gradients for each observable is indeed the gradient of $\alpha$. This behavior is supported by all TensorFlow Quantum differentiators and plays a crucial role in the compatibility with the rest of TensorFlow. 4. Advanced usageAll differentiators that exist inside of TensorFlow Quantum subclass `tfq.differentiators.Differentiator`. To implement a differentiator, a user must implement one of two interfaces. The standard is to implement `get_gradient_circuits`, which tells the base class which circuits to measure to obtain an estimate of the gradient. Alternatively, you can overload `differentiate_analytic` and `differentiate_sampled`; the class `tfq.differentiators.Adjoint` takes this route.The following uses TensorFlow Quantum to implement the gradient of a circuit. You will use a small example of parameter shifting. Recall the circuit you defined above, $|\alpha⟩ = Y^{\alpha}|0⟩$. As before, you can define a function as the expectation value of this circuit against the $X$ observable, $f(\alpha) = ⟨\alpha|X|\alpha⟩$. Using [parameter shift rules](https://pennylane.ai/qml/glossary/parameter_shift.html), for this circuit, you can find that the derivative is$$\frac{\partial}{\partial \alpha} f(\alpha) = \frac{\pi}{2} f\left(\alpha + \frac{1}{2}\right) - \frac{ \pi}{2} f\left(\alpha - \frac{1}{2}\right)$$The `get_gradient_circuits` function returns the components of this derivative. ###Code class MyDifferentiator(tfq.differentiators.Differentiator): """A Toy differentiator for <Y^alpha | X |Y^alpha>.""" def __init__(self): pass def get_gradient_circuits(self, programs, symbol_names, symbol_values): """Return circuits to compute gradients for given forward pass circuits. Every gradient on a quantum computer can be computed via measurements of transformed quantum circuits. Here, you implement a custom gradient for a specific circuit. For a real differentiator, you will need to implement this function in a more general way. See the differentiator implementations in the TFQ library for examples. """ # The two terms in the derivative are the same circuit... batch_programs = tf.stack([programs, programs], axis=1) # ... with shifted parameter values. shift = tf.constant(1/2) forward = symbol_values + shift backward = symbol_values - shift batch_symbol_values = tf.stack([forward, backward], axis=1) # Weights are the coefficients of the terms in the derivative. num_program_copies = tf.shape(batch_programs)[0] batch_weights = tf.tile(tf.constant([[[np.pi/2, -np.pi/2]]]), [num_program_copies, 1, 1]) # The index map simply says which weights go with which circuits. batch_mapper = tf.tile( tf.constant([[[0, 1]]]), [num_program_copies, 1, 1]) return (batch_programs, symbol_names, batch_symbol_values, batch_weights, batch_mapper) ###Output _____no_output_____ ###Markdown The `Differentiator` base class uses the components returned from `get_gradient_circuits` to calculate the derivative, as in the parameter shift formula you saw above. This new differentiator can now be used with existing `tfq.layer` objects: ###Code custom_dif = MyDifferentiator() custom_grad_expectation = tfq.layers.Expectation(differentiator=custom_dif) # Now let's get the gradients with finite diff. with tf.GradientTape() as g: g.watch(values_tensor) exact_outputs = expectation_calculation(my_circuit, operators=[pauli_x], symbol_names=['alpha'], symbol_values=values_tensor) analytic_finite_diff_gradients = g.gradient(exact_outputs, values_tensor) # Now let's get the gradients with custom diff. with tf.GradientTape() as g: g.watch(values_tensor) my_outputs = custom_grad_expectation(my_circuit, operators=[pauli_x], symbol_names=['alpha'], symbol_values=values_tensor) my_gradients = g.gradient(my_outputs, values_tensor) plt.subplot(1, 2, 1) plt.title('Exact Gradient') plt.plot(input_points, analytic_finite_diff_gradients.numpy()) plt.xlabel('x') plt.ylabel('f(x)') plt.subplot(1, 2, 2) plt.title('My Gradient') plt.plot(input_points, my_gradients.numpy()) plt.xlabel('x') ###Output _____no_output_____ ###Markdown This new differentiator can now be used to generate differentiable ops.Key Point: A differentiator that has been previously attached to an op must be refreshed before attaching to a new op, because a differentiator may only be attached to one op at a time. ###Code # Create a noisy sample based expectation op. expectation_sampled = tfq.get_sampled_expectation_op( cirq.DensityMatrixSimulator(noise=cirq.depolarize(0.01))) # Make it differentiable with your differentiator: # Remember to refresh the differentiator before attaching the new op custom_dif.refresh() differentiable_op = custom_dif.generate_differentiable_op( sampled_op=expectation_sampled) # Prep op inputs. circuit_tensor = tfq.convert_to_tensor([my_circuit]) op_tensor = tfq.convert_to_tensor([[pauli_x]]) single_value = tf.convert_to_tensor([[my_alpha]]) num_samples_tensor = tf.convert_to_tensor([[5000]]) with tf.GradientTape() as g: g.watch(single_value) forward_output = differentiable_op(circuit_tensor, ['alpha'], single_value, op_tensor, num_samples_tensor) my_gradients = g.gradient(forward_output, single_value) print('---TFQ---') print('Foward: ', forward_output.numpy()) print('Gradient:', my_gradients.numpy()) print('---Original---') print('Forward: ', my_expectation(pauli_x, my_alpha)) print('Gradient:', my_grad(pauli_x, my_alpha)) ###Output _____no_output_____ ###Markdown Copyright 2020 The TensorFlow Authors. ###Code #@title Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ###Output _____no_output_____ ###Markdown Calculate gradients View on TensorFlow.org Run in Google Colab View source on GitHub Download notebook This tutorial explores gradient calculation algorithms for the expectation values of quantum circuits.Calculating the gradient of the expectation value of a certain observable in a quantum circuit is an involved process. Expectation values of observables do not have the luxury of having analytic gradient formulas that are always easy to write down—unlike traditional machine learning transformations such as matrix multiplication or vector addition that have analytic gradient formulas which are easy to write down. As a result, there are different quantum gradient calculation methods that come in handy for different scenarios. This tutorial compares and contrasts two different differentiation schemes. Setup ###Code !pip install tensorflow==2.4.1 ###Output _____no_output_____ ###Markdown Install TensorFlow Quantum: ###Code !pip install tensorflow-quantum # Update package resources to account for version changes. import importlib, pkg_resources importlib.reload(pkg_resources) ###Output _____no_output_____ ###Markdown Now import TensorFlow and the module dependencies: ###Code import tensorflow as tf import tensorflow_quantum as tfq import cirq import sympy import numpy as np # visualization tools %matplotlib inline import matplotlib.pyplot as plt from cirq.contrib.svg import SVGCircuit ###Output _____no_output_____ ###Markdown 1. PreliminaryLet's make the notion of gradient calculation for quantum circuits a little more concrete. Suppose you have a parameterized circuit like this one: ###Code qubit = cirq.GridQubit(0, 0) my_circuit = cirq.Circuit(cirq.Y(qubit)**sympy.Symbol('alpha')) SVGCircuit(my_circuit) ###Output _____no_output_____ ###Markdown Along with an observable: ###Code pauli_x = cirq.X(qubit) pauli_x ###Output _____no_output_____ ###Markdown Looking at this operator you know that $⟨Y(\alpha)| X | Y(\alpha)⟩ = \sin(\pi \alpha)$ ###Code def my_expectation(op, alpha): """Compute ⟨Y(alpha)| `op` | Y(alpha)⟩""" params = {'alpha': alpha} sim = cirq.Simulator() final_state_vector = sim.simulate(my_circuit, params).final_state_vector return op.expectation_from_state_vector(final_state_vector, {qubit: 0}).real my_alpha = 0.3 print("Expectation=", my_expectation(pauli_x, my_alpha)) print("Sin Formula=", np.sin(np.pi * my_alpha)) ###Output _____no_output_____ ###Markdown and if you define $f_{1}(\alpha) = ⟨Y(\alpha)| X | Y(\alpha)⟩$ then $f_{1}^{'}(\alpha) = \pi \cos(\pi \alpha)$. Let's check this: ###Code def my_grad(obs, alpha, eps=0.01): grad = 0 f_x = my_expectation(obs, alpha) f_x_prime = my_expectation(obs, alpha + eps) return ((f_x_prime - f_x) / eps).real print('Finite difference:', my_grad(pauli_x, my_alpha)) print('Cosine formula: ', np.pi * np.cos(np.pi * my_alpha)) ###Output _____no_output_____ ###Markdown 2. The need for a differentiatorWith larger circuits, you won't always be so lucky to have a formula that precisely calculates the gradients of a given quantum circuit. In the event that a simple formula isn't enough to calculate the gradient, the `tfq.differentiators.Differentiator` class allows you to define algorithms for computing the gradients of your circuits. For instance you can recreate the above example in TensorFlow Quantum (TFQ) with: ###Code expectation_calculation = tfq.layers.Expectation( differentiator=tfq.differentiators.ForwardDifference(grid_spacing=0.01)) expectation_calculation(my_circuit, operators=pauli_x, symbol_names=['alpha'], symbol_values=[[my_alpha]]) ###Output _____no_output_____ ###Markdown However, if you switch to estimating expectation based on sampling (what would happen on a true device) the values can change a little bit. This means you now have an imperfect estimate: ###Code sampled_expectation_calculation = tfq.layers.SampledExpectation( differentiator=tfq.differentiators.ForwardDifference(grid_spacing=0.01)) sampled_expectation_calculation(my_circuit, operators=pauli_x, repetitions=500, symbol_names=['alpha'], symbol_values=[[my_alpha]]) ###Output _____no_output_____ ###Markdown This can quickly compound into a serious accuracy problem when it comes to gradients: ###Code # Make input_points = [batch_size, 1] array. input_points = np.linspace(0, 5, 200)[:, np.newaxis].astype(np.float32) exact_outputs = expectation_calculation(my_circuit, operators=pauli_x, symbol_names=['alpha'], symbol_values=input_points) imperfect_outputs = sampled_expectation_calculation(my_circuit, operators=pauli_x, repetitions=500, symbol_names=['alpha'], symbol_values=input_points) plt.title('Forward Pass Values') plt.xlabel('$x$') plt.ylabel('$f(x)$') plt.plot(input_points, exact_outputs, label='Analytic') plt.plot(input_points, imperfect_outputs, label='Sampled') plt.legend() # Gradients are a much different story. values_tensor = tf.convert_to_tensor(input_points) with tf.GradientTape() as g: g.watch(values_tensor) exact_outputs = expectation_calculation(my_circuit, operators=pauli_x, symbol_names=['alpha'], symbol_values=values_tensor) analytic_finite_diff_gradients = g.gradient(exact_outputs, values_tensor) with tf.GradientTape() as g: g.watch(values_tensor) imperfect_outputs = sampled_expectation_calculation( my_circuit, operators=pauli_x, repetitions=500, symbol_names=['alpha'], symbol_values=values_tensor) sampled_finite_diff_gradients = g.gradient(imperfect_outputs, values_tensor) plt.title('Gradient Values') plt.xlabel('$x$') plt.ylabel('$f^{\'}(x)$') plt.plot(input_points, analytic_finite_diff_gradients, label='Analytic') plt.plot(input_points, sampled_finite_diff_gradients, label='Sampled') plt.legend() ###Output _____no_output_____ ###Markdown Here you can see that although the finite difference formula is fast to compute the gradients themselves in the analytical case, when it came to the sampling based methods it was far too noisy. More careful techniques must be used to ensure a good gradient can be calculated. Next you will look at a much slower technique that wouldn't be as well suited for analytical expectation gradient calculations, but does perform much better in the real-world sample based case: ###Code # A smarter differentiation scheme. gradient_safe_sampled_expectation = tfq.layers.SampledExpectation( differentiator=tfq.differentiators.ParameterShift()) with tf.GradientTape() as g: g.watch(values_tensor) imperfect_outputs = gradient_safe_sampled_expectation( my_circuit, operators=pauli_x, repetitions=500, symbol_names=['alpha'], symbol_values=values_tensor) sampled_param_shift_gradients = g.gradient(imperfect_outputs, values_tensor) plt.title('Gradient Values') plt.xlabel('$x$') plt.ylabel('$f^{\'}(x)$') plt.plot(input_points, analytic_finite_diff_gradients, label='Analytic') plt.plot(input_points, sampled_param_shift_gradients, label='Sampled') plt.legend() ###Output _____no_output_____ ###Markdown From the above you can see that certain differentiators are best used for particular research scenarios. In general, the slower sample-based methods that are robust to device noise, etc., are great differentiators when testing or implementing algorithms in a more "real world" setting. Faster methods like finite difference are great for analytical calculations and you want higher throughput, but aren't yet concerned with the device viability of your algorithm. 3. Multiple observablesLet's introduce a second observable and see how TensorFlow Quantum supports multiple observables for a single circuit. ###Code pauli_z = cirq.Z(qubit) pauli_z ###Output _____no_output_____ ###Markdown If this observable is used with the same circuit as before, then you have $f_{2}(\alpha) = ⟨Y(\alpha)| Z | Y(\alpha)⟩ = \cos(\pi \alpha)$ and $f_{2}^{'}(\alpha) = -\pi \sin(\pi \alpha)$. Perform a quick check: ###Code test_value = 0. print('Finite difference:', my_grad(pauli_z, test_value)) print('Sin formula: ', -np.pi * np.sin(np.pi * test_value)) ###Output _____no_output_____ ###Markdown It's a match (close enough).Now if you define $g(\alpha) = f_{1}(\alpha) + f_{2}(\alpha)$ then $g'(\alpha) = f_{1}^{'}(\alpha) + f^{'}_{2}(\alpha)$. Defining more than one observable in TensorFlow Quantum to use along with a circuit is equivalent to adding on more terms to $g$.This means that the gradient of a particular symbol in a circuit is equal to the sum of the gradients with regards to each observable for that symbol applied to that circuit. This is compatible with TensorFlow gradient taking and backpropagation (where you give the sum of the gradients over all observables as the gradient for a particular symbol). ###Code sum_of_outputs = tfq.layers.Expectation( differentiator=tfq.differentiators.ForwardDifference(grid_spacing=0.01)) sum_of_outputs(my_circuit, operators=[pauli_x, pauli_z], symbol_names=['alpha'], symbol_values=[[test_value]]) ###Output _____no_output_____ ###Markdown Here you see the first entry is the expectation w.r.t Pauli X, and the second is the expectation w.r.t Pauli Z. Now when you take the gradient: ###Code test_value_tensor = tf.convert_to_tensor([[test_value]]) with tf.GradientTape() as g: g.watch(test_value_tensor) outputs = sum_of_outputs(my_circuit, operators=[pauli_x, pauli_z], symbol_names=['alpha'], symbol_values=test_value_tensor) sum_of_gradients = g.gradient(outputs, test_value_tensor) print(my_grad(pauli_x, test_value) + my_grad(pauli_z, test_value)) print(sum_of_gradients.numpy()) ###Output _____no_output_____ ###Markdown Here you have verified that the sum of the gradients for each observable is indeed the gradient of $\alpha$. This behavior is supported by all TensorFlow Quantum differentiators and plays a crucial role in the compatibility with the rest of TensorFlow. 4. Advanced usageAll differentiators that exist inside of TensorFlow Quantum subclass `tfq.differentiators.Differentiator`. To implement a differentiator, a user must implement one of two interfaces. The standard is to implement `get_gradient_circuits`, which tells the base class which circuits to measure to obtain an estimate of the gradient. Alternatively, you can overload `differentiate_analytic` and `differentiate_sampled`; the class `tfq.differentiators.Adjoint` takes this route.The following uses TensorFlow Quantum to implement the gradient of a circuit. You will use a small example of parameter shifting. Recall the circuit you defined above, $|\alpha⟩ = Y^{\alpha}|0⟩$. As before, you can define a function as the expectation value of this circuit against the $X$ observable, $f(\alpha) = ⟨\alpha|X|\alpha⟩$. Using [parameter shift rules](https://pennylane.ai/qml/glossary/parameter_shift.html), for this circuit, you can find that the derivative is$$\frac{\partial}{\partial \alpha} f(\alpha) = \frac{\pi}{2} f\left(\alpha + \frac{1}{2}\right) - \frac{ \pi}{2} f\left(\alpha - \frac{1}{2}\right)$$The `get_gradient_circuits` function returns the components of this derivative. ###Code class MyDifferentiator(tfq.differentiators.Differentiator): """A Toy differentiator for <Y^alpha | X |Y^alpha>.""" def __init__(self): pass def get_gradient_circuits(self, programs, symbol_names, symbol_values): """Return circuits to compute gradients for given forward pass circuits. Every gradient on a quantum computer can be computed via measurements of transformed quantum circuits. Here, you implement a custom gradient for a specific circuit. For a real differentiator, you will need to implement this function in a more general way. See the differentiator implementations in the TFQ library for examples. """ # The two terms in the derivative are the same circuit... batch_programs = tf.stack([programs, programs], axis=1) # ... with shifted parameter values. shift = tf.constant(1/2) forward = symbol_values + shift backward = symbol_values - shift batch_symbol_values = tf.stack([forward, backward], axis=1) # Weights are the coefficients of the terms in the derivative. num_program_copies = tf.shape(batch_programs)[0] batch_weights = tf.tile(tf.constant([[[np.pi/2, -np.pi/2]]]), [num_program_copies, 1, 1]) # The index map simply says which weights go with which circuits. batch_mapper = tf.tile( tf.constant([[[0, 1]]]), [num_program_copies, 1, 1]) return (batch_programs, symbol_names, batch_symbol_values, batch_weights, batch_mapper) ###Output _____no_output_____ ###Markdown The `Differentiator` base class uses the components returned from `get_gradient_circuits` to calculate the derivative, as in the parameter shift formula you saw above. This new differentiator can now be used with existing `tfq.layer` objects: ###Code custom_dif = MyDifferentiator() custom_grad_expectation = tfq.layers.Expectation(differentiator=custom_dif) # Now let's get the gradients with finite diff. with tf.GradientTape() as g: g.watch(values_tensor) exact_outputs = expectation_calculation(my_circuit, operators=[pauli_x], symbol_names=['alpha'], symbol_values=values_tensor) analytic_finite_diff_gradients = g.gradient(exact_outputs, values_tensor) # Now let's get the gradients with custom diff. with tf.GradientTape() as g: g.watch(values_tensor) my_outputs = custom_grad_expectation(my_circuit, operators=[pauli_x], symbol_names=['alpha'], symbol_values=values_tensor) my_gradients = g.gradient(my_outputs, values_tensor) plt.subplot(1, 2, 1) plt.title('Exact Gradient') plt.plot(input_points, analytic_finite_diff_gradients.numpy()) plt.xlabel('x') plt.ylabel('f(x)') plt.subplot(1, 2, 2) plt.title('My Gradient') plt.plot(input_points, my_gradients.numpy()) plt.xlabel('x') ###Output _____no_output_____ ###Markdown This new differentiator can now be used to generate differentiable ops.Key Point: A differentiator that has been previously attached to an op must be refreshed before attaching to a new op, because a differentiator may only be attached to one op at a time. ###Code # Create a noisy sample based expectation op. expectation_sampled = tfq.get_sampled_expectation_op( cirq.DensityMatrixSimulator(noise=cirq.depolarize(0.01))) # Make it differentiable with your differentiator: # Remember to refresh the differentiator before attaching the new op custom_dif.refresh() differentiable_op = custom_dif.generate_differentiable_op( sampled_op=expectation_sampled) # Prep op inputs. circuit_tensor = tfq.convert_to_tensor([my_circuit]) op_tensor = tfq.convert_to_tensor([[pauli_x]]) single_value = tf.convert_to_tensor([[my_alpha]]) num_samples_tensor = tf.convert_to_tensor([[5000]]) with tf.GradientTape() as g: g.watch(single_value) forward_output = differentiable_op(circuit_tensor, ['alpha'], single_value, op_tensor, num_samples_tensor) my_gradients = g.gradient(forward_output, single_value) print('---TFQ---') print('Foward: ', forward_output.numpy()) print('Gradient:', my_gradients.numpy()) print('---Original---') print('Forward: ', my_expectation(pauli_x, my_alpha)) print('Gradient:', my_grad(pauli_x, my_alpha)) ###Output _____no_output_____ ###Markdown Copyright 2020 The TensorFlow Authors. ###Code #@title Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ###Output _____no_output_____ ###Markdown Calculate gradients View on TensorFlow.org Run in Google Colab View source on GitHub Download notebook This tutorial explores gradient calculation algorithms for the expectation values of quantum circuits.Calculating the gradient of the expectation value of a certain observable in a quantum circuit is an involved process. Expectation values of observables do not have the luxury of having analytic gradient formulas that are always easy to write down—unlike traditional machine learning transformations such as matrix multiplication or vector addition that have analytic gradient formulas which are easy to write down. As a result, there are different quantum gradient calculation methods that come in handy for different scenarios. This tutorial compares and contrasts two different differentiation schemes. Setup ###Code !pip install tensorflow==2.1.0 ###Output _____no_output_____ ###Markdown Install TensorFlow Quantum: ###Code !pip install tensorflow-quantum cirq==0.7.0 ###Output _____no_output_____ ###Markdown Now import TensorFlow and the module dependencies: ###Code import tensorflow as tf import tensorflow_quantum as tfq import cirq import sympy import numpy as np # visualization tools %matplotlib inline import matplotlib.pyplot as plt from cirq.contrib.svg import SVGCircuit ###Output _____no_output_____ ###Markdown 1. PreliminaryLet's make the notion of gradient calculation for quantum circuits a little more concrete. Suppose you have a parameterized circuit like this one: ###Code qubit = cirq.GridQubit(0, 0) my_circuit = cirq.Circuit(cirq.Y(qubit)**sympy.Symbol('alpha')) SVGCircuit(my_circuit) ###Output _____no_output_____ ###Markdown Along with an observable: ###Code pauli_x = cirq.X(qubit) pauli_x ###Output _____no_output_____ ###Markdown Looking at this operator you know that $⟨Y(\alpha)| X | Y(\alpha)⟩ = \sin(\pi \alpha)$ ###Code def my_expectation(op, alpha): """Compute ⟨Y(alpha)| `op` | Y(alpha)⟩""" params = {'alpha': alpha} sim = cirq.Simulator() final_state = sim.simulate(my_circuit, params).final_state return op.expectation_from_wavefunction(final_state, {qubit: 0}).real my_alpha = 0.3 print("Expectation=", my_expectation(pauli_x, my_alpha)) print("Sin Formula=", np.sin(np.pi * my_alpha)) ###Output _____no_output_____ ###Markdown and if you define $f_{1}(\alpha) = ⟨Y(\alpha)| X | Y(\alpha)⟩$ then $f_{1}^{'}(\alpha) = \pi \cos(\pi \alpha)$. Let's check this: ###Code def my_grad(obs, alpha, eps=0.01): grad = 0 f_x = my_expectation(obs, alpha) f_x_prime = my_expectation(obs, alpha + eps) return ((f_x_prime - f_x) / eps).real print('Finite difference:', my_grad(pauli_x, my_alpha)) print('Cosine formula: ', np.pi * np.cos(np.pi * my_alpha)) ###Output _____no_output_____ ###Markdown 2. The need for a differentiatorWith larger circuits, you won't always be so lucky to have a formula that precisely calculates the gradients of a given quantum circuit. In the event that a simple formula isn't enough to calculate the gradient, the `tfq.differentiators.Differentiator` class allows you to define algorithms for computing the gradients of your circuits. For instance you can recreate the above example in TensorFlow Quantum (TFQ) with: ###Code expectation_calculation = tfq.layers.Expectation( differentiator=tfq.differentiators.ForwardDifference(grid_spacing=0.01)) expectation_calculation(my_circuit, operators=pauli_x, symbol_names=['alpha'], symbol_values=[[my_alpha]]) ###Output _____no_output_____ ###Markdown However, if you switch to estimating expectation based on sampling (what would happen on a true device) the values can change a little bit. This means you now have an imperfect estimate: ###Code sampled_expectation_calculation = tfq.layers.SampledExpectation( differentiator=tfq.differentiators.ForwardDifference(grid_spacing=0.01)) sampled_expectation_calculation(my_circuit, operators=pauli_x, repetitions=500, symbol_names=['alpha'], symbol_values=[[my_alpha]]) ###Output _____no_output_____ ###Markdown This can quickly compound into a serious accuracy problem when it comes to gradients: ###Code # Make input_points = [batch_size, 1] array. input_points = np.linspace(0, 5, 200)[:, np.newaxis].astype(np.float32) exact_outputs = expectation_calculation(my_circuit, operators=pauli_x, symbol_names=['alpha'], symbol_values=input_points) imperfect_outputs = sampled_expectation_calculation(my_circuit, operators=pauli_x, repetitions=500, symbol_names=['alpha'], symbol_values=input_points) plt.title('Forward Pass Values') plt.xlabel('$x$') plt.ylabel('$f(x)$') plt.plot(input_points, exact_outputs, label='Analytic') plt.plot(input_points, imperfect_outputs, label='Sampled') plt.legend() # Gradients are a much different story. values_tensor = tf.convert_to_tensor(input_points) with tf.GradientTape() as g: g.watch(values_tensor) exact_outputs = expectation_calculation(my_circuit, operators=pauli_x, symbol_names=['alpha'], symbol_values=values_tensor) analytic_finite_diff_gradients = g.gradient(exact_outputs, values_tensor) with tf.GradientTape() as g: g.watch(values_tensor) imperfect_outputs = sampled_expectation_calculation( my_circuit, operators=pauli_x, repetitions=500, symbol_names=['alpha'], symbol_values=values_tensor) sampled_finite_diff_gradients = g.gradient(imperfect_outputs, values_tensor) plt.title('Gradient Values') plt.xlabel('$x$') plt.ylabel('$f^{\'}(x)$') plt.plot(input_points, analytic_finite_diff_gradients, label='Analytic') plt.plot(input_points, sampled_finite_diff_gradients, label='Sampled') plt.legend() ###Output _____no_output_____ ###Markdown Here you can see that although the finite difference formula is fast to compute the gradients themselves in the analytical case, when it came to the sampling based methods it was far too noisy. More careful techniques must be used to ensure a good gradient can be calculated. Next you will look at a much slower technique that wouldn't be as well suited for analytical expectation gradient calculations, but does perform much better in the real-world sample based case: ###Code # A smarter differentiation scheme. gradient_safe_sampled_expectation = tfq.layers.SampledExpectation( differentiator=tfq.differentiators.ParameterShift()) with tf.GradientTape() as g: g.watch(values_tensor) imperfect_outputs = gradient_safe_sampled_expectation( my_circuit, operators=pauli_x, repetitions=500, symbol_names=['alpha'], symbol_values=values_tensor) sampled_param_shift_gradients = g.gradient(imperfect_outputs, values_tensor) plt.title('Gradient Values') plt.xlabel('$x$') plt.ylabel('$f^{\'}(x)$') plt.plot(input_points, analytic_finite_diff_gradients, label='Analytic') plt.plot(input_points, sampled_param_shift_gradients, label='Sampled') plt.legend() ###Output _____no_output_____ ###Markdown From the above you can see that certain differentiators are best used for particular research scenarios. In general, the slower sample-based methods that are robust to device noise, etc., are great differentiators when testing or implementing algorithms in a more "real world" setting. Faster methods like finite difference are great for analytical calculations and you want higher throughput, but aren't yet concerned with the device viability of your algorithm. 3. Multiple observablesLet's introduce a second observable and see how TensorFlow Quantum supports multiple observables for a single circuit. ###Code pauli_z = cirq.Z(qubit) pauli_z ###Output _____no_output_____ ###Markdown If this observable is used with the same circuit as before, then you have $f_{2}(\alpha) = ⟨Y(\alpha)| Z | Y(\alpha)⟩ = \cos(\pi \alpha)$ and $f_{2}^{'}(\alpha) = -\pi \sin(\pi \alpha)$. Perform a quick check: ###Code test_value = 0. print('Finite difference:', my_grad(pauli_z, test_value)) print('Sin formula: ', -np.pi * np.sin(np.pi * test_value)) ###Output _____no_output_____ ###Markdown It's a match (close enough).Now if you define $g(\alpha) = f_{1}(\alpha) + f_{2}(\alpha)$ then $g'(\alpha) = f_{1}^{'}(\alpha) + f^{'}_{2}(\alpha)$. Defining more than one observable in TensorFlow Quantum to use along with a circuit is equivalent to adding on more terms to $g$.This means that the gradient of a particular symbol in a circuit is equal to the sum of the gradients with regards to each observable for that symbol applied to that circuit. This is compatible with TensorFlow gradient taking and backpropagation (where you give the sum of the gradients over all observables as the gradient for a particular symbol). ###Code sum_of_outputs = tfq.layers.Expectation( differentiator=tfq.differentiators.ForwardDifference(grid_spacing=0.01)) sum_of_outputs(my_circuit, operators=[pauli_x, pauli_z], symbol_names=['alpha'], symbol_values=[[test_value]]) ###Output _____no_output_____ ###Markdown Here you see the first entry is the expectation w.r.t Pauli X, and the second is the expectation w.r.t Pauli Z. Now when you take the gradient: ###Code test_value_tensor = tf.convert_to_tensor([[test_value]]) with tf.GradientTape() as g: g.watch(test_value_tensor) outputs = sum_of_outputs(my_circuit, operators=[pauli_x, pauli_z], symbol_names=['alpha'], symbol_values=test_value_tensor) sum_of_gradients = g.gradient(outputs, test_value_tensor) print(my_grad(pauli_x, test_value) + my_grad(pauli_z, test_value)) print(sum_of_gradients.numpy()) ###Output _____no_output_____ ###Markdown Here you have verified that the sum of the gradients for each observable is indeed the gradient of $\alpha$. This behavior is supported by all TensorFlow Quantum differentiators and plays a crucial role in the compatibility with the rest of TensorFlow. 4. Advanced usageHere you will learn how to define your own custom differentiation routines for quantum circuits.All differentiators that exist inside of TensorFlow Quantum subclass `tfq.differentiators.Differentiator`. A differentiator must implement `differentiate_analytic` and `differentiate_sampled`.The following uses TensorFlow Quantum constructs to implement the closed form solution from the first part of this tutorial. ###Code class MyDifferentiator(tfq.differentiators.Differentiator): """A Toy differentiator for <Y^alpha | X |Y^alpha>.""" def __init__(self): pass @tf.function def _compute_gradient(self, symbol_values): """Compute the gradient based on symbol_values.""" # f(x) = sin(pi * x) # f'(x) = pi * cos(pi * x) return tf.cast(tf.cos(symbol_values * np.pi) * np.pi, tf.float32) @tf.function def differentiate_analytic(self, programs, symbol_names, symbol_values, pauli_sums, forward_pass_vals, grad): """Specify how to differentiate a circuit with analytical expectation. This is called at graph runtime by TensorFlow. `differentiate_analytic` should calculate the gradient of a batch of circuits and return it formatted as indicated below. See `tfq.differentiators.ForwardDifference` for an example. Args: programs: `tf.Tensor` of strings with shape [batch_size] containing the string representations of the circuits to be executed. symbol_names: `tf.Tensor` of strings with shape [n_params], which is used to specify the order in which the values in `symbol_values` should be placed inside of the circuits in `programs`. symbol_values: `tf.Tensor` of real numbers with shape [batch_size, n_params] specifying parameter values to resolve into the circuits specified by programs, following the ordering dictated by `symbol_names`. pauli_sums: `tf.Tensor` of strings with shape [batch_size, n_ops] containing the string representation of the operators that will be used on all of the circuits in the expectation calculations. forward_pass_vals: `tf.Tensor` of real numbers with shape [batch_size, n_ops] containing the output of the forward pass through the op you are differentiating. grad: `tf.Tensor` of real numbers with shape [batch_size, n_ops] representing the gradient backpropagated to the output of the op you are differentiating through. Returns: A `tf.Tensor` with the same shape as `symbol_values` representing the gradient backpropagated to the `symbol_values` input of the op you are differentiating through. """ # Computing gradients just based off of symbol_values. return self._compute_gradient(symbol_values) * grad @tf.function def differentiate_sampled(self, programs, symbol_names, symbol_values, pauli_sums, num_samples, forward_pass_vals, grad): """Specify how to differentiate a circuit with sampled expectation. This is called at graph runtime by TensorFlow. `differentiate_sampled` should calculate the gradient of a batch of circuits and return it formatted as indicated below. See `tfq.differentiators.ForwardDifference` for an example. Args: programs: `tf.Tensor` of strings with shape [batch_size] containing the string representations of the circuits to be executed. symbol_names: `tf.Tensor` of strings with shape [n_params], which is used to specify the order in which the values in `symbol_values` should be placed inside of the circuits in `programs`. symbol_values: `tf.Tensor` of real numbers with shape [batch_size, n_params] specifying parameter values to resolve into the circuits specified by programs, following the ordering dictated by `symbol_names`. pauli_sums: `tf.Tensor` of strings with shape [batch_size, n_ops] containing the string representation of the operators that will be used on all of the circuits in the expectation calculations. num_samples: `tf.Tensor` of positive integers representing the number of samples per term in each term of pauli_sums used during the forward pass. forward_pass_vals: `tf.Tensor` of real numbers with shape [batch_size, n_ops] containing the output of the forward pass through the op you are differentiating. grad: `tf.Tensor` of real numbers with shape [batch_size, n_ops] representing the gradient backpropagated to the output of the op you are differentiating through. Returns: A `tf.Tensor` with the same shape as `symbol_values` representing the gradient backpropagated to the `symbol_values` input of the op you are differentiating through. """ return self._compute_gradient(symbol_values) * grad ###Output _____no_output_____ ###Markdown This new differentiator can now be used with existing `tfq.layer` objects: ###Code custom_dif = MyDifferentiator() custom_grad_expectation = tfq.layers.Expectation(differentiator=custom_dif) # Now let's get the gradients with finite diff. with tf.GradientTape() as g: g.watch(values_tensor) exact_outputs = expectation_calculation(my_circuit, operators=[pauli_x], symbol_names=['alpha'], symbol_values=values_tensor) analytic_finite_diff_gradients = g.gradient(exact_outputs, values_tensor) # Now let's get the gradients with custom diff. with tf.GradientTape() as g: g.watch(values_tensor) my_outputs = custom_grad_expectation(my_circuit, operators=[pauli_x], symbol_names=['alpha'], symbol_values=values_tensor) my_gradients = g.gradient(my_outputs, values_tensor) plt.subplot(1, 2, 1) plt.title('Exact Gradient') plt.plot(input_points, analytic_finite_diff_gradients.numpy()) plt.xlabel('x') plt.ylabel('f(x)') plt.subplot(1, 2, 2) plt.title('My Gradient') plt.plot(input_points, my_gradients.numpy()) plt.xlabel('x') ###Output _____no_output_____ ###Markdown This new differentiator can now be used to generate differentiable ops.Key Point: A differentiator that has been previously attached to an op must be refreshed before attaching to a new op, because a differentiator may only be attached to one op at a time. ###Code # Create a noisy sample based expectation op. expectation_sampled = tfq.get_sampled_expectation_op( cirq.DensityMatrixSimulator(noise=cirq.depolarize(0.01))) # Make it differentiable with your differentiator: # Remember to refresh the differentiator before attaching the new op custom_dif.refresh() differentiable_op = custom_dif.generate_differentiable_op( sampled_op=expectation_sampled) # Prep op inputs. circuit_tensor = tfq.convert_to_tensor([my_circuit]) op_tensor = tfq.convert_to_tensor([[pauli_x]]) single_value = tf.convert_to_tensor([[my_alpha]]) num_samples_tensor = tf.convert_to_tensor([[1000]]) with tf.GradientTape() as g: g.watch(single_value) forward_output = differentiable_op(circuit_tensor, ['alpha'], single_value, op_tensor, num_samples_tensor) my_gradients = g.gradient(forward_output, single_value) print('---TFQ---') print('Foward: ', forward_output.numpy()) print('Gradient:', my_gradients.numpy()) print('---Original---') print('Forward: ', my_expectation(pauli_x, my_alpha)) print('Gradient:', my_grad(pauli_x, my_alpha)) ###Output _____no_output_____ ###Markdown Copyright 2020 The TensorFlow Authors. ###Code #@title Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ###Output _____no_output_____ ###Markdown Calculate gradients View on TensorFlow.org Run in Google Colab View source on GitHub Download notebook This tutorial explores gradient calculation algorithms for the expectation values of quantum circuits.Calculating the gradient of the expectation value of a certain observable in a quantum circuit is an involved process. Expectation values of observables do not have the luxury of having analytic gradient formulas that are always easy to write down—unlike traditional machine learning transformations such as matrix multiplication or vector addition that have analytic gradient formulas which are easy to write down. As a result, there are different quantum gradient calculation methods that come in handy for different scenarios. This tutorial compares and contrasts two different differentiation schemes. Setup ###Code !pip install tensorflow==2.7.0 ###Output _____no_output_____ ###Markdown Install TensorFlow Quantum: ###Code !pip install tensorflow-quantum # Update package resources to account for version changes. import importlib, pkg_resources importlib.reload(pkg_resources) ###Output _____no_output_____ ###Markdown Now import TensorFlow and the module dependencies: ###Code import tensorflow as tf import tensorflow_quantum as tfq import cirq import sympy import numpy as np # visualization tools %matplotlib inline import matplotlib.pyplot as plt from cirq.contrib.svg import SVGCircuit ###Output _____no_output_____ ###Markdown 1. PreliminaryLet's make the notion of gradient calculation for quantum circuits a little more concrete. Suppose you have a parameterized circuit like this one: ###Code qubit = cirq.GridQubit(0, 0) my_circuit = cirq.Circuit(cirq.Y(qubit)**sympy.Symbol('alpha')) SVGCircuit(my_circuit) ###Output _____no_output_____ ###Markdown Along with an observable: ###Code pauli_x = cirq.X(qubit) pauli_x ###Output _____no_output_____ ###Markdown Looking at this operator you know that $⟨Y(\alpha)| X | Y(\alpha)⟩ = \sin(\pi \alpha)$ ###Code def my_expectation(op, alpha): """Compute ⟨Y(alpha)| `op` | Y(alpha)⟩""" params = {'alpha': alpha} sim = cirq.Simulator() final_state_vector = sim.simulate(my_circuit, params).final_state_vector return op.expectation_from_state_vector(final_state_vector, {qubit: 0}).real my_alpha = 0.3 print("Expectation=", my_expectation(pauli_x, my_alpha)) print("Sin Formula=", np.sin(np.pi * my_alpha)) ###Output _____no_output_____ ###Markdown and if you define $f_{1}(\alpha) = ⟨Y(\alpha)| X | Y(\alpha)⟩$ then $f_{1}^{'}(\alpha) = \pi \cos(\pi \alpha)$. Let's check this: ###Code def my_grad(obs, alpha, eps=0.01): grad = 0 f_x = my_expectation(obs, alpha) f_x_prime = my_expectation(obs, alpha + eps) return ((f_x_prime - f_x) / eps).real print('Finite difference:', my_grad(pauli_x, my_alpha)) print('Cosine formula: ', np.pi * np.cos(np.pi * my_alpha)) ###Output _____no_output_____ ###Markdown 2. The need for a differentiatorWith larger circuits, you won't always be so lucky to have a formula that precisely calculates the gradients of a given quantum circuit. In the event that a simple formula isn't enough to calculate the gradient, the `tfq.differentiators.Differentiator` class allows you to define algorithms for computing the gradients of your circuits. For instance you can recreate the above example in TensorFlow Quantum (TFQ) with: ###Code expectation_calculation = tfq.layers.Expectation( differentiator=tfq.differentiators.ForwardDifference(grid_spacing=0.01)) expectation_calculation(my_circuit, operators=pauli_x, symbol_names=['alpha'], symbol_values=[[my_alpha]]) ###Output _____no_output_____ ###Markdown However, if you switch to estimating expectation based on sampling (what would happen on a true device) the values can change a little bit. This means you now have an imperfect estimate: ###Code sampled_expectation_calculation = tfq.layers.SampledExpectation( differentiator=tfq.differentiators.ForwardDifference(grid_spacing=0.01)) sampled_expectation_calculation(my_circuit, operators=pauli_x, repetitions=500, symbol_names=['alpha'], symbol_values=[[my_alpha]]) ###Output _____no_output_____ ###Markdown This can quickly compound into a serious accuracy problem when it comes to gradients: ###Code # Make input_points = [batch_size, 1] array. input_points = np.linspace(0, 5, 200)[:, np.newaxis].astype(np.float32) exact_outputs = expectation_calculation(my_circuit, operators=pauli_x, symbol_names=['alpha'], symbol_values=input_points) imperfect_outputs = sampled_expectation_calculation(my_circuit, operators=pauli_x, repetitions=500, symbol_names=['alpha'], symbol_values=input_points) plt.title('Forward Pass Values') plt.xlabel('$x$') plt.ylabel('$f(x)$') plt.plot(input_points, exact_outputs, label='Analytic') plt.plot(input_points, imperfect_outputs, label='Sampled') plt.legend() # Gradients are a much different story. values_tensor = tf.convert_to_tensor(input_points) with tf.GradientTape() as g: g.watch(values_tensor) exact_outputs = expectation_calculation(my_circuit, operators=pauli_x, symbol_names=['alpha'], symbol_values=values_tensor) analytic_finite_diff_gradients = g.gradient(exact_outputs, values_tensor) with tf.GradientTape() as g: g.watch(values_tensor) imperfect_outputs = sampled_expectation_calculation( my_circuit, operators=pauli_x, repetitions=500, symbol_names=['alpha'], symbol_values=values_tensor) sampled_finite_diff_gradients = g.gradient(imperfect_outputs, values_tensor) plt.title('Gradient Values') plt.xlabel('$x$') plt.ylabel('$f^{\'}(x)$') plt.plot(input_points, analytic_finite_diff_gradients, label='Analytic') plt.plot(input_points, sampled_finite_diff_gradients, label='Sampled') plt.legend() ###Output _____no_output_____ ###Markdown Here you can see that although the finite difference formula is fast to compute the gradients themselves in the analytical case, when it came to the sampling based methods it was far too noisy. More careful techniques must be used to ensure a good gradient can be calculated. Next you will look at a much slower technique that wouldn't be as well suited for analytical expectation gradient calculations, but does perform much better in the real-world sample based case: ###Code # A smarter differentiation scheme. gradient_safe_sampled_expectation = tfq.layers.SampledExpectation( differentiator=tfq.differentiators.ParameterShift()) with tf.GradientTape() as g: g.watch(values_tensor) imperfect_outputs = gradient_safe_sampled_expectation( my_circuit, operators=pauli_x, repetitions=500, symbol_names=['alpha'], symbol_values=values_tensor) sampled_param_shift_gradients = g.gradient(imperfect_outputs, values_tensor) plt.title('Gradient Values') plt.xlabel('$x$') plt.ylabel('$f^{\'}(x)$') plt.plot(input_points, analytic_finite_diff_gradients, label='Analytic') plt.plot(input_points, sampled_param_shift_gradients, label='Sampled') plt.legend() ###Output _____no_output_____ ###Markdown From the above you can see that certain differentiators are best used for particular research scenarios. In general, the slower sample-based methods that are robust to device noise, etc., are great differentiators when testing or implementing algorithms in a more "real world" setting. Faster methods like finite difference are great for analytical calculations and you want higher throughput, but aren't yet concerned with the device viability of your algorithm. 3. Multiple observablesLet's introduce a second observable and see how TensorFlow Quantum supports multiple observables for a single circuit. ###Code pauli_z = cirq.Z(qubit) pauli_z ###Output _____no_output_____ ###Markdown If this observable is used with the same circuit as before, then you have $f_{2}(\alpha) = ⟨Y(\alpha)| Z | Y(\alpha)⟩ = \cos(\pi \alpha)$ and $f_{2}^{'}(\alpha) = -\pi \sin(\pi \alpha)$. Perform a quick check: ###Code test_value = 0. print('Finite difference:', my_grad(pauli_z, test_value)) print('Sin formula: ', -np.pi * np.sin(np.pi * test_value)) ###Output _____no_output_____ ###Markdown It's a match (close enough).Now if you define $g(\alpha) = f_{1}(\alpha) + f_{2}(\alpha)$ then $g'(\alpha) = f_{1}^{'}(\alpha) + f^{'}_{2}(\alpha)$. Defining more than one observable in TensorFlow Quantum to use along with a circuit is equivalent to adding on more terms to $g$.This means that the gradient of a particular symbol in a circuit is equal to the sum of the gradients with regards to each observable for that symbol applied to that circuit. This is compatible with TensorFlow gradient taking and backpropagation (where you give the sum of the gradients over all observables as the gradient for a particular symbol). ###Code sum_of_outputs = tfq.layers.Expectation( differentiator=tfq.differentiators.ForwardDifference(grid_spacing=0.01)) sum_of_outputs(my_circuit, operators=[pauli_x, pauli_z], symbol_names=['alpha'], symbol_values=[[test_value]]) ###Output _____no_output_____ ###Markdown Here you see the first entry is the expectation w.r.t Pauli X, and the second is the expectation w.r.t Pauli Z. Now when you take the gradient: ###Code test_value_tensor = tf.convert_to_tensor([[test_value]]) with tf.GradientTape() as g: g.watch(test_value_tensor) outputs = sum_of_outputs(my_circuit, operators=[pauli_x, pauli_z], symbol_names=['alpha'], symbol_values=test_value_tensor) sum_of_gradients = g.gradient(outputs, test_value_tensor) print(my_grad(pauli_x, test_value) + my_grad(pauli_z, test_value)) print(sum_of_gradients.numpy()) ###Output _____no_output_____ ###Markdown Here you have verified that the sum of the gradients for each observable is indeed the gradient of $\alpha$. This behavior is supported by all TensorFlow Quantum differentiators and plays a crucial role in the compatibility with the rest of TensorFlow. 4. Advanced usageAll differentiators that exist inside of TensorFlow Quantum subclass `tfq.differentiators.Differentiator`. To implement a differentiator, a user must implement one of two interfaces. The standard is to implement `get_gradient_circuits`, which tells the base class which circuits to measure to obtain an estimate of the gradient. Alternatively, you can overload `differentiate_analytic` and `differentiate_sampled`; the class `tfq.differentiators.Adjoint` takes this route.The following uses TensorFlow Quantum to implement the gradient of a circuit. You will use a small example of parameter shifting. Recall the circuit you defined above, $|\alpha⟩ = Y^{\alpha}|0⟩$. As before, you can define a function as the expectation value of this circuit against the $X$ observable, $f(\alpha) = ⟨\alpha|X|\alpha⟩$. Using [parameter shift rules](https://pennylane.ai/qml/glossary/parameter_shift.html), for this circuit, you can find that the derivative is$$\frac{\partial}{\partial \alpha} f(\alpha) = \frac{\pi}{2} f\left(\alpha + \frac{1}{2}\right) - \frac{ \pi}{2} f\left(\alpha - \frac{1}{2}\right)$$The `get_gradient_circuits` function returns the components of this derivative. ###Code class MyDifferentiator(tfq.differentiators.Differentiator): """A Toy differentiator for <Y^alpha | X |Y^alpha>.""" def __init__(self): pass def get_gradient_circuits(self, programs, symbol_names, symbol_values): """Return circuits to compute gradients for given forward pass circuits. Every gradient on a quantum computer can be computed via measurements of transformed quantum circuits. Here, you implement a custom gradient for a specific circuit. For a real differentiator, you will need to implement this function in a more general way. See the differentiator implementations in the TFQ library for examples. """ # The two terms in the derivative are the same circuit... batch_programs = tf.stack([programs, programs], axis=1) # ... with shifted parameter values. shift = tf.constant(1/2) forward = symbol_values + shift backward = symbol_values - shift batch_symbol_values = tf.stack([forward, backward], axis=1) # Weights are the coefficients of the terms in the derivative. num_program_copies = tf.shape(batch_programs)[0] batch_weights = tf.tile(tf.constant([[[np.pi/2, -np.pi/2]]]), [num_program_copies, 1, 1]) # The index map simply says which weights go with which circuits. batch_mapper = tf.tile( tf.constant([[[0, 1]]]), [num_program_copies, 1, 1]) return (batch_programs, symbol_names, batch_symbol_values, batch_weights, batch_mapper) ###Output _____no_output_____ ###Markdown The `Differentiator` base class uses the components returned from `get_gradient_circuits` to calculate the derivative, as in the parameter shift formula you saw above. This new differentiator can now be used with existing `tfq.layer` objects: ###Code custom_dif = MyDifferentiator() custom_grad_expectation = tfq.layers.Expectation(differentiator=custom_dif) # Now let's get the gradients with finite diff. with tf.GradientTape() as g: g.watch(values_tensor) exact_outputs = expectation_calculation(my_circuit, operators=[pauli_x], symbol_names=['alpha'], symbol_values=values_tensor) analytic_finite_diff_gradients = g.gradient(exact_outputs, values_tensor) # Now let's get the gradients with custom diff. with tf.GradientTape() as g: g.watch(values_tensor) my_outputs = custom_grad_expectation(my_circuit, operators=[pauli_x], symbol_names=['alpha'], symbol_values=values_tensor) my_gradients = g.gradient(my_outputs, values_tensor) plt.subplot(1, 2, 1) plt.title('Exact Gradient') plt.plot(input_points, analytic_finite_diff_gradients.numpy()) plt.xlabel('x') plt.ylabel('f(x)') plt.subplot(1, 2, 2) plt.title('My Gradient') plt.plot(input_points, my_gradients.numpy()) plt.xlabel('x') ###Output _____no_output_____ ###Markdown This new differentiator can now be used to generate differentiable ops.Key Point: A differentiator that has been previously attached to an op must be refreshed before attaching to a new op, because a differentiator may only be attached to one op at a time. ###Code # Create a noisy sample based expectation op. expectation_sampled = tfq.get_sampled_expectation_op( cirq.DensityMatrixSimulator(noise=cirq.depolarize(0.01))) # Make it differentiable with your differentiator: # Remember to refresh the differentiator before attaching the new op custom_dif.refresh() differentiable_op = custom_dif.generate_differentiable_op( sampled_op=expectation_sampled) # Prep op inputs. circuit_tensor = tfq.convert_to_tensor([my_circuit]) op_tensor = tfq.convert_to_tensor([[pauli_x]]) single_value = tf.convert_to_tensor([[my_alpha]]) num_samples_tensor = tf.convert_to_tensor([[5000]]) with tf.GradientTape() as g: g.watch(single_value) forward_output = differentiable_op(circuit_tensor, ['alpha'], single_value, op_tensor, num_samples_tensor) my_gradients = g.gradient(forward_output, single_value) print('---TFQ---') print('Foward: ', forward_output.numpy()) print('Gradient:', my_gradients.numpy()) print('---Original---') print('Forward: ', my_expectation(pauli_x, my_alpha)) print('Gradient:', my_grad(pauli_x, my_alpha)) ###Output _____no_output_____ ###Markdown Copyright 2020 The TensorFlow Authors. ###Code #@title Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ###Output _____no_output_____ ###Markdown Calculate gradients View on TensorFlow.org Run in Google Colab View source on GitHub Download notebook This tutorial explores gradient calculation algorithms for the expectation values of quantum circuits.Calculating the gradient of the expectation value of a certain observable in a quantum circuit is an involved process. Expectation values of observables do not have the luxury of having analytic gradient formulas that are always easy to write down—unlike traditional machine learning transformations such as matrix multiplication or vector addition that have analytic gradient formulas which are easy to write down. As a result, there are different quantum gradient calculation methods that come in handy for different scenarios. This tutorial compares and contrasts two different differentiation schemes. Setup ###Code !pip install tensorflow==2.4.1 ###Output _____no_output_____ ###Markdown Install TensorFlow Quantum: ###Code !pip install tensorflow-quantum ###Output _____no_output_____ ###Markdown Now import TensorFlow and the module dependencies: ###Code import tensorflow as tf import tensorflow_quantum as tfq import cirq import sympy import numpy as np # visualization tools %matplotlib inline import matplotlib.pyplot as plt from cirq.contrib.svg import SVGCircuit ###Output _____no_output_____ ###Markdown 1. PreliminaryLet's make the notion of gradient calculation for quantum circuits a little more concrete. Suppose you have a parameterized circuit like this one: ###Code qubit = cirq.GridQubit(0, 0) my_circuit = cirq.Circuit(cirq.Y(qubit)**sympy.Symbol('alpha')) SVGCircuit(my_circuit) ###Output _____no_output_____ ###Markdown Along with an observable: ###Code pauli_x = cirq.X(qubit) pauli_x ###Output _____no_output_____ ###Markdown Looking at this operator you know that $⟨Y(\alpha)| X | Y(\alpha)⟩ = \sin(\pi \alpha)$ ###Code def my_expectation(op, alpha): """Compute ⟨Y(alpha)| `op` | Y(alpha)⟩""" params = {'alpha': alpha} sim = cirq.Simulator() final_state_vector = sim.simulate(my_circuit, params).final_state_vector return op.expectation_from_state_vector(final_state_vector, {qubit: 0}).real my_alpha = 0.3 print("Expectation=", my_expectation(pauli_x, my_alpha)) print("Sin Formula=", np.sin(np.pi * my_alpha)) ###Output _____no_output_____ ###Markdown and if you define $f_{1}(\alpha) = ⟨Y(\alpha)| X | Y(\alpha)⟩$ then $f_{1}^{'}(\alpha) = \pi \cos(\pi \alpha)$. Let's check this: ###Code def my_grad(obs, alpha, eps=0.01): grad = 0 f_x = my_expectation(obs, alpha) f_x_prime = my_expectation(obs, alpha + eps) return ((f_x_prime - f_x) / eps).real print('Finite difference:', my_grad(pauli_x, my_alpha)) print('Cosine formula: ', np.pi * np.cos(np.pi * my_alpha)) ###Output _____no_output_____ ###Markdown 2. The need for a differentiatorWith larger circuits, you won't always be so lucky to have a formula that precisely calculates the gradients of a given quantum circuit. In the event that a simple formula isn't enough to calculate the gradient, the `tfq.differentiators.Differentiator` class allows you to define algorithms for computing the gradients of your circuits. For instance you can recreate the above example in TensorFlow Quantum (TFQ) with: ###Code expectation_calculation = tfq.layers.Expectation( differentiator=tfq.differentiators.ForwardDifference(grid_spacing=0.01)) expectation_calculation(my_circuit, operators=pauli_x, symbol_names=['alpha'], symbol_values=[[my_alpha]]) ###Output _____no_output_____ ###Markdown However, if you switch to estimating expectation based on sampling (what would happen on a true device) the values can change a little bit. This means you now have an imperfect estimate: ###Code sampled_expectation_calculation = tfq.layers.SampledExpectation( differentiator=tfq.differentiators.ForwardDifference(grid_spacing=0.01)) sampled_expectation_calculation(my_circuit, operators=pauli_x, repetitions=500, symbol_names=['alpha'], symbol_values=[[my_alpha]]) ###Output _____no_output_____ ###Markdown This can quickly compound into a serious accuracy problem when it comes to gradients: ###Code # Make input_points = [batch_size, 1] array. input_points = np.linspace(0, 5, 200)[:, np.newaxis].astype(np.float32) exact_outputs = expectation_calculation(my_circuit, operators=pauli_x, symbol_names=['alpha'], symbol_values=input_points) imperfect_outputs = sampled_expectation_calculation(my_circuit, operators=pauli_x, repetitions=500, symbol_names=['alpha'], symbol_values=input_points) plt.title('Forward Pass Values') plt.xlabel('$x$') plt.ylabel('$f(x)$') plt.plot(input_points, exact_outputs, label='Analytic') plt.plot(input_points, imperfect_outputs, label='Sampled') plt.legend() # Gradients are a much different story. values_tensor = tf.convert_to_tensor(input_points) with tf.GradientTape() as g: g.watch(values_tensor) exact_outputs = expectation_calculation(my_circuit, operators=pauli_x, symbol_names=['alpha'], symbol_values=values_tensor) analytic_finite_diff_gradients = g.gradient(exact_outputs, values_tensor) with tf.GradientTape() as g: g.watch(values_tensor) imperfect_outputs = sampled_expectation_calculation( my_circuit, operators=pauli_x, repetitions=500, symbol_names=['alpha'], symbol_values=values_tensor) sampled_finite_diff_gradients = g.gradient(imperfect_outputs, values_tensor) plt.title('Gradient Values') plt.xlabel('$x$') plt.ylabel('$f^{\'}(x)$') plt.plot(input_points, analytic_finite_diff_gradients, label='Analytic') plt.plot(input_points, sampled_finite_diff_gradients, label='Sampled') plt.legend() ###Output _____no_output_____ ###Markdown Here you can see that although the finite difference formula is fast to compute the gradients themselves in the analytical case, when it came to the sampling based methods it was far too noisy. More careful techniques must be used to ensure a good gradient can be calculated. Next you will look at a much slower technique that wouldn't be as well suited for analytical expectation gradient calculations, but does perform much better in the real-world sample based case: ###Code # A smarter differentiation scheme. gradient_safe_sampled_expectation = tfq.layers.SampledExpectation( differentiator=tfq.differentiators.ParameterShift()) with tf.GradientTape() as g: g.watch(values_tensor) imperfect_outputs = gradient_safe_sampled_expectation( my_circuit, operators=pauli_x, repetitions=500, symbol_names=['alpha'], symbol_values=values_tensor) sampled_param_shift_gradients = g.gradient(imperfect_outputs, values_tensor) plt.title('Gradient Values') plt.xlabel('$x$') plt.ylabel('$f^{\'}(x)$') plt.plot(input_points, analytic_finite_diff_gradients, label='Analytic') plt.plot(input_points, sampled_param_shift_gradients, label='Sampled') plt.legend() ###Output _____no_output_____ ###Markdown From the above you can see that certain differentiators are best used for particular research scenarios. In general, the slower sample-based methods that are robust to device noise, etc., are great differentiators when testing or implementing algorithms in a more "real world" setting. Faster methods like finite difference are great for analytical calculations and you want higher throughput, but aren't yet concerned with the device viability of your algorithm. 3. Multiple observablesLet's introduce a second observable and see how TensorFlow Quantum supports multiple observables for a single circuit. ###Code pauli_z = cirq.Z(qubit) pauli_z ###Output _____no_output_____ ###Markdown If this observable is used with the same circuit as before, then you have $f_{2}(\alpha) = ⟨Y(\alpha)| Z | Y(\alpha)⟩ = \cos(\pi \alpha)$ and $f_{2}^{'}(\alpha) = -\pi \sin(\pi \alpha)$. Perform a quick check: ###Code test_value = 0. print('Finite difference:', my_grad(pauli_z, test_value)) print('Sin formula: ', -np.pi * np.sin(np.pi * test_value)) ###Output _____no_output_____ ###Markdown It's a match (close enough).Now if you define $g(\alpha) = f_{1}(\alpha) + f_{2}(\alpha)$ then $g'(\alpha) = f_{1}^{'}(\alpha) + f^{'}_{2}(\alpha)$. Defining more than one observable in TensorFlow Quantum to use along with a circuit is equivalent to adding on more terms to $g$.This means that the gradient of a particular symbol in a circuit is equal to the sum of the gradients with regards to each observable for that symbol applied to that circuit. This is compatible with TensorFlow gradient taking and backpropagation (where you give the sum of the gradients over all observables as the gradient for a particular symbol). ###Code sum_of_outputs = tfq.layers.Expectation( differentiator=tfq.differentiators.ForwardDifference(grid_spacing=0.01)) sum_of_outputs(my_circuit, operators=[pauli_x, pauli_z], symbol_names=['alpha'], symbol_values=[[test_value]]) ###Output _____no_output_____ ###Markdown Here you see the first entry is the expectation w.r.t Pauli X, and the second is the expectation w.r.t Pauli Z. Now when you take the gradient: ###Code test_value_tensor = tf.convert_to_tensor([[test_value]]) with tf.GradientTape() as g: g.watch(test_value_tensor) outputs = sum_of_outputs(my_circuit, operators=[pauli_x, pauli_z], symbol_names=['alpha'], symbol_values=test_value_tensor) sum_of_gradients = g.gradient(outputs, test_value_tensor) print(my_grad(pauli_x, test_value) + my_grad(pauli_z, test_value)) print(sum_of_gradients.numpy()) ###Output _____no_output_____ ###Markdown Here you have verified that the sum of the gradients for each observable is indeed the gradient of $\alpha$. This behavior is supported by all TensorFlow Quantum differentiators and plays a crucial role in the compatibility with the rest of TensorFlow. 4. Advanced usageAll differentiators that exist inside of TensorFlow Quantum subclass `tfq.differentiators.Differentiator`. To implement a differentiator, a user must implement one of two interfaces. The standard is to implement `get_gradient_circuits`, which tells the base class which circuits to measure to obtain an estimate of the gradient. Alternatively, you can overload `differentiate_analytic` and `differentiate_sampled`; the class `tfq.differentiators.Adjoint` takes this route.The following uses TensorFlow Quantum to implement the gradient of a circuit. You will use a small example of parameter shifting. Recall the circuit you defined above, $|\alpha⟩ = Y^{\alpha}|0⟩$. As before, you can define a function as the expectation value of this circuit against the $X$ observable, $f(\alpha) = ⟨\alpha|X|\alpha⟩$. Using [parameter shift rules](https://pennylane.ai/qml/glossary/parameter_shift.html), for this circuit, you can find that the derivative is$$\frac{\partial}{\partial \alpha} f(\alpha) = \frac{\pi}{2} f\left(\alpha + \frac{1}{2}\right) - \frac{ \pi}{2} f\left(\alpha - \frac{1}{2}\right)$$The `get_gradient_circuits` function returns the components of this derivative. ###Code class MyDifferentiator(tfq.differentiators.Differentiator): """A Toy differentiator for <Y^alpha | X |Y^alpha>.""" def __init__(self): pass def get_gradient_circuits(self, programs, symbol_names, symbol_values): """Return circuits to compute gradients for given forward pass circuits. Every gradient on a quantum computer can be computed via measurements of transformed quantum circuits. Here, you implement a custom gradient for a specific circuit. For a real differentiator, you will need to implement this function in a more general way. See the differentiator implementations in the TFQ library for examples. """ # The two terms in the derivative are the same circuit... batch_programs = tf.stack([programs, programs], axis=1) # ... with shifted parameter values. shift = tf.constant(1/2) forward = symbol_values + shift backward = symbol_values - shift batch_symbol_values = tf.stack([forward, backward], axis=1) # Weights are the coefficients of the terms in the derivative. num_program_copies = tf.shape(batch_programs)[0] batch_weights = tf.tile(tf.constant([[[np.pi/2, -np.pi/2]]]), [num_program_copies, 1, 1]) # The index map simply says which weights go with which circuits. batch_mapper = tf.tile( tf.constant([[[0, 1]]]), [num_program_copies, 1, 1]) return (batch_programs, symbol_names, batch_symbol_values, batch_weights, batch_mapper) ###Output _____no_output_____ ###Markdown The `Differentiator` base class uses the components returned from `get_gradient_circuits` to calculate the derivative, as in the parameter shift formula you saw above. This new differentiator can now be used with existing `tfq.layer` objects: ###Code custom_dif = MyDifferentiator() custom_grad_expectation = tfq.layers.Expectation(differentiator=custom_dif) # Now let's get the gradients with finite diff. with tf.GradientTape() as g: g.watch(values_tensor) exact_outputs = expectation_calculation(my_circuit, operators=[pauli_x], symbol_names=['alpha'], symbol_values=values_tensor) analytic_finite_diff_gradients = g.gradient(exact_outputs, values_tensor) # Now let's get the gradients with custom diff. with tf.GradientTape() as g: g.watch(values_tensor) my_outputs = custom_grad_expectation(my_circuit, operators=[pauli_x], symbol_names=['alpha'], symbol_values=values_tensor) my_gradients = g.gradient(my_outputs, values_tensor) plt.subplot(1, 2, 1) plt.title('Exact Gradient') plt.plot(input_points, analytic_finite_diff_gradients.numpy()) plt.xlabel('x') plt.ylabel('f(x)') plt.subplot(1, 2, 2) plt.title('My Gradient') plt.plot(input_points, my_gradients.numpy()) plt.xlabel('x') ###Output _____no_output_____ ###Markdown This new differentiator can now be used to generate differentiable ops.Key Point: A differentiator that has been previously attached to an op must be refreshed before attaching to a new op, because a differentiator may only be attached to one op at a time. ###Code # Create a noisy sample based expectation op. expectation_sampled = tfq.get_sampled_expectation_op( cirq.DensityMatrixSimulator(noise=cirq.depolarize(0.01))) # Make it differentiable with your differentiator: # Remember to refresh the differentiator before attaching the new op custom_dif.refresh() differentiable_op = custom_dif.generate_differentiable_op( sampled_op=expectation_sampled) # Prep op inputs. circuit_tensor = tfq.convert_to_tensor([my_circuit]) op_tensor = tfq.convert_to_tensor([[pauli_x]]) single_value = tf.convert_to_tensor([[my_alpha]]) num_samples_tensor = tf.convert_to_tensor([[5000]]) with tf.GradientTape() as g: g.watch(single_value) forward_output = differentiable_op(circuit_tensor, ['alpha'], single_value, op_tensor, num_samples_tensor) my_gradients = g.gradient(forward_output, single_value) print('---TFQ---') print('Foward: ', forward_output.numpy()) print('Gradient:', my_gradients.numpy()) print('---Original---') print('Forward: ', my_expectation(pauli_x, my_alpha)) print('Gradient:', my_grad(pauli_x, my_alpha)) ###Output _____no_output_____ ###Markdown Copyright 2020 The TensorFlow Authors. ###Code #@title Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ###Output _____no_output_____ ###Markdown Calculate gradients View on TensorFlow.org Run in Google Colab View source on GitHub Download notebook This tutorial explores gradient calculation algorithms for the expectation values of quantum circuits.Calculating the gradient of the expectation value of a certain observable in a quantum circuit is an involved process. Expectation values of observables do not have the luxury of having analytic gradient formulas that are always easy to write down—unlike traditional machine learning transformations such as matrix multiplication or vector addition that have analytic gradient formulas which are easy to write down. As a result, there are different quantum gradient calculation methods that come in handy for different scenarios. This tutorial compares and contrasts two different differentiation schemes. Setup ###Code !pip install tensorflow==2.1.0 ###Output _____no_output_____ ###Markdown Install TensorFlow Quantum: ###Code !pip install tensorflow-quantum ###Output _____no_output_____ ###Markdown Now import TensorFlow and the module dependencies: ###Code import tensorflow as tf import tensorflow_quantum as tfq import cirq import sympy import numpy as np # visualization tools %matplotlib inline import matplotlib.pyplot as plt from cirq.contrib.svg import SVGCircuit ###Output _____no_output_____ ###Markdown 1. PreliminaryLet's make the notion of gradient calculation for quantum circuits a little more concrete. Suppose you have a parameterized circuit like this one: ###Code qubit = cirq.GridQubit(0, 0) my_circuit = cirq.Circuit(cirq.Y(qubit)**sympy.Symbol('alpha')) SVGCircuit(my_circuit) ###Output _____no_output_____ ###Markdown Along with an observable: ###Code pauli_x = cirq.X(qubit) pauli_x ###Output _____no_output_____ ###Markdown Looking at this operator you know that $⟨Y(\alpha)| X | Y(\alpha)⟩ = \sin(\pi \alpha)$ ###Code def my_expectation(op, alpha): """Compute ⟨Y(alpha)| `op` | Y(alpha)⟩""" params = {'alpha': alpha} sim = cirq.Simulator() final_state = sim.simulate(my_circuit, params).final_state return op.expectation_from_wavefunction(final_state, {qubit: 0}).real my_alpha = 0.3 print("Expectation=", my_expectation(pauli_x, my_alpha)) print("Sin Formula=", np.sin(np.pi * my_alpha)) ###Output _____no_output_____ ###Markdown and if you define $f_{1}(\alpha) = ⟨Y(\alpha)| X | Y(\alpha)⟩$ then $f_{1}^{'}(\alpha) = \pi \cos(\pi \alpha)$. Let's check this: ###Code def my_grad(obs, alpha, eps=0.01): grad = 0 f_x = my_expectation(obs, alpha) f_x_prime = my_expectation(obs, alpha + eps) return ((f_x_prime - f_x) / eps).real print('Finite difference:', my_grad(pauli_x, my_alpha)) print('Cosine formula: ', np.pi * np.cos(np.pi * my_alpha)) ###Output _____no_output_____ ###Markdown 2. The need for a differentiatorWith larger circuits, you won't always be so lucky to have a formula that precisely calculates the gradients of a given quantum circuit. In the event that a simple formula isn't enough to calculate the gradient, the `tfq.differentiators.Differentiator` class allows you to define algorithms for computing the gradients of your circuits. For instance you can recreate the above example in TensorFlow Quantum (TFQ) with: ###Code expectation_calculation = tfq.layers.Expectation( differentiator=tfq.differentiators.ForwardDifference(grid_spacing=0.01)) expectation_calculation(my_circuit, operators=pauli_x, symbol_names=['alpha'], symbol_values=[[my_alpha]]) ###Output _____no_output_____ ###Markdown However, if you switch to estimating expectation based on sampling (what would happen on a true device) the values can change a little bit. This means you now have an imperfect estimate: ###Code sampled_expectation_calculation = tfq.layers.SampledExpectation( differentiator=tfq.differentiators.ForwardDifference(grid_spacing=0.01)) sampled_expectation_calculation(my_circuit, operators=pauli_x, repetitions=500, symbol_names=['alpha'], symbol_values=[[my_alpha]]) ###Output _____no_output_____ ###Markdown This can quickly compound into a serious accuracy problem when it comes to gradients: ###Code # Make input_points = [batch_size, 1] array. input_points = np.linspace(0, 5, 200)[:, np.newaxis].astype(np.float32) exact_outputs = expectation_calculation(my_circuit, operators=pauli_x, symbol_names=['alpha'], symbol_values=input_points) imperfect_outputs = sampled_expectation_calculation(my_circuit, operators=pauli_x, repetitions=500, symbol_names=['alpha'], symbol_values=input_points) plt.title('Forward Pass Values') plt.xlabel('$x$') plt.ylabel('$f(x)$') plt.plot(input_points, exact_outputs, label='Analytic') plt.plot(input_points, imperfect_outputs, label='Sampled') plt.legend() # Gradients are a much different story. values_tensor = tf.convert_to_tensor(input_points) with tf.GradientTape() as g: g.watch(values_tensor) exact_outputs = expectation_calculation(my_circuit, operators=pauli_x, symbol_names=['alpha'], symbol_values=values_tensor) analytic_finite_diff_gradients = g.gradient(exact_outputs, values_tensor) with tf.GradientTape() as g: g.watch(values_tensor) imperfect_outputs = sampled_expectation_calculation( my_circuit, operators=pauli_x, repetitions=500, symbol_names=['alpha'], symbol_values=values_tensor) sampled_finite_diff_gradients = g.gradient(imperfect_outputs, values_tensor) plt.title('Gradient Values') plt.xlabel('$x$') plt.ylabel('$f^{\'}(x)$') plt.plot(input_points, analytic_finite_diff_gradients, label='Analytic') plt.plot(input_points, sampled_finite_diff_gradients, label='Sampled') plt.legend() ###Output _____no_output_____ ###Markdown Here you can see that although the finite difference formula is fast to compute the gradients themselves in the analytical case, when it came to the sampling based methods it was far too noisy. More careful techniques must be used to ensure a good gradient can be calculated. Next you will look at a much slower technique that wouldn't be as well suited for analytical expectation gradient calculations, but does perform much better in the real-world sample based case: ###Code # A smarter differentiation scheme. gradient_safe_sampled_expectation = tfq.layers.SampledExpectation( differentiator=tfq.differentiators.ParameterShift()) with tf.GradientTape() as g: g.watch(values_tensor) imperfect_outputs = gradient_safe_sampled_expectation( my_circuit, operators=pauli_x, repetitions=500, symbol_names=['alpha'], symbol_values=values_tensor) sampled_param_shift_gradients = g.gradient(imperfect_outputs, values_tensor) plt.title('Gradient Values') plt.xlabel('$x$') plt.ylabel('$f^{\'}(x)$') plt.plot(input_points, analytic_finite_diff_gradients, label='Analytic') plt.plot(input_points, sampled_param_shift_gradients, label='Sampled') plt.legend() ###Output _____no_output_____ ###Markdown From the above you can see that certain differentiators are best used for particular research scenarios. In general, the slower sample-based methods that are robust to device noise, etc., are great differentiators when testing or implementing algorithms in a more "real world" setting. Faster methods like finite difference are great for analytical calculations and you want higher throughput, but aren't yet concerned with the device viability of your algorithm. 3. Multiple observablesLet's introduce a second observable and see how TensorFlow Quantum supports multiple observables for a single circuit. ###Code pauli_z = cirq.Z(qubit) pauli_z ###Output _____no_output_____ ###Markdown If this observable is used with the same circuit as before, then you have $f_{2}(\alpha) = ⟨Y(\alpha)| Z | Y(\alpha)⟩ = \cos(\pi \alpha)$ and $f_{2}^{'}(\alpha) = -\pi \sin(\pi \alpha)$. Perform a quick check: ###Code test_value = 0. print('Finite difference:', my_grad(pauli_z, test_value)) print('Sin formula: ', -np.pi * np.sin(np.pi * test_value)) ###Output _____no_output_____ ###Markdown It's a match (close enough).Now if you define $g(\alpha) = f_{1}(\alpha) + f_{2}(\alpha)$ then $g'(\alpha) = f_{1}^{'}(\alpha) + f^{'}_{2}(\alpha)$. Defining more than one observable in TensorFlow Quantum to use along with a circuit is equivalent to adding on more terms to $g$.This means that the gradient of a particular symbol in a circuit is equal to the sum of the gradients with regards to each observable for that symbol applied to that circuit. This is compatible with TensorFlow gradient taking and backpropagation (where you give the sum of the gradients over all observables as the gradient for a particular symbol). ###Code sum_of_outputs = tfq.layers.Expectation( differentiator=tfq.differentiators.ForwardDifference(grid_spacing=0.01)) sum_of_outputs(my_circuit, operators=[pauli_x, pauli_z], symbol_names=['alpha'], symbol_values=[[test_value]]) ###Output _____no_output_____ ###Markdown Here you see the first entry is the expectation w.r.t Pauli X, and the second is the expectation w.r.t Pauli Z. Now when you take the gradient: ###Code test_value_tensor = tf.convert_to_tensor([[test_value]]) with tf.GradientTape() as g: g.watch(test_value_tensor) outputs = sum_of_outputs(my_circuit, operators=[pauli_x, pauli_z], symbol_names=['alpha'], symbol_values=test_value_tensor) sum_of_gradients = g.gradient(outputs, test_value_tensor) print(my_grad(pauli_x, test_value) + my_grad(pauli_z, test_value)) print(sum_of_gradients.numpy()) ###Output _____no_output_____ ###Markdown Here you have verified that the sum of the gradients for each observable is indeed the gradient of $\alpha$. This behavior is supported by all TensorFlow Quantum differentiators and plays a crucial role in the compatibility with the rest of TensorFlow. 4. Advanced usageHere you will learn how to define your own custom differentiation routines for quantum circuits.All differentiators that exist inside of TensorFlow Quantum subclass `tfq.differentiators.Differentiator`. A differentiator must implement `differentiate_analytic` and `differentiate_sampled`.The following uses TensorFlow Quantum constructs to implement the closed form solution from the first part of this tutorial. ###Code class MyDifferentiator(tfq.differentiators.Differentiator): """A Toy differentiator for <Y^alpha | X |Y^alpha>.""" def __init__(self): pass @tf.function def _compute_gradient(self, symbol_values): """Compute the gradient based on symbol_values.""" # f(x) = sin(pi * x) # f'(x) = pi * cos(pi * x) return tf.cast(tf.cos(symbol_values * np.pi) * np.pi, tf.float32) @tf.function def differentiate_analytic(self, programs, symbol_names, symbol_values, pauli_sums, forward_pass_vals, grad): """Specify how to differentiate a circuit with analytical expectation. This is called at graph runtime by TensorFlow. `differentiate_analytic` should calculate the gradient of a batch of circuits and return it formatted as indicated below. See `tfq.differentiators.ForwardDifference` for an example. Args: programs: `tf.Tensor` of strings with shape [batch_size] containing the string representations of the circuits to be executed. symbol_names: `tf.Tensor` of strings with shape [n_params], which is used to specify the order in which the values in `symbol_values` should be placed inside of the circuits in `programs`. symbol_values: `tf.Tensor` of real numbers with shape [batch_size, n_params] specifying parameter values to resolve into the circuits specified by programs, following the ordering dictated by `symbol_names`. pauli_sums: `tf.Tensor` of strings with shape [batch_size, n_ops] containing the string representation of the operators that will be used on all of the circuits in the expectation calculations. forward_pass_vals: `tf.Tensor` of real numbers with shape [batch_size, n_ops] containing the output of the forward pass through the op you are differentiating. grad: `tf.Tensor` of real numbers with shape [batch_size, n_ops] representing the gradient backpropagated to the output of the op you are differentiating through. Returns: A `tf.Tensor` with the same shape as `symbol_values` representing the gradient backpropagated to the `symbol_values` input of the op you are differentiating through. """ # Computing gradients just based off of symbol_values. return self._compute_gradient(symbol_values) * grad @tf.function def differentiate_sampled(self, programs, symbol_names, symbol_values, pauli_sums, num_samples, forward_pass_vals, grad): """Specify how to differentiate a circuit with sampled expectation. This is called at graph runtime by TensorFlow. `differentiate_sampled` should calculate the gradient of a batch of circuits and return it formatted as indicated below. See `tfq.differentiators.ForwardDifference` for an example. Args: programs: `tf.Tensor` of strings with shape [batch_size] containing the string representations of the circuits to be executed. symbol_names: `tf.Tensor` of strings with shape [n_params], which is used to specify the order in which the values in `symbol_values` should be placed inside of the circuits in `programs`. symbol_values: `tf.Tensor` of real numbers with shape [batch_size, n_params] specifying parameter values to resolve into the circuits specified by programs, following the ordering dictated by `symbol_names`. pauli_sums: `tf.Tensor` of strings with shape [batch_size, n_ops] containing the string representation of the operators that will be used on all of the circuits in the expectation calculations. num_samples: `tf.Tensor` of positive integers representing the number of samples per term in each term of pauli_sums used during the forward pass. forward_pass_vals: `tf.Tensor` of real numbers with shape [batch_size, n_ops] containing the output of the forward pass through the op you are differentiating. grad: `tf.Tensor` of real numbers with shape [batch_size, n_ops] representing the gradient backpropagated to the output of the op you are differentiating through. Returns: A `tf.Tensor` with the same shape as `symbol_values` representing the gradient backpropagated to the `symbol_values` input of the op you are differentiating through. """ return self._compute_gradient(symbol_values) * grad ###Output _____no_output_____ ###Markdown This new differentiator can now be used with existing `tfq.layer` objects: ###Code custom_dif = MyDifferentiator() custom_grad_expectation = tfq.layers.Expectation(differentiator=custom_dif) # Now let's get the gradients with finite diff. with tf.GradientTape() as g: g.watch(values_tensor) exact_outputs = expectation_calculation(my_circuit, operators=[pauli_x], symbol_names=['alpha'], symbol_values=values_tensor) analytic_finite_diff_gradients = g.gradient(exact_outputs, values_tensor) # Now let's get the gradients with custom diff. with tf.GradientTape() as g: g.watch(values_tensor) my_outputs = custom_grad_expectation(my_circuit, operators=[pauli_x], symbol_names=['alpha'], symbol_values=values_tensor) my_gradients = g.gradient(my_outputs, values_tensor) plt.subplot(1, 2, 1) plt.title('Exact Gradient') plt.plot(input_points, analytic_finite_diff_gradients.numpy()) plt.xlabel('x') plt.ylabel('f(x)') plt.subplot(1, 2, 2) plt.title('My Gradient') plt.plot(input_points, my_gradients.numpy()) plt.xlabel('x') ###Output _____no_output_____ ###Markdown This new differentiator can now be used to generate differentiable ops.Key Point: A differentiator that has been previously attached to an op must be refreshed before attaching to a new op, because a differentiator may only be attached to one op at a time. ###Code # Create a noisy sample based expectation op. expectation_sampled = tfq.get_sampled_expectation_op( cirq.DensityMatrixSimulator(noise=cirq.depolarize(0.01))) # Make it differentiable with your differentiator: # Remember to refresh the differentiator before attaching the new op custom_dif.refresh() differentiable_op = custom_dif.generate_differentiable_op( sampled_op=expectation_sampled) # Prep op inputs. circuit_tensor = tfq.convert_to_tensor([my_circuit]) op_tensor = tfq.convert_to_tensor([[pauli_x]]) single_value = tf.convert_to_tensor([[my_alpha]]) num_samples_tensor = tf.convert_to_tensor([[1000]]) with tf.GradientTape() as g: g.watch(single_value) forward_output = differentiable_op(circuit_tensor, ['alpha'], single_value, op_tensor, num_samples_tensor) my_gradients = g.gradient(forward_output, single_value) print('---TFQ---') print('Foward: ', forward_output.numpy()) print('Gradient:', my_gradients.numpy()) print('---Original---') print('Forward: ', my_expectation(pauli_x, my_alpha)) print('Gradient:', my_grad(pauli_x, my_alpha)) ###Output _____no_output_____ ###Markdown Copyright 2020 The TensorFlow Authors. ###Code #@title Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ###Output _____no_output_____ ###Markdown Calculate gradients View on TensorFlow.org Run in Google Colab View source on GitHub Download notebook This tutorial explores gradient calculation algorithms for the expectation values of quantum circuits.Calculating the gradient of the expectation value of a certain observable in a quantum circuit is an involved process. Expectation values of observables do not have the luxury of having analytic gradient formulas that are always easy to write down—unlike traditional machine learning transformations such as matrix multiplication or vector addition that have analytic gradient formulas which are easy to write down. As a result, there are different quantum gradient calculation methods that come in handy for different scenarios. This tutorial compares and contrasts two different differentiation schemes. Setup ###Code try: %tensorflow_version 2.x except Exception: pass ###Output _____no_output_____ ###Markdown Install TensorFlow Quantum:Note: This may require restarting the Colab runtime (*Runtime > Restart Runtime*). ###Code !pip install tensorflow-quantum ###Output _____no_output_____ ###Markdown Now import TensorFlow and the module dependencies: ###Code import tensorflow as tf import tensorflow_quantum as tfq import cirq import sympy import numpy as np # visualization tools %matplotlib inline import matplotlib.pyplot as plt from cirq.contrib.svg import SVGCircuit ###Output _____no_output_____ ###Markdown 1. PreliminaryLet's make the notion of gradient calculation for quantum circuits a little more concrete. Suppose you have a parameterized circuit like this one: ###Code qubit = cirq.GridQubit(0, 0) my_circuit = cirq.Circuit(cirq.Y(qubit)**sympy.Symbol('alpha')) SVGCircuit(my_circuit) ###Output _____no_output_____ ###Markdown Along with an observable: ###Code pauli_x = cirq.X(qubit) pauli_x ###Output _____no_output_____ ###Markdown Looking at this operator you know that $⟨Y(\alpha)| X | Y(\alpha)⟩ = \sin(\pi \alpha)$ ###Code def my_expectation(op, alpha): """Compute ⟨Y(alpha)| `op` | Y(alpha)⟩""" params = {'alpha': alpha} sim = cirq.Simulator() final_state = sim.simulate(my_circuit, params).final_state return op.expectation_from_wavefunction(final_state, {qubit: 0}).real my_alpha = 0.3 print("Expectation=", my_expectation(pauli_x, my_alpha)) print("Sin Formula=", np.sin(np.pi * my_alpha)) ###Output _____no_output_____ ###Markdown and if you define $f_{1}(\alpha) = ⟨Y(\alpha)| X | Y(\alpha)⟩$ then $f_{1}^{'}(\alpha) = \pi \cos(\pi \alpha)$. Let's check this: ###Code def my_grad(obs, alpha, eps=0.01): grad = 0 f_x = my_expectation(obs, alpha) f_x_prime = my_expectation(obs, alpha + eps) return ((f_x_prime - f_x) / eps).real print('Finite difference:', my_grad(pauli_x, my_alpha)) print('Cosine formula: ', np.pi * np.cos(np.pi * my_alpha)) ###Output _____no_output_____ ###Markdown 2. The need for a differentiatorWith larger circuits, you won't always be so lucky to have a formula that precisely calculates the gradients of a given quantum circuit. In the event that a simple formula isn't enough to calculate the gradient, the `tfq.differentiators.Differentiator` class allows you to define algorithms for computing the gradients of your circuits. For instance you can recreate the above example in TensorFlow Quantum (TFQ) with: ###Code expectation_calculation = tfq.layers.Expectation( differentiator=tfq.differentiators.ForwardDifference(grid_spacing=0.01)) expectation_calculation(my_circuit, operators=pauli_x, symbol_names=['alpha'], symbol_values=[[my_alpha]]) ###Output _____no_output_____ ###Markdown However, if you switch to estimating expectation based on sampling (what would happen on a true device) the values can change a little bit. This means you now have an imperfect estimate: ###Code sampled_expectation_calculation = tfq.layers.SampledExpectation( differentiator=tfq.differentiators.ForwardDifference(grid_spacing=0.01)) sampled_expectation_calculation(my_circuit, operators=pauli_x, repetitions=500, symbol_names=['alpha'], symbol_values=[[my_alpha]]) ###Output _____no_output_____ ###Markdown This can quickly compound into a serious accuracy problem when it comes to gradients: ###Code # Make input_points = [batch_size, 1] array. input_points = np.linspace(0, 5, 200)[:, np.newaxis].astype(np.float32) exact_outputs = expectation_calculation(my_circuit, operators=pauli_x, symbol_names=['alpha'], symbol_values=input_points) imperfect_outputs = sampled_expectation_calculation(my_circuit, operators=pauli_x, repetitions=500, symbol_names=['alpha'], symbol_values=input_points) plt.title('Forward Pass Values') plt.xlabel('$x$') plt.ylabel('$f(x)$') plt.plot(input_points, exact_outputs, label='Analytic') plt.plot(input_points, imperfect_outputs, label='Sampled') plt.legend() # Gradients are a much different story. values_tensor = tf.convert_to_tensor(input_points) with tf.GradientTape() as g: g.watch(values_tensor) exact_outputs = expectation_calculation(my_circuit, operators=pauli_x, symbol_names=['alpha'], symbol_values=values_tensor) analytic_finite_diff_gradients = g.gradient(exact_outputs, values_tensor) with tf.GradientTape() as g: g.watch(values_tensor) imperfect_outputs = sampled_expectation_calculation( my_circuit, operators=pauli_x, repetitions=500, symbol_names=['alpha'], symbol_values=values_tensor) sampled_finite_diff_gradients = g.gradient(imperfect_outputs, values_tensor) plt.title('Gradient Values') plt.xlabel('$x$') plt.ylabel('$f^{\'}(x)$') plt.plot(input_points, analytic_finite_diff_gradients, label='Analytic') plt.plot(input_points, sampled_finite_diff_gradients, label='Sampled') plt.legend() ###Output _____no_output_____ ###Markdown Here you can see that although the finite difference formula is fast to compute the gradients themselves in the analytical case, when it came to the sampling based methods it was far too noisy. More careful techniques must be used to ensure a good gradient can be calculated. Next you will look at a much slower technique that wouldn't be as well suited for analytical expectation gradient calculations, but does perform much better in the real-world sample based case: ###Code # A smarter differentiation scheme. gradient_safe_sampled_expectation = tfq.layers.SampledExpectation( differentiator=tfq.differentiators.ParameterShift()) with tf.GradientTape() as g: g.watch(values_tensor) imperfect_outputs = gradient_safe_sampled_expectation( my_circuit, operators=pauli_x, repetitions=500, symbol_names=['alpha'], symbol_values=values_tensor) sampled_param_shift_gradients = g.gradient(imperfect_outputs, values_tensor) plt.title('Gradient Values') plt.xlabel('$x$') plt.ylabel('$f^{\'}(x)$') plt.plot(input_points, analytic_finite_diff_gradients, label='Analytic') plt.plot(input_points, sampled_param_shift_gradients, label='Sampled') plt.legend() ###Output _____no_output_____ ###Markdown From the above you can see that certain differentiators are best used for particular research scenarios. In general, the slower sample-based methods that are robust to device noise, etc., are great differentiators when testing or implementing algorithms in a more "real world" setting. Faster methods like finite difference are great for analytical calculations and you want higher throughput, but aren't yet concerned with the device viability of your algorithm. 3. Multiple observablesLet's introduce a second observable and see how TensorFlow Quantum supports multiple observables for a single circuit. ###Code pauli_z = cirq.Z(qubit) pauli_z ###Output _____no_output_____ ###Markdown If this observable is used with the same circuit as before, then you have $f_{2}(\alpha) = ⟨Y(\alpha)| Z | Y(\alpha)⟩ = \cos(\pi \alpha)$ and $f_{2}^{'}(\alpha) = -\pi \sin(\pi \alpha)$. Perform a quick check: ###Code test_value = 0. print('Finite difference:', my_grad(pauli_z, test_value)) print('Sin formula: ', -np.pi * np.sin(np.pi * test_value)) ###Output _____no_output_____ ###Markdown It's a match (close enough).Now if you define $g(\alpha) = f_{1}(\alpha) + f_{2}(\alpha)$ then $g'(\alpha) = f_{1}^{'}(\alpha) + f^{'}_{2}(\alpha)$. Defining more than one observable in TensorFlow Quantum to use along with a circuit is equivalent to adding on more terms to $g$.This means that the gradient of a particular symbol in a circuit is equal to the sum of the gradients with regards to each observable for that symbol applied to that circuit. This is compatible with TensorFlow gradient taking and backpropagation (where you give the sum of the gradients over all observables as the gradient for a particular symbol). ###Code sum_of_outputs = tfq.layers.Expectation( differentiator=tfq.differentiators.ForwardDifference(grid_spacing=0.01)) sum_of_outputs(my_circuit, operators=[pauli_x, pauli_z], symbol_names=['alpha'], symbol_values=[[test_value]]) ###Output _____no_output_____ ###Markdown Here you see the first entry is the expectation w.r.t Pauli X, and the second is the expectation w.r.t Pauli Z. Now when you take the gradient: ###Code test_value_tensor = tf.convert_to_tensor([[test_value]]) with tf.GradientTape() as g: g.watch(test_value_tensor) outputs = sum_of_outputs(my_circuit, operators=[pauli_x, pauli_z], symbol_names=['alpha'], symbol_values=test_value_tensor) sum_of_gradients = g.gradient(outputs, test_value_tensor) print(my_grad(pauli_x, test_value) + my_grad(pauli_z, test_value)) print(sum_of_gradients.numpy()) ###Output _____no_output_____ ###Markdown Here you have verified that the sum of the gradients for each observable is indeed the gradient of $\alpha$. This behavior is supported by all TensorFlow Quantum differentiators and plays a crucial role in the compatibility with the rest of TensorFlow. 4. Advanced usageHere you will learn how to define your own custom differentiation routines for quantum circuits.All differentiators that exist inside of TensorFlow Quantum subclass `tfq.differentiators.Differentiator`. A differentiator must implement `differentiate_analytic` and `differentiate_sampled`.The following uses TensorFlow Quantum constructs to implement the closed form solution from the first part of this tutorial. ###Code class MyDifferentiator(tfq.differentiators.Differentiator): """A Toy differentiator for <Y^alpha | X |Y^alpha>.""" def __init__(self): pass @tf.function def _compute_gradient(self, symbol_values): """Compute the gradient based on symbol_values.""" # f(x) = sin(pi * x) # f'(x) = pi * cos(pi * x) return tf.cast(tf.cos(symbol_values * np.pi) * np.pi, tf.float32) @tf.function def differentiate_analytic(self, programs, symbol_names, symbol_values, pauli_sums, forward_pass_vals, grad): """Specify how to differentiate a circuit with analytical expectation. This is called at graph runtime by TensorFlow. `differentiate_analytic` should calculate the gradient of a batch of circuits and return it formatted as indicated below. See `tfq.differentiators.ForwardDifference` for an example. Args: programs: `tf.Tensor` of strings with shape [batch_size] containing the string representations of the circuits to be executed. symbol_names: `tf.Tensor` of strings with shape [n_params], which is used to specify the order in which the values in `symbol_values` should be placed inside of the circuits in `programs`. symbol_values: `tf.Tensor` of real numbers with shape [batch_size, n_params] specifying parameter values to resolve into the circuits specified by programs, following the ordering dictated by `symbol_names`. pauli_sums: `tf.Tensor` of strings with shape [batch_size, n_ops] containing the string representation of the operators that will be used on all of the circuits in the expectation calculations. forward_pass_vals: `tf.Tensor` of real numbers with shape [batch_size, n_ops] containing the output of the forward pass through the op you are differentiating. grad: `tf.Tensor` of real numbers with shape [batch_size, n_ops] representing the gradient backpropagated to the output of the op you are differentiating through. Returns: A `tf.Tensor` with the same shape as `symbol_values` representing the gradient backpropagated to the `symbol_values` input of the op you are differentiating through. """ # Computing gradients just based off of symbol_values. return self._compute_gradient(symbol_values) * grad @tf.function def differentiate_sampled(self, programs, symbol_names, symbol_values, pauli_sums, num_samples, forward_pass_vals, grad): """Specify how to differentiate a circuit with sampled expectation. This is called at graph runtime by TensorFlow. `differentiate_sampled` should calculate the gradient of a batch of circuits and return it formatted as indicated below. See `tfq.differentiators.ForwardDifference` for an example. Args: programs: `tf.Tensor` of strings with shape [batch_size] containing the string representations of the circuits to be executed. symbol_names: `tf.Tensor` of strings with shape [n_params], which is used to specify the order in which the values in `symbol_values` should be placed inside of the circuits in `programs`. symbol_values: `tf.Tensor` of real numbers with shape [batch_size, n_params] specifying parameter values to resolve into the circuits specified by programs, following the ordering dictated by `symbol_names`. pauli_sums: `tf.Tensor` of strings with shape [batch_size, n_ops] containing the string representation of the operators that will be used on all of the circuits in the expectation calculations. num_samples: `tf.Tensor` of positive integers representing the number of samples per term in each term of pauli_sums used during the forward pass. forward_pass_vals: `tf.Tensor` of real numbers with shape [batch_size, n_ops] containing the output of the forward pass through the op you are differentiating. grad: `tf.Tensor` of real numbers with shape [batch_size, n_ops] representing the gradient backpropagated to the output of the op you are differentiating through. Returns: A `tf.Tensor` with the same shape as `symbol_values` representing the gradient backpropagated to the `symbol_values` input of the op you are differentiating through. """ return self._compute_gradient(symbol_values) * grad ###Output _____no_output_____ ###Markdown This new differentiator can now be used with existing `tfq.layer` objects: ###Code custom_dif = MyDifferentiator() custom_grad_expectation = tfq.layers.Expectation(differentiator=custom_dif) # Now let's get the gradients with finite diff. with tf.GradientTape() as g: g.watch(values_tensor) exact_outputs = expectation_calculation(my_circuit, operators=[pauli_x], symbol_names=['alpha'], symbol_values=values_tensor) analytic_finite_diff_gradients = g.gradient(exact_outputs, values_tensor) # Now let's get the gradients with custom diff. with tf.GradientTape() as g: g.watch(values_tensor) my_outputs = custom_grad_expectation(my_circuit, operators=[pauli_x], symbol_names=['alpha'], symbol_values=values_tensor) my_gradients = g.gradient(my_outputs, values_tensor) plt.subplot(1, 2, 1) plt.title('Exact Gradient') plt.plot(input_points, analytic_finite_diff_gradients.numpy()) plt.xlabel('x') plt.ylabel('f(x)') plt.subplot(1, 2, 2) plt.title('My Gradient') plt.plot(input_points, my_gradients.numpy()) plt.xlabel('x') ###Output _____no_output_____ ###Markdown This new differentiator can now be used to generate differentiable ops.Key Point: A differentiator that has been previously attached to an op must be refreshed before attaching to a new op, because a differentiator may only be attached to one op at a time. ###Code # Create a noisy sample based expectation op. expectation_sampled = tfq.get_sampled_expectation_op( cirq.DensityMatrixSimulator(noise=cirq.depolarize(0.01))) # Make it differentiable with your differentiator: # Remember to refresh the differentiator before attaching the new op custom_dif.refresh() differentiable_op = custom_dif.generate_differentiable_op( sampled_op=expectation_sampled) # Prep op inputs. circuit_tensor = tfq.convert_to_tensor([my_circuit]) op_tensor = tfq.convert_to_tensor([[pauli_x]]) single_value = tf.convert_to_tensor([[my_alpha]]) num_samples_tensor = tf.convert_to_tensor([[1000]]) with tf.GradientTape() as g: g.watch(single_value) forward_output = differentiable_op(circuit_tensor, ['alpha'], single_value, op_tensor, num_samples_tensor) my_gradients = g.gradient(forward_output, single_value) print('---TFQ---') print('Foward: ', forward_output.numpy()) print('Gradient:', my_gradients.numpy()) print('---Original---') print('Forward: ', my_expectation(pauli_x, my_alpha)) print('Gradient:', my_grad(pauli_x, my_alpha)) ###Output _____no_output_____ ###Markdown Copyright 2020 The TensorFlow Authors. ###Code #@title Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ###Output _____no_output_____ ###Markdown Calculate gradients View on TensorFlow.org Run in Google Colab View source on GitHub Download notebook This tutorial explores gradient calculation algorithms for the expectation values of quantum circuits.Calculating the gradient of the expectation value of a certain observable in a quantum circuit is an involved process. Expectation values of observables do not have the luxury of having analytic gradient formulas that are always easy to write down—unlike traditional machine learning transformations such as matrix multiplication or vector addition that have analytic gradient formulas which are easy to write down. As a result, there are different quantum gradient calculation methods that come in handy for different scenarios. This tutorial compares and contrasts two different differentiation schemes. Setup ###Code !pip install tensorflow==2.3.1 ###Output _____no_output_____ ###Markdown Install TensorFlow Quantum: ###Code !pip install tensorflow-quantum ###Output _____no_output_____ ###Markdown Now import TensorFlow and the module dependencies: ###Code import tensorflow as tf import tensorflow_quantum as tfq import cirq import sympy import numpy as np # visualization tools %matplotlib inline import matplotlib.pyplot as plt from cirq.contrib.svg import SVGCircuit ###Output _____no_output_____ ###Markdown 1. PreliminaryLet's make the notion of gradient calculation for quantum circuits a little more concrete. Suppose you have a parameterized circuit like this one: ###Code qubit = cirq.GridQubit(0, 0) my_circuit = cirq.Circuit(cirq.Y(qubit)**sympy.Symbol('alpha')) SVGCircuit(my_circuit) ###Output _____no_output_____ ###Markdown Along with an observable: ###Code pauli_x = cirq.X(qubit) pauli_x ###Output _____no_output_____ ###Markdown Looking at this operator you know that $⟨Y(\alpha)| X | Y(\alpha)⟩ = \sin(\pi \alpha)$ ###Code def my_expectation(op, alpha): """Compute ⟨Y(alpha)| `op` | Y(alpha)⟩""" params = {'alpha': alpha} sim = cirq.Simulator() final_state_vector = sim.simulate(my_circuit, params).final_state_vector return op.expectation_from_state_vector(final_state_vector, {qubit: 0}).real my_alpha = 0.3 print("Expectation=", my_expectation(pauli_x, my_alpha)) print("Sin Formula=", np.sin(np.pi * my_alpha)) ###Output _____no_output_____ ###Markdown and if you define $f_{1}(\alpha) = ⟨Y(\alpha)| X | Y(\alpha)⟩$ then $f_{1}^{'}(\alpha) = \pi \cos(\pi \alpha)$. Let's check this: ###Code def my_grad(obs, alpha, eps=0.01): grad = 0 f_x = my_expectation(obs, alpha) f_x_prime = my_expectation(obs, alpha + eps) return ((f_x_prime - f_x) / eps).real print('Finite difference:', my_grad(pauli_x, my_alpha)) print('Cosine formula: ', np.pi * np.cos(np.pi * my_alpha)) ###Output _____no_output_____ ###Markdown 2. The need for a differentiatorWith larger circuits, you won't always be so lucky to have a formula that precisely calculates the gradients of a given quantum circuit. In the event that a simple formula isn't enough to calculate the gradient, the `tfq.differentiators.Differentiator` class allows you to define algorithms for computing the gradients of your circuits. For instance you can recreate the above example in TensorFlow Quantum (TFQ) with: ###Code expectation_calculation = tfq.layers.Expectation( differentiator=tfq.differentiators.ForwardDifference(grid_spacing=0.01)) expectation_calculation(my_circuit, operators=pauli_x, symbol_names=['alpha'], symbol_values=[[my_alpha]]) ###Output _____no_output_____ ###Markdown However, if you switch to estimating expectation based on sampling (what would happen on a true device) the values can change a little bit. This means you now have an imperfect estimate: ###Code sampled_expectation_calculation = tfq.layers.SampledExpectation( differentiator=tfq.differentiators.ForwardDifference(grid_spacing=0.01)) sampled_expectation_calculation(my_circuit, operators=pauli_x, repetitions=500, symbol_names=['alpha'], symbol_values=[[my_alpha]]) ###Output _____no_output_____ ###Markdown This can quickly compound into a serious accuracy problem when it comes to gradients: ###Code # Make input_points = [batch_size, 1] array. input_points = np.linspace(0, 5, 200)[:, np.newaxis].astype(np.float32) exact_outputs = expectation_calculation(my_circuit, operators=pauli_x, symbol_names=['alpha'], symbol_values=input_points) imperfect_outputs = sampled_expectation_calculation(my_circuit, operators=pauli_x, repetitions=500, symbol_names=['alpha'], symbol_values=input_points) plt.title('Forward Pass Values') plt.xlabel('$x$') plt.ylabel('$f(x)$') plt.plot(input_points, exact_outputs, label='Analytic') plt.plot(input_points, imperfect_outputs, label='Sampled') plt.legend() # Gradients are a much different story. values_tensor = tf.convert_to_tensor(input_points) with tf.GradientTape() as g: g.watch(values_tensor) exact_outputs = expectation_calculation(my_circuit, operators=pauli_x, symbol_names=['alpha'], symbol_values=values_tensor) analytic_finite_diff_gradients = g.gradient(exact_outputs, values_tensor) with tf.GradientTape() as g: g.watch(values_tensor) imperfect_outputs = sampled_expectation_calculation( my_circuit, operators=pauli_x, repetitions=500, symbol_names=['alpha'], symbol_values=values_tensor) sampled_finite_diff_gradients = g.gradient(imperfect_outputs, values_tensor) plt.title('Gradient Values') plt.xlabel('$x$') plt.ylabel('$f^{\'}(x)$') plt.plot(input_points, analytic_finite_diff_gradients, label='Analytic') plt.plot(input_points, sampled_finite_diff_gradients, label='Sampled') plt.legend() ###Output _____no_output_____ ###Markdown Here you can see that although the finite difference formula is fast to compute the gradients themselves in the analytical case, when it came to the sampling based methods it was far too noisy. More careful techniques must be used to ensure a good gradient can be calculated. Next you will look at a much slower technique that wouldn't be as well suited for analytical expectation gradient calculations, but does perform much better in the real-world sample based case: ###Code # A smarter differentiation scheme. gradient_safe_sampled_expectation = tfq.layers.SampledExpectation( differentiator=tfq.differentiators.ParameterShift()) with tf.GradientTape() as g: g.watch(values_tensor) imperfect_outputs = gradient_safe_sampled_expectation( my_circuit, operators=pauli_x, repetitions=500, symbol_names=['alpha'], symbol_values=values_tensor) sampled_param_shift_gradients = g.gradient(imperfect_outputs, values_tensor) plt.title('Gradient Values') plt.xlabel('$x$') plt.ylabel('$f^{\'}(x)$') plt.plot(input_points, analytic_finite_diff_gradients, label='Analytic') plt.plot(input_points, sampled_param_shift_gradients, label='Sampled') plt.legend() ###Output _____no_output_____ ###Markdown From the above you can see that certain differentiators are best used for particular research scenarios. In general, the slower sample-based methods that are robust to device noise, etc., are great differentiators when testing or implementing algorithms in a more "real world" setting. Faster methods like finite difference are great for analytical calculations and you want higher throughput, but aren't yet concerned with the device viability of your algorithm. 3. Multiple observablesLet's introduce a second observable and see how TensorFlow Quantum supports multiple observables for a single circuit. ###Code pauli_z = cirq.Z(qubit) pauli_z ###Output _____no_output_____ ###Markdown If this observable is used with the same circuit as before, then you have $f_{2}(\alpha) = ⟨Y(\alpha)| Z | Y(\alpha)⟩ = \cos(\pi \alpha)$ and $f_{2}^{'}(\alpha) = -\pi \sin(\pi \alpha)$. Perform a quick check: ###Code test_value = 0. print('Finite difference:', my_grad(pauli_z, test_value)) print('Sin formula: ', -np.pi * np.sin(np.pi * test_value)) ###Output _____no_output_____ ###Markdown It's a match (close enough).Now if you define $g(\alpha) = f_{1}(\alpha) + f_{2}(\alpha)$ then $g'(\alpha) = f_{1}^{'}(\alpha) + f^{'}_{2}(\alpha)$. Defining more than one observable in TensorFlow Quantum to use along with a circuit is equivalent to adding on more terms to $g$.This means that the gradient of a particular symbol in a circuit is equal to the sum of the gradients with regards to each observable for that symbol applied to that circuit. This is compatible with TensorFlow gradient taking and backpropagation (where you give the sum of the gradients over all observables as the gradient for a particular symbol). ###Code sum_of_outputs = tfq.layers.Expectation( differentiator=tfq.differentiators.ForwardDifference(grid_spacing=0.01)) sum_of_outputs(my_circuit, operators=[pauli_x, pauli_z], symbol_names=['alpha'], symbol_values=[[test_value]]) ###Output _____no_output_____ ###Markdown Here you see the first entry is the expectation w.r.t Pauli X, and the second is the expectation w.r.t Pauli Z. Now when you take the gradient: ###Code test_value_tensor = tf.convert_to_tensor([[test_value]]) with tf.GradientTape() as g: g.watch(test_value_tensor) outputs = sum_of_outputs(my_circuit, operators=[pauli_x, pauli_z], symbol_names=['alpha'], symbol_values=test_value_tensor) sum_of_gradients = g.gradient(outputs, test_value_tensor) print(my_grad(pauli_x, test_value) + my_grad(pauli_z, test_value)) print(sum_of_gradients.numpy()) ###Output _____no_output_____ ###Markdown Here you have verified that the sum of the gradients for each observable is indeed the gradient of $\alpha$. This behavior is supported by all TensorFlow Quantum differentiators and plays a crucial role in the compatibility with the rest of TensorFlow. 4. Advanced usageHere you will learn how to define your own custom differentiation routines for quantum circuits.All differentiators that exist inside of TensorFlow Quantum subclass `tfq.differentiators.Differentiator`. A differentiator must implement `differentiate_analytic` and `differentiate_sampled`.The following uses TensorFlow Quantum constructs to implement the closed form solution from the first part of this tutorial. ###Code class MyDifferentiator(tfq.differentiators.Differentiator): """A Toy differentiator for <Y^alpha | X |Y^alpha>.""" def __init__(self): pass @tf.function def get_gradient_circuits(self, programs, symbol_names, symbol_values): """Return circuits to compute gradients for given forward pass circuits. When implementing a gradient, it is often useful to describe the intermediate computations in terms of transformed versions of the input circuits. The details are beyond the scope of this tutorial, but interested users should check out the differentiator implementations in the TFQ library for examples. """ raise NotImplementedError( "Gradient circuits are not implemented in this tutorial.") @tf.function def _compute_gradient(self, symbol_values): """Compute the gradient based on symbol_values.""" # f(x) = sin(pi * x) # f'(x) = pi * cos(pi * x) return tf.cast(tf.cos(symbol_values * np.pi) * np.pi, tf.float32) @tf.function def differentiate_analytic(self, programs, symbol_names, symbol_values, pauli_sums, forward_pass_vals, grad): """Specify how to differentiate a circuit with analytical expectation. This is called at graph runtime by TensorFlow. `differentiate_analytic` should calculate the gradient of a batch of circuits and return it formatted as indicated below. See `tfq.differentiators.ForwardDifference` for an example. Args: programs: `tf.Tensor` of strings with shape [batch_size] containing the string representations of the circuits to be executed. symbol_names: `tf.Tensor` of strings with shape [n_params], which is used to specify the order in which the values in `symbol_values` should be placed inside of the circuits in `programs`. symbol_values: `tf.Tensor` of real numbers with shape [batch_size, n_params] specifying parameter values to resolve into the circuits specified by programs, following the ordering dictated by `symbol_names`. pauli_sums: `tf.Tensor` of strings with shape [batch_size, n_ops] containing the string representation of the operators that will be used on all of the circuits in the expectation calculations. forward_pass_vals: `tf.Tensor` of real numbers with shape [batch_size, n_ops] containing the output of the forward pass through the op you are differentiating. grad: `tf.Tensor` of real numbers with shape [batch_size, n_ops] representing the gradient backpropagated to the output of the op you are differentiating through. Returns: A `tf.Tensor` with the same shape as `symbol_values` representing the gradient backpropagated to the `symbol_values` input of the op you are differentiating through. """ # Computing gradients just based off of symbol_values. return self._compute_gradient(symbol_values) * grad @tf.function def differentiate_sampled(self, programs, symbol_names, symbol_values, pauli_sums, num_samples, forward_pass_vals, grad): """Specify how to differentiate a circuit with sampled expectation. This is called at graph runtime by TensorFlow. `differentiate_sampled` should calculate the gradient of a batch of circuits and return it formatted as indicated below. See `tfq.differentiators.ForwardDifference` for an example. Args: programs: `tf.Tensor` of strings with shape [batch_size] containing the string representations of the circuits to be executed. symbol_names: `tf.Tensor` of strings with shape [n_params], which is used to specify the order in which the values in `symbol_values` should be placed inside of the circuits in `programs`. symbol_values: `tf.Tensor` of real numbers with shape [batch_size, n_params] specifying parameter values to resolve into the circuits specified by programs, following the ordering dictated by `symbol_names`. pauli_sums: `tf.Tensor` of strings with shape [batch_size, n_ops] containing the string representation of the operators that will be used on all of the circuits in the expectation calculations. num_samples: `tf.Tensor` of positive integers representing the number of samples per term in each term of pauli_sums used during the forward pass. forward_pass_vals: `tf.Tensor` of real numbers with shape [batch_size, n_ops] containing the output of the forward pass through the op you are differentiating. grad: `tf.Tensor` of real numbers with shape [batch_size, n_ops] representing the gradient backpropagated to the output of the op you are differentiating through. Returns: A `tf.Tensor` with the same shape as `symbol_values` representing the gradient backpropagated to the `symbol_values` input of the op you are differentiating through. """ return self._compute_gradient(symbol_values) * grad ###Output _____no_output_____ ###Markdown This new differentiator can now be used with existing `tfq.layer` objects: ###Code custom_dif = MyDifferentiator() custom_grad_expectation = tfq.layers.Expectation(differentiator=custom_dif) # Now let's get the gradients with finite diff. with tf.GradientTape() as g: g.watch(values_tensor) exact_outputs = expectation_calculation(my_circuit, operators=[pauli_x], symbol_names=['alpha'], symbol_values=values_tensor) analytic_finite_diff_gradients = g.gradient(exact_outputs, values_tensor) # Now let's get the gradients with custom diff. with tf.GradientTape() as g: g.watch(values_tensor) my_outputs = custom_grad_expectation(my_circuit, operators=[pauli_x], symbol_names=['alpha'], symbol_values=values_tensor) my_gradients = g.gradient(my_outputs, values_tensor) plt.subplot(1, 2, 1) plt.title('Exact Gradient') plt.plot(input_points, analytic_finite_diff_gradients.numpy()) plt.xlabel('x') plt.ylabel('f(x)') plt.subplot(1, 2, 2) plt.title('My Gradient') plt.plot(input_points, my_gradients.numpy()) plt.xlabel('x') ###Output _____no_output_____ ###Markdown This new differentiator can now be used to generate differentiable ops.Key Point: A differentiator that has been previously attached to an op must be refreshed before attaching to a new op, because a differentiator may only be attached to one op at a time. ###Code # Create a noisy sample based expectation op. expectation_sampled = tfq.get_sampled_expectation_op( cirq.DensityMatrixSimulator(noise=cirq.depolarize(0.01))) # Make it differentiable with your differentiator: # Remember to refresh the differentiator before attaching the new op custom_dif.refresh() differentiable_op = custom_dif.generate_differentiable_op( sampled_op=expectation_sampled) # Prep op inputs. circuit_tensor = tfq.convert_to_tensor([my_circuit]) op_tensor = tfq.convert_to_tensor([[pauli_x]]) single_value = tf.convert_to_tensor([[my_alpha]]) num_samples_tensor = tf.convert_to_tensor([[1000]]) with tf.GradientTape() as g: g.watch(single_value) forward_output = differentiable_op(circuit_tensor, ['alpha'], single_value, op_tensor, num_samples_tensor) my_gradients = g.gradient(forward_output, single_value) print('---TFQ---') print('Foward: ', forward_output.numpy()) print('Gradient:', my_gradients.numpy()) print('---Original---') print('Forward: ', my_expectation(pauli_x, my_alpha)) print('Gradient:', my_grad(pauli_x, my_alpha)) ###Output _____no_output_____ ###Markdown Copyright 2020 The TensorFlow Authors. ###Code #@title Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ###Output _____no_output_____ ###Markdown Calculate gradients View on TensorFlow.org Run in Google Colab View source on GitHub Download notebook This tutorial explores gradient calculation algorithms for the expectation values of quantum circuits.Calculating the gradient of the expectation value of a certain observable in a quantum circuit is an involved process. Expectation values of observables do not have the luxury of having analytic gradient formulas that are always easy to write down—unlike traditional machine learning transformations such as matrix multiplication or vector addition that have analytic gradient formulas which are easy to write down. As a result, there are different quantum gradient calculation methods that come in handy for different scenarios. This tutorial compares and contrasts two different differentiation schemes. Setup ###Code try: %tensorflow_version 2.x except Exception: pass ###Output _____no_output_____ ###Markdown Install TensorFlow Quantum: ###Code !pip install tensorflow-quantum ###Output _____no_output_____ ###Markdown Now import TensorFlow and the module dependencies: ###Code import tensorflow as tf import tensorflow_quantum as tfq import cirq import sympy import numpy as np # visualization tools %matplotlib inline import matplotlib.pyplot as plt from cirq.contrib.svg import SVGCircuit ###Output _____no_output_____ ###Markdown 1. PreliminaryLet's make the notion of gradient calculation for quantum circuits a little more concrete. Suppose you have a parameterized circuit like this one: ###Code qubit = cirq.GridQubit(0, 0) my_circuit = cirq.Circuit(cirq.Y(qubit)**sympy.Symbol('alpha')) SVGCircuit(my_circuit) ###Output _____no_output_____ ###Markdown Along with an observable: ###Code pauli_x = cirq.X(qubit) pauli_x ###Output _____no_output_____ ###Markdown Looking at this operator you know that $⟨Y(\alpha)| X | Y(\alpha)⟩ = \sin(\pi \alpha)$ ###Code def my_expectation(op, alpha): """Compute ⟨Y(alpha)| `op` | Y(alpha)⟩""" params = {'alpha': alpha} sim = cirq.Simulator() final_state = sim.simulate(my_circuit, params).final_state return op.expectation_from_wavefunction(final_state, {qubit: 0}).real my_alpha = 0.3 print("Expectation=", my_expectation(pauli_x, my_alpha)) print("Sin Formula=", np.sin(np.pi * my_alpha)) ###Output _____no_output_____ ###Markdown and if you define $f_{1}(\alpha) = ⟨Y(\alpha)| X | Y(\alpha)⟩$ then $f_{1}^{'}(\alpha) = \pi \cos(\pi \alpha)$. Let's check this: ###Code def my_grad(obs, alpha, eps=0.01): grad = 0 f_x = my_expectation(obs, alpha) f_x_prime = my_expectation(obs, alpha + eps) return ((f_x_prime - f_x) / eps).real print('Finite difference:', my_grad(pauli_x, my_alpha)) print('Cosine formula: ', np.pi * np.cos(np.pi * my_alpha)) ###Output _____no_output_____ ###Markdown 2. The need for a differentiatorWith larger circuits, you won't always be so lucky to have a formula that precisely calculates the gradients of a given quantum circuit. In the event that a simple formula isn't enough to calculate the gradient, the `tfq.differentiators.Differentiator` class allows you to define algorithms for computing the gradients of your circuits. For instance you can recreate the above example in TensorFlow Quantum (TFQ) with: ###Code expectation_calculation = tfq.layers.Expectation( differentiator=tfq.differentiators.ForwardDifference(grid_spacing=0.01)) expectation_calculation(my_circuit, operators=pauli_x, symbol_names=['alpha'], symbol_values=[[my_alpha]]) ###Output _____no_output_____ ###Markdown However, if you switch to estimating expectation based on sampling (what would happen on a true device) the values can change a little bit. This means you now have an imperfect estimate: ###Code sampled_expectation_calculation = tfq.layers.SampledExpectation( differentiator=tfq.differentiators.ForwardDifference(grid_spacing=0.01)) sampled_expectation_calculation(my_circuit, operators=pauli_x, repetitions=500, symbol_names=['alpha'], symbol_values=[[my_alpha]]) ###Output _____no_output_____ ###Markdown This can quickly compound into a serious accuracy problem when it comes to gradients: ###Code # Make input_points = [batch_size, 1] array. input_points = np.linspace(0, 5, 200)[:, np.newaxis].astype(np.float32) exact_outputs = expectation_calculation(my_circuit, operators=pauli_x, symbol_names=['alpha'], symbol_values=input_points) imperfect_outputs = sampled_expectation_calculation(my_circuit, operators=pauli_x, repetitions=500, symbol_names=['alpha'], symbol_values=input_points) plt.title('Forward Pass Values') plt.xlabel('$x$') plt.ylabel('$f(x)$') plt.plot(input_points, exact_outputs, label='Analytic') plt.plot(input_points, imperfect_outputs, label='Sampled') plt.legend() # Gradients are a much different story. values_tensor = tf.convert_to_tensor(input_points) with tf.GradientTape() as g: g.watch(values_tensor) exact_outputs = expectation_calculation(my_circuit, operators=pauli_x, symbol_names=['alpha'], symbol_values=values_tensor) analytic_finite_diff_gradients = g.gradient(exact_outputs, values_tensor) with tf.GradientTape() as g: g.watch(values_tensor) imperfect_outputs = sampled_expectation_calculation( my_circuit, operators=pauli_x, repetitions=500, symbol_names=['alpha'], symbol_values=values_tensor) sampled_finite_diff_gradients = g.gradient(imperfect_outputs, values_tensor) plt.title('Gradient Values') plt.xlabel('$x$') plt.ylabel('$f^{\'}(x)$') plt.plot(input_points, analytic_finite_diff_gradients, label='Analytic') plt.plot(input_points, sampled_finite_diff_gradients, label='Sampled') plt.legend() ###Output _____no_output_____ ###Markdown Here you can see that although the finite difference formula is fast to compute the gradients themselves in the analytical case, when it came to the sampling based methods it was far too noisy. More careful techniques must be used to ensure a good gradient can be calculated. Next you will look at a much slower technique that wouldn't be as well suited for analytical expectation gradient calculations, but does perform much better in the real-world sample based case: ###Code # A smarter differentiation scheme. gradient_safe_sampled_expectation = tfq.layers.SampledExpectation( differentiator=tfq.differentiators.ParameterShift()) with tf.GradientTape() as g: g.watch(values_tensor) imperfect_outputs = gradient_safe_sampled_expectation( my_circuit, operators=pauli_x, repetitions=500, symbol_names=['alpha'], symbol_values=values_tensor) sampled_param_shift_gradients = g.gradient(imperfect_outputs, values_tensor) plt.title('Gradient Values') plt.xlabel('$x$') plt.ylabel('$f^{\'}(x)$') plt.plot(input_points, analytic_finite_diff_gradients, label='Analytic') plt.plot(input_points, sampled_param_shift_gradients, label='Sampled') plt.legend() ###Output _____no_output_____ ###Markdown From the above you can see that certain differentiators are best used for particular research scenarios. In general, the slower sample-based methods that are robust to device noise, etc., are great differentiators when testing or implementing algorithms in a more "real world" setting. Faster methods like finite difference are great for analytical calculations and you want higher throughput, but aren't yet concerned with the device viability of your algorithm. 3. Multiple observablesLet's introduce a second observable and see how TensorFlow Quantum supports multiple observables for a single circuit. ###Code pauli_z = cirq.Z(qubit) pauli_z ###Output _____no_output_____ ###Markdown If this observable is used with the same circuit as before, then you have $f_{2}(\alpha) = ⟨Y(\alpha)| Z | Y(\alpha)⟩ = \cos(\pi \alpha)$ and $f_{2}^{'}(\alpha) = -\pi \sin(\pi \alpha)$. Perform a quick check: ###Code test_value = 0. print('Finite difference:', my_grad(pauli_z, test_value)) print('Sin formula: ', -np.pi * np.sin(np.pi * test_value)) ###Output _____no_output_____ ###Markdown It's a match (close enough).Now if you define $g(\alpha) = f_{1}(\alpha) + f_{2}(\alpha)$ then $g'(\alpha) = f_{1}^{'}(\alpha) + f^{'}_{2}(\alpha)$. Defining more than one observable in TensorFlow Quantum to use along with a circuit is equivalent to adding on more terms to $g$.This means that the gradient of a particular symbol in a circuit is equal to the sum of the gradients with regards to each observable for that symbol applied to that circuit. This is compatible with TensorFlow gradient taking and backpropagation (where you give the sum of the gradients over all observables as the gradient for a particular symbol). ###Code sum_of_outputs = tfq.layers.Expectation( differentiator=tfq.differentiators.ForwardDifference(grid_spacing=0.01)) sum_of_outputs(my_circuit, operators=[pauli_x, pauli_z], symbol_names=['alpha'], symbol_values=[[test_value]]) ###Output _____no_output_____ ###Markdown Here you see the first entry is the expectation w.r.t Pauli X, and the second is the expectation w.r.t Pauli Z. Now when you take the gradient: ###Code test_value_tensor = tf.convert_to_tensor([[test_value]]) with tf.GradientTape() as g: g.watch(test_value_tensor) outputs = sum_of_outputs(my_circuit, operators=[pauli_x, pauli_z], symbol_names=['alpha'], symbol_values=test_value_tensor) sum_of_gradients = g.gradient(outputs, test_value_tensor) print(my_grad(pauli_x, test_value) + my_grad(pauli_z, test_value)) print(sum_of_gradients.numpy()) ###Output _____no_output_____ ###Markdown Here you have verified that the sum of the gradients for each observable is indeed the gradient of $\alpha$. This behavior is supported by all TensorFlow Quantum differentiators and plays a crucial role in the compatibility with the rest of TensorFlow. 4. Advanced usageHere you will learn how to define your own custom differentiation routines for quantum circuits.All differentiators that exist inside of TensorFlow Quantum subclass `tfq.differentiators.Differentiator`. A differentiator must implement `differentiate_analytic` and `differentiate_sampled`.The following uses TensorFlow Quantum constructs to implement the closed form solution from the first part of this tutorial. ###Code class MyDifferentiator(tfq.differentiators.Differentiator): """A Toy differentiator for <Y^alpha | X |Y^alpha>.""" def __init__(self): pass @tf.function def _compute_gradient(self, symbol_values): """Compute the gradient based on symbol_values.""" # f(x) = sin(pi * x) # f'(x) = pi * cos(pi * x) return tf.cast(tf.cos(symbol_values * np.pi) * np.pi, tf.float32) @tf.function def differentiate_analytic(self, programs, symbol_names, symbol_values, pauli_sums, forward_pass_vals, grad): """Specify how to differentiate a circuit with analytical expectation. This is called at graph runtime by TensorFlow. `differentiate_analytic` should calculate the gradient of a batch of circuits and return it formatted as indicated below. See `tfq.differentiators.ForwardDifference` for an example. Args: programs: `tf.Tensor` of strings with shape [batch_size] containing the string representations of the circuits to be executed. symbol_names: `tf.Tensor` of strings with shape [n_params], which is used to specify the order in which the values in `symbol_values` should be placed inside of the circuits in `programs`. symbol_values: `tf.Tensor` of real numbers with shape [batch_size, n_params] specifying parameter values to resolve into the circuits specified by programs, following the ordering dictated by `symbol_names`. pauli_sums: `tf.Tensor` of strings with shape [batch_size, n_ops] containing the string representation of the operators that will be used on all of the circuits in the expectation calculations. forward_pass_vals: `tf.Tensor` of real numbers with shape [batch_size, n_ops] containing the output of the forward pass through the op you are differentiating. grad: `tf.Tensor` of real numbers with shape [batch_size, n_ops] representing the gradient backpropagated to the output of the op you are differentiating through. Returns: A `tf.Tensor` with the same shape as `symbol_values` representing the gradient backpropagated to the `symbol_values` input of the op you are differentiating through. """ # Computing gradients just based off of symbol_values. return self._compute_gradient(symbol_values) * grad @tf.function def differentiate_sampled(self, programs, symbol_names, symbol_values, pauli_sums, num_samples, forward_pass_vals, grad): """Specify how to differentiate a circuit with sampled expectation. This is called at graph runtime by TensorFlow. `differentiate_sampled` should calculate the gradient of a batch of circuits and return it formatted as indicated below. See `tfq.differentiators.ForwardDifference` for an example. Args: programs: `tf.Tensor` of strings with shape [batch_size] containing the string representations of the circuits to be executed. symbol_names: `tf.Tensor` of strings with shape [n_params], which is used to specify the order in which the values in `symbol_values` should be placed inside of the circuits in `programs`. symbol_values: `tf.Tensor` of real numbers with shape [batch_size, n_params] specifying parameter values to resolve into the circuits specified by programs, following the ordering dictated by `symbol_names`. pauli_sums: `tf.Tensor` of strings with shape [batch_size, n_ops] containing the string representation of the operators that will be used on all of the circuits in the expectation calculations. num_samples: `tf.Tensor` of positive integers representing the number of samples per term in each term of pauli_sums used during the forward pass. forward_pass_vals: `tf.Tensor` of real numbers with shape [batch_size, n_ops] containing the output of the forward pass through the op you are differentiating. grad: `tf.Tensor` of real numbers with shape [batch_size, n_ops] representing the gradient backpropagated to the output of the op you are differentiating through. Returns: A `tf.Tensor` with the same shape as `symbol_values` representing the gradient backpropagated to the `symbol_values` input of the op you are differentiating through. """ return self._compute_gradient(symbol_values) * grad ###Output _____no_output_____ ###Markdown This new differentiator can now be used with existing `tfq.layer` objects: ###Code custom_dif = MyDifferentiator() custom_grad_expectation = tfq.layers.Expectation(differentiator=custom_dif) # Now let's get the gradients with finite diff. with tf.GradientTape() as g: g.watch(values_tensor) exact_outputs = expectation_calculation(my_circuit, operators=[pauli_x], symbol_names=['alpha'], symbol_values=values_tensor) analytic_finite_diff_gradients = g.gradient(exact_outputs, values_tensor) # Now let's get the gradients with custom diff. with tf.GradientTape() as g: g.watch(values_tensor) my_outputs = custom_grad_expectation(my_circuit, operators=[pauli_x], symbol_names=['alpha'], symbol_values=values_tensor) my_gradients = g.gradient(my_outputs, values_tensor) plt.subplot(1, 2, 1) plt.title('Exact Gradient') plt.plot(input_points, analytic_finite_diff_gradients.numpy()) plt.xlabel('x') plt.ylabel('f(x)') plt.subplot(1, 2, 2) plt.title('My Gradient') plt.plot(input_points, my_gradients.numpy()) plt.xlabel('x') ###Output _____no_output_____ ###Markdown This new differentiator can now be used to generate differentiable ops.Key Point: A differentiator that has been previously attached to an op must be refreshed before attaching to a new op, because a differentiator may only be attached to one op at a time. ###Code # Create a noisy sample based expectation op. expectation_sampled = tfq.get_sampled_expectation_op( cirq.DensityMatrixSimulator(noise=cirq.depolarize(0.01))) # Make it differentiable with your differentiator: # Remember to refresh the differentiator before attaching the new op custom_dif.refresh() differentiable_op = custom_dif.generate_differentiable_op( sampled_op=expectation_sampled) # Prep op inputs. circuit_tensor = tfq.convert_to_tensor([my_circuit]) op_tensor = tfq.convert_to_tensor([[pauli_x]]) single_value = tf.convert_to_tensor([[my_alpha]]) num_samples_tensor = tf.convert_to_tensor([[1000]]) with tf.GradientTape() as g: g.watch(single_value) forward_output = differentiable_op(circuit_tensor, ['alpha'], single_value, op_tensor, num_samples_tensor) my_gradients = g.gradient(forward_output, single_value) print('---TFQ---') print('Foward: ', forward_output.numpy()) print('Gradient:', my_gradients.numpy()) print('---Original---') print('Forward: ', my_expectation(pauli_x, my_alpha)) print('Gradient:', my_grad(pauli_x, my_alpha)) ###Output _____no_output_____ ###Markdown Copyright 2020 The TensorFlow Authors. ###Code #@title Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ###Output _____no_output_____ ###Markdown Calculate gradients View on TensorFlow.org Run in Google Colab View source on GitHub Download notebook This tutorial explores gradient calculation algorithms for the expectation values of quantum circuits.Calculating the gradient of the expectation value of a certain observable in a quantum circuit is an involved process. Expectation values of observables do not have the luxury of having analytic gradient formulas that are always easy to write down—unlike traditional machine learning transformations such as matrix multiplication or vector addition that have analytic gradient formulas which are easy to write down. As a result, there are different quantum gradient calculation methods that come in handy for different scenarios. This tutorial compares and contrasts two different differentiation schemes. Setup ###Code try: # %tensorflow_version only works in Colab. %tensorflow_version 2.x except Exception: pass ###Output _____no_output_____ ###Markdown Install TensorFlow Quantum: ###Code !pip install tensorflow-quantum ###Output _____no_output_____ ###Markdown Now import TensorFlow and the module dependencies: ###Code import tensorflow as tf import tensorflow_quantum as tfq import cirq import sympy import numpy as np # visualization tools %matplotlib inline import matplotlib.pyplot as plt from cirq.contrib.svg import SVGCircuit ###Output _____no_output_____ ###Markdown 1. PreliminaryLet's make the notion of gradient calculation for quantum circuits a little more concrete. Suppose you have a parameterized circuit like this one: ###Code qubit = cirq.GridQubit(0, 0) my_circuit = cirq.Circuit(cirq.Y(qubit)**sympy.Symbol('alpha')) SVGCircuit(my_circuit) ###Output _____no_output_____ ###Markdown Along with an observable: ###Code pauli_x = cirq.X(qubit) pauli_x ###Output _____no_output_____ ###Markdown Looking at this operator you know that $⟨Y(\alpha)| X | Y(\alpha)⟩ = \sin(\pi \alpha)$ ###Code def my_expectation(op, alpha): """Compute ⟨Y(alpha)| `op` | Y(alpha)⟩""" params = {'alpha': alpha} sim = cirq.Simulator() final_state = sim.simulate(my_circuit, params).final_state return op.expectation_from_wavefunction(final_state, {qubit: 0}).real my_alpha = 0.3 print("Expectation=", my_expectation(pauli_x, my_alpha)) print("Sin Formula=", np.sin(np.pi * my_alpha)) ###Output _____no_output_____ ###Markdown and if you define $f_{1}(\alpha) = ⟨Y(\alpha)| X | Y(\alpha)⟩$ then $f_{1}^{'}(\alpha) = \pi \cos(\pi \alpha)$. Let's check this: ###Code def my_grad(obs, alpha, eps=0.01): grad = 0 f_x = my_expectation(obs, alpha) f_x_prime = my_expectation(obs, alpha + eps) return ((f_x_prime - f_x) / eps).real print('Finite difference:', my_grad(pauli_x, my_alpha)) print('Cosine formula: ', np.pi * np.cos(np.pi * my_alpha)) ###Output _____no_output_____ ###Markdown 2. The need for a differentiatorWith larger circuits, you won't always be so lucky to have a formula that precisely calculates the gradients of a given quantum circuit. In the event that a simple formula isn't enough to calculate the gradient, the `tfq.differentiators.Differentiator` class allows you to define algorithms for computing the gradients of your circuits. For instance you can recreate the above example in TensorFlow Quantum (TFQ) with: ###Code expectation_calculation = tfq.layers.Expectation( differentiator=tfq.differentiators.ForwardDifference(grid_spacing=0.01)) expectation_calculation(my_circuit, operators=pauli_x, symbol_names=['alpha'], symbol_values=[[my_alpha]]) ###Output _____no_output_____ ###Markdown However, if you switch to estimating expectation based on sampling (what would happen on a true device) the values can change a little bit. This means you now have an imperfect estimate: ###Code sampled_expectation_calculation = tfq.layers.SampledExpectation( differentiator=tfq.differentiators.ForwardDifference(grid_spacing=0.01)) sampled_expectation_calculation(my_circuit, operators=pauli_x, repetitions=500, symbol_names=['alpha'], symbol_values=[[my_alpha]]) ###Output _____no_output_____ ###Markdown This can quickly compound into a serious accuracy problem when it comes to gradients: ###Code # Make input_points = [batch_size, 1] array. input_points = np.linspace(0, 5, 200)[:, np.newaxis].astype(np.float32) exact_outputs = expectation_calculation(my_circuit, operators=pauli_x, symbol_names=['alpha'], symbol_values=input_points) imperfect_outputs = sampled_expectation_calculation(my_circuit, operators=pauli_x, repetitions=500, symbol_names=['alpha'], symbol_values=input_points) plt.title('Forward Pass Values') plt.xlabel('$x$') plt.ylabel('$f(x)$') plt.plot(input_points, exact_outputs, label='Analytic') plt.plot(input_points, imperfect_outputs, label='Sampled') plt.legend() # Gradients are a much different story. values_tensor = tf.convert_to_tensor(input_points) with tf.GradientTape() as g: g.watch(values_tensor) exact_outputs = expectation_calculation(my_circuit, operators=pauli_x, symbol_names=['alpha'], symbol_values=values_tensor) analytic_finite_diff_gradients = g.gradient(exact_outputs, values_tensor) with tf.GradientTape() as g: g.watch(values_tensor) imperfect_outputs = sampled_expectation_calculation( my_circuit, operators=pauli_x, repetitions=500, symbol_names=['alpha'], symbol_values=values_tensor) sampled_finite_diff_gradients = g.gradient(imperfect_outputs, values_tensor) plt.title('Gradient Values') plt.xlabel('$x$') plt.ylabel('$f^{\'}(x)$') plt.plot(input_points, analytic_finite_diff_gradients, label='Analytic') plt.plot(input_points, sampled_finite_diff_gradients, label='Sampled') plt.legend() ###Output _____no_output_____ ###Markdown Here you can see that although the finite difference formula is fast to compute the gradients themselves in the analytical case, when it came to the sampling based methods it was far too noisy. More careful techniques must be used to ensure a good gradient can be calculated. Next you will look at a much slower technique that wouldn't be as well suited for analytical expectation gradient calculations, but does perform much better in the real-world sample based case: ###Code # A smarter differentiation scheme. gradient_safe_sampled_expectation = tfq.layers.SampledExpectation( differentiator=tfq.differentiators.ParameterShift()) with tf.GradientTape() as g: g.watch(values_tensor) imperfect_outputs = gradient_safe_sampled_expectation( my_circuit, operators=pauli_x, repetitions=500, symbol_names=['alpha'], symbol_values=values_tensor) sampled_param_shift_gradients = g.gradient(imperfect_outputs, values_tensor) plt.title('Gradient Values') plt.xlabel('$x$') plt.ylabel('$f^{\'}(x)$') plt.plot(input_points, analytic_finite_diff_gradients, label='Analytic') plt.plot(input_points, sampled_param_shift_gradients, label='Sampled') plt.legend() ###Output _____no_output_____ ###Markdown From the above you can see that certain differentiators are best used for particular research scenarios. In general, the slower sample-based methods that are robust to device noise, etc., are great differentiators when testing or implementing algorithms in a more "real world" setting. Faster methods like finite difference are great for analytical calculations and you want higher throughput, but aren't yet concerned with the device viability of your algorithm. 3. Multiple observablesLet's introduce a second observable and see how TensorFlow Quantum supports multiple observables for a single circuit. ###Code pauli_z = cirq.Z(qubit) pauli_z ###Output _____no_output_____ ###Markdown If this observable is used with the same circuit as before, then you have $f_{2}(\alpha) = ⟨Y(\alpha)| Z | Y(\alpha)⟩ = \cos(\pi \alpha)$ and $f_{2}^{'}(\alpha) = -\pi \sin(\pi \alpha)$. Perform a quick check: ###Code test_value = 0. print('Finite difference:', my_grad(pauli_z, test_value)) print('Sin formula: ', -np.pi * np.sin(np.pi * test_value)) ###Output _____no_output_____ ###Markdown It's a match (close enough).Now if you define $g(\alpha) = f_{1}(\alpha) + f_{2}(\alpha)$ then $g'(\alpha) = f_{1}^{'}(\alpha) + f^{'}_{2}(\alpha)$. Defining more than one observable in TensorFlow Quantum to use along with a circuit is equivalent to adding on more terms to $g$.This means that the gradient of a particular symbol in a circuit is equal to the sum of the gradients with regards to each observable for that symbol applied to that circuit. This is compatible with TensorFlow gradient taking and backpropagation (where you give the sum of the gradients over all observables as the gradient for a particular symbol). ###Code sum_of_outputs = tfq.layers.Expectation( differentiator=tfq.differentiators.ForwardDifference(grid_spacing=0.01)) sum_of_outputs(my_circuit, operators=[pauli_x, pauli_z], symbol_names=['alpha'], symbol_values=[[test_value]]) ###Output _____no_output_____ ###Markdown Here you see the first entry is the expectation w.r.t Pauli X, and the second is the expectation w.r.t Pauli Z. Now when you take the gradient: ###Code test_value_tensor = tf.convert_to_tensor([[test_value]]) with tf.GradientTape() as g: g.watch(test_value_tensor) outputs = sum_of_outputs(my_circuit, operators=[pauli_x, pauli_z], symbol_names=['alpha'], symbol_values=test_value_tensor) sum_of_gradients = g.gradient(outputs, test_value_tensor) print(my_grad(pauli_x, test_value) + my_grad(pauli_z, test_value)) print(sum_of_gradients.numpy()) ###Output _____no_output_____ ###Markdown Here you have verified that the sum of the gradients for each observable is indeed the gradient of $\alpha$. This behavior is supported by all TensorFlow Quantum differentiators and plays a crucial role in the compatibility with the rest of TensorFlow. 4. Advanced usageHere you will learn how to define your own custom differentiation routines for quantum circuits.All differentiators that exist inside of TensorFlow Quantum subclass `tfq.differentiators.Differentiator`. A differentiator must implement `differentiate_analytic` and `differentiate_sampled`.The following uses TensorFlow Quantum constructs to implement the closed form solution from the first part of this tutorial. ###Code class MyDifferentiator(tfq.differentiators.Differentiator): """A Toy differentiator for <Y^alpha | X |Y^alpha>.""" def __init__(self): pass @tf.function def _compute_gradient(self, symbol_values): """Compute the gradient based on symbol_values.""" # f(x) = sin(pi * x) # f'(x) = pi * cos(pi * x) return tf.cast(tf.cos(symbol_values * np.pi) * np.pi, tf.float32) @tf.function def differentiate_analytic(self, programs, symbol_names, symbol_values, pauli_sums, forward_pass_vals, grad): """Specify how to differentiate a circuit with analytical expectation. This is called at graph runtime by TensorFlow. `differentiate_analytic` should calculate the gradient of a batch of circuits and return it formatted as indicated below. See `tfq.differentiators.ForwardDifference` for an example. Args: programs: `tf.Tensor` of strings with shape [batch_size] containing the string representations of the circuits to be executed. symbol_names: `tf.Tensor` of strings with shape [n_params], which is used to specify the order in which the values in `symbol_values` should be placed inside of the circuits in `programs`. symbol_values: `tf.Tensor` of real numbers with shape [batch_size, n_params] specifying parameter values to resolve into the circuits specified by programs, following the ordering dictated by `symbol_names`. pauli_sums: `tf.Tensor` of strings with shape [batch_size, n_ops] containing the string representation of the operators that will be used on all of the circuits in the expectation calculations. forward_pass_vals: `tf.Tensor` of real numbers with shape [batch_size, n_ops] containing the output of the forward pass through the op you are differentiating. grad: `tf.Tensor` of real numbers with shape [batch_size, n_ops] representing the gradient backpropagated to the output of the op you are differentiating through. Returns: A `tf.Tensor` with the same shape as `symbol_values` representing the gradient backpropagated to the `symbol_values` input of the op you are differentiating through. """ # Computing gradients just based off of symbol_values. return self._compute_gradient(symbol_values) * grad @tf.function def differentiate_sampled(self, programs, symbol_names, symbol_values, pauli_sums, num_samples, forward_pass_vals, grad): """Specify how to differentiate a circuit with sampled expectation. This is called at graph runtime by TensorFlow. `differentiate_sampled` should calculate the gradient of a batch of circuits and return it formatted as indicated below. See `tfq.differentiators.ForwardDifference` for an example. Args: programs: `tf.Tensor` of strings with shape [batch_size] containing the string representations of the circuits to be executed. symbol_names: `tf.Tensor` of strings with shape [n_params], which is used to specify the order in which the values in `symbol_values` should be placed inside of the circuits in `programs`. symbol_values: `tf.Tensor` of real numbers with shape [batch_size, n_params] specifying parameter values to resolve into the circuits specified by programs, following the ordering dictated by `symbol_names`. pauli_sums: `tf.Tensor` of strings with shape [batch_size, n_ops] containing the string representation of the operators that will be used on all of the circuits in the expectation calculations. num_samples: `tf.Tensor` of positive integers representing the number of samples per term in each term of pauli_sums used during the forward pass. forward_pass_vals: `tf.Tensor` of real numbers with shape [batch_size, n_ops] containing the output of the forward pass through the op you are differentiating. grad: `tf.Tensor` of real numbers with shape [batch_size, n_ops] representing the gradient backpropagated to the output of the op you are differentiating through. Returns: A `tf.Tensor` with the same shape as `symbol_values` representing the gradient backpropagated to the `symbol_values` input of the op you are differentiating through. """ return self._compute_gradient(symbol_values) * grad ###Output _____no_output_____ ###Markdown This new differentiator can now be used with existing `tfq.layer` objects: ###Code custom_dif = MyDifferentiator() custom_grad_expectation = tfq.layers.Expectation(differentiator=custom_dif) # Now let's get the gradients with finite diff. with tf.GradientTape() as g: g.watch(values_tensor) exact_outputs = expectation_calculation(my_circuit, operators=[pauli_x], symbol_names=['alpha'], symbol_values=values_tensor) analytic_finite_diff_gradients = g.gradient(exact_outputs, values_tensor) # Now let's get the gradients with custom diff. with tf.GradientTape() as g: g.watch(values_tensor) my_outputs = custom_grad_expectation(my_circuit, operators=[pauli_x], symbol_names=['alpha'], symbol_values=values_tensor) my_gradients = g.gradient(my_outputs, values_tensor) plt.subplot(1, 2, 1) plt.title('Exact Gradient') plt.plot(input_points, analytic_finite_diff_gradients.numpy()) plt.xlabel('x') plt.ylabel('f(x)') plt.subplot(1, 2, 2) plt.title('My Gradient') plt.plot(input_points, my_gradients.numpy()) plt.xlabel('x') ###Output _____no_output_____ ###Markdown This new differentiator can now be used to generate differentiable ops.Key Point: A differentiator that has been previously attached to an op must be refreshed before attaching to a new op, because a differentiator may only be attached to one op at a time. ###Code # Create a noisy sample based expectation op. expectation_sampled = tfq.get_sampled_expectation_op( cirq.DensityMatrixSimulator(noise=cirq.depolarize(0.01))) # Make it differentiable with your differentiator: # Remember to refresh the differentiator before attaching the new op custom_dif.refresh() differentiable_op = custom_dif.generate_differentiable_op( sampled_op=expectation_sampled) # Prep op inputs. circuit_tensor = tfq.convert_to_tensor([my_circuit]) op_tensor = tfq.convert_to_tensor([[pauli_x]]) single_value = tf.convert_to_tensor([[my_alpha]]) num_samples_tensor = tf.convert_to_tensor([[1000]]) with tf.GradientTape() as g: g.watch(single_value) forward_output = differentiable_op(circuit_tensor, ['alpha'], single_value, op_tensor, num_samples_tensor) my_gradients = g.gradient(forward_output, single_value) print('---TFQ---') print('Foward: ', forward_output.numpy()) print('Gradient:', my_gradients.numpy()) print('---Original---') print('Forward: ', my_expectation(pauli_x, my_alpha)) print('Gradient:', my_grad(pauli_x, my_alpha)) ###Output _____no_output_____
Notebooks/ObservationPlotting.ipynb
###Markdown Plotting Observations * **Products used:** [ga_ls8c_wofs_2](https://explorer.digitalearth.africa/ga_ls8c_wofs_2),[ga_ls8c_wofs_2_summary ](https://explorer.digitalearth.africa/ga_ls8c_wofs_2_summary) BackgroundTBA DescriptionThis notebook explains how you can perform validation analysis for WOFS derived product using collected ground truth dataset and window-based sampling. The notebook demonstrates how to:1. Plotting the count of clear observation in each month for validation points 2. *** Getting startedTo run this analysis, run all the cells in the notebook, starting with the "Load packages" cell.After finishing the analysis, you can modify some values in the "Analysis parameters" cell and re-run the analysis to load WOFLs for a different location or time period. Load packagesImport Python packages that are used for the analysis. ###Code %matplotlib inline import time import datacube from datacube.utils import masking, geometry import sys import os import dask import rasterio, rasterio.features import xarray import glob import numpy as np import pandas as pd import seaborn as sn import geopandas as gpd import subprocess as sp import matplotlib.pyplot as plt import scipy, scipy.ndimage import warnings warnings.filterwarnings("ignore") #this will suppress the warnings for multiple UTM zones in your AOI sys.path.append("../Scripts") from rasterio.mask import mask from geopandas import GeoSeries, GeoDataFrame from shapely.geometry import Point from deafrica_plotting import map_shapefile,display_map, rgb from deafrica_spatialtools import xr_rasterize from deafrica_datahandling import wofs_fuser, mostcommon_crs,load_ard,deepcopy from deafrica_dask import create_local_dask_cluster #for parallelisation from multiprocessing import Pool, Manager import multiprocessing as mp from tqdm import tqdm sn.set() sn.set_theme(color_codes=True) ###Output _____no_output_____ ###Markdown Connect to the datacubeActivate the datacube database, which provides functionality for loading and displaying stored Earth observation data. ###Code dc = datacube.Datacube(app='WOfS_accuracy') ###Output _____no_output_____ ###Markdown Analysis parameters To analyse validation points collected by each partner institution, we need to obtain WOfS surface water observation data that corresponds with the labelled input data locations. Loading Dataset 1. Load validation points for each partner institutions as a list of observations each has a location and month * Load the cleaned validation file as ESRI `shapefile` * Inspect the shapefile ###Code #Read the final table of analysis for each AEZ zone CEO = '../Supplementary_data/Validation/Refined/NewAnalysis/Continent/WOfS_processed/Intitutions/Point_Based/AEZs/ValidPoints/Africa_ValidationPoints.csv' input_data = pd.read_csv(CEO,delimiter=",") input_data=input_data.drop(['Unnamed: 0'], axis=1) input_data.head() input_data['CL_OBS_count'] = input_data.groupby('MONTH')['CLEAR_OBS'].transform('count') input_data ###Output _____no_output_____ ###Markdown Demonstrating Clear Observation in Each Month ###Code import calendar input_data['MONTH'] = input_data['MONTH'].apply(lambda x: calendar.month_abbr[x]) #input_data.reindex(input_data.MONTH.map(d).sort_values().index) #map + sort_values + reindex with index input_data.MONTH=input_data.MONTH.str.capitalize() #capitalizes the series d={i:e for e,i in enumerate(calendar.month_abbr)} #creates a dictionary input_data.reindex(input_data.MONTH.map(d).sort_values().index) #map + sort_values + reindex with index input_data = input_data.rename(columns={'CL_OBS_count':'Number of Valid Points','MONTH':'Month'}) #In order to plot the count of clear observation for each month in each AEZ and examine the seasonality Months = ['Jan', 'Feb', 'Mar', 'Apr', 'May', 'Jun', 'Jul', 'Aug', 'Sep', 'Oct', 'Nov', 'Dec'] g = sn.catplot(x='Month', y='Number of Valid Points', kind='bar', data=input_data, order=Months); #you can add pallette=set1 to change the color scheme g.fig.suptitle('Africa'); #sn.histplot(data=input_data,x='MONTH',hue='Clear_Obs', multiple='stack',bins=25).set_title('Number of WOfS Clear Observations in Sahel AEZ'); ###Output _____no_output_____ ###Markdown Working on histogram ###Code #Reading the classification table extracted from 0.9 thresholding of the frequncy for each AEZ exteracted from WOfS_Validation_Africa notebook #SummaryTable = '../Supplementary_data/Validation/Refined/Continent/AEZs_Assessment/AEZs_Classification/Africa_WOfS_Validation_Class_Eastern_T0.9.csv' SummaryTable = '../Supplementary_data/Validation/Refined/Continent/AEZ_count/AEZs_Classification/Africa_WOfS_Validation_Class_Southern_T0.9.csv' CLF = pd.read_csv(SummaryTable,delimiter=",") CLF CLF=CLF.drop(['Unnamed: 0','MONTH','ACTUAL','CLEAR_OBS','CLASS_WET','Actual_Sum','PREDICTION','WOfS_Sum', 'Actual_count','WOfS_count','geometry','WOfS_Wet_Sum','WOfS_Clear_Sum'], axis=1) CLF count = CLF.groupby('CLASS',as_index=False,sort=False).last() count sn.set() sn.set_theme(color_codes=True) ax1 = sn.displot(CLF, x="CEO_FREQUENCY", hue="CLASS"); ax2 = sn.displot(CLF, x="WOfS_FREQUENCY", hue="CLASS"); ax2._legend.remove() sn.relplot(x="WOfS_FREQUENCY", y="CEO_FREQUENCY", hue="CLASS",size='WOfS_FREQUENCY',sizes=(10,150), data=CLF); sn.displot(CLF, x="CEO_FREQUENCY", hue="CLASS", kind='kde'); sn.histplot(CLF, x="CEO_FREQUENCY"); sn.displot(CLF, x="CEO_FREQUENCY", kind='kde'); Sample_ID = CLF[['CLASS','CEO_FREQUENCY','WOfS_FREQUENCY']] sn.pairplot(Sample_ID, hue='CLASS', size=2.5); sn.pairplot(Sample_ID,hue='CLASS',diag_kind='kde',kind='scatter',palette='husl'); print(datacube.__version__) ###Output _____no_output_____ ###Markdown *** Additional information**License:** The code in this notebook is licensed under the [Apache License, Version 2.0](https://www.apache.org/licenses/LICENSE-2.0). Digital Earth Africa data is licensed under the [Creative Commons by Attribution 4.0](https://creativecommons.org/licenses/by/4.0/) license.**Contact:** If you need assistance, please post a question on the [Open Data Cube Slack channel](http://slack.opendatacube.org/) or on the [GIS Stack Exchange](https://gis.stackexchange.com/questions/ask?tags=open-data-cube) using the `open-data-cube` tag (you can view previously asked questions [here](https://gis.stackexchange.com/questions/tagged/open-data-cube)).If you would like to report an issue with this notebook, you can file one on [Github](https://github.com/digitalearthafrica/deafrica-sandbox-notebooks).**Last modified:** September 2020**Compatible datacube version:** TagsBrowse all available tags on the DE Africa User Guide's [Tags Index](https://) (placeholder as this does not exist yet) ###Code **Tags**: :index:`WOfS`, :index:`fractional cover`, :index:`deafrica_plotting`, :index:`deafrica_datahandling`, :index:`display_map`, :index:`wofs_fuser`, :index:`WOFL`, :index:`masking` ###Output _____no_output_____ ###Markdown Plotting Observations * **Products used:** [ga_ls8c_wofs_2](https://explorer.digitalearth.africa/ga_ls8c_wofs_2),[ga_ls8c_wofs_2_summary ](https://explorer.digitalearth.africa/ga_ls8c_wofs_2_summary) BackgroundTBA DescriptionThis notebook explains how you can perform validation analysis for WOFS derived product using collected ground truth dataset and window-based sampling. The notebook demonstrates how to:1. Plotting the count of clear observation in each month for validation points 2. *** Getting startedTo run this analysis, run all the cells in the notebook, starting with the "Load packages" cell.After finishing the analysis, you can modify some values in the "Analysis parameters" cell and re-run the analysis to load WOFLs for a different location or time period. Load packagesImport Python packages that are used for the analysis. ###Code %matplotlib inline import time import datacube from datacube.utils import masking, geometry import sys import os import dask import rasterio, rasterio.features import xarray import glob import numpy as np import pandas as pd import seaborn as sn import geopandas as gpd import subprocess as sp import matplotlib.pyplot as plt import scipy, scipy.ndimage import warnings warnings.filterwarnings("ignore") #this will suppress the warnings for multiple UTM zones in your AOI sys.path.append("../Scripts") from rasterio.mask import mask from geopandas import GeoSeries, GeoDataFrame from shapely.geometry import Point from deafrica_plotting import map_shapefile,display_map, rgb from deafrica_spatialtools import xr_rasterize from deafrica_datahandling import wofs_fuser, mostcommon_crs,load_ard,deepcopy from deafrica_dask import create_local_dask_cluster #for parallelisation from multiprocessing import Pool, Manager import multiprocessing as mp from tqdm import tqdm sn.set() sn.set_theme(color_codes=True) ###Output _____no_output_____ ###Markdown Connect to the datacubeActivate the datacube database, which provides functionality for loading and displaying stored Earth observation data. ###Code dc = datacube.Datacube(app='WOfS_accuracy') ###Output _____no_output_____ ###Markdown Analysis parameters To analyse validation points collected by each partner institution, we need to obtain WOfS surface water observation data that corresponds with the labelled input data locations. Loading Dataset 1. Load validation points for each partner institutions as a list of observations each has a location and month * Load the cleaned validation file as ESRI `shapefile` * Inspect the shapefile ###Code #Read the final table of analysis for each AEZ zone CEO = '../Supplementary_data/Validation/Refined/NewAnalysis/Continent/WOfS_processed/Intitutions/Point_Based/AEZs/ValidPoints/Africa_ValidationPoints.csv' input_data = pd.read_csv(CEO,delimiter=",") input_data=input_data.drop(['Unnamed: 0'], axis=1) input_data.head() input_data['CL_OBS_count'] = input_data.groupby('MONTH')['CLEAR_OBS'].transform('count') input_data ###Output _____no_output_____ ###Markdown Demonstrating Clear Observation in Each Month ###Code import calendar input_data['MONTH'] = input_data['MONTH'].apply(lambda x: calendar.month_abbr[x]) #input_data.reindex(input_data.MONTH.map(d).sort_values().index) #map + sort_values + reindex with index input_data.MONTH=input_data.MONTH.str.capitalize() #capitalizes the series d={i:e for e,i in enumerate(calendar.month_abbr)} #creates a dictionary input_data.reindex(input_data.MONTH.map(d).sort_values().index) #map + sort_values + reindex with index input_data = input_data.rename(columns={'CL_OBS_count':'Number of Valid Points','MONTH':'Month'}) #In order to plot the count of clear observation for each month in each AEZ and examine the seasonality Months = ['Jan', 'Feb', 'Mar', 'Apr', 'May', 'Jun', 'Jul', 'Aug', 'Sep', 'Oct', 'Nov', 'Dec'] g = sn.catplot(x='Month', y='Number of Valid Points', kind='bar', data=input_data, order=Months); #you can add pallette=set1 to change the color scheme g.fig.suptitle('Africa'); #sn.histplot(data=input_data,x='MONTH',hue='Clear_Obs', multiple='stack',bins=25).set_title('Number of WOfS Clear Observations in Sahel AEZ'); ###Output _____no_output_____ ###Markdown Working on histogram ###Code #Reading the classification table extracted from 0.9 thresholding of the frequncy for each AEZ exteracted from WOfS_Validation_Africa notebook #SummaryTable = '../Supplementary_data/Validation/Refined/Continent/AEZs_Assessment/AEZs_Classification/Africa_WOfS_Validation_Class_Eastern_T0.9.csv' SummaryTable = '../Supplementary_data/Validation/Refined/Continent/AEZ_count/AEZs_Classification/Africa_WOfS_Validation_Class_Southern_T0.9.csv' CLF = pd.read_csv(SummaryTable,delimiter=",") CLF CLF=CLF.drop(['Unnamed: 0','MONTH','ACTUAL','CLEAR_OBS','CLASS_WET','Actual_Sum','PREDICTION','WOfS_Sum', 'Actual_count','WOfS_count','geometry','WOfS_Wet_Sum','WOfS_Clear_Sum'], axis=1) CLF count = CLF.groupby('CLASS',as_index=False,sort=False).last() count sn.set() sn.set_theme(color_codes=True) ax1 = sn.displot(CLF, x="CEO_FREQUENCY", hue="CLASS"); ax2 = sn.displot(CLF, x="WOfS_FREQUENCY", hue="CLASS"); ax2._legend.remove() sn.relplot(x="WOfS_FREQUENCY", y="CEO_FREQUENCY", hue="CLASS",size='WOfS_FREQUENCY',sizes=(10,150), data=CLF); sn.displot(CLF, x="CEO_FREQUENCY", hue="CLASS", kind='kde'); sn.histplot(CLF, x="CEO_FREQUENCY"); sn.displot(CLF, x="CEO_FREQUENCY", kind='kde'); Sample_ID = CLF[['CLASS','CEO_FREQUENCY','WOfS_FREQUENCY']] sn.pairplot(Sample_ID, hue='CLASS', size=2.5); sn.pairplot(Sample_ID,hue='CLASS',diag_kind='kde',kind='scatter',palette='husl'); print(datacube.__version__) ###Output _____no_output_____ ###Markdown *** Additional information**License:** The code in this notebook is licensed under the [Apache License, Version 2.0](https://www.apache.org/licenses/LICENSE-2.0). Digital Earth Africa data is licensed under the [Creative Commons by Attribution 4.0](https://creativecommons.org/licenses/by/4.0/) license.**Contact:** If you need assistance, please post a question on the [Open Data Cube Slack channel](http://slack.opendatacube.org/) or on the [GIS Stack Exchange](https://gis.stackexchange.com/questions/ask?tags=open-data-cube) using the `open-data-cube` tag (you can view previously asked questions [here](https://gis.stackexchange.com/questions/tagged/open-data-cube)).If you would like to report an issue with this notebook, you can file one on [Github](https://github.com/digitalearthafrica/deafrica-sandbox-notebooks).**Last modified:** September 2020**Compatible datacube version:** TagsBrowse all available tags on the DE Africa User Guide's [Tags Index](https://) (placeholder as this does not exist yet) ###Code **Tags**: :index:`WOfS`, :index:`fractional cover`, :index:`deafrica_plotting`, :index:`deafrica_datahandling`, :index:`display_map`, :index:`wofs_fuser`, :index:`WOFL`, :index:`masking` ###Output _____no_output_____
pacbook/_build/jupyter_execute/PAC Interactive Inclusion Analysis.ipynb
###Markdown Corporate PAC Inclusion Analysis¶ Does your company's Political Action Committee have a blind spot with respect to inclusion? ###Code # Execute this cell to load the notebook's style sheet, then ignore it from IPython.core.display import HTML css_file = 'PAC.css' HTML(open(css_file, "r").read()) import pandas as pd import numpy as np from ipywidgets import interact, interactive, fixed, interact_manual, Layout import ipywidgets as widgets import matplotlib.pyplot as plt from matplotlib.ticker import FuncFormatter from IPython.display import Javascript, display, HTML races = ['Asian', 'Black', 'Hispanic', 'Other Races', 'White'] genders = ['Male', 'Female'] pac_selection = widgets.Select( options=['BlackRock', 'Leidos', 'Google'], value='BlackRock', description='Select PAC:', disabled=False, ) pac_text = widgets.Text(value="BlackRock") def handle_change(change): if change['type'] == 'change' and change['name'] == 'value': print("changed to %s" % change['new']) pac_text.value = change['new'] display(Javascript('IPython.notebook.execute_cells_below()')) pac_selection.observe(handle_change) display(pac_selection) def display_race_charts(input_df, main_title): #strip Total column from dataframe df = input_df.iloc[:,:-1] count = len(df.index) fig, axes = plt.subplots(1,count, figsize=(12,3)) if count > 1: for ax, idx in zip(axes, df.index): ax.pie(df.loc[idx], labels=df.columns, radius=1, autopct='%1.1f%%', explode=(0, 0, 0, 0, 0.1), shadow=True) ax.set(ylabel='', title=idx, aspect='equal') else: ax = df.iloc[0].plot(kind = 'pie', labels=df.columns, radius=1, autopct='%1.1f%%', explode=(0,0,0,0,0.1), shadow=True) ax.set(ylabel='', title=df.index[0], aspect='equal') fig.suptitle(main_title, fontsize=18) fig.tight_layout() fig.subplots_adjust(top=0.80) plt.show() def display_race_summary_charts(input_df, main_title): df = input_df count = len(df.index) fig, axes = plt.subplots(1,count, figsize=(12,3)) df.plot(kind = 'pie', radius=1, autopct='%1.1f%%', ax=ax, subplots=True, shadow=True) ax.set(ylabel='', title=df.index[0], aspect='equal') #ax.get_legend().remove() fig.suptitle(main_title, fontsize=18) fig.tight_layout() fig.subplots_adjust(top=0.80) plt.show() def display_gender_charts(input_df, main_title): #strip Total column from dataframe df = input_df.iloc[:,:-1] count = len(df.index) fig, axes = plt.subplots(1,count, figsize=(12,3)) if count > 1: for ax, idx in (zip(axes, df.index)): ax.pie(df.loc[idx], labels=df.columns, radius=1, autopct='%1.1f%%', explode=(0.1, 0), shadow=True) ax.set(ylabel='', title=idx, aspect='equal') else: ax = df.iloc[0].plot(kind = 'pie', labels=df.columns, radius=1, autopct='%1.1f%%', explode=(0.1, 0), shadow=True) ax.set(ylabel='', title=df.index[0], aspect='equal') fig.suptitle(main_title, fontsize=18) fig.tight_layout() fig.subplots_adjust(top=0.80) plt.show() def autopct_format(values): def my_format(pct): total = sum(values) val = int(round(pct*total/100.0)) return '${v:d}'.format(v=val) return my_format def display_money_charts(input_df, main_title): #strip Total column from dataframe df = input_df.iloc[:,:-1] #Reverse order dataframe df = df.iloc[::-1] fig, axes = plt.subplots(1,2, figsize=(12,3)) for ax, idx in zip(axes, df.index): ax.pie(df.loc[idx], labels=df.columns, radius=1, autopct = autopct_format(df.loc[idx]), shadow=True) ax.set(ylabel='', title=idx, aspect='equal') fig.suptitle(main_title, fontsize=18) fig.tight_layout() fig.subplots_adjust(top=0.80) plt.show() def display_money_bar(input_df, main_title): #strip Total column from dataframe df = input_df.iloc[:,:-1] #Reverse order dataframe #df = df.iloc[::-1] ax = df.plot(kind='bar', title =main_title, figsize=(15, 10), legend=True, fontsize=12) ax.set_xlabel("Party", fontsize=12) ax.set_ylabel("PAC Disbursment Dollars", fontsize=12) for p in ax.patches: ax.annotate('$'+str(p.get_height()), (p.get_x() * 1.005, p.get_height() * 1.005)) plt.show() def change_index_values(df, old, new): as_list = df.index.tolist() idx = as_list.index(old) as_list[idx] = new df.index = as_list def currency(x, pos): 'The two args are the value and tick position' if x >= 1000000: return '${:1.1f}M'.format(x*1e-6) return '${:1.0f}K'.format(x*1e-3) def display_bar(df): fig, ax = plt.subplots() df.plot(kind = 'barh', ax=ax) fmt = FuncFormatter(currency) ax.xaxis.set_major_formatter(fmt) ax.xaxis.grid() def race_totals(df): total = 0 for r in races: if r in df.columns: total = total + df[r] return total def gender_totals(df): total = 0 for r in genders: if r in df.columns: total = total + df[r] return total congress116_df = pd.read_csv("../data/116th_congress_190103.csv") #data cleaning #split race & ethnicity congress116_df[['Race','Ethnicity']] = congress116_df.raceEthnicity.str.split(" - ", 1, expand=True,) #remove independents congress116_df = congress116_df[congress116_df.party != "Independent"] #remove non-voting members congress116_df['raceEthnicity'].replace('', np.nan, inplace=True) congress116_df.dropna(subset=['raceEthnicity'], inplace=True) #Fix Golden Jared missing gender congress116_df.at[240, 'gender'] = 'M' #change Native American and Pacific Islander to "Other Races" congress116_df.loc[(congress116_df.Race == 'Native American'),'Race']='Other Races' congress116_df.loc[(congress116_df.Race == 'Pacific Islander'),'Race']='Other Races' #change M & F to Male and Female congress116_df.loc[(congress116_df.gender == 'M'),'gender']='Male' congress116_df.loc[(congress116_df.gender == 'F'),'gender']='Female' #remove nan congress116_df = congress116_df.apply(lambda x: x.fillna(0) if x.dtype.kind in 'biufc' else x.fillna('')) #convert floats to ints #congress116_df = congress116_df.convert_dtypes() race_df = congress116_df.groupby(['party','Race']).agg('size').unstack() gender_df = congress116_df.groupby(['party','gender']).agg('size').unstack() #remove NaN race_df = race_df.apply(lambda x: x.fillna(0) if x.dtype.kind in 'biufc' else x.fillna('')) gender_df = gender_df.apply(lambda x: x.fillna(0) if x.dtype.kind in 'biufc' else x.fillna('')) #add total column race_df['Total'] = race_totals(race_df) gender_df['Total'] = gender_totals(gender_df) #race_df['Total'] = race_df['Asian'] + race_df['Black'] + race_df['Hispanic'] + race_df['Other Races'] + race_df['White'] #gender_df['Total'] = gender_df['Male'] + gender_df['Female'] #load 2017 US race and gender data us_race_df = pd.read_csv("../data/us_race_2017.csv") us_race_df.set_index('Category', inplace=True) us_gender_df = pd.read_csv("../data/us_gender_2017.csv") us_gender_df.set_index('Category', inplace=True) #concatenate race dataframes race_df = pd.concat([race_df, us_race_df]) #concatenate gender dataframes gender_df = pd.concat([gender_df, us_gender_df]) #convert floats to ints race_df = race_df.convert_dtypes() gender_df = gender_df.convert_dtypes() #change index values for clearer presentation change_index_values(race_df, "Democrat", "Democrats") change_index_values(race_df, "Republican", "Republicans") change_index_values(gender_df, "Democrat", "Democrats") change_index_values(gender_df, "Republican", "Republican") #align PAC data PAC_2017_2018_df = pd.read_csv("../data/"+pac_text.value+"PAC-2017-2018-disbursements.csv") ThunderboltPAC_2017_2018_df = pd.read_csv("../data/thunderboltPAC-2017-2018-disbursements.csv") NewPAC_2017_2018_df = pd.read_csv("../data/newPAC-2017-2018-disbursements.csv") #remove nan PAC_2017_2018_df = PAC_2017_2018_df.apply(lambda x: x.fillna(0) if x.dtype.kind in 'biufc' else x.fillna('')) ThunderboltPAC_2017_2018_df = ThunderboltPAC_2017_2018_df.apply(lambda x: x.fillna(0) if x.dtype.kind in 'biufc' else x.fillna('')) NewPAC_2017_2018_df = NewPAC_2017_2018_df.apply(lambda x: x.fillna(0) if x.dtype.kind in 'biufc' else x.fillna('')) #convert floats to ints PAC_2017_2018_df.candidate_office_district = PAC_2017_2018_df.candidate_office_district.astype(int) ThunderboltPAC_2017_2018_df.candidate_office_district = ThunderboltPAC_2017_2018_df.candidate_office_district.astype(int) NewPAC_2017_2018_df.candidate_office_district = NewPAC_2017_2018_df.candidate_office_district.astype(int) #convert join columns from all caps to capitalized PAC_2017_2018_df.candidate_first_name = PAC_2017_2018_df.candidate_first_name.str.title() PAC_2017_2018_df.candidate_last_name = PAC_2017_2018_df.candidate_last_name.str.title() PAC_2017_2018_df.candidate_middle_name = PAC_2017_2018_df.candidate_middle_name.str.title() ThunderboltPAC_2017_2018_df.candidate_first_name = ThunderboltPAC_2017_2018_df.candidate_first_name.str.title() ThunderboltPAC_2017_2018_df.candidate_last_name = ThunderboltPAC_2017_2018_df.candidate_last_name.str.title() ThunderboltPAC_2017_2018_df.candidate_middle_name = ThunderboltPAC_2017_2018_df.candidate_middle_name.str.title() NewPAC_2017_2018_df.candidate_first_name = NewPAC_2017_2018_df.candidate_first_name.str.title() NewPAC_2017_2018_df.candidate_last_name = NewPAC_2017_2018_df.candidate_last_name.str.title() NewPAC_2017_2018_df.candidate_middle_name = NewPAC_2017_2018_df.candidate_middle_name.str.title() #join PAC and congress demographic dataframes PAC_merge_df = pd.merge(PAC_2017_2018_df, congress116_df, how='left', left_on=['candidate_last_name','candidate_office_district','candidate_office_state'], right_on = ['lastName','district','state']) TBPAC_merge_df = pd.merge(ThunderboltPAC_2017_2018_df, congress116_df, how='left', left_on=['candidate_last_name','candidate_office_district','candidate_office_state'], right_on = ['lastName','district','state']) NewPAC_merge_df = pd.merge(NewPAC_2017_2018_df, congress116_df, how='left', left_on=['candidate_last_name','candidate_office_district','candidate_office_state'], right_on = ['lastName','district','state']) #remove nan PAC_merge_df = PAC_merge_df.apply(lambda x: x.fillna(0) if x.dtype.kind in 'biufc' else x.fillna('')) TBPAC_merge_df = TBPAC_merge_df.apply(lambda x: x.fillna(0) if x.dtype.kind in 'biufc' else x.fillna('')) NewPAC_merge_df = NewPAC_merge_df.apply(lambda x: x.fillna(0) if x.dtype.kind in 'biufc' else x.fillna('')) #subsets #possible loser candidates winners_2018_df = PAC_merge_df.loc[PAC_merge_df['Race'] != ""] possible_2018_losers_df = PAC_merge_df.loc[(PAC_merge_df['candidate_last_name'] != "") & (PAC_merge_df['Race'] == "")] untraced_disbursements_df = PAC_merge_df.loc[PAC_merge_df['Race'] == ""] PAC_race_df = winners_2018_df.groupby(['party','Race']).agg('size').unstack() PAC_gender_df = winners_2018_df.groupby(['party','gender']).agg('size').unstack() PAC_money_race_df = winners_2018_df.groupby(['party', 'Race'])['disbursement_amount'].agg('sum').unstack() PAC_money_gender_df = winners_2018_df.groupby(['party', 'gender'])['disbursement_amount'].agg('sum').unstack() #remove NaN PAC_race_df = PAC_race_df.apply(lambda x: x.fillna(0) if x.dtype.kind in 'biufc' else x.fillna('')) PAC_gender_df = PAC_gender_df.apply(lambda x: x.fillna(0) if x.dtype.kind in 'biufc' else x.fillna('')) PAC_money_race_df = PAC_money_race_df.apply(lambda x: x.fillna(0) if x.dtype.kind in 'biufc' else x.fillna('')) PAC_money_gender_df = PAC_money_gender_df.apply(lambda x: x.fillna(0) if x.dtype.kind in 'biufc' else x.fillna('')) #add total column PAC_race_df['Total'] = race_totals(PAC_race_df) PAC_gender_df['Total'] = gender_totals(PAC_gender_df) PAC_money_race_df['Total'] = race_totals(PAC_money_race_df) PAC_money_gender_df['Total'] = gender_totals(PAC_money_gender_df) #PAC_race_df['Total'] = PAC_race_df['Asian'] + PAC_race_df['Black'] + PAC_race_df['Hispanic'] + PAC_race_df['Other Races'] + PAC_race_df['White'] #PAC_gender_df['Total'] = PAC_gender_df['Male'] + PAC_gender_df['Female'] #PAC_money_race_df['Total'] = PAC_money_race_df['Asian'] + PAC_money_race_df['Black'] + PAC_money_race_df['Hispanic'] + PAC_money_race_df['Other Races'] + PAC_money_race_df['White'] #PAC_money_gender_df['Total'] = PAC_money_gender_df['Male'] + PAC_money_gender_df['Female'] #concatenate race dataframes PAC_race_df = pd.concat([PAC_race_df, us_race_df]) #concatenate gender dataframes PAC_gender_df = pd.concat([PAC_gender_df, us_gender_df]) #convert floats to ints PAC_race_df = PAC_race_df.convert_dtypes() PAC_gender_df = PAC_gender_df.convert_dtypes() PAC_money_race_df = PAC_money_race_df.convert_dtypes() PAC_money_gender_df = PAC_money_gender_df.convert_dtypes() #remove NaN PAC_race_df = PAC_race_df.apply(lambda x: x.fillna(0) if x.dtype.kind in 'biufc' else x.fillna('')) PAC_gender_df = PAC_gender_df.apply(lambda x: x.fillna(0) if x.dtype.kind in 'biufc' else x.fillna('')) PAC_money_race_df = PAC_money_race_df.apply(lambda x: x.fillna(0) if x.dtype.kind in 'biufc' else x.fillna('')) PAC_money_gender_df = PAC_money_gender_df.apply(lambda x: x.fillna(0) if x.dtype.kind in 'biufc' else x.fillna('')) #change index values for clearer presentation change_index_values(PAC_race_df, "Democrat", "Democratic Recipiants") change_index_values(PAC_race_df, "Republican", "Republican Recipiants") change_index_values(PAC_gender_df, "Democrat", "Democratic Recipiants") change_index_values(PAC_gender_df, "Republican", "Republican Recipiants") change_index_values(PAC_money_race_df, "Democrat", "Democratic Recipiants") change_index_values(PAC_money_race_df, "Republican", "Republican Recipiants") change_index_values(PAC_money_gender_df, "Democrat", "Democratic Recipiants") change_index_values(PAC_money_gender_df, "Republican", "Republican Recipiants") #rearrange columns race_cols = races race_cols.append('Total') gender_cols = genders gender_cols.append('Total') PAC_race_df = PAC_race_df[race_cols] PAC_gender_df = PAC_gender_df[gender_cols] ###Output _____no_output_____ ###Markdown PAC disbursements based on inclusion and diversity. In this analysis we take a closer look at the diversity of the United States overall and the diversity of the current US Congress by party. We will analyze diversity based on gender and race and compare the parties in general and then dive into the diversity of the specific candidates that received money from the selected PAC. All of this data is publicly available. ###Code display_gender_charts(gender_df.iloc[2:3], "US Population by Gender") display_gender_charts(gender_df.iloc[0:2], "Current Congress by Gender") display_gender_charts(PAC_gender_df.iloc[0:2], "Percent of PAC Disbursements to Members of the 116th Congress by Gender") display_gender_charts(PAC_gender_df.iloc[0:2].sum().to_frame(name='recipients').transpose(), "PAC Disbursement to candidates by Gender") ###Output _____no_output_____ ###Markdown PAC disbursements based on racial diversity ###Code display_race_charts(race_df.iloc[2:3], "US Population by Race") display_race_charts(race_df.iloc[0:2], "Current Congress by Race") display_race_charts(PAC_race_df.iloc[0:2], "Percent of PAC Disbursements to Members of the 116th Congress by Race") display_race_charts(PAC_race_df.iloc[0:2].sum().to_frame(name='recipients').transpose(), "PAC Disbursement to candidates by Race") display_money_charts(PAC_money_race_df, "Amount of PAC Disbursements to Members of the 116th Congress by Race") df = PAC_merge_df.groupby('Race')['disbursement_amount'].sum().sort_values() as_list = df.index.tolist() idx = as_list.index('') as_list[idx] = 'candidates not elected or other PACs or RNCC/DCCC' df.index = as_list display_bar(df) ###Output _____no_output_____
.ipynb_checkpoints/ecephys_quickstart-checkpoint.ipynb
###Markdown Extracellular Electrophysiology Data Quick StartA short introduction to the Visual Coding Neuropixels data and SDK. For more information, see the full reference notebook.Contents-------------* peristimulus time histograms* image classification ###Code import os import numpy as np import pandas as pd import matplotlib.pyplot as plt from allensdk.brain_observatory.ecephys.ecephys_project_cache import EcephysProjectCache st = session.get_stimulus_table() gab_stims = st.loc[st.stimulus_name=='natural_movie_three',:] sp = session.stimulus_presentations sp.loc[sp.stimulus_name=='natural_movie_three',:] movie = cache.get_natural_movie_template(3) ###Output _____no_output_____ ###Markdown The `EcephysProjectCache` is the main entry point to the Visual Coding Neuropixels dataset. It allows you to download data for individual recording sessions and view cross-session summary information. ###Code movie.shape # this path determines where downloaded data will be stored manifest_path = os.path.join('/local1/ecephys_cache_dir/', "manifest.json") cache = EcephysProjectCache.from_warehouse(manifest=manifest_path) print(cache.get_all_session_types()) ###Output ['brain_observatory_1.1', 'functional_connectivity'] ###Markdown This dataset contains sessions in which two sets of stimuli were presented. The `"brain_observatory_1.1"` sessions are (almost exactly) the same as Visual Coding 2P sessions. ###Code sessions = cache.get_session_table() brain_observatory_type_sessions = sessions[sessions["session_type"] == "brain_observatory_1.1"] brain_observatory_type_sessions.tail() ###Output _____no_output_____ ###Markdown peristimulus time histograms We are going to pick a session arbitrarily and download its spike data. ###Code session_id = 791319847 session = cache.get_session_data(session_id) session.stimulus_presentations ###Output _____no_output_____ ###Markdown We can get a high-level summary of this session by acessing its `metadata` attribute: ###Code session.metadata ###Output c:\users\fritz\.conda\envs\py36\lib\site-packages\allensdk\brain_observatory\ecephys\ecephys_project_api\ecephys_project_warehouse_api.py:291: FutureWarning: Conversion of the second argument of issubdtype from `bool` to `np.generic` is deprecated. In future, it will be treated as `np.bool_ == np.dtype(bool).type`. pv_is_bool = np.issubdtype(output["p_value_rf"].values[0], np.bool) ###Markdown We can also take a look at how many units were recorded in each brain structure: ###Code session.structurewise_unit_counts ###Output _____no_output_____ ###Markdown Now that we've gotten spike data, we can create peristimulus time histograms. ###Code presentations = session.get_stimulus_table("flashes") units = session.units[session.units["ecephys_structure_acronym"] == 'VISp'] time_step = 0.01 time_bins = np.arange(-0.1, 0.5 + time_step, time_step) histograms = session.presentationwise_spike_counts( stimulus_presentation_ids=presentations.index.values, bin_edges=time_bins, unit_ids=units.index.values ) histograms.coords presentations mean_histograms = histograms.mean(dim="stimulus_presentation_id") fig, ax = plt.subplots(figsize=(8, 8)) ax.pcolormesh( mean_histograms["time_relative_to_stimulus_onset"], np.arange(mean_histograms["unit_id"].size), mean_histograms.T, vmin=0, vmax=1 ) ax.set_ylabel("unit", fontsize=24) ax.set_xlabel("time relative to stimulus onset (s)", fontsize=24) ax.set_title("peristimulus time histograms for VISp units on flash presentations", fontsize=24) plt.show() ###Output _____no_output_____ ###Markdown image classification First, we need to extract spikes. We will do using `EcephysSession.presentationwise_spike_times`, which returns spikes annotated by the unit that emitted them and the stimulus presentation during which they were emitted. ###Code scene_presentations = session.get_stimulus_table("natural_scenes") visp_units = session.units[session.units["ecephys_structure_acronym"] == "VISp"] spikes = session.presentationwise_spike_times( stimulus_presentation_ids=scene_presentations.index.values, unit_ids=visp_units.index.values[:] ) spikes ###Output _____no_output_____ ###Markdown Next, we will convert these into a num_presentations X num_units matrix, which will serve as our input data. ###Code spikes["count"] = np.zeros(spikes.shape[0]) spikes = spikes.groupby(["stimulus_presentation_id", "unit_id"]).count() design = pd.pivot_table( spikes, values="count", index="stimulus_presentation_id", columns="unit_id", fill_value=0.0, aggfunc=np.sum ) design ###Output _____no_output_____ ###Markdown ... with targets being the numeric identifiers of the images presented. ###Code targets = scene_presentations.loc[design.index.values, "frame"] targets from sklearn import svm from sklearn.model_selection import KFold from sklearn.metrics import confusion_matrix design_arr = design.values.astype(float) targets_arr = targets.values.astype(int) labels = np.unique(targets_arr) accuracies = [] confusions = [] for train_indices, test_indices in KFold(n_splits=5).split(design_arr): clf = svm.SVC(gamma="scale", kernel="rbf") clf.fit(design_arr[train_indices], targets_arr[train_indices]) test_targets = targets_arr[test_indices] test_predictions = clf.predict(design_arr[test_indices]) accuracy = 1 - (np.count_nonzero(test_predictions - test_targets) / test_predictions.size) print(accuracy) accuracies.append(accuracy) confusions.append(confusion_matrix(y_true=test_targets, y_pred=test_predictions, labels=labels)) print(f"mean accuracy: {np.mean(accuracy)}") print(f"chance: {1/labels.size}") ###Output mean accuracy: 0.473109243697479 chance: 0.008403361344537815 ###Markdown imagewise performance ###Code mean_confusion = np.mean(confusions, axis=0) fig, ax = plt.subplots(figsize=(8, 8)) img = ax.imshow(mean_confusion) fig.colorbar(img) ax.set_ylabel("actual") ax.set_xlabel("predicted") plt.show() best = labels[np.argmax(np.diag(mean_confusion))] worst = labels[np.argmin(np.diag(mean_confusion))] fig, ax = plt.subplots(1, 2, figsize=(16, 8)) best_image = cache.get_natural_scene_template(best) ax[0].imshow(best_image, cmap=plt.cm.gray) ax[0].set_title("most decodable", fontsize=24) worst_image = cache.get_natural_scene_template(worst) ax[1].imshow(worst_image, cmap=plt.cm.gray) ax[1].set_title("least decodable", fontsize=24) plt.show() ###Output _____no_output_____
vanderplas/PythonDataScienceHandbook-master/notebooks/03.09-Pivot-Tables.ipynb
###Markdown *This notebook contains an excerpt from the [Python Data Science Handbook](http://shop.oreilly.com/product/0636920034919.do) by Jake VanderPlas; the content is available [on GitHub](https://github.com/jakevdp/PythonDataScienceHandbook).**The text is released under the [CC-BY-NC-ND license](https://creativecommons.org/licenses/by-nc-nd/3.0/us/legalcode), and code is released under the [MIT license](https://opensource.org/licenses/MIT). If you find this content useful, please consider supporting the work by [buying the book](http://shop.oreilly.com/product/0636920034919.do)!* Pivot Tables We have seen how the ``GroupBy`` abstraction lets us explore relationships within a dataset.A *pivot table* is a similar operation that is commonly seen in spreadsheets and other programs that operate on tabular data.The pivot table takes simple column-wise data as input, and groups the entries into a two-dimensional table that provides a multidimensional summarization of the data.The difference between pivot tables and ``GroupBy`` can sometimes cause confusion; it helps me to think of pivot tables as essentially a *multidimensional* version of ``GroupBy`` aggregation.That is, you split-apply-combine, but both the split and the combine happen across not a one-dimensional index, but across a two-dimensional grid. Motivating Pivot TablesFor the examples in this section, we'll use the database of passengers on the *Titanic*, available through the Seaborn library (see [Visualization With Seaborn](04.14-Visualization-With-Seaborn.ipynb)): ###Code import numpy as np import pandas as pd import seaborn as sns titanic = sns.load_dataset('titanic') titanic.head() ###Output _____no_output_____ ###Markdown This contains a wealth of information on each passenger of that ill-fated voyage, including gender, age, class, fare paid, and much more. Pivot Tables by HandTo start learning more about this data, we might begin by grouping according to gender, survival status, or some combination thereof.If you have read the previous section, you might be tempted to apply a ``GroupBy`` operation–for example, let's look at survival rate by gender: ###Code titanic.groupby('sex')[['survived']].mean() ###Output _____no_output_____ ###Markdown This immediately gives us some insight: overall, three of every four females on board survived, while only one in five males survived!This is useful, but we might like to go one step deeper and look at survival by both sex and, say, class.Using the vocabulary of ``GroupBy``, we might proceed using something like this:we *group by* class and gender, *select* survival, *apply* a mean aggregate, *combine* the resulting groups, and then *unstack* the hierarchical index to reveal the hidden multidimensionality. In code: ###Code titanic.groupby(['sex', 'class'])['survived'].aggregate('mean').unstack() ###Output _____no_output_____ ###Markdown This gives us a better idea of how both gender and class affected survival, but the code is starting to look a bit garbled.While each step of this pipeline makes sense in light of the tools we've previously discussed, the long string of code is not particularly easy to read or use.This two-dimensional ``GroupBy`` is common enough that Pandas includes a convenience routine, ``pivot_table``, which succinctly handles this type of multi-dimensional aggregation. Pivot Table SyntaxHere is the equivalent to the preceding operation using the ``pivot_table`` method of ``DataFrame``s: ###Code titanic.pivot_table('survived', index='sex', columns='class') ###Output _____no_output_____ ###Markdown This is eminently more readable than the ``groupby`` approach, and produces the same result.As you might expect of an early 20th-century transatlantic cruise, the survival gradient favors both women and higher classes.First-class women survived with near certainty (hi, Rose!), while only one in ten third-class men survived (sorry, Jack!). Multi-level pivot tablesJust as in the ``GroupBy``, the grouping in pivot tables can be specified with multiple levels, and via a number of options.For example, we might be interested in looking at age as a third dimension.We'll bin the age using the ``pd.cut`` function: ###Code age = pd.cut(titanic['age'], [0, 18, 80]) titanic.pivot_table('survived', ['sex', age], 'class') ###Output _____no_output_____ ###Markdown We can apply the same strategy when working with the columns as well; let's add info on the fare paid using ``pd.qcut`` to automatically compute quantiles: ###Code fare = pd.qcut(titanic['fare'], 2) titanic.pivot_table('survived', ['sex', age], [fare, 'class']) ###Output _____no_output_____ ###Markdown The result is a four-dimensional aggregation with hierarchical indices (see [Hierarchical Indexing](03.05-Hierarchical-Indexing.ipynb)), shown in a grid demonstrating the relationship between the values. Additional pivot table optionsThe full call signature of the ``pivot_table`` method of ``DataFrame``s is as follows:```python call signature as of Pandas 0.18DataFrame.pivot_table(data, values=None, index=None, columns=None, aggfunc='mean', fill_value=None, margins=False, dropna=True, margins_name='All')```We've already seen examples of the first three arguments; here we'll take a quick look at the remaining ones.Two of the options, ``fill_value`` and ``dropna``, have to do with missing data and are fairly straightforward; we will not show examples of them here.The ``aggfunc`` keyword controls what type of aggregation is applied, which is a mean by default.As in the GroupBy, the aggregation specification can be a string representing one of several common choices (e.g., ``'sum'``, ``'mean'``, ``'count'``, ``'min'``, ``'max'``, etc.) or a function that implements an aggregation (e.g., ``np.sum()``, ``min()``, ``sum()``, etc.).Additionally, it can be specified as a dictionary mapping a column to any of the above desired options: ###Code titanic.pivot_table(index='sex', columns='class', aggfunc={'survived':sum, 'fare':'mean'}) ###Output _____no_output_____ ###Markdown Notice also here that we've omitted the ``values`` keyword; when specifying a mapping for ``aggfunc``, this is determined automatically. At times it's useful to compute totals along each grouping.This can be done via the ``margins`` keyword: ###Code titanic.pivot_table('survived', index='sex', columns='class', margins=True) ###Output _____no_output_____ ###Markdown Here this automatically gives us information about the class-agnostic survival rate by gender, the gender-agnostic survival rate by class, and the overall survival rate of 38%.The margin label can be specified with the ``margins_name`` keyword, which defaults to ``"All"``. Example: Birthrate DataAs a more interesting example, let's take a look at the freely available data on births in the United States, provided by the Centers for Disease Control (CDC).This data can be found at https://raw.githubusercontent.com/jakevdp/data-CDCbirths/master/births.csv(this dataset has been analyzed rather extensively by Andrew Gelman and his group; see, for example, [this blog post](http://andrewgelman.com/2012/06/14/cool-ass-signal-processing-using-gaussian-processes/)): ###Code # shell command to download the data: # !curl -O https://raw.githubusercontent.com/jakevdp/data-CDCbirths/master/births.csv births = pd.read_csv('data/births.csv') ###Output _____no_output_____ ###Markdown Taking a look at the data, we see that it's relatively simple–it contains the number of births grouped by date and gender: ###Code births.head() ###Output _____no_output_____ ###Markdown We can start to understand this data a bit more by using a pivot table.Let's add a decade column, and take a look at male and female births as a function of decade: ###Code births['decade'] = 10 * (births['year'] // 10) births.pivot_table('births', index='decade', columns='gender', aggfunc='sum') ###Output _____no_output_____ ###Markdown We immediately see that male births outnumber female births in every decade.To see this trend a bit more clearly, we can use the built-in plotting tools in Pandas to visualize the total number of births by year (see [Introduction to Matplotlib](04.00-Introduction-To-Matplotlib.ipynb) for a discussion of plotting with Matplotlib): ###Code %matplotlib inline import matplotlib.pyplot as plt sns.set() # use Seaborn styles births.pivot_table('births', index='year', columns='gender', aggfunc='sum').plot() plt.ylabel('total births per year'); ###Output _____no_output_____ ###Markdown With a simple pivot table and ``plot()`` method, we can immediately see the annual trend in births by gender. By eye, it appears that over the past 50 years male births have outnumbered female births by around 5%. Further data explorationThough this doesn't necessarily relate to the pivot table, there are a few more interesting features we can pull out of this dataset using the Pandas tools covered up to this point.We must start by cleaning the data a bit, removing outliers caused by mistyped dates (e.g., June 31st) or missing values (e.g., June 99th).One easy way to remove these all at once is to cut outliers; we'll do this via a robust sigma-clipping operation: ###Code quartiles = np.percentile(births['births'], [25, 50, 75]) mu = quartiles[1] sig = 0.74 * (quartiles[2] - quartiles[0]) ###Output _____no_output_____ ###Markdown This final line is a robust estimate of the sample mean, where the 0.74 comes from the interquartile range of a Gaussian distribution (You can learn more about sigma-clipping operations in a book I coauthored with Željko Ivezić, Andrew J. Connolly, and Alexander Gray: ["Statistics, Data Mining, and Machine Learning in Astronomy"](http://press.princeton.edu/titles/10159.html) (Princeton University Press, 2014)).With this we can use the ``query()`` method (discussed further in [High-Performance Pandas: ``eval()`` and ``query()``](03.12-Performance-Eval-and-Query.ipynb)) to filter-out rows with births outside these values: ###Code births = births.query('(births > @mu - 5 * @sig) & (births < @mu + 5 * @sig)') ###Output _____no_output_____ ###Markdown Next we set the ``day`` column to integers; previously it had been a string because some columns in the dataset contained the value ``'null'``: ###Code # set 'day' column to integer; it originally was a string due to nulls births['day'] = births['day'].astype(int) ###Output _____no_output_____ ###Markdown Finally, we can combine the day, month, and year to create a Date index (see [Working with Time Series](03.11-Working-with-Time-Series.ipynb)).This allows us to quickly compute the weekday corresponding to each row: ###Code # create a datetime index from the year, month, day births.index = pd.to_datetime(10000 * births.year + 100 * births.month + births.day, format='%Y%m%d') births['dayofweek'] = births.index.dayofweek ###Output _____no_output_____ ###Markdown Using this we can plot births by weekday for several decades: ###Code import matplotlib.pyplot as plt import matplotlib as mpl births.pivot_table('births', index='dayofweek', columns='decade', aggfunc='mean').plot() plt.gca().set_xticklabels(['Mon', 'Tues', 'Wed', 'Thurs', 'Fri', 'Sat', 'Sun']) plt.ylabel('mean births by day'); ###Output _____no_output_____ ###Markdown Apparently births are slightly less common on weekends than on weekdays! Note that the 1990s and 2000s are missing because the CDC data contains only the month of birth starting in 1989.Another intersting view is to plot the mean number of births by the day of the *year*.Let's first group the data by month and day separately: ###Code births_by_date = births.pivot_table('births', [births.index.month, births.index.day]) births_by_date.head() ###Output _____no_output_____ ###Markdown The result is a multi-index over months and days.To make this easily plottable, let's turn these months and days into a date by associating them with a dummy year variable (making sure to choose a leap year so February 29th is correctly handled!) ###Code births_by_date.index = [pd.datetime(2012, month, day) for (month, day) in births_by_date.index] births_by_date.head() ###Output _____no_output_____ ###Markdown Focusing on the month and day only, we now have a time series reflecting the average number of births by date of the year.From this, we can use the ``plot`` method to plot the data. It reveals some interesting trends: ###Code # Plot the results fig, ax = plt.subplots(figsize=(12, 4)) births_by_date.plot(ax=ax); ###Output _____no_output_____
Research/GoogleSmartPhone/code/GSDC2_AssessAndCleanData.ipynb
###Markdown Load Libraries ###Code import numpy as np import pandas as pd from glob import glob import os import matplotlib.pyplot as plt from tqdm.notebook import tqdm from pathlib import Path import plotly.express as px import torch import torch.nn as nn import torch.nn.functional as F import torch.optim as optim from torch.utils.data import TensorDataset, DataLoader from sklearn.model_selection import train_test_split from sklearn.preprocessing import StandardScaler, MinMaxScaler ###Output _____no_output_____ ###Markdown Set Path ###Code data_dir = Path("../input/google-smartphone-decimeter-challenge") ###Output _____no_output_____ ###Markdown Load Data ###Code df_train = pd.read_pickle(str(data_dir / "gsdc_train.pkl.gzip")) df_test = pd.read_pickle(str(data_dir / "gsdc_test.pkl.gzip")) ###Output _____no_output_____ ###Markdown Check Dataset ###Code print(df_train.shape) df_train.head() print(df_test.shape) df_test.head() df_train.info(verbose = True, memory_usage= True, null_counts=True) df_test.info(verbose = True, memory_usage= True, null_counts=True) for col in df_train.columns: print(f"KEY {col}") if col in df_train.columns: print(f"train dtype: {df_train[col].dtype}, null: {df_train[col].isna().mean()}") if col in df_test.columns: print(f"test dtype: {df_test[col].dtype}, null: {df_test[col].isna().mean()}") print("") ###Output KEY collectionName train dtype: object, null: 0.0 test dtype: object, null: 0.0 KEY phoneName train dtype: object, null: 0.0 test dtype: object, null: 0.0 KEY millisSinceGpsEpoch train dtype: int64, null: 0.0 test dtype: int64, null: 0.0 KEY latDeg train dtype: float64, null: 0.0 test dtype: float64, null: 0.0 KEY lngDeg train dtype: float64, null: 0.0 test dtype: float64, null: 0.0 KEY heightAboveWgs84EllipsoidM train dtype: float64, null: 0.0 test dtype: float64, null: 0.0 KEY phone train dtype: object, null: 0.0 test dtype: object, null: 0.0 KEY timeSinceFirstFixSeconds train dtype: float64, null: 0.0 KEY hDop train dtype: float64, null: 0.0 KEY vDop train dtype: float64, null: 0.0 KEY speedMps train dtype: float64, null: 0.0 KEY courseDegree train dtype: float64, null: 0.0 KEY t_latDeg train dtype: float64, null: 0.0 KEY t_lngDeg train dtype: float64, null: 0.0 KEY t_heightAboveWgs84EllipsoidM train dtype: float64, null: 0.0 KEY constellationType train dtype: float64, null: 0.47261348235903217 test dtype: float64, null: 0.3933060796187395 KEY svid train dtype: float64, null: 0.47261348235903217 test dtype: float64, null: 0.3933060796187395 KEY signalType train dtype: object, null: 0.47261348235903217 test dtype: object, null: 0.3933060796187395 KEY receivedSvTimeInGpsNanos train dtype: float64, null: 0.47261348235903217 test dtype: float64, null: 0.3933060796187395 KEY xSatPosM train dtype: float64, null: 0.47261348235903217 test dtype: float64, null: 0.3933060796187395 KEY ySatPosM train dtype: float64, null: 0.47261348235903217 test dtype: float64, null: 0.3933060796187395 KEY zSatPosM train dtype: float64, null: 0.47261348235903217 test dtype: float64, null: 0.3933060796187395 KEY xSatVelMps train dtype: float64, null: 0.47261348235903217 test dtype: float64, null: 0.3933060796187395 KEY ySatVelMps train dtype: float64, null: 0.47261348235903217 test dtype: float64, null: 0.3933060796187395 KEY zSatVelMps train dtype: float64, null: 0.47261348235903217 test dtype: float64, null: 0.3933060796187395 KEY satClkBiasM train dtype: float64, null: 0.47261348235903217 test dtype: float64, null: 0.3933060796187395 KEY satClkDriftMps train dtype: float64, null: 0.47261348235903217 test dtype: float64, null: 0.3933060796187395 KEY rawPrM train dtype: float64, null: 0.47261348235903217 test dtype: float64, null: 0.3933060796187395 KEY rawPrUncM train dtype: float64, null: 0.47261348235903217 test dtype: float64, null: 0.3933060796187395 KEY isrbM train dtype: float64, null: 0.47261348235903217 test dtype: float64, null: 0.3933060796187395 KEY ionoDelayM train dtype: float64, null: 0.47261348235903217 test dtype: float64, null: 0.3933060796187395 KEY tropoDelayM train dtype: float64, null: 0.47261348235903217 test dtype: float64, null: 0.3933060796187395 KEY utcTimeMillis train dtype: float64, null: 0.7212848898296051 test dtype: float64, null: 0.487856065408915 KEY elapsedRealtimeNanos train dtype: float64, null: 0.7212848898296051 test dtype: float64, null: 0.487856065408915 KEY yawDeg train dtype: float64, null: 0.7212848898296051 test dtype: float64, null: 0.487856065408915 KEY rollDeg train dtype: float64, null: 0.7212848898296051 test dtype: float64, null: 0.487856065408915 KEY pitchDeg train dtype: float64, null: 0.7212848898296051 test dtype: float64, null: 0.487856065408915 KEY utcTimeMillis_Status train dtype: float64, null: 0.14724916629867066 test dtype: float64, null: 0.11254180967579738 KEY SignalCount train dtype: float64, null: 0.14724916629867066 test dtype: float64, null: 0.11254180967579738 KEY SignalIndex train dtype: float64, null: 0.14724916629867066 test dtype: float64, null: 0.11254180967579738 KEY ConstellationType train dtype: float64, null: 0.14724916629867066 test dtype: float64, null: 0.11254180967579738 KEY Svid train dtype: float64, null: 0.14724916629867066 test dtype: float64, null: 0.11254180967579738 KEY CarrierFrequencyHz train dtype: float64, null: 0.14858917939425317 test dtype: float64, null: 0.11434536431803773 KEY Cn0DbHz train dtype: float64, null: 0.14724916629867066 test dtype: float64, null: 0.11254180967579738 KEY AzimuthDegrees train dtype: float64, null: 0.14724916629867066 test dtype: float64, null: 0.11254180967579738 KEY ElevationDegrees train dtype: float64, null: 0.14724916629867066 test dtype: float64, null: 0.11254180967579738 KEY UsedInFix train dtype: float64, null: 0.14724916629867066 test dtype: float64, null: 0.11254180967579738 KEY HasAlmanacData train dtype: float64, null: 0.14724916629867066 test dtype: float64, null: 0.11254180967579738 KEY HasEphemerisData train dtype: float64, null: 0.14724916629867066 test dtype: float64, null: 0.11254180967579738 KEY BasebandCn0DbHz train dtype: float64, null: 0.8446346180201306 test dtype: float64, null: 0.7579957589139322 KEY utcTimeMillis_UncalMag train dtype: float64, null: 0.1333008481673798 test dtype: float64, null: 0.12249961742780316 KEY elapsedRealtimeNanos_UncalMag train dtype: float64, null: 0.1333008481673798 test dtype: float64, null: 0.12249961742780316 KEY UncalMagXMicroT train dtype: float64, null: 0.1333008481673798 test dtype: float64, null: 0.12249961742780316 KEY UncalMagYMicroT train dtype: float64, null: 0.1333008481673798 test dtype: float64, null: 0.12249961742780316 KEY UncalMagZMicroT train dtype: float64, null: 0.1333008481673798 test dtype: float64, null: 0.12249961742780316 KEY BiasXMicroT train dtype: float64, null: 0.43065432230360434 test dtype: float64, null: 0.487856065408915 KEY BiasYMicroT train dtype: float64, null: 0.43065432230360434 test dtype: float64, null: 0.487856065408915 KEY BiasZMicroT train dtype: float64, null: 0.43065432230360434 test dtype: float64, null: 0.487856065408915 KEY utcTimeMillis_UncalAccel train dtype: float64, null: 0.1333008481673798 test dtype: float64, null: 0.12249961742780316 KEY elapsedRealtimeNanos_UncalAccel train dtype: float64, null: 0.1333008481673798 test dtype: float64, null: 0.12249961742780316 KEY UncalAccelXMps2 train dtype: float64, null: 0.1333008481673798 test dtype: float64, null: 0.12249961742780316 KEY UncalAccelYMps2 train dtype: float64, null: 0.1333008481673798 test dtype: float64, null: 0.12249961742780316 KEY UncalAccelZMps2 train dtype: float64, null: 0.1333008481673798 test dtype: float64, null: 0.12249961742780316 KEY BiasXMps2 train dtype: float64, null: 0.43065432230360434 test dtype: float64, null: 0.487856065408915 KEY BiasYMps2 train dtype: float64, null: 0.43065432230360434 test dtype: float64, null: 0.487856065408915 KEY BiasZMps2 train dtype: float64, null: 0.43065432230360434 test dtype: float64, null: 0.487856065408915 KEY utcTimeMillis_UncalGyro train dtype: float64, null: 0.1333008481673798 test dtype: float64, null: 0.12249961742780316 KEY elapsedRealtimeNanos_UncalGyro train dtype: float64, null: 0.1333008481673798 test dtype: float64, null: 0.12249961742780316 KEY UncalGyroXRadPerSec train dtype: float64, null: 0.1333008481673798 test dtype: float64, null: 0.12249961742780316 KEY UncalGyroYRadPerSec train dtype: float64, null: 0.1333008481673798 test dtype: float64, null: 0.12249961742780316 KEY UncalGyroZRadPerSec train dtype: float64, null: 0.1333008481673798 test dtype: float64, null: 0.12249961742780316 KEY DriftXRadPerSec train dtype: float64, null: 0.43065432230360434 test dtype: object, null: 0.487856065408915 KEY DriftYRadPerSec train dtype: float64, null: 0.43065432230360434 test dtype: float64, null: 0.487856065408915 KEY DriftZRadPerSec train dtype: float64, null: 0.43065432230360434 test dtype: float64, null: 0.487856065408915 KEY utcTimeMillis_Raw train dtype: int64, null: 0.0 test dtype: int64, null: 0.0 KEY TimeNanos train dtype: int64, null: 0.0 test dtype: int64, null: 0.0 KEY LeapSecond train dtype: float64, null: 0.6503174917391238 test dtype: float64, null: 0.6804975624685744 KEY TimeUncertaintyNanos train dtype: float64, null: 1.0 test dtype: float64, null: 1.0 KEY FullBiasNanos train dtype: int64, null: 0.0 test dtype: int64, null: 0.0 KEY BiasNanos train dtype: float64, null: 0.0 test dtype: float64, null: 0.0 KEY BiasUncertaintyNanos train dtype: float64, null: 0.0 test dtype: float64, null: 0.0 KEY DriftNanosPerSecond train dtype: float64, null: 0.10787866790516362 test dtype: float64, null: 0.06347419277266467 KEY DriftUncertaintyNanosPerSecond train dtype: float64, null: 0.10787866790516362 test dtype: float64, null: 0.06347419277266467 KEY HardwareClockDiscontinuityCount train dtype: int64, null: 0.0 test dtype: int64, null: 0.0 KEY Svid_Raw train dtype: int64, null: 0.0 test dtype: int64, null: 0.0 KEY TimeOffsetNanos train dtype: float64, null: 0.0 test dtype: float64, null: 0.0 KEY State train dtype: int64, null: 0.0 test dtype: int64, null: 0.0 KEY ReceivedSvTimeNanos train dtype: int64, null: 0.0 test dtype: int64, null: 0.0 KEY ReceivedSvTimeUncertaintyNanos train dtype: int64, null: 0.0 test dtype: int64, null: 0.0 KEY Cn0DbHz_Raw train dtype: float64, null: 0.0 test dtype: float64, null: 0.0 KEY PseudorangeRateMetersPerSecond train dtype: float64, null: 0.0 test dtype: float64, null: 0.0 KEY PseudorangeRateUncertaintyMetersPerSecond train dtype: float64, null: 0.0 test dtype: float64, null: 0.0 KEY AccumulatedDeltaRangeState train dtype: int64, null: 0.0 test dtype: int64, null: 0.0 KEY AccumulatedDeltaRangeMeters train dtype: float64, null: 0.0 test dtype: float64, null: 0.0 KEY AccumulatedDeltaRangeUncertaintyMeters train dtype: float64, null: 0.0 test dtype: float64, null: 0.0 KEY CarrierFrequencyHz_Raw train dtype: float64, null: 0.0 test dtype: float64, null: 0.0 KEY CarrierCycles train dtype: float64, null: 1.0 test dtype: float64, null: 1.0 KEY CarrierPhase train dtype: float64, null: 1.0 test dtype: float64, null: 1.0 KEY CarrierPhaseUncertainty train dtype: float64, null: 1.0 test dtype: float64, null: 1.0 KEY MultipathIndicator train dtype: int64, null: 0.0 test dtype: int64, null: 0.0 KEY SnrInDb train dtype: float64, null: 1.0 test dtype: float64, null: 1.0 KEY ConstellationType_Raw train dtype: int64, null: 0.0 test dtype: int64, null: 0.0 KEY AgcDb train dtype: float64, null: 0.06000365458116977 test dtype: float64, null: 0.04684869816146733 KEY BasebandCn0DbHz_Raw train dtype: float64, null: 0.8020815885246151 test dtype: float64, null: 0.7114859104125222 KEY FullInterSignalBiasNanos train dtype: float64, null: 0.8020815885246151 test dtype: float64, null: 0.7114859104125222 KEY FullInterSignalBiasUncertaintyNanos train dtype: float64, null: 0.8020815885246151 test dtype: float64, null: 0.7114859104125222 KEY SatelliteInterSignalBiasNanos train dtype: float64, null: 0.891854852217874 test dtype: float64, null: 0.8104846643202238 KEY SatelliteInterSignalBiasUncertaintyNanos train dtype: float64, null: 0.891854852217874 test dtype: float64, null: 0.8104846643202238 KEY CodeType train dtype: object, null: 0.36728540756193756 test dtype: object, null: 0.3653564479811119 KEY ChipsetElapsedRealtimeNanos train dtype: float64, null: 0.62987467832072 test dtype: float64, null: 0.5401919419364711 ###Markdown Data Assess and Clean Remove empty columns ###Code drop_cols = [] for col in df_train.columns: if col in df_train.columns and col in df_test.columns: if df_train[col].isna().mean() == 1 or df_test[col].isna().mean() == 1: drop_cols.append(col) df_train.drop(columns = drop_cols, inplace = True) df_test.drop(columns = drop_cols, inplace = True) ###Output _____no_output_____ ###Markdown Change data type ###Code # 서로 다른 데이터 타입이 존재하는 열이 있는지 확인한다. for col in df_train.columns: if col in df_train.columns and col in df_test.columns: if df_train[col].dtype == df_test[col].dtype: pass else: print(f"KEY {col}") print(df_train[col].dtype, df_test[col].dtype) print("") col = 'DriftXRadPerSec' df_temp = df_test.copy() df_temp[col] = df_temp[col].apply(lambda x: x if type(x) == float else x + "-4" if x[-1] == 'E' else x) df_temp[col] = df_temp[col].apply(lambda x: x if type(x) == float else float(x)) df_test = df_temp.copy() # 서로 다른 데이터 타입이 존재하는 열이 있는지 확인한다. for col in df_train.columns: if col in df_train.columns and col in df_test.columns: if df_train[col].dtype == df_test[col].dtype: pass else: print(f"KEY {col}") print(df_train[col].dtype, df_test[col].dtype) print("") ###Output _____no_output_____ ###Markdown Output ###Code df_train.to_pickle(str(data_dir / "gsdc_cleaned_train.pkl.gzip")) df_test.to_pickle(str(data_dir / "gsdc_cleaned_test.pkl.gzip")) ###Output _____no_output_____
hail/python/hail/docs/tutorials/05-filter-annotate.ipynb
###Markdown Filtering and Annotation Tutorial FilterYou can filter the rows of a table with [Table.filter](https://hail.is/docs/0.2/hail.Table.htmlhail.Table.filter). This returns a table of those rows for which the expression evaluates to `True`. ###Code import hail as hl import seaborn hl.utils.get_movie_lens('data/') users = hl.read_table('data/users.ht') users.filter(users.occupation == 'programmer').count() ###Output _____no_output_____ ###Markdown AnnotateYou can add new fields to a table with [annotate](https://hail.is/docs/0.2/hail.Table.htmlhail.Table.annotate). Let's mean-center and variance-normalize the `age` field. ###Code stats = users.aggregate(hl.agg.stats(users.age)) missing_occupations = hl.set(['other', 'none']) t = users.annotate( cleaned_occupation = hl.cond(missing_occupations.contains(users.occupation), hl.null('str'), users.occupation)) t.show() ###Output _____no_output_____ ###Markdown Note: `annotate` is functional: it doesn't mutate `users`, but returns a new table. This is also true of `filter`. In fact, all operations in Hail are functional. ###Code users.describe() ###Output _____no_output_____ ###Markdown There are two other annotate methods: [select](https://hail.is/docs/0.2/hail.Table.htmlhail.Table.select) and [transmute](https://hail.is/docs/0.2/hail.Table.htmlhail.Table.transmute). `select` returns a table with the key and an entirely new set of value fields. `transmute` replaces any fields mentioned on the right-hand side with the new fields, but leaves unmentioned fields unchanged. `transmute` is useful for transforming data into a new form. How about some examples? ###Code (users.select(len_occupation = hl.len(users.occupation)) .describe()) (users.transmute( cleaned_occupation = hl.cond(missing_occupations.contains(users.occupation), hl.null(hl.tstr), users.occupation)) .describe()) ###Output _____no_output_____ ###Markdown Finally, you can add global fields with [annotate_globals](https://hail.is/docs/0.2/hail.Table.htmlhail.Table.annotate_globals). Globals are useful for storing metadata about a dataset or storing small data structures like sets and maps. ###Code t = users.annotate_globals(cohort = 5, cloudable = hl.set(['sample1', 'sample10', 'sample15'])) t.describe() t.cloudable hl.eval(t.cloudable) ###Output _____no_output_____ ###Markdown Filtering and Annotation Tutorial FilterYou can filter the rows of a table with [Table.filter](https://hail.is/docs/0.2/hail.Table.htmlhail.Table.filter). This returns a table of those rows for which the expression evaluates to `True`. ###Code import hail as hl hl.utils.get_movie_lens('data/') users = hl.read_table('data/users.ht') users.filter(users.occupation == 'programmer').count() ###Output _____no_output_____ ###Markdown AnnotateYou can add new fields to a table with [annotate](https://hail.is/docs/0.2/hail.Table.htmlhail.Table.annotate). Let's mean-center and variance-normalize the `age` field. ###Code stats = users.aggregate(hl.agg.stats(users.age)) missing_occupations = hl.set(['other', 'none']) t = users.annotate( cleaned_occupation = hl.cond(missing_occupations.contains(users.occupation), hl.null('str'), users.occupation)) t.show() ###Output _____no_output_____ ###Markdown Note: `annotate` is functional: it doesn't mutate `users`, but returns a new table. This is also true of `filter`. In fact, all operations in Hail are functional. ###Code users.describe() ###Output _____no_output_____ ###Markdown There are two other annotate methods: [select](https://hail.is/docs/0.2/hail.Table.htmlhail.Table.select) and [transmute](https://hail.is/docs/0.2/hail.Table.htmlhail.Table.transmute). `select` returns a table with the key and an entirely new set of value fields. `transmute` replaces any fields mentioned on the right-hand side with the new fields, but leaves unmentioned fields unchanged. `transmute` is useful for transforming data into a new form. How about some examples? ###Code (users.select(len_occupation = hl.len(users.occupation)) .describe()) (users.transmute( cleaned_occupation = hl.cond(missing_occupations.contains(users.occupation), hl.null(hl.tstr), users.occupation)) .describe()) ###Output _____no_output_____ ###Markdown Finally, you can add global fields with [annotate_globals](https://hail.is/docs/0.2/hail.Table.htmlhail.Table.annotate_globals). Globals are useful for storing metadata about a dataset or storing small data structures like sets and maps. ###Code t = users.annotate_globals(cohort = 5, cloudable = hl.set(['sample1', 'sample10', 'sample15'])) t.describe() t.cloudable hl.eval(t.cloudable) ###Output _____no_output_____ ###Markdown Filtering and Annotation Tutorial FilterYou can filter the rows of a table with [Table.filter](https://hail.is/docs/0.2/hail.Table.htmlhail.Table.filter). This returns a table of those rows for which the expression evaluates to `True`. ###Code import hail as hl hl.utils.get_movie_lens('data/') users = hl.read_table('data/users.ht') users.filter(users.occupation == 'programmer').count() ###Output _____no_output_____ ###Markdown We can also express this query in multiple ways using [aggregations](https://hail.is/docs/0.2/tutorials/04-aggregation.html): ###Code users.aggregate(hl.agg.filter(users.occupation == 'programmer', hl.agg.count())) users.aggregate(hl.agg.counter(users.occupation == 'programmer'))[True] ###Output _____no_output_____ ###Markdown AnnotateYou can add new fields to a table with [annotate](https://hail.is/docs/0.2/hail.Table.htmlhail.Table.annotate). As an example, let's create a new column called `cleaned_occupation` that replaces missing entries in the `occupation` field labeled as 'other' with 'none.' ###Code missing_occupations = hl.set(['other', 'none']) t = users.annotate( cleaned_occupation = hl.if_else(missing_occupations.contains(users.occupation), hl.missing('str'), users.occupation)) t.show() ###Output _____no_output_____ ###Markdown Compare this to what we had before: ###Code users.show() ###Output _____no_output_____ ###Markdown Note: `annotate` is functional: it doesn't mutate `users`, but returns a new table. This is also true of `filter`. In fact, all operations in Hail are functional. ###Code users.describe() ###Output _____no_output_____ ###Markdown Select and TransmuteThere are two other annotate methods: [select](https://hail.is/docs/0.2/hail.Table.htmlhail.Table.select) and [transmute](https://hail.is/docs/0.2/hail.Table.htmlhail.Table.transmute). `select` allows you to create new tables from old ones by selecting existing fields, or creating new ones. First, let's extract the `sex` and `occupation` fields: ###Code users.select(users.sex, users.occupation).show() ###Output _____no_output_____ ###Markdown We can also create a new field that stores the age relative to the average. Note that new fields *must* be assigned a name (in this case `mean_shifted_age`): ###Code mean_age = round(users.aggregate(hl.agg.stats(users.age)).mean) users.select(users.sex, users.occupation, mean_shifted_age = users.age - mean_age).show() ###Output _____no_output_____ ###Markdown `transmute` replaces any fields mentioned on the right-hand side with the new fields, but leaves unmentioned fields unchanged. `transmute` is useful for transforming data into a new form. Compare the following two snippts of code. The second is identical to the first with `transmute` replacing `select.` ###Code missing_occupations = hl.set(['other', 'none']) t = users.select( cleaned_occupation = hl.if_else(missing_occupations.contains(users.occupation), hl.missing('str'), users.occupation)) t.show() missing_occupations = hl.set(['other', 'none']) t = users.transmute( cleaned_occupation = hl.if_else(missing_occupations.contains(users.occupation), hl.missing('str'), users.occupation)) t.show() ###Output _____no_output_____ ###Markdown Global Fields Finally, you can add global fields with [annotate_globals](https://hail.is/docs/0.2/hail.Table.htmlhail.Table.annotate_globals). Globals are useful for storing metadata about a dataset or storing small data structures like sets and maps. ###Code t = users.annotate_globals(cohort = 5, cloudable = hl.set(['sample1', 'sample10', 'sample15'])) t.describe() t.cloudable hl.eval(t.cloudable) ###Output _____no_output_____ ###Markdown Filtering and Annotation Tutorial FilterYou can filter the rows of a table with [Table.filter](https://hail.is/docs/0.2/hail.Table.htmlhail.Table.filter). This returns a table of those rows for which the expression evaluates to `True`. ###Code import hail as hl hl.utils.get_movie_lens('data/') users = hl.read_table('data/users.ht') users.filter(users.occupation == 'programmer').count() ###Output _____no_output_____ ###Markdown We can also express this query in multiple ways using [aggregations](https://hail.is/docs/0.2/tutorials/04-aggregation.html): ###Code users.aggregate(hl.agg.filter(users.occupation == 'programmer', hl.agg.count())) users.aggregate(hl.agg.counter(users.occupation == 'programmer'))[True] ###Output _____no_output_____ ###Markdown AnnotateYou can add new fields to a table with [annotate](https://hail.is/docs/0.2/hail.Table.htmlhail.Table.annotate). As an example, let's create a new column called `cleaned_occupation` that replaces missing entries in the `occupation` field labeled as 'other' with 'none.' ###Code missing_occupations = hl.set(['other', 'none']) t = users.annotate( cleaned_occupation = hl.if_else(missing_occupations.contains(users.occupation), hl.null('str'), users.occupation)) t.show() ###Output _____no_output_____ ###Markdown Compare this to what we had before: ###Code users.show() ###Output _____no_output_____ ###Markdown Note: `annotate` is functional: it doesn't mutate `users`, but returns a new table. This is also true of `filter`. In fact, all operations in Hail are functional. ###Code users.describe() ###Output _____no_output_____ ###Markdown Select and TransmuteThere are two other annotate methods: [select](https://hail.is/docs/0.2/hail.Table.htmlhail.Table.select) and [transmute](https://hail.is/docs/0.2/hail.Table.htmlhail.Table.transmute). `select` allows you to create new tables from old ones by selecting existing fields, or creating new ones. First, let's extract the `sex` and `occupation` fields: ###Code users.select(users.sex, users.occupation).show() ###Output _____no_output_____ ###Markdown We can also create a new field that stores the age relative to the average. Note that new fields *must* be assigned a name (in this case `mean_shifted_age`): ###Code mean_age = round(users.aggregate(hl.agg.stats(users.age)).mean) users.select(users.sex, users.occupation, mean_shifted_age = users.age - mean_age).show() ###Output _____no_output_____ ###Markdown `transmute` replaces any fields mentioned on the right-hand side with the new fields, but leaves unmentioned fields unchanged. `transmute` is useful for transforming data into a new form. Compare the following two snippts of code. The second is identical to the first with `transmute` replacing `select.` ###Code missing_occupations = hl.set(['other', 'none']) t = users.select( cleaned_occupation = hl.if_else(missing_occupations.contains(users.occupation), hl.null('str'), users.occupation)) t.show() missing_occupations = hl.set(['other', 'none']) t = users.transmute( cleaned_occupation = hl.if_else(missing_occupations.contains(users.occupation), hl.null('str'), users.occupation)) t.show() ###Output _____no_output_____ ###Markdown Global Fields Finally, you can add global fields with [annotate_globals](https://hail.is/docs/0.2/hail.Table.htmlhail.Table.annotate_globals). Globals are useful for storing metadata about a dataset or storing small data structures like sets and maps. ###Code t = users.annotate_globals(cohort = 5, cloudable = hl.set(['sample1', 'sample10', 'sample15'])) t.describe() t.cloudable hl.eval(t.cloudable) ###Output _____no_output_____ ###Markdown Filtering and Annotation Tutorial FilterYou can filter the rows of a table with [Table.filter](https://hail.is/docs/0.2/hail.Table.htmlhail.Table.filter). This returns a table of those rows for which the expression evaluates to `True`. ###Code import hail as hl hl.utils.get_movie_lens('data/') users = hl.read_table('data/users.ht') users.filter(users.occupation == 'programmer').count() ###Output _____no_output_____ ###Markdown AnnotateYou can add new fields to a table with [annotate](https://hail.is/docs/0.2/hail.Table.htmlhail.Table.annotate). Let's mean-center and variance-normalize the `age` field. ###Code stats = users.aggregate(hl.agg.stats(users.age)) missing_occupations = hl.set(['other', 'none']) t = users.annotate( cleaned_occupation = hl.cond(missing_occupations.contains(users.occupation), hl.null('str'), users.occupation)) t.show() ###Output _____no_output_____ ###Markdown Note: `annotate` is functional: it doesn't mutate `users`, but returns a new table. This is also true of `filter`. In fact, all operations in Hail are functional. ###Code users.describe() ###Output _____no_output_____ ###Markdown There are two other annotate methods: [select](https://hail.is/docs/0.2/hail.Table.htmlhail.Table.select) and [transmute](https://hail.is/docs/0.2/hail.Table.htmlhail.Table.transmute). `select` returns a table with the key and an entirely new set of value fields. `transmute` replaces any fields mentioned on the right-hand side with the new fields, but leaves unmentioned fields unchanged. `transmute` is useful for transforming data into a new form. How about some examples? ###Code (users.select(len_occupation = hl.len(users.occupation)) .describe()) (users.transmute( cleaned_occupation = hl.cond(missing_occupations.contains(users.occupation), hl.null(hl.tstr), users.occupation)) .describe()) ###Output _____no_output_____ ###Markdown Finally, you can add global fields with [annotate_globals](https://hail.is/docs/0.2/hail.Table.htmlhail.Table.annotate_globals). Globals are useful for storing metadata about a dataset or storing small data structures like sets and maps. ###Code t = users.annotate_globals(cohort = 5, cloudable = hl.set(['sample1', 'sample10', 'sample15'])) t.describe() t.cloudable hl.eval(t.cloudable) ###Output _____no_output_____ ###Markdown Filtering and Annotation Tutorial FilterYou can filter the rows of a table with [Table.filter](https://hail.is/docs/0.2/hail.Table.htmlhail.Table.filter). This returns a table of those rows for which the expression evaluates to `True`. ###Code import hail as hl hl.utils.get_movie_lens('data/') users = hl.read_table('data/users.ht') users.filter(users.occupation == 'programmer').count() ###Output _____no_output_____ ###Markdown We can also express this query in multiple ways using [aggregations](https://hail.is/docs/0.2/tutorials/04-aggregation.html): ###Code users.aggregate(hl.agg.filter(users.occupation == 'programmer', hl.agg.count())) users.aggregate(hl.agg.counter(users.occupation == 'programmer'))[True] ###Output _____no_output_____ ###Markdown AnnotateYou can add new fields to a table with [annotate](https://hail.is/docs/0.2/hail.Table.htmlhail.Table.annotate). As an example, let's create a new column called `cleaned_occupation` that replaces missing entries in the `occupation` field labeled as 'other' with 'none.' ###Code missing_occupations = hl.set(['other', 'none']) t = users.annotate( cleaned_occupation = hl.cond(missing_occupations.contains(users.occupation), hl.null('str'), users.occupation)) t.show() ###Output _____no_output_____ ###Markdown Compare this to what we had before: ###Code users.show() ###Output _____no_output_____ ###Markdown Note: `annotate` is functional: it doesn't mutate `users`, but returns a new table. This is also true of `filter`. In fact, all operations in Hail are functional. ###Code users.describe() ###Output _____no_output_____ ###Markdown Select and TransmuteThere are two other annotate methods: [select](https://hail.is/docs/0.2/hail.Table.htmlhail.Table.select) and [transmute](https://hail.is/docs/0.2/hail.Table.htmlhail.Table.transmute). `select` allows you to create new tables from old ones by selecting existing fields, or creating new ones. First, let's extract the `sex` and `occupation` fields: ###Code users.select(users.sex, users.occupation).show() ###Output _____no_output_____ ###Markdown We can also create a new field that stores the age relative to the average. Note that new fields *must* be assigned a name (in this case `mean_shifted_age`): ###Code mean_age = round(users.aggregate(hl.agg.stats(users.age)).mean) users.select(users.sex, users.occupation, mean_shifted_age = users.age - mean_age).show() ###Output _____no_output_____ ###Markdown `transmute` replaces any fields mentioned on the right-hand side with the new fields, but leaves unmentioned fields unchanged. `transmute` is useful for transforming data into a new form. Compare the following two snippts of code. The second is identical to the first with `transmute` replacing `select.` ###Code missing_occupations = hl.set(['other', 'none']) t = users.select( cleaned_occupation = hl.cond(missing_occupations.contains(users.occupation), hl.null('str'), users.occupation)) t.show() missing_occupations = hl.set(['other', 'none']) t = users.transmute( cleaned_occupation = hl.cond(missing_occupations.contains(users.occupation), hl.null('str'), users.occupation)) t.show() ###Output _____no_output_____ ###Markdown Global Fields Finally, you can add global fields with [annotate_globals](https://hail.is/docs/0.2/hail.Table.htmlhail.Table.annotate_globals). Globals are useful for storing metadata about a dataset or storing small data structures like sets and maps. ###Code t = users.annotate_globals(cohort = 5, cloudable = hl.set(['sample1', 'sample10', 'sample15'])) t.describe() t.cloudable hl.eval(t.cloudable) ###Output _____no_output_____
assignments/assignment9/Assignment9_Model1_CoQA_dataset.ipynb
###Markdown Model v1 ###Code import torch import torch.nn as nn import torch.optim as optim import pandas as pd from torchtext.data import Example,Field, BucketIterator,Dataset import spacy import numpy as np import random import math import time SEED = 1234 random.seed(SEED) np.random.seed(SEED) torch.manual_seed(SEED) torch.cuda.manual_seed(SEED) torch.backends.cudnn.deterministic = True pd.set_option('display.max_colwidth', -1) train=pd.read_json('http://downloads.cs.stanford.edu/nlp/data/coqa/coqa-train-v1.0.json') test=pd.read_json('http://downloads.cs.stanford.edu/nlp/data/coqa/coqa-dev-v1.0.json') train['data'][0]['story'] import time def data_prep(dt): st=time.time() story=[] question=[] answer=[] for i in range(0,dt.data.shape[0]): sty=dt.data[i]['story'] for j in range(0,len(dt.data[i]['questions'])): story.append(sty) question.append(dt.data[i]['questions'][j]['input_text']) answer.append(dt.data[i]['answers'][j]['input_text']) print(time.time()-st) return(story,question,answer) # import time # def data_prep(dt): # st=time.time() # story=[] # question=[] # answer=[] # for i in range(0,dt.data.shape[0]): # sty=dt.data[i]['story'] # story.append(sty) # q=[] # a=[] # for j in range(0,len(dt.data[i]['questions'])): # q.append(dt.data[i]['questions'][j]['input_text']) # q1=" ".join(q) # a.append(dt.data[i]['answers'][j]['input_text']) # a1=" ".join(a) # question.append(q1) # answer.append(a1) # print(time.time()-st) # return(story,question,answer) st_train,question_train,answer_train=data_prep(train) st_train[0] question_train[0] st_train,question_train,answer_train=data_prep(train) train_data=pd.DataFrame( {'story': st_train, 'question': question_train, 'answer': answer_train }) train_data.shape MAX_LEN = 100 train_data['story'] = train_data['story'].apply(lambda x: ' '.join(x.split(' ')[:MAX_LEN])) train_data['story'][0] len(train_data['story'][0]) train_data['sty_ques']=train_data['story']+" "+train_data['question'] train_data.head() st_test,question_test,answer_test=data_prep(test) test_data=pd.DataFrame( {'story': st_test, 'question': question_test, 'answer': answer_test }) test_data.shape test_data['story'] = test_data['story'].apply(lambda x: " ".join(x.split(' ')[:MAX_LEN])) test_data['sty_ques']=test_data['story']+" "+test_data['question'] test_data.head() ###Output _____no_output_____ ###Markdown Obtaining only revelent fields from the data set ###Code train_cols=train_data[['sty_ques','answer']] test_cols=test_data[['sty_ques','answer']] train_cols.shape test_cols.shape ###Output _____no_output_____ ###Markdown Create our fields to process our data ###Code question = Field(tokenize='spacy', init_token='<sos>', eos_token='<eos>', lower=True) answer = Field(tokenize='spacy', init_token='<sos>', eos_token='<eos>', lower=True) fields = [('questions', question),('answers',answer)] fields example = [Example.fromlist([train_cols.sty_ques[i],train_cols.answer[i]], fields) for i in range(train_cols.shape[0])] questionDataset = Dataset(example, fields) #(train, valid) = questionDataset.split(split_ratio=[0.80, 0.20], random_state=random.seed(SEED)) train=questionDataset print(len(train)) print(vars(train.examples[0])) print(vars(train.examples[0])) example1 = [Example.fromlist([test_cols.sty_ques[i],test_cols.answer[i]], fields) for i in range(test_cols.shape[0])] valid = Dataset(example1, fields) len(valid) MAX_VOCAB_SIZE = 25_000 question.build_vocab(train,max_size = MAX_VOCAB_SIZE, vectors = "glove.6B.100d",unk_init = torch.Tensor.normal_,min_freq = 2) answer.build_vocab(train,max_size = MAX_VOCAB_SIZE, vectors = "glove.6B.100d",unk_init = torch.Tensor.normal_,min_freq = 2) device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') device BATCH_SIZE = 64 train_iterator, valid_iterator = BucketIterator.splits( (train, valid), batch_size = BATCH_SIZE, device = device,sort=False) class Encoder(nn.Module): def __init__(self, input_dim, emb_dim, hid_dim, dropout): super().__init__() self.hid_dim = hid_dim self.embedding = nn.Embedding(input_dim, emb_dim) #no dropout as only one layer! self.rnn = nn.GRU(emb_dim, hid_dim) self.dropout = nn.Dropout(dropout) def forward(self, src): #src = [src len, batch size] embedded = self.dropout(self.embedding(src)) #embedded = [src len, batch size, emb dim] outputs, hidden = self.rnn(embedded) #no cell state! #outputs = [src len, batch size, hid dim * n directions] #hidden = [n layers * n directions, batch size, hid dim] #outputs are always from the top hidden layer return hidden class Decoder(nn.Module): def __init__(self, output_dim, emb_dim, hid_dim, dropout): super().__init__() self.hid_dim = hid_dim self.output_dim = output_dim self.embedding = nn.Embedding(output_dim, emb_dim) self.rnn = nn.GRU(emb_dim + hid_dim, hid_dim) self.fc_out = nn.Linear(emb_dim + hid_dim * 2, output_dim) self.dropout = nn.Dropout(dropout) def forward(self, input, hidden, context): #input = [batch size] #hidden = [n layers * n directions, batch size, hid dim] #context = [n layers * n directions, batch size, hid dim] #n layers and n directions in the decoder will both always be 1, therefore: #hidden = [1, batch size, hid dim] #context = [1, batch size, hid dim] input = input.unsqueeze(0) #input = [1, batch size] embedded = self.dropout(self.embedding(input)) #embedded = [1, batch size, emb dim] emb_con = torch.cat((embedded, context), dim = 2) #emb_con = [1, batch size, emb dim + hid dim] output, hidden = self.rnn(emb_con, hidden) #output = [seq len, batch size, hid dim * n directions] #hidden = [n layers * n directions, batch size, hid dim] #seq len, n layers and n directions will always be 1 in the decoder, therefore: #output = [1, batch size, hid dim] #hidden = [1, batch size, hid dim] output = torch.cat((embedded.squeeze(0), hidden.squeeze(0), context.squeeze(0)), dim = 1) #output = [batch size, emb dim + hid dim * 2] prediction = self.fc_out(output) #prediction = [batch size, output dim] return prediction, hidden embedded = self.dropout(self.embedding(input)) #embedded = [1, batch size, emb dim] emb_con = torch.cat((embedded, context), dim = 2) #emb_con = [1, batch size, emb dim + hid dim] output, hidden = self.rnn(emb_con, hidden) #output = [seq len, batch size, hid dim * n directions] #hidden = [n layers * n directions, batch size, hid dim] #seq len, n layers and n directions will always be 1 in the decoder, therefore: #output = [1, batch size, hid dim] #hidden = [1, batch size, hid dim] output = torch.cat((embedded.squeeze(0), hidden.squeeze(0), context.squeeze(0)), dim = 1) #output = [batch size, emb dim + hid dim * 2] prediction = self.fc_out(output) #prediction = [batch size, output dim] return prediction, hidden class Seq2Seq(nn.Module): def __init__(self, encoder, decoder, device): super().__init__() self.encoder = encoder self.decoder = decoder self.device = device assert encoder.hid_dim == decoder.hid_dim, \ "Hidden dimensions of encoder and decoder must be equal!" def forward(self, src, trg, teacher_forcing_ratio = 0.5): #src = [src len, batch size] #trg = [trg len, batch size] #teacher_forcing_ratio is probability to use teacher forcing #e.g. if teacher_forcing_ratio is 0.75 we use ground-truth inputs 75% of the time batch_size = trg.shape[1] trg_len = trg.shape[0] trg_vocab_size = self.decoder.output_dim #tensor to store decoder outputs outputs = torch.zeros(trg_len, batch_size, trg_vocab_size).to(self.device) #last hidden state of the encoder is the context context = self.encoder(src) #context also used as the initial hidden state of the decoder hidden = context #first input to the decoder is the <sos> tokens input = trg[0,:] for t in range(1, trg_len): #insert input token embedding, previous hidden state and the context state #receive output tensor (predictions) and new hidden state output, hidden = self.decoder(input, hidden, context) #place predictions in a tensor holding predictions for each token outputs[t] = output #decide if we are going to use teacher forcing or not teacher_force = random.random() < teacher_forcing_ratio #get the highest predicted token from our predictions top1 = output.argmax(1) #if teacher forcing, use actual next token as next input #if not, use predicted token input = trg[t] if teacher_force else top1 return outputs INPUT_DIM = len(question.vocab) OUTPUT_DIM = len(answer.vocab) ENC_EMB_DIM = 256 DEC_EMB_DIM = 256 HID_DIM = 512 ENC_DROPOUT = 0.5 DEC_DROPOUT = 0.5 enc = Encoder(INPUT_DIM, ENC_EMB_DIM, HID_DIM, ENC_DROPOUT) dec = Decoder(OUTPUT_DIM, DEC_EMB_DIM, HID_DIM, DEC_DROPOUT) device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') model = Seq2Seq(enc, dec, device).to(device) print(INPUT_DIM) print(OUTPUT_DIM) def init_weights(m): for name, param in m.named_parameters(): nn.init.normal_(param.data, mean=0, std=0.01) model.apply(init_weights) optimizer = optim.Adam(model.parameters()) TRG_PAD_IDX = answer.vocab.stoi[answer.pad_token] criterion = nn.CrossEntropyLoss(ignore_index = TRG_PAD_IDX) def train(model, iterator, optimizer, criterion, clip): model.train() epoch_loss = 0 for i, batch in enumerate(iterator): src = batch.questions trg = batch.answers optimizer.zero_grad() output = model(src, trg) #trg = [trg len, batch size] #output = [trg len, batch size, output dim] output_dim = output.shape[-1] output = output[1:].view(-1, output_dim) trg = trg[1:].view(-1) #trg = [(trg len - 1) * batch size] #output = [(trg len - 1) * batch size, output dim] loss = criterion(output, trg) loss.backward() torch.nn.utils.clip_grad_norm_(model.parameters(), clip) optimizer.step() epoch_loss += loss.item() return epoch_loss / len(iterator) def evaluate(model, iterator, criterion): model.eval() epoch_loss = 0 with torch.no_grad(): for i, batch in enumerate(iterator): src = batch.questions trg = batch.answers output = model(src, trg, 0) #turn off teacher forcing #trg = [trg len, batch size] #output = [trg len, batch size, output dim] output_dim = output.shape[-1] output = output[1:].view(-1, output_dim) trg = trg[1:].view(-1) #trg = [(trg len - 1) * batch size] #output = [(trg len - 1) * batch size, output dim] loss = criterion(output, trg) epoch_loss += loss.item() return epoch_loss / len(iterator) def epoch_time(start_time, end_time): elapsed_time = end_time - start_time elapsed_mins = int(elapsed_time / 60) elapsed_secs = int(elapsed_time - (elapsed_mins * 60)) return elapsed_mins, elapsed_secs N_EPOCHS = 10 CLIP = 1 best_valid_loss = float('inf') for epoch in range(N_EPOCHS): start_time = time.time() train_loss = train(model, train_iterator, optimizer, criterion, CLIP) valid_loss = evaluate(model, valid_iterator, criterion) end_time = time.time() epoch_mins, epoch_secs = epoch_time(start_time, end_time) if valid_loss < best_valid_loss: best_valid_loss = valid_loss torch.save(model.state_dict(), 'tut2-model.pt') print(f'Epoch: {epoch+1:02} | Time: {epoch_mins}m {epoch_secs}s') print(f'\tTrain Loss: {train_loss:.3f} | Train PPL: {math.exp(train_loss):7.3f}') print(f'\t Val. Loss: {valid_loss:.3f} | Val. PPL: {math.exp(valid_loss):7.3f}') ###Output 100%|█████████▉| 399960/400000 [00:30<00:00, 26128.40it/s] ###Markdown ###Code model.load_state_dict(torch.load('tut2-model.pt')) test_loss, test_acc = evaluate(model, test_iterator, criterion) print(f'| Test Loss: {test_loss:.3f} | Test PPL: {math.exp(test_loss):7.3f} |') ###Output _____no_output_____
notebooks/01.0-custom-parsing/03.0-swamp-sparrow-custom-parsing.ipynb
###Markdown Swamp sparrow custom parsing- This dataset has: - A number of CSVs with individual, element, and song information- The data was originally in [luscinia](https://rflachlan.github.io/Luscinia/) format (h2 db). I exported individual tables as CSVs so that I could import them into python. - Because the data is already well annotated, all this notebook does is save data as WAV and generate JSONs corresponding to the data. - Dataset origin: - https://figshare.com/articles/SwampSparrow_luscdb_zip/5625310 ###Code %load_ext autoreload %autoreload 2 DATASET_ID = 'swamp_sparrow' from avgn.utils.general import prepare_env prepare_env() ###Output The autoreload extension is already loaded. To reload it, use: %reload_ext autoreload env: CUDA_VISIBLE_DEVICES=GPU ###Markdown Import relevant packages ###Code from joblib import Parallel, delayed from tqdm.autonotebook import tqdm import pandas as pd pd.options.display.max_columns = None import librosa from datetime import datetime import numpy as np import avgn from avgn.custom_parsing.lachlan_swampsparrow import string2int16, annotate_bouts from avgn.utils.paths import DATA_DIR ###Output _____no_output_____ ###Markdown Load data in original format ###Code # create a unique datetime identifier for the files output by this notebook DT_ID = datetime.now().strftime("%Y-%m-%d_%H-%M-%S") DT_ID DSLOC = avgn.utils.paths.Path('/mnt/cube/Datasets/swampsparrow/swampsparrow-xml/') individual = pd.read_csv(DSLOC / 'INDIVIDUAL.csv') individual[:3] syllables = pd.read_csv(DSLOC / 'SYLLABLE.csv') syllables[:3] elements = pd.read_csv(DSLOC / 'ELEMENT.csv') elements[:3] songdata = pd.read_csv(DSLOC / 'SONGDATA.csv') songdata[:3] wavs = pd.read_csv(DSLOC / 'WAVS.csv') wavs[:3] ###Output _____no_output_____ ###Markdown generate wavs and textgrids ###Code with Parallel(n_jobs=1, verbose=10) as parallel: parallel( delayed(annotate_bouts)( row, songdata[songdata.ID == row.ID].iloc[0], individual[individual.ID == songdata[songdata.ID == row.ID].iloc[0].INDIVIDUALID].iloc[0], elements[elements.SONGID == row.SONGID], syllables[syllables.SONGID == row.SONGID], DT_ID) for idx, row in tqdm(wavs.iterrows(), total=len(wavs)) ); """for idx, row in tqdm(wavs.iterrows(), total=len(wavs)): annotate_bouts( row, songdata[songdata.ID == row.ID].iloc[0], individual[individual.ID == songdata[songdata.ID == row.ID].iloc[0].INDIVIDUALID].iloc[0], elements[elements.SONGID == row.SONGID], syllables[syllables.SONGID == row.SONGID], DT_ID )""" ###Output _____no_output_____
Imbalance-Dataset/.ipynb_checkpoints/Handle-imbalance-data-with-smote-and-ann-checkpoint.ipynb
###Markdown Import package ###Code import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns import torch from torch import nn, optim from jcopdl.callback import Callback, set_config device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") device ###Output _____no_output_____ ###Markdown Load Data ###Code df = pd.read_csv("activity_km_07_01.csv") df.head() ###Output _____no_output_____ ###Markdown Mengganti nama kolom yang menggunakan spasi ###Code df.columns = df.columns.str.replace(" ","_") df.head() ###Output _____no_output_____ ###Markdown Cek Missing Values ###Code df.shape print("Total Rows : ", df.shape[0]) print("Total Cols : ", df.shape[1]) print("Total Missing Values : ", df.isnull().sum().sum()) pd.DataFrame({ 'Missing_values': df.isnull().sum(), 'Persentase_missing_values (%)': (df.isnull().sum()/len(df))*100 }) ###Output _____no_output_____ ###Markdown cek value target ###Code df.aksi.value_counts().to_frame() ###Output _____no_output_____ ###Markdown Handle Missing Value ###Code miss = pd.DataFrame({ 'Missing_values': df.isnull().sum(), 'Persentase_missing_values (%)': (df.isnull().sum()/len(df))*100 }) miss ###Output _____no_output_____ ###Markdown Suhu ###Code mean_temp = float(df.suhu.mean()) mean_temp df.suhu.fillna(value=mean_temp, inplace=True) ###Output _____no_output_____ ###Markdown cahaya ###Code mode_light = df.cahaya.mode()[0] mode_light df.cahaya.fillna(value=mode_light, inplace=True) ###Output _____no_output_____ ###Markdown PH ###Code mean_ph = float(df.PH.mean()) mean_ph df.PH.fillna(value=mean_ph, inplace=True) ###Output _____no_output_____ ###Markdown PPM ###Code mean_ppm = float(df.PPM.mean()) mean_ppm df.PPM.fillna(value=mean_ppm, inplace=True) miss = pd.DataFrame({ 'Missing_values': df.isnull().sum(), 'Persentase_missing_values (%)': (df.isnull().sum()/len(df))*100 }) miss ###Output _____no_output_____ ###Markdown Handle & detect outliers ###Code num_cols = np.array(['PH', 'suhu', 'PPM', 'tinggi_air']).reshape(2,2) nrows=2 ncols=2 fig, ax = plt.subplots(nrows=nrows, ncols=ncols, figsize=(20,10)) for i in range(nrows): for j in range(ncols): ax[i][j].set_title(num_cols[i][j]) df[[num_cols[i][j]]].boxplot(ax=ax[i][j]) plt.show() ###Output _____no_output_____ ###Markdown Suhu `ambil nilai suhu yang lebih dari nol saja` ###Code df[df.suhu < 0] df = df[df.suhu > 0] ###Output _____no_output_____ ###Markdown Tinggi air ###Code df[df.tinggi_air < 8000]['tinggi_air'].max() ###Output _____no_output_____ ###Markdown `ambil nilai dibawah 700` ###Code df = df[df.tinggi_air < 700] ###Output _____no_output_____ ###Markdown Visualisasi kembali ###Code nrows=2 ncols=2 fig, ax = plt.subplots(nrows=nrows, ncols=ncols, figsize=(20,10)) for i in range(nrows): for j in range(ncols): ax[i][j].set_title(num_cols[i][j]) df[[num_cols[i][j]]].boxplot(ax=ax[i][j]) plt.show() ###Output _____no_output_____ ###Markdown `Pada feature PH kami menganggap nilainya bukan pencilan karena masih dalam rentan nilai PH (1-14)` Cek Imbalance data ###Code plt.figure(figsize=(20,6)) sns.set_context('notebook', font_scale=1.5) sns.countplot('aksi',data=df, palette="Set1") plt.annotate(''+str(df['aksi'][df['aksi']=='Hidupkan Lampu dan Pompa nutrisi TDS'].count()), xy=(-0.2, 250), xytext=(-0.03, 40), size=15, color='r') plt.annotate(''+str(df['aksi'][df['aksi']=='Tidak melakukan apa-apa'].count()), xy=(-0.2, 100), xytext=(0.97, 200), size=15, color='w') plt.annotate(''+str(df['aksi'][df['aksi']=='Hidupkan Lampu'].count()), xy=(-0.2, 100), xytext=(1.97, 30), size=15, color='w') plt.annotate(''+str(df['aksi'][df['aksi']=='Hidupkan Pompa nutrisi TDS'].count()), xy=(-0.2, 100), xytext=(2.97, 30), size=15, color='purple') plt.tight_layout() plt.show() df.intensitas_air.unique() ###Output _____no_output_____ ###Markdown Encoding ###Code df_backup = df.copy(deep=True) #applymap dengan dict untuk label encoding mapping = {'Rendah sekali': 1, 'Rendah': 2, 'Cukup': 3, 'Tinggi': 4} df.intensitas_air = df[['intensitas_air']].applymap(mapping.get) # # one hot encoding cahaya # cahaya = pd.get_dummies(df.cahaya, prefix='cahaya_') # df = pd.concat([df, cahaya], axis=1) # df.drop(columns='cahaya', inplace=True) # df.head() df.cahaya.unique() #applymap dengan dict untuk label encoding mapping2 = {'Tidak ada': 0, 'Ada': 1} df.cahaya = df[['cahaya']].applymap(mapping2.get) #applymap dengan dict untuk label encoding mapping3 = {'Tidak melakukan apa-apa': 1, 'Hidupkan Lampu': 2, 'Hidupkan Pompa nutrisi TDS': 3, 'Hidupkan Lampu dan Pompa nutrisi TDS': 4} df.aksi = df[['aksi']].applymap(mapping3.get) df.head() df.corr()['aksi'].to_frame() X = df.drop(columns="aksi") y = df.aksi ###Output _____no_output_____ ###Markdown Handle dengan SMOTE ###Code from imblearn.over_sampling import SMOTE sm = SMOTE(random_state=42) X_sm, y_sm = sm.fit_resample(X, y) print(f'''Shape of X before SMOTE: {X.shape} Shape of X after SMOTE: {X_sm.shape}''') X_sm df_smote = pd.concat([X_sm, y_sm], axis=1) df_smote.head() df_smote.isnull().sum() ###Output _____no_output_____ ###Markdown Visualize ###Code df[df['aksi'] == 4].shape df_smote[df_smote['aksi'] == 4].shape ###Output _____no_output_____ ###Markdown Swap numeric menjadi kategoric lagi untuk visualisasi ###Code df_smote['intensitas_air'].unique() {value: key for key, value in mapping.items()} df_smote['intensitas_air'] = df_smote[['intensitas_air']].applymap({value: key for key, value in mapping.items()}.get) df_smote['cahaya'] = df_smote[['cahaya']].applymap({value: key for key, value in mapping2.items()}.get) df_smote['aksi'] = df_smote[['aksi']].applymap({value: key for key, value in mapping3.items()}.get) df_smote.head() ###Output _____no_output_____ ###Markdown PH ###Code import matplotlib.colors as mcolors plt.figure(figsize=(25,9)) df_smote.groupby('aksi')['PH'].mean().plot(kind='bar',color=['tab:blue', 'tab:orange', 'tab:green', 'tab:red']) plt.xticks(rotation=0) plt.title("Rata-rata PH") plt.tight_layout() plt.show() ph_aksi = df_smote.groupby('aksi')['PH'].mean().reset_index() ph_aksi ph_aksi.iloc[0]['PH'] plt.figure(figsize=(25,9)) splot = sns.barplot(x='aksi', y='PH', data=ph_aksi) plt.title("Rata-rata PH") # plt.annotate(str(ph_aksi.iloc[0]['PH']), xy=(-0.4, 2), xytext=(-0.29, 2), size=20, color='w') # plt.annotate(str(ph_aksi.iloc[1]['PH']), xy=(0.7, 3), xytext=(0.7, 3), size=20, color='w') # plt.annotate(str(ph_aksi.iloc[2]['PH']), xy=(1.7, 6), xytext=(1.7, 6), size=20, color='w') # plt.annotate(str(ph_aksi.iloc[3]['PH']), xy=(1.7, 3), xytext=(2.7, 3), size=20, color='w') for p in splot.patches: splot.annotate(format(p.get_height(), '.1f'), (p.get_x() + p.get_width() / 2., p.get_height()), ha = 'center', va = 'center', xytext = (0, 10), textcoords = 'offset points') plt.show() ###Output _____no_output_____ ###Markdown Intensitas Air ###Code df_smote.intensitas_air.unique() plt.figure(figsize=(25,10)) splot = sns.countplot(x='intensitas_air', hue='aksi', data=df_smote) for p in splot.patches: splot.annotate(format(p.get_height(), '.1f'), (p.get_x() + p.get_width() / 2., p.get_height()), ha = 'center', va = 'center', xytext = (0, 10), textcoords = 'offset points') plt.title("Value count intensitas air") plt.legend(bbox_to_anchor=(0.9,1)) plt.show() ###Output _____no_output_____ ###Markdown Cahaya ###Code plt.figure(figsize=(25,10)) splot = sns.countplot(x='cahaya', hue='aksi', data=df_smote) for p in splot.patches: splot.annotate(format(p.get_height(), '.1f'), (p.get_x() + p.get_width() / 2., p.get_height()), ha = 'center', va = 'center', xytext = (0, 10), textcoords = 'offset points') plt.title("Value count cahaya") plt.legend(bbox_to_anchor=(1,1)) plt.show() ###Output _____no_output_____ ###Markdown Suhu ###Code plt.figure(figsize=(25,9)) splot = sns.barplot(x='aksi', y='suhu', data=df_smote.groupby('aksi')['suhu'].mean().reset_index()) for p in splot.patches: splot.annotate(format(p.get_height(), '.1f'), (p.get_x() + p.get_width() / 2., p.get_height()), ha = 'center', va = 'center', xytext = (0, 10), textcoords = 'offset points') plt.title("Rata-rata suhu") plt.show() ###Output _____no_output_____ ###Markdown PPM ###Code plt.figure(figsize=(25,9)) splot = sns.barplot(x='aksi', y='PPM', data=df_smote.groupby('aksi')['PPM'].mean().reset_index()) for p in splot.patches: splot.annotate(format(p.get_height(), '.1f'), (p.get_x() + p.get_width() / 2., p.get_height()), ha = 'center', va = 'center', xytext = (0, 10), textcoords = 'offset points') plt.title("Rata-rata PPM") plt.show() ###Output _____no_output_____ ###Markdown Tinggi air ###Code plt.figure(figsize=(25,10)) splot = sns.barplot(x='aksi', y='tinggi_air', data=df_smote.groupby('aksi')['tinggi_air'].mean().reset_index()) for p in splot.patches: splot.annotate(format(p.get_height(), '.1f'), (p.get_x() + p.get_width() / 2., p.get_height()), ha = 'center', va = 'center', xytext = (0, 10), textcoords = 'offset points') plt.title("Rata-rata tinggi_air") plt.show() df_smote.isnull().sum() ###Output _____no_output_____ ###Markdown Encode kembali ###Code df_smote['intensitas_air'] = df_smote[['intensitas_air']].applymap(mapping.get) df_smote['cahaya'] = df_smote[['cahaya']].applymap(mapping2.get) # df_smote['aksi'] = df_smote[['aksi']].applymap(mapping3.get) # one hot encoding cahaya aksi = pd.get_dummies(df_smote.aksi, prefix='aksi') df_smote = pd.concat([df_smote, aksi], axis=1) df_smote.drop(columns='aksi', inplace=True) df_smote.head() df_smote.isnull().sum() ###Output _____no_output_____ ###Markdown Build ANN model ###Code import tensorflow as tf from tensorflow import keras from sklearn.model_selection import train_test_split feature = list(df_smote.columns[:6]) target = list(df_smote.columns[6:]) target df_smote.isnull().sum() X = df_smote[feature] y = df_smote[target] from sklearn.preprocessing import RobustScaler scaler = RobustScaler() # transform data X_scaled = scaler.fit_transform(X) print(X_scaled) X_train, X_test, y_train, y_test = train_test_split(X_scaled, y, test_size=0.2, stratify=y, random_state=42) X_train.shape, X_test.shape, y_train.shape, y_test.shape model = keras.Sequential([ keras.layers.Dense(units=8, input_shape=(6,)), keras.layers.Dense(units=16, activation='relu'), keras.layers.Dense(units=4, activation='softmax') ]) # isi code model.compile(optimizer=tf.keras.optimizers.SGD(learning_rate=0.001), loss=tf.keras.losses.categorical_crossentropy, metrics=['accuracy']) from tensorflow.keras.callbacks import EarlyStopping, ModelCheckpoint callback=EarlyStopping(monitor="val_loss",patience=50, verbose=1, mode='min') check_point = ModelCheckpoint('best_model.h5', monitor='val_accuracy', mode='max', verbose=1, save_best_only=True) # isi code history = model.fit(X_train, y_train, epochs=100, callbacks=[callback, check_point], validation_split=0.1) from tensorflow.keras.models import load_model # load model 2 untuk digunakan lagi dari file best_model = load_model('best_model.h5') loss, acc = best_model.evaluate(X_test, y_test, verbose=1) print('Test Accuracy_model_3: %.3f' % acc) plt.plot(history.history['loss']) plt.plot(history.history['val_loss'], c='r') plt.show() ###Output _____no_output_____
nlp-2019-autumn/lecture01/assignment-pattern-match.ipynb
###Markdown 基于模式匹配的对话机器人实现 Pattern Match机器能否实现对话,这个长久以来是衡量机器人是否具有智能的一个重要标志。 Alan Turing早在其文中就提出过一个测试机器智能程度的方法,该方法主要是考察人类是否能够通过对话内容区分对方是机器人还是真正的人类,如果人类无法区分,我们就称之为具有”智能“。而这个测试,后来被大家叫做”图灵测试“,之后也被翻拍成了一步著名电影,叫做《模拟游戏》。 既然图灵当年以此作为机器是否具备智能的标志,这项任务肯定是复杂的。自从 1960s 开始,诸多科学家就希望从各个方面来解决这个问题,直到如今,都只能解决一部分问题。 目前对话机器人的建立方法有很多,今天的作业中,我们为大家提供一共快速的基于模板的对话机器人配置方式。 ###Code def is_varaible(pattern): return pattern.startswith('?') and all(s.isalpha() for s in pattern[1:]) def pattern_match(pattern, saying): if not pattern or not saying: return [] if is_varaible(pattern[0]): return [(pattern[0], saying[0])] + pattern_match(pattern[1:], saying[1:]) else: if pattern[0] != saying[0]: return [] else: return pattern_match(pattern[1:], saying[1:]) pattern_match('?A + ?B = ?C'.split(), '3 + 2 = 5'.split()) def substitute(rule, parsed_rules): if not rule: return [] return [parsed_rules.get(rule[0], rule[0])] + substitute(rule[1:], parsed_rules) got_patterns = pattern_match('I want ?X'.split(), 'I want Iphone'.split()) ' '.join(substitute('What if you mean if you got ?X'.split(), dict(got_patterns))) defined_patterns = { "I need ?X": ["Image you will get ?X soon", "Why do you need ?X ?"], "My ?X told me something": ["Talk about more about your ?X", "How do you think about your ?X ?"] } import random def get_response(saying, rules=defined_patterns): for pattern in rules: got_patterns = pattern_match(pattern.split(), saying.split()) if got_patterns: return ' '.join(substitute(random.choice(rules[pattern]).split(), dict(got_patterns))) else: return "I don't konwn how to response you." print(get_response('I need Iphone')) print(get_response('My Mother told me something')) print(get_response("It's fine day")) ###Output Image you will get Iphone soon How do you think about your Mother ? I don't konwn how to response you. ###Markdown Segment Match 我们上边的这种形式,能够进行一些初级的对话了,但是我们的模式逐字逐句匹配的, "I need iPhone" 和 "I need ?X" 可以匹配,但是"I need an iPhone" 和 "I need ?X" 就不匹配了,那怎么办? 为了解决这个问题,我们可以新建一个变量类型 "?\*X", 这种类型多了一个星号(\*),表示匹配多个 ###Code def is_pattern_segment(pattern): return pattern.startswith('?*') and all(s.isalpha() for s in pattern[2:]) is_pattern_segment('?*Hello') fail = [True, None] def is_match(rest, saying): if not rest or not saying: return True if not all(a.isalpha() for a in rest[0]): return True if rest[0] != saying[0]: return False return is_match(rest[1:], saying[1:]) def segment_match(pattern, saying): seg_pattern, rest = pattern[0], pattern[1:] seg_pattern = seg_pattern.replace('?*', '?') if not rest: return (seg_pattern, saying), len(saying) for i, token in enumerate(saying): if rest[0] == token and is_match(rest[1:], saying[(i+1):]): return (seg_pattern, saying[:i]), i return (seg_pattern, saying), len(saying) def pattern_match_with_seg(pattern, saying): if not pattern or not saying: return [] if is_varaible(pattern[0]): return [(pattern[0], saying[0])] + pattern_match_with_seg(pattern[1:] ,saying[1:]) elif is_pattern_segment(pattern[0]): match, index = segment_match(pattern, saying) return [match] + pattern_match_with_seg(pattern[1:], saying[index:]) elif pattern[0] == saying[0]: return pattern_match_with_seg(pattern[1:], saying[1:]) else: return [True, None] pattern_match_with_seg('?*P is very good!'.split(), 'My dog is very good!'.split()) response_pair = { 'I need ?X': [ "Why do you neeed ?X" ], "I dont like my ?X": ["What bad things did ?X do for you?"] } def pattern2dict(patterns): return {k: ' '.join(v) if isinstance(v, list) else v for k, v in patterns} got_patterns = pattern_match_with_seg('I need ?*X'.split(), 'I need an ipad and an macbookpro'.split()) print(' '.join(substitute("Why do you neeed ?X".split(), pattern2dict(got_patterns)))) print(' '.join(substitute('What bad things did ?X for you?'.split(), pattern2dict( pattern_match_with_seg('I dont like my ?X'.split(), 'I dont like my Boss'.split()))))) # ("?*X hello ?*Y", "Hi, how do you do") ' '.join(substitute('Hi, how do you do'.split(), pattern2dict(pattern_match_with_seg('?*X hello ?*Y'.split(), 'hello Mike')))) ###Output _____no_output_____ ###Markdown Assignment 问题1编写一个程序, get_response(saying, response_rules)输入是一个字符串 + 我们定义的 rules,例如上边我们所写的 pattern, 输出是一个回答。 ###Code import random defined_patterns = { "I need ?*x": ["Image you will get ?x soon", "Why do you need ?x ?"], "My ?*X told me something": ["Talk about more about your ?X", "How do you think about your ?X ?"], } def get_response(saying, rules=defined_patterns): for pattern in rules: got_patterns = pattern_match_with_seg(pattern.split(), saying.split()) print(got_patterns) if got_patterns: return ' '.join(substitute(random.choice(rules[pattern]).split(), pattern2dict(got_patterns))) else: return "I don't konwn how to response you." get_response('I need an Ipad') ###Output [('?x', ['an', 'Ipad'])] ###Markdown 问题2改写以上程序,将程序变成能够支持中文输入的模式。*提示*: 你可以需用用到 jieba 分词 ###Code rule_responses = { '?*x hello ?*y': ['How do you do'], '?*x I want ?*y': ['what would it mean if you got ?y', 'Why do you want ?y', 'Suppose you got ?y soon'], '?*x if ?*y': ['Do you really think its likely that ?y', 'Do you wish that ?y', 'What do you think about ?y', 'Really-- if ?y'], '?*x no ?*y': ['why not?', 'You are being a negative', 'Are you saying \'No\' just to be negative?'], '?*x I was ?*y': ['Were you really', 'Perhaps I already knew you were ?y', 'Why do you tell me you were ?y now?'], '?*x I feel ?*y': ['Do you often feel ?y ?', 'What other feelings do you have?'], '?*x你好?*y': ['你好呀', '请告诉我你的问题'], '?*x我想?*y': ['你觉得?y有什么意义呢?', '为什么你想?y', '你可以想想你很快就可以?y了'], '?*x我想要?*y': ['?x想问你,你觉得?y有什么意义呢?', '为什么你想?y', '?x觉得... 你可以想想你很快就可以有?y了', '你看?x像?y不', '我看你就像?y'], '?*x喜欢?*y': ['喜欢?y的哪里?', '?y有什么好的呢?', '你想要?y吗?'], '?*x讨厌?*y': ['?y怎么会那么讨厌呢?', '讨厌?y的哪里?', '?y有什么不好呢?', '你不想要?y吗?'], '?*xAI?*y': ['你为什么要提AI的事情?', '你为什么觉得AI要解决你的问题?'], '?*x机器人?*y': ['你为什么要提机器人的事情?', '你为什么觉得机器人要解决你的问题?'], '?*x对不起?*y': ['不用道歉', '你为什么觉得你需要道歉呢?'], '?*x我记得?*y': ['你经常会想起这个吗?', '除了?y你还会想起什么吗?', '你为什么和我提起?y'], '?*x如果?*y': ['你真的觉得?y会发生吗?', '你希望?y吗?', '真的吗?如果?y的话', '关于?y你怎么想?'], '?*x我?*z梦见?*y':['真的吗? --- ?y', '你在醒着的时候,以前想象过?y吗?', '你以前梦见过?y吗'], '?*x妈妈?*y': ['你家里除了?y还有谁?', '嗯嗯,多说一点和你家里有关系的', '她对你影响很大吗?'], '?*x爸爸?*y': ['你家里除了?y还有谁?', '嗯嗯,多说一点和你家里有关系的', '他对你影响很大吗?', '每当你想起你爸爸的时候, 你还会想起其他的吗?'], '?*x我愿意?*y': ['我可以帮你?y吗?', '你可以解释一下,为什么想?y'], '?*x我很难过,因为?*y': ['我听到你这么说, 也很难过', '?y不应该让你这么难过的'], '?*x难过?*y': ['我听到你这么说, 也很难过', '不应该让你这么难过的,你觉得你拥有什么,就会不难过?', '你觉得事情变成什么样,你就不难过了?'], '?*x就像?*y': ['你觉得?x和?y有什么相似性?', '?x和?y真的有关系吗?', '怎么说?'], '?*x和?*y都?*z': ['你觉得?z有什么问题吗?', '?z会对你有什么影响呢?'], '?*x和?*y一样?*z': ['你觉得?z有什么问题吗?', '?z会对你有什么影响呢?'], '?*x我是?*y': ['真的吗?', '?x想告诉你,或许我早就知道你是?y', '你为什么现在才告诉我你是?y'], '?*x我是?*y吗': ['如果你是?y会怎么样呢?', '你觉得你是?y吗', '如果你是?y,那一位着什么?'], '?*x你是?*y吗': ['你为什么会对我是不是?y感兴趣?', '那你希望我是?y吗', '你要是喜欢, 我就会是?y'], '?*x你是?*y' : ['为什么你觉得我是?y'], '?*x因为?*y' : ['?y是真正的原因吗?', '你觉得会有其他原因吗?'], '?*x我不能?*y': ['你或许现在就能?*y', '如果你能?*y,会怎样呢?'], '?*x我觉得?*y': ['你经常这样感觉吗?', '除了到这个,你还有什么其他的感觉吗?'], '?*x我?*y你?*z': ['其实很有可能我们互相?y'], '?*x你为什么不?*y': ['你自己为什么不?y', '你觉得我不会?y', '等我心情好了,我就?y'], '?*x好的?*y': ['好的', '你是一个很正能量的人'], '?*x嗯嗯?*y': ['好的', '你是一个很正能量的人'], '?*x不嘛?*y': ['为什么不?', '你有一点负能量', '你说 不,是想表达不想的意思吗?'], '?*x不要?*y': ['为什么不?', '你有一点负能量', '你说 不,是想表达不想的意思吗?'], '?*x有些人?*y': ['具体是哪些人呢?'], '?*x有的人?*y': ['具体是哪些人呢?'], '?*x某些人?*y': ['具体是哪些人呢?'], '?*x每个人?*y': ['我确定不是人人都是', '你能想到一点特殊情况吗?', '例如谁?', '你看到的其实只是一小部分人'], '?*x所有人?*y': ['我确定不是人人都是', '你能想到一点特殊情况吗?', '例如谁?', '你看到的其实只是一小部分人'], '?*x总是?*y': ['你能想到一些其他情况吗?', '例如什么时候?', '你具体是说哪一次?', '真的---总是吗?'], '?*x一直?*y': ['你能想到一些其他情况吗?', '例如什么时候?', '你具体是说哪一次?', '真的---总是吗?'], '?*x或许?*y': ['你看起来不太确定'], '?*x可能?*y': ['你看起来不太确定'], '?*x电视很不错': ['嗯嗯,?x是狠不错', '?x我也很喜欢'], '?*x他们是?*y吗?': ['你觉得他们可能不是?y?'], '?*x': ['很有趣', '请继续', '我不太确定我很理解你说的, 能稍微详细解释一下吗?'] } import os import jieba import random fail = (True, None) def is_match(rest, saying): if not rest or not saying: return True # 分割下一个pattern, ? if not all(a.isalpha() for a in rest[0]): return True if rest[0] != saying[0]: return False return is_match(rest[1:], saying[1:]) def segment_match(pattern, saying): seg_pattern, rest = pattern[0], pattern[1:] seg_pattern = seg_pattern.replace('?*', '?') if not rest: return (seg_pattern, saying), len(saying) for i, token in enumerate(saying): if rest[0] == token and is_match(rest[1:], saying[(i+1):]): return (seg_pattern, saying[:i]), i return (seg_pattern, saying), len(saying) def pattern_match_with_seg(pattern, saying): if all([not pattern, not saying]): return [] if any([not pattern, not saying]): return [fail] if is_varaible(pattern[0]): return [(pattern[0], saying[0])] + pattern_match_with_seg(pattern[1:] ,saying[1:]) elif is_pattern_segment(pattern[0]): match, index = segment_match(pattern, saying) return [match] + pattern_match_with_seg(pattern[1:], saying[index:]) elif pattern[0] == saying[0]: return pattern_match_with_seg(pattern[1:], saying[1:]) else: return [fail] def is_pattern_match(got_patterns): if not got_patterns: return False for k, v in got_patterns: if k is True and v is None: return False return True def merge_token(tokens): if len(tokens) < 2: return tokens if tokens[0] == '?' and tokens[1].isalpha(): return [''.join(tokens[:2])] + merge_token(tokens[2:]) if len(tokens) > 2 and tokens[0] == '?' and tokens[1] == '*' and tokens[2].isalpha(): return [''.join(tokens[:3])] + merge_token(tokens[3:]) return [tokens[0]] + merge_token(tokens[1:]) def is_chinese(string): for ch in string: if ch > '\u4e00' and ch < '\u9fff': return True else: return False def cut_chinese(string): tokens = list(jieba.cut(string)) return merge_token(tokens) def cut(string): if is_chinese(string): return cut_chinese(string) else: return string.split() def get_response(saying, rules=rule_responses): for pattern in rules: got_patterns = pattern_match_with_seg(cut(pattern), cut(saying)) # print(pattern, got_patterns) if is_pattern_match(got_patterns): tokens = substitute(cut(random.choice(rules[pattern])), pattern2dict(got_patterns)) if is_chinese(saying): return ''.join(tokens) else: return ' '.join(tokens) else: return "I don't konwn how to response you." print(get_response('Mike hello John')) print(get_response('Mike John I want an Ipad')) print(get_response('亮剑电视很不错')) print(get_response('你好')) import jieba def is_chinese(string): for ch in string: if ch > '\u4e00' and ch < '\u9fff': return True else: return False def merge_token(tokens): if len(tokens) < 2: return tokens if tokens[0] == '?' and tokens[1].isalpha(): return [''.join(tokens[:2])] + merge_token(tokens[2:]) if len(tokens) > 2 and tokens[0] == '?' and tokens[1] == '*' and tokens[2].isalpha(): return [''.join(tokens[:3])] + merge_token(tokens[3:]) return [tokens[0]] + merge_token(tokens[1:]) def cut_chinese(string): tokens = list(jieba.cut(string)) return merge_token(tokens) def cut(string): if is_chinese(string): return cut_chinese(string) else: return string.split() cut('?*x所有人?y') ###Output _____no_output_____
EDA/TEAM-1_insurance_case_study.ipynb
###Markdown Importing GDrive ###Code from google.colab import drive drive.mount('/gdrive') ###Output Go to this URL in a browser: https://accounts.google.com/o/oauth2/auth?client_id=947318989803-6bn6qk8qdgf4n4g3pfee6491hc0brc4i.apps.googleusercontent.com&redirect_uri=urn%3aietf%3awg%3aoauth%3a2.0%3aoob&scope=email%20https%3a%2f%2fwww.googleapis.com%2fauth%2fdocs.test%20https%3a%2f%2fwww.googleapis.com%2fauth%2fdrive%20https%3a%2f%2fwww.googleapis.com%2fauth%2fdrive.photos.readonly%20https%3a%2f%2fwww.googleapis.com%2fauth%2fpeopleapi.readonly&response_type=code Enter your authorization code: ·········· Mounted at /gdrive ###Markdown Importing libraries ###Code import numpy as np import pandas as pd import seaborn as sns import matplotlib.pyplot as plt ###Output _____no_output_____ ###Markdown Defining path ###Code path = "/gdrive/My Drive/ML:March2020/Assignments/data/" data=pd.read_csv(path+"Insurance case study.csv") data.head() ###Output _____no_output_____ ###Markdown Knowing Data ###Code data.dtypes data.info() ###Output <class 'pandas.core.frame.DataFrame'> RangeIndex: 60 entries, 0 to 59 Data columns (total 9 columns): # Column Non-Null Count Dtype --- ------ -------------- ----- 0 Respon-dent 60 non-null int64 1 Concept Rating 60 non-null int64 2 Current Insurance Supplier 60 non-null object 3 Age 60 non-null int64 4 Marital Status 60 non-null object 5 Number of Cars 60 non-null int64 6 Average Age of Car(s) 60 non-null float64 7 Number of Trips 60 non-null int64 8 Unnamed: 8 0 non-null float64 dtypes: float64(2), int64(5), object(2) memory usage: 4.3+ KB ###Markdown Label encoding categorical data ###Code from sklearn.preprocessing import LabelEncoder CurrentInsuranceSupplier_labelencoder = LabelEncoder() data["Current Insurance Supplier "] = CurrentInsuranceSupplier_labelencoder.fit_transform(data["Current Insurance Supplier "]) MaritalStatus_labelencoder = LabelEncoder() data["Marital Status "] =MaritalStatus_labelencoder.fit_transform(data["Marital Status "]) data.head(10) data.describe() ###Output _____no_output_____ ###Markdown Various graphs for understanding ###Code sns.distplot(data['Concept Rating '],kde=True) #distance plot sns.barplot(x='Age',y="Respon-dent ",data=data) #Bar plot sns.barplot(x='Average Age of Car(s)',y='Number of Cars',data=data) #Bar plot sns.distplot(data['Number of Trips'],kde=True) #distance plot sns.scatterplot(x="Average Age of Car(s)", y="Number of Trips", data=data) #scatter plot sns.scatterplot(x="Number of Cars", y="Number of Trips", data=data) #scatter plot sns.boxplot(x="Current Insurance Supplier ", y="Concept Rating ",data=data) #Box plot sns.boxplot(x="Current Insurance Supplier ", y="Age",data=data) #Box plot sns.boxplot(x="Marital Status ", y="Age",data=data) #Box plot sns.catplot(x="Concept Rating ", y="Age",col="Current Insurance Supplier ", kind = 'bar',data=data, palette = "rainbow") #Categorical plot sns.catplot(x="Average Age of Car(s)", y="Number of Trips",col="Number of Cars", kind = 'bar',data=data, palette = "rainbow") #Categorical plot sns.catplot(x="Number of Cars", y="Number of Trips",col="Current Insurance Supplier ", kind = 'bar',data=data, palette = "rainbow") #Categorical plot sns.catplot(x="Number of Cars", y="Number of Trips",col="Marital Status ", kind = 'bar',data=data, palette = "rainbow") #Categorical plot sns.catplot(x="Age", y="Number of Cars",col="Marital Status ", kind = 'bar',data=data, palette = "rainbow") #Categorical plot sns.catplot(x="Concept Rating ", y="Number of Trips",col="Current Insurance Supplier ", kind = 'bar',data=data, palette = "rainbow") #Categorical plot ###Output _____no_output_____
_notebooks/unfinished/standard-neural-network.ipynb
###Markdown refer to https://towardsdatascience.com/coding-a-2-layer-neural-network-from-scratch-in-python-4dd022d19fd2 ###Code class dlnet: def __init__(self, x, y): self.X=x self.Y=y self.Yh=np.zeros((1,self.Y.shape[1])) self.L=2 self.dims = [9, 15, 1] self.param = {} self.ch = {} self.grad = {} self.loss = [] self.lr=0.003 self.sam = self.Y.shape[1] ###Output _____no_output_____ ###Markdown ![](https://i.loli.net/2021/05/17/u2EXoxtyan7gzWZ.png) ![](https://i.loli.net/2021/05/17/KE4SW8Z3yBwThxg.png) ###Code def nInit(self): np.random.seed(1) self.param['W1'] = np.random.randn(self.dims[1], self.dims[0]) / np.sqrt(self.dims[0]) self.param['b1'] = np.zeros((self.dims[1], 1)) self.param['W2'] = np.random.randn(self.dims[2], self.dims[1]) / np.sqrt(self.dims[1]) self.param['b2'] = np.zeros((self.dims[2], 1)) return def Sigmoid(Z): return 1/(1+np.exp(-Z)) def Relu(Z): return np.maximum(0,Z) def forward(self): Z1 = self.param['W1'].dot(self.X) + self.param['b1'] A1 = Relu(Z1) self.ch['Z1'],self.ch['A1']=Z1,A1 Z2 = self.param['W2'].dot(A1) + self.param['b2'] A2 = Sigmoid(Z2) self.ch['Z2'],self.ch['A2']=Z2,A2 self.Yh=A2 loss=self.nloss(A2) return self.Yh, loss def nloss(self,Yh): loss = (1./self.sam) * (-np.dot(self.Y,np.log(Yh).T) - np.dot(1-self.Y, np.log(1-Yh).T)) return loss ###Output _____no_output_____ ###Markdown ![](https://i.loli.net/2021/05/17/LIvziK4DOhH2f5p.png) ###Code def dRelu(x): x[x<=0] = 0 x[x>0] = 1 return x def dSigmoid(Z): s = 1/(1+np.exp(-Z)) dZ = s * (1-s) return dZ def backward(self): dLoss_Yh = - (np.divide(self.Y, self.Yh ) - np.divide(1 - self.Y, 1 - self.Yh)) dLoss_Z2 = dLoss_Yh * dSigmoid(self.ch['Z2']) dLoss_A1 = np.dot(self.param["W2"].T,dLoss_Z2) dLoss_W2 = 1./self.ch['A1'].shape[1] * np.dot(dLoss_Z2,self.ch['A1'].T) dLoss_b2 = 1./self.ch['A1'].shape[1] * np.dot(dLoss_Z2, np.ones([dLoss_Z2.shape[1],1])) dLoss_Z1 = dLoss_A1 * dRelu(self.ch['Z1']) dLoss_A0 = np.dot(self.param["W1"].T,dLoss_Z1) dLoss_W1 = 1./self.X.shape[1] * np.dot(dLoss_Z1,self.X.T) dLoss_b1 = 1./self.X.shape[1] * np.dot(dLoss_Z1, np.ones([dLoss_Z1.shape[1],1])) self.param["W1"] = self.param["W1"] - self.lr * dLoss_W1 self.param["b1"] = self.param["b1"] - self.lr * dLoss_b1 self.param["W2"] = self.param["W2"] - self.lr * dLoss_W2 self.param["b2"] = self.param["b2"] - self.lr * dLoss_b2 nn = dlnet(x,y) nn.gd(x, y, iter = 15000) def gd(self,X, Y, iter = 3000): np.random.seed(1) self.nInit() for i in range(0, iter): Yh, loss=self.forward() self.backward() if i % 500 == 0: print ("Cost after iteration %i: %f" %(i, loss)) self.loss.append(loss) return ###Output _____no_output_____
1_Array_creation_routines.ipynb
###Markdown Array creation routines Ones and zeros ###Code import numpy as np ###Output _____no_output_____ ###Markdown Create a new array of 2*2 integers, without initializing entries. Let X = np.array([1,2,3], [4,5,6], np.int32). Create a new array with the same shape and type as X. ###Code X = np.array([[1,2,3], [4,5,6]], np.int32) ###Output _____no_output_____ ###Markdown Create a 3-D array with ones on the diagonal and zeros elsewhere. Create a new array of 3*2 float numbers, filled with ones. Let x = np.arange(4, dtype=np.int64). Create an array of ones with the same shape and type as X. ###Code x = np.arange(4, dtype=np.int64) ###Output _____no_output_____ ###Markdown Create a new array of 3*2 float numbers, filled with zeros. Let x = np.arange(4, dtype=np.int64). Create an array of zeros with the same shape and type as X. ###Code x = np.arange(4, dtype=np.int64) ###Output _____no_output_____ ###Markdown Array creation routines Ones and zeros ###Code import numpy as np # импорт библиотеки numpy ###Output _____no_output_____ ###Markdown Create a new array of 2*2 integers, without initializing entries. ###Code np.zeros([2,2], int) # возвращает новый массив указанной формы и типа, заполненный нулями ###Output _____no_output_____ ###Markdown Let X = np.array([1,2,3], [4,5,6], np.int32). Create a new array with the same shape and type as X. ###Code X = np.array([[1,2,3], [4,5,6]], np.int32) np.empty_like(X) # возвращает новый массив без инициированных записей с формой и типом данных указанного массива ###Output _____no_output_____ ###Markdown Create a 3-D array with ones on the diagonal and zeros elsewhere. ###Code np.eye(3) # возвращает двумерный массив у которого все элементы по диагонали равны 1, а все остальные равны 0. ###Output _____no_output_____ ###Markdown Create a new array of 3*2 float numbers, filled with ones. ###Code np.ones([3,2]) # возвращает новый массив указанной формы и типа, заполненный единицами ###Output _____no_output_____ ###Markdown Let x = np.arange(4, dtype=np.int64). Create an array of ones with the same shape and type as X. ###Code x = np.arange(4, dtype=np.int64) # возвращает одномерный массив с равномерно разнесенными значениями внутри заданного интервала np.ones_like(x) # возвращает новый массив из единиц с формой и типом данных указанного массива ###Output _____no_output_____ ###Markdown Create a new array of 3*2 float numbers, filled with zeros. ###Code np.zeros([3,2]) # возвращает новый массив указанной формы и типа, заполненный нулями ###Output _____no_output_____ ###Markdown Let x = np.arange(4, dtype=np.int64). Create an array of zeros with the same shape and type as X. ###Code x = np.arange(4, dtype=np.int64) # возвращает одномерный массив с равномерно разнесенными значениями внутри заданного интервала np.zeros_like(x) # возвращает новый массив из нулей с формой и типом данных указанного массива ###Output _____no_output_____ ###Markdown Create a new array of 2*5 uints, filled with 6. ###Code np.full((2, 5),6,dtype=np.uint) # возвращает новый массив указанной формы и типа, заполненный указанным значением ###Output _____no_output_____ ###Markdown Let x = np.arange(4, dtype=np.int64). Create an array of 6's with the same shape and type as X. ###Code x = np.arange(4, dtype=np.int64) np.full_like(x, 6) # возвращает новый массив все элементы которого равны указанному значению, а форма и тип данных такие же как массива x ###Output _____no_output_____ ###Markdown From existing data Create an array of [1, 2, 3]. ###Code np.array([1,2,3]) # создание массива из списка или кортежа ###Output _____no_output_____ ###Markdown Let x = [1, 2]. Convert it into an array. ###Code x = [1,2] np.asarray(x) # преобразует последовательность в массив NumPy. Если x итак массив NumPy, не делает ничего ###Output _____no_output_____ ###Markdown Let X = np.array([[1, 2], [3, 4]]). Convert it into a matrix. ###Code X = np.array([[1, 2], [3, 4]]) np.asmatrix(X) # интерпретирует входные данные как матрицу ###Output _____no_output_____ ###Markdown Let x = [1, 2]. Conver it into an array of `float`. ###Code x = [1, 2] np.asfarray(x) # преобразует тип входного массива к вещественному типу float64 ###Output _____no_output_____ ###Markdown Let x = np.array([30]). Convert it into scalar of its single element, i.e. 30. ###Code x = np.array([30]) x.item() # преобразует массив с одним элементом в его скалярный эквивалент ###Output _____no_output_____ ###Markdown Let x = np.array([1, 2, 3]). Create a array copy of x, which has a different id from x. ###Code x = np.array([1, 2, 3]) y = np.copy(x) # возвращает массив-копию указанного объекта print(id(x),x) print(id(y),y) ###Output 2080842828256 [1 2 3] 2080842826016 [1 2 3] ###Markdown Numerical ranges Create an array of 2, 4, 6, 8, ..., 100. ###Code np.arange(2, 101, 2) # возвращает одномерный массив с равномерно разнесенными значениями внутри заданного интервала ###Output _____no_output_____ ###Markdown Create a 1-D array of 50 evenly spaced elements between 3. and 10., inclusive. ###Code np.linspace(3,10,50) # возвращает одномерный массив из указанного количества элементов, значения которых равномерно распределенны внутри заданного интервала ###Output _____no_output_____ ###Markdown Create a 1-D array of 50 element spaced evenly on a log scale between 3. and 10., exclusive. ###Code np.logspace(3,10,50,endpoint=False) # возвращает 1-мерный массив из указанного кол-ва элементов, значения которых равномерно распределенны по логарифмической шкале внутри заданного интервала ###Output _____no_output_____ ###Markdown Building matrices Let X = np.array([[ 0, 1, 2, 3], [ 4, 5, 6, 7], [ 8, 9, 10, 11]]). Get the diagonal of X, that is, [0, 5, 10]. ###Code X = np.array([[ 0, 1, 2, 3], [ 4, 5, 6, 7], [ 8, 9, 10, 11]]) np.diagonal(X) # возвращает указанные диагонали массива ###Output _____no_output_____ ###Markdown Create a 2-D array whose diagonal equals [1, 2, 3, 4] and 0's elsewhere. ###Code np.diagflat([1,2,3,4], k=0) # сжимает входной массив до одной оси и строит из него диагональный массив (k-индекс диагонали) ###Output _____no_output_____ ###Markdown Create an array which looks like below.array([[ 0., 0., 0., 0., 0.], [ 1., 0., 0., 0., 0.], [ 1., 1., 0., 0., 0.]]) ###Code np.tri(3, M=5, k=-1, dtype='float') # возвращает треугольный массив в котором на заданной диагонали и ниже ее расположены единицы, а выше нее расположены нули ###Output _____no_output_____ ###Markdown Create an array which looks like below.array([[ 0, 0, 0], [ 4, 0, 0], [ 7, 8, 0], [10, 11, 12]]) ###Code X = np.arange(1,13).reshape(4,3) np.tril(X,-1) # преобразует указанный массив в треугольный у которого все элементы выше указанной диагонали равны 0. ###Output _____no_output_____ ###Markdown Create an array which looks like below. array([[ 1, 2, 3], [ 4, 5, 6], [ 0, 8, 9], [ 0, 0, 12]]) ###Code X = np.arange(1,13).reshape(4,3) np.triu(X,-1) # преобразует указанный массив в треугольный у которого все элементы ниже указанной диагонали равны 0 ###Output _____no_output_____ ###Markdown Array creation routines Ones and zeros ###Code import numpy as np ###Output _____no_output_____ ###Markdown Create a new array of 2*2 integers, without initializing entries. ###Code np.zeros(4,int).reshape(2,2) ###Output _____no_output_____ ###Markdown Let X = np.array([1,2,3], [4,5,6], np.int32). Create a new array with the same shape and type as X. ###Code X = np.array([[1,2,3], [4,5,6]], np.int32) X np.empty_like(X) ###Output _____no_output_____ ###Markdown Create a 3-D array with ones on the diagonal and zeros elsewhere. ###Code np.eye(3) np.identity(3) ###Output _____no_output_____ ###Markdown Create a new array of 3*2 float numbers, filled with ones. ###Code np.ones([3,2],dtype=float) ###Output _____no_output_____ ###Markdown Let x = np.arange(4, dtype=np.int64). Create an array of ones with the same shape and type as X. ###Code x = np.arange(4, dtype=np.int64) x = np.arange(4, dtype=np.int64) np.ones_like(x) ###Output _____no_output_____ ###Markdown Create a new array of 3*2 float numbers, filled with zeros. ###Code np.zeros([3,2],dtype=float) ###Output _____no_output_____ ###Markdown Let x = np.arange(4, dtype=np.int64). Create an array of zeros with the same shape and type as X. ###Code x = np.arange(4, dtype=np.int64) x = np.arange(4, dtype=np.int64) np.zeros_like(x) ###Output _____no_output_____ ###Markdown Create a new array of 2*5 uints, filled with 6. ###Code np.full((2,5),6,dtype=np.uint32) ###Output _____no_output_____ ###Markdown Let x = np.arange(4, dtype=np.int64). Create an array of 6's with the same shape and type as X. ###Code x = np.arange(4, dtype=np.int64) x = np.arange(4, dtype=np.int64) np.full_like(x, 6) ###Output _____no_output_____ ###Markdown From existing data Create an array of [1, 2, 3]. ###Code np.array([1,2,3]) ###Output _____no_output_____ ###Markdown Let x = [1, 2]. Convert it into an array. ###Code x = [1,2] x = [1,2] np.asarray(x) ###Output _____no_output_____ ###Markdown Let X = np.array([[1, 2], [3, 4]]). Convert it into a matrix. ###Code X = np.array([[1, 2], [3, 4]]) X = np.array([[1, 2], [3, 4]]) np.asmatrix(X) ###Output _____no_output_____ ###Markdown Let x = [1, 2]. Conver it into an array of `float`. ###Code x = [1, 2] x = [1, 2] np.asfarray(x) ###Output _____no_output_____ ###Markdown Let x = np.array([30]). Convert it into scalar of its single element, i.e. 30. ###Code x = np.array([30]) x = np.array([30]) np.asscalar(x) ###Output _____no_output_____ ###Markdown Let x = np.array([1, 2, 3]). Create a array copy of x, which has a different id from x. ###Code x = np.array([1, 2, 3]) x = np.array([1, 2, 3]) y =np.copy(x) print (id(x),id(y)) ###Output 1606853064384 1606853064464 ###Markdown Numerical ranges Create an array of 2, 4, 6, 8, ..., 100. ###Code np.arange(2,102,2) ###Output _____no_output_____ ###Markdown Create a 1-D array of 50 evenly spaced elements between 3. and 10., inclusive. ###Code np.linspace(3.,10.,50) ###Output _____no_output_____ ###Markdown Create a 1-D array of 50 element spaced evenly on a log scale between 3. and 10., exclusive. ###Code np.logspace(3.,10.,50,endpoint=False) ###Output _____no_output_____ ###Markdown Building matrices Let X = np.array([[ 0, 1, 2, 3], [ 4, 5, 6, 7], [ 8, 9, 10, 11]]). Get the diagonal of X, that is, [0, 5, 10]. ###Code X = np.array([[ 0, 1, 2, 3], [ 4, 5, 6, 7], [ 8, 9, 10, 11]]) X = np.array([[ 0, 1, 2, 3], [ 4, 5, 6, 7], [ 8, 9, 10, 11]]) X.diagonal() ###Output _____no_output_____ ###Markdown Create a 2-D array whose diagonal equals [1, 2, 3, 4] and 0's elsewhere. ###Code np.diag(np.arange(4)+1) ###Output _____no_output_____ ###Markdown Create an array which looks like below.array([[ 0., 0., 0., 0., 0.], [ 1., 0., 0., 0., 0.], [ 1., 1., 0., 0., 0.]]) ###Code np.tri(3,5,-1) ###Output _____no_output_____ ###Markdown Create an array which looks like below.array([[ 0, 0, 0], [ 4, 0, 0], [ 7, 8, 0], [10, 11, 12]]) ###Code np.tril(np.arange(1,13).reshape(4,3),-1) #np.tril() #Lower triangle of an array. np.tri(3,3,-1) ###Output _____no_output_____ ###Markdown Create an array which looks like below. array([[ 1, 2, 3], [ 4, 5, 6], [ 0, 8, 9], [ 0, 0, 12]]) ###Code np.triu(np.arange(1,13).reshape(4,3),-1) ###Output _____no_output_____ ###Markdown Create a new array of 2*5 uints, filled with 6. Let x = np.arange(4, dtype=np.int64). Create an array of 6's with the same shape and type as X. ###Code x = np.arange(4, dtype=np.int64) ###Output _____no_output_____ ###Markdown From existing data Create an array of [1, 2, 3]. Let x = [1, 2]. Convert it into an array. ###Code x = [1,2] ###Output _____no_output_____ ###Markdown Let X = np.array([[1, 2], [3, 4]]). Convert it into a matrix. ###Code X = np.array([[1, 2], [3, 4]]) ###Output _____no_output_____ ###Markdown Let x = [1, 2]. Conver it into an array of `float`. ###Code x = [1, 2] ###Output _____no_output_____ ###Markdown Let x = np.array([30]). Convert it into scalar of its single element, i.e. 30. ###Code x = np.array([30]) ###Output _____no_output_____ ###Markdown Let x = np.array([1, 2, 3]). Create a array copy of x, which has a different id from x. ###Code x = np.array([1, 2, 3]) ###Output 70140352 [1 2 3] 70140752 [1 2 3] ###Markdown Numerical ranges Create an array of 2, 4, 6, 8, ..., 100. Create a 1-D array of 50 evenly spaced elements between 3. and 10., inclusive. Create a 1-D array of 50 element spaced evenly on a log scale between 3. and 10., exclusive. Building matrices Let X = np.array([[ 0, 1, 2, 3], [ 4, 5, 6, 7], [ 8, 9, 10, 11]]). Get the diagonal of X, that is, [0, 5, 10]. ###Code X = np.array([[ 0, 1, 2, 3], [ 4, 5, 6, 7], [ 8, 9, 10, 11]]) ###Output _____no_output_____
notebooks/01_overview_of_learning_tasks.ipynb
###Markdown Time series learning tasks* What is machine learning with time series? * How is it different from standard machine learning? ###Code import matplotlib.pyplot as plt import numpy as np import pandas as pd %matplotlib inline ###Output _____no_output_____ ###Markdown Learning objectivesYou'll learn about* different time series learning tasks* how to tell them apart--- Single seriesTime series comes in many shapes and forms. As an example, consider that we observe a chemical process in a [bioreactor](https://en.wikipedia.org/wiki/Bioreactor). We may observe the repeated sensor readings for the pressure over time from a single bioreactor run. ###Code from utils import load_pressure pressure = load_pressure() fig, ax = plt.subplots(1, figsize=(16, 4)) pressure.plot(ax=ax) ax.set(ylabel="Pressure", xlabel="Time"); ###Output _____no_output_____ ###Markdown Suppose you only have a single time series, what are some real-world problems that you encounter and may want to solve with machine learning? > * Time series annotation (e.g. outlier/anomaly detection, segmentation)> * Forecasting--- Multiple time seriesYou may observe multiple time series. There are two ways in which this can happen: Multivariate time seriesHere we observe two or more variables over time, with variables representing *different kinds of measurements* within a single *experimental unit* (e.g. readings from different sensors of a single chemical process). ###Code from utils import load_temperature temperature = load_temperature() fig, (ax0, ax1) = plt.subplots(nrows=2, figsize=(16, 8), sharex=True) pressure.plot(ax=ax0) temperature.plot(ax=ax1) ax0.set(ylabel="Pressure") ax1.set(ylabel="Temperature", xlabel="Time"); ###Output _____no_output_____ ###Markdown Suppose you have multivariate time series, what are some real-world problems that you encounter and may want to solve with machine learning? > * Time series annotation with additional variables> * Forecasting with exogenous variables> * Vector forecasting (forecasting multiple series at the same time)--- Panel data Sometimes also called longitudinal data, here we observe multiple independent instances of the *same kind(s) of measurements* over time, e.g. sensor readings from multiple separate chemical processes). ###Code from utils import load_experiments experiments = load_experiments(variables="pressure") fig, ax = plt.subplots(1, figsize=(16, 4)) experiments.sample(5).T.plot(ax=ax) ax.set(ylabel="Pressure", xlabel="Time"); ###Output _____no_output_____ ###Markdown Time series learning tasks* What is machine learning with time series? * How is it different from standard machine learning? ###Code import matplotlib.pyplot as plt import numpy as np import pandas as pd %matplotlib inline ###Output _____no_output_____ ###Markdown Learning objectivesYou'll learn about* different time series learning tasks* how to tell them apart--- Single seriesTime series comes in many shapes and forms. As an example, consider that we observe a chemical process in a [bioreactor](https://en.wikipedia.org/wiki/Bioreactor). We may observe the repeated sensor readings for the pressure over time from a single bioreactor run. ###Code from utils import load_pressure pressure = load_pressure() fig, ax = plt.subplots(1, figsize=(16, 4)) pressure.plot(ax=ax) ax.set(ylabel="Pressure", xlabel="Time"); ###Output _____no_output_____ ###Markdown Suppose you only have a single time series, what are some real-world problems that you encounter and may want to solve with machine learning? > * Time series annotation (e.g. outlier/anomaly detection, segmentation)> * Forecasting--- Multiple time seriesYou may observe multiple time series. There are two ways in which this can happen: Multivariate time seriesHere we observe two or more variables over time, with variables representing *different kinds of measurements* within a single *experimental unit* (e.g. readings from different sensors of a single chemical process). ###Code from utils import load_temperature temperature = load_temperature() fig, (ax0, ax1) = plt.subplots(nrows=2, figsize=(16, 8), sharex=True) pressure.plot(ax=ax0) temperature.plot(ax=ax1) ax0.set(ylabel="Pressure") ax1.set(ylabel="Temperature", xlabel="Time"); ###Output _____no_output_____ ###Markdown Suppose you have multivariate time series, what are some real-world problems that you encounter and may want to solve with machine learning? > * Time series annotation with additional variables> * Forecasting with exogenous variables> * Vector forecasting (forecasting multiple series at the same time)--- Panel data Sometimes also called longitudinal data, here we observe multiple independent instances of the *same kind(s) of measurements* over time, e.g. sensor readings from multiple separate chemical processes). ###Code from utils import load_experiments experiments = load_experiments(variables="pressure") fig, ax = plt.subplots(1, figsize=(16, 4)) experiments.sample(10).T.plot(ax=ax) ax.set(ylabel="Pressure", xlabel="Time"); ###Output _____no_output_____
data_structure/enum.ipynb
###Markdown Creating Enumerations A new enumeration is defined using the class syntax by subclassing Enum and adding class attributes describing the values ###Code import enum class BugStatus(enum.Enum): new = 7 incomplete = 6 invalid = 5 wont_fix = 4 in_progress = 3 fix_committed = 2 fix_released = 1 print("member name: {}".format(BugStatus.wont_fix.name)) print("member value: {}".format(BugStatus.wont_fix.value)) ###Output _____no_output_____ ###Markdown Access to enumeration members and their attributes ###Code BugStatus(7) # if you want access enum members by name, use item access BugStatus[''] ###Output _____no_output_____ ###Markdown Iteration Iterating over the enum class pruduces the indivisual members of the member ###Code for status in BugStatus: print("{}:{}".format(status.name, status.value)) ###Output _____no_output_____ ###Markdown **Note**:The members are produced in the order they are declared in the class definition. The names and values are not used to sort them. Comparing Enums Because enumeration members are not ordered. They only support equality and identify test ###Code actual_state = BugStatus.wont_fix desired_state = BugStatus.fix_released print('Equality:', actual_state == desired_state, actual_state == BugStatus.wont_fix) print('Identity:', actual_state is desired_state, actual_state is BugStatus.wont_fix) print('Ordered by value:') try: print('\n'.join(' ' + s.name for s in sorted(BugStatus))) except TypeError as err: print(' Cannot sort: {}'.format(err)) ###Output _____no_output_____ ###Markdown IntEnumuse the `IntEnum` class for enumrations where the members need to behave more like numbers, for example, to support comparisons ###Code class BugStatusInt(enum.IntEnum): new = 7 incomplete = 6 invalid = 5 wont_fix = 4 in_progress = 3 fix_committed = 2 fix_released = 1 actual_state = BugStatusInt.wont_fix desired_state = BugStatusInt.fix_released print('Equality:', actual_state == desired_state, actual_state == BugStatusInt.wont_fix) print('Identity:', actual_state is desired_state, actual_state is BugStatusInt.wont_fix) print("comparison: ") print("new is bigger then invalid:", BugStatusInt.new > BugStatusInt.invalid) print('Ordered by value:') print('\n'.join(' ' + s.name for s in sorted(BugStatusInt))) ###Output _____no_output_____ ###Markdown Unique Enumeration Values Enum members with the same value are tracked as alias references to the same member object. Aliases do not cause repeated values to be present in the iterator for the Enum ###Code class BugStatusUnique(enum.Enum): new = 7 incomplete = 6 invalid = 5 wont_fix = 4 in_progress = 3 fix_committed = 2 fix_released = 1 by_design = 4 closed = 1 for status in BugStatusUnique: print('{:15} = {}'.format(status.name, status.value)) print('\nSame: by_design is wont_fix: ', BugStatusUnique.by_design is BugStatusUnique.wont_fix) print('Same: closed is fix_released: ', BugStatusUnique.closed is BugStatusUnique.fix_released) ###Output _____no_output_____ ###Markdown **To require all members to have unique values, add the decorator** ###Code @enum.unique class BugStatusUniqueDecorator(enum.Enum): new = 7 incomplete = 6 invalid = 5 wont_fix = 4 in_progress = 3 fix_committed = 2 fix_released = 1 # This will trigger an error with unique applied. by_design = 4 closed = 1 ###Output _____no_output_____ ###Markdown Members with repeated values trigger a `ValueError` exception when the `Enum` class being interpreted Create Enumerations Programmatically ###Code BugStatus = enum.Enum( value='BugStatus', names=('fix_released fix_committed in_progress ' 'wont_fix invalid incomplete new'), ) print('Member: {}'.format(BugStatus.new)) print('\nAll members:') for status in BugStatus: print('{:15} = {}'.format(status.name, status.value)) ###Output _____no_output_____ ###Markdown value: the name of the enumrationnames: lists the member of the enumeration, if a string is passed. it is split on the whitespace and commas. the value to names is starting with 1 If you want control the value associated with members, the names string can be replaced with a sequence of 2 part tuples or a dictionary mapping names to values ###Code BugStatus = enum.Enum( value='BugStatus', names=[ ('new', 7), ('incomplete', 6), ('invalid', 5), ('wont_fix', 4), ('in_progress', 3), ('fix_committed', 2), ('fix_released', 1), ], ) print('All members:') for status in BugStatus: print('{:15} = {}'.format(status.name, status.value)) ###Output _____no_output_____ ###Markdown Non-integer Member Values Enum member values are not restricted to integers. In fact, any type of object can be associated with a member. If the value is a tuple, the members are passed as individual arguments to __init__(). ###Code class BugStatus(enum.Enum): new = (7, ['incomplete', 'invalid', 'wont_fix', 'in_progress']) incomplete = (6, ['new', 'wont_fix']) invalid = (5, ['new']) wont_fix = (4, ['new']) in_progress = (3, ['new', 'fix_committed']) fix_committed = (2, ['in_progress', 'fix_released']) fix_released = (1, ['new']) def __init__(self, num, transitions): self.num = num self.transitions = transitions def can_transition(self, new_state): return new_state.name in self.transitions print('Name:', BugStatus.in_progress) print('Value:', BugStatus.in_progress.value) print('Custom attribute:', BugStatus.in_progress.transitions) print('Using attribute:', BugStatus.in_progress.can_transition(BugStatus.new)) BugStatus.new.transitions ###Output _____no_output_____ ###Markdown For more complex cases, tuples might become unwieldy. Since member values can be any type of object, dictionaries can be used for cases where there are a lot of separate attributes to track for each enum value. Complex values are passed directly to __init__() as the only argument other than self. ###Code import enum class BugStatus(enum.Enum): new = { 'num': 7, 'transitions': [ 'incomplete', 'invalid', 'wont_fix', 'in_progress', ], } incomplete = { 'num': 6, 'transitions': ['new', 'wont_fix'], } invalid = { 'num': 5, 'transitions': ['new'], } wont_fix = { 'num': 4, 'transitions': ['new'], } in_progress = { 'num': 3, 'transitions': ['new', 'fix_committed'], } fix_committed = { 'num': 2, 'transitions': ['in_progress', 'fix_released'], } fix_released = { 'num': 1, 'transitions': ['new'], } def __init__(self, vals): self.num = vals['num'] self.transitions = vals['transitions'] def can_transition(self, new_state): return new_state.name in self.transitions print('Name:', BugStatus.in_progress) print('Value:', BugStatus.in_progress.value) print('Custom attribute:', BugStatus.in_progress.transitions) print('Using attribute:', BugStatus.in_progress.can_transition(BugStatus.new)) ###Output _____no_output_____
Monelit Data Science/5. Lunes/NLP/reading_preprocessing.ipynb
###Markdown Lectura y preprocesamiento de documentos ###Code # Paquetes necesarios import re import pandas as pd import os import PyPDF2 import time import sys import pickle # Packages for text preprocessing import nltk ###Output _____no_output_____ ###Markdown Almacenar los documentos en una base de datos ###Code #--------------------------------------- # Cargar cada pdf en una lista de Python #--------------------------------------- #scriptPath = 'C:\\Users\\User\\Desktop\\DS4A_workspace\\Final Project\\DS4A-Final_Project-Team_28\\Personal\\Camilo' # Directorio de trabajo absoluto # Necesario para llamados relativos desde bucles scriptPath = sys.path[0] os.chdir(scriptPath + '/Last_conpes_pdfs') # Directorio con los pdfs files = os.listdir(scriptPath + '/Last_conpes_pdfs') # Lista vacía para llenar con cada pdf almacenado Database = [] # Bucle que abre cada pdf en Python for FILE in files: # Si termina en '.pdf' leerlo en formato binario y pegarlo a la lista if FILE.endswith('.pdf'): data = open(FILE,'rb') Database.append(data) ###Output _____no_output_____ ###Markdown Observemos los primeros 10 archivos ###Code Database[0:10] ###Output _____no_output_____ ###Markdown Leer los documentos con bucle Con el paquete PyPDF2 podemos leer archivos en pdf con facilidad. Sin embargo, hay varios documentos que no se encuentran en formato legible, es decir que para ellos hay que emplear el procedimiento de Reconocimiento Óptico de Caracteres. En este caso obviaremos dichos documentos por ser minoría. ###Code # Dataframe vacío que almacenará el nombre del PDF y su texto text_table = pd.DataFrame(index = [0], columns = ['PDF','Text']) fileIndex = 0 # Cntabilizar tiempo de ejecución t0 = time.time() # Para cada pdf que puede ser leído for file in files: # Leer como binario pdfFileObj = open(file,'rb') # Magia con PyPDF2 pdfReader = PyPDF2.PdfFileReader(pdfFileObj) # Empezar contador de páginas startPage = 0 # Caracter vacío para rellenarse con texto text = '' cleanText = '' # Mientras que el contador sea menor al número de páginas while startPage <= pdfReader.numPages-1: pageObj = pdfReader.getPage(startPage) text += pageObj.extractText() startPage += 1 pdfFileObj.close() # Para cada palabra dentro del texto for myWord in text: # Ignorar saltos de línea if myWord != '\n': cleanText += myWord # Objeto temporal que contiene el texto limpio text = cleanText # Crear fila vacía newRow = pd.DataFrame(index = [0], columns = ['PDF', 'Text']) # Rellenar la anterior fila con nombre y texto newRow.iloc[0]['PDF'] = file newRow.iloc[0]['Text'] = text # Concatenar la fila creada al dataframe creado por fuera del bucle text_table = pd.concat([text_table, newRow], ignore_index=True) t1 = time.time() # Tiempo total de ejecución total = t1-t0 ###Output _____no_output_____ ###Markdown Observemos el dataframe creado ###Code text_table = text_table.iloc[1:] text_table ###Output _____no_output_____ ###Markdown Limpieza del texto En procesamiento de lenguaje natural, para que una computadora pueda interpretar las palabras como números, es necesario realizar transformaciones sobre estas. En ese sentido, el texto se homogeniza retirando todos los elementos que no le aportan al verdadero significado del texto. Entre esos elementos encontramos:- Caracteres especiales.- Palabras mal escritas de corta longitud.- Acentos si estos con inconsistentes (en español corregir la ortografía es más complicado que en inglés).- Stop words: artículos, conectores y palabras que dependiendo del contexto se consideren stop words. ###Code # Remover caracteres que no son ASCII def remove_noChar(words): return [re.sub(u"[^a-zA-ZñÑáéíóúÁÉÍÓÚ ]","", word) for word in words] # Remover stopwords def remove_sw(words,sw_list): return [word for word in words if word not in sw_list] # Remover caracteres cortos def remove_shortW(words): return [word for word in words if len(word) > 2] # Remover acentos # Esto no es necesario para documentos que tienen buena ortografía def remove_tilde(words): return [r_tilde(word) for word in words] # Reemplazo de tildes def r_tilde(word): w=[] for letra in list(word): if letra == 'á': letra = 'a' if letra == 'é': letra = 'e' if letra == 'í': letra = 'i' if letra == 'ó': letra = 'o' if letra == 'ú': letra = 'u' w += letra return ''.join(w) # Función que usa las funciones anteriores def preProc_docs(documentos): documentos = [re.sub(r'[^\w\s]',' ',proy) for proy in documentos] documentos = [[word for word in texto.lower().split()] for texto in documentos] documentos = [remove_noChar(text) for text in documentos] #documentos = [remove_tilde(text) for text in documentos] documentos = [remove_sw(words_lst, all_stopwords) for words_lst in documentos] documentos = [remove_shortW(text) for text in documentos] return [' '.join(item) for item in documentos] nltk.download('words') # archivo stopwords with open(scriptPath + '/stop_words_spanish.txt', 'rb') as f: sw_spanish = f.read().decode('latin-1').replace(u'\r', u'').split(u'\n') sw_spanish #--------------------------------------------------------------------------------- # conjunto de stopwords de nltk default_stopwords = nltk.corpus.stopwords.words('spanish') # Combinar ambos conjuntos de stopwords all_stopwords = list(set(default_stopwords) | set(sw_spanish) ) all_stopwords ###Output _____no_output_____ ###Markdown Finalmente, con las funciones de limpieza listas, y la lista de stop words cargada, procedemos a limpiar el texto Correr limpieza ###Code # Ejecutemos la limpieza y cronometremos el tiempo que toma correr t0 = time.time() clean_text = pd.DataFrame(text_table.Text) clean_text = clean_text.apply(preProc_docs) t1 = time.time() # 16 segundos para procesar todo el texto total = t1-t0 ###Output _____no_output_____ ###Markdown Extraer información relevante con expresión regular ###Code #re.search(r'DEPARTAMENTO NACIONAL DE PLANEACIÓN\.(.*?)Departamento Nacional de Planeación', text_table.Text[5]) titles = [] for i in range(1,len(clean_text)): try: temp = re.search('nacional planeación(.*)versión aprobada', clean_text.Text.iloc[i]) temp2 = temp.group(1).strip() temp3 = temp2.replace('CONSEJO NACIONAL DE POLÍTICA ECONÓMICA Y SOCIAL REPÚBLICA DE COLOMBIA DEPARTAMENTO NACIONAL DE PLANEACIÓN ','') titles.append(temp2) except: pass #except Exception: # temp = re.search('Documento CONPES(.*)Versión aprobada', text_table.Text[i]) #if not os.path.isfile(filename): # try: # urllib.request.urlretrieve(url, filename) # except Exception: # pass len(titles) #------------------------------------------------------------------------------- #titles_xlsx = pd.read_excel('C:\\Users\\User\\Desktop\\conpes_list.xlsx') #titles_2 = pd.DataFrame(titles_xlsx.titulo) #titles_2_clean = titles_2.apply(preProc_docs).titulo.tolist() titles ###Output _____no_output_____ ###Markdown Almacenar ###Code pickle.dump( titles, open( "titles.p", "wb" ) ) ###Output _____no_output_____
module2-sql-for-analysis/Module2_Assignment.ipynb
###Markdown Test the SQLite Load - File is Uploaded Locally in Colab ###Code !pip install psycopg2-binary # Imports import sqlite3 # Queries query1 = 'SELECT COUNT(character_id) \ FROM charactercreator_character;' # File is uploaded to Colab conn = sqlite3.connect('rpg_db.sqlite3') # Execute queries curs1 = conn.cursor() print('Total characters =', curs1.execute(query1).fetchall()) # Close cursors and commit curs1.close() conn.commit() ###Output _____no_output_____ ###Markdown Insert the RPG Data Into PostgreSQL ###Code # Imports import pandas as pd from sqlalchemy import create_engine import psycopg2 # Connect to sqlite RPG DB sl_conn =sqlite3.connect('rpg_db.sqlite3') sl_cur = sl_conn.cursor() # Test the Connection sl_cur.execute('SELECT * FROM charactercreator_character') sl_cc_table = sl_cur.fetchall() sl_cc_table[0] # Create Postegres Engine db_string = 'postgres://wsatpgnz:[email protected]:5432/wsatpgnz' engine = create_engine(db_string) # Connnect to Postgres DB pg_conn = engine.connect() # Convert charactercreator_character to Dataframe df = pd.read_sql('SELECT * FROM charactercreator_character', sl_conn) df #pg_conn.execute('DROP TABLE "public"."charactercreator_character"') # Store the Dataframe in the Postgres DB table_names_dict = {'charactercreator_character': 'character_id'} for table_name, primary_key in table_names_dict.items(): df = pd.read_sql(f"SELECT * FROM {table_name}", sl_conn) df = df.set_index(primary_key, verify_integrity=True) df.to_sql(table_name, pg_conn) # Close cursors and commit sl_cur.close() sl_conn.commit() ###Output _____no_output_____ ###Markdown Import Dataset ###Code import psycopg2 import pandas as pd df = pd.read_csv('titanic.csv') df.head(30) df['Name'] = df['Name'].str.replace("'", '`') df.info() ###Output <class 'pandas.core.frame.DataFrame'> RangeIndex: 887 entries, 0 to 886 Data columns (total 8 columns): Survived 887 non-null int64 Pclass 887 non-null int64 Name 887 non-null object Sex 887 non-null object Age 887 non-null float64 Siblings/Spouses Aboard 887 non-null int64 Parents/Children Aboard 887 non-null int64 Fare 887 non-null float64 dtypes: float64(2), int64(4), object(2) memory usage: 55.5+ KB ###Markdown Connect to PostgreSQL ###Code dbname = 'rbdyjzel' user = 'rbdyjzel' password = 'PqamaH9-y5MGtTxPP__tkNvls9Nj0WWQ' # Don't commit this! host = 'raja.db.elephantsql.com' pg_conn = psycopg2.connect(dbname=dbname, user=user, password=password, host=host) pg_curs = pg_conn.cursor() ###Output _____no_output_____ ###Markdown Transform pandas dataframe to SQL ###Code #df.to_sql(name='titanic', con=sl_conn, if_exists='replace') import sqlite3 # Convert to SQLite3 sl_conn = sqlite3.connect('titanic.sqlite3') df.to_sql(name='titanic', con=sl_conn, if_exists='replace') sl_curs = sl_conn.cursor() human = sl_curs.execute('SELECT * FROM titanic;').fetchall() human[0] df.head(1) create_titanic_table = """ CREATE TABLE titanic ( id SERIAL PRIMARY KEY, survived INT, pclass INT, name VARCHAR(100), sex VARCHAR(10), age INT, siblings_or_spouses_aboard INT, parents_children_aboard INT, fare FLOAT ) """ pg_curs.execute(create_titanic_table) attempted_insert = """ INSERT INTO titanic VALUES""" + str(human[0]) attempted_insert pg_curs.execute(attempted_insert) pg_curs.execute('SELECT * FROM titanic;') pg_human = pg_curs.fetchall() human[28] pg_human[0] for humans in human[1:]: insert_human = """ INSERT INTO titanic VALUES """ + str(humans) pg_curs.execute(insert_human) pg_conn.commit() pg_human[-2] for humans, pg_humans in zip(human, pg_human): assert human == pg_human ###Output _____no_output_____
foundation/applied-statistics/class_material_day_3/SF Salaries Exercise- Solutions.ipynb
###Markdown ___ ___ SF Salaries Exercise - SolutionsWe will be using the [SF Salaries Dataset](https://www.kaggle.com/kaggle/sf-salaries) from Kaggle! Just follow along and complete the tasks outlined in bold below. The tasks will get harder and harder as you go along. ** Import pandas as pd.** ###Code import pandas as pd ###Output _____no_output_____ ###Markdown ** Read Salaries.csv as a dataframe called sal.** ###Code sal = pd.read_csv('Salaries.csv') ###Output _____no_output_____ ###Markdown ** Check the head of the DataFrame. ** ###Code sal.head() ###Output _____no_output_____ ###Markdown ** Use the .info() method to find out how many entries there are.** ###Code sal.info() # 148654 Entries ###Output <class 'pandas.core.frame.DataFrame'> RangeIndex: 148654 entries, 0 to 148653 Data columns (total 13 columns): Id 148654 non-null int64 EmployeeName 148654 non-null object JobTitle 148654 non-null object BasePay 148045 non-null float64 OvertimePay 148650 non-null float64 OtherPay 148650 non-null float64 Benefits 112491 non-null float64 TotalPay 148654 non-null float64 TotalPayBenefits 148654 non-null float64 Year 148654 non-null int64 Notes 0 non-null float64 Agency 148654 non-null object Status 0 non-null float64 dtypes: float64(8), int64(2), object(3) memory usage: 14.7+ MB ###Markdown **What is the average BasePay ?** ###Code sal['BasePay'].mean() ###Output _____no_output_____ ###Markdown ** What is the highest amount of OvertimePay in the dataset ? ** ###Code sal['OvertimePay'].max() ###Output _____no_output_____ ###Markdown ** What is the job title of JOSEPH DRISCOLL ? Note: Use all caps, otherwise you may get an answer that doesn't match up (there is also a lowercase Joseph Driscoll). ** ###Code sal[sal['EmployeeName']=='JOSEPH DRISCOLL']['JobTitle'] ###Output _____no_output_____ ###Markdown ** How much does JOSEPH DRISCOLL make (including benefits)? ** ###Code sal[sal['EmployeeName']=='JOSEPH DRISCOLL']['TotalPayBenefits'] ###Output _____no_output_____ ###Markdown ** What is the name of highest paid person (including benefits)?** ###Code sal[sal['TotalPayBenefits']== sal['TotalPayBenefits'].max()] #['EmployeeName'] # or # sal.loc[sal['TotalPayBenefits'].idxmax()] ###Output _____no_output_____ ###Markdown ** What is the name of lowest paid person (including benefits)? Do you notice something strange about how much he or she is paid?** ###Code sal[sal['TotalPayBenefits']== sal['TotalPayBenefits'].min()] #['EmployeeName'] # or # sal.loc[sal['TotalPayBenefits'].idxmax()]['EmployeeName'] ## ITS NEGATIVE!! VERY STRANGE ###Output _____no_output_____ ###Markdown ** What was the average (mean) BasePay of all employees per year? (2011-2014) ? ** ###Code sal.groupby('Year').mean()['BasePay'] ###Output _____no_output_____ ###Markdown ** How many unique job titles are there? ** ###Code sal['JobTitle'].nunique() ###Output _____no_output_____ ###Markdown ** What are the top 5 most common jobs? ** ###Code sal['JobTitle'].value_counts().head(5) ###Output _____no_output_____ ###Markdown ** How many Job Titles were represented by only one person in 2013? (e.g. Job Titles with only one occurence in 2013?) ** ###Code sum(sal[sal['Year']==2013]['JobTitle'].value_counts() == 1) # pretty tricky way to do this... ###Output _____no_output_____ ###Markdown ** How many people have the word Chief in their job title? (This is pretty tricky) ** ###Code def chief_string(title): if 'chief' in title.lower(): return True else: return False sum(sal['JobTitle'].apply(lambda x: chief_string(x))) ###Output _____no_output_____ ###Markdown ** Bonus: Is there a correlation between length of the Job Title string and Salary? ** ###Code sal['title_len'] = sal['JobTitle'].apply(len) sal[['title_len','TotalPayBenefits']].corr() # No correlation. ###Output _____no_output_____
Pytorch_BSNetConv.ipynb
###Markdown ###Code !pip install kornia import numpy as np import torch import torch.nn as nn import torch.nn.functional as F import sys import os import torch.optim as optim import torchvision from torchvision import datasets, transforms from scipy import io import torch.utils.data import scipy import matplotlib.pyplot as plt from torch.utils.data import Dataset, DataLoader device = torch.device("cuda" if torch.cuda.is_available() else "cpu") !pip install -U spectral if not (os.path.isfile('/content/Indian_pines_corrected.mat')): !wget http://www.ehu.eus/ccwintco/uploads/6/67/Indian_pines_corrected.mat if not (os.path.isfile('/content/Indian_pines_gt.mat')): !wget http://www.ehu.eus/ccwintco/uploads/c/c4/Indian_pines_gt.mat import scipy.io as sio def loadData(): data = sio.loadmat('Indian_pines_corrected.mat')['indian_pines_corrected'] labels = sio.loadmat('Indian_pines_gt.mat')['indian_pines_gt'] return data, labels def padWithZeros(X, margin=2): ## From: https://github.com/gokriznastic/HybridSN/blob/master/Hybrid-Spectral-Net.ipynb newX = np.zeros((X.shape[0] + 2 * margin, X.shape[1] + 2* margin, X.shape[2])) x_offset = margin y_offset = margin newX[x_offset:X.shape[0] + x_offset, y_offset:X.shape[1] + y_offset, :] = X return newX def createImageCubes(X, y, windowSize=5, removeZeroLabels = True): ## From: https://github.com/gokriznastic/HybridSN/blob/master/Hybrid-Spectral-Net.ipynb margin = int((windowSize - 1) / 2) zeroPaddedX = padWithZeros(X, margin=margin) # split patches patchesData = np.zeros((X.shape[0] * X.shape[1], windowSize, windowSize, X.shape[2]), dtype=np.uint8) patchesLabels = np.zeros((X.shape[0] * X.shape[1]), dtype=np.uint8) patchIndex = 0 for r in range(margin, zeroPaddedX.shape[0] - margin): for c in range(margin, zeroPaddedX.shape[1] - margin): patch = zeroPaddedX[r - margin:r + margin + 1, c - margin:c + margin + 1] patchesData[patchIndex, :, :, :] = patch patchesLabels[patchIndex] = y[r-margin, c-margin] patchIndex = patchIndex + 1 if removeZeroLabels: patchesData = patchesData[patchesLabels>0,:,:,:] patchesLabels = patchesLabels[patchesLabels>0] patchesLabels -= 1 return patchesData, patchesLabels class HyperSpectralDataset(Dataset): """HyperSpectral dataset.""" def __init__(self,data_url,label_url): self.data = np.array(scipy.io.loadmat('/content/'+data_url.split('/')[-1])[data_url.split('/')[-1].split('.')[0].lower()]) self.targets = np.array(scipy.io.loadmat('/content/'+label_url.split('/')[-1])[label_url.split('/')[-1].split('.')[0].lower()]) self.data, self.targets = createImageCubes(self.data,self.targets, windowSize=7) self.data = torch.Tensor(self.data) self.data = self.data.permute(0,3,1,2) print(self.data.shape) def __len__(self): return self.data.shape[0] def __getitem__(self, idx): return self.data[idx,:,:,:] , self.targets[idx] data_train = HyperSpectralDataset('Indian_pines_corrected.mat','Indian_pines_gt.mat') train_loader = DataLoader(data_train, batch_size=16, shuffle=True) print(data_train.__getitem__(0)[0].shape) print(data_train.__len__()) class BSNET_Conv(nn.Module): def __init__(self,): super(BSNET_Conv, self).__init__() self.conv1 = nn.Sequential( nn.Conv2d(200,64,(3,3),1,0), nn.ReLU(True)) self.conv1_1 = nn.Sequential( nn.Conv2d(200,128,(3,3),1,0), nn.ReLU(True)) self.conv1_2 = nn.Sequential( nn.Conv2d(128,64,(3,3),1,0), nn.ReLU(True)) self.deconv1_2 = nn.Sequential( nn.ConvTranspose2d(64,64,(3,3),1,0), nn.ReLU(True)) self.deconv1_1 = nn.Sequential( nn.ConvTranspose2d(64,128,(3,3),1,0), nn.ReLU(True)) self.conv2_1 = nn.Sequential( nn.Conv2d(128,200,(1,1),1,0), nn.Sigmoid()) self.fc1 = nn.Sequential( nn.Linear(64,128), nn.ReLU(True)) self.fc2 = nn.Sequential( nn.Linear(128,200), nn.Sigmoid()) self.gp=nn.AvgPool2d(5) def BAM(self,x): x = self.conv1(x) x = self.gp(x) x = x.view(-1,64) x = self.fc1(x) x = self.fc2(x) x = x.view(-1,1,1,200) x = x.permute(0,3,1,2) return x def RecNet(self,x): x = self.conv1_1(x) x = self.conv1_2(x) x = self.deconv1_2(x) x = self.deconv1_1(x) x = self.conv2_1(x) return x def forward(self,x): BRW = self.BAM(x) x = x*BRW ret = self.RecNet(x) return ret model = BSNET_Conv().to(device) from torchsummary import summary summary(model,(200,7,7),batch_size=16) top = 25 import skimage import kornia global bsnlist ssim = kornia.losses.SSIM(5, reduction='none') psnr = kornia.losses.PSNRLoss(2500) from skimage import measure ssim_list = [] psnr_list = [] l1_list = [] channel_weight_list = [] def train(epoch): model.train() ENTROPY = torch.zeros(200) for batch_idx, (data, __) in enumerate(train_loader): data = data.to(device) optimizer.zero_grad() output = model(data) loss = F.l1_loss(output,data) loss.backward() optimizer.step() D = output.detach().cpu().numpy() for i in range(0,200): ENTROPY[i]+=skimage.measure.shannon_entropy(D[:,i,:,:]) if batch_idx % (0.5*len(train_loader)) == 0: L1 = loss.item() print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format( epoch, batch_idx * len(data), len(train_loader.dataset), 100. * batch_idx / len(train_loader),L1)) l1_list.append(L1) ssim_val = torch.mean(ssim(data,output)) print("SSIM: {}".format(ssim_val)) ssim_list.append(ssim_val) psnr_val = psnr(data,output) print("PSNR: {}".format(psnr_val)) psnr_list.append(psnr_val) ENTROPY = np.array(ENTROPY) bsnlist = np.asarray(ENTROPY.argsort()[-top:][::-1]) print('Top {} bands with Entropy ->'.format(top),list(bsnlist)) for epoch in range(0, 50): train(epoch) bsnlist = [80, 97, 43, 71, 72, 7, 92, 151, 134, 87, 100, 15, 10, 84, 95, 38, 106, 122, 3, 34, 37, 48, 36, 86, 190] x,xx,xxx = psnr_list,ssim_list,l1_list print(len(x)),print(len(xx)),print(len(xxx)) import matplotlib import matplotlib.pyplot as plt %matplotlib inline plt.figure(figsize=(20,10)) plt.xlabel('Epoch',fontsize=50) plt.ylabel('PSNR',fontsize=50) plt.xticks(fontsize=40) plt.yticks(np.arange(0,100 , 10.0),fontsize=40) plt.ylim(10,100) plt.plot(x,linewidth=5.0) plt.savefig('PSNR-IN.pdf') plt.show() plt.figure(figsize=(20,10)) plt.xlabel('Epoch',fontsize=50) plt.ylabel('SSIM',fontsize=50) plt.xticks(fontsize=40) plt.yticks(fontsize=40) plt.plot(xx,linewidth=5.0) plt.savefig('SSIM-IN.pdf') plt.show() plt.figure(figsize=(20,10)) plt.xlabel('Epoch',fontsize=50) plt.ylabel('L1 Reconstruction loss',fontsize=50) plt.xticks(fontsize=40) plt.yticks(fontsize=40) plt.plot(xxx,linewidth=5.0) plt.savefig('L1-IN.pdf') plt.show() from scipy.stats import entropy def MeanSpectralDivergence(band_subset): n_row, n_column, n_band = band_subset.shape N = n_row * n_column hist = [] for i in range(n_band): hist_, _ = np.histogram(band_subset[:, :, i], 256) hist.append(hist_ / N) hist = np.asarray(hist) hist[np.nonzero(hist <= 0)] = 1e-20 info_div = 0 for b_i in range(n_band): for b_j in range(n_band): band_i = hist[b_i].reshape(-1)/np.sum(hist[b_i]) band_j = hist[b_j].reshape(-1)/np.sum(hist[b_j]) entr_ij = entropy(band_i, band_j) entr_ji = entropy(band_j, band_i) entr_sum = entr_ij + entr_ji info_div += entr_sum msd = info_div * 2 / (n_band * (n_band - 1)) return msd def MeanSpectralAngle(band_subset): """ Spectral Angle (SA) is defined as the angle between two bands. We use Mean SA (MSA) to quantify the redundancy among a band set. i-th band B_i, and j-th band B_j, SA = arccos [B_i^T * B_j / ||B_i|| * ||B_j||] MSA = 2/n*(n-1) * sum(SA_ij) Ref: [1] GONG MAOGUO, ZHANG MINGYANG, YUAN YUAN. Unsupervised Band Selection Based on Evolutionary Multiobjective Optimization for Hyperspectral Images [J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(1): 544-57. :param band_subset: with shape (n_row, n_clm, n_band) :return: """ n_row, n_column, n_band = band_subset.shape spectral_angle = 0 for i in range(n_band): for j in range(n_band): band_i = band_subset[i].reshape(-1) band_j = band_subset[j].reshape(-1) lower = np.sum(band_i ** 2) ** 0.5 * np.sum(band_j ** 2) ** 0.5 higher = np.dot(band_i, band_j) if higher / lower > 1.: angle_ij = np.arccos(1. - 1e-16) # print('1-higher-lower', higher - lower) # elif higher / lower < -1.: # angle_ij = np.arccos(1e-8 - 1.) # print('2-higher-lower', higher - lower) else: angle_ij = np.arccos(higher / lower) spectral_angle += angle_ij msa = spectral_angle * 2 / (n_band * (n_band - 1)) return msa import skimage from skimage import measure def sumentr(band_subset,X): nbands = len(band_subset) ENTROPY=np.ones(nbands) for i in range(0,len(band_subset)): ENTROPY[i]+=skimage.measure.shannon_entropy(X[:,:,band_subset[i]]) return np.sum(ENTROPY) def MSA(bsnlist): X, _ = loadData() print('[',end=" ") for a in range(2,len(bsnlist)): band_subset_list = [] for i in bsnlist[:a]: band_subset_list.append(X[:,:,i]) band_subset = np.array(band_subset_list) band_subset = np.stack(band_subset,axis =2) print(MeanSpectralAngle(band_subset),end=" ") if a!= len(bsnlist)-1: print(",",end=" ") print(']') def MSD(bsnlist): X, _ = loadData() print('[',end=" ") for a in range(2,len(bsnlist)): band_subset_list = [] for i in bsnlist[:a]: band_subset_list.append(X[:,:,i]) band_subset = np.array(band_subset_list) band_subset = np.stack(band_subset,axis =2) print(MeanSpectralDivergence(band_subset),end=" ") if a!= len(bsnlist)-1: print(",",end=" ") print(']') def EntropySum(bsnlist): X, _ = loadData() print('[',end=" ") for a in range(2,len(bsnlist)): band_subset_list = [] for i in bsnlist[:a]: band_subset_list.append(X[:,:,i]) band_subset = np.array(band_subset_list) band_subset = np.stack(band_subset,axis =2) print(sumentr(bsnlist[:a],X),end=" ") if a!= len(bsnlist)-1: print(",",end=" ") print(']') MSA(bsnlist) MSD(bsnlist) EntropySum(bsnlist) dabs = [ 33.12881252113703 , 27.699269748852547 , 31.189050523240567 , 25.407158521806743 , 21.23842365661258 , 21.4600299169822 , 20.86248085946583 , 20.17228040657472 , 20.53299041484558 , 21.1335634998955 , 19.59117061832842 , 20.946230004039375 , 22.843494279707382 , 21.596483466175062 , 21.633130554147392 , 22.832050045391185 , 23.112561570936894 , 23.938250673675114 , 24.27697303727743 , 24.67049003424132 , 24.818116958133697 , 24.450204537801287 , 25.019421764795172 ] bsnetconv = [ 24.926582298710684 , 21.330938461786815 , 23.04076040826106 , 21.645181998356264 , 18.691557180047244 , 20.7226257192415 , 20.180950404677475 , 18.92119239091796 , 18.14126793229048 , 18.054941145300337 , 19.2913419518319 , 21.458442690479096 , 22.376986846120094 , 26.539316782854403 , 26.364677531292276 , 26.004356791026886 , 26.06563007931373 , 27.562615680165703 , 26.816233958923476 , 26.75423730463073 , 26.76546728344344 , 26.651876628889074 , 26.170407693767313 ] pca = [ 64.6659495569616 , 44.206964175291155 , 56.974405048963185 , 47.303760042785385 , 39.8940534876976 , 34.768743086455515 , 30.563590015282664 , 27.347606401064958 , 25.73579551531729 , 23.562059922897653 , 24.332531206971105 , 22.65318676880641 , 21.20680313199034 , 19.950365482269632 , 18.7957381872366 , 17.785780071254095 , 16.84197341100759 , 16.71704973304585 , 15.959359012341034 , 16.69296720295007 , 16.303398054778945 , 15.775575036839665 , 15.247189808858215 ] spabs = [ 51.546751478947485 , 41.56190968855882 , 34.1507585379382 , 32.18755647433454 , 31.393008047463585 , 31.02527459658134 , 30.212480943960397 , 33.42180148091237 , 32.627589457381625 , 30.811290451152864 , 31.07497311582388 , 29.193101794721112 , 28.174085856682574 , 27.110556610241026 , 26.16396012024104 , 27.642474793195948 , 26.97927639524588 , 26.802185442574 , 26.733570979934218 , 25.614498829087168 , 24.57496106936372 , 24.260774948635653 , 24.535411090068447 ] snmf = [ 42.687271482734026 , 69.98650272134581 , 65.56190884814379 , 64.78830503377719 , 60.283392581094056 , 57.29725635316855 , 61.48424023193987 , 65.9111624844873 , 69.81263992889625 , 66.0216268025207 , 63.44659867282022 , 59.12927876180595 , 55.89468878602123 , 54.131703617998376 , 56.680276749080825 , 59.53217131059314 , 57.16351130033321 , 54.9461367723193 , 55.23628180002861 , 54.62510055278423 , 53.74485500301176 , 52.97448803455957 , 51.9084356071723 ] issc = [ 18.282704191681795 , 35.29174781838125 , 33.52621667208111 , 34.7570094214297 , 34.693446545983406 , 33.8470987598166 , 42.36183874938314 , 38.34479910743488 , 38.34974051412382 , 35.28287700260462 , 32.65494379097696 , 32.312139823186655 , 30.307662525527835 , 29.98966839606608 , 29.269512799967384 , 29.912423244699333 , 29.038917745855983 , 28.929037072912795 , 28.672306590798843 , 28.505889476998565 , 28.182865736586837 , 28.759689061354372 , 28.95934175252772 ] new = [ 0.3815454878000646 , 6.781090755133797 , 9.950440828878444 , 11.237053937027174 , 27.088203156192495 , 28.32426713263673 , 31.61098768365176 , 29.18215151414016 , 30.623415605281778 , 28.31521833089382 , 27.449306705475106 , 26.808790797203535 , 26.64422017203365 , 26.15949242450031 , 24.537110949551423 , 26.60549266437586 , 25.726471570464867 , 25.336850074623072 , 24.637817130631845 , 23.95399234128613 , 23.29746143739684 , 22.647506727415077 , 22.878749722275444 ] NSBands = list((i for i in range(2,25))) import matplotlib import matplotlib.pyplot as plt %matplotlib inline methods = [dabs,bsnetconv,pca,spabs,snmf,new] for i in methods: print(len(i)) markerstylelist = ["8","1","2","4","*","3","5"] scatar = [] f = plt.figure(num=None, figsize=(12, 8), dpi=80, facecolor='w', edgecolor='k') for method in methods: PLOT = plt.plot(NSBands,method,markersize=30) SCATTER = plt.scatter(NSBands,method,s=100) scatar.append(SCATTER) plt.xlabel('Number of Selected Bands',fontsize=40) plt.ylabel('MSD',fontsize=40) plt.xticks(fontsize=30) plt.yticks(fontsize=30) plt.ylim(1,80) plt.xlim(1,25) plt.legend(scatar,['DARecNet-BS','BSNet-Conv','PCA','SpaBS','SNMF','New'],loc='best',fontsize='xx-large',shadow=True,prop={'size': 26},bbox_to_anchor=(0.5, 0.5, 0.5, 0.5)) plt.show() f.savefig("MSD-IN.pdf", bbox_inches='tight') ###Output _____no_output_____
05_NN/NN_03_TB.ipynb
###Markdown TENSORBOARD USED- tensorboard --logdir =./logs ###Code import tensorflow as tf import numpy as np x_data = np.array([[0, 0], [0, 1], [1, 0], [1, 1]], dtype=np.float32) y_data = np.array([[0], [1], [1], [0]], dtype=np.float32) X = tf.placeholder(tf.float32, [None, 2], name='x-input') Y = tf.placeholder(tf.float32, [None, 1], name='y-input') with tf.name_scope("layer1") as scope: W1 = tf.Variable(tf.random_normal([2,2]),name="Weight_one") b1 = tf.Variable(tf.random_normal([2]),name="Bias_one") layer_one = tf.sigmoid(tf.matmul(X,W1) + b1) w1_histogram = tf.summary.histogram("Weight_one", W1) b1_histogram = tf.summary.histogram("Bias-one",b1) layer_one_histogram = tf.summary.histogram("layer1",layer_one) ###Output _____no_output_____ ###Markdown more Deep ###Code with tf.name_scope("layer2") as scope: W2 = tf.Variable(tf.random_normal([2,1]),name="Weight_two") b2 = tf.Variable(tf.random_normal([1]),name="Bias_two") Hypothesis = tf.sigmoid(tf.matmul(layer_one,W2) + b2) w2_histogram = tf.summary.histogram("Weight_two", W2) b2_histogram = tf.summary.histogram("Bias-two",b2) layer_two_histogram = tf.summary.histogram("Hypothesis",Hypothesis) with tf.name_scope("cost") as scope: cost = -tf.reduce_mean(Y * tf.log(Hypothesis) + (1 - Y) * tf.log(1 - Hypothesis)) cost_summ = tf.summary.scalar("cost", cost) with tf.name_scope("train") as scope: train = tf.train.GradientDescentOptimizer(learning_rate=0.01).minimize(cost) predicted = tf.cast(Hypothesis > 0.5, dtype=tf.float32) accuracy = tf.reduce_mean(tf.cast(tf.equal(predicted, Y), dtype=tf.float32)) accuracy_summ = tf.summary.scalar("accuracy", accuracy) init = tf.global_variables_initializer() sess = tf.Session() sess.run(init) merged_summary = tf.summary.merge_all() writer = tf.summary.FileWriter("\\xor_logs_01") writer.add_graph(sess.graph) for step in range(10001): summary, _ = sess.run([merged_summary, train], feed_dict={X: x_data, Y: y_data}) writer.add_summary(summary, global_step=step) if step % 500 == 0: print(step, sess.run(cost, feed_dict={X: x_data, Y: y_data}), sess.run([W1, W2])) h, c, a = sess.run([Hypothesis, predicted, accuracy], feed_dict={X: x_data, Y: y_data}) print("\nHypothesis: ", h, "\nCorrect: ", c, "\nAccuracy: ", a) ###Output Hypothesis: [[ 0.49660048] [ 0.54613131] [ 0.47485587] [ 0.47427541]] Correct: [[ 0.] [ 1.] [ 0.] [ 0.]] Accuracy: 0.75
New Jupyter Notebooks/Classification/Iris Dataset/.ipynb_checkpoints/LogisticRegressionWithIris-checkpoint.ipynb
###Markdown Exercise Option 1 - Standard DifficultyAnswer the following questions. You can also use the graph below, if seeing the data visually helps you understand the data.1. In the above cell, the expected class predictions should be [0, 1, 2], because the first datapoint of each class was used. If the model was not giving the expected output, some reasons could be that the data values chosen to test were outliers, or that logistic regression does not work well predicting the data. 2. The probabilities relate to the class predictions because each class prediction is just the class with the highest probabilitiy. The model is more or less confident in its predictions based on the logit function. 3. If a coefficient is negative, that means that if you took a datapoint and increased the value of a feature that has a negative coeficcient, the probability the model outputs should decrease.4. The two features do not predict very well the iris data. Although for the three datapoints tested it predicted correctly, the confidence for one of the the predictions was only 62%. Also, if you look at the graph of the dataset with the two features, you can see that there is overlap between veriscolor and virginica, which would explain the 62% confidence. 5. As seen below, using all the different feature pair combinations, the best pair was petal length and petal width. I know this because I calculated for each combination how confident the model was for the expected outputs. This finding actually aligns with what I found about the iris dataset with a decision tree: in the case of the decision tree, most nodes separated the data based on petal length and petal width, i.e. that they were the best predictors. ###Code feature_pairs = [[0, 1], [0, 2], [0, 3], [1, 2], [1, 3], [2, 3]] feature_pair_probabilities = [] feature_pair_models = [] # generate model and probabilities for each feature pair for feature_pair in feature_pairs: feature_pair_data = iris.data[:,feature_pair] # get data of feature pair feature_pair_model = linear_model.LogisticRegression() # make model feature_pair_model.fit(feature_pair_data, iris.target) # fit model to feature pair feature_pair_inputs = [feature_pair_data[0], feature_pair_data[start_class_two], feature_pair_data[start_class_three]] # make new inputs with only the feature pair feature_pair_probabilities.append(feature_pair_model.predict_proba(feature_pair_inputs)) # push class probabilities for specific feature pair to array feature_pair_models.append(feature_pair_model) # push model to array for later use best_pair_score = 0 # scale from 0-1, how well feature pair performed based on how close it was to expected outputs best_pair = [] # feature pair with best score # https://stackoverflow.com/questions/23828242/how-to-set-a-python-variable-to-undefined best_model = None # the most accurate model index = 0 # for indexing for feature_pair_probability in feature_pair_probabilities: # print probabilities for feature pair print('Probabilities for {} & {}:\n{}'.format(iris.feature_names[feature_pairs[index][0]], iris.feature_names[feature_pairs[index][1]], feature_pair_probability)) # calculate score feature_pair_score = ((feature_pair_probability[0][0]/1)+(feature_pair_probability[1][1]/1)+(feature_pair_probability[2][2]/1))/3 # if it's better than current best feature pair score, update it if (feature_pair_score > best_pair_score): best_pair_score = feature_pair_score best_pair = feature_pairs[index] best_model = feature_pair_models[index] # index index += 1 # print info on the best feature pair print('Best pair: {} & {}, with score: {}'.format(iris.feature_names[best_pair[0]], iris.feature_names[best_pair[1]], best_pair_score)) ###Output Probabilities for sepal length (cm) & sepal width (cm): [[0.92347315 0.0585081 0.01801875] [0.00176572 0.1981595 0.80007478] [0.05009604 0.37235578 0.57754818]] Probabilities for sepal length (cm) & petal length (cm): [[0.97521958 0.02478036 0.00000005] [0.00105972 0.7765676 0.22237268] [0.00000087 0.01201376 0.98798537]] Probabilities for sepal length (cm) & petal width (cm): [[0.92831857 0.07157087 0.00011056] [0.00559652 0.62519423 0.36920925] [0.00001365 0.03313084 0.96685551]] Probabilities for sepal width (cm) & petal length (cm): [[0.98200697 0.01799299 0.00000004] [0.00633308 0.66738949 0.32627743] [0.0000065 0.01584795 0.98414555]] Probabilities for sepal width (cm) & petal width (cm): [[0.95767161 0.04223211 0.00009628] [0.10787733 0.65224682 0.23987585] [0.00009767 0.02361994 0.97628239]] Probabilities for petal length (cm) & petal width (cm): [[0.97983058 0.02016939 0.00000003] [0.0024148 0.77883567 0.21874952] [0.00000027 0.00463449 0.99536524]] Best pair: petal length (cm) & petal width (cm), with score: 0.9180104999500484 ###Markdown Exercise Option 2 - Advanced DifficultyAs seen below, to try to show model fit, I graphed the dataset against the predictions of the model. If you look at the graph, it seems like the model only incorrectly predicted 4 or 5 of the datapoints. ###Code # https://scikit-learn.org/stable/auto_examples/linear_model/plot_iris_logistic.html#sphx-glr-auto-examples-linear-model-plot-iris-logistic-py # Got help from Huxley for this. # I use the model using the best pair of features for this. X = iris.data[:, best_pair] # input data, use the best two features Y = iris.target # expected values of input data x1 = X[:, 0] # datapoints with only first feature x2 = X[:, 1] # datapoits with only second feature # get the min and max values of dataset, with 0.5 padding added x_min, x_max = x1.min()-0.5, x1.max()+0.5 y_min, y_max = x2.min()-0.5, x2.max()+0.5 step = .01 # step size in the mesh # https://numpy.org/doc/stable/reference/generated/numpy.arange.html # https://numpy.org/doc/stable/reference/generated/numpy.meshgrid.html xx, yy = numpy.meshgrid(numpy.arange(x_min, x_max, step), numpy.arange(y_min, y_max, step)) #print(xx) #print(yy) #print(numpy.c_[xx.ravel(), yy.ravel()]) # https://numpy.org/doc/stable/reference/generated/numpy.c_.html # https://numpy.org/doc/stable/reference/generated/numpy.ravel.html Z = best_model.predict(numpy.c_[xx.ravel(), yy.ravel()]) Z = Z.reshape(xx.shape) plt.figure() # make figure # https://matplotlib.org/3.1.0/tutorials/colors/colormaps.html plt.pcolormesh(xx, yy, Z, cmap='Pastel1', shading='auto') # https://matplotlib.org/api/_as_gen/matplotlib.pyplot.scatter.html plt.scatter(x1, x2, c=Y, edgecolors='black', cmap=plt.cm.Paired) # plot all the training points with their expected colors # https://thispointer.com/python-capitalize-the-first-letter-of-each-word-in-a-string/#:~:text=Use%20title()%20to%20capitalize,of%20word%20to%20lower%20case. # https://www.askpython.com/python/string/remove-character-from-string-python plt.xlabel(iris.feature_names[best_pair[0]].replace('(cm)', '').title()) # get the name of the x-axis feature, remove units, and capitalize each word plt.ylabel(iris.feature_names[best_pair[1]].replace('(cm)', '').title()) # get the name of the y-axis feature, remove units, and capitalize each word # https://matplotlib.org/3.1.1/api/_as_gen/matplotlib.pyplot.xlim.html plt.xlim(x_min, x_max) # set min and max of x-axis plt.ylim(y_min, y_max) # set min and max of y-axis # https://matplotlib.org/api/_as_gen/matplotlib.pyplot.xticks.html plt.xticks(()) # remove ticks on x-axis plt.yticks(()) # remove ticks on y-axis plt.show() # show graph ###Output _____no_output_____
examples/Using_HoloGrid.ipynb
###Markdown Using the `GridEditor` [Hologridgen](https://github.com/pygridgen/hologridgen) is an interactive tool for the generation of orthonormal grids using [pygridgen](https://github.com/pygridgen/pygridgen) and the [HoloViz](holoviz.org) tool suite for use within [Jupyter notebooks](https://jupyter.org/) or deployable with [Panel](panel.pyviz.org). This notebook will demonstrate how you can use the primary class in `hologridgen` called `GridEditor`.You can install `hologridgen` with conda into a Python 3.7 or 3.8 environment as follows:```conda install -c jlstevens -c conda-forge hologridgen```With `hologridgen` installed, first we import [GeoViews](http://geoviews.org/) and [GeoPandas](http://geopandas.org/) and load the GeoViews bokeh extension: ###Code import geopandas as gpd import geoviews as gv gv.extension('bokeh') ###Output _____no_output_____ ###Markdown `GridEditor` Basics Now we can import `GridEditor` from `hologridgen`: ###Code from hologridgen import GridEditor ###Output _____no_output_____ ###Markdown This class can then be instantiated and given a handle. ###Code editor = GridEditor() ###Output _____no_output_____ ###Markdown The main entrypoint on the instance is then the `.view()` method which we will call shortly. This method displays the Bokeh plot with the following set of tools in the side bar:By default, the 'Tap' tool is selected as indicated by the blue line on the side. To start defining a grid boundary, select the 'Point Draw' tool and click four times within the axes to define a square (the node marked with the triangle is the start node that was added first). Then hit the 'Generate mesh' button:Have a go replicating the above screenshot in the area below: ###Code editor.view() ###Output _____no_output_____ ###Markdown Note that you can do the following:* You can move the nodes with the 'Point Draw' tool by click dragging them* You can delete nodes with the 'Point Draw' tool by clicking them then hitting `Backspace`* You can change the grid resolution by change the `Xres` and `Yres` values before hitting 'Generate mesh'* You can hide any mesh you have generated by hitting the 'Hide mesh' button.Now that you have defined a boundary, how can you access it programatically?To get the corresponding geopandas `DataFrame`, simply use the `.boundary` property: ###Code editor.boundary ###Output _____no_output_____ ###Markdown You'll notice that the values in the `x`, `y` and `geometry` columns are not latitudes and longitudes. This is because these values are in the [Web Mercator](https://en.wikipedia.org/wiki/Web_Mercator_projection) projection. What if you want the last generated `pygridgen.grid.Gridgen` object? If available, this can be found using the `.grid` property: ###Code editor.grid ###Output _____no_output_____ ###Markdown Setting node polaritiesYou might have noticed in the previous example, that if you draw *five* boundary nodes, the 'Generate mesh' button is greyed out. This is because the total polarity of the nodes has to add up to *four* for the mesh generation to be available.To define more complex boundaries, you therefore need to set the node polarity (`beta` values) appropriately. This is done by selecting on the 'Tap' tool and clicking on the nodes. Red nodes (by default) contribute +1 to polarity, blue nodes contribute -1 to polarity and the hollow nodes are neutral, adding zero to the total polarity.The following screenshot show a more complex boundary you can define using both the 'Point Draw' and 'Tap' tools:Have a go defining this boundary in the view below (and inspecting `.boundary` afterwards, if you wish): ###Code complex_boundary = GridEditor() complex_boundary.view() ###Output _____no_output_____ ###Markdown Have a go playing with the 'Node size' and 'Edge width' sliders (which should be self-evident) as well as the 'Background' drop down that lets you select from a variety of map tile sources. Once you are happy with a boundary, you can also download the corresponding GeoJSON file by clicking the 'Download boundary.geojson' button. Inserting nodes into edgesYou may have noticed one button that hasn't been mentioned yet, namely 'Insert points' which allows you to insert new points into an existing edge. To do this, you need to activate the 'Tap' tool again to use it for its second function of selecting edges. This the 'Tap' tool active, you can click an existing edge to select it (you can see when an edge is selected as the non-selected edges will then be muted in color). With an edge selected, you can now hit the 'Insert points' button to insert new nodes into the edge. As before, you can move these nodes around with the 'Point Draw' tool:Note that you can reset your selection by clicking away from any node or boundary edge. Try inserting and moving around new nodes in one of the boundaries you have defined above. Setting options in the constructorAll the widgets and settings describe so far can be set using keywords in the `GridEditor` constructor. For instance, you can run: ###Code customized_editor = GridEditor(node_size=20, edge_width=4, xres=10, yres=40, background='EsriOceanBase') customized_editor.view() ###Output _____no_output_____ ###Markdown Which sets a larger (custom) node size and edge width as well as a custom resolution for the grids along the `x` and `y` directions. **Try defining a boundary over the world map in the cell above as it will help illustrate the serializing/restoring functionality later on!**All these options are [`param`](https://param.holoviz.org/) `Parameters` and you can read more about the allowed values (and the docstrings for these settings) by running:```pythongv.help(GridEditor)```Note that not all parameters are exposed as widgets such as `custom_background` and `focus`. We'll describe these features next: Setting a custom backgroundBy setting the `custom_background` parameter, to a HoloViews or GeoViews element, you can use any background you wish. For instance, the following line (corresponding to a [GeoViews example](http://geoviews.org/index.html)) defines a set of polygons for the various countries of the world, colored by population (with Bokeh hover information enabled): ###Code custom_polygons = gv.Polygons(gpd.read_file(gpd.datasets.get_path('naturalearth_lowres')), vdims=['pop_est', ('name', 'Country')]).opts( tools=['hover'], width=600, alpha=0.4, cmap='plasma' ) ###Output _____no_output_____ ###Markdown Now we simply supply this element in the constructor to the `custom_background` parameter: ###Code editor_with_custom_background = GridEditor(custom_background=custom_polygons, xres=25, yres=30, node_size=20) editor_with_custom_background.view() ###Output _____no_output_____ ###Markdown Note that the Bokeh hover tool is still enabled and the rest of the `GridEditor`'s functionality remains the same as before. Setting the `focus`Once a boundary is defined, it is important to be able to tweak the orthonormal grid. One tool that makes this possible is `pygridgen`'s `Focus` class. Here is a simple example of defining a `Focus` instance: ###Code import pygridgen as pgg focus = pgg.Focus() focus.add_focus(0.50, 'y', factor=5, extent=0.25) ###Output _____no_output_____ ###Markdown Now you can apply this focus the next the time 'Generate Mesh' button is hit by setting the `focus` parameter on the `GridEditor` instance. For example, to set a focus on the first example in the notebook we can execute: ###Code editor.focus = focus # Go back and hit 'Generate mesh' in the simple `editor` example above ###Output _____no_output_____ ###Markdown To remove the `Focus` definition from the mesh generation process, simply set the parameter to `None`: ###Code editor.focus = None ###Output _____no_output_____ ###Markdown Saving and loading `GridEditor` stateYou can easily serialize the state of `GridEditor` by using the `.data` property. This makes it easy to save a boundary editing session to disk (e.g as a JSON file for instance) and resume your work later. This serialized data can be passed to `GridEditor` as the first (optional) positional argument: ###Code serialized_data = customized_editor.data # Inspect this in the notebook (e.g use print) restored_editor = GridEditor(serialized_data) restored_editor.view() ###Output _____no_output_____
2. Data Cleaning.ipynb
###Markdown Load DatasetFirst, read the combined data from $2014$ until $2018$ from local disk. ###Code data = pd.read_csv('./data/data_2014_2018.csv') data.head() data.info(verbose=False) ###Output <class 'pandas.core.frame.DataFrame'> RangeIndex: 1642574 entries, 0 to 1642573 Columns: 88 entries, loan_amnt to year dtypes: float64(25), int64(39), object(24) memory usage: 1.1+ GB ###Markdown Data Cleaning 1. Features collected after loan is issuedFor this problem, we will assume that our model will run at the moment one begins to apply for the loan. Thus, there should be no information about user's payment behaviors. ###Code ongo_columns = ['funded_amnt', 'funded_amnt_inv', 'issue_d', 'pymnt_plan', 'out_prncp', 'out_prncp_inv', 'total_pymnt', 'total_pymnt_inv', 'total_rec_prncp', 'policy_code', 'total_rec_int', 'total_rec_late_fee', 'recoveries', 'collection_recovery_fee', 'last_pymnt_d', 'last_pymnt_amnt', 'last_credit_pull_d', 'hardship_flag', 'disbursement_method', 'debt_settlement_flag'] data = data.drop(labels=ongo_columns, axis=1) data.info(verbose=False) ###Output <class 'pandas.core.frame.DataFrame'> RangeIndex: 1642574 entries, 0 to 1642573 Columns: 68 entries, loan_amnt to year dtypes: float64(14), int64(37), object(17) memory usage: 852.2+ MB ###Markdown 2. Parsing `loan_status` ###Code data['loan_status'].value_counts() ###Output _____no_output_____ ###Markdown There are a series of different kinds of loan status. Based on the explanation from [Lending Club](https://help.lendingclub.com/hc/en-us/articles/215488038-What-do-the-different-Note-statuses-mean-), The explanation for each status are listed below: | Loan Status | Explanation || --------------- | ----------------------------------------------------- || Current | Loan is up to date on all outstanding payments || Fully Paid | Loan has been fully repaid, either at the expiration of the 3- or 5-year year term or as a result of a prepayment || Default | Loan has not been current for 121 days or more || Charged Off | Loan for which there is no longer a reasonable expectation of further payments. Generally, Charge Off occurs no later than 30 days after the Default status is reached. Upon Charge Off, the remaining principal balance of the Note is deducted from the account balance || In Grace Period | Loan is past due but within the 15-day grace period || Late (16-30) | Loan has not been current for 16 to 30 days || Late (31-120) | Loan has not been current for 31 to 120 days | For this project, we don't care about the loan that is in **Current** status. Instead, we are more interested in whether the loan is **Good** or **Bad**. Here, we assume loan in **Good** status if it will be fully paid, and the loan in **Bad** status if it is **Charged Off**, **Default**, or **Late (16-30 days, or 31-120 days)**. For loans that are in **Grace Period**, we will remove them from our data due to uncertainty. ###Code # only keep the data that we are certainty about their final status used_status = ['Charged Off', 'Fully Paid', 'Late (16-30 days)', 'Late (31-120 days)', 'Default'] data = data[data['loan_status'].isin(used_status)] # Encoding the `loan_status` # status 1: 'Charged Off', 'Late (16-30 days)', 'Late (31-120 days)', 'Default' # status 0: 'Fully Paid' data['target'] = 1 data.loc[data['loan_status'] == 'Fully Paid', 'target'] = 0 data.info(verbose=False) ###Output <class 'pandas.core.frame.DataFrame'> Int64Index: 820870 entries, 0 to 1642573 Columns: 69 entries, loan_amnt to target dtypes: float64(14), int64(38), object(17) memory usage: 438.4+ MB ###Markdown 3. Split into training and test dataset After above procedures, we have reduced the dataset size from $1,642,574$ to $820,870$, and the features from $88$ to $68$ (including the `target`). ###Code # calculate the number of records for each year year_count = data.groupby('year')['target'].count().reset_index() year_count = year_count.rename(columns={'target': 'counts'}) year_count['ratio'] = year_count['counts'] / len(data) year_count # visualize the time effect fig, ax = plt.subplots(nrows=1, ncols=2, figsize=(16, 6)) sns.countplot(x='year', data=data, ax=ax[0]) ax[0].set_xlabel('Year', fontsize=14) ax[0].set_ylabel('Count', fontsize=14) sns.barplot(x='year', y='target', data=data, ax=ax[1]) ax[1].set_xlabel('Year', fontsize=14) ax[1].set_ylabel('Default Ratio', fontsize=14) plt.tight_layout() plt.show() # drop useless features data = data.drop(labels='loan_status', axis=1) data.info(verbose=False) ###Output <class 'pandas.core.frame.DataFrame'> Int64Index: 820870 entries, 0 to 1642573 Columns: 68 entries, loan_amnt to target dtypes: float64(14), int64(38), object(16) memory usage: 472.1+ MB ###Markdown Now, let's split the data into training and test set. Based on the above information, we decide to split the data according year information. More specifically, since the data after $2016$ accounts about $12\%$ of all the data, we will use the data from $2014$ until $2016$ as the training set, data from $2017$ until $2018$ as the test set. ###Code # split into train and test set train = data[data['year'] < 2017] test = data[data['year'] >= 2017] # save to disk train.to_csv('./data/train.csv', index=False) test.to_csv('./data/test.csv', index=False) print('Training set:\t', train.shape, '\t', round(len(train) / len(data), 4)) print('Test set:\t', test.shape, '\t', round(len(test) / len(data), 4)) ###Output Training set: (722143, 68) 0.8797 Test set: (98727, 68) 0.1203
faiss/faiss_index_experiment.ipynb
###Markdown ###Code !apt install libomp-dev !python -m pip install --upgrade faiss faiss-gpu import shutil import urllib.request as request from contextlib import closing # first we download the Sift1M dataset with closing(request.urlopen('ftp://ftp.irisa.fr/local/texmex/corpus/sift.tar.gz')) as r: with open('sift.tar.gz', 'wb') as f: shutil.copyfileobj(r, f) import tarfile tar = tarfile.open('sift.tar.gz', 'r:gz') tar.extractall() import numpy as np def read_fvecs(fp): a = np.fromfile(fp, dtype='int32') d = a[0] return a.reshape(-1, d+1)[:, 1:].copy().view('float32') # 검색할 데이터 xb = read_fvecs('./sift/sift_base.fvecs') #1M samples # some query vectors xq = read_fvecs('./sift/sift_query.fvecs') # 하나의 쿼리를 추출 xq = xq[0].reshape(1, xq.shape[1]) xq.shape xb.shape xq ###Output _____no_output_____ ###Markdown IndexFlatL2- balance of search spped of search quality- 대부분 검색 품질이 높으면 검색 속도가 낮아진다.- 10억개의 벡터가 있고 1분에 100개의 쿼리를 수행한다고 하면 오랜시간이 걸릴 것이다.- 그리고 이걸 실행하려면 미친 하드웨어가 필요하므로 완전 검색에서는 빠른 색인을 사용할 수 없지만 사용 방법을 보여드리겠습니다~ ###Code d = 128 k = 10 # how many result do i want import faiss index = faiss.IndexFlatIP(d) # L2보다 약간 빠름. 실제로는 거의 차이가 없음 index.add(xb) %%time D, I = index.search(xq, k) # 샘플 갯수와 쿼리 벡터 I # 10개의 가장 가까운 인덱스 baseline = I[0].tolist() baseline ###Output _____no_output_____ ###Markdown LSH (Locality Sensitive Hashing)- 50 : 50- hashing 기능 : hash buckets에 값이 중복되는 충돌을 최소화- python의 dictionary 같은 구조- 가까운 버킷을 찾은다음 검색 범위를 제한한다.- 모든 곳을 검색할 필요가 없음.- 아주 직관적 ###Code nbits = d*5 # 데이터의 차원에 따라 확장됨 index = faiss.IndexLSH(d,nbits) index.add(xb) %%time D, I = index.search(xq, k) np.in1d(baseline, I) ###Output _____no_output_____ ###Markdown - LSH 알고리즘을 통해 얻은 10개의 결과값.- 대부분이 일치함.- 합리적으로 좋은 회수율.- 시간이 빨라짐.- nbits를 조정하여 더 좋은 결괏값을 얻을 수 있음.- recall graph를 보면 차원을 증가시키면 좋은 recall을 얻을 수 있지만, 차원의 저주가 있다.- 낮은 차원일 수록 좋다. HNSW(Hierarchical Navigable Small World)- small world graph를 탐색.- hops로 접근- 인덱스 추가에 더 오래 걸림(더 정확하게 하기 위해)- ef_construction은 크게 해도될것같고.. (대신 메모리 소비 많음)- ef_search는 잘 조절 ###Code M = 16 # 50~16 number of 꼭짓점의 연결 ef_search = 16 #검색의 깊이 (네트워크 더 많이 검색하려는 경우 high or low) ef_construction = 64 #네트워크 구성할 때 네트워크의 양. 얼마나 자세하게 네트워크를 구성할 것인가. 검색 시간에는 영향을 주지 않으므로 높게 설정 index = faiss.IndexHNSWFlat(d, M) index.hnsw.efSearch = ef_search index.hnsw.efConstruction = ef_construction index.add(xb) %%time D, I = index.search(xq, k) np.in1d(baseline, I) ###Output _____no_output_____ ###Markdown IVF(Inverted File Index)- Super cool index- Clustering datapoint를 기반으로 함.- 보로노이 셀 or 디리클레 테셀레이션- 각 영역의 중심과의 거리를 계산- 가까운 곳의 영역 안의 벡터와만 비교 Edge Problem- 쿼리를 사용하면 셀 중 하나의 가장자리에 있다. 그리고 n개의 probe value를 정하면, 1로 되어있다면 검색하는 영역의 수. - 가까운 중심 노드가 있어도 검색하지 않을 것이다. 엣지로 영역이 막혀 있으니. 따라서 search scope를 늘림으로써 (nprobe의 증가) 여러개의 셀을 검색하므로 해결할 수 있다. ###Code nlist = 128 # 데이터 내에서 가질 중심의 수 quantizer = faiss.IndexFlatIP(d) # 최종 검색을 수행하는 방법 index = faiss.IndexIVFFlat(quantizer, d, nlist) index.is_trained index.train(xb) # 다른 클러스터링은 훈련이나 최적화가 필요없지만, 사용하기 전 인덱스 트레인을 작성하고 모든 벡터를 전달하며ㅡ 속도는 느리지 않다. index.add(xb) index.nprobe = 2 # 2로 증가했더니 더 높은 성능 %%time D, I = index.search(xq, k) # Low quality 결과를 제외하고 가장 빠른 것 같음. np.in1d(baseline, I) ###Output _____no_output_____
notebooks/karpathy_game.ipynb
###Markdown Average Reward over time ###Code g.plot_reward(smoothing=100) ###Output _____no_output_____ ###Markdown Visualizing what the agent is seeingStarting with the ray pointing all the way right, we have one row per ray in clockwise order.The numbers for each ray are the following:- first three numbers are normalized distances to the closest visible (intersecting with the ray) object. If no object is visible then all of them are $1$. If there's many objects in sight, then only the closest one is visible. The numbers represent distance to friend, enemy and wall in order.- the last two numbers represent the speed of moving object (x and y components). Speed of wall is ... zero.Finally the last two numbers in the representation correspond to speed of the hero. ###Code g.__class__ = KarpathyGame np.set_printoptions(formatter={'float': (lambda x: '%.2f' % (x,))}) x = g.observe() new_shape = (x[:-2].shape[0]//g.eye_observation_size, g.eye_observation_size) print(x[:-2].reshape(new_shape)) print(x[-2:]) g.to_html() ###Output [[1.00 1.00 0.34 1.00 0.52 0.53] [1.00 1.00 0.34 1.00 0.52 0.53] [1.00 1.00 1.00 1.00 0.00 0.00] [1.00 1.00 1.00 1.00 0.00 0.00] [1.00 1.00 1.00 1.00 0.00 0.00] [1.00 1.00 1.00 1.00 0.00 0.00] [1.00 1.00 1.00 1.00 0.00 0.00] [0.69 1.00 1.00 1.00 0.50 0.18] [1.00 1.00 1.00 1.00 0.00 0.00] [1.00 1.00 1.00 1.00 0.00 0.00] [1.00 1.00 1.00 1.00 0.00 0.00] [1.00 1.00 1.00 1.00 0.00 0.00] [1.00 1.00 1.00 0.79 0.00 0.00] [1.00 1.00 1.00 0.68 0.00 0.00] [1.00 0.43 1.00 1.00 -0.00 0.54] [1.00 0.39 1.00 1.00 -0.00 0.54] [1.00 1.00 1.00 0.56 0.00 0.00] [1.00 1.00 1.00 0.57 0.00 0.00] [1.00 1.00 1.00 0.61 0.00 0.00] [1.00 1.00 1.00 0.68 0.00 0.00] [1.00 1.00 1.00 0.79 0.00 0.00] [1.00 1.00 1.00 1.00 0.00 0.00] [1.00 1.00 1.00 1.00 0.00 0.00] [1.00 1.00 1.00 1.00 0.00 0.00] [1.00 1.00 1.00 1.00 0.00 0.00] [1.00 1.00 1.00 1.00 0.00 0.00] [1.00 1.00 1.00 1.00 0.00 0.00] [1.00 1.00 1.00 1.00 0.00 0.00] [1.00 1.00 1.00 1.00 0.00 0.00] [1.00 1.00 1.00 1.00 0.00 0.00] [1.00 1.00 1.00 1.00 0.00 0.00] [0.69 1.00 1.00 1.00 0.81 0.33]] [-1.03 0.75] ###Markdown Average Reward over time ###Code g.plot_reward(smoothing=100) session.run(current_controller.target_network_update) current_controller.q_network.input_layer.Ws[0].eval() current_controller.target_q_network.input_layer.Ws[0].eval() ###Output _____no_output_____ ###Markdown Visualizing what the agent is seeingStarting with the ray pointing all the way right, we have one row per ray in clockwise order.The numbers for each ray are the following:- first three numbers are normalized distances to the closest visible (intersecting with the ray) object. If no object is visible then all of them are $1$. If there's many objects in sight, then only the closest one is visible. The numbers represent distance to friend, enemy and wall in order.- the last two numbers represent the speed of moving object (x and y components). Speed of wall is ... zero.Finally the last two numbers in the representation correspond to speed of the hero. ###Code g.__class__ = KarpathyGame np.set_printoptions(formatter={'float': (lambda x: '%.2f' % (x,))}) x = g.observe() new_shape = (x[:-4].shape[0]//g.eye_observation_size, g.eye_observation_size) print(x[:-4].reshape(new_shape)) print(x[-4:]) g.to_html() ###Output [[1.00 0.55 1.00 -0.42 -0.40] [1.00 1.00 1.00 0.00 0.00] [1.00 1.00 1.00 0.00 0.00] [1.00 0.83 1.00 0.42 0.63] [1.00 1.00 1.00 0.00 0.00] [1.00 1.00 1.00 0.00 0.00] [1.00 1.00 1.00 0.00 0.00] [1.00 1.00 1.00 0.00 0.00] [1.00 1.00 1.00 0.00 0.00] [1.00 1.00 1.00 0.00 0.00] [1.00 1.00 1.00 0.00 0.00] [1.00 1.00 1.00 0.00 0.00] [1.00 1.00 1.00 0.00 0.00] [1.00 1.00 1.00 0.00 0.00] [1.00 1.00 1.00 0.00 0.00] [1.00 0.44 1.00 -0.18 0.76] [1.00 0.46 1.00 -0.18 0.76] [1.00 1.00 1.00 0.00 0.00] [0.89 1.00 1.00 -0.95 0.78] [1.00 1.00 1.00 0.00 0.00] [1.00 1.00 1.00 0.00 0.00] [1.00 0.44 1.00 0.45 -0.81] [1.00 0.20 1.00 -0.64 0.14] [1.00 0.19 1.00 -0.64 0.14] [1.00 0.21 1.00 -0.64 0.14] [1.00 0.57 1.00 0.56 0.78] [1.00 1.00 1.00 0.00 0.00] [1.00 1.00 1.00 0.00 0.00] [1.00 0.92 1.00 0.41 0.77] [1.00 1.00 1.00 0.00 0.00] [1.00 1.00 1.00 0.00 0.00] [1.00 1.00 1.00 0.00 0.00]] [1.00 -0.94 -0.25 0.46]
u1/02_PythonPrimer.ipynb
###Markdown Erste Schritte in Python VariablenPython ist fundamental objektorientiert. Das heißt nicht nur, dass Sie in Python objektorientiert programmieren können. Es gilt auch der Leitsatz: *Alles in Python ist ein Objekt*. Also selbst grundlegende Datentypen wie `int`, `float` und `str`, sowie Funktionen sind Objekte. Daher sind Variablen in Python immer Referenzen auf Objekte.Wie viele andere Skriptprachen auch, ist Python dynamisch typisiert. Das bedeutet, dass Sie keine Typangaben bei der Definition einer Variablen angeben müssen. Python leitet automatisch den passenden Typ ab, bzw. es wählt den "am besten passenden" Typ aus.Sie können daher Variablen in Python wie folgt definieren: ###Code a = 42 b = 1.23 ab = 'Hallo' ###Output _____no_output_____ ###Markdown Für Variablennamen gelten die Gleichen Regeln wie für die Bezeichner in C/C++. Variablen müssen mit einem Buchstaben oder Unterstrich beginnen und können sich ab dem 2. Zeichen aus einer beliebigen Folge von Buchstaben, Ziffern und Unterstrichen zusammensetzen.Es gibt allerdings einige Konventionen für die Wahl von Bezeichnern. So gelten Variablen, die mit 2 Unterstrichen beginnen als *privat*, Namen mit 2 Unterstrichen am Anfang und am Ende sind für spezielle Attribute und Methoden reserviert ("*magic methods*"). Die skalaren, also elementare oder nicht-zusammengesetzten Datentypen in Python sind:- `int` Ganze Zahlen- `float` Fließkommazahlen mit 64-bit Präzision- `complex` Komplexe Zahlen- `bool` Bool'scher Datentyp mit den Werten `True` und `False`- `NoneType` signalisiert das Nicht-Vorhandensein einer Referenz, ähnlich zu `NULL` oder `NIL` in anderen SprachenDie Typen `str` für Zeichenketten sowie `bytes` für Folgen von 8-bit (vorzeichenlosen) Werten (zum Verarbeiten von Binärdaten) gehören zu den *Sequentiallen Datentypen*. OperationenFür die meisten Datentypen existieren die bekannten Operationen (`+`, `-`, `*`, `/`) mit der üblichen Bedeutung. Daneben gibt es noch den Operator `//`, für die ganzzahlige Division, den Modulo-Operator `%` und den Potenz-Operator `**`. ###Code a = 2 + 1.23 b = 22.2//3 c = "Hallo " + "Welt" d = 2**8 print(a, b, c, d) ###Output _____no_output_____ ###Markdown Die `print` Funktion, wie oben verwendet, benötigt man ziemlich häufig.Ruft man sie mit einer (beliebigen) Folge von Parametern aus, so wird für jeden Variable, entsprechend ihres Typs, eine passende *print* Methode aufgerufen. In Python heißt die Methode `__str__()`, sie entspricht in etwa der `toString()`-Methode aus Java.Um eine formatierte Ausgabe zu erhalten, kann man einen Format-String mit Platzhaltern angeben, ähnlich wie bei der `printf`-Funktion aus C. Über den Modulo-Operator können dann die Variablen angegeben werden, die an den Platzhaltern eingesetzt werden sollen.Für unser Beispiel oben sieht das dann z.B. so aus: ###Code print("a = %f, b = %d, c = %s, d = %s" % (a, b, c, d)) ###Output _____no_output_____ ###Markdown Python ist stark typisiert. D.h., dass Variablen immer einen eindeutigen Typ haben und an keiner Stelle eine implizite Typumwandlung stattfinden kann. Jede Änderung des Typs erfordert eine explizite Typkonvertierung. Ein Ausdruck wie `"Hallo"+2` kann nicht ausgewertet werden, da die `+`-Operation für einen String und einen Integer nicht definiert ist.In diesem Fall kann man eine Typenwandlung, z.B. von `int` nach `str` vornehmen: ###Code "Hallo" + str(2) ###Output _____no_output_____ ###Markdown Sequentielle DatentypenUnter sequenziellen Datentypen wird eine Klasse von Datentypen zusammengefasst, die Folgen von **gleichartigen oder verschiedenen Elementen** verwalten.In Listen und Tupel können beliebige Folgen von Daten abgelegt sein. Die gespeicherten Elemente haben eine definierte Reihenfolge und man kann über eindeutige Indizes auf sie zugreifen. Listen sind veränderbar, d.h., man kann einzelne Elemente ändern, löschen oder hinzufügen. Tupel sind nicht veränderbar. Das bedeutet, bei jeder Änderung wird ein komplett neues Objekt mit den geänderten Elmenten angelegt. ###Code a = [3.23, 7.0, "Hallo Welt", 256] b = (3.23, 7.0, "Hallo Welt", 256) print("Liste a = %s\nTupel b =%s" % (a,b) ) print("Das dritte Element von b ist " + b[2]) print("Gleiche Referenz? %s. Gleicher Inhalt? %s" % (a == b, set(a)==set(b))) ###Output _____no_output_____ ###Markdown Das obige Beispiel bringt uns direkt zum nächsten Datentyp, den Mengen (oder engl. *sets*).Wie bei den Mengen aus der Mathematik kann ein set in Python jedes Objekt nur einmal enthalten.Wenn wir also aus der Liste [4,4,4,4,3,3,3,2,2,1] eine Menge machen, hat diese folgende Elemente: ###Code set([4,4,4,4,3,3,3,2,2,1]) ###Output _____no_output_____ ###Markdown Die elemente tauchen nun nicht nur einmalig auf, sondern sie sind auch umsortiert worden.Man darf sich hier nicht täuschen lassen, die Elemente einer Menge sind immer unsortiert.D.h., man kann keine spezielle Sortierung erwarten, auch wenn die Ausgabe in manchen Fällen danach aussieht. Ein weitere sequentieller Datentyp sind Dictionaries (die deutsche Übersetzung *Wörterbücher* passt hier nicht so gut).Diectionaries sind eine Menge von *Schlüssel-Wert-Paaren*.Das bedeutet, dass jeder Wert im Dictionary unter einem frei wählbaren Schlüssel abgelegt ist, und auch über diesen Schlüssel zugegriffen werden kann. ###Code haupstaedte = {"DE" : "Berlin", "FR" : "Paris", "US" : "Washington", "CH" : "Zurich"} print(haupstaedte["FR"]) haupstaedte["US"] = "Washington, D.C." print(haupstaedte["US"]) ###Output _____no_output_____ ###Markdown Funktionen Funktionen in Python werden über das Schlüsselwort `def` definiert. Die Syntax einer Funktions-Definition sieht folgendermaßen aus:```pythondef myfunc(arg1, arg2,... argN): '''Dokumentation''' Programmcode return ```Hier wird die Funktion "myfunc" definiert, welche mit den Parametern "arg1,arg2,....argN" aufgerufen werden kann.Wir sehen hier auch ein weiteres Konzept von Python, das wir bisher noch nicht angesprochen haben. Die Strukturierung von Code in Blöcke erfolgt über **Einrückungen**.Für eine Funktion bedeutet das, dass der Code des Funktionskörpers um eine Stufe gegenüber der Funktionsdefinition eingerückt sein muss. Wenn der Funktionskörpers weitere Kontrollstrukturen enthält, z.B. Schleifen oder Bedingungen, sind weitere Einrückungen nötig. Betrachten Sie folgendes Beispiel: ###Code def gib_was_aus(): print("Eins") print("Zwei") print("Drei") gib_was_aus() ###Output _____no_output_____ ###Markdown Hier wird zuerst eine Funktion `gib_was_aus` definiert. Die Anweisung `print("Drei")` ist nicht mehr eingerückt, gehört daher nicht mehr zur Funktion. Funktionen können fast überall definiert sein, also z.B. auch innerhalb von anderen Funktionen.Rückgaben erfolgen, wie auch in anderen Programmiersprachen üblich mit den Schlüsselwort `return`.Falls mehrere Elemente zurückgegeben werden sollen, können diese z.B. in ein Tupel gepackt werden: ###Code def inc(a, b, c): return a+1, b+1, c+"B" a=b=1 c="A" a,b,c = inc(a,b,c) print(a,b,c) ###Output _____no_output_____ ###Markdown VerzweigungenWir haben bisher noch keine Kontrollstrukturen, also Verzweigungen oder Schleifen angesprochen.Eine Bedingung oder Verzeigung funktioniert in Python (wie üblich) über ein `if`-`else`-Konstrukt.Auch hier werden zur Strukturierung der Blöcke Einrückungen benutzt. ###Code a=2 if a==0: print("a ist Null") else: print("a ist nicht Null") ###Output _____no_output_____ ###Markdown Um tiefe Verschachtelungen zu vermeiden, gibt es noch ein `elif`-Anweisung: ###Code a=2 if a<0: print("a ist negativ") elif a>0: print("a ist positiv") else: print("a ist Null") ###Output _____no_output_____ ###Markdown SchleifenIn Python gibt es die Schleifentypen, `while` und `for`, wobei letztere eine etwas ungewöhnliche Syntax hat.Die `while`-Schleife hingegen wird wie in vielen bekannten Programmiersprachen benutzt: ###Code i = 5 while i>0: print(i) i -= 2 ###Output _____no_output_____ ###Markdown Anders als z.B. in C/C++ oder Java läuft eine `for`-Schleife in Python nicht über eine Zählvariable, sondern über *die Elemente eines iterierbaren Datentyps*.Einige Beispiele für iterierbaren Datentypen haben wir schon als sequentielle Datentypen kennen gelernt.Wir können z.B. mit einer `for`-Schleife alle Elemente eines Dictionaries besuchen: ###Code haupstaedte = {"DE" : "Berlin", "FR" : "Paris", "US" : "Washington", "CH" : "Zurich"} for s in haupstaedte: print(haupstaedte[s]) ###Output _____no_output_____ ###Markdown Wir sehen, dass die Laufvariable hier alle Schlüssel des Dictionaries annimmt. Bei einer Liste wird über alle Werte iteriert: ###Code a = [3.23, 7.0, "Hallo Welt", 256] for s in a: print(s) ###Output _____no_output_____ ###Markdown Neben den sequentiellen Datentypen liefern noch sogenannte **Generatoren** Folgen von Werten die iterierbar sind. Der bekannteste iterator ist `range()`.`range` kann mehrere Argumente haben. Ist nur ein Argument `E` angegeben, so läuft der iterator von 0 bis `E-1`.`range(S, E)` läuft von S bis `E-1`, und `range(S, E, K)` läuft von S bis `E-1` mit der Schrittweite `K` ###Code print("Ein Parameter:", end=" ") for s in range(5): print(s, end=" ") print("\nZwei Parameter:", end=" ") for s in range(2,5): print(s, end=" ") print("\nDrei Parameter:", end=" ") for s in range(0,5,2): print(s, end=" ") ###Output _____no_output_____ ###Markdown Das zusätzliche Argument `end=" "` in den `print`-Anweisungen oben verhindert übrigens einen Zeilenumbruch.Ohne diesen Parameter würden alle Werte in einer Spalter untereinander ausgegeben. Damit endet unser erster *Crash Kurs* zum Thema Python. Sie haben nun die wichtigsten Elemente der Python-Syntax gesehen.Natürlich zeigen die Beispiele aber nur einen kleinen Auschnitt, die Sprache ist noch deutlich umfangreicher und viele Konzepte, wie z.B. Klassen und Module, haben wir noch nicht einmal angesprochen.Am besten Sie probieren Python einfach mal aus, indem Sie bestehende Beispiele übernehmen und verändern.Die Python Notebooks sind eine ideale Umgebung dafür.Sie können in den Code-Zellen Programmcode einfach ausprobieren.In den Markdown-Zellen können Sie sich Notizen machen, um Ihren Code zu dokumentieren oder ihre Schritte zu beschreiben. AufgabenAuf den folgenden Notebooks wird es ggf. auch Aufgaben zur Eigneständigen Bearbeitung geben. Ihre Lösungen können Sie über das JupyterNotebook einreichen.Zum Testen der Abgaben kommt hier eine Mini Aufgabe:Implementieren Sie eine Python Funktion, die den String *Hello World* zurückliefert! ###Code def hello(): return "Hello World" assert hello()=="Hello World" ###Output _____no_output_____
learning_notebooks/Part 1 - Predicting timeseries in the real world new.ipynb
###Markdown Part 1 - Predicting timeseries in the real world new Predicting in the real world is much less theoretical than we showed you in the previous BLUs. As with so much, experience plays a part in choosing things like tuning Hyper-Parameters and choosing models, but at the end of the day you are going to follow some best practices when you can, grid search while your CPU allows you, and avoid complicated problems with libraries and APIs whenever those present themselves.Let's go predict some timeseries. ###Code import utils from sklearn.metrics import r2_score import pandas as pd import numpy as np import statsmodels.api as sm # <--- Yay! API! % matplotlib inline import matplotlib.pyplot as plt plt.rcParams["figure.figsize"] = (16, 5) import itertools import warnings warnings.simplefilter(action='ignore', category=FutureWarning) warnings.filterwarnings("ignore") # specify to ignore warning messages airlines = utils.load_airline_data() ###Output _____no_output_____ ###Markdown Predicting out of time We will start, as so often happens, with a confession ![](https://i.imgflip.com/2ab2ba.jpg) Same dataset as we had in the previous BLU: ###Code airlines = airlines[:'1957'] ###Output _____no_output_____ ###Markdown Predicting the Airlines dataset in the real world Alright! Same problem as BLU2, but this time without caring so much about low level stuff. Let's have some fun! ###Code airlines.plot(figsize=(16, 4)); ###Output _____no_output_____ ###Markdown This is the SARIMAX. What does that stand for? ![](https://i.imgflip.com/2ab2xu.jpg) The **Autoregressive Integrated Moving Average** part we know from BLU2. _(well... kind of anyway)_ Now what about the new bits? - **`Seasonal`**: as the name suggests, this model can actually deal with seasonality. Coool.... - **`With Exogenous`** roughly means we can add external information. For instance we can include the temperature time series to predict the ice cream sales, which is surely useful. Exogenous variables, as you learned in [BLU2](https://github.com/LDSSA/batch2-BLU02/blob/master/Learning%20Notebooks/BLU02%20-%20Learning%20Notebook%20-%20Part%201%20of%203%20-%20Time%20series%20modelling%20concepts.ipynb) are introduced from or produced outside the organism or system, and don't change with the predictions of the system.What are the parameters? These we already know from [BLU](https://github.com/LDSSA/batch2-BLU02/blob/master/Learning%20Notebooks/BLU02%20-%20Learning%20Notebook%20-%20Part%203%20of%203%20-%20Prediction.ipynb)> p = 0 > d = 1 > q = 1 But now we have a second bunch. The first 3 are the same as before, but for the seasonal part: > P = 1 > D = 1 > Q = 1 The last new parameter, `S`, is an integer giving the periodicity (number of periods in season). We normally have a decent intuition for this parameter: - If we have daily data and suspect we may have weekly trends, we may want `S` to be 7. - If the data is monthly and we think the time of the year may count, maybe try `S` at 12 > S = 12 To know the SARIMAX in detail you can and should take a closer look at [the documentation](http://www.statsmodels.org/dev/generated/statsmodels.tsa.statespace.sarimax.SARIMAX.html). But for now, let's just do exactly what we did in BLU2, but without the crazy low level details: ###Code model = sm.tsa.statespace.SARIMAX(airlines, # <-- holy crap just passed it pandas? No ".values"? No .diff? order=(0, 1, 1), # <-- keeping our order as before in BLU2 seasonal_order=(1, 1, 1, 12)) # <-- We'll get into how we found these hyper params later ###Output _____no_output_____ ###Markdown Now to fit the model ###Code results = model.fit() ###Output _____no_output_____ ###Markdown And get predictions: ###Code pred = results.get_prediction(start=airlines.index.min(), # <--- Start at the first point we have dynamic=False) # <--- Dynamic means "use only the data # from the past, we'll use this eventually mean_predictions = pred.predicted_mean print('Can this possibly return a... %s OH MY GOD IT DID THAT IS SO AWESOME!!' % type(mean_predictions)) ###Output Can this possibly return a... <class 'pandas.core.series.Series'> OH MY GOD IT DID THAT IS SO AWESOME!! ###Markdown Done. Seriously, check this out: ###Code airlines.plot(label='observed') mean_predictions.plot(label='One-step ahead Forecast with dynamic=False', alpha=.7) plt.legend() plt.show() ###Output _____no_output_____ ###Markdown Boum. Confidence intervals? Why yes please: ###Code pred_ci = pred.conf_int() airlines.plot(label='observed') mean_predictions.plot(label='One-step ahead Forecast with dynamic=False', alpha=.7) # Let's use some matplotlib code to fill between the upper and lower confidence bound with grey plt.fill_between(pred_ci.index, pred_ci['lower passengers_thousands'], pred_ci['upper passengers_thousands'], color='k', alpha=.2) plt.ylim([0, 700]) plt.legend() plt.show() ###Output _____no_output_____ ###Markdown Kind of makes sense, at the start we didn't have enough data to predict much, so the uncertaintly band is pretty insane. ###Code def plot_predictions(series_, pred_): """ Remember Sam told us to build functions as we go? Let's not write this stuff again. """ mean_predictions_ = pred_.predicted_mean pred_ci_ = pred_.conf_int() series_.plot(label='observed') mean_predictions_.plot(label='predicted', alpha=.7) plt.fill_between(pred_ci_.index, pred_ci_['lower passengers_thousands'], pred_ci_['upper passengers_thousands'], color='k', alpha=.2) plt.ylim([0, 700]) plt.legend() plt.show() ###Output _____no_output_____ ###Markdown Now, what if we had stopped feeding it data, and asked it to predict the last 30 periods? ###Code # We want to make 30 steps out of time train_up_to_step = len(airlines) - 30 # remember the dynamic argument? Well, we'll use the first 30 steps to train pred = results.get_prediction(start=airlines.index.min(), dynamic=train_up_to_step) plot_predictions(series_=airlines, pred_=pred) ###Output _____no_output_____ ###Markdown Pretty cool, we can see the uncertainty increasing as we move. Also, what if we wanted to forecast outside of our "known" dates? For this we will use the `get_forecast` method, which allows us to go beyond what data we have: ###Code forecast = results.get_forecast(steps=15) forecast_ci = forecast.conf_int() plot_predictions(series_=airlines, pred_=forecast) ###Output _____no_output_____ ###Markdown Looks like a decent forecast! [Or is it](https://thumbs.gfycat.com/BitterRingedGrayling-size_restricted.gif)? Let's quantify the quality of our predictions. Validation metrics There are two metrics we will use to validate our results. The first one, $R^{2}$, should be familiar to you from [SLU12](https://goo.gl/6Nvqgs). It is generally used only to validate the test set results. _Optional bit: The demonstration of why $R^{2}$ is beyond the scope here, but intuitive enough: a really complex model can overfit and get a high $R^{2}$, so if we use it as a metric to optimize when choosing the model we're incentivizing it to overfit._Let's evaluate some test set results with R2: ###Code pred = results.get_prediction(start=train_up_to_step, dynamic=False) y_pred = pred.predicted_mean y_true = airlines.iloc[train_up_to_step::] # Compute the mean square error r2 = r2_score(y_pred=y_pred, y_true=y_true) print('The R2 of our forecasts is {}'.format(round(r2, 2))) ###Output The R2 of our forecasts is 0.97 ###Markdown AIC As we mentioned, $R^{2}$ is limited when applied to the training set. This is where AIC is a better choice. AIC (Akaike information criterion) is a metric that will simutaneously measure how well the model fits the data, but will control for how complex the model is. If the model is very complex, the expectation oh how well it must fit the data will also go up. It is therefore useful for comparing models. If you (for some weird reason) feel compelled to calculate it by hand, [this post](https://stats.stackexchange.com/questions/87345/calculating-aic-by-hand-in-r?utm_medium=organic&utm_source=google_rich_qa&utm_campaign=google_rich_qa) explains how to do so. Then again, it's sunny and beautiful outside, and Statsmodel has got your back. ###Code results.aic ###Output _____no_output_____ ###Markdown Hyper parameter optimization Now, I've been using some very specific parameters: > p = 0 > d = 1 > q = 1 > P = 1 > D = 1 > Q = 1 > S = 12 I discovered these parameters by doing one of the following: > A) _~~developing a strong intuition about how statsmodels work and about the trends in the airline industry~~_ > B) throwing a hyper parameter optimizer at the problem and making myself a nice cup of tea while it ran. Let's build a Hyper Parameter Optimizer (fancy!) ###Code p = d = q = P = D = Q = range(0, 2) # <--- all of the paramters between 0 and 2 S = [7, 14] # <-- let's pretend we have a couple of hypothesis params_combinations = list(itertools.product(p, d, q, P, D, Q, S)) inputs = [[x[0], x[1], x[2], x[3], x[4], x[5], x[6]] for x in params_combinations] ###Output _____no_output_____ ###Markdown Great. Now, for each set of params, let's get the aic: ###Code def get_aic(series_, params): # extract the params p = params[0] d = params[1] q = params[2] P = params[3] D = params[4] Q = params[5] S = params[6] # fit a model with those params model = sm.tsa.statespace.SARIMAX(series_, order=(p, d, q), seasonal_order=(P, D, Q, S), enforce_stationarity=False, enforce_invertibility=False) # fit the model results = model.fit() # return the aic return results.aic ###Output _____no_output_____ ###Markdown Run, forest, run! ###Code %%time aic_scores = {} params_index = {} for i in range(len(inputs)): try: param_set = inputs[i] aic = get_aic(airlines, param_set) aic_scores[i] = aic params_index[i] = param_set # this will fail sometimes with impossible parameter combinations. # ... and I'm too lazy to remember what they are. except Exception as e: continue ###Output CPU times: user 33.7 s, sys: 1.87 s, total: 35.5 s Wall time: 41.8 s ###Markdown Wrangle these results into a usable dataframe _(note: don't worry if you don't understand this code too well for now)_ ###Code temp = pd.DataFrame(params_index).T temp.columns = ['p', 'd', 'q', 'P', 'D', 'Q', 'S'] temp['aic'] = pd.Series(aic_scores) temp.sort_values('aic').head() ###Output _____no_output_____ ###Markdown Great! What were the best params? ###Code best_model_params = temp.aic.idxmin() temp.loc[best_model_params] ###Output _____no_output_____ ###Markdown Great! Let's fit that model then: ###Code best_model = sm.tsa.statespace.SARIMAX(airlines, order=(0, 1, 1), seasonal_order=(1, 1, 1, 12), enforce_stationarity=False, enforce_invertibility=False) results = best_model.fit() predictions_best_model = results.get_prediction(dynamic=len(airlines) - 10) plot_predictions(series_=airlines, pred_=predictions_best_model) ###Output _____no_output_____ ###Markdown Using season and exogenous variables So far, we have been using only the endogenous variable to create predictions. Also, the time series we used are ... kind of easy. Highly seasonal and periodic, eventhough the variance might increase over time. But they are easy. So, what about making things a "little bit" harder? Like, for example, predicting the US GDP Growth. ###Code import pandas as pd from statsmodels import api as sm import matplotlib.pyplot as plt import warnings warnings.filterwarnings('ignore') ###Output _____no_output_____ ###Markdown If you want additional insights on each of the time series of this dataset, check this page at [thebalance.com](https://www.thebalance.com/components-of-gdp-explanation-formula-and-chart-3306015). ###Code data = pd.read_csv('../data/US_Production_Q_Data_Growth_Rates.csv') data.Year = pd.to_datetime(data.Year) data = data.set_index('Year') data.head(10) data['GDP Growth'].plot(figsize=(16, 6)); ###Output _____no_output_____ ###Markdown Can you see any seasonality? Me neither. But you might notice that, from time to time, there is a big drop in GDP Growth (to negative values). That is related to economical cycles. Hmmm...cycles...maybe a cyclical component is present?**ALSO**, Remember the 2007 crisis? Well, it is no surprise that we had the biggest recession near ~2009. Let's plot all time series together to see if there is a pattern ###Code data.plot(figsize=(16, 6)); ###Output _____no_output_____ ###Markdown Well...maybe it wasn't a good idea. Let's instead make several plots, one for each pair (GDP Growth, OTHER TIME SERIES) ###Code from itertools import product for gdp, other in product(['GDP Growth'], data.drop('GDP Growth', axis=1).columns): data[[gdp, other]].plot(figsize=(16, 6)) plt.show() ###Output _____no_output_____ ###Markdown By visual inspection, we that Consumption Growth and Labor Growth follow GDP Growth like two puppies. So, one reasonable hypothesis is: those two time series are highly predictive for GDP Growth. Instead of trying to find the best model using grid search, we will let you explore the effect of each exogenous variable and model parameter in the forecast. First, let's prepare the train test split and, also, add some cyclical features for month and decade ###Code import numpy as np X = data.drop('GDP Growth', axis=1) X['month (cosine)'] = np.cos(2 * np.pi * X.index.month/ 12) X['month (sin)'] = np.sin(2 * np.pi * X.index.month/ 12) X['decade (cosine)'] = np.cos(2 * np.pi * (X.index.year % 10) / 10) X['decade (sine)'] = np.sin(2 * np.pi * (X.index.year % 10) / 10) y = data['GDP Growth'] train_percentage = 0.5 train_size = int(X.shape[0] * train_percentage) X_train, y_train = X.iloc[:train_size], y.iloc[:train_size] X_test, y_test = X.iloc[train_size:], y.iloc[train_size:] from ipywidgets import interact from ipywidgets import fixed from ipywidgets import FloatSlider from ipywidgets import IntSlider from ipywidgets import Checkbox from ipywidgets import Dropdown from ipywidgets import SelectMultiple def sarimax_fit_and_plot(endo_train, endo_test, exog_train=None, exog_test=None, use_exog=False, exog_selected=None, trend='n', maxiter=50, forecast_steps=None, p=1, d=0, q=0, P=0, D=0, Q=0, s=0): if use_exog: exog_selected = list(exog_selected) exog_train = exog_train[exog_selected] exog_test = exog_test[exog_selected] if use_exog: sarimax = sm.tsa.SARIMAX(endo_train, exog=exog_train, order=(p, d, q), trend=trend, seasonal_order=(P, D, Q, s)) else: sarimax = sm.tsa.SARIMAX(endo_train, order=(p, d, q), trend=trend, seasonal_order=(P, D, Q, s)) sarimax_results = sarimax.fit(maxiter=maxiter, trend=trend) if forecast_steps is None: forecast_steps = len(y_test) if use_exog: exog_test = exog_test.iloc[:forecast_steps] forecast = sarimax_results.get_forecast( steps=forecast_steps, exog=exog_test).predicted_mean else: forecast = sarimax_results.get_forecast( steps=forecast_steps).predicted_mean plot_forecast_target(forecast, endo_test) def plot_forecast_target(forecast, target): plt.figure(figsize=(16, 6)) forecast.plot(label="prediction") target = target.iloc[:len(forecast)] target.plot(label="target") plt.ylabel(target.name) plt.legend() plt.title("R²: {}".format(r2_score(target, forecast))) interact(sarimax_fit_and_plot, endo_train=fixed(y_train), endo_test=fixed(y_test), exog_train=fixed(X_train), exog_test=fixed(X_test), use_exog=Dropdown(options=[True, False]), exog_selected=SelectMultiple( options=list(X.columns), value=[X.columns[0]], rows=X.shape[1], description='Exogenous features', disabled=False ), trend=Dropdown(options=['n','c','t','ct']), maxiter=IntSlider(value=50, min=10, max=5000, step=10), forecast_steps=IntSlider(value=10, min=1, max=len(y_test), step=1), p=IntSlider(value=1, min=0, max=20, step=1), d=IntSlider(value=0, min=0, max=2, step=1), q=IntSlider(value=0, min=0, max=10, step=1), P=IntSlider(value=0, min=0, max=10, step=1), D=IntSlider(value=0, min=0, max=2, step=1), Q=IntSlider(value=0, min=0, max=10, step=1), s=IntSlider(value=0, min=0, max=40, step=1)); ###Output _____no_output_____
.ipynb_checkpoints/categorical_embedding-checkpoint.ipynb
###Markdown Visualize dataset using categorical embedding The dataset for this project originates from the [UCI Machine Learning Repository](https://archive.ics.uci.edu/ml/datasets/Census+Income). The datset was donated by Ron Kohavi and Barry Becker, after being published in the article _"Scaling Up the Accuracy of Naive-Bayes Classifiers: A Decision-Tree Hybrid"_. We can find the article by Ron Kohavi [online](https://www.aaai.org/Papers/KDD/1996/KDD96-033.pdf). The data we investigate here consists of small changes to the original dataset, such as removing the `'fnlwgt'` feature and records with missing or ill-formatted entries. ###Code import warnings warnings.simplefilter('ignore') # Import libraries necessary for this project import numpy as np import pandas as pd from time import time from IPython.display import display # Allows the use of display() for DataFrames # Import sklearn.preprocessing.StandardScaler from sklearn.preprocessing import MinMaxScaler # Import train_test_split from sklearn.model_selection import train_test_split # Import two metrics from sklearn - fbeta_score and accuracy_score from sklearn.metrics import fbeta_score from sklearn.metrics import accuracy_score # Import the three supervised learning models from sklearn from sklearn.naive_bayes import GaussianNB from sklearn.tree import DecisionTreeClassifier from sklearn.ensemble import RandomForestClassifier # Import 'GridSearchCV', 'make_scorer', and any other necessary libraries from sklearn.model_selection import GridSearchCV from sklearn.metrics import make_scorer # Import functionality for cloning a model from sklearn.base import clone import altair as alt alt.data_transformers.enable('json') # Pretty display for notebooks %matplotlib inline from gensim.models import Word2Vec # TSNE import time from sklearn.manifold import TSNE # Load the Census dataset data = pd.read_csv("census.csv") data.head() ###Output _____no_output_____ ###Markdown **Featureset Exploration*** **age**: Continuous. * **workclass**: Categorical - Private, Self-emp-not-inc, Self-emp-inc, Federal-gov, Local-gov, State-gov, Without-pay, Never-worked. * **education**: Categorical - Bachelors, Some-college, 11th, HS-grad, Prof-school, Assoc-acdm, Assoc-voc, 9th, 7th-8th, 12th, Masters, 1st-4th, 10th, Doctorate, 5th-6th, Preschool. * **education-num**: Continuous. * **marital-status**: Categorical - Married-civ-spouse, Divorced, Never-married, Separated, Widowed, Married-spouse-absent, Married-AF-spouse. * **occupation**: Categorical - Tech-support, Craft-repair, Other-service, Sales, Exec-managerial, Prof-specialty, Handlers-cleaners, Machine-op-inspct, Adm-clerical, Farming-fishing, Transport-moving, Priv-house-serv, Protective-serv, Armed-Forces. * **relationship**: Categorical - Wife, Own-child, Husband, Not-in-family, Other-relative, Unmarried. * **race**: Categorical - Black, White, Asian-Pac-Islander, Amer-Indian-Eskimo, Other. * **sex**: Categorical - Female, Male. * **capital-gain**: Continuous. * **capital-loss**: Continuous. * **hours-per-week**: Continuous. * **native-country**: Categorical - United-States, Cambodia, England, Puerto-Rico, Canada, Germany, Outlying-US(Guam-USVI-etc), India, Japan, Greece, South, China, Cuba, Iran, Honduras, Philippines, Italy, Poland, Jamaica, Vietnam, Mexico, Portugal, Ireland, France, Dominican-Republic, Laos, Ecuador, Taiwan, Haiti, Columbia, Hungary, Guatemala, Nicaragua, Scotland, Thailand, Yugoslavia, El-Salvador, Trinadad&Tobago, Peru, Hong, Holand-Netherlands. ---- Preparing the DataBefore data can be used as input for machine learning algorithms, it often must be cleaned, formatted, and restructured. Fortunately, for this dataset, there are no invalid or missing entries we must deal with, however, there are some qualities about certain features that must be adjusted. Normalizing Numerical FeaturesIn addition to performing transformations on features that are highly skewed, it is often good practice to perform some type of scaling on numerical features. Applying a scaling to the data does not change the shape of each feature's distribution (such as `'capital-gain'` or `'capital-loss'` above); however, normalization ensures that each feature is treated equally when applying supervised learners. Note that once scaling is applied, observing the data in its raw form will no longer have the same original meaning. ###Code # Initialize a scaler, then apply it to the features scaler = MinMaxScaler() # default=(0, 1) numerical = ['age', 'education-num', 'capital-gain', 'capital-loss', 'hours-per-week'] numerical_normalized = ['age_normalized', 'education-num_normalized', 'capital-gain_normalized', 'capital-loss_normalized', 'hours-per-week_normalized'] normalized_data = data normalized_data[numerical_normalized] = data[numerical] normalized_data[numerical_normalized] = scaler.fit_transform(normalized_data[numerical_normalized]) normalized_data.head() categorical = ['workclass', 'education_level', 'marital-status', 'occupation', 'relationship', 'race', 'sex', 'native-country'] def getSentence(x): arr = [] for col in categorical: arr.append(x[col].strip()) return arr normalized_data['combined-categories'] = normalized_data.apply(getSentence, axis=1) normalized_data.head() # window size of 8 includes all words in context # ns_exponent of 0.0 samples all words equally model = Word2Vec(list(normalized_data['combined-categories']), min_count=1, size=32, window=8, ns_exponent=0.0, workers=8, iter=100) # test vector for one of the categorical values model['Private'] def getCategoryArray(x): arr = [] for col in categorical: arr.append(model[x[col].strip()]) return np.mean(np.array(arr), axis=0) normalized_data['categories_arr'] = normalized_data.apply(getCategoryArray, axis=1) normalized_data.head() normalizer = np.amax(list(normalized_data['categories_arr'])) - np.amin(list(normalized_data['categories_arr'])) def getCombinedArray(x): arr = x['categories_arr'] for col in numerical_normalized: arr = np.append(arr, x[col]*normalizer) return arr normalized_data['combined_arr'] = normalized_data.apply(getCombinedArray, axis=1) normalized_data.head() ###Output _____no_output_____ ###Markdown Visualize ###Code def performTSNE(df, col, out_x='x', out_y='y', verbose=1, perplexity=40, n_iter=500): ''' perform tSNE (t-distributed Stochastic Neighbor Embedding). A tool to visualize high-dimensional data. It converts similarities between data points to joint probabilities and tries to minimize the Kullback-Leibler divergence between the joint probabilities of the low-dimensional embedding and the high-dimensional data. input: df - data frame col - name of col with embedding data out_x - name of column to store x-coordinates out_y - name of column to store y-cordinates verbose - perplexity - related to the number of nearest neighbors - usually a value between 5 and 50 n_iter - number of iterations output: input df with 2 additional columns for x and y co-ordinates ''' X = np.array(list(df[col])) time_start = time.time() tsne = TSNE(n_components=2, verbose=verbose, random_state=32, perplexity=perplexity, n_iter=n_iter) tsne_results = tsne.fit_transform(X) if verbose > 0: print('t-SNE done! Time elapsed: {} seconds'.format(time.time()-time_start)) df[out_x] = tsne_results[:,0] df[out_y] = tsne_results[:,1] return df normalized_data = performTSNE(normalized_data, 'combined_arr') normalized_data.head() ###Output _____no_output_____ ###Markdown Now that we have the x and y co-ordinates, we can get rid of the extra columns. ###Code to_drop = ['age_normalized', 'education-num_normalized', 'capital-gain_normalized', 'capital-loss_normalized', 'hours-per-week_normalized', 'categories_arr', 'combined_arr'] #to be used in modeling features = pd.DataFrame(normalized_data['combined_arr'].tolist()) normalized_data.drop(columns=to_drop, inplace=True) scatter_chart = alt.Chart(normalized_data).mark_circle().encode( x='x', y='y', color = 'income', tooltip=['age', 'workclass', 'education_level', 'education-num', 'marital-status', 'occupation', 'relationship', 'race', 'sex', 'capital-gain', 'capital-loss', 'hours-per-week', 'native-country'] ).properties( width=700, height=700 ).interactive() scatter_chart.display() scatter_chart.save('scatter_chart.html') ###Output _____no_output_____ ###Markdown Effect of Gender, Marital Status and Race ###Code sex_selection = alt.selection_multi(fields=['sex'], name='sex') marital_selection = alt.selection_multi(fields=['marital-status'], name='marital') race_selection = alt.selection_multi(fields=['race'], name='race') scatter_color = alt.condition(sex_selection | marital_selection | race_selection, alt.Color('income:N'), alt.value('lightgray')) sex_color = alt.condition(sex_selection, #alt.value("#e45756"), alt.Color('income:N'), alt.value('lightgray')) marital_color = alt.condition(marital_selection, #alt.value("#72b7b2"), alt.Color('income:N'), alt.value('lightgray')) race_color = alt.condition(race_selection, #alt.value("#54a24b"), alt.Color('income:N'), alt.value('lightgray')) sex_bar = alt.Chart(normalized_data).mark_bar().encode( x= alt.X('count()', axis=alt.Axis(title='')), y= alt.Y('sex:N', sort='-x', axis=alt.Axis(title='', labelFontSize=12, ticks=False)), color=sex_color ).properties( width=200, height=60, title="Sex" ).add_selection( sex_selection ) marital_bar = alt.Chart(normalized_data).mark_bar().encode( x= alt.X('count()', axis=alt.Axis(title='')), y= alt.Y('marital-status:N', sort='-x', axis=alt.Axis(title='', labelFontSize=12, ticks=False)), color=marital_color ).properties( width=200, height=225, title="Marital Status" ).add_selection( marital_selection ) race_bar = alt.Chart(normalized_data).mark_bar().encode( x= alt.X('count()', axis=alt.Axis(title='')), y= alt.Y('race:N', sort='-x', axis=alt.Axis(title='', labelFontSize=12, ticks=False)), color=race_color ).properties( width=200, height=125, title="Race" ).add_selection( race_selection ) scatter = alt.Chart(normalized_data).mark_circle().encode( x='x', y='y', color = scatter_color, tooltip=['age', 'workclass', 'education_level', 'education-num', 'marital-status', 'occupation', 'relationship', 'race', 'sex', 'capital-gain', 'capital-loss', 'hours-per-week', 'native-country'] ).properties( width=500, height=500 ).add_selection(alt.selection_single()) # selection_single work arounf for vega-lite bug - to show tooltp gender_marital_race_chart = (scatter | (sex_bar & marital_bar & race_bar)).configure_legend( orient='bottom' ) gender_marital_race_chart.display() gender_marital_race_chart.save('gender_marital_race_chart.html') ###Output _____no_output_____ ###Markdown Effect of Education Level, Workclass and Occupation ###Code workclass_selection = alt.selection_multi(fields=['workclass'], name='workclass') education_level_selection = alt.selection_multi(fields=['education_level'], name='education_level') occupation_selection = alt.selection_multi(fields=['occupation'], name='occupation') scatter_color = alt.condition(workclass_selection | education_level_selection | occupation_selection, alt.Color('income:N'), alt.value('lightgray')) workclass_color = alt.condition(workclass_selection, alt.Color('income:N'), alt.value('lightgray')) education_level_color = alt.condition(education_level_selection, alt.Color('income:N'), alt.value('lightgray')) occupation_color = alt.condition(occupation_selection, alt.Color('income:N'), alt.value('lightgray')) workclass_bar = alt.Chart(normalized_data).mark_bar().encode( x= alt.X('count()', axis=alt.Axis(title='')), y= alt.Y('workclass:N', sort='-x', axis=alt.Axis(title='', labelFontSize=12, ticks=False)), color=workclass_color ).properties( width=200, height=80, title="Workclass" ).add_selection( workclass_selection ) education_level_bar = alt.Chart(normalized_data).mark_bar().encode( x= alt.X('count()', axis=alt.Axis(title='')), y= alt.Y('education_level:N', sort='-x', axis=alt.Axis(title='', labelFontSize=12, ticks=False)), color=education_level_color ).properties( width=200, height=225, title="Education Level" ).add_selection( education_level_selection ) occupation_bar = alt.Chart(normalized_data).mark_bar().encode( x= alt.X('count()', axis=alt.Axis(title='')), y= alt.Y('occupation:N', sort='-x', axis=alt.Axis(title='', labelFontSize=12, ticks=False)), color=occupation_color ).properties( width=200, height=150, title="Occupation" ).add_selection( occupation_selection ) scatter = alt.Chart(normalized_data).mark_circle().encode( x='x', y='y', color = scatter_color, tooltip=['age', 'workclass', 'education_level', 'education-num', 'marital-status', 'occupation', 'relationship', 'race', 'sex', 'capital-gain', 'capital-loss', 'hours-per-week', 'native-country'] ).properties( width=500, height=500 ).add_selection(alt.selection_single()) # selection_single work arounf for vega-lite bug - to show tooltp workclass_education_occupation_chart = (scatter | (workclass_bar & education_level_bar & occupation_bar)).configure_legend( orient='bottom' ) workclass_education_occupation_chart.display() workclass_education_occupation_chart.save('workclass_education_occupation_chart.html') ###Output _____no_output_____ ###Markdown Modeling ###Code income = normalized_data['income'].map({'<=50K':0, '>50K':1}) ###Output _____no_output_____ ###Markdown Shuffle and Split Data ###Code # Split the 'features' and 'income' data into training and testing sets X_train, X_test, y_train, y_test = train_test_split(features, income, test_size = 0.2, random_state = 0) # Show the results of the split print("Training set has {:,} samples.".format(X_train.shape[0])) print("Testing set has {:,} samples.".format(X_test.shape[0])) # Initialize the classifier clf = RandomForestClassifier(random_state=23) # Create the parameters list you wish to tune, using a dictionary if needed. parameters = {'n_estimators':[60, 75],'max_depth':[12, 14],'min_samples_leaf':[5, 6]} # Make an fbeta_score scoring object using make_scorer() scorer = make_scorer(fbeta_score, beta=0.5) # Perform grid search on the classifier using 'scorer' as the scoring method using GridSearchCV() grid_obj = GridSearchCV(clf, parameters, scoring=scorer) # Fit the grid search object to the training data and find the optimal parameters using fit() grid_fit = grid_obj.fit(X_train,y_train) # Get the estimator best_clf = grid_fit.best_estimator_ print(grid_fit.best_estimator_) # Make predictions using the unoptimized and model predictions = (clf.fit(X_train, y_train)).predict(X_test) time_start = time.time() best_predictions = (best_clf.fit(X_train, y_train)).predict(X_test) time_end = time.time() # Report the before-and-afterscores print("Unoptimized model\n------") print("Accuracy score on testing data: {:.4f}".format(accuracy_score(y_test, predictions))) print("F-score on testing data: {:.4f}".format(fbeta_score(y_test, predictions, beta = 0.5))) print("\nOptimized Model\n------") print("Final accuracy score on the testing data: {:.4f}".format(accuracy_score(y_test, best_predictions))) print("Final F-score on the testing data: {:.4f}".format(fbeta_score(y_test, best_predictions, beta = 0.5))) print("Time taken {:.4f}".format(time_end - time_start)) ###Output RandomForestClassifier(bootstrap=True, ccp_alpha=0.0, class_weight=None, criterion='gini', max_depth=14, max_features='auto', max_leaf_nodes=None, max_samples=None, min_impurity_decrease=0.0, min_impurity_split=None, min_samples_leaf=5, min_samples_split=2, min_weight_fraction_leaf=0.0, n_estimators=75, n_jobs=None, oob_score=False, random_state=23, verbose=0, warm_start=False) Unoptimized model ------ Accuracy score on testing data: 0.8377 F-score on testing data: 0.6700 Optimized Model ------ Final accuracy score on the testing data: 0.8605 Final F-score on the testing data: 0.7290 Time taken 5.1834
utilities/video-analysis/notebooks/resnet/resnet50/resnet50-http-icpu-onnx/create_resnet50_icpu_container_image.ipynb
###Markdown Create a Local Docker ImageIn this section, we will create an IoT Edge module, a Docker container image with an HTTP web server that has a scoring REST endpoint. Get Global Variables ###Code import sys sys.path.append('../../../common') from env_variables import * ###Output _____no_output_____ ###Markdown Create Web Application & Inference Server for Our ML Solution ###Code %%writefile $lvaExtensionPath/app.py import threading import cv2 import numpy as np import io import onnxruntime import json import logging import linecache import sys from score import MLModel, PrintGetExceptionDetails from flask import Flask, request, jsonify, Response logging.basicConfig(level=logging.DEBUG) app = Flask(__name__) inferenceEngine = MLModel() @app.route("/score", methods = ['POST']) def scoreRRS(): global inferenceEngine try: # get request as byte stream reqBody = request.get_data(False) # convert from byte stream inMemFile = io.BytesIO(reqBody) # load a sample image inMemFile.seek(0) fileBytes = np.asarray(bytearray(inMemFile.read()), dtype=np.uint8) cvImage = cv2.imdecode(fileBytes, cv2.IMREAD_COLOR) # Infer Image detectedObjects = inferenceEngine.Score(cvImage) if len(detectedObjects) > 0: respBody = { "inferences" : detectedObjects } respBody = json.dumps(respBody) logging.info("[LVAX] Sending response.") return Response(respBody, status= 200, mimetype ='application/json') else: logging.info("[LVAX] Sending empty response.") return Response(status= 204) except: PrintGetExceptionDetails() return Response(response='Exception occured while processing the image.', status=500) @app.route("/") def healthy(): return "Healthy" if __name__ == "__main__": app.run(host='127.0.0.1', port=8888) ###Output _____no_output_____ ###Markdown 8888 is the internal port of the webserver app that listens the requests. Next, we will map it to different ports to expose it externally. ###Code %%writefile $lvaExtensionPath/wsgi.py from app import app as application def create(): application.run(host='127.0.0.1', port=8888) import os os.makedirs(os.path.join(lvaExtensionPath, "nginx"), exist_ok=True) ###Output _____no_output_____ ###Markdown The exposed port of the web app is now 80, while the internal one is still 8888. ###Code %%writefile $lvaExtensionPath/nginx/app server { listen 80; server_name _; location / { include proxy_params; proxy_pass http://127.0.0.1:8888; proxy_connect_timeout 5000s; proxy_read_timeout 5000s; } } %%writefile $lvaExtensionPath/gunicorn_logging.conf [loggers] keys=root, gunicorn.error [handlers] keys=console [formatters] keys=json [logger_root] level=INFO handlers=console [logger_gunicorn.error] level=ERROR handlers=console propagate=0 qualname=gunicorn.error [handler_console] class=StreamHandler formatter=json args=(sys.stdout, ) [formatter_json] class=jsonlogging.JSONFormatter %%writefile $lvaExtensionPath/kill_supervisor.py import sys import os import signal def write_stdout(s): sys.stdout.write(s) sys.stdout.flush() # this function is modified from the code and knowledge found here: http://supervisord.org/events.html#example-event-listener-implementation def main(): while 1: write_stdout('[LVAX] READY\n') # wait for the event on stdin that supervisord will send line = sys.stdin.readline() write_stdout('[LVAX] Terminating supervisor with this event: ' + line); try: # supervisord writes its pid to its file from which we read it here, see supervisord.conf pidfile = open('/tmp/supervisord.pid','r') pid = int(pidfile.readline()); os.kill(pid, signal.SIGQUIT) except Exception as e: write_stdout('[LVAX] Could not terminate supervisor: ' + e.strerror + '\n') write_stdout('[LVAX] RESULT 2\nOK') main() import os os.makedirs(os.path.join(lvaExtensionPath, "etc"), exist_ok=True) %%writefile $lvaExtensionPath/etc/supervisord.conf [supervisord] logfile=/tmp/supervisord.log ; (main log file;default $CWD/supervisord.log) logfile_maxbytes=50MB ; (max main logfile bytes b4 rotation;default 50MB) logfile_backups=10 ; (num of main logfile rotation backups;default 10) loglevel=info ; (log level;default info; others: debug,warn,trace) pidfile=/tmp/supervisord.pid ; (supervisord pidfile;default supervisord.pid) nodaemon=true ; (start in foreground if true;default false) minfds=1024 ; (min. avail startup file descriptors;default 1024) minprocs=200 ; (min. avail process descriptors;default 200) [program:gunicorn] command=bash -c "gunicorn --workers 1 -m 007 --timeout 100000 --capture-output --error-logfile - --log-level debug --log-config gunicorn_logging.conf \"wsgi:create()\"" directory=/lvaExtension redirect_stderr=true stdout_logfile =/dev/stdout stdout_logfile_maxbytes=0 startretries=2 startsecs=20 [program:nginx] command=/usr/sbin/nginx -g "daemon off;" startretries=2 startsecs=5 priority=3 [eventlistener:program_exit] command=python kill_supervisor.py directory=/lvaExtension events=PROCESS_STATE_FATAL priority=2 ###Output _____no_output_____ ###Markdown Create a Docker File to Containerize the ML Solution and Web App Server ###Code %%writefile $lvaExtensionPath/Dockerfile FROM ubuntu:18.04 ENV WORK_DIR=/lvaExtension WORKDIR ${WORK_DIR} RUN apt-get update && apt-get install -y --no-install-recommends wget ca-certificates COPY etc /etc RUN apt-get update && apt-get install -y --no-install-recommends \ python3-pip python3-dev libglib2.0-0 libsm6 libxext6 libxrender-dev nginx supervisor runit nginx python3-setuptools RUN cd /usr/local/bin \ && ln -s /usr/bin/python3 python \ && pip3 install --upgrade pip \ && pip install numpy onnxruntime flask pillow gunicorn opencv-python json-logging-py RUN apt-get update && apt-get install -y --no-install-recommends \ libgl1-mesa-dev COPY . ${WORK_DIR}/ RUN rm -rf /var/lib/apt/lists/* \ && apt-get clean \ && rm /etc/nginx/sites-enabled/default \ && cp ${WORK_DIR}/nginx/app /etc/nginx/sites-available/ \ && ln -s /etc/nginx/sites-available/app /etc/nginx/sites-enabled/ EXPOSE 80 CMD ["supervisord", "-c", "/lvaExtension/etc/supervisord.conf"] ###Output _____no_output_____ ###Markdown Create a Local Docker ImageFinally, we will create a Docker image locally. We will later host the image in a container registry like Docker Hub, Azure Container Registry, or a local registry.To run the following code snippet, you must have the pre-requisities mentioned in [the requirements page](../../../common/requirements.md). Most notably, we are running the `docker` command without `sudo`.> [!WARNING]> Please ensure that Docker is running before executing the cell below. Execution of the cell below may take several minutes. ###Code !docker build -t $containerImageName --file ./$lvaExtensionPath/Dockerfile ./$lvaExtensionPath ###Output _____no_output_____
scripts/python_scripts/.ipynb_checkpoints/plot_expression_data_BD-checkpoint.ipynb
###Markdown Plotting expression data of given gene ID's01. This script plot the expression data of defined gene modules from WGCNAThe modules are named by colors (e.g. red, blue, ect.). This script allow the input of a colorname and plots the expressin values of all the genes in that module.02. This script plot the expression data of any given list of gene ID's. This script allows the input of gene list (robin IDs or ncbi ID) and will plot the expression value of the given genes. HousekeepingYou start with specifing the path to your machine, and the species you want to investigate. These Next you import all the modules used for this script ###Code ### Housekeeping # # load modules import sqlite3 # to connect to database import pandas as pd # data anaylis handeling import numpy as np # following three are for plotting import matplotlib.pyplot as plt import seaborn as sns import colorsys import matplotlib # # specify path to folder were your data files are, or your database is #path = '/Users/roos_brouns/Dropbox/Ant-fungus/02_scripts/Git_Das_folder2/Das_et_al_2022a' path = '/Users/biplabendudas/Documents/GitHub/Das_et_al_2022a' # # specify species species = 'ophio_cflo' # Add defenition for color palette making for plotting. # source: source: https://stackoverflow.com/questions/37765197/darken-or-lighten-a-color-in-matplotlib def scale_lightness(rgb, scale_l): # convert rgb to hls h, l, s = colorsys.rgb_to_hls(*rgb) # manipulate h, l, s values and return as rgb return colorsys.hls_to_rgb(h, min(1, l * scale_l), s = s) ###Output _____no_output_____ ###Markdown Load in the dataThe next step is to load in the data. This can be done with connection to a database base in this example or a excel/cvs with the data kan be read in. The database used in this tutorial is can be made with another script [REF]. ###Code ### Load in data # # Connect to the database conn = sqlite3.connect(f'{path}/data/databases/new_TC6_fungal_data.db') # # read data from DB into dataframe exp_val = pd.read_sql_query(f"SELECT * from {species}_fpkm", conn) ### Clean data # # drop 'start' and 'end' columns exp_val.drop(['start','end'], axis=1, inplace=True) ###Output _____no_output_____ ###Markdown Part 01. Plotting expression value of modulesThis next part of code plots the expression values of all the genes in a defined module. These module have been defined with WCGNA and can be used to do this step [REF]. * This code will ask for an input of color names of the defined module ###Code ### Part 01. Plot expressioin value of modules # # A. Get the data you want to plot # # Load in the data with the gene ID's and their assigned module all_modules = pd.read_csv(f'{path}/results/networks/{species}_gene_IDs_and_module_identity.csv') # Clean the data by dropping exsessive columns all_modules.drop(['start', 'end'], axis=1, inplace=True) # # # Input the colors of the modules you want to plot # source : https://pynative.com/python-accept-list-input-from-user/ input_string = input('Enter elements of a list separated by space ') print("\n") module_list = input_string.split() # print list print('giving input colors', module_list) # try: for color in module_list: # Define the module you want to plot module_name = color # select all the data of that module module_data = all_modules.loc[all_modules['module_identity'] == module_name] # select the gene ID's in of the module module_IDs = pd.DataFrame(module_data['gene_ID_robin']) # get the expression values of the selected gene ID's in the module exp_val_module = module_IDs.merge(exp_val, on='gene_ID_robin', how='left') # # B. Plot the data # # Transform the data so we can plot t_exp_val_module = exp_val_module.T t_exp_val_module.drop(['gene_ID_robin','gene_ID_ncbi'], axis=0, inplace=True) # # Make the color palette for plotting color = matplotlib.colors.ColorConverter.to_rgb(module_name) rgbs = [scale_lightness(color, scale) for scale in [0.3, .6, 1, 1.1, 1.25]] # Show the palette color # sns.palplot(rgbs) # # set background and the color palette sns.set_theme() sns.set_palette(rgbs) # # Plot the gene expression values against the time, without legend and with titles ax = t_exp_val_module.plot(legend=False) ax.set_title(species[0].upper()+f'{species[1:len(species)]}-{module_name} gene expression', fontsize=15, fontweight='bold') ax.set_xlabel('Time point') ax.set_ylabel('Expression value (FPKM)') # ### Done. # except: # print('Wrong input was given: No color module was defined or the given color does not exist as module.') # ### X-axis try outs # label = t_exp_val_module.index # ndx = t_exp_val_module.index # time_points = 2+np.arange(len(t_exp_val_module))*2 # exp_val_module # sns.set_palette('Greens') # t_exp_val_module.plot(legend=False) # #plt.xticks(time_points) # #plt.xticks(time_points, ndx) ###Output _____no_output_____
ipynb/cellflow.ipynb
###Markdown A step towards a reactive notebook This is a proof-of-concept for an API that aims to automate the data flow in a notebook. It uses the IPython magic functions `onchange` to specify how variables depend on each other in a cell, and `compute` to get the desired results. The dependency resolution is automatically taken care of, and the computations only occur if needed. ###Code %load_ext cellflow %cellflow_configure -v # initialization a = 2 ###Output _____no_output_____ ###Markdown Any change in the value of `a` will cause `b` to be re-computed: ###Code %%onchange a -> b b = a - 1 ###Output _____no_output_____ ###Markdown Any change in the value of `a` or `b` will cause `c` and `d` to be re-computed: ###Code %%onchange a, b -> c, d c = a + b d = a - b ###Output _____no_output_____ ###Markdown Until now no computation did actually take place. It has to be explicitely asked for through the `compute` magic function, which will figure out the optimal way to compute the results: ###Code %%compute c, d print() print(f'c = {c}') print(f'd = {d}') ###Output The data flow consists of the following paths: a -> c a -> d a -> b -> c a -> b -> d Looking at target variable c in path: a -> c Variable c is also in path: a -> b -> c And other variables have to be computed first Looking at target variable d in path: a -> d Variable d is also in path: a -> b -> d And other variables have to be computed first Looking at target variable b in path: a -> b -> c Variable b is also in path: a -> b -> d Which doesn't prevent computing it Variable a has changed Computing: b = a - 1 Looking at target variable b in path: a -> b -> d No change in dependencies Looking at target variable c in path: a -> c Variable c is also in path: b -> c Which doesn't prevent computing it Variable a has changed Computing: c = a + b d = a - b Looking at target variable d in path: a -> d Variable d is also in path: b -> d Which doesn't prevent computing it No change in dependencies Looking at target variable c in path: b -> c No change in dependencies Looking at target variable d in path: b -> d No change in dependencies All done! c = 3 d = 1 ###Markdown If no dependency has changed, there will actually be no computation: ###Code %%compute c, d print() print(f'c = {c}') print(f'd = {d}') ###Output The data flow consists of the following paths: a -> c a -> d a -> b -> c a -> b -> d Looking at target variable c in path: a -> c Variable c is also in path: a -> b -> c And other variables have to be computed first Looking at target variable d in path: a -> d Variable d is also in path: a -> b -> d And other variables have to be computed first Looking at target variable b in path: a -> b -> c Variable b is also in path: a -> b -> d Which doesn't prevent computing it No change in dependencies Looking at target variable b in path: a -> b -> d No change in dependencies Looking at target variable c in path: a -> c Variable c is also in path: b -> c Which doesn't prevent computing it No change in dependencies Looking at target variable d in path: a -> d Variable d is also in path: b -> d Which doesn't prevent computing it No change in dependencies Looking at target variable c in path: b -> c No change in dependencies Looking at target variable d in path: b -> d No change in dependencies All done! c = 3 d = 1 ###Markdown But a change in the dependencies will cause some or all the variables to be re-computed: ###Code a = 3 %%compute c, d print() print(f'c = {c}') print(f'd = {d}') ###Output The data flow consists of the following paths: a -> c a -> d a -> b -> c a -> b -> d Looking at target variable c in path: a -> c Variable c is also in path: a -> b -> c And other variables have to be computed first Looking at target variable d in path: a -> d Variable d is also in path: a -> b -> d And other variables have to be computed first Looking at target variable b in path: a -> b -> c Variable b is also in path: a -> b -> d Which doesn't prevent computing it Variable a has changed Computing: b = a - 1 Looking at target variable b in path: a -> b -> d No change in dependencies Looking at target variable c in path: a -> c Variable c is also in path: b -> c Which doesn't prevent computing it Variable a has changed Computing: c = a + b d = a - b Looking at target variable d in path: a -> d Variable d is also in path: b -> d Which doesn't prevent computing it No change in dependencies Looking at target variable c in path: b -> c No change in dependencies Looking at target variable d in path: b -> d No change in dependencies All done! c = 5 d = 1 ###Markdown Again, only what is needed is re-computed: ###Code %%compute c, d print() print(f'c = {c}') print(f'd = {d}') ###Output The data flow consists of the following paths: a -> c a -> d a -> b -> c a -> b -> d Looking at target variable c in path: a -> c Variable c is also in path: a -> b -> c And other variables have to be computed first Looking at target variable d in path: a -> d Variable d is also in path: a -> b -> d And other variables have to be computed first Looking at target variable b in path: a -> b -> c Variable b is also in path: a -> b -> d Which doesn't prevent computing it No change in dependencies Looking at target variable b in path: a -> b -> d No change in dependencies Looking at target variable c in path: a -> c Variable c is also in path: b -> c Which doesn't prevent computing it No change in dependencies Looking at target variable d in path: a -> d Variable d is also in path: b -> d Which doesn't prevent computing it No change in dependencies Looking at target variable c in path: b -> c No change in dependencies Looking at target variable d in path: b -> d No change in dependencies All done! c = 5 d = 1 ###Markdown The data flow can be hacked. Here we modify the intermediary variable `b` (that should automatically be computed as `b = a - 1`), which will cause the final results to be re-computed: ###Code b = 10 %%compute c print() print(f'c = {c}') print(f'd = {d}') %%compute d print() print(f'c = {c}') print(f'd = {d}') ###Output The data flow consists of the following paths: a -> d a -> b -> d Looking at target variable d in path: a -> d Variable d is also in path: a -> b -> d And other variables have to be computed first Looking at target variable b in path: a -> b -> d No change in dependencies Looking at target variable d in path: a -> d Variable d is also in path: b -> d Which doesn't prevent computing it No change in dependencies Looking at target variable d in path: b -> d No change in dependencies All done! c = 13 d = -7
mlflow-project/sklearn_elasticnet_wine/train.ipynb
###Markdown MLflow Training TutorialThis `train.pynb` Jupyter notebook predicts the quality of wine using [sklearn.linear_model.ElasticNet](http://scikit-learn.org/stable/modules/generated/sklearn.linear_model.ElasticNet.html). > This is the Jupyter notebook version of the `train.py` exampleAttribution* The data set used in this example is from http://archive.ics.uci.edu/ml/datasets/Wine+Quality* P. Cortez, A. Cerdeira, F. Almeida, T. Matos and J. Reis.* Modeling wine preferences by data mining from physicochemical properties. In Decision Support Systems, Elsevier, 47(4):547-553, 2009. ###Code # Wine Quality Sample def train(in_alpha, in_l1_ratio): import os import warnings import sys import pandas as pd import numpy as np from sklearn.metrics import mean_squared_error, mean_absolute_error, r2_score from sklearn.model_selection import train_test_split from sklearn.linear_model import ElasticNet import mlflow import mlflow.sklearn import logging logging.basicConfig(level=logging.WARN) logger = logging.getLogger(__name__) def eval_metrics(actual, pred): rmse = np.sqrt(mean_squared_error(actual, pred)) mae = mean_absolute_error(actual, pred) r2 = r2_score(actual, pred) return rmse, mae, r2 warnings.filterwarnings("ignore") np.random.seed(40) # Read the wine-quality csv file from the URL csv_url =\ 'http://archive.ics.uci.edu/ml/machine-learning-databases/wine-quality/winequality-red.csv' try: data = pd.read_csv(csv_url, sep=';') except Exception as e: logger.exception( "Unable to download training & test CSV, check your internet connection. Error: %s", e) # Split the data into training and test sets. (0.75, 0.25) split. train, test = train_test_split(data) # The predicted column is "quality" which is a scalar from [3, 9] train_x = train.drop(["quality"], axis=1) test_x = test.drop(["quality"], axis=1) train_y = train[["quality"]] test_y = test[["quality"]] # Set default values if no alpha is provided if float(in_alpha) is None: alpha = 0.5 else: alpha = float(in_alpha) # Set default values if no l1_ratio is provided if float(in_l1_ratio) is None: l1_ratio = 0.5 else: l1_ratio = float(in_l1_ratio) # Useful for multiple runs (only doing one run in this sample notebook) with mlflow.start_run(): # Execute ElasticNet lr = ElasticNet(alpha=alpha, l1_ratio=l1_ratio, random_state=42) lr.fit(train_x, train_y) # Evaluate Metrics predicted_qualities = lr.predict(test_x) (rmse, mae, r2) = eval_metrics(test_y, predicted_qualities) # Print out metrics print("Elasticnet model (alpha=%f, l1_ratio=%f):" % (alpha, l1_ratio)) print(" RMSE: %s" % rmse) print(" MAE: %s" % mae) print(" R2: %s" % r2) # Log parameter, metrics, and model to MLflow mlflow.log_param("alpha", alpha) mlflow.log_param("l1_ratio", l1_ratio) mlflow.log_metric("rmse", rmse) mlflow.log_metric("r2", r2) mlflow.log_metric("mae", mae) mlflow.sklearn.log_model(lr, "model") train(0.5, 0.5) train(0.2, 0.2) train(0.1, 0.1) ###Output Elasticnet model (alpha=0.100000, l1_ratio=0.100000): RMSE: 0.7792546522251949 MAE: 0.6112547988118587 R2: 0.2157063843066196
Data Analysis Stocker.ipynb
###Markdown Checando as diferenças usando diferentes períodos de data ###Code error1 = tomorrow(Microsoft, years = 1)[1] error2 = tomorrow(Microsoft, years = 2)[1] error3 = tomorrow(Microsoft, years = 3)[1] print('Erro usando 1 ano de data:', error1, '%') print('Erro usando 2 anos de data:', error2, '%') print('Erro usando 3 anos de data:', error3, '%') ###Output [*********************100%***********************] 1 of 1 completed [*********************100%***********************] 1 of 1 completed [*********************100%***********************] 1 of 1 completed Erro usando 1 ano de data: 0.968 % Erro usando 2 anos de data: 1.255 % Erro usando 3 anos de data: 1.087 % ###Markdown Aparentemente é melhor usar somente dados do último ano. Isso pode ser devido ao entendimento do modelo, se somente o comportamento mais recente esta envolvido no modelo, portanto é feita uma melhor predição. Agora vamos checar a diferença usando quantidades diferentes de dias para os passos de entradas: ###Code error1 = tomorrow(Microsoft, steps = 1)[1] error2 = tomorrow(Microsoft, steps = 10)[1] error3 = tomorrow(Microsoft, steps = 20)[1] print('Erro usando 1 dia anterior de dados:', error1, '%') print('Erro usando 10 dias anterior de dados:', error2, '%') print('Erro usando 20 dias anterior de dados:', error3, '%') ###Output [*********************100%***********************] 1 of 1 completed [*********************100%***********************] 1 of 1 completed [*********************100%***********************] 1 of 1 completed Erro usando 1 dia anterior de dados: 1.014 % Erro usando 10 dias anterior de dados: 2.62 % Erro usando 20 dias anterior de dados: 1.194 % ###Markdown Novamente, checando que a data mais recente é a melhor opção. Isso não significa que o modelo não está levando em conta todo o comportamento durante todo o período de tempo. Agora vamos checar a diferença usando diferentes features: ###Code error1 = tomorrow(Microsoft, features=['Open'])[1] error2 = tomorrow(Microsoft, features=['Low'])[1] error3 = tomorrow(Microsoft, features=['High'])[1] error4 = tomorrow(Microsoft, features=['Volume'])[1] error5 = tomorrow(Microsoft, features=['Adj Close'])[1] error6 = tomorrow(Microsoft, features=['Interest'])[1] error7 = tomorrow(Microsoft, features=['Wiki_views'])[1] error8 = tomorrow(Microsoft, features=['RSI', '%K', '%R'])[1] error9 = tomorrow(Microsoft)[1] error10 = tomorrow(Microsoft, features=['Open','Low','High','Volume', 'Adj Close', 'Interest', 'Wiki_views', 'RSI', '%K', '%R'])[1] error11 = tomorrow(Microsoft, features=['Open', 'Low', 'High', 'Volume', 'Adj Close']) print('Error by including Open prices:',error1,'%') print('Error by including Low prices:',error2,'%') print('Error by including High prices:',error3,'%') print('Error by including Volume:',error4,'%') print('Error by including Adj Close prices:',error5,'%') print('Error by including Interest:',error6,'%') print('Error by including Wiki_views:',error7,'%') print('Error by including indicators:',error8,'%') print('Error by including only Close prices:',error9,'%') print('Error by including all the features:',error10,'%') print('Error by including the features from Yahoo Finance:',error11,'%') ###Output [*********************100%***********************] 1 of 1 completed [*********************100%***********************] 1 of 1 completed [*********************100%***********************] 1 of 1 completed [*********************100%***********************] 1 of 1 completed [*********************100%***********************] 1 of 1 completed [*********************100%***********************] 1 of 1 completed [*********************100%***********************] 1 of 1 completed [*********************100%***********************] 1 of 1 completed [*********************100%***********************] 1 of 1 completed [*********************100%***********************] 1 of 1 completed [*********************100%***********************] 1 of 1 completed Error by including Open prices: 0.943 % Error by including Low prices: 0.977 % Error by including High prices: 1.137 % Error by including Volume: 0.961 % Error by including Adj Close prices: 1.003 % Error by including Interest: 1.071 % Error by including Wiki_views: 0.967 % Error by including indicators: 1.07 % Error by including only Close prices: 1.231 % Error by including all the features: 0.896 % Error by including the features from Yahoo Finance: [337.95, 0.823, '2021-11-08'] % ###Markdown Usando somente o preço de fechamento anterior mostra um erro mais aproximado do que usando todas as features, então é uma boa opção para economizar tempo enquanto está executando o código. De qualquer forma, é recomendado implementar vários casos com diferentes features e escolher o caso com o menor erro. Finalmente vamos checar o coeficiente de correlação de Pearson para cada feature contra os preços de fechamento ###Code from stocker.get_data import correlation corr = correlation(Microsoft, interest = True, wiki_views = True, indicators = True) corr Microsoft_prediction = stocker.predict.tomorrow('MSFT') Microsoft_prediction # [Preço previsto, error(%), data da próx abertura] ###Output _____no_output_____
examples/VectorScanner.ipynb
###Markdown Load Damagescanner package ###Code import os import numpy import pandas from damagescanner.core import VectorScanner data_path = '..' ###Output _____no_output_____ ###Markdown Read input data ###Code inun_map = os.path.join(data_path,'data','inundation','inundation_map.tif') landuse = os.path.join(data_path,'data','landuse','landuse.shp') ###Output _____no_output_____ ###Markdown Create dummy maximum damage dictionary and curves DataFrame ###Code maxdam = {"grass":5, "forest":10, "orchard":50, "residential":200, "industrial":300, "retail":300, "farmland":10, "cemetery":15, "construction":10, "meadow":5, "farmyard":5, "scrub":5, "allotments":10, "reservoir":5, "static_caravan":100, "commercial":300} curves = numpy.array( [[0,0], [50,0.2], [100,0.4], [150,0.6], [200,0.8], [250,1]]) curves = numpy.concatenate((curves, numpy.transpose(numpy.array([curves[:,1]]*(len(maxdam)-1)))), axis=1) curves = pandas.DataFrame(curves) curves.columns = ['depth']+list(maxdam.keys()) curves.set_index('depth',inplace=True) ###Output _____no_output_____ ###Markdown Run the RasterScanner ###Code %%time # run the VectorScanner and return the landuse map with damage values loss_df = VectorScanner(landuse,inun_map,curves,maxdam) ###Output Get unique shapes: 100%|██████████████████████████████████████████████████████████| 3848/3848 [00:28<00:00, 135.87it/s] Estimate damages: 100%|█████████████████████████████████████████████████████████| 9773/9773 [00:00<00:00, 13083.56it/s] Damage per object: 100%|██████████████████████████████████████████████████████████| 6615/6615 [00:31<00:00, 211.64it/s]
Movie Ratings Recency.ipynb
###Markdown IntroductionFounded in 1997, MovieLens is a website and online community that generates movie recommendations for users via collaborative filtering. Users begin by creating an account and rating some number of movies they have previously watched on a scale of 0.5 stars to 5 stars. MovieLens's recommendation algorithm then uses the user's ratings, as well as other users' rating patterns, to generate movie recommendations for the user. As the user rates more movies over time, the algorithm updates the recommendations displayed, becoming more personalized (and thus theoretically more successful) over time.MovieLens makes its datasets, consisting of some 20 million ratings covering over 27,000 movies, available to the public. These datasets include the numerical rating and the associated user ID, movie ID, and date and time of rating. For this study, we'll begin with an up-to-date random sample of 100K ratings offered by MovieLens; if necessary for adequate significance levels, we'll also examine their full dataset of 20 million ratings. Loading the DataThe function load_and_clean imports the specified datasets, reformats dates, and merges the ratings data with the movies data. ###Code import numpy as np import scipy as sp import pandas as pd import seaborn as sns import matplotlib.pyplot as plt sns.set() %matplotlib inline # load small data from load_and_clean import load_and_clean smallRatings_df = load_and_clean("ml-latest-small/movies.csv", "ml-latest-small/ratings.csv") smallRatings_df.head() ###Output _____no_output_____ ###Markdown Exploring the DataLooking at the distribution of scores pictured below, two features stand out. First, although the site allows half-star ratings (0.5, 1.5, etc), users give whole-star ratings (1.0, 2.0, etc) much more often. This accounts for the dips in the half-star values of the plot on the upper left. If we round all the ratings up to the nearest full star as in the plot on the upper right plot, we can see the shape of the distribution more clearly. As the bottom plot shows, the distribution is roughly Gaussian with a leftward skew. ###Code rating_mean = smallRatings_df["rating"].mean() rating_std = smallRatings_df["rating"].std() plt.figure(figsize=(15,5)) plt.subplot(121) sns.countplot("rating", data=smallRatings_df) plt.title("Rating distribution (mean = {}, std = {})".format(round(rating_mean, 2), round(rating_std, 2))) plt.subplot(122) roundedRatings = (smallRatings_df["rating"] + .01).round() # add .01 to avoid skew from default banker's rounding sns.countplot(roundedRatings) plt.title("Rating distribution (rounded up to nearest whole star)") plt.show() plt.figure(figsize=(15,5)) sns.distplot(roundedRatings, bins=5, kde_kws={'bw':.8}) plt.title("Rounded ratings distribution with Gaussian approximation") plt.show() ###Output _____no_output_____ ###Markdown The plots below show the total number of ratings submitted on particular months of the year, days of the week, and years since 1996. There are ready-to-hand intuitive explanations for some of the differences exhibited here. For instance, while the data doesn't prove causality, the significant differences across months do correlate with typical U.S. work patterns. November and December feature significant holiday time for many jobs, but also short daylight and cold weather in many regions. We would expect this combination to increase indoor leisure time, which could include both movie-watching and movie-rating. The vacation-heavy summer months are also slightly elevated. The only result that doesn't have an obvious corollary in U.S. work cycles is the secondary ratings spike in April.For weekdays, it's unsurprising that the evenings most commonly used for social gatherings (Wednesday, Friday, and Saturday) feature lower movie-rating totals. People are more likely to be at home and on their computers on less socially busy nights. As for the yearly distribution, given the irregularity of the pattern and the rarity of multi-year institutional cycles in our culture, there are no clearly significant trends. ###Code plt.figure(figsize=(15,5)) plt.subplot(121) sns.countplot("month", data=smallRatings_df) plt.title("Total ratings in each calendar month") plt.subplot(122) sns.countplot("weekday", data=smallRatings_df) plt.title("Total ratings on each weekday") plt.show() plt.figure(figsize=(15,5)) sns.countplot(smallRatings_df["datetime"].dt.year) plt.title("Total ratings each year") plt.show() ###Output _____no_output_____ ###Markdown As we can see below, the distribution of how many ratings each user submitted is roughly geometric. The median number of ratings for a single user is 71 (the mean, heavily distorted by outliers, rises to 149). ###Code user_df = smallRatings_df.groupby("userId").agg({"movieId":"count", "rating":"mean"}) user_df.rename(index=str, columns={"movieId":"rating_count"}, inplace=True) plt.figure(figsize=(15,5)) plt.subplot(121) user_df["rating_count"].hist(range=(0,800), bins=20) plt.title("User rating count distribution (limit 800)") plt.subplot(122) user_df["rating_count"].hist(range=(0,200), bins=20) plt.title("User rating count distribution (limit 200)") print(user_df["rating_count"].mean()) plt.show() ###Output 149.03725782414307 ###Markdown Central QuestionOne major difficulty in assessing the ratings in this dataset is that participants give ratings at different time intervals from their actual viewing. Some ratings represent ratings for a movie that the user watched just an hour beforehand and remembers in great detail, while others represent ratings for movies that the user watched many years beforehand and retains only a vague impression of. Given the effects of memory over time, shifts in taste, and intervening life experiences, ratings of recently vs non-recently watched movies may be measuring very different attributes of the viewer-movie interaction. Interpreting them as equivalent may lead to faulty conclusions and gloss over valuable insights.We can roughly encapsulate these considerations in a single question: how do users' ratings of recently watched movies (say, within the past week) differ from their ratings of movies they watched long ago? HypothesisMy hypothesis is that ratings not given recently after watching a movie will tend to regress to the average in users' minds, leading to a smaller degree of dispersion among ratings. Concretely, my hypothesis is that the standard distribution will be lower for movies not rated recently after watching than for movies rated recently.It will also be interesting to examine the mean. My secondary hypothesis is that the mean rating will be slightly lower for movies not rated recently after watching than for movies rated recently. MethodologyOn the face of it, our question seems difficult to answer based on the available data. Because MovieLens does not ask the user how long ago or on what date she watched a given movie (rating a movie is a one-click process), we don't have any direct time interval data. However, we can make some inferences based on usage patterns. Broadly, we can posit three typical usage patterns for rating movies: Profile-building: the user rates multiple movies she has watched at some point - not necessarily recently - in order to generate initial recommendations. (Includes the initial site visit.) Targeted rating: the user logs in specifically to rate one or more movies she has recently watched Hybrid rating: the user logs in specifically to rate one or more movies she has recently watched, and then also rates one or more non-recently-watched movies while online.Notably, none of these typical patterns include going online just to rate a single movie that the user watched long ago - it's hard to imagine what motive would prompt that behavior. This is crucial, because it means that we can distinguish recent vs non-recent ratings based on how many movies the user rated that day. Specifically, for the purposes of answering our question, we will divide the data into three groups: Singleton ratings: ratings given on days on which that user recorded no other ratings Small-batch ratings: ratings given on days on which that user recorded two to five ratings Large-batch ratings: ratings given on days on which that user recorded more than five ratingsWe will discard the small-batch ratings as ambiguous, since these could plausibly represent several recently watched movies (usage pattern 2), several non-recently-watched movies (usage pattern 1), or a mixture of the two (usage pattern 3). We will compare the singleton ratings, which almost exclusively represent recently watched movies, against the large-batch ratings, which predominantly represent movies watched less recently than one week.For each of these sets – the singleton ratings and the large-batch ratings – we will take the mean and the standard deviation. As they are on the same scale, we do not need to normalize. We will compare these metrics and run t-tests to determine whether these differences are significant, defined as a p-value of less than 5%.Given the large size of the full dataset (20 million ratings), it would make good pragmatic sense to begin with evaluating a smaller random subset of 100,000 ratings, which we will divide into singleton, small-batch, and large-batch ratings. If the p-values produced from these subsets are close to or greater than 5%, we will run the tests again on the entire dataset. Conclusions and applicationsThis test will be successful if it demonstrates a significant difference between the singleton and large-batch rating datasets – in either direction. Even if that difference is the opposite of the hypothesized difference, the test will have produced interesting and useful information about the dataset. The lower the p-value of the difference is, the more significant the result is. Knowing the nature of this difference will allow us to take recency of rating into account as we analyze the dataset for recommendation algorithm optimization and other purposes.On the other hand, if there are no significant differences between the two rating sets, this means that one of the premises of the experiment was misguided: either the singletons vs large-batch ratings do not predominantly represent recent vs non-recent ratings (respectively) as supposed, or recent vs non-recent ratings do not actually display any statistically significant differences.The main application of this study would be toward improving the recommendation algorithm. A simple approach to movie recommendations would treat all ratings given by a user equally. The results of this experiment, however, may give us both reason and means to normalize ratings for recency. Significant differences between recent and non-recent ratings would also give us additional justification to weight ratings according to recency (with batch size and various aspects of individual user patterns serving as proxies for recency). Specifically, an optimal recommendation algorithm will likely attach more weight to recent movies. For one thing, the accuracy and detail of a memory diminish over time. But equally important is the consideration that individual taste is a moving target for every individual over time. This means that even a perfect memory of how much a user enjoyed a movie five years ago will be a very imperfect indicator of how much they would like a similar movie today. How much the user enjoyed a movie five hours ago, while still subject to a host of variable factors, will be more reliable. If this line of reasoning in favor of recent ratings is correct, the datasets of recent vs non-recent ratings will show differences in their distribution. The experiment outlined here would not be sufficient to prove that a recency-weighted algorithm will be more effective, but it would lend evidential support to such an argument. Further researchA reasonable next step in investigating and using the results of this study would be to build a recommendation algorithm that uses recency-based weighting and normalization. This new algorithm could then be tested against the original algorithm on MovieLens. Provided an adequate number of users to establish significance, a simple A/B test would be adequate; if the number of regular users is smaller, we could randomize the recommendation algorithm for each login or page reload rather than each user. Success would be based on the average subsequent user rating of recommended movies.While A/B testing could confirm these results and give us new data, there are also ways we could dig further into the data we have. Specifically, we could perform further study of recency differentials (the gap between recent and non-recent ratings). Looking at recency differentials for different users could help us categorize different types of viewers by recency effects. Perhaps more practically, looking at recency differentials for different movies may help us determine which types of movies age positively vs negatively in viewers' memories over time. This could help generate re-watch recommendations, or predict demand for DVD sales and other post-release merchandizing. Bonus: basic executionFrom the basic execution below, we can see that the mean values and standard distributions of the singleton vs. large-batch ratings differ slightly, but significantly (p = 0.00000000049). Both my primary and secondary hypothesis (that singleton ratings would have a higher average and a higher standard deviation) turned out to be false. But given the extremely low p-value, the experiment was still successful in producing significant information about real differences between recent and non-recent ratings.The plots below also reveal another significant difference: singleton ratings are much more likely to utilize half-star ratings (0.5, etc). This supports (but does not prove) the assumption that singleton ratings represent recent movies, which are remembered in much greater detail.The next step in this experiment, before pursuing the further research options listed above, would be to try toggling the threshholds between singleton, small-batch, and large-batch ratings and seeing how that affects these basic results. ###Code from experiment import split, contrastPlots singletons_df, batches_df = split(smallRatings_df) contrastPlots(singletons_df, batches_df) p_val = sp.stats.ttest_ind(singletons_df["rating"], batches_df["rating"])[1] print("P-value for singleton vs. large-batch ratings: {}".format(p_val)) ###Output _____no_output_____
SubsurfaceDataAnalytics_NeuralNetv2.ipynb
###Markdown Visualize the DatasetLet's visualize the train and test data split on a single scatter plot.* we want to make sure it is fair* ensure that the test samples are not clustered or too far away from the training data.We will look at the original data and normalized data, the input to the neural network. ###Code plt.subplot(211) plt.plot(X2_train['Depth'].values,y2_train['Nporosity'].values, 'o', markerfacecolor='red', markeredgecolor='black', alpha=0.4, label = "Train") plt.plot(X2_test['Depth'].values,y2_test['Nporosity'].values, 'o', markerfacecolor='blue', markeredgecolor='black', alpha=0.4, label = "Test") plt.title('Standard Normal Porosity vs. Depth') plt.xlabel('Z (m)') plt.ylabel('NPorosity') plt.legend() plt.subplots_adjust(left=0.0, bottom=0.0, right=2.0, top=1.0, wspace=0.2, hspace=0.2) plt.subplot(212) plt.plot(X2_train['norm_Depth'].values,y2_train['norm_Nporosity'].values, 'o', markerfacecolor='red', markeredgecolor='black', alpha=0.4, label = "Train") plt.plot(X2_test['norm_Depth'].values,y2_test['norm_Nporosity'].values, 'o', markerfacecolor='blue', markeredgecolor='black', alpha=0.4, label = "Test") plt.title('Normalized Standard Normal Porosity vs. Normalized Depth') plt.xlabel('Normalized Z') plt.ylabel('Normalized NPorosity') plt.legend() plt.subplots_adjust(left=0.0, bottom=0.0, right=2.0, top=1.5, wspace=0.2, hspace=0.3) plt.show() ###Output _____no_output_____ ###Markdown Specify the Prediction LocationsGiven this training and testing data, let's specify the prediction locations over the range of the observed depths at regularly spaced $nbins$ locations. ###Code # Specify the prediction locations nbins = 1000 depth_bins = np.linspace(depth_min, depth_max, nbins) # set the bins for prediction norm_depth_bins = (depth_bins-depth_min)/(depth_max-depth_min)*2-1 # use normalized bins ###Output _____no_output_____ ###Markdown Build and Train a Simple Neural NetworkFor our first model we will build a simple model with: * 1 predictor feature - depth ($d$)* 1 responce feature - normal score porosity ($N\{\phi\}$)we will build a model to predict normal score porosity from depth over all locations in our model $\bf{u} \in AOI$. \begin{equation}N\{\phi(\bf{u})\} = \hat{f} (d(\bf{u}))\end{equation}and use this model to support the prediction of porosity between the wells. Design, Train and Test a Neural NetworkIn the following code we use keras / tensorflow to:1. **Design the Network** - we use a fully connected, feed forward neural network with one node in the input and output layers, to receive the normalized depth and output the normalized (normal score) porosity. We found by trial and error, given the complexity of the dataset, that we required a significant network width (about 500 nodes) and a network depth of atleast 4 hidden layers. 2. **Select the Optimizer** - we selected the adam optimizer (Kingma and Ba, 2015). This optimizer is computationally efficient and is well suited to problems with noisy data and sparse gradients. It is an extension of stochastic gradient descent with the addition of adaptive gradient algorithm that calculates per-parameter learning rates to improve learning with sparse gradients, and root mean square propopagation that sets the learning rate based on the recent magnitudes of the gradients for each parameter to improve performance with noisy data. We include stochastic gradient descent for experimentation. * we found a learning rate of 0.01 to 0.001 works well * we found the rate of decay parameters of $\beta_1=0.9$ and $\beta_2=0.999$ performed well 3. **Compile the Machine** - specify the optimizer, loss function and the metric for model training. 4. **Train the Network** - fit / train the model parameters over a specified number of batch size within a specified number of epochs. We specify the train and test normalized predictor and response features.Then we visualize the model in the original units. ###Code # Design the neural network model_2 = Sequential([ Dense(1, activation='linear', input_shape=(1,)), # input layer Dense(3, activation='relu'), # Dense(50, activation='relu'), # Dense(50, activation='relu'), # Dense(20, activation='relu'), # uncomment these to add hidden layers # Dense(20, activation='relu'), # Dense(20, activation='relu'), # Dense(20, activation='relu'), Dense(1, activation='linear'), # output layer ]) # Select the Optimizer adam = Adam(lr=0.003, beta_1=0.9, beta_2=0.999, epsilon=None, decay=0.0, amsgrad=False) # adam optimizer #sgd = keras.optimizers.SGD(lr=0.001, momentum=0.0, decay = 0.0, nesterov=False) # stochastic gradient descent # Compile the Machine model_2.compile(optimizer=adam,loss='mse',metrics=['accuracy']) # Train the Network hist_2 = model_2.fit(X2_train['norm_Depth'], y2_train['norm_Nporosity'], batch_size=5, epochs=200, validation_data=(X2_test['norm_Depth'], y2_test['norm_Nporosity']),verbose = 0) # Predict with the Network pred_norm_Nporsity = model_2.predict(np.array(norm_depth_bins)) # predict with our ANN pred_Nporosity = ((pred_norm_Nporsity + 1)/2*(Npor_max - Npor_min)+Npor_min) # Plot the Model Predictions plt.subplot(1,1,1) plt.plot(depth_bins,pred_Nporosity,'black',linewidth=2) plt.plot(X2_train['Depth'].values,y2_train['Nporosity'].values, 'o', markerfacecolor='red', markeredgecolor='black', alpha=1.0, label = "Train") plt.plot(X2_test['Depth'].values,y2_test['Nporosity'].values, 'o', markerfacecolor='blue', markeredgecolor='black', alpha=1.0, label = "Test") plt.xlabel('Depth (m)') plt.ylabel('Porosity (faction)') plt.legend() plt.subplots_adjust(left=0.0, bottom=0.0, right=2.0, top=0.8, wspace=0.2, hspace=0.2) plt.show() ###Output _____no_output_____ ###Markdown Evaluation of the ModelFor my specified artificial neural network design and optimization parameters I have a very flexible model to fit the data.* artificial neural networks live up to their designation as **Universal Function Approximators**Let's check the training curve, loss functions for our model over training and testing datasets.* **square loss** ($L_2$ loss) is the:\begin{equation}L_2 = \sum_{\bf{u}_{\alpha} \in AOI} \left(y(\bf{u}_{\alpha}) - \hat{f}(x_1(\bf{u}_{\alpha}),\ldots,x_m(\bf{u}_{\alpha})\right)\end{equation}* this is a measure of the inaccuracy over the available dataWe can see the progress of the model over epochs in reduction of training and testing error.* we can observe that the model matches the training data after about 200 epochs, but continues to improve up the 1,000 epochs ###Code # Plot the Loss vs. Training Epoch plt.subplot(1,1,1) plt.plot(hist_2.history['loss']) plt.plot(hist_2.history['val_loss']) plt.title('Loss function of Artificial Neural Net Example #2') plt.ylabel('loss') plt.xlabel('epoch') plt.legend(['train', 'test'], loc='upper right') plt.ylim(0,0.4) plt.grid() plt.tight_layout() plt.subplots_adjust(left=0.0, bottom=0.0, right=2.0, top=0.8, wspace=0.2, hspace=0.2) plt.show() ###Output _____no_output_____ ###Markdown Some ObservationsWe performed a set of experiments and made the following observations that may help you experiment with the design and training of this artificial neural network. Each machine was trained over 1000 epochs with a batch size of 5. For a 1 $\times$ 100 $\times$ 100 $\times$ 1 neural network:* Learning Rate of 0.001 still converging at 1000 epochs, missing some features* Learning Rate of 0.1 - stuck in a local minum as a step functionFor a 1 $\times$ 500 $\times$ 500 $\times$ 1 neural network:* Learning Rate of 0.01 - 0.001 for a close fit to training data* Learning Rate of 0.1 - stuck in a local minimum as a line* Learning Rate of $\le$ 0.0001 still converging at 1000 epochs, missing some featuresFor a 1 $\times$ 500 $\times$ 500 $\times$ 500 $\times$ 1 neural network:* Learning Rate of 0.01 - 0.001 for a close fit to training data* Learning Rate of 0.1 - stuck as a line* Learning Rate of $\le$ 0.0001 still converging at 1000 epochs, missing some features Visualizing the Neural NetThere are some methods available to interogate the artificial neural net.* neural net summary* weightsHere's the summary from our neural net. It lists by layers the number of nodes and number of parameters. ###Code model_2.summary() # artificial neural network design and number of parameters ###Output Model: "sequential_2" _________________________________________________________________ Layer (type) Output Shape Param # ================================================================= dense_7 (Dense) (None, 1) 2 _________________________________________________________________ dense_8 (Dense) (None, 3) 6 _________________________________________________________________ dense_9 (Dense) (None, 1) 4 ================================================================= Total params: 12 Trainable params: 12 Non-trainable params: 0 _________________________________________________________________ ###Markdown We can also see the actual trained weights for each node in each layer. ###Code for layer in model_2.layers: # weights for the trained artificial neural network g = layer.get_config() h = layer.get_weights() print(g) print(h) print('\n') ###Output {'name': 'dense_7', 'trainable': True, 'batch_input_shape': (None, 1), 'dtype': 'float32', 'units': 1, 'activation': 'linear', 'use_bias': True, 'kernel_initializer': {'class_name': 'GlorotUniform', 'config': {'seed': None}}, 'bias_initializer': {'class_name': 'Zeros', 'config': {}}, 'kernel_regularizer': None, 'bias_regularizer': None, 'activity_regularizer': None, 'kernel_constraint': None, 'bias_constraint': None} [array([[1.3643419]], dtype=float32), array([0.06368703], dtype=float32)] {'name': 'dense_8', 'trainable': True, 'dtype': 'float32', 'units': 3, 'activation': 'relu', 'use_bias': True, 'kernel_initializer': {'class_name': 'GlorotUniform', 'config': {'seed': None}}, 'bias_initializer': {'class_name': 'Zeros', 'config': {}}, 'kernel_regularizer': None, 'bias_regularizer': None, 'activity_regularizer': None, 'kernel_constraint': None, 'bias_constraint': None} [array([[-0.42711794, -0.64516276, 1.1085054 ]], dtype=float32), array([-0.183792 , -0.28067875, -0.7691435 ], dtype=float32)] {'name': 'dense_9', 'trainable': True, 'dtype': 'float32', 'units': 1, 'activation': 'linear', 'use_bias': True, 'kernel_initializer': {'class_name': 'GlorotUniform', 'config': {'seed': None}}, 'bias_initializer': {'class_name': 'Zeros', 'config': {}}, 'kernel_regularizer': None, 'bias_regularizer': None, 'activity_regularizer': None, 'kernel_constraint': None, 'bias_constraint': None} [array([[-1.2426817 ], [-0.5781366 ], [ 0.51588565]], dtype=float32), array([0.00843373], dtype=float32)] ###Markdown Subsurface Data Analytics Artificial Neural Networks for Prediction in Python Michael Pyrcz, Associate Professor, University of Texas at Austin [Twitter](https://twitter.com/geostatsguy) | [GitHub](https://github.com/GeostatsGuy) | [Website](http://michaelpyrcz.com) | [GoogleScholar](https://scholar.google.com/citations?user=QVZ20eQAAAAJ&hl=en&oi=ao) | [Book](https://www.amazon.com/Geostatistical-Reservoir-Modeling-Michael-Pyrcz/dp/0199731446) | [YouTube](https://www.youtube.com/channel/UCLqEr-xV-ceHdXXXrTId5ig) | [LinkedIn](https://www.linkedin.com/in/michael-pyrcz-61a648a1) | [GeostatsPy](https://github.com/GeostatsGuy/GeostatsPy) Honggeun Jo, Graduate Student, The University of Texas at Austin [LinkedIn](https://www.linkedin.com/in/honggeun-jo/?originalSubdomain=kr) | [Twitter](https://twitter.com/HonggeunJ) PGE 383 Exercise: Artificial Neural Networks for Subsurface Modeling in Python Here's a simple workflow, demonstration of artificial neural networks for subsurface modeling workflows. This should help you get started with building subsurface models that use data analytics and machine learning. Here's some basic details about neural networks. Neural NetworksMachine learning method for supervised learning for classification and regression analysis. Here are some key aspects of support vector machines.**Basic Design** *"...a computing system made up of a number of simple, highly interconnected processing elements, which process information by their dynamic state response to external inputs."* Caudill (1989). **Nature-inspire Computing** based on the neuronal structure in the brain, including many interconnected simple, processing units, known as nodes that are capable of complicated emergent pattern detection due to a large number of nodes and interconnectivity.**Training and Testing** just like and other predictive model (e.g. linear regression, decision trees and support vector machines) we perform training to fit parameters and testing to tune hyperparameters. Here we observe the error with training and testing datasets, but do not demonstrate tuning of the hyperparameters. **Parameters** are the weights applied to each connection and a bias term applied to each node. For a single node in an artificial neural network, this includes the slope terms, $\beta_i$, and the bias term, $\beta_{0}$.\begin{equation}Y = \sum_{i=1}^m \beta_i X + \beta_0\end{equation}it can be seen that the number of parameters increases rapidly as we increase the number of nodes and the connectivity between the nodes.**Layers** the typical artificial neural net is structured with an **input layer**, with one node for each $m$ predictor feature, $X_1,\ldots,X_m$. There is an **ouput layer**, with one node for each $r$ response feature, $Y_1,\ldots,Y_r$. There may be one or more layers of nodes between the input and output layers, known as **hidden layer(s)**. **Connections** are the linkages between the nodes in adjacent layers. For example, in a fully connected artificial neural network, all the input nodes are connected to all of the nodes in the first layer, then all of the nodes in the first layer are connected to the next layer and so forth. Each connection includes a weight parameter as indicated above.**Nodes** receive the weighted signal from the connected previous layer nodes, sum and then apply this result to the **activation** function in the node. Some example activation functions include:* **Binary** the node fires or not. This is represented by a Heaviside step function.* **Identify** the input is passed to the output $f(x) = x$* **Linear** the node passes a signal that increases linearly with the weighted input.* **Logistic** also known as sigmoid or soft step $f(x) = \frac{1}{1+e^{-x}}$the node output is the nonlinear activiation function applied to the linearly weighted inputs. This is fed to all nodes in the next layer.**Training Cycles** - the presentation of a batch of data, forward application of the current prediction model to make estimates, calculation of error and then backpropagation of error to correct the artificial neural network parameters to reduce the error over all of the batches.**Batch** is the set of training data for each training cycle of forward prediction and back propagation of error, drawn to train for each iteration. There is a trade-off, a larger batch results in more computational time per iteration, but a more accurate estimate of the error to adjust the weights. Smaller batches result in a nosier estimate of the error, but faster epochs, this results in faster learning and even possibly more robust models.**Epochs** - is a set of training cycles, batches covering all available training data. **Local Minimums** - if one calculated the error hypersurface over the range of model parameters it would be hyparabolic, there is a global minimium error solution. But this error hyper surface is rough and it is possible to be stuck in a local minimum. **Learning Rate** and **Mommentum** coefficients are introduced to avoid getting stuck in local minimums.* **Mommentum** is a hyperparameter to control the use of information from the weight update over the last epoch for consideration in the current epoch. This can be accomplished with an update vector, $v_i$, a mommentum parameter, $\alpha$, to calculate the current weight update, $v_{i+1}$ given the new update $\theta_{i+1}$.\begin{equation}v_{i+1} = \alpha v_i + \theta_{i+1}\end{equation}* **Learning Rate** is a hyperparameter that controls the adjustment of the weights in response to the gradient indicated by backpropagation of error Applications to subsurface modelingWe demonstrate the estimation of normal score transformed porosity from depth. This would be useful for building a vertical trend model. * modeling the complicated relationship between porosity and depth. Limitations of Neural Network EstimationSince we demonstrate the use of an artificial neural network to estimate porosity from sparsely sampled data over depth, we should comment on limitations of our artificial neural networks for this estimation problem:* does not honor the well data* does not honor the histogram of the data* does not honor spatial correlation * does not honor the multivariate relationship* generally low interpretability models* requires a large number of data for effective training* high model complexity with high model variance Workflow GoalsLearn the basics of machine learning in python to predict subsurface features. This includes:* Loading and visualizing sample data* Trying out neural nets Objective In the PGE 383: Subsurface Machine Learning Class, I want to provide hands-on experience with building subsurface modeling workflows. Python provides an excellent vehicle to accomplish this. I have coded a package called GeostatsPy with GSLIB: Geostatistical Library (Deutsch and Journel, 1998) functionality that provides basic building blocks for building subsurface modeling workflows. The objective is to remove the hurdles of subsurface modeling workflow construction by providing building blocks and sufficient examples. This is not a coding class per se, but we need the ability to 'script' workflows working with numerical methods. Getting StartedHere's the steps to get setup in Python with the GeostatsPy package:1. Install Anaconda 3 on your machine (https://www.anaconda.com/download/). 2. From Anaconda Navigator (within Anaconda3 group), go to the environment tab, click on base (root) green arrow and open a terminal. 3. In the terminal type: pip install geostatspy. 4. Open Jupyter and in the top block get started by copy and pasting the code block below from this Jupyter Notebook to start using the geostatspy functionality. You will need to copy the data file to your working directory. They are available here:* Tabular data - 12_sample_data.csv found [here](https://github.com/GeostatsGuy/GeoDataSets/blob/master/12_sample_data.csv).There are exampled below with these functions. You can go here to see a list of the available functions, https://git.io/fh4eX, other example workflows and source code. Import Required PackagesWe will also need some standard packages. These should have been installed with Anaconda 3. ###Code import geostatspy.GSLIB as GSLIB # GSLIB utilies, visualization and wrapper import geostatspy.geostats as geostats # GSLIB methods convert to Python ###Output _____no_output_____ ###Markdown We will also need some standard packages. These should have been installed with Anaconda 3. ###Code import numpy as np # ndarrys for gridded data import pandas as pd # DataFrames for tabular data import os # set working directory, run executables import matplotlib.pyplot as plt # for plotting import seaborn as sns # for plotting import warnings # supress warnings from seaborn pairplot from sklearn.model_selection import train_test_split # train / test DatFrame split ###Output _____no_output_____ ###Markdown We will also need the following packages to train and test our artificial neural nets:* Tensorflow - open source machine learning * Keras - high level application programing interface (API) to build and train modelsMore information is available at [tensorflow install](https://www.tensorflow.org/install).* This workflow was designed with tensorflow version 1.13.1 and does not work with version 2.0.0 alpha.To check your current version of tensorflow you could run the next block of code. ###Code import tensorflow as tf tf.__version__ # check the installed version of tensorflow ###Output _____no_output_____ ###Markdown Let's import all of the tensorflow and keras methods that we will need in our workflow. ###Code import tensorflow as tf from keras.models import Sequential, load_model from keras.layers.core import Dense, Dropout, Activation from keras.utils import np_utils import keras from tensorflow.python.keras import backend as k ###Output _____no_output_____ ###Markdown Set the working directoryI always like to do this so I don't lose files and to simplify subsequent read and writes (avoid including the full address each time). ###Code os.chdir("C:/PGE383") ###Output _____no_output_____ ###Markdown Loading DataLet's load the provided multivariate, spatial dataset '12_sample_data.csv'. It is a comma delimited file with: * Depth ($m$)* Normal Score Porosity It is common to transform properties to standard normal for geostatistical workflows.We load it with the pandas 'read_csv' function into a data frame we called 'df' and then preview it to make sure it loaded correctly.**Python Tip: using functions from a package** just type the label for the package that we declared at the beginning:```pythonimport pandas as pd```so we can access the pandas function 'read_csv' with the command: ```pythonpd.read_csv()```but read csv has required input parameters. The essential one is the name of the file. For our circumstance all the other default parameters are fine. If you want to see all the possible parameters for this function, just go to the docs [here](https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.read_csv.html). * The docs are always helpful* There is often a lot of flexibility for Python functions, possible through using various inputs parametersalso, the program has an output, a pandas DataFrame loaded from the data. So we have to specficy the name / variable representing that new object.```pythondf = pd.read_csv("1D_Porosity.csv") ```Let's run this command to load the data and then look at the resulting DataFrame to ensure that we loaded it. ###Code df2 = pd.read_csv("1D_Porosity.csv") # read a .csv file in as a DataFrame # display first 4 samples in the table as a preview df2.head() # we could also use this command for a table preview ###Output _____no_output_____ ###Markdown Data NormalizationWe must normalize the features before we apply them in an artificial neural network model. These are the motivations for this normalization:* remove impact of scale of different types of data (i.e., depth varies between $[0,10]$, but porosity only varies between $[-3,3.0]$).* activation functions in artificial neural networks are designed to be more sensive to values of nodes closer to 0.0 (i.e., results in higher gradient and improves backpropagation in training)Let's normalize each feature. * We apply the min max normalization by-hand to force both the predictor and response features to be bound $[-1,1]$.* It is easy to backtransform given we keep track of the original min and max values ###Code depth_min = df2['Depth'].values.min(); depth_max = df2['Depth'].values.max() Npor_min = df2['Nporosity'].values.min(); Npor_max = df2['Nporosity'].values.max() df2['norm_Depth'] = (df2['Depth'] - depth_min)/(depth_max - depth_min) * 2 - 1 df2['norm_Nporosity'] = (df2['Nporosity'] - Npor_min)/(Npor_max - Npor_min) * 2 - 1 df2.head() ###Output _____no_output_____ ###Markdown It is also a good idea to check the summary statistics. * All normalized features should now range from -1.0 to 1.0 ###Code df2.describe().transpose() ###Output _____no_output_____ ###Markdown Separation of Training and Testing DataWe also need to split our data into training / testing datasets so that we:* can train our artificial neural networks using the training data * while testing their performance with the withheld testing (validation) data. ###Code X2 = df2.iloc[:,[0,2]] # extract the predictor feature - acoustic impedance y2 = df2.iloc[:,[1,3]] # extract the response feature - porosity X2_train, X2_test, y2_train, y2_test = train_test_split(X2, y2, test_size=0.2, random_state=73073) ###Output _____no_output_____ ###Markdown Visualize the DatasetLet's visualize the train and test data split on a single scatter plot.* we want to make sure it is fair* ensure that the test samples are not clustered or too far away from the training data.We will look at the original data and normalized data, the input to the neural network. ###Code plt.subplot(211) plt.plot(X2_train['Depth'].values,y2_train['Nporosity'].values, 'o', markerfacecolor='red', markeredgecolor='black', alpha=0.4, label = "Train") plt.plot(X2_test['Depth'].values,y2_test['Nporosity'].values, 'o', markerfacecolor='blue', markeredgecolor='black', alpha=0.4, label = "Test") plt.title('Standard Normal Porosity vs. Depth') plt.xlabel('Z (m)') plt.ylabel('NPorosity') plt.legend() plt.subplots_adjust(left=0.0, bottom=0.0, right=2.0, top=1.0, wspace=0.2, hspace=0.2) plt.subplot(212) plt.plot(X2_train['norm_Depth'].values,y2_train['norm_Nporosity'].values, 'o', markerfacecolor='red', markeredgecolor='black', alpha=0.4, label = "Train") plt.plot(X2_test['norm_Depth'].values,y2_test['norm_Nporosity'].values, 'o', markerfacecolor='blue', markeredgecolor='black', alpha=0.4, label = "Test") plt.title('Normalized Standard Normal Porosity vs. Normalized Depth') plt.xlabel('Normalized Z') plt.ylabel('Normalized NPorosity') plt.legend() plt.subplots_adjust(left=0.0, bottom=0.0, right=2.0, top=1.5, wspace=0.2, hspace=0.3) plt.show() ###Output _____no_output_____ ###Markdown Specify the Prediction LocationsGiven this training and testing data, let's specify the prediction locations over the range of the observed depths at regularly spaced $nbins$ locations. ###Code # Specify the prediction locations nbins = 1000 depth_bins = np.linspace(depth_min, depth_max, nbins) # set the bins for prediction norm_depth_bins = (depth_bins-depth_min)/(depth_max-depth_min)*2-1 # use normalized bins ###Output _____no_output_____ ###Markdown Build and Train a Simple Neural NetworkFor our first model we will build a simple model with: * 1 predictor feature - depth ($d$)* 1 responce feature - normal score porosity ($N\{\phi\}$)we will build a model to predict normal score porosity from depth over all locations in our model $\bf{u} \in AOI$. \begin{equation}N\{\phi(\bf{u})\} = \hat{f} (d(\bf{u}))\end{equation}and use this model to support the prediction of porosity between the wells. Design, Train and Test a Neural NetworkIn the following code we use keras / tensorflow to:1. **Design the Network** - we use a fully connected, feed forward neural network with one node in the input and output layers, to receive the normalized depth and output the normalized (normal score) porosity. We found by trial and error, given the complexity of the dataset, that we required a significant network width (about 500 nodes) and a network depth of atleast 4 hidden layers. 2. **Select the Optimizer** - we selected the adam optimizer (Kingma and Ba, 2015). This optimizer is computationally efficient and is well suited to problems with noisy data and sparse gradients. It is an extension of stochastic gradient descent with the addition of adaptive gradient algorithm that calculates per-parameter learning rates to improve learning with sparse gradients, and root mean square propopagation that sets the learning rate based on the recent magnitudes of the gradients for each parameter to improve performance with noisy data. We include stochastic gradient descent for experimentation. * we found a learning rate of 0.01 to 0.001 works well * we found the rate of decay parameters of $\beta_1=0.9$ and $\beta_2=0.999$ performed well 3. **Compile the Machine** - specify the optimizer, loss function and the metric for model training. 4. **Train the Network** - fit / train the model parameters over a specified number of batch size within a specified number of epochs. We specify the train and test normalized predictor and response features.Then we visualize the model in the original units. ###Code # Design the neural network model_2 = Sequential([ Dense(1, activation='linear', input_shape=(1,)), # input layer Dense(500, activation='relu'), Dense(500, activation='relu'), Dense(500, activation='relu'), # Dense(100, activation='relu'), # uncomment these to add hidden layers # Dense(100, activation='relu'), # Dense(100, activation='relu'), # Dense(100, activation='relu'), Dense(1, activation='linear'), # output layer ]) # Select the Optimizer adam = keras.optimizers.Adam(lr=0.001, beta_1=0.9, beta_2=0.999, epsilon=None, decay=0.0, amsgrad=False) # adam optimizer #sgd = keras.optimizers.SGD(lr=0.001, momentum=0.0, decay = 0.0, nesterov=False) # stochastic gradient descent # Compile the Machine model_2.compile(optimizer=adam,loss='mse',metrics=['accuracy']) # Train the Network hist_2 = model_2.fit(X2_train['norm_Depth'], y2_train['norm_Nporosity'], batch_size=5, epochs=1000, validation_data=(X2_test['norm_Depth'], y2_test['norm_Nporosity']),verbose = 0) # Predict with the Network pred_norm_Nporsity = model_2.predict(np.array(norm_depth_bins)) # predict with our ANN pred_Nporosity = ((pred_norm_Nporsity + 1)/2*(Npor_max - Npor_min)+Npor_min) # Plot the Model Predictions plt.subplot(1,1,1) plt.plot(depth_bins,pred_Nporosity,'black',linewidth=2) plt.plot(X2_train['Depth'].values,y2_train['Nporosity'].values, 'o', markerfacecolor='red', markeredgecolor='black', alpha=1.0, label = "Train") plt.plot(X2_test['Depth'].values,y2_test['Nporosity'].values, 'o', markerfacecolor='blue', markeredgecolor='black', alpha=1.0, label = "Test") plt.xlabel('Depth (m)') plt.ylabel('Porosity (faction)') plt.legend() plt.subplots_adjust(left=0.0, bottom=0.0, right=2.0, top=0.8, wspace=0.2, hspace=0.2) plt.show() ###Output _____no_output_____ ###Markdown Evaluation of the ModelFor my specified artificial neural network design and optimization parameters I have a very flexible model to fit the data.* artificial neural networks live up to their designation as **Universal Function Approximators**Let's check the training curve, loss functions for our model over training and testing datasets.* **square loss** ($L_2$ loss) is the:\begin{equation}L_2 = \sum_{\bf{u}_{\alpha} \in AOI} \left(y(\bf{u}_{\alpha}) - \hat{f}(x_1(\bf{u}_{\alpha}),\ldots,x_m(\bf{u}_{\alpha})\right)\end{equation}* this is a measure of the inaccuracy over the available dataWe can see the progress of the model over epochs in reduction of training and testing error.* we can observe that the model matches the training data after about 200 epochs, but continues to improve up the 1,000 epochs ###Code # Plot the Loss vs. Training Epoch plt.subplot(1,1,1) plt.plot(hist_2.history['loss']) plt.plot(hist_2.history['val_loss']) plt.title('Loss function of Artificial Neural Net Example #2') plt.ylabel('loss') plt.xlabel('epoch') plt.legend(['train', 'test'], loc='upper right') plt.ylim(0,0.4) plt.grid() plt.tight_layout() plt.subplots_adjust(left=0.0, bottom=0.0, right=2.0, top=0.8, wspace=0.2, hspace=0.2) plt.show() ###Output _____no_output_____ ###Markdown Some ObservationsWe performed a set of experiments and made the following observations that may help you experiment with the design and training of this artificial neural network. Each machine was trained over 1000 epochs with a batch size of 5. For a 1 $\times$ 100 $\times$ 100 $\times$ 1 neural network:* Learning Rate of 0.001 still converging at 1000 epochs, missing some features* Learning Rate of 0.1 - stuck in a local minum as a step functionFor a 1 $\times$ 500 $\times$ 500 $\times$ 1 neural network:* Learning Rate of 0.01 - 0.001 for a close fit to training data* Learning Rate of 0.1 - stuck in a local minimum as a line* Learning Rate of $\le$ 0.0001 still converging at 1000 epochs, missing some featuresFor a 1 $\times$ 500 $\times$ 500 $\times$ 500 $\times$ 1 neural network:* Learning Rate of 0.01 - 0.001 for a close fit to training data* Learning Rate of 0.1 - stuck as a line* Learning Rate of $\le$ 0.0001 still converging at 1000 epochs, missing some features Visualizing the Neural NetThere are some methods available to interogate the artificial neural net.* neural net summary* weightsHere's the summary from our neural net. It lists by layers the number of nodes and number of parameters. ###Code model_2.summary() # artificial neural network design and number of parameters ###Output _________________________________________________________________ Layer (type) Output Shape Param # ================================================================= dense_535 (Dense) (None, 1) 2 _________________________________________________________________ dense_536 (Dense) (None, 500) 1000 _________________________________________________________________ dense_537 (Dense) (None, 500) 250500 _________________________________________________________________ dense_538 (Dense) (None, 500) 250500 _________________________________________________________________ dense_539 (Dense) (None, 1) 501 ================================================================= Total params: 502,503 Trainable params: 502,503 Non-trainable params: 0 _________________________________________________________________ ###Markdown We can also see the actual trained weights for each node in each layer. ###Code for layer in model_2.layers: # weights for the trained artificial neural network g = layer.get_config() h = layer.get_weights() print(g) print(h) print('\n') ###Output {'name': 'dense_535', 'trainable': True, 'batch_input_shape': (None, 1), 'dtype': 'float32', 'units': 1, 'activation': 'linear', 'use_bias': True, 'kernel_initializer': {'class_name': 'VarianceScaling', 'config': {'scale': 1.0, 'mode': 'fan_avg', 'distribution': 'uniform', 'seed': None}}, 'bias_initializer': {'class_name': 'Zeros', 'config': {}}, 'kernel_regularizer': None, 'bias_regularizer': None, 'activity_regularizer': None, 'kernel_constraint': None, 'bias_constraint': None} [array([[-1.324188]], dtype=float32), array([-0.01764077], dtype=float32)] {'name': 'dense_536', 'trainable': True, 'units': 500, 'activation': 'relu', 'use_bias': True, 'kernel_initializer': {'class_name': 'VarianceScaling', 'config': {'scale': 1.0, 'mode': 'fan_avg', 'distribution': 'uniform', 'seed': None}}, 'bias_initializer': {'class_name': 'Zeros', 'config': {}}, 'kernel_regularizer': None, 'bias_regularizer': None, 'activity_regularizer': None, 'kernel_constraint': None, 'bias_constraint': None} [array([[ 4.37869839e-02, 2.84792539e-02, -5.04958704e-02, 1.33315518e-01, 3.78291379e-03, -1.06391739e-02, 9.11150649e-02, -1.02796906e-03, -1.50301322e-01, -6.21361472e-02, -2.31712814e-02, 4.74340748e-03, 8.10861066e-02, -8.89362991e-02, 2.98289418e-01, 4.41729911e-02, 4.47279736e-02, 2.22163871e-02, 4.29757684e-02, 6.64823875e-02, 3.37973014e-02, 2.44364385e-02, -6.22198582e-02, 8.36473256e-02, -1.49021158e-02, 8.82090256e-02, 3.54946870e-03, -1.29045490e-02, 8.74734744e-02, -1.06779337e-02, -5.43587096e-02, 1.33621832e-03, 1.16167612e-01, -6.61311031e-04, -9.01760723e-06, -4.26420793e-02, 7.38960207e-02, 3.16858850e-02, 1.09584540e-01, 7.82321021e-02, 3.61922011e-02, -1.04301557e-01, 8.85869563e-02, 9.70736817e-02, -5.80134802e-03, 8.00451189e-02, -1.30036043e-03, 3.91601166e-03, 1.01504810e-01, 3.23649906e-02, 5.36048077e-02, -8.75119120e-02, 7.06093982e-02, 9.37056392e-02, 9.51493159e-02, -3.00738541e-03, 7.92166516e-02, -4.90556529e-04, -1.29743107e-02, -7.81329200e-02, 1.32052168e-01, -8.99229273e-02, -6.77816384e-03, -1.38963714e-01, 4.36128713e-02, -6.23008721e-02, -6.70676082e-02, -1.58895971e-04, 4.52702381e-02, 6.76621273e-02, -1.48024713e-03, 1.09858453e-01, -9.12376912e-04, 6.73749018e-03, 5.63484197e-03, -3.38859251e-03, 1.16737701e-01, -7.53363296e-02, 1.29707232e-01, -1.08739913e-01, -9.22356173e-03, 1.16427720e-01, -7.81598166e-02, -6.16153656e-03, 8.80591869e-02, -6.53325766e-02, 3.85513045e-02, 1.08171615e-03, 9.70692188e-02, -4.51390678e-03, -1.91461872e-02, -9.73084494e-02, -2.10419614e-02, -8.55254233e-02, 1.29724205e-01, -1.06441669e-01, 4.56053168e-02, -7.28177875e-02, -7.60430004e-04, 5.38264588e-02, -1.00965656e-01, -6.52337819e-02, 1.06089935e-02, -7.60561451e-02, -6.80339411e-02, -6.55979514e-02, 1.01904668e-01, 4.16511856e-03, 4.18214388e-02, 3.36837284e-02, -6.89377934e-02, -3.13841109e-03, 7.37283900e-02, 1.30472451e-01, 3.95321772e-02, -6.40012696e-02, -2.65501030e-02, 1.35376722e-01, 5.19507155e-02, 3.28973262e-03, 9.72523764e-02, 6.78595230e-02, -7.61842132e-02, 5.09470887e-02, -5.81806116e-02, 8.02602246e-02, -1.05615310e-01, -7.84106031e-02, -8.20061564e-03, -2.09269673e-02, -6.52782246e-02, -3.76430005e-02, -4.43258230e-03, -4.43456182e-03, -7.33490521e-03, 4.39224727e-02, 7.80225322e-02, -8.18999037e-02, -3.16527747e-02, 1.35007845e-02, -1.23362601e-01, 6.97992444e-02, -4.31013806e-03, 2.70868577e-02, 7.12058842e-02, -1.16116460e-03, -4.60769923e-04, -4.54251692e-02, 6.35423064e-02, -2.99977348e-03, -1.34880468e-01, 6.31999224e-02, -6.48167804e-02, -6.69402704e-02, 6.27936516e-03, -3.10638584e-02, -9.25559103e-02, -1.11442834e-01, 3.28482166e-02, -1.14701122e-01, -5.21795750e-02, -6.13903143e-02, -7.53833354e-02, -3.98605177e-03, 3.29084210e-02, -1.16867386e-02, -5.33676371e-02, -4.76962626e-02, -1.55353293e-01, 7.93459788e-02, 4.12472570e-03, -6.63398355e-02, 4.17984463e-02, -4.13348991e-03, -3.65724275e-03, 2.94227749e-02, -6.86958060e-02, 8.13451335e-02, -1.81635027e-03, 5.97945638e-02, -7.60767385e-02, -5.49900644e-02, 1.34785116e-01, -1.07490271e-01, 1.29407361e-01, -1.05475530e-03, 4.20478433e-02, -8.41621831e-02, 9.80847478e-02, 7.03405812e-02, 8.84528086e-02, 2.63709179e-03, 9.27885473e-02, -1.14496797e-01, 5.28439842e-02, -3.86079773e-02, 4.00377586e-02, 3.54537810e-03, -7.69117326e-02, -1.08731799e-02, 6.50035217e-02, 6.63219616e-02, -4.19028290e-02, 5.35250939e-02, 8.24268088e-02, 4.13128324e-02, 5.90596795e-02, -2.60966900e-03, -6.19906597e-02, -4.01285430e-03, -4.59489822e-02, 1.15634732e-01, 9.54596475e-02, 3.70567292e-02, -6.69994131e-02, 3.28783505e-02, -7.60106593e-02, -9.85587314e-02, -1.66328298e-03, -5.84144657e-03, -1.33208230e-01, -9.32852104e-02, 8.55539441e-02, 4.49849386e-03, 4.29949239e-02, 3.05023566e-02, -9.41249058e-02, -5.18078580e-02, 9.61371660e-02, 8.67340341e-02, -2.08380865e-03, -1.32435605e-01, 3.22007686e-02, -9.46334153e-02, 1.68362688e-02, -1.11437447e-01, -7.92395920e-02, -7.11047575e-02, -2.16089971e-02, -1.10117979e-01, 6.64046081e-03, 8.86755735e-02, -3.29512381e-03, -7.75940418e-02, -1.31690934e-01, 6.67404830e-02, 8.91118497e-03, -1.77239031e-02, -8.86819586e-02, 6.95541948e-02, 6.89079836e-02, -1.05990872e-01, -6.73175603e-03, -6.64992407e-02, 9.71645042e-02, 1.55092170e-03, -1.54509470e-01, -7.50039071e-02, 1.23657798e-02, -1.34944007e-01, -6.35182112e-02, 1.14698768e-01, -9.12414715e-02, -1.27469366e-02, -1.27320290e-01, -6.35384917e-02, 8.69745612e-02, -1.01650916e-01, -7.39746392e-02, -1.11858472e-01, -4.81140334e-03, 5.06917983e-02, -1.02960981e-01, -6.23498410e-02, -1.90573558e-03, -7.14417920e-02, -8.64325166e-02, 2.62962803e-02, 7.69598118e-04, 7.82793504e-04, 8.48663449e-02, 5.03086671e-03, -9.86906141e-02, -6.83365166e-02, -8.57298437e-04, -7.14763552e-02, -2.47936677e-02, 4.49170657e-02, 2.82813385e-02, 6.86316267e-02, 2.87176669e-02, -6.49383990e-04, 1.10460266e-01, 4.37190309e-02, -1.34818971e-01, 2.25369576e-02, 7.59827569e-02, 8.77600238e-02, 6.10029958e-02, 4.76534851e-02, -1.09301433e-01, 9.92182493e-02, 9.33573022e-02, -1.11727640e-01, 7.03948066e-02, 6.28180876e-02, -1.55644551e-01, 3.15748453e-02, 3.85251343e-02, 7.26150498e-02, -2.99699232e-02, -1.16008695e-03, 9.00451466e-02, 3.72605994e-02, -7.57500231e-02, 1.35603398e-01, 3.50316837e-02, 1.13473386e-01, -7.59589225e-02, -6.93566352e-02, -9.32576507e-02, -5.85489348e-02, -8.36537704e-02, 6.00345293e-03, -8.75586644e-02, 1.75075140e-02, 5.72374538e-02, -1.57084502e-02, 3.77423353e-02, -1.36674359e-03, 3.36039974e-03, -1.06565133e-01, -1.29231559e-02, -6.47024736e-02, -5.83822392e-02, 9.99464691e-02, -8.59773308e-02, -2.25808448e-03, 1.04079396e-01, -3.04516940e-03, -1.45849600e-01, -8.17036256e-02, -1.57709438e-02, 1.06820256e-01, -4.14584093e-02, -6.64309459e-03, -9.44048446e-03, 8.36263970e-03, 1.09452441e-01, 7.22158607e-03, -6.70162402e-03, 1.76369622e-02, -4.00551409e-02, 3.14997211e-02, -6.75998926e-02, 5.34251817e-02, -6.50570542e-02, -5.72608598e-02, -2.12053079e-02, -6.81426972e-02, 1.92111805e-02, -2.33714134e-02, -2.11180479e-04, 1.36419702e-02, 6.11771382e-02, -5.63817704e-03, 5.86114563e-02, 8.18122774e-02, 8.32198001e-03, -8.27094913e-02, 4.07909937e-02, 8.27760771e-02, 6.55070022e-02, -1.61201786e-02, -8.37071761e-02, -1.21987864e-01, 1.02040082e-01, 6.02825582e-02, -6.75648451e-02, 7.14957565e-02, 2.08943477e-03, 4.29181755e-02, -2.25497922e-03, 6.37466386e-02, -6.50759786e-02, -9.48397517e-02, 4.51110490e-02, 1.01239242e-01, -8.45591426e-02, 3.51027623e-02, -7.04090968e-02, -6.20335378e-02, 5.60532324e-02, -6.05542287e-02, 8.46762434e-02, 1.10914316e-02, 6.13659620e-02, 2.12732601e-04, 3.68024129e-03, -6.93032220e-02, -2.75107697e-02, -1.10175148e-01, -2.30825553e-03, -8.83723274e-02, -5.68870977e-02, -1.47443516e-02, 5.29175289e-02, 1.02081917e-01, 1.03125438e-01, -5.90750249e-03, -1.71697848e-02, 4.59938950e-04, -9.67270415e-03, 1.13146283e-01, 6.02231696e-02, -1.22713171e-01, -1.56251043e-01, 9.25789773e-02, 3.61172482e-02, -6.59704860e-03, 6.58418387e-02, -1.08241461e-01, 4.66979221e-02, 1.89785305e-02, 1.06163993e-01, -7.98181817e-03, -4.21184935e-02, -6.92812204e-02, -8.86960998e-02, -6.53993636e-02, -7.85087645e-02, -8.98909271e-02, 9.31996405e-02, 3.45884226e-02, 8.91835988e-02, 6.24386482e-02, -4.41202847e-03, 6.15031570e-02, -7.02832565e-02, 1.05966171e-02, -1.43899932e-03, -7.76754320e-02, 1.02125727e-01, 8.34097266e-02, -1.43925697e-01, 8.42536539e-02, 1.04465811e-02, 2.24737227e-02, 1.08246863e-01, -7.89064392e-02, -9.83206779e-02, -1.22306362e-01, 4.55920026e-02, 1.05681658e-01, -2.09155977e-02, 3.43536325e-02, -8.47020000e-02, 5.27732074e-02, 5.98774552e-02, -1.04057558e-01, -1.83242336e-02, 7.08967596e-02, -6.99171498e-02, -6.37240848e-03, -2.10936777e-02, 5.89776859e-02, 8.36545303e-02, -1.14212818e-01, -1.50420722e-02, 7.64402226e-02, 7.43056163e-02, 1.21164434e-01, -1.32907426e-03, -4.82582068e-03, 2.17562038e-02, 2.86421478e-02, -5.22685573e-02, -8.04568008e-02, 1.20499551e-01, -1.01798251e-01, 1.02965400e-01, -9.50997025e-02, -2.22027255e-03, 7.36168995e-02, 1.10508129e-03, -3.12446966e-03, 3.03575695e-02, -1.19504379e-02, 6.95811212e-02, -6.69124594e-04, 8.70308727e-02, 3.32550704e-02, -7.08441362e-02, 4.81908470e-02, 8.01099166e-02, 1.68886909e-03, 9.67642516e-02, -5.53571247e-02, 2.30133021e-03, 6.30277395e-02]], dtype=float32), array([-0.06139961, -0.03823963, -0.04796872, -0.05715915, -0.00778893, -0.01715333, -0.07307467, -0.00414138, -0.02369456, -0.08908577, -0.03416378, -0.01094732, -0.08148513, -0.06651676, -0.04846705, -0.06414326, -0.06192571, -0.03751549, -0.0619099 , -0.07249781, -0.05136329, 0.01927103, -0.05907007, -0.08442453, -0.02177054, -0.06876581, -0.00651649, -0.02827632, -0.06884521, -0.01586316, -0.05935439, -0.01289208, -0.05038578, -0.00867271, -0.00318428, 0.0086913 , -0.08008435, -0.0433035 , -0.04697267, -0.07393831, -0.05754452, -0.07528708, -0.06741227, -0.076387 , 0.03964805, -0.07952945, -0.005366 , 0.02763389, -0.07387943, -0.0549034 , -0.07615414, -0.08007966, -0.08798408, -0.07791902, -0.07160194, -0.00560842, -0.08591481, -0.00418956, -0.02050515, -0.05918604, -0.07379995, -0.06774189, -0.01120751, -0.01974001, 0.06067615, -0.05945587, -0.05904902, 0.00732201, -0.06428739, -0.07017349, -0.0086476 , -0.0485802 , -0.00730538, -0.00957363, -0.02154209, -0.01012385, -0.0503656 , -0.07115868, -0.06906632, 0.00565668, -0.01403928, -0.07305516, -0.07933737, -0.00866085, -0.0698074 , -0.07289582, -0.05830758, -0.00272358, -0.07188021, -0.01362477, -0.02701662, -0.07330002, -0.02126301, -0.08914766, -0.08186267, -0.07523412, -0.06335444, -0.06751571, -0.00684798, -0.07694793, -0.07039765, -0.06945851, -0.02247573, -0.07047946, -0.06347238, -0.04554536, -0.04426727, -0.0142412 , -0.05859767, -0.05376985, -0.07195932, -0.00791719, -0.07501336, -0.05634447, -0.0550543 , -0.0462756 , -0.04563486, -0.05884227, -0.07370295, -0.00788396, -0.04158321, -0.0841307 , -0.07055681, -0.0639838 , -0.05372795, -0.08102303, -0.07511374, -0.05606232, -0.02532341, -0.02959966, -0.06019864, -0.05242248, -0.0084167 , -0.00598817, -0.01137267, -0.06449889, -0.08436804, -0.07252833, -0.0444572 , -0.01972921, -0.04350067, -0.08468529, -0.00869756, -0.04184554, -0.08907367, -0.0059012 , -0.00231363, -0.06242609, -0.07555081, 0.0111065 , -0.00878023, -0.06532616, -0.06585679, -0.05300143, -0.01283845, 0.05271176, -0.0663313 , -0.07893655, -0.05373202, -0.08252703, -0.07084762, -0.06485971, -0.07689745, -0.01427657, -0.05416669, -0.02175184, -0.0562396 , -0.06432167, -0.02325281, -0.06684574, -0.00705054, -0.06296429, -0.05777869, -0.00748384, -0.00635496, -0.04159978, -0.06685322, -0.08389334, -0.00701761, -0.06432831, -0.07090707, -0.06264 , -0.08206632, -0.07564244, -0.05886821, -0.0063959 , -0.05845111, -0.06204287, -0.04233636, -0.07327709, -0.07834864, -0.00707027, -0.09887744, 0.00626668, -0.06312662, -0.02920069, -0.05897494, -0.00603426, -0.05829883, -0.02059165, -0.07834075, -0.06683242, -0.05705149, -0.0762232 , -0.08900511, -0.05739731, -0.07109588, -0.00592516, -0.05978489, -0.0183938 , -0.05917713, -0.04931708, -0.07244904, -0.05095007, -0.06334067, -0.05363588, -0.06938779, -0.07172804, -0.00444791, -0.01391948, -0.03241966, -0.07023546, -0.09296511, -0.00707521, -0.06007748, -0.05099807, -0.08633383, -0.04671507, -0.07162772, -0.06880689, -0.00580111, -0.02292861, -0.05301842, -0.0699292 , 0.06440304, -0.08127811, -0.08215243, -0.06553537, -0.02928443, -0.07802734, -0.01139031, -0.07959687, 0.01446193, -0.07216932, 0.00841058, -0.06963574, -0.01869061, -0.0314908 , -0.06402976, -0.08380255, -0.08380487, -0.07963423, -0.01089369, -0.06037915, -0.07224868, -0.00275239, -0.02820986, -0.07644273, -0.01820268, -0.02047534, -0.06006921, -0.04915273, -0.0652189 , -0.01797788, -0.00674913, -0.06562325, -0.09353849, 0.01572672, -0.06633594, -0.07833622, -0.00790852, -0.06969513, -0.07658083, -0.06411042, -0.00743337, -0.06299569, -0.06349686, 0.06481276, -0.01390679, -0.00704703, -0.09151021, -0.00897039, -0.07108843, -0.07116202, -0.0073884 , -0.07649622, -0.03437965, -0.06293312, -0.04763817, -0.08573087, -0.04416954, -0.00300061, -0.07880595, -0.0616023 , -0.01828985, -0.0342025 , -0.07971473, -0.08888055, -0.07533889, -0.06609005, -0.07731427, -0.07258897, -0.07445047, -0.08132768, -0.06696977, -0.07822786, -0.05202796, -0.05250061, -0.05390753, -0.09042215, -0.02522271, -0.00187201, -0.08000803, -0.04903469, -0.06784555, -0.0589343 , -0.05476155, -0.05010034, -0.05756522, -0.06287936, -0.06581006, -0.06560832, -0.07855322, -0.00921494, -0.06341241, -0.03245432, -0.08061009, -0.02204132, -0.05269145, -0.00488693, -0.00603298, 0.00657092, -0.02193722, -0.06552897, -0.06532465, -0.07232498, -0.07811823, 0.02950191, -0.04523056, -0.0042063 , -0.0276743 , -0.08286427, -0.0218486 , -0.04605348, -0.03906796, -0.0113944 , -0.0318488 , -0.01176713, -0.04728981, -0.01139557, -0.01032085, -0.02429256, -0.05450579, -0.04662224, -0.04982534, -0.07490676, -0.06650402, -0.06072304, -0.03004125, -0.06273857, -0.03457063, -0.00580207, -0.0016215 , -0.02143812, -0.07632421, -0.01378029, -0.07292905, -0.0883406 , 0.03496349, -0.08809979, -0.05501696, -0.07620736, -0.0675406 , -0.0245028 , -0.06243804, -0.08766349, -0.06441812, -0.07074441, -0.07693358, -0.07767762, -0.00305608, 0.00857855, -0.01002404, -0.06823479, -0.05937157, -0.0650647 , -0.06624278, -0.04493498, -0.05777024, -0.04969624, -0.06784492, -0.04617 , -0.0673632 , -0.02127056, -0.06717695, -0.01669092, -0.0772848 , -0.00140384, -0.00521039, -0.07037175, -0.01954671, -0.08139505, -0.00493742, -0.06340863, -0.06051 , -0.020957 , -0.07684536, -0.10320909, -0.07542219, -0.02146349, -0.02428293, -0.00908613, -0.02114126, -0.04844717, -0.07506659, -0.04155113, -0.02611309, -0.0735454 , -0.0500888 , -0.01164846, -0.07853115, -0.0765461 , 0.06416114, -0.02982672, -0.0457687 , -0.01188941, -0.06042792, -0.07090043, -0.0842066 , -0.06803164, -0.08185688, -0.06315702, -0.10026774, -0.049329 , -0.09501091, -0.07488233, -0.00600216, -0.07636529, -0.0779068 , -0.01502587, -0.00658086, -0.02787442, -0.08036617, -0.06611934, 0.00686911, -0.09045056, -0.01738705, 0.08067761, -0.04652357, -0.05989062, -0.07276973, -0.04131578, -0.06277292, -0.04539846, -0.03031358, -0.05429706, -0.06148601, -0.05069135, -0.06731895, -0.07334394, -0.02559559, -0.08864345, -0.07282297, -0.01017689, -0.0348955 , -0.08250091, -0.06658982, -0.00376104, -0.02169728, -0.07390127, -0.07335062, -0.05235442, -0.00371226, -0.00705077, 0.0043261 , -0.04688119, -0.05291606, 0.00359649, -0.06370793, 0.00477501, -0.04499554, -0.07048909, -0.00963487, -0.07721131, -0.00331341, -0.00476873, -0.04947318, -0.01665951, -0.08469487, -0.00331149, -0.06853346, -0.0532644 , -0.06600736, -0.07018627, -0.08656831, -0.01211547, -0.04298428, -0.06073886, -0.00776081, -0.07503507], dtype=float32)] ###Markdown Subsurface Data Analytics Artificial Neural Networks for Prediction in Python Michael Pyrcz, Associate Professor, University of Texas at Austin [Twitter](https://twitter.com/geostatsguy) | [GitHub](https://github.com/GeostatsGuy) | [Website](http://michaelpyrcz.com) | [GoogleScholar](https://scholar.google.com/citations?user=QVZ20eQAAAAJ&hl=en&oi=ao) | [Book](https://www.amazon.com/Geostatistical-Reservoir-Modeling-Michael-Pyrcz/dp/0199731446) | [YouTube](https://www.youtube.com/channel/UCLqEr-xV-ceHdXXXrTId5ig) | [LinkedIn](https://www.linkedin.com/in/michael-pyrcz-61a648a1) | [GeostatsPy](https://github.com/GeostatsGuy/GeostatsPy) Honggeun Jo, Graduate Student, The University of Texas at Austin [LinkedIn](https://www.linkedin.com/in/honggeun-jo/?originalSubdomain=kr) | [Twitter](https://twitter.com/HonggeunJ) PGE 383 Exercise: Artificial Neural Networks for Subsurface Modeling in Python Here's a simple workflow, demonstration of artificial neural networks for subsurface modeling workflows. This should help you get started with building subsurface models that use data analytics and machine learning. Here's some basic details about neural networks. Neural NetworksMachine learning method for supervised learning for classification and regression analysis. Here are some key aspects of support vector machines.**Basic Design** *"...a computing system made up of a number of simple, highly interconnected processing elements, which process information by their dynamic state response to external inputs."* Caudill (1989). **Nature-inspire Computing** based on the neuronal structure in the brain, including many interconnected simple, processing units, known as nodes that are capable of complicated emergent pattern detection due to a large number of nodes and interconnectivity.**Training and Testing** just like and other predictive model (e.g. linear regression, decision trees and support vector machines) we perform training to fit parameters and testing to tune hyperparameters. Here we observe the error with training and testing datasets, but do not demonstrate tuning of the hyperparameters. **Parameters** are the weights applied to each connection and a bias term applied to each node. For a single node in an artificial neural network, this includes the slope terms, $\beta_i$, and the bias term, $\beta_{0}$.\begin{equation}Y = \sum_{i=1}^m \beta_i X + \beta_0\end{equation}it can be seen that the number of parameters increases rapidly as we increase the number of nodes and the connectivity between the nodes.**Layers** the typical artificial neural net is structured with an **input layer**, with one node for each $m$ predictor feature, $X_1,\ldots,X_m$. There is an **ouput layer**, with one node for each $r$ response feature, $Y_1,\ldots,Y_r$. There may be one or more layers of nodes between the input and output layers, known as **hidden layer(s)**. **Connections** are the linkages between the nodes in adjacent layers. For example, in a fully connected artificial neural network, all the input nodes are connected to all of the nodes in the first layer, then all of the nodes in the first layer are connected to the next layer and so forth. Each connection includes a weight parameter as indicated above.**Nodes** receive the weighted signal from the connected previous layer nodes, sum and then apply this result to the **activation** function in the node. Some example activation functions include:* **Binary** the node fires or not. This is represented by a Heaviside step function.* **Identify** the input is passed to the output $f(x) = x$* **Linear** the node passes a signal that increases linearly with the weighted input.* **Logistic** also known as sigmoid or soft step $f(x) = \frac{1}{1+e^{-x}}$the node output is the nonlinear activiation function applied to the linearly weighted inputs. This is fed to all nodes in the next layer.**Training Cycles** - the presentation of a batch of data, forward application of the current prediction model to make estimates, calculation of error and then backpropagation of error to correct the artificial neural network parameters to reduce the error over all of the batches.**Batch** is the set of training data for each training cycle of forward prediction and back propagation of error, drawn to train for each iteration. There is a trade-off, a larger batch results in more computational time per iteration, but a more accurate estimate of the error to adjust the weights. Smaller batches result in a nosier estimate of the error, but faster epochs, this results in faster learning and even possibly more robust models.**Epochs** - is a set of training cycles, batches covering all available training data. **Local Minimums** - if one calculated the error hypersurface over the range of model parameters it would be hyparabolic, there is a global minimium error solution. But this error hyper surface is rough and it is possible to be stuck in a local minimum. **Learning Rate** and **Mommentum** coefficients are introduced to avoid getting stuck in local minimums.* **Mommentum** is a hyperparameter to control the use of information from the weight update over the last epoch for consideration in the current epoch. This can be accomplished with an update vector, $v_i$, a mommentum parameter, $\alpha$, to calculate the current weight update, $v_{i+1}$ given the new update $\theta_{i+1}$.\begin{equation}v_{i+1} = \alpha v_i + \theta_{i+1}\end{equation}* **Learning Rate** is a hyperparameter that controls the adjustment of the weights in response to the gradient indicated by backpropagation of error Applications to subsurface modelingWe demonstrate the estimation of normal score transformed porosity from depth. This would be useful for building a vertical trend model. * modeling the complicated relationship between porosity and depth. Limitations of Neural Network EstimationSince we demonstrate the use of an artificial neural network to estimate porosity from sparsely sampled data over depth, we should comment on limitations of our artificial neural networks for this estimation problem:* does not honor the well data* does not honor the histogram of the data* does not honor spatial correlation * does not honor the multivariate relationship* generally low interpretability models* requires a large number of data for effective training* high model complexity with high model variance Workflow GoalsLearn the basics of machine learning in python to predict subsurface features. This includes:* Loading and visualizing sample data* Trying out neural nets Objective In the PGE 383: Subsurface Machine Learning Class, I want to provide hands-on experience with building subsurface modeling workflows. Python provides an excellent vehicle to accomplish this. I have coded a package called GeostatsPy with GSLIB: Geostatistical Library (Deutsch and Journel, 1998) functionality that provides basic building blocks for building subsurface modeling workflows. The objective is to remove the hurdles of subsurface modeling workflow construction by providing building blocks and sufficient examples. This is not a coding class per se, but we need the ability to 'script' workflows working with numerical methods. Getting StartedHere's the steps to get setup in Python with the GeostatsPy package:1. Install Anaconda 3 on your machine (https://www.anaconda.com/download/). 2. From Anaconda Navigator (within Anaconda3 group), go to the environment tab, click on base (root) green arrow and open a terminal. 3. In the terminal type: pip install geostatspy. 4. Open Jupyter and in the top block get started by copy and pasting the code block below from this Jupyter Notebook to start using the geostatspy functionality. You will need to copy the data file to your working directory. They are available here:* Tabular data - 12_sample_data.csv found [here](https://github.com/GeostatsGuy/GeoDataSets/blob/master/12_sample_data.csv).There are exampled below with these functions. You can go here to see a list of the available functions, https://git.io/fh4eX, other example workflows and source code. Import Required PackagesWe will also need some standard packages. These should have been installed with Anaconda 3. ###Code import geostatspy.GSLIB as GSLIB # GSLIB utilies, visualization and wrapper import geostatspy.geostats as geostats # GSLIB methods convert to Python ###Output _____no_output_____ ###Markdown We will also need some standard packages. These should have been installed with Anaconda 3. ###Code import numpy as np # ndarrys for gridded data import pandas as pd # DataFrames for tabular data import os # set working directory, run executables import matplotlib.pyplot as plt # for plotting import seaborn as sns # for plotting import warnings # supress warnings from seaborn pairplot from sklearn.model_selection import train_test_split # train / test DatFrame split ###Output _____no_output_____ ###Markdown We will also need the following packages to train and test our artificial neural nets:* Tensorflow - open source machine learning * Keras - high level application programing interface (API) to build and train modelsMore information is available at [tensorflow install](https://www.tensorflow.org/install).* This workflow was designed with tensorflow version 1.13.1 and does not work with version 2.0.0 alpha.To check your current version of tensorflow you could run the next block of code. ###Code import tensorflow as tf tf.__version__ # check the installed version of tensorflow ###Output _____no_output_____ ###Markdown Let's import all of the tensorflow and keras methods that we will need in our workflow. ###Code import tensorflow as tf from tensorflow.keras.models import Sequential from tensorflow.keras.layers import Dense, Activation, Dropout #from keras.models import Sequential, load_model #from keras.layers.core import Dense, Dropout, Activation from tensorflow.keras.optimizers import Adam from tensorflow.python.keras import backend as k ###Output _____no_output_____ ###Markdown Set the working directoryI always like to do this so I don't lose files and to simplify subsequent read and writes (avoid including the full address each time). ###Code os.chdir("c:/PGE383") ###Output _____no_output_____ ###Markdown Loading DataLet's load the provided multivariate, spatial dataset '12_sample_data.csv'. It is a comma delimited file with: * Depth ($m$)* Normal Score Porosity It is common to transform properties to standard normal for geostatistical workflows.We load it with the pandas 'read_csv' function into a data frame we called 'df' and then preview it to make sure it loaded correctly.**Python Tip: using functions from a package** just type the label for the package that we declared at the beginning:```pythonimport pandas as pd```so we can access the pandas function 'read_csv' with the command: ```pythonpd.read_csv()```but read csv has required input parameters. The essential one is the name of the file. For our circumstance all the other default parameters are fine. If you want to see all the possible parameters for this function, just go to the docs [here](https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.read_csv.html). * The docs are always helpful* There is often a lot of flexibility for Python functions, possible through using various inputs parametersalso, the program has an output, a pandas DataFrame loaded from the data. So we have to specficy the name / variable representing that new object.```pythondf = pd.read_csv("1D_Porosity.csv") ```Let's run this command to load the data and then look at the resulting DataFrame to ensure that we loaded it. ###Code df2 = pd.read_csv("1D_Porosity.csv") # read a .csv file in as a DataFrame # display first 4 samples in the table as a preview df2.head() # we could also use this command for a table preview ###Output _____no_output_____ ###Markdown Data NormalizationWe must normalize the features before we apply them in an artificial neural network model. These are the motivations for this normalization:* remove impact of scale of different types of data (i.e., depth varies between $[0,10]$, but porosity only varies between $[-3,3.0]$).* activation functions in artificial neural networks are designed to be more sensive to values of nodes closer to 0.0 (i.e., results in higher gradient and improves backpropagation in training)Let's normalize each feature. * We apply the min max normalization by-hand to force both the predictor and response features to be bound $[-1,1]$.* It is easy to backtransform given we keep track of the original min and max values ###Code depth_min = df2['Depth'].values.min(); depth_max = df2['Depth'].values.max() Npor_min = df2['Nporosity'].values.min(); Npor_max = df2['Nporosity'].values.max() df2['norm_Depth'] = (df2['Depth'] - depth_min)/(depth_max - depth_min) * 2 - 1 df2['norm_Nporosity'] = (df2['Nporosity'] - Npor_min)/(Npor_max - Npor_min) * 2 - 1 df2.head() ###Output _____no_output_____ ###Markdown It is also a good idea to check the summary statistics. * All normalized features should now range from -1.0 to 1.0 ###Code df2.describe().transpose() ###Output _____no_output_____ ###Markdown Separation of Training and Testing DataWe also need to split our data into training / testing datasets so that we:* can train our artificial neural networks using the training data * while testing their performance with the withheld testing (validation) data. ###Code X2 = df2.iloc[:,[0,2]] # extract the predictor feature - acoustic impedance y2 = df2.iloc[:,[1,3]] # extract the response feature - porosity X2_train, X2_test, y2_train, y2_test = train_test_split(X2, y2, test_size=0.2, random_state=73073) ###Output _____no_output_____ ###Markdown Visualize the DatasetLet's visualize the train and test data split on a single scatter plot.* we want to make sure it is fair* ensure that the test samples are not clustered or too far away from the training data.We will look at the original data and normalized data, the input to the neural network. ###Code plt.subplot(211) plt.plot(X2_train['Depth'].values,y2_train['Nporosity'].values, 'o', markerfacecolor='red', markeredgecolor='black', alpha=0.4, label = "Train") plt.plot(X2_test['Depth'].values,y2_test['Nporosity'].values, 'o', markerfacecolor='blue', markeredgecolor='black', alpha=0.4, label = "Test") plt.title('Standard Normal Porosity vs. Depth') plt.xlabel('Z (m)') plt.ylabel('NPorosity') plt.legend() plt.subplots_adjust(left=0.0, bottom=0.0, right=2.0, top=1.0, wspace=0.2, hspace=0.2) plt.subplot(212) plt.plot(X2_train['norm_Depth'].values,y2_train['norm_Nporosity'].values, 'o', markerfacecolor='red', markeredgecolor='black', alpha=0.4, label = "Train") plt.plot(X2_test['norm_Depth'].values,y2_test['norm_Nporosity'].values, 'o', markerfacecolor='blue', markeredgecolor='black', alpha=0.4, label = "Test") plt.title('Normalized Standard Normal Porosity vs. Normalized Depth') plt.xlabel('Normalized Z') plt.ylabel('Normalized NPorosity') plt.legend() plt.subplots_adjust(left=0.0, bottom=0.0, right=2.0, top=1.5, wspace=0.2, hspace=0.3) plt.show() ###Output _____no_output_____ ###Markdown Specify the Prediction LocationsGiven this training and testing data, let's specify the prediction locations over the range of the observed depths at regularly spaced $nbins$ locations. ###Code # Specify the prediction locations nbins = 1000 depth_bins = np.linspace(depth_min, depth_max, nbins) # set the bins for prediction norm_depth_bins = (depth_bins-depth_min)/(depth_max-depth_min)*2-1 # use normalized bins ###Output _____no_output_____ ###Markdown Build and Train a Simple Neural NetworkFor our first model we will build a simple model with: * 1 predictor feature - depth ($d$)* 1 responce feature - normal score porosity ($N\{\phi\}$)we will build a model to predict normal score porosity from depth over all locations in our model $\bf{u} \in AOI$. \begin{equation}N\{\phi(\bf{u})\} = \hat{f} (d(\bf{u}))\end{equation}and use this model to support the prediction of porosity between the wells. Design, Train and Test a Neural NetworkIn the following code we use keras / tensorflow to:1. **Design the Network** - we use a fully connected, feed forward neural network with one node in the input and output layers, to receive the normalized depth and output the normalized (normal score) porosity. We found by trial and error, given the complexity of the dataset, that we required a significant network width (about 500 nodes) and a network depth of atleast 4 hidden layers. 2. **Select the Optimizer** - we selected the adam optimizer (Kingma and Ba, 2015). This optimizer is computationally efficient and is well suited to problems with noisy data and sparse gradients. It is an extension of stochastic gradient descent with the addition of adaptive gradient algorithm that calculates per-parameter learning rates to improve learning with sparse gradients, and root mean square propopagation that sets the learning rate based on the recent magnitudes of the gradients for each parameter to improve performance with noisy data. We include stochastic gradient descent for experimentation. * we found a learning rate of 0.01 to 0.001 works well * we found the rate of decay parameters of $\beta_1=0.9$ and $\beta_2=0.999$ performed well 3. **Compile the Machine** - specify the optimizer, loss function and the metric for model training. 4. **Train the Network** - fit / train the model parameters over a specified number of batch size within a specified number of epochs. We specify the train and test normalized predictor and response features.Then we visualize the model in the original units. ###Code # Design the neural network model_2 = Sequential([ Dense(1, activation='linear', input_shape=(1,)), # input layer Dense(50, activation='relu'), Dense(50, activation='relu'), Dense(50, activation='relu'), Dense(20, activation='relu'), # uncomment these to add hidden layers # Dense(20, activation='relu'), # Dense(20, activation='relu'), # Dense(20, activation='relu'), Dense(1, activation='linear'), # output layer ]) # Select the Optimizer adam = Adam(lr=0.003, beta_1=0.9, beta_2=0.999, epsilon=None, decay=0.0, amsgrad=False) # adam optimizer #sgd = keras.optimizers.SGD(lr=0.001, momentum=0.0, decay = 0.0, nesterov=False) # stochastic gradient descent # Compile the Machine model_2.compile(optimizer=adam,loss='mse',metrics=['accuracy']) # Train the Network hist_2 = model_2.fit(X2_train['norm_Depth'], y2_train['norm_Nporosity'], batch_size=5, epochs=200, validation_data=(X2_test['norm_Depth'], y2_test['norm_Nporosity']),verbose = 0) # Predict with the Network pred_norm_Nporsity = model_2.predict(np.array(norm_depth_bins)) # predict with our ANN pred_Nporosity = ((pred_norm_Nporsity + 1)/2*(Npor_max - Npor_min)+Npor_min) # Plot the Model Predictions plt.subplot(1,1,1) plt.plot(depth_bins,pred_Nporosity,'black',linewidth=2) plt.plot(X2_train['Depth'].values,y2_train['Nporosity'].values, 'o', markerfacecolor='red', markeredgecolor='black', alpha=1.0, label = "Train") plt.plot(X2_test['Depth'].values,y2_test['Nporosity'].values, 'o', markerfacecolor='blue', markeredgecolor='black', alpha=1.0, label = "Test") plt.xlabel('Depth (m)') plt.ylabel('Porosity (faction)') plt.legend() plt.subplots_adjust(left=0.0, bottom=0.0, right=2.0, top=0.8, wspace=0.2, hspace=0.2) plt.show() ###Output _____no_output_____ ###Markdown Evaluation of the ModelFor my specified artificial neural network design and optimization parameters I have a very flexible model to fit the data.* artificial neural networks live up to their designation as **Universal Function Approximators**Let's check the training curve, loss functions for our model over training and testing datasets.* **square loss** ($L_2$ loss) is the:\begin{equation}L_2 = \sum_{\bf{u}_{\alpha} \in AOI} \left(y(\bf{u}_{\alpha}) - \hat{f}(x_1(\bf{u}_{\alpha}),\ldots,x_m(\bf{u}_{\alpha})\right)\end{equation}* this is a measure of the inaccuracy over the available dataWe can see the progress of the model over epochs in reduction of training and testing error.* we can observe that the model matches the training data after about 200 epochs, but continues to improve up the 1,000 epochs ###Code # Plot the Loss vs. Training Epoch plt.subplot(1,1,1) plt.plot(hist_2.history['loss']) plt.plot(hist_2.history['val_loss']) plt.title('Loss function of Artificial Neural Net Example #2') plt.ylabel('loss') plt.xlabel('epoch') plt.legend(['train', 'test'], loc='upper right') plt.ylim(0,0.4) plt.grid() plt.tight_layout() plt.subplots_adjust(left=0.0, bottom=0.0, right=2.0, top=0.8, wspace=0.2, hspace=0.2) plt.show() ###Output _____no_output_____ ###Markdown Some ObservationsWe performed a set of experiments and made the following observations that may help you experiment with the design and training of this artificial neural network. Each machine was trained over 1000 epochs with a batch size of 5. For a 1 $\times$ 100 $\times$ 100 $\times$ 1 neural network:* Learning Rate of 0.001 still converging at 1000 epochs, missing some features* Learning Rate of 0.1 - stuck in a local minum as a step functionFor a 1 $\times$ 500 $\times$ 500 $\times$ 1 neural network:* Learning Rate of 0.01 - 0.001 for a close fit to training data* Learning Rate of 0.1 - stuck in a local minimum as a line* Learning Rate of $\le$ 0.0001 still converging at 1000 epochs, missing some featuresFor a 1 $\times$ 500 $\times$ 500 $\times$ 500 $\times$ 1 neural network:* Learning Rate of 0.01 - 0.001 for a close fit to training data* Learning Rate of 0.1 - stuck as a line* Learning Rate of $\le$ 0.0001 still converging at 1000 epochs, missing some features Visualizing the Neural NetThere are some methods available to interogate the artificial neural net.* neural net summary* weightsHere's the summary from our neural net. It lists by layers the number of nodes and number of parameters. ###Code model_2.summary() # artificial neural network design and number of parameters ###Output Model: "sequential_4" _________________________________________________________________ Layer (type) Output Shape Param # ================================================================= dense_12 (Dense) (None, 1) 2 _________________________________________________________________ dense_13 (Dense) (None, 50) 100 _________________________________________________________________ dense_14 (Dense) (None, 50) 2550 _________________________________________________________________ dense_15 (Dense) (None, 1) 51 ================================================================= Total params: 2,703 Trainable params: 2,703 Non-trainable params: 0 _________________________________________________________________ ###Markdown We can also see the actual trained weights for each node in each layer. ###Code for layer in model_2.layers: # weights for the trained artificial neural network g = layer.get_config() h = layer.get_weights() print(g) print(h) print('\n') ###Output {'name': 'dense', 'trainable': True, 'batch_input_shape': (None, 1), 'dtype': 'float32', 'units': 1, 'activation': 'linear', 'use_bias': True, 'kernel_initializer': {'class_name': 'GlorotUniform', 'config': {'seed': None}}, 'bias_initializer': {'class_name': 'Zeros', 'config': {}}, 'kernel_regularizer': None, 'bias_regularizer': None, 'activity_regularizer': None, 'kernel_constraint': None, 'bias_constraint': None} [array([[-0.6884202]], dtype=float32), array([0.1548591], dtype=float32)] {'name': 'dense_1', 'trainable': True, 'dtype': 'float32', 'units': 1, 'activation': 'relu', 'use_bias': True, 'kernel_initializer': {'class_name': 'GlorotUniform', 'config': {'seed': None}}, 'bias_initializer': {'class_name': 'Zeros', 'config': {}}, 'kernel_regularizer': None, 'bias_regularizer': None, 'activity_regularizer': None, 'kernel_constraint': None, 'bias_constraint': None} [array([[-1.1786897]], dtype=float32), array([-0.15738262], dtype=float32)] {'name': 'dense_2', 'trainable': True, 'dtype': 'float32', 'units': 1, 'activation': 'linear', 'use_bias': True, 'kernel_initializer': {'class_name': 'GlorotUniform', 'config': {'seed': None}}, 'bias_initializer': {'class_name': 'Zeros', 'config': {}}, 'kernel_regularizer': None, 'bias_regularizer': None, 'activity_regularizer': None, 'kernel_constraint': None, 'bias_constraint': None} [array([[1.4482979]], dtype=float32), array([-0.16542506], dtype=float32)] ###Markdown Subsurface Data Analytics Artificial Neural Networks for Prediction in Python Michael Pyrcz, Associate Professor, University of Texas at Austin [Twitter](https://twitter.com/geostatsguy) | [GitHub](https://github.com/GeostatsGuy) | [Website](http://michaelpyrcz.com) | [GoogleScholar](https://scholar.google.com/citations?user=QVZ20eQAAAAJ&hl=en&oi=ao) | [Book](https://www.amazon.com/Geostatistical-Reservoir-Modeling-Michael-Pyrcz/dp/0199731446) | [YouTube](https://www.youtube.com/channel/UCLqEr-xV-ceHdXXXrTId5ig) | [LinkedIn](https://www.linkedin.com/in/michael-pyrcz-61a648a1) | [GeostatsPy](https://github.com/GeostatsGuy/GeostatsPy) Honggeun Jo, Graduate Student, The University of Texas at Austin [LinkedIn](https://www.linkedin.com/in/honggeun-jo/?originalSubdomain=kr) | [Twitter](https://twitter.com/HonggeunJ) PGE 383 Exercise: Artificial Neural Networks for Subsurface Modeling in Python Here's a simple workflow, demonstration of artificial neural networks for subsurface modeling workflows. This should help you get started with building subsurface models that use data analytics and machine learning. Here's some basic details about neural networks. Neural NetworksMachine learning method for supervised learning for classification and regression analysis. Here are some key aspects of support vector machines.**Basic Design** *"...a computing system made up of a number of simple, highly interconnected processing elements, which process information by their dynamic state response to external inputs."* Caudill (1989). **Nature-inspire Computing** based on the neuronal structure in the brain, including many interconnected simple, processing units, known as nodes that are capable of complicated emergent pattern detection due to a large number of nodes and interconnectivity.**Training and Testing** just like and other predictive model (e.g. linear regression, decision trees and support vector machines) we perform training to fit parameters and testing to tune hyperparameters. Here we observe the error with training and testing datasets, but do not demonstrate tuning of the hyperparameters. **Parameters** are the weights applied to each connection and a bias term applied to each node. For a single node in an artificial neural network, this includes the slope terms, $\beta_i$, and the bias term, $\beta_{0}$.\begin{equation}Y = \sum_{i=1}^m \beta_i X + \beta_0\end{equation}it can be seen that the number of parameters increases rapidly as we increase the number of nodes and the connectivity between the nodes.**Layers** the typical artificial neural net is structured with an **input layer**, with one node for each $m$ predictor feature, $X_1,\ldots,X_m$. There is an **ouput layer**, with one node for each $r$ response feature, $Y_1,\ldots,Y_r$. There may be one or more layers of nodes between the input and output layers, known as **hidden layer(s)**. **Connections** are the linkages between the nodes in adjacent layers. For example, in a fully connected artificial neural network, all the input nodes are connected to all of the nodes in the first layer, then all of the nodes in the first layer are connected to the next layer and so forth. Each connection includes a weight parameter as indicated above.**Nodes** receive the weighted signal from the connected previous layer nodes, sum and then apply this result to the **activation** function in the node. Some example activation functions include:* **Binary** the node fires or not. This is represented by a Heaviside step function.* **Identify** the input is passed to the output $f(x) = x$* **Linear** the node passes a signal that increases linearly with the weighted input.* **Logistic** also known as sigmoid or soft step $f(x) = \frac{1}{1+e^{-x}}$the node output is the nonlinear activiation function applied to the linearly weighted inputs. This is fed to all nodes in the next layer.**Training Cycles** - the presentation of a batch of data, forward application of the current prediction model to make estimates, calculation of error and then backpropagation of error to correct the artificial neural network parameters to reduce the error over all of the batches.**Batch** is the set of training data for each training cycle of forward prediction and back propagation of error, drawn to train for each iteration. There is a trade-off, a larger batch results in more computational time per iteration, but a more accurate estimate of the error to adjust the weights. Smaller batches result in a nosier estimate of the error, but faster epochs, this results in faster learning and even possibly more robust models.**Epochs** - is a set of training cycles, batches covering all available training data. **Local Minimums** - if one calculated the error hypersurface over the range of model parameters it would be hyparabolic, there is a global minimium error solution. But this error hyper surface is rough and it is possible to be stuck in a local minimum. **Learning Rate** and **Mommentum** coefficients are introduced to avoid getting stuck in local minimums.* **Mommentum** is a hyperparameter to control the use of information from the weight update over the last epoch for consideration in the current epoch. This can be accomplished with an update vector, $v_i$, a mommentum parameter, $\alpha$, to calculate the current weight update, $v_{i+1}$ given the new update $\theta_{i+1}$.\begin{equation}v_{i+1} = \alpha v_i + \theta_{i+1}\end{equation}* **Learning Rate** is a hyperparameter that controls the adjustment of the weights in response to the gradient indicated by backpropagation of error Applications to subsurface modelingWe demonstrate the estimation of normal score transformed porosity from depth. This would be useful for building a vertical trend model. * modeling the complicated relationship between porosity and depth. Limitations of Neural Network EstimationSince we demonstrate the use of an artificial neural network to estimate porosity from sparsely sampled data over depth, we should comment on limitations of our artificial neural networks for this estimation problem:* does not honor the well data* does not honor the histogram of the data* does not honor spatial correlation * does not honor the multivariate relationship* generally low interpretability models* requires a large number of data for effective training* high model complexity with high model variance Workflow GoalsLearn the basics of machine learning in python to predict subsurface features. This includes:* Loading and visualizing sample data* Trying out neural nets Objective In the PGE 383: Subsurface Machine Learning Class, I want to provide hands-on experience with building subsurface modeling workflows. Python provides an excellent vehicle to accomplish this. I have coded a package called GeostatsPy with GSLIB: Geostatistical Library (Deutsch and Journel, 1998) functionality that provides basic building blocks for building subsurface modeling workflows. The objective is to remove the hurdles of subsurface modeling workflow construction by providing building blocks and sufficient examples. This is not a coding class per se, but we need the ability to 'script' workflows working with numerical methods. Getting StartedHere's the steps to get setup in Python with the GeostatsPy package:1. Install Anaconda 3 on your machine (https://www.anaconda.com/download/). 2. From Anaconda Navigator (within Anaconda3 group), go to the environment tab, click on base (root) green arrow and open a terminal. 3. In the terminal type: pip install geostatspy. 4. Open Jupyter and in the top block get started by copy and pasting the code block below from this Jupyter Notebook to start using the geostatspy functionality. You will need to copy the data file to your working directory. They are available here:* Tabular data - 12_sample_data.csv found [here](https://github.com/GeostatsGuy/GeoDataSets/blob/master/12_sample_data.csv).There are exampled below with these functions. You can go here to see a list of the available functions, https://git.io/fh4eX, other example workflows and source code. Import Required PackagesWe will also need some standard packages. These should have been installed with Anaconda 3. ###Code import geostatspy.GSLIB as GSLIB # GSLIB utilies, visualization and wrapper import geostatspy.geostats as geostats # GSLIB methods convert to Python ###Output _____no_output_____ ###Markdown We will also need some standard packages. These should have been installed with Anaconda 3. ###Code import numpy as np # ndarrys for gridded data import pandas as pd # DataFrames for tabular data import os # set working directory, run executables import matplotlib.pyplot as plt # for plotting import seaborn as sns # for plotting import warnings # supress warnings from seaborn pairplot from sklearn.model_selection import train_test_split # train / test DatFrame split ###Output _____no_output_____ ###Markdown We will also need the following packages to train and test our artificial neural nets:* Tensorflow - open source machine learning, with Keras modulw - high level application programing interface (API) to build and train modelsMore information is available at [tensorflow install](https://www.tensorflow.org/install).* This workflow was designed with tensorflow version > 2.0.To import Tensorflow, set memory growth and check your current version of tensorflow you could run the next block of code. ###Code import tensorflow as tf physical_devices = tf.config.list_physical_devices('GPU') tf.config.experimental.set_memory_growth(physical_devices[0], True) tf.__version__ # check the installed version of tensorflow ###Output _____no_output_____ ###Markdown Let's import all of the tensorflow and keras methods that we will need in our workflow. ###Code import tensorflow as tf from tensorflow.keras.models import Sequential from tensorflow.keras.layers import Dense, Activation, Dropout #from keras.models import Sequential, load_model #from keras.layers.core import Dense, Dropout, Activation from tensorflow.keras.optimizers import Adam from tensorflow.python.keras import backend as k ###Output _____no_output_____ ###Markdown Set the working directoryI always like to do this so I don't lose files and to simplify subsequent read and writes (avoid including the full address each time). ###Code os.chdir("c:/PGE383") ###Output _____no_output_____ ###Markdown Loading DataLet's load the provided multivariate, spatial dataset '12_sample_data.csv'. It is a comma delimited file with: * Depth ($m$)* Normal Score Porosity It is common to transform properties to standard normal for geostatistical workflows.We load it with the pandas 'read_csv' function into a data frame we called 'df' and then preview it to make sure it loaded correctly.**Python Tip: using functions from a package** just type the label for the package that we declared at the beginning:```pythonimport pandas as pd```so we can access the pandas function 'read_csv' with the command: ```pythonpd.read_csv()```but read csv has required input parameters. The essential one is the name of the file. For our circumstance all the other default parameters are fine. If you want to see all the possible parameters for this function, just go to the docs [here](https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.read_csv.html). * The docs are always helpful* There is often a lot of flexibility for Python functions, possible through using various inputs parametersalso, the program has an output, a pandas DataFrame loaded from the data. So we have to specficy the name / variable representing that new object.```pythondf = pd.read_csv("1D_Porosity.csv") ```Let's run this command to load the data and then look at the resulting DataFrame to ensure that we loaded it. ###Code df2 = pd.read_csv("1D_Porosity.csv") # read a .csv file in as a DataFrame # display first 4 samples in the table as a preview df2.head() # we could also use this command for a table preview ###Output _____no_output_____ ###Markdown Data NormalizationWe must normalize the features before we apply them in an artificial neural network model. These are the motivations for this normalization:* remove impact of scale of different types of data (i.e., depth varies between $[0,10]$, but porosity only varies between $[-3,3.0]$).* activation functions in artificial neural networks are designed to be more sensive to values of nodes closer to 0.0 (i.e., results in higher gradient and improves backpropagation in training)Let's normalize each feature. * We apply the min max normalization by-hand to force both the predictor and response features to be bound $[-1,1]$.* It is easy to backtransform given we keep track of the original min and max values ###Code depth_min = df2['Depth'].values.min(); depth_max = df2['Depth'].values.max() Npor_min = df2['Nporosity'].values.min(); Npor_max = df2['Nporosity'].values.max() df2['norm_Depth'] = (df2['Depth'] - depth_min)/(depth_max - depth_min) * 2 - 1 df2['norm_Nporosity'] = (df2['Nporosity'] - Npor_min)/(Npor_max - Npor_min) * 2 - 1 df2.head() ###Output _____no_output_____ ###Markdown It is also a good idea to check the summary statistics. * All normalized features should now range from -1.0 to 1.0 ###Code df2.describe().transpose() ###Output _____no_output_____ ###Markdown Separation of Training and Testing DataWe also need to split our data into training / testing datasets so that we:* can train our artificial neural networks using the training data * while testing their performance with the withheld testing (validation) data. ###Code X2 = df2.iloc[:,[0,2]] # extract the predictor feature - acoustic impedance y2 = df2.iloc[:,[1,3]] # extract the response feature - porosity X2_train, X2_test, y2_train, y2_test = train_test_split(X2, y2, test_size=0.2, random_state=73073) ###Output _____no_output_____
concepts/Data Structures/02 Stacks/07 Minimum bracket reversals.ipynb
###Markdown Problem StatementGiven an input string consisting of only `{` and `}`, figure out the minimum number of reversals required to make the brackets balanced.For example:* For `input_string = "}}}}`, the number of reversals required is `2`.* For `input_string = "}{}}`, the number of reversals required is `1`.If the brackets cannot be balanced, return `-1` to indicate that it is not possible to balance them. ###Code class LinkedListNode: def __init__(self, data): self.data = data self.next = None class Stack: def __init__(self): self.num_elements = 0 self.head = None def push(self, data): new_node = LinkedListNode(data) if self.head is None: self.head = new_node else: new_node.next = self.head self.head = new_node self.num_elements += 1 def pop(self): if self.is_empty(): return None temp = self.head.data self.head = self.head.next self.num_elements -= 1 return temp def top(self): if self.head is None: return None return self.head.data def size(self): return self.num_elements def is_empty(self): return self.num_elements == 0 def minimum_bracket_reversals(input_string): """ Calculate the number of reversals to fix the brackets Args: input_string(string): Strings to be used for bracket reversal calculation Returns: int: Number of breacket reversals needed """ # TODO: Write function here pass def test_function(test_case): input_string = test_case[0] expected_output = test_case[1] output = minimum_bracket_reversals(input_string) if output == expected_output: print("Pass") else: print("Fail") test_case_1 = ["}}}}", 2] test_function(test_case_1) test_case_2 = ["}}{{", 2] test_function(test_case_2) test_case_3 = ["{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{}}}}}", 13] test_function(test_case_1) test_case_4= ["}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{", 2] test_function(test_case_2) test_case_5 = ["}}{}{}{}{}{}{}{}{}{}{}{}{}{}{}", 1] test_function(test_case_3) ###Output _____no_output_____ ###Markdown Hide Solution ###Code def minimum_bracket_reversals(input_string): if len(input_string) % 2 == 1: return -1 stack = Stack() count = 0 for bracket in input_string: if stack.is_empty(): stack.push(bracket) else: top = stack.top() if top != bracket: if top == '{': stack.pop() continue stack.push(bracket) ls = list() while not stack.is_empty(): first = stack.pop() second = stack.pop() ls.append(first) ls.append(second) if first == '}' and second == '}': count += 1 elif first == '{' and second == '}': count += 2 elif first == '{' and second == '{': count += 1 return count ###Output _____no_output_____
ML-Python/Week2/submissions/A3/A3_Guru.ipynb
###Markdown Generalized Linear Model4 Features ==> 1 TargetEmploys Gradient DescentIt works ###Code import pandas as pd import numpy as np import string as str ###Output _____no_output_____ ###Markdown x ==> Array of Feature Valuesx[1] returns a column of training values for the second featurey ==> Result Array. The values the Hypothesis fn should train to. ###Code train_data = pd.read_csv('train_data.csv',header = 0) y = train_data["Target"] y = y.values #convert to ndarray train_data = train_data.drop("Target",1) x = train_data.values x = np.c_[np.ones(x.shape[0]),x] def calculateCost (HypothesisFn,y,x): distance = HypothesisFn - y return (np.sum((distance)**2)/(2*distance.size)) def derivativeOf(HypothesisFn,y,x): distance = HypothesisFn - y deriv = np.dot(x.transpose(), distance) deriv /= y.shape[0] return deriv Parameters = np.zeros(5) #initialize parameters HypothesisFn = np.dot(x,Parameters) ###Output _____no_output_____ ###Markdown If anyone's wondering why I didn't transpose my Parameters array, one dimensional arrays do not need to be transposed to be multiplied. np.dot figures it out on its own. np.dot is the real bae ###Code LearningRate = 0.1 while True: Parameters = Parameters - LearningRate*derivativeOf(HypothesisFn,y,x) HypothesisFn = np.dot(x,Parameters) cost = calculateCost (HypothesisFn,y,x) if ( cost <= 10**(-25)): break # 10^-25 seems pretty negligible. = ¯\_(ツ)_/¯ print ("\nThe Hypothesis function is {0}".format(Parameters[0])), for i in range(1,Parameters.size): print (" + {0}x{1}".format(Parameters[i],i)), test_input = pd.read_csv('test_input.csv',header = 0) test_input = test_input.values test_input = np.c_[np.ones(test_input.shape[0]),test_input] prediction = np.dot (test_input, Parameters) test_input = np.delete(test_input, (0), axis=1) test_input = np.c_[test_input,prediction] output = pd.DataFrame(data=test_input, columns = ["Variable 1","Variable 2","Variable 3","Variable 4","Prediction"]) output.to_csv('test_output.csv', index=False, header=True, sep=',') print output #Boom shakalaka ###Output Variable 1 Variable 2 Variable 3 Variable 4 Prediction 0 0.052917 0.315560 0.769792 0.242442 3.314985 1 0.736748 0.774736 0.991972 0.686699 5.876583 2 0.072012 0.649908 0.472070 0.879730 5.022247 3 0.564943 0.859830 0.764108 0.991852 6.293258 4 0.913741 0.827315 0.411412 0.885002 6.162375 5 0.183902 0.559515 0.327523 0.730312 4.576910 6 0.263851 0.968906 0.487362 0.949212 6.248639 7 0.567881 0.254971 0.942230 0.814473 4.263874 8 0.324696 0.158970 0.227014 0.410909 2.994508 9 0.280444 0.200198 0.964338 0.860580 3.951514 10 0.185000 0.651180 0.022720 0.722323 4.725106 11 0.344684 0.843482 0.647393 0.331496 5.231817 12 0.224112 0.570966 0.137944 0.880133 4.743091 13 0.585966 0.794656 0.742884 0.587200 5.603770 14 0.455460 0.199887 0.237061 0.948117 3.873507 15 0.145781 0.976496 0.706553 0.466245 5.693815 16 0.105116 0.285242 0.265898 0.406501 3.242849 17 0.982609 0.911043 0.358867 0.617593 6.126405 18 0.999271 0.755277 0.886075 0.937326 6.263868 19 0.647837 0.140072 0.893775 0.319280 3.339608 20 0.793952 0.369704 0.355454 0.814200 4.535348 21 0.381051 0.409095 0.565238 0.763939 4.390016 22 0.845477 0.787822 0.267364 0.379387 5.314161 23 0.067374 0.751306 0.175546 0.874231 5.203306 24 0.736657 0.071955 0.139063 0.431615 3.006095 25 0.350636 0.682030 0.389500 0.554403 4.892420 26 0.859244 0.642913 0.882985 0.492440 5.269921 27 0.139187 0.800644 0.774105 0.348804 5.025113 28 0.476021 0.076429 0.834784 0.035051 2.646669 29 0.325099 0.658965 0.566500 0.760976 5.128210 30 0.961533 0.838505 0.256368 0.152980 5.276231 31 0.338888 0.877312 0.968079 0.862380 6.114902 32 0.058088 0.553975 0.319993 0.941502 4.722646 33 0.736978 0.852461 0.824838 0.671308 6.030080 34 0.405489 0.969086 0.440965 0.673975 5.996756 35 0.206186 0.528878 0.995515 0.588026 4.608132 36 0.880115 0.573087 0.452686 0.708280 5.145927 37 0.631965 0.321172 0.058512 0.331713 3.554654 38 0.175711 0.510245 0.057679 0.116826 3.556717 39 0.571311 0.679296 0.973027 0.930148 5.747043 40 0.057735 0.968774 0.828177 0.692998 5.933670 41 0.855015 0.099155 0.384450 0.534479 3.405493 42 0.909414 0.607041 0.054595 0.544184 4.904533 43 0.755819 0.766392 0.591364 0.985343 6.056822 44 0.094780 0.330283 0.657516 0.860141 4.094019 45 0.959639 0.916353 0.991050 0.368245 6.092215 46 0.996029 0.020010 0.099648 0.824563 3.490729 47 0.193439 0.621190 0.076266 0.667906 4.594009 48 0.234836 0.464753 0.341920 0.218517 3.701314 49 0.311490 0.920181 0.707429 0.134068 5.233442 50 0.265221 0.954385 0.303192 0.539907 5.628531 51 0.574388 0.863050 0.580298 0.534555 5.676266 52 0.351915 0.775155 0.196954 0.305331 4.800062 53 0.260872 0.519215 0.598623 0.802096 4.708636 54 0.697415 0.687054 0.268074 0.721872 5.309147 55 0.133789 0.918394 0.019873 0.308387 5.019777 56 0.712013 0.727818 0.568780 0.800287 5.670229 57 0.263746 0.758232 0.820299 0.302350 4.945134 58 0.493948 0.613297 0.216240 0.029928 4.069417 59 0.919843 0.714592 0.973155 0.470763 5.549610
Python-For-Data-Analysis/Chapter 3 Basics/3.5 Files and OS.ipynb
###Markdown Files and OS in Python Version 0.0 Use of sys module to get system's default encoding ###Code import sys sys.getdefaultencoding() ###Output _____no_output_____ ###Markdown Files in Python (seek,tell,open,read,write) ###Code x=open("C:/Users/sanka/Desktop/sanky.txt","r+") x.write("hello how ya doing") x.seek(12) print(x.tell()) x.seek(0) print(x.readlines()) x.close() ###Output _____no_output_____ ###Markdown Use with as to open files without worrying to close them ###Code with open("C:/Users/sanka/Desktop/sanky.txt","w") as f: f.write("hello how ya doing again") ###Output _____no_output_____
Chinese_rationality_analasis/training.ipynb
###Markdown Tutorial for Chinese Sentiment analysis with hotel review data DependenciesPython 3.5, numpy, pickle, keras, tensorflow, [jieba](https://github.com/fxsjy/jieba) Optional for plottingpylab, scipy ###Code from os import listdir from os.path import isfile, join import jieba import codecs from langconv import * # convert Traditional Chinese characters to Simplified Chinese characters import pickle import random from keras.models import Sequential from keras.layers.embeddings import Embedding from keras.layers.recurrent import GRU from keras.preprocessing.text import Tokenizer from keras.layers.core import Dense from keras.utils import to_categorical from keras.preprocessing.sequence import pad_sequences from keras.callbacks import TensorBoard ###Output /home/yingshaoxo/.local/lib/python3.6/site-packages/h5py/__init__.py:36: FutureWarning: Conversion of the second argument of issubdtype from `float` to `np.floating` is deprecated. In future, it will be treated as `np.float64 == np.dtype(float).type`. from ._conv import register_converters as _register_converters Using TensorFlow backend. ###Markdown Helper function to pickle and load stuff ###Code def __pickleStuff(filename, stuff): save_stuff = open(filename, "wb") pickle.dump(stuff, save_stuff) save_stuff.close() def __loadStuff(filename): saved_stuff = open(filename,"rb") stuff = pickle.load(saved_stuff) saved_stuff.close() return stuff ###Output _____no_output_____ ###Markdown Get lists of files, positive and negative files ###Code dataBaseDirPos = "./Data/positive/" dataBaseDirNeg = "./Data/negative/" positiveFiles = [dataBaseDirPos + f for f in listdir(dataBaseDirPos) if isfile(join(dataBaseDirPos, f)) and '.txt' in f] negativeFiles = [dataBaseDirNeg + f for f in listdir(dataBaseDirNeg) if isfile(join(dataBaseDirNeg, f)) and '.txt' in f] ###Output _____no_output_____ ###Markdown Show length of samples ###Code print(len(positiveFiles)) print(len(negativeFiles)) print() print(positiveFiles) print(negativeFiles) ###Output 6 4 ['./Data/positive/diary.txt', './Data/positive/msgs.txt', './Data/positive/theory.txt', './Data/positive/mind.txt', './Data/positive/drafts.txt', './Data/positive/saying.txt'] ['./Data/negative/QQZoneComments.txt', './Data/negative/DuanZi.txt', './Data/negative/SiBuDeJieDianzi.txt', './Data/negative/BilibiliComments.txt'] ###Markdown Have a look at what's in a file(one hotel review) ###Code filename = positiveFiles[0] with codecs.open(filename, "r", encoding="utf-8", errors="ignore") as doc_file: text=doc_file.read() print(text[:200]) ###Output 在这个世界上我能活多久?是空留无一物还是另类?我不知道,也不会去想。 世界总是要我们给予什么,但残酷的命运无情的夺走我们的一切。 时间在这时已停止,只留下一串串时间的印记串联起的文字。 因此才有了这本日记,他是属于自己的,没人偷看。 这是一片自由的天空,任自己遨游,飞跃时间的限制,让我们能在年老的时候说:瞧!这就是青春,我的宝贵时间就是那样过的! —————————————— 天空一如 ###Markdown Test removing stop wordsDemo what it looks like to tokenize the sentence and remove stop words. ###Code filename = positiveFiles[1] with codecs.open(filename, "r", encoding="utf-8", errors="ignore") as doc_file: text=doc_file.read()[:200] text = text.replace("\n", "") text = text.replace("\r", "") print("==Orginal==:\n\r{}".format(text)) stopwords = [ line.rstrip() for line in codecs.open('./Data/chinese_stop_words.txt',"r", encoding="utf-8") ] seg_list = jieba.cut(text, cut_all=False) final =[] seg_list = list(seg_list) for seg in seg_list: if seg not in stopwords: final.append(seg) print("==Tokenized==\tToken count:{}\n\r{}".format(len(seg_list)," ".join(seg_list))) print("==Stop Words Removed==\tToken count:{}\n\r{}".format(len(final)," ".join(final))) ###Output Building prefix dict from the default dictionary ... Loading model from cache /tmp/jieba.cache ###Markdown Prepare "doucments", a list of tuplesSome files contain abnormal encoding characters which encoding GB2312 will complain about. Solution: read as bytes then decode as GB2312 line by line, skip lines with abnormal encodings. We also convert any traditional Chinese characters to simplified Chinese characters. ###Code documents = [] positive_nums = 0 negative_nums = 0 for filename in positiveFiles: with open(filename, "r", encoding="utf-8", errors="ignore") as f: text = f.read() all_text = Converter('zh-hans').convert(text)# Convert from traditional to simplified Chinese text_list = all_text.split("\n\n——————————————\n\n") for text in text_list: #text = text.replace("\n", "") #text = text.replace("\r", "") documents.append((text, "pos")) positive_nums += 1 for filename in negativeFiles: with open(filename, "r", encoding="utf-8", errors="ignore") as f: text = f.read() all_text = Converter('zh-hans').convert(text)# Convert from traditional to simplified Chinese text_list = all_text.split("\n\n——————————————\n\n") for text in text_list: #text = text.replace("\n", "") #text = text.replace("\r", "") documents.append((text, "neg")) negative_nums += 1 print('positive_nums:', positive_nums) print('negative_nums:', negative_nums) ###Output positive_nums: 8739 negative_nums: 13422 ###Markdown Optional step to save/load the documents as pickle file ###Code # Uncomment those two lines to save/load the documents for later use since the step above takes a while # __pickleStuff("./Data/chinese_sentiment_corpus.p", documents) # documents = __loadStuff("./Data/chinese_sentiment_corpus.p") print(len(documents)) print(documents[-4:-1]) ###Output 22161 [('每天都做,但还没研究过,现在好了哈哈', 'neg'), ('极限6分钟,四分钟开始全身抖动', 'neg'), ('(=・ω・=)', 'neg')] ###Markdown shuffle the data ###Code random.shuffle(documents) ###Output _____no_output_____ ###Markdown Prepare the input and output for the modelEach input (hotel review) will be a list of tokens, output will be one token("pos" or "neg"). The stopwords are not removed here since the dataset is relative small and removing the stop words are not saving much traing time. ###Code # Tokenize only totalX = [] totalY = [str(doc[1]) for doc in documents] for doc in documents: seg_list = jieba.cut(doc[0], cut_all=False) seg_list = list(seg_list) totalX.append(seg_list) #Switch to below code to experiment with removing stop words # Tokenize and remove stop words # totalX = [] # totalY = [str(doc[1]) for doc in documents] # stopwords = [ line.rstrip() for line in codecs.open('./Data/chinese_stop_words.txt',"r", encoding="utf-8") ] # for doc in documents: # seg_list = jieba.cut(doc[0], cut_all=False) # seg_list = list(seg_list) # Uncomment below code to experiment with removing stop words # final =[] # for seg in seg_list: # if seg not in stopwords: # final.append(seg) # totalX.append(final) ###Output _____no_output_____ ###Markdown Visualize distribution of sentence lengthDecide the max input sequence, here we cover up to 60% sentences. The longer input sequence, the more training time will take, but could improve prediction accuracy. ###Code import numpy as np import scipy.stats as stats import pylab as pl h = sorted([len(sentence) for sentence in totalX]) maxLength = h[int(len(h) * 0.60)] print("Max length is: ",h[len(h)-1]) print("60% cover length up to: ",maxLength) h = h[:5000] fit = stats.norm.pdf(h, np.mean(h), np.std(h)) #this is a fitting indeed pl.plot(h,fit,'-o') pl.hist(h,normed=True) #use this to draw histogram of your data pl.show() ###Output Max length is: 2677 60% cover length up to: 16 ###Markdown Words to number tokens, paddingPad input sequence to max input length if it is shorterSave the input tokenizer, since we need to use the same tokenizer for our new predition data. ###Code totalX = [" ".join(wordslist) for wordslist in totalX] # Keras Tokenizer expect the words tokens to be seperated by space input_tokenizer = Tokenizer(30000) # Initial vocab size input_tokenizer.fit_on_texts(totalX) vocab_size = len(input_tokenizer.word_index) + 1 print("input vocab_size:",vocab_size) totalX = np.array(pad_sequences(input_tokenizer.texts_to_sequences(totalX), maxlen=maxLength)) __pickleStuff("./Data/input_tokenizer_chinese.p", input_tokenizer) ###Output input vocab_size: 44932 ###Markdown Output, array of 0s and 1s ###Code target_tokenizer = Tokenizer(3) target_tokenizer.fit_on_texts(totalY) print("output vocab_size:",len(target_tokenizer.word_index) + 1) totalY = np.array(target_tokenizer.texts_to_sequences(totalY)) -1 totalY = totalY.reshape(totalY.shape[0]) totalY[40:50] ###Output _____no_output_____ ###Markdown Turn output 0s and 1s to categories(one-hot vectors) ###Code totalY = to_categorical(totalY, num_classes=2) totalY[40:50] output_dimen = totalY.shape[1] # which is 2 ###Output _____no_output_____ ###Markdown Save meta data for later preditionmaxLength: the input sequence lengthvocab_size: Input vocab sizeoutput_dimen: which is 2 in this example (pos or neg)sentiment_tag: either ["neg","pos"] or ["pos","neg"] matching the target tokenizer ###Code target_reverse_word_index = {v: k for k, v in list(target_tokenizer.word_index.items())} sentiment_tag = [target_reverse_word_index[1],target_reverse_word_index[2]] metaData = {"maxLength":maxLength,"vocab_size":vocab_size,"output_dimen":output_dimen,"sentiment_tag":sentiment_tag} __pickleStuff("./Data/meta_sentiment_chinese.p", metaData) ###Output _____no_output_____ ###Markdown Build the Model, train and save itThe training data is logged to Tensorboard, we can look at it by cd into directory "./Graph/sentiment_chinese" and run"python -m tensorflow.tensorboard --logdir=." ###Code embedding_dim = 256 model = Sequential() model.add(Embedding(vocab_size, embedding_dim,input_length = maxLength)) # Each input would have a size of (maxLength x 256) and each of these 256 sized vectors are fed into the GRU layer one at a time. # All the intermediate outputs are collected and then passed on to the second GRU layer. model.add(GRU(256, dropout=0.9, return_sequences=True)) # Using the intermediate outputs, we pass them to another GRU layer and collect the final output only this time model.add(GRU(256, dropout=0.9)) # The output is then sent to a fully connected layer that would give us our final output_dim classes model.add(Dense(output_dimen, activation='softmax')) # We use the adam optimizer instead of standard SGD since it converges much faster tbCallBack = TensorBoard(log_dir='./Graph/sentiment_chinese', histogram_freq=0, write_graph=True, write_images=True) model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy']) model.summary() model.fit(totalX, totalY, validation_split=0.1, batch_size=32, epochs=20, verbose=1, callbacks=[tbCallBack]) model.save('./Data/sentiment_chinese_model.HDF5') print("Saved model!") ###Output _________________________________________________________________ Layer (type) Output Shape Param # ================================================================= embedding_1 (Embedding) (None, 16, 256) 11502592 _________________________________________________________________ gru_1 (GRU) (None, 16, 256) 393984 _________________________________________________________________ gru_2 (GRU) (None, 256) 393984 _________________________________________________________________ dense_1 (Dense) (None, 2) 514 ================================================================= Total params: 12,291,074 Trainable params: 12,291,074 Non-trainable params: 0 _________________________________________________________________ Train on 19944 samples, validate on 2217 samples Epoch 1/20 19944/19944 [==============================] - 130s 6ms/step - loss: 0.4441 - acc: 0.7968 - val_loss: 0.2851 - val_acc: 0.8841 Epoch 2/20 19944/19944 [==============================] - 130s 7ms/step - loss: 0.2677 - acc: 0.8968 - val_loss: 0.2330 - val_acc: 0.9089 Epoch 3/20 19944/19944 [==============================] - 132s 7ms/step - loss: 0.2083 - acc: 0.9202 - val_loss: 0.2311 - val_acc: 0.9093 Epoch 4/20 19944/19944 [==============================] - 132s 7ms/step - loss: 0.1680 - acc: 0.9368 - val_loss: 0.2418 - val_acc: 0.9107 Epoch 5/20 19944/19944 [==============================] - 132s 7ms/step - loss: 0.1451 - acc: 0.9488 - val_loss: 0.2546 - val_acc: 0.9053 Epoch 6/20 19944/19944 [==============================] - 132s 7ms/step - loss: 0.1263 - acc: 0.9552 - val_loss: 0.2664 - val_acc: 0.9098 Epoch 7/20 19944/19944 [==============================] - 132s 7ms/step - loss: 0.1098 - acc: 0.9611 - val_loss: 0.2856 - val_acc: 0.9089 Epoch 8/20 19944/19944 [==============================] - 132s 7ms/step - loss: 0.0929 - acc: 0.9659 - val_loss: 0.2932 - val_acc: 0.9102 Epoch 9/20 19944/19944 [==============================] - 132s 7ms/step - loss: 0.0823 - acc: 0.9705 - val_loss: 0.2887 - val_acc: 0.9084 Epoch 10/20 19944/19944 [==============================] - 133s 7ms/step - loss: 0.0732 - acc: 0.9748 - val_loss: 0.3213 - val_acc: 0.9071 Epoch 11/20 19944/19944 [==============================] - 134s 7ms/step - loss: 0.0687 - acc: 0.9755 - val_loss: 0.3645 - val_acc: 0.9089 Epoch 12/20 19944/19944 [==============================] - 134s 7ms/step - loss: 0.0615 - acc: 0.9786 - val_loss: 0.3509 - val_acc: 0.9111 Epoch 13/20 19944/19944 [==============================] - 134s 7ms/step - loss: 0.0599 - acc: 0.9787 - val_loss: 0.3168 - val_acc: 0.9102 Epoch 14/20 19944/19944 [==============================] - 134s 7ms/step - loss: 0.0532 - acc: 0.9811 - val_loss: 0.3981 - val_acc: 0.9093 Epoch 15/20 19944/19944 [==============================] - 134s 7ms/step - loss: 0.0483 - acc: 0.9828 - val_loss: 0.3934 - val_acc: 0.9111 Epoch 16/20 19944/19944 [==============================] - 134s 7ms/step - loss: 0.0475 - acc: 0.9831 - val_loss: 0.4414 - val_acc: 0.9084 Epoch 17/20 19944/19944 [==============================] - 134s 7ms/step - loss: 0.0469 - acc: 0.9834 - val_loss: 0.4706 - val_acc: 0.9048 Epoch 18/20 19944/19944 [==============================] - 134s 7ms/step - loss: 0.0435 - acc: 0.9842 - val_loss: 0.4752 - val_acc: 0.9057 Epoch 19/20 19944/19944 [==============================] - 134s 7ms/step - loss: 0.0434 - acc: 0.9849 - val_loss: 0.4922 - val_acc: 0.9057 Epoch 20/20 19944/19944 [==============================] - 134s 7ms/step - loss: 0.0414 - acc: 0.9854 - val_loss: 0.4394 - val_acc: 0.9075 Saved model! ###Markdown Below are prediction codeFunction to load the meta data and the model we just trained. ###Code model = None sentiment_tag = None maxLength = None def loadModel(): global model, sentiment_tag, maxLength metaData = __loadStuff("./Data/meta_sentiment_chinese.p") maxLength = metaData.get("maxLength") vocab_size = metaData.get("vocab_size") output_dimen = metaData.get("output_dimen") sentiment_tag = metaData.get("sentiment_tag") embedding_dim = 256 if model is None: model = Sequential() model.add(Embedding(vocab_size, embedding_dim, input_length=maxLength)) # Each input would have a size of (maxLength x 256) and each of these 256 sized vectors are fed into the GRU layer one at a time. # All the intermediate outputs are collected and then passed on to the second GRU layer. model.add(GRU(256, dropout=0.9, return_sequences=True)) # Using the intermediate outputs, we pass them to another GRU layer and collect the final output only this time model.add(GRU(256, dropout=0.9)) # The output is then sent to a fully connected layer that would give us our final output_dim classes model.add(Dense(output_dimen, activation='softmax')) # We use the adam optimizer instead of standard SGD since it converges much faster model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy']) model.load_weights('./Data/sentiment_chinese_model.HDF5') model.summary() print("Model weights loaded!") ###Output _____no_output_____ ###Markdown Functions to convert sentence to model input, and predict result ###Code def findFeatures(text): text=Converter('zh-hans').convert(text) text = text.replace("\n", "") text = text.replace("\r", "") seg_list = jieba.cut(text, cut_all=False) seg_list = list(seg_list) text = " ".join(seg_list) textArray = [text] input_tokenizer_load = __loadStuff("./Data/input_tokenizer_chinese.p") textArray = np.array(pad_sequences(input_tokenizer_load.texts_to_sequences(textArray), maxlen=maxLength)) return textArray def predictResult(text): if model is None: print("Please run \"loadModel\" first.") return None features = findFeatures(text) predicted = model.predict(features)[0] # we have only one sentence to predict, so take index 0 predicted = np.array(predicted) probab = predicted.max() predition = sentiment_tag[predicted.argmax()] return predition, probab ###Output _____no_output_____ ###Markdown Calling the load model function ###Code loadModel() ###Output _________________________________________________________________ Layer (type) Output Shape Param # ================================================================= embedding_2 (Embedding) (None, 16, 256) 11502592 _________________________________________________________________ gru_3 (GRU) (None, 16, 256) 393984 _________________________________________________________________ gru_4 (GRU) (None, 256) 393984 _________________________________________________________________ dense_2 (Dense) (None, 2) 514 ================================================================= Total params: 12,291,074 Trainable params: 12,291,074 Non-trainable params: 0 _________________________________________________________________ Model weights loaded! ###Markdown Try some new comments, feel free to try your ownThe result tuple consists the predicted result and likehood. ###Code predictResult("还好,床很大而且很干净,前台很友好,很满意,下次还来。") predictResult("房间有点小但是设备还齐全,没有异味。") predictResult("房间还算干净,一般般吧,短住还凑合。") predictResult("开始不太满意,前台好说话换了一间,房间很干净没有异味。") predictResult("以前从没有出现过这种情况,这一定有问题") predictResult("需求决定人的行为") predictResult("我不同意你所说的每一个字,但我誓死捍卫你说话的权力") predictResult("凡夫俗子只关心如何去打发时间,而略具才华的人却考虑如何应用时间") predictResult("清华大学的傻逼们,请出来说句话") predictResult("我好可怜奥") predictResult("好久都没有听到一首这样有韵味的歌了!") predictResult("在一个傍晚的偏远小镇上,街道上寒冷凄清,几乎看不到路人,只有几盏闪烁的霓虹灯,渲染着寂寥的风景。") predictResult("走开,女大十八变不知道啊") predictResult("踢个球右腿被干了,瓜皮瓜皮") predictResult("终于他梁的忙完这些稀里糊涂的东西了,爆炸") predictResult("大家都是平等的") saying = """ never give up I'm born to do this 有希望在的地方,痛苦也成欢乐。 信仰是人生杠杆的支撑点,具备这个支撑点,才可能成为一个强而有力的人;信仰是事业的大门,没有正确的信仰,注定做不出伟大的事业。 哲学是有严密逻辑系统的宇宙观,它研究宇宙的性质、宇宙内万事万物演化的总规律、人在宇宙中的位置等等一些很基本的问题 伟人与平凡人的差别在于,伟人的胸中并不是没有不自信的时候,只是他能够在不自信时调整自己,从而从不自信中走出来,以达到自信的旺盛的精神状态 别人是自己的镜子,自己应该在别人成功与失败的教训中避免不幸的重现。 劣书是损害我们精神思想的毒药。 I love losing face 陈述性的讲演不会被当成 negative 偏激的、平庸的、不讲逻辑的才会 生死狙击是这两年兴起的一款页游 A teacher from a community college addressed a sympathetic audience. 你怕是个傻子 好耶好耶,妈妈有爸爸了 小学生们要喷就喷点有营养的好么 SB游戏 本人玩这个英雄联盟也有几千场了,打这么多场下来,不说100%的场次, 至少90%的场次是属于以下类型的。1,己方3路全爆或者敌方3路全爆2.赢是躺赢,输是凯瑞。3一方默契到爆每次抓人先人一步,或者无脑团,每次团得比对方快几秒。这个游戏秒人速度大家是有目共睹的,任何一个小小的失误都会导致被秒,团灭或者队友之间的胡喷,而且请记住,你是绝对无法彻底控制一场对战的随机性的。在这个战局优劣瞬息万变的游戏,5个随机的人打另外5个随机的人,又有各式各样的阵容克制,单个英雄之间的克制,还有暴击率。在这样一个随机性游戏里面,概率事件变得如此之多的游戏,很有可能这个游戏需要的运气量比你打牌或者赌钱的运气更多,前提是运气能量化的话。能决定你输或者赢得跟你技术关系真不大,不管你是翻盘局,少胜多,还是你凯瑞了,或者你带崩全局。都说明不了你,你队友或者你对手很垃圾或者很NB。综上经常开比赛,描述英雄联盟是一个多需要技术多注重竞技性的游戏,来洗脑这个只能玩路人局的你,舔着B脸说自己是竞技游戏的,真的是太垃圾了。 """ text_list = [text for text in saying.split('\n') if text.strip('\n ') != ''] for text in text_list: print(text[:88], '\n', predictResult(text), '\n'*2) ###Output never give up ('pos', 0.9998504) I'm born to do this ('pos', 0.998686) 有希望在的地方,痛苦也成欢乐。 ('pos', 0.9998497) 信仰是人生杠杆的支撑点,具备这个支撑点,才可能成为一个强而有力的人;信仰是事业的大门,没有正确的信仰,注定做不出伟大的事业。 ('pos', 0.99976236) 哲学是有严密逻辑系统的宇宙观,它研究宇宙的性质、宇宙内万事万物演化的总规律、人在宇宙中的位置等等一些很基本的问题 ('pos', 0.9996941) 伟人与平凡人的差别在于,伟人的胸中并不是没有不自信的时候,只是他能够在不自信时调整自己,从而从不自信中走出来,以达到自信的旺盛的精神状态 ('pos', 0.9994443) 别人是自己的镜子,自己应该在别人成功与失败的教训中避免不幸的重现。 ('pos', 0.9998518) 劣书是损害我们精神思想的毒药。 ('neg', 0.9961482) I love losing face ('pos', 0.98438025) 陈述性的讲演不会被当成 negative ('pos', 0.6916256) 偏激的、平庸的、不讲逻辑的才会 ('pos', 0.9996351) 生死狙击是这两年兴起的一款页游 ('pos', 0.87719715) A teacher from a community college addressed a sympathetic audience. ('pos', 0.95462114) 你怕是个傻子 ('neg', 0.9991398) 好耶好耶,妈妈有爸爸了 ('neg', 0.999869) 小学生们要喷就喷点有营养的好么 ('neg', 0.99981564) SB游戏 ('neg', 0.949867) 本人玩这个英雄联盟也有几千场了,打这么多场下来,不说100%的场次, 至少90%的场次是属于以下类型的。1,己方3路全爆或者敌方3路全爆2.赢是躺赢,输是凯瑞。3一方默契到爆每 ('neg', 0.9943099)
notebooks/Dstripes/adversarial/basic/inference_adversarial/dense/VAE/pokemonIVAAE_Dense_reconst_1ellwlb_05sharpdiff.ipynb
###Markdown Settings ###Code %env TF_KERAS = 1 import os sep_local = os.path.sep import sys sys.path.append('..'+sep_local+'..') print(sep_local) os.chdir('..'+sep_local+'..'+sep_local+'..'+sep_local+'..'+sep_local+'..') print(os.getcwd()) import tensorflow as tf print(tf.__version__) ###Output _____no_output_____ ###Markdown Dataset loading ###Code dataset_name='Dstripes' import tensorflow as tf train_ds = tf.data.Dataset.from_generator( lambda: training_generator, output_types=tf.float32 , output_shapes=tf.TensorShape((batch_size, ) + image_size) ) test_ds = tf.data.Dataset.from_generator( lambda: testing_generator, output_types=tf.float32 , output_shapes=tf.TensorShape((batch_size, ) + image_size) ) _instance_scale=1.0 for data in train_ds: _instance_scale = float(data[0].numpy().max()) break _instance_scale import numpy as np from collections.abc import Iterable if isinstance(inputs_shape, Iterable): _outputs_shape = np.prod(inputs_shape) _outputs_shape ###Output _____no_output_____ ###Markdown Model's Layers definition ###Code menc_lays = [tf.keras.layers.Dense(units=intermediate_dim//2, activation='relu'), tf.keras.layers.Dense(units=intermediate_dim//2, activation='relu'), tf.keras.layers.Flatten(), tf.keras.layers.Dense(units=latents_dim)] venc_lays = [tf.keras.layers.Dense(units=intermediate_dim//2, activation='relu'), tf.keras.layers.Dense(units=intermediate_dim//2, activation='relu'), tf.keras.layers.Flatten(), tf.keras.layers.Dense(units=latents_dim)] dec_lays = [tf.keras.layers.Dense(units=latents_dim, activation='relu'), tf.keras.layers.Dense(units=intermediate_dim, activation='relu'), tf.keras.layers.Dense(units=_outputs_shape), tf.keras.layers.Reshape(inputs_shape)] ###Output _____no_output_____ ###Markdown Model definition ###Code model_name = dataset_name+'IVAAE_Dense_reconst_1ell_05ssmi' experiments_dir='experiments'+sep_local+model_name from training.autoencoding_basic.autoencoders.autoencoder import autoencoder as AE inputs_shape=image_size variables_params = \ [ { 'name': 'inference_mean', 'inputs_shape':inputs_shape, 'outputs_shape':latents_dim, 'layers': menc_lays }, { 'name': 'inference_logvariance', 'inputs_shape':inputs_shape, 'outputs_shape':latents_dim, 'layers': venc_lays }, { 'name': 'generative', 'inputs_shape':latents_dim, 'outputs_shape':inputs_shape, 'layers':dec_lays } ] from utils.data_and_files.file_utils import create_if_not_exist _restore = os.path.join(experiments_dir, 'var_save_dir') create_if_not_exist(_restore) _restore #to restore trained model, set filepath=_restore from statistical.basic_adversarial_losses import \ create_inference_discriminator_real_losses, \ create_inference_discriminator_fake_losses, \ create_inference_generator_fake_losses inference_discriminator_losses = { 'inference_discriminator_real_outputs': create_inference_discriminator_real_losses, 'inference_discriminator_fake_outputs': create_inference_discriminator_fake_losses, 'inference_generator_fake_outputs': create_inference_generator_fake_losses, } ae = AE( name=model_name, latents_dim=latents_dim, batch_size=batch_size, variables_params=variables_params, filepath=None ) from evaluation.quantitive_metrics.sharp_difference import prepare_sharpdiff from statistical.losses_utilities import similarity_to_distance from statistical.ae_losses import expected_loglikelihood_with_lower_bound as ellwlb discr2gen_rate = 0.001 gen2trad_rate = 0.1 ae.compile( loss={'x_logits': lambda x_true, x_logits: ellwlb(x_true, x_logits)+ 0.5*similarity_to_distance(prepare_sharpdiff([ae.batch_size]+ae.get_inputs_shape()))(x_true, x_logits)} adversarial_losses=inference_discriminator_losses, adversarial_weights={'generator_weight': gen2trad_rate, 'discriminator_weight': discr2gen_rate} ) ###Output _____no_output_____ ###Markdown Callbacks ###Code from training.callbacks.sample_generation import SampleGeneration from training.callbacks.save_model import ModelSaver es = tf.keras.callbacks.EarlyStopping( monitor='loss', min_delta=1e-12, patience=12, verbose=1, restore_best_weights=False ) ms = ModelSaver(filepath=_restore) csv_dir = os.path.join(experiments_dir, 'csv_dir') create_if_not_exist(csv_dir) csv_dir = os.path.join(csv_dir, ae.name+'.csv') csv_log = tf.keras.callbacks.CSVLogger(csv_dir, append=True) csv_dir image_gen_dir = os.path.join(experiments_dir, 'image_gen_dir') create_if_not_exist(image_gen_dir) sg = SampleGeneration(latents_shape=latents_dim, filepath=image_gen_dir, gen_freq=5, save_img=True, gray_plot=False) ###Output _____no_output_____ ###Markdown Model Training ###Code ae.fit( x=train_ds, input_kw=None, steps_per_epoch=int(1e4), epochs=int(1e6), verbose=2, callbacks=[ es, ms, csv_log, sg], workers=-1, use_multiprocessing=True, validation_data=test_ds, validation_steps=int(1e4) ) ###Output _____no_output_____ ###Markdown Model Evaluation inception_score ###Code from evaluation.generativity_metrics.inception_metrics import inception_score is_mean, is_sigma = inception_score(ae, tolerance_threshold=1e-6, max_iteration=200) print(f'inception_score mean: {is_mean}, sigma: {is_sigma}') ###Output _____no_output_____ ###Markdown Frechet_inception_distance ###Code from evaluation.generativity_metrics.inception_metrics import frechet_inception_distance fis_score = frechet_inception_distance(ae, training_generator, tolerance_threshold=1e-6, max_iteration=10, batch_size=32) print(f'frechet inception distance: {fis_score}') ###Output _____no_output_____ ###Markdown perceptual_path_length_score ###Code from evaluation.generativity_metrics.perceptual_path_length import perceptual_path_length_score ppl_mean_score = perceptual_path_length_score(ae, training_generator, tolerance_threshold=1e-6, max_iteration=200, batch_size=32) print(f'perceptual path length score: {ppl_mean_score}') ###Output _____no_output_____ ###Markdown precision score ###Code from evaluation.generativity_metrics.precision_recall import precision_score _precision_score = precision_score(ae, training_generator, tolerance_threshold=1e-6, max_iteration=200) print(f'precision score: {_precision_score}') ###Output _____no_output_____ ###Markdown recall score ###Code from evaluation.generativity_metrics.precision_recall import recall_score _recall_score = recall_score(ae, training_generator, tolerance_threshold=1e-6, max_iteration=200) print(f'recall score: {_recall_score}') ###Output _____no_output_____ ###Markdown Image Generation image reconstruction Training dataset ###Code %load_ext autoreload %autoreload 2 from training.generators.image_generation_testing import reconstruct_from_a_batch from utils.data_and_files.file_utils import create_if_not_exist save_dir = os.path.join(experiments_dir, 'reconstruct_training_images_like_a_batch_dir') create_if_not_exist(save_dir) reconstruct_from_a_batch(ae, training_generator, save_dir) from utils.data_and_files.file_utils import create_if_not_exist save_dir = os.path.join(experiments_dir, 'reconstruct_testing_images_like_a_batch_dir') create_if_not_exist(save_dir) reconstruct_from_a_batch(ae, testing_generator, save_dir) ###Output _____no_output_____ ###Markdown with Randomness ###Code from training.generators.image_generation_testing import generate_images_like_a_batch from utils.data_and_files.file_utils import create_if_not_exist save_dir = os.path.join(experiments_dir, 'generate_training_images_like_a_batch_dir') create_if_not_exist(save_dir) generate_images_like_a_batch(ae, training_generator, save_dir) from utils.data_and_files.file_utils import create_if_not_exist save_dir = os.path.join(experiments_dir, 'generate_testing_images_like_a_batch_dir') create_if_not_exist(save_dir) generate_images_like_a_batch(ae, testing_generator, save_dir) ###Output _____no_output_____ ###Markdown Complete Randomness ###Code from training.generators.image_generation_testing import generate_images_randomly from utils.data_and_files.file_utils import create_if_not_exist save_dir = os.path.join(experiments_dir, 'random_synthetic_dir') create_if_not_exist(save_dir) generate_images_randomly(ae, save_dir) from training.generators.image_generation_testing import interpolate_a_batch from utils.data_and_files.file_utils import create_if_not_exist save_dir = os.path.join(experiments_dir, 'interpolate_dir') create_if_not_exist(save_dir) interpolate_a_batch(ae, testing_generator, save_dir) ###Output 100%|██████████| 15/15 [00:00<00:00, 19.90it/s]
deep-learnining-specialization/2. improving deep neural networks/resources/Optimization methods.ipynb
###Markdown Optimization MethodsUntil now, you've always used Gradient Descent to update the parameters and minimize the cost. In this notebook, you will learn more advanced optimization methods that can speed up learning and perhaps even get you to a better final value for the cost function. Having a good optimization algorithm can be the difference between waiting days vs. just a few hours to get a good result. Gradient descent goes "downhill" on a cost function $J$. Think of it as trying to do this: **Figure 1** : **Minimizing the cost is like finding the lowest point in a hilly landscape** At each step of the training, you update your parameters following a certain direction to try to get to the lowest possible point. **Notations**: As usual, $\frac{\partial J}{\partial a } = $ `da` for any variable `a`.To get started, run the following code to import the libraries you will need. ###Code import numpy as np import matplotlib.pyplot as plt import scipy.io import math import sklearn import sklearn.datasets from opt_utils import load_params_and_grads, initialize_parameters, forward_propagation, backward_propagation from opt_utils import compute_cost, predict, predict_dec, plot_decision_boundary, load_dataset from testCases import * %matplotlib inline plt.rcParams['figure.figsize'] = (7.0, 4.0) # set default size of plots plt.rcParams['image.interpolation'] = 'nearest' plt.rcParams['image.cmap'] = 'gray' ###Output _____no_output_____ ###Markdown 1 - Gradient DescentA simple optimization method in machine learning is gradient descent (GD). When you take gradient steps with respect to all $m$ examples on each step, it is also called Batch Gradient Descent. **Warm-up exercise**: Implement the gradient descent update rule. The gradient descent rule is, for $l = 1, ..., L$: $$ W^{[l]} = W^{[l]} - \alpha \text{ } dW^{[l]} \tag{1}$$$$ b^{[l]} = b^{[l]} - \alpha \text{ } db^{[l]} \tag{2}$$where L is the number of layers and $\alpha$ is the learning rate. All parameters should be stored in the `parameters` dictionary. Note that the iterator `l` starts at 0 in the `for` loop while the first parameters are $W^{[1]}$ and $b^{[1]}$. You need to shift `l` to `l+1` when coding. ###Code # GRADED FUNCTION: update_parameters_with_gd def update_parameters_with_gd(parameters, grads, learning_rate): """ Update parameters using one step of gradient descent Arguments: parameters -- python dictionary containing your parameters to be updated: parameters['W' + str(l)] = Wl parameters['b' + str(l)] = bl grads -- python dictionary containing your gradients to update each parameters: grads['dW' + str(l)] = dWl grads['db' + str(l)] = dbl learning_rate -- the learning rate, scalar. Returns: parameters -- python dictionary containing your updated parameters """ L = len(parameters) // 2 # number of layers in the neural networks # Update rule for each parameter for l in range(L): ### START CODE HERE ### (approx. 2 lines) parameters["W" + str(l+1)] = parameters["W" + str(l+1)] - learning_rate * grads["dW" + str(l+1)] parameters["b" + str(l+1)] = parameters["b" + str(l+1)] - learning_rate * grads["db" + str(l+1)] ### END CODE HERE ### return parameters parameters, grads, learning_rate = update_parameters_with_gd_test_case() parameters = update_parameters_with_gd(parameters, grads, learning_rate) print("W1 = " + str(parameters["W1"])) print("b1 = " + str(parameters["b1"])) print("W2 = " + str(parameters["W2"])) print("b2 = " + str(parameters["b2"])) ###Output W1 = [[ 1.63535156 -0.62320365 -0.53718766] [-1.07799357 0.85639907 -2.29470142]] b1 = [[ 1.74604067] [-0.75184921]] W2 = [[ 0.32171798 -0.25467393 1.46902454] [-2.05617317 -0.31554548 -0.3756023 ] [ 1.1404819 -1.09976462 -0.1612551 ]] b2 = [[-0.88020257] [ 0.02561572] [ 0.57539477]] ###Markdown **Expected Output**: **W1** [[ 1.63535156 -0.62320365 -0.53718766] [-1.07799357 0.85639907 -2.29470142]] **b1** [[ 1.74604067] [-0.75184921]] **W2** [[ 0.32171798 -0.25467393 1.46902454] [-2.05617317 -0.31554548 -0.3756023 ] [ 1.1404819 -1.09976462 -0.1612551 ]] **b2** [[-0.88020257] [ 0.02561572] [ 0.57539477]] A variant of this is Stochastic Gradient Descent (SGD), which is equivalent to mini-batch gradient descent where each mini-batch has just 1 example. The update rule that you have just implemented does not change. What changes is that you would be computing gradients on just one training example at a time, rather than on the whole training set. The code examples below illustrate the difference between stochastic gradient descent and (batch) gradient descent. - **(Batch) Gradient Descent**:``` pythonX = data_inputY = labelsparameters = initialize_parameters(layers_dims)for i in range(0, num_iterations): Forward propagation a, caches = forward_propagation(X, parameters) Compute cost. cost = compute_cost(a, Y) Backward propagation. grads = backward_propagation(a, caches, parameters) Update parameters. parameters = update_parameters(parameters, grads) ```- **Stochastic Gradient Descent**:```pythonX = data_inputY = labelsparameters = initialize_parameters(layers_dims)for i in range(0, num_iterations): for j in range(0, m): Forward propagation a, caches = forward_propagation(X[:,j], parameters) Compute cost cost = compute_cost(a, Y[:,j]) Backward propagation grads = backward_propagation(a, caches, parameters) Update parameters. parameters = update_parameters(parameters, grads)``` In Stochastic Gradient Descent, you use only 1 training example before updating the gradients. When the training set is large, SGD can be faster. But the parameters will "oscillate" toward the minimum rather than converge smoothly. Here is an illustration of this: **Figure 1** : **SGD vs GD** "+" denotes a minimum of the cost. SGD leads to many oscillations to reach convergence. But each step is a lot faster to compute for SGD than for GD, as it uses only one training example (vs. the whole batch for GD). **Note** also that implementing SGD requires 3 for-loops in total:1. Over the number of iterations2. Over the $m$ training examples3. Over the layers (to update all parameters, from $(W^{[1]},b^{[1]})$ to $(W^{[L]},b^{[L]})$)In practice, you'll often get faster results if you do not use neither the whole training set, nor only one training example, to perform each update. Mini-batch gradient descent uses an intermediate number of examples for each step. With mini-batch gradient descent, you loop over the mini-batches instead of looping over individual training examples. **Figure 2** : **SGD vs Mini-Batch GD** "+" denotes a minimum of the cost. Using mini-batches in your optimization algorithm often leads to faster optimization. **What you should remember**:- The difference between gradient descent, mini-batch gradient descent and stochastic gradient descent is the number of examples you use to perform one update step.- You have to tune a learning rate hyperparameter $\alpha$.- With a well-turned mini-batch size, usually it outperforms either gradient descent or stochastic gradient descent (particularly when the training set is large). 2 - Mini-Batch Gradient descentLet's learn how to build mini-batches from the training set (X, Y).There are two steps:- **Shuffle**: Create a shuffled version of the training set (X, Y) as shown below. Each column of X and Y represents a training example. Note that the random shuffling is done synchronously between X and Y. Such that after the shuffling the $i^{th}$ column of X is the example corresponding to the $i^{th}$ label in Y. The shuffling step ensures that examples will be split randomly into different mini-batches. - **Partition**: Partition the shuffled (X, Y) into mini-batches of size `mini_batch_size` (here 64). Note that the number of training examples is not always divisible by `mini_batch_size`. The last mini batch might be smaller, but you don't need to worry about this. When the final mini-batch is smaller than the full `mini_batch_size`, it will look like this: **Exercise**: Implement `random_mini_batches`. We coded the shuffling part for you. To help you with the partitioning step, we give you the following code that selects the indexes for the $1^{st}$ and $2^{nd}$ mini-batches:```pythonfirst_mini_batch_X = shuffled_X[:, 0 : mini_batch_size]second_mini_batch_X = shuffled_X[:, mini_batch_size : 2 * mini_batch_size]...```Note that the last mini-batch might end up smaller than `mini_batch_size=64`. Let $\lfloor s \rfloor$ represents $s$ rounded down to the nearest integer (this is `math.floor(s)` in Python). If the total number of examples is not a multiple of `mini_batch_size=64` then there will be $\lfloor \frac{m}{mini\_batch\_size}\rfloor$ mini-batches with a full 64 examples, and the number of examples in the final mini-batch will be ($m-mini_\_batch_\_size \times \lfloor \frac{m}{mini\_batch\_size}\rfloor$). ###Code # GRADED FUNCTION: random_mini_batches def random_mini_batches(X, Y, mini_batch_size = 64, seed = 0): """ Creates a list of random minibatches from (X, Y) Arguments: X -- input data, of shape (input size, number of examples) Y -- true "label" vector (1 for blue dot / 0 for red dot), of shape (1, number of examples) mini_batch_size -- size of the mini-batches, integer Returns: mini_batches -- list of synchronous (mini_batch_X, mini_batch_Y) """ np.random.seed(seed) # To make your "random" minibatches the same as ours m = X.shape[1] # number of training examples mini_batches = [] # Step 1: Shuffle (X, Y) permutation = list(np.random.permutation(m)) shuffled_X = X[:, permutation] shuffled_Y = Y[:, permutation].reshape((1,m)) # Step 2: Partition (shuffled_X, shuffled_Y). Minus the end case. num_complete_minibatches = math.floor(m/mini_batch_size) # number of mini batches of size mini_batch_size in your partitionning for k in range(0, num_complete_minibatches): ### START CODE HERE ### (approx. 2 lines) mini_batch_X = shuffled_X[:, k * mini_batch_size : (k + 1) * mini_batch_size] mini_batch_Y = shuffled_Y[:, k * mini_batch_size : (k + 1) * mini_batch_size] ### END CODE HERE ### mini_batch = (mini_batch_X, mini_batch_Y) mini_batches.append(mini_batch) # Handling the end case (last mini-batch < mini_batch_size) if m % mini_batch_size != 0: ### START CODE HERE ### (approx. 2 lines) mini_batch_X = shuffled_X[:, (k + 1) * mini_batch_size:] mini_batch_Y = shuffled_Y[:, (k + 1) * mini_batch_size:] ### END CODE HERE ### mini_batch = (mini_batch_X, mini_batch_Y) mini_batches.append(mini_batch) return mini_batches X_assess, Y_assess, mini_batch_size = random_mini_batches_test_case() mini_batches = random_mini_batches(X_assess, Y_assess, mini_batch_size) print ("shape of the 1st mini_batch_X: " + str(mini_batches[0][0].shape)) print ("shape of the 2nd mini_batch_X: " + str(mini_batches[1][0].shape)) print ("shape of the 3rd mini_batch_X: " + str(mini_batches[2][0].shape)) print ("shape of the 1st mini_batch_Y: " + str(mini_batches[0][1].shape)) print ("shape of the 2nd mini_batch_Y: " + str(mini_batches[1][1].shape)) print ("shape of the 3rd mini_batch_Y: " + str(mini_batches[2][1].shape)) print ("mini batch sanity check: " + str(mini_batches[0][0][0][0:3])) ###Output shape of the 1st mini_batch_X: (12288, 64) shape of the 2nd mini_batch_X: (12288, 64) shape of the 3rd mini_batch_X: (12288, 20) shape of the 1st mini_batch_Y: (1, 64) shape of the 2nd mini_batch_Y: (1, 64) shape of the 3rd mini_batch_Y: (1, 20) mini batch sanity check: [ 0.90085595 -0.7612069 0.2344157 ] ###Markdown **Expected Output**: **shape of the 1st mini_batch_X** (12288, 64) **shape of the 2nd mini_batch_X** (12288, 64) **shape of the 3rd mini_batch_X** (12288, 20) **shape of the 1st mini_batch_Y** (1, 64) **shape of the 2nd mini_batch_Y** (1, 64) **shape of the 3rd mini_batch_Y** (1, 20) **mini batch sanity check** [ 0.90085595 -0.7612069 0.2344157 ] **What you should remember**:- Shuffling and Partitioning are the two steps required to build mini-batches- Powers of two are often chosen to be the mini-batch size, e.g., 16, 32, 64, 128. 3 - MomentumBecause mini-batch gradient descent makes a parameter update after seeing just a subset of examples, the direction of the update has some variance, and so the path taken by mini-batch gradient descent will "oscillate" toward convergence. Using momentum can reduce these oscillations. Momentum takes into account the past gradients to smooth out the update. We will store the 'direction' of the previous gradients in the variable $v$. Formally, this will be the exponentially weighted average of the gradient on previous steps. You can also think of $v$ as the "velocity" of a ball rolling downhill, building up speed (and momentum) according to the direction of the gradient/slope of the hill. **Figure 3**: The red arrows shows the direction taken by one step of mini-batch gradient descent with momentum. The blue points show the direction of the gradient (with respect to the current mini-batch) on each step. Rather than just following the gradient, we let the gradient influence $v$ and then take a step in the direction of $v$. **Exercise**: Initialize the velocity. The velocity, $v$, is a python dictionary that needs to be initialized with arrays of zeros. Its keys are the same as those in the `grads` dictionary, that is:for $l =1,...,L$:```pythonv["dW" + str(l+1)] = ... (numpy array of zeros with the same shape as parameters["W" + str(l+1)])v["db" + str(l+1)] = ... (numpy array of zeros with the same shape as parameters["b" + str(l+1)])```**Note** that the iterator l starts at 0 in the for loop while the first parameters are v["dW1"] and v["db1"] (that's a "one" on the superscript). This is why we are shifting l to l+1 in the `for` loop. ###Code # GRADED FUNCTION: initialize_velocity def initialize_velocity(parameters): """ Initializes the velocity as a python dictionary with: - keys: "dW1", "db1", ..., "dWL", "dbL" - values: numpy arrays of zeros of the same shape as the corresponding gradients/parameters. Arguments: parameters -- python dictionary containing your parameters. parameters['W' + str(l)] = Wl parameters['b' + str(l)] = bl Returns: v -- python dictionary containing the current velocity. v['dW' + str(l)] = velocity of dWl v['db' + str(l)] = velocity of dbl """ L = len(parameters) // 2 # number of layers in the neural networks v = {} # Initialize velocity for l in range(L): ### START CODE HERE ### (approx. 2 lines) v["dW" + str(l+1)] = np.zeros(parameters["W" + str(l+1)].shape) v["db" + str(l+1)] = np.zeros(parameters["b" + str(l+1)].shape) ### END CODE HERE ### return v parameters = initialize_velocity_test_case() v = initialize_velocity(parameters) print("v[\"dW1\"] = " + str(v["dW1"])) print("v[\"db1\"] = " + str(v["db1"])) print("v[\"dW2\"] = " + str(v["dW2"])) print("v[\"db2\"] = " + str(v["db2"])) ###Output v["dW1"] = [[ 0. 0. 0.] [ 0. 0. 0.]] v["db1"] = [[ 0.] [ 0.]] v["dW2"] = [[ 0. 0. 0.] [ 0. 0. 0.] [ 0. 0. 0.]] v["db2"] = [[ 0.] [ 0.] [ 0.]] ###Markdown **Expected Output**: **v["dW1"]** [[ 0. 0. 0.] [ 0. 0. 0.]] **v["db1"]** [[ 0.] [ 0.]] **v["dW2"]** [[ 0. 0. 0.] [ 0. 0. 0.] [ 0. 0. 0.]] **v["db2"]** [[ 0.] [ 0.] [ 0.]] **Exercise**: Now, implement the parameters update with momentum. The momentum update rule is, for $l = 1, ..., L$: $$ \begin{cases}v_{dW^{[l]}} = \beta v_{dW^{[l]}} + (1 - \beta) dW^{[l]} \\W^{[l]} = W^{[l]} - \alpha v_{dW^{[l]}}\end{cases}\tag{3}$$$$\begin{cases}v_{db^{[l]}} = \beta v_{db^{[l]}} + (1 - \beta) db^{[l]} \\b^{[l]} = b^{[l]} - \alpha v_{db^{[l]}} \end{cases}\tag{4}$$where L is the number of layers, $\beta$ is the momentum and $\alpha$ is the learning rate. All parameters should be stored in the `parameters` dictionary. Note that the iterator `l` starts at 0 in the `for` loop while the first parameters are $W^{[1]}$ and $b^{[1]}$ (that's a "one" on the superscript). So you will need to shift `l` to `l+1` when coding. ###Code # GRADED FUNCTION: update_parameters_with_momentum def update_parameters_with_momentum(parameters, grads, v, beta, learning_rate): """ Update parameters using Momentum Arguments: parameters -- python dictionary containing your parameters: parameters['W' + str(l)] = Wl parameters['b' + str(l)] = bl grads -- python dictionary containing your gradients for each parameters: grads['dW' + str(l)] = dWl grads['db' + str(l)] = dbl v -- python dictionary containing the current velocity: v['dW' + str(l)] = ... v['db' + str(l)] = ... beta -- the momentum hyperparameter, scalar learning_rate -- the learning rate, scalar Returns: parameters -- python dictionary containing your updated parameters v -- python dictionary containing your updated velocities """ L = len(parameters) // 2 # number of layers in the neural networks # Momentum update for each parameter for l in range(L): ### START CODE HERE ### (approx. 4 lines) # compute velocities v["dW" + str(l+1)] = beta * v["dW" + str(l+1)] + (1 - beta) * grads["dW" + str(l+1)] v["db" + str(l+1)] = beta * v["db" + str(l+1)] + (1 - beta) * grads["db" + str(l+1)] # update parameters parameters["W" + str(l+1)] = parameters["W" + str(l+1)] - learning_rate * v["dW" + str(l+1)] parameters["b" + str(l+1)] = parameters["b" + str(l+1)] - learning_rate * v["db" + str(l+1)] ### END CODE HERE ### return parameters, v parameters, grads, v = update_parameters_with_momentum_test_case() parameters, v = update_parameters_with_momentum(parameters, grads, v, beta = 0.9, learning_rate = 0.01) print("W1 = " + str(parameters["W1"])) print("b1 = " + str(parameters["b1"])) print("W2 = " + str(parameters["W2"])) print("b2 = " + str(parameters["b2"])) print("v[\"dW1\"] = " + str(v["dW1"])) print("v[\"db1\"] = " + str(v["db1"])) print("v[\"dW2\"] = " + str(v["dW2"])) print("v[\"db2\"] = " + str(v["db2"])) ###Output W1 = [[ 1.62544598 -0.61290114 -0.52907334] [-1.07347112 0.86450677 -2.30085497]] b1 = [[ 1.74493465] [-0.76027113]] W2 = [[ 0.31930698 -0.24990073 1.4627996 ] [-2.05974396 -0.32173003 -0.38320915] [ 1.13444069 -1.0998786 -0.1713109 ]] b2 = [[-0.87809283] [ 0.04055394] [ 0.58207317]] v["dW1"] = [[-0.11006192 0.11447237 0.09015907] [ 0.05024943 0.09008559 -0.06837279]] v["db1"] = [[-0.01228902] [-0.09357694]] v["dW2"] = [[-0.02678881 0.05303555 -0.06916608] [-0.03967535 -0.06871727 -0.08452056] [-0.06712461 -0.00126646 -0.11173103]] v["db2"] = [[ 0.02344157] [ 0.16598022] [ 0.07420442]] ###Markdown **Expected Output**: **W1** [[ 1.62544598 -0.61290114 -0.52907334] [-1.07347112 0.86450677 -2.30085497]] **b1** [[ 1.74493465] [-0.76027113]] **W2** [[ 0.31930698 -0.24990073 1.4627996 ] [-2.05974396 -0.32173003 -0.38320915] [ 1.13444069 -1.0998786 -0.1713109 ]] **b2** [[-0.87809283] [ 0.04055394] [ 0.58207317]] **v["dW1"]** [[-0.11006192 0.11447237 0.09015907] [ 0.05024943 0.09008559 -0.06837279]] **v["db1"]** [[-0.01228902] [-0.09357694]] **v["dW2"]** [[-0.02678881 0.05303555 -0.06916608] [-0.03967535 -0.06871727 -0.08452056] [-0.06712461 -0.00126646 -0.11173103]] **v["db2"]** [[ 0.02344157] [ 0.16598022] [ 0.07420442]] **Note** that:- The velocity is initialized with zeros. So the algorithm will take a few iterations to "build up" velocity and start to take bigger steps.- If $\beta = 0$, then this just becomes standard gradient descent without momentum. **How do you choose $\beta$?**- The larger the momentum $\beta$ is, the smoother the update because the more we take the past gradients into account. But if $\beta$ is too big, it could also smooth out the updates too much. - Common values for $\beta$ range from 0.8 to 0.999. If you don't feel inclined to tune this, $\beta = 0.9$ is often a reasonable default. - Tuning the optimal $\beta$ for your model might need trying several values to see what works best in term of reducing the value of the cost function $J$. **What you should remember**:- Momentum takes past gradients into account to smooth out the steps of gradient descent. It can be applied with batch gradient descent, mini-batch gradient descent or stochastic gradient descent.- You have to tune a momentum hyperparameter $\beta$ and a learning rate $\alpha$. 4 - AdamAdam is one of the most effective optimization algorithms for training neural networks. It combines ideas from RMSProp (described in lecture) and Momentum. **How does Adam work?**1. It calculates an exponentially weighted average of past gradients, and stores it in variables $v$ (before bias correction) and $v^{corrected}$ (with bias correction). 2. It calculates an exponentially weighted average of the squares of the past gradients, and stores it in variables $s$ (before bias correction) and $s^{corrected}$ (with bias correction). 3. It updates parameters in a direction based on combining information from "1" and "2".The update rule is, for $l = 1, ..., L$: $$\begin{cases}v_{dW^{[l]}} = \beta_1 v_{dW^{[l]}} + (1 - \beta_1) \frac{\partial \mathcal{J} }{ \partial W^{[l]} } \\v^{corrected}_{dW^{[l]}} = \frac{v_{dW^{[l]}}}{1 - (\beta_1)^t} \\s_{dW^{[l]}} = \beta_2 s_{dW^{[l]}} + (1 - \beta_2) (\frac{\partial \mathcal{J} }{\partial W^{[l]} })^2 \\s^{corrected}_{dW^{[l]}} = \frac{s_{dW^{[l]}}}{1 - (\beta_1)^t} \\W^{[l]} = W^{[l]} - \alpha \frac{v^{corrected}_{dW^{[l]}}}{\sqrt{s^{corrected}_{dW^{[l]}}} + \varepsilon}\end{cases}$$where:- t counts the number of steps taken of Adam - L is the number of layers- $\beta_1$ and $\beta_2$ are hyperparameters that control the two exponentially weighted averages. - $\alpha$ is the learning rate- $\varepsilon$ is a very small number to avoid dividing by zeroAs usual, we will store all parameters in the `parameters` dictionary **Exercise**: Initialize the Adam variables $v, s$ which keep track of the past information.**Instruction**: The variables $v, s$ are python dictionaries that need to be initialized with arrays of zeros. Their keys are the same as for `grads`, that is:for $l = 1, ..., L$:```pythonv["dW" + str(l+1)] = ... (numpy array of zeros with the same shape as parameters["W" + str(l+1)])v["db" + str(l+1)] = ... (numpy array of zeros with the same shape as parameters["b" + str(l+1)])s["dW" + str(l+1)] = ... (numpy array of zeros with the same shape as parameters["W" + str(l+1)])s["db" + str(l+1)] = ... (numpy array of zeros with the same shape as parameters["b" + str(l+1)])``` ###Code # GRADED FUNCTION: initialize_adam def initialize_adam(parameters) : """ Initializes v and s as two python dictionaries with: - keys: "dW1", "db1", ..., "dWL", "dbL" - values: numpy arrays of zeros of the same shape as the corresponding gradients/parameters. Arguments: parameters -- python dictionary containing your parameters. parameters["W" + str(l)] = Wl parameters["b" + str(l)] = bl Returns: v -- python dictionary that will contain the exponentially weighted average of the gradient. v["dW" + str(l)] = ... v["db" + str(l)] = ... s -- python dictionary that will contain the exponentially weighted average of the squared gradient. s["dW" + str(l)] = ... s["db" + str(l)] = ... """ L = len(parameters) // 2 # number of layers in the neural networks v = {} s = {} # Initialize v, s. Input: "parameters". Outputs: "v, s". for l in range(L): ### START CODE HERE ### (approx. 4 lines) v["dW" + str(l+1)] = np.zeros(parameters["W" + str(l+1)].shape) v["db" + str(l+1)] = np.zeros(parameters["b" + str(l+1)].shape) s["dW" + str(l+1)] = np.zeros(parameters["W" + str(l+1)].shape) s["db" + str(l+1)] = np.zeros(parameters["b" + str(l+1)].shape) ### END CODE HERE ### return v, s parameters = initialize_adam_test_case() v, s = initialize_adam(parameters) print("v[\"dW1\"] = " + str(v["dW1"])) print("v[\"db1\"] = " + str(v["db1"])) print("v[\"dW2\"] = " + str(v["dW2"])) print("v[\"db2\"] = " + str(v["db2"])) print("s[\"dW1\"] = " + str(s["dW1"])) print("s[\"db1\"] = " + str(s["db1"])) print("s[\"dW2\"] = " + str(s["dW2"])) print("s[\"db2\"] = " + str(s["db2"])) ###Output v["dW1"] = [[ 0. 0. 0.] [ 0. 0. 0.]] v["db1"] = [[ 0.] [ 0.]] v["dW2"] = [[ 0. 0. 0.] [ 0. 0. 0.] [ 0. 0. 0.]] v["db2"] = [[ 0.] [ 0.] [ 0.]] s["dW1"] = [[ 0. 0. 0.] [ 0. 0. 0.]] s["db1"] = [[ 0.] [ 0.]] s["dW2"] = [[ 0. 0. 0.] [ 0. 0. 0.] [ 0. 0. 0.]] s["db2"] = [[ 0.] [ 0.] [ 0.]] ###Markdown **Expected Output**: **v["dW1"]** [[ 0. 0. 0.] [ 0. 0. 0.]] **v["db1"]** [[ 0.] [ 0.]] **v["dW2"]** [[ 0. 0. 0.] [ 0. 0. 0.] [ 0. 0. 0.]] **v["db2"]** [[ 0.] [ 0.] [ 0.]] **s["dW1"]** [[ 0. 0. 0.] [ 0. 0. 0.]] **s["db1"]** [[ 0.] [ 0.]] **s["dW2"]** [[ 0. 0. 0.] [ 0. 0. 0.] [ 0. 0. 0.]] **s["db2"]** [[ 0.] [ 0.] [ 0.]] **Exercise**: Now, implement the parameters update with Adam. Recall the general update rule is, for $l = 1, ..., L$: $$\begin{cases}v_{W^{[l]}} = \beta_1 v_{W^{[l]}} + (1 - \beta_1) \frac{\partial J }{ \partial W^{[l]} } \\v^{corrected}_{W^{[l]}} = \frac{v_{W^{[l]}}}{1 - (\beta_1)^t} \\s_{W^{[l]}} = \beta_2 s_{W^{[l]}} + (1 - \beta_2) (\frac{\partial J }{\partial W^{[l]} })^2 \\s^{corrected}_{W^{[l]}} = \frac{s_{W^{[l]}}}{1 - (\beta_2)^t} \\W^{[l]} = W^{[l]} - \alpha \frac{v^{corrected}_{W^{[l]}}}{\sqrt{s^{corrected}_{W^{[l]}}}+\varepsilon}\end{cases}$$**Note** that the iterator `l` starts at 0 in the `for` loop while the first parameters are $W^{[1]}$ and $b^{[1]}$. You need to shift `l` to `l+1` when coding. ###Code # GRADED FUNCTION: update_parameters_with_adam def update_parameters_with_adam(parameters, grads, v, s, t, learning_rate = 0.01, beta1 = 0.9, beta2 = 0.999, epsilon = 1e-8): """ Update parameters using Adam Arguments: parameters -- python dictionary containing your parameters: parameters['W' + str(l)] = Wl parameters['b' + str(l)] = bl grads -- python dictionary containing your gradients for each parameters: grads['dW' + str(l)] = dWl grads['db' + str(l)] = dbl v -- Adam variable, moving average of the first gradient, python dictionary s -- Adam variable, moving average of the squared gradient, python dictionary learning_rate -- the learning rate, scalar. beta1 -- Exponential decay hyperparameter for the first moment estimates beta2 -- Exponential decay hyperparameter for the second moment estimates epsilon -- hyperparameter preventing division by zero in Adam updates Returns: parameters -- python dictionary containing your updated parameters v -- Adam variable, moving average of the first gradient, python dictionary s -- Adam variable, moving average of the squared gradient, python dictionary """ L = len(parameters) // 2 # number of layers in the neural networks v_corrected = {} # Initializing first moment estimate, python dictionary s_corrected = {} # Initializing second moment estimate, python dictionary # Perform Adam update on all parameters for l in range(L): # Moving average of the gradients. Inputs: "v, grads, beta1". Output: "v". ### START CODE HERE ### (approx. 2 lines) v["dW" + str(l+1)] = beta1 * v["dW" + str(l+1)] + (1 - beta1) * grads["dW" + str(l+1)] v["db" + str(l+1)] = beta1 * v["db" + str(l+1)] + (1 - beta1) * grads["db" + str(l+1)] ### END CODE HERE ### # Compute bias-corrected first moment estimate. Inputs: "v, beta1, t". Output: "v_corrected". ### START CODE HERE ### (approx. 2 lines) v_corrected["dW" + str(l+1)] = v["dW" + str(l+1)] / (1 - beta1**t) v_corrected["db" + str(l+1)] = v["db" + str(l+1)] / (1 - beta1**t) ### END CODE HERE ### # Moving average of the squared gradients. Inputs: "s, grads, beta2". Output: "s". ### START CODE HERE ### (approx. 2 lines) s["dW" + str(l+1)] = beta2 * s["dW" + str(l+1)] + (1 - beta2) * np.square(grads["dW" + str(l+1)]) s["db" + str(l+1)] = beta2 * s["db" + str(l+1)] + (1 - beta2) * np.square(grads["db" + str(l+1)]) ### END CODE HERE ### # Compute bias-corrected second raw moment estimate. Inputs: "s, beta2, t". Output: "s_corrected". ### START CODE HERE ### (approx. 2 lines) s_corrected["dW" + str(l+1)] = s["dW" + str(l+1)] / (1 - beta2**t) s_corrected["db" + str(l+1)] = s["db" + str(l+1)] / (1 - beta2**t) ### END CODE HERE ### # Update parameters. Inputs: "parameters, learning_rate, v_corrected, s_corrected, epsilon". Output: "parameters". ### START CODE HERE ### (approx. 2 lines) parameters["W" + str(l+1)] = parameters["W" + str(l+1)] - learning_rate * v_corrected["dW" + str(l+1)] / (np.sqrt(s_corrected["dW" + str(l+1)]) + epsilon) parameters["b" + str(l+1)] = parameters["b" + str(l+1)] - learning_rate * v_corrected["db" + str(l+1)] / (np.sqrt(s_corrected["db" + str(l+1)]) + epsilon) ### END CODE HERE ### return parameters, v, s parameters, grads, v, s = update_parameters_with_adam_test_case() parameters, v, s = update_parameters_with_adam(parameters, grads, v, s, t = 2) print("W1 = " + str(parameters["W1"])) print("b1 = " + str(parameters["b1"])) print("W2 = " + str(parameters["W2"])) print("b2 = " + str(parameters["b2"])) print("v[\"dW1\"] = " + str(v["dW1"])) print("v[\"db1\"] = " + str(v["db1"])) print("v[\"dW2\"] = " + str(v["dW2"])) print("v[\"db2\"] = " + str(v["db2"])) print("s[\"dW1\"] = " + str(s["dW1"])) print("s[\"db1\"] = " + str(s["db1"])) print("s[\"dW2\"] = " + str(s["dW2"])) print("s[\"db2\"] = " + str(s["db2"])) ###Output W1 = [[ 1.63178673 -0.61919778 -0.53561312] [-1.08040999 0.85796626 -2.29409733]] b1 = [[ 1.75225313] [-0.75376553]] W2 = [[ 0.32648046 -0.25681174 1.46954931] [-2.05269934 -0.31497584 -0.37661299] [ 1.14121081 -1.09244991 -0.16498684]] b2 = [[-0.88529979] [ 0.03477238] [ 0.57537385]] v["dW1"] = [[-0.11006192 0.11447237 0.09015907] [ 0.05024943 0.09008559 -0.06837279]] v["db1"] = [[-0.01228902] [-0.09357694]] v["dW2"] = [[-0.02678881 0.05303555 -0.06916608] [-0.03967535 -0.06871727 -0.08452056] [-0.06712461 -0.00126646 -0.11173103]] v["db2"] = [[ 0.02344157] [ 0.16598022] [ 0.07420442]] s["dW1"] = [[ 0.00121136 0.00131039 0.00081287] [ 0.0002525 0.00081154 0.00046748]] s["db1"] = [[ 1.51020075e-05] [ 8.75664434e-04]] s["dW2"] = [[ 7.17640232e-05 2.81276921e-04 4.78394595e-04] [ 1.57413361e-04 4.72206320e-04 7.14372576e-04] [ 4.50571368e-04 1.60392066e-07 1.24838242e-03]] s["db2"] = [[ 5.49507194e-05] [ 2.75494327e-03] [ 5.50629536e-04]] ###Markdown **Expected Output**: **W1** [[ 1.63178673 -0.61919778 -0.53561312] [-1.08040999 0.85796626 -2.29409733]] **b1** [[ 1.75225313] [-0.75376553]] **W2** [[ 0.32648046 -0.25681174 1.46954931] [-2.05269934 -0.31497584 -0.37661299] [ 1.14121081 -1.09245036 -0.16498684]] **b2** [[-0.88529978] [ 0.03477238] [ 0.57537385]] **v["dW1"]** [[-0.11006192 0.11447237 0.09015907] [ 0.05024943 0.09008559 -0.06837279]] **v["db1"]** [[-0.01228902] [-0.09357694]] **v["dW2"]** [[-0.02678881 0.05303555 -0.06916608] [-0.03967535 -0.06871727 -0.08452056] [-0.06712461 -0.00126646 -0.11173103]] **v["db2"]** [[ 0.02344157] [ 0.16598022] [ 0.07420442]] **s["dW1"]** [[ 0.00121136 0.00131039 0.00081287] [ 0.0002525 0.00081154 0.00046748]] **s["db1"]** [[ 1.51020075e-05] [ 8.75664434e-04]] **s["dW2"]** [[ 7.17640232e-05 2.81276921e-04 4.78394595e-04] [ 1.57413361e-04 4.72206320e-04 7.14372576e-04] [ 4.50571368e-04 1.60392066e-07 1.24838242e-03]] **s["db2"]** [[ 5.49507194e-05] [ 2.75494327e-03] [ 5.50629536e-04]] You now have three working optimization algorithms (mini-batch gradient descent, Momentum, Adam). Let's implement a model with each of these optimizers and observe the difference. 5 - Model with different optimization algorithmsLets use the following "moons" dataset to test the different optimization methods. (The dataset is named "moons" because the data from each of the two classes looks a bit like a crescent-shaped moon.) ###Code train_X, train_Y = load_dataset() ###Output _____no_output_____ ###Markdown We have already implemented a 3-layer neural network. You will train it with: - Mini-batch **Gradient Descent**: it will call your function: - `update_parameters_with_gd()`- Mini-batch **Momentum**: it will call your functions: - `initialize_velocity()` and `update_parameters_with_momentum()`- Mini-batch **Adam**: it will call your functions: - `initialize_adam()` and `update_parameters_with_adam()` ###Code def model(X, Y, layers_dims, optimizer, learning_rate = 0.0007, mini_batch_size = 64, beta = 0.9, beta1 = 0.9, beta2 = 0.999, epsilon = 1e-8, num_epochs = 10000, print_cost = True): """ 3-layer neural network model which can be run in different optimizer modes. Arguments: X -- input data, of shape (2, number of examples) Y -- true "label" vector (1 for blue dot / 0 for red dot), of shape (1, number of examples) layers_dims -- python list, containing the size of each layer learning_rate -- the learning rate, scalar. mini_batch_size -- the size of a mini batch beta -- Momentum hyperparameter beta1 -- Exponential decay hyperparameter for the past gradients estimates beta2 -- Exponential decay hyperparameter for the past squared gradients estimates epsilon -- hyperparameter preventing division by zero in Adam updates num_epochs -- number of epochs print_cost -- True to print the cost every 1000 epochs Returns: parameters -- python dictionary containing your updated parameters """ L = len(layers_dims) # number of layers in the neural networks costs = [] # to keep track of the cost t = 0 # initializing the counter required for Adam update seed = 10 # For grading purposes, so that your "random" minibatches are the same as ours # Initialize parameters parameters = initialize_parameters(layers_dims) # Initialize the optimizer if optimizer == "gd": pass # no initialization required for gradient descent elif optimizer == "momentum": v = initialize_velocity(parameters) elif optimizer == "adam": v, s = initialize_adam(parameters) # Optimization loop for i in range(num_epochs): # Define the random minibatches. We increment the seed to reshuffle differently the dataset after each epoch seed = seed + 1 minibatches = random_mini_batches(X, Y, mini_batch_size, seed) for minibatch in minibatches: # Select a minibatch (minibatch_X, minibatch_Y) = minibatch # Forward propagation a3, caches = forward_propagation(minibatch_X, parameters) # Compute cost cost = compute_cost(a3, minibatch_Y) # Backward propagation grads = backward_propagation(minibatch_X, minibatch_Y, caches) # Update parameters if optimizer == "gd": parameters = update_parameters_with_gd(parameters, grads, learning_rate) elif optimizer == "momentum": parameters, v = update_parameters_with_momentum(parameters, grads, v, beta, learning_rate) elif optimizer == "adam": t = t + 1 # Adam counter parameters, v, s = update_parameters_with_adam(parameters, grads, v, s, t, learning_rate, beta1, beta2, epsilon) # Print the cost every 1000 epoch if print_cost and i % 1000 == 0: print ("Cost after epoch %i: %f" %(i, cost)) if print_cost and i % 100 == 0: costs.append(cost) # plot the cost plt.plot(costs) plt.ylabel('cost') plt.xlabel('epochs (per 100)') plt.title("Learning rate = " + str(learning_rate)) plt.show() return parameters ###Output _____no_output_____ ###Markdown You will now run this 3 layer neural network with each of the 3 optimization methods. 5.1 - Mini-batch Gradient descentRun the following code to see how the model does with mini-batch gradient descent. ###Code # train 3-layer model layers_dims = [train_X.shape[0], 5, 2, 1] parameters = model(train_X, train_Y, layers_dims, optimizer = "gd") # Predict predictions = predict(train_X, train_Y, parameters) # Plot decision boundary plt.title("Model with Gradient Descent optimization") axes = plt.gca() axes.set_xlim([-1.5,2.5]) axes.set_ylim([-1,1.5]) plot_decision_boundary(lambda x: predict_dec(parameters, x.T), train_X, train_Y) ###Output Cost after epoch 0: 0.690736 Cost after epoch 1000: 0.685273 Cost after epoch 2000: 0.647072 Cost after epoch 3000: 0.619525 Cost after epoch 4000: 0.576584 Cost after epoch 5000: 0.607243 Cost after epoch 6000: 0.529403 Cost after epoch 7000: 0.460768 Cost after epoch 8000: 0.465586 Cost after epoch 9000: 0.464518 ###Markdown 5.2 - Mini-batch gradient descent with momentumRun the following code to see how the model does with momentum. Because this example is relatively simple, the gains from using momemtum are small; but for more complex problems you might see bigger gains. ###Code # train 3-layer model layers_dims = [train_X.shape[0], 5, 2, 1] parameters = model(train_X, train_Y, layers_dims, beta = 0.9, optimizer = "momentum") # Predict predictions = predict(train_X, train_Y, parameters) # Plot decision boundary plt.title("Model with Momentum optimization") axes = plt.gca() axes.set_xlim([-1.5,2.5]) axes.set_ylim([-1,1.5]) plot_decision_boundary(lambda x: predict_dec(parameters, x.T), train_X, train_Y) ###Output Cost after epoch 0: 0.690741 Cost after epoch 1000: 0.685341 Cost after epoch 2000: 0.647145 Cost after epoch 3000: 0.619594 Cost after epoch 4000: 0.576665 Cost after epoch 5000: 0.607324 Cost after epoch 6000: 0.529476 Cost after epoch 7000: 0.460936 Cost after epoch 8000: 0.465780 Cost after epoch 9000: 0.464740 ###Markdown 5.3 - Mini-batch with Adam modeRun the following code to see how the model does with Adam. ###Code # train 3-layer model layers_dims = [train_X.shape[0], 5, 2, 1] parameters = model(train_X, train_Y, layers_dims, optimizer = "adam") # Predict predictions = predict(train_X, train_Y, parameters) # Plot decision boundary plt.title("Model with Adam optimization") axes = plt.gca() axes.set_xlim([-1.5,2.5]) axes.set_ylim([-1,1.5]) plot_decision_boundary(lambda x: predict_dec(parameters, x.T), train_X, train_Y) ###Output Cost after epoch 0: 0.690552 Cost after epoch 1000: 0.185567 Cost after epoch 2000: 0.150852 Cost after epoch 3000: 0.074454 Cost after epoch 4000: 0.125936 Cost after epoch 5000: 0.104235 Cost after epoch 6000: 0.100552 Cost after epoch 7000: 0.031601 Cost after epoch 8000: 0.111709 Cost after epoch 9000: 0.197648
onshore7-Copy1.ipynb
###Markdown OLS regression with power and windspeed, filtered to those countries that "make sense" ###Code R={} for i in wd.set_index('ISO_CODE').index.unique(): result = sm.ols(formula="year ~ power + wind", data=wd.set_index('ISO_CODE').loc[i]).fit() R[i]=result.params P=pd.DataFrame(R).T P[(P['Intercept']>1990)&(P['Intercept']<2020)] P[(P['Intercept']>1990)&(P['Intercept']<2020)].hist(bins=20) ###Output _____no_output_____ ###Markdown Number of projects in each country ###Code C={} for i in wd.set_index('ISO_CODE').index.unique(): C[i]=len(wd.set_index('ISO_CODE').loc[i].index) C P['projects']=C.values() ###Output _____no_output_____